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C H A P T E R

THE LAPLACE TRANSFORM

1 5

A man is like a function whose numerator is what he is and whose
denominator is what he thinks of himself. The larger the denominator the
smaller the fraction.

—I. N. Tolstroy

Historical Profiles
Pierre Simon Laplace (1749–1827), a French astronomer and mathematician, first
presented the transform that bears his name and its applications to differential equations
in 1779.

Born of humble origins in Beaumont-en-Auge, Normandy, France, Laplace
became a professor of mathematics at the age of 20. His mathematical abilities inspired
the famous mathematician Simeon Poisson, who called Laplace the Isaac Newton
of France. He made important contributions in potential theory, probability theory,
astronomy, and celestial mechanics. He was widely known for his work,Traite de
Mecanique Celeste (Celestial Mechanics), which supplemented the work of New-
ton on astronomy. The Laplace transform, the subject of this chapter, is named after him.

Samuel F. B. Morse (1791–1872), an American painter, invented the telegraph, the first
practical, commercialized application of electricity.

Morse was born in Charlestown, Massachusetts and studied at Yale and the Royal
Academy of Arts in London to become an artist. In the 1830s, he became intrigued
with developing a telegraph. He had a working model by 1836 and applied for a patent
in 1838. The U.S. Senate appropriated funds for Morse to construct a telegraph line
between Baltimore and Washington, D.C. On May 24, 1844, he sent the famous first
message: “What hath God wrought!” Morse also developed a code of dots and dashes
for letters and numbers, for sending messages on the telegraph. The development of
the telegraph led to the invention of the telephone.
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15.1 INTRODUCTION
Our frequency-domain analysis has been limited to circuits with sinu-
soidal inputs. In other words, we have assumed sinusoidal time-varying
excitations in all our non-dc circuits. This chapter introduces theLaplace
transform, a very powerful tool for analyzing circuits with sinusoidalor
nonsinusoidal inputs.

The idea of transformation should be familiar by now. When using
phasors for the analysis of circuits, we transform the circuit from the time
domain to the frequency or phasor domain. Once we obtain the phasor
result, we transform it back to the time domain. The Laplace transform
method follows the same process: we use the Laplace transformation
to transform the circuit from the time domain to the frequency domain,
obtain the solution, and apply the inverse Laplace transform to the result
to transform it back to the time domain.

The Laplace transform is significant for a number of reasons. First,
it can be applied to a wider variety of inputs than phasor analysis. Second,
it provides an easy way to solve circuit problems involving initial con-
ditions, because it allows us to work with algebraic equations instead of
differential equations. Third, the Laplace transform is capable of provid-
ing us, in one single operation, the total response of the circuit comprising
both the natural and forced responses.

We begin with the definition of the Laplace transform and use it to
derive the transforms of some basic, important functions. We consider
some properties of the Laplace transform that are very helpful in circuit
analysis. We then consider the inverse Laplace transform, transfer func-
tions, and convolution. Finally, we examine how the Laplace transform
is applied in circuit analysis, network stability, and network synthesis.

15.2 DEFINITION OF THE LAPLACE TRANSFORM
Given a functionf (t), its Laplace transform, denoted byF(s) orL[f (t)],
is given by

L[f (t)] = F(s) =
∫ ∞

0−
f (t)e−st dt (15.1)

wheres is a complex variable given by

s = σ + jω (15.2)

Since the argumentst of the exponente in Eq. (15.1) must be dimension-
less, it follows thats has the dimensions of frequency and units of inverse
seconds (s−1). In Eq. (15.1), the lower limit is specified as 0− to indicate
a time just beforet = 0. We use 0− as the lower limit to include the origin
and capture any discontinuity off (t) at t = 0; this will accommodate
functions—such as singularity functions—that may be discontinuous at
t = 0.For an ordinary function f (t), the lower limit can

be replaced by 0.

The Laplace transform is an integral transformation of a function f (t) from the time
domain into the complex frequency domain, giving F(s).
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We assume in Eq. (15.1) thatf (t) is ignored fort < 0. To ensure
that this is the case, a function is often multiplied by the unit step. Thus,
f (t) is written asf (t)u(t) or f (t), t ≥ 0.

The Laplace transform in Eq. (15.1) is known as theone-sided
(or unilateral ) Laplace transform. Thetwo-sided (or bilateral ) Laplace
transform is given by

F(s) =
∫ ∞

−∞
f (t)e−st dt (15.3)

The one-sided Laplace transform in Eq. (15.1), being adequate for our
purposes, is the only type of Laplace transform that we will treat in this
book.

| e jωt| =
√
cos2 ωt + sin2 ωt = 1

A function f (t) may not have a Laplace transform. In order for
f (t) to have a Laplace transform, the integral in Eq. (15.1) must converge
to a finite value. Since|ejωt | = 1 for any value oft , the integral converges
when ∫ ∞

0−
e−σ t |f (t)| dt < ∞ (15.4)

for some real valueσ = σc. Thus, the region of convergence for the
Laplace transform is Re(s) = σ > σc, as shown in Fig. 15.1. In this
region, |F(s)| < ∞ andF(s) exists. F(s) is undefined outside the
region of convergence. Fortunately, all functions of interest in circuit
analysis satisfy the convergence criterion in Eq. (15.4) and have Laplace
transforms. Therefore, it is not necessary to specifyσc in what follows.

A companion to the direct Laplace transform in Eq. (15.1) is the
inverse Laplace transform given by

L−1[F(s)] = f (t) = 1

2πj

∫ σ1+j∞

σ1−j∞
F(s)est ds (15.5)

where the integration is performed along a straight line (σ1 + jω, −∞ <

ω < ∞) in the region of convergence,σ1 > σc. See Fig. 15.1. The
direct application of Eq. (15.5) involves some knowledge about complex
analysis beyond the scope of this book. For this reason, we will not use
Eq. (15.5) to find the inverse Laplace transform. We will rather use a
look-up table, to be developed in Section 15.3. The functionsf (t) and
F(s) are regarded as a Laplace transform pair where

f (t) ⇐⇒ F(s) (15.6)

meaning that there is one-to-one correspondence betweenf (t) andF(s).
The following examples derive the Laplace transforms of some important
functions.

jv

0 sc s1 s

Figure 15.1 Region of convergence for
the Laplace transform.

E X A M P L E 1 5 . 1

Determine the Laplace transform of each of the following functions:
(a) u(t), (b) e−atu(t), a ≥ 0, and (c) δ(t).
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Solution:

(a) For the unit step function u(t), shown in Fig. 15.2(a), the Laplace
transform is

L[u(t)] =
∫ ∞

0−
1e−st dt = −1

s
e−st

∣∣∣∣
∞

0

= −1

s
(0)+ 1

s
(1) = 1

s

(15.1.1)

(b) For the exponential function, shown in Fig. 15.2(b), the Laplace trans-
form is

L[e−atu(t)] =
∫ ∞

0−
e−at e−st dt

= − 1

s + a e
−(s+a)t

∣∣∣∣
∞

0

= 1

s + a

(15.1.2)

(c) For the unit impulse function, shown in Fig. 15.2(c),

L[δ(t)] =
∫ ∞

0−
δ(t)e−st dt = e−0 = 1 (15.1.3)

since the impulse function δ(t) is zero everywhere except at t = 0. The
sifting property in Eq. (7.33) has been applied in Eq. (15.1.3).

u(t)

t

1

0

(a)

e−atu(t)

t

1

0

(b)

d(t)

t

1

0

(c)

Figure 15.2 For Example 15.1: (a) unit step function, (b) exponential function,
(c) unit impulse function.

P R A C T I C E P R O B L E M 1 5 . 1

Find the Laplace transforms of these functions: r(t) = tu(t), that is, the
ramp function; and eatu(t).

Answer: 1/s2, 1/(s − a).

E X A M P L E 1 5 . 2

Determine the Laplace transform of f (t) = sinωtu(t).

Solution:

Using Eq. (B.26) in addition to Eq. (15.1), we obtain the Laplace trans-
form of the sine function as
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F(s) = L[sinωt] =
∫ ∞

0
(sinωt)e−st dt =

∫ ∞

0

(
ejωt − e−jωt

2j

)
e−st dt

= 1

2j

∫ ∞

0
(e−(s−jω)t − e−(s+jω)t ) dt

= 1

2j

(
1

s − jω − 1

s + jω
)

= ω

s2 + ω2

P R A C T I C E P R O B L E M 1 5 . 2

Find the Laplace transform of f (t) = cosωtu(t).

Answer: s/(s2 + ω2).

15.3 PROPERTIES OF THE LAPLACE TRANSFORM
The properties of the Laplace transform help us to obtain transform pairs
without directly using Eq. (15.1) as we did in Examples 15.1 and 15.2. As
we derive each of these properties, we should keep in mind the definition
of the Laplace transform in Eq. (15.1).

Linearity

If F1(s) and F2(s) are, respectively, the Laplace transforms of f1(t) and
f2(t), then

L[a1f1(t)+ a2f2(t)] = a1F1(s)+ a2F2(s) (15.7)

where a1 and a2 are constants. Equation 15.7 expresses the linearity
property of the Laplace transform. The proof of Eq. (15.7) follows readily
from the definition of the Laplace transform in Eq. (15.1).

For example, by the linearity property in Eq. (15.7), we may write

L[coswt] = L
[

1

2
(ejωt + e−jωt )

]
= 1

2
L[ejωt ] + 1

2
L[e−jωt ] (15.8)

But from Example 15.1(b), L[e−at ] = 1/(s + a). Hence,

L[coswt] = 1

2

(
1

s − jω + 1

s + jω
)

= s

s2 + ω2
(15.9)

Scaling

If F(s) is the Laplace transform of f (t), then

L[f (at)] =
∫ ∞

0
f (at)e−st dt (15.10)

where a is a constant and a > 0. If we let x = at , dx = a dt , then

L[f (at)] =
∫ ∞

0
f (x)e−x(s/a)

dx

a
= 1

a

∫ ∞

0
f (x)e−x(s/a) dx (15.11)
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Comparing this integral with the definition of the Laplace transform in
Eq. (15.1) shows that s in Eq. (15.1) must be replaced by s/a while the
dummy variable t is replaced by x. Hence, we obtain the scaling property
as

L[f (at)] = 1

a
F
( s
a

)
(15.12)

For example, we know from Example 15.2 that

L[sinωt] = ω

s2 + ω2
(15.13)

Using the scaling property in Eq. (15.12),

L[sin 2ωt] = 1

2

ω

(s/2)2 + ω2
= 2ω

s2 + 4ω2
(15.14)

which may also be obtained from Eq. (15.13) by replacing ω with 2ω.

Time Shift

If F(s) is the Laplace transform of f (t), then

L[f (t − a)u(t − a)] =
∫ ∞

0
f (t − a)u(t − a)e−st dt

a ≥ 0
(15.15)

But u(t − a) = 0 for t < a and u(t − a) = 1 for t > a. Hence,

L[f (t − a)u(t − a)] =
∫ ∞

a

f (t − a)e−st dt (15.16)

If we let x = t − a, then dx = dt and t = x + a. As t → a, x → 0 and
as t → ∞, x → ∞. Thus,

L[f (t − a)u(t − a)] =
∫ ∞

0
f (x)e−s(x+a) dx

= e−as
∫ ∞

0
f (x)e−sx dx = e−asF (s)

or

L[f (t − a)u(t − a)] = e−asF (s) (15.17)

In other words, if a function is delayed in time by a, the result in the s
domain is multiplying the Laplace transform of the function (without the
delay) by e−as . This is called the time-delay or time-shift property of the
Laplace transform.

As an example, we know from Eq. (15.9) that

L[cosωt] = s

s2 + ω2

Using the time-shift property in Eq. (15.17),

L[cosω(t − a)u(t − a)] = e−as
s

s2 + ω2
(15.18)



CHAPTER 15 The Laplace Transform 651

Frequency Shift

If F(s) is the Laplace transform of f (t), then

L[e−atf (t)] =
∫ ∞

0
e−atf (t)e−st dt

=
∫ ∞

0
f (t)e−(s+a)t dt = F(s + a)

or

L[e−atf (t)] = F(s + a) (15.19)

That is, the Laplace transform of e−atf (t) can be obtained from the
Laplace transform of f (t) by replacing every s with s+a. This is known
as frequency shift or frequency translation.

As an example, we know that

cosωt ⇐⇒ s

s2 + ω2

and

sinωt ⇐⇒ ω

s2 + ω2

(15.20)

Using the shift property in Eq. (15.19), we obtain the Laplace transform
of the damped sine and damped cosine functions as

L[e−at cosωt] = s + a
(s + a)2 + ω2

(15.21a)

L[e−at sinωt] = ω

(s + a)2 + ω2
(15.21b)

Time Differentiation

Given that F(s) is the Laplace transform of f (t), the Laplace transform
of its derivative is

L
[
df

dt

]
=
∫ ∞

0−

df

dt
e−st dt (15.22)

To integrate this by parts, we let u = e−st , du = −se−st dt, and dv =
(df/dt) dt = df (t), v = f (t). Then

L
[
df

dt

]
= f (t)e−st

∣∣∣∣
∞

0−
−
∫ ∞

0−
f (t)[−se−st ] dt

= 0 − f (0−)+ s
∫ ∞

0−
f (t)e−st dt = sF (s)− f (0−)

or

L[f ′(t)] = sF (s)− f (0−) (15.23)

The Laplace transform of the second derivative of f (t) is a repeated
application of Eq. (15.23) as

L
[
d2f

dt2

]
= sL[f ′(t)] − f ′(0−) = s[sF (s)− f (0−)] − f ′(0−)

= s2F(s)− sf (0−)− f ′(0−)
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or

L[f ′′(t)] = s2F(s)− sf (0−)− f ′(0−) (15.24)

Continuing in this manner, we can obtain the Laplace transform of the
nth derivative of f (t) as

L
[
dnf

dtn

]
= snF (s)− sn−1f (0−)

− sn−2f ′(0−)− · · · − s0f (n−1)(0−)
(15.25)

As an example, we can use Eq. (15.23) to obtain the Laplace trans-
form of the sine from that of the cosine. If we let f (t) = cosωt , then
f (0) = 1 and f ′(t) = −ω sinωt . Using Eq. (15.23) and the scaling
property,

L[sinωt] = − 1

ω
L[f ′(t)] = − 1

ω
[sF (s)− f (0−)]

= − 1

ω

(
s

s

s2 + ω2
− 1

)
= ω

s2 + ω2

(15.26)

as expected.

