CHAPTER]| 8

SECOND-ORDER CIRCUITS

“Engineering is not only a learned profession, it is also a learning pro-
fession, one whose practitioners first become and then remain students
throughout their active careers.”

—William L. Everitt

AMA—

Enhancing Your Career

To increase your engineering career opportunities after gra
uation, develop a strong fundamental understanding in § == - I
broad set of engineering areas. When possible, this migh pOtEmntla S
best be accomplished by working toward a graduate degre, forup-and:-Coming engineers
immediately upon receiving your undergraduate degree.

Each degree in engineering represents certain skills A
the students acquire. Atthe Bachelor degree level, you lear
the language of engineering and the fundamentals of engi
neering and design. At the Master’s level, you acquire the | EEE
ability ?o do adva?nced engineering projectsyand toqcommu ptworking U rCes
nicate your work effectively both orally and in writing. The 0T idwil
Ph.D. represents a thorough understanding of the fundame
tals of electrical engineering and a mastery of the skills nec e ) -
essary both for working at the frontiers of an engineering Professional organization
area and for communicating one'’s effort to others.

If you have no idea what career you should pursue af-
ter graduation, a graduate degree program will enhance you @
ability to explore career options. Since your undergraduatg "= T e ormation
degree will only provide you with the fundamentals of en- IEEE
gineering, a Master’'s degree in engineering supplemente N
by business courses benefits more engineering students th v theiviorl die
does getting a Master’s of Business Administration (MBA).
'I_'h_e best ti_me to getyour MBA is afteryo_u have been a prac- Key career p | ot p0| nts
ticing engineer for some years and decide your career pat
would be enhanced by strengthening your business skills.

Engineers should constantly educate themselvesEnhancing your career involves understanding your goals,
formally and informally, taking advantage of all means of adapting to changes, anticipating opportunities, and planning
education. Perhaps there is no better way to enhance youfPUr own niche. (Courtesy of IEEE.)
career than to join a professional society such as IEEE and
be an active member.
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Figure 8.1 Typical examples of
second-order circuits; (a) series
RLC circuit, (b) paralel RLC
circuit, (c) RL circuit, (d) RC
circuit.
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8.1 INTRODUCTION

In the previous chapter we considered circuits with a single storage ele-
ment (a capacitor or an inductor). Such circuits are first-order because
the differential equations describing them are first-order. In this chap-
ter we will consider circuits containing two storage elements. These are
known assecond-ordecircuits because their responses are described by
differential equations that contain second derivatives.

Typical examples of second-order circuits &&C circuits, in
which the three kinds of passive elements are present. Examples of such
circuits are shown in Fig. 8.1(a) and (b). Other exampleR&r@ndR L
circuits, as shown in Fig. 8.1(c) and (d). Itis apparent from Fig. 8.1 that
a second-order circuit may have two storage elements of different type or
the same type (provided elements of the same type cannot be represented
by an equivalent single element). An op amp circuit with two storage
elements may also be a second-order circuit. As with first-order circuits,
a second-order circuit may contain several resistors and dependent and
independent sources.

A second-order circuit is characterized by a second-order differential equation. It
consists of resistors and the equivalent of two energy storage elements.

Our analysis of second-order circuits will be similar to that used for
first-order. We will first consider circuits that are excited by the initial
conditions of the storage elements. Although these circuits may contain
dependent sources, they are free of independent sources. These source-
free circuits will give natural responses as expected. Later we will con-
sider circuits that are excited by independent sources. These circuits will
give both the natural response and the forced response. We consider
only dc independent sources in this chapter. The case of sinusoidal and
exponential sources is deferred to later chapters.

We begin by learning how to obtain theinitial conditionsfor thecir-
cuit variables and their derivatives, asthisis crucial to analyzing second-
order circuits. Thenwe consider seriesand parallel RLC circuitssuch as
shown in Fig. 8.1 for the two cases of excitation: by initial conditions of
the energy storage elements and by step inputs. Later we examine other
types of second-order circuits, including op amp circuits. We will con-
sider PSpice analysis of second-order circuits. Finally, we will consider
the automobile ignition system and smoothing circuits as typical appli-
cations of the circuits treated in this chapter. Other applications such as
resonant circuits and filters will be covered in Chapter 14.

8.2 FINDING INITIAL AND FINAL VALUES

Perhapsthe major problem studentsfacein handling second-order circuits
isfinding theinitial and final conditionson circuit variables. Studentsare
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CHAPTER 8 Second-Order Circuits

usually comfortable getting theinitial and final values of v and i but often
have difficulty finding the initial values of their derivatives: dv/dr and
di/dt. For thisreason, this section is explicitly devoted to the subtleties
of getting v(0), i(0), dv(0)/dt, di(0)/dt, i(c0), and v(co). Unless
otherwise stated in this chapter, v denotes capacitor voltage, while i is
the inductor current.

There are two key points to keep in mind in determining the initial
conditions.

First—as alwaysin circuit analysis—we must carefully handle the
polarity of voltage v(z) across the capacitor and the direction of the cur-
rent i(¢) through the inductor. Keep in mind that v and i are defined
strictly according to the passive sign convention (see Figs. 6.3 and 6.23).
One should carefully observe how these are defined and apply them ac-
cordingly.

Second, keep in mind that the capacitor voltage is always continu-
ous so that

v(0T) = v(07) (8.19)
and the inductor current is always continuous so that
i(0Y) =i(0) (8.1b)

wherer = 0~ denotesthetimejust beforeaswitchingeventand: = 0" is
the time just after the switching event, assuming that the switching event
takesplaceatt = 0.

Thus, infinding initia conditions, wefirst focus on those variables
that cannot change abruptly, capacitor voltage and inductor current, by
applying Eq. (8.1). The following examplesillustrate these ideas.

mg.|

TheswitchinFig. 8.2 hasbeen closed for alongtime. Itisopenatt = 0.
Find: (8) i (0™), v(0™), (b) di (0)dt, dv(0")/dt, (C) i (00), v(00).
Solution:

(a) If theswitchisclosed alongtimebeforer = 0, it meansthat thecircuit
has reached dc steady state at + = 0. At dc steady state, the inductor acts
like a short circuit, while the capacitor acts like an open circuit, so we
have the circuit in Fig. 8.3(a) at = 0~. Thus,

40 |

12V 202y 12V
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Figure 8.2 For Example 8.1.
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Figure 8.3 Equivalent circuit of that in Fig. 8.2 for: (@) 1 = 0~, (b) # = 0", (c) r — oo.
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298 PART | DC Circuits

12
4+2
Astheinductor current and the capacitor voltage cannot change abruptly,

i(07) = 2A,  w(0)=2i(0)=4V

i(0H=i(0)=2A, v(0")=v0)=4V

(b) Atz = O, theswitchisopen; theequivaent circuitisasshowninFig.
8.3(b). The same current flows through both the inductor and capacitor.
Hence,

ic(0Y) =i(0") =2A
Since C dv/dt = ic,dv/dt =ic/C, and
dv(0t)  ic(0h) 2
dr c To1- Vs
Similarly, since L di/dt = vy, di/dt = v, /L. We now obtain v; by
applying KVL to theloop in Fig. 8.3(b). Theresultis

—124+4i(0") + v, (0Y) +v(0T) =0
or
v (0 =12-8-4=0
Thus,
di(0") v (0") 0
dt L 0.25

(c) Fort > 0, thecircuit undergoestransience. Butast — oo, thecircuit
reaches steady state again. The inductor acts like a short circuit and the
capacitor like an open circuit, so that the circuit becomes that shown in
Fig. 8.3(c), from which we have

=0A/s

i(c0) =0A, v(oo) =12V

PRACTICE PROBLEMEKN

The switch in Fig. 8.4 was open for along time but closed at r = 0. De-
termine: (a) i(0™), v(0™), (b) di (0M)dt, dv(0h)/dt, (C) i (c0), v(c0).

100 04H _i
M T
+
2Q V= 55 F 24V

Figure 8.4 For Practice Prob. 8.1.

Answer: (@) 2A,4V,(b)50A/s,0VI/s, (c) 12A,24 V.
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In the circuit of Fig. 8.5, caculate: (a) i (0"), vc(01), vgr(0h),
(b) dip (0")dt, dvc(01)/dt, dvg(0T)/dt, (C) iz (00), ve(00), vR(00).

4Q
AW
fi

3u() A (D 20 2 vy C/’g;ov %0.6H

Figure 8.5  For Example 8.2.

Solution:

(@) Fort < 0,3u(r) = 0. Atr = 07, since the circuit has reached steady
state, the inductor can be replaced by a short circuit, while the capacitor
is replaced by an open circuit as shown in Fig. 8.6(a). From this figure
we obtain

ir(0)=0, w0 )=0, wvc(0)=-20V (821

Although the derivatives of these quantitiesat + = 0~ are not required, it
is evident that they are all zero, since the circuit has reached steady state
and nothing changes.

4Q a + Vo b
[} A% i AWV i i
: . it 0 |4 i
V_C + %F;\ VC +
Vg 2Q 3A 2Q = VR - VL % 0.6 H
20V - <+ 20V -
e,
@ (b)

Figure 8.6 The circuit in Fig. 85 for: (@) 1 = 0~, (b) 1 = O*.

Fort > 0, 3u(r) = 3, so that the circuit is now equivalent to that
in Fig. 8.6(b). Since the inductor current and capacitor voltage cannot
change abruptly,

ir(0H) =i (07) =0, ve(0T) = ve(07) = —20V (822

Although the voltage across the 4-2 resistor is not required, we will use
it to apply KVL and KCL; let it be called v,. Applying KCL at node a
in Fig. 8.6(b) gives

vg(0h) N v, (07)

3=
2 4

(8.2.3)
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Applying KVL to the middle mesh in Fig. 8.6(b) yields
—vR(0") + v,(0") + ve(0T) +20=0 (8.2.4)
Since ve (0+) = —20V from Eq. (8.2.2), Eq. (8.2.4) implies that
vr(07) = v,(07) (8:25)
From Egs. (8.2.3) and (8.2.5), we obtain
vR(07) = v,(0") =4V (826)
(b) Since L diy /dt = vy,

dip (0Y) v, (0")
dt L
But applying KVL to the right mesh in Fig. 8.6(b) gives

v (0Y) = ve(07) +20=0

Hence,

di  (0%) -0
dt
Similarly, since C dvc/dt = ic, thendvc/dt = ic/C. We apply KCL
at node b in Fig. 8.6(b) to get ic:
v,(0%)
4
Sincev,(0") = 4andi; (0Y) = 0,ic(0") =4/4=1A. Then
+ i . (OF
dve©@) _ic@) _ 1 _ 5\ ©29)
dt C 0.5

To get dvg (01)/dt, we apply KCL to node a and obtain

(82.7)

=ic(0") +i,(0") (8.2.8)

UR Vo
3= FX 42
2 + 4
Taking the derivative of each term and setting ¢ = O gives
_ ZdUR(0+) + dv(}(0+)
dt dt

We also apply KVL to the middle mesh in Fig. 8.6(b) and obtain

0

(8.2.10)

—vp+vc+204+v,=0

Again, taking the derivative of each term and setting r = 07 yields
dvg(O* dvc(0F dv, (0"

_dvr(©) | dve(©) | dv,(0) _

0
dt dt dt
Substituting for dvc (01) /dr = 2 gives
dvg(0%) dv,(07)
—_— =2 8.2.11
dt + dt ( )

From Egs. (8.2.10) and (8.2.11), we get
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dvg(0t) 2
——==V/s
dt 3

We can find di g (0%) /dt although it is not required. Since vy = 5ig,

dig(0™) _ 1dvg(0") _ 12 _ 2 Als

dt 5 dt 53 15
(c) Ast — oo, the circuit reaches steady state. We have the equivalent
circuit in Fig. 8.6(a) except that the 3-A current source is now operative.

By current division principle,

, 2
4 (82.12)

5 23AX2=4V, uc(00) =20V

vR(00) =

PRACTICE PROBLEMEKNN

For the circuit in Fig. 8.7, find: (a) i.(0"), vc(0), vzr(0h),
(b) dip (0M)/dt, dve(0T)/dt, dvg(0h)/dt, (C) i1 (00), v (00), VR(00).
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Figure 8.7 For Practice Prob. 8.2.

Answer: (a) —3A, 0,0, (b)0,10V/s, 0, (c) —1A, 10V, 10 V.

8.3 THE SOURCE-FREE SERIES RLC CIRCUIT

An understanding of the natural response of the series RLC circuitisa
necessary background for future studiesin filter design and communica-
tions networks.

