CHAPTER]|I

FOURIER TRANSFORM

No human investigation can claim to be scientific if it doesn’t pass the
test of mathematical proof.
—Leonardo da Vinci

Enhancing Your Career

Career in Communications Systems Communications
systems apply the principles of circuit analysis. A com-
munication system is designed to convey information from
a source (the transmitter) to a destination (the receiver) vig
a channel (the propagation medium). Communications en
gineers design systems for transmitting and receiving infor
mation. The information can be in the form of voice, data,
or video.

We live in the information age—news, weather,
sports, shopping, financial, business inventory, and othe|
sources make information available to us almost instantl
via communications systems. Some obvious examples o
communications systems are the telephone network, mobil
cellular telephones, radio, cable TV, satellite TV, fax, and
radar. Mobile radio, used by police and fire departments
aircraft, and various businesses is another example.

The field of communications is perhaps the fastest
growing area in electrical engineering. The merging of
the communications field with computer technology in re-
cent years has led to digital data communications networks
such as local area networks, metropolitan area network
and broadband integrated services digital networks. For e
ample, the Internet (the “information superhighway”) al-
lows educators, business people, and others to send ele
tronic mail from their computers worldwide, log onto remote
databases, and transfer files. The Internet has hit the worl
like a tidal wave and is drastically changing the way people
do business, communicate, and get information. This trend
will continue.

A communications systems engineer designs sys
tems that provide high-quality information services. The

systems include hardware for generating, transmitting, and —

places where communications systems are routinely used”
More and more government agencies, academic depart-
ments, and businesses are demanding faster and more
accurate transmission of information. To meet these needs,
communications engineers are in high demand. Therefore,
the future is in communications and every electrical
engineer must prepare accordingly.

receiving information signals. Communications engineersCordless phone. Source: M. Nemzow, Fast Ethernet Implemen-
are employed in numerous communications industries andftion and Migration Solutions [New York: McGraw-Hill, 1997],
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Figure 7.1 (a) A nonperiodic function,
(b) increasing T to infinity makes f ()
become the nonperiodic function in ().

PART 3 Advanced Circuit Analyses

17.1  INTRODUCTION

Fourier series enable us to represent a periodic function as a sum of sinu-
soids and to obtain the frequency spectrum from the series. The Fourier
transform allows us to extend the concept of a frequency spectrum to non-
periodic functions. The transform assumes that a nonperiodic function is
a periodic function with an infinite period. Thus, the Fourier transform
is an integral representation of a nonperiodic function that is analogous
to a Fourier series representation of a periodic function.

The Fourier transform is amtegral transform like the Laplace
transform. It transforms a function in the time domain into the frequency
domain. The Fourier transform is very useful in communications systems
and digital signal processing, in situations where the Laplace transform
does not apply. While the Laplace transform can only handle circuits
with inputs fors > 0 with initial conditions, the Fourier transform can
handle circuits with inputs far < 0 as well as those far> 0.

We begin by using a Fourier series as a stepping stone in defining the
Fourier transform. Then we develop some of the properties of the Fourier
transform. Next, we apply the Fourier transform in analyzing circuits. We
discuss Parseval's theorem, compare the Laplace and Fourier transforms,
and see how the Fourier transform is applied in amplitude modulation
and sampling.

17.2 DEFINITION OF THE FOURIER TRANSFORM

We saw in the previous chapter that a nonsinusoidal periodic function can

be represented by a Fourier series, provided that it satisfies the Dirichlet

conditions. What happens if a function is not periodic? Unfortunately,

there are many important nonperiodic functions—such as a unit step or

an exponential function—that we cannot represent by a Fourier series.

As we shall see, the Fourier transform allows a transformation from the

time to the frequency domain, even if the function is not periodic.
Suppose we want to find the Fourier transform of a nonperiodic

function p(¢), showninFig. 17.1(a). Weconsider aperiodicfunction f (¢)

whose shape over one period isthe sameas p(t), asshowninFig. 17.1(b).

If welet the period T — oo, only asingle pulse of width t [the desired

nonperiodicfunctioninFig. 17.1(a)] remains, becausethe adjacent pulses

have been movedtoinfinity. Thus, thefunction f (¢) isnolonger periodic.

In other words, f (1) = p(t) asT — oo. Itisinteresting to consider the

spectrumof f(¢) for A = 10and r = 0.2 (see Section 16.6). Figure17.2

shows the effect of increasing 7' on the spectrum. First, we notice that

the general shape of the spectrum remains the same, and the frequency at

which the envelope first becomes zero remains the same. However, the

amplitude of the spectrum and the spacing between adjacent components

both decrease, while the number of harmonics increases. Thus, over a

range of frequencies, the sum of the amplitudes of the harmonicsremains

almost constant. Since the total “strength” or energy of the components

within a band must remain unchanged, the amplitudes of the harmonics

must decrease as T increases. Since f = 1/T, as T increases, f or w

decreases, so that the discrete spectrum ultimately becomes continuous.
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Figure |7 Effect of increasing T on the spectrum of the periodic
pulsetrainsin Fig. 17.1(b).
(Source: L. Balmer, Sgnalsand Systems: An Introduction
[London: Prentice-Hall, 1991], p. 229.)

To further understand this connection between a nonperiodic func-
tion and its periodic counterpart, consider the exponential form of a
Fourier seriesin EQ. (16.58), namely,

o0
fO =" cae™ 17.1)
n=—o0
where
T/2 '
= — f(t)e /" dt (17.2)
T J 1)

The fundamental frequency is

2
wo = T (17.3)

and the spacing between adjacent harmonicsis

2
Aw = n+ Dwg — nwg = wg = T (17.4)
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Substituting Eq. (17.2) into Eq. (17.1) gives

0 1 T/2 A A
f(t) = Z |:— f(t)e_.mwol dl] ednwot

n==oo LT Jory2
o Aw [T/? ; .
= Z [E zf(t)e*f”’”‘” dt] elneot (17.5)
n=—00 =T/
T/2

1 & [ : ,
= — f(t)e /! dt:| Awe’/"™!

21 n;oo 172
If welet T — oo, the summation becomes integration, the incremen-
tal spacing Aw becomes the differential separation dw, and the discrete

harmonic frequency nwo becomes a continuous frequency w. Thus, as

T — oo,
oo oo
> =

o0

(17.6)
dw

w

I

nwo

so that Eq. (17.5) becomes

f@) = 1 /Oo [/OO ft)e i dt] e/ dw 17.7)
27 J oo L) -0

The term in the brackets is known as the Fourier transform of f(z) and

Some authors use F(je) instead of F(w) to rep- isrepresented by F(w). Thus
resent the Fourier transform.

F(w)=F[f®] = / ” f(He I dt (17.9)

where F is the Fourier transform operator. It is evident from Eq. (17.8)
that:

time domain to the frequency domain.

FC
JL The Fourier transform is an integral transformation of f (t) from the

In general, F(w) isacomplex function; its magnitude is called the
amplitude spectrum, while its phase is called the phase spectrum. Thus
F (w) isthe spectrum.

Equation (17.7) can bewritten in terms of F(w), and we obtain the
inverse Fourier transform as

1 1 o0 ot
fO) = FUF@)] = o f F@)e™ do 179

The function f(¢) and its transform F(w) form the Fourier transform
pairs:

f@ — F(w) (17.10)
since one can be derived from the other.
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The Fourier transform F (w) existswhen the Fourier integral in Eq.
(17.8) converges. A sufficient but not necessary condition that f(¢) has
a Fourier transform isthat it be completely integrable in the sense that

/ |f(O|dt < o0 (17.11)

oo

For example, the Fourier transform of the unit ramp function ru(r) does
not exist, because the function does not satisfy the condition above.

To avoid the complex algebrathat explicitly appearsin the Fourier
transform, it is sometimes expedient to temporarily replace jw with s and
then replace s with jo at the end.

M|7.|

Find the Fourier transform of the following functions. (@) 3(t — o),
(b) e/, (C) coswot .

Solution:

() For the impulse function,

F(w) = F[5(t — tg)] = / 8(t —to)e /N dt = eI (17.1.1)

where the sifting property of the impulse function in Eq. (7.32) has been
applied. For the special casety = 0, we obtain

Fls@®] =1 (17.1.2)

This shows that the magnitude of the spectrum of the impulse function
is constant; that is, all frequencies are equally represented in the impulse
function.

