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C H A P T E R

SINUSOIDAL STEADY-STATE ANALYSIS

1 0

An expert problem solver must be endowed with two incompatible quan-
tities, a restless imagination and a patient pertinacity.

—Howard W. Eves

Enhancing Your Career
Career in Software Engineering Software engineering is
that aspect of engineering that deals with the practical ap-
plication of scientific knowledge in the design, construction,
and validation of computer programs and the associated doc-
umentation required to develop, operate, and maintain them.
It is a branch of electrical engineering that is becoming in-
creasingly important as more and more disciplines require
one form of software package or another to perform rou-
tine tasks and as programmable microelectronic systems are
used in more and more applications.

The role of a software engineer should not be con-
fused with that of a computer scientist; the software engi-
neer is a practitioner, not a theoretician. A software engineer
should have good computer-programming skill and be famil-
iar with programming languages, in particular C++, which
is becoming increasingly popular. Because hardware and
software are closely interlinked, it is essential that a soft-
ware engineer have a thorough understanding of hardware
design. Most important, the software engineer should have
some specialized knowledge of the area in which the soft-
ware development skill is to be applied.

All in all, the field of software engineering offers
a great career to those who enjoy programming and devel-
oping software packages. The higher rewards will go to
those having the best preparation, with the most interesting
and challenging opportunities going to those with graduate
education.

Output of a modeling software.
(Courtesy of National Instruments.)
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10.1 INTRODUCTION
In Chapter 9, we learned that the forced or steady-state response of cir-
cuits to sinusoidal inputs can be obtained by using phasors. We also know
that Ohm’s and Kirchhoff’s laws are applicable to ac circuits. In this
chapter, we want to see how nodal analysis, mesh analysis, Thevenin’s
theorem, Norton’s theorem, superposition, and source transformations
are applied in analyzing ac circuits. Since these techniques were already
introduced for dc circuits, our major effort here will be to illustrate with
examples.

Analyzing ac circuits usually requires three steps.

S t e p s t o A n a l y z e a c C i r c u i t s :
1. Transform the circuit to the phasor or frequency domain.

2. Solve the problem using circuit techniques (nodal analysis, mesh
analysis, superposition, etc.).

3. Transform the resulting phasor to the time domain.

Step 1 is not necessary if the problem is specified in the frequency domain.
In step 2, the analysis is performed in the same manner as dc circuit
analysis except that complex numbers are involved. Having read Chapter
9, we are adept at handling step 3.Frequency-domain analysis of an ac circuit via

phasors is much easier than analysis of the cir-
cuit in the time domain.

Toward the end of the chapter, we learn how to applyPSpice in
solving ac circuit problems. We finally apply ac circuit analysis to two
practical ac circuits: oscillators and ac transistor circuits.

10.2 NODAL ANALYSIS
The basis of nodal analysis is Kirchhoff’s current law. Since KCL is valid
for phasors, as demonstrated in Section 9.6, we can analyze ac circuits
by nodal analysis. The following examples illustrate this.

E X A M P L E 1 0 . 1

Find ix in the circuit of Fig. 10.1 using nodal analysis.

0.5 H0.1 F

1 H10 Ω

2ix

ix

+
−20 cos 4t V       

Figure 10.1 For Example 10.1.

Solution:

We first convert the circuit to the frequency domain:
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20 cos 4t �⇒ 20 0◦, ω = 4 rad/s

1 H �⇒ jωL = j4

0.5 H �⇒ jωL = j2

0.1 F �⇒ 1

jωC
= −j2.5

Thus, the frequency-domain equivalent circuit is as shown in Fig. 10.2.

–j2.5 Ω j2 Ω

j4 Ω10 Ω

2Ix

Ix

+
−

V1 V2

20   0° V

Figure 10.2 Frequency-domain equivalent of the circuit in Fig. 10.1.

Applying KCL at node 1,

20 − V1

10
= V1

−j2.5
+ V1 − V2

j4
or

(1 + j1.5)V1 + j2.5V2 = 20 (10.1.1)

At node 2,

2Ix + V1 − V2

j4
= V2

j2

But Ix = V1/−j2.5. Substituting this gives

2V1

−j2.5
+ V1 − V2

j4
= V2

j2

By simplifying, we get

11V1 + 15V2 = 0 (10.1.2)

Equations (10.1.1) and (10.1.2) can be put in matrix form as[
1 + j1.5 j2.5

11 15

] [
V1

V2

]
=

[
20
0

]

We obtain the determinants as


 =
∣∣∣∣1 + j1.5 j2.5

11 15

∣∣∣∣ = 15 − j5


1 =
∣∣∣∣20 j2.5

0 15

∣∣∣∣ = 300, 
2 =
∣∣∣∣1 + j1.5 20

11 0

∣∣∣∣ = −220

V1 = 
1



= 300

15 − j5
= 18.97 18.43◦ V

V2 = 
2



= −220

15 − j5
= 13.91 198.3◦ V
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The current Ix is given by

Ix = V1

−j2.5
= 18.97 18.43◦

2.5 − 90◦
= 7.59 108.4◦ A

Transforming this to the time domain,

ix = 7.59 cos(4t + 108.4◦) A

P R A C T I C E P R O B L E M 1 0 . 1

Using nodal analysis, find v1 and v2 in the circuit of Fig. 10.3.

4 Ω

2 Ω 3vxvx 2 H

0.2 F
v1 v2

+
−

+

−
10 sin 2t A

Figure 10.3 For Practice Prob. 10.1.

Answer: v1(t) = 20.96 sin(2t + 58◦) V,
v2(t) = 44.11 sin(2t + 41◦) V.

E X A M P L E 1 0 . 2

Compute V1 and V2 in the circuit of Fig. 10.4.

4 Ω

12 Ω

1 2V1 V2

–j3 Ω j6 Ω

+ −
10   45° V

3   0° A

Figure 10.4 For Example 10.2.

Solution:

Nodes 1 and 2 form a supernode as shown in Fig. 10.5. Applying KCL
at the supernode gives

3 = V1

−j3
+ V2

j6
+ V2

12
or

36 = j4V1 + (1 − j2)V2 (10.2.1)

But a voltage source is connected between nodes 1 and 2, so that
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–j3 Ω j6 Ω 12 Ω3 A

Supernode
V1 V2

Figure 10.5 A supernode in the circuit of Fig. 10.4.

V1 = V2 + 10 45◦ (10.2.2)

Substituting Eq. (10.2.2) in Eq. (10.2.1) results in

36 − 40 135◦ = (1 + j2)V2 �⇒ V2 = 31.41 − 87.18◦ V

From Eq. (10.2.2),

V1 = V2 + 10 45◦ = 25.78 − 70.48◦ V

P R A C T I C E P R O B L E M 1 0 . 2

Calculate V1 and V2 in the circuit shown in Fig. 10.6.

4 Ω

2 Ωj4 Ω –j1 Ω

+ −

+
−

V1 V2

15   0° V

20   60° V

Figure 10.6 For Practice Prob. 10.2.

Answer: V1 = 19.36 69.67◦ V, V2 = 3.376 165.7◦ V.

10.3 MESH ANALYSIS
Kirchhoff’s voltage law (KVL) forms the basis of mesh analysis. The
validity of KVL for ac circuits was shown in Section 9.6 and is illustrated
in the following examples.

E X A M P L E 1 0 . 3

Determine current Io in the circuit of Fig. 10.7 using mesh analysis.

Solution:

Applying KVL to mesh 1, we obtain

(8 + j10 − j2)I1 − (−j2)I2 − j10I3 = 0 (10.3.1)
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4 Ω

8 Ω –j2 Ω

–j2 Ω

j10 Ω
+
−

Io

I2

I3

I1

5   0° A

20   90° V

Figure 10.7 For Example 10.3.

