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C H A P T E R

SECOND-ORDER CIRCUITS

8

“Engineering is not only a learned profession, it is also a learning pro-
fession, one whose practitioners first become and then remain students
throughout their active careers.”

—William L. Everitt

Enhancing Your Career
To increase your engineering career opportunities after grad-
uation, develop a strong fundamental understanding in a
broad set of engineering areas. When possible, this might
best be accomplished by working toward a graduate degree
immediately upon receiving your undergraduate degree.

Each degree in engineering represents certain skills
the students acquire. At the Bachelor degree level, you learn
the language of engineering and the fundamentals of engi-
neering and design. At the Master’s level, you acquire the
ability to do advanced engineering projects and to commu-
nicate your work effectively both orally and in writing. The
Ph.D. represents a thorough understanding of the fundamen-
tals of electrical engineering and a mastery of the skills nec-
essary both for working at the frontiers of an engineering
area and for communicating one’s effort to others.

If you have no idea what career you should pursue af-
ter graduation, a graduate degree program will enhance your
ability to explore career options. Since your undergraduate
degree will only provide you with the fundamentals of en-
gineering, a Master’s degree in engineering supplemented
by business courses benefits more engineering students than
does getting a Master’s of Business Administration (MBA).
The best time to get your MBA is after you have been a prac-
ticing engineer for some years and decide your career path
would be enhanced by strengthening your business skills.

Engineers should constantly educate themselves,
formally and informally, taking advantage of all means of
education. Perhaps there is no better way to enhance your
career than to join a professional society such as IEEE and
be an active member.

Key career plot points

Networking
worldwide

Professional organization

Technical information

Career resources

Networking
the World TM

Enhancing your career involves understanding your goals,
adapting to changes, anticipating opportunities, and planning
your own niche. (Courtesy of IEEE.)
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8.1 INTRODUCTION
In the previous chapter we considered circuits with a single storage ele-
ment (a capacitor or an inductor). Such circuits are first-order because
the differential equations describing them are first-order. In this chap-
ter we will consider circuits containing two storage elements. These are
known assecond-ordercircuits because their responses are described by
differential equations that contain second derivatives.

Typical examples of second-order circuits areRLC circuits, in
which the three kinds of passive elements are present. Examples of such
circuits are shown in Fig. 8.1(a) and (b). Other examples areRC andRL
circuits, as shown in Fig. 8.1(c) and (d). It is apparent from Fig. 8.1 that
a second-order circuit may have two storage elements of different type or
the same type (provided elements of the same type cannot be represented
by an equivalent single element). An op amp circuit with two storage
elements may also be a second-order circuit. As with first-order circuits,
a second-order circuit may contain several resistors and dependent and
independent sources.

A second-order circuit is characterized by a second-order differential equation. It
consists of resistors and the equivalent of two energy storage elements.

Our analysis of second-order circuits will be similar to that used for
first-order. We will first consider circuits that are excited by the initial
conditions of the storage elements. Although these circuits may contain
dependent sources, they are free of independent sources. These source-
free circuits will give natural responses as expected. Later we will con-
sider circuits that are excited by independent sources. These circuits will
give both the natural response and the forced response. We consider
only dc independent sources in this chapter. The case of sinusoidal and
exponential sources is deferred to later chapters.
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Figure 8.1 Typical examples of
second-order circuits: (a) series
RLC circuit, (b) parallel RLC
circuit, (c) RL circuit, (d) RC
circuit.

We begin by learning how to obtain the initial conditions for the cir-
cuit variables and their derivatives, as this is crucial to analyzing second-
order circuits. Then we consider series and parallel RLC circuits such as
shown in Fig. 8.1 for the two cases of excitation: by initial conditions of
the energy storage elements and by step inputs. Later we examine other
types of second-order circuits, including op amp circuits. We will con-
sider PSpice analysis of second-order circuits. Finally, we will consider
the automobile ignition system and smoothing circuits as typical appli-
cations of the circuits treated in this chapter. Other applications such as
resonant circuits and filters will be covered in Chapter 14.

8.2 FINDING INITIAL AND FINAL VALUES
Perhaps the major problem students face in handling second-order circuits
is finding the initial and final conditions on circuit variables. Students are



CHAPTER 8 Second-Order Circuits 297

usually comfortable getting the initial and final values of v and i but often
have difficulty finding the initial values of their derivatives: dv/dt and
di/dt . For this reason, this section is explicitly devoted to the subtleties
of getting v(0), i(0), dv(0)/dt , di(0)/dt , i(∞), and v(∞). Unless
otherwise stated in this chapter, v denotes capacitor voltage, while i is
the inductor current.

There are two key points to keep in mind in determining the initial
conditions.

First—as always in circuit analysis—we must carefully handle the
polarity of voltage v(t) across the capacitor and the direction of the cur-
rent i(t) through the inductor. Keep in mind that v and i are defined
strictly according to the passive sign convention (see Figs. 6.3 and 6.23).
One should carefully observe how these are defined and apply them ac-
cordingly.

Second, keep in mind that the capacitor voltage is always continu-
ous so that

v(0+) = v(0−) (8.1a)

and the inductor current is always continuous so that

i(0+) = i(0−) (8.1b)

where t = 0− denotes the time just before a switching event and t = 0+ is
the time just after the switching event, assuming that the switching event
takes place at t = 0.

Thus, in finding initial conditions, we first focus on those variables
that cannot change abruptly, capacitor voltage and inductor current, by
applying Eq. (8.1). The following examples illustrate these ideas.

E X A M P L E 8 . 1

The switch in Fig. 8.2 has been closed for a long time. It is open at t = 0.
Find: (a) i(0+), v(0+), (b) di(0+)dt , dv(0+)/dt , (c) i(∞), v(∞).

12 V

4 Ω 0.25 H

+
− 0.1 F

i

v
+

−
2 Ω

t = 0

Figure 8.2 For Example 8.1.

Solution:

(a) If the switch is closed a long time before t = 0, it means that the circuit
has reached dc steady state at t = 0. At dc steady state, the inductor acts
like a short circuit, while the capacitor acts like an open circuit, so we
have the circuit in Fig. 8.3(a) at t = 0−. Thus,

12 V

4 Ω 0.25 H

+
− 0.1 F

i

(b)

12 V

4 Ω

+
−

i

v

+

−
2 Ω

(a)

12 V

4 Ω

+
−

i

v

+

−

(c)

+ −vL

v
+

−

Figure 8.3 Equivalent circuit of that in Fig. 8.2 for: (a) t = 0−, (b) t = 0+, (c) t → ∞.
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i(0−) = 12

4 + 2
= 2 A, v(0−) = 2i(0−) = 4 V

As the inductor current and the capacitor voltage cannot change abruptly,

i(0+) = i(0−) = 2 A, v(0+) = v(0−) = 4 V

(b) At t = 0+, the switch is open; the equivalent circuit is as shown in Fig.
8.3(b). The same current flows through both the inductor and capacitor.
Hence,

iC(0
+) = i(0+) = 2 A

Since C dv/dt = iC , dv/dt = iC/C, and

dv(0+)
dt

= iC(0+)
C

= 2

0.1
= 20 V/s

Similarly, since L di/dt = vL, di/dt = vL/L. We now obtain vL by
applying KVL to the loop in Fig. 8.3(b). The result is

−12 + 4i(0+) + vL(0
+) + v(0+) = 0

or

vL(0
+) = 12 − 8 − 4 = 0

Thus,

di(0+)
dt

= vL(0+)
L

= 0

0.25
= 0 A/s

(c) For t > 0, the circuit undergoes transience. But as t → ∞, the circuit
reaches steady state again. The inductor acts like a short circuit and the
capacitor like an open circuit, so that the circuit becomes that shown in
Fig. 8.3(c), from which we have

i(∞) = 0 A, v(∞) = 12 V

P R A C T I C E P R O B L E M 8 . 1

The switch in Fig. 8.4 was open for a long time but closed at t = 0. De-
termine: (a) i(0+), v(0+), (b) di(0+)dt , dv(0+)/dt , (c) i(∞), v(∞).

10 Ω

24 Vv
+

−
2 Ω +

−

i

t = 0

0.4 H

 F1
20

Figure 8.4 For Practice Prob. 8.1.

Answer: (a) 2 A, 4 V, (b) 50 A/s, 0 V/s, (c) 12 A, 24 V.
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E X A M P L E 8 . 2

In the circuit of Fig. 8.5, calculate: (a) iL(0+), vC(0+), vR(0+),
(b) diL(0+)dt , dvC(0+)/dt , dvR(0+)/dt , (c) iL(∞), vC(∞), vR(∞).

3u(t) A

4 Ω

20 V
0.6 H

vC

+

−vR

+

−
2 Ω

+
−

iL
 F1

2

Figure 8.5 For Example 8.2.

Solution:

(a) For t < 0, 3u(t) = 0. At t = 0−, since the circuit has reached steady
state, the inductor can be replaced by a short circuit, while the capacitor
is replaced by an open circuit as shown in Fig. 8.6(a). From this figure
we obtain

iL(0
−) = 0, vR(0

−) = 0, vC(0
−) = −20 V (8.2.1)

Although the derivatives of these quantities at t = 0− are not required, it
is evident that they are all zero, since the circuit has reached steady state
and nothing changes.

3 A

4 Ω

20 V

0.6 HvR

+

−
2 Ω

+
−

iLiC

vL

(b)

a b4 Ω

20 V

vC

+

−
vR

+

−

2 Ω
+
−

iL

(a)

vo

vC

+

−

+ −

+

−

F1
2

Figure 8.6 The circuit in Fig. 8.5 for: (a) t = 0−, (b) t = 0+.

For t > 0, 3u(t) = 3, so that the circuit is now equivalent to that
in Fig. 8.6(b). Since the inductor current and capacitor voltage cannot
change abruptly,

iL(0
+) = iL(0

−) = 0, vC(0
+) = vC(0

−) = −20 V (8.2.2)

Although the voltage across the 4-� resistor is not required, we will use
it to apply KVL and KCL; let it be called vo. Applying KCL at node a
in Fig. 8.6(b) gives

3 = vR(0+)
2

+ vo(0+)
4

(8.2.3)
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Applying KVL to the middle mesh in Fig. 8.6(b) yields

−vR(0
+) + vo(0

+) + vC(0
+) + 20 = 0 (8.2.4)

Since vC(0+) = −20 V from Eq. (8.2.2), Eq. (8.2.4) implies that

vR(0
+) = vo(0

+) (8.2.5)

From Eqs. (8.2.3) and (8.2.5), we obtain

vR(0
+) = vo(0

+) = 4 V (8.2.6)

(b) Since L diL/dt = vL,

diL(0+)
dt

= vL(0+)
L

But applying KVL to the right mesh in Fig. 8.6(b) gives

vL(0
+) = vC(0

+) + 20 = 0

Hence,

diL(0+)
dt

= 0 (8.2.7)

Similarly, since C dvC/dt = iC , then dvC/dt = iC/C. We apply KCL
at node b in Fig. 8.6(b) to get iC :

vo(0+)
4

= iC(0
+) + iL(0

+) (8.2.8)

Since vo(0+) = 4 and iL(0+) = 0, iC(0+) = 4/4 = 1 A. Then

dvC(0+)
dt

= iC(0+)
C

= 1

0.5
= 2 V/s (8.2.9)

To get dvR(0+)/dt , we apply KCL to node a and obtain

3 = vR

2
+ vo

4

Taking the derivative of each term and setting t = 0+ gives

0 = 2
dvR(0+)

dt
+ dvo(0+)

dt
(8.2.10)

We also apply KVL to the middle mesh in Fig. 8.6(b) and obtain

−vR + vC + 20 + vo = 0

Again, taking the derivative of each term and setting t = 0+ yields

−dvR(0+)
dt

+ dvC(0+)
dt

+ dvo(0+)
dt

= 0

Substituting for dvC(0+)/dt = 2 gives

dvR(0+)
dt

= 2 + dvo(0+)
dt

(8.2.11)

From Eqs. (8.2.10) and (8.2.11), we get
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dvR(0+)
dt

= 2

3
V/s

We can find diR(0+)/dt although it is not required. Since vR = 5iR ,

diR(0+)
dt

= 1

5

dvR(0+)
dt

= 1

5

2

3
= 2

15
A/s

(c) As t → ∞, the circuit reaches steady state. We have the equivalent
circuit in Fig. 8.6(a) except that the 3-A current source is now operative.
By current division principle,

iL(∞) = 2

2 + 4
3 A = 1 A

vR(∞) = 4

2 + 4
3 A × 2 = 4 V, vC(∞) = −20 V

(8.2.12)

P R A C T I C E P R O B L E M 8 . 2

For the circuit in Fig. 8.7, find: (a) iL(0+), vC(0+), vR(0+),
(b) diL(0+)/dt , dvC(0+)/dt , dvR(0+)/dt , (c) iL(∞), vC(∞), vR(∞).

2u(t) A 3 A

5 Ω

2 H

iC iL

vC

+

−

iR

vL

vR+ −

+

−
F1

5

Figure 8.7 For Practice Prob. 8.2.

Answer: (a) −3 A, 0, 0, (b) 0, 10 V/s, 0, (c) −1 A, 10 V, 10 V.

8.3 THE SOURCE-FREE SERIES RLC CIRCUIT
An understanding of the natural response of the series RLC circuit is a
necessary background for future studies in filter design and communica-
tions networks.

