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CHAPTER]|I

THE LAPLACE TRANSFORM

A man is like a function whose numerator is what he is and whose
denominator iswhat he thinks of himself. Thelarger the denominator the
smaller the fraction.

—I. N. Tolstroy

Pierre Simon Laplace (1749-1827), a French astronomer and mathematician, firs
presented the transform that bears his name and its applications to differential equati
in 1779.
Born of humble origins in Beaumont-en-Auge, Normandy, France, Laplac
became a professor of mathematics at the age of 20. His mathematical abilities inspi
the famous mathematician Simeon Poisson, who called Laplace the Isaac New
of France. He made important contributions in potential theory, probability theor
astronomy, and celestial mechanics. He was widely known for his wiwgite de
Mecanique Celeste (Celestial Mechanics), which supplemented the work of New-
ton on astronomy. The Laplace transform, the subject of this chapter, is named after h

Samuel F. B. Morse (1791-1872), an American painter, invented the telegraph, the firg
practical, commercialized application of electricity.

Morse was born in Charlestown, Massachusetts and studied at Yale and the R
Academy of Arts in London to become an artist. In the 1830s, he became intrigus
with developing a telegraph. He had a working model by 1836 and applied for a patqg’

between Baltimore and Washington, D.C. On May 24, 1844, he sent the famous fi
message: “What hath God wrought!” Morse also developed a code of dots and das|
for letters and numbers, for sending messages on the telegraph. The developmer
the telegraph led to the invention of the telephone.

Historical Profiles W

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents

645



646

For an ordinary function f (t), the lower limit can
be replaced by 0.

PART 3 Advanced Circuit Analysis

15.1 INTRODUCTION

Our frequency-domain analysis has been limited to circuits with sinu-
soidal inputs. In other words, we have assumed sinusoidal time-varying
excitations in all our non-dc circuits. This chapter introduced Hyptace
transform, a very powerful tool for analyzing circuits with sinusoidsl
nonsinusoidal inputs.

The idea of transformation should be familiar by now. When using
phasors for the analysis of circuits, we transform the circuit from the time
domain to the frequency or phasor domain. Once we obtain the phasor
result, we transform it back to the time domain. The Laplace transform
method follows the same process: we use the Laplace transformation
to transform the circuit from the time domain to the frequency domain,
obtain the solution, and apply the inverse Laplace transform to the result
to transform it back to the time domain.

The Laplace transform is significant for a number of reasons. First,
it can be applied to a wider variety of inputs than phasor analysis. Second,
it provides an easy way to solve circuit problems involving initial con-
ditions, because it allows us to work with algebraic equations instead of
differential equations. Third, the Laplace transform is capable of provid-
ing us, in one single operation, the total response of the circuit comprising
both the natural and forced responses.

We begin with the definition of the Laplace transform and use it to
derive the transforms of some basic, important functions. We consider
some properties of the Laplace transform that are very helpful in circuit
analysis. We then consider the inverse Laplace transform, transfer func-
tions, and convolution. Finally, we examine how the Laplace transform
is applied in circuit analysis, network stability, and network synthesis.

15.2 DEFINITION OF THE LAPLACE TRANSFORM

Given afunctionf (z), its Laplace transform, denoted BYs) or L[ f (¢)],
is given by

o0

LIf®O] = F(s) = /0  fedt (15.1)

wheres is a complex variable given by
s=0+jow (15.2)

Since the argument of the exponent in Eq. (15.1) must be dimension-
less, it follows that has the dimensions of frequency and units of inverse
seconds (sh). In Eqg. (15.1), the lower limit is specified as @ indicate
atime justbefore = 0. We use 0 as the lower limit to include the origin
and capture any discontinuity gf(¢) atr = 0; this will accommodate
functions—such as singularity functions—that may be discontinuous at
t=0.

The Laplace transform is an integral transformation of a function f (t) from the time
domain into the complex frequency domain, giving F(s).
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CHAPTER 15 The Laplace Transform

We assume in Eq. (15.1) thdi(r) is ignored forr < 0. To ensure
that this is the case, a function is often multiplied by the unit step. Thus,
f (@) is written asf (t)u(t) or f(¢),t > 0.

The Laplace transform in Eq. (15.1) is known as tme-sided
(or unilateral ) Laplace transform. Thievo-sided (or bilateral) Laplace
transform is given by

F(s) = /OO f@®e™" dt (15.3)

The one-sided Laplace transform in Eq. (15.1), being adequate for our
purposes, is the only type of Laplace transform that we will treat in this
book.

A function f(z) may not have a Laplace transform. In order for
f(¢) to have a Laplace transform, the integral in Eq. (15.1) must converge

647

to afinite value. Since/*'| = 1 for any value of, the integral converges

when | = cost ot + sin wt = |

o
/ e ' f@)|dt < oo (15.4)
for some real valug = o.. Thus, the region of convergence for the
Laplace transform is Re) = o > o,, as shown in Fig. 15.1. In this
region, |F(s)| < oo and F(s) exists. F(s) is undefined outside the '
region of convergence. Fortunately, all functions of interest in circuit
analysis satisfy the convergence criterion in Eq. (15.4) and have Laplace
transforms. Therefore, it is not necessary to spegifin what follows.

A companion to the direct Laplace transform in Eq. (15.1) is the

inverse Laplace transform given by 0 % oy @
1 o1+ joo
LTUF®)] = f) = — F(s)e" ds (15.5)
277”.] J]_*jOO

. o . . Figure 15.]  Region of convergence for
where the integration is performed along a straight line jw, —oco < 8 thigLapwcetranS?O,m_

® < o0) in the region of convergence; > o.. See Fig. 15.1. The
direct application of Eq. (15.5) involves some knowledge about complex
analysis beyond the scope of this book. For this reason, we will not use
Eqg. (15.5) to find the inverse Laplace transform. We will rather use a
look-up table, to be developed in Section 15.3. The functifGs and

F(s) are regarded as a Laplace transform pair where

f@®) = F(s) (15.6)

meaning that there is one-to-one correspondence betfeeandF (s).
The following examples derive the Laplace transforms of some important
functions.

M|5.|

Determine the Laplace transform of each of the following functions:
@ u@), (b) e “u(t),a > 0,and () §(¢).
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PRACTICE PROBLEMNIE

PART 3 Advanced Circuit Analysis

Solution:

(a) For the unit step function u(¢), shown in Fig. 15.2(a), the Laplace
transformis

e—Sl

Llu()] = /OO le™dt = —

0 (15.1.1)

AT ™

1 1
=0 +-0 =
N S

(b) For the exponential function, showninFig. 15.2(b), the Laplacetrans-
formis

Lle ™ u(t)] =/ e e dt
~ (15.1.2)
- _ 1 e—(s+a)t — 1
s +a 0 s +a
(c) For the unit impulse function, shown in Fig. 15.2(c),
L[5(1)] = f S(edt=e=1 (15.1.3)

since the impulse function §(¢) is zero everywhere except at ¢t = 0. The
sifting property in Eq. (7.33) has been applied in Eg. (15.1.3).

u(t) A e y(t) 5(t)
L 4|—>
1 b——ou— 1
_—l)
0 t 0 t

0 t
@ (b) (©

Figure [52  For Example 15.1: (a) unit step function, (b) exponential function,
(c) unit impulse function.

Find the Laplace transforms of these functions: r(¢) = tu(t), that is, the
ramp function; and e u(t).

Answer: 1/s2,1/(s — a).

MIS.Z

Determine the Laplace transform of f(¢) = sinwtu(t).
Solution:

Using Eq. (B.26) in addition to Eqg. (15.1), we obtain the Laplace trans-
form of the sine function as
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CHAPTER 15 The Laplace Transform 649

oo o) ejwt _ e—jwt
F(s) = L[dnwt] = / (Snwt)e™ dt = / (—) e ' dt
0 0 2j

1 00
— _/ (ef(sfjw)t _ e*(s+jw)t) dt
2j Jo

11 1\ o
T2 \s—jo s+jo) 52+ w?

PRACTICE PROBLEMEEEN

Find the Laplace transform of f(t) = coswtu(t).
Answer: s/(s? + w?).

15.3 PROPERTIES OF THE LAPLACE TRANSFORM

The properties of the Laplace transform help usto obtain transform pairs
without directly using EQ. (15.1) aswedidin Examples15.1and 15.2. As
we derive each of these properties, we should keep in mind the definition
of the Laplace transform in Eq. (15.1).

Linearity
If F1(s) and Fx(s) are, respectively, the Laplace transforms of f1(z) and
f2(1), then

Llay f1(t) + az f2(t)] = a1 F1(s) + axFa(s) (15.7)

where a1 and a, are constants. Equation 15.7 expresses the linearity
property of the Laplacetransform. Theproof of Eq. (15.7) followsreadily
from the definition of the Laplace transform in Eq. (15.1).

For example, by the linearity property in Eq. (15.7), we may write

1 . . 1. 1.
L[coswt] = L [E(ef‘” + e””)} = Eﬁ[e"‘”] + Eﬁ[e*f‘“’] (15.8)

But from Example 15.1(b), L[e~*] = 1/(s + a). Hence,

L[coswt] = ! ! + ! -2 15.9
wH=5 s—jo s+ jo) 24w (159
Scaling
If F(s) isthe Laplacetransform of f(¢), then
L[ f (at)] =/ flat)e™ " dt (15.10)
0

wherea isaconstantanda > 0. If welet x = at, dx = a dt, then

L[f(at)] = /Ooo f(x)e“(f/”%)C = %/000 F(x)e 6/ gx  (15.12)
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Comparing this integral with the definition of the Laplace transform in
Eqg. (15.1) showsthat s in Eq. (15.1) must be replaced by s/a while the
dummy variabler isreplaced by x. Hence, we obtain the scaling property
as

L[f(a)] = }F (i) (15.12)
a a

For example, we know from Example 15.2 that

Llsinwt] = P (15.13)
Using the scaling property in Eg. (15.12),
1 1) 2w
in2wt] = = = !
L[sin2wt] 2G/22 TR st da? (15.14)

which may also be obtained from Eq. (15.13) by replacing w with 2w.

Time Shift
If F(s) isthe Laplacetransform of f(z), then

LIf(t —a)u(t —a)] = /0 ft —a)ut —a)e™" dt (15.15)

a>0

Butu(t —a) =0fort <aandu(t —a) = 1fort > a. Hence,

LIf(t —a)u(t —a)] = /Oo ft —a)e " dt (15.16)

Ifweletx =t —a,thendx =drandtr =x +a. Ast — a,x — Oand
ast — 00, x — 00. Thus,

LIf(t —au@ —a)] = /00 F(x)e S0+ gx
0

=e ¥ / f@)e™ dx = e F(s)
0

or

LIft —a)u@t —a)] =e “F(s) (15.17)

In other words, if afunction is delayed in time by «a, the result in the s
domain is multiplying the Laplace transform of the function (without the
delay) by e~**. Thisis called the time-delay or time-shift property of the
Laplace transform.

As an example, we know from Eq. (15.9) that

s
52 + w?

Using the time-shift property in Eq. (15.17),

L[coswt] =

N

Lleosa(t —ayu(t —a)] = e 5

(15.18)
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CHAPTER 15 The Laplace Transform

Frequency Shift
If F(s) isthe Laplacetransform of f(z), then

Lle= f(1)] = /OO e~ f(t)e " dt
0

- / fe T dt = F(s + a)
0

or

Ll f(O] = F(s +a) (15.19)

That is, the Laplace transform of ¢~ f(t) can be obtained from the
Laplacetransformof f(r) by replacing every s withs +a. Thisisknown
as frequency shift or frequency translation.
As an example, we know that
N

CoSwt < - 3
s+ w
and (15.20)
. 0]
Sinwt <~ - 3
s+ w

Using the shift property in Eq. (15.19), we obtain the Laplace transform
of the damped sine and damped cosine functions as

—a s+a
[,[e ICOS(J)I] = m (15.218)
Lle= g . w
[6 Sma)t] = m (15.21b)

Time Differentiation
Given that F(s) isthe Laplace transform of f(r), the Laplace transform

of its derivativeis
af | _ [Zdf _,
L[dt}_/_ dte dt (15.22)

To integrate this by parts, welet u = ¢™*', du = —se™' dt, and dv =
(df/dt)ydt = df(t),v = f(r). Then
df

c [E] = f(t)e™

oo

[ f@O[—se™]dt
0~ 0~

—0— f(0*)+s/ f(e™' dt = sF(s) — f(07)
.

or

LIf' ] =sF(s)— f(07) (15.23)

The Laplace transform of the second derivative of f(¢) is a repeated
application of EQ. (15.23) as

d2
L I:d_z‘{j| = S»C[f/(t)] — f/(oi) = S[SF(S) _ f(Of)] _ f/(oi)
= s2F(s) —sf(0) — f'(07)
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652 PART 3 Advanced Circuit Analysis

or

LLF" ()] = s2F(s) — sf(07) — £/(07) (15.24)

Continuing in this manner, we can obtain the Laplace transform of the
nth derivative of f(r) as

c [d"f

o n _ -1 —
dt”:|_s F(s)—s"2f(0)

(15.25)
=207 = =S f0R0)

Asan example, we can use Eq. (15.23) to obtain the Laplace trans-
form of the sine from that of the cosine. If welet f(t) = coswt, then
f(O) = 1and f'(t) = —wsinwt. Using Eqg. (15.23) and the scaling

property,
_ 1. 1 )
Llsinwt] = —=L[f'()] = —=[sF(s) — f(07)]
w w
(15.26)

I U 1) =

N w(ss2~|—a)2 >_s2+w2
as expected.