For mesh 2,

(4 − j2 − j2)I2 − (−j2)I1 − (−j2)I3 + 20 90◦ = 0 (10.3.2)

For mesh 3, I3 = 5. Substituting this in Eqs. (10.3.1) and (10.3.2), we
get

(8 + j8)I1 + j2I2 = j50 (10.3.3)

j2I1 + (4 − j4)I2 = −j20 − j10 (10.3.4)

Equations (10.3.3) and (10.3.4) can be put in matrix form as[
8 + j8 j2
j2 4 − j4

] [
I1

I2

]
=

[
j50

−j30

]

from which we obtain the determinants


 =
∣∣∣∣8 + j8 j2

j2 4 − j4

∣∣∣∣ = 32(1 + j)(1 − j) + 4 = 68


2 =
∣∣∣∣8 + j8 j50

j2 −j30

∣∣∣∣ = 340 − j240 = 416.17 − 35.22◦

I2 = 
2



= 416.17 − 35.22◦

68
= 6.12 − 35.22◦ A

The desired current is

Io = −I2 = 6.12 144.78◦ A

P R A C T I C E P R O B L E M 1 0 . 3

Find Io in Fig. 10.8 using mesh analysis.

8 Ω
j4 Ω

–j2 Ω 6 Ω

+
−

Io

2   0° A

10   30° V

Figure 10.8 For Practice Prob. 10.3.

Answer: 1.194 65.45◦ A.
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E X A M P L E 1 0 . 4

Solve for Vo in the circuit in Fig. 10.9 using mesh analysis.

8 Ω

6 Ω

–j2 Ω

–j4 Ω
j5 Ω

4   0˚ A

+
− Vo

+

−
3   0° A10   0° V

Figure 10.9 For Example 10.4.

Solution:

As shown in Fig. 10.10, meshes 3 and 4 form a supermesh due to the
current source between the meshes. For mesh 1, KVL gives

−10 + (8 − j2)I1 − (−j2)I2 − 8I3 = 0

or

(8 − j2)I1 + j2I2 − 8I3 = 10 (10.4.1)

For mesh 2,

I2 = −3 (10.4.2)

For the supermesh,

(8 − j4)I3 − 8I1 + (6 + j5)I4 − j5I2 = 0 (10.4.3)

Due to the current source between meshes 3 and 4, at node A,

I4 = I3 + 4 (10.4.4)

Combining Eqs. (10.4.1) and (10.4.2),

(8 − j2)I1 − 8I3 = 10 + j6 (10.4.5)

Combining Eqs. (10.4.2) to (10.4.4),

−8I1 + (14 + j)I3 = −24 − j35 (10.4.6)

8 Ω

6 Ω

–j2 Ω

–j4 Ω

j5 Ω

10 V 3 A

4 A

A

+
−

+

− I2

I3

I3 I4

I4

I1

Supermesh

Vo

Figure 10.10 Analysis of the circuit in Fig. 10.9.
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From Eqs. (10.4.5) and (10.4.6), we obtain the matrix equation[
8 − j2 −8

−8 14 + j

] [
I1

I3

]
=

[
10 + j6

−24 − j35

]

We obtain the following determinants


 =
∣∣∣∣8 − j2 −8

−8 14 + j

∣∣∣∣ = 112 + j8 − j28 + 2 − 64 = 50 − j20


1 =
∣∣∣∣ 10 + j6 −8
−24 − j35 14 + j

∣∣∣∣ = 140 + j10 + j84 − 6 − 192 − j280

= −58 − j186

Current I1 is obtained as

I1 = 
1



= −58 − j186

50 − j20
= 3.618 274.5◦ A

The required voltage Vo is

Vo = −j2(I1 − I2) = −j2(3.618 274.5◦ + 3)

= −7.2134 − j6.568 = 9.756 222.32◦ V

P R A C T I C E P R O B L E M 1 0 . 4

Calculate current Io in the circuit of Fig. 10.11.

j8 Ω

–j6 Ω

–j4 Ω

5 Ω

10 Ω Io

+
−50   0° V

2   0° A

Figure 10.11 For Practice Prob. 10.4.

Answer: 5.075 5.943◦ A.

10.4 SUPERPOSITION THEOREM
Since ac circuits are linear, the superposition theorem applies to ac circuits
the same way it applies to dc circuits. The theorem becomes important
if the circuit has sources operating at different frequencies. In this case,
since the impedances depend on frequency, we must have a different
frequency-domain circuit for each frequency. The total response must
be obtained by adding the individual responses in the time domain. It is
incorrect to try to add the responses in the phasor or frequency domain.
Why? Because the exponential factor ejωt is implicit in sinusoidal analy-
sis, and that factor would change for every angular frequency ω. It would
therefore not make sense to add responses at different frequencies in the
phasor domain. Thus, when a circuit has sources operating at different

http://www.mhhe.com/engcs/electrical/alexander/eetuts/tutorial/Tut11-1.htm
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frequencies, one must add the responses due to the individual frequencies
in the time domain.

E X A M P L E 1 0 . 5

Use the superposition theorem to find Io in the circuit in Fig. 10.7.

Solution:

Let

Io = I′
o + I′′

o (10.5.1)

where I′
o and I′′

o are due to the voltage and current sources, respectively.
To find I′

o, consider the circuit in Fig. 10.12(a). If we let Z be the parallel
combination of −j2 and 8 + j10, then

Z = −j2(8 + j10)

−2j + 8 + j10
= 0.25 − j2.25

and current I′
o is

I′
o = j20

4 − j2 + Z
= j20

4.25 − j4.25
or

I′
o = −2.353 + j2.353 (10.5.2)

4 Ω

8 Ω –j2 Ω

–j2 Ω
j10 Ω

j20 V+
−

I'o

(a)

(b)

4 Ω

8 Ω –j2 Ω

–j2 Ω
j10 Ω

5 A
I''o

I2

I3

I1

Figure 10.12 Solution of Example 10.5.

To get I′′
o , consider the circuit in Fig. 10.12(b). For mesh 1,

(8 + j8)I1 − j10I3 + j2I2 = 0 (10.5.3)

For mesh 2,

(4 − j4)I2 + j2I1 + j2I3 = 0 (10.5.4)

For mesh 3,

I3 = 5 (10.5.5)

From Eqs. (10.5.4) and (10.5.5),

(4 − j4)I2 + j2I1 + j10 = 0

Expressing I1 in terms of I2 gives

I1 = (2 + j2)I2 − 5 (10.5.6)

Substituting Eqs. (10.5.5) and (10.5.6) into Eq. (10.5.3), we get

(8 + j8)[(2 + j2)I2 − 5] − j50 + j2I2 = 0

or

I2 = 90 − j40

34
= 2.647 − j1.176

Current I′′
o is obtained as

I′′
o = −I2 = −2.647 + j1.176 (10.5.7)

From Eqs. (10.5.2) and (10.5.7), we write

Io = I′
o + I′′

o = −5 + j3.529 = 6.12 144.78◦ A
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which agrees with what we got in Example 10.3. It should be noted
that applying the superposition theorem is not the best way to solve this
problem. It seems that we have made the problem twice as hard as
the original one by using superposition. However, in Example 10.6,
superposition is clearly the easiest approach.

P R A C T I C E P R O B L E M 1 0 . 5

Find current Io in the circuit of Fig. 10.8 using the superposition theorem.

Answer: 1.194 65.45◦ A.

E X A M P L E 1 0 . 6

Find vo in the circuit in Fig. 10.13 using the superposition theorem.

2 H 1 Ω 4 Ω

0.1 F 5 V+
−

+
−10 cos 2t V 2 sin 5t A

−+ vo

Figure 10.13 For Example 10.6.

Solution:

Since the circuit operates at three different frequencies (ω = 0 for the
dc voltage source), one way to obtain a solution is to use superposition,
which breaks the problem into single-frequency problems. So we let

vo = v1 + v2 + v3 (10.6.1)

where v1 is due to the 5-V dc voltage source, v2 is due to the 10 cos 2t V
voltage source, and v3 is due to the 2 sin 5t A current source.

To find v1, we set to zero all sources except the 5-V dc source. We
recall that at steady state, a capacitor is an open circuit to dc while an
inductor is a short circuit to dc. There is an alternative way of looking at
this. Since ω = 0, jωL = 0, 1/jωC = ∞. Either way, the equivalent
circuit is as shown in Fig. 10.14(a). By voltage division,

−v1 = 1

1 + 4
(5) = 1 V (10.6.2)

To find v2, we set to zero both the 5-V source and the 2 sin 5t current
source and transform the circuit to the frequency domain.

