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C H A P T E R

FOURIER TRANSFORM

1 7

No human investigation can claim to be scientific if it doesn’t pass the
test of mathematical proof.

—Leonardo da Vinci

Enhancing Your Career
Career in Communications Systems Communications
systems apply the principles of circuit analysis. A com-
munication system is designed to convey information from
a source (the transmitter) to a destination (the receiver) via
a channel (the propagation medium). Communications en-
gineers design systems for transmitting and receiving infor-
mation. The information can be in the form of voice, data,
or video.

We live in the information age—news, weather,
sports, shopping, financial, business inventory, and other
sources make information available to us almost instantly
via communications systems. Some obvious examples of
communications systems are the telephone network, mobile
cellular telephones, radio, cable TV, satellite TV, fax, and
radar. Mobile radio, used by police and fire departments,
aircraft, and various businesses is another example.

The field of communications is perhaps the fastest
growing area in electrical engineering. The merging of
the communications field with computer technology in re-
cent years has led to digital data communications networks
such as local area networks, metropolitan area networks,
and broadband integrated services digital networks. For ex-
ample, the Internet (the “information superhighway”) al-
lows educators, business people, and others to send elec-
tronic mail from their computers worldwide, log onto remote
databases, and transfer files. The Internet has hit the world
like a tidal wave and is drastically changing the way people
do business, communicate, and get information. This trend
will continue.

A communications systems engineer designs sys-
tems that provide high-quality information services. The
systems include hardware for generating, transmitting, and
receiving information signals. Communications engineers
are employed in numerous communications industries and
places where communications systems are routinely used.
More and more government agencies, academic depart-
ments, and businesses are demanding faster and more
accurate transmission of information. To meet these needs,
communications engineers are in high demand. Therefore,
the future is in communications and every electrical
engineer must prepare accordingly.

Cordless phone. Source: M. Nemzow, Fast Ethernet Implemen-
tation and Migration Solutions [New York: McGraw-Hill, 1997],
p. 176.



760 PART 3 Advanced Circuit Analyses

17.1 INTRODUCTION
Fourier series enable us to represent a periodic function as a sum of sinu-
soids and to obtain the frequency spectrum from the series. The Fourier
transform allows us to extend the concept of a frequency spectrum to non-
periodic functions. The transform assumes that a nonperiodic function is
a periodic function with an infinite period. Thus, the Fourier transform
is an integral representation of a nonperiodic function that is analogous
to a Fourier series representation of a periodic function.

The Fourier transform is anintegral transform like the Laplace
transform. It transforms a function in the time domain into the frequency
domain. The Fourier transform is very useful in communications systems
and digital signal processing, in situations where the Laplace transform
does not apply. While the Laplace transform can only handle circuits
with inputs fort > 0 with initial conditions, the Fourier transform can
handle circuits with inputs fort < 0 as well as those fort > 0.

We begin by using a Fourier series as a stepping stone in defining the
Fourier transform. Then we develop some of the properties of the Fourier
transform. Next, we apply the Fourier transform in analyzing circuits. We
discuss Parseval’s theorem, compare the Laplace and Fourier transforms,
and see how the Fourier transform is applied in amplitude modulation
and sampling.

17.2 DEFINITION OF THE FOURIER TRANSFORM
We saw in the previous chapter that a nonsinusoidal periodic function can
be represented by a Fourier series, provided that it satisfies the Dirichlet
conditions. What happens if a function is not periodic? Unfortunately,
there are many important nonperiodic functions—such as a unit step or
an exponential function—that we cannot represent by a Fourier series.
As we shall see, the Fourier transform allows a transformation from the
time to the frequency domain, even if the function is not periodic.

0 t t

A

p(t)

(a)

0 t T−T t

A

f (t)

(b)

Figure 17.1 (a) A nonperiodic function,
(b) increasing T to infinity makes f (t)
become the nonperiodic function in (a).

Suppose we want to find the Fourier transform of a nonperiodic
functionp(t), shown in Fig. 17.1(a). We consider a periodic functionf (t)
whose shape over one period is the same asp(t), as shown in Fig. 17.1(b).
If we let the period T → ∞, only a single pulse of width τ [the desired
nonperiodic function in Fig. 17.1(a)] remains, because the adjacent pulses
have been moved to infinity. Thus, the function f (t) is no longer periodic.
In other words, f (t) = p(t) as T → ∞. It is interesting to consider the
spectrum of f (t) forA = 10 and τ = 0.2 (see Section 16.6). Figure 17.2
shows the effect of increasing T on the spectrum. First, we notice that
the general shape of the spectrum remains the same, and the frequency at
which the envelope first becomes zero remains the same. However, the
amplitude of the spectrum and the spacing between adjacent components
both decrease, while the number of harmonics increases. Thus, over a
range of frequencies, the sum of the amplitudes of the harmonics remains
almost constant. Since the total “ strength” or energy of the components
within a band must remain unchanged, the amplitudes of the harmonics
must decrease as T increases. Since f = 1/T , as T increases, f or ω
decreases, so that the discrete spectrum ultimately becomes continuous.
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Figure 17.2 Effect of increasing T on the spectrum of the periodic
pulse trains in Fig. 17.1(b).
(Source: L. Balmer, Signals and Systems: An Introduction
[London: Prentice-Hall, 1991], p. 229.)

To further understand this connection between a nonperiodic func-
tion and its periodic counterpart, consider the exponential form of a
Fourier series in Eq. (16.58), namely,

f (t) =
∞∑

n=−∞
cne

jnω0t (17.1)

where

cn = 1

T

∫ T/2

−T/2
f (t)e−jnω0t dt (17.2)

The fundamental frequency is

ω0 = 2π

T
(17.3)

and the spacing between adjacent harmonics is

�ω = (n+ 1)ω0 − nω0 = ω0 = 2π

T
(17.4)
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Substituting Eq. (17.2) into Eq. (17.1) gives

f (t) =
∞∑

n=−∞

[
1

T

∫ T/2

−T/2
f (t)e−jnω0t dt

]
ejnω0t

=
∞∑

n=−∞

[
�ω

2π

∫ T/2

−T/2
f (t)e−jnω0t dt

]
ejnω0t

= 1

2π

∞∑
n=−∞

[∫ T/2

−T/2
f (t)e−jnω0t dt

]
�ωejnω0t

(17.5)

If we let T → ∞, the summation becomes integration, the incremen-
tal spacing �ω becomes the differential separation dω, and the discrete
harmonic frequency nω0 becomes a continuous frequency ω. Thus, as
T → ∞,

∞∑
n=−∞

�⇒
∫ ∞

−∞
�ω �⇒ dω

nω0 �⇒ ω

(17.6)

so that Eq. (17.5) becomes

f (t) = 1

2π

∫ ∞

−∞

[∫ ∞

−∞
f (t)e−jωt dt

]
ejωt dω (17.7)

The term in the brackets is known as the Fourier transform of f (t) and
is represented by F(ω). Thus

F(ω) = F[f (t)] =
∫ ∞

−∞
f (t)e−jωt dt (17.8)

where F is the Fourier transform operator. It is evident from Eq. (17.8)
that:

The Fourier transform is an integral transformation of f (t) from the
time domain to the frequency domain.

Some authors use F( jω) instead of F(ω) to rep-
resent the Fourier transform.

In general, F(ω) is a complex function; its magnitude is called the
amplitude spectrum, while its phase is called the phase spectrum. Thus
F(ω) is the spectrum.

Equation (17.7) can be written in terms of F(ω), and we obtain the
inverse Fourier transform as

f (t) = F−1[F(ω)] = 1

2π

∫ ∞

−∞
F(ω)ejωt dω (17.9)

The function f (t) and its transform F(ω) form the Fourier transform
pairs:

f (t) ⇐⇒ F(ω) (17.10)

since one can be derived from the other.
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The Fourier transform F(ω) exists when the Fourier integral in Eq.
(17.8) converges. A sufficient but not necessary condition that f (t) has
a Fourier transform is that it be completely integrable in the sense that∫ ∞

−∞
|f (t)| dt < ∞ (17.11)

For example, the Fourier transform of the unit ramp function tu(t) does
not exist, because the function does not satisfy the condition above.

To avoid the complex algebra that explicitly appears in the Fourier
transform, it is sometimes expedient to temporarily replace jωwith s and
then replace s with jω at the end.

E X A M P L E 1 7 . 1

Find the Fourier transform of the following functions: (a) δ(t − t0),
(b) ejω0t , (c) cosω0t .

