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C H A P T E R

THREE-PHASE CIRCUITS

1 2

Society is never prepared to receive any invention. Every new thing is
resisted, and it takes years for the inventor to get people to listen to him
and years more before it can be introduced.

—Thomas Alva Edison

Historical Profiles
Thomas Alva Edison (1847–1931) was perhaps the greatest American inventor. He
patented 1093 inventions, including such history-making inventions as the incandescent
electric bulb, the phonograph, and the first commercial motion pictures.

Born in Milan, Ohio, the youngest of seven children, Edison received only three
months of formal education because he hated school. He was home-schooled by his
mother and quickly began to read on his own. In 1868, Edison read one of Faraday’s
books and found his calling. He moved to Menlo Park, New Jersey, in 1876, where he
managed a well-staffed research laboratory. Most of his inventions came out of this lab-
oratory. His laboratory served as a model for modern research organizations. Because
of his diverse interests and the overwhelming number of his inventions and patents,
Edison began to establish manufacturing companies for making the devices he invented.
He designed the first electric power station to supply electric light. Formal electri-
cal engineering education began in the mid-1880s with Edison as a role model and leader.

Nikola Tesla (1856–1943) was a Croatian-American engineer whose inventions—
among them the induction motor and the first polyphase ac power system—greatly
influenced the settlement of the ac versus dc debate in favor of ac. He was also re-
sponsible for the adoption of 60 Hz as the standard for ac power systems in the United
States.

Born in Austria-Hungary (now Croatia), to a clergyman, Tesla had an incredible
memory and a keen affinity for mathematics. He moved to the United States in 1884
and first worked for Thomas Edison. At that time, the country was in the “battle of the
currents” with George Westinghouse (1846–1914) promoting ac and Thomas Edison
rigidly leading the dc forces. Tesla left Edison and joined Westinghouse because of
his interest in ac. Through Westinghouse, Tesla gained the reputation and acceptance
of his polyphase ac generation, transmission, and distribution system. He held 700
patents in his lifetime. His other inventions include high-voltage apparatus (the tesla
coil) and a wireless transmission system. The unit of magnetic flux density, the tesla,
was named in honor of him.
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12.1 INTRODUCTION
So far in this text, we have dealt with single-phase circuits. A single-
phase ac power system consists of a generator connected through a pair
of wires (a transmission line) to a load. Figure 12.1(a) depicts a single-
phase two-wire system, whereVp is the magnitude of the source voltage
andφ is the phase. What is more common in practice is a single-phase
three-wire system, shown in Fig. 12.1(b). It contains two identical sources
(equal magnitude and the same phase) which are connected to two loads
by two outer wires and the neutral. For example, the normal household
system is a single-phase three-wire system because the terminal voltages
have the same magnitude and the same phase. Such a system allows the
connection of both 120-V and 240-V appliances.

Historical note: Thomas Edison invented a three-
wire system, using three wires instead of four.
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Figure 12.1 Single-phase systems: (a) two-wire type, (b) three-wire type.

Circuits or systems in which the ac sources operate at the same
frequency but different phases are known as polyphase. Figure 12.2 shows
a two-phase three-wire system, and Fig. 12.3 shows a three-phase four-
wire system. As distinct from a single-phase system, a two-phase system
is produced by a generator consisting of two coils placed perpendicular
to each other so that the voltage generated by one lags the other by 90◦.
By the same token, a three-phase system is produced by a generator
consisting of three sources having the same amplitude and frequency but
out of phase with each other by 120◦. Since the three-phase system is by
far the most prevalent and most economical polyphase system, discussion
in this chapter is mainly on three-phase systems.
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Figure 12.2 Two-phase three-wire system.
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Figure 12.3 Three-phase four-wire system.

Three-phase systems are important for at least three reasons. First,
nearly all electric power is generated and distributed in three-phase, at
the operating frequency of 60 Hz (or ω = 377 rad/s) in the United States
or 50 Hz (or ω = 314 rad/s) in some other parts of the world. When one-
phase or two-phase inputs are required, they are taken from the three-
phase system rather than generated independently. Even when more
than three phases are needed—such as in the aluminum industry, where
48 phases are required for melting purposes—they can be provided by
manipulating the three phases supplied. Second, the instantaneous power
in a three-phase system can be constant (not pulsating), as we will see
in Section 12.7. This results in uniform power transmission and less
vibration of three-phase machines. Third, for the same amount of power,
the three-phase system is more economical than the single-phase. The
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amount of wire required for a three-phase system is less than that required
for an equivalent single-phase system.

We begin with a discussion of balanced three-phase voltages. Then
we analyze each of the four possible configurations of balanced three-
phase systems. We also discuss the analysis of unbalanced three-phase
systems. We learn how to use PSpice for Windows to analyze a balanced
or unbalanced three-phase system. Finally, we apply the concepts devel-
oped in this chapter to three-phase power measurement and residential
electrical wiring.

12.2 BALANCED THREE-PHASE VOLTAGES
Three-phase voltages are often produced with a three-phase ac generator
(or alternator) whose cross-sectional view is shown in Fig. 12.4. The gen-
erator basically consists of a rotating magnet (called the rotor) surrounded
by a stationary winding (called the stator). Three separate windings or
coils with terminals a-a′, b-b′, and c-c′ are physically placed 120◦ apart
around the stator. Terminals a and a′, for example, stand for one of the
ends of coils going into and the other end coming out of the page. As the
rotor rotates, its magnetic field “cuts” the flux from the three coils and
induces voltages in the coils. Because the coils are placed 120◦ apart,
the induced voltages in the coils are equal in magnitude but out of phase
by 120◦ (Fig. 12.5). Since each coil can be regarded as a single-phase
generator by itself, the three-phase generator can supply power to both
single-phase and three-phase loads.
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Figure 12.4 A three-phase generator.
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Figure 12.5 The generated voltages are 120◦
apart from each other.

A typical three-phase system consists of three voltage sources con-
nected to loads by three or four wires (or transmission lines). (Three-
phase current sources are very scarce.) A three-phase system is equiv-
alent to three single-phase circuits. The voltage sources can be either
wye-connected as shown in Fig. 12.6(a) or delta-connected as in Fig.
12.6(b).

Let us consider the wye-connected voltages in Fig. 12.6(a) for now.
The voltages Van, Vbn, and Vcn are respectively between lines a, b, and
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Figure 12.6 Three-phase voltage sources: (a) Y-connected source,
(b) 	-connected source.

c, and the neutral line n. These voltages are called phase voltages. If the
voltage sources have the same amplitude and frequency ω and are out of
phase with each other by 120◦, the voltages are said to be balanced. This
implies that

Van + Vbn + Vcn = 0 (12.1)

|Van| = |Vbn| = |Vcn| (12.2)

Thus,

Balanced phase voltages are equal in magnitude and are out
of phase with each other by 120◦.

120°

Vcn

Van

Vbn

120°

−120°

(a)

120°

Vbn

Van

Vcn

120°

−120°

(b)

v

v

Figure 12.7 Phase sequences:
(a) abc or positive sequence,
(b) acb or negative sequence.

As a common tradition in power systems, volt-
age and current in this chapter are in rms values
unless otherwise stated.

Since the three-phase voltages are 120◦ out of phase with each other,
there are two possible combinations. One possibility is shown in Fig.
12.7(a) and expressed mathematically as

Van = Vp 0◦

Vbn = Vp − 120◦

Vcn = Vp − 240◦ = Vp + 120◦
(12.3)

where Vp is the effective or rms value. This is known as the abc sequence
or positive sequence. In this phase sequence, Van leads Vbn, which in
turn leads Vcn. This sequence is produced when the rotor in Fig. 12.4
rotates counterclockwise. The other possibility is shown in Fig. 12.7(b)
and is given by

Van = Vp 0◦

Vcn = Vp − 120◦

Vbn = Vp − 240◦ = Vp + 120◦
(12.4)

This is called the acb sequence or negative sequence. For this phase
sequence, Van leads Vcn, which in turn leads Vbn. The acb sequence is
produced when the rotor in Fig. 12.4 rotates in the clockwise direction.
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It is easy to show that the voltages in Eqs. (12.3) or (12.4) satisfy Eqs.
(12.1) and (12.2). For example, from Eq. (12.3),

Van + Vbn + Vcn = Vp 0◦ + Vp − 120◦ + Vp + 120◦

= Vp(1.0 − 0.5 − j0.866 − 0.5 + j0.866)

= 0

(12.5)

The phase sequence is the time order in which the voltages pass through
their respective maximum values.

The phase sequence may also be regarded as the
order in which the phase voltages reach their
peak (or maximum) values with respect to time.

The phase sequence is determined by the order in which the phasors pass
through a fixed point in the phase diagram. Reminder: As time increases, each phasor (or

sinor) rotates at an angular velocity ω.In Fig. 12.7(a), as the phasors rotate in the counterclockwise direc-
tion with frequencyω, they pass through the horizontal axis in a sequence
abcabca . . . . Thus, the sequence is abc or bca or cab. Similarly, for the
phasors in Fig. 12.7(b), as they rotate in the counterclockwise direction,
they pass the horizontal axis in a sequence acbacba . . . . This describes
the acb sequence. The phase sequence is important in three-phase power
distribution. It determines the direction of the rotation of a motor con-
nected to the power source, for example.

Like the generator connections, a three-phase load can be either
wye-connected or delta-connected, depending on the end application.
Figure 12.8(a) shows a wye-connected load, and Fig. 12.8(b) shows a
delta-connected load. The neutral line in Fig. 12.8(a) may or may not
be there, depending on whether the system is four- or three-wire. (And,
of course, a neutral connection is topologically impossible for a delta
connection.) A wye- or delta-connected load is said to be unbalanced if
the phase impedances are not equal in magnitude or phase.
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Figure 12.8 Two possible three-
phase load configurations:
(a) a Y-connected load,
(b) a 	-connected load

A balanced load is one in which the phase impedances
are equal in magnitude and in phase.

Reminder: A Y-connected load consists of three
impedances connected to a neutral node, while a
	-connected load consists of three impedances
connected around a loop. The load is balanced
when the three impedances are equal in either
case.

For a balanced wye-connected load,

Z1 = Z2 = Z3 = ZY (12.6)

where ZY is the load impedance per phase. For a balanced delta-connected
load,

Za = Zb = Zc = Z	 (12.7)

where Z	 is the load impedance per phase in this case. We recall from
Eq. (9.69) that

Z	 = 3ZY or ZY = 1

3
Z	 (12.8)

so we know that a wye-connected load can be transformed into a delta-
connected load, or vice versa, using Eq. (12.8).

Since both the three-phase source and the three-phase load can be
either wye- or delta-connected, we have four possible connections:
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• Y-Y connection (i.e., Y-connected source with a Y-connected
load).

• Y-	 connection.

• 	-	 connection.

• 	-Y connection.

In subsequent sections, we will consider each of these possible configu-
rations.

It is appropriate to mention here that a balanced delta-connected
load is more common than a balanced wye-connected load. This is due
to the ease with which loads may be added or removed from each phase
of a delta-connected load. This is very difficult with a wye-connected
load because the neutral may not be accessible. On the other hand, delta-
connected sources are not common in practice because of the circulating
current that will result in the delta-mesh if the three-phase voltages are
slightly unbalanced.

E X A M P L E 1 2 . 1

Determine the phase sequence of the set of voltages

van = 200 cos(ωt + 10◦)
vbn = 200 cos(ωt − 230◦), vcn = 200 cos(ωt − 110◦)

Solution:

The voltages can be expressed in phasor form as

Van = 200 10◦, Vbn = 200 − 230◦ , Vcn = 200 − 110◦

We notice that Van leads Vcn by 120◦ and Vcn in turn leads Vbn by 120◦.
Hence, we have an acb sequence.

P R A C T I C E P R O B L E M 1 2 . 1

Given that Vbn = 110 30◦, find Van and Vcn, assuming a positive (abc)
sequence.

Answer: 110 150◦, 110 − 90◦.

12.3 BALANCED WYE-WYE CONNECTION
We begin with the Y-Y system, because any balanced three-phase system
can be reduced to an equivalent Y-Y system. Therefore, analysis of this
system should be regarded as the key to solving all balanced three-phase
systems.

A balanced Y-Y system is a three-phase system with a balanced Y-connected
source and a balanced Y-connected load.

