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1 PREDUCTION/INTROFACE

It is customary to begin a book of this sort with Deep and Noble Thoughts.
There are a number of excellent sources that convincingly make the point that
timing is extremely important in current and future technologies‚ and as a Bear
of Very Little Brain [Mil28]‚ the author has little to add to this. Therefore‚
all that there is to say is presented in a hybrid between a preface and an
introduction (which‚ in case you were wondering‚ is where the title of this
chapter came from). Suffice it to say that if you’ve picked up this book‚ you’re
probably interested in timing in one way or another.

This book attempts to provide an overview of methods that are used for
the analysis and optimization of timing in digital integrated circuits in con-
temporary technologies. It is rather well known that this topic is important
to circuit designers and CAD engineers. The problem of timing analysis and
optimization has come a long way over the years‚ and has become increasingly
complicated with the passage of time due to two classes of effects that arise
due to shrinking device geometries:

“Micro” effects correspond to new physical effects at the device or intercon-
nect level caused by reductions in device dimensions.

“Macro” effects are related to problems of scale‚ as circuit sizes increase
with the ability to pack larger circuits on a die.
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The former necessitates novel approaches that handle the new effects‚ while
the latter requires great efficiency in the algorithms to handle increasing prob-
lem sizes.

One of the holy grails of design is to achieve timing closure in a single pass
of design; simply put‚ this implies that the design should meet its specifications
without iteration. This is a rather difficult task‚ and a more realistic goal is
to minimize the number of iterations by using realistic timing information at
every step of design. Unfortunately‚ this is limited by the fact that early design
stages‚ which show great flexibility towards design change‚ must operate under
incomplete layout information‚ whereas later steps‚ where the more detailed
layout provides accurate timing estimates‚ show a lower degree of flexibility.

Developing accurate methods for timing is‚ therefore‚ a vital part of ensur-
ing fast timing closure. As a part of this goal‚ some kind of timing analysis
must be carried out at each stage of design‚ right from a behavioral or register
transfer level (RTL) description‚ down through logic synthesis‚ transistor-level
optimization‚ and layout‚ working with the level of available information at
each stage. This book primarily focuses on timing issues that are used in the
design cycle in the post-synthesis phase‚ although some of the techniques may
be used at earlier steps of the design cycle.

The organization of the book is as follows:

In Chapter 2‚ we go through a quick tour of circuit simulation‚ which should
be just enough to introduce the concepts that are required for fast timing
analysis.

Next‚ in Chapter 3‚ fast techniques for the analysis of linear systems using
model order reduction and related techniques are studied.

Since real circuits tend to have a mix of linear and nonlinear elements‚ we
stretch this linear world to include nonlinear elements in Chapter 4‚ where
we discuss methods for finding the delay of a single stage of digital logic.

This is then expanded to the static timing analysis of full combinational
circuits in Chapter 5‚ incorporating the effects of transistor nonlinearities
with the linear behavior of interconnect parasitics.

All of the analyses up to this point have been purely deterministic‚ but the
increasing amount of uncertainty in upcoming designs has motivated the
need for statistical timing analysis. This is a relatively recent field‚ and an
overview of approaches for statistical static timing analysis that have been
proposed to date is presented in Chapter 6.

The next step is to overview techniques for the analysis of edge-triggered
and level-clocked sequential circuits in Chapter 7.

Chapter 8 then presents a few techniques for the transistor-level optimization
of combinational circuits‚ specifically using the techniques of transistor sizing
and dual assignment for purposes of illustration.
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Chapter 9 considers the effects of intentional or deliberate skews in the
clock network‚ surveying techniques for clock network construction‚ zero and
nonzero skew optimization‚ and combinational optimization in conjunction
with the use of deliberate skews.

The technique of retiming‚ a purely sequential optimization method‚ is intro-
duced in Chapter 10‚ and algorithmic techniques for retiming are discussed.

Finally‚ the book closes out with some concluding remarks in Chapter 11.

It is unlikely that this book is free of errors‚ and a list of errata will be
maintained at

http://www.ece.umn.edu/users/sachin/timingbook

3
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2 A QUICK OVERVIEW OF CIRCUIT
SIMULATION

2.1 INTRODUCTION

Circuit simulation provides an methodical procedure for writing the equations
that describe a circuit‚ and utilizes numerical techniques to solve them to an ac-
curacy within the limits of the numerical methods and machine precision. The
result of this computation can be used to determine the currents and voltages
throughout the circuit over a specified time period of interest. It is generally
considered to be the most precise practical way of solving general circuits. In
this chapter‚ we will overview the techniques used by circuit simulators such
as SPICE [Nag75]. This discussion aims to be sufficient to acquaint the reader
with the background required for understanding concepts in timing analysis‚
and is not intended to be completely thorough; for such coverage‚ the reader is
referred to [CL75‚ VS94‚ PRV95].

At the most elementary level‚ a circuit may consist of fundamental ele-
ments such as resistors‚ capacitors‚ inductors‚ transistors‚ diodes and controlled
sources. A circuit is an interconnection of these fundamental elements‚ and the
currents and voltages in the circuit are governed by three basic sets of equations:

Kirchoff’s Current Law (KCL)‚ which states that the algebraic sum of cur-
rents leaving any node is zero‚

Kirchoff’s Voltage Law (KVL)‚ which affirms that the current around any
cycle in a circuit must be zero‚ and
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the device equations that relate the current and voltage parameters for in-
dividual elements.

The KCL and KVL relations are linear equations that are purely topological
in that they depend only on the connectivity of the network‚ and not on the
type of elements in the circuit. The element characteristics are wholly modeled
by the device equations‚ and these may‚ in general be linear or nonlinear or
differential equations. Circuit simulation involves the solution of this system
of equations to find the currents and voltages everywhere in the circuit. For
practical purposes‚ the results of circuit simulation are often considered to be
the exact solution to any circuit‚ although it is useful to temper this statement
with the observation that any such solution is only as exact as the models that
are used for the devices.

For a circuit with nodes (plus a ground node) and branches‚ there are
independent KCL equations‚ independent KVL equations‚ and device

equations. The circuit variables consist of node voltages‚ branch currents
and branch voltages‚ which yields a total of equations in an equal
number of variables.

There are several ways of combining these equations into a more compact set‚
but we will focus our attention on the modified nodal analysis (MNA) method
since it is arguably the most widely-used formulation.

2.2 FORMULATION OF CIRCUIT EQUATIONS

We first introduce a formal manner for writing the equations for a circuit. To
write the topological KCL and KVL equations‚ we will consider a circuit to
be represented by a directed graph G = (V‚E)‚ where the vertex set V has a
one-to-one correspondence with the set of nodes in the circuit‚ and the elements
in the edge set E correspond to the branches. The directions on the edges may
be chosen arbitrarily1. Given any such graph‚ we can define the notion of an
incidence matrix‚ on the graph G. This is an matrix‚ with the
rows corresponding to the nonground vertices and one vertex corresponding
to the ground node. Each of the columns corresponds to a directed edge and
has two nonzero entries: a “+1” for the source of a directed edge‚ and a “-1”
for the destination. An example incidence matrix for a sample circuit graph
is shown in Figure 2.1. The reference directions chosen for the branches are
shown by arrows in the circuit graph.

It may be observed that by definition‚ the sum of all entries in each column
of is 0; as a consequence‚ is not of full rank2. It can be shown that
for a connected graph the rank of is and that any submatrix
of is nonsingular. In other words‚ eliminating one row of (typically
the row corresponding to the ground node) would convert it to a matrix of full
rank that we will denote as A.

Let denote the vector of branch currents. With the aid of the incidence
matrix‚ the KCL equations may be written as follows:
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The explanation for this is simple. Since each row of A has a “+1” entry
corresponding to a branch that has its source at that node‚ and a “-1” for a
branch terminating at that node‚ each row of the matrix product is the
algebraic sum of the currents leaving the node‚ which equals zero.

If is the vector of branch voltages and the vector of node voltages‚
then it is easy to see that the two are related by the equations

From the definition of A, we see that each row in the above equation corre-
sponds to a statement that the voltage across a branch is given by the difference
between the voltages at either end. Although it may not be immediately ob-
vious‚ this is indeed the set of KVL equations. By way of verification‚ the
reader may add the voltages around any cycle and will find that the variables
cancel telescopically to sum up to zero. For instance‚ the application of the
above equation to the sum of the branch voltages in the cycle in
Figure 2.1 yields

Finally‚ the device equations describe the relation between the and
vectors. These equations could be linear or nonlinear or differential equations‚
and for the time being‚ we will focus our attention on devices whose character-
istics are defined by linear algebraic equations. For convenience‚ we will divide
these into two categories:

Type 1 devices can be defined by a device equation of the type

If is the total number of such devices in the circuit‚ then Y is a constant
matrix and s is a constant vector. Examples of such devices
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are conductances‚ constant current sources‚ and voltage-controlled current
sources.

Type 2 devices are those that are not described by Type 1 equations‚ and
are instead described by equations of the type

If is the total number of Type 2 devices in the circuit‚ then Z and G are
constant matrices‚ and t is a constant vector. Constant voltage
sources and current-controlled current/voltage sources cannot be described
by Type 1 equations‚ and therefore they are examples of this class of devices.

Let us now consider a circuit that contains only Type 1 and Type 2 devices.
Clearly, for such a circuit, the sum of and is The relations describ-
ing this system correspond to Equations (2.1), (2.2), (2.3) and (2.4). However,
simple algebraic substitutions may be used to reduce these to a smaller set of
equations.

For convenience, we will order the branch voltage and branch current vectors
so that the Type 1 devices are listed before the Type 2 devices. The incidence
matrix is also correspondingly rearranged, with the submatrix corresponding
to Type 1 [Type 2] devices being referred to as We will denote the
vector of currents and voltages corresponding to Type 1 [Type 2] elements by

and and respectively. The list of all circuit equations is
then:

Combining (2.5)‚ (2.6)‚ and (2.8)‚ we obtain

The two remaining equations may also be merged: by inserting (2.7) into (2.9)‚
we get
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The equations (2.10) and (2.11) may be written together in terms of the modified
nodal formulation (MNA) as:

We observe that the variables in the MNA equation correspond to the voltages
at each of the nodes and the currents through the Type 2 elements‚ for a total
of equations in as many variables. When all elements are of Type 1‚ this
set of equations is referred to as the nodal formulation.

2.2.1 Stamps for commonly-encountered elements

It may appear that finding the above expression would require a good deal of
computation‚ involving the multiplication of large matrices. Fortunately‚ there
are simple techniques for finding the entries of the MNA matrix by developing
“stamps” for individual elements‚ and formulating the left hand side matrix
and right hand side vector by inspection of a circuit. To illustrate this‚ we will
develop stamps for a few typical elements:

Conductances. For a conductance connected on a branch between nodes
and and carrying a current and a voltage each with a reference

direction from to the contribution to the KCL equation can be shown in
terms of its entries in the incidence matrix as follows:

Substituting the device equation for the conductance‚ we can rewrite
the above equation as

Finally‚ the only remaining relation to be substituted is the KVL equation that
states that where and are‚ respectively‚ the voltages at the
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nodes and We obtain

This implies that for a conductance connected between nodes and there
are no contributions to the  matrix, and the LHS matrix has only four
entries: at the and positions, and at the and
positions. It may be observed that since a conductance is a Type 1 element,
the only contributions are to the region of the MNA matrix.

Constant current sources. Now consider another Type 1 element: a con-
stant current source on a branch directed from node to node Its
contribution to the KCL equation is

Substituting the device equation for the conductance, we can find its
stamp as

The stamp for a constant current source is, therefore, an entry of in the
RHS matrix in the position and in the position.

Constant voltage sources. A constant voltage source of value V connected
on a branch between nodes and is an example of a Type 2 element.
Therefore, its contributions to the KCL equation are similar to the elements
above; the difference here is that the branch current variable remains present
in the final set of MNA equations.

The Type 2 device equation, combined with the KVL equation, states that
This is written in the lower part of the MNA matrix, after all

RHS
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the KCL equations‚ as follows:

Other elements. The stamps for several other elements are as shown below;
their derivation is left as an exercise to the reader.

Capacitors in the Laplace domain A capacitor of value C is represented
as an admittance of Its stamp can therefore be derived to be identical
to the stamp for the conductance shown in Equation (2.15)‚ with replaced
by to give:

Inductors in the Laplace domain A similar argument may be used to state
that the stamp for a self-inductance of value L is the same as that for the
conductance‚ but with replaced by However‚ for reasons of conve-
nience that we will further elaborate on in Section 3.5.2‚ inductors are often
represented as Type 2 elements‚ so that their stamps can be derived‚ in a
manner similar to the derivation of Equation (2.18)‚ as

For a system of mutual inductances‚ in the Type 2 device equation‚ G = I‚
where I is the identity matrix‚ and Therefore‚ the corresponding
stamp is given by:
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Controlled sources For the controlled sources shown in Figure 2.2‚ the MNA
stamps are as follows:
Current-controlled current source (CCCS):

Note that this element docs not have any branches that are classified as
Type 2 elements. While this stamp looks superficially similar to that for the

Voltage controlled current source (VCCS)
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conductance, it differs in that it is asymmetric: it contains no entries in the
rows of and or in the columns and and will lead to an asymmetric
nodal or MNA matrix.

Current controlled voltage source (CCVS)

2.3 EXAMPLES OF EQUATION FORMULATION BY INSPECTION

Example 1: Consider the circuit shown in Figure 2.3(a) with two unit resistors,
driven by a unit current source. The circuit has two non-ground nodes and no

Voltage controlled voltage source (VCVS)
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Type 2 elements‚ and therefore its equations can be written using the nodal
formulation. The circuit is described by a system of two equations in the two
nodal variables‚ and the voltages at the two non-ground nodes. Adding
up the contributions of the conductance stamp from Equation (2.15) and the
current source stamp from Equation (2.17)‚ the nodal equations are found to
be:

Note that the conductance contributes to all four elements of the LHS matrix,
to only the (2,2) element (since its other end is connected to ground), and,

for the same reason, J to only one entry on the RHS.
It is easily seen that the solution to this system is which is

the expected solution for such a resistive divider.
Example 2: The circuit in Figure 2.3(b) corresponds to Figure 2.1(a), where
the elements in branches and are unit resistances, those in and
are unit capacitances, and the element is a voltage source excitation.
with a directionality from to the latter is taken to be the ground node.
This system contains one Type 2 element, the voltage source, and three nodal
voltage variables. In the frequency (Laplace) domain, the MNA equations can
therefore be written as

2.4 SOLUTION OF NONLINEAR EQUATIONS

In Section 2.2‚ an equation formulation technique for circuits described by linear
algebraic equations was described. In this section‚ we will build upon this
foundation to consider how devices that are described by nonlinear algebraic
equations may be incorporated into such a formulation.

To motivate this idea‚ let us consider the example of a diode connected
between nodes and This element is represented by the equation

where and are‚ respectively‚ the current through and the voltage across the
diode‚ and is the thermal voltage‚ which is the product of a physical constant
and the temperature. These device characteristics are pictorially illustrated
by the curve shown in Figure 2.4. The operating point of the diode
depends on the device equations for the other elements of the circuit and on
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the circuit topology. Let us assume that we iteratively proceed to find this
value‚ beginning with an initial guess. In the iteration‚ let us assume that
this value is We may then approximate the diode equation by a tangent
to the curve at this point‚ as shown in the figure. This tangent provides a local
linear approximation4 to the nonlinear curve. Specifically‚ this may be obtained
through a first order Taylor series expansion as

where

It is easy to see that this local linear approximation is a Type 1 equation; in
particular‚ it is equivalent to a conductance of in parallel with a current
source of value Therefore‚ it may be represented in the circuit by adding
the stamps for these elements‚ so that the composite stamp for a diode in the

iteration is

In the equation above, and are MNA variables that correspond to the
voltages at the two nodes and between which the diode is connected.
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Having observed this principle‚ let us now consider a device equation of the
type

Such an equation may be approximated using a truncated first order Taylor
series about a point (we will see later that the subscript

corresponds to an iteration number). This results in the following equation:

Note that the partial derivative is evaluated at so that this results in a linear
approximation. An alternative interpretation of this is that it approximates the
nonlinear function by its tangent plane at the point to arrive at a local linear
approximation. This procedure is identical to the Newton-Raphson method
that is used to find the roots of a nonlinear system of equations‚ and is often
referred to by that name (or simply as “Newton’s method”).

Returning to the original context‚ consider a circuit consisting only of de-
vices whose characteristic equation may be represented by linear or nonlinear
algebraic equations. Recall that both KCL and KVL are linear. If the nonlin-
ear equations were to be in the form of Equation (2.29)‚ then the locally linear
approximation provided by Equation (2.30) could be used to obtain a system of
purely linear algebraic equations. Further‚ any such linearized device equation
could be taken to be a Type 1 or Type 2 device‚ which implies that the circuit
could be represented using the MNA formulation.

In general‚ such a locally linear approximation is accurate only within a small
region around the expansion point if the actual operating point of the device
is within this region‚ then the solution to the linearized MNA formulation is
a valid solution to the original nonlinear system. If it is not‚ then the MNA
solution will lead to a new solution point‚ A new guess for the operating
point may be obtained using this value‚ and the circuit may be linearized about
the new operating point. This process is repeated until convergence.

For a general system of equations‚ there is no guarantee of convergence if we
start from an arbitrary initial guess. However‚ in practice‚ it is often possible to
obtain reasonable initial guesses‚ particularly for digital circuits‚ which allows
the procedure to converge relatively soon.
Example: A Level 1 SPICE model for an nmos transistor is given by the
equations

where is the current from drain to source‚ and are the gate-to-source
and drain-to-source voltages‚ respectively‚ is the threshold voltage‚ and K is
a constant that depends on the dimensions of the transistor and the physical
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properties of silicon. For simplicity‚ we will ignore the body effect and consider
the device to be a three-terminal structure.

During the Newton iteration‚ the linearized equations for the nmos device
about the point are given by:

where

The cutoff‚ linear and saturation regions are as defined in Equation (2.31).
Let us now present a general framework for handling a circuit described by

linear and nonlinear algebraic equations. Consider a circuit that contains
devices‚ of which the characteristic equations of devices are represented by
nonlinear algebraic equations; the remaining characteristic equations are
linear algebraic equations. We will write the nonlinear equations as

We define the Jacobian for these equations as

The approximating systems of equations may then be listed as

which become Type 1 or Type 2 devices.
The computational overhead here consists of evaluating the Jacobian matrix

in each iteration and this could be considerable. Several methods have been
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proposed to speed up this process. For instance‚ the parallel chord method
assumes small perturbations from one iteration to the next‚ and updates the
Jacobian only after several iterations.

The nonlinear iterations end when a convergence criterion is satisfied. One
such convergence criterion is

for appropriately chosen values of the tolerances and

2.5 SOLUTION OF DIFFERENTIAL EQUATIONS

Now that our framework has been expanded to include any linear or nonlinear
algebraic equation‚ let us consider devices that are represented by ordinary
differential equations.

As a motivating example‚ let us consider an arbitrary device whose charac-
teristics are given by the equation

where is the variable of interest and is a general nonlinear equation. The
initial condition for this differential equation is given as where
is a constant. Let us assume that we have calculated the value of up to some
arbitrary time point and let us consider how the next value at time point

is computed‚ where is referred to as the time step. It is enough
to explain how we can compute from this information; if we know this‚ we
can start with and proceed one time step at a time‚ even possibly
varying the time step from one time point to the next.

An intuitive way of performing this task may be understood visually by
examining Figure 2.5(a). If we know the value of and the time derivative of

at time we can simply calculate the value of at time as
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This is referred to as the Forward Euler numerical integration formula‚ and it
is merely a natural consequence of the finite difference approximation‚

where the left hand side represents the derivative evaluated at time
Another alternative is to instead let the left hand side of Equation (2.39)

correspond to the derivative at time this leads to the numerical integration
formula‚

This technique‚ called the Backward Euler method may be interpreted as shown
in Figure 2.5(b)‚ where we take a step back from the time point and use the
derivative at that point to estimate the value there. Of course‚ the value of the
derivative and the value are both unknown‚ so that we obtain an implicit
equation in here‚ instead of the explicit equation provided by the Forward
Euler method‚ where all terms on the right hand side are known. It can be seen
then that both Equations (2.38) and (2.40) effectively convert the differential
equation to a nonlinear equation at each time point.

The intuition behind yet another formula for numerical integration can like-
wise be arrived at. The Trapezoidal rule follows similar principles as the For-
ward Euler and Backward Euler methods‚ but averages the derivative at the
points and so that it may be stated as

As a motivating example to see how these techniques could be applied to
circuit analysis‚ let us consider a linear capacitor of value C that is represented
by the device equation

where and are, respectively, the current through and voltage across the
capacitor, and is the time variable5. Let us assume that we know the value
of this voltage and current at some time point and that we would like to
calculate its value at the time point for a sufficiently small time
step,

Using the Forward Euler method, we have
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Combining this with Equation (2.42) yields

Since the values at time are unknown‚ we drop all subscripts to obtain the
approximated characteristic equation at as

This corresponds to a constant voltage source‚ and therefore‚ the circuit may
be analyzed by replacing the capacitor by a constant voltage source.

Alternatively‚ one could use the Backward Euler formula‚

Substituting the characteristic equation for the linear capacitor and dropping
the subscripts‚ we obtain the following approximation:

This corresponds to a conductance of value in parallel with a current source
of value The stamps for these elements may be used to solve the
circuit at time

If the Trapezoidal rule is used instead‚ it is easy to verify that for the linear
capacitor‚ this results in the equation

which again is a conductance in parallel with a current source.
All three methods use the information from one previous time step‚ but from

Equations (2.47) and (2.48)‚ we can see that the Backward Euler only requires
the voltage across the capacitor at the previous time step‚ while the Trapezoidal
Rule requires both the voltage and current from the previous time point.

Stability

While the preceding discussion makes these formulæ all look superficially sim-
ilar, they have vastly different characteristics in terms of numerical stability.
We explore the concept of numerical stability with the aid of a test equation,

where is an arbitrary complex number. As the solution tends
to zero when and it tends to when At the very
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minimum‚ the numerical solution should obey these limiting conditions‚ and if
it does‚ we refer to the numerical integration formula as being stable.

Now consider the behavior of each of the above formulæ on this test equa-
tion‚ At the outset‚ we point out that since the step size the sign of

is the same as that of For the Forward Euler method under a
constant step size so that

When as provided Representing
the above equation may be rewritten as

In the this corresponds to a circle centered at (–1‚0) with a radius of
1‚ as shown in the left half plane (corresponding to in Figure 2.6(a)).
When satisfies the requirement that lies within this region‚ the resulting
solution satisfies the basic requirement of stability: that the asymptotic value
of the solution as time tends to is the same as that for the exact solution.

On the other hand‚ for the case when we must have
as It is easily verified that as regardless of
what value of is chosen‚ implying that the test equation satisfies the stability
requirement for this case over the entire right half plane.
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Similar analyses for the Backward Euler method and Trapezoidal rule yield
regions of stability as shown in Figure 2.6(b) and (c)‚ respectively. Several
observations may be made:

When the Backward Euler formula and the Trapezoidal rule are
unconditionally stable for the test equation‚ regardless of the choice of the
step size while the Forward Euler method satisfies this condition only
when is sufficiently small.

When it is the Forward Euler formula and the Trapezoidal rule
that unconditionally obey the requirement that the solution
as while the Backward Euler method obeys this only when is
sufficiently small.

The significance of the test equation is that the response of many physical
system can be represented as a sum of exponentials‚ so that stability with
regard to this equation is necessary. Moreover‚ since physical systems tend to
decay with time‚ stability in the left half plane is of greater practical interest‚
and therefore‚ the Backward Euler method and Trapezoidal rule are “good”
methods‚ while the Forward Euler method is “bad” and is often shunned in
practice.

It is important to offer the following caveat: stability is merely a sufficient
condition for goodness‚ and that stability does not imply accuracy. If it did‚
one would need look no further than the Trapezoidal rule for perfection!

2.5.1 Accuracy and the local truncation error

An alternative interpretation of the Forward Euler and Backward Euler meth-
ods views them as truncated Taylor series approximations. Let us consider the
solution at the time point. Given the solution at the time
point‚ we may write the Taylor series approximation of the solution as

We observe from this equation that the Forward Euler method is merely this
approximation‚ truncated after the first order term. Therefore‚ we can explicitly
say that the error for this approximation is given by the truncated terms. In
practice‚ for a “sufficiently small”6 value of this is dominated by the first
truncated term‚ and we refer to its absolute value as the local truncation error
(LTE). For the Forward Euler method‚ this is given by

The Backward Euler method can similarly be analyzed‚ this time with the
Taylor series expansion being performed about the point as
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Again‚ it is easily seen that the Backward Euler formula arises from the trun-
cation of the terms that are of second order and higher‚ yielding

The error for the Trapezoidal rule does not emerge quite as simply from the
Taylor series approximation‚ but can be shown to be

Intuitively‚ the reason why this yields a third order term is that the Trapezoidal
rule “averages” the derivative from the Forward Euler and Backward Euler
methods‚ which causes the second-order term to cancel out‚ leaving the
term as the lowest-order term with a nonzero coefficient.

The expressions for the LTE above can all be seen to be proportional to
some power of Therefore‚ if one wanted to control the accuracy‚ a limit
could be set on the allowable LTE in each step‚ and the step size could be
chosen accordingly. For instance‚ for the Backward Euler method‚ for a given
upper limit on the LTE‚ we have

where is an estimate of the second derivative of at time point

In general‚ it is possible‚ and may even be desirable‚ to have a different value
for the time step at each time point. A specific example is the case of a rising
saturated exponential‚ as shown in Figure 2.7. Initially‚ when the transition is
very quick‚ a smaller time step is desirable‚ while in later parts where the value
does not change significantly for larger periods of time since the transition is
much slower‚ the time step may be increased without appreciable error. This
is automatically detected by Equation (2.57) as changes.

2.5.2 Other numerical integration formulæ

Although this discussion has focused on the Forward Euler and Backward Eu-
ler methods and the Trapezoidal rule‚ a rich variety of numerical integration
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methods is available. A class of methods that is particularly useful is that of
linear multistep formulæ; all of these three methods belong to that class. The
order of a linear multistep formula is related to the amount of previous infor-
mation (values and derivatives at previously computed points) that must be
maintained.

Before departing the topic, it is worth pointing to a subset of this class,
namely, the set of Gear’s formulæ that are “stiffly stable,” or in casual parlance,
stable for asymptotically decaying systems with steep settling exponentials; the
Backward Euler formula, which we know to be stable in the entire left half
plane, is a first order Gear’s formula.

A complete discussion of these techniques is beyond the scope of this book,
but the reader is referred to [CL75] for a detailed exposition on the topic in the
context of circuit simulation.

2.6 PUTTING IT ALL TOGETHER

The overall structure of a SPICE-like circuit simulator is illustrated in Fig-
ure 2.8. The initial system of equations may be a set of linear‚ nonlinear and
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differential equations. A time step is chosen and the differential equations are
converted to nonlinear equations at each time point using a numerical integra-
tion formula. Therefore‚ at each time step‚ this results in a system of nonlinear
and linear equations that must be solved.

The stamps for the linear equations are entered into the MNA matrix. At
each time step‚ in the inner loop of iterations‚ the nonlinear equations are
linearized at the operating point‚ as discussed in Section 2.4. The corresponding
stamps are entered into the MNA matrix‚ and the resulting system of linear
equations is then solved using techniques similar to those that will be outlined
in Section 2.7. Once the nonlinear iterations converge‚ the outer loop marches
on to the next time step‚ and so on until the entire time period of interest is
simulated.

A key issue here is in the generation of the initial conditions for the differ-
ential equations‚ which may not always be provided explicitly‚ by solving the
initial circuit at the steady state. This is referred to as the problem of DC
solution‚ and the reader is referred to [PRV95] for algorithms for this purpose.

2.7 A PRIMER ON SOLVING SYSTEMS OF LINEAR EQUATIONS

From the above discussion‚ it can be seen that regardless of the type of equation
(linear‚ nonlinear or differential)‚ the circuit simulation procedure transforms it
into an approximated linear system of equations that must be solved. Therefore‚
a vital subproblem in circuit simulation relates to the solution of a system of
linear equations‚ Ax = b‚ where A is an matrix‚ and x and b are each

vectors. We will briefly overview the LU factorization technique‚ a so-
called direct method‚ and some iterative‚ or indirect‚ methods for solving this
problem.

2.7.1 LU factorization

The idea of this method is to decompose the matrix A into the product of two
matrices: an lower triangular matrix‚ L‚ and an upper triangular matrix‚

U. To depict this more visually‚ we write
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If this could be done‚ the original system could be rewritten as

Substituting

we have

Since L is a lower triangular matrix‚ this may be solved easily to find the value
of y using a procedure known as forward substitution. Given this value of y‚ the
system in Equation (2.59) may be similarly solved‚ this time using a method
known as backward substitution‚ to find the value of x.

For the specific case where A is symmetric7 and positive definite8‚ it can be
shown that one can find an LU factorization so that so that we may
write This factorization is referred to as the Cholesky factorization
of A.

The key step is‚ therefore‚ in determining how A may be decomposed into
the product of L and U. A simple way to understand this is in terms of
Gaussian elimination [Gv96]‚ a technique in which we start from the matrix
equation Ax = b‚ and successively perform identical row operations on A and

with the aim of transforming A into an upper triangular matrix. The row
transformations successively use multipliers and in each step‚ subtract
times row from row for both the left hand side matrix and the right hand
side vector. Any such row transformation preserves the equality between the
left and right hand sides. During Gaussian elimination‚ A eventually becomes
an upper triangular matrix U‚ b is transformed to a vector‚ y‚ and the equation
takes the form Ux = y.

The careful reader may view this discussion and find the use of notation
“sloppy‚” as the choice of the symbols U and y in the context of Gaussian
elimination above is identical to that used for LU factorization. This is not
entirely a mistake‚ and nor is it accidental! One way to LU-factorize a matrix
is to perform Gaussian elimination until the matrix A is transformed into U;
at this point‚ we have Equation (2.59). The matrix L simply corresponds to
the multipliers that were used to perform the transformations.
Example Consider the system of equations

The sequence of steps through which Gaussian elimination proceeds is listed
below; in each case‚ the multiplier that is used to zero out the lower
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triangular element is shown.

and U is the above upper triangular matrix. Given all of the multipliers‚ we
may simply write the L matrix using these multipliers as

The reader may easily verify that A = L . U for this example
To substantiate this more formally‚ let us now examine the process by which

Gaussian elimination transforms Ax = b to Ux = y. In each step‚ the lower
triangle of one column i of the matrix is zeroed out through row transforma-
tions‚ by subtracting times the row) from the row. Eventually‚ we
can see that

Moving the negative terms to the left hand side and rewriting the equations in
matrix form‚ we may relate y and b through the relation

or simply‚ Ly = b.
We now illustrate the procedures of forward and backward substitution: the

terms “forward” and “backward” allude to the order in which the variables
are solved for in the system. For the case of forward substitution‚ since L
is lower triangular‚ one may find the elements of the vector y‚ starting from
the first equation of Ly = b‚ which directly yields then proceeding to the
second equation‚ which yields (since is known by now)‚ and so on forward

...
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until we reach the equation. Now that y has been found‚ solving Ux = y
is similarly easy. Since U is upper triangular‚ one may start from the last
equation to find         then proceed to the second last equation‚ and so on until
the first equation‚ to find the in backward order‚ and this explains why the
procedure is referred to as backward substitution.
Example For the system of equations (2.61)‚ we solve Ly = b using forward
substitution to obtain the elements of y as Next‚
applying backward substitution we find the elements of x from Ux = y as

Pivoting
During the process of LU factorization‚ it is very possible that a diagonal

element with a value of zero may be encountered. If so‚ this would result
in a division by zero. This may be avoided by the use of pivoting‚ whereby
by exchanging the rows in which equations are placed‚ or by exchanging the
columns that represent any given variable‚ a nonzero diagonal element‚ referred
to as the pivot‚ may be obtained‚ and the processing can continue.

For instance‚ for the system of equations

the first diagonal element is zero. One may exchange the first two equations to
obtain

which now has a nonzero at the first diagonal element. Alternatively‚ the first
and second variables may be swapped to obtain

In general‚ it is possible to perform a sequence of row and column exchanges
to use any arbitrary nonzero in the matrix as a pivot. the element at the (3‚3)
position in the original matrix may be brought to the first diagonal through a
combination of a row exchange and a column exchange to obtain:

For efficiency‚ the choice of pivots may be restricted to the elements of the
same column (“column pivoting”)‚ elements of the same row (“row pivoting”)‚
or elements along the diagonal (“diagonal pivoting”).
Computational complexity issues
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The computational complexity of LU-factorizing an matrix can be
shown to be while that of the forward and backward substitution steps
is each. For solving a single system of linear equations, this shows no
real gain over a competing method such as Gaussian elimination; in fact, it
incurs the extra overhead of storing the L factors. The true advantage of LU-
factorization arises when the same left-hand side must be solved repeatedly
for a different set of right-hand sides. In the circuit context, this can arise, for
example, when the response of a resistive system to a time-vary ing excitation is
required at different times, or when for transient analysis of a system of linear
resistors and capacitors under a constant time step in each case, the left hand
side matrix does not change from one time point to the next, but the right-hand
side excitation vector does change. In this case, for different right hand sides,
the expense of LU-factorization is incurred only once, and given these
LU factors, forward and backward substitution are repeatedly carried out for
the excitations, yielding a complexity of as against for
Gaussian elimination.

For real circuits, additional savings may be obtained. Recall that the stamps
for most of the elements discussed in Section 2.2.1 yielded a constant number
of entries in the left hand side matrix; systems of mutual inductances are a
notable exception. Therefore, even for an MNA system with variables, the
number of nonzero entries in the MNA matrix is which is much less than
the size of the matrix, Such a matrix where the number of nonzero entries
is small is referred to as a sparse matrix, and smart techniques may be used to
reduce the cost of LU-factorization. Empirically, for typical circuit matrices, it
has been observed that the cost of LU factorization ranges from to

2.7.2 Indirect methods

An indirect method for solving linear equations begins with a guess solution and
updates the solution through a set of iterations. In some cases‚ the iterations
will converge regardless of the initial guess‚ while in others‚ the iterations will
converge under some conditions but not under others. We will examine some
of the related issues in this section.

To begin with‚ let us consider a system of linear equations Ax = b‚ or more
completely‚

and an initial guess
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In the iteration‚ one could use the equation to update the value
of x as follows:

Alternatively‚ observing that if these computations are carried out sequen-
tially‚ at the time when is to be computed‚ is known we may
use the following update formula instead:

The update formula in Equation (2.70) is referred to as the Gauss-Jacobi
method‚ while the formula in Equation (2.71) is called the Gauss-Seidel method.
The former has the advantage over the latter of being easier to parallelize‚ since
each variable in the iteration may be simultaneously updated; this
is not possible for the latter due to the sequential dependencies between the
update formulæ for and

While there are various ways of characterizing the requirements for conver-
gence‚ it can be shown that if the matrix A is diagonally dominant10‚ both the
Gauss-Seidel and Gauss-Jacobi methods converge unconditionally‚ regardless
of the initial guess. This is a particularly useful fact‚ since there are practical
circuit topologies for which the nodal or MNA matrix is diagonally dominant.

The successive overrelaxation (SOR) method is an alternative update for-
mula that sets the next update value for a variable to be

where is the updated value using the Gauss-Seidel update formula
from Equation 2.71. This formula uses an extrapolation that finds the update
as a weighted sum of the previous iterate and the Gauss-Seidel update. It
is clear that for this method is identical to the Gauss-Seidel method.
Moreover‚ it has been proven that if  (0,2), the procedure will not converge.

..

.

.
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More sophisticated methods do exist‚ such as the conjugate gradient method
or the GMRES (generalized minimum residual) method‚ and for a detailed
explanation‚ the reader is referred to [Gv96‚ SS86].

A technique that is often used to hasten the convergence of an iterative
method involves the use of preconditioners. Given a system of equations in

variables‚ Ax = b‚ and an matrix P that acts as a preconditioner‚ one
may premultiply both sides of the matrix equation by P to obtain

If P were to be exactly then the method would conclude in a single
iteration; this however‚ involves the substantial computational effort of finding

Instead‚ if P were to be a “good” approximation to then PA would
be “close” to the identity matrix‚ and the iterations would converge relatively
soon. The notion of preconditioning essentially involves the choice of a suitable
P that is both easy to compute and satisfies the requirement of being a “good”
approximation to

For a detailed discussion on preconditioning‚ the reader is referred to [Gv96].

2.8 SUMMARY

This chapter has presented an overview of techniques used for circuit simulation.
For elements represented by linear device equations‚ the MNA formulation is
employed‚ and we have seen how it may be constructed by inspection of the
circuit. Nonlinear elements are iteratively linearized at a guess solution and
folded into this formulation‚ and elements described by differential equations
are numerically integrated‚ so that the system is solved at successive time
points. This represents the slowest and practically most exact way of solving a
circuit. In the succeeding chapters‚ we will next see methods that can be used
for faster simulation.
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Notes

1. The reader is invited to verify in the subsequent discussion that this choice merely
provides a reference direction, and does not affect the correctness or validity of the circuit
equations.

2. The rank of a matrix is the dimension of its largest square submatrix that has a nonzero
determinant (i.e., is nonsingular).

3. In this context, this means that if G were to be converted to an undirected graph by
removing the edge directions, then there would be a path between any pair of nodes

4. Pedantically, this should be referred to as an affine approximation, but we will refer
to it through the (strictly speaking, incorrect) common usage that refers to it as linear.

5. Note that if a nonlinear capacitor were used instead, then the fundamental quantity
that describes it would be the charge on the capacitor. The characteristic equation would
then be

The capacitance is denoted here as to emphasize that it is a function of the voltage. It is
particularly important to observe this since many of the capacitances in MOS circuits are in-
deed nonlinear‚ and the blind use of numerical integration formulæ based on Equation (2.42)
instead of Equation (2.74) can lead to significant errors.

6. This sufficiently small value should lie within the radius of convergence of the Taylor
series. Note that this is purely related to accuracy‚  and should not be confused with stability
issues.

7. A symmetric matrix is one for which In other words‚

8 . A matrix A is positive definite [positive semidefinite] if for every nonzero vector x‚ the
scalar An alternative characterization of a positive definite [semidefinite]
matrix is that its eigenvalues are all larger than [larger than or equal to] zero.

9. The quotes refer to the fact that this is not a worst-case complexity‚ and is merely
found empirically over typical circuits.

10. A matrix A is said to be diagonally dominant if The
matrix is said to be strictly diagonally dominant if the inequality is strict.



3 FREQUENCY-DOMAIN ANALYSIS
OF LINEAR SYSTEMS

3.1 INTRODUCTION

A typical digital circuit consists of a number of transistors‚ often organized into
gates‚ that drive interconnect wires. The transistors may be modeled with the
aid of nonlinear resistances and capacitances‚ while the behavior of the wires is
represented by resistors‚ capacitor and inductors. As described in Chapter 2‚
calculating all of the currents and voltages in such a circuit over a specified
period of time requires its solution at numerous time steps‚ at each of which
the nonlinear equations are iteratively solved. Under circumstances where much
more limited accuracy is desired‚ or when only some summary attributes of the
waveform are required‚ such a time-domain analysis method is far too elaborate
and time-consuming‚ and faster timing analysis techniques are employed.

The chief characteristic of digital circuits that permits simplified circuit sim-
ulation is that they can be assumed to be decomposed into stages of logic gates‚
and each of these stages can reasonably be considered independently of each
other. In this chapter‚ we will focus on techniques that can be used to find the
delay of a linear system‚ such as an interconnect net. In Chapter 4‚ we will
utilize these results to first compute the delay of a stage of logic that consists
of an interconnect driven by a logic gate‚ and then use this as a building block
to compute the delay of an entire combinational circuit in Chapter 5.

Before proceeding‚ it is appropriate to focus on two attributes of a waveform‚
pictorially described in Figure 3.1‚ that are of great interest during design:
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The 50% delay (often referred to simply as the delay) of a waveform relates
to the amount of time from the instant when a stimulus is applied to when
its response asserts itself. In the context of a digital circuit‚ it is defined as
the interval that elapses between the time when the input waveform crosses a
specified threshold‚ and when the output waveform crosses a given threshold.
Although these two thresholds could‚ in principle‚ be different from each
other‚ they are most commonly set to be at the halfway point‚ also known
as the 50% point‚ of the waveform transition.

The transition time of a waveform is related to the “slope” of the waveform‚
and is typically defined as the time in which the waveform goes from
to of its final value. Since most such transitions involve exponentials‚
the most commonly used measures correspond to the 10%-90% transition
time and the 20%-80% transition time. However‚ if the signal is modeled
as a piecewise linear function (such as a saturated ramp)‚ a 0% to 100%
transition time is meaningful.

Although finding the most exact values of parameters such as the delay or the
transition time of a waveform requires rigorous circuit simulation‚ quicker and
more approximate estimates may be obtained using timing analysis techniques.

A notable fact is that it is indeed possible‚ under this definition of the 50%
delay‚ to achieve a negative delay! An extremely slow input waveform applied
to the input of a logic stage‚ as shown in Figure 3.2‚ may actually result in
the output rising at a faster rate‚ as a result of which the difference between
the 50% crossing points of the output and the input is negative. This is not
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a nonphysical effect‚ but merely a consequence of the artificial nature of the
choice of the 50% point as the delay threshold. Such a scenario may occur
when‚ for example‚ a gate with low width transistors is used to drive a large
output load1.

Let us now consider the problem of computing these values for the case of an
an inverter driving an interconnect wire. During a transition‚ the inverter can
be represented by a set of nonlinear resistors and capacitors‚ while the inter-
connect can be represented by a set of linear resistors‚ capacitors and possibly‚
inductors (we will consider these models in further detail in Section 3.2). For
the time being‚ let us ignore the nonlinearities and assume all elements to be
perfectly linear; we will consider the consequences of this assumption and revisit
it later in Chapter 4. For such an RLC system‚ one can think of the response
in terms of a set of time constants that dictate the transition‚ and these time
constants depend on the RLC values. If one could estimate the dominant time
constants of such a system‚ it would be a useful aid in calculating the delay
of the system. In the succeeding discussion‚ we will consider first the Elmore
delay metric‚ which attempts to identify the single dominant time constant of
a system‚ and then the asymptotic waveform evaluation (AWE) method and
other higher order modeling techniques‚ which generalizes this to find multiple
time constants.

To understand the notion of a dominant time constant‚ let us consider the
example circuit shown in Figure 3.3. The exact response at node 5 to a unit
step excitation at the input is given in terms of the frequency variable as
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follows:

where the latter expression corresponds to a partial fraction expansion. In the
time domain‚ this corresponds to the following sum of exponentials

The transient here is dominated by the time constant of the first exponential
term‚ which corresponds to the first few exponential terms‚ and the pole at

is referred to as a dominant pole2. While such a distinction is qualitative
rather than quantitative‚ if one were to approximate the exact system by a
lower-order system that captures the dominant pole(s) of the original system‚ a
very good approximation to the waveform could be obtained. Figure 3.4 show
the results of applying the AWE technique (to be discussed in Section 3.5) to the
above system and it is apparent that even a first or second order approximation
is adequate to capture the most important characteristics of this waveform.

This chapter will discuss techniques for the reduced order modeling of lin-
ear systems‚ starting with the asymptotic waveform evaluation method‚ and
then progressing into Krylov subspace-based methods. For a more in-depth
description‚ the reader is referred to [CN94‚ CPO02].

3.2 INTERCONNECT MODELING

Interconnect wires may be modeled at various levels of abstraction‚ ranging
from relatively simple models to those that arise from a full 3-dimensional
extraction. We will outline a set of low-frequency models from the former cat-
egory here‚ which will consider resistance and capacitance‚ but not inductance‚
and for inductance extraction approaches‚ the reader is referred to‚ for exam-
ple‚ [BP01‚ ]. The analysis methods described later in this chapter‚
however‚ are valid for RLC systems.

Given a wire of length and width its resistance R may be modeled as
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where is the sheet resistance‚ which is the ratio of the resistivity of the
material and the thickness of the wire. A simple model for the line-to-ground
wire capacitance is given by

where is the area capacitance and is the fringing capacitance. The line-to-
line capacitance for between two wires that have a coupling length of and a
separation of may be characterized by

where is the coupling capacitance per unit length‚ and is an empirical
constant whose value is between 1 and 2 (a frequently-used value for is 1.34).

Other‚ more complex‚ models for the interconnect capacitance such as those
proposed by Sakurai [ST83] and Chern [ ]‚ are frequently employed.

An on-chip wire with a ground plane is most accurately represented as a
distributed transmission line‚ with infinitesimal elements of size with a
resistance of and a capacitance to ground of where and are
the per unit resistance and capacitance‚ respectively. However‚ practically‚ this
may be represented by discrete‚ noninfinitesimal segments with lengths of the
order of a hundred microns‚ each associated with lumped elements in the form
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of models‚ illustrated in Figure 3.5. The total resistance R of the segment is
connected between the two ends of the segment‚ and the total capacitance to
ground‚ C‚ is divided into two parts‚ one placed at each end of the segment.
This basic model can be used as a building block to model larger lines: for
example‚ for a 1000µm line with a segment length of 100µm‚ ten such models
are cascaded together to represent the line. For coupled lines‚ the pi model
could be extended as follows. The coupling capacitance associated with each
segment could be divided into two components‚ one at each end of the segment‚
and this could be connected between the segment under consideration and the
segment that it couples to. An example of an RC circuit that results from this
is shown in Figure 3.8.

3.3 TYPICAL INTERCONNECT STRUCTURES

We will define a set of basic structures that are commonly encountered in
analyzing interconnect circuits. An RC tree is a tree-structured connection of
resistors with the requirement that any capacitance connected to a node of the
tree must have its other terminal connected to ground‚ and that no resistor
is connected to ground. A distributed RC tree is a tree structure where each
branch corresponds to a distributed resistance between nonground nodes‚ and a
distributed capacitance to ground; this differs from an RC tree‚ which contains
lumped resistors for each wire segment.

The tree-structured nature of the resistances naturally leads to two proper-
ties: firstly‚ resistive loops are forbidden‚ and secondly‚ if one of the nonground
nodes is considered to be an input‚ then there is a unique path from the input
to any nonground node of the tree. An example of an RC tree is shown in
Figure 3.6. The input node of the network is the node and is driven by the
excitation‚

A specific case of an RC tree is an RC line‚ which corresponds to an RC
tree where all nodes are connected to two resistors‚ except the nodes at the
far ends that are each connected to a single resistor. Coarsely speaking‚ this
is an RC tree without branches‚ and an instance of an RC line is illustrated in
Figure 3.3.

An RC mesh is similar to an RC tree‚ except that resistor loops are permitted
in RC meshes; an example of an RC mesh is shown in Figure 3.7. Clearly‚ since
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any RC tree is (trivially) an RC mesh‚ the set of RC meshes is a superset of
the set of RC trees.

