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C H A P T E R

METHODS OF ANALYSIS

3

Scientists study the world as it is, engineers create the world that never
has been.

—Theodore von Karman

Enhancing Your Career
Career in Electronics One area of application for electric
circuit analysis is electronics. The termelectronics was orig-
inally used to distinguish circuits of very low current levels.
This distinction no longer holds, as power semiconductor de-
vices operate at high levels of current. Today, electronics is
regarded as the science of the motion of charges in a gas, vac-
uum, or semiconductor. Modern electronics involves tran-
sistors and transistor circuits. The earlier electronic circuits
were assembled from components. Many electronic circuits
are now produced as integrated circuits, fabricated in a semi-
conductor substrate or chip.

Electronic circuits find applications in many areas,
such as automation, broadcasting, computers, and instru-
mentation. The range of devices that use electronic circuits
is enormous and is limited only by our imagination. Radio,
television, computers, and stereo systems are but a few.

An electrical engineer usually performs diverse func-
tions and is likely to use, design, or construct systems that
incorporate some form of electronic circuits. Therefore, an
understanding of the operation and analysis of electronics
is essential to the electrical engineer. Electronics has
become a specialty distinct from other disciplines within
electrical engineering. Because the field of electronics
is ever advancing, an electronics engineer must update
his/her knowledge from time to time. The best way to do
this is by being a member of a professional organization
such as the Institute of Electrical and Electronics Engineers

Troubleshooting an electronic circuit board. Source: T. J. Mal-
oney, Modern Industrial Electronics, 3rd ed. Englewood Cliffs, NJ:
Prentice Hall, 1996, p. 408.

(IEEE). With a membership of over 300,000, the IEEE is
the largest professional organization in the world. Members
benefit immensely from the numerous magazines, journals,
transactions, and conference/symposium proceedings pub-
lished yearly by IEEE. You should consider becoming an
IEEE member.
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3.1 INTRODUCTION
Having understood the fundamental laws of circuit theory (Ohm’s law and
Kirchhoff’s laws), we are now prepared to apply these laws to develop
two powerful techniques for circuit analysis: nodal analysis, which is
based on a systematic application of Kirchhoff’s current law (KCL), and
mesh analysis, which is based on a systematic application of Kirchhoff’s
voltage law (KVL). The two techniques are so important that this chapter
should be regarded as the most important in the book. Students are
therefore encouraged to pay careful attention.

With the two techniques to be developed in this chapter, we can
analyze almost any circuit by obtaining a set of simultaneous equations
that are then solved to obtain the required values of current or voltage.
One method of solving simultaneous equations involves Cramer’s rule,
which allows us to calculate circuit variables as a quotient of determinants.
The examples in the chapter will illustrate this method; Appendix A also
briefly summarizes the essentials the reader needs to know for applying
Cramer’s rule.

Also in this chapter, we introduce the use ofPSpice for Windows, a
circuit simulation computer software program that we will use throughout
the text. Finally, we apply the techniques learned in this chapter to analyze
transistor circuits.

3.2 NODAL ANALYSIS
Nodal analysis provides a general procedure for analyzing circuits using
node voltages as the circuit variables. Choosing node voltages instead
of element voltages as circuit variables is convenient and reduces the
number of equations one must solve simultaneously.

To simplify matters, we shall assume in this section that circuits do
not contain voltage sources. Circuits that contain voltage sources will be
analyzed in the next section.

Nodal analysis is also known as the node-voltage
method.

In nodal analysis, we are interested in finding the node voltages.
Given a circuit withn nodes without voltage sources, the nodal analysis
of the circuit involves taking the following three steps.

S t e p s t o D e t e rm i n e N o d e V o l t a g e s :
1. Select a node as the reference node. Assign voltages

v1, v2, . . . , vn−1 to the remainingn − 1 nodes. The voltages are
referenced with respect to the reference node.

2. Apply KCL to each of then − 1 nonreference nodes. Use Ohm’s
law to express the branch currents in terms of node voltages.

3. Solve the resulting simultaneous equations to obtain the unknown
node voltages.

We shall now explain and apply these three steps.
The first step in nodal analysis is selecting a node as thereference

or datum node. The reference node is commonly called theground since
it is assumed to have zero potential. A reference node is indicated by

http://www.mhhe.com/engcs/electrical/alexander/eetuts/tutorial/Tut3-1.htm
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any of the three symbols in Fig. 3.1. The type of ground in Fig. 3.1(b) is
called achassis ground and is used in devices where the case, enclosure,
or chassis acts as a reference point for all circuits. When the potential of
the earth is used as reference, we use theearth ground in Fig. 3.1(a) or
(c). We shall always use the symbol in Fig. 3.1(b).

The number of nonreference nodes is equal to
the number of independent equations that we
will derive.

Once we have selected a reference node, we assign voltage desig-
nations to nonreference nodes. Consider, for example, the circuit in Fig.
3.2(a). Node 0 is the reference node(v = 0), while nodes 1 and 2 are
assigned voltagesv1 andv2, respectively. Keep in mind that the node
voltages are defined with respect to the reference node. As illustrated in
Fig. 3.2(a), each node voltage is the voltage rise from the reference node
to the corresponding nonreference node or simply the voltage of that node
with respect to the reference node.

(a) (b) (c)

Figure 3.1 Common symbols for
indicating a reference node.

As the second step, we apply KCL to each nonreference node in the
circuit. To avoid putting too much information on the same circuit, the
circuit in Fig. 3.2(a) is redrawn in Fig. 3.2(b), where we now add i1, i2,
and i3 as the currents through resistors R1, R2, and R3, respectively. At
node 1, applying KCL gives

I1 = I2 + i1 + i2 (3.1)

At node 2,

I2 + i2 = i3 (3.2)

We now apply Ohm’s law to express the unknown currents i1, i2, and i3

in terms of node voltages. The key idea to bear in mind is that, since
resistance is a passive element, by the passive sign convention, current
must always flow from a higher potential to a lower potential.

Current flows from a higher potential to a lower potential in a resistor.

(a)

(b)

1 2

v1

i1

i2 i2

i3

v2

I2

0

R3v2

+

−

R3

R1v1

+

−

R1I1

I2

R2

R2

I1

Figure 3.2 Typical circuit for nodal
analysis.

We can express this principle as

i = vhigher − vlower

R
(3.3)

Note that this principle is in agreement with the way we defined resistance
in Chapter 2 (see Fig. 2.1). With this in mind, we obtain from Fig. 3.2(b),

i1 = v1 − 0

R1
or i1 = G1v1

i2 = v1 − v2

R2
or i2 = G2(v1 − v2)

i3 = v2 − 0

R3
or i3 = G3v2

(3.4)

Substituting Eq. (3.4) in Eqs. (3.1) and (3.2) results, respectively, in

I1 = I2 + v1

R1
+ v1 − v2

R2
(3.5)

I2 + v1 − v2

R2
= v2

R3
(3.6)
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In terms of the conductances, Eqs. (3.5) and (3.6) become

I1 = I2 + G1v1 + G2(v1 − v2) (3.7)

I2 + G2(v1 − v2) = G3v2 (3.8)

The third step in nodal analysis is to solve for the node voltages. If
we apply KCL to n−1 nonreference nodes, we obtain n−1 simultaneous
equations such as Eqs. (3.5) and (3.6) or (3.7) and (3.8). For the circuit
of Fig. 3.2, we solve Eqs. (3.5) and (3.6) or (3.7) and (3.8) to obtain the
node voltages v1 and v2 using any standard method, such as the substitu-
tion method, the elimination method, Cramer’s rule, or matrix inversion.
To use either of the last two methods, one must cast the simultaneous
equations in matrix form. For example, Eqs. (3.7) and (3.8) can be cast
in matrix form as[

G1 + G2

−G2

−G2

G2 + G3

] [
v1

v2

]
=

[
I1 − I2

I2

]
(3.9)

which can be solved to get v1 and v2. Equation 3.9 will be generalized
in Section 3.6. The simultaneous equations may also be solved using
calculators such as HP48 or with software packages such as Matlab,
Mathcad, Maple, and Quattro Pro.

Appendix A discusses how to use Cramer’s rule.

E X A M P L E 3 . 1

Calculate the node voltages in the circuit shown in Fig. 3.3(a).

Solution:

Consider Fig. 3.3(b), where the circuit in Fig. 3.3(a) has been prepared for
nodal analysis. Notice how the currents are selected for the application
of KCL. Except for the branches with current sources, the labeling of the
currents is arbitrary but consistent. (By consistent, we mean that if, for
example, we assume that i2 enters the 4 � resistor from the left-hand side,
i2 must leave the resistor from the right-hand side.) The reference node
is selected, and the node voltages v1 and v2 are now to be determined.

At node 1, applying KCL and Ohm’s law gives

i1 = i2 + i3 �⇒ 5 = v1 − v2

4
+ v1 − 0

2
Multiplying each term in the last equation by 4, we obtain

20 = v1 − v2 + 2v1

or

3v1 − v2 = 20 (3.1.1)

2
1

5 A

10 A2 Ω 6 Ω

4 Ω

(a)

5 A

10 A2 Ω 6 Ω

4 Ω

(b)

i1 = 5 i1 = 5

i4 = 10i2

i3
i2 i5

v2v1

Figure 3.3 For Example 3.1: (a) original
circuit, (b) circuit for analysis.

At node 2, we do the same thing and get

i2 + i4 = i1 + i5 �⇒ v1 − v2

4
+ 10 = 5 + v2 − 0

6
Multiplying each term by 12 results in

3v1 − 3v2 + 120 = 60 + 2v2

or

−3v1 + 5v2 = 60 (3.1.2)
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Now we have two simultaneous Eqs. (3.1.1) and (3.1.2). We can solve
the equations using any method and obtain the values of v1 and v2.

METHOD 1 Using the elimination technique, we add Eqs. (3.1.1) and
(3.1.2).

