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C H A P T E R

TWO-PORT NETWORKS

1 8

Research is to see what everybody else has seen, and think what nobody
has thought.

—Albert Szent-Gyorgyi

Enhancing Your Career
Career in Education While two thirds of all engineers
work in private industry, some work in academia and pre-
pare students for engineering careers. The course on circuit
analysis you are studying is an important part of the prepa-
ration process. If you enjoy teaching others, you may want
to consider becoming an engineering educator.

Engineering professors work on state-of-the-art re-
search projects, teach courses at graduate and undergradu-
ate levels, and provide services to their professional societies
and the community at large. They are expected to make orig-
inal contributions in their areas of specialty. This requires
a broad-based education in the fundamentals of electrical
engineering and a mastery of the skills necessary for com-
municating their efforts to others.

If you like to do research, to work at the frontiers
of engineering, to make contributions to technological ad-
vancement, to invent, consult, and/or teach, consider a career
in engineering education. The best way to start is by talking
with your professors and benefiting from their experience.

A solid understanding of mathematics and physics at
the undergraduate level is vital to your success as an engi-
neering professor. If you are having difficulty in solving
your engineering textbook problems, start correcting any
weaknesses you have in your mathematics and physics fun-
damentals.

Most universities these days require that engineering
professors have a Ph.D. degree. In addition, some universi-
ties require that they be actively involved in research leading

The lecture method is still regarded as the most effective mode of
teaching because of the personal contact with instructor and op-
portunity to ask questions. Source: c©PhotoDisc, Inc. Copyright
1999.

to publications in reputable journals. To prepare yourself
for a career in engineering education, get as broad an educa-
tion as possible, because electrical engineering is changing
rapidly and becoming interdisciplinary. Without doubt, en-
gineering education is a rewarding career. Professors get a
sense of satisfaction and fulfillment as they see their students
graduate, become leaders in the professions, and contribute
significantly to the betterment of humanity.
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18.1 INTRODUCTION
A pair of terminals through which a current may enter or leave a network
is known as aport. Two-terminal devices or elements (such as resistors,
capacitors, and inductors) result in one-port networks. Most of the circuits
we have dealt with so far are two-terminal or one-port circuits, represented
in Fig. 18.1(a). We have considered the voltage across or current through
a single pair of terminals—such as the two terminals of a resistor, a
capacitor, or an inductor. We have also studied four-terminal or two-port
circuits involving op amps, transistors, and transformers, as shown in Fig.
18.1(b). In general, a network may haven ports. A port is an access to
the network and consists of a pair of terminals; the current entering one
terminal leaves through the other terminal so that the net current entering
the port equals zero.
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Figure 18.1 (a) One-port network,
(b) two-port network.

In this chapter, we are mainly concerned with two-port networks
(or, simply, two-ports).

A two-port network is an electrical network with two separate ports
for input and output.

Thus, a two-port network has two terminal pairs acting as access points.
As shown in Fig. 18.1(b), the current entering one terminal of a pair leaves
the other terminal in the pair. Three-terminal devices such as transistors
can be configured into two-port networks.

Our study of two-port networks is for at least two reasons. First,
such networks are useful in communications, control systems, power
systems, and electronics. For example, they are used in electronics to
model transistors and to facilitate cascaded design. Second, knowing the
parameters of a two-port network enables us to treat it as a “black box”
when embedded within a larger network.

To characterize a two-port network requires that we relate the ter-
minal quantities V1, V2, I1, and I2 in Fig. 18.1(b), out of which two are
independent. The various terms that relate these voltages and currents
are called parameters. Our goal in this chapter is to derive six sets of
these parameters. We will show the relationship between these parame-
ters and how two-port networks can be connected in series, parallel, or
cascade. As with op amps, we are only interested in the terminal behav-
ior of the circuits. And we will assume that the two-port circuits contain
no independent sources, although they can contain dependent sources.
Finally, we will apply some of the concepts developed in this chapter to
the analysis of transistor circuits and synthesis of ladder networks.

18.2 IMPEDANCE PARAMETERS
Impedance and admittance parameters are commonly used in the syn-
thesis of filters. They are also useful in the design and analysis of
impedance-matching networks and power distribution networks. We dis-
cuss impedance parameters in this section and admittance parameters in
the next section.
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A two-port network may be voltage-driven as in Fig. 18.2(a) or
current-driven as in Fig. 18.2(b). From either Fig. 18.2(a) or (b), the
terminal voltages can be related to the terminal currents as

V1 = z11I1 + z12I2

V2 = z21I1 + z22I2
(18.1)

or in matrix form as[
V1

V2

]
=

[
z11 z12

z21 z22

] [
I1

I2

]
= [z]

[
I1

I2

]
(18.2)

where the z terms are called the impedance parameters, or simply z

parameters, and have units of ohms.

Reminder: Only two of the four variables (V1,
V2, I1, and I2) are independent. The other two
can be found using Eq. (18.1).
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Figure 18.2 The linear two-port network: (a) driven by voltage sources, (b) driven by current sources.

The values of the parameters can be evaluated by setting I1 = 0
(input port open-circuited) or I2 = 0 (output port open-circuited). Thus,

z11 = V1

I1

∣∣∣∣
I2=0

, z12 = V1

I2

∣∣∣∣
I1=0

z21 = V2

I1

∣∣∣∣
I2=0

, z22 = V2

I2

∣∣∣∣
I1=0

(18.3)

Since the z parameters are obtained by open-circuiting the input or out-
put port, they are also called the open-circuit impedance parameters.
Specifically,

z11 = Open-circuit input impedance

z12 = Open-circuit transfer impedance from port 1 to port 2

z21 = Open-circuit transfer impedance from port 2 to port 1

z22 = Open-circuit output impedance

(18.4)
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Figure 18.3 Determination of the z

parameters: (a) finding z11 and z21,
(b) finding z12 and z22.

According to Eq. (18.3), we obtain z11 and z21 by connecting a
voltage V1 (or a current source I1) to port 1 with port 2 open-circuited as
in Fig. 18.3(a) and finding I1 and V2; we then get

z11 = V1

I1
, z21 = V2

I1
(18.5)
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Similarly, we obtain z12 and z22 by connecting a voltage V2 (or a current
source I2) to port 2 with port 1 open-circuited as in Fig. 18.3(b) and
finding I2 and V1; we then get

z12 = V1

I2
, z22 = V2

I2
(18.6)

The above procedure provides us with a means of calculating or measuring
the z parameters.

Sometimes z11 and z22 are called driving-point impedances, while
z21 and z12 are called transfer impedances. A driving-point impedance
is the input impedance of a two-terminal (one-port) device. Thus, z11 is
the input driving-point impedance with the output port open-circuited,
while z22 is the output driving-point impedance with the input port open-
circuited.

When z11 = z22, the two-port network is said to be symmetrical.
This implies that the network has mirrorlike symmetry about some center
line; that is, a line can be found that divides the network into two similar
halves.

When the two-port network is linear and has no dependent sources,
the transfer impedances are equal (z12 = z21), and the two-port is said to
be reciprocal. This means that if the points of excitation and response are
interchanged, the transfer impedances remain the same. As illustrated in
Fig. 18.4, a two-port is reciprocal if interchanging an ideal voltage source
at one port with an ideal ammeter at the other port gives the same ammeter
reading. The reciprocal network yields V = z12I according to Eq. (18.1)
when connected as in Fig. 18.4(a), but yields V = z21I when connected
as in Fig. 18.4(b). This is possible only if z12 = z21. Any two-port that is
made entirely of resistors, capacitors, and inductors must be reciprocal.
For a reciprocal network, the T-equivalent circuit in Fig. 18.5(a) can be
used. If the network is not reciprocal, a more general equivalent network
is shown in Fig. 18.5(b); notice that this figure follows directly from
Eq. (18.1).
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Figure 18.4 Interchanging a voltage source
at one port with an ideal ammeter at the
other port produces the same reading in a
reciprocal two-port.
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Figure 18.5 (a) T-equivalent circuit (for reciprocal case only), (b) general equivalent circuit.
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Figure 18.6 An ideal trans-
former has no z parameters.

It should be mentioned that for some two-port networks, the z pa-
rameters do not exist because they cannot be described by Eq. (18.1). As
an example, consider the ideal transformer of Fig. 18.6. The defining
equations for the two-port network are:

V1 = 1

n
V2, I1 = −nI2 (18.7)

Observe that it is impossible to express the voltages in terms of the cur-
rents, and vice versa, as Eq. (18.1) requires. Thus, the ideal transformer
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has no z parameters. However, it does have hybrid parameters, as we
shall see in Section 18.4.

E X A M P L E 1 8 . 1

Determine the z parameters for the circuit in Fig. 18.7.

40 Ω

30 Ω20 Ω

Figure 18.7 For Example 18.1.

Solution:

METHOD 1 To determine z11 and z21, we apply a voltage source V1

to the input port and leave the output port open as in Fig. 18.8(a). Then,

z11 = V1

I1
= (20 + 40)I1

I1
= 60 �

that is, z11 is the input impedance at port 1.

z21 = V2

I1
= 40I1

I1
= 40 �

To find z12 and z22, we apply a voltage source V2 to the output port and
leave the input port open as in Fig. 18.8(b). Then,

z12 = V1

I2
= 40I2

I2
= 40 �, z22 = V2

I2
= (30 + 40)I2

I2
= 70 �

Thus,

[z] =
[

60 � 40 �

40 � 70 �

]

V1 V2

I2 = 0I1

40 Ω

(a)

(b)

30 Ω20 Ω

+

−

+
−

V2V1

I2I1 = 0

40 Ω

30 Ω20 Ω

+

−

+
−

Figure 18.8 For Example 18.1: (a) finding
z11 and z21, (b) finding z12 and z22.

METHOD 2 Alternatively, since there is no dependent source in the
given circuit, z12 = z21 and we can use Fig. 18.5(a). Comparing Fig.
18.7 with Fig. 18.5(a), we get

z12 = 40 � = z21

z11 − z12 = 20 �⇒ z11 = 20 + z12 = 60 �

z22 − z12 = 30 �⇒ z22 = 30 + z12 = 70 �

P R A C T I C E P R O B L E M 1 8 . 1

Find the z parameters of the two-port network in Fig. 18.9.

6 Ω

8 Ω

Figure 18.9 For Practice
Prob. 18.1.

Answer: z11 = 14, z12 = z21 = z22 = 6 �.

E X A M P L E 1 8 . 2

Find I1 and I2 in the circuit in Fig. 18.10.
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I1 I2

+

−

10 ΩV2

+

−

V1

z11 = 40 Ω
z12 = j20 Ω
z21 = j30 Ω
z22 = 50 Ω

+
−100   0° V

Figure 18.10 For Example 18.2.

Solution:

This is not a reciprocal network. We may use the equivalent circuit in Fig.
18.5(b) but we can also use Eq. (18.1) directly. Substituting the given z

parameters into Eq. (18.1),

V1 = 40I1 + j20I2 (18.2.1)

V2 = j30I1 + 50I2 (18.2.2)

Since we are looking for I1 and I2, we substitute

V1 = 100 0◦, V2 = −10I2

into Eqs. (18.2.1) and (18.2.2), which become

100 = 40I1 + j20I2 (18.2.3)

− 10I2 = j30I1 + 50I2 �⇒ I1 = j2I2 (18.2.4)

Substituting Eq. (18.2.4) into Eq. (18.2.3) gives

100 = j80I2 + j20I2 �⇒ I2 = 100

j100
= −j

From Eq. (18.2.4), I1 = j2(−j) = 2. Thus,

I1 = 2 0◦ A, I2 = 1 − 90◦ A

P R A C T I C E P R O B L E M 1 8 . 2

Calculate I1 and I2 in the two-port of Fig. 18.11.

I1 I2

+

−

V2

+

−

V1

2 Ω

z11 = 6 Ω
z12 = −j4 Ω
z21 = −j4 Ω
z22 = 8 Ω

+
−2   30° V

Figure 18.11 For Practice Prob. 18.2.

Answer: 2 20◦ A, 1 − 60◦ A.
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18.3 ADMITTANCE PARAMETERS
In the previous section we saw that impedance parameters may not exist
for a two-port network. So there is a need for an alternative means of
describing such a network. This need is met by the second set of parame-
ters, which we obtain by expressing the terminal currents in terms of the
terminal voltages. In either Fig. 18.12(a) or (b), the terminal currents can
be expressed in terms of the terminal voltages as

I1 = y11V1 + y12V2

I2 = y21V1 + y22V2
(18.8)

or in matrix form as[
I1

I2

]
=

[
y11 y12

y21 y22

] [
V1

V2

]
= [y]

[
V1

V2

]
(18.9)

The y terms are known as the admittance parameters (or, simply, y pa-
rameters) and have units of siemens.