An RLC tree and an RLC mesh may be defined in an analogous manner to
the RC tree and the RC mesh‚ respectively‚ when each resistance is replaced
by a resistor in series with a self-inductor.

It is also common to encounter coupled RC lines‚ which can be thought of as a
set of RC lines that are connected by floating (i.e.‚ non-grounded) capacitances‚
as illustrated in Figure 3.8. A coupled RLC line consists of a set of RLC lines
that are coupled through mutual inductances and/or coupling capacitors. One
may similarly define coupled RC trees‚ coupled RC meshes‚ coupled RLC trees
and coupled RLC meshes.
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3.4 THE ELMORE DELAY METRIC

The Elmore delay provides a useful technique for estimating the delay of circuits
whose response is well-captured by a dominant time constant. As will be shown
in Section 3.5‚ this metric corresponds to a first order AWE approximation of
a circuit‚ and in cases where multiple time constants affect the behavior of the
system‚ its accuracy may be limited. Nevertheless‚ there is a wide range of
applications for which it is of great utility.
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The Elmore metric can be understood in terms of a simple and intuitively
appealing description. Consider‚ for example‚ an RC mesh that is initially
rested‚ i.e.‚ the initial voltage at any node is zero. If a unit step excitation
is applied to this structure‚ then the voltage at each node will monotonically
increase from 0 to 1. Figure 3.9(a) illustrates such a  waveform‚ at some
non-source node of this RC network. We will refer to the time derivative of
this waveform as

In [Elm48]‚ Elmore made the observation that the time coordinate of the
center of area of the region under the curve (illustrated by the shaded
region in Figure 3.9(b)) would serve as a reasonable estimate of the delay. In
other words‚ an approximation to the 50% delay‚ may be expressed as3

From Figure 3.9(a)‚ such a metric can be seen to have great intuitive appeal.
From elementary linear system theory‚ we observe that since is the step

response of the rested system‚ must be the response to an excitation that is
the derivative of the step response‚ namely‚ the unit impulse. Hence‚ Equation
(3.7) also has the interpretation of being the first time moment of the impulse
response.

An interesting observation is that the quantity is also the area above
the step response‚ as shown in Figure 3.9(c). This can be seen by performing
integration by parts‚ as shown below:

Here‚ we make use of the fact that since as
and the latter term decreases exponentially with while the former

term only increases linearly.

3.4.1 An expression for the Elmore delay through RC networks

Although the above expressions provide formal definitions of the Elmore delay
metric‚ they are rather cumbersome and difficult to use. In this section‚ we will
derive a more usable form for the Elmore delays in a general RC tree or mesh
structure (with no floating capacitors)‚ and derive a closed-form expression for
the Elmore delays in RC trees and RC meshes.
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For a given RC mesh with grounded capacitors‚ the MNA matrix of con-
ductances defined in Section 2.2 has the following form

where is the branch conductance between nodes and and
is the sum of all branch conductances connected to node We define the
capacitance matrix C and the corresponding capacitance vector C as

where is the value of the grounded capacitance at node

A very widely used result states that the Elmore delay‚ to the node
of an RC network is given by the element of the vector

The proof of this statement is as follows [Wya87]. The current flowing
through all capacitors can be abstracted as dependent current sources that
inject the current



3.4.2 A closed-form Elmore delay expression for RC trees

In general‚ inverting G is a tedious and computationally expensive procedure.
However‚ in the case of an RC tree‚ admits a closed form‚ and the Elmore
delay at node can be written down by inspection as follows. Let be the
unique path from the input node to some internal node of the tree‚ and
for any two nodes and in the tree‚ we will denote as the
portion of the path between and that is common to the path between

and The set of the resistances in the path are referred to as the
upstream resistances for node

The Elmore delay to node in the RC tree is then given by the expression
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into node where is the voltage at node This is illustrated by the example
in Figure 3.10.

This modified network now consists entirely of resistors and current sources.
Taking the input node‚ which is at voltage of 1 after as the datum‚ its
nodal equations for may be written as

In other words‚

where the vector‚ 1‚ has all entries equal to 1.
Since‚ from Equation (3.8)‚ the Elmore delay at node is given by

we can write
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By rearranging the terms‚ it can be shown that this expression may also be
rewritten as

where the downstream capacitance at is the sum of all capacitances at any
node such that the unique path in the tree from to the root must pass
through i.e.‚
Example: Consider the circuit shown in Figure 3.6. The node is the input
node. The procedure described above may be used to compute the Elmore delay
to various nodes in the circuit. For example‚ using the upstream resistance
formula‚ we can compute

The downstream capacitance formula may also be used to write these terms as

The reader is invited to verify that the expressions are indeed identical.
Several techniques [LM84‚ Wya85‚ CS89‚ CK89] have been suggested for a

fast computational approximation to the Elmore delay of a general RC mesh.

3.5 ASYMPTOTIC  WAVEFORM  EVALUATION

The Elmore delay metric turns out to be the simplest first order expression
of the more general idea of model order reduction that was alluded to earlier‚
in which a higher order system is approximated by a lower order system that
captures the most important characteristics‚ such as the dominant poles‚ of
the original system. The technique of Asympotic Waveform Evaluation (AWE)
[PR90] provides a systematic technique for performing such a reduction based
on the moments of the transfer function for a system. In this section‚ we will
first define the moments of a transfer function and then develop a system-
atic method for computing them. We will then present the engine of AWE‚ a
computationally efficient technique for performing model order reduction‚ and
finally‚ discuss the limitations of the method.



FREQUENCY-DOMAIN ANALYSIS OF LINEAR SYSTEMS 45

3.5.1 Moments of a transfer function

Consider a single-input single-output linear system whose transfer function4

is represented by the function The Laplace transform of this transfer
function is given by

A MacLaurin series expansion (i.e., a Taylor series approximation about
of the exponential results in the expression

where

corresponds to the moment of the transfer function
Once the moments of the transfer function are calculated, a technique known

as the Padé approximation5 may be applied to easily compute a reduced order
model for the system using a process known as moment matching. A Padé
approximant is merely a lower order transfer function, and it is characterized
by its order, denoted [L/M], where L is the order of its numerator polynomial
and M the order of the denominator polynomial.

To convey the essential idea of moment matching, let us consider the fol-
lowing example that matches the moments of an arbitrary transfer function to
a reduced order model that corresponds to a first-order transfer function. In
essence, what we try to do is to assert that

Here, we assume that the are all known, and that the unknowns correspond
to and Cross-multiplying the denominator of the right-hand side with
the left-hand side, we have

For the two sides to “match,” the coefficient of each power of must be equal.
In other words, if we consider each power of separately, we have:
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While this process could continue indefinitely for arbitrary powers of since
we have only two unknowns‚ any further matching could result in an overde-
termined system with no solution. Therefore‚ we choose not to try to match
any further powers of beyond the first‚ and obtain

Relation to the Elmore delay metric. The Elmore delay corresponds to
an AWE approximation to a first-order system. To see this‚ consider any RC
structure with no resistances to ground‚ such as an RC tree or an RC mesh
excited by a unit step input. In the steady state the capacitors carry no current‚
and therefore‚ the voltage at any nonground node reaches unity. If the
moments of the transfer function to a node are given by Equation (3.23)‚ the
step response can be obtained by multiplying this by which is the Laplace
transform of the unit step excitation. We can apply the final value theorem
[Kuo93] as follows. We know that for a step input‚ the steady state voltage at
any node of an RC tree after the transient has settled must be given by

Since

this implies that for the voltage step response at any node in an RC
tree. In conjunction with Equation (3.29)‚ this means that the [0/1] Padé
approximation for the voltage step response at any node of an RC tree is

In other words‚ the Elmore delay at a node in an RC structure with no grounded
resistors is the negation of the time constant of its step response transient when
it is approximated as a first order system. Specifically:

The 50% delay is given by log 2.

The 10%-90% transition time is given by

3.5.2 Efficient moment computation

From Section 2.2.1‚ we can see that an RLC interconnect system may be rep-
resented by an MNA matrix that can be constructed by using an aggregation
of element stamps. If we represent resistors and capacitors using the stamps
of Equations (2.15) and (2.19)‚ respectively‚ and inductors as Type 2 elements
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(as defined in Section 2.2)‚ with stamps given by Equation (2.20)‚ then‚ using
the MNA formulation from Chapter 2‚ an RLC system may be represented as:

where G and C are constant matrices whose entries depend on the values of
the RLC elements, X is the vector of unknowns, consisting of node voltages
and currents in Type 2 elements such as inductors and voltage sources, and E
is the excitation vector.

If we represent X in terms of its moments, we have:

Note that the entry of vector is simply the moment of the variable.
We will use this to find the impulse response of the system‚ i.e.‚ the response

of the system to a excitation. Under this condition‚ we have a
constant vector in the domain. Substituting these two into Equation (3.33)‚

Matching the powers of on either side of the equation‚ we obtain the following
relations:

The above set of equations has a very useful physical interpretation‚ related to
the original system that is described by Equation (3.33).

The solution of Equation (3.36) is identical to that of the original system
when an impulse excitation is applied‚ and is set to zero. In other words‚
it is the response of the original circuit to a unit impulse at DC‚ i.e.‚ with
all capacitors open-circuited and all inductors short-circuited.

Equation (3.37) corresponds to Equation (3.33) if is set to zero‚ the original
excitation is set to zero‚ and a new excitation of is applied instead.
This implies that the original circuit is modified as follows:

(a)

(b)

All voltage sources are short-circuited and current sources open-circuited.

Each capacitor is replaced by a current source of value where
is the moment of the voltage across the capacitor.

(c) Each self or mutual inductance is replaced by a voltage source of
value on line where is the moment of
the current through inductor

Example – An RC Line: We will demonstrate the above ideas on the RC
line shown in Figure 3.3. To simplify our calculations‚ we will assume that all re-
sistors are of value and all capacitors have the (unrealistic) value of 1F. The
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set of unknowns here is characterized by the vector
where is the voltage at node and is the current through the voltage
source.

Finding All capacitors are open-circuited‚ and the voltage source is re-
placed by a delta function in the time domain‚ which corresponds to a unit
source in the domain. The resulting circuit is shown in Figure 3.11 (a)‚ and
can be analyzed by inspection. It is easily verified that no current can flow
in the circuit‚ which implies that the voltage at each node is 1. Therefore‚

Finding The capacitor from node to ground‚ for is now
replaced by a current source of value and the input is grounded.
In this case‚ it turns out that all of these current sources have unit value‚
as illustrated in Figure 3.11(b). Again‚ this circuit can be analyzed by
inspection. The current in each branch can be calculated as the sum of all
downstream currents‚ and the voltage at each node may then be calculated
to give
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Finding and The same technique may be used‚ in each case replacing
a capacitor by a current source of value and grounding the input
excitation. The reader is invited to verify that this leads to:

Moments of order higher than 3 can be computed in a similar manner.
The above example illustrates a few points that can be used to make the

following generalizations.

1.

2.

3.

4.

Any RLC tree or mesh structure driven by a voltage source‚ by definition‚
has no resistors or inductors to ground. Therefore‚ the value of for all
node voltages is 1‚ since the circuit corresponding to has no path that
allows current to flow. This is merely a corroboration of a result that was
shown earlier in this chapter using the final value theorem.

During the calculation of the value of the first voltage moment‚ for any
node in an uncoupled RC tree‚ the current in each branch is easily verified
to be the sum of all downstream capacitance values. This‚ coupled with
the earlier proof that the Elmore delay at a node is the negative of the
first voltage moment‚ leads to an alternative derivation of the Elmore delay
formula in Equation (3.17).

For an (uncoupled) RLC tree‚ the current in each branch is given by the sum
of all downstream currents. These may therefore be calculated by a simple
tree traversal‚ starting from the sinks and moving towards the source. A
second traversal‚ starting from the source and moving towards the sinks‚ may
then be used to calculate the node voltages‚ which correspond to the voltage
moments. The cost of moment computation for an RC tree is therefore linear
in the number of nodes in the tree.

For coupled RLC trees‚ the moment computation rules may be followed to
also permit the moments to be computed using tree traversals‚ in linear time.

Example – A distributed line: The distributed RC line‚ shown in Fig-
ure 3.12‚ has length L and is characterized by its per unit resistance and per
unit capacitance An infinitesimal element of size has a resistance of
and a capacitance of

Moment computation for this line can proceed as usual: for the zeroth mo-
ment‚ the capacitances are all open-circuited‚ and a unit voltage source is ap-
plied. Clearly‚ the voltage everywhere on the line will be 1‚ and this yields

everywhere on the line.
To compute all of the infinitesimal capacitors are replaced by current

sources of value from the line to ground‚ so that the voltage at any point
that is a distance from the source is given by
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where is the current passing through the infinitesimal element. This is
merely the sum of the downstream currents at point , and may be computed
as Therefore‚ the value of the first moment‚ which is
identical to is

Higher order moments can similarly be calculated to find the moments of the
impulse response at a point that is units from the source as

Example – A coupled RLC line: A simple coupled RLC line is illustrated
in Figure 3.13(a). The coupling elements correspond to a floating capacitance

and mutual inductances and line has a resistive element of
a grounded capacitance of and a self-inductance of

The equivalent circuit for the zeroth moment is shown in Figure 3.13(b)‚
and it is easy to see from this that the voltage moments everywhere on line1
are 1‚ those everywhere in line2 are 0‚ and the current moments everywhere
are 0. This yields the circuit for the first moment calculation in Figure 3.13(c).
Observe that since the zeroth current moments are all zero‚ the voltage source
corresponding to each inductor is zero. As a result‚ inductors do not affect
in any way. The voltage moments at the three nodes on line1 are‚ in order
from the distance from the source‚ 0‚ -2‚ and -2‚ and the current moment for
line 1 is -2. The corresponding numbers for line2 are voltage moments of 0‚ 1
and 1‚ and a current moment of 1.

The circuit for the computation of is depicted in Figure 3.13(d). Observe
that since the first current moments on both lines were nonzero‚ the inductances
will begin to affect the moments from onwards.

As before‚ this procedure may be used to find any arbitrary moment
and moment matching may be used to find a Padé approximant.

3.5.3 Transfer function approximation using moment matching

Having calculated the moments of the transfer function‚ the next step is to
find a Padé approximant of order [L /M]. For a physical system‚ we must have

for the voltage transfer function. The inequality is strict for a system
with zero initial conditions‚ and the case where L = M corresponds to a system
with nonzero initial voltages or currents6.
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The process of moment matching was informally introduced earlier‚ and we
now discuss more formally how this may be used to find the Padé approximant
of a given order‚ say‚ We begin with the moments of a response‚
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such as the voltage moments of a node in the circuit‚ and attempt to set

There are unknowns here‚ corresponding to the and variables‚ and
therefore‚ we must generate a system of        equations to find their values. Cross-
multiplying the denominator of the right hand side with the left-hand side‚ this
may be written as

Matching the powers of on either side‚ we obtain the following equations from
the first powers of

For the next powers of the left hand side is zero‚ and we obtain the following
equations

The equations represented in (3.48) can be written more compactly as the set
of linear equations:

This is a system of linear equations in variables that can easily be solved
to find the values of the variables. Since the left hand side matrix‚ which
is in the Hankel form‚ is dense‚ the computational complexity of this step is

however‚ since  is typically small (typically‚     for RC circuits)‚this
is not a significant expense. Once the values of the are known‚ a simple
substitution on the right hand sides of the equations in (3.46) yields the values
of the variables.
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Once the Padé approximant to the transfer function has been computed‚
the final step is to compute a response to an applied stimulus. For a unit-step
stimulus and an approximation of order this involves finding the
inverse Laplace transform of

A first step is to find the roots of the denominator‚ which reduces to finding
the roots of the polynomial For a polynomial of order

closed-form solutions for the roots exist; for higher order polynomials‚
numerical techniques are essential. Specifically‚ the closed-form formula for
the roots of a quadratic equation is widely known and is not reproduced in this
book. The formulæ for the roots of cubic and quartic equations are provided in
Appendix A. For this reason‚ and because higher-order AWE approximations
are often unstable‚ it is common to select Next‚ given these poles‚ the
approximant is represented as a sum of partial fractions‚ and the corresponding
residues are calculated. The final step of inverse Laplace transforming this sum
yields the response as a sum of exponentials.

A typical approach to finding an reduced order system is to start with a
desired order and to compute the corresponding approximant. The stability
of this approximant is easily checked using‚ for example‚ the Routh-Hurwitz
criterion [Kuo93]. If the solution is unstable‚ the order is successively reduced
until a stable solution is found. The first order approximant is guaranteed to
be stable for an RLC system‚ and therefore this procedure will definitely result
in a solution; whether the level of accuracy of the solution is satisfactory or not
is another matter altogether.
Example: For the RC line shown in Figure 3.3‚ the moments of the voltage at
node 5 were calculated earlier as Matching these
to a [1/2] Padé approximant‚ we obtain

which leads to the equations

Solving these‚ we obtain the [1/2] Padé approximant to the transfer function
as

A comparison of this with the exact response to a step excitation was shown
earlier‚ in Figure 3.4(b).
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3.5.4 Moment scaling and moment shifting

Since typical time constants in integrated circuits are of the order of picoseconds
to nanoseconds‚ consecutive moments can differ by many orders of magnitude.
Typically‚ the ratio of consecutive moments is of the order of the dominant
time constant of the system. This may lead to numerical errors due to the
limited precision afforded by computing machines. This is effectively addressed
by the use of moment scaling. If all capacitors and inductors are scaled by a
multiplicative factor‚ this is equivalent to multiplying the frequency variable‚
and hence the time variable‚ by a factor of For instance‚ if is set to
then the only difference after scaling is that the units of time are altered from
seconds to nanoseconds; the numerical errors in the computation are‚ however‚
greatly reduced.

The idea of moment shifting is to compute moments about a point other
than say about since this may be able to better capture the
effects of nondominant poles. It is easy to show that such a shift is equivalent
to adding a conductance of in parallel with a capacitor of value C‚ and a
resistance of in series with an inductor of value L ; for a detailed discussion‚
the reader is referred to [CPO02].
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3.5.5 Limitations of AWE

The AWE technique is based on the MacLaurin series expansion‚ and is there-
fore limited by the region of convergence of this approximation. A significant
limitation of this method is that the Padé approximant for a stable system may
very well be unstable‚ as the approximant creates a spurious pole in the right
half plane. While a first-order approximation for an RLC circuit is provably
stable‚ no such guarantee exists for higher order expansions. However‚ in prac-
tice‚ it often does provide effective and stable solutions for many interconnect
systems in digital circuits.

Several techniques have been employed to enhance the stability of AWE‚ one
among which is the notion of complex frequency hopping [CHNR93]. In this
procedure‚ illustrated in Figure 3.14‚ the Padé approximation about is
first computed‚ and the corresponding poles and are identified.
These are accurate if they fall within the radius of convergence of the expansion;
however‚ it is not possible to say what this radius is. Therefore‚ a second
expansion is carried out about for some wisely chosen value of This
expansion results in another set of poles‚ and some of these
may match the original set‚ while others will not. If any pole is found to match‚
it must lie within the radius of convergence‚ and consequently‚ all poles that
are closer to the expansion point are deemed accurate. In this case‚ and

coincide. Therefore‚ the radius of convergence is at least as large as the
dotted circles shown in the figure‚ and therefore‚ the set of accurate poles that
underlined in the figure‚ include and for the lower circle‚ and
(which is identical to ) and for the upper circle. In this specific case‚ all
poles were found to be accurate after one hop‚ but in general‚ this may not be
so. In such a case‚ one could continue hopping along the complex axis for
several expansion points‚ until all poles are deemed accurate.

While it is possible to perform hopping over the entire complex plane‚ the
right half plane is of no interest in physical systems since it contains no poles‚
and points in the left half plane that are far from the imaginary axis typically
do not constitute dominant poles‚ and can be excluded. Therefore‚ in prac-
tice‚ the hopping procedure is only carried out on the imaginary axis. Further
computational simplifications are possible. Since complex poles appear in con-
jugate pairs‚ it is only necessary to perform complex frequency hopping on the
upper (or lower) half of the imaginary axis.

An additional limitation of AWE is related to the inability of the reduced
order models to guarantee passivity. A more detailed discussion of this issues
is deferred to Section 3.6.3.

3.6 KRYLOV SUBSPACE-BASED METHODS

3.6.1 Numerical stability and Krylov subspaces

The AWE method can be very useful in building reduced order systems‚ but
there are several issues associated with the quality and numerical properties
of the solution. While the latter may be partially overcome using moment
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scaling in some circumstances‚ such an approach provides limited relief. The
use of Krylov subspace-based methods provides an effective way to overcome a
number of problems associated with numerical instability.

We begin by defining the span of a set of vectors‚ which in turn is used to
define a Krylov subspace

Definition 3.6.1 The span of a set of  vectors is
the set of points that can be expressed as a linear combination of these vectors.
In other words‚ implies that for some
set of real values

n-dimensional

Definition 3.6.2 A Krylov subspace of order associated with an matrix
A and a vector denoted by is given by the span of the vectors

Interestingly‚ it can be proven that the sequence converges to the eigen-
vector corresponding to the largest eigenvalue of A as becomes large‚ regard-
less of the chosen (nonzero) value of

If the vector is replaced by a matrix R (where typically )‚
then the subspace is similarly defined as the span of the columns of
the matrices and is referred to as a block Krylov
subspace.

The relationship between the moment generation process and Krylov sub-
spaces can be seen from Equations (3.36) and (3.37). From the latter‚ it is easy
to see that the sequence of moments

can be rewritten as

These vectors together match the above definition of a Krylov subspace‚ where
and and we will henceforth use A and to denote these

terms.
Instead of working with directly‚ which is liable to introduce numerical

errors‚ we will work with an orthonormal basis matrix within the subspace: for
a Krylov subspace an orthonormal basis consists of a set
of vectors such that and the
vectors are all orthogonal‚ i.e.‚ and

Techniques such as Lanczos-based [FF95‚ FF96‚ FF98‚ Fre99] and Arnoldi-
based methods [SKEW96‚ EL97] overcome the numerical limitations associated
with practical implementations of AWE at the expense of slightly more complex
calculations. Other methods such as truncated balanced realizations have also
been studied recently [PDS03] to overcome some of the limitations in accuracy
of other methods‚ and to more easily widen their applicability to a larger class
of circuits.
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3.6.2 The block Arnoldi method

A block Arnoldi method for solving circuit equations is proposed in [SKEW96].
We present a description of the procedure based on the explanation in [OCP98].
Consider a circuit whose inputs and outputs are all considered to be the ports
of the system (we will show a specific example in Section 3.6.3). Its equations
are given by

where G and C are matrices‚ B and L are matrices‚ and X‚ u and
y are column vectors of dimension and respectively. This is essentially
similar to the descriptions used earlier: the first of these equations is almost
identical to Equation (3.33). The second‚ the output equation‚ represents the
values at the ports (including the outputs of interest) contained in

which are represented as linear functions of the X variables: for
instance‚ if the output of interest is the element of X‚ then and

for all other
From Equation (3.53)‚ simple matrix algebraic techniques can be used to

obtain

where as before‚ and This may be expanded about
to obtain

or in other words‚ the matrix representing the moment
Note that the entry in the position of matrix corresponds to the
moment of transfer function that relates the entry of y with the entry
of u.

Instead of using moments‚ for numerical stability‚ an Arnoldi-based method
generates an orthonormal basis for the block Krylov subspace The
following properties of follow as a natural consequence:

where I is the identity matrix.
For a order reduction‚ an Arnoldi-based method uses the matrix
matrix to apply the variable transformation:
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This transformation effectively maps a point in a space to
a point X in the original space. Substituting this in (3.53)‚
premultiplying the first equation by and using Equation (3.59)‚ we
obtain

Note that this is a reduced system since it is represented by state variables
instead of the original variables. This may be rewritten as

where we set a matrix that corresponds to the reduced
order system. In the Laplace domain‚ this implies that the transfer function
for this reduced-order system is given by

Using the eigendecomposition we obtain

The matrix is diagonal and is hence easily invertible for small values
of the approximation order‚ As a result‚ this method is computationally
efficient. Since it does not directly work with circuit moments‚ it succeeds in
avoiding the numerical problems faced by AWE.

3.6.3 Passivity and PRIMA

Numerical problems are not the only issues that haunt AWE-like methods. A
major problem associated with solutions provided by AWE and simple Arnoldi-

network is passive. A passive network is one that always dissipates more energy
than it generates; pure RLC networks always possess this property. Stability
(which is equivalent to the statement that all poles of the transfer function must
lie in the left half plane) is a necessary but not sufficient condition for passivity‚
so that of the two‚ passivity is the stronger and more restrictive condition.

In particular‚ it is possible to show existence cases of a nonpassive but stable
system that‚ when connected to a passive and stable system‚ results in an
unstable system [KY98]. On the other hand‚ if a system is guaranteed to
be passive‚ any interconnection with any other passive system will also be
passive (and hence stable). This idea was described in the context of model
order reduction in [KY98]‚ and the idea of a split congruence transformation
was proposed. This was later incorporated into other model order reduction
algorithms‚ among which PRIMA is widely used.

or Lanczos-based methods is that they cannot guarantee that the resulting
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The Passive Reduced-order Interconnect Macromodeling Algorithm (PRIMA)
[OCP98] algorithm‚ based on the idea of split congruence transformations to
ensure passivity and block Krylov subspace methods to assure numerical sta-
bility‚ overcomes many of the shortcomings of AWE and provides a guaranteed
stable and passive reduced order model for the linear system. This comes at
the expense of (typically) requiring a model of higher order to achieve the same
accuracy as AWE (assuming‚ of course‚ that the AWE model is stable). From
the programmer’s point of view‚ a major advantage of the PRIMA approach is
that it is very similar to AWE in terms of implementation‚ and requires a few
additional intermediate steps.

An Arnoldi-based implementation of PRIMA‚ which guaranteed the passiv-
ity of the reduced solution‚ can be described as follows. In terms of equation
formulation‚ it has been shown in [OCP98] that if the following two criteria are
satisfied‚ the representation will result in a passive reduced order model:

1. The MNA equations in (3.53) are written in such a way that

where resistor stamps are included in N‚ capacitor stamps in Q‚ and Type
2 element stamps are in the border elements. For example‚ voltage source
stamps manifest themselves in E‚ and inductors‚ which are treated as Type
2 elements‚ contribute their stamps to H and E.

2. To guarantee passivity‚ it is necessary to set B = L‚ which requires some
special handling during equation formulation.
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Example: For the circuit shown in Figure 3.3‚ if the parameter of interest is
the voltage at node 5‚ then the circuit equations may be written in the following
manner to satisfy the above requirements:

Note the negation of both sides of the device equation for the voltage source
to maintain the negative transpose relationship relationship between the off-
diagonal blocks of the MNA matrix‚ and the addition of an extra dummy
current source‚ whose primary function is to ensure the relationship
B = L (this also results in ). Similarly‚ a dummy output is
forced upon the formulation to maintain this relationship. Once the reduced
order model is generated‚ we set

As in the block Arnoldi case‚ PRIMA generates an orthonormal basis for
the block Krylov subspace with the properties described in Equa-
tions (3.58) and (3.59)‚ and uses the variable transformation

This is now substituted in (3.53)‚ but the first equation is now premultiplied
instead by (instead of as in Section 3.6.2) to yield

For this reduced system of order we substitute
and to obtain the following representation of the reduced
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system:

We define the matrix‚ and the solution to the reduced system
is given‚ in a similar manner to Equation (3.56)‚ by

where Since this is a order system and is manageably small‚
it can easily be solved exactly. Specifically‚ we eigendecompose the matrix

where to obtain

The matrix is diagonal and is invertible in time‚ and therefore
the right hand side can be evaluated.

The pseudocode for PRIMA is provided in Figure 3.15. Additional practical
tips for increasing the robustness of the method have been provided in [OCP99].
Example: For the example in Figure 3.3‚ the first step of the algorithm implies
solving GR = B‚ which is equivalent to the original system twice at dc‚ each
time with a unit source excitation on one of the two sources. Instead of finding

using matrix multiplication‚ this may be solved by short-circuiting all
inductors (this is irrelevant for this circuit‚ since it has none)‚ open-circuiting
all capacitors‚ and applying these excitations. The resulting circuit can be
solved using path traversals to obtain

When this is orthonormalized‚ we obtain

Next‚ we apply the loop in line 4 of the pseudocode and at the end of step 5‚
we calculate as

This leads to
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Taking the algorithm further‚ we find the fourth order approximation to the
voltage transfer function in the domain at node 5 as

It is easy to verify that the sixth order approximation returns the original
system.

3.7 FAST DELAY METRICS

3.7.1   The Elmore delay as an upper bound

The step response for an RC tree can be proven to increase monotonically from
0 to 1. In this sense‚ it behaves in a similar manner as a cumulative distribution
function (cdf) of a probability distribution of some random variable‚ and several
of the results from probability theory may be brought to bear in this regard.
For example‚

The impulse response‚ which is the derivative of the step response‚ can be
thought of as being equivalent to a probability density function (pdf) of the
same random variable.

The Elmore delay‚ which is the first time moment of the impulse response‚
is equivalent to the mean value of the random variable.

Higher order moments‚ such as the second and third moments‚ can be counte-
nanced as being equivalent to their corresponding counterparts in probability
theory.

A specific concept that is widely used in probability theory is that of a central
moment. The central moment of a probability distribution on a random
variable described by a density function is given by

where is the mean of Since the impulse response of a system can
be interpreted as a probability density function‚ we may write its central
moment as

where is the first moment‚ or mean‚ of The relationship between the
moments as defined in Equation (3.24)‚ and the first few central moments‚
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is given by

While the values of and are obvious from earlier discussions‚ the others
have specific interpretations. The second central moment‚ corresponds to
the variance of the distribution‚ which is higher if has a wider “spread”
from its mean value. The third central moment‚ has an interpretation as the
skewness of the distribution: its sign is positive [negative] if the mode‚ or the
maximum of is to the left [right] of the mean‚ and its magnitude measures
the distance from the mean. The fourth central moment is the kurtosis of the
distribution‚ which reflects the total area that corresponds to the tails of

The above parameters provide measures for the mean and the mode of the
distribution; however‚ the 50% delay that we are interested in is the median of
the distribution‚ and generally speaking‚ no simple closed-form formulas for the
median are available. However‚ it was proved in [GTP97] that for the impulse
response at any node of an RC tree‚ the Elmore delay‚ which corresponds
to the mean‚ is an upper bound on the median‚ or the 50% delay.

3.7.2 Delay metrics based on probabilistic interpretations

Several techniques have used the probabilistic interpretation of moments to
arrive at a delay metric‚ and these are surveyed here. All of the methods listed
here are stable in that they result in reasonable (i.e.‚ physically realizable)
values for the parameters that define the delay distributions‚ and therefore‚
physically reasonable delay values.

The PRIMO metric. The PRIMO method [KP98] attacked the problem
by fitting the impulse response to the gamma distribution‚ given by

This distribution is completely described by two parameters‚ and and
therefore a gamma function approximation to can be found by fitting the
moments of the gamma function to the moments of The first few central
moments of are given by
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This leads to the relations

While matching the second and third central moments would certainly yield
values of and in practice‚ it was found that a time-shifted gamma function
provided more accurate results. Essentially‚ this involves matching the first
moment to a time shift‚ since the first moment of is this results
in setting

While closed forms for the median do not exist‚ it is relatively simple to
store them in two-dimensional look-up tables that are functions of and
If the input is not a step‚ but can be modeled as a saturated ramp (which
can be written as the difference between two time-shifted ramp functions)‚ the
response can be captured by two time-shifted gamma functions‚ separated by
the rise time of the saturated ramp. For details‚ the reader is referred to [KP98].

The h-gamma metric. This technique was found to have limited accuracy
in cases such as those when interconnect resistance plays a large part‚ and
a modification‚ called the h-gamma method‚ was proposed in [LAP98]. The
method is predicated on the observation that the Laplace transform of the
step response can be divided into two components: a forced response and a
homogeneous response‚ as shown below‚ and illustrated in Figure 3.16:

where is the forced response ( is the unit step function) and
is the homogeneous response‚ and are the step response in the time
and frequency domains‚ respectively‚ and is the transfer function in the
Laplace domain.

For an RC mesh‚ the homogeneous response increases monotonically from
0 to 1 under a step excitation‚ and the h-gamma method treats as a
probability density function that is approximated by the gamma distribution.
Specifically‚ in the frequency domain‚ the homogeneous response is represented
by
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Interpreting this as a probability density function‚ the mean and variance are
given by

Since the gamma distribution has a mean of and a variance of these
values can be fitted as follows

The approximate step response is then given by

and its median can be determined from a preconstructed two-dimensional lookup
table that depends on and When the input is a saturated ramp‚ sim-
ilar techniques as for PRIMO may be used to find the delay from a three-
dimensional lookup table‚ parameterized by and the input transition time.

The WED metric. The above methods inspired [LKA02] to use a Weibull
distribution instead of the gamma distribution‚ yielding the advantage of re-
quiring smaller lookup tables. The algorithm for the WEibull-based Delay
(WED) metric is simple and is listed in Table 3.1 (a); for details of the deriva-
tions‚ the reader is referred to [LKA02]. The computation uses the function‚
which is has the property‚                        for therefore‚ by storing the
value of in a table‚ this property can be used to find

for any arbitrary



FREQUENCY-DOMAIN ANALYSIS OF LINEAR SYSTEMS 67

The D2M metric. Strictly speaking‚ D2M [ADK01] does not belong to this
class of metrics that are derived from a probabilistic interpretation‚ but is also
fast to compute. Historically‚ it preceded the WED metric‚ and the simple
formula is related to it‚ and hence it is presented here for completeness.

This metric is purely empirical‚ although it is proven to always be less than the
Elmore metric.
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3.8 REALIZABLE CIRCUIT REDUCTION

While several model order reduction methods have been described in this chap-
ter‚ most of them lead to fairly complicated models. The TICER (TIme Con-
stant Equilibration Reducer) algorithm [She99] presents a simple and scalable
RC-in RC-out method for reducing large RC networks by eliminating “slow”
and “quick” nodes. A notable feature is that it preserves the Elmore delays
through RC ladders when only “quick” internal nodes are eliminated.

The core of the method is based on an observation for a simple star network‚
such as that shown in Figure 3.17. The star has N nodes‚ with the peripheral
nodes numbered from 1 to N – 1‚ and the central node labeled N. Each branch
from node N to node consists of a conductance and a
capacitance

If a step voltage is applied to one peripheral terminal i and the other N – 2
peripheral nodes are grounded‚ then the circuit may easily be analyzed‚ and
the response at the central node N is found to be

where

It is notable that regardless of which node is excited‚ the
time constant remains the same‚ so that it is meaningful to associate a
time constant with node N. Depending on whether this time constant is
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“quick‚” “slow‚” or “normal‚” various approximations may be made. In partic-
ular‚ TICER presents a method for eliminating quick and slow nodes using a
reasonable approximation.

As usual‚ let us consider a circuit described by the MNA equations

We may rearrange these equations if necessary to ensure that the voltage of
the node N to be eliminated corresponds to the last element in X. Therefore‚
the above equation may be rewritten as

If we eliminate we obtain

where

This may be used as a basis for node elimination as follows. For simplicity‚
we will assume here that although this is not essential; for the more
general case where the reader is referred to [She99].

For quick nodes‚ and can be approximated as follows

A physical interpretation of this yields the following recipe for eliminating
quick nodes.

1.

2.

Remove all resistors and capacitors connected to node N.

Between all pairs of former neighbors and of N‚ insert the following
new elements: a conductance and a capacitance

For slow nodes‚ and can be approximated as follows

The corresponding recipe for node elimination is as follows
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1.

2.

Remove all resistors and capacitors connected to node N.

Between all pairs of former neighbors and of N‚ insert the conduc-
tance and the capacitance

The basic TICER procedure described above is applicable to RC circuits.
Subsequent work in [ACI03] has extended the algorithm to circuits with RLCK
elements. An alternative approach based on the use of transforms is
presented in [QC03]‚ and is claimed to be significantly faster than TICER.

3.9 SUMMARY

This chapter has overviewed a set of techniques for reduced-order modeling
of linear systems. Beginning with the simple Elmore delay metric‚ we have
surveyed model order reduction methods‚ ranging from AWE to PRIMA‚ as
well as fast delay metrics based on probability interpretations‚ and methods
for building realizable circuits. In the next chapter‚ we will see how these
techniques fit into a circuit-level timing analyzer.

Notes

1. It is possible to build causal delay metrics where the delay is guaranteed to be greater
than or equal to zero. One possible way of doing this is to use the uni ty gain points in the DC
transfer characteristic as crossing points for the input and output waveforms; however‚ such
a metric will involve considerably more complex calculations and is therefore not generally
used in practice.

2. An implicit assumption that is made when we speak of a dominant pole is that there
is no nearby zero that can cancel out its effect.

3. The expression for the centroid is normally divided by the integral of from to
however‚ the equation below takes this simple form since

4. The transfer function of a single-input single-output linear system is a ratio of the
response at the output to the stimulus applied at the input [Kuo93].

5. The credit for this method is generally given to the French mathematician‚ Henri Padé
(1863-1953) who provided the first thorough treatment of the topic.

6. The proof of this is simple and follows from the ini t ial value theorem.

7. If no conductance or capacitance exists‚ then the value could simply be set to zero.



4 TIMING ANALYSIS FOR A
COMBINATIONAL STAGE

4.1 INTRODUCTION

In Chapter 3‚ several techniques for the analysis of linear systems‚ such as
interconnect systems‚ were presented. In this chapter‚ we will first consider the
problem of analyzing the delay of a stage of combinational logic‚ consisting of a
logic gate and the interconnect wires driven by it‚ and then extend it to handle
coupled interconnect systems. This is a mixed linear /nonlinear system‚ since
the interconnect consists of purely linear elements‚ while the logic gate models
involve significant nonlinearities.

A simple way to address this problem is to approximate the nonlinear el-
ements using linear models. In this case‚ the drain-to-source resistance of a
transistor can be represented by a linear resistor. Under such a model‚ the the-
ory from Chapter 3 may be used to solve the resulting linear system. However‚
the accuracy of this method will be limited since real-life transistor models
show strong nonlinearities.

This chapter will present techniques for finding the delay of a stage of combi-
national logic‚ including both the nonlinear drivers and the linear interconnects.
We will begin our presentation under the assumption that the wires show no
capacitive coupling‚ and then extend the discussion to consider coupled inter-
connects.
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4.2 IDENTIFYING A LOGIC STAGE

In general‚ a circuit may be specified in terms of a netlist that enumerates a
set of circuit elements‚ such as transistors‚ resistors‚ capacitors and inductors.
Each element is specified in terms of its electrical properties and the nodes to
which its terminals are connected.

In case of a full circuit simulation‚ one may write equations for the entire
netlist and solve them‚ as in Chapter 2. However‚ for digital circuits‚ successive
stages of combinational logic may be analyzed independently of each other‚ and
the delay along a path may be computed simply as the sum of the delays of all of
its combinational stages. The speed of the simulation can be greatly enhanced
by taking advantage of this fact. Figure 4.1 shows a chain of inverters‚ each
driving an interconnect wire. In this case‚ the four stages are identified‚ and
the delay of the path may be taken to be the sum of the delays of these stages.
In the ensuing discussion‚ we will refer to a component and the interconnect
that it drives as a “logic stage.”

Therefore‚ a first task that must be accomplished is to start from the input
netlist‚ and to identify the combinational stages in the circuit. Roughly speak-
ing‚ a combinational stage consists of a gate and the interconnect that it drives‚
but a stronger and more general definition is required. For example‚ the circuit
shown in Figure 4.2 consists of an inverter driving a transmission gate. This
would not conventionally be considered to be a single logic gate‚ but for the
purposes of timing analysis‚ these are considered together since the behavior of
the transmission gate and the inverter are very tightly coupled.

The key to finding reasonably decoupled stages is to observe that succes-
sive levels of logic are separated by gate nodes of transistors. Therefore‚ the
basic unit that we must identify is a channel-connected component (henceforth
referred to simply as a component). Each component corresponds to a set of
transistors that are connected by drain and source nodes.
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More formally‚ the definition of a component can be given by the following
construction. The circuit is represented as an undirected graph‚ with a
vertex for each circuit node and an edge between the drain and source nodes of
each transistor. Next‚ the vertices corresponding to the ground and the supply

nodes are split such that each of these vertices is incident on only one
edge after splitting‚ resulting in a new graph‚ A component is then a set
of transistors corresponding to the edges within a connected component of the
graph‚ This process is illustrated by an example in Figure 4.3. The graph

corresponding to the circuit in Figure 4.3(a) is shown in Figure 4.3(b)‚ and it
is easily seen that it has two strongly connected components‚ which correspond
to the channel-connected components of the circuit.

The input nodes of a component consist of all of the gate nodes of transistors
in the component‚ and any drain or source node of a transistor in the component
that is also a primary input to the circuit. A component’s output nodes include
any drain or source node of a transistor in the component that are connected
to a gate node of a transistor or to a primary output of the circuit.

On occasion‚ a component-based analysis may result in tremendously large
components: for example‚ in case of a very large bus with tri-state drivers‚ or a
barrel shifter. In such situations‚ it is more practical to partition the component
into smaller segments. This is often done in an way‚ and there is little
literature that explores this issue in detail.

4.3 DELAY CALCULATION UNDER PURELY CAPACITIVE LOADS

Consider a logic gate driving an interconnect net to one or more sinks. If the
entire net can be considered to be entirely capacitive‚ the problem of determin-
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ing the delay of this logic stage reduces to that of finding the delay of the gate
for a specific capacitive load. If the gate is a cell from a library‚ its delay is typ-
ically precharacterized under various loads and input transition times
Typically‚ these methods are used to characterize the delay from each input pin
to the output‚ under the assumption that only one input switches at any time.
This is illustrated for the case of a falling output transition for a three-input
NAND gate in Figure 4.4. The delay from to out here is computed using the
input excitations shown in Figure 4.4(b)‚ where the inputs and are set to
logic 1 so as to propagate the input transition from to the output. In practice‚
the assumption of a single switching input is not entirely accurate‚ and the case
of simultaneously switching inputs (e.g.‚ when inputs and switch together
in this example) can significantly impact the delay. Therefore‚ any model that
considers these will be more accurate [CS96‚ CGB01].

4.3.1 Common delay metrics

Some of the commonly used delay characterization techniques under capacitive
loads include:

A look-up table may be used‚ with each entry corresponding to the delay
under different capacitive loads and input transition times. While this can
achieve arbitrarily good accuracy provided the table has enough entries‚ in
practice‚ it is seen to be memory-intensive.

Traditional methods for characterizing a cell driving a load use an equation
of the form

where is a characterized slope and is an intrinsic delay. However‚ such
an equation neglects the effect of the input transition time on the delay. One
method that had often been applied is to multiply the delay of a gate to a
step-input response (as calculated above) with a factor that depends on the
input transition time [HJ87].

The equations compact the table look-up by storing the delay D as
a fitted function of the form
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The nonlinear delay model (NLDM) from Synopsys uses characterization
equations of the form

The scalable polynomial delay model (SPDM) from Synopsys uses a product
of polynomials to fit the delay data. For example‚ for two parameters
and                     fit is the product of an order polynomial in

with an order polynomial in of the form

This approach is a generalization of the NLDM model‚ and has been found
to be more compact.

The above expressions perform a characterization for a single cell type‚ with
fixed transistor sizes. Generalized posynomial models are more ambitious in
that they attempt to find a unified expression for the delay over all allowable
transistor widths‚ and will be presented in Section 8.7.1.

Similar equations are also used to characterize the output transition time.
Other equations have also been presented‚ based on analytic delay models.

However‚ any equations based on the Shichman-Hodges model (the Spice Level
1 model that was used in an example in Section 2.4) is inherently inaccurate‚
since this model does not scale well to deep-submicron and nanometer tech-
nologies. Other models based on more complex semianalytic models such as
the alpha-power model [SN90] and its variants scale a little better‚ but as tech-
nology moves into the nanometer domain and newer effects come into play‚
BSIM-like table lookup models are likely to be the only really accurate models‚
so that generating an analytic closed form will become harder‚ if not impossible.

Some delay models may have to factor in technology-specific issues. For
instance‚ for partially depeleted SOI technologies‚ the uncertainty in the body
voltage adds another dimension to the delay estimation problem. The work in
[SK01] provides a technique for overcoming this issue.

4.3.2 Finding the input logic assignments for the worst-case delay

A frequent problem that arises in timing analysis relates to determining the
set of transistors that must be on during the worst-case delay calculations for
a gate. One possible approach to this is to use the intuition that the Elmore
delay is likely to have good fidelity (this was shown‚ albeit in a slightly different
context‚ in [BKMR95])‚ and therefore can be used to determining the identities
of these transistors. Once this set is determined‚ a more accurate model may
be used for delay computation.

The most precise way of identifying the set is through a full enumeration;
unfortunately‚ for a input gate‚ this results in an exponential number of
enumerations‚ which can be particularly severe for complex gates. The use
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of the Elmore fidelity argument results in heuristics (and intuition) that can
significantly improve upon this. We will now present such a procedure.

The delay of a gate depends not only on the transistors that are on the
path from the output to the supply node‚ but also on other off-path nodes
whose parasitic capacitances must be charged or discharged in the process. The
algorithm for finding the worst-case fall delay at an output node of a gate is
described below; the worst-case rise delay at can be found in an analogous
manner.

Consider a CMOS gate: we represent this by an undirected weighted graph‚
G‚ with an edge between the drain and source nodes of each transistor in the
gate. The node and its incident edges are removed‚ since for a fall transition‚
the worst-case path will not involve this node or these edges. Edge weights are
given by the resistance of the corresponding transistor‚ which are inversely
proportional to the transistor size; each node in the original circuit also has a
capacitance associated with it‚ which is not directly represented in the graph.

The objective is to determine the set of edges that must be on to induce the
largest Elmore delay in the component for a switching event on the transistor
represented by edge It is reasonable to assume that this implies that there
will only be one path from the output node to ground‚ and as a reasonable
heuristic‚ we may assume that this is the path through with the largest
resistance1. We refer to this as the largest resistive path (LRP) through and
it may be computed from the graph by finding the path of maximum weight
between and ground‚ which also passes through

Since finding the LRP is equivalent to the longest path problem in a graph
which is NP-complete‚ a heuristic must be used to perform this task. One
such heuristic is provided in [SRVK93]. An alternative approach is to apply
the Jouppi rules [Jou87a] to assign directions to transistors‚ which means that
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the longest path problem must now be solved on a directed graph; this is well
known to be solvable in polynomial time [CLR90].

However‚ there may well be transistors that are not on the LRP that are
on in the worst case. To motivate the intuition for this‚ consider the graph
shown in Figure 4.5. Assume that the LRP between the output node and
ground through d has been found to be d‚ e. If‚ for example‚ transistor a is
also on‚ then the capacitance that must be driven by the resistors on d and e is
increased. Assuming the Elmore delay fidelity argument‚ the worst case delay
scenario corresponds to the case when the downstream capacitances are chosen
in such a way as to maximize the Elmore delay. Essentially‚ this implies that the
edges should be chosen in the following order: first‚ maximize the downstream
capacitance at the output node  by setting the appropriate transistors to “on‚”
and then move along the LRP towards the ground node‚ each time setting
transistors to “on” to maximizing the downstream capacitance at that node‚
subject to the assignments already made.