4v2 = 80 �⇒ v2 = 20 V

Substituting v2 = 20 in Eq. (3.1.1) gives

3v1 − 20 = 20 �⇒ v1 = 40

3
= 13.33 V

METHOD 2 To use Cramer’s rule, we need to put Eqs. (3.1.1) and
(3.1.2) in matrix form as[

3
−3

−1
5

] [
v1

v2

]
=

[
20
60

]
(3.1.3)

The determinant of the matrix is

� =
∣∣∣∣ 3
−3

−1
5

∣∣∣∣ = 15 − 3 = 12

We now obtain v1 and v2 as

v1 = �1

�
=

∣∣∣∣20
60

−1
5

∣∣∣∣
�

= 100 + 60

12
= 13.33 V

v2 = �2

�
=

∣∣∣∣ 3
−3

20
60

∣∣∣∣
�

= 180 + 60

12
= 20 V

giving us the same result as did the elimination method.

If we need the currents, we can easily calculate them from the values
of the nodal voltages.

i1 = 5 A, i2 = v1 − v2

4
= −1.6667 A, i3 = v1

2
= 6.666

i4 = 10 A, i5 = v2

6
= 3.333 A

The fact that i2 is negative shows that the current flows in the direction
opposite to the one assumed.

P R A C T I C E P R O B L E M 3 . 1

Obtain the node voltages in the circuit in Fig. 3.4.

1 A 4 A

6 Ω

2 Ω 7 Ω

1 2

Figure 3.4 For Practice Prob. 3.1.

Answer: v1 = −2 V, v2 = −14 V.
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E X A M P L E 3 . 2

Determine the voltages at the nodes in Fig. 3.5(a).

Solution:

The circuit in this example has three nonreference nodes, unlike the pre-
vious example which has two nonreference nodes. We assign voltages to
the three nodes as shown in Fig. 3.5(b) and label the currents.

4 Ω

4 Ω

2 Ω 8 Ωix

1 3
2

0

3 A 2ix

(a)

ix ix i3

4 Ω

4 Ω

2 Ω 8 Ω
i1

v1
v2

i2 i2
i1

v3

3 A

3 A

2ix

(b)

Figure 3.5 For Example 3.2: (a) original circuit, (b) circuit for analysis.

At node 1,

3 = i1 + ix �⇒ 3 = v1 − v3

4
+ v1 − v2

2
Multiplying by 4 and rearranging terms, we get

3v1 − 2v2 − v3 = 12 (3.2.1)

At node 2,

ix = i2 + i3 �⇒ v1 − v2

2
= v2 − v3

8
+ v2 − 0

4

Multiplying by 8 and rearranging terms, we get

−4v1 + 7v2 − v3 = 0 (3.2.2)

At node 3,

i1 + i2 = 2ix �⇒ v1 − v3

4
+ v2 − v3

8
= 2(v1 − v2)

2

Multiplying by 8, rearranging terms, and dividing by 3, we get

2v1 − 3v2 + v3 = 0 (3.2.3)

We have three simultaneous equations to solve to get the node voltages
v1, v2, and v3. We shall solve the equations in two ways.

METHOD 1 Using the elimination technique, we add Eqs. (3.2.1) and
(3.2.3).

5v1 − 5v2 = 12
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or

v1 − v2 = 12

5
= 2.4 (3.2.4)

Adding Eqs. (3.2.2) and (3.2.3) gives

−2v1 + 4v2 = 0 �⇒ v1 = 2v2 (3.2.5)

Substituting Eq. (3.2.5) into Eq. (3.2.4) yields

2v2 − v2 = 2.4 �⇒ v2 = 2.4, v1 = 2v2 = 4.8 V

From Eq. (3.2.3), we get

v3 = 3v2 − 2v1 = 3v2 − 4v2 = −v2 = −2.4 V

Thus,

v1 = 4.8 V, v2 = 2.4 V, v3 = −2.4 V

METHOD 2 To use Cramer’s rule, we put Eqs. (3.2.1) to (3.2.3) in
matrix form.


 3

−4
2

−2
7

−3

−1
−1

1





v1

v2

v3


 =


12

0
0




From this, we obtain

v1 = �1

�
, v2 = �2

�
, v3 = �3

�

where �, �1, �2, and �3 are the determinants to be calculated as follows.
As explained in Appendix A, to calculate the determinant of a 3 by 3
matrix, we repeat the first two rows and cross multiply.

−
−
− +

+
+

= 21 − 12 + 4 + 14 − 9 − 8 = 10

3

3

7

7−4
−2

−2
−4

== −4
−2

−1
−1
−1

−1
−1

−1

−3
−3

1
1

2
2

3
7�

Similarly, we obtain

= 84 + 0 + 0 − 0 − 36 − 0 = 48

−
−
− +

+
+

7

7
−2

−2

=
0
0

0

12

12
−3�1

−1
−1

1
−1
−1
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= 0 + 0 − 24 − 0 − 0 + 48 = 24

−
−
− +

+
+

3

3
−4

−4
−1
−1

1
−1
−1

=
0
0

0

12

12
2�2

= 0 + 144 + 0 − 168 − 0 − 0 = −24

−
−
− +

+
+

3

3

7

7−4
−2

−2
−4

=
0
0

0

12

12
−32�3

Thus, we find

v1 = �1

�
= 48

10
= 4.8 V, v2 = �2

�
= 24

10
= 2.4 V

v3 = �3

�
= −24

10
= −2.4 V

as we obtained with Method 1.

P R A C T I C E P R O B L E M 3 . 2

Find the voltages at the three nonreference nodes in the circuit of Fig. 3.6.

10 A

2 Ω

3 Ω

4 Ω 6 Ω

ix

4ix

1 3
2

Figure 3.6 For Practice Prob. 3.2.

Answer: v1 = 80 V, v2 = −64 V, v3 = 156 V.

3.3 NODAL ANALYSIS WITH VOLTAGE SOURCES
We now consider how voltage sources affect nodal analysis. We use the
circuit in Fig. 3.7 for illustration. Consider the following two possibilities.

CA S E 1 If a voltage source is connected between the reference node
and a nonreference node, we simply set the voltage at the nonreference
node equal to the voltage of the voltage source. In Fig. 3.7, for example,

v1 = 10 V (3.10)

Thus our analysis is somewhat simplified by this knowledge of the voltage
at this node.
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10 V

5 V

4 Ω

8 Ω 6 Ω

2 Ω
v1 v3

v2

i3

i1

i2

i4

Supernode

+
−

+ −

Figure 3.7 A circuit with a supernode.

CA S E 2 If the voltage source (dependent or independent) is connected
between two nonreference nodes, the two nonreference nodes form a gen-
eralized node or supernode; we apply both KCL and KVL to determine
the node voltages.

A supernode may be regarded as a closed surface
enclosing the voltage source and its two nodes.

A supernode is formed by enclosing a (dependent or independent) voltage
source connected between two nonreference nodes and any

elements connected in parallel with it.

In Fig. 3.7, nodes 2 and 3 form a supernode. (We could have more than
two nodes forming a single supernode. For example, see the circuit in
Fig. 3.14.) We analyze a circuit with supernodes using the same three
steps mentioned in the previous section except that the supernodes are
treated differently. Why? Because an essential component of nodal
analysis is applying KCL, which requires knowing the current through
each element. There is no way of knowing the current through a voltage
source in advance. However, KCL must be satisfied at a supernode like
any other node. Hence, at the supernode in Fig. 3.7,

i1 + i4 = i2 + i3 (3.11a)

or

v1 − v2

2
+ v1 − v3

4
= v2 − 0

8
+ v3 − 0

6
(3.11b)

To apply Kirchhoff’s voltage law to the supernode in Fig. 3.7, we redraw
the circuit as shown in Fig. 3.8. Going around the loop in the clockwise
direction gives

−v2 + 5 + v3 = 0 �⇒ v2 − v3 = 5 (3.12)

From Eqs. (3.10), (3.11b), and (3.12), we obtain the node voltages.

+ −

v2 v3

5 V

+ +

− −

Figure 3.8 Applying KVL to a supernode.
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Note the following properties of a supernode:

1. The voltage source inside the supernode provides a constraint
equation needed to solve for the node voltages.

2. A supernode has no voltage of its own.

3. A supernode requires the application of both KCL and KVL.

E X A M P L E 3 . 3

For the circuit shown in Fig. 3.9, find the node voltages.

+−

2 A

2 V

7 A4 Ω

10 Ω

2 Ω

v1 v2

Figure 3.9 For Example 3.3.

Solution:

The supernode contains the 2-V source, nodes 1 and 2, and the 10-� re-
sistor. Applying KCL to the supernode as shown in Fig. 3.10(a) gives

2 = i1 + i2 + 7

Expressing i1 and i2 in terms of the node voltages

2 = v1 − 0

2
+ v2 − 0

4
+ 7 �⇒ 8 = 2v1 + v2 + 28

or

v2 = −20 − 2v1 (3.3.1)

To get the relationship between v1 and v2, we apply KVL to the circuit
in Fig. 3.10(b). Going around the loop, we obtain

−v1 − 2 + v2 = 0 �⇒ v2 = v1 + 2 (3.3.2)

From Eqs. (3.3.1) and (3.3.2), we write

v2 = v1 + 2 = −20 − 2v1

or

3v1 = −22 �⇒ v1 = −7.333 V

and v2 = v1 + 2 = −5.333 V. Note that the 10-� resistor does not make
any difference because it is connected across the supernode.

2 A

2 A

7 A

7 A

2 Ω 4 Ω

v2v1

i1 i2

1 2

(a)

+−

(b)

2 V
1 2

++

− −

v1 v2

Figure 3.10 Applying: (a) KCL to the supernode, (b) KVL to the loop.
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P R A C T I C E P R O B L E M 3 . 3

Find v and i in the circuit in Fig. 3.11.

7 V

3 V
4 Ω

3 Ω 2 Ω 6 Ω+
−

+−

i

v
+

−

Figure 3.11 For Practice Prob. 3.3.

Answer: −0.2 V, 1.4 A.

E X A M P L E 3 . 4

Find the node voltages in the circuit of Fig. 3.12.

20 V

2 Ω 4 Ω

6 Ω

3 Ω

1 Ω

vx
3vx

+ − + −

10 A

1 4
32

+ −

Figure 3.12 For Example 3.4.

