
CHAPTER 16 - FOURIER SERIES

List of topics for this chapter :
Trigonometric Fourier Series
Symmetry Considerations
Circuit Applications
Average Power and RMS Values
Exponential Fourier Series
Fourier Analysis with PSpice

TRIGONOMETRIC FOURIER SERIES

Problem 16.1 [16.5] A voltage source has a periodic waveform defined over its period
as V)t2(t)t(v −π=  for π<< 2t0 .  Find the Fourier series for this voltage.
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Problem 16.2 Evaluate each of the following functions and determine if it is periodic.  If it
is periodic, find its period.

(a) f(t)  =  cos(πt/2) + sin(πt) + 3 cos(2πt)

(b) y(t)  =  sin( 3 πt) + cos(πt)
(c) g(t)  =  4 + sin(ωt)
(d)  h(t)  =  2sin(5t)cos(3t)
(e) z(t)  =  e–tsin(πt)

(a) This is a periodic function with a period of 4 seconds.
(b) This is a nonperiodic function since the first term has an irrational

multiplier of πt while the second has a rational multiplier.
(c) The integral of this function goes to infinity because of the dc function.

Thus this is a nonperiodic function.
(d) This is a periodic function with a period of π seconds.
(e) This is a nonperiodic function since it continuously changes as t goes to

infinity.

SYMMETRY CONSIDERATIONS

Problem 16.3 Determine the type of function represented by the signal in Figure 16.1.
Also, determine the Fourier series expansion.

Figure 16.1

This is an odd function since f(t)  =  –f(–t).  Therefore, ao  =  0  =  an.
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Problem 16.4 [16.15] Calculate the Fourier coefficients for the function in Figure 16.1.

Figure 16.1

This is an even function, therefore 0bn = .  In addition, 4T =  and 20 ω=ω .
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CIRCUIT APPLICATIONS

Problem 16.5 Figure 16.1 and vs(t) is periodic with a period equal to 2π msec and has the
following values during that period,

Vs(t)  =  10 volts          0 < t < π msec
          =    0 π msec < t < 2π msec

Figure 16.1

In addition, L  =  1 H and C  =  1 µF.  Determine the  value of vo(t).

The first step is to find the Fourier series for vs(t).  an  =  0  since this is an odd function.
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Now let us look at the first three terms.

Clearly, for the dc term, Vo  =   0 since the inductor looks like a short for dc.  For all the other
values of n,
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For n  =  1, ω  =  1000.  Therefore, Vo  =   20/π.

For n  =  3, ω  =  3000.  Therefore,
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This value of impedance is so much smaller than the value of the resistor that we can neglect this
term and all of the others.  Thus,

vo(t)  =  volts)t1000sin(
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Does this answer make any sense?  If we look at this term and the values of L and C, we find that
L and C are in parallel resonance when ω  =  1000.  Thus, this circuit is actually a filter that filters
out a single sine wave from the input signal.

Problem 16.6 Refer to Figure 16.1.  Change the value of L to (1/9) H. with everything else
remaining the same.  Now solve for vo(t).  Everything remains the same as Problem 16.5 up till
equation (a).  The new value of L changes equation (a) as shown below.

Thus, our new equation for Vo  =  
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Clearly, this can be considered to be equal to zero.
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For all other values of n, Vo is essentially equal to zero.  Therefore,
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Problem 16.7 [16.25] If sv  in the circuit of Figure 16.1 is the same as function )t(f 2

in Figure 16.2, determine the dc component and the first three nonzero harmonics of )t(vo .

Figure 16.1

+

vo

−−−−

1 H

1 ΩΩΩΩ

1 ΩΩΩΩ

+
−

vs 1 F



Figure 16.2

The signal is even, hence, 0bn = .  In addition, 3T = , 320 π=ω .
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AVERAGE POWER AND RMS VALUES

Problem 16.8 Given the signal shown in Figure 16.6, determine the exact value of the rms
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value of this wave shape.  Using the Fourier series of the wave shape, calculate the estimated rms
value using all the terms up to and including n  =  5.

