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C H A P T E R

SINUSOIDS AND PHASORS

9

The desire to understand the world and the desire to reform it are the two
great engines of progress.

— Bertrand Russell

Historical Profiles
Heinrich Rudorf Hertz (1857–1894), a German experimental physicist, demonstrated
that electromagnetic waves obey the same fundamental laws as light. His work confirmed
James Clerk Maxwell’s celebrated 1864 theory and prediction that such waves existed.

Hertz was born into a prosperous family in Hamburg, Germany. He attended
the University of Berlin and did his doctorate under the prominent physicist Hermann
von Helmholtz. He became a professor at Karlsruhe, where he began his quest for
electromagnetic waves. Hertz successfully generated and detected electromagnetic
waves; he was the first to show that light is electromagnetic energy. In 1887, Hertz
noted for the first time the photoelectric effect of electrons in a molecular structure.
Although Hertz only lived to the age of 37, his discovery of electromagnetic waves
paved the way for the practical use of such waves in radio, television, and other
communication systems. The unit of frequency, the hertz, bears his name.

Charles Proteus Steinmetz (1865–1923), a German-Austrian mathematician and en-
gineer, introduced the phasor method (covered in this chapter) in ac circuit analysis. He
is also noted for his work on the theory of hysteresis.

Steinmetz was born in Breslau, Germany, and lost his mother at the age of one.
As a youth, he was forced to leave Germany because of his political activities just as
he was about to complete his doctoral dissertation in mathematics at the University
of Breslau. He migrated to Switzerland and later to the United States, where he
was employed by General Electric in 1893. That same year, he published a paper in
which complex numbers were used to analyze ac circuits for the first time. This led to
one of his many textbooks,Theory and Calculation of ac Phenomena, published by
McGraw-Hill in 1897. In 1901, he became the president of the American Institute of
Electrical Engineers, which later became the IEEE.
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9.1 INTRODUCTION
Thus far our analysis has been limited for the most part to dc circuits:
those circuits excited by constant or time-invariant sources. We have
restricted the forcing function to dc sources for the sake of simplicity, for
pedagogic reasons, and also for historic reasons. Historically, dc sources
were the main means of providing electric power up until the late 1800s.
At the end of that century, the battle of direct current versus alternating
current began. Both had their advocates among the electrical engineers
of the time. Because ac is more efficient and economical to transmit over
long distances, ac systems ended up the winner. Thus, it is in keeping
with the historical sequence of events that we considered dc sources first.

We now begin the analysis of circuits in which the source voltage or
current is time-varying. In this chapter, we are particularly interested in
sinusoidally time-varying excitation, or simply, excitation by asinusoid.

A sinusoid is a signal that has the form of the sine or cosine function.

A sinusoidal current is usually referred to asalternating current (ac).
Such a current reverses at regular time intervals and has alternately posi-
tive and negative values. Circuits driven by sinusoidal current or voltage
sources are calledac circuits.

We are interested in sinusoids for a number of reasons. First, nature
itself is characteristically sinusoidal. We experience sinusoidal variation
in the motion of a pendulum, the vibration of a string, the ripples on the
ocean surface, the political events of a nation, the economic fluctuations
of the stock market, and the natural response of underdamped second-
order systems, to mention but a few. Second, a sinusoidal signal is easy
to generate and transmit. It is the form of voltage generated throughout
the world and supplied to homes, factories, laboratories, and so on. It is
the dominant form of signal in the communications and electric power
industries. Third, through Fourier analysis, any practical periodic signal
can be represented by a sum of sinusoids. Sinusoids, therefore, play an
important role in the analysis of periodic signals. Lastly, a sinusoid is
easy to handle mathematically. The derivative and integral of a sinusoid
are themselves sinusoids. For these and other reasons, the sinusoid is an
extremely important function in circuit analysis.

A sinusoidal forcing function produces both a natural (or transient)
response and a forced (or steady-state) response, much like the step func-
tion, which we studied in Chapters 7 and 8. The natural response of a
circuit is dictated by the nature of the circuit, while the steady-state re-
sponse always has a form similar to the forcing function. However, the
natural response dies out with time so that only the steady-state response
remains after a long time. When the natural response has become negligi-
bly small compared with the steady-state response, we say that the circuit
is operating at sinusoidal steady state. It is thissinusoidal steady-state
response that is of main interest to us in this chapter.
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We begin with a basic discussion of sinusoids and phasors. We
then introduce the concepts of impedance and admittance. The basic
circuit laws, Kirchhoff’s and Ohm’s, introduced for dc circuits, will be
applied to ac circuits. Finally, we consider applications of ac circuits in
phase-shifters and bridges.

9.2 SINUSOIDS
Consider the sinusoidal voltage

v(t) = Vm sinωt (9.1)

where

Vm = theamplitude of the sinusoid

ω = theangular frequency in radians/s

ωt = theargument of the sinusoid

The sinusoid is shown in Fig. 9.1(a) as a function of its argument and in
Fig. 9.1(b) as a function of time. It is evident that the sinusoid repeats
itself everyT seconds; thus,T is called theperiod of the sinusoid. From
the two plots in Fig. 9.1, we observe thatωT = 2π ,

T = 2π

ω
(9.2)

The fact thatv(t) repeats itself everyT seconds is shown by replacingt
by t + T in Eq. (9.1). We get

v(t + T ) = Vm sinω(t + T ) = Vm sinω

(
t + 2π

ω

)

= Vm sin(ωt + 2π) = Vm sinωt = v(t)

(9.3)

Hence,

v(t + T ) = v(t) (9.4)

that is,v has the same value att + T as it does att andv(t) is said to be
periodic. In general,

A periodic function is one that satisfies f (t) = f (t + nT), for all t and for all
integers n.

0

Vm

–Vm

π 2π 4π vt

(a)

v(t)

0

Vm

–Vm

(b)

v(t)

T
2

T 2T t3π 3T
2

Figure 9.1 A sketch of Vm sinωt : (a) as a function of ωt , (b) as a function of t.
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As mentioned, the period T of the periodic function is the time of one
complete cycle or the number of seconds per cycle. The reciprocal of
this quantity is the number of cycles per second, known as the cyclic
frequency f of the sinusoid. Thus,

f = 1

T
(9.5)

From Eqs. (9.2) and (9.5), it is clear that

ω = 2πf (9.6)

While ω is in radians per second (rad/s), f is in hertz (Hz).The unit of f is named after the German physicist
Heinrich R. Hertz (1857–1894). Let us now consider a more general expression for the sinusoid,

v(t) = Vm sin(ωt + φ) (9.7)

where (ωt + φ) is the argument and φ is the phase. Both argument and
phase can be in radians or degrees.

Let us examine the two sinusoids

v1(t) = Vm sinωt and v2(t) = Vm sin(ωt + φ) (9.8)

shown in Fig. 9.2. The starting point of v2 in Fig. 9.2 occurs first in time.
Therefore, we say that v2 leads v1 by φ or that v1 lags v2 by φ. If φ �= 0,
we also say that v1 and v2 are out of phase. If φ = 0, then v1 and v2 are
said to be in phase; they reach their minima and maxima at exactly the
same time. We can compare v1 and v2 in this manner because they operate
at the same frequency; they do not need to have the same amplitude.

Vm

–Vm

vt
f

v2 = Vm sin(vt + f)

v1 = Vm sin vt

π 2π

Figure 9.2 Two sinusoids with different phases.

A sinusoid can be expressed in either sine or cosine form. When
comparing two sinusoids, it is expedient to express both as either sine or
cosine with positive amplitudes. This is achieved by using the following
trigonometric identities:

sin(A± B) = sinA cosB ± cosA sinB

cos(A± B) = cosA cosB ∓ sinA sinB
(9.9)
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With these identities, it is easy to show that

sin(ωt ± 180◦) = − sinωt

cos(ωt ± 180◦) = − cosωt

sin(ωt ± 90◦) = ± cosωt

cos(ωt ± 90◦) = ∓ sinωt

(9.10)

Using these relationships, we can transform a sinusoid from sine form to
cosine form or vice versa.

A graphical approach may be used to relate or compare sinusoids
as an alternative to using the trigonometric identities in Eqs. (9.9) and
(9.10). Consider the set of axes shown in Fig. 9.3(a). The horizontal
axis represents the magnitude of cosine, while the vertical axis (pointing
down) denotes the magnitude of sine. Angles are measured positively
counterclockwise from the horizontal, as usual in polar coordinates. This
graphical technique can be used to relate two sinusoids. For example, we
see in Fig. 9.3(a) that subtracting 90◦ from the argument of cosωt gives
sinωt , or cos(ωt−90◦) = sinωt . Similarly, adding 180◦ to the argument
of sinωt gives − sinωt , or sin(ωt − 180◦) = − sinωt , as shown in Fig.
9.3(b).

–90°

180°

+ sin vt 

+ sin vt 

+ cos vt 

+ cos vt 

(a)

(b)

Figure 9.3 A graphical means
of relating cosine and sine:
(a) cos(ωt − 90◦) = sinωt ,
(b) sin(ωt + 180◦) = − sinωt.

The graphical technique can also be used to add two sinusoids of
the same frequency when one is in sine form and the other is in cosine
form. To add A cosωt and B sinωt , we note that A is the magnitude
of cosωt while B is the magnitude of sinωt , as shown in Fig. 9.4(a).
The magnitude and argument of the resultant sinusoid in cosine form is
readily obtained from the triangle. Thus,

A cosωt + B sinωt = C cos(ωt − θ) (9.11)

where

C =
√
A2 + B2, θ = tan−1 B

A
(9.12)

For example, we may add 3 cosωt and −4 sinωt as shown in Fig. 9.4(b)
and obtain

3 cosωt − 4 sinωt = 5 cos(ωt + 53.1◦) (9.13)

A

C

B

–u

sin vt 

cos vt 

(a)

sin vt 

cos vt 0

53.1°

+3

–4

5

(b)

Figure 9.4 (a) AddingA cosωt and B sinωt, (b) adding 3 cosωt and −4 sinωt .
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Compared with the trigonometric identities in Eqs. (9.9) and (9.10),
the graphical approach eliminates memorization. However, we must not
confuse the sine and cosine axes with the axes for complex numbers to
be discussed in the next section. Something else to note in Figs. 9.3 and
9.4 is that although the natural tendency is to have the vertical axis point
up, the positive direction of the sine function is down in the present case.