Solution:

Nodes 1 and 2 form a supernode; so do nodes 3 and 4. We apply KCL to
the two supernodes as in Fig. 3.13(a). At supernode 1-2,

i3 + 10 = i1 + i2

Expressing this in terms of the node voltages,

v3 − v2

6
+ 10 = v1 − v4

3
+ v1

2
or

5v1 + v2 − v3 − 2v4 = 60 (3.4.1)

At supernode 3-4,

i1 = i3 + i4 + i5 �⇒ v1 − v4

3
= v3 − v2

6
+ v4

1
+ v3

4
or

4v1 + 2v2 − 5v3 − 16v4 = 0 (3.4.2)
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10 A

3 Ω

6 Ω

2 Ω 4 Ω 1 Ω

(a)

i1

i2
i3 i4i5

v1
v2 v3 v4

vx+ −

(b)

+ − + −

+ −

20 V

3 Ω

6 Ω

i3

v1 v2 v3 v4

vx

Loop 1 Loop 2

Loop 3
3vx

+ + ++

− − − −

i1

i3

Figure 3.13 Applying: (a) KCL to the two supernodes, (b) KVL to the loops.

We now apply KVL to the branches involving the voltage sources
as shown in Fig. 3.13(b). For loop 1,

−v1 + 20 + v2 = 0 �⇒ v1 − v2 = 20 (3.4.3)

For loop 2,

−v3 + 3vx + v4 = 0

But vx = v1 − v4 so that

3v1 − v3 − 2v4 = 0 (3.4.4)

For loop 3,

vx − 3vx + 6i3 − 20 = 0

But 6i3 = v3 − v2 and vx = v1 − v4. Hence

−2v1 − v2 + v3 + 2v4 = 20 (3.4.5)

We need four node voltages, v1, v2, v3, and v4, and it requires
only four out of the five Eqs. (3.4.1) to (3.4.5) to find them. Although
the fifth equation is redundant, it can be used to check results. We can
eliminate one node voltage so that we solve three simultaneous equations
instead of four. From Eq. (3.4.3), v2 = v1 − 20. Substituting this into
Eqs. (3.4.1) and (3.4.2), respectively, gives

6v1 − v3 − 2v4 = 80 (3.4.6)

and

6v1 − 5v3 − 16v4 = 40 (3.4.7)

Equations (3.4.4), (3.4.6), and (3.4.7) can be cast in matrix form as
3

6
6

−1
−1
−5

−2
−2

−16





v1

v3

v4


 =


 0

80
40



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Using Cramer’s rule,

� =
∣∣∣∣∣∣
3
6
6

−1
−1
−5

−2
−2

−16

∣∣∣∣∣∣ = −18, �1 =
∣∣∣∣∣∣

0
80
40

−1
−1
−5

−2
−2

−16

∣∣∣∣∣∣ = −480

�3 =
∣∣∣∣∣∣
3
6
6

0
80
40

−2
−2

−16

∣∣∣∣∣∣ = −3120, �4 =
∣∣∣∣∣∣
3
6
6

−1
−1
−5

0
80
40

∣∣∣∣∣∣ = 840

Thus, we arrive at the node voltages as

v1 = �1

�
= −480

−18
= 26.667 V, v3 = �3

�
= −3120

−18
= 173.333 V

v4 = �4

�
= 840

−18
= −46.667 V

and v2 = v1 −20 = 6.667 V. We have not used Eq. (3.4.5); it can be used
to cross check results.

P R A C T I C E P R O B L E M 3 . 4

Find v1, v2, and v3 in the circuit in Fig. 3.14 using nodal analysis.

2 Ω 4 Ω 3 Ω

6 Ω

i

v1
v2 v3+ − +−

10 V 5i

Figure 3.14 For Practice Prob. 3.4.

Answer: v1 = 3.043 V, v2 = −6.956 V, v3 = 0.6522 V.

3.4 MESH ANALYSIS
Mesh analysis provides another general procedure for analyzing circuits,
using mesh currents as the circuit variables. Using mesh currents instead
of element currents as circuit variables is convenient and reduces the
number of equations that must be solved simultaneously. Recall that a
loop is a closed path with no node passed more than once. A mesh is a
loop that does not contain any other loop within it.

Mesh analysis is also known as loop analysis or the
mesh-current method.

Nodal analysis applies KCL to find unknown voltages in a given
circuit, while mesh analysis applies KVL to find unknown currents. Mesh
analysis is not quite as general as nodal analysis because it is only ap-
plicable to a circuit that is planar. A planar circuit is one that can be
drawn in a plane with no branches crossing one another; otherwise it is
nonplanar. A circuit may have crossing branches and still be planar if it
can be redrawn such that it has no crossing branches. For example, the

http://www.mhhe.com/engcs/electrical/alexander/eetuts/tutorial/Tut4-1.htm
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circuit in Fig. 3.15(a) has two crossing branches, but it can be redrawn
as in Fig. 3.15(b). Hence, the circuit in Fig. 3.15(a) is planar. However,
the circuit in Fig. 3.16 is nonplanar, because there is no way to redraw
it and avoid the branches crossing. Nonplanar circuits can be handled
using nodal analysis, but they will not be considered in this text.

(a)

1 A

(b)

1 A

1 Ω

1 Ω 3 Ω

2 Ω

4 Ω
5 Ω

8 Ω 7 Ω

6 Ω

2 Ω

4 Ω

7 Ω8 Ω

5 Ω 6 Ω 3 Ω

Figure 3.15 (a) A planar circuit with crossing
branches, (b) the same circuit redrawn with no
crossing branches.

5 A

1 Ω

5 Ω
4 Ω

6 Ω

10 Ω

11 Ω
12 Ω

13 Ω

9 Ω
8 Ω

3 Ω

2 Ω7 Ω

Figure 3.16 A nonplanar circuit.

To understand mesh analysis, we should first explain more about
what we mean by a mesh.

A mesh is a loop which does not contain any other loops within it.

In Fig. 3.17, for example, paths abefa and bcdeb are meshes, but path
abcdefa is not a mesh. The current through a mesh is known as mesh
current. In mesh analysis, we are interested in applying KVL to find the
mesh currents in a given circuit.

Although path abcdefa is a loop and not a mesh,
KVL still holds. This is the reason for loosely
using the terms loop analysis and mesh analysis to
mean the same thing.

+
−

+
−

I1 R1 R2

R3

i1 i2

I2

I3

V1 V2

a b c

def

Figure 3.17 A circuit with two meshes.

In this section, we will apply mesh analysis to planar circuits that
do not contain current sources. In the next sections, we will consider
circuits with current sources. In the mesh analysis of a circuit with n

meshes, we take the following three steps.
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S t e p s t o D e t e rm i n e M e s h C u r r e n t s :
1. Assign mesh currents i1, i2, . . . , in to the n meshes.

2. Apply KVL to each of the n meshes. Use Ohm’s law to express
the voltages in terms of the mesh currents.

3. Solve the resulting n simultaneous equations to get the mesh
currents.

To illustrate the steps, consider the circuit in Fig. 3.17. The first
step requires that mesh currents i1 and i2 are assigned to meshes 1 and
2. Although a mesh current may be assigned to each mesh in an arbi-
trary direction, it is conventional to assume that each mesh current flows
clockwise.

The direction of the mesh current is arbitrary—
(clockwise or counterclockwise)—and does not
affect the validity of the solution.

As the second step, we apply KVL to each mesh. Applying KVL
to mesh 1, we obtain

−V1 + R1i1 + R3(i1 − i2) = 0

or

(R1 + R3)i1 − R3i2 = V1 (3.13)

For mesh 2, applying KVL gives

R2i2 + V2 + R3(i2 − i1) = 0

or

−R3i1 + (R2 + R3)i2 = −V2 (3.14)

Note in Eq. (3.13) that the coefficient of i1 is the sum of the resistances in
the first mesh, while the coefficient of i2 is the negative of the resistance
common to meshes 1 and 2. Now observe that the same is true in Eq.
(3.14). This can serve as a shortcut way of writing the mesh equations.
We will exploit this idea in Section 3.6.

The shortcut way will not apply if one mesh cur-
rent is assumed clockwise and the other assumed
anticlockwise, although this is permissible.The third step is to solve for the mesh currents. Putting Eqs. (3.13)

and (3.14) in matrix form yields[
R1 + R3

−R3

−R3

R2 + R3

] [
i1

i2

]
=

[
V1

−V2

]
(3.15)

which can be solved to obtain the mesh currents i1 and i2. We are at liberty
to use any technique for solving the simultaneous equations. According
to Eq. (2.12), if a circuit has n nodes, b branches, and l independent
loops or meshes, then l = b −n+ 1. Hence, l independent simultaneous
equations are required to solve the circuit using mesh analysis.

Notice that the branch currents are different from the mesh currents
unless the mesh is isolated. To distinguish between the two types of
currents, we use i for a mesh current and I for a branch current. The
current elements I1, I2, and I3 are algebraic sums of the mesh currents.
It is evident from Fig. 3.17 that

I1 = i1, I2 = i2, I3 = i1 − i2 (3.16)
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E X A M P L E 3 . 5

For the circuit in Fig. 3.18, find the branch currents I1, I2, and I3 using
mesh analysis.

+
−

+
−

15 V

10 V

5 Ω 6 Ω

10 Ω

4 Ω

I1

i1

I2

i2

I3

Figure 3.18 For Example 3.5.