10 cos 2t �⇒ 10 0◦, ω = 2 rad/s

2 H �⇒ jωL = j4 �

0.1 F �⇒ 1

jωC
= −j5 �
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The equivalent circuit is now as shown in Fig. 10.14(b). Let

Z = −j5 ‖ 4 = −j5 × 4

4 − j5
= 2.439 − j1.951

By voltage division,

V2 = 1

1 + j4 + Z
(10 0◦ ) = 10

3.439 + j2.049
= 2.498 − 30.79◦

In the time domain,

v2 = 2.498 cos(2t − 30.79◦) (10.6.3)

1 Ω 4 Ω

5 V+
−

−+ v1

(a) (b) (c)

1 Ωj4 Ω

–j5 Ω

4 Ω

+
−

1 Ω

4 Ω–j2 Ωj10 Ω

I1

10   0° V 2   –90° A

+ −V2
+ −V3

Figure 10.14 Solution of Example 10.6: (a) setting all sources to zero except the 5-V dc source, (b) setting all sources to zero except the ac
voltage source, (c) setting all sources to zero except the ac current source.

To obtain v3, we set the voltage sources to zero and transform what
is left to the frequency domain.

2 sin 5t �⇒ 2 − 90◦ , ω = 5 rad/s

2 H �⇒ jωL = j10 �

0.1 F �⇒ 1

jωC
= −j2 �

The equivalent circuit is in Fig. 10.14(c). Let

Z1 = −j2 ‖ 4 = −j2 × 4

4 − j2
= 0.8 − j1.6 �

By current division,

I1 = j10

j10 + 1 + Z1
(2 − 90◦) A

V3 = I1 × 1 = j10

1.8 + j8.4
(−j2) = 2.328 − 77.91◦ V

In the time domain,

v3 = 2.33 cos(5t − 80◦) = 2.33 sin(5t + 10◦) V (10.6.4)

Substituting Eqs. (10.6.2) to (10.6.4) into Eq. (10.6.1), we have

vo(t) = −1 + 2.498 cos(2t − 30.79◦) + 2.33 sin(5t + 10◦) V

P R A C T I C E P R O B L E M 1 0 . 6

Calculate vo in the circuit of Fig. 10.15 using the superposition theorem.
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8 Ω

0.2 F 1 H+
−30 sin 5t V 2 cos 10t A

+

−
vo

Figure 10.15 For Practice Prob. 10.6.

Answer: 4.631 sin(5t − 81.12◦) + 1.051 cos(10t − 86.24◦) V.

10.5 SOURCE TRANSFORMATION
As Fig. 10.16 shows, source transformation in the frequency domain
involves transforming a voltage source in series with an impedance to a
current source in parallel with an impedance, or vice versa. As we go
from one source type to another, we must keep the following relationship
in mind:

Vs = ZsIs ⇐⇒ Is = Vs

Zs

(10.1)

a

b

Vs

Vs = ZsIs

Z s

Z s
+
−

a

b

Is

Is = Zs

Vs

Figure 10.16 Source transformation.

E X A M P L E 1 0 . 7

Calculate Vx in the circuit of Fig. 10.17 using the method of source trans-
formation.

5 Ω

j4 Ω

–j13 Ω

3 Ω

10 Ω

4 Ω

+
−

+

−
Vx2 0   –90° V

Figure 10.17 For Example 10.7.
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Solution:

We transform the voltage source to a current source and obtain the circuit
in Fig. 10.18(a), where

Is = 20 − 90◦

5
= 4 − 90◦ = −j4 A

The parallel combination of 5-� resistance and (3+j4) impedance gives

Z1 = 5(3 + j4)

8 + j4
= 2.5 + j1.25 �

Converting the current source to a voltage source yields the circuit in Fig.
10.18(b), where

Vs = IsZ1 = −j4(2.5 + j1.25) = 5 − j10 V

By voltage division,

Vx = 10

10 + 2.5 + j1.25 + 4 − j13
(5 − j10) = 5.519 − 28◦ V

5 Ω
j4 Ω

–j13 Ω

3 Ω

10 Ω

4 Ω

+

−

+

−
V xIs = –j4 Α

–j13 Ω

10 Ω

4 Ω2.5 Ω j1.25 Ω

VxVs = 5 – j10 V +
−

(a) (b)

Figure 10.18 Solution of the circuit in Fig. 10.17.

P R A C T I C E P R O B L E M 1 0 . 7

Find Io in the circuit of Fig. 10.19 using the concept of source transfor-
mation.

–j3 Ω

j5 Ω

j1 Ω2 Ω

Io

–j2 Ω

4   90°  Α
4 Ω

1 Ω

Figure 10.19 For Practice Prob. 10.7.

Answer: 3.288 99.46◦ A.
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10.6 THEVENIN AND NORTON EQUIVALENT CIRCUITS
Thevenin’s and Norton’s theorems are applied to ac circuits in the same
way as they are to dc circuits. The only additional effort arises from the
need to manipulate complex numbers. The frequency-domain version of
a Thevenin equivalent circuit is depicted in Fig. 10.20, where a linear
circuit is replaced by a voltage source in series with an impedance. The
Norton equivalent circuit is illustrated in Fig. 10.21, where a linear circuit
is replaced by a current source in parallel with an impedance. Keep in
mind that the two equivalent circuits are related as

VTh = ZN IN, ZTh = ZN (10.2)

just as in source transformation. VTh is the open-circuit voltage while IN
is the short-circuit current.

a

b

ZTh

a

b

VTh
Linear
circuit

+
−

Figure 10.20 Thevenin equivalent.

a

b

ZN

a

b

IN

Linear
circuit

Figure 10.21 Norton equivalent.

If the circuit has sources operating at different frequencies (see
Example 10.6, for example), the Thevenin or Norton equivalent circuit
must be determined at each frequency. This leads to entirely different
equivalent circuits, one for each frequency, not one equivalent circuit
with equivalent sources and equivalent impedances.

E X A M P L E 1 0 . 8

Obtain the Thevenin equivalent at terminalsa-b of the circuit in Fig. 10.22.

4 Ω

d

a b

f

ce

–j6 Ω

j12 Ω8 Ω

+
− a b120   75° V

Figure 10.22 For Example 10.8.

Solution:

We find ZTh by setting the voltage source to zero. As shown in Fig.
10.23(a), the 8-� resistance is now in parallel with the −j6 reactance, so
that their combination gives

Z1 = −j6 ‖ 8 = −j6 × 8

8 − j6
= 2.88 − j3.84 �

Similarly, the 4-� resistance is in parallel with the j12 reactance, and
their combination gives

Z2 = 4 ‖ j12 = j12 × 4

4 + j12
= 3.6 + j1.2 �
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4 Ω8 Ω –j6 Ω j12 Ω

ZTh

VTh

a

e c

f,d f,d

b

(a)
(b)

8 Ω

4 Ω

j12 Ω

–j6 Ω

+
−

I2I1

d

e
a b

c

f

−+
120   75° V

Figure 10.23 Solution of the circuit in Fig. 10.22: (a) finding ZTh, (b) finding VTh.

The Thevenin impedance is the series combination of Z1 and Z2; that is,

ZTh = Z1 + Z2 = 6.48 − j2.64 �

To find VTh, consider the circuit in Fig. 10.23(b). Currents I1 and
I2 are obtained as

I1 = 120 75◦

8 − j6
A, I2 = 120 75◦

4 + j12
A

Applying KVL around loop bcdeab in Fig. 10.23(b) gives

VTh − 4I2 + (−j6)I1 = 0

or

VTh = 4I2 + j6I1 = 480 75◦

4 + j12
+ 720 75◦ + 90◦

8 − j6

= 37.95 3.43◦ + 72 201.87◦

= −28.936 − j24.55 = 37.95 220.31◦ V

P R A C T I C E P R O B L E M 1 0 . 8

Find the Thevenin equivalent at terminals a-b of the circuit in Fig. 10.24.

–j4 Ω

j2 Ω6 Ω

10 Ω+
−

a b

30   20° V

Figure 10.24 For Practice Prob. 10.8.

Answer: ZTh = 12.4 − j3.2 �,VTh = 18.97 − 51.57◦ V.
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E X A M P L E 1 0 . 9

Find the Thevenin equivalent of the circuit in Fig. 10.25 as seen from ter-
minals a-b.

–j4 Ω

j3 Ω4 Ω

2 Ω

a

b

Io

0.5 Io15   0° A

Figure 10.25 For Example 10.9.

Solution:

To find VTh, we apply KCL at node 1 in Fig. 10.26(a).

