CHAPTER]| 7

FIRST-ORDER CIRCUITS

| often say that when you can measure what you are speaking about, and
expressit in numbers, you know something about it; but when you cannot
expressit in numbers, your knowledge is of a meager and unsatisfactory
kind; it may be the beginning of knowledge, but you have scarcely, in
your thoughts, advanced to the stage of a science, whatever the matter
may be.

—Lord Kelvin
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Figure 7.1 A source-free
RC circuit.

A circuit response is the manner in which the
circuit reacts to an excitation.

PART | DC Circuits

1.1 INTRODUCTION

Now that we have considered the three passive elements (resistors, ca-
pacitors, and inductors) and one active element (the op amp) individually,
we are prepared to consider circuits that contain various combinations of
two or three of the passive elements. In this chapter, we shall examine
two types of simple circuits: a circuit comprising a resistor and capaci-
tor and a circuit comprising a resistor and an inductor. These are called
RC and RL circuits, respectively. As simple as these circuits are, they
find continual applications in electronics, communications, and control
systems, as we shall see.

We carry out the analysis &C andR L circuits by applying Kirch-
hoff's laws, as we did for resistive circuits. The only difference is that
applying Kirchhoff’s laws to purely resistive circuits results in algebraic
equations, while applying the laws C andRL circuits produces dif-
ferential equations, which are more difficult to solve than algebraic equa-
tions. The differential equations resulting from analyzi®g and RL
circuits are of the first order. Hence, the circuits are collectively known
asfirst-order circuits.

J A first-order circuit is characterized by a first-order differential equation.

In addition to there being two types of first-order circui®(
and RL), there are two ways to excite the circuits. The first way is by
initial conditions of the storage elements in the circuits. In these so-
called source-free circuits, we assume that energy is initially stored in
the capacitive or inductive element. The energy causes current to flow in
the circuit and is gradually dissipated in the resistors. Although source-
free circuits are by definition free of independent sources, they may have
dependent sources. The second way of exciting first-order circuits is by
independent sources. In this chapter, the independent sources we will
consider are dc sources. (In later chapters, we shall consider sinusoidal
and exponential sources.) The two types of first-order circuits and the
two ways of exciting them add up to the four possible situations we will
study in this chapter.

Finally, we consider four typical applications &C and RL cir-
cuits: delay and relay circuits, a photoflash unit, and an automobile igni-
tion circuit.

7.2 THE SOURCE_FREE RC C|RCU|T Electronic Testing Tutorials

A source-freeR C circuit occurs when its dc source is suddenly discon-
nected. The energy already stored in the capacitor is released to the
resistors.

Consider a series combination of aresistor and an initially charged
capacitor, as shown in Fig. 7.1. (The resistor and capacitor may be the
equivalent resistance and equivalent capacitance of combinations of re-
sistorsand capacitors.) Our objectiveisto determinethe circuit response,
which, for pedagogic reasons, we assume to be the voltage v(¢) across
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CHAPTER 7 First-Order Circuits 239

the capacitor. Sincethe capacitor isinitially charged, we can assume that
attimer = 0, theinitial voltage is

v(0) = Vo (7.9)
with the corresponding value of the energy stored as
1
w(0) = > cv¢ (72
Applying KCL at the top node of the circuit in Fig. 7.1,
ict+ig=0 (73
By definition, ic = C dv/dt andig = v/R. Thus,
C dv + v 0 (7.4a)
dt R '
or
dv + v 0 (7.4b)
dt = RC '

Thisisafirst-order differential equation, since only thefirst derivative of
v isinvolved. To solveit, we rearrange the terms as

dv 1
— =——dt (7.5)
v RC

Integrating both sides, we get
In ! +InA
V= ———
RC
where In A isthe integration constant. Thus,
n— =—-—— (7.6)
Taking powers of e produces
v(t) = Ae /RC
But from the initial conditions, v(0) = A = V,. Hence,
v(t) = Voe /RC @7

This shows that the voltage response of the RC circuit is an exponential
decay of theinitial voltage. Sincetheresponseisdueto theinitia energy
stored and the physical characteristics of the circuit and not due to some
external voltage or current source, it is called the natural response of the
circuit.

The natural response of a circuit refers to the behavior (in terms of voltages and
currents) of the circuit itself, with no external sources of excitation.

The natural response is illustrated graphicaly in Fig. 7.2. Note that at The natural response depends on the nature of

1= 0, we ha/ethe correct |n|t|a| COﬂdItIOﬂ %'n Eq (71) ASt InCI’eaSGS, the circuit a|0ney with no external sources. In
the voltage decreases toward zero. The rapidity with which the voltage fact, the circuit has a response only because of
decreasesisexpressed in terms of the time constant, denoted by the lower the energy initially stored in the capacitor.

case Greek letter tau, .
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240 PART | DC Circuits

The time constant of a circuit is the time required for the response to decay by a
factor of /e or 36.8 percent of s initial value.

Thisimpliesthat at t = 7, Eq. (7.7) becomes
Voe /RC€ = Vpe ! = 0.368Vp

t

Figure 7.2 The voltage response of the RC g
circuit.

T=RC (7.9)

In terms of the time constant, Eq. (7.7) can be written as

v(t) = Ve /7 (7.9

With a calculator it is easy to show that the value of v(z)/ Vp isas
showninTable7.1. Itisevident from Table 7.1 that thevoltage v(z) isless
than 1 percent of Vj after 5t (fivetime constants). Thus, it is customary
to assume that the capacitor is fully discharged (or charged) after five
time constants. In other words, it takes 5t for the circuit to reach its final
state or steady state when no changes take place with time. Naotice that
for every timeinterval of , the voltage is reduced by 36.8 percent of its
previous value, v(r + t) = v(t)/e = 0.368v(z), regardless of the value
of 7.

TABLE7.]  Values of
v(t)/ Vo =e ",

t v(1)/ Vo

T 0.36788

2t 0.13534

3t 0.04979

4t 0.01832

5t 0.00674

V

A Observefrom Eq. (7.8) that the smaller the time constant, the more
10 rapidly the voltage decreases, that is, the faster the response. This is

illustrated in Fig. 7.4. A circuit with a small time constant gives a fast
response in that it reaches the steady state (or final state) quickly due to

0.75 quick dissipation of energy stored, whereas a circuit with a large time

050 Tangentatt=0 —_—
’ \ 1The time constant may be viewed from another perspective. Evaluating the derivative of
0.37 F--43 v(t) in Eq. (7.7) a t = 0, we obtain

0.25 | d /v
dt <70> =0 T =0 T

Thusthe time constant istheinitial rate of decay, or the time taken for v/ Vy to decay from
unity to zero, assuming a constant rate of decay. Thisinitial slope interpretation of the
time constant is often used in the laboratory to find ¢ graphically from the response curve
Figu re7.3  Graphical determination of the displayed on an oscilloscope. To find T from the response curve, draw the tangent to the
time constant = from the response curve. curve, as shown in Fig. 7.3. The tangent intercepts with thetime axisat t = 7.

1

_ —76_1/1

1

0 T 27 3r 4r 5 t(9
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CHAPTER 7 First-Order Circuits 241

Figure 74 Plot of v/ Vo = e*/* for various values of the time constant.

constant gives a slow response because it takes longer to reach steady
state. At any rate, whether the time constant is small or large, the circuit
reaches steady state in five time constants.

With the voltage v(¢) in Eq. (7.9), we can find the current i g (¢),

v(t) _ &e”/’

ip(t) = = - R (7.10)
The power dissipated in the resistor is
2
p(t) = vig = %e*z’/’ (7.11)

The energy absorbed by the resistor up totimer is

t t V2
wr(1) Zf pdt 2/ ?Oefzt/rdt
0 0

2 t (7.12)
AL 7 %Cvoz(l— e™2/m), T =RC

2R

0

Noticethat ast — oo, wg(co) — 1CVE, which is the same as wc (0),
the energy initialy stored in the capacitor. The energy that was initially
stored in the capacitor is eventually dissipated in the resistor.

In summary:

The Key to Working with a Source-free RC Circuit is

Finding:
1. Theinitial voltage v(0) = V, across the capacitor. The time constant is the same regardless of what
2. Thetime constant 7. the output is defined to be.

When a circuit contains a single capacitor and

With these two items, we obtain the response as the capacitor voltage several resistors and dependent sources, the

ve (1) = v(r) = v(0)e™"/*. Once the capacitor voltage is first obtained, Thevenin equivalent can be found at the termi-
other variables (capacitor current ic, resistor voltage vg, and resistor nals of the capacitor to form a simple RC circuit.
current i g) can be determined. Infinding thetimeconstant t = RC, R is Also, one can use Thevenin's theorem when sev-
often the Thevenin equivalent resistance at the terminals of the capacitor; eral capacitors can be combined to form a single
that is, we take out the capacitor C and find R = Ry, at itsterminals. equivalent capacitor.
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E XA L E

8Q
MM
E
+ +
5Q 01F == v 129§vX
Figure 7.5 For Example 7.1.

= 0.1F

ReS v

Figure 7.6 Equivalent circit
for the circuit in Fig. 7.5.

PRACTICE PROBLEMNEE

InFig. 7.5, let ve(0) = 15 V. Find v¢, vy, and i, for¢t > O.
Solution:

We first need to make the circuit in Fig. 7.5 conform with the standard
RC circuitinFig. 7.1. Wefind the equivalent resistance or the Thevenin
resistanceat the capacitor terminals. Our objectiveisawaystofirst obtain
capacitor voltage vc. From this, we can determine v, and i, .

The 8-Q and 12-Q resistors in series can be combined to give a
20-Q2 resistor. This20-Q2 resistor in parallel with the 5-2 resistor can be
combined so that the equivalent resistanceis

_20><5_
4T 20+5

Hence, the equivalent circuit is as shown in Fig. 7.6, which is analogous
to Fig. 7.1. Thetime constant is

T =ReC =4(01) =04s
Thus,
v=10(0)e™"/" = 15704V, ve = v = 15¢72% v

From Fig. 7.5, we can use voltage division to get v, ; so

12
b= gt s 0.6(15¢2%) = 9¢72% Vv
Finaly,
1)
i = — = 0.75¢ >%A
l 12 4

s 80
+ +
12Q 6Q < vy TF==ve

Refer tothecircuitin Fig. 7.7. Let v (0) = 30 V. Determine v¢, v,, and
i, fort > 0.

Answer: 30e 02"\, 10e~02 \/, —2 5025 A

Figure 7.7 For Practice Prob. 7.1.

e LE B
30 t=0 10 The switch in the circuit in Fig. 7.8 has been closed for along time, and
itisopenedat r = 0. Find v(¢) for + > 0. Calculate theinitia energy

+ stored in the capacitor.
20V 90 v 20MF  goiytion:
T For t < 0, the switch is closed; the capacitor is an open circuit to dc, as
) represented in Fig. 7.9(a). Using voltage division
Flgure 78  For Example 7.2.
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9
t)y=——(20) =15V t<0
ve(t) 9+ 3( ) ) <
Since the voltage across a capacitor cannot change instantaneously, the
voltage across the capacitor at r = 0~ isthesameat r = 0, or
ve(0) = Vo =15V

Fort > 0, the switch is opened, and we have the RC circuit shown
inFig. 7.9(b). [Notice that the RC circuit in Fig. 7.9(b) is source free;
the independent source in Fig. 7.8 is needed to provide V; or the initial
energy in the capacitor.] The 1-Q and 9-Q2 resistorsin series give

Ryg=14+9=10Q
The time constant is
T=RgC=10x20x103=02s
Thus, the voltage across the capacitor for ¢+ > 0is
V() = ve(0)e /" = 15¢/02V
or
v(t) = 157> V
Theinitial energy stored in the capacitor is

1 1
we(0) = ECvg(O) =5 x20x 1073 x 15 = 2.25]

PRACTICE PROBLEM NS

M43

3Q 1Q
AV ANV 0
+
20V 9Q vc(0)
o
(€Y
1Q
o AW
+
9Q \,=15V = 20mF

(b)

Figure 7.9 For Example 7.2: (8) 1 < O,
(b): > 0.

If the switchin Fig. 7.10 opensat t = O, find v(¢) for + > 0 and w¢(0).
Answer: 8¢ % V,5.33J.

6Q

24V == 12Q

< +

Figure 7.10  For Practice Prob. 7.2.

4Q

1.3 THE SOURCE-FREE RL CIRCUIT

Consider the series connection of aresistor and an inductor, as shown in
Fig. 7.11. Our god is to determine the circuit response, which we will
assumeto bethe current i (¢) through theinductor. We select the inductor
current as the response in order to take advantage of the idea that the
inductor current cannot change instantaneously. At ¢+ = 0, we assume
that the inductor has aninitia current I, or

i(0)=1Ip (7.13)

with the corresponding energy stored in the inductor as

1
w(0) = 5”02 (7.14)

Electronic Testing Tutorials

Figure 7.1 A source-
free RL circuit.

