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C H A P T E R

FIRST-ORDER CIRCUITS

7

I often say that when you can measure what you are speaking about, and
express it in numbers, you know something about it; but when you cannot
express it in numbers, your knowledge is of a meager and unsatisfactory
kind; it may be the beginning of knowledge, but you have scarcely, in
your thoughts, advanced to the stage of a science, whatever the matter
may be.

—Lord Kelvin

Enhancing Your Career
Careers in Computer Engineering Electrical engineer-
ing education has gone through drastic changes in recent
decades. Most departments have come to be known as De-
partment of Electrical and Computer Engineering, empha-
sizing the rapid changes due to computers. Computers oc-
cupy a prominent place in modern society and education.
They have become commonplace and are helping to change
the face of research, development, production, business,
and entertainment. The scientist, engineer, doctor, attor-
ney, teacher, airline pilot, businessperson—almost anyone
benefits from a computer’s abilities to store large amounts
of information and to process that information in very short
periods of time. The internet, a computer communication
network, is becoming essential in business, education, and
library science. Computer usage is growing by leaps and
bounds.

Three major disciplines study computer systems:
computer science, computer engineering, and information
management science. Computer engineering has grown so
fast and wide that it is divorcing itself from electrical en-
gineering. But, in many schools of engineering, computer
engineering is still an integral part of electrical engineering.

An education in computer engineering should provide
breadth in software, hardware design, and basic modeling
techniques. It should include courses in data structures, dig-
ital systems, computer architecture, microprocessors, inter-
facing, software engineering, and operating systems. Elec-
trical engineers who specialize in computer engineering find

Computer design of very large scale integrated (VLSI) circuits.
Source: M. E. Hazen, Fundamentals of DC and AC Circuits,
Philadelphia: Saunders, 1990, p. 20A4.

jobs in computer industries and in numerous fields where
computers are being used. Companies that produce soft-
ware are growing rapidly in number and size and providing
employment for those who are skilled in programming. An
excellent way to advance one’s knowledge of computers is
to join the IEEE Computer Society, which sponsors diverse
magazines, journals, and conferences.
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7.1 INTRODUCTION
Now that we have considered the three passive elements (resistors, ca-
pacitors, and inductors) and one active element (the op amp) individually,
we are prepared to consider circuits that contain various combinations of
two or three of the passive elements. In this chapter, we shall examine
two types of simple circuits: a circuit comprising a resistor and capaci-
tor and a circuit comprising a resistor and an inductor. These are called
RC andRL circuits, respectively. As simple as these circuits are, they
find continual applications in electronics, communications, and control
systems, as we shall see.

We carry out the analysis ofRC andRL circuits by applying Kirch-
hoff’s laws, as we did for resistive circuits. The only difference is that
applying Kirchhoff’s laws to purely resistive circuits results in algebraic
equations, while applying the laws toRC andRL circuits produces dif-
ferential equations, which are more difficult to solve than algebraic equa-
tions. The differential equations resulting from analyzingRC andRL
circuits are of the first order. Hence, the circuits are collectively known
asfirst-order circuits.

A first-order circuit is characterized by a first-order differential equation.

In addition to there being two types of first-order circuits (RC

andRL), there are two ways to excite the circuits. The first way is by
initial conditions of the storage elements in the circuits. In these so-
calledsource-free circuits, we assume that energy is initially stored in
the capacitive or inductive element. The energy causes current to flow in
the circuit and is gradually dissipated in the resistors. Although source-
free circuits are by definition free of independent sources, they may have
dependent sources. The second way of exciting first-order circuits is by
independent sources. In this chapter, the independent sources we will
consider are dc sources. (In later chapters, we shall consider sinusoidal
and exponential sources.) The two types of first-order circuits and the
two ways of exciting them add up to the four possible situations we will
study in this chapter.

Finally, we consider four typical applications ofRC andRL cir-
cuits: delay and relay circuits, a photoflash unit, and an automobile igni-
tion circuit.

7.2 THE SOURCE-FREE RC CIRCUIT
A source-freeRC circuit occurs when its dc source is suddenly discon-
nected. The energy already stored in the capacitor is released to the
resistors.

v

+

−

iRiC

RC

Figure 7.1 A source-free
RC circuit.

A circuit response is the manner in which the
circuit reacts to an excitation.

Consider a series combination of a resistor and an initially charged
capacitor, as shown in Fig. 7.1. (The resistor and capacitor may be the
equivalent resistance and equivalent capacitance of combinations of re-
sistors and capacitors.) Our objective is to determine the circuit response,
which, for pedagogic reasons, we assume to be the voltage v(t) across
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the capacitor. Since the capacitor is initially charged, we can assume that
at time t = 0, the initial voltage is

v(0) = V0 (7.1)

with the corresponding value of the energy stored as

w(0) = 1

2
CV 2

0 (7.2)

Applying KCL at the top node of the circuit in Fig. 7.1,

iC + iR = 0 (7.3)

By definition, iC = C dv/dt and iR = v/R. Thus,

C
dv

dt
+ v

R
= 0 (7.4a)

or
dv

dt
+ v

RC
= 0 (7.4b)

This is a first-order differential equation, since only the first derivative of
v is involved. To solve it, we rearrange the terms as

dv

v
= − 1

RC
dt (7.5)

Integrating both sides, we get

ln v = − t

RC
+ lnA

where lnA is the integration constant. Thus,

ln
v

A
= − t

RC
(7.6)

Taking powers of e produces

v(t) = Ae−t/RC

But from the initial conditions, v(0) = A = V0. Hence,

v(t) = V0e
−t/RC (7.7)

This shows that the voltage response of the RC circuit is an exponential
decay of the initial voltage. Since the response is due to the initial energy
stored and the physical characteristics of the circuit and not due to some
external voltage or current source, it is called the natural response of the
circuit.

The natural response of a circuit refers to the behavior (in terms of voltages and
currents) of the circuit itself, with no external sources of excitation.

The natural response depends on the nature of
the circuit alone, with no external sources. In
fact, the circuit has a response only because of
the energy initially stored in the capacitor.

The natural response is illustrated graphically in Fig. 7.2. Note that at
t = 0, we have the correct initial condition as in Eq. (7.1). As t increases,
the voltage decreases toward zero. The rapidity with which the voltage
decreases is expressed in terms of the time constant, denoted by the lower
case Greek letter tau, τ .
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The time constant of a circuit is the time required for the response to decay by a
factor of 1/e or 36.8 percent of its initial value.1

Voe−t ⁄ t 

t t

0.368Vo

Vo

v

0

Figure 7.2 The voltage response of the RC
circuit.
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v
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1.0

0.50
Tangent at t = 0

Figure 7.3 Graphical determination of the
time constant τ from the response curve.

This implies that at t = τ , Eq. (7.7) becomes

V0e
−τ/RC = V0e

−1 = 0.368V0

or

τ = RC (7.8)

In terms of the time constant, Eq. (7.7) can be written as

v(t) = V0e
−t/τ (7.9)

With a calculator it is easy to show that the value of v(t)/V0 is as
shown in Table 7.1. It is evident from Table 7.1 that the voltage v(t) is less
than 1 percent of V0 after 5τ (five time constants). Thus, it is customary
to assume that the capacitor is fully discharged (or charged) after five
time constants. In other words, it takes 5τ for the circuit to reach its final
state or steady state when no changes take place with time. Notice that
for every time interval of τ , the voltage is reduced by 36.8 percent of its
previous value, v(t + τ) = v(t)/e = 0.368v(t), regardless of the value
of t .

TABLE 7.1 Values of
v(t)/V0 = e−t/τ .

t v(t)/V0

τ 0.36788
2τ 0.13534
3τ 0.04979
4τ 0.01832
5τ 0.00674

Observe from Eq. (7.8) that the smaller the time constant, the more
rapidly the voltage decreases, that is, the faster the response. This is
illustrated in Fig. 7.4. A circuit with a small time constant gives a fast
response in that it reaches the steady state (or final state) quickly due to
quick dissipation of energy stored, whereas a circuit with a large time

1The time constant may be viewed from another perspective. Evaluating the derivative of
v(t) in Eq. (7.7) at t = 0, we obtain

d

dt

(
v

V0

) ∣∣∣∣
t = 0

= − 1

τ
e−t/τ

∣∣∣∣
t=0

= − 1

τ

Thus the time constant is the initial rate of decay, or the time taken for v/V0 to decay from
unity to zero, assuming a constant rate of decay. This initial slope interpretation of the
time constant is often used in the laboratory to find τ graphically from the response curve
displayed on an oscilloscope. To find τ from the response curve, draw the tangent to the
curve, as shown in Fig. 7.3. The tangent intercepts with the time axis at t = τ .
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Figure 7.4 Plot of v/V0 = e−t/τ for various values of the time constant.

constant gives a slow response because it takes longer to reach steady
state. At any rate, whether the time constant is small or large, the circuit
reaches steady state in five time constants.

With the voltage v(t) in Eq. (7.9), we can find the current iR(t),

iR(t) = v(t)

R
= V0

R
e−t/τ (7.10)

The power dissipated in the resistor is

p(t) = viR = V 2
0

R
e−2t/τ (7.11)

The energy absorbed by the resistor up to time t is

wR(t) =
∫ t

0
p dt =

∫ t

0

V 2
0

R
e−2t/τ dt

= −τV 2
0

2R
e−2t/τ

∣∣∣∣
t

0

= 1

2
CV 2

0 (1 − e−2t/τ ), τ = RC

(7.12)

Notice that as t → ∞, wR(∞) → 1
2CV

2
0 , which is the same as wC(0),

the energy initially stored in the capacitor. The energy that was initially
stored in the capacitor is eventually dissipated in the resistor.

In summary:

T h e K e y t o Wo r k i n g w i t h a S o u r c e - f r e e RC C i r c u i t i s
F i n d i n g :

1. The initial voltage v(0) = V0 across the capacitor.

2. The time constant τ .

The time constant is the same regardless of what
the output is defined to be.

With these two items, we obtain the response as the capacitor voltage
vC(t) = v(t) = v(0)e−t/τ . Once the capacitor voltage is first obtained,
other variables (capacitor current iC , resistor voltage vR , and resistor
current iR) can be determined. In finding the time constant τ = RC, R is
often the Thevenin equivalent resistance at the terminals of the capacitor;
that is, we take out the capacitor C and find R = RTh at its terminals.

When a circuit contains a single capacitor and
several resistors and dependent sources, the
Thevenin equivalent can be found at the termi-
nals of the capacitor to form a simple RC circuit.
Also, one can use Thevenin’s theorem when sev-
eral capacitors can be combined to form a single
equivalent capacitor.
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E X A M P L E 7 . 1

In Fig. 7.5, let vC(0) = 15 V. Find vC , vx , and ix for t > 0.

5 Ω

8 Ω

12 ΩvC vx

ix
+

−

+

−
0.1 F

Figure 7.5 For Example 7.1.

Solution:

We first need to make the circuit in Fig. 7.5 conform with the standard
RC circuit in Fig. 7.1. We find the equivalent resistance or the Thevenin
resistance at the capacitor terminals. Our objective is always to first obtain
capacitor voltage vC . From this, we can determine vx and ix .

The 8-� and 12-� resistors in series can be combined to give a
20-� resistor. This 20-� resistor in parallel with the 5-� resistor can be
combined so that the equivalent resistance is

Req = 20 × 5

20 + 5
= 4 �

Hence, the equivalent circuit is as shown in Fig. 7.6, which is analogous
to Fig. 7.1. The time constant is

τ = ReqC = 4(0.1) = 0.4 s

Thus,

v = v(0)e−t/τ = 15e−t/0.4 V, vC = v = 15e−2.5t V

From Fig. 7.5, we can use voltage division to get vx ; so

vx = 12

12 + 8
v = 0.6(15e−2.5t ) = 9e−2.5t V

Finally,

ix = vx

12
= 0.75e−2.5tA

v

+

−

Req 0.1 F

Figure 7.6 Equivalent circuit
for the circuit in Fig. 7.5.

P R A C T I C E P R O B L E M 7 . 1

Refer to the circuit in Fig. 7.7. Let vC(0) = 30 V. Determine vC , vx , and
io for t ≥ 0.

12 Ω

8 Ω

vC  F6 Ω

io

+

−
vx

+

−
1
3

Figure 7.7 For Practice Prob. 7.1.

Answer: 30e−0.25t V, 10e−0.25t V, −2.5e−0.25t A.

E X A M P L E 7 . 2

The switch in the circuit in Fig. 7.8 has been closed for a long time, and
it is opened at t = 0. Find v(t) for t ≥ 0. Calculate the initial energy
stored in the capacitor.

3 Ω

20 V
+

−
v9 Ω

t = 0
1 Ω

20 mF+
−

Figure 7.8 For Example 7.2.

Solution:

For t < 0, the switch is closed; the capacitor is an open circuit to dc, as
represented in Fig. 7.9(a). Using voltage division
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vC(t) = 9

9 + 3
(20) = 15 V, t < 0

Since the voltage across a capacitor cannot change instantaneously, the
voltage across the capacitor at t = 0− is the same at t = 0, or

vC(0) = V0 = 15 V

9 Ω

1 Ω

vC(0)

3 Ω

9 Ω

1 Ω

+

−

+
−20 V

(a)

(b)

+

−
Vo = 15 V 20 mF

Figure 7.9 For Example 7.2: (a) t < 0,
(b) t > 0.

For t > 0, the switch is opened, and we have the RC circuit shown
in Fig. 7.9(b). [Notice that the RC circuit in Fig. 7.9(b) is source free;
the independent source in Fig. 7.8 is needed to provide V0 or the initial
energy in the capacitor.] The 1-� and 9-� resistors in series give

Req = 1 + 9 = 10 �

The time constant is

τ = ReqC = 10 × 20 × 10−3 = 0.2 s

Thus, the voltage across the capacitor for t ≥ 0 is

v(t) = vC(0)e
−t/τ = 15e−t/0.2 V

or

v(t) = 15e−5t V

The initial energy stored in the capacitor is

wC(0) = 1

2
Cv2

C(0) = 1

2
× 20 × 10−3 × 152 = 2.25 J

P R A C T I C E P R O B L E M 7 . 2

If the switch in Fig. 7.10 opens at t = 0, find v(t) for t ≥ 0 and wC(0).