Solution:

We first obtain the mesh currents using KVL. For mesh 1,

−15 + 5i1 + 10(i1 − i2) + 10 = 0

or

3i1 − 2i2 = 1 (3.5.1)

For mesh 2,

6i2 + 4i2 + 10(i2 − i1) − 10 = 0

or

i1 = 2i2 − 1 (3.5.2)

METHOD 1 Using the substitution method, we substitute Eq. (3.5.2)
into Eq. (3.5.1), and write

6i2 − 3 − 2i2 = 1 �⇒ i2 = 1 A

From Eq. (3.5.2), i1 = 2i2 − 1 = 2 − 1 = 1 A. Thus,

I1 = i1 = 1 A, I2 = i2 = 1 A, I3 = i1 − i2 = 0

METHOD 2 To use Cramer’s rule, we cast Eqs. (3.5.1) and (3.5.2) in
matrix form as [

3
−1

−2
2

] [
i1

i2

]
=

[
1
1

]

We obtain the determinants

� =
∣∣∣∣ 3
−1

−2
2

∣∣∣∣ = 6 − 2 = 4

�1 =
∣∣∣∣11 −2

2

∣∣∣∣ = 2 + 2 = 4, �2 =
∣∣∣∣ 3
−1

1
1

∣∣∣∣ = 3 + 1 = 4

Thus,

i1 = �1

�
= 1 A, i2 = �2

�
= 1 A

as before.

P R A C T I C E P R O B L E M 3 . 5

Calculate the mesh currents i1 and i2 in the circuit of Fig. 3.19.

  12 V   8 V

2 Ω

4 Ω 3 Ω

12 Ω

9 Ω

i1
i2

+
−

+
−

Figure 3.19 For Practice Prob. 3.5.

Answer: i1 = 2
3 A, i2 = 0 A.
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E X A M P L E 3 . 6

Use mesh analysis to find the current io in the circuit in Fig. 3.20.

+
−

+
−

24 V

12 Ω

4 Ω

10 Ω 24 Ω

i1

i1

i3

i2

i2
io

4io

A

Figure 3.20 For Example 3.6.

Solution:

We apply KVL to the three meshes in turn. For mesh 1,

−24 + 10(i1 − i2) + 12(i1 − i3) = 0

or

11i1 − 5i2 − 6i3 = 12 (3.6.1)

For mesh 2,

24i2 + 4(i2 − i3) + 10(i2 − i1) = 0

or

−5i1 + 19i2 − 2i3 = 0 (3.6.2)

For mesh 3,

4io + 12(i3 − i1) + 4(i3 − i2) = 0

But at node A, io = i1 − i2, so that

4(i1 − i2) + 12(i3 − i1) + 4(i3 − i2) = 0

or

−i1 − i2 + 2i3 = 0 (3.6.3)

In matrix form, Eqs. (3.6.1) to (3.6.3) become
 11

−5
−1

−5
19
−1

−6
−2

2





i1

i2

i3


 =


12

0
0




We obtain the determinants as

= 418 − 30 − 10 − 114 − 22 − 50 = 192

−
−
− +

+
+

19

19
−5

−5

=
−5
−1

11

−5
11

−1�

−6
−2

2
−6
−2

= 456 − 24 = 432

−
−
− +

+
+

19

19
−5

−5

=
0
0

12

0
12

−1

−6
−2

2
−6
−2

�1

= 24 + 120 = 144

−
−
− +

+
+

0

0
12

12

=
−5
−1

11

−5
11

0

−6
−2

2
−6
−2

�2
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= 60 + 228 = 288

−
−
− +

+
+

019

19 0
12

12

=
−5

−5

−5
−1 −1

11

−5
11

0�3

We calculate the mesh currents using Cramer’s rule as

i1 = �1

�
= 432

192
= 2.25 A, i2 = �2

�
= 144

192
= 0.75 A

i3 = �3

�
= 288

192
= 1.5 A

Thus, io = i1 − i2 = 1.5 A.

P R A C T I C E P R O B L E M 3 . 6

Using mesh analysis, find io in the circuit in Fig. 3.21.

+
−

–
+20 V

4 Ω 8 Ω

2 Ω

6 Ω

i1 i2

i3

10io

io

Figure 3.21 For Practice Prob. 3.6.

Answer: −5 A.

3.5 MESH ANALYSIS WITH CURRENT SOURCES
Applying mesh analysis to circuits containing current sources (dependent
or independent) may appear complicated. But it is actually much easier
than what we encountered in the previous section, because the presence
of the current sources reduces the number of equations. Consider the
following two possible cases.

+
− 5 A10 V

4 Ω 3 Ω

6 Ωi1 i2

Figure 3.22 A circuit with a current source.

CA S E 1 When a current source exists only in one mesh: Consider the
circuit in Fig. 3.22, for example. We set i2 = −5 A and write a mesh
equation for the other mesh in the usual way, that is,

−10 + 4i1 + 6(i1 − i2) = 0 �⇒ i1 = −2 A (3.17)

CA S E 2 When a current source exists between two meshes: Consider
the circuit in Fig. 3.23(a), for example. We create a supermesh by ex-
cluding the current source and any elements connected in series with it,
as shown in Fig. 3.23(b). Thus,

A supermesh results when two meshes have a (dependent or independent)
current source in common.
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(b)

20 V 4 Ω

6 Ω 10 Ω

i1 i2+
−

+
−

6 A

20 V

6 Ω 10 Ω

2 Ω

4 Ω

i1

i1

i2

i2

0

(a)

Exclude these
elements

Figure 3.23 (a) Two meshes having a current source in common, (b) a supermesh, created by excluding the current source.

As shown in Fig. 3.23(b), we create a supermesh as the periphery of
the two meshes and treat it differently. (If a circuit has two or more
supermeshes that intersect, they should be combined to form a larger
supermesh.) Why treat the supermesh differently? Because mesh analy-
sis applies KVL—which requires that we know the voltage across each
branch—and we do not know the voltage across a current source in ad-
vance. However, a supermesh must satisfy KVL like any other mesh.
Therefore, applying KVL to the supermesh in Fig. 3.23(b) gives

−20 + 6i1 + 10i2 + 4i2 = 0

or

6i1 + 14i2 = 20 (3.18)

We apply KCL to a node in the branch where the two meshes intersect.
Applying KCL to node 0 in Fig. 3.23(a) gives

i2 = i1 + 6 (3.19)

Solving Eqs. (3.18) and (3.19), we get

i1 = −3.2 A, i2 = 2.8 A (3.20)

Note the following properties of a supermesh:

1. The current source in the supermesh is not completely ignored;
it provides the constraint equation necessary to solve for the
mesh currents.

2. A supermesh has no current of its own.

3. A supermesh requires the application of both KVL and KCL.

E X A M P L E 3 . 7

For the circuit in Fig. 3.24, find i1 to i4 using mesh analysis.

Solution:

Note that meshes 1 and 2 form a supermesh since they have an independent
current source in common. Also, meshes 2 and 3 form another supermesh
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+
− 10 V6 Ω 8 Ω

2 Ω4 Ω

i1

i2 i3 i4

2 Ω

5 A

i1

i2

i2 i3

io

P

Q

3io

Figure 3.24 For Example 3.7.

because they have a dependent current source in common. The two
supermeshes intersect and form a larger supermesh as shown. Applying
KVL to the larger supermesh,

2i1 + 4i3 + 8(i3 − i4) + 6i2 = 0

or

i1 + 3i2 + 6i3 − 4i4 = 0 (3.7.1)

For the independent current source, we apply KCL to node P :

i2 = i1 + 5 (3.7.2)

For the dependent current source, we apply KCL to node Q:

i2 = i3 + 3io

But io = −i4, hence,

i2 = i3 − 3i4 (3.7.3)

Applying KVL in mesh 4,

2i4 + 8(i4 − i3) + 10 = 0

or

5i4 − 4i3 = −5 (3.7.4)

From Eqs. (3.7.1) to (3.7.4),

i1 = −7.5 A, i2 = −2.5 A, i3 = 3.93 A, i4 = 2.143 A

P R A C T I C E P R O B L E M 3 . 7

Use mesh analysis to determine i1, i2, and i3 in Fig. 3.25.

+
− 3 A

6 V

1 Ω

2 Ω 2 Ω

8 Ω

4 Ωi1

i3

i2

Figure 3.25 For Practice Prob. 3.7.

Answer: i1 = 3.474 A, i2 = 0.4737 A, i3 = 1.1052 A.

http://www.mhhe.com/engcs/electrical/alexander/eetuts/tutorial/Tut5-1.htm
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†3.6 NODAL AND MESH ANALYSES BY INSPECTION
This section presents a generalized procedure for nodal or mesh analysis.
It is a shortcut approach based on mere inspection of a circuit.

When all sources in a circuit are independent current sources, we
do not need to apply KCL to each node to obtain the node-voltage equa-
tions as we did in Section 3.2. We can obtain the equations by mere
inspection of the circuit. As an example, let us reexamine the circuit in
Fig. 3.2, shown again in Fig. 3.26(a) for convenience. The circuit has
two nonreference nodes and the node equations were derived in Section
3.2 as [

G1 + G2

−G2

−G2

G2 + G3

] [
v1

v2

]
=

[
I1 − I2

I2

]
(3.21)

Observe that each of the diagonal terms is the sum of the conductances
connected directly to node 1 or 2, while the off-diagonal terms are the
negatives of the conductances connected between the nodes. Also, each
term on the right-hand side of Eq. (3.21) is the algebraic sum of the
currents entering the node.

I1

v1

G1 G3

G2

I2

v2

(a)

(b)

i1 i3V1 V2
+
−

+
−

R1 R2

R3

Figure 3.26 (a) The circuit in Fig. 3.2,
(b) the circuit in Fig. 3.17.

In general, if a circuit with independent current sources has N

nonreference nodes, the node-voltage equations can be written in terms
of the conductances as


G11

G21
...

GN1

G12

G22
...

GN2

. . .

. . .
...

. . .

G1N

G2N
...

GNN







v1

v2
...

vN


 =




i1

i2
...

iN


 (3.22)

or simply

Gv = i (3.23)

where

Gkk = Sum of the conductances connected to node k

Gkj = Gjk = Negative of the sum of the conductances directly
connecting nodes k and j, k �= j

vk = Unknown voltage at node k

ik = Sum of all independent current sources directly
connected to node k, with currents entering the node
treated as positive

G is called the conductance matrix, v is the output vector; and i is the
input vector. Equation (3.22) can be solved to obtain the unknown node
voltages. Keep in mind that this is valid for circuits with only independent
current sources and linear resistors.