Time Integration

If F(s) is the Laplace transform of f (t), the Laplace transform of its
integral is

L
[∫ t

0
f (t) dt

]
=
∫ ∞

0−

[∫ t

0
f (x) dx

]
e−st dt (15.27)

To integrate this by parts, we let

u =
∫ t

0
f (x) dx, du = f (t) dt

and

dv = e−st dt, v = −1

s
e−st

Then

L
[∫ t

0
f (t) dt

]
=
[∫ t

0
f (x) dx

](
−1

s
e−st

) ∣∣∣∣
∞

0−

−
∫ ∞

0−

(
−1

s

)
e−stf (t) dt

For the first term on the right-hand side of the equation, evaluating the
term at t = ∞ yields zero due to e−s∞ and evaluating it at t = 0 gives
1

s

∫ 0

0
f (x) dx = 0. Thus, the first term is zero, and

L
[∫ t

0
f (t) dt

]
= 1

s

∫ ∞

0−
f (t)e−st dt = 1

s
F (s)
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or simply,

L
[∫ t

0
f (t) dt

]
= 1

s
F (s) (15.28)

As an example, if we letf (t) = u(t), from Example 15.1(a),F(s) =
1/s. Using Eq. (15.28),

L
[∫ t

0
f (t) dt

]
= L[t] = 1

s

(
1

s

)

Thus, the Laplace transform of the ramp function is

L[t] = 1

s2
(15.29)

Applying Eq. (15.28), this gives

L
[∫ t

0
t dt

]
= L

[
t2

2

]
= 1

s

1

s2

or

L[t2] = 2

s3
(15.30)

Repeated applications of Eq. (15.28) lead to

L[tn] = n!

sn+1
(15.31)

Similarly, using integration by parts, we can show that

L
[∫ t

−∞
f (t) dt

]
= 1

s
F (s)+ 1

s
f −1(0−) (15.32)

where

f −1(0−) =
∫ 0−

−∞
f (t) dt

Frequency Differentiation

If F(s) is the Laplace transform of f (t), then

F(s) =
∫ ∞

0
f (t)e−st dt

Taking the derivative with respect to s,

dF(s)

ds
=
∫ ∞

0
f (t)(−te−st ) dt =

∫ ∞

0
(−tf (t))e−st dt = L[−tf (t)]

and the frequency differentiation property becomes

L[tf (t)] = −dF(s)
ds

(15.33)

Repeated applications of this equation lead to

L[tnf (t)] = (−1)n
dnF (s)

dsn
(15.34)
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For example, we know from Example 15.1(b) that L[e−at ] = 1/
(s + a). Using the property in Eq. (15.33),

L[te−at ] = − d

ds

(
1

s + a
)

= 1

(s + a)2 (15.35)

Note that if a = 0, we obtain L[t] = 1/s2 as in Eq. (15.29), and repeated
applications of Eq. (15.33) will yield Eq. (15.31).

f (t)

0 tT 2T 3T

Figure 15.3 A periodic function.

f1(t)

0 tT

f2(t)

0 tT 2T

f3(t)

0 tT 2T 3T

Figure 15.4 Decomposition of
the periodic function in Fig. 15.2.

Time Periodicity

If function f (t) is a periodic function such as shown in Fig. 15.3, it can
be represented as the sum of time-shifted functions shown in Fig. 15.4.
Thus,

f (t) = f1(t)+ f2(t)+ f3(t)+ · · ·
= f1(t)+ f1(t − T )u(t − T )

+ f1(t − 2T )u(t − 2T )+ · · ·
(15.36)

where f1(t) is the same as the function f (t) gated over the interval 0 <
t < T , that is,

f1(t) = f (t)[u(t)− u(t − T )] (15.37a)

or

f1(t) =
{
f (t), 0 < t < T
0, otherwise

(15.37b)

We now transform each term in Eq. (15.36) and apply the time-shift pro-
perty in Eq. (15.17). We obtain

F(s) = F1(s)+ F1(s)e
−T s + F1(s)e

−2T s + F1(s)e
−3T s + · · ·

= F1(s)[1 + e−T s + e−2T s + e−3T s + · · ·] (15.38)

But

1 + x + x2 + x3 + · · · = 1

1 − x (15.39)

if |x| < 1. Hence,

F(s) = F1(s)

1 − e−T s (15.40)

where F1(s) is the Laplace transform of f1(t); in other words, F1(s) is
the transform f (t) defined over its first period only. Equation (15.40)
shows that the Laplace transform of a periodic function is the transform
of the first period of the function divided by 1 − e−T s .
Initial and Final Values

The initial-value and final-value properties allow us to find the initial value
f (0) and the final value f (∞) of f (t) directly from its Laplace trans-
form F(s). To obtain these properties, we begin with the differentiation
property in Eq. (15.23), namely,

sF (s)− f (0+) = L
[
df

dt

]
=
∫ ∞

0

df

dt
e−st dt (15.41)
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If we let s → ∞, the integrand in Eq. (15.41) vanishes due to the damping
exponential factor, and Eq. (15.41) becomes

lim
s→∞

[
sF (s)− f (0+)

] = 0

or

f (0+) = lim
s→∞ sF (s) (15.42)

This is known as the initial-value theorem. For example, we know from
Eq. (15.21a) that

f (t) = e−2t cos 10t ⇐⇒ F(s) = s + 2

(s + 2)2 + 102
(15.43)

Using the initial-value theorem,

f (0+) = lim
s→∞ sF (s) = lim

s→∞
s2 + 2s

s2 + 4s + 104

= lim
s→∞

1 + 2/s

1 + 4/s + 104/s2
= 1

which confirms what we would expect from the given f (t).
In Eq. (15.41), we let s → 0; then

lim
s→0

[sF (s)− f (0−)] =
∫ ∞

0

df

dt
e0t dt =

∫ ∞

0
df = f (∞)− f (0−)

or

f (∞) = lim
s→0

sF (s) (15.44)

This is referred to as the final-value theorem. In order for the final-value
theorem to hold, all poles of F(s) must be located in the left half of the
s plane (see Fig. 15.1 or Fig. 15.9); that is, the poles must have negative
real parts. The only exception to this requirement is the case in which
F(s) has a simple pole at s = 0, because the effect of 1/s will be nullified
by sF (s) in Eq. (15.44). For example, from Eq. (15.21b),

f (t) = e−2t sin 5t ⇐⇒ F(s) = 5

(s + 2)2 + 52
(15.45)

Applying the final-value theorem,

f (∞) = lim
s→0

sF (s) = lim
s→0

5s

s2 + 4s + 29
= 0

as expected from the given f (t). As another example,

f (t) = sin t ⇐⇒ f (s) = 1

s2 + 1
(15.46)

so that

f (∞) = lim
s→0

sF (s) = lim
s→0

s

s2 + 1
= 0

This is incorrect, because f (t) = sin t oscillates between +1 and −1 and
does not have a limit as t → ∞. Thus, the final-value theorem cannot
be used to find the final value of f (t) = sin t, because F(s) has poles
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at s = ±j , which are not in the left half of the s plane. In general, the
final-value theorem does not apply in finding the final values of sinusoidal
functions—these functions oscillate forever and do not have final values.

The initial-value and final-value theorems depict the relationship
between the origin and infinity in the time domain and the s domain.
They serve as useful checks on Laplace transforms.

Table 15.1 provides a list of the properties of the Laplace transform.
The last property (on convolution) will be proved in Section 15.7. There
are other properties, but these are enough for present purposes. Table 15.2
summarizes the Laplace transforms of some common functions. We have
omitted the factor u(t) except where it is necessary.

TABLE 15.1 Properties of the Laplace transform.

Property f (t) F (s)

Linearity a1f1(t)+ a2f2(t) a1F1(s)+ a2F2(s)

Scaling f (at)
1

a
F
( s
a

)
Time shift f (t − a)u(t − a) e−asF (s)

Frequency shift e−atf (t) F (s + a)
Time

df

dt
sF (s)− f (0−)

differentiation
d2f

dt2
s2F(s)− sf (0−)− f ′(0−)

d3f

dt3
s3F(s)− s2f (0−)− sf ′(0−)

−f ′′(0−)
dnf

dtn
snF (s)− sn−1f (0−)− sn−2f ′(0−)

− · · · − f (n−1)(0−)

Time integration
∫ t

0
f (t) dt

1

s
F (s)

Frequency tf (t) − d

ds
F (s)

differentiation

Frequency
f (t)

t

∫ ∞

s

F (s) ds

integration

Time periodicity f (t) = f (t + nT ) F1(s)

1 − e−sT
Initial value f (0+) lim

s→∞
sF (s)

Final value f (∞) lim
s→0

sF (s)

Convolution f1(t) ∗ f1(t) F1(s)F2(s)

TABLE 15.2 Laplace transform pairs.

f (t) F (s)

δ(t) 1

u(t)
1

s

e−at
1

s + a

t
1

s2

tn
n!

sn+1

te−at
1

(s + a)2

tne−at
n!

(s + a)n+1

sinωt
ω

s2 + ω2

cosωt
s

s2 + ω2

sin(ωt + θ) s sin θ + ω cos θ

s2 + ω2

cos(ωt + θ) s cos θ − ω sin θ

s2 + ω2

e−at sinωt
ω

(s + a)2 + ω2

e−at cosωt
s + a

(s + a)2 + ω2

E X A M P L E 1 5 . 3

Obtain the Laplace transform of f (t) = δ(t)+ 2u(t)− 3e−2t , t ≥ 0.
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Solution:

By the linearity property,

F(s) = L[δ(t)] + 2L[u(t)] − 3L[e−2t ]

= 1 + 2
1

s
− 3

1

s + 2
= s2 + s + 4

s(s + 2)

P R A C T I C E P R O B L E M 1 5 . 3

Find the Laplace transform of f (t) = cos 2t + e−3t , t ≥ 0.

Answer:
2s2 + 3s + 4

(s + 3)(s2 + 4)
.

E X A M P L E 1 5 . 4

Determine the Laplace transform of f (t) = t2 sin 2t u(t).

Solution:

We know that

L[sin 2t] = 2

s2 + 22

Using frequency differentiation in Eq. (15.34),

F(s) = L[t2 sin 2t] = (−1)2
d2

ds2

(
2

s2 + 4

)

= d

ds

( −4s

(s2 + 4)2

)
= 12s2 − 16

(s2 + 4)3

P R A C T I C E P R O B L E M 1 5 . 4

Find the Laplace transform of f (t) = t2 cos 3t u(t).

Answer:
2s(s2 − 27)

(s2 + 9)3
.

E X A M P L E 1 5 . 5

Find the Laplace transform of the gate function in Fig. 15.5. g(t)

0 1 2 3

10

t

Figure 15.5 The gate function;
for Example 15.5.

Solution:

We can express the gate function in Fig. 15.5 as

g(t) = 10[u(t − 2)− u(t − 3)]

Since we know the Laplace transform of u(t), we apply the time-shift
property and obtain

G(s) = 10

(
e−2s

s
− e−3s

s

)
= 10

s
(e−2s − e−3s)
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P R A C T I C E P R O B L E M 1 5 . 5

Find the Laplace transform of the function h(t) in Fig. 15.6.

5

10

0 2 4

h(t)

t

Figure 15.6 For Practice Prob. 15.5.

Answer:
5

s
(2 − e−2s − e−4s).

E X A M P L E 1 5 . 6

Calculate the Laplace transform of the periodic function in Fig. 15.7.
2

0 1 2 3 4 5

f(t)

t

Figure 15.7 For Example 15.6.

Solution:

The period of the function is T = 2. To apply Eq. (15.40), we first obtain
the transform of the first period of the function.

f1(t) = 2t[u(t)− u(t − 1)] = 2tu(t)− 2tu(t − 1)

= 2tu(t)− 2(t − 1 + 1)u(t − 1)

= 2tu(t)− 2(t − 1)u(t − 1)− 2u(t − 1)

Using the time-shift property,

F1(s) = 2

s2
− 2

e−s

s2
− 2

s
e−s = 2

s2
(1 − e−s − se−s)

Thus, the transform of the periodic function in Fig. 15.7 is

F(s) = F1(s)

1 − e−T s = 2

s2(1 − e−2s)
(1 − e−s − se−s)

P R A C T I C E P R O B L E M 1 5 . 6

Determine the Laplace transform of the periodic function in Fig. 15.8.
1

0 2 5 7 10 12

f(t)

t

Figure 15.8 For Practice Prob. 15.6.

Answer:
1 − e−2s

s(1 − e−5s)
.

E X A M P L E 1 5 . 7

Find the initial and final values of the function whose Laplace transform
is

H(s) = 20

(s + 3)(s2 + 8s + 25)
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Solution:

Applying the initial-value theorem,

h(0) = lim
s→∞ sH(s) = lim

s→∞
20s

(s + 3)(s2 + 8s + 25)

= lim
s→∞

20/s2

(1 + 3/s)(1 + 8/s + 25/s2)
= 0

(1 + 0)(1 + 0 + 0)
= 0

To be sure that the final-value theorem is applicable, we check where the
poles of H(s) are located. The poles of H(s) are s = −3, −4 ± j3,
which all have negative real parts: they are all located on the left half of
the s plane (Fig. 15.9). Hence the final-value theorem applies and

h(∞) = lim
s→0

sH(s) = lim
s→0

20s

(s + 3)(s2 + 8s + 25)

= 0

(0 + 3)(0 + 0 + 25)
= 0

Both the initial and final values could be determined from h(t) if we knew
it. See Example 15.11, where h(t) is given.

1

1

2

2

3

3
−1

−1

−2

−3

−2−3

jv

s

×

×

×
−4

Figure 15.9 For Example 15.7: Poles ofH(s).

P R A C T I C E P R O B L E M 1 5 . 7

Obtain the initial and the final values of

G(s) = s3 + 2s + 6

s(s + 1)2(s + 3)
Answer: 1, 2.

15.4 THE INVERSE LAPLACE TRANSFORM
Given F(s), how do we transform it back to the time domain and obtain
the corresponding f (t)? By matching entries in Table 15.2, we avoid
using Eq. (15.5) to find f (t).

Suppose F(s) has the general form of

F(s) = N(s)

D(s)
(15.47)

where N(s) is the numerator polynomial and D(s) is the denominator
polynomial. The roots of N(s) = 0 are called the zeros of F(s), while
the roots of D(s) = 0 are the poles of F(s). Although Eq. (15.47) is
similar in form to Eq. (14.3), here F(s) is the Laplace transform of a
function, which is not necessarily a transfer function. We use partial
fraction expansion to break F(s) down into simple terms whose inverse
transform we obtain from Table 15.2. Thus, finding the inverse Laplace
transform of F(s) involves two steps. Software packages such as Matlab, Mathcad, and

Maple are capable of finding partial fraction ex-
pansions quite easily.S t e p s t o F i n d t h e I n v e r s e L a p l a c e T r a n s f o rm :

1. Decompose F(s) into simple terms using partial fraction
expansion.

2. Find the inverse of each term by matching entries in Table 15.2.
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Let us consider the three possible forms F(s)may take and how to apply
the two steps to each form.

Otherwise, we must first apply long division so
that F(s) = N(s)/D(s) = Q(s) + R(s)/D(s), where
the degree of R(s), the remainder of the long
division, is less than the degree of D(s).

Historical note: Named after Oliver Heaviside
(1850–1925), an English engineer, the pioneer of
operational calculus.

