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CHAPTER]| 9

SINUSOIDS AND PHASORS

The desireto understand the world and the desire to reformit are the two
great engines of progress.
— Bertrand Russell

Historical Profiles

Heinrich Rudorf Hertz (1857—-1894), a German experimental physicist, demonstrate]
that electromagnetic waves obey the same fundamental laws as light. His work confirm
James Clerk Maxwell’s celebrated 1864 theory and prediction that such waves exist
Hertz was born into a prosperous family in Hamburg, Germany. He attende
the University of Berlin and did his doctorate under the prominent physicist Herman
von Helmholtz. He became a professor at Karlsruhe, where he began his quest
electromagnetic waves. Hertz successfully generated and detected electromagr
waves; he was the first to show that light is electromagnetic energy. In 1887, He
noted for the first time the photoelectric effect of electrons in a molecular structur
Although Hertz only lived to the age of 37, his discovery of electromagnetic wave
paved the way for the practical use of such waves in radio, television, and oth
communication systems. The unit of frequency, the hertz, bears his name.

Charles Proteus Steinmetz (1865-1923), a German-Austrian mathematician and en
gineer, introduced the phasor method (covered in this chapter) in ac circuit analysis.
is also noted for his work on the theory of hysteresis.

Steinmetz was born in Breslau, Germany, and lost his mother at the age of o
As a youth, he was forced to leave Germany because of his political activities just
he was about to complete his doctoral dissertation in mathematics at the Universy
of Breslau. He migrated to Switzerland and later to the United States, where
was employed by General Electric in 1893. That same year, he published a pape
which complex numbers were used to analyze ac circuits for the first time. This led
one of his many textbook§heory and Calculation of ac Phenomena, published by
McGraw-Hill in 1897. In 1901, he became the president of the American Institute d
Electrical Engineers, which later became the IEEE.
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PART 2 AC Circuits

9.1 INTRODUCTION

Thus far our analysis has been limited for the most part to dc circuits:
those circuits excited by constant or time-invariant sources. We have
restricted the forcing function to dc sources for the sake of simplicity, for
pedagogic reasons, and also for historic reasons. Historically, dc sources
were the main means of providing electric power up until the late 1800s.
At the end of that century, the battle of direct current versus alternating
current began. Both had their advocates among the electrical engineers
of the time. Because ac is more efficient and economical to transmit over
long distances, ac systems ended up the winner. Thus, it is in keeping
with the historical sequence of events that we considered dc sources first.
We now begin the analysis of circuits in which the source voltage or
current is time-varying. In this chapter, we are particularly interested in
sinusoidally time-varying excitation, or simply, excitation bgiausoid.

t A sinusoid is  signal that has the form of the sine or cosine function.

A sinusoidal current is usually referred to asernating current (ac).

Such a current reverses at regular time intervals and has alternately posi-
tive and negative values. Circuits driven by sinusoidal current or voltage
sources are callegt circuits.

We are interested in sinusoids for a number of reasons. First, nature
itself is characteristically sinusoidal. We experience sinusoidal variation
in the motion of a pendulum, the vibration of a string, the ripples on the
ocean surface, the political events of a nation, the economic fluctuations
of the stock market, and the natural response of underdamped second-
order systems, to mention but a few. Second, a sinusoidal signal is easy
to generate and transmit. It is the form of voltage generated throughout
the world and supplied to homes, factories, laboratories, and so on. ltis
the dominant form of signal in the communications and electric power
industries. Third, through Fourier analysis, any practical periodic signal
can be represented by a sum of sinusoids. Sinusoids, therefore, play an
important role in the analysis of periodic signals. Lastly, a sinusoid is
easy to handle mathematically. The derivative and integral of a sinusoid
are themselves sinusoids. For these and other reasons, the sinusoid is an
extremely important function in circuit analysis.

A sinusoidal forcing function produces both a natural (or transient)
response and a forced (or steady-state) response, much like the step func-
tion, which we studied in Chapters 7 and 8. The natural response of a
circuit is dictated by the nature of the circuit, while the steady-state re-
sponse always has a form similar to the forcing function. However, the
natural response dies out with time so that only the steady-state response
remains after along time. When the natural response has become negligi-
bly small compared with the steady-state response, we say that the circuit
is operating at sinusoidal steady state. It is Higisoidal steady-state
response that is of main interest to us in this chapter.
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CHAPTER 9 Sinusoids and Phasors 355

We begin with a basic discussion of sinusoids and phasors. We
then introduce the concepts of impedance and admittance. The basic
circuit laws, Kirchhoff’s and Ohm'’s, introduced for dc circuits, will be
applied to ac circuits. Finally, we consider applications of ac circuits in
phase-shifters and bridges.

9.2 SINUSOIDS

Consider the sinusoidal voltage
v(t) =V, sinwt (9.1)
where
V,, = theamplitude of the sinusoid
o = theangular frequency in radians/s
wt = theargument of the sinusoid

The sinusoid is shown in Fig. 9.1(a) as a function of its argument and in
Fig. 9.1(b) as a function of time. It is evident that the sinusoid repeats
itself everyT seconds; thud is called theperiod of the sinusoid. From

the two plots in Fig. 9.1, we observe thal’ = 2r,

T=" (9.2)
w

The fact that(¢) repeats itself ever§ seconds is shown by replacing
byr + T in Eq. (9.1). We get

. . 2
vit+T)=V,sinw(t+T)="V,Sihw (t + —n>
Q) (9.3)
=V, sin(wt + 27) = V,, Sinwt = v(r)

Hence,

v+ T)=v() (9.4

that is,v has the same value at+ T as it does at andv(¢) is said to be
periodic. In general,

integers n.

v(t) v(t)
Vm Vm
% N/ ]’/\ SN/

FC
i A periodic function is one that satisfies f(t) = f(t + nT), for all t and for all }

i NOZIE Nt

@ (b)

Figure 9.1 A sketch of V;, sinwr: (a) as a function of wr, (b) as a function of 7.

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



356

The unit of f is named after the German physicist
Heinrich R. Hertz (1857-1894).

PART 2 AC Circuits

As mentioned, the period T of the periodic function is the time of one
complete cycle or the number of seconds per cycle. The reciprocal of
this quantity is the number of cycles per second, known as the cyclic
frequency f of the sinusoid. Thus,

f== (95)

From Egs. (9.2) and (9.5), it is clear that
w=2rf (9.6)

While w isin radians per second (rad/s), f isin hertz (Hz).
Let us now consider a more general expression for the sinusoid,

v() =V, Sin(wt + ¢) 9.7)

where (wt + ¢) isthe argument and ¢ is the phase. Both argument and
phase can bein radians or degrees.
L et us examine the two sinusoids

v1(t) = V, Sinwt and vo(t) = V,, Sin(wt + ¢) (9.8)

showninFig. 9.2. The starting point of v, in Fig. 9.2 occursfirst in time.
Therefore, we say that v, leads vy by ¢ or that v1 lags v, by ¢. If ¢ # 0,
we also say that v; and v, are out of phase. If ¢ = 0, then vy and v, are
said to be in phase; they reach their minima and maxima at exactly the
sametime. We can compare v, and v inthismanner becausethey operate
at the same freguency; they do not need to have the same amplitude.

V1=V, Sinwt

wt

N -
Vy =V Sin(wt + ¢)

Figure 9.2 Two sinusoids with different phases.

A sinusoid can be expressed in either sine or cosine form. When
comparing two sinusoids, it is expedient to express both as either sine or
cosine with positive amplitudes. Thisisachieved by using the following
trigonometric identities:

Sin(A &= B) =sSinAcosB +cosAsnB

. . 9.9
COS(A £+ B) = CcosAcosB FSnAsSnB @9)
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CHAPTER 9 Sinusoids and Phasors 357

With these identities, it is easy to show that
sin(wt + 180°) = — sinwt
cos(wt + 180°) = — coswt

sin(wt £+ 90°) = 4 coswt
cos(wt & 90°) = FSnwr

(9.10)

Using these réelationships, we can transform asinusoid from sine form to
cosine form or vice versa.

A graphical approach may be used to relate or compare sinusoids
as an alternative to using the trigonometric identities in Egs. (9.9) and
(9.10). Consider the set of axes shown in Fig. 9.3(a). The horizontal
axis represents the magnitude of cosine, while the vertical axis (pointing > +coswt
down) denotes the magnitude of sine. Angles are measured positively /-90"
counterclockwise from the horizontal, asusual in polar coordinates. This
graphical technique can be used to relate two sinusoids. For example, we
seein Fig. 9.3(a) that subtracting 90° from the argument of coswr gives
Sinwt, or cos(wt —90°) = sinwt. Similarly, adding 180° to the argument \
of sinwr gives — sinwt, or sin(wt — 180°) = — sinwt, as shown in Fig. +snot
9.3(b). @

The graphical technique can also be used to add two sinusoids of
the same frequency when one is in sine form and the other isin cosine
form. To add A coswt and B sinwt, we note that A is the magnitude

of coswt while B is the magnitude of sinwt, as shown in Fig. 9.4(a).
The magnitude and argument of the resultant sinusoid in cosine form is . 180°
readily obtained from the triangle. Thus, - > + oS wt

A coswt + BSinwt = C cos(wt — 6) (9.12)
where

1B
C =A%+ B2, 0 =tan — (9.12)
A +sinwt

For example, we may add 3 coswt and —4 sinwt as shown in Fig. 9.4(b) )
and obtain

. Figure 9.3 A graphical
3coswt — 4sinwt = 5cos(wt + 53.1°) (9.13) ofgre,aﬁng cosi n’*“;"";’ng s-n{;‘ eans

(a) cos(wt — 90°) = sinwt,
(b) sin(wt + 180°) = —sinwt.

et .
A :
: Cos wt 5 '
/ -0 A
A 53.1° !
Blocoooooo ™ g 0 L cos wt
+3
v A
sin wt sinwt
@ (b)

Figure 94 (a) Adding A coswr and B sinwt, (b) adding 3coswr and —4sinwt.
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Compared with thetrigonometric identitiesin Egs. (9.9) and (9.10),
the graphical approach eliminates memorization. However, we must not
confuse the sine and cosine axes with the axes for complex numbers to
be discussed in the next section. Something elseto notein Figs. 9.3 and
9.4 isthat although the natural tendency isto have the vertical axis point
up, the positive direction of the sine function is down in the present case.

