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C H A P T E R

BASIC LAWS

2

The chessboard is the world, the pieces are the phenomena of the universe,
the rules of the game are what we call the laws of Nature. The player
on the other side is hidden from us, we know that his play is always fair,
just, and patient. But also we know, to our cost, that he never overlooks
a mistake, or makes the smallest allowance for ignorance.

— Thomas Henry Huxley

Historical Profiles
Georg Simon Ohm (1787–1854), a German physicist, in 1826 experimentally deter-
mined the most basic law relating voltage and current for a resistor. Ohm’s work was
initially denied by critics.

Born of humble beginnings in Erlangen, Bavaria, Ohm threw himself into
electrical research. His efforts resulted in his famous law. He was awarded the Copley
Medal in 1841 by the Royal Society of London. In 1849, he was given the Professor
of Physics chair by the University of Munich. To honor him, the unit of resistance was
named the ohm.

Gustav Robert Kirchhoff (1824–1887), a German physicist, stated two basic laws
in 1847 concerning the relationship between the currents and voltages in an electrical
network. Kirchhoff’s laws, along with Ohm’s law, form the basis of circuit theory.

Born the son of a lawyer in Konigsberg, East Prussia, Kirchhoff entered
the University of Konigsberg at age 18 and later became a lecturer in Berlin. His
collaborative work in spectroscopy with German chemist Robert Bunsen led to the
discovery of cesium in 1860 and rubidium in 1861. Kirchhoff was also credited with
the Kirchhoff law of radiation. Thus Kirchhoff is famous among engineers, chemists,
and physicists.
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2.1 INTRODUCTION
Chapter 1 introduced basic concepts such as current, voltage, and power
in an electric circuit. To actually determine the values of these variables
in a given circuit requires that we understand some fundamental laws that
govern electric circuits. These laws, known as Ohm’s law and Kirchhoff’s
laws, form the foundation upon which electric circuit analysis is built.

In this chapter, in addition to these laws, we shall discuss some
techniques commonly applied in circuit design and analysis. These tech-
niques include combining resistors in series or parallel, voltage division,
current division, and delta-to-wye and wye-to-delta transformations. The
application of these laws and techniques will be restricted to resistive cir-
cuits in this chapter. We will finally apply the laws and techniques to
real-life problems of electrical lighting and the design of dc meters.

2.2 OHM’S LAW
Materials in general have a characteristic behavior of resisting the flow
of electric charge. This physical property, or ability to resist current, is
known asresistance and is represented by the symbolR. The resistance
of any material with a uniform cross-sectional areaA depends onA and
its length�, as shown in Fig. 2.1(a). In mathematical form,

R = ρ
�

A
(2.1)

whereρ is known as theresistivity of the material in ohm-meters. Good
conductors, such as copper and aluminum, have low resistivities, while
insulators, such as mica and paper, have high resistivities. Table 2.1
presents the values ofρ for some common materials and shows which
materials are used for conductors, insulators, and semiconductors.

l

Cross-sectional
area A

(a)
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v R
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+

−

(b)

Figure 2.1 (a) Resistor, (b) Circuit symbol
for resistance.

TABLE 2.1 Resistivities of common materials.

Material Resistivity (�·m) Usage

Silver 1.64 × 10−8 Conductor
Copper 1.72 × 10−8 Conductor
Aluminum 2.8 × 10−8 Conductor
Gold 2.45 × 10−8 Conductor
Carbon 4 × 10−5 Semiconductor
Germanium 47 × 10−2 Semiconductor
Silicon 6.4 × 102 Semiconductor
Paper 1010 Insulator
Mica 5 × 1011 Insulator
Glass 1012 Insulator
Teflon 3 × 1012 Insulator

The circuit element used to model the current-resisting behavior of
a material is the resistor. For the purpose of constructing circuits, resistors
are usually made from metallic alloys and carbon compounds. The circuit
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symbol for the resistor is shown in Fig. 2.1(b), where R stands for the
resistance of the resistor. The resistor is the simplest passive element.

Georg Simon Ohm (1787–1854), a German physicist, is credited
with finding the relationship between current and voltage for a resistor.
This relationship is known as Ohm’s law.

Ohm’s law states that the voltage v across a resistor is directly proportional
to the current i flowing through the resistor.

That is,

v ∝ i (2.2)

Ohm defined the constant of proportionality for a resistor to be the resis-
tance, R. (The resistance is a material property which can change if the
internal or external conditions of the element are altered, e.g., if there are
changes in the temperature.) Thus, Eq. (2.2) becomes

v = iR (2.3)

which is the mathematical form of Ohm’s law. R in Eq. (2.3) is measured
in the unit of ohms, designated �. Thus,

The resistance R of an element denotes its ability to resist the flow
of electric current; it is measured in ohms (�).

We may deduce from Eq. (2.3) that

R = v

i
(2.4)

so that

1 � = 1 V/A

To apply Ohm’s law as stated in Eq. (2.3), we must pay careful
attention to the current direction and voltage polarity. The direction of
current i and the polarity of voltage v must conform with the passive sign
convention, as shown in Fig. 2.1(b). This implies that current flows from
a higher potential to a lower potential in order for v = iR. If current
flows from a lower potential to a higher potential, v = −iR.

(a)

(b)

R = 0

i

R = ∞

i = 0

v = 0

+

−

v

+

−

Figure 2.2 (a) Short circuit (R = 0),
(b) Open circuit (R = ∞).

Since the value of R can range from zero to infinity, it is important
that we consider the two extreme possible values of R. An element with
R = 0 is called a short circuit, as shown in Fig. 2.2(a). For a short circuit,

v = iR = 0 (2.5)

showing that the voltage is zero but the current could be anything. In
practice, a short circuit is usually a connecting wire assumed to be a
perfect conductor. Thus,
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A short circuit is a circuit element with resistance approaching zero.

Similarly, an element with R = ∞ is known as an open circuit, as shown
in Fig. 2.2(b). For an open circuit,

i = lim
R→∞

v

R
= 0 (2.6)

indicating that the current is zero though the voltage could be anything.
Thus,

An open circuit is a circuit element with resistance approaching infinity.

(a)

(b)

Figure 2.3 Fixed resistors: (a) wire-
wound type, (b) carbon film type.
(Courtesy of Tech America.)

(a) (b)

Figure 2.4 Circuit symbol for: (a) a variable
resistor in general, (b) a potentiometer.

A resistor is either fixed or variable. Most resistors are of the fixed
type, meaning their resistance remains constant. The two common types
of fixed resistors (wirewound and composition) are shown in Fig. 2.3.
The composition resistors are used when large resistance is needed. The
circuit symbol in Fig. 2.1(b) is for a fixed resistor. Variable resistors
have adjustable resistance. The symbol for a variable resistor is shown
in Fig. 2.4(a). A common variable resistor is known as a potentiometer
or pot for short, with the symbol shown in Fig. 2.4(b). The pot is a
three-terminal element with a sliding contact or wiper. By sliding the
wiper, the resistances between the wiper terminal and the fixed terminals
vary. Like fixed resistors, variable resistors can either be of wirewound or
composition type, as shown in Fig. 2.5. Although resistors like those in
Figs. 2.3 and 2.5 are used in circuit designs, today most circuit components
including resistors are either surface mounted or integrated, as typically
shown in Fig. 2.6.

(a) (b)

Figure 2.5 Variable resistors: (a) composition type, (b) slider pot.
(Courtesy of Tech America.)

Figure 2.6 Resistors in a thick-film circuit.
(Source: G. Daryanani, Principles of Active
Network Synthesis and Design [New York:
John Wiley, 1976], p. 461c.)

It should be pointed out that not all resistors obey Ohm’s law. A
resistor that obeys Ohm’s law is known as a linear resistor. It has a con-
stant resistance and thus its current-voltage characteristic is as illustrated
in Fig. 2.7(a): its i-v graph is a straight line passing through the ori-
gin. A nonlinear resistor does not obey Ohm’s law. Its resistance varies
with current and its i-v characteristic is typically shown in Fig. 2.7(b).
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Examples of devices with nonlinear resistance are the lightbulb and the
diode. Although all practical resistors may exhibit nonlinear behavior
under certain conditions, we will assume in this book that all elements
actually designated as resistors are linear.

Slope = R

(a)

v

i

Slope = R

(b)

v

i

Figure 2.7 The i-v characteristic of:
(a) a linear resistor,
(b) a nonlinear resistor.

A useful quantity in circuit analysis is the reciprocal of resistance
R, known as conductance and denoted by G:

G = 1

R
= i

v
(2.7)

The conductance is a measure of how well an element will conduct
electric current. The unit of conductance is the mho (ohm spelled back-
ward) or reciprocal ohm, with symbol

�

, the inverted omega. Although
engineers often use the mhos, in this book we prefer to use the siemens
(S), the SI unit of conductance:

1 S = 1

�= 1 A/V (2.8)

Thus,

Conductance is the ability of an element to conduct electric current; it is
measured in mhos (

�

) or siemens (S).

The same resistance can be expressed in ohms or siemens. For
example, 10 � is the same as 0.1 S. From Eq. (2.7), we may write

i = Gv (2.9)

The power dissipated by a resistor can be expressed in terms of R.
Using Eqs. (1.7) and (2.3),

p = vi = i2R = v2

R
(2.10)

The power dissipated by a resistor may also be expressed in terms of G
as

p = vi = v2G = i2

G
(2.11)

We should note two things from Eqs. (2.10) and (2.11):

1. The power dissipated in a resistor is a nonlinear function of
either current or voltage.

2. Since R and G are positive quantities, the power dissipated in
a resistor is always positive. Thus, a resistor always absorbs
power from the circuit. This confirms the idea that a resistor is
a passive element, incapable of generating energy.

E X A M P L E 2 . 1

An electric iron draws 2 A at 120 V. Find its resistance.
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Solution:

From Ohm’s law,

R = v

i
= 120

2
= 60 �

P R A C T I C E P R O B L E M 2 . 1

The essential component of a toaster is an electrical element (a resistor)
that converts electrical energy to heat energy. How much current is drawn
by a toaster with resistance 12 � at 110 V?

Answer: 9.167 A.

E X A M P L E 2 . 2

In the circuit shown in Fig. 2.8, calculate the current i, the conductance
G, and the power p.

30 V

i

+
− 5 kΩ v

+

−

Figure 2.8 For Example 2.2.

Solution:

The voltage across the resistor is the same as the source voltage (30 V)
because the resistor and the voltage source are connected to the same pair
of terminals. Hence, the current is

i = v

R
= 30

5 × 103
= 6 mA

The conductance is

G = 1

R
= 1

5 × 103
= 0.2 mS

We can calculate the power in various ways using either Eqs. (1.7), (2.10),
or (2.11).

p = vi = 30(6 × 10−3) = 180 mW

or

p = i2R = (6 × 10−3)25 × 103 = 180 mW

or

p = v2G = (30)20.2 × 10−3 = 180 mW

P R A C T I C E P R O B L E M 2 . 2

For the circuit shown in Fig. 2.9, calculate the voltage v, the conductance
G, and the power p.

2 mA

i

10 kΩ v
+

−

Figure 2.9 For Practice Prob. 2.2

Answer: 20 V, 100 µS, 40 mW.
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E X A M P L E 2 . 3

A voltage source of 20 sinπt V is connected across a 5-k� resistor. Find
the current through the resistor and the power dissipated.