1 5 . 4 . 1 S imp l e Po l e s
Recall from Chapter 14 that a simple pole is a first-order pole. If F(s)
has only simple poles, then D(s) becomes a product of factors, so that

F(s) = N(s)

(s + p1)(s + p2) · · · (s + pn) (15.48)

where s = −p1, −p2, . . . ,−pn are the simple poles, and pi �= pj for all
i �= j (i.e., the poles are distinct). Assuming that the degree ofN(s) is less
than the degree ofD(s), we use partial fraction expansion to decompose
F(s) in Eq. (15.48) as

F(s) = k1

s + p1
+ k2

s + p2
+ · · · + kn

s + pn (15.49)

The expansion coefficients k1, k2, . . . , kn are known as the residues of
F(s). There are many ways of finding the expansion coefficients. One
way is using the residue method. If we multiply both sides of Eq. (15.49)
by (s + p1), we obtain

(s + p1)F (s) = k1 + (s + p1)k2

s + p2
+ · · · + (s + p1)kn

s + pn (15.50)

Since pi �= pj , setting s = −p1 in Eq. (15.50) leaves only k1 on the
right-hand side of Eq. (15.50). Hence,

(s + p1)F (s)
∣∣
s=−p1

= k1 (15.51)

Thus, in general,

ki = (s + pi)F (s)
∣∣
s=−pi (15.52)

This is known as Heaviside’s theorem. Once the values of ki are known,
we proceed to find the inverse ofF(s) using Eq. (15.49). Since the inverse
transform of each term in Eq. (15.49) is L−1[k/(s + a)] = ke−atu(t),
then, from Table 15.1,

f (t) = (
k1e

−p1t + k2e
−p2t + · · · + kne−pnt

)
(15.53)

15 . 4 . 2 Repea t ed Po l e s
Suppose F(s) has n repeated poles at s = −p. Then we may represent
F(s) as

F(s) = kn

(s + p)n + kn−1

(s + p)n−1
+ · · · + k2

(s + p)2

+ k1

s + p + F1(s)

(15.54)

where F1(s) is the remaining part of F(s) that does not have a pole at
s = −p. We determine the expansion coefficient kn as

kn = (s + p)nF (s) ∣∣
s=−p (15.55)
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as we did above. To determine kn−1, we multiply each term in Eq. (15.54)
by (s + p)n and differentiate to get rid of kn, then evaluate the result at
s = −p to get rid of the other coefficients except kn−1. Thus, we obtain

kn−1 = d

ds
[(s + p)nF (s)] ∣∣

s=−p (15.56)

Repeating this gives

kn−2 = 1

2!

d2

ds2
[(s + p)nF (s)] ∣∣

s=−p (15.57)

The mth term becomes

kn−m = 1

m!

dm

dsm
[(s + p)nF (s)] ∣∣

s=−p (15.58)

where m = 1, 2, . . . , n − 1. One can expect the differentiation to be
difficult to handle as m increases. Once we obtain the values of k1,
k2, . . . , kn by partial fraction expansion, we apply the inverse transform

L−1

[
1

(s + a)n
]

= tn−1e−at

(n− 1)!
(15.59)

to each term in the right-hand side of Eq. (15.54) and obtain

f (t) = k1e
−pt + k2te

−pt + k3

2!
t2e−pt

+ · · · + kn

(n− 1)!
tn−1e−pt + f1(t)

(15.60)

15 . 4 . 3 Comp l ex Po l e s
A pair of complex poles is simple if it is not repeated; it is a double or
multiple pole if repeated. Simple complex poles may be handled the
same as simple real poles, but because complex algebra is involved the
result is always cumbersome. An easier approach is a method known as
completing the square. The idea is to express each complex pole pair (or
quadratic term) in D(s) as a complete square such as (s + α)2 + β2 and
then use Table 15.2 to find the inverse of the term.

Since N(s) and D(s) always have real coefficients and we know
that the complex roots of polynomials with real coefficients must occur
in conjugate pairs, F(s) may have the general form

F(s) = A1s + A2

s2 + as + b + F1(s) (15.61)

where F1(s) is the remaining part of F(s) that does not have this pair of
complex poles. If we complete the square by letting

s2 + as + b = s2 + 2αs + α2 + β2 = (s + α)2 + β2 (15.62)

and we also let

A1s + A2 = A1(s + α)+ B1β (15.63)

then Eq. (15.61) becomes

F(s) = A1(s + α)
(s + α)2 + β2

+ B1β

(s + α)2 + β2
+ F1(s) (15.64)
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From Table 15.2, the inverse transform is

f (t) = A1e
−αt cosβt + B1e

−αt sinβt + f1(t) (15.65)

The sine and cosine terms can be combined using Eq. (9.12).
Whether the pole is simple, repeated, or complex, a general ap-

proach that can always be used in finding the expansion coefficients is
the method of algebra, illustrated in Examples 15.9 to 15.11. To apply
the method, we first set F(s) = N(s)/D(s) equal to an expansion con-
taining unknown constants. We multiply the result through by a common
denominator. Then we determine the unknown constants by equating
coefficients (i.e., by algebraically solving a set of simultaneous equations
for these coefficients at like powers of s).

Another general approach is to substitute specific, convenient val-
ues of s to obtain as many simultaneous equations as the number of
unknown coefficients, and then solve for the unknown coefficients. We
must make sure that each selected value of s is not one of the poles of
F(s). Example 15.11 illustrates this idea.

E X A M P L E 1 5 . 8

Find the inverse Laplace transform of

F(s) = 3

s
− 5

s + 1
+ 6

s2 + 4
Solution:

The inverse transform is given by

f (t) = L−1[F(s)] = L−1

(
3

s

)
− L−1

(
5

s + 1

)
+ L−1

(
6

s2 + 4

)

= 3u(t)− 5e−t + 3 sin 2t, t ≥ 0

where Table 15.2 has been consulted for the inverse of each term.

P R A C T I C E P R O B L E M 1 5 . 8

Determine the inverse Laplace transform of

F(s) = 1 + 4

s + 3
− 5s

s2 + 16
Answer: δ(t)+ 4e−3t − 5 cos 4t, t ≥ 0.

E X A M P L E 1 5 . 9

Find f (t) given that

F(s) = s2 + 12

s(s + 2)(s + 3)
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Solution:

Unlike in the previous example where the partial fractions have been
provided, we first need to determine the partial fractions. Since there are
three poles, we let

s2 + 12

s(s + 2)(s + 3)
= A

s
+ B

s + 2
+ C

s + 3
(15.9.1)

where A, B, and C are the constants to be determined. We can find the
constants using two approaches.

METHOD 1 Residue method:

A = sF (s)
∣∣
s=0 = s2 + 12

(s + 2)(s + 3)

∣∣∣∣
s=0

= 12

(2)(3)
= 2

B = (s + 2)F (s)
∣∣
s=−2 = s2 + 12

s(s + 3)

∣∣∣∣
s=−2

= 4 + 12

(−2)(1)
= −8

C = (s + 3)F (s)
∣∣
s=−3 = s2 + 12

s(s + 2)

∣∣∣∣
s=−3

= 9 + 12

(−3)(−1)
= 7

METHOD 2 Algebraic method: Multiplying both sides of Eq.
(15.9.1) by s(s + 2)(s + 3) gives

s2 + 12 = A(s + 2)(s + 3)+ Bs(s + 3)+ Cs(s + 2)

or

s2 + 12 = A(s2 + 5s + 6)+ B(s2 + 3s)+ C(s2 + 2s)

Equating the coefficients of like powers of s gives

Constant: 12 = 6A �⇒ A = 2

s : 0 = 5A+ 3B + 2C �⇒ 3B + 2C = −10

s2 : 1 = A+ B + C �⇒ B + C = −1

Thus A = 2, B = −8, C = 7, and Eq. (15.9.1) becomes

F(s) = 2

s
− 8

s + 2
+ 7

s + 3

By finding the inverse transform of each term, we obtain

f (t) = 2u(t)− 8e−2t + 7e−3t , t ≥ 0.

P R A C T I C E P R O B L E M 1 5 . 9

Find f (t) if

F(s) = 6(s + 2)

(s + 1)(s + 3)(s + 4)

Answer: f (t) = e−t + 3e−3t − 4e−4t , t ≥ 0.
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E X A M P L E 1 5 . 1 0

Calculate v(t) given that

V (s) = 10s2 + 4

s(s + 1)(s + 2)2

Solution:

While the previous example is on simple roots, this example is on repeated
roots. Let

V (s) = 10s2 + 4

s(s + 1)(s + 2)2

= A

s
+ B

s + 1
+ C

(s + 2)2
+ D

s + 2

(15.10.1)

METHOD 1 Residue method:

A = sV (s)
∣∣
s=0 = 10s2 + 4

(s + 1)(s + 2)2

∣∣∣∣
s=0

= 4

(1)(2)2
= 1

B = (s + 1)V (s)
∣∣
s=−1 = 10s2 + 4

s(s + 2)2

∣∣∣∣
s=−1

= 14

(−1)(1)2
= −14

C = (s + 2)2V (s)
∣∣
s=−2 = 10s2 + 4

s(s + 1)

∣∣∣∣
s=−2

= 44

(−2)(−1)
= 22

D = d

ds
[(s + 2)2V (s)]

∣∣∣∣
s=−2

= d

ds

(
10s2 + 4

s2 + s
) ∣∣∣∣

s=−2

= (s2 + s)(20s)− (10s2 + 4)(2s + 1)

(s2 + s)2
∣∣∣∣
s=−2

= 52

4
= 13

METHOD 2 Algebraic method: Multiplying Eq. (15.10.1) by
s(s + 1)(s + 2)2, we obtain

10s2 + 4 = A(s + 1)(s + 2)2 + Bs(s + 2)2

+ Cs(s + 1)+Ds(s + 1)(s + 2)

or

10s2 + 4 = A(s3 + 5s2 + 8s + 4)+ B(s3 + 4s2 + 4s)

+ C(s2 + s)+D(s3 + 3s2 + 2s)

Equating coefficients,

Constant: 4 = 4A �⇒ A = 1

s: 0 = 8A+ 4B + C + 2D �⇒ 4B + C + 2D = −8

s2: 10 = 5A+ 4B + C + 3D �⇒ 4B + C + 3D = 5

s3: 0 = A+ B +D �⇒ B +D = −1

Solving these simultaneous equations gives A = 1, B = −14, C = 22,
D = 13, so that

V (s) = 1

s
− 14

s + 1
+ 13

s + 2
+ 22

(s + 2)2
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Taking the inverse transform of each term, we get

v(t) = u(t)− 14e−t + 13e−2t + 22te−2t , t ≥ 0

P R A C T I C E P R O B L E M 1 5 . 1 0

Obtain g(t) if

G(s) = s3 + 2s + 6

s(s + 1)2(s + 3)

Answer: 2u(t)− 3.25e−t − 1.5te−t + 2.25e−3t , t ≥ 0.

E X A M P L E 1 5 . 1 1

Find the inverse transform of the frequency-domain function in Example
15.7:

H(s) = 20

(s + 3)(s2 + 8s + 25)
Solution:

In this example,H(s) has a pair of complex poles at s2 + 8s+ 25 = 0 or
s = −4 ± j3. We let

H(s) = 20

(s + 3)(s2 + 8s + 25)
= A

s + 3
+ Bs + C
(s2 + 8s + 25)

(15.11.1)

We now determine the expansion coefficients in two ways.

METHOD 1 Combination of methods: We can obtain A using the
method of residue,

A = (s + 3)H(s)
∣∣
s=−3 = 20

s2 + 8s + 25

∣∣∣∣
s=−3

= 20

10
= 2

Although B and C can be obtained using the method of residue, we
will not do so, to avoid complex algebra. Rather, we can substitute two
specific values of s [say s = 0, 1, which are not poles of F(s)] into Eq.
(15.11.1). This will give us two simultaneous equations from which to
find B and C. If we let s = 0 in Eq. (15.11.1), we obtain

20

75
= A

3
+ C

25
or

20 = 25A+ 3C (15.11.2)

Since A = 2, Eq. (15.11.2) gives C = −10. Substituting s = 1 into Eq.
(15.11.1) gives

20

(4)(34)
= A

4
+ B + C

34
or

20 = 34A+ 4B + 4C (15.11.3)

But A = 2, C = −10, so that Eq. (15.11.3) gives B = −2.
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M E THOD 2 Algebraic method: Multiplying both sides of Eq.
(15.11.1) by (s + 3)(s2 + 8s + 25) yields

20 = A(s2 + 8s + 25)+ (Bs + C)(s + 3)

= A(s2 + 8s + 25)+ B(s2 + 3s)+ C(s + 3)
(15.11.4)

Equating coefficients,

s2: 0 = A+ B �⇒ A = −B
s: 0 = 8A+ 3B + C = 5A+ C �⇒ C = −5A

Constant: 20 = 25A+ 3C = 25A− 15A �⇒ A = 2

That is, B = −2, C = −10. Thus

H(s) = 2

s + 3
− 2s + 10

(s2 + 8s + 25)
= 2

s + 3
− 2(s + 4)+ 2

(s + 4)2 + 9

= 2

s + 3
− 2(s + 4)

(s + 4)2 + 9
− 2

3

3

(s + 4)2 + 9

Taking the inverse of each term, we obtain

h(t) = 2e−3t − 2e−4t cos 3t − 2

3
e−4t sin 3t (15.11.5)

It is alright to leave the result this way. However, we can combine the
cosine and sine terms as

h(t) = 2e−3t − Ae−4t cos(3t − θ) (15.11.6)

To obtain Eq. (15.11.6) from Eq. (15.11.5), we apply Eq. (9.12). Next,
we determine the coefficient A and the phase angle θ :

A =
√

22 + (
2
3

)2 = 2.108, θ = tan−1
2
3

2
= 18.43◦

Thus,

h(t) = 2e−3t − 2.108e−4t cos(3t − 18.43◦)

P R A C T I C E P R O B L E M 1 5 . 1 1

Find g(t) given that

G(s) = 10

(s + 1)(s2 + 4s + 13)

Answer: e−t − e−2t cos 3t + 1

3
e−2t sin 3t , t ≥ 0.

15.5 APPLICATION TO CIRCUITS
Having mastered how to obtain the Laplace transform and its inverse, we
are now prepared to employ the Laplace transform to analyze circuits.
This usually involves three steps.
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S t e p s i n a p p l y i n g t h e L a p l a c e t r a n s f o rm :
1. Transform the circuit from the time domain to the s domain.

2. Solve the circuit using nodal analysis, mesh analysis, source
transformation, superposition, or any circuit analysis technique
with which we are familiar.

3. Take the inverse transform of the solution and thus obtain the
solution in the time domain.

Only the first step is new and will be discussed here. As we did in phasor
analysis, we transform a circuit in the time domain to the frequency or s
domain by Laplace transforming each term in the circuit.

As one can infer from step 2, all the circuit anal-
ysis techniques applied for dc circuits are appli-
cable to the s domain.

For a resistor, the voltage-current relationship in the time domain
is

v(t) = Ri(t) (15.66)

Taking the Laplace transform, we get

V (s) = RI (s) (15.67)

For an inductor,

v(t) = L
di(t)

dt
(15.68)

Taking the Laplace transform of both sides gives

V (s) = L[sI (s)− i(0−)] = sLI (s)− Li(0−) (15.69)

or

I (s) = 1

sL
V (s)+ i(0−)

s
(15.70)

The s-domain equivalents are shown in Fig. 15.10, where the initial con-
dition is modeled as a voltage or current source.

i(t)

+

−

v(t)

i(0)

L

(a)

I(s)

+

−

V(s)

sL

(b)

+
− Li(0)

(c)

V(s)

I(s)

+

−

sL i(0)
s

Figure 15.10 Representation of an
inductor: (a) time-domain, (b,c) s-domain
equivalents.

The elegance of using the Laplace transform in
circuit analysis lies in the automatic inclusion of
the initial conditions in the transformation pro-
cess, thus providing a complete (transient and
steady-state) solution.

For a capacitor,

i(t) = C
dv(t)

dt
(15.71)

which transforms into the s domain as

I (s) = C[sV (s)− v(0−)] = sCV (s)− Cv(0−) (15.72)

or

V (s) = 1

sC
I (s)+ v(0−)

s
(15.73)

The s-domain equivalents are shown in Fig. 15.11. With the s-domain
equivalents, the Laplace transform can be used readily to solve first-
and second-order circuits such as those we considered in Chapters 7
and 8. We should observe from Eqs. (15.68) to (15.73) that the initial
conditions are part of the transformation. This is one advantage of using
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i(t)

+

−

(a)

+

−

v(t) v(0) C
v(0)

I(s)

+

−

(b)

+

−

V(s)
+
−

(c)

V(s)

I(s)

+

−

Cv(o)

+

−

sC
1

sC
1

s

Figure 15.11 Representation of a capacitor: (a) time-domain, (b,c) s-domain equivalents.

the Laplace transform in circuit analysis. Another advantage is that a
complete response—transient and steady state—of a network is obtained.
We will illustrate this with Examples 15.13 and 15.14. Also, observe the
duality of Eqs. (15.70) and (15.73), confirming what we already know
from Chapter 8 (see Table 8.1), namely, thatL andC, I (s) and V (s), and
v(0) and i(0) are dual pairs.

