CHAPTER

BASIC LAWS

Thechesshoardistheworld, the piecesarethe phenomena of the universe,
the rules of the game are what we call the laws of Nature. The player
on the other side is hidden from us, we know that his play is always fair,
just, and patient. But also we know, to our cost, that he never overlooks
a mistake, or makes the smallest allowance for ignorance.

— Thomas Henry Huxley

Historical Profiles

Georg Simon Ohm (1787-1854), a German physicist, in 1826 experimentally deter
mined the most basic law relating voltage and current for a resistor. Ohm’s work w;
initially denied by critics.

Born of humble beginnings in Erlangen, Bavaria, Ohm threw himself intg
electrical research. His efforts resulted in his famous law. He was awarded the Cop
Medal in 1841 by the Royal Society of London. In 1849, he was given the Profess
of Physics chair by the University of Munich. To honor him, the unit of resistance wa
named the ohm.

4

AMA—

Gustav Robert Kirchhoff (1824-1887), a German physicist, stated two basic laws
in 1847 concerning the relationship between the currents and voltages in an electri
network. Kirchhoff’s laws, along with Ohm’s law, form the basis of circuit theory.

Born the son of a lawyer in Konigsberg, East Prussia, Kirchhoff entere
the University of Konigsberg at age 18 and later became a lecturer in Berlin. H
collaborative work in spectroscopy with German chemist Robert Bunsen led to tf
discovery of cesium in 1860 and rubidium in 1861. Kirchhoff was also credited wit
the Kirchhoff law of radiation. Thus Kirchhoff is famous among engineers, chemist:
and physicists.

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents

7



28 PART | DC Circuits

2.1 INTRODUCTION

Chapter 1 introduced basic concepts such as current, voltage, and power
in an electric circuit. To actually determine the values of these variables
in a given circuit requires that we understand some fundamental laws that
govern electric circuits. These laws, known as Ohm'’s law and Kirchhoff’s
laws, form the foundation upon which electric circuit analysis is built.

In this chapter, in addition to these laws, we shall discuss some
techniques commonly applied in circuit design and analysis. These tech-
nigues include combining resistors in series or parallel, voltage division,
current division, and delta-to-wye and wye-to-delta transformations. The
application of these laws and techniques will be restricted to resistive cir-
cuits in this chapter. We will finally apply the laws and techniques to
real-life problems of electrical lighting and the design of dc meters.

)\ 1.2 OHM'S LAW
\ ~ Materials in general have a characteristic behavior of resisting the flow

o]
l' of electric charge. This physical property, or ability to resist current, is
known agresistance and is represented by the symlial The resistance
of any material with a uniform cross-sectional aredepends om and
v R . . . .
% its length¢, as shown in Fig. 2.1(a). In mathematical form,

Material with ¢

i resistivity p R = 0— (21)

Cross-sectional A

acah wherep is known as theesistivity of the material in ohm-meters. Good

conductors, such as copper and aluminum, have low resistivities, while

Figure 2.1 () Resistor, (b) Circuit symbol insulators, such as mica and paper, have high resistivities. Table 2.1
for resistance. presents the values @f for some common materials and shows which

materials are used for conductors, insulators, and semiconductors.

@ (b)

TABLE2|  Resigtivities of common materials.

Material Resigtivity (£2-m) Usage
Silver 1.64 x 1078 Conductor
Copper 1.72 x 1078 Conductor
Aluminum 2.8x 1078 Conductor
Gold 2.45 x 10°8 Conductor
Carbon 4% 1075 Semiconductor
Germanium 47 x 1072 Semiconductor
Silicon 6.4 x 10? Semiconductor
Paper 1010 Insulator

Mica 5 x 101 Insul ator
Glass 1012 Insulator
Teflon 3 x 10%? Insul ator

Thecircuit element used to model the current-resi sting behavior of
amaterial istheresistor. For thepurposeof constructing circuits, resistors
areusually madefrom metallic alloysand carbon compounds. Thecircuit
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CHAPTER 2 Basic Laws

symbol for the resistor is shown in Fig. 2.1(b), where R stands for the
resistance of the resistor. The resistor is the simplest passive element.

Georg Simon Ohm (1787-1854), a German physicist, is credited
with finding the relationship between current and voltage for a resistor.
Thisrelationship is known as Ohm's law.

Ohm's law states that the voltage v across a resistor is directly proportional
to the current i flowing through the resistor.

Thatis,
v i (2.2)

Ohm defined the constant of proportionality for aresistor to betheresis-
tance, R. (Theresistance is amateria property which can change if the
internal or external conditions of the element are altered, e.g., if thereare
changes in the temperature.) Thus, Eq. (2.2) becomes

v=1iR (2.3

whichisthe mathematical form of Ohm’slaw. R in Eq. (2.3) ismeasured
in the unit of ohms, designated 2. Thus,

The resistance R of an element denotes its ability to resist the flow
of electric current; it is measured in ohms ().
We may deduce from Eg. (2.3) that
+ |
rR="1 2.4) '
l
v=0|R=0
so that
1Q=1VI/A -

To apply Ohm's law as stated in Eq. (2.3), we must pay careful
attention to the current direction and voltage polarity. The direction of @
current i and the polarity of voltage v must conform with the passive sign
convention, asshownin Fig. 2.1(b). Thisimpliesthat current flows from

a higher potentia to a lower potential in order for v = iR. If current + li:O
flows from alower potential to a higher potential, v = —i R.

Sincethevalue of R can range from zero to infinity, it isimportant V R=o
that we consider the two extreme possible values of R. An element with
R = Oiscalledashort circuit, asshownin Fig. 2.2(a). For ashort circuit, -
v=iR=0 (25
. . ) (b)
showing that the voltage is zero but the current could be anything. In
practice, a short circuit is usually a connecting wire assumed to be a Figure 22 (a) Short dirauiit (R = 0),
perfect conductor. Thus, (b) Opencircuit (R = c0).
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(b)

Figure 2.3 Fixed resistors: (a) wire-
wound type, (b) carbon film type.
(Courtesy of Tech America.)

@ (b)

Figure 24 Circuit symbol for: (a) a variable
resistor in general, (b) a potentiometer.

Figure 2.6 Resistors in a thick-film circuit.
(Source: G. Daryanani, Principles of Active
Network Synthesis and Design [New York:
John Wiley, 1976], p. 461c.)

PART | DC Circuits

{ A short circuit is a circuit element with resistance approaching zero.

Similarly, an element with R = oo isknown as an open circuit, as shown
in Fig. 2.2(b). For an open circuit,

i = lim Yo 0 (2.6)
R—x R

indicating that the current is zero though the voltage could be anything.
Thus,

{ An open circuit is a circuit element with resistance approaching infinity.

A resistor is either fixed or variable. Most resistors are of the fixed
type, meaning their resistance remains constant. The two common types
of fixed resistors (wirewound and composition) are shown in Fig. 2.3.
The composition resistors are used when large resistance is needed. The
circuit symbol in Fig. 2.1(b) is for a fixed resistor. Variable resistors
have adjustable resistance. The symbol for a variable resistor is shown
in Fig. 2.4(a). A common variable resistor is known as a potentiometer
or pot for short, with the symbol shown in Fig. 2.4(b). The pot is a
three-terminal element with a sliding contact or wiper. By dliding the
wiper, the resistances between the wiper terminal and the fixed terminals
vary. Likefixed resistors, variableresistors can either be of wirewound or
composition type, as shown in Fig. 2.5. Although resistors like those in
Figs. 2.3and 2.5areused incircuit designs, today most circuit components
including resistors are either surface mounted or integrated, as typically
shownin Fig. 2.6.

@ (b)

Figure 15 Variable resistors: (a) composition type, (b) dlider pot.
(Courtesy of Tech America.)

It should be pointed out that not all resistors obey Ohm's law. A
resistor that obeys Ohm’s law is known as alinear resistor. It hasacon-
stant resistance and thusits current-voltage characteristicis asillustrated
in Fig. 2.7(8): its i-v graph is a straight line passing through the ori-
gin. A nonlinear resistor does not obey Ohm’s law. Its resistance varies
with current and its i-v characteristic is typically shown in Fig. 2.7(b).
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CHAPTER 2 Basic Laws

Examples of devices with nonlinear resistance are the lightbulb and the v
diode. Although al practical resistors may exhibit nonlinear behavior
under certain conditions, we will assume in this book that all elements
actually designated asresistors are linear.

A useful quantity in circuit analysisisthe reciprocal of resistance Slope=R
R, known as conductance and denoted by G:

1 i
= - = (€Y
G R v @7)

The conductance isameasure of how well an element will conduct
electric current. The unit of conductance is the mho (ohm spelled back-
ward) or reciprocal ohm, with symbol &, the inverted omega. Although
engineers often use the mhos, in this book we prefer to use the siemens

(S), the SI unit of conductance: Slope=R
PR i
1S=18=1A/V 28) (b)
Thus, ,
Flgure 27 Thei-v characteristic of:
(a) alinear resistor,
. . . . ‘ (b) anonlinear resistor.
Conductance is the ability of an element to conduct electric current; it is
measured in mhos (8) or siemens (S).

The same resistance can be expressed in ohms or siemens. For
example, 10 Q isthesame as 0.1 S. From Eq. (2.7), we may write

i=Gv (2.9

The power dissipated by aresistor can be expressed in terms of R.
Using Egs. (1.7) and (2.3),

=vi =i’R=— 2.10
p=v=1 R (2.10)
The power dissipated by a resistor may also be expressed in terms of G
as
2
—vi=1G == (2.11)
P G

We should note two things from Egs. (2.10) and (2.11):

1. The power dissipated in aresistor isanonlinear function of
either current or voltage.

2. Since R and G are positive quantities, the power dissipated in
aresistor is aways positive. Thus, aresistor always absorbs
power from the circuit. This confirmsthe ideathat aresistor is
apassive element, incapable of generating energy.

£ X AP LENE

|
An electriciron draws 2 A at 120 V. Find its resistance.
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PRACTICE PROBLEMNEE

PART | DC Circuits

Solution:
From Ohm’s law,

= 600

The essential component of a toaster is an electrical element (aresistor)
that convertselectrical energy to heat energy. How much current isdrawn
by atoaster with resistance 12 Q2 at 110V ?

Answer: 9.167 A.

£ XA H P L E I

v @

‘ i

+

5kQ§V

Figure 28 For Example 2.2,

In the circuit shown in Fig. 2.8, calculate the current i, the conductance
G, and the power p.