I1 I2

(a)

+

−

I1 V2 = 0

+

−

V1

y11 = 

y21 = 

I1
V1

I2
V1

I1 I2

(b)

+

−

I2V1 = 0

+

−

V2

y12 = 

y22 = 

I1
V2

I2
V2

Figure 18.12 Determination of the y param-
eters: (a) finding y11 and y21, (b) finding y12
and y22.

The values of the parameters can be determined by setting V1 = 0
(input port short-circuited) or V2 = 0 (output port short-circuited). Thus,

y11 = I1

V1

∣∣∣∣
V2=0

, y12 = I1

V2

∣∣∣∣
V1=0

y21 = I2

V1

∣∣∣∣
V2=0

, y22 = I2

V2

∣∣∣∣
V1=0

(18.10)

Since the y parameters are obtained by short-circuiting the input or out-
put port, they are also called the short-circuit admittance parameters.
Specifically,

y11 = Short-circuit input admittance

y12 = Short-circuit transfer admittance from port 2 to port 1

y21 = Short-circuit transfer admittance from port 1 to port 2

y22 = Short-circuit output admittance

(18.11)

Following Eq. (18.10), we obtain y11 and y21 by connecting a cur-
rent I1 to port 1 and short-circuiting port 2 as in Fig. 18.12(a), finding V1

and I2, and then calculating

y11 = I1

V1
, y21 = I2

V1
(18.12)

Similarly, we obtain y12 and y22 by connecting a current source I2 to port
2 and short-circuiting port 1 as in Fig. 18.12(b), finding I1 and V2, and
then getting

y12 = I1

V2
, y22 = I2

V2
(18.13)

This procedure provides us with a means of calculating or measuring the
y parameters. The impedance and admittance parameters are collectively
referred to as immittance parameters.
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For a two-port network that is linear and has no dependent sources,
the transfer admittances are equal (y12 = y21). This can be proved in the
same way as for the z parameters. A reciprocal network (y12 = y21) can
be modeled by the 	-equivalent circuit in Fig. 18.13(a). If the network
is not reciprocal, a more general equivalent network is shown in Fig.
18.13(b).

V1

I1 I2

(b)

+

−

+

−

V2
y12V2 y21V1

y22y11V1

I1 I2

(a)

+

−

+

−

V2
y22 + y12y11 + y12

–y12

Figure 18.13 (a) 	-equivalent circuit (for reciprocal case only), (b) general equivalent circuit.

E X A M P L E 1 8 . 3

Obtain the y parameters for the 	 network shown in Fig. 18.14.

4 Ω

2 Ω

8 Ω

Figure 18.14 For Example 18.3.

I1 I2

(a)

+

−

I1 V2 = 0

+

−

V1  4 Ω  8 Ω

 2 Ω

I1 I2

(b)

+

−

I2V1 = 0

+

−

V2 4 Ω  8 Ω

 2 Ω

Figure 18.15 For Example 18.3: (a) finding
y11 and y21, (b) finding y12 and y22.

Solution:

METHOD 1 To find y11 and y21, short-circuit the output port and con-
nect a current source I1 to the input port as in Fig. 18.15(a). Since the
8-� resistor is short-circuited, the 2-� resistor is in parallel with the 4-�
resistor. Hence,

V1 = I1(4 ‖ 2) = 4

3
I1, y11 = I1

V1
= I1

4
3 I1

= 0.75 S

By current division,

−I2 = 4

4 + 2
I1 = 2

3
I1, y21 = I2

V1
= − 2

3 I1

4
3 I1

= −0.5 S

To get y12 and y22, short-circuit the input port and connect a current source
I2 to the output port as in Fig. 18.15(b). The 4-� resistor is short-circuited
so that the 2-� and 8-� resistors are in parallel.

V2 = I2(8 ‖ 2) = 8

5
I2, y22 = I2

V2
= I2

8
5 I2

= 5

8
= 0.625 S

By current division,

−I1 = 8

8 + 2
I2 = 4

5
I2, y12 = I1

V2
= − 4

5 I2

8
5 I2

= −0.5 S

METHOD 2 Alternatively, comparing Fig. 18.14 with Fig. 18.13(a),

y12 = −1

2
S = y21

y11 + y12 = 1

4
�⇒ y11 = 1

4
− y12 = 0.75 S

y22 + y12 = 1

8
�⇒ y22 = 1

8
− y12 = 0.625 S

as obtained previously.
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P R A C T I C E P R O B L E M 1 8 . 3

Obtain the y parameters for the T network shown in Fig. 18.16.

4 Ω

6 Ω2 Ω

Figure 18.16 For Practice Prob. 18.3.

Answer: y11 = 0.2273 S, y12 = y21 = −0.0909 S, y22 = 0.1364 S.

E X A M P L E 1 8 . 4

Determine the y parameters for the two-port shown in Fig. 18.17.

2 Ω

4 Ω

2i

8 Ωi

Figure 18.17 For Example 18.4.

Solution:

We follow the same procedure as in the previous example. To get y11 and
y21, we use the circuit in Fig. 18.18(a), in which port 2 is short-circuited
and a current source is applied to port 1. At node 1,

V1 − Vo

8
= 2I1 + Vo

2
+ Vo − 0

4

But I1 = V1 − Vo

8
; therefore,

0 = V1 − Vo

8
+ 3Vo

4

0 = V1 − Vo + 6Vo �⇒ V1 = −5Vo

Hence,

I1 = −5Vo − Vo

8
= −0.75Vo

and

y11 = I1

V1
= −0.75Vo

−5Vo

= 0.15 S

At node 2,

Vo − 0

4
+ 2I1 + I2 = 0

I2

2I1

Vo

(a)

+

−

I1 V2 = 0

+

−

V2

+

−

V1  2 Ω

 8 Ω  1  2 4 Ω
I1

2I1

Vo

(b)

I2V1 = 0

+

−

 2 Ω

 8 Ω  1  2 4 Ω

Figure 18.18 Solution of Example 18.4: (a) finding y11 and y21, (b) finding y12 and y22.
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or

−I2 = 0.25Vo − 1.5Vo = −1.25Vo

Hence,

y21 = I2

V1
= 1.25Vo

−5Vo

= −0.25 S

Similarly, we get y12 and y22 using Fig. 18.18(b). At node 1,

0 − Vo

8
= 2I1 + Vo

2
+ Vo − V2

4

But I1 = 0 − Vo

8
; therefore,

0 = −Vo

8
+ Vo

2
+ Vo − V2

4
or

0 = −Vo + 4Vo + 2Vo − 2V2 �⇒ V2 = 2.5Vo

Hence,

y12 = I1

V2
= −Vo/8

2.5Vo

= −0.05 S

At node 2,

Vo − V2

4
+ 2I1 + I2 = 0

or

−I2 = 0.25Vo − 1

4
(2.5Vo) − 2Vo

8
= −0.625Vo

Thus,

y22 = I2

V2
= 0.625Vo

2.5Vo

= 0.25 S

Notice that y12 �= y21 in this case, since the network is not reciprocal.

P R A C T I C E P R O B L E M 1 8 . 4

Obtain the y parameters for the circuit in Fig. 18.19.

3 Ω

io

2 Ω6 Ω

2io

Figure 18.19 For Practice Prob. 18.4.

Answer: y11 = 0.625 S, y12 = −0.125 S, y21 = 0.375 S,
y22 = 0.125 S.

18.4 HYBRID PARAMETERS
The z and y parameters of a two-port network do not always exist. So
there is a need for developing another set of parameters. This third set of
parameters is based on making V1 and I2 the dependent variables. Thus,
we obtain
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V1 = h11I1 + h12V2

I2 = h21I1 + h22V2
(18.14)

or in matrix form,[
V1

I2

]
=

[
h11 h12

h21 h22

] [
I1

V2

]
= [h]

[
I1

V2

]
(18.15)

The h terms are known as the hybrid parameters (or, simply, h param-
eters) because they are a hybrid combination of ratios. They are very
useful for describing electronic devices such as transistors (see Section
18.9); it is much easier to measure experimentally the h parameters of
such devices than to measure their z or y parameters. In fact, we have
seen that the ideal transformer in Fig. 18.6, described by Eq. (18.7), does
not have z parameters. The ideal transformer can be described by the
hybrid parameters, because Eq. (18.7) conforms with Eq. (18.14).

The values of the parameters are determined as

h11 = V1

I1

∣∣∣∣
V2=0

, h12 = V1

V2

∣∣∣∣
I1=0

h21 = I2

I1

∣∣∣∣
V2=0

, h22 = I2

V2

∣∣∣∣
I1=0

(18.16)

It is evident from Eq. (18.16) that the parameters h11, h12, h21, and h22

represent an impedance, a voltage gain, a current gain, and an admittance,
respectively. This is why they are called the hybrid parameters. To be
specific,

h11 = Short-circuit input impedance

h12 = Open-circuit reverse voltage gain

h21 = Short-circuit forward current gain

h22 = Open-circuit output admittance

(18.17)

The procedure for calculating the h parameters is similar to that used
for the z or y parameters. We apply a voltage or current source to the
appropriate port, short-circuit or open-circuit the other port, depending
on the parameter of interest, and perform regular circuit analysis. For
reciprocal networks, h12 = −h21. This can be proved in the same way
as we proved that z12 = z21. Figure 18.20 shows the hybrid model of a
two-port network.

V1

I1 I2

+

−

+

−

V2h22

h11

h12V2 h21I1
+
−

Figure 18.20 The h-parameter equivalent
network of a two-port network.

A set of parameters closely related to the h parameters are the g

parameters or inverse hybrid parameters. These are used to describe the
terminal currents and voltages as

I1 = g11V1 + g12I2

V2 = g21V1 + g22I2
(18.18)

or [
I1

V2

]
=

[
g11 g12

g21 g22

] [
V1

I2

]
= [g]

[
V1

I2

]
(18.19)
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The values of the g parameters are determined as

g11 = I1

V1

∣∣∣∣
I2=0

, g12 = I1

I2

∣∣∣∣
V1=0

g21 = V2

V1

∣∣∣∣
I2=0

, g22 = V2

I2

∣∣∣∣
V1=0

(18.20)

Thus, the inverse hybrid parameters are specifically called

g11 = Open-circuit input admittance

g12 = Short-circuit reverse current gain

g21 = Open-circuit forward voltage gain

g22 = Short-circuit output impedance

(18.21)

Figure 18.21 shows the inverse hybrid model of a two-port network.

V1

I1 I2

+

−

+

−

V2g11

g22

g12I2 g21V1
+
−

Figure 18.21 The g-parameter model of a
two-port network.

E X A M P L E 1 8 . 5

Find the hybrid parameters for the two-port network of Fig. 18.22.

6 Ω

3 Ω2 Ω

Figure 18.22 For Example 18.5.

I1 V2 = 0

I2

6 Ω

(a)

(b)

3 Ω2 Ω

+

−

V1

+

−

V2
V1

I2I1 = 0

6 Ω

3 Ω2 Ω

+

−

+
−

Figure 18.23 For Example 18.5: (a) comput-
ing h11 and h21, (b) computing h12 and h22.

Solution:

To find h11 and h21, we short-circuit the output port and connect a current
source I1 to the input port as shown in Fig. 18.23(a). From Fig. 18.23(a),

V1 = I1(2 + 3 ‖ 6) = 4I1

Hence,

h11 = V1

I1
= 4 �

Also, from Fig. 18.23(a) we obtain, by current division,

−I2 = 6

6 + 3
I1 = 2

3
I1

Hence,

h21 = I2

I1
= −2

3
To obtain h12 and h22, we open-circuit the input port and connect a voltage
source V2 to the output port as in Fig. 18.23(b). By voltage division,

V1 = 6

6 + 3
V2 = 2

3
V2

Hence,

h12 = V1

V2
= 2

3
Also,

V2 = (3 + 6)I2 = 9I2

Thus,

h22 = I2

V2
= 1

9
S
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P R A C T I C E P R O B L E M 1 8 . 5

Determine the h parameters for the circuit in Fig. 18.24.

5 Ω

3 Ω

2 Ω

Figure 18.24 For Practice Prob. 18.5.

Answer: h11 = 1.2 �, h12 = 0.4, h21 = −0.4, h22 = 0.4 S.

60 V

40 Ω

h11 = 1 kΩ
h12 = –2
h21 = 10
h22 = 200 mS

+
−

Figure 18.25 For Example 18.6.

