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C H A P T E R

CAPACITORS AND INDUCTORS

6

The important thing about a problem is not its solution, but the strength
we gain in finding the solution.

—Anonymous

Historical Profiles
Michael Faraday (1791–1867), an English chemist and physicist, was probably the
greatest experimentalist who ever lived.

Born near London, Faraday realized his boyhood dream by working with the
great chemist Sir Humphry Davy at the Royal Institution, where he worked for 54 years.
He made several contributions in all areas of physical science and coined such words
as electrolysis, anode, and cathode. His discovery of electromagnetic induction in
1831 was a major breakthrough in engineering because it provided a way of generating
electricity. The electric motor and generator operate on this principle. The unit of
capacitance, the farad, was named in his honor.

Joseph Henry (1797–1878), an American physicist, discovered inductance and con-
structed an electric motor.

Born in Albany, New York, Henry graduated from Albany Academy and taught
philosophy at Princeton University from 1832 to 1846. He was the first secretary of the
Smithsonian Institution. He conducted several experiments on electromagnetism and
developed powerful electromagnets that could lift objects weighing thousands of pounds.
Interestingly, Joseph Henry discovered electromagnetic induction before Faraday
but failed to publish his findings. The unit of inductance, the henry, was named after him.
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6.1 INTRODUCTION
So far we have limited our study to resistive circuits. In this chapter, we
shall introduce two new and important passive linear circuit elements:
the capacitor and the inductor. Unlike resistors, which dissipate energy,
capacitors and inductors do not dissipate but store energy, which can be
retrieved at a later time. For this reason, capacitors and inductors are
calledstorage elements.In contrast to a resistor, which spends or dis-

sipates energy irreversibly, an inductor or ca-
pacitor stores or releases energy (i.e., has a
memory).

The application of resistive circuits is quite limited. With the in-
troduction of capacitors and inductors in this chapter, we will be able to
analyze more important and practical circuits. Be assured that the circuit
analysis techniques covered in Chapters 3 and 4 are equally applicable to
circuits with capacitors and inductors.

We begin by introducing capacitors and describing how to combine
them in series or in parallel. Later, we do the same for inductors. As
typical applications, we explore how capacitors are combined with op
amps to form integrators, differentiators, and analog computers.

6.2 CAPACITORS
A capacitor is a passive element designed to store energy in its electric
field. Besides resistors, capacitors are the most common electrical com-
ponents. Capacitors are used extensively in electronics, communications,
computers, and power systems. For example, they are used in the tuning
circuits of radio receivers and as dynamic memory elements in computer
systems.

A capacitor is typically constructed as depicted in Fig. 6.1.

Metal plates,
each with area A

d

Dielectric with permittivity e

Figure 6.1 A typical capacitor.

A capacitor consists of two conducting plates separated
by an insulator (or dielectric).

In many practical applications, the plates may be aluminum foil while the
dielectric may be air, ceramic, paper, or mica.

When a voltage source v is connected to the capacitor, as in Fig.
6.2, the source deposits a positive charge q on one plate and a negative
charge −q on the other. The capacitor is said to store the electric charge.
The amount of charge stored, represented by q, is directly proportional
to the applied voltage v so that

q = Cv (6.1)

where C, the constant of proportionality, is known as the capacitance
of the capacitor. The unit of capacitance is the farad (F), in honor of
the English physicist Michael Faraday (1791–1867). From Eq. (6.1), we
may derive the following definition.Alternatively, capacitance is the amount of charge

stored per plate for a unit voltage difference in a
capacitor.
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Figure 6.2 A capacitor
with applied voltage v.

Capacitance is the ratio of the charge on one plate of a capacitor to the voltage
difference between the two plates, measured in farads (F).

Note from Eq. (6.1) that 1 farad = 1 coulomb/volt.
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Although the capacitance C of a capacitor is the ratio of the charge
q per plate to the applied voltage v, it does not depend on q or v. It
depends on the physical dimensions of the capacitor. For example, for
the parallel-plate capacitor shown in Fig. 6.1, the capacitance is given by

C = εA

d
(6.2)

where A is the surface area of each plate, d is the distance between the
plates, and ε is the permittivity of the dielectric material between the
plates. Although Eq. (6.2) applies to only parallel-plate capacitors, we
may infer from it that, in general, three factors determine the value of the
capacitance:

Capacitor voltage rating and capacitance are typ-
ically inversely rated due to the relationships in
Eqs. (6.1) and (6.2). Arcing occurs if d is small
and V is high.

1. The surface area of the plates—the larger the area, the greater
the capacitance.

2. The spacing between the plates—the smaller the spacing, the
greater the capacitance.

3. The permittivity of the material—the higher the permittivity,
the greater the capacitance.

Capacitors are commercially available in different values and types.
Typically, capacitors have values in the picofarad (pF) to microfarad (µF)
range. They are described by the dielectric material they are made of and
by whether they are of fixed or variable type. Figure 6.3 shows the circuit
symbols for fixed and variable capacitors. Note that according to the
passive sign convention, current is considered to flow into the positive
terminal of the capacitor when the capacitor is being charged, and out of
the positive terminal when the capacitor is discharging.

i iC

v+ −

C

v+ −

Figure 6.3 Circuit symbols for capacitors:
(a) fixed capacitor, (b) variable capacitor.

Figure 6.4 shows common types of fixed-value capacitors. Polyester
capacitors are light in weight, stable, and their change with temperature is
predictable. Instead of polyester, other dielectric materials such as mica
and polystyrene may be used. Film capacitors are rolled and housed in
metal or plastic films. Electrolytic capacitors produce very high capaci-
tance. Figure 6.5 shows the most common types of variable capacitors.
The capacitance of a trimmer (or padder) capacitor or a glass piston capac-
itor is varied by turning the screw. The trimmer capacitor is often placed
in parallel with another capacitor so that the equivalent capacitance can
be varied slightly. The capacitance of the variable air capacitor (meshed
plates) is varied by turning the shaft. Variable capacitors are used in radio

(a) (b) (c)

Figure 6.4 Fixed capacitors: (a) polyester capacitor, (b) ceramic capacitor, (c) electrolytic capacitor.
(Courtesy of Tech America.)
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receivers allowing one to tune to various stations. In addition, capacitors
are used to block dc, pass ac, shift phase, store energy, start motors, and
suppress noise.

(a)

(b)

Figure 6.5 Variable capacitors:
(a) trimmer capacitor, (b) filmtrim
capacitor.
(Courtesy of Johanson.)

To obtain the current-voltage relationship of the capacitor, we take
the derivative of both sides of Eq. (6.1). Since

i = dq

dt
(6.3)

differentiating both sides of Eq. (6.1) gives

i = C
dv

dt
(6.4)

According to Eq. (6.4), for a capacitor to carry
current, its voltage must vary with time. Hence,
for constant voltage, i = 0 .

This is the current-voltage relationship for a capacitor, assuming the pos-
itive sign convention. The relationship is illustrated in Fig. 6.6 for a
capacitor whose capacitance is independent of voltage. Capacitors that
satisfy Eq. (6.4) are said to be linear. For a nonlinear capacitor, the
plot of the current-voltage relationship is not a straight line. Although
some capacitors are nonlinear, most are linear. We will assume linear
capacitors in this book.

Slope = C

dv ⁄dt0

i

Figure 6.6 Current-voltage
relationship of a capacitor.

The voltage-current relation of the capacitor can be obtained by
integrating both sides of Eq. (6.4). We get

v = 1

C

∫ t

−∞
i dt (6.5)

or

v = 1

C

∫ t

t0

i dt + v(t0) (6.6)

where v(t0) = q(t0)/C is the voltage across the capacitor at time t0.
Equation (6.6) shows that capacitor voltage depends on the past history
of the capacitor current. Hence, the capacitor has memory—a property
that is often exploited.

The instantaneous power delivered to the capacitor is

p = vi = Cv
dv

dt
(6.7)

The energy stored in the capacitor is therefore

w =
∫ t

−∞
p dt = C

∫ t

−∞
v
dv

dt
dt = C

∫ t

−∞
v dv = 1

2
Cv2

∣∣∣∣
t

t=−∞
(6.8)

We note that v(−∞) = 0, because the capacitor was uncharged at t =
−∞. Thus,

w = 1

2
Cv2 (6.9)

Using Eq. (6.1), we may rewrite Eq. (6.9) as

w = q2

2C
(6.10)
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Equation (6.9) or (6.10) represents the energy stored in the electric field
that exists between the plates of the capacitor. This energy can be re-
trieved, since an ideal capacitor cannot dissipate energy. In fact, the word
capacitor is derived from this element’s capacity to store energy in an
electric field.

We should note the following important properties of a capacitor:

1. Note from Eq. (6.4) that when the voltage across a capacitor is
not changing with time (i.e., dc voltage), the current through
the capacitor is zero. Thus,

A capacitor is an open circuit to dc.