If we assume zero initial conditions for the inductor and the capac-
itor, the above equations reduce to:

Resistor: V (s) = RI (s)

Inductor: V (s) = sLI (s)

Capacitor: V (s) = 1

sC
I (s)

(15.74)

The s-domain equivalents are shown in Fig. 15.12.

+

−

i(t)

v(t) R

+

−

I(s)

V(s) R

i(t)

+

−

v(t) L

I(s)

+

−

V(s) sL

i(t)

+

−

v(t) C

I(s)

+

−

V(s) sC
1

(a)

(b)

(c)

Figure 15.12 Time-domain and
s-domain representations of passive
elements under zero initial conditions.

We define the impedance in the s-domain as the ratio of the voltage
transform to the current transform under zero initial conditions, that is,

Z(s) = V (s)

I (s)
(15.75)

Thus the impedances of the three circuit elements are

Resistor: Z(s) = R

Inductor: Z(s) = sL

Capacitor: Z(s) = 1

sC

(15.76)

Table 15.3 summarizes these. The admittance in the s domain is the
reciprocal of the impedance, or

Y (s) = 1

Z(s)
= I (s)

V (s)
(15.77)

The use of the Laplace transform in circuit analysis facilitates the use
of various signal sources such as impulse, step, ramp, exponential, and
sinusoidal.

TABLE 15.3 Impedance of an
element in the s domain.∗

Element Z(s) = V (s)/I (s)

Resistor R

Inductor sL

Capacitor 1/sC

∗Assuming zero initial conditions

E X A M P L E 1 5 . 1 2

Find vo(t) in the circuit in Fig. 15.13, assuming zero initial conditions.
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Solution:

We first transform the circuit from the time domain to the s domain.

u(t) �⇒ 1

s
1 H �⇒ sL = s

1

3
F �⇒ 1

sC
= 3

s

The resulting s-domain circuit is in Fig. 15.14. We now apply mesh
analysis. For mesh 1,

1

s
=
(

1 + 3

s

)
I1 − 3

s
I2 (15.12.1)

For mesh 2,

0 = −3

s
I1 +

(
s + 5 + 3

s

)
I2

or

I1 = 1

3
(s2 + 5s + 3)I2 (15.12.2)

Substituting this into Eq. (15.12.1),

1

s
=
(

1 + 3

s

)
1

3
(s2 + 5s + 3)I2 − 3

s
I2

Multiplying through by 3s gives

3 = (s3 + 8s2 + 18s)I2 �⇒ I2 = 3

s3 + 8s2 + 18s

Vo(s) = sI2 = 3

s2 + 8s + 18
= 3√

2

√
2

(s + 4)2 + (√2)2

Taking the inverse transform yields

vo(t) = 3√
2
e−4t sin

√
2t V, t ≥ 0

1 H

1 Ω 5 Ω

vo(t)
+

−
+
−u(t) F1

3

Figure 15.13 For Example 15.12.

3 s

1 Ω 5 Ω

Vo(s)
+

−
+
−

I1(s) I2(s)

s
1
s

Figure 15.14 Mesh analysis of the frequency-
domain equivalent of the same circuit.

P R A C T I C E P R O B L E M 1 5 . 1 2

Determine vo(t) in the circuit of Fig. 15.15, assuming zero initial condi-
tions.

+

−
4 Ω vo(t)

1 H

2u(t) VF1
4

Figure 15.15 For Practice Prob. 15.12.

Answer: 8(1 − e−2t − 2te−2t )u(t) V.

E X A M P L E 1 5 . 1 3

Find vo(t) in the circuit of Fig. 15.16. Assume vo(0) = 5 V.
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+

−
+
− 0.1 F

10 Ω

10 Ω vo(t) 2d(t) V10e−tu(t) V

Figure 15.16 For Example 15.13.

Solution:

We transform the circuit to the s domain as shown in Fig. 15.17. The
initial condition is included in the form of the current source Cvo(0) =
0.1(5) = 0.5 A. [See Fig. 15.11(c).] We apply nodal analysis. At the top
node,

10/(s + 1)− Vo
10

+ 2 + 0.5 = Vo

10
+ Vo

10/s

or

1

s + 1
+ 2.5 = 2Vo

10
+ sVo

10
= 1

10
Vo(s + 2)

Multiplying through by 10,

10

s + 1
+ 25 = Vo(s + 2)

or

Vo = 25s + 35

(s + 1)(s + 2)
= A

s + 1
+ B

s + 2

where

A = (s + 1)Vo(s)
∣∣
s=−1 = 25s + 35

(s + 2)

∣∣∣∣
s=−1

= 10

1
= 10

B = (s + 2)Vo(s)
∣∣
s=−2 = 25s + 35

(s + 1)

∣∣∣∣
s=−2

= −15

−1
= 15

Thus,

Vo(s) = 10

s + 1
+ 15

s + 2

Taking the inverse Laplace transform, we obtain

vo(t) = (10e−t + 15e−2t )u(t)

10 Ω

10 Ω+
−

10
s

10
s + 1 0.5 A 2 A

Vo(s)

Figure 15.17 Nodal analysis of the equivalent of the circuit in
Fig. 15.16.
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P R A C T I C E P R O B L E M 1 5 . 1 3

Find vo(t) in the circuit shown in Fig. 15.18.

2 H

1 Ω

2 Ω vo(t)
+

−
+
−e−2tu(t) V

Figure 15.18 For Practice Prob. 15.13.

Answer: ( 4
5e

−2t + 8
15e

−t/3)u(t).

E X A M P L E 1 5 . 1 4

In the circuit in Fig. 15.19(a), the switch moves from position a to posi-
tion b at t = 0. Find i(t) for t > 0.

+
−

t = 0 R

R

L

a

b
Io

(a)

(b)

Vo

i(t)

+
−

+
−

sL

I(s)

LIo

Vo
s

Figure 15.19 For Example 15.14.

Solution:

The initial current through the inductor is i(0) = Io. For t > 0, Fig.
15.19(b) shows the circuit transformed to the s domain. The initial con-
dition is incorporated in the form of a voltage source as Li(0) = LIo.
Using mesh analysis,

I (s)(R + sL)− LIo − Vo

s
= 0 (15.14.1)

or

I (s) = LIo

R + sL + Vo

s(R + sL) = Io

s + R/L + Vo/L

s(s + R/L) (15.14.2)

Applying partial fraction expansion on the second term on the right-hand
side of Eq. (15.14.2) yields

I (s) = Io

s + R/L + Vo/R

s
− Vo/R

(s + R/L) (15.14.3)

The inverse Laplace transform of this gives

i(t) =
(
Io − Vo

R

)
e−t/τ + Vo

R
, t ≥ 0 (15.14.4)

where τ = R/L. The term in fences is the transient response, while
the second term is the steady-state response. In other words, the final
value is i(∞) = Vo/R, which we could have predicted by applying the
final-value theorem on Eq. (15.14.2) or (15.14.3); that is,

lim
s→0

sI (s) = lim
s→0

(
sIo

s + R/L + Vo/L

s + R/L
)

= Vo

R
(15.14.5)

Equation (15.14.4) may also be written as

i(t) = Ioe
−t/τ + Vo

R
(1 − e−t/τ ), t ≥ 0 (15.14.6)

The first term is the natural response, while the second term is the forced
response. If the initial condition Io = 0, Eq. (15.14.6) becomes
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i(t) = Vo

R
(1 − e−t/τ ), t ≥ 0 (15.14.7)

which is the step response, since it is due to the step input Vo with no
initial energy.

P R A C T I C E P R O B L E M 1 5 . 1 4

The switch in Fig. 15.20 has been in position b for a long time. It is moved
to position a at t = 0. Determine v(t) for t > 0.

+
−

t = 0

+

−Vo
v(t)Io R C

a

b

Figure 15.20 For Practice Prob. 15.14.

Answer: v(t) = (Vo − IoR)e−t/τ + IoR, t > 0, where τ = RC.

15.6 TRANSFER FUNCTIONS
The transfer function is a key concept in signal processing because it
indicates how a signal is processed as it passes through a network. It is
a fitting tool for finding the network response, determining (or designing
for) network stability, and network synthesis. The transfer function of a
network describes how the output behaves in respect to the input. It spec-
ifies the transfer from the input to the output in the s domain, assuming
no initial energy.

For electrical networks, the transfer function is
also known as the network function.

The transfer function H(s) is the ratio of the output response Y (s) to the input
excitation X(s), assuming all initial conditions are zero.

Some authors would not consider Eqs. (15.79c)
and (15.79d) transfer functions.

Thus,

H(s) = Y (s)

X(s)
(15.78)

The transfer function depends on what we define as input and output.
Since the input and output can be either current or voltage at any place in
the circuit, there are four possible transfer functions:

H(s) = Voltage gain = Vo(s)

Vi(s)
(15.79a)

H(s) = Current gain = Io(s)

Ii(s)
(15.79b)

H(s) = Impedance = V (s)

I (s)
(15.79c)

H(s) = Admittance = I (s)

V (s)
(15.79d)
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Thus, a circuit can have many transfer functions. Note that H(s) is
dimensionless in Eqs. (15.79a) and (15.79b).

Each of the transfer functions in Eq. (15.79) can be found in two
ways. One way is to assume any convenient input X(s), use any circuit
analysis technique (such as current or voltage division, nodal or mesh
analysis) to find the output Y (s), and then obtain the ratio of the two. The
other approach is to apply the ladder method, which involves walking our
way through the circuit. By this approach, we assume that the output is
1 V or 1 A as appropriate and use the basic laws of Ohm and Kirchhoff
(KCL only) to obtain the input. The transfer function becomes unity
divided by the input. This approach may be more convenient to use
when the circuit has many loops or nodes so that applying nodal or mesh
analysis becomes cumbersome. In the first method, we assume an input
and find the output; in the second method, we assume the output and find
the input. In both methods, we calculate H(s) as the ratio of output to
input transforms. The two methods rely on the linearity property, since
we only deal with linear circuits in this book. Example 15.16 illustrates
these methods.

Equation (15.78) assumes that both X(s) and Y (s) are known.
Sometimes, we know the input X(s) and the transfer function H(s).
We find the output Y (s) as

Y (s) = H(s)X(s) (15.80)

and take the inverse transform to get y(t). A special case is when the
input is the unit impulse function, x(t) = δ(t), so that X(s) = 1. For
this case,

Y (s) = H(s) or y(t) = h(t) (15.81)

where

h(t) = L−1[H(s)] (15.82)

The term h(t) represents the unit impulse response—it is the time-domain
response of the network to a unit impulse. Thus, Eq. (15.82) provides a
new interpretation for the transfer function: H(s) is the Laplace transform
of the unit impulse response of the network. Once we know the impulse
response h(t) of a network, we can obtain the response of the network to
any input signal using Eq. (15.80) in the s domain or using the convolution
integral (see next section) in the time domain.

The unit impulse response is the output response
of a circuit when the input is a unit impulse.

E X A M P L E 1 5 . 1 5

The output of a linear system is y(t) = 10e−t cos 4tu(t)when the input is
x(t) = e−t u(t). Find the transfer function of the system and its impulse
response.

Solution:

If x(t) = e−t u(t) and y(t) = 10e−t cos 4tu(t), then

X(s) = 1

s + 1
and Y (s) = 10(s + 1)

(s + 1)2 + 42
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Hence,

H(s) = Y (s)

X(s)
= 10

(s + 1)2 + 16
= 10

s2 + 2s + 17

To find h(t), we write H(s) as

H(s) = 10

4

4

(s + 1)2 + 42

From Table 15.2, we obtain

h(t) = 2.5e−t sin 4t

P R A C T I C E P R O B L E M 1 5 . 1 5

The transfer function of a linear system is

H(s) = 2s

s + 6

Find the output y(t) due to the input e−3t u(t) and its impulse response.

Answer: −2e−3t + 4e−6t , t ≥ 0, 2δ(t)− 12e−6t u(t).

E X A M P L E 1 5 . 1 6

Determine the transfer functionH(s) = Vo(s)/Io(s) of the circuit in Fig.
15.21.

+

−
Vo

+
−

1 Ω

2 Ω

4 Ω

s

V(s)

1
2sIo I2

I1

Figure 15.21 For Example 15.16.

Solution:

METHOD 1 By current division,

I2 = (s + 4)Io
s + 4 + 2 + 1/2s

But

Vo = 2I2 = 2(s + 4)Io
s + 6 + 1/2s

Hence,

H(s) = Vo(s)

Io(s)
= 4s(s + 4)

2s2 + 12s + 1

METHOD 2 We can apply the ladder method. We let Vo = 1 V. By
Ohm’s law, I2 = Vo/2 = 1/2 A. The voltage across the (2 + 1/2s)
impedance is

V1 = I2

(
2 + 1

2s

)
= 1 + 1

4s
= 4s + 1

4s
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This is the same as the voltage across the (s + 4) impedance. Hence,

I1 = V1

s + 4
= 4s + 1

4s(s + 4)

Applying KCL at the top node yields

Io = I1 + I2 = 4s + 1

4s(s + 4)
+ 1

2
= 2s2 + 12s + 1

4s(s + 4)
Hence,

H(s) = Vo

Io
= 1

Io
= 4s(s + 4)

2s2 + 12s + 1
as before.

P R A C T I C E P R O B L E M 1 5 . 1 6

Find the transfer functionH(s) = I1(s)/Io(s) in the circuit of Fig. 15.21.

Answer:
4s + 1

2s2 + 12s + 1
.

E X A M P L E 1 5 . 1 7

For the s-domain circuit in Fig. 15.22, find: (a) the transfer function
H(s) = Vo/Vi , (b) the impulse response, (c) the response when vi(t) =
u(t) V, (d) the response when vi(t) = 8 cos 2t V. +

−
Vo

+
−Vi

1 Ω

1 Ω 1 Ω

a s

b

Figure 15.22 For Example 15.17.

