CHAPTER]| 6

CAPACITORS AND INDUCTORS

The important thing about a problem is not its solution, but the strength
we gain in finding the solution.
—Anonymous

Historical Profiles

Michael Faraday (1791-1867), an English chemist and physicist, was probably th
greatest experimentalist who ever lived.

Born near London, Faraday realized his boyhood dream by working with th
great chemist Sir Humphry Davy at the Royal Institution, where he worked for 54 yeal
He made several contributions in all areas of physical science and coined such wol 1]
as electrolysis, anode, and cathode. His discovery of electromagnetic induction
1831 was a major breakthrough in engineering because it provided a way of generat
electricity. The electric motor and generator operate on this principle. The unit (
capacitance, the farad, was named in his honor.

Joseph Henry (1797-1878), an American physicist, discovered inductance and co
structed an electric motor.

Born in Albany, New York, Henry graduated from Albany Academy and taugh
philosophy at Princeton University from 1832 to 1846. He was the first secretary of t
Smithsonian Institution. He conducted several experiments on electromagnetism 4§
developed powerful electromagnets that could lift objects weighing thousands of poun
Interestingly, Joseph Henry discovered electromagnetic induction before Farad
but failed to publish his findings. The unit of inductance, the henry, was named after hi
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In contrast to a resistor, which spends or dis-
sipates energy irreversibly, an inductor or ca-
pacitor stores or releases energy (ie., has a
memory).

Dielectric with permittivity e

M I
- etal plates,

S

i

d

Figure 6.1 A typical capacitor.

(V)

Figure 6.2 A capacitor
with applied voltage v.

Alternatively, capacitance s the amount of charge
stored per plate for a unit voltage difference in a
capacitor.

each with area A

PART | DC Circuits

6.1 INTRODUCTION

So far we have limited our study to resistive circuits. In this chapter, we
shall introduce two new and important passive linear circuit elements:
the capacitor and the inductor. Unlike resistors, which dissipate energy,
capacitors and inductors do not dissipate but store energy, which can be
retrieved at a later time. For this reason, capacitors and inductors are
calledstorage elements.

The application of resistive circuits is quite limited. With the in-
troduction of capacitors and inductors in this chapter, we will be able to
analyze more important and practical circuits. Be assured that the circuit
analysis techniques covered in Chapters 3 and 4 are equally applicable to
circuits with capacitors and inductors.

We begin by introducing capacitors and describing how to combine
them in series or in parallel. Later, we do the same for inductors. As
typical applications, we explore how capacitors are combined with op
amps to form integrators, differentiators, and analog computers.

6.2 CAPACITORS

A capacitor is a passive element designed to store energy in its electric
field. Besides resistors, capacitors are the most common electrical com-
ponents. Capacitors are used extensively in electronics, communications,
computers, and power systems. For example, they are used in the tuning
circuits of radio receivers and as dynamic memory elements in computer
systems.

A capacitor is typically constructed as depicted in Fig. 6.1.

A capacitor consists of two conducting plates separated
by an insulator (or dielectric).

In many practical applications, the plates may be aluminum foil whilethe
dielectric may be air, ceramic, paper, or mica.

When a voltage source v is connected to the capacitor, asin Fig.
6.2, the source deposits a positive charge g on one plate and a negative
charge —g onthe other. The capacitor is said to store the electric charge.
The amount of charge stored, represented by ¢, is directly proportional
to the applied voltage v so that

qg=Cv 6.1

where C, the constant of proportionality, is known as the capacitance
of the capacitor. The unit of capacitance is the farad (F), in honor of
the English physicist Michael Faraday (1791-1867). From Eqg. (6.1), we
may derive the following definition.

Capacitance s the ratio of the charge on one plate of a capacitor to the voltage
difference between the two plates, measured in farads (F).

Note from Eq. (6.1) that 1 farad = 1 coulomb/volt.
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CHAPTER 6 Capacitors and Inductors 203

Although the capacitance C of acapacitor istheratio of the charge

q per plate to the applied voltage v, it does not depend on g or v. It

depends on the physical dimensions of the capacitor. For example, for

the parallel-plate capacitor shown in Fig. 6.1, the capacitance is given by
€A

C=-— (6.2) . : :
d Capacitor voltage rating and capacitance are typ-

where A is the surface area of each plate, d is the distance between the 'Ecally(':ﬁr;;g (réatze)d i“red? ?:J:l%”f?'f;;ﬂ
plates, and ¢ is the permittivity of the dielectric material between the ag dIVi.s high, £ ATCNg

plates. Although Eq. (6.2) applies to only parallel-plate capacitors, we

may infer from it that, in general, three factors determine the value of the

capacitance:

1. The surface area of the plates—the larger the area, the greater
the capacitance.

2. The spacing between the plates—the smaller the spacing, the
greater the capacitance.

3. The permittivity of the material—the higher the permittivity,
the greater the capacitance.

Capacitorsarecommercially availablein different valuesand types.
Typically, capacitors have valuesin the picofarad (pF) to microfarad (uF)
range. They are described by the diel ectric material they are made of and
by whether they are of fixed or variabletype. Figure 6.3 showsthecircuit i
symbols for fixed and variable capacitors. Note that according to the ©
passive sign convention, current is considered to flow into the positive
terminal of the capacitor when the capacitor is being charged, and out of Figure 63 Gircuit symbols for capaitors:
the pOSl tiVe term| nal When the CapaCI tor iS d|$harg| ng. (a) fixed capacitor' (b) variable Capacitor.
Figure6.4 showscommontypesof fixed-val uecapacitors. Polyester
capacitorsarelight in weight, stable, and their change with temperatureis
predictable. Instead of polyester, other dielectric materials such as mica
and polystyrene may be used. Film capacitors are rolled and housed in
metal or plastic films. Electrolytic capacitors produce very high capaci-
tance. Figure 6.5 shows the most common types of variable capacitors.
The capacitance of atrimmer (or padder) capacitor or aglass piston capac-
itor isvaried by turning the screw. The trimmer capacitor is often placed
in parallel with another capacitor so that the equivalent capacitance can
be varied dlightly. The capacitance of the variable air capacitor (meshed
plates) isvaried by turning the shaft. Variable capacitorsareusedinradio

@ (b) ©

Figu re64  Fixed capacitors: (a) polyester capacitor, (b) ceramic capacitor, (c) electrolytic capacitor.
(Courtesy of Tech America.)
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(b)

Figure 6.5  Variable capacitors:
(a) trimmer capacitor, (b) filmtrim
capacitor.

(Courtesy of Johanson.)

PART | DC Circuits

receivers allowing one to tune to various stations. In addition, capacitors
are used to block dc, pass ac, shift phase, store energy, start motors, and
Suppress noise.

To obtain the current-voltage relationship of the capacitor, we take
the derivative of both sides of Eq. (6.1). Since

. dg
differentiating both sides of Eq. (6.1) gives
= 64
T €9

Thisisthe current-voltage relationship for a capacitor, assuming the pos-
itive sign convention. The relationship is illustrated in Fig. 6.6 for a
capacitor whose capacitance is independent of voltage. Capacitors that
satisfy Eq. (6.4) are said to be linear. For a nonlinear capacitor, the
plot of the current-voltage relationship is not a straight line. Although
some capacitors are nonlinear, most are linear. We will assume linear
capacitors in this book.

The voltage-current relation of the capacitor can be obtained by
integrating both sides of Eq. (6.4). We get

1 t
According to Eq. (6.4), for a capacitor to carry v= C /: ool dt (65)
current, its voltage must vary with time. Hence, or
for constant voltage, i =0
1 t
i V= —/ i dt + v(to) (6.6)
C Jg,

where v(fg) = ¢(tp)/C is the voltage across the capacitor at time 7.
Equation (6.6) shows that capacitor voltage depends on the past history

~— Slope=C
of the capacitor current. Hence, the capacitor has memory—a property
that is often exploited.
0 >t The instantaneous power delivered to the capacitor is
\
e dv
Figure 6.6 Current-voltage p=uv==0vos (6.7)

relationship of a capacitor. . . .
The energy stored in the capacitor is therefore

t t d t 1
w:/ pdt:C/ v—vdt:C/ vdv= =Cv?
—0 _so  dt oo 2

We note that v(—o0) = 0, because the capacitor was uncharged at ¢ =

t
(68)

1=—00

—o00. Thus,
_ Ll 6.9
w = E v (6.9)
Using Eq. (6.1), we may rewrite Eq. (6.9) as
2
-1
W= on (6.10)
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CHAPTER 6 Capacitors and Inductors 205

Equation (6.9) or (6.10) represents the energy stored in the electric field
that exists between the plates of the capacitor. This energy can be re-
trieved, since an ideal capacitor cannot dissipate energy. Infact, theword
capacitor is derived from this element’s capacity to store energy in an
electric field.
We should note the following important properties of a capacitor:
1. Note from Eq. (6.4) that when the voltage across a capacitor is

not changing with time (i.e., dc voltage), the current through
the capacitor is zero. Thus,

B |
t A capacitor is an open circuit to dc. ! .