Time Integration
If F(s) isthe Laplace transform of f(¢), the Laplace transform of its

integral is
£|:ft f(t)dl‘] Z/OO [/tf(x)dxi| e ' dt (15.27)
0 0~ 0

To integrate this by parts, we let

u =/ f(x)dx, du = f(t)dt
0
and

dv = e ¥ dt, v=—=—¢ ¥

L |:/:f(t)dti| = |:/:f(x)dxi| (—%e”)
/00( 1) st
- —= e f@t)drt
- S

For the first term on the right-hand side of the equation, evaluating the
term at t = oo yields zero due to e > and evaluating it at + = 0 gives

Then

[ee]

o-

1 0
- / f(x)dx = 0. Thus, thefirst termis zero, and
s Jo

ﬁ[/tf(t)dt} = }fwf(t)e_S’dt = }F(s)
0 s Jo- s
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CHAPTER 15 The Laplace Transform

or simply,

c Ui £(t) dt} - }F(s)
0 N

(15.28)

Asanexample, if welet f(r) = u(z),fromExamplel5.1(a), F(s) =

1/s. Using Eq. (15.28),

L[fot f(t)dt} =L[1] = % <%>

Thus, the Laplace transform of the ramp functionis

1
L[] = 2

Applying Eq. (15.28), this gives
! 1? 11
d = —_— = ——
el f o] -elz] =55

2
2
E[t]:s—3

or

Repeated applications of Eq. (15.28) lead to

" n!
L["] = ol
Similarly, using integration by parts, we can show that
! 1 1.,
Ef fde| ==F@)+<f 07)

where
0 = / £y di

Frequency Differentiation
If F(s) isthe Laplace transform of f(¢), then

F(s) = /Oo f(He™ dt
0

Taking the derivative with respect to s,
dF(s)
ds
and the frequency differentiation property becomes

dF(s)
ds

Lltf(1)] = —

Repeated applications of this equation lead to
d"F(s)

LI o] = (-1 —
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(15.30)

(15.31)

(15.32)

= /0 f@O)(—te™)dt = /0 (—=tf())e " dt = L[—1f(1)]

(15.33)

(15.34)
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Figure 5.3 A periodic function.

fi(t) I/\

0 T t
(1) 4
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0 T 2T t
f3(0) A
N

0 T 2T 3T t

Figure 5.4 Decomposition of
the periodic function in Fig. 15.2.

PART 3 Advanced Circuit Analysis

For example, we know from Example 15.1(b) that L[e~*] = 1/
(s + a). Using the property in Eq. (15.33),

d 1 1
—at1 _ _ — :
Llte ] = Is (s n a) 6T a? (15.35)

Notethat if « = 0, weobtain £[¢] = 1/s2 asin Eq. (15.29), and repeated
applications of Eq. (15.33) will yield Eq. (15.31).

Time Periodicity
If function f(¢) isaperiodic function such as shown in Fig. 15.3, it can
be represented as the sum of time-shifted functions shown in Fig. 15.4.
Thus,
f(@0) = fi®) + f2(0) + f3@) + - -
= f1t) + fa(t = T)u(t —T) (15.36)
+ falt = 2T)u(t — 2T) + - - -

where f1(¢) isthe same as the function f(¢) gated over theinterval 0 <
t < T,thatis,

f1(t) = f@O)[u@) —u —T)] (15.373)
or
_ | f@, O<t<T
f1) = { 0. otherwise (15.37b)

We now transform each term in Eq. (15.36) and apply the time-shift pro-
perty in Eq. (15.17). We obtain

F(s) = Fi(s) + Fi(s)e™ ™ + Fi(s)e 2" + Fi(s)e 3T + ...

15.38
— Fl(S)[1+€7TS +672Ts +673Ts 4. ] ( )
But
2 3 1
1+x+x“4+x°+... = (15.39)
1—x
if x| < 1. Hence,
Fi(s)
F = 15.40
(s) T (15.40)

where Fi(s) isthe Laplace transform of f1(¢); in other words, Fi(s) is
the transform f(¢) defined over its first period only. Equation (15.40)
shows that the Laplace transform of a periodic function is the transform
of thefirst period of the function divided by 1 — ¢~ 75.

Initial and Final Values

Theinitial-valueand final-val ue propertiesallow ustofind theinitial value
f(0) and the final value f(oco) of f(¢) directly from its Laplace trans-
form F(s). To obtain these properties, we begin with the differentiation
property in Eq. (15.23), namely,

o =c[Y]= [T Y
sF(s) f(O)_ﬁ[dt =/ dte dt (15.41)
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CHAPTER 15 The Laplace Transform

If welets — oo, theintegrandin Eq. (15.41) vanishesdueto the damping
exponentia factor, and Eq. (15.41) becomes

JLTO [sF(s)— f(0H]=0
or

£(O) = lim sF(s) (15.42)

Thisis known as the initial-value theorem. For example, we know from
Eq. (15.214a) that
s+ 2

_ -2 =5
f() =e < cosl0r — F(s) = (s +2)2+ 102

(15.43)

Using the initial-value theorem,

§2 425
O+ = Ilm F = |lim ——
FOD = I sF) = M 104
1+2/s

AN 1+ 4/s + 104/52

which confirms what we would expect from the given f(¢).
In Eq. (15.41), welet s — O; then

. ®d o0
imisFs) = £ = [ 5L ar= [ ar = pieor - 50)
s 0 t 0

or

f(o0) = [ir’%sF(s) (15.44)

Thisisreferred to as the final-value theorem. In order for the final-value
theorem to hold, all poles of F(s) must be located in the left half of the
s plane (see Fig. 15.1 or Fig. 15.9); that is, the poles must have negative
real parts. The only exception to this requirement is the case in which
F(s) hasasimplepoleat s = 0, becausethe effect of 1/s will be nullified
by s F(s) in Eq. (15.44). For example, from Eq. (15.21b),

— 2 -
f@t) =e “sSin5t = F(s) = CI22i5 (15.45)
Applying the final-val ue theorem,
5s
f(OO)—llmSF(S)—!LOm 0
as expected from the given 1 (z). Asanother example,
f(@) =sint = f(s) = (15.46)

s24+1
S0 that

= I F(s) =i
f(o0) = ImsF(s) = M=
Thisisincorrect, because f (1) = sint oscillates between +1 and —1 and
does not have alimit ast — oo. Thus, the final-value theorem cannot
be used to find the final value of f () = sint, because F'(s) has poles
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at s = £, which are not in the left half of the s plane. In general, the
final-val ue theorem does not apply in finding thefinal values of sinusoidal
functions—these functions oscillate forever and do not have final values.

The initial-value and final-value theorems depict the relationship
between the origin and infinity in the time domain and the s domain.
They serve as useful checks on Laplace transforms.

Table 15.1 providesalist of the properties of the Laplacetransform.
Thelast property (on convolution) will be proved in Section 15.7. There
areother properties, but these are enough for present purposes. Table 15.2
summarizesthe Laplacetransforms of some common functions. We have
omitted the factor u(r) except whereit is necessary.

TABLE I5.]  Properties of the Laplace transform. TABLE I5.2  Laplacetransform pairs.
Property Q) F(s) f@) F(s)
Linearity a1 fi(t) +axfo(t)  a1Fi(s) + axFa(s) 5(1) 1
. 1 s 1
Scaling f(at) EF(Z) u(r) -
Time shift ft —a)u(t —a) e F(s) » 1
Frequency shift e~ f(1) F(s+a) ¢ sta
. d
Time d—{ sF(s) — f(07) ; 12
differentiation s
el S2F(s) = sf(07) = f'(07) : !
dt? s sntl
3
‘Z—J; s3F(s) — s2£(07) — sf'(07) P 1
! —1"(0") (s +a)?
a f $"F(s) =" f(07) —s""2f'(07) 1 gt nt
dt .= f(nfl) 0) (s + a)"+t
. ) ! 1 sinwr 2
Time integration /0 f(@)dt ;F(s) w 2t a?
F i0) L Fe) coser -
requency tf ——F(s < 2
differentiation ds e
o . ssing 0
Frequency 1@ / F(s)ds sin(wt +6) %
integration ! s e
. L Fi(s) cos(wr + ) §C0SO —wsing
Timeperiodicity  f(t) = f(t +nT) i 60 T te?
Initial value £ lim s F(s) e sinwt S
- . (s +a)? + &?
Fina value f(o00) limsF(s)
s—>0 —ar s+a
Corvolution Fu6) % (o) Fi(s) Fa(s) i (s a2 +a?

m|5.3

Obtain the Laplace transform of f(r) = 8(t) + 2u(r) — 3¢~ %, > 0.
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CHAPTER 15 The Laplace Transform

Solution:
By the linearity property,
F(s) = L[5(0)] + 2L[u(t)] — 3L[e 2]

1 1 s+s+4
=1+2--3 =
+ s s+2 s(s+2)

PRACTICE PROBLEMMBENE

Find the Laplace transform of f (1) = cos2t + e, ¢ > 0.
2524+ 35+ 4

ST TE )

M|5.4

Determine the Laplace transform of f(r) = t2sin2t u(t).
Solution:
We know that
2
52422
Using frequency differentiation in Eq. (15.34),

L[sin2:] =

2
F(s):E[tzsinZt]z(—l)zd ( 2 )

ds? \ 52 +4
L d [ -4\ 12216
Tds \(s2+42) T (s2+4)3
PRACTICE PROBLEMEREK
Find the Laplace transform of f(r) = 12 cos3t u(r).
25(s%2 — 27)
A _—.
nswer e
e L B
Find the Laplace transform of the gate function in Fig. 15.5. 90
Solution: 10

We can express the gate functionin Fig. 15.5 as
g() = 10[u(t —2) —u(t — 3)]

>

0o 1 2 3 t
Since we know the Laplace transform of u(¢), we apply the time-shift

property and obtain Figure 155 The gate function;

Y 3 10 for Example 15.5.
G(s) = 10 (e— ¢ ) e )
S ) S
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PRACTICE PROBLEMNEN

h(t) A Find the Laplace transform of the function 4 (¢) in Fig. 15.6.
5
10 Answer: Z(2—e % — ).
S
5
0 2 4 {

Figure [5.6  For Practice Prob. 15.5.

£ A 7 L E NI
f(t) Calculate the Laplace transform of the periodic function in Fig. 15.7.
2 Solution:
The period of thefunctionis7T = 2. To apply Eq. (15.40), wefirst obtain
0 1 2 3 4 5t

the transform of the first period of the function.

f1@®) = 2t{u(t) —u(t — V)] = 2tu(t) — 2tu(® — 1)
=2tu(t) —2(t — 1+ Du( — 1)
=2tu(t) — 2t — Du(t — 1) — 2u(r — 1)

Figure 5.7 For Example 15.6.

Using the time-shift property,

2 et 2 . 2 s s
F]_(S)Is—z—zs—z—ge =s—2(1—€ — se )
Thus, the transform of the periodic function in Fig. 15.7 is
F 2
F(s) = 1(5) = 1—e* —se™)

1—e s 52(1—e %)

PRACTICE PROBLEMEEINN

f(t) Determine the Laplace transform of the periodic function in Fig. 15.8.

1 l—e>
Answer; ——————.
s(1—e™>)

0o 2 5 7 10 12 ¢t

Figure 158 For Practice Prob. 15.6.

M|5.7

Find the initial and final values of the function whose Laplace transform
is

20
(s +3)(s2+8s + 25

H(s) =
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Solution:
Applying the initial-value theorem,
. . 20s
MO = lim sH(s) = lim = 8 7 25 ,
— 1im 20/s? _ 0 _0 1
s>o0 (L+3/5)(1+8/s+25/5s%)  (1+0)(1+0+0) Xomroere ey 3
To be sure that the final-value theorem is applicable, we check where the 2

poles of H(s) are located. The poles of H(s) are s = —3, —4 %+ j3,

which all have negative real parts: they are all located on the |eft half of 1
the s plane (Fig. 15.9). Hence the final-value theorem applies and :
208 -4 -3 -2 -1 1 2 3 o
= limsH(s) = li | 1
hioo) = ImsH(s) = M 3 e 1 8 1 25) s
0
D — -3

= = O
(0+3)(0+0+25
Boththeinitial and final values could be determined from i (z) if weknew
it. See Example 15.11, where i (¢) is given. Figure 159 For Example15.7: Polesof H (s).

PRACTICE PROBLEMNENN

Obtain theinitial and the final values of
S4+25+6
s(s +1D2(s +3)

G(s) =

Answer: 1, 2.

154 THE INVERSE LAPLACE TRANSFORM

Given F(s), how do we transform it back to the time domain and obtain
the corresponding f(¢)? By matching entries in Table 15.2, we avoid
using Eq. (15.5) to find £ (¢).
Suppose F'(s) hasthe general form of

N(s)

D(s)
where N(s) is the numerator polynomial and D(s) is the denominator
polynomial. Theroots of N(s) = 0 are caled the zeros of F(s), while
the roots of D(s) = 0 are the poles of F(s). Although Eq. (15.47) is
similar in form to Eq. (14.3), here F(s) is the Laplace transform of a
function, which is not necessarily a transfer function. We use partial
fraction expansion to break F(s) down into simple terms whose inverse
transform we obtain from Table 15.2. Thus, finding the inverse Laplace
transform of F'(s) involves two steps. Software packages such as Matlab, Mathcad, and

Maple are capable of finding partial fraction ex-
pansions quite easily.

F(s) = (15.47)

Steps to Find the Inverse Laplace Transform:

1. Decompose F (s) into simple terms using partial fraction
expansion.
2. Find theinverse of each term by matching entriesin Table 15.2.
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Let us consider the three possible forms F (s) may take and how to apply
the two steps to each form.