Consider the balanced four-wire Y-Y system of Fig. 12.9, where
a Y-connected load is connected to a Y-connected source. We assume a
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balanced load so that load impedances are equal. Although the impedance
ZY is the total load impedance per phase, it may also be regarded as the
sum of the source impedance Zs , line impedance Z�, and load impedance
ZL for each phase, since these impedances are in series. As illustrated in
Fig. 12.9, Zs denotes the internal impedance of the phase winding of the
generator; Z� is the impedance of the line joining a phase of the source
with a phase of the load; ZL is the impedance of each phase of the load;
and Zn is the impedance of the neutral line. Thus, in general

ZY = Zs + Z� + ZL (12.9)

Zs and Z� are often very small compared with ZL, so one can assume
that ZY = ZL if no source or line impedance is given. In any event,
by lumping the impedances together, the Y-Y system in Fig. 12.9 can be
simplified to that shown in Fig. 12.10.
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Figure 12.9 A balanced Y-Y system, showing the
source, line, and load impedances.
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Figure 12.10 Balanced Y-Y connection.

Assuming the positive sequence, the phase voltages (or line-to-
neutral voltages) are

Van = Vp 0◦

Vbn = Vp − 120◦, Vcn = Vp + 120◦ (12.10)

The line-to-line voltages or simply line voltages Vab, Vbc, and Vca are
related to the phase voltages. For example,

Vab = Van + Vnb = Van − Vbn = Vp 0◦ − Vp − 120◦

= Vp

(
1 + 1

2
+ j

√
3

2

)
=

√
3Vp 30◦ (12.11a)

Similarly, we can obtain

Vbc = Vbn − Vcn =
√

3Vp − 90◦ (12.11b)

Vca = Vcn − Van =
√

3Vp − 210◦ (12.11c)
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Thus, the magnitude of the line voltages VL is
√

3 times the magnitude
of the phase voltages Vp, or

VL =
√

3Vp (12.12)

where

Vp = |Van| = |Vbn| = |Vcn| (12.13)

and

VL = |Vab| = |Vbc| = |Vca| (12.14)

Also the line voltages lead their corresponding phase voltages by 30◦.
Figure 12.11(a) illustrates this. Figure 12.11(a) also shows how to deter-
mine Vab from the phase voltages, while Fig. 12.11(b) shows the same
for the three line voltages. Notice that Vab leads Vbc by 120◦, and Vbc

leads Vca by 120◦, so that the line voltages sum up to zero as do the phase
voltages.
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Figure 12.11 Phasor diagrams illustrating
the relationship between line voltages and
phase voltages.

Applying KVL to each phase in Fig. 12.10, we obtain the line cur-
rents as

Ia = Van

ZY

, Ib = Vbn

ZY

= Van − 120◦

ZY

= Ia − 120◦

Ic = Vcn

ZY

= Van − 240◦

ZY

= Ia − 240◦
(12.15)

We can readily infer that the line currents add up to zero,

Ia + Ib + Ic = 0 (12.16)

so that

In = −(Ia + Ib + Ic) = 0 (12.17a)

or

VnN = ZnIn = 0 (12.17b)

that is, the voltage across the neutral wire is zero. The neutral line can
thus be removed without affecting the system. In fact, in long distance
power transmission, conductors in multiples of three are used with the
earth itself acting as the neutral conductor. Power systems designed in
this way are well grounded at all critical points to ensure safety.

While the line current is the current in each line, the phase current
is the current in each phase of the source or load. In the Y-Y system, the
line current is the same as the phase current. We will use single subscripts
for line currents because it is natural and conventional to assume that line
currents flow from the source to the load.

ZYVan
+
−

a A

n N

Ia

Figure 12.12 A single-phase
equivalent circuit.

An alternative way of analyzing a balanced Y-Y system is to do so
on a “per phase” basis. We look at one phase, say phase a, and analyze the
single-phase equivalent circuit in Fig. 12.12. The single-phase analysis
yields the line current Ia as

Ia = Van

ZY

(12.18)
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From Ia , we use the phase sequence to obtain other line currents. Thus,
as long as the system is balanced, we need only analyze one phase. We
may do this even if the neutral line is absent, as in the three-wire system.

E X A M P L E 1 2 . 2

Calculate the line currents in the three-wire Y-Y system of Fig. 12.13.
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Figure 12.13 Three-wire Y-Y system; for Example 12.2.

Solution:

The three-phase circuit in Fig. 12.13 is balanced; we may replace it with
its single-phase equivalent circuit such as in Fig. 12.12. We obtain Ia
from the single-phase analysis as

Ia = Van

ZY

where ZY = (5 − j2)+ (10 + j8) = 15 + j6 = 16.155 21.8◦. Hence,

Ia = 110 0◦

16.155 21.8◦
= 6.81 − 21.8◦ A

Since the source voltages in Fig. 12.13 are in positive sequence and the
line currents are also in positive sequence,

Ib = Ia − 120◦ = 6.81 − 141.8◦ A

Ic = Ia − 240◦ = 6.81 − 261.8◦ A = 6.81 98.2◦ A

P R A C T I C E P R O B L E M 1 2 . 2

A Y-connected balanced three-phase generator with an impedance of
0.4+ j0.3� per phase is connected to a Y-connected balanced load with
an impedance of 24 + j19 � per phase. The line joining the generator
and the load has an impedance of 0.6 + j0.7 � per phase. Assuming
a positive sequence for the source voltages and that Van = 120 30◦ V,
find: (a) the line voltages, (b) the line currents.
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Answer: (a) 207.85 60◦ V, 207.85 − 60◦ V, 207.85 − 180◦ V,
(b) 3.75 − 8.66◦ A, 3.75 − 128.66◦ A, 3.75 − 248.66◦ A.

12.4 BALANCED WYE-DELTA CONNECTION

A balanced Y-∆ system consists of a balanced Y-connected source
feeding a balanced 	-connected load.

This is perhaps the most practical three-phase
system, as the three-phase sources are usually Y-
connected while the three-phase loads are usu-
ally 	-connected.

The balanced Y-delta system is shown in Fig. 12.14, where the
source is wye-connected and the load is	-connected. There is, of course,
no neutral connection from source to load for this case. Assuming the
positive sequence, the phase voltages are again

Van = Vp 0◦

Vbn = Vp − 120◦, Vcn = Vp + 120◦ (12.19)

As shown in Section 12.3, the line voltages are

Vab = √
3Vp 30◦ = VAB, Vbc = √

3Vp − 90◦ = VBC

Vca = √
3Vp − 210◦ = VCA

(12.20)

showing that the line voltages are equal to the voltages across the load
impedances for this system configuration. From these voltages, we can
obtain the phase currents as

IAB = VAB

Z	

, IBC = VBC

Z	

, ICA = VCA

Z	

(12.21)

These currents have the same magnitude but are out of phase with each
other by 120◦.
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Figure 12.14 Balanced Y-	 connection.
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Another way to get these phase currents is to apply KVL. For ex-
ample, applying KVL around loop aABbna gives

−Van + Z	IAB + Vbn = 0

or

IAB = Van − Vbn

Z	

= Vab

Z	

= VAB

Z	

(12.22)

which is the same as Eq. (12.21). This is the more general way of finding
the phase currents.

The line currents are obtained from the phase currents by applying
KCL at nodes A, B, and C. Thus,

Ia = IAB − ICA, Ib = IBC − IAB, Ic = ICA − IBC (12.23)

Since ICA = IAB − 240◦,

Ia = IAB − ICA = IAB(1 − 1 − 240◦)

= IAB(1 + 0.5 − j0.866) = IAB
√

3 − 30◦ (12.24)

showing that the magnitude IL of the line current is
√

3 times the magni-
tude Ip of the phase current, or

IL =
√

3Ip (12.25)

where

IL = |Ia| = |Ib| = |Ic| (12.26)

and

Ip = |IAB | = |IBC | = |ICA| (12.27)

Also, the line currents lag the corresponding phase currents by 30◦, as-
suming the positive sequence. Figure 12.15 is a phasor diagram illustrat-
ing the relationship between the phase and line currents.

30°
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30°

ICA

IAB

Ib IBC

Ia

Ic

Figure 12.15 Phasor diagram
illustrating the relationship between
phase and line currents.

An alternative way of analyzing the Y-	 circuit is to transform the
	-connected load to an equivalent Y-connected load. Using the 	-Y
transformation formula in Eq. (9.69),

ZY = Z	

3
(12.28)

After this transformation, we now have a Y-Y system as in Fig. 12.10.
The three-phase Y-	 system in Fig. 12.14 can be replaced by the single-
phase equivalent circuit in Fig. 12.16. This allows us to calculate only
the line currents. The phase currents are obtained using Eq. (12.25) and
utilizing the fact that each of the phase currents leads the corresponding
line current by 30◦.

Van
+
−

Ia

Z∆
3

Figure 12.16 A single-phase equivalent
circuit of a balanced Y-	 circuit.

E X A M P L E 1 2 . 3

A balanced abc-sequence Y-connected source with Van = 100 10◦ V
is connected to a 	-connected balanced load (8 + j4) � per phase. Cal-
culate the phase and line currents.
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Solution:

This can be solved in two ways.

M E T H O D 1 The load impedance is

Z	 = 8 + j4 = 8.944 26.57◦ �

If the phase voltage Van = 100 10◦, then the line voltage is

Vab = Van

√
3 30◦ = 100

√
3 10◦ + 30◦ = VAB

or

VAB = 173.2 40◦ V

The phase currents are

IAB = VAB

Z	

= 173.2 40◦

8.944 26.57◦
= 19.36 13.43◦ A

IBC = IAB − 120◦ = 19.36 − 106.57◦ A

ICA = IAB + 120◦ = 19.36 133.43◦ A

The line currents are

Ia = IAB
√

3 − 30◦ =
√

3(19.36) 13.43◦ − 30◦

= 33.53 − 16.57◦ A

Ib = Ia − 120◦ = 33.53 − 136.57◦ A

Ic = Ia + 120◦ = 33.53 103.43◦ A

M E T H O D 2 Alternatively, using single-phase analysis,

Ia = Van

Z	/3
= 100 10◦

2.981 26.57◦
= 33.54 − 16.57◦ A

as above. Other line currents are obtained using the abc phase sequence.

P R A C T I C E P R O B L E M 1 2 . 3

One line voltage of a balanced Y-connected source is VAB =
180 − 20◦ V. If the source is connected to a 	-connected load of

20 40◦ �, find the phase and line currents. Assume the abc sequence.

Answer: 9 − 60◦, 9 − 180◦, 9 60◦, 15.59 − 90◦,

15.59 − 210◦, 15.59 30◦ A.

12.5 BALANCED DELTA-DELTA CONNECTION

A balanced ∆-∆ system is one in which both the balanced source
and balanced load are 	-connected.
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The source as well as the load may be delta-connected as shown
in Fig. 12.17. Our goal is to obtain the phase and line currents as usual.
Assuming a positive sequence, the phase voltages for a delta-connected
source are

Vab = Vp 0◦

Vbc = Vp − 120◦, Vca = Vp + 120◦ (12.29)

The line voltages are the same as the phase voltages. From Fig. 12.17,
assuming there is no line impedances, the phase voltages of the delta-
connected source are equal to the voltages across the impedances; that
is,

Vab = VAB, Vbc = VBC, Vca = VCA (12.30)

Hence, the phase currents are

IAB = VAB

Z	
= Vab

Z	
, IBC = VBC

Z	
= Vbc

Z	

ICA = VCA

Z	
= Vca

Z	

(12.31)

Since the load is delta-connected just as in the previous section, some
of the formulas derived there apply here. The line currents are obtained
from the phase currents by applying KCL at nodes A, B, and C, as we
did in the previous section:

Ia = IAB − ICA, Ib = IBC − IAB, Ic = ICA − IBC (12.32)

Also, as shown in the last section, each line current lags the corresponding
phase current by 30◦; the magnitude IL of the line current is

√
3 times

the magnitude Ip of the phase current,

IL =
√

3Ip (12.33)

Z∆

Z∆

Z∆

Vca

Vbc

Vab

IAB

ICA

A

C
b

c
B

a

+
−

Ia

Ib

IBCIc

+
−

− +

Figure 12.17 A balanced 	-	 connection.

An alternative way of analyzing the 	-	 circuit is to convert both
the source and the load to their Y equivalents. We already know that
ZY = Z	/3. To convert a 	-connected source to a Y-connected source,
see the next section.
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E X A M P L E 1 2 . 4

A balanced 	-connected load having an impedance 20 − j15 � is con-
nected to a 	-connected, positive-sequence generator having Vab =
330 0◦ V. Calculate the phase currents of the load and the line currents.

Solution:

The load impedance per phase is

Z	 = 20 − j15 = 25 − 36.87◦ �

The phase currents are

IAB = VAB

Z	

= 330 0◦

25 − 36.87
= 13.2 36.87◦ A

IBC = IAB − 120◦ = 13.2 − 83.13◦ A

ICA = IAB + 120◦ = 13.2 156.87◦ A

For a delta load, the line current always lags the corresponding phase
current by 30◦ and has a magnitude

√
3 times that of the phase current.