Answer: 8e−2t V, 5.33 J.
6 Ω

+
−24 V

+

−
v 12 Ω 4 Ω

t = 0

  F1
6

Figure 7.10 For Practice Prob. 7.2.

7.3 THE SOURCE-FREE RL CIRCUIT

vL+

−

RL

i

vR

+

−

Figure 7.11 A source-
free RL circuit.

Consider the series connection of a resistor and an inductor, as shown in
Fig. 7.11. Our goal is to determine the circuit response, which we will
assume to be the current i(t) through the inductor. We select the inductor
current as the response in order to take advantage of the idea that the
inductor current cannot change instantaneously. At t = 0, we assume
that the inductor has an initial current I0, or

i(0) = I0 (7.13)

with the corresponding energy stored in the inductor as

w(0) = 1

2
LI 2

0 (7.14)
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Applying KVL around the loop in Fig. 7.11,

vL + vR = 0 (7.15)

But vL = Ldi/dt and vR = iR. Thus,

L
di

dt
+ Ri = 0

or
di

dt
+ R

L
i = 0 (7.16)

Rearranging terms and integrating gives∫ i(t)

I0

di

i
= −

∫ t

0

R

L
dt

ln i

∣∣∣∣
i(t)

I0

= −Rt

L

∣∣∣∣
t

0

�⇒ ln i(t)− ln I0 = −Rt

L
+ 0

or

ln
i(t)

I0
= −Rt

L
(7.17)

Taking the powers of e, we have

i(t) = I0e
−Rt/L (7.18)

This shows that the natural response of the RL circuit is an exponential
decay of the initial current. The current response is shown in Fig. 7.12.
It is evident from Eq. (7.18) that the time constant for the RL circuit is

τ = L

R
(7.19)

with τ again having the unit of seconds. Thus, Eq. (7.18) may be written
as

i(t) = I0e
−t/τ (7.20)

Tangent at t = 0

Ioe−t ⁄ t 

t t

0.368Io

Io

i(t)

0

Figure 7.12 The current response of the RL

circuit.

The smaller the time constant τ of a circuit, the
faster the rate of decay of the response. The
larger the time constant, the slower the rate of
decay of the response. At any rate, the response
decays to less than 1 percent of its initial value
(i.e., reaches steady state) after 5τ .

Figure 7.12 shows an initial slope interpretation
may be given to τ .

With the current in Eq. (7.20), we can find the voltage across the
resistor as

vR(t) = iR = I0Re
−t/τ (7.21)

The power dissipated in the resistor is

p = vRi = I 2
0Re

−2t/τ (7.22)

The energy absorbed by the resistor is

wR(t) =
∫ t

0
p dt =

∫ t

0
I 2

0Re
−2t/τ dt = −1

2
τI 2

0Re
−2t/τ

∣∣∣∣
t

0

, τ = L

R

or

wR(t) = 1

2
LI 2

0 (1 − e−2t/τ ) (7.23)

Note that as t → ∞, wR(∞) → 1
2LI

2
0 , which is the same as wL(0), the

initial energy stored in the inductor as in Eq. (7.14). Again, the energy
initially stored in the inductor is eventually dissipated in the resistor.
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In summary:

T h e K e y t o Wo r k i n g w i t h a S o u r c e - f r e e RL C i r c u i t i s
t o F i n d :

1. The initial current i(0) = I0 through the inductor.

2. The time constant τ of the circuit.

With the two items, we obtain the response as the inductor current iL(t) =
i(t) = i(0)e−t/τ . Once we determine the inductor current iL, other vari-
ables (inductor voltage vL, resistor voltage vR , and resistor current iR)
can be obtained. Note that in general, R in Eq. (7.19) is the Thevenin
resistance at the terminals of the inductor.

When a circuit has a single inductor and several
resistors and dependent sources, the Thevenin
equivalent can be found at the terminals of the
inductor to form a simple RL circuit. Also, one
can use Thevenin’s theorem when several induc-
tors can be combined to form a single equivalent
inductor.

E X A M P L E 7 . 3

Assuming that i(0) = 10 A, calculate i(t) and ix(t) in the circuit in Fig.
7.13.

2 Ω

4 Ω

0.5 H +
−

i

3i

ix

Figure 7.13 For Example 7.3.

Solution:

There are two ways we can solve this problem. One way is to obtain the
equivalent resistance at the inductor terminals and then use Eq. (7.20).
The other way is to start from scratch by using Kirchhoff’s voltage law.
Whichever approach is taken, it is always better to first obtain the inductor
current.

METHOD 1 The equivalent resistance is the same as the Thevenin
resistance at the inductor terminals. Because of the dependent source,
we insert a voltage source with vo = 1 V at the inductor terminals a-b,
as in Fig. 7.14(a). (We could also insert a 1-A current source at the ter-
minals.) Applying KVL to the two loops results in

2(i1 − i2)+ 1 = 0 �⇒ i1 − i2 = −1

2
(7.3.1)

6i2 − 2i1 − 3i1 = 0 �⇒ i2 = 5

6
i1 (7.3.2)

Substituting Eq. (7.3.2) into Eq. (7.3.1) gives

4 Ω

2 Ωvo = 1 V +
−

+
−

io

i1 i2 3i

(a)

a

b

4 Ω

2 Ω +
−i1 i2 3i

(b)

0.5 H

Figure 7.14 Solving the circuit in Fig. 7.13.



246 PART 1 DC Circuits

i1 = −3 A, io = −i1 = 3 A

Hence,

Req = RTh = vo

io
= 1

3
�

The time constant is

τ = L

Req
=

1
2
1
3

= 3

2
s

Thus, the current through the inductor is

i(t) = i(0)e−t/τ = 10e−(2/3)t A, t > 0

METHOD 2 We may directly apply KVL to the circuit as in Fig.
7.14(b). For loop 1,

1

2

di1

dt
+ 2(i1 − i2) = 0

or
di1

dt
+ 4i1 − 4i2 = 0 (7.3.3)

For loop 2,

6i2 − 2i1 − 3i1 = 0 �⇒ i2 = 5

6
i1 (7.3.4)

Substituting Eq. (7.3.4) into Eq. (7.3.3) gives

di1

dt
+ 2

3
i1 = 0

Rearranging terms,

di1

i1
= −2

3
dt

Since i1 = i, we may replace i1 with i and integrate:

ln i

∣∣∣∣
i(t)

i(0)

= − 2

3
t

∣∣∣∣
t

0

or

ln
i(t)

i(0)
= −2

3
t

Taking the powers of e, we finally obtain

i(t) = i(0)e−(2/3)t = 10e−(2/3)t A, t > 0

which is the same as by Method 1.
The voltage across the inductor is

v = L
di

dt
= 0.5(10)

(
−2

3

)
e−(2/3)t = −10

3
e−(2/3)t V

Since the inductor and the 2-� resistor are in parallel,

ix(t) = v

2
= −1.667e−(2/3)t A, t > 0
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P R A C T I C E P R O B L E M 7 . 3

Find i and vx in the circuit in Fig. 7.15. Let i(0) = 5 A.

1 Ω
5 Ω

3 Ω

+
− 2vx

 H

i + −vx

1
6

Figure 7.15 For Practice Prob. 7.3.

Answer: 5e−53t A, −15e−53t V.

E X A M P L E 7 . 4

The switch in the circuit of Fig. 7.16 has been closed for a long time. At
t = 0, the switch is opened. Calculate i(t) for t > 0.

2 Ω 4 Ω

+
− 40 V 16 Ω12 Ω 2 H

t = 0

i(t)

Figure 7.16 For Example 7.4.

Solution:

When t < 0, the switch is closed, and the inductor acts as a short circuit
to dc. The 16-� resistor is short-circuited; the resulting circuit is shown
in Fig. 7.17(a). To get i1 in Fig. 7.17(a), we combine the 4-� and 12-�
resistors in parallel to get

4 × 12

4 + 12
= 3 �

Hence,

i1 = 40

2 + 3
= 8 A

We obtain i(t) from i1 in Fig. 7.17(a) using current division, by writing

i(t) = 12

12 + 4
i1 = 6 A, t < 0

Since the current through an inductor cannot change instantaneously,

i(0) = i(0−) = 6 A

When t > 0, the switch is open and the voltage source is discon-
nected. We now have the RL circuit in Fig. 7.17(b). Combining the re-
sistors, we have

Req = (12 + 4) ‖ 16 = 8 �

The time constant is

τ = L

Req
= 2

8
= 1

4
s

Thus,

i(t) = i(0)e−t/τ = 6e−4t A

4 Ω

12 Ω

2 Ω

+
−

i1

2 H

i(t)

40 V

i(t)

(a)

16 Ω12 Ω

4 Ω

(b)

Figure 7.17 Solving the circuit of Fig. 7.16: (a)
for t < 0, (b) for t > 0.
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P R A C T I C E P R O B L E M 7 . 4

For the circuit in Fig. 7.18, find i(t) for t > 0.

5 Ω5 A

12 Ω 8 Ω

2 H

t = 0

i(t)

Figure 7.18 For Practice Prob. 7.4.

Answer: 2e−2t A, t > 0.

E X A M P L E 7 . 5

In the circuit shown in Fig. 7.19, find io, vo, and i for all time, assuming
that the switch was open for a long time.

10 V 6 Ω 2 Ht = 0

iio+ −vo

3 Ω2 Ω

+
−

Figure 7.19 For Example 7.5.

Solution:

It is better to first find the inductor current i and then obtain other quantities
from it.

2 Ω 3 Ω

+
−10 V 6 Ω

iio+ −vo

+ −vo

(a)

(b)

6 Ω

3 Ω

2 H

iio

vL

+

−

Figure 7.20 The circuit in Fig. 7.19 for:
(a) t < 0, (b) t > 0.

For t < 0, the switch is open. Since the inductor acts like a short
circuit to dc, the 6-� resistor is short-circuited, so that we have the circuit
shown in Fig. 7.20(a). Hence, io = 0, and

i(t) = 10

2 + 3
= 2 A, t < 0

vo(t) = 3i(t) = 6 V, t < 0

Thus, i(0) = 2.
For t > 0, the switch is closed, so that the voltage source is short-

circuited. We now have a source-freeRL circuit as shown in Fig. 7.20(b).
At the inductor terminals,

RTh = 3 ‖ 6 = 2 �

so that the time constant is

τ = L

RTh
= 1 s

Hence,

i(t) = i(0)e−t/τ = 2e−t A, t > 0

Since the inductor is in parallel with the 6-� and 3-� resistors,

vo(t) = −vL = −L
di

dt
= −2(−2e−t ) = 4e−t V, t > 0

and

io(t) = vL

6
= −2

3
e−t A, t > 0
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Thus, for all time,

io(t) =



0 A, t < 0

−2

3
e−t A, t > 0

, vo(t) =
{

6 V, t < 0
4e−t V, t > 0

i(t) =
{

2 A, t < 0
2e−t A, t ≥ 0

We notice that the inductor current is continuous at t = 0, while the
current through the 6-� resistor drops from 0 to −2/3 at t = 0, and the
voltage across the 3-� resistor drops from 6 to 4 at t = 0. We also notice
that the time constant is the same regardless of what the output is defined
to be. Figure 7.21 plots i and io.

t

2
i(t)

2
3− io(t)

Figure 7.21 A plot of i and i0.

P R A C T I C E P R O B L E M 7 . 5

Determine i, io, and vo for all t in the circuit shown in Fig. 7.22. Assume
that the switch was closed for a long time.

1 H

4 Ω 2 Ω

3 Ω

6 A

it = 0

io

vo

+

−

Figure 7.22 For Practice Prob. 7.5.

Answer: i =
{

4 A, t < 0
4e−2t A, t ≥ 0

, io =
{

2 A, t < 0
−(4/3)e−2t A, t > 0

,

vo =
{

4 V, t < 0
−(8/3)e−2t V, t > 0

7.4 SINGULARITY FUNCTIONS
Before going on with the second half of this chapter, we need to digress
and consider some mathematical concepts that will aid our understanding
of transient analysis. A basic understanding of singularity functions will
help us make sense of the response of first-order circuits to a sudden
application of an independent dc voltage or current source.

Singularity functions (also called switching functions) are very use-
ful in circuit analysis. They serve as good approximations to the switching
signals that arise in circuits with switching operations. They are helpful in
the neat, compact description of some circuit phenomena, especially the
step response of RC or RL circuits to be discussed in the next sections.
By definition,

Singularity functions are functions that either are discontinuous or have
discontinuous derivatives.

The three most widely used singularity functions in circuit analysis
are the unit step, the unit impulse, and the unit ramp functions.
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The unit step function u(t) is 0 for negative values of t and 1 for positive values of t.

In mathematical terms,

u(t) =
{

0, t < 0
1, t > 0

(7.24)

0 t

1

u(t)

Figure 7.23 The unit step
function.

The unit step function is undefined at t = 0, where it changes abruptly
from 0 to 1. It is dimensionless, like other mathematical functions such as
sine and cosine. Figure 7.23 depicts the unit step function. If the abrupt
change occurs at t = t0 (where t0 > 0) instead of t = 0, the unit step
function becomes

u(t − t0) =
{

0, t < t0
1, t > t0

(7.25)

which is the same as saying that u(t) is delayed by t0 seconds, as shown in
Fig. 7.24(a). To get Eq. (7.25) from Eq. (7.24), we simply replace every
t by t − t0. If the change is at t = −t0, the unit step function becomes

u(t + t0) =
{

0, t < −t0
1, t > −t0

(7.26)

meaning that u(t) is advanced by t0 seconds, as shown in Fig. 7.24(b).

0 t

1

u(t − to)

to

(a)

0 t

u(t + to)

−to

(b)

1

Figure 7.24 (a) The unit step
function delayed by t0, (b) the unit
step advanced by t0.

Alternatively, wemay derive Eqs. (7.25) and (7.26)
from Eq. (7.24) by writing u[f (t)] = 1, f (t) > 0,
where f (t) may be t − t0 or t + t0.

