
CHAPTER 14 - FREQUENCY RESPONSE
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TRANSFER FUNCTION

Problem 14.1 Given the circuit in Figure 14.1 and )tcos(I)t(i ω=  amps, find the transfer

function IV)(H o=ω  and sketch the frequency response.

Figure 14.1

 Carefully DEFINE the problem.
Each component is labeled completely.  The problem is clear.

 PRESENT everything you know about the problem.
To obtain the transfer function, H(ω), we need to obtain the frequency-domain equivalent of
the circuit by replacing resistors, inductors, and capacitors with their impedances R, jωL, and

Cj1 ω  respectively.  Then, use any circuit technique to obtain H(ω).  The frequency
response of the circuit can be obtained by plotting the magnitude and phase of the transfer
function as the frequency varies.

 Establish a set of ALTERNATIVE solutions and determine the one that promises the
greatest likelihood of success.
After transforming the circuit from the time domain to the frequency domain, we can use
nodal analysis, mesh analysis, or basic circuit analysis to find the transfer function.  Let's
examine the frequency-domain equivalent circuit in order to make the best choice.
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Transforming the circuit to the frequency domain yields

It seems obvious that nodal analysis will yield two equations with three unknowns (I, V1, and
Vo).  These equations can be manipulated to eliminate V1 in order to find H(ω).

 ATTEMPT a problem solution.
Using nodal analysis,
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Using the equation for node 1, find 1V  in terms of oV  and I .
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Simplify the equation for node 2.
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Now, substitute the equation for 1V  into the simplified equation for node 2.
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 EVALUATE the solution and check for accuracy.
A check of our solution can be done using basic circuit analysis.  Find the output voltage as
the current through the inductor multiplied by the impedance of the inductor, i.e., V = I Z.
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Label the necessary variables for this technique.

I
)02.0(j20

10
I

)02.0(j1010

10
Io ω+

=
ω++

=

I
j1000

10j
I

)02.0(j20

)10)(02.0)(j(
IZVo ω+

ω
=

ω+
ω

==

ω+
ω

=
j1000

10j

I

Vo

Our check for accuracy was successful.

 Has the problem been solved SATISFACTORILY?  If so, present the solution; if not,
then return to “ALTERNATIVE solutions” and continue through the process again.
This problem has been solved satisfactorily.
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The frequency response is
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Problem 14.2 Given the circuit in Figure 14.1 and )tcos(V)t(v inin ω=  volts, find the

transfer function inout VV)(H =ω  and sketch the frequency response.

Figure 14.1

Transform the circuit to the frequency domain.

Clearly,
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The frequency response is

Problem 14.3 Given the circuit in Figure 14.1 and )tcos(I)t(i in ω=  amps, find the

transfer function inout IV)(H =ω  and sketch the frequency response.

Figure 14.1

The frequency response is
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for the transfer function
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BODE PLOTS

Problem 14.4 Sketch the Bode plots, both magnitude and phase, given the following
transfer function in the s-domain.
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First, we need to modify the transfer function so that it is in a form that is easy to plot.
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Begin with a plot showing the magnitude curve of each term in the transfer function.
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Now, combine, or add, the curves to acquire the composite magnitude (dB) plot of the transfer
function.  Note that the dashed curve shows the approximation to the actual curve.

The individual phase angle plots for each component of the transfer function are shown below.

Finally, the composite phase angle plot for the transfer function can be drawn.
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Problem 14.5 Given the following Bode plot, determine the value of the transfer function,
H(s), represented by the Bode plot.

From this figure we have the following H(s), determined by looking at each break point and
realizing that the slope everywhere is incremented by 20 dB per decade.  Please note that the one
break point between ω = 1 and 10 is estimated to be equal to 3.
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where K is given by =→= K40)K(log20 10 100

Problem 14.6 Given the following Bode plot, determine the value of the transfer function,
H(s), represented by the Bode plot.
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Decomposing the Bode plot into its basic elements we get,

Therefore,
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SERIES RESONANCE

Problem 14.7 Given the circuit in Figure 14.1, find:
(a) the resonant frequency and the half-power frequencies,
(b) the bandwidth and the quality factor,
(c) the amplitudes of )t(vC  at 0ω , 1ω , and 2ω .

Figure 14.1
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(a) The resonant frequency of a series RLC circuit is 
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So,

512.9512.10B −=
=B s/krad1

The quality factor of a series RLC circuit is 
B

Q 0ω
= .

So,

3

4

10

10
Q =

=Q 10
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At 100 =ω=ω  krad/s, the inductor has a value of 100j10j10 2-4 =×  ohms and the

capacitor has a value of 100j-1010j- 46 =  ohms.  Then,
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So,
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and
)90t000,10cos(100)t(vC °−=  volts

This gives an amplitude of V100  at s/krad100 =ω=ω .

At 512.91 =ω=ω  krad/s, the inductor has a value of 12.95j01.0j9,512 =×  ohms
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This gives an amplitude of V3.74  at 512.91 =ω=ω krad/s.
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Note that the output voltage for this bandpass filter is the voltage across the resistor.  It
can be shown that

V)t000,10cos(10)t(vout = at 100 =ω=ω  krad/s

V)03.45512,9cos(068.7)t(vout += at 512.91 =ω=ω  krad/s

V)97.44t512,10cos(075.7)t(vout °−= at 512.102 =ω=ω  krad/s

The amplitude at the half-power frequencies is 21  times the maximum amplitude at
the center frequency.  In this case,

071.7)10(
2

1
=

where the calculated amplitudes of 7.068 volts and 7.075 volts are quite close to the
expected half-power value of 7.071 volts.