PRACTICE PROBLEMEE

Find the amplitude, phase, period, and frequency of the sinusoid

v(t) = 12cos(50r + 10°)
Solution:
The amplitudeisV,, = 12 V.
The phaseis¢ = 10°.
The angular frequency is w = 50 rad/s.

2 2
Theperiod 7 = - = 2L — 0.1257s
w 50

1
Thefrequency is f = 7= 7.958 Hz.

Given the sinusoid 5sin(4rrt — 60°), calculate its amplitude, phase, an-
gular frequency, period, and frequency.

Answer: 5, —60°, 12.57 rad/s, 0.5 s, 2 Hz.

i p L B

Calculate the phase angle between v; = —10cos(wt + 50°) and v, =
12sin(wt — 10°). State which sinusoid isleading.

Solution:

Let us calculate the phasein three ways. Thefirst two methods use trigo-
nometric identities, while the third method uses the graphical approach.

METHOD I} inorder to compare v; and vy, wemust expresstheminthe

same form. If we express them in cosine form with positive amplitudes,

v, = —10cos(wt + 50°) = 10 cos(wt + 50° — 180°)
vy = 10cos(wt — 130°) or vy = 10cos(wt + 230°)  (9.2.1)

and

vy = 12sin(wt — 10°) = 12 cos(wt — 10° — 90°)
v = 12 cos(wt — 100°) (9.2.2)

It can be deduced from Egs. (9.2.1) and (9.2.2) that the phase difference
between vq and v, is 30°. We can write v, as
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CHAPTER 9 Sinusoids and Phasors 359

vy = 12cos(wt — 130° +30°) or vy, = 12cos(wt + 260°) (9.2.3)
Comparing Egs. (9.2.1) and (9.2.3) showsclearly that v, leads vy by 30°.

METHOD B4 Alternatively, we may express v; in sine form:

v, = —10cos(wt + 50°) = 10sin(wt + 50° — 90°)
= 10sin(wt — 40°) = 10sin(wt — 10° — 30°)

cos wt

50°

But v, = 12sin(wt — 10°). Comparing the two shows that v1 lags v, by
30°. Thisisthe same as saying that v, leads v, by 30°.

Wemay regard v, assimply —10 coswr with aphase shift V2
of +50°. Hence, vy isasshowninFig. 9.5. Similarly, v is12sin ot with sinot

aphase shift of —10°, asshownin Fig. 9.5. Itiseasy to seefrom Fig. 9.5

that v, leads vy by 30°, that is, 90° — 50° — 10°. Figure 9.5 For Example 9.2.

PRACTICE PROBLEMKE

Find the phase angle between

Vi 10°

iy = —4sin(377t 4+ 25°) and ip = 5¢c08(377t — 40°)

Doesiy lead or lag i,? ’@

Answer: 155°,i; leadsis. Network Analysis

9.3 PHASORS

Sinusoids are easily expressed in terms of phasors, which are more con-
venient to work with than sine and cosine functions.

FO
A phasor is a complex number that represents the amplitude and phase
of a sinusoid.

Phasors provide a simple means of analyzing linear circuits excited by
sinusoidal sources; solutions of such circuits would be intractable other-
wise. The notion of solving ac circuits using phasors wasfirst introduced

by Charles Steinmetz in 1893. Before we completely define phasors and Charles Proteus Steinmetz (1865-1923) was a
apply them to circuit analysis, we need to be thoroughly familiar with German-Austrian mathematician and electrical
complex numbers. engineer.

A complex number z can be written in rectangular form as

Appendix B presents a short tutorial on complex

Z=xAgy (0149 numbers.

where j = /—1; x isthe red part of z; y is the imaginary part of z.
In this context, the variables x and y do not represent a location as in
two-dimensional vector analysis but rather the real and imaginary parts
of z in the complex plane. Nevertheless, we note that there are some
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360 PART 2 AC Circuits

resemblances between manipul ating complex numbers and manipul ating
two-dimensional vectors.
The complex number z can also be written in polar or exponential
form as
7= rﬁ =rel® (9.14b)
where r is the magnitude of z, and ¢ is the phase of z. We notice that z
can be represented in three ways:
z=x4jy Rectangular form
z=r/9 Polar form (9.15)
z=rel? Exponential form
The relationship between the rectangular form and the polar form
Imaginary axis is shown in Fig. 9.6, where the x axis represents the real part and the y

) . axis represents the imaginary part of acomplex number. Given x and y,
' we can get r and ¢ as
AL, » r=VPEy g=tants (9.169)
ik i On the other hand, if we know r and ¢, we can obtain x and y as
¢ : .
0 > Real axis X = r C0S¢, y=rsnge (9.16b)
45+ Thus, z may be written as
2+ . .
: z=x+Jy=rﬁ=r(cos¢+Jsm¢) (9.17)
Figure 9.6 Representation of a Addition and subtraction of complex numbers are better performed
complex number z = x + jy =r/¢. in rectangular form; multiplication and division are better done in polar

form. Given the complex numbers
i=x+jy=r/p, un=x1+jn=n/¢1
w2=x2+ jy2=r2/¢2

the following operations are important.
Addition:

z1tz2=(x1+x2)+j(y1+y2) (9.183)
Subtraction:

21— 22= (x1—x2) + j(y1— y2) (9.18b)
Multiplication:

2122 = rir2 /1 + ¢2 (9.18c)

Division:
DD — g (9.18)
22 r
Reciprocal:
1 1
-—=-/—¢ (9.18¢)
4 r
Square Root:

Va=+r/¢/2 (9.18)
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CHAPTER 9 Sinusoids and Phasors 361

Complex Conjugate:
Z*=x—jy=r{—¢ =re/? (9.189)
Note that from Eqg. (9.18e),
- =—j (9.18h)
J
These are the basic properties of complex numbers we need. Other prop-
erties of complex numbers can be found in Appendix B.

The idea of phasor representation is based on Euler’s identity. In
general,

et/ = cos¢g + jsing (9.19)

which showsthat we may regard cos¢ and sin ¢ asthereal and imaginary
parts of ¢/¢; we may write
cos¢p = Re(e’?) (9.208)
sing = Im(e/?) (9.20b)

where Re and Im stand for the real part of and the imaginary part of.
Given asinusoid v(t) = V,, cos(wt + ¢), we use Eq. (9.20a) to express

v(t) as
v(t) = V,, cos(wt + ¢) = Re(V,,e/ @) (9.22)
or
v(t) = Re(V,,e/?e/® (9.22)
Thus,
v(t) = Re(Ve/™) (9.23)
where
V=V,e=V,/¢ (9.24)
V isthusthe phasor representation of thesinusoid v(z), aswesaid earlier. A phasor may be regarded as a mathematical
In other words, a phasor is a complex representation of the magnitude equivalent of a sinusoid with the time depen-
and phase of asinusoid. Either Eq. (9.20a) or EQ. (9.20b) can be used to dence dropped.

develop the phasor, but the standard convention isto use Eq. (9.20a).
Oneway of looking at Egs. (9.23) and (9.24) isto consider the plot
of thesinor Ve/® = V,,e/@*+9 onthecomplex plane. Astimeincreases,
the sinor rotates on acircle of radius V,, at an angular velocity o in the
counterclockwise direction, as shown in Fig. 9.7(a). In other words, the
entire complex plane is rotating at an angular velocity of w. We may
regard v(¢) asthe projection of the sinor Ve/®' on thereal axis, asshown

If we use sine for the phasor instead of cosine,

in Fig. 9.7(b). The value of the sinor at time ¢ = 0 is the phasor V of then v(t) = Vo sin (6t + 9) = Im (V5 9))
the sinusoid v(r). The sinor may be regarded as a rotating phasor. Thus, and the corresponding phasor s the same as that
whenever asinusoid is expressed as a phasor, the term ¢/ isimplicitly in Eq. (9.24).

present. It is therefore important, when dealing with phasors, to keep
in mind the frequency w of the phasor; otherwise we can make serious
mistakes.
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We use lightface italic letters such as z to repre-
sent complex numbers but boldface letters such
as V to represent phasors, because phasors are
vectorlike quantities.

PART 2 AC Circuits

Im v(t) = Re(Vel®t)

Y

.

Rotation at w rad/s
@ (b)

Figure 9.7 Representation of Ve/®': (a) sinor rotating counterclockwise, (b) its
projection on the real axis, as afunction of time.

Equation (9.23) states that to obtain the sinusoid corresponding to
a given phasor V, multiply the phasor by the time factor ¢/ and take
the real part. As a complex quantity, a phasor may be expressed in
rectangular form, polar form, or exponential form. Since a phasor has
magnitude and phase (“direction™), it behaves as a vector and is printed
in boldface. For example, phasorsV = V,, /¢ and | = 1,,/~ 6 are
graphically represented in Fig. 9.8. Such a graphical representation of
phasors is known as a phasor diagram.

Imaginary axis

\% \u
Vm
\Leading direction

/ Lagging direction

> Real axis

Figure 9.8 A phasor diagram showingV = V,, /¢ and | = 1,, /- 6 .