We use the step function to represent an abrupt change in voltage
or current, like the changes that occur in the circuits of control systems
and digital computers. For example, the voltage

v(t) =
{

0, t < t0
V0, t > t0

(7.27)

may be expressed in terms of the unit step function as

v(t) = V0u(t − t0) (7.28)

If we let t0 = 0, then v(t) is simply the step voltage V0u(t). A voltage
source of V0u(t) is shown in Fig. 7.25(a); its equivalent circuit is shown
in Fig. 7.25(b). It is evident in Fig. 7.25(b) that terminals a-b are short-
circuited (v = 0) for t < 0 and that v = V0 appears at the terminals
for t > 0. Similarly, a current source of I0u(t) is shown in Fig. 7.26(a),
while its equivalent circuit is in Fig. 7.26(b). Notice that for t < 0, there
is an open circuit (i = 0), and that i = I0 flows for t > 0.

+
−

(a)

Vou(t) +
−

(b)

Vo

b

a

b

a
t = 0

=

Figure 7.25 (a) Voltage source of V0u(t), (b) its equivalent circuit.
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(a)

Iou(t)

(b)

Io

b

a

b

a
t = 0 i

=

Figure 7.26 (a) Current source of I0u(t), (b) its equivalent circuit.

The derivative of the unit step function u(t) is the unit impulse
function δ(t), which we write as

δ(t) = d

dt
u(t) =




0, t < 0
Undefined, t = 0
0, t > 0

(7.29)

The unit impulse function—also known as the delta function—is shown
in Fig. 7.27.

The unit impulse function δ(t) is zero everywhere except at t = 0, where
it is undefined.

Impulsive currents and voltages occur in electric circuits as a result of
switching operations or impulsive sources. Although the unit impulse
function is not physically realizable ( just like ideal sources, ideal resistors,
etc.), it is a very useful mathematical tool.

The unit impulse may be regarded as an applied or resulting shock.
It may be visualized as a very short duration pulse of unit area. This may
be expressed mathematically as

∫ 0+

0−
δ(t) dt = 1 (7.30)

where t = 0− denotes the time just before t = 0 and t = 0+ is the time
just after t = 0. For this reason, it is customary to write 1 (denoting
unit area) beside the arrow that is used to symbolize the unit impulse
function, as in Fig. 7.27. The unit area is known as the strength of the
impulse function. When an impulse function has a strength other than
unity, the area of the impulse is equal to its strength. For example, an
impulse function 10δ(t) has an area of 10. Figure 7.28 shows the impulse
functions 5δ(t + 2), 10δ(t), and −4δ(t − 3).

0 t

(1)d(t)

Figure 7.27 The unit
impulse function.

5d(t + 2)

10d(t)

−4d(t − 3)

10 2 3 t−1−2

Figure 7.28 Three impulse functions.

To illustrate how the impulse function affects other functions, let
us evaluate the integral

∫ b

a

f (t)δ(t − t0) dt (7.31)

where a < t0 < b. Since δ(t − t0) = 0 except at t = t0, the integrand is
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zero except at t0. Thus,∫ b

a

f (t)δ(t − t0) dt =
∫ b

a

f (t0)δ(t − t0) dt

= f (t0)

∫ b

a

δ(t − t0) dt = f (t0)

or
∫ b

a

f (t)δ(t − t0) dt = f (t0) (7.32)

This shows that when a function is integrated with the impulse function,
we obtain the value of the function at the point where the impulse occurs.
This is a highly useful property of the impulse function known as the
sampling or sifting property. The special case of Eq. (7.31) is for t0 = 0.
Then Eq. (7.32) becomes∫ 0+

0−
f (t)δ(t) dt = f (0) (7.33)

Integrating the unit step function u(t) results in the unit ramp func-
tion r(t); we write

r(t) =
∫ t

−∞
u(t) dt = tu(t) (7.34)

or

r(t) =
{

0, t ≤ 0
t, t ≥ 0

(7.35)

The unit ramp function is zero for negative values of t and has a unit slope for
positive values of t.

Figure 7.29 shows the unit ramp function. In general, a ramp is a function
that changes at a constant rate.

0 t

1

r(t)

1

Figure 7.29 The unit ramp
function.

The unit ramp function may be delayed or advanced as shown in
Fig. 7.30. For the delayed unit ramp function,

r(t − t0) =
{

0, t ≤ t0
t − t0, t ≥ t0

(7.36)

and for the advanced unit ramp function,

r(t + t0) =
{

0, t ≤ −t0
t − t0, t ≥ −t0

(7.37)

(a)

0 t−to + 1−to

1

r(t + to)

r(t − to)

(b)

0 tto + 1to

1

Figure 7.30 The unit ramp
function: (a) delayed by t0,
(b) advanced by t0.

We should keep in mind that the three singularity functions (im-
pulse, step, and ramp) are related by differentiation as

δ(t) = du(t)

dt
, u(t) = dr(t)

dt
(7.38)

or by integration as

u(t) =
∫ t

−∞
δ(t) dt, r(t) =

∫ t

−∞
u(t) dt (7.39)
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Although there are many more singularity functions, we are only inter-
ested in these three (the impulse function, the unit step function, and the
ramp function) at this point.

E X A M P L E 7 . 6

Express the voltage pulse in Fig. 7.31 in terms of the unit step. Calculate
its derivative and sketch it.

0 t

10

v (t)

3 4 51 2

Figure 7.31 For Example 7.6.

Solution:

The type of pulse in Fig. 7.31 is called the gate function. It may be re-
garded as a step function that switches on at one value of t and switches
off at another value of t . The gate function shown in Fig. 7.31 switches
on at t = 2 s and switches off at t = 5 s. It consists of the sum of two
unit step functions as shown in Fig. 7.32(a). From the figure, it is evident
that

v(t) = 10u(t − 2)− 10u(t − 5) = 10[u(t − 2)− u(t − 5)]

Taking the derivative of this gives

dv

dt
= 10[δ(t − 2)− δ(t − 5)]

which is shown in Fig. 7.32(b). We can obtain Fig. 7.32(b) directly from
Fig. 7.31 by simply observing that there is a sudden increase by 10 V at
t = 2 s leading to 10δ(t − 2). At t = 5 s, there is a sudden decrease by
10 V leading to −10 V δ(t − 5).

Gate functions are used along with switches to
pass or block another signal.

0 t21

10

10u(t − 2) −10u(t − 5)

(a)

1 2
0

3 4 5 t

10

−10

+

(b)

10

3 4 5 t1 2
0

−10

dv
dt

Figure 7.32 (a) Decomposition of the pulse in Fig. 7.31, (b) derivative of the pulse in Fig. 7.31.
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P R A C T I C E P R O B L E M 7 . 6

Express the current pulse in Fig. 7.33 in terms of the unit step. Find its
integral and sketch it.

Answer: 10[u(t)−2u(t−2)+u(t−4)], 10[r(t)−2r(t−2)+r(t−4)].
See Fig. 7.34.

0
t

10

−10

i(t)

2 4

Figure 7.33 For Practice Prob. 7.6.

20 4 t

20

i dt∫

Figure 7.34 Integral of i(t) in Fig. 7.33.

E X A M P L E 7 . 7

Express the sawtooth function shown in Fig. 7.35 in terms of singularity
functions.

0 t

10

v(t)

2

Figure 7.35 For Example 7.7.

Solution:

There are three ways of solving this problem. The first method is by mere
observation of the given function, while the other methods involve some
graphical manipulations of the function.

METHOD 1 By looking at the sketch of v(t) in Fig. 7.35, it is not
hard to notice that the given function v(t) is a combination of singularity
functions. So we let

v(t) = v1(t)+ v2(t)+ · · · (7.7.1)

The function v1(t) is the ramp function of slope 5, shown in Fig. 7.36(a);
that is,

v1(t) = 5r(t) (7.7.2)

0 t

10

v1(t)

2 0 t

10

v1 + v2

2
0

t

−10

v2(t)

2
+

(a)

(b)

(c)

=

Figure 7.36 Partial decomposition of v(t) in Fig. 7.35.
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Since v1(t) goes to infinity, we need another function at t = 2 s in order
to get v(t). We let this function be v2, which is a ramp function of slope
−5, as shown in Fig. 7.36(b); that is,

v2(t) = −5r(t − 2) (7.7.3)

Adding v1 and v2 gives us the signal in Fig. 7.36(c). Obviously, this is
not the same as v(t) in Fig. 7.35. But the difference is simply a constant
10 units for t > 2 s. By adding a third signal v3, where

v3 = −10u(t − 2) (7.7.4)

we get v(t), as shown in Fig. 7.37. Substituting Eqs. (7.7.2) through
(7.7.4) into Eq. (7.7.1) gives

v(t) = 5r(t)− 5r(t − 2)− 10u(t − 2)

0 t

10

v1 + v2

2

+

(c)(a)

=
0 t

10

v(t)

2
0

t

−10

v3(t)

2

(b)

Figure 7.37 Complete decomposition of v(t) in Fig. 7.35.

METHOD 2 A close observation of Fig. 7.35 reveals that v(t) is a mul-
tiplication of two functions: a ramp function and a gate function. Thus,

v(t) = 5t[u(t)− u(t − 2)]

= 5tu(t)− 5tu(t − 2)

= 5r(t)− 5(t − 2 + 2)u(t − 2)

= 5r(t)− 5(t − 2)u(t − 2)− 10u(t − 2)

= 5r(t)− 5r(t − 2)− 10u(t − 2)

the same as before.

METHOD 3 This method is similar to Method 2. We observe from
Fig. 7.35 that v(t) is a multiplication of a ramp function and a unit step
function, as shown in Fig. 7.38. Thus,

v(t) = 5r(t)u(−t + 2)

If we replace u(−t) by 1 − u(t), then we can replace u(−t + 2) by
1 − u(t − 2). Hence,

v(t) = 5r(t)[1 − u(t − 2)]

which can be simplified as in Method 2 to get the same result.
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0 t

10

5r(t)

2

×
0 t

u(−t + 2)

2

1

Figure 7.38 Decomposition of v(t) in Fig. 7.35.

P R A C T I C E P R O B L E M 7 . 7

Refer to Fig. 7.39. Express i(t) in terms of singularity functions.i(t) (A)

1
0

2 3 t (s)

2

−2

Figure 7.39 For Practice Prob. 7.7.

Answer: 2u(t)− 2r(t)+ 4r(t − 2)− 2r(t − 3).

E X A M P L E 7 . 8

Given the signal

g(t) =



3, t < 0
−2, 0 < t < 1

2t − 4, t > 1

express g(t) in terms of step and ramp functions.

Solution:

The signal g(t) may be regarded as the sum of three functions specified
within the three intervals t < 0, 0 < t < 1, and t > 1.

For t < 0, g(t) may be regarded as 3 multiplied by u(−t), where
u(−t) = 1 for t < 0 and 0 for t > 0. Within the time interval 0 < t < 1,
the function may be considered as −2 multiplied by a gated function
[u(t) − u(t − 1)]. For t > 1, the function may be regarded as 2t − 4
multiplied by the unit step function u(t − 1). Thus,

g(t) = 3u(−t)− 2[u(t)− u(t − 1)] + (2t − 4)u(t − 1)

= 3u(−t)− 2u(t)+ (2t − 4 + 2)u(t − 1)

= 3u(−t)− 2u(t)+ 2(t − 1)u(t − 1)

= 3u(−t)− 2u(t)+ 2r(t − 1)

One may avoid the trouble of using u(−t) by replacing it with 1 − u(t).
Then
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g(t) = 3[1 − u(t)] − 2u(t)+ 2r(t − 1) = 3 − 5u(t)+ 2r(t − 1)

Alternatively, we may plot g(t) and apply Method 1 from Example 7.7.

P R A C T I C E P R O B L E M 7 . 8

If

h(t) =




0, t < 0
4, 0 < t < 2
6 − t, 2 < t < 6
0, t > 6

express h(t) in terms of the singularity functions.

Answer: 4u(t)− r(t − 2)+ r(t − 6).

E X A M P L E 7 . 9

Evaluate the following integrals involving the impulse function:
∫ 10

0
(t2 + 4t − 2)δ(t − 2) dt

∫ ∞

−∞
(δ(t − 1)e−t cos t + δ(t + 1)e−t sin t)dt

Solution:

For the first integral, we apply the sifting property in Eq. (7.32).
∫ 10

0
(t2 + 4t − 2)δ(t − 2)dt = (t2 + 4t − 2)|t=2 = 4 + 8 − 2 = 10

Similarly, for the second integral,∫ ∞

−∞
(δ(t − 1)e−t cos t + δ(t + 1)e−t sin t)dt

= e−t cos t |t=1 + e−t sin t |t=−1

= e−1 cos 1 + e1 sin(−1) = 0.1988 − 2.2873 = −2.0885

P R A C T I C E P R O B L E M 7 . 9

Evaluate the following integrals:
∫ ∞

−∞
(t3 + 5t2 + 10)δ(t + 3) dt,

∫ 10

0
δ(t − π) cos 3t dt

Answer: 28, −1.

7.5 STEP RESPONSE OF AN RC CIRCUIT
When the dc source of an RC circuit is suddenly applied, the voltage
or current source can be modeled as a step function, and the response is
known as a step response.
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The step response of a circuit is its behavior when the excitation is the step
function, which may be a voltage or a current source.

The step response is the response of the circuit due to a sudden application
of a dc voltage or current source.

R

C

t = 0

+
−

Vsu(t)

Vs

+

−
v

(a)

R

C+
−

+

−
v

(b)

Figure 7.40 An RC circuit with
voltage step input.