Solution:

(a) Using voltage division,

Vo = 1

s + 1
Vab (15.17.1)

But

Vab = 1 ‖ (s + 1)

1 + 1 ‖ (s + 1)
Vi = (s + 1)/(s + 2)

1 + (s + 1)/(s + 2)
Vi

or

Vab = s + 1

2s + 3
Vi (15.17.2)

Substituting Eq. (15.17.2) into Eq. (15.17.1) results in

Vo = Vi

2s + 3
Thus, the impulse response is

H(s) = Vo

Vi
= 1

2s + 3
(b) We may write H(s) as

H(s) = 1

2

1

s + 3
2

Its inverse Laplace transform is the required impulse response:

h(t) = 1

2
e−3t/2u(t)
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(c) When vi(t) = u(t), Vi(s) = 1/s, and

Vo(s) = H(s)Vi(s) = 1

2s(s + 3
2 )

= A

s
+ B

s + 3
2

where

A = sVo(s)
∣∣
s=0 = 1

2(s + 3
2 )

∣∣∣∣
s=0

= 1

3

B =
(
s + 3

2

)
Vo(s)

∣∣∣∣
s=−3/2

= 1

2s

∣∣∣∣
s=−3/2

= −1

3

Hence, for vi(t) = u(t),

Vo(s) = 1

3

(
1

s
− 1

s + 3
2

)

and its inverse Laplace transform is

vo(t) = 1

3
(1 − e−3t/2)u(t) V

(d) When vi(t) = 8 cos 2t , then Vi(s) = 8s

s2 + 4
, and

Vo(s) = H(s)Vi(s) = 4s

(s + 3
2 )(s

2 + 4)

= A

s + 3
2

+ Bs + C
s2 + 4

(15.17.3)

where

A =
(
s + 3

2

)
Vo(s)

∣∣∣∣
s=−3/2

= 4s

s2 + 4

∣∣∣∣
s=−3/2

= −24

25

To get B and C, we multiply Eq. (15.17.3) by (s + 3/2)(s2 + 4). We get

4s = A(s2 + 4)+ B
(
s2 + 3

2
s

)
+ C

(
s + 3

2

)

Equating coefficients,

Constant: 0 = 4A+ 3

2
C �⇒ C = −8

3
A

s : 4 = 3

2
B + C

s2 : 0 = A+ B �⇒ B = −A
Solving these gives A = −24/25, B = 24/25, C = 64/25. Hence, for
vi(t) = 8 cos 2t V,

Vo(s) = − 24
25

s + 3
2

+ 24

25

s

s2 + 4
+ 32

25

2

s2 + 4

and its inverse is

vo(t) = 24

25

(
−e−3t/2 + cos 2t + 4

3
sin 2t

)
u(t) V
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P R A C T I C E P R O B L E M 1 5 . 1 7

Rework Example 15.17 for the circuit shown in Fig. 15.23.

1 Ω Vo
+
−

+

−

1 Ω

Vi
2
s

Figure 15.23 For Practice Prob. 15.17.

Answer: (a) 2/(s + 4), (b) 2e−4t u(t), (c) 1
2 (1 − e−4t )u(t) V,

(d) 3
2 (e

−4t + cos 2t + 1
2 sin 2t)u(t) V.

15.7 THE CONVOLUTION INTEGRAL
The term convolution means “ folding.” Convolution is an invaluable tool
to the engineer because it provides a means of viewing and characterizing
physical systems. For example, it is used in finding the response y(t) of a
system to an excitation x(t), knowing the system impulse response h(t).
This is achieved through the convolution integral, defined as

y(t) =
∫ ∞

−∞
x(λ)h(t − λ) dλ (15.83)

or simply

y(t) = x(t) ∗ h(t) (15.84)

where λ is a dummy variable and the asterisk denotes convolution. Equa-
tion (15.83) or (15.84) states that the output is equal to the input convolved
with the unit impulse response. The convolution process is commutative:

y(t) = x(t) ∗ h(t) = h(t) ∗ x(t) (15.85a)

or

y(t) =
∫ ∞

−∞
x(λ)h(t − λ) dλ =

∫ ∞

−∞
h(λ)x(t − λ) dλ (15.85b)

This implies that the order in which the two functions are convolved is
immaterial. We will see shortly how to take advantage of this commuta-
tive property when performing graphical computation of the convolution
integral.

The convolution of two signals consists of time-reversing one of the signals,
shifting it, and multiplying it point by point with the second signal,

and integrating the product.

The convolution integral in Eq. (15.83) is the general one; it applies
to any linear system. However, the convolution integral can be simplified
if we assume that a system has two properties. First, if x(t) = 0 for
t < 0, then

y(t) =
∫ ∞

−∞
x(λ)h(t − λ) dλ =

∫ ∞

0
x(λ)h(t − λ) dλ (15.86)
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Second, if the system’s impulse response is causal (i.e., h(t) = 0 for
t < 0), then h(t − λ) = 0 for t − λ < 0 or λ > t , so that Eq. (15.86)
becomes

y(t) = h(t) ∗ x(t) =
∫ t

0
x(λ)h(t − λ) dλ (15.87)

Here are some properties of the convolution integral.

1. x(t) ∗ h(t) = h(t) ∗ x(t) (Commutative)

2. f (t) ∗ [x(t)+ y(t)] = f (t) ∗ x(t)+ f (t) ∗ y(t) (Distributive)

3. f (t) ∗ [x(t) ∗ y(t)] = [f (t) ∗ x(t)] ∗ y(t) (Associative)

4. f (t) ∗ δ(t) =
∫ ∞

−∞
f (λ)δ(t − λ) dλ = f (t)

5. f (t) ∗ δ(t − to) = f (t − to)
6. f (t) ∗ δ′(t) =

∫ ∞

−∞
f (λ)δ′(t − λ) dλ = f ′(t)

7. f (t) ∗ u(t) =
∫ ∞

−∞
f (λ)u(t − λ) dλ =

∫ t

−∞
f (λ) dλ

Before learning how to evaluate the convolution integral in Eq.
(15.87), let us establish the link between the Laplace transform and the
convolution integral. Given two functions f1(t) and f2(t) with Laplace
transforms F1(s) and F2(s), respectively, their convolution is

f (t) = f1(t) ∗ f2(t) =
∫ t

0
f1(λ)f2(t − λ) dλ (15.88)

Taking the Laplace transform gives

F(s) = L[f1(t) ∗ f2(t)] = F1(s)F2(s) (15.89)

To prove that Eq. (15.89) is true, we begin with the fact that F1(s)

is defined as

F1(s) =
∫ ∞

0
f1(λ)e

−sλ dλ (15.90)

Multiplying this with F2(s) gives

F1(s)F2(s) =
∫ ∞

0
f1(λ)[F2(s)e

−sλ] dλ (15.91)

We recall from the time shift property in Eq. (15.17) that the term in
brackets can be written as

F2(s)e
−sλ = L[f2(t − λ)u(t − λ)]

=
∫ ∞

0
f2(t − λ)u(t − λ)e−sλ dt

(15.92)

Substituting Eq. (15.92) into Eq. (15.91) gives

F1(s)F2(s) =
∫ ∞

0
f1(λ)

[∫ ∞

0
f2(t − λ)u(t − λ)e−sλ dt

]
dλ (15.93)

Interchanging the order of integration results in

F1(s)F2(s) =
∫ ∞

0

[∫ t

0
f1(λ)f2(t − λ) dλ

]
e−sλ dt (15.94)
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The integral in brackets extends only from 0 to t because the delayed unit
step u(t − λ) = 1 for λ < t and u(t − λ) = 0 for λ > t . We notice
that the integral is the convolution of f1(t) and f2(t) as in Eq. (15.88).
Hence,

F1(s)Fs(s) = L[f1(t) ∗ f2(t)] (15.95)

as desired. This indicates that convolution in the time domain is equivalent
to multiplication in the s domain. For example, if x(t) = 4e−t and
h(t) = 5e−2t , applying the property in Eq. (15.95), we get

h(t) ∗ x(t) = L−1[H(s)X(s)] = L−1

[(
5

s + 2

)(
4

s + 1

)]

= L−1

[
20

s + 1
+ −20

s + 2

]

= 20(e−t − e−2t ), t ≥ 0

(15.96)

Although we can find the convolution of two signals using Eq.
(15.95), as we have just done, if the product F1(s)F2(s) is very com-
plicated, finding the inverse may be tough. Also, there are situations in
which f1(t) and f2(t) are available in the form of experimental data and
there are no explicit Laplace transforms. In these cases, one must do the
convolution in the time domain.

The process of convolving two signals in the time domain is better
appreciated from a graphical point of view. The graphical procedure for
evaluating the convolution integral in Eq. (15.87) usually involves four
steps.

S t e p s t o e v a l u a t e t h e c o n v o l u t i o n i n t e g r a l :
1. Folding: Take the mirror image of h(λ) about the ordinate axis to

obtain h(−λ).
2. Displacement: Shift or delay h(−λ) by t to obtain h(t − λ).
3. Multiplication: Find the product of h(t − λ) and x(λ).

4. Integration: For a given time t , calculate the area under the
product h(t − λ)x(λ) for 0 < λ < t to get y(t) at t .

The folding operation in step 1 is the reason for the term convolution. The
function h(t − λ) scans or slides over x(λ). In view of this superposition
procedure, the convolution integral is also known as the superposition
integral.

To apply the four steps, it is necessary to be able to sketch x(λ) and
h(t − λ). To get x(λ) from the original function x(t) involves merely
replacing t with λ. Sketching h(t − λ) is the key to the convolution
process. It involves reflecting h(λ) about the vertical axis and shifting it
by t . Analytically, we obtain h(t − λ) by replacing every t in h(t) by
t − λ. Since convolution is commutative, it may be more convenient to
apply steps 1 and 2 to x(t) instead of h(t). The best way to illustrate the
procedure is with some examples.
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E X A M P L E 1 5 . 1 8

Find the convolution of the two signals in Fig. 15.24.x1(t) x2(t)

2

0 1 t t

1

0 1 2 3

Figure 15.24 For Example 15.18.

Solution:

We follow the four steps to get y(t) = x1(t) ∗ x2(t). First, we fold x1(t)

as shown in Fig. 15.25(a) and shift it by t as shown in Fig. 15.25(b). For
different values of t , we now multiply the two functions and integrate to
determine the area of the overlapping region.

2

−1 0 l l

x1(−l) x1(t − l)

t − 1
0

t

2

(a) (b)

Figure 15.25 (a) Folding x1(λ),
(b) shifting x1(−λ) by t .

For 0 < t < 1, there is no overlap of the two functions, as shown
in Fig. 15.26(a). Hence,

y(t) = x1(t) ∗ x2(t) = 0, 0 < t < 1 (15.18.1)

For 1 < t < 2, the two signals overlap between 1 and t , as shown in Fig.
15.26(b).

y(t) =
∫ t

1
(2)(1) dλ = 2λ

∣∣∣∣
t

1

= 2(t − 1), 1 < t < 2 (15.18.2)

For 2 < t < 3, the two signals completely overlap between (t − 1) and t ,
as shown in Fig. 15.26(c). It is easy to see that the area under the curve
is 2. Or

y(t) =
∫ t

t−1
(2)(1) dλ = 2λ

∣∣∣∣
t

t−1

= 2, 2 < t < 3 (15.18.3)

For 3 < t < 4, the two signals overlap between (t − 1) and 3, as shown
in Fig. 15.26(d).

y(t) =
∫ 3

t−1
(2)(1) dλ = 2λ

∣∣∣∣
3

t−1

= 2(3 − t + 1) = 8 − 2t, 3 < t < 4

(15.18.4)

0 1 2 3t l

2

1

x1(t − l)

x2(l)

0 1 t 3t − 1 l

2

1

x1(t − l)

x2(l)

0 1 t 3t − 1 l

2

1

x1(t − l)

x2(l)

(a) (b) (c)

0 1 t3t − 1 l

2

1

x1(t − l)

x2(l)

(d)

0 1 t3 42 t − 1 l

2

1

x1(t − l)

x2(l)

(e)

4

Figure 15.26 Overlapping of x1(t − λ) and x2(λ) for: (a) 0 < t < 1, (b) 1 < t < 2, (c) 2 < t < 3,
(d) 3 < t < 4, (e) t > 4.
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For t > 4, the two signals do not overlap [Fig. 15.26(e)], and

y(t) = 0, t > 4 (15.18.5)

Combining Eqs. (15.18.1) to (15.18.5), we obtain

y(t) =




0, 0 ≤ t ≤ 1
2t − 2, 1 ≤ t ≤ 2
2, 2 ≤ t ≤ 3
8 − 2t, 3 ≤ t ≤ 4
0, t ≥ 4

(15.18.6)

which is sketched in Fig. 15.27. Notice that y(t) in this equation is
continuous. This fact can be used to check the results as we move from
one range of t to another. The result in Eq. (15.18.6) can be obtained
without using the graphical procedure—by directly using Eq. (15.87)
and the properties of step functions. This will be illustrated in Example
15.20.

0 1 2 3 4

2

y(t)

t

Figure 15.27 Convolution of signals x1(t)

and x2(t) in Fig. 15.24.

P R A C T I C E P R O B L E M 1 5 . 1 8

Graphically convolve the two functions in Fig. 15.28.

0 1

1

t

x1(t)

0 1

1

t

x2(t)

2

2

Figure 15.28 For Practice Prob. 15.18.

Answer: The result of the convolutiony(t) is shown in Fig. 15.29, where

y(t) =


t, 0 ≤ t ≤ 2
6 − 2t, 2 ≤ t ≤ 3
0, otherwise

0 1 2 3

2

t

y(t)

Figure 15.29 Convolution of the
signals in Fig. 15.28.

E X A M P L E 1 5 . 1 9

Graphically convolve g(t) and u(t) shown in Fig. 15.30.

Solution:

Let y(t) = g(t) ∗ u(t). We can find y(t) in two ways.

METHOD 1 Suppose we fold g(t), as in Fig. 15.31(a), and shift it by
t , as in Fig. 15.31(b). Since g(t) = t, 0 < t < 1 originally, we expect
that g(t − λ) = t − λ, 0 < t − λ < 1 or t − 1 < λ < t . There is no
overlap of the two functions when t < 0 so that y(0) = 0 for this case.
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g(−l)

1

−1 0 l

(a)

1

0 l

(b)

1

0 l

(c)

t − 1 t − 1t t

g(t − l) g(t − l)

u(l) u(l)

Figure 15.31 Convolution of g(t) and u(t) in Fig. 15.30 with g(t) folded.

g(t)

1

0 1 t

u(t)

1

0 t

Figure 15.30 For Example 15.19.

For 0 < t < 1, g(t − λ) and u(λ) overlap from 0 to t , as evident in Fig.
15.31(b). Therefore,

y(t) =
∫ t

0
(1)(t − λ) dλ =

(
tλ− 1

2
λ2

) ∣∣∣∣
t

0

= t2 − t2

2
= t2

2
, 0 ≤ t ≤ 1

(15.19.1)

For t > 1, the two functions overlap completely between (t − 1) and t
[see Fig. 15.31(c)]. Hence,

y(t) =
∫ t

t−1
(1)(t − λ) dλ

=
(
tλ− 1

2
λ2

) ∣∣∣∣
t

t−1

= 1

2
, t ≥ 1

(15.19.2)

Thus, from Eqs. (15.19.1) and (15.19.2),

y(t) =




1

2
t2, 0 ≤ t ≤ 1

1

2
, t ≥ 1

METHOD 2 Instead of foldingg, suppose we fold the unit step function
u(t), as in Fig. 15.32(a), and then shift it by t , as in Fig. 15.32(b). Since
u(t) = 1 for t > 0, u(t−λ) = 1 for t−λ > 0 or λ < t , the two functions
overlap from 0 to t , so that

y(t) =
∫ t

0
(1)λ dλ = 1

2
λ2

∣∣∣∣
t

0

= t2

2
, 0 ≤ t ≤ 1 (15.19.3)

u(−l)

1

0 l

(a)

1

0 l

(b)

1

0 l

(c)

1t t

g(l) = l u(t − l) = 1

u(t − l) = 1

1

g(l) = l

Figure 15.32 Convolution of g(t) and u(t) in Fig. 15.30 with u(t) folded.
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For t > 1, the two functions overlap between 0 and 1, as shown in Fig.
15.32(c). Hence,

y(t) =
∫ 1

0
(1)λ dλ = 1

2
λ2

∣∣∣∣
1

0

= 1

2
, t ≥ 1 (15.19.4)

And, from Eqs. (15.19.3) and (15.19.4),

y(t) =




1

2
t2, 0 ≤ t ≤ 1

1

2
, t ≥ 1

Although the two methods give the same result, as expected, notice
that it is more convenient to fold the unit step function u(t) than fold g(t)
in this example. Figure 15.33 shows y(t).

y(t)

0 1 t

1
2

Figure 15.33 Result of
Example 15.19.