Consider the series RLC circuit shown in Fig. 8.8. The circuit is
being excited by the energy initially stored in the capacitor and inductor.
The energy is represented by the initial capacitor voltage V0 and initial
inductor current I0. Thus, at t = 0,

v(0) = 1

C

∫ 0

−∞
i dt = V0 (8.2a)

i(0) = I0 (8.2b)

i

R L

Io

Vo C

+

−

Figure 8.8 A source-free series
RLC circuit.Applying KVL around the loop in Fig. 8.8,

Ri + L
di

dt
+ 1

C

∫ t

−∞
i dt = 0 (8.3)
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To eliminate the integral, we differentiate with respect to t and rearrange
terms. We get

d2i

dt2
+ R

L

di

dt
+ i

LC
= 0 (8.4)

This is a second-order differential equation and is the reason for calling
theRLC circuits in this chapter second-order circuits. Our goal is to solve
Eq. (8.4). To solve such a second-order differential equation requires that
we have two initial conditions, such as the initial value of i and its first
derivative or initial values of some i and v. The initial value of i is given
in Eq. (8.2b). We get the initial value of the derivative of i from Eqs.
(8.2a) and (8.3); that is,

Ri(0) + L
di(0)

dt
+ V0 = 0

or

di(0)

dt
= − 1

L
(RI0 + V0) (8.5)

With the two initial conditions in Eqs. (8.2b) and (8.5), we can now
solve Eq. (8.4). Our experience in the preceding chapter on first-order
circuits suggests that the solution is of exponential form. So we let

i = Aest (8.6)

where A and s are constants to be determined. Substituting Eq. (8.6) into
Eq. (8.4) and carrying out the necessary differentiations, we obtain

As2est + AR

L
sest + A

LC
est = 0

or

Aest
(
s2 + R

L
s + 1

LC

)
= 0 (8.7)

Since i = Aest is the assumed solution we are trying to find, only the
expression in parentheses can be zero:

s2 + R

L
s + 1

LC
= 0 (8.8)

See Appendix C.1 for the formula to find the
roots of a quadratic equation.

This quadratic equation is known as the characteristic equation of the
differential Eq. (8.4), since the roots of the equation dictate the character
of i. The two roots of Eq. (8.8) are

s1 = − R

2L
+

√(
R

2L

)2

− 1

LC
(8.9a)

s2 = − R

2L
−

√(
R

2L

)2

− 1

LC
(8.9b)

A more compact way of expressing the roots is

s1 = −α +
√
α2 − ω2

0, s2 = −α −
√
α2 − ω2

0 (8.10)



CHAPTER 8 Second-Order Circuits 303

where

α = R

2L
, ω0 = 1√

LC
(8.11)

The roots s1 and s2 are called natural frequencies, measured in
nepers per second (Np/s), because they are associated with the natural
response of the circuit;ω0 is known as the resonant frequency or strictly as
the undamped natural frequency, expressed in radians per second (rad/s);
and α is the neper frequency or the damping factor, expressed in nepers
per second. In terms of α and ω0, Eq. (8.8) can be written as

s2 + 2αs + ω2
0 = 0 (8.8a)

The variables s and ω are important quantities we will be discussing
throughout the rest of the text.

The neper (Np) is a dimensionless unit named
after John Napier (1550–1617), a Scottish math-
ematician.

The ratio α/ω0 is known as the damping ratio ζ .

The two values of s in Eq. (8.10) indicate that there are two possible
solutions for i, each of which is of the form of the assumed solution in
Eq. (8.6); that is,

i1 = A1e
s1t , i2 = A2e

s2t (8.12)

Since Eq. (8.4) is a linear equation, any linear combination of the two
distinct solutions i1 and i2 is also a solution of Eq. (8.4). A complete or
total solution of Eq. (8.4) would therefore require a linear combination
of i1 and i2. Thus, the natural response of the series RLC circuit is

i(t) = A1e
s1t + A2e

s2t (8.13)

where the constantsA1 andA2 are determined from the initial values i(0)
and di(0)/dt in Eqs. (8.2b) and (8.5).

From Eq. (8.10), we can infer that there are three types of solutions:

1. If α > ω0, we have the overdamped case.

2. If α = ω0, we have the critically damped case.

3. If α < ω0, we have the underdamped case.

We will consider each of these cases separately.

The response is overdamped when the roots of
the circuit’s characteristic equation are unequal
and real, critically damped when the roots are
equal and real, and underdamped when the roots
are complex.

Overdamped Case (α > ω0)

From Eqs. (8.9) and (8.10), α > ω0 when C > 4L/R2. When this hap-
pens, both roots s1 and s2 are negative and real. The response is

i(t) = A1e
s1t + A2e

s2t (8.14)

which decays and approaches zero as t increases. Figure 8.9(a) illustrates
a typical overdamped response.

Critically Damped Case (α = ω0)

When α = ω0, C = 4L/R2 and

s1 = s2 = −α = − R

2L
(8.15)

For this case, Eq. (8.13) yields

i(t) = A1e
−αt + A2e

−αt = A3e
−αt
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where A3 = A1 + A2. This cannot be the solution, because the two
initial conditions cannot be satisfied with the single constant A3. What
then could be wrong? Our assumption of an exponential solution is
incorrect for the special case of critical damping. Let us go back to Eq.
(8.4). When α = ω0 = R/2L, Eq. (8.4) becomes

d2i

dt2
+ 2α

di

dt
+ α2i = 0

or
d

dt

(
di

dt
+ αi

)
+ α

(
di

dt
+ αi

)
= 0 (8.16)

If we let

f = di

dt
+ αi (8.17)

then Eq. (8.16) becomes

df

dt
+ αf = 0

which is a first-order differential equation with solution f = A1e
−αt ,

where A1 is a constant. Equation (8.17) then becomes

di

dt
+ αi = A1e

−αt

or

eαt
di

dt
+ eαtαi = A1 (8.18)

This can be written as
d

dt
(eαt i) = A1 (8.19)

Integrating both sides yields

eαt i = A1t + A2

or

i = (A1t + A2)e
αt (8.20)

whereA2 is another constant. Hence, the natural response of the critically
damped circuit is a sum of two terms: a negative exponential and a
negative exponential multiplied by a linear term, or

i(t) = (A2 + A1t)e
−αt (8.21)

A typical critically damped response is shown in Fig. 8.9(b). In fact, Fig.
8.9(b) is a sketch of i(t) = te−αt , which reaches a maximum value of
e−1/α at t = 1/α, one time constant, and then decays all the way to zero.

t

i(t)

0

e–t

(c)

t1
a

i(t)

0

(b)

t

i(t)

0

(a)

2p
vd

Figure 8.9 (a) Overdamped response,
(b) critically damped response,
(c) underdamped response.

Underdamped Case (α < ω0)

For α < ω0, C < 4L/R2. The roots may be written as

s1 = −α +
√

−(ω2
0 − α2) = −α + jωd (8.22a)

s2 = −α −
√

−(ω2
0 − α2) = −α − jωd (8.22b)
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where j = √−1 and ωd =
√
ω2

0 − α2, which is called the damping
frequency. Both ω0 and ωd are natural frequencies because they help
determine the natural response; while ω0 is often called the undamped
natural frequency,ωd is called the damped natural frequency. The natural
response is

i(t) = A1e
−(α−jωd )t + A2e

−(α+jωd )t

= e−αt (A1e
jωd t + A2e

−jωd t )
(8.23)

Using Euler’s identities,

ejθ = cos θ + j sin θ, e−jθ = cos θ − j sin θ (8.24)

we get

i(t) = e−αt [A1(cosωdt + j sinωdt) + A2(cosωdt − j sinωdt)]

= e−αt [(A1 + A2) cosωdt + j (A1 − A2) sinωdt]
(8.25)

Replacing constants (A1 + A2) and j (A1 − A2) with constants B1 and
B2, we write

i(t) = e−αt (B1 cosωdt + B2 sinωdt) (8.26)

With the presence of sine and cosine functions, it is clear that the natural
response for this case is exponentially damped and oscillatory in nature.
The response has a time constant of 1/α and a period of T = 2π/ωd . Fig-
ure 8.9(c) depicts a typical underdamped response. [Figure 8.9 assumes
for each case that i(0) = 0.]

Once the inductor current i(t) is found for theRLC series circuit as
shown above, other circuit quantities such as individual element voltages
can easily be found. For example, the resistor voltage is vR = Ri, and the
inductor voltage is vL = L di/dt . The inductor current i(t) is selected
as the key variable to be determined first in order to take advantage of Eq.
(8.1b).

We conclude this section by noting the following interesting, pe-
culiar properties of an RLC network:

R = 0 produces a perfectly sinusoidal response.
This response cannot be practically accomplished
with L and C because of the inherent losses in
them. See Figs. 6.8 and 6.26. An electronic de-
vice called an oscillator can produce a perfectly
sinusoidal response.

Examples 8.5 and 8.7 demonstrate the effect of
varying R.

The response of a second-order circuit with two
storage elements of the same type, as in Fig.
8.1(c) and (d), cannot be oscillatory.

1. The behavior of such a network is captured by the idea of
damping, which is the gradual loss of the initial stored energy,
as evidenced by the continuous decrease in the amplitude of
the response. The damping effect is due to the presence of
resistance R. The damping factor α determines the rate at
which the response is damped. If R = 0, then α = 0, and we
have an LC circuit with 1/

√
LC as the undamped natural

frequency. Since α < ω0 in this case, the response is not only
undamped but also oscillatory. The circuit is said to be loss-
less, because the dissipating or damping element (R) is absent.
By adjusting the value of R, the response may be made
undamped, overdamped, critically damped, or underdamped.

2. Oscillatory response is possible due to the presence of the two
types of storage elements. Having both L and C allows the
flow of energy back and forth between the two. The damped
oscillation exhibited by the underdamped response is known as
ringing. It stems from the ability of the storage elements L and
C to transfer energy back and forth between them.
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3. Observe from Fig. 8.9 that the waveforms of the responses
differ. In general, it is difficult to tell from the waveforms the
difference between the overdamped and critically damped
responses. The critically damped case is the borderline
between the underdamped and overdamped cases and it decays
the fastest. With the same initial conditions, the overdamped
case has the longest settling time, because it takes the longest
time to dissipate the initial stored energy. If we desire the
fastest response without oscillation or ringing, the critically
damped circuit is the right choice.

What this means in most practical circuits is that
we seek an overdamped circuit that is as close as
possible to a critically damped circuit.

E X A M P L E 8 . 3

In Fig. 8.8, R = 40 �, L = 4 H, and C = 1/4 F. Calculate the char-
acteristic roots of the circuit. Is the natural response overdamped, under-
damped, or critically damped?

Solution:

We first calculate

α = R

2L
= 40

2(4)
= 5, ω0 = 1√

LC
= 1√

4 × 1
4

= 1

The roots are

s1,2 = −α ±
√
α2 − ω2

0 = −5 ± √
25 − 1

or

s1 = −0.101, s2 = −9.899

Since α > ω0, we conclude that the response is overdamped. This is also
evident from the fact that the roots are real and negative.

P R A C T I C E P R O B L E M 8 . 3

If R = 10 �, L = 5 H, and C = 2 mF in Fig. 8.8, find α, ω0, s1, and s2.
What type of natural response will the circuit have?

Answer: 1, 10, −1 ± j9.95, underdamped.

E X A M P L E 8 . 4

Find i(t) in the circuit in Fig. 8.10. Assume that the circuit has reached
steady state at t = 0−.

t = 0

10 V

4 Ω

0.5 H

0.02 F v
+

−

3 Ω

+
−

6 Ω

i

Figure 8.10 For Example 8.4.

Solution:

For t < 0, the switch is closed. The capacitor acts like an open circuit
while the inductor acts like a shunted circuit. The equivalent circuit is
shown in Fig. 8.11(a). Thus, at t = 0,

i(0) = 10

4 + 6
= 1 A, v(0) = 6i(0) = 6 V

where i(0) is the initial current through the inductor and v(0) is the initial
voltage across the capacitor.
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0.5 H

0.02 F

9 Ω

i

(b)

10 V

4 Ω

v
+

−
6 Ω+

−

i

(a)

v
+

−

Figure 8.11 The circuit in Fig. 8.10: (a) for t < 0, (b) for t > 0.

For t > 0, the switch is opened and the voltage source is dis-
connected. The equivalent circuit is shown in Fig. 8.11(b), which is a
source-free series RLC circuit. Notice that the 3-� and 6-� resistors,
which are in series in Fig. 8.10 when the switch is opened, have been
combined to give R = 9 � in Fig. 8.11(b). The roots are calculated as
follows:

α = R

2L
= 9

2
(

1
2

) = 9, ω0 = 1√
LC

= 1√
1
2 × 1

50

= 10

s1,2 = −α ±
√
α2 − ω2

0 = −9 ± √
81 − 100

or

s1,2 = −9 ± j4.359

Hence, the response is underdamped (α < ω); that is,

i(t) = e−9t (A1 cos 4.359t + A2 sin 4.359t) (8.4.1)

We now obtain A1 and A2 using the initial conditions. At t = 0,

i(0) = 1 = A1 (8.4.2)

From Eq. (8.5),

di

dt

∣∣∣∣
t=0

= − 1

L
[Ri(0) + v(0)] = −2[9(1) − 6] = −6 A/s (8.4.3)

Note that v(0) = V0 = −6 V is used, because the polarity of v in Fig.
8.11(b) is opposite that in Fig. 8.8. Taking the derivative of i(t) in Eq.
(8.4.1),

di

dt
= −9e−9t (A1 cos 4.359t + A2 sin 4.359t)

+ e−9t (4.359)(−A1 sin 4.359t + A2 cos 4.359t)

Imposing the condition in Eq. (8.4.3) at t = 0 gives

−6 = −9(A1 + 0) + 4.359(−0 + A2)

But A1 = 1 from Eq. (8.4.2). Then

−6 = −9 + 4.359A2 	⇒ A2 = 0.6882
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Substituting the values of A1 and A2 in Eq. (8.4.1) yields the com-
plete solution as

i(t) = e−9t (cos 4.359t + 0.6882 sin 4.359t) A

P R A C T I C E P R O B L E M 8 . 4

The circuit in Fig. 8.12 has reached steady state at t = 0−. If the make-
before-break switch moves to position b at t = 0, calculate i(t) for t > 0.

t = 0

a b

50 V

10 Ω

1 H

+
− 5 Ω

i(t)

F1
9

Figure 8.12 For Practice Prob. 8.4.

