
CHAPTER 11 - AC POWER ANALYSIS

List of topics for this chapter :
Instantaneous and Average Power
Maximum Average Power Transfer
Effective or RMS Value
Apparent Power and Power Factor
Complex Power
Conservation of AC Power
Power Factor Correction
Applications

INSTANTANEOUS AND AVERAGE POWER

Problem 11.1 [11.3] Refer to the circuit depicted in Figure 11.1.  Find the average
power absorbed by each element.

Figure 11.1
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The average power supplied by the source  = 7.5 W

For the 4-Ω resistor, the average power absorbed is
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For the inductor,
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The average power absorbed by the inductor  = W0

For the 2-Ω resistor, the average power absorbed is
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For the capacitor,
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The average power absorbed by the capacitor  = W0

The average power supplied by the source  = W5.7

The average power absorbed by the 4-Ω resistor  = W5

The average power absorbed by the inductor  = W0

The average power absorbed by the 2-Ω resistor  = W5.2

The average power absorbed by the capacitor  = W0



Problem 11.2 The load for the following circuit is given by the 5 ohm resistor and the
0.02297 Henry inductor.  In addition, vin(t) = 200 sin(377t) volts.  Determine the average power
delivered to the load.

Using the frequency domain circuit on the right, we can solve for I.

-141.4 + (5 + j8.660)I  =  0.  Which leads to,

I  =  141.4/(10∠ 60o)  =  14.14∠ -60o amps.  But power delivered to the load is equal to,

Pavg  =  
2

I R  =  (14.14)2 x 5  =  200x5  =  1000 watts.

MAXIMUM AVERAGE POWER TRANSFER

Problem 11.3 Given the circuit in Figure 11.1 and ( )tsin200)t(v ω=  volts, calculate the

values of LR  and X  for maximum power transfer to LR .

Figure 11.1
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This is a straightforward classical maximum power transfer problem.  If you remember that for
maximum power transfer, ZL  =  Zs

* or the value of the load is equal to the complex conjugate of
the source impedance.

RL + jX  =  10 – j5  Thus the load resistor must be 10 ΩΩΩΩ and the reactance must
be capacitive and equal to [1/(5ωωωω)] F.

What if you do not remember the maximum power transfer theorem?  Well, you can usually work
it out just by looking at what you have.  It seems reasonable to cancel whatever source reactance
there is.  Then if the source resistance is either zero or infinity, there is no power transfer.  The
only thing that makes sense is that the load resistance must equal the source resistance.

Problem 11.4 [11.15] Find the value of LZ  in the circuit of Figure 11.1 for maximum
power transfer.

Figure 11.1
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EFFECTIVE OR RMS VALUE

Problem 11.5 Calculate the RMS value of the signal shown in Figure 11.1.  The curve can
be represented by the function PP V)tsin(V +ω .

Figure 11.1

Since the value of the voltage, v(t), can be expressed as Vp[sin(ωt) + 1], we can ignore the value
of Vp in our calculations.  The true value of the rms voltage will be what we obtain times Vp.
Also, since the value of the rms voltage is independent of ω, we will let T  =  1,  which means
that ω  =  2π.
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Vrms  =  5.1   =  1.2247Vp

Problem 11.6 Calculate the RMS value of the signal shown in Figure 11.1.  The curve can
be represented by the function ),tsin(VP ω (please note, this is often referred to as the full wave,
rectified sine wave).

Figure 11.1
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We can use the same approach that we used in problem 11.5.  In this case, ω stays the same but
now T  =  0.5 sec.
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the rms value is taken by squaring the value of a signal.  Squaring either wave produces the same
result.

Problem 11.7 Calculate the RMS value of the signal shown in Figure 11.1.

Figure 11.1

Again, the same approach is used.

5.0

0

5.0

0

5.0

0

1

5.0

2
2
p

2
rms

8

)t4sin(

2

t
dt

2

)t4cos(1
dt0dt)t2(sin

1

1

V

V






π
π−=π−=



 +π= ∫∫ ∫

=  (0.5)/2 – 0  =  0.25 thus,  Vrms  =  25.0 Vp  =  0.5Vp

Problem 11.8 [11.21] Find the effective value of the voltage waveform in Figure 11.1.