E X A M P L E 1 8 . 6

Determine the Thevenin equivalent at the output port of the circuit in
Fig. 18.25.

1 V40 Ω

+

−

V1

(a)

[h]

I1 I2

+
−

60 V

40 Ω

+

−

V1

+

−

V2

(b)

[h]

I1 I2 = 0

+
−

Figure 18.26 For Example 18.6: (a) finding
ZTh, (b) finding VTh.

Solution:

To find ZTh and VTh, we apply the normal procedure, keeping in mind
the formulas relating the input and output ports of the h model. To obtain
ZTh, remove the 60-V voltage source at the input port and apply a 1-V
voltage source at the output port, as shown in Fig. 18.26(a). From Eq.
(18.14),

V1 = h11I1 + h12V2 (18.6.1)

I2 = h21I1 + h22V2 (18.6.2)

But V2 = 1, and V1 = −40I1. Substituting these into Eqs. (18.6.1) and
(18.6.2), we get

− 40I1 = h11I1 + h12 �⇒ I1 = − h12

40 + h11
(18.6.3)

I2 = h21I1 + h22 (18.6.4)

Substituting Eq. (18.6.3) into Eq. (18.6.4) gives

I2 = h22 − h21h12

h11 + 40
= h11h22 − h21h12 + h2240

h11 + 40

Therefore,

ZTh = V2

I2
= 1

I2
= h11 + 40

h11h22 − h21h12 + h2240

Substituting the values of the h parameters,

ZTh = 1000 + 40

103 × 200 × 10−6 + 20 + 40 × 200 × 10−6

= 1040

20.21
= 51.46 �

To get VTh, we find the open-circuit voltage V2 in Fig. 18.26(b). At the
input port,

−60 + 40I1 + V1 = 0 �⇒ V1 = 60 − 40I1 (18.6.5)

At the output,

I2 = 0 (18.6.6)
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Substituting Eqs. (18.6.5) and (18.6.6) into Eqs. (18.6.1) and (18.6.2), we
obtain

60 − 40I1 = h11I1 + h12V2

or

60 = (h11 + 40)I1 + h12V2 (18.6.7)

and

0 = h21I1 + h22V2 �⇒ I1 = −h22

h21
V2 (18.6.8)

Now substituting Eq. (18.6.8) into Eq. (18.6.7) gives

60 =
[
−(h11 + 40)

h22

h21
+ h12

]
V2

or

VTh = V2 = 60

−(h11 + 40)h22/h21 + h12
= 60h21

h12h21 − h11h22 − 40h22

Substituting the values of the h parameters,

VTh = 60 × 10

−20.21
= −29.69 V

P R A C T I C E P R O B L E M 1 8 . 6

Find the impedance at the input port of the circuit in Fig. 18.27.

50 kΩ

h11 = 2 kΩ
h12 = 10–4

h21 = 100
h22 = 10–5 S

Zin

Figure 18.27 For Practice Prob. 18.6.

Answer: 1667 �.

E X A M P L E 1 8 . 7

Find the g parameters as functions of s for the circuit in Fig. 18.28.

1 Ω

1 F1 H

Figure 18.28 For Example 18.7.

Solution:

In the s domain,

1 H �⇒ sL = s, 1 F �⇒ 1

sC
= 1

s

To get g11 and g21, we open-circuit the output port and connect a voltage
source V1 to the input port as in Fig. 18.29(a). From the figure,

I1 = V1

s + 1
or

g11 = I1

V1
= 1

s + 1
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By voltage division,

V2 = 1

s + 1
V1

or

g21 = V2

V1
= 1

s + 1
To obtain g12 and g22, we short-circuit the input port and connect a current
source I2 to the output port as in Fig. 18.29(b). By current division,

I1 = − 1

s + 1
I2

or

g12 = I1

I2
= − 1

s + 1
Also,

V2 = I2

(
1

s
+ s ‖ 1

)
or

g22 = V2

I2
= 1

s
+ s

s + 1
= s2 + s + 1

s(s + 1)

Thus,

[g] =




1

s + 1
− 1

s + 1

1

s + 1

s2 + s + 1

s(s + 1)




V1 V2

I2 = 0I1

1 Ω

(a)

1/ss

+

−

+
−

V2 I2

I1

1 Ω

(b)

1/ss

+

−

V1 = 0

+

−

Figure 18.29 Determining the g parameters
in the s domain for the circuit in Fig. 18.28.

P R A C T I C E P R O B L E M 1 8 . 7

For the ladder network in Fig. 18.30, determine the g parameters in the s

domain.

Answer: [g] =




s + 2

s2 + 3s + 1
− 1

s2 + 3s + 1

1

s2 + 3s + 1

s(s + 2)

s2 + 3s + 1


 .

1 Ω

1 H

1 Ω

1 H

Figure 18.30 For Practice Prob. 18.7.

18.5 TRANSMISSION PARAMETERS
Since there are no restrictions on which terminal voltages and currents
should be considered independent and which should be dependent vari-
ables, we expect to be able to generate many sets of parameters. Another
set of parameters relates the variables at the input port to those at the
output port. Thus,

V1 = AV2 − BI2

I1 = CV2 − DI2
(18.22)
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or [
V1

I1

]
=

[
A B
C D

] [
V2

−I2

]
= [T]

[
V2

−I2

]
(18.23)

Equations (18.22) and (18.23) relate the input variables (V1 and I1) to the
output variables (V2 and −I2). Notice that in computing the transmission
parameters, −I2 is used rather than I2, because the current is considered
to be leaving the network, as shown in Fig. 18.31, as opposed to entering
the network as in Fig. 18.1(b). This is done merely for conventional
reasons; when you cascade two-ports (output to input), it is most logical
to think of I2 as leaving the two-port. It is also customary in the power
industry to consider I2 as leaving the two-port.−

+

V1

−

+

V2

I1 –I2

Linear
two-port

Figure 18.31 Terminal variables used to
define the ABCD parameters.

The two-port parameters in Eqs. (18.22) and (18.23) provide a mea-
sure of how a circuit transmits voltage and current from a source to a load.
They are useful in the analysis of transmission lines (such as cable and
fiber) because they express sending-end variables (V1 and I1) in terms of
the receiving-end variables (V2 and −I2). For this reason, they are called
transmission parameters. They are also known as ABCD parameters.
They are used in the design of telephone systems, microwave networks,
and radars.

The transmission parameters are determined as

A = V1

V2

∣∣∣∣
I2=0

, B = −V1

I2

∣∣∣∣
V2=0

C = I1

V2

∣∣∣∣
I2=0

, D = − I1

I2

∣∣∣∣
V2=0

(18.24)

Thus, the transmission parameters are called, specifically,

A = Open-circuit voltage ratio

B = Negative short-circuit transfer impedance

C = Open-circuit transfer admittance

D = Negative short-circuit current ratio

(18.25)

A and D are dimensionless, B is in ohms, and C is in siemens. Since the
transmission parameters provide a direct relationship between input and
output variables, they are very useful in cascaded networks.

Our last set of parameters may be defined by expressing the vari-
ables at the output port in terms of the variables at the input port. We
obtain

V2 = aV1 − bI1

I2 = cV1 − dI1
(18.26)

or [
V2

I2

]
=

[
a b
c d

] [
V1

−I1

]
= [t]

[
V1

−I1

]
(18.27)
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The parameters a, b, c, and d are called the inverse transmission param-
eters. They are determined as follows:

a = V2

V1

∣∣∣∣
I1=0

, b = −V2

I1

∣∣∣∣
V1=0

c = I2

V1

∣∣∣∣
I1=0

, d = − I2

I1

∣∣∣∣
V1=0

(18.28)

From Eq. (18.28) and from our experience so far, it is evident that these
parameters are known individually as

a = Open-circuit voltage gain

b = Negative short-circuit transfer impedance

c = Open-circuit transfer admittance

d = Negative short-circuit current gain

(18.29)

While a and d are dimensionless, b and c are in ohms and siemens, respec-
tively. In terms of the transmission or inverse transmission parameters, a
network is reciprocal if

AD − BC = 1, ad − bc = 1 (18.30)

These relations can be proved in the same way as the transfer impedance
relations for the z parameters. Alternatively, we will be able to use Table
18.1 a little later to derive Eq. (18.30) from the fact that z12 = z21 for
reciprocal networks.

E X A M P L E 1 8 . 8

Find the transmission parameters for the two-port network in Fig. 18.32.

20 Ω

3I1
10 ΩI1 I2

+ −

Figure 18.32 For Example 18.8.

Solution:

To determine A and C, we leave the output port open as in Fig. 18.33(a)
so that I2 = 0 and place a voltage source V1 at the input port. We have

V1 = (10 + 20)I1 = 30I1 and V2 = 20I1 − 3I1 = 17I1

Thus,

A = V1

V2
= 30I1

17I1
= 1.765, C = I1

V2
= I1

17I1
= 0.0588 S

I2
3I1I1

(a)

Va

a+

−

V1
V2 20 Ω

10 Ω
+ −

+
−

I2
3I1I1

(b)

V1
V2 = 0 20 Ω

10 Ω
+ −

+
−

Figure 18.33 For Example 18.8: (a) finding A and C, (b) finding B and D.
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To obtain B and D, we short-circuit the output port so that V2 = 0 as
shown in Fig. 18.33(b) and place a voltage source V1 at the input port.
At node a in the circuit of Fig. 18.33(b), KCL gives

V1 − Va

10
− Va

20
+ I2 = 0 (18.8.1)

But Va = 3I1 and I1 = (V1 − Va)/10. Combining these gives

V1 = 13I1 (18.8.2)

Substituting Eq. (18.8.2) into Eq. (18.8.1) and replacing the first term
with I1,

I1 − 3I1

20
+ I2 = 0 �⇒ 17

20
I1 = −I2

Therefore,

D = − I1

I2
= 20

17
= 1.176, B = −V1

I2
= −13I1

(−17/20) I1
= 15.29 �

P R A C T I C E P R O B L E M 1 8 . 8

Find the transmission parameters for the circuit in Fig. 18.16 (see Practice
Prob. 18.3).

Answer: A = 1.5, B = 11 �, C = 0.25 S, D = 2.5.

E X A M P L E 1 8 . 9

The ABCD parameters of the two-port network in Fig. 18.34 are[
4 20 �

0.1 S 2

]

The output port is connected to a variable load for maximum power trans-
fer. Find RL and the maximum power transferred.

50 V RL

10 Ω

[T ]+
−

Figure 18.34 For Example 18.9. Solution:

What we need is to find the Thevenin equivalent (ZTh and VTh) at the load
or output port. We find ZTh using the circuit in Fig. 18.35(a). Our goal is
to get ZTh = V2/I2. Substituting the given ABCD parameters into Eq.
(18.22), we obtain

V1 = 4V2 − 20I2 (18.9.1)

I1 = 0.1V2 − 2I2 (18.9.2)

RL
1 V

(a)

V2V1

10 Ω

[T ] +
−

I1 I2

+

−

+

−

50 V

(b)

V2 = VThV1

10 Ω

[T ]+
−

I1 I2 = 0

+

−

+

−

(c)

VTh
+
−

RTh

Figure 18.35 Solution of Example 18.9: (a) finding ZTh, (b) finding VTh, (c) finding RL for maximum power transfer.
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At the input port, V1 = −10I1. Substituting this into Eq. (18.9.1) gives

−10I1 = 4V2 − 20I2

or

I1 = −0.4V2 + 2I2 (18.9.3)

Setting the right-hand sides of Eqs. (18.9.2) and (18.9.3) equal,

0.1V2 − 2I2 = −0.4V2 + 2I2 �⇒ 0.5V2 = 4I2

Hence,

ZTh = V2

I2
= 4

0.5
= 8 �

To find VTh, we use the circuit in Fig. 18.35(b). At the output port
I2 = 0 and at the input port V1 = 50 − 10I1. Substituting these into Eqs.
(18.9.1) and (18.9.2),

50 − 10I1 = 4V2 (18.9.4)

I1 = 0.1V2 (18.9.5)

Substituting Eq. (18.9.5) into Eq. (18.9.4),

50 − V2 = 4V2 �⇒ V2 = 10

Thus,

VTh = V2 = 10 V

The equivalent circuit is shown in Fig. 18.35(c). For maximum power
transfer,

RL = ZTh = 8 �

From Eq. (4.24), the maximum power is

P = I 2RL =
(

VTh

2RL

)2

RL = V2
Th

4RL

= 100

4 × 8
= 3.125 W

P R A C T I C E P R O B L E M 1 8 . 9

Find I1 and I2 if the transmission parameters for the two-port in Fig. 18.36
are [

5 10 �

0.4 S 1

]

10 ΩV2

2 Ω

[T ]+
−

I1 I2

+

−

14   0° V

Figure 18.36 For Practice Prob. 18.9.