In this specific case‚ at node we may set transistors and b to be
“on.” Next‚ moving to node we may set transistor f to be on. The worst
case assignment then corresponds to the case where the darkened edges in the
figure correspond to the on transistors. A more accurate calculator may now be
used for the delay computation from the input of transistor d to the output

This procedure does not incorporate the effects of correlations between the
inputs of a gate; one procedure that considers the case where the same signal
may drive multiple pins of a gate is described in [DY96].

4.4 EFFECTIVE CAPACITANCE: DELAYS UNDER RC LOADS

4.4.1 Motivation

The lumped capacitance model for interconnects is only accurate when the
driver resistance overwhelms the wire resistance; when the two are comparable‚
such a model could have significant errors. In particular‚ the phenomenon of
“resistive shielding” causes the delay at the driver output (referred to as the
driving point) to be equivalent to a situation where it drives a lumped load that
is less than the total capacitance of the interconnect‚ as shown in Figure 4.6. In
effect‚ the interconnect resistance shields a part of the total capacitance from
the driving point. In this section‚ we will examine techniques that may be
used to derive a value for the effective capacitance at the driving point. Such a
capacitive model is particularly useful since it implies that cells may continue
to be characterized in terms of a load capacitance as in Section 4.3 even in the
domain where interconnect resistance is a dominant factor. The difference is
that the load capacitance is no longer the total capacitance driven by the gate‚
but a smaller value corresponding to the effective capacitance.

As stated earlier‚ the parasitics that are associated with MOS transistors‚
particularly the transistor resistance‚ show significant nonlinearities‚ while the
wire parasitics are linear. To take advantage of this‚ many timing analyzers
process a logic stage in two steps:
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The waveform at the output of the logic gate‚ or the driving point‚ is first
found using a composite model for the parasitics. This is a system that con-
tains nonlinearities that stem from the transistor models‚ and this analysis
must incorporate such effects.

Next‚ this waveform at the driving point is used to drive the purely linear
parasitic system‚ using linear system analysis techniques.

The primary advantage of such an approach is that it isolates the nonlinearities
from the linearities‚ so that the efficient techniques from Chapter 3 may be
applied in the second step. The problem of how to build a composite model for
the parasitics through an “effective capacitance” approach will be addressed
here.

4.4.2 The O’Brien-Savarino reduction

The O’Brien-Savarino reduction approach [OS89] reduces an arbitrary RC load
to an equivalent model at the driving point‚ and is used as a starting point
for  finding Consider a gate driving an RC line‚ as shown in Figure 4.7(a).
An impulse voltage excitation corresponding to a unit voltage in
the  domain‚ = 1‚ is applied at the root of the RC line‚ as shown in
Figure 4.7(b) (or in general‚ an RC tree). One may apply the techniques of
Section 3.5 to find the moments of the current‚ through the voltage source.
The moments of the admittance at the root can be computed in the form

These are simply the moments of when a unit voltage source in the
domain (i.e.‚ in the time domain) is applied.
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This admittance is then represented by a reduced order model of the type
shown in Figure 4.7 whose admittance moments are computed as follows:

To compute the three  unknowns‚ and we may match these moments
with those of the first three moments of to obtain a system of three
equations in three variables. These are solved to yield:

An important consideration is that the circuit should be realizable‚ i.e.‚ the
resistance and capacitance values obtained above should all be nonnegative. It
can be shown [KK00] that the first three admittance moments of general RC
circuits satisfy
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From relations (4.8)–(4.12)‚ it is easy to see that for an RC line‚ the reduction
will always be realizable.

4.4.3 Effective capacitance computations

The use of the O’Brien-Savarino reduction to compute the gate delay still re-
quires the calibration of the delay of each gate with respect to the four pa-
rameters‚ and so that a four-dimensional look-up table must be
created for the gate delay. With points along each axis‚ this amounts to a
table with entries‚ clearly worse than the entries required for a purely
capacitive load. Even if curve-fitted formulae were to be used‚ the complexity
with four parameters would be much worse than with just two. The effective
capacitance‚     finds an equivalent capacitance that can be used to replace
the model‚ so that the delay characterization could continue to be performed
over two parameters.

The essence of the calculations lies in creating a model that draws the
same average current from a source as the model above‚ up to the 50%
delay time point. In order to achieve this‚ the gate output must be modeled by
an equivalent representation. Early efforts [QPP94] used a voltage source to
model the gate output‚ but it was later found [DMP96] that a Thevenin model
[NR00] with a voltage source and a resistor is more effective3.
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Figure 4.8(a) and (b) show gate driving a load‚ and its corresponding
representation. Under the single switching input assumption‚ one input of
the gate switches‚ and this is modeled by a saturated ramp with a rise time
of while the others are held steady. The Thevenin model consists of a
resistance and a voltage source in the form of a saturated ramp that
is parameterized by the variables the delay with respect to the 50% point of
the input waveform‚ and the transition time‚ as illustrated in Figure 4.8(c).
Therefore‚ characterizing the gate involves the determination of the values of

and
In the subsequent discussion‚ we will refer to the point of a waveform as

the time at which of the transition is complete. For a rising waveform‚ this
is simply the time at which it reaches of and for a falling waveform‚
this is the time when the signal is at

The saturated ramp model for the Thevenin source can be written in terms
of the difference of two time-shifted infinite ramps. For a falling output‚ such
an equation would be

where is the ramp function and is the
unit step function. A similar equation can be written for the rising output
transition.

When the load is a capacitor the response to this excitation is
given by

where is the response to an infinite ramp and is given by

Later‚ Equation (4.14) will be used to find the the 20% of 50% point of the
transition. Note that this involves solving an implicit nonlinear equation‚ and
an iterative procedure‚ such as one based on the Newton-Raphson method‚ is
used for this.

Finding

The effective capacitance computation is found to be relatively insensitive
to the value of and therefore‚ several simplifying assumptions may be used
during its calibration. This procedure involves matching the delay of a resistor

driving a load capacitor under the assumption of a step input voltage
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excitation to this RC structure. The insensitivity of the effective capacitance
to also enables flexibility in the choice of a reasonable value of that.
is used is the largest capacitance that the cell is expected to drive.

When the gate drives a capacitive load under a step input‚ if the falling
output waveform is assumed to be of the form

then the value of can be obtained from the 50% and 90% time points
(denoted as and respectively) as

The reason for choosing and rather than any other threshold is a result
of empirical observations.

The values of and for a gate driving a purely capacitive load may
easily be found using any of the techniques described in Section 4.3‚ such as
the use of equations.

Finding and

This procedure involves a set of iterations‚ whereby the average load current
driven by the Thevenin model for the driver through an O’Brien-Savarino
model‚ as shown in Figure 4.9(a)‚ is equated to that through a capacitor
shown in Figure 4.9(b). Equivalently‚ this may be thought of as equating the
total charge delivered to both circuits over a given time period‚ The value
of is typically set to

Since the value of the effective capacitance is unknown‚ this procedure in-
volves iterations to compute the values of and Specifically‚ the
iterations involve the following steps:

Step 1 The value is computed by solving the following equation‚ illus-
trated for a falling output transition:
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As stated above‚ this equates the total charge delivered to the load‚
with that sent to the load‚ This computation presumes a value
of for the Thevenin source‚ which is taken from the previous iteration.
The Newton-Raphson method is applied to iteratively solve this nonlinear
equation to compute the value of

The average currents on either side of Equation (4.18) are given by

where

and and represent the zero and two poles of the transfer function

of Figure 4.9(a).

Step 2 Next‚ based on this computed value of the values of and
for the Thevenin equivalent are updated using the following relations:

where is the 20% point‚ i.e.‚ the point at which 20% of the transition is
complete; recall that for a falling transition‚ this corresponds to a voltage of

Here‚ the expression for is provided by Equation (4.14)‚ and the
values of and on the left hand sides are based on the current value
of and can be found from characterized equations for the cell such as

equations. These are two equations in two variables‚ and are solved
using an iterative procedure that converges rapidly in practice.

Alternative approaches for computations are provided in [KM98‚ She02].
The former works with a fixed   and and matches the delay instead of
the total charge. The latter observes that most libraries are characterized for
the 50% time‚ but not the 20% time‚ and proposes a method that avoids the
requirement for an extra characterization for the 20% time.

4.4.4 Extension to RLC lines

For RLC lines‚ in principle‚ the effective capacitance approach suggested above
may be applied. However‚ for such lines‚ the O’Brien-Savarino reduction is not
guaranteed to be realizable‚ even for mildly inductive lines. In particular‚ it
can be shown that when the admittance moments of the line are computed‚
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although and may take on any sign‚ so that the conditions in
Equation (4.11) do not all hold true. Moreover‚ the validity of Equation (4.12)
also depends on the inductance values in the circuit.

An example of an approach that overcomes this for RLC lines (with self-
inductance only) is [KK00]‚ which proposes a more general realizable mode l
for RLC structures‚ shown in Figure 4.10. The unknowns here are the induc-
tance the resistances and and the total capacitance These four
parameters are matched against the first four moment terms of the impedance

The total capacitance is split into arid where
is a parameter whose value is chosen so as to ensure readability. Table 4.1

shows how may be chosen for various combinations of the signs of and
For various combinations of these signs‚ acceptable ranges of that

guarantee realizability are provided‚ from which may be determined.

Another approach for effective capacitance computation for RLC intercon-
nects is presented in [ASB03]. This work shows that a single ramp is inadequate
to model the output waveform in the presence of inductance‚ and proposes a
piecewise linear waveform with two pieces that model the transition. The tech-
nique consists of the following steps. First‚ the breakpoint for the two pieces
is determined. Next‚ separate values are found for each of the two pieces‚
and the output waveform is accordingly determined.
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4.5 CAPACITIVE COUPLING EFFECTS

4.5.1 Introduction

As feature sizes have shrunk with advancing technologies‚ wires have been
brought closer to each other. While the width of a wire has correspondingly
shrunk‚ wire heights have not scaled proportionally‚ as illustrated in Figure 4.11‚
since such scaling would increase wire resistances tremendously. The net effect
of this has been to increase the capacitive coupling between wires‚ and this
leads to two effects in terms of circuit performance:

Crosstalk noise corresponds to noise bumps that are injected from an switch-
ing wire to an adjacent‚ nominally silent‚ wire. Several fast crosstalk noise
metrics have been proposed in  [Dev97‚ ‚ KS01‚ CaPVS01‚ DBM03]‚
and a detailed description of these is beyond the scope of this book.

Delay changes occur‚ as compared to the uncoupled case‚ because of the
additional coupling capacitances in the system.

The terminology that is frequently used in the context of crosstalk analysis is
to label the wire being analyzed as the victim‚ and consider any wires that
capacitively couple to it as aggressors.

In a full-chip analysis scenario that consists of a prohibitive number of ag-
gressor/victim scenarios‚ it is vital to reduce the cases to be considered to a
manageable number. The effect of an aggressor on a victim depends on a num-
ber of factors‚ and not every aggressor will inject an appreciable amount of
noise into a victim. Pruning filters that identify unimportant coupling cases
have been proposed in

To illustrate the mechanisms that affect crosstalk‚ consider an example of
two coupled lines of equal length. While this is a very simple case‚ the concepts
illustrated here can be extended to understand crosstalk in the multiple line
case. The equivalent segmented RC line with a Thevenin driver model is shown
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in Figure 4.12. A voltage change on the aggressor line creates a nonzero
across the coupling capacitors‚ which injects currents into the victim. These
currents may partially flow through the grounded capacitor on the victim‚ but
mostly return through the resistances on the interconnect‚ through the transis-
tors in the driver‚ to the supply node. Further analysis based on this mechanism
points to the following factors that affect the magnitude of coupling noise.

The spatial proximity of the lines determines the magnitude of the coupling
capacitors‚ and influences the coupling noise.

The noise at the far end of a line (near the receiver) is generally larger than
that at the near end (near the driving point) since the injected noise current
is dropped over a larger resistance.

The victim impedance also affects the magnitude of the noise voltage; a
larger impedance implies a larger drop.

The switching rate of the aggressor influences the value across the cou-
pling capacitor‚ so that a faster switching aggressor will induce a larger
coupling noise.

The temporal simultaneity of switching‚ as will be explained in Section 4.5.2‚
affects the across the capacitors‚ and is another factor.

Methods for reducing coupling effects include buffer insertion to reduce the
distance to the far end of the line [ADQ98]‚ adding additional spacing between
wires‚ using shield lines in the form of power or ground lines‚ which maintain
relatively stable voltage levels‚ sizing up the driver and staggering
repeaters on a bus [KMS99].
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4.5.2 Miller capacitance models

A simple way to model crosstalk capacitances is to replace the coupling capac-
itor by a Miller capacitance to ground. To see how one can arrive at the value
of this Miller capacitor‚ let us consider three cases‚ shown in Figure 4.13:

When a wire switches and is next to a nonswitching (silent) neighbor‚ the
value of the Miller capacitance to ground equals the coupling capacitance.
Although the silent wire will see a small noise bump on its voltage wave-
form‚ the time constant associated with this is large‚ so that the across
the capacitor is substantially determined by the aggressor. Therefore‚ the
the value of across the coupling capacitor and the Miller capacitor are
identical‚ so that the contribution of the former is well captured by the
latter.

When the aggressor and the victim switch in the same direction‚ if the
switching events track each other perfectly‚ then the value of across the
coupling capacitor is zero. Using this intuition‚ the Miller capacitor is simply
set to zero‚ which results in the same current injection into the wire as
from the coupling capacitor.

When the aggressor and the victim switch in opposite directions‚ if the
changes on the two wires are symmetric‚ then will be twice that for
case This may be modeled by using a Miller capacitor value that is
twice the value of the coupling capacitance.

a.

b.

c.

The above cases are based on simplistic assumptions‚ and practically‚ for a
coupling capacitance of instead of a approximation‚ more realistic
scenarios are “fudged” in using a approximation instead. This is
not a completely unreasonable approximation‚ and has been shown to be exact
under a specific coupling model in [CKK00].

Although Figure 4.13 simplistically shows the lines coupled through a single
coupling capacitor‚ the same reasoning is valid even for segmented coupled
RC lines‚ such as that shown in Figure 3.8. In such a case‚ the coupling
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capacitor associated with each segment is converted to the corresponding Miller
capacitance‚ depending on the direction in which the coupled wires switch.

4.5.3 Accurate coupling models and aggressor alignment

The use of the Miller capacitance is only a simple first-order approximation
that can be used to extend the existing circuit analysis machinery for RC trees
using Elmore delay computations‚ AWE‚ and the like. The primary advantage
of this approximation is that it alters a coupled interconnect system to a set of
uncoupled systems‚ each of which can be solved using the methods described
earlier.

A more accurate picture of reality is illustrated for a pair of simultaneously
switching coupled lines in Figure 4.14. The line of interest is the victim line‚
and the aggressor line influences it through a set of coupling capacitances that
are not explicitly shown in the figure.

There are two sources of noise on a wire

A noise bump at the input to a gate may propagate to its output‚ typically
in an attenuated form. Extremely fast noise transitions at a gate input may
not be sent through at all‚ since a gate acts as a low pass filter.

The voltage on the aggressor line results in the injection of a noise voltage
pulse on node of the victim‚ as shown in

Processing the effects of the first of these components exactly requires a topo-
logical traversal of the entire circuit to trace the noise propagation [SNR99]‚
since the combinational stage at the input to a given stage must be processed
prior to the current stage. To avoid the complications associated with such sce-
narios‚ which may result in cyclical dependencies when a topologically earlier
stage is coupled to a topologically later stage‚ one may often impose a constraint
that limits the propagated noise bump to be lower than a peak value and pes-
simistically assume the propagated noise to be at this peak value on each net.
This yields the advantage that each net can be processed independently.

These two components add up to contribute to a noise voltage waveform at
node  on the victim. Since the interconnect net‚ when driven by a Thevenin
equivalent for the driver‚ is a linear system‚ the composite waveform at can
be obtained by adding the noise-free waveform‚ shown by the uppermost graph
in Figure 4.14(c)‚ with this noise bump. The exact time at which the noise is
injected depends on the transition time of the aggressor‚ relative to that of the
victim; this is referred to as the aggressor alignment. The second and third
graphs in Figure 4.14(c) show the noise bump waveforms corresponding to two
different aggressor alignments.

Note that the noise-free waveform‚ has a delay of        in
the figure‚ while the two different aggressor alignments have delays of and

respectively‚ and the latter corresponds to the worst-case delay at over all
alignments. The task of delay computation in a coupled system involves the
determination of aggressor alignments that result in the worst-case delay(s) at
the nodes(s) of interest.

Figure 4.14(b)4.
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4.5.4 The concept of timing windows

The role of the coupling capacitances is greatly dependent on the relative
switching times of the nets. Using the models of Section 4.5.2‚ depending
on whether a neighboring wire is silent‚ or switches in the same or the opposite
direction‚ a Miller capacitance of 0 or (or some variant thereof) may be
used to substitute the coupling capacitor. While this is more approximate than
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the analysis in Section 4.5.3‚ it is adequate to explain the concept of timing
windows that is introduced in this section.

The use of a Miller capacitor transforms a coupled RC network into a set
of uncoupled RC trees‚ and the values of the capacitors‚ and hence the delays‚
in these trees depend on the switching characteristics of the neighboring wires.
Therein lies the complexity of the timing calculation procedure: the delays
depend on the Miller capacitance values‚ which in turn depend on the switching
times that are determined by the delays. This cyclic relationship makes the
task of timing analysis in coupled RC networks nontrivial.

In general‚ one can define a timing window as an interval (or most generally‚
a union of intervals) in time during which a node in a circuit may switch. Given
the timing windows for the aggressors and the victims at the driver inputs of
a set of coupled lines‚ it is possible to determine the timing windows at the
receivers driven by these drivers.

As an example‚ consider two wires that are laid out adjacent to each other‚
as shown in Figure 4.15(a). For purposes of illustration‚ let us use the sim-
plistic model in Figure 4.15(b)‚ where the capacitances to ground as well as
the coupling capacitance are all lumped; the analysis presented here will hold
even for more complex distributed or segmented wire models. If the input sig-
nals to driver of the two wires switch between times and

respectively‚ and if the delays required to propagate the
signal along the wires are in the range and re-
spectively‚ then the intervals during which the lines switch are
and respectively‚ where

and
Therefore‚ the following relationship holds between the switching times and the
equivalent coupling capacitance‚

The first line of Table 4.2 corresponds to the case where the switching inter-
vals for the two lines overlap‚ and the value of is accordingly chosen to be
either 0 or depending on whether the signals switch in the same direction‚
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or in opposite directions5. The second and third lines correspond to the cases
where there is no overlap in the switching windows.

Since  are all dependent on the value of
(under‚ for example‚ a model)‚ the values of                                                                       and

also depend on However‚ an examination of this table shows that
is itself dependent on the values of and

To break this cyclic dependency‚ iterative approaches are often employed.
The technique proposed in [Sap99‚ Sap00] provides a method that determines
worst-case bounds on the number of iterations required for convergence. Other
significant efforts in this direction include [Zho03]‚ which shows the problem
formulation in the context of a solution on a lattice‚ [TB03] that attempts to
remove the need for iterations‚ and [ARP00]‚ which employs this method in
the context of a full static timing analysis for a circuit with multiple stages of
logic.

In developing the concept of timing windows‚ three factors come into play:

Spatial neighborhood is clearly vital‚ since adjacency between nets is required
for any capacitive coupling.

Temporal aspects come into play since the timing window‚ described in terms
of the earliest and latest allowable switching times‚ must overlap in order to
excite a simultaneous switching scenario corresponding to the maximum or
minimum possible delay. If such overlap is not possible‚ then the maximum
and minimum delay computations must be suitably adjusted.

Functional issues correspond to Boolean relationships between the signals on
adjacent wires‚ and are also important. Even though the sum of the delays
on a path may predict temporal adjacency‚ the Boolean relationships in the
circuit may not permit the signals to switch simultaneously. The importance
of this lies in the fact that timing windows are often computed rapidly using
a static timing analyzer (which will be described in detail in Chapter 5)‚
which is blind to the logical relationships in a circuit; and simply sums up
the delays of gates on a path to find the maximum (or minimum) delay.
Techniques such as [KSV96‚ CK99‚ ABP01] have been proposed to address
the problem of integrating temporal and functional dependencies.

Therefore‚ timing window computations are vital to determining the effects
of crosstalk on timing. Most approaches define timing windows in terms of an

and
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earliest and latest switching time‚ and assume that a switching event is permis-
sible at any intermediate time. In practice‚ this is a pessimistic argument‚ and
the true switching windows could be a union of disjoint windows. For instance‚
consider the example shown in Figure 4.16‚ where and are primary inputs
that switch at time 0. Assuming that the delay of each gate is 1‚ the minimum
and maximum delays at nodes and the inputs to gate G‚ can easily be seen
to be 0 and 2 units‚ respectively. Accordingly‚ adding to this the unit delay of
gate G‚ the switching window at can be set to the interval [1‚ 3]. However‚
in reality‚ a switching event at can only occur at this node at time 1‚ due to
path or at time 3‚ due to path or and not
at any arbitrary time in this interval (e.g.‚ at time 2). Therefore‚ the choice of
the entire interval [1‚ 3] may enable some nonexistent simultaneous switching
events‚ which will result in pessimistic calculations for both the maximum and
minimum delays at the output of G.

4.5.5 Extending the effective capacitance method to coupled RC lines

We will illustrate the concept of computations from [DP97] on a pair of
RC coupled lines‚ shown in Figure 4.17‚ but the idea can be extended to RC
coupled trees with an arbitrary number of coupled nets. In the two-line case
considered here‚ the first step is to replace each driver by a Thevenin model‚ as
in Section 4.4.3; in this explanation‚ a Norton equivalent is used instead. This
is characterized by the parameters and for the first line and and

for the second‚ and these must be calculated‚ in addition to the resistors
and

Two effective capacitances‚ and one for each driver‚ and the
four Thevenin parameters for the two driver models are computed as follows:

An initial guess for the  values is chosen.

Considering this system as a two-port‚ the linear system is solved to find
the voltage at each of the driving point nodes. Effectively‚ this method is
identical to that considered for the RC line case‚ except for the addition of
an extra current source in the load driven by each Thevenin equivalent.

Next‚ for each line‚ the average voltage at the driving point for the coupled
load is equated with that injected into the effective capacitance load. In
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other words‚ we set

where and correspond to the Thevenin parameters for driver as
defined in Section 4.4.3. As before‚ this expression is used to update the
value of This can be shown to be equivalent to the average current (or
total charge) formulation used earlier.

The next task is to update the value of and This is achieved‚
as before‚ by using the driver models at the computed value of
to match the 20% and 50% points on each line. These four equations here
(two for each line) are essentially the counterparts of Equations (4.20) and
(4.21) for the single line case. Together with the two equations (4.23) and
(4.24) above‚ we obtain six equations that are solved iteratively to find the
six unknown variables.

This procedure can be generalized to the line case‚ where the number
of variables is corresponding to an effective capacitance variable and two
Thevenin driver variables for each of the lines. The equations arise from
a charge equation‚ a 20% matching equation and a 50% matching equation at
each of the driving points‚ and these can be solved in a manner similar to
that outlined for the two-line case above.

4.5.6 Finding the worst-case aggressor alignment

As shown in Section 4.5.3‚ the precise aggressor alignment affects the delay of
the waveform. We now explain how the technique described in the previous
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section can be extended to find the worst-case aggressor alignment, i.e., the
alignment that results in the worst-case delay.

Consider a victim with a rising waveform that is capacitively coupled to
several aggressors, each with a falling waveform, as illustrated in Figure 4.18(a).
At a node of interest on the victim, each aggressor will contribute a noise
waveform, The technique in [GARP98] uses a procedure similar to
waveform relaxation [LRSV83] to arrive at this solution. Each line is solved
separately using a Thevenin model for each driver, and its contribution
at the victim node is computed. Since this system uses a Thevenin equivalent
for each driver, it is purely linear, and the noise waveform can be found by
summing up the individual contributions6 The worst-case noise peak,

is achieved when the noise peaks of all of the aggressors are perfectly
aligned, as shown in Figure 4.18(b)7. To determine the worst-case delay, this
composite noise pulse is aligned with the noise-free victim waveform to create
a worst-case scenario. This occurs when the noise peak is aligned with the time
at which the noise-free victim is at voltage Since the noise-free
waveform rises monotonically, the sum of the two waveforms has its minimum
at this time point, as shown in Figure 4.18(c).

Therefore, the process of determining the worst-case 50% delay at for a
rising victim waveform consists of the following steps:

The noise-free waveform is determined‚ as are the individual noise waveforms
from each aggressor.

The peaks of the noise waveforms are all aligned to find the noise wave-
form peak; note that is negative since all of the aggressors sport falling
waveforms.

The noise-free waveform‚ is now aligned with the noise signal in
such a way that the time at which the latter reaches corresponds to the
time when is at

1.

2.

3.

An enhancement of this approach was proposed in [BSO03]. Firstly‚ it is
observed that the aggressor alignment strategy above uses the artifact of the
50% delay definition‚ which may not be very meaningful in practice. Specifi-
cally‚ when a noisy waveform is at the input to the victim receiver‚ the output
waveform is shown in Figure 4.19. In this case‚ the pulse propagates to the
output when the transient has already settled‚ and thus‚ the noise pulse does
not appreciably change the waveform at the victim output. Consequently‚ an
improved definition of the delay is necessary‚ whereby the worst-case aggressor
alignment is a function of the gate type‚ size‚ pmos/nmos ratio‚ and output
load on the victim receiver. An inexpensive precharacterization using a linear
fit was proposed to capture these effects in this work.

Secondly‚ [BSO03] noted that the Thevenin resistance that is valid over the
entire transition between 0 and is not identical to the resistance that is
seen for the noise transition‚ which has a much smaller range. Therefore‚ it
developed the concept of a transient holding resistance to capture this effect‚
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and developed a modified effective capacitance computation algorithm for com-
puting its value.

In addition to these efforts‚ several other notable contributions have been
made. TETA [ADP02] uses a simulation-based environment to avoid the inac-
curacies of effective capacitance calculation. Its core is a fast nonlinear driver
simulations using table-based transistor models and the parallel chord method
for rapid model evaluation‚ and it employs a relaxation-based framework for
the fast solution of a set of coupled lines. The approach in [CMS01] avoids the
relaxation iterations and uses a direct technique to handle nonlinearities in the
circuit.

4.6 SUMMARY

In this chapter‚ we have seen how the delay of a single combinational stage‚
with many coupled interconnect elements‚ can be found. A stage may consist
of linear interconnect elements and nonlinear elements related to MOS devices.
Efficient techniques for taking advantage of the linearities while taking the
nonlinearities into account have been presented‚ including the notion of an
effective capacitance. This provides the basis for circuit-level analysis‚ where
the delays of combinational stages are added up to systematically determine
the worst-case delay of a combinational circuit.

Notes

1. This assumption is valid when the load capacitances at internal nodes are small enough‚
as compared to the capacitance at the gate output. This is often the case in CMOS circuits.

2. The original paper [OS89] studied reductions to a single capacitor‚ a single RC and
the  model described here; the latter has become the most widely used.

3. Alternatively‚ the Norton equivalent corresponding to the Thevenin model may be
used.

4. In the figure‚ the voltage on the aggressor line is simplistically shown to be monotonic.
In reality‚ it may also be affected by a noise bump. In any case‚ it will result in the injection
of a noise voltage pulse that is similar in nature to that shown here.

5. Further subtlety can be added by considering rise and fall times independently‚ and
the procedure can be suitably modified.

6. Note that this is a nonlinear system‚ and strictly speaking‚ superposition is not permit-
ted. However‚ the nonlinear iterations are used to determine the parameters of the Thevenin
model‚ and for small noise perturbations about this‚ a linear approximation is possible‚ which
permits the use of superposition. If this addition is performed using the original driver mod-
els‚ it is seen to underestimate the noise on occasion.

7. Note that this does not mean that the input waveforms to the aggressors are aligned!



5 TIMING ANALYSIS FOR
COMBINATIONAL CIRCUITS

5.1   INTRODUCTION

The methods described in Chapter 4 can be employed to find the delay of a
single stage of combinational logic. A larger combinational circuit consists of
several such stages, and the next logical step is to extend these methods for
circuit-level delay calculation. This chapter will present methods that compute
the delay of a combinational logic block in a computationally efficient manner.

5.2    REPRESENTATION OF COMBINATIONAL AND SEQUENTIAL
CIRCUITS

A combinational logic circuit may be represented as a timing graph G = (V, E),
where the elements of V, the vertex set, are the logic gates in the circuit and
the primary inputs and outputs of the circuit. Strictly speaking, this discussion
should work with channel-connected components instead, but we will press
on with the term “gate,” with the understanding that it is considered to be
equivalent to a component in this context.

A pair of vertices, and are connected by a directed edge
if there is a connection from the output of the element represented by vertex
to the input of the element represented by  vertex A simple logic circuit and
its corresponding graph are illustrated in Figure 5.1(a) and (b), respectively.

A simple transform that converts the graph into one that has a single source
and a single sink is often useful. In the event that all primary inputs are
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connected to flip-flops and transition at the same time, edges are added from
the node to each primary input, and from each primary output to the sink

The case where the primary inputs arrive at different times can be
handled with a minor transformation to this graph1, adding a dummy node
with a delay of along each edge from to the primary input

The above construction generally results in a combinational circuit that
is represented as a directed acyclic graph (DAG). This is because combina-
tional circuits, as conventionally described, do not have any cycles. How-
ever, many actual implementations of combinational circuits are not acyclic,
and some literature on cyclic combinational circuits has been published in
[Mal95, RB03, Edw03]. Many timing analyzers handle loops in combinational
circuits by breaking them either in an ad hoc manner, or according to a heuris-
tic, so that the circuit to be analyzed may be represented as a DAG.

A sequential circuit that consists both of combinational elements and sequen-
tial elements (flip-flops and latches) may be represented as a set of combina-
tional blocks that lie between latches, and a timing graph may be constructed
for each of these blocks. For any such block, the sequential elements or cir-
cuit inputs that fanout to a gate in the block constitute its primary inputs;
similarly, the sequential elements or circuit outputs for which a fanin gate be-
longs to the block together represent its primary outputs. It is rather easy to
find these blocks: to begin with, we construct a graph in which each vertex
corresponds to a combinational element, an undirected edge is drawn between
a combinational element and the combinational elements that it fans out to,
and sequential elements are left unrepresented (this is substantially similar to
the directed graph described above for a combinational circuit, except that
it is undirected). The connected components of this graph correspond to the
combinational blocks in the circuit.

The computation of the delay of such a combinational block is an important
step in timing analysis. For an edge-triggered circuit, the signals at the primary
inputs of such a block make a transition at exactly the same time, and the clock
period must satisfy the constraint that it is no smaller than the maximum delay
of any path through the logic block, plus the setup time for a flip-flop at the
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primary output at the end of that path. Therefore, finding the maximum delay
through a combinational block is a vital subtask, and we will address this issue
in this section. Alternatively, a combinational block that is to be treated as
a black box must be characterized in terms of its delays from each input to
each output; this is a vital problem in, for example, when the analysis involves
hierarchically defined blocks with such timing abstractions. For level-clocked
circuits, the timing relations are more complex, but the machinery developed
in this section will nevertheless be useful. A detailed discussion on the analysis
of sequential circuits based on combinational block delays will be presented in
Chapter 7.

5.2.1 Delay calculation for a combinational logic block

In this section, we will present techniques that are used for the static timing
analysis of digital combinational circuits. The word “static” alludes to the
fact that this timing analysis is carried out in an input-independent manner,
and purports to find the worst-case delay of the circuit over all possible input
combinations. The computational efficiency of such an approach has resulted
in its widespread use, even though it has some limitations that we will describe
in Section 5.3.

A method that is commonly referred to as PERT (Program Evaluation and
Review Technique) is popularly used in static timing analysis. In fact, this is a
misnomer, and the so-called PERT method discussed in most of the literature
on timing analysis refers to the CPM (Critical Path Method) that is widely
used in project management2. The CPM procedure is now an integral part
of most fast algorithms for circuit delay calculation, and in this book we will
endeavor to use the correct terminology.

Before proceeding, it is worth pointing out that while CPM-based methods
are the dominantly in use today, other methods for traversing circuit graphs
have been used by various timing analyzers: for example, depth-first techniques
have been presented in [Jou87b].

The algorithm, applied to a timing graph G = (V ,E) , can be summarized
by the pseudocode shown in Figure 5.2. The procedure is best illustrated by
means of a simple example. Consider the circuit in Figure 5.3, which shows an
interconnection of blocks. Each of these blocks could be as simple as a logic
gate or could be a more complex combinational block, and is characterized by
the delay from each input pin to each output pin. For simplicity, this example
will assume that for each block, the delay from any input to the output is
identical. Moreover, we will assume that each block is an inverting logic gate
such as a NAND or a NOR, as shown by the “bubble” at the output. The
two numbers, inside each gate represent the delay corresponding to the
delay of the output rising transition, and that of the output fall transition,

respectively. We assume that all primary inputs are available at time zero,
so that the numbers “0/0” against each primary input represent the worst-case
rise and fall arrival times, respectively, at each of these nodes. The critical path
method proceeds from the primary inputs to the primary outputs in topological
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order, computing the worst-case rise and fall arrival times at each intermediate
node, and eventually at the output(s) of a circuit.

A block is said to be ready for processing when the signal arrival time in-
formation is available for all of its inputs; in other words, when the number of
processed inputs of a gate equals the number of in-
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puts of the gate, Notationally, we will refer to each block by the
symbol for its output node. Initially, since the signal arrival times are known
only at the primary inputs, only those blocks that are fed solely by primary
inputs are ready for processing. In the example, these correspond to the gates

and These are placed in a queue  using the function  and are
processed in the order in which they appear in the queue.

In the iterative process, the block at the head of the queue  is taken off the
queue and scheduled for processing. Each processing step consists of

Finding the latest arriving input to the block that triggers the output tran-
sition (this involves finding the maximum of all worst-case arrival times of
inputs to the block), and then adding the delay of the block to the latest
arriving input time, to obtain the worst-case arrival time at the output. This
is represented by function  in the pseudocode.

Checking all of the block that the current block fans out to, to find out
whether they are ready for processing. If so, the block is added to the tail
of the queue using function

The iterations end when the queue is empty. In the example, the algorithm is
executed as follows:

Step 1 In the initial step gates and are placed on the queue since the
input arrival times at all of their inputs are available.

Step 2 Gate at the head of the queue, is scheduled. Since the inputs tran-
sition at time 0, and the rise and fall delays are, respectively, 2 and 1 units,
the rise and fall arrival times at the output are computed as 0+2=2 and
0+1=1, respectively. After processing no new blocks can be added to the
queue.

Step 3 Gate is scheduled, and the rise and fall arrival times are similarly
found to be 4 and 2, respectively. Again, no additional elements can be
placed in the queue.

Step 4 Gate is processed, and its output rise and fall arrival times are
computed as 3 and 1, respectively. After this computation, we see that all
arrival times at the input to gate have been determined. Therefore, it is
deemed ready for processing, and is added to the tail of the queue.

Step 5 Gate is now scheduled, and the rise and fall arrival times are similarly
found to be 4 and 2, respectively, and no additional elements can be placed
in the queue.

Step 6 Gate which is at the head of the queue, is scheduled. Since this is
an inverting gate, the output falling transition is caused by the latest input
rising transition, which occurs at time max(4, 3) = 4. As a consequence, the
fall arrival time at is given by max(4, 3) + 1 = 5. Similarly, the rise arrival
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time at is max(2, 1) + 1 = 3. At the end of this step, both and are
ready for processing and are added to the queue.

Step 7 Gate is scheduled, and its rise and fall arrival times are calculated,
respectively, as max(1, 5) + 3 = 8 and max(2, 3) + 2 = 5.

Step 8 Gate is now processed, and its rise and fall arrival times are found
to be max(5, 2) + 2 = 7 and max(3, 4) + 2 = 6, respectively. This sets the
stage for adding gate to the queue.

Step 9 Gate is scheduled, and its rise and fall arrival times are max(5, 6) +
1 = 7 and max(8, 7) + 3 = 11, respectively. The queue is now empty and the
algorithm terminates.

The worst-case delay for the entire block is therefore max(7, 11) = 11 units.

5.2.2 Critical paths, required times, and slacks

The critical path, defined as the path between an input and an output with
the maximum delay, can now easily be found by using a traceback method.
We begin with the block whose output is the primary output with the latest
arrival time: this is the last block on the critical path. Next, the latest arriving
input to this block is identified, and the block that causes this transition is the
preceding block on the critical path. The process is repeated recursively until
a primary input is reached.

In the example, we begin with Gate at the output, whose falling transition
corresponds to the maximum delay. This transition is caused by the rising
transition at the output of gate which must therefore precede on the
critical path. Similarly, the transition at is effected by the faling transition
at the output of and so on. By continuing this process, the critical path
from the input to the output is identified as being caused by a falling transition
at either input or and then progressing as follows: rising

A useful concept is the notion of the required time, R, at a node in the
circuit. If a circuit is provided with a set of arrival time constraints at each
output node, then on the completion of the CPM traversal, one may check
whether those constraints are met or not. If they are not met, it is useful to
know which parts of the circuit should be sped up and how, and if they are, it
may be possible to save design resources by resynthesizing the circuit to slow
it down. In either case, the required time at each node in the circuit provides
useful information. At any node in the circuit, if the arrival time exceeds the
required time, then the path that this node lies on must be sped up.

The computation of the required time proceeds as follows. At each primary
output, the rise/fall required times are set according to the specifications pro-
vided to the circuit. Next, a backward topological traversal is carried out,
processing each gate when the required times at all of its fanouts are known.
In essence, this is equivalent to performing a CPM traversal with
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1.

2.

3.

the directions of the edges in G(V, E) reversed,

the block delays negated, and

the required time at the outputs set to the timing specification.

The required rise and fall arrival times for the circuit in Figure 5.3 are shown
in Figure 5.4, for a timing specification of 10 units at the primary output.
A representative calculation for gate can be shown as follows: The falling
transition at corresponds to a rising transition at its fanout gates and
and the fall required time must satisfy the requirements from both of these
gates, and as a result, it is given by the minimum of the values imposed by
the two. Each such value is given by the required rise time at the gate output,
minus the rise delay of the gate. Therefore, the required time for the falling
transition at is computed as min(7 – 3, 7 – 2) = 4. Similarly, the required
time for the rising transition at is calculated as min(9 – 2, 9 – 2) = 7.

The slack associated with each connection is then simply computed as the
difference between the required time and the arrival time. A positive slack at
a node implies that the arrival time at that node may be increased by without
affecting the overall delay of the circuit. Such a delay increase will only eat into
the slack, and may provide the potential to free up excessive design resources
used to build the circuit. The rise and fall slacks at each gate in Figure 5.4,
corresponding to a timing constraint of 10 units, are listed next to the gate.
For example, the rise delay of gate in the figure may be slowed down by up to
5 units, and its fall delay by up to 4 units without affecting the circuit delay.
This could be accomplished, for example, by replacing the gate by another gate
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in the library with the same functionality, but higher rise and fall delays. The
redistribution of slack plays a vital role in timing analysis, and various methods
for this purpose have been presented in, for example, [NBHY89, YS90, SSP02].

It should be noted that the critical path can also be found using the slack
information. The lowest slack at the primary output is -1, and by tracing back
from the primary output towards the primary inputs and following the path
with a slack of -1 yields the critical path of the circuit.

5.2.3 Extensions to more complex cases

For ease of exposition, the example in the previous section contained a number
of simplifying assumptions. The critical path method can work under more gen-
eral problem formulations, and a few of these that are commonly encountered
are listed below:

Nonzero arrival times at the primary inputs If the combinational block
is a part of a larger circuit, we may have nonzero rise/fall arrival times at the
primary inputs. If so, the CPM traversal can be carried out by simply using
these values instead of zero as the arrival times at the primary inputs. This
is particularly useful in characterizing blocks, and may be used to create
hierarchical models.

Minimum delay calculations When the gate delays are fixed, the method
described above can easily be adapted to find the minimum, instead of the
maximum delay from any input to any output. The only changes in the
procedure involve the manner in which an individual block is processed: the
earliest arrival time over all inputs is now added to the delay of the block to
find the earliest arrival time at its output.

Minmax delay calculations If the gate delay is specified in terms of an in-
terval, then the minimum and maximum arrival time intervals
can be propagated in a similar manner; again, these values may be main-
tained separately for the rising and falling output transitions. The values of

and can be computed on the fly while processing a gate, as will
be explained shortly.

Noninverting gates In the example above, all blocks are assumed to consist
of inverting gates, due to which a rising transition at the output is caused
by a falling transition at the input and vice versa. In case of a noninverting
gate/block, a simple adjustment may be made by realizing that the rise [fall]
transition at the output is effected by a rise [fall] transition at the input.

Generalized block delay models  If the delay from input pin    to output
pin of a blocks is and the values of are not all uniform for a block,
then the arrival time at the output can be computed as
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where is the arrival time (of the appropriate polarity) at input Note
that if then this simply reduces to the expression,

which was used in the example in Figure 5.3.

Incorporating input signal transition times In the example, the delay of
each of the individual gates was prespecified as an input to the problem.
However, in practice, the delay of a logic gate depends on factors such as
the input transition time (i.e., the 10%-to-90% rise or fall times), which are
unknown until the predecessor gate has been processed. This problem is
overcome by propagating not only the worst case rise and fall arrival times,
but also the input signal transition times corresponding to those arrival
times.

Note that this fits in well with the fact that the delay of a gate is only
required at the time when it is marked as ready for processing during the
CPM traversal. At this time, the input signal arrival times as well as the
corresponding signal transition times are available, which implies that the
delay of the gate may be computed on the fly,  just before it is needed, using
techniques such as those presented in Section 4.3 and 4.4.

The last of these is particularly important to factor in, and while the above
discussion indicates this may easily be carried out in the context of CPM,
such a calculation entails some complexities. Consider for instance two signals
arriving at a node, with arrival times of and respectively, and transition
times of and respectively. In the most common application of CPM, it is
assumed that if then the arrival time is propagated, along with its
corresponding transition time, However, it is easy to see that if is just
barely larger than but then the worst-case transition at the gate
output is very likely to be caused by the signal arriving at Worst of all,
such a scheme that uses and to compute the worst-case delay may very
well underestimate the path delay: underestimation is a cardinal sin in timing
analysis, where every effort is made to ensure that the estimates are pessimistic
(but not unduly so).

A simplistic scheme to overcome this problem may propagate, for each gate,
the worst-case arrival time, and the worst-case transition time. However, this
may be far too pessimistic, since the worst-case transition time may well be due
to an early arriving signal that could never lie on the critical path. This problem
was pointed out in [BZS02], which also proposes a method for overcoming it.
The essential idea is to selectively propagate a set of arrival times and transition
times, using careful pruning to manage the amount of data to be kept track of.
Experimental results show that this method provides improved delay estimates
with a manageable amount of storage and computation.
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5.2.4 Incremental timing analysis

During the process of circuit design or optimization, it is frequently the case
that a designer or a CAD tool may alter a small part of a circuit and consider
the effects of this change on the timing behavior of the circuit. Since the cir-
cuit remains largely unchanged, performing a full static timing analysis entails
needless computation, since many of the arrival times remain unchanged. The
notion of incremental timing analysis provides a way of propagating the changes
in circuit timing caused by this alteration only to those parts of the circuit that
require it. For example, in the circuit shown in Figure 5.5, if the delay of gate
G1 is changed from 5 to 4 units, then its effect is propagated to the next stage
of gates, and then on to the next stage, and so on, as long as some arrival time
in the circuit is altered. In this case, the arrival times at the shaded gates G1
and G6 are affected, and the propagation stops at gate G8 since its arrival time
is unaltered (though in general, such a change may well make its effects felt
on the primary outputs). It is easily seen that the incremental analysis here is
cheaper than carrying out a fresh new static timing analysis.

This is referred to as event-driven propagation: an event is said to occur
when the timing information at the input to a gate is changed, and the gate
is then processed so that the event is propagated to its outputs. Unlike CPM,
in an event-driven approach, it is possible that a gate may be processed more
than once. However, when only a small change is made to the circuit, and a
small fraction of the gates have their arrival times altered, such a method is
highly efficient. In the next section, we will employ an event-driven method for
the problem of finding the delays for all primary input-primary output pairs in
a combinational circuit, embedding an approach that ensures that each gate is
updated only once during the event-driven propagation.
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5.2.5 Calculating the worst-case delays from a specific input to all outputs

The CPM procedure described above finds the worst-case delay from any input
to any output in a combinational block. A commonly encountered problem
is that of finding the maximum delay, from one specified input to
all outputs and a solution was suggested in [Fis90]. This method first set
the arrival time at input to zero, and that at all other inputs to The
resulting signal arrival time at each output found using CPM, is the value of

However, if this procedure were to be performed directly, it would lead
to large computation times. This would be accentuated if all input-to-output
delays were required, which would mean that this procedure would have to be
executed for each input to the combinational block.

For practical circuits, it was observed during the symbolic propagation of
constraints in [CSH95] that in most cases, the input to a combinational block
exercises only a small fraction of all of the paths between the inputs of the
combinational block and the outputs. Based on this observation, an efficient
procedure for calculating the values of was developed in [Sap96]. It was
found that the use of this procedure yielded run-time improvements of several
orders of magnitude over the direct multiple applications of CPM described in
the previous paragraph.

The topological level, of each gate in the circuit is first computed
by a single CPM run; this is defined as the largest number of gates from a
primary input to the gate, inclusive of the gate, and is found by a topological
ordering algorithm. To find  the largest delay from primary input to
all primary outputs we conduct an event-driven CPM-like exercise starting
at flip-flop as described in the following piece of pseudocode. During the
process, we maintain a set of queues, known as level queues. The level queue
indexed by contains all gates at level that have had an input processed.
The pseudocode for the procedure is as shown in Figure 5.6.

At each step, an element from the lowest unprocessed level is plucked from
its level queue, and the worst-case delay from input to the gate output is
computed. All of  its fanouts are then placed on their corresponding level queues,
unless they have already been placed there earlier. Note that by construction,
no gate is processed until the delay to all of its inputs that are affected by
flip-flop have been computed, since such inputs must necessarily have a lower
level number.

