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BASIC AC THEORY
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1.1 What is alternating current (AC)?

Most students of electricity begin their study with what is known as direct current (DC), which is
electricity flowing in a constant direction, and/or possessing a voltage with constant polarity. DC
is the kind of electricity made by a battery (with definite positive and negative terminals), or the
kind of charge generated by rubbing certain types of materials against each other.

As useful and as easy to understand as DC is, it is not the only ”kind” of electricity in use. Certain
sources of electricity (most notably, rotary electro-mechanical generators) naturally produce voltages
alternating in polarity, reversing positive and negative over time. Either as a voltage switching
polarity or as a current switching direction back and forth, this ”kind” of electricity is known as
Alternating Current (AC):

1
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I

I

DIRECT CURRENT
(DC)

ALTERNATING CURRENT
(AC)

I

I

Whereas the familiar battery symbol is used as a generic symbol for any DC voltage source, the
circle with the wavy line inside is the generic symbol for any AC voltage source.

One might wonder why anyone would bother with such a thing as AC. It is true that in some
cases AC holds no practical advantage over DC. In applications where electricity is used to dissipate
energy in the form of heat, the polarity or direction of current is irrelevant, so long as there is
enough voltage and current to the load to produce the desired heat (power dissipation). However,
with AC it is possible to build electric generators, motors and power distribution systems that are
far more efficient than DC, and so we find AC used predominately across the world in high power
applications. To explain the details of why this is so, a bit of background knowledge about AC is
necessary.

If a machine is constructed to rotate a magnetic field around a set of stationary wire coils with
the turning of a shaft, AC voltage will be produced across the wire coils as that shaft is rotated, in
accordance with Faraday’s Law of electromagnetic induction. This is the basic operating principle
of an AC generator, also known as an alternator :
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Load

no current!
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Load
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Load
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- +
I I

Step #1 Step #2

Step #3 Step #4

Alternator operation

Notice how the polarity of the voltage across the wire coils reverses as the opposite poles of the
rotating magnet pass by. Connected to a load, this reversing voltage polarity will create a reversing
current direction in the circuit. The faster the alternator’s shaft is turned, the faster the magnet
will spin, resulting in an alternating voltage and current that switches directions more often in a
given amount of time.

While DC generators work on the same general principle of electromagnetic induction, their
construction is not as simple as their AC counterparts. With a DC generator, the coil of wire is
mounted in the shaft where the magnet is on the AC alternator, and electrical connections are
made to this spinning coil via stationary carbon ”brushes” contacting copper strips on the rotating
shaft. All this is necessary to switch the coil’s changing output polarity to the external circuit so
the external circuit sees a constant polarity:
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Load
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(DC) Generator operation

The generator shown above will produce two pulses of voltage per revolution of the shaft, both
pulses in the same direction (polarity). In order for a DC generator to produce constant voltage,
rather than brief pulses of voltage once every 1/2 revolution, there are multiple sets of coils making
intermittent contact with the brushes. The diagram shown above is a bit more simplified than what
you would see in real life.
The problems involved with making and breaking electrical contact with a moving coil should

be obvious (sparking and heat), especially if the shaft of the generator is revolving at high speed.
If the atmosphere surrounding the machine contains flammable or explosive vapors, the practical
problems of spark-producing brush contacts are even greater. An AC generator (alternator) does
not require brushes and commutators to work, and so is immune to these problems experienced by
DC generators.
The benefits of AC over DC with regard to generator design is also reflected in electric motors.

While DC motors require the use of brushes to make electrical contact with moving coils of wire, AC
motors do not. In fact, AC and DC motor designs are very similar to their generator counterparts
(identical for the sake of this tutorial), the AC motor being dependent upon the reversing magnetic
field produced by alternating current through its stationary coils of wire to rotate the rotating
magnet around on its shaft, and the DC motor being dependent on the brush contacts making and
breaking connections to reverse current through the rotating coil every 1/2 rotation (180 degrees).
So we know that AC generators and AC motors tend to be simpler than DC generators and DC

motors. This relative simplicity translates into greater reliability and lower cost of manufacture.
But what else is AC good for? Surely there must be more to it than design details of generators and
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motors! Indeed there is. There is an effect of electromagnetism known as mutual induction, whereby
two or more coils of wire placed so that the changing magnetic field created by one induces a voltage
in the other. If we have two mutually inductive coils and we energize one coil with AC, we will
create an AC voltage in the other coil. When used as such, this device is known as a transformer :

Transformer

AC
voltage
source

Induced AC
voltage

The fundamental significance of a transformer is its ability to step voltage up or down from the
powered coil to the unpowered coil. The AC voltage induced in the unpowered (”secondary”) coil
is equal to the AC voltage across the powered (”primary”) coil multiplied by the ratio of secondary
coil turns to primary coil turns. If the secondary coil is powering a load, the current through
the secondary coil is just the opposite: primary coil current multiplied by the ratio of primary to
secondary turns. This relationship has a very close mechanical analogy, using torque and speed to
represent voltage and current, respectively:

+ +

Large gear

Small gear

(many teeth)

(few teeth)

AC voltage
source Load

high voltage

low current

low voltage

high current

many
turns few turns

Speed multiplication geartrain

"Step-down" transformer

high torque
low speed

low torque
high speed

If the winding ratio is reversed so that the primary coil has less turns than the secondary coil,
the transformer ”steps up” the voltage from the source level to a higher level at the load:
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++

Large gear

Small gear

(many teeth)

(few teeth)

AC voltage
source Load

low voltage

high current

high voltage

low current

few turns many turns

Speed reduction geartrain

"Step-up" transformer

low torque
high speed

high torque
low speed

The transformer’s ability to step AC voltage up or down with ease gives AC an advantage
unmatched by DC in the realm of power distribution. When transmitting electrical power over
long distances, it is far more efficient to do so with stepped-up voltages and stepped-down currents
(smaller-diameter wire with less resistive power losses), then step the voltage back down and the
current back up for industry, business, or consumer use use.

Step-up

Step-down

Power Plant

low voltage

high voltage

low voltage

. . . to other customers

Home or
Business

Transformer technology has made long-range electric power distribution practical. Without the
ability to efficiently step voltage up and down, it would be cost-prohibitive to construct power
systems for anything but close-range (within a few miles at most) use.

As useful as transformers are, they only work with AC, not DC. Because the phenomenon of
mutual inductance relies on changing magnetic fields, and direct current (DC) can only produce
steady magnetic fields, transformers simply will not work with direct current. Of course, direct
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current may be interrupted (pulsed) through the primary winding of a transformer to create a
changing magnetic field (as is done in automotive ignition systems to produce high-voltage spark
plug power from a low-voltage DC battery), but pulsed DC is not that different from AC. Perhaps
more than any other reason, this is why AC finds such widespread application in power systems.

• REVIEW:

• DC stands for ”Direct Current,” meaning voltage or current that maintains constant polarity
or direction, respectively, over time.

• AC stands for ”Alternating Current,” meaning voltage or current that changes polarity or
direction, respectively, over time.

• AC electromechanical generators, known as alternators, are of simpler construction than DC
electromechanical generators.

• AC and DC motor design follows respective generator design principles very closely.

• A transformer is a pair of mutually-inductive coils used to convey AC power from one coil to
the other. Often, the number of turns in each coil is set to create a voltage increase or decrease
from the powered (primary) coil to the unpowered (secondary) coil.

• Secondary voltage = Primary voltage (secondary turns / primary turns)

• Secondary current = Primary current (primary turns / secondary turns)

1.2 AC waveforms

When an alternator produces AC voltage, the voltage switches polarity over time, but does so in a
very particular manner. When graphed over time, the ”wave” traced by this voltage of alternating
polarity from an alternator takes on a distinct shape, known as a sine wave:

+

-

Time 

Graph of AC voltage over time
(the sine wave)

In the voltage plot from an electromechanical alternator, the change from one polarity to the
other is a smooth one, the voltage level changing most rapidly at the zero (”crossover”) point and
most slowly at its peak. If we were to graph the trigonometric function of ”sine” over a horizontal
range of 0 to 360 degrees, we would find the exact same pattern:
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Angle Sine(angle)

in degrees

0 ............... 0.0000 -- zero

15 ............... 0.2588

30 ............... 0.5000

45 ............... 0.7071

60 ............... 0.8660

75 ............... 0.9659

90 ............... 1.0000 -- positive peak

105 .............. 0.9659

120 .............. 0.8660

135 .............. 0.7071

150 .............. 0.5000

165 .............. 0.2588

180 .............. 0.0000 -- zero

195 .............. -0.2588

210 .............. -0.5000

225 .............. -0.7071

240 .............. -0.8660

255 .............. -0.9659

270 .............. -1.0000 -- negative peak

285 .............. -0.9659

300 .............. -0.8660

315 .............. -0.7071

330 .............. -0.5000

345 .............. -0.2588

360 .............. 0.0000 -- zero

The reason why an electromechanical alternator outputs sine-wave AC is due to the physics of
its operation. The voltage produced by the stationary coils by the motion of the rotating magnet is
proportional to the rate at which the magnetic flux is changing perpendicular to the coils (Faraday’s
Law of Electromagnetic Induction). That rate is greatest when the magnet poles are closest to the
coils, and least when the magnet poles are furthest away from the coils. Mathematically, the rate
of magnetic flux change due to a rotating magnet follows that of a sine function, so the voltage
produced by the coils follows that same function.

If we were to follow the changing voltage produced by a coil in an alternator from any point
on the sine wave graph to that point when the wave shape begins to repeat itself, we would have
marked exactly one cycle of that wave. This is most easily shown by spanning the distance between
identical peaks, but may be measured between any corresponding points on the graph. The degree
marks on the horizontal axis of the graph represent the domain of the trigonometric sine function,
and also the angular position of our simple two-pole alternator shaft as it rotates:
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one wave cycle

Alternator shaft
position (degrees)

0 90 180 270 360
(0)

90 180 270 360
(0)

one wave cycle

Since the horizontal axis of this graph can mark the passage of time as well as shaft position in
degrees, the dimension marked for one cycle is often measured in a unit of time, most often seconds
or fractions of a second. When expressed as a measurement, this is often called the period of a wave.
The period of a wave in degrees is always 360, but the amount of time one period occupies depends
on the rate voltage oscillates back and forth.
A more popular measure for describing the alternating rate of an AC voltage or current wave

than period is the rate of that back-and-forth oscillation. This is called frequency. The modern unit
for frequency is the Hertz (abbreviated Hz), which represents the number of wave cycles completed
during one second of time. In the United States of America, the standard power-line frequency is
60 Hz, meaning that the AC voltage oscillates at a rate of 60 complete back-and-forth cycles every
second. In Europe, where the power system frequency is 50 Hz, the AC voltage only completes 50
cycles every second. A radio station transmitter broadcasting at a frequency of 100 MHz generates
an AC voltage oscillating at a rate of 100 million cycles every second.
Prior to the canonization of the Hertz unit, frequency was simply expressed as ”cycles per

second.” Older meters and electronic equipment often bore frequency units of ”CPS” (Cycles Per
Second) instead of Hz. Many people believe the change from self-explanatory units like CPS to
Hertz constitutes a step backward in clarity. A similar change occurred when the unit of ”Celsius”
replaced that of ”Centigrade” for metric temperature measurement. The name Centigrade was
based on a 100-count (”Centi-”) scale (”-grade”) representing the melting and boiling points of
H2O, respectively. The name Celsius, on the other hand, gives no hint as to the unit’s origin or
meaning.
Period and frequency are mathematical reciprocals of one another. That is to say, if a wave has

a period of 10 seconds, its frequency will be 0.1 Hz, or 1/10 of a cycle per second:

Frequency in Hertz = 
1

Period in seconds
An instrument called an oscilloscope is used to display a changing voltage over time on a graphical

screen. You may be familiar with the appearance of an ECG or EKG (electrocardiograph) machine,
used by physicians to graph the oscillations of a patient’s heart over time. The ECG is a special-
purpose oscilloscope expressly designed for medical use. General-purpose oscilloscopes have the
ability to display voltage from virtually any voltage source, plotted as a graph with time as the
independent variable. The relationship between period and frequency is very useful to know when
displaying an AC voltage or current waveform on an oscilloscope screen. By measuring the period
of the wave on the horizontal axis of the oscilloscope screen and reciprocating that time value (in
seconds), you can determine the frequency in Hertz.
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trigger

timebase

s/div
DC GND AC

X

GNDDC
V/div

vertical

OSCILLOSCOPE

Y

AC

1m

16 divisions
@ 1ms/div =

a period of 16 ms

Frequency = 
period

1 1
16 ms

= = 62.5 Hz

Voltage and current are by no means the only physical variables subject to variation over time.
Much more common to our everyday experience is sound, which is nothing more than the alternating
compression and decompression (pressure waves) of air molecules, interpreted by our ears as a phys-
ical sensation. Because alternating current is a wave phenomenon, it shares many of the properties
of other wave phenomena, like sound. For this reason, sound (especially structured music) provides
an excellent analogy for relating AC concepts.

In musical terms, frequency is equivalent to pitch. Low-pitch notes such as those produced by
a tuba or bassoon consist of air molecule vibrations that are relatively slow (low frequency). High-
pitch notes such as those produced by a flute or whistle consist of the same type of vibrations in
the air, only vibrating at a much faster rate (higher frequency). Here is a table showing the actual
frequencies for a range of common musical notes:
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C (middle)

Note Musical designation

C

C sharp (or D flat) C# or Db

D D

D sharp (or E flat) D# or Eb

E E

F F

F sharp (or G flat) F# or Gb

G G

G sharp (or A flat) G# or Ab

A A

A sharp (or B flat) A# or Bb

B B

C

B

A sharp (or B flat) A# or Bb

A A1 220.00

440.00

261.63

Frequency (in hertz)

B1

C1

293.66

233.08

246.94

277.18

311.13

329.63

349.23

369.99

392.00

415.30

466.16

493.88

523.25

Astute observers will notice that all notes on the table bearing the same letter designation are
related by a frequency ratio of 2:1. For example, the first frequency shown (designated with the
letter ”A”) is 220 Hz. The next highest ”A” note has a frequency of 440 Hz – exactly twice as many
sound wave cycles per second. The same 2:1 ratio holds true for the first A sharp (233.08 Hz) and
the next A sharp (466.16 Hz), and for all note pairs found in the table.

Audibly, two notes whose frequencies are exactly double each other sound remarkably similar.
This similarity in sound is musically recognized, the shortest span on a musical scale separating such
note pairs being called an octave. Following this rule, the next highest ”A” note (one octave above
440 Hz) will be 880 Hz, the next lowest ”A” (one octave below 220 Hz) will be 110 Hz. A view of a
piano keyboard helps to put this scale into perspective:

C D E F G A B C D E F G A BC D E F G A B

C#

Db
D#

Eb
F#

Gb
G#

Ab
A#

Bb
C#

Db
D#

Eb
F#

Gb
G#

Ab
A#

Bb
C#

Db
D#

Eb
F#

Gb
G#

Ab
A#

Bb

one octave

As you can see, one octave is equal to eight white keys’ worth of distance on a piano keyboard.
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The familiar musical mnemonic (doe-ray-mee-fah-so-lah-tee-doe) – yes, the same pattern immor-
talized in the whimsical Rodgers and Hammerstein song sung in The Sound of Music – covers one
octave from C to C.
While electromechanical alternators and many other physical phenomena naturally produce sine

waves, this is not the only kind of alternating wave in existence. Other ”waveforms” of AC are
commonly produced within electronic circuitry. Here are but a few sample waveforms and their
common designations:

Square wave Triangle wave

Sawtooth wave

one wave cycle one wave cycle

These waveforms are by no means the only kinds of waveforms in existence. They’re simply a
few that are common enough to have been given distinct names. Even in circuits that are supposed
to manifest ”pure” sine, square, triangle, or sawtooth voltage/current waveforms, the real-life result
is often a distorted version of the intended waveshape. Some waveforms are so complex that they
defy classification as a particular ”type” (including waveforms associated with many kinds of musical
instruments). Generally speaking, any waveshape bearing close resemblance to a perfect sine wave
is termed sinusoidal, anything different being labeled as non-sinusoidal. Being that the waveform of
an AC voltage or current is crucial to its impact in a circuit, we need to be aware of the fact that
AC waves come in a variety of shapes.

• REVIEW:

• AC produced by an electromechanical alternator follows the graphical shape of a sine wave.

• One cycle of a wave is one complete evolution of its shape until the point that it is ready to
repeat itself.

• The period of a wave is the amount of time it takes to complete one cycle.

• Frequency is the number of complete cycles that a wave completes in a given amount of time.
Usually measured in Hertz (Hz), 1 Hz being equal to one complete wave cycle per second.

• Frequency = 1/(period in seconds)
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1.3 Measurements of AC magnitude

So far we know that AC voltage alternates in polarity and AC current alternates in direction. We
also know that AC can alternate in a variety of different ways, and by tracing the alternation over
time we can plot it as a ”waveform.” We can measure the rate of alternation by measuring the time
it takes for a wave to evolve before it repeats itself (the ”period”), and express this as cycles per
unit time, or ”frequency.” In music, frequency is the same as pitch, which is the essential property
distinguishing one note from another.

However, we encounter a measurement problem if we try to express how large or small an AC
quantity is. With DC, where quantities of voltage and current are generally stable, we have little
trouble expressing how much voltage or current we have in any part of a circuit. But how do you
grant a single measurement of magnitude to something that is constantly changing?

One way to express the intensity, or magnitude (also called the amplitude), of an AC quantity
is to measure its peak height on a waveform graph. This is known as the peak or crest value of an
AC waveform:

Time 

Peak

Another way is to measure the total height between opposite peaks. This is known as the
peak-to-peak (P-P) value of an AC waveform:

Time 

Peak-to-Peak

Unfortunately, either one of these expressions of waveform amplitude can be misleading when
comparing two different types of waves. For example, a square wave peaking at 10 volts is obviously
a greater amount of voltage for a greater amount of time than a triangle wave peaking at 10 volts.
The effects of these two AC voltages powering a load would be quite different:
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Time 

10 V

10 V
(peak)

10 V
(peak)

more heat energy
dissipated

dissipated
less heat energy

(same load resistance)

One way of expressing the amplitude of different waveshapes in a more equivalent fashion is to
mathematically average the values of all the points on a waveform’s graph to a single, aggregate
number. This amplitude measure is known simply as the average value of the waveform. If we
average all the points on the waveform algebraically (that is, to consider their sign, either positive
or negative), the average value for most waveforms is technically zero, because all the positive points
cancel out all the negative points over a full cycle:

+
+

+
+ + +

+
+

+

-
-

-
- -

-
-

-
-

True average value of all points
(considering their signs) is zero!

This, of course, will be true for any waveform having equal-area portions above and below the
”zero” line of a plot. However, as a practical measure of a waveform’s aggregate value, ”average” is
usually defined as the mathematical mean of all the points’ absolute values over a cycle. In other
words, we calculate the practical average value of the waveform by considering all points on the wave
as positive quantities, as if the waveform looked like this:
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+
+

+
+ + +

+
+
++

+
+

+ + +
+

+
+

Practical average of points, all
values assumed to be positive.

Polarity-insensitive mechanical meter movements (meters designed to respond equally to the
positive and negative half-cycles of an alternating voltage or current) register in proportion to
the waveform’s (practical) average value, because the inertia of the pointer against the tension of
the spring naturally averages the force produced by the varying voltage/current values over time.
Conversely, polarity-sensitive meter movements vibrate uselessly if exposed to AC voltage or current,
their needles oscillating rapidly about the zero mark, indicating the true (algebraic) average value of
zero for a symmetrical waveform. When the ”average” value of a waveform is referenced in this text,
it will be assumed that the ”practical” definition of average is intended unless otherwise specified.

Another method of deriving an aggregate value for waveform amplitude is based on the wave-
form’s ability to do useful work when applied to a load resistance. Unfortunately, an AC mea-
surement based on work performed by a waveform is not the same as that waveform’s ”average”
value, because the power dissipated by a given load (work performed per unit time) is not directly
proportional to the magnitude of either the voltage or current impressed upon it. Rather, power is
proportional to the square of the voltage or current applied to a resistance (P = E2/R, and P =
I2R). Although the mathematics of such an amplitude measurement might not be straightforward,
the utility of it is.

Consider a bandsaw and a jigsaw, two pieces of modern woodworking equipment. Both types of
saws cut with a thin, toothed, motor-powered metal blade to cut wood. But while the bandsaw uses
a continuous motion of the blade to cut, the jigsaw uses a back-and-forth motion. The comparison
of alternating current (AC) to direct current (DC) may be likened to the comparison of these two
saw types:

blade
motion

(analogous to DC)

blade
motion

(analogous to AC)

Bandsaw

Jigsaw

wood

wood

The problem of trying to describe the changing quantities of AC voltage or current in a single,
aggregate measurement is also present in this saw analogy: how might we express the speed of a
jigsaw blade? A bandsaw blade moves with a constant speed, similar to the way DC voltage pushes
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or DC current moves with a constant magnitude. A jigsaw blade, on the other hand, moves back
and forth, its blade speed constantly changing. What is more, the back-and-forth motion of any two
jigsaws may not be of the same type, depending on the mechanical design of the saws. One jigsaw
might move its blade with a sine-wave motion, while another with a triangle-wave motion. To rate
a jigsaw based on its peak blade speed would be quite misleading when comparing one jigsaw to
another (or a jigsaw with a bandsaw!). Despite the fact that these different saws move their blades
in different manners, they are equal in one respect: they all cut wood, and a quantitative comparison
of this common function can serve as a common basis for which to rate blade speed.
Picture a jigsaw and bandsaw side-by-side, equipped with identical blades (same tooth pitch,

angle, etc.), equally capable of cutting the same thickness of the same type of wood at the same
rate. We might say that the two saws were equivalent or equal in their cutting capacity. Might this
comparison be used to assign a ”bandsaw equivalent” blade speed to the jigsaw’s back-and-forth
blade motion; to relate the wood-cutting effectiveness of one to the other? This is the general idea
used to assign a ”DC equivalent” measurement to any AC voltage or current: whatever magnitude
of DC voltage or current would produce the same amount of heat energy dissipation through an
equal resistance:

RMS

power
dissipated

power
dissipated10 V

10 V

2 Ω

2 Ω

50 W

50 W

5 A RMS

5 A RMS

5 A

5 A

Equal power dissipated through
equal resistance loads

In the two circuits above, we have the same amount of load resistance (2 Ω) dissipating the same
amount of power in the form of heat (50 watts), one powered by AC and the other by DC. Because
the AC voltage source pictured above is equivalent (in terms of power delivered to a load) to a 10 volt
DC battery, we would call this a ”10 volt” AC source. More specifically, we would denote its voltage
value as being 10 volts RMS. The qualifier ”RMS” stands for Root Mean Square, the algorithm used
to obtain the DC equivalent value from points on a graph (essentially, the procedure consists of
squaring all the positive and negative points on a waveform graph, averaging those squared values,
then taking the square root of that average to obtain the final answer). Sometimes the alternative
terms equivalent or DC equivalent are used instead of ”RMS,” but the quantity and principle are
both the same.
RMS amplitude measurement is the best way to relate AC quantities to DC quantities, or other

AC quantities of differing waveform shapes, when dealing with measurements of electric power. For
other considerations, peak or peak-to-peak measurements may be the best to employ. For instance,
when determining the proper size of wire (ampacity) to conduct electric power from a source to
a load, RMS current measurement is the best to use, because the principal concern with current
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is overheating of the wire, which is a function of power dissipation caused by current through the
resistance of the wire. However, when rating insulators for service in high-voltage AC applications,
peak voltage measurements are the most appropriate, because the principal concern here is insulator
”flashover” caused by brief spikes of voltage, irrespective of time.

Peak and peak-to-peak measurements are best performed with an oscilloscope, which can capture
the crests of the waveform with a high degree of accuracy due to the fast action of the cathode-
ray-tube in response to changes in voltage. For RMS measurements, analog meter movements
(D’Arsonval, Weston, iron vane, electrodynamometer) will work so long as they have been calibrated
in RMS figures. Because the mechanical inertia and dampening effects of an electromechanical meter
movement makes the deflection of the needle naturally proportional to the average value of the AC,
not the true RMS value, analog meters must be specifically calibrated (or mis-calibrated, depending
on how you look at it) to indicate voltage or current in RMS units. The accuracy of this calibration
depends on an assumed waveshape, usually a sine wave.

Electronic meters specifically designed for RMS measurement are best for the task. Some in-
strument manufacturers have designed ingenious methods for determining the RMS value of any
waveform. One such manufacturer produces ”True-RMS” meters with a tiny resistive heating ele-
ment powered by a voltage proportional to that being measured. The heating effect of that resistance
element is measured thermally to give a true RMS value with no mathematical calculations whatso-
ever, just the laws of physics in action in fulfillment of the definition of RMS. The accuracy of this
type of RMS measurement is independent of waveshape.

For ”pure” waveforms, simple conversion coefficients exist for equating Peak, Peak-to-Peak, Av-
erage (practical, not algebraic), and RMS measurements to one another:

RMS = 0.707 (Peak)

AVG = 0.637 (Peak)

P-P = 2 (Peak)

RMS = Peak

AVG = Peak

P-P = 2 (Peak)

RMS = 0.577 (Peak)

AVG = 0.5 (Peak)

P-P = 2 (Peak)

In addition to RMS, average, peak (crest), and peak-to-peak measures of an AC waveform, there
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are ratios expressing the proportionality between some of these fundamental measurements. The
crest factor of an AC waveform, for instance, is the ratio of its peak (crest) value divided by its RMS
value. The form factor of an AC waveform is the ratio of its peak value divided by its average value.
Square-shaped waveforms always have crest and form factors equal to 1, since the peak is the same
as the RMS and average values. Sinusoidal waveforms have crest factors of 1.414 (the square root
of 2) and form factors of 1.571 (π/2). Triangle- and sawtooth-shaped waveforms have crest values
of 1.732 (the square root of 3) and form factors of 2.
Bear in mind that the conversion constants shown here for peak, RMS, and average amplitudes

of sine waves, square waves, and triangle waves hold true only for pure forms of these waveshapes.
The RMS and average values of distorted waveshapes are not related by the same ratios:

RMS = ???

AVG = ???

P-P = 2 (Peak)

This is a very important concept to understand when using an analog meter movement to measure
AC voltage or current. An analog movement, calibrated to indicate sine-wave RMS amplitude, will
only be accurate when measuring pure sine waves. If the waveform of the voltage or current being
measured is anything but a pure sine wave, the indication given by the meter will not be the true
RMS value of the waveform, because the degree of needle deflection in an analog meter movement is
proportional to the average value of the waveform, not the RMS. RMS meter calibration is obtained
by ”skewing” the span of the meter so that it displays a small multiple of the average value, which
will be equal to be the RMS value for a particular waveshape and a particular waveshape only.
Since the sine-wave shape is most common in electrical measurements, it is the waveshape as-

sumed for analog meter calibration, and the small multiple used in the calibration of the meter is
1.1107 (the form factor π/2 divided by the crest factor 1.414: the ratio of RMS divided by average
for a sinusoidal waveform). Any waveshape other than a pure sine wave will have a different ratio
of RMS and average values, and thus a meter calibrated for sine-wave voltage or current will not
indicate true RMS when reading a non-sinusoidal wave. Bear in mind that this limitation applies
only to simple, analog AC meters not employing ”True-RMS” technology.

• REVIEW:

• The amplitude of an AC waveform is its height as depicted on a graph over time. An amplitude
measurement can take the form of peak, peak-to-peak, average, or RMS quantity.

• Peak amplitude is the height of an AC waveform as measured from the zero mark to the highest
positive or lowest negative point on a graph. Also known as the crest amplitude of a wave.

• Peak-to-peak amplitude is the total height of an AC waveform as measured from maximum
positive to maximum negative peaks on a graph. Often abbreviated as ”P-P”.

• Average amplitude is the mathematical ”mean” of all a waveform’s points over the period of
one cycle. Technically, the average amplitude of any waveform with equal-area portions above
and below the ”zero” line on a graph is zero. However, as a practical measure of amplitude,
a waveform’s average value is often calculated as the mathematical mean of all the points’
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absolute values (taking all the negative values and considering them as positive). For a sine
wave, the average value so calculated is approximately 0.637 of its peak value.

• ”RMS” stands for Root Mean Square, and is a way of expressing an AC quantity of voltage or
current in terms functionally equivalent to DC. For example, 10 volts AC RMS is the amount
of voltage that would produce the same amount of heat dissipation across a resistor of given
value as a 10 volt DC power supply. Also known as the ”equivalent” or ”DC equivalent” value
of an AC voltage or current. For a sine wave, the RMS value is approximately 0.707 of its
peak value.

• The crest factor of an AC waveform is the ratio of its peak (crest) to its RMS value.

• The form factor of an AC waveform is the ratio of its peak (crest) value to its average value.

• Analog, electromechanical meter movements respond proportionally to the average value of
an AC voltage or current. When RMS indication is desired, the meter’s calibration must be
”skewed” accordingly. This means that the accuracy of an electromechanical meter’s RMS
indication is dependent on the purity of the waveform: whether it is the exact same waveshape
as the waveform used in calibrating.