Solution:

The voltage across the resistor is the same as the source voltage (30 V)
because the resistor and the voltage source are connected to the same pair
of terminals. Hence, the current is

v 30
I= R 5x1e oM
The conductanceis
1 1
G=—=——=02mS
R 5x10° m

We can calcul ate the power in variouswaysusing either Egs. (1.7), (2.10),
or (2.11).

p = vi =30(6 x 10°%) = 180 mW
or
p =i’R = (6 x 107325 x 10° = 180 mW
or

p = v2G = (30)20.2 x 10~2 = 180 mW

PRACTICE PROBLEMNEN

Figure 2.9

For Practice Prob. 2.2

For the circuit shown in Fig. 2.9, calculate the voltage v, the conductance
G, and the power p.

Answer: 20V, 100 uS, 40 mW.
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£ X AP LE NI

A voltage source of 20sinz¢ V isconnected across a’5-k<2 resistor. Find
the current through the resistor and the power dissipated.

Solution:
. v 20sinxt
| = — =

R = W=4Sinnt mA

Hence,

p = vi =80sinzr mW

PRACTICE PROBLEMNEE

A resistor absorbs an instantaneous power of 20cos?r mW when con-
nected to a voltage source v = 10cost V. Findi and R.

Answer: 2cost mA, 5ke.

1.3 NODES, BRANCHES, AND LOOPS

Since the elements of an electric circuit can be interconnected in several
ways, weneed to understand somebasi ¢ conceptsof network topology. To
differentiate between acircuit and anetwork, we may regard anetwork as
an interconnection of elements or devices, whereas acircuit is a network
providing one or more closed paths. The convention, when addressing
network topology, is to use the word network rather than circuit. We
do this even though the words network and circuit mean the same thing
when used in this context. In network topology, we study the properties
relating to the placement of elements in the network and the geometric
configuration of the network. Such elements include branches, nodes,
and loops.

{ A branch represents a single element such as a voltage source or a resistor.

In other words, abranch represents any two-terminal element. Thecircuit
in Fig. 2.10 has five branches, namely, the 10-V voltage source, the 2-A
current source, and the three resistors.

{ A node is the point of connection between two or more branches. J

A node is usually indicated by a dot in a circuit. If a short circuit (a
connecting wire) connects two nodes, the two nodes constitute a single
node. The circuit in Fig. 2.10 has three nodes a, b, and ¢. Notice that
the three points that form node b are connected by perfectly conducting
wires and therefore constitute asingle point. The sameistrue of the four
points forming node ¢. We demonstrate that the circuit in Fig. 2.10 has
only three nodes by redrawing thecircuit in Fig. 2.11. Thetwo circuitsin

wv@ 20330 @ 2

c

Figure 2.10

Nodes, branches, and loops.

2A

v
c

Figure 2.1 Thethree-nodecircuit of Fig. 2.10

isredrawn.
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Figs. 2.10 and 2.11 are identical. However, for the sake of clarity, nodes
b and ¢ are spread out with perfect conductors asin Fig. 2.10.

B |
t A loop is any closed path in a circuit.

A loop is a closed path formed by starting at a node, passing through a
set of nodes, and returning to the starting node without passing through
any node morethan once. A loop issaid to beindependent if it containsa
branch which is not in any other loop. Independent loops or paths result
in independent sets of equations.

For example, the closed path abca containing the 2-Q2 resistor in
Fig. 2.11 isaloop. Another loop is the closed path bcb containing the
3-Q resistor and the current source. Although one can identify six loops
in Fig. 2.11, only three of them are independent.

A network with b branches, n nodes, and I independent loops will
satisfy the fundamental theorem of network topology:

b=Il+n-1 (212

Asthe next two definitions show, circuit topology is of great value
to the study of voltages and currentsin an electric circuit.

Two or more elements are in series if they are cascaded or connected sequentially
and consequently carry the same current.
Two or more elements are in parallel if they are connected to the same two nodes
and consequently have the same voltage across them.

Elements are in series when they are chain-connected or connected se-
quentialy, end to end. For example, two elements are in series if they
share one common node and no other element is connected to that com-
mon node. Elementsin parallel are connected to the same pair of termi-
nals. Elements may be connected in away that they are neither in series
nor in parallel. In the circuit shown in Fig. 2.10, the voltage source and
the 5-Q resistor are in series because the same current will flow through
them. The 2-Q resistor, the 3-Q resistor, and the current source are in
parallel because they are connected to the same two nodes (b and c)
and consequently have the same voltage across them. The 5-Q and 2-Q
resistors are neither in series nor in parallel with each other.

Determine the number of branches and nodesin the circuit shownin Fig.
2.12. Identify which elements are in series and which are in parallel.

Solution:

Since there are four elementsin the circuit, the circuit has four branches;
10V,5Q, 6 Q, and 2 A. The circuit has three nodes as identified in
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Fig. 2.13. The 5-Q resistor is in series with the 10-V voltage source
because the same current would flow in both. The 6-Q resistor isin
parallel with the 2-A current source because both are connected to the
same nodes 2 and 3.

50 1 5Q 2

10V 6Q 2A ov (& 60 1) 2A

C |
3

Figure .12 For Example 2.4.

Figure 2.13  The three nodes in the circuit
of Fig. 2.12.

PRACTICE PROBLEMNEE

How many branchesand nodesdoesthecircuitin Fig. 2.14 have? Identify
the elements that arein seriesand in parallel.

Answer: Five branches and three nodes areidentified in Fig. 2.15. The
1-Q and 2-Q2 resistors are in parallel. The 4-Q resistor and 10-V source
areasoin paralel.

5Q 1 3Q 2
T AWV T
1Q 2Q 10V £4Q 10 2Q élov 40
CI 1 I)
3

Figure 2.14  For Practice Prob. 2.4.
Figure .15 Answer for Practice Prob. 2.4.

24 KIRCHHOFF'S LAWS

Ohm's law by itself is not sufficient to analyze circuits. However, when
it is coupled with Kirchhoff’s two laws, we have a sufficient, powerful
set of tools for analyzing a large variety of electric circuits. Kirchhoff’'s
lawswerefirst introduced in 1847 by the German physicist Gustav Robert
Kirchhoff (1824-1887). These laws are formally known as Kirchhoff’s
current law (KCL) and Kirchhoff’s voltage law (KVL).

Kirchhoff'sfirst law is based on the law of conservation of charge,
which requires that the algebraic sum of charges within a system cannot
change.
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Figure2.16  Currents at
anode illustrating KCL.

o Closed boundary

Figure .17 Applying KCL to aclosed

boundary.

Two sources (or circuits in general) are said to be
equivalent if they have the same i-v relationship
at a pair of terminals.

PART | DC Circuits

Kirchhoff's current law (KCL) states that the algebraic sum of currents entering
anode (or a closed boundary) is zero.

Mathematically, KCL implies that

Y in=0 (213)

where N is the number of branches connected to the node and i, is the
nth current entering (or leaving) the node. By thislaw, currents entering
anode may be regarded as positive, while currents leaving the node may
be taken as negative or vice versa.

To prove KCL, assume a set of currents i, (7)), k = 1,2, ..., flow
into anode. The algebraic sum of currents at the nodeis
iT(t) =i1(t) +ix(t) +iz(t) +--- (214
Integrating both sides of Eq. (2.14) gives
qr (1) = qa(t) + q2(1) + g3(t) + - - - (215

where g, (1) = [ix(t) dr and g7 (t) = [ iz (1) dt. But thelaw of conser-
vation of electric chargerequiresthat the algebraic sum of electric charges
at the node must not change; that is, the node stores no net charge. Thus
qr(t) = 0— ip(t) = 0, confirming the validity of KCL.

Consider the node in Fig. 2.16. Applying KCL gives

i1+ (—i2) +iz+is+ (—is) =0 (2.16)

since currents iy, i3, and i4 are entering the node, while currents i, and
is areleaving it. By rearranging the terms, we get

i1+i3+ig=1ir+is (2.17)
Equation (2.17) is an aternative form of KCL:
[ , , |
The sum of the currents entering a node is equal to the sum
of the currents leaving the node.
|

Note that KCL also applies to a closed boundary. This may be
regarded as a generalized case, because a node may be regarded as a
closed surface shrunk to a point. In two dimensions, a closed boundary
is the same as a closed path. As typicaly illustrated in the circuit of
Fig. 2.17, thetotal current entering the closed surface is equal to the total
current leaving the surface.

A simple application of KCL is combining current sources in par-
alel. The combined current is the algebraic sum of the current supplied
by theindividual sources. For example, the current sources shownin Fig.
2.18(a) can be combined asin Fig. 2.18(b). The combined or equivalent
current source can be found by applying KCL to node a.

Ir+hL=hL+1I3
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or

Ir=L—-L+13 (2.18) ao

A circuit cannot contain two different currents, 7; and I, in series, unless
I, = I; otherwise KCL will be violated.

Kirchhoff’s second law is based on the principle of conservationof b o
energy: @

J> Kirchhoff’s voltage law (KVL) states that the algebraic sum of all voltages a
around a closed path (or loop) is zero.

Lc | Is=l1—lx+13

Expressed mathematically, KVL states that (b)

W Figure .18 Current sources in paralle!:
Z vy =0 2.19) (a) origina circuit, (b) equivalent circuit.

where M isthe number of voltagesin theloop (or the number of branches
in the loop) and v,, isthe mth voltage.

To illustrate KVL, consider the circuit in Fig. 2.19. The sign on
each voltage is the polarity of the terminal encountered first as we travel
around the loop. We can start with any branch and go around the loop
either clockwise or counterclockwise. Suppose we start with the voltage KVL can beappliedin twoways: by taking either a
source and go clockwise around the loop as shown; then voltages would clockwise or a counterclockwise trip around the
be —vy, +vy, +v3, —v4, and +us, inthat order. For example, aswereach loop. Either way, the algebraic sum of voltages
branch 3, the positive terminal ismet first; hencewehave +vs. For branch around the loop is zero.
4, we reach the negative terminal first; hence, —v4. Thus, KVL yields

—vi+vot+uvz—v4+v5=0 (2.20)

Vo _ V3 _

+ +

Rearranging terms gives

V2 + V3 + Vs = V1 + V4 221) w@® q @ v
| |

which may be interpreted as

- Vg +
Sum of voltage drops = Sum of voltage rises (2.22)

Figure .19 A single-loop circuiit
Thisis an alternative form of KVL. Notice that if we had traveled coun- illustrating KVL.
terclockwise, the result would have been +vq, —vs, +vs4, —v3, and —uv,,
which is the same as before except that the signs are reversed. Hence,
Egs. (2.20) and (2.21) remain the same.
When voltage sources are connected in series, KV L can be applied
to obtain the total voltage. The combined voltage is the algebraic sum
of the voltages of the individual sources. For example, for the voltage
sources shown in Fig. 2.20(a), the combined or equivalent voltage source
in Fig. 2.20(b) is obtained by applying KVL.