(b) We can find the Fourier transform of e/® in two ways. If we let

F(w) = é(w — wo)
then we can find f(¢) using Eq. (17.9), writing

1 o0 )
F) =~ f 5@ — wo)el™ de
27 J_

o0

Using the sifting property of the impulse function gives

— 1 Jwot
f@) = Ee

Since F(w) and f(¢t) congtitute a Fourier transform pair, so too must
2m8(w — wg) and /@0

Fle/™ = 218 (w — wp) (17.1.3)
Alternatively, from Eq. (17.1.2),
8() = F Y1)

Using the inverse Fourier transform formulain Eg. (17.9),

1 [~ .
3(r)=7—1[1]=2/ 1e/ dw

—00
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or
o0 .
/ e dw = 218(t) (17.1.9)
—0oQ
Interchanging variables r and w resultsin
00 .
/ e/'dt = 2n8(w) (17.1.5)
—00

Using thisresult, the Fourier transform of the given function is

Fle!™'] = / e/ ™e I dt = / e/ @07 dt = 21§ (wo — )

[ee] [ee]

Since theimpulse function is an even function, with § (wp — @) = §(w —
o),

Fle/ = 278 (w — wo) (17.1.6)
By simply changing the sign of wg, we readily obtain
Fle /" = 278 (w + wo) (17.1.7)
Also, by setting wg = O,
FI1] = 278 (w) (17.1.8)
(c) By using the result in Egs. (17.1.6) and (17.1.7), we get

eja)ot + e—ont]

Flcoswot] = ]—'[ >

1 : 1 : (17.1.9)
— Jwot = —Jjwot
SFle/ ™) 4 SFle ]

=1mé(w — wo) + w8 (w + wo)

The Fourier transform of the cosine signal is shownin Fig. 17.3.

/\mij\ N ”Tw[ d
VARV AVARVA S

Figure [73  Fourier transform of f(#) = coswot.

Determine the Fourier transforms of the following functions: (a) gate
function g(t) = u(t — 1) — u(t — 2), (b) 45 (¢ + 2), () SiNwopt.
Answer: (@) (e /” — e /%) /jw, (b) 4e’?®,

(©) jr[8(w + wo) — wé(w — wo)].
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ﬂﬂlmnﬂ|rz

Derive the Fourier transform of asingle rectangular pulse of width t and
height A, shownin Fig. 17.4.

Solution:
‘[/2 ) A ) I/2
F(w) = / Ae 1 dt = ——e 7!
71’/2 JC() —r/2
2A eja)t/Z _ e—jwr/Z
_?< 2j )
Sihwt/2 . wT
= At = At SInC —
wt/2 2

If wemake A = 10 and t = 2 asin Fig. 16.27 (like in Section 16.6),
then

F(w) =20sincw

whose amplitude spectrum is shown in Fig. 17.5. Comparing Fig. 17.4
with the frequency spectrum of the rectangular pulsesin Fig. 16.28, we
notice that the spectrum in Fig. 16.28 is discrete and its envel ope has the
same shape as the Fourier transform of a single rectangular pulse.

PRACTICE PROBLEMENES

(1) A

NI
NI

Figure [74 A rectangular
pulse; for Example 17.2.

|F(@)!4
20

>

=37 27 -m 0 7 27 37

Figure 7.5 Amplitude spectrum
of the rectangular pulse in Fig. 17.4;
for Example 17.2.

Obtain the Fourier transform of the function in Fig. 17.6.
2(cosw — 1)

Jw

Answer

(1)

Figure 7.6 For Practice Prob. 17.2.

Eﬂﬂﬂﬂin.s

Obtain the Fourier transform of the “ switched-on” exponential function
shown in Fig. 17.7.

Solution:
From Fig. 17.7,

 _at e, >0
f@®) =e M(l)—{o’ {1 <0

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



766 PART 3 Advanced Circuit Analyses

f® Hence,
1 o0 o0 o0
F(w) = / fe 7 dt = f e e dt = / e~ “HIN g
—00 0 0
e—at 00
— -1 e—ation| 1
a+ jo 0 a+jo
0 t
Figure 7.7 For Example 17.3.
PRACTICE PROBLEMMBEEE
f(t) Determine the Fourier transform of the “ switched-off” exponentia func-
1 tionin Fig. 17.8.
Answer : —.

a—jw

eat

0 t

Figure 178 For Practice Prob. 17.3.

17.3 PROPERTIES OF THE FOURIER TRANSFORM

We now develop some properties of the Fourier transform that are useful
in finding the transforms of complicated functions from the transforms
of simple functions. For each property, we will first state and derive it,
and then illustrate it with some examples.

Linearity

If F1(w) and F>(w) arethe Fourier transformsof f1(¢) and f>(¢), respec-
tively, then

Flay f1(t) + axf2(t)] = a1 F1(w) + a2 F2(w) (17.12)

wherea; and a, are constants. Thisproperty simply statesthat the Fourier
transform of alinear combination of functions is the same as the linear
combination of the transforms of the individual functions. The proof of
the linearity property in Eq. (17.12) is straightforward. By definition,

Flay f1(t) + az f2(t)] = f [a1 f1(t) + azfz([)]e*jwt dt

= / b arfi(t)e 7 dr + / N az fo(t)e ' dt

= a1 F1(®) + axF2(w)
(17.13)
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For example, sinwgt = Zij(ef‘”f” — e~J®0") Using the linearity

property,
F[sinwot] = ;[}‘(giwof) — F(e7/™h)]
/ (17.14)
T
= 180~ wo) — 8( + wo)]

Time Scaling
If F(w) = F[f ()], then

Flf(an)] = iF (8) (17.15)

la| a

where a is a constant. Equation (17.15) shows that time expansion
(Ja] > 1) corresponds to frequency compression, or conversely, time
compression (Ja| < 1) implies frequency expansion. The proof of the
time-scaling property proceeds as follows.

Flf@an] = f ” flat)e /" dt (17.16)

If welet x = ar, sothat dx = adt, then

Flf(a)] = /oo fx)e Jex/a dx _ 1F (9) (17.17)
00 a

— a a

For example, for the rectangular pulse p(¢) in Example 17.2,

Flp@®)] = At sinc w—; (17.18a)
Using Eqg. (17.15),
At
Flp@n] = 2L sinc 28 (17.18b)
2 4
It may be helpful to plot p(¢) and p(2¢t) and their Fourier transforms.
Since
A, L <
, —=<t< =
p) = 2 2 (17.193)
0, otherwise

then replacing every ¢ with 2r gives

T T T T
A, —=<2t<= A, ——<t<-
p(2t) = 2 2 = 4 4 (17.19b)
0, otherwise

showing that p(2¢) istime compressed, as shownin Fig. 17.9(b). To plot
both Fourier transforms in Eq. (17.18), we recall that the sinc function
has zeroswhen its argument is nsr, where n is an integer. Hence, for the
transform of p(¢) in Eq. (17.183), wt/2 = 2nft/2 = nw — f = n/t,
and for the transform of p(2¢) in Eqg. (17.18b), wt/4 = 2nft/4 =
nw — f = 2n/7. The plots of the Fourier transforms are shown in Fig.
17.9, which shows that time compression corresponds with frequency

0, otherwise
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expansion. We should expect this intuitively, because when the signal is
sguashed in time, we expect it to change more rapidly, thereby causing
higher-frequency componentsto exist.

Flp®] 4

At
p(t) 4
A
B
T o0 T 1t é/\z 1 0 1 '2/\;, f
2 2 T T\Us AL
@
p(2t) 4
Flp(20)]
A Ar
2
/
_%1 05 t —7‘\/_% 0 %\/Tf

(b)

Figure [79  Theeffect of time scaling: (8) transform of the pulse, (b) time compres-
sion of the pulse causes frequency expansion.