However, if a battery (dc voltage) is connected across a
capacitor, the capacitor charges.

2. The voltage on the capacitor must be continuous.

The voltage on a capacitor cannot change abruptly.

The capacitor resists an abrupt change in the voltage across it.
According to Eq. (6.4), a discontinuous change in voltage
requires an infinite current, which is physically impossible.
For example, the voltage across a capacitor may take the form
shown in Fig. 6.7(a), whereas it is not physically possible for
the capacitor voltage to take the form shown in Fig. 6.7(b)
because of the abrupt change. Conversely, the current through
a capacitor can change instantaneously.

3. The ideal capacitor does not dissipate energy. It takes power
from the circuit when storing energy in its field and returns
previously stored energy when delivering power to the circuit.

4. A real, nonideal capacitor has a parallel-model leakage
resistance, as shown in Fig. 6.8. The leakage resistance may be
as high as 100 M� and can be neglected for most practical
applications. For this reason, we will assume ideal capacitors
in this book.

An alternative way of looking at this is using Eq.
(6.9), which indicates that energy is proportional
to voltage squared. Since injecting or extracting
energy can only be done over some finite time,
voltage cannot change instantaneously across a
capacitor.

v

t

(a)

v

t

(b)

Figure 6.7 Voltage across a capacitor:
(a) allowed, (b) not allowable; an abrupt
change is not possible.

Leakage resistance

Capacitance

Figure 6.8 Circuit model of a
nonideal capacitor.

E X A M P L E 6 . 1

(a) Calculate the charge stored on a 3-pF capacitor with 20 V across it.
(b) Find the energy stored in the capacitor.

Solution:

(a) Since q = Cv,

q = 3 × 10−12 × 20 = 60 pC

(b) The energy stored is

w = 1

2
Cv2 = 1

2
× 3 × 10−12 × 400 = 600 pJ
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P R A C T I C E P R O B L E M 6 . 1

What is the voltage across a 3-µF capacitor if the charge on one plate is
0.12 mC? How much energy is stored?

Answer: 40 V, 2.4 mJ.

E X A M P L E 6 . 2

The voltage across a 5-µF capacitor is

v(t) = 10 cos 6000t V

Calculate the current through it.

Solution:

By definition, the current is

i(t) = C
dv

dt
= 5 × 10−6 d

dt
(10 cos 6000t)

= −5 × 10−6 × 6000 × 10 sin 6000t = −0.3 sin 6000t A

P R A C T I C E P R O B L E M 6 . 2

If a 10-µF capacitor is connected to a voltage source with

v(t) = 50 sin 2000t V

determine the current through the capacitor.

Answer: cos 2000t A.

E X A M P L E 6 . 3

Determine the voltage across a 2-µF capacitor if the current through it is

i(t) = 6e−3000t mA

Assume that the initial capacitor voltage is zero.

Solution:

Since v = 1

C

∫ t

0
i dt + v(0) and v(0) = 0,

v = 1

2 × 10−6

∫ t

0
6e−3000t dt ·10−3

= 3 × 103

−3000
e−3000t

∣∣∣∣
t

0

= (1 − e−3000t ) V

P R A C T I C E P R O B L E M 6 . 3

The current through a 100-µF capacitor is i(t) = 50 sin 120πt mA. Cal-
culate the voltage across it at t = 1 ms and t = 5 ms. Take v(0) = 0.

Answer: −93.137 V, −1.736 V.
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E X A M P L E 6 . 4

Determine the current through a 200-µF capacitor whose voltage is shown
in Fig. 6.9.

v(t)

0
4321

50

−50

t

Figure 6.9 For Example 6.4.

Solution:

The voltage waveform can be described mathematically as

v(t) =




50t V 0 < t < 1
100 − 50t V 1 < t < 3

−200 + 50t V 3 < t < 4
0 otherwise

Since i = C dv/dt and C = 200 µF, we take the derivative of v to obtain

i(t) = 200 × 10−6 ×




50 0 < t < 1
−50 1 < t < 3

50 3 < t < 4
0 otherwise

=




10 mA 0 < t < 1
−10 mA 1 < t < 3

10 mA 3 < t < 4
0 otherwise

Thus the current waveform is as shown in Fig. 6.10.

i (mA)

0
4321

10

−10

t

Figure 6.10 For Example 6.4.

P R A C T I C E P R O B L E M 6 . 4

An initially uncharged 1-mF capacitor has the current shown in Fig. 6.11
across it. Calculate the voltage across it at t = 2 ms and t = 5 ms.

i (mA)

0
642

100

t (ms)

Figure 6.11 For Practice Prob. 6.4.

Answer: 100 mV, 400 mV.

E X A M P L E 6 . 5

Obtain the energy stored in each capacitor in Fig. 6.12(a) under dc con-
ditions.

Solution:

Under dc conditions, we replace each capacitor with an open circuit, as
shown in Fig. 6.12(b). The current through the series combination of the
2-k� and 4-k� resistors is obtained by current division as

i = 3

3 + 2 + 4
(6 mA) = 2 mA

Hence, the voltages v1 and v2 across the capacitors are

v1 = 2000i = 4 V v2 = 4000i = 8 V
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v1+ −

v2

+

−
6  mA 3 kΩ

5 kΩ
4 kΩ

2 kΩ

2 mF

4 mF

(a)

6  mA 3 kΩ

5 kΩ

4 kΩ

2 kΩ

(b)

i

Figure 6.12 For Example 6.5.

and the energies stored in them are

w1 = 1

2
C1v

2
1 = 1

2
(2 × 10−3)(4)2 = 16 mJ

w2 = 1

2
C2v

2
2 = 1

2
(4 × 10−3)(8)2 = 128 mJ

P R A C T I C E P R O B L E M 6 . 5

Under dc conditions, find the energy stored in the capacitors in Fig. 6.13.

10 V +
− 6 kΩ

1 kΩ

20 mF

10 mF

3 kΩ

Figure 6.13 For Practice Prob. 6.5.

Answer: 405 µJ, 90 µJ.

6.3 SERIES AND PARALLEL CAPACITORS
We know from resistive circuits that series-parallel combination is a pow-
erful tool for reducing circuits. This technique can be extended to series-
parallel connections of capacitors, which are sometimes encountered. We
desire to replace these capacitors by a single equivalent capacitor Ceq.

i C1

(a)

i1

C2 C3 CN

iN

v

i

(b)

Ceq v

+

−

+

−

i2 i3

Figure 6.14 (a) Parallel-connected N

capacitors, (b) equivalent circuit for the parallel
capacitors.

In order to obtain the equivalent capacitor Ceq of N capacitors in
parallel, consider the circuit in Fig. 6.14(a). The equivalent circuit is in
Fig. 6.14(b). Note that the capacitors have the same voltage v across
them. Applying KCL to Fig. 6.14(a),

i = i1 + i2 + i3 + · · · + iN (6.11)

But ik = Ck dv/dt . Hence,

i = C1
dv

dt
+ C2

dv

dt
+ C3

dv

dt
+ · · · + CN

dv

dt

=
(

N∑
k=1

Ck

)
dv

dt
= Ceq

dv

dt

(6.12)
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where

Ceq = C1 + C2 + C3 + · · · + CN (6.13)

The equivalent capacitance of N parallel-connected capacitors is the
sum of the individual capacitances.

We observe that capacitors in parallel combine in the same manner as
resistors in series.

v

C1

(a)

C2 C3 CN

v

(b)

Ceq v

v1 v2 v3 vN
+
−

+
−

i

i

+ −+ −+ − + −

+

−

Figure 6.15 (a) Series-connected N

capacitors, (b) equivalent circuit for the series
capacitor.

We now obtain Ceq of N capacitors connected in series by compar-
ing the circuit in Fig. 6.15(a) with the equivalent circuit in Fig. 6.15(b).
Note that the same current i flows (and consequently the same charge)
through the capacitors. Applying KVL to the loop in Fig. 6.15(a),

v = v1 + v2 + v3 + · · · + vN (6.14)

But vk = 1

Ck

∫ t

t0

i(t) dt + vk(t0). Therefore,

v = 1

C1

∫ t

t0

i(t) dt + v1(t0) + 1

C2

∫ t

t0

i(t) dt + v2(t0)

+ · · · + 1

CN

∫ t

t0

i(t) dt + vN(t0)

=
(

1

C1
+ 1

C2
+ · · · + 1

CN

)∫ t

t0

i(t) dt + v1(t0) + v2(t0)

+ · · · + vN(t0)

= 1

Ceq

∫ t

t0

i(t) dt + v(t0)

(6.15)

where

1

Ceq
= 1

C1
+ 1

C2
+ 1

C3
+ · · · + 1

CN

(6.16)

The initial voltage v(t0) across Ceq is required by KVL to be the sum of
the capacitor voltages at t0. Or according to Eq. (6.15),

v(t0) = v1(t0) + v2(t0) + · · · + vN(t0)

Thus, according to Eq. (6.16),

The equivalent capacitance of series-connected capacitors is the reciprocal of the
sum of the reciprocals of the individual capacitances.