Answer: 1 A, −0.2 A.

†18.6 RELATIONSHIPS BETWEEN PARAMETERS
Since the six sets of parameters relate the same input and output terminal
variables of the same two-port network, they should be interrelated. If
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two sets of parameters exist, we can relate one set to the other set. Let us
demonstrate the process with two examples.

Given the z parameters, let us obtain the y parameters. From
Eq. (18.2), [

V1

V2

]
=

[
z11 z12

z21 z22

] [
I1

I2

]
= [z]

[
I1

I2

]
(18.31)

or [
I1

I2

]
= [z]−1

[
V1

V2

]
(18.32)

Also, from Eq. (18.9),[
I1

I2

]
=

[
y11 y12

y21 y22

] [
V1

V2

]
= [y]

[
V1

V2

]
(18.33)

Comparing Eqs. (18.32) and (18.33), we see that

[y] = [z]−1 (18.34)

The adjoint of the [z] matrix is[
z22 −z12

−z21 z11

]
and its determinant is

�z = z11z22 − z12z21

Substituting these into Eq. (18.34), we get

[
y11 y12

y21 y22

]
=

[
z22 −z12

−z21 z11

]
�z

(18.35)

Equating terms yields

y11 = z22

�z

, y12 = −z12

�z

, y21 = −z21

�z

, y22 = z11

�z

(18.36)

As a second example, let us determine the h parameters from the z

parameters. From Eq. (18.1),

V1 = z11I1 + z12I2 (18.37a)

V2 = z21I1 + z22I2 (18.37b)

Making I2 the subject of Eq. (18.37b),

I2 = −z21

z22
I1 + 1

z22
V2 (18.38)

Substituting this into Eq. (18.37a),

V1 = z11z22 − z12z21

z22
I1 + z12

z22
V2 (18.39)

Putting Eqs. (18.38) and (18.39) in matrix form,

[
V1

I2

]
=




�z

z22

z12

z22

−z21

z22

1

z22




[
I1

V2

]
(18.40)

From Eq. (18.15), [
V1

I2

]
=

[
h11 h12

h21 h22

] [
I1

V2

]
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Comparing this with Eq. (18.40), we obtain

h11 = �z

z22
, h12 = z12

z22
, h21 = −z21

z22
, h22 = 1

z22
(18.41)

Table 18.1 provides the conversion formulas for the six sets of two-
port parameters. Given one set of parameters, Table 18.1 can be used to
find other parameters. For example, given the T parameters, we find the
corresponding h parameters in the fifth column of the third row. Also,
given that z21 = z12 for a reciprocal network, we can use the table to
express this condition in terms of other parameters. It can also be shown
that

[g] = [h]−1 (18.42)

but

[t] �= [T]−1 (18.43)

TABLE 18.1 Conversion of two-port parameters.

z y h g T t

z z11 z12
y22

�y

−y12

�y

�h

h22

h12

h22

1

g11
−g12

g11

A
C

�T

C
d
c

1

c

z21 z22 −y21

�y

y11

�y

−h21

h22

1

h22

g21

g11

�g

g11

1

C
D
C

�t

c
a
c

y
z22

�z

− z12

�z

y11 y12
1

h11
−h12

h11

�g

g22

g12

g22

D
B

−�T

B
a
b

− 1

b

− z21

�z

z11

�z

y21 y22
h21

h11

�h

h11
−g21

g22

1

g22
− 1

B
A
B

−�t

b
d
b

h
�z

z22

z12

z22

1

y11
−y12

y11
h11 h12

g22

�g

−g12

�g

B
D

�T

D
b
a

1

a

− z21

z22

1

z22

y21

y11

�y

y11
h21 h22 −g21

�g

g11

�g

− 1

D
C
D

�t

a
c
a

g
1

z11
− z12

z11

�y

y22

y12

y22

h22

�h

−h12

�h

g11 g12
C
A

−�T

A
c
d

− 1

d

z21

z11

�z

z11
−y21

y22

1

y22
−h21

�h

h11

�h

g21 g22
1

A
B
A

�t

d
−b

d

T
z11

z21

�z

z21
−y22

y21
− 1

y21
−�h

h21
−h11

h21

1

g21

g22

g21
A B

d
�t

b
�t

1

z21

z22

z21
−�y

y21
−y11

y21
−h22

h21
− 1

h21

g11

g21

�g

g21
C D

c
�t

a
�t

t
z22

z12

�z

z12
−y11

y12
− 1

y12

1

h12

h11

h12
−�g

g12
−g22

g12

D
�T

B
�T

a b

1

z12

z11

z12
−�y

y12
−y22

y12

h22

h12

�h

h12
−g11

g12
− 1

g12

C
�T

A
�T

c d

�z = z11z22 − z12z21, �h = h11h22 − h12h21, �T = AD − BC

�y = y11y22 − y12y21, �g = g11g22 − g12g21, �t = ad − bc
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E X A M P L E 1 8 . 1 0

Find [z] and [g] of a two-port network if

[T] =
[

10 1.5 �

2 S 4

]
Solution:

If A = 10, B = 1.5, C = 2, D = 4, the determinant of the matrix is

�T = AD − BC = 40 − 3 = 37

From Table 18.1,

z11 = A
C

= 10

2
= 5, z12 = �T

C
= 37

2
= 18.5

z21 = 1

C
= 1

2
= 0.5, z22 = D

C
= 4

2
= 2

g11 = C
A

= 2

10
= 0.2, g12 = −�T

A
= −37

10
= −3.7

g21 = 1

A
= 1

10
= 0.1, g22 = B

A
= 1.5

10
= 0.15

Thus,

[z] =
[

5 18.5

0.5 2

]
�, [g] =

[
0.2 S −3.7

0.1 0.15 �

]

P R A C T I C E P R O B L E M 1 8 . 1 0

Determine [y] and [T] of a two-port network whose z parameters are

[z] =
[

6 4
4 6

]
�

Answer: [y] =
[

0.3 −0.2
−0.2 0.3

]
S, [T] =

[
1.5 5 �

0.25 S 1.5

]
.

E X A M P L E 1 8 . 1 1

Obtain the y parameters of the op amp circuit in Fig. 18.37. Show that
the circuit has no z parameters.

V1

I1 I2

+

−

V2Io

Io

R2

R1

R3

+

−

+
−

Figure 18.37 For Example 18.11.

Solution:

Since no current can enter the input terminals of the op amp, I1 = 0,
which can be expressed in terms of V1 and V2 as

I1 = 0V1 + 0V2 (18.11.1)

Comparing this with Eq. (18.8) gives

y11 = 0 = y12

Also,

V2 = R3I2 + Io(R1 + R2)
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where Io is the current through R1 and R2. But Io = V1/R1. Hence,

V2 = R3I2 + V1(R1 + R2)

R1

which can be written as

I2 = − (R1 + R2)

R1R3
V1 + V2

R3

Comparing this with Eq. (18.8) shows that

y21 = − (R1 + R2)

R1R3
, y22 = 1

R3

The determinant of the [y] matrix is

�y = y11y22 − y12y21 = 0

Since �y = 0, the [y] matrix has no inverse; therefore, the [z] matrix does
not exist according to Eq. (18.34). Note that the circuit is not reciprocal
because of the active element.

P R A C T I C E P R O B L E M 1 8 . 1 1

Find the z parameters of the op amp circuit in Fig. 18.38. Show that the
circuit has no y parameters.

V1

I1 I2

+

−
V2

R2

R1

+

−

+
−

Figure 18.38 For Practice Prob. 18.11.

Answer: [z] =
[

R1

−R2

0

0

]
. Since [z]−1 does not exist, [y] does not

exist.

18.7 INTERCONNECTION OF NETWORKS
A large, complex network may be divided into subnetworks for the pur-
poses of analysis and design. The subnetworks are modeled as two-port
networks, interconnected to form the original network. The two-port
networks may therefore be regarded as building blocks that can be in-
terconnected to form a complex network. The interconnection can be in
series, in parallel, or in cascade. Although the interconnected network
can be described by any of the six parameter sets, a certain set of parame-
ters may have a definite advantage. For example, when the networks are
in series, their individual z parameters add up to give the z parameters
of the larger network. When they are in parallel, their individual y pa-
rameters add up to give the y parameters the larger network. When they
are cascaded, their individual transmission parameters can be multiplied
together to get the transmission parameters of the larger network.

Consider the series connection of two two-port networks shown
in Fig. 18.39. The networks are regarded as being in series because
their input currents are the same and their voltages add. In addition,
each network has a common reference, and when the circuits are placed
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in series, the common reference points of each circuit are connected
together. For network Na ,

V1a = z11aI1a + z12aI2a

V2a = z21aI1a + z22aI2a

(18.44)

and for network Nb,

V1b = z11bI1b + z12bI2b

V2b = z21bI1b + z22bI2b

(18.45)

We notice from Fig. 18.39 that

I1 = I1a = I1b, I2 = I2a = I2b (18.46)

and that

V1 = V1a + V1b = (z11a + z11b)I1 + (z12a + z12b)I2

V2 = V2a + V2b = (z21a + z21b)I1 + (z22a + z22b)I2
(18.47)

Thus, the z parameters for the overall network are[
z11 z12

z21 z22

]
=

[
z11a + z11b z12a + z12b

z21a + z21b z22a + z22b

]
(18.48)

or

[z] = [za] + [zb] (18.49)

showing that the z parameters for the overall network are the sum of
the z parameters for the individual networks. This can be extended to
n networks in series. If two two-port networks in the [h] model, for
example, are connected in series, we use Table 18.1 to convert the h to z
and then apply Eq. (18.49). We finally convert the result back to h using
Table 18.1.

−

+

−

+

−

+
V1a

V2I2V1 I1

−

+
V2a

I1a I2aI1 I2

Na

−

+
V1b

−

+
V2b

I1b I2b

Nb

Figure 18.39 Series connection of two
two-port networks.

−

+
V1a

V2

−

+
V2a

I1a I2a

−

+

I2

V1

−

+

I1

Na

−

+
V1b

−

+
V2b

I1b I2b

Nb

Figure 18.40 Parallel connection of two
two-port networks.

Two two-port networks are in parallel when their port voltages are
equal and the port currents of the larger network are the sums of the
individual port currents. In addition, each circuit must have a common
reference and when the networks are connected together, they must all
have their common references tied together. The parallel connection of
two two-port networks is shown in Fig. 18.40. For the two networks,

I1a = y11aV1a + y12aV2a

I2a = y21aV1a + y22aV2a

(18.50)

and

I1b = y11bV1b + y12bV2b

I2a = y21bV1b + y22bV2b

(18.51)

But from Fig. 18.40,

V1 = V1a = V1b, V2 = V2a = V2b (18.52a)

I1 = I1a + I1b, I2 = I2a + I2b (18.52b)



CHAPTER 18 Two-Port Networks 819

Substituting Eqs. (18.50) and (18.51) into Eq. (18.52b) yields

I1 = (y11a + y11b)V1 + (y12a + y12b)V2

I2 = (y21a + y21b)V1 + (y22a + y22b)V2
(18.53)

Thus, the y parameters for the overall network are[
y11 y12

y21 y22

]
=

[
y11a + y11b y12a + y12b

y21a + y21b y22a + y22b

]
(18.54)

or

[y] = [ya] + [yb] (18.55)

showing that the y parameters of the overall network are the sum of the
y parameters of the individual networks. The result can be extended to n

two-port networks in parallel.
Two networks are said to be cascaded when the output of one is the

input of the other. The connection of two two-port networks in cascade
is shown in Fig. 18.41. For the two networks,[

V1a

I1a

]
=

[
Aa Ba

Ca Da

] [
V2a

−I2a

]
(18.56)

[
V1b

I1b

]
=

[
Ab Bb

Cb Db

] [
V2b

−I2b

]
(18.57)

From Fig. 18.41,[
V1

I1

]
=

[
V1a

I1a

]
,

[
V2a

−I2a

]
=

[
V1b

I1b

]
,

[
V2b

−I2b

]
=

[
V2

−I2

]
(18.58)

Substituting these into Eqs. (18.56) and (18.57),[
V1

I1

]
=

[
Aa Ba

Ca Da

] [
Ab Bb

Cb Db

] [
V2

−I2

]
(18.59)

Thus, the transmission parameters for the overall network are the product
of the transmission parameters for the individual transmission parameters:[

A B
C D

]
=

[
Aa Ba

Ca Da

] [
Ab Bb

Cb Db

]
(18.60)

or

[T] = [Ta][Tb] (18.61)

It is this property that makes the transmission parameters so useful. Keep
in mind that the multiplication of the matrices must be in the order in
which the networks Na and Nb are cascaded.

