
CHAPTER 3 - METHODS OF ANALYSIS

List of topics for this chapter :
Solving Systems of Equations
Nodal Analysis
Nodal Analysis with Voltage Sources
Mesh Analysis
Mesh Analysis with Current Sources
Nodal and Mesh Analysis by Inspection
Circuit Analysis with PSpice

SOLVING SYSTEMS OF EQUATIONS

Problem 3.1 Invert a general nn ×  matrix.

The inverse of a nonsingular nn ×  matrix
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where ∆ is the determinant of the matrix A and ijc  is the cofactor of ija  in ∆.

The value of the determinant, ∆, can be obtained by expanding along the ith row
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or the jth column
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where ijm , the minor of ija  in ∆, is a )1n()1n( −×−  determinant of the submatrix of A

obtained by removing the ith row and the jth column.

The cofactor of ija  in ∆ is ij
ji

ij m)1-(c += .

The transpose of the cofactor matrix is also known as the adjoint of the matrix; i.e., TCAadj = .
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Problem 3.2 Solve a general system of simultaneous equations using Cramer's rule.

Given a system of simultaneous equations having the form
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where there are n unknowns, 1x , 2x , …, nx , to be determined.

The matrix representation of the system of simultaneous equations is
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Note that A is a square ( nn × ) matrix, while X and B are ( 1n × ) column matrices.



Cramer's rule states that the solution to the system of simultaneous equations, BAX = , is

=1x
∆∆∆∆
∆∆∆∆ 1 ,   =2x

∆∆∆∆
∆∆∆∆ 2 , …,  =nx

∆∆∆∆
∆∆∆∆ n

where the ∆'s are the determinants given by
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Notice that ∆ is the determinant of matrix A and k∆  is ∆ with its kth column replaced with
matrix B.

Obviously, Cramer's rule only applies when 0≠∆ .  In the case that 0=∆ , the set of equations
has no unique solution because the equations are linearly dependent.

See Problem 3.1 to find out how to calculate the value of a determinant of a matrix.

NODAL ANALYSIS

Problem 3.3 [3.3] Find the currents 1i  through 4i  and the voltage ov  in Figure 3.1.

Figure 3.1

20 ΩΩΩΩ

i2

10 ΩΩΩΩ10 A

vo

i1

2 A30 ΩΩΩΩ

i3

60 ΩΩΩΩ

i4



Applying KCL to the non-reference node,
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Problem 3.4 Given the circuit in Figure 3.1, find xI .

Figure 3.1
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NODAL ANALYSIS WITH VOLTAGE SOURCES

Problem 3.5 Given the circuit in Figure 3.1, solve for xV .
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 Carefully DEFINE the problem.
Each component is labeled completely.  The problem is clear.

 PRESENT everything you know about the problem.
The goal of the problem is to find xV .  Letting the lower node be the reference node, we need
to find the voltage to the right of the 10-V voltage source.

A supernode is formed by enclosing a (dependent or independent) voltage source connected
between two non-reference nodes and any elements connected in parallel with it.  Hence, it is
clear that the two nodes on either side of the 10-V voltage source form a supernode.

A supermesh results when two meshes have a (dependent or independent) current source in
common.  Hence, the two meshes on the right half of the circuit create a supermesh, with the
9-A current source in common.

 Establish a set of ALTERNATIVE solutions and determine the one that promises the
greatest likelihood of success.
The two methods of analysis of simple circuits, such as the one above, are nodal analysis and
mesh analysis.  Because the circuit contains three nodes in addition to the reference node,
nodal analysis produces a set of three equations and three unknowns.  Yet, the supernode
changes the set to two equations and a constraint equation.  On the other hand, the circuit has
four loops.  Thus, mesh analysis produces four equations and four unknowns.  The supermesh
changes the set to three equations and a constraint equation.

Because the goal of the problem is to find a voltage, the obvious choice is to use nodal
analysis to find the voltages at each node of the circuit.  If mesh analysis were used to find
the mesh currents, Ohm's law would also be needed to find the voltage across the resistor.

 ATTEMPT a problem solution.
Begin the problem solution by identifying the nodes, including the supernode.

Clearly, 2x vV =

Use nodal analysis to find 1v , 2v , and 3v .

At the supernode (nodes 1 & 2): At node 3:
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Simplifying,
0)vv)(4(v2v)20v( 32211 =−+++− 90v)vv)(2( 323 =+−

20v4v6v2 321 =−+ 90v3v2- 32 =+
10v2v3v 321 =−+

This is a set of two equations and three unknowns.  Thus, we must find a constraint equation.
The supernode will provide the constraint equation.

10vv 12 += or 10vv 21 −=

Substitute the constraint equation into the simplified equation from the supernode.  Then, this
equation plus two times the simplified equation from node 3 will isolate 3v .