Problem 14.8 Given the circuit in Figure 14.1, find the value of L so that we have a Q  of

100.  Also, find 0ω , 1ω , 2ω , and B .

Figure 14.1
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PARALLEL RESONANCE

Problem 14.9 Given the circuit in Figure 14.1 and °∠= 02I  amps, find
(a) 0ω , Q , and B,

(b) 1ω  and 2ω ,

(c) power dissipated at 0ω , 1ω , and 2ω .
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Figure 14.1

(a) The resonant frequency of a parallel RLC circuit is 
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(c) Find the power dissipated at 10 =ω  krad/s.

Since all of the current flows through the resistor at resonance, RI
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2
= .

So,
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Since 1ω  and 2ω  correspond to the half-power points, the power dissipated at 1ω  and

2ω  is kwatts10 .

Problem 14.10 Given the circuit in Figure 14.1, find the resonant frequency.

Figure 14.1

Begin by finding the parallel equivalent of the series resistor and inductor elements.  The parallel
equivalent is given by
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At resonance,
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PASSIVE FILTERS

Problem 14.11 What type of filter is represented by the circuit in Figure 14.1?  What is the
cutoff frequency, or what are the corner frequencies?

Figure 14.1

In the frequency domain, the circuit is
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Find the transfer function

in

out

V

V
)(H =ω

Using nodal analysis,

0
10

V

10j-

V

10

VV
4

out
5

out
4

inout =+
ω

+
−

Simplifying,

0VV
10

jVV outoutinout =+
ω

+−

inout VV
10

j2 =





 ω

+

Hence,

10j2

1
)(H

ω+
=ω

This transfer function looks like a typical transfer function for a lowpass filter
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This lowpass filter has a cutoff frequency of  =ωC s/rad20    or   =Cf Hz10 ππππ .



Problem 14.12 [14.43] Determine the range of frequencies that will be passed by a
series RLC bandpass filter with 10R =  Ω, 25L =  mH, and 4.0C =  µF.  Find the quality
factor.
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Problem 14.13 What type of filter is represented by the circuit in Figure 14.1?  What is the
cutoff frequency, or what are the corner frequencies?

Figure 14.1

This highpass filter has a cutoff frequency of  =ωC s/rad55.26    or   =Cf Hz226.4 .
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ACTIVE FILTERS

Problem 14.14 What type of filter is represented by the circuit in Figure 14.1?  What is the
cutoff frequency, or what are the corner frequencies?

Figure 14.1

In the frequency domain, the circuit is

Find the transfer function
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Using nodal analysis,
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This transfer function looks like a typical transfer function for a lowpass filter
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This lowpass filter has a cutoff frequency of  =ωC s/rad10    or   =Cf Hz5915.1 .

Problem 14.15 [14.55] Design the filter in Figure 14.1 to meet the following
requirements :

(a) It must attenuate a signal at 2 kHz by 3 dB compared with its value at 10 MHz.

(b) It must provide a steady-state output of )180t102sin(10)t(v 8
o °+×π=  volts

for an input )t102sin(4)t(v 8
i ×π=  volts.

Figure 14.1
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Clearly, the capacitor becomes a short circuit at high frequencies.  Hence, the high frequency gain
is

4

10-

R

R- f = or R5.2Rf =

If we let =R ΩΩΩΩk10 , then =fR ΩΩΩΩk25 , and =
×π

= 4104000

1
C nF958.7 .

SCALING

Problem 14.16 [14.63] For the circuit in Figure 14.1,

(a) draw the new circuit after it has been scaled by 200Km =  and .10K 4
f =

(b) obtain the Thevenin equivalent impedance at terminals a-b of the scaled circuit at
410=ω rad/s.

Figure 14.1

(a) 400)2)(200(RKR m ===′  Ω

20
10

)1)(200(

K

LK
L 4

f

m ===′  mH

25.0
)10)(200(

5.0

KK

C
C 4

fm

===′  µF

0.5 F

Ix

2 ΩΩΩΩ 0.5 Ix

a

b

1 H



We now have a new circuit,

(b) Insert a 1 amp source at the terminals a-b.

At node 1 : At node 2 :

sL

VV

)sC(1

V
1 211 −

+=
R

V
I5.0

sL

VV 2
x

21 =+
−

But, 1x VsCI = .

So, the nodal equations become

sL

VV
VsC1 21

1

−
+=

R

V
VsC5.0

sL

VV 2
1

21 =+
−

Solving for 1V ,

1sCR5.0LCs

RsL
V 21 ++

+
=

1sCR5.0LCs

RsL

1

V
Z 2

1
Th ++

+
==

At 410=ω , 
1)400)(1025.0)(10j(5.0)1025.0)(1020()10j(

400)1020)(10j(
Z 6-46-3-24

3-4

Th +×+××
+×

=

200j600
5.0j5.0

200j400
ZTh −=

+
+

=

=ThZ ΩΩΩΩ°°°°∠∠∠∠ 43.18-5.632

0.25 µµµµF

Ix

400 ΩΩΩΩ 0.5 Ix

a

b

20 mH

1 A 1/(sC)

Ix

R 0.5 Ix

a

b

V1 V2
sL



Problem 14.17 Given the circuit in Figure 14.1, find the values necessary to scale this
circuit, increasing the corner frequency to 100 rad/s.  Use a 1 µF capacitor.

Figure 14.1

To scale the circuit in Figure 14.1 from 41=ω  rad/s to 100=ω′  rad/s using a 1 µF capacitor,

the feedback resistor and the input resistor must be 10 kΩΩΩΩ.

+
−vin(t)

2 ΩΩΩΩ

2 F

+

vout(t)

−−−−

−
+

2 ΩΩΩΩ
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