LICENSE INFORI\/IATION Thisis a smgle user copy of thls eBook It may
not be conied or distributed.
Unauthorized reproduction or distribution of this eBook may result in severe criminal penalties.

w WA

LD-ROM ontainsieBookersion with ol §extsenrth’
PLUS IBONUS CHAPTER AN IIostrated Historyof Elettronits and Lomputing

Default
cover_thumb.jpg

BEBOE OLEAN
BOOGIE

OLEAN
BOOGIE

An unconventional guide to electronics
fundamentals, components, and processes

EBOP
TO

THE

by Clive (call me “Max”) Maxfield

Foreword by Pete Waddell,
Publisher of Printed Circuit Design

@ Newnes Amsterdam Boston London New York Oxford Paris

San Diego San Francisco ~ Singapore Sydney Toyko

Newnes is an imprint of Elsevier Science.
Copyright © 2003, Elsevier Science (USA). All rights reserved.

No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written
permission of the publisher.

Recognizing the importance of preserving what has been written,
Elsevier Science prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data
Maxfield, Clive, 1957—

Bebop to the boolean boogie : an unconventional guide to
electronics fundamentals, components, and processes / by Clive
(call me “Max”) Maxfield ; foreword by Pete Waddell.—2nd ed.

p. cm
Includes bibliographical references and index.
ISBN 0-7506-7543-8 (alk. paper)
1. Digital electronics—Popular works. [. Title.
TK7868.D5 M323 2002
621.381—dc21 2002038930

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

The publisher offers special discounts on bulk orders of this book. For
information, please contact:

Manager of Special Sales
Elsevier Science

200 Wheeler Road
Burlington, MA 01803
Tel: 781-313-4700

Fax: 781-313-4882

For information on all Newnes publications available, contact our
World Wide Web home page at: http://www.newnespress.com

Printed in the United States of America

109876543121

Foreword

My first exposure to the unique writing style of Clive (call me “Max”)
Maxfield was a magazine article that he co-wrote with an associate. The
article was technically brilliant (he paid me to say that) and very infor-
mative, but it was the short biography at the end of the piece that I enjoyed
the most. [say enjoyed the most because, as you will soon learn, Max does
not necessarily follow the herd or dance to the same drummer as the masses.
Trade journals have a reputation for being informative and educational but
also as dry as West Texas real estate.

Anyway, Max’s personally submitted biography not only included a
message from his mom, but also made mention of the fact that he (Max)
is taller than his co-author, who just happened to be his boss at the time.
Now to some people this may seem irrelevant, but to our readers (and Max’s
boss), these kind of things—trivial as they may seem to the uninitiated—
are what helps us to maintain our off-grid sense of the world. Max has
become, for better or worse, a part of that alternate life experience.

So now it’s a couple of years later, and Max has asked me to write a
few words by way of introduction. Personally, I think that the title of this
tome alone (hmmm, a movie?) should provide some input as to what you
can expect. But, for those who require a bit more: be forewarned, dear
reader, you will probably learn far more than you could hope to expect from
Bebop to the Boolean Boogie, just because of the unique approach Max has
to technical material. The author will guide you from the basics through
a minefield of potentially boring theoretical mish-mash, to a Nirvana
of understanding. You will not suffer that fate familiar to every reader:
rereading paragraphs over and over wondering what in the world the author
was trying to say. For a limey, Max shoots amazingly well and from the hip,
but in a way that will keep you interested and amused. If you are not
vigilant, you may not only learn something, but you may even enjoy the
process. The only further advice I can give is to “expect the unexpected.”

— PETE WADDELL, Publisher, Printed Circuit Design
Literary genius (so says his mom), and taller than Max by 5"

Contents

Section

Chapter 1 Analog versus Digital |

Chapter 2 Atoms, Molecules, and
Crystals...................... 7

Chapter 3 Conductors and Insulators;
Voltage, Current,
Resistance, Capacitance,
and Inductance 12

Voltage, Current and Resistance .. 13

Capacitanceceeevveevereenvenrennen. 16
Inductance.....ccccooevvvveviieiiiiiiniiin, 19
Unit Qualifierscccoevveevievireennenns 22
Chapter 4 Semiconductors: Diodes
and Transistors 24
The Electromechanical Relay....... 24
The First Vacuum Tubes............... 25
Semiconductorscoveerveeveiennene. 26
Semiconductor Diodes 28
Bipolar Junction Transistors 29
Metal-Oxide Semiconductor
Field-Effect Transistors 30
The Transistor as a Switch 32
Gallium Arsenide
Semiconductorscc.cvevienn. 33
Light-Emitting Diodes 33
Chapter 5 Primitive Logic
Functions 36
BUF and NOT Functions 38

AND, OR, and XOR Functions ... 39
NAND, NOR, and XNOR

Functionscooovvvvviveiiiiiiiinnnnnn, 40

@ rondamenats

NOt a Lot wueeeeeeen 40

Functions versus Gates.................. 43

Chapter 6 Using Transistors to
Build Primitive Logic

Functions 44
NOT and BUF Gates 44
NAND and AND Gates 46
NOR and OR Gatesccceevennenn. 48
XNOR and XOR Gates 49
Pass-transistor Logicc.coveveiennene 51

Chapter 7 Alternative Numbering

Systems 52
Decimal (Base-10) ...cocovvvivrviennnne. 52
Duo-Decimal (Base-12) 54
Sexagesimal (Base-60) 55
The Concepts of Zero and

Negative Numbers 56
Vigesimal (Base-20) ..cccocvvvverennnne. 57
Quinary (Base Five) ...cccccoevevennenenn 58
Binary (Base-2) .ocoevevveriivieiennn, 59
Octal (Base-8) and Hexadecimal

(Base-16) ..covvevviovieiiiriiiniinn, 61
Representing Numbers Using

Powers 63
Tertiary Logic coveevveeveeeieeieeeieennen. 66

Chapter 8 Binary Arithmetic 67
Unsigned Binary Numbers 67
Binary Additionccceevevvevieniennes 68
Binary Subtractionccccevevvene. 70
Signed Binary Numbers 75

Binary Multiplication.......c..c......... 78

viii m Bebop to the Boolean Boogie

Chapter 9 Boolean Algebra......... 80

Combining a Single Variable

with Logic O or Logic 1 83
The Idempotent Rules 84
The Complementary Rules 84
The Involution Rule 85
The Commutative Rules............... 85
The Associative Rules................... 86
Precedence of Operators 87
The First Distributive Rule 88
The Second Distributive Rule 89
The Simplification Rules 90
DeMorgan Transformations.......... 92
Minterms and Maxterms............... 94
Sum-of-Products and

Product-of-Sumscccevevennee 94
Canonical Formscccocveevieiinnn. 96

Chapter 10 Karnaugh Maps 97

Minimization Using Karnaugh

Maps c..oovevieeiiniiiciece 98
Grouping Mintermsc.cc.c...... 100
Incompletely Specified

Functionsccoeeveeveeieennnnnne. 102
Populating Maps Using Os

VETISUS 1S tovvveeriieeieeeiecenneenn 103

Chapter 11 Using Primitive Logic

Functions to Build More
Complex Functions ... 105

Scalar versus Vector Notation 105

Equality Comparators.................. 106
MultipleXerscccoveevveivrerieinienns 107
Decoders ..c.ooovivvieiieriiiieriiieeienne. 109
Tri-State Functionsc.ccve.... 110

Combinational versus Sequential
Functions

RS Latches ..ccccovveveevieiiciieienen 112
D-Type Latchesccooeveivieinncnnns 118
D-Type Flip-flops ...ccecevveivennncns 120
JK and T Flip-flops ...c.cccovevveunne 123
Shift Registers ...c.cccoevverveenncnnas 124
COUNLETS 1ooevvreeeriieeiieeeirreeireeeenneas 126
Setup and Hold Times 128
Brick by Brickcccoviviiniininiinenn 130
Chapter 12 State Diagrams,

State Tables, and

State Machines 131
State Diagramsc..cccoceveeeennenne. 132
State Tables.....ccccevveeieviieieienn. 134
State Machines.........ccccovvevennnnnn. 134
State Assignmentc..ccceeueeunenne. 136

Don’t Care States, Unused States,
and Latch-Up Conditions 138

Chapter 13 Analog-to-Digital and

Section

Digital-to-Analog 140
Analog-to-Digitalcccceevernnennes 140
Digital-to-Analog......c.ccccoveeeucnnes 142

{2 Components & Processes

Chapter 14 Integrated Circuits

(ICS) ... 143

An Overview of the Fabrication

Process..ccoveeevveevvreenivreeiieenns 143
A More Detailed Look at the

Fabrication Process 145
The Packaging Process 151
Integrated Circuits versus

Discrete Components 155
Different Types of ICsc........ 155
Technology Considerations 156

Contents m ix

Chapter 15 Memory ICs 162 Chapter 18 Circuit Boavds 221
Underlying RAM and ROM The First Circuit Boards.............. 221
Architecturesoooevveenneene. 165 PCBs and PWBS e 222
Increasing Width and Depth 170 Subtractive Processesc....... 222
Alternative Technologies 172 Additive Processescccoevunn.. 225
Single-sided Boardscccouu..... 226

Ch 16 P ble ICs ... 178
apter 16 Programmable ICs ... 17 Lead Through-Hole (LTH) 229

Fusible-link Technologies........... 179
Antifuse Technologi 179 Surface Mount Technology
AIIUSE 1 ECANOIOBIES rrrverrvvrreee (503 J 231
Speua.l PLD Notationc...... 181 Double-sided Boards.................... 233
Generic PLD Struc.tures """"""" 182 Holes versus Vias.......cccocvevennnne. 235
Prog(rlilingr;zslble Logic Arrays 183 Multilayer Boardscoccoovevienenen 237
e Microvia, HID, and Build-up
Programmable Array Logic Technologi 241
SN G Y 184 R
Discrete Wire Technology 243
Programmable Read-Only
Memories (PROMS) 185 Backplanes and Motherboards 252
Additional Programmable Conductive Ink Technology 253
OPLioNS eveveeveevrereerrereereerenenns 186 Chip-On-Board (COB) 255
Programming PLDsc..coovee.... 189 Flexible Printed Circuits (FPCs) 256
Reprogrammable PLDs................ 191 . s
Complex PLDs (CPLDS) 195 Chapter 19 Hybrids 258
, Hybrid Substratescccccuee. 258
Field-Programmable Gate . .
Arrays (FPGAS) e, 196 The Thick-Film Process 260
Why Use Programmable ICs? 199 The Thin-Film Process 265
The Assembly Process................. 268
Chapter 17 Application-Specific The Packaging Process 273
Integrated Circuits
(ASICS) oo 201 Chapter 20 Multichip Modules
Gate Array Devices.....ccocvevennenne. 202 (MCMs) 275
Standard Cell Devices................. 206 Categorization by Substrate 276
Full Custom Devices 208 Why Use Multichip Modules? 277
Input/Output Cells and Pads 209 Cofired Ceramicsccoeveevervennenn 279
Who Are All the Players?........... 210 Low-fired Cofired Ceramics........ 282
The ASIC Design Flow................ 213 Assembly and Packaging............. 283
ASIC, ASSP, and COT 218 Equivalent Integrated Circuits..... 287

SUMMALY oo 219 The Mind Bogglesc.cccoveeneeee 288

X W Bebop to the Boolean Boogie

Chapter 21 Alternative and Future

Technologies 290

Reconfigurable Hardware and

Interconnectceceeeeeeeeenne 290
Adaptive Computing Machines

(ACMS) v 300
Three-Dimensional Molded

Interconnectcceeeeeveenveenne 303
Optical Interconnect 305
Optical Memories......c..cccoeveeennes 315

Protein Switches and Memories . 316

Electromagnetic Transistor

Fabricationcccoevevveeenenenn. 320
Heterojunction Transistors 320
Buckyballs and Nanotubes 323
Diamond Substrates 325
Chip-On-Chip (COC)cccueuu... 328
Conductive Adhesives 329
Superconductorso.eveveeereenennns 331
Nanotechnologyc..cccoceveninn. 333
Again, the Mind Boggles 339
Summary ...c..cecceeeevienienenenennenn 340

Appendix A Assertion-Level

Logic..................... 341
Appendix B Positive Logic versus
Negative Logic 345
Physical to Abstract Mapping
(NMOS Logic) weevevreververennen. 346
Physical to Abstract Mapping
(PMOS Logic) .ocveveeverrerenienns 348
Physical to Intermediate to
Abstract Mappingc....c...... 349

Appendix C Reed-Miiller Logic 353

Appendix D Gray Codes............. 358

Appendix E A Reed-Miiller
Extraction Utility 362

How to Become Famous 377

Appendix F Linear Feedback Shift
Registers (LFSRs) 381

Many-to-One Implementations .. 381

More Taps Than You Know

What to Do Withccc.c...... 384
One-to-Many Implementations .. 385
Seeding an LFSRc.ccccoveiens 386
FIFO Applicationsc..c.ceccoveuenee 386
Modifying LFSRs to Sequence

20 Values .ooveevvevenieieeieinns 389

Accessing the Previous Value 390
Encryption and Decryption

Applications......c.ccceveveeennene. 391
Cyclic Redundancy Check
Applications.......ccccecevevennnn 391

Data Compression Applications . 393
Built-in Self-Test Applications... 395

Pseudo-Random Number

Applications.......ccceceverennnn 397
Last But Not Leastccccveeeenee... 400
Appendix G Pass-Transistor

Logic..................... 401

Appendix H No-Holds-Barred
Seafood Gumbo 405
Abbreviations and Acronyms 409
Glossary 412
Index 446

Bonus Chapter: An lllustrated History
of Electronics and
Computing ... On CD-ROM

This book is dedicated to my Auntie Barbara,
whose assiduous scrubbing in my younger years
has left me the proud owner of the cleanest pair

of knees in the known universe!

About this Book

Note from the author with regard to this second edition.

I awoke one Saturday morning in July 1992 with the idea that it would
be “sort of cool” to stroll into a bookshop and see something I'd written
on the shelves. So with no clue as to what this would actually entail, |
started penning the first edition of Bebop to the Boolean Boogie, which
eventually hit the streets in 1995.

Much to my surprise, Bebop quickly found use at Yale University as part
of an introductory electronics course (it was subsequently adopted by
a number of other universities around the world), and it soon became
required reading for sales and marketing groups at a number of high-
tech companies in Silicon Valley and across the USA.

Time passed by (as is its wont), and suddenly it was seven years later
and we were in a new millennium! Over these last few years, electronics
and computing technology has progressed in leaps and bounds. For
example, in 1995, an integrated circuit containing around 14 million
transistors was considered to be relatively state-of the art. By the
summer of 2002, however, Intel had announced a test chip containing
330 million transistors!

And it’s not just improvements to existing technologies, because over
the last few years entirely new ideas like carbon nanotubes have made
their appearance on the scene. Therefore, by popular demand, I've
completely revamped Bebop from cover to cover, revising the nitty-
gritty details to reflect the latest in technology, and adding a myriad
of new facts, topics, and nuggets of trivia (see especially the bonus
Chapter 22 on the CD ROM accompanying the book). Enjoy!

This outrageously interesting book has two namesakes, Bebop, a jazz style
known for its fast tempos and agitated rhythms, and Boolean algebra, a branch
of mathematics that is the mainstay of the electronics designer’s tool chest.
Bebop to the Boolean Boogie meets the expectations set by both, because it leaps
from topic to topic with the agility of a mountain goat, and it will become
your key reference guide to understanding the weird and wonderful world of
electronics.

Bebop to the Boolean Boogie provides a wide-ranging but comprehensive
introduction to the electronics arena, roaming through the fundamental
concepts, and rampaging through electronic components and the processes
used to create them. As a bonus, nuggets of trivia are included with which
you can amaze your family and friends; for example, Greenland Eskimos have
a base twenty number system because they count using both fingers and toes.

Section 1: Fundamental Concepts starts by considering the differences
between analog and digital views of the world. We then proceed rapidly
through atomic theory and semiconductor switches to primitive logic functions
and their electronic implementations. The concepts of alternative numbering
systems are presented, along with binary arithmetic, Boolean algebra, and
Karnaugh map representations. Finally, the construction of more complex
logical functions is considered along with their applications.

Section 2: Components and Processes is where we consider the components
from which electronic systems are formed and the processes required to
construct them. The construction of integrated circuits is examined in some
detail, followed by introductions to memory devices, programmable devices,
and application-specific devices. The discussion continues with hybrids,
printed circuit boards, and multichip modules. We close with an overview of
some alternative and future technologies along with a history of where every-
thing came from. Also, there’s a bonus chapter (Chapter 22), An Illustrated
History of Electronics and Computing, on the CD-ROM accompanying this
book, that will answer questions you didn’t even think to ask!

This book is of particular interest to electronics students. Additionally, by
clarifying the techno-speech used by engineers, the book is of value to anyone
who is interested in understanding more about electronics but lacks a strong
technical background.

Except where such interpretation is inconsistent with the context, the
singular shall be deemed to include the plural, the masculine shall be deemed
to include the feminine, and the spelling (and the punctuation) shall be
deemed to be correct!

About the Author

Clive “Max” Maxfield is 6'1" tall, outrageously handsome, English and
proud of it. In addition to being a hero, trendsetter, and leader of fashion,
he is widely regarded as an expert in all aspects of electronics (at least by his
mother).

After receiving his B.Sc. in Control Engineering in 1980 from Sheffield
Polytechnic (now Sheffield Hallam University), England, Max began his
career as a designer of central processing units for mainframe computers.

To cut a long story short, Max now finds himself President of TechBites
Interactive (www.techbites.com). A marketing consultancy, TechBites
specializes in communicating the value of technical products and services to
non-technical audiences through such mediums as websites, advertising,
technical documents, brochures, collaterals, and multimedia.

In his spare time (Ha!), Max is co-editor and co-publisher of the
web-delivered electronics and computing hobbyist magazine EPE Online
(www.epemag.com) and a contributing editor to www.eedesign.com. In
addition to numerous technical articles and papers appearing in magazines
and at conferences around the world, Max is also the author of Designus
Maximus Unleashed (Banned in Alabama) and co-author of Bebop BYTES Back
(An Unconwventional Guide to Computers).

On the off-chance that you're still not impressed, Max was once referred
to as an “industry notable” and a “semiconductor design expert” by someone
famous who wasn’t prompted, coerced, or remunerated in any way!

Acknowledgments

Special thanks for technical advice go to Alvin Brown, Alon Kfir,
Don Kuk, and Preston Jett, the closest thing to living encyclopedic
reference manuals one could hope to meet. (The reason that the text
contains so few bibliographic references is due to the fact that [never
had to look anything up—1I simply asked the relevant expert for the
definitive answer.)

[would also like to thank Dave Thompson from Mentor Graphics,
Tamara Snowden and Robert Bielby from Xilinx, Stuart Hamilton from
NEC, Richard Gordon and Gary Smith from Gartner Dataquest, Richard
Goering from EE Times, high-speed design expert Lee Ritchey from
Speeding Edge, and circuit board technologist Happy Holden from
Westwood Associates, all of whom helped out with critical nuggets of
information just when I needed them the most.

Thanks also to Joan Doggrell, who labored furiously to meet my
ridiculous deadlines. An old friend and expert copy editor, Joan not only
corrected my syntax and grammar, but also offered numerous suggestions
that greatly improved the final result. (In the unlikely event that any
errors did creep in, they can only be attributed to cosmic rays and have
nothing whatsoever to do with me.)

Last but not least, I should also like to mention my daughters— Abby
and Lucie—without whom this book would never have materialized
(they so depleted my financial resources that I was obliged to look for a
supplemental source of income).

— Clive (Max) Maxfield, June 2002

Chapter

VN
1

A 4

Analog Versus Digital

It was a dark and stormy night . . .
always wanted to start a book this
way, and this is as good a time as
any, but we digress. . .

Now sit up and pay attention
because this bit is important.
Electronic engineers split their
world into two views called analog
and digital, and it’s necessary to
understand the difference between
these views to make much sense out
of the rest of this book.!

A digital quantity is one that
can be represented as being in one
of a finite number of states, such as
O and 1, ON and OFF, UP and DOWN,
and so on. As an example of a
simple digital system, consider a
light switch in a house. When the
switch is UP, the light is ON, and
when the switch is DOWN, the light
is OFF.2 By comparison, a light
controlled by a dimmer switch
provides an example of a simple
analog system.

Made famous by the Peanuts
cartoon character, Snoopy, the
phrase “It was a dark and stormy
night . . .” is actually the opening
sentence to an 1830 book by the
British author Edward George
Bulwer-Lytton. A legend in his

own lunchtime, Bulwer-Lytton
became renowned for penning
exceptionally bad prose, of which
the opening to his book Paul
Clifford set the standard for others
to follow. For your delectation and
delight, the complete opening
sentence was: “It was a dark and
stormy night; the rain fell in torrents—
except at occasional intervals, when
it was checked by a violent gust of
wind which swept up the streets (for
it is in London that our scene lies),
rattling along the housetops, and
fiercely agitating the scanty flame of
the lamps that struggled against the
darkness.” Where else are you going
to go to learn nuggets of trivia like
this? As you can see, this isn’t your
mother’s electronics book!

1 In England, “analog” is spelled “analogue” (and pronounced with a really cool accent).

2 At least, that’s the way they work in America. It’s the opposite way round in England, and

you take your chances in the rest of the world.

2 m Chapter One

We can illustrate the differences in the way these two systems work by
means of a graph-like diagram (Figure 1-1). Time is considered to progress from
left to right, and the solid lines, which engineers often refer to as waveforms,
indicate what is happening.

Digital
Signal

Analog
Signal

Figure 1-1. Digital versus analog waveforms

In this figure, the digital waveform commences in its OFF state, changes to
its ON state, and then returns to its OFF state. In the case of the analog wave-
form, however, we typically don’t think in terms of ON and OFF. Rather, we
tend to regard things as being more OFF or more ON with an infinite number of
values between the two extremes.

One interesting point about digital systems is that
\ they can have more than two states. For example,
consider a fun-loving fool sliding down a ramp
mounted alongside a staircase (Figure 1-2).
In order to accurately determine this

person’s position on the ramp, an indepen-
dent observer would require the use of a tape
measure. Alternatively, the observer could
estimate the ramp-slider’s approximate
location in relation to the nearest stair.
The exact position on the ramp, as measured
using the tape measure, would be considered
G\ to be an analog value. In this case, the
analog value most closely represents the real
Figure 1-2. Staircase and ramp world and can be as precise as the measuring

Analog versus Digital m 3

technique allows. By comparison, an estimation based on the nearest stair
would be considered to be a digital value. As was previously noted, a digital
value is represented as being in one of a finite number of discrete states. These
states are called quanta (from the Latin neuter of quantus, meaning “how great”)
and the accuracy, or resolution, of a digital value is dependent on the number
of quanta employed to represent it.

Assume that at some starting time we’ll call T, (“time zero”), our thrill-
seeker is balanced at the top of the ramp preparing to take the plunge. He
commences sliding at time T, and reaches the bottom of the ramp at time T,.
Analog and digital waveforms can be plotted representing the location of the
person on the ramp as a function of time (Figure 1-3).

Once again, the horizontal axis in
both waveforms represents the passage Height
of time, which is considered to (physical units)

progress from left to right. In the case ANALOG VIEW

of the analog waveform, the vertical
axis is used to represent the thrill-
seeker’s exact location in terms of
height above the ground, and is

therefore annotated with real, Time
physicalunits. Bycomparison’ the ||||||||||||||||||||||||||||||||||||
. . . T T,
vertical axis for the digital waveform
is annotated with abstract labels, N
earest
which do not have any units associ- step
ated with them. Platf
. . attorm | DIGITAL VIEW
To examine the differences be- Step 4—— — T AN
tween analog and digital views in StopB—— — + —
more detail, let’s consider a brick
Step2—— — —{— — —
suspended from a wooden beam by
. . L1 5t6p1———4————
a piece of elastic. If the brick is left | Time
to its own devices, itwilleventually Ground T[T T T I I T T T[TTT T 77T
T T, T,

o] 1 2

reach a stable state in which the pull
f ity is bal d by the tensi
F) gravity 1s. a %nce y the tehsion Figure 1-3. Analog and digital waveforms
in the elastic (Figure 1-4). showing the position of the person
sliding down the ramp

4 m Chapter One

Assume that at time T, the system is in its
stable state. The system remains in this state
until time T,, when an inquisitive passerby
grabs hold of the brick and pulls it down,
Wooden bear thereby increasing the tension on the elastic.

Pulling the brick down takes some time, and

Flastic the brick reaches its lowest point at time T,.

The passerby hangs around for a while

Brick " looking somewhat foolish, releases
Stable position the brick at time T, and there-

(tension in elastic balances pull of gravity) after exits fI'OIIl our story. The
Figure 1-4. Brick suspended by elastic brick’s resulting motion may

be illustrated using an analog

Height waveform (Figure 1-5).
A

Stable Position

|
\
\
|
\
|
\
\
\
|
\
\
\
: > Time
T T T, T.

Figure 1-5. Brick on elastic: analog waveform

Now consider a digital view of the brick’s motion represented by two
quanta labeled LOW and HIGH. The LOW quanta may be taken to represent any
height less than or equal to the system’s stable position, and the HIGH quanta
therefore represents any height greater than the stable position (Figure 1-6).
(Our original analog waveform is shown as a dotted line.)

Although it is apparent that the digital view is a subset of the analog view,
digital representations often provide extremely useful approximations to

Analog versus Digital m 5

stable position

Analog b
Digital state nalog bands
i '
Sl ! " -~ Above the

Stable Position

LOW

Below the
H stable position
" T D
\ !
/
;

To

Time
Figure 1-6. Brick on elastic: two-quanta digital waveform

the real world. If the only requirement in the above example is to determine

whether the brick is above or below the stable position, then the digital view
is the most appropriate.

The accuracy of a digital view can be improved by adding more quanta.

For example, consider a digital view with five quanta: LOW, LOW-MIDDLE,
MIDDLE, HIGH-MIDDLE, and HIGH. As the number of quanta increases,

the digital view more closely approximates the analog view (Figure 1-7).

. Analog bands
Digital state ¢
HIGH 7
HIGH-MIDDLE

MIDDLE

LOW-MIDDLE

Time

Figure 1-7. Brick on elastic: five-quanta digital waveform

6 B Chapter One

In the real world, every electronic component behaves in an analog fashion.
However, these components can be connected together so as to form functions
whose behavior is amenable to digital approximations. This book concentrates
on the digital view of electronics, although certain aspects of analog designs
and the effects associated with them are discussed where appropriate.

Chapter

72‘

A 4

Atoms, Molecules,
and Crystals

Matter, the stuff that everything is made of, is formed from atoms. The heart
of an atom, the nucleus, is composed of protons and neutrons and is surrounded
by a “cloud” of electrons.! For example, consider an atom of the gas helium,
which consists of two protons, two neutrons, and two electrons (Figure 2-1).

[t may help to visualize the electrons as orbiting the

positive charge
negative charge

nucleus in the same way that the moon orbits the = Proton
) , . = Neutron
earth. In the real world things aren’t this = electron

simple, but the concept of orbiting
electrons serves our purpose here.
Each proton carries a single

positive (+ve) charge, and each P -~
electron carries a single negative /// Ill \\\
(—ve) charge. The neutrons are ‘\\ l\ e !
neutral and act like glue, holding T~ L /®
the nucleus together and resisting \

the natural tendency of

the protons to repel each other.
Protons and neutrons are approxi- .]
. . Figure 2-1. Helium atom
mately the same size, while electrons
are very much smaller. If a basketball
were used to represent the nucleus of a helium atom, then, on the same scale,
softballs could represent the individual protons and neutrons, while large
garden peas could represent the electrons. In this case, the diameter of an

electron’s orbit would be approximately equal to the length of 250 American

1 We now know that protons and neutrons are formed from fundamental particles called quarks,
of which there are six flavors: up, down, charm, strange, top (or truth), and bottom (or beauty).
Quarks are so weird that they have been referred to as “The dreams that stuff is made from,” and
they are way beyond the scope of this book.

8 m Chapter Two

football fields (excluding the end zones)! Thus, the majority of an atom
consists of empty space. If all the empty space were removed from the atoms
that form a camel, it would be possible for the little rascal to pass through the
eye of a needle! 234

The number of protons determines the type of the element; for example,
hydrogen has one proton, helium two, lithium three, etc. Atoms vary greatly
in size, from hydrogen with its single proton to those containing hundreds of
protons. The number of neutrons does not necessarily equal the number of
protons. There may be several different flavors, or isotopes, of the same element
differing only in their number of neutrons; for example, hydrogen has three
isotopes with zero, one, and two neutrons, respectively.

Left to its own devices, each proton in the nucleus will have a comple-
mentary electron. If additional electrons are forcibly added to an atom, the
result is a negative ion of that atom; if electrons are forcibly removed from an
atom, the result is a positive ion.

In an atom where each proton is balanced by a complementary electron,
one would assume that the atom would be stable and content with its own
company, but things are not always as they seem. Although every electron
contains the same amount of negative charge, electrons orbit the nucleus at
different levels known as quantum levels or electron shells. Each electron shell
requires a specific number of electrons to fill it; the first shell requires two
electrons, the second requires eight, etc. Thus, although a hydrogen atom
contains both a proton and an electron and is therefore electrically balanced,
it is still not completely happy. Given a choice, hydrogen would prefer to
have a second electron to fill its first electron shell. However, simply adding
a second electron is not the solution; although the first electron shell would
now be filled, the extra electron would result in an electrically unbalanced
negative ion.

Obviously this is a bit of a poser, but the maker of the universe came up
with a solution; atoms can use the electrons in their outermost shell to form

2 [am of course referring to the Bible verse: “It is easier for a camel to go through the eye of a needle, than

for a rich man to enter the Kingdom of God.” (Mark 10:25).
3 In fact, the “needle” was a small, man-sized gate located next to the main entrance to Jerusalem.

4 The author has discovered to his cost that if you call a zoo to ask the cubic volume of the average
adult camel, they treat you as if you are a complete idiot . . . go figure!

Atoms, Molecules, and Crystals m 9

bonds with other atoms. The atoms share each other’s electrons, thereby
forming more complex structures. One such structure is called a molecule; for
example, two hydrogen atoms (chemical symbol H), each comprising a single
proton and electron, can bond together and share their electrons to form a
hydrogen molecule (chemical symbol H,) (Figure 2-2).

Hydrogen Atom (H) Hydrogen Atom (H)
-ve

Hydrogen Molecule (Hy)

———— —_————

/ +ve \\ P +ve \
/ N \
\ = |
\ - /

7 ~ _Ve/
~ _ -~ ~ ~
~ ~ - _ — - ~ ~ - —

Figure 2-2. Two hydrogen atoms bonding to form a hydrogen molecule

These types of bonds are called valence bonds. The resulting hydrogen
molecule contains two protons and two electrons from its constituent atoms
and so remains electrically balanced. However, each atom lends its electron to
its partner and, at the same time, borrows an electron from its partner. This can
be compared to two circus jugglers passing objects between each other—the
quickness of the hand deceives the eye. The electrons are passing backwards
and forwards between the atoms so quickly that each atom is fooled into
believing it has two electrons. The first electron shell of each atom appears
to be completely filled and the hydrogen molecule is therefore stable.

Even though the hydrogen molecule is the simplest molecule of all, the
previous illustration demanded a significant amount of time, space, and effort.
Molecules formed from atoms containing more than a few protons and electrons
would be well nigh impossible to represent in this manner. A simpler form of

10 m Chapter Two

representation is therefore employed, H = hydrogen atom
with two dashed lines indicating H,
the sharing of two electrons
(Figure 2-3).
Now contrast the case of

hydrogen with helium. Helium Figure 2-3. Alternative representation
of a hydrogen molecule

atoms each have two protons
and two electrons and are therefore electrically balanced. Additionally, as
helium’s two electrons completely fill its first electron shell, this atom is very
stable.” This means that, under normal circumstances, helium atoms do not go
around casually making molecules with every other atom they meet.

Molecules can also be formed by combining different types of atoms. An
oxygen atom (chemical symbol O) contains eight protons and eight electrons.
Two of the electrons are used to fill the first electron shell, which leaves six
left over for the second shell. Unfortunately for oxygen, its second shell would
ideally prefer eight electrons to fill it. Each oxygen atom can therefore form
two bonds with other atoms—for example, with two hydrogen atoms to form
a water molecule (chemical symbol H,O) (Figure 2-4). (The reason the three
atoms in the water molecule are not shown as forming a straight line is
discussed in the section on nanotechnology in Chapter 21.)

Each hydrogen atom lends its
H = hydrogen atom

H.O O = oxygen atom electron to the oxygen atom and at
) =

the same time borrows an electron
from the oxygen atom. This leads
both of the hydrogen atoms to
believe they have two electrons in
their first electron shell. Similarly,
the oxygen atom lends two electrons

(one to each hydrogen atom) and at
the same time borrows two electrons
(one from each hydrogen atom).

Figure 2-4. Water molecule

5 Because helium is so stable, it is known as an inert, or noble, gas (the latter appellation presumably
comes from the fact that helium doesn’t mingle with the commoners <grin>).

Atoms, Molecules, and Crystals m 11

When the two borrowed electrons are added to the original six in the oxygen
atom’s second shell, this shell appears to contain the eight electrons necessary to
fill it. Thus, all the atoms in the water molecule are satisfied with their lot and
the molecule is stable.

Structures other than molecules may be formed when atoms bond; for
example, crystals. Carbon, silicon, and germanium all belong to the same family
of elements; each has only four electrons in its outermost electron shell. Silicon
has 14 protons and 14 electrons; two electrons are required to fill the first
electron shell and eight to fill the second shell; thus, only four remain for the
third shell, which would ideally prefer eight. Under the appropriate conditions,
each silicon atom will form bonds with four other silicon atoms, resulting in a
three-dimensional silicon crystal® (Figure 2-5).

The electrons used to form the bonds in crystalline structures such as silicon
are tightly bound to their respective atoms. Yet another structure is presented
by metals such as copper, silver, and gold. Metals have an amorphous crystalline
structure in which their shared electrons have relatively weak bonds and may
easily migrate from one atom to another.

S)
I

o
=
S
Y
N
S
S
B

Apart from the fact that atoms
are the basis of life, the universe,

and everything as we knowit, S

they are also fundamental to the ¥

operation of the components used i i

in electronic designs. Electricity N
Si rooootiod i poitiiiio si

may be considered to be vast herds J
of electrons migrating from one

place to another, while electronics
is the science of controlling these

herds: starting them, stopping them, @
deciding where they can roam, and

determining what they are going to

Figure 2-5. Simplified (two-dimensional)

representation of the three-dimensional
structure of crystalline silicon

do when they get there.

6 An equivalent structure formed from carbon atoms is known as diamond.

Chapter

.\

3

A 4

Conductors and Insulators;
Voltage, Current, Resistance,
Capacitance, and Inductance

A substance that conducts electricity easily is called a conductor. Metals
such as copper are very good conductors because the bonds in their amorphous
crystalline structures are relatively weak, and the bonding electrons can easily
migrate from one atom to another. If a piece of copper wire is used to connect
a source with an excess of electrons to a target with too few electrons, the wire

will conduct electrons between them (Figure 3-1).

©
©

020

©

OF<Q,
B9

oS

Migration of electrons

®

Conducting source
with excess electrons

Copper wire

®

OePo

®

MO,
O

o

Conducting target
depleted of electrons

Figure 3-1. Electrons flowing through a copper wire

If we consider electricity to be the migration of electrons from one place to
another, then we may also say that it flows from the more negative source to
the more positive target. As an electron jumps from the negative source into
the wire, it pushes the nearest electron in the wire out of the way. This electron
pushes another in turn, and the effect ripples down the wire until an electron
at the far end of the wire is ejected into the more positive target. When an
electron arrives in the positive target, it neutralizes one of the positive charges.

An individual electron will take a surprisingly long time to migrate from
one end of the wire to the other; however, the time between an electron

Conductors and Insulators m 13

entering one end of the wire and causing an equivalent electron to be ejected
from the other end is extremely fast.!

As opposed to a conductor, a substance which does not conduct electricity
easily is called an insulator. Materials such as rubber are very good insulators
because the electrons used to form bonds are tightly bound to their respective

atoms.z

Voltage, Current, and Resistance

One measure of whether a substance is a conductor or an insulator is how
much it resists the flow of electricity. Imagine a tank of water to which two
pipes are connected at different heights; the water ejected from the pipes is
caught in two buckets A and B (Figure 3-2).

Resistance

m—

s ___\\ Less
Lower \ Flow

WATER - Pressure \
A~ === § Greater
Higher Flow
Pressure

Figure 3-2. Water tank representation of voltage,
current, and resistance

1 For a copper wire isolated in a vacuum, the speed of a signal propagating through the wire is only
fractionally less than the speed of light. However, the speed of a signal is modified by a variety of
factors, including any materials surrounding or near the conductor. Signal speeds in electronic
circuits vary, but are typically in the vicinity of half the speed of light.

2 In reality, everything conducts if presented with a sufficiently powerful electric potential. For
example, if you don a pair of rubber boots and then fly a kite in a thunderstorm, your rubber boots
won’t save you when the lightning comes racing down the kite string! (Bearing in mind that
litigation is a national sport in America, do NOT try this at home unless you are a professional.)

14 m Chapter Three

Let’s assume that the contents of the tank are magically maintained at a
constant level. The water pressure at the end of a pipe inside the tank depends
on the depth of the pipe with respect to the surface level. The difference in
pressure between the ends of a pipe inside and outside the tank causes water
to flow. The amount of water flowing through a pipe depends on the water
pressure and on the resistance to that pressure determined by the pipe’s cross-
sectional area. A thin pipe with a smaller cross-sectional area will present more
resistance to the water than a thicker pipe with a larger cross-sectional area.
Thus, if both pipes have the same cross-sectional area, bucket B will fill faster
than bucket A.

In electronic systems, the flow of electricity is called current measured in
units of amperes or amps;># the resistance to electrical flow is simply called
resistance measured in units of ohms.? and the electrical equivalent to pressure
is called voltage, or electric potential, measured in units of volts.®

The materials used to connect components in electronic circuits are typi-
cally selected to have low resistance values; however, in some cases engineers
make use of special resistive components called resistors. The value of resistance
(R) depends on the resistor’s length, cross-sectional area, and the resistivity of
the material from which it is formed. Resistors come in many shapes and sizes;
a common example could be as shown in Figure 3-3.78

3 The term amp is named after the French mathematician and physicist André-Marie Ampeére, who
formulated one of the basic laws of electromagnetism in 1820.

4 An amp corresponds to approximately 6,250,000,000,000,000,000 electrons per second flowing past
a given point in an electrical circuit (not that the author counted them himself, you understand;
this little nugget of information is courtesy of Microsoft’s multimedia encyclopedia, Encarta).

5 The term ohm is named after the German physicist Georg Simon Ohm, who defined the relation-
ship between voltage, current, and resistance in 1827 (we now call this Ohm’s Law).

6 The term volt is named after the Italian physicist Count Alessandro Giuseppe Antonio Anastastio
Volta, who invented the electric battery in 1800. (Having said this, some people believe that an
ancient copper-lined jar found in an Egyptian pyramid was in fact a primitive battery . . . there
again, some people will believe anything. Who knows for sure?)

7 In addition to the simple resistor shown here, there are also variable resistors (sometimes called
potentiometers), in which a third “center” connection is made via a conducting slider. Changing
the position of the slider (perhaps by turning a knob) alters the relative resistance between the
center connection and the two ends.

8 There are also a variety of sensor resistors, including light-dependent resistors (LDRs) whose value
depends on the amount of light falling on them, heat-dependent resistors called thermistors, and
voltage-dependent resistors called VDRs or varistors.

Conductors and Insulators m 15

In a steady-state system Approx. actual size 0

— 05— —— M

where everything is constant,
the voltage, current, and resis-
tance are related by a rule

(a) Discrete Component (b) Symbol
called Ohm’s Law, which states
that voltage (V) equals current Figure 3-3. Resistor:
(I) multiplied by resistance (R). component and symbol

An easy method for remembering
Ohm’s Law is by means of a diagram known as Ohm’s Triangle (Figure 3-4).

g==Y RV AT
/\ —)
V=IxR
/11RN\
TR N /N
1=V/R / T\
Figure 3-4. Ohm’s Triangle
. . . o + 5 Volts
Consider a simple electrical circuit com- Vo
prising two wires with electrical potentials of
5 volts and 0 volts connected by a resistor of
10 ohms (Figure 3-5).%1°
This illustration shows the direction of R =10 ohms
current flow as being from the more positive
(+5 volts) to the more negative (0 volts).
This may seem strange, as we know that I
current actually consists of electrons migrat-
ing from a negative source to a positive target. O Volts
Ohm’s Law: V = IxR
9 Instead of writing “5 volts,” engineers would simply use I = VIR
“5V” (a useful rule to remember is that no space is used [= 5volts/10 ohms
for a single-letter qualifier like “5V,” but spaces are used I = 05amps

for multi-letter qualifiers like “5 Hz”).

10 The Greek letter omega “Q” is used to represent . .
resistance, so instead of writing “10 ohms,” engineers Figure 3-5. Curre“_t flowing
would typically use “10Q.” through a resistor

16 m Chapter Three

The reason for this inconsistency is that the existence of electricity was
discovered long before it was fully understood. Electricity as a phenomenon was
known for quite some time, but it wasn’t until the early part of the 20t century
that George Thomson proved the existence of the electron at the University of
Aberdeen, Scotland. The men who established the original electrical theories
had to make decisions about things they didn’t fully understand. The direction
of current flow is one such example; for a variety of reasons, it was originally
believed that current flowed from positive to negative. As you may imagine,
this inconsistency can, and does, cause endless problems.

Capacitance

Now imagine a full water tank A connected by a blocked pipe to an empty
water tank B (Figure 3-6a). Assume that the contents of tank A are magically
maintained at the same level regardless of the amount of water that is removed.
At some time T, (“time zero”), the pipe is unblocked and tank B starts to fill.
By the time we’ll call ¢, |, tank B will have reached the same level as tank A
(Figure 3-6b).

The speed with which tank B fills depends on the rate with which water
flows between the two tanks. The rate of water flow depends on the difference
in pressure between the two ends of the pipe and any resistance to the flow

A B A B
A A —_—
_G —— _G —— A
1l WATER —— 1l -~
< <
B B
S —— B ——
o oY
— ———
Y Y
Va4 / / /

(a) Pipe linking tanks is blocked.
Blockage is removed at time T

(b) By time Tp tank B has filled
to the same level as tank A.

Figure 3-6. Water tank representation of capacitance

caused by the pipe.
When the water starts to
flow between the tanks
at time Ty, there is a
large pressure differential
between the end of the
pipe in tank A and the
end in tank B; however,
as tank B fills, the pres-
sure differential between
the tanks is correspond-
ingly reduced. This
means that tank B fills
faster at the beginning of
the process than it does

Conductors and Insulators m 17

Water depth
(tank B)

|

|

|

|

|

, |
Exponential [
characteristic |
|

|

|

|

|

1

- Time

To TrULL
Figure 3-7. Rate at which water tank capacitor fills

at the end. The rate at which tank B fills has an exponential characteristic best
illustrated by a graph (Figure 3-7).

The electronic equivalent of tank B stores electrical charge. This ability to

store charge is called capacitance measured in units of farads.!' Capacitances

occur naturally in electronic circuits, and engineers generally try to ensure that

their values are as low as possible; however, in some cases, designers may make

use of special capacitive components called capacitors. One type of capacitor is

formed from two metal plates separated by a layer of insulating material; the

resulting capacitance (C) depends on the surface area of the plates, the size of

the gap between them, and the material used to fill the gap. Capacitors come

Approximate actual size

©

(a) Discrete component

in many shapes and sizes; a common
example could be as shown in

Figure 3-8.

11 The term farad is named
after the British scientist
(b) Symbol Michael Faraday, who

constructed the first electric

Figure 3-8. Capacitor: component and symbol motor in 1821.

18 m Chapter Three

- Vops Volts Veos Volts Now consider a simple
I circuit consisting of a

5 resistor, a capacitor, and a

\ Switch Switch switch. Initially the switch

is in the OPEN (OFF)

position, the capacitor

voltage V., is O volts,

R R and no current is flowing
(Figure 3-9).
‘ Venr ' Year When the switch is
¢ ¢ CLOSED (turned ON),
| 0 Volts 0 Volts any difference in potential

between V. and V
() At time T, Fos CAF

o will cause current to flow
switch is closed

through the resistor. As

(a) Switch is open

Figure 3-9. Resistor-capacitor-switch circuit usual, the direction of
current flow is illustrated

in the classical rather than the actual sense. The current flowing through

the resistor causes the capacitor to charge towards V. But as the capacitor
charges, the difference in voltage between Vs and V.,» decreases, and conse-
quently so does the current (Figure 3-10).

Vear
A
IM/\X
Veps Yolts —— — — — — — — — — — 5
\
|
~BB% 14— — — }
\ \
\ \ ~37% _——
\ \ |
\ \ |
\ \ |
O Volts l “ - Time 0 Amps | T' T‘ " Time
T T 0 RC FULL
0 RC Teu
(a) Voltage characteristic of V_, (b) Current flowing in the circuit

Figure 3-10. Voltage and current characteristics of resistor-capacitor-switch circuit

Conductors and Insulators m 19

The maximum current I, occurs at time T, when there is the greatest
difference between Vppg and Viup; from Ohm’s Law, I, = Vpps/R. The
capacitor is considered to be completely charged by time Ty |, at which
point the flow of current falls to zero.

The time Tg. equals R x C and is known as the RC time constant. With R
in ohms and C in farads, the resulting Ty is in units of seconds. The RC time
constant is approximately equal to the time taken for V., to achieve 63% of
its final value and for the current to fall to 37% of its initial value.!?

Inductance

This is the tricky one. The author has yet to see a water-based analogy
for inductance that didn’t leak like a sieve <grin>. Consider two electric fans
facing each other on a desk. If you turn one of the fans on, the other will start
to spin in sympathy. That is, the first fan induces an effect in the second.
Well, electrical inductance is just like this, but different.

What, you want more? Oh well, how about this then. . . a difference in
electrical potential between two ends of a conducting wire causes current to
flow, and current flowing through a wire causes an electromagnetic field to be
generated around that wire (Figure 3-11).

magnetic field

Figure 3-11. Current flowing through a wire
generates an electromagnetic field

12 During each successive Ty, time constant, the capacitor will charge 63% of the remaining distance
to the maximum voltage level. A capacitor is generally considered to be fully charged after five
time constants.

20 m Chapter Three

Correspondingly, if a piece of wire is moved through an externally
generated electromagnetic field, it cuts the lines of electromagnetic flux,
resulting in an electrical potential being

generated between the two ends

of the wire (Figure 3-12).

Externally generated

- . .
electromagnetic field

+ve (Resulting voltage)

Direction of movement

Figure 3-12. A conductor cutting through an
electromagnetic field generates an electrical potential

Engineers sometimes make use of components called inductors, which may
be formed by winding a wire into a coil. When a current is passed through the
coil, the result is an intense electromagnetic field (Figure 3-13).

+ve
L
Y YN
- — Intense field (b) Symbol
—ve \ —

() Inductor Component Figure 3-13. Inductor:

component and symbol

Conductors and Insulators m 21

Now consider a simple Vpog Volte v Volts

POS
circuit consisting of a
resistor, an inductor, and a
switch. Initially the switch
is in the OPEN (OFF)
position, the inductor VinD V ND
voltage V) p is at Vppg volts,
and no current is flowing L
(Figure 3-14).

As the inductor is
formed from a piece of Switeh Switch

conducting wire, one I
O Yolts

might expect that closing 0 Volts

the switch at time T,
would immediately cause (a) Switch is open

Vinp to drop to O volts;

(b) At time T,
switch is closed

however, when the switch Figure 3-14. Resistor-inductor-switch circuit
is CLOSED (turned ON) and

current begins to flow, the inductor’s electromagnetic field starts to form.
As the field grows in strength, the lines of flux are pushed out from the center,
and in the process they cut through the loops of wire forming the coil. This has
the same effect as moving a conductor through an electromagnetic field and a
voltage differential is created between the ends of the coil. This generated
voltage is such that it attempts to oppose the changes causing it (Figure 3-15).
This effect is called inductance, the official unit of which is the henry.!?
As time progresses, the coil’s inductance is overcome and its electromagnetic
field is fully established. Thus, by the time we’ll call Tgrp ¢, the inductor
appears little different from any other piece of wire in the circuit (except for its
concentrated electromagnetic field). This will remain the case until some new
event occurs to disturb the circuit—for example, opening the switch again.
Inductors are typically formed by coiling a wire around a ferromagnetic rod.
When you strike a musical tuning fork, it rings with a certain frequency

13 The term henry is named after the American inventor Joseph Henry, who discovered inductance
in 1832.

22 B Chapter Three

[
ViND
A
Vg Yolts A g ‘
MAX
\
\
\
\
\
\
\
\
\
- | ,
OVolts 1 T Y ime 0 Amps = Time
0 TorapLe To TorABLE
(a) Voltage characteristic of v, (b) Current flowing in the circuit

Figure 3-15. Voltage and current characteristics of resistor-
inductor-switch circuit

depending on its physical characteristics (size, material, etc.). Similarly, an
inductor has a natural resonant frequency depending on the diameter of the
rod, the material used to form the rod, the number of coils, etc. For this reason,
inductors may form part of the tuning circuits used in radios (they also have
many other uses that we won’t go into here).