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



244

i(t)

Tangentatt=0

0.3681, | -- ¢~ /

o€

Figure 7.12 The current response of the RL

circuit.

The smaller the time constant 7 of a circuit, the
faster the rate of decay of the response. The
larger the time constant, the slower the rate of
decay of the response. At any rate, the response
decays to less than | percent of its initial value
(i.e., reaches steady state) after 5.

Figure 7.12 shows an initial slope interpretation
may be given to 7.

PART | DC Circuits

Applying KVL around the loop in Fig. 7.11,
v + vg = 0 (7.15)
Butv, = Ldi/dt andvg = iR. Thus,

or
-+ —i= (7.16)

Rearranging terms and integrating gives

i gi tR
/ flz—/ —dt
Io l o L

|'® Rt , Rt
Ini = —— — Ini(t) —Inlp=——+0
I L 0 L
0
or
i(t Rt
InQ =—— (7.17)

I L

Taking the powers of e, we have
i(t) = Ioe K/E (7.18)

This shows that the natural response of the RL circuit is an exponential
decay of the initial current. The current response is shown in Fig. 7.12.
It is evident from Eq. (7.18) that the time constant for the RL circuit is

T=— (7.19)

with t again having the unit of seconds. Thus, Eq. (7.18) may be written
as

i(r) = Ioe /" (7.20)

With the current in Eqg. (7.20), we can find the voltage across the
resistor as
vr(t) = iR = IoRe™'/* (7.21)
The power dissipated in the resistor is
p = Vgl = I(?Re_h/r (7.22)

The energy absorbed by the resistor is
t t 1 t L
wgr(t) = / pdt = / IgRe_z'/T dt = ——tlgRe_Z’/T , T =—
0 0 2 0 R
or

1
wr(t) = ELI§(1 — e 2Ty (7.23)

Notethat ast — oo, wg(c0) — 3LIZ, whichisthe sameas w; (0), the
initial energy stored in the inductor asin Eq. (7.14). Again, the energy
initially stored in the inductor is eventually dissipated in the resistor.
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CHAPTER 7 First-Order Circuits

In summary:

The Key to Working with a Source-free RL Circuit is
to Find:

1. Theinitial current i (0) = I, through the inductor.

2. Thetime constant = of the circuit.

With thetwoitems, we obtain theresponse astheinductor currenti; () =
i(t) = i(0)e~"/*. Once we determine the inductor current i, other vari-
ables (inductor voltage v, , resistor voltage vg, and resistor current ig)
can be obtained. Note that in general, R in Eq. (7.19) is the Thevenin
resistance at the terminals of the inductor.

245

When a circuit has a single inductor and several
resistors and dependent sources, the Thevenin
equivalent can be found at the terminals of the
inductor to form a simple RL circuit. Also, one
can use Thevenin's theorem when several induc-
tors can be combined to form a single equivalent
inductor.

£ X AMPLENIE

|
Assuming that i (0) = 10 A, calculate i (r) and i, (¢) inthe circuit in Fig.
7.13.

Solution:

There are two ways we can solve this problem. One way isto obtain the
equivalent resistance at the inductor terminals and then use Eq. (7.20).
The other way is to start from scratch by using Kirchhoff’s voltage law.
Whichever approachistaken, it isalwaysbetter tofirst obtain theinductor
current.

| The equivalent resistance is the same as the Thevenin
resistance at the inductor terminals. Because of the dependent source,
we insert a voltage source with v, = 1V at the inductor terminals a-b,
asin Fig. 7.14(a). (We could also insert a 1-A current source at the ter-
minals.) Applying KVL to the two loops resultsin

21 —i2)+1=0 =

1
i1 —ip= —E (7.3.1)

5

6i, —2i; —3i;,=0 — ip = éil (7.3.2)

Substituting Eq. (7.3.2) into Eq. (7.3.1) gives

05H g

Figure 7.13

W
gZQ 3i

For Example 7.3.

vw=1v @ @ 2Q§ @ D 3

@ D

@

Figure 7.14  solving the circuiit in Fig. 7.13.

(b)
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Hence,
Rey= Rm= 2 =10
i, 3
Thetime constant is
oL 3 38
" Req % 2

Thus, the current through the inductor is
i(r) =i(0)e™T = 10e~ @3 A, >0

METHOD 1 We may directly apply KVL to the circuit as in Fig.
7.14(b). For loop 1,

1di,
20 5y
> (i1—12) =0
or
di
f 1 4ii—4i=0 (7:33)
For loop 2,
. . . . S,
6i, —2i1—3i1=0 - 1p = éll (7.3.4)
Substituting Eq. (7.3.4) into Eq. (7.3.3) gives
diy 2
245 =0
i + 311
Rearranging terms,
diy 2
— = ——dt
i1 3
Sincei; = i, we may replacei; with i and integrate:
i(r) 2 |
Ini =— =t
i(0) 3o
or
In ﬂ = —g
i(0) 3

Taking the powers of ¢, we finally obtain
i(1) = i(0)e @ = 10e~ @3 A, >0

which is the same as by Method 1.
The voltage across the inductor is

di 2 10
=L— =05(10)( —= |e @ = @3y
T (19 < 3) ¢ 3¢

Since the inductor and the 2-2 resistor are in parallel,

i(1) = % — 1667 @3 A, 1>0

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



CHAPTER 7 First-Order Circuits

PRACTICE PROBLEMNIE

2147

Find i and v, inthecircuitin Fig. 7.15. Leti(0) = 5A.
Answer: 5e 5% A, —15¢75% v,

Figure 7.15  For Practice Prob. 7.3.

£ XA H P L E I

The switch in the circuit of Fig. 7.16 has been closed for along time. At
t = 0, the switch is opened. Calculatei(¢) fort > O.

Solution:

When ¢ < 0, the switch is closed, and the inductor acts as a short circuit
to dc. The 16-2 resistor is short-circuited; the resulting circuit is shown
in Fig. 7.17(a). To get i1 in Fig. 7.17(a), we combine the 4-Q and 12-Q
resistorsin parallel to get

4x12
4412

Hence,

T 2437

We obtain i (¢) from iy in Fig. 7.17(a) using current division, by writing

i1 8A

i(t) = i1=06A, t<0

12+ 4
Since the current through an inductor cannot change instantaneously,
i(0)=i(0)=6A

When ¢ > 0, the switch is open and the voltage source is discon-
nected. We now have the RL circuit in Fig. 7.17(b). Combining the re-
sistors, we have

Reg=(124+4) | 16 =8Q

The time constant is

Thus,

i(1) =i(0)e™"/" =674 A

Jio

40V 12Q glGQ §2H

Figure 7.16  For Example 7.4.

=
jio
40V 12Q
@
4Q
AN wt)
120 16Q 2H

(b)

Figure 7.17  solving thecircuit of Fig. 7.16: (a)
fort <0, (b)forz > 0.
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PRACTICE PROBLEM NI
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t=0

5

%129 %SQ
ANV

i(tw 50
2H

5A

Figure 7.18  For Practice Prob. 7.4.

For thecircuit in Fig. 7.18, find i () for r > 0.
Answer: 2¢ % At > 0.

mmmj
+WW_ it
t=0 §GQ §2H

Figure 7.19  For Example 7.5.

3Q
M

it

10V GQ§

(b)

Figure 720 The circuit in Fig. 7.19 for:
@r<0,(b)r>0.

In thecircuit shownin Fig. 7.19, find i, v,, and i for al time, assuming
that the switch was open for along time.

Solution:

Itisbetter tofirst find theinductor current i and then obtain other quantities
fromiit.

For ¢ < 0, the switch is open. Since the inductor acts like a short
circuit to dc, the 6-S2 resistor is short-circuited, so that we have the circuit
shown in Fig. 7.20(a). Hence, i, = 0, and

10
l(t)=m=2A, t<0

V,(1) =3i(t) =6V, t<0

Thus, i(0) = 2.

For ¢ > 0, the switch is closed, so that the voltage source is short-
circuited. We now haveasource-free RL circuit asshowninFig. 7.20(b).
At theinductor terminals,

Rm=3(6=2Q

so that the time constant is

Hence,
i(t) =i(0)e /" =27 A, t>0
Since the inductor isin parallel with the 6-Q2 and 3-Q2 resistors,
V(1) = —vp, = —L% =-2(—2e")=4e7"V, t>0
and

2
iy(t) = % = —:—se” A, t>0
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Thus, for all time,

0 0% r<0 oo [6V. 1< ,
R R A U2 i®

o |2A, t<0
i) = 227'"A, t>0

We natice that the inductor current is continuous at ¢+ = 0, while the
current through the 6-C2 resistor drops from 0to —2/3 at + = 0, and the

/(' t
iolt)
voltage acrossthe 3-Q2 resistor dropsfrom6to4 at r = 0. We also notice

that the time constant is the same regardless of what the output is defined Figure 7.1
to be. Figure 7.21 plotsi and i,,. '

PRACTICE PROBLEMESE

wIinN

A plot of i and ip.

Determinei, i,, and v, for al ¢ inthecircuit shown in Fig. 7.22. Assume 3Q
that the switch was closed for along time. WW
. [4A, r<0 . 2A, t<0 t=0 i 1H
Answer: i = {4e_2’ A 10 "7 {—(4/3)6_2’ A 1>0 e ;’
° +
_ | av. 1<0 6a (d 40 20 2V,
Vo = {—(8/3)e‘2’ V, >0 ® -

Figure 722 For Practice Prob. 7.5.

1.4 SINGULARITY FUNCTIONS

Before going on with the second half of this chapter, we need to digress
and consider some mathematical conceptsthat will aid our understanding
of transient analysis. A basic understanding of singularity functions will
help us make sense of the response of first-order circuits to a sudden
application of an independent dc voltage or current source.

Singularity functions (also called switching functions) are very use-
fulincircuit analysis. They serveasgood approximationsto the switching
signalsthat arisein circuitswith switching operations. They arehelpful in
the neat, compact description of some circuit phenomena, especialy the
step response of RC or RL circuits to be discussed in the next sections.
By definition,

Singularity functions are functions that either are discontinuous or have
discontinuous derivatives.

Thethree most widely used singularity functionsin circuit analysis
are the unit step, the unit impulse, and the unit ramp functions.
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u(t)

>

0 t

Figure 7.23  The unit step

function.
u(t - t,)
1F i
0t t
@
u(t + to)
1
“t, O t
(b)

Figure 724 (a) The unit step
function delayed by 1y, (b) the unit
step advanced by 1.

Alternatively, we may derive Eqs. (7.25) and (7.26)
from Eq. (7.24) by writing u[f (t)] = I, f(t) > 0,
where f(t) may be t — ty or t + tp.

PART | DC Circuits

{The unit step function u(t) is 0 for negative values of t and 1 for positive values of t

In mathematical terms,

0, t<0
u(t) = {1 ; i 0 (7.24)

The unit step function is undefined at + = 0, where it changes abruptly
fromOto 1. Itisdimensionless, like other mathematical functionssuch as
sine and cosine. Figure 7.23 depicts the unit step function. If the abrupt
change occurs at t = 1y (Where rg > 0) instead of + = 0, the unit step
function becomes

0, t<1

u(t —tg) = {1 £ > 1o (7.25)

whichisthe sameassaying that u () isdelayed by 7o seconds, asshownin
Fig. 7.24(a). To get EqQ. (7.25) from EQ. (7.24), we simply replace every
t by r — 1o. If thechangeisat t = —1g, the unit step function becomes
_ 0, t<—t
u(t +tg) = {1’ ‘> —tg (7.26)
meaning that «(¢) is advanced by ¢y seconds, as shown in Fig. 7.24(b).
We use the step function to represent an abrupt change in voltage
or current, like the changes that occur in the circuits of control systems
and digital computers. For example, the voltage

0, t<to

vln) = {Vo, t>1 (7.27)

may be expressed in terms of the unit step function as
v(t) = Vou(t — tp) (7.28)

If welet rg = 0, then v(z) is sSimply the step voltage Vou(z). A voltage
source of Vou(t) isshown in Fig. 7.25(a); its equivalent circuit is shown
in Fig. 7.25(b). Itisevident in Fig. 7.25(b) that terminals a-b are short-
circuited (v = 0) for r < 0 and that v = V, appears at the terminals
fort > 0. Similarly, a current source of Iou(t) isshownin Fig. 7.26(a),
whileits equivalent circuitisin Fig. 7.26(b). Noticethat for r < O, there
isan open circuit (i = 0), andthat i = Iy flowsfor r > 0.

————O a —O - a
v @ = @
L ob b
@ (b)

Figure 725 (a) Voltage source of Vou(t), (b) its equivalent circuit.
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t=0 _1_
—O a o——-o0a
1ut) @) — @
L——ob b
@ (b)

Figure 7.26 (a) Current source of Iou(t), (b) its equivaent circuit.