P R A C T I C E P R O B L E M 1 5 . 1 9

Given g(t) and f (t) in Fig. 15.34, graphically find y(t) = g(t) ∗ f (t).

g(t)

1

0 1 t

f (t)

3

0 t

3e−t

Figure 15.34 For Practice Prob. 15.19.

Answer: y(t) =



3(1 − e−t ), 0 ≤ t ≤ 1
3(e − 1)e−t , t ≥ 1
0, elsewhere

E X A M P L E 1 5 . 2 0

For the RL circuit in Fig. 15.35(a), use the convolution integral to find
the response io(t) due to the excitation shown in Fig. 15.35(b).

Solution:

This problem can be solved in two ways: directly using the convolution
integral or using the graphical technique. To use either approach, we
first need the unit impulse response h(t) of the circuit. In the s domain,
applying the current division principle to the circuit in Fig. 15.36(a) gives

Io = 1

s + 1
Is
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Hence,

H(s) = Io

Is
= 1

s + 1
(15.20.1)

and the inverse Laplace transform of this gives

h(t) = e−t u(t) (15.20.2)

Figure 15.36(b) shows the impulse response h(t) of the circuit.

io

1 H1 Ωis(t)

(a)

(b)

1

0 2 t(s)

is(t) A

Figure 15.35 For Example 15.20.

Io

s1 ΩIs

(a)

(b)

1

t

h(t)

e−t

Figure 15.36 For the
circuit in Fig. 15.35:
(a) its s-domain equivalent,
(b) its impulse response.

METHOD 1 To use the convolution integral directly, recall that the
response is given in the s domain as

Io(s) = H(s)Is(s)

With the given is(t) in Fig. 15.35(b),

is(t) = u(t)− u(t − 2)

so that

io(t) = h(t) ∗ is(t) =
∫ t

0
is(λ)h(t − λ) dλ

=
∫ t

0
[u(λ)− u(λ− 2)]e−(t−λ) dλ

(15.20.3)

Since u(λ− 2) = 0 for 0 < λ < 2, the integrand involving u(λ) is non-
zero for all λ > 0, whereas the integrand involving u(λ − 2) is nonzero
only for λ > 2. The best way to handle the integral is to do the two parts
separately. For 0 < t < 2,

i ′o(t) =
∫ t

0
(1)e−(t−λ) dλ = e−t

∫ t

0
(1)eλ dλ

= e−t (et − 1) = 1 − e−t , 0 < t < 2

(15.20.4)

For t > 2,

i ′′o (t) =
∫ t

2
(1)e−(t−λ) dλ = e−t

∫ t

2
eλ dλ

= e−t (et − e2) = 1 − e2e−t , t > 2

(15.20.5)

Substituting Eqs. (15.20.4) and (15.20.5) into Eq. (15.20.3) gives

io(t) = i ′o(t)− i ′′o (t)
= (1 − e−t )[u(t − 2)− u(t)] − (1 − e2e−t )u(t − 2)

=
{

1 − e−t , 0 < t < 2
(e2 − 1)e−t , t > 2

(15.20.6)

t − 2 0 t l

is(t − l)

h(l)

(a)

t − 20 lt

is(t − l)

h(l)

(b)

1

1

Figure 15.37 For Example 15.20.

METHOD 2 To use the graphical technique, we may fold is(t) in Fig.
15.35(a) and shift by t , as shown in Fig. 15.37(a). For 0 < t < 2, the
overlap between is(t − λ) and h(λ) is from 0 to t , so that

io(t) =
∫ t

0
(1)e−λ dλ = −e−λ

∣∣∣∣
t

0

= 1 − e−t , 0 ≤ t ≤ 2 (15.20.7)
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For t > 2, the two functions overlap between (t − 2) and t , as in Fig.
15.37(b). Hence

io(t) =
∫ t

t−2
(1)e−λ dλ = −e−λ

∣∣∣∣
t

t−2

= −e−t + e−(t−2)

= (e2 − 1)e−t , t ≥ 0

(15.20.8)

From Eqs. (15.20.7) and (15.20.8), the response is

io(t) =
{

1 − e−t , 0 ≤ t ≤ 2
(e2 − 1)e−t , t ≥ 2

(15.20.9)

which is the same as in Eq. (15.20.6). Thus, the response io(t) along the
excitation is(t) is as shown in Fig. 15.38.

1

0 1 2 3 4 t

Excitation is

Response io

Figure 15.38 For Example 15.20;
excitation and response.

P R A C T I C E P R O B L E M 1 5 . 2 0

Use convolution to find vo(t) in the circuit of Fig. 15.39(a) when the ex-
citation is the signal shown in Fig. 15.39(b).

−
+
−

+

−

1 Ω

vovs

(a)

0 t

10

vs (V)

10e−t

(b)

0.5 F

Figure 15.39 For Practice Prob. 15.20.

Answer: 20(e−t − e−2t ) V.

†15.8 APPLICATION TO INTEGRODIFFERENTIAL
EQUATIONS

The Laplace transform is useful in solving linear integrodifferential equa-
tions. Using the differentiation and integration properties of Laplace
transforms, each term in the integrodifferential equation is transformed.
Initial conditions are automatically taken into account. We solve the re-
sulting algebraic equation in the s domain. We then convert the solution
back to the time domain by using the inverse transform. The following
examples illustrate the process.

E X A M P L E 1 5 . 2 1

Use the Laplace transform to solve the differential equation

d2v(t)

dt2
+ 6

dv(t)

dt
+ 8v(t) = 2u(t)

subject to v(0) = 1, v′(0) = −2.
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Solution:

We take the Laplace transform of each term in the given differential
equation and obtain

[s2V (s)− sv(0)− v′(0)] + 6[sV (s)− v(0)] + 8V (s) = 2

s

Substituting v(0) = 1, v′(0) = −2,

s2V (s)− s + 2 + 6sV (s)− 6 + 8V (s) = 2

s
or

(s2 + 6s + 8)V (s) = s + 4 + 2

s
= s2 + 4s + 2

s

Hence,

V (s) = s2 + 4s + 2

s(s + 2)(s + 4)
= A

s
+ B

s + 2
+ C

s + 4

where

A = sV (s)
∣∣
s=0 = s2 + 4s + 2

(s + 2)(s + 4)

∣∣∣∣
s=0

= 2

(2)(4)
= 1

4

B = (s + 2)V (s)
∣∣
s=−2 = s2 + 4s + 2

s(s + 4)

∣∣∣∣
s=−2

= −2

(−2)(2)
= 1

2

C = (s + 4)V (s)
∣∣
s=−4 = s2 + 4s + 2

s(s + 2)

∣∣∣∣
s=−4

= 2

(−4)(−2)
= 1

4

Hence,

V (s) =
1
4

s
+

1
2

s + 2
+

1
4

s + 4

By the inverse Laplace transform,

v(t) = 1

4
(1 + 2e−2t + e−4t )u(t)

P R A C T I C E P R O B L E M 1 5 . 2 1

Solve the following differential equation using the Laplace transform
method.

d2v(t)

dt2
+ 4

dv(t)

dt
+ 4v(t) = e−t

if v(0) = v′(0) = 1.

Answer: (e−t + 2te−2t )u(t).

E X A M P L E 1 5 . 2 2

Solve for the response y(t) in the following integrodifferential equation.

dy

dt
+ 5y(t)+ 6

∫ t

0
y(τ) dτ = u(t), y(0) = 2
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Solution:

Taking the Laplace transform of each term, we get

[sY (s)− y(0)] + 5Y (s)+ 6

s
Y (s) = 1

s

Substituting y(0) = 2 and multiplying through by s,

Y (s)(s2 + 5s + 6) = 1 + 2s

or

Y (s) = 2s + 1

(s + 2)(s + 3)
= A

s + 2
+ B

s + 3

where

A = (s + 2)Y (s)
∣∣
s=−2 = 2s + 1

s + 3

∣∣∣∣
s=−2

= −3

1
= −3

B = (s + 3)Y (s)
∣∣
s=−3 = 2s + 1

s + 2

∣∣∣∣
s=−3

= −5

−1
= 5

Thus,

Y (s) = −3

s + 2
+ 5

s + 3

Its inverse transform is

y(t) = (−3e−2t + 5e−3t )

P R A C T I C E P R O B L E M 1 5 . 2 2

Use the Laplace transform to solve the integrodifferential equation

dy

dt
+ 3y(t)+ 2

∫ t

0
y(τ) dτ = 2e−3t , y(0) = 0

Answer: (−e−t + 4e−2t − 3e−3t )u(t).

†15.9 APPLICATIONS
So far we have considered three applications of Laplace’s transform: cir-
cuit analysis in general, obtaining transfer functions, and solving linear
integrodifferential equations. The Laplace transform also finds appli-
cation in other areas in circuit analysis, signal processing, and control
systems. Here we will consider two more important applications: net-
work stability and network synthesis.

15 . 9 . 1 Ne twork S t ab i l i t y
A circuit is stable if its impulse response h(t) is bounded (i.e., h(t) con-
verges to a finite value) as t → ∞; it is unstable if h(t) grows without
bound as t → ∞. In mathematical terms, a circuit is stable when

lim
t→∞ |h(t)| = finite (15.97)
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Since the transfer function H(s) is the Laplace transform of the impulse
response h(t), H(s) must meet certain requirements in order for Eq.
(15.97) to hold. Recall that H(s) may be written as

H(s) = N(s)

D(s)
(15.98)

where the roots of N(s) = 0 are called the zeros of H(s) because they
makeH(s) = 0, while the roots ofD(s) = 0 are called the poles ofH(s)
since they cause H(s) → ∞. The zeros and poles of H(s) are often
located in the s plane as shown in Fig. 15.40(a). Recall from Eqs. (15.47)
and (15.48) that H(s) may also be written in terms of its poles as

H(s) = N(s)

D(s)
= N(s)

(s + p1)(s + p2) · · · (s + pn) (15.99)

H(s) must meet two requirements for the circuit to be stable. First, the
degree of N(s) must be less than the degree of D(s); otherwise, long
division would produce

H(s) = kns
n + kn−1s

n−1 + · · · + k1s + k0 + R(s)

D(s)
(15.100)

where the degree of R(s), the remainder of the long division, is less than
the degree ofD(s). The inverse ofH(s) in Eq. (15.99) does not meet the
condition in Eq. (15.97). Second, all the poles ofH(s) in Eq. (15.98) (i.e.,
all the roots of D(s) = 0) must have negative real parts; in other words,
all the poles must lie in the left half of the s plane, as shown typically in
Fig. 15.40(b). The reason for this will be apparent if we take the inverse
Laplace transform of H(s) in Eq. (15.98). Since Eq. (15.98) is similar
to Eq. (15.48), its partial fraction expansion is similar to the one in Eq.
(15.49) so that the inverse ofH(s) is similar to that in Eq. (15.53). Hence,

h(t) = (k1e
−p1t + k2e

−p2t + · · · + kne−pnt ) (15.101)

We see from this equation that each polepi must be positive (i.e., pole s =
−pi in the left-half plane) in order for e−pi t to decrease with increasing
t . Thus,

jv

jv

s

O

O Zero

O

XX

X Pole

(a)

s

X

X

(b)

0

Figure 15.40 The complex s
plane: (a) poles and zeros
plotted, (b) left-half plane.

A circuit is stable when all the poles of its transfer function H(s) lie
in the left half of the s plane.

An unstable circuit never reaches steady state because the transient
response does not decay to zero. Consequently, steady-state analysis is
only applicable to stable circuits.

+
− Vo

+

−

1
sCVs

R sL

Figure 15.41 A typical RLC
circuit.

A circuit made up exclusively of passive elements (R,L, andC) and
independent sources cannot be unstable, because that would imply that
some branch currents or voltages would grow indefinitely with sources
set to zero. Passive elements cannot generate such indefinite growth.
Passive circuits either are stable or have poles with zero real parts. To
show that this is the case, consider the series RLC circuit in Fig. 15.41.
The transfer function is given by

H(s) = Vo

Vs
= 1/sC

R + sL+ 1/sC
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or

H(s) = 1/LC

s2 + sR/L+ 1/LC
(15.102)

Notice that D(s) = s2 + sR/L + 1/LC = 0 is the same as the char-
acteristic equation obtained for the series RLC circuit in Eq. (8.8). The
circuit has poles at

p1,2 = −α ±
√
α2 − ω0

2 (15.103)

where

α = R

2L
, ω0 = 1

LC

For R, L, C > 0, the two poles always lie in the left half of the s plane,
implying that the circuit is always stable. However, when R = 0, α = 0
and the circuit becomes unstable. Although ideally this is possible, it
does not really happen, because R is never zero.

On the other hand, active circuits or passive circuits with controlled
sources can supply energy, and they can be unstable. In fact, an oscillator
is a typical example of a circuit designed to be unstable. An oscillator is
designed such that its transfer function is of the form

H(s) = N(s)

s2 + ω0
2

= N(s)

(s + jω0)(s − jω0)
(15.104)

so that its output is sinusoidal.

E X A M P L E 1 5 . 2 3

Determine the values of k for which the circuit in Fig. 15.42 is stable.

–
+

+
−

1
sCVi

R R

I1 I2 kI1

Figure 15.42 For Example 15.23.

Solution:

Applying mesh analysis to the first-order circuit in Fig. 15.42 gives

Vi =
(
R + 1

sC

)
I1 − I2

sC
(15.23.1)

and

0 = −kI1 +
(
R + 1

sC

)
I2 − I1

sC

or

0 = −
(
k + 1

sC

)
I1 +

(
R + 1

sC

)
I2 (15.23.2)

We can write Eqs. (15.23.1) and (15.23.2) in matrix form as

[
Vi
0

]
=



(
R + 1

sC

)
− 1

sC

−
(
k + 1

sC

) (
R + 1

sC

)


[
I1

I2

]

The determinant is

8 =
(
R + 1

sC

)2

− k

sC
− 1

s2C2
= sR2C + 2R − k

sC
(15.23.3)
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The characteristic equation (8 = 0) gives the single pole as

p = k − 2R

R2C

which is negative when k < 2R. Thus, we conclude the circuit is stable
when k < 2R and unstable for k > 2R.

P R A C T I C E P R O B L E M 1 5 . 2 3

For what value of β is the circuit in Fig. 15.43 stable?

+

−
VoR C C R

bVo

Figure 15.43 For Practice Prob. 15.23.

Answer: β > 1/R.

E X A M P L E 1 5 . 2 4

An active filter has the transfer function

H(s) = k

s2 + s(4 − k)+ 1

For what values of k is the filter stable?

Solution:

As a second-order circuit, H(s) may be written as

H(s) = N(s)

s2 + bs + c
where b = 4−k, c = 1, andN(s) = k.This has poles atp2 +bp+c = 0,
that is,

p1,2 = −b ± √
b2 − 4c

2

For the circuit to be stable, the poles must be located in the left half of
the s plane. This implies that b > 0.

Applying this to the given H(s) means that for the circuit to be
stable, 4 − k > 0 or k < 4.

P R A C T I C E P R O B L E M 1 5 . 2 4

A second-order active circuit has the transfer function

H(s) = 1

s2 + s(10 + α)+ 25

Find the range of the values of α for which the circuit is stable. What is
the value of α that will cause oscillation?

Answer: α > −10, α = −10.
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15 . 9 . 2 Ne twork Syn the s i s
Network synthesis may be regarded as the process of obtaining an appro-
priate network to represent a given transfer function. Network synthesis
is easier in the s domain than in the time domain.

In network analysis, we find the transfer function of a given net-
work. In network synthesis, we reverse the approach: given a transfer
function, we are required to find a suitable network.