Solution:

i = v

R
= 20 sinπt

5 × 103
= 4 sinπt mA

Hence,

p = vi = 80 sin2 πt mW

P R A C T I C E P R O B L E M 2 . 3

A resistor absorbs an instantaneous power of 20 cos2 t mW when con-
nected to a voltage source v = 10 cos t V. Find i and R.

Answer: 2 cos t mA, 5 k�.

†2.3 NODES, BRANCHES, AND LOOPS
Since the elements of an electric circuit can be interconnected in several
ways, we need to understand some basic concepts of network topology. To
differentiate between a circuit and a network, we may regard a network as
an interconnection of elements or devices, whereas a circuit is a network
providing one or more closed paths. The convention, when addressing
network topology, is to use the word network rather than circuit. We
do this even though the words network and circuit mean the same thing
when used in this context. In network topology, we study the properties
relating to the placement of elements in the network and the geometric
configuration of the network. Such elements include branches, nodes,
and loops.

A branch represents a single element such as a voltage source or a resistor.

In other words, a branch represents any two-terminal element. The circuit
in Fig. 2.10 has five branches, namely, the 10-V voltage source, the 2-A
current source, and the three resistors.

10 V 2 A

a b

c

5 Ω

+
− 2 Ω 3 Ω

Figure 2.10 Nodes, branches, and loops.

b

c

a

10 V

5 Ω

2 Ω
3 Ω 2 A

+
−

Figure 2.11 The three-node circuit of Fig. 2.10
is redrawn.

A node is the point of connection between two or more branches.

A node is usually indicated by a dot in a circuit. If a short circuit (a
connecting wire) connects two nodes, the two nodes constitute a single
node. The circuit in Fig. 2.10 has three nodes a, b, and c. Notice that
the three points that form node b are connected by perfectly conducting
wires and therefore constitute a single point. The same is true of the four
points forming node c. We demonstrate that the circuit in Fig. 2.10 has
only three nodes by redrawing the circuit in Fig. 2.11. The two circuits in
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Figs. 2.10 and 2.11 are identical. However, for the sake of clarity, nodes
b and c are spread out with perfect conductors as in Fig. 2.10.

A loop is any closed path in a circuit.

A loop is a closed path formed by starting at a node, passing through a
set of nodes, and returning to the starting node without passing through
any node more than once. A loop is said to be independent if it contains a
branch which is not in any other loop. Independent loops or paths result
in independent sets of equations.

For example, the closed path abca containing the 2-� resistor in
Fig. 2.11 is a loop. Another loop is the closed path bcb containing the
3-� resistor and the current source. Although one can identify six loops
in Fig. 2.11, only three of them are independent.

A network with b branches, n nodes, and l independent loops will
satisfy the fundamental theorem of network topology:

b = l + n − 1 (2.12)

As the next two definitions show, circuit topology is of great value
to the study of voltages and currents in an electric circuit.

Two or more elements are in series if they are cascaded or connected sequentially
and consequently carry the same current.

Two or more elements are in parallel if they are connected to the same two nodes
and consequently have the same voltage across them.

Elements are in series when they are chain-connected or connected se-
quentially, end to end. For example, two elements are in series if they
share one common node and no other element is connected to that com-
mon node. Elements in parallel are connected to the same pair of termi-
nals. Elements may be connected in a way that they are neither in series
nor in parallel. In the circuit shown in Fig. 2.10, the voltage source and
the 5-� resistor are in series because the same current will flow through
them. The 2-� resistor, the 3-� resistor, and the current source are in
parallel because they are connected to the same two nodes (b and c)
and consequently have the same voltage across them. The 5-� and 2-�
resistors are neither in series nor in parallel with each other.

E X A M P L E 2 . 4

Determine the number of branches and nodes in the circuit shown in Fig.
2.12. Identify which elements are in series and which are in parallel.

Solution:

Since there are four elements in the circuit, the circuit has four branches:
10 V, 5 �, 6 �, and 2 A. The circuit has three nodes as identified in
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Fig. 2.13. The 5-� resistor is in series with the 10-V voltage source
because the same current would flow in both. The 6-� resistor is in
parallel with the 2-A current source because both are connected to the
same nodes 2 and 3.

5 Ω

6 Ω 2 A10 V +
−

Figure 2.12 For Example 2.4.

1 25 Ω

6 Ω 2 A10 V +
−

3

Figure 2.13 The three nodes in the circuit
of Fig. 2.12.

P R A C T I C E P R O B L E M 2 . 4

How many branches and nodes does the circuit in Fig. 2.14 have? Identify
the elements that are in series and in parallel.

Answer: Five branches and three nodes are identified in Fig. 2.15. The
1-� and 2-� resistors are in parallel. The 4-� resistor and 10-V source
are also in parallel.

5 Ω

1 Ω 2 Ω 4 Ω10 V+
−

Figure 2.14 For Practice Prob. 2.4.

3 Ω

3

1 Ω 2 Ω 4 Ω10 V+
−

1 2

Figure 2.15 Answer for Practice Prob. 2.4.

2.4 KIRCHHOFF’S LAWS
Ohm’s law by itself is not sufficient to analyze circuits. However, when
it is coupled with Kirchhoff’s two laws, we have a sufficient, powerful
set of tools for analyzing a large variety of electric circuits. Kirchhoff’s
laws were first introduced in 1847 by the German physicist Gustav Robert
Kirchhoff (1824–1887). These laws are formally known as Kirchhoff’s
current law (KCL) and Kirchhoff’s voltage law (KVL).

Kirchhoff’s first law is based on the law of conservation of charge,
which requires that the algebraic sum of charges within a system cannot
change.
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Kirchhoff’s current law (KCL) states that the algebraic sum of currents entering
a node (or a closed boundary) is zero.

Mathematically, KCL implies that

N∑
n=1

in = 0 (2.13)

where N is the number of branches connected to the node and in is the
nth current entering (or leaving) the node. By this law, currents entering
a node may be regarded as positive, while currents leaving the node may
be taken as negative or vice versa.

To prove KCL, assume a set of currents ik(t), k = 1, 2, . . . , flow
into a node. The algebraic sum of currents at the node is

iT (t) = i1(t) + i2(t) + i3(t) + · · · (2.14)

Integrating both sides of Eq. (2.14) gives

qT (t) = q1(t) + q2(t) + q3(t) + · · · (2.15)

where qk(t) = ∫
ik(t) dt and qT (t) = ∫

iT (t) dt . But the law of conser-
vation of electric charge requires that the algebraic sum of electric charges
at the node must not change; that is, the node stores no net charge. Thus
qT (t) = 0 → iT (t) = 0, confirming the validity of KCL.

i1
i5

i4

i3
i2

Figure 2.16 Currents at
a node illustrating KCL. Consider the node in Fig. 2.16. Applying KCL gives

i1 + (−i2) + i3 + i4 + (−i5) = 0 (2.16)

since currents i1, i3, and i4 are entering the node, while currents i2 and
i5 are leaving it. By rearranging the terms, we get

i1 + i3 + i4 = i2 + i5 (2.17)

Equation (2.17) is an alternative form of KCL:

The sum of the currents entering a node is equal to the sum
of the currents leaving the node.

Note that KCL also applies to a closed boundary. This may be
regarded as a generalized case, because a node may be regarded as a
closed surface shrunk to a point. In two dimensions, a closed boundary
is the same as a closed path. As typically illustrated in the circuit of
Fig. 2.17, the total current entering the closed surface is equal to the total
current leaving the surface.

Closed boundary

Figure 2.17 Applying KCL to a closed
boundary.

Two sources (or circuits in general) are said to be
equivalent if they have the same i-v relationship
at a pair of terminals.

A simple application of KCL is combining current sources in par-
allel. The combined current is the algebraic sum of the current supplied
by the individual sources. For example, the current sources shown in Fig.
2.18(a) can be combined as in Fig. 2.18(b). The combined or equivalent
current source can be found by applying KCL to node a.

IT + I2 = I1 + I3
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or

IT = I1 − I2 + I3 (2.18)

A circuit cannot contain two different currents, I1 and I2, in series, unless
I1 = I2; otherwise KCL will be violated.

Kirchhoff’s second law is based on the principle of conservation of
energy:

a

(a)

(b)

I1 I2 I3

b

a

IS = I1 – I2 + I3 

b

IT

IT

Figure 2.18 Current sources in parallel:
(a) original circuit, (b) equivalent circuit.

Kirchhoff’s voltage law (KVL) states that the algebraic sum of all voltages
around a closed path (or loop) is zero.

Expressed mathematically, KVL states that

M∑
m=1

vm = 0 (2.19)

where M is the number of voltages in the loop (or the number of branches
in the loop) and vm is the mth voltage.

KVL can be applied in twoways: by taking either a
clockwise or a counterclockwise trip around the
loop. Either way, the algebraic sum of voltages
around the loop is zero.

To illustrate KVL, consider the circuit in Fig. 2.19. The sign on
each voltage is the polarity of the terminal encountered first as we travel
around the loop. We can start with any branch and go around the loop
either clockwise or counterclockwise. Suppose we start with the voltage
source and go clockwise around the loop as shown; then voltages would
be −v1,+v2,+v3,−v4, and +v5, in that order. For example, as we reach
branch 3, the positive terminal is met first; hence we have +v3. For branch
4, we reach the negative terminal first; hence, −v4. Thus, KVL yields

−v1 + v2 + v3 − v4 + v5 = 0 (2.20)

Rearranging terms gives

v2 + v3 + v5 = v1 + v4 (2.21)

which may be interpreted as

Sum of voltage drops = Sum of voltage rises (2.22)

This is an alternative form of KVL. Notice that if we had traveled coun-
terclockwise, the result would have been +v1, −v5, +v4, −v3, and −v2,
which is the same as before except that the signs are reversed. Hence,
Eqs. (2.20) and (2.21) remain the same.

v4v1
+
− +

−

v3v2

v5

+ − + −

+−

Figure 2.19 A single-loop circuit
illustrating KVL.

When voltage sources are connected in series, KVL can be applied
to obtain the total voltage. The combined voltage is the algebraic sum
of the voltages of the individual sources. For example, for the voltage
sources shown in Fig. 2.20(a), the combined or equivalent voltage source
in Fig. 2.20(b) is obtained by applying KVL.

−Vab + V1 + V2 − V3 = 0
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or

Vab = V1 + V2 − V3 (2.23)

To avoid violating KVL, a circuit cannot contain two different voltages
V1 and V2 in parallel unless V1 = V2.

V1

V2

V3

a

b

(a)

VS = V1 + V2 − V3 

a

b

(b)

+
−

+
−

+
−Vab

+

−

Vab

+

−

+
−

Figure 2.20 Voltage sources in series:
(a) original circuit, (b) equivalent circuit.

E X A M P L E 2 . 5

For the circuit in Fig. 2.21(a), find voltages v1 and v2.

(a)

20 V +
− 3 Ωv2

2 Ω

v1+ −

+

−

(b)

20 V +
− 3 Ωv2

2 Ω

v1+ −

+

−

i

Figure 2.21 For Example 2.5.

