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C H A P T E R

CIRCUIT THEOREMS

4

Our schools had better get on with what is their overwhelmingly most
important task: teaching their charges to express themselves clearly and
with precision in both speech and writing; in other words, leading them
toward mastery of their own language. Failing that, all their instruction
in mathematics and science is a waste of time.

—Joseph Weizenbaum, M.I.T.

Enhancing Your Career
Enhancing Your Communication Skill Taking a course
in circuit analysis is one step in preparing yourself for a
career in electrical engineering. Enhancing your commu-
nication skill while in school should also be part of that
preparation, as a large part of your time will be spent com-
municating.

People in industry have complained again and again
that graduating engineers are ill-prepared in written and
oral communication. An engineer who communicates ef-
fectively becomes a valuable asset.

You can probably speak or write easily and quickly.
But how effectively do you communicate? The art of ef-
fective communication is of the utmost importance to your
success as an engineer.

For engineers in industry, communication is key to
promotability. Consider the result of a survey of U.S. cor-
porations that asked what factors influence managerial pro-
motion. The survey includes a listing of 22 personal qualities
and their importance in advancement. You may be surprised
to note that “technical skill based on experience” placed
fourth from the bottom. Attributes such as self-confidence,
ambition, flexibility, maturity, ability to make sound deci-
sions, getting things done with and through people, and ca-
pacity for hard work all ranked higher. At the top of the list
was “ability to communicate.” The higher your professional
career progresses, the more you will need to communicate.
Therefore, you should regard effective communication as an
important tool in your engineering tool chest.

Learning to communicate effectively is a lifelong
task you should always work toward. The best time to begin
is while still in school. Continually look for opportunities
to develop and strengthen your reading, writing, listening,

Ability to work hard

Working and
getting along

with people

Maturity

Appearance

Problem-solvingskills

Self-determination

Collegeeducation

Effectivecommunication

Ability to communicate effectively is regarded by many as the most
important step to an executive promotion.
(Adapted from J. Sherlock, A Guide to Technical Communication.
Boston, MA: Allyn and Bacon, 1985, p. 7.)

and speaking skills. You can do this through classroom
presentations, team projects, active participation in student
organizations, and enrollment in communication courses.
The risks are less now than later in the workplace.
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4.1 INTRODUCTION
A major advantage of analyzing circuits using Kirchhoff’s laws as we did
in Chapter 3 is that we can analyze a circuit without tampering with its
original configuration. A major disadvantage of this approach is that, for
a large, complex circuit, tedious computation is involved.

The growth in areas of application of electric circuits has led to an
evolution from simple to complex circuits. To handle the complexity,
engineers over the years have developed some theorems to simplify cir-
cuit analysis. Such theorems include Thevenin’s and Norton’s theorems.
Since these theorems are applicable to linear circuits, we first discuss the
concept of circuit linearity. In addition to circuit theorems, we discuss the
concepts of superposition, source transformation, and maximum power
transfer in this chapter. The concepts we develop are applied in the last
section to source modeling and resistance measurement.

4.2 LINEARITY PROPERTY
Linearity is the property of an element describing a linear relationship
between cause and effect. Although the property applies to many circuit
elements, we shall limit its applicability to resistors in this chapter. The
property is a combination of both the homogeneity (scaling) property and
the additivity property.

The homogeneity property requires that if the input (also called the
excitation) is multiplied by a constant, then the output (also called the
response) is multiplied by the same constant. For a resistor, for example,
Ohm’s law relates the input i to the output v,

v = iR (4.1)

If the current is increased by a constant k, then the voltage increases
correspondingly by k, that is,

kiR = kv (4.2)

The additivity property requires that the response to a sum of inputs
is the sum of the responses to each input applied separately. Using the
voltage-current relationship of a resistor, if

v1 = i1R (4.3a)

and

v2 = i2R (4.3b)

then applying (i1 + i2) gives

v = (i1 + i2)R = i1R + i2R = v1 + v2 (4.4)

We say that a resistor is a linear element because the voltage-current
relationship satisfies both the homogeneity and the additivity properties.

In general, a circuit is linear if it is both additive and homogeneous.
A linear circuit consists of only linear elements, linear dependent sources,
and independent sources.
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A linear circuit is one whose output is linearly related
(or directly proportional) to its input.

Throughout this book we consider only linear circuits. Note that since
p = i2R = v2/R (making it a quadratic function rather than a linear
one), the relationship between power and voltage (or current) is nonlinear.
Therefore, the theorems covered in this chapter are not applicable to
power.

To understand the linearity principle, consider the linear circuit
shown in Fig. 4.1. The linear circuit has no independent sources inside
it. It is excited by a voltage source vs , which serves as the input. The
circuit is terminated by a load R. We may take the current i through R as
the output. Suppose vs = 10 V gives i = 2 A. According to the linearity
principle, vs = 1 V will give i = 0.2 A. By the same token, i = 1 mA
must be due to vs = 5 mV.

vs R

i

+
− Linear circuit

Figure 4.1 A linear circuit with input vs and
output i.

E X A M P L E 4 . 1

For the circuit in Fig. 4.2, find io when vs = 12 V and vs = 24 V.

+
−vs

vx

3vx

i1 i2

2 Ω 8 Ω

4 Ω
6 Ω

4 Ω

–
+

+ − io

Figure 4.2 For Example 4.1.

Solution:

Applying KVL to the two loops, we obtain

12i1 − 4i2 + vs = 0 (4.1.1)

− 4i1 + 16i2 − 3vx − vs = 0 (4.1.2)

But vx = 2i1. Equation (4.1.2) becomes

−10i1 + 16i2 − vs = 0 (4.1.3)

Adding Eqs. (4.1.1) and (4.1.3) yields

2i1 + 12i2 = 0 �⇒ i1 = −6i2
Substituting this in Eq. (4.1.1), we get

−76i2 + vs = 0 �⇒ i2 = vs

76
When vs = 12 V,

io = i2 = 12

76
A

When vs = 24 V,

io = i2 = 24

76
A

showing that when the source value is doubled, io doubles.

P R A C T I C E P R O B L E M 4 . 1

For the circuit in Fig. 4.3, find vo when is = 15 and is = 30 A.

is

6 Ω

4 Ω2 Ω
+

−
vo

Figure 4.3 For Practice Prob. 4.1.

Answer: 10 V, 20 V.
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E X A M P L E 4 . 2

Assume Io = 1 A and use linearity to find the actual value of Io in the
circuit in Fig. 4.4.

Io

I4 I2

I3

V2
6 Ω 2 Ω2

5 Ω7 Ω

I1

V1
3 Ω1

4 ΩIs = 15 A

Figure 4.4 For Example 4.2.

Solution:

If Io = 1 A, then V1 = (3 + 5)Io = 8 V and I1 = V1/4 = 2 A. Applying
KCL at node 1 gives

I2 = I1 + Io = 3 A

V2 = V1 + 2I2 = 8 + 6 = 14 V, I3 = V2

7
= 2 A

Applying KCL at node 2 gives

I4 = I3 + I2 = 5 A

Therefore, Is = 5 A. This shows that assuming Io = 1 gives Is = 5 A;
the actual source current of 15 A will give Io = 3 A as the actual value.

P R A C T I C E P R O B L E M 4 . 2

Assume that Vo = 1 V and use linearity to calculate the actual value of
Vo in the circuit of Fig. 4.5.

10 V

12 Ω

8 Ω5 Ω+
−

+

−
Vo

Figure 4.5 For Practice Prob. 4.2

Answer: 4 V.

4.3 SUPERPOSITION
If a circuit has two or more independent sources, one way to determine
the value of a specific variable (voltage or current) is to use nodal or mesh
analysis as in Chapter 3. Another way is to determine the contribution of
each independent source to the variable and then add them up. The latter
approach is known as the superposition.
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The idea of superposition rests on the linearity property. Superposition is not limited to circuit analysis but
is applicable in many fields where cause and effect
bear a linear relationship to one another.The superposition principle states that the voltage across (or current through) an

element in a linear circuit is the algebraic sum of the voltages across (or currents
through) that element due to each independent source acting alone.

The principle of superposition helps us to analyze a linear circuit with
more than one independent source by calculating the contribution of each
independent source separately. However, to apply the superposition prin-
ciple, we must keep two things in mind:

1. We consider one independent source at a time while all other
independent sources are turned off. This implies that we
replace every voltage source by 0 V (or a short circuit), and
every current source by 0 A (or an open circuit). This way we
obtain a simpler and more manageable circuit.

Other terms such as killed, made inactive, dead-
ened, or set equal to zero are often used to con-
vey the same idea.

2. Dependent sources are left intact because they are controlled
by circuit variables.

With these in mind, we apply the superposition principle in three steps:

S t e p s t o A p p l y S u p e r p o s i t i o n P r i n c i p l e :
1. Turn off all independent sources except one source. Find the

output (voltage or current) due to that active source using nodal or
mesh analysis.

2. Repeat step 1 for each of the other independent sources.

3. Find the total contribution by adding algebraically all the
contributions due to the independent sources.

Analyzing a circuit using superposition has one major disadvan-
tage: it may very likely involve more work. If the circuit has three
independent sources, we may have to analyze three simpler circuits each
providing the contribution due to the respective individual source. How-
ever, superposition does help reduce a complex circuit to simpler circuits
through replacement of voltage sources by short circuits and of current
sources by open circuits.

Keep in mind that superposition is based on linearity. For this
reason, it is not applicable to the effect on power due to each source,
because the power absorbed by a resistor depends on the square of the
voltage or current. If the power value is needed, the current through (or
voltage across) the element must be calculated first using superposition.

For example, when current i1 flows through re-
sistor R, the power is p1 = Ri21, and when current
i2 flows through R, the power is p2 = Ri22. If cur-
rent i1 + i2 flows through R, the power absorb-
ed is p3 = R(i1 + i2)2 = Ri21 + Ri22 + 2Ri1i2 �=
p1 + p2. Thus, the power relation is nonlinear.

E X A M P L E 4 . 3

Use the superposition theorem to find v in the circuit in Fig. 4.6.

6 V v 3 A

8 Ω

4 Ω+
−

+

−

Figure 4.6 For Example 4.3.

Solution:

Since there are two sources, let

v = v1 + v2

where v1 and v2 are the contributions due to the 6-V voltage source and
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the 3-A current source, respectively. To obtain v1, we set the current
source to zero, as shown in Fig. 4.7(a). Applying KVL to the loop in Fig.
4.7(a) gives

12i1 − 6 = 0 �⇒ i1 = 0.5 A

Thus,

v1 = 4i1 = 2 V

We may also use voltage division to get v1 by writing

v1 = 4

4 + 8
(6) = 2 V

To get v2, we set the voltage source to zero, as in Fig. 4.7(b). Using
current division,

i3 = 8

4 + 8
(3) = 2 A

Hence,

v2 = 4i3 = 8 V

And we find

v = v1 + v2 = 2 + 8 = 10 V

+
−6 V i1

8 Ω

v14 Ω

(a)

+

−

3 A

8 Ω

v2

i2

i3

4 Ω

(b)

+

−

Figure 4.7 For Example 4.3:
(a) calculating v1, (b) calculating v2.