Network synthesis is finding a network that represents a given transfer function.

Keep in mind that in synthesis, there may be many different an-
swers—or possibly no answers—because there are many circuits that
can be used to represent the same transfer function; in network analysis,
there is only one answer.

Network synthesis is an exciting field of prime engineering impor-
tance. Being able to look at a transfer function and come up with the
type of circuit it represents is a great asset to a circuit designer. Although
network synthesis constitutes a whole course by itself and requires some
experience, the following examples are meant to whet your appetite.

E X A M P L E 1 5 . 2 5

Given the transfer function

H(s) = Vo(s)

Vi(s)
= 10

s2 + 3s + 10

realize the function using the circuit in Fig. 15.44(a). (a) SelectR = 59,
and find L and C. (b) Select R = 1 9, and find L and C.

+

−
Vo(t)+

−vi(t)

L

C R

(a)

+

−
Vo(s)+

−Vi(s)

sL

(b)

1
sC

Figure 15.44 For Example 15.25.

Solution:

The s-domain equivalent of the circuit in Fig. 15.44(a) is shown in Fig.
15.44(b). The parallel combination of R and C gives

R

∥∥∥∥ 1

sC
= R/sC

R + 1/sC
= R

1 + sRC
Using the voltage division principle,

Vo = R/(1 + sRC)
sL+ R/(1 + sRC)Vi = R

sL(1 + sRC)+ RVi
or

Vo

Vi
= R

s2RLC + sL+ R = 1/LC

s2 + s/RC + 1/LC

Comparing this with the given transfer function H(s) reveals that

1

LC
= 10,

1

RC
= 3

There are several values of R, L, and C that satisfy these requirements.
This is the reason for specifying one element value so that others can be
determined.
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(a) If we select R = 5 9, then

C = 1

3R
= 66.67 mF, L = 1

10C
= 1.5 H

(b) If we select R = 1 9, then

C = 1

3R
= 0.333 F, L = 1

10C
= 0.3 H

Making R = 1 9 can be regarded as normalizing the design.
In this example we have used passive elements to realize the given

transfer function. The same goal can be achieved by using active ele-
ments, as the next example demonstrates.

P R A C T I C E P R O B L E M 1 5 . 2 5

Realize the function

G(s) = Vo(s)

Vi(s)
= 4s

s2 + 4s + 20

using the circuit in Fig. 15.45. Select R = 2 9, and determine L and C.
+
−vi(t)

LC

+

−
vo(t)R

Figure 15.45 For Practice Prob. 15.25.

Answer: 0.5 H, 0.1 F.

E X A M P L E 1 5 . 2 6

Synthesize the function

T (s) = Vo(s)

Vs(s)
= 106

s2 + 100s + 106

using the topology in Fig. 15.46.

+
−

V1

V2
Y1 Vo

Vo

Vs

Y2

Y3

Y4

+

−
1 2

Figure 15.46 For Example 15.26.

Solution:

We apply nodal analysis to nodes 1 and 2. At node 1,

(Vs − V1)Y1 = (V1 − Vo)Y2 + (V1 − V2)Y3 (15.26.1)
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At node 2,

(V1 − V2)Y3 = (V2 − 0)Y4 (15.26.2)

But V2 = Vo, so Eq. (15.26.1) becomes

Y1Vs = (Y1 + Y2 + Y3)V1 − (Y2 + Y3)Vo (15.26.3)

and Eq. (15.26.2) becomes

V1Y3 = (Y3 + Y4)Vo

or

V1 = 1

Y3
(Y3 + Y4)Vo (15.26.4)

Substituting Eq. (15.26.4) into Eq. (15.26.3) gives

Y1Vs = (Y1 + Y2 + Y3)
1

Y3
(Y3 + Y4)Vo − (Y2 + Y3)Vo

or

Y1Y3Vs = [Y1Y3 + Y4(Y1 + Y2 + Y3)]Vo

Thus,

Vo

Vs
= Y1Y3

Y1Y3 + Y4(Y1 + Y2 + Y3)
(15.26.5)

To synthesize the given transfer function T (s), compare it with the one in
Eq. (15.26.5). Notice two things: (1) Y1Y3 must not involve s because the
numerator of T (s) is constant; (2) the given transfer function is second-
order, which implies that we must have two capacitors. Therefore, we
must make Y1 and Y3 resistive, while Y2 and Y4 are capacitive. So we
select

Y1 = 1

R1
, Y2 = sC1, Y3 = 1

R2
, Y4 = sC2 (15.26.6)

Substituting Eq. (15.26.6) into Eq. (15.26.5) gives

Vo

Vs
= 1/(R1R2)

1/(R1R2)+ sC2(1/R1 + 1/R2 + sC1)

= 1/(R1R2C1C2)

s2 + s(R1 + R2)/(R1R2C1)+ 1/(R1R2C1C2)

Comparing this with the given transfer function T (s), we notice that

1

R1R2C1C2
= 106,

R1 + R2

R1R2C1
= 100

If we select R1 = R2 = 10 k9, then

C1 = R1 + R2

100R1R2
= 20 × 103

100 × 100 × 106
= 2 µF

C2 = 10−6

R1R2C1
= 10−6

100 × 106 × 2 × 10−6
= 5 nF

Thus, the given transfer function is realized using the circuit shown in
Fig. 15.47.
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+
−

Vo

Vs

R1 = 10 kΩ R2 = 10 kΩ

C1 = 2 mF

C2 = 5 nF

+
−

Figure 15.47 For Example 15.26.

P R A C T I C E P R O B L E M 1 5 . 2 6

Synthesize the function

Vo(s)

Vin
= −2s

s2 + 6s + 10

using the op amp circuit shown in Fig. 15.48. Select

Y1 = 1

R1
, Y2 = sC1, Y3 = sC2, Y4 = 1

R2

Let R1 = 1 k9, and determine C1, C2, and R2.

+
−

Y1

Vo

Vin

Y3

Y4

+
−

Y2

Figure 15.48 For Practice Prob. 15.26.

Answer: 0.1 mF, 0.5 mF, 2 k9.

15.10 SUMMARY
1. The Laplace transform allows a signal represented by a function in

the time domain to be analyzed in the s domain (or complex fre-
quency domain). It is defined as

L[f (t)] = F(s) =
∫ ∞

0
f (t)e−st dt
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2. Properties of the Laplace transform are listed in Table 15.1, while
the Laplace transforms of basic common functions are listed in
Table 15.2.

3. The inverse Laplace transform can be found using partial fraction
expansions and using the Laplace transform pairs in Table 15.2 as a
look-up table. Real poles lead to exponential functions and com-
plex poles to damped sinusoids.

4. The Laplace transform can be used to analyze a circuit. We convert
each element from the time domain to the s domain, solve the
problem using any circuit technique, and convert the result to the
time domain using the inverse transform.

5. In the s domain, the circuit elements are replaced with the initial
condition at t = 0 as follows:

Resistor: vR �⇒ VR = RI

Inductor: vL �⇒ VL = sLI − Li(0−)

Capacitor: vC �⇒ VC = I

sC
− v(0−)

s

6. Using the Laplace transform to analyze a circuit results in a com-
plete (both natural and forced) response, as the initial conditions
are incorporated in the transformation process.

7. The transfer function H(s) of a network is the Laplace transform of
the impulse response h(t).

8. In the s domain, the transfer function H(s) relates the output re-
sponse Y (s) and an input excitation X(s); that is, H(s) = Y (s)/

X(s).

9. The convolution of two signals consists of time-reversing one of the
signals, shifting it, multiplying it point by point with the second
signal, and integrating the product. The convolution integral relates
the convolution of two signals in the time domain to the inverse of
the product of their Laplace transforms:

L−1[F1(s)F2(s)] = f1(t) ∗ f2(t) =
∫ t

0
f1(λ)f2(t − λ) dλ

10. In the time domain, the output y(t) of the network is the convolu-
tion of the impulse response with the input x(t),

y(t) = h(t) ∗ x(t)

11. The Laplace transform can be used to solve a linear integrodiffer-
ential equation.

12. Two other typical areas of applications of the Laplace transform are
circuit stability and synthesis. A circuit is stable when all the poles
of its transfer function lie in the left half of the s plane. Network
synthesis is the process of obtaining an appropriate network to
represent a given transfer function for which analysis in the s
domain is well suited.
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R E V I EW QU E S T I ON S

15.1 Every function f (t) has a Laplace transform.
(a) True (b) False

15.2 The variable s in the Laplace transform H(s) is
called
(a) complex frequency (b) transfer function
(c) zero (d) pole

15.3 The Laplace transform of u(t − 2) is:

(a)
1

s + 2
(b)

1

s − 2

(c)
e2s

s
(d)

e−2s

s

15.4 The zero of the function

F(s) = s + 1

(s + 2)(s + 3)(s + 4)

is at
(a) −4 (b) −3 (c) −2 (d) −1

15.5 The poles of the function

F(s) = s + 1

(s + 2)(s + 3)(s + 4)

are at
(a) −4 (b) −3 (c) −2 (d) −1

15.6 If F(s) = 1/(s + 2), then f (t) is
(a) e2t u(t) (b) e−2t u(t)

(c) u(t − 2) (d) u(t + 2)

15.7 Given that F(s) = e−2s/(s + 1), then f (t) is
(a) e−2(t−1)u(t − 1) (b) e−(t−2)u(t − 2)
(c) e−t u(t − 2) (d) e−t u(t + 1)
(e) e−(t−2)u(t)

15.8 The initial value of f (t) with transform

F(s) = s + 1

(s + 2)(s + 3)

is:
(a) nonexistent (b) ∞ (c) 0
(d) 1 (e) 1

6

15.9 The inverse Laplace transform of

s + 2

(s + 2)2 + 1

is:
(a) e−t cos 2t (b) e−t sin 2t (c) e−2t cos t
(d) e−2t sin 2t (e) none of the above

15.10 A transfer function is defined only when all initial
conditions are zero.
(a) True (b) False

Answers: 15.1b, 15.2a, 15.3d, 15.4d, 15.5a,b,c, 15.6b, 15.7b, 15.8d,
15.9c, 15.10b.

P RO B L E M S

Sections 15.2 and 15.3 Definition and
Properties of the Laplace Transform

15.1 Find the Laplace transform of:
(a) cosh at (b) sinh at
[Hint: cosh x = 1

2 (e
x + e−x),

sinh x = 1
2 (e

x − e−x).]
15.2 Determine the Laplace transform of:

(a) cos(ωt + θ) (b) sin(ωt + θ)
15.3 Obtain the Laplace transform of each of the

following functions:
(a) e−2t cos 3tu(t) (b) e−2t sin 4tu(t)
(c) e−3t cosh 2tu(t) (d) e−4t sinh tu(t)
(e) te−t sin 2tu(t)

15.4 Find the Laplace transform of each of the following
functions:
(a) t2 cos(2t + 30◦)u(t) (b) 3t4e−2t u(t)

(c) 2tu(t)− 4
d

dt
δ(t) (d) 2e−(t−1)u(t)

(e) 5u(t/2) (f ) 6e−t/3u(t)

(g)
dn

dtn
δ(t)

15.5 Calculate the Laplace transforms of these functions:
(a) 2δ(t − 1) (b) 10u(t − 2)
(c) (t + 4)u(t) (d) 2e−t u(t − 4)

15.6 Obtain the Laplace transform of
(a) 10 cos 4(t − 1)u(t) (b) t2e−2t u(t)+ u(t − 3)
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15.7 Find the Laplace transforms of the following
functions:
(a) 2δ(3t)+ 6u(2t)+ 4e−2t − 10e−3t

(b) te−t u(t − 1)
(c) cos 2(t − 1)u(t − 1)
(d) sin 4t[u(t)− u(t − π)]

15.8 Determine the Laplace transforms of these
functions:
(a) f (t) = (t − 4)u(t − 2)
(b) g(t) = 2e−4t u(t − 1)
(c) h(t) = 5 cos(2t − 1)u(t)
(d) p(t) = 6[u(t − 2)− u(t − 4)]

15.9 In two different ways, find the Laplace transform of

g(t) = d

dt
(te−t cos t)

15.10 Find F(s) if:
(a) f (t) = 6e−t cosh 2t (b) f (t) = 3te−2t sinh 4t
(c) f (t) = 8e−3t cosh tu(t − 2)

15.11 Calculate the Laplace transform of the function in
Fig. 15.49.

0 1 2 t

5

f (t)

Figure 15.49 For Prob. 15.11.

15.12 Find the Laplace transform of the function in Fig.
15.50.

1 2
0

10

−10

f(t)

t

Figure 15.50 For Prob. 15.12.

15.13 Obtain the Laplace transform of f (t) in Fig. 15.51.

0 1 2 3 4

2

5

t

f(t)

Figure 15.51 For Prob. 15.13.

15.14 Determine the Laplace transforms of the function in
Fig. 15.52.

0 1 2 3 t

1

f(t)

t2

Figure 15.52 For Prob. 15.14.

15.15 Obtain the Laplace transforms of the functions in
Fig. 15.53.

0 1 2 3

1

2

3

g(t)

t

(a)

0 1 2 3 4

2

h(t)

t

(b)

Figure 15.53 For Prob. 15.15.

15.16 Calculate the Laplace transform of the train of unit
impulses in Fig. 15.54.

0 2 4 6 8 t

1

f(t)

Figure 15.54 For Prob. 15.16.
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15.17 The periodic function shown in Fig. 15.55 is defined
over its period as

g(t) =
{

sinπt, 0 < t < 1
0, 1 < t < 2

Find G(s).

0 1

1

2 3 t

g(t)

Figure 15.55 For Prob. 15.17.

15.18 Obtain the Laplace transform of the periodic
waveform in Fig. 15.56.

0 2p 4p 6p 8p t

1

f(t)

Figure 15.56 For Prob. 15.18.

15.19 Find the Laplace transforms of the functions in Fig.
15.57.

2

0 1 2 3 t

g(t)

(a)

3

0 1 2 3 4 5

h(t)

(b)

1

t

Figure 15.57 For Prob. 15.19.

15.20 Determine the Laplace transforms of the periodic
functions in Fig. 15.58.

1

0
1 2 3 4 t

f(t)

(a)

0 2 4 6

h(t)

(b)

t

−1

4
t2

Figure 15.58 For Prob. 15.20.