Time Shifting
If F(w) = F[f(#)], then

FLf(t —to)] = e /" F () (17.20)

that is, a delay in the time domain corresponds to a phase shift in the
frequency domain. To derive the time shifting property, we note that

FIf (@t —19)] =/ f(t —to)e /' dt (17.22)
Ifweletx =t —rgsothat dx = dr andt = x + 1o, then

Flf@t—1)] = /oo Fx)eiouto gy

o (17.22)
= ¢/l / f(x)e 7" dx = e 1" F (w)
Similarly, F[ f(t + to)] = e/“°F (w).
For example, from Example 17.3,
Fle"u@®)] = (17.23)

a+jo
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Thetransform of (1) = e~ "2u(t — 2) is

—j2w
F(w) = Fle " Pu@t —2)] = 1o (17.24)
Frequency Shifting (or Amplitude M odulation)
This property statesthat if F(w) = F[f(¢)], then
FLf()e!™] = F(w — wo) (17.25)

meaning, afrequency shift in the frequency domain adds a phase shift to
the time function. By definition,

Flwe = [~ pwere i ar
= (17.26)
= f f()e 7@ dr = F(w — wo)

For example, coswot = %(ej”")’ + e~/@"), Using the property in
Eq. (17.25),

1 - 1 4
f[f(l) COSCL)()Z] = E‘F[f(t)e]wot] + Ef[f(t)e_jwot]
(17.27)
= 1P w0+ 2F(+ w0)
- 2 w o 2 w wo

Thisisanimportant result in modul ation where frequency components of
asigna are shifted. If, for example, the amplitude spectrum of f(¢) isas
shown in Fig. 17.10(a), then the amplitude spectrum of f(¢) coswor will
beasshowninFig. 17.10(b). Wewill elaborate on amplitude modulation

in Section 17.7.1.
| FTEO]I
| FLH(t) cos wof]|
A 1
%F(w+wo) /EF(‘U—U’O)
AE ************ AN
I I >
-B B w —wp—B wg -wyt+B 0 wg—B wy wytB w
@ (b)

Figure [7.10  Amplitude spectra of: (a) signal f (¢), (b) modulated signal f (1) cosawr.

Time Differentiation
Giventhat F(w) = F[f ()], then

FIf' )] = joF (o) (17.28)

In other words, the transform of the derivative of f(¢) is obtained by
multiplying the transform of f(¢) by jw. By definition,

o0

-1 1 jowt
O = FHF@] = = / F@)el™ do 17.29)

—00
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Taking the derivative of both sides with respect to ¢ gives

=122

/OO F(w)e!” dw = joF Y F(w)]
2m J_

or
FILf' ()] = joF (w) (17.30)

Repeated applications of Eq. (17.30) give

FIf"®)] = (jw)"F (w) (17.31)

For example, if f(t) = e %, then

@) =—ae™™ = —af(t) (17.32)
Taking the Fourier transforms of the first and last terms, we obtain

joF(w) = —aF(w) — F(w) = (17.33)
a—+ jo
which agrees with the result in Example 17.3.
Time Integration
Giventhat F(w) = F[f(t)], then
' F(w)
F / f®dt| = — + 71 F(0)5(w) (17.34)
—00 Jw

that is, the transform of the integral of f(¢) is obtained by dividing the
transform of f(¢) by jw and adding the result to the impulse term that
reflects the dc component F(0). Someone might ask, “How do we know
that when we take the Fourier transform for time integration, we should
integrate over the interval [—oo, ¢] and not [—oo, oo]?” When we inte-
grate over [—o0, o], the result does not depend on time anymore, and
the Fourier transform of a constant is what we will eventually get. But
when we integrate over [—oo, t], we get theintegral of the function from
the past to time ¢, so that the result depends on ¢ and we can take the
Fourier transform of that.
If wisreplaced by 0in Eq. (17.8),

FO) = / f@)de (17.35)

indicating that the dc component is zero when the integral of f(z) over
all timevanishes. The proof of thetime integration in Eq. (17.34) will be
given later when we consider the convolution property.

For example, we know that F[§(r)] = 1 and that integrating the
impulse function gives the unit step function [see Eq. (7.39a)]. By ap-
plying the property in Eq. (17.34), we obtain the Fourier transform of the
unit step function as

—00

Flu@®)] =F [/ S(I)dt:| = ]iw + 78(w) (17.36)

Reversal
If F(w) = F[f(@)], then
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FIf(=] = F(-w) = F*(w) (17.37)

where the asterisk denotes the complex conjugate. This property states
that reversing f (¢) about thetime axisreverses F (w) about the frequency
axis. This may be regarded as a special case of time scaling for which
a = —-1inkEq. (17.15).

Duality

This property states that if F(w) isthe Fourier transform of f(z), then
the Fourier transform of F(¢) is 2r f (—w); we write

FIf®)] = F(w) = FIF®)] = 2nf (—w) (17.38)

Thisexpressesthe symmetry property of the Fourier transform. To derive
this property, we recall that

f(t)=F HYF(w)] = 1 foo F(w)e!® dw
2 J_o
or
2nf(t) = / ” F(w)e'™ dw (17.39)

Replacing ¢ by —¢ gives

2nf(—t) = /00 F(w)e ' dw

o0

If weinterchange r and w, we obtain

2nf(—w) = / F(t)e /" dt = F[F(1)] (17.40)
—00
as expected.
For example, if /(1) = eI, then Since  (t) is the sum of the signals n Figs. 17.7 and
2 [7.8, F() is the sum of the results in Example
Flo)=—— (17.41) 7.3 and Practice Prob. 17.3.
w?+1

By the duality property, the Fourier transform of F(¢) = 2/(t> + 1) is
27 f(w) = 2me™ ! (17.42)

Figure 17.11 shows another example of the duality property. Itillustrates
the fact that if f(r) = §(¢r) sothat F(w) = 1, asin Fig. 17.11(a), then
the Fourier transform of F(r) = 1is2r f (w) = 278 (w) asshownin Fig.
17.11(b).

Convolution

Recall from Chapter 15 that if x (¢) istheinput excitation to acircuit with
an impulse function of x(¢), then the output response y(¢) is given by the
convolution integral

oo

V(1) = h(t) % x() = / hOYx(t — Ay d 17.43)

—0Q
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U5 S U5 I 27t (w)
g

(b)

Figure 7.1 A typical illustration of the duality property of the Fourier transform: (a) transform of impulse,
(b) transform of unit dc level.

The important relationship in Eq. (17.46) is the
key reason for using the Fourier transform in the
analysis of linear systems.

If X(w), H(w), and Y (w) are the Fourier transforms of x(¢), h(z), and
y(t), respectively, then

Y(w) = F[h@) * x(t)] = H(w)X (w) (17.44)

which indicates that convolution in the time domain corresponds with
multiplication in the frequency domain.

To derive the convolution property, we take the Fourier transform
of both sides of Eq. (17.43) to get

Y(w) = / [/ h(M)x(t —X) dA] e/ dt (17.45)
Exchanging the order of integration and factoring 4 (1), which does not
depend on ¢, we have

Y(w) = /oo h(}) Uoo x(t — r)e /@ dt] dx

For the integral within the brackets, let t = ¢ — A sothatr = v + A and
dt = drt. Then,

Y(w) = /oo h(L) |:-/°° x(r)e—jw(r-M) d‘ci| d

] [e¢]

= /oo h(M)e I d /OC x(De /" dt = H(w)X (w)

] —0Q

(17.46)
as expected. This result expands the phasor method beyond what was
done with the Fourier seriesin the previous chapter.

To illustrate the convolution property, suppose both 4(¢) and x(¢)
areidentical rectangular pulses, as shown in Fig. 17.12(a) and 17.12(b).
Werecall from Example 17.2 and Fig. 17.5 that the Fourier transforms of
the rectangular pulses are sinc functions, as shown in Fig. 17.12(c) and
17.12(d). According to the convolution property, the product of the sinc
functions should give us the convolution of the rectangular pulsesin the
time domain. Thus, the convolution of the pulsesin Fig. 17.12(e) and the
product of the sinc functionsin Fig. 17.12(f) form a Fourier pair.