Solution:

(a) For the impulse function,

F(ω) = F[δ(t − t0)] =
∫ ∞

−∞
δ(t − t0)e−jωt dt = e−jωt0 (17.1.1)

where the sifting property of the impulse function in Eq. (7.32) has been
applied. For the special case t0 = 0, we obtain

F[δ(t)] = 1 (17.1.2)

This shows that the magnitude of the spectrum of the impulse function
is constant; that is, all frequencies are equally represented in the impulse
function.
(b) We can find the Fourier transform of ejω0t in two ways. If we let

F(ω) = δ(ω − ω0)

then we can find f (t) using Eq. (17.9), writing

f (t) = 1

2π

∫ ∞

−∞
δ(ω − ω0)e

jωt dω

Using the sifting property of the impulse function gives

f (t) = 1

2π
ejω0t

Since F(ω) and f (t) constitute a Fourier transform pair, so too must
2πδ(ω − ω0) and ejω0t ,

F[ejω0t ] = 2πδ(ω − ω0) (17.1.3)

Alternatively, from Eq. (17.1.2),

δ(t) = F−1[1]

Using the inverse Fourier transform formula in Eq. (17.9),

δ(t) = F−1[1] = 1

2π

∫ ∞

−∞
1ejωt dω
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or ∫ ∞

−∞
ejωt dω = 2πδ(t) (17.1.4)

Interchanging variables t and ω results in∫ ∞

−∞
ejωtdt = 2πδ(ω) (17.1.5)

Using this result, the Fourier transform of the given function is

F[ejω0t ] =
∫ ∞

−∞
ejω0t e−jωt dt =

∫ ∞

−∞
ej (ω0−ω) dt = 2πδ(ω0 − ω)

Since the impulse function is an even function, with δ(ω0 −ω) = δ(ω−
ω0),

F[ejω0t ] = 2πδ(ω − ω0) (17.1.6)

By simply changing the sign of ω0, we readily obtain

F[e−jω0t ] = 2πδ(ω + ω0) (17.1.7)

Also, by setting ω0 = 0,

F[1] = 2πδ(ω) (17.1.8)

(c) By using the result in Eqs. (17.1.6) and (17.1.7), we get

F[cosω0t] = F
[
ejω0t + e−jω0t

2

]

= 1

2
F[ejω0t ] + 1

2
F[e−jω0t ]

= πδ(ω − ω0)+ πδ(ω + ω0)

(17.1.9)

The Fourier transform of the cosine signal is shown in Fig. 17.3.

t

f (t)

1

00 vv0−v0

F(v)

p p

Figure 17.3 Fourier transform of f (t) = cosω0t .

P R A C T I C E P R O B L E M 1 7 . 1

Determine the Fourier transforms of the following functions: (a) gate
function g(t) = u(t − 1)− u(t − 2), (b) 4δ(t + 2), (c) sinω0t .

Answer: (a) (e−jω − e−j2ω)/jω, (b) 4ej2ω,
(c) jπ [δ(ω + ω0)− πδ(ω − ω0)].
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E X A M P L E 1 7 . 2

Derive the Fourier transform of a single rectangular pulse of width τ and
height A, shown in Fig. 17.4.

0 t

A

f (t)

t
2

t
2

−

Figure 17.4 A rectangular
pulse; for Example 17.2.

Solution:

F(ω) =
∫ τ/2

−τ/2
Ae−jωt dt = − A

jω
e−jωt

∣∣∣∣
τ/2

−τ/2

= 2A

ω

(
ejωτ/2 − e−jωτ/2

2j

)

= Aτ
sinωτ/2

ωτ/2
= Aτ sinc

ωτ

2

If we make A = 10 and τ = 2 as in Fig. 16.27 (like in Section 16.6),
then

F(ω) = 20 sinc ω

whose amplitude spectrum is shown in Fig. 17.5. Comparing Fig. 17.4
with the frequency spectrum of the rectangular pulses in Fig. 16.28, we
notice that the spectrum in Fig. 16.28 is discrete and its envelope has the
same shape as the Fourier transform of a single rectangular pulse.

v

20

|F(v)|

p 2p 3p−2p −p−3p 0

Figure 17.5 Amplitude spectrum
of the rectangular pulse in Fig. 17.4;
for Example 17.2.

P R A C T I C E P R O B L E M 1 7 . 2

Obtain the Fourier transform of the function in Fig. 17.6.

0 t

−1

1

−1

f (t)

1

Figure 17.6 For Practice Prob. 17.2.

Answer:
2(cosω − 1)

jω
.

E X A M P L E 1 7 . 3

Obtain the Fourier transform of the “switched-on” exponential function
shown in Fig. 17.7.

Solution:

From Fig. 17.7,

f (t) = e−atu(t) =
{
e−at , t > 0
0, t < 0
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Hence,

F(ω) =
∫ ∞

−∞
f (t)e−jωt dt =

∫ ∞

0
e−at e−jωt dt =

∫ ∞

0
e−(a+jω)t dt

= −1

a + jωe
−(a+jω)t

∣∣∣∣
∞

0

= 1

a + jω

0 t

1

f (t)

e−at

Figure 17.7 For Example 17.3.

P R A C T I C E P R O B L E M 1 7 . 3

Determine the Fourier transform of the “switched-off” exponential func-
tion in Fig. 17.8.

0 t

1

f (t)

eat

Figure 17.8 For Practice Prob. 17.3.

Answer:
1

a − jω .

17.3 PROPERTIES OF THE FOURIER TRANSFORM
We now develop some properties of the Fourier transform that are useful
in finding the transforms of complicated functions from the transforms
of simple functions. For each property, we will first state and derive it,
and then illustrate it with some examples.

Linearity

If F1(ω) and F2(ω) are the Fourier transforms of f1(t) and f2(t), respec-
tively, then

F[a1f1(t)+ a2f2(t)] = a1F1(ω)+ a2F2(ω) (17.12)

where a1 and a2 are constants. This property simply states that the Fourier
transform of a linear combination of functions is the same as the linear
combination of the transforms of the individual functions. The proof of
the linearity property in Eq. (17.12) is straightforward. By definition,

F[a1f1(t)+ a2f2(t)] =
∫ ∞

−∞
[a1f1(t)+ a2f2(t)]e

−jωt dt

=
∫ ∞

−∞
a1f1(t)e

−jωt dt +
∫ ∞

−∞
a2f2(t)e

−jωtdt

= a1F1(ω)+ a2F2(ω)
(17.13)
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For example, sinω0t = 1
2j (e

jω0t − e−jω0t ). Using the linearity
property,

F [sinω0t] = 1

2j
[F(ejω0t )− F(e−jω0t )]

= π

j
[δ(ω − ω0)− δ(ω + ω0)]

(17.14)

Time Scaling

If F(ω) = F[f (t)], then

F[f (at)] = 1

|a|F
(ω
a

)
(17.15)

where a is a constant. Equation (17.15) shows that time expansion
(|a| > 1) corresponds to frequency compression, or conversely, time
compression (|a| < 1) implies frequency expansion. The proof of the
time-scaling property proceeds as follows.

F[f (at)] =
∫ ∞

−∞
f (at)e−jωt dt (17.16)

If we let x = at, so that dx = a dt , then

F[f (at)] =
∫ ∞

−∞
f (x)e−jωx/a

dx

a
= 1

a
F

(ω
a

)
(17.17)

For example, for the rectangular pulse p(t) in Example 17.2,

F[p(t)] = Aτ sinc
ωτ

2
(17.18a)

Using Eq. (17.15),

F[p(2t)] = Aτ

2
sinc

ωτ

4
(17.18b)

It may be helpful to plot p(t) and p(2t) and their Fourier transforms.
Since

p(t) =


A, −τ

2
< t <

τ

2
0, otherwise

(17.19a)

then replacing every t with 2t gives

p(2t) =


A, −τ

2
< 2t <

τ

2
0, otherwise

=


A, −τ

4
< t <

τ

4
0, otherwise

(17.19b)

showing that p(2t) is time compressed, as shown in Fig. 17.9(b). To plot
both Fourier transforms in Eq. (17.18), we recall that the sinc function
has zeros when its argument is nπ , where n is an integer. Hence, for the
transform of p(t) in Eq. (17.18a), ωτ/2 = 2πf τ/2 = nπ → f = n/τ ,
and for the transform of p(2t) in Eq. (17.18b), ωτ/4 = 2πf τ/4 =
nπ → f = 2n/τ . The plots of the Fourier transforms are shown in Fig.
17.9, which shows that time compression corresponds with frequency
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expansion. We should expect this intuitively, because when the signal is
squashed in time, we expect it to change more rapidly, thereby causing
higher-frequency components to exist.

(a)

f

At

F[p(t)]

ft−t

0 t

A

p(t)

(b)

0 t

A

p(2t)
F[p(2t)]

0

0

t
2

t
2

At
2

t
4

t
2

− 3
t

−
t

−2 1
t

− 1
t

2
t

3
t

t
2

−t
4

−

Figure 17.9 The effect of time scaling: (a) transform of the pulse, (b) time compres-
sion of the pulse causes frequency expansion.