Equations (9.21) through (9.23) reveal that to get the phasor corre-
sponding to a sinusoid, we first express the sinusoid in the cosine form
so that the sinusoid can be written as the real part of a complex number.
Then we take out the time factor e/®, andwhatever is left is the pha-
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CHAPTER 9 Sinusoids and Phasors

sor corresponding to the sinusoid. By suppressing the time factor, we
transform the sinusoid from the time domain to the phasor domain. This
transformation is summarized as follows:

V=V,/¢ (9.25)

(Phasor-domain
representation)

v(t) =V, cos(wt + ¢) —
(Time-domain
representation)

Givenasinusoidv () = V,, cos(wt + ¢), weobtainthecorrespond-
ing phasor asV = V,, /¢. Equation (9.25) isalso demonstrated in Table
9.1, where the sine function is considered in addition to the cosine func-
tion. From Eq. (9.25), we see that to get the phasor representation of a
sinusoid, we expressit in cosine form and take the magnitude and phase.
Given a phasor, we obtain the time-domain representation as the cosine
function with the same magnitude as the phasor and the argument as
wt plus the phase of the phasor. The idea of expressing information in
alternate domains is fundamental to all areas of engineering.

TABLE9.|  Sinusoid-phasor transformation.

Time-domain representation  Phasor-domain representation

V,, COS(wt + ) V./ o
V, Sin(wt + ¢) V, /¢ — 90
1,, cos(wt + 6) 1,/6
I, sSin(wt + 0) 1,/6 —90°

Note that in Eq. (9.25) the frequency (or time) factor e/ is sup-
pressed, and the frequency is not explicitly shown in the phasor-domain
representation because w is constant. However, the response depends on
w. For this reason, the phasor domain is aso known as the frequency
domain.

From Egs. (9.23) and (9.24), v(t) = Re(Ve/*") = V,, cos (wt +¢),
so that

dv . °
o5 = TOVa SN +¢) = oV, coser +¢+90)

= Re(mee-""”ej‘f’engo) — Re(ja)Ve-i“’f)
This shows that the derivative v(¢) is transformed to the phasor domain
as joV
dv

dt
(Time domain)

— joV 9.27)

(Phasor domain)

Similarly, the integral of v(z) is transformed to the phasor domain as
V/jw

V
vdt — — (9.28)
Jw

(Time domain) (Phasor domain)

363

Differentiating a sinusoid is equivalent to multi-
plying its corresponding phasor by jo.

Integrating a sinusoid is equivalent to dividing its
corresponding phasor by jo.
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364 PART 2 AC Circuits

Equation (9.27) alowsthe replacement of aderivative with respect
to time with multiplication of jw in the phasor domain, whereas Eq.
(9.28) allows the replacement of an integral with respect to time with
division by jw in the phasor domain. Equations (9.27) and (9.28) are
useful infinding the steady-state sol ution, which doesnot require knowing
the initial values of the variable involved. Thisis one of the important
applications of phasors.
Besides time differentiation and integration, another important use
Adding sinusoids of the same frequency is equiv- of phasorsisfound in summing sinusoids of the same frequency. Thisis
alent to adding their corresponding phasors. best illustrated with an example, and Example 9.6 provides one.
The differences between v(¢) and V should be emphasized:

1. v(¢) istheinstantaneous or time-domain representation, while
V isthe frequency or phasor-domain representation.

2. v(¢r) istime dependent, while V isnot. (Thisfact is often
forgotten by students.)

3. v(¢r) isalwaysreal with no complex term, while V is generally
complex.

Finally, we should bear in mind that phasor analysis applies only when
frequency is constant; it applies in manipulating two or more sinusoidal
signals only if they are of the same frequency.

Evaluate these complex numbers:
(a) (40 /50° + 20/ — 30°)%/2
©) 10/ —30° + (3— j4
2+ jHEB—j9*
Solution:
(a) Using polar to rectangular transformation,

40,/50° = 40(cos50° + j sin50°) = 25.71 + j30.64
20/ —30° = 20[cos(—30°) + j Sin(—30°)] = 17.32 — j10
Adding them up gives
40/50° +20/ — 30° = 43.03+ j20.64 = 47.72 /25.63°
Taking the square root of this,
(40 /50° + 20/ — 30°)¥2 = 6.91 /12.81°

(b) Using polar-rectangular transformation, addition, multiplication, and

division,
10/—-30° +(3—j4 866— j5+ (3— jd)
2+ jHB-j5* 2+ jHE+ 5

11.66 — jO  14.73/ — 37.66°

C —14422 2608 /122.47°

= 0.565/ — 160.31°
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PRACTICE PROBLEMENE

365

Evaluate the following complex numbers:
@[5+ jd(-1+j4 —5,/60°]"
10+ j5+ 3 /40°

d L +10,/30°

b
() -3+ j4
Answer: (a) —15.5— j13.67, (b) 8.293 + j2.2.

mﬂ9.4

Transform these sinusoids to phasors:
(@) v = —4sin(30r + 50°)
(b) i = 6c0s(50f — 40°)
Solution:
(@) Since —sin A = cos(A + 90°),
v = —4sin(30¢ + 50°) = 4c0s(30r + 50° + 90°)
= 4cos(30t + 140°)

V =4/140°
(b) i = 6cos(50r — 40°) has the phasor
| =6/ —40°

PRACTICE PROBLEMENE

The phasor form of v is

Express these sinusoids as phasors:
(@) v = —7cos(2r + 40°)
(b) i = 4sin(10r 4 10°)

Answer: () V =7/220°, (b) | =4,/ — 80"

M9.5

Find the sinusoids represented by these phasors:
@V = j8e 1
(b)l = -3+ j4
Solution:
(a) Since j = 1,/90°,
V=,8/-20° =(1/90°)8/ - 20°)
=8,/90° —20° =8 /70° V

Converting this to the time domain gives

v(t) = 8cos(wt + 70°) V

()| = =3+ j4 =5,/126.87°. Transforming this to the time domain
gives

i(t) = 5cos(wt + 126.87°) A
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PRACTICE PROBLEMENS

PART 2 AC Circuits

Find the sinusoids corresponding to these phasors:

(@ V=-10/30°

(b1 =j5-,12

Answer: (@) v(t) = 10cos(wt +210°), (b) i(t) = 13 cos(wt 4 22.62°).

mﬂ9.s

Given i1 (t) = 4cos(wt + 30°) and i»(t) = 5sin(wt — 20°), find their
sum.

Solution:

Hereisan important use of phasors—for summing sinusoids of the same
frequency. Current i1 (¢) isin the standard form. Its phasor is

l1=4/30°

We need to express i, () in cosine form. The rule for converting sine to
cosineisto subtract 90°. Hence,

i, = 5c0s8(wt — 20° — 90°) = 5cos(wt — 110°)
and its phasor is
I, =5/—110°
If weleti =i, + iy, then
l=114+1,=4/30°+5/ — 110°
=3464+ j2—1.71— j4.698 = 1.754 — j2.698
=3.218/—56.97° A

Transforming this to the time domain, we get
i(t) = 3.218cos(wt — 56.97°) A
Of course, we can find i1 + i, using Egs. (9.9), but that isthe hard way.

PRACTICE PROBLEM KM

If v = —10sin(wt + 30°) and v, = 20cos(wt —45°), find V = vy + vs.
Answer: v(r) = 10.66 cos(wt — 30.95°).

e L KB

Using the phasor approach, determine the current i(¢) in a circuit de-
scribed by the integrodifferential equation

»
4 + 8/ idi — 3d—; — 50c0S(2f + 75°)
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Solution:

We transform each term in the equation from time domain to phasor
domain. Keeping Egs. (9.27) and (9.28) in mind, we obtain the phasor
form of the given equation as

8l
4 + — —3jwl =50/75°
jo
Butw =2, s0
1(4— j4— j6) =50/75°

| 50/75° B 50/75°

- — _ = 4.642/143.2° A
4—-j10 1077/ -682°

Converting this to the time domain,
i(t) =4.642cos(2t + 143.2°) A

Keep in mind that this is only the steady-state solution, and it does not
require knowing theinitial values.

PRACTICE PROBLEMKN

Findthevoltage v (¢) inacircuit described by theintegrodifferential equa-
tion

d
2d—lt’ 450+ 10/ vdt = 20cos(5¢ — 30°)

using the phasor approach.
Answer: v(t) = 2.12cos(5r — 88°).

9.4 PHASOR RELATIONSHIPS FOR CIRCUIT ELEMENTS

Now that we know how to represent a voltage or current in the phasor or
frequency domain, one may legitimately ask how we apply thisto circuits
involving the passive elements R, L, and C. What we need to do isto
transform the voltage-current relationship from the time domain to the
frequency domain for each element. Again, we will assume the passive
sign convention.

We begin with the resistor. If the current through a resistor R is
i = I, cos(wt + ¢), the voltage acrossit is given by Ohm’s law as

v =iR = RI, cos(wt + ¢) (9.29)
The phasor form of this voltageis
V=RIL/¢ (9.30)
But the phasor representation of the currentis| = I, @ Hence,
V = RI (9.31)
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o—— o——

+ +

v §R v §R

o— | o |
v=iR V=1R
@ (b)

Figure 9.9 Voltage-current
relations for aresistor in the:
(a) time domain, (b) frequency
domain.

Im

0 Re

Figure 9.10 Phasor diagram for the
resistor.

Although it is equally correct to say that the in-
ductor voltage leads the current by 90°, con-
vention gives the current phase relative to the
voltage.

—_— —_—
o— o—

+ +

v §L \Y %L
VzL% V =joll

@ (b)

Figure 9.1 voltage-current
relations for an inductor in the:
(a) time domain, (b) frequency
domain.

PART 2 AC Circuits

showing that the voltage-current relation for the resistor in the phasor
domain continues to be Ohm'’s law, as in the time domain. Figure 9.9
illustrates the voltage-current relations of aresistor. We should note from
Eq. (9.31) that voltage and current arein phase, asillustrated in the phasor
diagramin Fig. 9.10.