E X A M P L E 9 . 1

Find the amplitude, phase, period, and frequency of the sinusoid

v(t) = 12 cos(50t + 10◦)
Solution:

The amplitude is Vm = 12 V.

The phase is φ = 10◦.

The angular frequency is ω = 50 rad/s.

The period T = 2π

ω
= 2π

50
= 0.1257 s.

The frequency is f = 1

T
= 7.958 Hz.

P R A C T I C E P R O B L E M 9 . 1

Given the sinusoid 5 sin(4πt − 60◦), calculate its amplitude, phase, an-
gular frequency, period, and frequency.

Answer: 5, −60◦, 12.57 rad/s, 0.5 s, 2 Hz.

E X A M P L E 9 . 2

Calculate the phase angle between v1 = −10 cos(ωt + 50◦) and v2 =
12 sin(ωt − 10◦). State which sinusoid is leading.

Solution:

Let us calculate the phase in three ways. The first two methods use trigo-
nometric identities, while the third method uses the graphical approach.

METHOD 1 In order to compare v1 and v2, we must express them in the
same form. If we express them in cosine form with positive amplitudes,

v1 = −10 cos(ωt + 50◦) = 10 cos(ωt + 50◦ − 180◦)
v1 = 10 cos(ωt − 130◦) or v1 = 10 cos(ωt + 230◦) (9.2.1)

and

v2 = 12 sin(ωt − 10◦) = 12 cos(ωt − 10◦ − 90◦)
v2 = 12 cos(ωt − 100◦) (9.2.2)

It can be deduced from Eqs. (9.2.1) and (9.2.2) that the phase difference
between v1 and v2 is 30◦. We can write v2 as
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v2 = 12 cos(ωt − 130◦ + 30◦) or v2 = 12 cos(ωt + 260◦) (9.2.3)

Comparing Eqs. (9.2.1) and (9.2.3) shows clearly that v2 leads v1 by 30◦.

METHOD 2 Alternatively, we may express v1 in sine form:

v1 = −10 cos(ωt + 50◦) = 10 sin(ωt + 50◦ − 90◦)
= 10 sin(ωt − 40◦) = 10 sin(ωt − 10◦ − 30◦)

But v2 = 12 sin(ωt − 10◦). Comparing the two shows that v1 lags v2 by
30◦. This is the same as saying that v2 leads v1 by 30◦.

50°

10°v1

v2

sin vt 

cos vt 

Figure 9.5 For Example 9.2.

METHOD 3 We may regard v1 as simply −10 cosωt with a phase shift
of +50◦. Hence, v1 is as shown in Fig. 9.5. Similarly, v2 is 12 sinωt with
a phase shift of −10◦, as shown in Fig. 9.5. It is easy to see from Fig. 9.5
that v2 leads v1 by 30◦, that is, 90◦ − 50◦ − 10◦.

P R A C T I C E P R O B L E M 9 . 2

Find the phase angle between

i1 = −4 sin(377t + 25◦) and i2 = 5 cos(377t − 40◦)

Does i1 lead or lag i2?

Answer: 155◦, i1 leads i2.

9.3 PHASORS
Sinusoids are easily expressed in terms of phasors, which are more con-
venient to work with than sine and cosine functions.

A phasor is a complex number that represents the amplitude and phase
of a sinusoid.

Phasors provide a simple means of analyzing linear circuits excited by
sinusoidal sources; solutions of such circuits would be intractable other-
wise. The notion of solving ac circuits using phasors was first introduced
by Charles Steinmetz in 1893. Before we completely define phasors and
apply them to circuit analysis, we need to be thoroughly familiar with
complex numbers.

Charles Proteus Steinmetz (1865–1923) was a
German-Austrian mathematician and electrical
engineer.

Appendix B presents a short tutorial on complex
numbers.

A complex number z can be written in rectangular form as

z = x + jy (9.14a)

where j = √−1; x is the real part of z; y is the imaginary part of z.
In this context, the variables x and y do not represent a location as in
two-dimensional vector analysis but rather the real and imaginary parts
of z in the complex plane. Nevertheless, we note that there are some

http://www.mhhe.com/engcs/electrical/alexander/eetuts/tutorial/Tut10-1.htm
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resemblances between manipulating complex numbers and manipulating
two-dimensional vectors.

The complex number z can also be written in polar or exponential
form as

z = r φ = rejφ (9.14b)

where r is the magnitude of z, and φ is the phase of z. We notice that z
can be represented in three ways:

z = x + jy Rectangular form

z = r φ Polar form

z = rejφ Exponential form

(9.15)

The relationship between the rectangular form and the polar form
is shown in Fig. 9.6, where the x axis represents the real part and the y
axis represents the imaginary part of a complex number. Given x and y,
we can get r and φ as

r =
√
x2 + y2, φ = tan−1 y

x
(9.16a)

On the other hand, if we know r and φ, we can obtain x and y as

x = r cosφ, y = r sinφ (9.16b)

Thus, z may be written as

z = x + jy = r φ = r(cosφ + j sinφ) (9.17)

0

2j

j

–2j

–j

z

yr

x
Real axis

Imaginary axis

f

Figure 9.6 Representation of a
complex number z = x + jy = r φ.

Addition and subtraction of complex numbers are better performed
in rectangular form; multiplication and division are better done in polar
form. Given the complex numbers

z = x + jy = r φ, z1 = x1 + jy1 = r1 φ1

z2 = x2 + jy2 = r2 φ2

the following operations are important.
Addition:

z1 + z2 = (x1 + x2)+ j (y1 + y2) (9.18a)

Subtraction:

z1 − z2 = (x1 − x2)+ j (y1 − y2) (9.18b)

Multiplication:

z1z2 = r1r2 φ1 + φ2 (9.18c)

Division:
z1

z2
= r1

r2
φ1 − φ2 (9.18d)

Reciprocal:

1

z
= 1

r
− φ (9.18e)

Square Root:
√
z = √

r φ/2 (9.18f)



CHAPTER 9 Sinusoids and Phasors 361

Complex Conjugate:

z∗ = x − jy = r − φ = re−jφ (9.18g)

Note that from Eq. (9.18e),

1

j
= −j (9.18h)

These are the basic properties of complex numbers we need. Other prop-
erties of complex numbers can be found in Appendix B.

The idea of phasor representation is based on Euler’s identity. In
general,

e±jφ = cosφ ± j sinφ (9.19)

which shows that we may regard cosφ and sinφ as the real and imaginary
parts of ejφ ; we may write

cosφ = Re(ejφ) (9.20a)

sinφ = Im(ejφ) (9.20b)

where Re and Im stand for the real part of and the imaginary part of.
Given a sinusoid v(t) = Vm cos(ωt + φ), we use Eq. (9.20a) to express
v(t) as

v(t) = Vm cos(ωt + φ) = Re(Vme
j(ωt+φ)) (9.21)

or

v(t) = Re(Vme
jφejωt ) (9.22)

Thus,

v(t) = Re(Vejωt ) (9.23)

where

V = Vme
jφ = Vm φ (9.24)

V is thus the phasor representation of the sinusoid v(t), as we said earlier.
In other words, a phasor is a complex representation of the magnitude
and phase of a sinusoid. Either Eq. (9.20a) or Eq. (9.20b) can be used to
develop the phasor, but the standard convention is to use Eq. (9.20a).

A phasor may be regarded as a mathematical
equivalent of a sinusoid with the time depen-
dence dropped.

If we use sine for the phasor instead of cosine,
then v(t) = Vm sin (ωt + φ) = Im (Vme j(ωt + φ))
and the corresponding phasor is the same as that
in Eq. (9.24).

One way of looking at Eqs. (9.23) and (9.24) is to consider the plot
of the sinor Vejωt = Vme

j(ωt+φ) on the complex plane. As time increases,
the sinor rotates on a circle of radius Vm at an angular velocity ω in the
counterclockwise direction, as shown in Fig. 9.7(a). In other words, the
entire complex plane is rotating at an angular velocity of ω. We may
regard v(t) as the projection of the sinor Vejωt on the real axis, as shown
in Fig. 9.7(b). The value of the sinor at time t = 0 is the phasor V of
the sinusoid v(t). The sinor may be regarded as a rotating phasor. Thus,
whenever a sinusoid is expressed as a phasor, the term ejωt is implicitly
present. It is therefore important, when dealing with phasors, to keep
in mind the frequency ω of the phasor; otherwise we can make serious
mistakes.
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Rotation at v rad ⁄s

at t = to
at t = 0

f

Vm

Im

Re 0 to t

Vm

v(t) = Re(Ve jvt )

(a) (b)

Figure 9.7 Representation of Vejωt : (a) sinor rotating counterclockwise, (b) its
projection on the real axis, as a function of time.

Equation (9.23) states that to obtain the sinusoid corresponding to
a given phasor V, multiply the phasor by the time factor ejωt and take
the real part. As a complex quantity, a phasor may be expressed in
rectangular form, polar form, or exponential form. Since a phasor has
magnitude and phase (“direction” ), it behaves as a vector and is printed
in boldface. For example, phasors V = Vm φ and I = Im − θ are
graphically represented in Fig. 9.8. Such a graphical representation of
phasors is known as a phasor diagram.

We use lightface italic letters such as z to repre-
sent complex numbers but boldface letters such
as V to represent phasors, because phasors are
vectorlike quantities.

Lagging direction

Leading direction

Real axis

Imaginary axis

Vm

Im

v

v

V

I

–u

f

Figure 9.8 A phasor diagram showing V = Vm φ and I = Im − θ .

Equations (9.21) through (9.23) reveal that to get the phasor corre-
sponding to a sinusoid, we first express the sinusoid in the cosine form
so that the sinusoid can be written as the real part of a complex number.
Then we take out the time factor ejωt , andwhatever is left is the pha-



CHAPTER 9 Sinusoids and Phasors 363

sor corresponding to the sinusoid. By suppressing the time factor, we
transform the sinusoid from the time domain to the phasor domain. This
transformation is summarized as follows:

v(t) = Vm cos(ωt + φ)
(Time-domain
representation)

⇐⇒ V = Vm φ
(Phasor-domain
representation)

(9.25)

Given a sinusoidv(t) = Vm cos(ωt + φ), we obtain the correspond-
ing phasor as V = Vm φ. Equation (9.25) is also demonstrated in Table
9.1, where the sine function is considered in addition to the cosine func-
tion. From Eq. (9.25), we see that to get the phasor representation of a
sinusoid, we express it in cosine form and take the magnitude and phase.
Given a phasor, we obtain the time-domain representation as the cosine
function with the same magnitude as the phasor and the argument as
ωt plus the phase of the phasor. The idea of expressing information in
alternate domains is fundamental to all areas of engineering.