Time Shifting

If F(ω) = F[f (t)], then

F[f (t − t0)] = e−jωt0F(ω) (17.20)

that is, a delay in the time domain corresponds to a phase shift in the
frequency domain. To derive the time shifting property, we note that

F[f (t − t0)] =
∫ ∞

−∞
f (t − t0)e−jωt dt (17.21)

If we let x = t − t0 so that dx = dt and t = x + t0, then

F[f (t − t0)] =
∫ ∞

−∞
f (x)e−jω(x+t0) dx

= e−jωt0
∫ ∞

−∞
f (x)e−jωx dx = e−jωt0F(ω)

(17.22)

Similarly, F[f (t + t0)] = ejωt0F(ω).
For example, from Example 17.3,

F[e−atu(t)] = 1

a + jω (17.23)
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The transform of f (t) = e−(t−2)u(t − 2) is

F(ω) = F[e−(t−2)u(t − 2)] = e−j2ω

1 + jω (17.24)

Frequency Shifting (or Amplitude Modulation)

This property states that if F(ω) = F[f (t)], then

F[f (t)ejω0t ] = F(ω − ω0) (17.25)

meaning, a frequency shift in the frequency domain adds a phase shift to
the time function. By definition,

F[f (t)ejω0t ] =
∫ ∞

−∞
f (t)ejω0t e−jωt dt

=
∫ ∞

−∞
f (t)e−j (ω−ω0)t dt = F(ω − ω0)

(17.26)

For example, cosω0t = 1
2 (e

jω0t + e−jω0t ). Using the property in
Eq. (17.25),

F[f (t) cosω0t] = 1

2
F

[
f (t)ejω0t

] + 1

2
F

[
f (t)e−jω0t

]

= 1

2
F(ω − ω0)+ 1

2
F(ω + ω0)

(17.27)

This is an important result in modulation where frequency components of
a signal are shifted. If, for example, the amplitude spectrum of f (t) is as
shown in Fig. 17.10(a), then the amplitude spectrum of f (t) cosω0t will
be as shown in Fig. 17.10(b). We will elaborate on amplitude modulation
in Section 17.7.1.

A

(a)

|F[ f (t)]|

(b)

−B B v

|F[ f (t) cos v0t]|

−v0 − B −v0 + B 0v0 v0 – B v0 + B vv0

F (v + v0) F (v − v0)
A
2

1
2

1
2

Figure 17.10 Amplitude spectra of: (a) signal f (t), (b) modulated signal f (t) cosωt .

Time Differentiation

Given that F(ω) = F[f (t)], then

F[f ′(t)] = jωF(ω) (17.28)

In other words, the transform of the derivative of f (t) is obtained by
multiplying the transform of f (t) by jω. By definition,

f (t) = F−1[F(ω)] = 1

2π

∫ ∞

−∞
F(ω)ejωt dω (17.29)
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Taking the derivative of both sides with respect to t gives

f ′(t) = jω

2π

∫ ∞

−∞
F(ω)ejωt dω = jωF−1[F(ω)]

or

F[f ′(t)] = jωF(ω) (17.30)

Repeated applications of Eq. (17.30) give

F[f (n)(t)] = (jω)nF (ω) (17.31)

For example, if f (t) = e−at , then

f ′(t) = −ae−at = −af (t) (17.32)

Taking the Fourier transforms of the first and last terms, we obtain

jωF(ω) = −aF(ω) �⇒ F(ω) = 1

a + jω (17.33)

which agrees with the result in Example 17.3.

Time Integration

Given that F(ω) = F[f (t)], then

F
[∫ t

−∞
f (t) dt

]
= F(ω)

jω
+ πF(0)δ(ω) (17.34)

that is, the transform of the integral of f (t) is obtained by dividing the
transform of f (t) by jω and adding the result to the impulse term that
reflects the dc component F(0). Someone might ask, “How do we know
that when we take the Fourier transform for time integration, we should
integrate over the interval [−∞, t] and not [−∞,∞]?” When we inte-
grate over [−∞,∞], the result does not depend on time anymore, and
the Fourier transform of a constant is what we will eventually get. But
when we integrate over [−∞, t], we get the integral of the function from
the past to time t , so that the result depends on t and we can take the
Fourier transform of that.

If ω is replaced by 0 in Eq. (17.8),

F(0) =
∫ ∞

−∞
f (t) dt (17.35)

indicating that the dc component is zero when the integral of f (t) over
all time vanishes. The proof of the time integration in Eq. (17.34) will be
given later when we consider the convolution property.

For example, we know that F[δ(t)] = 1 and that integrating the
impulse function gives the unit step function [see Eq. (7.39a)]. By ap-
plying the property in Eq. (17.34), we obtain the Fourier transform of the
unit step function as

F[u(t)] = F
[∫ t

−∞
δ(t) dt

]
= 1

jω
+ πδ(ω) (17.36)

Reversal

If F(ω) = F[f (t)], then
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F[f (−t)] = F(−ω) = F ∗(ω) (17.37)

where the asterisk denotes the complex conjugate. This property states
that reversing f (t) about the time axis reverses F(ω) about the frequency
axis. This may be regarded as a special case of time scaling for which
a = −1 in Eq. (17.15).

Duality

This property states that if F(ω) is the Fourier transform of f (t), then
the Fourier transform of F(t) is 2πf (−ω); we write

F[f (t)] = F(ω) �⇒ F[F(t)] = 2πf (−ω) (17.38)

This expresses the symmetry property of the Fourier transform. To derive
this property, we recall that

f (t) = F−1[F(ω)] = 1

2π

∫ ∞

−∞
F(ω)ejωt dω

or

2πf (t) =
∫ ∞

−∞
F(ω)ejωt dω (17.39)

Replacing t by −t gives

2πf (−t) =
∫ ∞

−∞
F(ω)e−jωt dω

If we interchange t and ω, we obtain

2πf (−ω) =
∫ ∞

−∞
F(t)e−jωt dt = F[F(t)] (17.40)

as expected.
For example, if f (t) = e−|t |, then

F(ω) = 2

ω2 + 1
(17.41)

By the duality property, the Fourier transform of F(t) = 2/(t2 + 1) is

2πf (ω) = 2πe−|ω| (17.42)

Figure 17.11 shows another example of the duality property. It illustrates
the fact that if f (t) = δ(t) so that F(ω) = 1, as in Fig. 17.11(a), then
the Fourier transform of F(t) = 1 is 2πf (ω) = 2πδ(ω) as shown in Fig.
17.11(b).

Since f (t) is the sum of the signals in Figs. 17.7 and
17.8, F(ω) is the sum of the results in Example
17.3 and Practice Prob. 17.3.

Convolution

Recall from Chapter 15 that if x(t) is the input excitation to a circuit with
an impulse function of h(t), then the output response y(t) is given by the
convolution integral

y(t) = h(t) ∗ x(t) =
∫ ∞

−∞
h(λ)x(t − λ) dλ (17.43)
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0 t

1

f(t)

(a)

0 v

F(v)

1

(b)

0 t 0 v

F(t)

1 2pf(v)

Figure 17.11 A typical illustration of the duality property of the Fourier transform: (a) transform of impulse,
(b) transform of unit dc level.

If X(ω), H(ω), and Y (ω) are the Fourier transforms of x(t), h(t), and
y(t), respectively, then

Y (ω) = F[h(t) ∗ x(t)] = H(ω)X(ω) (17.44)

which indicates that convolution in the time domain corresponds with
multiplication in the frequency domain.

To derive the convolution property, we take the Fourier transform
of both sides of Eq. (17.43) to get

Y (ω) =
∫ ∞

−∞

[∫ ∞

−∞
h(λ)x(t − λ) dλ

]
e−jωt dt (17.45)

Exchanging the order of integration and factoring h(λ), which does not
depend on t , we have

Y (ω) =
∫ ∞

−∞
h(λ)

[∫ ∞

−∞
x(t − λ)e−jωt dt

]
dλ

For the integral within the brackets, let τ = t − λ so that t = τ + λ and
dt = dτ. Then,

Y (ω) =
∫ ∞

−∞
h(λ)

[∫ ∞

−∞
x(τ)e−jω(τ+λ) dτ

]
dλ

=
∫ ∞

−∞
h(λ)e−jωλ dλ

∫ ∞

−∞
x(τ)e−jωτ dτ = H(ω)X(ω)

(17.46)

as expected. This result expands the phasor method beyond what was
done with the Fourier series in the previous chapter.The important relationship in Eq. (17.46) is the

key reason for using the Fourier transform in the
analysis of linear systems.

To illustrate the convolution property, suppose both h(t) and x(t)
are identical rectangular pulses, as shown in Fig. 17.12(a) and 17.12(b).
We recall from Example 17.2 and Fig. 17.5 that the Fourier transforms of
the rectangular pulses are sinc functions, as shown in Fig. 17.12(c) and
17.12(d). According to the convolution property, the product of the sinc
functions should give us the convolution of the rectangular pulses in the
time domain. Thus, the convolution of the pulses in Fig. 17.12(e) and the
product of the sinc functions in Fig. 17.12(f) form a Fourier pair.