1.4 Simple AC circuit calculations

Over the course of the next few chapters, you will learn that AC circuit measurements and calcu-
lations can get very complicated due to the complex nature of alternating current in circuits with
inductance and capacitance. However, with simple circuits involving nothing more than an AC
power source and resistance, the same laws and rules of DC apply simply and directly.

10 V

R1

R2

R3

100 Ω

500 Ω

400 Ω
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Rtotal = R1 + R2 + R3

Rtotal = 1 kΩ

Itotal = 
Etotal

Rtotal

Itotal =
10 V

1 kΩ

Itotal = 10 mA

ER1 = ItotalR1 ER2 = ItotalR2 ER3 = ItotalR3

ER1 = 1 V ER2 = 5 V ER3 = 4 V

Series resistances still add, parallel resistances still diminish, and the Laws of Kirchhoff and
Ohm still hold true. Actually, as we will discover later on, these rules and laws always hold true,
it’s just that we have to express the quantities of voltage, current, and opposition to current in more
advanced mathematical forms. With purely resistive circuits, however, these complexities of AC are
of no practical consequence, and so we can treat the numbers as though we were dealing with simple
DC quantities.
Because all these mathematical relationships still hold true, we can make use of our familiar

”table” method of organizing circuit values just as with DC:

E

I

R

Volts

Amps

Ohms

1

100

R1 R2 R3 Total

10

400500

10m 10m 10m 10m

1k

5 4

One major caveat needs to be given here: all measurements of AC voltage and current must be
expressed in the same terms (peak, peak-to-peak, average, or RMS). If the source voltage is given in
peak AC volts, then all currents and voltages subsequently calculated are cast in terms of peak units.
If the source voltage is given in AC RMS volts, then all calculated currents and voltages are cast in
AC RMS units as well. This holds true for any calculation based on Ohm’s Laws, Kirchhoff’s Laws,
etc. Unless otherwise stated, all values of voltage and current in AC circuits are generally assumed to
be RMS rather than peak, average, or peak-to-peak. In some areas of electronics, peak measurements
are assumed, but in most applications (especially industrial electronics) the assumption is RMS.

• REVIEW:

• All the old rules and laws of DC (Kirchhoff’s Voltage and Current Laws, Ohm’s Law) still hold
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true for AC. However, with more complex circuits, we may need to represent the AC quantities
in more complex form. More on this later, I promise!

• The ”table” method of organizing circuit values is still a valid analysis tool for AC circuits.

1.5 AC phase

Things start to get complicated when we need to relate two or more AC voltages or currents that are
out of step with each other. By ”out of step,” I mean that the two waveforms are not synchronized:
that their peaks and zero points do not match up at the same points in time. The following graph
illustrates an example of this:

A B

A B

A B

A B

A B

A B

The two waves shown above (A versus B) are of the same amplitude and frequency, but they
are out of step with each other. In technical terms, this is called a phase shift. Earlier we saw
how we could plot a ”sine wave” by calculating the trigonometric sine function for angles ranging
from 0 to 360 degrees, a full circle. The starting point of a sine wave was zero amplitude at zero
degrees, progressing to full positive amplitude at 90 degrees, zero at 180 degrees, full negative at 270
degrees, and back to the starting point of zero at 360 degrees. We can use this angle scale along the
horizontal axis of our waveform plot to express just how far out of step one wave is with another:

A B

0 90 180 270 360
(0)

90 180 270 360
(0)

0 90 180 270 360
(0)

90 180 270 360
(0)

A

B

degrees

degrees

The shift between these two waveforms is about 45 degrees, the ”A” wave being ahead of the
”B” wave. A sampling of different phase shifts is given in the following graphs to better illustrate
this concept:
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A B

Phase shift = 90 degrees

     A is ahead of B

(A "leads" B)

B A

Phase shift = 90 degrees

B is ahead of A

(B "leads" A)

A

B

Phase shift = 180 degrees

A and B waveforms are

mirror-images of each other

A B

Phase shift = 0 degrees

A and B waveforms are 

in perfect step with each other

Because the waveforms in the above examples are at the same frequency, they will be out of step
by the same angular amount at every point in time. For this reason, we can express phase shift for
two or more waveforms of the same frequency as a constant quantity for the entire wave, and not
just an expression of shift between any two particular points along the waves. That is, it is safe to
say something like, ”voltage ’A’ is 45 degrees out of phase with voltage ’B’.” Whichever waveform
is ahead in its evolution is said to be leading and the one behind is said to be lagging.

Phase shift, like voltage, is always a measurement relative between two things. There’s really no
such thing as a waveform with an absolute phase measurement because there’s no known universal
reference for phase. Typically in the analysis of AC circuits, the voltage waveform of the power
supply is used as a reference for phase, that voltage stated as ”xxx volts at 0 degrees.” Any other
AC voltage or current in that circuit will have its phase shift expressed in terms relative to that
source voltage.

This is what makes AC circuit calculations more complicated than DC. When applying Ohm’s
Law and Kirchhoff’s Laws, quantities of AC voltage and current must reflect phase shift as well
as amplitude. Mathematical operations of addition, subtraction, multiplication, and division must
operate on these quantities of phase shift as well as amplitude. Fortunately, there is a mathematical
system of quantities called complex numbers ideally suited for this task of representing amplitude
and phase.

Because the subject of complex numbers is so essential to the understanding of AC circuits, the
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next chapter will be devoted to that subject alone.

• REVIEW:

• Phase shift is where two or more waveforms are out of step with each other.

• The amount of phase shift between two waves can be expressed in terms of degrees, as de-
fined by the degree units on the horizontal axis of the waveform graph used in plotting the
trigonometric sine function.

• A leading waveform is defined as one waveform that is ahead of another in its evolution. A
lagging waveform is one that is behind another. Example:

•

A B

Phase shift = 90 degrees

A leads B; B lags A

• Calculations for AC circuit analysis must take into consideration both amplitude and phase
shift of voltage and current waveforms to be completely accurate. This requires the use of a
mathematical system called complex numbers.

1.6 Principles of radio

One of the more fascinating applications of electricity is in the generation of invisible ripples of
energy called radio waves. The limited scope of this lesson on alternating current does not permit
full exploration of the concept, some of the basic principles will be covered.
With Oersted’s accidental discovery of electromagnetism, it was realized that electricity and

magnetism were related to each other. When an electric current was passed through a conductor, a
magnetic field was generated perpendicular to the axis of flow. Likewise, if a conductor was exposed
to a change in magnetic flux perpendicular to the conductor, a voltage was produced along the
length of that conductor. So far, scientists knew that electricity and magnetism always seemed to
affect each other at right angles. However, a major discovery lay hidden just beneath this seemingly
simple concept of related perpendicularity, and its unveiling was one of the pivotal moments in
modern science.
This breakthrough in physics is hard to overstate. The man responsible for this conceptual

revolution was the Scottish physicist James Clerk Maxwell (1831-1879), who ”unified” the study of
electricity and magnetism in four relatively tidy equations. In essence, what he discovered was that
electric and magnetic fields were intrinsically related to one another, with or without the presence
of a conductive path for electrons to flow. Stated more formally, Maxwell’s discovery was this:

A changing electric field produces a perpendicular magnetic field, and
A changing magnetic field produces a perpendicular electric field.

All of this can take place in open space, the alternating electric and magnetic fields supporting
each other as they travel through space at the speed of light. This dynamic structure of electric and
magnetic fields propagating through space is better known as an electromagnetic wave.
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There are many kinds of natural radiative energy composed of electromagnetic waves. Even
light is electromagnetic in nature. So are X-rays and ”gamma” ray radiation. The only difference
between these kinds of electromagnetic radiation is the frequency of their oscillation (alternation of
the electric and magnetic fields back and forth in polarity). By using a source of AC voltage and a
special device called an antenna, we can create electromagnetic waves (of a much lower frequency
than that of light) with ease.

An antenna is nothing more than a device built to produce a dispersing electric or magnetic field.
Two fundamental types of antennae are the dipole and the loop:

DIPOLE LOOP

Basic antenna designs

While the dipole looks like nothing more than an open circuit, and the loop a short circuit,
these pieces of wire are effective radiators of electromagnetic fields when connected to AC sources
of the proper frequency. The two open wires of the dipole act as a sort of capacitor (two conductors
separated by a dielectric), with the electric field open to dispersal instead of being concentrated
between two closely-spaced plates. The closed wire path of the loop antenna acts like an inductor
with a large air core, again providing ample opportunity for the field to disperse away from the
antenna instead of being concentrated and contained as in a normal inductor.

As the powered dipole radiates its changing electric field into space, a changing magnetic field
is produced at right angles, thus sustaining the electric field further into space, and so on as the
wave propagates at the speed of light. As the powered loop antenna radiates its changing magnetic
field into space, a changing electric field is produced at right angles, with the same end-result of
a continuous electromagnetic wave sent away from the antenna. Either antenna achieves the same
basic task: the controlled production of an electromagnetic field.

When attached to a source of high-frequency AC power, an antenna acts as a transmitting device,
converting AC voltage and current into electromagnetic wave energy. Antennas also have the ability
to intercept electromagnetic waves and convert their energy into AC voltage and current. In this
mode, an antenna acts as a receiving device:
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AC voltage
produced

AC current
produced

electromagnetic radiation electromagnetic radiation

Radio receivers

Radio transmitters

While there is much more that may be said about antenna technology, this brief introduction is
enough to give you the general idea of what’s going on (and perhaps enough information to provoke
a few experiments).

• REVIEW:

• James Maxwell discovered that changing electric fields produce perpendicular magnetic fields,
and vice versa, even in empty space.

• A twin set of electric and magnetic fields, oscillating at right angles to each other and traveling
at the speed of light, constitutes an electromagnetic wave.

• An antenna is a device made of wire, designed to radiate a changing electric field or changing
magnetic field when powered by a high-frequency AC source, or intercept an electromagnetic
field and convert it to an AC voltage or current.

• The dipole antenna consists of two pieces of wire (not touching), primarily generating an
electric field when energized, and secondarily producing a magnetic field in space.

• The loop antenna consists of a loop of wire, primarily generating a magnetic field when ener-
gized, and secondarily producing an electric field in space.

1.7 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most recent
to first. See Appendix 2 (Contributor List) for dates and contact information.
Harvey Lew (February 7, 2004): Corrected typographical error: ”circuit” should have been

”circle”.
Duane Damiano (February 25, 2003): Pointed out magnetic polarity error in DC generator

illustration.
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Mark D. Zarella (April 28, 2002): Suggestion for improving explanation of ”average” waveform
amplitude.
John Symonds (March 28, 2002): Suggestion for improving explanation of the unit ”Hertz.”
Jason Starck (June 2000): HTML document formatting, which led to a much better-looking

second edition.
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2.1 Introduction

If I needed to describe the distance between two cities, I could provide an answer consisting of a
single number in miles, kilometers, or some other unit of linear measurement. However, if I were to
describe how to travel from one city to another, I would have to provide more information than just
the distance between those two cities; I would also have to provide information about the direction
to travel, as well.
The kind of information that expresses a single dimension, such as linear distance, is called a

scalar quantity in mathematics. Scalar numbers are the kind of numbers you’ve used in most all of
your mathematical applications so far. The voltage produced by a battery, for example, is a scalar
quantity. So is the resistance of a piece of wire (ohms), or the current through it (amps).
However, when we begin to analyze alternating current circuits, we find that quantities of voltage,

current, and even resistance (called impedance in AC) are not the familiar one-dimensional quan-
tities we’re used to measuring in DC circuits. Rather, these quantities, because they’re dynamic
(alternating in direction and amplitude), possess other dimensions that must be taken into account.
Frequency and phase shift are two of these dimensions that come into play. Even with relatively
simple AC circuits, where we’re only dealing with a single frequency, we still have the dimension of
phase shift to contend with in addition to the amplitude.

27
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In order to successfully analyze AC circuits, we need to work with mathematical objects and
techniques capable of representing these multi-dimensional quantities. Here is where we need to
abandon scalar numbers for something better suited: complex numbers. Just like the example of
giving directions from one city to another, AC quantities in a single-frequency circuit have both
amplitude (analogy: distance) and phase shift (analogy: direction). A complex number is a single
mathematical quantity able to express these two dimensions of amplitude and phase shift at once.

Complex numbers are easier to grasp when they’re represented graphically. If I draw a line with
a certain length (magnitude) and angle (direction), I have a graphic representation of a complex
number which is commonly known in physics as a vector :

length = 7
angle = 0 degrees

length = 10
angle = 180 degrees

length = 5
angle = 90 degrees

length = 4
angle = 270 degrees

(-90 degrees)

length = 5.66
angle = 45 degrees

length = 9.43

(-57.99 degrees)
angle = 302.01 degrees

Like distances and directions on a map, there must be some common frame of reference for angle
figures to have any meaning. In this case, directly right is considered to be 0o, and angles are counted
in a positive direction going counter-clockwise:
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0o

90o

180o

270o

(-90o)

The vector "compass"

The idea of representing a number in graphical form is nothing new. We all learned this in grade
school with the ”number line:”

0 1 2 3 4 5 6 7 8 9 10

. . .

We even learned how addition and subtraction works by seeing how lengths (magnitudes) stacked
up to give a final answer:

0 1 2 3 4 5 6 7 8 9 10

. . .
5 3

8

5 + 3 = 8

Later, we learned that there were ways to designate the values between the whole numbers marked
on the line. These were fractional or decimal quantities:

0 1 2 3 4 5 6 7 8 9 10

. . .

3-1/2 or 3.5

Later yet we learned that the number line could extend to the left of zero as well:
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0 1 2 3 4 5

. . .. . .

-1-2-3-4-5

These fields of numbers (whole, integer, rational, irrational, real, etc.) learned in grade school
share a common trait: they’re all one-dimensional. The straightness of the number line illustrates
this graphically. You can move up or down the number line, but all ”motion” along that line is
restricted to a single axis (horizontal). One-dimensional, scalar numbers are perfectly adequate
for counting beads, representing weight, or measuring DC battery voltage, but they fall short of
being able to represent something more complex like the distance and direction between two cities,
or the amplitude and phase of an AC waveform. To represent these kinds of quantities, we need
multidimensional representations. In other words, we need a number line that can point in different
directions, and that’s exactly what a vector is.

• REVIEW:

• A scalar number is the type of mathematical object that people are used to using in everyday
life: a one-dimensional quantity like temperature, length, weight, etc.

• A complex number is a mathematical quantity representing two dimensions of magnitude and
direction.

• A vector is a graphical representation of a complex number. It looks like an arrow, with a
starting point, a tip, a definite length, and a definite direction. Sometimes the word phasor
is used in electrical applications where the angle of the vector represents phase shift between
waveforms.

2.2 Vectors and AC waveforms

Okay, so how exactly can we represent AC quantities of voltage or current in the form of a vector?
The length of the vector represents the magnitude (or amplitude) of the waveform, like this:
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Amplitude
Length

Waveform Vector representation

The greater the amplitude of the waveform, the greater the length of its corresponding vector.
The angle of the vector, however, represents the phase shift in degrees between the waveform in
question and another waveform acting as a ”reference” in time. Usually, when the phase of a
waveform in a circuit is expressed, it is referenced to the power supply voltage waveform (arbitrarily
stated to be ”at” 0o). Remember that phase is always a relative measurement between two waveforms
rather than an absolute property.
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A B

Phase shift = 90 degrees

     A is ahead of B

(A "leads" B)

B A

Phase shift = 90 degrees

B is ahead of A

(B "leads" A)

A

B
Phase shift = 180 degrees

A and B waveforms are

mirror-images of each other

A B

Phase shift = 0 degrees

A and B waveforms are 

in perfect step with each other

(of "A" waveform with
reference to "B" waveform)

B

A

B

A

BA

A B

90 degrees

-90 degrees

180 degrees

Waveforms Phase relations Vector representations

BA

B

A

phase shift

angle

The greater the phase shift in degrees between two waveforms, the greater the angle difference
between the corresponding vectors. Being a relative measurement, like voltage, phase shift (vector
angle) only has meaning in reference to some standard waveform. Generally this ”reference” wave-
form is the main AC power supply voltage in the circuit. If there is more than one AC voltage source,
then one of those sources is arbitrarily chosen to be the phase reference for all other measurements
in the circuit.
This concept of a reference point is not unlike that of the ”ground” point in a circuit for the

benefit of voltage reference. With a clearly defined point in the circuit declared to be ”ground,” it
becomes possible to talk about voltage ”on” or ”at” single points in a circuit, being understood that
those voltages (always relative between two points) are referenced to ”ground.” Correspondingly,
with a clearly defined point of reference for phase it becomes possible to speak of voltages and
currents in an AC circuit having definite phase angles. For example, if the current in an AC circuit
is described as ”24.3 milliamps at -64 degrees,” it means that the current waveform has an amplitude
of 24.3 mA, and it lags 64o behind the reference waveform, usually assumed to be the main source
voltage waveform.

• REVIEW:
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• When used to describe an AC quantity, the length of a vector represents the amplitude of the
wave while the angle of a vector represents the phase angle of the wave relative to some other
(reference) waveform.

2.3 Simple vector addition

Remember that vectors are mathematical objects just like numbers on a number line: they can
be added, subtracted, multiplied, and divided. Addition is perhaps the easiest vector operation
to visualize, so we’ll begin with that. If vectors with common angles are added, their magnitudes
(lengths) add up just like regular scalar quantities:

length = 6

angle = 0 degrees

length = 8

angle = 0 degrees

total length = 6 + 8 = 14

angle = 0 degrees

Similarly, if AC voltage sources with the same phase angle are connected together in series, their
voltages add just as you might expect with DC batteries:

0 deg 0 deg

0 deg

- + - +

- +

- + - +

- +

6 V 8 V

14 V 14 V

6 V 8 V

Please note the (+) and (-) polarity marks next to the leads of the two AC sources. Even though
we know AC doesn’t have ”polarity” in the same sense that DC does, these marks are essential to
knowing how to reference the given phase angles of the voltages. This will become more apparent
in the next example.
If vectors directly opposing each other (180o out of phase) are added together, their magnitudes

(lengths) subtract just like positive and negative scalar quantities subtract when added:

length = 6 angle = 0 degrees

length = 8

total length = 6 - 8 = -2 at 0 degrees

angle = 180 degrees

or   2 at 180 degrees

Similarly, if opposing AC voltage sources are connected in series, their voltages subtract as you
might expect with DC batteries connected in an opposing fashion:



34 CHAPTER 2. COMPLEX NUMBERS

0 deg
- + - +

- +

- + -+

-+

180 deg

180 deg

6 V 8 V
6 V 8 V

2 V 2 V

Determining whether or not these voltage sources are opposing each other requires an exami-
nation of their polarity markings and their phase angles. Notice how the polarity markings in the
above diagram seem to indicate additive voltages (from left to right, we see - and + on the 6 volt
source, - and + on the 8 volt source). Even though these polarity markings would normally indicate
an additive effect in a DC circuit (the two voltages working together to produce a greater total volt-
age), in this AC circuit they’re actually pushing in opposite directions because one of those voltages
has a phase angle of 0o and the other a phase angle of 180o. The result, of course, is a total voltage
of 2 volts.

We could have just as well shown the opposing voltages subtracting in series like this:

0 deg
- + - +

- +

- +

-+
180 deg

6 V
8 V

6 V
8 V

2 V 2 V

0 deg

- +

Note how the polarities appear to be opposed to each other now, due to the reversal of wire
connections on the 8 volt source. Since both sources are described as having equal phase angles (0o),
they truly are opposed to one another, and the overall effect is the same as the former scenario with
”additive” polarities and differing phase angles: a total voltage of only 2 volts.
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0 deg
- + -+

- +

180 deg

0 deg

0 deg
+ -

6 V 8 V

2 V

2 V

Just as there are two ways to
express the phase of the sources,
there are two ways to express
their resultant sum.

The resultant voltage can be expressed in two different ways: 2 volts at 180o with the (-) symbol
on the left and the (+) symbol on the right, or 2 volts at 0o with the (+) symbol on the left and the
(-) symbol on the right. A reversal of wires from an AC voltage source is the same as phase-shifting
that source by 180o.

8 V
180 deg
- +

8 V

-+
0 degThese voltage sources

are equivalent!

2.4 Complex vector addition

If vectors with uncommon angles are added, their magnitudes (lengths) add up quite differently than
that of scalar magnitudes:

length = 6
angle = 0 degrees

length = 8
angle = 90 degrees

length = 10
angle = 53.13

degrees

6 at 0 degrees

8 at 90 degrees+

10 at 53.13 degrees

Vector addition
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If two AC voltages – 90o out of phase – are added together by being connected in series, their
voltage magnitudes do not directly add or subtract as with scalar voltages in DC. Instead, these
voltage quantities are complex quantities, and just like the above vectors, which add up in a trigono-
metric fashion, a 6 volt source at 0o added to an 8 volt source at 90o results in 10 volts at a phase
angle of 53.13o:

0 deg
- + - +

90 deg

53.13 deg
- +

6 V 8 V

10 V

Compared to DC circuit analysis, this is very strange indeed. Note that it’s possible to obtain
voltmeter indications of 6 and 8 volts, respectively, across the two AC voltage sources, yet only read
10 volts for a total voltage!
There is no suitable DC analogy for what we’re seeing here with two AC voltages slightly out

of phase. DC voltages can only directly aid or directly oppose, with nothing in between. With
AC, two voltages can be aiding or opposing one another to any degree between fully-aiding and
fully-opposing, inclusive. Without the use of vector (complex number) notation to describe AC
quantities, it would be very difficult to perform mathematical calculations for AC circuit analysis.
In the next section, we’ll learn how to represent vector quantities in symbolic rather than graph-

ical form. Vector and triangle diagrams suffice to illustrate the general concept, but more precise
methods of symbolism must be used if any serious calculations are to be performed on these quan-
tities.

• REVIEW:

• DC voltages can only either directly aid or directly oppose each other when connected in series.
AC voltages may aid or oppose to any degree depending on the phase shift between them.

2.5 Polar and rectangular notation

In order to work with these complex numbers without drawing vectors, we first need some kind of
standard mathematical notation. There are two basic forms of complex number notation: polar and
rectangular.
Polar form is where a complex number is denoted by the length (otherwise known as the mag-

nitude, absolute value, or modulus) and the angle of its vector (usually denoted by an angle symbol
that looks like this: 6 ). To use the map analogy, polar notation for the vector from New York City
to San Diego would be something like ”2400 miles, southwest.” Here are two examples of vectors
and their polar notations:
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8.49 ∠ 45o

8.06 ∠ -29.74o

(8.06 ∠ 330.26o)

5.39 ∠ 158.2o
7.81 ∠ 230.19o

(7.81 ∠ -129.81o)

Note: the proper notation for designating a vector’s angle
is this symbol: ∠

Standard orientation for vector angles in AC circuit calculations defines 0o as being to the right
(horizontal), making 90o straight up, 180o to the left, and 270o straight down. Please note that
vectors angled ”down” can have angles represented in polar form as positive numbers in excess of
180, or negative numbers less than 180. For example, a vector angled 6 270o (straight down) can
also be said to have an angle of -90o. The above vector on the right (5.4 6 326o) can also be denoted
as 5.4 6 -34o.

0o

90o

180o

270o

(-90o)

The vector "compass"

Rectangular form, on the other hand, is where a complex number is denoted by its respective
horizontal and vertical components. In essence, the angled vector is taken to be the hypotenuse of a
right triangle, described by the lengths of the adjacent and opposite sides. Rather than describing
a vector’s length and direction by denoting magnitude and angle, it is described in terms of ”how
far left/right” and ”how far up/down.”

These two dimensional figures (horizontal and vertical) are symbolized by two numerical figures.
In order to distinguish the horizontal and vertical dimensions from each other, the vertical is prefixed
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with a lower-case ”i” (in pure mathematics) or ”j” (in electronics). These lower-case letters do not
represent a physical variable (such as instantaneous current, also symbolized by a lower-case letter
”i”), but rather are mathematical operators used to distinguish the vector’s vertical component from
its horizontal component. As a complete complex number, the horizontal and vertical quantities are
written as a sum:

4 + j4
"4 right and 4 up"

In "rectangular" form, a vector’s length and direction
are denoted in terms of its horizontal and vertical span,
the first number representing the horixontal ("real") and
the second number (with the "j" prefix) representing the
vertical ("imaginary") dimensions.

4 + j0

"4 right and 0 up/down"

4 - j4
"4 right and 4 down"

-4 + j0
"4 left and 0 up/down"

-4 + j4
"4 left and 4 up"

-4 -j4

"4 left and 4 down"

+j

-j

+ "imaginary"

- "imaginary"

+ "real"- "real"

The horizontal component is referred to as the real component, since that dimension is compatible
with normal, scalar (”real”) numbers. The vertical component is referred to as the imaginary
component, since that dimension lies in a different direction, totally alien to the scale of the real
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numbers.

The ”real” axis of the graph corresponds to the familiar number line we saw earlier: the one with
both positive and negative values on it. The ”imaginary” axis of the graph corresponds to another
number line situated at 90o to the ”real” one. Vectors being two-dimensional things, we must have
a two-dimensional ”map” upon which to express them, thus the two number lines perpendicular to
each other:

0
1 2 3 4 5

. . .. . .

-1-2-3-4-5

1

2

3

4

5

-1

-2

-3

-4

-5

"real" number line

"imaginary"
number line

Either method of notation is valid for complex numbers. The primary reason for having two
methods of notation is for ease of longhand calculation, rectangular form lending itself to addition
and subtraction, and polar form lending itself to multiplication and division.

Conversion between the two notational forms involves simple trigonometry. To convert from
polar to rectangular, find the real component by multiplying the polar magnitude by the cosine
of the angle, and the imaginary component by multiplying the polar magnitude by the sine of the
angle. This may be understood more readily by drawing the quantities as sides of a right triangle,
the hypotenuse of the triangle representing the vector itself (its length and angle with respect to the
horizontal constituting the polar form), the horizontal and vertical sides representing the ”real” and
”imaginary” rectangular components, respectively:
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+j3

+4

length = 5

angle =
36.87o

(polar form)

(real component)

(imaginary component)

4 + j3 (rectangular form)

(5)(cos 36.87o) = 4

(5)(sin 36.87o) = 3

5 ∠ 36.87o

To convert from rectangular to polar, find the polar magnitude through the use of the Pythagorean
Theorem (the polar magnitude is the hypotenuse of a right triangle, and the real and imaginary com-
ponents are the adjacent and opposite sides, respectively), and the angle by taking the arctangent
of the imaginary component divided by the real component:

4 + j3 (rectangular form)

c = a2 + b2 (pythagorean theorem)

polar magnitude = 42 + 32

polar magnitude = 5

polar angle = arctan
3

4

polar angle =

(polar form)

36.87o

5 ∠ 36.87o

• REVIEW:

• Polar notation denotes a complex number in terms of its vector’s length and angular direction
from the starting point. Example: fly 45 miles 6 203o (West by Southwest).

• Rectangular notation denotes a complex number in terms of its horizontal and vertical dimen-
sions. Example: drive 41 miles West, then turn and drive 18 miles South.
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• In rectangular notation, the first quantity is the ”real” component (horizontal dimension of
vector) and the second quantity is the ”imaginary” component (vertical dimension of vector).
The imaginary component is preceded by a lower-case ”j,” sometimes called the j operator.

• Both polar and rectangular forms of notation for a complex number can be related graphically
in the form of a right triangle, with the hypotenuse representing the vector itself (polar form:
hypotenuse length = magnitude; angle with respect to horizontal side = angle), the horizontal
side representing the rectangular ”real” component, and the vertical side representing the
rectangular ”imaginary” component.

2.6 Complex number arithmetic

Since complex numbers are legitimate mathematical entities, just like scalar numbers, they can
be added, subtracted, multiplied, divided, squared, inverted, and such, just like any other kind of
number. Some scientific calculators are programmed to directly perform these operations on two or
more complex numbers, but these operations can also be done ”by hand.” This section will show
you how the basic operations are performed. It is highly recommended that you equip yourself with
a scientific calculator capable of performing arithmetic functions easily on complex numbers. It will
make your study of AC circuit much more pleasant than if you’re forced to do all calculations the
longer way.