I5.4.1 Simple Poles
Recall from Chapter 14 that a simple pole is a first-order pole. If F(s)
has only simple poles, then D(s) becomes a product of factors, so that

N(s)
F(s) = (15.48)
(s +pO(s+p2)---(s+ pn)
wheres = —p1, —po, ..., —p, arethesimplepoles, and p; # p; for al

i # j(i.e,thepolesaredistinct). Assumingthat thedegreeof N(s)isless
than the degree of D(s), we use partial fraction expansion to decompose

Otherwise, we must first apply long division so

that F(5) = N(SD(s) = Qs) + R(s)ID(s), where F(s) inEq. (1548) as
the degree of R(s), the remainder of the long ky ko ky
e F(s) = + +- 4 15.49
division, is less than the degree of D(s). (5) s+p1 o s+ pa S+ pn ( )
The expansion coefficients k1, ko, ..., k, are known as the residues of

F(s). There are many ways of finding the expansion coefficients. One
way isusing the residue method. If we multiply both sides of Eq. (15.49)
by (s + p1), we obtain
k ky,
(s + p1) 2 4 (s + p1)
s+ p2 § =+ Pn

Since p; # pj, setting s = —p1 in Eq. (15.50) leaves only k; on the
right-hand side of Eq. (15.50). Hence,

(s +p)F(s) =ki+ (15.50)

(s +pOF®) |__, =k (15.51)

Thus, in general,
ki=(s+p)FG) | __, (15.52)
Historical note: Named after Oliver Heaviside Thisisknown as Heaviside' s theorem. Once the values of k; are known,
(1850-1925), an English engineer, the pioneer of we proceedtofind theinverseof F(s) using Eq. (15.49). Sincetheinverse
operational calculus. transform of each term in Eq. (15.49) is L7[k/(s + a)] = ke~ “u(t),

then, from Table 15.1,

f(t) = (kie ™™ + koe P 4 - + kye” ") (15.53)

15.4.2 Repeated Poles

Suppose F'(s) hasn repeated polesat s = —p. Then we may represent
F(s) as

_ kn + kn—l + + k2

G+ pr s+ prt (s + p)?

F(s)
(15.54)

+ ML R
_— S
s+ p !

where Fi(s) is the remaining part of F(s) that does not have a pole at
s = —p. We determine the expansion coefficient k,, as

ky = (s +p)"F(s) | __, (15.55)

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



CHAPTER 15 The Laplace Transform

aswedid above. Todeterminek,_1, wemultiply each termin Eq. (15.54)
by (s + p)" and differentiate to get rid of k,, then evaluate the result at
s = — p to get rid of the other coefficients except k,,_1. Thus, we obtain

kn_1 = %[(s +p)"FO] |, (15.56)
Repeating this gives
kn—2 = id—z[(s + p)'F(9)] | (15.57)
"TET 20 ds? s==p '
The mth term becomes
1 4™ u
b = — = [(s + P)"F (5)] o, (15.58)

wherem = 1,2,...,n — 1. One can expect the differentiation to be
difficult to handle as m increases. Once we obtain the values of kj,
ko, ..., k, by partia fraction expansion, we apply the inverse transform

1 tn—le—at
1 _
£ [(s + a)”] (=1 1es9

to each term in the right-hand side of Eq. (15.54) and obtain

k
f@) =kie " + kpte 7 + Z_T’lze_”’

k. (15.60)

n—=1_—pt
+ m+—(n—1)!t e "+ f1(t)

15.4.3 Complex Poles
A pair of complex polesis simpleif it is not repeated; it is a double or
multiple pole if repeated. Simple complex poles may be handled the
same as simple real poles, but because complex algebrais involved the
result is always cumbersome. An easier approach isamethod known as
completing the square. Theideaisto express each complex pole pair (or
quadratic term) in D(s) as acomplete square such as (s + «)? + A2 and
then use Table 15.2 to find the inverse of the term.

Since N(s) and D(s) aways have real coefficients and we know
that the complex roots of polynomials with real coefficients must occur
in conjugate pairs, F(s) may have the general form

A1s + Ao
s24as+b

where Fy(s) isthe remaining part of F(s) that does not have this pair of
complex poles. If we complete the square by letting

F(s) = + Fi(s) (15.61)

stas+b=s’+2as+a’+B°=(G+a)’+ B> (1562
and we also let

A1s + Ay = Ay(s + o) + BB (15.63)
then Eqg. (15.61) becomes
Ai(s + ) B1p

F(s) =

St raZ<p T Fi(s) (1564
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From Table 15.2, the inverse transform is

f(t) = Are™ cosBt + Bre ™ sinBt + fi(t) (15.65)

The sine and cosine terms can be combined using Eqg. (9.12).

Whether the pole is simple, repeated, or complex, a general ap-
proach that can always be used in finding the expansion coefficients is
the method of algebra, illustrated in Examples 15.9 to 15.11. To apply
the method, we first set F(s) = N(s)/D(s) equal to an expansion con-
taining unknown constants. We multiply the result through by acommon
denominator. Then we determine the unknown constants by equating
coefficients (i.e., by algebraically solving aset of simultaneous equations
for these coefficients at like powers of s).

Another general approach is to substitute specific, convenient val-
ues of s to obtain as many simultaneous equations as the number of
unknown coefficients, and then solve for the unknown coefficients. We
must make sure that each selected value of s is not one of the poles of
F(s). Example 15.11 illustrates thisidea.

PRACTICE PROBLEMMENER

Find the inverse Laplace transform of

5 6

3
Fis)=2-2 4 >
() s s+1+52+4

Solution:
The inverse transform is given by

_ 1 IR ANl 1 _6
o=t — e () e () e (255)

=3u(t) —5e~" +3sin2t, t>0

where Table 15.2 has been consulted for the inverse of each term.

8

Determine the inverse Laplace transform of
4 Bs

s+3 s2+16
Answer: 8(z) +4e~¥ — 5cos4t, t > 0.

F(s)=1+

M|5.9

Find f(¢) given that

s24+12

FO =57 26+3

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



CHAPTER 15 The Laplace Transform

Solution:
Unlike in the previous example where the partial fractions have been
provided, we first need to determine the partial fractions. Sincethere are
three poles, we let
s2+12 A B

— = — 4+ —+

s(s+2)(s+3 s s+2 s+3
where A, B, and C are the constants to be determined. We can find the
constants using two approaches.

METHOD BN Residue method:

(15.9.1)

A=sF() | y= — 2 - o6 =
=S5£8) |0 = (s +2)(s+3) x:O_ 2@
B=G6+2F0 | =5 ==
s2 412 94+ 12
C=G6H+IFO | =" | =Ty -

METHOD §} Algebraic method: Multiplying both sides of Eq.

(15.9.2) by s(s + 2)(s + 3) gives

s+ 12=A(s +2)(s +3) + Bs(s +3) + Cs(s + 2)
or

52+ 12 = A(s? + 55 + 6) + B(s® + 3s) + C(s? + 25)
Equating the coefficients of like powers of s gives
Constant: 12 = 6A == A=2
st 0=54+4+3B+2C - 3B+2C =-10
52 1=A+B+C = B+C=-1
Thus A =2, B = -8, C = 7, and Eq. (15.9.1) becomes

8 N 7
s+2 s+3

2
F(S):;_

By finding the inverse transform of each term, we obtain

f(t) =2u(t) —8 2 +7%, >0

PRACTICE PROBLEMEEEE

Find f () if
_ 6(s +2)
T G+DGE+IE+ 4D

Answer: f(t)=e ' +3e ¥ —4e ¥, t > 0.

F(s)
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Calculate v(z) given that

Vis) = 10s2 + 4
VS G+ DG+ 22
Solution:

Whilethe previousexampleison simpleroots, thisexampleisonrepeated
roots. Let
10s? + 4
s(s +1)(s + 2)2
A B C D

s +s+1+(s+2)2+s+2

METHOD | Residue method:

Vis) =
(15.10.1)

A5V | = 10s° + 4 4
=V = D622 |, T R
10s2 + 4 14
P=CHDVO =T |, T Char
10s2 + 4 44
R =T

im+awm]

d _d (10s°+4
d o ds \ s2+s
_ (s?+5)(20s) — (10s® 4 4)(2s 4 1) B2
- (52 + 5)2 s 4
METHOD 1 Algebraic method: Multiplying Eq. (15.10.1) by
s(s + 1)(s + 2), we obtain
1052 + 4= A(s + D)(s + 22+ Bs(s + 2)2
+Cs(s+1)+Ds(s+D(s+2)

D =

s=—2

13

or
10s? + 4 = A(s® 4 552 + 85 4 4) + B(s> + 4s% + 4s)
+ C(s? +5) + D(s% + 352 + 25)
Equating coefficients,
Constant: 4 =4A - A=1

s 0=8A+4B+C+2D — 4B+ C +2D = -8
s2: 10=5A+4B+C+3D =N AB+C+3D=5
53 O0=A+B+D = B+D=-1

Solving these simultaneous equations gives A = 1, B = —14, C = 22,
D = 13, sothat
V(s) 1 14 N 13 N 22
§)=— —
s s+1 s+2 (s+2)72
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Taking the inverse transform of each term, we get
V(1) = u(r) — 1de™ +13e7% + 22te™%, >0

PRACTICE PROBLEMMNEEEN

Obtain g(t) if

s34+254+6
s(s +12(s + 3)
Answer: 2u(t) — 3.25¢" — 1.5re~ +2.25¢ %t > 0.

G(s) =

|Illﬂﬂ]j|sw|

Find the inverse transform of the frequency-domain function in Example
15.7:

20

HO) = Cia62+ 8 +

Solution:

Inthisexample, H (s) hasapair of complex polesat s> + 8s +25 = O or
s =—4+ j3. Welet

_ 20 A n Bs+C
T (s+3)($2+8+25 s+3 (s24+8s+25)
We now determine the expansion coefficientsin two ways.

METHOD §} Combination of methods: We can obtain A using the

method of residue,

H(s) (15.11.1)

20 20
_ = = = — = 2
=3 248 +25|_, 10
Although B and C can be obtained using the method of residue, we
will not do so, to avoid complex algebra. Rather, we can substitute two
specific values of s [say s = 0, 1, which are not poles of F(s)] into Eq.
(15.11.1). Thiswill give us two simultaneous equations from which to
find Band C. If welets = 0in Eq. (15.11.1), we obtain

A=(s+3H() |

20 A . C

75 3 25
or

20 =25A + 3C (15.11.2)
Since A = 2, Eq. (15.11.2) gives C = —10. Substituting s = 1 into Eq.
(15.11.2) gives

20 A n B+C
@EH 40 A

or

20=34A+4B +4C (15.11.3)
But A = 2, C = —10, so that Eg. (15.11.3) gives B = —2.
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PRACTICE PROBLEM

| 5.

PART 3 Advanced Circuit Analysis

METHOD ]} Algebraic method: Multiplying both sides of Eg.

(15.11.1) by (s + 3)(s2 + 85 + 25) yields
20 = A(s? + 85+ 25) + (Bs + C)(s + 3)

(15.11.4)
=A(s2+ 85+ 25+ B(s>+3s)+C(s +3)
Equating coefficients,
52 0=A+B = A=-B
s: 0=8A+3B+C=5A+C - C=-5A

Constant: 20 = 25A + 3C = 25A — 154 e A=2
Thatis, B = —2, C = —10. Thus

2 25 + 10 2 2s +4)+2
H(s) = - = — -
s+3 (5248 +25 s+3 (+dH2+9
2 2(s + 4 2 3

T 5+3 (5+42+9 3(+42+9
Taking the inverse of each term, we obtain

2
h(t) = 2¢™% — 2¢7* cos3r — ée“" sin3t (15.11.5)

It is aright to leave the result this way. However, we can combine the
cosine and sine terms as

h(t) = 2¢7% — Ae ™ cos(3t — 6) (15.11.6)

To obtain Eq. (15.11.6) from Eq. (15.11.5), we apply Eq. (9.12). Next,
we determine the coefficient A and the phase angle 6:

A=y24(3)°=2108 O =tan!

= 18.43°

N [win

Thus,
h(t) = 2¢~% — 2.108¢~* cos(3r — 18.43")
| |

Find g(r) given that

_ 10
T (s + 1)(s2 + 4s + 13)

G(s)

1 .
Answer: e~ — e 2 cos3t + ée‘z’ sin3¢,¢ > 0.

15.5 APPLICATION TO CIRCUITS

Having mastered how to obtain the Laplace transform and itsinverse, we
are now prepared to employ the Laplace transform to analyze circuits.
This usually involves three steps.

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



CHAPTER 15 The Laplace Transform 667

Steps in applying the Laplace transform:
1. Transform the circuit from the time domain to the s domain.

2. Solvethe circuit using nodal analysis, mesh analysis, source
transformation, superposition, or any circuit analysis technique
with which we are familiar.

3. Taketheinverse transform of the solution and thus obtain the
solution in the time domain.

Only the f| rst Step |S new and W| “ be dISCLI$ed here AS we d| d |n phaSOI’ As one can infer from Step 2y all the circuit anal-
analysis, we transform a circuit in the time domain to the frequency or s ysis techniques applied for dc circuits are appli-
domain by Laplace transforming each term in the circuit. cable to the s domain.
For a resistor, the voltage-current relationship in the time domain
is
v(1) = Ri(t) (15.66)
Taking the Laplace transform, we get
V(s) = RI(s) (15.67) it) I(s)
- —_— —_—
For an inductor, + +
i(0) sL
di(t)
v = L= (1568 v l =RV
Li(Q
Taking the Laplace transform of both sides gives - - ©
O—
V(s)=L[sI(s)—i(0")] =sLI(s)— Li(07) (15.69) @ (b)
or ©
1 (0~ °
I(s)=—V(s)+ 4Cl (15.70) +
sL K
s i
The s-domain equivalents are shown in Fig. 15.10, where theinitia con- Ve % <> s
dition ismodeled as a voltage or current source. _
For a capacitor, o
d (©
it)y=0C Zl(t) (15.71)
_ _ _ Figure 15.10  Representation of an
which transforms into the s domain as inductor: (a) time-domain, (b,c) s-domain
equivalents.
I(s) =C[sV(s) —v(07)] =sCV(s) — Cv(0) (15.72)
or

v(07)

(15.73)

1
Vis) = —71(s) +

The s-domain equivalents are shown in Fig. 15.11. With the s-domain

. ; ) The elegance of using the Laplace transform in
equivaents, the Laplace transform can be used readily to solve first-

circuit analysis lies in the automatic inclusion of

and second-order circuits such as those we considered in Chapters 7 the initial conditions in the transformation pro-
and 8. We should observe from Egs. (15.68) to (15.73) that the initial cess, thus providing a complete (transient and
conditions are part of the transformation. Thisis one advantage of using steady-state) solution.
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it) I(9)
o—— o——
+ +
v(t) R V() R
o—— o——
@
it) I(9)
P —— P—
+ +

o— o— 1
(b)
it) I(s)
o—— o——
+ +
L1
vy —|C VO T =
o— | o |

©

Figure 1512 Time-domain and
s-domain representations of passive
elements under zero initial conditions.