In view of the duality property, we expect that if convolution in the
time domain corresponds with multiplication in the frequency domain,
then multiplication in the time domain should have a correspondence in
the frequency domain. This happens to be the case. If f (t) = f1(t)f2(t),
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Convolution

Multiplication

v

2AT0

H(v)

t

A

h(t)

−T0 T0

2A2T0

(2AT0)2

h(t) • x(t)

t

v

H(v)X(v)

(a)

t

A

x(t)

−T0 T0

(b)

(e)

−2T0 2T0

1
2T0

1
2T0

−

(f )

1
2T0

(c)

v

2AT0

X(v)

1
2T0

(d)

Figure 17.12 Graphical illustration of the convolution property.
(Source: E. O. Brigham, The Fast Fourier Transform [Englewood Cliffs, NJ: Prentice Hall, 1974], p. 60.)

then

F(ω) = F[f1(t)f2(t)] = 1

2π
F1(ω) ∗ F2(ω) (17.47)

or

F(ω) = 1

2π

∫ ∞

−∞
F1(λ)F2(ω − λ) dλ (17.48)

which is convolution in the frequency domain. The proof of Eq. (17.48)
readily follows from the duality property in Eq. (17.38).
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Let us now derive the time integration property in Eq. (17.34). If
we replace x(t) with the unit step function u(t) and h(t) with f (t) in Eq.
(17.43), then ∫ ∞

−∞
f (λ)u(t − λ) dλ = f (t) ∗ u(t) (17.49)

But by the definition of the unit step function,

u(t − λ) =
{

1, t − λ > 0
0, t − λ > 0

We can write this as

u(t − λ) =
{

1, λ < t

0, λ > t

Substituting this into Eq. (17.49) makes the interval of integration change
from [−∞,∞] to [−∞, t], and thus Eq. (17.49) becomes∫ t

−∞
f (λ) dλ = u(t) ∗ f (t)

Taking the Fourier transform of both sides yields

F
[∫ t

−∞
f (λ) dλ

]
= U(ω)F (ω) (17.50)

But from Eq. (17.36), the Fourier transform of the unit step function is

U(ω) = 1

jω
+ πδ(ω)

Substituting this into Eq. (17.50) gives

F
[∫ t

−∞
f (λ) dλ

]
=

(
1

jω
+ πδ(ω)

)
F(ω)

= F(ω)

jω
+ πF(0)δ(ω)

(17.51)

which is the time integration property of Eq. (17.34). Note that in Eq.
(17.51), F(ω)δ(ω) = F(0)δ(ω), since δ(ω) is only nonzero at ω = 0.

Table 17.1 lists these properties of the Fourier transform. Table
17.2 presents the transform pairs of some common functions. Note the
similarities between these tables and Tables 15.1 and 15.2.

TABLE 17.1 Properties of the Fourier transform.

Property f (t) F (ω)

Linearity a1f1(t)+ a2f2(t) a1F1(ω)+ a2F2(ω)

Scaling f (at)
1

|a|F
(ω
a

)

Time shift f (t − a)u(t − a) e−jωaF (ω)

Frequency shift ejω0t f (t) F (ω − ω0)

Modulation cos(ω0t) f (t)
1

2
[F(ω + ω0)+ F(ω − ω0)]
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TABLE 17.1 (continued)

Property f (t) F (ω)

Time differentiation
df

dt
jωF(ω)

dnf

dtn
(jω)nF (ω)

Time integration
∫ t

−∞
f (t) dt

F (ω)

jω
+ πF(0) δ(ω)

Frequency differentiation tnf (t) (j)n
dn

dωn
F (ω)

Reversal f (−t) F (−ω) or F ∗(ω)

Duality F(t) 2πf (−ω)
Convolution in t f1(t) ∗ f1(t) F1(ω)F2(ω)

Convolution in ω f1(t)f1(t)
1

2π
F1(ω) ∗ F2(ω)

TABLE 17.2 Fourier transform pairs.

f (t) F (ω)

δ(t) 1

1 2πδ(ω)

u(t) πδ(ω)+ 1

jω

u(t + τ)− u(t − τ) 2
sinωτ

ω

|t | −2

ω2

sgn(t)
2

jω

e−atu(t)
1

a + jω
eatu(−t) 1

a − jω
tne−atu(t)

n!

(a + jω)n+1

e−a|t |
2a

a2 + ω2

ejω0t 2πδ(ω − ω0)

sinω0t jπ [δ(ω + ω0)− δ(ω − ω0)]

cosω0t π [δ(ω + ω0)+ δ(ω − ω0)]

e−at sinω0tu(t)
ω0

(a + jω)2 + ω2
0

e−at cosω0tu(t)
a + jω

(a + jω)2 + ω2
0
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E X A M P L E 1 7 . 4

Find the Fourier transforms of the following functions: (a) signum func-
tion sgn(t), shown in Fig. 17.13, (b) the double-sided exponential e−a|t |,
and (c) the sinc function (sin t)/t .

0 t

1

sgn(t)

−1

Figure 17.13 The signum
function of Example 17.4.

Solution:

(a) We can obtain the Fourier transform of the signum function in three
ways. First, we can write the signum function in terms of the unit step
function as

sgn(t) = f (t) = u(t)− u(−t)
But from Eq. (17.36),

U(ω) = F[u(t)] = πδ(ω)+ 1

jω

Applying this and the reversal property, we obtain

F[sgn(t)] = U(ω)− U(−ω)

=
(
πδ(ω)+ 1

jω

)
−

(
πδ(−ω)+ 1

−jω
)

= 2

jω

Second, another way of writing the signum function in terms of the unit
step function is

f (t) = sgn(t) = −1 + 2u(t)

Taking the Fourier transform of each term gives

F(ω) = −2πδ(ω)+ 2

(
πδ(ω)+ 1

jω

)
= 2

jω

Third, we can take the derivative of the signum function in Fig. 17.13 and
obtain

f ′(t) = 2δ(t)

Taking the transform of this,

jωF(ω) = 2 �⇒ F(ω) = 2

jω

as obtained previously.
(b) The double-sided exponential can be expressed as

f (t) = e−a|t | = e−atu(t)+ eatu(−t) = y(t)+ y(−t)
where y(t) = e−atu(t) so that Y (ω) = 1/(a+jω). Applying the reversal
property,

F[e−a|t |] = Y (ω)+ Y (−ω) =
(

1

a + jω + 1

a − jω
)

= 2a

a2 + ω2

(c) From Example 17.2,

F
[
u

(
t + τ

2

)
− u

(
t − τ

2

)]
= τ

sin(ωτ/2)

ωτ/2
= τ sinc

ωτ

2
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Setting τ/2 = 1 gives

F[u(t + 1)− u(t − 1)] = 2
sinω

ω

Applying the duality property,

F
[

2
sin t

t

]
= 2π [U(ω + 1)− U(ω − 1)]

or

F
[

sin t

t

]
= π [U(ω + 1)− U(ω − 1)]

P R A C T I C E P R O B L E M 1 7 . 4

Determine the Fourier transforms of these functions: (a) gate function
g(t) = u(t) − u(t − 1), (b) f (t) = te−2t u(t), and (c) sawtooth pulse
f (t) = 10t[u(t)− u(t − 2)].

Answer: (a) (1 − e−jω)
[
πδ(ω)+ 1

jω

]
, (b)

1

(2 + jω)2 ,

(c)
10(e−j2ω − 1)

ω2
+ 20j

ω
e−j2ω.

E X A M P L E 1 7 . 5

Find the Fourier transform of the function in Fig. 17.14. f (t)

−1 0 1 t

1

Figure 17.14 For Example 17.5.

Solution:

The Fourier transform can be found directly using Eq. (17.8), but it is
much easier to find it using the derivative property. We can express the
function as

f (t) =
{

1 + t, −1 < t < 0
1 − t, 0 < t < 1

Its first derivative is shown in Fig. 17.15(a) and is given by

f ′(t) =
{

1, −1 < t < 0
−1, 0 < t < 1

0 t

−1

1

−1

f ′(t)

1

1 1

(a)

0 t

−2

−1

f ′′ (t)

(b)

1

Figure 17.15 First and second derivatives of f (t) in Fig. 17.14;
for Example 17.5.
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Its second derivative is in Fig. 17.15(b) and is given by

f ′′(t) = δ(t + 1)− 2δ(t)+ δ(t − 1)

Taking the Fourier transform of both sides,

(jω)2F(ω) = ejω − 2 + e−jω = −2 + 2 cosω

or

F(ω) = 2(1 − cosω)

ω2

P R A C T I C E P R O B L E M 1 7 . 5

Determine the Fourier transform of the function in Fig. 17.16.
2

f (t)

−2−4 20 4 t

Figure 17.16 For Practice Prob. 17.5.

Answer: (8 cos 3ω − 4 cos 4ω − 4 cos 2ω)/ω2.

E X A M P L E 1 7 . 6

Obtain the inverse Fourier transform of:

(a) F(ω) = 10jω + 4

(jω)2 + 6jω + 8
(b) G(ω) = ω2 + 21

ω2 + 9
Solution:

(a) To avoid complex algebra, we can replace jω with s for the moment.
Using partial fraction expansion,

F(s) = 10s + 4

s2 + 6s + 8
= 10s + 4

(s + 4)(s + 2)
= A

s + 4
+ B

s + 2

where

A = (s + 4)F (s)
∣∣
s=−4 = 10s + 4

(s + 2)

∣∣∣∣
s=−4

= −36

−2
= 18

B = (s + 2)F (s)
∣∣
s=−2 = 10s + 4

(s + 4)

∣∣∣∣
s=−2

= −16

2
= −8

Substituting A = 18 and B = −8 in F(s) and s with jω gives

F(jω) = 18

jω + 4
+ −8

jω + 2

With the aid of Table 17.2, we obtain the inverse transform as

f (t) = (18e−4t − 8e−2t )u(t)

(b) We simplify G(ω) as

G(ω) = ω2 + 21

ω2 + 9
= 1 + 12

ω2 + 9
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With the aid of Table 17.2, the inverse transform is obtained as

g(t) = δ(t)+ 2e−3|t |

P R A C T I C E P R O B L E M 1 7 . 6

Find the inverse Fourier transform of:

(a) H(ω) = 6(3 + j2ω)

(1 + jω)(4 + jω)(2 + jω)
(b) Y (ω) = πδ(ω)+ 1

jω
+ 2(1 + jω)
(1 + jω)2 + 16

Answer: (a) h(t) = (2e−t + 3e−2t − 5e−4t )u(t),
(b) y(t) = (1 + 2e−t cos 4t)u(t).