P R A C T I C E P R O B L E M 4 . 3

Using the superposition theorem, find vo in the circuit in Fig. 4.8.3 Ω 5 Ω

2 Ω 8 A 20 V+
−

+

−
vo

Figure 4.8 For Practice Prob. 4.3.

Answer: 12 V.

E X A M P L E 4 . 4

Find io in the circuit in Fig. 4.9 using superposition.

4 A

20 V

3 Ω

5 Ω

1 Ω

2 Ω

4 Ω

+ −

5io

io

+ −

Figure 4.9 For Example 4.4.

Solution:

The circuit in Fig. 4.9 involves a dependent source, which must be left
intact. We let

io = i ′o + i ′′o (4.4.1)

where i ′o and i ′′o are due to the 4-A current source and 20-V voltage source
respectively. To obtain i ′o, we turn off the 20-V source so that we have
the circuit in Fig. 4.10(a). We apply mesh analysis in order to obtain i ′o.
For loop 1,

i1 = 4 A (4.4.2)
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4 A

3 Ω

5 Ω

1 Ω

2 Ω

4 Ω

+ −

i1 i3i ′o

5i ′o

0

(a)

3 Ω

5 Ω

1 Ω

2 Ω

4 Ω

+ −
i ′′o

5i ′′o

(b)

20 V

+ −

i1

i2

i3
i5

i4

Figure 4.10 For Example 4.4: Applying superposition to (a) obtain i′0, (b) obtain i′′0 .

For loop 2,

−3i1 + 6i2 − 1i3 − 5i ′o = 0 (4.4.3)

For loop 3,

−5i1 − 1i2 + 10i3 + 5i ′o = 0 (4.4.4)

But at node 0,

i3 = i1 − i ′o = 4 − i ′o (4.4.5)

Substituting Eqs. (4.4.2) and (4.4.5) into Eqs. (4.4.3) and (4.4.4) gives
two simultaneous equations

3i2 − 2i ′o = 8 (4.4.6)

i2 + 5i ′o = 20 (4.4.7)

which can be solved to get

i ′o = 52

17
A (4.4.8)

To obtain i ′′o , we turn off the 4-A current source so that the circuit
becomes that shown in Fig. 4.10(b). For loop 4, KVL gives

6i4 − i5 − 5i ′′o = 0 (4.4.9)

and for loop 5,

−i4 + 10i5 − 20 + 5i ′′o = 0 (4.4.10)

But i5 = −i ′′o . Substituting this in Eqs. (4.4.9) and (4.4.10) gives

6i4 − 4i ′′o = 0 (4.4.11)

i4 + 5i ′′o = −20 (4.4.12)

which we solve to get
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i ′′o = −60

17
A (4.4.13)

Now substituting Eqs. (4.4.8) and (4.4.13) into Eq. (4.4.1) gives

io = − 8

17
= −0.4706 A

P R A C T I C E P R O B L E M 4 . 4

Use superposition to find vx in the circuit in Fig. 4.11.vx20 Ω

0.1vx4 Ω10 V 2 A+
−

Figure 4.11 For Practice Prob. 4.4.

Answer: vx = 12.5 V.

E X A M P L E 4 . 5

For the circuit in Fig. 4.12, use the superposition theorem to find i.
+ −

+
−

24 V 8 Ω

4 Ω

3 Ω 3 A12 V

4 Ω

i

Figure 4.12 For Example 4.5.

Solution:

In this case, we have three sources. Let

i = i1 + i2 + i3

where i1, i2, and i3 are due to the 12-V, 24-V, and 3-A sources respectively.
To get i1, consider the circuit in Fig. 4.13(a). Combining 4� (on the right-
hand side) in series with 8 � gives 12 �. The 12 � in parallel with 4 �

gives 12 × 4/16 = 3 �. Thus,

i1 = 12

6
= 2 A

To get i2, consider the circuit in Fig. 4.13(b). Applying mesh analysis,

16ia − 4ib + 24 = 0 �⇒ 4ia − ib = −6 (4.5.1)

7ib − 4ia = 0 �⇒ ia = 7

4
ib (4.5.2)

Substituting Eq. (4.5.2) into Eq. (4.5.1) gives

i2 = ib = −1

To get i3, consider the circuit in Fig. 4.13(c). Using nodal analysis,

3 = v2

8
+ v2 − v1

4
�⇒ 24 = 3v2 − 2v1 (4.5.3)

v2 − v1

4
= v1

4
+ v1

3
�⇒ v2 = 10

3
v1 (4.5.4)

Substituting Eq. (4.5.4) into Eq. (4.5.3) leads to v1 = 3 and
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8 Ω

4 Ω 4 Ω

3 Ω12 V +
−

3 Ω

3 Ω12 V +
−

(a)

8 Ω24 V

4 Ω 4 Ω

3 Ω

(b)

+ −

ib

ia

8 Ω

4 Ω 4 Ω

3 Ω 3 A

v1
v2

(c)

i2

i2 i2

i1

Figure 4.13 For Example 4.5.

i3 = v1

3
= 1 A

Thus,

i = i1 + i2 + i3 = 2 − 1 + 1 = 2 A

P R A C T I C E P R O B L E M 4 . 5

Find i in the circuit in Fig. 4.14 using the superposition principle.

16 V

8 Ω
2 Ω

4 A

6 Ω

+
− 12 V+

−

i

Figure 4.14 For Practice Prob. 4.5.

Answer: 0.75 A.

4.4 SOURCE TRANSFORMATION
We have noticed that series-parallel combination and wye-delta transfor-
mation help simplify circuits. Source transformation is another tool for
simplifying circuits. Basic to these tools is the concept of equivalence.
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We recall that an equivalent circuit is one whose v-i characteristics are
identical with the original circuit.

In Section 3.6, we saw that node-voltage (or mesh-current) equa-
tions can be obtained by mere inspection of a circuit when the sources are
all independent current (or all independent voltage) sources. It is there-
fore expedient in circuit analysis to be able to substitute a voltage source
in series with a resistor for a current source in parallel with a resistor, or
vice versa, as shown in Fig. 4.15. Either substitution is known as a source
transformation.

+
−vs

R
a

b

is R

a

b

Figure 4.15 Transformation of independent sources.

A source transformation is the process of replacing a voltage source vs
in series with a resistor R by a current source is in parallel

with a resistor R, or vice versa.

The two circuits in Fig. 4.15 are equivalent—provided they have the same
voltage-current relation at terminals a-b. It is easy to show that they are
indeed equivalent. If the sources are turned off, the equivalent resistance
at terminals a-b in both circuits is R. Also, when terminals a-b are short-
circuited, the short-circuit current flowing from a to b is isc = vs/R in
the circuit on the left-hand side and isc = is for the circuit on the right-
hand side. Thus, vs/R = is in order for the two circuits to be equivalent.
Hence, source transformation requires that

vs = isR or is = vs

R
(4.5)

Source transformation also applies to dependent sources, provided
we carefully handle the dependent variable. As shown in Fig. 4.16, a
dependent voltage source in series with a resistor can be transformed to
a dependent current source in parallel with the resistor or vice versa.

vs

R
a

b

is R

a

b

+
−

Figure 4.16 Transformation of dependent sources.

Like the wye-delta transformation we studied in Chapter 2, a source
transformation does not affect the remaining part of the circuit. When
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applicable, source transformation is a powerful tool that allows circuit
manipulations to ease circuit analysis. However, we should keep the
following points in mind when dealing with source transformation.

1. Note from Fig. 4.15 (or Fig. 4.16) that the arrow of the current
source is directed toward the positive terminal of the voltage
source.

2. Note from Eq. (4.5) that source transformation is not possible
when R = 0, which is the case with an ideal voltage source.
However, for a practical, nonideal voltage source, R �= 0.
Similarly, an ideal current source with R = ∞ cannot be
replaced by a finite voltage source. More will be said on ideal
and nonideal sources in Section 4.10.1.

E X A M P L E 4 . 6

Use source transformation to find vo in the circuit in Fig. 4.17. 2 Ω 3 Ω

12 V8 Ω4 Ω 3 A +
−

+

−
vo

Figure 4.17 For Example 4.6.

Solution:

We first transform the current and voltage sources to obtain the circuit in
Fig. 4.18(a). Combining the 4-� and 2-� resistors in series and trans-
forming the 12-V voltage source gives us Fig. 4.18(b). We now combine
the 3-� and 6-� resistors in parallel to get 2-�. We also combine the
2-A and 4-A current sources to get a 2-A source. Thus, by repeatedly
applying source transformations, we obtain the circuit in Fig. 4.18(c).

4 Ω 2 Ω

4 A8 Ω 3 Ω12 V +
−

(a)

+

−
vo

4 A8 Ω6 Ω 3 Ω2 A

(b)

2 A8 Ω 2 Ω

(c)

i
+

−
vo

+

−
vo

Figure 4.18 For Example 4.6.

We use current division in Fig. 4.18(c) to get

i = 2

2 + 8
(2) = 0.4

and

vo = 8i = 8(0.4) = 3.2 V
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Alternatively, since the 8-� and 2-� resistors in Fig. 4.18(c) are in
parallel, they have the same voltage vo across them. Hence,

vo = (8 ‖ 2)(2 A) = 8 × 2

10
(2) = 3.2 V

P R A C T I C E P R O B L E M 4 . 6

Find io in the circuit of Fig. 4.19 using source transformation.

4 Ω5 A

5 V

7 Ω 3 A3 Ω

1 Ω

6 Ω

− +
io

Figure 4.19 For Practice Prob. 4.6.

Answer: 1.78 A.

E X A M P L E 4 . 7

Find vx in Fig. 4.20 using source transformation.4 Ω

2 Ω
0.25vx

2 Ω6 V 18 V+
−

+
−vx

+

−

Figure 4.20 For Example 4.7.

Solution:

The circuit in Fig. 4.20 involves a voltage-controlled dependent current
source. We transform this dependent current source as well as the 6-V
independent voltage source as shown in Fig. 4.21(a). The 18-V volt-
age source is not transformed because it is not connected in series with
any resistor. The two 2-� resistors in parallel combine to give a 1-�
resistor, which is in parallel with the 3-A current source. The current is
transformed to a voltage source as shown in Fig. 4.21(b). Notice that the
terminals for vx are intact. Applying KVL around the loop in Fig. 4.21(b)
gives

−3 + 5i + vx + 18 = 0 (4.7.1)

18 V3 A

4 Ω

2 Ω2 Ω

+ −

+
−

(a)

18 V3 V

4 Ω1 Ω

vx

vx

+

−

+ −

+
−

+
−

(b)

i

+

−
vx

Figure 4.21 For Example 4.7: Applying source transformation to the circuit in Fig. 4.20.
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Applying KVL to the loop containing only the 3-V voltage source, the
1-� resistor, and vx yields

−3 + 1i + vx = 0 �⇒ vx = 3 − i (4.7.2)

Substituting this into Eq. (4.7.1), we obtain

15 + 5i + 3 − i = 0 �⇒ i = −4.5 A

Alternatively, we may apply KVL to the loop containing vx , the 4-�
resistor, the voltage-controlled dependent voltage source, and the 18-V
voltage source in Fig. 4.21(b). We obtain

−vx + 4i + vx + 18 = 0 �⇒ i = −4.5 A

Thus, vx = 3 − i = 7.5 V.