—Vap+Vi+Vo—V3=0
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or
Vib=Vi+Vo— V3 (2.23)

To avoid violating KVL, a circuit cannot contain two different voltages
Vi and Vs in parallel unless V; = V.

@ (b)

Figure 220 Voltage sourcesin series:
(a) original circuit, (b) equivalent circuit.

For the circuit in Fig. 2.21(a), find voltages v, and v,.

2Q 2Q
AW

oy -

+y -
20v @ v, <30 20v @ ﬁ) v, 230

+ +

@ (b)

Figure 221 For Example 2.5.

Solution:

To find v; and vy, we apply Ohm’s law and Kirchhoff’s voltage law.
Assume that current i flows through the loop as shown in Fig. 2.21(b).
From Ohm’s law,

vy = 2, vy = —3i (25.1)
Applying KVL around the loop gives
—20+ v, —vp,=0 (25.2)
Substituting Eg. (2.5.1) into Eq. (2.5.2), we obtain
—-20+2i4+3i=0 or 5i =20 = i=4A
Substituting i in Eq. (2.5.1) finally gives
v1 =8V, v, =-12V
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Find v, and v, in the circuit of Fig. 2.22.
Answer: 12V, —-6V.

4Q
oV 8V

2Q

Figure 222 For Practice Prob. 2.5

e L B

Determine v, and i in the circuit shown in Fig. 2.23(a).

' 40 2, 40 2V,
A

12v @ awv @ 12v @ Q w @

6Q
MW AW
+ Vo T + Vo T
@ (b)

Figure .23 For Example 2.6.

Solution:
We apply KVL around the loop as shown in Fig. 2.23(b). Theresultis

—124+4i+2v,—4+6i =0 (2.6.1)
Applying Ohm'’s law to the 6-$2 resistor gives
v, = —6i (2.6.2)
Substituting Eqg. (2.6.2) into Eq. (2.6.1) yields
—16+10i —12i =0 - i=-8A
and v, =48 V.

PRACTICE PROBLEMNE

Find v, and v, in the circuit of Fig. 2.24.
Answer: 10V, -5V.

1OQ
+ v~
X

Figure .24 For Practice Prob. 2.6.
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a Find current i, and voltage v, in the circuit shownin Fig. 2.25.
l io Solution:
+ . .
05, <8 v % 40 G 3A Applying KCL to node a, we obtain
- 3+ 0.5, =1, = i,=6A

For the 4-Q2 resistor, Ohm'’s law gives

Figure 2.25  For Example 2.7. v, =4i, =24V
PRACTICE PROBLEMNBES
*i Find v, and i,, in the circuit of Fig. 2.26.
° A . 8V, 4A.
sa@ 20 If{ 80 =% nawer

Figure 2.26  For Practice Prob. 2.7.

Find the currents and voltages in the circuit shown in Fig. 2.27(a).

80 L a3 80 L.l
+Vl— #iz +Vl_ *iz

+ + + +
30V ’:) V2§3Q V3§6§2 30V ’:) Loop 1 V2§3Q @ v3§69

€) (b)
Figure 227 For Example 2.8.

Solution:
We apply Ohm'’s law and Kirchhoff’s laws. By Ohm'’s law,

v1 = 8iy, vy = 3ip, v3 = Bi3 (2.8.1)

Since the voltage and current of each resistor are related by Ohm’s
law as shown, we are redly looking for three things. (v, vo, v3) OF
(i1, i2, i3). At node a, KCL gives

i1—ip—iz=0 (28.2)
Applying KVL toloop 1 asin Fig. 2.27(b),
—-30+4+v1+v2=0
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We express thisin terms of i; and i asin Eq. (2.8.1) to obtain
—30+8i1+3i,=0
or
30-3i
i1 = % (283)
Applying KVL to loop 2,
—vy+v3=0 — V3 = U2 (2.8.4)
as expected since the two resistors are in parallel. We express v1 and vy
interms of i1 and i, asin Eq. (2.8.1). Equation (2.8.4) becomes
. . . i2
6i3 = 3iy - i3 = 5 (2.8.5)
Substituting Egs. (2.8.3) and (2.8.5) into (2.8.2) gives
30-3i, . i
== =0
8 277
or i = 2 A. From the value of i», we now use Egs. (2.8.1) to (2.8.5) to
obtain
i1=3A, iz=1A, v =24V, 1,=6V, 13=6V ’@
PRACTICE PROBLEMIPINE Network Analysis
Find the currents and voltages in the circuit shown in Fig. 2.28. 20 1 i3 40
Answer: v =3V,u,=2V,v3=5V,iy=15A,ip = 0.25A, MM~
is =1.25A. ER
5V vy % 8Q 3V

Figure 228 For Practice Prob. 2.8.

2.5 SERIES RESISTORS AND VOLTAGE DIVISION

The need to combineresistorsin seriesor in parallel occurs so frequently
that it warrants special attention. The process of combining the resistors
is facilitated by combining two of them at a time. With this in mind,
consider the single-loop circuit of Fig. 2.29. The two resistors are in
series, since the same current i flows in both of them. Applying Ohm’s
law to each of the resistors, we obtain

v1 = iRy, vo = iR (2.24)

If weapply KVL totheloop (moving in the clockwise direction), we have

—v+v1+v2=0 (2.25)

Figure 229 A single-loop circuit
with two resistors in series.
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Combining Egs. (2.24) and (2.25), we get

v=v1+v2=i(R1+ Rp) (2.26)
i or
Lk :
| = 2.2

TvoT l Ri+ R (2D

v Notice that Eq. (2.26) can be written as
v =1iRg (2.28)
b implying that the two resistors can be replaced by an equivalent resistor

. Req; that is,
Flgure 2.30 Equivalent circuit <

of the Fig. 2.29 circuit. Rg=R1+ R (2.29)

Thus, Fig. 2.29 can bereplaced by the equivalent circuit in Fig. 2.30. The
two circuitsin Figs. 2.29 and 2.30 are equivalent because they exhibit the
same voltage-current relationships at the terminals a-b. An equivalent
circuit such as the one in Fig. 2.30 is useful in simplifying the analysis
of acircuit. In genera,

The equivalent resistance of any number of resistors connected in series
is the sum of the individual resistances.

——— - , For N resistorsin series then,
Resistors in series behave as a single resistor

whose resistance is equal to the sum of the re-
sistances of the individual resistors.

N
Rq=Ri+Ry+ - +Ry=) R, (2.30)
n=1

To determine the voltage across each resistor in Fig. 2.29, we sub-
stitute Eq. (2.26) into Eq. (2.24) and obtain

R R;
v, Uy =
Ri+ R Ri+ R

V1 = v (2.31)

Notice that the source voltage v is divided among the resistors in direct
proportion to their resistances; the larger the resistance, the larger the
voltage drop. This is called the principle of voltage division, and the
circuit in Fig. 2.29 is called a voltage divider. In general, if a voltage

divider has N resistors(Ry, Ry, ..., Ry) inserieswith the source voltage
v, thenth resistor (R,) will have avoltage drop of
Ry,
Un (2.32)

- R1+R2+~-~+RNU
2.6 PARALLEL RESISTORS AND CURRENT DIVISION

Consider the circuit in Fig. 2.31, where two resistors are connected in
paralel and therefore have the same voltage across them. From Ohm's
law,

v=10i1R1 =i2R>
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or i

. v . v . Node a
1= —, g = — .
R]_ R2 i1+ |2+
Applying KCL at node a givesthe total current i as v <+> R R
= 1 2
i=i1+1i (2.34)
Substituting EQ. (2.33) into Eq. (2.34), we get
Node b
) v v ( 1 1 ) v
R Rz R Ry Req Figure 231 Two resistors in parallel.
where R is the equivalent resistance of the resistors in parallel:
t_1 + ! 2.36
Rq Ri R (230
or
1 Ri+R
Req  RiR>
or
Ri1R>
= 2.3
T R+ R, @37
Thus,

The equivalent resistance of two parallel resistors is equal to the product
of their resistances divided by their sum.

It must be emphasized that this applies only to two resistors in parallel.
From Eq. (2.37), if Ry = Ry, then Req = R1/2.

We can extend theresult in Eq. (2.36) to the general case of acircuit
with N resistorsin parallel. The equivalent resistanceis

i=i+i+...+i (2.38)
Rq R1 R Ry
Notethat Req isalways smaller than the resistance of the smallest resistor
inthe paralel combination. If Ry = R, = --- = Ry = R, then
Req = R (2.39)
N

For example, if four 100-2 resistorsare connected in parallel, their equiv-
alent resistanceis 25 Q.

It isoften more convenient to use conductancerather than resistance
when dealing with resistorsin parallel. From Eqg. (2.38), the equivalent
conductance for N resistorsin paralel is

Conductances in parallel behave as a single con-
ductance whose value is equal to the sum of the
individual conductances.

Gq=G1+G2+Gs+---+ Gy (2.40)

where Geg = 1/Req, G1 = 1/R1, G2 = 1/R2, G3 = 1/Rs, ..., Gy =
1/Ry. Equation (2.40) states:
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The equivalent conductance of resistors connected in parallel is the sum
of their individual conductances.

This means that we may replace the circuit in Fig. 2.31 with that in
i Fig. 2.32. Notice the similarity between Egs. (2.30) and (2.40). The
equivalent conductance of parallel resistors is obtained the same way
as the equivalent resistance of series resistors. In the same manner, the
v <+> v S Ry or Gy equivalent conductance of resistorsin seriesisobtained just the sameway
astheresistance of resistorsin parallel. Thusthe equivalent conductance

Geq Of N resistorsin series (such as shown in Fig. 2.29) is

b t_t r g (2.41)
Figure 2.32  Equivalent circuit to Geg G1 G2 Gs Gy '
Fig. 2.31.