Consider theRC circuit in Fig. 7.40(a) which can be replaced by the
circuit in Fig. 7.40(b), where Vs is a constant, dc voltage source. Again,
we select the capacitor voltage as the circuit response to be determined.
We assume an initial voltage V0 on the capacitor, although this is not
necessary for the step response. Since the voltage of a capacitor cannot
change instantaneously,

v(0−) = v(0+) = V0 (7.40)

where v(0−) is the voltage across the capacitor just before switching and
v(0+) is its voltage immediately after switching. Applying KCL, we have

C
dv

dt
+ v − Vsu(t)

R
= 0

or
dv

dt
+ v

RC
= Vs

RC
u(t) (7.41)

where v is the voltage across the capacitor. For t > 0, Eq. (7.41) becomes

dv

dt
+ v

RC
= Vs

RC
(7.42)

Rearranging terms gives

dv

dt
= −v − Vs

RC
or

dv

v − Vs
= − dt

RC
(7.43)

Integrating both sides and introducing the initial conditions,

ln(v − Vs)

∣∣∣∣
v(t)

V0

= − t

RC

∣∣∣∣
t

0

ln(v(t)− Vs)− ln(V0 − Vs) = − t

RC
+ 0

or

ln
v − Vs

V0 − Vs
= − t

RC
(7.44)

Taking the exponential of both sides

v − Vs

V0 − Vs
= e−t/τ , τ = RC

v − Vs = (V0 − Vs)e
−t/τ

or

v(t) = Vs + (V0 − Vs)e
−t/τ , t > 0 (7.45)
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Thus,

v(t) =
{
V0, t < 0
Vs + (V0 − Vs)e

−t/τ , t > 0
(7.46)

This is known as the complete response of the RC circuit to a sudden
application of a dc voltage source, assuming the capacitor is initially
charged. The reason for the term “complete” will become evident a little
later. Assuming that Vs > V0, a plot of v(t) is shown in Fig. 7.41.

0 t

Vs

v(t)

Vo

Figure 7.41 Response of an
RC circuit with initially charged
capacitor.

If we assume that the capacitor is uncharged initially, we setV0 = 0
in Eq. (7.46) so that

v(t) =
{

0, t < 0
Vs(1 − e−t/τ ), t > 0

(7.47)

which can be written alternatively as

v(t) = Vs(1 − e−t/τ )u(t) (7.48)

This is the complete step response of the RC circuit when the capacitor
is initially uncharged. The current through the capacitor is obtained from
Eq. (7.47) using i(t) = C dv/dt . We get

i(t) = C
dv

dt
= C

τ
Vse

−t/τ , τ = RC, t > 0

or

i(t) = Vs

R
e−t/τ u(t) (7.49)

Figure 7.42 shows the plots of capacitor voltage v(t) and capacitor current
i(t).

0 t

Vs

v(t)

0 t

i(t)

Vs
R

(a)

(b)

Figure 7.42 Step response of an
RC circuit with initially uncharged
capacitor: (a) voltage response,
(b) current response.

Rather than going through the derivations above, there is a sys-
tematic approach—or rather, a short-cut method—for finding the step
response of an RC or RL circuit. Let us reexamine Eq. (7.45), which is
more general than Eq. (7.48). It is evident that v(t) has two components.
Thus, we may write

v = vf + vn (7.50)

where

vf = Vs (7.51)

and

vn = (V0 − Vs)e
−t/τ (7.52)

We know that vn is the natural response of the circuit, as discussed in
Section 7.2. Since this part of the response will decay to almost zero
after five time constants, it is also called the transient response because it
is a temporary response that will die out with time. Now, vf is known as
the forced response because it is produced by the circuit when an external
“ force” is applied (a voltage source in this case). It represents what the
circuit is forced to do by the input excitation. It is also known as the
steady-state response, because it remains a long time after the circuit is
excited.
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The natural response or transient response is the circuit’s temporary response
that will die out with time.

The forced response or steady-state response is the behavior of the circuit
a long time after an external excitation is applied.

The complete response of the circuit is the sum of the natural response
and the forced response. Therefore, we may write Eq. (7.45) as

v(t) = v(∞)+ [v(0)− v(∞)]e−t/τ (7.53)

where v(0) is the initial voltage at t = 0+ and v(∞) is the final or steady-
state value. Thus, to find the step response of anRC circuit requires three
things:

This is the same as saying that the complete re-
sponse is the sum of the transient response and
the steady-state response.

Once we know x(0), x(∞), and τ , almost all the
circuit problems in this chapter can be solved
using the formula

x(t) = x(∞)+ [x(0) − x(∞)] e-t/τ

1. The initial capacitor voltage v(0).

2. The final capacitor voltage v(∞).

3. The time constant τ .

We obtain item 1 from the given circuit for t < 0 and items 2 and 3 from
the circuit for t > 0. Once these items are determined, we obtain the
response using Eq. (7.53). This technique equally applies to RL circuits,
as we shall see in the next section.

Note that if the switch changes position at time t = t0 instead of at
t = 0, there is a time delay in the response so that Eq. (7.53) becomes

v(t) = v(∞)+ [v(t0)− v(∞)]e−(t−t0)/τ (7.54)

where v(t0) is the initial value at t = t+0 . Keep in mind that Eq. (7.53) or
(7.54) applies only to step responses, that is, when the input excitation is
constant.

E X A M P L E 7 . 1 0

The switch in Fig. 7.43 has been in position A for a long time. At t = 0,
the switch moves to B. Determine v(t) for t > 0 and calculate its value
at t = 1 s and 4 s.

3 kΩ

24 V 30 Vv5 kΩ 0.5 mF

4 kΩ

+
−

+
−

t = 0

A B

+

−

Figure 7.43 For Example 7.10.
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Solution:

For t < 0, the switch is at position A. Since v is the same as the voltage
across the 5-k� resistor, the voltage across the capacitor just before t = 0
is obtained by voltage division as

v(0−) = 5

5 + 3
(24) = 15 V

Using the fact that the capacitor voltage cannot change instantaneously,

v(0) = v(0−) = v(0+) = 15 V

For t > 0, the switch is in positionB. The Thevenin resistance connected
to the capacitor is RTh = 4 k�, and the time constant is

τ = RThC = 4 × 103 × 0.5 × 10−3 = 2 s

Since the capacitor acts like an open circuit to dc at steady state, v(∞) =
30 V. Thus,

v(t) = v(∞)+ [v(0)− v(∞)]e−t/τ

= 30 + (15 − 30)e−t/2 = (30 − 15e−0.5t ) V

At t = 1,

v(1) = 30 − 15e−0.5 = 20.902 V

At t = 4,

v(4) = 30 − 15e−2 = 27.97 V

P R A C T I C E P R O B L E M 7 . 1 0

Find v(t) for t > 0 in the circuit in Fig. 7.44. Assume the switch has been
open for a long time and is closed at t = 0. Calculate v(t) at t = 0.5.
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Figure 7.44 For Practice Prob. 7.10.

Answer: −5 + 15e−2t V, 0.5182 V.

E X A M P L E 7 . 1 1

In Fig. 7.45, the switch has been closed for a long time and is opened at
t = 0. Find i and v for all time.
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Figure 7.45 For Example 7.11.



262 PART 1 DC Circuits

Solution:

The resistor current i can be discontinuous at t = 0, while the capacitor
voltage v cannot. Hence, it is always better to find v and then obtain i

from v.
By definition of the unit step function,

30u(t) =
{

0, t < 0
30, t > 0

For t < 0, the switch is closed and 30u(t) = 0, so that the 30u(t)
voltage source is replaced by a short circuit and should be regarded as
contributing nothing to v. Since the switch has been closed for a long
time, the capacitor voltage has reached steady state and the capacitor acts
like an open circuit. Hence, the circuit becomes that shown in Fig. 7.46(a)
for t < 0. From this circuit we obtain

v = 10 V, i = − v

10
= −1 A

Since the capacitor voltage cannot change instantaneously,

v(0) = v(0−) = 10 V
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Figure 7.46 Solution of Example 7.11:
(a) for t < 0, (b) for t > 0.

For t > 0, the switch is opened and the 10-V voltage source is
disconnected from the circuit. The 30u(t) voltage source is now opera-
tive, so the circuit becomes that shown in Fig. 7.46(b). After a long time,
the circuit reaches steady state and the capacitor acts like an open circuit
again. We obtain v(∞) by using voltage division, writing

v(∞) = 20

20 + 10
(30) = 20 V

The Thevenin resistance at the capacitor terminals is

RTh = 10 ‖ 20 = 10 × 20

30
= 20

3
�

and the time constant is

τ = RThC = 20

3
· 1

4
= 5

3
s

Thus,

v(t) = v(∞)+ [v(0)− v(∞)]e−t/τ

= 20 + (10 − 20)e−(3/5)t = (20 − 10e−0.6t ) V

To obtain i, we notice from Fig. 7.46(b) that i is the sum of the currents
through the 20-� resistor and the capacitor; that is,

i = v

20
+ C

dv

dt

= 1 − 0.5e−0.6t + 0.25(−0.6)(−10)e−0.6t = (1 + e−0.6t ) A

Notice from Fig. 7.46(b) that v + 10i = 30 is satisfied, as expected.
Hence,

v =
{

10 V, t < 0
(20 − 10e−0.6t ) V, t ≥ 0
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i =
{−1 A, t < 0
(1 + e−0.6t ) A, t > 0

Notice that the capacitor voltage is continuous while the resistor current
is not.

P R A C T I C E P R O B L E M 7 . 1 1

The switch in Fig. 7.47 is closed at t = 0. Find i(t) and v(t) for all time.
Note that u(−t) = 1 for t < 0 and 0 for t > 0. Also, u(−t) = 1 − u(t).

5 Ω

+
−20u(−t) V 10 Ω0.2 F 3 Av

i t = 0

+

−

Figure 7.47 For Practice Prob. 7.11.

Answer: i(t) =
{

0, t < 0
−2(1 + e−1.5t ) A, t > 0

,

v =
{

20 V, t < 0
10(1 + e−1.5t ) V, t > 0

7.6 STEP RESPONSE OF AN RL CIRCUIT
Consider the RL circuit in Fig. 7.48(a), which may be replaced by the
circuit in Fig. 7.48(b). Again, our goal is to find the inductor current i as
the circuit response. Rather than apply Kirchhoff’s laws, we will use the
simple technique in Eqs. (7.50) through (7.53). Let the response be the
sum of the natural current and the forced current,

i = in + if (7.55)

We know that the natural response is always a decaying exponential, that
is,

in = Ae−t/τ , τ = L

R
(7.56)

where A is a constant to be determined.

R
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i

i
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−
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(b)

Figure 7.48 An RL circuit with a
step input voltage.

The forced response is the value of the current a long time after
the switch in Fig. 7.48(a) is closed. We know that the natural response
essentially dies out after five time constants. At that time, the inductor
becomes a short circuit, and the voltage across it is zero. The entire source
voltage Vs appears across R. Thus, the forced response is

if = Vs

R
(7.57)
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Substituting Eqs. (7.56) and (7.57) into Eq. (7.55) gives

i = Ae−t/τ + Vs

R
(7.58)

We now determine the constant A from the initial value of i. Let I0 be
the initial current through the inductor, which may come from a source
other than Vs . Since the current through the inductor cannot change
instantaneously,

i(0+) = i(0−) = I0 (7.59)

Thus at t = 0, Eq. (7.58) becomes

I0 = A+ Vs

R

From this, we obtain A as

A = I0 − Vs

R

Substituting for A in Eq. (7.58), we get

i(t) = Vs

R
+

(
I0 − Vs

R

)
e−t/τ (7.60)

This is the complete response of the RL circuit. It is illustrated in Fig.
7.49. The response in Eq. (7.60) may be written as

i(t) = i(∞)+ [i(0)− i(∞)]e−t/τ (7.61)

where i(0) and i(∞) are the initial and final values of i. Thus, to find the
step response of an RL circuit requires three things:

0 t

i(t)

Vs
R

Io

Figure 7.49 Total response
of the RL circuit with initial
inductor current I0.

1. The initial inductor current i(0) at t = 0+.

2. The final inductor current i(∞).

3. The time constant τ .

We obtain item 1 from the given circuit for t < 0 and items 2 and 3 from
the circuit for t > 0. Once these items are determined, we obtain the
response using Eq. (7.61). Keep in mind that this technique applies only
for step responses.

Again, if the switching takes place at time t = t0 instead of t = 0,
Eq. (7.61) becomes

i(t) = i(∞)+ [i(t0)− i(∞)]e−(t−t0)/τ (7.62)

If I0 = 0, then

i(t) =



0, t < 0
Vs

R
(1 − e−t/τ ), t > 0

(7.63a)

or

i(t) = Vs

R
(1 − e−t/τ )u(t) (7.63b)

This is the step response of theRL circuit. The voltage across the inductor
is obtained from Eq. (7.63) using v = Ldi/dt . We get
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v(t) = L
di

dt
= Vs

L

τR
e−t/τ , τ = L

R
, t > 0

or

v(t) = Vse
−t/τ u(t) (7.64)

Figure 7.50 shows the step responses in Eqs. (7.63) and (7.64).

0 t

v(t)

0 t

i(t)

Vs
R

(a) (b)

Vs

Figure 7.50 Step responses of an RL circuit with no initial
inductor current: (a) current response, (b) voltage response.

E X A M P L E 7 . 1 2

Find i(t) in the circuit in Fig. 7.51 for t > 0. Assume that the switch has
been closed for a long time.

2 Ω 3 Ω

+
−10 V

i

t = 0

  H1
3

Figure 7.51 For Example 7.12.

Solution:

When t < 0, the 3-� resistor is short-circuited, and the inductor acts
like a short circuit. The current through the inductor at t = 0− (i.e., just
before t = 0) is

i(0−) = 10

2
= 5 A

Since the inductor current cannot change instantaneously,

i(0) = i(0+) = i(0−) = 5 A

When t > 0, the switch is open. The 2-� and 3-� resistors are in series,
so that

i(∞) = 10

2 + 3
= 2 A

The Thevenin resistance across the inductor terminals is

RTh = 2 + 3 = 5 �

For the time constant,

τ = L

RTh
=

1
3

5
= 1

15
s

Thus,

i(t) = i(∞)+ [i(0)− i(∞)]e−t/τ

= 2 + (5 − 2)e−15t = 2 + 3e−15t A, t > 0
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Check: In Fig. 7.51, for t > 0, KVL must be satisfied; that is,

10 = 5i + L
di

dt

5i + L
di

dt
= [10 + 15e−15t ] +

[
1

3
(3)(−15)e−15t

]
= 10

This confirms the result.

P R A C T I C E P R O B L E M 7 . 1 2

The switch in Fig. 7.52 has been closed for a long time. It opens at t = 0.
Find i(t) for t > 0.