TABLE 153 Impedance of an
element in the s domain.*

Element Z(s) =V(s)/I(s)
Resistor R
Inductor sL
Capacitor 1/sC

*Assuming zero initial conditions

PART 3 Advanced Circuit Analysis
i I(s) 1(s)
—_— —_— o —_—
+ + + +
+ S%Z +
vy VO=FC vy ARC * @ oo
o— | o
(@ (b) (©
Figure 5.1 Representation of a capacitor: (a) time-domain, (b,c) s-domain equivalents.

the Laplace transform in circuit analysis. Another advantage is that a
complete response—transient and steady state—of anetwork isobtained.
Wewill illustrate this with Examples 15.13 and 15.14. Also, observethe
duality of Egs. (15.70) and (15.73), confirming what we already know
from Chapter 8 (see Table 8.1), namely, that L and C, I (s) and V (s), and
v(0) and i (0) are dual pairs.

If we assume zero initial conditions for the inductor and the capac-
itor, the above equations reduce to:

Resistor:
Inductor:

V(s) = RI(s)

V(s) =sLI(s) (15.74)

Capacitor: V(s) = %I(s)
N

The s-domain equivalents are shown in Fig. 15.12.
We define the impedance in the s-domain as the ratio of the voltage
transform to the current transform under zero initial conditions, that is,

Z(s) = L 1575
S) = 3

10 (15.79)
Thus the impedances of the three circuit elements are
Resistor:  Z(s) =R
Inductor:  Z(s) = sli (15.76)
Capacitor:  Z(s) = —

sC

Table 15.3 summarizes these. The admittance in the s domain is the
reciprocal of the impedance, or
(O]
Z(s) V(s
The use of the Laplace transform in circuit analysis facilitates the use

of various signal sources such as impulse, step, ramp, exponential, and
sinusoidal.

Y(s) (15.77)

m|5.|2

Find v, (¢) inthe circuit in Fig. 15.13, assuming zero initial conditions.
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Solution: 50
Wefirst transform the circuit from the time domain to the s domain. +
1 vy(t
() N 1 u(t) 1H _o()
N
1H - sL=s
1 1 3 Figure [5.13  For Example 15.12,
-F == — ==
3 sC s
The resulting s-domain circuit is in Fig. 15.14. We now apply mesh
analysis. For mesh 1,
1 3 3
-=\1+-)h—--DI (15.12.1) 10 50
s s s AW A
For mesh 2, n
3 3 1+ 3L s 2 V(9
0=——11+<s+5+—)12 SC) s -
or
1
IL==(“4+5+3 DL (15122)
3 Flgure_ |5.|4_ Mesh analysis of'the_frequency-
Substituting thisinto Eq. (15.12.1), domain equivalent of the same circuit.

1 <1+ §) }(sZ + 55+ 3 — 2’12
s s/) 3 K
Multiplying through by 3s gives
3

" 3+ 852+ 185

3 3 V2
2485 +18 V2(s+47 + (V272
Taking the inverse transform yields

3= (s34 852+ 18s)» = I

V,(s) =sl, =

3 .
Vo(t) = —e ¥ sinv2t V, t>0

V2
PRACTICE PROBLEMERFNEW
Determine v, (¢) in the circuit of Fig. 15.15, assuming zero initial condi- 1H
tions. a1l o
Answer: 8(1—e % —2re 2 u(t) V. +

Bl
m
||

I

= 2u(t) V 4Q < V()

Figure I5.15  For Practice Prob. 15.12.

mIS.IS

Find v, (¢) inthe circuit of Fig. 15.16. Assume v,(0) = 5V.
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10Q

+
10etu(t) V 10Q Vo(t) == 0.1F 28(t) vV

Figure 1516 For Example 15.13.

Solution:

We transform the circuit to the s domain as shown in Fig. 15.17. The
initial condition isincluded in the form of the current source Cv,(0) =
0.1(5) = 0.5A.[SeeFig. 15.11(c).] We apply nodal analysis. At thetop

node,
10/s+1) -V, v, v,
- 1+ 24+05=-—-
10 tet 10 + 10/s
or

1 2V, sV, 1

25= =
s+1 * 10 * 10 10
Multiplying through by 10,

Vols +2)

10
- 25= 0 2
5+ Vo(s +2)
or
. 25%+3 A + B
"TGFDE+D  sHL 52
where
255 + 35 10
N - _255+35 - _-10
(s +DVols) |[__, (s+2) |, 1
255 + 35 —15
. - _255+35 - _15
s +2Ve) |,__, ¢+D [, -1
Thus,
Vols) = o 4 >
OS:_
s+1 s+2

Taking the inverse Laplace transform, we obtain

v, (1) = (10e™" + 15¢ %) u(r)
100 (9

10 110

Figure [517  Nodal analysis of the equivalent of the circuit in
Fig. 15.16.
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PRACTICE PROBLEMEEIEE

Find v, (¢) inthe circuit shown in Fig. 15.18. 10
Answer: (e + S Bu(r). N
e 2y(t) vV 2H 20 < V()

Figure 1518 For Practice Prob. 15.13.

MIS.H

Inthe circuit in Fig. 15.19(a), the switch moves from position a to posi- 2 20

tionbatr=0. Findi(r) forr > 0. R _
Solution: | b l'(t)
The initial current through the inductor isi(0) = 1,. Fort > 0, Fig. o v L
15.19(b) shows the circuit transformed to the s domain. Theinitia con- °
dition is incorporated in the form of a voltage source as Li(0) = L1,.
Using mesh analysis, €Y
Vo R
IS)(R+sL)y—LI,—— =0 (15.14.1)
S
or sk
LI, V, 1, Vo/L \'é @) @
I1(s) = + = + (15.14.2) Ll,
R+sL  s(R+sL) s+ R/L s(s+ R/L)

Applying partial fraction expansion on the second term on the right-hand
side of Eq. (15.14.2) yields

1, V,/R V,/R Figure 15.19 For Example 15.14.
= - (15.14.3)
s+ R/L s (s+ R/L)

(b)

1(s)

The inverse Laplace transform of this gives

\% \%
)= (1, — =2 )e /" + 2, t>0 15.14.4
0= (- BB izo s

where T = R/L. The term in fences is the transient response, while
the second term is the steady-state response. In other words, the final
vaueisi(oo) = V,/R, which we could have predicted by applying the
final-value theorem on Eq. (15.14.2) or (15.14.3); that is,

. . si, V,/L V,
limsI(s) =Ilim + = — (15.14.5)
s—0 s—0 S+R/L S+R/L R
Equation (15.14.4) may also be written as
Vo _
it) = Le '™+ E(l — e 1Ty, r>0 (15.14.6)

Thefirst term isthe natural response, while the second term isthe forced
response. If theinitia condition 7, = 0, Eq. (15.14.6) becomes
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i) = %(1 — ey, t>0 (15.14.7)

which is the step response, since it is due to the step input V,, with no
initial energy.

| 4

Figure 1520 For Practice Prob. 15.14.

TheswitchinFig. 15.20 hasbeenin position b for alongtime. Itismoved
to positiona at r = 0. Determine v(z) forr > 0.

Answer: v(t) = (V, — I,R)e /" + I,R,t > 0, wheret = RC.

For electrical networks, the transfer function is
also known as the network function.

Some authors would not consider Egs. (15.79¢)
and (15.79d) transfer functions.

15,6 TRANSFER FUNCTIONS

The transfer function is a key concept in signal processing because it
indicates how a signal is processed as it passes through a network. Itis
afitting tool for finding the network response, determining (or designing
for) network stability, and network synthesis. The transfer function of a
network describes how the output behavesin respect to theinput. It spec-
ifies the transfer from the input to the output in the s domain, assuming
no initial energy.

The transfer function H(s) is the ratio of the output response ¥(s) to the input
excitation X(s), assuming all initial conditions are zero.

Thus,

oY)
CX(s)

H(s) (15.78)

The transfer function depends on what we define as input and output.
Sincetheinput and output can be either current or voltage at any placein
the circuit, there are four possible transfer functions:

Vo (s)

H(s) = Voltagegain = Vo) (15.79a)
H (s) = Current gain = Lo(s) (15.79h)
I (s)
H (s) = Impedance = & (15.79¢c)
1(s)
1
H (s) = Admittance = (s) (15.79d)
V(s)
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Thus, a circuit can have many transfer functions. Note that H(s) is
dimensionlessin Egs. (15.79a) and (15.79b).

Each of the transfer functions in Eq. (15.79) can be found in two
ways. One way isto assume any convenient input X (s), use any circuit
analysis technique (such as current or voltage division, nodal or mesh
analysis) to find the output Y (s), and then obtain theratio of thetwo. The
other approachisto apply theladder method, which involveswalking our
way through the circuit. By this approach, we assume that the output is
1V or 1 A asappropriate and use the basic laws of Ohm and Kirchhoff
(KCL only) to obtain the input. The transfer function becomes unity
divided by the input. This approach may be more convenient to use
when the circuit has many loops or nodes so that applying nodal or mesh
analysis becomes cumbersome. In the first method, we assume an input
and find the output; in the second method, we assume the output and find
the input. In both methods, we calculate H (s) as the ratio of output to
input transforms. The two methods rely on the linearity property, since
we only deal with linear circuitsin this book. Example 15.16 illustrates
these methods.

Equation (15.78) assumes that both X (s) and Y (s) are known.
Sometimes, we know the input X (s) and the transfer function H(s).
We find the output Y (s) as

Y(s) = H(s)X (s) (15.80)

and take the inverse transform to get y(r). A specia case is when the
input is the unit impulse function, x(t) = §(¢), sothat X(s) = 1. For
this case,

Y(s) = H(s) or y(t) = h(t) (15.81)
where

h(t) = L7YH (s)] (15.82)

Theterm k(¢) representsthe unit impul se response—it isthetime-domain
response of the network to a unit impulse. Thus, Eq. (15.82) provides a
new interpretationfor thetransfer function: H (s) istheLaplacetransform
of the unit impul se response of the network. Once we know the impulse
response i (t) of anetwork, we can obtain the response of the network to
anyinput signal using Eq. (15.80) inthes domain or using the convol ution
integral (see next section) in the time domain.

MIS.IS

The unitimpulse responseis the output response
of a circuit when the input is a unit impulse.

Theoutput of alinear systemisy(r) = 10e~' cos4tu(r) whentheinputis
x(t) = e”"u(r). Find the transfer function of the system and its impulse

response.
Solution;
If x(t) = e 'u(t) and y(¢t) = 10e~" cos4dru(t), then
1 10(s + 1)
X = Y e —
©=77 )= T2y 2
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Hence,
M = YO _ 10 10
s X(s) (s+1D24+16 52425 +17

Tofind h(r), wewrite H(s) as

10 4

B = F s e

From Table 15.2, we obtain

h(t) = 2.5e""sin4t

| 5

The transfer function of alinear systemis

H(s) =

s+ 6

Find the output y(¢) dueto the input e~ 1 (r) and itsimpulse response.
Answer: —2¢ ¥ 4+ 4e % 1t > 0,25(t) — 12 % u(r).

o @

Figure 521 For Example 15.16.

Determinethetransfer function H (s) = V,(s)/1,(s) of thecircuitin Fig.
15.21.

Solution:
METHOD Ml By current division,
A
2T St A42+1/2s
But
2 41
V, =2l = u
s+6+1/2s
Hence,
v, 4s(s + 4
His) = (s)  As(s+4

I,(s) 252412541

METHOD B} We can apply the ladder method. We let V, = 1 V. By

Ohm'slaw, I, = V,/2 = 1/2 A. The voltage across the (2 + 1/2s)

impedanceis
1

1
24 =
+2s

:1 —_— =
+4s

4s + 1
4s
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Thisisthe same as the voltage across the (s + 4) impedance. Hence,
V1 4s + 1

s+4  4s(s+4)

Applying KCL at the top node yields

4s+1 1 224125+ 1

Iy =

IL=L+DL= g
=1 T 2T a6+
Hence,
V, 1 4s 4
H(S):—Oz—:—(s+)
I, I, 2s24+125+1
as before.

PRACTICE PROBLEMEEEE

Find thetransfer function H (s) = I1(s)/1,(s) inthecircuit of Fig. 15.21.
4s + 1
2524+ 125 +1°

mﬂu.w

For the s-domain circuit in Fig. 15.22, find: (&) the transfer function 1Q 4 s
H(s) = V,/V;, (b) theimpulse response, (c) the response when v; (t) =
u(t) V, (d) the response when v; (t) = 8cos2r V.

Solution:

(a) Using voltage division,

Answer:

= V, 15.17.1 .
s+1 @ ( ) Figure 15.22  For Example 15.17.