15 = Io + 0.5Io �⇒ Io = 10 A

Applying KVL to the loop on the right-hand side in Fig. 10.26(a), we
obtain

−Io(2 − j4) + 0.5Io(4 + j3) + VTh = 0

or

VTh = 10(2 − j4) − 5(4 + j3) = −j55

Thus, the Thevenin voltage is

VTh = 55 − 90◦ V
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Figure 10.26 Solution of the problem in Fig. 10.25: (a) finding VTh, (b) finding ZTh.

To obtain ZTh, we remove the independent source. Due to the
presence of the dependent current source, we connect a 3-A current source
(3 is an arbitrary value chosen for convenience here, a number divisible
by the sum of currents leaving the node) to terminals a-b as shown in Fig.
10.26(b). At the node, KCL gives

3 = Io + 0.5Io �⇒ Io = 2 A

Applying KVL to the outer loop in Fig. 10.26(b) gives

Vs = Io(4 + j3 + 2 − j4) = 2(6 − j)
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The Thevenin impedance is

ZTh = Vs

Is
= 2(6 − j)

3
= 4 − j0.6667 �

P R A C T I C E P R O B L E M 1 0 . 9

Determine the Thevenin equivalent of the circuit in Fig. 10.27 as seen from
the terminals a-b.
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Figure 10.27 For Practice Prob. 10.9.

Answer: ZTh = 12.166 136.3◦ �,VTh = 7.35 72.9◦ V.

E X A M P L E 1 0 . 1 0

Obtain current Io in Fig. 10.28 using Norton’s theorem.
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Figure 10.28 For Example 10.10.

Solution:

Our first objective is to find the Norton equivalent at terminals a-b. ZN

is found in the same way as ZTh. We set the sources to zero as shown
in Fig. 10.29(a). As evident from the figure, the (8 − j2) and (10 + j4)
impedances are short-circuited, so that

ZN = 5 �

To get IN , we short-circuit terminals a-b as in Fig. 10.29(b) and
apply mesh analysis. Notice that meshes 2 and 3 form a supermesh
because of the current source linking them. For mesh 1,

−j40 + (18 + j2)I1 − (8 − j2)I2 − (10 + j4)I3 = 0 (10.10.1)

For the supermesh,

(13 − j2)I2 + (10 + j4)I3 − (18 + j2)I1 = 0 (10.10.2)
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Figure 10.29 Solution of the circuit in Fig. 10.28: (a) finding ZN , (b) finding VN , (c) calculating Io.

At node a, due to the current source between meshes 2 and 3,

I3 = I2 + 3 (10.10.3)

Adding Eqs. (10.10.1) and (10.10.2) gives

−j40 + 5I2 = 0 �⇒ I2 = j8

From Eq. (10.10.3),

I3 = I2 + 3 = 3 + j8

The Norton current is

IN = I3 = (3 + j8) A

Figure 10.29(c) shows the Norton equivalent circuit along with the imped-
ance at terminals a-b. By current division,

Io = 5

5 + 20 + j15
IN = 3 + j8

5 + j3
= 1.465 38.48◦ A

P R A C T I C E P R O B L E M 1 0 . 1 0

Determine the Norton equivalent of the circuit in Fig. 10.30 as seen from
terminals a-b. Use the equivalent to find Io.
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Figure 10.30 For Practice Prob. 10.10.

Answer: ZN = 3.176 + j0.706 �, IN = 8.396 − 32.68◦ A,
Io = 1.971 − 2.101◦ A.
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10.7 OP AMP AC CIRCUITS
The three steps stated in Section 10.1 also apply to op amp circuits, as
long as the op amp is operating in the linear region. As usual, we will
assume ideal op amps. (See Section 5.2.) As discussed in Chapter 5, the
key to analyzing op amp circuits is to keep two important properties of
an ideal op amp in mind:

1. No current enters either of its input terminals.

2. The voltage across its input terminals is zero.

The following examples will illustrate these ideas.

E X A M P L E 1 0 . 1 1

Determine vo(t) for the op amp circuit in Fig. 10.31(a) if vs =
3 cos 1000t V.
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Figure 10.31 For Example 10.11: (a) the original circuit in the time domain, (b) its frequency-domain equivalent.

Solution:

We first transform the circuit to the frequency domain, as shown in Fig.
10.31(b), where Vs = 3 0◦, ω = 1000 rad/s. Applying KCL at node 1,
we obtain

3 0◦ − V1

10
= V1

−j5
+ V1 − 0

10
+ V1 − Vo

20
or

6 = (5 + j4)V1 − Vo (10.11.1)

At node 2, KCL gives
V1 − 0

10
= 0 − Vo

−j10
which leads to

V1 = −jVo (10.11.2)

Substituting Eq. (10.11.2) into Eq. (10.11.1) yields

6 = −j (5 + j4)Vo − Vo = (3 − j5)Vo

Vo = 6

3 − j5
= 1.029 59.04◦

Hence,

vo(t) = 1.029 cos(1000t + 59.04◦) V
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P R A C T I C E P R O B L E M 1 0 . 1 1

Find vo and io in the op amp circuit of Fig. 10.32. Let vs =
2 cos 5000t V.
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Figure 10.32 For Practice Prob. 10.11.

Answer: 0.667 sin 5000t V, 66.67 sin 5000t µA.

E X A M P L E 1 0 . 1 2

Compute the closed-loop gain and phase shift for the circuit in Fig. 10.33.
Assume that R1 = R2 = 10 k�, C1 = 2 µF, C2 = 1 µF, and ω =
200 rad/s.
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Figure 10.33 For Example 10.12.

Solution:

The feedback and input impedances are calculated as

Zf = R2

∥∥∥∥ 1

jωC2
= R2

1 + jωR2C2

Zi = R1 + 1

jωC1
= 1 + jωR1C1

jωC1

Since the circuit in Fig. 10.33 is an inverting amplifier, the closed-loop
gain is given by

G = Vo

Vs

= −Zf

Zi

= jωC1R2

(1 + jωR1C1)(1 + jωR2C2)

Substituting the given values of R1, R2, C1, C2, and ω, we obtain

G = j4

(1 + j4)(1 + j2)
= 0.434 − 49.4◦

Thus the closed-loop gain is 0.434 and the phase shift is −49.4◦.

P R A C T I C E P R O B L E M 1 0 . 1 2

Obtain the closed-loop gain and phase shift for the circuit in Fig. 10.34.
Let R = 10 k�, C = 1 µF, and ω = 1000 rad/s.
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Figure 10.34 For Practice Prob. 10.12.

Answer: 1.015, −5.599◦.
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10.8 AC ANALYSIS USING PSPICE
PSpice affords a big relief from the tedious task of manipulating complex
numbers in ac circuit analysis. The procedure for using PSpice for ac
analysis is quite similar to that required for dc analysis. The reader should
read Section D.5 in Appendix D for a review of PSpice concepts for ac
analysis. AC circuit analysis is done in the phasor or frequency domain,
and all sources must have the same frequency. Although AC analysis with
PSpice involves using AC Sweep, our analysis in this chapter requires a
single frequency f = ω/2π . The output file of PSpice contains voltage
and current phasors. If necessary, the impedances can be calculated using
the voltages and currents in the output file.

E X A M P L E 1 0 . 1 3

Obtain vo and io in the circuit of Fig. 10.35 using PSpice.

2 mF

50 mH4 kΩ

2 kΩ

io

0.5io
+
−8 sin(1000t + 50°) V vo

+

−

Figure 10.35 For Example 10.13.

Solution:

We first convert the sine function to cosine.

8 sin(1000t + 50◦) = 8 cos(1000t + 50◦ − 90◦) = 8 cos(1000t − 40◦)

The frequency f is obtained from ω as

f = ω

2π
= 1000

2π
= 159.155 Hz

The schematic for the circuit is shown in Fig. 10.36. Notice the current-
controlled current source F1 is connected such that its current flows from
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2 3

+
−

Figure 10.36 The schematic of the circuit in Fig. 10.35.
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node 0 to node 3 in conformity with the original circuit in Fig. 10.35. Since
we only want the magnitude and phase of vo and io, we set the attributes
of IPRINT AND VPRINT1 each to AC = yes, MAG = yes, PHASE = yes.
As a single-frequency analysis, we select Analysis/Setup/AC Sweep and
enter Total Pts = 1, Start Freq = 159.155, and Final Freq = 159.155. Af-
ter saving the schematic, we simulate it by selecting Analysis/Simulate.
The output file includes the source frequency in addition to the attributes
checked for the pseudocomponents IPRINT and VPRINT1,

FREQ IM(V_PRINT3) IP(V_PRINT3)
1.592E+02 3.264E-03 -3.743E+01

FREQ VM(3) VP(3)
1.592E+02 1.550E+00 -9.518E+01

From this output file, we obtain

Vo = 1.55 − 95.18◦ V, Io = 3.264 − 37.43◦ mA

which are the phasors for

vo = 1.55 cos(1000t − 95.18◦) = 1.55 sin(1000t − 5.18◦) V

and

io = 3.264 cos(1000t − 37.43◦) mA

P R A C T I C E P R O B L E M 1 0 . 1 3

Use PSpice to obtain vo and io in the circuit of Fig. 10.37.
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Figure 10.37 For Practice Prob. 10.13.