Electronic Testing Tutorials

Consider the series RLC circuit shown in Fig. 8.8. The circuit is R L
being excited by the energy initialy stored in the capacitor and inductor. —
The energy is represented by the initial capacitor voltage V, and initial lo .
inductor current /. Thus, at t = 0, ﬁ) v, = ¢
1 (0 -
v(0) = —f idt=Vy (8.29)
CJw
i(0)=1Ip (8.2b)

Figure 88 A source-free series

Applying KVL around the loop in Fig. 8.8, RLC dirauit.

di 1 [t
Ri+LY 12| iar=o0 83
s dt+C/,OOl 63
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See Appendix C.| for the formula to find the
roots of a quadratic equation.
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To eliminate the integral, we differentiate with respect to ¢ and rearrange
terms. We get

d’i  Rdi i 0 .

a2ttt e” 649
Thisis a second-order differential equation and is the reason for calling
the RLC circuitsinthischapter second-order circuits. Our goal isto solve
Eg. (8.4). To solve such asecond-order differential equation requiresthat
we have two initial conditions, such as the initial value of i and its first
derivative or initial values of somei and v. Theinitial value of i isgiven
in Eq. (8.2b). We get the initial value of the derivative of i from Egs.
(8.29) and (8.3); that is,

Ri©) + 159 4y =0
dt
or
ai© _ 1(RI + Vo) 8.5
a7 L 0 0 (8.5)

With thetwo initial conditionsin Egs. (8.2b) and (8.5), we can now
solve Eq. (8.4). Our experience in the preceding chapter on first-order
circuits suggests that the solution is of exponential form. So we let

i = Ae" (8.6)

where A and s are constants to be determined. Substituting Eq. (8.6) into
Eq. (8.4) and carrying out the necessary differentiations, we obtain

AR A
A 2 st st st =0
s°e +—L se +—LCe
or

. R 1
Aé'” <S2 + ZS + R) = 0 (87)

Sincei = Ae* isthe assumed solution we are trying to find, only the
expression in parentheses can be zero:
R 1

2
— — =0 8.8
s+Ls+LC (8.8)

This quadratic equation is known as the characteristic equation of the
differential Eq. (8.4), since the roots of the equation dictate the character
of i. Thetwo roots of Eq. (8.8) are

= R + R : ! 8.9
Y 2L L (8.9
R R\? 1 -
2= 7o 2L LC (8.90)

A more compact way of expressing therootsis

s1= —a +,/a? — o, 52 = —a — \/a? — ) (8.10)
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where

R 1
o= — wo = —— (8.11)

2L’ JLC

The roots s, and s, are called natural frequencies, measured in
nepers per second (Np/s), because they are associated with the natural
response of thecircuit; wg isknown astheresonant frequency or strictly as
the undamped natural frequency, expressed in radians per second (rad/s);
and « is the neper frequency or the damping factor, gxpressed in nepers The neper (Np) & a dimensionless unic named
per second. Interms of o and wo, Eq. (8.8) can be written as afer John Napier (1550-1617), 2 Scottish math-

52+ 2as + a)(z) =0 (8.83) ematician.

The variables s and » are important quantities we will be discussing " T g ——
throughout the rest of the text. e ratio /wq is known as the damping ratio {.
Thetwovaluesof s in Eq. (8.10) indicatethat there aretwo possible
solutions for i, each of which is of the form of the assumed solution in
Eq. (8.6); that is,
i1 = Ale‘slt, ip = A2€SZI (8.12)
Since Eq. (8.4) is alinear equation, any linear combination of the two
distinct solutions i; and i is aso asolution of Eq. (8.4). A complete or

total solution of Eq. (8.4) would therefore require a linear combination
of i1 and ip. Thus, the natural response of the series RLC circuit is

i(t) = Are™ 4+ Aye™ (8.13)

wherethe constants A1 and A, are determined from theinitial valuesi (0)
and di(0)/dt in Egs. (8.2b) and (8.5).
From Eg. (8.10), we can infer that there are three types of solutions:

1. If « > wo, we have the overdamped case. The response is overdamped when the roots of
2. If & = wo, we have the critically damped case. the circuit’s characteristic equation are unequal
and real, critically damped when the roots are
3. If o < wo, We have the underdamped case. equal and real, and underdamped when the roots
We will consider each of these cases separately. are complex.

Overdamped Case (o > wy)

From Egs. (8.9) and (8.10), @ > wo when C > 4L/R?. When this hap-
pens, both roots s; and s, are negative and real. Theresponseis

i(t) = Are™ 4 Aye™ (8.14)

which decaysand approaches zero ast increases. Figure8.9(a) illustrates
atypical overdamped response.
Critically Damped Case (a« = wyp)
When o = wg, C = 4L/R? and
R

sl=S2:—a=—Z

(8.15)

For this case, Eq. (8.13) yields
i(t) = Ale—ar + Aze_“’ = Aae_ar
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i(t) where A3 = A; + A,. This cannot be the solution, because the two
initial conditions cannot be satisfied with the single constant A;. What
then could be wrong? Our assumption of an exponentia solution is
incorrect for the special case of critical damping. Let us go back to Eq.

/\ (8.4). Whena = wo = R/2L, Eq. (8.4) becomes
d?i di
L og— 2i=0
dt? + dt tot

0 t or

i(ﬂ—f-ozz)—i—oz(ﬂ—i-on) =0 (8.16)

dr \dt dt

@ If welet

i(t) di .

‘ f= o + ai (8.17)
then Eq. (8.16) becomes
%—l—afzo

which is a first-order differential equation with solution f = Aje™*,

0 % t where A; isaconstant. Equation (8.17) then becomes
Ji
d_; 4+ ai = Ae™™
(b) or
. di
t ot 77 ot +
i® e e T +e¥ai = A (8.18)
)\ S This can be written as
Pl d )
0 At E(e"”z) =A; (8.19)
T —%:—’ Integrating both sides yields

ot
© e = At + Ao

or
Figure 8.9  (a) Overdamped response, .
: (b) critically damped response, i = (At + Ap)e™ (8.20)
() undlerdamped response: where A, isanother constant. Hence, the natural response of thecritically
damped circuit is a sum of two terms. a negative exponential and a
negative exponential multiplied by alinear term, or

i(t) = (As+ Agt)e™ (8.21)

A typical critically damped responseisshownin Fig. 8.9(b). Infact, Fig.
8.9(b) is a sketch of i(r) = re~*, which reaches a maximum value of
e /o att = 1/a, onetime constant, and then decays all the way to zero.

Underdamped Case (a < wy)
For o < wg, C < 4L/R?. The roots may be written as

s1=—a +/—(0f —a?) = —a + jw, (8.229)
s2=—a —/—(0f —a?) = —a — jw, (8.220)
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where j = V=1 and w; = vwi — o?, which is caled the damping
frequency. Both wg and w, are natural frequencies because they help
determine the natural response; while wy is often called the undamped
natural frequency, wy iscalled thedamped natural frequency. Thenatural
responseis

i(t) = Ale—(a—jwa)t + Aze—(a+jwzl)f

— e (Agelit 4 Ape—iout) (8.23)
Using Euler’'sidentities,
e/’ = cosh + jsing, e % =cosf — jsing (8.24)
we get
i(t) = e " [A1(COSwyt + j SiNwyt) + A2(COSwyt — j SiNwyt)] ©25)

=e ¥ [(A1+ Ap) CcOSwyt + j(A1 — Ap) SNwyt]

Replacing constants (A; + A») and j(Ay — Ay) with constants B; and
B>, we write

i(t) = e ¥ (B1COSwgt + BrSiNwyt) (8.26)

With the presence of sine and cosine functions, it is clear that the natural
response for this case is exponentially damped and oscillatory in nature.
Theresponsehasatimeconstant of 1/« and aperiodof T = 27 /w,. Fig-
ure 8.9(c) depicts atypical underdamped response. [Figure 8.9 assumes
for each casethat i (0) = 0.]

Oncetheinductor current i (¢) isfound for the R L C seriescircuit as
shown above, other circuit quantities such asindividua element voltages
can easily befound. For example, theresistor voltageisvg = Ri, andthe
inductor voltageisv; = L di/dt. Theinductor current i (z) is selected
asthe key variable to be determined first in order to take advantage of Eq.
(8.1b).

We conclude this section by noting the following interesting, pe-
culiar properties of an RLC network:

1. The behavior of such anetwork is captured by the idea of —
damping, which is the gradual loss of the initial stored energy, Eh? 0 produces 2 Perge‘tly S'T‘”T|°'da| reSPl‘,”:ea
as evidenced by the continuous decrease in the amplitude of 1 FEsponse cannot be practiczly accomplishe

. . with L and C because of the inherent losses in
the response. The damping effect is due to the presence of , .

. ) . them. See Figs. 6.8 and 6.26. An electronic de-
reS_Stance R. The dampl ng factor o determines the rate at vice called an oscillator can produce a perfectly
which the response is damped. If R = 0, then o = 0, and we sinusoidal response.
have an LC circuit with 1/+/LC asthe undamped natural
frequency. Since o < wyg in this case, the response is not only
undamped but also oscillatory. The circuit is said to be loss- Examples 8.5 and 8.7 demonstrate the effect of
less, because the dissipating or damping element (R) is absent. varying R.

By adjusting the value of R, the response may be made
undamped, overdamped, critically damped, or underdamped.

2. Ogcillatory responseis possible due to the presence of the two The response of a second-order circuit with two
types of storage elements. Having both L and C alowsthe storage elements of the same type, as in Fig.
flow of energy back and forth between the two. The damped 8.1(c) and (d), cannot be oscillatory.
oscillation exhibited by the underdamped response is known as
ringing. It stems from the ability of the storage elements L and
C totransfer energy back and forth between them.
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3. Observe from Fig. 8.9 that the waveforms of the responses
differ. In general, it is difficult to tell from the waveforms the
difference between the overdamped and critically damped
responses. The critically damped case is the borderline
between the underdamped and overdamped cases and it decays
the fastest. With the same initial conditions, the overdamped
case has the longest settling time, because it takes the longest

What this means in most practical circuits is that time to dissipate the initial stored energy. If we desirethe
we seek an overdamped circuit that is as close as fastest response without oscillation or ringing, the critically
possible to a critically damped circuit. damped circuit is the right choice.

e L I

InFig.88, R =40 , L = 4H, and C = 1/4 F. Calculate the char-
acteristic roots of the circuit. Isthe natural response overdamped, under-
damped, or critically damped?

Solution:
Wefirst calculate
R 40 5 1 1 1
0= — = — = y w) = —/]/— = =
2L~ 2(4) PTVICT [ax:
Theroots are
s12=—a+,/a?2—ws=-5++/25-1
or

s1 = —0.101, s2 = —9.899

Sincea > wp, we conclude that the responseis overdamped. Thisisalso
evident from the fact that the roots are real and negative.

PRACTICE PROBLEMKRE

IfR=10Q,L =5H,and C = 2mFinFig. 8.8, find «, wy, 51, and s.
What type of natural response will the circuit have?

Answer: 1,10, —1+ ;j9.95, underdamped.

t=0 : Find i (z) in the circuit in Fig. 8.10. Assume that the circuit has reached
E— steady stateatr = 0.
- Solution:
- For ¢+ < 0, the switch is closed. The capacitor acts like an open circuit
while the inductor acts like a shunted circuit. The equivalent circuit is
showninFig. 8.11(a). Thus, att = 0,

| T p—
F|gure 8.10  For Example 8.4. 4+6
wherei (0) istheinitial current through theinductor and v(0) istheinitial

voltage across the capacitor.

0V

—1A, v(0)=6i(0)=6V
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4Q !

9Q

=V
10V v60 002F==1

- 0.5H

@ ()

Figure 8.1  Thecircuit in Fig. 8.10: (a) fort < 0, (b) for ¢ > 0.

For + > 0, the switch is opened and the voltage source is dis-
connected. The equivalent circuit is shown in Fig. 8.11(b), which is a
source-free series RLC circuit. Notice that the 3-Q and 6-Q2 resistors,
which are in series in Fig. 8.10 when the switch is opened, have been
combined to give R = 9 Q in Fig. 8.11(b). The roots are calculated as

follows:
R 9 1 1
= = —— = 9’ = = = 10
“Ta T "TVIET g

s12=—a +,/aZ— wg =-9+./81-100

or
S1,2 = -9+ j4359

Hence, the response is underdamped (o < w); that is,

i(t) = e ¥ (A1 c054.359f + A,Sin4.359¢) (8.4.1)

We now obtain A; and A, using theinitial conditions. At ¢t = 0,
i0)=1=A; (8.4.2)
From Eq. (8.5),

di 1 - o
dr|_o — 7[R0 +v(0)] = —2[9(1) — 6] = —6A/s (843

Note that v(0) = Vo = —6V is used, because the polarity of v in Fig.
8.11(b) is opposite that in Fig. 8.8. Taking the derivative of i(¢) in Eq.
(8.4.1),

% = —9¢ ¥ (A1 c054.359 + A,Sin4.359)
+ e ¥(4.359)(— A1 Sin4.359¢ + A, cos4.359¢)
Imposing the condition in Eq. (8.4.3) at t = 0 gives
—6=—9(A; + 0) +4.359(—0+ Ay)
But A; = 1from Eq. (8.4.2). Then

—6=—-9+44.3594, == Az = 0.6882
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Substituting the values of A; and A, in Eq. (8.4.1) yields the com-
plete solution as

i(r) = e ¥ (cos4.359 + 0.6882sin4.359%) A

PRACTICE PROBLEMEKN

100 iF Thecircuit in Fig. 8.12 has reached steady state at t = 0~. If the make-
a g_¢ before-break switch movesto positionb at ¢ = 0, calculatei(¢) fort > 0.
=0 Answer: ¢~25 (50051.6583¢ — 7.5378sin1.6583) A.
i)
50V l 50
1H

Figure 8.12  For Practice Prob. 8.4.