But
Vo — 11G+1 V- (s+D/s+2
CTIFLIG6+D T 146 +D/5+2)

or

s+1

> =V

25 +3

Substituting Eq. (15.17.2) into Eq. (15.17.1) resultsin
Vi

Vo= o
25 +3

Vap = (15.17.2)

Thus, the impulse responseis

v,
H = — =
©) =3 =573

(b) We may write H (s) as
H(s) 1 1
S) = —
2543

Itsinverse Laplace transform is the required impul se response:

h(t) = %e_?”/zu(t)
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(c) When v; (t) = u(t), Vi(s) = 1/s, and
1 A B

Vos) = Hs)Vi(s) = — = — + —_
(s) ($)Vi(s) 2612 s+s+%

where
A=sU) | 1 1
= S 0 ) = —— = —
=0 265+ [0 3
B ( + 3) V,(s) 1 1
= S — 0 S = — = ——
2 s=—3/2 2s s=—3/2 3
Hence, for v; (1) = u(t),
V.(s) 1/1 1
oS) =5 |- — —=
3\s s—}—%’
and itsinverse Laplace transformis
1
vo(t) = (1 - e ¥ Pu@) v
8s
(d) When v; (t) = 8cos2t, then V;(s) = i and
)
Vy(s) = H(s)Vi(s) i
o(s) = HVis) = ———7—
(s+ (2 + 4 e1rs
_ A, Bs+C (45179
Cs+3 0 244
where
4s 24

3
A=|s+ <) V,( = = o
(g 2> © sm—gp S2+4 L:s/z 25

To get B and C, we multiply Eq. (15.17.3) by (s + 3/2)(s? + 4). We get
4s = A(s°>+4) + B (s2+§s> +C<s+g)

Equating coefficients,

3 8
Constant: 0=4A+§C — C = —§A
3
: 4=—-B+C
K > +
§2 0=A+B — B=-A

Solving these gives A = —24/25, B = 24/25, C = 64/25. Hence, for
v;(t) = 8cos2t V,

-2 24 2 2
_ +_
s+3 25s52+4 2552+4

Va(s) =
and itsinverseis

2 —3/2 4
V(1) = > (—e + cos2t + 3 sin2t Ju(t) V
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PRACTICE PROBLEMEEREIN

Rework Example 15.17 for the circuit shown in Fig. 15.23. 10
Answer: (a) 2/(s + 4), (b) 2% u(r), (©) (L — e~ u(®) V,
(d) 3(e* + cos2r + S sin2t)u(r) V.

Figure 1523 For Practice Prob. 15.17.

15,7 THE CONVOLUTION INTEGRAL

Theterm convolution means“folding.” Convolution isan invaluabletool
to the engineer becauseit provides ameans of viewing and characterizing
physical systems. For example, itisused infinding theresponse y(¢) of a
system to an excitation x (), knowing the system impulse response A(t).
Thisis achieved through the convolution integral, defined as

y(t) = /oo x(Mh(t — L) dr (15.83)

or smply
y(t) = x(1) * h(z) (15.84)
where A isadummy variable and the asterisk denotes convolution. Equa-

tion (15.83) or (15.84) statesthat the output isequal to theinput convolved
with the unit impulseresponse. The convolution processiscommutetive:

y(@)=x@)xh(t) = h(t) * x(t) (15.85a)
or
y(t) = foo x(Mh(@ —A)dr = foo h(M)x(t — A)dAr (15.85h)

This implies that the order in which the two functions are convolved is
immaterial. We will see shortly how to take advantage of this commuta-
tive property when performing graphical computation of the convolution
integral.

The convolution of two signals consists of time-reversing one of the signals,
shifting it, and multiplying it point by point with the second signal,
and integrating the product.

Theconvolutionintegral in Eq. (15.83) isthegeneral one; it applies
toany linear system. However, the convolution integral can be simplified
if we assume that a system has two properties. First, if x(#) = O for
t < 0, then

y(t) = /OO x(Mh(t —A)dr = /oox(k)h(t —A)dL  (15.86)
- 0

o]
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Second, if the system’s impulse response is causal (i.e., h(t) = O for
t < 0),thenh(t — 1) =0fort — A < 0or A > ¢, sothat Eqg. (15.86)
becomes

y(&) =h@) xx(t) = / x(Wh(t — ) d (15.87)
0

Here are some properties of the convolution integral.
1. x(t) * h(t) = h(@) * x(t) (Commutative)
2. f@) *[x@) +y@®)] = f@) *=x(t) + f() * y(t) (Distributive)
3 F0) *[x(0) * y(O)] = [£ (1) * x(D)] * y(¢) (Associative)

4. f(t)*5(t)=/ FR)8(t —r)ydr = f(t)
S. ft) %8t —1,) = f(t —1,)
- f@)x8(@) = / FO)S'@ =ndr= f'(1)

»

~

. f(t)*u(t):/oo f(A)u(t—A)dA:/ F(R) dr

Before learning how to evaluate the convolution integra in Eq.
(15.87), let us establish the link between the Laplace transform and the
convolution integral. Given two functions f1(¢) and f>(¢) with Laplace
transforms Fi(s) and Fx(s), respectively, their convolution is

f@) = f1(0) * fa(t) = fo J1) fo(t — 1) d (15.89)

Taking the Laplace transform gives

F(s) = LI f1(1) % fo(D)] = F1(s) Fa(s) (15.89)
To prove that Eq. (15.89) is true, we begin with the fact that F; (s)
is defined as
Fi(s) = / F)e ™ dx (15.90)
0

Multiplying thiswith F>(s) gives

F1(s) F2(s) =/0 1O Fa(s)e™ ] (15.91)

We recall from the time shift property in Eq. (15.17) that the term in
brackets can be written as

Fa(s)e™* = L[ fo(t — Mu(t — 1)]
(15.92)

= / ~ folt — Nu(t — r)e™* dt
0
Substituting Eg. (15.92) into Eq. (15.91) gives
Fi(s)Fa(s) = / ” fi(v) [ [ ” folt — Nu(t — A)e dt] d) (15.93)
0 0

Interchanging the order of integration resultsin

Fi(s)Fa(s) = / ” [ / F1(V) fot — 1) d/\} et dt (1594
0 0
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Theintegral in brackets extends only from 0to ¢ because the delayed unit
stepu(t — 1) =1forr < tandu(r — 1) = Ofor A > z. We notice
that the integral is the convolution of f1(¢) and f>(¢) asin Eq. (15.88).
Hence,

F1(s)Fs(s) = L[ f1(2) * f2(1)] (15.95)

asdesired. Thisindicatesthat convolutioninthetimedomainisequivalent
to multiplication in the s domain. For example, if x(r) = 4e™" and
h(t) = 5e~%, applying the property in Eq. (15.95), we get

_ p-1 =1 > 4
h(t) xx(t) = L~ [H()X ()] = £ [(s+2> <s+1>]

20 -20
:El[ +1+ +2] (15.96)
S S

=20(e™" — %), t>0

Although we can find the convolution of two signals using Eq.
(15.95), as we have just done, if the product Fi(s) F>(s) is very com-
plicated, finding the inverse may be tough. Also, there are situationsin
which f1(r) and f>(¢) are availablein the form of experimental data and
there are no explicit Laplace transforms. In these cases, one must do the
convolution in the time domain.

The process of convolving two signalsin the time domain is better
appreciated from a graphical point of view. The graphical procedure for
evaluating the convolution integral in Eq. (15.87) usually involves four

steps.

Steps to evaluate the convolution integral:

1. Folding: Take the mirror image of (1) about the ordinate axis to
obtain A(—A\).

2. Displacement: Shift or delay 2(—2) by ¢ to obtain 2(r — A).
3. Multiplication: Find the product of 2(r — A) and x(}).

4. Integration: For agiven time ¢, calculate the area under the
product 2(r — A)x(A) forO < A < rtoget y(r) at ¢.

Thefolding operation in step 1 isthereason for theterm convolution. The
function 2(t — 1) scansor didesover x(1). In view of this superposition
procedure, the convolution integral is also known as the superposition
integral.

To apply thefour steps, it is necessary to be ableto sketch x (1) and
h(t — A). To get x(») from the original function x(¢) involves merely
replacing ¢+ with A. Sketching A(+ — 1) is the key to the convolution
process. It involves reflecting #(2) about the vertical axis and shifting it
by ¢. Anaytically, we obtain 2(r — A) by replacing every ¢ in h(t) by
t — A. Since convolution is commutative, it may be more convenient to
apply steps 1 and 2 to x(¢) instead of A (¢). The best way to illustrate the
procedure is with some examples.
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BEYXEN 5
(1) A Xo(t) Find the convolution of the two signalsin Fig. 15.24.
2 Solution:
1t- We follow the four stepsto get y(¢) = x1(¢) * x2(¢). First, wefold x1(¢)
as shown in Fig. 15.25(a) and shift it by ¢ as shown in Fig. 15.25(b). For
0 1t o1 2 13t differentvauesof, wenow multiply thetwo functions and integrate to
' determine the area of the overlapping region.
Figure 1524 For Example 15.18, For 0 < ¢ < 1, thereis no overlap of the two functions, as shown
in Fig. 15.26(a). Hence,
%(=A) *(t=2) 4 y(t) = x1(t) * x2(t) = 0, O<t<1 (15.18.1)
5 For 1l <t < 2, thetwo signals overlap between 1 and ¢, asshownin Fig.
2 15.26(b).
t t
y(t) = [ @Q@D)dr=20| =2t -1, l<tr<2 (15182
1 1
-1 0 A -1 0 _— For 2 < ¢ < 3, thetwo signals completely overlap between (r — 1) and ¢,
as shown in Fig. 15.26(c). It is easy to see that the area under the curve
@ (®) is2. Or
t
Figure 1525  (a) Folding x1 (1), _ [ _ _
3 o shiftingxi(—k) by 1. y(t) = 171(2)(1) d) = 2x T 2, 2<t<3 (15183
For 3 < t < 4, the two signals overlap between (¢ — 1) and 3, as shown
in Fig. 15.26(d).
3 3
Y1) = @@ dr =2
-1 —1 (15.18.4)
=2B83—t+1)=8-2¢, 3<t<4
X(t=2) X(t=A) X(t=2)
2
Xo(A) 2f-- X5(A) o Xo(A)
1t 1 / 1
0o, 1 2 3 0, 41, 3 0 1,0, 32X
@ (b) (©
X(t=A) X(t=A)
TN R ONE
Xol 2!
1 \ 1 P \
01 (213 (42 o 1 2 3t_14tX

(d)

€

Figure [5.26 Overlapping of x1(t —A) and xp(A) for: @0 <t <1, (b)l<t<2/(C)2<t <3,
d3<t<4(er>4
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For ¢ > 4, the two signals do not overlap [Fig. 15.26(¢)], and

y(@) =0, t>4 (15.18.5)
Combining Egs. (15.18.1) to (15.18.5), we obtain
0, O<r<1
2t—2, 1<tr<?2
y(t) =12, 2<1<3 (15.18.6)
8—-2r, 3<tr<4 ()

0, t>4

2
which is sketched in Fig. 15.27. Notice that y(¢z) in this equation is
continuous. This fact can be used to check the results as we move from
one range of ¢ to another. The result in Eq. (15.18.6) can be obtained >
without using the graphical procedure—by directly using Eq. (15.87)

and the properties of step functions. This will beillustrated in Example  Figyre 1527 convolution of signals xs (1)
15.20. and xz(¢) in Fig. 15.24.

PRACTICE PROBLEMNEEK

681

Graphically convolve the two functionsin Fig. 15.28.

X(t)

2

()

y(t) 4

o 1 t o 1 2 t 2

Figure 1528 For Practice Prob. 15.18.

Answer: Theresult of theconvolution y(z) isshowninFig. 15.29, where

>

t, 0<t<2 0 1 2 3 t
y(t) =

—_ < < .
621, 2<1 - 3 Flgure 1529  corwolution of the
0, otherwise signalsin Fig. 15.28.

MIS.H

Graphically convolve g(¢) and u(¢) shown in Fig. 15.30.
Solution:
Let y(t) = g(¢t) x u(t). Wecanfind y(¢) in two ways.
METHOD B} Supposewefold g(r), asin Fig. 15.31(a), and shift it by
t, asin Fig. 15.31(b). Since g(r) = #,0 < ¢ < 1 originally, we expect

that g(t —A) =t — X2, 0<t—XA <lort—1< X < t. Thereisno
overlap of the two functions when ¢ < 0 so that y(0) = 0 for this case.
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a(t) 9(-1) \ 1
u(r) u(r)
ir 1 1 1 e
F\( g(t-A) \( g(t-A)
o 1ot 1 0 X t-10 t A 0 t-1 t A
u® @ () ©
1 e——————
Figure [5.3]  Convolution of g(¢) and u(¢) in Fig. 15.30 with g(r) folded.
0 { ForO <t <1, g(t—2) andu(r) overlap from Oto ¢, as evident in Fig.

15.31(b). Therefore,

| (+-37)
y() = / D@ —ANdr=|tr— =X
0 2
2

> 1
=" = = —, O<r<1

2 2 - =
For ¢+ > 1, the two functions overlap completely between (r — 1) and ¢
[see Fig. 15.31(c)]. Hence,

Figure [5.30  For Example 15.19. .

0 (15.19.1)

y(t) =/ D@ — 1) dxr
- , (15.19.2)
1

(#-27)
=(tr—Za , >
2" )., 2

Thus, from Egs. (15.19.1) and (15.19.2),

1
2?2 0<r<1

y() =

METHOD 1 instead of folding ¢, supposewefold theunit step function
u(t), asin Fig. 15.32(a), and then shift it by ¢, asin Fig. 15.32(b). Since
u(t) =1fort > 0,u(r—A) = 1forr—x > 0or A < t, thetwofunctions
overlap from 0 to ¢, so that

t 1 t 2
y(@) = / Drdr= 22| = =, 0<r<1 (15193
0 2 |, 2
Hn kl 1 }(t_/\):l 1‘ g() =2
] g = A L | ut-ay=1
L—>
0 A 0t 1 A 0o 1 t oA
@ (b) (©

Figure 1532  convolution of g(0) and u(r) in Fig. 15.30 with u(¢) folded.
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For r > 1, the two functions overlap between 0 and 1, as shown in Fig.
15.32(c). Hence,

g 1, 1
y(1) =/ (Drdr==2%| =2, r>1 (15.19.4)
0 2 |, 2
And, from Egs. (15.19.3) and (15.19.4),
1
Etz’ 0<t<1
y(t) = 1 . y(®)
2’ - 1]
2
Although the two methods give the same result, as expected, notice 0 ! t
that itis more convenient to fold the unit step function u(¢) than fold g (¢) Figure 1533 Result of
in this example. Figure 15.33 shows y(z). Example 15.19.