Addition and subtraction with complex numbers in rectangular form is easy. For addition, simply
add up the real components of the complex numbers to determine the real component of the sum, and
add up the imaginary components of the complex numbers to determine the imaginary component
of the sum:

2 + j5
4 - j3+

6 + j2

175 - j34
80 - j15+

255 - j49

-36 + j10
20 + j82+

-16 + j92

When subtracting complex numbers in rectangular form, simply subtract the real component of
the second complex number from the real component of the first to arrive at the real component
of the difference, and subtract the imaginary component of the second complex number from the
imaginary component of the first to arrive the imaginary component of the difference:

2 + j5
4 - j3

175 - j34
80 - j15

-36 + j10
20 + j82- - -

-2 + j8 95 - j19 -56 - j72

For longhand multiplication and division, polar is the favored notation to work with. When
multiplying complex numbers in polar form, simply multiply the polar magnitudes of the complex
numbers to determine the polar magnitude of the product, and add the angles of the complex
numbers to determine the angle of the product:
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(35 ∠ 65o)(10 ∠ -12o) = 350 ∠ 53o

(124 ∠ 250o)(11 ∠ 100o) = 1364 ∠ -10o

or
1364 ∠ 350o

(3 ∠ 30o)(5 ∠ -30o) = 15 ∠ 0o

Division of polar-form complex numbers is also easy: simply divide the polar magnitude of the
first complex number by the polar magnitude of the second complex number to arrive at the polar
magnitude of the quotient, and subtract the angle of the second complex number from the angle of
the first complex number to arrive at the angle of the quotient:

35 ∠ 65o

10 ∠ -12o =

124 ∠ 250o

11 ∠ 100o =

3 ∠ 30o

5 ∠ -30o =

3.5 ∠ 77o

11.273 ∠ 150o

0.6 ∠ 60o

To obtain the reciprocal, or ”invert” (1/x), a complex number, simply divide the number (in polar
form) into a scalar value of 1, which is nothing more than a complex number with no imaginary
component (angle = 0):

1
= =

1
= =

1
= =

1 ∠ 0o

1 ∠ 0o

1 ∠ 0o

35 ∠ 65o 35 ∠ 65o

10 ∠ -12o 10 ∠ -12o

0.0032 ∠ 10o 0.0032 ∠ 10o

0.02857 ∠ -65o

0.1 ∠ 12o

312.5 ∠ -10o

These are the basic operations you will need to know in order to manipulate complex numbers
in the analysis of AC circuits. Operations with complex numbers are by no means limited just
to addition, subtraction, multiplication, division, and inversion, however. Virtually any arithmetic
operation that can be done with scalar numbers can be done with complex numbers, including
powers, roots, solving simultaneous equations with complex coefficients, and even trigonometric
functions (although this involves a whole new perspective in trigonometry called hyperbolic functions
which is well beyond the scope of this discussion). Be sure that you’re familiar with the basic
arithmetic operations of addition, subtraction, multiplication, division, and inversion, and you’ll
have little trouble with AC circuit analysis.
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• REVIEW:

• To add complex numbers in rectangular form, add the real components and add the imaginary
components. Subtraction is similar.

• To multiply complex numbers in polar form, multiply the magnitudes and add the angles. To
divide, divide the magnitudes and subtract one angle from the other.

2.7 More on AC ”polarity”

Complex numbers are useful for AC circuit analysis because they provide a convenient method of
symbolically denoting phase shift between AC quantities like voltage and current. However, for
most people the equivalence between abstract vectors and real circuit quantities is not an easy one
to grasp. Earlier in this chapter we saw how AC voltage sources are given voltage figures in complex
form (magnitude and phase angle), as well as polarity markings. Being that alternating current
has no set ”polarity” as direct current does, these polarity markings and their relationship to phase
angle tends to be confusing. This section is written in the attempt to clarify some of these issues.
Voltage is an inherently relative quantity. When we measure a voltage, we have a choice in

how we connect a voltmeter or other voltage-measuring instrument to the source of voltage, as
there are two points between which the voltage exists, and two test leads on the instrument with
which to make connection. In DC circuits, we denote the polarity of voltage sources and voltage
drops explicitly, using ”+” and ”-” symbols, and use color-coded meter test leads (red and black).
If a digital voltmeter indicates a negative DC voltage, we know that its test leads are connected
”backward” to the voltage (red lead connected to the ”-” and black lead to the ”+”).
Batteries have their polarity designated by way of intrinsic symbology: the short-line side of a

battery is always the negative (-) side and the long-line side always the positive (+):

6 V

+

-

Although it would be mathematically correct to represent a battery’s voltage as a negative figure
with reversed polarity markings, it would be decidedly unconventional:

+

-

-6 V

Interpreting such notation might be easier if the ”+” and ”-” polarity markings were viewed as
reference points for voltmeter test leads, the ”+” meaning ”red” and the ”-” meaning ”black.” A
voltmeter connected to the above battery with red lead to the bottom terminal and black lead to
the top terminal would indeed indicate a negative voltage (-6 volts). Actually, this form of notation
and interpretation is not as unusual as you might think: it’s commonly encountered in problems of
DC network analysis where ”+” and ”-” polarity marks are initially drawn according to educated
guess, and later interpreted as correct or ”backward” according to the mathematical sign of the
figure calculated.
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In AC circuits, though, we don’t deal with ”negative” quantities of voltage. Instead, we describe
to what degree one voltage aids or opposes another by phase: the time-shift between two waveforms.
We never describe an AC voltage as being negative in sign, because the facility of polar notation
allows for vectors pointing in an opposite direction. If one AC voltage directly opposes another AC
voltage, we simply say that one is 180o out of phase with the other.

Still, voltage is relative between two points, and we have a choice in how we might connect a
voltage-measuring instrument between those two points. The mathematical sign of a DC voltmeter’s
reading has meaning only in the context of its test lead connections: which terminal the red lead is
touching, and which terminal the black lead is touching. Likewise, the phase angle of an AC voltage
has meaning only in the context of knowing which of the two points is considered the ”reference”
point. Because of this fact, ”+” and ”-” polarity marks are often placed by the terminals of an AC
voltage in schematic diagrams to give the stated phase angle a frame of reference.

Let’s review these principles with some graphical aids. First, the principle of relating test lead
connections to the mathematical sign of a DC voltmeter indication:

COMA

V

V A

A
OFF

6 V

COMA

V

V A

A
OFF

6 V

Test lead colors provide a frame of reference
for interpreting the sign (+ or -) of the meter’s
indication.

The mathematical sign of a digital DC voltmeter’s display has meaning only in the context of its
test lead connections. Consider the use of a DC voltmeter in determining whether or not two DC
voltage sources are aiding or opposing each other, assuming that both sources are unlabeled as to
their polarities. Using the voltmeter to measure across the first source:
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COMA

V

V A

A
OFF

Source 1 Source 2

Total voltage?

The meter tells us +24 volts

This first measurement of +24 across the left-hand voltage source tells us that the black lead of
the meter really is touching the negative side of voltage source #1, and the red lead of the meter
really is touching the positive. Thus, we know source #1 is a battery facing in this orientation:

Source 1 Source 2

Total voltage?

24 V

Measuring the other unknown voltage source:



46 CHAPTER 2. COMPLEX NUMBERS

COMA

V

V A

A
OFF

Source 1 Source 2

Total voltage?

The meter tells us -17 volts

This second voltmeter reading, however, is a negative (-) 17 volts, which tells us that the black
test lead is actually touching the positive side of voltage source #2, while the red test lead is actually
touching the negative. Thus, we know that source #2 is a battery facing in the opposite direction:

Source 1 Source 2

24 V 17 V

Total voltage = 7 V
- +

It should be obvious to any experienced student of DC electricity that these two batteries are
opposing one another. By definition, opposing voltages subtract from one another, so we subtract
17 volts from 24 volts to obtain the total voltage across the two: 7 volts.
We could, however, draw the two sources as nondescript boxes, labeled with the exact voltage

figures obtained by the voltmeter, the polarity marks indicating voltmeter test lead placement:

Source 1 Source 2

24 V -17 V
- + - +

According to this diagram, the polarity marks (which indicate meter test lead placement) indicate
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the sources aiding each other. By definition, aiding voltage sources add with one another to form
the total voltage, so we add 24 volts to -17 volts to obtain 7 volts: still the correct answer. If we let
the polarity markings guide our decision to either add or subtract voltage figures – whether those
polarity markings represent the true polarity or just the meter test lead orientation – and include
the mathematical signs of those voltage figures in our calculations, the result will always be correct.
Again, the polarity markings serve as frames of reference to place the voltage figures’ mathematical
signs in proper context.
The same is true for AC voltages, except that phase angle substitutes for mathematical sign.

In order to relate multiple AC voltages at different phase angles to each other, we need polarity
markings to provide frames of reference for those voltages’ phase angles.
Take for example the following circuit:

10 V ∠ 0o 6 V ∠ 45o

- + - +

14.861 V ∠ 16.59o

The polarity markings show these two voltage sources aiding each other, so to determine the
total voltage across the resistor we must add the voltage figures of 10 V 6 0o and 6 V 6 45o together
to obtain 14.861 V 6 16.59o. However, it would be perfectly acceptable to represent the 6 volt source
as 6 V 6 225o, with a reversed set of polarity markings, and still arrive at the same total voltage:

10 V ∠ 0o

- + -+
6 V ∠ 225o

14.861 V ∠ 16.59o

6 V 6 45o with negative on the left and positive on the right is exactly the same as 6 V 6

225o with positive on the left and negative on the right: the reversal of polarity markings perfectly
complements the addition of 180o to the phase angle designation:

6 V ∠ 45o

- +

. . . is equivalent to . . . 

-+
6 V ∠ 225o

Unlike DC voltage sources, whose symbols intrinsically define polarity by means of short and
long lines, AC voltage symbols have no intrinsic polarity marking. Therefore, any polarity marks
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must by included as additional symbols on the diagram, and there is no one ”correct” way in which
to place them. They must, however, correlate with the given phase angle to represent the true phase
relationship of that voltage with other voltages in the circuit.

• REVIEW:

• Polarity markings are sometimes given to AC voltages in circuit schematics in order to provide
a frame of reference for their phase angles.

2.8 Some examples with AC circuits

Let’s connect three AC voltage sources in series and use complex numbers to determine additive
voltages. All the rules and laws learned in the study of DC circuits apply to AC circuits as well
(Ohm’s Law, Kirchhoff’s Laws, network analysis methods), with the exception of power calculations
(Joule’s Law). The only qualification is that all variables must be expressed in complex form, taking
into account phase as well as magnitude, and all voltages and currents must be of the same frequency
(in order that their phase relationships remain constant).

load

+

-

-

+

-

+

E1

E2

E3

22 V ∠ -64o

12 V ∠ 35o

15 V ∠ 0o

The polarity marks for all three voltage sources are oriented in such a way that their stated volt-
ages should add to make the total voltage across the load resistor. Notice that although magnitude
and phase angle is given for each AC voltage source, no frequency value is specified. If this is the
case, it is assumed that all frequencies are equal, thus meeting our qualifications for applying DC
rules to an AC circuit (all figures given in complex form, all of the same frequency). The setup of
our equation to find total voltage appears as such:

Etotal = E1 + E2 + E3

(22 V ∠ -64o) + (12 V ∠ 35o) + (15 V ∠ 0o)Etotal =

Graphically, the vectors add up in this manner:
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22 ∠ -64o

12 ∠ 35o

15 ∠ 0o

The sum of these vectors will be a resultant vector originating at the starting point for the 22
volt vector (dot at upper-left of diagram) and terminating at the ending point for the 15 volt vector
(arrow tip at the middle-right of the diagram):

resultant vector

22 ∠ -64o

12 ∠ 35o

15 ∠ 0o

In order to determine what the resultant vector’s magnitude and angle are without resorting to
graphic images, we can convert each one of these polar-form complex numbers into rectangular form
and add. Remember, we’re adding these figures together because the polarity marks for the three
voltage sources are oriented in an additive manner:
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15 

9.8298

9.6442

+ j6.8829 V

- j19.7735 V

+ j0        V

+

34.4740 - j12.8906 V

15 V ∠ 0o = 15 + j0 V

12 V ∠ 35o = 9.8298 + j6.8829 V

22 V ∠ -64o = 9.6442 - j19.7735 V

In polar form, this equates to 36.8052 volts 6 -20.5018o. What this means in real terms is that
the voltage measured across these three voltage sources will be 36.8052 volts, lagging the 15 volt (0o

phase reference) by 20.5018o. A voltmeter connected across these points in a real circuit would only
indicate the polar magnitude of the voltage (36.8052 volts), not the angle. An oscilloscope could
be used to display two voltage waveforms and thus provide a phase shift measurement, but not a
voltmeter. The same principle holds true for AC ammeters: they indicate the polar magnitude of
the current, not the phase angle.

This is extremely important in relating calculated figures of voltage and current to real circuits.
Although rectangular notation is convenient for addition and subtraction, and was indeed the final
step in our sample problem here, it is not very applicable to practical measurements. Rectangular
figures must be converted to polar figures (specifically polar magnitude) before they can be related
to actual circuit measurements.

We can use SPICE to verify the accuracy of our results. In this test circuit, the 10 kΩ resistor
value is quite arbitrary. It’s there so that SPICE does not declare an open-circuit error and abort
analysis. Also, the choice of frequencies for the simulation (60 Hz) is quite arbitrary, because resistors
respond uniformly for all frequencies of AC voltage and current. There are other components
(notably capacitors and inductors) which do not respond uniformly to different frequencies, but that
is another subject!
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+

-

-

+

-

+

3

2

1

0

3

0

V1

V2

V3

R1 10 kΩ

22 V ∠ -64o

12 V ∠ 35o

15 V ∠ 0o

ac voltage addition

v1 1 0 ac 15 0 sin

v2 2 1 ac 12 35 sin

v3 3 2 ac 22 -64 sin

r1 3 0 10k

.ac lin 1 60 60 I’m using a frequency of 60 Hz

.print ac v(3,0) vp(3,0) as a default value

.end

freq v(3) vp(3)

6.000E+01 3.681E+01 -2.050E+01

Sure enough, we get a total voltage of 36.81 volts 6 -20.5o (with reference to the 15 volt source,
whose phase angle was arbitrarily stated at zero degrees so as to be the ”reference” waveform).

At first glance, this is counter-intuitive. How is it possible to obtain a total voltage of just over
36 volts with 15 volt, 12 volt, and 22 volt supplies connected in series? With DC, this would be
impossible, as voltage figures will either directly add or subtract, depending on polarity. But with
AC, our ”polarity” (phase shift) can vary anywhere in between full-aiding and full-opposing, and
this allows for such paradoxical summing.

What if we took the same circuit and reversed one of the supply’s connections? Its contribution
to the total voltage would then be the opposite of what it was before:
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load

+

-

-

+

-

+

E1

E2

E3

Polarity reversed on
source E2 !

22 V ∠ -64o

12 V ∠ 35o

15 V ∠ 0o

Note how the 12 volt supply’s phase angle is still referred to as 35o, even though the leads have
been reversed. Remember that the phase angle of any voltage drop is stated in reference to its noted
polarity. Even though the angle is still written as 35o, the vector will be drawn 180o opposite of
what it was before:

22 ∠ -64o

12 ∠ 35o (reversed) = 12 ∠ 215o

or
-12 ∠ 35o

15 ∠ 0o

The resultant (sum) vector should begin at the upper-left point (origin of the 22 volt vector) and
terminate at the right arrow tip of the 15 volt vector:
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resultant vector

22 ∠ -64o

12 ∠ 35o (reversed) = 12 ∠ 215o

or
-12 ∠ 35ο

15 ∠ 0o

The connection reversal on the 12 volt supply can be represented in two different ways in polar
form: by an addition of 180o to its vector angle (making it 12 volts 6 215o), or a reversal of sign on
the magnitude (making it -12 volts 6 35o). Either way, conversion to rectangular form yields the
same result:

(reversed) =

or
=

=

-9.8298 - j6.8829 V

-9.8298 - j6.8829 V

12 V ∠ 215o

-12 V ∠ 35o

12 V ∠ 35o

The resulting addition of voltages in rectangular form, then:

15 

9.6442 - j19.7735 V

+ j0        V

+

-9.8298 - j6.8829 V

14.8143 - j26.6564 V

In polar form, this equates to 30.4964 V 6 -60.9368o. Once again, we will use SPICE to verify
the results of our calculations:

ac voltage addition

v1 1 0 ac 15 0 sin

v2 1 2 ac 12 35 sin Note the reversal of node numbers 2 and 1

v3 3 2 ac 22 -64 sin to simulate the swapping of connections

r1 3 0 10k

.ac lin 1 60 60

.print ac v(3,0) vp(3,0)

.end
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freq v(3) vp(3)

6.000E+01 3.050E+01 -6.094E+01

• REVIEW:

• All the laws and rules of DC circuits apply to AC circuits, with the exception of power cal-
culations (Joule’s Law), so long as all values are expressed and manipulated in complex form,
and all voltages and currents are at the same frequency.

• When reversing the direction of a vector (equivalent to reversing the polarity of an AC voltage
source in relation to other voltage sources), it can be expressed in either of two different ways:
adding 180o to the angle, or reversing the sign of the magnitude.

• Meter measurements in an AC circuit correspond to the polar magnitudes of calculated values.
Rectangular expressions of complex quantities in an AC circuit have no direct, empirical equiv-
alent, although they are convenient for performing addition and subtraction, as Kirchhoff’s
Voltage and Current Laws require.

2.9 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most recent
to first. See Appendix 2 (Contributor List) for dates and contact information.
Jason Starck (June 2000): HTML document formatting, which led to a much better-looking

second edition.
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3.1 AC resistor circuits

R

If we were to plot the current and voltage for a very simple AC circuit consisting of a source and
a resistor, it would look something like this:

55
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Time 

+

-

e =
i =

Because the resistor simply and directly resists the flow of electrons at all periods of time, the
waveform for the voltage drop across the resistor is exactly in phase with the waveform for the
current through it. We can look at any point in time along the horizontal axis of the plot and
compare those values of current and voltage with each other (any ”snapshot” look at the values of
a wave are referred to as instantaneous values, meaning the values at that instant in time). When
the instantaneous value for current is zero, the instantaneous voltage across the resistor is also zero.
Likewise, at the moment in time where the current through the resistor is at its positive peak, the
voltage across the resistor is also at its positive peak, and so on. At any given point in time along
the waves, Ohm’s Law holds true for the instantaneous values of voltage and current.
We can also calculate the power dissipated by this resistor, and plot those values on the same

graph:

Time 

+

-

e =
i =

p =

Note that the power is never a negative value. When the current is positive (above the line), the
voltage is also positive, resulting in a power (p=ie) of a positive value. Conversely, when the current
is negative (below the line), the voltage is also negative, which results in a positive value for power
(a negative number multiplied by a negative number equals a positive number). This consistent
”polarity” of power tells us that the resistor is always dissipating power, taking it from the source
and releasing it in the form of heat energy. Whether the current is positive or negative, a resistor
still dissipates energy.

3.2 AC inductor circuits

Inductors do not behave the same as resistors. Whereas resistors simply oppose the flow of electrons
through them (by dropping a voltage directly proportional to the current), inductors oppose changes
in current through them, by dropping a voltage directly proportional to the rate of change of current.
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In accordance with Lenz’s Law, this induced voltage is always of such a polarity as to try to maintain
current at its present value. That is, if current is increasing in magnitude, the induced voltage will
”push against” the electron flow; if current is decreasing, the polarity will reverse and ”push with”
the electron flow to oppose the decrease. This opposition to current change is called reactance,
rather than resistance.

Expressed mathematically, the relationship between the voltage dropped across the inductor and
rate of current change through the inductor is as such:

e = di
dt

L

The expression di/dt is one from calculus, meaning the rate of change of instantaneous current
(i) over time, in amps per second. The inductance (L) is in Henrys, and the instantaneous voltage
(e), of course, is in volts. Sometimes you will find the rate of instantaneous voltage expressed as
”v” instead of ”e” (v = L di/dt), but it means the exact same thing. To show what happens with
alternating current, let’s analyze a simple inductor circuit:

L

If we were to plot the current and voltage for this very simple circuit, it would look something
like this:

Time 

+

-

e =
i =

Remember, the voltage dropped across an inductor is a reaction against the change in current
through it. Therefore, the instantaneous voltage is zero whenever the instantaneous current is at a
peak (zero change, or level slope, on the current sine wave), and the instantaneous voltage is at a
peak wherever the instantaneous current is at maximum change (the points of steepest slope on the
current wave, where it crosses the zero line). This results in a voltage wave that is 90o out of phase
with the current wave. Looking at the graph, the voltage wave seems to have a ”head start” on the
current wave; the voltage ”leads” the current, and the current ”lags” behind the voltage.



58 CHAPTER 3. REACTANCE AND IMPEDANCE – INDUCTIVE

Time 

+

-

current slope = max. (-)
voltage = max. (-)

current slope = 0
voltage = 0

voltage = 0

e =
i =

current slope = 

current slope = max. (+)
voltage = max. (+)

0

Things get even more interesting when we plot the power for this circuit:

Time 

+

-

e =
i =

p =

Because instantaneous power is the product of the instantaneous voltage and the instantaneous
current (p=ie), the power equals zero whenever the instantaneous current or voltage is zero. When-
ever the instantaneous current and voltage are both positive (above the line), the power is positive.
As with the resistor example, the power is also positive when the instantaneous current and voltage
are both negative (below the line). However, because the current and voltage waves are 90o out of
phase, there are times when one is positive while the other is negative, resulting in equally frequent
occurrences of negative instantaneous power.
But what does negative power mean? It means that the inductor is releasing power back to the

circuit, while a positive power means that it is absorbing power from the circuit. Since the positive
and negative power cycles are equal in magnitude and duration over time, the inductor releases just
as much power back to the circuit as it absorbs over the span of a complete cycle. What this means
in a practical sense is that the reactance of an inductor dissipates a net energy of zero, quite unlike
the resistance of a resistor, which dissipates energy in the form of heat. Mind you, this is for perfect
inductors only, which have no wire resistance.
An inductor’s opposition to change in current translates to an opposition to alternating current

in general, which is by definition always changing in instantaneous magnitude and direction. This
opposition to alternating current is similar to resistance, but different in that it always results in a
phase shift between current and voltage, and it dissipates zero power. Because of the differences,
it has a different name: reactance. Reactance to AC is expressed in ohms, just like resistance is,
except that its mathematical symbol is X instead of R. To be specific, reactance associate with an
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inductor is usually symbolized by the capital letter X with a letter L as a subscript, like this: XL.

Since inductors drop voltage in proportion to the rate of current change, they will drop more
voltage for faster-changing currents, and less voltage for slower-changing currents. What this means
is that reactance in ohms for any inductor is directly proportional to the frequency of the alternating
current. The exact formula for determining reactance is as follows:

XL = 2πfL

If we expose a 10 mH inductor to frequencies of 60, 120, and 2500 Hz, it will manifest the
following reactances:

For a 10 mH inductor:

Frequency (Hertz) Reactance (Ohms)

----------------------------------------

| 60 | 3.7699 |
|--------------------------------------|
| 120 | 7.5398 |
|--------------------------------------|
| 2500 | 157.0796 |
----------------------------------------

In the reactance equation, the term ”2πf” (everything on the right-hand side except the L) has
a special meaning unto itself. It is the number of radians per second that the alternating current
is ”rotating” at, if you imagine one cycle of AC to represent a full circle’s rotation. A radian is a
unit of angular measurement: there are 2π radians in one full circle, just as there are 360o in a full
circle. If the alternator producing the AC is a double-pole unit, it will produce one cycle for every
full turn of shaft rotation, which is every 2π radians, or 360o. If this constant of 2π is multiplied by
frequency in Hertz (cycles per second), the result will be a figure in radians per second, known as
the angular velocity of the AC system.

Angular velocity may be represented by the expression 2πf, or it may be represented by its own
symbol, the lower-case Greek letter Omega, which appears similar to our Roman lower-case ”w”: ω.
Thus, the reactance formula XL = 2πfL could also be written as XL = ωL.

It must be understood that this ”angular velocity” is an expression of how rapidly the AC
waveforms are cycling, a full cycle being equal to 2π radians. It is not necessarily representative of
the actual shaft speed of the alternator producing the AC. If the alternator has more than two poles,
the angular velocity will be a multiple of the shaft speed. For this reason, ω is sometimes expressed
in units of electrical radians per second rather than (plain) radians per second, so as to distinguish
it from mechanical motion.

Any way we express the angular velocity of the system, it is apparent that it is directly pro-
portional to reactance in an inductor. As the frequency (or alternator shaft speed) is increased in
an AC system, an inductor will offer greater opposition to the passage of current, and vice versa.
Alternating current in a simple inductive circuit is equal to the voltage (in volts) divided by the
inductive reactance (in ohms), just as either alternating or direct current in a simple resistive circuit
is equal to the voltage (in volts) divided by the resistance (in ohms). An example circuit is shown
here:
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L 10 mH10 V
60 Hz

XL = 3.7699 Ω
(inductive reactance of 10 mH inductor at 60 Hz)

I =
E

X

I = 
10 V

3.7699 Ω

I = 2.6526 A

However, we need to keep in mind that voltage and current are not in phase here. As was shown
earlier, the voltage has a phase shift of +90o with respect to the current. If we represent these
phase angles of voltage and current mathematically in the form of complex numbers, we find that
an inductor’s opposition to current has a phase angle, too:

Opposition =
Current
Voltage

Opposition =
10 V ∠ 90o

2.6526 A ∠ 0ο

Opposition = 3.7699 Ω ∠ 90o

or

0 + j3.7699 Ω
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Opposition

For an inductor:

90o

0o

90o

(XL)

E

I

Mathematically, we say that the phase angle of an inductor’s opposition to current is 90o, meaning
that an inductor’s opposition to current is a positive imaginary quantity. This phase angle of reactive
opposition to current becomes critically important in circuit analysis, especially for complex AC
circuits where reactance and resistance interact. It will prove beneficial to represent any component’s
opposition to current in terms of complex numbers rather than scalar quantities of resistance and
reactance.

• REVIEW:

• Inductive reactance is the opposition that an inductor offers to alternating current due to its
phase-shifted storage and release of energy in its magnetic field. Reactance is symbolized by
the capital letter ”X” and is measured in ohms just like resistance (R).

• Inductive reactance can be calculated using this formula: XL = 2πfL

• The angular velocity of an AC circuit is another way of expressing its frequency, in units of
electrical radians per second instead of cycles per second. It is symbolized by the lower-case
Greek letter ”omega,” or ω.

• Inductive reactance increases with increasing frequency. In other words, the higher the fre-
quency, the more it opposes the AC flow of electrons.

3.3 Series resistor-inductor circuits

In the previous section, we explored what would happen in simple resistor-only and inductor-only
AC circuits. Now we will mix the two components together in series form and investigate the effects.
Take this circuit as an example to work with:

R

L
5 Ω

10 mH10 V
60 Hz

The resistor will offer 5 Ω of resistance to AC current regardless of frequency, while the inductor
will offer 3.7699 Ω of reactance to AC current at 60 Hz. Because the resistor’s resistance is a real
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number (5 Ω 6 0o, or 5 + j0 Ω), and the inductor’s reactance is an imaginary number (3.7699
Ω 6 90o, or 0 + j3.7699 Ω), the combined effect of the two components will be an opposition to
current equal to the complex sum of the two numbers. This combined opposition will be a vector
combination of resistance and reactance. In order to express this opposition succinctly, we need a
more comprehensive term for opposition to current than either resistance or reactance alone. This
term is called impedance, its symbol is Z, and it is also expressed in the unit of ohms, just like
resistance and reactance. In the above example, the total circuit impedance is:

Ztotal = (5 Ω resistance) + (3.7699 Ω inductive reactance)

Ztotal = 5 Ω (R)   +   3.7699 Ω (XL)

Ztotal = (5 Ω ∠ 0o) + (3.7699 Ω ∠ 900)

or

(5 + j0 Ω) + (0 + j3.7699 Ω)

Ztotal = 5 + j3.7699 Ω or 6.262 Ω ∠ 37.016o

Impedance is related to voltage and current just as you might expect, in a manner similar to
resistance in Ohm’s Law:

Ohm’s Law for AC circuits:

E = IZ I = Z =
E
Z

E
I

All quantities expressed in
complex, not scalar, form

In fact, this is a far more comprehensive form of Ohm’s Law than what was taught in DC
electronics (E=IR), just as impedance is a far more comprehensive expression of opposition to the
flow of electrons than resistance is. Any resistance and any reactance, separately or in combination
(series/parallel), can be and should be represented as a single impedance in an AC circuit.

To calculate current in the above circuit, we first need to give a phase angle reference for the
voltage source, which is generally assumed to be zero. (The phase angles of resistive and inductive
impedance are always 0o and +90o, respectively, regardless of the given phase angles for voltage or
current).
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I =
E

Z

I =
10 V ∠ 0o

6.262 Ω ∠ 37.016o

I = 1.597 A ∠ -37.016o

As with the purely inductive circuit, the current wave lags behind the voltage wave (of the
source), although this time the lag is not as great: only 37.016o as opposed to a full 90o as was the
case in the purely inductive circuit.

Time 

+

-

e =
i =

phase shift =
37.016o

For the resistor and the inductor, the phase relationships between voltage and current haven’t
changed. Voltage across the resistor is in phase (0o shift) with the current through it; and the
voltage across the inductor is +90o out of phase with the current going through it. We can verify
this mathematically:

E = IZ

ER = IRZR

ER = (1.597 A ∠ -37.016o)(5 Ω ∠ 0o)

ER = 7.9847 V ∠ -37.016o

Notice that the phase angle of ER is equal to
the phase angle of the current.

The voltage across the resistor has the exact same phase angle as the current through it, telling
us that E and I are in phase (for the resistor only).