TABLE 9.1 Sinusoid-phasor transformation.

Time-domain representation Phasor-domain representation

Vm cos(ωt + φ) Vm φ

Vm sin(ωt + φ) Vm φ − 90◦

Im cos(ωt + θ) Im θ

Im sin(ωt + θ) Im θ − 90◦

Note that in Eq. (9.25) the frequency (or time) factor ejωt is sup-
pressed, and the frequency is not explicitly shown in the phasor-domain
representation because ω is constant. However, the response depends on
ω. For this reason, the phasor domain is also known as the frequency
domain.

From Eqs. (9.23) and (9.24), v(t) = Re(Vejωt ) = Vm cos (ωt+φ),
so that

dv

dt
= −ωVm sin(ωt + φ) = ωVm cos(ωt + φ + 90◦)

= Re(ωVmejωtejφej90◦
) = Re(jωVejωt )

(9.26)

This shows that the derivative v(t) is transformed to the phasor domain
as jωV

dv

dt
(Time domain)

⇐⇒ jωV
(Phasor domain)

(9.27)

Similarly, the integral of v(t) is transformed to the phasor domain as
V/jω ∫

v dt

(Time domain)

⇐⇒ V
jω

(Phasor domain)

(9.28)

Differentiating a sinusoid is equivalent to multi-
plying its corresponding phasor by jω.

Integrating a sinusoid is equivalent to dividing its
corresponding phasor by jω.



364 PART 2 AC Circuits

Equation (9.27) allows the replacement of a derivative with respect
to time with multiplication of jω in the phasor domain, whereas Eq.
(9.28) allows the replacement of an integral with respect to time with
division by jω in the phasor domain. Equations (9.27) and (9.28) are
useful in finding the steady-state solution, which does not require knowing
the initial values of the variable involved. This is one of the important
applications of phasors.

Besides time differentiation and integration, another important use
of phasors is found in summing sinusoids of the same frequency. This is
best illustrated with an example, and Example 9.6 provides one.

Adding sinusoids of the same frequency is equiv-
alent to adding their corresponding phasors.

The differences between v(t) and V should be emphasized:

1. v(t) is the instantaneous or time-domain representation, while
V is the frequency or phasor-domain representation.

2. v(t) is time dependent, while V is not. (This fact is often
forgotten by students.)

3. v(t) is always real with no complex term, while V is generally
complex.

Finally, we should bear in mind that phasor analysis applies only when
frequency is constant; it applies in manipulating two or more sinusoidal
signals only if they are of the same frequency.

E X A M P L E 9 . 3

Evaluate these complex numbers:

(a) (40 50◦ + 20 − 30◦)1/2

(b)
10 − 30◦ + (3 − j4)

(2 + j4)(3 − j5)∗

Solution:

(a) Using polar to rectangular transformation,

40 50◦ = 40(cos 50◦ + j sin 50◦) = 25.71 + j30.64

20 − 30◦ = 20[cos(−30◦)+ j sin(−30◦)] = 17.32 − j10

Adding them up gives

40 50◦ + 20 − 30◦ = 43.03 + j20.64 = 47.72 25.63◦

Taking the square root of this,

(40 50◦ + 20 − 30◦)1/2 = 6.91 12.81◦

(b) Using polar-rectangular transformation, addition, multiplication, and
division,

10 − 30◦ + (3 − j4)

(2 + j4)(3 − j5)∗
= 8.66 − j5 + (3 − j4)

(2 + j4)(3 + j5)

= 11.66 − j9

−14 + j22
= 14.73 − 37.66◦

26.08 122.47◦

= 0.565 − 160.31◦
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P R A C T I C E P R O B L E M 9 . 3

Evaluate the following complex numbers:

(a) [(5 + j2)(−1 + j4)− 5 60◦]∗

(b)
10 + j5 + 3 40◦

−3 + j4
+ 10 30◦

Answer: (a) −15.5 − j13.67, (b) 8.293 + j2.2.

E X A M P L E 9 . 4

Transform these sinusoids to phasors:

(a) v = −4 sin(30t + 50◦)
(b) i = 6 cos(50t − 40◦)
Solution:

(a) Since − sinA = cos(A+ 90◦),
v = −4 sin(30t + 50◦) = 4 cos(30t + 50◦ + 90◦)

= 4 cos(30t + 140◦)
The phasor form of v is

V = 4 140◦

(b) i = 6 cos(50t − 40◦) has the phasor

I = 6 − 40◦

P R A C T I C E P R O B L E M 9 . 4

Express these sinusoids as phasors:

(a) v = −7 cos(2t + 40◦)
(b) i = 4 sin(10t + 10◦)
Answer: (a) V = 7 220◦, (b) I = 4 − 80◦.

E X A M P L E 9 . 5

Find the sinusoids represented by these phasors:

(a) V = j8e−j20◦

(b) I = −3 + j4

Solution:

(a) Since j = 1 90◦,

V = j8 − 20◦ = (1 90◦)(8 − 20◦)

= 8 90◦ − 20◦ = 8 70◦ V

Converting this to the time domain gives

v(t) = 8 cos(ωt + 70◦) V

(b) I = −3 + j4 = 5 126.87◦. Transforming this to the time domain
gives

i(t) = 5 cos(ωt + 126.87◦) A
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P R A C T I C E P R O B L E M 9 . 5

Find the sinusoids corresponding to these phasors:

(a) V = −10 30◦

(b) I = j (5 − j12)

Answer: (a) v(t) = 10 cos(ωt+210◦), (b) i(t) = 13 cos(ωt+22.62◦).

E X A M P L E 9 . 6

Given i1(t) = 4 cos(ωt + 30◦) and i2(t) = 5 sin(ωt − 20◦), find their
sum.

Solution:

Here is an important use of phasors—for summing sinusoids of the same
frequency. Current i1(t) is in the standard form. Its phasor is

I1 = 4 30◦

We need to express i2(t) in cosine form. The rule for converting sine to
cosine is to subtract 90◦. Hence,

i2 = 5 cos(ωt − 20◦ − 90◦) = 5 cos(ωt − 110◦)

and its phasor is

I2 = 5 − 110◦

If we let i = i1 + i2, then

I = I1 + I2 = 4 30◦ + 5 − 110◦

= 3.464 + j2 − 1.71 − j4.698 = 1.754 − j2.698

= 3.218 − 56.97◦ A

Transforming this to the time domain, we get

i(t) = 3.218 cos(ωt − 56.97◦) A

Of course, we can find i1 + i2 using Eqs. (9.9), but that is the hard way.

P R A C T I C E P R O B L E M 9 . 6

If v1 = −10 sin(ωt + 30◦) and v2 = 20 cos(ωt − 45◦), find V = v1 + v2.

Answer: v(t) = 10.66 cos(ωt − 30.95◦).

E X A M P L E 9 . 7

Using the phasor approach, determine the current i(t) in a circuit de-
scribed by the integrodifferential equation

4i + 8
∫
i dt − 3

di

dt
= 50 cos(2t + 75◦)
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Solution:

We transform each term in the equation from time domain to phasor
domain. Keeping Eqs. (9.27) and (9.28) in mind, we obtain the phasor
form of the given equation as

4I + 8I
jω

− 3jωI = 50 75◦

But ω = 2, so

I(4 − j4 − j6) = 50 75◦

I = 50 75◦

4 − j10
= 50 75◦

10.77 − 68.2◦
= 4.642 143.2◦ A

Converting this to the time domain,

i(t) = 4.642 cos(2t + 143.2◦) A

Keep in mind that this is only the steady-state solution, and it does not
require knowing the initial values.

P R A C T I C E P R O B L E M 9 . 7

Find the voltage v(t) in a circuit described by the integrodifferential equa-
tion

2
dv

dt
+ 5v + 10

∫
v dt = 20 cos(5t − 30◦)

using the phasor approach.

Answer: v(t) = 2.12 cos(5t − 88◦).

9.4 PHASOR RELATIONSHIPS FOR CIRCUIT ELEMENTS
Now that we know how to represent a voltage or current in the phasor or
frequency domain, one may legitimately ask how we apply this to circuits
involving the passive elements R, L, and C. What we need to do is to
transform the voltage-current relationship from the time domain to the
frequency domain for each element. Again, we will assume the passive
sign convention.

We begin with the resistor. If the current through a resistor R is
i = Im cos(ωt + φ), the voltage across it is given by Ohm’s law as

v = iR = RIm cos(ωt + φ) (9.29)

The phasor form of this voltage is

V = RIm φ (9.30)

But the phasor representation of the current is I = Im φ. Hence,

V = RI (9.31)
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showing that the voltage-current relation for the resistor in the phasor
domain continues to be Ohm’s law, as in the time domain. Figure 9.9
illustrates the voltage-current relations of a resistor. We should note from
Eq. (9.31) that voltage and current are in phase, as illustrated in the phasor
diagram in Fig. 9.10.

(a)

i

v

+

−

R

v = iR

(b)

I

V

+

−

R

V = IR

Figure 9.9 Voltage-current
relations for a resistor in the:
(a) time domain, (b) frequency
domain.

I

f

V

0 Re

Im

Figure 9.10 Phasor diagram for the
resistor.

For the inductor L, assume the current through it is i =
Im cos(ωt + φ). The voltage across the inductor is

v = L
di

dt
= −ωLIm sin(ωt + φ) (9.32)

Recall from Eq. (9.10) that − sinA = cos(A + 90◦). We can write the
voltage as

v = ωLIm cos(ωt + φ + 90◦) (9.33)

which transforms to the phasor

V = ωLIme
j(φ+90◦) = ωLIme

jφej90◦ = ωLIm φej90◦
(9.34)

But Im φ = I, and from Eq. (9.19), ej90◦ = j . Thus,

V = jωLI (9.35)

showing that the voltage has a magnitude ofωLIm and a phase of φ+90◦.
The voltage and current are 90◦ out of phase. Specifically, the current
lags the voltage by 90◦. Figure 9.11 shows the voltage-current relations
for the inductor. Figure 9.12 shows the phasor diagram.

Although it is equally correct to say that the in-
ductor voltage leads the current by 90◦, con-
vention gives the current phase relative to the
voltage.

i

v

+

−

L

v = L di
dt

(a)

I

V

+

−

L

V = jvLI 

(b)

Figure 9.11 Voltage-current
relations for an inductor in the:
(a) time domain, (b) frequency
domain.

