CHAPTER]|IG®

THE FOURIER SERIES

Do not worry about your difficulties in mathematics, | assure you that

mine are greater.
—Albert Einstein

Historical Profiles

Jean Baptiste Joseph Fourier (1768-1830), a French mathematician, first presente
the series and transform that bear his name. Fourier’s results were not enthusiastic
received by the scientific world. He could not even get his work published as a pape

Born in Auxerre, France, Fourier was orphaned at age 8. He attended a lo
military college run by Benedictine monks, where he demonstrated great proficiency;
mathematics. Like most of his contemporaries, Fourier was swept into the politics
the French Revolution. He played an important role in Napoleon’s expeditions to Egy
in the later 1790s. Due to his political involvement, he narrowly escaped death twice

Alexander Graham Bell (1847-1922) inventor of the telephone, was a Scottish
American scientist.

Bell was born in Edinburgh, Scotland, a son of Alexander Melville Bell, a
well-known speech teacher. Alexander the younger also became a speech tea
after graduating from the University of Edinburgh and the University of London. |
1866 he became interested in transmitting speech electrically. After his older brot
died of tuberculosis, his father decided to move to Canada. Alexander was asked
come to Boston to work at the School for the Deaf. There he met Thomas A. Watsd
who became his assistant in his electromagnetic transmitter experiment. On Ma
10, 1876, Alexander sent the famous first telephone message: “Watson, come he|
wantyou.” The bel, the logarithmic unitintroduced in Chapter 14, is named in his hond
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The harmonic frequency w, is anintegral multiple
of the fundamental frequency wy, i.e., 0, = ney.

PART 3 Advanced Circuit Analyses

l6.1 INTRODUCTION

We have spent a considerable amount of time on the analysis of circuits
with sinusoidal sources. This chapter is concerned with a means of an-
alyzing circuits with periodic, nonsinusoidal excitations. The notion of
periodic functions was introduced in Chapter 9; it was mentioned there
that the sinusoid is the most simple and useful periodic function. This
chapter introduces the Fourier series, a technique for expressing a peri-
odic functionin terms of sinusoids. Once the source functionis expressed
in terms of sinusoids, we can apply the phasor method to analyze circuits.

The Fourier series is named after Jean Baptiste Joseph Fourier
(1768-1830). In 1822, Fourier's genius came up with the insight that
any practical periodic function can be represented as a sum of sinusoids.
Such a representation, along with the superposition theorem, allows us
to find the response of circuits to arbitrary periodic inputs using phasor
techniques.

We begin with the trigonometric Fourier series. Later we consider
the exponential Fourier series. We then apply Fourier series in circuit
analysis. Finally, practical applications of Fourier series in spectrum
analyzers and filters are demonstrated.

16.2 TRIGONOMETRIC FOURIER SERIES

While studying heat flow, Fourier discovered that a nonsinusoidal periodic
function can be expressed as an infinite sum of sinusoidal functions.
Recall that a periodic function is one that repeats eeeconds. In
other words, a periodic functiofi(r) satisfies

f@) = ft+nT) (16.1)

wheren is an integer and’ is the period of the function.

According to theFourier theorem, any practical periodic function
of frequencywy can be expressed as an infinite sum of sine or cosine
functions that are integral multiples @f. Thus, f (¢) can be expressed
as

f(t) = ap + a1 COSwot + by Sinwot + az COS 2vgt

16.2
+ b2 Sin 2wt + a3 €0S Jvgt + b3 Sin 3wt + - - - (16.2)
or
[o¢]
f@®) = ap + Z(an cosnwot + b, Sinnwot) (16.3)
—

dc n=1

ac

wherewg = 27/ T is called thefundamental frequency in radians per
second. The sinusoid simor Or cosnwot is called thenth harmonic
of f(¢); itis an odd harmonic if: is odd and an even harmonicrifis
even. Equation 16.3 is called ttegonometric Fourier series of f(¢).
The constanta,, andb, are theFourier coefficients. The coefficientg
is the dc component or the average valug of). (Recall that sinusoids
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CHAPTER 16 The Fourier Series

have zero average values.) The coefficientandb, (for n # 0) are the
amplitudes of the sinusoids in the ac component. Thus,

The Fourier series of a periodic function f (t) is a representation that resolves
f(t) into a dc component and an ac component comprising an
infinite series of harmonic sinusoids.

Afunctionthat can be represented by a Fourier seriesasin Eq. (16.3)
must meet certain requirements, because the infinite series in Eq. (16.3)
may or may not converge. These conditionsf@r) to yield a convergent
Fourier series are as follows:

1. f(¢) is single-valued everywhere.

2. f(¢r) has a finite number of finite discontinuities in any one
period.

3. f(¢) has a finite number of maxima and minima in any one
period.

to+T
4. The integraM | f()|dt < oo foranyry.

fo
These conditions are calléirichlet conditions. Although they are not
necessary conditions, they are sufficient conditions for a Fourier series to
exist.

A major task in Fourier series is the determination of the Fourier
coefficientsag, a,, andb,.. The process of determining the coefficients is
calledFourier analysis. The following trigonometric integrals are very
helpful in Fourier analysis. For any integexrsandn,

T
/ Sinnwot dt =0 (16.4a)
0
T
/ cosnwot dt =0 (16.4b)
0
T
/ Sinnwgt cOSmagt dt = 0 (16.4c)
0
T
/ Sinnwgt Sinmawgt dt = 0, (m # n) (16.4d)
0
T
/ coSnwot COSmwpt dt = 0, (m # n) (16.4e)
0

T T
f Sirf nwot dt = = (16.4f)

0 2

T T
/ coS nwot df = — (16.4g)

0 2

Let us use these identities to evaluate the Fourier coefficients.

709

Historical note: Although Fourier published his
theorem in 1822, it was P. G. L. Dirichlet (1805-
1859) who later supplied an acceptable proof of
the theorem.

A software package like Mathcad or Maple can
be used to evaluate the Fourier coefficients.
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710 PART 3 Advanced Circuit Analyses

We begin by findingiy. We integrate both sides of Eq. (16.3) over
one period and obtain

T T [ee]
f f@)dt = / |:ao + Z(a" cosnwot + by, Sinnwot):| dt
0 0

n=1

T 00 T
= / agdt + [f a, COSnaot dt (16.5)
0 n=1 0

T
+/ bnSinna)otdt:| dt
0

Invoking the identities of Eqs. (16.4a) and (16.4b), the two integrals in-
volving the ac terms vanish. Hence,

T T
/ f@)dt = / apdt = agT
0 0

l T
ap = —/ f@®) dt (16.6)
T Jo

or

showing thaty is the average value gf(z).
To evaluates,,, we multiply both sides of Eq. (16.3) by cagvgt
and integrate over one period:

T
/ f(t) cosmawot dt
0

T o]
= f |:ao + Z (a, coSnwot + b, sinnwot)} cosmawot dt
0 n=1

T 00 T
:/ ag COSmwot dt + Z [/ a, COSnwot COSmwot dt
0 n—=1 0

T

+/ b, sinnwgt COSMwot dti| dt (16.7)

0
The integral containingig is zero in view of Eq. (16.4b), while the
integral containing,, vanishes according to Eq. (16.4c). The integral

containinga, will be zero except whem = n, in which case it is'/2,
according to Egs. (16.4e) and (16.49). Thus,

r T
/ f(t) cosmwot dt = a”E’ form=n
0

or

2 T
a, = —f f(t) cosnwot dt (16.8)
T Jo

In a similar vein, we obtaib, by multiplying both sides of Eq.
(16.3) by sifmwot and integrating over the period. The result is

2 T
b, = —/ f () sinnwot dt (16.9)
T Jo
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CHAPTER 16 The Fourier Series 711

Be aware that sincg (¢) is periodic, it may be more convenient to carry
the integrations above from7 /2 to T /2 or generally fromgtozy + T
instead of O tdI'. The result will be the same.

An alternative form of Eq. (16.3) is themplitude-phase form

f(t)=ao+ ) A, coSnwot + ¢,) (16.10)
n=1

We can use Egs. (9.11) and (9.12) to relate Eqg. (16.3) to Eq. (16.10), or
we can apply the trigonometric identity

coSa + B) = cosa cosB — sina sinB (16.11)
to the ac terms in Eq. (16.10) so that

ag+ Y _ A, coSnaxt + ¢,) = dao+ Y (A, COSp,) COSnwot

n=1 n=1

(16.12)
— (A, sing,) sinnwot

Equating the coefficients of the series expansions in Egs. (16.3) and
(16.12) shows that

a, = A, C0Sg,, b, = —A, sing, (16.13a)

or

b
A, =,/a?+ b2, ¢, = —tan? a—” (16.13b)
n

To avoid any confusion in determiningy,, it may be better to relate the
terms in complex form as

An (bn =da, — an (16.14)

The convenience of this relationship will become evident in Section 16.6.

The plot of the amplitudet,, of the harmonics versuswy is called the

amplitude spectrum of f(¢); the plot of the phase, versusnwy is the

phase spectrum of f(¢). Both the amplitude and phase spectra form

thefrequency spectrumof f (7). The frequency spectrum is also known as the
line spectrum in view of the discrete frequency

‘ components.

The frequency spectrum of a signal consists of the plots of the amplitudes
and phases of the harmonics versus frequency.

Thus, the Fourier analysis is also a mathematical tool for finding the
spectrum of a periodic signal. Section 16.6 will elaborate more on the
spectrum of a signal.

To evaluate the Fourier coefficients, a,, andb,,, we often need
to apply the following integrals:

1 .
/cosm dt = —sinat (16.15a)
a
. 1
sinat dt = —— cosat (16.15b)
a
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712 PART 3 Advanced Circuit Analyses

1 1 .
/lCOSatdt = — cosat + ~t sinat (16.15¢)
a a
. 1 . 1
tsinat dt = — sinat — =t cosat (16.15d)
a? a

It is also useful to know the values of the cosine, sine, and exponential
functions for integral multiples of. These are givenin Table 16.1, where
n is an integer.

TABLE 6.  Values of cosine, sine, and
exponential functions for integral

multiples ofr.

Function Value

CoS i 1

sin 2n 0

cosnm (="

sinnm 0

nmw (=D"2, n=even
COS——
2 0, n = odd
. nm (=D@-b2 p =odd
sin —
2 0, n = even
el 1
ejmr (_1))1
__1\n/2 —
i 2 (=D"/=, n = even
j(=1)@-b2 5 = odd
e L N
f(t) Determine the Fourier series of the waveform shown in Fig. 16.1. Obtain
L the amplitude and phase spectra.
Solution:
The Fourier seriesis given by Eq. (16.3), namely,

-2 -1 0 1 2 3t ~
Figure 16.]  For Example 16.1; a square wave. fO) =ao+ ;(a” Cosnwot + by SiNnwot) (1611

Our god is to obtain the Fourier coefficients ag, a,, and b, using Egs.
(16.6), (16.8), and (16.9). First, we describe the waveform as

f(t)={1’ O<r<1 (16.1.2)
0, 1<t<?2
and f(t) = f(t+T). SinceT =2, wo=2r/T = . Thus,

1 (T 1 ¢ 2 1" 1
a0=7fo f(t)dtzé[/(; 1dt+/1 Odt:|=§t0=§ (16.1.3)
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CHAPTER 16 The Fourier Series 713
Using Eq. (16.8) along with Eq. (16.154),
2 T
a, = —/ f(t) cosnwot dt
T Jo

2 1 2
=5 [/ lcosnmtdt +/ OCOSnntdt] (16.1.4)
0 1

1

1 .
= —9nnr =0
o nmw

1
= —sdinnnt
nmw

From Eq. (16.9) with the aid of Eq. (16.15b),

2 T
b, = —/ f(@) sSinnwet dt
T Jo

2 1 2
=—[f 1sinnmdt+/ Osinnmdt}
2 0 1

1

1
1
= ——(cosnm — 1), cosnm = (—1)"
ni
2
1 = =
~lno oy ag nmow
nw 0, n = even

Substituting the Fourier coefficientsin Egs. (16.1.3) to (16.1.5) into Eq.
(16.1.1) givesthe Fourier series as

1 2 . 2 . 2 .
f@)==-+—snxt+ —sn3rt+ —sSin5rzr + - -- (16.1.6)
2 7« 3T 5t

Since f(¢) contains only the dc component and the sine terms with the
fundamental component and odd harmonics, it may be written as

2

By summing the terms one by one as demonstrated in Fig. 16.2, Summing the Fourier terms by hand calculation
we notice how superposition of the terms can evolve into the original may be tedious. A computer is helpful to com-
square. As more and more Fourier components are added, the sum gets pute the terms and plot the sumlike those shown
closer and closer to the square wave. However, it is not possible in in Fig. 16.2.
practice to sum the series in Eq. (16.1.6) or (16.1.7) to infinity. Only a
partial sum(n =1, 2,3, ..., N,where N isfinite) ispossible. If we plot
the partial sum (or truncated series) over one period for alarge N asin
Fig. 16.3, we notice that the partial sum oscillates above and below the
actual value of f(¢). At the neighborhood of the points of discontinuity
(x=0,1,2,...), thereis overshoot and damped oscillation. In fact, an
overshoot of about 9 percent of the peak valueisal wayspresent, regardless Historical note: Named after the mathematical
of the number of terms used to approximate f (¢). Thisiscalled the Gibbs physicist Josiah Willard Gibbs, who first ob-
phenomenon. served it in 1899,

OES

NIH
:IH

sinnmnt, n=2k—-1 (16.1.7)

:I
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714 PART 3 Advanced Circuit Analyses

£(t) 4

NI

1/\ A

\'4 \4

dc component

A A

v V,

\/ t 0 1 2t

Figure 6.3 Truncating the Fourier series at
Fundamental ac component N = 11, Gibbs phenomenon.