5.3 FALSE PATHS

The true delay of a combinational circuit corresponds to the worst case over all
possible logic values that may be applied at the primary inputs. Given that each
input can take on one of four values (a steady 0, a steady 1, a transition
and a transition), the number of possible combinations for a circuit with

inputs is which shows an exponential trend. However, it can be verified
that the critical path method for finding the delay of a combinational circuit
can be completed time for a timing graph G = (V, E), and in
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practice, this computation is considerably cheaper on large circuits than a full
enumeration. The difference arises because of a specific assumption made by
CPM: namely, that the logic function implemented by a gate is inconsequential,
and only its delay is relevant. In other words, CPM completely ignores the
Boolean relationships in a circuit, and work with purely topological properties.
As a result, it is possible that it may not be possible to excite the critical path
found by CPM, and in general, the critical path delay found using CPM is
pessimistic.
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As an example, consider the circuit shown in Figure 5.7, with three inputs
a, b and c, and one output, out. Assume, for simplicity, that the multiplexer
and inverter have zero delays, and that the four blocks whose delays are shown
are purely combinational. It can easily be verified that the worst-case delay for
this circuit computed using the critical path method, is 4 units. However, by
enumerating both possible logic values for the multiplexer, namely, c=0 and
c=1, it can be seen the delay in both cases is 3 units, implying that the circuit
delay is 3 units. The reason for this discrepancy is simple: the path with a
delay of 4 units can never be sensitized because of the restrictions placed by
the Boolean dependencies between the inputs.

While many approaches to false path analysis have been proposed, most are
rather too complex to be applied in practice. The identification of false paths
includes numerous subtleties. Some paths may be statically insensitizable when
delays are not considered, but dynamically sensitizable. For instance, if the in-
verter has a delay of 3 units, then the path of delay 4 units is indeed dynamically
sensitizable. Various definitions have been proposed in the literature, and an
excellent survey, written at a time when research on false paths was at its most
active, in presented in [MB91].

However, by and large, most practical approaches use some designer input
and case enumeration, just as in the case of Figure 5.7 where the cases of c=0
and c=1 were enumerated. If a set of user-specified false paths is provided,
the techniques listed in Section 5.4 may be applied to identify the longest true
path. Alternatively, approaches for pruning user-specified false paths from
timing graphs have been presented in [Bel95, GS99, BPD00].

5.4 FINDING THE K MOST CRITICAL PATHS

It is frequently useful to find the most critical paths in a circuit. For instance,
while trying to find the longest sensitizable critical path, one could begin with
the longest path and check whether it is a false path or not. If the path is true,
the task is done; if not, then the next critical path must be identified, and so
on.

A simple algorithm that is easily implemented in the context of the critical
path method was presented in [JS91]. This procedure does not require the value
of to be specified a priori. It uses the timing graph defined in Section 5.2,
associating a delay on each edge that corresponds to the delay from the gate to
its fanout, including the gate delay and the interconnect delay3. In addition, a
source vertex and a sink vertex are introduced, as described earlier.

The method proceeds as follows:

The maximum delay to a sink from each node de-
fined as the longest delay path from to the sink node, is determined. This
may easily be computed by a backward topological traversal from the pri-
mary outputs towards the primary inputs.
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For each connection from a node to a successor node if is the
delay along the edge the successors are arranged in non-increasing
order of the cost function

The  branch_slack  (abbreviated as in the figures accompanying this discus-
sion) is computed as the difference between the cost functions of adjacent
successors and where is the next node in the sorted list of
successors of node If the node has fanouts, then the branch-slack for
the last node on the list is defined4 as

As an example, consider the graph shown in Figure 5.8 that shows a part
of a circuit. The italicized numbers on each edge indicate the delays asso-
ciated with each edge, and the bold figures next to each node indicate the
max_delay_to_sink values. For instance, if the max_delay_to_sink for D and G
are given to be 10 and 5, respectively, the value of max_delay_to_sink for C
is computed as max(10 + 10, 5 + 12) = 20. The branch_slack for the edge
(C,D) is therefore 3. The successors of C are sorted in the order of their
value of i.e., in the order D, G. Similarly, the
branch_slack  along (B,F) is found to be 1 unit, and the successors of B are
sorted in the order C, F.

These computations may be used to assist in the enumeration of the most
critical paths. The intuition for the procedure is based on the fact that the
delay of the next longest path that branches out from some node through
some edge is lower than the longest path through by the branch-slack
of Each such path must intersect the previous longest path at least two
nodes, the source and the sink

The computation proceeds as follows. The longest path in the circuit,
is first identified using the techniques

described in Section 5.2.1. As this path is identified, the branch-slack values at
the branch points on this path are used to compute the delays of the correspond-
ing paths, which are all realistic candidates for the next longest path. These
delays are stored in an ordered list, and the delay of the next longest path,
next-delay, is computed using the smallest of these branch-slacks. The second-
longest path, is the path with the smallest branch-slack on this list. This
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path branches out from the node on that has the smallest branch_slack for
the edge for some successor node of This path is identical to up
to some node after which the remaining nodes are obtained by identifying
the first successor node in the graph until the sink is reached. Once this path
is identified, the branch-slack values on the branch points on this path are used
to compute the delays for the corresponding candidate path delays, and these
are added to the ordered list.

In general, once the most critical paths have been identified, the
most critical path is computed by choosing the longest delay path on the ordered
list. The branch points off this path are then used to update the ordered list.
For efficiency, the ordered list is maintained as a heap [CLR90].
Example: The graph listed in Figure 5.9 shows a DAG on which the most
critical paths are to be found. The first step is to find the values of the
max-delay-to-sink  and  branch-slack throughout the graph; these are shown in
the figure using the same scheme as in Figure 5.8. A trace of the execution
that shows the computation of the five most critical paths is shown below.

Critical
path #

1
2
3
4
5

Path

ABFCD
AEBFCD

ABCD
ABFCGD
AEBCD

Delay

13
12
12
11
11

Available branch point
[branch_slack, path delay]

A[1,12], B[1,12], C[2,11], F[3,10]
B[1,11], E[2,10], C[2,10], F[3,9]

A[1,11], C[2,10]
A[1,10], B[1,10], F[3,8]

E[2,9], C[2,9]

Branch point
used (path #)

A[1,12] (1)
B[1,12] (1)
C[2,11] (1)
B[1,11] (2)

The first path that is identified is the most critical path, ABFCD, with a
delay of 13. The available branch points and the delays on the next most
critical paths using each of those branch points may be calculated using the
corresponding branch slacks as shown, and arranged in the heap in order of
the delay. The next critical path is found by taking the largest delay path off
the heap. Of the two choices of branch points A and B, A is chosen if it is
arranged on the heap before B, leading the the second most critical path. The
procedure continues: up to the fourth most critical path, all paths are derived
from the most critical path. However, observe that the fifth-most critical path
corresponds to the branch slack along B on the second-most critical path.

5.5 SUMMARY

In this chapter, we have developed the material from the earlier chapters to
present techniques that find the delay of a combinational block. The critical
path method for delay computation was first presented, followed by a discussion
on false paths and timing analysis in the presence of false paths.
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Notes

1. If some arrival times are negative, the time variable can be shifted to ensure that
at each primary input.

2. In the context of project management, PERT is a technique that is used to propagate
coarse probabilistic delay information through a network, while CPM propagates static delay
information. The confusion probably arose because one of the earliest works on timing
analysis by Kirkpatrick and Clark [KC66] used PERT for statistical timing analysis (the
vintage of this article is apparent from the fact that their illustrative example was that of a
ferrite core system design). These principles were extended by later work for constant delay
values, without necessarily changing the nomenclature. For an overview of the genesis of
timing analysis methods, the reader is referred to an early paper by Hitchcock [Hit82]. As a
final note, while statistical timing analysis is newly emerging as a major problem area in its
own right, as discussed in Chapter 6, PERT-based approaches may be somewhat simplistic,
and unable to model the complexities of the delay variations.

3. An alternative way of building the timing graph is to represent input pins and output
pins as vertices. Such a construct permits the specification of unequal pin-to-pin delays in a
gate.

4. This definition is necessary since is undefined for this node.



6 STATISTICAL STATIC TIMING
ANALYSIS

6.1 INTRODUCTION

Under true operating conditions‚ the parameters chosen by the circuit designer
are perturbed from their nominal values due to various types of variations. As
a consequence‚ a single SPICE-level transistor or interconnect model (or an
abstraction thereof) is seldom an adequate predictor of the exact behavior of a
circuit. These sources of variation can broadly be categorized into two classes

Process variations result from perturbations in the fabrication process‚ due
to which the nominal values of parameters such as the effective channel
length the oxide thickness the dopant concentration the
transistor width the interlayer dielectric (ILD) thickness and
the interconnect height and width respectively).

Environmental variations arise due to changes in the operating environ-
ment of the circuit‚ such as the temperature or variations in the supply
voltage and ground) levels. There is a wide body of work on analysis
techniques to determine environmental variations‚ both for thermal issues
[CK00‚ CS03b‚ WC02‚ GS03]‚ and for supply net analysis [SS02].

Both of these types of variations can result in changes in the timing and power
characteristics of a circuit.

Process variations can also be classified into the following categories:
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Inter-die variations are the variations from die to die‚ and affect all the de-
vices on same chip in the same way‚ e.g.‚ they may cause all of the transistor
gate lengths of devices on the same chip to be larger or all of them to be
smaller.

Intra-die variations correspond to variability within a single chip‚ and may
affect different devices differently on the same chip‚ e.g.‚ they may result
in some devices having smaller oxide thicknesses than the nominal‚ while
others may have larger oxide thicknesses.

Inter-die variations have been a longstanding design issue‚ and for several
decades‚ designers have striven to make their circuits robust under the unpre-
dictability of such variations. This has typically been achieved by simulating
the design at not just one design point‚ but at multiple “corners.” These corners
are chosen to encapsulate the behavior of the circuit under worst-case varia-
tions‚ and have served designers well in the past. In nanometer technologies‚
designs are increasingly subjected to numerous sources of variation‚ and these
variations are too complex to capture within a small set of process corners.

To illustrate this‚ consider the design of a typical circuit. The specifications
on the circuit are in the form of limits on performance parameters‚ such
as the delay or the static or dynamic power dissipation‚ which are dependent
on a set of design or process parameters‚ such as the transistor width or
the oxide thickness. In Figure 6.1 (a)‚ we show the behavior of a representative
circuit in the performance space of parameters‚ whose permissible range of
variations lies within a range of for each parameter‚ which
corresponds to a rectangular region. However‚ in the original space of design
parameters‚ this may translate into a much more complex geometry‚ as
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shown in Figure 6.1(b). This may conservatively be captured in the form of
process corners at which the circuit is simulated.

Although it is conceptually possible to model the shape of the feasible region‚
a large amount of related prior work in the analog context [DH77‚ AMH91‚
SVK94] has shown that such approaches can handle problems of only limited
dimensionality. This is also borne out by the work in  in the context
of digital circuits.

In nanometer technologies‚ intra-die variations have become significant and
can no longer be ignored. As a result‚ a process corner based methodology‚
which would simulate the entire chip at a small number of design corners‚ is
no longer sustainable. A true picture of the variations would use one process
corner in each region of the chip‚ but it is clear that the number of simulations
would increase exponentially with the number of such regions. This implies
that if a small number of process corners are to be chosen‚ they must be very
conservative and pessimistic. For true accuracy‚ this can be overcome by using
a larger number of process corners‚ but this number may be too large to permit
computational efficiency.

Our discussion in this chapter will focus primarily on intra-die variations.
Unlike inter-die variations‚ whose effects can be captured by a small number of
static timing analysis (STA) runs at the process corners‚ a more sophisticated
approach is called for in dealing with intra-die variations. This requires an
extension of traditional STA techniques to move beyond their deterministic na-
ture. An alternative approach that overcomes these problems is statistical STA
(SSTA)‚ which treats delays not as fixed numbers‚ but as probability density
functions (PDF’s)‚ taking the statistical distribution of parametric variations
into consideration while analyzing the circuit.

The sources of these variations may be used to create another taxonomy:

Random variations (as the name implies) depict random behavior that can
be characterized in terms of a distribution. This distribution may either be
explicit‚ in terms of a large number of samples provided from fabrication line
measurements‚ or implicit‚ in terms of a known probability density function
(such as a Gaussian or a lognormal distribution) that has been fitted to
the measurements. Random variations in some process or environmental
parameters (such as those in the temperature‚ supply voltage‚ or can
often show some degree of local spatial correlation‚ whereby variations in
one transistor in a chip are remarkably similar in nature to those in spatially
neighboring transistors‚ but may differ significantly from those that are far
away. Other process parameters (such as and do not show much
spatial correlation at all‚ so that for all practical purposes‚ variations in
neighboring transistors are uncorrelated.

Systematic variations show predictable variational trends across a chip‚ and
are caused by known physical phenomena during manufacturing. Strictly
speaking‚ environmental changes are entirely predictable‚ but practically‚
due to the fact that these may change under a large number (potentially
exponential in the number of inputs and internal states) of operating modes
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of a circuit‚ it is easier to capture them in terms of random variations.
Examples of systematic‚ variations include those due to

Spatial intra-chip gate length variability, also known as across-chip linewidth
variation (ACLV), which observes systematic changes in the value of

across a reticle due to effects such as changes in the stepper-
induced illumination and imaging nonuniformity clue to lens aberrations

ILD variations due to the effects of chemical-mechanical polishing (CMP)
on metal density patterns: regions that have uniform metal densities
tend to have more uniform ILD thicknesses than regions that have
nonuniformities. This is illustrated by an example in Figure 6.2.

This chapter will overview the field in the area of SSTA in the presence
of intra-die variations. For simplicity‚ many of these methods assume either a
normal distribution for the gate delay‚ or a discrete probability density function
(PDF). The latter have the advantage of being more versatile in describing
on-chip variations‚ but the former can more easily capture spatial correlation
structures.

6.2 MODELING PARAMETER VARIATIONS

6.2.1 Components of variations

In general‚ the intra-chip parametric variation can be decomposed into three
parts: a deterministic global component‚ a deterministic local compo-
nent and a random component [LNPSOO]:
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The global component‚ is location-dependent. For example‚ across
the die‚ it can be modeled by a slanted plane and expressed as a simple function
of the die location:

where is its die location‚ and are the location-dependent gradients
of parameter indicating the spatial variations of parameter along the and
direction respectively.

The local component‚ is proximity-dependent and layout-specific. The
random residue‚ stands for the random intra-chip variation and is modeled
as a random variable with a multivariate normal distribution to account for
the spatial correlation of the intra-chip variation:

where is the covariance matrix of the distribution. When the parameter
variations are assumed to be uncorrelated‚ is a diagonal matrix; spatial
correlations are captured by the off-diagonal cross-covariance terms in a general

using methods such as those described in Section 6.2.2. A fundamental
property of covariance matrices says that must be symmetric and positive
semidefinite.

If the impact of only the global and random components are considered‚
then under the model of Equation (6.2)‚ at a given location‚ the true value of
a parameter at location can be modeled as:

where  is the nominal design parameter value at die location (0‚0).

6.2.2 Spatial correlations

To model the intra-die spatial correlations of parameters‚ the die region may
be partitioned into Since devices or wires close to
each other are more likely to have similar characteristics than those placed
far away‚ it is reasonable to assume perfect correlations among the devices
[wires] in the same grid‚ high correlations among those in close grids and low
or zero correlations in far-away grids. For example‚ in Figure 6.3‚ gates
and   (whose sizes are shown to be exaggeratedly large) are located in the
same grid square‚ and it is assumed that their parameter variations (such as
the variations of their gate length)‚ are always identical. Gates and lie
in neighboring grids‚ and their parameter variations are not identical but are
highly correlated due to their spatial proximity. For example‚ when gate has
a larger than nominal gate length‚ it is highly probable that gate will have a
larger than nominal gate length‚ and less probable that it will have a smaller
than nominal gate length. On the other hand‚ gates and are far away from
each other‚ their parameters are uncorrelated; for example‚ when gate has a
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larger than nominal gate length‚ the gate length for may be either larger or
smaller than nominal.

Under this model‚ a parameter variation in a single grid at location can
be modeled using a single random variable For each type of parameter‚

random variables arc needed‚ each representing the value of a parameter in
one of the grids.

In addition‚ it is reasonable to assume that correlation exists only among the
same type of parameters in different grids and there is no correlation between
different types of parameters. For example‚ the values for transistors in a
grid are correlated with those in nearby grids‚ but are uncorrelated with other
parameters such as or in any grid. For each type of parameter‚ an
correlation matrix‚ represents the spatial correlations of such a structure.

An alternative model for spatial correlations was proposed in
The chip area is divided into several regions using multiple quad-

tree partitioning‚ where at level the die area is partitioned into squares;
therefore‚ the uppermost level has just one region‚ while the lowermost level
for a quad-tree of depth has regions. A three-level tree is illustrated in
Figure 6.4. An independent random variable‚ is associated with each
region to represent the variations in parameter in the region at level

The total variation at the lowest level is then taken to be the sum of the
variations of all squares that cover a region.

For example‚ in Figure 6.4‚ in region (2‚1)‚ if represents the effective gate
length due to intra-die variations‚ (2‚1)‚ then

In general‚ for region

It can be shown rather easily that this is a special case of the model of Figure 6.3‚
and has the advantage of having fewer characterization parameters. On the
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other hand‚ it shows marked edge effects that result in smaller correlations
between adjacent cells if they fall across the edges of early levels of the quad-
tree than those that do not.

6.2.3 Structural correlations

The structure of the circuit can also lead to correlations that must be incorpo-
rated in SSTA. Consider the reconvergent fanout structure shown in Figure 6.5.
The circuit has two paths‚ a-b-d and a-c-d. If‚ for example‚ we assume that
each gate delay is a Gaussian random variable‚ then the PDF of the delay of
each path is easy to compute‚ since it is the sum of Gaussians‚ which admits a
closed form. However‚ the circuit delay is the maximum of the delays of these
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two paths‚ and these are correlated since the delays of a and d contribute to
both paths. It is important to take such structural correlations‚ which arise
due to reconvergences in the circuit‚ into account while performing SSTA.

6.2.4 Modeling gate/interconnect delay PDF’s

We will now show how the variations in the process parameters are translated
into PDF’s that describe the variations in the gate and interconnect delays that
correspond to the weights on the nodes and edges, respectively, of the statistical
timing graph.

In Section 6.2.1, the geometrical parameters associated with the gate and
interconnect are modeled as normally distributed random variables. Before we
introduce how the distributions of gate and interconnect delays will be modeled,
let us first consider an arbitrary function that is assumed to be a
function on a set of parameters P, where each is a random variable
with a normal distribution given by We can approximate
linearly using a first order Taylor expansion:

where is the nominal value of calculated at the nominal values of parame-
ters in the set P‚ is computed at the nominal values of

is a normally distributed random variable and
If all of the parameter variations can be modeled by Gaussian distributions‚

this approximation implies that is a linear combination of Gaussians‚ which
is therefore Gaussian. Its mean and variance are:

where is the covariance of and
This approximation is valid when has relatively small variations‚ in

which domain the first order Taylor expansions is adequate and the approxi-
mation is acceptable with little loss of accuracy. This is generally true of the
impact of intra-chip variations on delay‚ where the process parameter variations
are relatively small in comparison with the nominal values‚ and the function
changes by a small amount under this perturbation. For this reason‚ the gate
and interconnect delays‚ as functions of the process parameters‚ can be approx-
imated as a normal distributions when the parameter variations are assumed
to be normal.

Computing the PDF of gate delay For a multiple-input gate‚ the pin-to-
pin delay of the gate differs at different input pins. Let be the delay of
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the gate from the input to the output. In general‚ can be written as
a function of the process parameters P of the gate‚ the loading capacitance of
the driving interconnect tree and the succeeding gates that it drives
and the input signal transition time at this input pin of the gate:

The sensitivities of the gate delay to the process parameters can be found
applying the chain rule for computing derivatives.

Since the gate delay differs at the different input pins‚ in conventional
static timing analysis‚ is set to if the path ending at the output of
the gate traversing the input pin has the longest path delay. In statistical
static timing analysis‚ each of the paths through different gate input pins has a
certain probability to be the longest path. Therefore‚ should be computed
as a weighted sum of the distributions of the gate delays where the weight
equals the probability that the path through the pin is the longest among
all others:

where is the distribution of path delay at the gate output through the
input pin. The calculation of and can be achieved by

the “sum” and the “max” operators‚ as discussed in Section 5.2.1. It is clearly
to see that is now approximated as a normal distribution‚ since it is as a
weighted sum of normal distributions Using the formulation above‚ the
derivatives of to the process parameters can also be computed through the
weighted sum of the derivatives of to the process parameters.

6.3 EARLY WORK ON STATISTICAL STA

Early work by [DIY91] presented a method for performing statistical timing
analysis while including structural Boolean properties of a combinational cir-
cuit. The approach used a discrete PDF and encoded both the delay and logic
behavior of the circuit into a Boolean expression that was subsequently sim-
plified using a BDD representation. Although the results of this method were
shown on small circuits‚ a notable observation was related to the computation
of the signal probability (i.e.‚ the probability that the signal is at logic 1) at
the output of a gate.

Notationally‚ let be the probability that a line is at logic 1 at time
Temporarily assuming that each gate has zero delay‚ the line probability at

the gate output can be calculated for various gates. For example‚ if the inputs
of the gate are and the output is then
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which is correct if the circuit has no reconvergences. Now‚ instead of a zero
delay‚ if a gate has a discrete delay PDF that dictates that its probability of
having a delay of is and if the signal probability on line at time is

then the PDF of the line probability at the output can be found using a
discrete convolution as

This is illustrated in Figure 6.6. The convolution result has since been indepen-
dently rediscovered and applied by many researchers in the area of SSTA. For
continuous PDFs‚ the same reasoning may be applied to render the equation
above in the form of a continuous convolution.

The work in [JMDK93] presented a symbolic simulation method for statis-
tical timing analysis. A particularly notable contribution that has since been
used in other work is the idea of using interval analysis to generate pruning
strategies to remove paths that can never be (or have a very low likelihood
of being) critical. Unlike [DIY91]‚ this method demonstrated results on large
benchmark circuits‚ albeit under interval-based delay models.

A broad taxonomy of SSTA techniques can be made on the basis of the
following criteria:

Path-based vs. block-based methods Path-based methods attempt to find
the probability distribution of the delay on a path-by-path basis‚ and even-
tually performing a “max” operation to find the delay distribution of the
circuit. If the number of paths to be considered is small‚ path-based methods
can be effective. In practice‚ however‚ the number of paths to be considered
in many circuits is exponential in the number of gates. On the other hand‚
block-based methods perform a topological CPM-like traversal‚ processing
each gate once‚ and are potentially much faster.

Continuous vs. discrete PDFs The variations in the gates may be modeled
using continuous or discrete PDFs. The former have the useful property
of providing a compact closed form‚ while the latter may be more data-
intensive‚ particularly as the number of terms can increase exponentially
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after repeated convolution operations. However‚ discrete methods have the
advantage of being more general‚ and the number of data points can‚ in
practice‚ be limited to a manageable number through clever heuristics.

The Monte Carlo method is probably the simplest method‚ in terms of im-
plementation‚ for performing statistical timing analysis. Given an arbitrary
delay distribution‚ the method generates sample points and runs a static tim-
ing analyzer at each such point‚ and aggregates the results to find the delay
distribution. The advantages of this method lie in its ease of implementation
and its generality in being able to handle the complexities of variations. For
example‚ spatial correlations are easily incorporated‚ since all that is required
is the generation of a sample point on a correlated distribution. Such a method
is very compatible with the data brought in from the fab line‚ which are essen-
tially in the form of sample points for the simulation. Its major disadvantage
is‚ of course‚ the extremely large run-times that it requires.

6.4 STATISTICAL STA IN THE ABSENCE OF SPATIAL
CORRELATION

6.4.1 Continuous PDFs

While the methods outlined in the previous section focused on solving the
statistical timing problem together with false path detection‚ the first method
for statistical static timing analysis to successfully process large benchmarks
under probabilistic delay models was proposed by Berkelaar in [Ber97]. In
the spirit of static timing analysis‚ this approach was purely topological‚ and
ignored the Boolean structure of the circuit. The method assumed that each
gate in the circuit has a delay distribution that is described by a Gaussian
PDF.

The essential operations in STA can be distilled into two types:

A gate is being processed in STA when the arrival times of all inputs are
known‚ at which time the candidate delay values at the output are computed
using the “sum” operation that adds the delay at each input with the input-
to-output pin delay.

Once these candidate delays have been found‚ the “max” operation is applied
to determine the maximum arrival time at the output.

In SSTA‚ the operations are identical to STA; the difference is that the pin-to-
pin delays and the arrival times are PDFs instead of single numbers.

Berkelaar’s approach maintains an invariant that expresses all arrival times
as Gaussians. As a consequence‚ since the gate delays are Gaussian‚ the “sum”
operation is merely an addition of Gaussians‚ which is well known to be a Gaus-
sian. The computation of the max function‚ however‚ poses greater problems.
The set of candidate delays are all Gaussian‚ so that this function must find
the maximum of Gaussians. In general‚ the maximum of two Gaussians is not
a Gaussian. However‚ given the intuition that if and are Gaussian random
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variables‚ if a Gaussian; if a
Guassian‚ it may be reasonable to approximate this maximum using a Gaus-
sian. This method was applied and found to be highly effective in [Ber97].
It was suggested there that a statistical sampling approach could be used to
approximate the mean and variance of the distribution; alternatively‚ this infor-
mation could be embedded in look-up tables. In later work in [JB00]‚ a precise
closed-form approximation for the mean and variance‚ based on [Pap91]‚ was
utilized.

6.4.2 Discrete PDFs

Statistical timing analysis has also been pursued in the test community. The
approach in [CW00] takes into account capacitive coupling and intra-die pro-
cess variation to estimate the worst case delay of critical path. The technique
in [LCKK01] uses a discrete PDF based method to propagate discrete PDFs
through the circuit‚ developing effective heuristics to overcome inaccuracies in
event propagation due to reconvergences. The work in [LKWC02] uses a Monte
Carlo sampling-based framework to analyze circuit timing on a set of selected
sensitizable true paths. Similar lines of investigation as [LCKK01‚ LKWC02]
have also been independently pursued in [Nai02].

The work in [DK03] develops an efficient algebra for the computation of
discrete probabilities in a block-based approach. For a single input gate‚ the
convolution described in Equation (6.12) may be used to propagate a discrete
PDF forward‚ except that instead of propagating the PDF of the signal prob-
ability forward‚ we now propagate the PDF of the arrival time instead. For
multiinput gates‚ a “max” operation must be carried out: for a gate
with arrival times and input-to-output delays
the arrival time at the output is found as the PDF of

Instead of a discrete PDF‚ this method uses a piece-wise constant PDF‚ which
translates to a piecewise-linear cumulative density function (CDF); recall that
the CDF is simply the integral of the PDF.

The CDF of is easily computed given the PDFs of the and
The PDF of can be obtained by convolving their respective PDFs‚ i.e.‚

where represents the convolution operator. It can be shown that the CDF
of this sum is given by

The CDF of the maximum of a set of independent random variables is easily
verified to simply be the product of the CDFs‚ so that we obtain
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The term in the inner parentheses is the product of a piecewise linear CDF with
a piecewise constant PDF‚ which is piecewise linear‚ and therefore the CDF is
found by multiplying a set of piecewise linear terms‚ which yields a piecewise
quadratic. The resulting quadratic is approximated by a piecewise linear CDF‚
and the process continues as blocks are processed in CPM-like order. The
technique also has some mechanisms for considering the effects of structural
correlations‚ and the reader is referred to [DK03] for a detailed discussion.

6.4.3 Bounding methods

The work in [ABZV03a‚ ABZV03b‚ AZB03] uses bounding techniques to arrive
at the delay distribution of a circuit. The method is applicable to either con-
tinuous or discrete PDFs‚ and at its core‚ it is based on reduction of the circuit
to easily computable forms.

The timing graph may be represented by a set of vertices that correspond
to gate inputs and outputs and primary inputs/outputs‚ with edges between
the interconnected gates and gate input-to-output pin connections. For such
graphs‚ the PDFs for series-connected edges with a single fanin can be processed
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by a convolution‚ and for parallel-connected edges‚ the CDF may be computed
by taking the product of the CDFs of the incoming edges (assuming that these
edges are statistically independent). For reconvergent subgraphs that are in
neither of these forms‚ in principle‚ the computation can be carried out by a
path enumeration over the subgraph. However‚ this is liable to be computa-
tionally expensive arid is not a feasible option‚ particularly for reconvergences
with a large depth.

Therefore‚ the method identifies dependence .sets corresponding to such re-
convergences and employs bounding techniques to approximate the PDFs. The
informal definition of a dependence set is illustrated in Figure 6.7‚ where
is a dummy source node and is a dummy sink node. For nodes and
the nodes in the shaded region correspond to the transitive fanin that the two
nodes share. The set of nodes within this structure that fan out to the re-
mainder of the transitive fanin of is the set and this constitutes the
dependence set of Similarly‚ the dependence set of is The method
proceeds by propagating the arrival time PDFs to the first dependence node‚
and using conditional probabilities to perform the enumeration. More detailed
enumeration schemes that enumerate over different parts of a CDF are also
provided.

Since enumeration can be a costly procedure‚ a bounding technique is in-
troduced. The principles behind bounding are simple to understand. Consider
the graph shown in Figure 6.8(a). It is proven in [AZB03] that an upper
bound on the CDF of the graph in the figure is provided by the CDF
of the graph which simply splits the node and carries out the PDF
propagation by ignoring the structural correlation between the path
and the path. A lower bound on the CDFs for two dependent arrival
times can be found by simply using the envelope of their CDFs using the min
operator on the original graph (without node splitting)‚ and this is shown in
Figure 6.8(b).

The overall procedure uses a heuristic method for merit computation for a
dependence node‚ to determine whether it should be enumerated or bounded.
Experimental results on benchmark circuits show that these bounds are very
successful in generating tight estimates of the CDF.

6.5 STATISTICAL STA UNDER SPATIAL CORRELATIONS

In cases where significant spatial correlations exist‚ it is important to take these
into account. Figure 6.5 shows a comparison of the PDF yielded by an SSTA
technique that is unaware of spatial correlations‚ as compared with a Monte
Carlo simulation that incorporates these spatial correlations‚ and clearly shows
a large difference. This motivates the need for developing methods that can
handle these dependencies.
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6.5.1 An overview of approaches

The approach described in [Ber97] was extended to handle intra-gate spatial
correlations in [TTF00]. This work assumed that the parameters associated
with transistors within a gate are correlated‚ but transistors in different gates
have uncorrelated parameters. A notable feature of this work was the use of an
approximation technique from [Cla61] (detailed in Appendix B) that provides
a closed-form formula to approximate the maximum of two correlated Gaus-
sian random variables as a Gaussian. More recently‚ the intra-gate variability
problem has also been addressed in [OYO03] using a linear response surface-
based technique to generate a gate delay model for an individual cell‚ including
sensitivity information.

The work by Orshansky and Keutzer in [OK02] suggested a method for
finding the max of path delay PDFs. The covariances between paths are first
calculated based on the delay covariances for pairs of gates on the paths‚ and an
analytic method is then used to derive lower and upper bounds of circuit delay.
However‚ the results were demonstrated on small structures and the pairwise
computation of covariances could be a potential problem when a large number
of paths is to be considered.

Agarwal proposed the quadtree-based spatial
correlation model discussed in Section 6.2.2‚ and show how the delay of a single
path can easily be calculated under this model. The essential idea is that since
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the change in the effective length for a gate in region is given by

the delay can be written in the form

where the variables correspond to the sensitivity of the delay to the L
variables. In other words‚ the change in delay can be written as a weighted
sum of the variables.

However‚ the PDF for a critical path may not be a good predictor of the
distribution of the circuit delay (which is the maximum of all path delays).
Later work by the same authors in [ABZ03b] derived an upper bound on the
CDF for the spatially correlated case‚ based on this quadtree model. Simplify-
ing the notation to represent the length variables as each arrival time in
a CPM-like traversal may be written as

where is the sensitivity of the delay of path to parameter To find the
max of two such arrival times‚ the following inequality is used:

A heuristic technique is used to propagate arrival times during the CPM traver-
sal‚ using the bound to merge groups of arrival times when possible‚ and thus
propagating a set of arrival times. Experimental results in [ABZ03b] show
some success for this approach‚ but the accuracy near the tail of the CDF is
inadequate. It must be stressed‚ however‚ that research is still ongoing‚ and
the reader is invited to look out for more recent results that these authors will
have published subsequent to [ABZ03b].

A final method for SSTA under spatial correlations is due to [CS03a]‚ and
we will discuss this method in detail in the next section.

6.5.2 A principal component analysis based approach

The approach in [CS03a] is based on the application of principal component
analysis (PCA) techniques [Mor76] to convert a set of correlated random vari-
ables into a set of uncorrelated variables in a transformed space; the PCA step
can be performed as a preprocessing step for a design. The complexity of this
method is times the complexity of CPM‚ where is the number of squares
in the grid‚ plus the complexity of finding the principal components‚ which
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requires very low runtimes in practice. The overall CPU times for this method
have been shown to be low‚ and the method yields high accuracy results.

Given a set of correlated random variables X with a covariance matrix the
PCA method transforms the set X into a set of mutually orthogonal random
variables‚  such that each member of has zero mean and unit variance.
The elements of the set are called principal components in PCA‚ and the
size of is no larger than the size of X. Any variable can then be
expressed in terms of the principal components as follows:

where is a principal component in set  is the eigenvalue of the
covariance matrix is the element of the eigenvector of and
and are‚ respectively‚ the mean and standard deviation of

For instance‚ let be the set of random variables representing transistor
gate length variations in all grids and the set of random variables is of multi-
variate normal distribution with covariance matrix Let be the set of
principal components computed by PCA. Then any representing the
variation of transistor gate length of the grid can then be expressed as a
linear function of the principal components:

where is the mean of is a principal component in all are
independent with zero means and unit variances‚ and is the total number of
principal components in

Superposing the set of rotated random variables of parameters on the random
variables in gate or interconnect delay as in Equation (6.7)‚ the delay may then
be written as a linear combination of the principal components

where and
is the size of 

Since all of the principal components that appear in Equation (6.23) are
independent‚ the following properties ensue:

The variance of is given by

The covariance between and any principal component is given by:
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For two random variables‚ and given by

The covariance of and can be computed as

In other words‚ the number of multiplications is linear in the dimension of
the space‚ since orthogonality of the principal components implies that the
products of terms and for need not be considered.

The work in [CS03a] uses these properties to perform SSTA under the gen-
eral spatial correlation model of Figure 6.3. The method assumes that the
fundamental process parameters are in the form of correlated Gaussians‚ so
that the delay‚ given by Equation (6.7) is a weighted sum of Gaussians‚ which
is therefore Gaussian.

As in the work of Berkelaar‚ this method maintains the invariant that‚ all ar-
rival times are approximated as Gaussians‚ although in this case the Gaussians
are correlated and are represented in terms of their principal components. Since
the delays are considered as correlated Gaussians‚ the sum and max operations
that underlie this block-based CPM-like traversal must yield Gaussians in the
form of principal components.

The computation of the distribution of the sum  function‚ is
simple. Since this function is a linear combination of normally distributed ran-
dom variables‚ is a normal distribution whose mean‚ and variance‚

are given by

Strictly speaking‚ the max function of normally distributed random vari-
ables‚ is not Gaussian; however‚ like [Ber97]‚ it is
approximated as one. The approximation here is in the form of a correlated
Gaussian‚ and the procedure in Appendix B is employed. The result is char-
acterized in terms of its principal components‚ so that it is enough to find
the mean of the max function and the coeficients associated with the principal
components.

The utility of using principal components is twofold:

As described earlier‚ it implies that covariance calculations between paths
are of linear complexity in the number of variables‚ obviating the need for
the expensive pair-wise delay computation methods used in other methods.
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Structural correlations are automatically accounted for‚ since all the requisite
information required to model these correlations is embedded in the principal
components.

The overall flow of the algorithm is shown in Figure 6.10. To further speed
up the process‚ several techniques may be used:

Before running the statistical timing analyzer‚ one run of deterministic STA
is performed to determine loose bounds on the best-case and worst-case
delays for all paths. Any path whose worst-case delay is less than the best-
case delay of the longest path will never be critical‚ and edges that lie only
on such paths can safely be removed.

1.

2. During the “max” operation of statistical STA‚ if the value of
of one path has a lower delay than the value of of another path‚
the max function can be calculated by ignoring the path with lower delay.

Although the above exposition has focused on handling spatially correlated
variables‚ it is equally easy to incorporate uncorrelated terms in this framework.
Only spatially correlated variables are decomposed into principal components‚
and any uncorrelated variables remain as they are. Therefore‚ in a case where no
variables are spatially correlated‚ the approach reduces to Berkelaar’s method
in [Ber97]. However‚ heuristics from the other approaches in Section 6.4 may
be used to improve the modeling of structural correlations.
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6.6 SUMMARY

Statistical timing analysis is an area of growing importance in nanometer tech-
nologies‚ as the uncertainties associated with process and environmental varia-
tions increase‚ and this chapter has captured some of the major efforts in this
area. This remains a very active field of research‚ and there is likely to be a
great deal of new research to be found in conferences and journals after this
book is published.

In addition to the statistical analysis of combinational circuits‚ a good deal
of work has been carried out in analyzing the effect of variations on clock skew.
Although we will not treat this subject in this book‚ the reader is referred to
[LNPS00‚ HN01‚ JH01‚ ABZ03a] for details.



7 TIMING ANALYSIS FOR
SEQUENTIAL CIRCUITS

7.1 INTRODUCTION

A general sequential circuit is a network of computational nodes (gates) and
memory elements (registers). The computational nodes may be conceptualized
as being clustered together in an acyclic network of gates that forms a com-
binational logic circuit. A cyclic path in the direction of signal propagation
is permitted in the sequential circuit only if it contains at least one register1.
In general, it is possible to represent any sequential circuit in terms of the
schematic shown in Figure 7.1, which has I inputs, O outputs and M registers.
The registers outputs feed into the combinational logic which, in turn, feeds
the register inputs. Thus, the combinational logic has I + M inputs and O + M
outputs.

Pipelined systems , such as the one shown in Figure 7.2, are a special subset
of the class of general sequential circuits, and are commonly used in datapaths.
A pipelined system uses registers to capture the output of each logic stage at
the end of each clock period. Data proceeds through each combinational block,
or pipeline stage, until it reaches the end of the pipeline, with the registers
serving to isolate individual stages so that they may parallelly process data
corresponding to different data sets, which increases the data throughput rate
of the system. While many pipelines have no feedback, the definition of a
pipeline does not preclude the use of feedback, and algorithms for scheduling
data into a pipeline with feedback have been devised. Acyclic pipelines form an
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important subclass of circuits and are popularly used in data-oriented designs as
they are much simpler to design, analyze and optimize than general sequential
circuits.

The functionality of registers plays a key role in determining the behavior
of any sequential circuit, and there are several choices of register type that are
available to a designer. The behavior of each register is controlled by the clock
signal, and depending on the state of the clock, the data at the register input
is either isolated from its output, or transmitted to the output. The types of
registers that may be used in a synchronous system are differentiated by the
manner in which they use the clock to transmit data from the input to the
output.

Level-clocked latches These are commonly referred to merely as latches,
and permit data to be transmitted from the input to the output whenever
the clock is high. During this time, the latch is said to be “transparent.”

Edge-triggered flip-flops These are commonly called flip-flops (FF’s), and
use the clock edge to determine when the data is transmitted to the output.
In a positive [negative] edge-triggered FF, data is transmitted from the input
to the output when the clock makes a transition from 0 to 1 [1 to 0]. FF’s
can typically be constructed by connecting two level-clocked latches in a
master-slave fashion; for details, see [WE93].
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A circuit in which all memory elements are level-clocked latches, is commonly
referred to as a level-clocked circuit, and a circuit composed of edge-triggered
FF’s is called an edge-triggered circuit.

In our discussions, we will primarily deal with edge-triggered D flip-flops
and level-clocked D latches as representative memory elements. Other types of
storage elements that may be used include the RS latch, the JK flip-flop, and
the T flip-flop, but we will not address these specifically in our discussion. A
description of the transistor-level details of these registers is beyond the scope
of this book, but we point out that various choices are available, and they
influence the number of transistors used, the number of clock signals to be
routed, and the area of and power dissipated by the chip [WE93].

7.2 CLOCKING DISCIPLINES: EDGE-TRIGGERED CIRCUITS

We will now overview the timing requirements for edge-triggered sequential
circuits, which consist of combinational blocks that lie between D flip-flops.
The basic parameters associated with a flip-flop can be summarized as follows:

The data input of the register, commonly referred to as the D input, must
receive incoming data at a time that is at least units before the onset
of the latching edge of the clock. The data will then be available at the
output node, Q, after the latching edge. The quantity, is referred to
as the setup time of the flip-flop.

The input, D, must be kept stable for a time of units, where is
called the hold time, so that the data is allowed to be stored correctly in the
flip-flop.

Each latch has a delay between the time the data and clock are both available
at the input, and the time when it is latched; this is referred to as the clock-
to-Q delay,

In the edge-triggered scenario, let us consider two FF’s, and connected
only by purely combinational paths. Over all such paths let the largest
delay from FF to FF be and the smallest delay be Therefore,
for any path with delay it must be true that
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We will denote the setup time, hold time, and the maximum and minimum
clock-to-Q delay of any arbitrary FF as and and respectively.
For a negative edge-triggered register, the setup and hold time requirements
are illustrated in Figure 7.3. The clock is a periodic waveform that repeats
after every P units of time, called the clock period or the cycle time.

The data is available at the launching FF, after the clock-to-q delay, and
will arrive at the latching FF, at a time no later than For correct
clocking, the data is required arrive one setup time before the latching edge of
the clock at FF as shown in Figure 7.3, i.e, at a time no later than
This leads to the following constraint:

For obvious reasons, this constraint is often referred to as the setup time con-
straint. Since this requirement places an upper bound on the delay of a
combinational path, it is also called the long path constraint. A third name
attributable to this is the zero clocking constraint, because the data will not
arrive in time to be latched at the next clock period if the combinational delay
does not satisfy this constraint.

The data must be stable for an interval that is at least as long as the hold
time after the clock edge, if it is to be correctly captured by the FF. Hence,
it is essential to ensure that the new data does not arrive at FF before time

Since the earliest time that the incoming data can arrive is
this gives us the following hold time constraint:

Since this constraint puts a lower bound on the combinational delay on a path,
it is referred to as a short path constraint. If this constraint is violated, then
the data in the current clock cycle is corrupted by the data from the next.
clock cycle; as a result, data is latched twice instead of once in a clock cycle,
and hence it is also called the double clocking constraint. Notice that if the
minimum clock-to-Q delay of FF is greater than the hold time of FF i.e.,

(this condition is not always true in practice), then the right hand
side of the constraint is negative. In this case, since the short path
constraint is always satisfied.

An important observation is the both the long path and the short path
constraints refer to combinational paths that lie between flip-flops. Therefore,
for timing verification of edge-triggered circuits, it is possible to decompose the
circuit into combinational blocks, and to verify the validity of the constraints
on each such block independently. As we will see shortly, this is not the case for
level-clocked circuits, which present a greater complexity to the timing verifier.
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7.3 CLOCKING DISCIPLINES: LEVEL-CLOCKED CIRCUITS

7.3.1 Introduction

As mentioned in Section 7.1, unlike an edge-triggered FF, a level-clocked latch
is transparent during the active period of the clock. This makes the analysis
and design of level-clocked circuits more complex than edge-triggered circuits,
since combinational blocks are not insulated from each other by the memory
elements, and multicycle paths are possible when the data is latched during the
transparent phase of the clock. Even though this transparent nature introduces
an additional level of complexity to the design phase, level-clocked circuits are
often used for high-performance designs since they offer more flexibility than
edge-triggered circuits, both in terms of the minimum clock period achievable
and the minimum number of memory elements required.

As an illustration of this notion, consider the simple circuit in Figure 7.4
with unit delay gates and a single-phase clocking scheme with a 50% duty
cycle. Let us assume that the data signals are available at the primary inputs
at the falling edge of the clock, and must arrive at the primary outputs before
the appropriate falling edge, several clock cycles later. At the level-triggered
latch L1, the data may depart at any time while the clock is high. A data
signal in this circuit is allowed precisely two clock periods to reach the primary
output from the primary input.

We will now use this example to demonstrate the advantage of using level
clocked circuits over edge-triggered circuits. For simplicity, we will assume zero
setup and hold times here. Consider the operation of the circuit under a clock
period of 2 units; notice that the path delay between latch L1 and the output
is more than the clock period. However, the circuit works correctly due to the
transparent nature of the latches. As shown in the figure, the data departs from
the IN node at time 0, arrives at and departs from the latch L1 at time 1, and
is latched at the output at time 4, which corresponds to the onset of the second
clock edge. In contrast, if L1 were an edge-triggered FF, then a clock period of
2 units would have been untenable, since the clock period would correspond to
the largest combinational block delay, which implies that the minimum possible
clock period would have been 3 units. This practice of using the active period of
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the clock in a level-clocked circuit to allow combinational paths to have a delay
of more than the clock period is referred to variously as either cycle borrowing,
cycle stealing, slack stealing, or time borrowing.

For edge-triggered circuits, the insulating nature of the memory elements
leads to the requirement that the delays through all combinational logic paths
must be less than the clock period, with an allowance for setup and hold time
constraints. Therefore, timing constraints need only be enforced between FF’s
connected by a purely combinational path. For level-clocked circuits, due to
cycle borrowing, the delay through a combinational logic path may be longer
than one clock cycle, as long as it is compensated by shorter path delays in
subsequent cycles.

To ensure that the extra delay is compensated, we must enforce timing
constraints between a latch and every other latch reachable from it via a path
that traverses combinational logic, and possibly multiple latches.

Example. Consider a linear N stage acyclic pipeline with N + 1 memory
elements If these memory elements were edge-triggered FF’s,
then we would need only N timing constraints (from the path

). However, if these memory elements were to be level sensitive latches,
then we would need N · (N +1)/2 timing constraints and

to check the correctness of multicycle paths. In the presence of feedback
paths, the timing analysis of level-clocked circuits would become even more
complex.

As will soon be shown, some of this complexity can be reduced by the intro-
duction of an appropriate set of intermediate variables.

7.3.2 Clock models

Single-phase and multiphase clocking. The most conventional form of
clocking uses a single-phase clock, where every rising [falling] clock edge is
perfectly aligned with every other rising [falling] clock edge, assuming that no
skews are introduced by the clock distribution network. Some high-performance
circuits may, instead, use multiphase clocking; in a clock, the phases
typically have the same clock period, but are staggered from each other by a
fixed time delay. Each phase consists of two intervals: an active interval during
which the latches are enabled, and a passive interval when they are disabled;
these typically correspond to the interval when the clock signal is high and low,
respectively.

Depending on the way the clock scheme is designed, the phases may be
overlapping or nonoverlapping, i.e., their active times may or may not simul-
taneously intersect in time with any other phase. Clocking schemes may be
designed to be symmetric, which implies that all phases have an equal ac-
tive time, and the time difference between the rising clock edges for successive
phases and are all equal; a clock scheme that does not satisfy this property
is said to be asymmetric.
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Although it is not essential for correct operation, if one were to traverse any
path in the circuit in the direction of signal propagation, one would typically
find that a latch of phase would be followed by a latch of phase mod
if so, the circuit is referred to as a well-formed circuit.

The SMO clock model. This clock model, developed by Sakallah, Mudge
and Olukotun [SMO92], and named after the initials of its authors, presents
a complete description of a multiphase clock signal; this model will be used
later in this chapter to describe the set of timing constraints for a level-clocked
circuit, as derived by their work.