Hence, the line currents are

Ia = IAB
√

3 − 30◦ = (13.2 36.87◦)(
√

3 − 30◦)

= 22.86 6.87◦ A

Ib = Ia − 120◦ = 22.86 − 113.13◦ A

Ic = Ia + 120◦ = 22.86 126.87◦ A

P R A C T I C E P R O B L E M 1 2 . 4

A positive-sequence, balanced 	-connected source supplies a balanced
	-connected load. If the impedance per phase of the load is 18 + j12 �
and Ia = 22.5 35◦ A, find IAB and VAB .

Answer: 13 65◦ A, 281.2 98.69◦ V.

12.6 BALANCED DELTA-WYE CONNECTION

A balanced ∆-Y system consists of a balanced 	-connected
source feeding a balanced Y-connected load.

Consider the 	-Y circuit in Fig. 12.18. Again, assuming the abc
sequence, the phase voltages of a delta-connected source are

Vab = Vp 0◦, Vbc = Vp − 120◦

Vca = Vp + 120◦ (12.34)

These are also the line voltages as well as the phase voltages.
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Vca
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Figure 12.18 A balanced 	-Y connection.

We can obtain the line currents in many ways. One way is to apply
KVL to loop aANBba in Fig. 12.18, writing

−Vab + ZY Ia − ZY Ib = 0

or

ZY (Ia − Ib) = Vab = Vp 0◦

Thus,

Ia − Ib = Vp 0◦

ZY

(12.35)

But Ib lags Ia by 120◦, since we assumed the abc sequence; that is,
Ib = Ia − 120◦. Hence,

Ia − Ib = Ia(1 − 1 − 120◦)

= Ia

(
1 + 1

2
+ j

√
3

2

)
= Ia

√
3 30◦ (12.36)

Substituting Eq. (12.36) into Eq. (12.35) gives

Ia = Vp/
√

3 − 30◦

ZY

(12.37)

From this, we obtain the other line currents Ib and Ic using the positive
phase sequence, i.e., Ib = Ia − 120◦, Ic = Ia + 120◦. The phase
currents are equal to the line currents.

Van

VabVca

Vbn

Vbc

Vcn

a

c b

n+
−

+ −

+ −

− +

+
−

+
−

Figure 12.19 Transforming a 	-connected
source to an equivalent Y-connected source.

Another way to obtain the line currents is to replace the delta-
connected source with its equivalent wye-connected source, as shown in
Fig. 12.19. In Section 12.3, we found that the line-to-line voltages of
a wye-connected source lead their corresponding phase voltages by 30◦.
Therefore, we obtain each phase voltage of the equivalent wye-connected
source by dividing the corresponding line voltage of the delta-connected
source by

√
3 and shifting its phase by −30◦. Thus, the equivalent wye-

connected source has the phase voltages

Van = Vp√
3

− 30◦

Vbn = Vp√
3

− 150◦, Vcn = Vp√
3

+ 90◦
(12.38)
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If the delta-connected source has source impedance Zs per phase, the
equivalent wye-connected source will have a source impedance of Zs/3
per phase, according to Eq. (9.69).

Once the source is transformed to wye, the circuit becomes a wye-
wye system. Therefore, we can use the equivalent single-phase circuit
shown in Fig. 12.20, from which the line current for phase a is

Ia = Vp/
√

3 − 30◦

ZY

(12.39)

which is the same as Eq. (12.37).

ZY
+
−

Ia

Vp   −30°

√3

Figure 12.20 The single-phase equivalent
circuit.

Alternatively, we may transform the wye-connected load to an
equivalent delta-connected load. This results in a delta-delta system,
which can be analyzed as in Section 12.5. Note that

VAN = IaZY = Vp√
3

− 30◦ (12.40)

VBN = VAN − 120◦, VCN = VAN + 120◦

As stated earlier, the delta-connected load is more desirable than
the wye-connected load. It is easier to alter the loads in any one phase of
the delta-connected loads, as the individual loads are connected directly
across the lines. However, the delta-connected source is hardly used in
practice, because any slight imbalance in the phase voltages will result in
unwanted circulating currents.

Table 12.1 presents a summary of the formulas for phase currents
and voltages and line currents and voltages for the four connections.
Students are advised not to memorize the formulas but to understand
how they are derived. The formulas can always be obtained by directly
applying KCL and KVL to the appropriate three-phase circuits.

TABLE 12.1 Summary of phase and line voltages/currents for
balanced three-phase systems1.

Connection Phase voltages/currents Line voltages/currents

Y-Y Van = Vp 0◦ Vab = √
3Vp 30◦

Vbn = Vp − 120◦ Vbc = Vab − 120◦

Vcn = Vp + 120◦ Vca = Vab + 120◦

Same as line currents Ia = Van/ZY

Ib = Ia − 120◦

Ic = Ia + 120◦

Y-	 Van = Vp 0◦ Vab = VAB = √
3Vp 30◦

Vbn = Vp − 120◦ Vbc = VBC = Vab − 120◦

Vcn = Vp + 120◦ Vca = VCA = Vab + 120◦

IAB = VAB/Z	 Ia = IAB
√

3 − 30◦

IBC = VBC/Z	 Ib = Ia − 120◦

ICA = VCA/Z	 Ic = Ia + 120◦

1Positive or abc sequence is assumed.
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TABLE 12.1 (continued)

Connection Phase voltages/currents Line voltages/currents

	-	 Vab = Vp 0◦ Same as phase voltages

Vbc = Vp − 120◦

Vca = Vp + 120◦

IAB = Vab/Z	 Ia = IAB
√

3 − 30◦

IBC = Vbc/Z	 Ib = Ia − 120◦

ICA = Vca/Z	 Ic = Ia + 120◦

	-Y Vab = Vp 0◦ Same as phase voltages

Vbc = Vp − 120◦

Vca = Vp + 120◦

Same as line currents Ia = Vp − 30◦
√

3ZY

Ib = Ia − 120◦

Ic = Ia + 120◦

E X A M P L E 1 2 . 5

A balanced Y-connected load with a phase resistance of 40 � and a reac-
tance of 25 � is supplied by a balanced, positive sequence 	-connected
source with a line voltage of 210 V. Calculate the phase currents. Use
Vab as reference.

Solution:

The load impedance is

ZY = 40 + j25 = 47.17 32◦ �

and the source voltage is

Vab = 210 0◦ V

When the 	-connected source is transformed to a Y-connected source,

Van = Vab√
3

− 30◦ = 121.2 − 30◦ V

The line currents are

Ia = Van

ZY

= 121.2 − 30◦

47.12 32◦
= 2.57 − 62◦ A

Ib = Ia − 120◦ = 2.57 − 182◦ A

Ic = Ia 120◦ = 2.57 58◦ A

which are the same as the phase currents.



494 PART 2 AC Circuits

P R A C T I C E P R O B L E M 1 2 . 5

In a balanced 	-Y circuit, Vab = 240 15◦ and ZY = (12 + j15) �.
Calculate the line currents.

Answer: 7.21 − 66.34◦, 7.21 − 186.34◦, 7.21 53.66◦ A.

12.7 POWER IN A BALANCED SYSTEM
Let us now consider the power in a balanced three-phase system. We
begin by examining the instantaneous power absorbed by the load. This
requires that the analysis be done in the time domain. For a Y-connected
load, the phase voltages are

vAN =
√

2Vp cosωt, vBN =
√

2Vp cos(ωt − 120◦)

vCN =
√

2Vp cos(ωt + 120◦)
(12.41)

where the factor
√

2 is necessary because Vp has been defined as the rms
value of the phase voltage. If ZY = Z θ , the phase currents lag behind
their corresponding phase voltages by θ . Thus,

ia =
√

2Ip cos(ωt − θ), ib =
√

2Ip cos(ωt − θ − 120◦)

ic =
√

2Ip cos(ωt − θ + 120◦)
(12.42)

where Ip is the rms value of the phase current. The total instantaneous
power in the load is the sum of the instantaneous powers in the three
phases; that is,

p = pa + pb + pc = vANia + vBNib + vCNic

= 2VpIp[cosωt cos(ωt − θ)

+ cos(ωt − 120◦) cos(ωt − θ − 120◦)
+ cos(ωt + 120◦) cos(ωt − θ + 120◦)]

(12.43)

Applying the trigonometric identity

cosA cosB = 1

2
[cos(A+ B)+ cos(A− B)] (12.44)

gives

p = VpIp[3 cos θ + cos(2ωt − θ)+ cos(2ωt − θ − 240◦)
+ cos(2ωt − θ + 240◦)]

= VpIp[3 cos θ + cosα + cosα cos 240◦ + sinα sin 240◦

+ cosα cos 240◦ − sinα sin 240◦]

where α = 2ωt − θ

= VpIp

[
3 cos θ + cosα + 2

(
−1

2

)
cosα

]
= 3VpIp cos θ

(12.45)

Thus the total instantaneous power in a balanced three-phase system is
constant—it does not change with time as the instantaneous power of each
phase does. This result is true whether the load is Y- or 	-connected.
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This is one important reason for using a three-phase system to generate
and distribute power. We will look into another reason a little later.

Since the total instantaneous power is independent of time, the
average power per phase Pp for either the 	-connected load or the Y-
connected load is p/3, or

Pp = VpIp cos θ (12.46)

and the reactive power per phase is

Qp = VpIp sin θ (12.47)

The apparent power per phase is

Sp = VpIp (12.48)

The complex power per phase is

Sp = Pp + jQp = VpI∗
p (12.49)

where Vp and Ip are the phase voltage and phase current with magnitudes
Vp and Ip, respectively. The total average power is the sum of the average
powers in the phases:

P = Pa + Pb + Pc = 3Pp = 3VpIp cos θ =
√

3VLIL cos θ (12.50)

For a Y-connected load, IL = Ip but VL = √
3Vp, whereas for a 	-

connected load, IL = √
3Ip but VL = Vp. Thus, Eq. (12.50) applies for

both Y-connected and 	-connected loads. Similarly, the total reactive
power is

Q = 3VpIp sin θ = 3Qp =
√

3VLIL sin θ (12.51)

and the total complex power is

S = 3Sp = 3VpI∗
p = 3I 2

pZp = 3V 2
p

Z∗
p

(12.52)

where Zp = Zp θ is the load impedance per phase. (Zp could be ZY or
Z	.) Alternatively, we may write Eq. (12.52) as

S = P + jQ =
√

3VLIL θ (12.53)

Remember that Vp, Ip, VL, and IL are all rms values and that θ is the
angle of the load impedance or the angle between the phase voltage and
the phase current.

A second major advantage of three-phase systems for power dis-
tribution is that the three-phase system uses a lesser amount of wire than
the single-phase system for the same line voltage VL and the same ab-
sorbed power PL. We will compare these cases and assume in both that
the wires are of the same material (e.g., copper with resistivity ρ), of the
same length �, and that the loads are resistive (i.e., unity power factor).
For the two-wire single-phase system in Fig. 12.21(a), IL = PL/VL, so
the power loss in the two wires is

Ploss = 2I 2
LR = 2R

P 2
L

V 2
L

(12.54)



496 PART 2 AC Circuits

Single-
phase
source

R

R

Transmission lines

(a)

PL

IL

Load
−

+

VL

Three-
phase
balanced
load

Three-
phase
balanced
source

R′

R′

R′

Transmission lines

(b)

Ia

Ib

Ic −

+
−

+

VL

VL   −120°

  0°

Figure 12.21 Comparing the power loss in (a) a single-phase system, and (b) a three-phase system.

For the three-wire three-phase system in Fig. 12.21(b), I ′
L = |Ia| = |Ib| =

|Ic| = PL/
√

3VL from Eq. (12.50). The power loss in the three wires is

P ′
loss = 3(I ′

L)
2R′ = 3R′ P

2
L

3V 2
L

= R′P
2
L

V 2
L

(12.55)

Equations (12.54) and (12.55) show that for the same total power delivered
PL and same line voltage VL,

Ploss

P ′
loss

= 2R

R′ (12.56)

But from Chapter 2, R = ρ�/πr2 and R′ = ρ�/πr ′2, where r and r ′ are
the radii of the wires. Thus,

Ploss

P ′
loss

= 2r ′2

r2
(12.57)

If the same power loss is tolerated in both systems, then r2 = 2r ′2. The
ratio of material required is determined by the number of wires and their
volumes, so

Material for single-phase

Material for three-phase
= 2(πr2�)

3(πr ′2�)
= 2r2

3r ′2

= 2

3
(2) = 1.333

(12.58)

since r2 = 2r ′2. Equation (12.58) shows that the single-phase system uses
33 percent more material than the three-phase system or that the three-
phase system uses only 75 percent of the material used in the equivalent
single-phase system. In other words, considerably less material is needed
to deliver the same power with a three-phase system than is required for
a single-phase system.