Note that capacitors in series combine in the same manner as resistors in
parallel. For N = 2 (i.e., two capacitors in series), Eq. (6.16) becomes

1

Ceq
= 1

C1
+ 1

C2
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or

Ceq = C1C2

C1 + C2
(6.17)

E X A M P L E 6 . 6

Find the equivalent capacitance seen between terminals a and b of the
circuit in Fig. 6.16.

a

b

Ceq

5 mF

20 mF 20 mF6 mF

60 mF

Figure 6.16 For Example 6.6.

Solution:

The 20-µF and 5-µF capacitors are in series; their equivalent capacitance
is

20 × 5

20 + 5
= 4 µF

This 4-µF capacitor is in parallel with the 6-µF and 20-µF capacitors;
their combined capacitance is

4 + 6 + 20 = 30 µF

This 30-µF capacitor is in series with the 60-µF capacitor. Hence, the
equivalent capacitance for the entire circuit is

Ceq = 30 × 60

30 + 60
= 20 µF

P R A C T I C E P R O B L E M 6 . 6

Find the equivalent capacitance seen at the terminals of the circuit in Fig.
6.17.

Answer: 40 µF.

Ceq
120 mF20 mF70 F

60 mF

50 mF

Figure 6.17 For Practice Prob. 6.6.

E X A M P L E 6 . 7

For the circuit in Fig. 6.18, find the voltage across each capacitor.
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Solution:

We first find the equivalent capacitance Ceq, shown in Fig. 6.19. The two
parallel capacitors in Fig. 6.18 can be combined to get 40+20 = 60 mF.
This 60-mF capacitor is in series with the 20-mF and 30-mF capacitors.
Thus,

Ceq = 1
1

60 + 1
30 + 1

20

mF = 10 mF

The total charge is

q = Ceqv = 10 × 10−3 × 30 = 0.3 C

This is the charge on the 20-mF and 30-mF capacitors, because they are
in series with the 30-V source. (A crude way to see this is to imagine that
charge acts like current, since i = dq/dt .) Therefore,

v1 = q

C1
= 0.3

20 × 10−3
= 15 V v2 = q

C2
= 0.3

30 × 10−3
= 10 V

Having determined v1 and v2, we now use KVL to determine v3 by

v3 = 30 − v1 − v2 = 5 V

20 mF40 mF

30 mF20 mF

30 V +
−

v1 v2

v3

+

−

+ − + −

Figure 6.18 For Example 6.7.

Ceq30 V +
−

q
+

−

Figure 6.19 Equivalent
circuit for Fig. 6.18.

Alternatively, since the 40-mF and 20-mF capacitors are in parallel,
they have the same voltage v3 and their combined capacitance is 40 +
20 = 60 mF. This combined capacitance is in series with the 20-mF and
30-mF capacitors and consequently has the same charge on it. Hence,

v3 = q

60 mF
= 0.3

60 × 10−3
= 5 V

P R A C T I C E P R O B L E M 6 . 7

Find the voltage across each of the capacitors in Fig. 6.20.

30 mF20 mF

60 mF40 mF

60 V +
−

v1 v3

v2 v4

+ − + −
+

−

+

−

Figure 6.20 For Practice Prob. 6.7.

Answer: v1 = 30 V, v2 = 30 V, v3 = 10 V, v4 = 20 V.

6.4 INDUCTORS
An inductor is a passive element designed to store energy in its magnetic
field. Inductors find numerous applications in electronic and power sys-
tems. They are used in power supplies, transformers, radios, TVs, radars,
and electric motors.

Any conductor of electric current has inductive properties and may
be regarded as an inductor. But in order to enhance the inductive effect,
a practical inductor is usually formed into a cylindrical coil with many
turns of conducting wire, as shown in Fig. 6.21.
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An inductor consists of a coil of conducting wire.

If current is allowed to pass through an inductor, it is found that the voltage
across the inductor is directly proportional to the time rate of change of
the current. Using the passive sign convention,

v = L
di

dt
(6.18)

where L is the constant of proportionality called the inductance of the
inductor. The unit of inductance is the henry (H), named in honor of the
American inventor Joseph Henry (1797–1878). It is clear from Eq. (6.18)
that 1 henry equals 1 volt-second per ampere.

Length, l
Cross-sectional area, A

Core material

Number of turns, N

Figure 6.21 Typical form of an inductor.

In view of Eq. (6.18), for an inductor to have
voltage across its terminals, its current must vary
with time. Hence, v = 0 for constant current
through the inductor.

Inductance is the property whereby an inductor exhibits opposition to the change
of current flowing through it, measured in henrys (H).

The inductance of an inductor depends on its physical dimension
and construction. Formulas for calculating the inductance of inductors
of different shapes are derived from electromagnetic theory and can be
found in standard electrical engineering handbooks. For example, for the
inductor (solenoid) shown in Fig. 6.21,

L = N2µA

�
(6.19)

where N is the number of turns, � is the length, A is the cross-sectional
area, and µ is the permeability of the core. We can see from Eq. (6.19)
that inductance can be increased by increasing the number of turns of
coil, using material with higher permeability as the core, increasing the
cross-sectional area, or reducing the length of the coil.

Like capacitors, commercially available inductors come in different
values and types. Typical practical inductors have inductance values
ranging from a few microhenrys (µH), as in communication systems,
to tens of henrys (H) as in power systems. Inductors may be fixed or
variable. The core may be made of iron, steel, plastic, or air. The terms
coil and choke are also used for inductors. Common inductors are shown
in Fig. 6.22. The circuit symbols for inductors are shown in Fig. 6.23,
following the passive sign convention.

(a)

(b)

(c)

Figure 6.22 Various types of inductors:
(a) solenoidal wound inductor, (b) toroidal
inductor, (c) chip inductor.
(Courtesy of Tech America.)

Equation (6.18) is the voltage-current relationship for an inductor.
Figure 6.24 shows this relationship graphically for an inductor whose
inductance is independent of current. Such an inductor is known as a
linear inductor. For a nonlinear inductor, the plot of Eq. (6.18) will not
be a straight line because its inductance varies with current. We will
assume linear inductors in this textbook unless stated otherwise.

The current-voltage relationship is obtained from Eq. (6.18) as

di = 1

L
v dt
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Integrating gives

i = 1

L

∫ t

−∞
v(t) dt (6.20)

i i i

(a)

v L

+

−

(b)

v L

+

−

(c)

v L

+

−

Figure 6.23 Circuit symbols for inductors:
(a) air-core, (b) iron-core, (c) variable
iron-core.

or

i = 1

L

∫ t

t0

v(t) dt + i(t0) (6.21)

where i(t0) is the total current for −∞ < t < t0 and i(−∞) = 0. The
idea of making i(−∞) = 0 is practical and reasonable, because there
must be a time in the past when there was no current in the inductor.

The inductor is designed to store energy in its magnetic field. The
energy stored can be obtained from Eqs. (6.18) and (6.20). The power
delivered to the inductor is

p = vi =
(
L
di

dt

)
i (6.22)

The energy stored is

w =
∫ t

−∞
p dt =

∫ t

−∞

(
L
di

dt

)
i dt

= L

∫ t

−∞
i di = 1

2
Li2(t) − 1

2
Li2(−∞)

(6.23)

Since i(−∞) = 0,

w = 1

2
Li2 (6.24)

Slope = L

di ⁄dt0

v

Figure 6.24 Voltage-current
relationship of an inductor.

We should note the following important properties of an inductor.

i

t

(a)

i

t

(b)

Figure 6.25 Current through an inductor:
(a) allowed, (b) not allowable; an abrupt
change is not possible.

1. Note from Eq. (6.18) that the voltage across an inductor is zero
when the current is constant. Thus,

An inductor acts like a short circuit to dc.

2. An important property of the inductor is its opposition to the
change in current flowing through it.

The current through an inductor cannot change instantaneously.

According to Eq. (6.18), a discontinuous change in the current
through an inductor requires an infinite voltage, which is not
physically possible. Thus, an inductor opposes an abrupt
change in the current through it. For example, the current
through an inductor may take the form shown in Fig. 6.25(a),
whereas the inductor current cannot take the form shown in
Fig. 6.25(b) in real-life situations due to the discontinuities.
However, the voltage across an inductor can change abruptly.
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3. Like the ideal capacitor, the ideal inductor does not dissipate
energy. The energy stored in it can be retrieved at a later time.
The inductor takes power from the circuit when storing energy
and delivers power to the circuit when returning previously
stored energy.