1.5 H

10 Ω5 Ω 3 At = 0

i

Figure 7.52 For Practice Prob. 7.12.

Answer: (2 + e−10t ) A, t > 0.

E X A M P L E 7 . 1 3

At t = 0, switch 1 in Fig. 7.53 is closed, and switch 2 is closed 4 s later.
Find i(t) for t > 0. Calculate i for t = 2 s and t = 5 s.

4 Ω 6 Ω

+
−

+
−

40 V

10 V

2 Ω 5 H

i

t = 0

t = 4

S1

S2

P

Figure 7.53 For Example 7.13.

Solution:

We need to consider the three time intervals t ≤ 0, 0 ≤ t ≤ 4, and t ≥ 4
separately. For t < 0, switches S1 and S2 are open so that i = 0. Since
the inductor current cannot change instantly,

i(0−) = i(0) = i(0+) = 0

For 0 ≤ t ≤ 4, S1 is closed so that the 4-� and 6-� resistors are in
series. Hence, assuming for now that S1 is closed forever,

i(∞) = 40

4 + 6
= 4 A, RTh = 4 + 6 = 10 �

τ = L

RTh
= 5

10
= 1

2
s
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Thus,

i(t) = i(∞)+ [i(0)− i(∞)]e−t/τ

= 4 + (0 − 4)e−2t = 4(1 − e−2t ) A, 0 ≤ t ≤ 4

For t ≥ 4, S2 is closed; the 10-V voltage source is connected, and
the circuit changes. This sudden change does not affect the inductor
current because the current cannot change abruptly. Thus, the initial
current is

i(4) = i(4−) = 4(1 − e−8) � 4 A

To find i(∞), let v be the voltage at node P in Fig. 7.53. Using KCL,

40 − v

4
+ 10 − v

2
= v

6
�⇒ v = 180

11
V

i(∞) = v

6
= 30

11
= 2.727 A

The Thevenin resistance at the inductor terminals is

RTh = 4 ‖ 2 + 6 = 4 × 2

6
+ 6 = 22

3
�

and

τ = L

RTh
= 5

22
3

= 15

22
s

Hence,

i(t) = i(∞)+ [i(4)− i(∞)]e−(t−4)/τ , t ≥ 4

We need (t − 4) in the exponential because of the time delay. Thus,

i(t) = 2.727 + (4 − 2.727)e−(t−4)/τ , τ = 15

22
= 2.727 + 1.273e−1.4667(t−4), t ≥ 4

Putting all this together,

i(t) =



0, t ≤ 0
4(1 − e−2t ), 0 ≤ t ≤ 4
2.727 + 1.273e−1.4667(t−4), t ≥ 4

At t = 2,

i(2) = 4(1 − e−4) = 3.93 A

At t = 5,

i(5) = 2.727 + 1.273e−1.4667 = 3.02 A

P R A C T I C E P R O B L E M 7 . 1 3

Switch S1 in Fig. 7.54 is closed at t = 0, and switch S2 is closed at t =
2 s. Calculate i(t) for all t . Find i(1) and i(3).
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Answer:

i(t) =



0, t < 0
2(1 − e−9t ), 0 < t < 2
3.6 − 1.6e−5(t−2), t > 2

i(1) = 1.9997 A, i(3) = 3.589 A.

10 Ω

15 Ω

20 Ω

6 A 5 H

t = 0

S1

t = 2

S2

i(t)

Figure 7.54 For Practice Prob. 7.13.

†7.7 FIRST-ORDER OP AMP CIRCUITS
An op amp circuit containing a storage element will exhibit first-order
behavior. Differentiators and integrators treated in Section 6.6 are exam-
ples of first-order op amp circuits. Again, for practical reasons, inductors
are hardly ever used in op amp circuits; therefore, the op amp circuits we
consider here are of the RC type.

As usual, we analyze op amp circuits using nodal analysis. Some-
times, the Thevenin equivalent circuit is used to reduce the op amp circuit
to one that we can easily handle. The following three examples illustrate
the concepts. The first one deals with a source-free op amp circuit, while
the other two involve step responses. The three examples have been care-
fully selected to cover all possibleRC types of op amp circuits, depending
on the location of the capacitor with respect to the op amp; that is, the
capacitor can be located in the input, the output, or the feedback loop.

E X A M P L E 7 . 1 4

For the op amp circuit in Fig. 7.55(a) , find vo for t > 0, given that v(0) =
3 V. Let Rf = 80 k�, R1 = 20 k�, and C = 5 µF.

vo

v +

−

R1

Rf

(a)

+ − 3

21 1

vo (0
+)

3 V +

−

(b)

+ −
3

2

vo

v +

−

(c)

80 kΩ80 kΩ

20 kΩ20 kΩ

1 AC

−+

C

+
−

+
−

+
−

Figure 7.55 For Example 7.14.

http://www.mhhe.com/engcs/electrical/alexander/eetuts/tutorial/Tut8-1.htm
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Solution:

This problem can be solved in two ways:

METHOD 1 Consider the circuit in Fig. 7.55(a). Let us derive the
appropriate differential equation using nodal analysis. If v1 is the voltage
at node 1, at that node, KCL gives

0 − v1

R1
= C

dv

dt
(7.14.1)

Since nodes 2 and 3 must be at the same potential, the potential at node
2 is zero. Thus, v1 − 0 = v or v1 = v and Eq. (7.14.1) becomes

dv

dt
+ v

CR1
= 0 (7.14.2)

This is similar to Eq. (7.4b) so that the solution is obtained the same way
as in Section 7.2, i.e.,

v(t) = V0e
−t/τ , τ = R1C (7.14.3)

where V0 is the initial voltage across the capacitor. But v(0) = 3 = V0

and τ = 20 × 103 × 5 × 10−6 = 0.1. Hence,

v(t) = 3e−10t (7.14.4)

Applying KCL at node 2 gives

C
dv

dt
= 0 − vo

Rf

or

vo = −RfC
dv

dt
(7.14.5)

Now we can find v0 as

vo = −80 × 103 × 5 × 10−6(−30e−10t ) = 12e−10t V, t > 0

METHOD 2 Let us now apply the short-cut method from Eq. (7.53).
We need to find vo(0+), vo(∞), and τ . Since v(0+) = v(0−) = 3 V, we
apply KCL at node 2 in the circuit of Fig. 7.55(b) to obtain

3

20,000
+ 0 − vo(0+)

80,000
= 0

or vo(0+) = 12 V. Since the circuit is source free, v(∞) = 0 V. To find τ ,
we need the equivalent resistance Req across the capacitor terminals. If
we remove the capacitor and replace it by a 1-A current source, we have
the circuit shown in Fig. 7.55(c). Applying KVL to the input loop yields

20,000(1)− v = 0 �⇒ v = 20 kV

Then

Req = v

1
= 20 k�

and τ = ReqC = 0.1. Thus,

vo(t) = vo(∞)+ [vo(0)− vo(∞)]e−t/τ

= 0 + (12 − 0)e−10t = 12e−10t V, t > 0

as before.
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P R A C T I C E P R O B L E M 7 . 1 4

For the op amp circuit in Fig. 7.56, find vo for t > 0 if v(0) = 4 V. Assume
that Rf = 50 k�, R1 = 10 k�, and C = 10 µF.

vo

+

−

R1

Rf

v+ −

C

+
−

Figure 7.56 For Practice Prob. 7.14.

Answer: −4e−2t V, t > 0.

E X A M P L E 7 . 1 5

Determine v(t) and vo(t) in the circuit of Fig. 7.57.

vo

v1

+

−

3 V

v+ −

1 mF

50 kΩ

20 kΩ
20 kΩ+

−

t = 0
10 kΩ

+
−

Figure 7.57 For Example 7.15.

Solution:

This problem can be solved in two ways, just like the previous example.
However, we will apply only the second method. Since what we are
looking for is the step response, we can apply Eq. (7.53) and write

v(t) = v(∞)+ [v(0)− v(∞)]e−t/τ , t > 0 (7.15.1)

where we need only find the time constant τ , the initial value v(0), and
the final value v(∞). Notice that this applies strictly to the capacitor
voltage due a step input. Since no current enters the input terminals of
the op amp, the elements on the feedback loop of the op amp constitute
an RC circuit, with

τ = RC = 50 × 103 × 10−6 = 0.05 (7.15.2)

For t < 0, the switch is open and there is no voltage across the capacitor.
Hence, v(0) = 0. For t > 0, we obtain the voltage at node 1 by voltage
division as

v1 = 20

20 + 10
3 = 2 V (7.15.3)

Since there is no storage element in the input loop, v1 remains constant
for all t . At steady state, the capacitor acts like an open circuit so that the
op amp circuit is a noninverting amplifier. Thus,

vo(∞) =
(

1 + 50

20

)
v1 = 3.5 × 2 = 7 V (7.15.4)

But

v1 − vo = v (7.15.5)
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so that

v(∞) = 2 − 7 = −5 V

Substituting τ, v(0), and v(∞) into Eq. (7.15.1) gives

v(t) = −5 + [0 − (−5)]e−20t = 5(e−20t − 1) V, t > 0 (7.15.6)

From Eqs. (7.15.3), (7.15.5), and (7.15.6), we obtain

vo(t) = v1(t)− v(t) = 7 − 5e−20t V, t > 0 (7.15.7)

P R A C T I C E P R O B L E M 7 . 1 5

Find v(t) and vo(t) in the op amp circuit of Fig. 7.58.

vo

+

−

4 mV

v+ −

1 mF

100 kΩ

+
−

t = 0
10 kΩ

+
−

Figure 7.58 For Practice Prob. 7.15.

Answer: 40(1 − e−10t ) mV, 40(e−10t − 1) mV.

E X A M P L E 7 . 1 6

Find the step response vo(t) for t > 0 in the op amp circuit of Fig. 7.59.
Let vi = 2u(t) V, R1 = 20 k�, Rf = 50 k�, R2 = R3 = 10 k�,
C = 2 µF.

vi vo
+
− C

+

−

R1

Rf

R2

R3

+
−

Figure 7.59 For Example 7.16.

Solution:

Notice that the capacitor in Example 7.14 is located in the input loop,
while the capacitor in Example 7.15 is located in the feedback loop. In
this example, the capacitor is located in the output of the op amp. Again,
we can solve this problem directly using nodal analysis. However, using
the Thevenin equivalent circuit may simplify the problem.

We temporarily remove the capacitor and find the Thevenin equiv-
alent at its terminals. To obtain VTh, consider the circuit in Fig. 7.60(a).
Since the circuit is an inverting amplifier,

Vab = −Rf

R1
vi

By voltage division,

VTh = R3

R2 + R3
Vab = − R3

R2 + R3

Rf

R1
vi



272 PART 1 DC Circuits

vi
+
−

R1

Rf

R2

R3

+

−

Vab VTh

+

−

a

b

(a) (b)

RThRo

R2

R3

+
−

Figure 7.60 Obtaining VTh and RTh across the capacitor in Fig. 7.59.

To obtain RTh, consider the circuit in Fig. 7.60(b), where Ro is the
output resistance of the op amp. Since we are assuming an ideal op amp,
Ro = 0, and

RTh = R2 ‖ R3 = R2R3

R2 + R3

Substituting the given numerical values,

VTh = − R3

R2 + R3

Rf

R1
vi = −10

20

50

20
2u(t) = −2.5u(t)

RTh = R2R3

R2 + R3
= 5 k�

The Thevenin equivalent circuit is shown in Fig. 7.61, which is similar
to Fig. 7.40. Hence, the solution is similar to that in Eq. (7.48); that is,

vo(t) = −2.5(1 − e−t/τ ) u(t)

where τ = RThC = 5 × 103 × 2 × 10−6 = 0.01. Thus, the step response
for t > 0 is

vo(t) = 2.5(e−100t − 1) u(t) V

5 kΩ

+
−−2.5u(t) 2 mF

Figure 7.61 Thevenin equivalent circuit of
the circuit in Fig. 7.59.

P R A C T I C E P R O B L E M 7 . 1 6

Obtain the step response vo(t) for the circuit of Fig. 7.62. Let vi = 2u(t)
V, R1 = 20 k�, Rf = 40 k�, R2 = R3 = 10 k�, C = 2 µF.

Rf

+
−

R1

R2

R3

vovi

+

−
C

+
−

Figure 7.62 For Practice Prob. 7.16.

Answer: 6(1 − e−50t )u(t) V.
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7.8 TRANSIENT ANALYSIS WITH PSPICE
As we discussed in Section 7.5, the transient response is the tem-

porary response of the circuit that soon disappears. PSpice can be used
to obtain the transient response of a circuit with storage elements. Sec-
tion D.4 in Appendix D provides a review of transient analysis using
PSpice for Windows. It is recommended that you read Section D.4 before
continuing with this section.

PSpice uses “transient” to mean “function of
time.” Therefore, the transient response in
PSpice may not actually die out as expected.

If necessary, dc PSpice analysis is first carried out to determine the
initial conditions. Then the initial conditions are used in the transient
PSpice analysis to obtain the transient responses. It is recommended
but not necessary that during this dc analysis, all capacitors should be
open-circuited while all inductors should be short-circuited.

E X A M P L E 7 . 1 7

Use PSpice to find the response i(t) for t > 0 in the circuit of Fig. 7.63. 4 Ω

2 Ω6 A 3 H

t = 0
i(t)

Figure 7.63 For Example 7.17.

Solution:

Solving this problem by hand gives i(0) = 0, i(∞) = 2 A,RTh = 6, τ =
3/6 = 0.5 s, so that

i(t) = i(∞)+ [i(0)− i(∞)]e−t/τ = 2(1 − e−2t ), t > 0

To use PSpice, we first draw the schematic as shown in Fig. 7.64.
We recall from Appendix D that the part name for a close switch is
Sw−tclose. We do not need to specify the initial condition of the in-
ductor because PSpice will determine that from the circuit. By select-
ing Analysis/Setup/Transient, we set Print Step to 25 ms and Final
Step to 5τ = 2.5 s. After saving the circuit, we simulate by selecting
Analysis/Simulate. In the Probe menu, we select Trace/Add and
display −I(L1) as the current through the inductor. Figure 7.65 shows the
plot of i(t), which agrees with that obtained by hand calculation.