@

Finally, let us obtain the amplitude and phase spectrafor the signal
inFig. 16.1. Sincea, = 0,

2
\/\/ t —, n=odd
A, = /a?+b% = |b,| = { nw (16.1.8)

0, n = even

Sum of first two ac components and
¢ = —tan™? by _ [-90% n=odd 16.1.9
" a, 0, n=even (16.19)
1 1 | >
\/V\/ t The plots of A, and ¢, for different values of nwg = nm provide the
amplitude and phase spectrain Fig. 16.4. Notice that the amplitudes of
the harmonics decay very fast with frequency.
Sum of first three ac components
A 2
I I | 05
\~
2
3w 2
Sum of first four ac components 5|77
l 1l 1l

0O 7w 27 3w 47w 57 67 ®

s |

a7 2w 3w 4o 5w 6

0° T T T
Sum of first five ac components @
b
(b) _o0°
Figure 6.2 Evolution of a b
square wave from its Fourier (0)

components. i
Flgure [64  For Example 16.1: (a) ampli-
tude and (b) phase spectrum of the function
shown in Fig. 16.1.
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CHAPTER 16 The Fourier Series 715

PRACTICE PROBLEMMNEN

Find the Fourier series of thesquarewavein Fig. 16.5. Plot theamplitude f(t)
and phase spectra. 1

4,1
Answer: f(t) = — Y =sinnmt,n = 2k — 1. SeeFig. 16.6 for the
4 k:]_}’l

spectra. -2 -1 0 1 2 3| o

— ] L

4
Mt 7 Figure 6.5  For Practice Prob. 16.1.
¢
4 m 2w 3w 4w 5w 67w
3 4 0° T T T >
% w
It ! | Il > o
0O 7 27 3m 47 57 67 o -0
@ (b)
Figure [6.6  For Practice Prob. 16.1: amplitude and phase spectra for the function shown
in Fig. 16.5.
£ tp L e NI
Obtain the Fourier series for the periodic function in Fig. 16.7 and plot f(t)
the amplitude and phase spectra. 1
Solution: ﬂ
The function is described as 5 N 5 N ) s 1
t, O0<r<l1
fo = 0, 1<t<2 Figure [6.7  For Example 16.2.

SinceT =2, wp =2n/T = m. Then

1 (T 17 2 2 12" 1
= — t)dt = = tdt Odt | ==-—=| =- (@621
a T/Of() 2[/0 +/1 ] 33 =3 02
To evauate a,, and b,,, we need the integralsin Eq. (16.15):
2 T
a,,:—/ f(t) cosnwot dt
T Jo
2 1 2
:5[/ tCOSnJTtdt+/ OCOSnntdtj|
0 ! (16.2.2)

1

1 r
= [ﬁ cosnmt + — SNnwt
n<mw ni

0
D" -1

1
= (cosnmt —1)+0= o
n<im

n2m?2

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



716 PART 3 Advanced Circuit Analyses
since cosnm = (—1)"; and

2 T
b, = —/ f (@) sinnwot dt
T Jo

2 1 2
=—[/ tsinnmdt+/ Osinnmdt}
2 0 1

) (16.2.3)

1 t
= |22 Slnnm‘ — —cosnrt
7[ ni

0
cosnt  (—1)"*t
nm o nm

Substituting the Fourier coefficients just found into Eq. (16.3) yields

f@) = —+Z[[( b —1] cosnut +

(nm)? i

(_1)n+1

Sinnnt]

To obtain the amplitude and phase spectra, we nhotice that, for even
harmonics, a, = 0, b, = —1/nm, so that

1
¢n =a, — jb, =0+ j— (16.2.4)
ni
AnA 038 Hence,
1
0.25 A, = bl = —, n=24,,...
0.16 nw (16.2.5)
o1l ¢n = 90°, n=24,...
0.08
| 0-|06 0.05 For odd harmonics, a, = —2/(n?7?), b, = 1/(n) o that
1
0 @ 27 3w 47w 57 6 o ) 2 1
@ A/ by =a, — jb, = R (16.2.6)
oA Thatis,
270° o 262.7°
23780 28
4 1
Ay =\Jai+bi= 7=+ 5
180° | 1 nr ner (16.2.7)
= — 2\/4+n2n2, n=13,
wrl | 9| o | o e
From Eq. (16.2.6), we observe that ¢ liesin the third quadrant, so that
> _ o - _
0 = 27 37 4m 57 6m o ¢, = 180° + tan > n=13, ... (16.2.8)
b
®) From Egs. (16.2.5), (16.2.7), and (16.2.8), weplot A,, and ¢, for different
Figure 16.8  For Example 16.2: () ampli- valuesof nwy = nr to obtain the amplitude spectrum and phase spectrum
tude spectrum, (b) phase spectrum. asshowninFig. 16.8.

PRACTICE PROBLEMNKIN

Determine the Fourier series of the sawtooth waveform in Fig. 16.9.
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CHAPTER 16 The Fourier Series 717

Answer: f(t) = sin2mnt.

NI
|
Q|
=
agt
S|

—2 -1 0 1 2 3t

Figure 169 For Practice Prob. 16.2.

16.3 SYMMETRY CONSIDERATIONS

We noticed that the Fourier series of Example 16.1 consisted only of the
sineterms. One may wonder if a method exists whereby one can know
in advance that some Fourier coefficients would be zero and avoid the
unnecessary work involved in the tedious process of calculating them.
Such a method does exigt; it is based on recognizing the existence of
symmetry. Herewe discussthreetypes of symmetry: (1) even symmetry,
(2) odd symmetry, (3) half-wave symmetry.

16.3.1 Even Symmetry
A function f(¢) isevenif its plot is symmetrical about the vertical axis;

that is,
S@®) = f(-1) (16.16)
Examplesof evenfunctionsarer?, 4, and cost. Figure16.10 showsmore oy
examples of periodic even functions. Note that each of these examples . .
satisfies Eq. (16.16). A main property of an even function f,(¢) isthat: -5 A 5
r/2 r2 YA\ NAN
fdi=2[ " fod @i TN LN T
-T/2 0
because integrating from —7'/2 to 0 is the same as integrating from 0 to @
T /2. Utilizing this property, the Fourier coefficientsfor an even function
become 904
A
2 T/2
apg = — f(@)dt m r—| m
T Jo -T 0 T t
4 (7172 16.18
a, = T f(t) cosnwot dt ( ) (&)
0 h(t)
— Ny

Since b, = 0, Eq. (16.3) becomes a Fourier cosine series. This makes
sense because the cosine function is itself even. It also makes intuitive
sense that an even function contains no sine terms since the sine function ©
isodd. . )

To confirm Eqg. (16.18) quantitatively, we apply the property of an Figure 16.10 ;éﬁ"(fj}'c‘?ﬁ""n‘c‘fi’gf;’f e
even functionin Eq. (16.17) in evaluating the Fourier coefficientsin Egs.
(16.6), (16.8), and (16.9). It is convenient in each case to integrate over
theinterval —T/2 < r < T /2, which is symmetrical about the origin.
Thus,
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1 T/2 1 0 T/2
aw=7 f_ f(t)dt:T[ /_ Jwas | f(t)dt] (16.19)

T/2
We change variables for the integral over theinterval —7/2 < ¢ < O by
lettingr = —x, sothat dt = —dx, f(t) = f(—t) = f(x), since f(¢) is
an even function, andwhent = —T/2,x = T /2. Then,
T/2

1 0
ap = — [ J () (=dx) + f(l)dl}

T

1z 0 (16.20)
T/2
T f(@ dt]

showing that the two integrals are identical. Hence,
2 T/2
apg= — f@) dt (16.21)
T Jo
as expected. Similarly, from Eq. (16.8),

2 0 T/2
a, = — [ f(¢) cosnwot dt + (1) cosnwot dti| (16.22)
T [J_rp2 0
We makethe same change of variablesthat led to Eg. (16.20) and notethat
both f(z) and cosnwot are even functions, implying that f(—¢) = f ()
and cos(—nwot) = cosnwot. Equation (16.22) becomes
- 0

1 T/2
= —|: fx)dx +
0 0

2 T/2
a, = — f(—x) cos(—nwox)(—dx) -|-/ f(t) cosnwot dti|
T [Jr)2 0
2T 0 T/2
= — f(x) cos(nwox)(—dx) + f(t) cosnwot dt:|
T [Jrp 0
o r7/2 T/2
=7 f(x) cos(nwox) dx + f(t) cosnwot dtj|
| Jo 0
(16.23a)
or
4 T/2
a, = — f () cosnwot dt (16.230)
T Jo
as expected. For b, we apply Eq. (16.9),
2 0 T/2
b, = — [/ f () Sinnwot dt + f () sinnwot dt:| (16.24)
T [J_1p2 0

We make the same change of variables but keep in mind that f(—7) =
f(¢) but sSin(—nwot) = — Sinnwet. Equation (16.24) yields

27 0 T/2
bo=2| [ F=x)Sn(=nwo)(—dx) + / F@ sinnot dt]
T LJT/2 0
27T 0 T/2
= — f(x)Sinnwox dx + f (@) Sinnwot dt]
T LUrp2 0
2T T/2 T/2
=T f(x) sin(nwox) dx + f(@®) sinnwpt dz}
L 0 0
=0 (16.25)

confirming Eq. (16.18).
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CHAPTER 16 The Fourier Series

16.3.2 Odd Symmetry
A function f(¢) is said to be odd if its plot is antisymmetrical about the
vertical axis:

f(=t)=—f@®

(16.26)

Examples of odd functions are, 3, and sinz. Figure 16.11 shows more
examples of periodic odd functions. All these examples satisfy Eq.
(16.26). An odd function f,(¢) hasthis major characteristic:
T/2
fo®)dt =0
-T/2
because integration from — 7' /2 to 0 isthe negative of that from0to 7/2.
With this property, the Fourier coefficients for an odd function become

(16.27)

ag =0, a, =0
4 [T/2 . (16.28)
b, = T f () Sinnwot dt
0

which give usaFourier sine series. Again, this makes sense because the
sinefunction isitself an odd function. Also, note that thereisno dc term
for the Fourier series expansion of an odd function.

The quantitative proof of Eq. (16.28) follows the same procedure
taken to prove Eq. (16.18) except that f(¢) is now odd, so that f(z) =
— f (). With thisfundamental but simple difference, it is easy to see that
ap = 0in Eg. (16.20), a, = 0in Eq. (16.23d), and b, in Eq. (16.24)
becomes

27T (0 T/2
by = — f(=x) sin(=nwox)(—dx) + f () sSinnwot dti|
T |72 0
2T 0 T/2
==|- f(x)sinnwox dx + f(t)sinnwot dz}
TL Jrp 0
27T r1/2 T/2
=7 f(x) sin(nwox) dx + £ (@) Sinnwot dti|
L 0
4 T/2
b, = T f(@) sinnwet dt (16.29)
0
as expected.