Once a circuit has reached a steady-state condition where nothing is
changing, any capacitors act like OPEN (OFF) switches and any inductors act
like simple pieces of wire. The effects of these components only come into play
when signals are transitioning between different values.

Unit Qualifiers

Engineers often work with very large or very small values of voltage,
current, resistance, capacitance, and inductance. As an alternative to writing
endless zeros, electrical quantities can be annotated with the qualifiers given
in Table 3-1. For example, 15 MQ! (15 megaohms) means fifteen million
ohms, 4 mA (4 milliamps) means four thousandths of an amp, and 20 fF
(20 femtofarads) means a very small capacitance indeed.

14 Remember that the Greek letter omega “Q” is used to represent resistance.

Conductors and Insulators m 23

Table 3-1. Unit Qualifiers

Qualifier Symbol Factor Name (U.S.)

yotta Y 10* septillion (one million million million million)

zetta z 10?1 sextillion (one thousand million million million)

exa E 10%® quintillion (one million million million)

peta P 10'® quadrillion (one thousand million million)

tera T 102 trillion (one million million)

giga G 109 billion (one thousand million)'3

mega M 108 million

kilo k 10° thousand

milli m 107 thousandth

micro i 107@ millionth

hano h 1079 billionth (one thousandth of one millionth)

pico p 1072 trillionth (one millionth of one millionth)

femto f 107 quadrillionth (one thousandth of one millionth
of one millionth)

atto a 1078 quintillionth (one millionth of one millionth of
one millionth)

zepto z 102" sextillionth (one thousandth of one millionth
of one millionth of one millionth)

yocto y 1072% septillionth (one millionth of one millionth of
one millionth of one millionth)

One last point that’s worth noting is that the qualifiers kilo, mega, giga, and

so forth mean slightly different things when we use them to describe the size of
computer memory. The reasoning behind this (and many other mysteries) is
revealed in Chapter 15.

15 In Britain, “billion” traditionally used to mean “a million million” (10'2). However, for reasons
unknown, the Americans decided that “billion” should mean “a thousand million” (10°). In order to
avoid the confusion that would otherwise ensue, most countries in the world (including Britain)
have decided to go along with the Americans.

Chapter

y N

4
A 4

Semiconductors: Diodes
and Transistors

As we noted earlier, electricity may be considered to be vast herds of elec-
trons migrating from one place to another, while electronics is the science of
controlling these herds. Ever since humans discovered electricity (as opposed to
electricity—in the form of lightning—discovering us), taming the little rascal
and bending it to our will has occupied a lot of thought and ingenuity.

The first, and certainly the simplest, form of control is the humble
mechanical switch. Consider a circuit consisting of a switch, a power supply
(say a battery), and a light bulb (Figure 4-1).

When the switch is CLOSED, the light is ON,
—

o - | and when the switch is OPEN, the light is OFF.
ower supply ,))
i As we'll see in Chapter 5, we can actually realize
interesting logical functions by connectin
Switch CED Light i £ 08 o ¥ g
switches together in different ways. However,
if mechanical switches were all we had to play
with, the life of an electronics engineer would be
. «_: 03l
Figure 4-1. The simplest fairly bor‘mg, so something with a bit more “zing
control device is a switch was required . . .

The Electromechanical Relay

By the end of the nineteenth century, when Queen Victoria still held sway
over all she surveyed, the most sophisticated form of control for electrical
systems was the electromechanical relay. This device consisted of a rod of iron
(or some other ferromagnetic material) wrapped in a coil of wire. Applying
an electrical potential across the ends of the coil caused the iron rod to act like
a magnet. The magnetic field could be used to attract another piece of iron
acting as a switch. Removing the potential from the coil caused the iron bar to
lose its magnetism, and a small spring would return the switch to its inactive

state.

Semiconductors: Diodes and Transistors m 25

The relay is a digital component,
because it is either ON or OFF. By

connecting relays together in different . ,
When the coil is energized,

its electronic field pulls
the switch closed

ways, it’s possible to create all sorts of
things. Perhaps the most ambitious use

of relays was to build gigantic electro-
mechanical computers, such as the Figure 4-2. The electromechanical relay
Harvard Mark 1. Constructed between
1939 and 1944, the Harvard Mark 1 was 50 feet long, 8 feet tall, and contained
over 750,000 individual components.
The problem with relays (especially the types that were around in the early
days) is that they can only switch a limited number of times a second. This
severely limits the performance of a relay-based computer. For example, the
Harvard Mark 1 took approximately six seconds to multiply two numbers
together, so engineers were interested in anything that could switch faster. . .

The First Vacuum Tubes

In 1879, the legendary American inventor Thomas Alva Edison publicly
demonstrated his incandescent electric light bulb for the first time. This is the
way it worked. A filament was mounted inside a glass bulb. Then all the air
was sucked out, leaving a vacuum. When electricity was passed through the
filament, it began to glow brightly (the vacuum stopped it from bursting into
flames).

A few years later in 1883, one of Edison’s assistants discovered that he
could detect electrons flowing through the vacuum from the lighted filament
to a metal plate mounted inside the bulb. Unfortunately, Edison didn’t develop
this so-called Edison Effect any further. In fact, it wasn’t until 1904 that the
English physicist Sir John Ambrose Fleming used this phenomenon to create
the first vacuum tube.! This device, known as a diode, had two terminals and
conducted electricity in only one direction (a feat that isn’t as easy to achieve
as you might think).

1 Vacuum tubes are known as valves in England. This is based on the fact that they can be used
to control the flow of electricity, similar in concept to the way in which their mechanical
namesakes are used to control the flow of fluids.

26 m Chapter Four

In 1906, the American inventor Lee de Forest introduced a third electrode
into his version of a vacuum tube. The resulting triode could be used as both an
amplifier and a switch. De Forest’s triodes revolutionized the broadcasting
industry (he presented the first live opera broadcast and the first news report on
radio). Furthermore, their ability to act as switches was to have a tremendous
impact on digital computing.

One of the most famous early electronic digital computers is the electronic
numerical integrator and calculator (ENIAC), which was constructed at the
University of Pennsylvania between 1943 and 1946. Occupying 1,000 square
feet, weighing in at 30 tons, and employing 18,000 vacuum tubes, ENIAC was
a monster . . . but it was a monster that could perform fourteen multiplications
or 5,000 additions a second, which was way faster than the relay-based Harvard
Mark 1.

However, in addition to requiring enough power to light a small town,
ENIAC’s vacuum tubes were horrendously unreliable, so researchers started
looking for a smaller, faster, and more dependable alternative that didn’t
demand as much power. . .

Semiconductors

Most materials are conductors, insulators, or something in-between, but a
special class of materials known as semiconductors can be persuaded to exhibit
both conducting and insulating properties. The first semiconductor to undergo
evaluation was the element germanium (chemical symbol Ge). However, for
a variety of reasons, silicon (chemical symbol Si) replaced germanium as the
semiconductor of choice. As silicon is the main constituent of sand and one
of the most common elements on earth (silicon accounts for approximately
28% of the earth’s crust), we aren’t in any danger of running out of it in the
foreseeable future.

Pure crystalline silicon acts as an insulator; however, scientists at Bell
Laboratories in the United States found that, by inserting certain impurities
into the crystal lattice, they could make silicon act as a conductor. The process
of inserting the impurities is known as doping, and the most commonly used
dopants are boron atoms with three electrons in their outermost electron shells
and phosphorus atoms with five.

Semiconductors: Diodes and Transistors m 27

If a pure piece of silicon is surrounded by a gas containing boron or
phosphorus and heated in a high-temperature oven, the boron or phosphorus
atoms will permeate the crystal lattice and displace some silicon atoms without
disturbing other atoms in the vicinity. This process is known as diffusion.
Boron-doped silicon is called P-type silicon and phosphorus-doped silicon is

called N-type (Figure 4-3).?

Boron gas
P-type Silicon
—_— P
Pure Silicon
Phosphorus gas
N-type Silicon

P - N

Figure 4-3. Creating P-type and N-type silicon

Because boron atoms have only three electrons in their outermost electron
shells, they can only make bonds with three of the silicon atoms surrounding
them. Thus, the site (location) occupied by a boron atom in the silicon crystal
will accept a free electron with relative ease and is therefore known as an
acceptor. Similarly, because phosphorous atoms have five electrons in their
outermost electron shells, the site of a phosphorous atom in the silicon crystal
will donate an electron with relative ease and is therefore known as a donor.

2 If you ever see an illustration of an integrated circuit, you may see symbols like n, n+, n++, p,
b+, and p++. In this case, the n and p stand for standard N-Type and P-type material (which
we might compare to an average guy), the n+ and p+ indicate a heavier level of doping (say a
bodybuilder or the author flexing his rippling muscles on the beach), and the n++ and p++
indicate a really high level of doping (like a weightlifter on steroids).

28 m Chapter Four

Semiconductor Diodes
As was noted above, pure crystalline silicon acts as an insulator. By
comparison, both P-type and N-type silicon are reasonably good conductors

(Figure 4-4).

+ve

+ve +ve
doesn't does does
‘ conduct l conduct I conduct +ve and —ve indicate
positive and negative

voltage sources,
respectively (for
example, they could be
wires connected to the
terminals of a battery)

Pure P-type N-type
silicon silicon silicon

—-ve —-ve —ve
Figure 4-4. Pure P-type and N-type silicon

When things start to become really interesting, however, is when a piece
of silicon is doped such that part is P-type and part is N-type (Figure 4-5).

Ve e The silicon with both
doesn't does P-type and N-type material
conduct conduct C o
conducts electricity in only
N-type] P-type one direction; in the other
silicon silicon)) . _
. \ direction it behaves like an
-type | -type | .
silicon silicon OPEN (OFF) switch. These
structures, known as semi-

conductor diodes,® come in

—ve S@mijfonjeuctor —ve many shapes and sizes; an
example could be as shown
Figure 4-5. Mixing P-type and N-type silicon in Figure 4-6.
Approximate actual size
| 3The “semiconductor” portion of
>| semiconductor diode was initially

used to distinguish these compo-
(v) Symbol nents from their vacuum tube-

based cousins. As semiconductors

took over, everyone started to just
Figure 4-6. Diode: Component and symbol refer to them as diodes.

(a) Diode component

Semiconductors: Diodes and Transistors m 29

If the triangular body of the symbol is pointing in the classical direction of
current flow (more positive to more negative), the diode will conduct. An
individually packaged diode consists of a piece of silicon with connections to
external leads, all encapsulated in a protective package (the silicon is typically
smaller than a grain of sand). The package protects the silicon from moisture
and other impurities and, when the diode is operating, helps to conduct heat
away from the silicon.

Due to the fact that diodes (and transistors as discussed below) are formed
from solids—as opposed to vacuum tubes, which are largely formed from empty
space—people started to refer to them as solid-state electronics.

Bipolar Junction Transistors

More complex components called transistors can be created by forming a
sandwich out of three regions of doped silicon. One family of transistors is
known as bipolar junction transistors (BJTs)* of which there are two basic types
called NPN and PNP; these names relate to the way in which the silicon is
doped (Figure 4-7).

collector ‘ collector collector | collector
Silicon Silicon

N P
e P o N
base base
N P
| emitter emitter | emitter
(a) NPN Bipolar Junction Transistor (b) PNFP Bipolar Junction Transistor

Figure 4-7. Bipolar junction transistors (BJTs)

4 In conversation, the term BJT is spelled out as “B-]J-T".

30 m Chapter Four

In the analog world, a transistor can be used as a voltage amplifier, a current
amplifier, or a switch; in the digital world, a transistor is primarily considered to
be a switch. The structure of a transistor between the collector and emitter
terminals is similar to that of two diodes connected back-to-back. Two diodes
connected in this way would typically not conduct; however, when signals are
applied to the base terminal, the transistor can be turned ON or OFF. If the
transistor is turned ON, it acts like a CLOSED switch and allows current to flow
between the collector and the emitter; if the transistor is turned OFF, it acts
like an OPEN switch and no current flows. We may think of the collector and
emitter as data terminals, and the base as the control terminal.

As for a diode, an individually packaged transistor consists of the silicon,
with connections to external leads, all
encapsulated in a protective package
(the silicon is typically smaller than a
grain of sand). The package protects the
silicon from moisture and other impurities
and helps to conduct heat away from the

silicon when the transistor is operating.
Transistors may be packaged in plastic or
in little metal cans about a quarter of an
Figure 4-8. Individually packaged) .) d L
transistor inch in diameter with three leads sticking

(photo courtesy of Alan Winstanley) out of the bottom (Figure 4-8).

Metal-Oxide Semiconductor Field-Effect Transistors

Another family of transistors is known as metal-oxide semiconductor
field-effect transistors (MOSFETs)? of which there are two basic types called
n-channel and p-channel; once again these names relate to the way in which the
silicon is doped (Figure 4-9).6

In the case of these devices, the drain and source form the data terminals
and the gate acts as the control terminal. Unlike bipolar devices, the control

5 In conversation, the term MOSFET is pronounced as a single word, where “MOS” rhymes
with “boss” and “FET” rhymes with “bet”.

6 Nothing is simple. In fact the MOSFETs discussed in this book are known as enhancement-type
devices, which are OFF unless a control signal is applied to turn them ON. There are also
depletion-type devices, which are ON unless a control signal is applied to turn them OFF.

Semiconductors: Diodes and Transistors m 31

drain drain drain drain
conductor Silicon conductor Silicon
\ N Symbol \ s Symbol
., gate R gate
gate P gate N
7 [~
N P
insulator |60urce source insulator | source source
(a) NMOS Field-Effect Transistor (b) PMOS Field-Effect Transistor

Figure 4-9. Metal-oxide semiconductor field-effect transistors (MOSFETSs)

terminal is connected to a conducting plate, which is insulated from the silicon
by a layer of non-conducting oxide. In the original devices the conducting plate
was metal—hence the term metal-oxide. When a signal is applied to the gate
terminal, the plate, insulated by the oxide, creates an electromagnetic field,
which turns the transistor ON or OFF—hence the term field-effect.

Now this is the bit that always confuses the unwary, because the term
“channel” refers to the piece of silicon under the gate terminal, that is, the
piece linking the drain and source regions. But the channel in the n-channel
device is formed from P-type material, while the channel in the p-channel
device is formed from N-type material.

At first glance, this would appear to be totally counter-intuitive, but there
is reason behind the madness. Let’s consider the n-channel device. In order to
turn this ON, a positive voltage is applied to the gate. This positive voltage
attracts negative electrons in the P-type material and causes them to accumulate
beneath the oxide layer where they form a negative channel—hence the term
n-channel. In fact, saying “n-channel” and “p-channel” is a bit of a mouthful,
so instead we typically just refer to these as NMOS and PMOS transistors,
respectively.’

This book concentrates on MOSFETs, because their symbols, construction,
and operation are easier to understand than those of bipolar junction transistors.

7 In conversation, NMOS and PMOS are pronounced “N-MOS” and “P-MOS”, respectively.
That is, by spelling out the first letter followed by “MOS” to rhyme with “boss”.

32 m Chapter Four

The Transistor as a Switch

To illustrate the application of a transistor as a switch, first consider a
simple circuit comprising a resistor and a real switch (Figure 4-10).

Voo
CLOSED |- ___
R Switch
OPEN
t— Vour
Voo
5 Vour
\ Switch VA
[Vas - Time
(a) Circuit (b) Waveform

Figure 4-10. Resistor-switch circuit

The labels V;, and Vg are commonly used in circuits employing MOSFETs.
At this point we have little interest in their actual values and, for the purpose
of these examples, need only assume that V,, is more positive than V.

When the switch is OPEN (OFF), V7 is connected via the resistor to Vpp;
when the switch is CLOSED (ON), Vr is connected via the switch directly to
Veo. In this latter case, V,; takes the value Vg because, like people, electricity
takes the path of least resistance, and the resistance to Vg through the closed
switch is far less than the resistance to Vp, through the resistor. The waveforms
in the illustration above show a delay between the switch operating and v
responding. Although this delay is extremely small, it is important to note that
there will always be some element of delay in any physical system.

Now consider the case where the switch is replaced with an NMOS tran-
sistor whose control input can be switched between V,, and Vg (Figure 4-11).

When the control input to an NMOS transistor is connected to Vg, the
transistor is turned OFF and acts like an OPEN switch; when the control input
is connected to Vpp, the transistor is turned ON and acts like a closed switch.
Thus, the transistor functions in a similar manner to the switch. However, a
switch is controlled by hand and can only be operated a few times a second,

Semiconductors: Diodes and Transistors m 33

VoD
Voo T————
R Control
Vss
¢+—p Vout
VDD
Control VouTt
| l: Ves 1 _ _
E— ves m Time
(a) Circuit (b) Waveform

Figure 4-11. Resistor-NMOS transistor circuit

but a transistor’s control input can be driven by other transistors, allowing it to
be operated millions of times a second.

Gallium Arsenide Semiconductors

Silicon is known as a four-valence semiconductor because it has four electrons
available to make bonds in its outermost electron shell. Although silicon is
the most commonly used semiconductor, there is another that requires some
mention. The element gallium (chemical symbol Ga) has three electrons
available in its outermost shell and the element arsenic (chemical symbol As)
has five. A crystalline structure of gallium arsenide (GaAs) is known as a III-V
valence semiconductor® and can be doped with impurities in a similar manner
to silicon.

In a number of respects, GaAs is preferable to silicon, not the least of which
is that GaAs transistors can switch approximately eight times faster than their
silicon equivalents. However, GaAs is hard to work with, which results in
GaA:ss transistors being more expensive than their silicon cousins.

Light-Emitting Diodes
On February 9, 1907, one of Marconi’s engineers, Mr. H.]. Round of
New York, NY, had a letter published in Electrical World magazine as follows:

8 In conversation, the Roman Numerals III-V are pronounced “three-five.”

34 m Chapter Four

A Note on Carborundum

To the editors of Electrical World:

Sirs: During an investigation of the unsymmetrical passage of current through
a contact of carborundum and other substances a curious phenomenon was
noted. On applying a potential of 10 wvolts between two points on a crystal of

carborundum, the crystal gave out a yellowish light.

Mr. Round went on to note that some crystals gave out green, orange, or
blue light. This is quite possibly the first documented reference to the effect
upon which special components called light-emitting diodes (LEDs) are based.®

Sad to relate, no one seemed particularly interested in Mr. Round’s
discovery, and nothing really happened until 1922, when the same phenomenon
was observed by O.V Losov in Leningrad. Losov took out four patents between
1927 and 1942, but he was killed during the Second World War and the details
of his work were never discovered.

In fact, it wasn’t until 1951, following the discovery of the bipolar transistor,
that researchers really started to investigate this effect in earnest. They found
that by creating a semiconductor diode from a compound semiconductor
formed from two or more elements—such as gallium arsenide (GaAs)—light
is emitted from the PN junction, that is, the junction between the P-Type and
N-type doped materials.

As for a standard diode, a LED conducts electricity in only one direction
(and it emits light only when it’s conducting). Thus, the symbol for an LED is
similar to that for a normal diode, but with
two arrows to indicate light being emitted

(Figure 4-12). e
A LED formed from pure gallium arsenide -
emits infrared light, which is useful for sensors, Figure 4-12. Symbol

R for a LED
but which is invisible to the human eye. It was

discovered that adding aluminum to the semiconductor to give aluminum
gallium arsenide (AlGaAs) resulted in red light humans could see. Thus, after

9 In conversation, the term LED may be spelled out as “L-E-D” or pronounced as a single word
to rhyme with “bed”.

Semiconductors: Diodes and Transistors m 35

much experimentation and refinement, the first red LEDs started to hit the
streets in the late 1960s.

LED:s are interesting for a number of reasons, not the least of which is that
they are extremely reliable, they have a very long life (typically 100,000 hours
as compared to 1,000 hours for an incandescent light bulb), they generate very
pure, saturated colors, and they are extremely energy efficient (LEDs use up to
90% less energy than an equivalent incandescent bulb).

Opver time, more materials were discovered that could generate different
colors. For example, gallium phosphide gives green light, and aluminum indium
gallium phosphite can be used to generate yellow and orange light. For a long
time, the only color missing was blue. This was important because blue light
has the shortest wavelength of visible light, and engineers realized that if they
could build a blue laser diode, they could quadruple the amount of data that
could be stored on, and read from, a CD-ROM or DVD.

However, although semiconductor companies spent hundreds of millions of
dollars desperately trying to create a blue LED, the little rapscallion remained
elusive for more than three decades. In fact, it wasn’t until 1996 that the
Japanese Electrical Engineer Shuji Nakamura demonstrated a blue LED based
on gallium nitride. Quite apart from its data storage applications, this discovery
also makes it possible to combine the output from a blue LED with its red and
green cousins to generate white light. Many observers believe that this may
ultimately relegate the incandescent light bulb to the museum shelf.

Chapter

75‘

A 4
Primitive Logic Functions

Consider an electrical circuit consisting of a power supply, a light, and two
switches connected in series (one after the other). The switches are the inputs
to the circuit and the light is the output. A truth table provides a convenient
way to represent the operation of the circuit (Figure 5-1).

As the light is only ON when both the 2 and b switches are CLOSED (ON),
this circuit could be said to perform a 2-input AND function.! In fact, the
results depend on the way in which the switches are connected; consider
another circuit in which two switches are connected in parallel (side by side)
(Figure 5-2).

In this case, as the light is ON when either a or b are CLOSED (ON), this
circuit could be said to provide a 2-input OR function.? In a limited respect, we
might consider that these circuits are making simple logical decisions; two
switches offer four combinations of OPEN (OFF) and CLOSED (ON), but only
certain combinations cause the light to be turned ON.

Logic functions such as AND and OR are generic concepts that can be
implemented in a variety of ways, including switches as illustrated above,
transistors for use in computers, and even pneumatic devices for use in hostile
environments such as steel works or nuclear reactors. Thus, instead of drawing
circuits using light switches, it is preferable to make use of more abstract forms
of representation. This permits designers to specify the function of systems with
minimal consideration as to their final physical realization. To facilitate this,
special symbols are employed to represent logic functions, and truth table
assignments are specified using the abstract terms FALSE and TRUE. This is
because assignments such as OPEN, CLOSED, ON, and OFF may imply a particu-
lar implementation.

1 A 3-input version could be constructed by adding a third switch in series with the first two.

2 A 3-input version could be constructed by adding a third switch in parallel with the first two.

Primitive Logic Functions m 37

Power supply
a \)O Switch a b |y
OPEN OPEN OFF
. OPEN CLOSED | OFF
Light Y CLOSED OFEN OFF
5 [CLOSED CLOSED | ON
b \) Switch
(b) Truth table
(a) Circuit
Figure 5-1 Switch representation of a 2-input AND function
Power supply
a b R
OPEN OPEN OFF
O O ‘ OPEN CLOSED | ON
a \o b\j Light =)Y CLOSED OPEN | ON
CLOSED CLOSED| ON
(b) Truth table
(a) Circuit

Figure 5.2: Switch representation of a 2-input OR function

38 m Chapter Five

BUF and NOT Functions

The simplest of all the logic functions are known as BUF and NOT
(Figure 5-3).

R S F|F F
L L Spp——
BUF F 1
= Time
2 {>c J FIT z F
TIF A I) D
NOT A -
= Time

Figure 5-3. BUF and NOT functions

The F and T values in the truth tables are shorthand for FALSE and TRUE,
respectively. The output of the BUF function has the same value as the input to
the function; if the input is FALSE the output is FALSE, and if the input is TRUE
the output is TRUE. By comparison, the small circle, or bobble,? on the output
of the NOT symbol indicates an inverting function; if the input is FALSE the
output is TRUE, and if the input is TRUE the output is FALSE.#

As a reminder that these abstract functions will eventually have physical
realizations, the waveforms show delays between transitions on the inputs and
corresponding responses at the outputs. The actual values of these delays
depend on the technology used to implement the functions, but it is important
to note that in any physical implementation there will always be some element
of delay.

Now consider the effect of connecting two NOT functions in series (one
after the other) as shown in Figure 5-4.

The first NOT gate inverts the value from the input, and the second
NOT gate inverts it back again. Thus, the two negations cancel each other out
(sort of like “two wrongs do make a right”). The end result is equivalent to that
of a BUF function, except that each NOT contributes an element of delay.

3 Some engineers use the term bubble, others say bobble, and the rest try to avoid mentioning it at all.

4 A commonly-used alternative name for a NOT function is INV (short for inverter).

Primitive Logic Functions m 39

NOT NOT

T

w [L
alwl|y Fi--—--

TA 777777
Ak TS i e N
TIF |7 7

Figure 5-4. Two NOT functions connected together in series

AND, OR, and XOR Functions

Three slightly more complex functions are known as AND, OR, and XOR
(Figure 5-5).°

m 4 m S A
-
|
|
|
|

A\l
m 4 m S m A
[
|
|
|
|

OR 4
s
= Time
T S,
a
F
R N N
b]
S S
T |
= Time

Figure 5-5. AND, OR, and XOR functions

5 In conversation, the term XOR is pronounced “X-OR”; that is, spelling the letter “X” followed by
“OR” to rhyme with “door”.

40 m Chapter Five

The AND and OR representations shown here are the abstract equivalents
of our original switch examples. In the case of the AND, the output is only
TRUE if both a and b are TRUE; in the case of the OR, the output is TRUE if either
a or b are TRUE. In fact, the OR should more properly be called an inclusive-OR,
because the TRUE output cases include the case when both inputs are TRUE.
Contrast this with the exclusive-OR, or XOR, where the TRUE output cases
exclude the case when both inputs are TRUE.

NAND, NOR, and XNOR Functions

Now consider the effect of appending a NOT function to the output of the
AND function (Figure 5-6).

This combination of functions occurs frequently in designs. Similarly, the
outputs of the OR and XOR functions are often inverted with NOT functions.
This leads to three more primitive functions called NAND (NOT-AND),
NOR (NOT-OR) and NXOR (NOT-XOR).® In practice, however, the NXOR
is almost always referred to as an XNOR (exclusive-NOR) (Figure 5-7).7

The bobbles on their outputs indicate that these are inverting functions.
One way to visualize this is that the symbol for the NOT function has been
forced back into the preceding symbol until only the bobble remains visible.

Of course, if we appended a NOT function to the output of a NAND,

we’d end up back with our original AND function again. Similarly, appending
a NOT to a NOR or an XNOR results in an OR and XOR, respectively.

Not a Lot

And that’s about it. In reality there are only eight simple functions (BUF,
NOT, AND, NAND, OR, NOR, XOR, and XNOR) from which everything
else is constructed. In fact, some might argue that there are only seven core
functions because you can construct a BUF out of two NOTs, as was discussed
earlier.

6 In conversation, the terms NAND and NOR are pronounced as single words to rhyme with
“band” and “door”, respectively.

7 In conversation, the term XNOR is pronounced “X-NOR,” that is, spelling the letter “X”
followed by “NOR” to rhyme with “door.”

Primitive Logic Functions m 41

AND

NAND T
vyl L
Time
T_ __________
a
F
a
NOR T
yF_ _____
Time
T_ __________
a
F
2 N R
F_
T_
yF- _____
= Titme

Figure 5-7. NAND, NOR, and XNOR functions

42 m Chapter Five

Actually, if you want to go down this path, you can construct all of the
above functions using one or more NAND gates (or one or more NOR gates).
For example, if you connect the two inputs of a NAND gate together, you end
up with a NOT as shown in Figure 5-8 (you can achieve the same effect by
connecting the two inputs of a NOR gate together).

a
Y
_.b }

NAND acting as NOT

= TD
= TS
m |

Figure 5-8. Forming a NOT from a NAND

As the inputs a and b are connected together, they have to carry identical
values, so we end up showing only two rows in the truth table. We also know
that if we invert the output from a NAND, we end up with an AND. So we
could append a NAND configured as a NOT to the output of another NAND
to generate an AND (Figure 5-9).

a
w y
A=

NAND NAND acting as NOT

Figure 5-9. Forming an AND from two NANDs

Later on in Chapter 9, we’ll discover how to transform functions formed
from AND:s into equivalent functions formed from ORs and vice versa.
Coupled with what we’ve just seen here, this would allow us to build anything

we wanted out of a bunch of 2-input NAND (or NOR) functions.

Primitive Logic Functions m 43

Functions versus Gates

Simple functions such as BUF, NOT, AND, NAND, OR, NOR, XOR, and
XNOR are often known as primitive gates, primitives, logic gates, or simply gates.8
Strictly speaking, the term logic function implies an abstract mathematical
relationship, while logic gate implies an underlying physical implementation. In
practice, however, these terms are often used interchangeably.

More complex functions can be constructed by combining primitive gates
in different ways. A complete design—say a computer—employs a great many
gates connected together to achieve the required result. When the time arrives
to translate the abstract representation into a particular physical implementation,
the logic symbols are converted into appropriate equivalents such as switches,
transistors, or pneumatic valves. Similarly, the FALSE and TRUE logic values are
mapped into appropriate equivalents such as switch positions, voltage levels,
or air pressures. The majority of designs are translated into a single technology.
However, one of the advantages of abstract representations is that they allow
designers to implement different portions of a single design in dissimilar tech-
nologies with relative ease. Throughout the remainder of this book we will be
concentrating on electronic implementations.

Finally, if some of the above seems to be a little esoteric, consider a real-
world example from your home, such as two light switches mounted at opposite
ends of a hallway controlling the same light. If both of the switches are UP or
DOWN the light will be ON; for any other combination the light will be OFF.
Constructing a truth table reveals a classic example of an XNOR function.

8 The reasoning behind using the term “gate” is that these functions serve to control electronic
signals in much the same way that farmyard gates can be used to control animals.

Chapter

V N

6

A 4

Using Transistors to Build
Primitive Logic Functions

There are several different families of transistors available to designers
and, although the actual implementations vary, each can be used to construct
primitive logic gates. This book concentrates on the metal-oxide semiconductor
field-effect transistors (MOSFETs) introduced in Chapter 4, because their sym-
bols, construction, and operation are easier to understand than are bipolar
junction transistors (BJTs).

Logic gates can be created using only NMOS or only PMOS transistors;
however, a popular implementation called complementary metal-oxide semi-
conductor (CMOS)! makes use of both NMOS and PMOS transistors
connected in a complementary manner.

CMOS gates operate from two voltage levels, which are usually given the
labels Vpp and Veg. To some extent the actual values of v, and Vg are irrele-
vant as long as Vp, is sufficiently more positive than V. There are also two
conventions known as positive logic and negative logic.? Under the positive logic
convention used throughout this book, the more positive Vo, is assigned the
value of logic 1, and the more negative V. is assigned the value of logic O.

In Chapter 5 it was noted that truth table assignments can be specified using
the abstract values FALSE and TRUE. However, for reasons that are more fully
examined in Appendix B, electronic designers usually represent FALSE and
TRUE as O and 1, respectively.

NOT and BUF Gates

The simplest logic function to implement in CMOS is a NOT gate
(Figure 6-1). The small circle, or bobble, on the control input of transistor Tr,
indicates a PMOS transistor. The bobble is used to indicate that this transistor

1 In conversation, the term CMOS is pronounced “C-MOS”; that is, spelling the letter “C”
followed by “MOS” to rhyme with “boss”.

2 The positive- and negative-logic conventions are discussed in detail in Appendix B.

Using Transistors to Build Primitive Logic Functions m 45

Logic 1)

Vop |
a {>C y aly Tr,
O a Y,
NOT 1
Tr2
Figure 6-1. CMOS Implementation of a NOT gate Veg (Logic 0)

3

OA

has an active-low’ control, which means that a logic O applied to the control
input turns the transistor ON and a logic 1 turns it OFF. The lack of a bobble on
the control input of transistor Tr, indicates an NMOS transistor. The lack of

a bobble says that this transistor has an active-high* control, which means that
a logic 1 applied to the control input turns the transistor ON and a logic O
turns it OFF.

Thus, when a logic O is applied to input a, transistor Tr, is turned ON,
transistor Tr, is turned OFF, and output y is connected to logic 1 via Tr,.
Similarly, when a logic 1 is applied to input a, transistor Tr, is turned OFF,
transistor Tr, is turned ON, and output y is connected to logic O via Tr..

Don’t worry if all this seems a bit confusing at first. The main points to
remember are that a logic O applied to its control input turns the PMOS
transistor ON and the NMOS transistor OFF, while a logic 1 turns the PMOS
transistor OFF and the NMOS transistor ON. It may help to visualize the
NOT gate’s operation in terms of switches rather than transistors (Figure 6-2).

a {>c y
——— Vpp (LO@IGO T VDD (Logic 1)

NOT q[L N
a=0 | y=1 a=1 | y=0
a y ***** 7‘ —p 1‘ p >
‘ \
! e I
Ho Vss (Logic O) 4+ Vg (Logic O)

Figure 6-2. NOT gate’s operation represented in terms of switches

3 The “low” comes from the fact that, under the commonly used positive-logic system, logic O
is more negative (conceptually “lower”) than logic 1.

4 The “high” comes from the fact that, under the commonly used positive-logic system, logic 1
is more positive (conceptually “higher”) than logic O.

46 m Chapter Six

Surprisingly, a non-inverting BUF gate is more complex than an inverting
NOT gate. This is due to the fact that a BUF gate is constructed from two
NOT gates connected in series (one after the other), which means that it

requires four transistors (Figure 6-3).

Tr, [:er
a | y i‘i a w y
] 0|0
BUF 111 Tr, Tr,

Figure 6-3. CMOS implementation of a BUF gate

Vpp (Logic)

Vgg (Logic)

The first NOT gate is formed from transistors Tr; and Tr,, while the second
is formed from transistors Try and Tr,. A logic O applied to input a is inverted to
a logic 1 on w, and then inverted back again to a logic O on output y. Similarly,
a logic 1 on a is inverted to a logic O on w, and then inverted back again to a
logic 1ony.

Around this stage it is not unreasonable to question the need for BUF gates
in the first place—after all, their logical function could be achieved using a
simple piece of wire. But there’s method to our madness, because BUF gates
may actually be used for a number of reasons: for example, to isolate signals,
to provide increased drive capability, or to add an element of delay.

NAND and AND Gates

The implementations of the NOT and BUF gates shown above illustrate an
important point, which is that it is generally easier to implement an inverting
function than its non-inverting equivalent. In the same way that a NOT is
easier to implement than a BUF, a NAND is easier to implement than an
AND, and a NOR s easier to implement than an OR. More significantly,
inverting functions typically require fewer transistors and operate faster than
their non-inverting counterparts. This can obviously be an important design
consideration. Consider a 2-input NAND gate, which requires four transistors

(Figure 6-4).5

5 A 3-input version could be constructed by adding an additional PMOS transistor in parallel with Tr,
and Tr,, and an additional NMOS transistor in series with Tr, and Tr,,.

2
b }

NAND

Using Transistors to Build Primitive Logic Functions m 47

a b |y
O 0O |1
O 1 1
1T O |1
1 110 2

Figure 6-4. CMOS implementation
of a 2-input NAND gate

Vpp (Logic1)

Vgg (Logic O)

When both a and b are presented with logic 1s, transistors Tr; and Tr, are

turned OFF, transistors Tr; and Tr, are turned ON, and output y is connected to

logic O via Tr; and Tr,. Any other combination of inputs results in one or both

of Try and Tr, being turned OFF, one or both of Tr; and Tr, being turned ON, and

output y being connected to logic 1 via Tr; and/or Tr,. Once again, it may help

to visualize the gate’s operation in terms of switches rather than transistors

(Figure 6-5).

a
M
b }

NAND
a by
O O] 1
O 111
1 0|1
1T 110

Vpp (Logic 1)

OETq % Tr

a lTr
Ay

-y =1

o

Ve (Logic O)

—»—ﬁVDD (Logic 1)

y=1

[I Il

T o

F

Vgs (Logic O)

‘: Tra
Vos (Logic O)

T—ﬁVDD (Logic 1)
3, Try Tro,
y=0

a=1 Try,

S
|
N

TI"A_

—LV% (Logic O)

Figure 6-5. NAND gate’s operation represented in terms of switches

48 m Chapter Six

Now consider an AND gate. This is formed by inverting the output of a
NAND with a NOT, which means that a 2-input AND requires six transistors

Fioure 6-6).6
(Figure) a by Vpp (Logic1)
. Y
2 y O 0|0 Try
b & 0110 2 "
1 0lo LA
AND
T 1 |1 NAND Tr,

Figure 6-6. CMOS implementation Vgs (Logic O)

of a 2-input AND gate

NOR and OR Gates

A similar story occurs in the case of NOR gates and OR gates. First,
consider a 2-input NOR, which requires four transistors (Figure 6-7).7

When both a and b are set to logic O, transistors Try and Tr, are turned OFF,
transistors Try and Tr,, are turned ON, and output y is connected to logic 1 via Tr,
and Tr,. Any other combination of inputs results in one or both of Tr, and Tr,
being turned OFF, one or both of Tr; and Tr, being turned ON, and output y

being connected to logic O via Try and/or Tr,.

Vpp (Logic1)

a bly a T

a O O|1 |
M O 110 b
b — Tr
m 1 oo IR
NOR 1 110 . — o
—| Ttz —| Tra

Figure 6-7. CMOS implementation
of a 2-input NOR gate L Vg (Logic O)

6 Remember that electronic designers are cunning little devils with lots of tricks up their sleeves. In
fact, it’s possible to create an AND gate using only one transistor and a resistor (see the discussions
on Pass-transistor Logic later in this chapter).

7 A 3-input version could be constructed by adding an additional PMOS transistor in series with Tr,
and Tr,, and an additional NMOS transistor in parallel with Tr, and Tr,.

Using Transistors to Build Primitive Logic Functions m 49
Once again, an OR gate is formed by inverting the output of a NOR with
a NOT, which means that a 2-input OR requires six transistors (Figure 6-8).

Vpp (Logic1)
a

o

OR

S D
E
<

NOR _| Tr6
Figure 6-8. CMOS implementation
of a 2-input OR gate Vgg (Logic O)

XNOR and XOR Gates

The concepts of NAND, AND, NOR, and OR are relatively easy to under-
stand because they map onto the way we think in everyday life. For example, a
textual equivalent of a NOR could be: “If it’s windy or if it’s raining then I'm not
going out.”

By comparison, the concepts of XOR and XNOR can be a little harder to
grasp because we don’t usually consider things in these terms. A textual equiva-
lent of an XOR could be: “If it is windy and it’s not raining, or if it’s not windy
and it is raining, then I will go out.” Although this does make sense (in a strange
sort of way), we don’t often find ourselves making decisions in this manner.

For this reason, it is natural to assume that XNOR and XOR gates would
be a little more difficult to construct. However, these gates are full of surprises,
both in the way in which they work and the purposes for which they can be
used. For example, a 2-input XNOR can be implemented using only four

(>C Tr
1]

NOT

transistors (Figure 6-9).8

Tr
Figure 6-9. CMOS implementation
of a 2-input XNOR gate

8 Unlike AND, NAND, OR, and NOR gates, there are no such beasts as XNOR or XOR primitives
with more than two inputs. However, equivalent functions with more than two inputs can be
formed by connecting a number of 2-input primitives together.

50 m Chapter Six

The NOT gate would be constructed in the standard way using two
transistors as described above, but the XNOR differs from the previous gates
in the way that transistors Try and Tr, are utilized. First, consider the case where
input b is presented with a logic O: transistor Tr, is turned OFF, transistor Trs
is turned ON, and output y is connected to the output of the NOT gate via Trs.
Thus, when input b is logic O, output y has the inverse of the value on input a.
Now consider the case where input b is presented with a logic 1: transistor Try
is turned OFF, transistor Tr, is turned ON, and output y is connected to input a
via Tr,. Thus, when input b is logic 1, output y has the same value as input a.
The end result of all these machinations is that wiring the transistors together
in this way does result in a function that satisfies the requirements of the
XNOR truth table.

Unlike the other complementary gates, it is not necessary to invert the
output of the XNOR to form an XOR (although we could if we wanted to,
of course). A little judicious rearranging of the components results in a 2-input
XOR that also requires only four transistors (Figure 4-10).

.| T
1
T

NOT

Figure 6-10. CMOS implementation b
of a 2-input XOR gate

First, consider the case where input b is presented with a logic O: transistor
Tr, is turned OFF, transistor Try is turned ON, and output y is connected to input
a via Tr. Thus, when input b is logic O, output y has the same value as input a.
Now consider the case where input b is presented with a logic 1: transistor Try is
turned OFF, transistor Tr, is turned ON, and output y is connected to the output
of the NOT gate via Tr,. Thus, when input b is logic 1, output y has the inverse
of the value on input a. Once again, this results in a junction that satisfies the
requirements of the XOR truth table.

Using Transistors to Build Primitive Logic Functions m 51

Pass-transistor Logic

In the BUF, NOT, AND, NAND, OR, and NOR gates described earlier,
the input signals and internal data signals are only used to drive control
terminals on the transistors. By comparison, transistors Trs and Tr, in the
XOR and XNOR gates shown above are connected so that input and internal
data signals pass between their data terminals. This technique is known as
pass-transistor logic. It can be attractive in that it minimizes the number of
transistors required to implement a function, but it’s not necessarily the best
approach. Strange and unexpected effects can ensue if you're not careful and
you don’t know what you’re doing.

An alternative solution for an XOR is to invert the output of the XNOR
shown above with a NOT. Similarly, an XNOR can be constructed by invert-
ing the output of the XOR shown above with a NOT. Although these new
implementations each now require six transistors rather than four, they are
more robust because the NOT gates buffer the outputs and provide a higher
drive capability. In many cases, XORs and XNORs are constructed from
combinations of the other primitive gates. This increases the transistor count
still further, but once again results in more robust solutions.

Having said all this, pass-transistor logic can be applicable in certain
situations for designers who do know what they’re doing. In the discussions
above, it was noted that it is possible to create an AND using a single transistor
and a resistor. Similarly, it’s possible to create an OR using a single transistor
and a resistor, and to create an XOR or an XNOR using only two transistors
and a resistor. If you're feeling brave, try to work out how to achieve these
minimal implementations for yourself (solutions are given in Appendix G).

Chapter

r_\

7
A4

Alternative Numbering

Decimal (Base-10)

Systems

The commonly used decimal numbering system is based on ten digits: 0, 1,

2,3,4,5,6,7, 8and 9. The name decimal comes from the Latin decem, mean-

ing “ten.” The symbols used to represent these digits arrived in Europe around

the thirteenth century from the Arabs, who in turn borrowed them from the

Hindus (and never gave them back). As the decimal system is based on ten

digits, it is said to be base-10 or radix-10, where the term radix comes from the

Latin word meaning “root.”

With the exception of specialist requirements such as computing, base-10

numbering systems have been adopted almost universally—this is almost

certainly due to the fact that humans happen to have ten fingers.! If mother

nature had dictated six fingers on each hand, the outcome would most probably

have been the common usage of base-12 numbering systems.

Thousands column

Hundreds column
Tens column
Ones column

Four

Forty

Four hundred
= Four thousand

QOO0 b =«
|

SIEN
SRCIEN

Figure 7-1. Place-value number systems

! Including thumbs.

The decimal system is a
place-value system, which means
that the value of a particular
digit depends both on the digit
itself and its position within the
number (Figure 7-1).

Every column in a place-
value number has a “weight”
associated with it, and each
digit is combined with its
column’s weight to determine
the final value of the number
(Figure 7-2).

Counting in decimal
commences at 0 and progresses

Alternative Numbering Systems m 53

Thousands column ——
Hundreds column
Tens column
Ones column
l Y Y Y ¢
5 2 4

3 = (3 x1000) + (2 x 100) + (3 x 10) + (4 x 1)

Figure 7-2. Combining digits with column weights in decimal

up to 9, at which point all of the available digits have been used. Thus, the
next count causes the first column to be reset to 0 and the second column to
be incremented, resulting in 10. Similarly, when the count reaches 99, the
next count causes the first column to be reset to zero and the second column
to be incremented. But, as the second column already contains a 9, this causes
it to be reset to 0 and the third column to be incremented resulting in 100
(Figure 7-3).

Although base-10 systems are anatomically convenient, they have few
other advantages to recommend them. In fact, depending on your point of
view, almost any other base (with the possible exception of nine) would be
as good as, or better than, base-10, which is only wholly divisible by 2 and 5.
For many arithmetic opera-

tions, the use of a base that is

wholly divisible by many ¢ ¢ ¢ ¢
numbers, especially the smaller 0 10 20 100 ete.
values, conveys certain advan- 1 11 21 101

tages. An educated layman may 2 12 22 102

well prefer a base-12 system on

the basis that 12 is wholly

divisible by 2, 3, 4 and 6. For

their own esoteric purposes,))))

some mathematicians would & 18 96 998

ideally prefer a system with a 9 19 99 999

prime number as a base; for | | | |

example, seven or eleven.
Figure 7-3. Counting in decimal

54 m Chapter Seven

Duo-Decimal (Base-12)

Number systems with bases other than ten have sprouted up like weeds
throughout history. Some cultures made use of duo-decimal (base-12) systems;
instead of counting fingers they counted finger-joints. The thumb is used to
point to the relevant joint and, as each finger has three joints, the remaining
fingers can be used to represent values from 1 through 12 (Figure 7-4).

This system is particularly useful if one
Thumb is used
to point to
relevant joint |3 6 9

wishes to count up to twelve while still main-
taining a free hand to throw a spear at someone

whom, we may assume, is not a close friend.
This form of counting may explain why the
ancient Sumerians, Assyrians, and Babylonians
divided their days into twelve periods, six for
day and six for night. The lengths of the periods
were adjusted to the seasons (since the length of
daylight compared to night time varies through-
out the year), but were approximately equal to

Figure 7-4. Using finger joints two of our hours. In fact, the Chinese use a form

to count in duo-decimal of this system to the present day (Figure 7-5).
11:00pm © 1:.00am = Hour of the Rat
1:00am © 3:00am = Hour of the Ox
3:00am © 5:00am = Hour of the Tiger
5:00am © 7:00am = Hour of the Hare
7:00am © 9:00am = Hour of the Dragon
9:00am © 11:00am = Hour of the Snake
1:00am © 1:00pm = Hour of the Horse
1:00pm © 3:00pm = Hour of the Ram
5:00pm © 5:00pm = Hour of the Morkey
5:00pm © 7:00pm = Hour of the Cock
7:00pm © 9:00pm = Hour of the Dog
9:00pm © 1:00pm = Hour of the Boar

Figure 7-5. The Chinese twelve-hour day

Alternative Numbering Systems m 55

If a similar finger-joint counting
strategy is applied to both hands,
the counter can represent values from
1 through 24 (Figure 7-6).

This may explain why the ancient
Egyptians divided their days into
twenty-four periods, twelve for day
and twelve for night. Once again, the
lengths of the periods were adjusted to
the seasons, but were approximately

equal to one of our hours.
Figure 7-6. Using finger joints on

Sexagesimal (Base-60) both hands to count to twenty-four

The ancient Babylonians used a sexagesimal (base-60) numbering system.
This system, which appeared between 1900 BC and 1800 BC, is also credited as
being the first known place-value number system. While there is no definite
proof as to the origins of the sexagesimal base, it’s possible that this was an
extension of the finger-joint counting schemes discussed above (Figure 7-7).

The finger joints of the left hand are still used to represent the values one

through twelve; however, instead of continuing

directly with the finger joints of the right hand, 5x12

, . 4 x12

the thumb and fingers on the right hand are used % 5 12

to keep track of each count of ‘ 2512
.

twelve. When all of the right 1% 12

hand digits are extended the

count is sixty (5 x 12 = 60).
Although sixty may

appear to be a large value

to have as a base, it does

2 After reading this book, one of
the author’s friends found this
technique useful to keep track of
her child’s finishing position in a
cross-country run. Figure 7-7. Using fingers to count to sixty2

56 m Chapter Seven

convey certain advantages. Sixty is the smallest number that can be wholly
divided by 2 through 6; in fact, sixty can be wholly divided by 2, 3, 4, 5, 6, 10,
12, 15, 20 and 30. Just to increase their fun, in addition to using base sixty the

Babylonians also made use of six and ten as sub-bases.

The Concepts of Zero and Negative Numbers
The concept of numbers like 1, 2, and 3 developed a long time before the

concept of zero. In the original Babylonian system a zero was simply represented

by a space; the decimal equivalent would be as shown in Figure 7-8.

26904 would be written as
“102056” would be written as

“1269 47
“1 2 bo”

“60014” would be written as “10 14~

Figure 7-8. Representing zeros using spaces

[t is easy to see how this can lead to a certain amount of confusion,

especially when attempting to portray multiple zeros next to each other.

The problems can only be exacerbated if one is using a sexagesimal system

and writing on tablets of damp clay in a thunderstorm.

After more than 1500 years of potentially inaccurate calculations, the

The water clock, or Clepsydra, is an
ancient instrument for measuring
time which is believed to have
originated in Egypt. These clocks
consisted of a container with a small
hole through which the water
escaped. Units of time were marked
on the side of the container or on
the side of a bowl used to collect the
water. The length of the units
corresponding to day and night
could be adjusted by varying

the shape of the container; for
example, by having the top wider
than the bottom.

Babylonians finally began to use a
special sign for zero, which first ap-
peared around 300 BC. Some say that
this was one of the most significant
inventions in the history of math-
ematics. However, the Babylonians
only used the zero symbol as a place
holder to separate digits—they didn’t
have the concept of zero as an actual
value. If we were to use the ‘A’ charac-
ter to represent the Babylonian place
holder, the decimal equivalent to the
clay tablet accounting records of the
time would read something like that
shown in Figure 7-9.