R2

26 A 3 H

IDC

R1 L1

tClose = 0
1 2

U1 4

0

Figure 7.64 The schematic of the circuit in
Fig. 7.63.1.5 A

0.5 A

2.0 A

1.0 A

0 A
0 s 1.0 s 2.0 s 3.0 s

 -I(L1)

Time

Figure 7.65 For Example 7.17; the response
of the circuit in Fig. 7.63.
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Note that the negative sign on I(L1) is needed because the current
enters through the upper terminal of the inductor, which happens to be the
negative terminal after one counterclockwise rotation. A way to avoid
the negative sign is to ensure that current enters pin 1 of the inductor. To
obtain this desired direction of positive current flow, the initially horizon-
tal inductor symbol should be rotated counterclockwise 270◦ and placed
in the desired location.

P R A C T I C E P R O B L E M 7 . 1 7

For the circuit in Fig. 7.66, use PSpice to find v(t) for t > 0.
3 Ω

+
−12 V 6 Ω 0.5 F

+

−
v(t)

t = 0

Figure 7.66 For Practice Prob. 7.17.

Answer: v(t) = 8(1 − e−t ) V, t > 0. The response is similar in shape
to that in Fig. 7.65.

E X A M P L E 7 . 1 8

In the circuit in Fig. 7.67, determine the response v(t).

12 Ω

+
−30 V 3 Ω6 Ω6 Ω

0.1 F

4 A

+ −v(t)t = 0 t = 0

Figure 7.67 For Example 7.18.

Solution:

There are two ways of solving this problem using PSpice.

METHOD 1 One way is to first do the dc PSpice analysis to determine
the initial capacitor voltage. The schematic of the revelant circuit is in
Fig. 7.68(a). Two pseudocomponent VIEWPOINTs are inserted to mea-
sure the voltages at nodes 1 and 2. When the circuit is simulated, we
obtain the displayed values in Fig. 7.68(a) as V1 = 0 V and V2 = 8 V.
Thus the initial capacitor voltage is v(0) = V1 −V2 = −8 V. The PSpice
transient analysis uses this value along with the schematic in Fig. 7.68(b).
Once the circuit in Fig. 7.68(b) is drawn, we insert the capacitor initial
voltage as IC = −8. We select Analysis/Setup/Transient and set Print
Step to 0.1 s and Final Step to 4τ = 4 s. After saving the circuit, we select
Analysis/Simulate to simulate the circuit. In the Probe menu, we select
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Trace/Add and display V(R2:2) - V(R3:2) or V(C1:1) - V(C1:2) as the
capacitor voltage v(t). The plot of v(t) is shown in Fig. 7.69. This agrees
with the result obtained by hand calculation, v(t) = 10 − 18e−t .

0.0000 8.0000

6 4A

0.1

1

R3 3R4 I1

2

6R2

0

C1

(a)

6

12

R2 6R330 V

0

R1

(b)

+
−

0.1 

C1

V1

Figure 7.68 (a) Schematic for dc analysis to get v(0),
(b) schematic for transient analysis used in getting the
response v(t).

5 V

-5 V

10 V

0 V

-10 V
0 s 1.0 s 2.0 s 3.0 s 4.0 s

  V(R2:2) - V(R3:2)

Time

Figure 7.69 Response v(t) for the circuit in Fig. 7.67.

METHOD 2 We can simulate the circuit in Fig. 7.67 directly, since
PSpice can handle the open and close switches and determine the initial
conditions automatically. Using this approach, the schematic is drawn
as shown in Fig. 7.70. After drawing the circuit, we select Analysis/
Setup/Transient and set Print Step to 0.1 s and Final Step to 4τ = 4 s.
We save the circuit, then select Analysis/Simulate to simulate the circuit.
In the Probe menu, we select Trace/Add and display V(R2:2) - V(R3:2)
as the capacitor voltage v(t). The plot of v(t) is the same as that shown
in Fig. 7.69.

R1

630 V 4 AR2 6R3 3R4 I1

tClose = 0
1 2

12 U1

1 2

U2

0

+
−

tOpen = 0

0.1 

C1

V1

Figure 7.70 For Example 7.18.
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P R A C T I C E P R O B L E M 7 . 1 8

The switch in Fig. 7.71 was open for a long time but closed at t = 0. If
i(0) = 10 A, find i(t) for t > 0 by hand and also by PSpice.

5 Ω

30 Ω12 A 2 H

t = 0

6 Ω

i(t)

Figure 7.71 For Practice Prob. 7.18.

Answer: i(t) = 6 + 4e−5t A. The plot of i(t) obtained by PSpice
analysis is shown in Fig. 7.72.

9 A

10 A

7 A

8 A

6 A
0 s 0.5 s 1.0 s

  I(L1)

Time

Figure 7.72 For Practice Prob. 7.18.

†7.9 APPLICATIONS
The various devices in which RC and RL circuits find applications in-
clude filtering in dc power supplies, smoothing circuits in digital com-
munications, differentiators, integrators, delay circuits, and relay circuits.
Some of these applications take advantage of the short or long time con-
stants of theRC orRL circuits. We will consider four simple applications
here. The first two are RC circuits, the last two are RL circuits.

7 . 9 . 1 De l a y C i r cu i t s
An RC circuit can be used to provide various time delays. Figure 7.73
shows such a circuit. It basically consists of an RC circuit with the
capacitor connected in parallel with a neon lamp. The voltage source can
provide enough voltage to fire the lamp. When the switch is closed, the
capacitor voltage increases gradually toward 110 V at a rate determined

R1
R2

110 V C 0.1 mF

S

+

−

70 V
Neon
lamp

Figure 7.73 An RC delay circuit.
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by the circuit’s time constant, (R1 +R2)C. The lamp will act as an open
circuit and not emit light until the voltage across it exceeds a particular
level, say 70 V. When the voltage level is reached, the lamp fires (goes
on), and the capacitor discharges through it. Due to the low resistance of
the lamp when on, the capacitor voltage drops fast and the lamp turns off.
The lamp acts again as an open circuit and the capacitor recharges. By
adjusting R2, we can introduce either short or long time delays into the
circuit and make the lamp fire, recharge, and fire repeatedly every time
constant τ = (R1 + R2)C, because it takes a time period τ to get the
capacitor voltage high enough to fire or low enough to turn off.

The warning blinkers commonly found on road construction sites
are one example of the usefulness of such an RC delay circuit.

E X A M P L E 7 . 1 9

Consider the circuit in Fig. 7.73, and assume thatR1 = 1.5 M�, 0 < R <

2.5 M�. (a) Calculate the extreme limits of the time constant of the cir-
cuit. (b) How long does it take for the lamp to glow for the first time after
the switch is closed? Let R2 assume its largest value.

Solution:

(a) The smallest value for R2 is 0 �, and the corresponding time constant
for the circuit is

τ = (R1 + R2)C = (1.5 × 106 + 0)× 0.1 × 10−6 = 0.15 s

The largest value for R2 is 2.5 M�, and the corresponding time constant
for the circuit is

τ = (R1 + R2)C = (1.5 + 2.5)× 106 × 0.1 × 10−6 = 0.4 s

Thus, by proper circuit design, the time constant can be adjusted to in-
troduce a proper time delay in the circuit.
(b) Assuming that the capacitor is initially uncharged, vC(0) = 0, while
vC(∞) = 110. But

vC(t) = vC(∞)+ [vC(0)− vC(∞)]e−t/τ = 110[1 − e−t/τ ]

where τ = 0.4 s, as calculated in part (a). The lamp glows when vC =
70 V. If vC(t) = 70 V at t = t0, then

70 = 110[1 − e−t0/τ ] �⇒ 7

11
= 1 − e−t0/τ

or

e−t0/τ = 4

11
�⇒ et0/τ = 11

4

Taking the natural logarithm of both sides gives

t0 = τ ln
11

4
= 0.4 ln 2.75 = 0.4046 s

A more general formula for finding t0 is

t0 = τ ln
v(0)− v(∞)

v(t0)− v(∞)
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The lamp will fire repeatedly every τ seconds if and only if t0 < τ . In
this example, that condition is not satisfied.

P R A C T I C E P R O B L E M 7 . 1 9

The RC circuit in Fig. 7.74 is designed to operate an alarm which acti-
vates when the current through it exceeds 120 µA. If 0 ≤ R ≤ 6 k�, find
the range of the time delay that the circuit can cause.

10 kΩ R

9 V 80 mF 4 kΩ

S

+

−

Alarm

Figure 7.74 For Practice Prob. 7.19.

Answer: Between 47.23 ms and 124 ms.

7 . 9 . 2 Pho to f l a s h Un i t

R1

+
−

High
voltage
dc supply R2

C vvs

1

2
i

+

−

Figure 7.75 Circuit for a flash unit providing
slow charge in position 1 and fast discharge in
position 2.

An electronic flash unit provides a common example of an RC circuit.
This application exploits the ability of the capacitor to oppose any abrupt
change in voltage. Figure 7.75 shows a simplified circuit. It consists
essentially of a high-voltage dc supply, a current-limiting large resistor
R1, and a capacitor C in parallel with the flashlamp of low resistance R2.
When the switch is in position 1, the capacitor charges slowly due to the
large time constant (τ1 = R1C). As shown in Fig. 7.76, the capacitor
voltage rises gradually from zero to Vs , while its current decreases grad-
ually from I1 = Vs/R1 to zero. The charging time is approximately five
times the time constant,

tcharge = 5R1C (7.65)

With the switch in position 2, the capacitor voltage is discharged. The low
resistanceR2 of the photolamp permits a high discharge current with peak
I2 = Vs/R2 in a short duration, as depicted in Fig. 7.76(b). Discharging
takes place in approximately five times the time constant,

0 t

Vs

v

0

(a) (b)

−I2

I1

i

Figure 7.76 (a) Capacitor voltage showing slow charge and fast discharge,
(b) capacitor current showing low charging current I1 = Vs/R1 and high discharge
current I2 = Vs/R2.
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tdischarge = 5R2C (7.66)

Thus, the simple RC circuit of Fig. 7.75 provides a short-duration, high-
current pulse. Such a circuit also finds applications in electric spot weld-
ing and the radar transmitter tube.

E X A M P L E 7 . 2 0

An electronic flashgun has a current-limiting 6-k� resistor and 2000-µF
electrolytic capacitor charged to 240 V. If the lamp resistance is 12 �,
find: (a) the peak charging current, (b) the time required for the capaci-
tor to fully charge, (c) the peak discharging current, (d) the total energy
stored in the capacitor, and (e) the average power dissipated by the lamp.

Solution:

(a) The peak charging current is

I1 = Vs

R1
= 240

6 × 103
= 40 mA

(b) From Eq. (7.65),

tcharge = 5R1C = 5 × 6 × 103 × 2000 × 10−6 = 60 s = 1 minute

(c) The peak discharging current is

I2 = Vs

R2
= 240

12
= 20 A

(d) The energy stored is

W = 1

2
CV 2

s = 1

2
× 2000 × 10−6 × 2402 = 57.6 J

(e) The energy stored in the capacitor is dissipated across the lamp during
the discharging period. From Eq. (7.66),

tdischarge = 5R2C = 5 × 12 × 2000 × 10−6 = 0.12 s

Thus, the average power dissipated is

p = W

tdischarge
= 57.6

0.12
= 480 W

P R A C T I C E P R O B L E M 7 . 2 0

The flash unit of a camera has a 2-mF capacitor charged to 80 V.

(a) How much charge is on the capacitor?

(b) What is the energy stored in the capacitor?

(c) If the flash fires in 0.8 ms, what is the average current through the
flashtube?

(d) How much power is delivered to the flashtube?

(e) After a picture has been taken, the capacitor needs to be recharged by
a power unit which supplies a maximum of 5 mA. How much time does
it take to charge the capacitor?

Answer: (a) 0.16 C, (b) 6.4 J, (c) 200 A, (d) 8 kW, (e) 32 s.
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7 . 9 . 3 Re l a y C i r cu i t s
A magnetically controlled switch is called a relay. A relay is essentially an
electromagnetic device used to open or close a switch that controls another
circuit. Figure 7.77(a) shows a typical relay circuit. The coil circuit is an
RL circuit like that in Fig. 7.77(b), where R and L are the resistance and
inductance of the coil. When switch S1 in Fig. 7.77(a) is closed, the coil
circuit is energized. The coil current gradually increases and produces
a magnetic field. Eventually the magnetic field is sufficiently strong to
pull the movable contact in the other circuit and close switch S2. At this
point, the relay is said to be pulled in. The time interval td between the
closure of switches S1 and S2 is called the relay delay time.

Relays were used in the earliest digital circuits and are still used
for switching high-power circuits.

S2

Coil

Magnetic fieldS1

S1

Vs

(a) (b)

Vs

R

L

Figure 7.77 A relay circuit.

E X A M P L E 7 . 2 1

The coil of a certain relay is operated by a 12-V battery. If the coil has a
resistance of 150 � and an inductance of 30 mH and the current needed
to pull in is 50 mA, calculate the relay delay time.

Solution:

The current through the coil is given by

i(t) = i(∞)+ [i(0)− i(∞)]e−t/τ

where

i(0) = 0, i(∞) = 12

150
= 80 mA

τ = L

R
= 30 × 10−3

150
= 0.2 ms

Thus,

i(t) = 80[1 − e−t/τ ] mA

If i(td) = 50 mA, then

50 = 80[1 − e−td /τ ] �⇒ 5

8
= 1 − e−td /τ
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or

e−td /τ = 3

8
�⇒ etd/τ = 8

3
By taking the natural logarithm of both sides, we get

td = τ ln
8

3
= 0.2 ln

8

3
ms = 0.1962 ms

P R A C T I C E P R O B L E M 7 . 2 1

A relay has a resistance of 200� and an inductance of 500 mH. The relay
contacts close when the current through the coil reaches 350 mA. What
time elapses between the application of 110 V to the coil and contact
closure?

Answer: 2.529 ms.