4. A practical, nonideal inductor has a significant resistive
component, as shown in Fig. 6.26. This is due to the fact that
the inductor is made of a conducting material such as copper,
which has some resistance. This resistance is called the
winding resistance Rw, and it appears in series with the
inductance of the inductor. The presence of Rw makes it both
an energy storage device and an energy dissipation device.
Since Rw is usually very small, it is ignored in most cases. The
nonideal inductor also has a winding capacitance Cw due to
the capacitive coupling between the conducting coils. Cw is
very small and can be ignored in most cases, except at high
frequencies. We will assume ideal inductors in this book.

Since an inductor is often made of a highly con-
ducting wire, it has a very small resistance.

L Rw

Cw

Figure 6.26 Circuit model
for a practical inductor.

E X A M P L E 6 . 8

The current through a 0.1-H inductor is i(t) = 10te−5t A. Find the voltage
across the inductor and the energy stored in it.

Solution:

Since v = Ldi/dt and L = 0.1 H,

v = 0.1
d

dt
(10te−5t ) = e−5t + t (−5)e−5t = e−5t (1 − 5t) V

The energy stored is

w = 1

2
Li2 = 1

2
(0.1)100t2e−10t = 5t2e−10t J

P R A C T I C E P R O B L E M 6 . 8

If the current through a 1-mH inductor is i(t) = 20 cos 100t mA, find the
terminal voltage and the energy stored.

Answer: −2 sin 100t mV, 0.2 cos2 100t µJ.

E X A M P L E 6 . 9

Find the current through a 5-H inductor if the voltage across it is

v(t) =
{

30t2, t > 0
0, t < 0

Also find the energy stored within 0 < t < 5 s.

Solution:

Since i = 1

L

∫ t

t0

v(t) dt + i(t0) and L = 5 H,

i = 1

5

∫ t

0
30t2 dt + 0 = 6 × t3

3
= 2t3 A
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The power p = vi = 60t5, and the energy stored is then

w =
∫

p dt =
∫ 5

0
60t5 dt = 60

t6

6

∣∣∣∣
5

0

= 156.25 kJ

Alternatively, we can obtain the energy stored using Eq. (6.13), by writing

w
∣∣5
0 = 1

2
Li2(5) − 1

2
Li(0) = 1

2
(5)(2 × 53)2 − 0 = 156.25 kJ

as obtained before.

P R A C T I C E P R O B L E M 6 . 9

The terminal voltage of a 2-H inductor is v = 10(1−t)V. Find the current
flowing through it at t = 4 s and the energy stored in it within 0 < t <

4 s. Assume i(0) = 2 A.

Answer: −18 A, 320 J.

E X A M P L E 6 . 1 0

Consider the circuit in Fig. 6.27(a). Under dc conditions, find: (a) i, vC ,
and iL, (b) the energy stored in the capacitor and inductor.

12 V

1 F

+
−

4 Ω

5 Ω1 Ω

2 H

i

iL

vC

+

−

vC

+

−

(a)(a)

12 V +
−

4 Ω

5 Ω1 Ωi

iL

(b)

Figure 6.27 For Example 6.10.

Solution:

(a) Under dc conditions, we replace the capacitor with an open circuit
and the inductor with a short circuit, as in Fig. 6.27(b). It is evident from
Fig. 6.27(b) that

i = iL = 12

1 + 5
= 2 A

The voltage vC is the same as the voltage across the 5-� resistor. Hence,

vC = 5i = 10 V

(b) The energy in the capacitor is

wC = 1

2
Cv2

C = 1

2
(1)(102) = 50 J

and that in the inductor is

wL = 1

2
Li2

L = 1

2
(2)(22) = 4 J

P R A C T I C E P R O B L E M 6 . 1 0

Determine vC , iL, and the energy stored in the capacitor and inductor in
the circuit of Fig. 6.28 under dc conditions.

4 A 2 F3 Ω 1 Ω

0.25 HiL

vC

+

−

Figure 6.28 For Practice Prob. 6.10.

Answer: 3 V, 3 A, 9 J, 1.125 J.

http://www.mhhe.com/engcs/electrical/alexander/eetuts/tutorial/Tut7-1.htm
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6.5 SERIES AND PARALLEL INDUCTORS
Now that the inductor has been added to our list of passive elements, it is
necessary to extend the powerful tool of series-parallel combination. We
need to know how to find the equivalent inductance of a series-connected
or parallel-connected set of inductors found in practical circuits.

Consider a series connection of N inductors, as shown in Fig.
6.29(a), with the equivalent circuit shown in Fig. 6.29(b). The inductors
have the same current through them. Applying KVL to the loop,

v = v1 + v2 + v3 + · · · + vN (6.25)

L1

(a)

L2 L3 LN

(b)

Leq

i

i

v

+

−

v

+

−

+ −v1
+ −v2

+ −v3
+ −vN

. . .

Figure 6.29 (a) A series connection of N

inductors, (b) equivalent circuit for the
series inductors.

Substituting vk = Lk di/dt results in

v = L1
di

dt
+ L2

di

dt
+ L3

di

dt
+ · · · + LN

di

dt

= (L1 + L2 + L3 + · · · + LN)
di

dt

=
(

N∑
k=1

Lk

)
di

dt
= Leq

di

dt

(6.26)

where

Leq = L1 + L2 + L3 + · · · + LN (6.27)

Thus,

The equivalent inductance of series-connected inductors is the
sum of the individual inductances.

Inductors in series are combined in exactly the same way as resistors in
series.

(a)

(b)

Leq

i

v

+

−

v

+

−
L1 L2 L3 LN

i

i1 i2 i3 iN

Figure 6.30 (a) A parallel connection of N

inductors, (b) equivalent circuit for the parallel
inductors.

We now consider a parallel connection of N inductors, as shown
in Fig. 6.30(a), with the equivalent circuit in Fig. 6.30(b). The inductors
have the same voltage across them. Using KCL,

i = i1 + i2 + i3 + · · · + iN (6.28)

But ik = 1

Lk

∫ t

t0

v dt + ik(t0); hence,

i = 1

L1

∫ t

t0

v dt + i1(t0) + 1

L2

∫ t

t0

v dt + i2(t0)

+ · · · + 1

LN

∫ t

t0

v dt + iN (t0)

=
(

1

L1
+ 1

L2
+ · · · + 1

LN

)∫ t

t0

v dt + i1(t0) + i2(t0)

+ · · · + iN (t0)

=
(

N∑
k=1

1

Lk

)∫ t

t0

v dt +
N∑

k=1

ik(t0) = 1

Leq

∫ t

t0

v dt + i(t0)

(6.29)
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where

1

Leq
= 1

L1
+ 1

L2
+ 1

L3
+ · · · + 1

LN

(6.30)

The initial current i(t0) through Leq at t = t0 is expected by KCL to be
the sum of the inductor currents at t0. Thus, according to Eq. (6.29),

i(t0) = i1(t0) + i2(t0) + · · · + iN (t0)

According to Eq. (6.30),

The equivalent inductance of parallel inductors is the reciprocal of the sum of the
reciprocals of the individual inductances.

Note that the inductors in parallel are combined in the same way as resis-
tors in parallel.

For two inductors in parallel (N = 2), Eq. (6.30) becomes

1

Leq
= 1

L1
+ 1

L2
or Leq = L1L2

L1 + L2
(6.31)

It is appropriate at this point to summarize the most important character-
istics of the three basic circuit elements we have studied. The summary
is given in Table 6.1.

TABLE 6.1 Important characteristics of the basic elements.†

Relation Resistor (R) Capacitor (C) Inductor (L)

v-i: v = iR v = 1

C

∫ t

t0

i dt + v(t0) v = L
di

dt

i-v: i = v/R i = C
dv

dt
i = 1

L

∫ t

t0

i dt + i(t0)

p or w: p = i2R = v2

R
w = 1

2
Cv2 w = 1

2
Li2

Series: Req = R1 + R2 Ceq = C1C2

C1 + C2
Leq = L1 + L2

Parallel: Req = R1R2

R1 + R2
Ceq = C1 + C2 Leq = L1L2

L1 + L2

At dc: Same Open circuit Short circuit

Circuit variable
that cannot
change abruptly: Not applicable v i

†Passive sign convention is assumed.

E X A M P L E 6 . 1 1

Find the equivalent inductance of the circuit shown in Fig. 6.31.
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4 H 20 H

8 H 10 H

12 H7 H
Leq

Figure 6.31 For Example 6.11.

Solution:

The 10-H, 12-H, and 20-H inductors are in series; thus, combining them
gives a 42-H inductance. This 42-H inductor is in parallel with the 7-H
inductor so that they are combined, to give

7 × 42

7 + 42
= 6 H

This 6-H inductor is in series with the 4-H and 8-H inductors. Hence,

Leq = 4 + 6 + 8 = 18 H

P R A C T I C E P R O B L E M 6 . 1 1

Calculate the equivalent inductance for the inductive ladder network in
Fig. 6.32.