E X A M P L E 1 2 . 6

Refer to the circuit in Fig. 12.13 (in Example 12.2). Determine the total
average power, reactive power, and complex power at the source and at
the load.
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Solution:

It is sufficient to consider one phase, as the system is balanced. For phase
a,

Vp = 110 0◦ V and Ip = 6.81 − 21.8◦ A

Thus, at the source, the complex power supplied is

Ss = −3VpI∗
p = 3(110 0◦)(6.81 21.8◦)

= −2247 21.8◦ = −(2087 + j834.6) VA

The real or average power supplied is −2087 W and the reactive power
is −834.6 VAR.

At the load, the complex power absorbed is

SL = 3|Ip|2Zp

where Zp = 10 + j8 = 12.81 38.66◦ and Ip = Ia = 6.81 − 21.8◦.
Hence

SL = 3(6.81)212.81 38.66◦ = 1782 38.66

= (1392 + j1113) VA

The real power absorbed is 1391.7 W and the reactive power absorbed is
1113.3 VAR. The difference between the two complex powers is absorbed
by the line impedance (5 − j2) �. To show that this is the case, we find
the complex power absorbed by the line as

S� = 3|Ip|2Z� = 3(6.81)2(5 − j2) = 695.6 − j278.3 VA

which is the difference between Ss and SL, that is, Ss + S� + SL = 0, as
expected.

P R A C T I C E P R O B L E M 1 2 . 6

For the Y-Y circuit in Practice Prob. 12.2, calculate the complex power
at the source and at the load.

Answer: (1054 + j843.3) VA, (1012 + j801.6) VA.

E X A M P L E 1 2 . 7

A three-phase motor can be regarded as a balanced Y-load. A three-phase
motor draws 5.6 kW when the line voltage is 220 V and the line current
is 18.2 A. Determine the power factor of the motor.

Solution:

The apparent power is

S =
√

3VLIL =
√

3(220)(18.2) = 6935.13 VA

Since the real power is

P = S cos θ = 5600 W
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the power factor is

pf = cos θ = P

S
= 5600

6935.13
= 0.8075

P R A C T I C E P R O B L E M 1 2 . 7

Calculate the line current required for a 30-kW three-phase motor having
a power factor of 0.85 lagging if it is connected to a balanced source with
a line voltage of 440 V.

Answer: 50.94 A.

E X A M P L E 1 2 . 8

Two balanced loads are connected to a 240-kV rms 60-Hz line, as shown
in Fig. 12.22(a). Load 1 draws 30 kW at a power factor of 0.6 lagging,
while load 2 draws 45 kVAR at a power factor of 0.8 lagging. Assuming
the abc sequence, determine: (a) the complex, real, and reactive powers
absorbed by the combined load, (b) the line currents, and (c) the kVAR
rating of the three capacitors 	-connected in parallel with the load that
will raise the power factor to 0.9 lagging and the capacitance of each
capacitor.

(a)

C

C

C

Balanced
load 1

Balanced
load 2

(b)

Combined
load

Figure 12.22 For Example 12.8: (a) The
original balanced loads, (b) the combined load
with improved power factor.

Solution:

(a) For load 1, given thatP1 = 30 kW and cos θ1 = 0.6, then sin θ1 = 0.8.
Hence,

S1 = P1

cos θ1
= 30 kW

0.6
= 50 kVA

and Q1 = S1 sin θ1 = 50(0.8) = 40 kVAR. Thus, the complex power
due to load 1 is

S1 = P1 + jQ1 = 30 + j40 kVA (12.8.1)

For load 2, if Q2 = 45 kVAR and cos θ2 = 0.8, then sin θ2 = 0.6. We
find

S2 = Q2

sin θ2
= 45 kVA

0.6
= 75 kVA

and P2 = S2 cos θ2 = 75(0.8) = 60 kW. Therefore the complex power
due to load 2 is

S2 = P2 + jQ2 = 60 + j45 kVA (12.8.2)

From Eqs. (12.8.1) and (12.8.2), the total complex power absorbed by
the load is

S = S1 + S2 = 90 + j85 kVA = 123.8 43.36◦ kVA (12.8.3)

which has a power factor of cos 43.36◦ = 0.727 lagging. The real power
is then 90 kW, while the reactive power is 85 kVAR.
(b) Since S = √

3VLIL, the line current is

IL = S√
3VL

(12.8.4)
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We apply this to each load, keeping in mind that for both loads, VL = 240
kV. For load 1,

IL1 = 50,000√
3 240,000

= 120.28 mA

Since the power factor is lagging, the line current lags the line voltage by
θ1 = cos−1 0.6 = 53.13◦. Thus,

Ia1 = 120.28 − 53.13◦

For load 2,

IL2 = 75,000√
3 240,000

= 180.42 mA

and the line current lags the line voltage by θ2 = cos−1 0.8 = 36.87◦.
Hence,

Ia2 = 180.42 − 36.87◦

The total line current is

Ia = Ia1 + Ia2 = 120.28 − 53.13◦ + 180.42 − 36.87◦

= (72.168 − j96.224)+ (144.336 − j108.252)

= 216.5 − j204.472 = 297.8 − 43.36◦ mA

Alternatively, we could obtain the current from the total complex
power using Eq. (12.8.4) as

IL = 123,800√
3 240,000

= 297.82 mA

and

Ia = 297.82 − 43.36◦ mA

which is the same as before. The other line currents, Ib2 and Ica , can be
obtained according to theabc sequence (i.e., Ib = 297.82 −163.36◦ mA
and Ic = 297.82 76.64◦ mA).
(c) We can find the reactive power needed to bring the power factor to 0.9
lagging using Eq. (11.59),

QC = P(tan θold − tan θnew)

where P = 90 kW, θold = 43.36◦, and θnew = cos−1 0.9 = 25.84◦.
Hence,

QC = 90,000(tan 43.36◦ − tan 25.04◦) = 41.4 kVAR

This reactive power is for the three capacitors. For each capacitor, the
rating Q′

C = 13.8 kVAR. From Eq. (11.60), the required capacitance is

C = Q′
C

ωV 2
rms

Since the capacitors are 	-connected as shown in Fig. 12.22(b), Vrms in
the above formula is the line-to-line or line voltage, which is 240 kV.
Thus,

C = 13,800

(2π60)(240,000)2
= 635.5 pF
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P R A C T I C E P R O B L E M 1 2 . 8

Assume that the two balanced loads in Fig. 12.22(a) are supplied by an
840-V rms 60-Hz line. Load 1 is Y-connected with 30+j40� per phase,
while load 2 is a balanced three-phase motor drawing 48 kW at a power
factor of 0.8 lagging. Assuming the abc sequence, calculate: (a) the
complex power absorbed by the combined load, (b) the kVAR rating of
each of the three capacitors	-connected in parallel with the load to raise
the power factor to unity, and (c) the current drawn from the supply at
unity power factor condition.

Answer: (a) 56.47 + j47.29 kVA, (b) 15.7 kVAR, (c) 38.813 A.

†12.8 UNBALANCED THREE-PHASE SYSTEMS
This chapter would be incomplete without mentioning unbalanced three-
phase systems. An unbalanced system is caused by two possible situa-
tions: (1) the source voltages are not equal in magnitude and/or differ
in phase by angles that are unequal, or (2) load impedances are unequal.
Thus,

An unbalanced system is due to unbalanced voltage sources or an unbalanced load.

To simplify analysis, we will assume balanced source voltages, but an
unbalanced load.

A special technique for handling unbalanced
three-phase systems is the method of symmet-
rical components, which is beyond the scope of
this text.

Unbalanced three-phase systems are solved by direct application
of mesh and nodal analysis. Figure 12.23 shows an example of an unbal-
anced three-phase system that consists of balanced source voltages (not
shown in the figure) and an unbalanced Y-connected load (shown in the
figure). Since the load is unbalanced, ZA, ZB , and ZC are not equal. The
line currents are determined by Ohm’s law as

Ia = VAN

ZA

, Ib = VBN

ZB

, Ic = VCN

ZC

(12.59)

This set of unbalanced line currents produces current in the neutral line,
which is not zero as in a balanced system. Applying KCL at node N
gives the neutral line current as

In = −(Ia + Ib + Ic) (12.60)

ZA

ZCZB

A

N

C

B

Ia

In

Ib

Ic

VAN

VBN

VCN

Figure 12.23 Unbalanced three-phase
Y-connected load.

In a three-wire system where the neutral line is absent, we can still
find the line currents Ia, Ib, and Ic using mesh analysis. At node N ,
KCL must be satisfied so that Ia + Ib + Ic = 0 in this case. The same
could be done for a 	-Y, Y-	, or 	-	 three-wire system. As mentioned
earlier, in long distance power transmission, conductors in multiples of
three (multiple three-wire systems) are used, with the earth itself acting
as the neutral conductor.

http://www.mhhe.com/engcs/electrical/alexander/eetuts/tutorial/Tut13-1.htm
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To calculate power in an unbalanced three-phase system requires
that we find the power in each phase using Eqs. (12.46) to (12.49). The
total power is not simply three times the power in one phase but the sum
of the powers in the three phases.

E X A M P L E 1 2 . 9

The unbalanced Y-load of Fig. 12.23 has balanced voltages of 100 V and
the acb sequence. Calculate the line currents and the neutral current.
Take ZA = 15 �, ZB = 10 + j5 �, ZC = 6 − j8 �.

Solution:

Using Eq. (12.59), the line currents are

Ia = 100 0◦

15
= 6.67 0◦ A

Ib = 100 120◦

10 + j5
= 100 120◦

11.18 26.56◦
= 8.94 93.44◦ A

Ic = 100 − 120◦

6 − j8
= 100 − 120◦

10 − 53.13◦
= 10 − 66.87◦ A

Using Eq. (12.60), the current in the neutral line is

In = −(Ia + Ib + Ic) = −(6.67 − 0.54 + j8.92 + 3.93 − j9.2)

= −10.06 + j0.28 = 10.06 178.4◦ A

P R A C T I C E P R O B L E M 1 2 . 9

The unbalanced 	-load of Fig. 12.24 is supplied by balanced voltages
of 200 V in the positive sequence. Find the line currents. Take Vab as
reference.

16 Ω

8 Ω

j6 Ω

10 Ω

–j5 Ω

A

C
B

Ia

Ib

Ic

Figure 12.24 Unbalanced 	-load; for
Practice Prob. 12.9.

Answer: 18.05 − 41.06◦, 29.15 220.2◦, 31.87 74.27◦ A.

E X A M P L E 1 2 . 1 0

For the unbalanced circuit in Fig. 12.25, find: (a) the line currents,
(b) the total complex power absorbed by the load, and (c) the total complex
power supplied by the source.

Solution:

(a) We use mesh analysis to find the required currents. For mesh 1,

120 − 120◦ − 120 0◦ + (10 + j5)I1 − 10I2 = 0
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+
− j5 Ω

A

N

10 Ω
–j10 Ω

C
b B

n

c

a

Ib

Ic

Ia

120  0° rms

120  120° rms 120   −120° rms+ − − +

I2

I1

Figure 12.25 For Example 12.10.

or

(10 + j5)I1 − 10I2 = 120
√

3 30◦ (12.10.1)

For mesh 2,

120 120◦ − 120 − 120◦ + (10 − j10)I2 − 10I1 = 0

or

−10I1 + (10 − j10)I2 = 120
√

3 − 90◦ (12.10.2)

Equations (12.10.1) and (12.10.2) form a matrix equation:

[
10 + j5 −10

−10 10 − j10

] [
I1

I2

]
=
[

120
√

3 30◦

120
√

3 − 90◦

]

The determinants are


 =
∣∣∣∣∣10 + j5 −10

−10 10 − j10

∣∣∣∣∣ = 50 − j50 = 70.71 − 45◦


1 =
∣∣∣∣∣

120
√

3 30◦ −10

120
√

3 − 90◦ 10 − j10

∣∣∣∣∣ = 207.85(13.66 − j13.66)

= 4015 − 45◦


2 =
∣∣∣∣∣
10 + j5 120

√
3 30◦

−10 120
√

3 − 90◦

∣∣∣∣∣ = 207.85(13.66 − j5)

= 3023 − 20.1◦



CHAPTER 12 Three-Phase Circuits 503

The mesh currents are

I1 = 
1


 = 4015.23 − 45◦

70.71 − 45◦
= 56.78 A

I2 = 
2


 = 3023.4 − 20.1◦

70.71 − 45◦
= 42.75 24.9◦ A

The line currents are

Ia = I1 = 56.78 A, Ic = −I2 = 42.75 − 155.1◦ A

Ib = I2 − I1 = 38.78 + j18 − 56.78 = 25.46 135◦ A

(b) We can now calculate the complex power absorbed by the load. For
phase A,

SA = |Ia|2ZA = (56.78)2(j5) = j16,120 VA

For phase B,

SB = |Ib|2ZB = (25.46)2(10) = 6480 VA

For phase C,

SC = |Ic|2ZC = (42.75)2(−j10) = −j18,276 VA

The total complex power absorbed by the load is

SL = SA + SB + SC = 6480 − j2156 VA

(c) We check the result above by finding the power supplied by the source.
For the voltage source in phase a,

Sa = −VanI∗
a = −(120 0◦)(56.78) = −6813.6 VA

For the source in phase b,

Sb = −VbnI∗
b = −(120 − 120◦)(25.46 − 135◦)

= −3055.2 105◦ = 790 − j2951.1 VA

For the source in phase c,

Sc = −VbnI∗
c = −(120 120◦)(42.75 155.1◦)

= −5130 275.1◦ = −456.03 + j5109.7 VA

The total complex power supplied by the three-phase source is

Ss = Sa + Sb + Sc = −6480 + j2156 VA

showing that Ss + SL = 0 and confirming the conservation principle of
ac power.