Solution:

To find v1 and v2, we apply Ohm’s law and Kirchhoff’s voltage law.
Assume that current i flows through the loop as shown in Fig. 2.21(b).
From Ohm’s law,

v1 = 2i, v2 = −3i (2.5.1)

Applying KVL around the loop gives

−20 + v1 − v2 = 0 (2.5.2)

Substituting Eq. (2.5.1) into Eq. (2.5.2), we obtain

−20 + 2i + 3i = 0 or 5i = 20 	⇒ i = 4 A

Substituting i in Eq. (2.5.1) finally gives

v1 = 8 V, v2 = −12 V
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P R A C T I C E P R O B L E M 2 . 5

Find v1 and v2 in the circuit of Fig. 2.22.

10 V +
− 8 V+

−

4 Ω

v1

2 Ω

v2

+ −

+ −

Figure 2.22 For Practice Prob. 2.5

Answer: 12 V, −6 V.

E X A M P L E 2 . 6

Determine vo and i in the circuit shown in Fig. 2.23(a).

4 Ω

(a)

12 V

2vo

i
4 V

i

+ −

+
− +

−

4 Ω

(b)

12 V

2vo

4 V

+ −

+
− +

−

6 Ω

vo

6 Ω

vo+ − + −

Figure 2.23 For Example 2.6.

Solution:

We apply KVL around the loop as shown in Fig. 2.23(b). The result is

−12 + 4i + 2vo − 4 + 6i = 0 (2.6.1)

Applying Ohm’s law to the 6-� resistor gives

vo = −6i (2.6.2)

Substituting Eq. (2.6.2) into Eq. (2.6.1) yields

−16 + 10i − 12i = 0 	⇒ i = −8 A

and vo = 48 V.

P R A C T I C E P R O B L E M 2 . 6

Find vx and vo in the circuit of Fig. 2.24.

35 V 2vx
+
−

+
−

10 Ω

vx

5 Ω

vo+ −

+ −

Figure 2.24 For Practice Prob. 2.6.

Answer: 10 V, −5 V.
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E X A M P L E 2 . 7

Find current io and voltage vo in the circuit shown in Fig. 2.25.a

0.5io 3 A

io

4 Ωvo

+

−

Figure 2.25 For Example 2.7.

Solution:

Applying KCL to node a, we obtain

3 + 0.5io = io 	⇒ io = 6 A

For the 4-� resistor, Ohm’s law gives

vo = 4io = 24 V

P R A C T I C E P R O B L E M 2 . 7

Find vo and io in the circuit of Fig. 2.26.

io
4

6 A

io

2 Ω 8 Ω vo

+

−

Figure 2.26 For Practice Prob. 2.7.

Answer: 8 V, 4 A.

E X A M P L E 2 . 8

Find the currents and voltages in the circuit shown in Fig. 2.27(a).

8 Ω

30 V +
−

(a)

v1 i2

i3i1
a

6 Ωv33 Ωv2

+ −

+

−

+

−

8 Ω

30 V +
−

(b)

v1 i2

i3i1
a

6 Ωv33 Ωv2

+ −

+

−

+

−
Loop 2Loop 1

Figure 2.27 For Example 2.8.

Solution:

We apply Ohm’s law and Kirchhoff’s laws. By Ohm’s law,

v1 = 8i1, v2 = 3i2, v3 = 6i3 (2.8.1)

Since the voltage and current of each resistor are related by Ohm’s
law as shown, we are really looking for three things: (v1, v2, v3) or
(i1, i2, i3). At node a, KCL gives

i1 − i2 − i3 = 0 (2.8.2)

Applying KVL to loop 1 as in Fig. 2.27(b),

−30 + v1 + v2 = 0
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We express this in terms of i1 and i2 as in Eq. (2.8.1) to obtain

−30 + 8i1 + 3i2 = 0

or

i1 = (30 − 3i2)

8
(2.8.3)

Applying KVL to loop 2,

−v2 + v3 = 0 	⇒ v3 = v2 (2.8.4)

as expected since the two resistors are in parallel. We express v1 and v2

in terms of i1 and i2 as in Eq. (2.8.1). Equation (2.8.4) becomes

6i3 = 3i2 	⇒ i3 = i2

2
(2.8.5)

Substituting Eqs. (2.8.3) and (2.8.5) into (2.8.2) gives

30 − 3i2
8

− i2 − i2

2
= 0

or i2 = 2 A. From the value of i2, we now use Eqs. (2.8.1) to (2.8.5) to
obtain

i1 = 3 A, i3 = 1 A, v1 = 24 V, v2 = 6 V, v3 = 6 V

P R A C T I C E P R O B L E M 2 . 8

Find the currents and voltages in the circuit shown in Fig. 2.28.

5 V 3 V+
−

i2

i3i1

8 Ωv2

+

−

2 Ω

v1

4 Ω

v3

+
−

+ − + −

Figure 2.28 For Practice Prob. 2.8.

Answer: v1 = 3 V, v2 = 2 V, v3 = 5 V, i1 = 1.5 A, i2 = 0.25 A,
i3 =1.25 A.

2.5 SERIES RESISTORS AND VOLTAGE DIVISION

v +
−

R1

v1

R2

v2

i

+ − + −

a

b

Figure 2.29 A single-loop circuit
with two resistors in series.

The need to combine resistors in series or in parallel occurs so frequently
that it warrants special attention. The process of combining the resistors
is facilitated by combining two of them at a time. With this in mind,
consider the single-loop circuit of Fig. 2.29. The two resistors are in
series, since the same current i flows in both of them. Applying Ohm’s
law to each of the resistors, we obtain

v1 = iR1, v2 = iR2 (2.24)

If we apply KVL to the loop (moving in the clockwise direction), we have

−v + v1 + v2 = 0 (2.25)

http://www.mhhe.com/engcs/electrical/alexander/eetuts/tutorial/Tut1-1.htm
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Combining Eqs. (2.24) and (2.25), we get

v = v1 + v2 = i(R1 + R2) (2.26)

or

i = v

R1 + R2
(2.27)

Notice that Eq. (2.26) can be written as

v = iReq (2.28)

implying that the two resistors can be replaced by an equivalent resistor
Req; that is,

Req = R1 + R2 (2.29)

Thus, Fig. 2.29 can be replaced by the equivalent circuit in Fig. 2.30. The
two circuits in Figs. 2.29 and 2.30 are equivalent because they exhibit the
same voltage-current relationships at the terminals a-b. An equivalent
circuit such as the one in Fig. 2.30 is useful in simplifying the analysis
of a circuit. In general,

v

Req

v

+
−

i

+ −

a

b

Figure 2.30 Equivalent circuit
of the Fig. 2.29 circuit.

The equivalent resistance of any number of resistors connected in series
is the sum of the individual resistances.

Resistors in series behave as a single resistor
whose resistance is equal to the sum of the re-
sistances of the individual resistors.

For N resistors in series then,

Req = R1 + R2 + · · · + RN =
N∑
n=1

Rn (2.30)

To determine the voltage across each resistor in Fig. 2.29, we sub-
stitute Eq. (2.26) into Eq. (2.24) and obtain

v1 = R1

R1 + R2
v, v2 = R2

R1 + R2
v (2.31)

Notice that the source voltage v is divided among the resistors in direct
proportion to their resistances; the larger the resistance, the larger the
voltage drop. This is called the principle of voltage division, and the
circuit in Fig. 2.29 is called a voltage divider. In general, if a voltage
divider hasN resistors (R1, R2, . . . , RN) in series with the source voltage
v, the nth resistor (Rn) will have a voltage drop of

vn = Rn

R1 + R2 + · · · + RN

v (2.32)

2.6 PARALLEL RESISTORS AND CURRENT DIVISION
Consider the circuit in Fig. 2.31, where two resistors are connected in
parallel and therefore have the same voltage across them. From Ohm’s
law,

v = i1R1 = i2R2
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or

i1 = v

R1
, i2 = v

R2
(2.33)

Applying KCL at node a gives the total current i as

i = i1 + i2 (2.34)

Substituting Eq. (2.33) into Eq. (2.34), we get

i = v

R1
+ v

R2
= v

(
1

R1
+ 1

R2

)
= v

Req
(2.35)

where Req is the equivalent resistance of the resistors in parallel:

1

Req
= 1

R1
+ 1

R2
(2.36)

or
1

Req
= R1 + R2

R1R2

or

Req = R1R2

R1 + R2
(2.37)

Thus,

The equivalent resistance of two parallel resistors is equal to the product
of their resistances divided by their sum.

It must be emphasized that this applies only to two resistors in parallel.
From Eq. (2.37), if R1 = R2, then Req = R1/2.

Node b

Node a

v +
− R1 R2

i1 i2

i

Figure 2.31 Two resistors in parallel.

We can extend the result in Eq. (2.36) to the general case of a circuit
with N resistors in parallel. The equivalent resistance is

1

Req
= 1

R1
+ 1

R2
+ · · · + 1

RN

(2.38)

Note that Req is always smaller than the resistance of the smallest resistor
in the parallel combination. If R1 = R2 = · · · = RN = R, then

Req = R

N
(2.39)

For example, if four 100-� resistors are connected in parallel, their equiv-
alent resistance is 25 �.

Conductances in parallel behave as a single con-
ductance whose value is equal to the sum of the
individual conductances.

It is often more convenient to use conductance rather than resistance
when dealing with resistors in parallel. From Eq. (2.38), the equivalent
conductance for N resistors in parallel is

Geq = G1 + G2 + G3 + · · · + GN (2.40)

where Geq = 1/Req,G1 = 1/R1,G2 = 1/R2,G3 = 1/R3, . . . ,GN =
1/RN . Equation (2.40) states:
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The equivalent conductance of resistors connected in parallel is the sum
of their individual conductances.

This means that we may replace the circuit in Fig. 2.31 with that in
Fig. 2.32. Notice the similarity between Eqs. (2.30) and (2.40). The
equivalent conductance of parallel resistors is obtained the same way
as the equivalent resistance of series resistors. In the same manner, the
equivalent conductance of resistors in series is obtained just the same way
as the resistance of resistors in parallel. Thus the equivalent conductance
Geq of N resistors in series (such as shown in Fig. 2.29) is

1

Geq
= 1

G1
+ 1

G2
+ 1

G3
+ · · · + 1

GN

(2.41)

b

a

v +
− Req or Geqv

i

Figure 2.32 Equivalent circuit to
Fig. 2.31.

Given the total current i entering node a in Fig. 2.31, how do we
obtain current i1 and i2? We know that the equivalent resistor has the
same voltage, or

v = iReq = iR1R2

R1 + R2
(2.42)

Combining Eqs. (2.33) and (2.42) results in

i1 = R2 i

R1 + R2
, i2 = R1 i

R1 + R2
(2.43)

which shows that the total current i is shared by the resistors in inverse
proportion to their resistances. This is known as the principle of current
division, and the circuit in Fig. 2.31 is known as a current divider. Notice
that the larger current flows through the smaller resistance.

As an extreme case, suppose one of the resistors in Fig. 2.31 is zero,
say R2 = 0; that is, R2 is a short circuit, as shown in Fig. 2.33(a). From
Eq. (2.43), R2 = 0 implies that i1 = 0, i2 = i. This means that the
entire current i bypasses R1 and flows through the short circuit R2 = 0,
the path of least resistance. Thus when a circuit is short circuited, as
shown in Fig. 2.33(a), two things should be kept in mind:

R2 = 0

(a)

R1

i

i1 = 0 i2 = i

R2 = ∞

(b)

R1

i

i1 = i i2 = 0

Figure 2.33 (a) A shorted circuit,
(b) an open circuit.