V2aNa

I1a I2a

+

−

V1a

+

−

I1

V1

+

−

V2bNb

I1b I2b

+ +

−

V2

I2

−

V1b

+

−

Figure 18.41 Cascade connection of two two-port networks.
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E X A M P L E 1 8 . 1 2

Evaluate V2/Vs in the circuit in Fig. 18.42.

++

V2

I2I1

−

V1

−

20 ΩVs

5 Ω

z11 = 12 Ω
z12 = 8 Ω
z21 = 8 Ω
z22 = 20 Ω

+
−

10 Ω

Figure 18.42 For Example 18.12.

Solution:

This may be regarded as two two-ports in series. For Nb,

z12b = z21b = 10 = z11 = z22

Thus,

[z] = [za] + [zb] =
[

12 8
8 20

]
+

[
10 10
10 10

]
=

[
22 18
18 30

]
But

V1 = z11I1 + z12I2 = 22I1 + 18I2 (18.12.1)

V2 = z21I1 + z22I2 = 18I1 + 30I2 (18.12.2)

Also, at the input port

V1 = Vs − 5I1 (18.12.3)

and at the output port

V2 = −20I2 �⇒ I2 = −V2

20
(18.12.4)

Substituting Eqs. (18.12.3) and (18.12.4) into Eq. (18.12.1) gives

Vs − 5I1 = 22I1 − 18

20
V2 �⇒ Vs = 27I1 − 0.9V2 (18.12.5)

while substituting Eq. (18.12.4) into Eq. (18.12.2) yields

V2 = 18I1 − 30

20
V2 �⇒ I1 = 2.5

18
V2 (18.12.6)

Substituting Eq. (18.12.6) into Eq. (18.12.5), we get

Vs = 27 × 2.5

18
V2 − 0.9V2 = 2.85V2

And so,
V2

Vs

= 1

2.85
= 0.3509
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P R A C T I C E P R O B L E M 1 8 . 1 2

Find V2/Vs in the circuit in Fig. 18.43.

+

V2

−

40 Ω

50 Ω

–j15 Ω

–j20 Ω

j10 Ω

j40 Ω

Vs

5 Ω

20 Ω

+
−

Figure 18.43 For Practice Prob. 18.12.

Answer: 0.58 − 40◦.

E X A M P L E 1 8 . 1 3

Find the y parameters of the two-port in Fig. 18.44.

2 S 3 S

j4 S

4 S

–j2 S –j6 S

Figure 18.44 For Example 18.13.

Solution:

Let us refer to the upper network as Na and the lower one as Nb. The
two networks are connected in parallel. Comparing Na and Nb with the
circuit in Fig. 18.13(a), we obtain

y12a = −j4 = y21a, y11a = 2 + j4, y22a = 3 + j4

or

[ya] =
[

2 + j4 −j4

−j4 3 + j4

]
S

and

y12b = −4 = y21b, y11b = 4 − j2, y22b = 4 − j6

or

[yb] =
[

4 − j2 −4

−4 4 − j6

]
S

The overall y parameters are

[y] = [ya] + [yb] =
[

6 + j2 −4 − j4

−4 − j4 7 − j2

]
S
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P R A C T I C E P R O B L E M 1 8 . 1 3

Obtain the y parameters for the network in Fig. 18.45.

1 S

j5 S

2 S 2 S

–j5 S

–j10 S

Figure 18.45 For Practice Prob. 18.13.

Answer:
[

27 − j15

−25 + j10

−25 + j10

27 − j5

]
S.

E X A M P L E 1 8 . 1 4

Find the transmission parameters for the circuit in Fig. 18.46.

2 Ω

8 Ω 6 Ω4 Ω

1 Ω

Figure 18.46 For Example 18.14.

2 Ω

8 Ω4 Ω 6 Ω

1 Ω

(a)

Na Nb

R2

R1 R3

(b)

Figure 18.47 For Example 18.14:
(a) Breaking the circuit in Fig. 18.46
into two two-ports, (b) a general T
two-port.

Solution:

We can regard the given circuit in Fig. 18.46 as a cascade connection of
two T networks as shown in Fig. 18.47(a). We can show that a T network,
shown in Fig. 18.47(b), has the following transmission parameters [see
Prob. 18.42(b)]:

A = 1 + R1

R2
, B = R3 + R1(R2 + R3)

R2

C = 1

R2
, D = 1 + R3

R2

Applying this to the cascaded networks Na and Nb in Fig. 18.47(a), we
get

Aa = 1 + 4 = 5, Ba = 8 + 4 × 9 = 44 �

Ca = 1 S, Da = 1 + 8 = 9

or in matrix form,

[Ta] =
[

5 44 �

1 S 9

]

and

Ab = 1, Bb = 6 �, Cb = 0.5 S, Db = 1 + 6

2
= 4

i.e.,

[Tb] =
[

1 6 �

0.5 S 4

]

Thus, for the total network in Fig. 18.46,
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[T] = [Ta][Tb] =
[

5 44
1 9

] [
1 6

0.5 4

]

=
[

5 × 1 + 44 × 0.5 5 × 6 + 44 × 4
1 × 1 + 9 × 0.5 1 × 6 + 9 × 4

]

=
[

27 206 �

5.5 S 42

]

Notice that

�Ta
= �Tb

= �T = 1

showing that the network is reciprocal.

P R A C T I C E P R O B L E M 1 8 . 1 4

Obtain the ABCD parameter representation of the circuit in Fig. 18.48.

20 Ω

40 Ω30 Ω 60 Ω

50 Ω20 Ω

Figure 18.48 For Practice Prob. 18.14.

Answer: [T] =
[

29.25

0.425 S

2200 �

32

]
.

18.8 COMPUTING TWO-PORT PARAMETERS USING
PSPICE

Hand calculation of the two-port parameters may become difficult when
the two-port is complicated. We resort to PSpice in such situations. If
the circuit is purely resistive, PSpice dc analysis may be used; otherwise,
PSpice ac analysis is required at a specific frequency. The key to using
PSpice in computing a particular two-port parameter is to remember how
that parameter is defined and to constrain the appropriate port variable
with a 1-A or 1-V source while using an open or short circuit to impose
the other necessary constraints. The following two examples illustrate
the idea.

E X A M P L E 1 8 . 1 5

Find the h parameters of the network in Fig. 18.49.

10 Ω

6 Ω
4ix

ix

5 Ω

10 Ω

+ −

Figure 18.49 For Example 18.15.

Solution:

From Eq. (18.16),

h11 = V1

I1

∣∣∣∣
V2=0

, h21 = I2

I1

∣∣∣∣
V2=0

showing that h11 and h21 can be found by setting V2 = 0. Also by set-
ting I1 = 1 A, h11 becomes V1/1 while h21 becomes I2/1. With this in
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mind, we draw the schematic in Fig. 18.50(a). We insert a 1-A dc current
source IDC to take care of I1 = 1 A, the pseudocomponent VIEWPOINT
to display V1 and pseudocomponent IPROBE to display I2. After saving
the schematic, we run PSpice by selecting Analysis/Simulate and note
the values displayed on the pseudocomponents. We obtain

h11 = V1

1
= 10 �, h21 = I2

1
= −0.5

R2

IDC 5

I1 DC=1A

6H1

H GAIN=4

10.0000

R13

R8

10

10

–5.000E–01

R5

(a)

+
−

6H1

H GAIN=4

.8333 1.833E–01

R13

R8

10 1V

10

V8

R5

0 0
(b)

+
− +

−

Figure 18.50 For Example 18.15: (a) computing h11 and h21, (b) computing h12 and h22.

Similarly, from Eq. (18.16),

h12 = V1

V2

∣∣∣∣
I1=0

, h22 = I2

V2

∣∣∣∣
I1=0

indicating that we obtain h12 and h22 by open-circuiting the input port
(I1 = 0). By making V2 = 1 V, h12 becomes V1/1 while h22 becomes
I2/1. Thus, we use the schematic in Fig. 18.50(b) with a 1-V dc voltage
source VDC inserted at the output terminal to take care of V2 = 1 V. The
pseudocomponents VIEWPOINT and IPROBE are inserted to display the
values of V1 and I2, respectively. (Notice that in Fig. 18.50(b), the 5-�
resistor is ignored because the input port is open-circuited and PSpice
will not allow such. We may include the 5-� resistor if we replace the
open circuit with a very large resistor, say, 10 M�.) After simulating the
schematic, we obtain the values displayed on the pseudocomponents as
shown in Fig. 18.50(b). Thus,

h12 = V1

1
= 0.8333, h22 = I2

1
= 0.1833 S

P R A C T I C E P R O B L E M 1 8 . 1 5

Obtain the h parameters for the network in Fig. 18.51 using PSpice.

4 Ω

8 Ω

2vx

vx

3 Ω 6 Ω

4 Ω
+

−

Figure 18.51 For Practice Prob. 18.15.

Answer: h11 = 4.238 �, h21 = −0.6190, h12 = −0.7143,

h22 = −0.1429 S.
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E X A M P L E 1 8 . 1 6

Find the z parameters for the circuit in Fig. 18.52 at ω = 106 rad/s.

4 nF 20
vxvx 2 kΩ8 kΩ

2 mH

+

−

Figure 18.52 For Example 18.16.

Solution:

Notice that we used dc analysis in Example 18.15 because the circuit in
Fig. 18.49 is purely resistive. Here, we use ac analysis at f = ω/2π =
0.15915 MHz, because L and C are frequency dependent.

In Eq. (18.3), we defined the z parameters as

z11 = V1

I1

∣∣∣∣
I2=0

, z21 = V2

I1

∣∣∣∣
I2=0

This suggests that if we let I1 = 1 A and open-circuit the output port so
that I2 = 0, then we obtain

z11 = V1

1
and z21 = V2

1
We realize this with the schematic in Fig. 18.53(a). We insert a 1-A ac
current source IAC at the input terminal of the circuit and two VPRINT1
pseudocomponents to obtain V1 and V2. The attributes of each VPRINT1
are set as AC = yes, MAG = yes, and PHASE = yes to print the magnitude
and phase values of the voltages. We select Analysis/Setup/AC Sweep
and enter 1 as Total Pts, 0.1519MEG as Start Freq, and 0.1519MEG as
Final Freq in the AC Sweep and Noise Analysis dialog box. After saving
the schematic, we select Analysis/Simulate to simulate it. We obtain V1

R1

AC=yes
MAG=yes

PHASE=yes

AC=yes
MAG=yes
PHASE=yes

8k
I2

AC=1A

IAC

2uH

L1

GAIN=
0.05

4n C16

G1

G

(a)

R2 2k

0

−
+

+

−

R1

AC=yes
MAG=yes
PHASE=yes

AC=yes
MAG=yes

PHASE=yes

8k
I4

AC=1A

IAC

2uH

L1

GAIN=
0.05

4n C16

G1

G

(b)

R2 2k

0

−
+

+

−

Figure 18.53 For Example 18.16: (a) circuit for determining z11 and z21,
(b) circuit for determining z12 and z22.
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and V2 from the output file. Thus,

z11 = V1

1
= 19.70 175.7◦ �, z21 = V2

1
= 19.79 170.2◦ �

In a similar manner, from Eq. (18.3),

z12 = V1

I2

∣∣∣∣
I1=0

, z22 = V2

I2

∣∣∣∣
I1=0

suggesting that if we let I2 = 1 A and open-circuit the input port,

z12 = V1

1
and z22 = V2

1

This leads to the schematic in Fig. 18.53(b). The only difference between
this schematic and the one in Fig. 18.53(a) is that the 1-A ac current source
IAC is now at the output terminal. We run the schematic in Fig. 18.53(b)
and obtain V1 and V2 from the output file. Thus,

z12 = V1

1
= 19.70 175.7◦ �, z22 = V2

1
= 19.56 175.7◦ �

P R A C T I C E P R O B L E M 1 8 . 1 6

Obtain the z parameters of the circuit in Fig. 18.54 at f = 60 Hz.

10ix

ix

10 mF0.2 H

8 Ω4 Ω

+
−

Figure 18.54 For Practice Prob. 18.16.

Answer: z11 = 3.987 175.5◦, z21 = 0.0175 − 2.65◦,

z12 = 0, z22 = 0.2651 91.9◦ �.