P R A C T I C E P R O B L E M 1 2 . 1 0

Find the line currents in the unbalanced three-phase circuit of Fig. 12.26
and the real power absorbed by the load.
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10 Ω

A

j10 Ω

−j5 Ω

C
b B

c

a

220   −0° rms V

220  120° rms V

+− + −

− +

220   −120° rms V

Figure 12.26 For Practice Prob. 12.10.

Answer: 64 80.1◦, 38.1 − 60◦, 42.5 225◦ A, 4.84 kW.

12.9 PSPICE FOR THREE-PHASE CIRCUITS
PSpice can be used to analyze three-phase balanced or unbalanced circuits
in the same way it is used to analyze single-phase ac circuits. However,
a delta-connected source presents two major problems to PSpice. First, a
delta-connected source is a loop of voltage sources—which PSpice does
not like. To avoid this problem, we insert a resistor of negligible resistance
(say, 1 µ� per phase) into each phase of the delta-connected source.
Second, the delta-connected source does not provide a convenient node
for the ground node, which is necessary to run PSpice. This problem can
be eliminated by inserting balanced wye-connected large resistors (say,
1 M� per phase) in the delta-connected source so that the neutral node of
the wye-connected resistors serves as the ground node 0. Example 12.12
will illustrate this.

E X A M P L E 1 2 . 1 1

For the balanced Y-	 circuit in Fig. 12.27, use PSpice to find the line cur-
rent IaA, the phase voltage VAB , and the phase current IAC . Assume that
the source frequency is 60 Hz.

100 0° V
a

n

A

C

B

100 Ω
100 Ω

1 Ω

0.2 H

0.2 H

100 Ω

0.2 H

− +

100 −120° V
b 1 Ω

− +

100 120° V
c 1 Ω

− +

Figure 12.27 For Example 12.10.
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Solution:

The schematic is shown in Fig. 12.28. The pseudocomponents IPRINT
are inserted in the appropriate lines to obtain IaA and IAC , while VPRINT2
is inserted between nodes A and B to print differential voltage VAB . We
set the attributes of IPRINT and VPRINT2 each to AC = yes, MAG = yes,
PHASE = yes, to print only the magnitude and phase of the currents and
voltages. As a single-frequency analysis, we select Analysis/Setup/AC
Sweep and enter Total Pts = 1, Start Freq = 60, and Final Freq = 60.
Once the circuit is saved, it is simulated by selecting Analysis/Simulate.
The output file includes the following:

FREQ V(A,B) VP(A,B)
6.000E+01 1.699E+02 3.081E+01

FREQ IM(V_PRINT2) IP(V_PRINT2)
6.000E+01 2.350E+00 -3.620E+01

FREQ IM(V_PRINT3) IP(V_PRINT3)
6.000E+01 1.357E+00 -6.620E+01

From this, we obtain

IaA = 2.35 − 36.2◦ A

VAB = 169.9 30.81◦ V, IAC = 1.357 − 66.2◦ A

A

B

C

R4
R6

100

0.2H L1

AC = yes
MAG = yes
PHASE = yes

AC = yes
MAG = yes
PHASE = yes

AC = yes
MAG = yes
PHASE = yesACMAG = 100 V

ACPHASE = 0

1

IPRINT

IPRINT

ACMAG = 100
ACPHASE = −120

1

R2

R1

V2

V1

ACMAG = 100 V
ACPHASE = 120

1

R3

V3

R5 100

0.2H
0.2H

L3
L2

100

− +
− +

− +

0

Figure 12.28 Schematic for the circuit in Fig. 12.27.

P R A C T I C E P R O B L E M 1 2 . 1 1

Refer to the balanced Y-Y circuit of Fig. 12.29. Use PSpice to find the
line current IbB and the phase voltage VAN . Take f = 100 Hz.
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120 60° V
a

n

A

C

N

10 Ω

2 Ω

10 mH

− +

120 −60° V
b 2 Ω

− +

120 180° V
c 2 Ω

1.6 mH

1.6 mH

1.6 mH
− +

10 Ω 10 mH

10 Ω

10 mH

B

Figure 12.29 For Practice Prob. 12.11.

Answer: 100.9 60.87◦ V, 8.547 − 91.27◦ A.

E X A M P L E 1 2 . 1 2

Consider the unbalanced 	-	 circuit in Fig. 12.30. Use PSpice to find
the generator current Iab, the line current IbB , and the phase current IBC .

208 130° V

208 −110° V

208 10° V

A

Bb

Cc

a

50 Ω

2 Ω

j30 Ω

j5 Ω

−j40 Ω
2 Ω j5 Ω

2 Ω j5 Ω

+
−

+
−

+
−

Figure 12.30 For Example 12.12.

Solution:

As mentioned above, we avoid the loop of voltage sources by inserting a
1-µ� series resistor in the delta-connected source. To provide a ground
node 0, we insert balanced wye-connected resistors (1 M� per phase)
in the delta-connected source, as shown in the schematic in Fig. 12.31.
Three IPRINT pseudocomponents with their attributes are inserted to be
able to get the required currents Iab, IbB , and IBC . Since the operating
frequency is not given and the inductances and capacitances should be
specified instead of impedances, we assume ω = 1 rad/s so that f =
1/2π = 0.159155 Hz. Thus,
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L = XL

ω
and C = 1

ωXC

We select Analysis/Setup/AC Sweep and enter Total Pts = 1, Start
Freq = 0.159155, and Final Freq = 0.159155. Once the schematic
is saved, we select Analysis/Simulate to simulate the circuit. The output
file includes:

FREQ IM(V_PRINT1) IP(V_PRINT1)
1.592E-01 9.106E+00 1.685E+02

FREQ IM(V_PRINT2) IP(V_PRINT2)
1.592E-01 5.959E+00 2.821E+00

FREQ IM(V_PRINT3) IP(V_PRINT3)
1.592E-01 5.500E+00 -7.532E+00

from which we get

Iab = 5.96 2.82◦ A

IbB = 9.106 168.5◦ A, IBC = 5.5 − 7.53◦ A

IPRINT

ACMAG = 208V
ACPHASE = 130

ACMAG = 208V
ACPHASE = -110

V1
V2

30H L4

25m C1

R1

2

1Meg

R8

L1

5H

R2

2

L2

5H

R3

2

L3

5H

R5 1Meg

R4 1u

R6 1Meg

R7 1u

R9 1u

−
+

−
+

ACMAG = 208V
ACPHASE = 110

V3

−
+

IPRINT

R10 50

AC = yes
MAG = yes
PHASE = yes

AC = yes
MAG = yes
PHASE = yes

AC = yes
MAG = yes
PHASE = yes

IPRINT

0

Figure 12.31 Schematic for the circuit in Fig. 12.30.

P R A C T I C E P R O B L E M 1 2 . 1 2

For the unbalanced circuit in Fig. 12.32, use PSpice to find the generator
current Ica , the line current IcC , and the phase current IAB .
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220 90° V

220 −150° V

220 −30° V

A

Bb

Cc

a

10 Ω

j10 Ω

10 Ω

+
−

+
−

+
−

10 Ω

−j10 Ω

Figure 12.32 For Practice Prob. 12.12.

Answer: 24.68 − 90◦ A, 15.56 105◦ A, 37.24 83.79◦ A.

†12.10 APPLICATIONS
Both wye and delta source connections have important practical applica-
tions. The wye source connection is used for long distance transmission
of electric power, where resistive losses (I 2R) should be minimal. This
is due to the fact that the wye connection gives a line voltage that is

√
3

greater than the delta connection; hence, for the same power, the line
current is

√
3 smaller. The delta source connection is used when three

single-phase circuits are desired from a three-phase source. This conver-
sion from three-phase to single-phase is required in residential wiring, be-
cause household lighting and appliances use single-phase power. Three-
phase power is used in industrial wiring where a large power is required.
In some applications, it is immaterial whether the load is wye- or delta-
connected. For example, both connections are satisfactory with induction
motors. In fact, some manufacturers connect a motor in delta for 220 V
and in wye for 440 V so that one line of motors can be readily adapted to
two different voltages.

Here we consider two practical applications of those concepts cov-
ered in this chapter: power measurement in three-phase circuits and res-
idential wiring.

Three-phase 
load (wye 
or delta, 
balanced or 
unbalanced)

W1

a

b

c

W3

±

±

W2
±

±

±

±

o

Figure 12.33 Three-wattmeter method for
measuring three-phase power.

1 2 . 1 0 . 1 T h r e e - P h a s e P o w e r M e a s u r e m e n t
Section 11.9 presented the wattmeter as the instrument for measuring the
average (or real) power in single-phase circuits. A single wattmeter can
also measure the average power in a three-phase system that is balanced,
so that P1 = P2 = P3; the total power is three times the reading of that
one wattmeter. However, two or three single-phase wattmeters are neces-
sary to measure power if the system is unbalanced. The three-wattmeter
method of power measurement, shown in Fig. 12.33, will work regardless
of whether the load is balanced or unbalanced, wye- or delta-connected.
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The three-wattmeter method is well suited for power measurement in a
three-phase system where the power factor is constantly changing. The
total average power is the algebraic sum of the three wattmeter readings,

PT = P1 + P2 + P3 (12.61)

where P1, P2, and P3 correspond to the readings of wattmeters W1, W2,
andW3, respectively. Notice that the common or reference point o in Fig.
12.33 is selected arbitrarily. If the load is wye-connected, point o can be
connected to the neutral point n. For a delta-connected load, point o can
be connected to any point. If point o is connected to point b, for example,
the voltage coil in wattmeter W2 reads zero and P2 = 0, indicating that
wattmeter W2 is not necessary. Thus, two wattmeters are sufficient to
measure the total power.

The two-wattmeter method is the most commonly used method for
three-phase power measurement. The two wattmeters must be properly
connected to any two phases, as shown typically in Fig. 12.34. Notice
that the current coil of each wattmeter measures the line current, while the
respective voltage coil is connected between the line and the third line and
measures the line voltage. Also notice that the ± terminal of the voltage
coil is connected to the line to which the corresponding current coil is
connected. Although the individual wattmeters no longer read the power
taken by any particular phase, the algebraic sum of the two wattmeter
readings equals the total average power absorbed by the load, regardless of
whether it is wye- or delta-connected, balanced or unbalanced. The total
real power is equal to the algebraic sum of the two wattmeter readings,

PT = P1 + P2 (12.62)

We will show here that the method works for a balanced three-phase
system.

Three-phase 
load (wye 
or delta, 
balanced or 
unbalanced)

W1

a

b

c

W2

±

±

±

±

Figure 12.34 Two-wattmeter method for
measuring three-phase power.