For the capacitor C, assume the voltage across it is v =
Vm cos(ωt + φ). The current through the capacitor is

i = C
dv

dt
(9.36)

By following the same steps as we took for the inductor or by applying
Eq. (9.27) on Eq. (9.36), we obtain

I = jωCV �⇒ V = I
jωC

(9.37)

showing that the current and voltage are 90◦ out of phase. To be specific,
the current leads the voltage by 90◦. Figure 9.13 shows the voltage-current

v

Re

Im

V
I

0

f

Figure 9.12 Phasor diagram for the
inductor; I lags V.

i

v

+

−

C

(a)

i = C dv
dt

I

V

+

−

C

(b)

I = jvCV 

Figure 9.13 Voltage-current
relations for a capacitor in the:
(a) time domain, (b) frequency
domain.
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relations for the capacitor; Fig. 9.14 gives the phasor diagram. Table 9.2
summarizes the time-domain and phasor-domain representations of the
circuit elements. v

Re

Im

I
V

0

f

Figure 9.14 Phasor diagram for the capa-
citor; I leads V.

TABLE 9.2 Summary of voltage-current
relationships.

Element Time domain Frequency domain

R v = Ri V = RI

L v = L
di

dt
V = jωLI

C i = C
dv

dt
V = I

jωC

E X A M P L E 9 . 8

The voltage v = 12 cos(60t + 45◦) is applied to a 0.1-H inductor. Find
the steady-state current through the inductor.

Solution:

For the inductor, V = jωLI, where ω = 60 rad/s and V = 12 45◦ V.
Hence

I = V
jωL

= 12 45◦

j60 × 0.1
= 12 45◦

6 90◦
= 2 − 45◦ A

Converting this to the time domain,

i(t) = 2 cos(60t − 45◦) A

P R A C T I C E P R O B L E M 9 . 8

If voltage v = 6 cos(100t−30◦) is applied to a 50µF capacitor, calculate
the current through the capacitor.

Answer: 30 cos(100t + 60◦) mA.

9.5 IMPEDANCE AND ADMITTANCE
In the preceding section, we obtained the voltage-current relations for the
three passive elements as

V = RI, V = jωLI, V = I
jωC

(9.38)

These equations may be written in terms of the ratio of the phasor voltage
to the phasor current as

V
I

= R,
V
I

= jωL,
V
I

= 1

jωC
(9.39)

From these three expressions, we obtain Ohm’s law in phasor form for
any type of element as
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Z = V
I

or V = ZI (9.40)

where Z is a frequency-dependent quantity known as impedance, mea-
sured in ohms.

The impedance Z of a circuit is the ratio of the phasor voltage V to the phasor
current I, measured in ohms (�).

The impedance represents the opposition which the circuit exhibits to the
flow of sinusoidal current. Although the impedance is the ratio of two
phasors, it is not a phasor, because it does not correspond to a sinusoidally
varying quantity.

The impedances of resistors, inductors, and capacitors can be read-
ily obtained from Eq. (9.39). Table 9.3 summarizes their impedances and
admittance. From the table we notice that ZL = jωL and ZC = −j/ωC.
Consider two extreme cases of angular frequency. When ω = 0 (i.e., for
dc sources), ZL = 0 and ZC → ∞, confirming what we already know—
that the inductor acts like a short circuit, while the capacitor acts like an
open circuit. When ω → ∞ (i.e., for high frequencies), ZL → ∞ and
ZC = 0, indicating that the inductor is an open circuit to high frequencies,
while the capacitor is a short circuit. Figure 9.15 illustrates this.

TABLE 9.3 Impedances and
admittances of passive elements.

Element Impedance Admittance

R Z = R Y = 1

R

L Z = jωL Y = 1

jωL

C Z = 1

jωC
Y = jωC

Short circuit at dc

Open circuit at
high frequencies

(a)

Open circuit at dc

Short circuit at
high frequencies

(b)

L

C

Figure 9.15 Equivalent circuits at dc and
high frequencies: (a) inductor, (b) capacitor.

As a complex quantity, the impedance may be expressed in rectan-
gular form as

Z = R + jX (9.41)

where R = Re Z is the resistance and X = Im Z is the reactance. The
reactance X may be positive or negative. We say that the impedance is
inductive when X is positive or capacitive when X is negative. Thus,
impedance Z = R + jX is said to be inductive or lagging since current
lags voltage, while impedance Z = R − jX is capacitive or leading
because current leads voltage. The impedance, resistance, and reactance
are all measured in ohms. The impedance may also be expressed in polar
form as

Z = |Z| θ (9.42)

Comparing Eqs. (9.41) and (9.42), we infer that

Z = R + jX = |Z| θ (9.43)

where

|Z| =
√
R2 +X2, θ = tan−1 X

R
(9.44)

and

R = |Z| cos θ, X = |Z| sin θ (9.45)

It is sometimes convenient to work with the reciprocal of impedance,
known as admittance.
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The admittance Y is the reciprocal of impedance, measured in siemens (S).

The admittance Y of an element (or a circuit) is the ratio of the phasor
current through it to the phasor voltage across it, or

Y = 1

Z
= I

V
(9.46)

The admittances of resistors, inductors, and capacitors can be obtained
from Eq. (9.39). They are also summarized in Table 9.3.

As a complex quantity, we may write Y as

Y = G+ jB (9.47)

whereG = Re Y is called the conductance andB = Im Y is called the sus-
ceptance. Admittance, conductance, and susceptance are all expressed
in the unit of siemens (or mhos). From Eqs. (9.41) and (9.47),

G+ jB = 1

R + jX (9.48)

By rationalization,

G+ jB = 1

R + jX · R − jX
R − jX = R − jX

R2 +X2
(9.49)

Equating the real and imaginary parts gives

G = R

R2 +X2
, B = − X

R2 +X2
(9.50)

showing that G �= 1/R as it is in resistive circuits. Of course, if X = 0,
then G = 1/R.

E X A M P L E 9 . 9

Find v(t) and i(t) in the circuit shown in Fig. 9.16.

+
−

i

+

−

5 Ω

v0.1 Fvs = 10 cos 4t

Figure 9.16 For Example 9.9.

Solution:

From the voltage source 10 cos 4t , ω = 4,

Vs = 10 0◦ V

The impedance is

Z = 5 + 1

jωC
= 5 + 1

j4 × 0.1
= 5 − j2.5 �

Hence the current

I = Vs
Z

= 10 0◦

5 − j2.5
= 10(5 + j2.5)

52 + 2.52

= 1.6 + j0.8 = 1.789 26.57◦ A
(9.9.1)

The voltage across the capacitor is
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V = IZC = I
jωC

= 1.789 26.57◦

j4 × 0.1

= 1.789 26.57◦

0.4 90◦
= 4.47 − 63.43◦ V

(9.9.2)

Converting I and V in Eqs. (9.9.1) and (9.9.2) to the time domain, we get

i(t) = 1.789 cos(4t + 26.57◦) A

v(t) = 4.47 cos(4t − 63.43◦) V

Notice that i(t) leads v(t) by 90◦ as expected.

P R A C T I C E P R O B L E M 9 . 9

Refer to Fig. 9.17. Determine v(t) and i(t).

+
−

i 4 Ω

v0.2 Hvs = 5 sin 10t

+

−

Figure 9.17 For Practice Prob. 9.9.

Answer: 2.236 sin(10t + 63.43◦) V, 1.118 sin(10t − 26.57◦) A.

†9.6 KIRCHHOFF’S LAWS IN THE FREQUENCY DOMAIN
We cannot do circuit analysis in the frequency domain without Kirch-
hoff’s current and voltage laws. Therefore, we need to express them in
the frequency domain.

For KVL, let v1, v2, . . . , vn be the voltages around a closed loop.
Then

v1 + v2 + · · · + vn = 0 (9.51)

In the sinusoidal steady state, each voltage may be written in cosine form,
so that Eq. (9.51) becomes

Vm1 cos(ωt + θ1) + Vm2 cos(ωt + θ2)

+ · · · + Vmn cos(ωt + θn) = 0
(9.52)

This can be written as

Re(Vm1e
jθ1ejωt )+ Re(Vm2e

jθ2ejωt )+ · · · + Re(Vmne
jθnejωt ) = 0

or

Re[(Vm1e
jθ1 + Vm2e

jθ2 + · · · + Vmnejθn)ejωt ] = 0 (9.53)

If we let Vk = Vmke
jθk , then

Re[(V1 + V2 + · · · + Vn)ejωt ] = 0 (9.54)

Since ejωt �= 0,

V1 + V2 + · · · + Vn = 0 (9.55)

indicating that Kirchhoff’s voltage law holds for phasors.
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By following a similar procedure, we can show that Kirchhoff’s
current law holds for phasors. If we let i1, i2, . . . , in be the current
leaving or entering a closed surface in a network at time t , then

i1 + i2 + · · · + in = 0 (9.56)

If I1, I2, . . . , In are the phasor forms of the sinusoids i1, i2, . . . , in, then

I1 + I2 + · · · + In = 0 (9.57)

which is Kirchhoff’s current law in the frequency domain.
Once we have shown that both KVL and KCL hold in the frequency

domain, it is easy to do many things, such as impedance combination,
nodal and mesh analyses, superposition, and source transformation.

9.7 IMPEDANCE COMBINATIONS
Consider the N series-connected impedances shown in Fig. 9.18. The
same current I flows through the impedances. Applying KVL around the
loop gives

V = V1 + V2 + · · · + VN = I(Z1 + Z2 + · · · + ZN) (9.58)

The equivalent impedance at the input terminals is

Zeq = V
I

= Z1 + Z2 + · · · + ZN

or

Zeq = Z1 + Z2 + · · · + ZN (9.59)

showing that the total or equivalent impedance of series-connected imped-
ances is the sum of the individual impedances. This is similar to the series
connection of resistances.

+ − + − + −

+

−

I Z1

Zeq

Z2 ZN

V1

V

V2 VN

Figure 9.18 N impedances in series.

+

−

+ −

I

+

−

Z1

V1

Z2V2V

Figure 9.19 Voltage division.