Given the total current i entering node « in Fig. 2.31, how do we
obtain current i, and i,? We know that the equivalent resistor has the
same voltage, or

‘R [R1R2 2.42)
V=1 = .
“" Ri+R;
Combining Egs. (2.33) and (2.42) resultsin
. Ry i . Rqi
11 = s 1o = 2.43
"TRitR " Rit R @4

which shows that the total current i is shared by the resistorsin inverse
proportion to their resistances. Thisisknown as the principle of current
division, and thecircuitin Fig. 2.31isknown asacurrent divider. Notice
that the larger current flows through the smaller resistance.
Asan extreme case, supposeone of theresistorsin Fig. 2.31iszero,
[ say R, = 0; that is, R, isashort circuit, as shown in Fig. 2.33(a). From
o o Eq. (2.43), R, = Oimpliesthat iy = 0, i, = i. This means that the
* i1=0 * 121 entire current i bypasses R; and flows through the short circuit R, = O,
the path of least resistance. Thus when a circuit is short circuited, as

R R,=0
! 2 shown in Fig. 2.33(a), two things should be kept in mind:
o 1. Theequivalent resistance Req = 0. [See what happens when
R, =0inEq. (2.37).]
@ 2. Theentire current flows through the short circuit.
i As another extreme case, suppose R» = oo, that is, R, is an open
o —0 circuit, as shown in Fig. 2.33(b). The current till flows through the path
li1=i Ol 2- of least resistance, R;. By taking the limit of Eq. (2.37) as R, — oo, we
R, R, = o obtain Reg = Ry inthiscase.
o) If we divide both the numerator and denominator by R1R», EQ.
(2.43) becomes
[e;
. G1 .
(b) 1= —G1 n Ggl (2.443)
Figure 233 (a) A shorted circuit, . G, .
(b) an open circuit. I = ml (2.44b)

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



CHAPTER 2 Basic Laws

Thus, ingenerad, if acurrent divider has N conductors(Gi, G, ..., Gy)
in parallel with the source current i, the nth conductor (G,) will have
current
G, .
G1+G2+~-~+GNl
In general, it is often convenient and possible to combine resistors
in seriesand parallel and reduce aresistive network to asingle equivalent
resistance Re. Such an equivalent resistance is the resistance between
the designated terminals of the network and must exhibit the same i-v
characteristics as the original network at the terminals.

(2.45)

In

mﬂz.9

Find R for the circuit shownin Fig. 2.34. 4Q 10
O
Solution: -
To get R, We combine resistors in series and in parallel. The 6-Q and Req 50
3-Qresistorsarein parallel, so their equivalent resistance is -—
6x 3 80 6Q 3Q
6Q|3Q= =2Q
(The wmbo_l II'is u%c! to in_dicateaparall_el combi nation._) Also, _the 1-Q Figure 234 For Example 2.9.
and 5-Q2 resistors are in series; hence their equivalent resistanceis
12+5Q=6Q 40
O
Thus the circuit in Fig. 2.34 is reduced to that in Fig. 2.35(a). In Fig.
2.35(a), wenoticethat thetwo 2-Q resistorsarein series, so the equivalent Re 2Q
resistance is — % 6Q
2Q42Q=4Q ga 3°°
This4-Q resistor is now in parallel with the 6-2 resistor in Fig. 2.35(a); @
their equivalent resistance is
4x6 4Q
4Q116Q=-""=24Q
4+6
ThecircuitinFig. 2.35(a) isnow replaced withthat in Fig. 2.35(b). InFig. Req. 24Q
2.35(b), the threeresistors are in series. Hence, the equivalent resistance 80
for the circuitis
Ry=4Q+24Q+8Q=144Q (b)
Figure 2.35  Equivalent circuits for
Example 2.9.
PRACTICE PROBLEMEEE
By combining the resistorsin Fig. 2.36, find Reg. 2Q 3Q 40
Answer: 6.
Req
—
10
Figure .36 For Practice Prob. 2.9.
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Exiip L BB

| 0

10Q ¢ 1Q

2Q

bo

d

3Q 6Q

@

100

2Q

bo

3Q

b
(b)

Figure 2.38

Equivalent
Example 2

circuits for

.10.

Calculate the equivalent resistance R,;, inthe circuit in Fig. 2.37.

1Q
AWV

100 ¢ 1Q d
a o—WW

AN
6Q
3Q§ %49
b b

Rao

—

%59

12Q

b o

Figure .37 For Example 2.10.

Solution:

The 3-Q and 6-Q2 resistors are in parallel because they are connected to
the same two nodes ¢ and b. Their combined resistance is

3060= 220

| ~ 3+6

Similarly, the 12-Q and 4-Q2 resistors are in parallel since they are con-

nected to the same two nodes d and . Hence

12Q4Q= 124 _

12+ 4
Also the 1-Q and 5-Q resistors are in series;, hence, their equivalent
resistanceis

=2Q (2.10.1)

(2.10.2)

1Q+5Q=6Q

With these three combinations, we canreplacethecircuitin Fig. 2.37 with
thatinFig. 2.38(a). InFig. 2.38(a), 3-Q2 in paralle with 6-Q gives 2-L2, as
calculated in Eq. (2.10.1). This2-Q equivalent resistanceisnow in series
withthe 1-Q resistanceto giveacombinedresistanceof 1 2+2 Q2 = 3 Q.
Thus, we replace the circuit in Fig. 2.38(a) with that in Fig. 2.38(b). In
Fig. 2.38(b), we combine the 2-2 and 3-Q2 resistorsin parallel to get

(2.10.3)

2x3
2Q13Q=——=12%
| 2+3

This 1.2-Q2 resistor isin series with the 10-Q2 resistor, so that
Rypy=10+12=112¢Q

PRACTICE PROBLEMESEN

20Q
ANV
8Q 5Q
a ANV AV
Rap 18Q § 20Q §
— 1Q
9Q
2Q
b ANV
Figure 239 For Practice Prob. 2.10.

Find R, for thecircuit in Fig. 2.39.
Answer: 11 Q.
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47

M2.||

Find the equivalent conductance G for the circuit in Fig. 2.40(a).
Solution:
The 8-Sand 12-Sresistors are in parallel, so their conductanceis

85+12S5=20S

This 20-S resistor is how in series with 5 S as shown in Fig. 2.40(b) so
that the combined conductanceis

20x 5

20+5
Thisisin parallel with the 6-Sresistor. Hence

Geg=6+4=10S

We should note that the circuit in Fig. 2.40(a) isthe same asthat in
Fig. 2.40(c). Whiletheresistorsin Fig. 2.40(a) are expressed in siemens,
they are expressed in ohmsin Fig. 2.40(c). To show that the circuits are
the same, we find Req for the circuit in Fig. 2.40(c).

P T A [ O AN .
“el\5 8]12) 6|\5 20) 6|4
: 1
Q

X

ol
Bl

+1710

ol
FNTN

1
eq

Thisisthe same as we obtained previously.

PRACTICE PROBLEMEEEN

55
AV
Geq
— 6S 8S 125
@
55
G
=, 205
(b)
1
EQ
AMAA
M. Zie Ste e

(©

Figure 240  For Example 2.11: () original
circuit, (b) its equivalent circuit, (c) same
circuit asin (a) but resistors are expressed in
ohms.

Calculate G inthecircuit of Fig. 2.41.
Answer: 48S.

—_—
6S
% 25 1o %
o %45
Figure 24| For Practice Prob. 2.11.

M2.|2

Find i, and v, in the circuit shown in Fig. 2.42(a). Calculate the power
dissipated in the 3-$2 resistor.

Solution:
The 6-Q and 3-Q resistors are in parallel, so their combined resistanceis
6x3
6Q3Q2=—-=2Q
” 6+ 3
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—I> 4Q a i»
+
12v 6Q Y%<=3Q
b
@
'L 40 a
+
2v @ V=20
b
(b)
Figure 242 For Example 2.12: (a) original

circuit, (b) its equivalent circuit.

PRACTICE PROBLEMWE

PART | DC Circuits

Thus our circuit reduces to that shown in Fig. 2.42(b). Notice that v, is
not affected by the combination of the resistors because the resistors are
in parallel and therefore have the same voltage v,. From Fig. 2.42(b), we
can obtain v, in two ways. One way isto apply Ohm’s law to get

12
"Tar2T
and hence, v, = 2i = 2 x 2 = 4 V. Another way is to apply voltage
division, since the 12 V in Fig. 2.42(b) is divided between the 4-Q and

2-Q resistors. Hence,
2
Vo = m(lZV) =4V
Similarly, i, can be obtained in two ways. Oneapproachisto apply
Ohm'’slaw to the 3-2 resistor in Fig. 2.42(a) now that we know v,,; thus,
. 4
— l, = é

Another approachisto apply current division to thecircuit in Fig. 2.42(a)
now that we know i, by writing
4

6 2
i, = i =—-Q2A)=-A
b=gy3 3N =3
The power dissipated in the 3-Q resistor is

v, =3i, =4

4
Do = Voiy = 4 (§> —=5333W

| 2

i
1 120
AWV
+ Vg T
6Q
MWy .
e
+

%10(2 V2§4OQ

15v @

Figure 243 For Practice Prob. 2.12.

Find v, and v, in the circuit shownin Fig. 2.43. Also calculatei; and ip
and the power dissipated in the 12-Q and 40-2 resistors.

Answer: vy =5V, i; =416.7mA, p; = 2.083W, v, =10V,

i» =250 mMA, p, = 25W.

mz.m

For the circuit shown in Fig. 2.44(a), determine: (@) the voltage v, (b)
the power supplied by the current source, (c) the power absorbed by each
resistor.

Solution:

(a) The 6-k2 and 12-k<2 resistors are in series so that their combined
valueis 6+ 12 = 18 k2. Thusthecircuit in Fig. 2.44(a) reduces to that
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shown in Fig. 2.44(b). We now apply the current division technique to
find i1 and i».
18,000
™ 9000 + 18,000
9000
~ 9000 + 18,000

it (30mA) = 20 mA

i (30A) = 10mA

Notice that the voltage across the 9-k2 and 18-k<2 resistors is the same,
and v, = 9,000i; = 18,000i, = 180V, as expected.
(b) Power supplied by the source is
Po = Voi, = 180(30) MW = 5.4 W
(c) Power absorbed by the 12-k<2 resistor is
p =iv=iyiR) =i5R = (10 x 1073)2(12,000) = 1.2 W
Power absorbed by the 6-kS2 resistor is
p =i5R = (10 x 107%)?(6000) = 0.6 W
Power absorbed by the 9-k resistor is

(180)2
=36W
9000 36

vy
e
or

P = v,i1 = 180(20) MW = 3.6 W

Noticethat the power supplied (5.4 W) equal s the power absorbed (1.2 +
0.6 4+ 3.6 = 5.4 W). Thisis one way of checking results.