7 . 9 . 4 Au tomob i l e I g n i t i on C i r cu i t
The ability of inductors to oppose rapid change in current makes them
useful for arc or spark generation. An automobile ignition system takes
advantage of this feature.

R

Vs v
+

−

i
Spark
plug

Air gap

L

Figure 7.78 Circuit for an automobile ignition
system.

The gasoline engine of an automobile requires that the fuel-air
mixture in each cylinder be ignited at proper times. This is achieved
by means of a spark plug (Fig. 7.78), which essentially consists of a
pair of electrodes separated by an air gap. By creating a large voltage
(thousands of volts) between the electrodes, a spark is formed across the
air gap, thereby igniting the fuel. But how can such a large voltage be
obtained from the car battery, which supplies only 12 V? This is achieved
by means of an inductor (the spark coil) L. Since the voltage across the
inductor is v = Ldi/dt , we can make di/dt large by creating a large
change in current in a very short time. When the ignition switch in Fig.
7.78 is closed, the current through the inductor increases gradually and
reaches the final value of i = Vs/R, where Vs = 12 V. Again, the time
taken for the inductor to charge is five times the time constant of the
circuit (τ = L/R),

tcharge = 5
L

R
(7.67)

Since at steady state, i is constant, di/dt = 0 and the inductor voltage
v = 0. When the switch suddenly opens, a large voltage is developed
across the inductor (due to the rapidly collapsing field) causing a spark
or arc in the air gap. The spark continues until the energy stored in the
inductor is dissipated in the spark discharge. In laboratories, when one
is working with inductive circuits, this same effect causes a very nasty
shock, and one must exercise caution.

E X A M P L E 7 . 2 2

A solenoid with resistance 4 � and inductance 6 mH is used in an auto-
mobile ignition circuit similar to that in Fig. 7.78. If the battery supplies
12 V, determine: the final current through the solenoid when the switch
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is closed, the energy stored in the coil, and the voltage across the air gap,
assuming that the switch takes 1 µs to open.

Solution:

The final current through the coil is

I = Vs

R
= 12

4
= 3 A

The energy stored in the coil is

W = 1

2
LI 2 = 1

2
× 6 × 10−3 × 32 = 27 mJ

The voltage across the gap is

V = L
)I

)t
= 6 × 10−3 × 3

1 × 10−6
= 18 kV

P R A C T I C E P R O B L E M 7 . 2 2

The spark coil of an automobile ignition system has a 20-mH inductance
and a 5-� resistance. With a supply voltage of 12 V, calculate: the time
needed for the coil to fully charge, the energy stored in the coil, and the
voltage developed at the spark gap if the switch opens in 2 µs.

Answer: 20 ms, 57.6 mJ, and 24 kV.

7.10 SUMMARY
1. The analysis in this chapter is applicable to any circuit that can be

reduced to an equivalent circuit comprising a resistor and a single
energy-storage element (inductor or capacitor). Such a circuit is
first-order because its behavior is described by a first-order differen-
tial equation. When analyzing RC and RL circuits, one must always
keep in mind that the capacitor is an open circuit to steady-state dc
conditions while the inductor is a short circuit to steady-state dc
conditions.

2. The natural response is obtained when no independent source is
present. It has the general form

x(t) = x(0)e−t/τ

where x represents current through (or voltage across) a resistor, a
capacitor, or an inductor, and x(0) is the initial value of x. The
natural response is also called the transient response because it is the
temporary response that vanishes with time.

3. The time constant τ is the time required for a response to decay to
1/e of its initial value. For RC circuits, τ = RC and for RL circuits,
τ = L/R.

4. The singularity functions include the unit step, the unit ramp func-
tion, and the unit impulse functions. The unit step function u(t) is

u(t) =
{

0, t < 0
1, t > 0
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The unit impulse function is

δ(t) =



0, t < 0
Undefined, t = 0
0, t > 0

The unit ramp function is

r(t) =
{

0, t ≤ 0
t, t ≥ 0

5. The forced (or steady-state) response is the behavior of the circuit
after an independent source has been applied for a long time.

6. The total or complete response consists of the natural response and
the forced response.

7. The step response is the response of the circuit to a sudden applica-
tion of a dc current or voltage. Finding the step response of a first-
order circuit requires the initial value x(0+), the final value x(∞),
and the time constant τ . With these three items, we obtain the step
response as

x(t) = x(∞)+ [x(0+)− x(∞)]e−t/τ

A more general form of this equation is

x(t) = x(∞)+ [x(t+0 )− x(∞)]e−(t−t0)/τ

Or we may write it as

Instantaneous value = Final + [Initial − Final]e−(t−t0)/τ

8. PSpice is very useful for obtaining the transient response of a circuit.

9. Four practical applications of RC and RL circuits are: a delay
circuit, a photoflash unit, a relay circuit, and an automobile ignition
circuit.

R E V I EW QU E S T I ON S

7.1 An RC circuit has R = 2 � and C = 4 F. The time
constant is:
(a) 0.5 s (b) 2 s (c) 4 s
(d) 8 s (e) 15 s

7.2 The time constant for an RL circuit with R = 2 �
and L = 4 H is:
(a) 0.5 s (b) 2 s (c) 4 s
(d) 8 s (e) 15 s

7.3 A capacitor in an RC circuit with R = 2 � and
C = 4 F is being charged. The time required for the
capacitor voltage to reach 63.2 percent of its
steady-state value is:
(a) 2 s (b) 4 s (c) 8 s
(d) 16 s (e) none of the above

7.4 An RL circuit has R = 2 � and L = 4 H. The time
needed for the inductor current to reach 40 percent

of its steady-state value is:
(a) 0.5 s (b) 1 s (c) 2 s
(d) 4 s (e) none of the above

7.5 In the circuit of Fig. 7.79, the capacitor voltage just
before t = 0 is:
(a) 10 V (b) 7 V (c) 6 V
(d) 4 V (e) 0 V

v(t)10 V
2 Ω

3 Ω

+
−

+

− t = 0

7 F

Figure 7.79 For Review Questions 7.5 and 7.6.
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7.6 In the circuit of Fig. 7.79, v(∞) is:
(a) 10 V (b) 7 V (c) 6 V
(d) 4 V (e) 0 V

7.7 For the circuit of Fig. 7.80, the inductor current just
before t = 0 is:
(a) 8 A (b) 6 A (c) 4 A
(d) 2 A (e) 0 A

10 A

3 Ω

2 Ω
5 H

i(t)

t = 0

Figure 7.80 For Review Questions 7.7 and 7.8.

7.8 In the circuit of Fig. 7.80, i(∞) is:
(a) 8 A (b) 6 A (c) 4 A
(d) 2 A (e) 0 A

7.9 If vs changes from 2 V to 4 V at t = 0, we may
express vs as:
(a) δ(t) V (b) 2u(t) V
(c) 2u(−t)+ 4u(t) V (d) 2 + 2u(t) V
(e) 4u(t)− 2 V

7.10 The pulse in Fig. 7.110(a) can be expressed in terms
of singularity functions as:
(a) 2u(t)+ 2u(t − 1) V (b) 2u(t)− 2u(t − 1) V
(c) 2u(t)− 4u(t − 1) V (d) 2u(t)+ 4u(t − 1) V

Answers: 7.1d, 7.2b, 7.3c, 7.4b, 7.5d, 7.6a, 7.7c, 7.8e, 7.9c,d, 7.10b.

P RO B L E M S

Section 7.2 The Source-Free RC Circuit

7.1 Show that Eq. (7.9) can be obtained by working with
the current i in the RC circuit rather than working
with the voltage v.

7.2 Find the time constant for the RC circuit in Fig.
7.81.

+
− 80 Ω

120 Ω 12 Ω

50 V 0.5 mF

Figure 7.81 For Prob. 7.2.

7.3 Determine the time constant of the circuit in Fig.
7.82.

4 kΩ12 kΩ 3 mF

1 mF

5 kΩ

Figure 7.82 For Prob. 7.3.

7.4 Obtain the time constant of the circuit in Fig. 7.83.

+
− R2

R1

vs

C2

C1

Figure 7.83 For Prob. 7.4.

7.5 The switch in Fig. 7.84 has been in position a for a
long time, until t = 4 s when it is moved to position
b and left there. Determine v(t) at t = 10 s.

v(t)24 V 20 Ω

80 Ω

+
−

+

−
0.1 F

t = 4

a b

Figure 7.84 For Prob. 7.5.

7.6 If v(0) = 20 V in the circuit in Fig. 7.85, obtain v(t)
for t > 0.

10 Ω

8 Ω

0.5 V 0.1 F+
− v

+

−

Figure 7.85 For Prob. 7.6.
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7.7 For the circuit in Fig. 7.86, if

v = 10e−4t V and i = 0.2e−4t A, t > 0

(a) Find R and C.
(b) Determine the time constant.
(c) Calculate the initial energy in the capacitor.
(d) Obtain the time it takes to dissipate 50 percent

of the initial energy.

R v

i

C
+

−

Figure 7.86 For Prob. 7.7.

7.8 In the circuit of Fig. 7.87, v(0) = 20 V. Find v(t) for
t > 0.

2 Ω

0.25 F

8 Ω

6 Ω 3 Ω

8 Ω
+

−
v

Figure 7.87 For Prob. 7.8.

7.9 Given that i(0) = 3 A, find i(t) for t > 0 in the
circuit in Fig. 7.88.

i

10 mF

10 Ω

4 Ω

15 Ω

Figure 7.88 For Prob. 7.9.

Section 7.3 The Source-Free RL Circuit

7.10 Derive Eq. (7.20) by working with voltage v across
the inductor of the RL circuit instead of working
with the current i.

7.11 The switch in the circuit in Fig. 7.89 has been closed
for a long time. At t = 0, the switch is opened.
Calculate i(t) for t > 0.

3 Ω

+
−12 V 4 Ω

i

t = 0

2 H

Figure 7.89 For Prob. 7.11.

7.12 For the circuit shown in Fig. 7.90, calculate the time
constant.

70 Ω 2 mH

+
−20 V 80 Ω 20 Ω30 Ω

Figure 7.90 For Prob. 7.12.

7.13 What is the time constant of the circuit in Fig. 7.91?

10 kΩ

10 mH30 kΩ 6 kΩ

20 mH

Figure 7.91 For Prob. 7.13.

7.14 Determine the time constant for each of the circuits
in Fig. 7.92.

L

R1

R2

R3

(a)

R1 R2

L2L1

R3

(b)

Figure 7.92 For Prob. 7.14.

7.15 Consider the circuit of Fig. 7.93. Find vo(t) if
i(0) = 2 A and v(t) = 0.
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vo(t)v(t)

1 Ω

3 Ω +

−

+
− i(t)

  H1
4

Figure 7.93 For Prob. 7.15.

7.16 For the circuit in Fig. 7.94, determine vo(t) when
i(0) = 1 A and v(t) = 0.

vo(t)v(t) 3 Ω

+

−

+
−

i(t)

2 Ω

0.4 H

Figure 7.94 For Prob. 7.16.

7.17 In the circuit of Fig. 7.95, find i(t) for t > 0 if
i(0) = 2 A.

40 Ω10 Ω 0.5i

6 Hi

Figure 7.95 For Prob. 7.17.

7.18 For the circuit in Fig. 7.96,

v = 120e−50t V

and

i = 30e−50t A, t > 0
(a) Find L and R.
(b) Determine the time constant.
(c) Calculate the initial energy in the inductor.
(d) What fraction of the initial energy is dissipated

in 10 ms?

R

i

+

−
vL

Figure 7.96 For Prob. 7.18.

7.19 In the circuit in Fig. 7.97, find the value of R for
which energy stored in the inductor will be 1 J.

40 Ω R

+
−60 V 2 H80 Ω

Figure 7.97 For Prob. 7.19.

7.20 Find i(t) and v(t) for t > 0 in the circuit of Fig.
7.98 if i(0) = 10 A.

5 Ω 20 Ω

1 Ω

2 H +

−
v(t)

i(t)

Figure 7.98 For Prob. 7.20.

7.21 Consider the circuit in Fig. 7.99. Given that
vo(0) = 2 V, find vo and vx for t > 0.

3 Ω

1 Ω 2 Ω vo

+

−
vx   H1

3

+

−

Figure 7.99 For Prob. 7.21.

Section 7.4 Singularity Functions

7.22 Express the following signals in terms of singularity
functions.

(a) v(t) =
{

0, t < 0
−5, t > 0

(b) i(t) =




0, t < 1
−10, 1 < t < 3

10, 3 < t < 5
0, t > 5
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(c) x(t) =



t − 1, 1 < t < 2
1, 2 < t < 3
4 − t, 3 < t < 4
0, Otherwise

(d) y(t) =



2, t < 0
−5, 0 < t < 1

0, t > 1

7.23 Express the signals in Fig. 7.100 in terms of
singularity functions.

0 t

1

−1

v1(t)

1

−1

(a)

0
1 2 t

−1

−2

v4(t)

(d)

0 2 4 6 t

2

4

v3(t)

(c)

0 2 4 t

2

v2(t)

(b)

Figure 7.100 For Prob. 7.23.

7.24 Sketch the waveform that is represented by

v(t) = u(t)+ u(t − 1)− 3u(t − 2)+ 2u(t − 3)

7.25 Sketch the waveform represented by

i(t) = r(t)+ r(t − 1)− u(t − 2)− r(t − 2)

+ r(t − 3)+ u(t − 4)

7.26 Evaluate the following integrals involving the
impulse functions:

(a)
∫ ∞

−∞
4t2δ(t − 1) dt

(b)
∫ ∞

−∞
4t2 cos 2πtδ(t − 0.5) dt

7.27 Evaluate the following integrals:

(a)
∫ ∞

−∞
e−4t2δ(t − 2) dt

(b)
∫ ∞

−∞
[5δ(t)+ e−t δ(t)+ cos 2πtδ(t)]dt

7.28 The voltage across a 10-mH inductor is
20δ(t − 2) mV. Find the inductor current, assuming
that the inductor is initially uncharged.