15.21 Find the initial and final values, if they exist, of the
following Laplace transforms:

(a) F(s) = 10s3 + 1

s2 + 6s + 5

(b) F(s) = s + 1

s2 − 4s + 6

(c) F(s) = 2s2 + 7

(s + 1)(s + 2)(s2 + 2s + 5)

15.22 Find f (0) and f (∞), if they exist, when:

(a) F(s) = 8(s + 1)(s + 3)

s(s + 2)(s + 4)

(b) F(s) = 6(s − 1)

s4 − 1

15.23 Determine the initial and final values of f (t), if they
exist, given that:

(a) F(s) = s2 + 3

s3 + 4s2 + 6

(b) F(s) = s2 − 2s + 1

(s − 2)(s2 + 2s + 4)

Section 15.4 The Inverse Laplace Transform

15.24 Determine the inverse Laplace transform of each of
the following functions:

(a) F(s) = 1

s
+ 2

s + 1

(b) G(s) = 3s + 1

s + 4

(c) H(s) = 4

(s + 1)(s + 3)

(d) J (s) = 12

(s + 2)2(s + 4)

15.25 Find f (t) for each F(s):

(a)
10s

(s + 1)(s + 2)(s + 3)

(b)
2s2 + 4s + 1

(s + 1)(s + 2)3

(c)
s + 1

(s + 2)(s2 + 2s + 5)

15.26 Determine the inverse Laplace transform of each of
the following functions:

(a)
8(s + 1)(s + 3)

s(s + 2)(s + 4)
(b)

s2 − 2s + 4

(s + 1)(s + 2)2

(c)
s2 + 1

(s + 3)(s2 + 4s + 5)
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15.27 Calculate the inverse Laplace transform of:

(a)
6(s − 1)

s4 − 1
(b)

se−πs

s2 + 1
(c)

8

s(s + 1)3

15.28 Find the time functions that have the following
Laplace transforms:

(a) F(s) = 10 + s2 + 1

s2 + 4

(b) G(s) = e−s + 4e−2s

s2 + 6s + 8

(c) H(s) = (s + 1)e−2s

s(s + 3)(s + 4)

15.29 Obtain f (t) for the following transforms:

(a) F(s) = (s + 3)e−6s

(s + 1)(s + 2)

(b) F(s) = 4 − e−2s

s2 + 5s + 4

(c) F(s) = se−s

(s + 3)(s2 + 4)

15.30 Obtain the inverse Laplace transforms of the
following functions:

(a) X(s) = 1

s2(s + 2)(s + 3)

(b) Y (s) = 1

s(s + 1)2

(c) Z(s) = 1

s(s + 1)(s2 + 6s + 10)

15.31 Obtain the inverse Laplace transforms of these
functions:

(a)
12e−2s

s(s2 + 4)
(b)

2s + 1

(s2 + 1)(s2 + 9)

(c)
9s2

(s2 + 4s + 13)

15.32 Find f (t) given that:

(a) F(s) = s2 + 4s

s2 + 10s + 26

(b) F(s) = 5s2 + 7s + 29

s(s2 + 4s + 29)

15.33∗ Determine f (t) if:

(a) F(s) = 2s3 + 4s2 + 1

(s2 + 2s + 17)(s2 + 4s + 20)

(b) F(s) = s2 + 4

(s2 + 9)(s2 + 6s + 3)

Section 15.5 Application to Circuits

15.34 Determine i(t) in the circuit of Fig. 15.59 by means
of the Laplace transform.

+
−

i(t)1 Ω

1 F

1 H

u(t)

Figure 15.59 For Prob. 15.34.

15.35 Find vo(t) in the circuit in Fig. 15.60.

+

−
+
−   F1

10

6 Ω

vo(t)

1 H

e−tu(t)

Figure 15.60 For Prob. 15.35.

15.36 Find the input impedance Zin(s) of each of the
circuits in Fig. 15.61.

2 Ω

(a) (b)

1 Ω

1 Ω

2 Ω

1 F

1 H
1 H 0.5 F

Figure 15.61 For Prob. 15.36.

15.37 Obtain the mesh currents in the circuit of Fig. 15.62.

i1 i2
+
−

+
−u(t)

1 H

4e−2tu(t)2 Ω

F1
4

Figure 15.62 For Prob. 15.37.

15.38 Find vo(t) in the circuit in Fig. 15.63.

+

−
4 Ωvo(t)+

− 2 F

1 H

10e−tu(t) V 3u(t) A

Figure 15.63 For Prob. 15.38.
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15.39 Determine io(t) in the circuit in Fig. 15.64.

io

1 Ω2 Ω

1 F 2 H

e−2tu(t) A

Figure 15.64 For Prob. 15.39.

15.40∗ Determine io(t) in the network shown in Fig. 15.65.

+
−5 + 10u(t) V 2 H

1 Ω 4 Ω

io

F1
4

Figure 15.65 For Prob. 15.40.

15.41∗ Find io(t) for t > 0 in the circuit in Fig. 15.66.

+
−

+ −vo

+
−

+
−

1 Ω

2 Ω

1 F

0.5vo

1 H

3u(−t) V5e−2t V

io

Figure 15.66 For Prob. 15.41.

15.42 Calculate io(t) for t > 0 in the network of Fig.
15.67.

io

+ −

1 Ω 1 Ω

1 F 1 H

2e−tu(t) V

4u(t) A

Figure 15.67 For Prob. 15.42.

15.43 In the circuit of Fig. 15.68, let i(0) = 1 A, vo(0) = 2
V, and vs = 4e−2t u(t) V. Find vo(t) for t > 0.

+−
+

−

2 Ω

vo+
−vs 1 H 1 F

2i

i

Figure 15.68 For Prob. 15.43.

15.44 Find vo(t) in the circuit in Fig. 15.69 if vx(0) = 2 V
and i(0) = 1 A.

+ −

+

−

i

1 Ω 1 Ω vo

vx

1 He−tu(t) A

1 F

Figure 15.69 For Prob. 15.44.

15.45 Consider the parallel RLC circuit of Fig. 15.70.
Find v(t) and i(t) given that v(0) = 5 and
i(0) = −2 A.

+

−
10 Ω 4 H v

i

4u(t) A F1
80

Figure 15.70 For Prob. 15.45.

15.46 For the RLC circuit shown in Fig. 15.71, find the
complete response if v(0) = 2 V when the switch is
closed.

+
−

t = 0

v
+

−

6 Ω

2 cos 4t V 

1 H

F1
9

Figure 15.71 For Prob. 15.46.
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15.47 For the op amp circuit in Fig. 15.72, find vo(t) for
t > 0. Take vs = 3e−5t u(t) V.

+
−

+
−

20 kΩ
vo

50 mF

vs

10 kΩ

Figure 15.72 For Prob. 15.47.

15.48 Find I1(s) and I2(s) in the circuit of Fig. 15.73.

i1 i2

+
− 1 Ω 1 Ω

2 H

1 H

2 H

10e−3tu(t) V

Figure 15.73 For Prob. 15.48.

15.49 For the circuit in Fig. 15.74, find vo(t) for t > 0.

1 Ω

+
− 2 H 1 H

1 H

2 Ω
+

−
vo6u(t)

Figure 15.74 For Prob. 15.49.

15.50 For the ideal transformer circuit in Fig. 15.75,
determine io(t).

+
−

1 Ω io

8 Ω0.25 F

1:2

10e−tu(t) V

Figure 15.75 For Prob. 15.50.

Section 15.6 Transfer Functions

15.51 The transfer function of a system is

H(s) = s2

3s + 1
Find the output when the system has an input of
4e−t/3u(t).

15.52 When the input to a system is a unit step function,
the response is 10 cos 2t . Obtain the transfer
function of the system.

15.53 A circuit is known to have its transfer function as

H(s) = s + 3

s2 + 4s + 5

Find its output when:
(a) the input is a unit step function
(b) the input is 6te−2t u(t).

15.54 When a unit step is applied to a system at t = 0, its
response is

y(t) = 4 + 1

2
e−3t − e−2t (2 cos 4t + 3 sin 4t)

What is the transfer function of the system?

15.55 For the circuit in Fig. 15.76, find
H(s) = Vo(s)/Vs(s). Assume zero initial
conditions.

+

−

2 Ω

4 Ω vo+
−vs

1 H

0.1 F

Figure 15.76 For Prob. 15.55.

15.56 Obtain the transfer function H(s) = Vo/Vs for the
circuit of Fig. 15.77.

+

−
vo+

−

i 0.5 F 1 H

3 Ω2ivs

Figure 15.77 For Prob. 15.56.

15.57 Repeat the previous problem for H(s) = Vo/I .

15.58 For the circuit in Fig. 15.78, find:
(a) I1/Vs (b) I2/Vx

+
−

+
−

i1 i23 Ω

vs

2 H

4vx0.5 FVx

+

−

Figure 15.78 For Prob. 15.58.

15.59 Refer to the network in Fig. 15.79. Find the
following transfer functions:
(a) H1(s) = Vo(s)/Vs(s)
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(b) H2(s) = Vo(s)/Is(s)

(c) H3(s) = Io(s)/Is(s)

(d) H4(s) = Io(s)/Vs(s)

+

−
vo+

−

is io

vs

1 Ω

1 Ω

1 Η

1 F 1 F

Figure 15.79 For Prob. 15.59.

15.60 Calculate the gain H(s) = Vo/Vs in the op amp
circuit of Fig. 15.80.

+
−

+
−

+

−

R

C

vo
vs

Figure 15.80 For Prob. 15.60.

15.61 Refer to the RL circuit in Fig. 15.81. Find:
(a) the impulse response h(t) of the circuit
(b) the unit step response of the circuit.

Rvs

+

−
vo+

−

L

Figure 15.81 For Prob. 15.61.

15.62 A network has the impulse response h(t) =
2e−t u(t). When the input signal vi(t) = 5u(t) is
applied to it, find its output.

15.63 Obtain the impulse response of a system modeled by
the differential equation

2
dy

dt
+ y(t) = x(t)

where x(t) is the input and y(t) is the output.

Section 15.7 The Convolution Integral

15.64 Graphically convolve the pairs of functions in Fig.
15.82.

0 1 t

f1(t)

1

0 1 t

f1(t) = f2(t)

1

0 1 t

f2(t)

1

(a) (b)

(c)

0 t

f2(t)

1

0 1−1 t

f1(t)

1

Figure 15.82 For Prob. 15.64.

15.65 Find y(t) = x(t) ∗ h(t) for each paired x(t) and h(t)
in Fig. 15.83.

x(t)

1

0 t

t

h(t)

(b)

(c)

x(t)

1

0 1 t

h(t)
2

0 t

2e−t

x(t)

1

0 1 t−1

1

0 1 2

h(t)

1

0 1 t

(a)

Figure 15.83 For Prob. 15.65.
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15.66 Obtain the convolution of the pairs of signals in Fig.
15.84.

(b)

x(t)

1

0 1 t

(a)

f1(t) f2(t)

1

0 t

1

2

0

1

−1

h(t)

t

1

0 11 2 3 4 5 t

Figure 15.84 For Prob. 15.66.

15.67 Show that:
(a) x(t) ∗ δ(t) = x(t)

(b) f (t) ∗ u(t) =
∫ t

0
f (λ) dλ

15.68 Determine the convolution for each of the following
pairs of continuous signals:
(a) x1(t) = e−t , t > 0, x2(t) = 4e−2t , 0 < t < 3
(b) x1(t) = u(t − 1)− u(t − 3),

x2(t) = u(t)− u(t − 1)
(c) x1(t) = 4e−t u(t),

x2(t) = u(t + 1)− 2u(t) + u(t − 1)

15.69 Given that F1(s) = F2(s) = s/(s2 + 1), find
L−1[F1(s)F2(s)] by convolution.

15.70 Find f (t) using convolution given that:

(a) F(s) = 4

(s2 + 2s + 5)2

(b) F(s) = 2s

(s + 1)(s2 + 4)

Section 15.8 Application to Integrodifferential
Equations

15.71 Use the Laplace transform to solve the differential
equation

d2v(t)

dt2
+ 2

dv(t)

dt
+ 10v(t) = 3 cos 2t

subject to v(0) = 1, dv(0)/dt = −2.

15.72 Use the Laplace transform to find i(t) for t > 0 if

d2i

dt2
+ 3

di

dt
+ 2i + δ(t) = 0,

i(0) = 0, i ′(0) = 3

15.73 Solve the following equation by means of the
Laplace transform:

y ′′ + 5y ′ + 6y = cos 2t

Let y(0) = 1, y ′(0) = 4.

15.74 The voltage across a circuit is given by

v′′ + 3v′ + 2v = 5e−3t

Find v(t) if the initial conditions are v(0) = 0,
v′(0) = −1.

15.75 Solve for y(t) in the following differential equation
if the initial conditions are zero.

d3y

dt3
+ 6

d2y

dt2
+ 8

dy

dt
= e−t cos 2t

15.76 Solve for v(t) in the integrodifferential equation

4
dv

dt
+ 12

∫ t

−∞
v dt = 0

given that v(0) = 2.

15.77 Solve the following integrodifferential equation
using the Laplace transform method:

dy(t)

dt
+ 9

∫ t

0
y(τ) dτ = cos 2t, y(0) = 1

15.78 Solve the integrodifferential equation

dy

dt
+ 4y + 3

∫ t

0
y dt = 6e−2t , y(0) = −1

15.79 Solve the following integrodifferential equation

2
dx

dt
+ 5x + 3

∫ t

0
x dt + 4 = sin 4t, x(0) = 1

Section 15.9 Applications

15.80 Show that the parallel RLC circuit shown in Fig.
15.85 is stable.

CRIs L 

Io

Figure 15.85 For Prob. 15.80.

15.81 A system is formed by cascading two systems as
shown in Fig. 15.86. Given that the impulse
response of the systems are

h1(t) = 3e−t u(t), h2(t) = e−4t u(t)

(a) Obtain the impulse response of the overall
system.

(b) Check if the overall system is stable.

h1(t) h2(t)vi vo

Figure 15.86 For Prob. 15.81.
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15.82 Determine whether the op amp circuit in Fig. 15.87
is stable.

+
− vo

vs

R

C
C

+

−

+
−+

− R

Figure 15.87 For Prob. 15.82.

15.83 It is desired to realize the transfer function

V2(s)

V1(s)
= 2s

s2 + 2s + 6

using the circuit in Fig. 15.88. Choose R = 1 k9
and find L and C.

L C

R

V1

+

−

V2

+

−

Figure 15.88 For Prob. 15.83.

15.84 Realize the transfer function

Vo(s)

Vi(s)
= 5

s2 + 6s + 25

using the circuit in Fig. 15.89. Choose R1 = 4 9
and R2 = 1 9, and determine L and C.

C

R1

R2
+
−vi(t) vo(t)

L

+

−

Figure 15.89 For Prob. 15.84.

15.85 Realize the transfer function

Vo(s)

Vs(s)
= − s

s + 10

using the circuit in Fig. 15.90. Let Y1 = sC1,
Y2 = 1/R1, Y3 = sC2. Choose R1 = 1 k9 and
determine C1 and C2.

+
−

Y3

Vo
Vs

Y1

Y2

+

−

+
−

Figure 15.90 For Prob. 15.85.

15.86 Synthesize the transfer function

Vo(s)

Vin(s)
= 106

s2 + 100s + 106

using the topology of Fig. 15.91. Let Y1 = 1/R1,
Y2 = 1/R2, Y3 = sC1, Y4 = sC2. Choose R1 = 1
k9 and determine C1, C2, and R2.

+
−

Y2

Y3

Vo

Vin

Y1

Y4

+
−

Figure 15.91 For Prob. 15.86.



CHAPTER 15 The Laplace Transform 705

COM P R E H EN S I V E P RO B L E M S

15.87 Obtain the transfer function of the op amp circuit in
Fig. 15.92 in the form of

Vo(s)

Vi(s)
= as

s2 + bs + c
where a, b, and c are constants. Determine the
constants.

+
−

Vo
Vi

10 kΩ

10 kΩ0.5 ΩF

1 mF

+
−

Figure 15.92 For Prob. 15.87.

15.88 A certain network has an input admittance Y (s).
The admittance has a pole at s = −3, a zero at
s = −1, and Y (∞) = 0.25 S.
(a) Find Y (s).
(b) An 8-V battery is connected to the network via a

switch. If the switch is closed at t = 0, find the
current i(t) through Y (s) using the Laplace
transform.

15.89 A gyrator is a device for simulating an inductor in a
network. A basic gyrator circuit is shown in Fig.
15.93. By finding Vi(s)/Io(s), show that the
inductance produced by the gyrator is L = CR2.

R

R

R

R

C

Io
+
−Vi

+
−+

−

Figure 15.93 For Prob. 15.89.

http://www.mhhe.com/engcs/electrical/alexander/student/olc/ch15_ppt.htm
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