Inview of the duality property, we expect that if convolutionin the
time domain corresponds with multiplication in the frequency domain,
then multiplication in the time domain should have a correspondence in
thefrequency domain. Thishappenstobethecase. If f(t) = f1(¢) f2(2),
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h(t) X(t)
A A
Convolution
_TO TO t _TO To t
@ h()-x(t) (b)
2A%T,
AN A
_2T0 2T0 t’
(e
H(w) X(w) 4
(2AT)?
1] 1 »
2T, 2T,
N N
)
H(w) X(w) 4
2AT, 2AT,
/\ Multiplication /\
ANVAN WANWAR ANVAN WA
\JV V | 1/ VUV o \JV V | 1/ VU o
2T, 2Ty
(0 (d)

Figure 17.12 Graphical illustration of the convolution property.
(Source: E. O. Brigham, The Fast Fourier Transform [Englewood Cliffs, NJ: Prentice Hall, 1974], p. 60.)

then
1
F(w) = F[f1(0) f2(0)] = EFl(w) * Fo(w) (17.47)
or
F(w) = 1 f F1(\) Fa(w — A) dA (17.48)
2 J_o

which is convolution in the frequency domain. The proof of Eq. (17.48)
readily follows from the duality property in Eq. (17.38).
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Let us now derive the time integration property in Eq. (17.34). If
wereplace x (¢) with the unit step function u(¢) and i (¢) with f () in Eq.
(17.43), then

f ~ FOu(t — A dr = f(t)*u(t) (17.49)

But by the definition of the unit step function,

1, t—1>0
”(’_”2{0 f— 23>0

We can write thisas

1, A<t
“(’_’\):{0 A>t

Substituting thisinto Eq. (17.49) makestheinterval of integration change
from [—o0, o0] to [—o0, t], and thus Eq. (17.49) becomes

t
/ F)dh =u(r) = f(1)
Taking the Fourier transform of both sidesyields
t
F [ / f dk} = U(w)F(w) (17.50)
But from Eq. (17.36), the Fourier transform of the unit step function is
1
Uw) =—+nmé(w)
Jw
Substituting thisinto Eq. (17.50) gives

F |:/ f) dki| = (i +JT3(LD)> F(w)
oo jw

= m + 7 F(0)8(w)
Ja)

(17.51)

which is the time integration property of Eq. (17.34). Note that in Eq.
(17.51), F(w)é(w) = F(0)é(w), Since §(w) isonly nonzero at w = 0.

Table 17.1 lists these properties of the Fourier transform. Table
17.2 presents the transform pairs of some common functions. Note the
similarities between these tables and Tables 15.1 and 15.2.

TABLE I7.1  Properties of the Fourier transform.

Property f@ F(w)

Linearity a1 fi(t) + az fo(t)  ar1F1(®) + axFa(w)

Scaling fat) %F(%)

Time shift ft—aut—a) e *F(w)

Frequency shift e/« f(1) F(w — wo)

Modulation cos(wot) f(1) %[F(w + wo) + F(w — wo)]
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TABLE 171 (continued)

Property f@® F(w)
Time differentiation ZJ; joF (w)

i;t{ (Jw)"F(w)
Time integration / f@)de % + 7 F(0)é(w)
Frequency differentiation " f(¢r) " % F(w)
Reversal f(=1) F(—w) or F*(w)
Duality F(1) 27 f (—w)
Convolutionin ¢ f1(0) % f1(1)  Fi(w)Fa(w)
Convolution in w fi() f1(t) % Fi(w) * F2(w)

TABLE 172 Fourier transform pairs.

AQ) F(w)
3(t) 1
1 218 (w)
1
u(r) wé(w) + —
jo
Wi +1) —ut—7v) 2207
w
-2
|7] 02
2
sgn(#) -—
jo
—at (t) 1
et a+ jo
1
e“u(—t) -
a—jo
—at n!
—a 2a
¢ ! aZ +w2
eloot 278 (w — wo)
SiNwot Jjr[8(w + wo) — §(w — wo)]
COS wot 7T[(S (w + wg) + 6 (w — u)o)]

e~ sinwotu(t)

e coswotu(t)

wo
@+ jo)?+ o}
a+ jo
(a+ jw)? + of

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents

775



PART 3 Advanced Circuit Analyses

Figure I7.13 The signum
function of Example 17.4.

Find the Fourier transforms of the following functions: (&) signum func-
tion sgn(z), shown in Fig. 17.13, (b) the double-sided exponential e/l
and (c) the sinc function (sinz)/t¢.

Solution:

(a) We can obtain the Fourier transform of the signum function in three
ways. First, we can write the signum function in terms of the unit step
function as

sgn() = f(t) = u(t) — u(—1)
But from Eq. (17.36),

1
U(w) = Flu@®)] = 7é (@) + —
jo

Applying this and the reversal property, we obtain
Flsgn(@)] = U(w) — U(-w)

1 1 2
= <7T5(60) + —> - (m?(—w) + —) = —
Jw —Jw Jw

Second, another way of writing the signum function in terms of the unit
step functionis
f@) =sgn(t) = =1+ 2u(t)
Taking the Fourier transform of each term gives
1 2
F(w) = —278(w) + 2 <n6(a)) + ,—) =
Jw Jw

Third, we can take the derivative of the signum functionin Fig. 17.13 and
obtain

@) =25(t)
Taking the transform of this,
2
joF(w) =2 - Fw) = —
Jw

as obtained previoudly.
(b) The double-sided exponential can be expressed as

f(t) =e " = e ut) + e"u(—t) = y(t) + y(—t)

wherey(t) = e “u(t) sothat Y (w) = 1/(a+ jw). Applyingthereversal
property,

Fle™ =Y (@) +Y(~w) = ( ! ! ) 2

a+ja)+a—ja) T a2t w2
(c) From Example 17.2,

(e 3)eo- 3] = 2 e
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Setting 7/2 = 1 gives
Flut+1) —ut =] = ZSmTw
Applying the duality property,
F [2?] =27[U(w+1) — U(w — 1)]

or

.7-'[2] =r[U(w+1) —U(w—1)]

PRACTICE PROBLEMNNEK

Determine the Fourier transforms of these functions. (a) gate function
g(®) = u(t) —u(t —1), (b) f(t) = te %u(t), and (c) sawtooth pulse
@) = 10¢[u(t) —u@ — 2)].

—jw i ;
Answer: '2(;':1) d—e )[nS(a))+ jw},(b) 2% jo)?’
0™ 1) | 20j

© =

£ A 7 L E

Find the Fourier transform of the function in Fig. 17.14. ()
Solution: 1

The Fourier transform can be found directly using Eq. (17.8), but it is
much easier to find it using the derivative property. We can express the >
function as 10 1t

F) = 147, —-1<t<0 Figure [7.14  For Example 17.5.
B O<t<1

Itsfirst derivative is shown in Fig. 17.15(a) and is given by

fon 1, -1<t<0
f(’)—{—l, O<t<1

f'(t) A f7(t)
1 1 1
: T T
2 o e -1 0 1t
-1 o1

@ (b)

Figure 17.15  First and second derivatives of f (1) in Fig. 17.14;
for Example 17.5.
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Its second derivativeisin Fig. 17.15(b) and is given by
) =8+1) —28(t)+8(1—1)
Taking the Fourier transform of both sides,
(jw)?F(w) = e/® —2+ ¢/ = —2 4+ 2cosw
or

2(1 — cosw)

F(w) = P

PRACTICE PROBLEMMBNEE

f(t)
2

-4 -2 0 2

Figure [7.16  For Practice Prob. 17.5.

Determine the Fourier transform of the function in Fig. 17.16.
Answer: (8cos3w — 4c0s4w — 4C0S2w)/w?.

MH.é

Obtain the inverse Fourier transform of:
10jw + 4 w? +21

@F@ = Gorreiors D00 =

Solution:

(a) To avoid complex algebra, we can replace jw with s for the moment.
Using partia fraction expansion,

10s + 4 10s + 4 A B

F = = =
O = 2 618 G+ +2 s+4 542
where
10s + 4 —36
A= 4HF = =——=18
(s+AF)|__, 612" 2
10s + 4 —16
GO = g |, T 2
Substituting A = 18 and B = —8in F(s) and s with jw gives
18 -8

F(jo) =

jo+4 + jo+2

With the aid of Table 17.2, we obtain the inverse transform as
f(t) = (18~ — 8¢~ )u(r)

(b) We simplify G (w) as

w?+21 12

249 T a7yo

G(w) =
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With the aid of Table 17.2, the inverse transform is obtained as
g(t) = 8(1) + 2731

PRACTICE PROBLEMBNE

Find the inverse Fourier transform of:
6(3+ j2w)
H =
@ H@ = o @t jo)@t jo
. i 21+ jw)
(b) Y(w) = 7 (w) + o + At w2116
Answer: (a) h(t) = (2" 4+ 3e™% — Be ™ *u(t),
(b) y(t) = (1 + 2¢7" cosdt)u(t).