Consider the balanced, wye-connected load in Fig. 12.35. Our
objective is to apply the two-wattmeter method to find the average power
absorbed by the load. Assume the source is in the abc sequence and the
load impedance ZY = ZY θ . Due to the load impedance, each voltage
coil leads its current coil by θ , so that the power factor is cos θ . We recall
that each line voltage leads the corresponding phase voltage by 30◦. Thus,
the total phase difference between the phase current Ia and line voltage

W1

a

b

c

W2

± ±

±±

Ib

Ic

Ia

ZY ZY

ZY

+

−
Vab

−

+

Vcb

Figure 12.35 Two-wattmeter method applied to a balanced wye load.
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Vab is θ + 30◦, and the average power read by wattmeter W1 is

P1 = Re[VabI∗
a] = VabIa cos(θ + 30◦) = VLIL cos(θ + 30◦) (12.63)

Similarly, we can show that the average power read by wattmeter 2 is

P2 = Re[VcbI∗
c ] = VcbIc cos(θ − 30◦) = VLIL cos(θ − 30◦) (12.64)

We now use the trigonometric identities

cos(A+ B) = cosA cosB − sinA sinB

cos(A− B) = cosA cosB + sinA sinB
(12.65)

to find the sum and the difference of the two wattmeter readings in Eqs.
(12.63) and (12.64):

P1 + P2 = VLIL[cos(θ + 30◦)+ cos(θ − 30◦)]
= VlIL(cos θ cos 30◦ − sin θ sin 30◦

+ cos θ cos 30◦ + sin θ sin 30◦)

= VLIL2 cos 30◦ cos θ =
√

3VLIL cos θ

(12.66)

since 2 cos 30◦ = √
3. Comparing Eq. (12.66) with Eq. (12.50) shows

that the sum of the wattmeter readings gives the total average power,

PT = P1 + P2 (12.67)

Similarly,

P1 − P2 = VLIL[cos(θ + 30◦)− cos(θ − 30◦)]
= VlIL(cos θ cos 30◦ − sin θ sin 30◦

− cos θ cos 30◦ − sin θ sin 30◦)
= −VLIL2 sin 30◦ sin θ

P2 − P1 = VLIL sin θ

(12.68)

since 2 sin 30◦ = 1. Comparing Eq. (12.68) with Eq. (12.51) shows that
the difference of the wattmeter readings is proportional to the total reactive
power, or

QT =
√

3(P2 − P1) (12.69)

From Eqs. (12.67) and (12.69), the total apparent power can be obtained
as

ST =
√
P 2
T +Q2

T (12.70)

Dividing Eq. (12.69) by Eq. (12.67) gives the tangent of the power factor
angle as

tan θ = QT

PT
=

√
3
P2 − P1

P2 + P1
(12.71)

from which we can obtain the power factor as pf = cos θ. Thus, the two-
wattmeter method not only provides the total real and reactive powers, it
can also be used to compute the power factor. From Eqs. (12.67), (12.69),
and (12.71), we conclude that:
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1. If P2 = P1, the load is resistive.

2. If P2 > P1, the load is inductive.

3. If P2 < P1, the load is capacitive.

Although these results are derived from a balanced wye-connected load,
they are equally valid for a balanced delta-connected load. However,
the two-wattmeter method cannot be used for power measurement in a
three-phase four-wire system unless the current through the neutral line
is zero. We use the three-wattmeter method to measure the real power in
a three-phase four-wire system.

E X A M P L E 1 2 . 1 3

Three wattmeters W1, W2, and W3 are connected, respectively, to phases
a, b, and c to measure the total power absorbed by the unbalanced wye-
connected load in Example 12.9 (see Fig. 12.23). (a) Predict the wattmeter
readings. (b) Find the total power absorbed.

Solution:

Part of the problem is already solved in Example 12.9. Assume that the
wattmeters are properly connected as in Fig. 12.36.

−

+

VCN

−

+

VAN

−

+

VBN

W3

Ia

Ib

Ic

In

W1

A

N

C
B

W2
j5 Ω

−j8 Ω

10 Ω 6 Ω

15 Ω

Figure 12.36 For Example 12.13.

(a) From Example 12.9,

VAN = 100 0◦, VBN = 100 120◦, VCN = 100 − 120◦ V

while

Ia = 6.67 0◦, Ib = 8.94 93.44◦, Ic = 10 − 66.87◦ A

We calculate the wattmeter readings as follows:

P1 = Re(VAN I∗
a) = VANIa cos(θVAN

− θIa )

= 100 × 6.67 × cos(0◦ − 0◦) = 667 W

P2 = Re(VBN I∗
b) = VBNIb cos(θVBN

− θIb )

= 100 × 8.94 × cos(120◦ − 93.44◦) = 800 W

P3 = Re(VCN I∗
c ) = VCNIc cos(θVCN

− θIc )

= 100 × 10 × cos(−120◦ + 66.87◦) = 600 W
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(b) The total power absorbed is

PT = P1 + P2 + P3 = 667 + 800 + 600 = 2067 W

We can find the power absorbed by the resistors in Fig. 12.36 and use that
to check or confirm this result.

PT = |Ia|2(15)+ |Ib|2(10)+ |Ic|2(6)
= 6.672(15)+ 8.942(10)+ 102(6)

= 667 + 800 + 600 = 2067 W

which is exactly the same thing.

P R A C T I C E P R O B L E M 1 2 . 1 3

Repeat Example 12.13 for the network in Fig. 12.24 (see Practice Prob.
12.9). Hint: Connect the reference point o in Fig. 12.33 to point B.

Answer: (a) 2961 W, 0 W, 4339 W, (b) 7300 W.

E X A M P L E 1 2 . 1 4

The two-wattmeter method produces wattmeter readings P1 = 1560 W
and P2 = 2100 W when connected to a delta-connected load. If the line
voltage is 220 V, calculate: (a) the per-phase average power, (b) the per-
phase reactive power, (c) the power factor, and (d) the phase impedance.

Solution:

We can apply the given results to the delta-connected load.
(a) The total real or average power is

PT = P1 + P2 = 1560 + 2100 = 3660 W

The per-phase average power is then

Pp = 1

3
PT = 1220 W

(b) The total reactive power is

QT =
√

3(P2 − P1) =
√

3(2100 − 1560) = 935.3 VAR

so that the per-phase reactive power is

Qp = 1

3
QT = 311.77 VAR

(c) The power angle is

θ = tan−1 QT

PT
= tan−1 935.3

3660
= 14.33◦

Hence, the power factor is

cos θ = 0.9689 (leading)

It is a leading pf because QT is positive or P2 > P1.
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(c) The phase impedance is Zp = Zp θ . We know that θ is the same as
the pf angle; that is, θ = 14.57◦.

Zp = Vp

Ip

We recall that for a delta-connected load, Vp = VL = 220 V. From Eq.
(12.46),

Pp = VpIp cos θ 
⇒ Ip = 1220

220 × 0.9689
= 5.723 A

Hence,

Zp = Vp

Ip
= 220

5.723
= 38.44 �

and

Zp = 38.44 14.33◦ �

P R A C T I C E P R O B L E M 1 2 . 1 4

Let the line voltage VL = 208 V and the wattmeter readings of the bal-
anced system in Fig. 12.35 be P1 = −560 W and P2 = 800 W. Deter-
mine:

(a) the total average power

(b) the total reactive power

(c) the power factor

(d) the phase impedance

Is the impedance inductive or capacitive?

Answer: (a) 240 W, (b) 2355.6 VAR, (c) 0.1014, (d) 18.25 84.18◦ �,
inductive.

E X A M P L E 1 2 . 1 5

The three-phase balanced load in Fig. 12.35 has impedance per phase of
ZY = 8 + j6 �. If the load is connected to 208-V lines, predict the read-
ings of the wattmeters W1 and W2. Find PT and QT .

Solution:

The impedance per phase is

ZY = 8 + j6 = 10 36.87◦ �

so that the pf angle is 36.87◦. Since the line voltage VL = 208 V, the line
current is

IL = Vp

|ZY | = 208/
√

3

10
= 12 A
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Then

P1 = VLIL cos(θ + 30◦) = 208 × 12 × cos(36.87◦ + 30◦)

= 980.48 W

P2 = VLIL cos(θ − 30◦) = 208 × 12 × cos(36.87◦ − 30◦)

= 2478.1 W

Thus, wattmeter 1 reads 980.48 W, while wattmeter 2 reads 2478.1 W.
Since P2 > P1, the load is inductive. This is evident from the load ZY

itself. Next,

PT = P1 + P2 = 3.4586 kW

and

QT =
√

3(P2 − P1) =
√

3(1497.6) VAR = 2.594 kVAR

P R A C T I C E P R O B L E M 1 2 . 1 5

If the load in Fig. 12.35 is delta-connected with impedance per phase of
Zp = 30−j40� and VL = 440 V, predict the readings of the wattmeters
W1 and W2. Calculate PT and QT .

Answer: 6.166 kW, 0.8021 kW, 6.968 kW, −9.291 kVAR.

1 2 . 1 0 . 2 R e s i d e n t i a l W i r i n g
In the United States, most household lighting and appliances operate
on 120-V, 60-Hz, single-phase alternating current. (The electricity may
also be supplied at 110, 115, or 117 V, depending on the location.) The
local power company supplies the house with a three-wire ac system.
Typically, as in Fig. 12.37, the line voltage of, say, 12,000 V is stepped
down to 120/240 V with a transformer (more details on transformers
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Light
pole

Grounded metal
stake

Ground

Wall of
house

Circuit
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Circuit
# 3

120 V
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Switch

Watt-hour meter

Step-down
transformer

Figure 12.37 A 120/240 household power system.
(Source: A. Marcus and C. M. Thomson, Electricity for Technicians,
2nd ed. [Englewood Cliffs, NJ: Prentice Hall, 1975], p. 324.)
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in the next chapter). The three wires coming from the transformer are
typically colored red (hot), black (hot), and white (neutral). As shown in
Fig. 12.38, the two 120-V voltages are opposite in phase and hence add up
to zero. That is, VW = 0 0◦, VB = 120 0◦, VR = 120 180◦ = −VB .

VBR = VB − VR = VB − (−VB) = 2VB = 240 0◦ (12.72)

Since most appliances are designed to operate with 120 V, the lighting
and appliances are connected to the 120-V lines, as illustrated in Fig.
12.39 for a room. Notice in Fig. 12.37 that all appliances are connected
in parallel. Heavy appliances that consume large currents, such as air
conditioners, dishwashers, ovens, and laundry machines, are connected
to the 240-V power line.

120 V
lights

120 V
appliance

120 V
lights

120 V
appliance

120 V

120 V
−

+

+

− 240 V
appliance

Black
(hot) B

White
(neutral)

Red (hot)

W

R

Ground

To other houses

Transformer
House

Figure 12.38 Single-phase three-wire residential wiring.
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Lamp sockets

Base outlets

120 volts

Ungrounded conductor

Switch

Neutral

Figure 12.39 A typical wiring diagram of
a room.
(Source: A. Marcus and C. M.
Thomson, Electricity for Tech-
nicians, 2nd ed. [Englewood
Cliffs, NJ: Prentice Hall, 1975],
p. 325.)

Because of the dangers of electricity, house wiring is carefully reg-
ulated by a code drawn by local ordinances and by the National Electrical
Code (NEC). To avoid trouble, insulation, grounding, fuses, and circuit
breakers are used. Modern wiring codes require a third wire for a sep-
arate ground. The ground wire does not carry power like the neutral
wire but enables appliances to have a separate ground connection. Figure
12.40 shows the connection of the receptacle to a 120-V rms line and to
the ground. As shown in the figure, the neutral line is connected to the
ground (the earth) at many critical locations. Although the ground line

+
−

Fuse or circuit breaker

120 V rms

Hot wire

Receptacle

To other appliances

Neutral wire

Power system
ground

Service
panel ground

Ground wire

Figure 12.40 Connection of a receptacle to the hot line and to the ground.
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seems redundant, grounding is important for many reasons. First, it is re-
quired by NEC. Second, grounding provides a convenient path to ground
for lightning that strikes the power line. Third, grounds minimize the risk
of electric shock. What causes shock is the passage of current from one
part of the body to another. The human body is like a big resistor R. If V
is the potential difference between the body and the ground, the current
through the body is determined by Ohm’s law as

I = V

R
(12.73)

The value of R varies from person to person and depends on whether the
body is wet or dry. How great or how deadly the shock is depends on
the amount of current, the pathway of the current through the body, and
the length of time the body is exposed to the current. Currents less than
1 mA may not be harmful to the body, but currents greater than 10 mA can
cause severe shock. A modern safety device is the ground-fault circuit
interrupter (GFCI), used in outdoor circuits and in bathrooms, where the
risk of electric shock is greatest. It is essentially a circuit breaker that
opens when the sum of the currents iR, iW , and iB through the red, white,
and the black lines is not equal to zero, or iR + iW + iB �= 0.

The best way to avoid electric shock is to follow safety guidelines
concerning electrical systems and appliances. Here are some of them:

• Never assume that an electrical circuit is dead. Always check to
be sure.

• Use safety devices when necessary, and wear suitable clothing
(insulated shoes, gloves, etc.).

• Never use two hands when testing high-voltage circuits, since
the current through one hand to the other hand has a direct path
through your chest and heart.

• Do not touch an electrical appliance when you are wet.
Remember that water conducts electricity.

• Be extremely careful when working with electronic appliances
such as radio and TV because these appliances have large
capacitors in them. The capacitors take time to discharge after
the power is disconnected.

• Always have another person present when working on a wiring
system, just in case of an accident.