PRACTICE PROBLEMNEEEE

Given g(r) and f(¢) inFig. 15.34, graphicaly find y(t) = g(¢) * f(¢).

f(®)
3

o(t) A

0 1 t 0 t

Figure 15.34  For Practice Prob. 15.19.

31—-¢"), 0<t<1
Answer: y(t) = 13(e—1e™", r>1
0, elsewhere

e L NN

For the RL circuit in Fig. 15.35(a), use the convolution integral to find
the response i, () dueto the excitation shown in Fig. 15.35(b).

Solution:
This problem can be solved in two ways: directly using the convolution
integral or using the graphical technique. To use either approach, we

first need the unit impulse response 4(¢) of the circuit. In the s domain,
applying the current division principleto thecircuitin Fig. 15.36(a) gives
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0 2 t(9
(b)

Figure 1535 For Example 15.20.

(b)

Figure [5.36  For the
circuit in Fig. 15.35:

(8) its s-domain equivalent,
(b) its impulse response.

is(t =A)
1 h(\)
t-2 0 ¢ A
@
it - A)
e
! hv)
0¢_» ¢ A
(b)

Figure [5.37  For Example 15.20.

PART 3 Advanced Circuit Analysis

Hence,
H(s) = L ! (15.20.1)
I s+1
and the inverse Laplace transform of this gives
h(t) =e'u(?) (15.20.2)

Figure 15.36(b) shows the impulse response 4 (¢) of the circuit.

METHOD ll To use the convolution integral directly, recall that the

responseis given in the s domain as
I,(s) = H(s)I(s)
With the given i, (¢) in Fig. 15.35(b),
is()=u(@) —ul—2)
so that

i,(t) =h@) *i,(t) = / is(Mh(t —A)dxr
0 (15.20.3)

t
= / [u(h) —u(h — 2)]e "M dx
0
Sinceu(h —2) = 0for 0 < & < 2, theintegrand involving u (1) is non-
zero for al A > 0, whereas the integrand involving u (A — 2) is nonzero

only for A > 2. The best way to handlethe integral isto do the two parts
separately. For0 < ¢ < 2,

i) = / Le " Mdr=e"! / (L)e* dx
0 0

O<t<?2

(15.20.4)
=e -1 =1—e¢",

Fort > 2,
t t
i) = f De " Mdr=e" / erdn
2 2

=e (e — ) =1— %", t>2
Substituting Egs. (15.20.4) and (15.20.5) into Eq. (15.20.3) gives
io(t) = i,(t) — i, (1)
=A—eDut -2 —u@®)] — (1 —eeHu(t —2)

_J1=eT, O<t<?2
Tl =Det, t>2

(15.20.5)

(15.20.6)

METHOD 1 To usethe graphical technique, we may fold i (1) in Fig.

15.35(a) and shift by ¢, as shown in Fig. 15.37(a). For 0 < ¢ < 2, the
overlap between i;(+ — A) and ~ (1) isfrom O to ¢, so that

t

t
i,(1) = / Dedr=—e*| =1—¢,
0 0

0<r<2 (15207
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For + > 2, the two functions overlap between (r — 2) and ¢, asin Fig.
15.37(b). Hence

1

= —e ' 4 87(172)
=2 (15.20.8)

= (e — e, t>0
From Egs. (15.20.7) and (15.20.8), the response is

N b 0<tr<?2
o) = @ —-Det, t>2

i,(1) = / De*dr=—e*
t—2

(15.20.9)

which isthe same asin Eq. (15.20.6). Thus, the response i, (¢) aong the
excitation i, (¢) isasshown in Fig. 15.38.

PRACTICE PROBLEMNENA

685

Excitation ig

1 Responsei,
vl

o 1 2 3 4t

Figure 1538

For Example 15.20;
excitation and response.

Use convolution to find v, (¢) in the circuit of Fig. 15.39(a) when the ex-
citation isthe signal shown in Fig. 15.39(b).

vs(V)
1Q
10 )
+ 10e™
A 05F 7= Y% /
0 t
@ (b)
Figure 15.39 For Practice Prob. 15.20.

Answer: 20(e~! —e ) V.

7158 APPLICATION TO INTEGRODIFFERENTIAL
EQUATIONS

TheLaplacetransformisuseful in solving linear integrodifferential equa-
tions. Using the differentiation and integration properties of Laplace
transforms, each term in the integrodifferential equation is transformed.
Initial conditions are automatically taken into account. We solve the re-
sulting algebraic equation in the s domain. We then convert the solution
back to the time domain by using the inverse transform. The following
examplesillustrate the process.

MIS.ZI

Use the Laplace transform to solve the differential equation

d?v(t) dv(t)
6
dt? + dt

subject tov(0) = 1, v/(0) = —2.

+ 8v(r) = 2u(r)
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Solution:

We take the Laplace transform of each term in the given differential
equation and obtain

[s2V (s) — sv(0) — v’ (0)] + 6[sV (s) — v(0)] + 8V (s) = §
Substituting v(0) = 1, v'(0) = —2,

2
$?V(s) —s+2+6sV(s) —6+8V(s) = -
S

or
2 244 2
(2465 L BV(s)=s 444 =t THIFE
) S
Hence,
V(s) 2445+ 2 A+ B n C
S)=m———"""""" = — _—
s(s +2)(s +4) s s+2 s+4
where
244 2 2 1
A:sV(s)|70= STt = ==
5= E+Ds+D|,_o DB 4
s24+4s +2 -2 1
B=(@G+2)V(s = — = = =
CHIVO o= | T e ~ 2
s24+454+2 2 1
C=(+dHV S M M - _=
G+HV6) |,y S6+2) |y (B2 4

Hence,
1

1
V(s) =2 1
) s+s+2+s+4

By the inverse Laplace transform,

1
2

v(t) = %(1 + 272 + e ()

PRACTICE PROBLEMEREE

Solve the following differential equation using the Laplace transform
method.

d®v@t)  dv(t) L
TR +47 +4dv(t) =e
if v(0) =v'(0) = 1.

Answer: (e~ + 2te=2)u(r).

e L EERE

Solve for the response y(¢) in the following integrodifferential equation.

dy

+ 5y(t) + 6/ y(t)dt = u(t), y(0) =2
dt 0
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Solution:
Taking the Laplace transform of each term, we get
6 1
[sY(s) — y(0)] +5Y(s) + ;Y(s) =7

Substituting y(0) = 2 and multiplying through by s,
Y(s)(s?+55 +6) = 1+ 25

or
v = ot e
S) = =
(+26+3 s+2 s+3
where
25 +1 -3
A=(s+2Y = Sisl, 10
(s+2Y(@s) | _, s+3|_, 1
25 +1 -5
B = Y = 19 =170
(s +3Y(s) | _ 4 s+2|_ 5 -1
Thus,
V)= — g
5)=——
s+2 s+3

Itsinverse transformis

y(1) = (=3¢ % +5¢7%)

PRACTICE PROBLEMEEINY

Use the Laplace transform to solve the integrodifferential equation

dy
dt
Answer: (—e ' +4e % — 3e 3 u(r).

+3y(t) + 2/ y(r)dt = 2¢7%, y(0) =0
0

7159 APPLICATIONS

So far we have considered three applications of Laplace’stransform: cir-
cuit analysisin general, obtaining transfer functions, and solving linear
integrodifferential equations. The Laplace transform also finds appli-
cation in other areas in circuit anaysis, signal processing, and control
systems. Here we will consider two more important applications: net-
work stability and network synthesis.

15.9.1 Network Stability

A circuit is stable if itsimpulse response /(¢) is bounded (i.e., i (¢) con-
vergesto afinite value) ast — oo; it is unstable if 4 () grows without
bound ast — oo. In mathematical terms, acircuit is stable when

tlim |h(2)| = finite (15.97)
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o Zero
x Pole

@

jo A

(b)

Figure 540 The complex s
plane: (a) poles and zeros
plotted, (b) left-half plane.

<+

1
6 C

Figure 1541 A typical RLC
circuit.

PART 3 Advanced Circuit Analysis

Since the transfer function H (s) isthe Laplace transform of the impulse
response h(t), H(s) must meet certain requirements in order for Eq.
(15.97) to hold. Recall that H (s) may be written as
N(s)
D(s)
where the roots of N(s) = 0 are called the zeros of H (s) because they
make H (s) = 0, whiletherootsof D(s) = Oarecalledthepolesof H (s)
since they cause H(s) — oo. The zeros and poles of H(s) are often
located inthe s plane asshown in Fig. 15.40(a). Recall from Egs. (15.47)
and (15.48) that H (s) may also be written in terms of its poles as
N(s) N(s)
D(s)  (s+pos+p2)---(s+ pn)
H (s) must meet two requirements for the circuit to be stable. First, the
degree of N(s) must be less than the degree of D(s); otherwise, long
division would produce

H(s) = (15.98)

H(s) (15.99)

H(s) = kys" + ky_15" >+ + kys + ko + @ (15.100)
D(s)

where the degree of R(s), the remainder of thelong division, islessthan
thedegreeof D(s). Theinverseof H (s) in Eq. (15.99) does not meet the
conditionin Eq. (15.97). Second, all thepolesof H (s) inEq. (15.98) (i.e.,
al theroots of D(s) = 0) must have negative real parts; in other words,
all the polesmust liein the left half of the s plane, as shown typically in
Fig. 15.40(b). The reason for thiswill be apparent if we take the inverse
Laplace transform of H (s) in Eq. (15.98). Since EqQ. (15.98) is similar
to Eq. (15.48), its partial fraction expansion is similar to the one in Eq.
(15.49) so that theinverseof H(s) issimilar tothatin Eq. (15.53). Hence,

h(t) = (kye ™™ + koe P + - + kye™P") (15.101)

We seefrom thisequation that each pole p; must be positive(i.e., poles =
—p; inthe left-haf plane) in order for e 7' to decrease with increasing
t. Thus,

FO
A circuit is stable when all the poles of its transfer function H(s) lie
in the left half of the s plane.

An unstable circuit never reaches steady state because the transient
response does not decay to zero. Consequently, steady-state analysisis
only applicable to stable circuits.

A circuit made up exclusively of passiveelements(R, L, and C) and
independent sources cannot be unstable, because that would imply that
some branch currents or voltages would grow indefinitely with sources
set to zero. Passive elements cannot generate such indefinite growth.
Passive circuits either are stable or have poles with zero rea parts. To
show that thisis the case, consider the series RLC circuit in Fig. 15.41.
The transfer function is given by

V, 1/sC
Hs)=—=———"—"
Vs R+SL+1/SC
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or
1/LC

s2+sR/L+1/LC

Notice that D(s) = s® 4+ sR/L + 1/LC = 0 is the same as the char-

acteristic equation obtained for the series RLC circuit in Eq. (8.8). The
circuit has poles at

H(s) =

(15.102)

pr2 = —a + v a? — wp? (15.103)
where
R 1
o= —, wy) = —
2L °=Ic

For R, L, C > 0, the two poles always lie in the left half of the s plane,
implying that the circuit is always stable. However, when R =0, =0
and the circuit becomes unstable. Although ideally this is possible, it
does not really happen, because R is never zero.

Ontheother hand, activecircuits or passive circuitswith controlled
sources can supply energy, and they can be unstable. Infact, an oscillator
isatypical example of acircuit designed to be unstable. An oscillator is
designed such that its transfer function is of the form

N(s) _ N(s)
24w (s jwo)(s — jwo)
so that its output is sinusoidal .

BEYNEN 5

Determine the values of k for which the circuit in Fig. 15.42 is stable.

R R
Solution: l VYW
Applying mesh analysisto the first-order circuit in Fig. 15.42 gives \ @ /|\ % @ Ky

I
Vi=(R+—=)1Lh—— (15.23.1)
s s

(15.104)

Figure 542 For Example 15.23,
and

I
0:—k11+<R+—)I .
N N
or

1 1
O=—\(k+—)I R+ —)I 15.23.2
(+SC) 1+< +SC)2 ( )

We can write Egs. (15.23.1) and (15.23.2) in matrix form as

(re2) %
V; sC sC I
[0}_ _<k+i) <R+i) [Iz}

sC sC
The determinant is

A_( 1)2 k 1 SR2C + 2R —k

R+ —) — —— —
+sC sC  s2C? sC

(15.23.3)
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The characteristic equation (A = 0) givesthe single pole as
k—2R
R2C

which is negative when k < 2R. Thus, we conclude the circuit is stable
when k < 2R and unstable for k > 2R.

p:

PRACTICE PROBLEMNEEEE

BV
7D
+
R C/~ C- RV,

Figure 1543 For Practice Prob. 15.23.

For what value of g isthecircuit in Fig. 15.43 stable?
Answer: 8 > 1/R.

€A 7 L E NIERR

PRACTICE PROBLEM

| 5.

An active filter has the transfer function

k
s24+s(4—-k+1
For what values of k is thefilter stable?

H(s) =

Solution:
As asecond-order circuit, H(s) may be written as
N(s)
H —
(s) 24 bs+c

whereb = 4—k,c = 1,and N(s) = k. Thishaspolesat p?>+bp+c =0,
that is,

—b+Vb?—4c
2

For the circuit to be stable, the poles must be located in the left half of
the s plane. Thisimpliesthat b > 0.

Applying this to the given H (s) means that for the circuit to be
stable, 4 — k > Qork < 4.

24

P12 =

A second-order active circuit has the transfer function

1

H =
©) = T M0t w 125

Find the range of the values of « for which the circuit is stable. What is
the value of « that will cause oscillation?

Answer: o > —10,a = —10.
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15.9.2 Network Synthesis
Network synthesis may be regarded as the process of obtaining an appro-
priate network to represent a given transfer function. Network synthesis
iseasier in the s domain than in the time domain.

In network analysis, we find the transfer function of a given net-
work. In network synthesis, we reverse the approach: given a transfer
function, we are required to find a suitable network.

{ Network synthesis is finding a network that represents a given transfer function.

Keep in mind that in synthesis, there may be many different an-
swers—or possibly no answers—because there are many circuits that
can be used to represent the same transfer function; in network analysis,
there is only one answer.