8.4 THE SOURCE-FREE PARALLEL RLC CIRCUIT

Parallel RLC circuits find many practical applications, notably in com-
munications networks and filter designs.

Electronic Testing Tutorials

v Consider the parallel RLC circuit shown in Fig. 8.13. Assume
¢ l ¢ initial inductor current Ip and initial capacitor voltage Vo,
+ +
+ 1 9
RE v L3 ooy, i0) = I = Zf v(t)dr @272
_ - v(0) =V (8.27b)

€L Since the three elements are in paralel, they have the same voltage v
acrossthem. According to passive sign convention, the current isentering

Figure 8.13 A source-free paralldl RLC each element; that is, the current through each element is leaving the top
circuit. node. Thus, applying KCL at the top node gives

Y + 1/I dt+CdU 0 (8.28)
R L J o dt

Taking the derivative with respect to  and dividing by C resultsin

d%v 1 dv 1

a? T rcar T’
We obtain the characteristic equation by replacing the first derivative by
s and the second derivative by s2. By following the same reasoning
used in establishing Egs. (8.4) through (8.8), the characteristic equation
isobtained as

=0 (8.29)

1
s+ —s+—=0 (8.30)
Theroots of the characteristic equation are

1, 1\? 1
§12 = ———— — - —
12 2RC 2RC LC
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or
s12=—a /a2 — o] (8.31)
where
1 1
o= m, wo = «/T_C (8.32)

The names of these terms remain the same as in the preceding section,
asthey play the sameroleinthe solution. Again, there are three possible
solutions, depending on whether « > wp, @ = wp, OFr @ < wp. Let us
consider these cases separately.

Overdamped Case (a > wyp)

FromEq. (8.32),« > wowhen L > 4R?C. Therootsof the characteristic
equation are real and negative. The responseis

v(t) = Are™ + Aye®? (8.33)

Critically Damped Case (o« = wyg)

For o = w, L = 4R?C. Theroots are rea and equal so that the response
is

v(t) = (AL + Agt)e™ (8.34)

Underdamped Case (o < wyg)
When o < wp, L < 4R2C. In this case the roots are complex and may

be expressed as
S12=—0x jo, (8.35)
where
Wi = | w3 — a? (8.36)
Theresponseis
v(t) = e ¥ (A1 COSwyt + ArSiNw,t) (8.37)

The constants A1 and A, in each case can be determined from the
initial conditions. We need v(0) and dv(0)/dt. Thefirst term is known
from Eq. (8.27b). We find the second term by combining Egs. (8.27) and
(8.28), as

Vo dv(0)

— 4+ L+ C
R+o+ i

0

or
dv(0) _ (Vo+ Rl
dr RC

The voltage waveforms are similar to those shown in Fig. 8.9 and will
depend on whether the circuit is overdamped, underdamped, or critically
damped.

(8.39)
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Having found the capacitor voltagev(¢) for theparallel RLC circuit
as shown above, we can readily obtain other circuit quantities such as
individual element currents. For example, the resistor current isiz =
v/R and the capacitor voltage is ve = Cdv/dt. We have selected
the capacitor voltage v(¢) as the key variable to be determined first in
order to take advantage of Eq. (8.1a). Notice that we first found the
inductor current i (r) for the RLC series circuit, whereas we first found
the capacitor voltage v(¢) for the parallel RLC circuit.

In the paralel circuit of Fig. 8.13, find v(¢) for ¢+ > 0, assuming v(0) =
5V,i(0) = 0, L = 1H, and C = 10 mF. Consider these cases:
R=1923Q,R=5Q,and R =6.25 Q.

Solution:
[CASENN 1fr=1923¢Q,
1 1
YT ORC T 2x1923x10x 103
1 1
o

JLC  4/1x10x 103
Sincea > wq inthis case, the response is overdamped. The roots of the
characteristic equation are

s12=—a =+ /a? —wi=—-2,-50

and the corresponding response is
v(t) = Are™% + Aye™™ (85.1)

We now apply theinitial conditionsto get A; and A».

v(0)=5=A,+ A, (85.2)
dv0) v +Ri(0) 5+0 _ 260
dt RC T 1.923x10x 103
But differentiating Eg. (8.5.1),
dv _ —2A1¢7% —50Ae7
dt
Atr =0,
260 = —2A1 — 5045 (85.3)

FromEgs. (8.5.2) and (8.5.3), weobtain A; = 10.625and A, = —5.625.
Substituting A; and A, in Eq. (8.5.1) yields

v(t) = 10.625¢ % — 5.625¢ (854)

CASEF} Whenr =5¢,

1 1

= =10
2RC  2x5x10x 103

o =
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while wg = 10 remains the same. Since « = wg = 10, the response is
critically damped. Hence, s; = s, = —10, and

v(t) = (A1 + Agt)e (8.5.5)
Toget A; and Ay, we apply the initia conditions

v(0)=5=A4; (8.5.6)
dv© v +Ri(0) 5+0 _ 100
dt RC  5x10x103
But differentiating Eq. (8.5.5),
d
d—'; — (—10A; — 10Aof + Ag)e™ 2

Atr =0,
100 = —10A1 + A, (85.7)
From Egs. (8.5.6) and (8.5.7), A1 = 5and A, = 150. Thus,
(1) = (54 150 v (85.8)
CASEE] WhenR =6.25Q,

1 1
2RC ~ 2x625x 10 x 10-3

while wg = 10 remains the same. Asa < wyg in this case, the response
is underdamped. The roots of the characteristic equation are

S12 = —a:l:,/az—a)gz —8+ 6

v(t) = (A1C0S6t + A, Sin6r)e ™™ (8.5.9)

=8

o=

Hence,

We now obtain A1 and A, as

v(0)=5=A4, (8.5.10)
dv)  v(0)+Ri(0) 5+0 _ 0
dt RC ~ 6.25x10x 103
But differentiating Eq. (8.5.9),
d . .
d—;} = (—8A; cos6t — 84,56t — 6A;SiN6t + 6A, cos6r)e
Att =0,

80 = —8A; + 6A, (8.5.11)
From Egs. (8.5.10) and (8.5.11), A; = 5and A, = 20. Thus,
v(t) = (5c0s6t + 20sin6t)e ¥ (85.12)

Notice that by increasing the value of R, the degree of damping
decreases and the responses differ. Figure 8.14 plots the three cases.
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v(t) vV
10
9
8
7
6
5
4
3
2 Critically damped
1t Underdamped
I
Sl 0.2 0.4 0.6 0.8 1 t(9)

Figure 8.14  For Example 8.5: responses for three degrees of damping.

InFig. 813, letR =2 Q,L =04H,C =25mF, v(0) = 0,i(0) =
3A.Findv(¢) forr > 0.

Answer: —120re 10 v,

mg.s

Find v(¢) for r > 0inthe RLC circuit of Fig. 8.15.

300 0.4H i
T

~ 5OQ§ 20uF =V

40V t=

40

Figure 8.15  For Example 8.6.

Solution:

Whent < 0, theswitchisopen; theinductor actslikeashort circuit while
the capacitor behaves like an open circuit. Theinitia voltage across the
capacitor is the same as the voltage across the 50-2 resistor; that is,

50 5
(40) = = x40=25V (8.6.1)

)= >
vO = 35750 8

Theinitia current through the inductor is
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— =-05A
30+ 50
Thedirection of i isasindicated in Fig. 8.15to conform with thedirection
of Iy in Fig. 8.13, which isin agreement with the convention that current
flows into the positive terminal of an inductor (see Fig. 6.23). We need

to expressthisin terms of dv/dt, since we are looking for v.

dv( v+ Ri(0)  25-50x05

dt RC ~ 50x20x 1076

When r > 0, the switch is closed. The voltage source along with

the 30-Q resistor is separated from the rest of the circuit. The parallel

RLC circuit acts independently of the voltage source, as illustrated in
Fig. 8.16. Next, we determine that the roots of the characteristic equation

i(0) =

0 (8.6.2)

are
1 1
%= S RC T 2xB0x20x 106~ 0
1 1 -
wo = = =
T JLC J04dx20x106
s12=—a /a2 — o]
— 500 + /250,000 — 124,997.6 = —500 + 354

or

s1 = —854, sp = —146
Sincea > wp, we have the overdamped response
v(t) = Are Y 4 Ay 104 (8.6.3)
At ¢t = 0, weimpose the condition in Eq. (8.6.1),
v(0)=25= A1+ A, — A, =25— A, (864
Taking the derivative of v(¢) in Eqg. (8.6.3),

d
d—'; — —854A16 %% _ 16445014

Imposing the condition in Eq. (8.6.2),

30Q 0.4H

40V 500 20 uF ==

Figure 8.16  The circuit in Fig. 8.15 when 7 > 0. The
parallel RLC circuit on the left-hand side acts inde-
pendently of the circuit on the right-hand side of the
junction.
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dv(0)
dr

0= —854A; — 164A,
or
0 = 854A; + 164A;
Solving Egs. (8.6.4) and (8.6.5) gives
A; = —-5.16,

(8:6.5)

Ay =30.16
Thus, the complete solution in Eg. (8.6.3) becomes

v(t) = —5.16¢ 8% + 30.16¢ %% v

PRACTICE PROBLEM KR

t=0

10H 4mF ==V

Figure 8.17  For Practice Prob. 8.6.

Refer to the circuit in Fig. 8.17. Find v(¢) for¢r > 0.
Answer: 66.67(e 10 — =25V,

Electronic Testing Tutorials

% ® cpY

Figure 8.18  Step voltage applied to a series

RLC circuit.

8.5 STEP RESPONSE OF A SERIES RLC CIRCUIT

Aswe learned in the preceding chapter, the step response is obtained by
the sudden application of a dc source. Consider the series RLC circuit
shownin Fig. 8.18. Applying KVL around the loop for ¢ > 0,

di .
L—+Ri+v=YV;

8.39
ar (8:39)
But
. dv
I =C—
dt
Substituting for i in Eq. (8.39) and rearranging terms,
d>v Rdv v Vs
(8.40)

a? "Ta TIc T Ic
which has the same form as Eq. (8.4). More specifically, the coefficients
are the same (and that isimportant in determining the frequency param-
eters) but the variable is different. (Likewise, see Eq. (8.47).) Hence, the
characteristic equation for the series RLC circuit is not affected by the
presence of the dc source.

Thesolutionto Eq. (8.40) hastwo components: thenatural response
v, (¢) and the forced response v, (1), that is,

v(t) = v, (1) +vp(?) (8.41)

The natural response is the solution when we set V;, = 0 in Eq. (8.40)
and is the same as the one obtained in Section 8.3. The natural response
v, for the overdamped, underdamped, and critically damped cases are:
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V(1) = Are®™ + Ase®  (Overdamped) (8.429)

U (1) = (A1 + Aot)e ™ (Critically damped) (8.42b)

v, (1) = (A1 COSwgt + AxSiNwgt)e™®  (Underdamped)  (8.42c)

The forced response is the steady state or final value of v(z). In the

circuit in Fig. 8.18, the final value of the capacitor voltage is the same as
the source voltage V;. Hence,

vy (1) = v(c0) = V, (843

Thus, the complete solutions for the overdamped, underdamped, and
critically damped cases are:

v(t) = Vi + Are® + Ay (Overdamped) (8.440)
v(t) = V, + (A1 + Agt)e™®  (Critically damped) |  (8.44b)
v(t) = Vi + (A1 C0Swgt + ArSinwgt)e™®  (Underdamped) |  (8.44c)

The values of the constants A; and A, are obtained from the initial con-
ditions: v(0) and dv(0)/dt. Keep in mind that v and i are, respectively,
the voltage across the capacitor and the current through the inductor.
Therefore, Eq. (8.44) only applies for finding v. But once the capaci-
tor voltage ve = v is known, we can determinei = C dv/dt, which is
the same current through the capacitor, inductor, and resistor. Hence,
the voltage across the resistor is vg = i R, while the inductor voltage is
v, = L di/dt.

Alternatively, the complete response for any variable x(¢) can be
found directly, because it has the general form

x(t) =x5() +x,(1) (8.45)

wherethe x ; = x(o0) isthefinal value and x, (¢) isthe natural response.
The final value is found as in Section 8.2. The natural response has the
same form asin Eq. (8.42), and the associated constants are determined
from Eq. (8.44) based on the values of x (0) and dx(0) /d:.