P R A C T I C E P R O B L E M 4 . 7

Use source transformation to find ix in the circuit shown in Fig. 4.22.

2ix

5 Ω

4 A 10 Ω
–
+

ix

Figure 4.22 For Practice Prob. 4.7.

Answer: 1.176 A.

4.5 THEVENIN’S THEOREM
It often occurs in practice that a particular element in a circuit is variable
(usually called the load) while other elements are fixed. As a typical
example, a household outlet terminal may be connected to different ap-
pliances constituting a variable load. Each time the variable element is
changed, the entire circuit has to be analyzed all over again. To avoid this
problem, Thevenin’s theorem provides a technique by which the fixed
part of the circuit is replaced by an equivalent circuit.

According to Thevenin’s theorem, the linear circuit in Fig. 4.23(a)
can be replaced by that in Fig. 4.23(b). (The load in Fig. 4.23 may be a
single resistor or another circuit.) The circuit to the left of the terminals
a-b in Fig. 4.23(b) is known as the Thevenin equivalent circuit; it was
developed in 1883 by M. Leon Thevenin (1857–1926), a French telegraph
engineer.

Linear 
two-terminal
circuit

Load

I a

b

V

+

−

(a)

Load

I a

b

V

+

−

(b)

+
−VTh

RTh

Figure 4.23 Replacing a linear two-terminal
circuit by its Thevenin equivalent: (a) original
circuit, (b) the Thevenin equivalent circuit.

Thevenin’s theorem states that a linear two-terminal circuit can be replaced
by an equivalent circuit consisting of a voltage source VTh in series with
a resistor RTh, where VTh is the open-circuit voltage at the terminals
and RTh is the input or equivalent resistance at the terminals when

the independent sources are turned off.

The proof of the theorem will be given later, in Section 4.7. Our
major concern right now is how to find the Thevenin equivalent voltage
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VTh and resistance RTh. To do so, suppose the two circuits in Fig. 4.23
are equivalent. Two circuits are said to be equivalent if they have the
same voltage-current relation at their terminals. Let us find out what will
make the two circuits in Fig. 4.23 equivalent. If the terminals a-b are
made open-circuited (by removing the load), no current flows, so that
the open-circuit voltage across the terminals a-b in Fig. 4.23(a) must be
equal to the voltage source VTh in Fig. 4.23(b), since the two circuits are
equivalent. Thus VTh is the open-circuit voltage across the terminals as
shown in Fig. 4.24(a); that is,

VTh = voc (4.6)

Linear 
two-terminal
circuit

a

b

voc

+

−

(a)

VTh = voc

Linear circuit with
all independent
sources set equal
to zero

a

b

R in

(b)

RTh = R in

Figure 4.24 Finding VTh and RTh.

Again, with the load disconnected and terminalsa-b open-circuited,
we turn off all independent sources. The input resistance (or equivalent
resistance) of the dead circuit at the terminals a-b in Fig. 4.23(a) must
be equal to RTh in Fig. 4.23(b) because the two circuits are equivalent.
Thus, RTh is the input resistance at the terminals when the independent
sources are turned off, as shown in Fig. 4.24(b); that is,

RTh = Rin (4.7)

To apply this idea in finding the Thevenin resistance RTh, we need
to consider two cases.

CA S E 1 If the network has no dependent sources, we turn off all in-
dependent sources. RTh is the input resistance of the network looking
between terminals a and b, as shown in Fig. 4.24(b).

CA S E 2 If the network has dependent sources, we turn off all inde-
pendent sources. As with superposition, dependent sources are not to be
turned off because they are controlled by circuit variables. We apply a
voltage source vo at terminals a and b and determine the resulting cur-
rent io. Then RTh = vo/io, as shown in Fig. 4.25(a). Alternatively, we
may insert a current source io at terminals a-b as shown in Fig. 4.25(b)
and find the terminal voltage vo. Again RTh = vo/io. Either of the two
approaches will give the same result. In either approach we may assume
any value of vo and io. For example, we may use vo = 1 V or io = 1 A,
or even use unspecified values of vo or io.

vo

Circuit with
all independent
sources set equal
to zero

a

b

(a)

RTh = 

+
−

vo

io

io

iovo

Circuit with
all independent
sources set equal
to zero

a

b

(b)

RTh = 
vo

io

+

−

Figure 4.25 Finding RTh when circuit
has dependent sources.

Later wewill see that an alternative way of finding
RTh is RTh = voc/isc. It often occurs that RTh takes a negative value. In this case, the

negative resistance (v = −iR) implies that the circuit is supplying power.
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This is possible in a circuit with dependent sources; Example 4.10 will
illustrate this.

Thevenin’s theorem is very important in circuit analysis. It helps
simplify a circuit. A large circuit may be replaced by a single independent
voltage source and a single resistor. This replacement technique is a
powerful tool in circuit design.

As mentioned earlier, a linear circuit with a variable load can be re-
placed by the Thevenin equivalent, exclusive of the load. The equivalent
network behaves the same way externally as the original circuit. Con-
sider a linear circuit terminated by a load RL, as shown in Fig. 4.26(a).
The current IL through the load and the voltage VL across the load are
easily determined once the Thevenin equivalent of the circuit at the load’s
terminals is obtained, as shown in Fig. 4.26(b). From Fig. 4.26(b), we
obtain

IL = VTh

RTh + RL

(4.8a)

VL = RLIL = RL

RTh + RL

VTh (4.8b)

Note from Fig. 4.26(b) that the Thevenin equivalent is a simple voltage
divider, yielding VL by mere inspection.

Linear 
circuit

a

b

(a)

RL

IL

a

b
(b)

RL

IL

+
−VTh

RTh

Figure 4.26 A circuit with a load:
(a) original circuit, (b) Thevenin
equivalent.

E X A M P L E 4 . 8

Find the Thevenin equivalent circuit of the circuit shown in Fig. 4.27, to
the left of the terminals a-b. Then find the current through RL = 6, 16,
and 36 �.

RL32 V 2 A

4 Ω 1 Ω

12 Ω+
−

a

b

Figure 4.27 For Example 4.8.

Solution:

We find RTh by turning off the 32-V voltage source (replacing it with
a short circuit) and the 2-A current source (replacing it with an open
circuit). The circuit becomes what is shown in Fig. 4.28(a). Thus,

RTh = 4 ‖ 12 + 1 = 4 × 12

16
+ 1 = 4 �

32 V 2 A

4 Ω 1 Ω

12 Ω+
− VTh

VTh

+

−

(b)

4 Ω 1 Ω

12 Ω

(a)

RTh i1 i2

Figure 4.28 For Example 4.8: (a) finding RTh, (b) finding VTh.

To find VTh, consider the circuit in Fig. 4.28(b). Applying mesh
analysis to the two loops, we obtain

−32 + 4i1 + 12(i1 − i2) = 0, i2 = −2 A
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Solving for i1, we get i1 = 0.5 A. Thus,

VTh = 12(i1 − i2) = 12(0.5 + 2.0) = 30 V

Alternatively, it is even easier to use nodal analysis. We ignore the 1-�
resistor since no current flows through it. At the top node, KCL gives

32 − VTh

4
+ 2 = VTh

12
or

96 − 3VTh + 24 = VTh �⇒ VTh = 30 V

as obtained before. We could also use source transformation to find VTh.
The Thevenin equivalent circuit is shown in Fig. 4.29. The current

through RL is

IL = VTh

RTh + RL

= 30

4 + RL

When RL = 6,

IL = 30

10
= 3 A

When RL = 16,

IL = 30

20
= 1.5 A

When RL = 36,

IL = 30

40
= 0.75 A

RL30 V

4 Ω

+
−

a

b

iL

Figure 4.29 The Thevenin
equivalent circuit for Example 4.8.

P R A C T I C E P R O B L E M 4 . 8

Using Thevenin’s theorem, find the equivalent circuit to the left of the
terminals in the circuit in Fig. 4.30. Then find i.

12 V 2 A

6 Ω 6 Ω

4 Ω 1 Ω+
−

a

b

i

Figure 4.30 For Practice Prob. 4.8.

Answer: VTh = 6 V, RTh = 3 �, i = 1.5 A.

E X A M P L E 4 . 9

Find the Thevenin equivalent of the circuit in Fig. 4.31.
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Solution:

This circuit contains a dependent source, unlike the circuit in the previ-
ous example. To find RTh, we set the independent source equal to zero
but leave the dependent source alone. Because of the presence of the
dependent source, however, we excite the network with a voltage source
vo connected to the terminals as indicated in Fig. 4.32(a). We may set
vo = 1 V to ease calculation, since the circuit is linear. Our goal is to find
the current io through the terminals, and then obtain RTh = 1/io. (Al-
ternatively, we may insert a 1-A current source, find the corresponding
voltage vo, and obtain RTh = vo/1.)

5 A

2 Ω

2vx

2 Ω

6 Ω4 Ω

a

b

− +

+

−
vx

Figure 4.31 For Example 4.9.

2 Ω

2vx

2 Ω

6 Ω4 Ω

a

b

− +

+
− vo = 1 V

io

(a)

i1

i2

(b)

5 A

2 Ω

2vx

2 Ω

6 Ω4 Ω

a

b

− +

voc

+

−

i3

i1 i2i3

+

−
vx

+

−
vx

Figure 4.32 Finding RTh and VTh for Example 4.9.

Applying mesh analysis to loop 1 in the circuit in Fig. 4.32(a) results
in

−2vx + 2(i1 − i2) = 0 or vx = i1 − i2

But −4i2 = vx = i1 − i2; hence,

i1 = −3i2 (4.9.1)

For loops 2 and 3, applying KVL produces

4i2 + 2(i2 − i1) + 6(i2 − i3) = 0 (4.9.2)

6(i3 − i2) + 2i3 + 1 = 0 (4.9.3)

Solving these equations gives

i3 = −1

6
A

But io = −i3 = 1/6 A. Hence,

RTh = 1 V

io
= 6 �

To getVTh, we find voc in the circuit of Fig. 4.32(b). Applying mesh
analysis, we get
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i1 = 5 (4.9.4)

− 2vx + 2(i3 − i2) = 0 �⇒ vx = i3 − i2 (4.9.5)

4(i2 − i1) + 2(i2 − i3) + 6i2 = 0

or

12i2 − 4i1 − 2i3 = 0 (4.9.6)

But 4(i1 − i2) = vx. Solving these equations leads to i2 = 10/3. Hence,

VTh = voc = 6i2 = 20 V

The Thevenin equivalent is as shown in Fig. 4.33.

20 V

6 Ω
a

b

+
−

Figure 4.33 The Thevenin
equivalent of the circuit in
Fig. 4.31.

P R A C T I C E P R O B L E M 4 . 9

Find the Thevenin equivalent circuit of the circuit in Fig. 4.34 to the left
of the terminals.

6 V

3 Ω5 Ω

4 Ω

a

b

1.5Ix
+
−

Ix

Figure 4.34 For Practice Prob. 4.9.

Answer: VTh = 5.33 V, RTh = 0.44 �.

E X A M P L E 4 . 1 0

Determine the Thevenin equivalent of the circuit in Fig. 4.35(a).

2ix 4 Ω 2 Ω

a

b

ix

vo

(a)

2ix io4 Ω 2 Ω

a

b

ix

(b)

Figure 4.35 For Example 4.10.