The derivative of the unit step function u(¢) is the unit impulse
function §(¢), which we write as

d 0, t<0
§(t) = —u(t) = {Undefined, +=0 (7.29)
dt 0, t>0

The unit impul se function—al so known as the delta function—is shown
inFig. 7.27. 8 4 (D

FC
The unit impulse function d(t) is zero everywhere except at t = 0, where
it is undefined. 0 t

. . S Figure 727 The unit
Impulsive currents and voltages occur in electric circuits as a result of impulse function.

switching operations or impulsive sources. Although the unit impulse
functionisnot physically realizable(just likeideal sources, ideal resistors,
etc.), it isavery useful mathematical tool.

The unit impulse may be regarded as an applied or resulting shock.
It may be visualized asavery short duration pulse of unit area. Thismay
be expressed mathematically as

0+
f s()dr=1 (7.30)
wherer = 0~ denotes the time just beforet = 0 and ¢+ = O isthetime
just after r = 0. For this reason, it is customary to write 1 (denoting
unit area) beside the arrow that is used to symbolize the unit impulse
function, asin Fig. 7.27. The unit area is known as the strength of the
impulse function. When an impulse function has a strength other than
unity, the area of the impulse is equal to its strength. For example, an 105(t)
impulsefunction 105 () hasan areaof 10. Figure 7.28 showstheimpulse
functions 58 (¢ + 2), 105 (¢), and —43(t — 3).
To illustrate how the impulse function affects other functions, let T

us evaluate the integral L

55(t + 2)

b
/ f(@®)s(t — o) dt (7.30) —45(t - 3)

wherea < tg < b. Since §(r — 1) = O except at t = 1o, theintegrandis  Figure 7.8  Three impulse functions.
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zero except at 9. Thus,

b b
/f(t)r?(t—to)dt=f fto)s(t — to) dt

b
= f(to)/ o(t — to) dt = f(to)
or ‘

b
/ F@)s(t —1o)dt = f(10) (7.32)

This shows that when afunction isintegrated with the impulse function,
we obtain the value of the function at the point where the impul se occurs.
This is a highly useful property of the impulse function known as the
sampling or sifting property. The special case of EqQ. (7.31) isfor rg = 0.
Then Eq. (7.32) becomes

r(t) ot
| rwswan = s 739
o
1f---------, ‘ Integrating the unit step function u(¢) resultsin the unit ramp func-
‘ tion r(r); we write
t
r(t) =/ u(t)dt = tu(t) (7.34)
0 1 t' or o
Figure 729 The unit ramp 0, r<0
function. r(t) = f 1>0 (7.35)

r(t—ty)
1

The unit ramp function is zero for negative values of t and has a unit slope for
positive values of t.

Figure 7.29 showsthe unit ramp function. Ingeneral, arampisafunction
that changes at a constant rate.

0t tot 1t

The unit ramp function may be delayed or advanced as shown in
@ Fig. 7.30. For the delayed unit ramp function,
r(t+t,) |0, t <t
r(t —to) = {t o, t>1 (7.36)

and for the advanced unit ramp function,

0 t<—tg

’ 7.3
t—t, t=-0 (737

V(t+to)={

We should keep in mind that the three singularity functions (im-
pulse, step, and ramp) are related by differentiation as

_ du(r) _dr(@®)
t Sy =— un == (7.38)
(0) or by integration as
Figure 730 The unit ramp _ ' _ '
fugncﬁon: @) ddmen by 1 u(t) = /_ma(r)dz, r(t) = /_oou(t)a’t (7.39)

(b) advanced by rg.
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Although there are many more singularity functions, we are only inter-
ested in these three (the impul se function, the unit step function, and the
ramp function) at this point.

£ X AP LE NI

Expressthe voltage pulsein Fig. 7.31 in terms of the unit step. Calculate
its derivative and sketch it.

Solution:

The type of pulsein Fig. 7.31 is called the gate function. It may be re-

garded as a step function that switches on at one value of 7 and switches Gate functions are used along with switches to
off at another value of . The gate function shown in Fig. 7.31 switches pass or block another signal.

onatt = 2 sand switches off at r = 5s. It consists of the sum of two

unit step functionsas shown in Fig. 7.32(a). From thefigure, it isevident V()4
that
10 +
v(t) = 10u(t — 2) — 10u(t — 5) = 10[u(t — 2) — u(t — 5)]
Taking the derivative of this gives
dv 1 1 1 >
— =10[6(r —2) — §(t — 5)] o 1 2 3 4 5 t

dt

whichisshownin Fig. 7.32(b). We can obtain Fig. 7.32(b) directly from  Figure 73| For Example 7.6.
Fig. 7.31 by simply observing that there is a sudden increase by 10 V at

t = 2sleadingto 108(r — 2). Att = 5, thereis a sudden decrease by

10V leadingto —10V §(r — 5).

10u(t - 2) ~10u(t - 5) 4

10 — 10 |+

+

| > 0 1 1 1 1
0 1 2 t 1 2 3 4 |5 t
_10_ -
@
dv
dt 4
10 + A

(b)

Figure 732 (a) Decomposition of the pulse in Fig. 7.31, (b) derivative of the pulse in Fig. 7.31.
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PRACTICE PROBLEM NI

Express the current pulse in Fig. 7.33 in terms of the unit step. Find its
integral and sketch it.

Answer: 10[u(t) —2u(t —2)+u(t — )], 10[r (t) — 2r (t —2) +r(t — B)].

See Fig. 7.34.
i Jidt
10 20
0 2 4 1t
: i

i Figure 7.34  Integral of i(¢) in Fig. 7.33.
Figure 7.33 For Practice Prob. 7.6.

e L B

V() Express the sawtooth function shown in Fig. 7.35 in terms of singularity
functions.
10 Solution:

Therearethree ways of solving thisproblem. Thefirst methodisby mere
observation of the given function, while the other methods involve some
graphical manipulations of the function.

0 2 i’ METHOD Ml By looking at the sketch of v(r) in Fig. 7.35, it is not

hard to notice that the given function v(z) isacombination of singularity

Figure 735 For Example7.7. functions. So we let
v(t) = va(t) +va(t) + - - (7.7.0)
The function vy () isthe ramp function of slope 5, shown in Fig. 7.36(a);
that is,
v1(t) = 5r (1) (7.7.2)
vy(t) Vi +Vsy
10 10

<

N
Py
K=
NG

@ (0

(b)

Figure 7.36  Partial decomposition of v(r) in Fig. 7.35.
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Since v1(¢) goes to infinity, we need another function at ¢+ = 2 sin order
to get v(r). We let this function be v,, which is aramp function of slope
—b5, asshownin Fig. 7.36(b); that is,

vo(t) = =5r(t — 2) (7.7.3)

Adding v1 and v, gives us the signal in Fig. 7.36(c). Obviously, thisis
not the same as v(¢) in Fig. 7.35. But the difference is simply a constant
10 unitsfor ¢ > 2 s. By adding athird signal vs, where

va = —10u(t — 2) (7.7.4)

we get v(t), as shown in Fig. 7.37. Substituting Egs. (7.7.2) through
(7.7.4) into Eq. (7.7.1) gives

v(t) =5r(@) —5r(t —2) — 10u(t — 2)

V3 +Vsy v(t)
10 + o -
0 >
0 2 t 2 t 0 2 t
10 L

@ (b) ©

Figure 7.37  Complete decomposition of v(z) in Fig. 7.35.

METHOD P4 A closeobservation of Fig. 7.35 revealsthat v(r) isamul-

tiplication of two functions; aramp function and a gate function. Thus,
v(r) = 5t[u(t) — u(t — 2)]
= 5tu(t) — 5tu(t — 2)
=5r() —5(t — 24 u(t — 2)
=5r(t) -5t —2u(t —2) — 10u(t — 2)
=5r(t) —5r(t — 2) — 10u(t — 2)

the same as before.

METHOD ] This method is similar to Method 2. We observe from
Fig. 7.35 that v(r) isamultiplication of aramp function and a unit step
function, as shown in Fig. 7.38. Thus,

v(t) =5r(u(—t + 2)

If we replace u(—t) by 1 — u(z), then we can replace u(—t + 2) by
1—u(t —2). Hence,

v(@) =5 @)[1—ui — 2)]

which can be simplified asin Method 2 to get the same resullt.
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5r(t) 4
10~ f u(-t+2)
X 1

0 2 t 0 2 t

Figure 7.38  Decomposition of v(r) in Fig. 7.35.

PRACTICE PROBLEM NI

i(t) (A) Refer to Fig. 7.39. Expressi(¢) interms of singularity functions.

2\ Answer: 2u(t) —2r(t) +4r(t — 2) — 2r(t — 3).
0 1\2/3 t(9)
_2_

Figure 739 For Practice Prob. 7.7.

e L B

Given the signal
3, t<0
g(t) =1 -2, O<r<l1
2t—4, t>1

express g(¢) interms of step and ramp functions.
Solution:

The signal g(z) may be regarded as the sum of three functions specified
within thethreeintervalsr < 0,0 <7 < 1, andt > 1.

Fort < 0O, g(¢) may be regarded as 3 multiplied by u(—t), where
u(—t) =1fort < 0andOfors > 0. Withinthetimeinterval 0 < ¢ < 1,
the function may be considered as —2 multiplied by a gated function
[u(t) — u(t — 1)]. Fort > 1, the function may be regarded as 2t — 4
multiplied by the unit step function u(t — 1). Thus,

g(t) =3u(=1) — 2fu@®) —u — D] + (2t — Hu - 1)
=3u(—t) —2u(t) + 2t —4+4+2u — 1)
= Bu(—1) — 2u(t) + 2(t — Du(t — 1)
=3u(—t)—2u(t) +2r(t — 1)

One may avoid the trouble of using u(—) by replacing it with 1 — u(z).
Then
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g)y=3[1—u@®)] -2u@®)+2rt—1)=3—-5u@)+2r(t — 1)
Alternatively, we may plot g(¢) and apply Method 1 from Example 7.7.

PRACTICE PROBLEMNEE

If

t<0

O<t<?2
—t, 2<t<6
, t>06

h(t) =

oo~ O

express i (t) in terms of the singularity functions.
Answer: 4du(t) —r(t —2) +r(t —6).

M7.9

Evaluate the following integral s involving the impul se function:
10
f (P + 4 —2)8(t — 2)dt
0

/ (8(t — L)e " cost + 8(t + Ve " sint)dt
Solution:
For thefirst integral, we apply the sifting property in Eq. (7.32).

(P +4 -8t —2)dt = (t°+4t —2),.o=4+8—-2=10
0

Similarly, for the second integral,

o0
/ (8@ — e " cost + 8(t + L)e " sint)dt
—0oQ0

=e ' cost|j—1 +e " sint|—_1

=e tcosl+ elsin(—1) = 0.1988 — 2.2873 = —2.0885

PRACTICE PROBLEM IR

Evaluate the following integrals.

00 10
/ (2 + 52 + 10)8(r + 3) dt, / 8(t — ) cos3t dt
—00 0
Answer: 28, —1.

1.5 STEP RESPONSE OF AN RC CIRCUIT

When the dc source of an RC circuit is suddenly applied, the voltage
or current source can be modeled as a step function, and the responseis
known as a step response.

Electronic Testing Tutorials
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<
O}—,
< +

@)

Vu(t) t) C—/—vV

(b)

Figure 740 An RC circuit with
voltage step input.

PART | DC Circuits

The step response of a circuit is its behavior when the excitation is the step
function, which may be a voltage or a current source.

Thestep responseistheresponse of thecircuit dueto asudden application
of adc voltage or current source.

Consider the RC circuitinFig. 7.40(a) which can bereplaced by the
circuit in Fig. 7.40(b), where V; is a constant, dc voltage source. Again,
we select the capacitor voltage as the circuit response to be determined.
We assume an initial voltage V, on the capacitor, although this is not
necessary for the step response. Since the voltage of a capacitor cannot
change instantaneously,

v(07) =v(0") =V (7.40)

where v(0™) isthe voltage across the capacitor just before switching and
v(0™) isitsvoltageimmediately after switching. Applying KCL, wehave

dv v — Vu(t) _

c 0
dt R
or
S 741
dt " RC _ RC" (7.41)

where v isthevoltage acrossthe capacitor. For¢t > 0, EQ. (7.41) becomes

dv+v_VS 242
dt  RC RC (7.42)

Rearranging terms gives

dv = Vs
dt  RC
or
dv dt
=—— (7.43)
v—V RC
Integrating both sides and introducing the initial conditions,
v(t) t
t
In(v — V) = ——
Vo RC 0
In(v@) — V) — In(Vo — Vy) ! +0
v - Vs) ™ —Vs) = T~
0 RC
or
v—V; t
In =—— (7.44)
Vo— Vi RC
Taking the exponential of both sides
-V
2= SRL T =RC
Vo— Vs
v= V= (Vo Ve "
or
v(t) = Vi + (Vo — Ve /T, t>0 (7.45)
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Thus,

Vo, t<0

U(t) = {Vs + (VO _ ‘/s)e_t/rv > 0 (746)

This is known as the complete response of the RC circuit to a sudden
application of a dc voltage source, assuming the capacitor is initialy
charged. Thereason for theterm “complete” will become evident alittle
later. Assuming that V; > Vq, aplot of v(z) isshownin Fig. 7.41.