M8.7

For the circuit in Fig. 8.19, find v(¢) and i (¢) for ¢+ > 0. Consider these
cases. R=5Q,R=4Q,andR =1 Q.

Solution:

CASERN When R =5 Q. Fort < 0, the switch is closed. The capa-
citor behaves like an open circuit while the inductor acts like a short cir-

cuit. Theinitia current through the inductor is 24V
24
i(0) = Er1- 4A
+ Figure 8.19  For Example 8.7.

and the initial voltage across the capacitor is the same as the voltage
across the 1-Q resistor; that is,
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v(0) =1i(0) =4V

For ¢+ > 0, the switch is opened, so that we have the 1-Q resistor
disconnected. What remains is the series RLC circuit with the voltage
source. The characteristic roots are determined as follows.

R 5 1 1
2L 2x1 °T JLC J1x025

S12 = —« :I:,/ozz—a)g =-1 -4

Since o > wgp, we have the overdamped natural response. The total
response is therefore

v(t) = vy + (Are™ + Aze™)

where v ¢ isthe forced or steady-state response. Itisthefinal value of the
capecitor voltage. InFig. 8.19, vy = 24 V. Thus,

V() = 24+ (Are™ + Aze™) (8.7.1)
We now need to find A; and A, using theinitial conditions.
v(0) =4=24+ A1+ A,
or
—20=A1+ Ay (8.7.2

The current through the inductor cannot change abruptly and isthe same
current throughthecapacitor at r = 0" becausetheinductor and capacitor
are now in series. Hence,

dv( 4 4

dv(0)

dr - i “com P
Before we use this condition, we need to take the derivative of v in Eq.
(8.7.1).

i0)=C

d
_d‘t’ = —Are™! — 4Aze ™ (87.3)
Att =0,
dv(0
’;(t ) —16=—A, — 44, (8.7.4)

From Egs. (8.7.2) and (8.7.4), A; = —64/3 and A, = 4/3. Substituting
Aiand A, in Eqg. (8.7.1), we get

4
v(t) =24+ 5(—16@" +e ¥V (8.7.5)

Sincetheinductor and capacitor arein seriesfor ¢ > 0, theinductor
current is the same as the capacitor current. Hence,

(0 =2
it)=C—
dt

Multiplying Eq. (8.7.3) by C = 0.25 and substituting the values of A;
and A, gives
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4
i(t) = §(4e_’ —e A (8.7.6)
Note that i (0) = 4 A, as expected.

CASE § WhenR = 4 Q. Again, theinitial current throughtheinductor
is

[(0) = 24 =45A
e
and the initial capacitor voltageis

v(0) = 1i(0) =45V

For the characteristic roots,

R 4 9
YT Tox1”
while wg = 2 remains the same. Inthiscase, 51 = 5o = —a = -2,
and we have the critically damped natural response. The total response

istherefore
v(t) = v + (A1 + Aat)e ™
and, asvy =24V,
v(t) = 244 (A1 + Agt)e™ 8.7.7)
Tofind A1 and A,, we use theinitia conditions. We write
v(0) = 4.5 =24+ Ay — A =-195 (878
Sincei(0) = Cdv(0)/dt =4.50r

d 4.
v(0) _ _5 _ 18
dt C
From Eq. (8.7.7),
d
d—l; — (=241 — 2tAs + Ap)e™? (8.7.9)
Atr =0,
dv(0
':Z(t ) _ 18- “2A1 + Ay (8.7.10)

From Egs. (8.7.8) and (8.7.10), A; = —19.5and A, = 57. Thus, Eq.
(8.7.7) becomes

v(t) = 24 + (—19.5+ 571)e % V (8.7.11)
Theinductor current is the same as the capacitor current, that is,
(1) = 2
1) =C—
dt
Multiplying Eqg. (8.7.9) by C = 0.25 and substituting the values of A;
and A, gives
i(t) = (45— 285)e 2 A 8.7.12)

Note that i (0) = 4.5 A, as expected.
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CASEJE] When R = 1 Q. Theinitial inductor current is
24
] =——=12A
O=177

and the initial voltage across the capacitor is the same as the voltage
across the 1-Q resistor,

v(0) =10 =12V
R 1
YT T 2x1”
Sincea = 0.5 < wo = 2, we have the underdamped response

s12=—0o £ \/ofwg =05+ j1.936

The total responseis therefore

0.5

v(t) = 24+ (A10051.9361 + A,sin1.9361)e %  (87.13)
We now determine A1 and A,. We write
v(0)=12=24+ A, - A =-12 (8.7.14)
Sincei(0) = C dv(0)/dt = 12,

dv(0 12
°© = — =48 (8.7.15)
dt C

But

d .
v _ e 95 (—1.9364,sin1.936¢ + 1.936A4, cos1.936¢)
dt (8.7.16)

— 0.5¢7%% (A cos1.936t + A, sin1.9367)
Att =0,
dv(0)
dt
Substituting A; = —12 gives A, = 21.694, and Eq. (8.7.13) becomes

=48 = (—0+ 1.936A4,) — 0.5(A1 + 0)

v(t) = 24 + (21.694sin1.936r — 12c0s1.9361)e %% V  (8.7.17)

Theinductor current is
i(t) = Cd—v
dt
Multiplying Eq. (8.7.16) by C = 0.25 and substituting the values of A1
and A, gives
i(t) = (3.1sin1.936r + 12c0s1.9361)e %> A (8.7.19)

Notethat i (0) = 12 A, as expected.

Figure8.20 plotstheresponsesfor thethree cases. Fromthisfigure,
we observe that the critically damped response approaches the step input
of 24 V the fastest.
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V() V

40

32

241

16

6 7 t(s)

Figure 820 For Example 8.7: response for three degrees of
damping.

PRACTICE PROBLEMKN

Having beenin positiona for along time, theswitchin Fig. 8.21 ismoved
topositionb atr = 0. Find v(¢) and vz (¢) fort > 0.

12v

Figure 8.2]  For Practice Prob. 8.7.

Answer: 10— (1.1547sin3.464t + 2c0s3.464t)e2 V,
2.3le=% sin3.464¢t V.

8.6 STEP RESPONSE OF A PARALLEL RLC CIRCUIT  ecionic Tesfing Tiania’s

Consider the parallel RLC circuit shown in Fig. 8.22. We want to find
i due to a sudden application of adc current. Applying KCL at the top

|
node for + > 0, 'SCD t=0\>z R§ Lg c—v

d
—4+i+C— =1 8.46
R +1+ dt s ( )
But Figure 822 Parallel RLC circit with an
di applied current.
v=L—
dt

Substituting for v in Eq. (8.46) and dividing by LC, we get
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d2i+ 1di i _ L
dt2  RCdt LC LC
which has the same characteristic equation as Eq. (8.29).

The compl ete solutionto Eq. (8.47) consists of the natural response
i,(t) and the forced response i f; that is,

(8.47)

i(t) =i, () +ip(t) (8.48)

The natural response is the same as what we had in Section 8.3. The
forced responseisthe steady state or final value of i. Inthecircuitin Fig.
8.22, thefinal value of the current through the inductor isthe same asthe
source current I;. Thus,

i(1) = I, + Are™ + Ape®™  (Overdamped)
i(t) =1, + (AL + Axt)e™™  (Critically damped) (8.49)
i(t) = I, + (AL COSwyt + AxSinwgt)e™™  (Underdamped)

The constants A; and A, in each case can be determined from the initial
conditionsfori and di /dt. Again, we should keep inmind that Eq. (8.49)
only appliesfor finding theinductor current i. But once the inductor cur-
renti;, = iisknown,wecanfindv = L di/dt, whichisthesamevoltage
across inductor, capacitor, and resistor. Hence, the current through the
resistor isix = v/R, while the capacitor current isic = C dv/dt. Al-
ternatively, the complete response for any variable x(¢) may be found
directly, using

x(t) = x7(t) + x,(2) (8.50)

where x » and x,, areitsfinal value and natural response, respectively.

Inthecircuitin Fig. 8.23, find i () and iz (¢) for r > 0.

t=0x 200
¥ _
T .
4A (D 20H § 200 gmF ==V 30u(-t) V

Figure 8.23  For Example 88.

Solution:

For ¢+ < 0, the switch is open, and the circuit is partitioned into two
independent subcircuits. The 4-A current flows through the inductor, so
that

i(0)=4A
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Since 30u(—t) = 30 whent < 0 and O when ¢ > 0, the voltage source
is operative for r < 0 under consideration. The capacitor acts like an
open circuit and the voltage across it is the same as the voltage across
the 20-Q2 resistor connected in parallel with it. By voltage division, the
initial capacitor voltageis
20
20420
Fort > 0, the switchisclosed, and we have aparallel RLC circuit
with a current source. The voltage source is off or short-circuited. The

two 20-C2 resistors are now in parallel. They are combined to give R =
20 || 20 = 10 Q. The characteristic roots are determined as follows:

1 . 1 .
2RC ~ 2x10x8x 103
1 1
VLC /20 x 8 x 1073

s12= —a +,/a? — w2 = —6.25+ +/39.0625 — 6.25
= —6.25+5.7282

v(0) (30) = 15V

6.25

o=

wo

or
s1 = —11.978, s» = —0.5218
Since @ > wq, We have the overdamped case. Hence,
i(t) — Is _I_Ale—ll.978t ~|—A2€_0'5218t (88.1)

where I, = 4 isthefinal value of i (r). We now use the initial conditions
to determine A1 and A,. Atr =0,

i0=4=4+ A1+ A, - Ar=—A; (8.8.2)
Taking the derivative of i (¢) in Eq. (8.8.1),

Ji
d—; — —11.978A;0~ 11978 _ 052184 ¢~ 05218
sothat at ¢+ = 0,
di(0
’d (t ) _ —11.978A; — 0.52184, 883)
But
di(0) di(0) 15 15
L =v(0) =15 =_—=_—=075
a O - i L 20

Substituting thisinto Eq. (8.8.3) and incorporating Eg. (8.8.2), we get
0.75 = (11.978 — 0.5218) A, = A, = 0.0655

Thus, A; = —0.0655 and A, = 0.0655. Inserting A; and A, in Eq.
(8.8.1) gives the complete solution as
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i(t) = 4 + 0.0655(¢ 05218 _ ,—11.978) A

Fromi(t), weobtain v(¢+) = L di/dt and
v(t) L di

ir(t) = 2—0 — Z_OE — 0.7856*11-9781‘ _ 0.0342670.521& A

PRACTICE PROBLEM KR

l i Findi(z) and v(z) for ¢+ > Ointhecircuitin Fig. 8.24.
Answer: 20(1 — cost) A, 100sint V.

—02F 5H

< +

20u(t) A (D

Figure 824  For Practice Prob. 8.8.

8.7 GENERAL SECOND-ORDER CIRCUITS

Now that we have mastered series and parallel RLC circuits, we are
prepared to apply the ideas to any second-order circuit. Although the
seriesand parallel RLC circuits are the second-order circuits of greatest
interest, other second-order circuits including op amps are also useful.
Given a second-order circuit, we determine its step response x (¢) (which
may be voltage or current) by taking the following four steps:

1. Wefirst determine theinitial conditions x(0) and dx (0)/dt
and the final value x (00), as discussed in Section 8.2.

2. Wefind the natural response x,,(¢) by turning off independent
sources and applying KCL and KVL. Once a second-order
differential equation is obtained, we determineits characteristic
roots. Depending on whether the response is overdamped,
critically damped, or underdamped, we obtain x,, () with two

Electronic Testing Tutorials

A circuit may look complicated at first. But once unknown constants as we did in the previous sections.

the sources are turned off in an attempt to find 3. We obtain the forced response as

the natural response, it may be reducible to a

first-order circuit, when the storage elements xy(t) = x(00) (8.51)
can be combined, or to a parallel/series RLC cir-

cuit. Ifit is reducible to a first-order circuit, the where x (c0) isthe final value of x, obtained in step 1.

solution becomes simply what we had in Chap-
ter 7. If it is reducible to a parallel or series
RLC circuit, we apply the techniques of previous
sections in this chapter.