We can use the definition of Vrms to calculate the rms value of the wave shape.
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Thus, Vrms  =  100   =  10 volts.

We now proceed to the Fourier series.  Please note, this is just the Fourier series of a standard
square wave.
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          =  (40/π)(0.7587)  =   9.66 volts.

Although this answer is only within 5%, it is still significant enough for some cases.  The reason
that this is not closer to the actual value of 10 volts is that the coefficients for the Fourier series of
a square wave do not decrease in value as fast as they do for other signals.



Problem 16.9 Given the triangular voltage wave shape shown in Figure 16.7, determine the
exact value of the rms voltage.  Then, calculate the approximate value of the rms value using the
Fourier terms up to and including n  =  5.

First we will calculate the exact value using,
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Therefore, Vrms  =  10/ 3   =  5.774 volts.

Now we can solve the Fourier series.  The student can verify that the Fourier series for this wave
shape is given by,
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Clearly, this compares very favorably to the exact value of 5.774.  The reason for this is because
the Fourier series for a triangular wave shape converges very quickly.
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Problem 16.10 [16.31] The voltage across the terminals of a circuit is

V)45t120cos(10)45t120cos(2030)t(v °−π+°+π+=

The current entering the terminal at higher potential is

A)60t120cos(2)10t120cos(46)t(i °−π−°+π+=

Find:
(a) the rms value of the voltage,
(b) the rms value of the current,
(c) the average value of the power absorbed by the circuit.

(a) =+







+=++= ∑
∞

=
)1020(

2

1
)30()ba(

2

1
aV 222

1n

2
n

2
n

2
0rms V91.33

(b) =+







+= )24(
2

1
6I 222

rms A782.6

(c) ∑ Φ−Θ+= )cos(IV
2

1
IVP nnnndcdc

)]6045-cos()2)(10()1045cos()4)(20[()5.0()60)(30(P °+°−°−°+=
=−+= 659.976.32180P W1.203

Problem 16.11 Determine the rms value of a triangular wave shape with a peak-to-peak
value of 40 volts.  If this wave shape is placed across a 10-ohm resistor, determine the average
power dissipated by that resistor.

As we saw in problem 16.9, the rms value of a triangular wave shape is given by,

Vrms  =  Vpeak/ 3   =  20/ 3   =  11.547 volts.

Average power  =  Vrms
2/R  =  (11.547)2/10  =  13.333 watts.

EXPONENTIAL FOURIER SERIES

Problem 16.12 Given the sawtooth voltage wave shape shown in Figure 16.8, find its
exponential (complex) Fourier series.
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FOURIER ANALYSIS WITH PSPICE

Problem 16.14 [16.51] Calculate the Fourier coefficients of the signal in Figure 16.1
using PSpice.

Figure 16.1

The Schematic is shown below.  In the Transient dialog box, we type “Print step = 0.01s, Final
time = 36s, Center frequency = 0.1667, Output vars = v(1),” and click Enable Fourier.
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After simulation, the output file includes the following Fourier components,

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(1)

DC COMPONENT =   2.000396E+00

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 1.667E–01 2.432E+00 1.000E+00 –8.996E+01 0.000E+00
2 3.334E–01 6.576E–04 2.705E–04 –8.932E+01 6.467E–01
3 5.001E–01 5.403E–01 2.222E–01 9.011E+01 1.801E+02
4 6.668E–01 3.343E–04 1.375E–04 9.134E+01 1.813E+02
5 8.335E–01 9.716E–02 3.996E–02 –8.982E+01 1.433E–01
6 1.000E+00 7.481E–06 3.076E–06 –9.000E+01 –3.581E–02
7 1.167E+00 4.968E–02 2.043E–02 –8.975E+01 2.173E–01
8 1.334E+00 1.613E–04 6.634E–05 –8.722E+01 2.748E+00
9 1.500E+00 6.002E–02 2.468E–02 9.032E+01 1.803E+02
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