If we assumethat the capacitor isuncharged initially, weset Vo = 0
in Eq. (7.46) so that

0, t<0
v(r) = {Vs(l _ eft/r)’ t>0 (7.47)
which can be written aternatively as
() = Vi(L— e u(r) (7.48)

Thisis the complete step response of the RC circuit when the capacitor
isinitially uncharged. The current through the capacitor is obtained from
Eq. (7.47) usingi(t) = C dv/dt. We get

d C
in=c® =Zvye!', 1=RC, t>0
dt T
or
Vi
i(r) = Ee_l/fu(t) (7.49)

Figure 7.42 showsthe plotsof capacitor voltage v (¢) and capacitor current
i(1).

Rather than going through the derivations above, there is a sys-
tematic approach—or rather, a short-cut method—for finding the step
response of an RC or RL circuit. Let usreexamine Eq. (7.45), whichiis
more general than Eq. (7.48). Itisevident that v(z) hastwo components.
Thus, we may write

V=Vf+ Uy (7.50)
where
vy =V (7.51)
and
va = (Vo — Vi)e /" (752)

We know that v, is the natural response of the circuit, as discussed in
Section 7.2. Since this part of the response will decay to amost zero
after five time constants, it isalso called the transient response because it
isatemporary response that will die out with time. Now, v isknown as
the forced response becauseit is produced by the circuit when an external
“force” is applied (a voltage source in this case). It represents what the
circuit is forced to do by the input excitation. It is aso known as the
steady-state response, because it remains along time after the circuit is
excited.

259

v(t) 4

0 t

Figure 74| Response of an
RC circuit with initially charged
capacitor.

v(t) 4
\/S ,,,,,,,,,,,,,,,,,,,
0 t
@
i(t)
Vs |
R
0 t

(b)

Figure 742 Step response of an
RC circuit with initially uncharged
capacitor: (a) voltage response,

(b) current response.
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The natural response or transient response is the circuit’s temporary response
that will die out with time.

The forced response or steady-state response is the behavior of the circuit
a long time after an external excitation is applied.

The complete response of the circuit is the sum of the natural response

This is the same as saying that the complete re- and the forced response. Therefore, we may write Eq. (7.45) as
sponse is the sum of the transient response and
the steady-state response. v(r) = v(00) + [v(0) — v(co)]e /" (7.53)

where v(0) istheinitial voltageat t = 0" and v(oc0) isthefinal or steady-
statevalue. Thus, to find the step response of an RC circuit requiresthree
things:

1. Theinitia capacitor voltage v(0).
2. Thefinal capacitor voltage v(co).
3. Thetime constant t.

Once we know x(0), x(c0), and 7, almost all the
circuit problems in this chapter can be solved
using the formula We obtain item 1 from the given circuit for 7 < 0 and items 2 and 3 from
x(t) = x(00)+ [x(0) - x(00)] & the circuit for r > 0. Once these items are determined, we obtain the
response using Eq. (7.53). Thistechnique equally appliesto RL circuits,
as we shall seein the next section.

Note that if the switch changes position at timet = ¢ instead of at

t = 0, thereis atime delay in the response so that Eq. (7.53) becomes

v(1) = v(00) + [v(fg) — v(00)]e 0/ (7.54)

where v(to) istheinitial valueat 1 = 1 . Keepin mind that Eq. (7.53) or
(7.54) applies only to step responses, that is, when the input excitation is
constant.

The switchin Fig. 7.43 has been in position A for along time. Atz = 0,
the switch movesto B. Determine v(¢) for + > 0 and calculate its value
ar=1sand4s.

3kQ A B 4kQ
t=0
+

il

Figure 743 For Example 7.10.

24V 5kQ 0.5mF 30V

A
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Solution:

For r < 0, the switchisat position A. Since v isthe same as the voltage
acrossthe 5-k2 resistor, the voltage acrossthe capacitor just beforer = 0
is obtained by voltage division as

_ 5
v(07) = m(24) =15V

Using the fact that the capacitor voltage cannot change instantaneously,
v(0) =v(0) =v(0") =15V

Fort > 0, theswitchisinposition B. The Thevenin resistance connected
to the capacitor is R, = 4 k2, and the time constant is

T=RmC=4x10>x05x 10°3=2s

Since the capacitor actslike an open circuit to dc at steady state, v(co) =
30 V. Thus,

V(1) = v(00) + [v(0) — v(oo)]e™"/
=30+ (15— 30)e "/? = (30 — 15¢ 7 0%) Vv
Atr =1,
v(1) = 30 — 15¢7%° = 20.902 V
Attr =4,
v(4) = 30— 15¢72 = 27.97V

PRACTICE PROBLEMNEEK

Findv(z) forr > OinthecircuitinFig. 7.44. Assumethe switch hasbeen
open for along timeandisclosed at ¢+ = 0. Calculate v(¢) at + = 0.5.

Answer: —5415¢% V,0.5182 V.

10V 50V

Figure 744 For Practice Prob. 7.10.

M7.||

In Fig. 7.45, the switch has been closed for along time and is opened at
t = 0. Find i and v for al time.

—_
1
o

100 _!

P

30u(t) V 200

< +
f
I
N
m

@ wv

Figure 745 For Example 7.11.
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0Q I,
.
200 v 10V
@
10Q _',
+
30V 20Q v 3 F

(b)

Figure 746 Solution of Example 7.11:
(@) fort <0, (b)forr > 0.

PART | DC Circuits

Solution:

The resistor current i can be discontinuous at 1 = 0, while the capacitor
voltage v cannot. Hence, it is always better to find v and then obtain i
fromv.

By definition of the unit step function,

0, t<0
30“(”2{30 (=0

For t < 0, the switch is closed and 30u(r) = 0, so that the 30u(r)
voltage source is replaced by a short circuit and should be regarded as
contributing nothing to v. Since the switch has been closed for a long
time, the capacitor voltage has reached steady state and the capacitor acts
likean opencircuit. Hence, thecircuit becomesthat showninFig. 7.46(a)
for t < 0. From thiscircuit we obtain
v=10V, i=--—=-1A
10
Since the capacitor voltage cannot change instantaneously,
v(0)=v(0) =10V

For ¢+ > 0, the switch is opened and the 10-V voltage source is
disconnected from the circuit. The 30u(¢) voltage source is now opera-
tive, so the circuit becomes that shown in Fig. 7.46(b). After along time,
the circuit reaches steady state and the capacitor acts like an open circuit
again. We obtain v(co) by using voltage division, writing

v(00) = B0) =20V

20+ 10
The Thevenin resistance at the capacitor terminalsis

10x20 20
==Q

Rmn =10 20= 3

and the time constant is

T = RmC =

w|y

Thus,
v(t) = v(00) + [v(0) — v(co)]e /"
= 20+ (10 — 20)e~®/9" = (20 — 10e=06") Vv

To obtain i, we notice from Fig. 7.46(b) that i isthe sum of the currents
through the 20-2 resistor and the capacitor; that is,

=1—05¢ %% +0.25(—0.6)(—10)e %% = (14 ¢ %) A

Notice from Fig. 7.46(b) that v + 10i = 30 is sdtisfied, as expected.
Hence,

_J10v, t<0
Y= 1(@20-10e %)V, >0
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. |-1A, t<0
"TlA+e A, >0

Notice that the capacitor voltage is continuous while the resistor current
is not.

PRACTICE PROBLEMNSEN

Theswitchin Fig. 7.47isclosed at + = 0. Find i (¢) and v(¢) for all time.
Notethat u(—t) = 1forr < OandOfor¢ > 0. Also, u(—1t) = 1 — u(t).

; t=0
0 X
N ’

20u(—t) V V==02F 10Q 3A

Figure 747 For Practice Prob. 7.11.

N L t<0
Answer: i(f) = {—2(1+e1'5’) A, 150
_ja0v, t<0
"Tl0@ eV, >0
Electronic Testing Tutorials
7.6 STEP RESPONSE OF AN RL CIRCUIT ’
Consider the RL circuit in Fig. 7.48(a), which may be replaced by the R
circuitin Fig. 7.48(b). Again, our goal isto find the inductor current i as i
the circuit response. Rather than apply Kirchhoff’s laws, we will use the t=0 ¢+
simple technique in Egs. (7.50) through (7.53). Let the response be the v, L3
sum of the natural current and the forced current, -
i=i,tif (7.55)
We know that the natural response is always adecaying exponential, that @
is, R
L AW ‘ i
i, = Ae T, T=— (7.56)
R

v @ L giva)

where A is aconstant to be determined.

The forced response is the value of the current a long time after
the switch in Fig. 7.48(a) is closed. We know that the natural response
essentially dies out after five time constants. At that time, the inductor (®)
becomesashort circuit, and the voltage acrossitiszero. Theentiresource
voltage V; appears across R. Thus, the forced responseis

Figure 748 An RL circuit with a
step input voltage.

.Y
ly = E (7.57)
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Substituting Egs. (7.56) and (7.57) into Eq. (7.55) gives

e Ve

i = Ae + R (7.58)
We now determine the constant A from the initial value of i. Let Iy be
theinitial current through the inductor, which may come from a source
other than V;. Since the current through the inductor cannot change
instantaneously,

i(0Y) =i(07) =1 (7.59)
Thusat t = 0, EQ. (7.58) becomes
Ip=A+ E
R
From this, we obtain A as
V,

A=1I— —
°7 R

Substituting for A in Eq. (7.58), we get
Vs Vi _
i(t):E—I—(IQ—E)e t/e (7.60)

it
04 This is the complete response of the RL circuit. It isillustrated in Fig.
lo 7.49. Theresponsein Eq. (7.60) may be written as

i(1) = i(00) + [i(0) — i(00)]e /" (7.61)

Tle<

wherei (0) and i (co) aretheinitial and final valuesof i. Thus, to find the
step response of an RL circuit requires three things:

0 t
1. Theinitia inductor current i (0) at r = O*.

Figure 749 Total response 2. Thefina inductor current i (co).
of the RL circuit with initial

inductor current Io. 3. Thetime constant 7.

We obtain item 1 from the given circuit for + < 0 anditems 2 and 3 from
the circuit for + > 0. Once these items are determined, we obtain the
response using Eq. (7.61). Keep in mind that this technique applies only
for step responses.

Again, if the switching takes place at time r = ry instead of r = 0,
Eqg. (7.61) becomes

i(1) = i(00) + [i(tg) — i(c0)]e "1/ (7.62)
If Ip = 0, then
0, t<0
it) = E(l— 1y, 120 (7.633)
R ,
or
. Vi _
i(1) = E(l — e () (7.63b)

Thisisthestepresponseof the R L circuit. Thevoltageacrosstheinductor
is obtained from Eq. (7.63) using v = L di/dt. We get
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di L L
v(t):L—les—e_’/r, t=—, t>0
dt TR R
or
v(t) = Vie "u(t) (7.64)
Figure 7.50 shows the step responsesin Egs. (7.63) and (7.64).

i(t) A v(t) A
\

R

@ (b)

Figure 7.50 Step responses of an RL circuit with no initial
inductor current: (a) current response, (b) voltage response.

£ x A 1P L ¢ A

|
Findi(z) inthecircuitin Fig. 7.51 for r > 0. Assume that the switch has
been closed for along time.
Solution;
When ¢ < 0, the 3-Q resistor is short-circuited, and the inductor acts

like a short circuit. The current through the inductor at ¢+ = 0~ (i.e., just
beforer = Q) is

10
i(0) =7 =5A

Figure 75| For Example 7.12.

Since the inductor current cannot change instantaneously,
i(0)=i(0H) =i(0)=5A

Whent > 0, the switchisopen. The 2-Q and 3-Q2 resistors are in series,
so that

10
2+3°
The Thevenin resistance across the inductor terminalsis

Rm=2+3=5Q

i(00) = 2A

For the time constant,

Thus,
i(1) = i(00) + [i(0) — i(c0)]e™"/"
=24+ (5-=2e B =243 A, t>0
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Check: InFig. 7.51, for t > 0, KVL must be satisfied; that is,
di
10=5+L—
i+ s
. di —15¢ 1 —15¢
5 + LE =[10+ 15 ] + §(3)(—15)e =10

This confirms the result.

PRACTICE PROBLEMNEEN

i
15H
A1IA

5Q >zt=0 10Q

Figure 7.52  For Practice Prob. 7.12.