4. Thetotal response is how found as the sum of the natural
response and forced response

x(t) = x,(t) +x5(1) (852

We finally determine the constants associated with the natural
response by imposing the initial conditions x (0) and dx(0) /dt,
determined in step 1.
We can apply this genera procedure to find the step response of
any second-order circuit, including those with op amps. The following
examplesillustrate the four steps.
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£ X AP LE B

Find the complete response v and then i for ¢+ > 0 in the circuit of Fig. 4Q _'» 1H
8.25. 2112
Solution: 2Q +
Wefirst find theinitial and final values. Ats = 0™, thecircuitisat steady 12V iIFT v
state. The switch is open, the equivalent circuit is shown in Fig. 8.26(a). t=0
It is evident from the figure that
v(0) =12V, i(0)=0 Figure 825 For Example 8.9.
At ¢ = O', the switch is closed; the equivalent circuit isin Fig. 8.26(b).
By the continuity of capacitor voltage and inductor current, we know that 40 [
(0" =v0) =12V, (0" =i0)=0 (8.9.1) oo °
+
To get dv(0")/dt, weuse C dv/dt = ic or dv/dt = ic/C. Applying 1V v
KCL at nodea in Fig. 8.26(b),
o+ A
0 =ic) + 2 :
@
0—'(0+)+1—2 = ic(0") =—-6A
—le 2 et = 40 1H _1_g4
Hence, lic
dv (0t —6 *
0@ _ =-12V/s (89.2) 12V 205V <O05F

dt 05 _

The final values are obtained when the inductor is replaced by a short
circuit and the capacitor by an open circuit in Fig. 8.26(b), giving

12 (b)
i(00) = —— =2A,  w(o0)=2i(c0) =4V  (893)
4+2 Figure 8.26  Equivalent circuit of the circuit
Next, we obtain the natural responsefor ¢+ > 0. By turning off the " F'9-825for: @7 =0, (b) > 0.
12-V voltage source, we have the circuit in Fig. 8.27. Applying KCL at

nodea in Fig. 8.27 gives 40 i r%;;\ v
_v+1dv 604 a
T2 2ur (894 ]
2Q vV ~3F

Applying KVL to the left mesh resultsin

di
4 1— =0 8.9.5
i+ 7 +v (8.9.5)

Figure 8.27  Obtaining the natural
Since we are interested in v for the moment, we substitute i from Eq. response for Example 8.9.

(8.9.4) into Eq. (8.9.5). We obtain

dv 1ldv 1d%
2v+20 42 2 =0
e T oa T 2ae Y
or
d%v dv
— +5— +6v=0
dt2Jr dt+ v

From this, we obtain the characteristic equation as
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s24+5+6=0
with rootss = —2 and s = —3. Thus, the natural responseis
V(1) = Ae % + Be™® (8.9.6)

where A and B are unknown constantsto be determined later. Theforced
responseis

vr(t) =v(oo) =4 (8.9.7)
The complete responseis
v(t) = v, + vy =4+ Ae ™ + Be™® (8.9.8)

We now determine A and B using the initial values. From Eg. (8.9.1),
v(0) = 12. Substituting thisinto Eg. (8.9.8) at r = 0 gives

12=4+A+B = A+B=8 (8.9.9)

Taking the derivative of v in Eq. (8.9.8),

d
d_lr) = —2A¢ % —3Be™¥ (8.9.10)

Substituting Eq. (8.9.2) into Eq. (8.9.10) at r = 0 gives
—12=-2A - 3B — 2A+3B =12 (8.9.11)
From Egs. (8.9.9) and (8.9.11), we obtain
A =12, B=—4
so that Eqg. (8.9.8) becomes
v(t) =4+ 1272 — 47V, >0 (89.12)

From v, we can obtain other quantities of interest by referring to Fig.
8.26(b). To obtain i, for example,

1d
= o+ 2 =24 662 — 2% — 12072 + B
2 2dt (8.9.13)

=2— 6% +4e7 ¥ A, t>0
Noticethat i (0) = 0O, in agreement with Eq. (8.9.1).

10Q 2A 4Q
Li
+
z—loFT\i t=0 2H

Figure 8.28  For Practice Prob. 8.9.

Determine v and i for # > 0inthe circuit of Fig. 8.28.
Answer: 8(1—e )V, 2(1—e %) A.
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£ X A P L E NI

|
Find v,(¢) for r > 0inthecircuit of Fig. 8.29.
Solution:

This is an example of a second-order circuit with two inductors. We . @
first obtain the mesh currents iy and i, which happen to be the currents 7y v 10 2V, g
through the inductors. We need to obtain the initial and final values of ﬁl) -
these currents.

Forr <0, 7u(t) = 0, s0that i1(07) = 0 = i»(07). For¢ > O,
Tu(t) = 7, so that the equivalent circuit is as shown in Fig. 8.30(a). Due Figure 829 For Example 8.10.
to the continuity of inductor current,

i1(0Y) =i1(07) =0, i2(0") =i,(07) =0 (8.10.1)
v22(07) = v,(07) = 1[(i1(0") —i2(0")] =0 (810.2)
Applying KVL to theleft loop in Fig. 8.30(a) at ¢t = O,
7 =3i1(0") + v.1(0+) + v,(01)

o
I

or
v1(0N) =7V
Since L1 diy/dt = vy,

w_ﬁ_z_mv/s (8.10.3)
dt o L1 a % a o
Similarly, since L, diy/dt = vpo,
diz0") _ vz _ g (8.10.4)

dt o L> -
Ast — oo, the circuit reaches steady state, and the inductors can be
replaced by short circuits, as shown in Fig. 8.30(b). From thisfigure,

7
i1(00) = iz(00) = 3 A (8.10.5)
_1
3Q L=3H 30
T oo
R iiz - ¢i2
I iy

+ +

7V 1Q§vo VngLzzéH 7V 1Q§ I

@) (b)

Figure 8.30  Equivalent circuit of that in Fig. 8.29 for: (8) r > 0, (b) 7 — oc.

Next, we obtain the natural responses by removing the voltage
source, as shown in Fig. 8.31. Applying KVL to the two meshesyields
1diy

4i — i -— =0 8.10.6
i1 12+2dt ( )
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1y and
w ; '+1di2 i1=0 8.10
i2 5 1= (8.10.7)
From Eq. (8.10.6),
(W) w03 (5) g TTEERS
ir =4i1 + -an (8.10.8)
2 dt

Substituting Eq. (12.8.8) into Eq. (8.10.7) gives

F|gure 83l Obtaining the natural 1diy 4di, 1 d2i1

response for Example 8.10. 4 —-L T S S
“tow Tsa toar T
d?iy diy
— 4+ 13— +30i;, =0
dr? + dt T

From this we obtain the characteristic equation as
5?4+ 135 +30=0
which hasrootss = —3 and s = —10. Hence, the natural response is
i1, = Ae™ 4+ Be ¥ (8.10.9)

where A and B are constants. The forced responseis

7
ilf =1i1(00) = é A (8.10.10)

From Egs. (8.10.9) and (8.10.10), we obtain the complete response as
7
i1(t) = 3+ Ae ™ 4 Be™ 1 (8.10.11)

We finally obtain A and B from the initial values. From Egs. (8.10.1)
and (8.10.11),

7
0= 3 +A+B (8.10.12)

Taking the derivative of Eq. (8.10.11), settingr = 0inthe derivative, and
enforcing Eq. (8.10.3), we obtain

14 = —-3A - 10B (8.10.13)
From Egs. (8.10.12) and (8.10.13), A = —4/3 and B = —1. Thus,

7 4
i1(t) = 3= :—ge*3’ — el (8.10.14)
We now obtain i, from i;. Applying KVL to the left loop in Fig.
8.30(a) gives
. . 1dil . . 1dl]_
7 =4 — - = 74+ 4 -1
"t 12+2dt = 2 + ll+2dt
Substituting for i3 in Eq. (8.10.14) gives
28 16
ir(t) = =7+ 3 _ Ee_& _ 4e—10z =+ Ze—Bz + 56—10t
2 10 (8.10.15)
_ 3 Ee_sl 410
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From Fig. 8.29,
V(1) = 1[ix (1) — i2(1)] (8.10.16)

Substituting Egs. (8.10.14) and (8.10.15) into Eq. (8.10.16) yields

V(1) = 2(e™% — 7100 (8.10.17)
Note that v,(0) = 0, as expected from Eq. (8.10.2). @
8 10 Network Analysis
For ¢ > 0, obtain v,(¢) in the circuit of Fig. 8.32. 1 vy 1Q v,

(Hint: First find v, and vy.)
Answer: 2(e' —e )V, > 0.

5u(t) v IF ,‘\ IF

Figure 8.32  For Practice Prob. 8.10.

8.8 SECOND-ORDER OP AMP CIRCUITS

An op amp circuit with two storage elements that cannot be combined
into a single equivalent element is second-order. Because inductors are

bulky and heavy, they are rarely used in practical op amp circuits. For The use of op amps in second-order circuits
thisreason, wewill only consider RC second-order op amp circuits here. avoids the use of inductors, which are somewhat
Such circuits find awide range of applications in devices such as filters undesirable in some applications.

and oscillators.
Theanalysisof asecond-order op amp circuit followsthe samefour
steps given and demonstrated in the previous section.

MS.II

In the op amp circuit of Fig. 8.33, find v,(z) for ¢+ > 0 when v, =
10u(t) mV.Let Ry = R, =10 ke, C1=20 uF, and C, =100 WFE.

G,
I
AN
+ Vo —
R, vy T R, 2
—»1—>WV\' _ —O Vo
H o+
VS Cl ~ Vo

Figure 833 For Example 8.11.
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Solution:

Although we could follow the same four steps given in the previous
section to solve this problem, we will solve it alittle differently. Dueto
the voltage follower configuration, the voltage across C; isv,. Applying

KCL at node 1,
Y ;lvl - Cg% + vllgzv” (8.11.1)
At node 2, KCL gives
V1 — U, dv,
T (8.11.2)
But
V2 = V1 — U, (8.11.3)

Wenow try toeliminate v; and v, in Egs. (8.11.1) to (8.11.3). Substituting
Egs. (8.11.2) and (8.11.3) into Eq. (8.11.1) yields

Os ;lvl = CZ% -G, (;vt" C: [;vt" (8.11.4)
From Eq. (8.11.2),
v = v, + chldv” (8.11.5)
dt
Substituting Eg. (8.11.5) into Eq. (8.11.4), we obtain
U Yo ReCudve o dvo o o @ o AV o d0
Ri R Ry dt dt dr? dt dt

or

d?v, n 1 n 1 dv, n U, B B 116
dt? R,C> R>Cy ) dt R1R>,C1C> - R1R>C1C @118
With the given values of R1, R», C1, and C,, Eq. (8.11.6) becomes

d?v, dv,
2 4+ 22 4 By, = By, 8.11.7
a2 + ar +5v v, ( )
To obtain the natural response, set v, = 0in Eq. (8.11.7), which is the
same as turning off the source. The characteristic equation is

s24+254+5=0
which has complex rootss1 » = —1+ j2. Hence, the natural responseis
Von =€ "(ACOS2t + Bsin2t) (8.11.8)

where A and B are unknown constants to be determined.

Ast — oo, the circuit reaches the steady-state condition, and
the capacitors can be replaced by open circuits. Since no current flows
through C; and C, under steady-state conditions and no current can enter
the input terminals of the ideal op amp, current does not flow through R,
and R,. Thus,

V,(00) = v1(00) = v
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The forced response is then
Vof = Up(00) = v, =10mV, t>0 (8.11.9)
The complete responseis
Vo(t) = Von + Voy = 10+ e '(ACOS2t + Bsin2t) mV  (8.11.10)

To determine A and B, we need theinitia conditions. Forr < 0, v, = 0,
S0 that

U,(07) =v2(07) =0

For ¢+ > 0, the source is operative. However, due to capacitor voltage
continuity,

v,(07) = v(0T) =0 (8.11.11)
From Eq. (8.11.3),
v1(0%) = v2(07) + v,(0") =0
and hence, from Eq. (8.11.2),

dv,(0")  vi—v,
dt ~ R)C1

(8.11.12)
We now impose Eqg. (8.11.11) on the complete responsein Eq. (8.11.10)
atr=0,for

0=10+ A - A=-10 (8.11.13)
Taking the derivative of Eq. (8.11.10),

dv,
dt

Setting r = 0 and incorporating Eq. (8.11.12), we obtain

=e '(—Acos2t — Bsin2t — 2Asin2t + 2B cos2t)

0=—-A+2B (8.11.14)

From Egs. (8.11.13) and (8.11.14), A = —10 and B = —5. Thus the
step response becomes

v,(t) = 10 — e (10c0s2r + 5sin2¢t) mV, t>0

PRACTICE PROBLEMENNE

329

Intheopampcircuit showninFig. 8.34, v, = 4u(¢) V,find v, (¢) forr > 0.
Assumethat Ry = R, = 10k, C; = 20 uF, and C, = 100 uF

Answer: 4—5e¢'+¢ %V, > 0.

Vg C, —~ C, A

Figure 8.34  For Practice Prob. 8.11.
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8.9  PSPICE ANALYSIS OF RLC CIRCUITS

RLC circuits can be analyzed with great ease using PSpice, just like
the RC or RL circuits of Chapter 7. The following two examples will
illustrate this. The reader may review Section D.4 in Appendix D on
PSpice for transient analysis.

()

60 Q 3H

(b)

Figure 835  For Example 8.12.

e

The input voltage in Fig. 8.35(a) is applied to the circuit in Fig. 8.35(b).
Use PSpiceto plot v(r) for 0 < ¢t < 4s.