PRACTICE PROBLEMNEEE

49

6 kQ

30 mA Yo = 9kQ 12kQ

30 mA Vo%QkQ %18k§2

(b)
Figure 244 For Example 2.13:
(a) origind circuit,
(b) its equivalent circuit.

For the circuit shown in Fig. 2.45, find: (@) v1 and v,, (b) the power dis-
sipated in the 3-k2 and 20-k<2 resistors, and (c) the power supplied by
the current source.

1kQ

+ +
3kQ%V1 %>mmA §5kQ V2 S 20kQ

Figure 2.45

For Practice Prob. 2.13.

Answer: (a) 15V, 20V, (b) 75 mW, 20 mW, (c) 200 mW.

@

Network Analysis
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.7 WYE-DELTA TRANSFORMATIONS

R Situations often arise in circuit analysis when the resistors are neither in

AMA parallel nor in series. For example, consider the bridge circuit in Fig.

2.46. How do we combine resistors R; through Rg when the resistors

R Rs are neither in series nor in parallel? Many circuits of the type shown in

" CD R, Fig. 2.46 can be simplified by using three-terminal equivalent networks.

themselves or as part of alarger network. They are used in three-phase
networks, electrical filters, and matching networks. Our main interest
hereisin how to identify them when they occur as part of a network and
how to apply wye-delta transformation in the analysis of that network.

MWy These are the wye (Y) or tee (T) network shown in Fig. 2.47 and the
\7%\ /§7 delta(A) or pi (IT) network shownin Fig. 2.48. These networks occur by
Rs Rs

Figure 246 The bridge network.

2 4 2 4
@ (b)

Figure 247 Two forms of the same network: @Y, (b)T.

Deltato Wye Conversion
1 «/ch» 3 Suppose it is more convenient to work with a wye network in a place
where the circuit contains a delta configuration. We superimpose awye
R, R, network on the existing delta network and find the equivalent resistances
in the wye network. To obtain the equivalent resistances in the wye
network, we compare the two networks and make sure that the resistance
2 4 between each pair of nodes in the A (or IT) network is the same as the
@ resistance between the same pair of nodesinthe Y (or T) network. For
R terminals 1 and 2 in Figs. 2.47 and 2.48, for example,
Ri>2(Y) =R1+ R
1 A 3 12(Y) 1+ R3 246
R12(A) =Ry || (Ry + R,)
Ro Ra Setting R1o(Y)= Ri12(A) gives
Rb(Ra + Rc)
R =R Ry= ——— 2.47
2 4 12 1+ Rs R.+ Ry + R. (2.479)
(b) -
Similarly,
Figure 248 Two forms of the Ris = Ri+ Ry = R.(R, + Rp) 0 a7
same network: (a) A, (b) II. 13=R1 2= R.+ Ry + R, (2.47p)
Ra (Rh + RE)
R3y =R Ry= ——— 2.47
34 2+ R3 R, + Ry + R, (2.47c)
Subtracting Eqg. (2.47¢) from Eq. (2.47a), we get
Rc(Rb - Ra)
Ri—Rp=———— 2.48
! 2 Ra + Rb + Rc ( )
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Adding Egs. (2.47b) and (2.48) gives

Ry R,
RR=———"— (2.49)
R, + Ry + R,
and subtracting EqQ. (2.48) from Eq. (2.47b) yields
R.R,
Ry= ———M— (2.50)
Ra + Rb + Rc
Subtracting Eqg. (2.49) from Eq. (2.478), we obtain
R, R,
Ry=—2 "~ (2.51)
R,+ Ry + R,

We do not need to memorize Egs. (2.49) to (2.51). To transform a A
network to Y, we create an extranode n as shown in Fig. 2.49 and follow
this conversion rule:

| |
tEach resistor in the Y network is the product of the resistors in the two adjacent A

branches, divided by the sum of the three A resistors.

Wyeto Delta Conversion

To aobtain the conversion formulas for transforming a wye network to an
equivalent delta network, we note from Egs. (2.49) to (2.51) that

R,RyR.(R, + Ry, + R,) Figure 249 Superposition of Y and A
RiR> + RoR3 + R3Ry = = — > . networks as an aid in transforming one to
(Ra + Rb + RC) (2 52) the other.

_ RaRbRc
N Ra + Rb + RC

Dividing Eq. (2.52) by each of Egs. (2.49) to (2.51) leadsto thefollowing
equations:

RiR> + RoR3 + R3R
R, = 1R2 + ;34- 3R 253
1

RiR> + RoR3 + R3R;
Ry, = R (254

Ri1R> + R>R3 + R3R
R = 1R2 + ;34— 3] (255)
3

From Egs. (2.53) to (2.55) and Fig. 2.49, the conversion rulefor Y to A
isasfollows:
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Each resistor in the A network is the sum of all possible products of Y resistors
taken two at a time, divided by the opposite Y resistor.

TheY and A networks are said to be balanced when
R1 =Ry, = R3= Ry, R, =R, = R. = Rx (2.56)

Under these conditions, conversion formul as become

Ry = — or Rar = 3Ry (2.57)

One may wonder why Ry islessthan R,. Well, we notice that the Y-
connection islike a“series’” connection while the A-connection islike a
“parallel” connection.

Notethat in making the transformation, wedo not take anything out
of thecircuit or put in anything new. We are merely substituting different
but mathematically equivalent three-terminal network patterns to create
acircuit in which resistors are either in series or in paralel, allowing us
to calculate Req if necessary.

Convert the A network in Fig. 2.50(a) to an equivalent Y network.

a Re b
o A o
250
10Q 150
R Ra Ry S3Q
c Ve

¢}

@ (b)

Figure 250 For Example 2.14: (a) origina A network, (b) Y eguivalent network.

Solution:
Using Egs. (2.49) to (2.51), we obtain
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e RR_ 25x10 250
Y R, fR,+R. 25+10+15 50
R.R, 25 x 15
Ry = _2X_750
R, + R, + R, 50
R,R 15 x 10
Ry = b _ X 39
R, + R, + R, 50

The equivalent Y network is shown in Fig. 2.50(b).

PRACTICE PROBLEMEEK

53

Transform the wye network in Fig. 2.51 to a delta network. R, R,
. _ _ _ a o——AMW AWMN—0 b
Answer: R, =140Q,R, =702, R. = 352. 100 00
Ry < 40Q
Cc
Figure 251 For Practice Prob. 2.14.
£ XA 7 L E I
Obtain the equivalent resistance R,;, for thecircuitin Fig. 2.52 and useit _|> a a
tofind current ;.
Solution: -
L . . 1
Inthiscircuit, therearetwo Y networksand one A network. Transforming 1250
just one of these will simplify the circuit. If we convert the Y network +> c 50Q N § 00
comprising the 5-€2, 10-Q2, and 20-2 resistors, we may select 120V (<
150 200Q
R =109, R, =209, R3=5Q
Thus from Egs. (2.53) to (2.55) we have b b
o RiRz+ RpR3+ RsRy 10 x 20420 x 5+ 5 x 10 Figure 252 For Example 2.15.
“ Ry N 10
350
=—=35Q
10
R1R RoR R3R 350
R, = 1R2 + Ra2R3 + R3 1_%P_ 1750
Ry 20
RiR RyR R3R
R =M 2+ R2R3 + R3 1:@:709
R3 5

Withthe Y converted to A, the equivalent circuit (with the voltage
source removed for now) is shown in Fig. 2.53(a). Combining the three
pairs of resistorsin parallel, we obtain
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70 x 30
70 | 30 = =21Q
| 70+ 30
125 x 175
125|1175= ————— =7.2917Q
> 1175 1254175 o
15%x 35
15135=-2>_105Q
15435
so that the equivalent circuit is shown in Fig. 2.53(b). Hence, we find
17.792 x 21
Ry =(7292+105) | 2l= —————— =9632Q
b= (72924105 17.792+ 21
Then
Vg 120
| = = —— =12458A
'"T R, 9632
ao
1250 1750 ao
§ 700 § 300 72000
350 § 210
150
1050
bo bo

@ (b)

Figure 253 Equivalent circuits to Fig. 2.52, with the voltage removed.

PRACTICE PROBLEMNE

i 130 For the bridge network in Fig. 2.54, find R, and i.
_» a
O— W\ Answer: 40, 25A.
24Q 10Q
200
100V (’:}
300 50Q

b

Figure 2.54  For Practice Prob. 2.15.

2.8 APPLICATIONS

Resistors are often used to model devices that convert electrical energy
into heat or other forms of energy. Such devices include conducting
wire, lightbulbs, electric heaters, stoves, ovens, and loudspeakers. Inthis
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section, we will consider two real-life problems that apply the concepts
developed in this chapter: electrical lighting systems and design of dc
meters.

2.8.1 Lighting Systems

Lighting systems, such asin ahouse or on a Christmastree, often consist
of N lamps connected either in parallel or in series, as shown in Fig.
2.55. Eachlampismodeled asaresistor. Assuming that al thelampsare
identical and V,, is the power-line voltage, the voltage across each lamp
isV, for the parallel connectionand V,,/ N for the series connection. The
series connection is easy to manufacture but is seldom used in practice,
for at least two reasons. Firg, it islessreliable; when alamp fails, all the
lamps go out. Second, it is harder to maintain; when alamp is bad, one
must test all the lamps one by one to detect the faulty one.

=
N
w

D ® OO ¢

/Q’/Z

@ Lamp

55

S0 far, we have assumed that connecting wires
are perfect conductors (i.e., conductors of zero
resistance). In real physical systems, however,
the resistance of the connecting wire may be ap-
preciably large, and the modeling of the system
must include that resistance.

Figure 2.55  (a) Parallel connection of lightbulbs, (b) series connection of lightbulbs.

£ X A P L ¢ I

Three lightbulbs are connected to a 9-V battery as shownin Fig. 2.56(a).
Calculate: (@) the total current supplied by the battery, (b) the current
through each bulb, (c) the resistance of each bulb.