17.4  CIRCUIT APPLICATIONS

The Fourier transform generalizes the phasor technique to nonperiodic
functions. Therefore, we apply Fourier transformsto circuits with nonsi-
nusoidal excitationsin exactly the same way we apply phasor techniques
to circuits with sinusoidal excitations. Thus, Ohm’s law is still valid:

V(o) = Z(w) () (17.52)

where V (w) and I (w) are the Fourier transforms of the voltage and cur-
rent and Z(w) is the impedance. We get the same expressions for the
impedances of resistors, inductors, and capacitors as in phasor analysis,
namely,

R = R

L - JjoL
1

joC

(17.53)
C

Once we transform the functions for the circuit elements into the fre-
guency domain and take the Fourier transforms of the excitations, we can
use circuit techniques such as voltage division, source transformation,
mesh analysis, node analysis, or Thevenin's theorem, to find the un-
known response (current or voltage). Finally, we taketheinverse Fourier
transform to obtain the response in the time domain.

Although the Fourier transform method produces a response that
exists for —oo < t < oo, Fourier analysis cannot handle circuits with
initial conditions.

The transfer function is again defined as the ratio of the output
response Y (w) to the input excitation X (w), that is,

_ Y()

H(w) = (o) @

(17.54)
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X(w) —| H(®) — Y(o)

Figure 1717 1nput-output
relationship of a circuit in the
frequency-domain.

PART 3 Advanced Circuit Analyses

or
Y(w) = Hw)X(w) (17.55)

Thefreguency-domaininput-output relationshipisportrayedinFig. 17.17.
Equation (17.55) shows that if we know the transfer function and the in-
put, we can readily find the output. The relationship in Eq. (17.54) is
the principal reason for using the Fourier transform in circuit analysis.
Notice that H (w) isidentical to H(s) withs = jw. Also, if the input
is an impulse function [i.e., x(r) = §(¢)], then X (w) = 1, so that the
responseis

Y(w) = H(w) = F[h(1)] (17.56)

indicating that H (w) is the Fourier transform of the impulse response
h(t).

MI7.7

2Q

+
Vi (t) 1F == V(D)

Figure I7.18  For Example 17.7.

PRACTICE PROBLEMMNNEE

Find v, (¢) in the circuit of Fig. 17.18 for v; (t) = 2~ u(z).
Solution:
The Fourier transform of the input voltage is

Viw) = 3T o
and the transfer function obtained by voltage divisionis
Hw) = V, () _ l/ja). _ 1.
Vilw) 2+4+1/jo 1+ j2w
Hence,
Vo(w) = Vi(w)H (w) = - 2 -
B+ jo)(1+ j2w)
or
v B 1
@) = B )05+ j)
By partia fractions,
-04 0.4

Vo (w) =
@ =370 T 051 o

Taking the inverse Fourier transform yields
V(1) = 0.4(e7 %% — e ¥ u(r)

7

1H

000
+

() @ vo(t)

Figure I7.19  For Practice Prob. 17.7.

Determine v, (¢) inFig. 17.19if v; () = 2sgn(t) = —2 + 4u(t).
Answer: —2+4+4(1— e *)u(@).
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MH.s

Using the Fourier transform method, find i, (¢) in Fig. 17.20 when i, (¢) = # i)
10sin2:r A. _
Solution: is(t) 2Q 40

By current division, 0.5F

(@) 2 o
 L(w) 2444+2/jo 1+ jw3

If i;(r) = 10sin 2z, then

H(w) Figure 1720 For Example 17.8.

I;(w) = jrl0[§(w + 2) — §(w — 2)]

Hence,

10t w[d(w — 2) — §(w + 2)]

I,(®) = H(w)[(0) = 1t jo3

Theinverse Fourier transform of 7, (w) cannot befound using Table 17.2.
Weresort to theinverse Fourier transform formulain Eg. (17.9) and write

. _ 1 [*® 10rw[é(w—2) —8(w+2)] ;
Y — 1 Io - = Jjot
i,(t) = F 1,(w)] Zﬂ/_m 17 w3 e/ dw
We apply the sifting property of the impulse function, namely,
3(w — wo) f(w) = f(wo)
or
/ d(@ — wo) f(w)dw = f(wo)
and obtain
107 2 , -2 .
. _ j2t —j2t
L) =5 [1—{—]’68 1-j6° ]
o2 eI
=1
0 [6.082e1'8°-54“ * .0820 0% ]
— 1_644[ej(2t—80.54°) + efj(2t780.54°)]
= 3.288cos(2r — 80.54°) A
PRACTICE PROBLEMERER
Find the current i,(¢) in the circuit in Fig. 17.21, given that i;(z) = ‘io(t)
20cos4t A. _ = 2H
Answer: 11.8cos(4s + 26.57°) A. 0 @ loQ

Figure 1721 For Practice Prob. 17.8.
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17.5 PARSEVAL’S THEOREM

Parseval’s theorem demonstrates one practical use of the Fourier trans-
form. It relates the energy carried by a signal to the Fourier transform
of thesignal. If p(¢) isthe power associated with the signal, the energy
carried by the signal is

W:/ p)dt (17.57)

In order to be able compare the energy content of current and voltage
signals, it is convenient to use a 1-Q2 resistor as the base for energy cal-
culation. For a1-Q resistor, p(r) = v2(t) = i%(t) = f2(t), where f(r)
standsfor either voltage or current. Theenergy deliveredtothe 1-Q resis-
toris

Wig = / f2(1) dt (17.58)

Parseval’s theorem states that this same energy can be calculated in the
frequency domain as

Wiq = / fA(r)dr = % [ |F(w)>dw (17.59)

Parseval’s theorem states that the total energy delivered to a [-{2 resistor equals
the total area under the square of f(t) or /27 times the total area under the
square of the magnitude of the Fourier transform of f ).

Parseval’s theorem relates energy associated with a signal to its Fourier
transform. It provides the physical significance of F(w), namely, that
|F (w)|? is a measure of the energy density (in joules per hertz) corre-
Infact, |F(«)|? is sometimes known as the energy sponding to f ®. o .
spectral density of signal {1, To derive Eq. (17.59), we begin with Eq. (17.58) and substitute Eq.
(17.9) for one of the f(r)’s. We obtain

Wig = / ” f2(t) dr = / h f@ [% / b F(a))ej‘“’da):| dt  (17.60)

o0

The function f(z) can be moved inside the integral within the brackets,
since the integral does not involve time:

Wig = zi/ / ft)F(w)e!” dowdt (17.61)
T J 00 J—00

Reversing the order of integration,

Wig = 1 / h F(w) [ / h f)e ir dt] dw
2m —00 —00
1 o 1 o (17.62)
= Z/:oo FwF(—w)dw = Zv/;oo F(w)F*(w)dw

Butif z=x+ jy,zz* = (x + jy)(x — jy) = x?+ y? = |z|°. Hence,
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Wi =/ f2(t)dt = zi/ |F(w)|? dw (17.63)
—o T J_ oo

asexpected. Equation (17.63) indicatesthat the energy carried by asignal
can be found by integrating either the square of f(¢) in the time domain
or 1/2z timesthe square of F(w) in the frequency domain.

Since | F (w)|? is an even function, we may integrate from 0 to oo
and double the result, that is,

W _ 00 ) _ 1 00 5
10 = fe@der = |F(w)|“dw (17.64)
—00 T Jo

We may aso calculate the energy in any frequency band w1 < @ < w,
as
1 [» 2
Wiq = — |F(w)|“dw (17.65)
T Jn
Noticethat Parseval’stheorem as stated here appliesto nonperiodic
functions. Parseval’s theorem for periodic functions was presented in
Sections 16.5 and 16.6. As evident in Eq. (17.63), Parseval’s theorem
showsthat the energy associated with anonperiodic signal is spread over
the entire frequency spectrum, whereas the energy of the periodic signal
is concentrated at the frequencies of its harmonic components.

783

|!!lﬂﬂ]i|7w

The voltage across a 10-Q resistor is v(t) = 5e~%u(r) V. Find the total
energy dissipated in the resistor.