For the inductor L, assume the current through it is i =
I, cos(wt + ¢). The voltage across the inductor is

di .
v = Ld—; — —wLl, Sn(wt + ) 932)

Recall from Eq. (9.10) that —sin A = cos(A + 90°). We can write the
voltage as

v = wLlI, cos(wt + ¢ + 90°) (9.33)
which transforms to the phasor
V = lemej(¢+900) = a)leej‘l’ejgou = lemﬁejgog (9.34)
But 7, /¢ = |, and from Eq. (9.19), ¢/% = j. Thus,

V = jwlLl (9.35)
showing that the voltage hasamagnitude of w L I,,, and aphase of ¢ +90°.
The voltage and current are 90° out of phase. Specificaly, the current
lags the voltage by 90°. Figure 9.11 shows the voltage-current relations
for the inductor. Figure 9.12 shows the phasor diagram.

For the capacitor C, assume the voltage across it is v =
Viu COS(wt + ¢). The current through the capacitor is

| = C— 9.36
! dt (9.36)

By following the same steps as we took for the inductor or by applying
Eq. (9.27) on Eq. (9.36), we obtain

I
| = joCV = V=—o
joC
showing that the current and voltage are 90° out of phase. To be specific,
thecurrent leadsthevoltageby 90°. Figure9.13 showsthevoltage-current

(9.37)

Im
L .
o—— o——
y + +
\
| v = C vV = C
¢ p— -
5 o— o— 1
i—c v | =jwCV
0 Re I_Cdt Jo
Figure 9.12 Phasor diagram for the @ (b)

inductor; | lags V.

Figure 9.3 voltage-current
relations for a capacitor in the:
(a) time domain, (b) frequency
domain.
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relations for the capacitor; Fig. 9.14 gives the phasor diagram. Table 9.2 Im
summarizes the time-domain and phasor-domain representations of the

circuit elements. N
[

Y,
TABLE92  Summary of voltage-current
relationships. ¢
Element Timedomain Frequency domain 0 Re
R v=Ri V =RI Figure 9.14  Phasor diagram for the capa-
di citor; | leads V.
L v=1%2 V= jolLl
dt
d |
C i=c V=—
dt joC

M9.8

The voltage v = 12 cos(60r + 45°) is applied to a 0.1-H inductor. Find
the steady-state current through the inductor.

Solution:

For the inductor, V = jwLl, where w = 60 rad/sand V = 12 /45° V.
Hence

\Y; 12 /45° 12 /45°

I = - = - = L == 2 - 450A
joL  j60x 0.1 6,/90°

Converting thisto the time domain,

i(t) = 2cos(60r — 45°) A

PRACTICE PROBLEMEN

If voltage v = 6 cos(100¢ — 30°) isapplied to a50 wF capacitor, calculate
the current through the capacitor.

Answer: 30cos(100r + 60°) mA.

9.5 [IMPEDANCE AND ADMITTANCE

In the preceding section, we obtained the voltage-current rel ations for the
three passive elements as

I
V = RI, V = jowll, V=—— (9.38)
joC

These equations may bewritten in terms of theratio of the phasor voltage
to the phasor current as

V_ R V_; L v_ 1 9.39
From these three expressions, we obtain Ohm'’s law in phasor form for
any type of element as
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Z =

\%
T or V =ZI (9.40)

where Z is a frequency-dependent quantity known as impedance, mea-
sured in ohms.

The impedance Z of a circuit is the ratio of the phasor voltage V to the phasor
current I, measured in ohms (<),

The impedance represents the opposition which the circuit exhibitsto the
flow of sinusoidal current. Although the impedance is the ratio of two
phasors, it isnot aphasor, becauseit does not correspond to asinusoidally
varying quantity.

Theimpedances of resistors, inductors, and capacitors can be read-
ily obtained from Eq. (9.39). Table 9.3 summarizestheir impedancesand
admittance. FromthetablewenoticethatZ; = joL andZ¢ = —j/wC.
Consider two extreme cases of angular frequency. Whenw = 0 (i.e, for
Element Impedance Admittance dcsources),Z; = 0andZs — oo, confirming what we already know—

TABLE93  Impedances and
admittances of passive elements.

1 that the inductor acts like a short circuit, while the capacitor acts like an
R Z=R Y=12 opencircuit. Whenw — oo (i.e,, for high frequencies), Z;, — oo and
1 Z¢ = 0, indicating that theinductor isan open circuit to high frequencies,
L Z=joL Y = — while the capacitor isashort circuit. Figure 9.15 illustrates this.
J@ Asacomplex quantity, the impedance may be expressed in rectan-
c s _ _1C Y = jwC gular form as
w
! Z=R+jX (9.41)
where R = Re Z istheresistance and X = Im Z isthe reactance. The
reactance X may be positive or negative. We say that the impedance is
inductive when X is positive or capacitive when X is negative. Thus,
impedance Z = R + j X issaid to be inductive or lagging since current
—Oo—0— |ags voltage, while impedance Z = R — jX is capacitive or leading
L Shortdreuitatde  pecaise current leads voltage. The impedance, resistance, and reactance
— = — are all measured in ohms. Theimpedance may also be expressed in polar
—o0 o— formas
Open circuit at
high frequencies zZ=12|/8 (9.42)
@ Comparing Egs. (9.41) and (9.42), we infer that
—O0 Oo— .
c Open circuit at dc Z=R+jX= |Z|ﬁ (9.43)
—— —
where
Short circuit at X
high frequencies 1Z| = vV R? + X2, 0 =tan* R (9.44)
(b) and
Figure 9.15  Equivalent circuits at dc and R = |Z] cosb, X =|Z|sin6 (9:45)

high f ies: (a) i itor. . : . . . .
'gh frequencies: (@) inductor, (b) capacitor Itissometimesconvenient towork withthereciprocal of impedance,

known as admittance.
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t The admittance Y is the reciprocal of impedance, measured in siemens (S).

The admittance Y of an element (or a circuit) is the ratio of the phasor
current through it to the phasor voltage across it, or

Y=== (9.46)

The admittances of resistors, inductors, and capacitors can be obtained
from Eq. (9.39). They are also summarized in Table 9.3.
Asacomplex quantity, we may write'Y as

Y=G+jB (9.47)

whereG =ReY iscalledtheconductanceand B =ImY iscalledthesus-
ceptance. Admittance, conductance, and susceptance are all expressed
in the unit of siemens (or mhos). From Egs. (9.41) and (9.47),

G+ jB= 9.48
+J R+ /X (948)
By rationalization,
_ 1 R—jX R-jX
G+ jB= — - ~ = (949
R+jX R—-jX R2+ X2
Equating the real and imaginary parts gives
G = R B = X 9.50
~ R24 X7 ~ R2+ X2 650
showingthat G # 1/R asitisinresistive circuits. Of coursg, if X = 0,
then G = 1/R.
£ XA P L E I
Find v(¢) and i (¢) in the circuit shown in Fig. 9.16. i 50
Solution:
From the voltage source 10 cos4t, w = 4, Vo= 10 cos 4t 01F - \J,r
A )
V,=10/0°V
Theimpedance is Figure 9.16  For Example 9.9.
1 1
Z=5+—=5+—"—-=5-,25Q
tiec =T jaxo1 /
Hence the current
vV, 10/0° 105+ j2.5)
~Z 5-j25 54252 (9.9.1)

=16+ j0.8=1.789 /26.57° A

The voltage across the capacitor is
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PRACTICE PROBLEM KN

Figure 9.17

For Practice Prob. 9.9.

PART 2 AC Circuits

| 1.789 /26.57°
joC ~  jAx01
1.789 /26.57° (9.2
————— =447/ -6343°V
0.4,/90°
Converting | and V in Egs. (9.9.1) and (9.9.2) to thetime domain, we get
i(t) = 1.789cos(4t + 26.57°) A
v(t) = 4.47 cos(4r — 63.43°) V
Noticethat i (¢) leads v(¢) by 90° as expected.

V=1Zc =

Refer to Fig. 9.17. Determine v(¢) and i (¢).
Answer: 2.236sin(10r + 63.43°) V, 1.118sin(10r — 26.57°) A.

9.6 KIRCHHOFF'S LAWS IN THE FREQUENCY DOMAIN

We cannot do circuit analysis in the frequency domain without Kirch-
hoff’s current and voltage laws. Therefore, we need to express them in
the frequency domain.

For KVL, let vy, vo, ..., v, bethe voltages around a closed loop.
Then

v+ vo4--4v, =0 (9.51)

Inthe sinusoidal steady state, each voltage may bewrittenin cosineform,
so that Eq. (9.51) becomes

Vin1 cos(wt + 01) + V2 COS(wt + 62)
4+ 4V, cos(wt +6,) =0 (852
This can be written as
Re(V,1e/%e/®) + Re(Vyoe!?2e/)y + .- + Re(Vye!” e’y =0
or
Re[(Vyu1e/™ + Vel + .. £ V,,e/%)e/”] = 0 (9.53)
If welet V, = V,.e/%, then
Re[(Vi+Va+---+V,)e/”] =0 (9.54)
Since e/“! # 0,
Vi+Vod -4V, =0 (9.55)
indicating that Kirchhoff’s voltage law holds for phasors.
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By following a similar procedure, we can show that Kirchhoff’s

current law holds for phasors. If we let iy, ip, ..., i, be the current

leaving or entering a closed surface in a network at time ¢, then
it+iz+---+i, =0 (9.56)

If 14,19, ...,1, arethe phasor forms of the sinusoids iy, io, .. ., i,, then
li+1l+---+1,=0 (9.57)

which isKirchhoff’s current law in the frequency domain.

Oncewe have shown that both KVL and KCL holdinthefrequency
domain, it is easy to do many things, such as impedance combination,
nodal and mesh analyses, superposition, and source transformation.