However, if abattery (dc voltage) is connected across a
capacitor, the capacitor charges.

2. The voltage on the capacitor must be continuous. @ (b)
. Figure 6.7 Voltage across a capacitor:
The voltage on a capacitor cannot change abruptly. (a) alowed, (b) not allowable; an abrupt
change is not possible.

The capacitor resists an abrupt change in the voltage acrossit.
According to Eq. (6.4), a discontinuous change in voltage
requires an infinite current, which is physically impossible.
For example, the voltage across a capacitor may take the form energy can only be done over some firte time,
shown in Fig. 6.7(a), whereasit is not physically possible for voltage cannot change instantaneously across a
the capacitor voltage to take the form shown in Fig. 6.7(b) capacitor.
because of the abrupt change. Conversealy, the current through

a capacitor can change instantaneously.

An alternative way of looking at this is using Eq.
(6.9), which indicates that energy is proportional
to voltage squared. Since injecting or extracting

J Leakage resistance
3. Theideal capacitor does not dissipate energy. It takes power AN
from the circuit when storing energy in itsfield and returns

previously stored energy when delivering power to the circuit.

4. A real, nonideal capacitor has a parallel-model leakage o 1€ o
resistance, as shown in Fig. 6.8. The leakage resistance may be \Capacitance
as high as 100 M2 and can be neglected for most practical
applications. For this reason, we will assume ideal capacitors Figure 6.8 Circuit model of a
in this book. nonideal capacitor.

M6.I

(a) Calculate the charge stored on a 3-pF capacitor with 20 V across it.
(b) Find the energy stored in the capacitor.

Solution:
(@) Sinceg = Cv,
g =3x10"2 x 20=60pC
(b) The energy stored is
1

1
w=§Cv2=§x3x10_12x400=600pJ
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206 PART | DC Circuits

PRACTICE PROBLEMEN

What is the voltage across a 3-uF capacitor if the charge on one plateis
0.12 mC? How much energy is stored?

Answer: 40V, 2.4 mJ.

i p L I

The voltage across a 5-uF capacitor is
v(t) = 10cos6000¢ V
Calculate the current through it.
Solution:
By definition, the current is

dv d
i(t) = C— = 10—
i) Cdz 5x 10 dt( 0cos6000¢)

= —5x 1078 x 6000 x 10sin6000r = —0.3sin6000r A

PRACTICE PROBLEMEN

If a 10-uF capacitor is connected to a voltage source with
v(r) = 50sin2000r V

determine the current through the capacitor.

Answer: co0s2000r A.

M6.3

Determine the voltage across a 2- F capacitor if the current throughiit is
i(1) = 673 mA

Assume that the initial capacitor voltage is zero.

Solution:

1 t
Sincev = 5/ i dt +v(0)andv(0) =0,
0

l t
= [ 6 411073
"7 2x 1045/0 ¢

t
— (1 _ e—3000t) V
0

3% 10 g
=~ 3000 °

PRACTICE PROBLEMENK

The current through a 100~ F capacitor isi(r) = 50sin 1207t mA. Cal-
culate the voltage acrossitat t = 1 msand ¢t = 5ms. Take v(0) = 0.

Answer: —93.137V, —1.736 V.
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CHAPTER 6 Capacitors and Inductors 207
Exaip L I
Determinethecurrent through a200-« F capacitor whosevoltageisshown — v(t) 4
inFig. 6.9. 50
Solution:
The voltage waveform can be described mathematically as 0 ) ) .
50¢ VV 0<t<1 SR N t
0 = 100 — 50t V 1<t<3
W= 1-200+500v  3<r<4 50
0 otherwise
Sincei = C dv/dt and C = 200 uF, wetakethe derivative of v to obtain Figure 6.9 For Example 6.4.
50 0<r<1 (A
-5 1<r<3
) — -6
i(t) =200 x 107° x 50 3</-4 10
0 otherwise
10 mA O<r<l1 0 1 '2 3 . {
_J—-10mA 1<r<3
10mA 3<t<4
0 otherwise 0
Thus the current waveform is as shown in Fig. 6.10.
Figure 6.10  For Example 6.4.
PRACTICE PROBLEMERE
Aninitially uncharged 1-mF capacitor hasthe current showninFig. 6.11 1 (MA)
acrossit. Calculate the voltage acrossitatt = 2msand¢ = 5ms. 100
Answer: 100 mV, 400 mV.
0 1 1 1
2 4 6 t(ms)
Figure 6.1 For Practice Prob. 6.4.

e L B

Obtain the energy stored in each capacitor in Fig. 6.12(a) under dc con-
ditions.

Solution:

Under dc conditions, we replace each capacitor with an open circuit, as
shownin Fig. 6.12(b). The current through the series combination of the
2-kQ and 4-k<2 resistorsis obtained by current division as

. 3
1= —F
3+2+4
Hence, the voltages v1 and v, across the capacitors are

vy = 2000i =4V vy = 4000i =8V

(6MA) = 2mA
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208 PART | DC Circuits
2mF ot Vi~
] 2kQ L
AV
2kQ
5kQ %
5kQ 6 mA 3kQ 4KQ
s ma @) 3kQ i 4KQ ® \72
4mF T ?
@ (b)

Figure 6.12  For Example 6.5.

and the energies stored in them are

1

wy = ZCpv? = -(2 x 107%)(4)? = 16 mJ

w2 =

2
1
2 C2U2 ==

1
5(4 x 1073)(8)2 = 128 mJ

PRACTICE PROBLEMERNS

3kQ
1kQ
20 uF
10V 10 uF = 6kQ
Figure 6.13  For Practice Prob. 6.5.

Under dc conditions, find the energy stored in the capacitorsin Fig. 6.13.
Answer: 405 uJ, 90 uJ.

il¢ i2¢ i3¢

@

eq

(b)

Figure 6.14 (2 Parallel-connected N
capacitors, (b) equivalent circuit for the parallel
capacitors.

6.3 SERIES AND PARALLEL CAPACITORS

Weknow from resistive circuitsthat series-parallel combinationisapow-
erful tool for reducing circuits. Thistechnique can be extended to series-
parallel connectionsof capacitors, which are sometimesencountered. We
desire to replace these capacitors by asingle equivalent capacitor Cey.

In order to obtain the equivalent capacitor Ceq Of N capacitors in
parallel, consider the circuit in Fig. 6.14(a). The equivalent circuitisin
Fig. 6.14(b). Note that the capacitors have the same voltage v across
them. Applying KCL to Fig. 6.14(a),

i=i1+ix+iz+---+iy (6.12)
Buti, = Cy dv/dt. Hence,
Cld—+C2d—U+C3d—v+ +CNd—v
dt dt dt dt
(6.12)

(Ee)s-e
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CHAPTER 6 Capacitors and Inductors 209

where

Cq=C1+Co+C3+---+Cy (6.13)

The equivalent capacitance of N parallel-connected capacitors is the
sum of the individual capacitances.

We observe that capacitors in parallel combine in the same manner as
resistorsin series.
We now obtain Ceq Of N capacitors connected in series by compar-

ing the circuit in Fig. 6.15(a) with the equivalent circuit in Fig. 6.15(b). _|> C, C, C; (oM
Note that the same current i flows (and consequently the same charge) I I {—-----——
through the capacitors. Applying KVL totheloopin Fig. 6.15(a), +Vp— +Vp - +Vz-  +Vy -
Vv
Vv=v1+Uv2+v3+---+UyN (6.24)
1 t
But vy = — [ (t) dt + vi(to). Therefore,
. Qﬁm> (0 o
1 [, 1 /. [
vV=— i(t) dt+vl(t0)+—f i(t) dt + va(to) —_—
Cl fo C2 to
1 t
+- = i(t) dt + vy(to) v Ceq::V
CN fo -
o2 /t'(t)dt+ (to) + va(to) ©19
— | — R e P 1 v v
ot o)l 1(fo 2(fo (b)
+ -+ vy (o) Figure 6.15  (2) Series-connected N
1 ' capac!tors, (b) equivalent circuit for the series
=— | i) dr+v(to) capacitor.
Ceq fo
where
SR T 6.16
Cq C1 C» C3 Cw (619

Theinitial voltage v(zp) across Ceq is required by KVL to be the sum of
the capacitor voltages at 7. Or according to Eqg. (6.15),

v(fo) = va(to) + v2(t0) + - - - + vn (t0)
Thus, according to Eq. (6.16),

The equivalent capacitance of series-connected capacitors is the reciprocal of the
sum of the reciprocals of the individual capacitances.