7.29 Find the solution of the following first-order
differential equations subject to the specified initial
conditions.
(a) 5 dv/dt + 3v = 0, v(0) = −2
(b) 4 dv/dt − 6v = 0, v(0) = 5

7.30 Solve for v in the following differential equations,
subject to the stated initial condition.
(a) dv/dt + v = u(t), v(0) = 0
(b) 2 dv/dt − v = 3u(t), v(0) = −6

Section 7.5 Step Response of an RC Circuit

7.31 Calculate the capacitor voltage for t < 0 and t > 0
for each of the circuits in Fig. 7.101.

+
−

1 Ω

4 Ω

20 V

12 V

+

−
t = 0

v 2 F

(a)

(b)

3 Ω

2 A4 Ω

+ −
+
− t = 0

2 F

v

Figure 7.101 For Prob. 7.31.

7.32 Find the capacitor voltage for t < 0 and t > 0 for
each of the circuits in Fig. 7.102.
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3 Ω 2 Ω

+
− 3 F

+

−
v12 V 4 V +

−

t = 0

(a)

(b)

4 Ω

2 Ω 5 F6 A
+

−
v

t = 0

Figure 7.102 For Prob. 7.32.

7.33 For the circuit in Fig. 7.103, find v(t) for t > 0.

1 F
+

−
v

6 Ω

30 Ω12 V

t = 0

+
−

Figure 7.103 For Prob. 7.33.

7.34 (a) If the switch in Fig. 7.104 has been open for a
long time and is closed at t = 0, find vo(t).

(b) Suppose that the switch has been closed for a
long time and is opened at t = 0. Find vo(t).

3 F
+

−
vo

2 Ω

4 Ω12 V +
−

t = 0

Figure 7.104 For Prob. 7.34.

7.35 Consider the circuit in Fig. 7.105. Find i(t) for
t < 0 and t > 0.

3 F

40 Ω 30 Ω

50 Ω0.5i80 V +
−

t = 0

i

Figure 7.105 For Prob. 7.35.

7.36 The switch in Fig. 7.106 has been in position a for a
long time. At t = 0, it moves to position b.
Calculate i(t) for all t > 0.

2 F

6 Ω

3 Ω30 V +
− 12 V +

−

i

t = 0a

b

Figure 7.106 For Prob. 7.36.

7.37 Find the step responses v(t) and i(t) to
vs = 5u(t) V in the circuit of Fig. 7.107.

v(t)vs 4 Ω

12 Ω

+
−

+

−
0.5 F

7 Ω

i(t)

Figure 7.107 For Prob. 7.37.

7.38 Determine v(t) for t > 0 in the circuit in Fig. 7.108
if v(0) = 0.

3u(t − 1) A 3u(t) A8 Ω2 Ω

+ −

0.1 F

v

Figure 7.108 For Prob. 7.38.

7.39 Find v(t) and i(t) in the circuit of Fig. 7.109.
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vu(−t) A 10 Ω
+

−
0.1 F

20 Ω

i

Figure 7.109 For Prob. 7.39.

7.40 If the waveform in Fig. 7.110(a) is applied to the
circuit of Fig. 7.110(b), find v(t). Assume v(0) = 0.

vis 4 Ω
+

−
0.5 F

6 Ω

(b)

0 1 t (s)

2

is (A)

(a)

Figure 7.110 For Prob. 7.40 and Review Question 7.10.

7.41∗ In the circuit in Fig. 7.111, find ix for t > 0. Let
R1 = R2 = 1 k�, R3 = 2 k�, and C = 0.25 mF.

R2

R130 mA

t = 0

R3

ix

C

Figure 7.111 For Prob. 7.41.

Section 7.6 Step Response of an RL Circuit

7.42 Rather than applying the short-cut technique used in
Section 7.6, use KVL to obtain Eq. (7.60).

7.43 For the circuit in Fig. 7.112, find i(t) for t > 0.

40 Ω
20 V 5 H

i

+
−

t = 0

10 Ω

Figure 7.112 For Prob. 7.43.

7.44 Determine the inductor current i(t) for both t < 0
and t > 0 for each of the circuits in Fig. 7.113.

4 Ω6 A 2 Ω 3 H

i

t = 0

(b)

25 V 4 H

i

(a)

+
− t = 0

2 Ω3 Ω

Figure 7.113 For Prob. 7.44.

7.45 Obtain the inductor current for both t < 0 and t > 0
in each of the circuits in Fig. 7.114.

∗An asterisk indicates a challenging problem.
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4 Ω2 A

2 Ω 3 Ω
6 Ω

12 Ω

3.5 H

i

4 Ω

(a)

10 V 2 H

i

(b)

+
−

24 V +
−

t = 0

t = 0

Figure 7.114 For Prob. 7.45.

7.46 Find v(t) for t < 0 and t > 0 in the circuit in Fig.
7.115.

8 Ω
4io

3 Ω

0.5 H

2 Ω

20 V +
−

24 V +
−

t = 0

+
−

io

+

−
v

Figure 7.115 For Prob. 7.46.

7.47 For the network shown in Fig. 7.116, find v(t) for
t > 0.

6 Ω

12 Ω2 A 0.5 H20 Ω

5 Ω

+

−
v

+
− 20 V

t = 0

Figure 7.116 For Prob. 7.47.

7.48∗ Find i1(t) and i2(t) for t > 0 in the circuit of Fig.
7.117.

6 Ω5 A

2.5 H

5 Ω 20 Ω

4 H

i1 i2

t = 0

Figure 7.117 For Prob. 7.48.

7.49 Rework Prob. 7.15 if i(0) = 10 A and
v(t) = 20u(t) V.

7.50 Determine the step response vo(t) to vs = 18u(t) in
the circuit of Fig. 7.118.

3 Ω

6 Ω

vs

1.5 H

4 Ω
+
− +

−
vo

Figure 7.118 For Prob. 7.50.

7.51 Find v(t) for t > 0 in the circuit of Fig. 7.119 if the
initial current in the inductor is zero.

5 Ω 20 Ω4u(t) 8 H
+

−
v

Figure 7.119 For Prob. 7.51.

7.52 In the circuit in Fig. 7.120, is changes from 5 A to
10 A at t = 0; that is, is = 5u(−t)+ 10u(t). Find v
and i.

4 Ωis 0.5 H
+

−
v

i

Figure 7.120 For Prob. 7.52.

7.53 For the circuit in Fig. 7.121, calculate i(t) if
i(0) = 0.
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3 Ω 6 Ω

+
−u(t − 1) V u(t) V2 H

i

+
−

Figure 7.121 For Prob. 7.53.

7.54 Obtain v(t) and i(t) in the circuit of Fig. 7.122.

5 Ω

+
−10u(−t) V 20 Ω 0.5 H

i

+

−
v

Figure 7.122 For Prob. 7.54.

7.55 Find vo(t) for t > 0 in the circuit of Fig. 7.123.

6 Ω

2 Ω

3 Ω+
−

+

−
vo

t = 0

4 H

10 V

Figure 7.123 For Prob. 7.55.

7.56 If the input pulse in Fig. 7.124(a) is applied to the
circuit in Fig. 7.124(b), determine the response i(t).

5 Ω

+
− vs 20 Ω 2 H

i

(b)(a)

0 t (s)

vs (V)

10

1

Figure 7.124 For Prob. 7.56.

Section 7.7 First-order Op Amp Circuits

7.57 Find the output current io for t > 0 in the op amp
circuit of Fig. 7.125. Let v(0) = −4 V.

10 kΩ

10 kΩ

v

20 kΩ

io

+ −

2 mF

+
−

Figure 7.125 For Prob. 7.57.

7.58 If v(0) = 5 V, find vo(t) for t > 0 in the op amp
circuit in Fig. 7.126. Let R = 10 k� and C = 1 µF.

R

R

R v

vo

+

−
C

+
−

Figure 7.126 For Prob. 7.58.

7.59 Obtain vo for t > 0 in the circuit of Fig. 7.127.

10 kΩ
10 kΩ

+
− vo

+

−
25 mF

t = 0

4 V

+
−

Figure 7.127 For Prob. 7.59.

7.60 For the op amp circuit in Fig. 7.128, find vo(t) for
t > 0.
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20 kΩ 100 kΩ10 kΩ

+
−

vo

+

−

25 mF

t = 0

4 V +
−

Figure 7.128 For Prob. 7.60.

7.61 Determine vo for t > 0 when vs = 20 mV in the op
amp circuit of Fig. 7.129.

20 kΩ

+
−

vo

vs 5 mF

t = 0

+
−

Figure 7.129 For Prob. 7.61.

7.62 For the op amp circuit in Fig. 7.130, find io for t > 2.

10 kΩ

10 kΩ 20 kΩ

+
− 100 mF

t = 2

4 V

io
+
−

Figure 7.130 For Prob. 7.62.

7.63 Find io in the op amp circuit in Fig. 7.131. Assume
that v(0) = −2 V, R = 10 k�, and C = 10 µF.

R+
−

v

3u(t)

io+ −

C

+
−

Figure 7.131 For Prob. 7.63.

7.64 For the op amp circuit of Fig. 7.132, let R1 = 10 k�,
Rf = 20 k�,C = 20 µF, and v(0) = 1 V. Find vo.

Rf

R1

+
− vo

+

−

4u(t)

v+ −

C

+
−

Figure 7.132 For Prob. 7.64.

7.65 Determine vo(t) for t > 0 in the circuit of Fig.
7.133. Let is = 10u(t) µA and assume that the
capacitor is initially uncharged.

10 kΩ

50 kΩ vo

+

−

is

2 mF

+
−

Figure 7.133 For Prob. 7.65.

7.66 In the circuit of Fig. 7.134, find vo and io, given that
vs = 4u(t) V and v(0) = 1 V.

vo

vs
2 mF

10 kΩ

20 kΩ
+ −v

+
−

io

+
−

Figure 7.134 For Prob. 7.66.
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Section 7.8 Transient Analysis with PSpice

7.67 Repeat Prob. 7.40 using PSpice.

7.68 The switch in Fig. 7.135 opens at t = 0. Use PSpice
to determine v(t) for t > 0.

5 Ω

4 Ω5 A 6 Ω 20 Ω +
− 30 V

t = 0 + −v

100 mF

Figure 7.135 For Prob. 7.68.

7.69 The switch in Fig. 7.136 moves from position a to b
at t = 0. Use PSpice to find i(t) for t > 0.

4 Ω
6 Ω

3 Ω+
− 108 V 6 Ω 2 H

i(t)t = 0

a

b

Figure 7.136 For Prob. 7.69.

7.70 Repeat Prob. 7.56 using PSpice.

Section 7.9 Applications

7.71 In designing a signal-switching circuit, it was found
that a 100-µF capacitor was needed for a time
constant of 3 ms. What value resistor is necessary
for the circuit?

7.72 A simple relaxation oscillator circuit is shown in
Fig. 7.137. The neon lamp fires when its voltage
reaches 75 V and turns off when its voltage drops to
30 V. Its resistance is 120 � when on and infinitely
high when off.
(a) For how long is the lamp on each time the

capacitor discharges?

(b) What is the time interval between light flashes?

120 V

4 MΩ

Neon lamp6 mF

+

−

Figure 7.137 For Prob. 7.72.

7.73 Figure 7.138 shows a circuit for setting the length of
time voltage is applied to the electrodes of a welding
machine. The time is taken as how long it takes the
capacitor to charge from 0 to 8 V. What is the time
range covered by the variable resistor?

100 kΩ to 1 MΩ

12 V 2 mF
Welding
control 
unit

Electrode

Figure 7.138 For Prob. 7.73.

7.74 A 120-V dc generator energizes a motor whose coil
has an inductance of 50 H and a resistance of 100 �.
A field discharge resistor of 400 � is connected in
parallel with the motor to avoid damage to the
motor, as shown in Fig. 7.139. The system is at
steady state. Find the current through the discharge
resistor 100 ms after the breaker is tripped.

+
− 120 V 400 Ω

Circuit breaker

Motor

Figure 7.139 For Prob. 7.74.

COM P R E H EN S I V E P RO B L E M S

7.75 The circuit in Fig. 7.140(a) can be designed as an
approximate differentiator or an integrator,
depending on whether the output is taken across the
resistor or the capacitor, and also on the time
constant τ = RC of the circuit and the width T of
the input pulse in Fig. 7.140(b). The circuit is a

differentiator if τ � T , say τ < 0.1T , or an
integrator if τ � T , say τ > 10T .
(a) What is the minimum pulse width that will allow

a differentiator output to appear across the
capacitor?
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(b) If the output is to be an integrated form of the
input, what is the maximum value the pulse
width can assume?

300 kΩ

+
− 200 pFvi

(a)

0 T t

Vm

vi

(b)

Figure 7.140 For Prob. 7.75.

7.76 An RL circuit may be used as a differentiator if the
output is taken across the inductor and τ � T (say
τ < 0.1T ), where T is the width of the input pulse.
If R is fixed at 200 k�, determine the maximum
value of L required to differentiate a pulse with
T = 10 µs.

7.77 An attenuator probe employed with oscilloscopes
was designed to reduce the magnitude of the input
voltage vi by a factor of 10. As shown in Fig. 7.141,
the oscilloscope has internal resistance Rs and
capacitance Cs , while the probe has an internal
resistance Rp . If Rp is fixed at 6 M�, find Rs and
Cs for the circuit to have a time constant of 15 µs.

vovi

Probe Scope

Rp

Cs

+

−

+

−

Rs

Figure 7.141 For Prob. 7.77.

7.78 The circuit in Fig. 7.142 is used by a biology student
to study “ frog kick.” She noticed that the frog
kicked a little when the switch was closed but
kicked violently for 5 s when the switch was
opened. Model the frog as a resistor and calculate
its resistance. Assume that it takes 10 mA for the
frog to kick violently.

50 Ω

2 H

+

−
12 V

Switch
Frog

Figure 7.142 For Prob. 7.78.

7.79 To move a spot of a cathode-ray tube across the
screen requires a linear increase in the voltage
across the deflection plates, as shown in Fig. 7.143.
Given that the capacitance of the plates is 4 nF,
sketch the current flowing through the plates.

Rise time = 2 ms Drop time = 5 ms
t

10

v (V)

(not to scale)

Figure 7.143 For Prob. 7.79.

http://www.mhhe.com/engcs/electrical/alexander/student/olc/ch07_ppt.htm
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