20 mH 100 mH 40 mH

30 mH 20 mH40 mH50 mH
Leq

Figure 6.32 For Practice Prob. 6.11.

Answer: 25 mH.

E X A M P L E 6 . 1 2

For the circuit in Fig. 6.33, i(t) = 4(2 − e−10t ) mA. If i2(0) = −1 mA,
find: (a) i1(0); (b) v(t), v1(t), and v2(t); (c) i1(t) and i2(t).

4 H

12 H4 Hv

+

−

v2

v1
+

+ −

−

i

i1 i2

Figure 6.33 For Example 6.12.

Solution:

(a) From i(t) = 4(2 − e−10t ) mA, i(0) = 4(2 − 1) = 4 mA. Since i =
i1 + i2,

i1(0) = i(0) − i2(0) = 4 − (−1) = 5 mA

(b) The equivalent inductance is

Leq = 2 + 4 ‖ 12 = 2 + 3 = 5 H

Thus,

v(t) = Leq
di

dt
= 5(4)(−1)(−10)e−10t mV = 200e−10t mV

and

v1(t) = 2
di

dt
= 2(−4)(−10)e−10t mV = 80e−10t mV

Since v = v1 + v2,

v2(t) = v(t) − v1(t) = 120e−10t mV



CHAPTER 6 Capacitors and Inductors 219

(c) The current i1 is obtained as

i1(t) = 1

4

∫ t

0
v2 dt + i1(0) = 120

4

∫ t

0
e−10t dt + 5 mA

= −3e−10t
∣∣t
0 + 5 mA = −3e−10t + 3 + 5 = 8 − 3e−10t mA

Similarly,

i2(t) = 1

12

∫ t

0
v2 dt + i2(0) = 120

12

∫ t

0
e−10t dt − 1 mA

= −e−10t
∣∣t
0 − 1 mA = −e−10t + 1 − 1 = −e−10t mA

Note that i1(t) + i2(t) = i(t).

P R A C T I C E P R O B L E M 6 . 1 2

In the circuit of Fig. 6.34, i1(t) = 0.6e−2t A. If i(0) = 1.4 A, find:
(a) i2(0); (b) i2(t) and i(t); (c) v(t), v1(t), and v2(t).

3 H

6 H
8 Hv

+

−

v2

+

−

i

i1

i2

+ −v1

Figure 6.34 For Practice Prob. 6.12.

Answer: (a) 0.8 A, (b) (−0.4 + 1.2e−2t ) A, (−0.4 + 1.8e−2t ) A,
(c) −7.2e−2t V, −28.8e−2t V, −36e−2t V.

†6.6 APPLICATIONS
Circuit elements such as resistors and capacitors are commercially avail-
able in either discrete form or integrated-circuit (IC) form. Unlike ca-
pacitors and resistors, inductors with appreciable inductance are difficult
to produce on IC substrates. Therefore, inductors (coils) usually come
in discrete form and tend to be more bulky and expensive. For this rea-
son, inductors are not as versatile as capacitors and resistors, and they
are more limited in applications. However, there are several applications
in which inductors have no practical substitute. They are routinely used
in relays, delays, sensing devices, pick-up heads, telephone circuits, ra-
dio and TV receivers, power supplies, electric motors, microphones, and
loudspeakers, to mention a few.

Capacitors and inductors possess the following three special prop-
erties that make them very useful in electric circuits:

1. The capacity to store energy makes them useful as temporary
voltage or current sources. Thus, they can be used for
generating a large amount of current or voltage for a short
period of time.

2. Capacitors oppose any abrupt change in voltage, while
inductors oppose any abrupt change in current. This property
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makes inductors useful for spark or arc suppression and for
converting pulsating dc voltage into relatively smooth dc
voltage.

3. Capacitors and inductors are frequency sensitive. This
property makes them useful for frequency discrimination.

The first two properties are put to use in dc circuits, while the third
one is taken advantage of in ac circuits. We will see how useful these
properties are in later chapters. For now, consider three applications
involving capacitors and op amps: integrator, differentiator, and analog
computer.

6 . 6 . 1 I n t e g r a to r
Important op amp circuits that use energy-storage elements include inte-
grators and differentiators. These op amp circuits often involve resistors
and capacitors; inductors (coils) tend to be more bulky and expensive.

The op amp integrator is used in numerous applications, especially
in analog computers, to be discussed in Section 6.6.3.

An integrator is an op amp circuit whose output is proportional
to the integral of the input signal.

R1

Rf

i1 v1

i2

vi

+

−

vo

+

−

v2

0 A

0 V

+

−

+

−

(a)

R

a

C

iR

iC

vi

+

−

vo

+

−

+

−

(b)

1

Figure 6.35 Replacing the feedback resistor
in the inverting amplifier in (a) produces an
integrator in (b).

If the feedback resistor Rf in the familiar inverting amplifier of
Fig. 6.35(a) is replaced by a capacitor, we obtain an ideal integrator, as
shown in Fig. 6.35(b). It is interesting that we can obtain a mathematical
representation of integration this way. At node a in Fig. 6.35(b),

iR = iC (6.32)

But

iR = vi

R
, iC = −C

dvo

dt

Substituting these in Eq. (6.32), we obtain

vi

R
= −C

dvo

dt
(6.33a)

dvo = − 1

RC
vi dt (6.33b)

Integrating both sides gives

vo(t) − vo(0) = − 1

RC

∫ t

0
vi(t) dt (6.34)

To ensure that vo(0) = 0, it is always necessary to discharge the integra-
tor’s capacitor prior to the application of a signal. Assuming vo(0) = 0,

vo = − 1

RC

∫ t

0
vi(t) dt (6.35)

which shows that the circuit in Fig. 6.35(b) provides an output voltage
proportional to the integral of the input. In practice, the op amp integrator
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requires a feedback resistor to reduce dc gain and prevent saturation. Care
must be taken that the op amp operates within the linear range so that it
does not saturate.

E X A M P L E 6 . 1 3

If v1 = 10 cos 2t mV and v2 = 0.5t mV, find vo in the op amp circuit in
Fig. 6.36. Assume that the voltage across the capacitor is initially zero.

vo

v1

v2

2 mF
3 MΩ

100 kΩ

+
−

Figure 6.36 For Example 6.13.

Solution:

This is a summing integrator, and

vo = − 1

R1C

∫
v1 dt − 1

R2C

∫
v2 dt

= − 1

3 × 106 × 2 × 10−6

∫ t

0
10 cos 2t dt

− 1

100 × 103 × 2 × 10−6

∫ t

0
0.5t dt

= −1

6

10

2
sin 2t − 1

0.2

0.5t2

2
= −0.833 sin 2t − 1.25t2 mV

P R A C T I C E P R O B L E M 6 . 1 3

The integrator in Fig. 6.35 has R = 25 k�, C = 10 µF. Determine the
output voltage when a dc voltage of 10 mV is applied at t = 0. Assume
that the op amp is initially nulled.

Answer: −40t mV.

6 . 6 . 2 D i f f e r en t i a to r

A differentiator is an op amp circuit whose output is proportional to
the rate of change of the input signal.

R

a

CiC

iR

vi

+

−
vo

+

−

+
−

Figure 6.37 An op amp differentiator.

In Fig. 6.35(a), if the input resistor is replaced by a capacitor, the
resulting circuit is a differentiator, shown in Fig. 6.37. Applying KCL at
node a,

iR = iC (6.36)

But

iR = −vo

R
, iC = C

dvi

dt

Substituting these in Eq. (6.36) yields

vo = −RC
dvi

dt
(6.37)

showing that the output is the derivative of the input. Differentiator cir-
cuits are electronically unstable because any electrical noise within the
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circuit is exaggerated by the differentiator. For this reason, the differen-
tiator circuit in Fig. 6.37 is not as useful and popular as the integrator. It
is seldom used in practice.

E X A M P L E 6 . 1 4

Sketch the output voltage for the circuit in Fig. 6.38(a), given the input
voltage in Fig. 6.38(b). Take vo = 0 at t = 0.

vo
vi

+

−

(a)

(b)

+
−

0.2 mF

5 kΩ

vi

86420

4

t (ms)

+
−

Figure 6.38 For Example 6.14.

Solution:

This is a differentiator with

RC = 5 × 103 × 0.2 × 10−6 = 10−3 s

For 0 < t < 4 ms, we can express the input voltage in Fig. 6.38(b) as

vi =
{

2t 0 < t < 2 ms
8 − 2t 2 < t < 4 ms

This is repeated for 4 < t < 8. Using Eq. (6.37), the output is obtained
as

vo = −RC
dvi

dt
=
{−2 mV 0 < t < 2 ms

2 mV 2 < t < 4 ms

Thus, the output is as sketched in Fig. 6.39.

vi (mV)

8642

2

0

−2

t (ms)

Figure 6.39 Output of the circuit in Fig. 6.38(a).