Answer: 0.2682 cos(3000t−154.6◦)V, 0.544 cos(3000t−55.12◦)mA.

E X A M P L E 1 0 . 1 4

Find V1 and V2 in the circuit of Fig. 10.38.

Solution:

The circuit in Fig. 10.35 is in the time domain, whereas the one in Fig.
10.38 is in the frequency domain. Since we are not given a particular
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Figure 10.38 For Example 10.14.

frequency and PSpice requires one, we select any frequency consistent
with the given impedances. For example, if we select ω = 1 rad/s, the
corresponding frequency is f = ω/2π = 0.159155 Hz. We obtain the
values of the capacitance (C = 1/ωXC) and inductances (L = XL/ω).
Making these changes results in the schematic in Fig. 10.39. To ease
wiring, we have exchanged the positions of the voltage-controlled cur-
rent source G1 and the 2 + j2 � impedance. Notice that the current of
G1 flows from node 1 to node 3, while the controlling voltage is across
the capacitor c2, as required in Fig. 10.38. The attributes of pseudocom-
ponents VPRINT1 are set as shown. As a single-frequency analysis, we
select Analysis/Setup/AC Sweep and enter Total Pts = 1, Start Freq =
0.159155, and Final Freq = 0.159155. After saving the schematic, we
select Analysis/Simulate to simulate the circuit. When this is done, the
output file includes

FREQ VM(1) VP(1)
1.592E-01 2.708E+00 -5.673E+01

FREQ VM(3) VP(3)
1.592E-01 4.468E+00 -1.026E+02
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Figure 10.39 Schematic for the circuit in Fig. 10.38.
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from which we obtain

V1 = 2.708 − 56.73◦ V, V2 = 4.468 − 102.6◦ V

P R A C T I C E P R O B L E M 1 0 . 1 4

Obtain Vx and Ix in the circuit depicted in Fig. 10.40.
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Figure 10.40 For Practice Prob. 10.14.

Answer: 13.02 − 76.08◦ V, 8.234 − 4.516◦ A.

†10.9 APPLICATIONS
The concepts learned in this chapter will be applied in later chapters to
calculate electric power and determine frequency response. The concepts
are also used in analyzing coupled circuits, three-phase circuits, ac tran-
sistor circuits, filters, oscillators, and other ac circuits. In this section, we
apply the concepts to develop two practical ac circuits: the capacitance
multiplier and the sine wave oscillators.

10 . 9 . 1 Capac i t a n ce Mu l t i p l i e r
The op amp circuit in Fig. 10.41 is known as a capacitance multiplier,
for reasons that will become obvious. Such a circuit is used in integrated-
circuit technology to produce a multiple of a small physical capacitance
C when a large capacitance is needed. The circuit in Fig. 10.41 can be
used to multiply capacitance values by a factor up to 1000. For example,
a 10-pF capacitor can be made to behave like a 100-nF capacitor.

In Fig. 10.41, the first op amp operates as a voltage follower, while
the second one is an inverting amplifier. The voltage follower isolates
the capacitance formed by the circuit from the loading imposed by the
inverting amplifier. Since no current enters the input terminals of the op
amp, the input current Ii flows through the feedback capacitor. Hence, at
node 1,

Ii = Vi − Vo

1/jωC
= jωC(Vi − Vo) (10.3)
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Figure 10.41 Capacitance multiplier.

Applying KCL at node 2 gives

Vi − 0

R1
= 0 − Vo

R2

or

Vo = −R2

R1
Vi (10.4)

Substituting Eq. (10.4) into (10.3) gives

Ii = jωC

(
1 + R2

R1

)
Vi

or

Ii
Vi

= jω

(
1 + R2

R1

)
C (10.5)

The input impedance is

Zi = Vi

Ii
= 1

jωCeq
(10.6)

where

Ceq =
(

1 + R2

R1

)
C (10.7)

Thus, by a proper selection of the values of R1 and R2, the op amp
circuit in Fig. 10.41 can be made to produce an effective capacitance
between the input terminal and ground, which is a multiple of the physical
capacitance C. The size of the effective capacitance is practically limited
by the inverted output voltage limitation. Thus, the larger the capacitance
multiplication, the smaller is the allowable input voltage to prevent the
op amps from reaching saturation.

A similar op amp circuit can be designed to simulate inductance.
(See Prob. 10.69.) There is also an op amp circuit configuration to create
a resistance multiplier.

E X A M P L E 1 0 . 1 5

CalculateCeq in Fig. 10.41 whenR1 = 10 k�,R2 = 1 M�, andC = 1 nF.
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Solution:

From Eq. (10.7)

Ceq =
(

1 + R2

R1

)
C =

(
1 + 1 × 106

10 × 103

)
1 nF = 101 nF

P R A C T I C E P R O B L E M 1 0 . 1 5

Determine the equivalent capacitance of the op amp circuit in Fig. 10.41
if R1 = 10 k�, R2 = 10 M�, and C = 10 nF.

Answer: 10 µF.

10 . 9 . 2 Osc i l l a t o r s
We know that dc is produced by batteries. But how do we produce ac?
One way is using oscillators, which are circuits that convert dc to ac.

An oscillator is a circuit that produces an ac waveform as output
when powered by a dc input.

The only external source an oscillator needs is the dc power supply.
Ironically, the dc power supply is usually obtained by converting the ac
supplied by the electric utility company to dc. Having gone through the
trouble of conversion, one may wonder why we need to use the oscillator
to convert the dc to ac again. The problem is that the ac supplied by the
utility company operates at a preset frequency of 60 Hz in the United
States (50 Hz in some other nations), whereas many applications such
as electronic circuits, communication systems, and microwave devices
require internally generated frequencies that range from 0 to 10 GHz or
higher. Oscillators are used for generating these frequencies.

This corresponds to ω = 2π f = 377 rad/s.

In order for sine wave oscillators to sustain oscillations, they must
meet the Barkhausen criteria:

1. The overall gain of the oscillator must be unity or greater.
Therefore, losses must be compensated for by an amplifying
device.

2. The overall phase shift (from input to output and back to the
input) must be zero.

Three common types of sine wave oscillators are phase-shift, twin T ,
and Wien-bridge oscillators. Here we consider only the Wien-bridge
oscillator.
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−

Rf

Rg

R1

R2

C1

C2

+

−
v2

+

−
vo

Positive feedback path
to create oscillations

Negative feedback
path to control gain

Figure 10.42 Wien-bridge oscillator.

The Wien-bridge oscillator is widely used for generating sinusoids
in the frequency range below 1 MHz. It is anRC op amp circuit with only
a few components, easily tunable and easy to design. As shown in Fig.
10.42, the oscillator essentially consists of a noninverting amplifier with
two feedback paths: the positive feedback path to the noninverting input
creates oscillations, while the negative feedback path to the inverting
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input controls the gain. If we define the impedances of the RC series and
parallel combinations as Zs and Zp, then

Zs = R1 + 1

jωC1
= R1 − j

ωC1
(10.8)

Zp = R2 ‖ 1

jωC2
= R2

1 + jωR2C2
(10.9)

The feedback ratio is

V2

Vo

= Zp

Zs + Zp

(10.10)

Substituting Eqs. (10.8) and (10.9) into Eq. (10.10) gives

V2

Vo

= R2

R2 +
(
R1 − j

ωC1

)
(1 + jωR2C2)

= ωR2C1

ω(R2C1 + R1C1 + R2C2) + j (ω2R1C1R2C2 − 1)

(10.11)

To satisfy the second Barkhausen criterion, V2 must be in phase with Vo,
which implies that the ratio in Eq. (10.11) must be purely real. Hence,
the imaginary part must be zero. Setting the imaginary part equal to zero
gives the oscillation frequency ωo as

ω2
oR1C1R2C2 − 1 = 0

or

ωo = 1√
R1R2C1C2

(10.12)

In most practical applications, R1 = R2 = R and C1 = C2 = C, so that

ωo = 1

RC
= 2πfo (10.13)

or

fo = 1

2πRC
(10.14)

Substituting Eq. (10.13) and R1 = R2 = R, C1 = C2 = C into Eq.
(10.11) yields

V2

Vo

= 1

3
(10.15)

Thus in order to satisfy the first Barkhausen criterion, the op amp must
compensate by providing a gain of 3 or greater so that the overall gain is
at least 1 or unity. We recall that for a noninverting amplifier,

Vo

V2
= 1 + Rf

Rg

= 3 (10.16)

or

Rf = 2Rg (10.17)
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Due to the inherent delay caused by the op amp, Wien-bridge oscil-
lators are limited to operating in the frequency range of 1 MHz or less.