Alternative Numbering Systems m 57

Original Amount — Fish Distributed = Fish Remaining
1AD2 fish — 45 fishto Steph = 1AA7 fish
— 2A fishto Max = 987 fish
— 4A7 fishto Lucie = DH&A fish
— 170 fishto Drew = 4A4 fish
— 4A4 fishto Abby = “No fish left”

Figure 7-9. Representing zeros using a place-holder

The last entry in the “Fish Remaining” column is particularly revealing.
Due to the fact that the Babylonian zero was only a place holder and not a
value, the accounting records had to say “No fish left” rather than “A fish.”

In fact, it was not until around 600 AD that the use of zero as an actual value
first appeared in India.

Vigesimal (Base-20)

The Mayans, Aztecs, and Celts developed vigesimal (base-20) systems by
counting using both fingers and toes. The Eskimos of Greenland, the Tamanas
of Venezuela, and the Ainu of northern Japan are three of the many other
groups of people who also make use of vigesimal systems. For example, to say
fifty-three, the Greenland Eskimos would use the expression “Inup pinga-jugsane
arkanek-pingasut,” which translates as “Of the third man, three on the first foot.”3
This means that the first two men contribute twenty each (ten fingers and ten
toes), and the third man contributes thirteen (ten fingers and three toes).

To this day we bear the legacies of almost every number system our ancestors
experimented with. From the duo-decimal systems we have twenty-four hours
in a day (2 x 12), twelve inches in a foot, and special words such as dozen (12)
and gross (144). Similarly, the Chinese have twelve hours in a day and twenty-
four seasons in a year. From the sexagesimal systems we have sixty seconds in a
minute, sixty minutes in an hour, and 360 degrees in a circle.# From the base
twenty systems we have special words like score (20), as in “Four score and seven

3 George Ifrah: From One to Zero (A Universal History of Numbers) .

4 The 360 degrees is derived from the product of the Babylonian’s main base (sixty) and their
sub-base (six); 6 x 60 = 360.

58 m Chapter Seven

years ago, our fathers brought forth upon this continent a new nation . . .” This all
serves to illustrate that number systems with bases other than ten are not only
possible, but positively abound throughout history.

Quinary (Base Five)

One system that is relatively easy to understand is quinary (base-5), which
uses the digits 0, 1, 2, 3 and 4. This system is particularly interesting in that a
quinary finger-counting scheme is still in use today by merchants in the Indian
state of Maharashtra near Bombay.

As with any place-value system, each column in a quinary number has a
weight associated with it, where the weights are derived from the base. Each
digit is combined with its column’s weight to determine the final value of the
number (Figure 7-10).

One hundred and twenty-fives column —
Twenty-fives column
Fives column

Ones column
i oYy

2 5 4 =(3x125) + (2x25) + (3x D) + (4 x1)
= 444

10

Figure 7-10. Combining digits with column weights in quinary

When using systems with bases other than ten, subscripts are used to indicate
the relevant base; for example, 32345 = 444, (32345uINaRY = 444DECIMAL)-
By convention, any value without a subscript is assumed to be in decimal.

Counting in quinary commences at 0 and progresses up to 4s, at which
point all the available digits have been used. Thus, the next count causes the
first column to be reset to 0 and the second column to be incremented resulting
in 105. Similarly, when the count reaches 44, the next count causes the first
column to be reset to zero and the second column to be incremented. But, as
the second column already contains a 4, this causes it to be reset to 0 and the
third column to be incremented resulting in 1005 (Figure 7-11).

Alternative Numbering Systems m 59

0, (0) 20, (10) 100, (25) 1000, (125) ete.
1, (1) 21, (11 101, (26) 1001, (126)

2, (2) 22 (12 102, (27) 1002, (127)

3, (3)

4, (4)

10, (5)

1. (6) . .

12, (7) 42, (22) 442, (122) 4442 (622)
13, (8) 43%_ (23) 443, (123) 4443 _ (623)
14, (9) 44 (24) 444 (124) 4444 (624)

I L L L

Figure 7-11. Counting in quinary

Binary (Base-2)

Digital systems are constructed out of logic gates that can only represent
two states; thus, computers are obliged to make use of a number system com-
prising only two digits. Base-2 number systems are called binary and use the
digits 0 and 1. As usual, each column in a binary number has a weight derived
from the base, and each digit is combined with its column’s weight to deter-
mine the final value of the number (Figure 7-12).

Sixteens column
Eights column
Fours column
Twos column

Ones colurmn
Y J \ \ Y Y ¢

=(1x160) + (Ox8)+ (1x4)+ (1x2)+ (Ox1)
=22,

Figure 7-12. Combining digits with column weights in binary

60 m Chapter Seven

Once again, subscripts are used to indicate the relevant base; for example,
10110, = 22,4 (101105 nary = 22pEcivar)- Sometime in the late 1940s, the
American chemist-turned-topologist-turned-statistician John Wilder Tukey
realized that computers and the binary number system were destined to become
important. In addition to coining the word “software,” Tukey decided that
saying “binary digit” was a bit of a mouthful, so he started to look for an alter-
native. He considered a variety of options like binit and bigit, but he eventually
settled on bit, which is elegant in its simplicity and is used to this day. Thus,
the binary value 10110, would be said to be 5 bits wide. Additionally, a group
of 4 bits is known as a nybble (sometimes called a nibble), and a group of 8 bits
is known as a byte. The idea that “two nybbles make a byte” in is the way of
being an engineer’s idea of a joke, which shows that they do have a sense of
humor (it’s just not a particularly sophisticated one).?

Counting in binary commences at 0 and rather quickly progresses up to 1,,
at which point all the available digits have been used. Thus, the next count
causes the first column to be reset to 0 and the second column to be incremented
resulting in 10,. Similarly, when the count reaches 11,, the next count causes
the first column to be reset to zero and the second column to be incremented.
But, as the second column already contains a 1, this causes it to be reset to 0
and the third column to be incremented resulting in 100, (Figure 7-13).

Although binary mathematics is fairly simple, humans tend to find it difficult
at first because the numbers are inclined to be long and laborious to manipulate.
For example, the binary value 11010011, is relatively difficult to conceptualize,
while its decimal equivalent of 211 is comparatively easy. On the other hand,
working in binary has its advantages. For example, if you can remember-. . .

0x0=0
Ox1=0
I1x0=0
Ix1=1

... then you’ve just memorized the entire binary multiplication table!

5 Continuing the theme, there have been sporadic attempts to construct terms for bit-groups of other
sizes; for example, tayste or crumb for a 2-bit group, playte or chawmp for a 16-bit group, dynner or
gawble for a 32-bit group, and tayble for a 64-bit group. But you can only take a joke so far, and using
anything other than the standard terms nybble and byte is extremely rare. Having said this, the term
word is commonly used as discussed in Chapter 15.

Alternative Numbering Systems m 61

0, (0) 1000, (8) 10000, (16) ete.
() 1001, (9) 10001, (17)
10, (2) 1010, (10) 10010, (18)
1, (2)
100, (4) .
101, (5) 1101, (12) 111012 (29)
110, (6) 1110, (14) 111102 (30)
11, (7) 1111, (15) , (3
I I I_

Figure 7-13. Counting in binary

Octal (Base-8) and Hexadecimal (Base-16)

Any number system having a base that is a power of two (2, 4, 8, 16, 32,
etc.) can be easily mapped into its binary equivalent and vice versa. For this
reason, electronics engineers typically make use of either the octal (base-8)
or hexadecimal (base-16) systems.

As a base-8 system, octal requires eight individual symbols to represent all
of its digits. This isn’t a problem because we can simply use the symbols O through
7 that we know and love so well. However, as a base-16 system, hexadecimal
requires sixteen individual symbols to represent all of its digits. This does pose
something of a problem because there are only ten Hindu-Arabic symbols
available (O through 9). One solution would be to create some new symbols,
but some doubting Thomases (and Thomasinas) regard this as less than optimal
because it would necessitate the modification of existing typewriters and com-
puter keyboards. As an alternative, the first six letters of the alphabet are
brought into play (Figure 7-14).

A B CDEF
10 1N 12 13 14 15

Hexadecimal O 1
Decimal O 1

2 5 4
2 2 4

(e}
IOV
© ©

Figure 7-14. The sixteen hexadecimal digits

62 m Chapter Seven

The rules for counting in octal and hexadecimal are the same as for any
other place-value system—when all the digits in a column are exhausted, the
next count sets that column to zero and increments the column to the left
(Figure 7-15).

Although not strictly necessary, binary, octal and hexadecimal numbers are
often prefixed by leading zeros to pad them to whatever width is required. This
padding is usually performed to give some indication as to the physical number
of bits used to represent that value within a computer.

Each octal digit can be directly mapped onto three binary digits, and each
hexadecimal digit can be directly mapped onto four binary digits (Figure 7-16).

Decimal Binary Octal Hexadecimal
@) 00000000 000 0]0)
1 00000001 001 01
2 00000010 002 02
%) 00000011 003 03
4 00000100 004 o4
5 00000101 005 05
© 00000110 006 06
7 00000111 007 07
& 00001000 010 0&
9 00001001 011 08
10 00001010 012 OA
11 00001011 013 OB
12 00001100 o14 oC
15 00001101 015 oD
14 00001110 016 OE
15 00001111 017 OF
16 00010000 020 10
17 00010001 021 11
16 00010010 022 12

etc. etc. etc. etc.

Figure 7-15. Counting in octal and hexadecimal

Alternative Numbering Systems B 63

Octal Decimal Hexadecimal
111, 100, 101, 010, 0000, 1111, 0010, 1010,
Binary Binary

Figure 7-16. Mapping octal and hexadecimal to binary

In the original digital computers, data paths were often 9 bits, 12 bits, 18
bits, or 24 bits wide, which provides one reason for the original popularity of
the octal system. Due to the fact that each octal digit maps directly to three
binary bits, these data-path values were easily represented in octal. More
recently, digital computers have standardized on data-path widths that are
integer multiples of 8 bits; for example, 8 bits, 16 bits, 32 bits, 64 bits, and so
forth. Because each hexadecimal digit maps directly to four binary bits, these
data-path values are more easily represented in hexadecimal. This may explain
the decline in popularity of the octal system and the corresponding rise in
popularity of the hexadecimal system.

Representing Numbers Using Powers

An alternative way of representing numbers is by means of powers; for
example, 103, where 10 is the base value and the superscripted 3 is known as
the power or exponent. We read 103 as “Ten to the power of three.” The power
specifies how many times the base value must be multiplied by itself; thus, 10
represents 10 x 10 x 10. Any value can be used as a base (Figure 7-17).

Any base to the power of one is equal to itself; for example, 8! = 8. Strictly
speaking, a power of zero is not part of the series, but, by convention, any base
to the power of zero equals one; for example, 8° = 1. Powers provide a conve-
nient way to represent column-weights in place-value systems (Figure 7-18).

64 m Chapter Seven

Decimal (Base-10)

100 =1 = o
10" =10 = 1040
102 = 10x10 = 100,

1l

Binary (Base-2)

25 = 2x2x2 = 1000, = &

®
D
1l
NS
X
&
1l

100,
1000,

1l
)

R

.

\y)
[N
1
N3]
X
»
X
»
1
1
Ql
N
o

160 = 1 - le = 10

16° = 16x16x16 = 1000, 4096,

Figure 7-17. Representing numbers using powers

Alternative Numbering Systems m 65

Decimal (Base-10)

10® = Thousands column
10? = Hundreds column
10" = Tens column

10° = Ones column
(Y Y Y ¢

3 2 3 4 (3 x10%) + (2%x10%) + (5 x10") + (4 x10°)
2000 + 200 + 30 + 4
3254

1

1

Figure 7-18a. Using powers to represent column weights in decimal

2% = Sixteens column —
2° = Eights column

22 = Fours column

2! = Twos column

29 = Ones column
Y Vr Y Y Y Y ¢

(I1x2 +(0x2%) +(1x2%) + (1x2") + (0Ox19
e + O + 4 + 2 + O
= 22

10

O
O
I

Figure 7-18b. Using powers to represent column weights in binary

16° = Fgurthqueand —_—
hinety-sixes column
162 = Two hundred
fifty-sixes column
16" = Sixteens column
16° = Ones column
\ J Y Y Y ¢
0O F 2 A, = (0x16°%) + (Fx16%) + (2x16") + (A x16°)
= o) + 5640 + 322 + 10
= 2862,

Figure 7-18c. Using powers to represent column weights in hexadecimal

66 m Chapter Seven

Tertiary Logic

And finally, for reasons that become a little involved, communications
theory tells us that optimal data transfer rates can be achieved if each data
element represents three states. Now engineers wouldn’t be the guys and gals
they are if they weren’t prepared to accept a challenge, and some experiments
have been performed with tertiary logic. This refers to logic gates that are based
on three distinct voltage levels. In this case, the three voltages are used to
represent the tertiary (base-3) values of O, 1, and 2, and their logical equivalents
FALSE, TRUE, and MAYBE.®

However, while it’s relatively easy to use transistors to generate two distinct
voltage levels, it’s harder to generate a consistent intermediate voltage to
represent a third value. Similarly, while it’s relatively easy to use transistors to
interpret (detect) two voltage levels, it’s harder to interpret a third, intermediate
value.” Additionally, creating and using an equivalent to Boolean algebra® that
works with the three logic states FALSE,
TRUE, and MAYBE is enough to make
even the strongest among us quail.

Apropos of nothing at all, man has
been interested in the properties
of odd numbers since antiquity, Thankfully, tertiary logic is currently of

often ascribing mystical and magical |, ., j.;ic interest only (otherwise this

properties to them, for example, book might have been substantially
“lucky seven” and “unlucky thirteen.”
As Pliny the Elder (AD 23-79) is

reported to have said, “Why is it

longer). Still, there’s an old saying
“What goes around comes around,” and

that we entertain the belief that
for every purpose odd numbers are
the most effectual?”

6 A tertiary digit is known as a “trit”.

it’s not beyond the realm of possibility
that tertiary logic or an even bigger
relative will rear its ugly head sometime
in the future.

7 Actually, if the truth were told, it’s really not too difficult to generate and detect three voltage
levels. The problem is that you can’t achieve this without using so many transistors that any

advantages of using a tertiary system are lost.

8 Boolean Algebra is introduced in Chapter 9.

Chapter
y N

8

A 4

Binary Arithmetic

Due to the fact that digital computers are constructed from logic gates
that can represent only two states, they are obliged to make use of the binary
number system with its two digits: O and 1. Unlike calculations on paper where
both decimal and binary numbers can be of any size—limited only by the size
of your paper, the endurance of your pencil, and your stamina— the numbers
manipulated within a computer have to be mapped onto a physical system of
logic gates and wires. Thus, the maximum value of a number inside a computer
is dictated by the width of its data path; that is, the number of bits used to
represent that number.!

Unsigned Binary Numbers

Unsigned binary numbers can only be used to represent positive values.
Consider the range of numbers that can be represented using 8 bits (Figure 8-1).

Each ‘x’ character represents a single bit; the right-hand bit is known as the
least significant bit (LSB) because it represents the smallest value. Similarly, the
left hand bit is known as the most significant bit (MSB) because it represents the
largest value.

In computing it is usual to commence indexing things from zero, so the
least significant bit is referred to as bit 0, and the most significant bit (of an
8-bit value) is referred to as bit 7. Every bit can be individually assigned a value
of 0 or 1, so a group of 8 bits can be assigned 28 = 256 unique combinations of
Os and Is. This means that an 8-bit unsigned binary number can be used to
represent values in the range 0;, through +255,.

1 Actually, this isn’t strictly true, because there are tricks we can use to represent large numbers
by splitting them into smaller “chunks” and re-using the same bits over and over again, but
that’s beyond the scope of what we’re looking at here.

68 m Chapter Eight

27 =128s column = bit7
2° = ©4s column = bit 6
2° = 32scolumn = bitH
2% = 10's column = bit 4
2° = Bscolumn = bit3
22 = Ascolumn = bit 2
2 = 2scolumn = bit1
2° = Tscolumn = bitO
YYVYY F

MEB—» x X X X X X X x =<€—[5B
O 0 0O 0 0 0 0 0 = 010
O 0 0 0 0 0 0 1 To
O o0 0 o0 o0 o0 1 o0 2.
O 0 0 0 0 0 1 1 S0
O o0 o0 0 01 00 = 4

Figure 8-1. Unsigned binary numbers

Binary Addition

Two binary numbers may be added together using an identical process to
that used for decimal addition. First, the two least significant bits are added
together to give a sum and, possibly, a carry-out to the next stage. This process
is repeated for the remaining bits progressing towards the most significant. For
each of the remaining bits, there may be a carry-in from the previous stage and
a carry-out to the next stage. To fully illustrate this process, consider the step-
by-step addition of two 8-bit binary numbers (Figure 8-2).

We commence with the least significant bits in step (a), 1 + 0 = 1. In
step (b) we see 0 + 1 = 1, followed by 0 + O = 0 in step (c). The first carry-out
occurs in step (d), where 1 + 1 = 2 or, in binary, 1, + 1, = 10,; thus, in this
instance, the sum is O and there is a carry-out of 1 to the next stage. The second

Binary Arithmetic m 69

oo 11 10 O]1 oo 1 1 10|01
+0 O O 1 1 0 1|0 +0 O O 1 1 0|1]0
= 1 = T 1
(a) BtO, 1+0=1, (b) Bit1, O+1=1,
oo 1 1 10]0 1 oo 1 1710 0 1
+0 O O 1 1101 O +0 O O 1|10 1 0O
= o 11 = O o0 1 1
(c) Bit 2, 0+0=0, (d) Bit 3, 1+1=10,
O o0 17110 O 1 o o111 10 O 1
+0 O 0|11 O 1 O +0 O|0|1 10 10
= T 0 0 1 1 = O 10 0 1 1
(e) Bit 4,1+ 1+carry_in=11, (f) Bit 5,1+ O + carry_in =10,
oot 1 10 O 1 oo 1 1 10 O 1
+0|,010 1 1.0 1 0 +0|0 0 1 10 10 +
= T 0 10 0 1 1 =0 10 10 O 1 1 =
(9) Bit 6,0 + O + carry_in =1, (h) Bit7, 0+0=0,

Figure 8-2. Binary addition

carry-out occurs in step (e), where the carry-in from the previous stage results
inl+1+1=3or,inbinary, 1, + 1, + 1, = 11,; thus, in this instance, the sum
is 1 and there is a carry-out of 1 to the next stage. The third and final carry-out
occurs in step (f), and it’s plain sailing from there on in.

70 m Chapter Eight

Binary Subtraction

Unsigned binary numbers may be subtracted from each other using an
identical process to that used for decimal subtraction. However, for reasons of
efficiency, computers rarely perform subtractions in this manner; instead, these
operations are typically performed by means of complement techniques.

There are two forms of complement associated with every number system,
the radix complement and the diminished radix complement, where radix refers to
the base of the number system. Under the decimal (base-10) system, the radix
complement is also known as the tens complement and the diminished radix
complement is known as the nines complement. First, consider a decimal sub-
traction performed using the nines complement technique—a process known
in ancient times as “Casting out the nines” (Figure 8-3).

Standard subtraction Nines complement equivalent
r-—-—-—-——-—-—"—-—""—""—"=-—"—""—""—"—""—""—""—— A
6 4 7 9 9 9 6 4 7 :
- 2 &6 3 - 2 &6 3 + 7 1 6 |
= 3 © 4 = 7 1 © = 13 6 3 |1 End-
| around-
| carry

Take nines
complement 5 6 4 :

ment to minuend

?

Add nines comple- |
|

Figure 8-3. Nines complement decimal subtraction

The standard way of performing the operation would be to subtract the
subtrahend (283) from the minuend (647), which, as in this example, may
require the use of one or more borrow operations. To perform the equivalent
operation in nines complement, each of the digits of the subtrahend is first
subtracted from a 9. The resulting nines complement value is added to the
minuend, and then an end-around-carry operation is performed. The advantage
of the nines complement technique is that it is never necessary to perform a

borrow operation.?

2 This made this technique extremely popular in the days of yore, when the math skills of the
general populace weren’t particularly high.

Binary Arithmetic m 71

Now consider the same subtraction performed using the tens complement
technique (Figure 8-4).

complement Add tens comple-

ment to minuend

Standard subtraction Tens complement equivalent

r-—--——— - -—"—-—"-—"“—""—"7—-——"—-—7——-— a

6 4 7 100 0 6 4 7 |

- 2 6 3 : - 2 & 3 + 7 1 7 :
= 3 6 4 | = 7 1 7 = 1 3 6 4 | Drop
an
I —A— 3 6 4 I car?*/y

: Take tens — :

I I

Figure 8-4. Tens complement decimal subtraction

The advantage of the tens complement is that it is not necessary to
perform an end-around-carry; any carry-out resulting from the addition of the
most significant digits is simply dropped from the final result. The disadvantage
is that, during the process of creating the tens complement, it is necessary to
perform a borrow operation for every digit in the subtrahend. This problem
could be solved by first taking the nines complement of the subtrahend,
adding one to the result, and then performing the remaining operations as
for the tens complement.

Similar techniques may be employed with binary (base-2) numbers, where
the radix complement is known as the twos complement and the diminished
radix complement is known as the ones complement. First, consider a binary
subtraction performed using the ones complement technique (Figure 8-5).

Once again, the standard way of performing the operation would be to
subtract the subtrahend (00011110,) from the minuend (00111001,),
which may require the use of one or more borrow operations. To perform the
equivalent operation in ones complement, each of the digits of the subtrahend
is first subtracted from a 1. The resulting ones complement value is added to
the minuend, and then an end-around-carry operation is performed. The
advantage of the ones complement technique is that it is never necessary to
perform a borrow operation. In fact, it isn’t even necessary to perform a

72 m Chapter Eight

Standard subtraction
OO0 111001

~—00011110 57,0730, =27,
=0001 1011
Ones complement equivalent
r—-—————— - —————— 1
[11111111 ocot111001 |
:—00011110 +111oooo1:
|=11100001 100011010| End-
| around-
| \ A\ J > 1 || carry
: Take ones complement Oo0o011011 :
I \ AL J I
[Add ones complement |
| to minuend |
b 4

Figure 8-5. Ones complement binary subtraction

subtraction, because the ones complement of a binary number can be simply
generated by inverting all of its bits; that is, by exchanging all the Os with 1s
and vice versa.

Now consider the same binary subtraction performed using the twos
complement technique (Figure 8-6).

As before, the advantage of the twos complement is that it is not necessary
to perform an end-around-carry; any carry-out resulting from the addition of
the two most significant bits is simply dropped from the final result. The disad-
vantage is that, during the process of creating the twos complement, it is
necessary to perform a borrow operation for almost every digit in the subtra-
hend. This problem can be solved by first taking the ones complement of the
subtrahend, adding one to the result, and then performing the remaining
operations as for the twos complement.

Binary Arithmetic m 73

Standard subtraction
OO0 111001
- 00011110

=0001 1011

Twos complement equivalent

r-r—-r——— - — — — — — |
| 1TO000O0OODO oOo0o111001 |
|l —oo0oo011110 +11100010 |
::11100010 TOOO11OTT:Dal”Y?yp
| \ N\ J o001 1011 | carry
[Take twos complement . A J |
I Add twos complement I
| to minuend |
L - o

Figure 8-6. Twos complement binary subtraction

As fate would have it, there is a short-cut approach available to generate
the twos complement of a binary number. Commencing with the least signifi-
cant bit of the value to be complemented, each bit up to and including the first
1 is copied directly, and the remaining bits are inverted (Figure 8-7).

MSB LSB

Y Y

o o o 1 1 1 1 0 Valuetobecomplemented

1 0O Copy from the LSB up to,
and including, the first 1

T 1 10 O O 1 0O Invert the remaining bits

Figure 8-7. Shortcut for generating a twos complement

74 m Chapter Eight

MSBE - X

(sign
bit)

o O O

QOO0 ——

_27

-

QOO0 *

+26

o O O

QOO0 ——

+25

S

000 X

000 -~ -

+24

QOO0 *

QOO0 ——

QOO0 *

QOO0 ——

+2°
+22

Il

1l

Il

Il

1l

Il

O —-~0—-~0

- O

1

Il

+2!
+20

1l

1l

126,
= 127
= 128,

= 126,

0]
A
"'27@

—128’s column
+064’s column

+32’s column =
+16’s column =
+&’s column =

= bit 7 — > Negative

= bit © 7
bit 5
bit 4
bit 3

value

< —> Positive

+4's column = bit 2 values
+2’s column = bit 1
+Ts column = bit O J
Figure 8-8. Signed
binary numbers
-27,,
T 1 1 0 O 1 O 12
\ VG J
—12810 +TO11O = —27@

Figure 8-9. Comparison of positive and negative signed binary numbers

Binary Arithmetic m 75

Unfortunately, all of the previous examples will return incorrect results if
a larger value is subtracted from a smaller value; that is, for these techniques
to work, the final result must be greater than or equal to zero. In the case of
unsigned binary numbers, the reason is clear because, by definition, an
unsigned binary number can only be used to represent a positive value, but
subtracting a larger value from a smaller value results in a negative value. It
would obviously be somewhat inconvenient if computers could only be used to
generate positive values, so we need some way to represent negative numbers.

Signed Binary Numbers

Signed binary numbers can be used to represent both positive and negative
values, and they do this in a rather cunning way. In standard decimal
arithmetic, negative numbers are typically represented in a form known
as sign-magnitude,® which means prefixing values with plus or minus signs.

For example, values of plus and minus twenty-seven would be shown as +27
and —27, respectively. However, for reasons of efficiency, computers rarely
employ the sign-magnitude form, and instead use the signed binary format, in
which the most significant bit is also called the sign bit (Figure 8-8).

The least significant bits continue to represent the same positive quantities
as for unsigned binary numbers, but the sign bit is used to represent a negative
quantity. In the case of a signed 8-bit number, a 1 in the sign bit represents —27
= —128, and the remaining bits are used to represent positive values in the range
0, through +127,,. Thus, when the value represented by the sign bit is com-
bined with the values represented by the remaining bits, an 8-bit signed binary
number can be used to represent values in the range —128,, through +127,,.

To illustrate the differences between the sign-magnitude and signed binary
formats, first consider a positive sign-magnitude decimal number and its negative
equivalent: for example, +27 and —27. As we see, the digits are identical for
both cases and only the sign changes. Now consider the same values represented
as signed binary numbers (Figure 8-9).

In this case, the bit patterns of the two binary numbers are very different.
This is because the sign bit represents an actual quantity (—128,,) rather than
a simple plus or minus; thus, the signed equivalent of =27, is formed by com-
bining —128;, with +101,,. Now pay attention because this is the clever part:

3 Sometimes written as sign+magnitude.

76 m Chapter Eight

closer investigation reveals that each bit pattern is in fact the twos complement
of the other! To put this another way, taking the twos complement of a positive
signed binary value returns its negative equivalent and vice versa.

The end result is that using signed binary numbers greatly reduces the
complexity of operations within a computer. To illustrate why this is so, first
consider one of the simplest operations, that of addition. Compare the additions
of positive and negative decimal values in sign-magnitude form with their
signed binary counterparts (Figure 8-10).

Examine the standard decimal calculations on the left. The one at the top
is easy to understand because it’s a straightforward addition of two positive
values. However, even though you are familiar with decimal addition, you
probably found the other three a little harder because you had to decide
exactly what to do with the negative values. By comparison, the signed binary

Decimal sign- Signed binary

magnitude
5 7 oo 1 1 1 0 O 1
+ 3 0 +0 O O 1 1 1 1 O
= & 7 o1 o 1 o 1 11
5 7 oo 1 1 1 0 O 1
+ =5 0 + 1 1 1 0 O O 1 O
= 2 7 oo o1 1 0 11
-5 7 T 1 0 0 0 1 1 1
+ 3 0 +0 O O 1 1 1 1 0
= =2 7 1T 1 0 0 1 0O 1
-5 7 T 1 0 0 0 1 1 1
+ =5 0 + 1 1 1 0 O O 1 O
= =5 7 T o0 1 0 1 O O 1

Figure 8-10. Comparison of sign-magnitude
versus signed binary additions

Binary Arithmetic m 77

calculations on the right are all simple additions, regardless of whether the
individual values are positive or negative.

If computers were forced to use a binary version of the sign-magnitude form
to perform additions, they would have to perform a sequence of operations

(Figure 8-11).

First compare the signs of the two values.

IF THE SIGNS ARE THE SAME: IF THE SIGNS ARE DIFFERENT:
Add the values. Note that the Subtract the smaller value from
result will always have the same the larger value, then attach
sign as the original values. the correct sign to the result.

Figure 8-11. Steps required for sign-magnitude additions

As well as being time consuming, performing all these operations would
require a substantial number of logic gates. Thus, the advantages of using
the signed binary format for addition operations are apparent: signed binary
numbers can always be directly added together to provide the correct result in
a single operation, regardless of whether they represent positive or negative
values. That is, the operations a + b, a + (-b), (-=a) + b, and (-a) + (—b) are all
performed in exactly the same way, by simply adding the two values together.
This results in fast computers that can be constructed using a minimum number
of logic gates.

Now consider the case of subtraction. We all know that 10 -3 = 7 in
decimal arithmetic, and that the same result can be obtained by negating the
right-hand value and inverting the operation: that is, 10 + (=3) = 7. This
technique is also true for signed binary arithmetic, although the negation of the
right hand value is performed by taking its twos complement rather than by

changing its sign. For example, consider a generic signed binary subtraction®

4 For the sake of simplicity, only the case of a — b is discussed here. However, the operations a — b,
a—(-b), (—a) — b, and (—a) — (=b) are all performed in exactly the same way, by simply taking the
twos complement of b and adding the result to a, regardless of whether a and b represent positive
or negative values.

78 m Chapter Eight

represented by a — b. Generating the twos complement of b results in —b,
allowing the operation to be performed as an addition: a + (-b). This means
that computers do not require different blocks of logic to add and subtract;
instead, they only require an adder and a twos complementor. As well as
being faster than a subtractor, a twos complementor requires significantly
fewer logic gates.

Binary Multiplication

One technique for performing multiplication in any number base is by
means of repeated addition; for example, in decimal, 6 x4 =6+ 6 + 6 + 6 = 24.
However, even though computers can perform millions of operations every
second, the repeated addition technique is time-consuming when the values to
be multiplied are large. As an alternative, binary numbers may by multiplied
together by means of a shift-and-add technique known as Booth’s Algorithm
(Figure 8-12).

Multiplicand Multiplier 65&\0/;?2,[,45
r Ve \ r a Ve \ —
O0010110 x O1 110011 22, ,x 115,
00010110 = |
O00101 10 _ -
O0000000 _ _ =
Partial O0000000 _ _ _ -
products 00010110 . <
ocoo1o110_ _ _ _ _ -
ocoot1o0110_ _ _ _ _ _ <
00000000 _ _ _ _ _ _ _ < Y
O00010011T11T00010 = 2530,

Figure 8-12. Binary multiplication using Booth’s Algorithm

Using Booth’s algorithm, a partial product is generated for every bit in the
multiplier. If the value of the multiplier bit is 0, its corresponding partial product
consists only of Os; if the value of the bit is 1, its corresponding partial product
is a copy of the multiplicand. Additionally, each partial product is left-shifted

Binary Arithmetic m 79

as a function of the multiplier bit with which it is associated; for example, the
partial product associated with bit O in the multiplier is left-shifted zero bits,
the partial product associated with bit 1 is left-shifted one bit, etc. All of the
partial products are then added together to generate the result, whose width is
equal to the sum of the widths of the two values being multiplied together.

There are several ways to implement a multiplier based on Booth’s
technique. In one implementation, all of the partial products are generated
simultaneously and then added together. This requires a lot of logic gates,
but the resulting multiplication is extremely fast. Unfortunately, Booth’s
Algorithm only works with unsigned binary values. However, this problem
can be overcome by taking the twos complement of any negative values
before feeding them into the multiplier. If the signs of the two values are the
same, both positive or both negative, then no further action need be taken.’
However, if the signs are different, then the result returned from the multiplier
must be negated by transforming it into its twos complement.

Last but not least, long division is just about as much fun in binary as it is
in decimal, which is to say “Not a lot!” For this reason, binary division is best
left to computers because they are in no position to argue about it.

5 A negative multiplied by a negative equals a positive; for example, (-3) X (—4) = +12.

Chapter
V__N

9

A 4
Boolean Algebra

One of the most significant mathematical tools available to electronics
designers was actually invented for quite a different purpose. Around the
1850s, a British mathematician, George Boole (1815-1864), developed a new
form of mathematics that is now known as Boolean Algebra. Boole’s intention
was to use mathematical techniques to represent and rigorously test logical and
philosophical arguments. His work was based on the following: a statement is a
sentence that asserts or denies an attribute about an object or group of objects:

Statement: Your face resembles a cabbage.

Depending on how carefully you choose your friends, they may
either agree or disagree with the sentiment expressed; therefore,

this statement cannot be proved to be either true or false.

By comparison, a proposition is a statement that is either true or false with
no ambiguity:

Proposition: [just tipped a bucket of burning oil into your lap.

This proposition may be true or it may be false, but it is definitely

one or the other and there is no ambiguity about it.

Propositions can be combined together in several ways; a proposition
combined with an AND operator is known as a conjunction:

Boolean Algebra m 81

Conjunction: You have a parrot on your head AND you have a fish in
your ear.

The result of a conjunction is true if all of the propositions

comprising that conjunction are true.

A proposition combined with an OR operator is known as a disjunction:

Disjunction: You have a parrot on your head OR you have a fish in
your ear.

The result of a disjunction is true if at least one of the propositions

comprising that disjunction is true.

From these humble beginnings, Boole established a new mathematical field
known as symbolic logic, in which the logical relationship between propositions
can be represented symbolically by such means as equations or truth tables.
Sadly, this work found little application outside the school of symbolic logic for
almost one hundred years.

In fact, the significance of Boole’s work was not fully appreciated until the
late 1930s, when a graduate student at MIT, Claude Shannon, submitted a
master’s thesis that revolutionized electronics. In this thesis, Shannon showed
that Boolean Algebra offered an ideal technique for representing the logical
operation of digital systems. Shannon had realized that the Boolean concepts of
FALSE and TRUE could be mapped onto the binary digits O and 1, and that
both could be easily implemented by means of electronic circuits.

Logical functions can be represented using graphical symbols, equations, or
truth tables, and these views can be used interchangeably (Figure 9-1).

There are a variety of ways to represent Boolean equations. In this book,
the symbols &, |, and A are used to represent AND, OR, and XOR respectively;
a negation, or NOT, is represented by a horizontal line, or bar, over the portion
of the equation to be negated.

y=a“”b

alb

y:

y=a&b

yf Q0

Q

X

QO —0O+—
0011

Q

xQ

O —0O~
QO ~+

yf OQQO «—

O

A\

O—0O~
QO ~

> QO «—

b)) >
XOR

A\

) D>
OR

A\

AND

a
b |

N

XNOR

NOR

NAND

Figure 9-1. Summary of primitive logic functions

82 m Chapter Nine

a_|

I
BUF
=7
0|1
110

S| QO— > ©

NOT

Boolean Algebra m 83

Combining a Single Variable with Logic 0 or Logic 1

A set of simple but highly useful rules can be derived from the combination
of a single variable with a logic 0 or logic 1 (Figure 9-2).12

y=a&O

1.0
1 1
a b
0 0
O 1 |
1.0
1]

_\IQ|QIO|

<

<

4|A|A|QI
|

y=al O |
a b
g y 100 |
b=0 0.1
1.0
OR 1
a.o y:a
y=all |
ab
2 _0_0 _
b=1 ’ 0 1
1.0 L
OR RN
oy =1

Figure 9-2. Combining a single variable with a logic 0 or logic 1

1 Note that, throughout these discussions, the results from the NAND and NOR functions would be
the inverse of those from the AND and OR functions, respectively.

2 Note that the symbol ... shown in the equations in Figure 9-2 means “therefore.”

84 m Chapter Nine

The Idempotent Rules
The rules derived from the combination of a single variable with itself are
known as the idempotent rules (Figure 9-3).

y=a&a y=ala

a I
b=a B—y b=a) | Y
AND OR
o.. y =4a o.o y =4a

Figure 9-3. The idempotent rules

The Complementary Rules
The rules derived from the combination of a single variable with the in-
verse of itself are known as the complementary rules (Figure 9-4).

° a a
-3 Y
o=z [[obE)
NOT NOT OR
0'0 y = O o.. y = 1

Figure 9-4. The complementary rules

Boolean Algebra m 85

The Involution Rule

The involution rule states that an even number of inversions cancel each
other out; for example, two NOT functions connected in series generate an
identical result to that of a BUF function (Figure 9-5).

1

N
<

Il

\\}

w=a y=Ww y

aDOwDOy a{/y

NOT NOT BUF
a | w woly a lvy
0‘1 1‘0 olo
110 O 11 1711

Figure 9-5. The involution rules

The Commutative Rules

The commutative rules state that the order in which variables are specified
will not affect the result of an AND or OR operation (Figure 9-6).

y=a&b y=b&a y=alb y=b 1l a

b
a_

b a b
— Y N

AND AND OR OrR

Figure 9-6. The commutative rules

86 m Chapter Nine

The Associative Rules
The associative rules state that the order in which pairs of variables are

associated together will not affect the result of multiple AND or OR operations
(Figure 9-7).

(a&b)&ec y=a&((b&ec)

y=a&b&c Y

Y Y 12

AND AND AND

y=alblec y=(alb)lc y=al (bl o)

2 y
a
BTN Y 2 Or
c;le/ c
OR OR

Figure 9-7. The associative rules

In addition to recognizing the application of Boolean algebra to elec-
tronic design, Shannon is also credited with the invention of the rocket-
powered frishee, and is famous for riding down the corridors at Bell
Laboratories on a unicycle while simultaneously juggling four balls.

Precedence of Operators

Boolean Algebra m 87

In standard arithmetic, the multiplication operator is said to have a

higher precedence than the addition operator. This means that, if an equation

contains both multiplication and addition operators without parenthesis, then

the multiplication is performed before the addition; for example:3

6+2x4 =

6+ (2x4)

Similarly, in Boolean Algebra, the & (AND) operator has a higher prece-

dence than the | (OR) operator:

alb&c

al (b&c)

Due to the similarities between these arithmetic and logical operators,

the & (AND) operator is known as a logical multiplication or product, while

the | (OR) operator is known as a logical addition or sum. To avoid any

confusion as to the order in which logical operations will be performed, this

book will always make use of parentheses.

The first true electronic
computer, ENIAC (Electronic
Numerical Integrator and
Calculator), was constructed at
the University of Pennsylvania
between 1943 and 1946. In
many ways ENIAC was a monster;
it occupied 30 feet by 50 feet of
floor space, weighed approxi-
mately 30 tons, and used more
than 18,000 vacuum tubes
which required 150 kilowatts of

power—enough to light a small
town. One of the big problems
with computers built from
vacuum tubes was reliability;
90% of ENIAC’s down-time was
attributed to locating and
replacing burnt-out tubes.
Records from 1952 show that
approximately 19,000 vacuum
tubes had to be replaced in that
year alone; that averages out

to about 50 tubes a day!

3 Note that the symbol = shown in these equations indicates “is equivalent to” or “is the same as.”

88 m Chapter Nine

The First Distributive Rule

In standard arithmetic, the multiplication operator will distribute over the
addition operator because it has a higher precedence; for example:

6x(5+2) = (6x5)+(6x2)
Similarly, in Boolean Algebra, the & (AND) operator will distribute over

an | (OR) operator because it has a higher precedence; this is known as the
first distributive rule (Figure 9-8).

y=ad&(| o) y=(aé&b) | (aéc)

a
a y b 5,
De
\\AND y
C

'Z:Df AND
OR
OR &
AND
a b c (blc) y a b c (a&b)| (a&e)| Yy
O O O o) @) O O O @) @) o)
O O 1 1 O O O 1 @) O o)
O 1 0 1 @) O 1 0 @) 0] o)
O 1 1 1 @) O 1 1 @) O o)
1 0 O o) @) 1 0O O @) @) o)
1 0 1 1 1 1 0 1 @) 1 1
1T 1 0 1 1 1 1 O 1 @) 1
1T 1 1 1 1 T 1 1 1 1 1
1 Output columns are identical #

Figure 9-8. The first distributive rule

Boolean Algebra m 89

The Second Distributive Rule

In standard arithmetic, the addition operator will not distribute over the
multiplication operator because it has a lower precedence:#

6+(5x2) # (6+5)x(6+2)

However, Boolean Algebra is special in this case. Even though the | (OR)
operator has lower precedence than the & (AND) operator, it will still
distribute over the & operator; this is known as the second distributive rule

(Figure 9-9).

y=al(b&ec) y=(lb)&(al o)

a

: y b >
OR Y

b

D BY

AND
AND c
OR

a b c (b &) y a b c (alb)i@lecl v
O 0 O 0 0 O 0O O O O 0,
O O 1 0 O O O 1 O 1 0
O 1 0 0 o) 0O 10 1 O 0,
O 1 1 1 1 o 11 1 1 1
10 0 0 1 1 0 O 1 1 1
T 0 1 O 1 T 0 1 1 1 1
11 0 0 1 T 10 1 1 1
1T 1 1 1 1 T 11 1 1 1

* Output columns are identical *

Figure 9-9. The second distributive rule

4 Note that the symbol # shown in the equation indicates “is not equal t0.”

90 m Chapter Nine

The Simplification Rules

There are a number of simplification rules that can be used to reduce the
complexity of Boolean expressions. As the end result is to reduce the number of
logic gates required to implement the expression, the process of simplification is
also known as minimization (Figure 9-10).

y=a l(a&b) y=a&(a |l b)

a :)
y=a
L e OR) AND
AND
y
OR

OR
a >y

BUF
a a
- & _
b b
AND o EL
bl |8 b AND
AND 5
y=(a&b) | (a&Db) y=(alb)&(al b

Figure 9-10. The simplification rules

- continued on next page

y=a l(a&b)

AND

Boolean Algebra m 91

y=ad&(a | b)

a
b | &) :

AND

Figure 9-10 (continued). The simplification rules

Few now know that, before
elbowing his way up the ladder
of corporate success, the author
of this epic volume once aspired
to be a world-famous explorer.
Picture him, if you will, as he
strode across the veldt (hair by
Vidal Sassoon®, eyelashes by
Max Factor®, and loin cloths by
Fruit of the Loom™). The name
Tracker Max, as he then styled
himself, was oft bandied by the
denizens of the dim and dingy
taverns in the deepest, direst
domains of the dark continent.
Today his Arnold Schwarze-

negger look-alike body is com-
pressed into an executive-style
business suit (in a fashion
reminiscent of years gone by)
and he passes his twilight years
quaffing the odd fermented
coconut and penning trail-blazing
books such as this one. Now that
time has healed the deeper
wounds, some in unusual and
interesting places that he is only
too happy to display (for a
nominal fee), he feels more able
to tell the tale of those far off
times... unfortunately we don’t
have enough space here!

92 m Chapter Nine

Start a&b
Step#1 alb
Step#2 alb
Step#3 alb ——
y=alb
y=a&b Step #4 N/A
— A
DeMorgan Transformation
D -—_
Reverse Transformation
AND
_— NOT
Start alb
Step #1 a &b I _ -
b P == a blla b l(alb)]| vy
0 Step #2 a &b O Of 1 1 1 @)
= O 1 1 0 1 0]
('I) Step #3 a &b 1 olo 7 : 0
1 Step #4 a &b 1T 110 0O 0] 1

DeMorgan Transformations

A contemporary of Boole’s, Augustus DeMorgan (1806-1871), also made
significant contributions to the field of symbolic logic, most notably a set of

rules which facilitate the conversion of Boolean expressions into alternate and

often more convenient forms. A DeMorgan Transformation comprises four step

Exchange all of the & operators for | operators and vice versa.
Invert all the variables; also exchange Os for 1s and vice versa.
Invert the entire function.

B D=

Reduce any multiple inversions.

Consider the DeMorgan Transformation of a 2-input AND function
(Figure 9-11). Note that the NOT gate on the output of the new function can
be combined with the OR to form a NOR.

S:

Figure 9-11. DeMorgan Transformation of an AND function

Boolean Algebra m 93

Similar transformations can be performed on the other primitive functions

(Figure 9-12).

a_ y=adhb DeMorgan
Bl

AND

a
- DeMorgan - T

a - =

NAND b] OR

NOT

a
2 DeMorgan -
Or b >OINAND

a
2 y=aTb DeMorgan >O_L n
b
NOR |7_>OIAND

Figure 9-12. DeMorgan Transformations of AND,
NAND, OR, and NOR functions

94 m Chapter Nine

Minterms and Maxterms

For each combination of inputs to a logical function, there is an associated
minterm and an associated maxterm. Consider a truth table with three inputs: a,

b, and ¢ (Figure 9-13).

a b ¢ minterms tmaxterms
O O O (3&b&7) (alblc)
O 0 1 (&b &0) (alble)
o 1 O (2&b&7) (alblc)
o 1 1 (a&b&o) (alblc)
1T O O (a&b&ec) (alblc)
1T 0 1 (a&b&ec) (albloc)
T 1 0 (a&b&q) (alblc)
T 1 1 (a&b&o) (alblc)

Figure 9-13. Minterms and maxterms

The minterm associated with each input combination is the & (AND),
or product, of the input variables, while the maxterm is the | (OR), or sum,
of the inverted input variables. Minterms and maxterms are useful for deriving
Boolean equations from truth tables as discussed below.

Sum-of-Products and Product-of-Sums

A designer will often specify portions of a design using truth tables, and
determine how to implement these functions as logic gates later. The designer
may start by representing a function as a “black box”> with an associated truth
table (Figure 9-14). Note that the values assigned to the output y in the truth
table shown in Figure 9-14 were selected randomly, and have no significance
beyond the purposes of this example.

There are two commonly used techniques for deriving Boolean equations
from a truth table. In the first technique, the minterms corresponding to each
line in the truth table for which the output is a logic 1 are extracted and
combined using | (OR) operators; this method results in an equation said to be

5 A “black box” is so-called because initially we don’t know exactly what’s going to be in it.

Black

Box

a c | vy
OO0 O] O

oo 1| 1

o1 0| o

y o1 1 | 1
—» 10 0| 1
10 1 | 1

11 01| O

1 1 1 0

Boolean Algebra m 95

b

Figure 9-14. Black box with associated truth table

in sum-of-products form. In the second technique, the maxterms corresponding
to each line in the truth table for which the output is a logic O are combined
using & (AND) operators; this method results in an equation said to be in
product-of-sums form (Figure 9-15).

Line #1
Line #2
Line #3
Line #4
Line #5
Line #6
Line #7
Line #5

S

a c y Product-of-Sums

0o00| 0—¢ l

O 0 1 | —]—

8 } (13 ?:«_‘ y=(alblc) & (alblc) & (alblc) & (21bI3)
1 0 O 1 —— Line #1 Line #3 Line #7 Line #&
] ? é é | Line #2 Line #4 Line #5 Line #6
11 1 o0 —14 y=(@ &b&c) I (3&b&c) | (a&b&T) | (a&b&c)

J

Sum-of-Products

Figure 9-15. Sum-of-products versus product-of-sums equations

For a function whose output is logic 1 fewer times than it is logic O, it is
generally easier to extract a sum-of-products equation. Similarly, if the output
is logic O fewer times than it is logic 1, it is generally easier to extract a product-
of-sums equation. The sum-of-products and product-of-sums forms complement
each other and return identical results. An equation in either form can be

transformed into its alternative form by means of the appropriate DeMorgan
Transformation.

96 m Chapter Nine

Once an equation has been obtained in the required form, the designer
would typically make use of the appropriate simplification rules to minimize the
number of logic gates required to implement the function. However, neglecting
any potential minimization, the equations above could be translated directly
into their logic gate equivalents (Figure 9-16).

a b c
P, 1 RIRGEEE
Ve [V | Y VALV,
) >
&) |
— t L &) N
— &) | B
) D
Sum-of-Products Product-of-Sums

Figure 9-16. Sum-of-products versus product-of-sums implementations

Canonical Forms

In a mathematical context, the term canonical form is taken to mean a
generic or basic representation. Canonical forms provide the means to compare
two expressions without falling into the trap of trying to compare “apples” with
“oranges.” The sum-of-products and product-of-sums representations are different
canonical forms. Thus, to compare two Boolean equations, both must first be
coerced into the same canonical form; either sum-of-products or product-of-sums.

A
o,
Karnaugh Maps

In 1953, Maurice Karnaugh (pronounced “car-no”) invented a form of logic
diagram! called a Karnaugh Map, which provides an alternative technique for
representing Boolean functions; for example, consider the Karnaugh Map for a

2-input AND function (Figure 10-1).
Karnaugh Map

Truth Table ab
i_BL ab y o0 01 11 10
—— 00|0 1
AND o110
1 0|0 T
11]1 =

Figure 10-1. Karnaugh Map for a 2-input AND function

The Karnaugh Map comprises a box for every line in the truth table. The
binary values above the boxes are those associated with the a and b inputs.
Unlike a truth table, in which the input values typically follow a binary
sequence, the Karnaugh Map’s input values must be ordered such that the
values for adjacent columns vary by only a single bit: for example, 00,, 01,, 11,,
and 10,. This ordering is known as a Gray code,? and it is a key factor in the
way in which Karnaugh Maps work.

The y column in the truth table shows all the 0 and 1 values associated
with the gate’s output. Similarly, all of the output values could be entered into
the Karnaugh Map’s boxes. However, for reasons of clarity, it is common for
only a single set of values to be used (typically the 1s).