3A

TheswitchinFig. 7.52 has been closed for along time. It opensat = 0.
Findi(z) forr > 0.

Answer: (2+e¢ %) At >0.

M7.|3

Atr =0, switch 1in Fig. 7.53 is closed, and switch 2 is closed 4 slater.
Findi(z) fort > 0. Calculatei fort = 2sandr =5s.

Figure 7.53  For Example 7.13.

Solution:

We need to consider thethreetimeintervalst <0, 0 <t <4,andt > 4
separately. For ¢ < 0, switches S; and S, are open so that i = 0. Since
the inductor current cannot change instantly,

i(0) =i(0)=i(0") =0

For 0 <t < 4, Sy isclosed so that the 4-Q2 and 6-Q resistors arein
series. Hence, assuming for now that S; is closed forever,

40
] = ——=4A, Rin=44+6=10Q
i(00) Y Th +

L 5 1S
T=— = — = —
Rm 10 2
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Thus,

i(t) = i(00) +[i(0) —i(c0)]e™"/*
=44+ 0—4e 2 =41—e2)A, O0<tr<4
For ¢t > 4, S, is closed; the 10-V voltage source is connected, and
the circuit changes. This sudden change does not affect the inductor

current because the current cannot change abruptly. Thus, the initial
currentis

M =id)=41—-e¢8 ~4A
To find i (00), let v be the voltage at node P in Fig. 7.53. Using KCL,

40—v+10—v_v _180V
z 2 "6 "=
v 30
j =_—=_—=2727TA
() =5=11
The Thevenin resistance at the inductor terminalsis
4x2 22
Rm=42+6=———4+6=—2C
Th 2+ 3 + 3
and
L 5 15S
T === = —
Rt % 22
Hence,

i(1) = i(00) + [i(4) —i(c0)]e ~¥/7, t>4

We need (¢ — 4) in the exponential because of the time delay. Thus,

i(t) = 2727 + (4 — 2.727)e~ =9/ T = %’
= 2.727 + 1.273¢ 1466704 t>4
Putting all this together,
0, t<0
i(t) = {4(1—e?%), 0<t<4
2.727 + 1.273¢= 1466704 =t > 4
Atr =2,
i(2 =41—e* =393A
Att =5,

i(5) = 2.727 + 1.273. 1467 = 3.02 A

PRACTICE PROBLEMNEEE

267

Switch S; inFig. 7.54 isclosed at + = 0, and switch S, isclosed at t =
2s. Calculatei(r) for all . Findi(1) and i (3).
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t=2 Answer:
0, t <0
S 10Q i(1)={2(1—e %), O<t<2
) 36—16e2"2D 52
t=0 20Q ll(t) ’
6A Q) 150 sy (D) =19997A,i(3) =3.589A.

Figure 7.54  For Practice Prob. 7.13,

@
Network Analysis 1.1 FIRST-ORDER OP AMP CIRCUITS

An op amp circuit containing a storage element will exhibit first-order
behavior. Differentiators and integratorstreated in Section 6.6 are exam-
plesof first-order op amp circuits. Again, for practical reasons, inductors
are hardly ever used in op amp circuits; therefore, the op amp circuitswe
consider here are of the RC type.

As usual, we analyze op amp circuits using nodal analysis. Some-
times, the Thevenin equivalent circuit is used to reduce the op amp circuit
to onethat we can easily handle. The following three examplesillustrate
the concepts. Thefirst one dealswith a source-free op amp circuit, while
the other two involve step responses. The three examples have been care-
fully selected to cover al possible R C typesof opamp circuits, depending
on the location of the capacitor with respect to the op amp; that is, the
capacitor can be located in the input, the output, or the feedback loop.

For theopampcircuitinFig. 7.55(a) , find v, for ¢ > 0, giventhat v(0) =
3V.Let Ry = 80K, Ry = 20k, and C = 5 uF.

Ry 80kQ 80kQ
—AAA—
C C 1A

e —¢ > © -
o)
rv- 3 b + + 3V - 3 > + v~ s +
R, v, 20kQ o 20k "
o o o

@ (b) (©

Figure 7.55  For Example 7.14.
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Solution:
This problem can be solved in two ways:

METHOD i} Consider the circuit in Fig. 7.55(a). Let us derive the

appropriate differential equation using nodal analysis. If v; isthevoltage
at node 1, at that node, KCL gives
M = Cd—v (7.14.2)
R dt
Since nodes 2 and 3 must be at the same potential, the potential at node
2iszero. Thus, v; — 0 = v or v; = v and Eq. (7.14.1) becomes
dv v
ar T CR T
Thisissimilar to Eq. (7.4b) so that the solution is obtained the same way
asin Section 7.2, i.e.,

(1) = Voe ', T=RC (7.14.3)

(7.14.2)

where Vj is the initial voltage across the capacitor. But v(0) = 3 = Vg
andt = 20 x 108 x 5 x 10°% = 0.1. Hence,

v(t) = 37 (7.14.4)
Applying KCL at node 2 gives
dv. 00—,
dt Rf
or
R, (7.145)
v, = — — 14.
I~ dt

Now we can find vg as
v, = —80 x 10° x 5 x 1078(—=30e71) = 12,71 v, >0
METHOD P4 Let us now apply the short-cut method from Eq. (7.53).
We need to find v,(0%), v,(c0), and r. Sincev(0™) = v(07) = 3V, we
apply KCL at node 2 in the circuit of Fig. 7.55(b) to obtain
3 0— v,(0")
20,000 80,000

or v,(07) = 12V. Sincethecircuit issourcefree, v(co) = 0V. Tofind ,
we need the equivalent resistance Req across the capacitor terminals. If
we remove the capacitor and replaceit by a 1-A current source, we have
the circuit shown in Fig. 7.55(c). Applying KVL totheinput loop yields

20,0001) —v=0 =  v=20KkV

=0

Then
v
Req = - = 20kQ
“T
and T = RegC = 0.1. Thus,

Vo (1) = 0,(00) + [1,(0) — v, (00)]e /"
=04 (12 = 0)e 10 = 12,101 v/, t>0
as before.
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PRACTICE PROBLEMNEK

C For theopampcircuitinFig. 7.56, find v, forz > Oif v(0) = 4V. Assume
IS that Ry = 50k, Ry = 10k, and C = 10 uF.
v

TV Answer: —4e 2 V.t > 0.
- AAMA—
Ry
D>
R, v

Figure 7.56  For Practice Prob. 7.14.

Determine v(z) and v, (¢) in the circuit of Fig. 7.57.

Solution:

This problem can be solved in two ways, just like the previous example.
However, we will apply only the second method. Since what we are
looking for is the step response, we can apply Eg. (7.53) and write

v(1) = v(00) + [v(0) — v(c0)]e /7, t>0 (7.15.1)

3V 20kQ § § A where we need only find the time constant , the initial value v(0), and

the fina value v(co). Notice that this applies strictly to the capacitor
~  voltage due a step input. Since no current enters the input terminals of
the op amp, the elements on the feedback loop of the op amp constitute

an RC circuit, with
Fisure 7.57  For Example 7.15.
g or Example T =RC =50x 10° x 107 = 0.05 (7.15.2)

For ¢ < 0, the switch is open and there is no voltage across the capacitor.
Hence, v(0) = 0. For ¢ > 0O, we obtain the voltage at node 1 by voltage
division as

20
20410
Since there is no storage element in the input loop, v, remains constant
for all r. At steady state, the capacitor acts like an open circuit so that the
op amp circuit is anoninverting amplifier. Thus,

3=2V (7.15.3)

U1

50
v,(00) = (l + E)) v1=35%x2=7V (7.15.4)
But
V1 — UV, =V (7.15.5)
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so that
v(o)=2—-7=-5V
Substituting z, v(0), and v(c0) into Eq. (7.15.1) gives
v(t) = =5+[0— (=5)]e ¥ =52 — 1)V, >0 (7.156)
From Egs. (7.15.3), (7.15.5), and (7.15.6), we obtain

Vo (1) = v1(t) — v(t) = 7 —5e 22V, t>0 (7157

PRACTICE PROBLEMEEEE

Find v(r) and v, () in the op amp circuit of Fig. 7.58. 100kQ
Answer: 40(1 — e 1%) mV, 40(e~1* — 1) mV.
1uF
Y4
AN
10kQ  ~
y >—3
4mV Vo
o

Figure 7.58  For Practice Prob. 7.15.

M7.I6

Find the step response v, (¢) for ¢+ > 0inthe op amp circuit of Fig. 7.59.
Letv; = 2u(t) V, Ry = 20 ke, Rf = 50k, R, = R; = 10 ke,
C=2uF

Solution:

Notice that the capacitor in Example 7.14 is located in the input loop,
while the capacitor in Example 7.15 is located in the feedback loop. In
this example, the capacitor islocated in the output of the op amp. Again,
we can solve this problem directly using nodal analysis. However, using
the Thevenin equivaent circuit may simplify the problem.

We temporarily remove the capacitor and find the Thevenin equiv-
dent at itsterminals. To obtain Vy,, consider the circuit in Fig. 7.60(a). Figre 759 For Example 7.16.
Since the circuit is an inverting amplifier,
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R,
ANV o)
Vi R, Ry R
o
7 @ (b)

Figure 760  obtaini ng Vn and Ry, across the capacitor in Fig. 7.59.

To obtain Ry, consider the circuit in Fig. 7.60(b), where R, isthe
output resistance of the op amp. Since we are assuming an ideal op amp,

R, =0, and
RoR;3
Rmm=Ry || R3=
Th 2|l R3 Ryt Rs
Substituting the given numerical values,
Rs Ry 1050
Vih=— —v; = ————2u(t) = —2.5u(t
N Tt R R T 20200 “(t)
R>R
Rih= — =2 = 5kQ
R>+ R3

The Thevenin eguivalent circuit is shown in Fig. 7.61, which is similar

5kQ
W to Fig. 7.40. Hence, the solution is similar to that in Eq. (7.48); that is,
~2.5u(t) t) 2 uF V(1) = —=2.5(1 — e77) u(r)
wherer = RmpC = 5x 103 x 2 x 1078 = 0.01. Thus, the step response

forr > 0is

Figure 761 Theveninequivalentcircuit of _100
the circuit in Fig. 7.59. Vo(1) = 2.5(e™ " =D u() V

PRACTICE PROBLEMESE

Obtain the step response v, (¢) for the circuit of Fig. 7.62. Let v; = 2u(t)
V, R]_: ZOkQ,Rf =40|(Q, R2 = R3= 10k$2, C = 2/,LF

Answer: 6(1— e )u(@) V.

Figure 7.62  For Practice Prob. 7.16.
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1.8 TRANSIENT ANALYSIS WITH PSPICE

Aswe discussed in Section 7.5, the transient response is the tem-

porary response of the circuit that soon disappears. PSpice can be used PSpice uses “transient’ to mean “function of
to obtain the transient response of a circuit with storage elements. Sec- time”  Therefore, the transient response in
tion D.4 in Appendix D provides a review of transient analysis using PSpice may not actually die out as expected.

PSpicefor Windows. It isrecommended that you read Section D.4 before
continuing with this section.
If necessary, dc PSpice analysisisfirst carried out to determine the
initial conditions. Then the initial conditions are used in the transient @
PSpice analysis to obtain the transient responses. It is recommended
but not necessary that during this dc analysis, al capacitors should be
open-circuited while all inductors should be short-circuited.

M7.|7

Use PSpice to find the response i (¢) for # > 0 in the circuit of Fig. 7.63. —~ 4Q
Solution: t:Vo ‘i(t)
Solving this problem by hand givesi (0) = 0,i(c0) = 2A,Rth =6, =

3/6 = 0.55, sothat ca@® oo 3H

i(t) = i(c0) +[i(0) —i(c0)]e /" =2(1—e2%), >0

To use PSpice, we first draw the schematic as shown in Fig. 7.64. Fioure 7.63
We recall from Appendix D that the part name for a close switch is gure .
Sw_tclose. We do not need to specify the initial condition of the in-

For Example 7.17.

ductor because PSpice will determine that from the circuit. By select- tdose =0 o,
ing Analysig/Setup/Transient, we set Print Step to 25 ms and Final =J17§2
4

Septo 51 = 2.5 s. After saving the circuit, we simulate by selecting
AnalysigSimulate. In the Probe menu, we select Trace/Add and 6 A <> I~ § 5
display —I(L 1) asthe current through theinductor. Figure 7.65 showsthe T

plot of i (¢), which agrees with that obtained by hand calculation.

L1&=3 H

N0

Figure 7.64  The schematic of the circuit in
Fig. 7.63.

o-1(L1)

Ti me

Figure 7.65  For Example 7.17; the response
of thecircuit in Fig. 7.63.
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Note that the negative sign on 1(L1) is needed because the current
entersthrough the upper terminal of theinductor, which happensto bethe
negative terminal after one counterclockwise rotation. A way to avoid
the negative sign isto ensure that current enters pin 1 of theinductor. To
obtain thisdesired direction of positive current flow, theinitially horizon-
tal inductor symbol should be rotated counterclockwise 270° and placed
in the desired location.