Solution:

We can find the energy using either f(¢) = v(¢) or F(w) = V(w). Inthe
time domain,

o0 o0
Wi = 10/ fPde = 10/ 25¢7% dr
—00 0

*Gt o0
= 250°% _ 20 _ 41673
6|, 6
In the frequency domain,
F =V =
(w) (w) 3T o

S0 that

F@)F = F@)F*(@) =
94w

Hence, the energy dissipated is

w 10 /00 Feytdo~ X [T B,
= o)|*dw = — ——dw
100 = 5 - 7 Jo 9+ a?
250 /1 o\|* 250 [1\ /7 250
7 (3 3>0 7 (3>(2> 6
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PRACTICE PROBLEMMENEE
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9

(a) Caculate the total energy absorbed by a 1-Q resistor with i () =
10¢=2 A in the time domain. (b) Repeat (a) in the frequency domain.

Answer: (@) 50J, (b) 50J.

M|7.|o

PRACTICE PROBLEMENEE

Calculate the fraction of the total energy dissipated by a 1-Q resistor in
the frequency band 0 < w < 10 rad/s when the voltage across it is
v(t) = e 2u(t).

Solution:

Giventhat f(f) = v(tr) = e ?u(t), then

F(w) = — |F()|* =

2+ jo 4+ ?
Thetotal energy dissipated by the resistor is

1 [ > 1 [* do
Wi =— |F(0)|“do = —
7T Jo 7T Jo

4+ w?

1/1. Lo\ 1 (1\x
_ (et 2T) == (2) Z—0253
n<2an 20) 71(2)2

The energy in the frequencies0 < w < 10is

W 1/10|F( )2 1/10 o —2(Ganr e’
= — w w= — — = | = —
7 Jo 7Jo 44+w?2 m\2 2o

1 1 1 [/78.69
=—tan"5=—( —— =0.218J
21 21 ( 180° ”)
Its percentage of the total energy is
w 0.218
— =——=874%
Wie  0.25 ’

| 0

A 2-Q resistor hasi(t) = e 'u(t). What percentage of the total energy
isin the frequency band —4 < w < 4 rad/s?

Answer: 84.4 percent.

17.6 COMPARING THE FOURIER AND LAPLACE
TRANSFORMS

Itisworthwhileto take somemomentsto comparetheL aplaceand Fourier
transforms. The following similarities and differences should be noted:

1. The Laplace transform defined in Chapter 14 is one-sided in
that theintegral isover 0 < ¢ < oo, making it only useful for
positive-time functions, f(¢), ¢t > 0. The Fourier transformis
applicable to functions defined for al time.
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2. For afunction f(¢) that is nonzero for positivetime only (i.e.,
f@) =0, t <0) and/ | f(®)]dt < oo, thetwo transforms
0

arerelated by In other words, if all the poles of F(s) lie in the

F(w) = F(s) } Ny (17.66) left-hand side of the s plane, then one can obtain

_ _ e the Fourier transform F(w) from the correspond-

This equation also shows that the Fourier transform can be re- ing Laplace transform F(s) by merely replacing s

garded as a special case of the Laplace transform with s = j. by j. Note that this is not the case, for example,
Recdll that s = o + jw. Therefore, Eq. (17.66) shows that the for u(t) or cos atu(t).

Laplace transform is related to the entire s plane, whereas the
Fourier transform isrestricted to the jw axis. See Fig. 15.1.

3. The Laplace transform is applicable to awider range of func-
tions than the Fourier transform. For example, the function
tu(t) has a Laplace transform but no Fourier transform. But
Fourier transforms exist for signals that are not physically
realizable and have no Laplace transforms.

4. The Laplace transform is better suited for the analysis of tran-
sient problems involving initial conditions, since it permitsthe
inclusion of theinitial conditions, whereas the Fourier trans-
form does not. The Fourier transform is especially useful for
problems in the steady state.

5. The Fourier transform provides greater insight into the fre-
guency characteristics of signals than does the Laplace trans-
form.

Some of the similarities and differences can be observed by comparing
Tables 15.1 and 15.2 with Tables 17.1 and 17.2.

fI7.1  APPLICATIONS

Besides its usefulness for circuit analysis, the Fourier transform is used
extensively in avariety of fields such as optics, spectroscopy, acoustics,
computer science, and electrical engineering. In electrical engineering,
it is applied in communications systems and signal processing, where
frequency response and frequency spectra are vital. Here we consider
two simple applications: amplitude modulation (AM) and sampling.

17.7.1 Amplitude Modulation

Electromagnetic radiation or transmission of information through space
has become an indispensable part of a modern technological society.
However, transmission through space is only efficient and economical
at radio frequencies (above 20 kHz). To transmit intelligent signals—
such as for speech and music—contained in the low-frequency range
of 50 Hz to 20 kHz is expensive; it requires a huge amount of power
and large antennas. A common method of transmitting low-frequency
audio information isto transmit a high-frequency signal, called acarrier,
which is controlled in some way to correspond to the audio information.
Three characteristics (amplitude, frequency, or phase) of a carrier can
be controlled so as to alow it to carry the intelligent signal, called the
modulating signal. Herewewill only consider the control of thecarrier’'s
amplitude. Thisis known as amplitude modulation.
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Amplitude modulation (AM) is a process whereby the amplitude of the
carrier is controlled by the modulating signal.

AM isused in ordinary commercial radio bands and the video portion of
commercial television.

Suppose the audio information, such asvoice or music (or the mod-
ulating signal in general) to be transmitted ism(z) = V,, cosw,,t, while
the high-frequency carrier isc(t) = V, cosw.t, where w, >> w,,. Then
an AM signal f(¢) isgiven by

f@) =V ][1+ m()] cosw.t (17.67)

Figure 17.22 illustrates the modulating signal m(¢), the carrier ¢(¢), and
the AM signal f(¢). We can use the result in Eq. (17.27) together with
the Fourier transform of the cosine function (see Example 17.1 or Table
17.1) to determine the spectrum of the AM signal:

F(w) = F[V,.coswt] + F[V.m(t) COSw,t]

=V [§(w — o) + 8(w + w.)] (17.68)

Ve
+ ?[M(a) — o) + M(w+ )]

M(w)|
m(t)
N
| t o 0 0
@
|C(w)]

c(t) A

“NAN /L] .
W2V VA S

(b)

f
© IF()]

e T T

©

Figure [722  Time domain and frequency display of: (a) modulating signal,
(b) carrier signal, (c) AM signal.
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where M (w) is the Fourier transform of the modulating signal m(z).
Shown in Fig. 17.23 isthe frequency spectrum of the AM signal. Figure
17.23 indicates that the AM signal consists of the carrier and two other
sinusoids. The sinusoid with frequency w. — w,, is known as the lower
sideband, while the one with frequency w. + w,, is known as the upper
sideband.

Notice that we have assumed that the modulating signal is sinu-
soidal to make the analysis easy. In real life, m(¢) is a nonsinusoidal,
band-limited signal—its frequency spectrum iswithin the range between
Oandw, = 27 f, (i.e., thesignal hasan upper frequency limit). Typically,
fu = 5 kHz for AM radio. If the frequency spectrum of the modulating
signal is as shown in Fig. 17.24(a), then the frequency spectrum of the
AM signa is shown in Fig. 17.24(b). Thus, to avoid any interference,
carriersfor AM radio stations are spaced 10 kHz apart.

At the receiving end of the transmission, the audio information is
recovered from the modulated carrier by a process known as demodula-

tion.
i |F(w)| .
Lower AT Upper IM(w)| Carrier
sideband ‘ sideband /%
0 w.-wny e w.to, 0 Oy [9) 0 w.-wy, [N w.to,
@ (b)

Figure 1723 Frequency spectrum
of AM signal. .
Flgure 17.24 Freguency spectrum of: (a) modulating signal, (b) AM signal.

MH.II

A music signal has frequency components from 15 Hz to 30 kHz. If this
signal could be used to amplitude modulate a 1.2-MHz carrier, find the
range of frequencies for the lower and upper sidebands.

Solution:

The lower sideband is the difference of the carrier and modulating fre-
guencies. It will include the frequencies from

1,200,000 — 30,000 Hz = 1,170,000 Hz
to
1,200,000 — 15 Hz = 1,199,985 Hz

The upper sideband isthe sum of the carrier and modulating frequencies.
It will include the frequencies from

1,200,000 + 15 Hz = 1,200,015 Hz
to

1,200,000 + 30,000 Hz = 1,230,000 Hz
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PRACTICE PROBLEMMENEE

PART 3 Advanced Circuit Analyses

If a2-MHz carrier is modulated by a4-kHz intelligent signal, determine
the frequencies of the three components of the AM signal that results.