1 The topic of logic diagrams in general is discussed in more detail in Chapter 22.

2 Gray codes are discussed in more detail in Appendix D.

98 m Chapter Ten

Similar maps can be constructed for 3-input and 4-input functions. In the
case of a 4-input map, the values associated with the ¢ and d inputs must also
be ordered as a Gray code: that is, they must be ordered in such a way that the
values for adjacent rows vary by only a single bit (Figure 10-2).

a
a —P
> b
b - S-in Y > i
put > 4-input N
c Function C i Funciion :
> d
b
ab ab
c oo O1 11 10 cd_00 01 11 10
o} 00
1 01

Figure 10-2. Karnaugh Maps for 3-input
and 4-input functions

Minimization Using Karnaugh Maps

Karnaugh Maps often prove useful in the simplification and minimization
of Boolean functions. Consider an example 3-input function represented as a
black box with an associated truth table (Figure 10-3).3

The equation extracted from the truth table in sum-of-products form
contains four minterms,* one for each of the 1s assigned to the output.
Algebraic simplification techniques could be employed to minimize this
equation, but this would necessitate every minterm being compared to each
of the others, which can be somewhat time-consuming.

3 The values assigned to output y in the truth table were selected randomly and have no
significance beyond the purposes of this example.

4 The concepts of minterms and maxterms were introduced in Chapter 9.

Karnaugh Maps m 99

a b c y
a O 0 O 0
4 O 0 1 1
b -i y o1 0 0] _ _ -
— St | Yy o1 1l 3 y=(3&b8&c) 1(3&b&c) | (a&b&T) | (a&b&e)
c
» 1 8 ? 1 Sum-of-Products Expression
11 0 0
T 11)

Figure 10-3. Example 3-input function

This is where Karnaugh Maps enter the game. The 1s assigned to the map’s
boxes represent the same minterms as the 1s in the truth table’s output column;
however, as the input values associated with each row and column in the map
differ by only one bit, any pair of horizontally or vertically adjacent boxes
corresponds to minterms that differ by only a single variable. Such pairs of
minterms can be grouped together and the variable that differs can be discarded

(Figure 10-4).

Truth Table ab ab

abecly c o0 O1 11 10 c o0 01 11 10
000 |0 0 1 0
001 |1 1111 1 1]
010 |0

011 |1 L l
100 |1 _
101 |1 y=(a&c)l(aé&b)
171010 . .

111 0 Figure 10-4. Karnaugh Map minimization

of example 3-input function

In the case of the horizontal group, input a is O for both boxes, input ¢ is 1
for both boxes, and input b is O for one box and 1 for the other. Thus, for this
group, changing the value on b does not affect the value of the output. This
means that b is redundant and can be discarded from the equation representing
this group. Similarly, in the case of the vertical group, input a is 1 for both
boxes, input b is O for both boxes, and input ¢ is O for one box and 1 for the
other. Thus, input c is redundant for this group and can be discarded.

100 m Chapter Ten

Grouping Minterms

In the case of a 3-input Karnaugh Map, any two horizontally or vertically
adjacent minterms, each composed of three variables, can be combined to form
a new product term composed of only two variables. Similarly, in the case of a
4-input map, any two adjacent minterms, each composed of four variables, can
be combined to form a new product term composed of only three variables.
Additionally, the 1s associated with the minterms can be used to form multiple
groups. For example, consider the 3-input function shown in Figure 10-5, in

which the minterm corresponding to a =1, b = 1, and ¢ = O is common to three
groups.
a b ¢ y
O 0 O O ab
a O 0 1 @)
- 01 0 1 cN\ 00 O 1 10
b B-input N O 1 1 O 0 (1)
> Function > 1 0 O 1
c 1 0 1 O 1 JJ
—> 11 O 1
T 1 1 1
Figure 10-5. Karnaugh Map minterms used to y=(b &¢) | (a&ec) | (a&b)

form multiple groups

Groupings can also be formed from four adjacent minterms, in which case
two redundant variables can be discarded; consider some 4-input Karnaugh
Map examples (Figure 10-6).

In fact, any group of 2™ adjacent minterms can be gathered together where
h is a positive integer. For example, 2! = two minterms, 22 = 2 x 2 = four
minterms, 2% = 2 x 2 x 2 = eight minterms, etc.

As was noted earlier, Karnaugh Map input values are ordered so that the
values associated with adjacent rows and columns differ by only a single bit.
One result of this ordering is that the top and bottom rows are also separated
by only a single bit (it may help to visualize the map rolled into a horizontal
cylinder such that the top and bottom edges are touching). Similarly, the left
and right columns are separated by only a single bit (in this case it may help to

ab
cd oo o1 1 10
N\
00 1
01 1
11 1
10 1
N/
y=(a&b)
ab
cd 00 o1 1 10
00

[0
()

y=(@&d)

ab
cd o0 o 1 10

00

y=(c&d)
ab
cd oo o 1 10
00 1 1]
o1 1 1J
11 1
10 W

y=E&Db) ! (b&7)

Karnaugh Maps m 101

ab

cd oo ol 1 10

y=(a&b)l(c&d)

ab
cd 00 O Il 10

00

© U

y=(b &d)I(a&ec)

Figure 10-6. Karnaugh Map groupings of four adjacent minterms

visualize the map rolled into a vertical cylinder such that the left and right

edges are touching). This leads to some additional groupings, a few of which are

shown in Figure 10-7.

Note especially the last example. Diagonally adjacent minterms generally

cannot be used to form a group: however, remembering that the left-right

columns and the top-bottom rows are logically adjacent, this means that the

four corner minterms are also logically adjacent, which in turn means that they

can be used to form a single group.

102 m Chapter Ten

cd

cd

ab

00

o1

0o |ol| 1 10
1
a
I I

00 01

y=(b&32)(adb&d)

cd

cd

ab ab
00 ol 110 cd_o00 |ot 1| 10
00 00 l 1 _1J
01_ 1| E_ 01
11 11
10 10 1 _1]
[[
y=(&c&d) y=(b&d)
ab ab
L 10 cd Qo o1 N 10/
ool | 1) oDl | Ky
01 01
1 1) (1_'— 11
10 ’1) 1] Ll_— 104 1 1
| 7 N
y=(2&d) | (b&e) y=(b&d)

Figure 10-7. Additional Karnaugh Map grouping possibilities

Incompletely Specified Functions

In certain cases a function may be incompletely specified: that is, the

output may be undefined for some of the input combinations. For example, if

the designer knows that certain input combinations will never occur, then the

value assigned to the output for these combinations is irrelevant. Alternatively,

for some input combinations the designer may simply not care about the value

on the output. In both cases, the designer can represent the output values

Karnaugh Maps m 103

ab

associated with the relevant input combinations as)
C

o0 01 11 10

question marks in the map (Figure 10-8).
The ? characters indicate don’t care states, which 00 (1 7 1 1 J
can be considered to represent either O or 1 values at

. . . . 01
the designer’s discretion. In the example shown in

Figure 10-8, we have no interest in the ? character at 11 2 | 2 | 2 |
a=0,b=0,c=1,d =0 or the ? character at a = O, L
1 1 J

b=1c¢=1,d =1, because neither of these can be 10

used to form a larger group. However, if we decide
that the other three ? characters are going to repre-
sent 1 values, then they can be used to form larger
groups, which allows us to minimize the function to y=(c8&d) | (ao)
a greater degree than would otherwise be possible.
It should be noted that many electronics refer-

Figure 10-8. Karnaugh Map
ences use X characters to represent don’t care states. for an incompletely

. . . specified function
Unfortunately, this may lead to confusion as design
tools such as logic simulators use X characters to
represent don’t know states. Unless otherwise indicated, this book will use 2 and

X to represent don’t care and don’t know states, respectively.

Populating Maps Using Os Versus 1s

When we were extracting Boolean equations from truth tables in the
previous chapter, we noted that in the case of a function whose output is logic 1
fewer times than it is logic O, it is generally easier to extract a sum-of-products
equation. Similarly, if the output is logic O fewer times than it is logic 1, it is
generally easier to extract a product-of-sums equation.

The same thing applies to a Karnaugh Map. If the output is logic 1 fewer
times than it is logic O, then it’s probably going to be a lot easier to populate
the map using logic 1's. Alternatively, if the output is logic O fewer times than
it is logic 1, then populating the map using logic Os may not be a bad idea.

When a Karnaugh Map is populated using the 1s assigned to the truth
table’s output, the resulting Boolean expression is extracted from the map in
sum-of-products form. By comparison, if the Karnaugh Map is populated using
the Os assigned to the truth table’s output, then the groupings of Os are used to
generate expressions in product-of-sums form (Figure 10-9).

104 m Chapter Ten

abOO o1 1 10 Sum-of-Products
abec c) 3
O0O0 % O 1) y=(a&ec)l(a&b)
010 |0 = |
o111 Equivalent
100 |1 ab

101 1 c oo O1 11 10

[ool 9[o y=(alc) & (31D)
trrlo 1 @ Product-of-Sums

Figure 10-9. Populating Karnaugh Maps with Os versus 1s

Although the sum-of-products and product-of-sums expressions appear to
be somewhat different, they do produce identical results. The expressions can
be shown to be equivalent using algebraic means, or by constructing truth
tables for each expression and comparing the outputs.

Karnaugh Maps are most often used to represent 3-input and 4-input
functions. It is possible to create similar maps for 5-input and 6-input functions,
but these maps can quickly become unwieldy and difficult to use. Thus, the

Karnaugh technique is generally not considered to have any application for
functions with more than six inputs.

]

LIIA

Using Primitive Logic
Functions to Build More
Complex Functions

The primitive functions NOT, AND, OR, NAND, NOR, XOR, and
XNOR can be connected together to build more complex functions which
may, in turn, be used as building blocks in yet more sophisticated system:s.

The examples introduced in this chapter were selected because they occur
commonly in designs, are relatively simple to understand, and will prove useful
in later discussions.

Scalar versus Vector Notation

A single signal carrying one bit of binary data is known as a scalar entity.
A set of signals carrying similar data can be gathered together into a group
known as a vector (see also the glossary definition of “vector”).

a3 o a3 L a30] |
‘ y3 ! y[3] ! 0] |
b3 Ei o BB | s 1 bB0)| &)Y (501
3 Gate 3 ‘ ‘ Gate [3] ; | Gate [3:0] l
a2 Al 2 L T
b2 B yz ! " p[2] w } Vector Notation

| | oo ! (Compressed)

} Gate 2 | } Gate [2] |

} a 1 | a[1] :

‘ 1 : yll

o [ey— B e) :

l Gate 1 | ! Gate [1]

| a0 | | al0] |

| yO | | o) !

b0 ORI 1

| Gate O ! ! Gate [0] 1

Scalar Notation Vector Notation Figure 11-1: Scalar

(Expanded) versus vector notation

106 m Chapter Eleven

Consider the circuit fragments shown in Figure 11-1. Each of these
fragments represents four 2-input AND gates. In the case of the scalar notation,
each signal is assigned a unique name: for example, a3, a2, al, and a0. By
comparison, when using vector notation, a single name is applied to a group
of signals, and individual signals within the group are referenced by means of
an index: for example, a[3], a[2], a[1], and a[0]. This means that if we were to
see a schematic (circuit) diagram containing two signals called a3 and a[3], we
would understand this to represent two completely different signals (the former
being a scalar named “23” and the latter being the third element of a vector
named “3”).

A key advantage of vector notation is that it allows all of the signals
comprising the vector to be easily referenced in a single statement: for example,
a[3:0], b[2:0], and y[3:0]. Thus, vector notation can be used to reduce the size
and complexity of a circuit diagram while at the same time increasing its
clarity.

Equality Comparators

In some designs it may be necessary to compare two sets of binary values to
see if they contain the same data. Consider a function used to compare two 4-bit
vectors: a[%:0] and b[3:0]. A scalar output called equal is to be set to logic 1 if
each bit in a[3:0] is equal to its corresponding bit in b[3:0]: that is, the vectors
are equal if a[3] = b[3], a[2] = b[2], a[1] = b[1], and a[O] = b[O] (Figure 11-2).

The values on a[3] and b[3] are compared using a 2-input XNOR gate. As
we know from Chapters 5 and 6, if the values on its inputs are the same (both
Os or both 1s), the output of an XNOR will be 1, but if the values on its inputs
are different, the output will be O. Similar comparisons are performed between
the other inputs: a[2] with b[2], a[1] with b[1], and a[0] with b[O]. The final
AND gate is used to gather the results of the individual comparisons. If all the
inputs to the AND gate are 1, the two vectors are the same, and the output of
the AND gate will be 1. Correspondingly, if any of the inputs to the AND gate
are O, the two vectors are different, and the output of the AND gate will be O.

Note that a similar result could have been obtained by replacing the
XNORs with XORs and the AND with a NOR, and that either of these
implementations could be easily extended to accommodate input vectors of
greater width.

Using Primitive Logic Functions to Build More Complex Functions m 107

a[?]

Comparator

XNOR Eeqi”a'
equal a1

AND

a[2:0]

b[3:0]

inputs ‘ equal
2:01 # b[5:0 0] _ N ~ ~ ~
2%510% * b%S:O% 1 equal = (a[3] “ b [3]) & (a[2] " b[2]) & (a[1] " b [1]) & (a[0] * b [O])
Figure 11-2. Equality comparator
Multiplexers

A multiplexer uses a binary value, or address, to select between a number
of inputs and to convey the data from the selected input to the output. For
example, consider a 2:1 (“two-to-one”) multiplexer (Figure 11-3).

The O and 1 annotations on the multiplexer symbol represent the possible
values of the select input and are used to indicate which data input will be
selected.

The ? characters in the truth table indicate don’t care states. When the
select input is presented with a O, the output from the function depends only
on the value of the dO data input, and we don’t care about the value on 4.
Similarly, when select is presented with a 1, the output from the function
depends only on the value of the d1 data input, and we don’t care about the
value on dO. The use of don’t care states reduces the size of the truth table,
better represents the operation of this particular function, and simplifies the
extraction of the sum-of-products expression because the don’t cares are
ignored.

108 m Chapter Eleven

40
2:1 MUX
AND
— N
o, T
Y a1 OR
di -l 1 select Eﬁ
AND

select

Select 4O al |y
@) @) G @) _
0 1 2 1 y= (select & dO) | (select & d1)
1 ? O o)
1 ? 1 1

Figure 11-3. A 2:1 multiplexer

An identical result could have been achieved using a full truth table
combined with a Karnaugh Map minimization (Figure 11-4).1

do, d1
Select
Select 40 A 00 01 1 10

0 @
@

- Q0-0-~0-0
-0 —-0—-—-00(«

- —00—~-~—-00

y= (select & dO) | (select & d1)

Figure 11-4. Deriving the 2:1 multiplexer equation
by means of a Karnaugh Map

1 Karnaugh Map minimization techniques were introduced in Chapter 10.

Using Primitive Logic Functions to Build More Complex Functions m 109

Larger multiplexers are also common in designs: for example, 4:1 multi-
plexers with four data inputs feeding one output and 8:1 multiplexers with
eight data inputs feeding one output. In the case of a 4:1 multiplexer, we will
require two select inputs to choose between the four data inputs (using binary
patterns of 0O, 01, 10, and 11). Similarly, in the case of an 8:1 multiplexer, we
will require three select inputs to choose between the eight data inputs (using
binary patterns of 000, 001, 010, O11, 100, 101, 110, and 111).

Decoders

A decoder uses a binary value, or address, to select between a number
of outputs and to assert the selected output by placing it in its active state.
For example, consider a 2:4 (“two-to-four”) decoder (Figure 11-5).

2:4 DEC
11 ~y [3] Select [1] Select [0]
Select [1:0] ~y [2]))
10
| oepn vy
01
00 v 10 & [3] = sélect [1] | select [O]
J | ~y = 5¢lec selec
OR
D‘ ~y [2] = select [1] | select [O]
OR
Select [1:0] |~y [2:0]
o g) 1)~y [1] =select [1] | 4lect [O]
O 1 1T 10 1 OR
10 10 1 1
11 o1 11 *D—w [0] = select [1] | select [O]
OR

Figure 11-5. A 2:4 decoder with active-low outputs

The 00, 01, 10 and 11 annotations on the decoder symbol represent the
possible values that can be applied to the select[1:0] inputs and are used to
indicate which output will be asserted.

The truth table shows that when a particular output is selected, it is
asserted to a O, and when that output is not selected, it returns to a 1. Because
the outputs are asserted to Os, this device is said to have active-low outputs.

110 m Chapter Eleven

An active-low signal is one whose active state is considered to be logic 0.2 The
active-low nature of this particular function is also indicated by the bobbles
(small circles) associated with the symbol’s outputs and by the tilde (“~”)3
characters in the names of the output signals. Additionally, from our discussions
in Chapters 9 and 10, we know that as each output is O for only one input
combination, it is simpler to extract the equations in product-of-sums form.

Larger decoders are also commonly used in designs: for example, 3:8 decoders
with three select inputs and eight outputs, 4:16 decoders with four select inputs
and sixteen outputs, etc.

Tri-State Functions

There is a special category of gates called tri-state functions whose outputs
can adopt three states: 0, 1, and Z. Lets first consider a simple tri-state buffer
(Figure 11-6).

The tri-state buffer’s symbol is based on a standard buffer with an additional
control input known as the enable. The active-low nature of this particular

data N~ Y
Vpp (Logic 1)
~enable
Th
OR
data Y
~enable datal y ~enable - L_D)_i Tro
o) 1 1
1 ? z

VSS (LO@iC O)

Figure 11-6. Tri-state buffer with active-low enable

2 Similar functions can be created with active-high outputs, which means that when an output is
selected it is asserted to a logic 1.

3 The tilde ‘~’ characters prefixing the output names ~y[3], ~y[2], ~y[1], and ~y[O] are used to
indicate that these signals are active-low. The use of tilde characters is discussed in more
detail in Appendix A.

Using Primitive Logic Functions to Build More Complex Functions m 111

function’s enable is indicated by the bobble associated with this input on the
symbol and by the tilde character in its name, ~enable. (Similar functions with
active-high enables are also commonly used in designs.)

The Z character in the truth table represents a state known as high-impedance,
in which the gate is not driving either of the standard O or 1 values. In fact, in
the high-impedance state the gate is effectively disconnected from its output.

Although Boolean algebra is not well equipped to represent the Z state, the
implementation of the tri-state buffer is relatively easy to understand. When
the ~enable input is presented with a 1 (its inactive state), the output of the OR
gate is forced to 1 and the output of the NOR gate is forced to O, thereby turn-
ing both the Tr, and Tr, transistors OFF, respectively. With both transistors
turned OFF, the output y is disconnected from V,; and Vg, and is therefore in
the high-impedance state.

When the ~enable input is presented with a O (its active state), the
outputs of the OR and NOR gates are determined by the value on the data
input. The circuit is arranged so that only one of the Tr, and Tr, transistors can
be ON at any particular time. If the data input is presented with a 1, transistor
Tr, is turned ON, thereby connecting output y to Vp, (which equates to logic 1).
By comparison, if the data input
is presented with a O, transistor datald]

Tr, is turned ON, thereby /(|{

Tri-state buffers can be used

connecting output y to Vgg data[2]
(which equates to logic 0). J—" Output
| B
in conjunction with additional datval]
control logic to allow the out- ’ f
puts of multiple devices to drive data[O]
a common signal. For example, f
consider the simple circuit 2:4 DEC
shown in 11 o
Figure 11-7. Select [10) | 10 o—oI
o1 o———

00 o———

Figure 11-7. Multiple devices driving a common signal

112 m Chapter Eleven

The use of a 2:4 decoder with active-low outputs ensures that only one of
the tri-state buffers is enabled at any time. The enabled buffer will propagate
the data on its input to the common output, while the remaining buffers will
be forced to their tri-state condition.

With hindsight it now becomes obvious that the standard primitive gates
(AND, OR, NAND, NOR, etc.) depend on internal Z states to function
(when any transistor is turned OFF, its output effectively goes to a Z state).
However, the standard primitive gates are constructed in such a way that at
least one of the transistors connected to the output is turned ON, which means
that the output of a standard gate is always driving either O or 1.

Combinational versus Sequential Functions

Logic functions are categorized as being either combinational (sometimes
referred to as combinatorial) or sequential. In the case of a combinational function,
the logic values on that function’s outputs are directly related to the current
combination of values on its inputs. All of the previous example functions have
been of this type.

In the case of a sequential function, the logic values on that function’s
outputs depend not only on its current input values, but also on previous input
values. That is, the output values depend on a sequence of input values. Because
sequential functions remember previous input values, they are also referred to
as memory elements.

RS Latches

One of the simpler sequential functions is that of an RS latch, which can be
implemented using two NOR gates connected in a back-to-back configuration
(Figure 11-8). In this NOR implementation, both reset and set inputs are
active-high as indicated by the lack of bobbles associated with these inputs on
the symbol. The names of these inputs reflect the effect they have on the g
output; when reset is active q is reset to O, and when set is active ¢ is set to 1.

The g and ~q outputs are known as the true and complementary outputs,
respectively.# In the latch’s normal mode of operation, the value on ~q is the

4 In this case, the tilde ‘~’ character prefixing the output name ~q is used to indicate that this
signal is a complementary output. Once again, the use of tilde characters is discussed in detail
in Appendix A.

Using Primitive Logic Functions to Build More Complex Functions m 113

RS Latch
| reset NOR q
reset q W
— —
set ~ ~
g O——p set 9
| NOR
reset set | dinn) ~Ans)
0 0 Ay ~Any q = (reset | ~q)
N 4= G
1 1 o* O*

(O* = Unstable State)

Figure 11-8. NOR implementation of an RS latch

inverse, or complement, of the value on g. This is also indicated by the bobble
associated with the ~g output on the symbol. The only time ~q is not the
inverse of g occurs when both reset and set are active at the same time

(this unstable state is discussed in more detail below).

The truth table column labels q,,, and ~q_,,, indicate that these columns
refer to the future values on the outputs. The n+ subscripts represent some future
time, or “now-plus.” By comparison, the labels g, and ~q,,, used in the body of
the truth table indicate the current values on the outputs. In this case the n
subscripts represent the current time, or “now.” Thus, the first row in the truth
table indicates that when both reset and set are in their inactive states (logic
Os), the future values on the outputs will be the same as their current values.

The secret of the RS latch’s ability to remember previous input values is
based on a technique known as feedback. This refers to the feeding back of the
outputs as additional inputs into the function. In order to see how this works,
let’s assume that both the reset and set inputs are initially in their inactive

114 m Chapter Eleven

Reset Goes Active Reset Goes Inactive
reset set) ~Ans) reset set Ane) ~Ans)
L0 __ 0 |9 _ ~ay) [0 0 lan -aw]
@) 1 1 o) 0.1 | 1””Qh
| o [0 1] . o | 0 1.

'”5561% NOR 4@% reee’&% NOR i

O—» 1 10

10
(63 7B

. 917 ~
oot S | 1
0]

q
O —»1
0 NOR %

Figure 11-9. RS latch: reset input goes active then inactive

states, but that some previous input sequence placed the latch in its set condi-
tion; that is, q is 1 and ~q is O. Now consider what occurs when the reset input
is placed in its active state and then returns to its inactive state (Figure 11-9).
As a reminder, if any input to a NOR s 1, its output will be forced to O,
and it’s only if both inputs to a NOR are O that the output will be 1. Thus, when
reset is placed in its active (logic 1) state[1 _[3, the q output from the first
gate is forced to O[2 [3. This O on q is fed back into the second gate
and, as both inputs to this gate are now O, the ~q output is forced to 1[4 [3.
The key point to note is that the 1 on ~q is now fed back into the first gate
[5[5
When the reset input returns to its inactive (logic O) state[6 |3, the 1
from the ~q output continues feeding back into the first gate [7 [3, which
means that the q output continues to be forced to O[_& [3. Similarly, the O on
q continues feeding back into the second gate [9 [3, and as both of this gate’s
inputs are now at O, the ~q output continues to be forced to 1[10 [3. The end

Using Primitive Logic Functions to Build More Complex Functions m 115

result is that the 1 from causes the O at which is fed back to
[9 |3, and the O on the set input combined with the O from [9 [3 causes
the 1 at which is fed back to[7 [3.

Thus, the latch® has now been placed in its reset condition, and a self-
sustaining loop has been established. Even though both the reset and set
inputs are now inactive, the g output remains at O, indicating that reset was
the last input to be in its active state. Once the function has been placed in its
reset condition, any subsequent activity on the reset input will have no effect on
the outputs, which means that the only way to affect the function is by means
of its set input.

Now consider what occurs when the set input is placed in its active state
and then returns to its inactive state (Figure 11-10).

Set Goes Active Set Goes Inactive
reset set An+) ~A(n) reset set An+) ~9ns)
(»L,Q,,,,Q,, | Ay~ {!OO) ~dgm)]
Lo 1 I O] 0o 1 |1 0
1 o) @) 1 1 0 @) 1
1 1 O* ok 1 1 O* O*

reset NOR q reset NOR &/@q
% O-»1 % 1
133 193 ’_NE

B3 ~q 713 ~q
2 = Do e = Do
&S 190 o)

Figure 11-10. RS latch: set input goes active then inactive

5 The term latch— which is commonly associated with a fastening for a door or gate—comes
from the Old English lacchen, meaning “to seize.”

116 m Chapter Eleven

When eet is placed in its active (logic 1) state[11_[3, the ~q output from
the second gate is forced to O [12 3. This O on ~q is fed back into the first
gate and, as both inputs to this gate are now O, the ¢ output is forced
to 1[14 3. The key point to note is that the 1 on ¢ is now fed back into the
second gate [15 [3.

When the set input returns to its inactive (logic O) state [16 |3, the 1 from
the q output continues feeding back to the second gate and the ~q
output continues to be forced to 0[18 [3. Similarly, the O on the ~q output
continues feeding back into the first gate [19 [3, and the g output continues
to be forced to 1] 20 [3. The end result is that the 1 at causes the O at
which is fed back to[19 |3, and the O on the reset input combined
with the O at causes the 1 at which is fed back to [17 [3.

Thus, the latch has been returned to its set condition and, once again, a
self-sustaining loop has been established. Even though both the reset and set
inputs are now inactive, the g output remains at 1, indicating that set was the
last input to be in its active state. Once the function has been placed in its set
condition, any subsequent activity on the set input will have no effect on the
outputs, which means that the only way to affect the function is by means of
its reset input.

The unstable condition indicated by the fourth row of the RS latch’s truth
table occurs when both the reset and set inputs are active at the same time.
Problems occur when both reset and set return to their inactive states simulta-
neously or too closely together (Figure 11-11).

When both reset and set are active at the same time, the 1 on reset
forces the q output to O and the 1 on set forces the ~g output to
O0[24 [3. The O on q is fed back to the second gate [25 [, and the O on ~q is
fed back to the first gate [26 [3.

Now consider what occurs when reset and set go inactive simultaneously
(27 |3 and [25 |3, respectively). When the new O values on reset and set are
combined with the O values fed back from q and ~q[20 [3, each gate
initially sees both of its inputs at O and therefore both gates attempt to drive
their outputs to 1. After any delays associated with the gates have been satisfied,
both of the outputs will indeed go to 1.

When the output of the first gate goes to 1, this value is fed back to the
input of the second gate. While this is happening, the output of the second gate

Using Primitive Logic Functions to Build More Complex Functions m 117

Both Reset and Set Active Reset and Set Go Inactive
reset o€l | quu) ~quy reset set | quo) ~dy)
O O Ay ~A(n) ’ 0 O X X_ ‘

@) 1 1 O 0] 1 1 o)
1 o | 0o 1 1o | 0o 1
| 1| o OF] 11 o o

(25| ~q 29[} >C ~q
56t set |

@5”“ QT TET 8

Figure 11-11. RS latch: the reset and set inputs go inactive simultaneously

goes to 1, and this value is fed back to the input of the first gate. Each gate

now has its fed-back input at 1, and both gates therefore attempt to drive their
outputs to O. As we see, the circuit has entered a metastable condition in which
the outputs oscillate between O and 1 values.

If both halves of the function were exactly the same, these metastable
oscillations would continue indefinitely. But there will always be some
differences (no matter how small) between the gates and their delays, and the
function will eventually collapse into either its reset condition or its set condition.
As there is no way to predict the final values on the g and ~q outputs, they are
indicated as being in X, or don’t know, states ([29 [3 and [20 [3°). These X states
will persist until a valid input sequence occurs on either the reset or set inputs.

An alternative implementation for an RS latch can be realized using two
NAND gates connected in a back-to-back configuration (Figure 11-12).

118 m Chapter Eleven

RS Latch

. NAND
l &)o—o—q
~set - q
~reset ~q
ol 4 O : ~
~reset EO—‘l—q
| NAND
~reset ~sel | duy) ~um
O O 1% 1* — (et R n
o 1 o0 4= (~oet & ~q)
1 O 1 O ~q = (~reset & q)
1 1 Ay~

(1* = Unstable State) Figure 11-12. NAND implementation

of an RS latch

In a NAND implementation, both the ~reset and ~set inputs are active
low, as is indicated by the bobbles associated with these inputs on the symbol
and by the tilde characters in their names. As a reminder, if any input to a
NAND is O, the output is 1, and it’s only if both inputs to a NAND are 1 that
the output will be 0. Working out how this version of the latch works is left as
an exercise to the reader.®

D-Type Latches

A more sophisticated function called a D-type (“data-type”) latch can be
constructed by attaching two ANDs and a NOT to the front of an RS latch
(Figure 11-13).

6 This is where we see if you've been paying attention <grin>.

Using Primitive Logic Functions to Build More Complex Functions m 119

D latch
I
data q
—P>
enable ~q
o———

enable data | A (n+) ~9 (n+) data

enable

o) ?
1 0 o) 1
1 1 1 o]

~
B
=
2
B
=

Figure 11-13. D-type latch with active-high enable

The enable input is active high for this configuration, as is indicated by
the lack of a bobble on the symbol. When enable is placed in its active (logic 1)
state, the true and inverted versions of the data input are allowed to propagate
through the AND gates and are presented to the back-to-back NOR gates.

If the data input changes while enable is still active, the outputs will respond
to reflect the new value.

When enable returns to its inactive (logic O) state, it forces the outputs
of both AND:s to O, and any further changes on the data input have no effect.
Thus, the back-to-back NOR gates remember the last value they saw from
the data input prior to the enable input going inactive.

Consider an example waveform (Figure 11-14). While the enable input is
in its active state, whatever value is presented to the data input appears on the
g output and an inverted version appears on the ~q output. As usual, there
will always be some element of delay between changes on the inputs and
corresponding responses on the outputs. When enable goes inactive, the outputs
remember their previous values and no longer respond to any changes on the
data input. As the operation of the device depends on the logic value, or level,
on enable, this input is said to be level-sensitive.

120 m Chapter Eleven

data 1T | |

o)

enable

Ol oo .

1 4------

a4
o)

1
| m

~9

O4------

» Titme

Figure 11-14. Waveform for a D-type latch with active-high enable

D-Type Flip-flops

In the case of a D-type flip-flop (which may also be referred to as a register),

the data appears to be loaded when a transition, or edge, occurs on the clock

input, which is therefore said to be edge-sensitive (the reason we say “appears to

D flip-flop D flip-flop
| |
data q data q
[~ - ~
clock 4 clock q
| |

clock data | qu) -~ ~clock data | qu.) ~qp

A 0 0 1 v o) o) 1
Ao 10 v 10
* ¢ Ay ~%m) * 4 Ay~

Fositive - Edge Triggered Negative - Edge Triggered

Figure 11-15. Positive-edge and
negative-edge D-type flip-flops

be loaded when an edge
occurs” is discussed in
the sidebar on the next
page). A transition from
O to 1is known as a
rising-edge or a positive-
edge, while a transition
from 1 to O is known

as a falling-edge or a
negative-edge. A D-type
flip-flop’s clock input
may be positive-edge or
negative-edge triggered
(Figure 11-15).

The chevrons
(arrows “>”) associated
with the clock inputs
on the symbols indicate

Using Primitive Logic Functions to Build More Complex Functions m 121

that these are edge-sensitive inputs. A chevron without an associated bobble
indicates a positive-edge clock, and a chevron with a bobble indicates a negative-
edge clock. The last rows in the truth tables show that an inactive edge on the
clock leaves the contents of the flip-flops unchanged (these cases are often
omitted from the truth tables).

Consider an example waveform for a positive-edge triggered D-type flip-flop
(Figure 11-16). As the observer initially has no knowledge as to the contents of
the flop-flop, the ¢ and ~¢ outputs are initially shown as having X, or don’t know,

values.

There are a number of ways to implement
a D-Type flip-flop. The most understand-
able from our point of view would be to
use two D-type latches in series (one after
the other). The first latch could have an
active-low enable and the second could
have an active-high enable. Both of these
enables would be connected together,
and would be known as the clock input

to the outside world.

This is known as a master-slave
relationship, where the first latch is the
“master” and the second is the “slave.”

When the clock input is O, the master
latch is enabled and passes whatever
value is presented to its data input

through to its outputs (only its q output is
actually used in this example). Meanwhile,
the slave latch is disabled and continues

to store (and output) its existing contents.

When the clock input is subsequently
driven to a 1, the master latch is disabled
and continues to store (and output) its
existing contents. Meanwhile the slave
latch is now enabled and passes whatever
value is presented to its data input (the
value from the output of the master latch)
through to its outputs.

Thus, everything is really controlled
by voltage levels, but from the outside
world it appears that the flip-flop was
loaded by a rising-edge on the clock input.

Positive edge-triggered D-type flip-flop

clock

i Master Slave
' D-type latch D-type latch
data i data [q data l q ' q
5 ~enable ~q enable ~q ~q
iide] O— | @ S LS

122 m Chapter Eleven

|

|

) |

data |
|

|

|

clock

9 XXX XXX

~0, XXX XXX

> Time

Figure 11-16. Waveform for positive-edge D-type flip-flop

The first rising edge of the clock loads the O on the data input into the
flip-flop, which (after a small delay) causes ¢ to change to 0 and ~q to change
to 1. The second rising edge of the clock loads the 1 on the data input into the
flip-flop; g goes to 1 and ~q goes to O.

Some flip-flops have an additional input called ~clear or ~reset which
forces q to O and ~q to 1, irrespective of the value on the data input (Figure
11-17). Similarly, some flip-flops have a ~preset or ~set input, which forces g
to 1 and ~q to O, and some have both ~clear and ~preset inputs.

The examples shown in Figure 11-17 reflect active-low ~clear inputs, but
active-high equivalents are also available. Furthermore, as is illustrated in
Figure 11-17, these inputs may be either asynchronous or synchronous. In the
more common asynchronous case, the effect of ~clear going active is immediate
and overrides both the clock and data inputs (the “asynchronous” qualifier
reflects the fact that the effect of this input is not synchronized to the clock).
By comparison, in the synchronous case the effect of ~clear is synchronized to
the active edge of the clock.”

7 The component symbols used in this book are relatively traditional and simple. One
disadvantage of this is that, as seen in Figure 11-17, there’s no way to tell if a clear or preset
input is synchronous or asynchronous without also looking at its truth table. There are
more modern and sophisticated symbol standards that do cover all eventualities, but their
complexity is beyond the scope of this book to explain.

Using Primitive Logic Functions to Build More Complex Functions m 123

D flip-flop

data | q

clock ~q

~clear Qf

~clear clock data | qu, ~q

n+)

D flip-flop
|
data q
clock ~q
|
~clear Qf

o 7 2 | o0
(R O T OB

1 S T B R,

Asynchronous Clear

clock ~clear data | dmy) ~9e)
f 0 ? 0 1

A 1 o | 0o 1
S I R IS TG

Synchronous Clear

Figure 11-17. D-type flip-flops with asynchronous
and synchronous clear inputs

JK and T Flip-flops

The majority of examples in this book are based on D-type flip-flops.
However, for the sake of completeness, it should be noted that there are
several other flavors of flip-flops available. Two common types are the JK
and T (for Toggle) flip-flops (Figure 11-18).

The first row of the JK flip-flop’s truth table shows that when both the j
and k (data) inputs are 0, an active edge on the clock input leaves the contents
of the flip-flop unchanged. The two middle rows of the truth table show that if
the j and k inputs have opposite values, an active edge on the clock input will
effectively load the flip-flop (the g output) with the value on j (the ~g output
will take the complementary value). The last line of the truth table shows
that when both the j and k inputs are 1, an active edge on the clock causes the
outputs to toggle to the inverse of their previous values.® By comparison, the

8 This may be the origin of the term “flip-flop,” because the outputs flip and flop back and forth.

124 m Chapter Eleven

JK flip-flop T flip-flop
. | |
clock
clock ~q,
k] e
| |
clock J k Ans) ~Ane) clock | dmy) ~qma
ﬁ @) o) Ay~ * A ~am = Toggle
o) 1 o) 1

O

- > >
O

1 1 An) ~qm = Toggle

Figure 11-18. JK and T flip-flops

T flip-flop doesn’t have any data inputs; the outputs simply toggle to the
inverse of their previous values on each active edge of the clock input.

Shift Registers

As was previously noted, another term for a flip-flop is “register.” Functions
known as shift registers—which facilitate the shifting of binary data one bit at a
time—are commonly used in digital systems. Consider a simple 4-bit shift
register constructed using D-type flip-flops (Figure 11-19).

This particular example is based on positive-edge triggered D-type flip-flops
with active-low ~clear inputs (in this case we’re only using each register’s q
output). Also, this example is classed as a serial-in-parallel-out (SIPO) shift
register, because data is loaded in serially (one after the other) and read out in
parallel (side by side).

When the ~clear input is set to 1 (its inactive state), a positive-edge on the
clock input loads the value on the serial_in input into the first flip-flop, 4ff[O].
At the same time, the value that used to be in dff{0] is loaded into dff[1], the

Using Primitive Logic Functions to Build More Complex Functions m 125

q[0]
q[1]
q[2]
AfF [0] AFF 1] AfF [2] aff e 2
| | | |
serial-in 4 q q[0] 4 9 q[1] 4 9 q[2] 4 q
I I I
clock

~clear

Figure 11-19. SIPO shift register

value that used to be in dff1] is loaded into dff[2], and the value that used to be
in dff[2] is loaded into dff[3].

This may seem a bit weird and wonderful the first time you see it, but the
way in which this works is actually quite simple (and of course capriciously
cunning). Each flip-flop exhibits a delay between seeing an active edge on its
clock input and the ensuing response on its q output. These delays provide
sufficient time for the next flip-flop in the chain to load the value from the
previous stage before that value changes. Consider an example waveform
where a single logic 1 value is migrated through the shift register (Figure 11-20).

Initially all of the flip-flops contain don’t know X values. When the ~clear
input goes to its active state (logic 0), all of the flip-flops are cleared to O.
When the first active edge occurs on the clock input, the serial_in input is 1,
so this is the value that’s loaded into the first flip-flop. At the same time, the
original O value from the first flip-flop is loaded into the second, the original O
value from the second flip-flop is loaded into the third, and the original O
value from the third flip-flop is loaded into the fourth.

When the next active edge occurs on the clock input, the serial_in input
is O, so this is the value that’s loaded into the first flip-flop. At the same time,
the original 1 value from the first flip-flop is loaded into the second, the O value
from the second flip-flop is loaded into the third, and the O value from the
third flip-flop is loaded into the fourth.

126 m Chapter Eleven

1

~clear
O -_— =4

/I B
serial_in

[l T
| |
01— |
| |
| |

O I m L L L
qm; ES3]

qm; X x|
qm; X X] |’_j

Figure 11-20. Waveform for SIPO shift register

Similarly, when the next active edge occurs on the clock input, the serial_in
input is still O, so this is the value that’s loaded into the first flip-flop. At the
same time, the O value from the first flip-flop is loaded into the second, the 1
value from the second flip-flop is loaded into the third, and the O value from
the third flip-flop is loaded into the fourth. And so it goes. . .

Other common shift register variants are the parallel-in-serial-out (PISO),
and the serial-in-serial-out (SISO); for example, consider a 4-bit SISO shift
register (Figure 11-21).

Counters

Counter functions are also commonly used in digital systems. The number
of states that the counter will sequence through before returning to its original
value is called the modulus of the counter. For example, a function that counts
from 0000, to 1111, in binary (or O to 15 in decimal) has a modulus of sixteen
and would be called a modulo-16, or mod-16, counter. Consider a modulo-16
counter implemented using D-type flip-flops (Figure 11-22).

Using Primitive Logic Functions to Build More Complex Functions m 127

aff [0] daff [1] aff [2] aff [2]
[[[[
serial-in 4 9 q[0] y q q[1] 4 9 q[2] 4 q serial-out
I I I
clock . (I) . (ID . ?
~clear I I I
Figure 11-21. SISO shift register
q[5:0]
fI[B:O] Combinational B
Logic ~q[3:0]
‘_
arff [2] aff (2] arf [1] aff (0]
I I I I
a[d s} a2 2 da 1 a0 0
IId quIE,d OILIE E;d qq[] IId qi}]
~q [3] ~q [2] ~q [1] ~q [O]
o—» o—» Oo—» O—»
I I
clock CI)

~clear

o——|—O—

——|—CO—

Figure 11-22. Modulo-16 binary counter

This particular example is based on positive-edge triggered D-type flip-flops
with active-low ~clear inputs. The four flip-flops are used to store the current
count value which is displayed on the ¢[3:0] outputs. When the ~clear input is
set to 1 (its inactive state), a positive-edge on the clock input causes the
counter to load the next value in the count sequence.

128 m Chapter Eleven

A block of combinational logic is used to generate the next value, d[3:0],
which is based on the current value g[3:0] (Figure 11-23). Note that there is no
need to create the inverted versions of q[3:0], because these signals are already
available from the flip-flops as ~q[3:0].

q[5:2]
Current Next q [1:0] 00 o1 N 10
Value Value 00 T 1M
2:0 da[3:0
q [2:0] [3:0] o b 1
oooo | ooo1 43l=
0coo1 | 0010 11 :
0010 | 0011
oco11 | o100 10 (1 U
0100 | 0101 |
o101 | o110
o110 | 0111
0111 1000
1000 | 1001 q [3:2]
18?5 181? q [1:0] 00 01 11 10
1011 1100 00
1100 | 1101
t1or | 1110 o]t
1110 1111 [1] =
1111 1 0oo0o0 11

ol 11]1)

d3)= a[3] & aff) | ([31& a[2)) | (q[3]& a[0]) | (a[3] & a[2] & q[1] & q[0)

q[5:2]
q [1:0] oo ot 11| 10
00 Uy
o1 1|1
d[2] = N

1] 1)

10

(1

q[5:2]
|00 Of

q[1:0]
00
01

4[0] =
11

10

d(2)= (q[2] & q[1]) | (q[2] & a[0)) | (q[2] & q[1] & a[O])
A= (a[] & q[0)) | (a[1] & a[O7)

d[0]= (q[0])

11

10|

u

1

1)

(1

)

Figure 11-23. Generating the next count value

Setup and Hold Times

One point we’ve glossed over thus far is the fact that there are certain

timing requirements associated with flip-flops. In particular, there are two
parameters called the setup and hold times which describe the relationship
between the flip-flop’s data and clock inputs (Figure 11-24).

Using Primitive Logic Functions to Build More Complex Functions m 129

D-type flip-flop data
data l q
clock
clock ~q
— P
setup hold N
1

Figure 11-24. Setup and hold times

The waveform shown here is a little different to those we’ve seen before.
What we're trying to indicate is that when we start (on the left-hand side),
the value presented to the data input may be a O or a 1, and it can change back
and forth as often as it pleases. However, it must settle one way or the other
before the setup time; otherwise when the active edge occurs on the clock we
can’t guarantee what will happen. Similarly, the value presented to the data
input must remain stable for the hold time following the clock, or once again we
can’t guarantee what will happen. In our illustration, the period for which the
value on the data input must remain stable is shown as being the darker gray.

The setup and hold times shown above are reasonably understandable.
However things can sometimes become a little confusing, especially in the
case of today’s deep submicron (DSM) integrated circuit technologies.” The
problem is that we may sometimes see so-called negative setup and hold times
(Figure 11-25).

Once again, the periods for which the value on the data input must remain
stable are shown as being the darker gray. These effects, which may seem a
little strange at first, are caused by internal delay paths inside the flip-flop.

Last but not least, we should note that there will also be setup and hold
times between the clear (or reset) and preset (or set) inputs and the clock
input. Also, there will be corresponding setup and hold times between the
data, clear (or reset) and preset (or set) inputs and the enable input on D-type
latches (phew!).

9 Integrated circuits (and DSM technologies) are introduced in Chapter 14.

130 m Chapter Eleven

data

(a) negative
setup > clock

T Y

) ni?j;]ve > clock I

negative hold
L < >
setup

Figure 11-25. Negative setup and hold times

Brick by Brick

Let us pause here for a brief philosophical moment. Consider, if you will,
a brick formed from clay. Now, there’s not a lot you can do with a single brick,
but when you combine thousands and thousands of bricks together you can
create the most tremendous structures. At the end of the day, the Great Wall
of China is no more than a pile of bricks molded by man’s imagination.©

In the world of the electronics engineer, transistors are the clay, primitive
logic gates are the bricks, and the functions described above are simply building
blocks.!! Any digital system, even one as complex as a supercomputer, is
constructed from building blocks like comparators, multiplexers, shift registers,
and counters. Once you understand the building blocks, there are no ends to

the things you can achieve!

10 But at approximately 2,400 km in length, it’s a very impressive pile of bricks (the author has
walked—and climbed—a small portion of the beast and it fair took his breath away).

11 We might also note that clay and transistors share something else in common—they both
consist predominantly of silicon!

A

e,

State Diagrams, State
Tables, and State Machines

Consider a coin-operated machine that accepts nickels and dimes! and,
for the princely sum of fifteen cents, dispenses some useful article called a
“gizmo” that the well-dressed man-about-town could not possibly be without.
We may consider such a machine to comprise three main blocks: a receiver
that accepts money, a dispenser that dispenses the “gismo” and any change, and
a controller that oversees everything and makes sure things function as planned

(Figure 12-1).

clock JuUuUuUL

g

nickel dispense
-

Coing In Gizmo and

Receiver Controller Dispenser Change Out

dime change

acknowledge

Figure 12-1. Block diagram of a coin-operated machine

The connections marked nickel, dime, dispense, change, and acknowledge
represent digital signals carrying logic O and 1 values. The user can deposit
nickels and dimes into the receiver in any order, but may only deposit one coin
at a time. When a coin is deposited, the receiver determines its type and sets
the corresponding signal (nickel or dime) to a logic 1.

The operation of the controller is synchronized by the clock signal. On a
rising edge of the clock, the controller examines the nickel and dime inputs to see
if any coins have been deposited. The controller keeps track of the amount of
money deposited and determines if any actions are to be performed.

1 For the benefit of those readers who do not reside in the United States, nickels and dimes are
American coins worth five and ten cents, respectively.

132 m Chapter Twelve

Every time the controller inspects the nickel and dime signals, it sends an
acknowledge signal back to the receiver. The acknowledge signal informs the
receiver that the coin has been accounted for, and the receiver responds by
resetting the nickel and dime signals to O and awaiting the next coin. The
acknowledge signal can be generated in a variety of ways which are not
particularly relevant here.

When the controller decides that sufficient funds have been deposited,
it instructs the dispenser to dispense a “gizmo” and any change (if necessary)
by setting the dispense and change signals to 1, respectively.

State Diagrams

A useful level of abstraction for a function such as the controller is to
consider it as consisting of a set of states through which it sequences. The
current state depends on the previous state combined with the previous values on
the nickel and dime inputs. Similarly, the next state depends on the current state
combined with the current values on the nickel and dime inputs. The operation
of the controller may be represented by means of a state diagram, which offers a
way to view the problem and to describe a solution (Figure 12-2).

nickel = O
dime =1

Initial State

nickel =1 nickel =1
dime = 0 dime = 0

dispense = O dispense = O dispense = O

change = O change = O change = O
ickel =0 ; _
nickel = O ;:ﬁq:: 0 m’ckel =0
dime =0 dime =0
nickel = 2 . _
dime =7 2‘;‘:2':10 nickel = O
- nickel =1 dime =1
dime = 0
? = don't care
nickel = 2 ‘
dime =2 i'}‘;l":”:‘i :01 dispense = 1
9 = change =1

Figure 12-2. State diagram for the controller

State Diagrams, State Tables, and State Machines m 133

The states are represented by the circles labeled O-cents, 5-cents, 10-cents,
15-cents, and 20-cents, and the values on the dispense and change outputs
are associated with these states. The arcs connecting the states are called
state transitions and the values of the nickel and dime inputs associated with the
state transitions are called guard conditions. The controller will only sequence
between two states if the values on the nickel and dime inputs match the guard
conditions.

Let’s assume that the controller is in its initial state of O-cents. The values
of the nickel and dime inputs are tested on every rising edge on the clock.? As
long as no coins are deposited, the nickel and dime inputs remain at O and the
controller remains in the O-cents state. Once a coin is deposited, the next
rising edge on the clock will cause the controller to sequence to the 5-cents
or the 10-cents states depending on the coin’s type. It is at this point that the
controller sends an acknowledge signal back to the receiver instructing it to reset
the nickel and dime signals back to O and to await the next coin.

Note that the O-cents, 5-cents, and 10-cents states have state transitions
that loop back into them (the ones with associated nickel = O and dime = O
guard conditions). These indicate that the controller will stay in whichever
state it is currently in until a new coin is deposited.