1. The equivalent resistance Req = 0. [See what happens when
R2 = 0 in Eq. (2.37).]

2. The entire current flows through the short circuit.

As another extreme case, suppose R2 = ∞, that is, R2 is an open
circuit, as shown in Fig. 2.33(b). The current still flows through the path
of least resistance, R1. By taking the limit of Eq. (2.37) as R2 → ∞, we
obtain Req = R1 in this case.

If we divide both the numerator and denominator by R1R2, Eq.
(2.43) becomes

i1 = G1

G1 + G2
i (2.44a)

i2 = G2

G1 + G2
i (2.44b)
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Thus, in general, if a current divider has N conductors (G1,G2, . . . ,GN)

in parallel with the source current i, the nth conductor (Gn) will have
current

in = Gn

G1 + G2 + · · · + GN

i (2.45)

In general, it is often convenient and possible to combine resistors
in series and parallel and reduce a resistive network to a single equivalent
resistance Req. Such an equivalent resistance is the resistance between
the designated terminals of the network and must exhibit the same i-v
characteristics as the original network at the terminals.

E X A M P L E 2 . 9

Find Req for the circuit shown in Fig. 2.34.

2 Ω
5 ΩReq

4 Ω

8 Ω

1 Ω

6 Ω 3 Ω

Figure 2.34 For Example 2.9.

Solution:

6 Ω
Req

4 Ω

(a)

8 Ω

2 Ω

2 Ω

2.4 Ω
Req

4 Ω

(b)

8 Ω

Figure 2.35 Equivalent circuits for
Example 2.9.

To get Req, we combine resistors in series and in parallel. The 6-� and
3-� resistors are in parallel, so their equivalent resistance is

6 � ‖ 3 � = 6 × 3

6 + 3
= 2 �

(The symbol ‖ is used to indicate a parallel combination.) Also, the 1-�
and 5-� resistors are in series; hence their equivalent resistance is

1 � + 5 � = 6 �

Thus the circuit in Fig. 2.34 is reduced to that in Fig. 2.35(a). In Fig.
2.35(a), we notice that the two 2-� resistors are in series, so the equivalent
resistance is

2 � + 2 � = 4 �

This 4-� resistor is now in parallel with the 6-� resistor in Fig. 2.35(a);
their equivalent resistance is

4 � ‖ 6 � = 4 × 6

4 + 6
= 2.4 �

The circuit in Fig. 2.35(a) is now replaced with that in Fig. 2.35(b). In Fig.
2.35(b), the three resistors are in series. Hence, the equivalent resistance
for the circuit is

Req = 4 � + 2.4 � + 8 � = 14.4 �

P R A C T I C E P R O B L E M 2 . 9

By combining the resistors in Fig. 2.36, find Req.

5 Ω4 Ω6 Ω
Req

2 Ω

1 Ω

3 Ω 4 Ω

3 Ω

Figure 2.36 For Practice Prob. 2.9.

Answer: 6 �.
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E X A M P L E 2 . 1 0

Calculate the equivalent resistance Rab in the circuit in Fig. 2.37.

a

b
b b

c d

6 Ω

12 Ω

5 Ω4 Ω

10 Ω 1 Ω 1 Ω

Rab
3 Ω

Figure 2.37 For Example 2.10.

Solution:

The 3-� and 6-� resistors are in parallel because they are connected to
the same two nodes c and b. Their combined resistance is

3 � ‖ 6 � = 3 × 6

3 + 6
= 2 � (2.10.1)

Similarly, the 12-� and 4-� resistors are in parallel since they are con-
nected to the same two nodes d and b. Hence

12 � ‖ 4 � = 12 × 4

12 + 4
= 3 � (2.10.2)

Also the 1-� and 5-� resistors are in series; hence, their equivalent
resistance is

1 � + 5 � = 6 � (2.10.3)

With these three combinations, we can replace the circuit in Fig. 2.37 with
that in Fig. 2.38(a). In Fig. 2.38(a), 3-� in parallel with 6-� gives 2-�, as
calculated in Eq. (2.10.1). This 2-� equivalent resistance is now in series
with the 1-� resistance to give a combined resistance of 1�+2� = 3�.
Thus, we replace the circuit in Fig. 2.38(a) with that in Fig. 2.38(b). In
Fig. 2.38(b), we combine the 2-� and 3-� resistors in parallel to get

(a)

bb

d

b

c

3 Ω 6 Ω2 Ω

10 Ω 1 Ω
a

b

(b)

b b

c

3 Ω2 Ω

10 Ω
a

b

Figure 2.38 Equivalent circuits for
Example 2.10.

2 � ‖ 3 � = 2 × 3

2 + 3
= 1.2 �

This 1.2-� resistor is in series with the 10-� resistor, so that

Rab = 10 + 1.2 = 11.2 �

P R A C T I C E P R O B L E M 2 . 1 0

Find Rab for the circuit in Fig. 2.39.

1 Ω
9 Ω

18 Ω

20 Ω

20 Ω

2 Ω

5 Ω8 Ω
a

b

Rab

Figure 2.39 For Practice Prob. 2.10.

Answer: 11 �.
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E X A M P L E 2 . 1 1

Find the equivalent conductance Geq for the circuit in Fig. 2.40(a).

12 S8 S6 S

(a)

5 S

Geq

20 S6 S

(b)

5 S

Geq

(c)

Req

Ω1
5

Ω1
6 Ω1

8 Ω1
12

Figure 2.40 For Example 2.11: (a) original
circuit, (b) its equivalent circuit, (c) same
circuit as in (a) but resistors are expressed in
ohms.

Solution:

The 8-S and 12-S resistors are in parallel, so their conductance is

8 S + 12 S = 20 S

This 20-S resistor is now in series with 5 S as shown in Fig. 2.40(b) so
that the combined conductance is

20 × 5

20 + 5
= 4 S

This is in parallel with the 6-S resistor. Hence

Geq = 6 + 4 = 10 S

We should note that the circuit in Fig. 2.40(a) is the same as that in
Fig. 2.40(c). While the resistors in Fig. 2.40(a) are expressed in siemens,
they are expressed in ohms in Fig. 2.40(c). To show that the circuits are
the same, we find Req for the circuit in Fig. 2.40(c).

Req = 1

6

∥∥∥∥
(

1

5
+ 1

8

∥∥∥∥ 1

12

)
= 1

6

∥∥∥∥
(

1

5
+ 1

20

)
= 1

6

∥∥∥∥ 1

4

=
1
6 × 1

4
1
6 + 1

4

= 1

10
�

Geq = 1

Req
= 10 S

This is the same as we obtained previously.

P R A C T I C E P R O B L E M 2 . 1 1

Calculate Geq in the circuit of Fig. 2.41.

4 S

6 S

8 S

2 S
12 Ω

Geq

Figure 2.41 For Practice Prob. 2.11.

Answer: 4 S.

E X A M P L E 2 . 1 2

Find io and vo in the circuit shown in Fig. 2.42(a). Calculate the power
dissipated in the 3-� resistor.

Solution:

The 6-� and 3-� resistors are in parallel, so their combined resistance is

6 � ‖ 3 � = 6 × 3

6 + 3
= 2 �
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Thus our circuit reduces to that shown in Fig. 2.42(b). Notice that vo is
not affected by the combination of the resistors because the resistors are
in parallel and therefore have the same voltage vo. From Fig. 2.42(b), we
can obtain vo in two ways. One way is to apply Ohm’s law to get

i = 12

4 + 2
= 2 A

and hence, vo = 2i = 2 × 2 = 4 V. Another way is to apply voltage
division, since the 12 V in Fig. 2.42(b) is divided between the 4-� and
2-� resistors. Hence,

vo = 2

2 + 4
(12 V) = 4 V

a

b

(a)

12 V

4 Ωi io

6 Ω 3 Ωvo

+

−

a

b

(b)

12 V

4 Ωi

+
− 2 Ωvo

+

−

+
−

Figure 2.42 For Example 2.12: (a) original
circuit, (b) its equivalent circuit.

Similarly, io can be obtained in two ways. One approach is to apply
Ohm’s law to the 3-� resistor in Fig. 2.42(a) now that we know vo; thus,

vo = 3io = 4 	⇒ io = 4

3
A

Another approach is to apply current division to the circuit in Fig. 2.42(a)
now that we know i, by writing

io = 6

6 + 3
i = 2

3
(2 A) = 4

3
A

The power dissipated in the 3-� resistor is

po = voio = 4

(
4

3

)
= 5.333 W

P R A C T I C E P R O B L E M 2 . 1 2

Find v1 and v2 in the circuit shown in Fig. 2.43. Also calculate i1 and i2
and the power dissipated in the 12-� and 40-� resistors.

15 V

i1

+
− 40 Ωv2

+

−
10 Ω

12 Ω

v1

6 Ω

i2

+ −

Figure 2.43 For Practice Prob. 2.12.

Answer: v1 = 5 V, i1 = 416.7 mA, p1 = 2.083 W, v2 = 10 V,
i2 = 250 mA, p2 = 2.5 W.

E X A M P L E 2 . 1 3

For the circuit shown in Fig. 2.44(a), determine: (a) the voltage vo, (b)
the power supplied by the current source, (c) the power absorbed by each
resistor.

Solution:

(a) The 6-k� and 12-k� resistors are in series so that their combined
value is 6 + 12 = 18 k�. Thus the circuit in Fig. 2.44(a) reduces to that
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shown in Fig. 2.44(b). We now apply the current division technique to
find i1 and i2.

i1 = 18,000

9000 + 18,000
(30 mA) = 20 mA

i2 = 9000

9000 + 18,000
(30 A) = 10 mA

Notice that the voltage across the 9-k� and 18-k� resistors is the same,
and vo = 9,000i1 = 18,000i2 = 180 V, as expected.

(a)

30 mA 9 kΩvo

+

−
12 kΩ

6 kΩ

(b)

30 mA 9 kΩvo

+

−
18 kΩ

i1

io i2

Figure 2.44 For Example 2.13:
(a) original circuit,
(b) its equivalent circuit.

(b) Power supplied by the source is

po = voio = 180(30) mW = 5.4 W

(c) Power absorbed by the 12-k� resistor is

p = iv = i2(i2R) = i2
2R = (10 × 10−3)2(12,000) = 1.2 W

Power absorbed by the 6-k� resistor is

p = i2
2R = (10 × 10−3)2(6000) = 0.6 W

Power absorbed by the 9-k� resistor is

p = v2
o

R
= (180)2

9000
= 3.6 W

or

p = voi1 = 180(20) mW = 3.6 W

Notice that the power supplied (5.4 W) equals the power absorbed (1.2+
0.6 + 3.6 = 5.4 W). This is one way of checking results.

P R A C T I C E P R O B L E M 2 . 1 3

For the circuit shown in Fig. 2.45, find: (a) v1 and v2, (b) the power dis-
sipated in the 3-k� and 20-k� resistors, and (c) the power supplied by
the current source.