E X A M P L E 1 0 . 1 6

Design a Wien-bridge circuit to oscillate at 100 kHz.

Solution:

Using Eq. (10.14), we obtain the time constant of the circuit as

RC = 1

2πfo
= 1

2π × 100 × 103
= 1.59 × 10−6 (10.16.1)

If we select R = 10 k�, then we can select C = 159 pF to satisfy Eq.
(10.16.1). Since the gain must be 3, Rf /Rg = 2. We could select Rf =
20 k� while Rg = 10 k�.

P R A C T I C E P R O B L E M 1 0 . 1 6

In the Wien-bridge oscillator circuit in Fig. 10.42, let R1 = R2 = 2.5 k�,
C1 = C2 = 1 nF. Determine the frequency fo of the oscillator.

Answer: 63.66 kHz.

10.10 SUMMARY
1. We apply nodal and mesh analysis to ac circuits by applying KCL

and KVL to the phasor form of the circuits.

2. In solving for the steady-state response of a circuit that has indepen-
dent sources with different frequencies, each independent source
must be considered separately. The most natural approach to analyz-
ing such circuits is to apply the superposition theorem. A separate
phasor circuit for each frequency must be solved independently, and
the corresponding response should be obtained in the time domain.
The overall response is the sum of the time-domain responses of all
the individual phasor circuits.

3. The concept of source transformation is also applicable in the fre-
quency domain.

4. The Thevenin equivalent of an ac circuit consists of a voltage source
VTh in series with the Thevenin impedance ZTh.

5. The Norton equivalent of an ac circuit consists of a current source IN
in parallel with the Norton impedance ZN (= ZTh).

6. PSpice is a simple and powerful tool for solving ac circuit problems.
It relieves us of the tedious task of working with the complex num-
bers involved in steady-state analysis.

7. The capacitance multiplier and the ac oscillator provide two typical
applications for the concepts presented in this chapter. A capacitance
multiplier is an op amp circuit used in producing a multiple of a
physical capacitance. An oscillator is a device that uses a dc input to
generate an ac output.
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R E V I EW QU E S T I ON S

10.1 The voltage Vo across the capacitor in Fig. 10.43 is:
(a) 5 0◦ V (b) 7.071 45◦ V

(c) 7.071 − 45◦ V (d) 5 − 45◦ V

1 Ω

+
− Vo

+

−
–j1 Ω10   0° V

Figure 10.43 For Review Question 10.1.

10.2 The value of the current Io in the circuit in Fig.
10.44 is:
(a) 4 0◦ A (b) 2.4 − 90◦ A

(c) 0.6 0◦ A (d) −1 A

j8 Ω –j2 Ω3   0° A

Io

Figure 10.44 For Review Question 10.2.

10.3 Using nodal analysis, the value of Vo in the circuit
of Fig. 10.45 is:
(a) −24 V (b) −8 V
(c) 8 V (d) 24 V

–j3 Ωj6 Ω 4   90° A

Vo

Figure 10.45 For Review Question 10.3.

10.4 In the circuit of Fig. 10.46, current i(t) is:
(a) 10 cos t A (b) 10 sin t A (c) 5 cos t A
(d) 5 sin t A (e) 4.472 cos(t − 63.43◦) A

1 H 1 F

+
− 1 Ω10 cos t V i(t)

Figure 10.46 For Review Question 10.4.

10.5 Refer to the circuit in Fig. 10.47 and observe that the
two sources do not have the same frequency. The
current ix(t) can be obtained by:
(a) source transformation
(b) the superposition theorem
(c) PSpice

1 F+
−

+
−sin 2t  V sin 10t  V

1 H 1 Ω

ix

Figure 10.47 For Review Question 10.5.

10.6 For the circuit in Fig. 10.48, the Thevenin
impedance at terminals a-b is:
(a) 1 � (b) 0.5 − j0.5 �

(c) 0.5 + j0.5 � (d) 1 + j2 �

(e) 1 − j2 �

1 Ω 1 H

+
− 1 F

a

b

5 cos t  V

Figure 10.48 For Review Questions 10.6 and 10.7.

10.7 In the circuit of Fig. 10.48, the Thevenin voltage at
terminals a-b is:
(a) 3.535 − 45◦ V (b) 3.535 45◦ V

(c) 7.071 − 45◦ V (d) 7.071 45◦ V

10.8 Refer to the circuit in Fig. 10.49. The Norton
equivalent impedance at terminals a-b is:
(a) −j4 � (b) −j2 �

(c) j2 � (d) j4 �

–j2 Ω

j4 Ω+
−

a

b

6   0° V

Figure 10.49 For Review Questions 10.8 and 10.9.
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10.9 The Norton current at terminals a-b in the circuit of
Fig. 10.49 is:
(a) 1 0◦ A (b) 1.5 − 90◦ A

(c) 1.5 90◦ A (d) 3 90◦ A

10.10 PSpice can handle a circuit with two independent
sources of different frequencies.
(a) True (b) False

Answers: 10.1c, 10.2a, 10.3d, 10.4a, 10.5b, 10.6c, 10.7a, 10.8a,
10.9d, 10.10b.

P RO B L E M S

Section 10.2 Nodal Analysis

10.1 Find vo in the circuit in Fig. 10.50.

1 F+
−

+
−

1 H3 Ω

vo10 cos(t – 45°) V 5 sin(t + 30°) V
+

−

Figure 10.50 For Prob. 10.1.

10.2 For the circuit depicted in Fig. 10.51 below,
determine io.

10.3 Determine vo in the circuit of Fig. 10.52.

+
−

2 H4 Ω

vo16 sin 4t V 2 cos 4t A
+

−
1 Ω 6 Ω

F1
12

Figure 10.52 For Prob. 10.3.

10.4 Compute vo(t) in the circuit of Fig. 10.53.

+
−

1 H 0.25 F

1 Ω0.5ix vo

+

−
16 sin (4t – 10°)  V

ix

Figure 10.53 For Prob. 10.4.

10.5 Use nodal analysis to find vo in the circuit of Fig.
10.54.

+
−

10 mH50 mF20 Ω

20 Ω 30 Ω10 cos 103t V

io

4io vo

+

−

Figure 10.54 For Prob. 10.5.

10.6 Using nodal analysis, find io(t) in the circuit in Fig.
10.55.

0.02 F+
− 1 H

10 Ω

20 sin (10t – 4) V 4 cos (10t – 3) A

io

Figure 10.51 For Prob. 10.2.
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0.5 F+
−

1 H

2 H

2 Ω

0.25 F

8 sin (2t + 30°) V cos 2t A

io

Figure 10.55 For Prob. 10.6.

10.7 By nodal analysis, find io in the circuit in Fig. 10.56.

10 Ω

20 Ω 50 mF 10 mH20 sin1000t A

2io

io

Figure 10.56 For Prob. 10.7.

10.8 Calculate the voltage at nodes 1 and 2 in the circuit
of Fig. 10.57 using nodal analysis.

10 Ω

1 2

–j2 Ω –j5 Ωj2 Ω

j4 Ω

20   30° A

Figure 10.57 For Prob. 10.8.

10.9 Solve for the current I in the circuit of Fig. 10.58
using nodal analysis.

2 Ω

4 Ω–j2 Ω

j1 Ω

2I

5   0° A

20   –90° V +
−

I

Figure 10.58 For Prob. 10.9.