IfN = 2, as shown in Fig. 9.19, the current through the impedances
is

I = V
Z1 + Z2

(9.60)

Since V1 = Z1I and V2 = Z2I, then

V1 = Z1

Z1 + Z2
V, V2 = Z2

Z1 + Z2
V (9.61)

which is the voltage-division relationship.
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In the same manner, we can obtain the equivalent impedance or
admittance of the N parallel-connected impedances shown in Fig. 9.20.
The voltage across each impedance is the same. Applying KCL at the
top node,

I = I1 + I2 + · · · + IN = V
(

1

Z1
+ 1

Z2
+ · · · + 1

ZN

)
(9.62)

The equivalent impedance is

1

Zeq
= I

V
= 1

Z1
+ 1

Z2
+ · · · + 1

ZN
(9.63)

and the equivalent admittance is

Yeq = Y1 + Y2 + · · · + YN (9.64)

This indicates that the equivalent admittance of a parallel connection of
admittances is the sum of the individual admittances.

I

+

−

I1 I2 IN

VI Z1 Z2 ZN

Zeq

Figure 9.20 N impedances in parallel.

When N = 2, as shown in Fig. 9.21, the equivalent impedance
becomes

Zeq = 1

Yeq
= 1

Y1 + Y2
= 1

1/Z1 + 1/Z2
= Z1Z2

Z1 + Z2
(9.65)

Also, since

V = IZeq = I1Z1 = I2Z2

the currents in the impedances are

I1 = Z2

Z1 + Z2
I, I2 = Z1

Z1 + Z2
I (9.66)

which is the current-division principle.

I1 I2+

−

I Z1 Z2V

Figure 9.21 Current division.

The delta-to-wye and wye-to-delta transformations that we applied
to resistive circuits are also valid for impedances. With reference to Fig.
9.22, the conversion formulas are as follows.
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a b

c

n

Z1

Zb

Zc

Za

Z2

Z3

Figure 9.22 Superimposed Y and ' networks.

Y -' Conversion:

Za = Z1Z2 + Z2Z3 + Z3Z1

Z1

Zb = Z1Z2 + Z2Z3 + Z3Z1

Z2

Zc = Z1Z2 + Z2Z3 + Z3Z1

Z3

(9.67)

'-Y Conversion:

Z1 = ZbZc
Za + Zb + Zc

Z2 = ZcZa
Za + Zb + Zc

Z3 = ZaZb
Za + Zb + Zc

(9.68)

A delta or wye circuit is said to be balanced if it has equal impedances in all
three branches.

When a '-Y circuit is balanced, Eqs. (9.67) and (9.68) become

Z' = 3ZY or ZY = 1

3
Z' (9.69)

where ZY = Z1 = Z2 = Z3 and Z' = Za = Zb = Zc.
As you see in this section, the principles of voltage division, cur-

rent division, circuit reduction, impedance equivalence, and Y -' trans-
formation all apply to ac circuits. Chapter 10 will show that other circuit
techniques—such as superposition, nodal analysis, mesh analysis, source
transformation, the Thevenin theorem, and the Norton theorem—are all
applied to ac circuits in a manner similar to their application in dc circuits.
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E X A M P L E 9 . 1 0

Find the input impedance of the circuit in Fig. 9.23. Assume that the cir-
cuit operates at ω = 50 rad/s.

3 Ω

10 mF

Zin
8 Ω

2 mF 0.2 H

Figure 9.23 For Example 9.10.

Solution:

Let

Z1 = Impedance of the 2-mF capacitor

Z2 = Impedance of the 3-� resistor in series with the 10-mF
capacitor

Z3 = Impedance of the 0.2-H inductor in series with the 8-�
resistor

Then

Z1 = 1

jωC
= 1

j50 × 2 × 10−3
= −j10 �

Z2 = 3 + 1

jωC
= 3 + 1

j50 × 10 × 10−3
= (3 − j2) �

Z3 = 8 + jωL = 8 + j50 × 0.2 = (8 + j10) �

The input impedance is

Zin = Z1 + Z2 ‖ Z3 = −j10 + (3 − j2)(8 + j10)

11 + j8

= −j10 + (44 + j14)(11 − j8)

112 + 82
= −j10 + 3.22 − j1.07 �

Thus,

Zin = 3.22 − j11.07 �

P R A C T I C E P R O B L E M 9 . 1 0

Determine the input impedance of the circuit in Fig. 9.24 at ω =
10 rad/s.

20 Ω

4 mF

2 mF

Zin
50 Ω

2 H

Figure 9.24 For Practice Prob. 9.10.

Answer: 32.38 − j73.76 �.

E X A M P L E 9 . 1 1

Determine vo(t) in the circuit in Fig. 9.25.

+
−

+

−

60 Ω

10 mF vo20 cos(4t − 15°) 5 H

Figure 9.25 For Example 9.11.

Solution:

To do the analysis in the frequency domain, we must first transform the
time-domain circuit in Fig. 9.25 to the phasor-domain equivalent in Fig.
9.26. The transformation produces
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vs = 20 cos(4t − 15◦) �⇒ Vs = 20 − 15◦ V, ω = 4

10 mF �⇒ 1

jωC
= 1

j4 × 10 × 10−3

= −j25 �

5 H �⇒ jωL = j4 × 5 = j20 �

Let

Z1 = Impedance of the 60-� resistor

Z2 = Impedance of the parallel combination of the 10-mF
capacitor and the 5-H inductor

Then Z1 = 60 � and

Z2 = −j25 ‖ j20 = −j25 × j20

−j25 + j20
= j100 �

By the voltage-division principle,

Vo = Z2

Z1 + Z2
Vs = j100

60 + j100
(20 − 15◦)

= (0.8575 30.96◦)(20 − 15◦) = 17.15 15.96◦ V.

We convert this to the time domain and obtain

vo(t) = 17.15 cos(4t + 15.96◦)V

+
−

+

−
−j25 Ω j20 Ω

60 Ω

20  −15° Vo

Figure 9.26 The frequency-domain
equivalent of the circuit in Fig. 9.25.

P R A C T I C E P R O B L E M 9 . 1 1

Calculate vo in the circuit in Fig. 9.27.

+
−

+

−
10 Ω vo

0.5 H

F10 cos (10t + 75°)
1
20

Figure 9.27 For Practice Prob. 9.11.

Answer: vo(t) = 7.071 cos(10t − 60◦) V.

E X A M P L E 9 . 1 2

Find current I in the circuit in Fig. 9.28.

+
−

12 Ω 8 Ω

8 Ω

j4 Ω

j6 Ω

−j4 Ω

−j3 Ω

2 Ω

50   0°

I

a

b
c

Figure 9.28 For Example 9.12.
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Solution:

The delta network connected to nodes a, b, and c can be converted to the
Y network of Fig. 9.29. We obtain the Y impedances as follows using
Eq. (9.68):

Zan = j4(2 − j4)

j4 + 2 − j4 + 8
= 4(4 + j2)

10
= (1.6 + j0.8) �

Zbn = j4(8)

10
= j3.2 �, Zcn = 8(2 − j4)

10
= (1.6 − j3.2) �

The total impedance at the source terminals is

Z = 12 + Zan + (Zbn − j3) ‖ (Zcn + j6 + 8)

= 12 + 1.6 + j0.8 + (j0.2) ‖ (9.6 + j2.8)

= 13.6 + j0.8 + j0.2(9.6 + j2.8)

9.6 + j3

= 13.6 + j1 = 13.64 4.204◦ �

The desired current is

I = V
Z

= 50 0◦

13.64 4.204◦
= 3.666 − 4.204◦ A

Zcn

+
−

I

Zan Zcn

50   0°

12 Ω

8 Ω

j6 Ω
−j3 Ω

cba

n

Zbn

Figure 9.29 The circuit in Fig. 9.28 after delta-to-wye transformation.

P R A C T I C E P R O B L E M 9 . 1 2

Find I in the circuit in Fig. 9.30.

+
−

I

−j2 Ω

−j3 Ω

j5 Ω

j4 Ω

5 Ω
10 Ω

8 Ω
30   0° V

Figure 9.30 For Practice Prob. 9.12.

Answer: 6.364 3.802◦ A.
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†9.8 APPLICATIONS
In Chapters 7 and 8, we saw certain uses of RC, RL, and RLC circuits
in dc applications. These circuits also have ac applications; among them
are coupling circuits, phase-shifting circuits, filters, resonant circuits, ac
bridge circuits, and transformers. This list of applications is inexhaustive.
We will consider some of them later. It will suffice here to observe two
simple ones: RC phase-shifting circuits, and ac bridge circuits.

9 . 8 . 1 Pha se - Sh i f t e r s
A phase-shifting circuit is often employed to correct an undesirable phase
shift already present in a circuit or to produce special desired effects. An
RC circuit is suitable for this purpose because its capacitor causes the
circuit current to lead the applied voltage. Two commonly used RC
circuits are shown in Fig. 9.31. (RL circuits or any reactive circuits
could also serve the same purpose.)

(a)

I

+

−

+

−
VoVi R

C

(b)

I

+

−

VoVi

+

−

R

C

Figure 9.31 Series RC
shift circuits: (a) leading
output, (b) lagging output.

In Fig. 9.31(a), the circuit current I leads the applied voltage Vi by
some phase angle θ , where 0 < θ < 90◦, depending on the values of R
and C. If XC = −1/ωC, then the total impedance is Z = R+ jXC , and
the phase shift is given by

θ = tan−1 XC

R
(9.70)

This shows that the amount of phase shift depends on the values of R,
C, and the operating frequency. Since the output voltage Vo across the
resistor is in phase with the current, Vo leads (positive phase shift) Vi as
shown in Fig. 9.32(a).

vo

t

vi

(a)

t

vi
vo

(b)

u
Phase shift

u
Phase shift

Figure 9.32 Phase shift in RC circuits: (a) leading output, (b) lagging output.

In Fig. 9.31(b), the output is taken across the capacitor. The current
I leads the input voltage Vi by θ , but the output voltage vo(t) across the
capacitor lags (negative phase shift) the input voltage vi(t) as illustrated
in Fig. 9.32(b).

We should keep in mind that the simple RC circuits in Fig. 9.31
also act as voltage dividers. Therefore, as the phase shift θ approaches
90◦, the output voltage Vo approaches zero. For this reason, these simple
RC circuits are used only when small amounts of phase shift are required.
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If it is desired to have phase shifts greater than 60◦, simple RC networks
are cascaded, thereby providing a total phase shift equal to the sum of
the individual phase shifts. In practice, the phase shifts due to the stages
are not equal, because the succeeding stages load down the earlier stages
unless op amps are used to separate the stages.

E X A M P L E 9 . 1 3

Design an RC circuit to provide a phase of 90◦ leading.