Solution:

Since the circuit in Fig. 4.35(a) has no independent sources, VTh = 0 V.
To findRTh, it is best to apply a current source io at the terminals as shown
in Fig. 4.35(b). Applying nodal analysis gives

io + ix = 2ix + vo

4
(4.10.1)

But

ix = 0 − vo

2
= −vo

2
(4.10.2)

Substituting Eq. (4.10.2) into Eq. (4.10.1) yields

io = ix + vo

4
= −vo

2
+ vo

4
= −vo

4
or vo = −4io

Thus,

RTh = vo

io
= −4 �

The negative value of the resistance tells us that, according to the passive
sign convention, the circuit in Fig. 4.35(a) is supplying power. Of course,
the resistors in Fig. 4.35(a) cannot supply power (they absorb power); it
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is the dependent source that supplies the power. This is an example of
how a dependent source and resistors could be used to simulate negative
resistance.

P R A C T I C E P R O B L E M 4 . 1 0

Obtain the Thevenin equivalent of the circuit in Fig. 4.36.

5 Ω 15 Ω

a

b

10 Ω
4vx

+ −
+

−
vx

Figure 4.36 For Practice Prob. 4.10.

Answer: VTh = 0 V, RTh = −7.5 �.

4.6 NORTON’S THEOREM
In 1926, about 43 years after Thevenin published his theorem, E. L.
Norton, an American engineer at Bell Telephone Laboratories, proposed
a similar theorem.

Norton’s theorem states that a linear two-terminal circuit can be replaced
by an equivalent circuit consisting of a current source IN in parallel with
a resistor RN, where IN is the short-circuit current through the terminals
and RN is the input or equivalent resistance at the terminals when the

independent sources are turned off.

Thus, the circuit in Fig. 4.37(a) can be replaced by the one in Fig. 4.37(b).

Linear 
two-terminal
circuit

a

b

(a)

(b)

RN

a

b

IN

Figure 4.37 (a) Original circuit,
(b) Norton equivalent circuit.

The proof of Norton’s theorem will be given in the next section. For
now, we are mainly concerned with how to get RN and IN . We find RN

in the same way we find RTh. In fact, from what we know about source
transformation, the Thevenin and Norton resistances are equal; that is,

RN = RTh (4.9)

To find the Norton current IN , we determine the short-circuit current
flowing from terminal a to b in both circuits in Fig. 4.37. It is evident
that the short-circuit current in Fig. 4.37(b) is IN . This must be the same
short-circuit current from terminal a to b in Fig. 4.37(a), since the two
circuits are equivalent. Thus,

IN = isc (4.10)

shown in Fig. 4.38. Dependent and independent sources are treated the
same way as in Thevenin’s theorem. Linear 

two-terminal
circuit

a

b

isc = IN

Figure 4.38 Finding Norton
current IN .

Observe the close relationship between Norton’s and Thevenin’s
theorems: RN = RTh as in Eq. (4.9), and

IN = VTh

RTh
(4.11)

http://www.mhhe.com/engcs/electrical/alexander/eetuts/tutorial/Thevenin.htm
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This is essentially source transformation. For this reason, source trans-
formation is often called Thevenin-Norton transformation.

The Thevenin and Norton equivalent circuits are
related by a source transformation.

Since VTh, IN , and RTh are related according to Eq. (4.11), to de-
termine the Thevenin or Norton equivalent circuit requires that we find:

• The open-circuit voltage voc across terminals a and b.

• The short-circuit current isc at terminals a and b.

• The equivalent or input resistance Rin at terminals a and b when
all independent sources are turned off.

We can calculate any two of the three using the method that takes the
least effort and use them to get the third using Ohm’s law. Example 4.11
will illustrate this. Also, since

VTh = voc (4.12a)

IN = isc (4.12b)

RTh = voc

isc
= RN (4.12c)

the open-circuit and short-circuit tests are sufficient to find any Thevenin
or Norton equivalent.

E X A M P L E 4 . 1 1

Find the Norton equivalent circuit of the circuit in Fig. 4.39.

2 A

8 Ω

8 Ω

5 Ω
4 Ω

12 V

a

b

+
−

Figure 4.39 For Example 4.11.

Solution:

We find RN in the same way we find RTh in the Thevenin equivalent cir-
cuit. Set the independent sources equal to zero. This leads to the circuit
in Fig. 4.40(a), from which we find RN . Thus,

RN = 5 ‖ (8 + 4 + 8) = 5 ‖ 20 = 20 × 5

25
= 4 �

To find IN , we short-circuit terminals a and b, as shown in Fig. 4.40(b).
We ignore the 5-� resistor because it has been short-circuited. Applying
mesh analysis, we obtain

i1 = 2 A, 20i2 − 4i1 − 12 = 0

From these equations, we obtain

i2 = 1 A = isc = IN

Alternatively, we may determine IN from VTh/RTh. We obtain VTh

as the open-circuit voltage across terminals a and b in Fig. 4.40(c). Using
mesh analysis, we obtain

i3 = 2 A

25i4 − 4i3 − 12 = 0 �⇒ i4 = 0.8 A

and

voc = VTh = 5i4 = 4 V
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2 A
5 Ω

4 Ω

12 V

a

b

+
−

isc = IN

(b)

2 A 5 Ω

4 Ω

12 V

a

b

+
−

(c)

8 Ω

5 Ω

a

b

4 Ω

(a)

RN

VTh = voc

+

−

i1

i3
i4

i2

8 Ω 8 Ω

8 Ω

8 Ω

8 Ω

Figure 4.40 For Example 4.11; finding: (a) RN , (b) IN = isc , (c) VTh = voc .

Hence,

IN = VTh

RTh
= 4

4
= 1 A

as obtained previously. This also serves to confirm Eq. (4.7) that RTh =
voc/isc = 4/1 = 4 �. Thus, the Norton equivalent circuit is as shown in
Fig. 4.41.

1 A 4 Ω

a

b

Figure 4.41 Norton equiva-
lent of the circuit in Fig. 4.39.

P R A C T I C E P R O B L E M 4 . 1 1

Find the Norton equivalent circuit for the circuit in Fig. 4.42.

4 A15 V 6 Ω

a

b

3 Ω

+
−

3 Ω

Figure 4.42 For Practice Prob. 4.11.

Answer: RN = 3 �, IN = 4.5 A.

E X A M P L E 4 . 1 2

Using Norton’s theorem, find RN and IN of the circuit in Fig. 4.43 at ter-
minals a-b.

Solution:

To find RN , we set the independent voltage source equal to zero and con-
nect a voltage source of vo = 1 V (or any unspecified voltage vo) to the
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terminals. We obtain the circuit in Fig. 4.44(a). We ignore the 4-� resistor
because it is short-circuited. Also due to the short circuit, the 5-� resistor,
the voltage source, and the dependent current source are all in parallel.
Hence, ix = vo/5 = 1/5 = 0.2. At node a, −io = ix + 2ix = 3ix = 0.6,
and

RN = vo

io
= 1

−0.6
= −1.67 �

5 Ω

2 Ix

10 V4 Ω

a

b

+
−

ix

Figure 4.43 For Example 4.12.

To find IN , we short-circuit terminalsa andb and find the current isc,
as indicated in Fig. 4.44(b). Note from this figure that the 4-� resistor, the
10-V voltage source, the 5-� resistor, and the dependent current source
are all in parallel. Hence,

ix = 10 − 0

5
= 2 A

At node a, KCL gives

isc = ix + 2ix = 2 + 4 = 6 A

Thus,

IN = 6 A

5 Ω

2ix

vo = 1 V

io
4 Ω

a

b

+
−

(a)

5 Ω

2ix

isc = IN4 Ω

a

b(b)

10 V+
−

ix ix

Figure 4.44 For Example 4.12: (a) finding RN , (b) finding IN .

P R A C T I C E P R O B L E M 4 . 1 2

Find the Norton equivalent circuit of the circuit in Fig. 4.45.

10 A

2vx

6 Ω 2 Ω

a

b

−+
+

−
vx

Figure 4.45 For Practice Prob. 4.12.

Answer: RN = 1 �, IN = 10 A.

†4.7 DERIVATIONS OF THEVENIN’S AND NORTON’S
THEOREMS

In this section, we will prove Thevenin’s and Norton’s theorems using
the superposition principle.
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Consider the linear circuit in Fig. 4.46(a). It is assumed that the cir-
cuit contains resistors, and dependent and independent sources. We have
access to the circuit via terminals a and b, through which current from
an external source is applied. Our objective is to ensure that the voltage-
current relation at terminals a and b is identical to that of the Thevenin
equivalent in Fig. 4.46(b). For the sake of simplicity, suppose the linear
circuit in Fig. 4.46(a) contains two independent voltage sources vs1 and
vs2 and two independent current sources is1 and is2. We may obtain any
circuit variable, such as the terminal voltage v, by applying superposition.
That is, we consider the contribution due to each independent source in-
cluding the external source i. By superposition, the terminal voltage v

is

i
Linear
circuit

a

b

(a)

i

a

b

(b)

v
+

−

v

+

−

VTh
+
−

RTh

Figure 4.46 Derivation of
Thevenin equivalent: (a) a
current-driven circuit, (b) its
Thevenin equivalent.

v = A0i + A1vs1 + A2vs2 + A3is1 + A4is2 (4.13)

where A0, A1, A2, A3, and A4 are constants. Each term on the right-hand
side of Eq. (4.13) is the contribution of the related independent source;
that is, A0i is the contribution to v due to the external current source i,
A1vs1 is the contribution due to the voltage source vs1, and so on. We
may collect terms for the internal independent sources together as B0, so
that Eq. (4.13) becomes

v = A0i + B0 (4.14)

where B0 = A1vs1 + A2vs2 + A3is1 + A4is2. We now want to evaluate
the values of constants A0 and B0. When the terminals a and b are open-
circuited, i = 0 and v = B0. Thus B0 is the open-circuit voltage voc,
which is the same as VTh, so

B0 = VTh (4.15)

When all the internal sources are turned off, B0 = 0. The circuit can then
be replaced by an equivalent resistance Req, which is the same as RTh,
and Eq. (4.14) becomes

v = A0i = RThi �⇒ A0 = RTh (4.16)

Substituting the values of A0 and B0 in Eq. (4.14) gives

v = RThi + VTh (4.17)

which expresses the voltage-current relation at terminals a and b of the
circuit in Fig. 4.46(b). Thus, the two circuits in Fig. 4.46(a) and 4.46(b)
are equivalent.

When the same linear circuit is driven by a voltage source v as
shown in Fig. 4.47(a), the current flowing into the circuit can be obtained
by superposition as

v
Linear
circuit

a

b

(a)

v

a

b

(b)

INRN
+
−

+
−

i

i

Figure 4.47 Derivation of Norton
equivalent: (a) a voltage-driven
circuit, (b) its Norton equivalent.

i = C0v + D0 (4.18)

whereC0v is the contribution to i due to the external voltage source v and
D0 contains the contributions to i due to all internal independent sources.
When the terminals a-b are short-circuited, v = 0 so that i = D0 = −isc,
where isc is the short-circuit current flowing out of terminal a, which is
the same as the Norton current IN , i.e.,

D0 = −IN (4.19)
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When all the internal independent sources are turned off, D0 = 0 and the
circuit can be replaced by an equivalent resistance Req (or an equivalent
conductance Geq = 1/Req), which is the same as RTh or RN . Thus Eq.
(4.19) becomes

i = v

RTh
− IN (4.20)

This expresses the voltage-current relation at terminals a-b of the circuit
in Fig. 4.47(b), confirming that the two circuits in Fig. 4.47(a) and 4.47(b)
are equivalent.