64 CHAPTER 3. REACTANCE AND IMPEDANCE – INDUCTIVE

E = IZ

EL = ILZL

EL = (1.597 A ∠ -37.016o)(3.7699 Ω ∠ 90o)

EL = 6.0203 V ∠ 52.984o

Notice that the phase angle of EL is exactly
90o more than the phase angle of the current.
The voltage across the inductor has a phase angle of 52.984o, while the current through the

inductor has a phase angle of -37.016o, a difference of exactly 90o between the two. This tells us
that E and I are still 90o out of phase (for the inductor only).
We can also mathematically prove that these complex values add together to make the total

voltage, just as Kirchhoff’s Voltage Law would predict:

Etotal = ER + EL

Etotal = (7.9847 V ∠ -37.016o) + (6.0203 V ∠ 52.984o)

Etotal = 10 V ∠ 0o

Let’s check the validity of our calculations with SPICE:

1

0

2

0

R

L

5 Ω
10 mH10 V

60 Hz

ac r-l circuit

v1 1 0 ac 10 sin

r1 1 2 5

l1 2 0 10m

.ac lin 1 60 60

.print ac v(1,2) v(2,0) i(v1)

.print ac vp(1,2) vp(2,0) ip(v1)

.end

freq v(1,2) v(2) i(v1)

6.000E+01 7.985E+00 6.020E+00 1.597E+00

freq vp(1,2) vp(2) ip(v1)

6.000E+01 -3.702E+01 5.298E+01 1.430E+02
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ER = 7.985 V ∠ -37.02o

EL = 6.020 V ∠ 52.98o

I = 1.597 A ∠ 143.0o

Interpreted SPICE results

Note that just as with DC circuits, SPICE outputs current figures as though they were negative
(180o out of phase) with the supply voltage. Instead of a phase angle of -37.016o, we get a current
phase angle of 143o (-37o + 180o). This is merely an idiosyncrasy of SPICE and does not represent
anything significant in the circuit simulation itself. Note how both the resistor and inductor voltage
phase readings match our calculations (-37.02o and 52.98o, respectively), just as we expected them
to.

With all these figures to keep track of for even such a simple circuit as this, it would be beneficial
for us to use the ”table” method. Applying a table to this simple series resistor-inductor circuit
would proceed as such. First, draw up a table for E/I/Z figures and insert all component values in
these terms (in other words, don’t insert actual resistance or inductance values in Ohms and Henrys,
respectively, into the table; rather, convert them into complex figures of impedance and write those
in):

E

I

Volts

Amps

OhmsZ

R L Total

5 + j0
5 ∠ 0o

0 + j3.7699
3.7699 ∠ 90o

10 + j0
10 ∠ 0o

Although it isn’t necessary, I find it helpful to write both the rectangular and polar forms of
each quantity in the table. If you are using a calculator that has the ability to perform complex
arithmetic without the need for conversion between rectangular and polar forms, then this extra
documentation is completely unnecessary. However, if you are forced to perform complex arithmetic
”longhand” (addition and subtraction in rectangular form, and multiplication and division in polar
form), writing each quantity in both forms will be useful indeed.

Now that our ”given” figures are inserted into their respective locations in the table, we can
proceed just as with DC: determine the total impedance from the individual impedances. Since this
is a series circuit, we know that opposition to electron flow (resistance or impedance) adds to form
the total opposition:
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E

I

Volts

Amps

OhmsZ

R L Total

5 + j0

5 ∠ 0o

0 + j3.7699

3.7699 ∠ 90o

10 + j0

10 ∠ 0o

5 + j3.7699
6.262 ∠ 37.016o

Rule of series
circuits

Ztotal = ZR + ZL

Now that we know total voltage and total impedance, we can apply Ohm’s Law (I=E/Z) to
determine total current:

E

I

Volts

Amps

OhmsZ

R L Total

5 + j0

5 ∠ 0o

0 + j3.7699

3.7699 ∠ 90o

10 + j0

10 ∠ 0o

5 + j3.7699

6.262 ∠ 37.016o

Ohm’s
Law

1.597 ∠ -37.016o

1.2751 - j0.9614

I = 
E
Z

Just as with DC, the total current in a series AC circuit is shared equally by all components.
This is still true because in a series circuit there is only a single path for electrons to flow, therefore
the rate of their flow must uniform throughout. Consequently, we can transfer the figures for current
into the columns for the resistor and inductor alike:

E

I

Volts

Amps

OhmsZ

R L Total

5 + j0

5 ∠ 0o

0 + j3.7699

3.7699 ∠ 90o

10 + j0

10 ∠ 0o

5 + j3.7699

6.262 ∠ 37.016o

1.597 ∠ -37.016o

Rule of series
circuits:

Itotal = IR = IL

1.597 ∠ -37.016o1.597 ∠ -37.016o

1.2751 - j0.96141.2751 - j0.96141.2751 - j0.9614
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Now all that’s left to figure is the voltage drop across the resistor and inductor, respectively.
This is done through the use of Ohm’s Law (E=IZ), applied vertically in each column of the table:

E

I

Volts

Amps

OhmsZ

R L Total

5 + j0

5 ∠ 0o

0 + j3.7699

3.7699 ∠ 90o

10 + j0

10 ∠ 0o

5 + j3.7699

6.262 ∠ 37.016o

1.597 ∠ -37.016o1.597 ∠ -37.016o1.597 ∠ -37.016o

Ohm’s
Law

Ohm’s
Law

6.3756 - j4.8071
7.9847 ∠ -37.016o

3.6244 + j4.8071
6.0203 ∠ 52.984o

1.2751 - j0.96141.2751 - j0.96141.2751 - j0.9614

E = IZ E = IZ

And with that, our table is complete. The exact same rules we applied in the analysis of DC
circuits apply to AC circuits as well, with the caveat that all quantities must be represented and
calculated in complex rather than scalar form. So long as phase shift is properly represented in our
calculations, there is no fundamental difference in how we approach basic AC circuit analysis versus
DC.
Now is a good time to review the relationship between these calculated figures and readings

given by actual instrument measurements of voltage and current. The figures here that directly
relate to real-life measurements are those in polar notation, not rectangular! In other words, if
you were to connect a voltmeter across the resistor in this circuit, it would indicate 7.9847 volts,
not 6.3756 (real rectangular) or 4.8071 (imaginary rectangular) volts. To describe this in graphical
terms, measurement instruments simply tell you how long the vector is for that particular quantity
(voltage or current).
Rectangular notation, while convenient for arithmetical addition and subtraction, is a more

abstract form of notation than polar in relation to real-world measurements. As I stated before, I
will indicate both polar and rectangular forms of each quantity in my AC circuit tables simply for
convenience of mathematical calculation. This is not absolutely necessary, but may be helpful for
those following along without the benefit of an advanced calculator. If we were to restrict ourselves
to the use of only one form of notation, the best choice would be polar, because it is the only one
that can be directly correlated to real measurements.

• REVIEW:

• Impedance is the total measure of opposition to electric current and is the complex (vector)
sum of (”real”) resistance and (”imaginary”) reactance. It is symbolized by the letter ”Z” and
measured in ohms, just like resistance (R) and reactance (X).

• Impedances (Z) are managed just like resistances (R) in series circuit analysis: series impedances
add to form the total impedance. Just be sure to perform all calculations in complex (not
scalar) form! ZTotal = Z1 + Z2 + . . . Zn

• A purely resistive impedance will always have a phase angle of exactly 0o (ZR = R Ω 6 0o).
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• A purely inductive impedance will always have a phase angle of exactly +90o (ZL = XL Ω 6

90o).

• Ohm’s Law for AC circuits: E = IZ ; I = E/Z ; Z = E/I

• When resistors and inductors are mixed together in circuits, the total impedance will have
a phase angle somewhere between 0o and +90o. The circuit current will have a phase angle
somewhere between 0o and -90o.

• Series AC circuits exhibit the same fundamental properties as series DC circuits: current is
uniform throughout the circuit, voltage drops add to form the total voltage, and impedances
add to form the total impedance.

3.4 Parallel resistor-inductor circuits

Let’s take the same components for our series example circuit and connect them in parallel:

R L5 Ω 10 mH10 V
60 Hz

Because the power source has the same frequency as the series example circuit, and the resistor
and inductor both have the same values of resistance and inductance, respectively, they must also
have the same values of impedance. So, we can begin our analysis table with the same ”given”
values:

E

I

Volts

Amps

OhmsZ

R L Total

5 + j0
5 ∠ 0o

0 + j3.7699
3.7699 ∠ 90o

10 + j0
10 ∠ 0o

The only difference in our analysis technique this time is that we will apply the rules of parallel
circuits instead of the rules for series circuits. The approach is fundamentally the same as for DC.
We know that voltage is shared uniformly by all components in a parallel circuit, so we can transfer
the figure of total voltage (10 volts 6 0o) to all components columns:
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E

I

Volts

Amps

OhmsZ

R L Total

5 + j0

5 ∠ 0o

0 + j3.7699

3.7699 ∠ 90o

10 + j0

10 ∠ 0o

10 + j0

10 ∠ 0o

10 + j0

10 ∠ 0o

Rule of parallel
 circuits:

Etotal = ER = EL

Now we can apply Ohm’s Law (I=E/Z) vertically to two columns of the table, calculating current
through the resistor and current through the inductor:

E

I

Volts

Amps

OhmsZ

R L Total

5 + j0

5 ∠ 0o

0 + j3.7699

3.7699 ∠ 90o

10 + j0

10 ∠ 0o

10 + j0

10 ∠ 0o

10 + j0

10 ∠ 0o

0 - j2.6526
2.6526 ∠ -90o

2 + j0
2 ∠ 0o

Ohm’s
Law

Ohm’s
Law

I = 
E

Z
I = 

E

Z

Just as with DC circuits, branch currents in a parallel AC circuit add to form the total current
(Kirchhoff’s Current Law still holds true for AC as it did for DC):

E

I

Volts

Amps

OhmsZ

R L Total

5 + j0

5 ∠ 0o

0 + j3.7699

3.7699 ∠ 90o

10 + j0

10 ∠ 0o

10 + j0

10 ∠ 0o

10 + j0

10 ∠ 0o

0 - j2.6526

2.6526 ∠ -90o

2 + j0

2 ∠ 0o

2 - j2.6526

Rule of parallel
circuits:

Itotal = IR + IL

3.3221 ∠ -52.984o

Finally, total impedance can be calculated by using Ohm’s Law (Z=E/I) vertically in the ”To-
tal” column. Incidentally, parallel impedance can also be calculated by using a reciprocal formula
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identical to that used in calculating parallel resistances.

Zparallel =

Z1 Z2 Zn

1
+

1
+ . . .

1

1

The only problem with using this formula is that it typically involves a lot of calculator keystrokes
to carry out. And if you’re determined to run through a formula like this ”longhand,” be prepared
for a very large amount of work! But, just as with DC circuits, we often have multiple options in
calculating the quantities in our analysis tables, and this example is no different. No matter which
way you calculate total impedance (Ohm’s Law or the reciprocal formula), you will arrive at the
same figure:

E

I

Volts

Amps

OhmsZ

R L Total

5 + j0

5 ∠ 0o

0 + j3.7699

3.7699 ∠ 90o

10 + j0

10 ∠ 0o

10 + j0

10 ∠ 0o

10 + j0

10 ∠ 0o

0 - j2.6526

2.6526 ∠ -90o

2 + j0

2 ∠ 0o

2 - j2.6526

3.322 ∠ -52.984o

1.8122 + j2.4035
3.0102 ∠ 52.984o

Ohm’s
Law or

Rule of parallel
circuits:

Ztotal =

ZR ZL

1
+

1

1
Z = E

I

• REVIEW:

• Impedances (Z) are managed just like resistances (R) in parallel circuit analysis: parallel
impedances diminish to form the total impedance, using the reciprocal formula. Just be sure
to perform all calculations in complex (not scalar) form! ZTotal = 1/(1/Z1 + 1/Z2 + . . .
1/Zn)

• Ohm’s Law for AC circuits: E = IZ ; I = E/Z ; Z = E/I

• When resistors and inductors are mixed together in parallel circuits (just as in series circuits),
the total impedance will have a phase angle somewhere between 0o and +90o. The circuit
current will have a phase angle somewhere between 0o and -90o.

• Parallel AC circuits exhibit the same fundamental properties as parallel DC circuits: voltage is
uniform throughout the circuit, branch currents add to form the total current, and impedances
diminish (through the reciprocal formula) to form the total impedance.
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3.5 Inductor quirks

In an ideal case, an inductor acts as a purely reactive device. That is, its opposition to AC current
is strictly based on inductive reaction to changes in current, and not electron friction as is the case
with resistive components. However, inductors are not quite so pure in their reactive behavior. To
begin with, they’re made of wire, and we know that all wire possesses some measurable amount
of resistance (unless it’s superconducting wire). This built-in resistance acts as though it were
connected in series with the perfect inductance of the coil, like this:

Wire resistance

Ideal inductor

Equivalent circuit for a real inductor

R

L

Consequently, the impedance of any real inductor will always be a complex combination of
resistance and inductive reactance.
Compounding this problem is something called the skin effect, which is AC’s tendency to flow

through the outer areas of a conductor’s cross-section rather than through the middle. When
electrons flow in a single direction (DC), they use the entire cross-sectional area of the conductor
to move. Electrons switching directions of flow, on the other hand, tend to avoid travel through
the very middle of a conductor, limiting the effective cross-sectional area available. The skin effect
becomes more pronounced as frequency increases.
Also, the alternating magnetic field of an inductor energized with AC may radiate off into space

as part of an electromagnetic wave, especially if the AC is of high frequency. This radiated energy
does not return to the inductor, and so it manifests itself as resistance (power dissipation) in the
circuit.
Added to the resistive losses of wire and radiation, there are other effects at work in iron-core

inductors which manifest themselves as additional resistance between the leads. When an inductor
is energized with AC, the alternating magnetic fields produced tend to induce circulating currents
within the iron core known as eddy currents. These electric currents in the iron core have to overcome
the electrical resistance offered by the iron, which is not as good a conductor as copper. Eddy current
losses are primarily counteracted by dividing the iron core up into many thin sheets (laminations),
each one separated from the other by a thin layer of electrically insulating varnish. With the cross-
section of the core divided up into many electrically isolated sections, current cannot circulate within
that cross-sectional area and there will be no (or very little) resistive losses from that effect.
As you might have expected, eddy current losses in metallic inductor cores manifest themselves

in the form of heat. The effect is more pronounced at higher frequencies, and can be so extreme that
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it is sometimes exploited in manufacturing processes to heat metal objects! In fact, this process of
”inductive heating” is often used in high-purity metal foundry operations, where metallic elements
and alloys must be heated in a vacuum environment to avoid contamination by air, and thus where
standard combustion heating technology would be useless. It is a ”non-contact” technology, the
heated substance not having to touch the coil(s) producing the magnetic field.

In high-frequency service, eddy currents can even develop within the cross-section of the wire
itself, contributing to additional resistive effects. To counteract this tendency, special wire made of
very fine, individually insulated strands called Litz wire (short for Litzendraht) can be used. The
insulation separating strands from each other prevent eddy currents from circulating through the
whole wire’s cross-sectional area.

Additionally, any magnetic hysteresis that needs to be overcome with every reversal of the in-
ductor’s magnetic field constitutes an expenditure of energy that manifests itself as resistance in the
circuit. Some core materials (such as ferrite) are particularly notorious for their hysteretic effect.
Counteracting this effect is best done by means of proper core material selection and limits on the
peak magnetic field intensity generated with each cycle.

Altogether, the stray resistive properties of a real inductor (wire resistance, radiation losses, eddy
currents, and hysteresis losses) are expressed under the single term of ”effective resistance:”

Ideal inductor

Equivalent circuit for a real inductor

R

L

"Effective" resistance

It is worthy to note that the skin effect and radiation losses apply just as well to straight lengths
of wire in an AC circuit as they do a coiled wire. Usually their combined effect is too small to
notice, but at radio frequencies they can be quite large. A radio transmitter antenna, for example,
is designed with the express purpose of dissipating the greatest amount of energy in the form of
electromagnetic radiation.

Effective resistance in an inductor can be a serious consideration for the AC circuit designer. To
help quantify the relative amount of effective resistance in an inductor, another value exists called
the Q factor, or ”quality factor” which is calculated as follows:

Q =
XL

R

The symbol ”Q” has nothing to do with electric charge (coulombs), which tends to be confusing.
For some reason, the Powers That Be decided to use the same letter of the alphabet to denote a
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totally different quantity.
The higher the value for ”Q,” the ”purer” the inductor is. Because it’s so easy to add additional

resistance if needed, a high-Q inductor is better than a low-Q inductor for design purposes. An ideal
inductor would have a Q of infinity, with zero effective resistance.
Because inductive reactance (X) varies with frequency, so will Q. However, since the resistive

effects of inductors (wire skin effect, radiation losses, eddy current, and hysteresis) also vary with
frequency, Q does not vary proportionally with reactance. In order for a Q value to have precise
meaning, it must be specified at a particular test frequency.
Stray resistance isn’t the only inductor quirk we need to be aware of. Due to the fact that the

multiple turns of wire comprising inductors are separated from each other by an insulating gap (air,
varnish, or some other kind of electrical insulation), we have the potential for capacitance to develop
between turns. AC capacitance will be explored in the next chapter, but it suffices to say at this
point that it behaves very differently from AC inductance, and therefore further ”taints” the reactive
purity of real inductors.

3.6 More on the ”skin effect”

As previously mentioned, the skin effect is where alternating current tends to avoid travel through the
center of a solid conductor, limiting itself to conduction near the surface. This effectively limits the
cross-sectional conductor area available to carry alternating electron flow, increasing the resistance
of that conductor above what it would normally be for direct current:

Cross-sectional area of a round
conductor available for conducting
DC current

"DC resistance"

Cross-sectional area of the same
conductor available for conducting
low-frequency AC

"AC resistance"

Cross-sectional area of the same
conductor available for conducting
high-frequency AC

"AC resistance"

The electrical resistance of the conductor with all its cross-sectional area in use is known as the
”DC resistance,” the ”AC resistance” of the same conductor referring to a higher figure resulting
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from the skin effect. As you can see, at high frequencies the AC current avoids travel through most
of the conductor’s cross-sectional area. For the purpose of conducting current, the wire might as
well be hollow!

In some radio applications (antennas, most notably) this effect is exploited. Since radio-frequency
(”RF”) AC currents wouldn’t travel through the middle of a conductor anyway, why not just use
hollow metal rods instead of solid metal wires and save both weight and cost? Most antenna
structures and RF power conductors are made of hollow metal tubes for this reason.

In the following photograph you can see some large inductors used in a 50 kW radio transmitting
circuit. The inductors are hollow copper tubes coated with silver, for excellent conductivity at the
”skin” of the tube:

The degree to which frequency affects the effective resistance of a solid wire conductor is impacted
by the gauge of that wire. As a rule, large-gauge wires exhibit a more pronounced skin effect
(change in resistance from DC) than small-gauge wires at any given frequency. The equation for
approximating skin effect at high frequencies (greater than 1 MHz) is as follows:
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RAC = (RDC)(k) f

Where,

RAC =

RDC =

k =

f =

AC resistance at given frequency "f"

Resistance at zero frequency (DC)

Wire gage factor (see table below)

Frequency of AC in MHz (MegaHertz)
The following table gives approximate values of ”k” factor for various round wire sizes:

Gage size k factor

======================

4/0 ---------- 124.5

2/0 ---------- 99.0

1/0 ---------- 88.0

2 ------------ 69.8

4 ------------ 55.5

6 ------------ 47.9

8 ------------ 34.8

10 ----------- 27.6

14 ----------- 17.6

18 ----------- 10.9

22 ----------- 6.86

For example, a length of number 10-gauge wire with a DC end-to-end resistance of 25 Ω would
have an AC (effective) resistance of 2.182 kΩ at a frequency of 10 MHz:

RAC = (RDC)(k) f

RAC = (25 Ω)(27.6) 10

RAC = 2.182 kΩ
Please remember that this figure is not impedance, and it does not consider any reactive effects,

inductive or capacitive. This is simply an estimated figure of pure resistance for the conductor (that
opposition to the AC flow of electrons which does dissipate power in the form of heat), corrected for
the skin effect. Reactance, and the combined effects of reactance and resistance (impedance), are
entirely different matters.

3.7 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most recent
to first. See Appendix 2 (Contributor List) for dates and contact information.
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Jim Palmer (June 2001): Identified and offered correction for typographical error in complex
number calculation.
Jason Starck (June 2000): HTML document formatting, which led to a much better-looking

second edition.
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4.1 AC resistor circuits

R

If we were to plot the current and voltage for a very simple AC circuit consisting of a source and
a resistor, it would look something like this:

77
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Time 

+

-

e =
i =

Because the resistor allows an amount of current directly proportional to the voltage across it at
all periods of time, the waveform for the current is exactly in phase with the waveform for the voltage.
We can look at any point in time along the horizontal axis of the plot and compare those values of
current and voltage with each other (any ”snapshot” look at the values of a wave are referred to as
instantaneous values, meaning the values at that instant in time). When the instantaneous value for
voltage is zero, the instantaneous current through the resistor is also zero. Likewise, at the moment
in time where the voltage across the resistor is at its positive peak, the current through the resistor
is also at its positive peak, and so on. At any given point in time along the waves, Ohm’s Law holds
true for the instantaneous values of voltage and current.
We can also calculate the power dissipated by this resistor, and plot those values on the same

graph:

Time 

+

-

e =
i =

p =

Note that the power is never a negative value. When the current is positive (above the line), the
voltage is also positive, resulting in a power (p=ie) of a positive value. Conversely, when the current
is negative (below the line), the voltage is also negative, which results in a positive value for power
(a negative number multiplied by a negative number equals a positive number). This consistent
”polarity” of power tells us that the resistor is always dissipating power, taking it from the source
and releasing it in the form of heat energy. Whether the current is positive or negative, a resistor
still dissipates energy.

4.2 AC capacitor circuits

Capacitors do not behave the same as resistors. Whereas resistors allow a flow of electrons through
them directly proportional to the voltage drop, capacitors oppose changes in voltage by drawing
or supplying current as they charge or discharge to the new voltage level. The flow of electrons



4.2. AC CAPACITOR CIRCUITS 79

”through” a capacitor is directly proportional to the rate of change of voltage across the capacitor.
This opposition to voltage change is another form of reactance, but one that is precisely opposite to
the kind exhibited by inductors.

Expressed mathematically, the relationship between the current ”through” the capacitor and
rate of voltage change across the capacitor is as such:

i = C
de

dt

The expression de/dt is one from calculus, meaning the rate of change of instantaneous voltage
(e) over time, in volts per second. The capacitance (C) is in Farads, and the instantaneous current
(i), of course, is in amps. Sometimes you will find the rate of instantaneous voltage change over
time expressed as dv/dt instead of de/dt: using the lower-case letter ”v” instead or ”e” to represent
voltage, but it means the exact same thing. To show what happens with alternating current, let’s
analyze a simple capacitor circuit:

C

If we were to plot the current and voltage for this very simple circuit, it would look something
like this:

Time 

+

-

e =
i =

Remember, the current through a capacitor is a reaction against the change in voltage across it.
Therefore, the instantaneous current is zero whenever the instantaneous voltage is at a peak (zero
change, or level slope, on the voltage sine wave), and the instantaneous current is at a peak wherever
the instantaneous voltage is at maximum change (the points of steepest slope on the voltage wave,
where it crosses the zero line). This results in a voltage wave that is -90o out of phase with the
current wave. Looking at the graph, the current wave seems to have a ”head start” on the voltage
wave; the current ”leads” the voltage, and the voltage ”lags” behind the current.
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Time 

+

-

e =
i =

voltage slope = 0
current = 0

voltage slope = max. (-)
current = max. (-)

voltage slope = 0
current = 0

voltage slope = max. (+)
current = max. (+)

As you might have guessed, the same unusual power wave that we saw with the simple inductor
circuit is present in the simple capacitor circuit, too:

Time 

+

-

e =
i =

p =

As with the simple inductor circuit, the 90 degree phase shift between voltage and current results
in a power wave that alternates equally between positive and negative. This means that a capacitor
does not dissipate power as it reacts against changes in voltage; it merely absorbs and releases power,
alternately.

A capacitor’s opposition to change in voltage translates to an opposition to alternating voltage
in general, which is by definition always changing in instantaneous magnitude and direction. For
any given magnitude of AC voltage at a given frequency, a capacitor of given size will ”conduct” a
certain magnitude of AC current. Just as the current through a resistor is a function of the voltage
across the resistor and the resistance offered by the resistor, the AC current through a capacitor is a
function of the AC voltage across it, and the reactance offered by the capacitor. As with inductors,
the reactance of a capacitor is expressed in ohms and symbolized by the letter X (or XC to be more
specific).

Since capacitors ”conduct” current in proportion to the rate of voltage change, they will pass
more current for faster-changing voltages (as they charge and discharge to the same voltage peaks
in less time), and less current for slower-changing voltages. What this means is that reactance in
ohms for any capacitor is inversely proportional to the frequency of the alternating current:
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XC =
2πfC

1

For a 100 uF capacitor:

Frequency (Hertz) Reactance (Ohms)

----------------------------------------

| 60 | 26.5258 |
|--------------------------------------|
| 120 | 13.2629 |
|--------------------------------------|
| 2500 | 0.6366 |
----------------------------------------

Please note that the relationship of capacitive reactance to frequency is exactly opposite from
that of inductive reactance. Capacitive reactance (in ohms) decreases with increasing AC frequency.
Conversely, inductive reactance (in ohms) increases with increasing AC frequency. Inductors op-
pose faster changing currents by producing greater voltage drops; capacitors oppose faster changing
voltage drops by allowing greater currents.
As with inductors, the reactance equation’s 2πf term may be replaced by the lower-case Greek

letter Omega (ω), which is referred to as the angular velocity of the AC circuit. Thus, the equation
XC = 1/(2πfC) could also be written as XC = 1/(ωC), with ω cast in units of radians per second.
Alternating current in a simple capacitive circuit is equal to the voltage (in volts) divided by

the capacitive reactance (in ohms), just as either alternating or direct current in a simple resistive
circuit is equal to the voltage (in volts) divided by the resistance (in ohms). The following circuit
illustrates this mathematical relationship by example:

10 V
60 Hz

C 100 µF

XC = 26.5258 Ω

I =
E

X

I =
10 V

26.5258 Ω

I = 0.3770 A

However, we need to keep in mind that voltage and current are not in phase here. As was shown
earlier, the current has a phase shift of +90o with respect to the voltage. If we represent these phase
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angles of voltage and current mathematically, we can calculate the phase angle of the capacitor’s
reactive opposition to current.

Opposition =
Voltage
Current

Opposition =
10 V ∠ 0o

0.3770 A ∠ 90o

Opposition = 26.5258 Ω ∠ -90o

I

E Opposition

For a capacitor:

90o

0o

-90o

(XC)

Mathematically, we say that the phase angle of a capacitor’s opposition to current is -90o, meaning
that a capacitor’s opposition to current is a negative imaginary quantity. This phase angle of reactive
opposition to current becomes critically important in circuit analysis, especially for complex AC
circuits where reactance and resistance interact. It will prove beneficial to represent any component’s
opposition to current in terms of complex numbers, and not just scalar quantities of resistance and
reactance.

• REVIEW:

• Capacitive reactance is the opposition that a capacitor offers to alternating current due to its
phase-shifted storage and release of energy in its electric field. Reactance is symbolized by the
capital letter ”X” and is measured in ohms just like resistance (R).

• Capacitive reactance can be calculated using this formula: XC = 1/(2πfC)

• Capacitive reactance decreases with increasing frequency. In other words, the higher the
frequency, the less it opposes (the more it ”conducts”) the AC flow of electrons.

4.3 Series resistor-capacitor circuits

In the last section, we learned what would happen in simple resistor-only and capacitor-only AC
circuits. Now we will combine the two components together in series form and investigate the effects.
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Take this circuit as an example to analyze:

10 V
60 Hz

5 Ω

R

C 100 µF

The resistor will offer 5 Ω of resistance to AC current regardless of frequency, while the capacitor
will offer 26.5258 Ω of reactance to AC current at 60 Hz. Because the resistor’s resistance is a real
number (5 Ω 6 0o, or 5 + j0 Ω), and the capacitor’s reactance is an imaginary number (26.5258 Ω 6

-90o, or 0 - j26.5258 Ω), the combined effect of the two components will be an opposition to current
equal to the complex sum of the two numbers. The term for this complex opposition to current
is impedance, its symbol is Z, and it is also expressed in the unit of ohms, just like resistance and
reactance. In the above example, the total circuit impedance is:

Ztotal = (5 Ω resistance) + (26.5258 Ω capacitive reactance)

Ztotal = (5 Ω ∠ 0o) + (26.5258 Ω ∠ -90o)

or

(5 + j0 Ω) + (0 - j26.5258 Ω)

Ztotal = 5 - j26.5258 Ω or 26.993 Ω ∠ -79.325o

5 Ω (R) + 26.5258 Ω (XC)Ztotal =

Impedance is related to voltage and current just as you might expect, in a manner similar to
resistance in Ohm’s Law:

Ohm’s Law for AC circuits:

E = IZ I = Z =
E
Z

E
I

All quantities expressed in
complex, not scalar, form

In fact, this is a far more comprehensive form of Ohm’s Law than what was taught in DC
electronics (E=IR), just as impedance is a far more comprehensive expression of opposition to the
flow of electrons than simple resistance is. Any resistance and any reactance, separately or in
combination (series/parallel), can be and should be represented as a single impedance.
To calculate current in the above circuit, we first need to give a phase angle reference for the

voltage source, which is generally assumed to be zero. (The phase angles of resistive and capacitive
impedance are always 0o and -90o, respectively, regardless of the given phase angles for voltage or
current).
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I =
E

Z

I =
10 V ∠ 0o

26.933 Ω ∠ -79.325o

I = 370.5 mA ∠ 79.325o

As with the purely capacitive circuit, the current wave is leading the voltage wave (of the source),
although this time the difference is 79.325o instead of a full 90o.