So at this stage of our discussions, the controller is either in the 5-cents
or the 10-cents state depending on whether the first coin was a nickel or dime,
respectively. What happens when the next coin is deposited? Well this depends
on the state we're in and the type of the new coin. If the controller is in the
5-cents state, then a nickel or dime will move it to the 10-cents or 15-cents
states, respectively. Alternatively, if the controller is in the 10-cents state, then
a nickel or dime will move it to the 15-cents or 20-cents states, respectively.

When the controller reaches either the 15-cents or 20-cents states, the
next clock will cause it to dispense a “gizmo” and return to its initial O-cents
state (in the case of the 20-cents state, the controller will also dispense a nickel
in change).

2 The controller is known to sequence between states only on the rising edge of the clock, so
displaying this signal on every state transition would be redundant.

134 m Chapter Twelve

State Tables

Another form of representation is that of a state table. This is similar to
a truth table (inputs on the left and corresponding outputs on the right), but
it also includes the current state as an input and the next state as an output

(Figure 12-3).

Current Next

state clock nickel dime | dispense change state

O-cents T 0 0 0 O O-cents
O-cents T 1 0 0 O 5-cents
Ocenvs T 0 1 | .. 0 . . .0, 10cents
5-cente T 0 0 0 O 5-cents
S5-cents T 1 o) o) o) 10-cents
5-cente T 0 1 0 O 15-cents
10-cents T 0 0 0 O 10-cents
10-cents T 1 o) o) o) 15-cents
10-cents T 0 1 0 O 20-cents
1B-cents T ? ? 1 o) O-cents
20-cents T ? ? 1 1 O-cents

Figure 12-3. State table for the controller

In this instance the clock signal has been included for purposes of clarity
(it’s only when there’s a rising edge on the clock that the outputs are set to the
values shown in that row of the table). However, as for the state diagram,
displaying this signal is somewhat redundant and it is often omitted.

State Machines

The actual implementation of a function such as the controller is called a
state machine. In fact, when the number of states is constrained and finite, this is
more usually called a finite state machine (FSM). The heart of a state machine
consists of a set of registers® known as the state variables. Each state, O-cents,
5-cents, 10-cents, . . . is assigned a unique binary pattern of Os and 1s, and the
pattern representing the current state is stored in the state variables.

3 For the purposes of these discussions we’ll assume that these registers are D-type flip-flops as
were introduced in Chapter 11.

State Diagrams, State Tables, and State Machines m 135

The two most common forms of synchronous, or clocked, state machines
are known as Moore and Mealy machines after the men who formalized them.
A Moore machine is distinguished by the fact that the outputs are derived only
from the values in the state variables (Figure 12-4). The controller function
featured in this discussion is a classic example of a Moore machine.

By comparison, the outputs from a Mealy machine may be derived from a
combination of the values in the state variables and one or more of the inputs
(Figure 12-5).

In both of the Moore and Mealy forms, the input logic consists of primitive
gates such as AND, NAND, OR, and NOR. These combine the values on the
inputs with the current state (which is fed back from the state variables) to
generate the pattern of Os and 1s representing the next state. This new pattern
of Os and 1s is presented to the inputs of the state variables and will be loaded
into them on the next rising edge of the clock.

The output logic also consists of standard primitive logic gates that generate
the appropriate values on the outputs from the current state stored in the state

variables.
clock U
Inputs Next
P | State Stla ve
nput Variable Output
Logic Registers Logic Outpute
(Current State)
Current
State
Figure 12-4. Block diagram of a Moore machine
clock UL
Inputs Next
P | State Stg e
nput Variable Output
Logic Registers Logic Outpute
(Current State)
Current
State

Figure 12-5. Block diagram of a Mealy machine

136 m Chapter Twelve

State Assignment

A key consideration in the design of a state machine is that of state
assignment, which refers to the process by which the states are assigned to
the binary patterns of Os and 1s that are to be stored in the state variables.

A common form of state assignment requiring the minimum number of
registers is known as binary encoding. Each register can only contain a single
binary digit, so it can only be assigned a value of O or 1. Two registers can be
assigned four binary values (00, 01, 10, and 11), three registers can be assigned
eight binary values (000, 001, 010, 011, 100, 101, 110, and 111), and so forth.
The controller used in our coin-operated machine consists of five unique states,
and therefore requires a minimum of three state variable registers.

The actual process of binary encoded state assignment is a nontrivial
problem. In the case of our controller function, there are 6,720 possible
combinations* by which five states can be assigned to the eight binary values
provided by three registers. Each of these solutions may require a different
arrangement of primitive gates to construct the input and output logic, which
in turn affects the maximum frequency that can be used to drive the system
clock. Additionally, the type of registers used to implement the state variables
also affects the supporting logic; the following discussions are based on the use
of D-type flip-flops.

Assuming that full use is made of don’t care states, an analysis of the various
binary encoded solutions for our controller yields the following. . .

138 solutions requiring 7 product terms
852 solutions requiring & product terms
1,676 solutions requiring 9 product terms
3,094 solutions requiring 10 product terms
570 eolutions requiring 11 product terms
190 eolutions requiring 12 product terms

.. .where a product term is a group of literals linked by & (AND) operators—
for example, (a & b & ¢)—and a literal is any true or inverted variable. Thus,
the product term (a & b & ¢) contains three literals (a, b, and ¢).

4 This number would be somewhat reduced if all the mirror-image combinations were taken
into account, but that would not significantly lessen the complexity problem of determining
the optimal combination.

State Diagrams, State Tables, and State Machines m 137

But wait, there’s more! A further analysis of the 138 solutions requiring
seven product terms yields the following:

66 solutions requiring 17 literals

24 solutions requiring 1& literals

48 solutions requiring 19 literals

Thus, the chances of a random assignment resulting in an optimal solution
is relatively slight. Fortunately, there are computer programs available to aid
designers in this task.> One solution resulting in the minimum number of
product terms and literals is shown in Figure 12-6.

d2 | q2.
o
dl T q!
P
do ! Y
clock b |
State Variable
Registers

Current State State
q2 q] q0 Assignments
0 @) 0 10-cents
0 @) 1 15-cents
0 1 @) —

0 1 1 20-cents
1 0] 0 O-cents
1 0] 1 5-cents
1 1 0 —
1 1 1 —
a2 di do State
Next State Assignments

Figure 12-6. Example binary encoded state assignment

A truth table for the controller function can now be derived from the state
table shown in Figure 12-3 by replacing the assignments in the current state
column with the corresponding binary patterns for the state variable outputs
(g2, q1, and q0), and replacing the assignments in the next state column with
the corresponding binary patterns for the state variable inputs (d2, d1, and dO).
The resulting equations can then be derived from the truth table by means of

standard algebraic or Karnaugh map techniques. As an alternative, a computer

5 The author used the program BOOL, which was created by his friend Alon Kfir (a man with a

size-16 brain if ever there was one).

138 m Chapter Twelve

program can be used to obtain the same results in less time with far fewer
opportunities for error.® Whichever technique is employed, the state
assignments above lead to the following minimized Boolean equations:

d0 = (90 & g2 & dime) | (90 & g2 & nickel) | (40 & nickel)
d1 = (90 & 92 & dime)
d2 = (90 & q2) | (92 & nickel & dime) | (40 & g2 & dime)
diepense = (q0 &q_2)
change = (ql)

The product terms shown in bold appear in multiple equations. However,
regardless of the number of times a product term appears, it is only counted
once because it only has to be physically implemented once. Similarly, the
literals used to form product terms that appear in multiple equations are only
counted once.

Another common form of state assignment is known as one-hot encoding,
in which each state is represented by an individual register. In this case, our
controller with its five states would require five register bits. The one-hot
technique typically requires a greater number of logic gates than does binary
encoding. However, as the logic gates are used to implement simpler equations,
the one-hot method results in faster state machines that can operate at higher
clock frequencies.

Don’t Care States, Unused States, and Latch-Up Conditions

[t was previously noted that the analysis of the binary encoded state
assignment made full use of don’t care states.” This allows us to generate a
solution that uses the least number of logic gates, but there are additional
considerations that must now be discussed in more detail.

The original definition of our coin-operated machine stated that it is only
possible for a single coin to be deposited at a time. Assuming this to be true,

6 Once again, the author used BOOL (“What's the point of barking if you have a dog?” as they say
in England).

7 The concept of don’t care states was introduced in Chapter 10.

State Diagrams, State Tables, and State Machines m 139

then the nickel and dime signals will never be assigned 1 values simultaneously.
The designer (or a computer program) can use this information to assign don’t
care states to the outputs for any combination of inputs that includes a 1 on
both nickel and dime signals.

Additionally, the three binary encoded state variable registers provide eight
possible binary patterns, of which only five were used. The analysis above was
based on the assumption that don’t care states can be assigned to the outputs for
any combination of inputs that includes one of the unused patterns on the state
variables. This assumption also requires further justification.

When the coin-operated machine is first powered-up, each state variable
register can potentially initialize with a random logic O or 1 value. The control-
ler could therefore power-up with its state variables containing any of the eight
possible patterns of Os and 1s. For some state machines this would not be an
important consideration, but this is not true in the case of our coin-operated
machine. For example, the controller could power-up in the 20-cents state, in
which case it would immediately dispense a “gizmo” and five cents change. The
owner of such a machine may well be of the opinion that this was a less than
ideal feature.

Alternatively, the controller could power-up with its state variables in one
of the unused combinations. Subsequently, the controller could sequence
directly—or via one or more of the other unused combinations—to any of
the defined states. In a worst-case scenario, the controller could remain in the
unused combination indefinitely or sequence endlessly between unused combi-
nations; these worst-case scenarios are known as latch-up conditions.

One method of avoiding latch-up conditions is to assign additional, dummy
states to each of the unused combinations and to define state transitions from
each of these dummy states to the controller’s initialization state of O-cents.
Unfortunately, in the case of our coin-operated machine, this technique would
not affect the fact that the controller could wake up in a valid state other than
O-cents. An alternative is to provide some additional circuitry to generate a
power-on reset signal—for example, a single pulse that occurs only when the
power is first applied to the machine. The power-on reset can be used to force
the state variable registers into the pattern associated with the O-cents state.
The analysis above assumed the use of such a power-on-reset.

¥

3,

Analog-to-Digital and
Digital-to-Analog

As we began our discussions in Chapter 1 by separating the analog and
digital views of the world, it seems appropriate to close this section of the book
by reuniting them. While some systems operate solely on digital data, others
have to interact with the analog world. It may be necessary to convert an
analog input into a form that can be manipulated by the digital system, or to
transform an output from a digital system into the analog realm. These tasks are
performed by analog-to-digital (A/D) and digital-to-analog (D/A) converters,
respectively (Figure 13-1).

Analog-to-Digital Digital-to-Analog
Converter Digital System Converter
—» A/D D DIA f————»
Analog Domain Digital Domain Analog Domain

Figure 13-1. Analog-to-digital (A/D) and digital-to-analog (D/A) converters

Analog-to-Digital

A transducer is a device that converts input energy of one form into output
energy of another. Analog effects can manifest themselves in a variety of differ-
ent ways such as heat and pressure. In order to be processed by a digital system,
the analog quantity must be detected and converted into a suitable form by
means of an appropriate transducer called a sensor. For example, a microphone
is a sensor that detects sound and converts it into a corresponding voltage. The
analog-to-digital conversion process can be represented as shown in Figure 13-2.

Analog-to-Digital and Digital-to-Analog m 141

Analog-to-Digital
Converter

Signal Processing
(Conditioning)

AW S

Sensor

> A/D To Digital
System

Analog Domain J Digital Domain

r|<
Figure 13-2. Analog-to-digital conversion process

The output from the sensor typically undergoes some form of signal

processing such as filtering and amplification before being passed to the A/D

converter. This signal processing is generically referred to as conditioning. The

A/D converter accepts the conditioned analog voltage and converts it into a

series of equivalent digital values by sampling and quantization (Figure 13-3).

Sample Times I Sampled Points I

\
\
[~

AN\ / \ 1 A

AN N
[AEAVARNN

Analog }{ N \ \ \ _A100 -Bit Digital
Signal 4 Equivalent
Range / \

\ ot
/ \\ \ / 010
/ 4 YV 001

000

000 001 100 M 1M 100 10 010 o001 omn 100

10 1
Nt
Sampled Values I

Figure 13-3. The sampling and quantization of a digital signal

142 m Chapter Thirteen

From

Digital System

The sampling usually occurs at regular time intervals and is triggered by the
digital part of the system. The complete range of values that the analog signal
can assume is divided into a set of discrete bands or quanta. At each sample
time, the A/D converter determines which band the analog signal falls into
(this is the “quantization” part of the process) and outputs the equivalent
binary code for that band.

The main factor governing the accuracy of the conversion is the number
of bands used. For example, a 3-bit code can represent only eight bands, each
encompassing 12.5% of the analog signal’s range, while a 12-bit code can
represent 4,096 bands, each encompassing 0.025% of the signal’s range.

Digital-to-Analog

A D/A converter accepts a digital code and transforms it into a correspond-
ing analog current or voltage suitable for use by means of an appropriate trans-
ducer called an actuator. For example, a loudspeaker is an actuator that converts
an electrical signal into sound. The digital-to-analog conversion process can be
represented as shown in Figure 13-4.

Digital-to-Analog
Converter Signal Processing Actuator
(Conditioning)

A ™ NN

DIA [)

Digital Domain Analog Domain

Figure 13-4. Digital-to-analog conversion process

The conversions usually occur at regular time intervals and are triggered
by a clock signal from the digital part of the system. The output from the D/A
converter typically undergoes some form of conditioning before being passed to
the actuator. For example, in the case of an audio system, the “staircase-like”
signal coming out of the D/A converter will be “smoothed” before being passed
to an amplifier (not shown in Figure 13-4) and, ultimately, to the loudspeaker.

¥
J4,
Integrated Circuits (ICs)

In the 1950s, transistors and other electronic components were available
only in individual packages. These discrete components were laid out on
a circuit board and hand connected using separate wires. At that time, an
electronic gate capable of storing a single binary bit of data cost more than $2.
By comparison, in the early 1990s, enough gates to store 5,000 bits of data cost
less than a cent. This vast reduction in price was primarily due to the invention
of the integrated circuit (IC).!

A functional electronic circuit requires transistors, resistors, diodes, etc.
and the connections between them. A monolithic integrated circuit (the
"monolithic” qualifier is usually omitted) has all of these components formed
on the surface layer of a sliver, or chip, of a single piece of semiconductor;
hence the term monolithic, meaning “seamless.” Although a variety of semi-
conductor materials are available, the most commonly used is silicon, and
integrated circuits are popularly known as “silicon chips.” Unless otherwise
noted, the remainder of these discussions will assume integrated circuits based
on silicon as the semiconductor.

An Overview of the Fabrication Process

The construction of integrated circuits requires one of most exacting pro-
duction processes ever developed. The environment must be at least a thousand
times cleaner than that of an operating theater, and impurities in materials
have to be so low as to be measured in parts per billion.? The process begins
with the growing of a single crystal of pure silicon in the form of a cylinder with
a diameter that can be anywhere up to 300 mm.? The cylinder is cut into paper-
thin slices called wafers, which are approximately 0.2 mm thick (Figure 14-1).

! In conversation, IC is pronounced by spelling it out as “I-C”.
2 [f you took a bag of flour and added a grain of salt, this would be impure by comparison.

3 This 300 mm value was true as of 2002. However, in 1995 (when the first edition of this tome
hit the streets), the maximum diameter was 200 mm, so who knows what it will be in the future?

144 m Chapter Fourteen

|

25 mm to
300 mm

Figure 14-2. The opto-lithographic
step-and-repeat process

Figure 14-1. Creating silicon wafers

Cylindrical silicon
e crystal

—

The thickness of
the wafer is determined
by the requirement for

Waf
j °r sufficient mechanical

0.2 mm)
strength to allow it to

be handled without
damage. The actual
thickness necessary
for the creation of the

electronic components is less than 10 um (ten-millionths of a meter). After the
wafers have been sliced from the cylinder, they are polished to a smoothness

rivaling the finest mirrors.

The most commonly used fabrication process is optical lithography, in which
ultraviolet light (UV) is passed through a stencil-like* object called a photo-
mask, or just mask for short. This square or rectangular mask carries patterns

formed by areas that are either transparent or opaque to ultraviolet frequencies
(similar in concept to a black and white photographic negative) and the result-
ing image is projected onto the surface of the wafer. By

-
—
—— \
Ultraviolet
‘ ‘ ‘ radiation
source

Mask

Each square
corresponds to
an individual
integrated
circuit

means of some technical wizardry that we’ll

consider in the next section, we can
use the patterns of ultraviolet light to
grow corresponding structures in the
silicon. The simple patterns shown in
the following diagrams were selected
for reasons of clarity; in practice, a
mask can contain millions of fine
lines and geometric shapes (Figure
14-2).

Each wafer can contain hundreds
or thousands of identical integrated
circuits. The pattern projected onto
the wafer’s surface corresponds to a

4 The term “stencil” comes from the Middle English
word stencelled, meaning “adorned brightly.”

Integrated Circuits (ICs) m 145

single integrated circuit, which is typically in the region of Imm x Imm to
10mm x 10mm, but may be even larger. After the area corresponding to one
integrated circuit has been exposed, the wafer is moved and the process is
repeated until the pattern has been replicated across the whole of the wafer’s
surface. This technique for duplicating the pattern is called a step-and-repeat
process.

As we shall see, multiple layers are required to construct the transistors
(and other components), where each layer requires its own unique mask. Once
all of the transistors have been created, similar techniques are used to lay down
the tracking (wiring) layers that connect the transistors together.

A More Detailed Look at the Fabrication Process

To illustrate the manufacturing process in more detail, we will consider the
construction of a single NMOS transistor occupying an area far smaller than a
speck of dust. For reasons of electronic stability, the majority of processes begin
by lightly doping the entire wafer to form either N-type or, more commonly,
P-type silicon. However, for the
purposes of this discussion, we will
assume a process based on a pure
silicon wafer (Figure 14-3).

Assume that the small area of
silicon shown here is sufficient to

accommodate a single transistor
in the middle of one of the

c 9]

Figure 14-3. Small area in the

integrated circuits residing some- middle of the silicon wafer

where on the wafer. During the

fabrication process the wafer is

often referred to as the substrate,

meaning “base layer.” A common

first stage is to either grow or

deposit a thin layer of silicon

dioxide (glass) across the entire Silicon dioxide
surface of the wafer by exposing Silicon (substrate)
it to oxygen in a high-temperature

Figure 14-4. Grow or deposit a
layer of silicon dioxide

oven (Figure 14-4).

146 m Chapter Fourteen

Silicon Silicon dioxide

(substrate)

Figure 14-5. Apply a layer of organic resist

Ultraviolet
radiation source

yvyvyYyy

Organic resist

After the wafer has
cooled, it is coated with a
thin layer of organic resist,’
which is first dried and then
baked to form an impervious

layer (Figure 14-5).

Organic resist A mask is created and

ultraviolet light is applied.
The ionizing ultraviolet
radiation passes through the
transparent areas of the
mask into the resist, silicon
dioxide, and silicon. The ultraviolet breaks
down the molecular structure of the resist, but
does not have any effect on the silicon dioxide
or the pure silicon (Figure 14-6).

As was previously noted, the small area
of the mask shown here is associated with a
single transistor. The full mask for an inte-
grated circuit can consist of
millions of similar patterns.
After the area under the
mask has been exposed, the
wafer is moved, and the
process is repeated until the
pattern has been replicated
across the wafer’s entire
surface, once for each inte-

Silicon Silicon dioxide grated circuit. The wafer is
(substrate) . .
then bathed in an organic
Figure 14-6. The exposed resist is degraded solvent to dissolve the

by the ultraviolet light

degraded resist. Thus, the

5 The term “organic” is used because this type of resist is a carbon-based compound, and carbon
is the key element for life as we know it.

Integrated Circuits (ICs) m 147

@ Organic resist

Sili
resist to be degraded is 5ub[6|’€roar’lae) Silicon dioxide

pattern on the mask has
been transferred to a series
of corresponding patterns in
the resist (Figure 14-7).

A process in which
ultraviolet light passing

through the transparent

areas of the mask causes the

known as a positive-resist
b Figure 14-7. The degraded resist is dissolved

process; negative-resist with an organic solvent
processes are also available.

In a negative-resist process,

the ultraviolet radiation

passing through the trans-

parent areas of the mask is

used to cure the resist, and

the remaining uncured areas

are then removed using an

appropriate solvent. Organic resist
After the unwanted

. Silicon Silicon dioxide
resist has been removed, the (substrate)

wafer undergoes a process
known as etching, in which Figure 14-8. Etch the exposed silicon dioxide
an appropriate solvent is
used to dissolve any exposed silicon dioxide without having any effect on the
organic resist or the pure silicon (Figure 14-8).

The remaining resist is then removed using an appropriate solvent, and the
wafer is placed in a high temperature oven where it is exposed to a gas contain-
ing the selected dopant (a P-type dopant in this case). The atoms in the gas

diffuse into the substrate resulting in a region of doped silicon (Figure 14-9).6

6 In some processes, diffusion is augmented with ion implantation techniques, in which beams of ions
are directed at the wafer to alter the type and conductivity of the silicon in selected regions.

148 m Chapter Fourteen

Gas containing

Prtype dopant The remaining silicon

dioxide layer is removed
by means of an appropri-
ate solvent that doesn’t
affect the silicon sub-
strate (including the

.. g doped regions). Then
ype eticon additional masks and

Silicon dioxide variations on the process

Silicon are used to create two
(substrate) N diffusi .
Figure 14-9. Dope the exposed silicon -type dilfusion regions,

a gate electrode, and a

Poly-crystalline silicon layer of insulating silicon dioxide between the
(gate electrode) substrate and the gate electrode (Figure 14-10).
In the original MOS technologies, the
N-type gate electrode was metallic: hence the
silicon

“metal-oxide semiconductor” appella-
tion. In modern processes, however,

Silicon dioxide Silicon .
" (eubstrate) the gate electrode is formed from poly-
N-type silicon
P-type siicon crystalline silicon (often abbreviated to

polysilicon or even just poly), which is
Figure 14-10. Add n-type diffusion

) also a good conductor.
regions and the gate electrode

The N-type diffusions form the
transistor’s source and drain regions (you might wish to refer back to Figure 4-9a
in Chapter 4 to refresh your memory at this point). The gap between the source
and drain is called the channel. To provide a sense of scale, the length of the
channel may be in the order of 0.1 um (one-tenth of one-millionth of a meter),
and the thickness of the silicon dioxide layer between the gate electrode and
the substrate may be in the order of 0.05 um (see also the discussions on device
geometries later in this chapter).

Another layer of insulating silicon dioxide is now grown or deposited across
the surface of the wafer. Using similar lithographic techniques to those described
above, holes are etched through the silicon dioxide in areas in which it is
desired to make connections, and a metalization layer of aluminum inter-
connections (think of them as wires) called tracks is deposited (Figure 14-11).

Integrated Circuits (ICs) m 149

The end result is an Metal track Metal track

)) (drain) (gate)
NMOS transistor; a logic 1
on the track connected to

. Insulating layer
the gate will turn the of silicon dioxide

Metal track

transistor ON, thereby Silicon (substrate) (oouree)

enabling current to flow
between its source and drain
terminals. An equivalent
PMOS transistor could have
been formed by exchanging the Figure 14-11. Add the
P-type and N-type diffusion metalization (tracks)
regions. By varying the structures

created by the masks, components such as resistors and diodes can be fabricated
at the same time as the transistors. The tracks are used to connect groups of
transistors to form primitive logic gates and to connect groups of these gates to
form more complex functions.

An integrated circuit contains three distinct levels of conducting material:
the diffusion layer at the bottom, the polysilicon layers in the middle, and the
metalization layers at the top. In addition to forming components, the diffusion
layer may also be used to create embedded wires. Similarly, in addition to
forming gate electrodes, the polysilicon may also be used to interconnect
components. There may be several layers of polysilicon and several layers of
metalization, with each pair of adjacent layers separated by an insulating layer
of silicon dioxide. The layers of silicon dioxide are selectively etched with holes
known as vias, which allow connections to be made between the various
tracking layers.

Early integrated circuits typically supported only two layers of metalization.
The tracks on the first layer predominantly ran in a “North-South” direction,
while the tracks on the second predominantly ran “East-West.”? As the number

71n 2001, a group of companies announced a new chip interconnect concept called X Architecture
(www.xinitiative.org) in which logic functions on chips are wired together using diagonal tracks
(as opposed to traditional North-South and East-West tracking layers). Initial evaluations
apparently show that this diagonal interconnect strategy can increase chip performance by 10%
and reduce power consumption by 20%. However, it may take awhile before design tools and
processes catch up . . . watch this space!

150 m Chapter Fourteen

of transistors increased, engineers required more and more tracking layers.
The problem is that when a layer of insulating silicon dioxide is deposited
over a tracking layer, you end up with slight “bumps” where the tracks are
(like snow falling over a snoozing polar bear—you end up with a bump).

After a few tracking layers, the bumps are pronounced enough that you
can’t continue. The answer is to re-planarize the wafer (smooth the bumps out)
after each tracking and silicon dioxide layer combo has been created. This is
achieved by means of a process called chemical mechanical polishing (CMP),
which returns the wafer to a smooth, flat surface before the next tracking layer
is added. With manufacturers using this process, high-end silicon chips could
support up to eight tracking layers by 2002.

Relatively large areas of aluminum called pads are constructed at the edges
of each integrated circuit for testing and connection purposes. Some of the pads
are used to supply power to the device, while the rest are used to provide input
and output signals (Figure 14-12).

The pads can be connected to the internal components using the diffusion,
polysilicon, or metalization layers. In a step known as overglassing, the entire
surface of the wafer is coated with a final barrier layer (or passivation layer)
of silicon dioxide or silicon nitride, which provides physical protection for
the underlying circuits from moisture and other contaminants. One more
lithographic step is required to pattern holes in the barrier layer to allow
connections to be made to the pads. In some cases, additional metalization
may be deposited on the pads to raise them fractionally above the level of the
barrier layer. Augmenting the pads in this way is known as silicon bumping.

The entire fabrication process requires numerous lithographic steps, each

involving an individual mask
and layer of resist to

selectively expose
different parts of
the wafer.

Pads

Figure 14-12. Power and signal pads

Integrated Circuits (ICs) m 151

The Packaging Process

The individual integrated circuits are tested while they are still part of the
wafer in a process known as wafer probing. An automated tester places probes on
the device’s pads, applies power to the power pads, injects a series of signals
into the input pads, and monitors the corresponding signals returned from the
output pads. Each integrated circuit is tested in turn, and any device that fails
the tests is automatically tagged with a splash of dye for subsequent rejection.
The yield is the number of devices that pass the

tests as a percentage of the total number
fabricated on that wafer.

The completed circuits, known as
die,8 are separated by marking the wafer
with a diamond scribe and fracturing it
along the scribed lines (much like
cutting a sheet of glass or breaking up a
Kit Kat® bar) (Figure 14-13).

Following separation, the majority of
the die are packaged individually. Since
there are almost as many packaging tech- Figure 14-13. Die separation
nologies as there are device manufacturers,
we will initially restrain ourselves to a relatively traditional process. First, the
die is attached to a metallic lead frame using an adhesive (Figure 14-14).

Lead frame
with die attached

Bare lead frame

Figure 14-14. Die attached to lead frame

8 The plural of die is also die (in much the same way that “a shoal of herring” is the plural of “herring”).

152 m Chapter Fourteen

One of the criteria used when selecting the adhesive is its ability to conduct
heat away from the die when the device is operating. An automatic wire bonding
tool connects the pads on the die to the leads on the lead frame with wire
bonds finer than a human hair.? The whole assembly is then encapsulated in a
block of plastic or epoxy (Figure 14-15).

Wire bonds
attached

Figure 14-15. Wire bonding and encapsulation

A dimple or notch is formed at one end of the package so that the users will
know which end is which. The unused parts of the lead frame are cut away and

the device’s leads, or pins, are shaped as required; these operations are usually
performed at the same time (Figure 14-16).

Notch ,
Shape pins

Discard unused
lead frame

Figure 14-16. Discard unused lead frame and shape pins

9 Human hairs range in thickness from around 0.07 mm to 0.1 mm. A hair from a typical blond
lady’s head is approximately 0.075 mm (three quarters of one tenth of a millimeter) in diameter.

By comparison, integrated circuit bonding wires are typically one-third this diameter, and they
can be even thinner.

Integrated Circuits (ICs) m 153

An individually packaged integrated circuit consists of the die and its
connections to the external leads, all encapsulated in the protective package.
The package protects the silicon from moisture and other impurities and helps
to conduct heat away from the die when the device is operating.

There is tremendous variety in the size and shape of packages. A rectangular
device with pins on two sides, as illustrated here, is called a dual in-line (DIL)
package. A standard 14-pin packaged device is approximately 18 mm long by
6.5 mm wide by 2.5 mm deep, and has 2.5 mm spaces between pins. An equiva-
lent small outline package (SOP) could be as small as 4 mm long by 2 mm wide by
0.75 mm deep, and have 0.5 mm spaces between pins. Other packages can be
square and have pins on all four sides, and some have an array of pins protruding
from the base.

The shapes into which the pins are bent depend on the way the device is
intended to be mounted on a circuit board. The package described above has
pins that are intended to go all the way through the circuit board using a
mounting technique called lead through hole (LTH). By comparison, the
packages associated with a technique called surface mount technology (SMT)
have pins that are bent out flat, and which attach to one side (surface) of the
circuit board (an example of this is shown in Chapter 18).

[t’s important to note that the example shown above reflects a very simple
packaging strategy for a device with very few pins. By 2002, some integrated
circuits had as many as 1,000 pins (with 2,000- and 4,000-pin devices on the
horizon). This multiplicity of pins requires a very different approach. In one
technique known as solder bump bonding, for example, the pads on the die are
not restricted to its periphery, but are instead located over the entire face of
the die. A minute ball of solder is then attached to each pad, and the die is
flipped over and attached to the package substrate (this is referred to as a
“flip-chip” technique). Each pad on the die has a corresponding pad on the
package substrate, and the package-die combo is heated so as to melt the solder
balls and form good electrical connections between the die and the substrate
(Figure 14-17).

Eventually, the die will be encapsulated in some manner to protect it from
the outside world. The package’s substrate itself may be made out of the same
material as a printed circuit board, or out of ceramic, or out of some even more
esoteric material. Whatever its composition, the substrate will contain multiple

154 m Chapter Fourteen

Die is flipped over, internal wiring layers that

Die with array attached to the

of pade and z cubstrate, then connect the pads on the
small ball of encapsulated upper surface with pads (or
solder on \

each pad pins) on the lower surface.

The pads (or pins) on the
Package

substrate with
an array of pads

lower surface (the side that
actually connects to the

circuit board) will be spaced
Array of pads on
the bottom of the
substrate (each tively speaking—than the
pad has a ball of
solder attached.)

much father apart—rela-

pads that connect to the die.

At some stage the pack-
Figure 14-17. A solder bump bonded age will have to be attached
ball grid array packaging technique to a circuit board. In one
technique known as a ball
grid array (BGA), the package has an array of pads on its bottom surface, and a
small ball of solder is attached to each of these pads. Each pad on the package
will have a corresponding pad on the circuit board, and heat is used to melt
the solder balls and form good electrical connections between the package and
the board.

Modern packaging technologies are extremely sophisticated. For example,
by 2002, some ball grid arrays had pins spaced 0.3 mm (one third of a milli-
meter) apart! In the case of chip-scale packages (CSP), the package is barely
larger than the die itself. In the early 1990s, some specialist applications
began to employ a technique known as die stacking, in which several bare die
are stacked on top of each other to form a sandwich. The die are connected
together and then packaged as a single entity.

As was previously noted, there are a wide variety of integrated packaging
styles. There are also many different ways in which the die can be connected
to the package. We will introduce a few more of these techniques in future

chapters.1°

10 Additional packaging styles and alternative mounting strategies are presented in the
discussions on circuit boards (Chapter 18), hybrids (Chapter 19), and multichip modules
(Chapter 20).

Integrated Circuits (ICs) m 155

Integrated Circuits versus Discrete Components

The tracks linking components inside an integrated circuit have widths
measured in fractions of a millionth of a meter and lengths measured in milli-
meters. By comparison, the tracks linking components on a circuit board are
orders of magnitude wider and have lengths measured in tens of centimeters.
Thus, the transistors used to drive tracks inside an integrated circuit can be
much smaller than those used to drive their circuit board equivalents, and
smaller transistors use less power. Additionally, signals take a finite time to
propagate down a track, so the shorter the track, the faster the signal.

A single integrated circuit can contain tens (sometimes hundreds) of
millions of transistors. A similar design based on discrete components would be
tremendously more expensive in terms of price, size, operating speed, power
requirements, and the time and effort required to design and manufacture the
system. Additionally, every solder joint on a circuit board is a potential source
of failure, which affects the reliability of the design. Integrated circuits reduce
the number of solder joints and hence improve the reliability of the system.

In the past, an electronic system was typically composed of a number of
integrated circuits, each with its own particular function (say a microprocessor,
a communications function, some memory devices, etc.). For many of today’s
high-end applications, however, electronics engineers are combining all of these
functions on a single device, which may be referred to as a system-on-chip (SoC).

Different Types of ICs

The first integrated circuit—a simple phase shift oscillator—was constructed
in 1958.11 Since that time, a plethora of different device types have appeared
on the scene. There are far too many different integrated circuit types for us to
cover in this book, but some of the main categories—along with their approxi-
mate dates of introduction—are shown in Figure 14-18.12

11 The first integrated circuits typically contained around six transistors. By the latter half of the
1960s, devices containing around 100 transistors were reasonably typical.

12 The white portions of the timeline bars in this figure indicate that although early incarnations
of these technologies may have been available, they perhaps hadn’t been enthusiastically
received during this period. For example, Xilinx introduced the world’s first FPGA as early
as 1984, but many design engineers didn’t really become interested in these little rapscallions
until the late 1980s.

156 m Chapter Fourteen

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
I I I I
I

FPGAs
PLDs
ASICs

NN

NN NN

Microprocessors 3|

SRAMs & DRAMs |

ICs (General) {
Transistors 4—

T T T T T T T T T T T
Figure 14-18. Timeline of device introductions (dates are approximate)

Memory devices (in particular SRAMs and DRAMs) are introduced in
Chapter 15; programmable integrated circuits (PLDs and FPGAs) are
presented in Chapter 16; and application-specific integrated circuits (ASICs)
are discussed in Chapter 17.

Technology Considerations

Transistors are available in a variety of flavors called families or technologies.
One of the first to be invented was the bipolar junction transistor (BJT), which
was the mainstay of the industry for many years. If bipolar transistors are
connected together in a certain way, the resulting logic gates are classed as
transistor-transistor logic (TTL). An alternative method of connecting the same
transistors results in logic gates classed as emitter-coupled logic (ECL). Another
family called metal-oxide semiconductor field-effect transistors (MOSFETs) were
invented some time after bipolar junction transistors. Complementary metal-
oxide semiconductor (CMOS) logic gates are based on NMOS and PMOS
MOFSETs connected together in a complementary manner.

Logic gates constructed in TTL are fast and have strong drive capability,
but consume a relatively large amount of power. Logic gates implemented in
CMOS are a little slower than their TTL equivalents and have weaker drive
capability, but their static (non-switching) power consumption is extremely
low. Technology improvements continue to yield lower-power TTL devices
and higher-speed CMOS devices. Logic gates built in ECL are substantially
faster than their TTL counterparts, but consume correspondingly more power.

Integrated Circuits (ICs) m 157

Finally, gates fabricated using the gallium arsenide (GaAs) semiconductor as a
substrate are approximately eight times faster than their silicon equivalents, but
they are expensive to produce, and so are used for specialist applications only.

If an integrated circuit containing millions of transistors were constructed
entirely from high-power transistors, it could literally consume enough power
to incinerate itself (or at least melt itself down into an undistinguished puddle
of gunk). As a compromise, some integrated circuits use a combination of
technologies. For example, the bulk of the logic gates in a device may be
implemented in low-power CMOS, but the gates driving the output pins may
be constructed from high-drive TTL. A more extreme example is that of
BiCMOS (Bipolar CMOS), in which the function of every primitive logic gate
is implemented in low-power CMOS, but the output stage of each gate uses
high-drive bipolar transistors.

Supply Voltages

Towards the end of the 1980s and the beginning of the 1990s, the majority
of circuits using TTL, CMOS, and BiCMOS devices were based on a 5.0-volt
supply. However, increasing usage of portable personal electronics such as
notebook computers and cellular telephones began to drive the requirement
for devices that consume and dissipate less power. One way to reduce power
consumption is to lower the supply voltage, so by the mid-to-late 1990s, the
most common supplies were 3.3 volts for portable computers and 3.0 volts for
communication systems. By 2002, some specialist applications had plunged to
1.8 volts, with even lower supplies on the horizon. Unfortunately, lowering the
supply voltage can drastically affect the speed of traditional technologies and
greatly lessens any speed advantages of BICMOS over CMOS. A relatively
new low-voltage contender that appeared in the latter half of the 1990s was
BiNMOS, in which complex combinations of bipolar and NMOS transistors
are used to form sophisticated output stages providing both high speed and low
static power dissipation.

Equivalent Gates

One common metric used to categorize an integrated circuit is the number
of logic gates it contains. However, difficulties may arise when comparing
devices, as each type of logic function requires a different number of transistors.

158 m Chapter Fourteen

This leads to the concept of an equivalent gate, whereby each type of logic
function is assigned an equivalent gate value, and the relative complexity of an
integrated circuit is judged by summing its equivalent gates. Unfortunately, the
definition of an equivalent gate can vary, depending on whom one is talking to.
A reasonably common convention is for a 2-input NAND to represent one
equivalent gate. A more esoteric convention defines an ECL equivalent gate as
being “one-eleventh the minimum logic required to implement a single-bit full-adder,”
while some vendors define an equivalent gate as being equal to an arbitrary
number of transistors based on their own particular technology. The best policy
is to establish a common frame of reference before releasing a firm grip on your
hard-earned lucre.

The acronyms SSI, MSI, LSI, VLSI, and ULSI represent Small-, Medium-,
Large-, Very-Large-, and Ultra-Large-Scale Integration, respectively. By one
convention, the number of gates represented by these terms are: SSI (1-12),
MSI (13-99), LSI (100-999), VLSI (1,000-999,999), and ULSI (1,000,000

or more).

Device Geometries

Integrated circuits are also categorized by their geometries, meaning the size
of the structures created on the substrate. For example, a 1 pm!'3 CMOS device
has structures that measure one-millionth of a meter. The structures typically
embraced by this description are the width of the tracks and the length of the
channel between the source and drain diffusion regions; the dimensions of
other features are derived as ratios of these structures.

Geometries are continuously shrinking as fabrication processes improve.
In 1990, devices with 1 um geometries were considered to be state of the art,
and many observers feared that the industry was approaching the limits of
manufacturing technology, but geometries continued to shrink regardless:

Anything below 0.5 um is referred to as deep-submicron (DSM), and
at some point that isn’t particularly well defined (or is defined differently by
different people) we move into the realm of ultra-deep-submicron (UDSM).

13 The u symbol stands for “micro” from the Greek micros, meaning “small” (hence the use of
uP as an abbreviation for microprocessor). In the metric system, p stands for “one millionth
part of,” so 1 um means one millionth of a meter.

Integrated Circuits (ICs) m 159

With devices whose geometries were 1 um and

higher, it was relatively easy to talk about them in
1990 1.00 um

1992 0.80 um
1994 0.50 ym
1996 0.35um
1997 0.25um
1999 0.18 ym
2000 0.13 um
20001 0.10 um
2002 0.09 um

conversation. For example, one might say “I'm
working with a one micron technology.” But things
started to get a little awkward when we dropped
below 1 um, because it’s a bit of a pain to have to
keep on saying things like “zero point one-three
microns.” For this reason, it’s become common to
talk in terms of “nano,” where one nano (short for
“nanometer”) equates to one thousandth of a

micron—that is, one thousandth of one millionth

of a meter. Thus, when referring to a 0.13 um technology, instead of mumbling
“zero point one-three microns,” you would now proclaim “one hundred and thirty
nano.” Of course both of these mean exactly the same thing, but if you want to
talk about this sort of stuff, it’s best to use the vernacular of the day and present
yourself as hip and trendy as opposed to an old fuddy-duddy from the last
millennium.

While smaller geometries result in lower power consumption and higher
operating speeds, these benefits do not come without a price. Submicron logic
gates exhibit extremely complex timing effects, which make corresponding
demands on designers and design systems. Additionally, all materials are
naturally radioactive to some extent, and the materials used to package inte-
grated circuits can spontaneously release alpha particles. Devices with smaller
geometries are more susceptible to the effects of noise, and the alpha decay in
packages can cause corruption of the data being processed by deep-submicron
logic gates. Deep-submicron technologies also suffer from a phenomenon
known as subatomic erosion or, more correctly, electromigration, in which the
structures in the silicon are eroded by the flow of electrons in much the same
way as land is eroded by a river.

What Comes After Optical Lithography?

Although new techniques are constantly evolving, technologists can foresee
the limits of miniaturization that can be practically achieved using optical
lithography. These limits are ultimately dictated by the wavelength of ultraviolet
radiation. The technology has now passed from using standard ultraviolet (UV)

160 m Chapter Fourteen

to extreme ultraviolet (EUV), which is just this side of soft X-rays in the electro-
magnetic spectrum. One potential alternative is true X-ray lithography, but

this requires an intense X-ray source and is considerably more expensive than
optical lithography. Another possibility is electron beam lithography, in which
fine electron beams are used to draw extremely high-resolution patterns directly
into the resist without a mask. Electron beam lithography is sometimes used

for custom and prototype devices, but it is much slower and more expensive
than optical lithography. Thus, for the present, it would appear that optical
lithography—in the form of extreme ultraviolet lithography (EUVL) —will
continue to be the mainstay of mass-produced integrated circuits.

How Many Transistors?

The geometry table presented on the previous page reflects commercially
available processes (although widespread adoption typically takes some time),
but experimental processes in the laboratories are much further advanced.

For example, in December 2000, Intel announced that they had constructed an
incredibly small, unbelievably fast CMOS transistor only 0.03 um (30 nano)
in size.

In the first half of 2002, Intel announced its McKinley microprocessor—
an integrated circuit based on a 0.13 um (130 nano) process containing more
than 200 million transistors! And by the summer of 2002, Intel had announced
a test chip based on a 0.09 um (90 nano) process that contained 330 million
transistors. Some observers are predicting that, using Intel’s 0.03 um (30 nano)
process, by 2005, we could have 500 million transistors on a single chip running
at 10 GHz'# with a supply voltage of less than one volt. And by 2010, we could
be looking at more than 1.8 billion transistors on a chip! At this level of pro-
cessing power, we will soon have the capabilities required to create Star Trek—

style products like a universal real-time translator.1>-16

14 The unit of frequency is the Hertz (Hz). One gigahertz (1 GHz) means “one thousand million cycles
per second.”

15 Speaking of Star Trek, a company called Time Domain (www.timedomain.com) based in Hunts-
ville, Alabama, USA is using ultra wideband wireless technology to create an incredibly low power,
Tricorder-like handheld radar. This will allow police, firefighters, and rescue workers to “see
through walls” and, for example, detect earthquake victims trapped under piles of rubble.

16 There are predictions of geometries as low as 0.009 um (9 nano) becoming available somewhere
between 2024 and 2028, at which point the author’s mind boggles!

Integrated Circuits (ICs) m 161

Moorvre’s Law

In 1965, Gordon Moore (who was to co-found Intel Corporation in 1968)
was preparing a speech that included a graph illustrating the growth in the
performance of memory ICs. While plotting this graph, Moore realized that
new generations of memory devices were released approximately every 18
months, and that each new generation of devices contained roughly twice
the capacity of its predecessor.

This observation subsequently became known as Moore’s Law, and it has
been applied to a wide variety of electronics trends. These include the number
of transistors that can be constructed in a certain area of silicon (the number
doubles approximately every 18 months), the price per transistor (which follows
an inverse Moore’s Law curve and halves approximately every 18 months), and
the performance of microprocessors (which again doubles approximately every

18 months).

Liquid crystal displays are often
used for personal electronic
appliances such as notebook
computers. These displays are
arranged as a matrix of points
called pixels, each of which can
be light or dark, and each of
which is controlled by a transis-
tor. Up until now, these displays
have typically been fabricated as
a sandwich of liquid crystal
between two slices of glass.
However, the following interest-
ing little snippet was reported in
the November 1994 edition of
the IEEE Spectrum magazine:
“Researchers at the French
National Center for Scientific
Research, in Thiais, say that they
have developed an all-plastic,
no-metal transistor. Using modern

up thin layers of various materials

printing techniques, the group built

to construct paper-thin field-effect
transistors, then employed plastic-
like organic polymers and graphite
inks to carry electricity. This
development could lead to flexible
computer screens that roll up like
window shades.”

Personally the author has
enough problems with his window
shades spontaneously rolling up
(which can offer one of life’s
unforgettable moments when
parading in full glory in front of
the bathroom mirror) without his
computer screen doing the same
thing. However, this opens the
door to yet more science fiction
predictions coming true in the
foreseeable future: for example,
comic books, newspapers, and
textbooks with animated pictures
and graphics. We truly do live in
interesting times.

Chapter

A
J3,

Memory ICs

Memory devices are a special class of integrated circuits that are used to
store binary data for later use. There are two main categories of semi-conductor
memories: read-only memory (ROM) and read-write memory (RWM). Other
components in the system can read (extract) data from ROM devices, but
cannot write (insert) new data into them. By comparison, data can be read out
of RWM devices and, if required, new data can be written back into them. The
act of reading data out of a RWM does not affect the master copy of the data
stored in the device. For a number of reasons, mainly historical, RWMs are
more commonly known as random-access memories (RAMs).

ROM and RAM devices find a large number of diverse applications in
electronic designs, but their predominant usage is as memory in computer
systems (Figure 15-1).1

o control_bus

Figure 15-1. ROM and RAM in a
computer system

1 In conversation, ROM is pronounced as a single word to thyme with “bomb,” while “RAM” is
pronounced to thyme with “ham.”

Memory ICs m 163

The brain of the computer is the central processing unit (CPU), which is
where all of the number crunching and decision-making are performed. The
CPU uses a set of signals called the address bus to point to the memory location
in which it is interested. The address bus is said to be unidirectional because it
conveys information in only one direction: from the CPU to the memory. By
means of control signals, the CPU either reads data from, or writes data to, the
selected memory location. The data is transferred on a set of signals called the
data bus, which is said to be bidirectional because it can convey information in
two directions: from the CPU to the memory and vice versa.

The bulk storage is often based on magnetic media such as a disk or tape,?
which can be used to store a large quantity of information relatively cheaply.
Because magnetic media maintains its data when power is removed from the
system it is said to be nonvolatile.

A general-purpose computer is a
system that can accept information
from the outside world (from a
keyboard, mouse, sensor, or some
other input device), process that
information, make decisions based
on the results of this processing,
and return the information to the
outside world in its new form (using
a computer screen, a robot arm, or
some other output device).

The concept of a general-purpose
computer on a single chip (or on a
group of related chips called a chipset)
became known as a microprocessor.

(A microcontroller may be considered to
be a microprocessor augmented with
special-purpose inputs, outputs, and
control logic like counter-timers). The
written abbreviations for microproces-
sors and microcontrollers are LP and
WLC, respectively, where “|L”, pro-
nounced “mu” for “micro” comes from

the Greek micros, meaning “small” (in
conversation you always use the full
names for these devices and never try
to pronounce their abbreviations).
Digital signal processing refers to
the branch of electronics concerned
with the representation and manipula-
tion of signals in digital form. These
signals include voice and video, and
this form of processing appears in such
things as compressing and decom-
pressing audio and video data, tele-
communications, radar, and image
processing (including medical imag-
ing). A digital signal processor (DSP) is
a special form of microprocessor that
has been designed to perform a
specific processing task on a specific
type of digital data much faster and
more efficiently than can be achieved
using a general-purpose device. (In
conversation, DSP is always spelled out
as “D-S-P").

2 The use of tape is becoming increasingly rare for almost any form of mainstream application.

164 m Chapter Fifteen

One of the major disadvantages of currently available bulk storage units is
their relatively slow speed.> The CPU can process data at a much higher rate
than the bulk storage can supply or store it. Semiconductor memories are
significantly more expensive than bulk storage, but they are also a great deal
faster.

ROM devices are said to be mask-programmable because the data they
contain is hard-coded into them during their construction (using photo-masks
as was discussed in the previous chapter). ROMs are also classed as being
nonvolatile, because their data remains when power is removed from the system.
By comparison, RAM devices initialize containing random logic O or logic 1
values when power is first applied to a system. Thus, any meaningful data stored
inside a RAM must be written into it by other components in the system after
it has been powered-up. Additionally, RAMs are said to be wvolatile, because any
data they contain is lost when power is removed from the system.

When a computer system is first powered up, it doesn’t know much about
anything. The CPU is hard-wired so that the first thing it does is read an
instruction from a specific memory address: for example, address zero. The
components forming the system are connected together in such a way that
this hard-wired address points to the first location in a block of ROM.#

The ROM contains a sequence of instructions that are used by the CPU to
initialize both itself and other parts of the system. This initialization is known
as boot-strapping, which is derived from the phrase “pulling yourself up by your
boot-straps.” At an appropriate point in the initialization sequence, instructions
in the ROM cause the CPU to copy a set of master programs, known collectively
as the operating system (OS), from the bulk storage into the RAM. Finally,

the instructions in the ROM direct the CPU to transfer its attention to the
operating system instructions in the RAM, at which point the computer is
ready for the user to enter the game.