Solution:

The given circuit is drawn using Schematics as in Fig. 8.36. The pulse
is specified using VPWL voltage source, but VPULSE could be used
instead. Using the piecewise linear function, we set the attributes of
VPWL asTl = 0,V1 =0, T2 = 0.001, V2 = 12, and so forth, as
shown in Fig. 8.36. Two voltage markers are inserted to plot the input
and output voltages. Once the circuit is drawn and the attributes are set,
we select Analysis/Setup/Transient to open up the Transient Analysis
dialog box. Asaparalel RLC circuit, the roots of the characteristic
equation are —1 and —9. Thus, we may set Final Time as4 s (four times
the magnitude of the lower root). When the schematic is saved, we select
AnalysisSimulate and obtain the plots for the input and output voltages
under the Probe window as shown in Fig. 8.37.

12
L1
A11%

60

T1=0
T2=0. 001
T3=2
T4=2.001

V1=0
V2=12
V3=12
V4=0

4
V1 R2 § 60 0. 037
4

SHl

Figure 8.36

)

1.0 s 4.0 s
O V(L1:2) o V(V1:+)

Ti me

3.0 s

Schematic for the circuit in Fig. 8.35(b).

Figure 837  For Example 8.12: the input and output

voltages.

PRACTICE PROBLEMEKNN

Findi(¢) using PSpicefor 0 < ¢ < 4 sif the pulse voltagein Fig. 8.35(a)
is applied to the circuit in Fig. 8.38.

Answer: SeeFig. 8.39.
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5Q 3.
yi

Vg — 1mF 2H 2.

Figure 8.38  For Practice Prob. 8.12.

o l(L1)

Ti me

Figure 8.39  Plot of i(r) for Practice Prob. 8.12.

mg.ls

For the circuit in Fig. 8.40, use PSpiceto obtaini(¢) for0 <t < 3s.

Figure 840  For Example 8.13.

Solution:

When the switch is in position a, the 6-Q resistor is redundant. The
schematic for this case is shown in Fig. 8.41(a). To ensure that current
i (¢) enterspin 1, theinductor isrotated threetimesbeforeitisplacedinthe
circuit. The same appliesfor the capacitor. Weinsert pseudocomponents

0. 0000 4. 000E+00

——@ D

| C=4A

4AC>IDC R1§5 23.81m%€1 7 H L1 W§6 23.81lm==Cl1 7H§Ll
%

@ (b)

Figure 84|  For Example 8.13: (a) for dc analysis, (b) for transient analysis.
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VIEWPOINT and |PROBE to determine theinitial capacitor voltage and
initial inductor current. We carry out a dc PSpice analysis by selecting
Analysig/Simulate. Asshown in Fig. 8.41(a), we obtain the initial ca-
pacitor voltage as 0V and theinitial inductor current i (0) as4 A fromthe
dc analysis. Theseinitial values will be used in the transient analysis.
When the switch is moved to position b, the circuit becomes a
source-free parallel RLC circuit with the schematic in Fig. 8.41(b). We
set the initial condition IC = O for the capacitor and IC = 4 A for
the inductor. A current marker isinserted at pin 1 of the inductor. We
select Analysis/Setup/Transient to open upthe Transient Analysisdial og
box and set Final Time to 3 s. After saving the schematic, we select
AnalysigTransient. Figure 8.42 shows the plot of i (¢). The plot agrees
withi (1) = 4.8¢7" — 0.8¢=% A, whichisthesolution by hand calculation.

ol (L1)

Ti me
Figure 842 Plot of i() for Example 8.13.

PRACTICE PROBLEMEKNE

Refer to the circuit in Fig. 8.21 (see Practice Prob. 8.7). Use PSpice to
obtanv() for0 <t < 2.

Answer: SeeFig. 8.43.

o V(CL: 1)

Ti me

Figure 843 Plot of v(r) for Practice Prob. 8.13.

i8.10 DUALITY

The concept of duality isatime-saving, effort-effective measure of solv-
ing circuit problems. Consider the similarity between Eq. (8.4) and Eq.
(8.29). Thetwo equations are the same, except that we must interchange
the following quantities: (1) voltage and current, (2) resistance and con-
ductance, (3) capacitance and inductance. Thus, it sometimes occursin
circuit analysis that two different circuits have the same equations and
solutions, except that the roles of certain complementary elementsarein-
terchanged. Thisinterchangeability is known as the principle of duality.
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| |
t The duality principle asserts a parallelism between pairs of characterizing

equations and theorems of electric circuits.

Dua pairs are shown in Table 8.1. Note that power does not appear in TABLES.|  Dul pairs
Table 8.1, because power hasno dual. The reason for thisisthe principle : -
of linearity; since power isnot linear, duality does not apply. Also notice Resistance R Conductance G
from Table 8.1 that the principle of duality extends to circuit elements, Inductance L ~ Capacitance C
configurations, and theorems. Voltage v Current i
Two circuits that are described by equations of the same form, but Voltage source  Current source
in which the variables are interchanged, are said to be dual to each other. Node Mesh
Series path Parallel path
Open circuit Short circuit
KVL KCL
Thevenin Norton

Two circuits are said to be duals of one another if they are described by the same
characterizing equations with dual quantities interchanged.

Even when the principle of linearity applies,

The usefulness of the duality principle is self-evident. Once we circuit element or variable may not have a dual
know the solution to one circuit, we automatically have the solution for For example, mutual inductance (to be covered
the dual circuit. It is obvious that the circuits in Figs. 8.8 and 8.13 are in Chapter 13) has no dual.

dual. Consequently, the result in Eq. (8.32) is the dual of that in Eq.
(8.11). We must keep in mind that the principle of duality is limited
to planar circuits. Nonplanar circuits have no duals, as they cannot be
described by a system of mesh equations.
To find the dual of a given circuit, we do not need to write down
the mesh or node equations. We can use a graphical technique. Given a
planar circuit, we construct the dual circuit by taking the following three
steps:
1. Place anode at the center of each mesh of the given circuit.
Place the reference node (the ground) of the dua circuit
outside the given circuit.

2. Draw lines between the nodes such that each line crosses an
element. Replace that element by its dual (see Table 8.1).

3. To determine the polarity of voltage sources and direction of
current sources, follow thisrule: A voltage source that pro-
duces a positive (clockwise) mesh current has asits dua acur-
rent source whose reference direction is from the ground to the
nonreference node.

In case of doubt, one may verify the dual circuit by writing the nodal or
mesh equations. The mesh (or nodal) equations of the original circuit are
similar to the nodal (or mesh) equations of the dual circuit. The duality
principleisillustrated with the following two examples.

mg.m

Construct the dual of the circuit in Fig. 8.44.
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20 t=0 Solution:

Asshownin Fig. 8.45(a), wefirst locate nodes 1 and 2 in the two meshes
and also the ground node O for the dual circuit. We draw a line between
one node and another crossing an element. We replace the line joining
the nodes by the duals of the elements which it crosses. For example, a
line between nodes 1 and 2 crosses a 2-H inductor, and we place a 2-F

6V 2H =/ 10mF

Figure 844 For Example 8.14. capacitor (an inductor’s dual) on the line. A line between nodes 1 and
0 crossing the 6-V voltage source will contain a 6-A current source. By
drawing lines crossing all the elements, we construct the dual circuit on
the given circuit as in Fig. 8.45(a). The dua circuit is redrawn in Fig.
8.45(b) for clarity.

05Q

0
(@ (b)
Figure 845 (a) Construction of the dual circuit of Fig. 8.44, (b) dua circuit redrawn.
PRACTICE PROBLEMEKNE
Draw the dual circuit of the onein Fig. 8.46.
Answer: SeeFig. 8.47.
3H
L s
50 mA (4
<> 10Q % "

Figure 8.46  For Practice Prob. 8.14.

mg.|5

Figure 847  Dua of the circuit in Fig. 8.46.

Obtain the dual of the circuit in Fig. 8.48.
Solution:

The dual circuit is constructed on the original circuit asin Fig. 8.49(a).
We first locate nodes 1 to 3 and the reference node 0. Joining nodes 1
and 2, we cross the 2-F capacitor, which is replaced by a 2-H inductor.
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211
1ov%> @ —= 2F @ 200 @ 3A

Figure 848  For Example 8.15.

Joining nodes 2 and 3, we cross the 20-Q2 resistor, which is replaced by
a1/20- resistor. We keep doing this until all the elements are crossed.
Theresultisin Fig. 8.49(a). The dual circuit isredrawn in Fig. 8.49(b).

5F

10A — 5F 3V

@ (b)

Figure 849 For Example 8.15: (a) construction of the dual circuit of Fig. 8.48, (b) dual circuit redrawn.

To verify the polarity of the voltage source and the direction of
the current source, we may apply mesh currents iy, i, and i3 (all in the
clockwise direction) inthe original circuitin Fig. 8.48. The 10-V voltage
source produces positive mesh current i1, so that itsdual isa10-A current
source directed from O to 1. Also, iz = —3 A inFig. 8.48 hasasits dua
vz = —3V inFig. 8.49(b).

PRACTICE PROBLEMENIE

For the circuit in Fig. 8.50, obtain the dua circuit.
Answer: SeeFig. 8.51.

50

0.2F 4H

2 (@
® 30 20V 2vﬁ‘:> 1o GPZOA

Figure 8.50  For Practice Prob. 8.15.

Figure 8.5  Dual of the circuiit in Fig. 8.50.
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i8.11  APPLICATIONS

Practical applications of RLC circuits are found in control and com-
munications circuits such as ringing circuits, peaking circuits, resonant
circuits, smoothing circuits, and filters. Most of the circuits cannot be
covered until wetreat ac sources. For now, wewill limit ourselvesto two
simple applications: automobile ignition and smoothing circuits.

8.11.1 Automobile Ignition System

In Section 7.9.4, we considered theautomobileignition system asacharg-
ing system. That wasonly apart of the system. Here, weconsider another
part—thevoltage generating system. Thesystemismodeled by thecircuit
shownin Fig. 8.52. The 12-V sourceis due to the battery and alternator.
The 4-Q resistor represents the resistance of the wiring. The ignition
coil is modeled by the 8-mH inductor. The 1-uF capacitor (known as
the condenser to automechanics) isin parallel with the switch (known as
the breaking points or electronic ignition). In the following example, we
determine how the RLC circuit in Fig. 8.52 is used in generating high
voltage.

4Q 1uF

Y4
AN .
+ Vo - ll
N
12V N2

W Sem I
T ]

Ignition coil

Spark plug

Figure 852 Automobile ignition circuit.

Assuming that the switch in Fig. 8.52 is closed prior tot = 0, find the
inductor voltage v, for ¢ > 0.

Solution:

If the switch is closed prior to + = 0~ and the circuit isin steady state,
then

12
i(O‘)=Z=3A, ve(07)=0
At = 0", the switch is opened. The continuity conditions require that
i(0M) = 3A, ve(@H) =0 (8.16.1)

Weobtaindi(0")/dt fromv; (07). ApplyingKVL tothemeshatr = 0"
yields
—12+44i(0") + v, (0") + v (0T) =0
—124+4x34+v,(0")+0=0 = v (0") =0

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



CHAPTER 8 Second-Order Circuits

Hence,
di(©) _ v (0) _
de L

Ast — oo, the system reaches steady state, so that the capacitor actslike
an open circuit. Then

0 (8.16.2)

i(c0) =0 (8.16.3)

If we apply KVL to the mesh for ¢t > 0, we obtain
di 1 ('

12=Ri+L—+—= | idt 0

1+ dr + C/(; 4 + vc(0)

Taking the derivative of each term yields
d?i L Rdi i
dt2  Ldt LC
We obtain the natural response by following the procedurein Section 8.3.
Substituting R =4 Q, L =8 mH, and C = 1 uF, we get
R 1
= — =250, =——_=1118x10*
o 5L wo «/ﬁ X

Since « < wy, the response is underdamped. The damped natural fre-

quency is
Wi =\ Wi — a? >~ wg = 1.118 x 10*

The natural response is

0 (8.16.4)

i,(t) = e “(Acoswyt + BSinwyt) (8.16.5)
where A and B are constants. The forced responseis
if(t) =i(c0) =0 (8.16.6)
so that the complete response is
i(t) = in(t) +is(t) = e ®%(Acos11,180f + Bsin11,180¢) (8.16.7)
We now determine A and B.
i(0)=3=A+0 = A=3
Taking the derivative of Eq. (8.16.7),

di .
d—; — _250e-2% (A cos 11,180 + B sin11,180r)

+ ¢201(—11,180A sin 11,180 + 11,1808 cos11,180r)
Setting + = 0 and incorporating Eq. (8.16.2),
0= —2504 + 11,180B = B = 0.0671
Thus
i(r) = e % (3cos11,180r + 0.0671sin11,180r)  (8.16.8)
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The voltage across the inductor is then

di .
() = Ld—; — —268¢ 2 §in11,180r (8.169)

This has a maximum value when sineis unity, that is, at 11,180f9 = /2
or to = 140.5 us. At time = 1, the inductor voltage reaches its peak,
whichis

vy (fg) = —268¢~ 200 = _250 (8.16.10)

Although this is far less than the voltage range of 6000 to 10,000 V
required to fire the spark plug in atypical automobile, a device known
as atransformer (to be discussed in Chapter 13) is used to step up the
inductor voltage to the required level.