Similarly, we can obtain mesh-current equations by inspection when
a linear resistive circuit has only independent voltage sources. Consider
the circuit in Fig. 3.17, shown again in Fig. 3.26(b) for convenience. The
circuit has two nonreference nodes and the node equations were derived
in Section 3.4 as [

R1 + R3

−R3

−R3

R2 + R3

] [
i1

i2

]
=

[
v1

−v2

]
(3.24)
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We notice that each of the diagonal terms is the sum of the resistances in
the related mesh, while each of the off-diagonal terms is the negative of
the resistance common to meshes 1 and 2. Each term on the right-hand
side of Eq. (3.24) is the algebraic sum taken clockwise of all independent
voltage sources in the related mesh.

In general, if the circuit has N meshes, the mesh-current equations
can be expressed in terms of the resistances as




R11

R21
...

RN1

R12

R22
...

RN2

. . .

. . .
...

. . .

R1N

R2N
...

RNN







i1

i2
...

iN


 =




v1

v2
...

vN


 (3.25)

or simply

Ri = v (3.26)

where

Rkk = Sum of the resistances in mesh k

Rkj = Rjk = Negative of the sum of the resistances in common with
meshes k and j, k �= j

ik = Unknown mesh current for mesh k in the clockwise
direction

vk = Sum taken clockwise of all independent voltage sources
in mesh k, with voltage rise treated as positive

R is called the resistance matrix, i is the output vector; and v is the input
vector. We can solve Eq. (3.25) to obtain the unknown mesh currents.

E X A M P L E 3 . 8

Write the node-voltage matrix equations for the circuit in Fig. 3.27 by
inspection.

3 A 1 A 4 A

2 A

10 Ω

5 Ω

1 Ω

8 Ω 8 Ωv1 v2 v3 v4

4 Ω 2 Ω

Figure 3.27 For Example 3.8.
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Solution:

The circuit in Fig. 3.27 has four nonreference nodes, so we need four
node equations. This implies that the size of the conductance matrix G,

is 4 by 4. The diagonal terms of G, in siemens, are

G11 = 1

5
+ 1

10
= 0.3, G22 = 1

5
+ 1

8
+ 1

1
= 1.325

G33 = 1

8
+ 1

8
+ 1

4
= 0.5, G44 = 1

8
+ 1

2
+ 1

1
= 1.625

The off-diagonal terms are

G12 = −1

5
= −0.2, G13 = G14 = 0

G21 = −0.2, G23 = −1

8
= −0.125, G24 = −1

1
= −1

G31 = 0, G32 = −0.125, G34 = −1

8
= −0.125

G41 = 0, G42 = −1, G43 = −0.125

The input current vector i has the following terms, in amperes:

i1 = 3, i2 = −1 − 2 = −3, i3 = 0, i4 = 2 + 4 = 6

Thus the node-voltage equations are


0.3
−0.2

0
0

−0.2
1.325

−0.125
−1

0
−0.125

0.5
−0.125

0
−1
−0.125

1.625







v1

v2

v3

v4


 =




3
−3

0
6




which can be solved to obtain the node voltages v1, v2, v3, and v4.

P R A C T I C E P R O B L E M 3 . 8

By inspection, obtain the node-voltage equations for the circuit in Fig.
3.28.

1 A

2 A

3 A

10 Ω

1 Ω

5 Ω

4 Ω

2 Ωv1 v2

v3 v4

Figure 3.28 For Practice Prob. 3.8.

Answer: 


1.3
−0.2
−1

0

−0.2
0.2
0
0

−1
0
1.25

−0.25

0
0

−0.25
0.75







v1

v2

v3

v4


 =




0
3

−1
3




E X A M P L E 3 . 9

By inspection, write the mesh-current equations for the circuit in Fig. 3.29.
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+
−

+ −

+
−

+
−10 V

4 V

2 Ω

2 Ω

5 Ω

2 Ω

4 Ω

3 Ω

3 Ω

1 Ω 1 Ω

4 Ω

i1

i2

i3

i4 i5 6 V
12 V

Figure 3.29 For Example 3.9.

Solution:

We have five meshes, so the resistance matrix is 5 by 5. The diagonal
terms, in ohms, are:

R11 = 5 + 2 + 2 = 9, R22 = 2 + 4 + 1 + 1 + 2 = 10

R33 = 2 + 3 + 4 = 9, R44 = 1 + 3 + 4 = 8, R55 = 1 + 3 = 4

The off-diagonal terms are:

R12 = −2, R13 = −2, R14 = 0 = R15

R21 = −2, R23 = −4, R24 = −1, R25 = −1

R31 = −2, R32 = −4, R34 = 0 = R35

R41 = 0, R42 = −1, R43 = 0, R45 = −3

R51 = 0, R52 = −1, R53 = 0, R54 = −3

The input voltage vector v has the following terms in volts:

v1 = 4, v2 = 10 − 4 = 6

v3 = −12 + 6 = −6, v4 = 0, v5 = −6

Thus the mesh-current equations are:



9
−2
−2

0
0

−2
10
−4
−1
−1

−2
−4

9
0
0

0
−1

0
8

−3

0
−1

0
−3

4







i1

i2

i3

i4

i5


 =




4
6

−6
0

−6




From this, we can obtain mesh currents i1, i2, i3, i4, and i5.

P R A C T I C E P R O B L E M 3 . 9

By inspection, obtain the mesh-current equations for the circuit in Fig.
3.30.
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+
−

+
−

24 V

12 V

10 V

50 Ω

40 Ω

i1

i2 i3

i4 i5

10 Ω

30 Ω

20 Ω

60 Ω80 Ω

+
−

Figure 3.30 For Practice Prob. 3.9.

Answer: 


170
−40

0
−80

0

−40
80

−30
−10

0

0
−30

50
0

−20

−80
−10

0
90

0

0
0

−20
0

80







i1

i2

i3

i4

i5


 =




24
0

−12
10

−10




3.7 NODAL VERSUS MESH ANALYSIS
Both nodal and mesh analyses provide a systematic way of analyzing a
complex network. Someone may ask: Given a network to be analyzed,
how do we know which method is better or more efficient? The choice
of the better method is dictated by two factors.

The first factor is the nature the particular network. Networks that
contain many series-connected elements, voltage sources, or supermeshes
are more suitable for mesh analysis, whereas networks with parallel-
connected elements, current sources, or supernodes are more suitable for
nodal analysis. Also, a circuit with fewer nodes than meshes is better
analyzed using nodal analysis, while a circuit with fewer meshes than
nodes is better analyzed using mesh analysis. The key is to select the
method that results in the smaller number of equations.

The second factor is the information required. If node voltages are
required, it may be expedient to apply nodal analysis. If branch or mesh
currents are required, it may be better to use mesh analysis.

It is helpful to be familiar with both methods of analysis, for at least
two reasons. First, one method can be used to check the results from the
other method, if possible. Second, since each method has its limitations,
only one method may be suitable for a particular problem. For example,
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mesh analysis is the only method to use in analyzing transistor circuits,
as we shall see in Section 3.9. But mesh analysis cannot easily be used to
solve an op amp circuit, as we shall see in Chapter 5, because there is no
direct way to obtain the voltage across the op amp itself. For nonplanar
networks, nodal analysis is the only option, because mesh analysis only
applies to planar networks. Also, nodal analysis is more amenable to
solution by computer, as it is easy to program. This allows one to analyze
complicated circuits that defy hand calculation. A computer software
package based on nodal analysis is introduced next.

3.8 CIRCUIT ANALYSIS WITH PSPICE
PSpice is a computer software circuit analysis program that we will grad-
ually learn to use throught the course of this text. This section illustrates
how to use PSpice for Windows to analyze the dc circuits we have studied
so far.

Appendix D provides a tutorial on using PSpice
for Windows.

The reader is expected to review Sections D.1 through D.3 of Ap-
pendix D before proceeding in this section. It should be noted that PSpice
is only helpful in determining branch voltages and currents when the nu-
merical values of all the circuit components are known.

E X A M P L E 3 . 1 0

Use PSpice to find the node voltages in the circuit of Fig. 3.31.

+
− 3 A120 V

20 Ω

30 Ω 40 Ω

10 Ω1 2 3

0

Figure 3.31 For Example 3.10.

Solution:

The first step is to draw the given circuit using Schematics. If one follows
the instructions given in Appendix sections D.2 and D.3, the schematic in
Fig. 3.32 is produced. Since this is a dc analysis, we use voltage source
VDC and current source IDC. The pseudocomponent VIEWPOINTS are
added to display the required node voltages. Once the circuit is drawn and
saved as exam310.sch, we run PSpice by selecting Analysis/Simulate.
The circuit is simulated and the results are displayed on VIEWPOINTS
and also saved in output file exam310.out. The output file includes the
following:

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1) 120.0000 (2) 81.2900 (3) 89.0320

indicating that V1 = 120 V, V2 = 81.29 V, V3 = 89.032 V.

+

−

R1 R3

20 10

120 V V1 R2 R430 40 I1 3 A

IDC

0

1 2 3
120.0000 81.2900 89.0320

Figure 3.32 For Example 3.10; the schematic of the circuit in Fig. 3.31.



CHAPTER 3 Methods of Analysis 101

P R A C T I C E P R O B L E M 3 . 1 0

For the circuit in Fig. 3.33, use PSpice to find the node voltages.

+
−

2 A

200 V30 Ω 60 Ω 50 Ω

100 Ω

25 Ω

1 2 3

0

Figure 3.33 For Practice Prob. 3.10.

Answer: V1 = −40 V, V2 = 57.14 V, V3 = 200 V.

E X A M P L E 3 . 1 1

In the circuit in Fig. 3.34, determine the currents i1, i2, and i3.

Solution:

The schematic is shown in Fig. 3.35. (The schematic in Fig. 3.35 includes
the output results, implying that it is the schematic displayed on the screen
after the simulation.) Notice that the voltage-controlled voltage source
E1 in Fig. 3.35 is connected so that its input is the voltage across the 4-�
resistor; its gain is set equal to 3. In order to display the required currents,
we insert pseudocomponent IPROBES in the appropriate branches. The
schematic is saved as exam311.sch and simulated by selecting Analy-
sis/Simulate. The results are displayed on IPROBES as shown in Fig.
3.35 and saved in output file exam311.out. From the output file or the
IPROBES, we obtain i1 = i2 = 1.333 A and i3 = 2.667 A.