PRACTICE PROBLEMESN

t=0 For the circuit in Fig. 7.66, use PSpiceto find v(¢) for ¢ > 0.

Answer: v() =8(1—e")V,t > 0. Theresponseis similar in shape
+ tothatinFig. 7.65.
12V 6Q 05F == v(t)

3Q

Figure 7.66  For Practice Prob. 7.17.

m7.|8

In thecircuit in Fig. 7.67, determine the response v (z).

= t=0

2o X0 v - =X
C} l ©r

01F

30V 6§2§ GQ§ 30 <>4A

Figure 7.67  For Example 7.18.

Solution:
There are two ways of solving this problem using PSpice.

METHOD Il oneway istofirst do the dc PSpice analysisto determine

the initial capacitor voltage. The schematic of the revelant circuit isin
Fig. 7.68(a). Two pseudocomponent VIEWPOINTSs are inserted to mea-
sure the voltages at nodes 1 and 2. When the circuit is simulated, we
obtain the displayed valuesin Fig. 7.68(a) asV; = 0V and V, = 8 V.
Thustheinitial capacitor voltageisv(0) = V1 — Vo, = —8V. The PSpice
transient analysis usesthisvalue along with the schematicin Fig. 7.68(b).
Once the circuit in Fig. 7.68(b) is drawn, we insert the capacitor initial
voltage as IC = —8. We select Analysis/Setup/Transient and set Print
Septo0.1sand Final Septodr = 4s. After saving thecircuit, we select
AnalysisSimulate to simulate the circuit. In the Probe menu, we select
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Trace/Add and display V(R2:2) - V(R3:2) or V(C1:1) - V(C1:2) asthe
capacitor voltage v(r). Theplot of v(r) isshowninFig. 7.69. Thisagrees
with the result obtained by hand calculation, v(r) = 10 — 18¢~".

0.0000 C1 8. OQOO 10 V‘
1 / H / 2 ) :
0.1 E
5V
RZ6 RBZ6 R4Z3 |1C’> 4A ;
oV
VO H
@ -5V
R L

Il 10 Vv

12 0.1 | s

o V(R2:2) - V(R3:2)
30 V C_f Vi R § 6 R3Z6 Ti e
p
Figure 769 Response v(t) for the circuit in Fig. 7.67.
o

(b)

Figure 7.68  (a) Schematic for dc analysis to get v(0),
(b) schematic for transient analysis used in getting the
response v(z).

METHOD P4 We can simulate the circuit in Fig. 7.67 directly, since

PSpice can handle the open and close switches and determine the initial
conditions automatically. Using this approach, the schematic is drawn
as shown in Fig. 7.70. After drawing the circuit, we select Analysis/
Setup/Transient and set Print Sep to 0.1 sand Final Septo 4t = 4 s.
We savethecircuit, then select Analysis/Simulateto simulatethecircuit.
In the Probe menu, we select Trace/Add and display V(R2:2) - V(R3:2)
as the capacitor voltage v(z). The plot of v(z) isthe same as that shown

inFig. 7.69.
Ry tClose =0 c1 tOpen = 0
12 " 1% 2
I M L
uL
12 y 01 w2
V1
30 V RZ6 R3Z6 R4Z3 |1<>4A
Yo

Figure 770 For Example 7.18.
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PRACTICE PROBLEM N

< 50

t=

12A D §3OQ §6Q

[@ kg

Figure 7.71  For Practice Prob. 7.18.

PART | DC Circuits

| 8

l i(t)

2H

The switch in Fig. 7.71 was open for along time but closed at t = 0. If
i(0) =10A,findi(z) for + > 0 by hand and also by PSpice.

Answer: i(t) = 6+ 4e~% A. The plot of i(r) obtained by PSpice
analysisis shownin Fig. 7.72.

0 s 0.5s 1.0 s
o 1(L1)
Ti me

Figure 7.72 For Practice Prob. 7.18.

7.9 APPLICATIONS

The various devices in which RC and RL circuits find applications in-
clude filtering in dc power supplies, smoothing circuits in digital com-
munications, differentiators, integrators, delay circuits, and relay circuits.
Some of these applications take advantage of the short or long time con-
stantsof the RC or RL circuits. Wewill consider four simpleapplications
here. Thefirst two are RC circuits, the last two are RL circuits.

7.9.1 Delay Circuits

An RC circuit can be used to provide various time delays. Figure 7.73
shows such a circuit. It basically consists of an RC circuit with the
capacitor connected in parallel with aneon lamp. The voltage source can
provide enough voltage to fire the lamp. When the switch is closed, the
capacitor voltage increases gradually toward 110 V at arate determined

R, S Rz(
+ 70V
110V T c

— 0.1 uF Neon
lamp

Figure 773 An RC delay circuiit.
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by the circuit’stime constant, (R + R2)C. Thelamp will act asan open
circuit and not emit light until the voltage across it exceeds a particular
level, say 70 V. When the voltage level is reached, the lamp fires (goes
on), and the capacitor dischargesthrough it. Dueto the low resistance of
the lamp when on, the capacitor voltage drops fast and the lamp turns off.
The lamp acts again as an open circuit and the capacitor recharges. By
adjusting R», we can introduce either short or long time delays into the
circuit and make the lamp fire, recharge, and fire repeatedly every time
constant T = (R1 + R»)C, because it takes a time period t to get the
capacitor voltage high enough to fire or low enough to turn off.

The warning blinkers commonly found on road construction sites
are one example of the usefulness of such an RC delay circuit.

M7.|9

Consider thecircuitinFig. 7.73, and assumethat R, = 1.5MQ,0 < R <
2.5 MQ. (a) Calculate the extreme limits of the time constant of the cir-
cuit. (b) How long doesit takefor thelamp to glow for thefirst time after
the switch is closed? Let R, assumeits largest value.

Solution:
(a) Thesmallest valuefor R, is0 €2, and the corresponding time constant
for the circuitis

T=(Ri+ R)C =(15x10°4+0) x0.1x 10 =0.15s

Thelargest valuefor R, is2.5 M2, and the corresponding time constant
for thecircuitis

T=(R1+R)C=(15+25x10°x01x10°%=04s

Thus, by proper circuit design, the time constant can be adjusted to in-
troduce a proper time delay in the circuit.

(b) Assuming that the capacitor isinitially uncharged, vc (0) = 0, while
ve(00) = 110. But

ve(t) = ve(00) + [ve(0) — ve(00)]e ™/ = 110[1 — e /7]

where t = 0.4 s, as calculated in part (a). The lamp glows when ve =
70V. Ifvc(r) =70V at r = 1o, then

7
70=110[1—¢ "] = =1 e/
or
4 11
_to/‘[ e fo/l' = —-—
e 11 — e 4

Taking the natural logarithm of both sides gives
11
fo=71ln 7= 0.4In2.75 = 0.4046 s

A more genera formulafor finding 7y is
N v(0) — v(00)

0= TN ) — v(00)
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The lamp will fire repeatedly every T seconds if and only if 7o < 7. In
this example, that condition is not satisfied.

PRACTICE PROBLEMNEER

10kQ S R The RC circuit in Fig. 7.74 is designed to operate an alarm which acti-
San . vateswhen the current through it exceeds 120 uA. 1f 0 < R < 6k, find
the range of the time delay that the circuit can cause.

Answer: Between 47.23 msand 124 ms.

+
9V

gl

Figure 774 For Practice Prob. 7.19.

7.9.2 Photoflash Unit
An electronic flash unit provides a common example of an RC circuit.
This application exploits the ability of the capacitor to oppose any abrupt
Ry 1 change in voltage. Figure 7.75 shows a simplified circuit. It consists
—A\WW—o0 >7— li essentially of a high-voltage dc supply, a current-limiting large resistor
High 2 . Ru, andacapacitor C in parallel with the flashlamp of low resistance R».
voltage @) Ve c -y Whentheswitchisin position 1, the capacitor charges slowly dueto the
R, - large time constant (tr; = R1C). Asshown in Fig. 7.76, the capacitor
voltage rises gradually from zero to V;, whileits current decreases grad-
ually from I, = V,/R; to zero. The charging time is approximately five

times the time constant,

dc supply

Figure 775 Circuit for aflash unit providing
slow charge in position 1 and fast discharge in

position 2. fcharge = DR1C (7.65)

With the switchin position 2, the capacitor voltageisdischarged. Thelow
resistance R, of the photolamp permitsahigh discharge current with peak
I, = Vi /R, in ashort duration, as depicted in Fig. 7.76(b). Discharging
takes place in approximately five times the time constant,

VA

Il
T \\
O >

AL
W

@) (b)

Figure 176 (a) Capacitor voltage showing slow charge and fast discharge,
(b) capacitor current showing low charging current /; = V, /R and high discharge
current Io = Vi /Ry.
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ldischarge = SR>C (7.66)

Thus, the simple RC circuit of Fig. 7.75 provides a short-duration, high-
current pulse. Such acircuit also finds applicationsin el ectric spot weld-
ing and the radar transmitter tube.

£ XA P L E D

An electronic flashgun has a current-limiting 6-k<2 resistor and 2000-F
electrolytic capacitor charged to 240 V. If the lamp resistance is 12 €,
find: (@) the peak charging current, (b) the time required for the capaci-
tor to fully charge, (c) the peak discharging current, (d) the total energy
stored in the capacitor, and (€) the average power dissipated by the lamp.

Solution:
(a) The peak charging current is
Vi 240
L =—=——-=40mA
TR 6x10°

(b) From Eq. (7.65),

feharge = BR1C = 5 x 6 x 10% x 2000 x 10~® = 60 s = 1 minute
(c) The peak discharging current is
V, 240

L=-—"=""=20A
"R 12
(d) The energy stored is
1 1
W= Ecvs2 = 5 X 2000 x 1076 x 240° = 57.6 J

(e) Theenergy stored in the capacitor is dissipated acrossthe lamp during
the discharging period. From Eq. (7.66),

tdischarge = DR2C = 5 x 12 x 2000 x 10°° = 0.12s
Thus, the average power dissipated is
w 57.6

= = —— =480W
P fdischarge 0.12

PRACTICE PROBLEMNEWE

The flash unit of a camera has a 2-mF capacitor charged to 80 V.

(a) How much charge is on the capacitor?

(b) What is the energy stored in the capacitor?

(c) If the flash fires in 0.8 ms, what is the average current through the
flashtube?

(d) How much power is delivered to the flashtube?

(e) After apicture has been taken, the capacitor needs to be recharged by

apower unit which supplies a maximum of 5 mA. How much time does
it take to charge the capacitor?

Answer: (@) 0.16 C, (b) 6.4 J, (c) 200 A, (d) 8kW, (e) 32s.
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7.9.3 Relay Circuits
A magnetically controlled switchiscalledarelay. A relayisessentially an
€l ectromagnetic deviceused to open or closeaswitchthat controlsanother
circuit. Figure 7.77(a) shows atypical relay circuit. Thecail circuitisan
RL circuit likethat in Fig. 7.77(b), where R and L are the resistance and
inductance of the coil. When switch S; in Fig. 7.77(a) is closed, the coil
circuit is energized. The coil current gradually increases and produces
a magnetic field. Eventually the magnetic field is sufficiently strong to
pull the movable contact in the other circuit and close switch S,. At this
point, the relay is said to be pulled in. The time interval ¢, between the
closure of switches S; and S, is called the relay delay time.

Relays were used in the earliest digital circuits and are still used
for switching high-power circuits.

L]

s ~—— Magnetic field

. Cail

I\I\I\I\I\T
o

<
@ (b)

Figure 7.77 A relay circuit.

m7.2|

The cail of acertain relay is operated by a12-V battery. If the coil hasa
resistance of 150 2 and an inductance of 30 mH and the current needed
to pull inis50 mA, calculate the relay delay time.

Solution:
The current through the coil is given by

i(t) = i(00) + [i(0) — i(c0)]e™"/"

where
12
i(0) =0, i(00) 190 80m
L 30x10°3
T R 150 0.2ms
Thus,

i(1) =80[1—e /"] MA
If i(t;) = 50 mA, then

5
50 = 80[1 — e /"] = =1~ et/
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or

3 8

—t4/T ta/T _
e = — —t e = —
8 3

By taking the natural logarithm of both sides, we get

8 8
tg = rlné = O.2In§ ms = 0.1962 ms

PRACTICE PROBLEMNEWE

A relay hasaresistance of 200 2 and an inductance of 500 mH. Therelay
contacts close when the current through the coil reaches 350 mA. What
time elapses between the application of 110 V to the coil and contact
closure?

Answer: 2.529 ms.