PRACTICE PROBLEMEKNE

In Fig. 8.52, find the capacitor voltage v¢ for ¢ > 0.
Answer: 12 — 12¢=20 cos11,180¢ + 267.7¢2% sin11,180¢ V.

P() 0 [ grooing | o0

D/A -
circuit

Figure 8.53 A series of pulsesis applied to
the digital-to-analog (D/A) converter, whose
output is applied to the smoothing circuit.

8.11.2 Smoothing Circuits

In atypical digital communication system, the signal to be transmitted
isfirst sampled. Sampling refers to the procedure of selecting samples
of a signal for processing, as opposed to processing the entire signal.
Each sample is converted into a binary number represented by a series
of pulses. The pulses are transmitted by a transmission line such as a
coaxial cable, twisted pair, or optical fiber. At the receiving end, the
signal is applied to a digital-to-analog (D/A) converter whose output is
a“staircase” function, that is, constant at each time interval. In order to
recover the transmitted anal og signal, the output is smoothed by letting it
pass through a“smoothing” circuit, asillustrated in Fig. 8.53. An RLC
circuit may be used as the smoothing circuit.

mg.w

The output of aD/A converter is shown in Fig. 8.54(a). If the RLC cir-
cuitin Fig. 8.54(b) is used as the smoothing circuit, determine the output
voltage v, (¢).

Vs
10 -
. 10 1H 3
A11A
4 2 +
Vs 1F=—VY%
0 _
2} t(s)
0 0

@ (b)

Figure 854 For Example 8.17: (&) output of a D/A converter, (b) an RLC
smoothing circuit.
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Thisproblemisbest solved using PSpice. The schematicisshowninFig.
8.55(a). The pulsein Fig. 8.54(a) is specified using the piecewise linear
function. The attributes of V1 aresetasT1 =0, V1 = 0, T2 = 0.001,
V2 =4, T3 =1, V3 = 4, and so on. To be able to plot both input
and output voltages, we insert two voltage markers as shown. We select
Analysig/Setup/Transient to open up the Transient Analysis dialog box
and set Final Time as 6 s. Once the schematic is saved, we select Anal-
ysis/Simulate to run Probe and obtain the plots shown in Fig. 8.55(b).

T1=0
T2=0. 001
T3=1
T4=1. 001
T5=2
T6=2. 001
T7=3
T8=3. 001

Figure 8.55

V1=0
V2=4
V3=4
V4=10 £F
V5=10 @
V6=-2 |
V7=-2
V8=0

L1

1H

@

PRACTICE PROBLEMENN

Rework Example 8.17 if the output of the D/A converter is as shown in

Fig. 8.56.

Answer: SeeFig. 8.57.

o V(V1:+) o V(Cl:1)
Ti me

(b)

For Example 8.17: (a) schematic, (b) input and output voltages.

339

VS

8

I .

0 1 1 Il >
1 [23 |4

y _,_1 t(

-3+

Figure 8.56  For Practice

Prob. 8.17.

2.0s 4.0s 6.0s

O V(V1:+) o V(CL: 1)

Figure 8.57

Ti me

Result of Practice Prob. 8.17.
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8.12  SUMMARY

1.

The determination of the initial values x (0) and dx(0)/dt and fina
value x (0o) iscrucial to analyzing second-order circuits.

The RLC circuit is second-order because it is described by a
second-order differential equation. Its characteristic equation is

52 4 2as + w3 = 0, where « is the damping factor and wy isthe
undamped natural frequency. For aseriescircuit, « = R/2L, fora
parallel circuit = 1/2RC, and for both cases wp = 1/+/LC.

If there are no independent sources in the circuit after switching (or
sudden change), we regard the circuit as source-free. The complete
solution isthe natural response.

The natural response of an RLC circuit is overdamped, under-
damped, or critically damped, depending on the roots of the char-
acteristic equation. The responseis critically damped when the roots
areequal (s; = s2 OFr @ = wp), overdamped when the roots are real
and unegual (s1 # s2 Or @ > wy), or underdamped when the roots are
complex conjugate (s1 = s5 Or o < wo).

If independent sources are present in the circuit after switching, the
complete response is the sum of the natural response and the forced
or steady-state response.

PSpiceisused to analyze RLC circuitsin the sameway asfor RC or
RL circuits.

Two circuits are dual if the mesh eguations that describe one circuit
have the same form as the nodal equations that describe the other.
The analysis of one circuit gives the analysis of its dual circuit.

The automobile ignition circuit and the smoothing circuit are typical
applications of the material covered in this chapter.

REVIEW QUESTIONS

8.1

8.2

For the circuit in Fig. 8.58, the capacitor voltage at 8.3 When astep input is applied to a second-order

t = 0~ (just before the switch is closed) is:
@ ov (b 4V

2Q

12v

circuit, the final values of the circuit variables are

(¢ 8V (d) 12V found by:

4Q
—AWA—

>< t=0
v

= 2F

%m -

Figure 8.58  For Review Questions 8.1 and 8.2.

(a) Replacing capacitors with closed circuits and
inductors with open circuits.

(b) Replacing capacitors with open circuits and
inductors with closed circuits.

(c) Doing neither of the above.
84 If the roots of the characteristic equation of an RLC
circuit are —2 and —3, the responseiis:
(@ (Acos2t + Bsin2t)e ™
(b) (A+2Bt)e ¥
(c) Ae % + Bre™¥
(d) Ae™® 4+ Be™®
where A and B are constants.

For the circuit in Fig. 8.58, the initial inductor
current (atr = Q) is:

(@ 0A (b) 2A

85 Inaseries RLC circuit, setting R = 0 will produce:

(c0 6A (d) 12A (a) an overdamped response
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(b) acriticaly damped response 8.9 M atch the circuitsin Fig. 8.61 with the following
(c) an underdamped response items. o
(d) an undamped response (i) first-order circuit
(€) none of the above (ii) second-order series circuit
(iii) second-order parallel circuit
86  Apardlel RLC circuithas L = 2H and _ (iv) none of the above
C = 0.25F. Thevaue of R that will produce unity
damping factor is:

R L
@052 @M1 (22 (42 A
8.7 Refer to the series RLC circuit in Fig. 8.59. What | _ 1
kind of response will it produce? Vs cCTt ¢t R Is CT
(a) overdamped
(b) underdamped
(©) critically damped @ (0)
(d) none of the above R G
10 1H Ry R
is Vg L C =
G G
(© (d)
Ry Ry
Figure 8.59  For Review Question 8.7. R c l
1
8.8 Consider the parallel RLC circuit in Fig. 8.60. 's <> % cT L
What type of response will it produce? L R
(a) overdamped
(b) underdamped e )
(c) critically damped
(d) none of the above Figure 8.6]  For Review Question 8.9.
8.10 Inan é€lectric circuit, the dual of resistanceis:
(@) conductance (b) inductance
10 1H = 1F (c) capacitance (d) open circuit
(e) short circuit
) ) . Answers: 8.1a, 8.2c, 8.3b, 8.4d, 8.5d, 8.6¢c, 8.7b, 8.8b, 8.9 (i)-c,
Flgure 860 For Review Question 8.8. (i)-b.e, (iii)-a, (iv)-d.f, 8.10a.
PROBLEMS “X(t=0
Section 8.2 Finding Initial and Final Values 60 40
v @ l i
8.1  Forthecircuitin Fig. 8.62, find: - 04F \J/’
(8 i(0%) and v(0*), ’ ’I‘ _
(b) di(0%)/dr and dv(0")/dt,
(€) i(00) and v(o0). Figure 862 For Prob. 8.1.
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8.2

8.3

8.4

Au(-t) V

8.5

PART |

In the circuit of Fig. 8.63, determine:

(@ ir(0%),i,(0%), andic(0),

(b) dig(0")/dt, di  (01)/dt, and dic(0%)/dt,
() ir(00),iL(00), andic (o).

iR 25kQ 20kQ
MW A .
i i
}ie
60 kQ
80V C:) ~ 1uF §2mH
t=0
Figure 8.63  For Prob. 8.2.

Refer to the circuit shown in Fig. 8.64. Calculate:
(@ iL(0%), vc(0%), and vg(0),

(b) di (0%)/dt, dvc(01)/dt, and dvg(0)/dt,
(©) iL(00), vc(00), and vg(00).

400
. VZ l %F l I
VR2100Q Q) M)A T g IH
- 0V

Figure 8.64  For Prob. 8.3.

In the circuit of Fig. 8.65, find:
(@ v(0%) and i (0%),
(b) dv(0")/dr and di(0")/dt,
(¢) v(oo) andi(oo).

3Q 0.25H

0.1F ;:\z §59 (D 4ut) A

Figure 8.65  For Prob. 8.4.

Refer to the circuit in Fig. 8.66. Determine:
(8 i(0") and v(0"),

(b) di(0%)/dt and dv(0")/dt,

(c) i(c0) and v(c0).

DC Circuits

1H
l [
+
amA @ 4Q§ I 603w
Figure 8.66  For Prob. 8.5.
8.6 In the circuit of Fig. 8.67, find:
(@ vg(0%) and v, (01),
(b) dvg(0%)/dt and dv, (0")/dt,
(©) vg(oo0) and v (00).
R R
AN
+ VR - +
Vsu(t) C = Vi L
Figure 8.67  For Prob. 8.6.
Section 8.3 Source-Free Series RLC Circuit
8.7 Thevoltagein an RLC network is described by the
differential equation
d?v dv
— +4—+4 =0
dt? + dt A
subject to theinitial conditions v(0) = 1 and
dv(0)/dt = —1. Determine the characteristic
equation. Find v(z) forz > 0.
8.8 The branch current in an RLC circuit is described
by the differential equation
d?i di
— +6—+9 =0
dt? + dt 3
and theinitia conditionsarei(0) = 0,
di(0)/dt = 4. Obtain the characteristic equation
and determinei(¢) forr > O.
8.9 The current inan RLC circuit is described by
d?i di
— + 10— + 25 =
2 + Odt +25i =0
If i(0) = 10and di(0)/dt = 0, find i(¢) for ¢t > 0.
8.10 Thedifferential equation that describes the voltage
inan RLC network is
d%v dv
— +5— +4v=0
dt? + dt v
Given that v(0) = 0, dv(0)/dt = 10, obtain v(z).
811 Thenatura response of an RLC circuit is described

by the differential equation

d%v dv
— +2— =0
dt? + dt v
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8.14

8.15

8.16

8.17

CHAPTER 8

for which theinitial conditionsare v(0) = 10 and
dv(0)/dt = 0. Solvefor v(t).

If R =20, L =0.6H,what valueof C will make
an RLC seriescircuit:
(a) overdamped,

(¢) underdamped?

(b) critically damped,

For the circuit in Fig. 8.68, calculate the value of R
needed to have a critically damped response.

60 Q

L5 Lo
[ T

Figure 8.68
Findv() forr > 0if v(0) =6V andi(0) =2An
the circuit shown in Fig. 8.69.

For Prob. 8.13.

i)  002F
—
|
+
60Q 2 30Q 2H 3 v(h)
Figure 8.69  For Prob. 8.14.

The responses of aseries RLC circuit are
ve(t) = 30 — 1062 4 3071 Vv
i (1) = 40e=2" — 60e~1 mA

where vc and i, are the capacitor voltage and
inductor current, respectively. Determine the values
of R, L,and C.

Findi(¢) for t > 0inthecircuit of Fig. 8.70.

t=0
10Q 60 Q
ANV 1 '\/\/\/\/—4|} it
1mF
30V <t> 400 §
25H
Figure 8.70  For Prob. 8.16.

Obtain v(¢) for + > 0inthecircuit of Fig. 8.71.

*An asterisk indicates a challenging problem.

8.18

*8.19

24V

Section 8.4

8.20

821

Second-Order Circuits 43

1F
TI

7
t=0
4H

For Prob. 8.17.

I < +

10Q
AW

120V

Figure 8.71

The switch inthe circuit of Fig. 8.72 has been closed
for along timebut isopened at r = 0. Determine
i(r) forr > 0.

it IH 20

—_—

Figure 8.7 For Prob. 8.18.
Calculate v(r) for t > 0inthecircuit of Fig. 8.73.

150

6Q
%

Figure 8.73  For Prob. 8.19.
Source-Free Parallel RLC Circuit
For aparalel RLC circuit, the responses are
v () = 4e=% cos50f — 10e=2 sin50r V
ic(t) = —6.5¢72 cos50r mA

whereic and v, arethe capacitor current and
inductor voltage, respectively. Determine the values
of R, L,and C.