Note that capacitorsin series combine in the same manner asresistorsin

parallel. For N = 2 (i.e.,, two capacitorsin series), Eq. (6.16) becomes
1 1 1

Ca Ci G

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



210 PART | DC Circuits

or

GG
AT Ci+C

(6.17)

Find the equivalent capacitance seen between terminals a and b of the
circuitin Fig. 6.16.

5 uF 60 uF
| ——oa
Ceq
20 uF == 6 uF = 20 uF == -~
o b
Figure 6.16  For Example 6.6.
Solution:
The 20-uF and 5- F capacitorsarein series; their equivalent capacitance
is
20x5
=4 uF
20+5

This 4-uF capacitor is in parallel with the 6-uF and 20-uF capacitors;
their combined capacitanceis
44+6+4+20=30uF

This 30-uF capacitor isin series with the 60-uF capacitor. Hence, the
equivalent capacitance for the entire circuit is

30 x 60

“=30re0  OMF
PRACTICE PROBLEMEM
50 pF Find the equivalent capacitance seen at the terminals of the circuit in Fig.
—  60uF 6.17.

o—[ I Answer: 40 uF.
C H_

eq
— 70F == 20uF =——120puF

(e

Figure 6.17  For Practice Prob. 6.6.

M6.7

For the circuit in Fig. 6.18, find the voltage across each capacitor.
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CHAPTER 6 Capacitors and Inductors 211

Solution:
20 mF 30 mF

Wefirst find the equivalent capacitance Ceg, Shownin Fig. 6.19. Thetwo | [
parallel capacitorsin Fig. 6.18 can be combined to get 40+ 20 = 60 mF. ‘ |

Vi — Vo —
This 60-mF capacitor is in series with the 20-mF and 30-mF capacitors. T T +
Thus, 30V 40mF == V3 == 20mF
C 1 mF = 10 mF
=71 1, 1 =
otmTH

. Figure 6.18  For Example 6.7.
Thetotal chargeis

qg=Cqv=10x10°%x30=03C

This s the charge on the 20-mF and 30-mF capacitors, because they are 30V 4 ==Cq
in serieswith the 30-V source. (A crude way to seethisistoimaginethat
charge actslike current, sincei = dq/dt.) Therefore,

q 0.3 q 0.3 Figure 619 Equivalent
4 __ = _15v L __ 7 _ 1oV t for Fig. 6.18.
€1 20x10°3 2T, T 30x103 creutior e

Having determined v, and vy, we now use KVL to determine v by

V1 =

v3=30—v1—v2=5V

Alternatively, sincethe 40-mF and 20-mF capacitorsarein parallel,
they have the same voltage v3 and their combined capacitance is 40 +
20 = 60 mF. This combined capacitanceisin series with the 20-mF and
30-mF capacitors and consequently has the same charge on it. Hence,

q 0.3
~ 60mF  60x 103

PRACTICE PROBLEMKNN

5V

U3

Find the voltage across each of the capacitorsin Fig. 6.20. 40““': GOH“F
Answer: vy =30V,v, =30V, v3 =10V, vy =20 V. Il Il
+ Vp — + V3 —
+ +
60V Vo == 20uF  Va = 30 uF

Figure 6.20  For Practice Prob. 6.7.

6.4 INDUCTORS

Aninductor is a passive element designed to store energy in its magnetic
field. Inductors find numerous applicationsin electronic and power sys-
tems. They are used in power supplies, transformers, radios, TVs, radars,
and electric motors.

Any conductor of electric current hasinductive properties and may
be regarded as an inductor. But in order to enhance the inductive effect,
apractical inductor is usually formed into a cylindrical coil with many
turns of conducting wire, as shown in Fig. 6.21.
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PART | DC Circuits

Cross-sectional area, A t An inductor consists of a coil of conducting wire.

Core material
Number of turns, N

Figure 6.2 Typical form of an inductor.

In view of Eq. (6.18), for an inductor to have
voltage across its terminals, its current must vary
with time. Hence, v = 0 for constant current
through the inductor.

(b)

©

Figure 622 Various types of inductors:
(a) solenoidal wound inductor, (b) toroidal
inductor, (c) chip inductor.

(Courtesy of Tech America.)

If currentisallowedto passthrough aninductor, itisfound that thevoltage
across the inductor is directly proportional to the time rate of change of
the current. Using the passive sign convention,

=L— 6.18
v ar (6.18)

where L is the constant of proportionality called the inductance of the
inductor. The unit of inductance is the henry (H), named in honor of the
Americaninventor Joseph Henry (1797-1878). Itisclear from Eq. (6.18)
that 1 henry equals 1 volt-second per ampere.

Inductance is the property whereby an inductor exhibits opposition to the change
of current flowing through it, measured in henrys (H).

The inductance of an inductor depends on its physical dimension
and construction. Formulas for calculating the inductance of inductors
of different shapes are derived from electromagnetic theory and can be
found in standard electrical engineering handbooks. For example, for the
inductor (solenoid) shown in Fig. 6.21,

N2pA
ot
where N isthe number of turns, ¢ isthe length, A is the cross-sectional
area, and u is the permeability of the core. We can see from Eqg. (6.19)
that inductance can be increased by increasing the number of turns of
coil, using materia with higher permeability as the core, increasing the
cross-sectional area, or reducing the length of the coil.

Likecapacitors, commercially availableinductorscomein different
values and types. Typical practical inductors have inductance values
ranging from a few microhenrys (xH), as in communication systems,
to tens of henrys (H) as in power systems. Inductors may be fixed or
variable. The core may be made of iron, steel, plastic, or air. The terms
coil and choke are also used for inductors. Common inductors are shown
in Fig. 6.22. The circuit symbols for inductors are shown in Fig. 6.23,
following the passive sign convention.

Equation (6.18) is the voltage-current relationship for an inductor.
Figure 6.24 shows this relationship graphically for an inductor whose
inductance is independent of current. Such an inductor is known as a
linear inductor. For anonlinear inductor, the plot of Eq. (6.18) will not
be a straight line because its inductance varies with current. We will
assume linear inductors in this textbook unless stated otherwise.

The current-voltage relationship is obtained from Eq. (6.18) as

L

(6.19)

1
di = —v dt
L
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CHAPTER 6 Capacitors and Inductors 213

Integrating gives e e @
. 1A T B
i = Z/_ v(t) dt (6.20) + + ¥
o i RS |
1 t
i = Z/zo v(t) dt + i(to) (6.21) o o o

@ (b) ©
where i (tg) isthe total current for —oco <t < fgandi(—oo0) = 0. The
idea of making i (—oo) = O is practical and reasonable, because there  Figure 6.23  Circuit symbols for inductors:
must be atime in the past when there was no current in the inductor. i(f‘c)ma_"&)fge' (b) iron-core, (c) varizble

The inductor is designed to store energy in its magnetic field. The
energy stored can be obtained from Egs. (6.18) and (6.20). The power
delivered to the inductor is v

. di .
p=vi= LZ i (6.22)

The energy stored is = Slope=L

t 1 dl
w:/ pdt:/ <L—>idt .
—o0 oo\ dt 0 di/dt

(6.23)

! 1 1
= L/ idi = ELiz(Z‘) - ELiZ(—oo) Figure 6.24  Voltage-current
—00 relationship of an inductor.
Sincei(—oo) =0,
= 1L‘2 6.24
w = 5 1 (6.24)

We should note the following important properties of an inductor.

1. Note from Eq. (6.18) that the voltage across an inductor is zero
when the current is constant. Thus,

An inductor acts like a short circuit to dc. ‘

|

2. Animportant property of the inductor is its opposition to the
changein current flowing through it.

{ The current through an inductor cannot change instantaneously. J _ _
| |

According to Eqg. (6.18), a discontinuous change in the current
through an inductor requires an infinite voltage, which is not

physically possible. Thus, an inductor opposes an abrupt
change in the current through it. For example, the current

through an inductor may take the form shown in Fig. 6.25(a), @ (0)
whereas the inductor current cannot take the form shown in Foure 625 Current throuah an inductor:
Fig. 6.25(b) in real-life situations due to the discontinuities. (ag) allowed, (b) not allowab?e; an abrupt

However, the voltage across an inductor can change abruptly. change is not possible.