N
Vs, R,
_ +
D 15w 9V =+ vl% R,
+ _
9V — (9 20W V3 S Ry
P)10W —
€) (b)

Figure 2.56 (a) Lighting system with three bulbs, (b) resistive circuit equivalent
model.
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Solution:
(a) The total power supplied by the battery is equal to the total power
absorbed by the bulbs, that is,
p=15+10+20=45W
Since p = V1, then the total current supplied by the battery is
P 45
I==—=—=5A
1% 9
(b) The bulbs can be modeled asresistors as shown in Fig. 2.56(b). Since
R1 (20-W bulb) isin parallel with the battery as well as the series com-
bination of R, and R3,
Vi=Vo+ V=9V
The current through R; is
D soma
Vi 9

By KCL, the current through the series combination of R, and R3

I

L=1—-1,=5-2222=2778A
(c) Since p = I?R,
N 20

R=C=_=_=a050
T2 T 22022
P2 15
Ro=22=-_=_ —1050
2T 2T 27
P3 10
Re=22 = —_ —12070Q
T T 2T

PRACTICE PROBLEMESEE

Refer to Fig. 2.55 and assume there are 10 lightbulbs, each with a power
rating of 40 W. If the voltage at the plug is 110 V for the parallel and
series connections, calculate the current through each bulb for both cases.

Answer: 0.364 A (paralld), 3.64 A (series).

2.8.2 Design of DC Meters
By their nature, resistors are used to control the flow of current. We take
advantage of this property in several applications, such as in a poten-

Max tiometer (Fig. 2.57). The word potentiometer, derived from the words

T b potential and meter, implies that potential can be metered out. The po-

Vin CI) L tentiometer (or pot for short) is athree-termina device that operates on

\+/ the principle of voltage division. It is essentialy an adjustable voltage

Min =" divider. Asavoltage regulator, it is used as avolume or level control on
c © radios, TVs, and other devices. In Fig. 2.57,

Figure 257 The potentiometer Vout = Vpe = &Vin (2.58)
controlling potential levels. ac

where R,. = Ry, + Rye. Thus, Vo decreases or increases as the sliding
contact of the pot moves toward ¢ or a, respectively.
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Another application whereresistors are used to control current flow
isintheanalog dc meters—the ammeter, voltmeter, and ohmmeter, which

measure current, voltage, and resistance, respectively. Each of these me- An instrument capable of measuring voltage, cur-
ters employs the d’ Arsonval meter movement, shown in Fig. 2.58. The rent, and resistance is called a multimeter or a
movement consists essentially of a movable iron-core coil mounted on volt-ohm meter (VOM).

a pivot between the poles of a permanent magnet. When current flows
through the cail, it creates a torque which causes the pointer to deflect.
The amount of current through the coil determines the deflection of the
pointer, which is registered on a scale attached to the meter movement.
For example, if the meter movement is rated 1 mA, 50 €2, it would take
1 mA to causeafull-scal e defl ection of the meter movement. By introduc-
ing additional circuitry to the d’ Arsonval meter movement, an ammeter,
voltmeter, or ohmmeter can be constructed.

Consider Fig. 2.59, where an analog voltmeter and ammeter are
connected to an element. The voltmeter measures the voltage across a

load and is therefore connected in parallel with the element. As shown Aload is acomponent that s receiving energy (an
in Fig. 2.60(a), the voltmeter consists of ad’ Arsonval movement in par- energy sink), as opposed to a generator supplying
alel with aresistor whose resistance R,, is deliberately made very large energy (an energy source). More about loading
(theoretically, infinite), to minimize the current drawn from the circuit. will be discussed in Section 49.1.

To extend the range of voltage that the meter can measure, series multi-
plier resistors are often connected with the voltmeters, as shown in Fig.
2.60(b). The multiple-range voltmeter in Fig. 2.60(b) can measure volt-
agefrom0to1V,0to 10V, or 0 to 100 V, depending on whether the
switch is connected to R1, Ry, Or R3, respectively.

Let uscalculate the multiplier resistor R, for the single-range volt-
meter in Fig. 2.60(8), or R, = Ri, R», or Rz for the multiple-range
voltmeter in Fig. 2.60(b). We need to determine the value of R, to be
connected in series with the internal resistance R,, of the voltmeter. In
any design, we consider the worst-case condition. In this case, the worst
case occurs when the full-scale current I+s = 1, flows through the meter.
This should aso correspond to the maximum voltage reading or the full-
scale voltage Vis. Since the multiplier resistance R, isin series with the

Ammeter |
O—

+
Voltmeter 6/) V Element

O

permanent magnet Figure .59 Connection of a
voltmeter and an ammeter to an
element.

rotating coil
stationary iron core

Figure 258 A o’ Arsonval meter movement.
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Multiplier ~ Meter

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘ Figure 260  voltmeters: (a) single-range type, (b) multiple-range type.

Meter } internal resistance R,

Iy :
5 | Vis = Iis(Ro + Ry) (259

| f From this, we obtain

Prob Vi
% A v Ry = — — R, (2.60)
@ Its
TR Similarly, the ammeter measures the current through the load and
; isconnected in serieswithit. Asshownin Fig. 2.61(a), the ammeter con-
10mA | sistsof ad’ Arsonval movement in parallel with aresistor whoseresistance
Ry 100mAN. Switch | Rm isdeliberately made very small (theoretically, zero) to minimize the
— \WW——e + voltage drop acrossit. To allow multiple range, shunt resistors are often
R, 1A . connected in parallel with R,, as shown in Fig. 2.61(b). The shunt resis-
+ tors alow the meter to measure in the range 0-10 mA, 0-100 mA, or
Meter ; 0-1 A, depending on whether the switch is connected to R1, Ry, Or
| ; R3, respectively.
m ﬁ 3 Now our objectiveisto obtain themultiplier shunt R, for thesingle-
w 1 range ammeter in Fig. 2.61(a), or R, = R1, R, or R3 for the multiple-
! ! ; range ammeter in Fig. 2.61(b). We notice that R,, and R, arein parallel
N IS P i andthat at full-scalereading I = Its = I, + I,, where I, is the current
~ Probes ~ through the shunt resistor R,. Applying the current division principle
(b) yields
Figure 26l Ammeters: (a) single-range type, I = Ry I
(b) multiple-range type. "7 R,+ R, fs
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or
Im
 Is—In
Theresistance R, of alinear resistor can be measured in two ways.
An indirect way is to measure the current I that flows through it by
connecting an ammeter in series with it and the voltage V across it by
connecting avoltmeter in parallel with it, as shownin Fig. 2.62(a). Then

%
R, = T (2.62)
The direct method of measuring resistance is to use an ohmmeter. An

ohmmeter consistsbasically of ad’ Arsonval movement, avariableresistor

R, (2.61)

n

or potentiometer, and a battery, as shown in Fig. 2.62(b). Applying KVL
to thecircuit in Fig. 2.62(b) gives EI:A
[
or T +
E ReSv
R, = — —(R+ Ry) (2.63) -
Theresistor R is selected such that the meter gives afull-scale deflection,
that is, I,, = It;s when R, = 0. Thisimpliesthat @
E = (R+ Rns (2.64) Ohmmeter

Substituting EQ. (2.64) into EQ. (2.63) leads to

R, = <% - 1) (R+ Ry (2.65)

As mentioned, the types of meters we have discussed are known as
analog metersand are based onthe d’ Arsonval meter movement. Another
type of meter, called a digital meter, is based on active circuit elements
such as op amps. For example, a digital multimeter displays measure-
ments of dc or ac voltage, current, and resistance as discrete numbers,
instead of using a pointer deflection on a continuous scale as in an ana- Figure 262 Two ways of measuring
log multimeter. Digital meters are what you would most likely usein a resistance: (a) using an ammeter and a
modern lab. However, the design of digital metersis beyond the scope ~ Voltmeter, (b) using an ohmmeter.
of this book.

|§llﬂﬂ[‘r|7

Following the voltmeter setup of Fig. 2.60, design avoltmeter for thefol-
lowing multiple ranges:

@o0-1v (b)0-5V (c)0-50V (d)0-100V

Assume that theinternal resistance R,,, = 2 k2 and the full-scale current
Irs = 100 uA.

Solution:

We apply Eq. (2.60) and assumethat R;, Ry, R3, and R, correspond with
ranges 0-1V, 0-5V, 0-50 V, and 0—100 V, respectively.

(a) For range 01V,

B 1

~ 100 x 10-6

R1 — 2000 = 10,000 — 2000 = 8 k2
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(b) For range 0-5V,

Re= W — 2000 = 50,000 — 2000 = 48 k<2
() For range 0-50 V,
Ry = ——2 2000 = 500,000 — 2000 = 498 k€2
100 x 10-6
(d) For range 0-100 V,
‘T % — 2000 = 1,000,000 — 2000 = 998 kS2

Notethat theratio of thetotal resistance (R, + R,,) tothefull-scalevoltage
Vis is constant and equal to 1/ I;s for the four ranges. Thisratio (givenin
ohms per volt, or ©2/V) is known as the sensitivity of the voltmeter. The
larger the sensitivity, the better the voltmeter.

PRACTICE PROBLEMEEEN

Following the ammeter setup of Fig. 2.61, design an ammeter for thefol-
lowing multiple ranges:

@ 0-1A (b) 0100 mA (c) 0-10 mA

Takethefull-scalemeter current as 1,, = 1 mA and theinternal resistance
of theammeter as R,, = 50 Q.

Answer: Shunt resistors: 0.05 2, 0.505 €2, 5.556 Q.

2.9 SUMMARY

1. A resistor isapassive element in which the voltage v acrossit is
directly proportional to the current i throughit. That is, aresistor is
a device that obeys Ohm’s law,

v=1iR

where R isthe resistance of the resistor.

2. A short circuit isaresistor (a perfectly conducting wire) with zero
resistance (R = 0). Anopen circuit isaresistor with infiniteresis-
tance (R = 00).

3. The conductance G of aresistor isthe reciprocal of its resistance:

1
G=—
R

4. A branchisasingle two-terminal element in an electric circuit. A
node is the point of connection between two or more branches. A
loop is aclosed path in acircuit. The number of branches b, the
number of nodes n, and the number of independent loops! in a
network are related as

b=Il+n-1

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



10.

11

12.

13.

14.

CHAPTER 2 Basic Laws

Kirchhoff’s current law (KCL) states that the currents at any node
algebraically sum to zero. In other words, the sum of the currents
entering a node equals the sum of currents leaving the node.