P R A C T I C E P R O B L E M 6 . 1 4

The differentiator in Fig. 6.37 has R = 10 k� and C = 2 µF. Given that
vi = 3t V, determine the output vo.

Answer: −60 mV.

6 . 6 . 3 Ana lo g Compu te r
Op amps were initially developed for electronic analog computers. Ana-
log computers can be programmed to solve mathematical models of me-
chanical or electrical systems. These models are usually expressed in
terms of differential equations.

To solve simple differential equations using the analog computer
requires cascading three types of op amp circuits: integrator circuits,
summing amplifiers, and inverting/noninverting amplifiers for negative/
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positive scaling. The best way to illustrate how an analog computer solves
a differential equation is with an example.

Suppose we desire the solution x(t) of the equation

a
d2x

dt2
+ b

dx

dt
+ cx = f (t), t > 0 (6.38)

where a, b, and c are constants, and f (t) is an arbitrary forcing function.
The solution is obtained by first solving the highest-order derivative term.
Solving for d2x/dt2 yields

d2x

dt2
= f (t)

a
− b

a

dx

dt
− c

a
x (6.39)

To obtain dx/dt , the d2x/dt2 term is integrated and inverted. Finally, to
obtain x, the dx/dt term is integrated and inverted. The forcing function
is injected at the proper point. Thus, the analog computer for solving Eq.
(6.38) is implemented by connecting the necessary summers, inverters,
and integrators. A plotter or oscilloscope may be used to view the output
x, or dx/dt , or d2x/dt2, depending on where it is connected in the
system.

Although the above example is on a second-order differential equa-
tion, any differential equation can be simulated by an analog computer
comprising integrators, inverters, and inverting summers. But care must
be exercised in selecting the values of the resistors and capacitors, to
ensure that the op amps do not saturate during the solution time
interval.

The analog computers with vacuum tubes were built in the 1950s
and 1960s. Recently their use has declined. They have been superseded
by modern digital computers. However, we still study analog computers
for two reasons. First, the availability of integrated op amps has made
it possible to build analog computers easily and cheaply. Second, un-
derstanding analog computers helps with the appreciation of the digital
computers.

E X A M P L E 6 . 1 5

Design an analog computer circuit to solve the differential equation:

d2vo

dt2
+ 2

dvo

dt
+ vo = 10 sin 4t t > 0

subject to vo(0) = −4, v′
o(0) = 1, where the prime refers to the time

derivative.

Solution:

We first solve for the second derivative as

d2vo

dt2
= 10 sin 4t − 2

dvo

dt
− vo (6.15.1)

Solving this requires some mathematical operations, including summing,
scaling, and integration. Integrating both sides of Eq. (6.15.1) gives

dvo

dt
= −

∫ t

0

(
−10 sin 4t + 2

dvo

dt
+ vo

)
+ v′

o(0) (6.15.2)
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where v′
o(0) = 1. We implement Eq. (6.15.2) using the summing inte-

grator shown in Fig. 6.40(a). The values of the resistors and capacitors
have been chosen so that RC = 1 for the term

− 1

RC

∫ t

0
vo dt

Other terms in the summing integrator of Eq. (6.15.2) are implemented
accordingly. The initial condition dvo(0)/dt = 1 is implemented by
connecting a 1-V battery with a switch across the capacitor as shown in
Fig. 6.40(a).

(a)

1 mF1 MΩ

1 V

0.6 MΩ

1 MΩ
dvo

dt
dvo

dt

dvo

dt

t = 0

–10 sin (4t)

vo

1 mF

1 MΩ 1 V

0.5 MΩ

1 MΩ

t = 0

10 sin (4t)

vo

(b)

1 mF

4 V

1 MΩ
1 MΩdvo

dt

t = 0

−vo
vo

1 MΩ

(c)

1 mF

4 V

1 MΩ 1 MΩ

t = 0

vo

1 MΩ

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+ −

+ −

+ −
+ −

Figure 6.40 For Example 6.15.

The next step is to obtain vo by integrating dvo/dt and inverting
the result,

vo = −
∫ t

0

(
−dvo

dt

)
dt + v(0) (6.15.3)

This is implemented with the circuit in Fig. 6.40(b) with the battery giving
the initial condition of −4 V. We now combine the two circuits in Fig.
6.40 (a) and (b) to obtain the complete circuit shown in Fig. 6.40(c). When
the input signal 10 sin 4t is applied, we open the switches at t = 0 to obtain
the output waveform vo, which may be viewed on an oscilloscope.
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P R A C T I C E P R O B L E M 6 . 1 5

Design an analog computer circuit to solve the differential equation:

d2vo

dt2
+ 3

dvo

dt
+ 2vo = 4 cos 10t t > 0

subject to vo(0) = 2, v′
o(0) = 0.

Answer: See Fig. 6.41, where RC = 1 s.

d2v

dt2

d2v

dt2

cos (10t)

2 V
t = 0

v

+
−

C

R
R

2

R

C

R

R

R

R
3

R
4  

+
−

+
−

+
−

+
−

+
−

R
R

Figure 6.41 For Practice Prob. 6.15.

6.7 SUMMARY
1. The current through a capacitor is directly proportional to the time

rate of change of the voltage across it.

i = C
dv

dt

The current through a capacitor is zero unless the voltage is
changing. Thus, a capacitor acts like an open circuit to a dc source.

2. The voltage across a capacitor is directly proportional to the time
integral of the current through it.

v = 1

C

∫ t

−∞
i dt = 1

C

∫ t

t0

i dt + i(t0)

The voltage across a capacitor cannot change instantly.

3. Capacitors in series and in parallel are combined in the same way as
conductances.
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4. The voltage across an inductor is directly proportional to the time
rate of change of the current through it.

v = L
di

dt

The voltage across the inductor is zero unless the current is chang-
ing. Thus an inductor acts like a short circuit to a dc source.

5. The current through an inductor is directly proportional to the time
integral of the voltage across it.

i = 1

L

∫ t

−∞
v dt = 1

L

∫ t

t0

v dt + v(t0)

The current through an inductor cannot change instantly.

6. Inductors in series and in parallel are combined in the same way
resistors in series and in parallel are combined.

7. At any given time t , the energy stored in a capacitor is 1
2Cv2, while

the energy stored in an inductor is 1
2Li2.

8. Three application circuits, the integrator, the differentiator, and the
analog computer, can be realized using resistors, capacitors, and op
amps.

R E V I EW QU E S T I ON S

6.1 What charge is on a 5-F capacitor when it is
connected across a 120-V source?
(a) 600 C (b) 300 C
(c) 24 C (d) 12 C

6.2 Capacitance is measured in:
(a) coulombs (b) joules
(c) henrys (d) farads

6.3 When the total charge in a capacitor is doubled, the
energy stored:
(a) remains the same (b) is halved
(c) is doubled (d) is quadrupled

6.4 Can the voltage waveform in Fig. 6.42 be associated
with a capacitor?
(a) Yes (b) No

0
21

10

−10

t

v(t)

Figure 6.42 For Review Question 6.4.

6.5 The total capacitance of two 40-mF series-connected
capacitors in parallel with a 4-mF capacitor is:
(a) 3.8 mF (b) 5 mF (c) 24 mF
(d) 44 mF (e) 84 mF

6.6 In Fig. 6.43, if i = cos 4t and v = sin 4t , the
element is:
(a) a resistor (b) a capacitor (c) an inductor

v +
−

i

Element

Figure 6.43 For Review Question 6.6.

6.7 A 5-H inductor changes its current by 3 A in 0.2 s.
The voltage produced at the terminals of the
inductor is:
(a) 75 V (b) 8.888 V
(c) 3 V (d) 1.2 V

6.8 If the current through a 10-mH inductor increases
from zero to 2 A, how much energy is stored in the
inductor?
(a) 40 mJ (b) 20 mJ
(c) 10 mJ (d) 5 mJ
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6.9 Inductors in parallel can be combined just like
resistors in parallel.
(a) True (b) False

6.10 For the circuit in Fig. 6.44, the voltage divider
formula is:

(a) v1 = L1 + L2

L1
vs (b) v1 = L1 + L2

L2
vs

(c) v1 = L2

L1 + L2
vs (d) v1 = L1

L1 + L2
vs

vs
+
− v2

v1

L1

L2

+

−

+ −

Figure 6.44 For Review Question 6.10.

Answers: 6.1a, 6.2d, 6.3d, 6.4b, 6.5c, 6.6b, 6.7a, 6.8b, 6.9a, 6.10d.