+
−

+−

24 V

1 Ω

i1 i2 i3
+

−

4 Ω 2 Ω

2 Ω 8 Ω 4 Ω

3vo

vo

Figure 3.34 For Example 3.11.
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+

−
24 V V1

R1

4

R2 2 R3 8 R4 4

1.333E+00 1.333E+00 2.667E+00

0

R6

1

R5

2

E E1

+−
− +

Figure 3.35 The schematic of the circuit in Fig. 3.34.

P R A C T I C E P R O B L E M 3 . 1 1

Use PSpice to determine currents i1, i2, and i3 in the circuit of Fig. 3.36.

+
−

2 A

10 V

2 Ω

i1

i1

i2

4 Ω

1 Ω 2 Ω

i3

Figure 3.36 For Practice Prob. 3.11.

Answer: i1 = −0.4286 A, i2 = 2.286 A, i3 = 2 A.

†3.9 APPLICATIONS: DC TRANSISTOR CIRCUITS
Most of us deal with electronic products on a routine basis and have
some experience with personal computers. A basic component for the
integrated circuits found in these electronics and computers is the ac-
tive, three-terminal device known as the transistor. Understanding the
transistor is essential before an engineer can start an electronic circuit
design.

Figure 3.37 depicts various kinds of transistors commercially avail-
able. There are two basic types of transistors: bipolar junction transis-
tors (BJTs) and field-effect transistors (FETs). Here, we consider only
the BJTs, which were the first of the two and are still used today. Our
objective is to present enough detail about the BJT to enable us to apply
the techniques developed in this chapter to analyze dc transistor circuits.

There are two types of BJTs: npn and pnp, with their circuit symbols
as shown in Fig. 3.38. Each type has three terminals, designated as emit-
ter (E), base (B), and collector (C). For the npn transistor, the currents and
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Figure 3.37 Various types of transistors.
(Courtesy of Tech America.)

n

n

pBase

Collector

Emitter E

B

C

(a)

p

p

nBase

Collector

Emitter E

B

C

(b)

Figure 3.38 Two types of BJTs and
their circuit symbols: (a) npn, (b) pnp.

B

C

E

+
+

+

−

−−

VCB

VCE

VBE

B

C

E

IB

IC

IE

(a)

(b)

Figure 3.39 The terminal
variables of an npn transistor:
(a) currents, (b) voltages.

voltages of the transistor are specified as in Fig. 3.39. Applying KCL to
Fig. 3.39(a) gives

IE = IB + IC (3.27)

where IE, IC , and IB are emitter, collector, and base currents, respectively.
Similarly, applying KVL to Fig. 3.39(b) gives

VCE + VEB + VBC = 0 (3.28)

where VCE, VEB , and VBC are collector-emitter, emitter-base, and base-
collector voltages. The BJT can operate in one of three modes: active,
cutoff, and saturation. When transistors operate in the active mode, typ-
ically VBE � 0.7 V,

IC = αIE (3.29)

where α is called the common-base current gain. In Eq. (3.29), α denotes
the fraction of electrons injected by the emitter that are collected by the
collector. Also,

IC = βIB (3.30)

where β is known as the common-emitter current gain. The α and β are
characteristic properties of a given transistor and assume constant values
for that transistor. Typically, α takes values in the range of 0.98 to 0.999,
while β takes values in the range 50 to 1000. From Eqs. (3.27) to (3.30),
it is evident that

IE = (1 + β)IB (3.31)

and

β = α

1 − α
(3.32)
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These equations show that, in the active mode, the BJT can be modeled as
a dependent current-controlled current source. Thus, in circuit analysis,
the dc equivalent model in Fig. 3.40(b) may be used to replace the npn
transistor in Fig. 3.40(a). Since β in Eq. (3.32) is large, a small base
current controls large currents in the output circuit. Consequently, the
bipolar transistor can serve as an amplifier, producing both current gain
and voltage gain. Such amplifiers can be used to furnish a considerable
amount of power to transducers such as loudspeakers or control motors.

B C

E

IB IC

VBE

VCE

+

−

+

−

B

C

E

IB

(a) (b)

VBE

VCE

+

+

−
−

bIB

Figure 3.40 (a) An npn transistor, (b) its dc equivalent
model.

In fact, transistor circuits provide motivation to
study dependent sources.

It should be observed in the following examples that one cannot
directly analyze transistor circuits using nodal analysis because of the
potential difference between the terminals of the transistor. Only when
the transistor is replaced by its equivalent model can we apply nodal
analysis.

E X A M P L E 3 . 1 2

Find IB, IC, and vo in the transistor circuit of Fig. 3.41. Assume that the
transistor operates in the active mode and that β = 50.

Solution:

For the input loop, KVL gives

−4 + IB(20 × 103) + VBE = 0

IC

+

−

+

+

−
−

+

−
4 V

6 V

20 kΩ IB

VBE

vo

Output
loopInput

loop

100 Ω

Figure 3.41 For Example 3.12.
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Since VBE = 0.7 V in the active mode,

IB = 4 − 0.7

20 × 103
= 165 µA

But

IC = βIB = 50 × 165 µA = 8.25 mA

For the output loop, KVL gives

−vo − 100IC + 6 = 0

or

vo = 6 − 100IC = 6 − 0.825 = 5.175 V

Note that vo = VCE in this case.

P R A C T I C E P R O B L E M 3 . 1 2

For the transistor circuit in Fig. 3.42, let β = 100 and VBE = 0.7 V. De-
termine vo and VCE .

+

−

+

+

+

−

−

−
+

−
5 V

12 V
10 kΩ

500 Ω

VBE

VCE

200 Ω vo

Figure 3.42 For Practice Prob. 3.12.

Answer: 2.876 V, 1.984 V.

E X A M P L E 3 . 1 3

For the BJT circuit in Fig. 3.43, β = 150 and VBE = 0.7 V. Find vo.

Solution:

We can solve this problem in two ways. One way is by direct analysis of
the circuit in Fig. 3.43. Another way is by replacing the transistor with
its equivalent circuit.

2 V

100 kΩ

+

−

+

−
16 V

200 kΩ

1 kΩ

+

−

vo

Figure 3.43 For Example 3.13.

METHOD 1 We can solve the problem as we solved the problem in
the previous example. We apply KVL to the input and output loops as
shown in Fig. 3.44(a). For loop 1,

2 = 100 × 103I1 + 200 × 103I2 (3.13.1)

For loop 2,

VBE = 0.7 = 200 × 103I2 �⇒ I2 = 3.5 µA (3.13.2)

For loop 3,

−vo − 1000IC + 16 = 0
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or

vo = 16 − 1000IC (3.13.3)

From Eqs. (3.13.1) and (3.13.2),

I1 = 2 − 0.7

100 × 103
= 13 µA, IB = I1 − I2 = 9.5 µA

IC = βIB = 150 × 9.5 µA = 1.425 mA

Substituting for IC in Eq. (3.13.3),

vo = 16 − 1.425 = 14.575 V

+

−

Vo

+

−

+

−

I1 IB

IC

I2

1 kΩ

100 kΩ

200 kΩ2 V

16 V

16 V2 V

Loop 1 Loop 2

Loop 3

(a)

(b)

+

−

+

−
0.7 V

100 kΩ

200 kΩ

1 kΩ

150IB

IBI1

I2

B C

E

+

−

Vo

Figure 3.44 Solution of the problem in Example 3.13: (a) method 1,
(b) method 2.

METHOD 2 We can modify the circuit in Fig. 3.43 by replacing the
transistor by its equivalent model in Fig. 3.40(b). The result is the circuit
shown in Fig. 3.44(b). Notice that the locations of the base (B), emitter
(E), and collector (C) remain the same in both the original circuit in Fig.
3.43 and its equivalent circuit in Fig. 3.44(b). From the output loop,

vo = 16 − 1000(150IB)

But

IB = I1 − I2 = 2 − 0.7

100 × 103
− 0.7

200 × 103
= (13 − 3.5) µA = 9.5 µA

and so

vo = 16 − 1000(150 × 9.5 × 10−6) = 14.575 V
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P R A C T I C E P R O B L E M 3 . 1 3

The transistor circuit in Fig. 3.45 has β = 80 and VBE = 0.7 V. Find vo

and io.

1 V

10 V
30 kΩ

20 kΩ

20 kΩ

+

−

io

VBE

+

−

vo

+

−

+

−

Figure 3.45 For Practice Prob. 3.13.

Answer: −3 V, −150 µA.

3.10 SUMMARY
1. Nodal analysis is the application of Kirchhoff’s current law at the

nonreference nodes. (It is applicable to both planar and nonplanar
circuits.) We express the result in terms of the node voltages.
Solving the simultaneous equations yields the node voltages.

2. A supernode consists of two nonreference nodes connected by a
(dependent or independent) voltage source.

3. Mesh analysis is the application of Kirchhoff’s voltage law around
meshes in a planar circuit. We express the result in terms of mesh
currents. Solving the simultaneous equations yields the mesh
currents.

4. A supermesh consists of two meshes that have a (dependent or
independent) current source in common.

5. Nodal analysis is normally used when a circuit has fewer node
equations than mesh equations. Mesh analysis is normally used
when a circuit has fewer mesh equations than node equations.

6. Circuit analysis can be carried out using PSpice.

7. DC transistor circuits can be analyzed using the techniques cover-
ed in this chapter.

R E V I EW QU E S T I ON S

3.1 At node 1 in the circuit in Fig. 3.46, applying KCL
gives:

(a) 2 + 12 − v1

3
= v1

6
+ v1 − v2

4

(b) 2 + v1 − 12

3
= v1

6
+ v2 − v1

4

(c) 2 + 12 − v1

3
= 0 − v1

6
+ v1 − v2

4

(d) 2 + v1 − 12

3
= 0 − v1

6
+ v2 − v1

4
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2 A

v1

1 2
v2

12 V +
−

3 Ω 4 Ω

6 Ω 6 Ω

8 Ω

Figure 3.46 For Review Questions 3.1 and 3.2.