†18.9 APPLICATIONS
We have seen how the six sets of network parameters can be used to
characterize a wide range of two-port networks. Depending on the way
two-ports are interconnected to form a larger network, a particular set of
parameters may have advantages over others, as we noticed in Section
18.7. In this section, we will consider two important application areas of
two-port parameters: transistor circuits and synthesis of ladder networks.

18 . 9 . 1 Tr an s i s to r C i r cu i t s
V2

Zin Zout

Two-port
network

+
−

I1 I2

+

−

V1

Zs

ZLVs

+

−

Figure 18.55 Two-port network isolating
source and load.

The two-port network is often used to isolate a load from the excitation
of a circuit. For example, the two-port in Fig. 18.55 may represent an
amplifier, a filter, or some other network. When the two-port represents
an amplifier, expressions for the voltage gain Av , the current gain Ai , the
input impedance Zin, and the output impedance Zout can be derived with
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ease. They are defined as follows:

Av = V2(s)

V1(s)
(18.62)

Ai = I2(s)

I1(s)
(18.63)

Zin = V1(s)

I1(s)
(18.64)

Zout = V2(s)

I2(s)

∣∣∣∣
Vs=0

(18.65)

Any of the six sets of two-port parameters can be used to derive the
expressions in Eqs. (18.62) to (18.65). Here, we will specifically use the
hybrid parameters to obtain them for transistor amplifiers.

The hybrid (h) parameters are the most useful for transistors; they
are easily measured and are often provided in the manufacturer’s data or
spec sheets for transistors. The h parameters provide a quick estimate of
the performance of transistor circuits. They are used for finding the exact
voltage gain, input impedance, and output impedance of a transistor.

The h parameters for transistors have specific meanings expressed
by their subscripts. They are listed by the first subscript and related to
the general h parameters as follows:

hi = h11, hr = h12, hf = h21, ho = h22 (18.66)

The subscripts i, r , f , and o stand for input, reverse, forward, and output.
The second subscript specifies the type of connection used: e for common
emitter (CE), c for common collector (CC), and b for common base (CB).
Here we are mainly concerned with the common-emitter connection.
Thus, the four h parameters for the common-emitter amplifier are:

hie = Base input impedance

hre = Reverse voltage feedback ratio

hf e = Base-collector current gain

hoe = Output admittance

(18.67)

These are calculated or measured in the same way as the general h pa-
rameters. Typical values are hie = 6 k�, hre = 1.5 × 10−4, hf e = 200,
hoe = 8 µS. We must keep in mind that these values represent ac char-
acteristics of the transistor, measured under specific circumstances.

Figure 18.56 shows the circuit schematic for the common-emitter
amplifier and the equivalent hybrid model. From the figure, we see that

Vb = hieIb + hreVc (18.68a)

Ic = hf eIb + hoeVc (18.68b)

Consider the transistor amplifier connected to an ac source and a
load as in Fig. 18.57. This is an example of a two-port network embedded
within a larger network. We can analyze the hybrid equivalent circuit as
usual with Eq. (18.68) in mind. (See Example 18.6.) Recognizing from
Fig. 18.57 that Vc = −RLIc and substituting this into Eq. (18.68b) gives

Ic = hf eIb − hoeRLIc
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hoe VcVb

Ib Ic CB

E E

(b)

hie

hreVc hfeIb
+
−

+

−

+

−

Vc
Vb

Ib

Ic C

B

E E

(a)

+

−

+

−

Figure 18.56 Common emitter amplifier: (a) circuit schematic, (b) hybrid model.

hoe RL

Rs

Two-port network

VcVs

Zin Zout

Vb

Ib Ichie

hreVc hfeIb
+
−

+

−

+

−

+
−

Figure 18.57 Transistor amplifier with source and load resistance.

or

(1 + hoeRL)Ic = hf eIb (18.69)

From this, we obtain the current gain as

Ai = Ic

Ib

= hf e

1 + hoeRL

(18.70)

From Eqs. (18.68b) and (18.70), we can express Ib in terms of Vc:

Ic = hf e

1 + hoeRL

Ib = hf eIb + hoeVc

or

Ib = hoeVc

hf e

1 + hoeRL

− hf e

(18.71)

Substituting Eq. (18.71) into Eq. (18.68a) and dividing by Vc gives

Vb

Vc

= hoehie

hf e

1 + hoeRL

− hf e

+ hre

= hie + hiehoeRL − hrehf eRL

−hf eRL

(18.72)

Thus, the voltage gain is

Av = Vc

Vb

= −hf eRL

hie + (hiehoe − hrehf e)RL

(18.73)
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Substituting Vc = −RLIc into Eq. (18.68a) gives

Vb = hieIb − hreRLIc

or
Vb

Ib

= hie − hreRL

Ic

Ib

(18.74)

Replacing Ic/Ib by the current gain in Eq. (18.70) yields the input impe-
dance as

Zin = Vb

Ib

= hie − hrehf eRL

1 + hoeRL

(18.75)

The output impedance Zout is the same as the Thevenin equivalent at the
output terminals. As usual, by removing the voltage source and placing
a 1-V source at the output terminals, we obtain the circuit in Fig. 18.58,
from which Zout is determined as 1/Ic. Since Vc = 1 V, the input loop
gives

hre(1) = −Ib(Rs + hie) �⇒ Ib = − hre

Rs + hie

(18.76)

For the output loop,

Ic = hoe(1) + hf eIb (18.77)

Substituting Eq. (18.76) into Eq. (18.77) gives

Ic = (Rs + hie)hoe − hrehf e

Rs + hie

(18.78)

From this, we obtain the output impedance Zout as 1/Ic; that is,

Zout = Rs + hie

(Rs + hie)hoe − hrehf e

(18.79)

hreVc Vc
hfeIb hoe 1 V

Ib

IcRs hie

+
−

+

−

+
−

Figure 18.58 Finding the output impedance of the amplifier
circuit in Fig. 18.57.

E X A M P L E 1 8 . 1 7

Consider the common-emitter amplifier circuit of Fig. 18.59. (a) Deter-
mine the voltage gain, current gain, input impedance, and output impe-
dance using these h parameters:

hie = 1 k�, hre = 2.5 × 10−4, hf e = 50, hoe = 20 µS

(b) Find the output voltage Vo.
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Vo1.2 kΩ3.2   0° mV

+

−

0.8 kΩ

+
−

Figure 18.59 For Example 18.17.

Solution:

(a) We note that Rs = 0.8 k� and RL = 1.2 k�. We treat the transistor
of Fig. 18.59 as a two-port network and apply Eqs. (18.70) to (18.79).

hiehoe − hrehf e = 103 × 20 × 10−6 − 2.5 × 10−4 × 50

= 7.5 × 10−3

Av = −hf eRL

hie + (hiehoe − hrehf e)RL

= −50 × 1200

1000 + 7.5 × 10−3 × 1200

= −59.46

Ai = hf e

1 + hoeRL

= 50

1 + 20 × 10−6 × 1200
= 48.83

Zin = hie − hreAiRL = 1000 − 2.5 × 10−4 × 48.83 × 1200 = 985.4 �

(Rs + hie)hoe − hrehf e

= (800 + 1000) × 20 × 10−6 − 2.5 × 10−4 × 50 = 23.5 × 10−3

Zout = Rs + hie

(Rs + hie)hoe − hrehf e

= 800 + 1000

23.5 × 10−3
= 76.6 k�

(b) The output voltage is

Vo = AvVs = −59.46(3.2 0◦) mV = 0.19 180◦ V

P R A C T I C E P R O B L E M 1 8 . 1 7

For the transistor amplifier of Fig. 18.60, find the voltage gain, current
gain, input impedance, and output impedance. Assume that

hie = 6 k�, hre = 1.5 × 10−4, hf e = 200, hoe = 8 µS
3.75 kΩ

150 kΩ

+
−2   0° mV

Figure 18.60 For Practice Prob. 18.17.

Answer: −123.61, 194.17, 6 k�, 128.08 k�.

18 . 9 . 2 L adde r Ne twork Syn the s i s
Another application of two-port parameters is the synthesis (or building)
of ladder networks which are found frequently in practice and have par-
ticular use in designing passive lowpass filters. Based on our discussion
of second-order circuits in Chapter 8, the order of the filter is the order
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of the characteristic equation describing the filter and is determined by
the number of reactive elements that cannot be combined into single el-
ements (e.g., through series or parallel combination). Figure 18.61(a)
shows an LC ladder network with an odd number of elements (to realize
an odd-order filter), while Fig. 18.61(b) shows one with an even number
of elements (for realizing an even-order filter). When either network is
terminated by the load impedance ZL and the source impedance Zs , we
obtain the structure in Fig. 18.62. To make the design less complicated,
we will assume that Zs = 0. Our goal is to synthesize the transfer func-
tion of the LC ladder network. We begin by characterizing the ladder
network by its admittance parameters, namely,

I1 = y11V1 + y12V2 (18.80a)

I2 = y21V1 + y22V2 (18.80b)

(Of course, the impedance parameters could be used instead of the ad-
mittance parameters.) At the input port, V1 = Vs since Zs = 0. At the
output port, V2 = Vo and I2 = −V2/ZL = −VoYL. Thus Eq. (18.80b)
becomes

−VoYL = y21Vs + y22Vo

or

H(s) = Vo

Vs

= −y21

YL + y22
(18.81)

We can write this as

H(s) = − y21/YL

1 + y22/YL

(18.82)

C4

(a)

C2

L1 L3 Ln

C4

(b)

C2

L1 L3 Ln – 1

Cn

Figure 18.61 LC ladder networks for
lowpass filters of: (a) odd order, (b) even
order.

We may ignore the negative sign in Eq. (18.82) because filter requirements
are often stated in terms of the magnitude of the transfer function. The
main objective in filter design is to select capacitors and inductors so that
the parameters y21 and y22 are synthesized, thereby realizing the desired
transfer function. To achieve this, we take advantage of an important
property of the LC ladder network: all z and y parameters are ratios of
polynomials that contain only even powers of s or odd powers of s—that
is, they are ratios of either Od(s)/Ev(s) or Ev(s)/Od(s), where Od and Ev
are odd and even functions, respectively. Let

H(s) = N(s)

D(s)
= No + Ne

Do + De

(18.83)

where N(s) and D(s) are the numerator and denominator of the transfer

V2

LC ladder
network

y11  y12
y21  y22

+
−

I1 I2

V1

Zs

ZL VoVs

+ + +

− − −

Figure 18.62 LC ladder network with terminating impedances.
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function H(s); No and Ne are the odd and even parts of N; Do and De are
the odd and even parts of D. Since N(s) must be either odd or even, we
can write Eq. (18.83) as

H(s) =




No

Do + De

, (Ne = 0)

Ne

Do + De

, (No = 0)

(18.84)

and can rewrite this as

H(s) =




No/De

1 + Do/De

, (Ne = 0)

Ne/Do

1 + De/Do

, (No = 0)

(18.85)

Comparing this with Eq. (18.82), we obtain the y parameters of the net-
work as

y21

YL

=




No

De

, (Ne = 0)

Ne

Do

, (No = 0)

(18.86)

and

y22

YL

=




Do

De

, (Ne = 0)

De

Do

, (No = 0)

(18.87)

The following example illustrates the procedure.

E X A M P L E 1 8 . 1 8

Design the LC ladder network terminated with a 1-� resistor that has the
normalized transfer function

H(s) = 1

s3 + 2s2 + 2s + 1
(This transfer function is for a Butterworth lowpass filter.)