P RO B L E M S

Section 6.2 Capacitors

6.1 If the voltage across a 5-F capacitor is 2te−3t V, find
the current and the power.

6.2 A 40-µF capacitor is charged to 120 V and is then
allowed to discharge to 80 V. How much energy is
lost?

6.3 In 5 s, the voltage across a 40-mF capacitor changes
from 160 V to 220 V. Calculate the average current
through the capacitor.

6.4 A current of 6 sin 4t A flows through a 2-F
capacitor. Find the voltage v(t) across the capacitor
given that v(0) = 1 V.

6.5 If the current waveform in Fig. 6.45 is applied to a
20-µF capacitor, find the voltage v(t) across the
capacitor. Assume that v(0) = 0.

0
21

4

t

i(t)

Figure 6.45 For Prob. 6.5.

6.6 The voltage waveform in Fig. 6.46 is applied across
a 30-µF capacitor. Draw the current waveform
through it.

v(t) V

0
6 8 10 1242

10

−10

t (ms)

Figure 6.46 For Prob. 6.6.

6.7 At t = 0, the voltage across a 50-mF capacitor is
10 V. Calculate the voltage across the capacitor for
t > 0 when current 4t mA flows through it.

6.8 The current through a 0.5-F capacitor is
6(1 − e−t ) A. Determine the voltage and power at
t = 2 s. Assume v(0) = 0.

6.9 If the voltage across a 2-F capacitor is as shown in
Fig. 6.47, find the current through the capacitor.

v (t) (V)

0

5

3 4 5 6 721

10

t (s)

Figure 6.47 For Prob. 6.9.

6.10 The current through an initially uncharged 4-µF
capacitor is shown in Fig. 6.48. Find the voltage
across the capacitor for 0 < t < 3.
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0
2 31

40

−40

t (s)

i(t) (mA)

Figure 6.48 For Prob. 6.10.

6.11 A voltage of 60 cos 4πt V appears across the
terminals of a 3-mF capacitor. Calculate the current
through the capacitor and the energy stored in it
from t = 0 to t = 0.125 s.

6.12 Find the voltage across the capacitors in the circuit
of Fig. 6.49 under dc conditions.

3 Ω

60 V

20 Ω

10 Ω 50 Ω

v2v1C1 C2

+
−

+

−

+

−

Figure 6.49 For Prob. 6.12.

Section 6.3 Series and Parallel Capacitors

6.13 What is the total capacitance of four 30-mF
capacitors connected in:
(a) parallel (b) series

6.14 Two capacitors (20 µF and 30 µF) are connected to
a 100-V source. Find the energy stored in each
capacitor if they are connected in:
(a) parallel (b) series

6.15 Determine the equivalent capacitance for each of the
circuits in Fig. 6.50.

4 F

4 F

6 F3 F

12 F

(a)

6 F

4 F 2 F5 F

(b)

2 F

3 F

(c)

6 F3 F

4 F

Figure 6.50 For Prob. 6.15.

6.16 Find Ceq for the circuit in Fig. 6.51.

30 mF

5 mF 40 mF15 mF

20 mF

Ceq

Figure 6.51 For Prob. 6.16.

6.17 Calculate the equivalent capacitance for the circuit
in Fig. 6.52. All capacitances are in mF.

48

1

15

5

6 6
2

3

Ceq

Figure 6.52 For Prob. 6.17.

6.18 Determine the equivalent capacitance at terminals
a-b of the circuit in Fig. 6.53.

6 mF 4 mF5 mF

3 mF 12 mF2 mF

a

b

Figure 6.53 For Prob. 6.18.
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6.19 Obtain the equivalent capacitance of the circuit in
Fig. 6.54.

40 mF

20 mF

a b

35 mF 5 mF

10 mF

15 mF 15 mF

10 mF

Figure 6.54 For Prob. 6.19.

6.20 For the circuit in Fig. 6.55, determine:
(a) the voltage across each capacitor,
(b) the energy stored in each capacitor.

2 mF
6 mF

4 mF

3 mF

+
−120 V

Figure 6.55 For Prob. 6.20.

6.21 Repeat Prob. 6.20 for the circuit in Fig. 6.56.

60 mF 20 mF

14 mF 80 mF30 mF+
−90 V

Figure 6.56 For Prob. 6.21.

6.22 (a) Show that the voltage-division rule for two
capacitors in series as in Fig. 6.57(a) is

v1 = C2

C1 + C2
vs, v2 = C1

C1 + C2
vs

assuming that the initial conditions are zero.

C1is C2

(b)

C1

vs

v1

v2 C2

(a)

+
−

+

−

+ − i1 i2

Figure 6.57 For Prob. 6.22.

(b) For two capacitors in parallel as in Fig. 6.57(b),
show that the current-division rule is

i1 = C1

C1 + C2
is , i2 = C2

C1 + C2
is

assuming that the initial conditions are zero.

6.23 Three capacitors, C1 = 5 µF, C2 = 10 µF, and
C3 = 20 µF, are connected in parallel across a
150-V source. Determine:
(a) the total capacitance,
(b) the charge on each capacitor,
(c) the total energy stored in the parallel

combination.

6.24 The three capacitors in the previous problem are
placed in series with a 200-V source. Compute:
(a) the total capacitance,
(b) the charge on each capacitor,
(c) the total energy stored in the series combination.

6.25∗ Obtain the equivalent capacitance of the network
shown in Fig. 6.58.

30 mF

20 mF10 mF

50 mF40 mF

Figure 6.58 For Prob. 6.25.

6.26 Determine Ceq for each circuit in Fig. 6.59.

∗An asterisk indicates a challenging problem.
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C

C
C

C

CCeq

(a)

C

CC

C

Ceq

(b)

Figure 6.59 For Prob. 6.26.

6.27 Assuming that the capacitors are initially uncharged,
find vo(t) in the circuit in Fig. 6.60.

is +

−
vo(t)

6 mF

3 mF

is (mA)

0
21

60

t (s)

Figure 6.60 For Prob. 6.27.

6.28 If v(0) = 0, find v(t), i1(t), and i2(t) in the circuit in
Fig. 6.61.

i1

is

i2

v6 mF 4 mF

is (mA)

53 41 2

20

0

−20

t

+

−

Figure 6.61 For Prob. 6.28.

6.29 For the circuit in Fig. 6.62, let v = 10e−3t V and
v1(0) = 2 V. Find:

(a) v2(0) (b) v1(t) and v2(t)

(c) i(t), i1(t), and i2(t)

50 mF30 mF

20 mF

v

+

−

v2

v1

i

−+
+

−

i1 i2

Figure 6.62 For Prob. 6.29.

Section 6.4 Inductors

6.30 The current through a 10-mH inductor is 6e−t/2 A.
Find the voltage and the power at t = 3 s.

6.31 The current in a coil increases uniformly from 0.4 to
1 A in 2 s so that the voltage across the coil is
60 mV. Calculate the inductance of the coil.

6.32 The current through a 0.25-mH inductor is
12 cos 2t A. Determine the terminal voltage and the
power.

6.33 The current through a 12-mH inductor is
4 sin 100t A. Find the voltage, and also the energy
stored in the inductor for 0 < t < π/200 s.

6.34 The current through a 40-mH inductor is

i(t) =
{

0, t < 0
te−2t A, t > 0

Find the voltage v(t).

6.35 The voltage across a 2-H inductor is 20(1 − e−2t ) V.
If the initial current through the inductor is 0.3 A,
find the current and the energy stored in the inductor
at t = 1 s.

6.36 If the voltage waveform in Fig. 6.63 is applied
across the terminals of a 5-H inductor, calculate the
current through the inductor. Assume i(0) = −1 A.

v (t) (V) 

5421 3

10

0
t

Figure 6.63 For Prob. 6.36.

6.37 The current in an 80-mH inductor increases from 0
to 60 mA. How much energy is stored in the
inductor?

6.38 A voltage of (4 + 10 cos 2t) V is applied to a 5-H
inductor. Find the current i(t) through the inductor
if i(0) = −1 A.
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6.39 If the voltage waveform in Fig. 6.64 is applied to a
10-mH inductor, find the inductor current i(t).
Assume i(0) = 0.

v(t)

0
21

5

–5

t

Figure 6.64 For Prob. 6.39.

6.40 Find vC , iL, and the energy stored in the capacitor
and inductor in the circuit of Fig. 6.65 under dc
conditions.

5 Ω

2 Ω

4 Ω

2 F

3 A 0.5 H

vC

+

−

iL

Figure 6.65 For Prob. 6.40.

6.41 For the circuit in Fig. 6.66, calculate the value of R
that will make the energy stored in the capacitor the
same as that stored in the inductor under dc
conditions.

R

2 Ω5 A 4 mH

160 mF

Figure 6.66 For Prob. 6.41.