Figure 11.1
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APPARENT POWER AND POWER FACTOR

Problem 11.9 Given the circuit in Figure 11.1, °∠= 30100Vin  and °∠= 6010I ,

(a) calculate the average power assuming that inV  and I  are already rms values
(b) calculate the apparent power
(c) calculate the reactive power

Figure 11.1

(a) power  =  100x10cos(30°– 60°)  =  1000cos(-30°)  =  866 watts

(b) apparent power  =  100x10  =  1000  =  1 kVA

(c) reactive power  =  100x10sin(30°– 60°)  =  1000sin(-30°)  =  –500 VARS

Problem 11.10 [11.29] A relay coil is connected to a 210-V, 50-Hz supply.  If it has a
resistance of 30 Ω and an inductance of 0.5 H, calculate the apparent power and the power factor.
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COMPLEX POWER

Problem 11.11 [11.35] Determine the complex power for the following cases:
(a) W269P = , VAR150Q =  (capacitive)

(b) VAR2000Q = , 9.0pf =  (leading)

(c) VA600S = , VAR450Q =  (inductive)

(d) V220Vrms = , kW1P = , Ω= 40Z  (inductive)
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CONSERVATION OF AC POWER

Problem 11.12 [11.43] Obtain the power delivered to the 10-kΩ resistor in the circuit of
Figure 11.1.

Figure 11.1
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From the right portion of the circuit,
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POWER FACTOR CORRECTION

Problem 11.13 A small industry operates from 220 volts supplied by a utility.  The small
industry represents a load to the utility that represents 22,000 watts and a power factor of 0.8.
Develop an equivalent circuit for the load.  Determine the value of a capacitor to correct the
circuit to unity power factor.

power  =  VI cosθ  =  220xIx0.8  =  22,000  or  I  =  125 A

Thus,  |Z|  =  220/125  =  1.76  and  cosθ  =  0.8  leads to θ  =  36.87°

Although it was not specified, most industries, if not all, represent an inductive load, thus the
power factor is lagging and θ is positive.

Z  =  1.76∠ 36.87°  =  (1.408 + j1.056) ΩΩΩΩ

Since this represents a resistor in series with an inductor, we place a capacitor in parallel with the
combination in order to correct to unity power factor.  The easiest way to do this is to just cancel
the reactive power with the parallel capacitor.

Q  =  VIsinθ  =  220x125xxin(36.87°)  =  16881  =  2202/XC

XC  =  2202/16881  =  2.867  =  1/(ωC)  with ω  =  377  the C  =  925 µµµµF

Problem 11.14 For the network in Figure 11.1, determine the value of C that corrects the
power factor to 0.8, 0.85, 0.9, 0.95, 1.0.



Figure 11.1
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Solving this for C,  5/a  =  1 – 5ωC  or  C  =  [1 – 5/a]/(377x5)  =  [1 – 5/a]/1885

pf a C
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0.8 6.667 132.65 µF

0.85 8.068 201.7   µF

0.9 10.324 273.6   µF

0.95 15.212 356.1   µF

1.0 ∞ 530.5   µF
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Problem 11.15 Referring to the results of Problem 11.14, what can you say about the relative
costs of power factor correction?

To correct to 0.8 pf requires a 132.65 µF capacitor. (Clearly one would purchase the closest value
commercially available for the desired use. Taking into account energy requirements, this might
be a 150 µF capacitor.)

To correct to 0.85 requires only a 200 µF capacitor.  However, to go to 0.95 requires almost two
of these.  This would mean that the cost of correcting to 0.95 is twice as much as correcting to
0.85.  To go to unity costs even more.  It would require 4 times the number of capacitors to
correct to unity as to correct to 0.8.  Fortunately, utilities gain little from corrections from 0.85 to
unity, which can save a lot since these compensating capacitors are very expensive.

Problem 11.16 [11.53] Refer to the circuit shown in Figure 11.1.

Figure 11.1

(a) What is the power factor?
(b) What is the average power dissipated?
(c) What is the value of capacitance that will give unity power factor when
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APPLICATIONS

Problem 11.17 [11.63] The kilowatt-hour-meter of a home is read once a month.  For a
particular month, the previous and present readings are as follows:

Previous reading: 3246 kWh
Present reading: 4017 kWh

Calculate the electricity bill for that month based on the following residential rate schedule:
Base monthly charge: $12.00
First 100 kWh per month at 16 cents/kWh
Next 200 kWh per month at 10 cents/kWh
Over 300 kWh per month at  6 cents/kWh

kWh consumed kWh77132464017 =−=

The electricity bill is calculated as follows :
(a) Base charge  =  $12
(b) First 100 kWh at $0.16 per kWh  =  $16
(c) Next 200 kWh at $0.10 per kWh  =  $20
(d) The remaining energy (771 – 300)  =  471 kWh

at $0.06 per kWh  =  $28.26.

Adding (a) to (d) gives a total of  26.76$
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