4.8 MAXIMUM POWER TRANSFER
In many practical situations, a circuit is designed to provide power to a
load. While for electric utilities, minimizing power losses in the process
of transmission and distribution is critical for efficiency and economic
reasons, there are other applications in areas such as communications
where it is desirable to maximize the power delivered to a load. We now
address the problem of delivering the maximum power to a load when
given a system with known internal losses. It should be noted that this
will result in significant internal losses greater than or equal to the power
delivered to the load.

The Thevenin equivalent is useful in finding the maximum power a
linear circuit can deliver to a load. We assume that we can adjust the load
resistance RL. If the entire circuit is replaced by its Thevenin equivalent
except for the load, as shown in Fig. 4.48, the power delivered to the load
is

p = i2RL =
(

VTh

RTh + RL

)2

RL (4.21)

For a given circuit, VTh and RTh are fixed. By varying the load resistance
RL, the power delivered to the load varies as sketched in Fig. 4.49. We
notice from Fig. 4.49 that the power is small for small or large values of
RL but maximum for some value of RL between 0 and ∞. We now want
to show that this maximum power occurs when RL is equal to RTh. This
is known as the maximum power theorem.

RLVTh

RTh

+
−

a

b

i

Figure 4.48 The circuit used for
maximum power transfer.

p

RLRTh0

pmax

Figure 4.49 Power delivered to the load
as a function of RL.

Maximum power is transferred to the load when the load resistance equals the
Thevenin resistance as seen from the load (RL = RTh).

To prove the maximum power transfer theorem, we differentiate
p in Eq. (4.21) with respect to RL and set the result equal to zero. We
obtain

dp

dRL

= V 2
Th

[
(RTh + RL)

2 − 2RL(RTh + RL)

(RTh + RL)4

]

= V 2
Th

[
(RTh + RL − 2RL)

(RTh + RL)3

]
= 0



CHAPTER 4 Circuit Theorems 143

This implies that

0 = (RTh + RL − 2RL) = (RTh − RL) (4.22)

which yields

RL = RTh (4.23)

showing that the maximum power transfer takes place when the load
resistanceRL equals the Thevenin resistanceRTh. We can readily confirm
that Eq. (4.23) gives the maximum power by showing that d2p/dR2

L < 0.
The source and load are said to bematched when
RL = RTh.

The maximum power transferred is obtained by substituting Eq.
(4.23) into Eq. (4.21), for

pmax = V 2
Th

4RTh
(4.24)

Equation (4.24) applies only when RL = RTh. When RL �= RTh, we
compute the power delivered to the load using Eq. (4.21).

E X A M P L E 4 . 1 3

Find the value of RL for maximum power transfer in the circuit of Fig.
4.50. Find the maximum power.

12 V 2 A

6 Ω 3 Ω 2 Ω

12 Ω RL
+
−

a

b

Figure 4.50 For Example 4.13.

Solution:

We need to find the Thevenin resistance RTh and the Thevenin voltage
VTh across the terminals a-b. To getRTh, we use the circuit in Fig. 4.51(a)
and obtain

RTh = 2 + 3 + 6 ‖ 12 = 5 + 6 × 12

18
= 9 �

6 Ω 3 Ω 2 Ω

12 Ω
RTh

12 V 2 A

6 Ω 3 Ω 2 Ω

12 Ω+
− VTh

+

−

(a) (b)

i1 i2

Figure 4.51 For Example 4.13: (a) finding RTh, (b) finding VTh.
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To get VTh, we consider the circuit in Fig. 4.51(b). Applying mesh anal-
ysis,

−12 + 18i1 − 12i2 = 0, i2 = −2 A

Solving for i1, we get i1 = −2/3. Applying KVL around the outer loop
to get VTh across terminals a-b, we obtain

−12 + 6i1 + 3i2 + 2(0) + VTh = 0 �⇒ VTh = 22 V

For maximum power transfer,

RL = RTh = 9 �

and the maximum power is

pmax = V 2
Th

4RL

= 222

4 × 9
= 13.44 W

P R A C T I C E P R O B L E M 4 . 1 3

Determine the value of RL that will draw the maximum power from the
rest of the circuit in Fig. 4.52. Calculate the maximum power.

9 V

4 Ω2 Ω

RL

1 Ω

3vx

+
−

+
−

+ −vx

Figure 4.52 For Practice Prob. 4.13.

Answer: 4.22 �, 2.901 W.

4.9 VERIFYING CIRCUIT THEOREMS WITH PSPICE
In this section, we learn how to use PSpice to verify the theorems covered
in this chapter. Specifically, we will consider using dc sweep analysis to
find the Thevenin or Norton equivalent at any pair of nodes in a circuit
and the maximum power transfer to a load. The reader is advised to read
Section D.3 of Appendix D in preparation for this section.

To find the Thevenin equivalent of a circuit at a pair of open ter-
minals using PSpice, we use the schematic editor to draw the circuit and
insert an independent probing current source, say, Ip, at the terminals.
The probing current source must have a part name ISRC. We then per-
form a DC Sweep on Ip, as discussed in Section D.3. Typically, we may
let the current through Ip vary from 0 to 1 A in 0.1-A increments. After
simulating the circuit, we use Probe to display a plot of the voltage across
Ip versus the current through Ip. The zero intercept of the plot gives us
the Thevenin equivalent voltage, while the slope of the plot is equal to
the Thevenin resistance.

To find the Norton equivalent involves similar steps except that we
insert a probing independent voltage source (with a part name VSRC),
say, Vp, at the terminals. We perform a DC Sweep on Vp and let Vp
vary from 0 to 1 V in 0.1-V increments. A plot of the current through
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Vp versus the voltage across Vp is obtained using the Probe menu after
simulation. The zero intercept is equal to the Norton current, while the
slope of the plot is equal to the Norton conductance.

To find the maximum power transfer to a load using PSpice involves
performing a dc parametric sweep on the component value of RL in Fig.
4.48 and plotting the power delivered to the load as a function of RL.
According to Fig. 4.49, the maximum power occurs when RL = RTh.
This is best illustrated with an example, and Example 4.15 provides one.

We use VSRC and ISRC as part names for the independent voltage
and current sources.

E X A M P L E 4 . 1 4

Consider the circuit is in Fig. 4.31 (see Example 4.9). Use PSpice to find
the Thevenin and Norton equivalent circuits.

Solution:

(a) To find the Thevenin resistance RTh and Thevenin voltage VTh at the
terminals a-b in the circuit in Fig. 4.31, we first use Schematics to draw
the circuit as shown in Fig. 4.53(a). Notice that a probing current source
I2 is inserted at the terminals. Under Analysis/Setput, we select DC
Sweep. In the DC Sweep dialog box, we select Linear for the Sweep
Type and Current Source for the Sweep Var. Type. We enter I2 under the
Name box, 0 as Start Value, 1 as End Value, and 0.1 as Increment. After
simulation, we add trace V(I2:−) from the Probe menu and obtain the
plot shown in Fig. 4.53(b). From the plot, we obtain

VTh = Zero intercept = 20 V, RTh = Slope = 26 − 20

1
= 6 �

These agree with what we got analytically in Example 4.9.

R2 R4

2 2

GAIN=2

E1

R4 4 R3 6 I2I1

0

+
−

(a) (b)

26 V

24 V

22 V

20 V
0 A 0.2 A 0.4 A 0.6 A 0.8 A 1.0 A

= V(I2:-)

+
−

Figure 4.53 For Example 4.14: (a) schematic and (b) plot for finding RTh and VTh.

(b) To find the Norton equivalent, we modify the schematic in Fig. 4.53(a)
by replaying the probing current source with a probing voltage source V1.
The result is the schematic in Fig. 4.54(a). Again, in the DC Sweep dialog
box, we select Linear for the Sweep Type and Voltage Source for the Sweep
Var. Type. We enter V1 under Name box, 0 as Start Value, 1 as End Value,
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and 0.1 as Increment. When the Probe is running, we add trace I(V1) and
obtain the plot in Fig. 4.54(b). From the plot, we obtain

IN = Zero intercept = 3.335 A

GN = Slope = 3.335 − 3.165

1
= 0.17 S

R2 R1

2 2

GAIN=2

E1

R4 4 R3 6 V1I1

0

+
−

(a) (b)

3.4 A

3.3 A

3.2 A

3.1 A
0 V 0.2 V 0.4 V 0.6 V 0.8 V 1.0 V

  I(V1) V_V1

+
−

+
−

Figure 4.54 For Example 4.14: (a) schematic and (b) plot for finding GN and IN .

P R A C T I C E P R O B L E M 4 . 1 4

Rework Practice Prob. 4.9 using PSpice.

Answer: VTh = 5.33 V, RTh = 0.44 �.

E X A M P L E 4 . 1 5

Refer to the circuit in Fig. 4.55. Use PSpice to find the maximum power
transfer to RL.

RL1 V

1 kΩ

+
−

Figure 4.55 For Example 4.15.

Solution:

We need to perform a dc sweep onRL to determine when the power across
it is maximum. We first draw the circuit using Schematics as shown in
Fig. 4.56. Once the circuit is drawn, we take the following three steps to
further prepare the circuit for a dc sweep.

{RL}DC=1 V +
−

0

R1

R2

1k
V1

PARAMETERS:
RL       2k

Figure 4.56 Schematic for the circuit in
Fig. 4.55.

The first step involves defining the value ofRL as a parameter, since
we want to vary it. To do this:

1. DCLICKL the value 1k of R2 (representing RL) to open up
the Set Attribute Value dialog box.

2. Replace 1k with {RL} and click OK to accept the change.

Note that the curly brackets are necessary.
The second step is to define parameter. To achieve this:

1. Select Draw/Get New Part/Libraries · · ·/special.slb.

2. Type PARAM in the PartName box and click OK.

3. DRAG the box to any position near the circuit.

4. CLICKL to end placement mode.
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5. DCLICKL to open up the PartName: PARAM dialog box.

6. CLICKL on NAME1 = and enter RL (with no curly brackets)
in the Value box, and CLICKL Save Attr to accept change.

7. CLICKL on VALUE1 = and enter 2k in the Value box, and
CLICKL Save Attr to accept change.

8. Click OK.

The value 2k in item 7 is necessary for a bias point calculation; it
cannot be left blank.

The third step is to set up the DC Sweep to sweep the parameter.
To do this:

1. Select Analysis/Setput to bring up the DC Sweep dialog box.

2. For the Sweep Type, select Linear (or Octave for a wide range
of RL).

3. For the Sweep Var. Type, select Global Parameter.

4. Under the Name box, enter RL.

5. In the Start Value box, enter 100.

6. In the End Value box, enter 5k.

7. In the Increment box, enter 100.

8. Click OK and Close to accept the parameters.

250 uW

150 uW

200 uW

100 uW

50 uW
0 2.0 K 4.0 K 6.0 K

 -V(R2:2)*I(R2)

RL

Figure 4.57 For Example 4.15: the plot
of power across PL.