6.42 Under dc conditions, find the voltage across the
capacitors and the current through the inductors in
the circuit of Fig. 6.67.

6 Ω

4 Ω

30 V +
− C1

L1

C2 L2

Figure 6.67 For Prob. 6.42.

Section 6.5 Series and Parallel Inductors

6.43 Find the equivalent inductance for each circuit in
Fig. 6.68.

5 H 1 H

4 H 4 H6 H

(a)

1 H 2 H

6 H 4 H12 H

(b)

6 H

2 H

4 H

3 H

(c)

Figure 6.68 For Prob. 6.43.

6.44 Obtain Leq for the inductive circuit of Fig. 6.69. All
inductances are in mH.

65

4

12

10

3

Figure 6.69 For Prob. 6.44.
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6.45 Determine Leq at terminals a-b of the circuit in Fig.
6.70.

60 mH

20 mH

30 mH

25 mH

10 mH

a b

Figure 6.70 For Prob. 6.45.

6.46 Find Leq at the terminals of the circuit in Fig. 6.71.

8 mH6 mH

8 mH

12 mH

4 mH
6 mH

5 mH

8 mH10 mH

a

b

Figure 6.71 For Prob. 6.46.

6.47 Find the equivalent inductance looking into the
terminals of the circuit in Fig. 6.72.

9 H

6 H4 H

3 H12 H

10 H

a b

Figure 6.72 For Prob. 6.47.

6.48 Determine Leq in the circuit in Fig. 6.73.

L

L

L

L

L

L

Leq

Figure 6.73 For Prob. 6.48.

6.49 Find Leq in the circuit in Fig. 6.74.

L

L

L

L L

Leq

L

L
L

Figure 6.74 For Prob. 6.49.

6.50∗ Determine Leq that may be used to represent the
inductive network of Fig. 6.75 at the terminals.

3 H

4 H

5 H
Leq

+ −
i

a

b

dt
di2

Figure 6.75 For Prob. 6.50.

6.51 The current waveform in Fig. 6.76 flows through a
3-H inductor. Sketch the voltage across the inductor
over the interval 0 < t < 6 s.

i(t)

0

2

3 4 5 621 t

Figure 6.76 For Prob. 6.51.
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6.52 (a) For two inductors in series as in Fig. 6.77(b),
show that the current-division principle is

v1 = L1

L1 + L2
vs, v2 = L2

L1 + L2
vs

assuming that the initial conditions are zero.
(b) For two inductors in parallel as in Fig. 6.77(b),

show that the current-division principle is

i1 = L2

L1 + L2
is , i2 = L1

L1 + L2
is

assuming that the initial conditions are zero.

vs
+
−

+

−
v2

+ −v1

L1

L2

(a)(a)

is L1 L2

(b)

i1 i2

Figure 6.77 For Prob. 6.52.

6.53 In the circuit of Fig. 6.78, let is(t) = 6e−2t mA,
t ≥ 0 and i1(0) = 4 mA. Find:
(a) i2(0),
(b) i1(t) and i2(t), t > 0,
(c) v1(t) and v2(t), t > 0,
(d) the energy in each inductor at t = 0.5 s.

is(t)

i1 i2

20 mH30 mH

10 mH

+ −v1

v2

+

−

Figure 6.78 For Prob. 6.53.

6.54 The inductors in Fig. 6.79 are initially charged and
are connected to the black box at t = 0. If
i1(0) = 4 A, i2(0) = −2 A, and v(t) = 50e−200t mV,
t ≥ 0, find:
(a) the energy initially stored in each inductor,
(b) the total energy delivered to the black box from

t = 0 to t = ∞,
(c) i1(t) and i2(t), t ≥ 0,
(d) i(t), t ≥ 0.

i1 i2

20 H5 Hv

+

−

Black box

i(t)

t = 0

Figure 6.79 For Prob. 6.54.

6.55 Find i and v in the circuit of Fig. 6.80 assuming that
i(0) = 0 = v(0).

40 mH60 mH

20 mH

16 mH

v
+

−
12 sin 4t mV +

−

i

Figure 6.80 For Prob. 6.55.

Section 6.6 Applications

6.56 An op amp integrator has R = 50 k� and
C = 0.04 µF. If the input voltage is
vi = 10 sin 50t mV, obtain the output voltage.

6.57 A 10-V dc voltage is applied to an integrator with
R = 50 k�, C = 100 µF at t = 0. How long will it
take for the op amp to saturate if the saturation
voltages are +12 V and −12 V? Assume that the
initial capacitor voltage was zero.

6.58 An op amp integrator with R = 4 M� and
C = 1 µF has the input waveform shown in Fig.
6.81. Plot the output waveform.

vi (mV)

0

20

10

–10

–20

3 4 5 621 t (ms)

Figure 6.81 For Prob. 6.58.

6.59 Using a single op amp, a capacitor, and resistors of
100 k� or less, design a circuit to implement

vo = −50
∫ t

0
vi(t) dt

Assume vo = 0 at t = 0.
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6.60 Show how you would use a single op amp to
generate

vo = −
∫ t

0
(v1 + 4v2 + 10v3) dt

If the integrating capacitor is C = 2 µF, obtain other
component values.

6.61 At t = 1.5 ms, calculate vo due to the cascaded
integrators in Fig. 6.82. Assume that the integrators
are reset to 0 V at t = 0.

1 V

2 mF

10 kΩ
20 kΩ

vo

+
−

0.5 mF

+

−

+
−

+
−

Figure 6.82 For Prob. 6.61.

6.62 Show that the circuit in Fig. 6.83 is a noninverting
integrator.

vo

vi
+
−

+

−

R

R

R

C

R

+
−

Figure 6.83 For Prob. 6.62.

6.63 The triangular waveform in Fig. 6.84(a) is applied to
the input of the op amp differentiator in Fig. 6.84(b).
Plot the output.

(a)

vi(t)

0

10

3 421 t (ms)

–10

vo
vi

+
−

+

−

20 kΩ

0.01 mF

(b)

+
−

Figure 6.84 For Prob. 6.63.

6.64 An op amp differentiator has R = 250 k� and
C = 10 µF. The input voltage is a ramp
r(t) = 12t mV. Find the output voltage.

6.65 A voltage waveform has the following
characteristics: a positive slope of 20 V/s for 5 ms
followed by a negative slope of 10 V/s for 10 ms. If
the waveform is applied to a differentiator with
R = 50 k�, C = 10 µF, sketch the output voltage
waveform.

6.66∗ The output vo of the op amp circuit of Fig. 6.85(a) is
shown in Fig. 6.85(b). Let Ri = Rf = 1 M� and
C = 1 µF. Determine the input voltage waveform
and sketch it.

(b)

(a)

0

4

3 421 t (ms)

−4

vo
vi

vo

Ri

C

Rf

+
−

+

−

+
−

Figure 6.85 For Prob. 6.66.

6.67 Design an analog computer to simulate

d2vo

dt2
+ 2

dvo

dt
+ vo = 10 sin 2t

where v0(0) = 2 and v′
0(0) = 0.
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6.68 Design an analog computer to solve the differential
equation

di(t)

dt
+ 3i(t) = 2 t > 0

and assume that i(0) = 1 mA.

6.69 Figure 6.86 presents an analog computer designed to
solve a differential equation. Assuming f (t) is
known, set up the equation for f (t).

vo(t)

−f (t)

1 mF
1 mF

1 MΩ
1 MΩ

1 MΩ

100 kΩ 200 kΩ

500 kΩ

100 kΩ

+
−

+
−

+
−

+
−

Figure 6.86 For Prob. 6.69.

COM P R E H EN S I V E P RO B L E M S

6.70 Your laboratory has available a large number of
10-µF capacitors rated at 300 V. To design a
capacitor bank of 40-µF rated at 600 V, how many
10-µF capacitors are needed and how would you
connect them?

6.71 When a capacitor is connected to a dc source, its
voltage rises from 20 V to 36 V in 4 µs with an
average charging current of 0.6 A. Determine the
value of the capacitance.

6.72 A square-wave generator produces the voltage
waveform shown in Fig. 6.87(a). What kind of a
circuit component is needed to convert the voltage
waveform to the triangular current waveform shown
in Fig. 6.87(b)? Calculate the value of the
component, assuming that it is initially uncharged.

v (V)

0

5

−5

3 421 t (ms)

(a)

(b)

i (A)

4

3 4210 t (ms)

Figure 6.87 For Prob. 6.72.

6.73 In an electric power plant substation, a capacitor
bank is made of 10 capacitor strings connected in
parallel. Each string consists of eight 1000-µF
capacitors connected in series, with each capacitor
charged to 100 V.
(a) Calculate the total capacitance of the bank.
(b) Determine the total energy stored in the bank.

http://www.mhhe.com/engcs/electrical/alexander/student/olc/ch06_ppt.htm
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