10 mA3 kΩ 5 kΩ 20 kΩ

1 kΩ

v1

+

−
v2

+

−

Figure 2.45 For Practice Prob. 2.13.

Answer: (a) 15 V, 20 V, (b) 75 mW, 20 mW, (c) 200 mW.

http://www.mhhe.com/engcs/electrical/alexander/eetuts/tutorial/Tut2-1.htm
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†2.7 WYE-DELTA TRANSFORMATIONS
Situations often arise in circuit analysis when the resistors are neither in
parallel nor in series. For example, consider the bridge circuit in Fig.
2.46. How do we combine resistors R1 through R6 when the resistors
are neither in series nor in parallel? Many circuits of the type shown in
Fig. 2.46 can be simplified by using three-terminal equivalent networks.
These are the wye (Y) or tee (T) network shown in Fig. 2.47 and the
delta (") or pi (#) network shown in Fig. 2.48. These networks occur by
themselves or as part of a larger network. They are used in three-phase
networks, electrical filters, and matching networks. Our main interest
here is in how to identify them when they occur as part of a network and
how to apply wye-delta transformation in the analysis of that network.

vs
+
−

R1

R4

R2

R5

R3

R6

Figure 2.46 The bridge network.

1 3

2 4

R3

R2R1

(a)

1 3

2 4

R3

R2R1

(b)

Figure 2.47 Two forms of the same network: (a) Y, (b) T.

1 3

2 4

Rc

(a)

1 3

2 4

(b)

RaRb

Rc

RaRb

Figure 2.48 Two forms of the
same network: (a) ", (b) #.

Delta to Wye Conversion

Suppose it is more convenient to work with a wye network in a place
where the circuit contains a delta configuration. We superimpose a wye
network on the existing delta network and find the equivalent resistances
in the wye network. To obtain the equivalent resistances in the wye
network, we compare the two networks and make sure that the resistance
between each pair of nodes in the " (or #) network is the same as the
resistance between the same pair of nodes in the Y (or T) network. For
terminals 1 and 2 in Figs. 2.47 and 2.48, for example,

R12(Y) = R1 + R3

R12(") = Rb ‖ (Ra + Rc)
(2.46)

Setting R12(Y)= R12(") gives

R12 = R1 + R3 = Rb(Ra + Rc)

Ra + Rb + Rc

(2.47a)

Similarly,

R13 = R1 + R2 = Rc(Ra + Rb)

Ra + Rb + Rc

(2.47b)

R34 = R2 + R3 = Ra(Rb + Rc)

Ra + Rb + Rc

(2.47c)

Subtracting Eq. (2.47c) from Eq. (2.47a), we get

R1 − R2 = Rc(Rb − Ra)

Ra + Rb + Rc

(2.48)
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Adding Eqs. (2.47b) and (2.48) gives

R1 = RbRc

Ra + Rb + Rc

(2.49)

and subtracting Eq. (2.48) from Eq. (2.47b) yields

R2 = RcRa

Ra + Rb + Rc

(2.50)

Subtracting Eq. (2.49) from Eq. (2.47a), we obtain

R3 = RaRb

Ra + Rb + Rc

(2.51)

We do not need to memorize Eqs. (2.49) to (2.51). To transform a "

network to Y, we create an extra node n as shown in Fig. 2.49 and follow
this conversion rule:

Each resistor in the Y network is the product of the resistors in the two adjacent "
branches, divided by the sum of the three " resistors.

R3

RaRb

R1 R2

Rc

b

n

a

c

Figure 2.49 Superposition of Y and "

networks as an aid in transforming one to
the other.

Wye to Delta Conversion

To obtain the conversion formulas for transforming a wye network to an
equivalent delta network, we note from Eqs. (2.49) to (2.51) that

R1R2 + R2R3 + R3R1 = RaRbRc(Ra + Rb + Rc)

(Ra + Rb + Rc)2

= RaRbRc

Ra + Rb + Rc

(2.52)

Dividing Eq. (2.52) by each of Eqs. (2.49) to (2.51) leads to the following
equations:

Ra = R1R2 + R2R3 + R3R1

R1
(2.53)

Rb = R1R2 + R2R3 + R3R1

R2
(2.54)

Rc = R1R2 + R2R3 + R3R1

R3
(2.55)

From Eqs. (2.53) to (2.55) and Fig. 2.49, the conversion rule for Y to "

is as follows:
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Each resistor in the " network is the sum of all possible products of Y resistors
taken two at a time, divided by the opposite Y resistor.

The Y and " networks are said to be balanced when

R1 = R2 = R3 = RY , Ra = Rb = Rc = R" (2.56)

Under these conditions, conversion formulas become

RY = R"

3
or R" = 3RY (2.57)

One may wonder why RY is less than R". Well, we notice that the Y-
connection is like a “series” connection while the "-connection is like a
“parallel” connection.

Note that in making the transformation, we do not take anything out
of the circuit or put in anything new. We are merely substituting different
but mathematically equivalent three-terminal network patterns to create
a circuit in which resistors are either in series or in parallel, allowing us
to calculate Req if necessary.

E X A M P L E 2 . 1 4

Convert the " network in Fig. 2.50(a) to an equivalent Y network.

c

ba

10 Ω 15 Ω

(a)

Rb Ra

Rc

25 Ω

c

ba

5 Ω

3 Ω

7.5 Ω
R2R1

R3

(b)

Figure 2.50 For Example 2.14: (a) original " network, (b) Y equivalent network.

Solution:

Using Eqs. (2.49) to (2.51), we obtain
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R1 = RbRc

Ra + Rb + Rc

= 25 × 10

25 + 10 + 15
= 250

50
= 5 �

R2 = RcRa

Ra + Rb + Rc

= 25 × 15

50
= 7.5 �

R3 = RaRb

Ra + Rb + Rc

= 15 × 10

50
= 3 �

The equivalent Y network is shown in Fig. 2.50(b).

P R A C T I C E P R O B L E M 2 . 1 4

Transform the wye network in Fig. 2.51 to a delta network.

20 Ω

R2

ba

c

10 Ω

R1

R3 40 Ω

Figure 2.51 For Practice Prob. 2.14.

Answer: Ra = 140 �,Rb = 70 �,Rc = 35 �.

E X A M P L E 2 . 1 5

Obtain the equivalent resistance Rab for the circuit in Fig. 2.52 and use it
to find current i.

a a
i

bb

c n120 V
5 Ω

30 Ω

12.5 Ω

15 Ω

10 Ω

20 Ω

+
−

Figure 2.52 For Example 2.15.

Solution:

In this circuit, there are two Y networks and one"network. Transforming
just one of these will simplify the circuit. If we convert the Y network
comprising the 5-�, 10-�, and 20-� resistors, we may select

R1 = 10 �, R2 = 20 �, R3 = 5 �

Thus from Eqs. (2.53) to (2.55) we have

Ra = R1R2 + R2R3 + R3R1

R1
= 10 × 20 + 20 × 5 + 5 × 10

10

= 350

10
= 35 �

Rb = R1R2 + R2R3 + R3R1

R2
= 350

20
= 17.5 �

Rc = R1R2 + R2R3 + R3R1

R3
= 350

5
= 70 �

With the Y converted to ", the equivalent circuit (with the voltage
source removed for now) is shown in Fig. 2.53(a). Combining the three
pairs of resistors in parallel, we obtain
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70 ‖ 30 = 70 × 30

70 + 30
= 21 �

12.5 ‖ 17.5 = 12.5 × 17.5

12.5 + 17.5
= 7.2917 �

15 ‖ 35 = 15 × 35

15 + 35
= 10.5 �

so that the equivalent circuit is shown in Fig. 2.53(b). Hence, we find

Rab = (7.292 + 10.5) ‖ 21 = 17.792 × 21

17.792 + 21
= 9.632 �

Then

i = vs

Rab

= 120

9.632
= 12.458 A

a

b

30 Ω70 Ω

17.5 Ω

35 Ω

12.5 Ω

15 Ω

(a)

a

b

21 Ω

(b)

7.292 Ω

10.5 Ω

Figure 2.53 Equivalent circuits to Fig. 2.52, with the voltage removed.

P R A C T I C E P R O B L E M 2 . 1 5

For the bridge network in Fig. 2.54, find Rab and i.

24 Ω

100 V

i

30 Ω

10 Ω

50 Ω

13 Ω

20 Ω
+
−

b

a

Figure 2.54 For Practice Prob. 2.15.

Answer: 40 �, 2.5 A.

†2.8 APPLICATIONS
Resistors are often used to model devices that convert electrical energy
into heat or other forms of energy. Such devices include conducting
wire, lightbulbs, electric heaters, stoves, ovens, and loudspeakers. In this
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section, we will consider two real-life problems that apply the concepts
developed in this chapter: electrical lighting systems and design of dc
meters.

So far, we have assumed that connecting wires
are perfect conductors (i.e., conductors of zero
resistance). In real physical systems, however,
the resistance of the connecting wire may be ap-
preciably large, and the modeling of the system
must include that resistance.

2 . 8 . 1 L i g h t i n g S y s t ems
Lighting systems, such as in a house or on a Christmas tree, often consist
of N lamps connected either in parallel or in series, as shown in Fig.
2.55. Each lamp is modeled as a resistor. Assuming that all the lamps are
identical and Vo is the power-line voltage, the voltage across each lamp
is Vo for the parallel connection and Vo/N for the series connection. The
series connection is easy to manufacture but is seldom used in practice,
for at least two reasons. First, it is less reliable; when a lamp fails, all the
lamps go out. Second, it is harder to maintain; when a lamp is bad, one
must test all the lamps one by one to detect the faulty one.

Vo

+

−
Power
plug

1 2 3 N

Lamp(a)

Vo

+

−

1
2

3

N

(b)

Figure 2.55 (a) Parallel connection of lightbulbs, (b) series connection of lightbulbs.

E X A M P L E 2 . 1 6

Three lightbulbs are connected to a 9-V battery as shown in Fig. 2.56(a).
Calculate: (a) the total current supplied by the battery, (b) the current
through each bulb, (c) the resistance of each bulb.

(a)

9 V
10 W

15 W

20 W

(b)

9 V

+

−

+

−

+

−

I1

I2

V3

V2

V1 R1

I

R3

R2

Figure 2.56 (a) Lighting system with three bulbs, (b) resistive circuit equivalent
model.



56 PART 1 DC Circuits

Solution:

(a) The total power supplied by the battery is equal to the total power
absorbed by the bulbs, that is,

p = 15 + 10 + 20 = 45 W

Since p = V I , then the total current supplied by the battery is

I = p

V
= 45

9
= 5 A

(b) The bulbs can be modeled as resistors as shown in Fig. 2.56(b). Since
R1 (20-W bulb) is in parallel with the battery as well as the series com-
bination of R2 and R3,

V1 = V2 + V3 = 9 V

The current through R1 is

I1 = p1

V1
= 20

9
= 2.222 A

By KCL, the current through the series combination of R2 and R3

is

I2 = I − I1 = 5 − 2.222 = 2.778 A

(c) Since p = I 2R,

R1 = p1

I 2
1

= 20

2.2222
= 4.05 �

R2 = p2

I 2
2

= 15

2.7772
= 1.945 �

R3 = p3

I 2
3

= 10

2.7772
= 1.297 �

P R A C T I C E P R O B L E M 2 . 1 6

Refer to Fig. 2.55 and assume there are 10 lightbulbs, each with a power
rating of 40 W. If the voltage at the plug is 110 V for the parallel and
series connections, calculate the current through each bulb for both cases.