Solution:

The denominator shows that this is a third-order network, so that the
LC ladder network is shown in Fig. 18.63(a), with two inductors and
one capacitor. Our goal is to determine the values of the inductors and
capacitor. To achieve this, we group the terms in the denominator into
odd or even parts:

D(s) = (s3 + 2s) + (2s2 + 1)

so that

H(s) = 1

(s3 + 2s) + (2s2 + 1)

Divide the numerator and denominator by the odd part of the denominator
to get

H(s) =
1

s3 + 2s

1 + 2s2 + 1

s3 + 2s

(18.18.1)
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From Eq. (18.82), when YL = 1,

H(s) = −y21

1 + y22
(18.18.2)

Comparing Eqs. (18.18.1) and (18.18.2), we obtain

y21 = − 1

s3 + 2s
, y22 = 2s2 + 1

s3 + 2s

Any realization of y22 will automatically realize y21, since y22 is the output
driving-point admittance, that is, the output admittance of the network
with the input port short-circuited. We determine the values of L and C

in Fig. 18.63(a) that will give us y22. Recall that y22 is the short-circuit
output admittance. So we short-circuit the input port as shown in Fig.
18.63(b). First we get L3 by letting

ZA = 1

y22
= s3 + 2s

2s2 + 1
= sL3 + ZB (18.18.3)

By long division,

ZA = 0.5s + 1.5s

2s2 + 1
(18.18.4)

Comparing Eqs. (18.18.3) and (18.18.4) shows that

L3 = 0.5 H, ZB = 1.5s

2s2 + 1

Next, we seek to get C2 as in Fig. 18.63(c) and let

YB = 1

ZB

= 2s2 + 1

1.5s
= 1.333s + 1

1.5s
= sC2 + YC

from which C2 = 1.33 F and

YC = 1

1.5s
= 1

sL1
�⇒ L1 = 1.5 H

Thus, the LC ladder network in Fig. 18.63(a) with L1 = 1.5 H, C2 =
1.333 F, and L3 = 0.5 H has been synthesized to provide the given transfer
function H(s). This result can be confirmed by finding H(s) = V2/V1

in Fig. 18.63(a) or by confirming the required y21.

V2 1 ΩC2

(a)

L1 L3

+

−

V1

+

−

C2

(b)

L1 L3

ZB

y22 = 

C2

(c)

L1 L3

YC

1
ZA

YB = 1
ZB

Figure 18.63 For Example 18.18.

P R A C T I C E P R O B L E M 1 8 . 1 8

Realize the following transfer function using an LC ladder network ter-
minated in a 1-� resistor:

H(s) = 2

s3 + s2 + 4s + 2
Answer: Ladder network in Fig. 18.63(a) with L1 = L3 = 1.0 H and
C2 = 0.5 F.

18.10 SUMMARY
1. A two-port network is one with two ports (or two pairs of access

terminals), known as input and output ports.



834 PART 3 Advanced Circuit Analyses

2. The six parameters used to model a two-port network are the imped-
ance [z], admittance [y], hybrid [h], inverse hybrid [g], transmission
[T], and inverse transmission [t] parameters.

3. The parameters relate the input and output port variables as[
V1

V2

]
= [z]

[
I1

I2

]
,

[
I1

I2

]
= [y]

[
V1

V2

]
,

[
V1

I2

]
= [h]

[
I1

V2

]
[

I1

V2

]
= [g]

[
V1

I2

]
,

[
V1

I1

]
= [T]

[
V2

−I2

]
,

[
V2

I2

]
= [t]

[
V1

−I1

]

4. The parameters can be calculated or measured by short-circuiting or
open-circuiting the appropriate input or output port.

5. A two-port network is reciprocal if z12 = z21, y12 = y21, h12 = −h21,
g12 = −g21, �T = 1 or �t = 1. Networks that have dependent
sources are not reciprocal.

6. Table 18.1 provides the relationships between the six sets of param-
eters. Three important relationships are

[y] = [z]−1, [g] = [h]−1, [t] �= [T]−1

7. Two-port networks may be connected in series, in parallel, or in cas-
cade. In the series connection the z parameters are added, in the
parallel connection the y parameters are added, and in the cascade
connection the transmission parameters are multiplied in the correct
order.

8. One can use PSpice to compute the two-port parameters by con-
straining the appropriate port variables with a 1-A or 1-V source
while using an open or short circuit to impose the other necessary
constraints.

9. The network parameters are specifically applied in the analysis of
transistor circuits and the synthesis of ladder LC networks. Network
parameters are especially useful in the analysis of transistor circuits
because these circuits are easily modeled as two-port networks. LC

ladder networks, important in the design of passive lowpass filters,
resemble cascaded T networks and are therefore best analyzed as
two-ports.

R E V I EW QU E S T I ON S

18.1 For the single-element two-port network in Fig.
18.64(a), z11 is:
(a) 0 (b) 5 (c) 10
(d) 20 (e) nonexistent 10 Ω

(a)

10 Ω

(b)

Figure 18.64 For Review Questions.
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18.2 For the single-element two-port network in Fig.
18.64(b), z11 is:
(a) 0 (b) 5 (c) 10
(d) 20 (e) nonexistent

18.3 For the single-element two-port network in Fig.
18.64(a), y11 is:
(a) 0 (b) 5 (c) 10
(d) 20 (e) nonexistent

18.4 For the single-element two-port network in Fig.
18.64(b), h21 is:
(a) −0.1 (b) −1 (c) 0
(d) 10 (e) nonexistent

18.5 For the single-element two-port network in Fig.
18.64(a), B is:
(a) 0 (b) 5 (c) 10
(d) 20 (e) nonexistent

18.6 For the single-element two-port network in Fig.
18.64(b), B is:
(a) 0 (b) 5 (c) 10
(d) 20 (e) nonexistent

18.7 When port 1 of a two-port circuit is short-circuited,
I1 = 4I2 and V2 = 0.25I2. Which of the following
is true?
(a) y11 = 4 (b) y12 = 16
(c) y21 = 16 (d) y22 = 0.25

18.8 A two-port is described by the following equations:

V1 = 50I1 + 10I2

V2 = 30I1 + 20I2

Which of the following is not true?
(a) z12 = 10 (b) y12 = −0.0143
(c) h12 = 0.5 (d) B = 50

18.9 If a two-port is reciprocal, which of the following is
not true?
(a) z21 = z12 (b) y21 = y12

(c) h21 = h12 (d) AD = BC + 1

18.10 If the two single-element two-port networks in Fig.
18.64 are cascaded, then D is:
(a) 0 (b) 0.1 (c) 2
(d) 10 (e) nonexistent

Answers: 18.1c, 18.2e, 18.3e, 18.4b, 18.5a, 18.6c, 18.7b, 18.8d,
18.9c, 18.10c.

P RO B L E M S
Section 18.2 Impedance Parameters

18.1 Obtain the z parameters for the network in Fig.
18.65.

2 Ω

4 Ω1 Ω

6 Ω

Figure 18.65 For Probs. 18.1 and 18.22.

18.2∗ Find the impedance parameter equivalent of the
network in Fig. 18.66.

1 Ω

1 Ω 1 Ω 1 Ω1 Ω

1 Ω 1 Ω 1 Ω1 Ω

1 Ω 1 Ω

Figure 18.66 For Prob. 18.2.

18.3 Determine the z parameters of the two-ports shown
in Fig. 18.67.

1 Ωj1 Ω

–j1 Ω

(a)

1 Ω

j1 Ω

1 Ω

–j1 Ω

–j1 Ω

(b)

Figure 18.67 For Prob. 18.3.

∗An asterisk indicates a challenging problem.
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18.4 Calculate the z parameters for the circuit in Fig.
18.68.

–j5 Ω12 Ω

j10 Ω

Figure 18.68 For Prob. 18.4.

18.5 Obtain the z parameters for the network in Fig.
18.69 as functions of s.

1 F1 F

1 Ω 1 H

1 Ω

Figure 18.69 For Prob. 18.5.

18.6 Obtain the z parameters for the circuit in Fig. 18.70.

0.5V2 V2V1

20 Ω10 Ω

30 Ω

+

−

+

−

Figure 18.70 For Prob. 18.6.

18.7 Find the impedance-parameter equivalent of the
circuit in Fig. 18.71.

Vx

4 Ω1 Ω

2 Ω

1 Ω
2Vx

–
+

+

−

Figure 18.71 For Prob. 18.7.

18.8 Construct a circuit that realizes the following z
parameters

[z] =
[

10 4
4 6

]

18.9 Construct a two-port that realizes each of the
following z parameters.

(a) [z] =
[

25 20
5 10

]
�

(b) [z] =




1 + 3

s

1

s

1

s
2s + 1

s


 �

18.10 For a two-port network,

[z] =
[

12 4

4 6

]
�

find V2/V1 if the network is terminated with a 2-�
resistor.

18.11 If [z] =
[

50

30

10

20

]
� in the two-port of Fig. 18.72,

calculate the average power delivered to the 100-�
resistor.

Two-port
network

40 Ω

100 Ω+
−120   0° V rms

Figure 18.72 For Prob. 18.11.

18.12 For the two-port network shown in Fig. 18.73, show
that

ZTh = z22 − z12z21

z11 + Zs

and

VTh = z21

z11 + Zs

Vs

V2
Two-port
network

+
−

I1 I2

+

−

V1

Zs

ZLVs

+

−

Figure 18.73 For Probs. 18.12 and 18.33.

18.13 For the circuit in Fig. 18.74, at ω = 2 rad/s,
z11 = 10 �, z12 = z21 = j6 �, z22 = 4 �. Obtain
the Thevenin equivalent circuit at terminals a-b and
calculate vo.

[z]

5 Ω

2 H

a

b

vo+
−15 cos 2t V

+

−

Figure 18.74 For Prob. 18.13.
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Section 18.3 Admittance Parameters

18.14∗ Determine the z and y parameters for the circuit in
Fig. 18.75.

4 Ω

6 Ω

2 Ω

8 Ω

Figure 18.75 For Prob. 18.14.

18.15 Calculate the y parameters for the two-port in Fig.
18.76.

3 Ω

3 Ω6 Ω

6 Ω

Figure 18.76 For Probs. 18.15 and 18.30.

18.16 Find the y parameters of the two-port in Fig. 18.77
in terms of s.

1 H

1 Ω

1 Ω

1 F

Figure 18.77 For Prob. 18.16.

18.17 Obtain the admittance parameter equivalent circuit
of the two-port in Fig. 18.78.

10 Ω V2V1

0.2V1

5 Ω

+

−

+

−

Figure 18.78 For Prob. 18.17.

18.18 Determine the y parameters for the two-ports in Fig.
18.79.

0.5VxVx 1 Ω

3 Ω2 Ω

(a)

+

−

–j1 Ω

j1 Ω

1 Ω1 Ω

(b)

Figure 18.79 For Prob. 18.18.

18.19 Find the resistive circuit that represents these y
parameters:

[y] =




1

2
−1

4

−1

4

3

8




18.20 Calculate [y] for the two-port in Fig. 18.80.

Vx 1 Ω

2Vx
2 Ω

4 Ω

+

−

Figure 18.80 For Prob. 18.20.

18.21 Find the y parameters for the circuit in Fig. 18.81.

V1

I1 I2

+

−

+

−

V210 Ω

4 Ω

0.1V2 20I1+
−

Figure 18.81 For Prob. 18.21.

18.22 In the circuit of Fig. 18.65, the input port is
connected to a 1-A dc current source. Calculate the
power dissipated by the 2-� resistor by using the y
parameters. Confirm your result by direct circuit
analysis.
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18.23 In the bridge circuit of Fig. 18.82, I1 = 10 A and
I2 = −4 A.
(a) Find V1 and V2 using y parameters.
(b) Confirm the results in part (a) by direct circuit

analysis.

I1 V21 Ω

3 Ω

3 Ω

3 Ω

+

−

V1

+

−

I2

Figure 18.82 For Prob. 18.23.

Section 18.4 Hybrid Parameters

18.24 Find the h parameters for the networks in Fig. 18.83.

60 Ω

40 Ω

(a)

20 Ω

(b)

10 Ω

Figure 18.83 For Prob. 18.24.

18.25 Determine the hybrid parameters for the network in
Fig. 18.84.

V1

I1 I2

+

−

+

−

V2

1 Ω

2 Ω 4I1

2 Ω 1 Ω

Figure 18.84 For Prob. 18.25.

18.26 Find the h and g parameters of the two-port network
in Fig. 18.85 as functions of s.

1 Ω 1 H 1 H

1 F

Figure 18.85 For Prob. 18.26.

18.27 Obtain the h and g parameters of the two-port in
Fig. 18.86.

10 Ω

100 ΩVx 10Vx
+
−

50 Ω

300 Ω

+

−

Figure 18.86 For Prob. 18.27.

18.28 Determine the h parameters for the network in Fig.
18.87.

1:2
1 Ω 4 Ω

Figure 18.87 For Prob. 18.28.

18.29 For the two-port in Fig. 18.88,

[h] =
[

16 � 3

−2 0.01 S

]

Find:
(a) V2/V1 (b) I2/I1

(c) I1/V1 (d) V2/I1

I1 I2

+

−

V2

+

−

V1

4 Ω

25 Ω[h]+
−10 V

Figure 18.88 For Prob. 18.29.

18.30 The input port of the circuit in Fig. 18.76 is
connected to a 10-V dc voltage source while the
output port is terminated by a 5-� resistor. Find the
voltage across the 5-� resistor by using h
parameters of the circuit. Confirm your result by
using direct circuit analysis.
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18.31 For the circuit in Fig. 18.89, h11 = 800 �,
h12 = 10−4, h21 = 50, h22 = 0.5 × 10−5 S. Find the
input impedance Zin.