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents

Yy



214 PART | DC Circuits

3. Liketheideal capacitor, theideal inductor does not dissipate
energy. The energy stored in it can beretrieved at alater time.
The inductor takes power from the circuit when storing energy
and delivers power to the circuit when returning previously
stored energy.
Since an inductor is often made of a highly con- 4. A practical, nonideal inductor has a significant resistive

ducting wire, it has a very small resistance. component, as shown in Fig. 6.26. Thisis due to the fact that
the inductor is made of a conducting material such as copper,

L Ry which has some resistance. This resistanceis called the
! 3 winding resistance R,,, and it appears in series with the
eeeeees {€-------- inductance of the inductor. The presence of R,, makesit both
Cy an energy storage device and an energy dissipation device.
Since R, isusualy very small, it isignored in most cases. The
Figure 6.26  Circuit model nonideal inductor also has awinding capacitance C,, dueto
for a practical inductor. the capacitive coupling between the conducting coils. C,, is

very small and can beignored in most cases, except at high
frequencies. We will assume ideal inductors in this book.

RSN ¢

Thecurrent througha0.1-H inductor isi (r) = 10re~> A. Findthevoltage
across the inductor and the energy stored init.

Solution:
Sincev = Ldi/dtand L = 0.1H,

d
v = O.la(lOte_SI) = 4 1(-5e ¥ =¥ A-5)V
The energy stored is

1 1
w= ELi2 = E(O.l)lOOtze’lO’ = 5127100

PRACTICE PROBLEM KN

If the current through a1-mH inductor isi (t) = 20 cos100¢t mA, find the
terminal voltage and the energy stored.

Answer: —2sin100r mV, 0.2 cos? 100z jJ.

e L I

Find the current through a 5-H inductor if the voltage acrossit is

) = 302, t>0
=10, t<0
Also find the energy stored within0 < ¢t < 5s.

Solution:
i 1/
Sincei = Zf v(t) dr +i(tg) and L = 5H,
o

1 /! 13
i=§/0 30t2dt+0=6x§=2t3A
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The power p = vi = 60¢°, and the energy stored is then

5

5 t6
w=/pdt=/ 60r° dr = 60— | = 156.25kJ
0 6 0

Alternatively, we can obtain the energy stored using Eq. (6.13), by writing

1 1 1
wlo = ELi2(5) ~5LiO = 55)@2x 53)2 _ 0 = 156.25 kJ

as obtained before.

PRACTICE PROBLEMENE

Theterminal voltage of a2-H inductorisv = 10(1—¢) V. Find thecurrent
flowing through it at r = 4 s and the energy stored in it within0 < ¢ <
4s. Assumei(0) = 2A.

Answer: —18A,320J.

M6.|0

Consider the circuit in Fig. 6.27(a). Under dc conditions, find: () i, vc, _|> 10 5Q
and iz, (b) the energy stored in the capacitor and inductor. MWW MW\ l i
Solution: 40
(a) Under dc conditions, we replace the capacitor with an open circuit 12V f) + 2H %
and the inductor with ashort circuit, asin Fig. 6.27(b). It isevident from Ve .~ 1F
Fig. 6.27(b) that - T
12
i = o —2A @
1+5 .
. _ i 10 5Q
The voltage vc isthe same asthe voltage across the 5-Q2 resistor. Hence, AW AN l
IL
ve =5 =10V 40
+
(b) The energy in the capacitor is v CD +
Ve
1 1 N
we = ECUE- = E(1)(102) =50J I

(b)
and that in the inductor is

Figure 6.27  For Example 6.10.
wy =

Li? = %(2)(22) =4]

PRACTICE PROBLEMENRIK

Determine vc, iy, and the energy stored in the capacitor and inductor in _'L> 0.25H
the circuit of Fig. 6.28 under dc conditions. TI " l
Answer: 3V,3A,9J 1.125J. 4Aé> %39 19% VCTZF

Network Analysis Figure 6.28  For Practice Prob. 6.10.
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(b)

Figure 629 (a) A series connection of N
inductors, (b) equivalent circuit for the
series inductors.

L 3L 3L,
o
@
i
—
+
v Leg
(b)
Figure 6.30  (a) A parallel connection of N

inductors, (b) equivalent circuit for the parall
inductors.

e

PART | DC Circuits

6.5 SERIES AND PARALLEL INDUCTORS

Now that the inductor has been added to our list of passive el ements, it is
necessary to extend the powerful tool of series-parallel combination. We
need to know how to find the equival ent inductance of a series-connected
or parallel-connected set of inductors found in practical circuits.

Consider a series connection of N inductors, as shown in Fig.
6.29(a), with the equivalent circuit shown in Fig. 6.29(b). The inductors
have the same current through them. Applying KVL to the loop,

V=v1+ U2+ U3+ -+ UN (6.25)
Substituting v, = L di/dt resultsin
Ldi+Ldi—|—L di+ ‘L di
V= _ —_ —_ JR—
Yar 2dt Sdr Nt
di
= (L1+L2+L3+"'+LN)E (6.26)
(XN:L ) di _, di
= k _—— eq—
= dt dt
where
Lm:L1+L2+L3+~-~+LN (6.27)
Thus,

The equivalent inductance of series-connected inductors is the
sum of the individual inductances.

Inductorsin series are combined in exactly the same way as resistorsin
series.

We now consider a parallel connection of N inductors, as shown
in Fig. 6.30(a), with the equivalent circuit in Fig. 6.30(b). The inductors
have the same voltage across them. Using KCL,

i=i1+ix+iz+---+iy (6.28)
1 t
Buti; = —/ v dr + i (f); hence,
Lk fo
t 1 t
= — vdt+i1(to)+—/ v dt + ix(to)
1Jy L; to
1 t
+~-+—/ v di +ix(to)
LN fo
(1+1+ +1)/t dt + i1(to) + i2(t0) ©29
=ttt v 11(lg) + 12(lo
L1 L Ly) Ji
+ - 4 in(to)
N 1 t N 1 t
= Z— /vdt—l—Zik(to):—/ v dt + i(tg)
iz Le ) Jio k=1 Leq Jio
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where

(6.30)

The initial current i (fo) through Leq at ¢ = 1o is expected by KCL to be
the sum of the inductor currents at #p. Thus, according to Eq. (6.29),

i(to) = i1(to) +i2(t0) + -+ - +in(to)
According to Eq. (6.30),

The equivalent inductance of parallel inductors is the reciprocal of the sum of the
reciprocals of the individual inductances.

Note that theinductorsin parallel are combined in the sameway asresis-
torsin paraldl.
For two inductorsin parallel (N = 2), Eq. (6.30) becomes
1 1 1 L,L,

— =4+ — or Leg=

Leq L1 Ly L1+ Lo
It isappropriate at this point to summarize the most important character-
istics of the three basic circuit elements we have studied. The summary
isgivenin Table 6.1.

(6.31)

217

TABLE6.]  Important characteristics of the basic elements. |
Relation Resistor (R) Capacitor (C) Inductor (L)
B i R ['dt—l— (to) Ldi
-l v=1 V= — i v v=L—
vt cl, 0 d
d 1/
i-v i=v/R izcd—’; izz[oidt+i(zo)
2 v 1, 1,
porw: ]J=1R=§ lUZECU w=§Ll
. C1C2
Series: Ry =R R = Legg=1L L
eq 1+ R «= G eq 1+ Lo
R1R2 LlLZ
Parallel: Ry = Ceq=0C C Leg=
BT RI+R, “ 1+ BT L+ Ly
Atdc: Same Open circuit Short circuit
Circuit variable
that cannot
change abruptly:  Not applicable v i

TPassive sign convention is assumed.

M6.II

Find the eguivalent inductance of the circuit shownin Fig. 6.31.
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4H 20H
o——TN 2112
Leq
— 7H 12H
o——TN 2112
8H 10H
Figure 6.31  For Example 6.11.

PRACTICE PROBLEMKEM

PART | DC Circuits
Solution:

The 10-H, 12-H, and 20-H inductors are in series; thus, combining them
gives a42-H inductance. This 42-H inductor isin parallel with the 7-H
inductor so that they are combined, to give

7x42
7+42
This 6-H inductor isin series with the 4-H and 8-H inductors. Hence,

Lyy=4+4+6+8=18H

6H

Calculate the equivalent inductance for the inductive ladder network in
Fig. 6.32.

20mH 100 mH 40 mH
o T L1
Leq
- 50 mH 40 mH 30 mH 20 mH
O
Figure 6.32  For Practice Prob. 6.11.