Answer: 2,004,000 Hz, 2,000,000 Hz, 1,996,000 Hz.

o
™Yy

@
8(t—nTy
Pretettttt
-, 0 T, 2T, 3T, .. t
(b)

a(t)

| || 1
Lo Tonsy | | T

Figure 17.25 (a) Continuous (analog) signal
to be sampled, (b) train of impulses,
(c) sampled (digital) signal.

17.7.2 Sampling

In analog systems, signals are processed in their entirety. However, in
modern digital systems, only samples of signalsare required for process-
ing. Thisispossible as aresult of the sampling theorem given in Section
16.8.1. The sampling can be done by using atrain of pulses or impulses.
We will use impulse sampling here.

Consider the continuous signal g(¢) shown in Fig. 17.25(a). This
can be multiplied by a train of impulses §(r — nTy) shown in Fig.
17.25(b), where T, isthesamplinginterval and f; = 1/ T isthesampling
frequency or the sampling rate. The sampled signal g () istherefore

&N =g@) Y 8¢ —nT)= ) gnT)s(t—nT,) (1769
The Fourier transform of thisis
Gy(w)= Y gmT)Fs(t —nT)] = Y  gnT)e ™" @z
It can be shown that
—jnoTy __
n;oo gnTHe "l = T n;oo G (w + nwy) 17.71)

where w, = 27/ T;. Thus, Eq. (17.70) becomes

1 o0
Gy(w) = T n;w G(w + nwy) ar.72)
This shows that the Fourier transform G, (w) of the sampled signal isa
sum of trandates of the Fourier transform of the original signal at arate
of 1/T;.
In order to ensure optimum recovery of the original signal, what
must be the sampling interval ? Thisfundamental questionin samplingis
answered by an equivalent part of the sampling theorem:

A band-limited signal, with no frequency component higher than W hertz,
may be completely recovered from its samples taken at a frequency
at least twice as high as 2W samples per second.

In other words, for a signal with bandwidth W hertz, there is no loss of
information or overlapping if the sampling frequency is at least twice the
highest frequency in the modulating signal. Thus,

1
= fs =2W (17.73)

N
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The sampling frequency f; = 2W isknown as the Nyquist frequency or
rate, and 1/ f; isthe Nyquist interval.

MH.IZ

A telephone signal with a cutoff frequency of 5 kHz is sampled at arate
60 percent higher than the minimum allowed rate. Find the samplingrate.

Solution:

The minimum sample rate is the Nyquist rate = 2W = 2 x 5 =
10 kHz. Hence,

fs = 1.60 x 2W = 16 kHz

PRACTICE PROBLEMNNEEN

An audio signal that is band-limited to 12.5 kHz is digitized into 8-bit
samples. What is the maximum sampling interval that must be used to
ensure complete recovery?

Answer: 40 us.

17.8 SUMMARY

1. The Fourier transform converts a nonperiodic function f () into a
transform F (w) where

F(o) = F[f(®)] =/ f(e 7 dt
2. Theinverse Fourier transform of F(w) is
1 1 [ ot
£ = FUF@)] = — / F(@)e™ do
2r J_o

3. Important Fourier transform properties and pairs are summarized in
Tables 17.1 and 17.2, respectively.

4. Using the Fourier transform method to analyze a circuit involves
finding the Fourier transform of the excitation, transforming the
circuit element into the frequency domain, solving for the unknown
response, and transforming the response to the time domain using
the inverse Fourier transform.

5. If H(w) isthetransfer function of a network, then H (w) isthe
Fourier transform of the network’s impulse response; that is,

H(w) = F[h(1)]

The output V, (w) of the network can be obtained from the input
Vi(w) using

Vo(w) = H(w)Vi(w)

6. Parseval’s theorem gives the energy relationship between afunction
f(¢) andits Fourier transform F(w). The 1-Q energy is

*© 2 1 o 2
Wi =/ £ di = —/ |F(@) do
oo 2 J_
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The theorem is useful in calculating energy carried by asignal either
in the time domain or in the frequency domain.

7. Typica applications of the Fourier transform are found in amplitude
modulation (AM) and sampling. For AM application, away of deter-
mining the sidebands in an amplitude-modul ated wave is derived
from the modulation property of the Fourier transform. For sampling
application, we found that no information islost in sampling
(required for digital transmission) if the sampling frequency is at
least twice equal to the Nyquist rate.

REVIEW QUESTIONS

17.1

Which of these functions does not have a Fourier 177 Theintegra / P 108w-1 gives
transform? oo A+ 2
(@ e'u(—1) (b) te 3 u(r) @ 0 (b) 2 (© 25 (d) oo
(©) 1/t (d) |r]u(r)
. o 17.8  Thecurrent through a 1-F capacitor is§(¢) A. The
17.2  The Fourier transform of e/ is: voltage across the capacitor is:
1 1
@ 5 (b) —"— @ u() (b) —1/2+u()
e e (©) eu (@ 5()
(€) 2né(w—2) (d) 278(w+2)
. 17.9 A unit step current is applied through a 1-H
_jo : X ;L
173  Theinverse Fourier transform of s inductor. The voltage across the inductor is:
2+ jo @ u( (b) son(r)
@ e (0) e ?u(t —1) (© e'u(t) (d) 5(t)
—2(t—1) —2(t—-1) -1
© e @ e u(e =1 17.10 Parseva’stheoremisonly for nonperiodic functions.
17.4  Theinverse Fourier transform of §(w) is: (@ True (b) False
@3dn Oun (1 (d1/2n
175 Theinverse Fourier transform of jw is: Answers: 17.1c, 17.2c, 17.3d, 17.4d, 17.5b, 17.6¢c, 17.7b, 17.8b,
@ 1/t (b) &) 17.9d, 17.10b
© u'@) (d) undefined
17.6  Evauating the integral / 105(@) do resultsin:
oo A+ @?
@ o0 (b) 2 ()25 (d) o
PROBLEMS
Sections17.2and 17.3  Fourier Transform and f(t) A
its Properties
l -
17.1  Obtain the Fourier transform of the function in Fig.

17.26. 1 2
2 -1 0 t

Figure 17.26  For Prob. 17.1.
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CHAPTER 17
17.2  What isthe Fourier transform of the triangular pulse
inFig. 17.27?
f(t)
1
0 1 t
Figure 17.27  For Prob. 17.2.
17.3  Cadculate the Fourier transform of the signal in Fig.
17.28.
f(t)
1 -
2
0 2t
_1 -
Figure 17.28  For Prob. 17.3.
17.4  Find the Fourier transforms of the signalsin Fig.
17.29.
(0 A
1 f5(t)
2 2
0 1 t
_1 -
-1 0 1t
@ (b)
Figure 1729 For Prob. 17.4.
175 Determine the Fourier transforms of the functionsin
Fig. 17.30.
£(0) a(t)
2 2r ]
1 -
| |
0 1 2t 0 1 2t
@ (b)

Figure 17.30  For Prob. 17.5.

*An asterisk indicates a challenging problem.

Fourier Transform 791

17.6

Obtain the Fourier transforms of the signal's shown
inFig. 17.31.

y(t)

1 el

-1 0 1t
@ (b
Figure 17.31 For Prob. 17.6.
17.7  Find the Fourier transform of the “sine-wave pulse”
@ shownin Fig. 17.32.
f(t) 4
ir sin 7t
1 >
0 1\/2 t
Figure 17.32  For Prob. 17.7.
17.8  Determine the Fourier transforms of these functions:
@ f =e'fu@) —u@—1)]
() g@) =tre”"u(r)
© hr®)=ult+1) —2u@)+ui-1
17.9  Find the Fourier transforms of these functions:

@ f@t) =e"cos(3t + m)u(t)

(b) g(t) =sinmt[u(t + 1) —u(t — 1)]

(©) h(t) = e ¥ cosmtu(t — 1)

(d) p(t) = e % sindtu(—t)

(e q@) =4sgn(t — 2) + 38(t) — 2u(t — 2)
17.10 Find the Fourier transforms of the following

functions:

@ f()=8¢+3)—38(t—23)

b) f@r) = /OO 25(t — 1)dt
© f() =483 -8

*17.11 Determine the Fourier transforms of these functions:
@ f@)=4/? (b) gt) =8/(4+1?