9.7 IMPEDANCE COMBINATIONS

Consider the N series-connected impedances shown in Fig. 9.18. The
same current | flowsthrough the impedances. Applying KVL around the
loop gives
V=Vi+Vot+ - -+Vy=I1(Z14+2Zo+---+2Zy) (9.58)
The equivalent impedance at the input terminalsis
\%

Zeq=|—=21+22+-~-+zzv

or

Zeq=Z1+2Zo+ - +2Zy (9.59)

showingthat thetotal or equival entimpedance of series-connectedimped-
ancesisthe sum of theindividual impedances. Thisissimilar tothe series
connection of resistances.

|
> Zl ZZ ZN
+V1_ +V2— +VN—

+

v O

z

—

Figure 9.18 N impedances in series.

If N = 2, asshowninFig. 9.19, the current through theimpedances ' Z,
||
is R
| \Y VT
= (9.60) + +
Z1+ 2, V_@ Vo [ Z2

SinceV; = Z41 and V5 = Zsl, then -

Zl v ZZ

= R = 9.61
Zi+ 25 2= 7,47, ©61

Vi

Figure 9.19  voltage division.

which is the voltage-division relationship.
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o |- |

Figure 9.21

Current division.

PART 2 AC Circuits

In the same manner, we can obtain the equivalent impedance or
admittance of the N parallel-connected impedances shown in Fig. 9.20.
The voltage across each impedance is the same. Applying KCL at the
top node,

l=li+l+--+ly=V 1+1+ +1 9.62
=l1+12 N = Z. "7, Zn (9.62)
The equivalent impedanceis
1 I 1 1 1
=+t -+ (9.63)

and the equivalent admittance is

qu=Y1+Y2+~-~+YN (9.64)

This indicates that the equivalent admittance of a parallel connection of
admittances is the sum of the individual admittances.

+ ¢|1 ¢|2 ¢|N
o . I-I- 1I-
l_,_

eq

Figure 920 N impedances in parallel.

When N = 2, as shown in Fig. 9.21, the equivalent impedance
becomes

1 1 1 Z1Z,
Yeq Y1+Y2 YZ1+1/Z; Z1+2Z;
Also, since
V=IZg=11Z1=15Z5
the currents in the impedances are
Zy Z1
I, = l, I, = | 9.66
YT Zi+ 2, 2T Zi+ 2, 669

which is the current-division principle.

The delta-to-wye and wye-to-del ta transformations that we applied
to resistive circuits are also valid for impedances. With reference to Fig.
9.22, the conversion formulas are as follows.
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c

Figure 922 Superimposed ¥ and A networks.

Y-A Conversion:

7 - 2175+ 72373+ 7237,
a — Zl
2175+ 2773+ 23Z2
Z, = 142+ L2l3+ L3l 967)
Z,
7 - 2175+ 72373+ 7237,
c — 23
A-Y Conversion:
Z,Z,
Zy= b7
Z,+Z,+Z.
Z.Z,
Zy= """ (9.69)
Z,+Z,+2Z.
Z,Z
Zy= 40
Z,+Z,+2Z.
A delta or wye circuit is said to be balanced if it has equal impedances in all
three branches.
When a A-Y circuit is balanced, Egs. (9.67) and (9.68) become
1
Zar =32y or Zy = éZA (9.69)

whereZy =21 =2, =2ZzandZy=2,=2, = Z..

Asyou see in this section, the principles of voltage division, cur-
rent division, circuit reduction, impedance equivalence, and Y-A trans-
formation all apply to ac circuits. Chapter 10 will show that other circuit
techniques—such as superposition, nodal analysis, mesh analysis, source
transformation, the Thevenin theorem, and the Norton theorem—are all
appliedto ac circuitsin amanner similar totheir applicationindc circuits.
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2mF 0.2H Find the input impedance of the circuit in Fig. 9.23. Assumethat the cir-
o—| A1) cuit operates at w = 50 rad/s.
Zin 30 Solution:
— 80 Let
10 mF
o i Z, = Impedance of the 2-mF capacitor
. Z, = Impedance of the 3-Q resistor in series with the 10-mF
Figure 9.23  For Example 9.10. capacitor
Z3 = Impedance of the 0.2-H inductor in series with the 8-Q
resistor
Then
1 1 .
Z1=—— = =—j10Q
joC  j50 x 2 x 10-3
1 1
Z, =34+ — =3+ =B-j2)Q

joC j50 x 10 x 103
Z3=8+ joL =8+ j50 x 0.2= (8+ j10)
Theinput impedanceis
B—-j2)(8+ j10)
11+ ;8

(44 + j14)(11 - j8) . .
ST = —j10+322— j1.07Q

Zin=21+2Z5 || Z3=—j10+

— —j10+

Thus,
Zin=322—j11.07Q

PRACTICE PROBLEMENNE

2mF - 200 2H Determine the input impedance of the circuit in Fig. 9.24 at o =
10 rad/s.
Z; ) ;
in I spo Answer: 32.38— j73.76 Q.

Figure 9.24  For Practice Prob. 9.10.

mﬂ9.||

60 Q Determine v, (¢) inthe circuit in Fig. 9.25.
. Solution:
20 cos(4t — 15°) 10mE = 5H 3V Todotheanayssin the frequency domain, we must first transform the

— time-domain circuit in Fig. 9.25 to the phasor-domain equivalent in Fig.
9.26. The transformation produces

Figure 9.25  For Example 9.11.
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vy, = 20cos(4t — 15°) - V,=20/—-15°V, w=4 60Q
1 1 aA%%Y
10 mF = - = — +
joC  j4x10x 103 20,415° 250 == j20Q 3V,
= —j25Q -
5H — joL = jAx 5= j20Q
Let Figure 926 The frequency-domain

equivalent of the circuit in Fig. 9.25.
Z; = Impedance of the 60-$2 resistor

Z, = Impedance of the parallel combination of the 10-mF
capacitor and the 5-H inductor
ThenZ; = 60 Q and
—j25x j20

j100 ©
—j25+j20

Zy=—j25 j20 =

By the voltage-division principle,

Zz ]100
V, = V, = 0/— 15°
Zi+ 2, 60+ 601 71002 /=15

= (0.8575,/30.96°)(20 / — 15°) = 17.15/15.96° V.
We convert this to the time domain and obtain
v,(t) = 17.15cos(4t + 15.96°)V

PRACTICE PROBLEMENN

Cdculate v, inthecircuit in Fig. 9.27. 05H
Answer: v,(t) = 7.071cos(10r — 60°) V.

10 cos (10t + 75°)

Figure 927 For Practice Prob. 9.11.

M9.|2

Find current | inthecircuit in Fig. 9.28.

20 -4Q
AW I
| .
YU B L By P
a
i6Q
50&’(’:) 30 -
8Q

Figure 9.28  For Example 9.12.
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Solution:

The delta network connected to nodes a, b, and ¢ can be converted to the
Y network of Fig. 9.29. We obtain the Y impedances as follows using

Eq. (9.68):
JA42— j4) 44+ j2) .
= - — (164 j0.8) Q
jat2_jars 10 (Ot/09
ja® 8(2— j4) .
Zp =127~ j32Q, Za=— 17 _(16-j32)Q
b 10 J3 10 (16-,32)

The total impedance at the sourceterminalsis
Z2=12+Z4+ Zpy — jI) || Zen + j6+8)
=12+16+ j0.8+ (j0.2) || (9.6 + j2.8)
j0.2(9.6 + j2.8)
9.6+ 3
=136+ j1=13.64,/4.204° Q

=136+ jO.8+

The desired current is

% 50,/0°

Z 1364 ,/4.204°

= 3.666/ — 4.204° A

i6Q

8Q

Figure 929  Thecircuitin Fig. 9.28 after delta-to-wye transformation.

PRACTICE PROBLEMKENN

I Find I inthecircuit in Fig. 9.30.

—
Answer: 6.364,3.802° A.
j4Q -i3Q
80Q j5Q
a0V @ AM——TT
5Q
100
-ji2Q

Figure 930 For Practice Prob. 9.12.
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9.8 APPLICATIONS

In Chapters 7 and 8, we saw certain usesof RC, RL, and RLC circuits
in dc applications. These circuits also have ac applications, among them
are coupling circuits, phase-shifting circuits, filters, resonant circuits, ac
bridgecircuits, and transformers. Thislist of applicationsisinexhaustive.
We will consider some of them later. It will suffice here to observe two
simple ones. RC phase-shifting circuits, and ac bridge circuits.

9.8.1 Phase-Shifters

A phase-shifting circuit is often employed to correct an undesirable phase
shift already present in acircuit or to produce specia desired effects. An
RC circuit is suitable for this purpose because its capacitor causes the
circuit current to lead the applied voltage. Two commonly used RC

circuits are shown in Fig. 9.31. (RL circuits or any reactive circuits @
could also serve the same purpose.) I R
In Fig. 9.31(a), thecircuit current | leadsthe applied voltage V; by —  AMM——
some phase angle 6, where 0 < 6 < 90°, depending on the values of R + +
and C. If X¢ = —1/wC, then thetotal impedanceisZ = R+ jX¢, and v C ==V,
the phase shift is given by ' -
1 Xc o

0 =tan"" — 9.70
R (9.70)

This shows that the amount of phase shift depends on the values of R, , _

C, and the operating frequency. Since the output voltage V,, across the Qﬁlf]tr ilgr gull © (i‘)* I':d’fng
resistor isin phase with the current, V,, leads (positive phase shift) V; as output, (b) lagging output.
shown in Fig. 9.32(a).

Phase shift Phase shift
@ (b)

Figure 932 Phase shift in RC circuits: (a) leading output, (b) lagging output.