Answer: 0.364 A (parallel), 3.64 A (series).

+
+
−

−

Vin

Vout

a

b

c

Max

Min

Figure 2.57 The potentiometer
controlling potential levels.

2 . 8 . 2 Des i g n o f DC Mete r s
By their nature, resistors are used to control the flow of current. We take
advantage of this property in several applications, such as in a poten-
tiometer (Fig. 2.57). The word potentiometer, derived from the words
potential and meter, implies that potential can be metered out. The po-
tentiometer (or pot for short) is a three-terminal device that operates on
the principle of voltage division. It is essentially an adjustable voltage
divider. As a voltage regulator, it is used as a volume or level control on
radios, TVs, and other devices. In Fig. 2.57,

Vout = Vbc = Rbc

Rac

Vin (2.58)

where Rac = Rab +Rbc. Thus, Vout decreases or increases as the sliding
contact of the pot moves toward c or a, respectively.
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Another application where resistors are used to control current flow
is in the analog dc meters—the ammeter, voltmeter, and ohmmeter, which
measure current, voltage, and resistance, respectively. Each of these me-
ters employs the d’Arsonval meter movement, shown in Fig. 2.58. The
movement consists essentially of a movable iron-core coil mounted on
a pivot between the poles of a permanent magnet. When current flows
through the coil, it creates a torque which causes the pointer to deflect.
The amount of current through the coil determines the deflection of the
pointer, which is registered on a scale attached to the meter movement.
For example, if the meter movement is rated 1 mA, 50 �, it would take
1 mA to cause a full-scale deflection of the meter movement. By introduc-
ing additional circuitry to the d’Arsonval meter movement, an ammeter,
voltmeter, or ohmmeter can be constructed.

An instrument capable of measuring voltage, cur-
rent, and resistance is called a multimeter or a
volt-ohm meter (VOM).

A load is a component that is receiving energy (an
energy sink), as opposed to a generator supplying
energy (an energy source). More about loading
will be discussed in Section 4.9.1.

Consider Fig. 2.59, where an analog voltmeter and ammeter are
connected to an element. The voltmeter measures the voltage across a
load and is therefore connected in parallel with the element. As shown
in Fig. 2.60(a), the voltmeter consists of a d’Arsonval movement in par-
allel with a resistor whose resistance Rm is deliberately made very large
(theoretically, infinite), to minimize the current drawn from the circuit.
To extend the range of voltage that the meter can measure, series multi-
plier resistors are often connected with the voltmeters, as shown in Fig.
2.60(b). The multiple-range voltmeter in Fig. 2.60(b) can measure volt-
age from 0 to 1 V, 0 to 10 V, or 0 to 100 V, depending on whether the
switch is connected to R1, R2, or R3, respectively.

Let us calculate the multiplier resistor Rn for the single-range volt-
meter in Fig. 2.60(a), or Rn = R1, R2, or R3 for the multiple-range
voltmeter in Fig. 2.60(b). We need to determine the value of Rn to be
connected in series with the internal resistance Rm of the voltmeter. In
any design, we consider the worst-case condition. In this case, the worst
case occurs when the full-scale current Ifs = Im flows through the meter.
This should also correspond to the maximum voltage reading or the full-
scale voltage Vfs. Since the multiplier resistance Rn is in series with the

scale

pointer

spring

permanent magnet

rotating coil

stationary iron core

spring

N

S

Figure 2.58 A d’Arsonval meter movement.

V

A

V

I

+

−
Voltmeter

Ammeter

Element

Figure 2.59 Connection of a
voltmeter and an ammeter to an
element.
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Probes V

+

−

R1

R2

R3

1 V

10 V

100 V

Switch

Im

(b)

Rn

Im

Multiplier

Probes V

+

−

(a)

Rm

Meter

Rm

Meter

Figure 2.60 Voltmeters: (a) single-range type, (b) multiple-range type.

internal resistance Rm,

Vfs = Ifs(Rn + Rm) (2.59)

From this, we obtain

Rn = Vfs

Ifs
− Rm (2.60)

Im

I

Probes

(a)

RnIn

(b)

R1

R2

R3

10 mA

100 mA

1 A

Switch

Im

I

Probes

Rm

Meter

Rm

Meter

Figure 2.61 Ammeters: (a) single-range type,
(b) multiple-range type.

Similarly, the ammeter measures the current through the load and
is connected in series with it. As shown in Fig. 2.61(a), the ammeter con-
sists of a d’Arsonval movement in parallel with a resistor whose resistance
Rm is deliberately made very small (theoretically, zero) to minimize the
voltage drop across it. To allow multiple range, shunt resistors are often
connected in parallel with Rm as shown in Fig. 2.61(b). The shunt resis-
tors allow the meter to measure in the range 0–10 mA, 0–100 mA, or
0–1 A, depending on whether the switch is connected to R1, R2, or
R3, respectively.

Now our objective is to obtain the multiplier shuntRn for the single-
range ammeter in Fig. 2.61(a), or Rn = R1, R2, or R3 for the multiple-
range ammeter in Fig. 2.61(b). We notice that Rm and Rn are in parallel
and that at full-scale reading I = Ifs = Im + In, where In is the current
through the shunt resistor Rn. Applying the current division principle
yields

Im = Rn

Rn + Rm

Ifs
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or

Rn = Im

Ifs − Im
Rm (2.61)

The resistance Rx of a linear resistor can be measured in two ways.
An indirect way is to measure the current I that flows through it by
connecting an ammeter in series with it and the voltage V across it by
connecting a voltmeter in parallel with it, as shown in Fig. 2.62(a). Then

Rx = V

I
(2.62)

The direct method of measuring resistance is to use an ohmmeter. An
ohmmeter consists basically of a d’Arsonval movement, a variable resistor
or potentiometer, and a battery, as shown in Fig. 2.62(b). Applying KVL
to the circuit in Fig. 2.62(b) gives

E = (R + Rm + Rx)Im

or

Rx = E

Im
− (R + Rm) (2.63)

The resistor R is selected such that the meter gives a full-scale deflection,
that is, Im = Ifs when Rx = 0. This implies that

E = (R + Rm)Ifs (2.64)

Substituting Eq. (2.64) into Eq. (2.63) leads to

Rx =
(
Ifs

Im
− 1

)
(R + Rm) (2.65)

Im

R

E Rx

Ohmmeter

(b)

(a)

V

A

+

−
VRx

I

Rm

Figure 2.62 Two ways of measuring
resistance: (a) using an ammeter and a
voltmeter, (b) using an ohmmeter.

As mentioned, the types of meters we have discussed are known as
analog meters and are based on the d’Arsonval meter movement. Another
type of meter, called a digital meter, is based on active circuit elements
such as op amps. For example, a digital multimeter displays measure-
ments of dc or ac voltage, current, and resistance as discrete numbers,
instead of using a pointer deflection on a continuous scale as in an ana-
log multimeter. Digital meters are what you would most likely use in a
modern lab. However, the design of digital meters is beyond the scope
of this book.

E X A M P L E 2 . 1 7

Following the voltmeter setup of Fig. 2.60, design a voltmeter for the fol-
lowing multiple ranges:
(a) 0–1 V (b) 0–5 V (c) 0–50 V (d) 0–100 V
Assume that the internal resistance Rm = 2 k� and the full-scale current
Ifs = 100 µA.

Solution:

We apply Eq. (2.60) and assume that R1, R2, R3, and R4 correspond with
ranges 0–1 V, 0–5 V, 0–50 V, and 0–100 V, respectively.
(a) For range 0–1 V,

R1 = 1

100 × 10−6
− 2000 = 10,000 − 2000 = 8 k�
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(b) For range 0–5 V,

R2 = 5

100 × 10−6
− 2000 = 50,000 − 2000 = 48 k�

(c) For range 0–50 V,

R3 = 50

100 × 10−6
− 2000 = 500,000 − 2000 = 498 k�

(d) For range 0–100 V,

R4 = 100 V

100 × 10−6
− 2000 = 1,000,000 − 2000 = 998 k�

Note that the ratio of the total resistance (Rn+Rm) to the full-scale voltage
Vfs is constant and equal to 1/Ifs for the four ranges. This ratio (given in
ohms per volt, or �/V) is known as the sensitivity of the voltmeter. The
larger the sensitivity, the better the voltmeter.

P R A C T I C E P R O B L E M 2 . 1 7

Following the ammeter setup of Fig. 2.61, design an ammeter for the fol-
lowing multiple ranges:
(a) 0–1 A (b) 0–100 mA (c) 0–10 mA
Take the full-scale meter current as Im = 1 mA and the internal resistance
of the ammeter as Rm = 50 �.

Answer: Shunt resistors: 0.05 �, 0.505 �, 5.556 �.

2.9 SUMMARY
1. A resistor is a passive element in which the voltage v across it is

directly proportional to the current i through it. That is, a resistor is
a device that obeys Ohm’s law,

v = iR

where R is the resistance of the resistor.

2. A short circuit is a resistor (a perfectly conducting wire) with zero
resistance (R = 0). An open circuit is a resistor with infinite resis-
tance (R = ∞).

3. The conductance G of a resistor is the reciprocal of its resistance:

G = 1

R

4. A branch is a single two-terminal element in an electric circuit. A
node is the point of connection between two or more branches. A
loop is a closed path in a circuit. The number of branches b, the
number of nodes n, and the number of independent loops l in a
network are related as

b = l + n − 1
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5. Kirchhoff’s current law (KCL) states that the currents at any node
algebraically sum to zero. In other words, the sum of the currents
entering a node equals the sum of currents leaving the node.

6. Kirchhoff’s voltage law (KVL) states that the voltages around a
closed path algebraically sum to zero. In other words, the sum of
voltage rises equals the sum of voltage drops.

7. Two elements are in series when they are connected sequentially,
end to end. When elements are in series, the same current flows
through them (i1 = i2). They are in parallel if they are connected to
the same two nodes. Elements in parallel always have the same
voltage across them (v1 = v2).

8. When two resistors R1 (= 1/G1) and R2 (= 1/G2) are in series,
their equivalent resistance Req and equivalent conductance Geq are

Req = R1 + R2, Geq = G1G2

G1 + G2

9. When two resistors R1 (= 1/G1) and R2 (= 1/G2) are in parallel,
their equivalent resistance Req and equivalent conductance Geq are

Req = R1R2

R1 + R2
, Geq = G1 + G2

10. The voltage division principle for two resistors in series is

v1 = R1

R1 + R2
v, v2 = R2

R1 + R2
v

11. The current division principle for two resistors in parallel is

i1 = R2

R1 + R2
i, i2 = R1

R1 + R2
i

12. The formulas for a delta-to-wye transformation are

R1 = RbRc

Ra + Rb + Rc

, R2 = RcRa

Ra + Rb + Rc

R3 = RaRb

Ra + Rb + Rc

13. The formulas for a wye-to-delta transformation are

Ra = R1R2 + R2R3 + R3R1

R1
, Rb = R1R2 + R2R3 + R3R1

R2

Rc = R1R2 + R2R3 + R3R1

R3

14. The basic laws covered in this chapter can be applied to the prob-
lems of electrical lighting and design of dc meters.