Itisinteresting to note that any periodic function f (z) with neither
even nor odd symmetry may be decomposed into even and odd parts.
Using the properties of even and odd functions from Egs. (16.16) and
(16.26), we can write

1 1
f() = é[f )+ f(=D]+ é[f (1) — f(=D] = fe(®) + fo(t) (16.30)
even odd

Notice that f,(t) = %[f(t) + f(—1)] satisfies the property of an even
function in Eq. (16.16), while £,(1) = 3[f(t) — f(—1)] satisfies the
property of an odd function in Eq. (16.26). The fact that f,(z) contains

719

K
©

Figure 6.1 Typical examples of odd

periodic functions.
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720 PART 3 Advanced Circuit Analyses

only thedc term and the cosineterms, while f,(¢) hasonly the sineterms,
can be exploited in grouping the Fourier series expansion of f(¢) as

o0 o0
f(t) = ao+ Z a, COSnwot + Z b, Sinnwot = £,(t) + f,(1) (16.31)
n=1 n=1

even odd

It follows readily from Eq. (16.31) that when f(¢) iseven, b, = 0, and
when f(¢) isodd, ap = 0 = a,.
Also, note the following properties of odd and even functions:

1. The product of two even functionsis also an even function.
2. The product of two odd functionsis an even function.

3. The product of an even function and an odd function is an odd
function.

4. The sum (or difference) of two even functionsis also an even
function.

5. The sum (or difference) of two odd functionsis an odd
function.

6. The sum (or difference) of an even function and an odd
function is neither even nor odd.

Each of these properties can be proved using Egs. (16.16) and (16.26).

16.3.3 Half-Wave Symmetry
A function is half-wave (odd) symmetric if

T
S (f - 5) =—f@) (16.32)

which means that each half-cycle is the mirror image of the next half-
cycle. Notice that functions cosnwot and sinnwot satisfy Eg. (16.32)
for odd values of n and therefore possess half-wave symmetry when
n isodd. Figure 16.12 shows other examples of half-wave symmetric
functions. ThefunctionsinFigs. 16.11(a) and 16.11(b) arealso half-wave
symmetric. Notice that for each function, one half-cycle is the inverted

£(t) 4 () 4

AW A [N\ N\ [
NGNS

@ (b

Figure [6.12 Typical examples of half-wave odd symmetric functions.
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CHAPTER 16 The Fourier Series

version of the adjacent half-cycle. The Fourier coefficients become

ag = 0
4 T/2
T f(t) cosnwot dt, for n odd

a, = 0
0, for n even (16.33)
4 T/2

b T f(@)sinnwet dt, forn odd

n — 0

0, for n even

showing that the Fourier seriesof ahal f-wave symmetricfunction contains
only odd harmonics.

To derive Eq. (16.33), we apply the property of half-wave symmet-
ric functionsin Eq. (16.32) in evaluating the Fourier coefficientsin Egs.
(16.6), (16.8), and (16.9). Thus,

T/2 1 [ 0 T/2

1
ap = - f@)dt = T f@®dt + f(t)dti| (16.34)
0

T J_1p —1/2

We change variables for the integral over the interval —T/2 <t < 0
by letting x = ¢t + T/2, so that dx = dt; whent = —T/2,x = O
andwhent = 0,x = T/2. Also, we keep Eq. (16.32) in mind; that is,
f(x =T/2) = —f(x). Then,

1 T/2 T T/2
= — ——\)d d
dg T|:f0 f<x 2) x+/o f) t]

/2 (16.35)
f@) dti| =0

T/2
=7|:_ A fx)dx + A

confirming the expression for ag in Eq. (16.33). Similarly,

2 0 T/2
a, = T [ f(t) cosnwot dt + f(t) cosnwot dt] (16.36)
0

We make the same change of variablesthat led to Eq. (16.35) so that Eq.
(16.36) becomes

2 (172 T T
an:?[/; f(x—E>COSna)o(x—§>dx

—T/2

(16.37)
T/2
+ f(t) cosnwot dt:|
0
Since f(x — T/2) = —f(x) and
T
COSnwo (x — E) = COS(nwot — ni)
(16.38)

= COSnwogt COSn + SiNnwot SINnw
= (—1)" cosnwot

substituting these in Eq. (16.37) leadsto

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



12

PART 3 Advanced Circuit Analyses
2 T/2
a, = —[1-(=1"] £ (t) cosnwot dt
T 0
T2 (16.39)
_1I7 f(t) cosnwot dt, for n odd
= 0
0, for n even

confirming Eq. (16.33). By following a similar procedure, we can derive
b, asin Eq. (16.33).

Table 16.2 summarizes the effects of these symmetries on the
Fourier coefficients. Table 16.3 providesthe Fourier series of some com-
mon periodic functions.

TABLE 6.2  Effects of symmetry on Fourier coefficients.
Symmetry ao a, b, Remarks
Even ap #0 a, #0 b, =0 Integrate over T/2 and multiply
by 2 to get the coefficients.
Odd ap=0 a,=0 b, #0 Integrate over T /2 and multiply
by 2 to get the coefficients.
Haf-wave ao=0 az, =0 by, =0 Integrate over T /2 and multiply
azi1 70 by #0 by 2to get the coefficients.
TABLE 163 The Fourier series of common functions.
Function Fourier series
1. Square wave
f(t)
A %
4A 1 .
. [0 = ?; 57 Sn@1 — Dot
0 T t
2. Sawtooth wave
f(t)
A £ = é é i SiNnwot
T2 n ~ n
0 T t

3. Triangular wave

A
o T t

f=

T 12 cos(2n — Dwgt
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TABLE [6.3  (continued)

Function Fourier series

4. Rectangular pulsetrain

f(®
A
At 2A X1 . ant
t)=— 4+ — Y —sin—— cosnwot
‘ \ ‘ \ f@®) T+T;n T nwo
1

OI
2

NIR

5. Half-wave rectified sine

f(®)

A A A 2A 1
)= —+ —Snhwyt — — COS 2nwot
/\ [\ O
0

6. Full-wave rectified sine

(1)

A 00
24 44
f = — T §=

T o= 4?1

cosnawot

723

M|e.3

Find the Fourier series expansion of f(¢) givenin Fig. 16.13.

(1) A

1

5| —4 -3 -2 -1 0 1 2 3 4 5 t

-1

Figure [6.13  For Example 16.3.

Solution:

Thefunction f (¢) isan odd function. Henceag = 0 = a,,. Theperiodis
T =4 andwy=2n/T = r/2, s0that
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4 T/2
b, = — f (@) Sinnwet dt
T Jo

4 1 nmw 2 niw
= - 1sin—ztdt O0sin—tdt
4 Uo 2 +/1 2 ]

2 nrt |t 2 nmw
= ——C0S—| =— 1—cos—>
nmw 2 | nn( 2
Hence,
231 nmw nmw
)= — — 1—cos—)sjn—t
r0=23 5 (1-es 7 )sn

which isaFourier sine series.

PRACTICE PROBLEMMENEKEE

Find the Fourier series of the function f(¢) in Fig. 16.14.

£(t)

—

=21 Tt 0 1T 21 3n

-1

Figure 16.14  For Practice Prob. 16.3.

4 1 .
Answer: f(t)=-—Y Zsinnt,n=2k—1
ﬂk:ln

Determine the Fourier series for the half-wave rectified cosine function
shownin Fig. 16.15.

f(t)

VA AN

-5 -3 -1 0 1 3 5 t

Figure [6.15 A haf-wave rectified cosine function; for

Example 16.4.
Solution:
Thisisanevenfunctionsothatb, = 0. Also, T = 4, wo = 2/ T = /2.
Over aperiod,
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0, 2<t<-1

f = cos%t, 1<t<1

0, 1<r<2

2 T/2 2 1 T 2
== H)dt = - Ccos —t dt Odt
w=2 [ so 4[/0 " +/1 }
_12 7|1
S 2x 2, w
4 T2 4T Y g nwt
= = t) cos tdt = - cos—tcos—dt + 0
a 7/, f@) nwo 4[/0 > > + ]

But cosA cos B = 3[cos(A + B) + cos(A — B)]. Then

1t b T
a, = —/0 [cosE(n + Dyt +cos§(n — 1)[] dt

2
Forn =1,
1/t 1[sinmt !
alzzfo [cosm+1]dt=§[ +t]0=§
Forn > 1,
. T . T
“’1:msn§(n+l)+msn§(”_l)

Forn=o0dd(n =1,3,5,...), (n+ 1) and (n — 1) are both even, so
sin%(n—i—l):O:sin%(n—l), n = odd

Forn =even(n = 2,4,6,...), (m + 1) and (n — 1) are both odd. Also,

sin%(n-i—l):—sin%(n—l):cos%=(—1)”/2, n = even

Hence,

_ (=p"? (=12 _ —2(—1"/? _
an_n(n—f—l) an—1  am?-1)" n=even

Thus,

2 & (—D)'"?  am

f@t) = 1~|—1cos:ﬂt Z
T 2 2 T, A, (n2—1) 2

To avoid usingn = 2,4, 6, ... and aso to ease computation, we can
replacen by 2k, wherek =1, 2, 3, ... and obtain

1 1 7 x (—)k
H==+zc0s"r— =3 = cosknt
S 71+2C052 Nk:1(4k2_1)0057r

which is aFourier cosine series.

PRACTICE PROBLEMENKEK

Find the Fourier series expansion of the function in Fig. 16.16.
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1 4 =21
Answer: f(t):E—P;ﬁcosm,nz%—l.

=2 0 21 A7 t

Figure 6.16  For Practice Prob. 16.4.

f(t) Calculate the Fourier series for the functionin Fig. 16.17.
Solution:
Thefunctionin Fig. 16.17 is half-wave odd symmetric, sothat ag = 0 =

>  a,. Itisdescribed over half the period as
2\ -1 0 1 23 /4t
\/ f@) =t, -1<t<1

T =4 wo=2r/T = /2. Hence,

4 T/2
b, = — f (@) Sinnwot dt
T Jo
Instead of integrating f (¢) from 0 to 2, it is more convenient to integrate
from —1to 1. Applying Eq. (16.15d),

Figure [6.17  For Example 16.5.

1

b 4f1tsinnm g sinnmt/2  tcosnmt/)2
S 2 | n2n2/4 nw/2 1
4 . nmw . niw 2 nmw niw
=——|sn— —-sn{——) |- —| cos— +cos{——
n27t2|: 2 ( 2)i| nn[ 2+ ( 2)i|
. 8 Smnn 4 Cosnr[
22 2 nm 2
since sin(—x) = — sinx as an odd function, while cos(—x) = cosx as
an even function. Using theidentitiesfor sinnr/2 and cosnz/2in Table
16.1,
8 (n—-1)/2
5— (=1 , n=o0dd=135,...
b, — n<m
! 4 (n+2)/2
— (=1 , n=even=246,...
ni
Thus,

o . nmw
)= b,sSn—t
£ ; sin=
where b, is given above.

PRACTICE PROBLEMENEIE

Determinethe Fourier series of thefunctioninFig. 16.12(a). TakeA = 1

and T = 2r.
2 [ -2 1.

Answer: f(1) ==Y (——cosnt+=sinnt |, n=2k—1
nkzl nem n
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CHAPTER 16 The Fourier Series

16.4 CIRCUIT APPLICATIONS

We find that in practice, many circuits are driven by nonsinusoidal peri-
odic functions. To find the steady-state response of acircuit to anonsinu-
soidal periodic excitation requires the application of a Fourier series, ac
phasor analysis, and the superposition principle. The procedure usually
involves three steps.

Steps for Applying Fourier Series:
1. Express the excitation as a Fourier series.
2. Find the response of each term in the Fourier series.

3. Add theindividual responses using the superposition principle.

The first step is to determine the Fourier series expansion of the
excitation. For the periodic voltage source shown in Fig. 16.18(a), for
example, the Fourier seriesis expressed as

o
v(t) = Vo+ YV, cos(nawot + 6,)
n=1
(The same could be done for aperiodic current source.) Equation (16.40)
shows that v(z) consists of two parts. the dc component V, and the ac
component VV, = V, /6, with several harmonics. This Fourier series
representation may be regarded as a set of series-connected sinusoidal
sources, with each source having its own amplitude and frequency, as
shown in Fig. 16.18(b).

(16.40)

i®
—_—
% @
it
i V; cos(wgt + 01) e
Linear
V, cos(2wpt + 6
Li 2 os(2uo 2 network
V() (F Inear '
Periocgi(): <‘> network .
Source V, cos(Nawgt + 6,) ( % )
@ (b)
Figure [6.18 (a) Linear network excited by a periodic voltage source, (b) Fourier series

representation (time-domain).

The second step is finding the response to each term in the Fourier
series. The response to the dc component can be determined in the fre-
guency domain by settingn = 0 or @ = 0 asin Fig. 16.19(a), or in
the time domain by replacing al inductors with short circuits and all
capacitors with open circuits. The response to the ac component is ob-
tained by the phasor techniques covered in Chapter 9, as shown in Fig.
16.19(b). The network isrepresented by itsimpedance Z (nwg) or admit-
tance Y (nwo). Z(nwo) is the input impedance at the source when w is
everywhere replaced by nwo, and Y (nwg) isthe reciprocal of Z (nwo).