17.4 CIRCUIT APPLICATIONS
The Fourier transform generalizes the phasor technique to nonperiodic
functions. Therefore, we apply Fourier transforms to circuits with nonsi-
nusoidal excitations in exactly the same way we apply phasor techniques
to circuits with sinusoidal excitations. Thus, Ohm’s law is still valid:

V (ω) = Z(ω)I (ω) (17.52)

where V (ω) and I (ω) are the Fourier transforms of the voltage and cur-
rent and Z(ω) is the impedance. We get the same expressions for the
impedances of resistors, inductors, and capacitors as in phasor analysis,
namely,

R �⇒ R

L �⇒ jωL

C �⇒ 1

jωC

(17.53)

Once we transform the functions for the circuit elements into the fre-
quency domain and take the Fourier transforms of the excitations, we can
use circuit techniques such as voltage division, source transformation,
mesh analysis, node analysis, or Thevenin’s theorem, to find the un-
known response (current or voltage). Finally, we take the inverse Fourier
transform to obtain the response in the time domain.

Although the Fourier transform method produces a response that
exists for −∞ < t < ∞, Fourier analysis cannot handle circuits with
initial conditions.

The transfer function is again defined as the ratio of the output
response Y (ω) to the input excitation X(ω), that is,

H(ω) = Y (ω)

X(ω)
(17.54)



780 PART 3 Advanced Circuit Analyses

or

Y (ω) = H(ω)X(ω) (17.55)

The frequency-domain input-output relationship is portrayed in Fig. 17.17.
Equation (17.55) shows that if we know the transfer function and the in-
put, we can readily find the output. The relationship in Eq. (17.54) is
the principal reason for using the Fourier transform in circuit analysis.
Notice that H(ω) is identical to H(s) with s = jω. Also, if the input
is an impulse function [i.e., x(t) = δ(t)], then X(ω) = 1, so that the
response is

Y (ω) = H(ω) = F[h(t)] (17.56)

indicating that H(ω) is the Fourier transform of the impulse response
h(t).

H(v)X(v) Y(v)

Figure 17.17 Input-output
relationship of a circuit in the
frequency-domain.

E X A M P L E 1 7 . 7

Find vo(t) in the circuit of Fig. 17.18 for vi(t) = 2e−3t u(t).2 Ω

+
− 1 Fvi(t) vo(t)

+

−

Figure 17.18 For Example 17.7.

Solution:

The Fourier transform of the input voltage is

Vi(ω) = 2

3 + jω
and the transfer function obtained by voltage division is

H(ω) = Vo(ω)

Vi(ω)
= 1/jω

2 + 1/jω
= 1

1 + j2ω

Hence,

Vo(ω) = Vi(ω)H(ω) = 2

(3 + jω)(1 + j2ω)
or

Vo(ω) = 1

(3 + jω)(0.5 + jω)
By partial fractions,

Vo(ω) = −0.4

3 + jω + 0.4

0.5 + jω
Taking the inverse Fourier transform yields

vo(t) = 0.4(e−0.5t − e−3t )u(t)

P R A C T I C E P R O B L E M 1 7 . 7

Determine vo(t) in Fig. 17.19 if vi(t) = 2 sgn(t) = −2 + 4u(t).1 H

4 Ω+
−vi(t) vo(t)

+

−

Figure 17.19 For Practice Prob. 17.7.

Answer: −2 + 4(1 − e−4t )u(t).
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E X A M P L E 1 7 . 8

Using the Fourier transform method, find io(t) in Fig. 17.20 when is(t) =
10 sin 2t A.

4 Ω

0.5 F

is(t) 2 Ω

io(t)

Figure 17.20 For Example 17.8.

Solution:

By current division,

H(ω) = Io(ω)

Is(ω)
= 2

2 + 4 + 2/jω
= jω

1 + jω3

If is(t) = 10 sin 2t , then

Is(ω) = jπ10[δ(ω + 2)− δ(ω − 2)]

Hence,

Io(ω) = H(ω)Is(ω) = 10πω[δ(ω − 2)− δ(ω + 2)]

1 + jω3

The inverse Fourier transform of Io(ω) cannot be found using Table 17.2.
We resort to the inverse Fourier transform formula in Eq. (17.9) and write

io(t) = F−1[Io(ω)] = 1

2π

∫ ∞

−∞

10πω[δ(ω − 2)− δ(ω + 2)]

1 + jω3
ejωt dω

We apply the sifting property of the impulse function, namely,

δ(ω − ω0)f (ω) = f (ω0)

or ∫ ∞

−∞
δ(ω − ω0)f (ω) dω = f (ω0)

and obtain

io(t) = 10π

2π

[
2

1 + j6
ej2t − −2

1 − j6
e−j2t

]

= 10

[
ej2t

6.082ej80.54◦ + e−j2t

6.082e−j80.54◦

]

= 1.644[ej (2t−80.54◦) + e−j (2t−80.54◦)]

= 3.288 cos(2t − 80.54◦) A

P R A C T I C E P R O B L E M 1 7 . 8

Find the current io(t) in the circuit in Fig. 17.21, given that is(t) =
20 cos 4t A.

10 Ωis(t) 

6 Ω

io(t)
2 H

Figure 17.21 For Practice Prob. 17.8.

Answer: 11.8 cos(4t + 26.57◦) A.
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17.5 PARSEVAL’S THEOREM
Parseval’s theorem demonstrates one practical use of the Fourier trans-
form. It relates the energy carried by a signal to the Fourier transform
of the signal. If p(t) is the power associated with the signal, the energy
carried by the signal is

W =
∫ ∞

−∞
p(t) dt (17.57)

In order to be able compare the energy content of current and voltage
signals, it is convenient to use a 1-0 resistor as the base for energy cal-
culation. For a 1-0 resistor, p(t) = v2(t) = i2(t) = f 2(t), where f (t)
stands for either voltage or current. The energy delivered to the 1-0 resis-
tor is

W10 =
∫ ∞

−∞
f 2(t) dt (17.58)

Parseval’s theorem states that this same energy can be calculated in the
frequency domain as

W10 =
∫ ∞

−∞
f 2(t) dt = 1

2π

∫ ∞

−∞
|F(ω)|2 dω (17.59)

Parseval’s theorem states that the total energy delivered to a 1-0 resistor equals
the total area under the square of f (t) or 1/2π times the total area under the

square of the magnitude of the Fourier transform of f (t).

Parseval’s theorem relates energy associated with a signal to its Fourier
transform. It provides the physical significance of F(ω), namely, that
|F(ω)|2 is a measure of the energy density (in joules per hertz) corre-
sponding to f (t).In fact, |F(ω)|2 is sometimes known as the energy

spectral density of signal f (t). To derive Eq. (17.59), we begin with Eq. (17.58) and substitute Eq.
(17.9) for one of the f (t)’s. We obtain

W10 =
∫ ∞

−∞
f 2(t) dt =

∫ ∞

−∞
f (t)

[
1

2π

∫ ∞

−∞
F(ω)ejωtdω

]
dt (17.60)

The function f (t) can be moved inside the integral within the brackets,
since the integral does not involve time:

W10 = 1

2π

∫ ∞

−∞

∫ ∞

−∞
f (t)F (ω)ejωt dω dt (17.61)

Reversing the order of integration,

W10 = 1

2π

∫ ∞

−∞
F(ω)

[∫ ∞

−∞
f (t)e−j (−ω)t dt

]
dω

= 1

2π

∫ ∞

−∞
F(ω)F (−ω) dω = 1

2π

∫ ∞

−∞
F(ω)F ∗(ω) dω

(17.62)

But if z = x + jy, zz∗ = (x + jy)(x − jy) = x2 + y2 = |z|2. Hence,
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W10 =
∫ ∞

−∞
f 2(t) dt = 1

2π

∫ ∞

−∞
|F(ω)|2 dω (17.63)

as expected. Equation (17.63) indicates that the energy carried by a signal
can be found by integrating either the square of f (t) in the time domain
or 1/2π times the square of F(ω) in the frequency domain.

Since |F(ω)|2 is an even function, we may integrate from 0 to ∞
and double the result, that is,

W10 =
∫ ∞

−∞
f 2(t) dt = 1

π

∫ ∞

0
|F(ω)|2 dω (17.64)

We may also calculate the energy in any frequency band ω1 < ω < ω2

as

W10 = 1

π

∫ ω2

ω1

|F(ω)|2 dω (17.65)

Notice that Parseval’s theorem as stated here applies to nonperiodic
functions. Parseval’s theorem for periodic functions was presented in
Sections 16.5 and 16.6. As evident in Eq. (17.63), Parseval’s theorem
shows that the energy associated with a nonperiodic signal is spread over
the entire frequency spectrum, whereas the energy of the periodic signal
is concentrated at the frequencies of its harmonic components.