InFig. 9.31(b), the output istaken acrossthe capacitor. The current
| leads the input voltage V; by 6, but the output voltage v, (¢) across the
capacitor lags (negative phase shift) the input voltage v; (¢) asillustrated
in Fig. 9.32(b).

We should keep in mind that the simple RC circuits in Fig. 9.31
also act as voltage dividers. Therefore, as the phase shift 6 approaches
90°, the output voltage V, approaches zero. For thisreason, thesesimple
RC circuitsare used only when small amounts of phase shift arerequired.
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If itisdesired to have phase shifts greater than 60°, simple RC networks
are cascaded, thereby providing a total phase shift equal to the sum of
theindividual phase shifts. In practice, the phase shifts due to the stages
are not equal, because the succeeding stages|oad down the earlier stages
unless op amps are used to separate the stages.

H200 200 Design an RC circuit to provide a phase of 90° leading.
1
© ] I 0 Solution:
v 200 00 Vi If we select circuit components of equal ohmic value, say R = | X¢| =

20 Q, at a particular frequency, according to Eq. (9.70), the phase shift
- —~ ~  isexactly 45°. By cascading two similar RC circuitsin Fig. 9.31(a), we
obtain the circuit in Fig. 9.33, providing a positive or leading phase shift
of 90°, as we shall soon show. Using the series-parallel combination
technique, Z in Fig. 9.33 is obtained as

Figure 9.3 An RC phase shift circuit with

90° leading phase shift; for Example 9.13. 20(20 — j20)
Z=20] (20— j20) = ——=12—j4Q (9131
Il (20 — j20) 20— ;20 J (913.1)
Using voltage division,
z 12 — j4 V2
V= V; = V; = — /45°V; 9.13.2
Tz j20 12— j24 3L (6132
and
20 V2
V,= ——V; = — /45°V 9.13.3
20— 20 ' 2 /451 (8139
Substituting Eq. (9.13.2) into Eq. (9.13.3) yields

vom (25) (20 < Lo

Thus, the output leads the input by 90° but its magnitude is only about
33 percent of the input.

PRACTICE PROBLEMENE

100 100 Design an RC circuit to provide a 90° lagging phase shift. If avoltage
f MWy of 10V isapplied, what is the output voltage?
+
o Answer: Figure 9.34 shows atypical design; 3.33 V.

v, -10Q == —10Q ==V,

(e

Figure 9.34  For Practice Prob. 9.13.

m9.|4

For the RL circuit shown in Fig. 9.35(a), calculate the amount of phase
shift produced at 2 kHz.
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Solution:
At 2 kHz, we transform the 10-mH and 5-mH inductances to the corre-
sponding impedances.
10 mH = X, =wL =27 x2x 10% x 10 x 1073
=407 = 125.7 Q2
5mH = X, =wL =27 x2x10®x5x 1073 150Q 100Q
= 207 = 62.83Q TV VW °
Consider the circuit in Fig. 9.35(b). The impedance Z is the parallel 10mH SmH
combination of j125.7 & and 100 + ;j62.83 2. Hence, o o
Z = j125.7 || (100 + j62.83) @
j125.7(100 + j62.83) (9.14.3) 150Q v, 100 Q
= = 69.56 /60.1°
100 + j188.5 o LEYYYN °
Using voltage division, v, j125.7Q i62.83Q VA
y z 69.56/60.1° 5 = >
YT Z+150 ' 1847+ j60.3 (9.142) z
= 0.3582 /42.02° V; (b)
and Figure 9.35  For Example 9.14.
j62.832
V,=—"———V; =0532,/57.86° V 14,
100+ j62832 "t = O032/5186 Vs 6143
Combining Egs. (9.14.2) and (9.14.3),
V, = (0.532/57.86°)(0.3582 /42.02°) V; = 0.1906 /100° V;
showing that the output is about 19 percent of the input in magnitude but
leading the input by 100°. If the circuit is terminated by aload, the load
will affect the phase shift.
PRACTICE PROBLEMEME
Refer tothe RL circuitin Fig. 9.36. If 1V isapplied, find the magnitude 1mH 2mH
and the phase shift produced at 5 kHz. Specify whether the phase shift ° ALl AL °
isleading or lagging.
, Vi 10Q 500 v,
Answer: 0.172, 120.4°, lagging. ~ -
O O
Figure 9.36  For Practice Prob. 9.14.

9.8.2 AC Bridges

An ac bridge circuit is used in measuring the inductance L of an inductor
or the capacitance C of acapacitor. Itissimilarin formto the Wheatstone
bridge for measuring an unknown resistance (discussed in Section 4.10)
and follows the same principle. To measure L and C, however, an ac
sourceis needed aswell as an ac meter instead of the galvanometer. The
ac meter may be a sensitive ac ammeter or voltmeter.
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382 PART 2 AC Circuits

Consider the general ac bridge circuit displayed in Fig. 9.37. The

J_ J_ bridge is balanced when no current flows through the meter. This means
. 2 that V, = V5. Applying the voltage division principle,
1 3
z z
Vi= 2 V,=Vy=_—"% v, ©.71)
v (= AC Z1+ 2, Z3+Z,
s <~> meter Thus,
N N Z:_ _ L = Z2,23=121Z 9.72
Zl (v Vo [ Zx 71427, Za+Z. 243 = L14y (9.72)
I ]
z
) Z, = —322 (9.73)
Flgure 937 A general ac bridge. Z;

Thisisthe balanced equation for the ac bridge and is similar to Eq. (4.30)
for the resistance bridge except that the R'sarereplaced by Z's.

Specific ac bridges for measuring L and C are shown in Fig. 9.38,
where L, and C, are the unknown inductance and capacitance to be
measured while L; and C, areastandard inductance and capacitance (the
values of which areknown to great precision). Ineach case, two resistors,
Ry and R, are varied until the ac meter reads zero. Then the bridge is
balanced. From Eq. (9.73), we obtain

L, ==L, (9.74)
Ry
and
Ry
C, = —C, (9.75)
R

Noticethat the balancing of the ac bridgesin Fig. 9.38 does not depend on
thefrequency f of the ac source, since f does not appear in the relation-
shipsin Egs. (9.74) and (9.75).

Ry R, Ry R,
AC AC
meter meter
LS LX CS C)(
(=) (=)
7 7
@ (b)

Figure 938 Specific ac bridges: (a) for measuring L, (b) for measuring C.

m9.|5

The ac bridge circuit of Fig. 9.37 balances when Z; is a 1-kS2 resistor,
Z,isa4.2-kQ resistor, Z3 isaparallel combination of a1.5-M S resistor
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and a 12-pF capacitor, and f = 2 kHz. Find: (&) the series components
that make up Z,., and (b) the parallel components that makeup Z,.

Solution:
From Eq. (9.73),

7, =27 9.15.1
x = Z1 2 (9.15.1)
whereZ, = R, + jX,,
Z1 = 1000 €, Z, =4200 Q (9.15.2)
and
R3
jwCs R3

1
Z = R = =
3= kel joCs  Rs+1/jwCs 1+ joRsCs

Since Rz = 1.5MQ and C3 = 12 pF,
_ 1.5 x 10° ~ 15x10°
1427 x2x 103 x 1.5 x 106 x 12 x 10-12 14 j0.2262

Z3
or
75 = 1.427 — j0.3228 MQ (9153

(a) Assumingthat Z, ismade up of seriescomponents, we substitute Egs.
(9.15.2) and (9.15.3) in Eq. (9.15.1) and obtain

, 4200 , .
Ry j X, = 5551427 — j0.3228) x 10

— (5.993 — j1.356) MQ

Equating the real and imaginary parts yields R, = 5.993 MQ and a
capacitive reactance

1
X, = — = 1.356 x 10°
w

or
1 1
wX, 27 x2x 108 x 1.356 x 106

(b) If Z, is made up of parallel components, we notice that Z3 isalso a
paralel combination. Hence, Eq. (9.15.1) becomes

z, = 20k, | L —a2ry -

1000 joCs JjoCs

This simply means that the unknown impedance Z, is 4.2 times Zs.

Since Z3 consists of R3 and X3 = 1/wC3, there are many ways we can

get 4.273. Therefore, there is no unique answer to the problem. If we

suppose that 4.2 = 3 x 1.4 and we decide to multiply R3 by 1.4 while
multiplying X3 by 3, then the answer is

R, = L4Rs = 21 MQ

C =

= 58.69 pF

=427, (9.15.4)

and
1 3 1

X, = =3X3=—- C,==C3=4pF
wC, 3 wC3 = 33 P
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Alternatively, we may decide to multiply R3 by 3 while multiplying X,
by 1.4 and obtain R, = 45 MQ and C, = C3/1.4 = 8571 pF. Of
course, there are several other possihilities. In asituation like this when
there is no unique solution, care must be taken to select reasonably sized
component values whenever possible.

PRACTICE PROBLEMENIE

In the ac bridge circuit of Fig. 9.37, suppose that balance is achieved
when Z1 is a 4.8-kQ resistor, Z5 is a 10-Q resistor in series with a
0.25-uH inductor, Z3 is a 12-k<2 resistor, and f = 6 MHz. Determine
the series components that make up Z,.

Answer: A 25-Q resistor in series with a 0.625-uH inductor.

9.9 SUMMARY

1. A sinusoid isasignal in the form of the sine or cosine function. It
has the general form

v(t) =V, cos(wt + ¢)

where V,, isthe amplitude, = 27 f isthe angular frequency,
(wt + ¢) isthe argument, and ¢ is the phase.
2. A phasor isacomplex quantity that represents both the magnitude

and the phase of asinusoid. Given the sinusoid
v(t) =V, cos(wt + ¢), itsphasor V is

V=V, /¢

3. Inac circuits, voltage and current phasors aways have afixed
relation to one another at any moment of time. If v(z) =
V,, cos(wt + ¢,) represents the voltage through an element and
i(t) = I,, cos(wt + ¢;) represents the current through the element,
then ¢; = ¢, if the element isaresistor, ¢; leads ¢, by 90° if the
element is a capacitor, and ¢; lags ¢, by 90° if the element isan
inductor.