3.2 In the circuit in Fig. 3.46, applying KCL at node 2
gives:

(a)
v2 − v1

4
+ v2

8
= v2

6

(b)
v1 − v2

4
+ v2

8
= v2

6

(c)
v1 − v2

4
+ 12 − v2

8
= v2

6

(d)
v2 − v1

4
+ v2 − 12

8
= v2

6
3.3 For the circuit in Fig. 3.47, v1 and v2 are related as:

(a) v1 = 6i + 8 + v2 (b) v1 = 6i − 8 + v2

(c) v1 = −6i + 8 + v2 (d) v1 = −6i − 8 + v2

12 V +
− 4 Ω

6 Ω 8 V v2v1

i

+−

Figure 3.47 For Review Questions 3.3 and 3.4.

3.4 In the circuit in Fig. 3.47, the voltage v2 is:
(a) −8 V (b) −1.6 V
(c) 1.6 V (d) 8 V

3.5 The current i in the circuit in Fig. 3.48 is:
(a) −2.667 A (b) −0.667 A
(c) 0.667 A (d) 2.667 A

10 V +
− 6 V+

−

4 Ω

i

2 Ω

Figure 3.48 For Review Questions 3.5 and 3.6.

3.6 The loop equation for the circuit in Fig. 3.48 is:
(a) −10 + 4i + 6 + 2i = 0
(b) 10 + 4i + 6 + 2i = 0
(c) 10 + 4i − 6 + 2i = 0
(d) −10 + 4i − 6 + 2i = 0

3.7 In the circuit in Fig. 3.49, current i1 is:
(a) 4 A (b) 3 A (c) 2 A (d) 1 A

i1 i22 A20 V +
−

2 Ω 1 Ω

3 Ω 4 Ω

v
+

−

Figure 3.49 For Review Questions 3.7 and 3.8.

3.8 The voltage v across the current source in the circuit
of Fig. 3.49 is:
(a) 20 V (b) 15 V (c) 10 V (d) 5 V

3.9 The PSpice part name for a current-controlled
voltage source is:
(a) EX (b) FX (c) HX (d) GX

3.10 Which of the following statements are not true of the
pseudocomponent IPROBE:
(a) It must be connected in series.
(b) It plots the branch current.
(c) It displays the current through the branch in

which it is connected.
(d) It can be used to display voltage by connecting it

in parallel.
(e) It is used only for dc analysis.
(f) It does not correspond to a particular circuit

element.

Answers: 3.1a, 3.2c, 3.3b, 3.4d, 3.5c, 3.6a, 3.7d, 3.8b, 3.9c, 3.10b,d.
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P RO B L E M S

Sections 3.2 and 3.3 Nodal Analysis

3.1 Determine v1, v2, and the power dissipated in all the
resistors in the circuit of Fig. 3.50.

10 A6 A 8 Ω

4 Ωv1 v2

2 Ω

Figure 3.50 For Prob. 3.1.

3.2 For the circuit in Fig. 3.51, obtain v1 and v2.

3 A

6 A

5 Ω10 Ω

2 Ω

v1 v2

4 Ω

Figure 3.51 For Prob. 3.2.

3.3 Find the currents i1 through i4 and the voltage vo in
the circuit in Fig. 3.52.

10 A 2 A 60 Ω30 Ω20 Ω10 Ω

i1 i2 i3 i4

vo

Figure 3.52 For Prob. 3.3.

3.4 Given the circuit in Fig. 3.53, calculate the currents
i1 through i4.

4 A 5 A

2 A

5 Ω10 Ω10 Ω5 Ω

i1 i2 i3 i4

Figure 3.53 For Prob. 3.4.

3.5 Obtain vo in the circuit of Fig. 3.54.

30 V +
−

2 kΩ

20 V +
−

5 kΩ
4 kΩ vo

+

−

Figure 3.54 For Prob. 3.5.

3.6 Use nodal analysis to obtain vo in the circuit in Fig.
3.55.

6 Ω 2 Ω12 V

10 V

+
−

+ −
4 Ω

i3i2

vo

i1

Figure 3.55 For Prob. 3.6.

3.7 Using nodal analysis, find vo in the circuit of Fig.
3.56.

3 V

4vo

+
−

2 Ωvo

+

− 1 Ω

3 Ω 5 Ω

+
−

Figure 3.56 For Prob. 3.7.

3.8 Calculate vo in the circuit in Fig. 3.57.

12 V 2vo
+
− 8 Ω

6 Ω

+
−

3 Ω

vo+ −

Figure 3.57 For Prob. 3.8.

3.9 Find io in the circuit in Fig. 3.58.
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2 Ω 4 Ω8 Ω

1 Ω

4 A 2 io

io

Figure 3.58 For Prob. 3.9.

3.10 Solve for i1 and i2 in the circuit in Fig. 3.22 (Section
3.5) using nodal analysis.

3.11 Use nodal analysis to find currents i1 and i2 in the
circuit of Fig. 3.59.

24 V +
− 40 Ω 20 Ω5 A

10 Ω 20 Ω 30 Ω

i2i1

Figure 3.59 For Prob. 3.11.

3.12 Calculate v1 and v2 in the circuit in Fig. 3.60 using
nodal analysis.

8 Ω 4 Ω 3 A

2 Ω 2 V
v2v1

+ −

Figure 3.60 For Prob. 3.12.

3.13 Using nodal analysis, find vo in the circuit of Fig.
3.61.

2 Ω

5 A

8 Ω

+
−

+
−4 Ω 20 Vvo

+

−

1 Ω

40 V

Figure 3.61 For Prob. 3.13.

3.14 Apply nodal analysis to find io and the power
dissipated in each resistor in the circuit of Fig. 3.62.

5 S6 S

2 A

io

4 A

3 S10 V

+ −

Figure 3.62 For Prob. 3.14.

3.15 Determine voltages v1 through v3 in the circuit of
Fig. 3.63 using nodal analysis.

1 S 13 V

2 S

v1 v2

2vo

v3

8 S

2 A 4 Svo

+

−
+
−

+ −

Figure 3.63 For Prob. 3.15.

3.16 Using nodal analysis, find current io in the circuit of
Fig. 3.64.

60 V

io

3io

10 Ω
8 Ω

2 Ω

+
−

4 Ω

Figure 3.64 For Prob. 3.16.

3.17 Determine the node voltages in the circuit in Fig.
3.65 using nodal analysis.

5 A

2
31

2 Ω2 Ω

10 V

+−

8 Ω4 Ω

Figure 3.65 For Prob. 3.17.
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3.18 For the circuit in Fig. 3.66, find v1 and v2 using
nodal analysis.

3 mA

v2v1

2 kΩ

4 kΩ

1 kΩ vo

3vo

+

−

+−

Figure 3.66 For Prob. 3.18.

3.19 Determine v1 and v2 in the circuit in Fig. 3.67.

3 A
v2

5vo

v1

8 Ω

1 Ω
4 Ω12 V

2 Ω

vo

+
−

–
+

+ −

Figure 3.67 For Prob. 3.19.

3.20 Obtain v1 and v2 in the circuit of Fig. 3.68.

2 A5 A 10 Ω

v1 v2

5 Ω

8 V

+−

Figure 3.68 For Prob. 3.20.

3.21 Find vo and io in the circuit in Fig. 3.69.

20 V 2 Ω

2 Ω1 Ω

+
−

40 V +
−

10 V +
−

4 Ω vo

+

−

io

Figure 3.69 For Prob. 3.21.

3.22∗ Use nodal analysis to determine voltages v1, v2, and
v3 in the circuit in Fig. 3.70.

2 S2 A 4 S 2 S 4 A

io

1 S

4 S

1 Sv1

3io

v2 v3

Figure 3.70 For Prob. 3.22.

3.23 Using nodal analysis, find vo and io in the circuit of
Fig. 3.71.

+
−100 V 80 Ω vo

+

−

10 Ω 20 Ω

40 Ω 120 V

+
− 2io4vo

+−

io

Figure 3.71 For Prob. 3.23.

3.24 Find the node voltages for the circuit in Fig. 3.72.

4 Ω1 A 1 Ω 4 Ω 10 V

io

1 Ω

2 Ωv1

2vo4io
v2 v3

+
−

vo

+−

+ −

Figure 3.72 For Prob. 3.24.

∗An asterisk indicates a challenging problem.
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3.25∗ Obtain the node voltages v1, v2, and v3 in the circuit
of Fig. 3.73.

10 kΩ4 mA

5 kΩ

v1

20 V10 V v2 v3

12 V+
−

+− + −

Figure 3.73 For Prob. 3.25.

Sections 3.4 and 3.5 Mesh Analysis

3.26 Which of the circuits in Fig. 3.74 is planar? For the
planar circuit, redraw the circuits with no crossing
branches.

2 Ω

6 Ω

5 Ω

2 A

(a)

4 Ω
3 Ω

1 Ω

(b)

12 V +
− 2 Ω

3 Ω

5 Ω
4 Ω

1 Ω

Figure 3.74 For Prob. 3.26.

3.27 Determine which of the circuits in Fig. 3.75 is
planar and redraw it with no crossing branches.

10 V +
−

3 Ω

5 Ω

2 Ω

7 Ω

4 Ω

(a)

1 Ω

6 Ω

7 Ω

6 Ω1 Ω 3 Ω

4 A

(b)

8 Ω

2 Ω

5 Ω 4 Ω

Figure 3.75 For Prob. 3.27.

3.28 Rework Prob. 3.5 using mesh analysis.

3.29 Rework Prob. 3.6 using mesh analysis.

3.30 Solve Prob. 3.7 using mesh analysis.

3.31 Solve Prob. 3.8 using mesh analysis.

3.32 For the bridge network in Fig. 3.76, find io using
mesh analysis.

30 V +
−

2 kΩ

2 kΩ

6 kΩ 6 kΩ

4 kΩ4 kΩ

io

Figure 3.76 For Prob. 3.32.