Answer: 25 mH.

i 4H
o— M _ _
+ + v, — i i

1 Vi . Vi
v 4H Vo 12H
o
Figure 6.33  For Example 6.12.

For the circuit in Fig. 6.33, i (1) = 4(2 — e 1) mA. If i»(0) = —1 mA,
find: (a) i1(0); (b) v(¢), va(2), and v2(¢); (C) i1(¢) and ix(¢).
Solution:
(@ Fromi(t) = 42— e @) mA,i(0) = 42— 1) = 4mA. Sincei =
i1+ iz,

i1(00 =i(0) —i2(0) =4— (1) =5mA
(b) The equivalent inductanceis

Lg=24+4|12=24+3=5H

Thus,

p
00 = Leg'y = 5@ (=D)(~10)e ™ mV = 200¢ 2 mv

and

di

H)y=2
v1() 7

= 2(—4)(—10)e ¥ mV = 80~ mv
Sincev = v1 + va,

V(1) = v(t) — v1(r) = 120e™ 2 mv
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(c) Thecurrent i4 is obtained as
1! 120 !
il(t)Z—/ U2dl+i1(0)=—/ e 10 dt +5mA
4 Jo 4 Jo

=3 |[[+5mA=-3"+3+5=8-3""mA

Similarly,

1 (! 120 [!
(1) = — dt + i(0) = — 10 gy —1mA
ia2(1) 12/0 v dt + i2(0) P /(; e

= -1mA=—-—+1-1=-—""mA

Notethat i1(¢) + is(¢) = i(¢).

PRACTICE PROBLEMENIN

In the circuit of Fig. 6.34, i1(f) = 0.6e=% A.1f i(0) = L4 A, find: i, 3n
(@) i2(0); (b) i2(r) and i (1); () v (1), va (1), and va(1). 1
Answer: (a) 0.8A, (b) (—0.4+ 1.2¢7%) A, (—0.4+ 1.8¢7%) A, o + v -
(€) =7.2¢7% V, —28.8¢ % V, —36¢ % V. * T N
v _I: 6H Va % 8H

Figure 6.34  For Practice Prob. 6.12.

6.6 APPLICATIONS

Circuit elements such as resistors and capacitors are commercially avail-
able in either discrete form or integrated-circuit (IC) form. Unlike ca-
pacitors and resistors, inductors with appreciable inductance are difficult
to produce on IC substrates. Therefore, inductors (coils) usually come
in discrete form and tend to be more bulky and expensive. For this rea-
son, inductors are not as versatile as capacitors and resistors, and they
aremore limited in applications. However, there are severa applications
in which inductors have no practical substitute. They are routinely used
in relays, delays, sensing devices, pick-up heads, telephone circuits, ra-
dioand TV receivers, power supplies, electric motors, microphones, and
loudspeakers, to mention afew.

Capacitors and inductors possess the following three special prop-
erties that make them very useful in electric circuits:

1. The capacity to store energy makes them useful as temporary
voltage or current sources. Thus, they can be used for
generating alarge amount of current or voltage for a short
period of time.

2. Capacitors oppose any abrupt change in voltage, while
inductors oppose any abrupt change in current. This property
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makes inductors useful for spark or arc suppression and for
converting pulsating dc voltage into relatively smooth dc
voltage.

3. Capacitors and inductors are frequency sensitive. This
property makes them useful for frequency discrimination.

The first two properties are put to use in dc circuits, while the third
one is taken advantage of in ac circuits. We will see how useful these
properties are in later chapters. For now, consider three applications
involving capacitors and op amps: integrator, differentiator, and analog
compulter.

6.6.1 Integrator

Important op amp circuits that use energy-storage elements include inte-

grators and differentiators. These op amp circuits often involve resistors

and capacitors; inductors (coils) tend to be more bulky and expensive.
The op amp integrator is used in numerous applications, especially

in analog computers, to be discussed in Section 6.6.3.

An integrator is an op amp circuit whose output is proportional
to the integral of the input signal.

If the feedback resistor Ry in the familiar inverting amplifier of

iy Ri Fig. 6.35(a) is replaced by a capacitor, we obtain an ideal integrator, as
_ VW shownin Fig. 6.35(b). Itisinteresting that we can obtain amathematical
i Ry L O_A representation of integration thisway. At node a in Fig. 6.35(b),
* ov Lo iR =lIc (6.32)
\'A V. + *
i 2 Vo But
_ - . v; C dv,
= l = —
[¢ é o] LR R’ c dr
@ Substituting these in Eq. (6.32), we obtain
) C v dv,
< | R ¢ dt (6:333)
ir R
O AAMA—— dv, = ———v; dt 6.33b
+ a v RC v ( )
+: Integrating both sides gives
V.
: Vo 1 [
_ _ V() = 0,(0) = —— f v; (t) dt (6.34)
° ° RC Jo
1
= To ensure that v, (0) = 0, it isalways necessary to discharge the integra-
(®) tor’s capacitor prior to the application of asignal. Assuming v,(0) = 0,
Figure 6.35  Replacing the feedback resistor 1
in the inverting amplifier in (a) produces an _ - )
integrator in (b). Vo = RC J, vi (1) dt (6.35)

which shows that the circuit in Fig. 6.35(b) provides an output voltage
proportional to theintegral of theinput. In practice, the op ampintegrator
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requiresafeedback resistor to reduce dc gain and prevent saturation. Care
must be taken that the op amp operates within the linear range so that it
does not saturate.

2|

m€:.|3

If v, = 10cos2tr mV and v, = 0.5 mV, find v, in the op amp circuit in
Fig. 6.36. Assume that the voltage across the capacitor isinitialy zero.
Solution:
Thisisasumming integrator, and
U():—Rl—c U]_d[—Rz—C Uzd[
1

t
= — 10cos2t dt
3x106x2x10—6/0

1 t
— 0.5t dt
100 x 103 x 2 x 10-°© /0

= —0.833sin2r — 1.25:° mV

PRACTICE PROBLEMENIE

Il

|

|
(%2}
S5
N
~
|

|

Vi

3MQ

100 kQ

Figure 6.36

2 uF

1o

For Example 6.13.

The integrator in Fig. 6.35 has R = 25 k2, C = 10 uF. Determine the
output voltage when a dc voltage of 10 mV isapplied at + = 0. Assume
that the op amp isinitialy nulled.

Answer: —40r mV.

6.6.2 Differentiator

A differentiator is an op amp circuit whose output is proportional to
the rate of change of the input signal.

In Fig. 6.35(a), if the input resistor is replaced by a capacitor, the
resulting circuit is adifferentiator, shown in Fig. 6.37. Applying KCL at
nodea,

i =ic (6.36)

But
. Vo . dv;
= -, = C—
'R R e dt

Substituting these in Eq. (6.36) yields

dl}i
v, = —RC— (6.37)
dt

showing that the output is the derivative of the input. Differentiator cir-
cuits are electronically unstable because any electrical noise within the

Q
+
0|o<+<L

Figure 6.37

L

An op amp differentiator.
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circuit is exaggerated by the differentiator. For this reason, the differen-
tiator circuit in Fig. 6.37 is not as useful and popular as the integrator. It
is seldom used in practice.

Sketch the output voltage for the circuit in Fig. 6.38(a), given the input

5kQ voltagein Fig. 6.38(b). Tekev, =0at+ = 0.
0.2 uF VW Solution:
— Thisis adifferentiator with
v " RC=5x10°x02x10°%=10"3s
o
%— For 0 < t < 4 ms, we can express the input voltage in Fig. 6.38(b) as
L I O<t<2ms
@ ViTl8—2  2<i<4ms
v Thisisrepeated for 4 < r < 8. Using Eq. (6.37), the output is obtained
4 as
——RC@— —-2mV O<t<2ms
Vo = dt | 2mVv 2<t<4ms
, , R Thus, the output is as sketched in Fig. 6.39.
0 2 4 6 8 t(ms)
(b) vi (mV)

2+

Figure 638 For Example 6.14.

2 4 6 8 t (ms)

Figure 6.39  Output of the circuit in Fig. 6.38(a).

PRACTICE PROBLEMENK

The differentiator in Fig. 6.37 has R = 10 k2 and C = 2 uF. Given that
v; = 3 V, determine the output v,,.

Answer: —60mV.

6.6.3 Analog Computer
Op ampswereinitially developed for el ectronic analog computers. Ana-
log computers can be programmed to solve mathematical models of me-
chanical or electrical systems. These models are usually expressed in
terms of differential equations.