7.9.4 Automobile Ignition Circuit
The ahility of inductors to oppose rapid change in current makes them
useful for arc or spark generation. An automobile ignition system takes
advantage of this feature.
The gasoline engine of an automobile requires that the fuel-air
mixture in each cylinder be ignited at proper times. This is achieved
by means of a spark plug (Fig. 7.78), which essentialy consists of a M&w—

pair of electrodes separated by an air gap. By creating a large voltage
(thousands of volts) between the electrodes, a spark is formed across the

. L Spark
air gap, thereby igniting the fuel. But how can such alarge voltage be plug
obtained from the car battery, which suppliesonly 12 V? Thisisachieved  ° _
by means of an inductor (the spark coil) L. Since the voltage across the ~—Airgap

inductor isv = L di/dt, we can make di/dt large by creating a large
changein current in a very short time. When theignition switch in Fig. . o o
7.78 is closed, the current through the inductor increases gradually and 818 178 Civault for an automobile igrition
reaches the final value of i = V,/R, where V, = 12 V. Again, the time ysem

taken for the inductor to charge is five times the time constant of the

circuit (t = L/R),

L
Icharge = 5E (7.67)

Since at steady state, i is constant, di /dr = 0 and the inductor voltage
v = 0. When the switch suddenly opens, a large voltage is devel oped
across the inductor (due to the rapidly collapsing field) causing a spark
or arcin the air gap. The spark continues until the energy stored in the
inductor is dissipated in the spark discharge. In laboratories, when one
is working with inductive circuits, this same effect causes a very nasty
shock, and one must exercise caution.

£ X AMP L & ERI

A solenoid with resistance 4 Q2 and inductance 6 mH is used in an auto-
mobile ignition circuit similar to that in Fig. 7.78. If the battery supplies
12 V, determine: the fina current through the solenoid when the switch
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is closed, the energy stored in the coil, and the voltage across the air gap,
assuming that the switch takes 1 s to open.

Solution:
Thefinal current through the coil is
12
1= _3p
R 4
The energy stored in the coail is
1 1
W = §“2=§ x6x103x32=27mJ
The voltage acrossthe gap is
Al 3
= L— = 1 -3 —_— = 1 kV
Vv A7 6 x 10 XlxlO*G 8

PRACTICE PROBLEMESW

The spark coil of an automobileignition system has a 20-mH inductance
and a 5-2 resistance. With a supply voltage of 12 V, calculate: the time
needed for the coil to fully charge, the energy stored in the coil, and the
voltage developed at the spark gap if the switch opensin 2 us.

Answer: 20ms, 57.6 mJ, and 24 kV.

1.10  SUMMARY

1. Theanalysisin this chapter is applicable to any circuit that can be
reduced to an equivalent circuit comprising aresistor and asingle
energy-storage element (inductor or capacitor). Such acircuitis
first-order because its behavior is described by afirst-order differen-
tial equation. When analyzing RC and R L circuits, one must aways
keep in mind that the capacitor is an open circuit to steady-state dc
conditions while the inductor is a short circuit to steady-state dc
conditions.

2. The natural response is obtained when no independent sourceis
present. It hasthe general form

x(t) = x(0)e™/*

where x represents current through (or voltage across) aresistor, a
capacitor, or an inductor, and x (0) isthe initial value of x. The
natural responseis aso called the transient response because it isthe
temporary response that vanishes with time.

3. Thetime constant t isthetime required for a response to decay to
1/e of itsinitial value. For RC circuits, T = RC and for RL circuits,
T=L/R.

4. Thesingularity functions include the unit step, the unit ramp func-
tion, and the unit impulse functions. The unit step function u(z) is

0, t<O
1

u(t):{ t>0
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The unit impulse function is

0, t <0
8(t) = {Undefined, r=0
0, t>0

The unit ramp function is
0, t<0
rn = {t, t>0
5. Theforced (or steady-state) response is the behavior of the circuit
after an independent source has been applied for along time.

6. Thetota or complete response consists of the natural response and
the forced response.

7. The step response is the response of the circuit to a sudden applica-
tion of adc current or voltage. Finding the step response of afirst-
order circuit requires the initial value x(0™), the final value x (c0),
and the time constant t. With these three items, we obtain the step
response as

x(1) = x(00) + [x(07) — x(c0)]e™""
A more general form of thisequationis
x(t) = x(00) + [x(tg) — x(c0)]e /T
Or we may write it as
Instantaneous value = Final + [Initial — Final]e= (/"

8. PSpiceisvery useful for obtaining the transient response of acircuit.

9. Four practical applicationsof RC and RL circuitsare: adelay
circuit, aphotoflash unit, arelay circuit, and an automobile ignition
circuit.

REVIEW QUESTIONS

7.1 An RC circuithasR =2 Q and C = 4 F. Thetime of its steady-state value is:
constant is: (@ 05s (b) 1s (©) 2s
(@ 05s (b) 2s (c) 4s (d) 4s (6) none of the above
(d) 8s (e) 15s
. o 75 In the circuit of Fig. 7.79, the capacitor voltage just
7.2 The time constant for an RL circuitwithR =2 Q beforet = Ois:
andL = 4His @ 10V (b) 7V (© 6V
(& 05s (b) 2s (c) 4s ) 4V (© 0V
(d) 8s (e) 15s
7.3 A capacitor inan RC circuit with R = 2 Q and 3Q
C = 4 Fisbeing charged. Thetimerequired for the
capacitor voltage to reach 63.2 percent of its ¥ 20
steady-state value is: 10V C_D v@t) == 7F
@ 2s (b) 4s (c) 8s - t=0
(d) 16s (e) none of the above
7.4 An RL circuithasR =2 Q and L = 4 H. Thetime
needed for the inductor current to reach 40 percent Figure 7.79  For Review Questions 7.5 and 7.6.
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7.6 In the circuit of Fig. 7.79, v(co) is: 7.8 In the circuit of Fig. 7.80, i (c0) is:
(@ 10V (b) 7V (c) 6V (@ 8A (b) 6A (c) 4A
(d) 4V (e OV (d) 2A (e) OA
7.7 ngr()tiheelckcgiitspf Fig. 7.80, the inductor current just 79 If v, changesfrom 2V to 4V at ¢ = 0, we may
- EXpress v, as.
(@ 8A (b) 6A (c) 4A @ 8()V (b) 2u() V
(d 2A (€ 0A © 2u(=1) +4u@®V  (d) 24 2u(t) V
5H 710 ThepulseinFig. 7.110(a) can be expressed in terms
10A D § 20 of singularity functions as:
_ @ 2u®)+2u(t—1V (b) 2u(r) —2u(@t —1)V
t=0 3Q (©) 2u(t) — 4u(t — DV (d) 2u(t) + du(t — DV
Figure 780 For Review Questions 7.7 and 7.8. Answers: 7.1d, 7.2b, 7.3c, 7.4b, 7.5d, 7.6a, 7.7c, 7.8¢, 7.9¢,d, 7.10b.
PROBLEMS
Section 7.2 The Source-Free RC Circuit R, C,
7.1 Show that Eq. (7.9) can be obtained by working with €
the current i inthe RC circuit rather than working
with the voltage v. Vs R
7.2 Find the time constant for the RC circuit in Fig. €
7.81. C
2
Figure 7.83  For Prob. 7.4.
1200 120 75 The switch in Fig. 7.84 has been in position a for a
long time, until + = 4 swhen it is moved to position
b and |eft there. Determinev(r) att = 10 s.
50V 80Q 0.5mF
T 80Q t=4
aX %
Figure 78] For Prob. 7.2. +
24V 01F == V(1) § 200
7.3 Determine the time constant of the circuit in Fig. T
7.82.
Figure 7.84  For Prob. 7.5.
7.6 If v(0) =20V inthecircuitin Fig. 7.85, obtain v(r)
1uF fort > 0.
I 3MF
12kQ = 4kQ w 8Q
5kQ
‘ 05V 10Q 01F =V
Figure 782 For Prob. 7.3. -
74 Obtain the time constant of the circuit in Fig. 7.83. Figure 7.85  For Prob. 7.6.
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7.7 For the circuit in Fig. 7.86, if 7.11  Theswitchinthecircuitin Fig. 7.89 has been closed
for alongtime. Atr = 0, the switch is opened.
v=10sV ad i=02"A >0 Calculatgi(z) fort > 0. >
(@ Find Rand C.
(b) Determine the time constant. t=0 30
(c) Calculate theinitial energy in the capacitor. i
(d) Obtain thetime it takes to dissipate 50 percent ‘

of theinitial energy. 12V 40 2H

—.—
Figure 789 For Prob. 7.11.
R C =V . . . . .
- 7.12  For thecircuit shown in Fig. 7.90, calculate the time
constant.
Fisure 7. 7.7 70Q 2mH
gure 7.86  For Prob. 7.7
7.8 Inthecircit of Fig. 7.87, v(0) = 20 V. Find v(r) for 20V 00 § 800 § < 200
t > 0.
2Q

Figure 790 For Prob. 7.12.
8Q 8Q
+ 7.13  What isthe time constant of the circuit in Fig. 7.91?
0.25F v
—‘7 6Q 3Q

Figure 7.87  For Prob. 7.8.

30kQ 6 kQ 10 mH

20 mH 10kQ

7.9 Giventhat i (0) = 3A, findi(¢) forr > Ointhe
circuitin Fig. 7.88.

Figure 7.91  For Prob. 7.13.

150 7.14  Determine the time constant for each of the circuits
inFig. 7.92.
', 10Q
Ly L,
10mF == 4Q R,
L Ry Ry
Figure 7.88  For Prob. 7.9.
€) (b)
Section 7.3 The Source-Free RL Circuit Figure 7.92  For Prob. 7.14.
7.10  Derive Eq. (7.20) by working with voltage v across
the inductor of the RL circuit instead of working 7.15  Consider thecircuit of Fig. 7.93. Find v, (¢) if
with the current . i(0)=2Aandv(r) =0.
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7.18

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents

PART |

3Q +
v @ PO w0
T
o
Figure 7.93  For Prob. 7.15.

For the circuit in Fig. 7.94, determine v, (t) when
i(0)=1Aandv(r) =0.

20
o
000
RS +
v(t) (t) 30y

Figure 7.94  For Prob. 7.16.

In the circuit of Fig. 7.95, find i (¢) for t > Oif
i(0)=2A.

i 6H

100 0.5i 40Q

Figure 7.95  For Prob. 7.17.

For the circuit in Fig. 7.96,
v = 120"V
and
i =307 A,
(8 Find L and R.
(b) Determine the time constant.
(c) Calculatetheinitial energy in the inductor.

t>0

(d) What fraction of the initial energy is dissipated

in 10 ms?

DC Circuits

7.19

7.20

7.21

Section 7.4

7.22

Figure 7.96  For Prob. 7.18.

Inthecircuitin Fig. 7.97, find the value of R for
which energy stored in the inductor will be 1 J.

40Q R

60V 80Q 2H

Figure 7.97  For Prob. 7.19.

Findi(¢) and v(¢) for r > Ointhecircuit of Fig.
7.98if i(0) = 10A.

o

2H *
50 2og§v(t)

1Q

Figure 7.98  For Prob. 7.20.

Consider the circuit in Fig. 7.99. Given that
v,(0) =2V, findv, and v, forr > 0.

3Q

><<
[N
(o]

Wik
I
N
o]

O<

Figure 7.99  For Prob. 7.21.

Singularity Functions

Express the following signals in terms of singularity

functions.
0, r<0
@ v = {—5, >0
0, r<1
. -10, 1<t<3
®iO=1 19 3-:<5
0, t>5
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t—1, 1<t<?2
1, 2<t<3
©xO=14_1 3<1<4
0 Otherwise
2, t<0
(d y@)=14-5 0<r<l1
0, r>1
7.23  Expressthesignalsin Fig. 7.100 in terms of
singularity functions.
vy(t) A va(t)
1 2
! N
-1 0 t 0 2 4 t
-1 (b)
€Y
va(t) A
4 -
2 Vu(t) A
L > 0
0 2 4 6 t 1 2
(© b
-2
(d)
Figure 7.100  For Prob. 7.23.
7.24  Sketch the waveform that is represented by
v(t) =u(@)+ut —1) —3u(t —2) +2u(t — 3)
7.25  Sketch the waveform represented by
i=r®)+r¢t—-1)—u@t—-2—r(it—2
+rt—=3)+u—4
7.26  Evaluate the following integrals involving the
impulse functions:
(@ / 4128(t — 1) dt
L N <

First-Order Circuits 287

7.27

7.28

7.29

7.30

Section 7.5

7.31

7.32

(b) / 412 cos2m18(t — 0.5) drt

Evaluate the following integrals:
(a)/ eS8t —2)dt

(b) fw[SB(t) +e78(1) + cos2mt5(1)]dt

The voltage across a 10-mH inductor is
208 (¢t — 2) mV. Find the inductor current, assuming
that the inductor isinitially uncharged.