Time 

+

-

e =
i =

phase shift =
79.325 degrees

As we learned in the AC inductance chapter, the ”table” method of organizing circuit quantities
is a very useful tool for AC analysis just as it is for DC analysis. Let’s place out known figures for
this series circuit into a table and continue the analysis using this tool:

E

I

Volts

Amps

OhmsZ

R TotalC

10 + j0

10 ∠ 0o

5 + j0

5 ∠ 0o

0 - j26.5258

26.5258 ∠ -90o

5 - j26.5258

26.993 ∠ -79.325o

370.5m ∠ 79.325o

68.623m + j364.06m

Current in a series circuit is shared equally by all components, so the figures placed in the ”Total”
column for current can be distributed to all other columns as well:
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E

I

Volts

Amps

OhmsZ

R TotalC

10 + j0

10 ∠ 0o

5 + j0

5 ∠ 0o

0 - j26.5258

26.5258 ∠ -90o

5 - j26.5258

26.993 ∠ -79.325o

370.5m ∠ 79.325o

68.623m + j364.06m68.623m + j364.06m
370.5m ∠ 79.325o

68.623m + j364.06m
370.5m ∠ 79.325o

Rule of series
circuits:

Itotal = IR = IC

Continuing with our analysis, we can apply Ohm’s Law (E=IR) vertically to determine voltage
across the resistor and capacitor:

E

I

Volts

Amps

OhmsZ

R TotalC

10 + j0

10 ∠ 0o

5 + j0

5 ∠ 0o

0 - j26.5258

26.5258 ∠ -90o

5 - j26.5258

26.993 ∠ -79.325o

370.5m ∠ 79.325o

68.623m + j364.06m68.623m + j364.06m

370.5m ∠ 79.325o

68.623m + j364.06m

370.5m ∠ 79.325o

343.11m + j1.8203
1.8523 ∠ 79.325o

Ohm’s
Law

Ohm’s
Law

9.6569 - j1.8203
9.8269 ∠ -10.675o

E = IZ E = IZ

Notice how the voltage across the resistor has the exact same phase angle as the current through
it, telling us that E and I are in phase (for the resistor only). The voltage across the capacitor has
a phase angle of -10.675o, exactly 90o less than the phase angle of the circuit current. This tells us
that the capacitor’s voltage and current are still 90o out of phase with each other.
Let’s check our calculations with SPICE:

1 2

0 0

10 V
60 Hz

5 Ω

R

C 100 µF

ac r-c circuit

v1 1 0 ac 10 sin

r1 1 2 5

c1 2 0 100u
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.ac lin 1 60 60

.print ac v(1,2) v(2,0) i(v1)

.print ac vp(1,2) vp(2,0) ip(v1)

.end

freq v(1,2) v(2) i(v1)

6.000E+01 1.852E+00 9.827E+00 3.705E-01

freq vp(1,2) vp(2) ip(v1)

6.000E+01 7.933E+01 -1.067E+01 -1.007E+02

ER = 1.852 V ∠ 79.33o

EC = 9.827 V ∠ -10.67o

I = 370.5 mA ∠ -100.7o

Interpreted SPICE results

Once again, SPICE confusingly prints the current phase angle at a value equal to the real phase
angle plus 180o (or minus 180o). However, it’s a simple matter to correct this figure and check to
see if our work is correct. In this case, the -100.7o output by SPICE for current phase angle equates
to a positive 79.3o, which does correspond to our previously calculated figure of 79.325o.
Again, it must be emphasized that the calculated figures corresponding to real-life voltage and

current measurements are those in polar form, not rectangular form! For example, if we were to
actually build this series resistor-capacitor circuit and measure voltage across the resistor, our volt-
meter would indicate 1.8523 volts, not 343.11 millivolts (real rectangular) or 1.8203 volts (imaginary
rectangular). Real instruments connected to real circuits provide indications corresponding to the
vector length (magnitude) of the calculated figures. While the rectangular form of complex number
notation is useful for performing addition and subtraction, it is a more abstract form of notation
than polar, which alone has direct correspondence to true measurements.

• REVIEW:

• Impedance is the total measure of opposition to electric current and is the complex (vector)
sum of (”real”) resistance and (”imaginary”) reactance.

• Impedances (Z) are managed just like resistances (R) in series circuit analysis: series impedances
add to form the total impedance. Just be sure to perform all calculations in complex (not
scalar) form! ZTotal = Z1 + Z2 + . . . Zn

• Please note that impedances always add in series, regardless of what type of components
comprise the impedances. That is, resistive impedance, inductive impedance, and capacitive
impedance are to be treated the same way mathematically.

• A purely resistive impedance will always have a phase angle of exactly 0o (ZR = R Ω 6 0o).

• A purely capacitive impedance will always have a phase angle of exactly -90o (ZC = XC Ω 6

-90o).
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• Ohm’s Law for AC circuits: E = IZ ; I = E/Z ; Z = E/I

• When resistors and capacitors are mixed together in circuits, the total impedance will have a
phase angle somewhere between 0o and -90o.

• Series AC circuits exhibit the same fundamental properties as series DC circuits: current is
uniform throughout the circuit, voltage drops add to form the total voltage, and impedances
add to form the total impedance.

4.4 Parallel resistor-capacitor circuits

Using the same value components in our series example circuit, we will connect them in parallel and
see what happens:

10 V
60 Hz

5 ΩR C 100 µF

Because the power source has the same frequency as the series example circuit, and the resistor
and capacitor both have the same values of resistance and capacitance, respectively, they must also
have the same values of impedance. So, we can begin our analysis table with the same ”given”
values:

E

I

Volts

Amps

OhmsZ

R TotalC

10 + j0

10 ∠ 0o

5 + j0

5 ∠ 0o

0 - j26.5258

26.5258 ∠ -90o

This being a parallel circuit now, we know that voltage is shared equally by all components, so
we can place the figure for total voltage (10 volts 6 0o) in all the columns:
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E

I

Volts

Amps

OhmsZ

R TotalC

10 + j0

10 ∠ 0o

5 + j0

5 ∠ 0o

0 - j26.5258

26.5258 ∠ -90o

10 + j0
10 ∠ 0o

10 + j0
10 ∠ 0o

Rule of parallel
circuits:

Etotal = ER = EC

Now we can apply Ohm’s Law (I=E/Z) vertically to two columns in the table, calculating current
through the resistor and current through the capacitor:

E

I

Volts

Amps

OhmsZ

R TotalC

10 + j0

10 ∠ 0o

5 + j0

5 ∠ 0o

0 - j26.5258

26.5258 ∠ -90o

10 + j0

10 ∠ 0o

10 + j0

10 ∠ 0o

2 + j0
2 ∠ 0o

0 + j376.99m
376.99m ∠ 90o

Ohm’s
Law

Ohm’s
Law

I = 
E

Z
I = 

E

Z

Just as with DC circuits, branch currents in a parallel AC circuit add up to form the total current
(Kirchhoff’s Current Law again):

E

I

Volts

Amps

OhmsZ

R TotalC

10 + j0

10 ∠ 0o

5 + j0

5 ∠ 0o

0 - j26.5258

26.5258 ∠ -90o

10 + j0

10 ∠ 0o

10 + j0

10 ∠ 0o

2 + j0

2 ∠ 0o

0 + j376.99m

376.99m ∠ 90o

2 + j376.99m
2.0352 ∠ 10.675o

Rule of parallel
circuits:

Itotal = IR + IC

Finally, total impedance can be calculated by using Ohm’s Law (Z=E/I) vertically in the ”Total”
column. As we saw in the AC inductance chapter, parallel impedance can also be calculated by using
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a reciprocal formula identical to that used in calculating parallel resistances. It is noteworthy to
mention that this parallel impedance rule holds true regardless of the kind of impedances placed in
parallel. In other words, it doesn’t matter if we’re calculating a circuit composed of parallel resistors,
parallel inductors, parallel capacitors, or some combination thereof: in the form of impedances (Z),
all the terms are common and can be applied uniformly to the same formula. Once again, the
parallel impedance formula looks like this:

Zparallel =

Z1 Z2 Zn

1
+

1
+ . . .

1

1

The only drawback to using this equation is the significant amount of work required to work it
out, especially without the assistance of a calculator capable of manipulating complex quantities.
Regardless of how we calculate total impedance for our parallel circuit (either Ohm’s Law or the
reciprocal formula), we will arrive at the same figure:

E

I

Volts

Amps

OhmsZ

R TotalC

10 + j0

10 ∠ 0o

5 + j0

5 ∠ 0o

0 - j26.5258

26.5258 ∠ -90o

10 + j0

10 ∠ 0o

10 + j0

10 ∠ 0o

2 + j0

2 ∠ 0o

0 + j376.99m

376.99m ∠ 90o

2 + j376.99m

2.0352 ∠ 10.675o

4.8284 - j910.14m
4.9135 ∠ -10.675o

Ohm’s
Law

or Rule of parallel
circuits:

Ztotal =

ZR ZC

1
+

1

1Z = 
E

I

• REVIEW:

• Impedances (Z) are managed just like resistances (R) in parallel circuit analysis: parallel
impedances diminish to form the total impedance, using the reciprocal formula. Just be sure
to perform all calculations in complex (not scalar) form! ZTotal = 1/(1/Z1 + 1/Z2 + . . .
1/Zn)

• Ohm’s Law for AC circuits: E = IZ ; I = E/Z ; Z = E/I

• When resistors and capacitors are mixed together in parallel circuits (just as in series circuits),
the total impedance will have a phase angle somewhere between 0o and -90o. The circuit
current will have a phase angle somewhere between 0o and +90o.

• Parallel AC circuits exhibit the same fundamental properties as parallel DC circuits: voltage is
uniform throughout the circuit, branch currents add to form the total current, and impedances
diminish (through the reciprocal formula) to form the total impedance.
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4.5 Capacitor quirks

As with inductors, the ideal capacitor is a purely reactive device, containing absolutely zero resistive
(power dissipative) effects. In the real world, of course, nothing is so perfect. However, capacitors
have the virtue of generally being purer reactive components than inductors. It is a lot easier to
design and construct a capacitor with low internal series resistance than it is to do the same with
an inductor. The practical result of this is that real capacitors typically have impedance phase
angles more closely approaching 90o (actually, -90o) than inductors. Consequently, they will tend
to dissipate less power than an equivalent inductor.

Capacitors also tend to be smaller and lighter weight than their equivalent inductor counterparts,
and since their electric fields are almost totally contained between their plates (unlike inductors,
whose magnetic fields naturally tend to extend beyond the dimensions of the core), they are less
prone to transmitting or receiving electromagnetic ”noise” to/from other components. For these
reasons, circuit designers tend to favor capacitors over inductors wherever a design permits either
alternative.

Capacitors with significant resistive effects are said to be lossy, in reference to their tendency to
dissipate (”lose”) power like a resistor. The source of capacitor loss is usually the dielectric material
rather than any wire resistance, as wire length in a capacitor is very minimal.

Dielectric materials tend to react to changing electric fields by producing heat. This heating
effect represents a loss in power, and is equivalent to resistance in the circuit. The effect is more
pronounced at higher frequencies and in fact can be so extreme that it is sometimes exploited in
manufacturing processes to heat insulating materials like plastic! The plastic object to be heated is
placed between two metal plates, connected to a source of high-frequency AC voltage. Temperature
is controlled by varying the voltage or frequency of the source, and the plates never have to contact
the object being heated.

This effect is undesirable for capacitors where we expect the component to behave as a purely
reactive circuit element. One of the ways to mitigate the effect of dielectric ”loss” is to choose a
dielectric material less susceptible to the effect. Not all dielectric materials are equally ”lossy.” A
relative scale of dielectric loss from least to greatest is given here:

Vacuum --------------- (Low Loss)

Air

Polystyrene

Mica

Glass

Low-K ceramic

Plastic film (Mylar)

Paper

High-K ceramic

Aluminum oxide

Tantalum pentoxide --- (High Loss)

Dielectric resistivity manifests itself both as a series and a parallel resistance with the pure
capacitance:
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Ideal
capacitor

Equivalent circuit for a real capacitor

Rseries

Rparallel

Fortunately, these stray resistances are usually of modest impact (low series resistance and high
parallel resistance), much less significant than the stray resistances present in an average inductor.
Electrolytic capacitors, known for their relatively high capacitance and low working voltage, are

also known for their notorious lossiness, due to both the characteristics of the microscopically thin
dielectric film and the electrolyte paste. Unless specially made for AC service, electrolytic capacitors
should never be used with AC unless it is mixed (biased) with a constant DC voltage preventing
the capacitor from ever being subjected to reverse voltage. Even then, their resistive characteristics
may be too severe a shortcoming for the application anyway.

4.6 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most recent
to first. See Appendix 2 (Contributor List) for dates and contact information.
Jason Starck (June 2000): HTML document formatting, which led to a much better-looking

second edition.
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5.1 Review of R, X, and Z

Before we begin to explore the effects of resistors, inductors, and capacitors connected together in
the same AC circuits, let’s briefly review some basic terms and facts.

Resistance is essentially friction against the motion of electrons. It is present in all conductors
to some extent (except superconductors!), most notably in resistors. When alternating current goes
through a resistance, a voltage drop is produced that is in-phase with the current. Resistance is
mathematically symbolized by the letter ”R” and is measured in the unit of ohms (Ω).

Reactance is essentially inertia against the motion of electrons. It is present anywhere electric
or magnetic fields are developed in proportion to applied voltage or current, respectively; but most
notably in capacitors and inductors. When alternating current goes through a pure reactance, a
voltage drop is produced that is 90o out of phase with the current. Reactance is mathematically
symbolized by the letter ”X” and is measured in the unit of ohms (Ω).

Impedance is a comprehensive expression of any and all forms of opposition to electron flow,
including both resistance and reactance. It is present in all circuits, and in all components. When

93
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alternating current goes through an impedance, a voltage drop is produced that is somewhere be-
tween 0o and 90o out of phase with the current. Impedance is mathematically symbolized by the
letter ”Z” and is measured in the unit of ohms (Ω), in complex form.

Perfect resistors possess resistance, but not reactance. Perfect inductors and perfect capacitors
possess reactance but no resistance. All components possess impedance, and because of this universal
quality, it makes sense to translate all component values (resistance, inductance, capacitance) into
common terms of impedance as the first step in analyzing an AC circuit.

Resistor

100 Ω
R = 100 Ω
X = 0 Ω
Z = 100 Ω ∠ 0o

Inductor

R = 0 Ω

159.15 Hz
100 mH

X = 100 Ω
Z = 100 Ω ∠ 90o

Capacitor

10 µF
159.15 Hz

R = 0 Ω
X = 100 Ω

Z = 100 Ω ∠ -90o

The impedance phase angle for any component is the phase shift between voltage across that
component and current through that component. For a perfect resistor, the voltage drop and current
are always in phase with each other, and so the impedance angle of a resistor is said to be 0o. For
an perfect inductor, voltage drop always leads current by 90o, and so an inductor’s impedance phase
angle is said to be +90o. For a perfect capacitor, voltage drop always lags current by 90o, and so a
capacitor’s impedance phase angle is said to be -90o.

Impedances in AC behave analogously to resistances in DC circuits: they add in series, and they
diminish in parallel. A revised version of Ohm’s Law, based on impedance rather than resistance,
looks like this:

Ohm’s Law for AC circuits:

E = IZ I = Z =
E
Z

E
I

All quantities expressed in
complex, not scalar, form
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Kirchhoff’s Laws and all network analysis methods and theorems are true for AC circuits as
well, so long as quantities are represented in complex rather than scalar form. While this qualified
equivalence may be arithmetically challenging, it is conceptually simple and elegant. The only real
difference between DC and AC circuit calculations is in regard to power. Because reactance doesn’t
dissipate power as resistance does, the concept of power in AC circuits is radically different from
that of DC circuits. More on this subject in a later chapter!

5.2 Series R, L, and C

Let’s take the following example circuit and analyze it:

120 V
60 Hz

250 Ω

R

L

C

650 mH

1.5 µF

The first step is to determine the reactances (in ohms) for the inductor and the capacitor.

XL = 2πfL

XL = (2)(π)(60 Hz)(650 mH)

XL = 245.04 Ω

XC = 
2πfC

1

XC = 
(2)(π)(60 Hz)(1.5 µF)

1

XC = 1.7684 kΩ
The next step is to express all resistances and reactances in a mathematically common form:

impedance. Remember that an inductive reactance translates into a positive imaginary impedance
(or an impedance at +90o), while a capacitive reactance translates into a negative imaginary
impedance (impedance at -90o). Resistance, of course, is still regarded as a purely ”real” impedance
(polar angle of 0o):
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ZR = 250 + j0 Ω   or   250 Ω ∠ 0o

ZL = 0 + j245.04 Ω   or   245.04 Ω ∠ 90o

ZC = 0 - j1.7684k Ω   or   1.7684 kΩ ∠ -90o

120 V
60 Hz

ZR

ZL

ZC

250 Ω ∠ 0o

245.04 Ω ∠ 90o

1.7684 kΩ ∠ -90o

Now, with all quantities of opposition to electric current expressed in a common, complex number
format (as impedances, and not as resistances or reactances), they can be handled in the same way
as plain resistances in a DC circuit. This is an ideal time to draw up an analysis table for this circuit
and insert all the ”given” figures (total voltage, and the impedances of the resistor, inductor, and
capacitor).

E

I

Volts

Amps

OhmsZ

R L TotalC

250 + j0
250 ∠ 0o

0 + j245.04 
254.04 ∠ 90o

0 - j1.7684k
1.7684k ∠ -90o

120 + j0
120 ∠ 0o

Unless otherwise specified, the source voltage will be our reference for phase shift, and so will
be written at an angle of 0o. Remember that there is no such thing as an ”absolute” angle of phase
shift for a voltage or current, since it’s always a quantity relative to another waveform. Phase angles
for impedance, however (like those of the resistor, inductor, and capacitor), are known absolutely,
because the phase relationships between voltage and current at each component are absolutely
defined.

Notice that I’m assuming a perfectly reactive inductor and capacitor, with impedance phase
angles of exactly +90 and -90o, respectively. Although real components won’t be perfect in this
regard, they should be fairly close. For simplicity, I’ll assume perfectly reactive inductors and
capacitors from now on in my example calculations except where noted otherwise.

Since the above example circuit is a series circuit, we know that the total circuit impedance is
equal to the sum of the individuals, so:
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Ztotal = ZR + ZL + ZC

Ztotal = (250 + j0 Ω) + (0 + j245.04 Ω) + (0 - j1.7684k Ω)

Ztotal = 250 - j1.5233k Ω   or   1.5437 kΩ ∠ -80.680o

Inserting this figure for total impedance into our table:

E

I

Volts

Amps

OhmsZ

R L TotalC

250 + j0

250 ∠ 0o

0 + j245.04 

254.04 ∠ 90o

0 - j1.7684k

1.7684k ∠ -90o

120 + j0

120 ∠ 0o

250 - j1.5233k
1.5437k ∠ -80.680o

Rule of series
circuits:

Ztotal = ZR + ZL + ZC

We can now apply Ohm’s Law (I=E/R) vertically in the ”Total” column to find total current
for this series circuit:

E

I

Volts

Amps

OhmsZ

R L TotalC

250 + j0

250 ∠ 0o

0 + j245.04 

254.04 ∠ 90o

0 - j1.7684k

1.7684k ∠ -90o

120 + j0

120 ∠ 0o

250 - j1.5233k

1.5437k ∠ -80.680o

12.589m + 76.708m
77.734m ∠ 80.680o

Ohm’s
Law

I = 
E

Z

Being a series circuit, current must be equal through all components. Thus, we can take the
figure obtained for total current and distribute it to each of the other columns:

E

I

Volts

Amps

OhmsZ

R L TotalC

250 + j0

250 ∠ 0o

0 + j245.04 

254.04 ∠ 90o

0 - j1.7684k

1.7684k ∠ -90o

120 + j0

120 ∠ 0o

250 - j1.5233k

1.5437k ∠ -80.680o

12.589m + 76.708m

77.734m ∠ 80.680o

12.589m + 76.708m
77.734m ∠ 80.680o

12.589m + 76.708m
77.734m ∠ 80.680o

12.589m + 76.708m
77.734m ∠ 80.680o

Rule of series
circuits:

Itotal = IR = IL = IC

Now we’re prepared to apply Ohm’s Law (E=IZ) to each of the individual component columns
in the table, to determine voltage drops:
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E

I

Volts

Amps

OhmsZ

R L TotalC

250 + j0

250 ∠ 0o

0 + j245.04 

254.04 ∠ 90o

0 - j1.7684k

1.7684k ∠ -90o

120 + j0

120 ∠ 0o

250 - j1.5233k

1.5437k ∠ -80.680o

12.589m + 76.708m

77.734m ∠ 80.680o

12.589m + 76.708m

77.734m ∠ 80.680o

12.589m + 76.708m

77.734m ∠ 80.680o

12.589m + 76.708m

77.734m ∠ 80.680o

Ohm’s
Law

Ohm’s
Law

Ohm’s
Law

3.1472 + j19.177
19.434 ∠ 80.680o

-18.797 + j3.0848
19.048 ∠ 170.68o

135.65 - j22.262
137.46 ∠ -9.3199o

E = IZ E = IZ E = IZ

Notice something strange here: although our supply voltage is only 120 volts, the voltage across
the capacitor is 137.46 volts! How can this be? The answer lies in the interaction between the
inductive and capacitive reactances. Expressed as impedances, we can see that the inductor opposes
current in a manner precisely opposite that of the capacitor. Expressed in rectangular form, the
inductor’s impedance has a positive imaginary term and the capacitor has a negative imaginary
term. When these two contrary impedances are added (in series), they tend to cancel each other
out! Although they’re still added together to produce a sum, that sum is actually less than either
of the individual (capacitive or inductive) impedances alone. It is analogous to adding together
a positive and a negative (scalar) number: the sum is a quantity less than either one’s individual
absolute value.

If the total impedance in a series circuit with both inductive and capacitive elements is less than
the impedance of either element separately, then the total current in that circuit must be greater
than what it would be with only the inductive or only the capacitive elements there. With this
abnormally high current through each of the components, voltages greater than the source voltage
may be obtained across some of the individual components! Further consequences of inductors’ and
capacitors’ opposite reactances in the same circuit will be explored in the next chapter.

Once you’ve mastered the technique of reducing all component values to impedances (Z), analyz-
ing any AC circuit is only about as difficult as analyzing any DC circuit, except that the quantities
dealt with are vector instead of scalar. With the exception of equations dealing with power (P),
equations in AC circuits are the same as those in DC circuits, using impedances (Z) instead of
resistances (R). Ohm’s Law (E=IZ) still holds true, and so do Kirchhoff’s Voltage and Current
Laws.

To demonstrate Kirchhoff’s Voltage Law in an AC circuit, we can look at the answers we derived
for component voltage drops in the last circuit. KVL tells us that the algebraic sum of the voltage
drops across the resistor, inductor, and capacitor should equal the applied voltage from the source.
Even though this may not look like it is true at first sight, a bit of complex number addition proves
otherwise:
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ER + EL + EC   should equal   Etotal

3.1472 + j19.177 V    ER

-18.797 + j3.0848 V EL

135.65 - j22.262 V EC+

120 + j0 V Etotal

Aside from a bit of rounding error, the sum of these voltage drops does equal 120 volts. Performed
on a calculator (preserving all digits), the answer you will receive should be exactly 120 + j0 volts.

We can also use SPICE to verify our figures for this circuit:

1 2

30

120 V
60 Hz

R

L

C

250 Ω

650 mH

1.5 µF

ac r-l-c circuit

v1 1 0 ac 120 sin

r1 1 2 250

l1 2 3 650m

c1 3 0 1.5u

.ac lin 1 60 60

.print ac v(1,2) v(2,3) v(3,0) i(v1)

.print ac vp(1,2) vp(2,3) vp(3,0) ip(v1)

.end

freq v(1,2) v(2,3) v(3) i(v1)

6.000E+01 1.943E+01 1.905E+01 1.375E+02 7.773E-02

freq vp(1,2) vp(2,3) vp(3) ip(v1)

6.000E+01 8.068E+01 1.707E+02 -9.320E+00 -9.932E+01
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ER = 19.43 V ∠ 80.68o

EL = 19.05 V ∠ 170.7o

EC = 137.5 V ∠ -9.320o

I = 77.73 mA ∠ -99.32o (actual phase angle = 80.68o)

Interpreted SPICE results

The SPICE simulation shows our hand-calculated results to be accurate.

As you can see, there is little difference between AC circuit analysis and DC circuit analysis,
except that all quantities of voltage, current, and resistance (actually, impedance) must be handled
in complex rather than scalar form so as to account for phase angle. This is good, since it means all
you’ve learned about DC electric circuits applies to what you’re learning here. The only exception
to this consistency is the calculation of power, which is so unique that it deserves a chapter devoted
to that subject alone.

• REVIEW:

• Impedances of any kind add in series: ZTotal = Z1 + Z2 + . . . Zn

• Although impedances add in series, the total impedance for a circuit containing both induc-
tance and capacitance may be less than one or more of the individual impedances, because
series inductive and capacitive impedances tend to cancel each other out. This may lead to
voltage drops across components exceeding the supply voltage!

• All rules and laws of DC circuits apply to AC circuits, so long as values are expressed in
complex form rather than scalar. The only exception to this principle is the calculation of
power, which is very different for AC.

5.3 Parallel R, L, and C

We can take the same components from the series circuit and rearrange them into a parallel config-
uration for an easy example circuit:

120 V
60 Hz

R L C
250 Ω 650 mH 1.5 µF

The fact that these components are connected in parallel instead of series now has absolutely no
effect on their individual impedances. So long as the power supply is the same frequency as before,
the inductive and capacitive reactances will not have changed at all:
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120 V
60 Hz

ZR ZL ZC

250 Ω ∠ 0o

245.04 Ω ∠ 90o

1.7684 kΩ ∠ -90o

With all component values expressed as impedances (Z), we can set up an analysis table and
proceed as in the last example problem, except this time following the rules of parallel circuits
instead of series:

E

I

Volts

Amps

OhmsZ

R L TotalC

250 + j0
250 ∠ 0o

0 + j245.04 
254.04 ∠ 90o

0 - j1.7684k
1.7684k ∠ -90o

120 + j0
120 ∠ 0o

Knowing that voltage is shared equally by all components in a parallel circuit, we can transfer
the figure for total voltage to all component columns in the table:

E

I

Volts

Amps

OhmsZ

R L TotalC

250 + j0

250 ∠ 0o

0 + j245.04 

254.04 ∠ 90o

0 - j1.7684k

1.7684k ∠ -90o

120 + j0

120 ∠ 0o

120 + j0
120 ∠ 0o

120 + j0
120 ∠ 0o

120 + j0
120 ∠ 0o

Rule of parallel
circuits:

Etotal = ER = EL = EC

Now, we can apply Ohm’s Law (I=E/Z) vertically in each column to determine current through
each component:

E

I

Volts

Amps

OhmsZ

R L TotalC

250 + j0

250 ∠ 0o

0 + j245.04 

254.04 ∠ 90o

0 - j1.7684k

1.7684k ∠ -90o

120 + j0

120 ∠ 0o

120 + j0

120 ∠ 0o

120 + j0

120 ∠ 0o

120 + j0

120 ∠ 0o

Ohm’s
Law

Ohm’s
Law

Ohm’s
Law

480m + j0
480 ∠ 0o

0 - j489.71m
489.71m ∠ -90o

0 + j67.858m
67.858m ∠ 90o

I = 
E

Z
I = 

E

Z
I = 

E

Z



102 CHAPTER 5. REACTANCE AND IMPEDANCE – R, L, AND C

There are two strategies for calculating total current and total impedance. First, we could
calculate total impedance from all the individual impedances in parallel (ZTotal = 1/(1/ZR + 1/ZL

+ 1/ZC), and then calculate total current by dividing source voltage by total impedance (I=E/Z).
However, working through the parallel impedance equation with complex numbers is no easy task,
with all the reciprocations (1/Z). This is especially true if you’re unfortunate enough not to have
a calculator that handles complex numbers and are forced to do it all by hand (reciprocate the
individual impedances in polar form, then convert them all to rectangular form for addition, then
convert back to polar form for the final inversion, then invert). The second way to calculate total
current and total impedance is to add up all the branch currents to arrive at total current (total
current in a parallel circuit – AC or DC – is equal to the sum of the branch currents), then use
Ohm’s Law to determine total impedance from total voltage and total current (Z=E/I).