4. Theimpedance Z of acircuit istheratio of the phasor voltage across
it to the phasor current through it:

Z = \I/— = R(w) + j X (»)

The admittance Y isthe reciprocal of impedance:
1
Z= 7= G () + jB(w)

Impedances are combined in series or in parallel the same way as
resistancesin series or parallel; that is, impedancesin series add
while admittances in parallel add.

5. For aresistor Z = R, foraninductor Z = jX = jwL,andfora
capacitorZ = —jX =1/jwC.

6. Basic circuit laws (Ohm's and Kirchhoff’s) apply to ac circuitsin the
same manner as they do for dc circuits; that is,
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V =2ZI
1y =0 (KCL)
> V=0 (KVL)
The techniques of voltage/current division, series/parallel combina-

tion of impedance/admittance, circuit reduction, and Y-A trans-
formation all apply to ac circuit analysis.

AC circuits are applied in phase-shifters and bridges.

REVIEW QUESTIONS

9.1 Which of the following is not aright way to express 9.8 At what frequency will the output voltage v, (¢) in
the sinusoid A coswt? Fig. 9.39 be equal to the input voltage v(r)?
(@ Acos2rft (b) Acos(2rt/T) (@) Orad/s (b) 1rad/s (c) 4radls
(¢c) Acosw(t —T) (d) Asin(wt —90°) (d) ooradls (e) none of the above
9.2 A function that repeats itself after fixed intervalsis
said to be: 10
(a) aphasor (b) harmonic
(c) periodic (d) reactive +
v @ IH 2w
9.3 Which of these frequencies has the shorter period? -
(& 1krad/s (b) 1kHz
9.4 If v = 30sin(wt 4+ 10°) and v, = 20sin(wt + 50°), ' i i
which of these statements are true? F|gure 939 For Review Question 9.8.
(&) vy leads v, (b) vy leads v
() v, lags v, (d) vy lags v, 9.9 A seriesRC circuit_has Vi =12V and Vo =5V.
(© vy and v, arein phase The supply voltageis:
@ -7V (b 7V (¢ 13V (d) 17V
9.5  Thevoltage across an inductor |eads the current 910 A seriesRCL circuithas R = 30 Q, X¢ = —50 Q,
through it by 90°. and X, = 90 Q. Theimpedance of the circuit is:
(@ True (b) False (@ 30+ 140 Q (b) 30+ j40Q
96  Theimaginary part of impedance is called: (c) 30— 409 (d) —30—j40¢Q
() resistance (b) admittance (9 —30+ /400
(c) susceptance (d) conductance
(e) reactance
Answers: 9.1d, 9.2c, 9.3b, 9.4b,d, 9.5a, 9.6e, 9.7b, 9.8d, 9.9c¢, 9.10b.
9.7 The impedance of a capacitor increases with
increasing frequency.
(@ True (b) Fase
PROBLEMS
Section 9.2 Sinusoids (d) Express v, in cosine form.
9.1  Inalinear circuit, the voltage source s (€) Determine v, at 7 = 2.5ms.

v, = 12sin(10% 4 24°) V

(8 What isthe angular frequency of the voltage?
(b) What is the frequency of the source?
(c) Find the period of the voltage.

9.2

A current source in alinear circuit has
iy = 8cos(b00rt — 25°) A

(@) What isthe amplitude of the current?
(b) What isthe angular frequency?
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9.3

9.4

9.5

9.6

Section 9.3

9.7
9.8

9.9

9.10

9.11

9.12

PART 2

(c) Find the frequency of the current.
(d) Calculatei; att = 2 ms.

Express the following functions in cosine form:
(@ 4sin(wt — 30°) (b) —2sin6t
(c) —10sin(wt + 20°)

(8) Expressv = 8cos(7f + 15°) in sineform.

(b) Converti = —10sin(3¢r — 85°) to cosine form.
Given v, = 20sin(wt + 60°) and v, =

60 cos(wt — 10°), determine the phase angle

between the two sinusoids and which one lags the
other.

For the following pairs of sinusoids, determine
which one leads and by how much.
(& v(r) = 10cos(4t — 60°) and
i(1) = 4sin(4s + 50°)
(b) vi(¢) = 4cos(377t + 10°) and
vo(t) = —20c0s377t
(¢) x(r) = 13cos2: + 5sin2t and

y(t) = 15c0s(2t — 11.8°)
Phasors
If f(¢) =cos¢ + jsing, show that f(¢) = e/?.

Calculate these complex numbers and express your
results in rectangular form:

15,/45°
3-j4

8/ — 208 10
2+ )HB—j4 —-5+j12
(©) 10+ (8/50°)(5— j12)

Evaluate the following complex numbers and
express your resultsin rectangular form:

(@ 24 > I% b) 4/ 10 + 1242
5-Jj8 3/6°
o B0 +6/ -2
9,/80° — 4,/50°

Given the complex numbersz; = —3+ j4 and
72 = 12+ j5, find:

@ 2122 (b) § ©
-2

@

+j2

(b)

21+ 22
31— 22
Let X =8/40°and Y = 10/ — 30°. Evaluate the

following quantities and express your resultsin
polar form.

@ X+Xs (b)) X=-Y)*

Evaluate these determinants:
10+ 6 2—;3

@ 5 _14;

(© X+Y)/X

AC Circuits

9.13

9.14

9.15

9.16

9.17

9.18

9.19

9.20

20/ -30 -4/-10°
(b)
16,/0° 3/45°
1-j —-j O
@Jj 1 —j
1 j 14

Transform the following sinusoids to phasors:

(8 —10cos(4r +75°)  (b) 5sin(20r — 10°)

(c) 4cos2t + 3sin2t

Express the sum of the following sinusoidal signals

in the form of A cos(wt + 6) with A > 0 and
0<6 < 360°.

(&) 8cos(5r — 30°) + 6cos5t
(b) 20cos(1207t + 45°) — 30sin(120m ¢ + 20°)
(c) 4sin8r + 3sin(8r — 10°)
Obtain the sinusoids corresponding to each of the
following phasors:
(@ Vi=60/15,0=1
(b) V,=6+ 8 w =40
© 1y =28e "3, =377
(d)I,=-05- 1.2 v =10°
Using phasors, find:
(8 3cos(20f + 10°) — 5cos(20f — 30°)
(b) 40sin50¢ + 30 cos(50r — 45°)
(c) 20sin400¢ + 10 cos(400¢ + 60°)
— 5sin(400r — 20°)

Find a single sinusoid corresponding to each of
these phasors:

(@ V =40/ —60°

(b) V = —30/10° + 50,/60°

© | = j6e /1 @ 1=24 10/ - 45°
J

Find v(¢) in the following integrodifferential
equations using the phasor approach:

@ v(t)+/vdt = 10cost
(b) fl—f + 5v(r) +4/ vdt = 20sin(4 + 10°)

Using phasors, determine i (¢) in the following
equations:

)] 2% + 3i(t) = 4cos(2r — 45°)

di
(b) 10/ idi + d—; +6i() = 5c0s(5t + 22°)
The loop equation for aseries RLC circuit gives

dt

Assuming that the value of theintegral at t = —oc is
zero, find i (r) using the phasor method.

di d
—l+2i+/ idt = cos2t

o0
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Section 9.4

9.22

9.23

9.24

9.25

9.26

9.27

9.28

CHAPTER 9

A parallel RLC circuit has the node equation

dv

ar + 50v + 100f vdt = 110cos(377t — 10°)

Determine v(¢) using the phasor method. You may
assume that the value of theintegral at t = —oo is
zero.

Phasor Relationshipsfor Circuit
Elements

Determine the current that flows through an 8-
resistor connected to a voltage source
v, = 110c0s377¢ V.

What is the instantaneous voltage across a 2-uF
capacitor when the current through it is
i = 4sin(10% + 25°) A?

The voltage across a4-mH inductor is
v = 60cos(500f — 65°) V. Find the instantaneous
current through it.

A current source of i (r) = 10sin(377: + 30°) A is
applied to asingle-element load. The resulting
voltage across the element isv(r) =

—65¢c0s(377t + 120°) V. What type of element is
this? Calculate its value.

Two elements are connected in series as shown in
Fig. 9.40. If i = 12cos(2r — 30°) A, find the
element values.

180 cos(2t + 10°) V

Figure 9.40  For Prob. 9.26.

A series RL circuit is connected to a110-V ac
source. If the voltage acrosstheresistor is85 'V, find
the voltage across the inductor.

What value of w will cause the forced response v, in
Fig. 9.41 to be zero?

2Q
A
]+
5mF
50 cos wt V CZ) v
20 mH
Figure 941 For Prob. 9.28.

Section 9.5

9.29

9.30

9.31

9.32

Sinusoids and Phasors 387

Impedance and Admittance

If v, = 5cos2r V inthecircuit of Fig. 9.42,
find v,.

20 0.25F
+
Vs 1H %
Figure 942 For Prob. 9.29.

Find i, when i, = 2sin5¢ A issupplied to the
circuitin Fig. 9.43.

is @ 20

Figure 943 For Prob. 9.30.

Find i (¢) and v(¢) in each of the circuits of Fig. 9.44.

¥ N
10 cos(3t + 45°) A 4Q =
@
Vi
8Q
40
50 cos 4tV @) +
1 V3 3H
T nF -
(b)
Figure 9.4 For Prob. 9.31.

Calculate i1 (¢) and i>(¢) in the circuit of Fig. 9.45 if
the source frequency is 60 Hz.