R E V I EW QU E S T I ON S

2.1 The reciprocal of resistance is:
(a) voltage (b) current
(c) conductance (d) coulombs

2.2 An electric heater draws 10 A from a 120-V line.
The resistance of the heater is:
(a) 1200 � (b) 120 �

(c) 12 � (d) 1.2 �
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2.3 The voltage drop across a 1.5-kW toaster that draws
12 A of current is:
(a) 18 kV (b) 125 V
(c) 120 V (d) 10.42 V

2.4 The maximum current that a 2W, 80 k� resistor can
safely conduct is:
(a) 160 kA (b) 40 kA
(c) 5 mA (d) 25 µA

2.5 A network has 12 branches and 8 independent loops.
How many nodes are there in the network?
(a) 19 (b) 17 (c) 5 (d) 4

2.6 The current I in the circuit in Fig. 2.63 is:
(a) −0.8 A (b) −0.2 A
(c) 0.2 A (d) 0.8 A

3 V 5 V+
−

+
−

4 Ω I

6 Ω

Figure 2.63 For Review Question 2.6.

2.7 The current Io in Fig. 2.64 is:
(a) −4 A (b) −2 A (c) 4 A (d) 16 A

10 A

4 A2 A

Io

Figure 2.64 For Review Question 2.7.

2.8 In the circuit in Fig. 2.65, V is:
(a) 30 V (b) 14 V (c) 10 V (d) 6 V

+
−

+
−

+ −

+ −

10 V

12 V 8 V

V

Figure 2.65 For Review Question 2.8.

2.9 Which of the circuits in Fig. 2.66 will give you
Vab = 7 V?

3 V

a

b

5 V

1 V

(a)

+
−

+ −

+ −

3 V

a

b

5 V

1 V

(b)

+
−

+−

+ −

3 V

a

5 V

1 V

(c)

+
−

+ −

+− b

3 V

a

5 V

1 V

(d)

+
−

+−

+− b

Figure 2.66 For Review Question 2.9.

2.10 The equivalent resistance of the circuit in Fig. 2.67
is:
(a) 4 k� (b) 5 k� (c) 8 k� (d) 14 k�

2 kΩ 3 kΩ

Req
6 kΩ 3 kΩ

Figure 2.67 For Review Question 2.10.

Answers: 2.1c, 2.2c, 2.3b, 2.4c, 2.5c, 2.6b, 2.7a, 2.8d, 2.9d, 2.10a.
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P RO B L E M S

Section 2.2 Ohm’s Law

2.1 The voltage across a 5-k� resistor is 16 V. Find the
current through the resistor.

2.2 Find the hot resistance of a lightbulb rated 60 W,
120 V.

2.3 When the voltage across a resistor is 120 V, the
current through it is 2.5 mA. Calculate its
conductance.

2.4 (a) Calculate current i in Fig. 2.68 when the switch
is in position 1.

(b) Find the current when the switch is in position 2.

+
−

150 Ω100 Ω
3 V

1 2

i

Figure 2.68 For Prob. 2.4.

Section 2.3 Nodes, Branches, and Loops

2.5 For the network graph in Fig. 2.69, find the number
of nodes, branches, and loops.

Figure 2.69 For Prob. 2.5.

2.6 In the network graph shown in Fig. 2.70, determine
the number of branches and nodes.

Figure 2.70 For Prob. 2.6.

2.7 Determine the number of branches and nodes in the
circuit in Fig. 2.71.

+
−

6 Ω3 Ω

2 Ω
5 Ω

10 V5i
4 Ω i

Figure 2.71 For Prob. 2.7.

Section 2.4 Kirchhoff’s Laws

2.8 Use KCL to obtain currents i1, i2, and i3 in the
circuit shown in Fig. 2.72.

8 mA

9 mA

12 mA

i1

i3i2

Figure 2.72 For Prob. 2.8.

2.9 Find i1, i2, and i3 in the circuit in Fig. 2.73.

i2

i3

10 A i1 3 A

2 A

1 A

Figure 2.73 For Prob. 2.9.
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2.10 Determine i1 and i2 in the circuit in Fig. 2.74.

3 A

4 A –2 A

i2

i1

Figure 2.74 For Prob. 2.10.

2.11 Determine v1 through v4 in the circuit in Fig. 2.75.

12 V

+

−

10 V

−

+

+ −8 V

+

−v1

+

−
v3

+

−
v2

−

+
v4

− +6 V

Figure 2.75 For Prob. 2.11.

2.12 In the circuit in Fig. 2.76, obtain v1, v2, and v3.

+

−
20 V

+

−
v1

+

−
v3

25 V 10 V

15 V

v2

+ −

+− + − + −

Figure 2.76 For Prob. 2.12.

2.13 Find v1 and v2 in the circuit in Fig. 2.77.

6 V v1+
−

+

−

v1

v2

+ − + −

+ −

+ −

12 V 10 V

Figure 2.77 For Prob. 2.13.

2.14 Obtain v1 through v3 in the circuit of Fig. 2.78.

24 V

12 V

10 Vv3
v2+

−

+−

+
−

+

−
+

−

v1+ −

Figure 2.78 For Prob. 2.14.

2.15 Find I and Vab in the circuit of Fig. 2.79.

5 Ω3 Ω

+
−

+
−

+

−
Vab30 V 8 V

b

a

+−

10 V

I

Figure 2.79 For Prob. 2.15.

2.16 From the circuit in Fig. 2.80, find I , the power
dissipated by the resistor, and the power supplied by
each source.

−8 V

10 V

12 V 3 Ω+
−

+ −

+ −
I

Figure 2.80 For Prob. 2.16.
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2.17 Determine io in the circuit of Fig. 2.81.

36 V +
−

4 Ω

+
− 5io

io

Figure 2.81 For Prob. 2.17.

2.18 Calculate the power dissipated in the 5-� resistor in
the circuit of Fig. 2.82.

–
+45 V

1 Ω

5 Ω

3Vo

+ −Vo
+
−

Figure 2.82 For Prob. 2.18.

2.19 Find Vo in the circuit in Fig. 2.83 and the power
dissipated by the controlled source.

10 A6 Ω 2Vo

+ −

4 Ω

Vo

Figure 2.83 For Prob. 2.19.

2.20 For the circuit in Fig. 2.84, find Vo/Vs in terms of
α, R1, R2, R3, and R4. If R1 = R2 = R3 = R4,
what value of α will produce |Vo/Vs | = 10?

Vo+
−

+

−
R4R3

R1

R2 aIoVs

Io

Figure 2.84 For Prob. 2.20.

2.21 For the network in Fig. 2.85, find the current,
voltage, and power associated with the 20-k�
resistor.

0.01VoVo

+

−
20 kΩ5 kΩ10 kΩ5 mA

Figure 2.85 For Prob. 2.21.

Sections 2.5 and 2.6 Series and Parallel
Resistors

2.22 For the circuit in Fig. 2.86, find i1 and i2.

4 kΩ6 kΩ20 mA

i1 i2

Figure 2.86 For Prob. 2.22.

2.23 Find v1 and v2 in the circuit in Fig. 2.87.

24 V

3 kΩ

9 kΩ

v1

v2+
−

+ −
+

−

Figure 2.87 For Prob. 2.23.

2.24 Find v1, v2, and v3 in the circuit in Fig. 2.88.

40 V

14 Ω

15 Ω

v1

v2+
−

+ −
+

−
10 Ωv3

+

−

Figure 2.88 For Prob. 2.24.

2.25 Calculate v1, i1, v2, and i2 in the circuit of Fig. 2.89.

3 Ω

4 Ω 6 Ω

i1 i2v1

v2+
−

+ −

+

−
12 V

Figure 2.89 For Prob. 2.25.
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2.26 Find i, v, and the power dissipated in the 6-�
resistor in Fig. 2.90.

9 A 4 Ω

8 Ω

6 Ω

i
+

−
v

Figure 2.90 For Prob. 2.26.

2.27 In the circuit in Fig. 2.91, find v, i, and the power
absorbed by the 4-� resistor.

20 V 6 Ω10 Ω

5 Ω

+
−

4 Ω

+

−
v

i

Figure 2.91 For Prob. 2.27.

2.28 Find i1 through i4 in the circuit in Fig. 2.92.

20 A

10 Ω

40 Ω

i4

i3

20 Ω

30 Ω

i2

i1

Figure 2.92 For Prob. 2.28.

2.29 Obtain v and i in the circuit in Fig. 2.93.

9 A 2 S1 S

4 S 6 S

3 S
+

−
v

i

Figure 2.93 For Prob. 2.29.

2.30 Determine i1, i2, v1, and v2 in the ladder network in
Fig. 2.94. Calculate the power dissipated in the 2-�
resistor.

28 V 13 Ω15 Ω

6 Ω

+
−

8 Ω 2 Ω4 Ω

−
10 Ω12 Ω

+
v1

−

+
v2

i1 i2

Figure 2.94 For Prob. 2.30.

2.31 Calculate Vo and Io in the circuit of Fig. 2.95.

50 V

30 Ω70 Ω

+
−

5 Ω20 Ω
+

−
Vo

Io

Figure 2.95 For Prob. 2.31.

2.32 Find Vo and Io in the circuit of Fig. 2.96.

4 V 6 Ω3 Ω

1 Ω

+

−

Vo

8 Ω

2 Ω

+
−

Io

Figure 2.96 For Prob. 2.32.

2.33 In the circuit of Fig. 2.97, find R if Vo = 4V.

20 V 6 Ω

16 Ω

+
−

+

−
VoR

Figure 2.97 For Prob. 2.33.
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2.34 Find I and Vs in the circuit of Fig. 2.98 if the current
through the 3-� resistor is 2 A.

4 Ω

2 A
10 Ω

+
−

2 Ω

3 Ω6 Ω

Vs

I

Figure 2.98 For Prob. 2.34.

2.35 Find the equivalent resistance at terminals a-b for
each of the networks in Fig. 2.99.

R

(a) (b) (c)

a

b       

3R R

R

R

(d) (e)

a

b       

R

R

R

R

a

b       

R

R

R

R
a b

R 2R 3R

a

b       

Figure 2.99 For Prob. 2.35.

2.36 For the ladder network in Fig. 2.100, find I and Req.

10 V 6 Ω

2 Ω

+
−

3 Ω 1 Ω

2 Ω4 Ω

I

Req

Figure 2.100 For Prob. 2.36.

2.37 If Req = 50 � in the circuit in Fig. 2.101, find R.

Req

30 Ω
10 Ω

60 Ω

R

12 Ω 12 Ω 12 Ω

Figure 2.101 For Prob. 2.37.

2.38 Reduce each of the circuits in Fig. 2.102 to a single
resistor at terminals a-b.

8 Ω

5 Ω

20 Ω

30 Ω

a b

(a)

5 Ω

4 Ω

8 Ω

5 Ω

10 Ω

4 Ω

2 Ω

3 Ω

a b

(b)

Figure 2.102 For Prob. 2.38.

2.39 Calculate the equivalent resistance Rab at terminals
a-b for each of the circuits in Fig. 2.103.

40 Ω10 Ω

5 Ω

20 Ω

(a)

a

b

30 Ω
80 Ω

60 Ω

(b)

a

b

10 Ω

20 Ω

Figure 2.103 For Prob. 2.39.
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2.40 Obtain the equivalent resistance at the terminals a-b
for each of the circuits in Fig. 2.104.