For the network in Fig. 8.74, what value of C is
needed to make the response underdamped with
unity damping factor (o = 1)?
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8.27  Solvethefollowing differential equations subject to
the specified initial conditions

10Q 05H C= 10mF == (@ d?v/d? + 4v = 12, v(0) = 0, dv(0)/dt = 2
(b) d?i/dt?* + 5di/dt + 4i = 8,i(0) = —1,
di(0)/dt =0
F|gure 874 For Prob. 8.21. (C) dzv/dtz + 2dv/dt +v= 3’ U(O) — 5,
dv(0)/dt = 1
822  Findv(?) fort > 0inthecircuit in Fig. 8.75. (d) d?i/di* + 2di/dt + 5i = 10,i(0) = 4,
di(0)/dt = =2
50 8.28  Consider thecircuit in Fig. 8.77. Find v, (0) and
l i Uc(o).
"
250(—t) LmF == v % 0.1H 00 100
+ +
2u(t) 05H v, 1F == Ve 50V

Figure 8.75  For Prob. 8.22. - -

823 InthecircuitinFig. 8.76, calculate i, () and v, (¢) Figure 877 For Prob. 8.28.
fort > 0.

8.29  ForthecircuitinFig. 8.78, find v(¢) for t > 0.

2Q 1H io(t)
t=0 + ZUﬁzA
30V 8Q § %F:: Vo(t) N\
- 1H 0.04F
2112 |
+ Vv -
Figure 8.76  For Prob. 8.23. 4Q 20
VAN
O
Section 8.5 Step Response of a SeriesRLC 50u(t) v
Circuit

824  Thestep response of an RLC circuit isgiven by F|gure 878 For Prob. 8.2

a4 _di .

dr2 + 25 +5i =10 830 Findv(r) fort > Ointhecircuitin Fig. 8.79.
Giventhati(0) = 2and di(0)/dt = 4, solvefori(t).

8.25 A branchvoltageinan RLC circuit is described by = 1H

" ) t 0471{ LH

dTZ + 4(7: +8v=24 .
If theinitial conditions are v(0) = 0 = dv(0)/dt, 3A G 100 VAR 5@ G aumA
find v().

8.26 Thecurrentinan RLC network is governed by the
differential equation

d%i di
4 3% 10—y
a T e

subject to i (0) = 1, di(0)/dt = —1. Solvefor i(t). 831 Calculatei(r) forr > Ointhecircuitin Fig. 8.80.

Figure 8.79  For Prob. 8.30.
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t Vv o= 8.35 Refertothecircuitin Fig. 8.84. Calculatei(r) for
H ) t > 0.
=F l '
16
20v @ IH oA
50 t=0
% ii(t) '
3 -
3H t=0
Figure 880  For Prob. 8.31. g " oo M
IF— A
8.32 Determinev(r) for + > 0inthecircuit in Fig. 8.81.
%Q
20
o) AWV m
t=0 .
+ Figure 8.84  For Prob. 8.35.
8V ' 12V Lp=v
1H 8.36 Determinev(r) for ¢+ > Ointhecircuitin Fig. 8.85.

Figure 881 For Prob. 8.32.

05F
833  Obtainv(r) andi(¢) for ¢ > Ointhecircuitin Fig. 30Q 0.25H
8.82.
+ V-
it eou(t) V 200 30u(H) v
O s :
.

3u(t) A 02F ==v(t
u(t) 5Q V(_) Figure 885 For Prob. 8.36.

20 20V

Figure 8.82  For Prob. 8.33. 8.37  Theswitchin thecircuit of Fig. 8.86 is moved from
positiona to b at t+ = 0. Determine i (¢) for ¢t > 0.

*8.34  For the network in Fig. 8.83, solvefor i (¢) forz > 0.

002F 140
6Q 6Q b l 12V
it
6Q ® 2H :/; g a 20
i) =
t=0 % H 6Q
AW
30V
10V :
Figure 883 For Prob. 8.34. Figure 8.86  For Prob. 8.37.
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*8.38  For the network in Fig. 8.87, find i (¢) for ¢ > 0.
5Q
—A—
200 ~ 1H
t=0 Y ¢ i
100V 50 § T 2F
Figure 8.87  For Prob. 8.38.
*8.39  Given the network in Fig. 8.88, find v(¢) for > 0.
2A
1H
AW
60Q +
4A 102 =0\ =F T v
Figure 8.88  For Prob. 8.39.
Section 8.6 Step Response of a Parallel RLC

Circuit

840 Inthecircuit of Fig. 8.89, find v(¢) and i (r) for
t > 0. Assumev(0) =0V andi(0) = 1A.

l [

— 05F ng

1<+
||

4u(t) A . 20 §

Figure 889 For Prob. 8.40.

841 Findi(r) fort > Ointhecircuitin Fig. 8.90.

it)»SmH

12u(t) V SuF 2kQ

Figure 890 For Prob. 8.41.

DC Circuits

8.42  Find the output voltage v, (¢) in the circuit of Fig.

8.91.
t=0"
AW
100 +
3A 59% 1H? 10mF == Y,
Figure 891 For Prob. 8.42.

843 Giventhecircuitin Fig. 8.92, find i (¢) and v(¢) for
t > 0.

wt)
ng

1Q

AWV
FSTS
m
f!

= Vv(t)
2Q -

>

I

6V

Figure 8.92  For Prob. 8.43.

844  Determinei(t) fort > 0inthecircuit of Fig. 8.93.

12v

For Prob. 8.44.

Figure 8.93

845  Forthecircuitin Fig. 8.94, find i (¢) fort > 0.

100
MWV

6u(t) A ‘ 10mF ==

¢ i(t)

3ov‘ §409 §4H

Figure 8.94  For Prob. 8.45.
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CHAPTER 8

846  Find v(r) for t > Ointhecircuitin Fig. 8.95.
t=0'
+

io R L v ~C

Figure 8.95  For Prob. 8.46.
Section 8.7 General Second-Order Circuits
8.47  Derivethe second-order differential equation for v,

in the circuit of Fig. 8.96.

G Ry
€ A
+

Vs Ry C T Y%

Figure 8.96  For Prob. 8.47.
8.48  Obtain the differential equation for v, in the circuit

inFig. 8.97.

R, L
+

Vs Ry CH Y%

Figure 8.97  For Prob. 8.48.
849  Forthecircuitin Fig. 8.98, find v(¢) for ¢ > 0.

Assumethat v(0t) =4V andi(0") = 2 A.

0.1F A

Figure 8.98  For Prob. 8.49.

Second-Order Circuits

8.50

8.51

8.52

8.53
8.54

347

In the circuit of Fig. 8.99, find i (¢) for ¢ > 0.

20V

Figure 8.99

For Prob. 8.50.

If the switch in Fig. 8.100 has been closed for along
time beforer = 0 but isopened at ¢+ = 0, determine:

(a) the characteristic equation of the circuit,
(b) i, and vg fort > 0.

t=0
-5
[T
Vg S 80
v @ 120 -
. 1H
%F T
Figure 8.100  For Prob. 8.51.

Obtain i; and i, for + > 0inthecircuit of Fig. 8.101.

4u(t) A Q 20 §

Figure 8.101  For Prob. 8.52.

For the circuit in Prob. 8.5, find i and v for ¢ > O.

Find the response vy (¢) for r > Ointhecircuitin
Fig.8.102. L&t R=3Q,L =2H,andC = 1/18F.

10u(t) V

Figure 8.102  For Prob. 8.54.
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Section 8.8 Second-Order Op Amp Circuits c,
855  Derivethedifferential equation relating v, to v, in @ €

the op amp circuit of Fig. 8.103. R,

Vg 0— A M,
R,
AV
G,
}_
C R,
Yo o—jt— Lo v,
Figure 8.103  For Prob. 8.55. Figure 8.106  For Prob. 8.58.

856  Obtain the differential equation for v, (¢) inthe
network of Fig. 8.104. *8.59  Intheop amp circuit of Fig. 8.107, determine v, ()

fortr > 0. Let vin = u(t) V, Ry = R, = 10k,
@ C1:C2:lOO/,LF

G
I
A X
R, & ]
A o—/\/\N\,—H—le Loy, R,
= R, G
Vin o—AWVM——

Figure 8.104  For Prob. 8.56.

857  Determinethe differential equation for the op amp .
circuit in Fig. 8.105. If v,(0%) = 2V and Figure 8107 For Prob. 8.59.
v2(0M) =0V, findv, forr > 0. Let R = 100 k2
andC =1 uF
Section 8.9 PSpice Analysis of RLC Circuit
R 8.60  For the step function v, = u(r), use PSpiceto find
AW theresponse v(¢) for 0 < t < 6 sinthecircuit of
C c Fig. 8.108.
- —
+ Vl - H
+ Vo —
R 2Q 1H
:l> s A ——TT
+
+
Vo Vg 1F == v(t)
°

-

Figure 8.105  For Prob. 857. Figure 8.108  For Prob. 8.60.

858  Giventhat v, = 2u(r) V inthe op amp circuit of Fig. 8.61  Given the source-freecircuit in Fig. 8.109, use
8.106, find v, (r) fort > 0. Let Ry = R, = 10k€2, PSpicetogeti(r) for0 <t < 20s. Take
R3 =20k, Ry = 40k, C; = C, = 100 uF. v(0) =30V andi(0) = 2A.
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: 8.66  Findthedual of thecircuitin Fig. 8.113.

1Q§ 10H§ 25F == v
1OQ§ %209 §3OQ

. 60V 120V
Figure 8.109  For Prob. 8.61. : :

862 Obtanv(r) for 0 < < 4sin thedircuit of Fig, e T @2
8.110 using PSpice.

Figure 8.113  For Prob. 8.66.
04F 1H 6Q 8

+ 8.67  Draw thedual of thecircuitin Fig. 8.114.
13u(t) A 60Q V() 220Q 39u(t) V

5A

Figure 8.110 For Prob. 8.62.

2Q 3Q
8.63  Rework Prob. 8.23 using PSpice. Plot v, (¢) for 1F % 0.25H 10
O<t<4s 12V

Section 8.10 Duality
8.64  Draw the dual of the network in Fig. 8.111.

Figure 8.114  For Prob. 8.67.

200 Section 8.11 Applications
v 8.68  An automobile airbag igniter is modeled by the
circuit in Fig. 8.115. Determine the time it takes the
4A Q) S5mH 10mH == 2uF voltage across the igniter to reach its first peak after
switchingfromAtoB. Lee R =3Q,C =1/30F,
and L = 60 mH.
Figure 8.1 For Prob. 8.64.
A B
O
t=0
8.65  Obtainthe dual of thecircuit in Fig. 8.112. ﬁ [ ; /Airbag igniter

12v

12v 10Q Figure 8115 For Prob. 8.68.
05F
© 22v
8.69 A passiveinterfaceisto be designed to connect an
4Q 2H electric motor to an ideal voltage source. If the
motor is modeled as a 40-mH inductor in parallel
with a 16-Q2 resistor, design the interface circuit so

that the overall circuit is critically damped at the
Figure 8.112  For Prob. 8.65. natural frequency of 60 Hz.
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COMPREHENSIVE PROBLEMS

8.70

871

8.72

A mechanical system ismodeled by aseries RLC
circuit. It isdesired to produce an overdamped
response with time constants 0.1 msand 0.5 ms. If a
series 50-k<2 resistor is used, find the values of L
and C.

An oscillogram can be adequately modeled by a
second-order system in the form of aparallel RLC
circuit. It isdesired to give an underdamped voltage
across a 200-Q2 resistor. If the damping frequency is
4 kHz and the time constant of the envelopeis

0.25 s, find the necessary values of L and C.

Thecircuit in Fig. 8.116 is the electrical analog of
body functions used in medical schools to study
convulsions. The analog is as follows:

C1 = Volume of fluid in adrug

C, = Volume of blood stream in a specified
region

R; = Resistance in the passage of the drug from
the input to the blood stream

R, = Resistance of the excretion mechanism,
such as kidney, etc.

vo = Initial concentration of the drug dosage
v(t) = Percentage of the drug in the blood stream

Find v(¢r) for t > O giventhat C; = 0.5 uF,
Cyo, = 5,bLF, R =5MQ, R, =25MQ, and
vo = 60u(r) V.

8.73

ox R
+ ' +
Vo = C; R, C, 4~ V(1)
Figure 8.116  For Prob. 8.72.

Figure 8.117 shows atypical tunnel-diode oscillator
circuit. The diode is modeled as a nonlinear resistor
withip = f(vp), i.e, thediode currentisa
nonlinear function of the voltage across the diode.
Derive the differential equation for the circuit in
termsof v and ij.

b

Figure 8.117  For Prob. 8.73.

Go to the Student OLC
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