+

−

+

−

20 Ω 20 ΩVi

−j20 Ω −j20 Ω

Vo

Z

V1

Figure 9.33 An RC phase shift circuit with
90◦ leading phase shift; for Example 9.13.

Solution:

If we select circuit components of equal ohmic value, say R = |XC | =
20 �, at a particular frequency, according to Eq. (9.70), the phase shift
is exactly 45◦. By cascading two similar RC circuits in Fig. 9.31(a), we
obtain the circuit in Fig. 9.33, providing a positive or leading phase shift
of 90◦, as we shall soon show. Using the series-parallel combination
technique, Z in Fig. 9.33 is obtained as

Z = 20 ‖ (20 − j20) = 20(20 − j20)

40 − j20
= 12 − j4 � (9.13.1)

Using voltage division,

V1 = Z
Z − j20

Vi = 12 − j4

12 − j24
Vi =

√
2

3
45◦Vi (9.13.2)

and

Vo = 20

20 − j20
V1 =

√
2

2
45◦V1 (9.13.3)

Substituting Eq. (9.13.2) into Eq. (9.13.3) yields

Vo =
(√

2

2
45◦

)(√
2

3
45◦Vi

)
= 1

3
90◦Vi

Thus, the output leads the input by 90◦ but its magnitude is only about
33 percent of the input.

P R A C T I C E P R O B L E M 9 . 1 3

Design an RC circuit to provide a 90◦ lagging phase shift. If a voltage
of 10 V is applied, what is the output voltage?

Answer: Figure 9.34 shows a typical design; 3.33 V.
+

−

+

−

10 Ω 10 Ω

−j10 Ω −j10 Ω VoVi

Figure 9.34 For Practice Prob. 9.13.

E X A M P L E 9 . 1 4

For the RL circuit shown in Fig. 9.35(a), calculate the amount of phase
shift produced at 2 kHz.
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Solution:

At 2 kHz, we transform the 10-mH and 5-mH inductances to the corre-
sponding impedances.

10 mH �⇒ XL = ωL = 2π × 2 × 103 × 10 × 10−3

= 40π = 125.7 �

5 mH �⇒ XL = ωL = 2π × 2 × 103 × 5 × 10−3

= 20π = 62.83 �

Consider the circuit in Fig. 9.35(b). The impedance Z is the parallel
combination of j125.7 � and 100 + j62.83 �. Hence,

Z = j125.7 ‖ (100 + j62.83)

= j125.7(100 + j62.83)

100 + j188.5
= 69.56 60.1◦ �

(9.14.1)

Using voltage division,

V1 = Z
Z + 150

Vi = 69.56 60.1◦

184.7 + j60.3
Vi

= 0.3582 42.02◦ Vi

(9.14.2)

and

Vo = j62.832

100 + j62.832
V1 = 0.532 57.86◦ V1 (9.14.3)

Combining Eqs. (9.14.2) and (9.14.3),

Vo = (0.532 57.86◦)(0.3582 42.02◦) Vi = 0.1906 100◦ Vi

showing that the output is about 19 percent of the input in magnitude but
leading the input by 100◦. If the circuit is terminated by a load, the load
will affect the phase shift.

150 Ω 100 Ω

10 mH 5 mH

(a)

150 Ω 100 Ω

(b)

+

−

+

−

Z

Vi

V1

Voj125.7 Ω j62.83 Ω

Figure 9.35 For Example 9.14.

P R A C T I C E P R O B L E M 9 . 1 4

Refer to the RL circuit in Fig. 9.36. If 1 V is applied, find the magnitude
and the phase shift produced at 5 kHz. Specify whether the phase shift
is leading or lagging.

10 Ω 50 Ω

+

−

+

−

Vi Vo

1 mH 2 mH

Figure 9.36 For Practice Prob. 9.14.

Answer: 0.172, 120.4◦, lagging.

9 . 8 . 2 AC Br i d ge s
An ac bridge circuit is used in measuring the inductance L of an inductor
or the capacitanceC of a capacitor. It is similar in form to the Wheatstone
bridge for measuring an unknown resistance (discussed in Section 4.10)
and follows the same principle. To measure L and C, however, an ac
source is needed as well as an ac meter instead of the galvanometer. The
ac meter may be a sensitive ac ammeter or voltmeter.
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Consider the general ac bridge circuit displayed in Fig. 9.37. The
bridge is balanced when no current flows through the meter. This means
that V1 = V2. Applying the voltage division principle,

V1 = Z2

Z1 + Z2
Vs = V2 = Zx

Z3 + Zx
Vs (9.71)

Thus,
Z2

Z1 + Z2
= Zx

Z3 + Zx
�⇒ Z2Z3 = Z1Zx (9.72)

or

Zx = Z3

Z1
Z2 (9.73)

This is the balanced equation for the ac bridge and is similar to Eq. (4.30)
for the resistance bridge except that the R’s are replaced by Z’s.

AC
meter

+

−

+

−

≈Vs

Z1 Z3

Z2 V1 V2 Zx

Figure 9.37 A general ac bridge.

Specific ac bridges for measuring L and C are shown in Fig. 9.38,
where Lx and Cx are the unknown inductance and capacitance to be
measured whileLs andCs are a standard inductance and capacitance (the
values of which are known to great precision). In each case, two resistors,
R1 and R2, are varied until the ac meter reads zero. Then the bridge is
balanced. From Eq. (9.73), we obtain

Lx = R2

R1
Ls (9.74)

and

Cx = R1

R2
Cs (9.75)

Notice that the balancing of the ac bridges in Fig. 9.38 does not depend on
the frequency f of the ac source, since f does not appear in the relation-
ships in Eqs. (9.74) and (9.75).

AC
meter

≈

R1 R2

Ls Lx

(a)

AC
meter

≈

R1 R2

Cs Cx

(b)

Figure 9.38 Specific ac bridges: (a) for measuring L, (b) for measuring C.

E X A M P L E 9 . 1 5

The ac bridge circuit of Fig. 9.37 balances when Z1 is a 1-k� resistor,
Z2 is a 4.2-k� resistor, Z3 is a parallel combination of a 1.5-M� resistor
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and a 12-pF capacitor, and f = 2 kHz. Find: (a) the series components
that make up Zx , and (b) the parallel components that make up Zx .

Solution:

From Eq. (9.73),

Zx = Z3

Z1
Z2 (9.15.1)

where Zx = Rx + jXx ,
Z1 = 1000 �, Z2 = 4200 � (9.15.2)

and

Z3 = R3 ‖ 1

jωC3
=

R3

jωC3

R3 + 1/jωC3
= R3

1 + jωR3C3

Since R3 = 1.5 M� and C3 = 12 pF,

Z3 = 1.5 × 106

1 + j2π × 2 × 103 × 1.5 × 106 × 12 × 10−12
= 1.5 × 106

1 + j0.2262
or

Z3 = 1.427 − j0.3228 M� (9.15.3)

(a) Assuming that Zx is made up of series components, we substitute Eqs.
(9.15.2) and (9.15.3) in Eq. (9.15.1) and obtain

Rx + jXx = 4200

1000
(1.427 − j0.3228)× 106

= (5.993 − j1.356)M�

Equating the real and imaginary parts yields Rx = 5.993 M� and a
capacitive reactance

Xx = 1

ωC
= 1.356 × 106

or

C = 1

ωXx
= 1

2π × 2 × 103 × 1.356 × 106
= 58.69 pF

(b) If Zx is made up of parallel components, we notice that Z3 is also a
parallel combination. Hence, Eq. (9.15.1) becomes

Zx = 4200

1000
R3

∥∥∥∥ 1

jωC3
= 4.2R3

∥∥∥∥ 1

jωC3
= 4.2Z3 (9.15.4)

This simply means that the unknown impedance Zx is 4.2 times Z3.
Since Z3 consists of R3 and X3 = 1/ωC3, there are many ways we can
get 4.2Z3. Therefore, there is no unique answer to the problem. If we
suppose that 4.2 = 3 × 1.4 and we decide to multiply R3 by 1.4 while
multiplying X3 by 3, then the answer is

Rx = 1.4R3 = 2.1 M�

and

Xx = 1

ωCx
= 3X3 = 3

ωC3
�⇒ Cx = 1

3
C3 = 4 pF
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Alternatively, we may decide to multiply R3 by 3 while multiplying Xx
by 1.4 and obtain Rx = 4.5 M� and Cx = C3/1.4 = 8.571 pF. Of
course, there are several other possibilities. In a situation like this when
there is no unique solution, care must be taken to select reasonably sized
component values whenever possible.

P R A C T I C E P R O B L E M 9 . 1 5

In the ac bridge circuit of Fig. 9.37, suppose that balance is achieved
when Z1 is a 4.8-k� resistor, Z2 is a 10-� resistor in series with a
0.25-µH inductor, Z3 is a 12-k� resistor, and f = 6 MHz. Determine
the series components that make up Zx .

Answer: A 25-� resistor in series with a 0.625-µH inductor.

9.9 SUMMARY
1. A sinusoid is a signal in the form of the sine or cosine function. It

has the general form

v(t) = Vm cos(ωt + φ)
where Vm is the amplitude, ω = 2πf is the angular frequency,
(ωt + φ) is the argument, and φ is the phase.

2. A phasor is a complex quantity that represents both the magnitude
and the phase of a sinusoid. Given the sinusoid
v(t) = Vm cos(ωt + φ), its phasor V is

V = Vm φ

3. In ac circuits, voltage and current phasors always have a fixed
relation to one another at any moment of time. If v(t) =
Vm cos(ωt + φv) represents the voltage through an element and
i(t) = Im cos(ωt + φi) represents the current through the element,
then φi = φv if the element is a resistor, φi leads φv by 90◦ if the
element is a capacitor, and φi lags φv by 90◦ if the element is an
inductor.

4. The impedance Z of a circuit is the ratio of the phasor voltage across
it to the phasor current through it:

Z = V
I

= R(ω)+ jX(ω)
The admittance Y is the reciprocal of impedance:

Z = 1

Y
= G(ω)+ jB(ω)

Impedances are combined in series or in parallel the same way as
resistances in series or parallel; that is, impedances in series add
while admittances in parallel add.

5. For a resistor Z = R, for an inductor Z = jX = jωL, and for a
capacitor Z = −jX = 1/jωC.

6. Basic circuit laws (Ohm’s and Kirchhoff’s) apply to ac circuits in the
same manner as they do for dc circuits; that is,
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V = ZI∑
Ik = 0 (KCL)∑

Vk = 0 (KVL)

7. The techniques of voltage/current division, series/parallel combina-
tion of impedance/admittance, circuit reduction, and Y -' trans-
formation all apply to ac circuit analysis.