To solve simple differential equations using the analog computer
requires cascading three types of op amp circuits. integrator circuits,
summing amplifiers, and inverting/noninverting amplifiers for negative/

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



CHAPTER 6 Capacitors and Inductors

positivescaling. Thebest way toillustrate how an analog computer solves
adifferential equation iswith an example.
Suppose we desire the solution x (¢) of the equation
d’x dx
T2 +b dt
wherea, b, and ¢ are constants, and f(¢) isan arbitrary forcing function.
The solution isobtained by first solving the highest-order derivativeterm.

+cx = f(1), t>0 (6.38)

Solving for d?x /dt? yields
d%x f@® bdx ¢
— = - = 6.39
dt? a adi a (639

To obtain dx /dt, the d?x /dt? term isintegrated and inverted. Finally, to
obtain x, thedx /dt termisintegrated and inverted. Theforcing function
isinjected at the proper point. Thus, the analog computer for solving Eq.
(6.38) is implemented by connecting the necessary summers, inverters,
and integrators. A plotter or oscilloscope may be used to view the output
x, or dx/dt, or d%x/dt?, depending on where it is connected in the
system.

Although the above exampleis on asecond-order differential equa-
tion, any differential equation can be simulated by an analog computer
comprising integrators, inverters, and inverting summers. But care must
be exercised in selecting the values of the resistors and capacitors, to
ensure that the op amps do not saturate during the solution time
interval.

The analog computers with vacuum tubes were built in the 1950s
and 1960s. Recently their use has declined. They have been superseded
by modern digital computers. However, we still study analog computers
for two reasons. First, the availability of integrated op amps has made
it possible to build analog computers easily and cheaply. Second, un-
derstanding analog computers helps with the appreciation of the digital
computers.

Me.u

Design an analog computer circuit to solve the differential equation:

%+2%+v0=105in4t t>0
subject to v,(0) = —4,v,(0) = 1, where the prime refers to the time
derivative.
Solution:
Wefirst solve for the second derivative as
i;vz” = 10sin4: — 2(2)[" -, (6.15.1)

Solving thisrequires some mathematical operations, including summing,

scaling, and integration. Integrating both sides of Eq. (6.15.1) gives
dv,
dt

! . dv,
= _f <—105|n4t + Zd_vt + v0> +v,(0) (6152
0
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where v/ (0) = 1. We implement Eq. (6.15.2) using the summing inte-
grator shown in Fig. 6.40(a). The values of the resistors and capacitors
have been chosen so that RC = 1 for the term
1 t

—— | v, dt
RC Jy

Other terms in the summing integrator of Eq. (6.15.2) are implemented
accordingly. The initial condition dv,(0)/dr = 1 is implemented by
connecting a 1-V battery with a switch across the capacitor as shown in

Fig. 6.40(a).
+ 1V - =0
LMo — 0 + 4V - -
1uF N
—10'sin (4) f — 7]
1MQ 1l 1uF
y & I 1MQ
° ?l%—o e 1MQ '
4. 06MQ dt v, . 1MQ
o = O VW =
dt dt i Vo + Vo
@ (b)
1MQ + 1V -
t=0 + 4V -
— o— :>St=0
10 sin (4t) 1uF — 7]
€ | 1ﬁF 1MQ
o —— A > 1Mo n 1MQ
7L_|+ J;_|+ AWV ; —0 Yy
05MQ ) = =
v,
ot
©
Figure 6.40  For Example 6.15.
The next step is to obtain v, by integrating dv,/dt and inverting
the resullt,

" dv,
v, = —/O (— T ) dt + v(0) (6.15.3)

Thisisimplemented with thecircuitin Fig. 6.40(b) with the battery giving
the initial condition of —4 V. We now combine the two circuits in Fig.
6.40 (a) and (b) to obtainthe completecircuit showninFig. 6.40(c). When
theinput signal 10sin 4z isapplied, weopentheswitchesat = Otoobtain
the output waveform v,,, which may be viewed on an oscilloscope.
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PRACTICE PROBLEMENIE

Design an analog computer circuit to solve the differential equation:

d%v, dv,
3— + 2v, = 4c0s10¢ t>0
dt? + dt tev g

subject to v, (0) = 2, v/ (0) = 0.
Answer: SeeFig. 6.41, where RC = 1s.

C
R
R

d2V ar =

— +

dtz d2y
B dt?

cos (10t)

Figure 641 For Practice Prob. 6.15.

6.7 SUMMARY

1. The current through a capacitor is directly proportional to the time
rate of change of the voltage acrossit.

i=C—
dt

The current through a capacitor is zero unless the voltage is
changing. Thus, a capacitor acts like an open circuit to a dc source.

2. The voltage across a capacitor is directly proportional to the time
integral of the current through it.

1/ 1/
v:—/ idt:—/idt+i(to)
CJ CJy

The voltage across a capacitor cannot change instantly.

3. Capacitorsin seriesand in parallel are combined in the same way as
conductances.
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4. The voltage across an inductor is directly proportiona to the time
rate of change of the current through it.

v=L—
dt

The voltage across the inductor is zero unless the current is chang-
ing. Thus an inductor acts like a short circuit to adc source.

5. The current through an inductor is directly proportional to the time
integral of the voltage acrossit.

1/ 1/
i=— vdt:—/ vdt + v(ty)
L\/—oo L to

The current through an inductor cannot change instantly.

6. Inductorsin seriesand in parallel are combined in the same way
resistorsin series and in parallel are combined.

7. Atany giventimer, the energy stored in a capacitor is %Cvz, while
the energy stored in an inductor is %Liz.

8. Three application circuits, the integrator, the differentiator, and the
analog computer, can be realized using resistors, capacitors, and op

amps.
REVIEW QUESTIONS
6.1 What chargeis on a 5-F capacitor when it is 6.5 Thetotal capacitance of two 40-mF series-connected
connected across a 120-V source? capacitorsin parallel with a4-mF capacitor is:
(@) 600C (b) 300C (@ 3.8mF (b) 5mF (c) 24 mF
(c) 24C (d) 12C (d) 44 mF (e) 84 mF
6.2 Capacitance is measured in: 6.6 Lrl1 Fig. 6:43, if i = cos4t and v = sin4t, the
(a8 coulombs (b) joules ement '_S' ) .
(©) henrys (d) farads (&) aresistor (b) acapacitor (c) aninductor
6.3 When the total charge in a capacitor is doubled, the ‘ i
energy stored:
(a) remainsthesame  (b) ishalved v C_r) Element
(c) isdoubled (d) isquadrupled
6.4 Can the voltage waveform in Fig. 6.42 be associated
With & capacitor? Figure 643 For Revi estion 6.6
(@ Yes (b) No g . or Review Question 6.6.
v 6.7 A 5-H inductor changesitscurrent by 3A in0.2 s.
10 - The voltage produced at the terminals of the
inductor is:
@ 75V (b) 8.888V
0 >
1 7 ; (c) 3V (d) 1.2V
6.8 If the current through a 10-mH inductor increases
-10 | from zeroto 2 A, how much energy is stored in the
inductor?
(@ 40mJ (b) 20mJ
Figure 6.42  For Review Question 6.4. (c) 10mJ (d) 5mJ
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6.9 Inductorsin parallel can be combined just like L,
resistorsin parallel. ) L
(@ True (b) False ! .
6.10 For thecircuit in Fig. 6.44, the voltage divider Vs @) V2 % L2
formulais: B
Li+L Li+L
@ v="7"0 O u=" "
L, Ly Figure 6.44  For Review Question 6.10.
© vi=——0 d vi=——vs
Li+ L, Li+ L,
Answers: 6.1a, 6.2d, 6.3d, 6.4b, 6.5c¢, 6.6b, 6.7a, 6.8b, 6.9a, 6.10d.
PROBLEMS
Section 6.2 Capacitors Vi)V
6.1 If the voltage across a 5-F capacitor is 2re=% V, find 10 -
the current and the power.
6.2 A 40-uF capacitor is charged to 120 V and isthen 0 — —
allowed to discharge to 80 V. How much energy is 2 4 8 10 /12 t(ms)
lost?
_10 -
6.3 In 5 s, the voltage across a 40-mF capacitor changes
from 160 V to 220 V. Calculate the average current
through the capacitor. Figure 646 For Prob. 6.6.
6.4 A current of 6sin4r A flowsthrough a 2-F
capacitor. Find the voltage v(r) across the capacitor o
given that v(0) = 1 V. 6.7 At ¢t = 0, the voltage across a 50-mF capacitor is
10 V. Calculate the voltage across the capacitor for
6.5 If the current waveform in Fig. 6.45 isapplied to a ¢t > 0 when current 4+ mA flows through it.
20-uF capacitor, find the voltage v(r) across the o
capacitor. Assume that v(0) = 0. 6.8 The current through a 0.5-F capacitor is
6(1 — e~") A. Determine the voltage and power at
t =2s. Assumev(0) = 0.
6.9 If the voltage across a 2-F capacitor is as shown in
i(0) 4 Fig. 6.47, find the current through the capacitor.
ar V() (V)4
10 -
5
0 1
1 2t
, 0 1 1 1 1 1 1 >
Figure 6.45  For Prob. 6.5. 1 2 3 4 5 6 7 t(
Figure 6.47  For Prob. 6.9.
6.6 The voltage waveform in Fig. 6.46 is applied across 6.10  Thecurrent through an initially uncharged 4-uF

a 30-uF capacitor. Draw the current waveform
through it.