10.10 Using nodal analysis, find V1 and V2 in the circuit
of Fig. 10.59.

20 Ω

10 Ω

j2 A 1 + j A

–j5 Ω

j10 Ω

V1 V2

Figure 10.59 For Prob. 10.10.

10.11 By nodal analysis, obtain current Io in the circuit in
Fig. 10.60.

3 Ω

2 Ω
1 Ωj4 Ω

–j2 Ω

+
−100   20° V

Io

Figure 10.60 For Prob. 10.11.

10.12 Use nodal analysis to obtain Vo in the circuit of Fig.
10.61 below.

8 Ω

2 Ω –j1 Ω –j2 Ω

j6 Ω 4 Ω j5 Ω

2Vx Vo
4   45° A

+

−
Vx

+

−

Figure 10.61 For Prob. 10.12.
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10.13 Obtain Vo in Fig. 10.62 using nodal analysis.

4 Ω

2 Ω –j4 Ω

j2 Ω

Vo 0.2Vo

+

−

+ −

12   0° V

Figure 10.62 For Prob. 10.13.

10.14 Refer to Fig. 10.63. If vs(t) = Vm sinωt and
vo(t) = A sin(ωt + φ), derive the expressions for A
and φ.

+
− vo(t)vs(t)

+

−
L

R

C

Figure 10.63 For Prob. 10.14.

10.15 For each of the circuits in Fig. 10.64, find Vo/Vi for
ω = 0, ω → ∞, and ω2 = 1/LC.

Vo

+

−

Vo

+

−

Vi

+

−

Vi

+

−

C

R R CL

L

(b)(a)

Figure 10.64 For Prob. 10.15.

10.16 For the circuit in Fig. 10.65, determine Vo/Vs .

+
−Vs Vo

+

−L

R1

R2

C

Figure 10.65 For Prob. 10.16.

Section 10.3 Mesh Analysis

10.17 Obtain the mesh currents I1 and I2 in the circuit of
Fig. 10.66.

+
−Vs L

R

C2

C1

I2I1

Figure 10.66 For Prob. 10.17.

10.18 Solve for io in Fig. 10.67 using mesh analysis.

+
−

+
−

2 H

0.25 F

4 Ω

10 cos 2t V 6 sin 2t V

io

Figure 10.67 For Prob. 10.18.

10.19 Rework Prob. 10.5 using mesh analysis.

10.20 Using mesh analysis, find I1 and I2 in the circuit of
Fig. 10.68.

+
−

+
−I2I1

j10 Ω

–j20 Ω

40 Ω

50   0° V40   30° V

Figure 10.68 For Prob. 10.20.

10.21 By using mesh analysis, find I1 and I2 in the circuit
depicted in Fig. 10.69.

I2I1

j4 Ω

j2 Ω

j1 Ω

–j6 Ω

3 Ω

2 Ω

30   20° V

3 Ω

+ −

Figure 10.69 For Prob. 10.21.
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10.22 Repeat Prob. 10.11 using mesh analysis.

10.23 Use mesh analysis to determine current Io in the
circuit of Fig. 10.70 below.

10.24 Determine Vo and Io in the circuit of Fig. 10.71
using mesh analysis.

j4 Ω

Io

3Vo –j2 Ω4   –30° A 2 Ω +
−Vo

+

−

Figure 10.71 For Prob. 10.24.

10.25 Compute I in Prob. 10.9 using mesh analysis.

10.26 Use mesh analysis to find Io in Fig. 10.28 (for
Example 10.10).

10.27 Calculate Io in Fig. 10.30 (for Practice Prob. 10.10)
using mesh analysis.

10.28 Compute Vo in the circuit of Fig. 10.72 using mesh
analysis.

–j3 Ω

2 Ω

j4 Ω

+
−2 Ω

2 Ω
12   0° V

2   0° A

4   90° A Vo

+

−

Figure 10.72 For Prob. 10.28.

10.29 Using mesh analysis, obtain Io in the circuit shown
in Fig. 10.73.

–j4 Ωj2 Ω
2 Ω

1 Ω 1 Ω

Io

+
− 10   90° V

4  0° A

2   0° A

Figure 10.73 For Prob. 10.29.

Section 10.4 Superposition Theorem

10.30 Find io in the circuit shown in Fig. 10.74 using
superposition.

4 Ω

+
−

+
−

2 Ω

8 V1 H10 cos 4t V

io

Figure 10.74 For Prob. 10.30.

10.31 Using the superposition principle, find ix in the
circuit of Fig. 10.75.

+
−

3 Ω

4 H 10 cos(2t – 60°) V5 cos(2t + 10°) A

ix
F1

8

Figure 10.75 For Prob. 10.31.

10.32 Rework Prob. 10.2 using the superposition theorem.

10.33 Solve for vo(t) in the circuit of Fig. 10.76 using the
superposition principle.

–j40 Ω –j40 Ω

j60 Ω80 Ω 20 ΩIo

+
−

+
−100   120° V 60   –30° V

Figure 10.70 For Prob. 10.23.
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+
−

+
−

6 Ω 2 H

10 V12 cos 3t V 4 sin 2t A
+

−
voF1

12

Figure 10.76 For Prob. 10.33.

10.34 Determine io in the circuit of Fig. 10.77.

+
−

1 Ω 2 H24 V

2 cos 3t2 Ω 4 Ω

+−
io

10 sin(3t – 30°) V

F1
6

Figure 10.77 For Prob. 10.34.

10.35 Find io in the circuit in Fig. 10.78 using
superposition.

80 Ω

60 Ω

40 mH

20 mF

24 V

100 Ω

+
−

+
−50 cos 2000t V

2 sin 4000t A

io

Figure 10.78 For Prob. 10.35.

Section 10.5 Source Transformation

10.36 Using source transformation, find i in the circuit of
Fig. 10.79.

3 Ω

5 Ω
5 mH

1 mF

8 sin(200t + 30°) A

i

Figure 10.79 For Prob. 10.36.

10.37 Use source transformation to find vo in the circuit in
Fig. 10.80.

20 Ω

80 Ω

0.4 mH

0.2 mF+
−5 cos 105t V vo

+

−

Figure 10.80 For Prob. 10.37.

10.38 Solve Prob. 10.20 using source transformation.

10.39 Use the method of source transformation to find Ix
in the circuit of Fig. 10.81.

+
−

2 Ω j4 Ω –j2 Ω

–j3 Ω

6 Ω 4 Ω

Ix

60   0° V 5   90° A

Figure 10.81 For Prob. 10.39.

10.40 Use the concept of source transformation to find Vo

in the circuit of Fig. 10.82.

+
−

4 Ω j4 Ω–j3 Ω

–j2 Ωj2 Ω 2 Ω20   0° V Vo

+

−

Figure 10.82 For Prob. 10.40.

Section 10.6 Thevenin and Norton Equivalent
Circuits

10.41 Find the Thevenin and Norton equivalent circuits at
terminals a-b for each of the circuits in Fig. 10.83.
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–j10 Ω

j20 Ω 10 Ω
a

b

50   30° V +
−

a

b

4   0° A

–j5 Ω

j10 Ω8 Ω

(b)

(a)

Figure 10.83 For Prob. 10.41.

10.42 For each of the circuits in Fig. 10.84, obtain
Thevenin and Norton equivalent circuits at terminals
a-b.

–j5 Ω

j4 Ω
6 Ω

30 Ω

a

b

2   0° A

a

b

120   45° V

–j2 Ω

j10 Ω

60 Ω

(b)

(a)

+
−

Figure 10.84 For Prob. 10.42.

10.43 Find the Thevenin and Norton equivalent circuits for
the circuit shown in Fig. 10.85.

j20 Ω

5 Ω 2 Ω

60   120° V +
−

–j10 Ω

Figure 10.85 For Prob. 10.43.

10.44 For the circuit depicted in Fig. 10.86, find the
Thevenin equivalent circuit at terminals a-b.

a

b

5   45° A j10 Ω
8 Ω

–j6 Ω

Figure 10.86 For Prob. 10.44.

10.45 Repeat Prob. 10.1 using Thevenin’s theorem.

10.46 Find the Thevenin equivalent of the circuit in Fig.
10.87 as seen from:
(a) terminals a-b (b) terminals c-d

10 Ω
a

b

4   0° A20   0° V

–j4 Ω

j5 Ω 4 Ω+
−

c d

Figure 10.87 For Prob. 10.46.