Z(wg)

Z(2aw)

Vh Z0n C'—D Z(Nwo)

]

Figure 16,19 Steady-state responses:
(a) dc component, (b) ac component
(frequency domain).
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Finally, following the principle of superposition, we add al the
individual responses. For the case shown in Fig. 16.19,

(1) = io(r) +ia(r) +i2(1) + - -

> 16.41
— 1o+ I1,] costneot + ) te4y
n=1

where each component |, with frequency nwo has been transformed to
the time domain to get i,,(¢), and v, isthe argument of |,,.

Let the function f () in Example 16.1 be the voltage source v, () in the
circuit of Fig. 16.20. Find the response v, (¢) of the circuit.

Solution:
From Example 16.1,

1

Figure 620 For Example 16.6. v, (1) = 5

231
+—E —Snnrnt, n=2k-1
nk:ln

where w, = nwg = nxr radls. Using phasors, we obtain the response V,,

in the circuit of Fig. 16.20 by voltage division:
JjonL _ jonw

"R+ jo,L ' 5+ j2um °
For the dc component (w, = 0 or n = 0)

o

1
Vi== =  V,=0

2
This is expected, since the inductor is a short circuit to dc. For the nth
harmonic,
2
Vy=—/—90° (16.6.1)
nmw

and the corresponding response is
v - 2n7 /90° 2
* " Y25+ 4n2n? /tan—L 2nm /5 nm
4/ —tan"! 2nm/5
IV, | 4 V2B +4n?n?

0'5 . -
In the time domain,

/ —90°
(16.6.2)

V(1) = g—%w cos(nm—tanl %) n=2k—-1
02 Thefirst threeterms (k = 1, 2, 3or n = 1, 3, 5) of the odd harmonicsin
0.13 the summation give us
) ) .ol v,(t) = 0.4981 cos(rrt — 51.49°) + 0.2051 cos(3rt — 75.14°)
0 7 27 37 4m 5w 6m Tm o + 0.1257 cos(5xt — 80.96°) + - -+ V
Figure 1621 For Example 16.6: Amplitude Figure 16.21 showstheamplitude spectrumfor output voltagev, (z),

spectrum of the output voltage. ~ while that of the input voltage v,(r) isin Fig. 16.4(a). Notice that the
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CHAPTER 16 The Fourier Series

two spectra are close. Why? We observe that the circuit in Fig. 16.20
is a highpass filter with the corner frequency w. = R/L = 2.5 radls,
which is less than the fundamental frequency wo = 7 rad/s. The dc
component is not passed and thefirst harmonic is slightly attenuated, but
higher harmonics are passed. In fact, from Egs. (16.6.1) and (16.6.2), V,,
isidentical to V; for large n, which is characteristic of a highpassfilter.

PRACTICE PROBLEMMNEIN

729

If the sawtooth waveformin Fig. 16.9 (see Practice Prob. 16.2) isthevolt-
age source v, (¢) in the circuit of Fig. 16.22, find the response v, (¢).

1 1-& sin2rnt —tant4
Answer: v,()=>-=>" (e n7)

PR P R g T

vy(t)

Figure 16.22

2Q

+
1F = V(1)

For Practice Prob. 16.6.

£ XAt L NI

|
Find theresponsei, (¢) inthecircuit in Fig. 16.23if theinput voltage v ()
has the Fourier series expansion

=1+ i 2" (cosnt — nsinnt)
v = e nt —n n
~ 1+n?

Solution:
Using Eg. (16.13), we can express the input voltage as

X 2(—1)"
v(t) =1+ § — 2 cos(nt + tan"1n)
= V1+n?

=1-—1.414cos(t + 45°) + 0.8944 cos(2t + 63.45°)
—0.6345cos(3¢ + 71.56°) — 0.4851 cos(4t + 78.7°) + - - -
We notice that wg = 1, w, = n rad/s. The impedance at the source is
jo8 84 jw,8

Z=4+ jw2|4=4 -
o2 YA 2 2+ jo,

Theinput current is

V24 jo,
T Z 8+ jw8
whereV isthe phasor form of the sourcevoltagev(t). By current division,
4 Y

o

T At jon2 At jo,h
Since w, = n, |, can be expressed as

V
4/1+n2/tantn

For the dc component (w,, = 0 or n = 0)

l, =

Vo1
V=l = l,=—-=:
4”4

i(t)

4Q 2Q

v @

MV
}is®

gZH 2Q

Figure 16.23

For Example 16.7.
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For the nth harmonic,

= 217 tan1n
V1+n?

so that

1 2(-1)" Vtan~ (=1)"
I() = t = —
4/1+n2/tan"*n 1+ n? o 2(1+n?)

In the time domain,

_1 o (=D
io(2) Z+22(1+ 2)cosmA

n=

PRACTICE PROBLEMMNNEIN

If the input voltage inthe circuit of Fig. 16.24 is

20
io(®) = _=
¢ v(t) = = Z( cosnt — Slﬂnt) Y
v(t) 1F == § 10
determine the response i, (¢).
1 & V1+n?g2 1 2n 1
Answer: —+ —————————cos|nt —tan " — +tan " nw | A.
Figure 16.24  For Practice Prob. 16.7. —~ n2w2/9+ an? 3
16.5 AVERAGE POWER AND RMS VALUES
Recall the concepts of average power and rms value of a periodic signal
that we discussed in Chapter 11. To find the average power absorbed by
acircuit due to a periodic excitation, we write the voltage and current in
amplitude-phase form [see Eq. (16.10)] as
V(1) = Ve + Z V,, cos(nwot — 6,) (16.42)
n=1
i(t) = lac+ Y I COS(meot — ) (16.43)
m=1
i Following the passive sign convention (Fig. 16.25), the average power is
O——] T
+ 1 .
) P=— / vi dt (16.44)
Linear T Jo
v() circuit L . .
Substituting Egs. (16.42) and (16.43) into Eq. (16.44) gives
o |

1 T = I, VdC g
P=Z| Valedt+Y ——= [ costmwot — ¢y)dt
, T Jo = T Jo
Figure 16.25  The voltage m=

polarity reference and current X Vol [T
reference direction. + Z — cos(nwot — 0,) dt (16.45)

+ ZZ Vi ’”/ cos(nwot — 6,) COS(mawot — ¢y, dt

m=1n=
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The second and third integral s vanish, since we are integrating the cosine
over itsperiod. According to Eq. (16.4€), all termsin the fourth integral
are zero when m # n. By evaluating the first integral and applying Eq.
(16.4q) to the fourth integral for the case m = n, we obtain

1 o0
P =Valoe+ > Y Valy COS(O, — pu) (16.46)
2 n=1

This shows that in average-power calculation involving periodic voltage
and current, the total average power is the sum of the average powersin
each harmonically related voltage and current.

Givenaperiodicfunction f (), itsrmsva ue (or the effectivevalue)

isgiven by
1 T
Fms =1/ 7 / f2(t)dt (16.47)
0

Substituting f(¢) in Eq. (16.10) into Eq. (16.47) and noting that
(a + b)? = a? + 2ab + b?, we obtain

1 /7 >
Frfns = T /O [aé +2 E apA, cos(nwot + ¢,,)
n=1

+ Z Z An A, COS(nwot + ¢) COS(mawot + %)} dt

n=1m=1
1 T ) 00 1 T
= — asydt + 2 agA, — / cos(nwot + ¢,) dt
T fo 0 ; T Jo
o0 00 1 T
+ Z Z A,,AmT / cos(nwot + ¢n) COS(Mwot + ¢ dt
0
(16.48)

Distinct integers n and m have been introduced to handle the product of
the two series summations. Using the same reasoning as above, we get

1 o0
2 2 2
Frmsza0+§ZAn
n=1
or
l o0
Fms= |a3+ 5 Z A2 (16.49)
n=1

In terms of Fourier coefficientsa,, and b,,, EQ. (16.49) may be written as

1 o.¢]
Fims = J ag + E Z(a,% + bﬁ) (16.50)
n=1

If f(¢) isthe current through aresistor R, then the power dissipated in
theresistor is

P = RF?

s (16.51)
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Orif f(¢) isthe voltage across aresistor R, the power dissipated in the
resistor is
F2
p =17 (16.52)
R

One can avoid specifying the nature of the signal by choosing a 1-Q2 re-
sistance. The power dissipated by the 1-Q2 resistance is

1 o8
Pio = Frs=ag+ 5 ;(af +0p) (1659
Historical note: Named after the French mathe- This result is known as Parseval’s theorem. Notice that o is the power
matician Marc-Antoine Parseval Deschemes in the dc component, while 1/2((13 + bs) is the ac power in the nth
(1755-1836). harmonic. Thus, Parseval’s theorem states that the average power in a

periodic signal is the sum of the average power in its dc component and
the average powersin its harmonics.

M|6.8

Determine the average power supplied to the circuit in Fig. 16.26 if
+ i(t) =2+ 10cos(t + 10°) 4+ 6cos(3r + 35°) A.
it) V() § 100 - 2F Solution:
The input impedance of the network is
, 1 10(1/ j2w) 10
Figure 1626 For Example 16.8 20~ 104 1/j20 — 15 1200
Hence,

101
Vv1+ 4000? /tan~1 20w
For the dc component, w = 0,
| =2A e V=102 =20V

V=IZ=

This is expected, because the capacitor is an open circuit to dc and the
entire 2-A current flows through the resistor. For w = 1 rad/s,

v 10(10,/10°)
~ J/1+400/tan"120

=5/-7714

| :lO 100 —

For w = 3rad/s,

10(6,/45°)
| =6/45° — V=
L +/1+ 3600/ tan~1 60
=1/— 44.05°

Thus, in the time domain,

v(t) = 20+ 5cos(t — 77.14°) + 1cos(3t — 44.05°) V

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



CHAPTER 16 The Fourier Series

We obtain the average power supplied to the circuit by applying Eq.
(16.46), as

1 o0
P = Voclse + 5 ; V.1, cos(6, — ¢,)

To get the proper signs of 6, and ¢,,, we have to compare v and i in this
example with Egs. (16.42) and (16.43). Thus,

P =20(2) + %(5)(10) cog[77.14° — (—10°)]

+ %(1)(6) cog[44.05° — (—35°%)]

=40+ 1.247+0.05=415 W
Alternatively, we can find the average power absorbed by the resistor as
1 5% 1 12

VZ o1& v, 207
p—=_%_ = ol 4.
+2Z 2’1072 10

R —~ R 10
=40+ 1.25+0.05=415W

which is the same as the power supplied, since the capacitor absorbs no
average power.

PRACTICE PROBLEMMEEI

The voltage and current at the terminals of a circuit are
v(t) = 80+ 120c0s120x ¢ + 60 cos(360rt — 30°)
i(t) = 5c0s(1207rt — 10°) + 2c0os(360rt — 60°)
Find the average power absorbed by the circuit.
Answer: 347.4W.

M|6.9

Find an estimate for the rms value of the voltage in Example 16.7.
Solution:
From Example 16.7, v(¢) is expressed as
v(t) = 1— 1.414cos(r + 45°) + 0.8944 cos(2t + 63.45°)
—0.6345cos(3r + 71.56°)
—0.4851cos(4t + 78.7°) + --- V
Using Eqg. (16.49),

l o0
Vims = [ad + EZA,E
n=1

- \/ 12 4 % [(—1.414)2 4 (0.8944)2 + (—0.6345)2 + (—0.4851)% + - - -]

=+/2.7186 = 1.649V
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Thisisonly an estimate, as we have not taken enough terms of the series.
The actual function represented by the Fourier seriesis

we'
snhx’
withv(t) = v(t + T). The exact rmsvalue of thisis1.776 V.

PRACTICE PROBLEMMNKIE

Find the rms value of the periodic current

i(t) =8+ 30cos2r — 20sin2t + 15cos4r — 10sindr A
Answer: 29.61A.

v(t) = —_T<t<m

16.6 EXPONENTIAL FOURIER SERIES

A compact way of expressing the Fourier seriesin Eq. (16.3) isto put it
in exponential form. This requires that we represent the sine and cosine
functionsin the exponential form using Euler’sidentity:

1 . .
COSnwot = E[ef”‘“O’ Y (16.54a)
. 1 . .
Sinnwgt = —[e/"* — /"] (16.54b)
2j
Substituting Eq. (16.54) into Eq. (16.3) and collecting terms, we obtain
1 . .
FO) =a0+ S [(@n — jb)e™™ + (ay + jby)e "™ (1655
2 n=1

If we define anew coefficient ¢, so that
(an - an) * (an + ]bn)

co = ao, e = 5 cp=c (16.56)
then f(z) becomes
o0 ) )
f@) =co+ Z(c,,e’"‘”‘)’ + c_pe " (16.57)
n=1
or
S .
f@)y =) cpe" (16.58)
n=—00

Thisisthe complex or exponential Fourier series representation of f(z).
Note that this exponential form is more compact than the sine-cosine
form in Eq. (16.3). Although the exponentia Fourier series coefficients
¢, can also be obtained from a,, and b, using Eq. (16.56), they can also
be obtained directly from £ (¢) as

1 (7 .
= — / f(t)e /"™ dt (16.59)
T Jo
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where wg = 27/ T, asusua. The plots of the magnitude and phase of
¢, VErsus nwo are caled the complex amplitude spectrum and complex
phase spectrumof f(¢), respectively. The two spectraform the complex
frequency spectrum of f(¢).