3 Note the use of the qualifier “relatively.” Modern bulk storage is actually amazingly fast, but not as
fast as the rest of the system.

4 Actually, if the truth be told, these days the block of memory pointed to by the CPU on power-up is
typically formed from another form of memory like FLASH, which is non-volatile like ROM, but
which can be re-programmed (if necessary) like RAM (FLASH is introduced later in this chapter).

Memory ICs m 165

Underlying RAM and ROM Architectures

The smallest unit of memory, called a cell, can be used to store a single bit
of data: that is, a logic O or a logic 1. A number of cells physically grouped
together are classed as a word, and all the cells in a word are typically written
to, or read from, at the same time. The core of a memory device is made up of a
number of words arranged as an array (Figure 15-2).

bit O
~a
@ bit 3
1-bit cell ™~ 2-bit
word

Figure 15-2. Memory cells,
words, and arrays word 7

The width (w) of a memory is the number of bits used to form a word, where
the bits are usually numbered from O to (w —1).> Similarly, the depth (d) of a
memory is the number of words used to form the array, where the words are
usually numbered from O to (d —1). The following examples assume a memory
array that is four bits wide and eight words deep—real devices can be much
wider and deeper.

For the purposes of this discussion, it is convenient to visualize a ROM as
containing an array of hard-coded cells. In reality, the physical implementation
of a ROM is similar to that of a PROM, which is discussed in more detail in
Chapter 16.

In the case of Dynamic RAMs (DRAM:s),® each cell is formed from a tran-
sistor-capacitor pair. The term “dynamic” is applied because a capacitor loses its
charge over time and each cell must be periodically recharged to retain its data.

5 Note that there is no official definition as to the width of a word: this is always system-dependent.

6 In conversation, DRAM is pronounced as “D-RAM.” That is, spelling out the “D” and following
it with “RAM” to rhyme with “ham.”

166 m Chapter Fifteen

This operation, known as refreshing, requires the contents of each cell to be read
out and then rewritten. Some types of DRAM require external circuitry to
supervise the refresh process, in which case a special independent controller
device is employed to manage a group of DRAMs. In other cases, a DRAM

may contain its own internal self-refresh circuitry.

In the case of Static RAMs (SRAMs),? each cell is formed from four or six
transistors configured as a latch or a flip-flop. The term “static” is applied
because, once a value has been loaded into an SRAM cell, it will remain
unchanged until it is explicitly altered or until power is removed from
the device.

For external components to reference a particular word in the memory, they
must specify that word’s address by placing appropriate values onto the address
bus. The address is decoded inside the device, and the contents of the selected
word are made available as outputs from the array (Figure 15-3).

external T~
system RS

data[2:0] (from

the word

selected by the

T~ ™~ address address bus)
.~ decoder

address_bus[2:0]

Figure 15-3. Address bus decoding

Standard memory devices are constrained to have a depth of 2® words,
where n is the number of bits used to form the address bus. For example, the

3-bit address bus illustrated in Figure 15-3 can be decoded to select one of eight
words (23 = 8) using a 3:8 decoder.®

7 In conversation, SRAM is pronounced as “S-RAM.” That is, spelling out the “S” and
following it with “RAM” to thyme with “ham.”

8 Decoders were introduced in Chapter 11.

Memory ICs m 167

This leads to an interesting quirk when referencing the size of a memory
device. In SI units,” the qualifier k (kilo)!° represents one thousand (1,000),
but the closest power of two to one thousand is 21°, which equals 1,024.
Therefore, a 1 kilobit (1 kb or 1 Kb) memory actually refers to a device
containing 1,024 bits.

Similarly, the qualifier M (mega)!! is generally taken to represent one
million (1,000,000), but the closest power of two to one million is 22°, which
equals 1,048,576. Therefore, a 1 megabit (1 Mb) memory actually refers to a
device containing 1,048,576 bits. In the case of the qualifier G (giga),'? which
is now generally taken to represent one billion (1,000,000,000),!3 the closest
power of two is 239, which equals 1,073,741,824. Therefore, a 1 gigaabit (1 Gb)
memory actually refers to a device containing 1,073,741,824 bits.

If the width of the memory is equal to a byte or a multiple of bytes, then
the size of the memory may also be referenced in terms of bytes. For example,

a memory containing 1,024 words, each 8 bits wide, may be referred to as being
either an 8 kilobit (8 Kb) or a 1 kilobyte (1 KB) device (note the use of “b” and
“B” to represent bit and byte, respectively).

Because multiple memory devices are usually connected to a single data bus,
the data coming out of the internal array is typically buffered from the external
system by means of tri-state gates.!4 Enabling the tri-state gates allows the
device to drive data onto the data bus, while disabling them allows other
devices to drive the data bus.

In addition to its address and data buses, a ROM requires a number
of control signals, the two most common being ~chip_select and ~read.

9 The metric system of measurement was developed during the French Revolution and its use
was legalized in the U.S. in 1866. The International System of Units (SI) is a modernized
version of the metric system.

10 The term kilo comes from the Greek khiloi, meaning “thousand” (strangely enough, this is the
only prefix with an actual numerical meaning).

11 The term mega comes from the Greek mega, meaning “great” (hence the fact that Alexander
the Great was known as Alexandros Megos in those days).

12 The term giga comes from the Latin gigas, meaning “giant.”

13 See the discussions in Chapter 3 on why we now take “one billion” to represent one thousand
million rather than one million million.

14 Tri-state gates were introduced in Chapter 11.

168 m Chapter Fifteen

(The ~read control is sometimes called ~output_enable. Alternatively, some
devices have both ~read and ~output_enable controls.) These control signals
are commonly active-low; that is, they are considered to be ON when a logic O is
applied.!> The ~chip_select signal indicates to the ROM that its attention is
required, and it is combined with ~read to form an internal signal ~rd which is
used to control the tri-state gates (Figure 15-4).

memory
device

~
~
~
~
~

external "~ . _
system

memory
device _~

tri-state

-
-

-
_- " external
e system

address_bus[2:0]

~chip_select

~read

Figure 15-4. ROM control decoding and data bus

When ~rd is active, the tri-state gates are enabled and the data stored in
the word selected by the address bus is driven out onto the data bus. When ~rd
is inactive, the tri-state gates are disabled and the outputs from the device are
placed into high-impedance Z states.

In addition to the control signals used by ROMs, RAMs require a mechanism
to control the writing of data into the device. Some RAMSs employ separate
buses for reading and writing called data_out and data_in, respectively. These
components usually have an additional control signal called ~write which is
also active-low. Once again, the ~chip_select signal indicates to the RAM that
its attention is required, and it is combined with ~read to form an internal ~rd

15 Tilde ‘~’ characters prefixing signal names are used to indicate that these signals are active-low.
The use of tilde characters is discussed in detail in Appendix A.

Memory ICs m 169

signal which is used to control the tri-state gates. Additionally, ~chip_select is
combined with ~write to form an internal ~wr signal (Figure 15-5).

external .
system - °~
data_in[2:0] - ’ %rﬂggy

tri-state
gates

memory
device -

-
-

_--7 external
system

address_bus[2:0]

~write
~chip_select
~read

S . data_out[2:0]

Figure 15-5. RAM with separate data in and data out busses

When ~wr is active, the data present on the data_in bus is written into the
word selected by the address_bus. The contents of the word pointed to by the
address_bus are always available at the output of the array, irrespective of the
value on ~wr. Therefore, devices of this type may be written to and read from
simultaneously.

In contrast to those devices with separate data_in and data_out buses, the
majority of RAMs use a common bus for both writing and reading. In this case,
the ~read and ~write signals are usually combined into a single control input
called something like read~write. The name read~write indicates that a logic 1
on this signal is associated with a read operation, while a logic O is associated
with a write. When the ~chip_select signal indicates to the RAM that its
attention is required, the value on read~write is used to determine the type of
operation to be performed. If read~write carries a logic 1, the internal ~rd signal

170 m Chapter Fifteen

is made active and a read operation is initiated; if read~write carries a logic O,
the internal ~wr signal is made active and a write operation is executed

(Figure 15-6).

. memory
~_ device

~

.. memory
external "~ device .-
system et
.77 external
system

address_bus[2:0]

~chip_select

read~write
Figure 15-6. RAM with single bi-directional databus

When ~rd is active, the tri-state gates are enabled and the data from the
word selected by the address_bus is driven onto the data_bus. When ~wr is
active (and therefore ~rd is inactive), the tri-state gates are disabled. This
allows external devices to place data onto the data_bus to be written into the
word selected by the address_bus.

If the value on the address_bus changes while ~rd is active, the data
associated with the newly selected word will appear on the data_bus. However,
it is not permissible for the value on the address_bus to change while ~wr is
active because the contents of multiple locations may be corrupted.

Increasing Width and Depth

Individual memory devices can be connected together to increase the width
and depth of the total memory as seen by the rest of the system. For example,
two 1,024-word devices, each 8 bits wide, can be connected so as to appear to
be a single 1,024-word device with a width of 16 bits. An address_bus
containing 10 bits is required to select between the 1,024 words (Figure 15-7).

Memory ICs m 171

read~write
~chip_select

addr@%_bua[Q:O]
data_bu5[15:0
Figure 15-7. Connecting memory devices to increase the width

In this case, the address_bus and control signals are common to both
memories, but each device handles a subset of the signals forming the data_bus.
Additional devices can be added to further increase the total width of the
data_bus as required. Alternatively, two 1,024-word devices, each 8 bits wide,
can be connected so as to appear to be a single device with a width of 8 bits and
a depth of 2,048 words. An address_bus containing 11 bits is required to select
between the 2,048 words (Figure 15-8).

In this case, the data_bus, the ten least-significant bits of the address_bus,
and the read~write control are common to both memories. However, the most
significant bit (MSB) of the address_bus is decoded to generate the ~chip_select
signals. A logic O on the most-significant bit selects the first device and deselects
the second, while a logic 1 deselects the first device and selects the second.

Additional address bits can be used to further increase the total depth as
required. If the address_bus in the previous example had contained 12 bits,
the two most-significant bits could be passed through a 2:4 decoder to generate
four chip select signals. These signals could be used to control four 1,024-word
devices, making them appear to be a single memory with a width of 8 bits and

a depth of 4,096 words.

172 m Chapter Fifteen

read~write bit 10 >

(address_bus)

address_bus[10:0]

data_bus[7:0]

Figure 15-8. Connecting memory devices to increase the depth

Alternative Technologies
SRAMs are faster than DRAMs, but each SRAM cell requires significantly

more silicon real estate and consumes much more power than a corresponding
DRAM cell. The first SRAM (256-bit) and DRAM (1,024-bit) devices were
both created in 1970. For the next few decades, both types of memory quadrupled
their capacities approximately every three years, but by the beginning of the
twenty-first century this had slowed to a doubling every two to three years.

By mid 2002, the highest density SRAMs contained 16 megabits. These
were typically based on 0.18 micron processes with a roadmap in place to
shrink to 0.15 and 0.13 microns. By comparison, by the end of 2002,
mainstream DRAM devices produced using 0.15 micron processes will contain
256 megabits. DRAM vendors will move to volume production using 0.13
micron processes in 2003, and 512 megabit devices based on these processes
will become mainstream in 2004/2005. These will be succeeded by 1 gigabit
devices based on 0.09 micron technologies in the second half of the decade.1®

16 One problem with DRAM memory cells is that there is a limit to the amount by which the size
of their capacitors can be reduced before they become too small to retain any data. This problem
will hopefully be addressed by MRAM devices, which are introduced later in this chapter.

Memory ICs m 173

Due to their regular structures and the numbers of components produced,

memory devices used to lead semiconductor technology by approximately two

years. For example, DRAMs based on 0.35 micron processes became available

as early 1994, but other devices with these geometries didn’t hit the main-

stream until 1996. By 2002, however, high-end general-purpose logic processes

had become just as advanced as memory processes, and both memory and logic

foundries routinely offered 0.13 micron technologies.

PROMs

Because ROMs are constructed containing pre-defined data, they are an

expensive design option unless used for large production runs. As an alter-

native, programmable read-only memories
(PROMs) 17 were developed in the
mid-1970s. PROMs are manufactured as
standard devices that may be electrically
programmed by the designer and are non-
volatile. PROMs are one-time programmable
(OTP) and slightly slower than their ROM
equivalents, but are significantly cheaper
for small- to medium-sized production runs.

EPROMs

To satisfy the designers’ desire to
combine the advantages of DRAMs
(programmable) and ROMs (nonvolatile),
erasable programmable read-only memories
(EPROMs) 18 were developed in the late
1970s. EPROMs are electrically program-
mable by the designer and are non-volatile,
but can be erased and reprogrammed should
the designer so desire. An EPROM device

is presented in a ceramic package with a

17 In conversation, PROM is pronounced just like
the high school dance of the same name.

Until the latter half of the 1990s,
DRAM-based computer memories
were asynchronous, which means
they weren’t synchronized to the
system clock. Every new generation
of computers used a new trick to
boost speed, and even the engi-
neers started to become confused
by the plethora of names, such as
fast page mode (FPM), extended data
out (EDO), and burst EDO (BEDO). In
reality, these were all based on
core DRAM concepts; the differ-
ences are largely in how you wire
the chips together on the circuit
board (OK, sometimes there is a bit
of tweaking on the chips also).

Over time, the industry
migrated to synchronous DRAM
(SDRAM), which is synchronized to
the system clock and makes every-
one’s lives much easier. Once again,
however, SDRAM is based on core
DRAM concepts—it’s all in the way
you tweak the chips and connect
them together.

174 m Chapter Fifteen

small quartz window mounted in the top. The quartz window is usually covered
by a piece of opaque tape. To erase the device, the tape is removed and the
EPROM is exposed to ultraviolet radiation for approximately 20 minutes.
EPROMs are relatively expensive due to their complicated packaging require-
ments, but are ideal for prototyping and other applications that require regular
changes to the stored data. EPROMs are often used during the development

of a design and are subsequently replaced by equivalent PROM or ROM
devices in cheaper plastic packages after the design has stabilized. (The actual
construction of EPROMSs and some of the other types of memory devices
introduced during the remainder of this chapter are discussed in greater detail

in Chapter 16.)

By 2002, there were a variety of
different types of SDRAM on the
market (way too many to cover
here). Perhaps the most well known
are the ones used in general-purpose
personal computers, which are called
PC100 and PC133, which operate at
100 MHz and 133 MHz, respectively.
In the future, memory manufac-
turers may move to faster speeds
(say PC166 of higher), but this may
cause problems, because the original
SDRAM interface was not designed
with these high frequencies in mind.
However, the original SDRAM
specification was based on using
only one of the clock edges (say the
rising edge) to read/write data out-
of /into the memory as shown below:

Clock

t t

An alternative known as double
data rate (DDR) is to design the
memory in such a way that data can
be read/written on both edges of
the clock:

Clock |

tor 8

This effectively doubles the
amount of data that can be pushed

through the system without increas-
ing the clock frequency (it sounds
simple if you say it fast, but making
this work is trickier than it may at
first appear).

Furthermore, a quad data rate
(QDR) memory is one with separate
data in and data out busses (as was
illustrated in Figure 15-5), both of
which can be used on both edges of

the clock.

18 In conversation, EPROM is pronounced as "E-PROM.” That is, spelling out the “E” and

following it with “prom.”

EEPROMs

A further technology called
electrically-erasable read-only memory
(EEPROM or E?PROM)'® was
developed towards the end of the
1970s. EZPROMs are electrically
programmable by the designer and
are nonvolatile, but can be electri-
cally erased and reprogrammed
should the designer so desire.
Additionally, by means of addi-
tional circuitry, an EZ2PROM can
be erased and reprogrammed while
remaining resident on the circuit
board, in which case it may be
referred to as in-system programmable
(ISP).

An EPROM cell is based on a
single transistor and is therefore
very efficient in terms of silicon
real estate, while an equivalent
E?PROM cell is based on two
transistors and requires more area
on the silicon. However, an
EPROM device must be erased and
reprogrammed in its entirety, while
an EZ2PROM device can be erased
and reprogrammed on a word-by-
word basis.

19 Tn conversation, some people pronounce
EEPROM as "E-E-PROM” (spelling out
“E-E” followed with “prom”), while
others say “E-squared-prom.”

Memory ICs m 175

PC100 and PC133 memory modules are
64-bits wide (although dual configurations
have been used to provide 128 bit wide
busses in really high-end computers).

Thus, assuming a standard 64-bit
(8-byte) wide PC100 (100 MHz) memory
modaule, the peak data throughput will be
8 x 100 = 800 megabytes per second. If a
DDR version becomes available as discussed
earlier, this would rise to 1,600 megabytes
per second. Furthermore, a 128-bit wide
DDR (using dual 64-bit modules in parallel)
would have a peak bandwidth of 3,200
megabytes per second.

Towards the end of the 1990s, an
alternative memory concept called Rambus
began to gain attention (as usual this is
based on core DRAM concepts presented
in a cunning manner). By around 2000,
personal computers equipped with memory
modules formed from Rambus DRAM
(RDRAM) devices were available. These
memory modules were 16-bits (2-bytes)
wide, and were accessed on both edges of
a 400 MHz clock, thereby providing a peak
data throughput of 2 x 2 x 400 = 1,600
megabytes per second. (Just to be confus-
ing, these devices are actually referenced as
“800 MHz Rambus DRAM, ” but this is just
marketing spin trying to make using both
edges of a 400 MHz clock sound more
impressive.)

In the summer of 2002, a new flavor of
Rambus was announced with a 32-bit wide
bus using both edges of a 533 MHz clock
(the official announcements quote “7,066
MHz Rambus DRAM,” but this is the same
marketing spin as noted above). Whatever,
this will provide a peak bandwidth of 4,200
megabytes per second.

176 m Chapter Fifteen

FLASH

Yet another technology called FLASH is generally regarded as an evolu-
tionary step that combines the best features from EPROM and E?PROM.
The name FLASH is derived from its fast reprogramming time compared to
EPROM. FLASH has been under development since the end of the 1970s, and
was officially described in 1985, but the technology did not initially receive a
great deal of interest. Towards the end of the 1980s, however, the demand for
portable computer and communication systems increased dramatically, and
FLASH began to attract the attention of designers.

All variants of FLASH are electrically erasable like EEPROMs. Some
devices are based on a single transistor cell, which provides a greater capacity
than an E2PROM, but which must be erased and reprogrammed on a device-

wide basis similar to an EPROM.
Computer systems are very complicated Other devices are based on a dual

and there’s always the chance that an transistor cell and can be erased and

error will occur when reading or writing reprogrammed on a word—byfword

to the memory (a stray pulse of “noise” basis (see Chapter 16 for more

may flip a logic O to a logic 1 while your details).

FLASH is considered to be of

particular value when the designer

back is turned). Thus, serious computers
use error-correcting code (ECC) memory,

which includes extra bits and special

. . requires the ability to reprogram a
circuitry that tests the accuracy of data ! Y prog

as it passes in and out of memory and system in the field or via a communi-

corrects any (simple) errors cations link while the devices remain

resident on the circuit board.

MRAMs

A technology that is attracting a great deal of interest for the future is
magnetic random access memory (MRAM),?° which may be able to store more
data, read and write data faster, and use less power than any of the current
memory technologies. In fact, the seeds of MRAM were laid as far back as
1974, when IBM developed a component called a magnetic tunnel junction
(MT]J), which comprises a sandwich of two ferromagnetic layers separated by a

20 [n conversation, MRAM is pronounced “M-RAM.” That is, by spelling out the “M” and
following it with “RAM” to rhyme with “ham.”

Memory ICs m 177

Whatever flavor of DRAM you are
using, a single device can only
contain a limited amount of data,
so a number of DRAMs are gath-
ered together onto a small circuit
board called a memory module.

Each memory module has a line
of gold-plated pads on both sides
of one edge of the board. These
pads plug into a corresponding
connector on the main computer
board.

A single in-line memory module
(SIMM) has the same electrical
signal on corresponding pads on
the front and back of the board

(that is, the pads on opposite sides
of the board are “tied together”).

By comparison, in the case of a
dual in-line memory module (DIMM),
the pads on opposite sides of the
board are electrically isolated from
each other and form two separate
contacts.

Last but not least, we have the
RIMM, which really doesn’t stand
for anything per se, but which is
the trademarked name for a
Rambus memory module (RIMMs
are similar in concept to DIMMs,
but have a different pin count and

configuration).

thin insulating layer. A memory cell is created by the intersection of two wires
(say a “row” line and a “column” line) with an MJT sandwiched between them.
MRAMs have the potential to combine the high speed of SRAM, the storage
capacity of DRAM, and the non-volatility of FLASH, while consuming very
little power. It’s taken close to 30 years, but MRAM s test chips are predicted to
become available around 2003, with volume production in 2004.

nvRAMs

Finally, a class of devices known as nonvolatile RAMs (nvRAMs)?! may be
used in cases where high speed is required and cost is not an overriding issue.
These devices are generally formed from an SRAM die mounted in a package
with a very small battery, or as a mixture of SRAM and EZPROM cells fabri-

cated on the same die.

21 [n conversation, nvRAM is pronounced as “n-v-RAM.” That is, spelling out the “n” and the
“v” and following them with “RAM?” to rhyme with “ham.”

¥
o,
Programmable ICs

Programmable integrated circuits are standard devices constructed in such
a way that a designer can configure them to perform a specific function. These
devices, which were introduced in the mid-1970s, are generically known as
programmable logic devices (PLDs),? and can range in complexity from a few
hundred to tens of thousands of equivalent gates. Traditional PLDs are based
on logic gates formed from diodes (Figure 16-1).

2-Input AND Vop (Logic 1)

D, 2-Input OR

y:a&b y:a[b

Vgg (LO@lC O)
Figure 16-1. Diode implementations of AND and OR gates

In the case of the 2-input AND, the pull-up resistor R attempts to hold
the output y at Vp;, (logic 1). When both of the inputs are at logic 1, there is no
difference in potential across the diodes and y remains at logic 1. However, if
input a is connected to Vg (logic 0), diode D, will conduct and y will be pulled
down to logic O; similarly for input b and diode D,. Additional inputs can be
formed by adding more diodes.

In the case of the 2-input OR, the pull-down resistor R attempts to hold
the output y at Vg (logic 0). When both of the inputs are at logic O, there is
no difference in potential across the diodes and y remains at logic O. However,

1 [n conversation, PLD is pronounced by spelling it out as “P-L-D.”

2 Originally all PLDs contained a modest number of equivalent logic gates and were fairly simple.
As more complex PLDs (CPLDs) arrived on the scene, however, it became common to refer to
their simpler cousins as simple PLDs (SPLDs). (Note that CPLDs are introduced in more detail
later in this chapter.)

Programmable ICs m 179

if input a is connected to Vp, (logic 1), diode D, will conduct and y will be
pulled up to logic 1; similarly for input b and diode D,. Once again, additional
inputs can be formed by adding more diodes.

Fusible-link Technologies

In the most common PLD technology, which is known as fusible-link, each
diode has an associated link known as a fuse. The designer can individually
remove unwanted fuses by applying pulses of relatively high voltage and cur-
rent, in the order of 20 volts and 300 milliamps, respectively, to the device’s
inputs. These pulses are sufficient to effectively vaporize the fuse (Figure 16-2).

5 D, Vop (Logic 1) Fa D4 Voo (Logic 1)
y=a&b&ec y=a&b
UNPROGRAMMED: ;) < PROGRAMMED:
B-Input AND | 2-Input AND

Figure 16-2. Removing unwanted fusible links

This process is typically known as programming the device, but may also be
referred to as blowing the fuses or burning the device. Devices based on fusible
links are said to be one-time programmable (OTP),? because once a fuse has
been blown it cannot be replaced.

Antifuse Technologies

As an alternative to fusible links, some PLDs employ antifuse technologies
in which each diode has an associated antifuse. Unlike fusible links—which
will conduct unless they are forcibly removed—antifuse links will not conduct
in the device’s unprogrammed state. The user can individually enable desired
antifuse links by applying signals of relatively high voltage and current to the
device’s inputs (Figure 16-3).

3 In conversation, OTP is pronounced by spelling it out as “O-T-P.”

180 m Chapter Sixteen

Voo (Logic 1) AF, D, Voo (Logic 1)

y = Logic 1 y=a&b

UNPROGRAMMED:
Not applicable

PROGRAMMED:
2-Input AND

Figure 16-3. Adding desired antifuse links

Antifuse links are formed by creating a connection—called a via—of
amorphous (noncrystalline) silicon between two layers of metalization. In its
unprogrammed state, the amorphous silicon is an insulator with a very high
resistance in excess of one billion ohms. The programming signal effectively
grows a link by changing the insulating amorphous silicon into conducting
polysilicon (Figure 16-4).

Polysilicon via

Amorphous (non-crystalline)
silicon via

Metal Metal
Silicon dioxide A
a T
<+—Metal

UNPROGRAMMED PROGRAMMED

Figure 16-4. Growing an antifuse link

The programmed links in the original antifuse technologies had resistance
values in the order of 1,000 ohms, but modern processes have reduced this value
to 50 ohms or lower. Devices based on antifuses are also one-time programmable
(OTP), because once an antifuse link has been grown it cannot be removed.

Special PLD Notation
Due to the fact

that PLD structures

are very regular, and

d<
4o
4>

a
4
also because they

differ from standard
logic gates, a special

form of notation has

been adopted. This

notation is applicable
to both fusible-link —s x/

=

Programmable ICs m 181

Link No Link

A
N

and antifuse PLD:s.

Consider a device

delivered with four
diode-link pairs

forming a 4-input

AND function (Figure 16-5).

The AND symbol indicates the
function and encompasses the pull-up
resistor to Vpp. The diode-fuse pairs are
represented by the presence or absence
of crosses. In a fusible-link device, a
cross indicates that the corresponding
link has been left intact, while the
absence of a cross indicates that the link
has been blown away. Thus, the diagram
for an unprogrammed fusible-link device
will show crosses at each intersection of
the matrix. By comparison, in antifuse
technology, a cross indicates that a link
has been grown, while the absence of a
cross indicates that no link is present.
Thus, the diagram for an unprogrammed
antifuse device will not show any

Crosses.

& y=a&b

AND

Figure 16-5. Special PLD notation

The majority of this book follows the
convention laid down in Appendix A,
which is that active-low and comple-
mentary signals are indicated by
prefixing their names with tilde “~"
characters.

However, rules are made for the
guidance of wise men and the blind
obedience of fools, and the purposes
of the discussions in this chapter are
better served by representing inverted
PLD input signals by means of lines, or
bars, over their names.

Actually, this serves to illustrate
an important point: although mixing
conventions is not usually recom-
mended, engineers are “switch hitters”
who will happily use whatever tool is
most appropriate and best suited to

get the job done.

182 m Chapter Sixteen

Generic PLD Structures

To increase the versatility of PLDs, their inputs are inverted inside the
device and both true and inverse versions of the inputs are presented to an
array (Figure 16-6).

a C

1 Y ¥ 1 Y

b
Y
[&)= r=NA $)EVA [&)y=r=asbso

E—»e:NlA E—»e:a&c
E—»t:NlA T | T—B-»t:E&E

aa bb ¢cc aa bb coc
UNPROGRAMMABLE PROGRAMMED
(fusible array)

Figure 16-6. True and inverse versions
of the inputs are presented to the array

The number of AND functions is independent of the number of inputs;
additional ANDs can be formed by introducing more rows into the array.
Similar techniques can be used to create an array of OR functions, and PLDs
typically contain an AND array feeding into an OR array (Figure 16-7).

The number of OR functions is independent of both the number of inputs
and the number of AND functions; additional ORs can be formed by
introducing more columns into the OR array.

PLDs are not obliged to have AND input arrays feeding OR output arrays;
NOR output arrays are also available. However, while it would be possible to
create other structures such as OR-AND, NAND-OR, or NAND-NOR, these
alternatives tend to be relatively rare or simply not provided. The reason it
isn’t necessary for the vendor to supply all possible variations is because
AND-OR (and AND-NOR) structures directly map onto the sum-of-products
representations most often used to specify equations.* Other equation formats
can be mapped to these structures using standard Boolean algebraic techniques

—for example, DeMorgan Transformations.”

4 Sum-of-products representations were introduced in Chapter 9.
5 DeMorgan Transformations were introduced in Chapter 9.

Programmable ICs m 183
c

Y

—q

§

—\(2 &b &0))L L .
D >3
| ~ 3 3
—\(P & ¢ <
T i '
a a bAb c ¢
Frogrammable
AND Array
w X y
|—>y =(a&b&ec)
Figure 16-7. AND array feeding x=(a&b&c)l(b&o)

into an OR array

»w=(a&c)l(b&o)

Although core PLD concepts are relatively simple, the wider arena may
prove to be a morass of confusion to the unwary. There are a multiplicity of
PLD alternatives, most of which seem to have acronyms formed from different
combinations of the same three or four letters.® This may be, as some suggest, a
strategy to separate the priests from the acolytes, or it may be that the inventors
of the devices had no creative energy left to dream up meaningful names for
them. Whatever the case, the more common PLD variants are introduced
below.

Programmable Logic Arrays (PLAS)
The most user-configurable of the traditional PLDs are programmable logic

arrays (PLAs),” because both the AND and OR arrays are programmable
(Figure 16-8).

6 A common engineering joke is to refer to TLAs, which is an acronym that stands for “three
letter acronyms” (in conversation, TLA is pronounced by spelling it out as “T-L-A”).

7 In conversation, PLA is spelled out as “P-L-A.”

184 m Chapter Sixteen

? ? ? + Programmable Link

aa bb cc | | |

Programmable
AND Array

w X y

Figure 16-8. Generic structure of a PLA
(programmable AND, programmable OR)

? ; ? + Programmable Link

By
%HHHHH&E—O
%HHHHH&E ¢ <
k¥ 6) ¢
—K KK 5)

[2)

|

aa bbb ¢ ¢
AN J

-~
<—€I—j +

Programmable
AND Array W X y

Figure 16-9. Generic structure of a PAL
(programmable AND, predefined OR)

T
Reaay J0O
9|gewiueIboJ

Reddy HO paxi4

This diagram indicates a
fusible link technology, because
all of the links are present
when the device is in its
unprogrammed state. Similarly,
the following examples are
based on fusible link devices
unless otherwise stated.

Programmable Array
Logic (PAL)

Many applications do not
require both the AND and OR
arrays to be programmable. In
the case of programmable array
logic (PAL)3?° devices, only the
AND array is programmable
while the OR array is predefined
(Figure 16-9).

Although PALs are less
flexible than PLAs, they
operate somewhat faster because
hard-wired connections take
less time to switch than their
programmable equivalents.!©

8 In conversation, PAL is pronounced
as a single word to thyme with
((gal‘”

9 PAL is a registered trademark of
Monolithic Memories Inc.

10 There are also variations on PALs
called generic array logic (GAL)
devices from Lattice Semiconductor
Corporation (www.latticesemi.com).

Programmable ICs m 185

Programmable Read-Only Memories (PROMs)
In the case of programmable read-only memory (PROM) devices, the AND
array is predefined and only the OR array is programmable (Figure 16-10).11

;

;

il

+ Programmable Link

Fixed Link

Address O W .
Address 1 — | ¢ o W
my
Address 2 *—¢ O—W S
S
Address 3 ———e * W |
< S
@
Address 4 —@ ® O—W %
>
Address 5 — o W 3
Address 6 —e——¢ '_W
Address 7 _T T T & /
a3 bb oo
Fixed AND Array
w X y

Figure 16-10. Generic structure of a PROM
(predefined AND, programmable OR)

PROMs are useful for equations requiring a large number of product terms,

but tend to have fewer inputs because every input combination is decoded and
used. The internal structure of a PROM is similar to that of a ROM, the main
difference being that a ROM'’s contents are defined during its construction.

PROMs are generally considered to be memory devices, in which each address

applied to the inputs returns a value programmed into the device.

11 PROMs were introduced in Chapter 15.

186 m Chapter Sixteen

Additional Programmable Options

If you thought the above was cunning, just wait /Fro_mOm

until you see some of the really clever tricks that ! ' '
can be used to augment PLDs and make them even

more useful. Q 7 Q 7 tl 7

Tri-stateable Outputs enable
Many PLDs have tri-state (Active Low)
buffers on their outputs.!? All of

the buffers share a common enable

control, which therefore requires y ! J
only a single input pin on the device
(Figure 16-11). Flg_ure 16-11. PLD with
i) . tri-stateable outputs
Some devices may contain additional

programmable links associated with the

outputs. By means of these additional links (which From OR Array

were omitted from Figure 16-11 for reasons of clarity), ‘ Y \

each output can be individually programmed to be
either permanently enabled or to remain under the

control of the enable input as tj tj tj
required (Figure 16-12). | | |
In this example, the tri-state ‘
w

enable
(Active Low)

N

O I
X Y

; o Figure 16-12. PLD with individually
inputs—as is indicated by the tri-stateable outputs

buffer driving the x output has

been disconnected from the
enable control and connected to a
constant logic O (as these tri-state
buffers have active-low control

bobbles on their symbols—a logic O
enables them while a logic 1 disables them). As a result, the x output is
permanently enabled, irrespective of the value on the enable input.

12 Tri-state buffers were introduced in Chapter 11.

Programmable ICs m 187

Using Outputs as Inputs
To further increase the fun, some devices are constructed in such a way that
their tri-state outputs are fed back into the AND array (Figure 16-13).

a b c

y v 71

enable

(Active Low)
+ Programmable Link

% X y

Figure 16-13. PLA with tri-state outputs fed back as inputs

Once again, there are additional programmable links that have been
omitted from Figure 16-13 for reasons of clarity. By means of these links, each
output’s ri-state buffer can be individually configured so as to always drive
a high-impedance Z state. Pins that are configured in this way can be used
as additional inputs (Figure 16-14).

In this example, the unprogrammed device began with three inputs and
three outputs, but the user actually required a device with four inputs and only
two outputs. By means of the appropriate links, the tri-state buffer on the y
output was disconnected from the enable control and connected to a constant
logic 1. Because w and x are still required to function as outputs, all of their
associated links in the AND array must be blown away to ensure that these
pins will not have any effect as inputs. The ability to configure pins as outputs
or inputs provides a great amount of flexibility; instead of purchasing myriad
devices with every conceivable combination of inputs and outputs, the designer
can configure a single device type as required.

188 m Chapter Sixteen

a b c

y 1 1

D S
N

+ Programmable Link

THFF

\

—r—< enable
\(éjf " (Active Low)
1

Y
A

Programmed Link

(Removed)

—

X Y

Figure 16-14. PLA with one tri-state output configured as an input

Registered Outputs

Certain PLDs are equipped with registers on the outputs, and others with

latches. Depending on the particular device, the registers (or latches) may be

provided on all of the outputs or on a subset of the outputs. Registered devices

are particularly useful for implementing finite state machines (FSMs).13 All of

dff=D-type flip-flop

- Y 1) d
p)) \ U—w
aff
From TN\ d q
OR Array g y s X
aff
L. \ d
) |) \ 0[—>y
clock aff

(positive edge)

Figure 16-15. PLD with registered outputs

the registers share a common
clock signal (this will be an
enable signal in the case of
latches) which therefore
requires only a single input
pin on the device (Figure
16-15).

In this example, the
outputs are shown as being
registered with D-type flip-

13 ESMs were introduced in
Chapter 12.

Programmable ICs m 189

flops, but alternative register types such as JK flip-flops or T-type flip-flops may
be more suitable for certain applications. It can be inconvenient to support a
dedicated device for each type of register. As a solution, some devices have
configurable register

3
c
X

aff=D-type flip-flop

elements whose types can T : 0]
be selected by program- = 2 nju_l‘_c[plexer D L[9 N
ming appropriate fuses. p EY
Registered (or latched) aff fmux
outputs may also incorpo- From [™ | [dq i ? >
rate by-pass multiplexers ~ OR Array L 3 - T
(Figure 16-16). dff ux
By means of appropri- » O
ate fuses, the control S D L Jaa o K
inputs to the multiplexers P pr= D
can be individually clock

configured to select (positive edge)

Figure 16-16. PLD with registered

either the non-registered data outputs and by-pass multiplexers

or its registered equivalent.

Other common programmable options are the ability to select true or
complemented outputs and TTL- or CMOS-compatible output drivers.
An individual PLD typically only provides a subset of the above capabilities,
but these may be combined in a variety of ways; for example, registered outputs
may be followed by tri-state buffers.

Programming PLDs

Programming a traditional PLD is relatively painless because there are
computer programs and associated tools dedicated to the task. The user first
creates a computer file known as a PLD source file containing a textual
description of the required functionality (Figure 16-17).

In addition to Boolean equations, the PLD source file may also support
truth tables, state tables, and other constructs, all in textual format. The
exclamation marks (called shrieks) shown in these equations provide a textual
way of indicating inversions. Additional statements allow the user to specify
which outputs are to be tri-statable, which are to be registered, and any of the
other programmable options associated with PLDs.

190 m Chapter Sixteen

-

INPUT = a,b,c;

OUTPUT = w,Xx,y:

EQUATIONw = (a & b);

EQUATION x = (a&b)l(a&!b&lc);
EQUATIONY = (a&b)l(b&c)l(a&lc);

Figure 16-17. Very simple example PLD source file

A special computer program is used to process the PLD source file. This
program makes use of a knowledge database that contains details about the
internal construction of all of the different types of PLDs. After the user has
instructed the program as to which type of device they wish to use, it analyzes
the equations in the source file and performs algebraic minimization to ensure
optimal utilization of the device’s resources. The program accesses the knowl-
edge database for details about the designated device and evaluates which fuses
need to be blown to implement the desired functionality. The program then
generates a textual output file comprising O and 1 characters, which represent
the fuses to be blown; this file is in an industry-standard format known as
JEDEC (Figure 16-18).

Knowledge database
hhhh

PLD type = jjjj C
(user input) JJJJ

kkkk

PLD

source file JEDEC file

01001101010
11010110101
o1101111001
10110001011
0000100010
10111001010
10011101100

PLD
Program

Figure 16-18. Using the textual source file to create a fuse file

Programmable ICs m 191

As an alternative to the user specifying a particular device, the program can
be instructed to automatically select the best device for the task. The program
can base its selection on a variety of criteria, such as the speed, cost, and power
consumption of the devices. The program may also be used to partition a large
design across several devices, in which case it will output a separate JEDEC file
for each device.

Finally, the designer takes a virgin device of the appropriate type and places
it in a socket on a special tool, which may be referred to as a programmer,
blower, or burner. The main computer passes the JEDEC file to the programmer,
which uses the contents of the file to determine which fuses to blow. The
designer presses the GO button, the burner applies the appropriate signals to
the device’s inputs, and a new device is born (Figure 16-19).

Unprogrammed
device Programmed
ﬁ% evice

(a) Host computer (b) Device programmer

Figure 16-19. Programming a physical PLD

Reprogrammable PLDs

One consideration with fusible link and antifuse technologies is that, once
they have been programmed, there is no going back. This may be of particular
concern with PROMs as the data they store is prone to change.

EPROMs

One alternative is a technology known as erasable programmable read-only
memory (EPROM). An EPROM transistor has the same basic structure as a
standard MOS transistor, but with the addition of a second polysilicon floating
gate isolated by layers of oxide (Figure 16-20).

In its unprogrammed state, the floating gate is uncharged and doesn’t affect

192 m Chapter Sixteen

Source Control gate Drain
Source Control gate Drain terminal terminal terminal
terminal terminal terminal ‘ ‘ ‘
Silicon CONTROL GATE
CONTROL GATE dioxide FLOATING GATE
SOURCE DRAIN SOURCE DRAIN
a— Silicon g |
(substrate)
MOS Transistor EPROM Transistor

Figure 16-20. Standard MOS transistor versus EPROM transistor

the normal operation of the control gate. To program the transistor, a relatively
high voltage in the order of 12V is applied between the control gate and drain
terminals. This causes the transistor to be turned hard on, and energetic electrons
force their way through the oxide into the floating gate in a process known as
hot (high energy) electron injection. When the programming signal is removed, a
negative charge remains on the floating gate. This charge is very stable and will
not dissipate for more than a decade under normal operating conditions. The
stored charge on the floating gate inhibits the normal operation of the control
gate, and thus distinguishes those cells that have been programmed from those
which have not.

EPROM cells are efficient in terms of silicon real estate, being half the size
of DRAM cells and an order of magnitude smaller than fusible links. However,
their main claim to fame is that they can be erased and reprogrammed. An
EPROM cell is erased by discharging the electrons on the floating gate. The
energy required to discharge the electrons is provided by a source of ultraviolet
(UV) radiation. An EPROM device is delivered in a ceramic package with a
small quartz window in the top; this window is usually covered with a piece of
opaque sticky tape. For the device to be erased, the tape is first removed from
the circuit board, the quartz window is uncovered, and the package is placed in
an enclosed container with an intense ultraviolet source.

The main problems with EPROM devices are their expensive ceramic
packages with quartz windows and the time it takes to erase them, which is in
the order of 20 minutes. A foreseeable problem with future generations of these

Programmable ICs m 193

devices is paradoxically related to improvements in process technologies that

allow transistors to be made increasingly smaller. The problem is one of scaling,
because not all of the structures on a silicon chip are shrinking at the same rate.
Most notably, the transistors are shrinking faster than the metal interconnections
and, as the features become smaller, a larger percentage of the surface of the die

is covered by metal. This makes it difficult for the EPROM cells to absorb the

ultraviolet and increases the required exposure time.

EEPROMs

A somewhat related technology is that of electrically-erasable programmable
read-only memory (EEPROM or EZPROM). An EZ2PROM cell is approximately
2.5 times larger than an EPROM cell because it contains two transistors. One
of the transistors is similar to that of an EPROM transistor in that it contains
a floating gate, but the insulating oxide layers surrounding the floating gate
are very much thinner. The second transistor can be used to erase the cell
electrically, and EZ2PROM devices can typically be erased and reprogrammed
on a word-by-word basis.

FLASH

Finally, a development known as FLASH can trace its ancestry to both
EPROM and E2PROM technologies. The name FLASH was originally coined
to reflect the technology’s rapid erasure times compared to EPROM. Compo-
nents based on FLASH can employ a variety of architectures. Some have a
single floating gate transistor cell with the same area as an EPROM cell, but
with the thinner oxide layers characteristic of an E2PROM component. These
devices can be electrically erased, but only by erasing the whole device or a
large portion of it. Other architectures have a two-transistor cell—which is
very similar to that of an E2PROM cell—allowing them to be erased and
reprogrammed on a word-by-word basis.

Initial versions of FLASH could only store a single bit of data per cell. By
2002, however, technologists were experimenting with a number of different
ways of increasing this capacity. One technique involves storing distinct levels
of charge in the FLASH transistor’s floating gate to represent two bits per cell.
An alternative approach involves creating two distinct storage nodes in a layer
below the gate, thereby supporting two bits per cell.

194 m Chapter Sixteen

In-System Programmable
One advantage of E2PROM and FLASH devices is that they can be repro-

grammed while still on the circuit board, in which case they may be referred to
as in-system programmable (ISP).1* A large proportion of FLASH and E2PROM
devices use hot (high energy) electron injection similar to EPROM and require
12V signals for programming. Some designers see this as an advantage, because
these devices cannot be accidentally erased by means of the 5.0V (or lower,
such as 3.3V, 3.0V, etc.) signals used during the circuit’s normal operation.
However, an increasing number of devices use cold (low energy) Fowler-
Nordheim electron tunneling and can be programmed using the standard signal
voltage (5.0V, 3.3V, 3.0V, etc.).

In addition to their use as memories, EPROM, EZPROM, and FLASH
technologies are also employed in other PLD types, which are generically
known as EPLDs, EZPLDs, and FLASH PLDs. For example, each fusible link
in a standard PLA is replaced by an EPROM cell in an EPLA, an E?PROM cell
in an E?PLA, or a FLASH cell in a FLASH PLA. Regardless of the technology
used—from fusible link to FLASH—all of the components are created on the
surface of a single piece of silicon substrate. However, it may be useful to
visualize the device as comprising two distinct strata, with the AND and OR
arrays on the lower level and the links “floating” above them (Figure 16-21).

In yet another alternative, some PLDs are constructed with each link being
replaced with an SRAM cell. Unlike the other reprogrammable options, PLDs

Figure 16-21. A fusible-link PLA versus an EPLA

14 In conversation, ISP is spelled out as “I-S-P.”

Programmable ICs m 195

based on SRAM cells are volatile and lose their data when power is removed
from the system. However, these devices can be dynamically reprogrammed
while the circuit is in use. Some SRAM-based devices employ a double-buffering
scheme using two SRAM cells per link. In this case, the device can be
reprogrammed with a new pattern while it is still operating with an old pattern.
At the appropriate time, the device can be instructed to switch from one bank
of SRAM cells to the other.

Reprogrammable devices also convey advantages over fusible link and
antifuse devices in that they can be more rigorously tested at the factory. For
example, reprogrammable devices typically undergo one or more program and
erase cycles before being shipped to the end user.

Complex PLDs (CPLDs)

The term complex PLD (CPLD) is generally taken to refer to a class of
devices that contain a number of simple PLA or PAL functions—generically
referred to as simple PLDs (SPLDs)—sharing a common programmable inter-
connection matrix (Figure 16-22).

Programmable
interconnection \

matrix

|

SPLD-like
Input/output ——» blocks

Figure 16-22. Generic CPLD structure

In addition to programming the individual PLD blocks, the connections
between the blocks can be configured by means of the programmable intercon-
nection matrix. Additional flexibility may be provided with a CPLD whose links
are based on SRAM cells. In this case, it may be possible to configure each PLD
block to either act in its traditional role or to function as a block of SRAM.

196 m Chapter Sixteen

Field-Programmable Gate Arrays (FPGASs)

SPLDs and CPLDs are tremendously useful for a wide variety of tasks, but
they are somewhat limited by the structures of their programmable AND and
OR planes. At the other end of spectrum are full-blown application-specific
integrated circuits (ASICs).15

Around the middle of the 1980s, a new breed of devices called Field-
Programmable Gate Arrays (FPGAs) began to appear on the scene. These
devices combined many aspects traditionally associated with ASICS (such as
high-density) with characteristics traditionally associated with SPLDs and
CPLD:s (such as the ability to program them in the field).

FPGAs are somewhat difficult to categorize, because each FPGA vendor
fields a proprietary architecture; however, a generic architecture that illustrates
the sophistication of FPGAs could be represented as shown in Figure 16-23.

Programmable Programmable
logic block switching matrix

Programmable
connection matrix

Local
< trackihg bus

Global
trackihg bus

Figure 16-23. Generic field-programmable gate array (FPGA) structure

The device consists of a number of programmable logic blocks, each
connected to a number of programmable connection matrices, which are
in turn connected to a number of programmable switching matrices. Each
programmable logic block may contain a selection of primitive logic gates and
register elements. By programming the appropriate links, each logic block can

15 ASICs are introduced in detail in Chapter 17.

Programmable ICs m 197

be individually configured to provide a variety of combinational and/or sequential
logic functions. The programmable connection matrices are used to establish
links to the inputs and outputs of the relevant logic blocks, while the program-
mable switch matrices are used to route signals between the various connection
matrices. In short, by programming the appropriate links in the connection and
switch matrices, the inputs and outputs of any logic block can be connected to
the inputs and outputs of any other logic block.

The majority of FPGAs are based on SRAM programmable switches
(some are based on antifuse technology, but these are in the minority). The
two predominant architectural variants are to use look-up tables (LUTs) or
multiplexers. First consider the LUT approach, of which there are two main

sub-variants (Figure 16-24)

Required function g > O
S| 1
Q
2 B a—p a > O
]7 Truth tab[e 17 Q ° °
—- g [] []
k) . °
c » N abocly . 1
y=(a&b)lc N O 0O0|o % > 1
OO0 111
0 10]0 /|—>y
O 1 11 SRAM cells
10 O[O
10 111 0 t— 2:1 multiplexer
J 1 10]|1 & i l
a—
b B-input Tt 0
— —Y ° °
LUT s ST
¢ 1
1

Yy

]

a b c

Figure 16-24: Look-up table (LUT)-based FPGAs

In Figure 16-24—which assumes 3-input LUTs'®—the required function
(upper left) is converted into an LUT (lower left) whose contents can be

16 FPGA vendors can spend countless hours debating the advantages and disadvantages of
3-input versus 4-input versus 5-input LUTs (you can only imagine how much fun it is to be
cornered by one of their salespersons at a party).

198 m Chapter Sixteen

represented using a truth table (center). One technique involves using a
3:8 decoder (upper right) to select one of eight SRAM cells that contain the
required truth table output values. Alternatively, the SRAM cells can be used
to drive a “pyramid” structure of multiplexers (lower right), where the multi-
plexers are themselves controlled by the values on the input variables and
“funnel down” to generate the output.

As opposed to LUTs, some FPGA architectures
are based almost 0—>

a
exc11951;/ely on) B
multiplexers

P :) D—y <>

(Figure 16-25). y=(aé&b)lc

Figure 16-25: Multiplexer-based approach
(this example features a mid 1990s
Actel-type logic module)

There are several considerations to bear in mind when using FPGAs. First,
interconnect delays are not as predictable as they are with SPLDs and CPLDs.
Second, each vendor employs special fitting software to map designs into their
devices, which makes it pretty darn tricky to migrate a design from one vendor
to another while maintaining anything like the same propagation delays. Third,
the majority of synthesis tools are geared towards fine-grained ASIC architec-
tures, so they output gate-level netlists, but FPGA fitting tools usually do a less
than superb job of placement or packing from these netlists. Having said this,
there have been tremendous strides in FPGA design tools over the years, and
modern versions of these tools work very hard to address these issues.