Answer: e−2.5t (5 cos 1.6583t − 7.5378 sin 1.6583t) A.

8.4 THE SOURCE-FREE PARALLEL RLC CIRCUIT
Parallel RLC circuits find many practical applications, notably in com-
munications networks and filter designs.

v

R L CI0v

+

−

v

+

−

V0

+

−

Figure 8.13 A source-free parallel RLC
circuit.

Consider the parallel RLC circuit shown in Fig. 8.13. Assume
initial inductor current I0 and initial capacitor voltage V0,

i(0) = I0 = 1

L

∫ 0

∞
v(t) dt (8.27a)

v(0) = V0 (8.27b)

Since the three elements are in parallel, they have the same voltage v

across them. According to passive sign convention, the current is entering
each element; that is, the current through each element is leaving the top
node. Thus, applying KCL at the top node gives

v

R
+ 1

L

∫ t

−∞
v dt + C

dv

dt
= 0 (8.28)

Taking the derivative with respect to t and dividing by C results in

d2v

dt2
+ 1

RC

dv

dt
+ 1

LC
v = 0 (8.29)

We obtain the characteristic equation by replacing the first derivative by
s and the second derivative by s2. By following the same reasoning
used in establishing Eqs. (8.4) through (8.8), the characteristic equation
is obtained as

s2 + 1

RC
s + 1

LC
= 0 (8.30)

The roots of the characteristic equation are

s1,2 = − 1

2RC
±

√(
1

2RC

)2

− 1

LC
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or

s1,2 = −α ±
√
α2 − ω2

0 (8.31)

where

α = 1

2RC
, ω0 = 1√

LC
(8.32)

The names of these terms remain the same as in the preceding section,
as they play the same role in the solution. Again, there are three possible
solutions, depending on whether α > ω0, α = ω0, or α < ω0. Let us
consider these cases separately.

Overdamped Case (α > ω0)

From Eq. (8.32), α > ω0 whenL > 4R2C. The roots of the characteristic
equation are real and negative. The response is

v(t) = A1e
s1t + A2e

s2t (8.33)

Critically Damped Case (α = ω0)

For α = ω, L = 4R2C. The roots are real and equal so that the response
is

v(t) = (A1 + A2t)e
−αt (8.34)

Underdamped Case (α < ω0)

When α < ω0, L < 4R2C. In this case the roots are complex and may
be expressed as

s1,2 = −α ± jωd (8.35)

where

ωd =
√
ω2

0 − α2 (8.36)

The response is

v(t) = e−αt (A1 cosωdt + A2 sinωdt) (8.37)

The constants A1 and A2 in each case can be determined from the
initial conditions. We need v(0) and dv(0)/dt . The first term is known
from Eq. (8.27b). We find the second term by combining Eqs. (8.27) and
(8.28), as

V0

R
+ I0 + C

dv(0)

dt
= 0

or
dv(0)

dt
= − (V0 + RI0)

RC
(8.38)

The voltage waveforms are similar to those shown in Fig. 8.9 and will
depend on whether the circuit is overdamped, underdamped, or critically
damped.



310 PART 1 DC Circuits

Having found the capacitor voltage v(t) for the parallelRLC circuit
as shown above, we can readily obtain other circuit quantities such as
individual element currents. For example, the resistor current is iR =
v/R and the capacitor voltage is vC = C dv/dt . We have selected
the capacitor voltage v(t) as the key variable to be determined first in
order to take advantage of Eq. (8.1a). Notice that we first found the
inductor current i(t) for the RLC series circuit, whereas we first found
the capacitor voltage v(t) for the parallel RLC circuit.

E X A M P L E 8 . 5

In the parallel circuit of Fig. 8.13, find v(t) for t > 0, assuming v(0) =
5 V, i(0) = 0, L = 1 H, and C = 10 mF. Consider these cases:
R = 1.923 �, R = 5 �, and R = 6.25 �.

Solution:

CA S E 1 If R = 1.923 �,

α = 1

2RC
= 1

2 × 1.923 × 10 × 10−3
= 26

ω0 = 1√
LC

= 1√
1 × 10 × 10−3

= 10

Since α > ω0 in this case, the response is overdamped. The roots of the
characteristic equation are

s1,2 = −α ±
√
α2 − ω2

0 = −2,−50

and the corresponding response is

v(t) = A1e
−2t + A2e

−50t (8.5.1)

We now apply the initial conditions to get A1 and A2.

v(0) = 5 = A1 + A2 (8.5.2)

dv(0)

dt
= −v(0) + Ri(0)

RC
= − 5 + 0

1.923 × 10 × 10−3
= 260

But differentiating Eq. (8.5.1),

dv

dt
= −2A1e

−2t − 50A2e
−50t

At t = 0,

260 = −2A1 − 50A2 (8.5.3)

From Eqs. (8.5.2) and (8.5.3), we obtainA1 = 10.625 andA2 = −5.625.
Substituting A1 and A2 in Eq. (8.5.1) yields

v(t) = 10.625e−2t − 5.625e−50t (8.5.4)

CA S E 2 When R = 5 �,

α = 1

2RC
= 1

2 × 5 × 10 × 10−3
= 10
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while ω0 = 10 remains the same. Since α = ω0 = 10, the response is
critically damped. Hence, s1 = s2 = −10, and

v(t) = (A1 + A2t)e
−10t (8.5.5)

To get A1 and A2, we apply the initial conditions

v(0) = 5 = A1 (8.5.6)

dv(0)

dt
= −v(0) + Ri(0)

RC
= − 5 + 0

5 × 10 × 10−3
= 100

But differentiating Eq. (8.5.5),

dv

dt
= (−10A1 − 10A2t + A2)e

−10t

At t = 0,

100 = −10A1 + A2 (8.5.7)

From Eqs. (8.5.6) and (8.5.7), A1 = 5 and A2 = 150. Thus,

v(t) = (5 + 150t)e−10t V (8.5.8)

CA S E 3 When R = 6.25 �,

α = 1

2RC
= 1

2 × 6.25 × 10 × 10−3
= 8

while ω0 = 10 remains the same. As α < ω0 in this case, the response
is underdamped. The roots of the characteristic equation are

s1,2 = −α ±
√
α2 − ω2

0 = −8 ± j6

Hence,

v(t) = (A1 cos 6t + A2 sin 6t)e−8t (8.5.9)

We now obtain A1 and A2, as

v(0) = 5 = A1 (8.5.10)

dv(0)

dt
= −v(0) + Ri(0)

RC
= − 5 + 0

6.25 × 10 × 10−3
= 80

But differentiating Eq. (8.5.9),

dv

dt
= (−8A1 cos 6t − 8A2 sin 6t − 6A1 sin 6t + 6A2 cos 6t)e−8t

At t = 0,

80 = −8A1 + 6A2 (8.5.11)

From Eqs. (8.5.10) and (8.5.11), A1 = 5 and A2 = 20. Thus,

v(t) = (5 cos 6t + 20 sin 6t)e−8t (8.5.12)

Notice that by increasing the value of R, the degree of damping
decreases and the responses differ. Figure 8.14 plots the three cases.
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0.2 0.4 0.6

1
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t (s)

v(t) V

Overdamped

Critically damped

Underdamped

Figure 8.14 For Example 8.5: responses for three degrees of damping.

P R A C T I C E P R O B L E M 8 . 5

In Fig. 8.13, let R = 2 �, L = 0.4 H, C = 25 mF, v(0) = 0, i(0) =
3 A. Find v(t) for t > 0.

Answer: −120te−10t V.

E X A M P L E 8 . 6

Find v(t) for t > 0 in the RLC circuit of Fig. 8.15.

40 V

0.4 H

50 Ω 20 mF

30 Ω

+
−

i

t = 0 v
+

−

Figure 8.15 For Example 8.6.

Solution:

When t < 0, the switch is open; the inductor acts like a short circuit while
the capacitor behaves like an open circuit. The initial voltage across the
capacitor is the same as the voltage across the 50-� resistor; that is,

v(0) = 50

30 + 50
(40) = 5

8
× 40 = 25 V (8.6.1)

The initial current through the inductor is
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i(0) = − 40

30 + 50
= −0.5 A

The direction of i is as indicated in Fig. 8.15 to conform with the direction
of I0 in Fig. 8.13, which is in agreement with the convention that current
flows into the positive terminal of an inductor (see Fig. 6.23). We need
to express this in terms of dv/dt , since we are looking for v.

dv(0)

dt
= −v(0) + Ri(0)

RC
= − 25 − 50 × 0.5

50 × 20 × 10−6
= 0 (8.6.2)

When t > 0, the switch is closed. The voltage source along with
the 30-� resistor is separated from the rest of the circuit. The parallel
RLC circuit acts independently of the voltage source, as illustrated in
Fig. 8.16. Next, we determine that the roots of the characteristic equation
are

α = 1

2RC
= 1

2 × 50 × 20 × 10−6
= 500

ω0 = 1√
LC

= 1√
0.4 × 20 × 10−6

= 354

s1,2 = −α ±
√
α2 − ω2

0

= −500 ± √
250,000 − 124,997.6 = −500 ± 354

or

s1 = −854, s2 = −146

Since α > ω0, we have the overdamped response

v(t) = A1e
−854t + A2e

−164t (8.6.3)

At t = 0, we impose the condition in Eq. (8.6.1),

v(0) = 25 = A1 + A2 	⇒ A2 = 25 − A1 (8.6.4)

Taking the derivative of v(t) in Eq. (8.6.3),

dv

dt
= −854A1e

−854t − 164A2e
−164t

Imposing the condition in Eq. (8.6.2),

40 V

0.4 H

50 Ω 20 mF

30 Ω

+
−

Figure 8.16 The circuit in Fig. 8.15 when t > 0. The
parallel RLC circuit on the left-hand side acts inde-
pendently of the circuit on the right-hand side of the
junction.
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dv(0)

dt
= 0 = −854A1 − 164A2

or

0 = 854A1 + 164A2 (8.6.5)

Solving Eqs. (8.6.4) and (8.6.5) gives

A1 = −5.16, A2 = 30.16

Thus, the complete solution in Eq. (8.6.3) becomes

v(t) = −5.16e−854t + 30.16e−164t V

P R A C T I C E P R O B L E M 8 . 6

Refer to the circuit in Fig. 8.17. Find v(t) for t > 0.

2 A 4 mF20 Ω 10 H

t = 0

v
+

−

Figure 8.17 For Practice Prob. 8.6.

Answer: 66.67(e−10t − e−2.5t ) V.

8.5 STEP RESPONSE OF A SERIES RLC CIRCUIT
As we learned in the preceding chapter, the step response is obtained by
the sudden application of a dc source. Consider the series RLC circuit
shown in Fig. 8.18. Applying KVL around the loop for t > 0,

L
di

dt
+ Ri + v = Vs (8.39)

But

i = C
dv

dt

Substituting for i in Eq. (8.39) and rearranging terms,

d2v

dt2
+ R

L

dv

dt
+ v

LC
= Vs

LC
(8.40)

which has the same form as Eq. (8.4). More specifically, the coefficients
are the same (and that is important in determining the frequency param-
eters) but the variable is different. (Likewise, see Eq. (8.47).) Hence, the
characteristic equation for the series RLC circuit is not affected by the
presence of the dc source.

Vs

R L

C+
−

i
t = 0

v
+

−

Figure 8.18 Step voltage applied to a series
RLC circuit.

The solution to Eq. (8.40) has two components: the natural response
vn(t) and the forced response vf (t); that is,

v(t) = vn(t) + vf (t) (8.41)

The natural response is the solution when we set Vs = 0 in Eq. (8.40)
and is the same as the one obtained in Section 8.3. The natural response
vn for the overdamped, underdamped, and critically damped cases are:
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vn(t) = A1e
s1t + A2e

s2t (Overdamped) (8.42a)

vn(t) = (A1 + A2t)e
−αt (Critically damped) (8.42b)

vn(t) = (A1 cosωdt + A2 sinωdt)e
−αt (Underdamped) (8.42c)

The forced response is the steady state or final value of v(t). In the
circuit in Fig. 8.18, the final value of the capacitor voltage is the same as
the source voltage Vs . Hence,

vf (t) = v(∞) = Vs (8.43)

Thus, the complete solutions for the overdamped, underdamped, and
critically damped cases are:

v(t) = Vs + A1e
s1t + A2e

s2t (Overdamped) (8.44a)

v(t) = Vs + (A1 + A2t)e
−αt (Critically damped) (8.44b)

v(t) = Vs + (A1 cosωdt + A2 sinωdt)e
−αt (Underdamped) (8.44c)

The values of the constants A1 and A2 are obtained from the initial con-
ditions: v(0) and dv(0)/dt . Keep in mind that v and i are, respectively,
the voltage across the capacitor and the current through the inductor.
Therefore, Eq. (8.44) only applies for finding v. But once the capaci-
tor voltage vC = v is known, we can determine i = C dv/dt , which is
the same current through the capacitor, inductor, and resistor. Hence,
the voltage across the resistor is vR = iR, while the inductor voltage is
vL = L di/dt .

Alternatively, the complete response for any variable x(t) can be
found directly, because it has the general form

x(t) = xf (t) + xn(t) (8.45)

where the xf = x(∞) is the final value and xn(t) is the natural response.
The final value is found as in Section 8.2. The natural response has the
same form as in Eq. (8.42), and the associated constants are determined
from Eq. (8.44) based on the values of x(0) and dx(0)/dt .

E X A M P L E 8 . 7

For the circuit in Fig. 8.19, find v(t) and i(t) for t > 0. Consider these
cases: R = 5 �,R = 4 �, andR = 1 �.

24 V

R 1 H

+
− 0.5 F 1 Ω

i

t = 0

v
+

−

Figure 8.19 For Example 8.7.