Kirchhoff’s voltage law (KVL) states that the voltages around a
closed path algebraically sum to zero. In other words, the sum of
voltage rises equal s the sum of voltage drops.

Two elements are in series when they are connected sequentially,
end to end. When elements are in series, the same current flows
through them (i; = i,). They arein paralléel if they are connected to
the same two nodes. Elementsin parallel always have the same
voltage across them (v = vy).

When two resistors Ry (= 1/G1) and R, (= 1/G») arein series,
their equivalent resistance R and equivalent conductance G are

_ GiGy
" G1+ G,

When two resistors Ry (= 1/G1) and R, (= 1/G») arein pardlel,
their equivalent resistance R and equivalent conductance G are

Req = R1+ R», Geq

The voltage division principle for two resistorsin seriesis
Ry R>

v, Uy =

Ri1+ R Ri+ R

The current division principle for two resistorsin parallel is
Ry | . Ry

i, lp =

R1+ R Ri+ Ry

The formulas for a delta-to-wye transformation are

B RyR. o R.R,

T R+ Ry, + R 2= R+ R, +R.

V1 = v

i

i1 =

Ry

R, Ry
"R+ R+ R
The formulas for awye-to-delta transformation are
_ RiR> + RoR3 + R3R1’ R, — Ri1R; + R2R3 + R3R;
R1 R>
R — R1R2 + R2R3 + R3Ry
R3
The basic laws covered in this chapter can be applied to the prob-
lems of electrical lighting and design of dc meters.

3

R4

6l

REVIEW QUESTIONS

21
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(0 12Q

(a) voltage (b) current
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The voltage drop across a 1.5-kW toaster that draws 29
12 A of current is:

(@ 18kV
(o) 120V

(b) 125V
(d) 10.42V

The maximum current that a 2W, 80 k<2 resistor can
safely conduct is:

(8 160 kA
(c) 5mA

(b) 40kA
(d) 25 uA

A network has 12 branches and 8 independent loops.
How many nodes are there in the network?

Which of the circuitsin Fig. 2.66 will give you
Vi =7V?

(b)

© (d)

Figure 2.66

For Review Question 2.9.

The equivalent resistance of the circuit in Fig. 2.67
is:

@ 4k2 () 5kQ (c) 8kQ  (d) 14k
2kQ 3kQ
O—\WW, ANV
E’ 6kQ 3kQ
O
Figure 2.67  For Review Question 2.10.

@19 ® 17 (@©5 (@4
Thecurrent I inthecircuit in Fig. 2.63 is.
(& —08A (b) —0.2A
(c) 0.2A (d) 0.8A
40 '
ANV
3V 5V
6Q
Figure 2.63  For Review Question 2.6.
Thecurrent 1, inFig. 2.64 is:
@ —4A (b —2A (c) 4A (d) 16A
o
f 10A
2.10
2A 4A
ity -
(¢} AW o}
o
0]
Figure 2.64  For Review Question 2.7.
Inthecircuitin Fig. 2.65, V is:
(@ 30V (b) 14V (c) 10V (d) 6V
10V
+ -
||
R
2v @ ® sv
||
1
+ \Va
Figure 2.65  For Review Question 2.8.

Answers: 2.1c, 2.2c, 2.3b, 2.4c, 2.5¢, 2.6b, 2.7a, 2.8d, 2.9d, 2.10a.
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PROBLEMS

Section 2.2 Ohm’sLaw 2.7 Determine the number of branches and nodesin the

21 The voltage across a 5-kS2 resistor is 16 V. Find the dreutinFg. 2.71.
current through the resistor.

2.2 Find the hot resistance of alightbulb rated 60 W,
120 V.

23 When the voltage across aresistor is 120 V, the 50
current through it is 2.5 mA. Calculateits
conductance. 2Q _
24 (3 Calculate current i in Fig. 2.68 when the switch s L S C_' 10V
isin position 1.
(b) Find the current when the switch isin position 2.
3Q 6Q
1 2
—e «—— )
Figure 2.7 For Prob. 2.7.
100Q § ? ! § 150 Q
3V
Section 2.4 Kirchhoff’'sLaws
. 28 Use KCL to obtain currentsiy, i, and i3 in the
Figure 2,68 For Prob. 2.4. circuit shownin Fig. 2.72.
Section 2.3 Nodes, Branches, and L oops
25 For the network graph in Fig. 2.69, find the number
of nodes, branches, and loops. 12 mA
i1
8mA
Aij i3
9ImA
Figure 2.72 For Prob. 2.8.
Figure 269 For Prob. 2.5. 2.9  Findiy, ip, and iz inthecircuit in Fig. 2.73.

2.6 In the network graph shown in Fig. 2.70, determine
the number of branches and nodes.

>< >< 10Al Til izl T3A

Figure .70 For Prob. 2.6. Figure .73 For Prob. 2.9.
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210 Determinei; and i, inthecircuitin Fig. 2.74. 213  Find v; and vy inthecircuit in Fig. 2.77.

+ V1

VWWA
+
6V Vi

4A/ \\_2A 12v oV -
©—©

NWY
+V2—

Figure .77 For Prob. 2.13.

Figure .74 For Prob. 2.10. 2.14  Obtain v; through vg in the circuit of Fig. 2.78.
211  Determine vy through vs in the circuit in Fig. 2.75. + &;f—

- +

2v @ L §V3 @ wv

I G 12V
+
Figure 278 For Prob. 2.14.
_BV 4
T T 215 Find I and V,, inthecircuit of Fig. 2.79.
I _ 30 WV 4 50
A V3 + *I
30V Vap 8V

Figure .75 For Prob. 2.11. b

Figure .79 For Prob. 2.15.

212 InthecircuitinFig. 2.76, obtain vy, vy, and vs.
216 Fromthecircuitin Fig. 2.80, find I, the power
dissipated by the resistor, and the power supplied by

each source.
10V
© i
25V
-+
12v ‘ § 30
+
20V ‘
-8V
Figure 2.76  For Prob. 2.12. Figure 280 For Prob. 2.16.
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2.17 Determinei, in the circuit of Fig. 2.81. Sections 2.5 and 2.6 Seriesand Parallel
_ Resistors
b 40
- 2.22  For thecircuit in Fig. 2.86, find i, and i,.
v @) é 5i,

T
20mA (4 6kQ 2 4kQ
Figure 28] For Prob. 2.17.

218 Cadculate the power dissipated in the 5-2 resistor in
the circuit of Fig. 2.82.

Figure 286 For Prob. 2.22.
10

223  Find v; and v, inthe circuit in Fig. 2.87.

v @ 0 3\,

3kQ
AW
5Q .
. +
Figure 282 For Prob. 2.18. Y C,) v % gk
219 FindV, inthecircuit in Fig. 2.83 and the power -
dissipated by the controlled source.
4Q :
A Figure 287 For Prob. 2.23.
LV
()
60 () 10A 2V 224 Find vy, vy, and vz in the circuit in Fig. 2.88.
Figure 283 For Prob. 2.19. m
220 ForthecircuitinFig. 2.84, find V, /V in terms of tov -
o, R, Ry, R3, and Ry. If R, = = R3 = Ry, + +
whatvalueofawnl produce|V/V| = 10? 40V C_“) Vz%lsn V3%109

+ .
%? v, Figure 2.88  For Prob. 2.24.
2.25 j i

Calculate vy, i1, v2, and i, in the circuit of Fig. 2.89.

Figure 2.84  For Prob. 2.20.

221  For the network in Fig. 2.85, find the current, 40 60
voltage, and power associated with the 20-kQ A A,
resistor. +ovy - l iy l iz
+
N 12v @ 30 § v
5 mA 10kQ 2V, 0.01\, 5kQ 20 kQ -
Figure 2.85  For Prob. 2.21. Figure 289 For Prob. 2.25.
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226 Findi, v, and the power dissipated in the 6-Q2

resistor in Fig. 2.90.

8Q
AMA
[
LR

on @® § 60 v % 40

Figure .90 For Prob. 2.26.
2.27 Inthecircuitin Fig. 2.91, find v, i, and the power

absorbed by the 4-Q resistor.

5Q 4Q
l [
+

20v @ v100Q 6Q

Figure 291 For Prob. 2.27.
2.28  Findi; throughis inthecircuitin Fig. 2.92.

100 _l4 2 200
w00 T o300
3 1
@ 204

Figure 2.92  For Prob. 2.28.

229 Obtainvandi inthecircuitin Fig. 2.93.

i
1 as 6S
AW
+
9A ? v % 1s % 2s 3s
Figure 2.93  For Prob. 2.29.

DC Circuits

2.30

28V '

231

2.32

2.33

Determine iy, i», v1, and v, in the ladder network in
Fig. 2.94. Calculate the power dissipated in the 2-Q
resistor.

40 2

i
R -To! 6Q l2_ 20
AW WA MAR
+ +
v S 12Q 150 10Q V2 $13Q
Figure 2.94  For Prob. 2.30.

Calculate V, and I, in the circuit of Fig. 2.95.

700 300
sov @

200 5Q
Figure 295 For Prob. 2.31.

Find V, and 1, in the circuit of Fig. 2.96.

8Q
lo 10
WW—
T
4v 30 60 v,
2Q -
Figure 2.96  For Prob. 2.32.

In the circuit of Fig. 2.97, find R if V, = 4V.

16Q
WA
+
20v @ 60 RSV,
Figure 2.97  For Prob. 2.33.
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CHAPTER 2

through the 3-Q resistor is2 A.

10Q

2Q
%%%%
4Q
3 O f2A
60 30

Figure 298 For Prob. 2.34.

2.35 Find the equivalent resistance at terminals a-b for
each of the networksin Fig. 2.99.

©

a
ao
R
%R R R
bo bo
@ (b)
R
ao W% ao
SR% R% R%
bo bo
(d)

Figure .99 For Prob. 2.35.

2.36  For theladder network in Fig. 2.100, find 7 and Req.

|
o
10V (’:) 40 6Q 20

—

| Re

Figure 2.100  For Prob. 2.36.

2.37

2.38

2.39

Basic Laws

67

If Req =50 Q inthecircuitinFig. 2.101, find R.

120

Figure 2.101

For Prob. 2.37.

Reduce each of the circuitsin Fig. 2.102 to asingle
resistor at terminals a-b.