After taking these steps and saving the circuit, we are ready to sim-
ulate. Select Analysis/Simulate. If there are no errors, we select Add
Trace in the Probe menu and type−V(R2:2)∗I(R2) in the Trace Command
box. [The negative sign is needed since I(R2) is negative.] This gives the
plot of the power delivered to RL as RL varies from 100 � to 5 k�. We
can also obtain the power absorbed byRL by typing V(R2:2)∗V(R2:2)/RL
in the Trace Command box. Either way, we obtain the plot in Fig. 4.57.
It is evident from the plot that the maximum power is 250 µW. Notice
that the maximum occurs when RL = 1 k�, as expected analytically.

P R A C T I C E P R O B L E M 4 . 1 5

Find the maximum power transferred to RL if the 1-k� resistor in Fig.
4.55 is replaced by a 2-k� resistor.

Answer: 125 µW.

†4.10 APPLICATIONS
In this section we will discuss two important practical applications of
the concepts covered in this chapter: source modeling and resistance
measurement.

4 . 10 . 1 Sour ce Mode l i n g
Source modeling provides an example of the usefulness of the Thevenin
or the Norton equivalent. An active source such as a battery is often
characterized by its Thevenin or Norton equivalent circuit. An ideal
voltage source provides a constant voltage irrespective of the current
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drawn by the load, while an ideal current source supplies a constant
current regardless of the load voltage. As Fig. 4.58 shows, practical
voltage and current sources are not ideal, due to their internal resistances
or source resistances Rs and Rp. They become ideal as Rs → 0 and
Rp → ∞. To show that this is the case, consider the effect of the load
on voltage sources, as shown in Fig. 4.59(a). By the voltage division
principle, the load voltage is

vL = RL

Rs + RL

vs (4.25)

As RL increases, the load voltage approaches a source voltage vs , as
illustrated in Fig. 4.59(b). From Eq. (4.25), we should note that:

vs

Rs

+
−

(a)

is Rp

(b)

Figure 4.58 (a) Practical
voltage source, (b) practical
current source.

1. The load voltage will be constant if the internal resistance Rs

of the source is zero or, at least, Rs � RL. In other words, the
smaller Rs is compared to RL, the closer the voltage source is
to being ideal.

2. When the load is disconnected (i.e., the source is open-
circuited so that RL → ∞), voc = vs . Thus, vs may be
regarded as the unloaded source voltage. The connection of
the load causes the terminal voltage to drop in magnitude; this
is known as the loading effect.

RLvs

Rs

+
− vL

+

−

(a) (b)

vL

RL
0

vs

Practical source

Ideal source

Figure 4.59 (a) Practical voltage source connected to a load RL,
(b) load voltage decreases as RL decreases.

The same argument can be made for a practical current source when
connected to a load as shown in Fig. 4.60(a). By the current division
principle,

iL = Rp

Rp + RL

is (4.26)

Figure 4.60(b) shows the variation in the load current as the load re-
sistance increases. Again, we notice a drop in current due to the load
(loading effect), and load current is constant (ideal current source) when
the internal resistance is very large (i.e., Rp → ∞ or, at least, Rp � RL).

RL

(a)

is Rp

IL

(b)

IL

RL0

is

Practical source

Ideal source

Figure 4.60 (a) Practical current
source connected to a load RL,
(b) load current decreases as RL

increases.
Sometimes, we need to know the unloaded source voltage vs and

the internal resistanceRs of a voltage source. To find vs andRs , we follow
the procedure illustrated in Fig. 4.61. First, we measure the open-circuit
voltage voc as in Fig. 4.61(a) and set

vs = voc (4.27)



CHAPTER 4 Circuit Theorems 149

Then, we connect a variable load RL across the terminals as in Fig.
4.61(b). We adjust the resistance RL until we measure a load voltage
of exactly one-half of the open-circuit voltage, vL = voc/2, because now
RL = RTh = Rs . At that point, we disconnect RL and measure it. We
set

Rs = RL (4.28)

For example, a car battery may have vs = 12 V and Rs = 0.05 �.

Signal
source

(a)

voc

+

−

Signal
source

(b)

vL

+

−
RL

Figure 4.61 (a) Measuring voc , (b) measuring vL.

E X A M P L E 4 . 1 6

The terminal voltage of a voltage source is 12 V when connected to a 2-W
load. When the load is disconnected, the terminal voltage rises to 12.4 V.
(a) Calculate the source voltage vs and internal resistance Rs . (b) Deter-
mine the voltage when an 8-� load is connected to the source.

Rs

(a)

(b)

RLvs

Rs iL

+
− vL

+

−

8 Ω12 V −
+ v

+

−

2.4 Ω

Figure 4.62 For Example 4.16.

Solution:

(a) We replace the source by its Thevenin equivalent. The terminal voltage
when the load is disconnected is the open-circuit voltage,

vs = voc = 12.4 V

When the load is connected, as shown in Fig. 4.62(a), vL = 12 V and
pL = 2 W. Hence,

pL = vL2

RL

�⇒ RL = v2
L

pL

= 122

2
= 72 �

The load current is

iL = vL

RL

= 12

72
= 1

6
A

The voltage across Rs is the difference between the source voltage vs and
the load voltage vL, or

12.4 − 12 = 0.4 = RsiL, Rs = 0.4

IL
= 2.4 �

(b) Now that we have the Thevenin equivalent of the source, we connect
the 8-� load across the Thevenin equivalent as shown in Fig. 4.62(b).
Using voltage division, we obtain

v = 8

8 + 2.4
(12) = 9.231 V



150 PART 1 DC Circuits

P R A C T I C E P R O B L E M 4 . 1 6

The measured open-circuit voltage across a certain amplifier is 9 V. The
voltage drops to 8 V when a 20-� loudspeaker is connected to the am-
plifier. Calculate the voltage when a 10-� loudspeaker is used instead.

Answer: 7.2 V.

4 . 10 . 2 Re s i s t a n ce Mea su remen t
Although the ohmmeter method provides the simplest way to measure re-
sistance, more accurate measurement may be obtained using the Wheat-
stone bridge. While ohmmeters are designed to measure resistance in
low, mid, or high range, a Wheatstone bridge is used to measure resis-
tance in the mid range, say, between 1 � and 1 M�. Very low values of
resistances are measured with a milliohmmeter, while very high values
are measured with a Megger tester.

Historical note: The bridge was invented by
Charles Wheatstone (1802–1875), a British
professor who also invented the telegraph, as
Samuel Morse did independently in the United
States.

v

R1 R3

R2 Rx

+
−

Galvanometer

v1

+

−

+

−
v2

Figure 4.63 The Wheatstone bridge; Rx is
the resistance to be measured.

The Wheatstone bridge (or resistance bridge) circuit is used in a
number of applications. Here we will use it to measure an unknown re-
sistance. The unknown resistance Rx is connected to the bridge as shown
in Fig. 4.63. The variable resistance is adjusted until no current flows
through the galvanometer, which is essentially a d’Arsonval movement
operating as a sensitive current-indicating device like an ammeter in the
microamp range. Under this condition v1 = v2, and the bridge is said
to be balanced. Since no current flows through the galvanometer, R1

and R2 behave as though they were in series; so do R3 and Rx . The fact
that no current flows through the galvanometer also implies that v1 = v2.

Applying the voltage division principle,

v1 = R2

R1 + R2
v = v2 = Rx

R3 + Rx

v (4.29)

Hence, no current flows through the galvanometer when

R2

R1 + R2
= Rx

R3 + Rx

�⇒ R2R3 = R1Rx

or

Rx = R3

R1
R2 (4.30)

If R1 = R3, and R2 is adjusted until no current flows through the gal-
vanometer, then Rx = R2.

How do we find the current through the galvanometer when the
Wheatstone bridge is unbalanced? We find the Thevenin equivalent (VTh

and RTh) with respect to the galvanometer terminals. If Rm is the resis-
tance of the galvanometer, the current through it under the unbalanced
condition is

I = VTh

RTh + Rm

(4.31)

Example 4.18 will illustrate this.
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E X A M P L E 4 . 1 7

In Fig. 4.63, R1 = 500 � and R3 = 200 �. The bridge is balanced when
R2 is adjusted to be 125 �. Determine the unknown resistance Rx .

Solution:

Using Eq. (4.30),

Rx = R3

R1
R2 = 200

500
125 = 50 �

P R A C T I C E P R O B L E M 4 . 1 7

A Wheatstone bridge has R1 = R3 = 1 k�. R2 is adjusted until no cur-
rent flows through the galvanometer. At that point, R2 = 3.2 k�. What
is the value of the unknown resistance?

Answer: 3.2 k�.

E X A M P L E 4 . 1 8

The circuit in Fig. 4.64 represents an unbalanced bridge. If the galvano-
meter has a resistance of 40 �, find the current through the galvanometer.

220 V

400 Ω

600 Ω

+
− G

3 kΩ

1 kΩ

40 Ωa b

Figure 4.64 Unbalanced bridge of Example 4.18.

Solution:

We first need to replace the circuit by its Thevenin equivalent at termi-
nals a and b. The Thevenin resistance is found using the circuit in Fig.
4.65(a). Notice that the 3-k� and 1-k� resistors are in parallel; so are the
400-� and 600-� resistors. The two parallel combinations form a series
combination with respect to terminals a and b. Hence,

RTh = 3000 ‖ 1000 + 400 ‖ 600

= 3000 × 1000

3000 + 1000
+ 400 × 600

400 + 600
= 750 + 240 = 990 �

To find the Thevenin voltage, we consider the circuit in Fig. 4.65(b).
Using the voltage division principle,

v1 = 1000

1000 + 3000
(220) = 55 V, v2 = 600

600 + 400
(220) = 132 V

Applying KVL around loop ab gives

−v1 + VTh + v2 = 0 or VTh = v1 − v2 = 55 − 132 = −77 V
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220 V

400 Ω

600 Ω

+
−

3 kΩ

1 kΩ
a b

+ −
VTh

(b)

VTh

40 Ω
+
−

(c)

400 Ω

600 Ω

3 kΩ

1 kΩ
a b

RTh

(a)

RTh a

b

G

IG

+

−
v1

+

−
v2

Figure 4.65 For Example 4.18: (a) Finding RTh, (b) finding VTh, (c) determining the current through the
galvanometer.

Having determined the Thevenin equivalent, we find the current through
the galvanometer using Fig. 4.65(c).

IG = VTh

RTh + Rm

= −77

990 + 40
= −74.76 mA

The negative sign indicates that the current flows in the direction opposite
to the one assumed, that is, from terminal b to terminal a.

P R A C T I C E P R O B L E M 4 . 1 8

Obtain the current through the galvanometer, having a resistance of 14�,
in the Wheatstone bridge shown in Fig. 4.66.

14 Ω

60 Ω

16 V

40 Ω

20 Ω 30 Ω
G

Figure 4.66 For Practice Prob. 4.18.

Answer: 64 mA.
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4.11 SUMMARY
1. A linear network consists of linear elements, linear dependent

sources, and linear independent sources.