Solution:

CA S E 1 When R = 5 �. For t < 0, the switch is closed. The capa-
citor behaves like an open circuit while the inductor acts like a short cir-
cuit. The initial current through the inductor is

i(0) = 24

5 + 1
= 4 A

and the initial voltage across the capacitor is the same as the voltage
across the 1-� resistor; that is,
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v(0) = 1i(0) = 4 V

For t > 0, the switch is opened, so that we have the 1-� resistor
disconnected. What remains is the series RLC circuit with the voltage
source. The characteristic roots are determined as follows.

α = R

2L
= 5

2 × 1
= 2.5, ω0 = 1√

LC
= 1√

1 × 0.25
= 2

s1,2 = −α ±
√
α2 − ω2

0 = −1,−4

Since α > ω0, we have the overdamped natural response. The total
response is therefore

v(t) = vf + (A1e
−t + A2e

−4t )

where vf is the forced or steady-state response. It is the final value of the
capacitor voltage. In Fig. 8.19, vf = 24 V. Thus,

v(t) = 24 + (A1e
−t + A2e

−4t ) (8.7.1)

We now need to find A1 and A2 using the initial conditions.

v(0) = 4 = 24 + A1 + A2

or

−20 = A1 + A2 (8.7.2)

The current through the inductor cannot change abruptly and is the same
current through the capacitor at t = 0+ because the inductor and capacitor
are now in series. Hence,

i(0) = C
dv(0)

dt
= 4 	⇒ dv(0)

dt
= 4

C
= 4

0.25
= 16

Before we use this condition, we need to take the derivative of v in Eq.
(8.7.1).

dv

dt
= −A1e

−t − 4A2e
−4t (8.7.3)

At t = 0,

dv(0)

dt
= 16 = −A1 − 4A2 (8.7.4)

From Eqs. (8.7.2) and (8.7.4), A1 = −64/3 and A2 = 4/3. Substituting
A1 and A2 in Eq. (8.7.1), we get

v(t) = 24 + 4

3
(−16e−t + e−4t ) V (8.7.5)

Since the inductor and capacitor are in series for t > 0, the inductor
current is the same as the capacitor current. Hence,

i(t) = C
dv

dt

Multiplying Eq. (8.7.3) by C = 0.25 and substituting the values of A1

and A2 gives
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i(t) = 4

3
(4e−t − e−4t ) A (8.7.6)

Note that i(0) = 4 A, as expected.

CA S E 2 WhenR = 4 �. Again, the initial current through the inductor
is

i(0) = 24

4 + 1
= 4.5 A

and the initial capacitor voltage is

v(0) = 1i(0) = 4.5 V

For the characteristic roots,

α = R

2L
= 4

2 × 1
= 2

while ω0 = 2 remains the same. In this case, s1 = s2 = −α = −2,
and we have the critically damped natural response. The total response
is therefore

v(t) = vf + (A1 + A2t)e
−2t

and, as vf = 24 V,

v(t) = 24 + (A1 + A2t)e
−2t (8.7.7)

To find A1 and A2, we use the initial conditions. We write

v(0) = 4.5 = 24 + A1 	⇒ A1 = −19.5 (8.7.8)

Since i(0) = C dv(0)/dt = 4.5 or

dv(0)

dt
= 4.5

C
= 18

From Eq. (8.7.7),

dv

dt
= (−2A1 − 2tA2 + A2)e

−2t (8.7.9)

At t = 0,

dv(0)

dt
= 18 = −2A1 + A2 (8.7.10)

From Eqs. (8.7.8) and (8.7.10), A1 = −19.5 and A2 = 57. Thus, Eq.
(8.7.7) becomes

v(t) = 24 + (−19.5 + 57t)e−2t V (8.7.11)

The inductor current is the same as the capacitor current, that is,

i(t) = C
dv

dt

Multiplying Eq. (8.7.9) by C = 0.25 and substituting the values of A1

and A2 gives

i(t) = (4.5 − 28.5t)e−2t A (8.7.12)

Note that i(0) = 4.5 A, as expected.
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C A S E 3 When R = 1 �. The initial inductor current is

i(0) = 24

1 + 1
= 12 A

and the initial voltage across the capacitor is the same as the voltage
across the 1-� resistor,

v(0) = 1i(0) = 12 V

α = R

2L
= 1

2 × 1
= 0.5

Since α = 0.5 < ω0 = 2, we have the underdamped response

s1,2 = −α ±
√
α2 − ω2

0 = −0.5 ± j1.936

The total response is therefore

v(t) = 24 + (A1 cos 1.936t + A2 sin 1.936t)e−0.5t (8.7.13)

We now determine A1 and A2. We write

v(0) = 12 = 24 + A1 	⇒ A1 = −12 (8.7.14)

Since i(0) = C dv(0)/dt = 12,

dv(0)

dt
= 12

C
= 48 (8.7.15)

But

dv

dt
= e−0.5t (−1.936A1 sin 1.936t + 1.936A2 cos 1.936t)

− 0.5e−0.5t (A1 cos 1.936t + A2 sin 1.936t)
(8.7.16)

At t = 0,

dv(0)

dt
= 48 = (−0 + 1.936A2) − 0.5(A1 + 0)

Substituting A1 = −12 gives A2 = 21.694, and Eq. (8.7.13) becomes

v(t) = 24 + (21.694 sin 1.936t − 12 cos 1.936t)e−0.5t V (8.7.17)

The inductor current is

i(t) = C
dv

dt

Multiplying Eq. (8.7.16) by C = 0.25 and substituting the values of A1

and A2 gives

i(t) = (3.1 sin 1.936t + 12 cos 1.936t)e−0.5t A (8.7.18)

Note that i(0) = 12 A, as expected.

Figure 8.20 plots the responses for the three cases. From this figure,
we observe that the critically damped response approaches the step input
of 24 V the fastest.
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t (s)

v(t) V

0 1

8

16

24

32

40

2 3 4 5 6 7

Overdamped

Critically damped

Underdamped

Figure 8.20 For Example 8.7: response for three degrees of
damping.

P R A C T I C E P R O B L E M 8 . 7

Having been in position a for a long time, the switch in Fig. 8.21 is moved
to position b at t = 0. Find v(t) and vR(t) for t > 0.

t = 0

a b

12 V

1 Ω

+
− 10 V +

−

10 Ω

2 Ω

2.5 H

− +vR

v
+

−
F1

40

Figure 8.21 For Practice Prob. 8.7.

Answer: 10 − (1.1547 sin 3.464t + 2 cos 3.464t)e−2t V,
2.31e−2t sin 3.464t V.

8.6 STEP RESPONSE OF A PARALLEL RLC CIRCUIT

Is CR Lt = 0

i

v
+

−

Figure 8.22 Parallel RLC circuit with an
applied current.

Consider the parallel RLC circuit shown in Fig. 8.22. We want to find
i due to a sudden application of a dc current. Applying KCL at the top
node for t > 0,

v

R
+ i + C

dv

dt
= Is (8.46)

But

v = L
di

dt

Substituting for v in Eq. (8.46) and dividing by LC, we get
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d2i

dt2
+ 1

RC

di

dt
+ i

LC
= Is

LC
(8.47)

which has the same characteristic equation as Eq. (8.29).
The complete solution to Eq. (8.47) consists of the natural response

in(t) and the forced response if ; that is,

i(t) = in(t) + if (t) (8.48)

The natural response is the same as what we had in Section 8.3. The
forced response is the steady state or final value of i. In the circuit in Fig.
8.22, the final value of the current through the inductor is the same as the
source current Is . Thus,

i(t) = Is + A1e
s1t + A2e

s2t (Overdamped)

i(t) = Is + (A1 + A2t)e
−αt (Critically damped) (8.49)

i(t) = Is + (A1 cosωdt + A2 sinωdt)e
−αt (Underdamped)

The constants A1 and A2 in each case can be determined from the initial
conditions for i and di/dt . Again, we should keep in mind that Eq. (8.49)
only applies for finding the inductor current i. But once the inductor cur-
rent iL = i is known, we can find v = L di/dt , which is the same voltage
across inductor, capacitor, and resistor. Hence, the current through the
resistor is iR = v/R, while the capacitor current is iC = C dv/dt . Al-
ternatively, the complete response for any variable x(t) may be found
directly, using

x(t) = xf (t) + xn(t) (8.50)

where xf and xn are its final value and natural response, respectively.

E X A M P L E 8 . 8

In the circuit in Fig. 8.23, find i(t) and iR(t) for t > 0.

4 A 20 Ω20 H

iRi

+
− 30u(–t) V

t = 0

8 mF

20 Ω

v
+

−

Figure 8.23 For Example 8.8.

Solution:

For t < 0, the switch is open, and the circuit is partitioned into two
independent subcircuits. The 4-A current flows through the inductor, so
that

i(0) = 4 A
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Since 30u(−t) = 30 when t < 0 and 0 when t > 0, the voltage source
is operative for t < 0 under consideration. The capacitor acts like an
open circuit and the voltage across it is the same as the voltage across
the 20-� resistor connected in parallel with it. By voltage division, the
initial capacitor voltage is

v(0) = 20

20 + 20
(30) = 15 V

For t > 0, the switch is closed, and we have a parallel RLC circuit
with a current source. The voltage source is off or short-circuited. The
two 20-� resistors are now in parallel. They are combined to give R =
20 ‖ 20 = 10 �. The characteristic roots are determined as follows:

α = 1

2RC
= 1

2 × 10 × 8 × 10−3
= 6.25

ω0 = 1√
LC

= 1√
20 × 8 × 10−3

= 2.5

s1,2 = −α ±
√
α2 − ω2

0 = −6.25 ± √
39.0625 − 6.25

= −6.25 ± 5.7282

or

s1 = −11.978, s2 = −0.5218

Since α > ω0, we have the overdamped case. Hence,

i(t) = Is + A1e
−11.978t + A2e

−0.5218t (8.8.1)

where Is = 4 is the final value of i(t). We now use the initial conditions
to determine A1 and A2. At t = 0,

i(0) = 4 = 4 + A1 + A2 	⇒ A2 = −A1 (8.8.2)

Taking the derivative of i(t) in Eq. (8.8.1),

di

dt
= −11.978A1e

−11.978t − 0.5218A2e
−0.5218t

so that at t = 0,

di(0)

dt
= −11.978A1 − 0.5218A2 (8.8.3)

But

L
di(0)

dt
= v(0) = 15 	⇒ di(0)

dt
= 15

L
= 15

20
= 0.75

Substituting this into Eq. (8.8.3) and incorporating Eq. (8.8.2), we get

0.75 = (11.978 − 0.5218)A2 	⇒ A2 = 0.0655

Thus, A1 = −0.0655 and A2 = 0.0655. Inserting A1 and A2 in Eq.
(8.8.1) gives the complete solution as
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i(t) = 4 + 0.0655(e−0.5218t − e−11.978t ) A

From i(t), we obtain v(t) = L di/dt and

iR(t) = v(t)

20
= L

20

di

dt
= 0.785e−11.978t − 0.0342e−0.5218t A

P R A C T I C E P R O B L E M 8 . 8

Find i(t) and v(t) for t > 0 in the circuit in Fig. 8.24.

20u(t) A  5 H

i

0.2 Fv
+

−

Figure 8.24 For Practice Prob. 8.8.

Answer: 20(1 − cos t) A, 100 sin t V.

8.7 GENERAL SECOND-ORDER CIRCUITS
Now that we have mastered series and parallel RLC circuits, we are
prepared to apply the ideas to any second-order circuit. Although the
series and parallel RLC circuits are the second-order circuits of greatest
interest, other second-order circuits including op amps are also useful.
Given a second-order circuit, we determine its step response x(t) (which
may be voltage or current) by taking the following four steps:

A circuit may look complicated at first. But once
the sources are turned off in an attempt to find
the natural response, it may be reducible to a
first-order circuit, when the storage elements
can be combined, or to a parallel/series RLC cir-
cuit. If it is reducible to a first-order circuit, the
solution becomes simply what we had in Chap-
ter 7. If it is reducible to a parallel or series
RLC circuit, we apply the techniques of previous
sections in this chapter.

1. We first determine the initial conditions x(0) and dx(0)/dt
and the final value x(∞), as discussed in Section 8.2.

2. We find the natural response xn(t) by turning off independent
sources and applying KCL and KVL. Once a second-order
differential equation is obtained, we determine its characteristic
roots. Depending on whether the response is overdamped,
critically damped, or underdamped, we obtain xn(t) with two
unknown constants as we did in the previous sections.

3. We obtain the forced response as

xf (t) = x(∞) (8.51)

where x(∞) is the final value of x, obtained in step 1.

4. The total response is now found as the sum of the natural
response and forced response

x(t) = xn(t) + xf (t) (8.52)

We finally determine the constants associated with the natural
response by imposing the initial conditions x(0) and dx(0)/dt ,
determined in step 1.

We can apply this general procedure to find the step response of
any second-order circuit, including those with op amps. The following
examples illustrate the four steps.
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E X A M P L E 8 . 9

Find the complete response v and then i for t > 0 in the circuit of Fig.
8.25.

12 V +
−

4 Ω

2 Ω

t = 0

1 Hi

v
+

−
F1

2

Figure 8.25 For Example 8.9.

Solution:

We first find the initial and final values. At t = 0−, the circuit is at steady
state. The switch is open, the equivalent circuit is shown in Fig. 8.26(a).
It is evident from the figure that

v(0−) = 12 V, i(0−) = 0

At t = 0+, the switch is closed; the equivalent circuit is in Fig. 8.26(b).
By the continuity of capacitor voltage and inductor current, we know that

v(0+) = v(0−) = 12 V, i(0+) = i(0−) = 0 (8.9.1)

To get dv(0+)/dt , we use C dv/dt = iC or dv/dt = iC/C. Applying
KCL at node a in Fig. 8.26(b),

i(0+) = iC(0
+) + v(0+)

2

0 = iC(0
+) + 12

2
	⇒ iC(0

+) = −6 A

12 V +
−

4 Ω

2 Ω

1 H i

0.5 Fv
+

−

iC

(b)

12 V +
−

4 Ω i

v

+

−

(a)

a

Figure 8.26 Equivalent circuit of the circuit
in Fig. 8.25 for: (a) t = 0, (b) t > 0.