8. AC circuits are applied in phase-shifters and bridges.

R E V I EW QU E S T I ON S

9.1 Which of the following is not a right way to express
the sinusoid A cosωt?
(a) A cos 2πf t (b) A cos(2πt/T )
(c) A cosω(t − T ) (d) A sin(ωt − 90◦)

9.2 A function that repeats itself after fixed intervals is
said to be:
(a) a phasor (b) harmonic
(c) periodic (d) reactive

9.3 Which of these frequencies has the shorter period?
(a) 1 krad/s (b) 1 kHz

9.4 If v1 = 30 sin(ωt + 10◦) and v2 = 20 sin(ωt + 50◦),
which of these statements are true?
(a) v1 leads v2 (b) v2 leads v1

(c) v2 lags v1 (d) v1 lags v2

(e) v1 and v2 are in phase

9.5 The voltage across an inductor leads the current
through it by 90◦.
(a) True (b) False

9.6 The imaginary part of impedance is called:
(a) resistance (b) admittance
(c) susceptance (d) conductance
(e) reactance

9.7 The impedance of a capacitor increases with
increasing frequency.
(a) True (b) False

9.8 At what frequency will the output voltage vo(t) in
Fig. 9.39 be equal to the input voltage v(t)?
(a) 0 rad/s (b) 1 rad/s (c) 4 rad/s
(d) ∞ rad/s (e) none of the above

+
−

+

−

1 Ω

Hv(t) vo(t)1
4

Figure 9.39 For Review Question 9.8.

9.9 A series RC circuit has VR = 12 V and VC = 5 V.
The supply voltage is:
(a) −7 V (b) 7 V (c) 13 V (d) 17 V

9.10 A series RCL circuit has R = 30 �,XC = −50 �,
and XL = 90 �. The impedance of the circuit is:
(a) 30 + j140 � (b) 30 + j40 �
(c) 30 − j40 � (d) −30 − j40 �
(e) −30 + j40 �

Answers: 9.1d, 9.2c, 9.3b, 9.4b,d, 9.5a, 9.6e, 9.7b, 9.8d, 9.9c, 9.10b.

P RO B L E M S

Section 9.2 Sinusoids

9.1 In a linear circuit, the voltage source is

vs = 12 sin(103t + 24◦) V

(a) What is the angular frequency of the voltage?
(b) What is the frequency of the source?
(c) Find the period of the voltage.

(d) Express vs in cosine form.
(e) Determine vs at t = 2.5 ms.

9.2 A current source in a linear circuit has

is = 8 cos(500πt − 25◦) A

(a) What is the amplitude of the current?
(b) What is the angular frequency?
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(c) Find the frequency of the current.
(d) Calculate is at t = 2 ms.

9.3 Express the following functions in cosine form:
(a) 4 sin(ωt − 30◦) (b) −2 sin 6t
(c) −10 sin(ωt + 20◦)

9.4 (a) Express v = 8 cos(7t + 15◦) in sine form.
(b) Convert i = −10 sin(3t − 85◦) to cosine form.

9.5 Given v1 = 20 sin(ωt + 60◦) and v2 =
60 cos(ωt − 10◦), determine the phase angle
between the two sinusoids and which one lags the
other.

9.6 For the following pairs of sinusoids, determine
which one leads and by how much.
(a) v(t) = 10 cos(4t − 60◦) and

i(t) = 4 sin(4t + 50◦)
(b) v1(t) = 4 cos(377t + 10◦) and

v2(t) = −20 cos 377t
(c) x(t) = 13 cos 2t + 5 sin 2t and

y(t) = 15 cos(2t − 11.8◦)

Section 9.3 Phasors

9.7 If f (φ) = cosφ + j sinφ, show that f (φ) = ejφ .

9.8 Calculate these complex numbers and express your
results in rectangular form:

(a)
15 45◦

3 − j4
+ j2

(b)
8 − 20◦

(2 + j)(3 − j4)
+ 10

−5 + j12

(c) 10 + (8 50◦)(5 − j12)

9.9 Evaluate the following complex numbers and
express your results in rectangular form:

(a) 2 + 3 + j4

5 − j8
(b) 4 − 10◦ + 1 − j2

3 6◦

(c)
8 10◦ + 6 − 20◦

9 80◦ − 4 50◦

9.10 Given the complex numbers z1 = −3 + j4 and
z2 = 12 + j5, find:

(a) z1z2 (b)
z1

z∗2
(c)

z1 + z2

z1 − z2

9.11 Let X = 8 40◦ and Y = 10 − 30◦. Evaluate the
following quantities and express your results in
polar form.
(a) (X + Y)X∗ (b) (X − Y)∗ (c) (X + Y)/X

9.12 Evaluate these determinants:

(a)

∣∣∣∣10 + j6
−5

2 − j3
−1 + j

∣∣∣∣

(b)

∣∣∣∣∣
20 − 30◦

16 0◦

−4 − 10◦

3 45◦

∣∣∣∣∣
(c)

∣∣∣∣∣∣
1 − j
j

1

−j
1
j

0
−j

1 + j

∣∣∣∣∣∣
9.13 Transform the following sinusoids to phasors:

(a) −10 cos(4t + 75◦) (b) 5 sin(20t − 10◦)
(c) 4 cos 2t + 3 sin 2t

9.14 Express the sum of the following sinusoidal signals
in the form of A cos(ωt + θ) with A > 0 and
0 < θ < 360◦.
(a) 8 cos(5t − 30◦)+ 6 cos 5t
(b) 20 cos(120πt + 45◦)− 30 sin(120πt + 20◦)
(c) 4 sin 8t + 3 sin(8t − 10◦)

9.15 Obtain the sinusoids corresponding to each of the
following phasors:
(a) V1 = 60 15◦, ω = 1
(b) V2 = 6 + j8, ω = 40
(c) I1 = 2.8e−jπ/3, ω = 377
(d) I2 = −0.5 − j1.2, ω = 103

9.16 Using phasors, find:
(a) 3 cos(20t + 10◦)− 5 cos(20t − 30◦)
(b) 40 sin 50t + 30 cos(50t − 45◦)
(c) 20 sin 400t + 10 cos(400t + 60◦)

− 5 sin(400t − 20◦)

9.17 Find a single sinusoid corresponding to each of
these phasors:
(a) V = 40 − 60◦

(b) V = −30 10◦ + 50 60◦

(c) I = j6e−j10◦
(d) I = 2

j
+ 10 − 45◦

9.18 Find v(t) in the following integrodifferential
equations using the phasor approach:

(a) v(t)+
∫
v dt = 10 cos t

(b)
dv

dt
+ 5v(t)+ 4

∫
v dt = 20 sin(4t + 10◦)

9.19 Using phasors, determine i(t) in the following
equations:

(a) 2
di

dt
+ 3i(t) = 4 cos(2t − 45◦)

(b) 10
∫
i dt + di

dt
+ 6i(t) = 5 cos(5t + 22◦)

9.20 The loop equation for a series RLC circuit gives

di

dt
+ 2i +

∫ t

−∞
i dt = cos 2t

Assuming that the value of the integral at t = −∞ is
zero, find i(t) using the phasor method.
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9.21 A parallel RLC circuit has the node equation

dv

dt
+ 50v + 100

∫
v dt = 110 cos(377t − 10◦)

Determine v(t) using the phasor method. You may
assume that the value of the integral at t = −∞ is
zero.

Section 9.4 Phasor Relationships for Circuit
Elements

9.22 Determine the current that flows through an 8-�
resistor connected to a voltage source
vs = 110 cos 377t V.

9.23 What is the instantaneous voltage across a 2-µF
capacitor when the current through it is
i = 4 sin(106t + 25◦) A?

9.24 The voltage across a 4-mH inductor is
v = 60 cos(500t − 65◦) V. Find the instantaneous
current through it.

9.25 A current source of i(t) = 10 sin(377t + 30◦) A is
applied to a single-element load. The resulting
voltage across the element is v(t) =
−65 cos(377t + 120◦) V. What type of element is
this? Calculate its value.

9.26 Two elements are connected in series as shown in
Fig. 9.40. If i = 12 cos(2t − 30◦) A, find the
element values.

+
−

i

180 cos(2t + 10°) V

Figure 9.40 For Prob. 9.26.

9.27 A series RL circuit is connected to a 110-V ac
source. If the voltage across the resistor is 85 V, find
the voltage across the inductor.

9.28 What value of ω will cause the forced response vo in
Fig. 9.41 to be zero?

+
−

2 Ω

+

−

5 mF

vo
50 cos vt V 

20 mH

Figure 9.41 For Prob. 9.28.

Section 9.5 Impedance and Admittance

9.29 If vs = 5 cos 2t V in the circuit of Fig. 9.42,
find vo.

+
−

+

−

2 Ω

vo

0.25 F

vs 1 H

Figure 9.42 For Prob. 9.29.

9.30 Find ix when is = 2 sin 5t A is supplied to the
circuit in Fig. 9.43.

2 Ω 1 His

ix

0.2 F

Figure 9.43 For Prob. 9.30.

9.31 Find i(t) and v(t) in each of the circuits of Fig. 9.44.

+

−
v

i

4 Ω  F10 cos(3t + 45°) A

(a)

i

4 Ω
8 Ω

F

50 cos 4t V +
− +

−
3 H

(b)

v1
12

1
6

Figure 9.44 For Prob. 9.31.

9.32 Calculate i1(t) and i2(t) in the circuit of Fig. 9.45 if
the source frequency is 60 Hz.

+
−

8 Ω

40   0° V j5 Ω −j10 Ω

i1 i2

Figure 9.45 For Prob. 9.32.
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9.33 In the circuit of Fig. 9.46, find io when:
(a) ω = 1 rad/s (b) ω = 5 rad/s
(c) ω = 10 rad/s

+
− 2 Ω4 cos vt V 0.05 F

io 1 H

Figure 9.46 For Prob. 9.33.

9.34 Find v(t) in the RLC circuit of Fig. 9.47.

+
−

+

−

1 Ω

1 Ω

1 H

1 F v10 cos t V

Figure 9.47 For Prob. 9.34.

9.35 Calculate vo(t) in the circuit in Fig. 9.48.

+
−

+

−

30 Ω

vo(t)

50 Ω

0.1 H60 sin 200t V
50 mF

Figure 9.48 For Prob. 9.35.