E

I

Volts

Amps

OhmsZ

R L TotalC

250 + j0

250 ∠ 0o

0 + j245.04 

254.04 ∠ 90o

0 - j1.7684k

1.7684k ∠ -90o

120 + j0

120 ∠ 0o

120 + j0

120 ∠ 0o

120 + j0

120 ∠ 0o

120 + j0

120 ∠ 0o

480m + j0

480 ∠ 0o

0 - j489.71m

489.71m ∠ -90o

0 + j67.858m

67.858m ∠ 90o

480m - j421.85m
639.03m ∠ -41.311o

141.05 + j123.96
187.79 ∠ 41.311o

Either method, performed properly, will provide the correct answers. Let’s try analyzing this
circuit with SPICE and see what happens:

voltage sources for SPICE to
use as current measurement

2

4

5

6
1

2

3

0 0 0 0

2 2

120 V
60 Hz

R L C
250 Ω 650 mH 1.5 µF

Vir Vil Vic

Vi

Rbogus

Battery symbols are "dummy"

points.  All are set to 0 volts.

ac r-l-c circuit

v1 1 0 ac 120 sin

vi 1 2 ac 0

vir 2 3 ac 0

vil 2 4 ac 0
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rbogus 4 5 1e-12

vic 2 6 ac 0

r1 3 0 250

l1 5 0 650m

c1 6 0 1.5u

.ac lin 1 60 60

.print ac i(vi) i(vir) i(vil) i(vic)

.print ac ip(vi) ip(vir) ip(vil) ip(vic)

.end

freq i(vi) i(vir) i(vil) i(vic)

6.000E+01 6.390E-01 4.800E-01 4.897E-01 6.786E-02

freq ip(vi) ip(vir) ip(vil) ip(vic)

6.000E+01 -4.131E+01 0.000E+00 -9.000E+01 9.000E+01

Itotal = 639.0 mA ∠ -41.31o

IR = 480 mA ∠ 0o

IL = 489.7 mA ∠ -90o

IC = 67.86 mA ∠ 90o

Interpreted SPICE results

It took a little bit of trickery to get SPICE working as we would like on this circuit (installing
”dummy” voltage sources in each branch to obtain current figures and installing the ”dummy”
resistor in the inductor branch to prevent a direct inductor-to-voltage source loop, which SPICE
cannot tolerate), but we did get the proper readings. Even more than that, by installing the dummy
voltage sources (current meters) in the proper directions, we were able to avoid that idiosyncrasy of
SPICE of printing current figures 180o out of phase. This way, our current phase readings came out
to exactly match our hand calculations.

5.4 Series-parallel R, L, and C

Now that we’ve seen how series and parallel AC circuit analysis is not fundamentally different than
DC circuit analysis, it should come as no surprise that series-parallel analysis would be the same as
well, just using complex numbers instead of scalar to represent voltage, current, and impedance.

Take this series-parallel circuit for example:
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120 V
60 Hz

C1

4.7 µF
L 650 mH

R 470 Ω
C2 1.5 µF

The first order of business, as usual, is to determine values of impedance (Z) for all components
based on the frequency of the AC power source. To do this, we need to first determine values of
reactance (X) for all inductors and capacitors, then convert reactance (X) and resistance (R) figures
into proper impedance (Z) form:

Reactances and Resistances:

XC1 = 
2πfC1

1

XC1 = 
(2)(π)(60 Hz)(4.7 µF)

1

XC1 = 564.38 Ω

XL = 2πfL

XL = (2)(π)(60 Hz)(650 mH)

XL = 245.04 Ω

XC2 =
1

2πfC2

XC2 = 
(2)(π)(60 Hz)(1.5 µF)

1

XC2 = 1.7684 kΩ

R = 470 Ω

ZC1 = 0 - j564.38 Ω   or   564.38 Ω ∠ -90o

ZL = 0 + j245.04 Ω   or   245.04 Ω ∠ 90o

ZC2 = 0 - j1.7684k Ω   or   1.7684 kΩ ∠ -90o

ZR = 470 + j0 Ω   or   470 Ω ∠ 0o

Now we can set up the initial values in our table:
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E

I

Volts

Amps

OhmsZ

TotalC1 L C2 R

470 + j0

470 ∠ 0o

120 + j0

120 ∠ 0o

0 - j564.38

564.38 ∠ -90o

0 + j245.04

245.04 ∠ 90o

0 - j1.7684k

1.7684k ∠ -90o

Being a series-parallel combination circuit, we must reduce it to a total impedance in more than
one step. The first step is to combine L and C2 as a series combination of impedances, by adding
their impedances together. Then, that impedance will be combined in parallel with the impedance
of the resistor, to arrive at another combination of impedances. Finally, that quantity will be added
to the impedance of C1 to arrive at the total impedance.
In order that our table may follow all these steps, it will be necessary to add additional columns

to it so that each step may be represented. Adding more columns horizontally to the table shown
above would be impractical for formatting reasons, so I will place a new row of columns underneath,
each column designated by its respective component combination:

E

I

Volts

Amps

OhmsZ

L -- C2 R // (L -- C2) C1 -- [R // (L -- C2)]
Total

Calculating these new (combination) impedances will require complex addition for series com-
binations, and the ”reciprocal” formula for complex impedances in parallel. This time, there is no
avoidance of the reciprocal formula: the required figures can be arrived at no other way!

E

I

Volts

Amps

OhmsZ

L -- C2 R // (L -- C2) C1 -- [R // (L -- C2)]
Total

0 - j1.5233k
1.5233k ∠ -90o

429.15 - j132.41
449.11 ∠ -17.147o

429.15 - j696.79
818.34 ∠ -58.371o

120 + j0

120 ∠ 0o

Rule of series
circuits:

Rule of parallel
circuits:

Rule of series
circuits:

ZL--C2 = ZL + ZC2

ZR//(L--C2) =

ZR ZL--C2

11
+

1

Ztotal = ZC1 + ZR//(L--C2)

Seeing as how our second table contains a column for ”Total,” we can safely discard that column
from the first table. This gives us one table with four columns and another table with three columns.
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Now that we know the total impedance (818.34 Ω 6 -58.371o) and the total voltage (120 volts
6 0o), we can apply Ohm’s Law (I=E/Z) vertically in the ”Total” column to arrive at a figure for
total current:

E

I

Volts

Amps

OhmsZ

L -- C2 R // (L -- C2) C1 -- [R // (L -- C2)]
Total

0 - j1.5233k

1.5233k ∠ -90o

429.15 - j132.41

449.11 ∠ -17.147o

429.15 - j696.79

818.34 ∠ -58.371o

120 + j0

120 ∠ 0o

76.899m + j124.86m
146.64m ∠ 58.371o

Ohm’s
Law

I = 
E

Z

At this point we ask ourselves the question: are there any components or component combinations
which share either the total voltage or the total current? In this case, both C1 and the parallel
combination R//(L−−C2) share the same (total) current, since the total impedance is composed of
the two sets of impedances in series. Thus, we can transfer the figure for total current into both
columns:

E

I

Volts

Amps

OhmsZ

C1 L C2 R

470 + j0

470 ∠ 0o

0 - j564.38

564.38 ∠ -90o

0 + j245.04

245.04 ∠ 90o

0 - j1.7684k

1.7684k ∠ -90o

76.899m + j124.86m
146.64m ∠ 58.371o

Rule of series
circuits:

Itotal = IC1 = IR//(L--C2)

E

I

Volts

Amps

OhmsZ

L -- C2 R // (L -- C2) C1 -- [R // (L -- C2)]
Total

0 - j1.5233k

1.5233k ∠ -90o

429.15 - j132.41

449.11 ∠ -17.147o

429.15 - j696.79

818.34 ∠ -58.371o

120 + j0

120 ∠ 0o

76.899m + j124.86m

146.64m ∠ 58.371o

76.899m + j124.86m
146.64m ∠ 58.371o

Rule of series
circuits:

Itotal = IC1 = IR//(L--C2)

Now, we can calculate voltage drops across C1 and the series-parallel combination of R//(L−−C2)
using Ohm’s Law (E=IZ) vertically in those table columns:
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E

I

Volts

Amps

OhmsZ

C1 L C2 R

470 + j0

470 ∠ 0o

0 - j564.38

564.38 ∠ -90o

0 + j245.04

245.04 ∠ 90o

0 - j1.7684k

1.7684k ∠ -90o

76.899m + j124.86m

146.64m ∠ 58.371o

Ohm’s
Law

70.467 - j43.400
82.760 ∠ -31.629o

E = IZ

E

I

Volts

Amps

OhmsZ

L -- C2 R // (L -- C2) C1 -- [R // (L -- C2)]
Total

0 - j1.5233k

1.5233k ∠ -90o

429.15 - j132.41

449.11 ∠ -17.147o

429.15 - j696.79

818.34 ∠ -58.371o

120 + j0

120 ∠ 0o

76.899m + j124.86m

146.64m ∠ 58.371o

76.899m + j124.86m

146.64m ∠ 58.371o

Ohm’s
Law

49.533 + j43.400
65.857 ∠ 41.225o

E = IZ

A quick double-check of our work at this point would be to see whether or not the voltage drops
across C1 and the series-parallel combination of R//(L−−C2) indeed add up to the total. According
to Kirchhoff’s Voltage Law, they should!

Etotal should be equal to EC1 + ER//(L--C2)

70.467 - j43.400 V

49.533 + j43.400 V+

120 + j0 V Indeed, it is!

That last step was merely a precaution. In a problem with as many steps as this one has, there
is much opportunity for error. Occasional cross-checks like that one can save a person a lot of work
and unnecessary frustration by identifying problems prior to the final step of the problem.

After having solved for voltage drops across C1 and the combination R//(L−−C2), we again ask
ourselves the question: what other components share the same voltage or current? In this case, the
resistor (R) and the combination of the inductor and the second capacitor (L−−C2) share the same
voltage, because those sets of impedances are in parallel with each other. Therefore, we can transfer
the voltage figure just solved for into the columns for R and L−−C2:
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E

I

Volts

Amps

OhmsZ

C1 L C2 R

470 + j0

470 ∠ 0o

0 - j564.38

564.38 ∠ -90o

0 + j245.04

245.04 ∠ 90o

0 - j1.7684k

1.7684k ∠ -90o

76.899m + j124.86m

146.64m ∠ 58.371o

70.467 - j43.400

82.760 ∠ -31.629o

49.533 + j43.400
65.857 ∠ 41.225o

Rule of parallel
circuits:

ER//(L--C2) = ER = EL--C2

E

I

Volts

Amps

OhmsZ

L -- C2 R // (L -- C2) C1 -- [R // (L -- C2)]
Total

0 - j1.5233k

1.5233k ∠ -90o

429.15 - j132.41

449.11 ∠ -17.147o

429.15 - j696.79

818.34 ∠ -58.371o

120 + j0

120 ∠ 0o

76.899m + j124.86m

146.64m ∠ 58.371o

76.899m + j124.86m

146.64m ∠ 58.371o

49.533 + j43.400

65.857 ∠ 41.225o

Rule of parallel
circuits:

ER//(L--C2) = ER = EL--C2

49.533 + j43.400
65.857 ∠ 41.225o

Now we’re all set for calculating current through the resistor and through the series combination
L−−C2. All we need to do is apply Ohm’s Law (I=E/Z) vertically in both of those columns:

E

I

Volts

Amps

OhmsZ

C1 L C2 R

470 + j0

470 ∠ 0o

0 - j564.38

564.38 ∠ -90o

0 + j245.04

245.04 ∠ 90o

0 - j1.7684k

1.7684k ∠ -90o

76.899m + j124.86m

146.64m ∠ 58.371o

70.467 - j43.400

82.760 ∠ -31.629o

49.533 + j43.400

65.857 ∠ 41.225o

Ohm’s 
Law

105.39m + j92.341m
140.12m ∠ 41.225o

I = 
E

Z
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E

I

Volts

Amps

OhmsZ

L -- C2 R // (L -- C2) C1 -- [R // (L -- C2)]
Total

0 - j1.5233k

1.5233k ∠ -90o

429.15 - j132.41

449.11 ∠ -17.147o

429.15 - j696.79

818.34 ∠ -58.371o

120 + j0

120 ∠ 0o

76.899m + j124.86m

146.64m ∠ 58.371o

76.899m + j124.86m

146.64m ∠ 58.371o

49.533 + j43.400

65.857 ∠ 41.225o

49.533 + j43.400

65.857 ∠ 41.225o

-28.490m + j32.516m
43.232m ∠ 131.22o

Ohm’s
Law

I =
E

Z

Another quick double-check of our work at this point would be to see if the current figures for
L−−C2 and R add up to the total current. According to Kirchhoff’s Current Law, they should:

IR//(L--C2) should be equal to IR + I(L--C2)

105.39m + j92.341m
-28.490m + j32.516m+

76.899m + j124.86m Indeed, it is!

Since the L and C2 are connected in series, and since we know the current through their series
combination impedance, we can distribute that current figure to the L and C2 columns following
the rule of series circuits whereby series components share the same current:

E

I

Volts

Amps

OhmsZ

C1 L C2 R

470 + j0

470 ∠ 0o

0 - j564.38

564.38 ∠ -90o

0 + j245.04

245.04 ∠ 90o

0 - j1.7684k

1.7684k ∠ -90o

76.899m + j124.86m

146.64m ∠ 58.371o

70.467 - j43.400

82.760 ∠ -31.629o

49.533 + j43.400

65.857 ∠ 41.225o

105.39m + j92.341m

140.12m ∠ 41.225o

-28.490m + j32.516m
43.232m ∠ 131.22o

-28.490m + j32.516m
43.232m ∠ 131.22o

Rule of series
circuits:

IL--C2 = IL = IC2

With one last step (actually, two calculations), we can complete our analysis table for this circuit.
With impedance and current figures in place for L and C2, all we have to do is apply Ohm’s Law
(E=IZ) vertically in those two columns to calculate voltage drops.
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E

I

Volts

Amps

OhmsZ

C1 L C2 R

470 + j0

470 ∠ 0o

0 - j564.38

564.38 ∠ -90o

0 + j245.04

245.04 ∠ 90o

0 - j1.7684k

1.7684k ∠ -90o

76.899m + j124.86m

146.64m ∠ 58.371o

70.467 - j43.400

82.760 ∠ -31.629o

49.533 + j43.400

65.857 ∠ 41.225o

105.39m + j92.341m

140.12m ∠ 41.225o

-28.490m + j32.516m

43.232m ∠ 131.22o

-28.490m + j32.516m

43.232m ∠ 131.22o

-7.968 - j6.981

Ohm’s
Law

Ohm’s
Law

10.594 ∠ 221.22o

57.501 + j50.382
76.451 ∠ 41.225

E = IZ E = IZ

Now, let’s turn to SPICE for a computer verification of our work:

1

0

2 3

4

5

6

0 0

3

more "dummy" voltage sources to
act as current measurement points
in the SPICE analysis (all set to 0
volts).

C1

L

C2

R 470 Ω
1.5 µF

650 mH

4.7 µF

120 V
60 Hz

Vit

Vilc Vir

ac series-parallel r-l-c circuit

v1 1 0 ac 120 sin

vit 1 2 ac 0

vilc 3 4 ac 0

vir 3 6 ac 0

c1 2 3 4.7u

l 4 5 650m

c2 5 0 1.5u

r 6 0 470

.ac lin 1 60 60

.print ac v(2,3) vp(2,3) i(vit) ip(vit)

.print ac v(4,5) vp(4,5) i(vilc) ip(vilc)

.print ac v(5,0) vp(5,0) i(vilc) ip(vilc)
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.print ac v(6,0) vp(6,0) i(vir) ip(vir)

.end

freq v(2,3) vp(2,3) i(vit) ip(vit) C1

6.000E+01 8.276E+01 -3.163E+01 1.466E-01 5.837E+01

freq v(4,5) vp(4,5) i(vilc) ip(vilc) L

6.000E+01 1.059E+01 -1.388E+02 4.323E-02 1.312E+02

freq v(5) vp(5) i(vilc) ip(vilc) C2

6.000E+01 7.645E+01 4.122E+01 4.323E-02 1.312E+02

freq v(6) vp(6) i(vir) ip(vir) R

6.000E+01 6.586E+01 4.122E+01 1.401E-01 4.122E+01

Each line of the SPICE output listing gives the voltage, voltage phase angle, current, and current
phase angle for C1, L, C2, and R, in that order. As you can see, these figures do concur with our
hand-calculated figures in the circuit analysis table.
As daunting a task as series-parallel AC circuit analysis may appear, it must be emphasized that

there is nothing really new going on here besides the use of complex numbers. Ohm’s Law (in its
new form of E=IZ) still holds true, as do the voltage and current Laws of Kirchhoff. While there
is more potential for human error in carrying out the necessary complex number calculations, the
basic principles and techniques of series-parallel circuit reduction are exactly the same.

• REVIEW:

• Analysis of series-parallel AC circuits is much the same as series-parallel DC circuits. The only
substantive difference is that all figures and calculations are in complex (not scalar) form.

• It is important to remember that before series-parallel reduction (simplification) can begin,
you must determine the impedance (Z) of every resistor, inductor, and capacitor. That way,
all component values will be expressed in common terms (Z) instead of an incompatible mix
of resistance (R), inductance (L), and capacitance (C).

5.5 Susceptance and Admittance

In the study of DC circuits, the student of electricity comes across a term meaning the opposite of
resistance: conductance. It is a useful term when exploring the mathematical formula for parallel
resistances: Rparallel = 1 / (1/R1 + 1/R2 + . . . 1/Rn). Unlike resistance, which diminishes as
more parallel components are included in the circuit, conductance simply adds. Mathematically,
conductance is the reciprocal of resistance, and each 1/R term in the ”parallel resistance formula”
is actually a conductance.
Whereas the term ”resistance” denotes the amount of opposition to flowing electrons in a circuit,

”conductance” represents the ease of which electrons may flow. Resistance is the measure of how
much a circuit resists current, while conductance is the measure of how much a circuit conducts
current. Conductance used to be measured in the unit of mhos, or ”ohms” spelled backward. Now,
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the proper unit of measurement is Siemens. When symbolized in a mathematical formula, the proper
letter to use for conductance is ”G”.
Reactive components such as inductors and capacitors oppose the flow of electrons with respect

to time, rather than with a constant, unchanging friction as resistors do. We call this time-based
opposition, reactance, and like resistance we also measure it in the unit of ohms.
As conductance is the complement of resistance, there is also a complementary expression of

reactance, called susceptance. Mathematically, it is equal to 1/X, the reciprocal of reactance. Like
conductance, it used to be measured in the unit of mhos, but now is measured in Siemens. Its
mathematical symbol is ”B”, unfortunately the same symbol used to represent magnetic flux density.
The terms ”reactance” and ”susceptance” have a certain linguistic logic to them, just like resis-

tance and conductance. While reactance is the measure of how much a circuit reacts against change
in current over time, susceptance is the measure of how much a circuit is susceptible to conducting
a changing current.
If one were tasked with determining the total effect of several parallel-connected, pure reactances,

one could convert each reactance (X) to a susceptance (B), then add susceptances rather than
diminish reactances: Xparallel = 1/(1/X1 + 1/X2 + . . . 1/Xn). Like conductances (G), susceptances
(B) add in parallel and diminish in series. Also like conductance, susceptance is a scalar quantity.
When resistive and reactive components are interconnected, their combined effects can no longer

be analyzed with scalar quantities of resistance (R) and reactance (X). Likewise, figures of conduc-
tance (G) and susceptance (B) are most useful in circuits where the two types of opposition are not
mixed, i.e. either a purely resistive (conductive) circuit, or a purely reactive (susceptive) circuit. In
order to express and quantify the effects of mixed resistive and reactive components, we had to have
a new term: impedance, measured in ohms and symbolized by the letter ”Z”.
To be consistent, we need a complementary measure representing the reciprocal of impedance.

The name for this measure is admittance. Admittance is measured in (guess what?) the unit of
Siemens, and its symbol is ”Y”. Like impedance, admittance is a complex quantity rather than
scalar. Again, we see a certain logic to the naming of this new term: while impedance is a measure
of how much alternating current is impeded in a circuit, admittance is a measure of how much current
is admitted.
Given a scientific calculator capable of handling complex number arithmetic in both polar and

rectangular forms, you may never have to work with figures of susceptance (B) or admittance (Y).
Be aware, though, of their existence and their meanings.

5.6 Summary

With the notable exception of calculations for power (P), all AC circuit calculations are based on
the same general principles as calculations for DC circuits. The only significant difference is that
fact that AC calculations use complex quantities while DC calculations use scalar quantities. Ohm’s
Law, Kirchhoff’s Laws, and even the network theorems learned in DC still hold true for AC when
voltage, current, and impedance are all expressed with complex numbers. The same troubleshooting
strategies applied toward DC circuits also hold for AC, although AC can certainly be more difficult
to work with due to phase angles which aren’t registered by a handheld multimeter.
Power is another subject altogether, and will be covered in its own chapter in this book. Because

power in a reactive circuit is both absorbed and released – not just dissipated as it is with resistors
– its mathematical handling requires a more direct application of trigonometry to solve.
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When faced with analyzing an AC circuit, the first step in analysis is to convert all resistor,
inductor, and capacitor component values into impedances (Z), based on the frequency of the power
source. After that, proceed with the same steps and strategies learned for analyzing DC circuits,
using the ”new” form of Ohm’s Law: E=IZ ; I=E/Z ; and Z=E/I
Remember that only the calculated figures expressed in polar form apply directly to empirical

measurements of voltage and current. Rectangular notation is merely a useful tool for us to add
and subtract complex quantities together. Polar notation, where the magnitude (length of vector)
directly relates to the magnitude of the voltage or current measured, and the angle directly relates
to the phase shift in degrees, is the most practical way to express complex quantities for circuit
analysis.

5.7 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most recent
to first. See Appendix 2 (Contributor List) for dates and contact information.
Jason Starck (June 2000): HTML document formatting, which led to a much better-looking

second edition.
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Chapter 6

RESONANCE
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6.1 An electric pendulum

Capacitors store energy in the form of an electric field, and electrically manifest that stored energy
as a potential: static voltage. Inductors store energy in the form of a magnetic field, and electrically
manifest that stored energy as a kinetic motion of electrons: current. Capacitors and inductors are
flip-sides of the same reactive coin, storing and releasing energy in complementary modes. When
these two types of reactive components are directly connected together, their complementary ten-
dencies to store energy will produce an unusual result.
If either the capacitor or inductor starts out in a charged state, the two components will exchange

energy between them, back and forth, creating their own AC voltage and current cycles. If we assume
that both components are subjected to a sudden application of voltage (say, from a momentarily
connected battery), the capacitor will very quickly charge and the inductor will oppose change in
current, leaving the capacitor in the charged state and the inductor in the discharged state:

+

-

capacitor charged: voltage at (+) peak
inductor discharged: zero current

e

i Time 

Battery momentarily 
connected to start the cycle e=

i=

115
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The capacitor will begin to discharge, its voltage decreasing. Meanwhile, the inductor will begin
to build up a ”charge” in the form of a magnetic field as current increases in the circuit:

+

-
Time 

e=
i=

capacitor discharging: voltage decreasing
inductor charging: current increasing

The inductor, still charging, will keep electrons flowing in the circuit until the capacitor has been
completely discharged, leaving zero voltage across it:

Time 

e=
i=

capacitor fully discharged: zero voltage
inductor fully charged: maximum current

The inductor will maintain current flow even with no voltage applied. In fact, it will generate
a voltage (like a battery) in order to keep current in the same direction. The capacitor, being the
recipient of this current, will begin to accumulate a charge in the opposite polarity as before:

Time 

e=
i=

-

+

capacitor charging: voltage increasing (in opposite polarity)
inductor discharging: current decreasing

When the inductor is finally depleted of its energy reserve and the electrons come to a halt, the
capacitor will have reached full (voltage) charge in the opposite polarity as when it started:

Time 

e=
i=

-

+

capacitor fully charged: voltage at (-) peak
inductor fully discharged: zero current 

Now we’re at a condition very similar to where we started: the capacitor at full charge and zero
current in the circuit. The capacitor, as before, will begin to discharge through the inductor, causing
an increase in current (in the opposite direction as before) and a decrease in voltage as it depletes
its own energy reserve:
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Time 

e=
i=

-

+

capacitor discharging: voltage decreasing
inductor charging: current increasing

Eventually the capacitor will discharge to zero volts, leaving the inductor fully charged with full
current through it:

Time 

e=
i=

capacitor fully discharged: zero voltage
inductor fully charged: current at (-) peak

The inductor, desiring to maintain current in the same direction, will act like a source again,
generating a voltage like a battery to continue the flow. In doing so, the capacitor will begin to
charge up and the current will decrease in magnitude:

Time 

e=
i=

-

+

capacitor charging: voltage increasing
inductor discharging: current decreasing

Eventually the capacitor will become fully charged again as the inductor expends all of its
energy reserves trying to maintain current. The voltage will once again be at its positive peak and
the current at zero. This completes one full cycle of the energy exchange between the capacitor and
inductor:

Time 

e=
i=

-

+

capacitor fully charged: voltage at (+) peak
inductor fully discharged: zero current

This oscillation will continue with steadily decreasing amplitude due to power losses from stray
resistances in the circuit, until the process stops altogether. Overall, this behavior is akin to that
of a pendulum: as the pendulum mass swings back and forth, there is a transformation of energy
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taking place from kinetic (motion) to potential (height), in a similar fashion to the way energy
is transferred in the capacitor/inductor circuit back and forth in the alternating forms of current
(kinetic motion of electrons) and voltage (potential electric energy).
At the peak height of each swing of a pendulum, the mass briefly stops and switches directions.

It is at this point that potential energy (height) is at a maximum and kinetic energy (motion) is
at zero. As the mass swings back the other way, it passes quickly through a point where the string
is pointed straight down. At this point, potential energy (height) is at zero and kinetic energy
(motion) is at maximum. Like the circuit, a pendulum’s back-and-forth oscillation will continue
with a steadily dampened amplitude, the result of air friction (resistance) dissipating energy. Also
like the circuit, the pendulum’s position and velocity measurements trace two sine waves (90 degrees
out of phase) over time:

mass

zero potential energy,
maximum kinetic energy

maximum potential energy,
zero kinetic energy

potential energy =
kinetic energy =

In physics, this kind of natural sine-wave oscillation for a mechanical system is called Simple
Harmonic Motion (often abbreviated as ”SHM”). The same underlying principles govern both the
oscillation of a capacitor/inductor circuit and the action of a pendulum, hence the similarity in
effect. It is an interesting property of any pendulum that its periodic time is governed by the length
of the string holding the mass, and not the weight of the mass itself. That is why a pendulum will
keep swinging at the same frequency as the oscillations decrease in amplitude. The oscillation rate
is independent of the amount of energy stored in it.
The same is true for the capacitor/inductor circuit. The rate of oscillation is strictly dependent on

the sizes of the capacitor and inductor, not on the amount of voltage (or current) at each respective
peak in the waves. The ability for such a circuit to store energy in the form of oscillating voltage and
current has earned it the name tank circuit. Its property of maintaining a single, natural frequency
regardless of how much or little energy is actually being stored in it gives it special significance in
electric circuit design.
However, this tendency to oscillate, or resonate, at a particular frequency is not limited to
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circuits exclusively designed for that purpose. In fact, nearly any AC circuit with a combination of
capacitance and inductance (commonly called an ”LC circuit”) will tend to manifest unusual effects
when the AC power source frequency approaches that natural frequency. This is true regardless of
the circuit’s intended purpose.

If the power supply frequency for a circuit exactly matches the natural frequency of the circuit’s
LC combination, the circuit is said to be in a state of resonance. The unusual effects will reach
maximum in this condition of resonance. For this reason, we need to be able to predict what the
resonant frequency will be for various combinations of L and C, and be aware of what the effects of
resonance are.

• REVIEW:

• A capacitor and inductor directly connected together form something called a tank circuit,
which oscillates (or resonates) at one particular frequency. At that frequency, energy is alter-
nately shuffled between the capacitor and the inductor in the form of alternating voltage and
current 90 degrees out of phase with each other.

• When the power supply frequency for an AC circuit exactly matches that circuit’s natural
oscillation frequency as set by the L and C components, a condition of resonance will have
been reached.

6.2 Simple parallel (tank circuit) resonance

A condition of resonance will be experienced in a tank circuit when the reactances of the capacitor
and inductor are equal to each other. Because inductive reactance increases with increasing frequency
and capacitive reactance decreases with increasing frequency, there will only be one frequency where
these two reactances will be equal.