A clock, illustrated in Figure 7.5, is a set of periodic signals,
where is referred to as phase of the clock All

of the have the same clock period, P. Each phase, has an active interval
of duration and a passive interval of duration corresponding to
a duty cycle of       Let    denote the set of all latches. Each latch,         is
clocked by exactly one phase of the clock which is denoted by All of
the latches controlled by a clock phase are enabled during the active interval
and disabled during the passive interval. Without loss of generality, it will
be assumed in this discussion that the active interval corresponds to the clock
being at logic value 1, while in the passive interval, the clock is at logic 0. The
term “clocking scheme” is used to indicate the relative locations of the clock
transition edges, and the duty cycles of the individual phases. Thus, a clocking
scheme together with a clock period, P, define a clock schedule,

Associated with each phase, is a local time zone, shown in Figure 7.6,
such that the passive interval starts at time 0, the enabling edge occurs at time

and the latching edge occurs at time P. Phases are ordered so that
and are numbered i.e., and
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A global time reference is maintained as a general reference, and
denotes the time when the phase ends, relative to this global reference.

The phase shift operator, illustrated with the help of Figure 7.7, is defined
as follows:

Note that always takes on positive values, and acts as a readjustment factor
in going from one time zone to another. Specifically, when is subtracted
from a time point in the current time zone of it changes the frame of
reference to the local time zone of

The clock is required to satisfy the following constraints:

The constraints (7.4), (7.5), (7.7) and (7.8) follow from the definition of the
clock. The constraint (7.6) maintains an ordering of the phases, and (7.9)
ensures that the phases are nonoverlapping. The last of these may be relaxed
in case of an overlapping clock.
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7.3.3 Timing constraints for level-clocked circuits

We now enumerate the set of timing constraints that dictate the correct opera-
tion of a level-clocked circuit. As before, the parameters and represent
the setup and hold times, respectively, of the latch, and we assume and

to be the minimum and maximum delays through each latch. As defined
earlier, for each pair of latches, and connected by a combinational path

the maximum and minimum path delays are denoted by and
respectively.

The data input to each latch, has an associated arrival time that lies in
the range between the earliest time, and the latest time, Similarly,
the earliest and latest departure time of the data are denoted by and
respectively. All of these times are with respect to the local time zone of the
latch.

Due to the transparent nature of the latches, a signal can depart from latch
at any time during the active interval of the phase i.e., between time

and P. In other words,

However, a signal cannot depart from a latch before it has arrived at that latch,
i.e.,

We can use the definitions of and to obtain the relations

The arrival time at a latch, of a signal departing from another latch,
connected by one or more purely combinational paths, must satisfy the
following relations

where is the phase shift operator that translates a time in phase
into the local time in phase

In addition, the latest arrival time must be at least one setup time before
the falling edge of the clock, i.e., and the earliest arrival time
must occur no sooner than a hold time after the rising edge of the clock, i.e.,
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Combining all of these relations, we can obtain the timing constraints that
must be imposed for a level clocked circuit to be correctly clocked as

A critical path of a circuit corresponds to the path corresponding to a se-
quence of constraints associated with the gates and latches on the path, such
that each of these constraints is an active or violated constraint (an active
constraint corresponds to a or inequality that is just satisfied, i.e., is an
equality). A critical path in a level-clocked circuit would typically traverse sev-
eral combinational and sequential circuit elements. The term “critical path of a
circuit” is often used colloquially to refer to the path with the largest violation,
though sometimes, this term may also be used to refer to any violating path.

Critical paths may be classified into three categories:

Critical long paths are associated with long path constraints, or setup time
constraints. Any increase in the delay along the path will worsen the slack
or violation along that path.

Critical short paths are those that are associated with short path or hold
time constraints. These paths are sensitive to a reduction in the delay along
the path; any such reduction is liable to worsen the slack or violation along
the path.

Critical cycles correspond to cyclic critical paths in the graph along which
the constraints are active or violated.

For correct operation of a circuit, timing violations along all critical paths must
be resolved. A detailed treatment of this subject is provided in [BSM95].

Timing verification. Several procedures for timing analysis have been pro-
posed, based on the SMO constraints, including [SMO92, BSM95, SS92, Szy92,
LTW94]. In this section, we provide a brief synopsis of this work; the reader
is referred to these papers for further details. The procedure checkTc [SMO90]
proposed an iterative procedure for resolving the timing constraints. It was
shown in [SS92] that the system of equations can be solved by relaxation in
polynomial time in the number of latches, until a fixed point is obtained. It
was also shown that the original system of equations in the SMO formulation
have a unique solution unless the circuit operates at the minimum clock period.
The following algorithm, SIMPLE-RELAX, shows an outline of the procedure:
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Algorithm TIMING_VERIFY
/* initialize the latch arrival times */
for all latches i

APrev[i] = aPrev[i] =
/* Iterate the evaluation of the departure and arrival time */
/* equations until convergence or a maximum of |L| iterations, */
/* where |L| is the number of latches. */
iter = 0;
repeat

iter++;
/* Update the latch departure time based on the latch */
/* Arrival times are computed in the previous iteration */
for i = 1 to |L| {

}
/* Update the latch arrival time based on the just-computed */
/* latch departure times */
for j = 1 to |L| {

APrev[j] = A[j]; aprev[j] = a[j] ;

}
until ((A[i] == APrev[i]) && (a[i] == aPrev[i])) || (iter > |L|– 1) ;

/* Check and record setup and hold time violations */
for i = 1 to |L| {

};

The procedure is essentially a variant of the Bellman-Ford algorithm [CLR90],
which will be described in detail in Section 9.3.4. In case the constraint set has
some slacks, as is almost always the case, a general algorithm that finds values
of each and that satisfies the “relaxed” constraints, (7.10), (7.11),
(7.12), (7.15), and (7.16) is not obliged to report times that are physical. In
contrast, this procedure finds the earliest arrival and departure times for the
signals, corresponding to a physically meaningful solution.

Several variants of the procedure may be used to speed up the computation.
For instance, by clipping off the departure times to physically realizable values
(for example, setting ), the information detected
is more relevant. If the signal does not arrive in time for the closing edge of
the clock, it is signaled as a timing violation. This procedure serves to localize
the effect of timing violations, and such a diagnostic provides useful input to
procedures that are used to remedy such violations.
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An alternative approach to this method utilizes the concept of back-edges
[LTW94]. For a directed acyclic graph processed in topological order, the
Bellman-Ford procedure (or the algorithm TIMING_VERIFY above) concludes
in one iteration. It can be shown that if the graph has back edges, it-
erations are necessary. While the problem of identifying a minimal number
of back-edges (i.e., the minimum feedback vertex set problem) is NP-hard, in
real circuits, it is found that the number of back edges is small enough that
almost any set is good enough to provide a good improvement over a naive
implementation of the relaxation procedure above.

7.4 CLOCK SCHEDULE OPTIMIZATION FOR LEVEL-CLOCKED
CIRCUITS

The clock schedule optimization problem is the problem of finding the minimum
clock period, and the corresponding locations of the rising and falling edges of
each phase so that the clocking scheme meets all timing constraints. Due to the
freedom allowed in the arrival times for level-clocked circuits, this optimization
can make a substantial difference to the behavior of the circuit.

The minTc algorithm [SMO90] formulates the clock schedule optimization
problem as a linear program. The problem is stated as follows:

After relaxing all max operators in relations (7.17) through (7.19) by replacing
them by inequalities, the problem maps on to a linear program whose
minimum objective function value can be proven to be the same as that of the
original problem.

The work in [Szy92] developed techniques to reduce the number of long path
constraints in the linear program. A principal idea was the concept of relevant
paths. Before defining this concept, we observe that if denotes the number
of latches on a path and is the delay along the path (with
allowances for setup times), then it must be true that

A path, is said to be relevant for period P if for any other path, with
the same endpoints as if
and if It was shown that in order to check the
feasibility of a clock schedule, it suffices to check if the constraints on the set
of relevant paths are satisfied; the intuition behind this is that satisfying the
relevant constraint will ensure that other constraints that were not relevant will
be forced to satisfy Relation (7.24).

The work in [Szy92] uses this pruning to reduce the constraint set before
feeding the resulting optimization problem to an LP solver. Subsequently,
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graph based algorithms for solving the clock scheduling problem were
presented in [SBS92]; graph-based algorithms for clock schedule optimization
for two-phase circuitry have also been presented in [ILP92]. For a fixed clock
period, the timing constraints can be represented as a set of difference con-
straints of the type where the are the variables in the problem
and is a constant. This set of constraints can be represented by a constraint
graph, and the longest path in the constraint graph yields a solution to the set
of difference constraints, if one exists. If the clock period is infeasible, no such
solution exists, and this is determined by a procedure such as the Bellman-Ford
algorithm. Therefore, a binary search over the clock period is used to find the
minimum value of the clock period at which the constraint graph has a solu-
tion; this procedure works since the search space is proven to be convex in
The complexity of this algorithm is approximately where
is the cardinality of the set, of latches in the circuit, and is the number of
phases of the clock [SBS92].

A vital contribution of [Szy92], subsequently used in many other papers
such as [SR94, SD96, MS98b], is the development of the predecessor heuristic
to update the value of the search boundary on the detection of a positive cycle
in the constraint graph; this is described in more detail in Section 9.3.5.

7.5 TIMING ANALYSIS OF DOMINO LOGIC

7.5.1 Introduction

Domino logic3 is a popular choice of design style for implementing high speed
logic designs since it has the advantage of low area and high speed. In this
section, we will discuss techniques used for the timing analysis of domino logic.

Strictly speaking, our treatment here covers combinational circuits imple-
mented using domino logic, but for various reasons related to the close relation
of the clocking scheme with the operation of domino circuits, we treat this as-
pect of timing analysis in this chapter, rather than the one on combinational
timing analysis.

The basics of domino gate operation may be explained with the help of a
representative domino gate configuration is shown in Figure 7.8. When the
clock input is low, the gate precharges, charging the dynamic node to logic
1. In the next half-cycle of the clock when it goes high, the domino gate eval-
uates, i.e., the dynamic node either discharges or retains the precharged state,
depending on the values of the input signals. The two-step mode of opera-
tion with a precharge and an evaluate phase causes the timing relationships in
domino logic to be more complex than those for static logic.

The clock input to the domino gate is shown in Figure 7.8. The precharge
phase begins at and continues until and the evaluate phase begins at
that time and ends at time where P is the period of the clock signal
feeding the domino gate. The reference time      is set with respect to the
clock signal at the primary inputs. If more than one clock signal is used, any
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one of them may be used as a reference, and the transition times of the other
clocks may be expressed according to the reference.

7.5.2 Timing constraints

The node timing constraints for domino logic may be expressed in terms of the
signal arrival times and the clock arrival time. Note that in case of multiple
clocks for the domino logic, the clock signal should be set to be the clock signal
that feeds the gate that is currently under consideration. The set of constraints
were first presented in  and subsequently modified in [VMS96, ZS98];
the following presentation is the most complete of all and is taken from [ZS98].

(i) The first set of constraints addresses the arrival time of a falling transition
at any data input of a domino gate. Any such falling event should meet the
setup-time requirement to the rising edge of the evaluate clock to ensure that
the dynamic node is not inadvertently discharged by a late arriving signal. If

refers to the falling event time of the input node, then it is required that

where the setup time is a constant that acts as a safety margin.

(ii) The second set of constraints is related to the arrival time of a rising tran-
sition at the output of the domino gate, and is presented here in terms of the
arrival time of rising transitions at each of the input nodes. The constraint may
be stated as follows: the rising event of the output node of the domino gate
must be completed before the falling edge of evaluate clock. If refers
to the rising event time at the output node, then the circuit operates correctly
only if
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In other words, before the beginning of the precharge for next cycle, the correct
evaluation result must have traveled to the output node.

For example, in Figure 7.8, the rising event of the output node of domino
gate with output o must satisfy (7.26). Therefore,

where

are the rising event times at inputs and respectively
represents the delay of a falling transition at the dynamic

node due to a rising transition at input
represents the rise delay of the inverter feeding the gate output node o
is the delay from the clock node to the dynamic node

Therefore for

The relation (7.28) corresponds to the requirement that the rising edge of each
input should appear in time for the falling edge of the evaluate clock so as to
allow sufficient time for the output to be discharged.

The relation (7.29) ensures that the pulse width of the evaluate clock is suf-
ficient for pulling down the output node when the last transistor to switch is
the lowermost one, connected to the clock node.

(iii) The third set of constraints addresses the timing requirements on rise
transitions at the dynamic node The rising event of the domino gate must
be completed before the rising edge of the evaluation clock, i.e.,

If the rise time of the dynamic node through the fed by the clock
is denoted by then the rising event time can be expressed as:

This leads to the constraint given by

This implies that the pulse width of precharge must be capable of pulling up
the output node.

Note that unlike (ii) above, the delay to only node is considered here, and
not to the output node o. Note that the constraint to node o is very loose and
is satisfied except in the most pathological cases. There are two possibilities:
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if the evaluate phase causes the dynamic node to go low, then the completion
of the fall transition at o during precharge is irrelevant.

if the evaluate phase causes the dynamic node to remain high, then it will
remain so until the end of the precharge phase in the next clock cycle, and
the node o correspondingly has a long time (equal to  to discharge,
and therefore the constraint is very loose.

In most cases, the overriding timing constraint will ho due to some other con-
straint, such as that corresponding to a gate at which the signal o is being
utilized.

(iv) In the previous clock cycle, a falling input data line may not go down to
logic 0 but must be held at the logic 1 level until the output transition in that
cycle has been completed. In other words, it is required that

The term is conservatively added here, since the fact that node has
reached the 50% point as it transitions to logic 0 does not, in general, guaran-
tee that the output inverter will charge up to 1. Although the output inverter
is often sized in a skewed manner, so that if is at the 50% point, then the
output will be well on its way to discharging, there may be issues related to
short-circuit current that require this stronger criterion.

(v) For any rising input data line, the hold constraint states that a transition
should occur only after i.e.,

These constraints are similar to the short path constraint in static timing anal-
ysis.

7.5.3 Timing analysis

The timing analysis procedure described here is based on the CPM procedure.
In mixed static-domino circuits, the static elements can easily be represented
by nodes in the CPM graph. Dynamic nodes can also be represented as nodes
in the CPM graph by representing output rise and fall times by expressions sim-
ilar to Equation (7.27), and then using the relaxed version of the constraint,
replacing each “max” by an inequality. This may be intuitively seen by ob-
serving that the relations in Section 7.5.2 can be written in terms of difference
constraints [CLR90].

The determination of rising and falling event arrival times at the output
node of a domino gate is similar to the CPM computation for static gates. A
major difference is that the rising event at the dynamic node is related only
to the falling edge of the domino clock and is independent of the other input
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nodes. This effect is captured by setting the value of from each input node
of the domino gate to the output node as The domino clock input node
is treated in the same way as any primary input node, and the rising or the
falling edge of the clock provide the corresponding event times for the clock
node. In case the clock input to the domino gate is the output of another gate,
its event time is given by the maximum of all gate input event arrival times,
plus the transition delay of the gate.

7.5.4 Sequential circuits using domino logic

Typical domino circuits use multiphase clocks. For a simple two-phase domino
pipeline shown in Figure 7.9, alternate phases are clocked by different clock
phases. Therefore, when the first stage goes through precharge, the second
stage evaluates, and vice versa. This is clearly better than a situation where
both stages precharge at the same time and evaluate simultaneously, since
it permits some operations to overlap. A good source to explore multiphase
domino logic, and the design of skew-tolerant domino circuits, in greater detail
is [HH97].

7.6 SUMMARY

In this chapter, we have overviewed the essential constraints that must be
verified during sequential timing analysis. For edge-triggered circuits, each
combinational stage can be treated independently, but for level-clocked circuits,
where multicycle paths may exist, a more involved analysis is necessary. Finally,
we have reviewed techniques for the timing analysis of domino logic circuits.

It is often useful to arrive at a “black box” characterization of a block,
for instance, an intellectual property (IP) block. Algorithms for this purpose
have been presented in [VPMS97,  and alternative models for this
representation are examined in
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Notes

1. Recall, from Chapter 5, that any cycles in combinational circuits are broken, so that
it is assumed here that any combinational circuit must be acyclic.

2. This basic procedure is widely used in many other algorithms for clock skew optimiza-
tion and retiming, presented in Chapters 9 and 10, respectively, and the reader is invited to
read those sections for a fuller understanding.

3. Although domino logic is often used to implement combinational elements, we discuss
it in this chapter since this explanation requires some prior discussion of clocking issues.



8 TRANSISTOR-LEVEL
COMBINATIONAL TIMING

OPTIMIZATION

8.1 INTRODUCTION

A typical digital integrated circuit consists of combinational logic blocks that
lie between memory elements that are clocked by system clock signals. For
such a circuit to obey long path and short path timing constraints‚ the delays
of the blocks should be adjusted so that they satisfy these constraints. As seen
in Chapter 7‚ this is easier for edge-triggered circuits than for level-clocked
circuits since for the former‚ the delay constraints can be applied separately
to each combinational block; for the latter‚ the existence of multicycle paths
makes the problem more involved‚ but it is still tractable. In our discussion
in this chapter‚ we will focus primarily on the timing optimization of edge-
triggered circuits since they are more widely used; extensions to level-clocked
circuits are primarily based on very similar methods.

For an edge-triggered circuit‚ the timing constraints dictate that valid signals
must be produced at each output latch of a combinational block before any
transition in the signal clocking the latch. In other words‚ the worst-case input-
output delay of each combinational stage must be restricted to be below a
certain specification. This may be achieved in various parts of the design cycle‚
but we will primarily focus on the role of back-end design tools here.

Timing optimization may be performed at various steps of the design cycle.
The technology-independent synthesis step [De 94] typically uses simple metrics
for timing: for instance‚ the delay of a circuit may be considered to be the num-
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ber of levels of logic. Truer delay metrics are used in the technology-dependent
synthesis‚ or technology mapping‚ step‚ where cell-level delay models are often
used for timing optimization [Keu87‚ CP95‚ HWMS03]. In the physical design
step‚ place and route algorithms typically attempt to perform timing optimiza-
tion‚ sometimes using metrics that are correlated with the delay‚ such as wire
length minimization‚ and sometimes using delay metrics directly. Due to the
complexities involved in placement‚ such metrics are necessarily simple. As the
physical layout gains more concreteness‚ more accurate models may be applied.
In case of global routing‚ where the choice of a route and the use of buffers can
significantly impact the wire delay‚ more complex delay models are employed
for timing optimization [van90‚ ADQ99‚ HS00].

The breakdown of the design cycle into synthesis‚ physical design‚ and tran-
sistor level optimization steps is somewhat artificial‚ as these steps are not
entirely independent of each other. A growing realization of this has led to sig-
nificant thrusts in physical synthesis‚ which focus on the interaction between
synthesis and physical design. A typical mode of operation in physical synthesis
may involve working with a physical prototype for the placement upon which
the wire length models that drive technology mapping are based [Dai01].

Transistor level design offers one of the best opportunities for the use of
more detailed timing models‚ since the degrees of freedom are greatly narrowed
down by this stage. Several options for transistor-level timing optimizations
are available. One powerful tool for timing optimization is the use of transistor
sizing: instead of using all minimum-sized or all uniform-sized transistors‚ this
optimization determines the sizes that optimize an objective function such as
area or power. Another optimization that is particularly useful in delay re-
duction at the transistor level is the use of dual threshold voltages‚ whereby a
tradeoff between the leakage current and the delay may be arrived at by se-
lectively mixing low transistors with high transistors in the design. In
this chapter‚ we will overview these transistor-level optimizations‚ which will
build upon the timing analysis techniques that we have surveyed in the previous
chapters.

8.2 TRANSISTOR  SIZING

8.2.1 Introduction

Transistor sizing involves the determination of an optimal set of transistor sizes
for a circuit‚ typically using objective or constraint functions that are related
to timing‚ power and area. This problem is frequently posed as a nonlinear
programming problem‚ and several approaches have been proposed in the past.
The “size” of a transistor typically refers to its channel width (unless otherwise
specified)‚ since the channel lengths of MOS transistors in a digital circuit are
generally uniform1. In coarse terms‚ the circuit delay can usually be reduced by
increasing the sizes of certain transistors in the circuit (although indiscriminate
increases are not very useful since the actual relation between transistor sizes
and the circuit delay is more complex). Hence‚ making the circuit faster usually
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entails the penalty of increased circuit area. The area-delay trade-off involved
here is‚ in essence‚ the problem of transistor size optimization.

A simple example from [Hed87] serves to illustrate how the delay varies
with transistor sizes. Consider the chain of three CMOS inverters shown in
Figure 8.1 (a). For simplicity‚ assume that all of the transistors have the same
channel width. Let the width of both the n-type and p-type transistors in gate

be and let D be the total delay through the three gates.

Consider the effect of increasing while keeping the size of the transistors
in gates and fixed. This causes the magnitude of the output current
of gate to increase. Thus the time required, for gate to drive its
output signal will decrease monotonically, as shown in Figure 8.1(b). However,
increasing also increases the capacitive load on the output of gate thus
slowing down the output transition of the first gate. Beyond a certain optimal
point at which the total delay, D, is minimized, the delay begins to
increase with respect to

This example illustrates the tradeoff involved in increasing a transistor size:
while the drive of the transistor is increased, so is the load that it offers to
the previous stage. The real problem of transistor sizing is considerably more
complex since it involves a larger number of variable, and delays along a larger
number of paths, as the sizes of all transistors in a circuit are optimized.

We will now consider various formulations of this problem, followed by a set
of solution techniques. Specifically, we will survey the heuristic approach in TI-
LOS, a more formal convex programming method in iCONTRAST, Lagrangian
multiplier methods, and timing budget based procedures. Other methods using
linear programming have also been utilized [BJ90], with delay models that are
piecewise linear functions of the transistor sizes. These will be covered in the
discussion of the combined skew and sizing optimization method of [CSH95] in
Chapter 9.
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8.2.2 Formulation of the optimization problem

A basic formulation. The transistor sizing problem for a combinational
block in an edge-triggered circuit is most commonly formulated as

where is the size of the transistor (out of total transistors) in the circuit.
The objective function approximates the area of a circuit as a weighted sum
of transistor sizes‚ a metric that is correlated with the circuit area‚ but not‚ an
exact measure. An accurate metric for the area occupied by a circuit requires
consideration of the layout arrangement‚ the cell structures and the design
style. This is unlikely to yield a well-behaved functional form‚ and therefore
the above approximation is widely used since it possesses the properties of
continuity and differentiability that are desirable from the point of view of a
general nonlinear optimizer. Consequently‚ from the point of view of transistor
sizing‚ the approximate area function in the objective is considered adequate.

The constraint function for edge-triggered circuits simply states that the
delay of each combinational block should not exceed a number‚ which
depends on the clock period‚ the setup times‚ and the skew tolerances. Strictly
speaking‚ a hold time constraint should also be incorporated‚ but this is often
taken care of in the design methodology in a separate step from transistor sizing.
For level-clocked circuits‚ the delay constraints are more complex and must take
into account the possibility of multicycle paths‚ as described in Section 7.3.

In addition to Equation (8.1)‚ several other formulations may be useful.
These include

Minimizing for some exponent

Minimizing the dynamic‚ short-circuit‚ or active/standby leakage power un-
der an area specification‚

A formulation that enumerates all constraints. In Equation (8.1)‚ the
constraint implies that the delay on every combinational path in
the circuit must be less than (for an edge-triggered circuit). The number
of paths in a circuit could be exponential in the number of gates in a circuit‚
and therefore‚ any optimizer that requires these constraints to be enumerated
literally experiences great difficulty with such a formulation. For this reason‚
the formulation in (8.1) is used by optimizers such as TILOS and iCONTRAST
that do not require constraint enumeration.

For optimizers where the constraints must be explicitly listed‚ a method
suggested in [Mar86‚ MG87‚ MG86] employs intermediate variables to reduce
the number of delay constraints from exponential to linear in the circuit size.
This is achieved as follows. As in the CPM method‚ the circuit is modeled by
a graph‚ G(V‚ E)‚ where V is the set of nodes (corresponding to gates) in G‚
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and E is the set of edges (corresponding to connections among gates). If
represents the worst-case arrival time of a signal at the output of gate then
for each gate, the delay constraint is expressed as

where gate fanout and is the delay of gate Therefore‚ the
transistor sizing problem can be framed as [CCW99]

Here, for primary output is the arrival time specification at the output,
and at primary input is the specified arrival time at the input (in the
most common case where a combinational block between flip-flops is being
considered, for all primary inputs For all other gates is the
arrival time at the output and is the delay of the gate. The rising and falling
arrival times may be considered separately within this framework. As before,

is a weight associated with the size of the transistor.
Thus, the number of delay constraints is reduced from a number that could,

in the worst case, be exponential in |V|,  to one that is linear in |E|,  by the
addition of O(|V |) intermediate variables.

Practically, the number of constraints can be substantially reduced even
over this, using a technique proposed in [VC99]. The essential idea of this
approach is based on the observation that the introduction of the intermediate
variables above does not always win over path enumeration. In cases where
subpath enumeration reduces the number of constraints, some constraints could
be combined, and the intermediate arrival time variables eliminated. As an
example, consider a case of a chain of three inverters, as shown in Figure 8.1,
and let us assume that the rise and fall delays are processed separately. The
circuit has two paths, and if the required delay at the output is then
assuming that the inputs are available at time 0, the constraints can be written
as

where and are‚ respectively‚ the rise and fall delays of gate On
the other hand‚ if intermediate arrival time variables are used‚ the number of
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variables and constraints is each clearly larger:

where and are the intermediate variables that represent the rise and
fall arrival times‚ respectively‚ at the output of gate

More generally, consider a timing graph substructure such as that shown in
Figure 8.2(a). A direct introduction of the intermediate arrival time variables
results in 1 rise and 1 fall constraint at each of nodes 1, 2 and 3; 3 rise and 3
fall constraints at node 4; and 1 rise and 1 fall constraint at node 5, for a total
of 10 constraints. When the internal node is eliminated, the input-to-output
constraints for this graph are shown in Figure 8.2(b): this corresponds to 3
rise time and 3 fall time constraints, for a total of 6 constraints. Generalizing
this, for a substructure with input nodes, output nodes, and one internal
node, the number of constraint using intermediate arrival time variables is

with one arrival time variable for each of the input nodes,
the output nodes and the internal node, and a factor of 2 corresponding to
the fact that both rise and fall constraints must be listed. If the internal node
is eliminated, the number of constraints reduces to The approach used
in [VC99] uses this very criterion to identify a candidate node for elimination,
and to eliminate it if

An example of how this is applied is illustrated on a timing graph in Fig-
ure 8.3. The nodes s and t represent the source and sink vertex, respectively,
and the nodes 1 through 16 correspond to combinational delays. The num-
ber of timing constraints using intermediate variables is equal to the number
of edges (26), and the number of intermediate variables equals the number
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of nodes (18). The first step removes the intermediate variables for nodes 1
through 6 to obtain the second graph‚ reducing the number of nodes to 12
and the number of edges to 20. Next‚ nodes 14‚ 15 and 16 are removed‚ and
the number of nodes and edges reduces further to 9 and 15‚ respectively. By
eliminating nodes 11 and 13‚ the next step reduces these numbers to 5 and 13‚
respectively. Subsequent steps remove nodes 7 and 10‚ followed by node 12‚ to
obtain a final graph with just two internal nodes. Therefore‚ the net result of
these transforms is that the number of intermediate variables is reduced from
18 to 4‚ while the number of constraints is halved‚ from 26 to 13.

On a set of industrial circuits‚ this method was shown to reduce the number
of arrival time variables by nearly 90%‚ the total number of variables by about
25%‚ and the total number of timing constraints by nearly 40%.

8.3 THE TILOS ALGORITHM

The algorithm that was implemented in TILOS (TImed LOgic Synthesizer)
[FD85‚ DFHS89‚ HSFK89] was the first to make use of the fact that the area and
delay can be represented as posynomial functions (to be defined in Section 8.3.2)
of the transistor sizes.

The TILOS algorithm is simple to implement on top of a static timing an-
alyzer. The method is essentially a simple greedy heuristic that is surprisingly
effective on many circuits. The basic philosophy is that for the problem state-
ment in Equation (8.1)‚ with all weights  set to 1‚ the objective function is
minimized when all of the transistors are at the minimum size permitted by the
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technology‚ and hence this is used as the initial solution. An STA step is then
carried out to check whether this initial solution satisfies the timing constraints
or not; if so‚ the solution has been found‚ and if not‚ an iterative procedure is
employed. In each iteration‚ the area is allowed to increase in such a way that
the largest impact is made on delay reduction. To reduce the circuit delay‚ the
area increase must necessarily be restricted to transistors on the critical path.
The ratio is a measure of the “bang per buck‚” and the transistor in a
gate on the critical path that provides the largest such ratio is upsized. The
STA step is repeated‚ and the iterations continue until the timing constraints
have been met.

The core of the algorithm requires a timing analysis and a sensitivity compu-
tation that calculates the delay change when a transistor size is perturbed; this
may be computed either using a sensitivity engine or by using finite differences
and multiple calls to the STA engine. In each iteration‚ since only a minor
change is made to the circuit (i.e., one transistor size is altered)‚ incremental
timing analysis techniques may be employed to reduce the overhead of timing
calculation.

8.3.1 The TILOS delay model

We examine delay modeling in TILOS at the transistor‚ gate and circuit levels.
At the transistor level‚ an RC model is used‚ with an approximated linear
source-to-drain resistance‚ and capacitances associated with the source‚ drain
and gate nodes. The resistance is inversely proportional to the transistor size‚
while the capacitances are directly proportional‚ with different constants of
proportionality for the gate node and the source/drain nodes.

At the gate level‚ TILOS operates in the following manner. For each tran-
sistor in a pullup or pulldown network of a complex gate‚ the largest resistive
path from the transistor to the gate output is computed‚ as well as the largest
resistive path from the transistor to a supply rail. Thus‚ for each transistor‚ the
network is transformed into an equivalent RC line corresponding to this path2‚
and the Elmore time constant for this RC line is computed. This Elmore delay
corresponds to the delay of the gate when the transition is caused by the tran-
sistor under consideration‚ and can be used to compute input-to-output pin
delays for all input pins in the gate. At the circuit level‚ the CPM technique‚
described in Section 5.2.1‚ is used to find the circuit delay, and gate delays are
computed on the fly as a gate is scheduled for processing.

8.3.2 Posynomial properties of the delay model

The circuit delay model above can be shown to fall into a class of real functions
known as posynomials that have excellent properties that can be exploited
during optimizations. A posynomial is a function of a positive variable
that has the form
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where the exponents and the coefficients Simply stated‚ this
means that a posynomial is similar to a polynomial‚ with the difference that
each term must have a positive coefficient‚ and the exponents associated with
the variables may be arbitrary real numbers that could be positive‚ negative‚
or zero. In the positive orthant in the x space‚ posynomial functions have the
useful property that they can be mapped onto a convex function through an
elementary variable transformation‚ [Eck80].

The delay model discussed in Section 8.3.1 uses resistor models that are
proportional to the inverse of some transistor sizes‚ and capacitor models that
are directly proportional to some other transistor sizes‚ and uses RC products
to compute gate delays. The delay on any path‚ computed using CPM‚ is
therefore a sum of such RC products‚ and can easily be verified to use the
following form of expressions:

where are constants and‚ is the vector of
transistor sizes. This shows that the model expresses the path delay as a
posynomial function of the transistor sizes; specifically these posynomials have
exponents that belong to the set {-1‚0‚1}.

The delay of a combinational circuit is defined to be the maximum of all path
delays in the circuit. Hence‚ it can be formulated as the maximum of posyn-
omial functions. This is mapped by the variable transformation
onto a maximum of convex functions‚ which is also a convex function. The
area function is linear in the and is therefore also a posynomial‚ and is
thus transformed into a convex function by the same mapping. Therefore‚ the
optimization problem defined in (8.1) is mapped to a convex programming prob-
lem‚ i.e.‚ a problem of minimizing a convex function over a convex constraint
set. A basic result in optimization theory states that for any such problem‚ any
local minimum is also a global minimum.

8.3.3 The TILOS optimizer

The optimization algorithm used by TILOS assumes an initial solution where
all transistors are at the minimum allowable size. For a general sequential
circuit, TILOS first extracts the combinational subnetworks and their input-
output timing requirements, and then performs the steps described in this
section on each combinational subnetwork. Keeping this in mind, for the rest
of this section we can assume, without loss of generality, that the circuit to be
optimized is purely combinational.

In each iteration, a static timing analysis is performed on the circuit, which
assigns two numbers to each electrical node: the latest fall transition time,
and the latest rise transition time. This timing analysis is used to determine
the critical path for the circuit. Let N be the primary output node on the crit-
ical path. The algorithm then walks backward along the critical path, starting
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from N. Whenever an output node of gate is visited‚ TILOS examines the
largest resistive path between  and the output node [between ground and
the output node] if the rise time [fall time] of causes the timing failure at N.
This includes

The critical transistor‚ i.e.‚ the transistor whose gate is on the critical path.

The supporting transistors‚ i.e.‚ transistors along the largest resistive path
from the critical transistor to the power supply or ground. 

The blocking transistors‚ i.e.‚ transistors along the highest resistance path
from the critical transistor to the logic gate output.

TILOS finds the sensitivity‚ which is the reduction in circuit delay per in-
crement of transistor size‚ for each critical‚ blocking and supporting transistor.
The size of the transistor with the greatest sensitivity is increased by multi-
plying it by a constant‚ BUMPSIZE‚ a user-settable parameter that defaults
to 1.5. Practically‚ it is observed that smaller values of 1.01‚ 1.05 or 1.1 can
provide better quality solutions‚ often without a very large CPU time penalty.
The above process is repeated until

all constraints are met‚ implying that a solution is found‚ or

the minimum delay state has been passed‚ and any increase in transistor
sizes would make it slower instead of faster‚ in which case TILOS cannot
find a solution.

The reason for increasing the transistor size by the factor BUMPSIZE‚ rather
than minimizing the delay along the critical path‚ is that such a minimization
would not necessarily optimize the delay of the circuit‚ since another path may
become critical instead; in such a case‚ the minimization would be overkill and
may involve an excessively large and unnecessary area overhead. Instead‚ the
delay along the current critical path is gradually reduced by this method‚ and
at the point at which another path becomes critical‚ its delay is reduced instead‚
and so on.

Note that since in each iteration‚ exactly one transistor size is changed‚ the
timing analysis method can employ incremental simulation techniques to up-
date delay information from the previous iteration. This substantially reduces
the amount of time spent by the algorithm in critical path detection.

The sensitivity calculation for the critical path can be carried out in a com-
putationally efficient manner. When a transistor i has its size bumped up by
the factor‚ BUMPSIZE‚ the delay of all gates on the path under consideration
remains unaltered‚ except for

the gate in which the transistor lies: since its driving power is increased‚ its
delay decreases.

the gate that drives this transistor: since it experiences a larger load‚ its
delay increases.
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By algebraically summing up these two changes‚ the change in the delay of the
path is easily found3.

8.4 TRANSISTOR SIZING USING CONVEX PROGRAMMING

The approach in [SRVK93] applies an efficient convex programming method
[Vai89] to guarantee global optimization over the parameter space of all tran-
sistor sizes in a combinational sub circuit‚ thereby solving the optimization prob-
lem exactly.

The algorithm works in the space where is the number of transistors in
the circuit. Each point in the space corresponds to a particular set of transistor
sizes. The feasible region is the set of points (i.e.‚ assignments of transistor
sizes) that satisfies the delay constraints.

The algorithm works in the transform domain under the transformation
and starts by bounding the convex domain by an initial polytope.

A polytope is simply an generalization of a convex polygon‚ and
can be represented by the intersection of a set of linear inequalities as

where A is a constant coefficient matrix‚ and b is a constant The
initial polytope is typically a box described by the user-specified minimum and
maximum values for each transistor size. By using a special cutting plane tech-
nique‚ the volume of this polytope is shrunk in each iteration‚ while ensuring
that the optimal solution lies within the boundary of the reduced polytope. The
iterative procedure stops when the volume of the polytope becomes sufficiently
small.

Let be the solution to the optimization problem in the transformed
domain. The objective of the algorithm is to start with a large polytope that
is guaranteed to contain and in each iteration‚ to shrink its volume while
keeping within the polytope‚ until the polytope becomes sufficiently small.
The algorithm proceeds as follows:

Step 1 An approximate center for the polytope is found deep in its interior.
This is achieved by minimizing a log-barrier function‚ and constitutes the
most computationally intensive part of the approach; for details‚ the reader
is referred to [SRVK93].

Step 2 An static timing analysis is performed to determine whether or not the
transistor sizes corresponding to the center satisfy the timing constraints‚
i.e.‚ whether lies within the feasible region.

In case of infeasibility‚ the convexity of the constraints guarantee that it is
possible to find a separating hyperplane

passing through that divides the polytope into two parts‚ such that the
feasible region lies entirely on one side of it; the determination of this hyper-
plane only requires the gradient of the critical path delay since it is specified
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by

If the point is feasible‚ then the convexity of the objective function implies
that there exists a hyperplane that divides the polytope into two parts such
that is contained in one of them; this time‚ the hyperplane is specified
by the gradient of the objective function as

Step 3 In either case‚ the constraint (8.15) is added to the current polytope
to give a new polytope that has roughly half the original volume.

Step 4 The process is repeated until the polytope is sufficiently small.

We now illustrate the application of the algorithm to solve the problem

where S is a convex set and is a convex function. The example problem is
pictorially depicted in Figure 8.4(a)‚ where the shaded region corresponds to
the feasible region S‚ and the dotted lines show contours of constant value of
the function The point is the solution to this problem.

The expected solution region is first bounded by a closed initial polytope‚
which is a rectangle in two dimensions‚ as shown in Figure 8.4(a)‚ and its center‚

is found. We now determine whether or not lies within the feasible region.
In this case‚ it can be seen that lies outside the feasible region. Hence‚ the
gradient of the constraint function is used to construct a hyperplane through

such that the polytope is divided into two parts of roughly equal volume‚
one of which contains the solution This is illustrated in Figure 8.4(b)‚ where
the shaded region corresponds to the updated polytope.

The process is repeated on the new smaller polytope. Its center lies inside
the feasible region; hence‚ the gradient of the objective function is used to
generate a hyperplane that further shrinks the size of the polytope‚ as shown
in Figure 8.4(c). The result of another iteration is illustrated in Figure 8.4(d).
The process continues until the polytope has been shrunk sufficiently according
to a user-specified criterion.

8.5 LAGRANGIAN MULTIPLIER APPROACHES

The method of Lagrangian multipliers [Lue84] is a general method that can be
used to solve nonlinear optimization problems‚ and has been applied to solve
the transistor sizing problem.
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8.5.1 Early approaches

An early approach in [Cir87] minimizes the area of a single path subject to
delay constraints on the path by formulating the problem using Lagrangians.
Another approach in [Hed87] performs this optimization for an enumerated set
of critical paths using a smoothing function to approximate the max function
using a continuous function. However‚ any path based-method is liable to fail
since the number of paths in a circuit can be exponential in the number of
gates.

The approach in [Mar86‚ MG87‚ MG86] presents a solution to transistor size
optimization by using Lagrangian multipliers‚ and employs intermediate vari-



164 TIMING

ables to reduce the number of delay constraints from an exponential number
to a number that is linear in the circuit size. The optimizer employs two varia-
tions of the Lagrange multiplier approach, the augmented Lagrangian algorithm
and the projected Lagrangian algorithm [Lue84, Mar86]. The augmented La-
grangian algorithm uses a penalty term that helps to steer the solution towards
the feasible region and, hence, has the desirable property of global convergence.
The projected Lagrangian method, a quadratic approximation method that is
similar to Newton’s method, has a fast convergence rate. However, it is not
globally convergent, and requires that the initial solution be close enough to
the optimum solution in order to converge. COP starts with the augmented
Lagrangian technique to take advantage of its global convergence. When the
gradient of the Lagrangian becomes less than a certain small number, it
switches to the projected Lagrangian algorithm, to converge more quickly to
the solution.

8.5.2 Lagrangian relaxation methods

The approach in [CCW99] presents a detailed analysis of the Lagrangian of
Equation (8.3). The problem can be rewritten as

where

It was shown that regardless of the delay model used‚ the linear relations in
the arrival time constraints lead to a following flow-like requirement on some
of the Lagrangian multipliers:

This leads to the restatement of the problem as
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where

This problem is then solved using Lagrangian relaxation. In each step‚ this
iteratively sizes the gates in the circuit for the value of from the previous
iteration‚ exploiting the properties of the Elmore delay function to speed up the
procedure. The initial values of the are chosen to be uniform‚ and these
values are adapted from step to step based on a subgradient optimization.

8.5.3 Sizing based on accurate nonconvex delay functions

The use of Elmore delay metrics has the disadavantage of low accuracy‚ while
providing substantial advantages in terms of the convexity of the delay function.
An alternative approach might use high accuracy delay evaluators that can
guarantee that the solution can indeed achieve the performance promised by
the optimizer. The drawback of such an approach‚ however‚ is the loss of the
convexity properties of the Elmore metric. As a result‚ the result may fall in a
local minimum rather than being guaranteed of a globally optimal solution.

The approach in  VC99] uses a fast and accurate simulator based
on SPECS [VR91‚ VW93]‚ which guarantees correctness of the delay compu-
tation. However‚ the simulator cannot guarantee the convexity of the delay
metric‚ and therefore any such optimization comes at the cost of a potential
loss in global optimality. To overcome this‚ the method uses a theoretically
rigorous and computationally efficient optimization engine that is empirically
seen to be likely to yield a good solution to the optimization problem.

The problem statement is similar to that in Equation (8.3)‚ except that
SPECS is used for delay computation to ensure better accuracy than an Elmore-
based method. The use of SPECS removes the restriction that the optimization
formulation must maintain convexity‚ and frees up the optimizer to incorporate
several other constraints such as

Upper and lower bounds on the signal transition times at each gate output

Timing constraints related to dynamic logic

Noise constraints may be incorporated: for example‚ sizing a gate very asym-
metrically results in poor noise margins‚ and this may be stated as a con-
straint.

The LANCELOT optimization engine [CGT92] is used to perform the opti-
mization‚ and an industrial strength implementation of the method is widely
used in IBM. The engine requires evaluations of the objective and constraint
functions and their gradients. The objective function‚ as in other methods‚ is
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simply the sum (or a weighted sum) of the transistor sizes‚ while most of the
constraints are related to the results of a fast circuit simulation. For computa-
tional efficiency‚ the adjoint method [DR69] is used to calculate the gradients
of constraint functions such as delay‚ slew‚ power‚ and noise.

The JiffyTune tool  differs from the methods listed so far‚ which
rely on a static timing-based formulation‚ in that it‚ employs detailed circuit
simulations over a user-specified set of input patterns. The essential advantage
of the method lies in its extreme accuracy; however‚ it places the burden of pro-
viding the worst-case input signals on the designer‚ and is appropriate at later
stage of design‚ and for highly hand-crafted custom blocks. As in the work
above4 the simulation is driven by the SPECS simulator‚ and the optimiza-
tion by the LANCELOT engine‚ which requires the evaluation of the objective
and constraint functions‚ and their sensitivities. Sensitivity computations are
performed using the adjoint network method‚ and one of the key observations
that makes it efficient is in the adjoint Lagrangian method‚ which permits the
sensitivity of a linear combination of functions to be computed by exciting the
adjoint circuit with a train of impulses.

8.6 TIMING BUDGET BASED OPTIMIZATION

Several techniques (such as iCOACH [CK91]‚ MOSIZ [DA89]‚ and CATS [HF91])
are based on reducing the computation in the problem by heuristically solving
it in two steps. The first step allocates a timing budget to each gate‚ while the
second translates this timing budget into a set of transistor sizes. These two
steps are repeated iteratively until the solution converges.

While all of the techniques cited above are purely heuristic‚ the method in
[SSP02] provides guarantees of convergence under this framework when the
delay function admits a simple monotonic decomposition (SMD) [SSP02]. The
basis of this approach is the observation that for delay expressions with an
SMD‚ such as the Elmore model‚ the gate delays and sizes are related by the
expression

where x is a vector of transistor sizes, A is a constant matrix and b is
a constant The matrix D is an diagonal matrix whose
diagonal elements correspond to the delay unknowns.

In the iteration, a small perturbation in to leads to a change
in the delays, so that matrix changes to This change must obey
the relation

From Equations (8.23) and (eq:vijay2)‚ we obtain the following by neglecting
the small term:

The two phases are described in greater detail below:

The D-phase assumes transistor sizes to be fixed and sets gate delay bud-
gets (“D”) . The objective function‚ which sums up all elements of x‚ can be
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rewritten using Equation (8.25) to depend purely on the D variables. In ad-
dition‚ topological information must be incorporated: specifically‚ the slacks
in the network are organized into a graph in which slacks may be allocated
to gates. This results in a network flow formulation that can be solved to
find the delay budgets.

The W-phase computes the optimal transistor sizes (“W”) corresponding
to these delay budgets by formulating the problem as a simple monotonic
program [Pap98].

The CPU times provided by this method are‚ at the time of writing this book‚
the fastest demonstrated results for the transistor sizing problem.

8.7 GENERALIZED POSYNOMIAL DELAY MODELS FOR
TRANSISTOR SIZING

8.7.1 Generalized posynomials

A major problem with the use of Elmore-based delay models is the limited ac-
curacy that can be achieved by these models. Particularly in deep-submicron
technologies and later‚ Elmore models leave much to be desired in terms of
accuracy‚ although their convexity properties are well-beloved. As a result‚ the
transistor sizing techniques described in Section 8.5.3 willingly abandoned the
convexity properties of the Elmore model in favor of accurate‚ but nonconvex
models. The idea of generalized posynomials for delay modeling was proposed
in [KKS00] in an effort to provide accurate convex gate delay models for tran-
sistor sizing. The philosophy behind the approach is that posynomials and
convex functions are a rich class of functions‚ and as described in Section 8.3.2‚
the posynomials that are used in Elmore-based delay models constitute a very
restricted set where the exponents for each term of the posynomial belong to
the set {–1‚ 0‚ 1}. Therefore‚ much of the space of posynomials and convex
functions remains unexploited when Elmore models are used.

A generalized posynomial is defined recursively in [KKS00] as follows.

A generalized posynomial of order 0 is simply a posynomial‚ as defined earlier
in Equation (8.12).

A generalized posynomial of order is defined as

where is a generalized posynomial of order less than or equal to
each R‚ and each
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Like posynomials‚ generalized posynomials can be transformed to convex func-
tions under the transform but with the additional restriction that

for each
For a generalized posynomial of order 1‚ observe that the term in the inner-

most bracket‚ represents a posynomial function. Therefore‚ a general-
ized posynomial of order 1 is similar to a posynomial, except that the place
of the variables in Equation (8.12) is taken by posynomial. In general‚ a
generalized posynomial of order  is similar to a posynomial‚ but in the

posynomial equation is replaced by a generalized posynomial of a lower order.
Example: Consider a posynomial function

By definition‚ his is a generalized posynomial of order zero. An example of a
generalized posynomial of order 1 is the function

A generalized posynomial that is not convex is

This can be inferred from the fact that corresponds to the
exterior of the unit circle, a nonconvex set; for a convex function, it must be
true that such a set is convex [Lue84]. Note that the exponent of “-1” here
does not satisfy the nonnegativity requirement that was described earlier.