Find the solution of the following first-order
differential equations subject to the specified initial
conditions.

(8 5dv/dt +3v =0, v(0) = -2

(b) 4dv/dt — 6v =0, v(0) =5

Solvefor v in the following differential equations,
subject to the stated initial condition.

@ dv/dr +v=u(), v(0) =0

(b) 2dv/dt — v = 3u(t), v(0) = —6

Step Response of an RC Circuit

Calculate the capacitor voltagefort < Oandt > 0
for each of the circuitsin Fig. 7.101.

40Q

20V

@

*y\tzo

12v

3Q
(b)

Figure 7.101 For Prob. 7.31.

Find the capacitor voltageforr < Oand r > O for
each of the circuitsin Fig. 7.102.
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7.33

7.34

7.35
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3Q 2Q
t=0

12v 4V 3F v

7.36

= 5F

(b)

Figure 7.102  For Prob. 7.32.
For the circuit in Fig. 7.103, find v(¢) for ¢t > 0.

7.37

[

30Q

I
< +

12v 1F =

Figure 7.103  For Prob. 7.33.

(a) If the switchin Fig. 7.104 has been open for a
long timeand isclosed a ¢ = O, find v, (¢).
(b) Suppose that the switch has been closed for a

long time and isopened at ¢+ = 0. Find v, (¢). 238

12v 4Q

Figure 7.104  For Prob. 7.34.

Consider the circuit in Fig. 7.105. Find i (¢) for

t<0Oand? > 0. 7.39

t

00 50 30Q
) ¢ i
80V 3F = b osi 500
Figure 7.105  For Prob. 7.35.

The switch in Fig. 7.106 has been in position a for a
long time. At s = 0, it movesto position b.
Cdculatei(r) foral ¢ > 0.

30V (’: 12V

§SQ - 2F

Figure 7.106  For Prob. 7.36.

Find the step responses v(r) and i (r) to
v, = 5u(?) V inthecircuit of Fig. 7.107.

120 7Q

i
e
Ve 40Q § 05F T v(®)

For Prob. 7.37.

Figure 7.107

Determine v(¢) for + > Qinthecircuit in Fig. 7.108
if v(0) =0.

aut-nA @) § so @ oA

Figure 7.108  For Prob. 7.38.

Find v(r) and i (r) in the circuit of Fig. 7.109.
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20Q Section 7.6 Step Response of an RL Circuit
l i 7.42  Rather than applying the short-cut technique used in
+ Section 7.6, use KVL to obtain Eq. (7.60).
u(-t) A D 10Q § 01F T v 7.43  For thecircuitin Fig. 7.112, find i (s) for > 0.
Figure 7.109  For Prob. 7.39. lo@
¢ i
t=0
7.40  If thewaveform in Fig. 7.110(a) is applied to the 20V % 5H
circuit of Fig. 7.110(b), find v(¢). Assumev(0) = 0. 400
i(A) 4
Figure 7.112 For Prob. 7.43.
2
7.44  Determine the inductor current i (¢) for bothz < 0
> and ¢ > O for each of the circuitsin Fig. 7.113.
0 1 t(9
€)
6Q
¢ i
+
is<> 4Q O.SFTV 25V 4H
(b) @
Figure 7.110° For Prob. 7.40 and Review Question 7.10. L;?
*7.41  Inthecircuitin Fig. 7.111, find i, forz > O. Let
@&:Rz:1kQ,R3:2kQ,andC:O.25mF. 6A () §4Q §2Q §3H
t=0
R,
V liWW (b)
X
30mA § R ~C § R Figure 7.113 For Prob. 7.44.
7.45  Obtain theinductor current for bothr < Oandz > 0
Figure 7.1l For Prob. 7.41. in each of the circuitsin Fig. 7.114.

*An asterisk indicates a challenging problem.
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t |4
12Q 4Q 50 200
2a @ 4Q§ sa @ 6Q§ t=0_M
t=0 35H 25H 4H
@ Figure 7.117  For Prob. 7.48.
‘ i
24V o,
10V 2H 749  Rework Prob. 7.15if i(0) = 10 A and
v(t) = 20u(t) V.
t=0 . .
7.50 Determine the step response v, (¢) to v, = 18u(t) in
2Q 3Q the circuit of Fig. 7.118.
6Q
6Q
(b)
Figure 7.114  For Prob. 7.45. 40
Vg 3Q § +
746  Findv(t) forr < Oandr > Ointhecircuit in Fig. 15H S v,
7.115. -
i 05H Figure 7.118  For Prob. 7.50.
= ol T
t=0
751 Findv(¢) fort > Ointhecircuit of Fig. 7.119 if the
3Q initial current in the inductor is zero.
8Q *
4, ’ 2Q § v
24V 20V .
4u(t) 5Q 8H 20Q=3v

Figure 7.115 For Prob. 7.46.

Figure 7.119 For Prob. 7.51.

7.47  For the network shown in Fig. 7.116, find v(¢) for

1> 0. 7.52 Inthecircuitin Fig. 7.120, i; changesfrom 5 A to

10A atr =0;thatis, iy = 5u(—t) + 10u(z). Find v
5Q andi.

6Q *

20V _ +
oA @ 1o 2OQ§ 05H J\r/ © - @ 4Q§ O'SHgf

*7.48  Findiy(¢) and i(¢) for + > 0inthe circuit of Fig. 7.53  Forthecircuit in Fig. 7.121, calculatei(¢) if
7.117. i(0) = 0.
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3Q 6Q 10kQ
i
* 2 ukF
u(t-1)V §2H u(t) v ¢
+ v -
| >,
Figure 7.121 For Prob. 7.53.
20kQ § 10kQ
7.54  Obtainv(¢) andi(¢) in the circuit of Fig. 7.122.
50 o -
Figure 7.125  For Prob. 7.57.
+
10u(-t) V 200 05H v
758 1If v(0) =5V, findv,(¢) for + > 0intheopamp
circuitinFig. 7.126. Let R =10kQ and C = 1 uF.
Figure 7.122 For Prob. 7.54.
755  Findv,(¢) for t > Oin thecircuit of Fig. 7.123. R
R
e’ VO
R v <C
Figure 7.126  For Prob. 7.58.
Figure 7.123  For Prob. 7.55 759 Obtain v, fort > 0inthecircuit of Fig. 7.127.
7.56 If theinput pulsein Fig. 7.124(a) is applied to the
circuit in Fig. 7.124(b), determine the response i (z).
t=0
Y5 (V) 4 50 .
10 l i
4v 10kQ 25 uF < Vo
Vs § 20Q g 2H 10KO -
0 1t T
@ (b)
Figure 7.127  For Prob. 7.59.
Figure 7.124  For Prob. 7.56.
7.60  For theop amp circuit in Fig. 7.128, find v, (¢) for
t > 0.

First-order Op Amp Circuits

Section 7.7
7.57  Find the output current i, for + > 0inthe op amp
circuit of Fig. 7.125. Let v(0) = —4 V.
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25 mF
I ©
t=0
10kQ 20kQ 100kQ T‘V _ l io
T AMA—
3u(t) ‘ R
o > ;
VO
°

Figure 7.128  For Prob. 7.60.

7.61

Determine v, for ¢ > 0 when v; = 20 mV in the op
amp circuit of Fig. 7.129.

Figure 7.131

For Prob. 7.63.
7.64  For theop amp circuit of Fig. 7.132, let R; = 10k<2,
R; =20kQ, C = 20 uF, and v(0) = 1 V. Find v,,.

R
R C
H
+ Vv - +
4u(t) Vo
5

Figure 7.132  For Prob. 7.64.
5uF 7.65 Determinev,(¢) for r > 0inthe circuit of Fig.
20k 7.133. Let iy = 10u(r) nA and assume that the
§ capacitor isinitially uncharged.
1 2 uF 10kQ
— A
Figure 7.129  For Prob. 7.61. °
iS 50 kQ Vo
7.62  FortheopampcircuitinFig. 7.130, find i, for t > 2. o
10K Figure 7.133  For Prob. 7.65.
10kO 20 kO 7.66 Inthecircuit of Fig. 7.134, find v, and i,,, given that
\ AMA vy =4u(t) Vandv(0) =1V.
- [
4V 100 mF =<

:

Figure 7.130  For Prob. 7.62.

Find i, intheop amp circuitin Fig. 7.131. Assume
that v(0) = =2V, R = 10k, and C = 10 uF.
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Figure 7.134 " For Prob. 7.66.
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CHAPTER 7

Section 7.8 Transient Analysiswith PSpice
7.67  Repeat Prob. 7.40 using PSpice.

7.68 TheswitchinFig. 7.135 opensat t = 0. Use PSpice
to determine v(¢) for ¢ > 0.

t=0 + v -
Q
A
100 mF
sa @ 40 60 200 30V
Figure 7.135  For Prob. 7.68.
7.69  Theswitchin Fig. 7.136 moves from position a to b
att =0. UsePSpicetofindi(z) fort > 0.
1o
108V 2H
Figure 7.136  For Prob. 7.69.
7.70  Repeat Prob. 7.56 using PSpice.
Section 7.9 Applications
7.71  Indesigning asignal-switching circuit, it was found
that a 100-uF capacitor was needed for atime
constant of 3 ms. What value resistor is necessary
for the circuit?
7.72 A simplerelaxation oscillator circuit is shown in

Fig. 7.137. The neon lamp fires when its voltage

reaches 75 V and turns off when its voltage drops to

30 V. Itsresistance is 120 & when on and infinitely

high when off.

(8) For how long isthe lamp on each time the
capacitor discharges?

First-Order Circuits

7.73

7.74

293

(b) What isthetimeinterval between light flashes?

4MQ

+
120V IT 6 uF =

Figure 7.137

Neon lamp

For Prob. 7.72.

Figure 7.138 shows a circuit for setting the length of
time voltage is applied to the electrodes of awelding
machine. Thetimeistaken as how long it takes the
capacitor to charge from O to 8 V. What is the time
range covered by the variable resistor?

100kQ to 1 MQ
Welding | . l
12V 2uF == | control ol
T unit . h
Electrode
Figure 7.138  For Prob. 7.73.

A 120-V dc generator energizes a motor whose coil
has an inductance of 50 H and a resistance of 100 €.
A field discharge resistor of 400 2 is connected in
parallel with the motor to avoid damage to the
motor, as shown in Fig. 7.139. The system is at
steady state. Find the current through the discharge
resistor 100 ms after the breaker is tripped.

Circuit breaker
N
120V Motor 400 Q
Figure 7.139 For Prob. 7.74.

COMPREHENSIVE PROBLEMS

7.75  Thecircuit in Fig. 7.140(a) can be designed as an
approximate differentiator or an integrator,
depending on whether the output is taken across the
resistor or the capacitor, and also on the time
constant = RC of the circuit and the width T of

theinput pulsein Fig. 7.140(b). Thecircuitisa

differentiator if t <« T, say T < 0.17, or an

integrator if t > T, say t > 107.

(@) What isthe minimum pulse width that will allow
adifferentiator output to appear across the
capacitor?
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7.76

7.77

PART | DC Circuits

(b) If the output isto be an integrated form of the
input, what is the maximum value the pulse
width can assume?

7.78

300 kQ v,

200 pF

(CY (b)

Figure 7.140  For Prob. 7.75.

An RL circuit may be used as adifferentiator if the
output is taken across theinductor and t <« T (say
t < 0.17), where T isthe width of the input pulse.
If R isfixed at 200 k€2, determine the maximum
value of L required to differentiate a pulse with

T =10 us.

An attenuator probe employed with oscilloscopes
was designed to reduce the magnitude of the input
voltage v; by afactor of 10. Asshownin Fig. 7.141,
the oscilloscope has internal resistance R, and
capacitance C,, while the probe has an internal
resistance R,. If R, isfixed at 6 M, find R, and
C, for the circuit to have atime constant of 15 us.

7.79

Probe Scope
O—ANWW o]
+ Rp +
Vi Rs % Cs = Yo
o o
Figure 7.14 For Prob. 7.77.

Thecircuit in Fig. 7.142 is used by abiology student
to study “frog kick.” She noticed that the frog
kicked alittle when the switch was closed but
kicked violently for 5 s when the switch was
opened. Model the frog as aresistor and calculate
itsresistance. Assume that it takes 10 mA for the
frog to kick violently.

Switch
Frog

Figure 7.142  For Prob. 7.78.

To move a spot of a cathode-ray tube across the
screen requires a linear increase in the voltage
across the deflection plates, as shown in Fig. 7.143.
Given that the capacitance of the platesis 4 nF,
sketch the current flowing through the plates.

v (V)

10

>

t

Risetime=2 m;\ Droptime=5us
(not to scale)

Figure 7.143  For Prob. 7.79.

Go to the Student OLC
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