The exponential Fourier series of a periodic function f (t) describes the spectrum
of f(t) in terms of the amplitude and phase angle of ac components at positive
and negative harmonic frequencies.

The coefficients of the three forms of Fourier series (sine-cosine
form, amplitude-phase form, and exponential form) are related by

An/n = ay — jby = 2c, (16.60)

or

/a2 + b2
o =leal oy = YU /ety fa, sy

if only @, > 0. Note that the phase 6, of ¢, isequa to ¢,.
In terms of the Fourier complex coefficients ¢,,, the rms value of a
periodic signal f(¢) can befound as

) 1 T ) 1 T o0 oot
Frns = ?-/O fe@yde = ?/O f@ Z cp e | dt

S 1 (T )
— 2 : Jjnawot
= Cn |: /(; f(®)e j| (16.62)

n=—00
00 00
§ * § 2
= CnC, = |Cn|
n=—00 n=—00

or

oo
Fs= | Y lcal? (16.63)
n=—oo

Equation (16.62) can be written as
o0
Fae=lcol?+2) leal? (16.64)
n=1
Again, the power dissipated by a 1-<2 resistanceis

Pig=Fhe= Y lel? (16.65)
which is arestatement of Parseval’s theorem. The power spectrum of the
signa f(r) istheplot of |c,|? versus nwo. If f(z) isthe voltage across a
resistor R, the average power absorbed by the resistor is F2../R; if f(t)

isthe current through R, the power is F2.(R.
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As an illustration, consider the periodic pulse train of Fig. 16.27.

fo Our goal isto obtain its amplitude and phase spectra. The period of the
10 pulsetrainis T = 10, so that wg = 27/ T = /5. Using EQ. (16.59),
1 T/2 ) 1 1 )
= — f@®e 7" dt = —/ 10e /""" d¢
H H > T J_rp2 10 J_4
-11 -9 -101 9 11t 1
F‘ |627 — 1 e*jna)ot — (efjnwo _ ejnwo)
igure 16. The periodic pulse train. —j —j
g € periodic pulse train ]}’la)o .71 Jnwo (16.66)
2 e/"wo — gmJnwo Sinnwg b4
= — N = 2 , a)o = —
nwo 2j nwo 5
_ 25innn/5
nmw/S
and
sin 5
f) =2 Z m/ eIt/ (16.67)

n=—00

Notice from Eqg. (16.66) that ¢, isthe product of 2 and afunction of the

form sinx /x. Thisfunction is known as the sinc function; we write it as

The sinc function is called the sampling function in
communication theory, where it is very useful. . Sinx

sinc(x) = — (16.68)
X

Some properties of the sinc function are important here. For zero argu-
ment, the value of the sinc function is unity,

sinc(0) =1 (16.69)

Thisis obtained applying L' Hopital’s rule to Eq. (16.68). For an integral
multiple of 7, the value of the sinc function is zero,

sinc(nm) =0, n=123,... (16.70)

Also, the sinc function shows even symmetry. With al thisin mind, we
can obtain the amplitude and phase spectra of f(¢). From Eq. (16.66),
the magnitudeis

sin 5
e =2 n/ (16.71)
nmw/5
while the phaseis
0°, sin % >0
6, = (16.72)

180°, sn% <0

Figure 16.28 showstheplot of |c, | versusn for n varying from —10to 10,
where n = w/wq is the normalized frequency. Figure 16.29 shows the
plot of 6, versusn. Both the amplitude spectrum and phase spectrum are
called line spectra, because the value of |¢, | and 6, occur only at discrete

Examining the input and output spectra allows values of frequer_lci es. The spacing between the linesis wy. The power
visualization of the effect ofa circuit on a periodic spectrum, whichistheplot of |, |? versusnawy, can also beplotted. Notice

signal.

that the sinc function forms the envel ope of the amplitude spectrum.

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



Icnl

-
—_—

Tl

CHAPTER 16 The Fourier Series

_1.87

151

\ 10
\
\‘ 0.47

/ 043

0.3 0.38

1
|\
\‘4 TOZ
\
v \

-108-6-4-20 2 4 6 8 10

Figure 16.28  The amplitude of a periodic
pulse train.

6

180°

l | | |

-10 8 -6 -4 -2 0 2 4 6 8 10n

Figure 1629 The phase spectrum of a periodic pulse train.

137

mﬂw.m

Find the exponential Fourier series expansion of the periodic function
f(t)=¢",0 <1t <27 with f(r +21) = f(1).

Solution:

Since T = 2, wg = 2/ T = 1. Hence,

1 [T , 1 [ .
Cn = T/o f@e " dt = E./o ee " dt
27
— i 1 e(l—jn)z — 1 [eZJTe—jZTH'l _ 1]
27 1— jn 0 2r(1— jn)

But by Euler’'sidentity,
e /" —cos2nn — jsn2rn=1—j0=1
Thus,

B 1 2 4. 85
= —27t(1— jn)[e 1] =

The complex Fourier seriesis

Cn

1—jn
[o¢]

8 .
f(t) = Z ]__jne]m

n=—0oQ
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We may want to plot the complex frequency spectrum of £ (¢). If welet
¢n = |cal /By, then

85
V1i+n?

By inserting in negative and positive values of n, we obtain the amplitude
and the phase plots of ¢, versusnwy = n, asin Fig. 16.30.

|Cn| = 0, = tan_ll’l

[Cnl A
/s 85 0, A
FARN
90° | -
RN P
-~
d M. 38 d
- ~_269 ’
17 S~ 206 /
- ~_167 /
( 1 5 -4 3 2 4
5 4 3 2 -1 0 1 2 3 4 5 nu 01 2 3 4 5w
/
@ /
/7
//
//
- —90°

Q)

Figure [630  The complex frequency spectrum of the function in Example 16.10: (a) amplitude spectrum, (b) phase spectrum.

PRACTICE PROBLEMEKIE

Obtain the complex Fourier series of the function in Fig. 16.1.

1 > Jj o
Answer: 1) ==— eIt
-3 % L
n#0
n = odd

MM.II

Find the complex Fourier series of the sawtooth wave in Fig. 16.9. Plot
the amplitude and the phase spectra.

Solution:

FromFig. 16.9, f(t) =¢t,0<t <1, T = 1sothat wg = 27 /T = 27.
Hence,

1 T . 1 1 .
en == / F@e ™ dr = = f eI A 1611)
T 0 1 0
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But
e(l[
fte‘”dt = —S@x-H+C
a

Applying thisto Eq. (16.11.1) gives

eijnm 1
=———(—jonnr -1
Cn (-]2}’[7'[)2( ,] T )O
: (16.11.2)
e (—jonm — 1) +1
B —4n?5?
Again,
e /¥ —cos2an — jSn2rin=1—j0=1
so that Eq. (16.11.2) becomes
o .
cn = J ) (16.11.3)

T —dn272 " nr
This does not include the case whenn = 0. Whenn = 0,

1 (7 1t 12
== t)dt = - tdt = —
co T/o f@ 1/0 5

0

=0.5 (16.11.4)
1

Hence,
o J
1) =0.5 L it 11,
f@) +n:Z:Oo - (16.11.5)
n#o0
and
1
, n#0
leal = { 2Inlm , 6,=90°, n#0 (16116
0.5, n=20

By plotting |c,,| and 6, for different n, we obtain the amplitude spectrum
and the phase spectrum shown in Fig. 16.31.

Icnl A
0.5
bn
90°
0.16 0.16
0.03 0.04 0.05 0-?8 ‘ °-|°8 0.05 0.04 0.03
1 1 1 1 1 1
—Swg—4wg—-3wg—2wg -wg 0 wy 2wy 3wy 4wy Swy w —Swg—4wg—-3wg—2wg wg 0 w5 2wy 3wy 4wy Swy @

@ (b)

Figure 1631 For Example 16.11: (a) amplitude spectrum, (b) phase spectrum.
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PRACTICE PROBLEMBEENINE

Obtain the complex Fourier seriesexpansion of f(¢) in Fig. 16.17. Show
the amplitude and phase spectra.

[0¢] . _1 n . )
Answer: f(t)=— Y uef’””.SeeFlg.16.32forthespec’[ra
L= niw
nn_;égo
[Cnl
0”
032 | 032
90° |
016 0.16 -3 -1 1 3
011 011 Z ~
05 | | 08 4 2 | o 2 4 n
432 -1 0 1 2 3 4n —0°F
€) (b)

Figure [6.32  For Practice Prob. 16.11: (a) amplitude spectrum, (b) phase spectrum.

16.7 FOURIER ANALYSIS WITH PSPICE

Fourier analysis is usualy performed with PSpice in conjunction with
transient analysis. Therefore, we must do atransient analysisin order to
perform a Fourier analysis.

To perform the Fourier analysis of a waveform, we need a circuit
whoseinput isthe waveform and whose output isthe Fourier decomposi-
tion. A suitablecircuit isacurrent (or voltage) sourcein serieswitha1l-Q
resistor as shown in Fig. 16.33. The waveform isinputted as v, (z) using

1 1 VPULSE for a pulse or VSIN for a sinusoid, and the attributes of the
waveform are set over itsperiod 7. The output V(1) from node 1 is the
_ + *  dclevel (ap) and the first nine harmonics (A,,) with their corresponding
Is 1Q§V° "SCD 19?’0 phases v,,; that is,
9
0 0 V(1) = a0+ »_ A, Sin(nwot + V) (16.73)
n=1
@ (b)
where
Figure [6.33  Fourier analysis with PSpice - b
using: (a) a current source, (b) a voltage — 2 2 — _ — -17n
source. Ap = Van+ by, Vn = ¢n 5 ¢, =tan a (16.74)

Noticein Eq. (16.74) that the PSpice output isin the sine and angle form
rather than the cosine and angle form in Eq. (16.10). The PSpice output
also includes the normalized Fourier coefficients. Each coefficient a,
is normalized by dividing it by the magnitude of the fundamental a; so
that the normalized component isa, /a;. The corresponding phase v, is
normalized by subtracting from it the phase v, of the fundamental, so
that the normalized phaseis v, — 1.
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There are two types of Fourier analyses offered by PSpice for Win-
dows: Discrete Fourier Transform (DFT) performed by the PSpice pro-
gram and Fast Fourier Transform (FFT) performed by the Probe program.
While DFT is an approximation of the exponential Fourier series, FTT
isan agorithm for rapid efficient numerical computation of DFT. A full
discussion of DFT and FTT is beyond the scope of this book.

16.7.1 Discrete Fourier Transform

A discrete Fourier transform (DFT) is performed by the PSpice program,
which tabulates the harmonics in an output file. To enable a Fourier
analysis, we select Analysis/Setup/Transient and bring up the Transient
dialog box, showninFig. 16.34. ThePrint Sep should beasmall fraction
of theperiod T, whilethe Final Timecould be 67. The Center Frequency
is the fundamental frequency fo = 1/T. The particular variable whose
DFT isdesired, V(1) in Fig. 16.34, is entered in the Output Vars com-
mand box. In addition to filling in the Transient dialog box, DCLICK
Enable Fourier. With the Fourier analysis enabled and the schematic
saved, run PSpice by selecting AnalysigSimulate as usual. The pro-
gram executes a harmonic decomposition into Fourier components of the
result of thetransient analysis. Theresultsare sent to an output filewhich
you can retrieve by selecting Analysis’Examine Output. Theoutput file
includes the dc value and the first nine harmonics by default, although
you can specify more in the Number of harmonics box (see Fig. 16.34).

16.7.2 Fast Fourier Transform

A fast Fourier transform (FFT) is performed by the Probe program and
displays as a Probe plot the complete spectrum of atransient expression.
Asexplained above, wefirst construct the schematic in Fig. 16.33(b) and
enter the attributes of the waveform. We also need to enter the Print Sep
and the Final Timein the Transient dialog box. Oncethisisdone, we can
obtain the FFT of the waveform in two ways.