The original FPGAs contained a significant number of logic gates, but
nothing like the little rascals you see these days. For example, by 2002, platform
FPGAs from Xilinx (www.xilinx.com) were available with upwards of 10 million
equivalent logic gates, which is pretty impressive whichever way you look at it.
Furthermore, FPGAs of this caliber don’t simply sport simple programmable
logic, but may include such things as embedded microprocessor cores, incredibly
fast communications functions, large blocks of RAM, large numbers of special-
purpose macro-cells such as multipliers and adders, and . . . the list goes on.

Programmable ICs m 199

Why Use Programmable ICs?

A single programmable device can be used to replace a large number of
simpler devices, thereby reducing board space requirements, optimizing system
performance by increasing speed and decreasing power consumption, and
reducing the cost of the final system. Additionally, replacing multiple devices
with one or more programmable devices increases the reliability of the design.
Every integrated circuit in a design has to be connected to the circuit board
by means of soldered joints, and every joint is a potential failure mechanism.!?
Thus, using programmable devices reduces the number of components, which
reduces the number of joints, thereby reducing the chances of a bad or inter-
mittent connection.

Electronic designs typically undergo a number of changes during the course
of their development. A design modification may require the addition or
removal of a number of logic functions and corresponding changes to the tracks
connecting them. However, when a programmable device is used to replace a
number of simpler devices, the effects of any design modifications are minimized.

Reprogrammable EPLDs and E2PLDs are often employed during the initial
stages of a design. Once the design has stabilized, these devices may be replaced
by cheaper, one-time programmable PLD equivalents. In certain cases involving
large production runs, both reprogrammable and one-time programmable
devices may eventually be replaced by mask-programmed equivalents, in which
the patterns are hard-coded during the construction of the component.

Traditionally, the majority of designers have not availed themselves of the
capabilities for in-circuit reprogrammability offered by devices based on the
E?PROM technology. However, the current interest in design-for-test (DFT)
and the increasing requirement for portable computer and telecommunication
equipment are driving an interest in in-circuit reprogrammability. This is
especially true in the case of components based on FLASH and SRAM
technologies, which allow these devices to be easily and quickly programmed,
erased, and reprogrammed while remaining embedded in the middle of a system.

To facilitate the testing of a system, these highly reprogrammable devices
can first be configured so as to make internal signals on the circuit board

17 Circuit boards are introduced in more detail in Chapter 18.

200 m Chapter Sixteen

available to the test system. After the circuit has been tested, the devices can
be erased and reprogrammed with the patterns required to make the board
perform its normal function. In some cases, it may make sense to create a single
design that can be used to replace a number of different variants. The designers
may create one circuit board type that can be reprogrammed with different
features for diverse applications.

Portable electronic equipment such as computers can be reprogrammed in
the field or remotely by means of a telephone link. Of most interest is the
concept of adaptive hardware, which can be reprogrammed on-the-fly. For
example, state machines may be reprogrammed to follow different sequences,
pattern detectors may be reprogrammed to search for different patterns, and
computational devices may be reprogrammed with different algorithms. For all
of the reasons discussed above, programmable integrated circuits continue to
form an extremely significant market segment.

V__N
J7

Application-Specific
Integrated Circuits (ASICs)

As opposed to a standard “off-the-shelf” integrated circuit whose function
is specified by the manufacturer, an application-specific integrated circuit (ASIC)!
is a device whose function is determined by design engineers to satisfy the
requirements of a particular application. (The programmable logic devices
introduced in the previous chapter fall into both camps; in one respect they are
standard devices in that they are mass produced, but they may also be classed as
subspecies of ASIC because of the design engineers’ ability to customize their
functionality.)

In 1967, Fairchild Semiconductor introduced a device called the
Micromosaic, which contained a few hundred transistors. The key feature of the
Micromosaic was that the transistors were not initially connected together.
Design engineers used a computer program to specify the function they wished
the device to perform. This program determined the necessary interconnections
required to link the transistors and generated the masks required to complete
the device. Although relatively simple, the Micromosaic is credited as being
the forerunner of the modern ASIC and the first real application of computer-
aided design (CAD).

A formal classification of ASICs tends to become a bit fluffy around the
edges. However, in addition to the plethora of programmable logic devices
introduced in Chapter 16, there are generally taken to be three other major
categories: gate array (including sea-of-gates), standard cell (including compiled
cells), and full custom (which also includes compiled cells) (Figure 17-1).

1 In conversation, ASIC is pronounced “A-SIC,” that is, by spelling out the “A” to thyme with
“hay” followed by “SIC” to rhyme with “tick.”

202 m Chapter Seventeen

Generic
ASIC usage
{ Field- ; .
FPD Programmable ASIC Typical
. usage
Device
/\ /\
v : ¥ v v ¥
Gate Standard Full
S0 50 FRel Array Cell Custom
—_— —_—
J\ Increasing Complexity Increasing Complexity
————————————— —\—I————————\I
v v v v v v
PLA PAL GAL PROM EPLDs E2PLDs

Figure 17-1. Generic and typical usage of the term ASIC

Gate Array Devices

A silicon chip may be considered to consist of two major facets: compo-
nents such as transistors and resistors, and the tracks connecting them together.
In the case of gate arrays, the ASIC vendor prefabricates wafers of silicon chips
containing unconnected transistors and resistors.> Gate arrays are based on the
concept of a basic cell, which consists of a selection of components; each ASIC
vendor determines the numbers and types of components provided in their
particular basic cell (Figure 17-2).

— [— —[

L — [

Pure CMOS Basic Cell BiCMOS Basic Cell

Figure 17-2. Examples of gate array basic cells

2 In the early days, gate arrays were also known as uncommitted logic arrays (ULAs), but this
term has largely fallen into disuse.

Application-Specific Integrated Circuits (ASICs) m 203

Channeled Gate Arrays

In the case of channeled gate arrays, the basic cells are typically presented as

column arrays; the free areas between the arrays
Figure 17-3). (Note that, although these diagrams

either single-column or dual

(

ls

are known as the channe
feature individual silicon chips

at this stage in the process these chips are still

)

embedded in the middle of a wafer.)

Input/output
cells and
Arrays of
basic cells

Channels

Input/output
cells and
pads
Arrays of
basic cells

Channels

(b) Dual-column arrays

(a) Single-column arrays

tectures

17-3. Channeled gate array arch

Figure

I-less Gate Arrays

Channe

Input/output
cells and

~free

l

ess or channe

l

I

the basic cells are presented as a

In the case of channe

devices,

single large array. The surface of the

of

”»

€«

device is covered in a “sea

basic cells, and there are no
dedicated channels for the

5}
w
5}

<
=
)
=)

<
=
“
o

g
=)
3}
o}
g
g
Q
O
-
5}
R)

=

devices are popularly referred

“Sea” of

to as sea-of-gates or sea-of-cells

(Figure 17-4).

basic cells

Figure 17-4. Channel-less gate array architecture

204 m Chapter Seventeen

Cell Libraries

Although the transistors from one or more basic cells could be connected
together to implement practically any digital function, design engineers using
gate arrays do not work at the transistor level. Instead, each ASIC vendor
selects a set of logic functions such as primitive gates, multiplexers, and registers
that they wish to make available to the engineers. The vendor also determines
how each of these functions can be implemented using the transistors from one
or more basic cells.

A primitive logic gate may only require the transistors from a single basic
cell, while a more complex function like a D-type flip-flop or a multiplexer may
require the use of several basic cells. Each of these “building block” functions is
referred to as a cell—not to be confused with a basic cell—and the set of functions
provided by the ASIC vendor are known collectively as the cell library. The
number of functions in a typical cell library can range from 50 to 250 or more.
The ASIC vendor also provides the design engineers with a cell library data
book containing details about each function, including its truth table and
timing attributes.

A High-level View of the Design Flow

Aided by a suite of design tools (see also the main ASIC Design Flow discus-
sions later in this chapter), design engineers select the cells and the connections
between them that are necessary for the gate array to perform its desired function.
In the classical ASIC design flow, this information is passed to the ASIC
vendor in a computer-readable form, and the vendor uses another suite of tools
to complete the device. One of these tools—called the placer—assigns the cells
selected by the engineers to basic cells on the silicon (Figure 17-5).

Another tool—called the router—determines the optimal way to connect
the cells together (these tools operate hand-in-hand and are referred to collec-
tively as place-and-route). Further tools are used to create the masks required to
implement the final metalization layers. These layers are used to connect the
transistors in the basic cells to form logic gates, and to connect the logic gates
to form the complete device. The channels in channeled devices are used for
the tracks that connect the logic gates together. By comparison, in channel-less
devices, the connections between logic gates have to be deposited over the top
of other basic cells. In the case of early processes based on two layers of

Application-Specific Integrated Circuits (ASICs) m 205

Circuit
<«—— opecified by
designer

Basic cells
(single column
architecture)

Circuit mapped
~<—— onto silicon by
manufacturer

Figure 17-5. Assigning cells to basic cells

metalization, any basic cell overlaid by a track was no longer available to the
user. More recent processes, which can potentially have up to eight metalization
layers, overcome this problem.

Gate arrays can contain from thousands to millions of equivalent gates,? but
there is a difference between the number of available gates and the number of
usable gates. Due to limited space in the routing channels of channeled devices,
the design engineers may find that they can only actually use between 70% and
90% of the total number of available gates. Sea-of-gates architectures provide
significantly more available gates than those of channeled devices because they
don’t contain any dedicated wiring channels. However, in practice, only about
40% of the gates were usable in devices with two layers of metalization, rising
to 60% or 70% in devices with three or four metalization layers, and even
higher as the number of metalization layers increases.

Functions in gate array cell libraries are generally fairly simple, ranging from
primitive logic gates to the level of registers. The ASIC vendor may also provide
libraries of more complex logical elements called hard-macros (or macro-cells)

3 The concept of equivalent gates was introduced in Chapter 14.

206 m Chapter Seventeen

and soft-macros (or macro-functions). In the case of gate arrays, the functions
represented by the hard-macros and soft-macros are usually at the MSI and LSI
level of complexity, such as comparators, shift-registers, and counters. Hard-
macros and soft-macros are both constructed using cells from the cell library.
In the case of a hard-macro, the ASIC vendor predetermines how the cells
forming the macro will be assigned to the basic cells and how the connections
between the basic cells will be realized. By comparison, in the case of a soft-
macro, the assignment of cells to basic cells is performed at the same time, and
by the same tool, as for the simple cells specified by the design engineers.

Gate arrays are classed as semi-custom devices. The definition of a semi-
custom device is that it has one or more customizable mask layers, but not all
the layers are customizable. Additionally, the design engineers can only utilize
the predefined logical functions provided by the ASIC vendor in the cell and
macro libraries.

Standard Cell Devices

Standard cell devices bear many similarities to gate arrays. Once again,
each ASIC vendor decides which logic functions they will make available to
the design engineers. Some vendors supply both gate array and standard cell
devices, in which case the majority of the logic functions in the cell libraries
will be identical and the main differences will be in their timing attributes.

Standard cell vendors also supply hard-macro and soft-macro libraries,
which include elements at the LSI and VLSI level of complexity, such as
processors, controllers, and communication functions. Additionally, these
macro libraries typically include a selection of RAM and ROM functions,
which cannot be implemented efficiently in gate array devices.? Last but not
least, the design engineers may decide to reuse previously designed functions
and/or to purchase blocks of intellectual property (IP)® (see sidebar).

4 The term macro was inherited from the software guys. In software terms, a macro is like a subroutine.
So a single computer instruction (to call the macro) initiates a series of additional instructions for
the computer to perform. Similarly, in hardware terms, a single macro represents a large number of
primitive logic gates.

5 In the case of a design that contains large functions connected together by relatively small amounts
of simple logic, this interfacing logic is referred to as “glue logic.”

6 In conversation, IP is pronounced by spelling it out as “I-P.”

Application-Specific Integrated Circuits (ASICs) m 207

A High-level View of the Design Flow

There are several different flavors
of intellectual property (IP). In the
tools, the design engineers determine generic sense, if you have a capri-
which elements they wish to use from the ciously cunning idea, then that idea
is your intellectual property and no
one else can use it unless they pay

Once again, aided by a suite of design

cell and macro libraries, and how they
require these elements to be connected

you for it.
together (see also the main ASIC Design TN 1 T o e T
Flow discussions later in this chapter). As engineers is tasked with designing
before, in the classical ASIC design flow, e L e

than “reinvent the wheel,” they may

the design engineers pass this information decide to purchase the plans for one

to the ASIC vendor in a computer-read- or more functional blocks that have
able form, and the vendor uses another already been created by someone
suite of tools to complete the device. else. The plans for these functional

. blocks are known as intellectual

Unlike gate arrays, however, standard

) property (IP).
cell devices do not use the concept of a T o e fere o e
basic cell, and no components are prefabri- up to sophisticated communications
cated on the silicon chip. The ASIC functions and microprocessors. The

more complex functions—like

vendor creates custom masks for every :
microprocessors —may be referred

stage of the device’s fabrication. This . B
to as “cores.

allows each logic function to be created

using the minimum number of transistors

required to implement that function with no redundant components. Addition-
ally, the cells and macro functions can be located anywhere on the chip, there
are no dedicated interconnection areas,

and the functions are placed so as to Input/output cells and pads

facilitate any connections made
between them. Standard
cell devices therefore
provide a closer-to-
optimal utilization of

the silicon than do gate Hard macros,

soft macros, and

arrays (Figure 17-6). simple cells

Figure 17-6. Standard cell architecture

208 m Chapter Seventeen

Compiled Cell Technology

Design engineers working with standard cell devices may also make use of
compiled cell technology. In this case, the engineers specify a desired function in
such terms as Boolean equations or state tables, and then employ a tool called a
silicon compiler to generate the masks required to implement the transistors and
interconnections. These tools can generate highly efficient structures, because
they have the ability to vary the size of individual transistors to achieve the
optimum tradeoff between speed requirements and power consumption. Silicon
compilers are also useful in the creation of selected macro functions such as
highly structured RAMs and ROMs. The user simply specifies the required
widths and depths of such functions, leaving the silicon compiler to determine
an optimal implementation.

Compiled cell technology was originally intended to provide a mechanism
for the creation of entire devices. This promise was never fully realized, and the
technology is now considered to be an adjunct to standard cell devices, allowing
the design engineers to create custom cells and macros to augment the libraries
supplied by the ASIC vendor.

From the ASIC vendor’s point of view, standard cell devices may be consid-
ered to be full custom on the basis that all the mask layers are customized. From
the design engineer’s point of view, however, these devices are still considered
to be semi-custom because, with the exception of compiled cells, the engineers
can only utilize the predefined functions provided by the ASIC vendor in the
cell and macro libraries.

Full Custom Devices

In the case of full custom devices, the design engineers have complete
control over every mask layer used to fabricate the silicon chip. The ASIC
vendor does not prefabricate any components on the silicon and does not
provide any cell libraries. With the aid of appropriate design tools, engineers
can “handcraft” the dimensions of individual transistors, and then create
higher-level functions based on these components. For example, if the engi-
neers require a slightly faster logic gate, they can alter the dimensions of the
transistors used to build that gate. The design tools used for full custom devices
are often created in-house.

Application-Specific Integrated Circuits (ASICs) m 209

Full custom devices may employ compiled cell technology and may also
include analog circuitry such as comparators, amplifiers, filters, and digital-to-
analog and analog-to-digital converters. The design of full custom devices is
highly complex and time consuming, but the resulting chips contain the
maximum amount of logic with minimal waste of silicon real estate.

Input/Output Cells and Pads

Around the periphery of the silicon chip are power and signal pads used to
interface the device to the outside world. The cell library data books for gate
array and standard cell devices include a set of functions known as input/output
(I/O) cells. The signal pads contain a selection of transistors, resistors, and
diodes necessary to implement input, output, or bi-directional buffers, and the
design engineers can decide how each pad will be configured. The masks and
metalization used to interconnect the internal logic are also used to configure

the components in the input/output cells and to connect the internal logic to

these cells (Figure 17-7).

Cell Fad

Configured
as output
buffer

4

Configured
as input
buffer

4

Configured as
bidirectional
buffer

Figure 17-7. Input/output (1/0) cells and pads

210 m Chapter Seventeen

The ASIC vendor may permit the design engineers to individually specify
whether each input/output cell should present CMOS, TTL, or ECL character-
istics to the outside world. The input/output cells also contain any circuitry
required to provide protection against electrostatic discharge (ESD). After the
metalization layers have been added, the chips are separated and packaged
using the same techniques as for standard integrated circuits.

Who Are All the Players?

In a little while we're going to look at the ASIC design flow, but before
that we need to have some understanding as to who all of the players are in
this complicated game. As you will soon come to realize, understanding the
technology is the easy part—it’s when you try to work out who does what that
things start to get hairy.

First of all we have the folks who create the tools (software programs) that
the engineers use to design integrated circuits, circuit boards, and electronic
systems. Prior to the 1970s, electronic circuits were handcrafted. Circuit dia-
grams (known as schematics) showing symbols for the components to be used
and the connections between them were drawn using pen, paper, and stencils.
Similarly, the copper tracks on a circuit board were drawn using red and blue
pencils to represent the top and bottom of the board. Any form of analysis (for
example, “What frequency will this oscillator run at if I use this capacitor and this
resistor?”) was performed with pencil, paper, and a slide rule (or a mechanical
calculator if you were lucky). Not surprisingly, this style of design was time-
consuming, expensive, and prone to error.

Computer-aided Design (CAD)

As electronic designs and devices grew more complex, it became necessary
to develop automated techniques to aid in the design process. In the early
1970s, companies like Calma, ComputerVision, and Applicon created special
computer programs that helped personnel in the drafting department? capture
hand-drawn designs in digital form using large-scale digitizing tables.

Opver time, these early computer-aided drafting tools evolved into inter-
active programs that performed integrated circuit layout (that is, they could be

7 The drafting department is referred to as the “drawing office” in the UK.

Application-Specific Integrated Circuits (ASICs) m 211

used to describe the locations of the transistors forming the integrated circuit
and the connections between them). Other companies like Racal-Redac,
SCI-Cards, and Telesis created equivalent layout programs for printed circuit
boards. These integrated circuit and circuit board layout programs became
known as computer-aided design (CAD) tools.8?

Computer-aided Engineering (CAE)

Also in the late 1960s and early 1970s, a number of universities and com-
mercial companies started to develop computer programs known as simulators.
These programs allowed students and engineers to emulate the operation of
an electronic circuit without actually having to build it first. Perhaps the most
famous of the early simulators was the simulation program with integrated circuit
emphasis (SPICE).'° This was developed by the University of California in
Berkeley and was made available for widespread use around the beginning of
the 1970s. SPICE was designed to simulate the behavior of analog circuits—
other programs called logic simulators were developed to simulate the behavior
of digital circuits.

Around the beginning of the 1980s, companies like Daisy, Mentor, and
Valid spawned computer programs that allowed engineers to capture schematic
(circuit) diagrams on the computer screen. These tools could then be used to
generate textual representations of the circuits called netlists that described
the components to be used and the connections between them. In turn, these
netlists could be used to drive analog and digital simulators (and eventually
layout tools).

The companies promoting front-end tools for schematic capture and
simulation classed them as computer-aided engineering (CAE).!! This was
based on the fact that these tools were targeted toward design engineers,
and the CAE companies wished to distinguish their products from the
CAD tools that were originally used by the drafting department.

8 In conversation, CAD is pronounced as a single word to rhyme with “bad.”

9 The term CAD is also used to refer to computer-aided design tools intended for a variety of
other engineering disciplines, such as mechanical and architectural design.

10 In conversation, SPICE is pronounced like the seasoning to rhyme with “mice.”

11 In conversation, CAE is spelled out as “C-A-E”.

212 m Chapter Seventeen

Designers versus Engineers

If you say things the wrong way when talking to someone in the industry,
you immediately brand yourself as an outsider (one of “them” instead of one
of “us”). For historical reasons that are based on the origins of the terms CAD
and CAE, the term layout designer or simply designer is typically used to refer to
someone who lays out a circuit board or integrated circuit (determines the
locations of the components and the routes of the tracks connecting them
together). By comparison, the term design engineer or simply engineer is typically
used to refer to someone who conceives and describes the functionality of an
integrated circuit, printed circuit board, or electronic system (what it does and
how it does it).

Electronic Design Automation (EDA)

Sometime during the 1980s, all of the CAE and CAD tools used to help
design electronic components and systems came to be referred to by the
“umbrella” name of electronic design automation (EDA),'? and everyone was
happy (apart from the ones who weren’t, but they don’t count).

Some of the Key Players

This is where things start to get interesting. Let’s start with the system house,
A block in the middle of Figure 17-8. These are the folks who design and build
the system-level products (from cell phones to televisions to computers) that
eventually wend their way into our hands.

When these system house folks are creating a new product, they may decide
it requires one or more ASICs, which they also design. Once they’ve created
the design for an ASIC, they may pass it over to an ASIC vendor to be imple-
mented and fabricated (see also the ASIC Design Flow discussions below). In
this case, the ASIC vendor is in charge of creating the masks and constructing
and packaging the final devices.

As opposed to a full-line ASIC vendor, a fabless semiconductor company is
one that designs and sells integrated circuits, but does not have the ability to
manufacture them. By comparison, a foundry is a company that manufactures
integrated circuits, but doesn’t actually do any designs of their own (these are
also known as “fabs” because they fabricate the integrated circuits).

12 In conversation, EDA is spelled out as “E-D-A”.

Application-Specific Integrated Circuits (ASICs) m 213

System
House A Design
| System
Fablegs House B 5
Semi. Hg’ig’;”& IDM Implementation
ASIC
1 Vendor
Foundry Fabrication
(fab)

Figure 17-8. Some of the key players

Initially we described a system house as passing its ASIC designs over to
an ASIC vendor for implementation and fabrication. However, some system
houses (B) perform both the design and implementation, and then hand the
masks over to a foundry for fabrication. Alternatively, a system house (C) may
have its own fab capability, in which case it will perform the entire process—
design, implementation, and fabrication—“in-house.”

And just to confuse the issue even further, we have integrated device manu-
facturers (IDMs).13 These are companies that are very similar to system houses,
except that IDMs focus on designing, manufacturing, and selling integrated
circuits as opposed to complete electronic systems.

The ASIC Design Flow

Before we start this portion of our discussions, we should note that some
integrated circuits contain only digital functions, others are analog in nature,
and some contain both analog and digital elements (these latter components
are referred to as mixed-signal devices). For the purpose of these discussions,
we'll concentrate on a digital ASIC design flow. The full-up design flow is
quite complex and is beyond the scope of this book, so we’ll only consider a
much-simplified version of the flow here (Figure 17-9).14

13 In conversation, IDM is spelled out as “I-D-M”.

14 The book EDA: Where Electronics Begins (www.techbites.com/eda), which was co-authored
by the author of this book, introduces design flows and tools (capture, simulation, synthesis,
verification, layout, etc.), for integrated circuits, printed circuit boards, and electronic
systems. Don’t worry; EDA: Where Electronics Begins is presented at a nontechnical level
that won’t make your brains leak out of your ears.

214 m Chapter Seventeen

Verilog started life as a commercial
(proprietary) simulation language.
However, in the mid 1990s it
became an open standard under
the auspices of the Open Verilog
International (OVI) organization.

Similarly, VHDL, which came
out of the American Department
of Defense (DoD), has also evolved
into an open standard. VHDL is
an acronym for VHSIC HDL (where
VHSIC is itself an acronym for very
high speed integrated circuit).

VHDL was originally intended
to provide a way of documenting
designs in such a way that the
design intent could be preserved for
a long time. This was important for
military projects with life spans in
terms of decades. However, when
VHDL was first conceived, little
thought was given to using it to
drive synthesis and simulation tools
(which may explain why doing so
can be such a painful experience).

Capturing the Design

RTL Capture

LA

Simulation

<%

Synthesis

%

Simulation

L

Floorplanning

<L

Placement

%

Routing

1%

Mask Generation

<%

Fabrication

<%

Packaging

Front-end (design)

Back-end (implementation)

\

Figure 17-9. A simplified version
of the ASIC design flow

First of all, the design engineers have to decide exactly what logic gates and

functions they wish to use in their integrated circuit and how they are to be

connected together. In the early days of integrated circuit design, schematic

(circuit) diagrams were hand-drawn by the engineers using pencil and paper.

Over time, schematic capture programs were developed that allowed engineers

to place symbols representing components on a computer screen and then draw

the wires connecting the symbols together.

However, today’s digital integrated circuits can contain tens of millions of

logic gates, and it simply isn’t possible to capture and manage designs of this

Application-Specific Integrated Circuits (ASICs) m 215

complexity at the schematic level. Thus, as opposed to using schematics, the
functionality of a high-end integrated circuit is now captured using a textual
hardware description language (HDL).'> The two most popular HDLs for digital
designs are Verilog and VHDL.16:17
Initially, the design engineers describe the device’s functionality at a high

level of abstraction called register transfer level (RTL). For example, assuming
that we had already declared an input signal called clock and three 8-bit regis-
ters called a[7:0], b[7:0], and y[7:0], an RTL statement might look something
like the following:

WHEN clock RISES

J[7:0] = a[7:0] & b[7:0];
END;

When capturing the design’s functionality, the design engineers may decide to
reuse RTL descriptions of functional blocks from previous designs. Also, they may
decide to purchase intellectual property (IP) blocks from a third-party design house.

Simulation and Synthesis

Once the RTL has been captured, the engineers use a computer program
called a simulator, which reads in the RTL and creates a virtual representation
of the integrated circuit in the computer’s memory. The engineers use the
simulator to apply a sequence of test patterns to the simulation model’s virtual
inputs and check the responses on its virtual outputs to ensure that the device
will function as planned (this sequence of patterns is called a testbench). The
simulator models how signals propagate through—and are processed by—the
high-level logic functions forming the integrated circuit.

Next, a logic synthesis program is used to automatically convert the high-
level RTL representation into equivalent Boolean Equations (like the ones we
discussed in Chapter 9). The synthesis tool automatically performs simplifications
and minimizations, and eventually outputs a gate-level netlist (Figure 17-10).

15 In conversation, HDL pronounced by spelling it out as “H-D-L.”
16 [n conversation, VHDL pronounced by spelling it out as “V-H-D-L.”

17 In the 1980s, engineers in Japan came up with their own HDL called UDL/I. This was a very useful
language that was designed with synthesis and simulation in mind. However, Verilog and VHDL
already held the high ground, and interest in UDL/I is now almost nonexistent even in Japan.

216 m Chapter Seventeen

The engineers can direct the synthesis tool to optimize

RIL different portions of designs for area (to use the smallest
Representation .
(text file) amount of real-estate on the silicon) or for speed.

Following synthesis, the engineers (or a separate verifi-

cation team) may re-simulate the design at the gate level

using the same testbench as before. This
simulation is performed to ensure that the
synthesis tool didn’t inadvertently change
B, ~ the functionality of the design. As opposed
>o—1)" to simulation—or in addition to it—the
Gate-level netlist engineers may also run a formal verification

.
(bext file) program that compares the RTL and gate-

level views of the design to ensure that

Figure 17-10. A synthesis program they are functionally equivalent (synthesis
converts an RTL description into a

gate-level netlist tools have been known to make mistakes).

Floorplanning

Traditionally, once the design engineers had generated a gate-level netlist,
they handed it over to the layout designers to perform floorplanning, placement,
and routing. This may still be the case for some design flows. In the case of the
majority of today’s high-performance digital integrated circuits, however, the
design engineers typically perform these functions also. For the purposes of
these discussions, we’ll assume that the design engineers undertake all of the
tasks associated with designing the integrated circuit.

Floorplanning!® involves creating a high-level representation showing
where the major functional blocks will be placed on the surface of the silicon
chip. Depending on the particular design flow, the floorplan may be created
by hand, interactively, or automatically. The creator of the floorplan tries to
ensure that blocks that communicate with each other are positioned as close
to each other as possible. Also, it may be preferable to place certain blocks near
to the periphery of the chip, while other blocks may be better situated toward
the center.

18 The term “floorplan” comes from the architectural and construction industries, because the
graphical floorplan for an integrated circuit looks similar to a floorplan showing the rooms
and corridors in a building.

Application-Specific Integrated Circuits (ASICs) m 217

A gate-level netlist is a textual representation that describes the logic gates
to be used and the connections between them. For example, consider a very
simple circuit called “test” comprising just two logic gates:

INPUT a AND NOT
[—
WIRE w1 OUTPUT ¢
INPUT b
GATE g1 GATE g2

A simple textual netlist representation of this circuit could be as follows:

START CIRCUIT NAME=test;

INPUTS = a, b;

OUTPUTS = c;

INTERNAL WIRES = w1;

GATE=g1, TYPE=AND, INPUT=a, INPUT=b, OUTPUT=w1;
GATE=g2, TYPE=NOT, INPUT=w1, OUTPUT=c;

END CIRCUIT NAME=test;

Such a netlist can be used to drive simulation and layout tools. There are a
variety of different netlist formats, such as the industry-standard electronic
design interchange format (EDIF). However, integrated circuit designers often
work with netlists in VHDL or Verilog.

Placement and Routing

Next, the design engineer uses a placement program to determine the
optimum locations for the individual logic gates forming the major functions.
This program tries to ensure that gates that communicate with each other are
placed as close to each other as possible. Also, the program may decide that it’s
preferable to place certain gates near to the periphery of a block, while other
gates may be better situated toward its center.

Once all of the logic gates have been placed, the engineer uses a routing
program to determine the optimum paths for the tracks linking the logic gates
together. Somewhere in the flow, the engineer will also use special programs to
design and route the chip’s clock signals and power supplies.

218 m Chapter Seventeen

Mask Generation

Throughout the entire process, the engineers will use a variety of complex
verification and timing analysis programs to ensure that the device will work
as planned. Eventually, when everyone is happy, the computer will take the
placed and routed design and generate all of the masks that will be required to
actually fabricate the device. These masks, which are represented in a machine-
readable format known as GDSII, 20 will be used by the foundry to fabricate
the device.

ASIC, ASSP, and COT

This is where things start to get really “fluffy” around the edges when
you're trying to explain them to someone, but we’ll take a stab at trying to put
everything into some sort of context. Throughout this chapter we’ve referred to
ASICs as being all-encompassing. In reality, an ASIC is generally considered
to be a component that is designed by and/or used by a single company in a
specific system (for example, a telecommunications system house may design
an ASIC for use in their new cell phone). By comparison, an application-specific
standard part (ASSP)?! is a more general-purpose device targeted at a specific
market (say the communications market) and intended for use by multiple
design houses.

[t’s important to note that there are a number of points at which the team
designing the integrated circuit may decide to hand over control to the ASIC
vendor or foundry. In some (rare) cases, the design team may create only the
high-level RTL description and then pass this to the ASIC vendor to take the
design through synthesis, floorplanning, and layout (place-and-route) to a
physical implementation. In this case, the ASIC vendor will charge a lot of
money for its services.

A traditional ASIC design flow has the design engineers performing RTL
capture, synthesis, and simulation (this may be referred to as the front-end

19 Tn conversation, GDSII is pronounced by spelling it out as “G-D-S-2.”

20 Officially, GDSII doesn’t actually stand for anything in particular. Unofficially, it’s rumored
to be an acronym for Graphics Design Station Two, because GDSII was the output format
from the second generation of design stations from Calma.

21 In conversation, ASSP is pronounced by spelling it out as “A-S-S-P.”

Application-Specific Integrated Circuits (ASICs) m 219

portion of the flow). The design engineers then hand over the resulting gate-
level netlist to the ASIC vendor’s layout designers, who perform floorplanning
and layout and progress the design to its final implementation (this may be
referred to as the back-end portion of the flow).

In contrast, in the case of today’s high-end ASIC and ASSP devices, the
design engineers are typically in charge of capturing the RTL and performing
simulation, synthesis, floorplanning, layout, etc. The resulting placed-and-
routed design is then passed to the ASIC vendor, whose task is largely reduced
to generating the masks used to create the chips and then manufacturing the
chips themselves.

There is also the customer-owned tooling (COT)?? business model, in which
the design engineers may take the design all the way through to generating the
masks used to create the chips. In this case, the only task remaining is for a
foundry to actually fabricate the chips.

Non-recurring engineering (NRE)

One important concept that people in the electronics industry often talk
about is that of non-recurring engineering (NRE),??> which refers to the costs
associated with developing an ASIC or ASSP. The NRE depends on a number
of factors, including the complexity of the design, the style of packaging, and
who does what in the design flow (that is, how the various tasks are divided
between the design house and the semiconductor vendor).

Summary

Electronic designs typically contain a selection of highly complex functions—
such as processors, controllers, and memory—interfaced to each other by a
plethora of simple functions such as primitive logic gates. The simple inter-
facing functions are often referred to as the glue logic. Both complex and simple
functions are available as standard integrated circuits. Devices containing small
numbers of simple logic functions (for example, four 2-input AND gates) are
sometimes referred to as “jellybean” parts. When glue logic is implemented

22 In conversation, COT is pronounced by spelling it out as “C-O-T” (people in the know do
NOT pronounce COT to rhyme with “hot”).

23 In conversation, NRE is pronounced by spelling it out as “N-R-E.”

220 m Chapter Seventeen

using jellybean parts, these components may require a disproportionate amount
of the circuit board’s real estate. A few complex devices containing the vast
majority of the design’s logic gates may occupy a small area, while a large
number of jellybean devices containing relatively few logic gates can occupy
the bulk of the board’s surface.

Early ASICs contained only a few hundred logic gates. These were mainly
used to implement glue logic, and it was possible to replace fifty or more
jellybean devices with a single ASIC. This greatly reduced the size of circuit
boards, increased speed and reliability, and reduced power consumption.

As time progressed, application-specific devices with tens of millions of gates
and thousands of pins became available. Thus, today’s ASICs can be used to
implement the most complex functions.

Both gate array and standard cell devices essentially consist of building
blocks designed and characterized by the manufacturer and connected together
by the designer. Gate arrays are mask programmable with a predefined number
of transistors, and different designs are essentially just changes in the inter-
connect. This means that gate arrays require the customization of fewer layers
than standard cell devices. Gate arrays are therefore faster to implement than
their standard cell equivalents, but the latter can contain significantly more
logic gates.

In certain respects gate arrays are moving towards having similar capabilities
to those of standard cells, and some support complex functions such as memory
and processor cores. The design engineers generally know the memory and
processing requirements in advance of the rest of the logic, and the gate array
manufacturer may supply devices with pre-built processor and memory functions
surrounded by arrays of basic cells. Some gate array devices support simple
analog cells in addition to the digital cells, and standard cell devices can be
constructed with complex analog functions if required.

S
J8,
Circuit Boavrds

Electronic components are rarely useful in isolation, and it is usually neces-
sary to connect a number of them together in order to achieve a desired effect.
Early electronic circuits were constructed using discrete (individually packaged)
components such as transistors, resistors, capacitors, and diodes. These were
mounted on a non-conducting board and connected using individual pieces of
insulated copper wire. The thankless task of wiring the boards by hand was
time-consuming, boring, prone to errors, and expensive.

The First Circuit Boards

The great American inventor Thomas Alva Edison had some ideas about
connecting electronic circuits together. In a note to Frank Sprague, founder of
Sprague Electric, Edison outlined several concepts for printing additive traces
on an insulating base. He even talked about the possibility of using conductive
inks (it was many decades before this technology—which is introduced later in
this chapter—came to fruition).

In 1903, Albert Hanson (a Berliner living in London) obtained a British
patent for a number of processes for forming electrical conductors on an
insulating base material. One of these described a technique for cutting or
stamping traces out of copper foil and then sticking them to the base. Hanson
also came up with the idea of double-sided boards and through-holes (which
were selectively connected by wires).

In 1913, Arthur Berry filed a British patent for covering a substrate with
a layer of copper and selectively etching parts of it away to leave tracks. In
another British patent issued in 1925, Charles Ducas described etching, plating
up, and even multi-layer circuit boards (including the means of interconnecting
the layers). For the next few decades, however, it was easier and cheaper to wire
boards manually. The real push into circuit boards only came with the invention
of the transistor and later the integrated circuit.

222 m Chapter Eighteen

PCBs and PWBs

By the 1950s, the interconnection technology now known as printed wire
boards (PWBs) or printed circuit boards (PCBs) had gained commercial accep-
tance. Both terms are synonymous, but the former is more commonly used in
America, while the latter is predominantly used in Europe and Asia. These
circuit boards are often referred to as laminates because they are constructed
from thin layers or sheets. In the case of the simpler boards, an insulating base
layer has conducting tracks formed on one or both sides. The base layer may
technically be referred to as the substrate, but this term is rarely used in the
circuit board world.!

The original board material was Bakelite, but modern boards are predomi-
nantly made from woven glass fibers which are bonded together with an epoxy.
The board is cured using a combination of temperature and pressure, which
causes the glass fibers to melt and bond together, thereby giving the board
strength and rigidity. These materials may also be referred to as organic sub-
strates, because epoxies are based on carbon compounds as are living creatures.
The most commonly used board material of this type is known as FR4, where
the first two characters stand for flame retardant, and you can count the number
of people who know what the “4” stands for on the fingers of one hand.

To provide a sense of scale, a fairly representative board might be 15 cm x
20 cm in area and in the region of 1.5 mm to 2.0 mm thick, but they can range
in size from 2 cm x 2 cm or smaller (and thinner) to 50 cm x 50 cm or larger

(and thicker).?

Subtractive Processes

In a subtractive process, a thin layer of copper foil in the order of 0.02 mm
thick is bonded to the surface of the board. The copper’s surface is coated
with an organic resist, which is cured in an oven to form an impervious layer

(Figure 18-1).

1 See also the glossary definition of “substrate.”

2 These dimensions are not intended to imply that circuit boards must be square or even
rectangular. In fact, circuit boards may be constructed with whatever outline is necessary to
meet the requirements of a particular enclosure: for example, the shape of a car dashboard.

Circuit Boards m 223

Coppgr\ Resist

FR4

Figure 18-1. Subtractive process:
applying resist to copper-clad board

Next, an optical mask is created with areas that are either transparent or
opaque to ultraviolet light. The mask is usually the same size as the board, and
can contain hundreds of thousands of fine lines and geometric shapes.

The mask is placed over the surface of the board, which is then exposed to
ultraviolet (UV) light. This ionizing radiation passes through the transparent
areas of the mask to break down the molecular structure of the resist. After the
board has been exposed, it is bathed in an organic solvent, which dissolves the
degraded resist. Thus, the pattern on the mask has been transferred to a corre-
sponding pattern in the resist (Figure 18-2).

Ultraviolet radiation

TYYYYYYYYYYYYY Degraded

resist
removed
Transparent areas exposing the
of the mask copper
Opaque areas Undegraded
of the mask resist

Figure 18-2. Subtractive process:
degrading the resist and exposing the copper

224 m Chapter Eighteen

A process in which ultraviolet light passing through the transparent areas of
the mask causes the resist to be degraded is known as a positive-resist process;
negative-resist processes are also available.?> The following discussions assume
positive-resist processes unless otherwise noted.

After the unwanted resist has been removed, the board is placed in a bath
containing a cocktail based on sulfuric acid, which is agitated and aerated to
make it more active. The sulfuric acid dissolves any exposed copper not pro-
tected by the resist in a process known as etching. The board is then washed to
remove the remaining resist. Thus, the pattern in the mask has now been
transferred to a corresponding pattern in the copper (Figure 18-3).

Unwanted copper

etched away Remaining
down to the resist removed
FR4 Remaining to leave

copper with bare copper

resist on top

Figure 18-3. Subtractive process:
removing the unwanted copper

This type of process is classed as subtractive because the board is first covered
with the conductor and any unwanted material is then removed, or subtracted.
As a point of interest, much of this core technology predates the modern
electronics industry. The process of copper etching was well known by the
printing industry in the 1800s, and opto-lithographic techniques involving
organic resists were used to create printing plates as early as the 1920s. These
existing processes were readily adopted by the fledgling electronics industry.

As process technologies improved, it became possible to achieve ever-finer
features. By 2002, a large proportion of boards were using lines and spaces of

3 In a negative-resist process the ultraviolet radiation passing through the transparent areas of
the mask is used to cure the resist. The remaining uncured areas are then removed using an
appropriate solvent. Thus, a mask used in a negative-resist process is the photographic
negative of one used in a positive-resist process to achieve the same effect; that is, the
transparent areas are now opaque and vice versa.

Circuit Boards m 225

5 mils or 4 mils, with some as small as 3 mils (one mil is one thousandth of
an inch). In this context, the term “lines” refers to the widths of the tracks,
while “spaces” refers to the gaps between adjacent tracks.

Additive Processes

An additive process does not involve any copper foil being bonded to the
board. Instead, the coating of organic resist is applied directly to the board’s
surface (Figure 18-4).

Resist

FR4

Figure 18-4. Additive process:
applying resist to bare board

Once again the resist is cured, an optical mask is created, ultraviolet light is
passed through the mask to break down the resist, and the board is bathed in an
organic solvent to dissolve the degraded resist (Figure 18-5).4

Ultraviolet radiation

YYYYYYYYYYYYY o

Opaque arecas resist
of the mask

Transparent areas FR4

of the mask

Figure 18-5. Additive process:
degrading the resist and exposing the FR4

4 Note that a mask used in an additive process is the photographic negative of one used in a subtrac-
tive process to achieve the same effect; that is, the transparent areas are now opaque and vice versa.

226 m Chapter Eighteen

After the unwanted resist has been removed, the board is placed in a bath
containing a cocktail based on copper sulfate where it undergoes a process
known as electroless plating. Tiny crystals of copper grow on the exposed areas
of the board to form copper tracks. The board is then washed in an appropriate
solvent to remove the remaining resist (Figure 18-6).

Remaining resist
removed to leave

Undegraded resist bare FR4

Copper grown Copper
on FR4

Figure 18-6. Additive process:
adding the desired copper

A process of this type is classed as additive because the conducting material
is only grown on, or added to, specific areas of the board. Additive processes are
increasing in popularity because they require less processing and result in less
wasted material. Additionally, fine tracks can be grown more accurately in
additive processes than they can be etched in their subtractive counterparts.
These processes are of particular interest for high-speed designs and microwave
applications, in which conductor thicknesses and controlled impedances are
critical. Groups of tracks, individual tracks, or portions of tracks can be built
up to precise thicknesses by iterating the process multiple times with selective
masking.

Single-sided Boards

[t probably comes as no great surprise to find that single-sided boards have
tracks on only one side. These tracks, which may be created using either
subtractive or additive processes, are terminated with areas of copper known as
pads. The shape of the pads and other features are, to some extent, dictated by
the method used to attach components to the board. Initially, these discussions
will assume that the components are to be attached using a technique known as

Circuit Boards m 227

through-hole, which is described in more detail below. The pads associated with
the through-hole technique are typically circular, and holes are drilled through
both the pads and the board using a computer-controlled drilling machine
(Figure 18-7).°

High-epeed drill

Figure 18-7. Single-sided boards:
drilling the holes

Once the holes have been drilled, an electroless plating process referred
to as tinning is used to coat the tracks and pads with a layer of tin-lead alloy.
This alloy is used to prevent the copper from oxidizing and provides protection
against contamination. The deposited alloy has a rough surface composed of
vertical crystals called spicules, which, when viewed under a microscope,
resemble a bed of nails. To prevent oxygen from reaching the copper through
pinholes in the alloy, the board is placed in a reflow oven where it is heated by
either infrared (IR) radiation or hot air. The reflow oven causes the alloy to
melt and form a smooth surface (Figure 18-8).

After the board has cooled, a layer known as the solder mask is applied to
the surface carrying the tracks (the purpose of this layer is discussed in the next
section). One common technique is for the solder mask to be screen printed
onto the board. In this case, the screen used to print the mask has patterns that
leave the areas around the pads exposed, and the mask is then cured in an

5 This is usually referred to as an NC drilling machine, where NC stands for “Numerically
Controlled.”

228 W Chapter Eighteen

Tin-lead alloy

FR4
Copper tracks
Figure 18-8. Single-sided boards: (and pads)

adding the tin-lead alloy

oven. In an alternative technique, the solder mask is applied across the entire
surface of the board as a film with an adhesive on one side. In this case, a
further opto-lithographic stage is used to cure the film with ultraviolet light.
The optical mask used in this process contains opaque patterns, which prevent
the areas around the pads from being cured; these areas are then removed using
an appropriate solvent (Figure 18-9).

Solder mask

Solder mask
Holes in solder mask

around pads

FR4 Tin-lead

Copper alloy

Figure 18-9. Single-sided boards: tracke
adding the solder mask

Circuit Boards m 229

Beware! Although there are relatively few core processes used to manu-
facture circuit boards, there are almost endless variations and techniques.
For example, the tracks and pads may be created before the holes are drilled or
vice versa. Similarly, the tin-lead alloy may be applied before the solder mask
or vice versa. This latter case, known as solder mask over bare copper (SMOBC),
prevents solder from leaking under the mask when the tin-lead alloy melts
during the process of attaching components to the board. Thus, the tin-lead
alloy is applied only to any areas of copper that are left exposed by the solder
mask, such as the pads at the end of the tracks. As there are so many variations
and techniques, these discussions can only hope to offer an overview of the
main concepts.

Lead Through-Hole (LTH)

Prior to the early 1980s, the majority of integrated circuits were supplied
in packages that were attached to a circuit board by inserting their leads
through holes drilled in the board. This technique, which is still widely used,
is known as lead through-hole (LTH), plated through-hole (PTH), or, more
concisely, through-hole. In the case of a single-sided board, any components
that are attached to the board in this fashion are mounted on the opposite side
to the tracks. This means that any masks used to form the tracks are actually
created as mirror-images of the required patterns (Figure 18-10).

Integrated circuit
Pads and A/(dual—in—line package)

Fea holes Tracks

Flip board
upside down Component
mounting

holes

(

Tin-lead alloy and solder mask layers
omitted for reasons of clarity)

Figure 18-10. Lead through-hole (LTH)

230 m Chapter Eighteen

The act of attaching components is known as populating the board, and the
area of the board occupied by a component is known as its footprint. Early
manufacturing processes required the boards to be populated by hand, but
modern processes make use of automatic insertion machines. Similarly,
component leads used to be hand-soldered to the pads, but most modern
processes employ automatic wave-soldering machines (Figure 18-11).

K
J
0
o0 Wave of solder FR4 Integrated
QX \V / circuit
o
Q¥°

) g)
/

Copper pad T Soldered H‘oint
after solder
Circuit board Component wave
Tank of populated with lead
hot, integrated circuits ,
liauid (Tin-lead alloy and solder mask layers
solder omitted for reasons of clarity)

Figure 18-11. Wave-soldering

A wave-soldering machine is based on a tank containing hot, liquid solder.®
The machine creates a wave (actually a large ripple) of solder which travels
across the surface of the tank. Circuit boards populated using the through-hole
technique are passed over the machine on a conveyer belt. The system is
carefully controlled and synchronized such that the solder wave brushes across
the bottom of the board only once.

The solder mask introduced in the previous section prevents the solder from
sticking to anything except the exposed pads and component leads. Because
the solder is restricted to the area of the pads, surface tension causes it to form

6 An alloy of tin and lead with a relatively low melting point.

Circuit Boards m 231

good joints between the pads and the component leads. Additionally, capillary
action causes the solder to be drawn up the hole, thereby forming reliable,
low-resistance connections. If the solder mask were omitted, the solder would
run down the tracks away from the component leads. In addition to forming
bad joints, the amount of heat absorbed by the tracks would cause them to
separate from the board (this is not considered to be a good thing to happen).

Surface Mount Technology (SMT)

In the early 1980s, new techniques for packaging integrated circuits and
populating boards began to appear. One of the more popular is surface mount
technology (SMT), in which component leads are attached directly to pads on
the surface of the board. Components with packages and lead shapes suitable
for this technology are known as surface mount devices (SMDs). One example
of a package that achieves a high lead count in a small area is the quad flat pack
(QFP), in which leads are present on all four sides of a thin square package.?

Boards populated with surface mount devices are fabricated in much the
same way as their through-hole equivalents (except that the pads used for
attaching the components are typically square or rectangular and do not have
any holes drilled through them).® However, the processes begin to diverge
after the solder mask and tin-lead plating layers have been applied. A layer of
solder paste is screen-printed onto the pads, and the board is populated by an
automatic pick-and-place machine, which pushes the component leads into the
paste (Figure 18-12).

Thus, in the case of a single-sided board, the components are mounted on
the same side as the tracks. When all of the components have been attached,
the solder paste is melted to form good conducting bonds between their leads
and the board’s pads. The solder paste can be melted by placing the board in
a reflow oven where it is heated by infrared (IR) radiation or hot air. Alterna-
tively, the solder may be melted using vapor-phase soldering, in which the board
is lowered into the vapor-cloud above a tank containing boiling hydrocarbons.

7 Other packaging styles such as pad grid arrays (PGAs) and ball grid arrays (BGAs) —which are
also suitable for surface mount technology—are introduced in more detail in Chapter 20.

8 Actually, the pads may have holes in the case of the microvia technologies discussed later in
this chapter.

232 m Chapter Eighteen

Integrated circuit
(quad flat package)

Component lead

Solder paste \

Pad ~
))

”
FR4

Tracke — o

(Tin-lead alloy and solder mask layers
omitted for reasons of clarity)

Figure 18-12. Surface mount

No holes technology (SMT)

in pads

However, vapor-phase soldering is becoming increasingly less popular due to
environmental concerns.