2. Network theorems are used to reduce a complex circuit to a simpler
one, thereby making circuit analysis much simpler.

3. The superposition principle states that for a circuit having multiple
independent sources, the voltage across (or current through) an
element is equal to the algebraic sum of all the individual voltages
(or currents) due to each independent source acting one at a time.

4. Source transformation is a procedure for transforming a voltage
source in series with a resistor to a current source in parallel with a
resistor, or vice versa.

5. Thevenin’s and Norton’s theorems allow us to isolate a portion of a
network while the remaining portion of the network is replaced by an
equivalent network. The Thevenin equivalent consists of a voltage
source VTh in series with a resistor RTh, while the Norton equivalent
consists of a current source IN in parallel with a resistor RN . The
two theorems are related by source transformation.

RN = RTh, IN = VTh

RTh

6. For a given Thevenin equivalent circuit, maximum power transfer
occurs when RL = RTh, that is, when the load resistance is equal to
the Thevenin resistance.

7. PSpice can be used to verify the circuit theorems covered in this
chapter.

8. Source modeling and resistance measurement using the Wheatstone
bridge provide applications for Thevenin’s theorem.

R E V I EW QU E S T I ON S

4.1 The current through a branch in a linear network is
2 A when the input source voltage is 10 V. If the
voltage is reduced to 1 V and the polarity is
reversed, the current through the branch is:
(a) −2 (b) −0.2 (c) 0.2
(d) 2 (e) 20

4.2 For superposition, it is not required that only one
independent source be considered at a time; any
number of independent sources may be considered
simultaneously.
(a) True (b) False

4.3 The superposition principle applies to power
calculation.
(a) True (b) False

4.4 Refer to Fig. 4.67. The Thevenin resistance at
terminals a and b is:

(a) 25 � (b) 20 �

(c) 5 � (d) 4 �

50 V 20 Ω+
−

5 Ω

a

b

Figure 4.67 For Review Questions 4.4 to 4.6.

4.5 The Thevenin voltage across terminals a and b of
the circuit in Fig. 4.67 is:
(a) 50 V (b) 40 V
(c) 20 V (d) 10 V
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4.6 The Norton current at terminals a and b of the
circuit in Fig. 4.67 is:
(a) 10 A (b) 2.5 A
(c) 2 A (d) 0 A

4.7 The Norton resistance RN is exactly equal to the
Thevenin resistance RTh.
(a) True (b) False

4.8 Which pair of circuits in Fig. 4.68 are equivalent?
(a) a and b (b) b and d
(c) a and c (d) c and d

+
−20 V

5 Ω

(a)

4 A

5 Ω

(b)

5 Ω

(c)

+
−20 V 5 Ω

(d)

4 A

Figure 4.68 For Review Question 4.8.

4.9 A load is connected to a network. At the terminals
to which the load is connected, RTh = 10 � and
VTh = 40 V. The maximum power supplied to the
load is:
(a) 160 W (b) 80 W
(c) 40 W (d) 1 W

4.10 The source is supplying the maximum power to the
load when the load resistance equals the source
resistance.
(a) True (b) False

Answers: 4.1b, 4.2a, 4.3b, 4.4d, 4.5b, 4.6a, 4.7a, 4.8c, 4.9c, 4.10b.

P RO B L E M S

Section 4.2 Linearity Property

4.1 Calculate the current io in the current of Fig. 4.69.
What does this current become when the input
voltage is raised to 10 V?

+
−

io

1 Ω 5 Ω

3 Ω8 Ω1 V

Figure 4.69 For Prob. 4.1.

4.2 Find vo in the circuit of Fig. 4.70. If the source
current is reduced to 1 µA, what is vo?

5 Ω 4 Ω

6 Ω8 Ω1 A 2 Ω
+

−
vo

Figure 4.70 For Prob. 4.2.

4.3 (a) In the circuit in Fig. 4.71, calculate vo and io
when vs = 1 V.

(b) Find vo and io when vs = 10 V.
(c) What are vo and io when each of the 1-�

resistors is replaced by a 10-� resistor and
vs = 10 V?

+
−

1 Ω

1 Ω

1 Ω 1 Ωvs

1 Ω

io
+

−
vo

Figure 4.71 For Prob. 4.3.

4.4 Use linearity to determine io in the circuit of Fig.
4.72.

2 Ω3 Ω

4 Ω6 Ω 9 A

io

Figure 4.72 For Prob. 4.4.
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4.5 For the circuit in Fig. 4.73, assume vo = 1 V, and
use linearity to find the actual value of vo.

2 Ω 3 Ω

4 Ω6 Ω

vo 2 Ω

6 Ω15 V +
−

Figure 4.73 For Prob. 4.5.

Section 4.3 Superposition

4.6 Apply superposition to find i in the circuit of Fig.
4.74.

20 V 5 A

6 Ω

4 Ω+
−

i

Figure 4.74 For Prob. 4.6.

4.7 Given the circuit in Fig. 4.75, calculate ix and the
power dissipated by the 10-� resistor using
superposition.

12 Ω

4 A10 Ω 40 Ω15 V −
+

ix

Figure 4.75 For Prob. 4.7.

4.8 For the circuit in Fig. 4.76, find the terminal voltage
Vab using superposition.

4 V 2 A

a

b

10 Ω
3Vab

+ −

+
− Vab

+

−

Figure 4.76 For Prob. 4.8.

4.9 Use superposition principle to find i in Fig. 4.77.

6 Ω

4 A2 Ω 3 Ω12 V −
+

i

Figure 4.77 For Prob. 4.9.

4.10 Determine vo in the circuit of Fig. 4.78 using the
superposition principle.

12 V

5 Ω6 Ω

2 A

4 Ω

12 Ω3 Ω+
− 19 V+

−

+ −vo

Figure 4.78 For Prob. 4.10.

4.11 Apply the superposition principle to find vo in the
circuit of Fig. 4.79.

+
−

6 Ω

2 Ω

3 Ω1 A

2 A

20 V

4 Ω

+

−
vo

Figure 4.79 For Prob. 4.11.

4.12 For the circuit in Fig. 4.80, use superposition to find
i. Calculate the power delivered to the 3-� resistor.

20 V
2 A

3 Ω
2 Ω

1 Ω
4 Ω

16 V−
+

i

+
−

Figure 4.80 For Probs. 4.12 and 4.45.
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4.13 Given the circuit in Fig. 4.81, use superposition to
get io.

12 V

3 Ω4 Ω

4 A

2 Ω

5 Ω10 Ω+
− 2 A

io

Figure 4.81 For Probs. 4.13 and 4.23.

4.14 Use superposition to obtain vx in the circuit of Fig.
4.82. Check your result using PSpice.

90 V 6 A

30 Ω 10 Ω 20 Ω

60 Ω 30 Ω+
− 40 V+

−

+ −vx

Figure 4.82 For Prob. 4.14.

4.15 Find vx in Fig. 4.83 by superposition.

2 Ω

1 Ω
5ix

2 A 4 Ω10 V +
−

ix

+ −vx

Figure 4.83 For Prob. 4.15.

4.16 Use superposition to solve for ix in the circuit of
Fig. 4.84.

8 Ω2 Ω 6 A 4 A

− +

ix

4ix

+

−
vx

Figure 4.84 For Prob. 4.16.

Section 4.4 Source Transformation

4.17 Find i in Prob. 4.9 using source transformation.

4.18 Apply source transformation to determine vo and io
in the circuit in Fig. 4.85.

12 V 2 A

6 Ω

3 Ω+
−

io

+

−
vo

Figure 4.85 For Prob. 4.18.

4.19 For the circuit in Fig. 4.86, use source
transformation to find i.

5 Ω 10 Ω

4 Ω5 Ω2 A 20 V+
−

i

Figure 4.86 For Prob. 4.19.

4.20 Obtain vo in the circuit of Fig. 4.87 using source
transformation. Check your result using PSpice.

3 A

9 Ω

2 Ω

2 A

30 V

5 Ω4 Ω 6 A

+ −
+ −vo

Figure 4.87 For Prob. 4.20.

4.21 Use source transformation to solve Prob. 4.14.

4.22 Apply source transformation to find vx in the circuit
of Fig. 4.88.
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50 V 8 A

10 Ω 12 Ω 20 Ω

40 Ω+
− 40 V+

−

a b

+ −vx

Figure 4.88 For Probs. 4.22 and 4.32.

4.23 Given the circuit in Fig. 4.81, use source
transformation to find io.

4.24 Use source transformation to find vo in the circuit of
Fig. 4.89.

4 kΩ

1 kΩ3 mA

2 kΩ
3vo

− +
+

−
vo

Figure 4.89 For Prob. 4.24.

4.25 Determine vx in the circuit of Fig. 4.90 using source
transformation.

+
−

3 Ω 6 Ω

2vx8 Ω12 V
+
−

+ −vx

Figure 4.90 For Prob. 4.25.

4.26 Use source transformation to find ix in the circuit of
Fig. 4.91.

10 Ω

15 Ω
0.5ix

40 Ω60 V +
− 50 Ω

ix

Figure 4.91 For Prob. 4.26.

Sections 4.5 and 4.6 Thevenin’s and Norton’s
Theorems

4.27 Determine RTh and VTh at terminals 1-2 of each of
the circuits in Fig. 4.92.

10 Ω

+
−20 V 40 Ω

(a)

(b)

1

2

2 A 30 Ω 30 V+
−

60 Ω

1

2

Figure 4.92 For Probs. 4.27 and 4.37.

4.28 Find the Thevenin equivalent at terminals a-b of the
circuit in Fig. 4.93.

20 Ω10 Ω

3 A

40 V 40 Ω

a

b

+
−

Figure 4.93 For Probs. 4.28 and 4.39.

4.29 Use Thevenin’s theorem to find vo in Prob. 4.10.

4.30 Solve for the current i in the circuit of Fig. 4.94
using Thevenin’s theorem. (Hint: Find the Thevenin
equivalent across the 12-� resistor.)

12 Ω

30 V

40 Ω
+
−

10 Ω

50 V +
−

i

Figure 4.94 For Prob. 4.30.

4.31 For Prob. 4.8, obtain the Thevenin equivalent at
terminals a-b.
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4.32 Given the circuit in Fig. 4.88, obtain the Thevenin
equivalent at terminals a-b and use the result to
get vx .

4.33∗ For the circuit in Fig. 4.95, find the Thevenin
equivalent between terminals a and b.

20 Ω

20 Ω10 Ω

10 Ω

5 A 10 Ω

20 V

30 V +
−

−
+

10 Ω

a b

Figure 4.95 For Prob. 4.33.

4.34 Find the Thevenin equivalent looking into terminals
a-b of the circuit in Fig. 4.96 and solve for ix .

20 V 2 A

10 Ω 6 Ω

10 Ω+
− 5 Ω

a b

ix

Figure 4.96 For Prob. 4.34.

4.35 For the circuit in Fig. 4.97, obtain the Thevenin
equivalent as seen from terminals:
(a) a-b (b) b-c

4 Ω24 V

5 Ω2 Ω

1 Ω3 Ω

2 A

a

b

c

+
−

Figure 4.97 For Prob. 4.35.

4.36 Find the Norton equivalent of the circuit in Fig. 4.98.

*An asterisk indicates a challenging problem.

4 A 4 Ω

a

b

6 Ω

6 Ω

Figure 4.98 For Prob. 4.36.