For delay modeling, a curve-fitting approach is used to find a least-squares
fit from the delay function, computed by SPICE over a grid, to a generalized
posynomial in order to provide guarantees on accuracy of the delay model while
using functions that are well-behaved in an optimization context. Under this
framework, it is possible to incorporate constraints that take into account limi-
tations on the allowable ratios between the n-block and the p-block transistors,
which have repercussions on the noise margins.

8.7.2 Delay modeling using generalized posynomials

Outline of the delay modeling approach. Many commonly utilized delay
estimation approaches‚ such as those used for standard cell characterization‚
estimate the delay of a gate for a given input transition time and output load
capacitance‚ with the sizes of the transistors inside the gate being kept constant.
However‚ for our purposes‚ any sizing procedure requires the timing model to
capture the effects of varying the transistor sizes on the gate delays. This
causes the number of parameters for the delay function to increase‚ making the
problem of delay modeling for sizing algorithms more complex. These input
parameters will be referred to as characterization variables.
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We begin with an explanation of the timing model for an inverter‚ such as
the one shown in Figure 8.5; this model is generalized to complex gates in
subsequent sections. The aim is to be able to estimate delay as a function of
the pmos and nmos transistor widths‚  and the input transition time
and the output load capacitance‚ . Therefore‚ for an inverter‚
and form the set of characterization variables. These variables reflect the
set of variables that are generally considered to be important in defining the
delay of a gate in most models.

We attempted the use of several types of functions to achieve the desired
levels of accuracy. The general form of expression that provided consistently
good results for different gate types is as follows

Here‚ the are characterization variables‚ and the C‚ and
are real constants‚ referred to collectively as characterization constants. The
parameter    is set to either -1 or 1‚ depending on the variable‚ as will soon be
explained. The problem of characterization is that of determining appropriate
values for the characterization constants. We will show in Appendix C that the
use of this form of function implies that the circuit delay can be expressed as
a generalized posynomial function of the transistor widths.

Due to the curve-fitting nature of the characterization procedure (akin to
standard cell characterization)‚ it is not possible to ascribe direct physical
meanings to each of these terms. However‚ it can be seen that the fall de-
lay increases as and are increased‚ and decreases as is increased‚
implying that the value of for the first three variables must be 1‚ and that
for should be -1. Note that this is not as restrictive as the Elmore form
since‚ among other things‚ the provide an additional degree of freedom
that was not available for the Elmore delay form. A similar argument may be
made for the rise delay case.

Circuit simulations and curve-fitting. A two-step methodology is adopted
to complete the characterization. In the first step‚ a number of circuit simula-
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tions are performed to generate points on a grid. In the second, a least-squares
procedure is used to fit the data to a function of the type in Equation (8.29).

A series of simulations is performed to collect the experimental data using a
circuit simulator. The total number of data points, N, increases exponentially
with the number of characterization variables. For the inverter circuit with four
characterization variables and data points for each variable to cover the range
of interest, the total number of data points, N would be Therefore, it is
important to choose the data points carefully; in particular, it is not necessary
to choose an even grid for the transistor widths and a smaller granularity of
points can be chosen for larger in case of the fall transition.

The determination of the characterization constants was performed by solv-
ing the following nonlinear program that minimizes the sum of the squares of
the percentage errors over all data points.

where N is the number of data points‚ and respectively‚
represent the values given by Equation (8.29)‚ and the corresponding measured
value at the data point. The parameter is a user-settable parameter
that is usually determined by running the simulation once with and
then feeding back higher values for points with higher errors. This nonlinear
programming problem is solved using the MINOS optimization package [Dep95]
to determine the values of characterization constants.

Characterization of a set of primitives. To illustrate the problem of di-
rectly extending the above methodology from inverters to arbitrary gates, we
consider a three-input NAND gate circuit. The characterization variables for
this gate will be the sizes of the three pmos transistors, sizes of the three nmos
transistors,     and      . if five data points were chosen to cover each of these
variables, we would have total data points. It is computationally
expensive to perform such a large number of simulations and generate this
database for curve fitting. For more complex gates, as the number of data
points increases exponentially with the number of transistors in the gate, this
would lead to a large overhead, both in terms of the simulation time and the
time required to perform the curve-fit. Therefore, an alternative strategy is
suggested. We emphasize even under this procedure, the transistor sizing ap-
proach will size each transistor individually, and this method is only only used
for delay estimation.

It is important to emphasize that the use of these mapping strategies only
serves to reduce the complexity of the characterization procedure. If one is
willing to invest the CPU time required to perform the characterizations for
each gate type, then this procedure is unnecessary. Since this is performed
only once for each technology, it is viable to characterize all gate types that are
expected to be used.
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We now present a procedure that permits us to precharacterize a set of
primitive logic structures accurately. The gate whose delay is to be measured
is mapped to the closest precharacterized logic structure and the delay is cal-
culated. A secondary advantage of this approach is that the delay model is not
restricted to a fixed library type, and arbitrary gate types can be handled.

One straightforward technique that may be used is to map all of the gates
to an “equivalent inverter” [WE93], and use the inverter characterization to
estimate delays; the sizes of the pull-down nmos transistor and the pull-up
pmos transistor of this inverter reflect the real pull-down or pull-up path in
the gate. The widths of these new transistors are referred to as the equivalent
widths. The equivalent width calculation is based on modeling the “on” tran-
sistors as conductances, and the equivalent width corresponds to the effective
conductance of the original structure. Accordingly, if two transistors of widths

and are connected in parallel, the equivalent width is defined as
and if the transistors are connected in series, the equivalent width is defined as

Two-input gates. The set of primitives used to approximate two-input gates
are shown in Figure 8.6 (the presence of a load capacitance at the output is
implicit and is not shown). The gates of the transistors are tied to either logic
‘0’ logic ‘1’, or to a switching input. This timing analysis procedure assumes
only single input transitions‚ and hence there can only be one pair of pmos and
nmos transistors switching at a time.

Consider the two-input nand gate shown in Figure 8.7(a). For the fall delay‚
if the input transition occurs at input A‚ then the gate is mapped to Fig-
ure 8.6(a). Note that since the output is being pulled down in the case of a fall
delay calculation‚ the pull-down is retained while pull-up is replaced by a single
transistor‚ and the characterization equations of Figure 8.6(a) are used to esti-
mate the delay. In a similar fashion‚ when the input transition occurs at input
B of Figure 8.7(a)‚ the gate is mapped to Figure 8.6(b). A similar procedure
is applied for rise delays‚ i.e.‚ the pull-up part is retained while the pull-down
part is replaced by an equivalent nmos transistor. If we assume single input
transitions‚ only one of the pmos transistors will be on during the rise output
transition. The contribution of the pmos transistor that is off is neglected‚ and
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hence for rise delay calculation‚ the nand gate is mapped to an inverter. In
a similar fashion‚ for the nor gate in Figure 8.7(b)‚ when the transition is at
input A‚ the gate is mapped to the primitive in Figure 8.6(d)‚ and when the
transition is at input B‚ the gate is mapped to the primitive in Figure 8.6(c).

Complex gates.  For more complex gates‚ an expanded set of primitives is
necessary. The set of primitives used to approximate complex CMOS gates is
shown in Figure 8.8.

Before explaining the procedure of delay modeling‚ we introduce the notion of
the largest resistive path (LRP). In the worst case switching scenario for a gate‚
there is exactly one path from the output node to the ground node for a fall
[rise] transition. This path may be formed by calculating equivalent widths for
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the “largest resistive path” from different nodes to ground nodes [SRVK93].
The complex gate is represented by a directed graph with an edge from the drain
and source nodes of each transistor in the gate5. Since the “on” resistance of a
transistor is‚ crudely speaking‚ proportional to the reciprocal of its width‚ the
edge weights are the reciprocals of the widths of corresponding transistors. The
largest resistive path between nodes and is the path of largest weight from

to The LRP and the weight of the LRP which corresponds to the width
of equivalent transistor is found using a longest path algorithm [CLR90]. Note
that the LRP computation based on the crude estimations of resistance are
only required to predict the identity of the worst-case path‚ and more accurate
delay modeling is carried out for the actual delay computation.

We will now explain the computation of fall and rise delays for the gate.
FALL DELAYS: For fall delay estimation‚ the switching nmos transistor in the
complex gate is identified; denote this transistor by
Case A: If the source/drain node of the transistor is connected to the
output node‚ the LRP from drain/source of to ground is replaced by its
equivalent transistor‚ and the pull-up network by its equivalent transistor. The
gate is thus mapped to a primitive as shown in Figure 8.9; this corresponds to
a mapping to the primitive in Figure 8.6(a).
Case B: If the source /drain node of the transistor is connected to
ground‚ the LRP from drain/source of to the output node is replaced
by its equivalent transistor‚ and the pull-up network by its equivalent transis-
tor. The gate is thus mapped to the primitive shown in Figure 8.6(b).
Case C: If neither the drain nor the source nodes of is connected to
the or ground node‚ then the LRP ’s from drain/source of to

ground nodes are replaced by their corresponding equivalent transistors.
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The pull-up network is replaced by its equivalent transistor, thereby mapping
the gate to the primitive shown in Figure 8.8(a).
RISE DELAYS: For rise delay estimation, the switching pmos transistor in the
complex gate is identified. Let it be identified by
Case A: If the source/drain node of the transistor is connected to the
output node, the LRP from drain/source of to is replaced by its
equivalent transistor, and the pull-down network by its equivalent transistor.
The gate is thus mapped to the primitive shown in Figure 8.6(c).
Case B: If the source/drain node of the transistor is connected to
the LRP from drain/source of to output node is replaced by its equiv-
alent transistor, and the pull-down network by its equivalent transistor. The
gate is thus mapped to the primitive shown in Figure 8.6(d).
Case C: If neither the drain nor the source nodes of are connected
to the or ground node, then the LRP’s from drain/source of to

ground nodes are replaced by their corresponding equivalent transistors.
The pull-down network is replaced by its equivalent transistor, thereby mapping
the gate to the primitive shown in Figure 8.8(b).

8.7.3 Statement of the problem

Ratioing constraints. Practical designs require that the rise and fall delays
of a gate be balanced. However‚ this is not‚ guaranteed by sizing algorithms‚
which may lead to unbalanced rise and fall delays. By limiting the ratio of
pull-down to pull-up strength‚ the gate delays can be balanced. This idea is
critical to the noise margins: for example‚ simple examples for the noise margin
for an inverter (see Section 2.3 of [WE93]) show that the ratio of the pullup to
the pulldown size must be controlled. A similar idea holds for more complex
gates. The ratioing constraints can be mathematically expressed as

Equivalently‚ this can be expressed as

The sizing problem defined in (8.1) is reformulated with these constraints for
every gate in addition to the original delay constraint. The term in the tie-
nominator is taken as the pull-down/pull-up strength of the equivalent inverter
with the largest resistive path activated‚ and the term in the numerator is ap-
proximated as the equivalent size of the largest set of transistors that can be
on in parallel in the opposite (pull-up/pull-down) network. The terms and

are user-settable constants.

The optimization problem. The problem that we solve is an altered form
of the traditionally stated problem of (8.1). In addition to minimizing the
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cost function under delay constraints at primary output nodes‚ constraints
are placed on the transition delay for the transitions at internal nodes in the
circuit and ratioing constraints. The addition of constraints on the transition
delay‚ apart from improving the delay properties of the circuit‚ also serves to
control the short-circuit power dissipation. Therefore‚ the power dissipated by
the circuit may be measured in terms of the dynamic power‚ and short-circuit
power effects described in [SC95] need not be considered. The problem may be
stated succinctly as follows:

minimize

subject to

A proof of convexity of this formulation is provided in Appendix C. Although
this is somewhat theoretical‚ it is recommended that the reader peruse this‚
since the proof also points to several practical methods that could be used to
preserve the convexity of the formulation.

In priciple‚ the accuracy of the model may be increased by enhancing the
richness of the modeling functions. For the transition time expression‚ a sum
of terms could be used and this could be shown to maintain the convexity
properties of the formulation. For delay modeling‚ one could use the “max”
operator to further enhance accuracy‚ if required. If are convex
functions then the function F = max is also a convex function
and hence can be used to improve accuracy of the approximation‚ while retain-
ing the convexity properties of the delay function. However‚ to implement such
a scheme‚ the number of characterization constants will increase‚ thereby in-
creasing the characterization effort. Nevertheless‚ it may be a useful extension
if the accuracy achieved using current model is not deemed sufficient. Since the
current modeling approach is a special case of this‚ where k = 1‚ the extension
is guaranteed to do no worse than this approach.

8.8 DUAL OPTIMIZATION

The use of dual threshold voltage values presents another approach for op-
timizing the delay of a circuit. Unlike transistor sizing‚ however‚ it presents no
significant area overhead; however‚ its use has ramifications on the power dissi-
pation of a circuit‚ specifically the leakage power. A transistor is an imperfect
switch‚ and even in the off state‚ some current can leak through it.

In recent technologies‚ the power dissipation associated with the leakage
current has grown increasingly important‚ and in particular‚ when a lower
is used for a device‚ it makes the switch even more imperfect and increases the
leakage power6. On the other hand‚ using a lower for a device increases its
current drive and allows for faster switching speeds and hence reduced delays.
Therefore‚ if dual values are used‚ it is possible to trade off the increase in
the leakage power with the delay reduction.
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Various methods for optimization have been presented, such as those
in WV98, SP99], all of which take a circuit and alter
transistor    values for a leakage-delay tradeoff. Alternative methods that look
at the problem of concurrently sizing the transistors in a circuit and assigning

values are presented in
The leakage of a gate depends on the logic signals at its inputs, and different

input combinations (“states”) correspond to different leakage values. The work
in defines the concept of a dominant leakage stage: the largest leakage
values are seen when only one transistor in a series chain is off (i.e., its gate is
at logic 1 if it is a pmos device, or at logic 0 if it is an nmos device). Therefore,
these states are referred to as dominant states. When more than one transistor
in a series chain if off, the corresponding leakage for such a state is significantly
smaller than the leakage in a dominant state. This observation considerably
simplifies the leakage computations.

The work in then proceeds to present a heuristic for simultaneous
and sizing optimization. The problem is formulated as one of delay-leakage

tradeoffs at a constant area. The extreme points for the delay correspond to
the all-low and all-high assignments. The procedure consists of two steps: in
the first, a merit function is evaluated to determine the largest delay reduction
for the smallest leakage increase. The transistor with the best merit function
value is then set to low The second step is one of rebalancing: with the
change in the the previous device sizes are longer optimal since alterations
in can change both the speed and the capacitance of the gate. Therefore, a
resizing is carried out: this first reduces the area due to oversized devices that
contribute to large slacks, and then redistributes this recovered area to achieve
a reduction in the maximum delay of the circuit, performing delay reduction
until the original area is reached.

An alternative approach in [KS02] examines the utility of sizing and
assignment in terms of the leakage-delay tradeoff, without the constraint of
keeping the area constant. The algorithm is based on the following observations:

A typical delay-area curve for a circuit has the largest delay when all tran-
sistors are at minimum size. As the transistor sizes are altered‚ the delay
first increases rapidly for small area increases. This continues up to a “knee
point‚” beyond which further delay reductions entail massive area increases.

The delay of a gate decreases linearly with increasing width‚ but super-
quadratically with decreasing This analysis does not count the effects
of the increased width on the delay of the previous stage of logic; this will
reduce the trend to less than linear for sizing. Therefore‚ it can be seen that

reduction is more efficient at reducing the circuit delay than sizing.

The leakage current varies exponentially with but linearly with the tran-
sistor size. This implies that as long as delay reductions can be achieved by
small increases in transistor areas‚ sizing is preferable to lowering

Putting these together‚ and starting with a circuit with all transistors at
minimum size and high one may conclude that up to the knee point‚ where
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the transistor area increase is small‚ delay reduction should be achieved through
sizing. Beyond this point‚ the leakage increase due to both sizing and re-
duction increases in an exponential-like manner‚ so that it is preferable to use

reduction‚ which can deliver a larger delay reduction. The procedure uses
the TILOS heuristic to reach the knee point‚ and then devises an enumeration
strategy with aggressive pruning to perform assignments.

8.9 RESOLVING SHORT PATH VIOLATIONS

Correct circuit operation requires that all data paths have a delay that lies
between an upper bound and a lower bound to satisfy long path and short path
constraints. Traditional approaches in delay optimization for combinational
circuits‚ such as those reviewed in the rest of this chapter‚ have dealt with
methods to decrease the delay of the longest path‚ frequently neglecting to
consider the problem of short path violations that may already exist‚ or may
be introduced as a result of the optimizations.

In [SBS93]‚ the issue of satisfying the lower bound delay constraints for
edge-triggered circuits is addressed. The short path constraints are handled
as a post-processing step after traditional delay optimization techniques by
padding delays into the circuit to ensure that it meets all short path constraints.
The problem of inserting a minimum number of such delays is referred to as
the minimum padding problem. Two methods for solving the problem are
described in [SBS93]:

(1) The first simple algorithm finds an edge on a short path that does not lie
on any critical long path. A delay is inserted on the edge until one of the
following two cases becomes true:

(a) either some path containing the edge becomes a critical long path‚ in
which case no further delays are added on this edge‚ and the process is
continued for the edge that is identified next‚ or

the short path containing the edge meets the lower bound and thus
success is achieved in padding.

(b)

This procedure is carried for all the short paths until the lower bound de-
lay constraints are met. This procedure is purely a heuristic and has no
guarantees of optimality.

(2) The second approach formulates the problem as a linear program. The
combinational circuit is represented as a directed acyclic graph with every
gate output‚ primary input or primary output in the circuit represented by
a vertex in the graph. Two type of edges are defined‚ namely‚ internal and
external edges‚ denoted by and An internal edge is directed from
an input pin of a gate to its output pin. The external edges represent the
interconnections or wiring in the circuit. Hence‚ if an edge then
the weight of the edge is the delay of the gate from the input represented
by to the output of the gate. If the edge then the weight of
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the edge is a variable whose value is to be determined; the physical meaning
of the variable here is the number of delays padded on the edge
Delays may be inserted only on the external edges. There are two arrival
times associated with each vertex an early arrival time and a late arrival
time If is a primary input (PI)‚ then and are specified by the
user or the algorithm at the higher level‚ say‚ as If is an
input/output pin of a gate‚ then

where denotes the set of fanins of A path is a sequence of vertices‚
and the delay of a path is denoted by At every primary output (PO)

the data is required to be available no earlier than and no later than
namely‚ A path fails to meet the short path constraint
if In that case‚ delays are added along the edge
on the short path to remove this violation. The area overhead of this addi-
tion is proportional to the number of delays added‚ and is approximated as

The problem of finding the minimum-cost padding that sat-
isfies the timing constraints can now be expressed as a linear program‚ with
constraints obtained by relaxing Equation (8.33)‚ and an objective function
that corresponds to the number of buffers added.

It was shown that in any circuit‚ if for every pair and PO such
that combinational path we are given that
then the padding problem can be solved. An intuitive explanation for this
condition is as follows. If we interpret the term‚ as the uncertainty
interval in the arrival time of the signal at the primary input‚ and the term‚

as the uncertainty in the required time at the output‚ then since
the circuit is causal‚ it cannot make the uncertainty interval at the output any
narrower than the uncertainty interval at its input.

8.10 SUMMARY

This chapter has overviewed several methods that can be used for transistor-
level timing optimization of digital circuits. The specific methods overviewed
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include transistor sizing‚ dual optimization‚ and padding for short paths.
These are intended to provide a flavor for timing optimization and should not
be construed as a complete review of such methods. In addition to these‚
numerous methods for interconnect optimization using buffer insertion and wire
sizing have been proposed in the literature. Even more such techniques are on
the way: for instance‚ recent technologies have seen large increases in the gate
leakage (as opposed to the subthreshold leakage‚ addressed in Section 8.8)‚
which can be translated into a leakage/delay tradeoff problem by using dual
oxide thickness values.

Notes

1. The current drive of a gate is controlled by the ratio of the channel width to channel
length‚ and if channel lengths are not uniform‚ this ratio can be considered as the size.
However‚ this may result in more complex functional forms for the area or power during
optimization.

2. This was subsequently extended to an RC tree model in iCONTRAST [SRVK93] to
model capacitors off the largest resistive path that must be charged/discharged.

3. In practice‚ when the effects of input transition times are considered under a more
accurate model‚ one may also have to consider a few stages downstream of the gate in which
the transistor lies.

4. It should be noted that Jiffytune predates VC99].

5. In a static CMOS gate‚ it is always possible to uniquely identify the source node and
the drain node. This may not be true in circuits with pass gates‚ which are not handled
in this work. The Jouppi rules [Jou87a]‚ for example‚ could be used to extend this work to
circuits with pass gates.

6. This refers to the leakage mechanism referred to as subthreshold leakage‚ where the
nonideal nature of the transistor switch implies that it conducts a nonzero current in the
region where the gate-to-source voltage for an nmos transistor (or vice versa for a pmos
transistor) is below in a regime where the transistor is supposedly off.
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9 CLOCKING AND CLOCK SKEW
OPTIMIZATION

9.1 ACCIDENTAL AND DELIBERATE CLOCK SKEW

Conventional synchronous circuit design is predicated on the assumption that
each clock signal of the same phase arrives at each memory element at exactly
the same time. In a sequential VLSI circuit‚ due to differences in interconnect
delays on the clock distribution network‚ this simultaneity is difficult to achieve
and clock signals do not arrive at all of the registers at the same time. This
is referred to as a skew in the clock. In a single-phase edge-triggered circuit‚
in the case where there is no clock skew‚ the designer must ensure that for
correct operation‚ each input-output path of a combinational subcircuit has
a delay that is less than the clock period. In the presence of skew‚ however‚
the relation grows more complex and the task of designing the combinational
subcircuits becomes more involved.

The conventional approach to design builds the clock distribution network
so as to ensure zero clock skew. An alternative approach views clock skews
as a manageable resource rather than a liability‚ and uses them to advantage
by intentionally introducing skews to improve the performance of the circuit.
To illustrate how this may be done‚ consider the circuit shown in Figure 9.1‚
and assume each of the inverters to have a unit delay. This circuit cannot
be properly clocked to function at a period of 2 time units‚ because as shown
in the figure‚ the required arrival time of the signal at register L1 is 2 units‚
while the data arrives after 3 time units. It is readily verifiable that the fastest
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allowable clock for this circuit has a period of 3 units. However‚ if a skew of
+ 1 unit is applied to the clock line to register L1‚ the circuit can operate under
a clock period of 2 units. This is possible because as shown in Figure 9.2‚ the
application of a skew of +1 unit delays the clock arrival at register L1 by one
unit‚ thus changing the required data arrival time to the new arrival time of the
first clock tick‚ which is 3 units (i.e.‚ the period of 2 unit delayed by +1 unit).
Under these circumstances‚ the actual data arrival time of 3 units does not
cause a timing violation‚ and the circuit is correctly clocked. A formal method
for determining the minimum clock period and the optimal skews was first
presented in the work by Fishburn [Fis90]‚ where the clock skew optimization
problem was formulated as a linear program that was solved to find the optimal
clock period.

A common misconception about changing clock skews is that it is believed
to be an “unsafe” optimization‚ in that a small change in the gate/interconnect
delays may cause a circuit with precariously small tolerances to malfunction. In
fact‚ this is not so; one can build in safety margins‚ as shown in Section 9.3‚ that
ensure that skewing errors do not disrupt circuit functionality. These margins
ensure that the circuit will operate in the presence of unintentional process-
dependent skew variations. In fact‚ introducing deliberate delays within the
clocking network has been a tactic that has long been used by designers [Wag88]
to squeeze extra performance from a chip‚ sometimes in a somewhat clandestine
manner. Only in the last few years has this idea become more “mainstream‚”
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so that a designer may feel free to try it in full public view. From the design
automation point of view‚ zero-skew clock tree construction techniques may be
adapted to build fixed-skew clock networks. A proof of the practicality of this
concept was demonstrated in a pipelined data buffer chip using the concept of
skewed clocks‚ which was designed and fabricated in [HW96].

It is‚ in fact‚ a misconception to believe that zero skew is entirely safe. To
see this‚ consider a shift register consisting of register A whose output is con-
nected to register B with no combinational logic between the two [SSF95]‚ as
shown in Figure 9.3. Even for a circuit designed for zero skew‚ a small uninten-
tional positive skew at register B will cause double-clocking‚ i.e.‚ a short path
constraint violation. Such problems may be avoided by the use of the safety
margins mentioned in the previous paragraph and the introduction of deliber-
ate nonzero skew: a small amount of deliberate positive skew at A provides an
effective safety margin against short path violations.

The organization of this chapter is as follows. We first briefly describe tech-
niques that may be used to build zero-skew and fixed-skew clock trees. This is
followed by clock skew optimization algorithms for period optimization‚ keep-
ing the structure of the remainder of the circuit unchanged. Finally‚ the use
of clock skew optimization in conjunction with transistor sizing‚ where the pa-
rameters of the circuit are changed at the same time as the optimal skews‚ and
its use for ground bounce reduction‚ are presented.

9.2 CLOCK NETWORK CONSTRUCTION

The clock distribution network is required to propagate the clock signal to every
register in a synchronous circuit. Consequently‚ it must be designed carefully
to ensure the optimal use of resources and to achieve performance requirements
on the clock signal at the sink nodes. These performance requirements include
requirements on the signal arrival time and on the sharpness of the clock edge.
The skew constraint on clock networks is a hard constraint‚ and to ensure the
tractability of the problem‚ many clock networks are constructed as trees.

In this section‚ we will present the essentials of clock tree construction meth-
ods targeted at achieving zero skew and fixed skew. Although they will not be
discussed here‚ it is worth pointing out that meshes have been proposed for
clock distribution‚ for example‚ in [DCJ96‚ XK95‚ SS01]. This section is only
intended to be an abbreviated reference on clock tree construction; for de-
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tails‚ the reader is referred to [KR95‚ Fri95‚ CHKM96]. As we will see‚ hybrid
tree/mesh structures are also commonly used in high-performance design.

9.2.1 H-tree-like approaches

Early methods for clock tree design attempted to achieve zero-skew by bal-
ancing the wire length to each sink. H-trees [FK82]‚ illustrated in Figure 9.4
and so named because of their structure‚ were recognized for years as a tech-
nique to help reduce the skew in synchronous systems. The H-tree ensured‚
by construction‚ that all sinks of the clock tree are equidistant from the clock
source. For regular structures such as systolic arrays‚ the H-tree works well to
reduce skew‚ but in the general case‚ asymmetric distributions of clock pins are
common and a symmetric H-tree may not be effective for clock routing. To
address this issue‚ the method of recursive geometric matching [KCR91] and
the method of means and medians [JSK90] were proposed; these extend the
H-tree idea to structures with a smaller degree of regularity.

Nevertheless‚ H-trees have still been used very widely because of their regular
structure‚ which makes it easy to account for routing resource utilization. It
is common in high-performance design to build a backbone structure that is
based on an H-tree and to size the wires suitably so as to achieve zero skew
[PMP93‚ PMOP93].

9.2.2 Exact zero-skew clock routing

Early H-tree based methods used symmetric structures‚ and simplified the prob-
lem of equalizing the clock delays into the geometric problem of equalizing the



CLOCKING AND CLOCK SKEW OPTIMIZATION 185

path lengths on a Manhatan grid. This assumption is valid for a perfectly sym-
metric clock network in which the load capacitances at all the sinks is precisely
the same; however‚ this is an invalid assumption for real circuits. The work
in [Tsa91‚ Tsa93] recognized that due to uneven loading and buffering effects‚
path-length equalization methods do not achieve the effect of balancing clock
delays. An approach that incorporates this effect and uses the Elmore delay
model to automatically build zero-skew clock trees was suggested. We will now
describe this method in detail‚ and explain how it may be extended to build
clock trees with specified‚ and possibly nonzero‚ skews at the sink nodes.

The Elmore delay model [RPH83] is used to calculate the signal propagation
delay from a clock source to each clock sink. A modified hierarchical method
is proposed for computing these delays in a bottom-up fashion. This algorithm
takes advantage of the structure of the Elmore delay calculations to construct
a recursive bottom-up procedure for interconnecting two zero-skew subtrees to
form a new tree with zero skew.

We now describe one recursive step of the bottom-up procedure. In each such
step‚ two subtrees are combined into one subtree; by construction‚ it is ensured
that each such subtree has zero skew from its current root to all of its sinks.
In other words‚ the signal delay from the root to the leaf nodes of the subtree
are forced to be equal. In the first step‚ each sink node constitutes a subtree‚
and the skew within each such subtree is trivially seen to be equal to zero. In
subsequent steps‚ partially constructed zero-skew subtrees are combined.

In one step of the recursion‚ two zero-skew subtrees are connected with a
wire and a new root is defined for this combined structure‚ ensuring zero skew
from the root to all sinks in the merged tree. This is illustrated in Figure 9.5‚
and this new root is referred to as the tapping point. If we denote the total
wire length of this connecting wire segment as and the wire length from the
tapping point to the root of subtree1 be then the wire length
from the tapping point to the root of subtree2 is

A closed-form expression for the value of that yields zero skew will now be
determined. Consider each subtree in Figure 9.5. Since subtree1 [subtree2] has
zero skew‚ the delay from its root to each leaf node is equal‚ say Let the
corresponding total capacitances in the subtrees be respectively. The
wires of length and are modeled using the model shown
in the figure.

The delay from the tapping point to each leaf node in subtree1 is equated
to the delay to each node in subtree2 using the Elmore delay formula [SK93]
to provide the following equation

Substituting and where
and are‚ respectively‚ the per unit resistance and capacitance of the intercon-
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necting wire‚ we find that the tapping point corresponds to

If the solution of Equation (9.2) results in a value that satisfies
then the tapping point lies along the segment interconnecting the two subtrees
and is legal. In case lies outside this range‚ it implies that the loads on the two
subtrees are too disparate. If so‚ the tapping point is set to lie at the root of the
subtree with the larger loading‚ and the wire connected to the other segment is
elongated in order to ensure that its additional delay balances the delay of the
first subtree. This procedure of elongating the wire is referred to as snaking.
If then the tapping point is kept at and the connecting wire is
elongated by an additional length The value of is found by matching the
delays in each subtree‚ and is given by

The formula for for the scenario can be derived in a similar manner.
Thus‚ in this approach the delay time to each node is derived from its imme-

diate predecessor‚ the branch resistance‚ and the subtree capacitance. Buffering
effects are accounted for in this procedure by storing and as the total
subtree capacitance up to their closest downstream buffer locations; buffers are
added to ensure that the clock edge remains sharp.

9.2.3 Further refinements

The procedure described by the algorithm described above does not attempt to
reduce the length of the zero-skew clock tree. The deferred-merge embedding
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(DME) algorithm [BK92‚ CHH92‚ Eda91] substantially reduces the tree cost
while satisfying the skew specifications. In each step of the zero-skew merging
procedure described earlier‚ the two subtrees are connected by a wire of length
In a Manhattan geometry‚ there are several routes between two points that have
the exact same length. Therefore‚ the precise route taken by the wire connecting
the two zero-skew subtrees is important in that it affects the optimality (but
not the correctness) of future merge operations‚ where the optimality is defined
in terms of minimizing the wire length of the clock tree.

The DME procedure works by deferring the precise route‚ or embedding‚
corresponding to each node for as long as possible‚ and operates in two phases.
In the first bottom-up phase‚ a tree of “merging segments” is constructed‚ where
each merging segment is the locus of possible placements of a specific tapping
point in the clock tree‚ under a Manhattan geometry. An example of a merging
segment for two points‚ S1 and S2‚ is shown in Figure 9.6‚ with the value of
in Equation 9.2 set to It should be pointed out that the locus of points that
form a merging segment for a pair of straight lines segments is another straight
line segment; this implies that as the method goes up the recursive merging
process‚ the locus of merging points is always given by a straight line. In the
second top-down phase‚ the exact location of these internal nodes are resolved
with the purpose of minimizing the total wire length of the clock tree.

Apart from reducing the delay by minimizing the wire lengths and inserting
buffers‚ one may also use wire width optimization for sharpening the clock
edge. Techniques for this purpose have been presented in‚ for example [Eda93‚
PMP93‚ PMOP93]. The problem of optimally inserting buffers in clock trees
has been addressed in [CS93b‚ TS97‚ VMS95].

The zero-skew merge procedure is extended to RLC clocking networks in
[LS96‚ LS98]‚ using higher-order moment matching methods that are a gen-
eralization of the Elmore delay modeling approach. The procedure ensures
adequate signal damping and satisfies constraints on the clock signal slew rate.



188 TIMING

9.2.4 Fixed skew clock network construction

The procedures described above can be extended [Tsa93] to build a clock
tree that is required to deliver the clock with a predetermined skew at each
sink. This problem is termed the fixed-skew clock network construction‚ or the
prescribed-skew routing problem. As described earlier in this chapter‚ the ma-
jor utility of nonzero skews is to enable time-borrowing between combinational
circuit segments that are connected by a flip-flop.

The technique of [Tsa91‚ Tsa93] (and its extensions) can be adapted to
solve this problem by adding a fictitious delay element on each clock sink. For
a prescribed skew of at the element‚ the algorithm begins with each
sink node corresponding to a (trivial) tree with a delay of instead of zero
as before. Note that according to the notation‚ a positive skew implies that
the clock signal is delayed by time

Therefore‚ in principle‚ in terms of the design automation effort‚ it is no
harder to design fixed-skew clock trees than it is to build zero-skew trees. Sev-
eral other papers on fixed-skew clock network construction have been published‚
including [HLFC97‚ NF96‚ NF97]. The work in [NF96‚ NF97] develops a tech-
nique that first determines the optimal skew schedule for a circuit‚ and then
constructs a fixed skew network by using the delays of wires and by inserting
buffers for additional delays‚ while minimizing sensitivity to process and envi-
ronmental delay variations. The approach in [HLFC97] is distinguished by the
fact that it performed a detailed circuit-level design and proved the viability of
the process through a fabricated chip.

9.2.5 Clock networks in high performance processors

In this section, we will provide a brief description of clock networks that have
been used in a few high performance processor families. While many of these
are aimed at providing zero skew, some may be extended for nonzero skew
clock network construction. This description will largely present the simplest
overview. The reality may be have a few additional complications since many
of these chips work in multiple clocking domains. For a clear example of how
this is handled, the reader is referred to several of the papers refer-
enced below also provide further details on how multiple clocking domains are
handled.

The DEC Alpha clock network. The alpha processors were among the
first to use meshes instead of trees‚ in an effort to control the clock skew. The
philosophy behind this construction is that the sensitivity of the clock skew to
process variations is reduced in a mesh that is driven redundantly by multiple
drivers. For the case of the 600 MHz Alpha processor [BB98]‚ the master clock
signal from a phase-locked loop (PLL) is fed to a global clock grid through an
X-tree or H-tree to 16 distributed global clock (GCLK) drivers. The lowest
level of GCLK drivers are in the form of a “windowpane” arrangement‚ as
shown in Figure 9.7(a)‚ and the last two levels are optimized so that the delay
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from the PLL to the windowpanes is identical. The windowpanes drivers are
connected to a dense global clock mesh, which is redundantly and multiply
driven by the clock signal, as shown in Figure 9.7(b). Finally, the clocks are
taken to the utilization points from this mesh. A design automation strategy
for sizing wires in clock meshes was presented in [DCJ96], and was applied
to an earlier generation processor. A new clocking procedure for the 1.2GHz
Alpha processor is described in and uses DLLs to compensate for
process variations.

The IBM Power4 clock network. The strategy for the 1.3 GHz IBM
Power4 also uses clock meshes at the lowest level, which are driven by buffered
tunable trees or tree-like networks at upper levels The
PLL drives a global clock distribution tree structure that delivers the clock
signal from the PLL near the center of the chip, through an H-tree with four
levels of buffers, to 64 sector buffers. Each sector buffer drives a final tree of
tunable wires, which in turn, drive a single grid, which covers the entire chip,
at 1024 points.

The Intel IA-64 clock network. The clock network for the first IA-64
processor consists of three levels a global H-tree based distribution
level where the PLL output is sent to a set of deskew buffers (DSKs), a regional
distribution level where the DSK outputs are distributed to 30 regional clock
grids (meshes) through regional clock drivers (RCDs), and a local distribution
level where the local clock buffers driven by the regional clock grid provide the
clock signal to clocked elements, including the possibility for providing skewed
clocks1. This is pictorially shown in Figure 9.8(a). The design of the DSK is
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particularly interesting: a separate reference clock is distributed along with the
core clock distribution‚ and feedback clocks are provided from the end points of
the core clock distribution back to the DSK‚ as shown in Figure 9.8(b). A phase
detector in the DSK then samples the phase difference between the reference
clock and the local feedback clock‚ and a tunable delay circuit is used to adjust
the skew until it is removed. Early generations of the processor selected one
of several discrete delays by picking the appropriate tap from a delay line‚ but
more recently‚ fuse-based deskew has been employed.

9.3 CLOCK SKEW OPTIMIZATION

It has been demonstrated at the beginning of this chapter that the use of in-
tentional nonzero clock skews can speed up the clock period for a sequential
circuit since it facilitates cycle-borrowing. The work of Fishburn [Fis90] for-
malized an approach to find the optimal skews at each memory element in an
edge-triggered circuit‚ where the optimality was defined in terms of minimiz-
ing the clock period. The problem was posed as a linear program‚ and this
formulation is described in this section.

9.3.1 Timing constraints

Consider a combinational block in a sequential circuit‚ as shown in Figure 9.9.
Let and be a pair of flip-flops at the input and output‚ respectively‚
of the combinational block‚ with skews of and respectively.
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Denoted the delay of the combinational block between them as with
being the minimum delay and being the maximum delay. If

is the flip-flop hold time‚ the flip-flop setup time‚ and P the clock period‚
then in the presence of skews‚ the timing constraints take the following form

Long path constraints To avoid “zero-clocking‚” the data from the current
clock cycle should arrive at no later than a time before the next
clock. Since the data leaves at time the latest time by which it will
reach is The long path constraint‚ shown in Figure 9.10‚
may be expressed as

Short path constraints To avoid “double-clocking‚” the data from the next
clock cycle should arrive at no earlier than a time after the current
clock. The data leaves at time and‚ therefore‚ the earliest time it
can reach     is Thus‚ the short path constraint illustrated in
Figure 9.11 is

9.3.2 Clock period minimization

The problem of minimizing the clock period P by controlling the clock skew at
each flip-flop‚ subject to correct timing‚ can now be formulated as the following
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linear program

The linear program is formulated under the assumption that the delays of the
combinational segments are constant. These delays can be calculated efficiently
by using the method of Section 5.2.1.

The above formulation may be altered to model uncertainties in the clock
skews. If it can be guaranteed that in the manufactured circuit‚ the skew at
flip-flop will be within the range  where is the designed
value of the skew‚ then the difference between any skews‚ in the
manufactured circuit‚ must be within of the designed value of A
linear program that is guaranteed to produce a functional manufactured circuit
is formulated below:

An alternative formulation to maximize the tolerance of the solution to un-
predictable changes‚ for a given clock period P‚ is as follows. This may be
achieved by maximizing the minimum slack over all the constraints‚ converting
the problem into a minmax problem. A new variable M is introduced‚ and
is added to each of the main constraint inequalities‚ so that maximizing M is
tantamount to finding the skew values that maxime the minimum slack over
all the inequalities. The precise formulation is as shown below:
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9.3.3 Efficient solution of the skew optimization problem

The constraints of the linear program (9.7) are rewritten as

Note that the skews at the primary inputs and the primary outputs may be
set to zero under the assumption that they cannot be controlled or adjusted.
For a constant value of P‚ the constraint matrix for this problem reduces to a
system of difference constraints [CLR90]. For such a system‚ it is possible to
construct a constraint graph. The vertices of the constraint graph correspond
to the variables‚ and each constraint corresponds to a directed
edge from node to node   with a weight of    If P is achievable‚ then a set
of skews that satisfies P can be found by solving the longest path problem on
this directed graph. The clock period P is feasible provided the corresponding
constraint graph contains no positive cycles.

This observation was utilized in [DS94] for efficient solution of the skew
optimization problem. The optimal clock period is obtained by performing
a binary search. At each step in the binary search (for clock period P) the
Bellman-Ford algorithm‚ to be described shortly‚ is applied to the corresponding
constraint graph to check for positive cycles. The procedure continues until the
smallest feasible clock period is found. The following skeletal pseudo-code is
used to perform the binary search for the optimal clock period.

Algorithm MINPERIOD_WITH_OPTIMAL_SKEWS
Construct the constraint graph;

...(Lemma 3.3)

...(Lemma 3.4)
while    {

if constraint graph has a positive cycle

else

}

The binary search can be provably justified since it can be shown that any
clock period that is larger than the optimal period is feasible‚ and that any
clock peiod that is smaller is infeasible [DS94‚ SD96].

The bounds on the the clock period‚ and may be computed as
follows. Given a pair of inequalities in Equation (9.9)‚ if we define

Such a quantity can be defined for any pair of flip-flops‚  and that are
connected by a combinational path. Then a lower bound‚ is given by
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An upper bound‚ is given by

9.3.4 Applying the Bellman-Ford algorithm

As stated earlier‚ each step of the binary search applies the Bellman-Ford algo-
rithm to solve the longest path problem on the constraint graph to determine
whether P is feasible or not‚ and if so‚ to find the values of the corresponding
skews. A brief description of the procedure follows.

The Bellman-Ford algorithm may be applied to solve a single-source longest
path problem on a directed graph. Unlike Dijskstra-like algorithms‚ it can
handle edge weights of either sign‚ but has a higher computational complexity.
The pseudocode for the application of the algorithm to a graph G = (V‚ E‚ w)‚
where V and E are the set of vertices and edges‚ respectively‚ of the graph‚ and
w is the vector of edge weights‚ is as follows:

Algorithm BELLMAN_FORD
for each vertex

predecessor(v)

for i 1 to |V|-1
for each edge

if then

predecessor(v)

for each edge

if then

/* A positive cycle exists */
SATISFIABLE    FALSE;

else

SATISFIABLE    TRUE;

If the skews are initialized to 0, the Bellman-Ford solution achieves the
objective of minimizing [CLR90]. On a graph with V vertices
and E edges, the computational complexity of this algorithm is O (V . E ) .

In the solution found above, all skews must necessarily be positive, since
the weight of each node in the Bellman-Ford algorithm was initialized to zero.
Also, in general, the skew at the host node (corresponding to primary inputs
and outputs) could be nonzero at the end of these iterations. Since the objective
is to ensure a zero skew at the primary input and output nodes, the solution
is modified to achieve this. Note that if is a solution to a system
of difference constraints in x, then so is
Therefore, by selecting to be the negative of the skew at the host node, a
solution with a zero skew at the host is found.
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9.3.5 Complexity analysis and efficiency-enhancing methods

The number of iterations of the binary search‚ in the worst case‚ is
The time required to form the constraint graph may be as large as

where is the maximum number of inputs to any combinational
stage. In practice‚ though‚ it is seen that this upper bound is seldom achieved.
Therefore‚ the iterative procedure above‚ when carried to convergence‚ provides
the solution to the linear program (9.7) with a worst-case time complexity of

where F is the number of flip-flops in the circuit‚ E is the number of pairs of
flip-flops connected by a combinational path‚ and and are as defined
in Lemmas 3.3 and 3.4‚ and defined in the pseudocode above‚ corresponds
to the degree of accuracy required.

We caution the reader that the complexity shown above is not a genuine
indication of the complexity for real circuits. Firstly‚ in practical cases‚ it is
seen that E = O(F). Secondly‚ if the implementation is cleverly carried out‚
the cost of the computation can be reduced. For instance‚ it has been shown in
[LW83] that such a system of difference constraints‚ where the graph is “mostly
acyclic‚” a small set of back edges may be identified. During each iteration‚
the back edges are removed‚ and the resulting acyclic graph can be solved in
topological order (similar to the method in Section 5.2.1) in O (E ) time. Next‚
the weights on the back edges are used to update the node distances‚ and the
iterations continue. It can be shown that at most    iterations are necessary‚
where    is the number of back edges‚ resulting in a O (b . E ) complexity.

In the outer loop‚ another approach using back-pointers may be used to
reduce the computation. Instead of dividing the interval into half during each
step of the binary search‚ it is possible to use circuit information to reduce the
computation and update the search space more efficiently [Szy92]. Suppose
that for some value of P‚ the constraint graph was found to be infeasible.
This implies that a positive cycle exists‚ and each edge on that positive cycle
has either a constant weight‚ if it corresponds to a short-path constraint‚ or a
weight of the form (constant - P)‚ if it is a long-path constraint edge. Given any
positive cycle‚ it is possible to sum up these weights on the edges and update
the bound on P so that any value of P that is less than this bound would force
this cycle to be infeasible. This reduces the binary search space.

The detection of a positive cycle proceeds as follows. During the Bellman-
Ford procedure‚ a back-pointer predecessor       is maintained from each vertex

to the predecessor vertex that updated its value; in other words‚ the edge
between these vertices corresponds to an active constraint. After the Bellman-
Ford procedure is completed‚ if the constraint graph is infeasible‚ a reverse trace
is carried out from the vertex for which it was found that
This node must necessarily lie on a positive cycle. The procedure steps back
to the predecessor of and further back‚ until is reached again; at this time‚
a positive cycle in the graph has been detected. The sum of the weights of all
edges on this cycle is calculated as a function of P. As stated in the previous
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paragraph‚ this sum is a linear function of P of the form the lower
bound on the clock period is updated to to ensure that this cycle will
not have a positive weight. This procedure can be repeated on every cycle in
the graph of predecessor edges; note that the number of edges in such a graph
is O(|V |)‚ where |V | is the number of vertices‚ which means that this can be
performed inexpensively. Similarly‚ if the clock period is feasible‚ the graph of
predecessor edges may be used to update the upper bound on the clock period
by exploring the amount by which the clock period could be lowered before the
predecessor graph would be altered.

Note that the solution to the problem of clock period minimization corre-
sponds to the maximum P over all positive cycles; it is‚ in general‚ not possible
to find this maximum in polynomial time since the number of cycles could be
exponential in the number of vertices. However‚ it has been seen that from
a practical standpoint‚ the back-pointer procedure works well in reducing the
amount of computation.

9.4 CLOCK SKEW OPTIMIZATION WITH TRANSISTOR SIZING

In the discussion so far‚ it has been assumed that the delay of each combi-
national path is fixed. However‚ the drive strength of gates can be altered
by transistor sizing [SK93]‚ thereby changing the combinational path delays.
Treating clock skew optimization and transistor sizing as separate optimizations
is liable to lead to a suboptimal solution‚ and a synergistic blend of the two
procedures can greatly improve the cost-performance tradeoff for the circuit.