40/0°V

Figure 9.45

For Prob. 9.32.
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9.33  Inthecircuit of Fig. 9.46, find i, when: i 50 5mF
—

(@ w=1radls (b) @ =5radls I
(©) w=10radls
6 cos 200t V 4Q 10 mH 3Q
o 1H

—
A115
Figure 9.50  For Prob. 9.37.
2Q — 005F
4cosotV 9.38  Find current |, in the network of Fig. 9.51.
2Q j4Q
. A%
Figure 9.46  For Prob. 9.33. 1o
° —j fr— —i f— 2Q
9.34 Findv(¢) inthe RLC circuit of Fig. 9.47. S0°A 120 120
1Q
Figure 9.51  For Prob. 9.38.
10 + 9.39  If iy = 5c0s(10¢ + 40°) A inthecircuit in Fig. 9.52,
10 costV 1IF ==V findi,.
1H
4Q 3Q

Figure 9.47  For Prob. 9.34.

9.35 Caculatev,(r) inthecircuit in Fig. 9.48.

Figure 9.52  For Prob. 9.39.

50Q
30Q 9.40  Find v,(¢) inthe circuit of Fig. 9.53 if the current i,
through the 1-Q resistor is 0.5sin 200z A.
50 pF + i
60 sin 200t V 0.1H %vo(t) 2Q 3 1Q
Vs 20 -1
Figure 948 For Prob. 9.35. T
936 Determinei, () inthe RLC circuit of Fig. 9.49, Figure 9.5 For Prob. 9.40.
941 If thevoltage v, acrossthe 2-Q2 resistor in the circuit
“’ of Fig. 9.54is10cos2s V, obtain i.
1H
acosztA (@) §1Q 01F 05H
1F
T +
i 1Q Yo £2Q
Figure 949 For Prob. 9.36. ]
9.37 Calculatei(¢) in thecircuit of Fig. 9.50. Figure 9.54  For Prob. 9.41.
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9.42 ][f \éol = 8,/30° V inthecircuit of Fig. 9.55, 946  Calculate Z, for thecircuit in Fig. 9.59.
indl,.
-i5Q 6Q 2Q
I
I . 2 Lo |
Is 100 50 BQ3V, — j4Q
- . T —2Q
Figure 955 For Prob. 9.42, Figure 9.59  For Prob. 9.46.

9.43 Inthecircuit of Fig. 9.56, find V, if |, =2 /0° A.
9.47  Find Zg in thecircuit of Fig. 9.60.

-i2Q Vs —H10
I \
I ' \ ¢ Iy o
20 j40 j2Q 10 z
eq 1-jQ
, ° = I
Figure 9.56  For Prob. 9.43. 1+j3Q 1+j20
944  Find Z in the network of Fig. 9.57, given that i5Q
V,=4/0°V.
@ 120
Figure 9.60  For Prob. 9.47.
N
20,-90° V -j4Q = 8Q 3V,
. =0 948  Forthecircuitin Fig. 9.61, find the input impedance
Zin at 10 krad/s.
Figure 9.57  For Prob. 9.44. 50 Q 2mH
[¢ A 411k
. . . + -
Section 9.7 Impedance Combinations v

9.45 At w = 50rad/s, determine Z;, for each of the

circuitsin Fig. 9.58. ’—’ 1 ‘;‘LF
© |

10 mH 10 mF 7z
n

Zin % 10 % 10 Figure 9.6/ For Prob. 9.48.
O
@

949 Determinel and Z; for thecircuitin Fig. 9.62.

10Q 0.4H 40 -6 Q
o——MM——TTN 1 20
j4Q
z, 30
— 200 02H I 1mF 120,/10° V
O
() Zr
Figure 9.58  For Prob. 9.45. Figure 9.62  For Prob. 9.49.
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950 Forthecircuitin Fig. 9.63, calculate Z; and V. 9.54  Find the equivalent impedance of the circuit in Fig.
9.67.

—o0
O
200 j100 0o
60,/90° V C:) oa bo _ — -j10Q
Vao 1150 5Q
-i5Q T 40 Q

)0 %89
-i5Q
Z: |_>c -

Figure 9.63  For Prob. 9.50. Zeq

951 Atw = 10° rad/s, find the input admittance of each Figure 9.67 For Prob. 9.54.

of the circuitsin Fig. 9.64. 9.55  Obtain the equivalent impedance of the circuit in

00 00 Fig. 9.68.
j40
Yin 20 mH 125 uF —
T -iQ 20
° ——wW——
@ 19% jZQ% 20 == <_Zeq
20 uF 00 o
Figure 9.68  For Prob. 9.55.
Y; -
> 300 5 10mH 956  Calculate the value of Z,, in the network of Fig.
9.69.
° 90
jsQ i
®) ao L1 |
Figure 9.64  For Prob. 9.51. j6Q -90Q
i6Q -9Q
9.52  Determine Y o for the circuit in Fig. 9.65.
A
o 200
y 50 30 200 100
L f— —J4 Q
b o
20 j10
° T Figure 9.69  For Prob. 9.56.
Fioure 9.65  For Prob. 9.52 9.57  Determine the equivalent impedance of the circuit in
gure . 952 Fig. 9.70.
9.53  Find the equivalent admittance Y o of the circuit in )
Fig. 9.66. -J““ Q
I
2S 1S -3s -j2Ss .
O—AM——AMMN— TN — 20 60 40
ao AW |
- i58 = i1s 48 %jGQ %jsn %jSQ 120
o bo
Figure 9.66  For Prob. 9.53. Figure 970 For Prob. 9.57.

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



Section 9.8

9.58

9.59

9.60

9.61

9.62

CHAPTER 9

Applications

Design an RL circuit to provide a 90° leading phase
shift.

Design acircuit that will transform a sinusoidal
input to a cosinusoidal output.

Refer to the RC circuit in Fig. 9.71.
(a) Calculate the phase shift at 2 MHz.
(b) Find the frequency where the phase shift is 45°.

50

+ O

20nF == V,

<

o

Figure 9.7 For Prob. 9.60.

(a) Calculate the phase shift of the circuit in Fig.
9.72.

(b) State whether the phase shift isleading or
lagging (output with respect to input).

(c) Determine the magnitude of the output when the
inputis 120 V.
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Figure 9.72

For Prob. 9.61.

Consider the phase-shifting circuit in Fig. 9.73. Let
V; = 120V operating at 60 Hz. Find:

(& V, when R is maximum

(b) V, when R is minimum

(c) thevalue of R that will produce a phase shift
of 45°

0<R<100Q
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Figure 9.73  For Prob. 9.62.
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9.63 Theacbridgein Fig. 9.37 is balanced when
R, =400, R, =600 2, R3; = 1.2 kQ, and

C, =0.3 uF Find R, and C,.

9.64 A capacitance bridge balances when R; = 100 €2,
R, =2kQ,and C; = 40 uF. What isC,, the
capacitance of the capacitor under test?

9.65 Aninductive bridge balanceswhen R; = 1.2 k<2,
R, =500, and L, = 250 mH. What is the value
of L., theinductance of the inductor under test?

9.66 Theac bridge shownin Fig. 9.74 isknown as a

Maxwell bridge and is used for accurate
measurement of inductance and resistance of a coil
in terms of a standard capacitance C;. Show that
when the bridge is balanced,
L, = RyR3C; and

Find L, and R, for R, = 40k2, R, = 1.6 k2,
R;=4kQ,and C, = 0.45 uF.

Figure 9.74  Maxwell bridge; for Prob. 9.66.

9.67 Theac bridge circuit of Fig. 9.75iscaled aWen
bridge. It isused for measuring the frequency of a
source. Show that when the bridge is balanced,
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Figure 9.75  Wein bridge; for Prob. 9.67.
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PART 2 AC Circuits

COMPREHENSIVE PROBLEMS

9.68

9.69

9.70

9.71

9.72

The circuit shown in Fig. 9.76 isused in atelevision
receiver. What is the total impedance of this circuit?
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7

Figure 9.76  For Prob. 9.68.

240 Q j95Q == —j84Q

The network in Fig. 9.77 is part of the schematic
describing an industrial electronic sensing device.
What is the total impedance of the circuit at 2 kHz?
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Figure 9.77

A series audio circuit is shown in Fig. 9.78.
(8 What isthe impedance of the circuit?

(b) If the frequency were halved, what would be the
impedance of the circuit?

10 mH
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9.73
For Prob. 9.69.
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Figure 9.78  For Prob. 9.70.
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9.74

Anindustrial load is modeled as a series
combination of a capacitance and a resistance as
shown in Fig. 9.79. Calculate the value of an
inductance L across the series combination so that
the net impedance isresistive at afrequency of
5MHz.

200 Q

50 nF

Figure 9.79  For Prob. 9.71.

Anindustrial coil ismodeled as a series
combination of an inductance L and resistance R, as

shown in Fig. 9.80. Since an ac voltmeter measures
only the magnitude of a sinusoid, the following
measurements are taken at 60 Hz when the circuit

operatesin the steady state:
IV,| =145V, Vi =50V, IV,| =110V

Use these measurements to determine the values of
L and R.
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Figure 9.80  For Prob. 9.72.

Figure 9.81 shows a parallel combination of an
inductance and aresistance. If it isdesired to
connect a capacitor in series with the parallel
combination such that the net impedance is resistive
at 10 MHz, what isthe required value of C?

c
300Q 20 uH

O

Figure 981 For Prob. 9.73.

A power transmission system is modeled as shown
in Fig. 9.82. Given the source voltage

V, = 115,/0° V, source impedance

Z, =1+ j0.5Q, lineimpedance

Z, =04+ j0.3 2, and load impedance

Z; =232+ j18.9 Q, find theload current | .

Z Z,
F—o— b
Vs Z,
Zy
Source Transmissionline Load
Figure 9.82  For Prob. 9.74.
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