Network synthesisis an exciting field of prime engineering impor-
tance. Being able to look at a transfer function and come up with the
type of circuit it representsisagreat asset to acircuit designer. Although
network synthesis congtitutes awhole course by itself and requires some
experience, the following examples are meant to whet your appetite.

£ A P L I

Given the transfer function
V., (s) 10
T Vils) T $2435+10
realizethefunction using thecircuitin Fig. 15.44(a). (a) Select R = 5, L
andfind L and C. (b) Select R =1 Q, andfind L and C.
Solution:
The s-domain equivalent of the circuit in Fig. 15.44(a) is shown in Fig.
15.44(b). The parallel combination of R and C gives
1 R/sC R @
E:R—i—l/sC:l—i—sRC sl
Using the voltage division principle,
_ R/(1+ sRC) Vi — R v V(s
sL+R/(1+sRC) ' sL(1+sRC)+R "'

10 Co  RZVW

XL (e

o

or
vV, R B 1/LC ®)
Vi $?RLC+sL+R ~ s2+s/RC+1/LC Figure 1544 For Example 15.25.
Comparing this with the given transfer function H (s) reveals that
1 = 10, 1 =
LC RC

There are severa values of R, L, and C that satisfy these requirements.
Thisisthe reason for specifying one element value so that others can be
determined.
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(a) If wesdlect R =5, then

1 1
C = — = 66.67 mF, L=—=15H
3R 10C

(b) If weselect R = 1 2, then

1 1
= — =0.333F, L=-—=03H
C 3R 0.333 100 0.3
Making R = 1 © can be regarded as normalizing the design.
In this example we have used passive elementsto realize the given
transfer function. The same goal can be achieved by using active ele-
ments, as the next example demonstrates.

PRACTICE PROBLEMEEEE

c L
+
Vi (t) R Vo(t)

Figure 1545 For Practice Prob. 15.25.

Realize the function
Vo (s) 4s
T Vis)  s2+45+20
using the circuit in Fig. 15.45. Select R = 2 ©, and determine L and C.
Answer: 05H,01F

G(s)

£ A 7 L E NI

Synthesize the function

CVo(s) 108
~ Vi(s)  s2-+100s + 10°
using the topology in Fig. 15.46.

T(s)

<

Figure 546 For Example 15.26.

Solution:
We apply nodal analysisto nodes 1 and 2. At node 1,

(Vs = V)Y1 = (V1 = VYo + (V1 — V2)Y3 (15.26.1)
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At node 2,
(V1= Vo)Y3 = (Vo —0)Y,4 (15.26.2)
But V, = V,, s0 Eq. (15.26.1) becomes
Yi&Wy= Y1+ Yo+ Y3)Vi — (Yo + Y3)V, (15.26.3)

and Eq. (15.26.2) becomes
WY = Y3+ Ya)V,

or
1
Vi=—{3+7YsV, (15.26.4)
Y3
Substituting Eq. (15.26.4) into Eq. (15.26.3) gives

1
Wiy=mM+Y2+ Y3)7(Y3 + YV, — Y2+ Y3)V,
3
or
Y1Y3V, = [Y1Y3 + Ya(Y1 + Yo + Y3)]V,

Thus,

Vo Y1Ys3

— = (15.26.5)

Vo Y1iYa+Ya(Y1+ Y2+ Y3)
To synthesize the given transfer function T (s), compareit with theonein
Eq. (15.26.5). Noticetwothings: (1) Y1Y3 must notinvolve s becausethe
numerator of T (s) is constant; (2) the given transfer function is second-
order, which implies that we must have two capacitors. Therefore, we
must make Y; and Y3 resistive, while Y, and Y, are capacitive. So we
select

Y1=i, Y, =5Cy, Y3=i,
R>
Substituting Eg. (15.26.6) into Eq. (15.26.5) gives
Vo 1/(R1R>)
Vi 1/(RiR2) +sC2(1/Ry+ 1/ Rz + 5Cy)
_ 1/(R1R2C1Cy)
52+ s(Ri+ R2)/(R1R2C1) + 1/ (R1R2C1C2)
Comparing this with the given transfer function T (s), we notice that

Ys=s5Cy (15.26.6)

1 R R

=g, St gp

R1R>2C1C> RiR>C,

If weselect R = R, = 10Kk, then
Ri+R 20 x 103
=it x —2uF
100R1R> 100 x 100 x 106
106 106
Cg 5nF

~ RiR,C; 100 x 10° x 2 x 106

Thus, the given transfer function is realized using the circuit shown in
Fig. 15.47.
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C,=2uF
R1=10kQT R,=10kQ
A A — oY%
\'A

Figure 15.47

For Example 15.26.

PRACTICE PROBLEMEEE

Synthesize the function

Vo(s)
Vi

—2s

T s24 65+ 10
using the op amp circuit shown in Fig. 15.48. Select

1

Y:—, YZSC,
1 R]_ 2 1

1
Y3 =5C>, Yo=—

R>
Let Ry = 1kS2, and determine Cq, C,, and R».

Y

\
—
L
Vin

e]

Figure 1548 For Practice Prob. 15.26.

Answer: 0.1 mF, 0.5 mF, 2kS.

15.10 SUMMARY

1. The Laplace transform allows a signal represented by afunction in
the time domain to be analyzed in the s domain (or complex fre-

guency domain). It isdefined as
LIfO] = F(s) = fo f(ye " dt
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2. Properties of the Laplace transform are listed in Table 15.1, while
the Laplace transforms of basic common functions are listed in
Table 15.2.

3. Theinverse Laplace transform can be found using partial fraction
expansions and using the Laplace transform pairsin Table 15.2 asa
look-up table. Real poles lead to exponential functions and com-
plex poles to damped sinusoids.

4. The Laplace transform can be used to analyze a circuit. We convert
each element from the time domain to the s domain, solve the
problem using any circuit technique, and convert the result to the
time domain using the inverse transform.

5. Inthes domain, the circuit elements are replaced with the initial
condition at ¢+ = O asfollows:

Resistor: UR = Vr = RI
Inductor: vL — Vi, =sLI —Li(0)
I v(07)

Capacitor: Ve = Ve

“sC s
6. Using the Laplace transform to analyze a circuit resultsin a com-

plete (both natural and forced) response, as the initial conditions
are incorporated in the transformation process.

7. Thetransfer function H (s) of anetwork isthe Laplace transform of
the impulse response k(7).

8. Inthes domain, the transfer function H (s) relates the output re-
sponse Y (s) and an input excitation X (s); that is, H(s) = Y (s)/

X (s).

9. The convolution of two signals consists of time-reversing one of the
signals, shifting it, multiplying it point by point with the second
signal, and integrating the product. The convolution integral relates
the convolution of two signalsin the time domain to the inverse of
the product of their Laplace transforms:

LTUFL(9)Fa(s)] = fu(t) * folt) = /(; i) fo(t — X)) da

10. Inthetime domain, the output y(z) of the network is the convolu-
tion of the impulse response with the input x(z),

y(#) = h(t) * x(1)

11. The Laplace transform can be used to solve a linear integrodiffer-
ential equation.

12. Two other typical areas of applications of the Laplace transform are
circuit stability and synthesis. A circuit is stable when all the poles
of itstransfer function liein the left half of the s plane. Network
synthesisis the process of obtaining an appropriate network to
represent a given transfer function for which analysisin the s
domain iswell suited.
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REVIEW QUESTIONS

15.1  Every function f(¢) has a Laplace transform. 15.7 Giventhat F(s) = e % /(s + 1), then f(z) is
(@ True (b) False (@ e 2" Vu@r —1) (b) e 2y —2)
—t _ —t
15.2 Thevariables in the Laplace transform H (s) is (© e_(lu_(;) 2 (@ eTut+1)
caled (e e u(t)
(&) complex frequency  (b) transfer function 15.8 Theinitial value of f(r) with transform
(c) zero (d) pole
s+1
15.3  TheLaplacetransform of u(r — 2) is: F(s) = 512613
1 1
@) (b)) — is:
s+2 s—2 )
o s (8 nonexistent (b) <l>o (© 0
© e (d) ~ () 1 © 3
. 159 Theinverse Laplace transform of
15.4  The zero of the function
s+2
s+1 > re
F(s) = (s+22+1

s+ +3)6s+4 _

is

(@ e"cos2t (b) e'sin2r (C) e % cost
(d) e Zsin2t  (e) none of the above

isat
@ -4 (-3 (-2 (-1

155  The polesof the function
15.10 A transfer function is defined only when al initial

F(s) = s+1 conditions are zero.
C+2+I6+49 (@ True (b) False
areat
@-4 (-3 (-2 (d-1 Answers: 15.1b, 15.2a, 15.3d, 15.4d, 15.5a,b,c, 15.6b, 15.7b, 15.8d,
_ 15.9¢, 15.10b.

156 If F(s) =1/(s +2),then f(z)is

@ e*u(r) (0) e ?u()

© ut—2 (d) ut+2)
PROBLEMS
Sections 15.2 and 15.3 Definition and 15.4  Find the Laplace transform of each of the following

Properties of the L aplace Transform functions:

2 ) 4 -2t

151  Find the Laplace transform of: (8) ¢ cos(r +§0 Ju@) (0) 3rfe  u(®)

(@ coshat (b) sinhat (©) 2tu(r) — 4580) (d) 2e=Vu(r)

[Hint: coshx = 3(e* +¢7), (&) 5u(t/2) () 6" u(r)

sinhx = 3(e* —e™).] d"

(@ ——38()
152  Determine the Laplace transform of: dt"
cos(wt + 6 b) sin(wt 46

@ © ) (b) sine ) 155 Cadculate the Laplace transforms of these functions:
153  Obtain the Laplace transform of each of the @ 25(r —1) (b) 10u(r —2)

following functions: © ¢+ Du(r) (d) 2e~"u(t — 4)

(@ e % cos3tu(t) (b) e=2 sin4tu(t)

(c) e~% cosh2ru(z) (d) e sinhru(t) 15.6  Obtain the Laplace transform of

(&) te™"sin2tu(r) (@ 10cos4(r — Du(t) (b) t2e2u(t) +u(t —3)
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15.8

15.9

15.10

1511

15.12

CHAPTER I5

Find the Laplace transforms of the following
functions:

(@) 26(3t) + 6u(2t) + 4% — 10e~*

(b) te”"u(t — 1)

(c) cos2(r — Du(t — 1)

(d) sindt[u(t) —u(t — m)]

Determine the Laplace transforms of these
functions:

@ f()=0t—-Dult -2

(b) g(t) =2 % u(t — 1)

(c) h(tr) =5c0s(2t — Lyu(t)

(d) p(t) = 6[u(t —2) —u(t — 4)]

In two different ways, find the Laplace transform of

d
t) = —(te”' cost
g() dt(e )

Find F(s) if:
(@ f(r)=6e"cosh2r (b) f(t) =3te ?sinh4s
(©) f(t) =8¢ ¥ coshru(t — 2)

Calculate the Laplace transform of the function in
Fig. 15.49.

f(t)

0 1 2t

Figure 1549 For Prob. 15.11.

Find the Laplace transform of the function in Fig.
15.50.

f(t)
10

-10

Figure 15.50  For Prob. 15.12.

15.13

15.14

15.15

15.16

The Laplace Transform 697

Obtain the Laplace transform of () in Fig. 15.51.

f(t)
5

0 1 2 3 4t

Figure [5.5]  For Prob. 15.13.

Determine the Laplace transforms of the function in
Fig. 15.52.

f(t)

Figure 15.52  For Prob. 15.14.

Obtain the Laplace transforms of the functionsin
Fig. 15.53.

g(t) 4
3

h(t)

2+

1

0 1 2 3t 01 2 3 4t
@ (b)

Figure 15.53  For Prob. 15.15.

Calculate the Laplace transform of the train of unit
impulsesin Fig. 15.54.

f(t)

1]

0 2 4 6 8t

Figure 15.54

For Prob. 15.16.

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



698 PART 3 Advanced Circuit Analysis

15.17 The periodic function shown in Fig. 15.55 is defined 1521 Findtheinitial and final values, if they exist, of the

over its period as following Laplace transforms:
sinrt, 0<t<1 10s3 + 1
g(1) = { F(s)= ————
0, l<t<2 (@ F(s) 216y 15
Find G(s). B Fls) — s+1
®) (S)_s2—4s+6

a(t) © Fes) = 2524+ 7
1 = I D6 +26°+25+5
0 1

> 3t 15.22 Find f(0) and f(c0), if they exist, when:
8s+D(s+3)

, (@ F(s) =
Figure 15.55  For Prob. 15.17. s(s +2)(s +4)
6(s — 1)
15.18 Obtain the Laplace transform of the periodic 0) Fis&) = —ZF—7

waveformin Fig. 15.56.

15.23 Determinetheinitial and final values of f (1), if they
f(t) exigt, given that:

1 s2+3
F = =
@ F6) = 52
s2—2s+1
s—2)(s2+25+4)

t

0 27 4w 6w 8nw

(b) F(s) = (
Figure 15.56  For Prob. 15.18.

15.19 Find the Laplace transforms of the functions in Fig. Section 154 Thelnverse L aplace Transform

15.57.
15.24 Determine the inverse Laplace transform of each of

h(t) A the following functions:
| @ ro=te 2
a(t) s os+1
2 +1
(0) G5y = "=
4
s+ D@ +3)
12
(s +2%s+4

() H(s) =

@ (b) (d) J(s) =

Figure 15,57 For Prob. 15.19. 16.25 Find £ (1) for each F(s):
10s
15.20 Determine the Laplace transforms of the periodic @ s+ D +2)(s +3)
functionsin Fig. 15.58. 252 1 ds 4 1

b -
f(t) ® (s + (s +2)°

! —ho © s+l
{2 (s +2)(s24+ 25 +5)

15.26 Determine the inverse Laplace transform of each of
-1+ the following functions:

0 2 4 6t @ 8(s +1)(s +3) ) s2—2s+4

o 2
@ (b) s(s+2)(s+4) (s +D(s+2
s2+1
(©) .