E X A M P L E 1 7 . 9

The voltage across a 10-0 resistor is v(t) = 5e−3t u(t) V. Find the total
energy dissipated in the resistor.

Solution:

We can find the energy using either f (t) = v(t) or F(ω) = V (ω). In the
time domain,

W100 = 10
∫ ∞

−∞
f 2(t) dt = 10

∫ ∞

0
25e−6t dt

= 250
e−6t

−6

∣∣∣∣
∞

0

= 250

6
= 41.67 J

In the frequency domain,

F(ω) = V (ω) = 5

3 + jω
so that

|F(ω)|2 = F(ω)F ∗(ω) = 25

9 + ω2

Hence, the energy dissipated is

W100 = 10

2π

∫ ∞

−∞
|F(ω)|2 dω = 10

π

∫ ∞

0

25

9 + ω2
dω

= 250

π

(
1

3
tan−1 ω

3

)∣∣∣∣
∞

0

= 250

π

(
1

3

) (π
2

)
= 250

6
= 41.67 J
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P R A C T I C E P R O B L E M 1 7 . 9

(a) Calculate the total energy absorbed by a 1-0 resistor with i(t) =
10e−2|t | A in the time domain. (b) Repeat (a) in the frequency domain.

Answer: (a) 50 J, (b) 50 J.

E X A M P L E 1 7 . 1 0

Calculate the fraction of the total energy dissipated by a 1-0 resistor in
the frequency band 0 < ω < 10 rad/s when the voltage across it is
v(t) = e−2t u(t).

Solution:

Given that f (t) = v(t) = e−2t u(t), then

F(ω) = 1

2 + jω �⇒ |F(ω)|2 = 1

4 + ω2

The total energy dissipated by the resistor is

W10 = 1

π

∫ ∞

0
|F(ω)|2 dω = 1

π

∫ ∞

0

dω

4 + ω2

= 1

π

(
1

2
tan−1 ω

2

∣∣∣∞
0

)
= 1

π

(
1

2

)
π

2
= 0.25 J

The energy in the frequencies 0 < ω < 10 is

W = 1

π

∫ 10

0
|F(ω)|2dω = 1

π

∫ 10

0

dω

4 + ω2
= 1

π

(
1

2
tan1 ω

2

∣∣∣10

0

)

= 1

2π
tan−1 5 = 1

2π

(
78.69◦

180◦ π
)

= 0.218 J

Its percentage of the total energy is

W

W10
= 0.218

0.25
= 87.4 %

P R A C T I C E P R O B L E M 1 7 . 1 0

A 2-0 resistor has i(t) = e−t u(t). What percentage of the total energy
is in the frequency band −4 < ω < 4 rad/s?

Answer: 84.4 percent.

17.6 COMPARING THE FOURIER AND LAPLACE
TRANSFORMS

It is worthwhile to take some moments to compare the Laplace and Fourier
transforms. The following similarities and differences should be noted:

1. The Laplace transform defined in Chapter 14 is one-sided in
that the integral is over 0 < t < ∞, making it only useful for
positive-time functions, f (t), t > 0. The Fourier transform is
applicable to functions defined for all time.
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2. For a function f (t) that is nonzero for positive time only (i.e.,

f (t) = 0, t < 0) and
∫ ∞

0
|f (t)| dt < ∞, the two transforms

are related by

F(ω) = F(s)
∣∣
s=jω (17.66)

This equation also shows that the Fourier transform can be re-
garded as a special case of the Laplace transform with s = jω.
Recall that s = σ + jω. Therefore, Eq. (17.66) shows that the
Laplace transform is related to the entire s plane, whereas the
Fourier transform is restricted to the jω axis. See Fig. 15.1.

3. The Laplace transform is applicable to a wider range of func-
tions than the Fourier transform. For example, the function
tu(t) has a Laplace transform but no Fourier transform. But
Fourier transforms exist for signals that are not physically
realizable and have no Laplace transforms.

4. The Laplace transform is better suited for the analysis of tran-
sient problems involving initial conditions, since it permits the
inclusion of the initial conditions, whereas the Fourier trans-
form does not. The Fourier transform is especially useful for
problems in the steady state.

5. The Fourier transform provides greater insight into the fre-
quency characteristics of signals than does the Laplace trans-
form.

In other words, if all the poles of F(s) lie in the
left-hand side of the s plane, then one can obtain
the Fourier transform F(ω) from the correspond-
ing Laplace transform F(s) by merely replacing s
by jω. Note that this is not the case, for example,
for u(t) or cos atu(t).

Some of the similarities and differences can be observed by comparing
Tables 15.1 and 15.2 with Tables 17.1 and 17.2.

†17.7 APPLICATIONS
Besides its usefulness for circuit analysis, the Fourier transform is used
extensively in a variety of fields such as optics, spectroscopy, acoustics,
computer science, and electrical engineering. In electrical engineering,
it is applied in communications systems and signal processing, where
frequency response and frequency spectra are vital. Here we consider
two simple applications: amplitude modulation (AM) and sampling.

1 7 . 7 . 1 A m p l i t u d e M o d u l a t i o n
Electromagnetic radiation or transmission of information through space
has become an indispensable part of a modern technological society.
However, transmission through space is only efficient and economical
at radio frequencies (above 20 kHz). To transmit intelligent signals—
such as for speech and music—contained in the low-frequency range
of 50 Hz to 20 kHz is expensive; it requires a huge amount of power
and large antennas. A common method of transmitting low-frequency
audio information is to transmit a high-frequency signal, called a carrier,
which is controlled in some way to correspond to the audio information.
Three characteristics (amplitude, frequency, or phase) of a carrier can
be controlled so as to allow it to carry the intelligent signal, called the
modulating signal. Here we will only consider the control of the carrier’s
amplitude. This is known as amplitude modulation.
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Amplitude modulation (AM) is a process whereby the amplitude of the
carrier is controlled by the modulating signal.

AM is used in ordinary commercial radio bands and the video portion of
commercial television.

Suppose the audio information, such as voice or music (or the mod-
ulating signal in general) to be transmitted is m(t) = Vm cosωmt , while
the high-frequency carrier is c(t) = Vc cosωct , where ωc >> ωm. Then
an AM signal f (t) is given by

f (t) = Vc[1 +m(t)] cosωct (17.67)

Figure 17.22 illustrates the modulating signal m(t), the carrier c(t), and
the AM signal f (t). We can use the result in Eq. (17.27) together with
the Fourier transform of the cosine function (see Example 17.1 or Table
17.1) to determine the spectrum of the AM signal:

F(ω) = F[Vc cosωct] + F[Vcm(t) cosωct]

= Vcπ [δ(ω − ωc)+ δ(ω + ωc)]

+ Vc

2
[M(ω − ωc)+M(ω + ωc)]

(17.68)

t

(a)

m(t)

Vm

t

(b)

c(t)

Vc

0 vvm−vm

|M(v)|

0 vvc−vc

|C(v)|

t

(c)

f (t)

0 vvc−vc

|F(v)|

2vm 2vm

| | | |

Figure 17.22 Time domain and frequency display of: (a) modulating signal,
(b) carrier signal, (c) AM signal.
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where M(ω) is the Fourier transform of the modulating signal m(t).
Shown in Fig. 17.23 is the frequency spectrum of the AM signal. Figure
17.23 indicates that the AM signal consists of the carrier and two other
sinusoids. The sinusoid with frequency ωc − ωm is known as the lower
sideband, while the one with frequency ωc + ωm is known as the upper
sideband.

Notice that we have assumed that the modulating signal is sinu-
soidal to make the analysis easy. In real life, m(t) is a nonsinusoidal,
band-limited signal—its frequency spectrum is within the range between
0 andωu = 2πfu (i.e., the signal has an upper frequency limit). Typically,
fu = 5 kHz for AM radio. If the frequency spectrum of the modulating
signal is as shown in Fig. 17.24(a), then the frequency spectrum of the
AM signal is shown in Fig. 17.24(b). Thus, to avoid any interference,
carriers for AM radio stations are spaced 10 kHz apart.

At the receiving end of the transmission, the audio information is
recovered from the modulated carrier by a process known as demodula-
tion.

0 v vc − vm  vc  vc + vm

Lower
sideband

Upper
sideband

Carrier

Figure 17.23 Frequency spectrum
of AM signal.

0 v

|M(v)|

vm

(a)

0 v

|F(v)|

vcvc − vm vc + vm

(b)

Carrier

Figure 17.24 Frequency spectrum of: (a) modulating signal, (b) AM signal.

E X A M P L E 1 7 . 1 1

A music signal has frequency components from 15 Hz to 30 kHz. If this
signal could be used to amplitude modulate a 1.2-MHz carrier, find the
range of frequencies for the lower and upper sidebands.

Solution:

The lower sideband is the difference of the carrier and modulating fre-
quencies. It will include the frequencies from

1,200,000 − 30,000 Hz = 1,170,000 Hz

to

1,200,000 − 15 Hz = 1,199,985 Hz

The upper sideband is the sum of the carrier and modulating frequencies.
It will include the frequencies from

1,200,000 + 15 Hz = 1,200,015 Hz

to

1,200,000 + 30,000 Hz = 1,230,000 Hz
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P R A C T I C E P R O B L E M 1 7 . 1 1

If a 2-MHz carrier is modulated by a 4-kHz intelligent signal, determine
the frequencies of the three components of the AM signal that results.