One way is to insert a voltage marker at node 1 in the schematic
of the circuit in Fig. 16.33(b). After saving the schematic and selecting
AnalysigSimulate, the waveform V(1) will be displayed in the Probe
window. Double clicking the FFT icon in the Probe menu will auto-
matically replace the waveform with its FFT. From the FFT-generated
graph, we can aobtain the harmonics. In case the FFT-generated graph
is crowded, we can use the User Defined data range (see Fig. 16.35) to
specify asmaller range.

Another way of obtaining the FFT of V(1) isto not insert avoltage
marker at node 1intheschematic. After selecting Analysis/Simulate, the
Probe window will come up with no graph on it. We select Trace/Add
and type V(1) in the Trace Command box and DCLICKL OK. We
now select Plot/X-Axis Settings to bring up the X Axis Setting dialog
box shown in Fig. 16.35 and then select Fourier/OK. This will cause
the FFT of the selected trace (or traces) to be displayed. This second
approach is useful for obtaining the FFT of any trace associated with the
circuit.

A major advantage of the FFT method is that it provides graphical
output. But its major disadvantage is that some of the harmonics may be
too small to see.

-
Fird S bepy fom
Firal Terar 3
bo-Pri Cielay [
§lep Coiing [t
™ [etsied Bas P
[T Ship reial seaedil tobadon
Fimmt dirsbyain
[F Erosbis Frares
Center Flegquency. |1

bk o peamonice |
ot W [T

(o] Coma|

Figure 16.34  Transient dialog box.
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Figure [6.35 X axis settings dialog box.

In both DFT and FFT, we should let the simulation run for alarge
number of cycles and use a small value of Sep Ceiling (in the Transient
dialog box) to ensure accurate results. The Final Time in the Transient
dialog box should be at least five times the period of the signal to allow
the simulation to reach steady state.

mﬂm.m

r P

V1=0
v2=1
TD=0
TF=1u @ V3
TR=1u

PWEL
PER=2

1§Rl

%

Figure 16.36  schematic for
Example 16.12.

Use PSpiceto determinethe Fourier coefficientsof thesignal inFig. 16.1.
Solution:

Figure 16.36 shows the schematic for obtaining the Fourier coefficients.
Withthesignal in Fig. 16.1in mind, we enter the attributes of the voltage
source VPULSE as shown in Fig. 16.36. We will solve this example
using both the DFT and FFT approaches.

METHOD [} DFT Approach: (The voltage marker in Fig. 16.36 is

not needed for this method.) From Fig. 16.1, itisevidentthat 7 = 2 s,

1 1 05H
fo= 7 =5=05Hz
So, in the transient dialog box, we select the Final Time as 6T =12 s,
the Print Sep as 0.01 s, the Sep Ceiling as 10 ms, the Center Frequency
as 0.5 Hz, and the output variable as V(1). (In fact, Fig. 16.34 is for
this particular example.) When PSpiceisrun, the output file containsthe

following result.

FOURI ER COEFFI Cl ENTS OF TRANSI ENT RESPONSE V(1)

DC COMPONENT = 4. 989950E-01

HARMONI C  FREQUENCY

NO

1
2
3

(HZ)

5. 000E- 01
1. O00E+00
1. 500E+00

FOURI ER  NORMALI ZED PHASE NORMALI ZED

COVPONENT ~ COVPONENT ( DEG) PHASE ( DEG)

6. 366E-01 1. 000E+00 -1. 809E-01 0. O00E+00
2.012E-03 3. 160E-03 -9.226E+01 -9. 208E+01
2.122E-01 3. 333E-01 -5.427E-01 -3.619E-01

(continued)
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(continued)
4 2. 000E+00 2.016E-03 3.167E-03 -9.451E+01 -9.433E+01
5 2.500E+00 1.273E-01 1.999E-01 -9.048E-01 -7.239E-01
6 3. 000E+00 2.024E-03 3.180E-03 -9.676E+01 -9.658E+01
7 3. 500E+00 9.088E-02 1.427E-01 -1.267E+00 - 1. 086E+00
8 4. 000E+00 2.035E-03 3.197E-03 -9.898E+01 -9. 880E+01
9 4. 500E+00 7.065E-02 1.110E-01 -1. 630E+00 - 1. 449E+00

Comparing theresult with that in EQ. (16.1.7) (see Example 16.1) or with
the spectrain Fig. 16.4 shows a close agreement. From Eq. (16.1.7), the
dc component is 0.5 while PSpice gives 0.498995. Also, the signal has
only odd harmonics with phase ¢, = —90°, whereas PSpice seems to
indicate that the signal has even harmonics although the magnitudes of
the even harmonics are small.

METHOD § FFT Approach: With voltage marker in Fig. 16.36 in

place, werun PSpiceand obtainthewaveformV (1) showninFig. 16.37(a)
on the Probewindow. By doubleclicking the FFT iconinthe Probe menu
and changing the X-axis setting to 0 to 10 Hz, we obtain the FFT of V(1)
as shown in Fig. 16.37(b). The FFT-generated graph contains the dc and
harmonic components within the selected frequency range. Notice that
the magnitudes and frequencies of the harmonics agree with the DFT-

generated tabulated values.
1.0 V
ovli---- :
0s 2's 4 s 6 s 8 s 10 s 12 s
o V(1) Ti me
(3
1.0 W immm e eeooooooon

2 Hz 4 Hz 6 Hz 8 Hz 10 Hz
Frequency

©)

Figure 16.37 (a) Origina waveform of Fig. 16.1, (b) FFT of the waveform.

PRACTICE PROBLEMENKIEN

Obtain the Fourier coefficients of the function in Fig. 16.7 using PSpice.

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



744 PART 3 Advanced Circuit Analyses

Answer:
FOURI ER CCEFFI Cl ENTS OF TRANSI ENT RESPONSE V(1)

DC COVPONENT = 4. 950000E- 01

HARMONI C FREQUENCY  FOURIER  NORMALI ZED PHASE NORMALI ZED
NO (H2) COVPONENT  COVPONENT (DEG) PHASE ( DEGQ
1 1. 000E+00 3.184E-01 1.000E+00 -1.782E+02 0. 000E+00
2 2. 000E+00 1.593E-01 5.002E-01 -1.764E+02 1.800E+00
3 3. 000E+00 1.063E-01 3.338E-01 -1.746E+02 3. 600E+00
4 4. 000E+00 7.979E-02 2.506E-03 -1.728E+02 5.400E+00
5 5. 000E+00 6.392E-01 2.008E-01 -1.710E+02 7.200E+00
6 6. 000E+00 5.337E-02 1.676E-03 -1.692E+02 9. 000E+00
7 7. 000E+00 4.584E-02 1.440E-01 -1. 674E+02 1. 080E+01
8 8. 000E+00 4.021E-02 1.263E-01 -1.656E+02 1.260E+01
9 9. 000E+00 3.584E-02 1.126E-01 -1.638E+02 1.440E+01

EYEEN
1Q If vy inthecircuit of Fig. 16.38 isasinusoidal voltage source of amplitude
li(t) 12V and frequency 100 Hz, find current i (z).
Solution:
Vs §l§2 ng

The schematic is shown in Fig. 16.39. We may use the DFT approach
to obtain the Fourier coefficents of i(r). Since the period of the input
waveformis T = 1/100 = 10 ms, in the Transient dialog box we select
Print Step: 0.1 ms, Final Time: 100 ms, Center Frequency: 100 Hz,
Number of harmonics: 4, and Output Vars: 1(L1). When the circuit is
simulated, the output file includes the following.

Figure 1638 For Example 16.13.

FOURI ER CCEFFI Cl ENTS OF TRANSI ENT RESPONSE | (VD)

DC COVPONENT = 8. 583269E- 03

HARMONI C  FREQUENCY

NO

A WNPF
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(HZ)

1. 000E+02
2. 000E+02
3. 000E+02
4. 000E+02

FOURI ER
COVPONENT

8. 730E- 03
1. 017E-04
6. 811E- 05
4. 403E- 05

With the Fourier coefficients, the Fourier series describing the cur-

NORMALI ZED
COVPONENT

1. 000E+00
1. 165E-02
7. 802E- 03
5. 044E-03

PHASE
(DEQ)

- 8. 984E+01
- 8. 306E+01
- 8. 235E+01
- 8. 943E+01

NORMAL | ZED
PHASE ( DEG)

0. O00E+00
6. 783E+00
7. 490E+00
4. 054E+00

rent i (¢) can be obtained using Eq. (16.73); that is,

i(t) = 8.5833+ 8.73sin(2r - 100r — 89.84°)

+ 0.1017sin(2z - 200r — 83.06°)
+ 0.068sin(2w - 300 — 82.35°) 4 - -- MA
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We can also use the FFT approach to cross-check our result. The R1
current marker isinserted at pin 1 of the inductor as shown in Fig. 16.39. _ 1
Running PSpice will automatically produce the plot of 1(L1) in the Probe \F/é'l\z’gﬁzég
window, as shown in Fig. 16.40(a). By doubleclickingthe FFT iconand  VOFF=0
setting the range of the X-axis from 0 to 200 Hz, we generate the FFT
of I(LL) shown in Fig. 16.40(b). It i clear from the FFT-generated plot 970
that only the dc component and the first harmonic are visible. Higher
harmonics are negligibly small.

V1 R2<1

Figure 16.39  schematic of the circuit in
Fig. 16.38.

40 ns 60 ns
Ti me

80 nms 100 ns

80 Hz 120 Hz 160 Hz 200 Hz
Frequency

(b)

Al
0

Hz 40 Hz
ol (L1)

Figure 1640 For Example 16.13: (a) plot of (1), (b) the FFT of i ().

PRACTICE PROBLEMNKIEE

A sinusoidal current source of amplitude 4 A and frequency 2 kHz is ap-
plied to the circuit in Fig. 16.41. Use PSpiceto find v().

Answer: v(t) = —150.72+ 145.5sin(4x - 103 +90°) + - - -
Fourier components are shown below.

le
T

For Practice Prob. 16.14.

+
ig(t) v(t) £10Q

Figure 16,41

uV. The

FOURI ER COEFFI Cl ENTS OF TRANSI ENT RESPONSE V(R1: 1)

DC COVPONENT = - 1.507169E- 04
HARMONI C FREQUENCY FOURIER NORMALIZED  PHASE  NORMALI ZED
NO (HZ) COVPONENT ~ COVPONENT ( DEG) PHASE ( DEG)
1 2. 000E+03 1.455E-04 1.000E+00  9.006E+01 0. 000E+00
2 4.000E+03 1.851E-06 1.273E-02 9.597E+01 5. 910E+00
3 6. 000E+03 1.406E-06 9.662E-03 9.323E+01 3. 167E+00
4 8. 000E+03 1.010E-06 6.946E-02 8.077E+01 -9.292E+00
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TABLE 164  Frequency ranges of

typical signals.

Signal Frequency Range
Audible sounds 20 Hz to 15 kHz
AM radio 540-1600 kHz
Short-wave radio 3-36 MHz
Video signals dcto 4.2 MHz
(U.S. standards)
VHF television, 54-216 MHz
FM radio
UHF television 470-806 MHz
Cdllular telephone  824-891.5 MHz
Microwaves 2.4-300 GHz
Visible light 10°-10° GHz
X-rays 10°-10° GHz

PART 3 Advanced Circuit Analyses

16.8 APPLICATIONS

We demonstrated in Section 16.4 that the Fourier series expansion per-
mits the application of the phasor techniques used in ac analysis to cir-
cuits containing nonsinusoidal periodic excitations. The Fourier series
has many other practical applications, particularly in communications
and signal processing. Typica applications include spectrum analysis,
filtering, rectification, and harmonic distortion. We will consider two of
these: spectrum analyzers and filters.

16.8.1 Spectrum Analyzers

TheFourier seriesprovidesthe spectrum of asignal. Aswehave seen, the
spectrum consists of the amplitudes and phases of the harmonics versus
frequency. By providing the spectrum of asignal f (¢), the Fourier series
helps us identify the pertinent features of the signal. It demonstrates
which frequencies are playing animportant rolein the shape of the output
and which ones are not. For example, audible sounds have significant
components in the frequency range of 20 Hz to 15 kHz, while visible
light signals range from 10° GHz to 10° GHz. Table 16.4 presents some
other signals and the frequency ranges of their components. A periodic
functionissaidto beband-limited if itsamplitude spectrum containsonly
afinite number of coefficients A,, or ¢,. In this case, the Fourier series
becomes

N N
f(t) = Z c el = qg + Z A, cOS(nawot + ¢,)  (16.75)
n=—N n=1

Thisshowsthat weneed only 2N + 1terms(namely, ag, A1, Ao, ..., Ay,
¢1, G2, ..., dy) to completely specify f(¢) if wgisknown. Thisleadsto
the sampling theorem: a band-limited periodic function whose Fourier
seriescontains N harmonicsisuniquely specified by itsvaluesat 2N + 1
instants in one period.