To illustrate this‚ consider a pair of combinational stages separated by
latches‚ as shown in Figure 9.12(a). We will consider area as the cost func-
tion here‚ but the same idea is valid for other correlated cost functions such as
power. If only the sizing transformation were to be applied‚ the nature of the
cost-delay tradeoff curve for each stage would be as shown in Figure 9.12(b). If
the timing specification on were stringent‚ then the optimal sizing solution
would lie beyond the knee of the curve‚ at a point such as point A. Similarly‚
if the specifications on were loose‚ then the optimal solution might lie at
a point such as C. The cost of the sizing solution would then be [Area(A) +
Area(C)].

Now consider a situation where a small skew‚ S‚ is applied to the registers
between the two stages‚ allowing to borrow time from This would
lead to a looser specification on bringing the solution point from A to
B‚ and a tighter specification for Stg2‚ moving its solution from C to D. The
cost of the overall sizing solution‚ [Area(B) + Area(D)]‚ can be seen to be
much smaller than the cost with zero skew‚ even for a small amount of cycle
borrowing‚ since the cost at the solution point A was well above the knee of
the curve2. Therefore‚ the judicious use of sizing in conjunction with deliberate
skew can deliver solutions of significantly better quality than sizing alone. It is
important to perform the two optimizations concurrently‚ rather than one after
another‚ to fully incorporate the mutual interactions between skew and sizing.
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The remainder of this section presents three techniques for simultaneous
optimization of skews and transistor sizes.

9.4.1 A linear programming formulation

The set of long path constraints in the presence of clock skews can be seen
from Inequation (9.4) to be linear in the skew variables and the gate delays.
If the gate delays could also be represented in terms of linear functions of
the transistor sizes‚ then the set of timing constraints on a circuit would be
linear. This idea forms the basis of the linear programming formulation [CSH93‚
CSH95] discussed in this section.

The delay of a gate is represented as a convex piecewise linear function of
its own size and that of its fanout gates. The delay
of a gate with size and with fanout gates of sizes can be
represented using a convex piecewise linear function with regions as:
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The second equality follows from the first since is
convex.

The variables are introduced to represent the longest (shortest) delay
from each flip-flop  to gate The introduction of the and intermediate
variables ensure that the number of constraints depends on the number of gates
rather than the number of combinational paths; the number of constraints in
the latter case would have been prohibitively large. As before‚ the skew at
flip-flop is denoted as while and are the width and delay of gate
respectively. The value of the skew is set to a constant (typically‚ 0) for primary
inputs and outputs. The skew optimization and sizing problem for a general
synchronous sequential circuit can now be formulated as follows.

Here, is the area coefficient, a constant associated with gate so that if
gate has size then its area is In the notation used above, is
the number of gates, is the number of flip-flops in the circuit, and
is the set of gates or flip-flops at the fanin of a gate or flip-flop

The problem formulation above is a linear program in the variables
and The entries in the constraint matrix are very sparse, which

makes the problem amenable to fast solution by sparse linear programming
approaches. The solution technique in [CSH95] also incorporates additional
efficiency-enhancing methods that reduce the number of constraints, and em-
ploy partitioning techniques to control the problem size with a minimal loss in
accuracy.
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9.4.2 A convex programming formulation

In [SSF95]‚ a method for combined sizing and skew optimization is presented
for acyclic pipelines. As in the case of the linear programming approach just
presented‚ this procedure utilizes the idea of cycle-borrowing using clock skew
optimization to relax the stringency of the timing specification on the critical
stages of the pipeline. Instead of the convex piecewise linear delay model in
the previous approach‚ this method uses Elmore delays.

The combined problem of sizing and skew optimization is formulated as:

where and are functions of the gate sizes in the circuit, P is the
specified clock period, and is the maximum allowable skew magnitude.
The Area objective function is approximated as the sum of all transistor sizes.

The area of the clocking network is not explicitly included in the formulation
for two reasons. Firstly, it is difficult to derive a relation between the skews
and the clocking network area. Secondly, the complexity of routing the clock
network is such that it is not possible to predict whether a nonzero skew clock
tree will necessarily use up more routing resources than a zero-skew tree.

The cost of the clock tree is indirectly modeled through the constraint (9.19).
The idea is that since the clock tree is likely to consume routing resources when
the skew magnitudes are large, its cost is controlled by limiting the maximum
skew magnitude.

Under the Elmore delay model, it can be shown [FD85] that the gate delays
are posynomial functions3 [Eck80] of the gate sizes. A posynomial function in
y can be transformed into a convex function in z using the mapping
Based on this fact, it was pointed out in [Fis90] that the above optimization
problem is a signomial programming problem [Eck80] and does not, in general,
correspond to a convex program. This makes it difficult to arrive at a good
solution to the problem.

It can be seen that each long path constraint is of the form

where is the maximum delay between flip-flops  and (which is some
posynomial function of the transistor sizes)‚ and are clock delays to the
source and destination flip-flops‚ and K is a constant. The left-hand side of this
inequality is not a posynomial because of the negative coefficient of If the
logarithmic substitution‚ were performed for each clock skew variable

and transistor size variable in this inequality‚ the result would not be a
convex constraint.

However‚ performing the substitution for each transistor width
appearing in while leaving and alone‚ results is a convex constraint:
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the left-hand side of the inequality is the sum of which is convex in the
new variables‚ and which is linear (hence convex)4‚ in the variables

and
All of the above statements are valid for general sequential circuits‚ and not

just acyclic pipelines. Therefore‚ it can be concluded that for general sequential
circuits‚ the problem of adjusting both clock skews and transistor sizes to meet
long path constraints‚ while minimizing total gate area‚ corresponds to a convex
optimization program.

Based on these observations‚ the following approach was proposed to solve
this problem in two steps:

Neglect the short path constraints (which may be nonconvex [Fis90]) and
solve the combined sizing and skew optimization under long path constraints
only. This is equivalent to a convex optimization problem and is therefore
a unimodal problem‚ i.e.‚ any local minimum is also a global minimum‚ and
is solved using an adaptation of the TILOS algorithm [FD85].

Resolve any short path constraints that are violated at the end of Step 1 by
changing the topology of the circuit and adding buffers in an optimal manner
using variation of techniques such as [SBS93]‚ described in Section 8.9.

1.

2.

9.4.3 A procedure that incorporates the cost of the clock tree

Both the linear programming and convex programming technique described
here control the cost of the clocking network only by placing bounds on the
clock skews. An alternative procedure in [XD97] optimizes the cost of the
clock tree directly‚ but uses more approximate models for gate sizing. The
optimization problem is set up as

where C(T‚ X) is a cost function that is dependent on the routing topology T of
the clock tree and on the vector of gate sizes x. The functions L(T) and
represent the total wire length of the clock tree‚ and the power dissipation
of the sized gates‚ respectively‚ and are appropriately chosen weighting
parameters. The cost function is optimized using simulated annealing [KGV83].

The algorithm first derives bounds on the relative skew at various sinks. If
a pair of latches and is connected by combinational logic‚ then it is possible
to derive upper and lower bounds on the value of the difference in skew
using expression (9.9); these are referred to as the positive skew bound‚
and the negative skew bound‚ For nonadjacent sinks‚ no such bound
exists. Note that since the expression (9.9) is dependent on the delays‚ the
bounds are derived over all circuit delays that correspond to allowable gate1

sizes.
The clock tree construction method is based on the DME procedure [KR95]‚

outlined in Section 9.6. Briefly‚ this is related to the fact that unlike the case
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of a Euclidean geometry‚ under a Manhattan geometry‚ there are several paths
between two points that have the same distance. Therefore‚ when the tapping
point is chosen during a bottom-up zero-skew merge‚ it may lie at a distance

away from one node along any of these routes‚ and the locus of possible
tapping points forms a line segment‚ called a merging segment.

In the problem at hand‚ since the skew is not fixed‚ but bounded‚ this permits
a variation in the location of the tapping point‚ and therefore‚ a variation in the
location of the merging segment of the DME procedure. A move in simulated
annealing corresponds to changing the position of a merging segment in such a
way that the skew bounds are satisfied.

The gate sizing results are stored in the form of a look-up table. The mini-
mum power of each combinational block for various sets of skews is determined
and stored in this table. When the clock network is perturbed‚ the skews are
mapped on to the closest set of skew values listed in the table‚ and the table
is accessed to determine the corresponding power dissipation. The cost of this
configuration is evaluated and fed into a simulated annealing loop that finds
the optimal solution to the problem.

9.5 TIMING ANALYSIS OF SEQUENTIAL CIRCUITS FOR SKEW
SCHEDULING

The optimization in Section 9.4.2‚ and indeed‚ many other procedures that work
with clock skew‚ requires the detection of violations of the clocking constraints.
This may be carried out by using a modification of CPM for delay estimation
that is generalized to handle sequential circuits [SSF95].

The procedure for timing analysis requires the determination of the optimal
skews and the arrival times at all gate outputs. Since the constraint graph for an
acyclic pipeline is acyclic‚ and since timing analysis involves the solution of the
longest path problem on this constraint graph‚ the complexity can be reduced
substantially by processing the vertices in topological order [CLR90]. Specifi-
cally‚ the timing analysis procedure is equivalent to applying CPM‚ described
in Section 5.2.1‚ to the graph‚ with gates being represented in the normal way‚
and flip-flops being represented by blocks with “delay” values of
where is the setup time for the flip-flop and P is the applied clock period‚
and is the uncertainty in the clock skew5.

We point out here that the reference point for the arrival time in each combi-
national block is the zero skew. For example‚ an arrival time of at the output
of a flip-flop implies that the clock signal at the flip-flop has been skewed by
If this flip-flop fans out to a single inverter with a delay of then the arrival
time at the output of this inverter would be Since skews may be either
positive or negative‚ it can be seen that arrival times may have either sign.

Consider Figure 9.13(a). We symbolically show the path from to
as being represented by a single gate with delay which corresponds
to the maximum combinational delay between these flip-flops. From (9.17) we
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have

where is the latest arrival time at the input‚ of G‚ is the latest arrival time
at the input of gate H. Writing as the latest arrival time
at the input of we have the following constraint

For a regular combinational gate‚ as shown in Figure 9.13(b)‚ if and are
the latest arrival times at the input of G2 and G3‚ then we have the difference
constraint

From the two difference constraints given above it can be seen that behaves
like a gate with a delay of

It is noteworthy that CPM is valid if the circuit is acyclic; if not‚ techniques
such as those used in [LW83] will have to be applied for analysis. Alternatively‚
for optimization purposes‚ a cyclic graph can be forced to be acyclic using the
techniques in [BSM94]‚ with additional constraints imposed at points where
the cycles are broken.

The process of calculating the optimal skews falls out as a natural conse-
quence of this procedure: if the timing requirements are met‚ then the arrival
time at the output of a flip-flop‚ as calculated by CPM‚ is a valid value of the
skew to be applied to that flip-flop.
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9.6 WAVE PIPELINING ISSUES

The treatment in [GLC94] provides an excellent illustration of the idea of wave
pipelining‚ and is summarized here. A conventional combinational circuit and
its associated timing are shown in Figure 9.14(a). The data flows out of the
input registers on the onset of the clock‚ and propagates through the logic‚
reaching the output registers in time for the onset of the next clock.

In contrast‚ in a wave pipelined system‚ the propagation time for the data
through the logic may be larger than the clock period. As an example‚ in
Figure 9.14(b)‚ the clocks at the input and output register are skewed. The
data that leaves the input registers reaches the output registers after more
than one clock period. During this time‚ the propagation of the second set of
data from the input registers has commenced at time Therefore‚ there
is a period of time when two different signals corresponding to two different
clock periods are flowing through the combinational logic‚ corresponding to two
“waves.” To ensure correct operation of the circuit‚ it is imperative to ensure
that the two waves do not collide. The advantage of wave pipelining over
conventional pipelining is that it may not require the use of as many registers‚
leading to potential savings in hardware and in the overhead of setup and hold
times at each register. Moreover‚ the overhead of clock distribution is also
reduced when the number of registers is reduced.

The critical issue in wave pipelining is to ensure that no two waves collide
during transmission. The work in [JC93] proposed an alteration of the clock
skew formulation of Fishburn [Fis90] to incorporate constraints that enforce
this requirement; these constraints are referred to as logic signal separation
constraints. Figure 9.15 shows two flip-flops‚ and and a set of combinational
logic gates‚ and Node is any predecessor gate of such that flip-flop
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lies in its fanin cone‚ and gate is any successor of node Let the skews
at the flip-flops and be and respectively. The logic signal separation
constraint under a clock period P is stated mathematically as follows:

The left hand side of this equation represents the arrival time of the signal
from the current wave at the output of the successor of This arrival implies
that the value at is no longer important for the current wave. The right
hand side is the arrival time at the output of during the next wave. Simply
stated‚ the inequality says that it is essential for the inputs of to be stable
for as long as its output influences the current wave. In case has multiple
predecessors and successors‚ the relationship (9.25) must hold between each
predecessor-successor pair.

Earlier in this chapter‚ several techniques for combined sizing and skew were
described. None of them explicitly considers the logic signal separation con-
straints in the form in which they were published. However‚ it is relatively
easy to incorporate them into the formulations. For the linear programming
formulation‚ the output arrival time at each gate is available as a variable‚ and
it is an easy matter to add constraints of the form (9.25) at For
the convex programming formulation‚ this constraint can be checked during the
application of CPM‚ and any violation can be flagged as a constraint violation
to be reconciled by altering the sizing and/or skew solution.

9.7 DELIBERATE SKEWS FOR PEAK CURRENT REDUCTION

In synchronous circuits‚ all of the flip-flops switch at the latching edge of the
clock. This simultaneous switching of flip-flops requires a large switching cur-
rent‚ which in turn creates a significant voltage drop on the power distribution
network‚ creating the need for multiple pins to distribute the power supply.
In [VHBM96] deliberate clock skews are used to reduce the dynamic transient
current drawn from the supply pins. This reduction in the transient current
reduces the number of supply pins required by the chip‚ and therefore‚ its
packaging cost.

The objective of introducing skews at the flip-flops is to ensure that all of
them do not switch at the same time and hence‚ do not draw current at the
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same time; this serves to reduce the peak current. The problem is modeled as
an integer linear program that minimizes the peak current. Each flip-flop may
have one of possible skew values. Correspondingly, for each flip-flop a set of
binary variables is used, of which exactly one variable is permitted to be 1, and
the skew of the flip-flop corresponds to this variable. The clock period of the
circuit imposes constraints on the possible skew value for each flip-flop, these
timing constraints are incorporated in the linear program. Experimental results
presented in [VHBM96] show a significant reduction in the ground bounce using
this technique. However, the use of an integer linear programming formulation
restricts the technique to system level design with few tens of modules. It is
possible that the application of heuristics to this technique may permit it to be
extended to larger designs, at the cost of sacrificing optimality.

A method for heuristic minimization of peak current by using clock skew is
presented in [VBBD96, BVBD97]. Experimental results on circuits with up to
550 flip-flops indicate an average reduction of about 30% in the peak current.
This method only minimizes the current peak directly caused by clock edges
using a genetic algorithm. The current waveform is approximated as a triangle
to allow efficient calculation of the total peak current in the circuit. The genetic
algorithm based solution results in a required skew at each flip-flop. Since clock
skew control for individual flip-flops is difficult, the flip-flops are clustered into
a user specified number of clusters, and each flip-flop in a cluster has the same
skew. A heuristic is used to attempt to cluster the flip-flops in such a way that
there is a minimal loss in optimality due to this simplification.

9.8 SUMMARY

The utility of deliberate skews for optimizing the performance of VLSI circuits
has been demonstrated‚ and algorithms for performing skew scheduling and
period minimization have been presented. Deliberate skews can also be used in
conjunction with other timing optimization strategies and for minimizing the
peak current in the supply network.

Until recently‚ there has been a great reluctance to alter the clock network
and attempt a nonzero-skew solution. However‚ recently‚ an increasing number
of designers have been willing to utilize skews for performance enhancement.
Small amounts of skews can easily be provided by making minor changes in the
sizes of the final buffers in the clock tree that feed the clock sinks‚ and altering
skews in this manner is a relatively painless manner in which the optimization
could be applied. For larger skew magnitudes‚ a more careful design of the clock
network is essential; for high-performance applications‚ the gains outweigh the
costs of this effort.

Notes

1. In subsequent generations of the processor‚ the regional clocks are provided by tree-
based structures [TDL03].
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2. In this example, the change in the cost of the clock network has been neglected. It
should be noted that it is easy to provide small skews by making minor changes in the sizes
of the buffers driving the leaf-level nodes, and it possible to do this cheaply for small skew
magnitudes.

3 .  A posynomial is a function of a positive variable that has the form
where the exponents and the coefficients Roughly

speaking, a posynomial is a function that is similar to a polynomial, except that (a) the
coefficients must be positive. (b) an exponent could be any real number, and not
necessarily a positive integer, unlike the case of polynomials.

4. This concept can be generalized to any optimization problem that can be divided into
two separate classes with each constraint is of the form

where P is a posynomial function, C is a convex function, and K is a constant. Such a
problem can be transformed into a convex program by performing the substitution
while leaving the variables alone.

5. Note that the word “delay,” when used in reference to flip-flops, is applied in a loose
sense here. The “delay” of a flip-flop as defined here is not the propagation delay of the
gates within the flip-flop, but is a mathematical tool that can be used to apply CPM to a
sequential circuit to check for delay violations in the presence of clock skews.

and
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10.1 INTRODUCTION TO RETIMING

Retiming is a powerful sequential circuit optimization technique for improving
the performance of sequential circuits. The concept of retiming is the notion of
moving storage devices across memoryless computational elements to improve
the performance without changing the input-output latency. Although retiming
can operate on gate level netlists, or on higher-level abstractions such as data
flow graphs, communication graphs, and processor schedules, our treatment
will focus on circuit-level optimizations.

At the circuit level, the storage devices, or registers, may either be edge-
triggered flip-flops or level-sensitive latches, commonly referred to as FF’s and
latches, respectively. The computational nodes at the circuit level are typically
combinational gates. Retiming moves registers across gates without changing
the number of registers in any cycle or on any path from the primary inputs to
the primary outputs, thereby preserving the input-output latency of the circuit.
Since retiming does not directly affect the combinational part of the circuit, the
circuit behavior remains unchanged. However, since retiming can change the
boundaries of combinational logic, it has the potential to affect the results of
combinational synthesis techniques that are applied to the sequential circuit.

This chapter begins with an overview of the retiming procedure. Next,
the assumptions and models common to many retiming algorithms are pre-
sented, followed by a description of the Leiserson-Saxe theory for retiming
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edge-triggered circuits is presented. Finally, we discuss fast and efficient meth-
ods for retiming large edge-triggered and level-clocked circuits to minimize their
clock period.

10.1.1 Types of retiming

Retiming may be performed to improve the circuit behavior with respect to
several possible objective functions, some of which are outlined below.

Clock period Algorithmically, the simplest objective function used in retim-
ing is the minimization of the clock period. Since the clock period in a circuit
with edge-triggered FF’s is given by the maximum combinational delay, the
FF’s may be relocated to reduce the clock period. For the circuit shown
in Figure 10.1(a), with unit delay gates and edge-triggered FF’s, the clock
period is 3 time units. If we relocate register F1 from the output of gate G3
to its input, we obtain the circuit in Figure 10.1(b), with a clock period of 2
units. Notice that the input-output behavior is left unchanged by retiming
since the output is produced after two clock cycles in both the original and
the retimed circuit. Thus, relocating registers can reduce the clock period of
a circuit, and retiming can be used to relocate registers with the objective of
minimizing the clock period. A retiming that minimizes the clock period of
a circuit is termed a minimum period retiming. Retiming a circuit to achieve
a specified target clock period is a special case of minimum period retiming,
and is often called specified-period retiming.

Area Since retiming does not affect the combinational part of the circuit, the
area overhead of the combinational logic remains constant under retiming.
The method may, however, affect the overall area of the circuit since it may
alter the number of registers in the circuit.

Two retimed versions of the same circuit could have the same input-output
behavior and clock period, but could use a different number of registers, as
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illustrated in Figure 10.2. The circuit in Figure 10.2(a) requires two registers,
while that in Figure 10.2(b) requires only one register.

Therefore, one could apply retiming with the object of minimizing the num-
ber of registers in the circuit, while leaving the input-output latency un-
changed. This may be done without any constraint on the clock period
of the resulting circuit, or subject to a target clock period. The former is
called unconstrained minimum area retiming while the latter is referred to
as constrained minimum area retiming or simply minimum area retiming.
In practice, minimum area retiming is a more useful form of the retiming
transformation than minimum period retiming.

Power The power dissipated in a circuit depends on the product of the switch-
ing activity and the load capacitance at the output of a gate, summed over
all gates. Since registers can filter out glitches, altering their locations can
affect the switching activity at gate outputs; moreover, it can also alter the
load capacitance seen by the gates. Thus, retiming can change the power
dissipation of a circuit, and an appropriately chosen retiming may be used to
optimize the power by placing registers at nodes with high switching activity
values and high capacitive loads.

Testability The relocation of registers can change the state encoding in se-
quential circuits, thus affecting the test generation time and the number of
redundant faults. The repositioning of registers also affects the length of the
scan chains required for partial or full scan designs. Retiming can, therefore,
be used to improve the testability of sequential circuits.

Quality of logic optimization Most logic optimization techniques operate
on combinational logic blocks separated by register boundaries. Hence,
changing these register boundaries by retiming the registers affects the qual-
ity of results obtained by logic optimization.
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A brief survey of publications describing these research activities is presented
in Section 10.2, and in the next few chapters, we will describe these methods
in varying degrees of detail.

10.1.2 Types of circuits

Algorithms for retiming a circuit must address the specific requirements of a
circuit, and the clocking discipline used. Four major classes of circuits are
described below.

Edge-triggered circuits In an edge-triggered circuit, the clock period is given
simply by the largest combinational delay. The first publications on retiming
concentrated on handling this class of circuits.

Level-clocked circuits Level-sensitive latches are, by definition, transparent
during the period when the clock signal is active; this transparent nature
gives level-clocked circuits the potential to operate at a faster clock period.
These circuits require less area than their edge-triggered counterparts, not
only because the cycle stealing reduces the amount of transistor sizing re-
quired to meet the timing goals, but also because individual latches require a
smaller amount of area than edge-triggered FF’s. Unfortunately, the analy-
sis of level-clocked circuits is more complicated than edge-triggered circuits,
and hence algorithms for finding an optimal retiming can be computationally
expensive.

Control logic Control logic involves an implementation of Finite State Ma-
chines (FSM’s), and hence the registers in control circuitry are associated
with the FSM states. Retiming alters the locations of these registers, and
consequently, the state encoding of the FSM. Thus, issues regarding safe
replaceability become important. In circuits that have a meaningful initial
state, it is important to find a retimed circuit with an equivalent initial state;
many retimings of a circuit that are otherwise valid may not have equivalent
initial states. To see this, consider the circuit in Figure 10.3(a). If we wish
to move FF A and B across gate G1 (to FF C in Figure 10.3(b)), we must-
find an initial value of FF C that is equivalent to the initial values of FF A
and B. If FF A and B have conflicting values, no such equivalent initial value
exists at FF C. Thus, additional constraints must be imposed to ensure the
presence of an equivalent initial state while retiming control logic.

FPGA’s Field Programmable Gate Arrays (FPGA’s) present requirements
that are different from those in conventional combinational logic. For exam-
ple, in LUT-based FPGA’s the amount of logic is dependent on the number
of inputs, and not on the complexity of the logic. Further, since FPGA’s
have limited resources with memory elements at fixed locations, extra con-
straints are placed on the movement of memory elements during retiming.
The issue of combined synthesis with retiming shows the maximal gains in
FPGA optimization.
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10.2 A BROAD OVERVIEW OF RESEARCH ON RETIMING

Since retiming was introduced by Leiserson and Saxe [LRS83, LS91], a signif-
icant amount of research has been carried out on retiming both in academia
and in industry (for example, at IBM, Philips and Synopsys). In this section,
we present a brief literature survey of retiming-related research. For a good
introduction and overview of retiming, the reader is also referred to [She97]
and to Section 9.3.1 of [De 94]. In the remainder of this chapter, more detailed
descriptions of these issues will be presented.

Edge-triggered circuits Leiserson and Saxe introduced algorithms for min-
imum period and minimum area retiming of edge-triggered circuits [LRS83].
The circuit is represented by a graph and polynomial time algorithms are
presented. The major contribution of this work is in formulating the theory
of retiming, rather than in presenting experimental implementations. The
minimum period retiming problem is solved by performing a binary search
for the best clock period. The feasibility of a given clock period is checked
by a Bellman-Ford-like relaxation algorithm, and the minimum area prob-
lem is formulated as a linear program (LP). This LP is shown to be the
dual of a mincost network flow problem. Details of this approach, which
we call the “LS approach,” are provided in [LS91] and described briefly in
Section 10.5.1.

Shenoy and Rudell presented an efficient and clever implementation of the
LS algorithms in [SR94]. Their main contributions include reducing the
memory requirements from to O(|G|), where |G| is the number of
gates in the circuit, and the use of back-pointers to speed up the feasibility
check during the binary search for minimum clock period. At about the same
time, a technique for reducing the number of constraints in the minimum
area LP was presented in

The ASTRA algorithm [Deo94, DS95, SD96] exploited the retiming-skew
equivalence for fast minimum period retiming. ASTRA first finds a minimum
period achievable by skew optimization, and then translates these skews into
retiming. Circuits with 20,000 gates were shown to be retimed in under two
minutes.
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The Minaret algorithm [MS97a, MS98b] modified ASTRA to efficiently ob-
tain bounds on the retiming variables, and used them to significantly reduce
the size of the minimum area LP. This enabled Minaret to perform minimum
area retiming on circuits with 50,000 gates in under 15 minutes. The work
in [SSP99] extends the formulation above to handle short path constraints
as well, permitting similar algorithms to be used for this purpose.

Level-clocked circuits A signal that flows through a level-sensitive latch
during its transparent phase can initiate the computation of the next combi-
national stage before the beginning of the next clock cycle; this phenomenon
is called cycle stealing. Due to cycle stealing, level-clocked circuits have the
potential to operate faster, and require less area. Algorithms to retime single
phase level-clocked circuits are presented in [SBS91], and techniques based
on the LS model for retiming multi-phase level-clocked circuits were pre-
sented in [ILP92, LE92, LE94]. TIM [PR93b] is a comprehensive timing
analysis and optimization CAD tool for level-clocked circuits that is avail-
able in public domain, and has been used to empirically compare the per-
formance of edge-triggered and level-sensitive circuits in [PR93a]. The work
in [IP96] presented a polynomial-time algorithm for pipelining two-phase,
level-clocked circuits under a bounded delay model.

The ASTRA and Minaret algorithms for edge-triggered circuits have been
extended to level-clocked circuits in [MS96] and [MS98a] respectively. This
enables minimum period and minimum area retiming of level-clocked circuits
with tens of thousands of gates in very reasonable time.

Retiming with equivalent initial states Traditional retiming algorithms do
not pay any regard to initial states or power-on states of circuits, and are
not very useful for control logic. Control logic usually has meaningful ini-
tial states, and any useful retiming must also find a new initial state for
the transformed circuit that is equivalent to the initial state of the original
circuit.

A method for minimum period retiming with equivalent initial states was
presented in [TB93], using only the so-called forward retiming moves. In
some cases, this approach may require modifications in the combinational
part of the circuit. An efficient technique for performing these modifica-
tions is presented in [SMB96], and a method for preserving synchronizing
sequences after retiming is proposed in [MSM04]. An alternative approach,
termed reversed retiming [ESS96, SSE95], uses a minimum number of reverse
(backward) retiming moves, and precludes the need for any modifications to
the combinational part of the circuit. An approach to minimum area retim-
ing that maintains initial states is presented in [MS97b].

Low power Retiming can affect the power consumption of a circuit since it
alters the amount of switching in a circuit, as also the fanout capacitance
driven by various elements in the circuit. A mechanism for reducing power by
retiming was presented in [MDG93]; it places FF’s on interconnects with high
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switching activity. The approach in [LP96] presented algorithms to reduce
power by retiming only one phase in a two-phase circuit. The advantage of
retiming only one phase is that it preserves the testability of the circuit. A
similar approach is taken in [SSWN97] to reduce power in DSP designs.

Testing and verification Retiming can be used both to improve the testa-
bility of a circuit, and as an aid to automatic test generation. In the former
case, circuit is actually implemented in the retimed form, while in the latter
case the retimed circuit is merely used by the test generator to generate test
vectors, but the original circuit is implemented. Various researchers have
worked on characterizing the effects of FF relocation on the redundancy of
faults [DB96, DC94, YKK95a, YKK95b], and the corresponding effects on
ATPG run time [MEMR96]. In [EMRM95, EMRM97], it was shown that
retiming preserves testability with respect to a single stuck-at-fault test set
by adding a prefix sequence of a pre-determined number of arbitrary input
vectors.

Retiming has been used to improve testability [DC94] by attempting to
convert sequential redundancies to combinational redundancies. Retim-
ing may also be employed for reducing test lengths in scan-based designs
[HKK95, HKK96, KT94], and for improving pseudo-exhaustive built-in self
test (BIST) [KTB93, LKA95a, LKA95c, LKA95b].

The work in [SPRB95] shows that while an accurate logic simulation may
distinguish a retimed circuit from the original circuit, a conservative three-
valued simulator cannot do so. Techniques for verification of retimed circuits
are presented in [HCC96, HCC97, RSSB98].

Enhancements to retiming The traditional retiming approaches assume the
gate delays to be fixed, and all FF delays to be equal. Since these are only
approximations, much effort has been spent in incorporating improved delay
models into retiming. Delay models that incorporate clock skews, register
delays, etc., are presented in [SF94, SFM93, SFM97, LP95a, LP95b], while
[KO95] presents retiming under a variable delay model. Issues related to
integrating retiming with placement are addressed in [ NK01].

Retiming has also been extended to handle multiple clocks and registers with
enable ports in [LVW97, Mar96], and to handle gated clocks and precharged
structures [Ish93]. Various efforts have been made to combine retiming
with other logic synthesis techniques, e.g., [BC96, LKW93, Lin93, MSBS90,
MSBS91, Pan97, PR91, AB98, BK01]. Architectural retiming [Has97] mod-
ifies the combinational part of a circuit to increase the number of registers
on a critical cycle or path without increasing the perceived latency.

Other applications Retiming has been used in numerous other applications:
during the technology mapping step in FPGA synthesis [CW94, CW96,
PL95, TSS92, WR93], to improve circuit partitioning for schedul-
ing in high level synthesis [CS93a, ], in multiprocessor scheduling
[CS92], for system level throughput optimization include [MH91, DPP95],
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etc. Retiming has also been used extensively in DSP applications [Dun92,
Geb93, PS96, PSB96, PR92].

10.3 MODELING AND ASSUMPTIONS FOR RETIMING

Any detailed presentation of material on retiming necessarily requires a section
explaining the models and preliminaries that are utilized by most algorithms.
In this section, we will present a graph-theoretic foundation that will be utilized
later in our exposition on retiming.

In the ensuing discussion, we will utilize the digital correlator circuit from
[LS91], shown in Figure 10.4(a), to motivate the procedure of applying retim-
ing by demonstrating the performance improvements on this example. The
design consists of two types of functional elements: adders (denoted by a ‘+’
symbol) and comparators (denoted by a ‘=’ symbol). The boxes between the
comparators are registers that act to shift the data. The delay of an adder is 3
units and that of a comparator is 7 units. Although this design is functionally
correct, it has poor timing characteristics.
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For the purposes of applying a retiming algorithm, it is useful to abstract the
problem from the circuit level into a directed graph representation,
where V is the set of vertices and E the set of edges. Each vertex models
a functional element with a fixed propagation delay, that remains unal-
tered during the retiming process. A special vertex called the host is introduced
in the graph, with outgoing edges connected to all primary inputs of the circuit,
and incoming edges from all primary outputs to the host vertex. The host ver-
tex is assigned a propagation delay of zero, i.e., The directed edges
model the interconnections between functional elements. Each edge
connects an output of functional element to an input of a functional element

with a weight of that corresponds to the number of registers between
and The graph corresponding to the correlator circuit in Figure 10.4(a) is

shown in Figure 10.4(b).
As an informal definition, a retiming move in a circuit is caused by moving

all of the memory elements at the input to a combinational block to all of its
outputs. A sequence of such movements is referred to as a retiming of the
circuit.

Equivalently, working on the graph representation of the circuit, a retiming
is an integer-valued vertex-labeling of the vertices, where Z is the
set of integers. The weight of an edge after retiming, denoted by
is given by

The retiming label, for a vertex represents the number of registers that
have been moved from its outputs to its inputs. Retiming can, therefore, also
be viewed as an assignment of a lag value, to every vertex in the circuit.
A path originating at vertex and terminating at vertex is represented as

For a path one may define its weight, as the sum of
the weights on the edges on and its delay, as the sum of the weights of
the vertices on A path with corresponds to a purely combinational
path with no registers on it. Therefore, the clock period, P, can be calculated
as

The Leiserson-Saxe method presents a systematic technique for computation
of the retiming labels, where the problem is formulated as a Mixed Integer
Linear Program (MILP). An important concept used in the approach is the
notion of the W and D matrices. The matrices are defined for all pairs of
vertices such that there exists a path, that does not include
the host vertex. The formal definition of the matrices is as follows:

In plain English, denotes the minimum latency, in clock cycles, for
the data flowing from to and gives the maximum delay from
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to over all paths with that minimum latency. The (W,D) pairs are used to
generate constraints, and the essential reason why is important is that
if all memory elements between and are removed during retiming, then the
delay between the two vertices on the path corresponding to will be the
maximum purely combinational delay between the two vertices. In the next
section, we will use this information to ensure that if the clock
period, then the value of after retiming is at least 1. The important
point here is that the delays on all but the minimum weight path are irrelevant.

The W and D matrices can easily be computed as follows. Each edge,
is reweighted with the ordered pair and the all-pairs shortest
paths are computed. Any standard procedure for finding all-pairs shortest
paths, e.g., the Floyd-Warshall method, or Johnson’s algorithm [CLR90], may
be used, with the following change that allows an ordered pair of weights to
be correctly interpreted. During the relaxation process, comparisons between
ordered pairs are performed in lexicographic order, i.e., amongst two pairs,

and we say that if or ( and
). At the end of this computation, if the shortest-path weight between

two vertices and is then and

10.4 MINIMUM PERIOD OPTIMIZATION OF EDGE-TRIGGERED
CIRCUITS

The algorithms presented in this section are all of polynomial time complexity.
We will first present algorithms that are rooted in the techniques presented
by Leiserson and Saxe [LS91] for retiming edge-triggered circuits, and follow
these by discussing how they may be applied efficiently in practice. Finally, we
will describe a method that applies the retiming-skew relationship to find an
efficient minimum period retiming solution.

In each of these methods, the minimum period obtainable under retiming
is calculated by performing a binary search over all possible clock periods. At
each step in the binary search, an attempt is made to retime the circuit for
the current value of the clock period. The smallest period for which retiming
succeeds is returned as the best clock period.

10.4.1 Leiserson-Saxe-based algorithms for minimum period retiming

Any retiming solution must satisfy the following two inequalities

The first constraint ensures that the weight of each edge, (i.e., the number
of registers between the output of gate and the input of gate ), after retiming
is nonnegative, i.e., We will refer to these constraints as circuit
constraints. The second constraint ensures that after retiming, each path whose
delay is larger than the clock period has at least one register on it. These
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constraints, being dependent on the clock period, are often referred to as period
constraints.

For a fixed clock period, the set of constraints (10.5) correspond to a system
of difference constraints. This system can be represented by a constraint graph
that may be solved by applying the Bellman-Ford method [CLR90]. If the
system of constraints is infeasible, this will be indicated by the Bellman-Ford
procedure. The smallest clock period for which the constraints are feasible is
the solution to the minimum period problem.

This notion leads to the first algorithm, OPT1 [LS91]. As mentioned earlier,
in the outer loop, a binary search in performed on the value of the clock period,
and for each clock period, the Bellman-Ford algorithm is applied to check for
feasibility of the constraint set. The binary search for the minimum value
of P is justified by the fact that the feasible values of P form a continuous
interval. This is due to the fact that the system (10.5) of inequalities is linear
in all variables, making the solution space convex. Consequently, the projection
of the feasible region on P is convex in one dimension, i.e., it is an interval.
The OPT1 algorithm requires the calculation of the W and D matrices, and
is expensive in terms of computation time and memory space

An alternative O(|V ||E|log|V |)-time algorithm from [LS91] is a more prac-
tical option for obtaining a retiming. The main routine FEAS is invoked during
the binary search to check whether a specified clock period, P, is feasible or
not. It proceeds by calling a subroutine, CP, that calculates the clock period
of the circuit by systematically identifying the purely combinational path that
has the largest delay. For any gate whose delay from an FF exceeds P, the
retiming label, is incremented.

Algorithm FEAS
Given a synchronous circuit and a desired clock
period return a retiming of G such that the clock period
of the retimed circuit

{
1. For each vertex set
2. Repeat the following |V| — 1 times

2.1 Compute the graph with the existing values of
2.2 Run Algorithm CP on the graph to determine

for each vertex
2.3 For each such that set

3. Run Algorithm CP on the circuit If
then no feasible retiming exists. Otherwise, is the
desired retiming.

}
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Algorithm CP
This algorithm computes the clock period for a synchronous
circuit

{
1. Let be the subgraph of G that contains precisely those

edges such that the register count
2. Perform a topological sort on totally ordering

its vertices so that if there is an edge from vertex
to vertex in then precedes in the total order.

3. Go through the vertices in the order defined by the
topological sort.
On visiting each vertex compute as follows:
a. If there is no incoming edge to
b. Otherwise, and

4. The clock period is

}

The advantage of this method is that it does not require the explicit calcula-
tion of the W and D matrices, thereby reducing the memory overhead. Step 2
of FEAS can be shown to be equivalent to applying the Bellman-Ford algorithm
on the graph G.

The application of either of these retiming procedures may be used to as-
sign the labels to each vertex in the graph corresponding to the correlator
circuit shown in Figure 10.4(a). For the unretimed circuit, the clock period
is 24 units, which corresponds to the sum of the propagation delays along the
longest register-free path, The graph obtained on ap-
plying minimum period retiming to Figure 10.4(b) is shown in Figure 10.5.
The labels describe the manner in which flip-flops are added or removed
from the original graph. For instance, the edge has one more regis-
ter since (see relation (10.1)). Since retiming preserves the
input-output latency of the circuit, the original and the retimed circuits corre-
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sponding to graphs in Figure 10.4(b) and Figure 10.5, respectively, must have
the same input/output behavior. However, the computations performed by
in Figure 10.4(b) lead by one clock tick the same computations performed by

in Figure 10.5. This is the physical meaning of the fact that the vertex
is assigned a lead of one clock tick or equivalently, a lag The clock
period of the retimed circuit is 13 time units, corresponding to the sum of the
propagation delays along the longest path,

Implementational notes. An efficient implementation of the minimum pe-
riod retiming algorithm was presented in [SR94], using a predecessor heuristic.
The procedure is similar to the method of [Szy92], presented in Section 9.3.5,
and its adaptation to this problem is presented here. The predecessor heuristic
maintains a predecessor vertex pointer, denoted by pred(), for each vertex,
which is initialized to the empty set When is computed for each vertex

a reference to a vertex is stored, where satisfies the property that there
exists a zero-weight path and If then the
procedure sets

Consider a cycle in the predecessor subgraph with vertices
i.e., Let denote the path
used in the computation of During each iteration in Step 2 of FEAS , the
retiming labels increase by at most 1, and before the update, the weight on
each path After the update,

Therefore, Since for each we have

As long as the clock period is chosen so that this condition is true, a feasible
retiming will not be possible. Therefore, it is essential to choose a clock period
for which this condition is violated; this provides an updated lower bound for
the binary search, given by

The use of this bound to update the lower bound of the binary search was
shown in [SR94] to provide tremendous improvements in the execution time of
the algorithm.
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10.4.2 The ASTRA approach

The relationship between clock skew and retiming.  The basis of the
ASTRA approach is the relationship between clock skew and retiming, as illus-
trated by the following example on a circuit with edge-triggered flip-flops. Let
us first consider the use of intentional clock skews for improving the circuit per-
formance. Consider the circuit in Figure 10.6(a), which has unit delay inverters
and negative edge-triggered flip-flops (i.e., data is latched at the falling edge
of the clock). The delays of the first and the second combinational block are
3 units and 1, respectively. Therefore, the fastest allowable clock has a period
of 3 units. If an attempt is made to operate the circuit with a clock period of
2 units, then we have a long path violation at FF1, because the required data
arrival time at FF1 is 2 units (assuming zero setup time), but the data arrives
at 3 units, as shown in Figure 10.6(a). However, if a skew of +1 unit is applied
to the clock line to FF1, as shown in Figure 10.6(b), then the circuit can be
operated without any long path violation, even for a clock period of two units2.
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It is easy to see that for the given circuit, the period can also be minimized
to two units by retiming, if FF1 is moved to the left across the inverter G3, as
shown in Figure 10.6(b).

In each case, one unit of time is borrowed by the first combinational block
from the second; the manner in which cycle-borrowing occurs may either be
via the vehicle of clock skew or via retiming. As a prelude to a more formal
presentation of the relationship between clock skew and retiming, consider a
flip-flop in a circuit, as shown in Figure 10.7(a). As explained in Section 9.3.1,
for every combinational path from a flip-flop to with delay the
following constraints must hold to ensure the absence of long path and short
path violations, respectively:

where and are the skews at flip-flops and respectively. Similar con-
straints can be written for every combinational path from flip-flop   to with
minimum delay and maximum delay

The relationship between retiming and skew can be captured in terms of
Figure 10.7 [SD96]. For a circuit that operates at a clock period P, and satisfies
the long path and short path delay constraints,
(a) retiming a flip-flop by moving it against the direction of signal propagation
across a single-input, single-output gate of delay is equivalent to decreasing
its skew by
(b) retiming a flip-flop by moving it in the direction of signal propagation
across a single-output, single-output gate of delay is equivalent to increasing
its skew by
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This may be further generalized to multi-input multi-output combinational
blocks is as follows:
(a) Retiming transformations may be used to move flip-flops from all of the
inputs of any combinational block to all of its outputs. The equivalent skew
of the relocated flip-flop at output considering long path constraints only, is
given by

where the are the skews at the input flip-flops, is the equiva-
lent skew at output and is the worst-case delay of any path from to

(b) Similarly, flip-flops may be moved from all of the outputs of any combina-
tional block to all of its inputs, and the equivalent skew at input considering
long path constraints only, is given by

where the are the skews at the input  flip-flops, is the
equivalent skew at input and is the worst-case delay of any path from

to
In general, it is not possible to come up with an equivalent skew value that

satisfies both long and short path constraints. For example, when we consider
short path constraints, moving flip-flops from the input to the output requires
that the new skew be

which is incompatible with the requirement stated above except in the special
case where all paths from to have the same delay. This is not an impediment
here since the retiming problem as stated by Leiserson and Saxe in [LS91]
considers long path constraints only.

Retiming may be thought of as a sequence of movements of flip-flops across
gates. Starting from the final retimed circuit, where all of the skews are zero,
and the long path constraints are met, this sequence of movements may be
performed in reverse order. This procedure can be used to move all flip-flops
back to their initial locations, using the above result to keep track of the altered
clock skews at each flip-flop. The optimal retiming is equivalent to applying
the set of skews thus obtained to the flip-flops in the circuit.

Note that the optimal clock period provided by the clock skew optimization
procedure must, by definition, be no greater than the clock period for the set
of clock skews thus obtained. Any differences arise due to the fact that clock
skew optimization is a continuous optimization, while retiming is a discrete
optimization. This argument leads to the following result:
Observation: The clock period obtained by an optimal retiming can be achieved
via clock skew optimization. The clock period provided by the clock skew op-
timization procedure is less than or equal to that provided by the method of
retiming.
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Minimum period retiming by ASTRA. The relationship between skew
and retiming motivates the following two-phase solution to the retiming prob-
lem:

Phase A: The clock skew optimization problem is solved to find the optimal
value of the skew at each FF, with the objective of minimizing the clock
period, or to satisfy a given (feasible) clock period, using the procedure
described in Chapter 9.

Phase B: The skew solution is translated to retiming and some FF’s are relo-
cated across gates in an attempt to set the values of all skews to be as close
to zero as possible. Flip-flops with positive skews are moved opposite to the
direction of signal propagation (i.e., in the backward direction), and those
with negative skews are moved in the direction of signal propagation (i.e.,
in the forward direction) to reduce the magnitude of their skews.

It can be proven [SD96] that at the end of this procedure, if all skews are
set to zero, then the optimal clock period for this circuit is no more than

where is the optimal clock period found in Phase A, and is
the maximum delay of any gate in the circuit. This does not necessarily imply
suboptimality for two reasons. Firstly, this is only an upper bound. Secondly,
skew is a continuous optimization while retiming is discrete, and therefore, the
clock period achievable from the use of skews may not be attainable by
retiming.

This method is extremely fast: experimental results on a mid-90s vintage
workstations show that a 50,000 gate circuit can be retimed within two minutes
using this procedure.

10.4.3 The ALAP and ASAP retimings

Retiming a circuit for a given target clock period is a special case of the min-
imum period retiming problem. Given a circuit and a clock period P, if the
given clock schedule is feasible, then the method should return a retimed circuit
that is correctly clocked, and if the clock schedule is not feasible, this should be
indicated by the method. In the Leiserson-Saxe method, a specified-period re-
timing is obtained by simply running the algorithm FEAS with the target clock
period. In the ASTRA approach for this problem, the binary search in Phase A
is not performed, but for the target clock period P only, the constraint graph is
constructed as before, and the Bellman-Ford algorithm is applied to obtain the
set of required skews. If the Bellman-Ford algorithm detects a positive cycle,
then the clock period is not feasible, and is reported as such; otherwise Phase
B is performed.

A retiming for a given clock period is, in general, not unique, and different
retimed circuits can be obtained, all of which satisfy the target clock period.
This may be understood through the presence of slacks in the graph at the end
of the Bellman-Ford procedure, which may be used to alter the skew values
within a specified range without altering the feasibility. Out of the set of all
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possible specified-period retimings, two are of particular interest. The retim-
ing that moves all registers as far as possible against the direction of signal
propagation is called an “as soon as possible” (ASAP) retiming. Similarly, the
retiming that moves all the registers as far as possible in the direction of signal
propagation is referred to as the “as late as possible” (ALAP) retiming. Both
ASAP and ALAP retiming assume that no register is moved across the host
node.

In this section we will concentrate on explaining the ASAP and ALAP re-
timings in the context of edge-triggered circuits. However, the reader should
remain aware that the same basic principle applies to level-clocked retimings,
even though we do not address the issue in detail here.

The ASAP and the ALAP locations can be seen as the extreme locations
of the locations of the registers in the circuit for the specified clock period,
and are unique. Their importance is in the fact that they may be utilized to
make the procedure of minimum area retiming more efficient, as explained in
Section 10.5.2.