10.47 Solve Prob. 10.3 using Thevenin’s theorem.

10.48 Using Thevenin’s theorem, find vo in the circuit in
Fig. 10.88.

2 H4 Ω

2 Ω vo

io

3io

+
−12 cos t V

+

−
F1

4 F1
8

Figure 10.88 For Prob. 10.48.

10.49 Obtain the Norton equivalent of the circuit depicted
in Fig. 10.89 at terminals a-b.

a

b

5 mF

10 H 2 kΩ4 cos(200t + 30°) V

Figure 10.89 For Prob. 10.49.
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10.50 For the circuit shown in Fig. 10.90, find the Norton
equivalent circuit at terminals a-b.

60 Ω 40 Ω

–j30 Ωj80 Ω

a b3   60° A

Figure 10.90 For Prob. 10.50.

10.51 Compute io in Fig. 10.91 using Norton’s theorem.

2 Ω

4 H

5 cos 2t V

+ −
io

F1
4 F1

2

Figure 10.91 For Prob. 10.51.

10.52 At terminals a-b, obtain Thevenin and Norton
equivalent circuits for the network depicted in Fig.
10.92. Take ω = 10 rad/s.

a

b

10 mF

10 Ω2 sin vt V 

12 cos vt
+−

vo 2vo

+

−
H1

2

Figure 10.92 For Prob. 10.52.

Section 10.7 Op Amp AC Circuits

10.53 For the differentiator shown in Fig. 10.93, obtain
Vo/Vs . Find vo(t) when vs(t) = Vm sinωt and
ω = 1/RC.

+
−vs vo

R

C

+

−

+
−

Figure 10.93 For Prob. 10.53.

10.54 The circuit in Fig. 10.94 is an integrator with a
feedback resistor. Calculate vo(t) if
vs = 2 cos 4 × 104t V.

+
−vs vo

+

−

10 nF

100 kΩ

50 kΩ

+
−

Figure 10.94 For Prob. 10.54.

10.55 Compute io(t) in the op amp circuit in Fig. 10.95 if
vs = 4 cos 104t V.

+
−vs

50 kΩ

1 nF
100 kΩ

io

+
−

Figure 10.95 For Prob. 10.55.

10.56 If the input impedance is defined as Zin = Vs/Is ,
find the input impedance of the op amp circuit in
Fig. 10.96 when R1 = 10 k�, R2 = 20 k�,
C1 = 10 nF, C2 = 20 nF, and ω = 5000 rad/s.

Vs C2

C1

R1 R2
Is

Zin

Vo

+
−

+
−

Figure 10.96 For Prob. 10.56.

10.57 Evaluate the voltage gain Av = Vo/Vs in the op
amp circuit of Fig. 10.97. Find Av at ω = 0,
ω → ∞, ω = 1/R1C1, and ω = 1/R2C2.

+
−Vs Vo

+

−

C1R1

C2R2

+
−

Figure 10.97 For Prob. 10.57.
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10.58 In the op amp circuit of Fig. 10.98, find the
closed-loop gain and phase shift if C1 = C2 = 1 nF,
R1 = R2 = 100 k�, R3 = 20 k�, R4 = 40 k�, and
ω = 2000 rad/s.

vs vo

C1

R1

R2
+
−

C2

R4

R3

+

−

+
−

Figure 10.98 For Prob. 10.58.

10.59 Compute the closed-loop gain Vo/Vs for the op amp
circuit of Fig. 10.99.

+

−

+
−vs

vo

+

−

C1

R1

R3 C2 R2

Figure 10.99 For Prob. 10.59.

10.60 Determine vo(t) in the op amp circuit in Fig. 10.100
below.

10.61 For the op amp circuit in Fig. 10.101, obtain vo(t).

vo
+
−

10 kΩ

20 kΩ

40 kΩ
0.1 mF

0.2 mF

+
−

+
−

+

−

5 cos 103t V

Figure 10.101 For Prob. 10.61.

10.62 Obtain vo(t) for the op amp circuit in Fig. 10.102 if
vs = 4 cos(1000t − 60◦) V.

vo
vs +

−

10 kΩ

50 kΩ

20 kΩ 0.2 mF

0.1 mF

+
−

+
−

+

−

Figure 10.102 For Prob. 10.62.

Section 10.8 AC Analysis Using PSpice

10.63 Use PSpice to solve Example 10.10.

10.64 Solve Prob. 10.13 using PSpice.

vo

+
−

10 kΩ

20 kΩ

20 kΩ

40 kΩ10 kΩ0.25 mF

0.5 mF

+
−

2 sin 400t V

Figure 10.100 For Prob. 10.60.
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10.65 Obtain Vo in the circuit of Fig. 10.103 using PSpice.

1 Ω

j4 Ω
–j2 Ω

2 Ω
+

−
Vx

2Vx
+

−
Vo

3   0° A

Figure 10.103 For Prob. 10.65.

10.66 Use PSpice to find V1,V2, and V3 in the network of
Fig. 10.104.

+
−

8 Ω

j10 Ω j10 Ω

–j4 Ω –j4 Ω

V1 V3V2

60   30° V 4   0° A

Figure 10.104 For Prob. 10.66.

10.67 Determine V1,V2, and V3 in the circuit of Fig.
10.105 using PSpice.

8 Ω

j10 Ω

1 Ω2 Ω

j6 Ω –j2 Ω

–j4 Ω
V1 V3V2

4   0° A 2   0° A

Figure 10.105 For Prob. 10.67.

10.68 Use PSpice to find vo and io in the circuit of Fig.
10.106 below.

Section 10.9 Applications

10.69 The op amp circuit in Fig. 10.107 is called an
inductance simulator. Show that the input
impedance is given by

Zin = Vin

Iin
= jωLeq

where

Leq = R1R3R4

R2
C

Vin

I in

+
−

+
−

R1 R2 R3
C R4

+
−

Figure 10.107 For Prob. 10.69.

10.70 Figure 10.108 shows a Wien-bridge network. Show
that the frequency at which the phase shift between
the input and output signals is zero is f = 1

2πRC,
and that the necessary gain is Av = Vo/Vi = 3 at
that frequency.

Vi
+
−

R
R1

R2R

C

C

+ −Vo

Figure 10.108 For Prob. 10.70.

10.71 Consider the oscillator in Fig. 10.109.
(a) Determine the oscillation frequency.

20 mF

25 mF

2 H4 Ω

10 Ω vo0.5vo

io

4io
+
−6 cos 4t V

+

−

+
−

Figure 10.106 For Prob. 10.68.
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(b) Obtain the minimum value of R for which
oscillation takes place.

+
−

R

10 kΩ

20 kΩ

80 kΩ

0.4 mH 2 nF

Figure 10.109 For Prob. 10.71.

10.72 The oscillator circuit in Fig. 10.110 uses an ideal op
amp.
(a) Calculate the minimum value of Ro that will

cause oscillation to occur.
(b) Find the frequency of oscillation.

+
−

10 kΩ

100 kΩ

1 MΩ

10 mH 2 nF

Ro

Figure 10.110 For Prob. 10.72.

10.73 Figure 10.111 shows a Colpitts oscillator. Show
that the oscillation frequency is

fo = 1

2π
√
LCT

where CT = C1C2/(C1 + C2). Assume Ri � XC2 .

+
−

Rf

Ri

C2 C1

L

Vo

Figure 10.111 A Colpitts oscillator; for Prob. 10.73.

(Hint: Set the imaginary part of the impedance in
the feedback circuit equal to zero.)

10.74 Design a Colpitts oscillator that will operate at
50 kHz.

10.75 Figure 10.112 shows a Hartley oscillator. Show that
the frequency of oscillation is

fo = 1

2π
√
C(L1 + L2)

+
−

Rf

Ri

L2 L1

C

Vo

Figure 10.112 A Hartley oscillator; for Prob. 10.75.

10.76 Refer to the oscillator in Fig. 10.113.
(a) Show that

V2

Vo

= 1

3 + j (ωL/R − R/ωL)

(b) Determine the oscillation frequency fo.
(c) Obtain the relationship between R1 and R2 in

order for oscillation to occur.

+
−

R L

RL

R1

R2

Vo

V2

Figure 10.113 For Prob. 10.76.
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