Surface mount technology is well suited to automated processes. Due to the
fact that the components are attached directly to the surface of the board, they
can be constructed with leads that are finer and more closely spaced than their
through-hole equivalents. The result is smaller and lighter packages which can
be mounted closer together and occupy less of the board’s surface area, which
is referred to as real estate. This, in turn, results in smaller, lighter, and faster
circuit boards. The fact that the components do not require holes for their leads
is also advantageous, because drilling holes is a time-consuming and expensive
process. Additionally, if any holes are required to make connections through
the board (as discussed below), they can be made much smaller because they
do not have to accommodate component leads.’

9 Typical pad and hole diameters are presented in the Holes versus Vias section later in this
chapter.

Circuit Boards m 233

Double-sided Boards

There is a simple game played by children all over the world. The game
commences by drawing three circles and three squares on a piece of paper, and
then trying to connect

each circle to each Start with three circles Can't make the
square without any of and three squares connection s

the connecting lines
crossing each other @ @ @
(Figure 18-13).

Children can
devote hours to this
game, much to the
delight of their par- Figure 18-13. Circles and
ents. Unfortunately, squares game
there is no solution,
and one circle-square pair will always remain unconnected. This simple
example illustrates a major problem with single-sided boards, which may have
to support large numbers of component leads and tracks. If any of the tracks
cross, an undesired electrical connection will be made and the circuit will not
function as desired. One solution to this dilemma is to use wire links called

jumpers (Figure 18-14).

Track Insulation — ~— Jumper

Pad and .
hole Flip board ~ Wire ‘

upside

«— Track %/\

~— FR4

Hole

(Tin-lead alloy and solder mask layers
omitted for reasons of clarity)

Figure 18-14. Single-sided boards: using jumpers

234 m Chapter Eighteen

Unfortunately, the act of inserting a jumper is as expensive as for any other
component. At some point it becomes more advantageous to employ a double-
sided board, which has tracks on both sides.

Initially, the construction of a double-sided board is similar to that for a
single-sided board. Assuming a subtractive process, copper foil is bonded to
both sides of the board, and then organic resist is applied to both surfaces and
cured. Separate masks are created for each side of the board, and ultraviolet
light is applied to both sides. The ultraviolet radiation that is allowed to pass
through the masks degrades the resist, which is then removed using an organic
solvent. Any exposed copper that is not protected by resist is etched, the
remaining resist is removed, and holes are drilled. However, a double-sided
board now requires an additional step. After the holes have been drilled, a
plating process is used to line them with copper (Figure 18-15).

Via
a.
~

Track on ,

bottom of board (Tin-lead alloy and solder mask layers
omitted for reasons of clarity)
FPad on
bottom of board Figure 18-15. Double-sided boards: creating vias

Instead of relying on jumpers, a track can now pass from one side of the
board to the other by means of these copper-plated holes, which are known
as vias.!®11 The tracks on one side of the board usually favor the y-axis
(North-South), while the tracks on the other side favor the x-axis (East-West).

10 The term via is taken to mean a conducting path linking two or more conducting layers, but does not
include a hole accommodating a component lead (see also the following section entitled Holes versus

Vias).

11 There are a number of alternative techniques that may be used to create circuit board vias. By default,
however, the term is typically understood to refer to holes plated with copper as described here.

Circuit Boards m 235

The inside of the vias and the tracks on both sides of the board are plated with
tin-lead alloy, and solder masks are applied to both surfaces (or vice versa in the
case of the SMOBC-based processes, which were introduced earlier).

Some double-sided boards are populated with through-hole or surface
mount devices on only one side. Some boards may be populated with through-
hole devices on one side and surface mount devices on the other. And some
boards may have surface mount devices attached to both sides. This latter case
is of particular interest, because surface mount devices do not require holes to be
drilled through the pads used to attach their leads (they have separate fan-out
vias as discussed below). Thus, in surface mount technology, it is possible to
place two devices directly facing each other on opposite sides of the board
without making any connections between them.

Having said this, in certain circumstances it may be advantageous to form
connections between surface mount devices directly facing each other on
opposite sides of the board. The reason for this is that a through-board connection
can be substantially shorter than an equivalent connection between adjacent
devices on the same side of the board. Thus, this technique may be of use for
applications such as high-speed data buses, because shorter connections result
in faster signals.

Holes versus Vias

Manufacturers of circuit boards are very particular about the terminology
they use, and woe betide anyone caught mistakenly referring to a hole as a via,
or vice versa. Figure 18-16 should serve to alleviate some of the confusion.

In the case of a single-sided board (as illustrated in Figures 18-7 and 18-14),
a hole that is used to accommodate a through-hole component lead is simply
referred to as a hole. By comparison, in the case of double-sided boards (or
multilayer boards as discussed below), a hole that is used to accommodate a
through-hole component lead is plated with copper and is referred to as a plated
through-hole. Additionally, a hole that is only used to link two or more conduct-
ing layers, but does not accommodate a component lead, is referred to as a via
(or, for those purists among us, an interstitial via). The qualification attached to
this latter case is important, because even if a hole that is used to accommodate
a component lead is also used to link two or more conducting layers, it is still
referred to as a plated through-hole and not a via (phew!).

236 m Chapter Eighteen

Resistor

(through-hole) Flated through-hole
and component pad

Component
pad

Component
pad
Plated
through-hole Via pad
Via

Resistor

Conducting (surface mount)
tetal

Fan-out via \
and pad
Via and pad

(Tin-lead alloy and solder mask layers
omitted for reasons of clarity)

Figure 18-16. Holes versus vias

Fan-out via

Due to the fact that vias do
not have to accommodate compo-
nent leads, they can be created
with smaller diameters than
plated through-holes, thereby
occupying less of the board’s real
estate. To provide a sense of scale,
the diameters of plated through-
holes and their associated pads are
usually in the order of 24 mils
(0.6 mm) and 48 mils (1.2 mm),
respectively, while the diameters
of vias and via pads are typically
12 mils (0.3 mm) and 24 mils
(0.6 mm), respectively.

Finally, in the case of surface
mount devices attached to
double-sided boards (or multilayer
boards as discussed below), each
component pad is usually con-
nected by a short length of track
to a via, known as a fan-out via,'?
which forms a link to other
conducting layers (an example of
a fan-out via is shown in Figure
18-16). However, if this track
exceeds a certain length (it could
meander all the way around the
board), an otherwise identical
via at the end would be simply
referred to as a via. Unfortunately,

12 Some engineers attempt to differentiate vias that fall inside the device’s footprint (under the body of
the device) from vias that fall outside the device’s footprint by referring to the former as fan-in vias,

but this is not a widely used term.

Circuit Boards m 237

there is no standard length of track that differentiates a fan-out via from a
standard via, and any such classification depends solely on the in-house design
rules employed by the designer and board manufacturer.

Multilayer Boards

It is not unheard of for a circuit board to support thousands of components
and tens of thousands of tracks and vias. Double-sided boards can support a
higher population density than single-sided boards, but there quickly comes a
point when even a double-sided board reaches its limits. A common limiting
factor is lack of space for the necessary number of vias. In order to overcome
this limitation, designers may move onwards and upwards to multilayer boards.

A multilayer board is constructed from a number of single-sided or double-
sided sub-boards.!? The individual sub-boards can be very thin, and multilayer
boards with four or six conducting layers are usually around the same thickness
as a standard double-sided board. Multilayer boards may be constructed using a
double-sided sub-board at the center with single-sided sub-boards added to each
side (Figure 18-17a).1# Alternatively, they may be constructed using only
double-sided sub-boards separated by non-conducting layers of semi-cured FR4
known as prepreg (Figure 18-17b).

Temperature
and pressure
Single- el Copper Copper AN
cided ™ S FR4 Double-
Copper sided
. -
Double- / COPP@F Prepre
sided N R4 pred
Copper
Single- - O FR4 ﬁ Copper ™~ Double-
sided Copper Temperature FR4 sided
and pressure Copper

(@) (b)

Figure 18-17. Multilayer boards: alternative structures

13 The term “sub-board” is not an industry standard, and it is used in these discussions only to
distinguish the individual layers from the completed board.

14 This technique is usually reserved for boards that carry only four conducting layers.

238 W Chapter Eighteen

After all of the layers have been etched to form tracks and pads, the sub-
boards and prepreg are bonded together using a combination of temperature
and pressure. This process also serves to fully cure the prepreg. Boards with four
conducting layers are typical for designs intended for large production runs.
The majority of multilayer boards have less than ten conducting layers, but
boards with twenty-four conducting layers or more are not outrageously
uncommon, and some specialized boards like backplanes (as discussed later in
this chapter) may have 60 layers or more!

Through-Hole, Blind, and Buried Vias

To overcome the problem of limited space, multilayer boards may make use
of through-hole, blind, and buried vias. A through-hole via passes all the way
through the board, a blind via is only visible from one side of the board, and a
buried via is used to link internal layers and is not visible from either side of the
board (Figure 18-18).

Unfortunately, although they help to overcome the problem of limited
space, blind and buried vias significantly increase the complexity of the
manufacturing process. When these vias

are only used to link both sides of a sub-

board, that board must be drilled

Cross-
sectional individually and a plating
VieEw . .
N process used to line its

vias with copper.

Layers
of FR4
Through-hole via

Blind via

(Tin-lead alloy and solder mask layers . .
omitted for reasons of clarity) Buried via

Figure 18-18. Multilayer boards:
through-hole, blind, and buried vias

Circuit Boards m 239

Similarly, when these vias only pass through a number of sub-boards, those
boards must be bonded together, drilled, and plated as a group. Finally, after
all of the sub-boards have been bonded together, any holes that are required
to form plated through-holes and vias are drilled and plated. Blind and buried
vias can greatly increase the number of tracks that a board can support but, in
addition to increasing costs and fabrication times, they can also make it an
absolute swine to test.

Power and Ground Planes

The layers carrying tracks are known as the signal layers. In a multilayer
board, the signal layers are typically organized so that each pair of adjacent
layers favors the y-axis (North-South) and the x-axis (East-West), respectively.
Additionally, two or more conducting layers are typically set aside to be used as
power and ground planes. The power and ground planes usually occupy the
central layers, but certain applications have them on the board’s outer surfaces.
This latter technique introduces a number of problems, but it also increases the
board’s protection from external sources of noise such as electromagnetic
radiation.

Unlike the signal layers, the bulk of the copper on the power and ground
planes remains untouched. The copper on these layers is etched away only in
those areas where it is not required to make a connection. For example, con-
sider a through-hole device with eight leads. Assume that leads 4 and 8 con-
nect to the ground and power planes respectively, while the remaining leads are
connected into various signal layers (Figure 18-19).

For the sake of simplicity, the exploded view in Figure 18-19 only shows the
central sub-board carrying the power planes; the sub-boards carrying the signal
layers would be bonded to either side. Also note that the holes shown in the
prepreg in the exploded view would not be drilled and plated until all of the
sub-boards had been bonded together.

In the case of component leads 1, 2, 3, 5, 6, and 7, both the power and
ground planes have copper removed around the holes. These etched-away
areas, which are referred to as anti-pads, are used to prevent connections to the
planes when the holes are plated. Similarly, the power plane has an anti-pad
associated with lead 4 (the ground lead), and the ground plane has an anti-pad
associated with lead 8 (the power lead).

240 m Chapter Eighteen

Thermal relief pad
(after drilling)

Anti-pads

Ground
plane

Thermal relief pad
(before drilling) © b

Signal layer
Power plane s:

Ground plane —

Signal layer =%

This plated through-hole is
connected into the ground plane

Figure 18-19. Multilayer boards:

The power plane has a
special pattern etched around
the hole associated with lead 8
(the power lead), and a similar
pattern is present on the
ground plane around the hole
associated with lead 4 (the
ground lead). These patterns,
which are referred to as ther-
mal relief pads,!® are used to
make electrical connections to
the power and ground planes.
The spokes in the thermal
relief pads are large enough
to allow sufficient current to
flow, but not so large that they
will conduct too much heat.

Thermal relief pads are
necessary to prevent excessive
heat from being absorbed into
the ground and power planes
when the board is being

15 The pattern of a thermal relief
pad is often referred to as a
“wagon wheel,” because the links
to the plated-through hole or via
look like the spokes of a wheel.
Depending on a number of
factors, a thermal relief pad may
have anywhere from one to four
spokes.

This plated through-hole is
connected into the power plane

power and ground planes, and thermal relief and anti-pads

Circuit Boards m 241

soldered.1® When the solder is applied, a surface-tension effect known as
capillary action sucks it up the vias and plated through-holes. The solder must
be drawn all the way through to form reliable, low-resistance connections.
The amount of copper contained in the power and ground planes can cause
problems because it causes them to act as thermal heat sinks. The use of thermal
relief pads ensures good electrical connections, while greatly reducing heat
absorption. If the thermal relief pads were not present, the power and ground
planes would absorb too much heat too quickly. This would cause the solder
to cool and form plugs in the vias resulting in unreliable, high-resistance
connections. Additionally, in the case of wave soldering, so much heat would
be absorbed by the power and ground planes that all of the layers forming the
board could separate in a process known as delamination.

A special flavor of multilayer boards known as Padcap (or “Pads-Only-
Outer-Layers”) are sometimes used for high-reliability military applications.
Padcap boards are distinguished by the fact that the outer surfaces of the board
only carry pads, while any tracks are exclusively created on inner layers and
connected to the pads by vias. Padcap technology offers a high degree of pro-
tection in hostile environments because all of the tracks are inside the board.

Microvia, HDI, and Build-up Technologies

One exciting recent circuit board development is that of microvia technology,
which officially refers to any vias and via pads with diameters of 6 mils (0.15 mm)
and 12 mils (0.3 mm)—or smaller—respectively. By 2002, boards using 4 mil,
3 mil, and 2 mil diameter microvias were reasonably common, and some folks
were even using 1 mil microvias.

In a typical implementation, one or two microvia layers are added to the
outer faces of a standard multiplayer board, which is why the term buildup
technology is also commonly used when referring to microvia boards. Just to
make things even more confusing, the term high density interconnect (HDI) is
also commonly used. In reality, the terms microvia, HDI, and buildup technology
are synonymous.

16 For future reference, the term pad-stack refers to any pads, anti-pads, and thermal relief pads
associated with a particular via or plated-through hole as it passes through the board.

242 W Chapter Eighteen

Microvias—which are actually blind vias that just pass through one or more
of the buildup layers on the outer faces of the main board—may be created
using a variety of techniques. One common method is to use a laser, which can
“drill” 20,000+ microvias per second.

The reason microvias are so necessary is largely tied to recent advances in
device packaging technologies. It’s now possible to get devices with 1,000 pins
(or pads or leads or connections or whatever you want to call them), and
packages with 2,000 and 4,000 pins are on the way. These pins are presented as
an array across the bottom of the device. The pin pitch (the distance between
adjacent pins) has shrunk to the extent that it simply isn’t possible to connect
the package to a board using conventional via diameters and line widths
(there just isn’t enough space to squeeze in all of the fan-out vias and route all
of the tracks). The use of microvia technology alleviates this problem, making
it possible to place a microvia in the center of a component pad, thereby
eliminating the need for fan-out vias.

As a simple example, consider a simple 8-pin TSOP type package. Using
conventional technologies, each of the component pads would be connected
to a fan-out via (Figure 18-20a). (This is obviously a much-magnified view,
and this simple component would actually be only a few millimeters in size.)
Compared to the footprint of the device itself, having these fan-out vias means

Microvias in

Component pads Standard fan-out component pads

N tracks and vias

(b) Microvia (via-in-pad)
(a) Typical routing pattern

Figure 18-20. Microvias can save a lot of board real estate

Circuit Boards m 243

that this component now occupies a substantial amount of the board’s real
estate. By comparison, placing vias in the component’s pads using microvia
technology means that the component occupies much less space on the board
(Figure 18-20b).

Although using microvia technology isn’t cheap per se, it can actually end
up being very cost effective. In one example of which the author is aware, the
use of microvias enabled an 18-layer board to be reduced to 10 layers, made the
board smaller, and halved the total production cost.

Discrete Wire Technology

Discrete wire technology is an interesting discipline that has enjoyed only
limited recognition, but its proponents continue to claim that it’s poised to
emerge as the technology-of-choice for designs that demand the highest signal
speeds and component densities. Circuit boards created using this technology
are known as discrete wired boards (DWBs).

Multiwire Boards

The earliest form of discrete wire technology, commonly known as
multiwire, 18 was developed in the late 1960s, and had gained both military
and commercial acceptance by the late 1970s. The discrete wire process
commences with a conventional FR4 base layer with copper foil bonded to
both sides to form the power and ground planes.!® After any thermal relief
pads and anti-pads have been etched into the copper using conventional
opto-lithographic processes (Figure 18-21), a layer of insulating prepreg is
bonded to each side and cured. This is followed by a layer of adhesive,?° or
wiring film, which is applied using a hot roll laminating machine.

17 Multiwire is a registered trademark of Advanced Interconnection Technology (AIT), Islip,
New York, USA.

18 Many thanks for the wealth of information on discrete wire technology, which was provided
by Hitachi Chemical Electro-Products Division (Atlanta, Georgia, USA), I-CON Industries
(Euless, Texas, USA), and MW Technologies (Aldershot, Hampshire, England).

19 These discussions concentrate on a reasonably simple implementation: more complex
boards with multiple and/or split power and ground planes are also available.

20 Manufacturers of discrete wire boards are trying to discard the term “adhesive” on the basis
that this layer is not actually “sticky.”

244 m Chapter Eighteen

Thermal relief pad

Anti-pad

Copper
~— power plane

~—FR4

(Only the power plane is
shown for clarity. The ground
plane would be bonded to the

bottom of the board.
ovvom) Figure 18-21. Multiwire boards:

preparing the core

Wire cropped over the
center of this anti-pad

Wire passes directly over
T the center of this anti-pad

. |=—Wiring film
“J|=—Frepreg

<—Power plane

-—FR4

/ Polyimide insulation

<~ Wiring film
Crossover point ring i
(no connection is made between the

wires because they are insulated) T X Prepreg

Figure 18-22. Multiwire boards:
ultrasonically bonding the wire

Circuit Boards m 245

A special computer-controlled wiring machine?! is used to ultrasonically

22 into the wiring film. The wire is routed

bond extremely fine insulated wires
through all the points to which it will eventually be connected. When the last
point of a particular net is reached, the wiring machine cuts the wire and
positions the wiring head at the next starting point (Figure 18-22).

The wire has an insulating coat of polyimide and can be wired orthogonally
(North-South and East-West), diagonally, or as a combination of both. Due to
the fact that the wires are insulated, they can cross over each other without
making any unwanted electrical connections. After all the wires have been
applied to one side of the board, the board is inverted and more wires can be
applied to the other side. The majority of such boards have just these two
wiring layers, one on each side. If necessary, however, additional layers of
prepreg and wiring film can be bonded to the outer surfaces of the board and
more wiring layers can be applied. It is not unusual for a very dense multiwire
board to support four wiring layers, two on each side. Supporters of this tech-
nology claim that an equivalent multilayer board might require twenty or more
signal layers to achieve the same effect.

After all of the wiring layers have been created, a final layer of prepreg and
copper foil are laminated onto the outer surfaces of each side of the board, and
any necessary holes are drilled through the board (Figure 18-23).

The drilling process leaves the wire ends exposed in the holes. The board
is now exposed to a polyimide-selective etchant, which etches away the insula-
tion at the end of wires. Although the insulation is only etched away to a depth
of approximately 0.05 mm, this is sufficient for the subsequent plating process
to form a wrap-around joint, which provides mechanical reliability as opposed
to a simple electrical connection.

The holes are plated with copper to form plated through-holes and vias, and
then the outer surfaces of the board are etched to form any via pads and compo-
nent mounting pads (Figure 18-24). (Note that the pads shown in this illustra-
tion indicate that the board is to be populated with surface mount devices.)

21 This is usually referred to as an NC wiring machine, where NC stands for “Numerically Con-
trolled.”

22 The wires used in the original process were 0.16 mm in diameter. Later processes made use of
additional wire diameters of 0.10 mm and 0.06 mm.

246 m Chapter Eighteen

Drilled through-holes

Copper foil
Prepreg

Power plane
S Fra

Cross-section of wires
bonded into the wiring film

Figure 18-23. Multiwire boards:

drilling the holes

Component pads
(surface mount devices)

Fan-out vias and pads

Hole drilled for via
cuts through wire.
Via's plating con-
hects to the wire

Thermal relief pad
connects this via's plating
into the power plane

Anti-pad prevents this via's
plating from connecting
into the power plane

Figure 18-24. Multiwire boards:
plating and etching

Circuit Boards m 247

Finally, the board is tinned, solder masks are applied, and components are
attached in the same way as for standard printed circuit boards. In fact, a
completed multiwire board appears identical to a standard printed circuit board.

Microwire Boards

If multiwire is a niche market, then its younger brother, microwire,?3 forms
a niche within a niche. Microwire augments the main attributes of multiwire
with laser-drilled blind vias, allowing these boards to support the maximum
number of wires and components.24 Due to the large numbers of components
they support, microwire boards typically have to handle and dissipate a great
deal of heat, so their cores may be formed from sandwiches of copper-Invar-
copper?® or similar materials. This sandwich structure is used because the
resulting coefficient of thermal expansion of the core combined with the other
materials used in the board is almost equal to that of any components with
ceramic packages that may be attached to the board. The coefficient of thermal
expansion defines the amount a material expands and contracts due to changes
in temperature. If materials with different coefficients are bonded together,
changes in temperature will cause shear forces at the interface between them.
Engineering the board to have a similar coefficient to any ceramic component
packages helps to ensure that a change in temperature will not result in those
components leaping off the board.

To provide a sense of scale, in one of the more common microwire imple-
mentations each copper-Invar-copper sandwich is 0.15 mm thick. The board’s
central core is formed from two of these sandwiches separated by a layer of
insulating prepreg, where the upper sandwich forms the power plane and the
lower sandwich forms the ground plane (Figure 18-25).26

23 Microwire is a registered trademark of Advanced Interconnection Technology (AIT), Islip,
New York, USA.

24 Actually, as multiwire boards can also be created with blind vias, and as the diameter of
these vias can be as small as their microwire equivalents, someone less trusting than the
author might wonder whether the main justification for microwire was the fact that some
people simply wanted to play with lasers.

25 Invar is an alloy similar to bronze.

26 More complex structures are also possible, including multiple and/or split power and ground
planes.

248 m Chapter Eighteen

Anti-pad

Thermal relief pad

Bounce pad

Power plane (copper-
Invar-copper sandwich)
~ FR4

(Only the power plane is shown RICSRELEIN .
for clarity. The ground plane ’ N
would be bonded to the bottom

of the fiberglass substrate.) _

Figure 18-25. Microwire boards:
preparing the core TS

Wire cropped over this anti-pad

Wire passes directly over the
center of this bounce pad

..) =— Wiring film
Jl=— Cured epoxy

~— Power plane

“—FR4

Copper wire

/ Polyimide insulation

Crossover point “ Wiring film

(no connection is made between the

wires because they are insulated) T /Cured epoxy

Figure 18-26. Microwire boards:
ultrasonically bonding the wire

Circuit Boards m 249

Thermal relief pads and anti-pads are etched into the upper and lower
copper-Invar-copper sandwiches in the same manner as for multiwire boards.
The etch is performed through all of the layers forming the sandwich, all
the way down to the surface of the prepreg in the center. In addition to the
standard thermal relief and anti-pads, microwire boards also contain special
pads known as bounce pads for use during the laser drilling process discussed
below.

Following the etching process, a layer of liquid epoxy is applied to the outer
surfaces.?? After this epoxy has been cured, a layer of wiring film is applied into
which wires are ultrasonically bonded as for multiwire boards. However, in the
case of microwire, the wires are always 0.06 mm in diameter (Figure 18-26).

As with multiwire, the majority of microwire boards have just two wiring
layers, one on each side. However, if necessary, additional layers of liquid epoxy
and wiring film can be bonded to the outer surfaces of the board and more
wiring layers can be applied.

After all of the wiring layers have been created, a final encapsulation layer
of liquid epoxy is applied to the outer surfaces of the board and cured. Now
comes the fun part of the process, in which blind vias are drilled using a
carbon-dioxide laser (Figure 18-27).

The laser evaporates the organic materials and strips the polyimide coating
off the top of wire, but does not affect the wire itself. The laser beam continues
down to the bounce pad, which reflects, or bounces, it back up, thereby stripping
the polyimide coating off the bottom of the wire. To complete the board, holes
for through-hole vias and, possibly, plated through-holes are created using a
conventional drilling process. The through-hole vias, laser-drilled blind vias,
and plated through-holes are plated with copper, along with any via pads and
component pads which are plated onto the board’s outer surfaces (Figure 18-28),
and standard tinning and solder mask processes are then applied.

27 Liquid epoxy is used to cover the wires because the glass fibers in prepreg would be impervious
to the subsequent laser-drilling operations.

250 m Chapter Eighteen
Laser-drilled blind hole.

The laser beam strips the
polyimide insulation off the wire.

Mechanically drilled
through-holes

I s, | e Cured epoxy
B “inn, N4 Wiring film
o | <&~ Cured epoxy
<= Power plane
- FR4

Bounce pad
reflects laser beam

Figure 18-27. Microwire boards:
laser-drilling the blind vias

Component pads plated
onto surface of board

Anti-pad prevents this
through-hole via’s plating
from connecting into the

power plane

Platihg the vias connects
the pads to the wires

Ring etched around the bounce pad
acte like an anti-pad and prevents
this blind via's plating from
connecting into the power plane

Thermal relief pad
connects this through-hole via's
plating into the power plane

Figure 18-28. Microwire boards:
plating the pads and vias

Circuit Boards m 251

The Advantages of Discrete Wire Technology

Since its inception, discrete wire technology has attracted a small number
of dedicated users, but has never achieved widespread recognition. Both
multiwire and microwire processes are more expensive than their conventional
printed wire counterparts, and therefore they are normally reserved for the
most dense and electrically sophisticated applications. In fact, this discipline
was originally regarded by many designers as simply being a useful prototyping
technology, which offered fast turnaround times on design modifications.
However, as many of its devotees have known for a long time, discrete wire
technology offers a number of advantages over traditional printed wire boards.
One obvious advantage is that discrete wired boards with only two wiring layers
(one on each side) can provide an equivalent capability to ten or more signal
layers in their multilayer counterparts. Thus, discrete wire technology can offer
substantially thinner and lighter circuit boards.

Additionally, discrete wire technology is particularly advantageous in the
case of high-speed applications. One major requirement of high-speed designs
is to control the impedance (capacitance and inductance) of the interconnect,
where the impedance is a function of the distance of the tracks from the power
and ground planes. In the case of multilayer boards, the tracks keep on changing
their distance from the planes as they pass through vias from one layer to
another. To compensate for this, additional ground planes must be added
between each pair of signal layers, which increases the thickness, weight, and
complexity of the boards. By comparison, the wires on discrete wire boards
maintain a constant distance from the planes.

Another consideration is the vias themselves. Transmitting a signal down
a conducting path may be compared to shouting down a corridor, where any
sharp turns in the corridor cause reflections and echoes. Similarly, the vias in
a multilayer board have significant capacitive and inductive parasitic effects
associated with them, and these effects cause deterioration and corruption of
the signals being passed through them. In the case of discrete wire technology,
the points at which wires cross over each other have similar effects, but they are
orders of magnitude smaller.

Yet another consideration is that, as the frequency of signals increases,
electrons start to be conducted only on the outer surface, or skin, of a conductor.
This phenomenon is known as the skin effect. By the nature of their construction,

252 m Chapter Eighteen

the etched tracks on multilayer boards have small imperfections at their edges.
These uneven surfaces slow the propagation of signals and cause noise. By
comparison, the wire used in discrete wire technology is uniform to + 0.0025
mm, which is smoother than etched tracks by a factor of 10:1.

Last but not least, the optimal cross-section for a high-speed conductor is
circular rather than square or rectangular, and a constant cross-section should
be maintained throughout the conductor’s length. Both of these criteria are
met by discrete wire technology, which, in fact, offers interconnections that are
close to ideal transmission lines. The end result is that discrete wire boards can
operate at frequencies that are simply not possible with their traditional multi-
layer counterparts.?8 It is for this reason that discrete wire technology may yet
be poised to emerge as the technology-of-choice for designers of high-speed
circuit boards.

Backplanes and Motherboards

Another flavor of multilayer boards, known as backplanes, have their own
unique design constraints and form a subject in their own right. Backplanes
usually have a number of connectors into which standard circuit boards are
plugged (Figure 18-29).

Backplanes typically do not carry any active components such as integrated
circuits, but they often carry passive components such as resistors and capacitors.
If a backplane does contain active components, then it is usually referred to as a
motherboard. In this case, the boards plugged into it are referred to as daughter
boards or daughter cards.

Because of the weight that they have to support, backplanes for large
systems can be 1 cm thick or more. Their conducting layers have thicker
copper plating than standard boards and the spaces between adjacent tracks
are wider to reduce noise caused by inductive effects.

Backplanes may also support a lot of hardware in the form of bolts, earth
straps, and power cables. It is not unusual for a backplane to have multiple
power planes such as +5 volts, =5 volts, +12 volts, —12 volts, +24 volts, and —24
volts. Each power plane typically has an independent ground plane associated

28 Discrete wire boards can be constructed using microcoaxial cable, and such boards can operate
at frequencies that would make your eyes water!

Circuit Boards m 253

Wlth It tO InCrease noise immunity. SO, our " Eackp[ane

hypothetical backplane would require 12

£

conducting layers for the power and

K

ground planes alone. Addition-

/\
&
0
&

&

&0
&

both analog and digital

'
ally, systems containing
circuits often require IS

independent power

Qoo
Qo8
Qo8

and ground planes for N

L= AR = VAN =V = 4

Qo0&

purposes of noise
immunity. Backplanes / “\\ Circuit
ircui

boards

SN

also require excellent L

thermal

tolerance, Backplane
connector
because some

of the more heroic systems Circuit board

can consume upwards of 200 connector

amps and generate more heat
Integrated

than a rampaging herd of large circuits

electric radiators.

Backplanes may be constructed Figure 18-29. Backplanes
using multilayer techniques or
discrete wire technology. In fact, discrete wire technology is starting to see
increased use in backplane applications because of its high performance, and
also due to the resulting reduction in layers, thickness, and weight.

Conductive Ink Technology

The underlying concept of conductive ink technology is relatively simple.
Tracks are screen-printed onto a bare board using a conducting ink, which is
then cured in an oven. Next, a dielectric, or insulating, layer is screen-printed
over the top of the tracks. The screen used to print the dielectric layer is
patterned so as to leave holes over selected pads on the signal layer. After the
dielectric layer has been cured, the cycle is repeated to build a number of signal
layers separated by dielectric layers. The holes patterned into the dielectric
layers are used to form vias between the signal layers (Figure 18-30).

254 m Chapter Eighteen

Holes patterned in Conductive ink enters
Conductive ink dielectric layer holes to form vias
tracks

Screen print Screen print Screen print conductive
conductive tracks dielectric tracks on surface of
on surface of FR4 (insulating) layer dielectric layer

Figure 18-30. Conductive ink technology

Finally, plated through-holes and vias can be created, and components can
be mounted, using the standard processes described previously. The apparent
simplicity of the conductive ink technique hides an underlying sophistication
in materials technology. Early inks were formed from resin pastes loaded with
silver or copper powder. These inks required high firing temperatures to boil
off the paste and melt the powder to form conducting tracks. Additionally, the
end product was not comparable to copper foil for adhesion, conductivity, or
solderability.

In the early 1990s, new inks were developed based on pastes containing a
mixture of two metal or alloy powders. One powder has a relatively low melting
point, while the other has a relatively high melting point. When the board is
cured in a reflow oven at temperatures as low as 200°C, a process called sintering
occurs between the two powders, resulting in an alloy with a high melting point
and good conductivity.

Conductive ink technology has not yet achieved track widths as fine as
traditional circuit board processes, but it does have a number of attractive
features, not the least of which is that it uses commonly available screen-
printing equipment. Modern inks have electrical conductivity comparable to
copper and they work well with both wave soldering and reflow soldering
techniques. Additionally, these processes generate less waste and are more
cost-effective and efficient than the plating and etching of copper tracks.

Circuit Boards m 255

Chip-On-Board (COB)

Chip-on-board (COB) is a relatively modern process that only began to gain
widespread recognition in the early 1990s, but which is now accepted as a
common and cost-effective die attachment technique. As the name implies,
unpackaged integrated circuits are mounted directly onto the surface of the
board. The integrated circuits are mechanically and electrically connected
using similar wire bonding, tape-automated bonding, and flip-chip techniques to
those used for hybrids and multichip modules.?® The final step is encapsulation,
in which the integrated circuits and their connections are covered with “globs”
of epoxy resin or plastic, which are then cured to form hard protective covers

(Figure 18-31).3°

Wire bonds “Glob” of plastic or
epoxy encapsulating
integrated circuit

Tracks
and pads

Unpackaged
integrated circuit

Figure 18-31. Chip-on-board (COB)

There are a number of variations of chip-on-board. For example, the
designer may wish to maintain an extremely low profile for applications such
as intelligent credit cards. One way to achieve this is to form cavities in the
board into which the integrated circuits are inserted. Compared to surface
mount technology, and especially to through-hole technology, chip-on-board

29 Hybrids and multichip modules are introduced in Chapters 19 and 20, respectively.

30 In addition to mechanical and environmental protection, the encapsulating material is also
used to block out light.

256 m Chapter Eighteen

offers significant reductions in size, area, and weight. Additionally, this tech-
nique boosts performance because the chips can be mounted closer together,
resulting in shorter tracks and faster signals.

Flexible Printed Circuits (FPCs)

Last, but not least, are flexible printed circuits (FPCs), often abbreviated to
flex, in which patterns of conducting tracks are printed onto flexible materials.
Surprisingly, flexible circuits are not a recent innovation: they can trace their
ancestry back to 1904 when conductive inks were printed on linen paper.
However, modern flexible circuits are made predominantly from organic
materials such as polyesters and polyimides. These base layers can be thinner
than a human hair, yet still withstand temperatures up to approximately 700°C
without decomposing.

There are many variants of flexible circuits, not the least being flexing, or
dynamic flex, and non-flexing, or static flex. Dynamic flex is used in applications
that are required to undergo constant flexing such as ribbon cables in printers,
while static flex can be manipulated into permanent three-dimensional shapes
for applications such as calculators and high-tech cameras requiring efficient
use of volume and not just area (Figure 18-32).

Flexible circuit manipulated into
a three-dimensional shape

Integrated

Figure 18-32. Flexible printed circuits:
circuits

static flex

Circuit Boards m 257

As well as single-sided flex, there are also double-sided and multilayer variants.
Additionally, unpackaged integrated circuits can be mounted directly onto the
surface of the flexible circuits in a similar manner to chip-on-board discussed
above. However, in this case, the process is referred to as chip-on-flex (COF).

A common manifestation of flex technology is found in hybrid constructions
known as rigid flex, which combine standard rigid circuit boards with flexible
printed circuits (Figure 18-33).

Integrated
circuits

Rigid
circuit board

Flexible
circuit board

Rigid Figure 18-33. Flexible printed
circuit board circuits: rigid flex

In this example, the flexible printed circuit linking two standard (rigid)
boards eliminates the need for connectors on the boards (which would have to
be linked by cables), thereby reducing the component count, weight, and
susceptibility to vibration of the circuit, and greatly increasing its reliability.

While the use of flexible circuits is relatively low, it is beginning to increase
for a number of reasons. These include the ongoing development of miniatur-
ized, lightweight, portable electronic systems such as cellular phones, and the
maturing of surface mount technology, which has been described as the ideal
packaging technology for flexible circuits. Additionally, flexible circuits are
amenable to being produced in the form of a continuous roll, which can offer
significant manufacturing advantages for large production runs.

r S
J9,
Hybrids

The word hybrid is defined as “the offspring resulting from crossbreeding.”
Many would agree that this is an apt description for the species of electronic
entities known as hybrids, which combine esoteric mixtures of interconnection
and packaging technologies. In electronic terms, a hybrid consists of a collection
of components mounted on a single insulating base layer called the substrate.
A typical hybrid may contain a number of packaged or unpackaged integrated
circuits and a variety of discrete components such as resistors, capacitors, and
inductors, all attached directly to the substrate. Connections between the
components are formed on the surface of the substrate; also, some components
such as resistors and inductors may be fabricated directly onto the surface of the
substrate.

Hybrid Substrates

Hybrid substrates are predominantly formed from alumina (aluminum
oxide) or similar ceramic materials. Ceramics have many valuable properties,
which have been recognized since the Chinese first created their superb
porcelains during the Ming dynasty. In addition to being cheap, light, rugged,
and well understood, ceramics have a variety of characteristics that make them
particularly well suited to electronic applications. They are nonporous and do
not absorb moisture, they can be extremely tough,! they have very good lateral
thermal conductivity, and their coefficient of thermal expansion is close to that
of silicon.

Good lateral thermal conductivity means that heat generated by the
components can be conducted horizontally across the substrate and out

1 As examples of their toughness, ceramics can be used to create artificial bone joints and to
line the faces of golf clubs. In fact, during the cold war, Glock developed a handgun for
espionage purposes that was fabricated almost completely out of ceramics (so it wouldn’t
trigger metal detectors at airports).

Hybrids m 259

through its leads. The coefficient of thermal expansion defines the amount a
material expands and contracts due to changes in temperature. If materials with
different coefficients are bonded together, changes in temperature will cause
shear forces at the interface between them. Because silicon and ceramic have
similar coefficients of thermal expansion, they expand and contract at the same
rate. This is particularly relevant when unpackaged silicon chips are bonded
directly to the hybrid’s substrate, because it helps to ensure that a change in
temperature will not result in the chips leaping off the substrate.

Hybrid substrates are usually created by placing ceramic powder in a mold
and firing it at high temperatures. The resulting substrates have very smooth
surfaces and are flat without any significant curvature. Hybrid substrates
typically range in size from 2.5 cm x 2.5 cm to 10 cm x 15 cm and are in the
order of 0.8 mm thick.

Some hybrids require numbers of small holes between the top and bottom
surfaces of the substrate. These holes will eventually be plated to form conduct-
ing paths between the two surfaces, at which time they start to be called vias.
Additionally, depending on the packaging technology being used, slightly
larger holes may be required to accommodate the hybrid’s leads. One technique
for forming these vias and lead-holes is to introduce tiny pillar structures into
the mold. The ceramic powder flows around the pillars and, when the mold
(including the pillars) is removed after firing, the substrate contains holes
corresponding to the pillars. Until recent times there was no cost-effective
method for drilling vias through a ceramic substrate after it had been fired.?
However, developments in laser technology have made it possible to punch
holes through fired substrates using laser beams.

While the majority of hybrid substrates are ceramic, a wide variety of other
materials may also be employed. These include glass, small FR4 circuit boards
(laminated substrates), and even cardboard. The latter may have appeared
among your Christmas presents embedded in a pair of socks that play an
annoying tune when you squeeze them.3

2 A process not dissimilar to attempting to bore holes through a dinner plate.

3 Thank you, Auntie Barbara, [wear them all the time.

260 m Chapter Nineteen

The Thick-Film Process

The two most common techniques used to create tracks and components
on the surface of hybrid substrates are known as the thick-film and thin-film
processes. The thick-film process is based on screen-printing, an ancient art
whose invention is usually attributed to the Chinese around 3,000 BC.

Creating Tracks

An optical mask is created carrying a pattern formed by areas that are either
transparent or opaque to ultraviolet frequencies. The simple patterns shown in
the following diagrams are used for reasons of clarity; in practice, such a mask
may contain hundreds or thousands of fine lines and geometric shapes. Next,
an extremely fine steel mesh the same size as the hybrid substrate is coated with
a layer of photo-resistive emulsion (Figure 19-1).

/ Optical mask

Fine steel mesh /

coated with emulsion

Figure 19-1. Thick-film: optical mask and
emulsion-coated fine steel mesh

The emulsion-coated mesh is first dried, then baked, and then exposed to
ultraviolet radiation passed through the optical mask. The ionizing radiation
passes through the transparent areas of the optical mask into the emulsion where
it breaks down the molecular structure of the resist. The mesh is then bathed in
an appropriate solvent to dissolve the degraded resist. Thus, the pattern on the
optical mask has been transferred to a corresponding pattern in the resist. The
steel mesh with the patterned resist forms a screen-print mask, through which a
paste containing metal and glass particles suspended in a solvent is applied onto
the surface of the substrate (Figure 19-2). (Note that these figures show a
magnified view of a very small portion of the entire substrate.)

Hybrids m 261

Screen-printed
tracks

Screen-print
mas

Ceramic substrate

Figure 19-2. Thick-film: tracks screen-
printed onto the substrate

The metal particles suspended in the paste are usually those of a noble metal
such as gold, silver, or platinum, or an alloy of such metals as pladium-silver
(platinum and silver). When the substrate is dried, the solvent evaporates,
leaving the particles of glass and metal forming tracks on the surface of the
substrate. Thick-film tracks are in the order of 0.01 mm thick. The widths of
the tracks and the spaces between adjacent tracks are normally in the order of
0.25 mm, but can be as low as 0.1 mm or even finer in a leading-edge process.

Multiple layers of tracks can be printed onto the surface, each requiring the
creation of a unique screen-print mask. A pattern of insulating material called a
dielectric layer must be inserted between each pair of tracking layers to keep them
separated. The dielectric patterns are formed from a paste containing only glass
particles suspended in a solvent. Each dielectric layer requires its own screen-
print mask and is applied using an identical process to that used for the tracking
layers. Holes are included in the dielectric patterns where it is required for tracks
from adjacent tracking layers to be connected to each other. Typical hybrids
employ four tracking layers, commercial applications are usually limited to
between seven and nine tracking layers, and a practical limit for current process
technologies is around fourteen tracking layers.* More layers can be used, but

4 The surface of the substrate becomes increasingly irregular with every layer that is applied.
Eventually, the screen-print mask does not make sufficiently good contact across the
substrate’s surface, and paste “leaks out” under the edges of the patterns.

262 m Chapter Nineteen

there is a crossover point where falling yields make the addition of successive
layers cost-prohibitive. When all the tracking and insulating layers have been
laid down and dried, the substrate is re-fired to approximately 1,000°C.

Creating Resistors

Resistors can be formed from a paste containing carbon compounds sus-
pended in a solvent; the mixture of carbon compounds determines the resistiv-
ity of the final component. The resistors require their own screen-print mask

and are applied to the substrate using an identical process to that described

above (Figure 19-3).

Resistor

Tracks

Screen-print
mask

Ceramic substrate

Figure 19-3. Thick-film: resistors
screen-printed onto the substrate

When the substrate is dried, the solvent evaporates, leaving the carbon
compounds to form resistors on the surface of the substrate. Assuming a
constant thickness, each resistor has a resistance defined by its length divided
by its width and multiplied by the resistivity of the paste. Thus, multiple
resistors with different values can be created in a single screen-print operation
by controlling the length and width of each component. However, if a low
resistivity paste is used, resistors with large values will occupy too great an area.
Similarly, if a high resistivity paste is used, resistors with small values will be
difficult to achieve within the required tolerances. To overcome these limita-
tions, the process may be repeated with a series of screen-print masks combined
with pastes of different resistivity.

Hybrids m 263

When all of the resistors have been created, the substrate is refired to
approximately 600°C. An additional screen-print operation is employed to lay
a protective overglaze over the resistors. This protective layer is formed from a
paste containing glass particles in a solvent and is fired at approximately 450°C.

Laser Trimming

Unfortunately, creating resistors as described above is not as exact a process
as one could wish. In order to compensate for process tolerances and to achieve
precise values, the resistors have to be trimmed using a laser beam. There are
two types of laser trimming known as passive trimming and active trimming.
Passive trimming is performed before any of the integrated circuits or discrete
components are mounted on the substrate. Probes are placed at each end of a
resistor to monitor its value while a laser beam is used to cut parts of the resis-
tive material away. There are a variety of different cuts which may be used to

modify the resistor, including plunge cuts, double plunge cuts, or L-shaped cuts
(Figure 19-4).

(a) Plunge cut (b) Double plunge cut (c) L-shaped cut

Figure 19-4. Thick-film: laser trimming of resistors

The L-shaped cut combines a plunge cut with a second cut at 90°. In this
case the plunge cut provides a coarse alteration and the second cut supplies
finer modifications. After each resistor has been trimmed, the probes are
automatically moved to the next resistor and the process is repeated.

By comparison, active trimming is used to fine-tune analog circuits (such
as active filters) and requires the integrated circuits and discrete components to
be mounted on the substrate. The whole circuit is powered up and the relevant
portion of the circuit is stimulated with suitable signals. A probe is placed at
the output of the circuit to monitor characteristics such as amplification and

264 m Chapter Nineteen

frequency response. A laser is then used to trim the appropriate resistors to
achieve the required characteristics while the output of the circuit is being
monitored.

Creating Capacitors and Inductors

Capacitors and inductors can also be fabricated directly onto the substrate.
However, capacitors created in this way are usually not very accurate, and
discrete components are typically used. If inductors are included on the
substrate, they are created at the same time and using the same paste as one
of the tracking layers. There are two main variations of such inductors: spiral
and square spiral (Figure 19-5).

(a) Spiral (b) Square epiral

Figure 19-5. Thick-film: inductors
screen-printed onto the substrate

The connection to the center-tap of the inductor can be made in several
ways. A wire link can be connected to the center-tap, arched over the paths
forming the spiral, and connected to a pad on the substrate outside the spiral.
A somewhat similar solution is to use a track on another tracking layer to
connect the center-tap to a point outside the spiral. As usual, an insulating
dielectric layer would be used to separate the layer forming the inductor from
the tracking layer. In yet another alternative, the center-tap can be connected
to tracks on the bottom side of the substrate by means of a via placed at the
center of the spiral.

Hybrids m 265

Double-sided Thick-film Hybrids

Thick-film hybrids can support tracking layers on both sides of the
substrate, with vias being used to make any necessary connections between
the two sides. Components of all types can be mounted on both sides of the
substrate as required, but active components such as integrated circuits are
usually mounted only on the upper side.

Subtractive Thick-film Technology

As with any branch of electronics, new developments are always appearing
on the scene. For example, a company called Silonex (www.silonex.com) has
developed a process called subtractive thick film (STF), which they claim is the
next generation in substrate technology. STF is the integration of different
technologies. In addition to standard thick film conductors, resistors, capacitors,
and inductors, STF features photolithography and chemical etching steps used
in conjunction with novel materials to produce unprecedented line width
density and repeatability. Silonex say that STF expands the capabilities and
performance of thick film modules for wireless telecommunication, instrumen-
tation, telemetry and medical devices such as hearing aids—without sacrificing
reliability or cost.

The Thin-Film Process

Thin-film processes typically employ either ceramic or glass substrates. The
substrate is prepared by spluttering a layer of nichrome (nickel and chromium)
alloy across the whole of its upper surface, then electroplating a layer of gold on
top of the nichrome. The nichrome sticks to the substrate and the gold sticks to
the nichrome. The nichrome and gold layers are each in the order of 5 um
(five-millionths of a meter) thick.

The thin-film process is similar to the opto-lithographic processes used
to create integrated circuits. An optical mask is created carrying a pattern
formed by areas that are either transparent or opaque to ultraviolet frequencies
(Figure 19-6). As usual, the simple patterns shown in the following diagrams
are used for reasons of clarity; in practice, such a mask may contain hundreds
of thousands of fine lines and geometric shapes.

266 m Chapter Nineteen

Optical mask

_\\ ; Substrate
Nichrome
Gold

Figure 19-6. Thin-film: optical mask and substrate

The surface of the gold is coated with a layer of photo-resistive emulsion,
which is first dried, then baked, and then exposed to ultraviolet radiation
passed through the optical mask. The ionizing radiation passes through the
transparent areas of the mask to break down the molecular structure of the
emulsion. The substrate is bathed in a solvent which dissolves the degraded
resist, then etched with a solvent that dissolves both the gold and nichrome
from any areas left unprotected. The nichrome and gold remaining after the
first mask-and-etch sequence represent a combination of tracks and resistors

(Figure 19-7).

Unexposed Nichrome
| resist and gold |
Substrate

Figure 19-7. Thin-film: combined tracks and resistors

Hybrids m 267

The thin-film tracks are typically in the order of 0.025 mm in width, but
can be as narrow as 0.001 mm in a leading-edge process. The substrate is now
recoated with a second layer of emulsion and the process is repeated with a
different mask. The solvent used in this iteration only dissolves any exposed
gold, but does not affect the underlying nichrome. The gold is removed from
specific sites to expose the nichrome underneath, and it is these exposed areas
of nichrome that form the resistors (Figure 19-8).

Optical N[c:r:zmc
mask gold Exposed

nichrome

e

Figure 19-8. Thin-film: separated tracks and resistors

Laser Trimming

In certain respects, thin-film designers have less freedom in their control
of resistance values than do their thick-film counterparts. Although the
resistivity of the nichrome layer can be varied to some extent from hybrid to
hybrid, the resistivity for a single hybrid is constant across the whole surface.
Thus, the only way to select the value of an individual resistor is by controlling
its length and width. In addition to simple rectangles, thin-film resistors are
often constructed in complex concertina shapes with associated trimming
blocks. The resistor values can be subsequently modified by laser trimming
(Figure 19-9).

Resistors may also be created in l