For the example circuit in Figure 10.8(a), with unit delay inverters and edge-
triggered FF’s, the ASAP and ALAP retimings for a target clock period of 3
units are shown in Figure 10.8(b) and Figure 10.8(c), respectively.

In ASAP retiming, the objective is to move the FF’s as far as possible in
the backward direction. Since Phase B of ASTRA moves FF’s with positive
skews in the backward direction, an ASAP retiming would aim to obtain the
maximum possible skew value for each register in Phase A. Similarly, it can be
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argued that FF’s with negative skews would be at their most backward location
if the skews were set to be at their maximum (least negative) value. There-
fore, in either case, an ASAP retiming corresponds to the maximum allowable
skew values; symmetrically, an ALAP retiming corresponds to the minimum
possible (least positive and most negative) skew values. The ASAP skews are
obtained by running the Bellman-Ford algorithm on the transpose [CLR90] of
the original constraint graph, i.e., a graph with the same vertex set as the orig-
inal graph, but with the edge directions reversed. In this transpose graph, an
edge from to exists if there is a combinational path from FF to FF the
weight of this edge is The initial skew values for the Bellman-Ford
algorithm are set to for all FF’s, except the host which is initialized to
0. Since all the edge directions have been reversed, the longest path values
obtained for each node in the graph must be made to undergo a sign reversal
to obtain the correct skew values for the corresponding FF’s. The skew values
so obtained are the maximum possible for the specified clock period, and no
skew can be increased further without violating the clock period. For example,
the transposed Phase A constraint graph for ASAP retiming of the circuit in
Figure 10.8(a), is shown in Figure 10.8(b). The longest path to the node cor-
responding to FF1 is +1 unit, and hence the corresponding skew on FF1 of -1
unit is obtained by reversing the sign.

Performing Phase B with these skew values results in the ASAP retiming.
For ASAP locations, the available slack is used to avoid moving an FF in
the direction of signal flow. The procedure for finding the ASAP (and ALAP)
retiming proceeds along the same lines as in Section 10.4.2, with a few variations
described below.

To obtain the ASAP locations for the retimed FF’s, it is necessary to push
the FF’s as far as possible in a backward direction. Therefore, each FF with
positive skew is moved as far as possible in the backward direction, and each
FF with negative skew is moved as little as possible in the forward direction.
Therefore,

for an FF with positive skew that is being moved across a single-fanout gate
in the backward direction, the skew value after the relocation at input of
is set to If this value is nonpositive, then the ASAP location

has been found. For gates with multiple fanouts,

where is the skew of the FF at the output, as shown in Figure 10.9(a).

for an FF with negative skew that is being moved across a single-fanin gate
in the direction of signal propagation, the skew value after the relocation

at output of is set to where is the slack
associated with the output This slack is defined as the amount by which
the delay at output may be increased before it becomes the critical output
of by definition, the critical output has zero slack. If the new skew is non-
negative, then the ASAP location has been found. For gates with multiple
fanins, where is the effective skew of the FF at

the output, as shown in Figure 10.9(b).

(1)

(2)
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Applying this procedure to circuit in Figure 10.8(a) requires us to move FF1,
which has a skew of -1 unit, across the unit delay inverter to the location
shown in Figure 10.8(b). At this point, the skew on FF1 is down to zero, and
hence the ASAP location has been reached. As is shown in this example if the
initial circuit does not satisfy the target clock period, then ASAP retiming may
require FF's to move forward, and these forward moves will be required by all
retimings satisfying the target clock period.

Since the objective in ALAP retiming is to move the FF’s as far as possible
in the forward direction, Phase A of ASTRA is modified to yield the minimum
(most negative and least positive) skew values. All skew values are initialized
to except the host which is set to zero, before applying the Bellman-Ford
algorithm to find the longest path in the constraint graph. In Phase B of ALAP
retiming, each FF is moved as far as possible in the forward direction, using
slacks if any to minimize any FF movements in the backward direction.

The Phase A constraint graph for ALAP retiming of the circuit in Fig-
ure 10.8(a) is shown in Figure 10.8(c). The longest path to the node corre-
sponding to FF1 is +3 units, and hence the skew on FF1 is 3 units. Since FF’s
with positive skews are moved as far forward as possible for ALAP retiming,
FF1 moves across gates and until its skew is brought down to zero and
the ALAP location has been achieved.

10.4.4 Continuous retiming

A related technique to the ASTRA algorithm is the procedure of continuous
retiming [Pan97]. Unlike retiming, this method assigns a real num-
ber to each gate, representing the fractional number of FF’s to be moved across
the gate. The motivation for is its potential use in studying synthe-
sis and optimization problems that involve circuit modifications in conjunction
with retiming, and an application of to the tree mapping problem
[De 94] is presented in [Pan97]. Rounding off this fractional number of FF’s will
result in a conventional retiming, with the resulting clock period guaranteed to
be within the largest gate delay of the optimal clock period. This provides an
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efficient way for minimum period retiming, since can be solved as a
single-source longest path problem. In the edge weights               are
also real numbers and denote the number of fractional FF’s present on an edge

The clock period of the circuit is P if the final continuous retimed
weight on each edge is no smaller than

10.5 MINIMUM AREA RETIMING OF EDGE-TRIGGERED CIRCUITS

As shown in Section 10.1, retiming can reduce the clock period of a circuit.
However, in doing so, it is possible that it may greatly increase the number
of registers. In fact, given any clock period for a general circuit, there will,
in general, be not one, but several retiming solutions that satisfy the clock
period; these differ in the manner in which they utilize the slack on noncritical
paths. The ASAP and ALAP retimings from Section 10.4.3 are just two of
these possible retimings, and each of these differs in terms of the number of
registers that it employs.

The objective of the minimum area retiming problem is to find one of these
retiming solutions at a given clock period, chosen in such a way that it has the
minimum number of registers over all feasible retimings satisfying the period.
This is a practical and meaningful objective, since minimizing the number of
registers would minimize the area of the circuit, as the retiming transformation
leaves the combinational logic untouched.

We will first overview the Leiserson-Saxe framework for minimum area re-
timing. Next, an efficient method for reducing the complexity of this method,
using bounds on the retiming variables derived from the equivalence between
clock skew and retiming, is presented. Finally, the extension of this approach
to level-clocked circuits is described.

10.5.1 The Leiserson-Saxe approach

A basic formulation. A mathematical programming formulation of the min-
imum area retiming problem was presented in [LS91], and is reproduced here.
Let the total number of registers in a circuit G be given by
The reader is referred back to Section 10.3 for the basic concepts and terminol-
ogy used in the representation of a circuit in terms of a retiming graph. Using
this notation, the total number of registers in a circuit after retiming,
can be calculated as follows:

where and represent the fanin and fanout sets of the gate Since
S(G) is a constant, the minimum area retiming problem for a target period P
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can be formulated as the following linear program (LP):

The significance of the objective function and the constraints is as follows.

The objective function represents the number of additional registers added
to the retimed circuit, with reference to the original circuit.

The first constraint ensures that the weight of each edge (i.e., the num-
ber of registers between the output of gate and the input of gate ) after
retiming is nonnegative. We will refer to these constraints as circuit, con-
straints.

The second constraint ensures that after retiming, each path whose delay
is larger than the clock period has at least one register on it. These con-
straints, being dependent on the clock period, are often referred to as period
constraints.

This problem formulation is in the form of a dual of a minimum-cost network
flow problem. Hence, the LP can be solved efficiently by solving this dual
[BJS77, AMO93].

A more accurate area model using mirror vertices. The cost function
in the LP (10.15) assumes that each FF has exactly one fanout. However, in
practice an FF can have multiple fanouts, allowing the FF’s on different fanout
edges of a gate to be shared. This sharing must be taken into account for an
accurate area model.

As an example, consider gate A in Figure 10.10 with three fanouts, B, C,
and D, having three, two and two FF’s, respectively. The LP in (10.15) will
model the total number of FF’s as seven as shown in Figure 10.10(a). However,
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the FF’s can be merged or shared as shown in Figure 10.10(b), resulting in a
total cost of only three FF’s.

To model the maximal FF sharing, the work in [LS91] introduces a mirror
vertex for each gate that has more than one fanout, as shown in Fig-
ure 10.11, the details of which can be found in [Sax85]. Each edge in addi-
tion to having a weight now also has a width In Figure 10.11, the
edge weights are shown above the edges while the edge widths are shown below
the edges. Consider a gate with fanouts to gates To model
the maximum sharing of FF’s, an extra edge is added from each fanout gate,

to the mirror vertex, with a weight of
Here, is the maximum weight on any fanout
edge of gate Each of the edges from the gate to its fanouts and from the
fanouts to the mirror vertex has a width of i.e.,

The original LP in (10.15) is modified to include the effect of register sharing
as follows:
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where and is the set of all the mirror vertices,
and additional constraints due to the mirror vertices are called the mirror con-
straints. For simplicity, we can rewrite the above LP as follows

where is the constraint set of the LP in (10.16), and includes
the period constraint set the circuit constraint set and the mirror
constraint set A constraint in the constraint set C is of the form

where

The objective function of the LP in (10.17) now denotes the increase in
the number of FF’s assuming maximal sharing of FF’s at the output of all
gates. The weights on all paths from gate to its mirror vertex are the
same before retiming, i.e., and
therefore, the weights on all paths from gate to its mirror vertex must
be equal after retiming. Since the mirror vertex is a sink in the graph, the
register count on one of the edges from the fanout nodes to will be zero,
i.e., Thus, the weight on all paths from gate to mirror
vertex after retiming will be since all
of the retimed edge weights As there are paths,
each with width the total cost of all paths will be as desired.
Like the LP in (10.15), the LP in (10.17) is also the dual of a minimum cost
network flow problem.

An alternative view of this model is as follows. The change in cost function
due to adding or removing latencies from the fanout junction of gate is
modeled by two retiming variables: one for the gate, and other for the
mirror vertex, Any change in the cost function due to FF’s moving
across the multi-fanout gate itself are modeled by while any change due
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to FF motion across its fanout gates is modeled by the mirror
variable

The change in the number of FF’s in the circuit, under maximal sharing
obtained by retiming a gate by one unit can be calculated as follows. The
decrease in the cost function obtained by removing an FF from each of the
fanouts of a gate is one unit, even for multiple fanout gates since the FF’s on
all the fanouts were shared. The increase in the cost function from adding an
FF to all the inputs of a gate is equal to the number of fanins of that
have only one fanout, since any FF added to a fanin of gate that has more
than one fanout is already modeled by the mirror variable of
that fanin gate Thus, the cost contribution of any single fanout gate
is given by while that of a multi-fanout gate is given by

where is the set of fanins that have only a
single output, i.e., and Therefore, the
cost function may be written as the summation of these terms over all gates.

Efficient implementation. Although the LP in (10.15) can be efficiently
solved by solving the dual, the computation of W and D matrices requires

time and memory. Further, the number of period edges re-
quired can be very large, destroying the sparsity of the circuit graph. Because
of these reasons, the minimum area retiming problem cannot be solved in rea-
sonable time using the method from [LS91]. Shenoy and Rudell in [SR94]
presented an efficient implementation, where they proposed a constraint gen-
eration method requiring time but only O(|V |) memory, and
a technique to prune the number of period constraints.

The algorithm uses a combination of the Dijkstra’s algorithm and the Bellman-
Ford algorithm. It works by generating one row, say the row, of the W and
the D matrix at a time. An ordered pair denoted by
is associated with each edge and is used to compute the shortest distance
from a source vertex A heap is maintained for each distinct value of and
is indexed by this value. Until all heaps are empty, the node at the top of the
minimum index heap is extracted using the function pop-min(heap index).
The fanouts of are then added to the appropriate heaps if their or
values are updated by Bellman-Ford relaxation. At the end of this procedure

and
Note that to satisfy a clock period, P, the only requirement is to ensure that

each path with delay greater than P has at least one FF on it. The number of
FF’s on any path is monotonic with respect to the path length since negative
edge weights are not allowed. Due to this monotonicity of edge weights, if at
least one FF is placed on a sub-path, then it is guaranteed that at least one
FF will exist on all paths containing this sub-path. Adding a period constraint
from to is one way to ensure at least one FF on all paths from to The
idea is to add a period edge to only the vertex reachable from that satisfies
the following:
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where is a path from to a fanin of Thus, if the period constraint
is added, the fanouts of need not be relaxed. The pseudocode for constraint
generation is as follows:

Algorithm CONSTRAINT_GENERATION

{
P = target clock period;
= the heap;

{
s = current vertex;

and

= current register weight;
do {

if
add a period edge with weight

else {
{

if
heap-insert

}
}

} while

}
}

The work in published a few months before [SR94], used the same
idea and referred to it as “clock-period limited labeling.” It was demonstrated
that the use of this method caused a significant speedup in constraint gen-
eration. A second method presented in the work was termed “relevant path
labeling.” Starting from a source node this technique labels each vertex
with the maximum value of the label The
rationale behind this approach is that for every path originating at it must
be true that and therefore, the largest value of
must be nonpositive. However, unlike the method of clock-period limited la-
beling, this must traverse all vertices, and while it generates a smaller number
of constraints, the amount of time required to generate these constraints was
reported to be extremely large.

10.5.2 The Minaret algorithm

Although the techniques of the previous section make minimum area retiming
efficient, they cannot handle large circuits with tens of thousands of gates. In
[MS97a, MS98b], an amalgamation of the Leiserson-Saxe approach and the
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ASTRA approach is used for efficient minimum area retiming. By utilizing the
merits of both approaches, an efficient algorithm for constrained minimum area
retiming was developed. This algorithm, called MINArea RETiming (Minaret),
is capable of handling very large circuits in very reasonable runtime. The basic
idea of the approach is to use the ASTRA approach to find tight bounds on
the retiming variables. These bounds help reduce both the number of variables
and the number of constraints in the problem without any loss in accuracy.
By spending a small amount of additional CPU time on the ASTRA runs,
this method leads to significant reductions in the total execution time of the
minimum area retiming problem. The reduction in the problem size also reduces
the memory requirements, thus enabling retiming of large circuits. On a mid-to-
late 90s vintage computer, this approach has been shown to solve problems with
more than 57,000 variables and 3.6 million constraints in about 2.5 minutes.

The approach in Minaret is to find tight bounds on the variables, and
to use these bounds to avoid generating redundant constraints. By appropri-
ate application of these bounds, not only is the constraint set pruned but the
number of variables is also reduced. In this way, the size of the LP is reduced
enabling it to be solved more efficiently. The reduced constraints can be gener-
ated efficiently by using these bounds. Note that the exactness of the solution
is not sacrificed in doing so, since none of the essential constraints are removed.

We will now show the relation between the Leiserson-Saxe approach and
the ASTRA approach, and how a modified version of ASTRA can be used to
derive bounds on the variables in the Leiserson-Saxe method. Next, we show
how these bounds can be used to prune the number of constraints in minimum
area Leiserson-Saxe retiming. Finally, we present an example to illustrate the
method.

The concept of restricted mobility and bounds for the variables.
For the circuit in Figure 10.12, to achieve the minimum clock period of 4.0
units, one must move one copy of FF B to the output of gate G4. The possible
locations for FF’s along the other path to FF C are at the input to gate G8,
or at the output of gate G8, or the inputs of gates (G9,G10) or the outputs of
gates (G9,G10); no other locations are permissible

Therefore, it can be seen that the FF’s cannot be sent to just any location
in the circuit; rather, there is a restricted range of locations into which each
FF may be moved, and the mobility of each FF is restricted. This restricted
mobility may be used to reduce the search space, and hence the number of
constraints.

The concept of restricted mobility is related to the ASAP and ALAP retim-
ings presented in Section 10.4.3 in that the ASAP and ALAP retiming solutions
define the boundaries of the region into which an FF can move during retiming
while satisfying the target clock period. For example, Figures 10.12(a) and (b)
are the ASAP and ALAP retiming for the given clock period of 4.0 units and
the FF can move only in the region defined by these locations. These ASAP
and ALAP retiming solutions can be used to obtain bounds on the retiming
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variables of the Leiserson-Saxe approach, associated with the gates in the
circuit as illustrated by the following example.
Example: For the circuit in Figure 10.12, the locations for the FF’s in the
retimed circuit corresponding to the ASAP and ALAP retiming solutions are
shown in Figure 10.12(a) and (b), respectively. This implies that during retim-
ing, no latency will move across gates G1, G2, G5, G6, G7, G11 and G12; one
latency each will move from the input to the output of gates G3 and G4, and
either no latency or one latency will move from the input to the output of gates
G8, G9 and G10. Referring to Section 10.3 for the definition of the variables,
this implies that one may set the following bounds on the variables.
(1) for
(2) for and
(3) for

While moving the FF’s in Phase B of ASAP and ALAP retimings, subject
to the specified clock period P, the number of FF’s that traverse each gate
is counted; this count is the upper and lower bound, respectively, on the
variables for each gate. An FF moving from the inputs to the output of a gate
decrements the count by one, while one moving from the output to the inputs
increments it by one. For the ASAP case, FF’s are moved as far as possible
in the backward direction. In other words, we relocate the largest number of
latencies possible from the output to the inputs of a gate. By the definition
of the variables, this gives an upper bound on for the gates. Similarly, the
ALAP retiming relocates the largest number of latencies that can move from
the inputs of a gate towards its output, and this provides a lower bound on the
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values for the gates in the circuit. The bounds on the variable corresponding
to each gate are of the form.

We will refer to as the lower bound for gate and to as the upper bound
of gate Like the ASAP and ALAP retimings, these bounds are with reference
to a fixed host vertex, i.e., If we say that
gate is fixed or immobile, since is not really a variable any more.
On the other hand, if we say that gate is flexible or mobile. Thus,
we can reduce the variable set V of the Leiserson-Saxe model to the
variable set of Minaret where

Bounds on the mirror vertices, introduced to model the maximal latch shar-
ing can be obtained directly from the bounds on fanout gates. The mirror
variable set M is also reduced to the mirror variable set of Minaret
where

The bounds on the value of a mirror vertex of gate in Figure 10.11
can easily be derived from the bounds on the fanout gates and are given by

For a proof, the reader is referred to [MS98b].

Eliminating unnecessary constraints. We now illustrate how the addition
of bounds (derived previously) to the LP of (10.17) in Section 10.5.1 may be
used to reduce the constraint set by dropping redundant constraints. It can be
seen from the bounds on and in relation (10.20) that

Therefore, if then is also true, and the
constraint can be dropped. Thus, the Leiserson-Saxe constraint set C can
be reduced to the Minaret constraint set where

Notice that constraints associated with fixed or immobile gates can be treated
as bounds and need not be included in Like the Leiserson-Saxe constraints,
the Minaret constraints also consists of circuit, period and mirror constraints,
i.e., where is the reduced circuit constraint set, is
the reduced period constraint set, and is the reduced mirror constraint set.
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The reduced linear program. We use the relations (10.21), (10.22) and
(10.23) to reduce the LP in (10.17) to the following LP in Minaret

Details of how the linear program is generated and solved are presented in
[MS98b].
An Example: We now illustrate this method and show how the number of
constraints can be reduced using our approach.

Consider the circuit example shown in Figure 10.13. As in the previous
examples, we make the assumption that the gates have unit delays. We consider
two possible clock periods of 2 units and 3 units in this example.

When P = 2 units
For a clock period of two units, the list of constraints generated by the

approach in [SR94] is listed below.

Circuit constraints

Period constraints

Note that
(a) the delay associated with the host node is zero, and
(b) the value of is set to zero as a reference, so that it is not really a
variable.
Therefore, this is a problem with four variables and eight linear constraints (of
which three act as simple bounds).
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In our approach, for a clock period of 2, we first find the bounding skews.
The FF’s at the input and output may not be moved, and therefore, the only
movable FF is FF1, which is assigned a skew of -2 units. The correctness of
this skew value is easy to verify since the only feasible location of FF1 under
P = 2 is two delay units to the right of its current location. Therefore, we find
that by using the concept of restricted mobility,

Since all nodes are fixed, and all the constraints can be dropped, all of the
constraints and variables have been eliminated!
When P = 3 units

With the clock period is set to 3 units, the list of constraints is

Circuit constraints

Period constraints

As before, is set as a reference, giving a problem with four variables
(as before) and seven linear constraints (of which three act as simple bounds).

Under our approach, the relocated FF can reside either at the input of gate
b, the output of gate b, or the output of gate c. Therefore, we have

Using these bounds we drop all constraints but

Therefore, we have reduced the problem complexity to two variables, each with
fixed upper and lower bounds and one linear constraint. (Note that upper/lower
bound constraints are typically much easier to handle in LP’s than general
linear constraints; in fact, in many cases, upper and lower bounds are actually
helpful in solving the LP.)
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Generating the linear program. Using the alternative description of the
maximal FF sharing in Section 10.5.1, the objective function coefficients are
obtained by inspection of the circuit, without explicitly adding the mirror ver-
tices. The circuit and the mirror constraints in are obtained from direct
inspection of the circuit graph using relation (10.23). Because the bounds on
the mirror vertices can also be obtained directly from the bounds on the gate
vertices, we do not need to explicitly add the mirror vertices to the circuit
graph. Since every multi-fanout gate has a mirror vertex, this gives us impor-
tant savings in terms of the space and time requirements. We now describe
how to obtain the period constraints in

We take advantage of the bounds obtained in Section 10.5.2 to modify the
method from [SR94] to run faster, generating only the reduced constraint set

As noted earlier, due to the monotonicity of edge weights, if we ensure at
least one FF on any sub-path, we are assured of having at least one FF on all
paths that contain this sub-path. Therefore, if the bounds on the variables
guarantee us at least one FF on any sub-path, we need not process any path
containing this sub-path. We use this observation in addition to relation (10.19)
to reduce the number of period constraints.

At the end of the ASTRA run for obtaining the lower bounds, all FF’s are in
their ALAP locations. If the delay of all the gates is not the same, it is possible
that retimed circuit obtained by ASTRA with FF’s in the ALAP locations may
have some purely combinational paths with delays that are greater than the
target clock period P. However, in practice, most of the other paths satisfy
the target clock period. We will use this observation to further speed up the
constraint generation process.

Consider a fixed gate in the circuit at the end of the ALAP run. If none of
the combinational paths starting at this gate violate the clock period, we have

if Since we
have or Since gate is fixed
we obtain which is guaranteed to be true, and hence,
all constraints starting from fixed gate are redundant, and we do not need
to generate them. Thus, we must generate period constraints only from those
fixed gates which have at least one purely combinational path starting from it
with delay more than the clock period. Let us call this set

The method from [SR94] presented in Section 10.11 is modified to take ad-
vantage of the bounds on the variables to generate the reduced constraint set

efficiently. The pseudocode is presented below with the modifications shown
in boldface.
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Algorithm CONSTRAINT-GENERATION-WITH-BOUNDS

{
P = target clock period;

= the heap;

{
s = current vertex;

and
and

= current register weight;
do {

if                                         break;

if continue;
if
add a period edge with weight
else {

{
if  {

if
heap-insert

}
}

}
} while

}
}

Solving the linear program. Like (10.17), the LP in (10.24) is also a dual
of a minimum cost network flow problem. We found that it could be solved
very efficiently using the network simplex algorithm from [BJS77]. The network
simplex method is a graph based adaptation of the LP simplex method that
exploits the network structure to achieve very good efficiency. The upper and
lower bounds on the variables provide an initial feasible spanning tree. This
tree has two levels only, with the host node as the root and all other nodes as
leaves. To prevent cycling we construct the initial basis to be strongly feasible
by using the appropriate bound (upper or lower) to connect a node to the root
(host node). It is easy to maintain strongly feasible trees during the simplex
operations, and details are given in [BJS77].

Using the first eligible arc pivot rule with a wraparound arc list from [AMO93]
(page 417) gives significant improvements in the run time. The dual variables
( variables) are directly available from the min cost flow solution.

;
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10.6 MINIMUM PERIOD RETIMING OF LEVEL-CLOCKED CIRCUITS

For edge-triggered circuits, the delays through all combinational logic paths
must be less than the clock period, with allowances for the setup time. There-
fore, timing constraints need only be enforced between FF’s connected by a
purely combinational path. For level-clocked circuits, the delay through a com-
binational logic path may be longer than one clock cycle, as long as it is com-
pensated by shorter path delays in subsequent cycles. To ensure that the extra
delay is compensated, timing constraints must be enforced from each latch to
every other latch reachable from it, possibly through a path that traverses mul-
tiple latches. This greatly increases the complexity of the problem for practical
circuits, as was illustrated by the example of an N-stage acyclic pipeline in
Section 7.3.1.

10.6.1 Variation of the critical path with the clock period

As in the case of edge-triggered circuits, traditional methods [LE94, PR93b]
solve the minimum period retiming problem for level-clocked circuits by per-
forming a binary search over all possible clock periods. At each step of this
binary search, the feasibility of achieving the clock period by retiming is checked
by solving a single source shortest path problem, using the Bellman-Ford algo-
rithm on a constraint graph. For a circuit with |G| gates, this constraint graph
consists of |G|  vertices and edges between every pair of vertices, constructed
by solving an all-pairs shortest path problem on the original circuit graph.
This graph must be reconstructed for every binary search point, because will
be shown shortly, unlike in the case of edge-triggered circuits, critical paths
in level-clocked circuits can be different for different clock periods. Therefore,
the methods in [PR93b, LE94] have memory requirements and high
(although polynomial) time complexity.
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In an edge-triggered circuit, the critical path is independent of the clock
period, and simply corresponds to the output with the largest delay, except
in the uninteresting case when the clock period is satisfied. In a level-clocked
circuit, however, critical paths are more difficult to identify since they may vary
from one clock period value to another. This was illustrated in [LE94] through
the following example. Figure 10.14 shows a situation where three paths,
and connect the vertex to the vertex the delay of each node is written
within its corresponding vertex. The description of each path is as follows:

where denotes the number of registers that currently lie on the path.
If a path from to has registers on it, then for a symmetric two-phase

clock with an active period of the amount of time available for data to
travel from to is time units, corresponding to the total active
time available from the input register of node to the output register of node

This leads to the following statements:

When a symmetric two-phase clock with a period of 3 units (and therefore,
an active time of 1.5 units) is applied, we require that and

Therefore, the path is critical since satisfying the constraint
on in the given circuit would violate the constraint on

When the period of the same clock is changed to 5 units, the requirements
are altered to and in this case, satisfying the former
would lead to a violation of the latter.

It is easily verified that the crossover point for the critical paths occurs at a
clock period of 4 units, where both are critical.

Note that the path is always subservient to path since it has the same
number of registers, but a smaller delay, and can, hence, never be critical.

10.6.2 Retiming of single phase level-clocked circuits

In [SBS91] an MILP formulation is presented for retiming single phase level-
clocked circuits. Constraints for correct clocking of single-phase circuits are laid
down, which were essentially similar to the SMO constraints in Section 7.3.2.
A new functionality constraint was also introduced in this work, which main-
tains temporal equivalence between the initial and the retimed circuit. The
constraint identifies a set of fundamental cycles in the directed graph corre-
sponding to this problem, and ensures that the sum of latches on each of these
is maintained during retiming. The property of the set of fundamental cycles
is that all other cycles can be expressed as a composition of these fundamental
cycles. The essential idea of the approach is to build a spanning tree on the di-
rected graph. If the graph has edges and vertices, then there are
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edges that are excluded from the spanning tree. It is proved in [SSBS92] that
each of these edges corresponds to a linearly independent cycle by showing that
the cycle-edge incidence matrix has rank

10.6.3 The TIM approach

TIM [Pap93, PR93b] presents polynomial time algorithms for retiming and
clock tuning of two-phase level clocked circuits. Since the notation used in the
work differs slightly from the SMO model, we will take a detour to define a
few terms. A clocking scheme is defined as where P is the
clock period, the duty cycle of phase and is the time gap between the
instant where the phase clock goes low and the phase clock goes
high. Each vertex, corresponds to a gate, and is associated with a phase,

i.e., clocks the last latch on any edge that ends at
The constraint for proper clocking on a path is given by the

following relations:

When and the relation (10.25) enforces the
constraint that the delay on any path must be less than the summation of the
following terms (the interpretation of relation (10.26) is analogous):

The first line on the right hand side is the timing allowance on the path
before retiming.

The second line is the change in the timing allowance of the path due to
the latches that where moved either on or off through gate during the
retiming process. The first term is the number of complete clock
periods added to the timing allowance, and the second term accounts for
fractional periods added. If is even, no fractional periods are added
and the second term is zero If is positive, latches
are shifted on to path and the timing allowance is increased; if it is neg-
ative, latches are being shifted off from path and the timing allowance is
decreased.



RETIMING 243

If is odd, the fractional change must also be considered. For a positive
value of the last latch moved on is of phase Therefore,
the latch on the boundary of (which includes gate ) will be of phase

which is same as Thus, the fractional period
added by this last latch is If is negative, then the
last latch moved off by forward retiming across is of phase and
the quantity must be subtracted from the
timing allowance of path

The third line is the change in the timing allowance of the path due to
latches being moved off or on through gate and is derived in a similar
manner to the second line.

For a more formal mathematical proof, the reader is referred to [Pap93].
These constraints in relations (10.25) and (10.26), together with the nonneg-

ativity constraint, form an integer monotonic program
that can be solved using graph-based algorithms.

A similar method for retiming level-clocked circuits was independently pre-
sented in [LE91, LE92, LE94], and was based on the SMO formulation of timing
constraints.

10.6.4 The relation between retiming and skew for level-clocked circuits

To derive timing constraints in the presence of skews, the SMO model of Sec-
tion 7.3.2 is augmented with new notation. A skew, is associated with every
latch where is the set of all latches in the circuit. It is worth pointing
out at this juncture that the skew values here are not physical skews to be
applied to the final circuit, but conceptual ideas that will eventually lead to
achieve a retiming solution. No restrictions are placed on the value of i.e.

We define a latch shift operator shown in Figure 10.15, much like the
phase shift operator in the SMO formulation. This operator converts time
from the local time zone of latch to the local time zone of latch taking into
account their skews. It is defined as
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which can be rewritten in terms of the phase shift operator as

In presence of skews at latches, the timing constraints in relation (7.17) and
(7.20), must be modified by using the latch shift operator instead of the phase
shift operator; only long path constraints are considered here. Thus, the timing
constraints for a level clocked circuit to be properly clocked by a clock schedule,

in presence of skews are

For simplicity, this discussion ignores the clock-to-Q delays and setup times,
though these may easily be inserted into these equations. These timing con-
straints can be rewritten as

To make the discussion simpler, we subtract from both sides of the first
relation, and substitute

The quantity is referred to as the Global Departure Time (GDT). Therefore,
we have

These can be rewritten as the following set of difference constraints:

The difference constraint between GDT values of two latches given in rela-
tion (10.29) is similar to the difference constraints between skews at FF’s in
relation (10.8). This suggests a relation between retiming and GDT values of
level-sensitive latches, similar to the retiming-skew relationship for edge trig-
gered FF’s. The following theorem is similar to the corresponding result for
edge-triggered circuits:
(a) Retiming transformations may be used to move latches from all of the
inputs of any combinational block to all of its outputs. The equivalent GDT of
the relocated latch at output considering long path constraints only, is given
by
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where the are the GDT’s at the input latches, is the equiva-
lent GDT at output and is the worst-case delay of any path from to

(b) Similarly, latches may be moved from all of the outputs of any combina-
tional block to all of its inputs, and the equivalent GDT at input considering
long path constraints only, is given by

where the are the GDT’s at the input latches, is the
equivalent GDT at input and is the worst-case delay of any path
from to

The physical meaning of the GDT is as follows. If arbitrary skews could
be applied at latches, the skew, of a latch could be adjusted so as to force

which is same as a negative edge triggered FF. Since
setting gives Hence, we can conceive of the GDT, for a
latch to be similar to the skew for an FF.

Note that in reality, we are not compelled to set and that can
be reduced by as much as if is increased by the same amount while
keeping constant. Since only GDT’s, appear in the timing constraint
of relation (10.29), keeping them constant keeps the clock period constant. As
an illustration of this idea, consider Figure 10.16(a) where and

this implies that The skew here may be increased to zero
without changing the GDT, as shown in Figure 10.16(b), by reducing

the departure time by the same amount thereby leaving the
GDT unchanged Therefore, a skew of up to can
be absorbed in the without violating the long path constraint. Thus, any
GDT value between and 0 is permissible, and this range will be referred
to as the allowable range. If different phases have different active intervals,
then the allowable GDT range of a latch will depend on its phase. Therefore,
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in this model, level-sensitive latches can be conceptualized as FF’s that have
the capacity to absorb some skew.

At this time, we also note the relation between the GDT, of a latch
and the corresponding minimum magnitude skew,

10.6.5 Minimum period retiming

The relationship between GDT and retiming presented in Section 10.6.4 can
be utilized to map the problem of retiming level-clocked circuits for minimum
period to the simpler problem of retiming edge-triggered circuits for minimum
period as solved in Section 10.4.2. This mapping motivates the following two-
phase method of retiming for minimum clock period under a specified clocking
scheme. The execution times for such an implementation are fast and a 50,000
gate circuit was shown to be retimed in about seven minutes in a computer of
mid-to-late 90s vintage.

The two phases in this method mirror those for edge-triggered circuits, and
are as follows:

Phase A: In phase A, the clock period, is minimized, and a set of GDT
values that will achieve this period is determined. For a specified clocking
scheme can be represented as the following linear program:

As before, the LP is solved through a binary search on the clock period,
checking for feasibility at each point in the search as was done in Sec-
tion 9.3.3.

Phase B: In Phase B, the GDT values obtained in Phase A are reduced by
applying transformations that alter the GDT through retiming, using tech-
niques similar to those in Section 10.4.2. This procedure relocates the latches
with nonzero GDT’s across logic gates, while maintaining the optimal clock
period previously found. Because of the freedom provided to by the
active interval of clock phase which allows to be set to any value
between and can be achieved if
If cannot be set to zero, then is brought as close to 0 or as
possible so as to minimize the magnitude of the final skew

At the end of the retiming procedure in Phase B, the magnitude of skew at
each latch is no more than
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where M is the maximum delay of any gate in the circuit. Thus, if the maximum
gate delay is less than the least the the optimal skew optimization period
can always be achieved by retiming. At this time, if all skews in a
circuit are set to zero, then the final clock period satisfies the following
condition

where is the optimal clock period with skews found in Phase A, and M is
the maximum delay of any gate in the circuit.

The advantage of this method is that it constructs a small and sparse graph
only once.

We first describe the two phases of minimum period retiming, followed by the
special case of retiming a circuit for a specified clock period. We then present
the bound on the difference between the optimal skew optimization period and
the clock period obtained by our method.

10.7 MINIMUM AREA RETIMING OF LEVEL-CLOCKED CIRCUITS

The minimum area retiming LP for level-clocked circuits is similar to the LP
for edge-triggered circuits given in (10.17). Unfortunately, under general clock
schedules with unequal phases, it must be modeled as a general integer linear
program of the type given in [LE91], while restricting the clock scheme to a
symmetric multi-phase clock enables us to model the minimum area retiming
problem as an efficiently solvable LP (dual of min-cost flow problem) [PR93b].

Like the minimum area LP of (10.17), the minimum area LP for level-clocked
circuits also contains circuit constraints, period constraints and mirror con-
straints. The circuit and mirror constraints are defined in the same way as in
Section 10.5.1, although the period constraints are somewhat different since the
timing constraints in level-clocked circuits differ from those in edge-triggered
circuit. Moreover, constraint pruning becomes more complex and requires fresh
strategies. A detailed discussion of this approach, called the Minaret-L algo-
rithm, is presented in [MS99].

10.8 SUMMARY

In this chapter, a detailed treatment of retiming algorithms has been provided.
Retiming is a technique for purely sequential timing optimization, which allows
cycle borrowing by moving the flip-flops or latches at cycle boundaries. Algo-
rithms for retiming both edge-triggered and level-clocked circuits have been
reviewed.

Most of the issues discussed here are related to retiming combinational logic.
In recent years, wire delays have increased to the level where it may take several
clock cycles even for a highly optimized wire to go from one end of a chip to
the other, and this problem is only projected to become worse in the future
[SMCK03]. As a consequence, it is becoming essential to pipeline wires in
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a circuit to ensure correct timing behavior. Several new approaches to this
problem have been presented in the recent past [HAT02, Coc02], and although
it is too early to say so definitively, it appears that the use of retiming-like
concepts [LZ03, NS04] may hold great promise for solving problems in this
area.

Notes

1. The calculation of indices here span the range 0, · · · , and in this discussion,
is calculated modulo

2. This result is easy to see on this simple example. The reader is referred to Chapter 9
for a general procedure for finding the optimal skews for a general circuit



11 CONCLUSION

This book has attempted to provide an overview of techniques that are used in
the timing analysis of digital circuits‚ with an exposition of methods used for
analyzing circuits at the gate/interconnect level‚ then at the level of a combi-
national stage‚ and finally as a larger sequential circuit. Methods for timing
optimization have been discussed‚ through transistor sizing and optimiza-
tion at the transistor level for combinational circuits‚ and through clock skew
scheduling and retiming for sequential circuits. A survey of statistical timing
methods has also been presented.

While this book covers several of the basics of timing analysis‚ there are
several topics that it does not cover explicitly in great detail. However‚ the
foundation for understanding these issues is well laid out in our discussion.

Inductive effects are becoming more prominent in nanometer technologies‚
particularly for long global wires such as those used for clock distribution‚
global busses‚ and power supply nets. There is a great deal of literature
available on the problem of extracting and analyzing inductive networks‚
and the material in Chapters 2 and 3 is very useful in understanding these
issues.

Timing-driven synthesis Logic synthesis has traditionally been divided into
the technology-independent and technology-dependent phases. The latter
phase‚ which may perform technology mapping to a library‚ explicitly uses
timing information for synthesis. However‚ such timing estimates are closely
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related to the estimated parasitics. Previously‚ wire load models were con-
sidered to be sufficient for this purpose‚ but increasingly‚ there is a need
for more accurate models. This step must perform timing analysis in the
absence of complete design information‚ and may make it up using a phys-
ical prototype‚ or perhaps a probabilistic model for the distribution of net.
parasitics.

Layout-driven timing optimization Timing optimization during physical
design can be performed during the stages of placement‚ and routing. Place-
ment algorithms may use either simple estimates for timing that are net-
based‚ attempting to limit the size or delay of each net‚ or be more intelli-
gent and use path-based metrics‚ which attempt to limit the delay on the
path. The advantage of the latter is that they can permit nets that are not‚
on critical paths to be longer‚ and can dynamically evaluate which paths are
more critical; however‚ they are also more computational. However‚ there is
a growing realization that some sort 'of explicit timing optimization must be
interleaved with placement‚ and timing analysis methods play a vital role in
deciding how this is to be performed. The fast timing metrics discussed in
Chapter 3 are likely to play an important role in these developments.

Timing issues also play an important role in routing. Global wires must be
routed in such a way that they obey constraints on timing and congestion
using accurate delay metrics. In addition‚ the effect of noise on delay‚ and
coupling effects due to crosstalk must be incorporated both in global and
detailed routing. The methods of Section 4.5 can provide a basis for such
optimizations.

Timing closure The timing closure problem requires timing estimates to be
taken into account in all stages of design‚ and can be thought of as a conglom-
eration of methods for timing-driven synthesis (behavioral synthesis or logic
synthesis)‚ timing-driven placement and timing-driven routing‚ into a flow
that guarantees timing closure with as little iteration as possible. Clearly‚
methods for the measurement and optimization of timing play an important
role in implementing such a flow.

Since the field of timing analysis and optimization is an active and fertile
research area‚ it is likely that new results will continue to be published in the
future‚ and the reader is referred to conferences such as the ACM/IEEE Design
Automation Conference (DAC) and the IEEE/ACM International Conference
on Computer-Aided Design (ICCAD)‚ and to journals such as the IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems‚ the
IEEE Transactions on VLSI Systems‚ and the ACM Transactions on Design
Automation of Electronic Systems.



Appendix A
Closed-form formula for the roots of cubic and quartic equations

This appendix reproduces results on the solution of cubic and quartic equations
[Ric66].

A.1 CUBIC EQUATIONS

A general cubic equation is given by

Setting this becomes

where and Further substituting this
reduces to

This is a quadratic in which may be solved to yield six roots for namely‚
and where
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A.2 QUARTIC EQUATIONS

A general quartic equation is given by

Substituting we get an equation of the form

This may be rewritten as

where is an as yet undetermined constant. We will choose to make the

second term a perfect square‚ substituting

For this relation to be true‚ the discriminant of the quadratic must be zero. In
other words‚

Equation A.1 is a cubic that can be solved as explained in Section A.1. Given
any root of this‚ say (this is where is determined!)‚ the original equation
becomes

These two quadratics may be solved to find the four roots of the quartic equa-
tion. Note that due to self-consistency‚ three of the roots will coincide with
those already found by solving the intermediate cubic equation.



PDF OF THE MAXIMUM OF TWO GAUSSIANS 253

Appendix B
A Gaussian approximation of the PDF of the maximum of two Gaussians

Although the maximum of two Gaussians is not a Gaussian, it is possible to
approximate it as such, and a method for doing so was suggested in [Cla61]. If

and are two Gaussian random variables, with a
correlation coefficient of then the mean and the variance of

can be approximated by:

where

The formula will not apply if and However, in this case,
the max function is simply identical to the random variable with largest mean
value.

Moreover, from [Cla61], if is another normally distributed random variable
and then the correlation between and
can be obtained by:

Using the formula above, we can find all the values needed. As an exam-
ple, let us see how this can be done by first starting with a two-variable max
function, Let be of the form

We can find the approximation of as follows:

1.

2.

Given the expressions that express each of and as linear combinations
of the principal components, determine their mean and sigma values

and respectively; recall that

Find the correlation coefficient between and where the
covariance of and can be computed, since

Now if and set to be identical to or
whichever has larger mean value and we can stop here; otherwise, we will
continue to the next step.
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3.

4.

5.

Calculate the mean and variance of using Equations (B.1)
and (B.1).

Find all coefficients of Note that
and Applying Equation (B.7)‚ the values of
and thus can be calculated.

After all of the ’s have been calculated‚ determine Nor-
malize the coefficient by resetting each

Several useful extensions are possible:

The minimum of two random variables and may be computed by using
the above procedure to compute

The calculation of the two-variable max function can easily be extended for
an max function by repeating the steps of the two-variable case
recursively.
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Appendix C
On the convexity of the generalized posynomial formulation for transistor
sizing

C.1 PROOF OF CONVEXITY

The objective functions of area and power can be modeled as polynomials in the
usual ways. This appendix discusses the proof that the generalized posynomial
formulation is equivalent to a convex program under the timing and ratioing
constraints.

The ensuing discussion first shows that the delays of individual paths satisfy
the property of convexity, and uses this fact to prove the convexity of the
optimization problem. It is to be emphasized that this discussion is purely
for expository purposes; the optimizer used in this work for sizing does not
require the enumeration of all paths, and performs the optimization efficiently
by checking, through a timing analysis, whether the constraints are satisfied or
not. For details, the reader is referred to [SRVK93].

Let the critical path of the circuit be represented by a set of stages, where
each stage represents a gate. Let us first consider a scenario with fully char-
acterized gates where no primitives are used, but the delay is characterized in
terms of the size of each transistor. Then, substituting the characterization
variables explicitly into Equation (8.29), we see that the fall delay of the gate
corresponding to stage has the following form:

and the output fall transition time of the gate in stage has the form.

where
are real constants. The and values, as usual, refer

to the nmos and pmos transistor sizes, refers to the transition time, and the
correspond to the capacitances at the gate output and at internal nodes.

The rise delay and rise transition time expressions are similar, with the roles
of and interchanged. We will show that the delay and transition time
functions have the form of generalized posynomials.

The capacitance at each internal or gate output node is modeled by
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where the and values are real constants, and represent the equivalent
transistor widths in the circuit.

Equations (C.2) and (C.3) can be recursively substituted in Equation (C.1),
back to the primary inputs (where the transition time is a fixed constant)
to express the delay entirely as a function of the variables, resulting in an
expression of the form

where are real constants, or 1, and
the Note that the transition time at the primary input is absorbed
in K.

It is easily verified that the path delay is a generalized posynomial function
of the device widths that can be mapped on to a convex function. The objective
function is chosen as a weighted sum of the transistor sizes, which is clearly a
generalized posynomial form. Using identical arguments to [FD85, SRVK93],
since the maximum of convex functions is convex, the problem of area mini-
mization under delay constraints for “template” gates can be shown to be a
convex programming problem.

The problem of power minimization can be dealt with in a similar fash-
ion; since the edge rates are being explicitly controlled in this formulation, the
short-circuit power is implicitly controlled and, unlike [SC95, BOI96] can be ne-
glected from the cost function. As a result, the power objective merely requires
minimization of the dynamic power, which is well known to be a weighted sum
of the device sizes [SC95, BOI96].

For gates that do not adhere to the template, the mapping techniques de-
scribed in Section 8.5 may be used to model the delay function. We will now
show that in such a case, the delay function continues to remain in the gen-
eralized posynomial form. Let represent transistor widths in the
primitives the gates are mapped to. In the process of mapping the gates, the
transistor widths in the primitives can be expressed in terms of the actual
transistor widths in the circuit. Let represent, the actual transistor
widths in the circuit. Then can be expressed as

All occurrences of value of which is a basic variable in the characteriza-
tion equation can be substituted as above in Equation (C.4), maintaining the
generalized posynomial property of the delay equation.

With regard to the ratioing constraints, each left hand side in the inequali-
ties listed in relation (8.31) is a generalized posynomial since (using a similar
argument as above), each denominator term of is substituted by a sum of

values, and the numerator terms correspond to sums of Therefore,
these constraints maintain the convexity properties of the problem formulation.
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C.2 RELATION OF A GENERALIZED POSYNOMIAL PROGRAM TO
A POSYNOMIAL PROGRAM

Traditionally posynomial programs have been solved by using geometric op-
timizers. In this work, we have used generalized posynomials to model the
gate delay and power dissipation. While these functions are provably equiva-
lent to convex functions, a precise relationship between generalized posynomial
programming problems and posynomial programming problems would permit
the use of geometric optimizers to solve the problem formulated here. In this
section, we describe a technique for transforming the set of delay constraints
described by generalized posynomials into a posynomial form.

As will be shown shortly, the transformation is carried out by the intro-
duction of additional variables. Consider the constrained order 1 generalized
posynomial constraint below:

where is a constant and The term in parentheses is a posynomial,
and if we set it to the variable the above relation may be rewritten as

The latter equality can, of course, be written as a pair of inequalities. We now
make use of a subtle observation: if we relax this equality to just one
inequality, then for any variable assignment that satisfies the relaxed set of
constraints, since and it must be true that

In conjunction with constraint (C.7), this implies that constraint (C.6) must
be satisfied.

Therefore, a generalized posynomial constraint of order 1 can be replaced
by the posynomial constraints
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This substitution method can be used, in general, for generalized posynomials
of order Such a procedure can reduce this to an order generalized
posynomial, and the substitution can be invoked recursively until a set of purely
posynomial constraints is obtained.
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