10 µF 100 mH

In the above circuit, we have a 10 µF capacitor and a 100 mH inductor. Since we know the
equations for determining the reactance of each at a given frequency, and we’re looking for that
point where the two reactances are equal to each other, we can set the two reactance formulae equal
to each other and solve for frequency algebraically:
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XL = 2πfL XC = 
2πfC

1

. . . setting the two equal to each other,
representing a condition of equal reactance
(resonance) . . .

2πfL =
1

2πfC

Multiplying both sides by f eliminates the f
term in the denominator of the fraction . . .

2πf2L = 
2πC

1

Dividing both sides by 2πL leaves f2 by itself
on the left-hand side of the equation . . .

f2 =
2π2πLC

1

Taking the square root of both sides of the
equation leaves f by itself on the left side . . .

f =
2π2πLC

1

. . . simplifying . . .

f =
LC2π

1

So there we have it: a formula to tell us the resonant frequency of a tank circuit, given the values
of inductance (L) in Henrys and capacitance (C) in Farads. Plugging in the values of L and C in
our example circuit, we arrive at a resonant frequency of 159.155 Hz.

What happens at resonance is quite interesting. With capacitive and inductive reactances equal
to each other, the total impedance increases to infinity, meaning that the tank circuit draws no
current from the AC power source! We can calculate the individual impedances of the 10 µF
capacitor and the 100 mH inductor and work through the parallel impedance formula to demonstrate
this mathematically:
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XL = 2πfL

XL = (2)(π)(159.155 Hz)(100 mH)

XL = 100 Ω

XC = 
2πfC

1

XC = 
(2)(π)(159.155 Hz)(10 µF)

1

XC = 100 Ω

As you might have guessed, I chose these component values to give resonance impedances that
were easy to work with (100 Ω even). Now, we use the parallel impedance formula to see what
happens to total Z:

Zparallel = 

ZL ZC

11
+

1

Zparallel = 

100 Ω ∠ 90o 100 Ω ∠ -90o

1 1
+

1

Zparallel =
1

+0.01 ∠ -90o 0.01 ∠ 90o

Zparallel =
1

0
Undefined!

We can’t divide any number by zero and arrive at a meaningful result, but we can say that the
result approaches a value of infinity as the two parallel impedances get closer to each other. What
this means in practical terms is that, the total impedance of a tank circuit is infinite (behaving as an
open circuit) at resonance. We can plot the consequences of this over a wide power supply frequency
range with a short SPICE simulation:
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1

0 0

1 1

2

0 0

10 uFC1 L1 100 mH

Rbogus 1 pΩ

freq i(v1) 3.162E-04 1.000E-03 3.162E-03 1.0E-02

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1.000E+02 9.632E-03 . . . . *

1.053E+02 8.506E-03 . . . . * .

1.105E+02 7.455E-03 . . . . * .

1.158E+02 6.470E-03 . . . . * .

1.211E+02 5.542E-03 . . . . * .

1.263E+02 4.663E-03 . . . . * .

1.316E+02 3.828E-03 . . . .* .

1.368E+02 3.033E-03 . . . *. .

1.421E+02 2.271E-03 . . . * . .

1.474E+02 1.540E-03 . . . * . .

1.526E+02 8.373E-04 . . * . . .

1.579E+02 1.590E-04 . * . . . .

1.632E+02 4.969E-04 . . * . . .

1.684E+02 1.132E-03 . . . * . .

1.737E+02 1.749E-03 . . . * . .

1.789E+02 2.350E-03 . . . * . .

1.842E+02 2.934E-03 . . . *. .

1.895E+02 3.505E-03 . . . .* .

1.947E+02 4.063E-03 . . . . * .

2.000E+02 4.609E-03 . . . . * .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

tank circuit frequency sweep

v1 1 0 ac 1 sin

c1 1 0 10u

* rbogus is necessary to eliminate a direct loop

* between v1 and l1, which SPICE can’t handle

rbogus 1 2 1e-12

l1 2 0 100m

.ac lin 20 100 200

.plot ac i(v1)
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.end

The 1 pico-ohm (1 pΩ) resistor is placed in this SPICE analysis to overcome a limitation of
SPICE: namely, that it cannot analyze a circuit containing a direct inductor-voltage source loop. A
very low resistance value was chosen so as to have minimal effect on circuit behavior.
This SPICE simulation plots circuit current over a frequency range of 100 to 200 Hz in twenty

even steps (100 and 200 Hz inclusive). Current magnitude on the graph increases from left to
right, while frequency increases from top to bottom. The current in this circuit takes a sharp dip
around the analysis point of 157.9 Hz, which is the closest analysis point to our predicted resonance
frequency of 159.155 Hz. It is at this point that total current from the power source falls to zero.
The plot above is produced from the above spice circuit file (*.cir), the command (.plot) in the

last line producing the text plot on any printer or terminal. A better looking plot is produced by
the ”nutmeg” graphical post-processor, part of the spice package. The above spice (*.cir) does not
require the plot (.plot) command, though it does no harm. The following commands produce the
below plot:
spice -b -r resonant.raw resonant.cir

( -b batch mode, -r raw file, input is resonant.cir)

nutmeg resonant.raw

From the nutmeg prompt:
setplot ac1 (setplot {enter} for list of plots)

display (for list of signals)

plot mag(v1#branch)

(magnitude of complex current vector v1#branch)
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Incidentally, the graph output produced by this SPICE computer analysis is more generally
known as a Bode plot. Such graphs plot amplitude or phase shift on one axis and frequency on the
other. The steepness of a Bode plot curve characterizes a circuit’s ”frequency response,” or how
sensitive it is to changes in frequency.

• REVIEW:

• Resonance occurs when capacitive and inductive reactances are equal to each other.

• For a tank circuit with no resistance (R), resonant frequency can be calculated with the
following formula:

•

fresonant = 
2π LC

1

• The total impedance of a parallel LC circuit approaches infinity as the power supply frequency
approaches resonance.

• A Bode plot is a graph plotting waveform amplitude or phase on one axis and frequency on
the other.

6.3 Simple series resonance

A similar effect happens in series inductive/capacitive circuits. When a state of resonance is reached
(capacitive and inductive reactances equal), the two impedances cancel each other out and the total
impedance drops to zero!

10 µF

100 mH

At 159.155 Hz:

ZL = 0 + j100 Ω ZC = 0 - j100 Ω

Zseries = ZL + ZC

Zseries = (0 + j100 Ω) + (0 - j100 Ω)

Zseries = 0 Ω
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With the total series impedance equal to 0 Ω at the resonant frequency of 159.155 Hz, the result
is a short circuit across the AC power source at resonance. In the circuit drawn above, this would
not be good. I’ll add a small resistor in series along with the capacitor and the inductor to keep
the maximum circuit current somewhat limited, and perform another SPICE analysis over the same
range of frequencies:

1 2

3

0 0

R1

1 V

1 Ω
C1

L1 100 mH

10 µF

series lc circuit

v1 1 0 ac 1 sin

r1 1 2 1

c1 2 3 10u

l1 3 0 100m

.ac lin 20 100 200

.plot ac i(v1)

.end
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As before, circuit current amplitude increases from left to right, while frequency increases from
top to bottom. The peak is still seen to be at the plotted frequency point of 157.9 Hz, the closest
analyzed point to our predicted resonance point of 159.155 Hz. This would suggest that our resonant
frequency formula holds as true for simple series LC circuits as it does for simple parallel LC circuits,
which is the case:

fresonant = 
2π LC

1

A word of caution is in order with series LC resonant circuits: because of the high currents which
may be present in a series LC circuit at resonance, it is possible to produce dangerously high voltage
drops across the capacitor and the inductor, as each component possesses significant impedance. We
can edit the SPICE netlist in the above example to include a plot of voltage across the capacitor
and inductor to demonstrate what happens:

series lc circuit

v1 1 0 ac 1 sin

r1 1 2 1

c1 2 3 10u

l1 3 0 100m

.ac lin 20 100 200

.plot ac i(v1) v(2,3) v(3)

.end
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According to SPICE, voltage across the capacitor and inductor (plotted with ”+” and ”=”
symbols, respectively) reach a peak somewhere between 100 and 1000 volts (marked by the ”x”
where the graphs overlap)! This is quite impressive for a power supply that only generates 1 volt.
Needless to say, caution is in order when experimenting with circuits such as this.

• REVIEW:

• The total impedance of a series LC circuit approaches zero as the power supply frequency
approaches resonance.

• The same formula for determining resonant frequency in a simple tank circuit applies to simple
series circuits as well.

• Extremely high voltages can be formed across the individual components of series LC circuits
at resonance, due to high current flows and substantial individual component impedances.

6.4 Applications of resonance

So far, the phenomenon of resonance appears to be a useless curiosity, or at most a nuisance to
be avoided (especially if series resonance makes for a short-circuit across our AC voltage source!).
However, this is not the case. Resonance is a very valuable property of reactive AC circuits, employed
in a variety of applications.
One use for resonance is to establish a condition of stable frequency in circuits designed to produce

AC signals. Usually, a parallel (tank) circuit is used for this purpose, with the capacitor and inductor
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directly connected together, exchanging energy between each other. Just as a pendulum can be used
to stabilize the frequency of a clock mechanism’s oscillations, so can a tank circuit be used to stabilize
the electrical frequency of an AC oscillator circuit. As was noted before, the frequency set by the
tank circuit is solely dependent upon the values of L and C, and not on the magnitudes of voltage
or current present in the oscillations:

. . .

. . .

... to the rest of
the "oscillator"

circuit

the natural frequency
of the "tank circuit" 
helps to stabilize
oscillations

Another use for resonance is in applications where the effects of greatly increased or decreased
impedance at a particular frequency is desired. A resonant circuit can be used to ”block” (present
high impedance toward) a frequency or range of frequencies, thus acting as a sort of frequency
”filter” to strain certain frequencies out of a mix of others. In fact, these particular circuits are
called filters, and their design constitutes a discipline of study all by itself:

load

AC source of
mixed frequencies

Tank circuit presents a 
high impedance to a narrow
range of frequencies, blocking
them from getting to the load

In essence, this is how analog radio receiver tuner circuits work to filter, or select, one station
frequency out of the mix of different radio station frequency signals intercepted by the antenna.

• REVIEW:

• Resonance can be employed to maintain AC circuit oscillations at a constant frequency, just as
a pendulum can be used to maintain constant oscillation speed in a timekeeping mechanism.

• Resonance can be exploited for its impedance properties: either dramatically increasing or
decreasing impedance for certain frequencies. Circuits designed to screen certain frequencies
out of a mix of different frequencies are called filters.

6.5 Resonance in series-parallel circuits

In simple reactive circuits with little or no resistance, the effects of radically altered impedance will
manifest at the resonance frequency predicted by the equation given earlier. In a parallel (tank) LC
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circuit, this means infinite impedance at resonance. In a series LC circuit, it means zero impedance
at resonance:

fresonant = 
2π LC

1

However, as soon as significant levels of resistance are introduced into most LC circuits, this
simple calculation for resonance becomes invalid. We’ll take a look at several LC circuits with
added resistance, using the same values for capacitance and inductance as before: 10 µF and 100
mH, respectively. According to our simple equation, the resonant frequency should be 159.155 Hz.
Watch, though, where current reaches maximum or minimum in the following SPICE analyses:

1

0 0

1 1

2

0 0

V1 1 V

C1 L1

R1 100 Ω

100 mH10 µF

Parallel LC with resistance in series with L

resonant circuit

v1 1 0 ac 1 sin

c1 1 0 10u

r1 1 2 100

l1 2 0 100m

.ac lin 20 100 200

.plot ac i(v1)

.end
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Minimum current at 136.8 Hz instead of 159.2 Hz!

1

0 0

1 1

2

0 0

3

Parallel LC with resistance in series with C

V1 1 V
R1

C1 L1 100 mH

Rbogus
100 Ω

10 µF

Here, an extra resistor (Rbogus) is necessary to prevent SPICE from encountering trouble in
analysis. SPICE can’t handle an inductor connected directly in parallel with any voltage source
or any other inductor, so the addition of a series resistor is necessary to ”break up” the voltage
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source/inductor loop that would otherwise be formed. This resistor is chosen to be a very low value
for minimum impact on the circuit’s behavior.

resonant circuit

v1 1 0 ac 1 sin

r1 1 2 100

c1 2 0 10u

rbogus 1 3 1e-12

l1 3 0 100m

.ac lin 20 100 400

.plot ac i(v1)

.end

Minimum current at roughly 180 Hz instead of 159.2 Hz!

Switching our attention to series LC circuits, we experiment with placing significant resistances
in parallel with either L or C. In the following series circuit examples, a 1 Ω resistor (R1) is placed
in series with the inductor and capacitor to limit total current at resonance. The ”extra” resistance
inserted to influence resonant frequency effects is the 100 Ω resistor, R2:
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1

0 0

2

3 3

0

Series LC with resistance in parallel with L

V1 1 V

R1

1 Ω

C1 10 µF

L1 100 mH R2 100 Ω

resonant circuit

v1 1 0 ac 1 sin

r1 1 2 1

c1 2 3 10u

l1 3 0 100m

r2 3 0 100

.ac lin 20 100 400

.plot ac i(v1)

.end

Maximum current at roughly 178.9 Hz instead of 159.2 Hz!



6.5. RESONANCE IN SERIES-PARALLEL CIRCUITS 133

And finally, a series LC circuit with the significant resistance in parallel with the capacitor:

1

0 0

2

3 3

2

Series LC with resistance in parallel with C

V1 1 V

R1

1 Ω

C1

L1 100 mH

10 µF R2 100 Ω

resonant circuit

v1 1 0 ac 1 sin
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r1 1 2 1

c1 2 3 10u

r2 2 3 100

l1 3 0 100m

.ac lin 20 100 200

.plot ac i(v1)

.end

Maximum current at 136.8 Hz instead of 159.2 Hz!

The tendency for added resistance to skew the point at which impedance reaches a maximum or
minimum in an LC circuit is called antiresonance. The astute observer will notice a pattern between
the four SPICE examples given above, in terms of how resistance affects the resonant peak of a
circuit:

• Parallel (”tank”) LC circuit:

• R in series with L: resonant frequency shifted down

• R in series with C: resonant frequency shifted up

• Series LC circuit:
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• R in parallel with L: resonant frequency shifted up

• R in parallel with C: resonant frequency shifted down

Again, this illustrates the complementary nature of capacitors and inductors: how resistance in
series with one creates an antiresonance effect equivalent to resistance in parallel with the other. If
you look even closer to the four SPICE examples given, you’ll see that the frequencies are shifted by
the same amount, and that the shape of the complementary graphs are mirror-images of each other!

Antiresonance is an effect that resonant circuit designers must be aware of. The equations for
determining antiresonance ”shift” are complex, and will not be covered in this brief lesson. It should
suffice the beginning student of electronics to understand that the effect exists, and what its general
tendencies are.

Added resistance in an LC circuit is no academic matter. While it is possible to manufacture
capacitors with negligible unwanted resistances, inductors are typically plagued with substantial
amounts of resistance due to the long lengths of wire used in their construction. What is more, the
resistance of wire tends to increase as frequency goes up, due to a strange phenomenon known as
the skin effect where AC current tends to be excluded from travel through the very center of a wire,
thereby reducing the wire’s effective cross-sectional area. Thus, inductors not only have resistance,
but changing, frequency-dependent resistance at that.

As if the resistance of an inductor’s wire weren’t enough to cause problems, we also have to
contend with the ”core losses” of iron-core inductors, which manifest themselves as added resistance
in the circuit. Since iron is a conductor of electricity as well as a conductor of magnetic flux, changing
flux produced by alternating current through the coil will tend to induce electric currents in the core
itself (eddy currents). This effect can be thought of as though the iron core of the transformer were
a sort of secondary transformer coil powering a resistive load: the less-than-perfect conductivity of
the iron metal. This effects can be minimized with laminated cores, good core design and high-grade
materials, but never completely eliminated.

One notable exception to the rule of circuit resistance causing a resonant frequency shift is the
case of series resistor-inductor-capacitor (”RLC”) circuits. So long as all components are connected
in series with each other, the resonant frequency of the circuit will be unaffected by the resistance:

1

0 0

2

3

Series LC with resistance in series

V1 1 V

R1

100 Ω

C1 10 µF

L1 100 mH
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series rlc circuit

v1 1 0 ac 1 sin

r1 1 2 100

c1 2 3 10u

l1 3 0 100m

.ac lin 20 100 200

.plot ac i(v1)

.end

Maximum current at 159.2 Hz once again!

Note that the peak of the current graph has not changed from the earlier series LC circuit (the
one with the 1 Ω token resistance in it), even though the resistance is now 100 times greater. The
only thing that has changed is the ”sharpness” of the curve. Obviously, this circuit does not resonate
as strongly as one with less series resistance (it is said to be ”less selective”), but at least it has the
same natural frequency!
It is noteworthy that antiresonance has the effect of dampening the oscillations of free-running LC

circuits such as tank circuits. In the beginning of this chapter we saw how a capacitor and inductor
connected directly together would act something like a pendulum, exchanging voltage and current
peaks just like a pendulum exchanges kinetic and potential energy. In a perfect tank circuit (no
resistance), this oscillation would continue forever, just as a frictionless pendulum would continue
to swing at its resonant frequency forever. But frictionless machines are difficult to find in the real
world, and so are lossless tank circuits. Energy lost through resistance (or inductor core losses or
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radiated electromagnetic waves or . . .) in a tank circuit will cause the oscillations to decay in
amplitude until they are no more. If enough energy losses are present in a tank circuit, it will fail
to resonate at all.

Antiresonance’s dampening effect is more than just a curiosity: it can be used quite effectively
to eliminate unwanted oscillations in circuits containing stray inductances and/or capacitances, as
almost all circuits do. Take note of the following L/R time delay circuit:

switch
R

L

The idea of this circuit is simple: to ”charge” the inductor when the switch is closed. The rate of
inductor charging will be set by the ratio L/R, which is the time constant of the circuit in seconds.
However, if you were to build such a circuit, you might find unexpected oscillations (AC) of voltage
across the inductor when the switch is closed. Why is this? There’s no capacitor in the circuit, so
how can we have resonant oscillation with just an inductor, resistor, and battery?

ideal L/R voltage curve =
actual L/R voltage curve =

All inductors contain a certain amount of stray capacitance due to turn-to-turn and turn-to-core
insulation gaps. Also, the placement of circuit conductors may create stray capacitance. While
clean circuit layout is important in eliminating much of this stray capacitance, there will always
be some that you cannot eliminate. If this causes resonant problems (unwanted AC oscillations),
added resistance may be a way to combat it. If resistor R is large enough, it will cause a condition
of antiresonance, dissipating enough energy to prohibit the inductance and stray capacitance from
sustaining oscillations for very long.

Interestingly enough, the principle of employing resistance to eliminate unwanted resonance is
one frequently used in the design of mechanical systems, where any moving object with mass is a
potential resonator. A very common application of this is the use of shock absorbers in automobiles.
Without shock absorbers, cars would bounce wildly at their resonant frequency after hitting any
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bump in the road. The shock absorber’s job is to introduce a strong antiresonant effect by dissipating
energy hydraulically (in the same way that a resistor dissipates energy electrically).

• REVIEW:

• Added resistance to an LC circuit can cause a condition known as antiresonance, where the
peak impedance effects happen at frequencies other than that which gives equal capacitive and
inductive reactances.

• Resistance inherent in real-world inductors can contribute greatly to conditions of antireso-
nance. One source of such resistance is the skin effect, caused by the exclusion of AC current
from the center of conductors. Another source is that of core losses in iron-core inductors.

• In a simple series LC circuit containing resistance (an ”RLC” circuit), resistance does not
produce antiresonance. Resonance still occurs when capacitive and inductive reactances are
equal.

6.6 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most recent
to first. See Appendix 2 (Contributor List) for dates and contact information.
Jason Starck (June 2000): HTML document formatting, which led to a much better-looking

second edition.
Dennis Crunkilton (May 2005): added nutmeg spice plots
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7.1 Introduction

In our study of AC circuits thus far, we’ve explored circuits powered by a single-frequency sine
voltage waveform. In many applications of electronics, though, single-frequency signals are the
exception rather than the rule. Quite often we may encounter circuits where multiple frequencies
of voltage coexist simultaneously. Also, circuit waveforms may be something other than sine-wave
shaped, in which case we call them non-sinusoidal waveforms.
Additionally, we may encounter situations where DC is mixed with AC: where a waveform is

superimposed on a steady (DC) signal. The result of such a mix is a signal varying in intensity,
but never changing polarity, or changing polarity asymmetrically (spending more time positive than
negative, for example). Since DC does not alternate as AC does, its ”frequency” is said to be zero,
and any signal containing DC along with a signal of varying intensity (AC) may be rightly called a
mixed-frequency signal as well. In any of these cases where there is a mix of frequencies in the same
circuit, analysis is more complex than what we’ve seen up to this point.
Sometimes mixed-frequency voltage and current signals are created accidentally. This may be

the result of unintended connections between circuits – called coupling – made possible by stray ca-
pacitance and/or inductance between the conductors of those circuits. A classic example of coupling
phenomenon is seen frequently in industry where DC signal wiring is placed in close proximity to AC

139
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power wiring. The nearby presence of high AC voltages and currents may cause ”foreign” voltages
to be impressed upon the length of the signal wiring. Stray capacitance formed by the electrical
insulation separating power conductors from signal conductors may cause voltage (with respect to
earth ground) from the power conductors to be impressed upon the signal conductors, while stray
inductance formed by parallel runs of wire in conduit may cause current from the power conductors
to electromagnetically induce voltage along the signal conductors. The result is a mix of DC and
AC at the signal load. The following schematic shows how an AC ”noise” source may ”couple” to
a DC circuit through mutual inductance (Mstray) and capacitance (Cstray) along the length of the
conductors.

"Noise"
source

Cstray
Mstray

Zwire Zwire Zwire

"Clean" DC voltage DC voltage + AC "noise"

When stray AC voltages from a ”noise” source mix with DC signals conducted along signal wiring,
the results are usually undesirable. For this reason, power wiring and low-level signal wiring should
always be routed through separated, dedicated metal conduit, and signals should be conducted via
2-conductor ”twisted pair” cable rather than through a single wire and ground connection:

"Noise"
source

Cstray
Mstray

Shielded cable
+-

+-

The grounded cable shield – a wire braid or metal foil wrapped around the two insulated con-
ductors – isolates both conductors from electrostatic (capacitive) coupling by blocking any external
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electric fields, while the parallal proximity of the two conductors effectively cancels any electromag-
netic (mutually inductive) coupling because any induced noise voltage will be approximately equal
in magnitude and opposite in phase along both conductors, canceling each other at the receiving
end for a net (differential) noise voltage of almost zero. Polarity marks placed near each inductive
portion of signal conductor length shows how the induced voltages are phased in such a way as to
cancel one another.

Coupling may also occur between two sets of conductors carrying AC signals, in which case both
signals may become ”mixed” with each other:

Cstray
Mstray

Zwire Zwire Zwire

Zwire Zwire Zwire

Signal A

Signal B

A + B

B + A

Coupling is but one example of how signals of different frequencies may become mixed. Whether
it be AC mixed with DC, or two AC signals mixing with each other, signal coupling via stray
inductance and capacitance is usually accidental and undesired. In other cases, mixed-frequency
signals are the result of intentional design or they may be an intrinsic quality of a signal. It is
generally quite easy to create mixed-frequency signal sources. Perhaps the easiest way is to simply
connect voltage sources in series:
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mixed-frequency
AC voltage

AC + DC
voltage

60 Hz

90 Hz

Some computer communications networks operate on the principle of superimposing high-frequency
voltage signals along 60 Hz power-line conductors, so as to convey computer data along existing
lengths of power cabling. This technique has been used for years in electric power distribution net-
works to communicate load data along high-voltage power lines. Certainly these are examples of
mixed-frequency AC voltages, under conditions that are deliberately established.

In some cases, mixed-frequency signals may be produced by a single voltage source. Such is the
case with microphones, which convert audio-frequency air pressure waves into corresponding voltage
waveforms. The particular mix of frequencies in the voltage signal output by the microphone is
dependent on the sound being reproduced. If the sound waves consist of a single, pure note or tone,
the voltage waveform will likewise be a sine wave at a single frequency. If the sound wave is a chord
or other harmony of several notes, the resulting voltage waveform produced by the microphone will
consist of those frequencies mixed together. Very few natural sounds consist of single, pure sine
wave vibrations but rather are a mix of different frequency vibrations at different amplitudes.

Musical chords are produced by blending one frequency with other frequencies of particular
fractional multiples of the first. However, investigating a little further, we find that even a single
piano note (produced by a plucked string) consists of one predominant frequency mixed with several
other frequencies, each frequency a whole-number multiple of the first (called harmonics, while
the first frequency is called the fundamental). An illustration of these terms is shown below with a
fundamental frequency of 1000 Hz (an arbitrary figure chosen for this example), each of the frequency
multiples appropriately labeled:

FOR A "BASE" FREQUENCY OF 1000 Hz:

Frequency (Hz) Term

-------------------------------------------

1000 --------- 1st harmonic, or fundamental

2000 --------- 2nd harmonic
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3000 --------- 3rd harmonic

4000 --------- 4th harmonic

5000 --------- 5th harmonic

6000 --------- 6th harmonic

7000 --------- 7th harmonic

ad infinitum

Sometimes the term ”overtone” is used to describe the a harmonic frequency produced by a
musical instrument. The ”first” overtone is the first harmonic frequency greater than the fundamen-
tal. If we had an instrument producing the entire range of harmonic frequencies shown in the table
above, the first overtone would be 2000 Hz (the 2nd harmonic), while the second overtone would
be 3000 Hz (the 3rd harmonic), etc. However, this application of the term ”overtone” is specific to
particular instruments.
It so happens that certain instruments are incapable of producing certain types of harmonic

frequencies. For example, an instrument made from a tube that is open on one end and closed on
the other (such as a bottle, which produces sound when air is blown across the opening) is incapable
of producing even-numbered harmonics. Such an instrument set up to produce a fundamental
frequency of 1000 Hz would also produce frequencies of 3000 Hz, 5000 Hz, 7000 Hz, etc, but would
not produce 2000 Hz, 4000 Hz, 6000 Hz, or any other even-multiple frequencies of the fundamental.
As such, we would say that the first overtone (the first frequency greater than the fundamental) in
such an instrument would be 3000 Hz (the 3rd harmonic), while the second overtone would be 5000
Hz (the 5th harmonic), and so on.
A pure sine wave (single frequency), being entirely devoid of any harmonics, sounds very ”flat”

and ”featureless” to the human ear. Most musical instruments are incapable of producing sounds
this simple. What gives each instrument its distinctive tone is the same phenomenon that gives each
person a distinctive voice: the unique blending of harmonic waveforms with each fundamental note,
described by the physics of motion for each unique object producing the sound.
Brass instruments do not possess the same ”harmonic content” as woodwind instruments, and

neither produce the same harmonic content as stringed instruments. A distinctive blend of frequen-
cies is what gives a musical instrument its characteristic tone. As anyone who has played guitar can
tell you, steel strings have a different sound than nylon strings. Also, the tone produced by a guitar
string changes depending on where along its length it is plucked. These differences in tone, as well,
are a result of different harmonic content produced by differences in the mechanical vibrations of an
instrument’s parts. All these instruments produce harmonic frequencies (whole-number multiples
of the fundamental frequency) when a single note is played, but the relative amplitudes of those
harmonic frequencies are different for different instruments. In musical terms, the measure of a
tone’s harmonic content is called timbre or color.
Musical tones become even more complex when the resonating element of an instrument is a

two-dimensional surface rather than a one-dimensional string. Instruments based on the vibration
of a string (guitar, piano, banjo, lute, dulcimer, etc.) or of a column of air in a tube (trumpet,
flute, clarinet, tuba, pipe organ, etc.) tend to produce sounds composed of a single frequency (the
”fundamental”) and a mix of harmonics. Instruments based on the vibration of a flat plate (steel
drums, and some types of bells), however, produce a much broader range of frequencies, not limited
to whole-number multiples of the fundamental. The result is a distinctive tone that some people
find acoustically offensive.
As you can see, music provides a rich field of study for mixed frequencies and their effects. Later
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sections of this chapter will refer to musical instruments as sources of waveforms for analysis in more
detail.

• REVIEW:

• A sinusoidal waveform is one shaped exactly like a sine wave.

• A non-sinusoidal waveform can be anything from a distorted sine-wave shape to something
completely different like a square wave.

• Mixed-frequency waveforms can be accidently created, purposely created, or simply exist out of
necessity. Most musical tones, for instance, are not composed of a single frequency sine-wave,
but are rich blends of different frequencies.

• When multiple sine waveforms are mixed together (as is often the case in music), the lowest
frequency sine-wave is called the fundamental, and the other sine-waves whose frequencies are
whole-number multiples of the fundamental wave are called harmonics.