10v2v3)10v( 322 =−+−
]90v3v2-[)2( 32 =+

]20v2v4[ 32 =−   +  ]180v6v4-[ 32 =+    =   ]200v4[ 3 =
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The equation at node 3 can be written,
90v3v2 32 −=

30)60)(21()90150)(21(]90)50)(3()[21(v2 ==−=−= volts

The constraint equation gives
20103010vv 21 =−=−= volts

Therefore, 30vV 2x == volts

 EVALUATE the solution and check for accuracy.
This circuit can be analyzed using mesh analysis to verify the solution.  This would provide
practice analyzing a circuit with a supermesh.  Mesh analysis will be discussed later in this
chapter.  So, we will check our solution using KCL at each node.

For the supernode,
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For node 3,
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KCL is not violated.  Thus, our check for accuracy was successful.

 Has the problem been solved SATISFACTORILY?  If so, present the solution; if not,
then return to “ALTERNATIVE solutions” and continue through the process again.
This problem has been solved satisfactorily.
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Problem 3.6 [3.7] Using nodal analysis, find oV  in Figure 3.1.

Figure 3.1
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Problem 3.7 Given the circuit in Figure 3.1, solve for xV  using matrix inversion.

Figure 3.1
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Clearly, 2x1 vVv += or 21x vvV −=

Use nodal analysis to find 1v  and 2v .
At node 1 : At node 2 :
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Simplifying,
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The system of simultaneous equations is
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Problem 3.8 Solve Problem 3.5 using Cramer's rule.
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This answer is the same as that found in Problem 3.5.
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MESH ANALYSIS

Problem 3.9 Given the circuit in Figure 3.1, solve for the loop currents, 1i  and 2i , using
mesh analysis.

Figure 3.1
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Therefore, =1i A1 and =2i A2-

Problem 3.10 [3.33] Apply mesh analysis to find i in Figure 3.1.

Figure 3.1
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For loop 1 : 2121 ii63i2i126 −=→−= (1)

For loop 2 : 321312 ii7i28ii2i78- +−=→−−= (2)

For loop 3 : 2323 ii620ii668- −=→=−++ (3)

Putting (1), (2), and (3) in matrix form,

















=
































2

8

3

i

i

i

61-0

17-2

01-6

3

2

1

-234

61-0

17-2

01-6

==∆ 240

620

182

036

2 ==∆ -38

21-0

87-2

31-6

3 ==∆

Clearly,

234-

24038-
iii 23

23

−
=

∆
∆−∆

=−=

=i A188.1

MESH ANALYSIS WITH CURRENT SOURCES

Problem 3.11 Given the circuit shown in Figure 3.1, find xI  using mesh analysis.

Figure 3.1

 Carefully DEFINE the problem.
Each component is labeled completely.  The problem is clear.

 PRESENT everything you know about the problem.
A supermesh results when two meshes have a (dependent or independent) current source in
common.  Hence, the leftmost mesh and the middle mesh create a supermesh, with the 1-A
current source in common.
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 Establish a set of ALTERNATIVE solutions and determine the one that promises the
greatest likelihood of success.
The problem clearly states to use mesh analysis.  This makes sense because the goal of the
problem is to find a current, xI , and mesh analysis produces the currents in each mesh, or
loop, of a circuit.

 ATTEMPT a problem solution.
Begin the problem solution by identifying the meshes, including the supermesh.

Clearly, 3x iI =

Use mesh analysis to find 1i , 2i , and 3i .

For the supermesh (loops 1 & 2) : 0)ii)(20(i1025- 321 =−++
where 12 ii1 −= or 1ii 21 −= (constraint equation)

For loop 3 : 0i20)ii)(20(50 323 =+−+

Substitute the constraint equation into the equation for the supermesh and simplify,
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Simplifying further,
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The system of simultaneous equations is
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 EVALUATE the solution and check for accuracy.
This circuit has only one unknown node after identifying the lower node as the reference
node.  Hence, it can easily be analyzed using nodal analysis.
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This matches the answer that was obtained using mesh analysis.  Our check for accuracy was
successful.

 Has the problem been solved SATISFACTORILY?  If so, present the solution; if not,
then return to “ALTERNATIVE solutions” and continue through the process again.
This problem has been solved satisfactorily.
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Problem 3.12 [3.35] Use mesh analysis to obtain oi  in the circuit of Figure 3.1.

Figure 3.1
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Loops 1 and 2 form a supermesh.  For the supermesh,
012i5i4i6 321 =+−+ (1)

For loop 3,
0i4ii76 213 =−−+ (2)

Also, 12 i3i += (3)

Putting (1), (2), and (3) into matrix form,
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Problem 3.13 Given the circuit as shown in Figure 3.1, solve for xI  using mesh analysis.

Figure 3.1
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NODAL AND MESH ANALYSIS BY INSPECTION

Problem 3.14 [3.51] Obtain the node-voltage equations for the circuit shown in
Figure 3.1 by inspection.  Determine the node voltages 1v  and 2v .

Figure 3.1
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Hence, we have
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Clearly, =1v V4  and =2v V2

CIRCUIT ANALYSIS WITH PSPICE

Problem 3.15 Solve Problem 3.13 using PSpice.

Clearly, xI  is the current flowing through R3 and the current probe reads  =xI A0.1 .

This answer is the same as the answer obtained in Problem 3.13.
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