A spectrumanalyzer isaninstrument that displaysthe amplitude of
the components of asignal versusfrequency. In other words, it showsthe
various frequency components (spectral lines) that indicate the amount
of energy at each frequency. It is unlike an oscilloscope, which displays
theentiresignal (all components) versustime. An oscilloscope showsthe
signa in the time domain, while the spectrum analyzer shows the signal
inthefrequency domain. Thereis perhapsno instrument more useful to a
circuit analyst than the spectrum analyzer. Ananalyzer can conduct noise
and spurious signal analysis, phase checks, electromagnetic interference
and filter examinations, vibration measurements, radar measurements,
and more. Spectrum analyzers are commercially available in various
sizes and shapes. Figure 16.42 displays atypical one.

16.8.2 Filters

Filters are an important component of electronics and communications
systems. Chapter 14 presented afull discussion on passive and active fil-
ters. Here, weinvestigate how to design filters to select the fundamental
component (or any desired harmonic) of the input signal and reject other
harmonics. This filtering process cannot be accomplished without the
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Figure [6.42 A typical spectrum analyzer.
(Courtesy of Hewlett-Packer.)

Fourier series expansion of the input signal. For the purpose of illustra-
tion, we will consider two cases, alowpassfilter and abandpassfilter. In
Example 16.6, we already looked at a highpass RL filter.

Theoutput of alowpassfilter dependsontheinput signal, thetrans-
fer function H(w) of the filter, and the corner or half-power frequency
w.. We recall that o, = 1/RC for an RC passive filter. As shown in
Fig. 16.43(a), the lowpass filter passes the dc and low-frequency com-
ponents, while blocking the high-frequency components. By making w.
sufficiently large (w. > wo, €.9., making C small), alarge number of the

0 wy 2wy 3wy wy 2wg 3wy @

@

dc

| N[>

L owpass
I_ filter
— —_

wc ¥ g

L >

(0)

Figu re 16.43 (8 Input and output spectraof alowpassfilter, (b) thelowpassfilter passes
only the dc component when w, < wp.
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harmonics can be passed. On the other hand, by making w. sufficiently
small (w. <« wo), we can block out all the ac components and pass only
dc, as shown typically in Fig. 16.43(b). (See Fig. 16.2(a) for the Fourier
series expansion of the square wave.)

Similarly, theoutput of abandpassfilter dependsontheinput signal,
the transfer function of the filter H (w), its bandwidth B, and its center
frequency w.. Asillustrated in Fig. 16.44(a), the filter passes &l the

In this section, we have used o, for the center

frequency of the bandpass fiter instead of wy as harmonicsof theinput signal within aband of frequencies(w1 < @ < a)_g)
in Chapter 14, to avoid confusing wy with the centered around w.. We have assumed that wo, 2wo, and 3wg are within
fundamental frequency of the input signal. that band. If the filter is made highly selective (B <« wp) and @, = wy,

where wg isthefundamental frequency of theinput signal, thefilter passes
only the fundamental component (n = 1) of the input and blocks out all
higher harmonics. As shown in Fig. 16.44(b), with a square wave as
input, we obtain asine wave of the samefrequency asthe output. (Again,
refer to Fig. 16.2(a).)

[H] 4

——

/) : I B

0 wy 2wy 3wy

M=

0 wp 2wy 3wy @

o
)

S

o
S

N
g

@

Bandpass
filter
—— ———
T

We = wWo
B<<(1)0 -~ T —

(b)

Figure 16.44 (&) Input and output spectra of a bandpass filter, (b) the bandpass filter
passes only the fundamental component when B <« wp.

If the sawtooth waveform in Fig. 16.45(a) is applied to an ideal lowpass
filter with the transfer function shown in Fig. 16.45(b), determine the
output.

Solution:

The input signal in Fig. 16.45(a) is the same as the signal in Fig. 16.9.
From Practice Prob. 16.2, we know that the Fourier series expansion is

1 1 1 1
t) = = — —SNwot — — SiN2wot — — SiN3wgt — - - -
x(®) 2 7w @0 2 @0 3 0
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where the period is T = 1 s and the fundamental frequency iswg = 2
rad/s. Since the corner frequency of thefilter is w, = 10 rad/s, only the
dc component and harmonics with nwg < 10 will be passed. For n = 2,
nwo = 4w = 12.566 rad/s, which is higher than 10 rad/s, meaning that
second and higher harmonics will be rejected. Thus, only the dc and
fundamental componentswill be passed. Hence the output of thefilter is

1 1.
y(t) = = — —9Sin2rt
2 7

x(t) |H|A

A

-1 0 1 2 3t 0 10 o
@ (b)

Figure 1645 For Example 16.14.

PRACTICE PROBLEMENKEK

Rework Example 16.14 if the lowpassfilter isreplaced by theideal band- [H]
pass filter shown in Fig. 16.46. 1

1 . 1 . 1 .
Answer: y(t):—gsm&oot—Esn%ot—gsn&oot. >

0 15 35 w

Figure 16.46  For Practice Prob. 16.14.

16.9 SUMMARY

1. A periodic function is one that repeatsitself every T seconds; that
is, f@£tnT)= f(t),n=1,23,....
2. Any nonsinusoidal periodic function f(¢) that we encounter in

electrical engineering can be expressed in terms of sinusoids using
Fourier series:

o0
ft) = ao + Z(“" cosnwot + by, SiNnwot)
——

de n=1

ac

where wp = 27t/ T isthe fundamental frequency. The Fourier series
resolves the function into the dc component ag and an ac compo-
nent containing infinitely many harmonically related sinusoids. The
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Fourier coefficients are determined as

1 (7 2 (T
aog = —/ fde,  a,= —[ £(t) cosnawot dt
T Jo T Jo

2 T
b, = —f f (@) sinnwot dt
T Jo

If f(¢) isanevenfunction, b, = 0, and when f(¢) isodd, ap = 0
anda, = 0. If f(¢) ishaf-wave symmetric, ag = a,, = b, = Ofor
even values of n.

3. Andternative to the trigonometric (or sine-cosine) Fourier seriesis
the amplitude-phase form

f@)=ao+ Y _ A, cosnwot + ¢,)

n=1

b
A, = /a2 + b2, ¢n:_tanila_n
n

4. Fourier series representation allows us to apply the phasor method
in analyzing circuits when the source function is a nonsinusoidal
periodic function. We use phasor technique to determine the
response of each harmonic in the series, transform the responses to
the time domain, and add them up.

5. The average-power of periodic voltage and current is

where

1 o0
P = Vaelse + 5 Z; V1, cOS(6, — ¢,)

In other words, the total average power isthe sum of the average
powers in each harmonically related voltage and current.

6. A periodic function can aso be represented in terms of an expo-
nential (or complex) Fourier series as

f@= i cpel"!

n=—00

where

17 ;
n = = ne "l dt
¢ Tfo f0e

and wo = 27t/ T. The exponential form describes the spectrum of
f () interms of the amplitude and phase of ac components at posi-
tive and negative harmonic frequencies. Thus, there are three basic
forms of Fourier series representation: the trigonometric form, the
amplitude-phase form, and the exponential form.

7. Thefreguency (or line) spectrum isthe plot of A, and ¢, or |c,|
and 6, versus frequency.

8. Thermsvalue of a periodic function is given by

1 oo
Fims = a§+§ZA§
n=1
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The power dissipated by a1-Q2 resistance is

1 [o¢]
Pio = Fips = a5+ 5 ) (i + b)) =
n=1

Thisrelationship is known as Parseval’s theorem.

2
> el

n=—00

The Fourier Series 751

Using PSpice, a Fourier analysis of acircuit can be performed in

conjunction with the transient analysis.

Fourier series find application in spectrum analyzers and filters.
The spectrum analyzer is an instrument that displays the discrete
Fourier spectra of an input signal, so that an analyst can determine
the frequencies and relative energies of the signal’s components.

Because the Fourier spectra are discrete spectra, filters can be

designed for great effectiveness in blocking frequency components

of asignal that are outside a desired range.

REVIEW QUESTIONS

16.1  Which of the following cannot be a Fourier series? 166 If f(r) =10+ 8cost + 4cos3t + 2cos5t + - - -,
2 3 A 45 the angular frequency of the 6th harmonic is
@r-5+3-7+3% @ 12 (b) 11 © 9
(b) 5sint 4+ 3sin2r — 2sin3t + sin4t (d) 6 (e 1
(© s!nz - ZC_OS3Z +4sn4: 4 cosds 16.7  Thefunctionin Fig. 16.14 is half-wave symmetric.
(d) sint +3sin2.7r — cosxt + 2tannt
omiZt i3t (a) True (b) False
—jmt
€ 1+e + 2 + 3 16.8 Theplot of |c,| versus nwy is caled:
162 If f@t)=1t,0<t<m, f@t+nm)= f(),the (a) complex frequency spectrum
vaue of wg is (b) complex amplitude spectrum
@1 (b) 2 © = (d) 2r (c) complex phase spectrum
16.3  Which of the following are even functions? 16.9  When the periodic voltage 2 + 6 sinwot isapplied to
2 b) 12 2 a1-Q resistor, the integer closest to the power (in
@ t2+t , (b) +*cosr © e watts) dissipated in the resistor is:
(d) “+1 (e) sinht @ 5 (b) 8 (©) 20
16.4  Which of the following are odd functions? (d) 22 (e) 40
(8 sint + cost (b) zsint ] i ]
© tln: (d) 2 cost 16.10  Theinstrument for. displaying the spectrum of a
(&) sinh signal isknown as:
(a) oscilloscope (b) spectrogram
165 If f(t) =10+ 8cost +4cos3r + 2cos5t + - -+, (c) spectrum analyzer  (d) Fourier spectrometer
the magnitude of the dc component is:
(@ 10 (b) 8 (© 4 Answers: 16.1a,d, 16.2b, 16.3b,cd, 164d,e, 16,53, 16.6d, 16.7a,
(d) 2 (e 0 16.80, 16.9d ,16.10c.
PROBLEMS
Section 16.2 Trigonometric Fourier Series
16.1  Evauate each of the following functions and seeiif it (d) h(t) = cos’t

isperiodic. If periodic, find its period.

(@) f(¢t) =cosnt + 2cos3nt + 3cosbrt
(b) y(r) = sint + 4cos2rt

(c) g(r) = sin3r cos4t

(e) z(t) = 4.2sin(0.4xt + 10°)
+0.8sin(0.67¢ + 50°)

(f) pt)y=10

(@ gt) =€
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16.2  Determine the period of these periodic functions: 169 Thewaveformin Fig. 16.49(a) hasthe following
(@ fi(t) =4sin5s + 3sin6r Fourier series:
(b) f2(r) =12+ 5c0s2r + 2 cos(4t + 45°) 1 4 1
© f3(t) = 4_sin2 6007 ¢ vi(t) = > g2 <cosm + 3 cos3rt
(@ far) = .

16.3  Givethe Fourier coefficients ao, a,, and b, of the + g oot + - ) v
waveform in Fig. 16.47. Plot the amplitude and
phase spectra. Obtain the Fourier series of v,(¢) in Fig. 16.49(b).

vy(t)

a(t)
10 1
5 2 - 1 2 3 4t
1 1 1 1 1 (a)

-4-3-2-1 012 3 45 6t

o

Figure 1647 For Prob. 16.3. 1
16.4  Find the Fourier series expansion of the backward \, . . . Lo
sawtooth waveform of Fig. 16.48. Obtain the O\ -1 0 1 2N 3 /4t
amplitude and phase spectra. \/
-1
f(t)
(b)
10

Figure 1649 For Probs. 16.9 and 16.52.

4 2 0 2 4 6t Section 16.3 Symmetry Consider ations

Figure 1648 For Probs. 16.4 and 16.50. 16.10 Determineif these functions are even, odd, or
neither.
*16.5 A voltage source has a periodic waveform defined @ 141 () 2—1 (¢) cosnmtsinnms

over its period as

(d) sinrwr (&) e
v(it)=t2r —1)V, O<t<2r

16.11 Determine the fundamental frequency and specify

Find the Fourier seriesfor this voltage. the type of symmetry present in the functionsin Fig.
16.6 A periodic function is defined over its period as 16.50.
Bty = {10sint, O<t<m f1(0) 4
20s8n(it —m), w<t<?2n 2

Find the Fourier seriesof h(z).

16.7  Find the quadrature (cosine and sine) form of the
Fourier series

f@) =2+ i n31—(|)— 1 cos(Znt + %)
n=1

16.8  Expressthe Fourier series

<. 4 1 .
f) =10+ 37 Cos10nt + — sin10nt

n= 2L
(a) inacosine ané angleform, 1 ’_|

(b) in asine and angle form.