Hence,

dv(0+)
dt

= −6

0.5
= −12 V/s (8.9.2)

The final values are obtained when the inductor is replaced by a short
circuit and the capacitor by an open circuit in Fig. 8.26(b), giving

i(∞) = 12

4 + 2
= 2 A, v(∞) = 2i(∞) = 4 V (8.9.3)

4 Ω

2 Ω

1 Hi

a

v

v
+

−
F1

2

Figure 8.27 Obtaining the natural
response for Example 8.9.

Next, we obtain the natural response for t > 0. By turning off the
12-V voltage source, we have the circuit in Fig. 8.27. Applying KCL at
node a in Fig. 8.27 gives

i = v

2
+ 1

2

dv

dt
(8.9.4)

Applying KVL to the left mesh results in

4i + 1
di

dt
+ v = 0 (8.9.5)

Since we are interested in v for the moment, we substitute i from Eq.
(8.9.4) into Eq. (8.9.5). We obtain

2v + 2
dv

dt
+ 1

2

dv

dt
+ 1

2

d2v

dt2
+ v = 0

or

d2v

dt2
+ 5

dv

dt
+ 6v = 0

From this, we obtain the characteristic equation as
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s2 + 5s + 6 = 0

with roots s = −2 and s = −3. Thus, the natural response is

vn(t) = Ae−2t + Be−3t (8.9.6)

whereA andB are unknown constants to be determined later. The forced
response is

vf (t) = v(∞) = 4 (8.9.7)

The complete response is

v(t) = vn + vf = 4 + Ae−2t + Be−3t (8.9.8)

We now determine A and B using the initial values. From Eq. (8.9.1),
v(0) = 12. Substituting this into Eq. (8.9.8) at t = 0 gives

12 = 4 + A + B 	⇒ A + B = 8 (8.9.9)

Taking the derivative of v in Eq. (8.9.8),

dv

dt
= −2Ae−2t − 3Be−3t (8.9.10)

Substituting Eq. (8.9.2) into Eq. (8.9.10) at t = 0 gives

−12 = −2A − 3B 	⇒ 2A + 3B = 12 (8.9.11)

From Eqs. (8.9.9) and (8.9.11), we obtain

A = 12, B = −4

so that Eq. (8.9.8) becomes

v(t) = 4 + 12e−2t − 4e−3t V, t > 0 (8.9.12)

From v, we can obtain other quantities of interest by referring to Fig.
8.26(b). To obtain i, for example,

i = v

2
+ 1

2

dv

dt
= 2 + 6e−2t − 2e−3t − 12e−2t + 6e−3t

= 2 − 6e−2t + 4e−3t A, t > 0
(8.9.13)

Notice that i(0) = 0, in agreement with Eq. (8.9.1).

P R A C T I C E P R O B L E M 8 . 9

Determine v and i for t > 0 in the circuit of Fig. 8.28.

t = 0

2 A10 Ω 4 Ω

2 H

i

v
+

−
F1

20

Figure 8.28 For Practice Prob. 8.9.

Answer: 8(1 − e−5t ) V, 2(1 − e−5t ) A.
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E X A M P L E 8 . 1 0

Find vo(t) for t > 0 in the circuit of Fig. 8.29.

7u(t) V +
−

3 Ω

1 Ω vo

+

−i1

i2

H1
2

H1
5

Figure 8.29 For Example 8.10.

Solution:

This is an example of a second-order circuit with two inductors. We
first obtain the mesh currents i1 and i2, which happen to be the currents
through the inductors. We need to obtain the initial and final values of
these currents.

For t < 0, 7u(t) = 0, so that i1(0−) = 0 = i2(0−). For t > 0,
7u(t) = 7, so that the equivalent circuit is as shown in Fig. 8.30(a). Due
to the continuity of inductor current,

i1(0
+) = i1(0

−) = 0, i2(0
+) = i2(0

−) = 0 (8.10.1)

vL2(0
+) = vo(0

+) = 1[(i1(0
+) − i2(0

+)] = 0 (8.10.2)

Applying KVL to the left loop in Fig. 8.30(a) at t = 0+,

7 = 3i1(0
+) + vL1(0+) + vo(0

+)

or

vL1(0
+) = 7 V

Since L1 di1/dt = vL1,

di1(0+)
dt

= vL1

L1
= 7

1
2

= 14 V/s (8.10.3)

Similarly, since L2 di2/dt = vL2,

di2(0+)
dt

= vL2

L2
= 0 (8.10.4)

As t → ∞, the circuit reaches steady state, and the inductors can be
replaced by short circuits, as shown in Fig. 8.30(b). From this figure,

i1(∞) = i2(∞) = 7

3
A (8.10.5)

7 V +
−

3 Ω

1 Ω vo vL2

+

−

+ −vL1i1
+

−

i2

(a)

7 V +
−

3 Ω

1 Ω

i1
i2

(b)

L1 =
1
2 H

L2 = 1
5 H

Figure 8.30 Equivalent circuit of that in Fig. 8.29 for: (a) t > 0, (b) t → ∞.

Next, we obtain the natural responses by removing the voltage
source, as shown in Fig. 8.31. Applying KVL to the two meshes yields

4i1 − i2 + 1

2

di1

dt
= 0 (8.10.6)
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and

i2 + 1

5

di2

dt
− i1 = 0 (8.10.7)

From Eq. (8.10.6),

i2 = 4i1 + 1

2

di1

dt
(8.10.8)

Substituting Eq. (12.8.8) into Eq. (8.10.7) gives

4i1 + 1

2

di1

dt
+ 4

5

di1

dt
+ 1

10

d2i1

dt2
− i1 = 0

d2i1

dt2
+ 13

di1

dt
+ 30i1 = 0

From this we obtain the characteristic equation as

s2 + 13s + 30 = 0

which has roots s = −3 and s = −10. Hence, the natural response is

i1n = Ae−3t + Be−10t (8.10.9)

where A and B are constants. The forced response is

i1f = i1(∞) = 7

3
A (8.10.10)

From Eqs. (8.10.9) and (8.10.10), we obtain the complete response as

i1(t) = 7

3
+ Ae−3t + Be−10t (8.10.11)

We finally obtain A and B from the initial values. From Eqs. (8.10.1)
and (8.10.11),

0 = 7

3
+ A + B (8.10.12)

Taking the derivative of Eq. (8.10.11), setting t = 0 in the derivative, and
enforcing Eq. (8.10.3), we obtain

14 = −3A − 10B (8.10.13)

From Eqs. (8.10.12) and (8.10.13), A = −4/3 and B = −1. Thus,

i1(t) = 7

3
− 4

3
e−3t − e−10t (8.10.14)

3 Ω

1 Ωi1 i2

H1
2

H1
5

Figure 8.31 Obtaining the natural
response for Example 8.10.

We now obtain i2 from i1. Applying KVL to the left loop in Fig.
8.30(a) gives

7 = 4i1 − i2 + 1

2

di1

dt
	⇒ i2 = −7 + 4i1 + 1

2

di1

dt

Substituting for i1 in Eq. (8.10.14) gives

i2(t) = −7 + 28

3
− 16

3
e−3t − 4e−10t + 2e−3t + 5e−10t

= 7

3
− 10

3
e−3t + e−10t

(8.10.15)
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From Fig. 8.29,

vo(t) = 1[i1(t) − i2(t)] (8.10.16)

Substituting Eqs. (8.10.14) and (8.10.15) into Eq. (8.10.16) yields

vo(t) = 2(e−3t − e−10t ) (8.10.17)

Note that vo(0) = 0, as expected from Eq. (8.10.2).

P R A C T I C E P R O B L E M 8 . 1 0

For t > 0, obtain vo(t) in the circuit of Fig. 8.32.
(Hint: First find v1 and v2.)

5u(t) V +
−

1 Ω 1 Ω

+ −vo

v1 v2

F1
2 F1

3

Figure 8.32 For Practice Prob. 8.10.

Answer: 2(e−t − e−6t ) V, t > 0.

8.8 SECOND-ORDER OP AMP CIRCUITS
An op amp circuit with two storage elements that cannot be combined
into a single equivalent element is second-order. Because inductors are
bulky and heavy, they are rarely used in practical op amp circuits. For
this reason, we will only consider RC second-order op amp circuits here.
Such circuits find a wide range of applications in devices such as filters
and oscillators.

The use of op amps in second-order circuits
avoids the use of inductors, which are somewhat
undesirable in some applications.

The analysis of a second-order op amp circuit follows the same four
steps given and demonstrated in the previous section.

E X A M P L E 8 . 1 1

In the op amp circuit of Fig. 8.33, find vo(t) for t > 0 when vs =
10u(t) mV. Let R1 = R2 = 10 k�, C1 = 20 µF, and C2 = 100 µF.

vs

R1 v1

+
− C1

vo

R2

–
+

C2

v2+ −

1

2

vo

+

−

Figure 8.33 For Example 8.11.

http://www.mhhe.com/engcs/electrical/alexander/eetuts/tutorial/Tut9-1.htm
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Solution:

Although we could follow the same four steps given in the previous
section to solve this problem, we will solve it a little differently. Due to
the voltage follower configuration, the voltage across C1 is vo. Applying
KCL at node 1,

vs − v1

R1
= C2

dv2

dt
+ v1 − vo

R2
(8.11.1)

At node 2, KCL gives

v1 − vo

R2
= C1

dvo

dt
(8.11.2)

But

v2 = v1 − vo (8.11.3)

We now try to eliminate v1 and v2 in Eqs. (8.11.1) to (8.11.3). Substituting
Eqs. (8.11.2) and (8.11.3) into Eq. (8.11.1) yields

vs − v1

R1
= C2

dv1

dt
− C2

dvo

dt
+ C1

dvo

dt
(8.11.4)

From Eq. (8.11.2),

v1 = vo + R2C1
dvo

dt
(8.11.5)

Substituting Eq. (8.11.5) into Eq. (8.11.4), we obtain

vs

R1
= vo

R1
+ R2C1

R1

dvo

dt
+ C2

dvo

dt
+ R2C1C2

d2vo

dt2
− C2

dvo

dt
+ C1

dvo

dt

or

d2vo

dt2
+

(
1

R1C2
+ 1

R2C2

)
dvo

dt
+ vo

R1R2C1C2
= vs

R1R2C1C2
(8.11.6)

With the given values of R1, R2, C1, and C2, Eq. (8.11.6) becomes

d2vo

dt2
+ 2

dvo

dt
+ 5vo = 5vs (8.11.7)

To obtain the natural response, set vs = 0 in Eq. (8.11.7), which is the
same as turning off the source. The characteristic equation is

s2 + 2s + 5 = 0

which has complex roots s1,2 = −1 ± j2. Hence, the natural response is

von = e−t (A cos 2t + B sin 2t) (8.11.8)

where A and B are unknown constants to be determined.
As t → ∞, the circuit reaches the steady-state condition, and

the capacitors can be replaced by open circuits. Since no current flows
through C1 and C2 under steady-state conditions and no current can enter
the input terminals of the ideal op amp, current does not flow through R1

and R2. Thus,

vo(∞) = v1(∞) = vs
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The forced response is then

vof = vo(∞) = vs = 10 mV, t > 0 (8.11.9)

The complete response is

vo(t) = von + vof = 10 + e−t (A cos 2t + B sin 2t) mV (8.11.10)

To determine A and B, we need the initial conditions. For t < 0, vs = 0,
so that

vo(0
−) = v2(0

−) = 0

For t > 0, the source is operative. However, due to capacitor voltage
continuity,

vo(0
+) = v2(0

+) = 0 (8.11.11)

From Eq. (8.11.3),

v1(0
+) = v2(0

+) + vo(0
+) = 0

and hence, from Eq. (8.11.2),

dvo(0+)
dt

= v1 − vo

R2C1
= 0 (8.11.12)

We now impose Eq. (8.11.11) on the complete response in Eq. (8.11.10)
at t = 0, for

0 = 10 + A 	⇒ A = −10 (8.11.13)

Taking the derivative of Eq. (8.11.10),

dvo

dt
= e−t (−A cos 2t − B sin 2t − 2A sin 2t + 2B cos 2t)

Setting t = 0 and incorporating Eq. (8.11.12), we obtain

0 = −A + 2B (8.11.14)

From Eqs. (8.11.13) and (8.11.14), A = −10 and B = −5. Thus the
step response becomes

vo(t) = 10 − e−t (10 cos 2t + 5 sin 2t) mV, t > 0

P R A C T I C E P R O B L E M 8 . 1 1

In the op amp circuit shown in Fig. 8.34, vs = 4u(t)V, find vo(t) for t > 0.
Assume that R1 = R2 = 10 k�, C1 = 20 µF, and C2 = 100 µF.

vs

R1

+
− C2 vo

+

−

R2

C1

–
+

Figure 8.34 For Practice Prob. 8.11.

Answer: 4 − 5e−t + e−5t V, t > 0.
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8.9 PSPICE ANALYSIS OF RLC CIRCUITS
RLC circuits can be analyzed with great ease using PSpice, just like
the RC or RL circuits of Chapter 7. The following two examples will
illustrate this. The reader may review Section D.4 in Appendix D on
PSpice for transient analysis.

E X A M P L E 8 . 1 2

The input voltage in Fig. 8.35(a) is applied to the circuit in Fig. 8.35(b).
Use PSpice to plot v(t) for 0 < t < 4s.

20 t (s)

12

vs

(a)

(b)

vs

3 H60 Ω

60 Ω+
− v

+

−
F1

27

Figure 8.35 For Example 8.12.