11 Ω10 Ω
20 Ω

6 Ω5 Ω

4 Ω

9 Ω8 Ω

4 Ω
5 Ω15 Ω

(b)

a

b

(a)

a

b

10 Ω

20 Ω

60 Ω 30 Ω

Figure 2.104 For Prob. 2.40.

2.41 Find Req at terminals a-b for each of the circuits in
Fig. 2.105.

(a)

a

b

40 Ω

70 Ω

30 Ω

60 Ω

20 Ω

(b)

a

b

6 Ω

40 Ω

60 Ω

30 Ω

20 Ω

50 Ω

80 Ω

10 Ω

70 Ω

4 Ω

8 Ω

Figure 2.105 For Prob. 2.41.

2.42 Find the equivalent resistance Rab in the circuit of
Fig. 2.106.

ad e

f

b

c

6 Ω

3 Ω

5 Ω

20 Ω

10 Ω 8 Ω

Figure 2.106 For Prob. 2.42.

Section 2.7 Wye-Delta Transformations

2.43 Convert the circuits in Fig. 2.107 from Y to ".

10 Ω 10 Ω

10 Ω

ba

c

(a)

20 Ω30 Ω

50 Ω

a

(b)

b

c

Figure 2.107 For Prob. 2.43.

2.44 Transform the circuits in Fig. 2.108 from " to Y.

12 Ω

12 Ω 12 Ω

(a)

a b

c

60 Ω

30 Ω 10 Ω

(b)

a b

c

Figure 2.108 For Prob. 2.44.
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2.45 What value of R in the circuit of Fig. 2.109 would
cause the current source to deliver 800 mW to the
resistors?

30 mA

R R

R

R

R

Figure 2.109 For Prob. 2.45.

2.46 Obtain the equivalent resistance at the terminals a-b
for each of the circuits in Fig. 2.110.

(a)

b

a

30 Ω

10 Ω
10 Ω

20 Ω

20 Ω10 Ω

20 Ω10 Ω

30 Ω

25 Ω

(b)

b

a

15 Ω5 Ω

Figure 2.110 For Prob. 2.46.

2.47∗ Find the equivalent resistance Rab in each of the
circuits of Fig. 2.111. Each resistor is 100 �.

(a)

b

a

(b)

b

a

Figure 2.111 For Prob. 2.47.

2.48∗ Obtain the equivalent resistance Rab in each of the
circuits of Fig. 2.112. In (b), all resistors have a
value of 30 �.

(b)

40 Ω

50 Ω

10 Ω

60 Ω

30 Ω

20 Ω

(a)

b

a

80 Ω

30 Ω
a

b

Figure 2.112 For Prob. 2.48.

2.49 Calculate Io in the circuit of Fig. 2.113.

20 Ω

40 Ω

60 Ω

50 Ω10 Ω

20 Ω

24 V +
−

Io

Figure 2.113 For Prob. 2.49.

∗An asterisk indicates a challenging problem.
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2.50 Determine V in the circuit of Fig. 2.114.

100 V

30 Ω

15 Ω 10 Ω16 Ω

35 Ω 12 Ω 20 Ω+
− V

+

−

Figure 2.114 For Prob. 2.50.

2.51∗ Find Req and I in the circuit of Fig. 2.115.

2 Ω4 Ω

12 Ω
6 Ω 1 Ω

8 Ω 2 Ω

3 Ω10 Ω
5 Ω

4 Ω
20 V +

−

Req

I

Figure 2.115 For Prob. 2.51.

Section 2.8 Applications

2.52 The lightbulb in Fig. 2.116 is rated 120 V, 0.75 A.
Calculate Vs to make the lightbulb operate at the
rated conditions.

+
−

40 Ω

Vs 80 ΩBulb

Figure 2.116 For Prob. 2.52.

2.53 Three lightbulbs are connected in series to a 100-V
battery as shown in Fig. 2.117. Find the current I
through the bulbs.

30 W 40 W 50 W

100 V +
−

I

Figure 2.117 For Prob. 2.53.

2.54 If the three bulbs of Prob. 2.53 are connected in
parallel to the 100-V battery, calculate the current
through each bulb.

2.55 As a design engineer, you are asked to design a
lighting system consisting of a 70-W power supply
and two lightbulbs as shown in Fig. 2.118. You must
select the two bulbs from the following three
available bulbs.

R1 = 80 �, cost = $0.60 (standard size)
R2 = 90 �, cost = $0.90 (standard size)
R3 = 100 �, cost = $0.75 (nonstandard size)

The system should be designed for minimum cost
such that I = 1.2 A ± 5 percent.

I

Rx Ry

70 W
Power
Supply

+

−

Figure 2.118 For Prob. 2.55.

2.56 If an ammeter with an internal resistance of 100 �
and a current capacity of 2 mA is to measure 5 A,
determine the value of the resistance needed.
Calculate the power dissipated in the shunt resistor.

2.57 The potentiometer (adjustable resistor) Rx in Fig.
2.119 is to be designed to adjust current ix from 1 A
to 10 A. Calculate the values of R and Rx to achieve
this.

+
−

ix R

Rx

ix
110 V

Figure 2.119 For Prob. 2.57.

2.58 A d’Arsonval meter with an internal resistance of 1
k� requires 10 mA to produce full-scale deflection.
Calculate the value of a series resistance needed to
measure 50 V of full scale.
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2.59 A 20-k�/V voltmeter reads 10 V full scale.
(a) What series resistance is required to make the

meter read 50 V full scale?
(b) What power will the series resistor dissipate

when the meter reads full scale?
2.60 (a) Obtain the voltage vo in the circuit of Fig.

2.120(a).
(b) Determine the voltage v′

o measured when a
voltmeter with 6-k� internal resistance is
connected as shown in Fig. 2.120(b).

(c) The finite resistance of the meter introduces an
error into the measurement. Calculate the
percent error as

∣∣∣∣vo − v′
o

vo

∣∣∣∣ × 100%

(d) Find the percent error if the internal resistance
were 36 k�.

+

−
2 mA

1 kΩ

5 kΩ 4 kΩ vo

(a)

(b)

2 mA
+

−

1 kΩ

5 kΩ 4 kΩ Voltmetervo

Figure 2.120 For Prob. 2.60.

2.61 (a) Find the current i in the circuit of Fig. 2.121(a).
(b) An ammeter with an internal resistance of 1 � is

inserted in the network to measure i ′ as shown in
Fig. 2.121(b). What is i ′?

(c) Calculate the percent error introduced by the
meter as

∣∣∣∣ i − i ′

i

∣∣∣∣ × 100%

+
−

i

4 V

16 Ω

40 Ω 60 Ω

(a)

+
−

i'

4 V

16 Ω

40 Ω 60 Ω

(b)

Ammeter

Figure 2.121 For Prob. 2.61.

2.62 A voltmeter is used to measure Vo in the circuit in
Fig. 2.122. The voltmeter model consists of an ideal
voltmeter in parallel with a 100-k� resistor. Let
Vs = 40 V, Rs = 10 k�, and R1 = 20 k�. Calculate
Vo with and without the voltmeter when
(a) R2 = 1 k� (b) R2 = 10 k�
(c) R2 = 100 k�

+

−

+
−

V100 kΩVo

Vs

Rs

R1

R2

Figure 2.122 For Prob. 2.62.

2.63 An ammeter model consists of an ideal ammeter in
series with a 20-� resistor. It is connected with a
current source and an unknown resistor Rx as shown
in Fig. 2.123. The ammeter reading is noted. When
a potentiometer R is added and adjusted until the
ammeter reading drops to one half its previous
reading, then R = 65 �. What is the value of Rx?

I

A

R

Rx

20 Ω
Ammeter
model

Figure 2.123 For Prob. 2.63.

2.64 The circuit in Fig. 2.124 is to control the speed of a
motor such that the motor draws currents 5 A, 3 A,
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and 1 A when the switch is at high, medium, and
low positions, respectively. The motor can be
modeled as a load resistance of 20 m�. Determine
the series dropping resistances R1, R2, and R3.

6 V

High

Medium

Low

10-A, 0.01-Ω fuse
R1

R2

R3

Motor

Figure 2.124 For Prob. 2.64.

2.65 An ohmmeter is constructed with a 2-V battery and
0.1-mA (full-scale) meter with 100-� internal
resistance.
(a) Calculate the resistance of the (variable) resistor

required to be in series with the meter and the
battery.

(b) Determine the unknown resistance across the
terminals of the ohmmeter that will cause the
meter to deflect half scale.

COM P R E H EN S I V E P RO B L E M S

2.66 An electric heater connected to a 120-V source
consists of two identical 0.4-� elements made of
Nichrome wire. The elements provide low heat
when connected in series and high heat when
connected in parallel. Find the power at low and
high heat settings.

2.67 Suppose your circuit laboratory has the following
standard commercially available resistors in large
quantities:

1.8 � 20 � 300 � 24 k� 56 k�

Using series and parallel combinations and a
minimum number of available resistors, how would
you obtain the following resistances for an
electronic circuit design?
(a) 5 � (b) 311.8 �

(c) 40 k� (d) 52.32 k�

2.68 In the circuit in Fig. 2.125, the wiper divides the
potentiometer resistance between αR and (1 − α)R,
0 ≤ α ≤ 1. Find vo/vs .

vo

+

−

+
− R

R

aR

vs

Figure 2.125 For Prob. 2.68.

2.69 An electric pencil sharpener rated 240 mW, 6 V is
connected to a 9-V battery as shown in Fig. 2.126.
Calculate the value of the series-dropping resistor
Rx needed to power the sharpener.

9 V

Switch Rx

Figure 2.126 For Prob. 2.69.

2.70 A loudspeaker is connected to an amplifier as shown
in Fig. 2.127. If a 10-� loudspeaker draws the
maximum power of 12 W from the amplifier,
determine the maximum power a 4-� loudspeaker
will draw.

Amplifier

Loudspeaker

Figure 2.127 For Prob. 2.70.

2.71 In a certain application, the circuit in Fig. 2.128
must be designed to meet these two criteria:
(a) Vo/Vs = 0.05 (b) Req = 40 k�
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If the load resistor 5 k� is fixed, find R1 and R2 to
meet the criteria.

Vs
+
−

+

−
5 kΩVoR2

R1

Req

Figure 2.128 For Prob. 2.71.

2.72 The pin diagram of a resistance array is shown in
Fig. 2.129. Find the equivalent resistance between
the following:
(a) 1 and 2 (b) 1 and 3 (c) 1 and 4

20 Ω 20 Ω

40 Ω
10 Ω

10 Ω

1 2

34

80 Ω

Figure 2.129 For Prob. 2.72.

2.73 Two delicate devices are rated as shown in Fig.
2.130. Find the values of the resistors R1 and R2

needed to power the devices using a 24-V battery.

Device 1

Device 2
24 V

R1

R2

60-mA, 2-Ω fuse

9 V, 45 mW

24 V, 480 mW

Figure 2.130 For Prob. 2.73.

http://www.mhhe.com/engcs/electrical/alexander/student/olc/ch02_ppt.htm
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