(s+3)(s?+4s+5)

Figure [5.58  For Prob. 15.20.
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15.27 Cadculate the inverse Laplace transform of: 10 |_(t)>
6(s — 1) se” ™S 8
@ — (b) = © —
s4—1 s2+1 s(s+1) u(t) .

15.28 Find the time functions that have the following
Laplace transforms:

1H
241
(8 F(s) =10+ 2= ,
se+4 Figure 15.59  For Prob. 15.34.
e +4e—2v
(b) G(s) = 716,18 15.35 Find v,(¢) in the circuit in Fig. 15.60.
(s +De?®
Hs)= ——— 6Q 1H
(c) H(s) 61361 D
+
15.29 Obtain f(¢) for thefollﬁz;vmg transforms: () 1_% E ()
@ Fs) = (s + e T _
T G+DG+2
_ ,=2s 1
() Fls) e Figure 15.60  For Prob. 15.35.
s2+5s+4
s 15.36 Find the input impedance Zi,(s) of each of the
© FGs)= —F7——— circuitsin Fig. 15.61.
(s +3)(s2+4)
15.30 Obtain the inverse Laplace transforms of the 10
following functions: O
X($) = 5—r
@ X 52(s +2)(s +3) 1H 1H g 2Q — 05F
§ 2Q
1
(b) Y(5) = —— 1F
s(s+1) ¢ AW
© 7) = ! "
YT 56+ 1)(s2 + 65 + 10) @ )
15.31 Obtain the inverse Laplace transforms of these )
functions: Figure 15.6]  For Prob. 15.36.
12¢~2 2+1
@ I d (b) 1 DGZE9) 15.37 Obtain the mesh currents in the circuit of Fig. 15.62.
952
(© : iF

(s2+4s + 13)

1H
I
15.32  Find f(¢) given that: I e
52+ 4s i i S
_ u() Q 2Q ﬁ) 4e2y(t
@ F6) = 770, 26 ' 2 ©

552 +7s + 29
(b) Fls) = s(j2 + 4; + 29)
Figure 15.62  For Prob. 15.37.
*15.33 Determine f(¢) if:

. 263+ 4524+ 1 15.38 Find v,(¢) inthecircuit in Fig. 15.63.

@ FO) = i a Tt et 4 120
244 1H

F =

(b) F(s) 219021613 l
10etu(t) V 2F Vo) 40 3u(t) A
Section 15.5 Application to Circuits T -

15.34 Determinei(z) inthecircuit of Fig. 15.59 by means '
of the Laplace transform. Figure [5.63  For Prob. 15.38.
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700 PART 3 Advanced Circuit Analysis

15.39 Determinei,(¢) inthecircuitin Fig. 15.64. 15.43 Inthecircuit of Fig. 15.68, let i (0) = 1A, v,(0) = 2
V, and v, = 4eZu(r) V. Find v, (¢) for t > 0.
1F 2H
\
| L1 L .

20 (D e2u) A 10

Figure 15.64  For Prob. 15.39.

Figure 15.68  For Prob. 15.43.

*15.40 Determinei,(t) in the network shown in Fig. 15.65.

15.44 Find v,(¢) inthecircuitin Fig. 15.69if v,(0) =2V
10 40 andi(0) = 1A.

5+ 10u(t) V

cupa @ 10 10 1H3S %

Figure 15.65  For Prob. 15.40.

*15.41 Findi,(r) for t > Ointhecircuit in Fig. 15.66. Figure 15.69  For Prob. 15.44.

15.45 Consider the parallel RLC circuit of Fig. 15.70.
Find v(r) and i (r) given that v(0) = 5 and
E" O~ oA,

A +

5e 2y e

au(t) A 100 aH

&l

Figure [5.66  For Prob. 15.41.
Figure 15.70  For Prob. 15.45.

15.42 Cadculatei,(r) for t > 0inthe network of Fig.

15.67.
15.46 For the RLC circuit shown in Fig. 15.71, find the
complete response if v(0) = 2V when the switch is
2e7tu(t) v closed.
AR
N\
22 6a  1H
+

10 4ut) A 10 2cos 4tV 3F TV
Figure 15.67  For Prob. 15.42. Figure 15.7]  For Prob. 15.46.
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15.47 For the op amp circuit in Fig. 15.72, find v, (¢) for
t > 0. Takev, = 3¢ u(r) V.

10kQ
— AM—
50 uF
||
I
20kQ
:l?—o %
VS
O

Figure 1572 For Prob. 15.47.
15.48 Find I1(s) and I>(s) in the circuit of Fig. 15.73.
1H

i i
i 2uY Yau iz

10e3tu(t) V 1Q 1Q

Figure 15.73  For Prob. 15.48.
For the circuit in Fig. 15.74, find v, (¢) for t > 0.

1H

12
[ ) +
6u(t) 2H 1H 203 %
. -

Figure [5.74 " For Prob. 15.49.
15.50 For theideal transformer circuit in Fig. 15.75,

@ determine i, ().
10 o

15.49

1.2
[ ] [ ]
10e7tu(t) V H - 025F 80
Figure I5.75  For Prob. 15.50.
Section 15.6 Transfer Functions

1551 Thetransfer function of asystemis
2

3+1
Find the output when the system has an input of
4e™Bu(r).

H(s) =

The Laplace Transform

15.52

15.53

15.54

15.55

15.56

15.57
15.58

15.59

D

701

When the input to a system is a unit step function,
the response is 10 cos2¢. Obtain the transfer
function of the system.

A circuit is known to have its transfer function as
s+3
Hs) = ———
(<) s2+4s+5
Find its output when:
(a) theinput isaunit step function
(b) theinput is6re=2u(t).
When a unit step is applied to asystem at r = 0, its
responseis

1 )
yi) =4+ 5673’ — e %(2c0s4t + 3sin4r)

What is the transfer function of the system?

For the circuit in Fig. 15.76, find
H(s) = V,(s)/ V,(s). Assume zero initial
conditions.

20 1H
A 4Q 01F = Yo
Figure 15.76  For Prob. 15.55.

Obtain the transfer function H(s) = V,/V, for the
circuit of Fig. 15.77.

i 05F

e 1H
I 21N

+

VS#D %%Zi 303 %

Figure 15.77

Repeat the previous problem for H(s) = V, /1.
For the circuit in Fig. 15.78, find:

For Prob. 15.56.

@ nL/Vv; (b) I/ Vy
i i
130 2 2H
+
Vg V>< — 05F 4Vx

Figure [5.78  For Prob. 15.58.

Refer to the network in Fig. 15.79. Find the
following transfer functions:

(@) Hi(s) = Vo(9)/Vi(s)
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15.60

15.61

15.62

15.63

PART 3 Advanced Circuit Analysis

(b) Ha(s) = V,(s)/1L(s) Section 15.7 The Convolution I ntegral
(©) Hz(s) = I,(s)/I(s) 15.64 Graphically convolve the pairs of functionsin Fig.
15.82.
(d) H4(S) = IU(S)/VS(S)
fi) A fot) fa(t) = fo(t)
s 10 1H o 1 1 1
1IN
+ »
Vg 1F == 1F == 1Q=VY% 0 1t 0 1t 0 1t
@ (b)
Figure 15.79  For Prob. 15.59. f1(t) fa(t)
1 1
Calculate thegain H(s) = V,/V, inthe op amp > >
circuit of Fig. 15.80. -1 0 1t 0 t
(©

Figure 15.82  For Prob. 15.64.

15.65 Find y(r) = x(¢) = h(t) for each paired x(¢t) and h(¢)
inFig. 15.83.

Figure 15.80  For Prob. 15.60. X(t) h(t)

Refer tothe RL circuitin Fig. 15.81. Find: '
(a) theimpulse response i (t) of the circuit 0 1 t 0 1 t
(b) the unit step response of the circuit.

@
h(t)
L 2
Tvy X(t) 4
N t
Ve e Vo ] 2€
, 0 t 0 t
Figure 1581 For Prob. 15.61.
(b)
A network has the impulse response (1) = X(t) 4 h(t)
2¢'u(t). Whentheinput signal v; (1) = 5u(?) is 1
applied to it, find its output. 1
Obtaj_n the ir_npulse response of asystem modeled by .
the differential equation 3 0 1 : 0 1 5 1
dy
2— 1) =x(t (©
pr y(@) =x(@)
where x(¢) isthe input and y(¢) is the output. Figure 15.83  For Prob. 15.65.
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15.66 Obtain the convolution of the pairs of signalsin Fig.

15.84.
X(t) h(t)
1 1
2
0 1t 0 1 t
_1 -
(@
fa(t) f5(t)
1 1
1 1 1
0 1 t 0 1 2 3 4 5 t

(b)

Figure 15.84  For Prob. 15.66.

15.67 Show that:

(@ x(t) x8(1) = x(1)
(b) f(t)*u(t)zf FOOda
0

15.68 Determine the convolution for each of the following
pairs of continuous signals:
@ x1() =e',t >0,x(t) =4 %,0<t <3
(b) x1(1) = u(t — 1) —u(t - 3),
x2(t) =u(t) —u(t —1)
(©) x1(t) = de”"u(t),
Xot) =u(+1) —2ut) +ut -1
Giventhat Fi(s) = Fa(s) = s/(s*> + 1), find
LY F1(s) F»(s)] by convolution.

15.69

15.70 Find f(r) using convolution given that:

4
R
2s
s+ D(s2+4)
Application to I ntegrodifferential
Equations

Use the Laplace transform to solve the differential
equation
dv()  _dv()
2
dr? + dt

subject to v(0) = 1, dv(0)/dt = —2.

Usethe Laplacetransformto find i (¢) for ¢+ > Oif
d?i
dr?

i(0) =0, i’/(0) =3

(b) F(s) =

Section 15.8

1571

+ 10v(¢) = 3cos2t

15.72

+3—+21+5(t)—

The Laplace Transform 703
15.73  Solve the following equation by means of the
Laplace transform:
y”" + 5y’ + 6y = cos2¢
Lety(0) =1y'(0)=4
15.74 Thevoltage across acircuit is given by
V' 430 + 20 =57
Find v(?) if theinitial conditions are v(0) = 0,
v'(0) = —
15.75 Solvefor y(¢) inthe following differential equation
if theinitial conditions are zero.
d3y d?y dy i
P + e Sd— e~ cos2t
15.76 Solvefor v(¢) in the integrodifferential equation
1
4d—v +12 / vdt =0
dt —o0
giventhat v(0) = 2.
15.77 Solve the following integrodifferential equation
using the Laplace transform method:
dy(t
fi(z) + 9/ y(t)dt = cos2t, y(0) =1
15.78 Solvetheintegrodifferential equation
d t
Crayea[ ya—eet 0 =-
dt 0
15.79 Solve the following integrodifferential equation
d t
zdi; —|—5x+3f xdt+4=sn4,  x©0) =1
0
Section 15.9 Applications
15.80 Show that the parallel RLC circuit shownin Fig.
15.85 isstable.
th
Is R C L
Figure 15.85  For Prob. 15.80.
15.81 A systemisformed by cascading two systems as

shown in Fig. 15.86. Given that the impulse
response of the systems are

hi(r) = 3e'u(r),  ha(t) = e u()
(a) Obtain the impulse response of the overall
system.

(b) Check if the overall system is stable.

el () e hl) %

Figure 15.86

For Prob. 15.81.
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15.82 Determine whether the op amp circuit in Fig. 15.87

15.83

15.84
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isstable.

(@]
(@]

R

™

R
:> M *V_O
Vg +

Figure [5.87  For Prob. 15.82.

It is desired to realize the transfer function
Vo(s) 25
Vi(s)  s24+25+6

using the circuit in Fig. 15.88. Choose R = 1 kQ
andfind L and C.

R
+ +
Vl L C —/— V2
o

Figure [5.88  For Prob. 15.83.
Realize the transfer function
Vo(s) 5
Vi(s)  s2+6s+25

using the circuit in Fig. 15.89. Choose Ry = 4
and R, =1, and determine L and C.

Ry L

vi(t) C—F

Figure 1589 For Prob. 15.84.

15.85 Redlizethetransfer function

15.86

Vo(s)__ K
Vi(s)  s+10

using the circuit in Fig. 15.90. Let Y1 = sCy,
Y, = l/Rl, Y3 = sCs. ChOOSERl =1k and
determine C; and Cs.

Yy

Y

)

ol < +

Figure 15.90  For Prob. 15.85.

Synthesize the transfer function

Vo(s) 108
Vin(s) ~ s2+ 100s + 108

using the topology of Fig. 15.91. Let Y; = 1/Ry,
Y, = l/Rz, Y3 =5Cq, Yy =5Co. ChOO%Rl =1
k2 and determine C4, C», and R».

Y,
T
Y %
—o0O V0
Vin Y
O
£
Figure 1591 For Prob. 15.86.
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The Laplace Transform 705

COMPREHENSIVE PROBLEMS

15.87 Obtain the transfer function of the op amp circuit in

15.88

Fig. 15.92 in the form of

Vo(s) as

Vi(s) ~ s24+bs+c
wherea, b, and ¢ are constants. Determine the
constants.

10kQ
MV
1uF

0.5 ‘QF 10kQ i
——ww 4i>_o
\

<

Figure 1592 For Prob. 15.87.

A certain network has an input admittance Y (s).
The admittance hasapoleat s = —3, azero a
s=-1,andY(c0) =0.25S.

(@ Find Y (s).

(b) An 8-V battery is connected to the network viaa
switch. If theswitchisclosed at r = 0, find the
current i (¢) through Y (s) using the Laplace
transform.

15.89 A gyrator isadevice for simulating an inductor in a

network. A basic gyrator circuit isshownin Fig.
15.93. By finding V;(s)/1,(s), show that the
inductance produced by the gyrator is L = C R?.

c
.
R R
I0
y |
R
Figure 15.93  For Prob. 15.89.
Go to the Student OLC
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