Solution:

The given circuit is drawn using Schematics as in Fig. 8.36. The pulse
is specified using VPWL voltage source, but VPULSE could be used
instead. Using the piecewise linear function, we set the attributes of
VPWL as T1 = 0, V1 = 0, T2 = 0.001, V2 = 12, and so forth, as
shown in Fig. 8.36. Two voltage markers are inserted to plot the input
and output voltages. Once the circuit is drawn and the attributes are set,
we select Analysis/Setup/Transient to open up the Transient Analysis
dialog box. As a parallel RLC circuit, the roots of the characteristic
equation are −1 and −9. Thus, we may set Final Time as 4 s (four times
the magnitude of the lower root). When the schematic is saved, we select
Analysis/Simulate and obtain the plots for the input and output voltages
under the Probe window as shown in Fig. 8.37.

T1=0
T2=0.001
T3=2
T4=2.001

V1=0
V2=12
V3=12
V4=0

V1

R1

60

R2 60 0.037 C1

0

3H

L1

+

−

V V

Figure 8.36 Schematic for the circuit in Fig. 8.35(b).

12 V

4 V

8 V

0 V
0 s 1.0 s 2.0 s 3.0 s 4.0 s

 V(L1:2)

Time

 V(V1:+)

Figure 8.37 For Example 8.12: the input and output
voltages.

P R A C T I C E P R O B L E M 8 . 1 2

Find i(t) using PSpice for 0 < t < 4 s if the pulse voltage in Fig. 8.35(a)
is applied to the circuit in Fig. 8.38.

Answer: See Fig. 8.39.
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vs

5 Ω

1 mF 2 H+
−

i

Figure 8.38 For Practice Prob. 8.12.

3.0 A

1.0 A

2.0 A

0 A
0 s 1.0 s 2.0 s 3.0 s 4.0 s

 I(L1)

Time

Figure 8.39 Plot of i(t) for Practice Prob. 8.12.

E X A M P L E 8 . 1 3

For the circuit in Fig. 8.40, use PSpice to obtain i(t) for 0 < t < 3 s.

4 A 7 H5 Ω 6 Ω

i(t)
t = 0

a

b

F1
42

Figure 8.40 For Example 8.13.

Solution:

When the switch is in position a, the 6-� resistor is redundant. The
schematic for this case is shown in Fig. 8.41(a). To ensure that current
i(t) enters pin 1, the inductor is rotated three times before it is placed in the
circuit. The same applies for the capacitor. We insert pseudocomponents

IDC4 A R1 5 7 H L1

0

23.81m C1

(a)

R2 6 7 H L1

0

23.81m C1

IC=0
IC=4A

(b)

I

0.0000 4.000E+00

Figure 8.41 For Example 8.13: (a) for dc analysis, (b) for transient analysis.
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VIEWPOINT and IPROBE to determine the initial capacitor voltage and
initial inductor current. We carry out a dc PSpice analysis by selecting
Analysis/Simulate. As shown in Fig. 8.41(a), we obtain the initial ca-
pacitor voltage as 0 V and the initial inductor current i(0) as 4 A from the
dc analysis. These initial values will be used in the transient analysis.

When the switch is moved to position b, the circuit becomes a
source-free parallel RLC circuit with the schematic in Fig. 8.41(b). We
set the initial condition IC = 0 for the capacitor and IC = 4 A for
the inductor. A current marker is inserted at pin 1 of the inductor. We
select Analysis/Setup/Transient to open up the Transient Analysis dialog
box and set Final Time to 3 s. After saving the schematic, we select
Analysis/Transient. Figure 8.42 shows the plot of i(t). The plot agrees
with i(t) = 4.8e−t − 0.8e−6t A, which is the solution by hand calculation.

4.00 A

3.92 A

3.96 A

3.88 A
0 s 1.0 s 2.0 s 3.0 s

 I(L1)

Time

Figure 8.42 Plot of i(t) for Example 8.13.

P R A C T I C E P R O B L E M 8 . 1 3

Refer to the circuit in Fig. 8.21 (see Practice Prob. 8.7). Use PSpice to
obtain v(t) for 0 < t < 2.

Answer: See Fig. 8.43.

11 V

9 V

10 V

8 V
0 s 0.5 s 1.0 s 1.5 s 2.0 s

 V(C1:1)

Time

Figure 8.43 Plot of v(t) for Practice Prob. 8.13.

†8.10 DUALITY
The concept of duality is a time-saving, effort-effective measure of solv-
ing circuit problems. Consider the similarity between Eq. (8.4) and Eq.
(8.29). The two equations are the same, except that we must interchange
the following quantities: (1) voltage and current, (2) resistance and con-
ductance, (3) capacitance and inductance. Thus, it sometimes occurs in
circuit analysis that two different circuits have the same equations and
solutions, except that the roles of certain complementary elements are in-
terchanged. This interchangeability is known as the principle of duality.
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The duality principle asserts a parallelism between pairs of characterizing
equations and theorems of electric circuits.

Dual pairs are shown in Table 8.1. Note that power does not appear in
Table 8.1, because power has no dual. The reason for this is the principle
of linearity; since power is not linear, duality does not apply. Also notice
from Table 8.1 that the principle of duality extends to circuit elements,
configurations, and theorems.

TABLE 8.1 Dual pairs.

Resistance R Conductance G
Inductance L Capacitance C
Voltage v Current i
Voltage source Current source
Node Mesh
Series path Parallel path
Open circuit Short circuit
KVL KCL
Thevenin Norton

Even when the principle of linearity applies, a
circuit element or variable may not have a dual.
For example, mutual inductance (to be covered
in Chapter 13) has no dual.

Two circuits that are described by equations of the same form, but
in which the variables are interchanged, are said to be dual to each other.

Two circuits are said to be duals of one another if they are described by the same
characterizing equations with dual quantities interchanged.

The usefulness of the duality principle is self-evident. Once we
know the solution to one circuit, we automatically have the solution for
the dual circuit. It is obvious that the circuits in Figs. 8.8 and 8.13 are
dual. Consequently, the result in Eq. (8.32) is the dual of that in Eq.
(8.11). We must keep in mind that the principle of duality is limited
to planar circuits. Nonplanar circuits have no duals, as they cannot be
described by a system of mesh equations.

To find the dual of a given circuit, we do not need to write down
the mesh or node equations. We can use a graphical technique. Given a
planar circuit, we construct the dual circuit by taking the following three
steps:

1. Place a node at the center of each mesh of the given circuit.
Place the reference node (the ground) of the dual circuit
outside the given circuit.

2. Draw lines between the nodes such that each line crosses an
element. Replace that element by its dual (see Table 8.1).

3. To determine the polarity of voltage sources and direction of
current sources, follow this rule: A voltage source that pro-
duces a positive (clockwise) mesh current has as its dual a cur-
rent source whose reference direction is from the ground to the
nonreference node.

In case of doubt, one may verify the dual circuit by writing the nodal or
mesh equations. The mesh (or nodal) equations of the original circuit are
similar to the nodal (or mesh) equations of the dual circuit. The duality
principle is illustrated with the following two examples.

E X A M P L E 8 . 1 4

Construct the dual of the circuit in Fig. 8.44.
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Solution:

As shown in Fig. 8.45(a), we first locate nodes 1 and 2 in the two meshes
and also the ground node 0 for the dual circuit. We draw a line between
one node and another crossing an element. We replace the line joining
the nodes by the duals of the elements which it crosses. For example, a
line between nodes 1 and 2 crosses a 2-H inductor, and we place a 2-F
capacitor (an inductor’s dual) on the line. A line between nodes 1 and
0 crossing the 6-V voltage source will contain a 6-A current source. By
drawing lines crossing all the elements, we construct the dual circuit on
the given circuit as in Fig. 8.45(a). The dual circuit is redrawn in Fig.
8.45(b) for clarity.

6 V

2 Ω

10 mF2 H+
−

t = 0

Figure 8.44 For Example 8.14.

6 V

6 A

10 mF

10 mH

2 H

2 F

+
−

2 F

t = 0

2

0

1

1 22 Ω

0.5 Ω

t = 0

6 A 10 mH

0.5 Ω

t = 0

0

(a) (b)

Figure 8.45 (a) Construction of the dual circuit of Fig. 8.44, (b) dual circuit redrawn.

P R A C T I C E P R O B L E M 8 . 1 4

Draw the dual circuit of the one in Fig. 8.46.

Answer: See Fig. 8.47.

50 mA 4 H

3 F

10 Ω

Figure 8.46 For Practice Prob. 8.14.

50 mV 4 F+
− 0.1 Ω

3 H

Figure 8.47 Dual of the circuit in Fig. 8.46.

E X A M P L E 8 . 1 5

Obtain the dual of the circuit in Fig. 8.48.

Solution:

The dual circuit is constructed on the original circuit as in Fig. 8.49(a).
We first locate nodes 1 to 3 and the reference node 0. Joining nodes 1
and 2, we cross the 2-F capacitor, which is replaced by a 2-H inductor.
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10 V +
− 20 Ω

5 H

3 Ai2 i3i1 2 F

Figure 8.48 For Example 8.15.

Joining nodes 2 and 3, we cross the 20-� resistor, which is replaced by
a 1/20-� resistor. We keep doing this until all the elements are crossed.
The result is in Fig. 8.49(a). The dual circuit is redrawn in Fig. 8.49(b).

1 2 3

0

10 A 3 V5 F

0

2 H

+
−

1 2 3

(b)(a)

10 V

10 A

+
− 20 Ω

5 H

3 A

3 V

2 F

2 H

5 F

+
−

 Ω1
20

Ω1
20

Figure 8.49 For Example 8.15: (a) construction of the dual circuit of Fig. 8.48, (b) dual circuit redrawn.

To verify the polarity of the voltage source and the direction of
the current source, we may apply mesh currents i1, i2, and i3 (all in the
clockwise direction) in the original circuit in Fig. 8.48. The 10-V voltage
source produces positive mesh current i1, so that its dual is a 10-A current
source directed from 0 to 1. Also, i3 = −3 A in Fig. 8.48 has as its dual
v3 = −3 V in Fig. 8.49(b).

P R A C T I C E P R O B L E M 8 . 1 5

For the circuit in Fig. 8.50, obtain the dual circuit.

Answer: See Fig. 8.51.

2 A 20 V3 Ω

0.2 F 4 H

+
−

5 Ω

Figure 8.50 For Practice Prob. 8.15.

2 V 20 A

4 F0.2 H

+
−

Ω1
3

Ω1
5

Figure 8.51 Dual of the circuit in Fig. 8.50.
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†8.11 APPLICATIONS
Practical applications of RLC circuits are found in control and com-
munications circuits such as ringing circuits, peaking circuits, resonant
circuits, smoothing circuits, and filters. Most of the circuits cannot be
covered until we treat ac sources. For now, we will limit ourselves to two
simple applications: automobile ignition and smoothing circuits.

8 . 11 . 1 Au tomob i l e I g n i t i on Sy s t em
In Section 7.9.4, we considered the automobile ignition system as a charg-
ing system. That was only a part of the system. Here, we consider another
part—the voltage generating system. The system is modeled by the circuit
shown in Fig. 8.52. The 12-V source is due to the battery and alternator.
The 4-� resistor represents the resistance of the wiring. The ignition
coil is modeled by the 8-mH inductor. The 1-µF capacitor (known as
the condenser to automechanics) is in parallel with the switch (known as
the breaking points or electronic ignition). In the following example, we
determine how the RLC circuit in Fig. 8.52 is used in generating high
voltage.

12 V

4 Ω

8 mH

i

vL

+

−

t = 0

1 mF

vC+ −

Ignition coil
Spark plug

Figure 8.52 Automobile ignition circuit.

E X A M P L E 8 . 1 6

Assuming that the switch in Fig. 8.52 is closed prior to t = 0−, find the
inductor voltage vL for t > 0.

Solution:

If the switch is closed prior to t = 0− and the circuit is in steady state,
then

i(0−) = 12

4
= 3 A, vC(0

−) = 0

At t = 0+, the switch is opened. The continuity conditions require that

i(0+) = 3 A, vC(0
+) = 0 (8.16.1)

We obtain di(0+)/dt from vL(0+). Applying KVL to the mesh at t = 0+

yields

−12 + 4i(0+) + vL(0+) + vC(0+) = 0

−12 + 4 × 3 + vL(0+) + 0 = 0 	⇒ vL(0+) = 0
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Hence,

di(0+)
dt

= vL(0+)
L

= 0 (8.16.2)

As t → ∞, the system reaches steady state, so that the capacitor acts like
an open circuit. Then

i(∞) = 0 (8.16.3)

If we apply KVL to the mesh for t > 0, we obtain

12 = Ri + L
di

dt
+ 1

C

∫ t

0
i dt + vC(0)

Taking the derivative of each term yields

d2i

dt2
+ R

L

di

dt
+ i

LC
= 0 (8.16.4)

We obtain the natural response by following the procedure in Section 8.3.
Substituting R = 4 �, L = 8 mH, and C = 1 µF, we get

α = R

2L
= 250, ω0 = 1√

LC
= 1.118 × 104

Since α < ω0, the response is underdamped. The damped natural fre-
quency is

ωd =
√
ω2

0 − α2 � ω0 = 1.118 × 104

The natural response is

in(t) = e−α(A cosωdt + B sinωdt) (8.16.5)

where A and B are constants. The forced response is

if (t) = i(∞) = 0 (8.16.6)

so that the complete response is

i(t) = in(t) + if (t) = e−250t (A cos 11,180t + B sin 11,180t) (8.16.7)

We now determine A and B.

i(0) = 3 = A + 0 	⇒ A = 3

Taking the derivative of Eq. (8.16.7),

di

dt
= −250e−250t (A cos 11,180t + B sin 11,180t)

+ e−250t (−11,180A sin 11,180t + 11,180B cos 11,180t)

Setting t = 0 and incorporating Eq. (8.16.2),

0 = −250A + 11,180B 	⇒ B = 0.0671

Thus

i(t) = e−250t (3 cos 11,180t + 0.0671 sin 11,180t) (8.16.8)
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The voltage across the inductor is then

vL(t) = L
di

dt
= −268e−250t sin 11,180t (8.16.9)

This has a maximum value when sine is unity, that is, at 11,180t0 = π/2
or t0 = 140.5 µs. At time = t0, the inductor voltage reaches its peak,
which is

vL(t0) = −268e−250t0 = −259 V (8.16.10)

Although this is far less than the voltage range of 6000 to 10,000 V
required to fire the spark plug in a typical automobile, a device known
as a transformer (to be discussed in Chapter 13) is used to step up the
inductor voltage to the required level.