4.37 Obtain RN and IN at terminals 1 and 2 of each of the
circuits in Fig. 4.92.

4.38 Determine the Norton equivalent at terminals a-b
for the circuit in Fig. 4.99.

2 A

a

b

4 Ω

2 Ω
10io

+ −
io

Figure 4.99 For Prob. 4.38.

4.39 Find the Norton equivalent looking into terminals
a-b of the circuit in Fig. 4.93.

4.40 Obtain the Norton equivalent of the circuit in Fig.
4.100 to the left of terminals a-b. Use the result to
find current i.

2 A

a

b

4 A4 Ω 5 Ω

12 V6 Ω
+ −

i

Figure 4.100 For Prob. 4.40.

4.41 Given the circuit in Fig. 4.101, obtain the Norton
equivalent as viewed from terminals:
(a) a-b (b) c-d

120 V

c

a b

d

6 A 2 Ω3 Ω

4 Ω6 Ω

+
−

Figure 4.101 For Prob. 4.41.
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4.42 For the transistor model in Fig. 4.102, obtain the
Thevenin equivalent at terminals a-b.

6 V 20io

3 kΩ

2 kΩ+
−

a

b

io

Figure 4.102 For Prob. 4.42.

4.43 Find the Norton equivalent at terminals a-b of the
circuit in Fig. 4.103.

2 Ω6 Ω

0.25vo

3 Ω18 V +
− vo

+

−

a

b

Figure 4.103 For Prob. 4.43.

4.44∗ Obtain the Norton equivalent at terminals a-b of the
circuit in Fig. 4.104.

2 V 80I

8 kΩ

50 kΩ+
−

a

b

0.01Vab
+
−

I

+

−
Vab

Figure 4.104 For Prob. 4.44.

4.45 Use Norton’s theorem to find current i in the circuit
of Fig. 4.80.

4.46 Obtain the Thevenin and Norton equivalent circuits
at the terminals a-b for the circuit in Fig. 4.105.

50 V

3 Ω 2 Ω

10 Ω+
−

a

b

0.5vx6 Ω
+

−
vx

Figure 4.105 For Probs. 4.46 and 4.65.

4.47 The network in Fig. 4.106 models a bipolar
transistor common-emitter amplifier connected to a
load. Find the Thevenin resistance seen by the load.

vs

R1
bib

RL
+
− R2

ib

Figure 4.106 For Prob. 4.47.

4.48 Determine the Thevenin and Norton equivalents at
terminals a-b of the circuit in Fig. 4.107.

8 A

10 Ω 20 Ω

50 Ω 40 Ω

a b

Figure 4.107 For Probs. 4.48 and 4.66.

4.49∗ For the circuit in Fig. 4.108, find the Thevenin and
Norton equivalent circuits at terminals a-b.

+ −
18 V

3 A

4 Ω 6 Ω

5 Ω

a b

2 A

10 V

+ −

Figure 4.108 For Probs. 4.49 and 4.67.

4.50∗ Obtain the Thevenin and Norton equivalent circuits
at terminals a-b of the circuit in Fig. 4.109.
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12 V

6 Ω
2 Ω

6 Ω

2 Ω

6 Ω
+
− 12 V

2 Ω

+
−

12 V+
−

a

b

Figure 4.109 For Prob. 4.50.

4.51∗ Find the Thevenin equivalent of the circuit in Fig.
4.110.

10 Ω

20 Ω40 Ω

+ −

io

0.1io

2vo

+

−
vo

b

a

Figure 4.110 For Prob. 4.51.

4.52 Find the Norton equivalent for the circuit in Fig.
4.111.

0.5vo

10 Ω

+

−
vo 20 V

Figure 4.111 For Prob. 4.52.

4.53 Obtain the Thevenin equivalent seen at terminals
a-b of the circuit in Fig. 4.112.

10ix

4 Ω

2 Ω

1 Ω

+
−

ix

a

b

Figure 4.112 For Prob. 4.53.

Section 4.8 Maximum Power Transfer

4.54 Find the maximum power that can be delivered to
the resistor R in the circuit in Fig. 4.113.

R3 Ω

2 Ω

5 Ω20 V 6 A+
−

− +

10 V

Figure 4.113 For Prob. 4.54.

4.55 Refer to Fig. 4.114. For what value of R is the
power dissipated in R maximum? Calculate that power.

6 Ω
30 V

4 Ω

8 Ω

R

12 Ω

+ −

Figure 4.114 For Prob. 4.55.

4.56∗ Compute the value of R that results in maximum
power transfer to the 10-� resistor in Fig. 4.115.
Find the maximum power.

+
−

+
−

R

20 Ω
10 Ω

8 V

12 V

Figure 4.115 For Prob. 4.56.

4.57 Find the maximum power transferred to resistor R
in the circuit of Fig. 4.116.

R40 kΩ 30 kΩ100 V +
− 3vo

22 kΩ10 kΩ

+

−
vo

Figure 4.116 For Prob. 4.57.



CHAPTER 4 Circuit Theorems 161

4.58 For the circuit in Fig. 4.117, what resistor connected
across terminals a-b will absorb maximum power
from the circuit? What is that power?

8 V 120vo

3 kΩ 10 kΩ

40 kΩ1 kΩ+
−

a

b

–
+

+

−
vo

Figure 4.117 For Prob. 4.58.

4.59 (a) For the circuit in Fig. 4.118, obtain the Thevenin
equivalent at terminals a-b.

(b) Calculate the current in RL = 8 �.
(c) Find RL for maximum power deliverable to RL.
(d) Determine that maximum power.

6 Ω4 Ω

2 A

20 V

4 A 2 Ω

a

b

RL

+ −

Figure 4.118 For Prob. 4.59.

4.60 For the bridge circuit shown in Fig. 4.119, find the
load RL for maximum power transfer and the
maximum power absorbed by the load.

R3
RL

R4

R1

R2

vs
+
−

Figure 4.119 For Prob. 4.60.

4.61 For the circuit in Fig. 4.120, determine the value of
R such that the maximum power delivered to the
load is 3 mW.

R

R

R

2 V
3 V

RL
+
−

1 V +
−

+
−

Figure 4.120 For Prob. 4.61.

Section 4.9 Verifying Circuit Theorems with
PSpice

4.62 Solve Prob. 4.28 using PSpice.

4.63 Use PSpice to solve Prob. 4.35.

4.64 Use PSpice to solve Prob. 4.42.

4.65 Obtain the Thevenin equivalent of the circuit in Fig.
4.105 using PSpice.

4.66 Use PSpice to find the Thevenin equivalent circuit at
terminals a-b of the circuit in Fig. 4.107.

4.67 For the circuit in Fig. 4.108, use PSpice to find the
Thevenin equivalent at terminals a-b.

Section 4.10 Applications

4.68 A battery has a short-circuit current of 20 A and an
open-circuit voltage of 12 V. If the battery is
connected to an electric bulb of resistance 2 �,
calculate the power dissipated by the bulb.

4.69 The following results were obtained from
measurements taken between the two terminals of a
resistive network.

Terminal Voltage 12 V 0 V
Terminal Current 0 V 1.5 A

Find the Thevenin equivalent of the network.

4.70 A black box with a circuit in it is connected to a
variable resistor. An ideal ammeter (with zero
resistance) and an ideal voltmeter (with infinite
resistance) are used to measure current and voltage
as shown in Fig. 4.121. The results are shown in the
table below.

Black
box

V

A

i

R

Figure 4.121 For Prob. 4.70.
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(a) Find i when R = 4 �.
(b) Determine the maximum power from the box.

R(�) V (V) i(A)

2 3 1.5
8 8 1.0

14 10.5 0.75

4.71 A transducer is modeled with a current source Is and
a parallel resistance Rs . The current at the terminals
of the source is measured to be 9.975 mA when an
ammeter with an internal resistance of 20 � is used.
(a) If adding a 2-k� resistor across the source

terminals causes the ammeter reading to fall to
9.876 mA, calculate Is and Rs .

(b) What will the ammeter reading be if the
resistance between the source terminals is
changed to 4 k�?

4.72 The Wheatstone bridge circuit shown in Fig. 4.122
is used to measure the resistance of a strain gauge.
The adjustable resistor has a linear taper with a
maximum value of 100 �. If the resistance of the
strain gauge is found to be 42.6 �, what fraction of
the full slider travel is the slider when the bridge is
balanced?

4 kΩ

100 Ω

2 kΩ

+
−vs

Rs

Rx

G

Figure 4.122 For Prob. 4.72.

4.73 (a) In the Wheatstone bridge circuit of Fig. 4.123,
select the values of R1 and R3 such that the
bridge can measure Rx in the range of 0–10 �.

R3

Rx

R1

V +
−

G

50 Ω

Figure 4.123 For Prob. 4.73.

(b) Repeat for the range of 0–100 �.

4.74∗ Consider the bridge circuit of Fig. 4.124. Is the
bridge balanced? If the 10-k� resistor is replaced
by an 18-k� resistor, what resistor connected
between terminals a-b absorbs the maximum
power? What is this power?

220 V

2 kΩ

3 kΩ 6 kΩ

5 kΩ 10 kΩ

+
− a b

Figure 4.124 For Prob. 4.74.

COM P R E H EN S I V E P RO B L E M S

4.75 The circuit in Fig. 4.125 models a common-emitter
transistor amplifier. Find ix using source
transformation.

vs

Rs

+
− bixRo

ix

Figure 4.125 For Prob. 4.75.

4.76 An attenuator is an interface circuit that reduces the
voltage level without changing the output resistance.
(a) By specifying Rs and Rp of the interface circuit

in Fig. 4.126, design an attenuator that will meet
the following requirements:

Vo

Vg

= 0.125, Req = RTh = Rg = 100 �

(b) Using the interface designed in part (a),
calculate the current through a load of
RL = 50 � when Vg = 12 V.
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Vg

Rg Rs

RL

Req

+
− Rp Vo

+

−

Attenuator
Load

Figure 4.126 For Prob. 4.76.

4.77∗ A dc voltmeter with a sensitivity of 20 k�/V is used
to find the Thevenin equivalent of a linear network.
Readings on two scales are as follows:
(a) 0–10 V scale: 4 V (b) 0–50 V scale: 5 V
Obtain the Thevenin voltage and the Thevenin
resistance of the network.

4.78∗ A resistance array is connected to a load resistor R
and a 9-V battery as shown in Fig. 4.127.
(a) Find the value of R such that Vo = 1.8 V.
(b) Calculate the value of R that will draw the

maximum current. What is the maximum
current?

60 Ω 10 Ω

10 Ω

8 Ω 8 Ω

R

10 Ω 40 Ω

9 V+ −

3

4

1

2

+ −Vo

Figure 4.127 For Prob. 4.78.

4.79 A common-emitter amplifier circuit is shown in Fig.
4.128. Obtain the Thevenin equivalent to the left of
points B and E.

RL

Rc

E

4 kΩ

6 kΩ

12 V
B +

−

Figure 4.128 For Prob. 4.79.

4.80∗ For Practice Prob. 4.17, determine the current
through the 40-� resistor and the power dissipated
by the resistor.

http://www.mhhe.com/engcs/electrical/alexander/student/olc/ch04_ppt.htm
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