Answer: 2,004,000 Hz, 2,000,000 Hz, 1,996,000 Hz.

1 7 . 7 . 2 S a m p l i n g
In analog systems, signals are processed in their entirety. However, in
modern digital systems, only samples of signals are required for process-
ing. This is possible as a result of the sampling theorem given in Section
16.8.1. The sampling can be done by using a train of pulses or impulses.
We will use impulse sampling here.

Consider the continuous signal g(t) shown in Fig. 17.25(a). This
can be multiplied by a train of impulses δ(t − nTs) shown in Fig.
17.25(b), where Ts is the sampling interval and fs = 1/Ts is the sampling
frequency or the sampling rate. The sampled signal gs(t) is therefore

gs(t) = g(t)

∞∑
n=−∞

δ(t − nTs) =
∞∑

n=−∞
g(nTs)δ(t − nTs) (17.69)

The Fourier transform of this is

Gs(ω) =
∞∑

n=−∞
g(nTs)F[δ(t − nTs)] =

∞∑
n=−∞

g(nTs)e
−jnωTs (17.70)

It can be shown that
∞∑

n=−∞
g(nTs)e

−jnωTs = 1

Ts

∞∑
n=−∞

G(ω + nωs) (17.71)

where ωs = 2π/Ts . Thus, Eq. (17.70) becomes

Gs(ω) = 1

Ts

∞∑
n=−∞

G(ω + nωs) (17.72)

This shows that the Fourier transform Gs(ω) of the sampled signal is a
sum of translates of the Fourier transform of the original signal at a rate
of 1/Ts .

t

(a)

g(t)

(b)

(c)

0

0

d(t − nTs)

Ts−Ts 2Ts 3Ts ...

t

t

g(t)

0 Ts−Ts 2Ts 3Ts

Figure 17.25 (a) Continuous (analog) signal
to be sampled, (b) train of impulses,
(c) sampled (digital) signal.

In order to ensure optimum recovery of the original signal, what
must be the sampling interval? This fundamental question in sampling is
answered by an equivalent part of the sampling theorem:

A band-limited signal, with no frequency component higher than W hertz,
may be completely recovered from its samples taken at a frequency

at least twice as high as 2W samples per second.

In other words, for a signal with bandwidth W hertz, there is no loss of
information or overlapping if the sampling frequency is at least twice the
highest frequency in the modulating signal. Thus,

1

Ts
= fs ≥ 2W (17.73)
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The sampling frequency fs = 2W is known as the Nyquist frequency or
rate, and 1/fs is the Nyquist interval.

E X A M P L E 1 7 . 1 2

A telephone signal with a cutoff frequency of 5 kHz is sampled at a rate
60 percent higher than the minimum allowed rate. Find the sampling rate.

Solution:

The minimum sample rate is the Nyquist rate = 2W = 2 × 5 =
10 kHz. Hence,

fs = 1.60 × 2W = 16 kHz

P R A C T I C E P R O B L E M 1 7 . 1 2

An audio signal that is band-limited to 12.5 kHz is digitized into 8-bit
samples. What is the maximum sampling interval that must be used to
ensure complete recovery?

Answer: 40 µs.

17.8 SUMMARY
1. The Fourier transform converts a nonperiodic function f (t) into a

transform F(ω) where

F(ω) = F[f (t)] =
∫ ∞

−∞
f (t)e−jωt dt

2. The inverse Fourier transform of F(ω) is

f (t) = F−1[F(ω)] = 1

2π

∫ ∞

−∞
F(ω)ejωt dω

3. Important Fourier transform properties and pairs are summarized in
Tables 17.1 and 17.2, respectively.

4. Using the Fourier transform method to analyze a circuit involves
finding the Fourier transform of the excitation, transforming the
circuit element into the frequency domain, solving for the unknown
response, and transforming the response to the time domain using
the inverse Fourier transform.

5. If H(ω) is the transfer function of a network, then H(ω) is the
Fourier transform of the network’s impulse response; that is,

H(ω) = F[h(t)]

The output Vo(ω) of the network can be obtained from the input
Vi(ω) using

Vo(ω) = H(ω)Vi(ω)

6. Parseval’s theorem gives the energy relationship between a function
f (t) and its Fourier transform F(ω). The 1-0 energy is

W10 =
∫ ∞

−∞
f 2(t) dt = 1

2π

∫ ∞

−∞
|F(ω)|2 dω
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The theorem is useful in calculating energy carried by a signal either
in the time domain or in the frequency domain.

7. Typical applications of the Fourier transform are found in amplitude
modulation (AM) and sampling. For AM application, a way of deter-
mining the sidebands in an amplitude-modulated wave is derived
from the modulation property of the Fourier transform. For sampling
application, we found that no information is lost in sampling
(required for digital transmission) if the sampling frequency is at
least twice equal to the Nyquist rate.

R E V I E W Q U E S T I O N S

17.1 Which of these functions does not have a Fourier
transform?
(a) etu(−t) (b) te−3t u(t)

(c) 1/t (d) |t |u(t)
17.2 The Fourier transform of ej2t is:

(a)
1

2 + jω (b)
1

−2 + jω
(c) 2πδ(ω − 2) (d) 2πδ(ω + 2)

17.3 The inverse Fourier transform of
e−jω

2 + jω is

(a) e−2t (b) e−2t u(t − 1)
(c) e−2(t−1) (d) e−2(t−1)u(t − 1)

17.4 The inverse Fourier transform of δ(ω) is:
(a) δ(t) (b) u(t) (c) 1 (d) 1/2π

17.5 The inverse Fourier transform of jω is:
(a) 1/t (b) δ′(t)
(c) u′(t) (d) undefined

17.6 Evaluating the integral
∫ ∞

−∞

10δ(ω)

4 + ω2
dω results in:

(a) 0 (b) 2 (c) 2.5 (d) ∞

17.7 The integral
∫ ∞

−∞

10δ(ω − 1)

4 + ω2
dω gives:

(a) 0 (b) 2 (c) 2.5 (d) ∞
17.8 The current through a 1-F capacitor is δ(t) A. The

voltage across the capacitor is:
(a) u(t) (b) −1/2 + u(t)
(c) e−t u(t) (d) δ(t)

17.9 A unit step current is applied through a 1-H
inductor. The voltage across the inductor is:
(a) u(t) (b) sgn(t)
(c) e−t u(t) (d) δ(t)

17.10 Parseval’s theorem is only for nonperiodic functions.
(a) True (b) False

Answers: 17.1c, 17.2c, 17.3d, 17.4d, 17.5b, 17.6c, 17.7b, 17.8b,
17.9d, 17.10b

P R O B L E M S

Sections 17.2 and 17.3 Fourier Transform and
its Properties

17.1 Obtain the Fourier transform of the function in Fig.
17.26.

0 t

−1

1

−1−2

f (t)

1 2

Figure 17.26 For Prob. 17.1.
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17.2 What is the Fourier transform of the triangular pulse
in Fig. 17.27?

0 t

1

f (t)

1

Figure 17.27 For Prob. 17.2.

17.3 Calculate the Fourier transform of the signal in Fig.
17.28.

0 t

1

−1

f (t)

2

−2

Figure 17.28 For Prob. 17.3.

17.4 Find the Fourier transforms of the signals in Fig.
17.29.

0 t

−1

1

f1(t)

1

2

(a)

2

(b)

f2(t)

−1 10 t

Figure 17.29 For Prob. 17.4.

17.5 Determine the Fourier transforms of the functions in
Fig. 17.30.

0 t

1

f (t)

1 2

2

(a)

0 t

g(t)

1 2

2

(b)

Figure 17.30 For Prob. 17.5.

17.6 Obtain the Fourier transforms of the signals shown
in Fig. 17.31.

0 t

1

x(t)

e−t

(a)

0−1 1 t

1

y(t)

e−|t |

(b)

Figure 17.31 For Prob. 17.6.

17.7 Find the Fourier transform of the “sine-wave pulse”
shown in Fig. 17.32.

0 t

1

f (t)

1 2

sin pt

Figure 17.32 For Prob. 17.7.

17.8 Determine the Fourier transforms of these functions:
(a) f (t) = et [u(t)− u(t − 1)]
(b) g(t) = te−t u(t)
(c) h(t) = u(t + 1)− 2u(t)+ u(t − 1)

17.9 Find the Fourier transforms of these functions:
(a) f (t) = e−t cos(3t + π)u(t)
(b) g(t) = sinπt[u(t + 1)− u(t − 1)]
(c) h(t) = e−2t cosπtu(t − 1)
(d) p(t) = e−2t sin 4tu(−t)
(e) q(t) = 4 sgn(t − 2)+ 3δ(t)− 2u(t − 2)

17.10 Find the Fourier transforms of the following
functions:
(a) f (t) = δ(t + 3)− δ(t − 3)

(b) f (t) =
∫ ∞

−∞
2δ(t − 1) dt

(c) f (t) = δ(3t)− δ′(2t)

17.11∗ Determine the Fourier transforms of these functions:
(a) f (t) = 4/t2 (b) g(t) = 8/(4 + t2)

17.12 Find the Fourier transforms of:
(a) cos 2tu(t) (b) sin 10tu(t)

17.13 Obtain the Fourier transform of y(t) = e−t cos tu(t).

∗An asterisk indicates a challenging problem.
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17.14 Find the Fourier transform of
f (t) = cos 2πt[u(t)− u(t − 1)].