P R A C T I C E P R O B L E M 8 . 1 6

In Fig. 8.52, find the capacitor voltage vC for t > 0.

Answer: 12 − 12e−250t cos 11,180t + 267.7e−250t sin 11,180t V.

8 . 11 . 2 Smooth i n g C i r cu i t s
In a typical digital communication system, the signal to be transmitted
is first sampled. Sampling refers to the procedure of selecting samples
of a signal for processing, as opposed to processing the entire signal.
Each sample is converted into a binary number represented by a series
of pulses. The pulses are transmitted by a transmission line such as a
coaxial cable, twisted pair, or optical fiber. At the receiving end, the
signal is applied to a digital-to-analog (D/A) converter whose output is
a “staircase” function, that is, constant at each time interval. In order to
recover the transmitted analog signal, the output is smoothed by letting it
pass through a “smoothing” circuit, as illustrated in Fig. 8.53. An RLC

circuit may be used as the smoothing circuit.

vs(t) Smoothing
circuit

p(t)
D/A

v0(t)

Figure 8.53 A series of pulses is applied to
the digital-to-analog (D/A) converter, whose
output is applied to the smoothing circuit.

E X A M P L E 8 . 1 7

The output of a D/A converter is shown in Fig. 8.54(a). If the RLC cir-
cuit in Fig. 8.54(b) is used as the smoothing circuit, determine the output
voltage vo(t).

vs

1 Ω 1 H

1 F+
−

1 3

0 0

2

(b)(a)

t (s)–2
0

4

10

v0

+

−

vs

Figure 8.54 For Example 8.17: (a) output of a D/A converter, (b) an RLC

smoothing circuit.
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Solution:

This problem is best solved using PSpice. The schematic is shown in Fig.
8.55(a). The pulse in Fig. 8.54(a) is specified using the piecewise linear
function. The attributes of V1 are set as T1 = 0, V1 = 0, T2 = 0.001,
V2 = 4, T3 = 1, V3 = 4, and so on. To be able to plot both input
and output voltages, we insert two voltage markers as shown. We select
Analysis/Setup/Transient to open up the Transient Analysis dialog box
and set Final Time as 6 s. Once the schematic is saved, we select Anal-
ysis/Simulate to run Probe and obtain the plots shown in Fig. 8.55(b).

T1=0
T2=0.001
T3=1
T4=1.001
T5=2
T6=2.001
T7=3
T8=3.001

V1=0
V2=4
V3=4
V4=10
V5=10
V6=-2
V7=-2
V8=0

V1

R1

1

1 C1

0

1H

L1

+

−

V V
10 V

0 V

5 V

-5 V
0 s 2.0 s 4.0 s 6.0 s

 V(V1:+)

Time

 V(C1:1)

(a) (b)

Figure 8.55 For Example 8.17: (a) schematic, (b) input and output voltages.

P R A C T I C E P R O B L E M 8 . 1 7

Rework Example 8.17 if the output of the D/A converter is as shown in
Fig. 8.56.

Answer: See Fig. 8.57.

t (s)

–3
–1

0

8
7

1 2 3 4

vs

Figure 8.56 For Practice
Prob. 8.17.

8.0 V

0 V

4.0 V

-4.0 V
0 s 2.0 s 4.0 s 6.0 s

 V(V1:+)

Time

 V(C1:1)

Figure 8.57 Result of Practice Prob. 8.17.
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8.12 SUMMARY
1. The determination of the initial values x(0) and dx(0)/dt and final

value x(∞) is crucial to analyzing second-order circuits.

2. The RLC circuit is second-order because it is described by a
second-order differential equation. Its characteristic equation is
s2 + 2αs + ω2

0 = 0, where α is the damping factor and ω0 is the
undamped natural frequency. For a series circuit, α = R/2L, for a
parallel circuit α = 1/2RC, and for both cases ω0 = 1/

√
LC.

3. If there are no independent sources in the circuit after switching (or
sudden change), we regard the circuit as source-free. The complete
solution is the natural response.

4. The natural response of an RLC circuit is overdamped, under-
damped, or critically damped, depending on the roots of the char-
acteristic equation. The response is critically damped when the roots
are equal (s1 = s2 or α = ω0), overdamped when the roots are real
and unequal (s1 
= s2 or α > ω0), or underdamped when the roots are
complex conjugate (s1 = s∗

2 or α < ω0).

5. If independent sources are present in the circuit after switching, the
complete response is the sum of the natural response and the forced
or steady-state response.

6. PSpice is used to analyze RLC circuits in the same way as for RC or
RL circuits.

7. Two circuits are dual if the mesh equations that describe one circuit
have the same form as the nodal equations that describe the other.
The analysis of one circuit gives the analysis of its dual circuit.

8. The automobile ignition circuit and the smoothing circuit are typical
applications of the material covered in this chapter.

R E V I EW QU E S T I ON S

8.1 For the circuit in Fig. 8.58, the capacitor voltage at
t = 0− (just before the switch is closed) is:
(a) 0 V (b) 4 V (c) 8 V (d) 12 V

4 Ω

2 F1 H12 V +
−

t = 0

2 Ω

Figure 8.58 For Review Questions 8.1 and 8.2.

8.2 For the circuit in Fig. 8.58, the initial inductor
current (at t = 0) is:
(a) 0 A (b) 2 A (c) 6 A (d) 12 A

8.3 When a step input is applied to a second-order
circuit, the final values of the circuit variables are
found by:
(a) Replacing capacitors with closed circuits and

inductors with open circuits.
(b) Replacing capacitors with open circuits and

inductors with closed circuits.
(c) Doing neither of the above.

8.4 If the roots of the characteristic equation of an RLC
circuit are −2 and −3, the response is:
(a) (A cos 2t + B sin 2t)e−3t

(b) (A + 2Bt)e−3t

(c) Ae−2t + Bte−3t

(d) Ae−2t + Be−3t

where A and B are constants.

8.5 In a series RLC circuit, setting R = 0 will produce:
(a) an overdamped response
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(b) a critically damped response
(c) an underdamped response
(d) an undamped response
(e) none of the above

8.6 A parallel RLC circuit has L = 2 H and
C = 0.25 F. The value of R that will produce unity
damping factor is:
(a) 0.5 � (b) 1 � (c) 2 � (d) 4 �

8.7 Refer to the series RLC circuit in Fig. 8.59. What
kind of response will it produce?
(a) overdamped
(b) underdamped
(c) critically damped
(d) none of the above

1 H

1 F

1 Ω

Figure 8.59 For Review Question 8.7.

8.8 Consider the parallel RLC circuit in Fig. 8.60.
What type of response will it produce?
(a) overdamped
(b) underdamped
(c) critically damped
(d) none of the above

1 F1 H1 Ω

Figure 8.60 For Review Question 8.8.

8.9 Match the circuits in Fig. 8.61 with the following
items:
(i) first-order circuit
(ii) second-order series circuit
(iii) second-order parallel circuit
(iv) none of the above

vs

R

C1

(c)

is C2

C1

L
R1

L

(d)

(e)

is

C

(f)

R1

C2

R2

vs

R L

+
−

(a)

is C

(b)

RC

+
−

vs

R1 R2

+
− L

L

C

R2

Figure 8.61 For Review Question 8.9.

8.10 In an electric circuit, the dual of resistance is:
(a) conductance (b) inductance
(c) capacitance (d) open circuit
(e) short circuit

Answers: 8.1a, 8.2c, 8.3b, 8.4d, 8.5d, 8.6c, 8.7b, 8.8b, 8.9 (i)-c,
(ii)-b,e, (iii)-a, (iv)-d,f, 8.10a.

P RO B L E M S

Section 8.2 Finding Initial and Final Values

8.1 For the circuit in Fig. 8.62, find:
(a) i(0+) and v(0+),
(b) di(0+)/dt and dv(0+)/dt ,
(c) i(∞) and v(∞).

12 V

0.4 F

6 Ω

+
−

2 H

4 Ω

i

t = 0

v
+

−

Figure 8.62 For Prob. 8.1.
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8.2 In the circuit of Fig. 8.63, determine:
(a) iR(0+), iL(0+), and iC(0+),
(b) diR(0+)/dt , diL(0+)/dt , and diC(0+)/dt ,
(c) iR(∞), iL(∞), and iC(∞).

80 V

20 kΩ

2 mH1 mF

60 kΩ
+
−

iLiC

25 kΩiR

t = 0

Figure 8.63 For Prob. 8.2.

8.3 Refer to the circuit shown in Fig. 8.64. Calculate:
(a) iL(0+), vC(0+), and vR(0+),
(b) diL(0+)/dt , dvC(0+)/dt , and dvR(0+)/dt ,
(c) iL(∞), vC(∞), and vR(∞).

2u(t) A

40 Ω

10 V

vR

+

−
10 Ω

+
−

IL
vC

+

−
F1

4

H1
8

Figure 8.64 For Prob. 8.3.

8.4 In the circuit of Fig. 8.65, find:
(a) v(0+) and i(0+),
(b) dv(0+)/dt and di(0+)/dt ,
(c) v(∞) and i(∞).

4u(–t) V 4u(t) A

3 Ω 0.25 H

0.1 F 5 Ω+
−

i

v
+

−

Figure 8.65 For Prob. 8.4.

8.5 Refer to the circuit in Fig. 8.66. Determine:
(a) i(0+) and v(0+),
(b) di(0+)/dt and dv(0+)/dt ,
(c) i(∞) and v(∞).

4u(t) A

1 H

4 Ω v
+

−
6 Ω

i

F1
4

Figure 8.66 For Prob. 8.5.

8.6 In the circuit of Fig. 8.67, find:
(a) vR(0+) and vL(0+),
(b) dvR(0+)/dt and dvL(0+)/dt ,
(c) vR(∞) and vL(∞).

Vsu(t)

Rs R

+
− LC

+ −vR +

−
vL

Figure 8.67 For Prob. 8.6.

Section 8.3 Source-Free Series RLC Circuit

8.7 The voltage in an RLC network is described by the
differential equation

d2v

dt2
+ 4

dv

dt
+ 4v = 0

subject to the initial conditions v(0) = 1 and
dv(0)/dt = −1. Determine the characteristic
equation. Find v(t) for t > 0.

8.8 The branch current in an RLC circuit is described
by the differential equation

d2i

dt2
+ 6

di

dt
+ 9i = 0

and the initial conditions are i(0) = 0,
di(0)/dt = 4. Obtain the characteristic equation
and determine i(t) for t > 0.

8.9 The current in an RLC circuit is described by

d2i

dt2
+ 10

di

dt
+ 25i = 0

If i(0) = 10 and di(0)/dt = 0, find i(t) for t > 0.

8.10 The differential equation that describes the voltage
in an RLC network is

d2v

dt2
+ 5

dv

dt
+ 4v = 0

Given that v(0) = 0, dv(0)/dt = 10, obtain v(t).

8.11 The natural response of an RLC circuit is described
by the differential equation

d2v

dt2
+ 2

dv

dt
+ v = 0
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for which the initial conditions are v(0) = 10 and
dv(0)/dt = 0. Solve for v(t).

8.12 If R = 20 �, L = 0.6 H, what value of C will make
an RLC series circuit:
(a) overdamped, (b) critically damped,
(c) underdamped?

8.13 For the circuit in Fig. 8.68, calculate the value of R
needed to have a critically damped response.

R 4 H0.01 F

60 Ω

Figure 8.68 For Prob. 8.13.

8.14 Find v(t) for t > 0 if v(0) = 6 V and i(0) = 2 A in
the circuit shown in Fig. 8.69.

2 H30 Ω60 Ω v (t)
+

−

0.02 Fi(t)

Figure 8.69 For Prob. 8.14.

8.15 The responses of a series RLC circuit are

vC(t) = 30 − 10e−20t + 30e−10t V

iL(t) = 40e−20t − 60e−10t mA

where vC and iL are the capacitor voltage and
inductor current, respectively. Determine the values
of R, L, and C.

8.16 Find i(t) for t > 0 in the circuit of Fig. 8.70.

t = 0

30 V

10 Ω

2.5 H

1 mF
40 Ω+

−

60 Ω

i(t)

Figure 8.70 For Prob. 8.16.

8.17 Obtain v(t) for t > 0 in the circuit of Fig. 8.71.

t = 0

120 V

10 Ω

4 H

1 Fv

+
−

+

−

Figure 8.71 For Prob. 8.17.

8.18 The switch in the circuit of Fig. 8.72 has been closed
for a long time but is opened at t = 0. Determine
i(t) for t > 0.

2 Ω

12 V

i(t)

+ −
t = 0

H1
2

F1
4

Figure 8.72 For Prob. 8.18.

8.19∗ Calculate v(t) for t > 0 in the circuit of Fig. 8.73.

t = 0

24 V

12 Ω

60 Ω+
−

3 H

6 Ω

15 Ω

25 Ω

v
+

−
F1

27

Figure 8.73 For Prob. 8.19.

Section 8.4 Source-Free Parallel RLC Circuit

8.20 For a parallel RLC circuit, the responses are

vL(t) = 4e−20t cos 50t − 10e−20t sin 50t V

iC(t) = −6.5e−20t cos 50t mA

where iC and vL are the capacitor current and
inductor voltage, respectively. Determine the values
of R, L, and C.