3.33 Apply mesh analysis to find i in Fig. 3.77.
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+
−

+ −

10 Ω

2 Ω

5 Ω
1 Ω

8 V

6 V
i1

i2 i3

i

4 Ω

Figure 3.77 For Prob. 3.33.

3.34 Use mesh analysis to find vab and io in the circuit in
Fig. 3.78.

+
−

20 Ω

20 Ω
30 Ω

30 Ω

20 Ω

80 V

+
−80 V

30 Ω vab

+

−

io

Figure 3.78 For Prob. 3.34.

3.35 Use mesh analysis to obtain io in the circuit of Fig.
3.79.

3 A

12 V+
−

4 Ωio 1 Ω

6 V

2 Ω

5 Ω

+ −

Figure 3.79 For Prob. 3.35.

3.36 Find current i in the circuit in Fig. 3.80.

4 A

30 V

i
+
− 3 Ω 1 Ω

2 Ω 6 Ω

4 Ω 8 Ω

Figure 3.80 For Prob. 3.36.

3.37 Find vo and io in the circuit of Fig. 3.81.

16 V2io

3 Ω

1 Ω 2 Ω

2 Ω +
−

io

vo

Figure 3.81 For Prob. 3.37.

3.38 Use mesh analysis to find the current io in the circuit
in Fig. 3.82.

3io

10 Ω
4 Ω

60 V +
−

io

8 Ω

2 Ω

Figure 3.82 For Prob. 3.38.

3.39 Apply mesh analysis to find vo in the circuit in Fig.
3.83.

20 V

5 A

2 Ω 8 Ω

1 Ω

40 V

vo

+
−

+
−4 Ω

Figure 3.83 For Prob. 3.39.

3.40 Use mesh analysis to find i1, i2, and i3 in the circuit
of Fig. 3.84.
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12 V +−

8 Ω

4 Ω +
−

2 Ωvo

2vo

i2

i3

i1

3 A

+

−

Figure 3.84 For Prob. 3.40.

3.41 Rework Prob. 3.11 using mesh analysis.

3.42∗ In the circuit of Fig. 3.85, solve for i1, i2, and i3.

4 A 2 Ω

1 A
i3

i1

i2

6 Ω

12 Ω 4 Ω

8 V

+ −

10 V

+ −

Figure 3.85 For Prob. 3.42.

3.43 Determine v1 and v2 in the circuit of Fig. 3.86.

12 V

2 Ω 2 Ω

2 Ω+
−

2 Ω

v1

2 Ωv2

+

−

+ −

Figure 3.86 For Prob. 3.43.

3.44 Find i1, i2, and i3 in the circuit in Fig. 3.87.

10 Ω

10 Ω

120 V 30 Ω30 Ω

30 Ω

i3

i2

i1

+
−

Figure 3.87 For Prob. 3.44.

3.45 Rework Prob. 3.23 using mesh analysis.

3.46 Calculate the power dissipated in each resistor in the
circuit in Fig. 3.88.

10 V

0.5io

4 Ω 8 Ω

1 Ω 2 Ω+
−

io

Figure 3.88 For Prob. 3.46.

3.47 Calculate the current gain io/is in the circuit of Fig.
3.89.

5vo

20 Ω 10 Ω

40 Ω

io

is 30 Ωvo

+

−
–
+

Figure 3.89 For Prob. 3.47.

3.48 Find the mesh currents i1, i2, and i3 in the network
of Fig. 3.90.

4 kΩ 8 kΩ 2 kΩ

100 V 4 mA 2i1 40 V+
−

+
−i1 i2 i3

Figure 3.90 For Prob. 3.48.

3.49 Find vx and ix in the circuit shown in Fig. 3.91.

ix

2 Ωvx 4ix

+

−

5 Ω

50 V

3 A

+
−

+
−

vx
4

10 Ω

Figure 3.91 For Prob. 3.49.
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3.50 Find vo and io in the circuit of Fig. 3.92.

+
−

+
−

io + −

2 A

100 V 40 Ω

10 Ω

50 Ω 10 Ω

vo

0.2vo

4io

Figure 3.92 For Prob. 3.50.

Section 3.6 Nodal and Mesh Analyses by
Inspection

3.51 Obtain the node-voltage equations for the circuit in
Fig. 3.93 by inspection. Determine the node
voltages v1 and v2.

3 A 5 A4 Ω 2 Ω

v1 v21 Ω

6 A

Figure 3.93 For Prob. 3.51.

3.52 By inspection, write the node-voltage equations for
the circuit in Fig. 3.94 and obtain the node voltages.

4 A 3 S 2 A 1 A

v1 1 S 2 S

5 S

v2
v3

Figure 3.94 For Prob. 3.52.

3.53 For the circuit shown in Fig. 3.95, write the
node-voltage equations by inspection.

2 kΩ 2 kΩ 10 mA20 mA

v1 4 kΩ 4 kΩ

1 kΩ

5 mA

v2 v3

Figure 3.95 For Prob. 3.53.

3.54 Write the node-voltage equations of the circuit in
Fig. 3.96 by inspection.

I1

v1 v3

G4 G5

G2 G3

G1

v2

I2

Figure 3.96 For Prob. 3.54.

3.55 Obtain the mesh-current equations for the circuit in
Fig. 3.97 by inspection. Calculate the power
absorbed by the 8-� resistor.

+
−

+
−

+−

12 A 20 V2 Ω 2 Ωi1 i2 i3

8 V

4 Ω 8 Ω 5 Ω

Figure 3.97 For Prob. 3.55.

3.56 By inspection, write the mesh-current equations for
the circuit in Fig. 3.98.
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+
−

+−+−

10 V

4 Ω

5 Ω 2 Ω 4 Ωi1 i2 i3

8 V 4 V
i4

1 Ω

Figure 3.98 For Prob. 3.56.

3.57 Write the mesh-current equations for the circuit in
Fig. 3.99.

+
−

+ − +−

+
−

6 V 4 V

1 Ω 1 Ω

3 Ω

1 Ω

i1 i2

i4i3

2 V 3 V

2 Ω

4 Ω

5 Ω

Figure 3.99 For Prob. 3.57.

3.58 By inspection, obtain the mesh-current equations for
the circuit in Fig. 3.100.

+
−

+ −

+
−

i1

i3

V1

V3

V2
V4

i2

i4

R1 R2 R3

R4

R5

R6

R7

R8

+
−

Figure 3.100 For Prob. 3.58.

Section 3.8 Circuit Analysis with PSpice

3.59 Use PSpice to solve Prob. 3.44.

3.60 Use PSpice to solve Prob. 3.22.

3.61 Rework Prob. 3.51 using PSpice.

3.62 Find the nodal voltages v1 through v4 in the circuit
in Fig. 3.101 using PSpice.

+
−

+ −

8 A

20 V

1 Ω

v1

2 Ω
4 Ω

10 Ω 12 Ωv2
v3

io

6io

v4

Figure 3.101 For Prob. 3.62.

3.63 Use PSpice to solve the problem in Example 3.4.

3.64 If the Schematics Netlist for a network is as follows,
draw the network.

R_R1 1 2 2K
R_R2 2 0 4K
R_R3 3 0 8K
R_R4 3 4 6K
R_R5 1 3 3K
V_VS 4 0 DC 100
I_IS 0 1 DC 4
F_F1 1 3 VF_F1 2
VF_F1 5 0 0V
E_E1 3 2 1 3 3

3.65 The following program is the Schematics Netlist of
a particular circuit. Draw the circuit and determine
the voltage at node 2.

R_R1 1 2 20
R_R2 2 0 50
R_R3 2 3 70
R_R4 3 0 30
V_VS 1 0 20V
I_IS 2 0 DC 2A

Section 3.9 Applications

3.66 Calculate vo and io in the circuit of Fig. 3.102.

+
−

+
−3 mV vo

+

−

4 kΩ

50io

io

vo
100 20 kΩ

Figure 3.102 For Prob. 3.66.

3.67 For the simplified transistor circuit of Fig. 3.103,
calculate the voltage vo.
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+
−

+

−

i

2 kΩ

5 kΩ

1 kΩ

30 mV vo

400i

Figure 3.103 For Prob. 3.67.

3.68 For the circuit in Fig. 3.104, find the gain vo/vs .

+
−

–
+

+

−

+

−
500 Ω 400 Ω

2 kΩ 200 Ω

vs vov1 60v1

Figure 3.104 For Prob. 3.68.

3.69∗ Determine the gain vo/vs of the transistor amplifier
circuit in Fig. 3.105.

2 kΩ

100 Ω

200 Ω

vs 40io

io

vo 10 kΩ
vo

1000
+
−

+
−

+

−

Figure 3.105 For Prob. 3.69.

3.70 For the simple transistor circuit of Fig. 3.106, let
β = 75, VBE = 0.7 V. What value of vi is required
to give a collector-emitter voltage of 2 V?

+

−
5 V

2 kΩ

vi

40 kΩ

Figure 3.106 For Prob. 3.70.

3.71 Calculate vs for the transistor in Fig. 3.107 given
that vo = 4 V, β = 150, VBE = 0.7 V.

+

−
18 V

1 kΩ

vs

10 kΩ

+

−
500 Ω vo

Figure 3.107 For Prob. 3.71.

3.72 For the transistor circuit of Fig. 3.108, find IB , VCE ,
and vo. Take β = 200, VBE = 0.7 V.

+

−
9 V

5 kΩ

3 V

6 kΩ

+

−
400 Ω vo

VCE

+

−

IB

2 kΩ

Figure 3.108 For Prob. 3.72.

3.73 Find IB and VC for the circuit in Fig. 3.109. Let
β = 100, VBE = 0.7 V.

+

−IB

12 V

4 kΩ

VC

10 kΩ

5 kΩ

Figure 3.109 For Prob. 3.73.

COM P R E H EN S I V E P RO B L E M S

3.74∗ Rework Example 3.11 with hand calculation.

http://www.mhhe.com/engcs/electrical/alexander/student/olc/ch03_ppt.htm
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