*An asterisk indicates a challenging problem. (b)
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©

Figure 16.50  For Probs. 16.11 and 16.48.

16.12 Obtain the Fourier series expansion of the function

inFig. 16.51.
f(t)
\l 1 1 I/
BN\ =2 A1 o 1\2/3 t
1
Figure 16,51 For Prob. 16.12.

16.13 Find the Fourier seriesfor the signal in Fig. 16.52.
Evaluate f(r) at t = 2 using thefirst three nonzero
harmonics.

f(t)
4 R
1 1 1 1 1 1 L 1 >
-4 2 0 2 4 6 8t
Figure 16.52  For Probs. 16.13 and 16.51.
16.14 Determine the trigonometric Fourier series of the

signal in Fig. 16.53.

f(t)

VAN WA

5-4-3-2-1012 3 4 5t

Figure 16.53

For Prob. 16.14.

The Fourier Series 753

16.15 Calculate the Fourier coefficients for the function in
Fig. 16.54.

(1)

NN N

5-4-3-2-1012 3 45t

Figure 16.54

For Prob. 16.15.

16.16 Find the Fourier series of the function shown in Fig.

@ 16.55.

/.
Az

For Prob. 16.16.

Figure 16.55

16.17 Inthe periodic function of Fig. 16.56,

(a) find the trigonometric Fourier series coefficients
az and by,

(b) calculate the magnitude and phase of the
component of f(¢) that has w, = 10 rad/s,

(c) usethefirst four nonzero termsto estimate

f(@/2),

(d) show that
7_1 1.1 1.1 1.
41 3'5 7'9 11

(1)

2L

|,

_2r[| —n\/_lo nw 3n am| t
2_

Figure 16.56  For Prob. 16.17.
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16.18 Determine the Fourier series representation of the
function in Fig. 16.57.

(1)

AL
SRR

/|
NIK

Figure 16.57  For Prob. 16.18.

16.19 Find the Fourier series representation of the signal

shownin Fig. 16.58.

f(t)

-4 3 2 -1

Figure [6.58  For Prob. 16.19.

16.20 For the waveform shown in Fig. 16.59 below,
(a) specify the type of symmetry it has,
(b) caculate az and b3,

(c) find the rms value using the first five nonzero
harmonics.

16.21 Obtain the trigonometric Fourier seriesfor the

voltage waveform shown in Fig. 16.60.

AN N
3 _1V_2LO 1V2 3V4t

Figure 16.60  For Prob. 16.21.

Advanced Circuit Analyses

16.22 Determine the Fourier series expansion of the
sawtooth function in Fig. 16.61.

f(®)

/]

_zw 0 - 2\ ;
-
Figure 16.6]  For Prob. 16.22.

Section 16.4 Circuit Applications

16.23 Findi(r) inthe circuit of Fig. 16.62 given that

1
i,(t) = 1+Z—cosSmA

n=1

2Q

MWV
?lQ

i (t)

i @ §2H

Figure 16.62  For Prob. 16.23.

16.24 Obtain v, (¢) in the network of Fig. 16.63 if

v(t) = i g cos(nt + %) Vv

n=1
20 1H
+
v() 05F T Vo(t)
Figure 16.63  For Prob. 16.24.

Figure 16.59  For Prob. 16.20.
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16.25 If v, inthecircuit of Fig. 16.64 isthe same as
function f>(¢) in Fig. 16.50(b), determine the dc
component and the first three nonzero harmonics of

v, (1).

10 1H

Figure 16.64  For Prob. 16.25.

16.26 Determinei,(¢) inthecircuit of Fig. 16.65 if

o0

. -1  nm 3 .
v, () = Z — sin—- cosnt + — sinn

n=1
n=odd

1Q
MWV

l io(t)

VSCD §1Q ng

Figure 16.65  For Prob. 16.26.

16.27 The periodic voltage waveformin Fig. 16.66(a) is
applied to the circuit in Fig. 16.66(b). Find the

voltage v, () across the capacitor.

vg(t) A

10

— 10 mF

(0)

Figure 16.66  For Prob. 16.27.

The Fourier Series 755

16.28 If the periodic voltagein Fig. 16.67(a) is applied to

@ thecircuit in Fig. 16.67(b), find i, (¢).

V() A

75

25

@
20Q 400
*io(t)
Vg = 50 mF 100 mH
(b)

Figure [6.67  For Prob. 16.28.

*16.29 Thesignal in Fig. 16.68(a) is applied to the circuit in

@ Fig. 16.68(b). Find v, (r).

vs(t)
0 1 2 3 4 5t
@
2\IX
10
~
+ +
Vs Ve== 025F  3Q §v0
(b
Figure [6.68  For Prob. 16.29.
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16.30 The full-wave rectified sinusoidal voltagein Fig.
16.69(a) is applied to the lowpass filter in Fig.
16.69(b). Obtain the output voltage v, () of the

filter.
Vin(t)
1
- 0 T 27 t
@
2H
+
Vin(t) 01F =/ 10Q § Vo

(b)
Figure 16.69  For Prob. 16.30.

Section 16.5 Aver age Power and RM S Values
16.31 The voltage across the terminals of acircuit is

v(t) = 30+ 20cos(60r ¢ + 45°)
+ 10cos(60rrt — 45°) V
If the current entering the terminal at higher
potentia is
i(t) = 64 4cos(60xt + 10%)
— 2c0s(120rt — 60°) A

find:

(a) thermsvalue of the voltage,

(b) the rms value of the current,

(c) the average power absorbed by the circuit.
16.32 A seriesRLC circuithasR =102, L = 2 mH,

and C = 40 uF. Determine the effective current and
average power absorbed when the applied voltage is

v(t) = 100 cos 1000 + 50 cos2000¢
+ 25c0s3000¢ V
16.33 Consider the periodic signal in Fig. 16.53. (a) Find
the actual rmsvalue of (). (b) Usethefirst five

nonzero harmonics of the Fourier seriesto obtain an
estimate for the rms value.

16.34 Cadlculate the average power dissipated by the 10-Q2
resistor in the circuit of Fig. 16.70 if

iy(t) = 3+ 2cos(50r — 60°)
+ 0.5c0s(100r — 120°) A

16.35

80 mH

it 5Q 100

Figure 16.70  For Prob. 16.34.

For the circuit in Fig. 16.71,

i(t) = 20 4 16 cos(10r + 45°)
+ 12 cos(20r — 60°) mA
(@ find v(r), and
(b) calculate the average power dissipated in the
resistor.

+
i) 100uF ==  2kQ = v(b)

Figure 16.7]  For Prob. 16.35.

Section 16.6 Exponential Fourier Series

16.36

16.37

16.38

16.39

16.40

Obtain the exponential Fourier seriesfor f(¢) =1,
-1 <t <1 with f(t + 2n) = f(1).

Determine the exponentia Fourier series for
f@) =1 —w <t <@, with f(t + 2nn) = f(¢).

Calculate the complex Fourier seriesfor f () =
e',—m <t <m,with f(t + 2mn) = f().

Find the complex Fourier seriesfor f (1) = e,
0<t <1 with f(t+n)= fQ).

Find the exponential Fourier series for the function
inFig. 16.72.

£(t) A

g

1 >
-4 =3 -1 0 1 2 3 4 5 6] t
-1
Figure 16.72  For Prob. 16.40.
16.41 Obtain the exponential Fourier series expansion of

the half-wave rectified sinusoidal current of Fig.
16.73.
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i)
AWAGA
27 -7 0 T 21 371';
Figure 16.73 For Prob. 16.41.

16.42 The Fourier series trigonometric representation of a

periodic functionis

f() =10+ ; (112711 cosnmt + nZLle sinnnt)
Find the exponential Fourier series representation of
f@.

The coefficients of the trigonometric Fourier series

representation of afunction are:

6
n3—2’

If w, = 50n, find the exponential Fourier series for

the function.

16.43

b, =0, n=0,12,...

a, =

16.44 Find the exponential Fourier series of afunction
which has the following trigonometric Fourier series
coefficients

T b — (=" =D -1
ap = 47 n — n ) a, = nnz
Teke T = 2.

16.45 The complex Fourier series of the function in Fig.
16.74(a) is _

1 > je—./(2n+l)t
==— _
F® 2 Z (2n+ DHm

n=-—o00

Find the complex Fourier series of the function & (z)
inFig. 16.74(b).

£(6) A

1

3t
@

-2
(b)

Figure [6.74  For Prob. 16.45.

The Fourier Series 757

16.46 Obtain the complex Fourier coefficients of the signal
in Fig. 16.56.

The spectra of the Fourier series of afunction are
shown in Fig. 16.75. (a) Obtain the trigonometric
Fourier series. (b) Calculate the rms value of the

16.47

function.
A, A
6
4
2
1 1
2
|
0 1 2 3 4 w,(radly
b 4
1 2 3 4
0 wy, (rad/s)
-20°
—25°
-35°
-50°
Figure 16.75  For Prob. 16.47.

16.48 Plot the amplitude spectrum for the signal f>(¢) in
Fig. 16.50(b). Consider the first five terms.

16.49 Given that

o0

fo=>

n=1
n=odd

20
—— cos2nt — i sin2nt
n2m? nmw

plot the first five terms of the amplitude and phase
spectra for the function.
Section 16.7

16.50 Determine the Fourier coefficients for the waveform
in Fig. 16.48 using PSpice.

Calculate the Fourier coefficients of the signal in
Fig. 16.52 using PSpice.

Use PSpice to obtain the Fourier coefficients of the
waveform in Fig. 16.49(a).

Rework Prob. 16.29 using PSpice.
Use PSpice to solve Prob. 16.28.

Fourier Analysiswith PSpice

16.51
16.52

16.53
16.54
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Section 16.8 Applications

16.55 Thesigna displayed by amedical device can be
approximated by the waveform shown in Fig. 16.76.
Find the Fourier series representation of the signal.

f(t) A
10
Il Il Il Il Il Il Il >
-6 |-4 -2 |0 2 4 | 6t
-10
Figure 16.76  For Prob. 16.55.

16.56 A spectrum anayzer indicates that asignal is made
up of three components only: 640 kHz at 2 V,
644kHz at 1V, 636 kHz at 1 V. If thesignal is
applied across a 10-<2 resistor, what is the average

power absorbed by the resistor?

16.57 A certain band-limited periodic current has only

three frequenciesin its Fourier series representation:

Advanced Circuit Analyses

dc, 50 Hz, and 100 Hz. The current may be
represented as

i(t) =4+ 6sin1007t + 8cos100rx¢
— 3sin2007t — 4cos200rt A

(8) Expressi(r) in amplitude-phase form.
(b) If i(¢) flowsthrough a 2-2 resistor, how many
watts of average power will be dissipated?

16.58 Thesigna inFig. 16.66(a) is applied to the
high-passfilter in Fig. 16.77. Determine the value of
R such that the output signal v, (¢) has an average
power of least 70 percent of the average power of
the input signal.

1H

+
RIV,

A 100

Figure 16.77  For Prob. 16.58.

COMPREHENSIVE PROBLEMS

16.59 The voltage across a device is given by
v(t) = —2+ 10cos4r + 8cos6r + 6cos8t
—58in4t — 3sin6r — sin8t V
Find:
(a) the period of v(1),
(b) the average value of v(?),
(o) the effective value of v(t).

16.60 A certain band-limited periodic voltage has only
three harmonics in its Fourier series representation.
The harmonics have the following rms values:
fundamental 40 V, third harmonic 20 V, fifth
harmonic 10 V.

(a) If the voltageis applied across a 5-2 resistor,
find the average power dissipated by the resistor.

(b) If adc component is added to the periodic
voltage and the measured power dissipated
increases by 5 percent, determine the value of
the dc component added.

16.61 Write aprogram to compute the Fourier coefficients
(up to the 10th harmonic) of the square wavein

Table16.3withA =10and T = 2.

Write a computer program to calculate the
exponential Fourier series of the half-wave rectified

16.62

sinusoidal current of Fig. 16.73. Consider terms up
to the 10th harmonic.

16.63 Consider the full-wave rectified sinusoidal current in
Table 16.3. Assume that the current is passed
through a 1-<2 resistor.

(8) Find the average power absorbed by the resistor.

(b) Obtainc, forn =1, 2,3, and 4.

(c) What fraction of the total power is carried by the
dc component?

(d) What fraction of the total power is carried by the
second harmonic (n = 2)?

16.64 A band-limited voltage signal is found to have the
complex Fourier coefficients presented in the table
below. Calculate the average power that the signal
would supply a4-Q2 resistor.

nwo eyl 6y,
0 10.0 o°
w 85 15
2w 42 30
3w 21 4%
) 05 60

5w 02 75
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