9.36 Determine io(t) in the RLC circuit of Fig. 9.49.

io

1 Ω4 cos 2t A

1 F

1 H

Figure 9.49 For Prob. 9.36.

9.37 Calculate i(t) in the circuit of Fig. 9.50.

+
− 3 Ω10 mH

5 mF

6 cos 200t V 4 Ω

5 Ωi

Figure 9.50 For Prob. 9.37.

9.38 Find current Io in the network of Fig. 9.51.

2 Ω

2 Ω

Io

−j2 Ω

j4 Ω

−j2 Ω5   0° A

Figure 9.51 For Prob. 9.38.

9.39 If is = 5 cos(10t + 40◦) A in the circuit in Fig. 9.52,
find io.

0.2 H 0.1 F

4 Ω 3 Ω

io

is

Figure 9.52 For Prob. 9.39.

9.40 Find vs(t) in the circuit of Fig. 9.53 if the current ix
through the 1-� resistor is 0.5 sin 200t A.

+
−

1 Ω2 Ω

vs j2 Ω −j1 Ω

ix

Figure 9.53 For Prob. 9.40.

9.41 If the voltage vo across the 2-� resistor in the circuit
of Fig. 9.54 is 10 cos 2t V, obtain is .

+

−
vo

0.1 F

1 Ω 2 Ωis

0.5 H

Figure 9.54 For Prob. 9.41.
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9.42 If Vo = 8 30◦ V in the circuit of Fig. 9.55,
find Is .

+

−
5 Ω10 Ω Vo

−j5 Ω

j5 ΩIs

Figure 9.55 For Prob. 9.42.

9.43 In the circuit of Fig. 9.56, find Vs if Io = 2 0◦ A.

+ −
Io

1 Ω2 Ω

Vs

j2 Ωj4 Ω

−j2 Ω −j1 Ω

Figure 9.56 For Prob. 9.43.

9.44 Find Z in the network of Fig. 9.57, given that
Vo = 4 0◦ V.

+
−

+

−

Z
12 Ω

Vo20  −90° V j8 Ω−j4 Ω

Figure 9.57 For Prob. 9.44.

Section 9.7 Impedance Combinations

9.45 At ω = 50 rad/s, determine Zin for each of the
circuits in Fig. 9.58.

10 Ω

20 Ω

0.4 H

0.2 H
Zin

1 mF

(b)

1 Ω 1 Ω

10 mH 10 mF

Zin

(a)

Figure 9.58 For Prob. 9.45.

9.46 Calculate Zeq for the circuit in Fig. 9.59.

1 Ω

2 Ω6 Ω

Zeq
j4 Ω

−j2 Ω

Figure 9.59 For Prob. 9.46.

9.47 Find Zeq in the circuit of Fig. 9.60.

Zeq 1 − j Ω

1 + j2 Ω

j5 Ω

1 + j3 Ω

Figure 9.60 For Prob. 9.47.

9.48 For the circuit in Fig. 9.61, find the input impedance
Zin at 10 krad/s.

+
−

+ −v

2v

50 Ω 2 mH

Zin

1 mF

Figure 9.61 For Prob. 9.48.

9.49 Determine I and ZT for the circuit in Fig. 9.62.

+
−

2 Ω

3 Ω

4 Ω

ZT

120   10° V

j4 Ω

−j6 Ω

I

Figure 9.62 For Prob. 9.49.
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9.50 For the circuit in Fig. 9.63, calculate ZT and Vab.

+
−

20 Ω

+ −

ZT

Vab

60   90° V

j10 Ω

−j5 Ω 40 Ω

a b

Figure 9.63 For Prob. 9.50.

9.51 At ω = 103 rad/s, find the input admittance of each
of the circuits in Fig. 9.64.

Yin

(a)

20 mH 12.5 mF

60 Ω 60 Ω

Yin

(b)

30 Ω 10 mH

20 mF

60 Ω

40 Ω

Figure 9.64 For Prob. 9.51.

9.52 Determine Yeq for the circuit in Fig. 9.65.

Yeq
3 Ω5 Ω

j1 Ω−j2 Ω

−j4 Ω

Figure 9.65 For Prob. 9.52.

9.53 Find the equivalent admittance Yeq of the circuit in
Fig. 9.66.

2 S

4 S

1 S

j5 S j1 S

−j3 S −j2 S

Figure 9.66 For Prob. 9.53.

9.54 Find the equivalent impedance of the circuit in Fig.
9.67.

10 Ω

Zeq

j15 Ω

−j5 Ω

−j10 Ω

2 Ω

5 Ω

8 Ω

Figure 9.67 For Prob. 9.54.

9.55 Obtain the equivalent impedance of the circuit in
Fig. 9.68.

Zeq1 Ω j2 Ω

j4 Ω

−j2 Ω

−j Ω 2 Ω

Figure 9.68 For Prob. 9.55.

9.56 Calculate the value of Zab in the network of Fig.
9.69.

20 Ω

20 Ω

j6 Ω −j9 Ω

10 Ω

−j9 Ω

−j9 Ω

j6 Ω

j6 Ω
a

b

Figure 9.69 For Prob. 9.56.

9.57 Determine the equivalent impedance of the circuit in
Fig. 9.70.

2 Ω 4 Ω

j6 Ω j8 Ω j8 Ω j12 Ω

−j4 Ω

−j6 Ω
a

b

Figure 9.70 For Prob. 9.57.
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Section 9.8 Applications

9.58 Design an RL circuit to provide a 90◦ leading phase
shift.

9.59 Design a circuit that will transform a sinusoidal
input to a cosinusoidal output.

9.60 Refer to the RC circuit in Fig. 9.71.
(a) Calculate the phase shift at 2 MHz.
(b) Find the frequency where the phase shift is 45◦.

+

−

+

−

5 Ω

20 nF VoVi

Figure 9.71 For Prob. 9.60.

9.61 (a) Calculate the phase shift of the circuit in Fig.
9.72.

(b) State whether the phase shift is leading or
lagging (output with respect to input).

(c) Determine the magnitude of the output when the
input is 120 V.

+

−

+

−

20 Ω 40 Ω 30 Ω

Voj10 Ω j30 Ω j60 ΩVi

Figure 9.72 For Prob. 9.61.

9.62 Consider the phase-shifting circuit in Fig. 9.73. Let
Vi = 120 V operating at 60 Hz. Find:
(a) Vo when R is maximum
(b) Vo when R is minimum
(c) the value of R that will produce a phase shift

of 45◦

+

−

+

−

50 Ω

200 mH vovi

0 < R < 100 Ω

Figure 9.73 For Prob. 9.62.

9.63 The ac bridge in Fig. 9.37 is balanced when
R1 = 400 �,R2 = 600 �,R3 = 1.2 k�, and
C2 = 0.3 µF. Find Rx and Cx .

9.64 A capacitance bridge balances when R1 = 100 �,
R2 = 2 k�, and Cs = 40 µF. What is Cx , the
capacitance of the capacitor under test?

9.65 An inductive bridge balances when R1 = 1.2 k�,
R2 = 500 �, and Ls = 250 mH. What is the value
of Lx , the inductance of the inductor under test?

9.66 The ac bridge shown in Fig. 9.74 is known as a
Maxwell bridge and is used for accurate
measurement of inductance and resistance of a coil
in terms of a standard capacitance Cs . Show that
when the bridge is balanced,

Lx = R2R3Cs and Rx = R2

R1
R3

Find Lx and Rx for R1 = 40 k�, R2 = 1.6 k�,
R3 = 4 k�, and Cs = 0.45 µF.

AC
meter

R3

Lx

Rx

R2

R1

Cs

Figure 9.74 Maxwell bridge; for Prob. 9.66.

9.67 The ac bridge circuit of Fig. 9.75 is called a Wien
bridge. It is used for measuring the frequency of a
source. Show that when the bridge is balanced,

f = 1

2π
√
R2R4C2C4

AC
meter

R3

R2

R1

C4

C2

R4

Figure 9.75 Wein bridge; for Prob. 9.67.
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9.68 The circuit shown in Fig. 9.76 is used in a television
receiver. What is the total impedance of this circuit?

240 Ω j95 Ω −j84 Ω

Figure 9.76 For Prob. 9.68.

9.69 The network in Fig. 9.77 is part of the schematic
describing an industrial electronic sensing device.
What is the total impedance of the circuit at 2 kHz?

50 Ω 10 mH

2 mF 80 Ω
100 Ω

Figure 9.77 For Prob. 9.69.

9.70 A series audio circuit is shown in Fig. 9.78.
(a) What is the impedance of the circuit?
(b) If the frequency were halved, what would be the

impedance of the circuit?

250 Hz ≈

j30 Ω 120 Ω

−j20 Ω

−j20 Ω

Figure 9.78 For Prob. 9.70.

9.71 An industrial load is modeled as a series
combination of a capacitance and a resistance as
shown in Fig. 9.79. Calculate the value of an
inductance L across the series combination so that
the net impedance is resistive at a frequency of
5 MHz.

200 Ω

50 nF

L

Figure 9.79 For Prob. 9.71.

9.72 An industrial coil is modeled as a series
combination of an inductance L and resistance R, as

shown in Fig. 9.80. Since an ac voltmeter measures
only the magnitude of a sinusoid, the following
measurements are taken at 60 Hz when the circuit
operates in the steady state:

|Vs | = 145 V, |V1| = 50 V, |Vo| = 110 V

Use these measurements to determine the values of
L and R.

80 Ω

+

−

+ −V1

Vs
+
− Vo

R

L

Coil

Figure 9.80 For Prob. 9.72.

9.73 Figure 9.81 shows a parallel combination of an
inductance and a resistance. If it is desired to
connect a capacitor in series with the parallel
combination such that the net impedance is resistive
at 10 MHz, what is the required value of C?

300 Ω 20 mH

C

Figure 9.81 For Prob. 9.73.

9.74 A power transmission system is modeled as shown
in Fig. 9.82. Given the source voltage
Vs = 115 0◦ V, source impedance
Zs = 1 + j0.5 �, line impedance
Z. = 0.4 + j0.3 �, and load impedance
ZL = 23.2 + j18.9 �, find the load current IL.

+
−vs

Z�Zs

Z�

ZL

IL

Source Transmission line Load

Figure 9.82 For Prob. 9.74.

http://www.mhhe.com/engcs/electrical/alexander/student/olc/ch09_ppt.htm
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