17.12 Find the Fourier transforms of:
(a) cos2ru(t) (b) sin10ru(t)

17.13 Obtain the Fourier transform of y (1) = e~ costu(t).
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17.14  Find the Fourier transform of ©) H(w) = 60
f@) = cos2rt[u(t) —u( — 1)]. —w? + j40w + 1300
17.15 (a) Show that aperiodic signal with exponential (d) Y(w) = $(w)
Fourier series (Jo+D(jo+2)
£ i inagt 17.21 Findtheinverse Fourier transforms of:
1) = cpe 78(w)
= @ Erjmet o
has the Fourier transform (b) 108 (w + 2)
F@ =Y cd@—nwo) jo(jo+1)
n=-—00 (C) 208((1) - 1)
where wo = 27/ T. 2+ jo)3+ jo)
(b) Find the Fourier transform of the signal in Fig. ) 518 (w) 5
17.33. 5+ jo  joBG+ jo)
f(t) *17.22 Determine the inverse Fourier transforms of:
@ F(w) =45(w+3) + §(w) + 45(w — 3)
1 ) G(w) = 4u(w + 2) — du(w — 2)
() H(w) = 6c0s2w
0 @ 2r 3w 4w 57 t *17.23 Determine the functions corresponding to the
following Fourier transforms:
Figure 17.33 For Prob. 17.15(h). ol®
. . . @ Fi(o) = — (b) Fa(w) = 2¢!
17.16 Provethat if F(w) isthe Fourier transform of f(¢), —jo+1
. )
FLr 0 snoo] - 2 © Fa@) = ——5 (@) Fif@) =
f®snwpt] = E[F(w-*—wo)—F(w—wo)] (1 + w?)? 1+ j2w
17.17 If the Fourier transform of f(¢) is *17.24  Find f(¢) if:
10 @ F(w)=2snmo[u(w+1) —u(w —1)]
Flo)=5——r—— 1 i
2+ jo)(5+ jw) (b) F(w) = ~(sin2w — sinw) + . (cos2w — cosw)
determine the transforms of the following: 1795 Determi thw ignal £(1) wh ::U ex trangf
_ _ . ermine the signal f (1) whose Fourier transform
@ ]:1( 30 (®) f(,Zt b (© f)cos isshown in Fig. 17.34.
(d) Ef(,) © / f(t)dt (Hint: Usethe duality property.)
- F(w)
17.18 Giventhat F[f ()] = (j/w)(e~/® — 1), find the
Fourier transforms of: 20
@ x@)=f(+3 (b) y)=f(t -2
(© h(t) = f'(t) 10 -
(d) g(t) =4f(En +10f(3r)
1 1
17.19 Obtain the inverse Fourier transforms of : =2 1 0 1 2t
10
Flw) = ——— i
@ F(w) oot Figure 17.34  For Prob. 17.25.
(b) Flw) = — ; jw . Section 17.4  Circuit Applications
wr Lo 17.26 A linear system has atransfer function
17.20 Find theinverse Fourier transforms of the following
functions: Hw) = 10
(a) F(a)):% 2+ je
]w(leg. ) Determine the output v, (¢) at r = 2 sif the input
(b) G(w) = J @ v; (1) equals:

(—jo+2)(@+3)

@ 45()V (b) 6e'u(r)V (c) 3cos2tV
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17.27 Find thetransfer function 1, (w)/ I, (w) for the circuit

@ inFig. 17.35.
}io®

is(t) 2Q 1H 40
Figure 17.35  For Prob. 17.27.
17.28 Obtain v,(¢) inthe circuit of Fig. 17.36 when

vi(t) = u() V.

2H

000

+

vi(t) 10Q = V()
Figure 17.36  For Prob. 17.28.

17.29 Determine the current i (¢) in the circuit of Fig.
17.37(b), given the voltage source shown in Fig.

17.37(a).
v(t) 2Q
1 jio
v(t) 1F
0 I1 2 t
(@ (®)

Figure 17.37  For Prob. 17.29.

17.30 Obtain the current i, (¢) in thecircuit in Fig. 17.38.

() Leti(r) =sgn() A.
(b) Leti(t) = Au(t) —u(t — D] A.

}io®
i) 20 3 1H

Figure 17.38  For Prob. 17.30.
17.31 Find current i, (¢) in the circuit of Fig. 17.39.

$ia®

1
= iF

30 WBHA =

Figure 17.39  For Prob. 17.31.

Fourier Transform 793

17.32 If therectangular pulsein Fig. 17.40(a) is applied to
thecircuitin Fig. 17.40(b), find v, att = 1s.

Vg(t) A

10 20

Vs 2Q 1H V%

@ (b)

@, Figure 1740 For Prob. 17.32.

*17.33 Calculate v, (¢) inthecircuit of Fig. 17.41 if
v, () = 10e7 M1V,

10mF 1H
Vs 1202 %
Figure 1741 For Prob. 17.33.

17.34 Determine the Fourier transform of i,(¢) in the

@ circuit of Fig. 17.42.

20
iO
o Ul
elu(t) 2H
33(t)
Figure 1742 For Prob. 17.34.
17.35 Inthecircuit of Fig. 17.43, leti; = 45(t) A. Find
V,(w).
+ Yy —
I
I li
1F °
is 20 10 05H
Figure 1743 For Prob. 17.35.
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794 PART 3 Advanced Circuit Analyses

17.36 Findi,(¢) inthe op amp circuit of Fig. 17.44. 17.41 Giventhesigna f(¢t) = 4e"u(t), what isthe total
energy in f(¢)?

17.42 Let f(t) = 5e~""u(t). Find F(0w) and useit to
20kQ find the total energy in f(¢).

20 uF

* io(t) 17.43 A voltage source v, (t) = e~"sin2t u(¢) V isapplied
L to a1-Q resistor. Calculate the energy delivered to
2etu) v @) 20kQ the resistor.

1744 Leti(t) = 2¢'u(—t) A. Find the total energy carried
é by i (r) and the percentage of the 1-2 energy in the
B frequency range of —5 < w < 5rad/s.

Figure 174 For prob. 1736 Section 17.6 Applications

17.37 Usethe Fourier transform method to obtain v, (¢) in 17.45 AnAM signal i ified b
the circuit of Fig. 17.45. ' : Signal IS speaned by

f(t) = 10(1 + 4c0s2007¢) cosm x 10%

1H
m Determine the following:
. . (a) the carrier frequency,
9H 1H (b) the lower sideband frequency,
+ (c) the upper sideband frequency.
costV 2Q 1Qs V% . .

- 17.46 A carrier wave of frequency 8 MHz is
amplitude-modulated by a 5-kHz signal. Determine
the lower and upper sidebands.

Figure |745  For Prob. 17.37. 17.47 A voice signal occupying the frequency band of 0.4
to 3.5 kHz is used to amplitude-modulate a 10-MHz
17.38 Determine v, (¢) in the transformer circuit of Fig. carrier. Determine the range of frequencies for the
17.46. lower and upper sidebands.
05H 17.48 For agiven locality, calculate the number of stations

allowable in the AM broadcasting band (540 to

1Q
(—\V 1600 kHz) without interference with one another.
* * 17.49 Repeat the previous problem for the FM
25(t) 1H 1H 1Q _V° broadcasting band (88 to 108 MHz), assuming that
. the carrier frequencies are spaced 200 kHz apart.

17.50 The highest-frequency component of avoice signal

Figure 1746 For Prob. 17.38. is34 kle. What isthe Nyquist rate of the sampler
of the voice signal?
Section 17.5  Parseval’s Theorem 1751 ATV signal is band-limited to 4.5 MHz. I samples

are to be reconstructed at a distant point, what isthe
maximum sampling interval allowable?

ol s o0 2 *17.52 Givenasignal g(r) = sinc (200x¢), find the
17.40 If f(t) = e 2", find J = / |F ()] dw. Nyquist rate and the Nyquist interval for the signal.

—00

17.39 For F(w) = %,find] =/ @) dr.
jo —c0

COMPREHENSIVE PROBLEMS

17.53 Thevoltage signa at theinput of afilter is 17.54 A signal with Fourier transform
v(t) = 50e~21'V. What percentage of the total 1-2 20
energy content lies in the frequency range of F(w) =

4+ jo

is passed through afilter whose cutoff frequency is 2
rad/s(i.e, 0 < w < 2). What fraction of the energy

inthe input signal is contained in the output signal ?

1< w < 5rad/s?

Go to the Student OLC
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