capacitor is shown in Fig. 6.48. Find the voltage
across the capacitor for 0 < ¢ < 3.
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i(t) (MA) 6F
° I
“ L L, L
5F T T 4F T 2F
0 > o
1 2 3 t(9)
(b)
—40 - 3F  6F
o
Figure 6.48  For Prob. 6.10. —
3F
4F T
[e;
6.11 A voltage of 60cos4rt V appears across the ©
terminals of a 3-mF capacitor. Calculate the current
through the capacitor and the energy stored in it .
fromt =0tor = 0.125s, F|gure 650 For Prob. 6.15.
6.12  Find the voltage across the capacitorsin the circuit 6.16  Find Ce for thecircuit in Fig. 6.51.
of Fig. 6.49 under dc conditions.
20uF  30uF
o—l| Il
100 50Q c ! !
VWA VWA —, 15uF = GuF = 40uF =
20Q + o
39% C, V1 Vo < Gy
- 60V Figure 6,51 For Prob. 6.16.

6.17  Caculate the equivalent capacitance for the circuit

) in Fig. 6.52. All capacitances arein mF.
Figure 6.49  For Prob. 6.12.

5
Il
Section 6.3 Seriesand Parallel Capacitors :
15 3
6.13 What isthetotal capacitance of four 30-mF o I I
capacitors connected in: I I
(a) paralle (b) series Ceq 1 2
E— - 6 - 6
6.14  Two capacitors (20 uF and 30 wF) are connected to
a100-V source. Find the energy stored in each " I
capacitor if they are connected in: o Il 1l
(@) parallel (b) series 8 4
6.15 Determine the equivalent capacitance for each of the Figure 6.52  For Prob. 6.17.

circuitsin Fig. 6.50. ) . . .
6.18  Determine the equivalent capacitance at terminals

a-b of the circuit in Fig. 6.53.

O—H } 5uF 6 uF 4 uF

l l ao—H Il Il
3E 6F lZ = J—3M|: LlZMF
T T bo T i T T

@ Figure 6.53  For Prob. 6.18.
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6.20

6.21

6.22

CHAPTER 6

Obtain the equivalent capacitance of the circuit in
Fig. 6.54.

40 uF

— 10uF 10uF ==
35 uF 5uF
|| | ||

|

[
Il [ Il
20 uF
— 15 uF 15 uF =

Figure 6.54  For Prob. 6.19.

For the circuit in Fig. 6.55, determine;
(a) the voltage across each capacitor,
(b) the energy stored in each capacitor.

120v @)

|

[

N
=

5
—

Figure 6.55  For Prob. 6.20.

Repeat Prob. 6.20 for the circuit in Fig. 6.56.

60 uF 20 uF
f f
I I
90V<t> —J|: 30 uF %JA-MF % 80 uF
Figure 6.56  For Prob. 6.21.

(a) Show that the voltage-division rule for two
capacitorsin seriesasin Fig. 6.57(a) is

C2 Cl
= Vs, vy = v
Cl + C2 Cl + C2

V1 s

assuming that the initial conditions are zero.

*An asterisk indicates a challenging problem.

6.23

6.24

*6.25

6.26

Capacitors and Inductors 29

€) (b)

Figure .57 For Prob. 6.22.

(b) For two capacitorsin paralel asin Fig. 6.57(b),
show that the current-division ruleis

R Cy . . C, .
===l 2= "1
C1+C2 C1+C2

assuming that the initial conditions are zero.

Three capacitors, C; = 5 uF, C, = 10 uF, and
C3 = 20 uF, are connected in parallel acrossa
150-V source. Determine;

(a) thetotal capacitance,
(b) the charge on each capacitor,

(c) thetota energy stored in the parallel
combination.

The three capacitorsin the previous problem are
placed in series with a 200-V source. Compute:

(a) thetotal capacitance,
(b) the charge on each capacitor,
(c) thetotal energy stored in the series combination.

Obtain the equivalent capacitance of the network
shown in Fig. 6.58.

}_
}_

40 uF 30 uF 50 uF
10 uF T T 20 uF

(e

Figure 6.58  For Prob. 6.25.

Determine C, for each circuit in Fig. 6.59.

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



230 PART | DC Circuits
ﬁ (@ v2(0) (b) va(r) and va(2)
° | (©) i), ia(r), and iz (1)
Ceq C \/ C i 20uF
c o——¢
‘(‘: L VA { iy * iz
o Il +
(a \ 30 uF 4~ Vo, 4~ S0 uF
c ; \_.C ©
Ceq / Figure 6.6 For Prob. 6.29.
x/ Section 6.4 Inductors
¢ g c 6.30  Thecurrent through a 10-mH inductor is 6e~'/2 A.
Find the voltage and the power at t = 3 s.
b)
®) 6.31  Thecurrentin acoil increases uniformly from 0.4 to
. 1 A in 2 sso that the voltage across the coil is
Figure 659 For Prob 6.26. 60 mV. Calculate the inductance of the coil.
6.32  Thecurrent through a 0.25-mH inductor is

6.27  Assuming that the capacitors are initially uncharged,
find v, (¢) in the circuit in Fig. 6.60.

iy (mA)
- 6 uF
is +
3uF Vo(t)
0 _
1 2 t(9

Figure 6.60  For Prob. 6.27.

6.28 Ifv(0) =0, findv(z),i1(r),and i>(¢) inthecircuitin
Fig. 6.61.

is (MA) A
20

O 1 1 1 |
1 2 Vs t
_20_

‘il ¢i2

4 uF ==

|
< +

is GMF =

Figure 6.6/ For Prob. 6.28.

6.29  For thecircuit in Fig. 6.62, let v = 10e=¥ V and
v1(0) = 2 V. Find:

6.33

6.34

6.35

6.36

6.37

6.38

12 cos2:t A. Determine the terminal voltage and the
power.
The current through a 12-mH inductor is

4sin 100 A. Find the voltage, and also the energy
stored in theinductor for 0 < ¢ < 7/200s.

The current through a 40-mH inductor is

. 0, t<0
i) = te 2 A tr>0
Find the voltage v ().

The voltage across a 2-H inductor is 20(1 — e=%) V.
If theinitia current through the inductor is0.3 A,
find the current and the energy stored in the inductor
ar=1s

If the voltage waveform in Fig. 6.63 is applied
across the terminals of a5-H inductor, calculate the
current through the inductor. Assume i (0) = —1A.

v(t) (V) A
10
0
1 2 3 4 5 t
Figure .63 For Prob. 6.36.

The current in an 80-mH inductor increases from 0
to 60 mA. How much energy is stored in the
inductor?

A voltage of (4 + 10cos2r) V isapplied to a5-H
inductor. Find the current i (¢) through the inductor
ifi(0) = —1A.
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6.39 If thevoltage waveform in Fig. 6.64 isapplied to a

CHAPTER 6

10-mH inductor, find the inductor current i (z).
Assumei(0) = 0.

v(®
5 [—

Figure 6.64

For Prob. 6.39.

6.40 Findvc, iz, and the energy stored in the capacitor
and inductor in the circuit of Fig. 6.65 under dc

conditions.

A @

g 0.5H

Figure 6.6

6.41  For thecircuit in Fig. 6.66, calculate the value of R
that will make the energy stored in the capacitor the

2Q
Ve 2F
% 4Q
5Q
For Prob. 6.40.

same as that stored in the inductor under dc

conditions.
R
VWA
I
IX
160 uF
5A % 2Q
Figure 6.66  For Prob. 6.41.

6.42  Under dc conditions, find the voltage across the

capacitors and the current through the inductorsin

the circuit of Fig. 6.67.

Capacitors and Inductors 3|

40 L,

30V = C
60

Figure 6.67  For Prob. 6.42.