5Q
WW
a —o b
80Q 200
\—WN::—‘
300
@
2Q 4Q 50
a o—AWW W VWA ob
50 3Q 10Q
AW
8Q 40
WW
(b)
Figure 2.102  For Prob. 2.38.

Calculate the equivalent resistance R, at terminals
a-b for each of the circuitsin Fig. 2.103.

50
a
200 10Q 400
b o
@
100
ao VWWWA
80Q
60Q % 20Q 30Q
b o
(b)
Figure 2.103  For Prob. 2.39.
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240  Obtain the equivalent resistance at the terminals a-b 242  Find the equivalent resistance R,;, in the circuit of

for each of the circuitsin Fig. 2.104. Fig. 2.106.
ao
10Q
60 Q 30Q
bo VWA VWWWA—
20Q
@

Figure 2.106  For Prob. 2.42.

50 6Q 8Q 90
a o— MM VWA VWWA
50
150 10Q 10
200 4Q

4Q

b o— /MW
(b)

Figure 2.104  For Prob. 2.40. . .
Section 2.7 Wye-Delta Transfor mations

241  Find Req at terminals a-b for each of the circuitsin

Fig. 2.105. 243  Convert thecircuitsin Fig. 2.107 from Y to A.
70Q
100 100 300 200
a a b a b
300 400 100 50 Q
60 Q
b C Cc
b
200 @ ®
@ Figure 2.107  For Prob. 2.43.

244  Transform the circuitsin Fig. 2.108 from A to Y.

120 60Q
a AW b a AV b
10Q 500
4Q 120 120 30Q 100
b o—WA
70Q 800Q
C C
(b) @ (b)
Figure 2.105  For Prob. 2.41. Figure 2.108  For Prob. 2.44.
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245 What value of R inthecircuit of Fig. 2.109 would a o—\WW\, MW
cause the current source to deliver 800 mW to the
resistors?
R R
b oM
oma @) w
(b)
R R .
Figure 2.1 For Prob. 2.47.

*2.48  Obtain the equivalent resistance R, in each of the

. circuits of Fig. 2.112. In (b), dl resistors have a
Figure 2.109  For Prob. 2.45. value of 30 O,

246  Obtain the equivalent resistance at the terminals a-b

for each of the circuitsin Fig. 2.110. 30Q 400Q
ao 200
ao
100Q 20Q
100Q
00 § 60Q 50Q 8@
100 200 bo
b o @
@ ao
30Q 30Q
AW
25Q 100 20Q
ao A MWW AW
50 150 bo VW MWWy
(b)
bo
(b) Figure 2.112 For Prob. 2.48.

Figure 2110 For Prob. 2.46. 249 Cdculate I, inthe circuit of Fig. 2.113.

*2.47  Find the equivalent resistance R, in each of the

IO
circuits of Fig. 2.111. Each resistor is 100 2. -
ao MW 200 60 Q
00
2aav @

50 Q

bo AW
@ Figure .13 For Prob. 2.49.

*An asterisk indicates a challenging problem.
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70 PART | DC Circuits
250 Determine V inthecircuit of Fig. 2.114.
30Q
MWV
16Q 150 100
+
100V V S3Q 12Q 200Q
2.54
Figure 2.114  For Prob. 2.50.
255
*251  Find Req and I inthecircuit of Fig. 2.115.
LYol 20
6Q 1Q
20V t) 8Q 20
10Q 3Q
Req
Figure 2,115 For Prob. 2.51. 2.56
Section 2.8 Applications
252  Thelightbulbin Fig. 2.116 israted 120 V, 0.75 A. 2.57
Calculate V; to make the lightbulb operate at the
rated conditions.
40 Q
A IO Bub <800
Figure .16 For Prob. 2.52.
2.58
253  Threelightbulbs are connected in seriesto a 100-V

battery as shown in Fig. 2.117. Find the current 1
through the bulbs.

30w 40w 50W

.9 o @
1oov<’:>

Figure .17 For Prob. 2.53.

If the three bulbs of Prob. 2.53 are connected in
parallel to the 100-V battery, calculate the current
through each bulb.

As adesign engineer, you are asked to design a
lighting system consisting of a 70-W power supply
and two lightbulbs as shown in Fig. 2.118. You must
select the two bulbs from the following three
available bulbs.

R; =80, cost = $0.60 (standard size)
R, =90 Q, cost = $0.90 (standard size)
R3 = 100 €, cost = $0.75 (nonstandard size)

The system should be designed for minimum cost
suchthat 7 = 1.2 A £ 5 percent.

—

+ |
70W
Power
Supply

10 -

Figure .18 For Prob. 2.55.

If an ammeter with an internal resistance of 100
and a current capacity of 2 mA isto measure5 A,
determine the value of the resistance needed.
Calculate the power dissipated in the shunt resistor.

The potentiometer (adjustable resistor) R, in Fig.
2.119isto be designed to adjust current i, from 1 A
to 10 A. Calculate the values of R and R, to achieve
this.

110V

Figure .19 For Prob. 2.57.

A d’Arsonval meter with an internal resistance of 1
k<2 requires 10 mA to produce full-scal e deflection.
Calculate the value of a series resistance needed to
measure 50 V of full scale.
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2.60

261

CHAPTER 2

A 20-k2/V voltmeter reads 10 V full scale.

(8) What seriesresistance is required to make the
meter read 50 V full scale?

(b) What power will the series resistor dissipate
when the meter reads full scale?

(a) Obtain the voltage v, in the circuit of Fig.
2.120(a).

(b) Determine the voltage v, measured when a
voltmeter with 6-kS2 internal resistanceis
connected as shown in Fig. 2.120(b).

(c) Thefinite resistance of the meter introduces an
error into the measurement. Calculate the
percent error as

v, — U,

x 100%

Vo

(d) Find the percent error if the internal resistance
were 36 k2.

1kQ
AW
+
2mA 5kQ 4kQ 2 Vo
@
1kQ
2mA 5kQ

+
4kQ = Vo e@ \oltmeter

(b)

Figure 2.120  For Prob. 2.60.

(a) Find the current i inthe circuit of Fig. 2.121(a).

(b) Anammeter with an internal resistanceof 1 Q is
inserted in the network to measure i’ asshown in
Fig. 2.121(b). What isi'?

(c) Calculate the percent error introduced by the
meter as

./

i —1

x 100%

I 160

—

4V 40 Q 60 Q

@

2.62

2.63

2.64

Basic Laws 71

(b)
Figure 2.121

A voltmeter is used to measure V, in the circuit in
Fig. 2.122. The voltmeter model consists of an ideal
voltmeter in parallel with a 100-ks2 resistor. Let

V, =40V, R, = 10k, and R; = 20k2. Calculate
V,, with and without the voltmeter when

(@ R, =1k (b) R, = 10k

() R, =100k

For Prob. 2.61.

100 kQ

Figure 2.122

An ammeter model consists of anideal ammeter in
serieswith a 20-2 resistor. It is connected with a
current source and an unknown resistor R, as shown
in Fig. 2.123. The ammeter reading is noted. When
a potentiometer R isadded and adjusted until the
ammeter reading drops to one half its previous
reading, then R = 65 Q. What isthe value of R, ?

For Prob. 2.62.

Figure 2.123  For Prob. 2.63.

Thecircuit in Fig. 2.124 isto control the speed of a
motor such that the motor draws currents5 A, 3 A,
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and 1 A when the switch is at high, medium, and 2.65

low positions, respectively. The motor can be
modeled as aload resistance of 20 m2. Determine
the series dropping resistances R1, R, and Rs.

R1
10-A, 0.01-Q fuse

Medium

High \§ R
F "

Figure 2.124  For Prob. 2.64.

6V —

An ohmmeter is constructed with a 2-V battery and
0.1-mA (full-scale) meter with 100-<2 internal
resistance.

(a) Calculate the resistance of the (variable) resistor
required to be in series with the meter and the
battery.

(b) Determine the unknown resistance across the
terminals of the ohmmeter that will cause the
meter to deflect half scale.

COMPREHENSIVE PROBLEMS

2.66

2.67

2.68

An electric heater connected to a 120-V source 2.69
consists of two identical 0.4-Q2 elements made of

Nichrome wire. The elements provide low heat

when connected in series and high heat when

connected in parallel. Find the power at low and

high heat settings.

Suppose your circuit laboratory has the following
standard commercialy available resistorsin large
quantities:

18¢Q 20 Q2 300 @ 24kQ 56 kQ2

Using series and parallel combinations and a
minimum number of available resistors, how would
you obtain the following resistances for an
electronic circuit design?

(@ 5Q
(©) 40 k2

2.70
(b) 311.8

(d) 52.32k2

In the circuit in Fig. 2.125, the wiper divides the
potentiometer resistance between «R and (1 — o) R,
0<a =<1 Findwv,/v.

271

Figure 2.125  For Prob. 2.68.

An electric pencil sharpener rated 240 m\W, 6V is
connected to a 9-V battery as shown in Fig. 2.126.
Calculate the value of the series-dropping resistor
R, needed to power the sharpener.

switch R

ov £T 4
|

Figure 2.126

For Prob. 2.69.

A loudspeaker is connected to an amplifier as shown
inFig. 2.127. If a10-Q2 loudspesaker draws the
maximum power of 12 W from the amplifier,
determine the maximum power a 4-2 loudspeaker
will draw.

Amplifier (]

[ Loudspeaker

Figure 2.127  For Prob. 2.70.

In acertain application, the circuit in Fig. 2.128
must be designed to meet these two criteria:

@ V,/V, = 0.05 (b) Req =40k
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CHAPTER 2 Basic Laws 73

If the load resistor 5 k2 isfixed, find R, and R to 2.73  Two delicate devices are rated as shown in Fig.
meet the criteria 2.130. Find the values of theresistors R; and R»
R needed to power the devices using a 24-V battery.
1
© VVVV 60-mA, 2-Q fuse

+
Vs (E R§ V%SKQ 24V, 480 mw
s<> 2 ° FF; @'@
24V

R .
9V, 45 mW

Figure 2.128  For Prob. 2.71.

2.72  Thepin diagram of aresistance array is shownin Figre 2130 For Pron 2.73.

Fig. 2.129. Find the equivalent resistance between
the following:

(@ land2 (b) 1and 3 (c) land4

4 3
n 0

20Q 20Q

> 40Q

10Q
80Q

o O
1 2

Figure 2.129  For Prob. 2.72.

Go to the Student OLC
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