12.11 SUMMARY
1. The phase sequence is the order in which the phase voltages of a

three-phase generator occur with respect to time. In an abc
sequence of balanced source voltages, Van leads Vbn by 120◦,
which in turn leads Vcn by 120◦. In an acb sequence of balanced
voltages, Van leads Vcn by 120◦, which in turn leads Vbn by 120◦.

2. A balanced wye- or delta-connected load is one in which the three-
phase impedances are equal.

3. The easiest way to analyze a balanced three-phase circuit is to
transform both the source and the load to a Y-Y system and then
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analyze the single-phase equivalent circuit. Table 12.1 presents a
summary of the formulas for phase currents and voltages and line
currents and voltages for the four possible configurations.

4. The line current IL is the current flowing from the generator to the
load in each transmission line in a three-phase system. The line
voltage VL is the voltage between each pair of lines, excluding the
neutral line if it exists. The phase current Ip is the current flowing
through each phase in a three-phase load. The phase voltage Vp is
the voltage of each phase. For a wye-connected load,

VL =
√

3Vp and IL = Ip

For a delta-connected load,

VL = Vp and IL =
√

3Ip

5. The total instantaneous power in a balanced three-phase system is
constant and equal to the average power.

6. The total complex power absorbed by a balanced three-phase
Y-connected or 	-connected load is

S = P + jQ =
√

3VLIL θ

where θ is the angle of the load impedances.

7. An unbalanced three-phase system can be analyzed using nodal or
mesh analysis.

8. PSpice is used to analyze three-phase circuits in the same way as it
is used for analyzing single-phase circuits.

9. The total real power is measured in three-phase systems using
either the three-wattmeter method or the two-wattmeter method.

10. Residential wiring uses a 120/240-V, single-phase, three-wire
system.

R E V I E W Q U E S T I O N S

12.1 What is the phase sequence of a three-phase motor
for which VAN = 220 − 100◦ V and
VBN = 220 140◦ V?
(a) abc (b) acb

12.2 If in an acb phase sequence, Van = 100 − 20◦,
then Vcn is:
(a) 100 − 140◦ (b) 100 100◦

(c) 100 − 50◦ (d) 100 10◦

12.3 Which of these is not a required condition for a
balanced system:
(a) |Van| = |Vbn| = |Vcn|
(b) Ia + Ib + Ic = 0
(c) Van + Vbn + Vcn = 0

(d) Source voltages are 120◦ out of phase with each
other.

(e) Load impedances for the three phases are equal.

12.4 In a Y-connected load, the line current and phase
current are equal.
(a) True (b) False

12.5 In a 	-connected load, the line current and phase
current are equal.
(a) True (b) False

12.6 In a Y-Y system, a line voltage of 220 V produces a
phase voltage of:
(a) 381 V (b) 311 V (c) 220 V
(d) 156 V (e) 127 V
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12.7 In a 	-	 system, a phase voltage of 100 V produces
a line voltage of:
(a) 58 V (b) 71 V (c) 100 V
(d) 173 V (e) 141 V

12.8 When a Y-connected load is supplied by voltages in
abc phase sequence, the line voltages lag the
corresponding phase voltages by 30◦.
(a) True (b) False

12.9 In a balanced three-phase circuit, the total
instantaneous power is equal to the average power.
(a) True (b) False

12.10 The total power supplied to a balanced 	-load is
found in the same way as for a balanced Y-load.
(a) True (b) False

Answers: 12.1a, 12.2a, 12.3c, 12.4a, 12.5b, 12.6e, 12.7c, 12.8b,
12.9a, 12.10a.

P R O B L E M S 1

Section 12.2 Balanced Three-Phase Voltages

12.1 If Vab = 400 V in a balanced Y-connected
three-phase generator, find the phase voltages,
assuming the phase sequence is:
(a) abc (b) acb

12.2 What is the phase sequence of a balanced
three-phase circuit for which Van = 160 30◦ V and
Vcn = 160 − 90◦ V? Find Vbn.

12.3 Determine the phase sequence of a balanced
three-phase circuit in which Vbn = 208 130◦ V
and Vcn = 208 10◦ V. Obtain Van.

12.4 Assuming the abc sequence, if Vca = 208 20◦ V
in a balanced three-phase circuit, find Vab, Vbc, Van,
and Vbn.

12.5 Given that the line voltages of a three-phase circuit
are

Vab = 420 0◦, Vbc = 420 − 120◦

Vac = 420 120◦ V

find the phase voltages Van, Vbn, and Vcn.

Section 12.3 Balanced Wye-Wye Connection

12.6 For the Y-Y circuit of Fig. 12.41, find the line
currents, the line voltages, and the load voltages.

a A

b B

c C

n N

− +

− +

− +

220   0° V

220    −120° V

220   120° V

10 Ω j5 Ω

10 Ω j5 Ω

10 Ω j5 Ω

Figure 12.41 For Prob. 12.6.

12.7 Obtain the line currents in the three-phase circuit of
Fig. 12.42 below.

+
−

A

Nn

a

440  0° V

440  120° V 440   −120° V+− − +

 6 − j8 Ω  6 − j8 Ω

 6 − j8 Ω

Ia

Ib

Ic

Figure 12.42 For Prob. 12.7.

1Remember that unless stated otherwise, all given voltages and currents are rms values.
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12.8 A balanced Y-connected load with a phase
impedance of 16 + j9 � is connected to a balanced
three-phase source with a line voltage of 220 V.
Calculate the line current IL.

12.9 A balanced Y-Y four-wire system has phase voltages

Van = 120 0◦, Vbn = 120 − 120◦

Vcn = 120 120◦ V

The load impedance per phase is 19 + j13 �, and
the line impedance per phase is 1 + j2 �. Solve for
the line currents and neutral current.

12.10 For the circuit in Fig. 12.43, determine the current in
the neutral line.

+
−

+
−

− +

2 Ω

2 Ω

20 Ω

2 Ω

220   −120° V

220  120° V 10 + j5 Ω

25 − j10 Ω220  0° V

Figure 12.43 For Prob. 12.10.

Section 12.4 Balanced Wye-Delta Connection

12.11 For the three-phase circuit of Fig. 12.44,
IbB = 30 60◦ A and VBC = 220 10◦ V. Find Van,
VAB , IAC , and Z.

+
−

+
−

− +

C

B

A

Z

Z

Z

Vcn

Van Vbn

n
b

a

c

Figure 12.44 For Prob. 12.11.

12.12 Solve for the line currents in the Y-	 circuit of Fig.
12.45. Take Z	 = 60 45◦ �.

Z∆

A

Cc
B

a

+
−

+
−

Ia

Ib

Ic

+
−

n

b

Z∆ Z∆

110   0° V

110    −120° V110   120° V

Figure 12.45 For Prob. 12.12.

12.13 The circuit in Fig. 12.46 is excited by a balanced
three-phase source with a line voltage of 210 V. If
Z� = 1 + j1 �, Z	 = 24 − j30 �, and
ZY = 12 + j5 �, determine the magnitude of the
line current of the combined loads.

a

b

c
Zl

Zl

Zl

Z∆

Z∆

Z∆

ZY

ZY

ZY

Figure 12.46 For Prob. 12.13.

12.14 A balanced delta-connected load has a phase current
IAC = 10 − 30◦ A.

(a) Determine the three line currents assuming that
the circuit operates in the positive phase
sequence.

(b) Calculate the load impedance if the line voltage
is VAB = 110 0◦ V.

12.15 In a wye-delta three-phase circuit, the source is a
balanced, positive phase sequence with
Van = 120 0◦ V. It feeds a balanced load with
Z	 = 9 + j12 � per phase through a balanced line
with Z� = 1 + j0.5 � per phase. Calculate the
phase voltages and currents in the load.
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12.16 If Van = 440 60◦ V in the network of Fig. 12.47,
find the load phase currents IAB , IBC , and ICA.

Three-phase,
Y-connected
generator

(+) phase
sequence

12 Ω

j9 Ω

j9 Ω

12 Ω

12 Ω j9 Ω

a

b

c

A

B
C

Figure 12.47 For Prob. 12.16.

Section 12.5 Balanced Delta-Delta Connection

12.17 For the 	-	 circuit of Fig. 12.48, calculate the
phase and line currents.

+
−

+
−

+
−

30 Ω

30 Ω

173  −120° V

173   0° V

j10 Ω

j10 Ω 30 Ω

j10 Ω

A

B

a

b

c C

173  120° V

Figure 12.48 For Prob. 12.17.

12.18 Refer to the 	-	 circuit in Fig. 12.49. Find the line
and phase currents. Assume that the load impedance
is 12 + j9 � per phase.

A

C
B

Ia

Ib

Ic

+
−+

−

− +

210   0° V 

210   −120° V 

210  120° V 

IBC

IAB

ICA

ZL

ZL

ZL

Figure 12.49 For Prob. 12.18.

12.19 Find the line currents Ia , Ib, and Ic in the three-phase
network of Fig. 12.50 below. Take
Z	 = 12 − j15 �, ZY = 4 + j6 �,
and Z� = 2 �.

12.20 A balanced delta-connected source has phase
voltage Vab = 416 30◦ V and a positive phase
sequence. If this is connected to a balanced
delta-connected load, find the line and phase
currents. Take the load impedance per phase as
60 30◦ � and line impedance per phase as
1 + j1 �.

A

C
B

Ia

Ib

Ic

+
−+

−

− +

208   0° V 

208   −120° V 

208  120° V 

Zl

Zl

Zl

ZY ZY

Z∆ Z∆

Z∆

ZY

Figure 12.50 For Prob. 12.19.
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Section 12.6 Balanced Delta-Wye Connection

12.21 In the circuit of Fig. 12.51, if Vab = 440 10◦,
Vbc = 440 250◦, Vca = 440 130◦ V, find the line
currents.

b

c

a
3 + j2 Ω

3 + j2 Ω 10 − j8 Ω

10 − j8 Ω

10 − j8 Ω
3 + j2 Ω

+
−

+
−

+
−Vca

 Vab

 Vbc

Ib

Ic

Ia

Figure 12.51 For Prob. 12.21.

12.22 For the balanced circuit in Fig. 12.52,
Vab = 125 0◦ V. Find the line currents IaA, IbB ,
and IcC .

N

IbB

IcC

IaA

24 Ω

24 Ω

24 Ω

−j15 Ω

−j15 Ω

−j15 Ω

a

b

c

A

C
B

Three-phase,
∆-connected
generator

(+) phase
sequence

Figure 12.52 For Prob. 12.22.

12.23 In a balanced three-phase 	-Y circuit, the source is
connected in the positive sequence, with
Vab = 220 20◦ V and ZY = 20 + j15 �. Find the
line currents.

12.24 A delta-connected generator supplies a balanced
wye-connected load with an impedance of
30 − 60◦ �. If the line voltages of the generator
have a magnitude of 400 V and are in the positive
phase sequence, find the line current IL and phase
voltage Vp at the load.

Section 12.7 Power in a Balanced System

12.25 A balanced wye-connected load absorbs a total
power of 5 kW at a leading power factor of 0.6 when
connected to a line voltage of 240 V. Find the
impedance of each phase and the total complex
power of the load.

12.26 A balanced wye-connected load absorbs 50 kVA at a
0.6 lagging power factor when the line voltage is
440 V. Find the line current and the phase
impedance.

12.27 A three-phase source delivers 4800 VA to a
wye-connected load with a phase voltage of 208 V
and a power factor of 0.9 lagging. Calculate the
source line current and the source line voltage.

12.28 A balanced wye-connected load with a phase
impedance of 10 − j16 � is connected to a balanced
three-phase generator with a line voltage of 220 V.
Determine the line current and the complex power
absorbed by the load.

12.29 The total power measured in a three-phase system
feeding a balanced wye-connected load is 12 kW at
a power factor of 0.6 leading. If the line voltage is
208 V, calculate the line current IL and the load
impedance ZY .

12.30 Given the circuit in Fig. 12.53 below, find the total
complex power absorbed by the load.

+
−

+
−

− +
1 Ω 9 Ω

9 Ω

9 Ω
110   120° V

j2 Ω

1 Ω j2 Ω

1 Ω j2 Ω

1 Ω j2 Ω

j12 Ω j12 Ω

j12 Ω

110   240° V
110   0° V

Figure 12.53 For Prob. 12.30.
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12.31 Find the real power absorbed by the load in Fig.
12.54.

A

−j6 Ω

j3 Ω

C
b B

c

a

100   −120° V

− +

+
−+

−100  120° V 100  0° V

5 Ω

5 Ω

5 Ω

8 Ω

4 Ω

10 Ω

Figure 12.54 For Prob. 12.31.

12.32 For the three-phase circuit in Fig. 12.55, find the
average power absorbed by the delta-connected load
with Z	 = 21 + j24 �.