200 Ω

50 kΩ[h]+
−Vs

Zin

Figure 18.89 For Prob. 18.31.

18.32 Find the g parameters for the circuit in Fig. 18.90.

–j6 Ω j10 Ω

12 Ω

Figure 18.90 For Prob. 18.32.

18.33 For the two-port in Fig. 18.73, show that

I2

I1
= −g21

g11ZL + �g

V2

Vs

= g21ZL

(1 + g11Zs )(g22 + ZL) − g21g12Zs

where �g is the determinant of [g] matrix.

18.34 Find the network which realizes each of the
following g parameters:

(a)

[
0.01 −0.5

0.5 20

]
(b)

[
0.1 0

12 s + 2

]

Section 18.5 Transmission Parameters

18.35 Find the transmission parameters for the
single-element two-port networks in Fig. 18.91.

Y

(b)

Z

(a)

Figure 18.91 For Prob. 18.35.

18.36 Determine the transmission parameters of the circuit
in Fig. 18.92.

–j10 Ω

j15 Ω

–j20 Ω

20 Ω

Figure 18.92 For Prob. 18.36.

18.37 Find the transmission parameters for the circuit in
Fig. 18.93.

1 Ω

2 Ω 4Ix

Ix

1 Ω

Figure 18.93 For Prob. 18.37.

18.38 For a two-port, let A = 4, B = 30 �, C = 0.1 S,
and D = 1.5. Calculate the input impedance
Zin = V1/I1, when:
(a) the output terminals are short-circuited,
(b) the output port is open-circuited,
(c) the output port is terminated by a 10-� load.

18.39 Using impedances in the s domain, obtain the
transmission parameters for the circuit in Fig. 18.94.

1 F

1 F

1 Ω 1 Ω1 F

Figure 18.94 For Prob. 18.39.

18.40 Find the t parameters of the network in Fig. 18.95 as
functions of s.

1 H

1 Ω

1 F

Figure 18.95 For Prob. 18.40.
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18.41 Obtain the t parameters for the network in Fig.
18.96.

j1 Ω
–j3 Ω

j1 Ωj2 Ω

1 Ω

Figure 18.96 For Prob. 18.41.

Section 18.6 Relationships between Parameters
18.42 (a) For the T network in Fig. 18.97, show that the h

parameters are:

h11 = R1 + R2R3

R1 + R3
, h12 = R2

R2 + R3

h21 = − R2

R2 + R3
, h22 = 1

R2 + R3

(b) For the same network, show that the
transmission parameters are:

A = 1 + R1

R2
, B = R3 + R1

R2
(R2 + R3)

C = 1

R2
, D = 1 + R3

R2

R2

R1 R3

Figure 18.97 For Prob. 18.42.

18.43 Through derivation, express the z parameters in
terms of the ABCD parameters.

18.44 Show that the transmission parameters of a two-port
may be obtained from the y parameters as:

A = −y22

y21
, B = − 1

y21

C = −�y

y21
, D = −y11

y21

18.45 Prove that the g parameters can be obtained from the
z parameters as

g11 = 1

z11
, g12 = − z12

z11

g21 = z21

z11
, g22 = �z

z11

18.46 Given the transmission parameters

[T] =
[

3 20
1 7

]

obtain the other five two-port parameters.

18.47 A two-port is described by

V1 = I1 + 2V2, I2 = −2I1 + 0.4V2

Find: (a) the y parameters, (b) the transmission
parameters.

18.48 Given that

[g] =
[

0.06 S −0.4
0.2 2 �

]

determine:
(a) [z] (b) [y] (c) [h] (d) [T]

18.49 Let [y] =
[

0.6

−0.1

−0.2

0.5

]
(S). Find:

(a) [z] (b) [h] (c) [t]

18.50 For the bridge circuit in Fig. 18.98, obtain:
(a) the z parameters
(b) the h parameters
(c) the transmission parameters

1 Ω

1 Ω1 Ω

1 Ω

Figure 18.98 For Prob. 18.50.

18.51 Find the z parameters of the op amp circuit in Fig.
18.99. Obtain the transmission parameters.

V1

I1 I2

+

−

+

−

V2

10 kΩ

30 kΩ

40 kΩ

50 kΩ

20 kΩ

+
−

Figure 18.99 For Prob. 18.51.
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18.52 Determine the y parameters at ω = 1,000 rad/s for
the op amp circuit in Fig. 18.100. Find the
corresponding h parameters.

V1

I1 I2

+

−

+

−
V2

20 kΩ

1 mF

10 kΩ

+
−

40 kΩ

Figure 18.100 For Prob. 18.52.

Section 18.7 Interconnection of Networks

18.53 What is the y parameter presentation of the circuit in
Fig. 18.101?

V1

I1 I2

+

−

+

−

V2

2 Ω

1 Ω
1 Ω

2 Ω

Figure 18.101 For Prob. 18.53.

18.54 In the two-port of Fig. 18.102, let y12 = y21 = 0,
y11 = 2 mS, and y22 = 10 mS. Find Vo/Vs .

100 Ω

+

−

Vo

60 Ω

300 Ω

[y]

+
−Vs

Figure 18.102 For Prob. 18.54.

18.55 Figure 18.103 shows two two-ports in series. Find
the transmission parameters.

1 Ω

1 Ω

1 Ω 1 Ω

Figure 18.103 For Prob. 18.55.

18.56 Obtain the h parameters for the network in Fig.
18.104.

2 Ω 2 Ω

1 Ω
1 Ω 1 Ω

2 Ω

Figure 18.104 For Prob. 18.56.

18.57 Determine the y parameters of the two two-ports in
parallel shown in Fig. 18.105.

–j10 Ω

j10 Ω –j5 Ω

j20 Ω30 Ω

20 Ω

Figure 18.105 For Prob. 18.57.

18.58∗ The circuit in Fig. 18.106 may be regarded as two
two-ports connected in parallel. Obtain the y
parameters as functions of s.

2:1

1 H

1 F2 Ω

2 Ω

Figure 18.106 For Prob. 18.58.
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18.59∗ For the parallel-series connection of the two
two-ports in Fig. 18.107, find the g parameters.

−

+
V1

−

+

V2

I1

I2

z11 = 25 Ω
z12 = 20 Ω
z21 = 5 Ω
z22 = 10 Ω

z11 = 50 Ω
z12 = 25 Ω
z21 = 25 Ω
z22 = 30 Ω

Figure 18.107 For Prob. 18.59.

18.60∗ A series-parallel connection of two two-ports is
shown in Fig. 18.108. Determine the z parameter
representation of the network.

−

+
V2

−

+

V1

I1

I2

h11 = 25 Ω
h12 = 4
h21 = –4
h22 = 1 S

h11 = 16 Ω
h12 = 1
h21 = –1
h22 = 0.5 S

Figure 18.108 For Prob. 18.60.

18.61 Find the transmission parameters for the cascaded
two-ports shown in Fig. 18.109. Obtain Zin = V1/I1

when the output is short-circuited.

1 Ω

1 Ω1 Ω 1 Ω

1 Ω

1 Ω

Figure 18.109 For Prob. 18.61.

18.62∗ Determine the ABCD parameters of the circuit in
Fig. 18.110 as functions of s.
(Hint: Partition the circuit into subcircuits and
cascade them using the results of Prob. 18.35.)

1 Ω1 F1 Ω

1 H

1 F

1 H

Figure 18.110 For Prob. 18.62.

Section 18.8 Computing Two-Port Parameters
Using PSpice

18.63 Use PSpice to compute the y parameters for the
circuit in Fig. 18.111.

30 Ω 50 Ω10 Ω

40 Ω20 Ω

Figure 18.111 For Prob. 18.63.

18.64 Using PSpice, find the h parameters of the network
in Fig. 18.112. Take ω = 1 rad/s.

1 Ω

2 Ω

1 F

1 H

Figure 18.112 For Prob. 18.64.

18.65 Use PSpice to determine the z parameters of the
circuit in Fig. 18.113. Take ω = 2 rad/s.

1 Ω

2 H

2 Ω 0.25 F

4 Ω

Figure 18.113 For Prob. 18.65.

18.66 Rework Prob. 18.7 using PSpice.

18.67 Repeat Prob. 18.20 using PSpice.

18.68 Use PSpice to rework Prob. 18.25.

18.69 Using PSpice, find the transmission parameters for
the network in Fig. 18.114.

1 Ω

2 Ω
2

Vo

Vo2 Ω

1 Ω 1 Ω

+ −

Figure 18.114 For Prob. 18.69.
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18.70 At ω = 1 rad/s, find the transmission parameters of
the network in Fig. 18.115 using PSpice.

1 Ω

1 H

1 F1 F1 H

1 Ω

Figure 18.115 For Prob. 18.70.

18.71 Obtain the g parameters for the network in Fig.
18.116 using PSpice.

ix

1 Ω 2 A 5ix

3 Ω2 Ω

Figure 18.116 For Prob. 18.71.

18.72 For the circuit shown in Fig. 18.117, use PSpice to
obtain the t parameters. Assume ω = 1 rad/s.

1 Ω1 Ω

j2 Ω

–j2 Ω –j2 Ω

1 Ω

Figure 18.117 For Prob. 18.72.

Section 18.9 Applications

18.73 Using the y parameters, derive formulas for Zin,
Zout, Ai , and Av for the common-emitter transistor
circuit.

18.74 A transistor has the following parameters in a
common-emitter circuit:

hie = 2640 �, hre = 2.6 × 10−4

hf e = 72, hoe = 16 µS, RL = 100 k�

What is the voltage amplification of the transistor?
How many decibels gain is this?

18.75 A transistor with

hf e = 120, hie = 2 k�

hre = 10−4, hoe = 20 µS

is used for a CE amplifier to provide an input
resistance of 1.5 k�.

(a) Determine the necessary load resistance RL.

(b) Calculate Av , Ai , and Zout if the amplifier is
driven by a 4 mV source having an internal
resistance of 600 �.

(c) Find the voltage across the load.

18.76 For the transistor network of Fig. 18.118,

hf e = 80, hie = 1.2 k�

hre = 1.5 × 10−4, hoe = 20 µS

Determine the following:
(a) voltage gain Av = Vo/Vs ,
(b) current gain Ai = Io/Ii ,
(c) input impedance Zin,
(d) output impedance Zout.

Vo

Vs

Io

Ii

2.4 kΩ
2 kΩ

+
−

+

−

Figure 18.118 For Prob. 18.76.

18.77∗ Determine Av , Ai , Zin, and Zout for the amplifier
shown in Fig. 18.119. Assume that

hie = 4 k�, hre = 10−4

hf e = 100, hoe = 30 µS

Vs

4 kΩ

240 Ω

1.2 kΩ

+
−

Figure 18.119 For Prob. 18.77.

18.78∗ Calculate Av , Ai , Zin, and Zout for the transistor
network in Fig. 18.120. Assume that

hie = 2 k�, hre = 2.5 × 10−4

hf e = 150, hoe = 10 µS

Vs

3.8 kΩ

0.2 kΩ

1 kΩ

+
−

Figure 18.120 For Prob. 18.78.
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18.79 A transistor in its common-emitter mode is specified
by

[h] =
[

200 � 0
100 10−6 S

]
Two such identical transistors are connected in
cascade to form a two-stage amplifier used at audio
frequencies. If the amplifier is terminated by a 4-k�
resistor, calculate the overall Av and Zin.

18.80 Realize an LC ladder network such that

y22 = s3 + 5s

s4 + 10s2 + 8
18.81 Design an LC ladder network to realize a lowpass

filter with transfer function

H(s) = 1

s4 + 2.613s2 + 3.414s2 + 2.613s + 1

18.82 Synthesize the transfer function

H(s) = Vo

Vs

= s3

s3 + 6s + 12s + 24

using the LC ladder network in Fig. 18.121.

Vo 1 ΩL2

C3C1

+

−

Vs

+

−

Figure 18.121 For Prob. 18.82.

COM P R E H EN S I V E P RO B L E M S

18.83 Assume that the two circuits in Fig. 18.122 are
equivalent. The parameters of the two circuits must
be equal. Using this factor and the z parameters,
derive Eqs. (9.67) and (9.68).

(a)

n
a

b

c
Z2

Z3

Z1

d

(b)

a

b

c
Zb

Zc Za

d

Figure 18.122 For Prob. 18.83.

http://www.mhhe.com/engcs/electrical/alexander/student/olc/ch18_ppt.htm
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