Section 6.5 Seriesand Parallel Inductors

6.43

6.44

Find the equivalent inductance for each circuit in
Fig. 6.68.

5H 1H
o—T—— T
6H 4H 4H
O
@
1H 2H
12H 6H 4H
O
(b)
O
2H
§4H
3H 6H
O
(©

Figure 6.68  For Prob. 6.43.

Obtain L, for the inductive circuit of Fig. 6.69. All
inductances are in mH.

10

.
o—/TI
N
512 3 6

(e,

Figure 6.69  For Prob. 6.44.
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6.45 Determine Lg at terminals a-b of the circuit in Fig. L
6.70. A11%
L L
L
10 mH l e
4A11A L L
60 mH L
AILR
25mH 20 mH Fioure 673
ao A11A A11R o b igure o. For Prob. 6.48.
30 mH

6.49 Find Ly inthecircuitin Fig. 6.74.
Figure 6.70  For Prob. 6.45.

L
A11A
6.46  Find L at the terminals of the circuit in Fig. 6.71. L L
L L L
ALk
6mH 8 mH
a o—1Imn 4A11A L L
5mH
12 mH o] o
T Leq
8 mH g
6 mH .
4mH Figure 6.74  For Prob. 6.49.
b o— T LLLD .
10 mH 8mH *6.50  Determine L that may be used to represent the

inductive network of Fig. 6.75 at the terminals.
Figure 6.7 For Prob. 6.46.

odi

i dt

. . . o _, 4H
6.47  Find the equivalent inductance looking into the ao TN 3 =
terminals of the circuit in Fig. 6.72.
e 3H 5H
9H bo
A1 )
10H Figure 6.75  For Prob. 6.50.
T

12H g 3H 6.51  The current waveform in Fig. 6.76 flows through a

3-H inductor. Sketch the voltage across the inductor

6H over theinterval 0 <t < 6s.

4H§

N1,

i(t)

o 0
a b 2
Figure 6.7 For Prob. 6.47.
0 1 1 1 >
1 2 3 45 6 t
6.48  Determine L in the circuit in Fig. 6.73. Figure 6.76  For Prob. 6.51.
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CHAPTER 6

(8) Fortwo inductorsin seriesasin Fig. 6.77(b),
show that the current-division principleis

Ly L,
= Vg, V2 = v
Li+L> Li+ L,
assuming that the initial conditions are zero.

(b) For two inductorsin parallel asin Fig. 6.77(b),
show that the current-division principleis

L, . . Ly
Iy, i) =
Li+ Ly z Li+ L,
assuming that the initial conditions are zero.

V1 s

i1 = i

6.53

6.54

Ly
- i
+
sdu @ 3u du
@ (b)
Figure 6.77  For Prob. 6.52.

Inthe circuit of Fig. 6.78, let i, (1) = 6e=% MA,
t > 0andiy(0) =4 mA. Find:

@ i2(0),

(b) i1(¢) and ix(¢), t > 0,

(©) vi(r) and va(2), t > 0,

(d) the energy in eachinductor at t = 0.5s.

10mH
T
V1 i i
L
i) g 30 mH Vzg 20 mH
Figure 6.78  For Prob. 6.53.

Theinductorsin Fig. 6.79 areinitially charged and

are connected to the black box at r = 0. If

i1(0) = 4A,i,(0) = =2 A, and v(¢) = 50e=2" mV,

t >0, find:

(a) theenergy initially stored in each inductor,

(b) thetotal energy delivered to the black box from
t=0tor = oo,

() ia(r) andix(2),t > 0,

(d) i), t>0.

6.55

Section 6.6

6.56

6.57

6.58

6.59

Capacitors and Inductors 233

Black box | v

Figure 6.79

Find i and v in the circuit of Fig. 6.80 assuming that
i(0) = 0=v(0).

For Prob. 6.54.

i 20mH
—

+
12sin4tmVv 60 mH v 40 mH

L11h
16 mH

Figure 6.80  For Prob. 6.55.

Applications

An op amp integrator has R = 50 k2 and
C = 0.04 uF. If theinput voltageis
v; = 10sin50¢ mV, obtain the output voltage.

A 10-V dc voltageis applied to an integrator with

R =50k, C = 100 uF at r = 0. How long will it
take for the op amp to saturate if the saturation
voltagesare +12 V and —12 V? Assume that the
initial capacitor voltage was zero.

An op amp integrator with R = 4 MQ and
C = 1 uF hasthe input waveform shown in Fig.
6.81. Plot the output waveform.

v; (mV)

ZO—L
10 |+

6 t(ms

[y
\S)
w
PN
[é)]

ml

For Prob. 6.58.

Figure 6.8

Using a single op amp, a capacitor, and resistors of
100 k€2 or less, design a circuit to implement

t
v, = —SOf v; (¢) dt
0

Assumev, =0atr =0.
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6.60

6.61

1V

6.62

6.63

PART |

Show how you would use asingle op amp to
generate

t
v, = —/ (v1 + 4vy + 10v3) dt
0

If the integrating capacitor is C = 2 uF, obtain other
component values.

Att = 1.5ms, calculate v, due to the cascaded
integratorsin Fig. 6.82. Assume that the integrators
areresettoOV atr =0.

ZﬁF 05 uF
Il Il
10kQ . 20KkQ 11
:‘+ A " L 6
+
VO
o

€

Figure 6.8 For Prob. 6.61.

Show that the circuit in Fig. 6.83 is anoninverting
integrator.

Figure 6.83  For Prob. 6.62.

The triangular waveformin Fig. 6.84(a) is applied to
the input of the op amp differentiator in Fig. 6.84(b).
Plot the output.

Vi (t) A
10 -

t (ms)

@

DC Circuits

6.64

6.65

*6.66

6.67

20kQ
0.01 uF
+
Yi Vo
o
(b)
Figure 6.84  For Prob. 6.63.

An op amp differentiator has R = 250 k2 and
C = 10 uF. Theinput voltage is aramp
r(t) = 12t mV. Find the output voltage.

A voltage waveform has the following
characteristics: apositive slope of 20 V/sfor 5 ms
followed by a negative slope of 10 V/sfor 10 ms. If
the waveform is applied to a differentiator with

R =50k, C = 10 uF, sketch the output voltage
waveform.

The output v, of the op amp circuit of Fig. 6.85(a) is
shownin Fig. 6.85(b). Let R, = Ry = 1 MQ and

C = 1 uF. Determine the input voltage waveform
and sketch it.

R
—MWAA—
C
R I
=
+
Vi v
o
@
VO
4 -
0 1 1 v 5
1 3 4 t(ms)
_4 -
(b)
Figure 6.85  For Prob. 6.66.
Design an analog computer to simulate
d?v, _dv, .
2 , = 10sin2¢
dr? * dt v

where vo(0) = 2 and v4(0) = 0.
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6.68  Design an analog computer to solve the differential
equation

di(t)
dt

+3i(t)=2 t>0

and assume that i (0) = 1 mA.

6.69  Figure 6.86 presents an analog computer designed to
solve adifferential equation. Assuming f(¢) is
known, set up the equation for f (¢).

1MQ

1wk 1uF
— 1MQ
1MQ 500 kQ
i = v ==
100 kQ
100 kQ 200kQ
= —f(t) o—

Figure 6.86  For Prob. 6.69.

COMPREHENSIVE PROBLEMS

6.70  Your laboratory has available alarge number of
10-;.F capacitorsrated at 300 V. To design a
capacitor bank of 40-uF rated at 600 V, how many
10-uF capacitors are needed and how would you
connect them?

6.71  When acapacitor is connected to adc source, its
voltagerisesfrom 20V to 36 V in 4 uswith an
average charging current of 0.6 A. Determine the
value of the capacitance.

6.72 A sguare-wave generator produces the voltage
waveform shown in Fig. 6.87(8). What kind of a
circuit component is needed to convert the voltage
waveform to the triangular current waveform shown
in Fig. 6.87(b)? Calculate the value of the
component, assuming that it isinitially uncharged.

v(V)A
5 pr—
0 3>
1] 2 3 4 t(ms)
_5 -

@

6.73

i (A)

0 1 2 3 4 t(ms)
(b)

Figure 6.87  For Prob. 6.72.

In an electric power plant substation, a capacitor
bank is made of 10 capacitor strings connected in
parallel. Each string consists of eight 1000-uF
capacitors connected in series, with each capacitor
charged to 100 V.

(a) Calculatethetotal capacitance of the bank.

(b) Determine the total energy stored in the bank.

Go to the Student OLC
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