1 Ω
− +

1 Ω

1 Ω

j0.5 Ω

j0.5 Ω

j0.5 Ω

100   0° V rms

100   −120° V rms

100   120°  V rms

− +

− +

Z∆

Z∆

Z∆

Figure 12.55 For Prob. 12.32.

12.33 A balanced delta-connected load draws 5 kW at a
power factor of 0.8 lagging. If the three-phase
system has an effective line voltage of 400 V, find
the line current.

12.34 A balanced three-phase generator delivers 7.2 kW to
a wye-connected load with impedance 30 − j40 �
per phase. Find the line current IL and the line
voltage VL.

12.35 Refer to Fig. 12.46. Obtain the complex power
absorbed by the combined loads.

12.36 A three-phase line has an impedance of 1 + j3 �
per phase. The line feeds a balanced
delta-connected load, which absorbs a total complex
power of 12 + j5 kVA. If the line voltage at the load
end has a magnitude of 240 V, calculate the
magnitude of the line voltage at the source end and
the source power factor.

12.37 A balanced wye-connected load is connected to the
generator by a balanced transmission line with an
impedance of 0.5 + j2 � per phase. If the load is
rated at 450 kW, 0.708 power factor lagging, 440-V
line voltage, find the line voltage at the generator.

12.38 A three-phase load consists of three 100-� resistors
that can be wye- or delta-connected. Determine
which connection will absorb the most average

power from a three-phase source with a line voltage
of 110 V. Assume zero line impedance.

12.39 The following three parallel-connected three-phase
loads are fed by a balanced three-phase source.

Load 1: 250 kVA, 0.8 pf lagging
Load 2: 300 kVA, 0.95 pf leading
Load 3: 450 kVA, unity pf

If the line voltage is 13.8 kV, calculate the line
current and the power factor of the source. Assume
that the line impedance is zero.

Section 12.8 Unbalanced Three-Phase Systems

12.40 For the circuit in Fig. 12.56, Za = 6 − j8 �,
Zb = 12 + j9 �, and Zc = 15 �. Find the line
currents Ia , Ib, and Ic.

Ib

Ic

Ia

150   120° V

150   0° V

150   −120° V

+ −

+−

+
−

Zb

Za

Zc

Figure 12.56 For Prob. 12.40.

12.41 A four-wire wye-wye circuit has

Van = 120 120◦, Vbn = 120 0◦

Vcn = 120 − 120◦ V

If the impedances are

ZAN = 20 60◦, ZBN = 30 0◦

Zcn = 40 30◦ �

find the current in the neutral line.

12.42 For the wye-connected load of Fig. 12.57, the line
voltages all have a magnitude of 250 V and are in a
positive phase sequence. Calculate the line currents
and the neutral current.

40   60° Ω Ia

60   −45° Ω Ib

20   0° Ω Ic

In

Figure 12.57 For Prob. 12.42.
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12.43 A delta-connected load whose phase impedances are
ZAB = 50 �, ZBC = −j50 �, and ZCA = j50 � is
fed by a balanced wye-connected three-phase source
with Vp = 100 V. Find the phase currents.

12.44 A balanced three-phase wye-connected generator
with Vp = 220 V supplies an unbalanced
wye-connected load with ZAN = 60 + j80 �,
ZBN = 100 − j120 �, and ZCN = 30 + j40 �.
Find the total complex power absorbed by the load.

12.45 Refer to the unbalanced circuit of Fig. 12.58.
Calculate:
(a) the line currents
(b) the real power absorbed by the load
(c) the total complex power supplied by the source

440   0° V

440   120° V 440    −120° V

+ −

+ −
− +

a

b B

c

A

C

20 Ω

j10 Ω

−j5 Ω

Figure 12.58 For Prob. 12.45.

Section 12.9 PSpice for Three-Phase Circuits

12.46 Solve Prob. 12.10 using PSpice.

12.47 The source in Fig. 12.59 is balanced and exhibits a
positive phase sequence. If f = 60 Hz, use PSpice
to find VAN , VBN , and VCN .

100   0° V + −

+ −
− +

a

b B

c

A

C

40 Ω
n N

0.2 mF

10 mF

Figure 12.59 For Prob. 12.47.

12.48 Use PSpice to determine Io in the single-phase,
three-wire circuit of Fig. 12.60. Let
Z1 = 15 − j10 �, Z2 = 30 + j20 �, and
Z3 = 12 + j5 �.

Z1

Z2

Z3

4 Ω

4 Ω

4 Ω

+
−

+
−

220   0° V

220   0° V

Io

Figure 12.60 For Prob. 12.48.

12.49 Given the circuit in Fig. 12.61, use PSpice to
determine currents IaA and voltage VBN .

a

n

A

C

N

4 Ω
− +

b 4 Ω

c 4 Ω

10 ΩB

j3 Ω j15 Ω

j15 Ωj3 Ω

j3 Ω

−j36 Ω −j36 Ω

240   0° V

240   −120° V

240   120°  V

−j36 Ω

− +

10 Ω j15 Ω

10 Ω

− +

Figure 12.61 For Prob. 12.49.

12.50 The circuit in Fig. 12.62 operates at 60 Hz. Use
PSpice to find the source current Iab and the line
current IbB .

A

Nb

c

a 1 Ω 16 Ω2 mH

2 mH 27 mH

2 mH 133 mF1 Ω

1 Ω

+
−

+
−

+
−

B

C

110   120° V

110   −120° V

110   0° V

Figure 12.62 For Prob. 12.50.

12.51 For the circuit in Fig. 12.54, use PSpice to find the
line currents and the phase currents.

12.52 A balanced three-phase circuit is shown in Fig.
12.63 on the next page. Use PSpice to find the line
currents IaA, IbB , and IcC .

Section 12.10 Applications

12.53 A three-phase, four-wire system operating with a
208-V line voltage is shown in Fig. 12.64. The
source voltages are balanced. The power absorbed
by the resistive wye-connected load is measured by
the three-wattmeter method. Calculate:
(a) the voltage to neutral
(b) the currents I1, I2, I3, and In
(c) the readings of the wattmeters
(d) the total power absorbed by the load
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A

b

c

a 0.6 Ω

0.2 Ω

0.2 Ω

30 Ω

j0.5 Ω

j1 Ω

j1 Ω

−j20 Ω

j0.5 Ω

j0.5 Ω

0.2 Ω

j1 Ω
0.6 Ω

0.6 Ω

30 Ω

−j20 Ω

+
−

+
−

+
−

B

C

240   130° V

240   −110° V

240   10° V

30 Ω

−j20 Ω

Figure 12.63 For Prob. 12.52.

n

I2

In

I3

I1

40 Ω

48 Ω

60 Ω

W1

W2

W3

Figure 12.64 For Prob. 12.53.

12.54∗ As shown in Fig. 12.65, a three-phase four-wire line
with a phase voltage of 120 V supplies a balanced
motor load at 260 kVA at 0.85 pf lagging. The
motor load is connected to the three main lines
marked a, b, and c. In addition, incandescent lamps
(unity pf) are connected as follows: 24 kW from
line a to the neutral, 15 kW from line b to the
neutral, and 9 kW from line a to the neutral.
(a) If three wattmeters are arranged to measure the

power in each line, calculate the reading of each
meter.

(b) Find the current in the neutral line.

*An asterisk indicates a challenging problem.

a

b

c

d

24 kW 15 kW 9 kW

Motor load
260 kVA,

0.85 pf, lagging

Lighting loads

Figure 12.65 For Prob. 12.54.

12.55 Meter readings for a three-phase wye-connected
alternator supplying power to a motor indicate that
the line voltages are 330 V, the line currents are
8.4 A, and the total line power is 4.5 kW. Find:
(a) the load in VA
(b) the load pf
(c) the phase current
(d) the phase voltage

12.56 The two-wattmeter method gives P1 = 1200 W and
P2 = −400 W for a three-phase motor running on a
240-V line. Assume that the motor load is wye-
connected and that it draws a line current of 6 A.
Calculate the pf of the motor and its phase
impedance.
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12.57 In Fig. 12.66, two wattmeters are properly
connected to the unbalanced load supplied by a
balanced source such that Vab = 208 0◦ V with
positive phase sequence.
(a) Determine the reading of each wattmeter.
(b) Calculate the total apparent power absorbed by

the load.

a

b
0 B

c

A

C

10 Ω

12 Ω
20 Ω

j5 Ω

−j10 Ω

W1

W2

Figure 12.66 For Prob. 12.57.

12.58 If wattmeters W1 and W2 are properly connected
respectively between lines a and b and lines b and c
to measure the power absorbed by the
delta-connected load in Fig. 12.44, predict their
readings.

12.59 For the circuit displayed in Fig. 12.67, find the
wattmeter readings.

Z

Z

Z = 10 + j30 Ω

+
−

+
−

240    −60° V

240   −120° V

±
±

±±

W1

W2

Figure 12.67 For Prob. 12.59.

12.60 Predict the wattmeter readings for the circuit in Fig.
12.68.

Z

Z

Z = 60 − j30 Ω

+
−

+
−

208   0° V

208   −60° V

±
±

±±

W1

W2

Figure 12.68 For Prob. 12.60.

12.61 A man has a body resistance of 600 �. How much
current flows through his ungrounded body:
(a) when he touches the terminals of a 12-V

autobattery?
(b) when he sticks his finger into a 120-V light

socket?

12.62 Show that the I 2R losses will be higher for a 120-V
appliance than for a 240-V appliance if both have
the same power rating.

C O M P R E H E N S I V E P R O B L E M S

12.63 A three-phase generator supplied 3.6 kVA at a
power factor of 0.85 lagging. If 2500 W are
delivered to the load and line losses are 80 W per
phase, what are the losses in the generator?

12.64 A three-phase 440-V, 51-kW, 60-kVA inductive load
operates at 60 Hz and is wye-connected. It is
desired to correct the power factor to 0.95 lagging.
What value of capacitor should be placed in parallel
with each load impedance?

12.65 A balanced three-phase generator has an abc phase
sequence with phase voltage Van = 255 0◦ V. The
generator feeds an induction motor which may be
represented by a balanced Y-connected load with an
impedance of 12 + j5 � per phase. Find the line
currents and the load voltages. Assume a line
impedance of 2 � per phase.
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12.66 Three balanced loads are connected to a distribution
line as depicted in Fig. 12.69. The loads are

Transformer: 12 kVA at 0.6 pf lagging
Motor: 16 kVA at 0.8 pf lagging
Unknown load: − − −−

If the line voltage is 220 V, the line current is 120 A,
and the power factor of the combined load is 0.95
lagging, determine the unknown load.

Transformer Motor Unknown Load

Figure 12.69 For Prob. 12.66.

12.67 A professional center is supplied by a balanced
three-phase source. The center has four plants, each
a balanced three-phase load as follows:

Load 1: 150 kVA at 0.8 pf leading
Load 2: 100 kW at unity pf
Load 3: 200 kVA at 0.6 pf lagging
Load 4: 80 kW and 95 kVAR (inductive)

If the line impedance is 0.02 + j0.05 � per phase
and the line voltage at the loads is 480 V, find the
magnitude of the line voltage at the source.

12.68∗ Figure 12.70 displays a three-phase delta-connected
motor load which is connected to a line voltage of
440 V and draws 4 kVA at a power factor of 72
percent lagging. In addition, a single 1.8 kVAR
capacitor is connected between lines a and b, while
a 800-W lighting load is connected between line c
and neutral. Assuming the abc sequence and taking
Van = Vp 0◦, find the magnitude and phase angle
of currents Ia , Ib, Ic, and In.

a

b

c

d

 Motor load
4 kVA,

pf = 72%, lagging

800 W lighting load

Ia

Ib

Ic

In

1.8 kVAR

Figure 12.70 For Prob. 12.68.

12.69 Design a three-phase heater with suitable symmetric
loads using wye-connected pure resistance. Assume
that the heater is supplied by a 240-V line voltage
and is to give 27 kW of heat.

12.70 For the single-phase three-wire system in Fig. 12.71,
find currents IaA, IbB , and InN .

24 − j2 Ω

15 + j4 Ω

1 Ω

1 Ω

1 Ω

+
−

+
−

120   0° V rms

120   0° V rms

a A

n

b B

N

Figure 12.71 For Prob. 12.70.

12.71 Consider the single-phase three-wire system shown
in Fig. 12.72. Find the current in the neutral wire
and the complex power supplied by each source.
Take Vs as a 115 0◦ -V, 60-Hz source.

1 Ω

2 Ω
20 Ω 15 Ω

30 Ω 50 mH

1 Ω

+
−

+
−

 Vs

 Vs

Figure 12.72 For Prob. 12.71.
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