8.21 For the network in Fig. 8.74, what value of C is
needed to make the response underdamped with
unity damping factor (α = 1)?

∗An asterisk indicates a challenging problem.
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0.5 H 10 mFC10 Ω

Figure 8.74 For Prob. 8.21.

8.22 Find v(t) for t > 0 in the circuit in Fig. 8.75.

25u(–t)

5 Ω

+
− 1 mF

i

0.1 Hv
+

−

Figure 8.75 For Prob. 8.22.

8.23 In the circuit in Fig. 8.76, calculate io(t) and vo(t)
for t > 0.

t = 0

30 V

2 Ω

vo(t)8 Ω+
−

io(t)1 H

+

−
F1

4

Figure 8.76 For Prob. 8.23.

Section 8.5 Step Response of a Series RLC
Circuit

8.24 The step response of an RLC circuit is given by

d2i

dt2
+ 2

di

dt
+ 5i = 10

Given that i(0) = 2 and di(0)/dt = 4, solve for i(t).

8.25 A branch voltage in an RLC circuit is described by

d2v

dt2
+ 4

dv

dt
+ 8v = 24

If the initial conditions are v(0) = 0 = dv(0)/dt ,
find v(t).

8.26 The current in an RLC network is governed by the
differential equation

d2i

dt2
+ 3

di

dt
+ 2i = 4

subject to i(0) = 1, di(0)/dt = −1. Solve for i(t).

8.27 Solve the following differential equations subject to
the specified initial conditions
(a) d2v/dt2 + 4v = 12, v(0) = 0, dv(0)/dt = 2

(b) d2i/dt2 + 5 di/dt + 4i = 8, i(0) = −1,
di(0)/dt = 0

(c) d2v/dt2 + 2 dv/dt + v = 3, v(0) = 5,
dv(0)/dt = 1

(d) d2i/dt2 + 2 di/dt + 5i = 10, i(0) = 4,
di(0)/dt = −2

8.28 Consider the circuit in Fig. 8.77. Find vL(0) and
vC(0).

2u(t)

40 Ω

50 V1 FvL

+

−
0.5 H +

−

10 Ω

vC

+

−

Figure 8.77 For Prob. 8.28.

8.29 For the circuit in Fig. 8.78, find v(t) for t > 0.

1 H

4 Ω

50u(t) V

2u(–t) A

0.04 F

+ −

2 Ω
v+ −

Figure 8.78 For Prob. 8.29.

8.30 Find v(t) for t > 0 in the circuit in Fig. 8.79.

3 A

1 H

10 Ω 5 Ω4 F

t = 0

4u(t) Av
+

−

Figure 8.79 For Prob. 8.30.

8.31 Calculate i(t) for t > 0 in the circuit in Fig. 8.80.
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20 V

5 Ω

+
−

t = 0

i

v+ −

F1
16

H1
4

Figure 8.80 For Prob. 8.31.

8.32 Determine v(t) for t > 0 in the circuit in Fig. 8.81.

t = 0

8 V +
− 12 V+

−

1 H

2 Ω

v
+

−
F1

5

Figure 8.81 For Prob. 8.32.

8.33 Obtain v(t) and i(t) for t > 0 in the circuit in Fig.
8.82.

3u(t) A

5 H

0.2 F

2 Ω

1 Ω

20 V

5 Ω

+ −

i(t)

v(t)

+

−

Figure 8.82 For Prob. 8.33.

8.34∗ For the network in Fig. 8.83, solve for i(t) for t > 0.

30 V

6 Ω

+
− 10 V +

−

6 Ω

t = 0

6 Ω

i(t)

H1
2

F1
8

Figure 8.83 For Prob. 8.34.

8.35 Refer to the circuit in Fig. 8.84. Calculate i(t) for
t > 0.

10 Ω

2 A

t = 0

10 Ω

5 Ω

i(t)

F1
3

H3
4

Figure 8.84 For Prob. 8.35.

8.36 Determine v(t) for t > 0 in the circuit in Fig. 8.85.

60u(t) V +
− 30u(t) V+

−20 Ω

0.25 H30 Ω 0.5 F

v+ −

Figure 8.85 For Prob. 8.36.

8.37 The switch in the circuit of Fig. 8.86 is moved from
position a to b at t = 0. Determine i(t) for t > 0.

12 V

2 H

+
−

2 Ω

14 Ω

6 Ω

4 A

i(t)
a

b

0.02 F

t = 0

Figure 8.86 For Prob. 8.37.
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8.38∗ For the network in Fig. 8.87, find i(t) for t > 0.

5 Ω

1 H

100 V 5 Ω+
−

t = 0

20 Ω

i

F1
25

Figure 8.87 For Prob. 8.38.

8.39∗ Given the network in Fig. 8.88, find v(t) for t > 0.

4 A 1 Ω t = 0

2 A

6 Ω

1 H

v
+

−
F1

25

Figure 8.88 For Prob. 8.39.

Section 8.6 Step Response of a Parallel RLC
Circuit

8.40 In the circuit of Fig. 8.89, find v(t) and i(t) for
t > 0. Assume v(0) = 0 V and i(0) = 1 A.

4u(t) A 0.5 F 1 H2 Ω

i

v
+

−

Figure 8.89 For Prob. 8.40.

8.41 Find i(t) for t > 0 in the circuit in Fig. 8.90.

12u(t) V +
−

8 mH

2 kΩ

i(t)

5 mF

Figure 8.90 For Prob. 8.41.

8.42 Find the output voltage vo(t) in the circuit of Fig.
8.91.

3 A 10 mF5 Ω 1 H

10 Ω

t = 0

vo

+

−

Figure 8.91 For Prob. 8.42.

8.43 Given the circuit in Fig. 8.92, find i(t) and v(t) for
t > 0.

1 Ω

6 V +
−

2 Ω
t = 0

1 H

i(t)

v(t)

+

−
F1

4

Figure 8.92 For Prob. 8.43.

8.44 Determine i(t) for t > 0 in the circuit of Fig. 8.93.

3 A5 Ω5 H

i(t)

12 V

t = 0

4 Ω

F1
20

+
−

Figure 8.93 For Prob. 8.44.

8.45 For the circuit in Fig. 8.94, find i(t) for t > 0.

6u(t) A 40 Ω10 mF 4 H

i(t)

30 V +
−

10 Ω

Figure 8.94 For Prob. 8.45.
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8.46 Find v(t) for t > 0 in the circuit in Fig. 8.95.

io CLR

t = 0

v
+

−

Figure 8.95 For Prob. 8.46.

Section 8.7 General Second-Order Circuits

8.47 Derive the second-order differential equation for vo
in the circuit of Fig. 8.96.

R2

vs C2
+
− R1

C1

vo

+

−

Figure 8.96 For Prob. 8.47.

8.48 Obtain the differential equation for vo in the circuit
in Fig. 8.97.

R1

vs C+
− R2

L

vo

+

−

Figure 8.97 For Prob. 8.48.

8.49 For the circuit in Fig. 8.98, find v(t) for t > 0.
Assume that v(0+) = 4 V and i(0+) = 2 A.

2 Ω

0.5 F0.1 F
i
4

v
+

−

i

Figure 8.98 For Prob. 8.49.

8.50 In the circuit of Fig. 8.99, find i(t) for t > 0.

20 V

6 Ω

4 Ω

t = 0

+
−

i

F1
25

H1
4

Figure 8.99 For Prob. 8.50.

8.51 If the switch in Fig. 8.100 has been closed for a long
time before t = 0 but is opened at t = 0, determine:
(a) the characteristic equation of the circuit,
(b) ix and vR for t > 0.

t = 0

16 V

1 H

+
−

8 Ω
12 Ω

vR

+

−

ix

F1
36

Figure 8.100 For Prob. 8.51.

8.52 Obtain i1 and i2 for t > 0 in the circuit of Fig. 8.101.

4u(t) A 1 H2 Ω

i2i1

1 H

3 Ω

Figure 8.101 For Prob. 8.52.

8.53 For the circuit in Prob. 8.5, find i and v for t > 0.

8.54 Find the response vR(t) for t > 0 in the circuit in
Fig. 8.102. Let R = 3 �, L = 2 H, and C = 1/18 F.

10u(t) V

R

+
− LC

+ −vR

Figure 8.102 For Prob. 8.54.
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Section 8.8 Second-Order Op Amp Circuits

8.55 Derive the differential equation relating vo to vs in
the op amp circuit of Fig. 8.103.

R2

C2

R1
C1

vs vo+
−

Figure 8.103 For Prob. 8.55.

8.56 Obtain the differential equation for vo(t) in the
network of Fig. 8.104.

R2

C2

R1
C1

vs vo+
−

Figure 8.104 For Prob. 8.56.

8.57 Determine the differential equation for the op amp
circuit in Fig. 8.105. If v1(0+) = 2 V and
v2(0+) = 0 V, find vo for t > 0. Let R = 100 k�
and C = 1 µF.

R

vo

+
−

−

C

v2+ −

C

v1+ −

R

+
+
−

Figure 8.105 For Prob. 8.57.

8.58 Given that vs = 2u(t) V in the op amp circuit of Fig.
8.106, find vo(t) for t > 0. Let R1 = R2 = 10 k�,
R3 = 20 k�, R4 = 40 k�, C1 = C2 = 100 µF.

vs

R1

C1 R4

vo

R2

–
+

C2

R3

Figure 8.106 For Prob. 8.58.

8.59∗ In the op amp circuit of Fig. 8.107, determine vo(t)
for t > 0. Let vin = u(t) V, R1 = R2 = 10 k�,
C1 = C2 = 100 µF.

R2

C1

R1
C2

vin vo+
−

Figure 8.107 For Prob. 8.59.

Section 8.9 PSpice Analysis of RLC Circuit

8.60 For the step function vs = u(t), use PSpice to find
the response v(t) for 0 < t < 6 s in the circuit of
Fig. 8.108.

2 Ω

vs
+
−

1 H

1 F v(t)

+

−

Figure 8.108 For Prob. 8.60.

8.61 Given the source-free circuit in Fig. 8.109, use
PSpice to get i(t) for 0 < t < 20 s. Take
v(0) = 30 V and i(0) = 2 A.
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1 Ω 10 H 2.5 F

i

v
+

−

Figure 8.109 For Prob. 8.61.

8.62 Obtain v(t) for 0 < t < 4 s in the circuit of Fig.
8.110 using PSpice.

13u(t) A 39u(t) V6 Ω

6 Ω

+
−

1 H

v(t)
+

−
20 Ω

0.4 F

Figure 8.110 For Prob. 8.62.

8.63 Rework Prob. 8.23 using PSpice. Plot vo(t) for
0 < t < 4 s.

Section 8.10 Duality

8.64 Draw the dual of the network in Fig. 8.111.

4 A 5 mH 10 mH

20 Ω

2 mF

Figure 8.111 For Prob. 8.64.

8.65 Obtain the dual of the circuit in Fig. 8.112.

12 V +
−

24 V+
−

4 Ω

10 Ω

2 H

0.5 F

Figure 8.112 For Prob. 8.65.

8.66 Find the dual of the circuit in Fig. 8.113.

20 Ω10 Ω 30 Ω

4 H

60 V

1 F 2 A

+ −
120 V

− +

Figure 8.113 For Prob. 8.66.

8.67 Draw the dual of the circuit in Fig. 8.114.

+
−

2 Ω 3 Ω

12 V

5 A

1 Ω0.25 H1 F

Figure 8.114 For Prob. 8.67.

Section 8.11 Applications

8.68 An automobile airbag igniter is modeled by the
circuit in Fig. 8.115. Determine the time it takes the
voltage across the igniter to reach its first peak after
switching from A to B. Let R = 3 �, C = 1/30 F,
and L = 60 mH.

t = 0

A B

12 V +
− L RC

Airbag igniter

Figure 8.115 For Prob. 8.68.

8.69 A passive interface is to be designed to connect an
electric motor to an ideal voltage source. If the
motor is modeled as a 40-mH inductor in parallel
with a 16-� resistor, design the interface circuit so
that the overall circuit is critically damped at the
natural frequency of 60 Hz.
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COM P R E H EN S I V E P RO B L E M S

8.70 A mechanical system is modeled by a series RLC
circuit. It is desired to produce an overdamped
response with time constants 0.1 ms and 0.5 ms. If a
series 50-k� resistor is used, find the values of L
and C.

8.71 An oscillogram can be adequately modeled by a
second-order system in the form of a parallel RLC
circuit. It is desired to give an underdamped voltage
across a 200-� resistor. If the damping frequency is
4 kHz and the time constant of the envelope is
0.25 s, find the necessary values of L and C.

8.72 The circuit in Fig. 8.116 is the electrical analog of
body functions used in medical schools to study
convulsions. The analog is as follows:

C1 = Volume of fluid in a drug

C2 = Volume of blood stream in a specified
region

R1 = Resistance in the passage of the drug from
the input to the blood stream

R2 = Resistance of the excretion mechanism,
such as kidney, etc.

v0 = Initial concentration of the drug dosage

v(t) = Percentage of the drug in the blood stream

Find v(t) for t > 0 given that C1 = 0.5 µF,
C2 = 5 µF, R1 = 5 M�, R2 = 2.5 M�, and
v0 = 60u(t) V.

R1t = 0

C2C1vo

+

−
R2

v(t)

+

−

Figure 8.116 For Prob. 8.72.

8.73 Figure 8.117 shows a typical tunnel-diode oscillator
circuit. The diode is modeled as a nonlinear resistor
with iD = f (vD), i.e., the diode current is a
nonlinear function of the voltage across the diode.
Derive the differential equation for the circuit in
terms of v and iD .

R L i

Cv
+

−
+
−vs

ID

vD

+

−

Figure 8.117 For Prob. 8.73.

http://www.mhhe.com/engcs/electrical/alexander/student/olc/ch08_ppt.htm
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