17.15 (a) Show that a periodic signal with exponential
Fourier series

f (t) =
∞∑

n=−∞
cne

jnω0t

has the Fourier transform

F(ω) =
∞∑

n=−∞
cnδ(ω − nω0)

where ω0 = 2π/T .
(b) Find the Fourier transform of the signal in Fig.

17.33.

0 t

f (t)

p 2p 3p

1

4p 5p

Figure 17.33 For Prob. 17.15(b).

17.16 Prove that if F(ω) is the Fourier transform of f (t),

F [f (t) sinω0t] = j

2
[F(ω + ω0)− F(ω − ω0)]

17.17 If the Fourier transform of f (t) is

F(ω) = 10

(2 + jω)(5 + jω)
determine the transforms of the following:
(a) f (−3t) (b) f (2t − 1) (c) f (t) cos 2t

(d)
d

dt
f (t) (e)

∫ t

−∞
f (t) dt

17.18 Given that F [f (t)] = (j/ω)(e−jω − 1), find the
Fourier transforms of:
(a) x(t) = f (t)+ 3 (b) y(t) = f (t − 2)
(c) h(t) = f ′(t)
(d) g(t) = 4f ( 2

3 t)+ 10f ( 5
3 t)

17.19 Obtain the inverse Fourier transforms of:

(a) F(ω) = 10

jω(jω + 2)

(b) F(ω) = 4 − jω
ω2 − 3jω − 2

17.20 Find the inverse Fourier transforms of the following
functions:

(a) F(ω) = 100

jω(jω + 10)

(b) G(ω) = 10jω

(−jω + 2)(ω + 3)

(c) H(ω) = 60

−ω2 + j40ω + 1300

(d) Y (ω) = δ(ω)

(jω + 1)(jω + 2)

17.21 Find the inverse Fourier transforms of:

(a)
πδ(ω)

(5 + jω)(2 + jω)

(b)
10δ(ω + 2)

jω(jω + 1)

(c)
20δ(ω − 1)

(2 + jω)(3 + jω)

(d)
5πδ(ω)

5 + jω + 5

jω(5 + jω)
17.22∗ Determine the inverse Fourier transforms of:

(a) F(ω) = 4δ(ω + 3)+ δ(ω)+ 4δ(ω − 3)
(b) G(ω) = 4u(ω + 2)− 4u(ω − 2)
(c) H(ω) = 6 cos 2ω

17.23∗ Determine the functions corresponding to the
following Fourier transforms:

(a) F1(ω) = ejω

−jω + 1
(b) F2(ω) = 2e|ω|

(c) F3(ω) = 1

(1 + ω2)2
(d) F4(ω) = δ(ω)

1 + j2ω

17.24∗ Find f (t) if:
(a) F(ω) = 2 sinπω[u(ω + 1)− u(ω − 1)]

(b) F(ω) = 1

ω
(sin 2ω− sinω)+ j

ω
(cos 2ω− cosω)

17.25 Determine the signal f (t) whose Fourier transform
is shown in Fig. 17.34.
(Hint: Use the duality property.)

0 t

10

F(v)

1−1−2 2

20

Figure 17.34 For Prob. 17.25.

Section 17.4 Circuit Applications

17.26 A linear system has a transfer function

H(ω) = 10

2 + jω
Determine the output vo(t) at t = 2 s if the input
vi(t) equals:
(a) 4δ(t) V (b) 6e−t u(t) V (c) 3 cos 2t V
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17.27 Find the transfer function Io(ω)/Is(ω) for the circuit
in Fig. 17.35.

1 H 4 Ω2 Ωis(t)

io(t)

Figure 17.35 For Prob. 17.27.

17.28 Obtain vo(t) in the circuit of Fig. 17.36 when
vi(t) = u(t) V.

2 H

10 Ω+
−vi(t) vo(t)

+

−

Figure 17.36 For Prob. 17.28.

17.29 Determine the current i(t) in the circuit of Fig.
17.37(b), given the voltage source shown in Fig.
17.37(a).

2 Ω

+
− 1 Fv (t)

(a) (b)

v (t)

0 1 t2

1 i(t)

Figure 17.37 For Prob. 17.29.

17.30 Obtain the current io(t) in the circuit in Fig. 17.38.
(a) Let i(t) = sgn(t) A.
(b) Let i(t) = 4[u(t)− u(t − 1)] A.

1 H2 Ωi(t)

io(t)

Figure 17.38 For Prob. 17.30.

17.31 Find current io(t) in the circuit of Fig. 17.39.

3 Ω 4d(t) A

io(t)

F1
6

Figure 17.39 For Prob. 17.31.

17.32 If the rectangular pulse in Fig. 17.40(a) is applied to
the circuit in Fig. 17.40(b), find vo at t = 1 s.

0 t

10

vs(t)

2

1 H2 Ω

2 Ω

+
−vs vo

(a) (b)

+

−

Figure 17.40 For Prob. 17.32.

17.33∗ Calculate vo(t) in the circuit of Fig. 17.41 if
vs(t) = 10e−|t | V.

1 H

12 Ω+
−vs vo

+

−

10 mF

Figure 17.41 For Prob. 17.33.

17.34 Determine the Fourier transform of io(t) in the
circuit of Fig. 17.42.

2 H

2 Ω

+
−e−tu(t)

+
−

io

3δ(t)

F1
4

Figure 17.42 For Prob. 17.34.

17.35 In the circuit of Fig. 17.43, let is = 4δ(t) A. Find
Vo(ω).

0.5 H

1 F

1 Ω2 Ωis

io

+ −vo

Figure 17.43 For Prob. 17.35.
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17.36 Find io(t) in the op amp circuit of Fig. 17.44.

20 kΩ2e−tu(t) V

io(t)+
−

+
−

20 kΩ

20 mF

Figure 17.44 For Prob. 17.36.

17.37 Use the Fourier transform method to obtain vo(t) in
the circuit of Fig. 17.45.

2 H 1 H

1 H

2 Ω 1 Ω+
−cos t V vo

+

−

Figure 17.45 For Prob. 17.37.

17.38 Determine vo(t) in the transformer circuit of Fig.
17.46.

1 H 1 H

0.5 H
1 Ω

+
−2d(t) 1 Ω vo

+

−

Figure 17.46 For Prob. 17.38.

Section 17.5 Parseval’s Theorem

17.39 For F(ω) = 1

3 + jω , find J =
∫ ∞

−∞
f 2(t) dt .

17.40 If f (t) = e−2|t |, find J =
∫ ∞

−∞
|F(ω)|2 dω.

17.41 Given the signal f (t) = 4e−t u(t), what is the total
energy in f (t)?

17.42 Let f (t) = 5e−(t−2)u(t). Find F(ω) and use it to
find the total energy in f (t).

17.43 A voltage source vs(t) = e−t sin 2t u(t) V is applied
to a 1-0 resistor. Calculate the energy delivered to
the resistor.

17.44 Let i(t) = 2etu(−t) A. Find the total energy carried
by i(t) and the percentage of the 1-0 energy in the
frequency range of −5 < ω < 5 rad/s.

Section 17.6 Applications

17.45 An AM signal is specified by

f (t) = 10(1 + 4 cos 200πt) cosπ × 104t

Determine the following:
(a) the carrier frequency,
(b) the lower sideband frequency,
(c) the upper sideband frequency.

17.46 A carrier wave of frequency 8 MHz is
amplitude-modulated by a 5-kHz signal. Determine
the lower and upper sidebands.

17.47 A voice signal occupying the frequency band of 0.4
to 3.5 kHz is used to amplitude-modulate a 10-MHz
carrier. Determine the range of frequencies for the
lower and upper sidebands.

17.48 For a given locality, calculate the number of stations
allowable in the AM broadcasting band (540 to
1600 kHz) without interference with one another.

17.49 Repeat the previous problem for the FM
broadcasting band (88 to 108 MHz), assuming that
the carrier frequencies are spaced 200 kHz apart.

17.50 The highest-frequency component of a voice signal
is 3.4 kHz. What is the Nyquist rate of the sampler
of the voice signal?

17.51 A TV signal is band-limited to 4.5 MHz. If samples
are to be reconstructed at a distant point, what is the
maximum sampling interval allowable?

17.52∗ Given a signal g(t) = sinc (200πt), find the
Nyquist rate and the Nyquist interval for the signal.

C O M P R E H E N S I V E P R O B L E M S

17.53 The voltage signal at the input of a filter is
v(t) = 50e−2|t | V. What percentage of the total 1-0
energy content lies in the frequency range of
1 < ω < 5 rad/s?

17.54 A signal with Fourier transform

F(ω) = 20

4 + jω
is passed through a filter whose cutoff frequency is 2
rad/s (i.e., 0 < ω < 2). What fraction of the energy
in the input signal is contained in the output signal?

http://www.mhhe.com/engcs/electrical/alexander/student/olc/ch17_ppt.htm
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