• An overtone is a harmonic produced by a particular device. The ”first” overtone is the first
frequency greater than the fundamental, while the ”second” overtone is the next greater fre-
quency produced. Successive overtones may or may not correspond to incremental harmonics,
depending on the device producing the mixed frequencies. Some devices and systems do not
permit the establishment of certain harmonics, and so their overtones would only include some
(not all) harmonic frequencies.

7.2 Square wave signals

It has been found that any repeating, non-sinusoidal waveform can be equated to a combination of
DC voltage, sine waves, and/or cosine waves (sine waves with a 90 degree phase shift) at various
amplitudes and frequencies. This is true no matter how strange or convoluted the waveform in
question may be. So long as it repeats itself regularly over time, it is reducible to this series of
sinusoidal waves. In particular, it has been found that square waves are mathematically equivalent
to the sum of a sine wave at that same frequency, plus an infinite series of odd-multiple frequency
sine waves at diminishing amplitude:
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4
π

1 V (peak) repeating square wave at 50 Hz is equivalent to:

(1 V peak sine wave at 50 Hz)

+ 4
π (1/3 V peak sine wave at 150 Hz)

+ 4
π (1/5 V peak sine wave at 250 Hz)

+ 4
π (1/7 V peak sine wave at 350 Hz)

+ 4
π (1/9 V peak sine wave at 450 Hz)

+ . . . ad infinitum . . .

This truth about waveforms at first may seem too strange to believe. However, if a square wave
is actually an infinite series of sine wave harmonics added together, it stands to reason that we
should be able to prove this by adding together several sine wave harmonics to produce a close
approximation of a square wave. This reasoning is not only sound, but easily demonstrated with
SPICE.

The circuit we’ll be simulating is nothing more than several sine wave AC voltage sources of the
proper amplitudes and frequencies connected together in series. We’ll use SPICE to plot the voltage
waveforms across successive additions of voltage sources, like this:
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plot voltage waveform

plot voltage waveform

plot voltage waveform

plot voltage waveform

plot voltage waveform

In this particular SPICE simulation, I’ve summed the 1st, 3rd, 5th, 7th, and 9th harmonic
voltage sources in series for a total of five AC voltage sources. The fundamental frequency is 50
Hz and each harmonic is, of course, an integer multiple of that frequency. The amplitude (voltage)
figures are not random numbers; rather, they have been arrived at through the equations shown in
the frequency series (the fraction 4/π multiplied by 1, 1/3, 1/5, 1/7, etc. for each of the increasing
odd harmonics).

building a squarewave

v1 1 0 sin (0 1.27324 50 0 0) 1st harmonic (50 Hz)

v3 2 1 sin (0 424.413m 150 0 0) 3rd harmonic

v5 3 2 sin (0 254.648m 250 0 0) 5th harmonic

v7 4 3 sin (0 181.891m 350 0 0) 7th harmonic

v9 5 4 sin (0 141.471m 450 0 0) 9th harmonic

r1 5 0 10k

.tran 1m 20m

.plot tran v(1,0) Plot 1st harmonic

.plot tran v(2,0) Plot 1st + 3rd harmonics

.plot tran v(3,0) Plot 1st + 3rd + 5th harmonics

.plot tran v(4,0) Plot 1st + 3rd + 5th + 7th harmonics

.plot tran v(5,0) Plot 1st + . . . + 9th harmonics

.end

I’ll narrate the analysis step by step from here, explaining what it is we’re looking at. In this
first plot, we see the fundamental-frequency sine-wave of 50 Hz by itself. It is nothing but a pure
sine shape, with no additional harmonic content. This is the kind of waveform produced by an ideal
AC power source:
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Next, we see what happens when this clean and simple waveform is combined with the third
harmonic (three times 50 Hz, or 150 Hz). Suddenly, it doesn’t look like a clean sine wave any more:
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The rise and fall times between positive and negative cycles are much steeper now, and the crests
of the wave are closer to becoming flat like a squarewave. Watch what happens as we add the next
odd harmonic frequency:
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The most noticeable change here is how the crests of the wave have flattened even more. There
are more several dips and crests at each end of the wave, but those dips and crests are smaller in
amplitude than they were before. Watch again as we add the next odd harmonic waveform to the
mix:
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Here we can see the wave becoming flatter at each peak. Finally, adding the 9th harmonic, the
fifth sine wave voltage source in our circuit, we obtain this result:
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The end result of adding the first five odd harmonic waveforms together (all at the proper
amplitudes, of course) is a close approximation of a square wave. The point in doing this is to
illustrate how we can build a square wave up from multiple sine waves at different frequencies, to
prove that a pure square wave is actually equivalent to a series of sine waves. When a square
wave AC voltage is applied to a circuit with reactive components (capacitors and inductors), those
components react as if they were being exposed to several sine wave voltages of different frequencies,
which in fact they are.
The fact that repeating, non-sinusoidal waves are equivalent to a definite series of additive DC

voltage, sine waves, and/or cosine waves is a consequence of how waves work: a fundamental property
of all wave-related phenomena, electrical or otherwise. The mathematical process of reducing a non-
sinusoidal wave into these constituent frequencies is called Fourier analysis, the details of which are
well beyond the scope of this text. However, computer algorithms have been created to perform
this analysis at high speeds on real waveforms, and its application in AC power quality and signal
analysis is widespread.
SPICE has the ability to sample a waveform and reduce it into its constituent sine wave harmonics

by way of a Fourier Transform algorithm, outputting the frequency analysis as a table of numbers.
Let’s try this on a square wave, which we already know is composed of odd-harmonic sine waves:

squarewave analysis netlist

v1 1 0 pulse (-1 1 0 .1m .1m 10m 20m)

r1 1 0 10k

.tran 1m 40m
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.plot tran v(1,0)

.four 50 v(1,0)

.end

The pulse option in the netlist line describing voltage source v1 instructs SPICE to simulate a
square-shaped ”pulse” waveform, in this case one that is symmetrical (equal time for each half-cycle)
and has a peak amplitude of 1 volt. First we’ll plot the square wave to be analyzed:

Next, we’ll print the Fourier analysis generated by SPICE for this square wave:

fourier components of transient response v(1)

dc component = -2.439E-02

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 5.000E+01 1.274E+00 1.000000 -2.195 0.000

2 1.000E+02 4.892E-02 0.038415 -94.390 -92.195

3 1.500E+02 4.253E-01 0.333987 -6.585 -4.390

4 2.000E+02 4.936E-02 0.038757 -98.780 -96.585
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5 2.500E+02 2.562E-01 0.201179 -10.976 -8.780

6 3.000E+02 5.010E-02 0.039337 -103.171 -100.976

7 3.500E+02 1.841E-01 0.144549 -15.366 -13.171

8 4.000E+02 5.116E-02 0.040175 -107.561 -105.366

9 4.500E+02 1.443E-01 0.113316 -19.756 -17.561

total harmonic distortion = 43.805747 percent

Here, SPICE has broken the waveform down into a spectrum of sinusoidal frequencies up to the
ninth harmonic, plus a small DC voltage labelled DC component. I had to inform SPICE of the
fundamental frequency (for a square wave with a 20 millisecond period, this frequency is 50 Hz), so
it knew how to classify the harmonics. Note how small the figures are for all the even harmonics
(2nd, 4th, 6th, 8th), and how the amplitudes of the odd harmonics diminish (1st is largest, 9th is
smallest).
This same technique of ”Fourier Transformation” is often used in computerized power instru-

mentation, sampling the AC waveform(s) and determining the harmonic content thereof. A common
computer algorithm (sequence of program steps to perform a task) for this is the Fast Fourier Trans-
form or FFT function. You need not be concerned with exactly how these computer routines work,
but be aware of their existence and application.
This same mathematical technique used in SPICE to analyze the harmonic content of waves can

be applied to the technical analysis of music: breaking up any particular sound into its constituent
sine-wave frequencies. In fact, you may have already seen a device designed to do just that without
realizing what it was! A graphic equalizer is a piece of high-fidelity stereo equipment that controls
(and sometimes displays) the nature of music’s harmonic content. Equipped with several knobs or
slide levers, the equalizer is able to selectively attenuate (reduce) the amplitude of certain frequencies
present in music, to ”customize” the sound for the listener’s benefit. Typically, there will be a ”bar
graph” display next to each control lever, displaying the amplitude of each particular frequency.
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50 150 300 500 750 1 1.5 3.5 5 7.5 10 12.5
Hz Hz Hz Hz Hz kHz kHz kHz kHz kHz kHz kHz

Graphic Equalizer

amplitude of each
frequency

Control levers set
the attenuation factor

for each frequency

Bargraph displays the

A device built strictly to display – not control – the amplitudes of each frequency range for a
mixed-frequency signal is typically called a spectrum analyzer. The design of spectrum analyzers
may be as simple as a set of ”filter” circuits (see the next chapter for details) designed to separate the
different frequencies from each other, or as complex as a special-purpose digital computer running
an FFT algorithm to mathematically split the signal into its harmonic components. Spectrum
analyzers are often designed to analyze extremely high-frequency signals, such as those produced by
radio transmitters and computer network hardware. In that form, they often have an appearance
like that of an oscilloscope:

Spectrum Analyzer

frequency

amplitude

Like an oscilloscope, the spectrum analyzer uses a CRT (or a computer display mimicking a CRT)
to display a plot of the signal. Unlike an oscilloscope, this plot is amplitude over frequency rather
than amplitude over time. In essence, a frequency analyzer gives the operator a Bode plot of the
signal: something an engineer might call a frequency-domain rather than a time-domain analysis.
The term ”domain” is mathematical: a sophisticated word to describe the horizontal axis of a

graph. Thus, an oscilloscope’s plot of amplitude (vertical) over time (horizontal) is a ”time-domain”
analysis, whereas a spectrum analyzer’s plot of amplitude (vertical) over frequency (horizontal) is
a ”frequency-domain” analysis. When we use SPICE to plot signal amplitude (either voltage or
current amplitude) over a range of frequencies, we are performing frequency-domain analysis.



7.2. SQUARE WAVE SIGNALS 155

Please take note of how the Fourier analysis from the last SPICE simulation isn’t ”perfect.”
Ideally, the amplitudes of all the even harmonics should be absolutely zero, and so should the DC
component. Again, this is not so much a quirk of SPICE as it is a property of waveforms in general.
A waveform of infinite duration (infinite number of cycles) can be analyzed with absolute precision,
but the less cycles available to the computer for analysis, the less precise the analysis. It is only
when we have an equation describing a waveform in its entirety that Fourier analysis can reduce it
to a definite series of sinusoidal waveforms. The fewer times that a wave cycles, the less certain its
frequency is. Taking this concept to its logical extreme, a short pulse – a waveform that doesn’t
even complete a cycle – actually has no frequency, but rather acts as an infinite range of frequencies.
This principle is common to all wave-based phenomena, not just AC voltages and currents.

Suffice it to say that the number of cycles and the certainty of a waveform’s frequency compo-
nent(s) are directly related. We could improve the precision of our analysis here by letting the wave
oscillate on and on for many cycles, and the result would be a spectrum analysis more consistent
with the ideal. In the following analysis, I’ve omitted the waveform plot for brevity’s sake – it’s just
a really long square wave:

squarewave

v1 1 0 pulse (-1 1 0 .1m .1m 10m 20m)

r1 1 0 10k

.option limpts=1001

.tran 1m 1

.plot tran v(1,0)

.four 50 v(1,0)

.end

fourier components of transient response v(1)

dc component = 9.999E-03

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 5.000E+01 1.273E+00 1.000000 -1.800 0.000

2 1.000E+02 1.999E-02 0.015704 86.382 88.182

3 1.500E+02 4.238E-01 0.332897 -5.400 -3.600

4 2.000E+02 1.997E-02 0.015688 82.764 84.564

5 2.500E+02 2.536E-01 0.199215 -9.000 -7.200

6 3.000E+02 1.994E-02 0.015663 79.146 80.946

7 3.500E+02 1.804E-01 0.141737 -12.600 -10.800

8 4.000E+02 1.989E-02 0.015627 75.529 77.329

9 4.500E+02 1.396E-01 0.109662 -16.199 -14.399
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Notice how this analysis shows less of a DC component voltage and lower amplitudes for each
of the even harmonic frequency sine waves, all because we let the computer sample more cycles of
the wave. Again, the imprecision of the first analysis is not so much a flaw in SPICE as it is a
fundamental property of waves and of signal analysis.

• REVIEW:

• Square waves are equivalent to a sine wave at the same (fundamental) frequency added to an
infinite series of odd-multiple sine-wave harmonics at decreasing amplitudes.

• Computer algorithms exist which are able to sample waveshapes and determine their con-
stituent sinusoidal components. The Fourier Transform algorithm (particularly the Fast
Fourier Transform, or FFT ) is commonly used in computer circuit simulation programs such
as SPICE and in electronic metering equipment for determining power quality.

7.3 Other waveshapes

As strange as it may seem, any repeating, non-sinusoidal waveform is actually equivalent to a series
of sinusoidal waveforms of different amplitudes and frequencies added together. Square waves are a
very common and well-understood case, but not the only one.
Electronic power control devices such as transistors and silicon-controlled rectifiers (SCRs) often

produce voltage and current waveforms that are essentially chopped-up versions of the otherwise
”clean” (pure) sine-wave AC from the power supply. These devices have the ability to suddenly
change their resistance with the application of a control signal voltage or current, thus ”turning on”
or ”turning off” almost instantaneously, producing current waveforms bearing little resemblance to
the source voltage waveform powering the circuit. These current waveforms then produce changes in
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the voltage waveform to other circuit components, due to voltage drops created by the non-sinusoidal
current through circuit impedances.

Circuit components that distort the normal sine-wave shape of AC voltage or current are called
nonlinear. Nonlinear components such as SCRs find popular use in power electronics due to their
ability to regulate large amounts of electrical power without dissipating much heat. While this is an
advantage from the perspective of energy efficiency, the waveshape distortions they introduce can
cause problems.

These non-sinusoidal waveforms, regardless of their actual shape, are equivalent to a series of
sinusoidal waveforms of higher (harmonic) frequencies. If not taken into consideration by the circuit
designer, these harmonic waveforms created by electronic switching components may cause erratic
circuit behavior. It is becoming increasingly common in the electric power industry to observe
overheating of transformers and motors due to distortions in the sine-wave shape of the AC power
line voltage stemming from ”switching” loads such as computers and high-efficiency lights. This is
no theoretical exercise: it is very real and potentially very troublesome.

In this section, I will investigate a few of the more common waveshapes and show their harmonic
components by way of Fourier analysis using SPICE.

One very common way harmonics are generated in an AC power system is when AC is converted,
or ”rectified” into DC. This is generally done with components called diodes, which only allow the
passage of current in one direction. The simplest type of AC/DC rectification is half-wave, where a
single diode blocks half of the AC current (over time) from passing through the load. Oddly enough,
the conventional diode schematic symbol is drawn such that electrons flow against the direction of
the symbol’s arrowhead:

load

diode
1 2

0 0

+

-

The diode only allows electron
flow in a counter-clockwise
direction.

halfwave rectifier

v1 1 0 sin(0 15 60 0 0)

rload 2 0 10k

d1 1 2 mod1

.model mod1 d

.tran .5m 17m

.plot tran v(1,0) v(2,0)

.four 60 v(1,0) v(2,0)

.end
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First, we’ll see how SPICE analyzes the source waveform, a pure sine wave voltage:

fourier components of transient response v(1)

dc component = 8.016E-04

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 6.000E+01 1.482E+01 1.000000 -0.005 0.000

2 1.200E+02 2.492E-03 0.000168 -104.347 -104.342

3 1.800E+02 6.465E-04 0.000044 -86.663 -86.658

4 2.400E+02 1.132E-03 0.000076 -61.324 -61.319

5 3.000E+02 1.185E-03 0.000080 -70.091 -70.086

6 3.600E+02 1.092E-03 0.000074 -63.607 -63.602

7 4.200E+02 1.220E-03 0.000082 -56.288 -56.283

8 4.800E+02 1.354E-03 0.000091 -54.669 -54.664

9 5.400E+02 1.467E-03 0.000099 -52.660 -52.655
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Notice the extremely small harmonic and DC components of this sinusoidal waveform in the
table above, though, too small to show on the harmonic plot above. Ideally, there would be nothing
but the fundamental frequency showing (being a perfect sine wave), but our Fourier analysis figures
aren’t perfect because SPICE doesn’t have the luxury of sampling a waveform of infinite duration.
Next, we’ll compare this with the Fourier analysis of the half-wave ”rectified” voltage across the
load resistor:

fourier components of transient response v(2)

dc component = 4.456E+00

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 6.000E+01 7.000E+00 1.000000 -0.195 0.000

2 1.200E+02 3.016E+00 0.430849 -89.765 -89.570

3 1.800E+02 1.206E-01 0.017223 -168.005 -167.810

4 2.400E+02 5.149E-01 0.073556 -87.295 -87.100

5 3.000E+02 6.382E-02 0.009117 -152.790 -152.595

6 3.600E+02 1.727E-01 0.024676 -79.362 -79.167

7 4.200E+02 4.492E-02 0.006417 -132.420 -132.224

8 4.800E+02 7.493E-02 0.010703 -61.479 -61.284

9 5.400E+02 4.051E-02 0.005787 -115.085 -114.889
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Notice the relatively large even-multiple harmonics in this analysis. By cutting out half of our
AC wave, we’ve introduced the equivalent of several higher-frequency sinusoidal (actually, cosine)
waveforms into our circuit from the original, pure sine-wave. Also take note of the large DC com-
ponent: 4.456 volts. Because our AC voltage waveform has been ”rectified” (only allowed to push
in one direction across the load rather than back-and-forth), it behaves a lot more like DC.
Another method of AC/DC conversion is called full-wave, which as you may have guessed utilizes

the full cycle of AC power from the source, reversing the polarity of half the AC cycle to get electrons
to flow through the load the same direction all the time. I won’t bore you with details of exactly
how this is done, but we can examine the waveform and its harmonic analysis through SPICE:

+ -

1

0

32

1

0

V1
15 V
60 Hz

D1 D3

D2 D4

Rload

10 kΩ

fullwave bridge rectifier

v1 1 0 sin(0 15 60 0 0)

rload 2 3 10k

d1 1 2 mod1

d2 0 2 mod1

d3 3 1 mod1
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d4 3 0 mod1

.model mod1 d

.tran .5m 17m

.plot tran v(1,0) v(2,3)

.four 60 v(2,3)

.end

fourier components of transient response v(2,3)

dc component = 8.273E+00

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 6.000E+01 7.000E-02 1.000000 -93.519 0.000

2 1.200E+02 5.997E+00 85.669415 -90.230 3.289

3 1.800E+02 7.241E-02 1.034465 -93.787 -0.267

4 2.400E+02 1.013E+00 14.465161 -92.492 1.027

5 3.000E+02 7.364E-02 1.052023 -95.026 -1.507

6 3.600E+02 3.337E-01 4.767350 -100.271 -6.752

7 4.200E+02 7.496E-02 1.070827 -94.023 -0.504

8 4.800E+02 1.404E-01 2.006043 -118.839 -25.319

9 5.400E+02 7.457E-02 1.065240 -90.907 2.612
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What a difference! According to SPICE’s Fourier transform, we have a 2nd harmonic component
to this waveform that’s over 85 times the amplitude of the original AC source frequency! The DC
component of this wave shows up as being 8.273 volts (almost twice what is was for the half-wave
rectifier circuit) while the second harmonic is almost 6 volts in amplitude. Notice all the other
harmonics further on down the table. The odd harmonics are actually stronger at some of the
higher frequencies than they are at the lower frequencies, which is interesting.
As you can see, what may begin as a neat, simple AC sine-wave may end up as a complex mess of

harmonics after passing through just a few electronic components. While the complex mathematics
behind all this Fourier transformation is not necessary for the beginning student of electric circuits to
understand, it is of the utmost importance to realize the principles at work and to grasp the practical
effects that harmonic signals may have on circuits. The practical effects of harmonic frequencies in
circuits will be explored in the last section of this chapter, but before we do that we’ll take a closer
look at waveforms and their respective harmonics.

• REVIEW:

• Any waveform at all, so long as it is repetitive, can be reduced to a series of sinusoidal wave-
forms added together. Different waveshapes consist of different blends of sine-wave harmonics.

• Rectification of AC to DC is a very common source of harmonics within industrial power
systems.

7.4 More on spectrum analysis

Computerized Fourier analysis, particularly in the form of the FFT algorithm, is a powerful tool for
furthering our understanding of waveforms and their related spectral components. This same math-
ematical routine programmed into the SPICE simulator as the .fourier option is also programmed
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into a variety of electronic test instruments to perform real-time Fourier analysis on measured signals.
This section is devoted to the use of such tools and the analysis of several different waveforms.

First we have a simple sine wave at a frequency of 523.25 Hz. This particular frequency value is
a ”C” pitch on a piano keyboard, one octave above ”middle C”. Actually, the signal measured for
this demonstration was created by an electronic keyboard set to produce the tone of a panflute, the
closest instrument ”voice” I could find resembling a perfect sine wave. The plot below was taken
from an oscilloscope display, showing signal amplitude (voltage) over time:

Viewed with an oscilloscope, a sine wave looks like a wavy curve traced horizontally on the
screen. The horizontal axis of this oscilloscope display is marked with the word ”Time” and an
arrow pointing in the direction of time’s progression. The curve itself, of course, represents the
cyclic increase and decrease of voltage over time.

Close observation reveals imperfections in the sine-wave shape. This, unfortunately, is a result
of the specific equipment used to analyze the waveform. Characteristics like these due to quirks
of the test equipment are technically known as artifacts: phenomena existing solely because of a
peculiarity in the equipment used to perform the experiment.

If we view this same AC voltage on a spectrum analyzer, the result is quite different:
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As you can see, the horizontal axis of the display is marked with the word ”Frequency,” denoting
the domain of this measurement. The single peak on the curve represents the predominance of a
single frequency within the range of frequencies covered by the width of the display. If the scale of
this analyzer instrument were marked with numbers, you would see that this peak occurs at 523.25
Hz. The height of the peak represents the signal amplitude (voltage).

If we mix three different sine-wave tones together on the electronic keyboard (C-E-G, a C-major
chord) and measure the result, both the oscilloscope display and the spectrum analyzer display
reflect this increased complexity:
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The oscilloscope display (time-domain) shows a waveform with many more peaks and valleys
than before, a direct result of the mixing of these three frequencies. As you will notice, some of
these peaks are higher than the peaks of the original single-pitch waveform, while others are lower.
This is a result of the three different waveforms alternately reinforcing and canceling each other as
their respective phase shifts change in time.

The spectrum display (frequency-domain) is much easier to interpret: each pitch is represented



166 CHAPTER 7. MIXED-FREQUENCY AC SIGNALS

by its own peak on the curve. The difference in height between these three peaks is another artifact
of the test equipment: a consequence of limitations within the equipment used to generate and
analyze these waveforms, and not a necessary characteristic of the musical chord itself.

As was stated before, the device used to generate these waveforms is an electronic keyboard: a
musical instrument designed to mimic the tones of many different instruments. The panflute ”voice”
was chosen for the first demonstrations because it most closely resembled a pure sine wave (a single
frequency on the spectrum analyzer display). Other musical instrument ”voices” are not as simple as
this one, though. In fact, the unique tone produced by any instrument is a function of its waveshape
(or spectrum of frequencies). For example, let’s view the signal for a trumpet tone:

The fundamental frequency of this tone is the same as in the first panflute example: 523.25
Hz, one octave above ”middle C.” The waveform itself is far from a pure and simple sine-wave
form. Knowing that any repeating, non-sinusoidal waveform is equivalent to a series of sinusoidal
waveforms at different amplitudes and frequencies, we should expect to see multiple peaks on the
spectrum analyzer display:
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Indeed we do! The fundamental frequency component of 523.25 Hz is represented by the left-most
peak, with each successive harmonic represented as its own peak along the width of the analyzer
screen. The second harmonic is twice the frequency of the fundamental (1046.5 Hz), the third
harmonic three times the fundamental (1569.75 Hz), and so on. This display only shows the first
six harmonics, but there are many more comprising this complex tone.
Trying a different instrument voice (the accordion) on the keyboard, we obtain a similarly com-

plex oscilloscope (time-domain) plot and spectrum analyzer (frequency-domain) display:
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Note the differences in relative harmonic amplitudes (peak heights) on the spectrum displays for
trumpet and accordion. Both instrument tones contain harmonics all the way from 1st (fundamental)
to 6th (and beyond!), but the proportions aren’t the same. Each instrument has a unique harmonic
”signature” to its tone. Bear in mind that all this complexity is in reference to a single note played
with these two instrument ”voices.” Multiple notes played on an accordion, for example, would
create a much more complex mixture of frequencies than what is seen here.

The analytical power of the oscilloscope and spectrum analyzer permit us to derive general rules
about waveforms and their harmonic spectra from real waveform examples. We already know that
any deviation from a pure sine-wave results in the equivalent of a mixture of multiple sine-wave
waveforms at different amplitudes and frequencies. However, close observation allows us to be
more specific than this. Note, for example, the time- and frequency-domain plots for a waveform
approximating a square wave:
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According to the spectrum analysis, this waveform contains no even harmonics, only odd. Al-
though this display doesn’t show frequencies past the sixth harmonic, the pattern of odd-only har-
monics in descending amplitude continues indefinitely. This should come as no surprise, as we’ve
already seen with SPICE that a square wave is comprised of an infinitude of odd harmonics. The
trumpet and accordion tones, however, contained both even and odd harmonics. This difference in
harmonic content is noteworthy. Let’s continue our investigation with an analysis of a triangle wave:
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In this waveform there are practically no even harmonics: the only significant frequency peaks on
the spectrum analyzer display belong to odd-numbered multiples of the fundamental frequency. Tiny
peaks can be seen for the second, fourth, and sixth harmonics, but this is due to imperfections in
this particular triangle waveshape (once again, artifacts of the test equipment used in this analysis).
A perfect triangle waveshape produces no even harmonics, just like a perfect square wave. It should
be obvious from inspection that the harmonic spectrum of the triangle wave is not identical to the
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spectrum of the square wave: the respective harmonic peaks are of different heights. However, the
two different waveforms are common in their lack of even harmonics.

Let’s examine another waveform, this one very similar to the triangle wave, except that its rise-
time is not the same as its fall-time. Known as a sawtooth wave, its oscilloscope plot reveals it to
be aptly named:

When the spectrum analysis of this waveform is plotted, we see a result that is quite different
from that of the regular triangle wave, for this analysis shows the strong presence of even-numbered
harmonics (second and fourth):
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The distinction between a waveform having even harmonics versus no even harmonics resides in
the difference between a triangle waveshape and a sawtooth waveshape. That difference is symmetry
above and below the horizontal centerline of the wave. A waveform that is symmetrical above and
below its centerline (the shape on both sides mirror each other precisely) will contain no even-
numbered harmonics.

These waveforms are
composed exclusively
of odd harmonics

Pure sine wave =
1st harmonic only

Square waves, triangle waves, and pure sine waves all exhibit this symmetry, and all are devoid
of even harmonics. Waveforms like the trumpet tone, the accordion tone, and the sawtooth wave



7.4. MORE ON SPECTRUM ANALYSIS 173

are unsymmetrical around their centerlines and therefore do contain even harmonics.

These waveforms contain
even harmonics

This principle of centerline symmetry should not be confused with symmetry around the zero
line. In the examples shown, the horizontal centerline of the waveform happens to be zero volts on
the time-domain graph, but this has nothing to do with harmonic content. This rule of harmonic
content (even harmonics only with unsymmetrical waveforms) applies whether or not the waveform
is shifted above or below zero volts with a ”DC component.” For further clarification, I will show
the same sets of waveforms, shifted with DC voltage, and note that their harmonic contents are
unchanged.

These waveforms are
composed exclusively
of odd harmonics

Pure sine wave =
1st harmonic only
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Again, the amount of DC voltage present in a waveform has nothing to do with that waveform’s
harmonic frequency content.

These waveforms contain
even harmonics

Why is this harmonic rule-of-thumb an important rule to know? It can help us comprehend the
relationship between harmonics in AC circuits and specific circuit components. Since most sources
of sine-wave distortion in AC power circuits tend to be symmetrical, even-numbered harmonics
are rarely seen in those applications. This is good to know if you’re a power system designer and
are planning ahead for harmonic reduction: you only have to concern yourself with mitigating the
odd harmonic frequencies, even harmonics being practically nonexistent. Also, if you happen to
measure even harmonics in an AC circuit with a spectrum analyzer or frequency meter, you know
that something in that circuit must be unsymmetrically distorting the sine-wave voltage or current,
and that clue may be helpful in locating the source of a problem (look for components or conditions
more likely to distort one half-cycle of the AC waveform more than the other).
Now that we have this rule to guide our interpretation of nonsinusoidal waveforms, it makes

more sense that a waveform like that produced by a rectifier circuit should contain such strong even
harmonics, there being no symmetry at all above and below center.

• REVIEW:

• Waveforms that are symmetrical above and below their horizontal centerlines contain no even-
numbered harmonics.

• The amount of DC ”bias” voltage present (a waveform’s ”DC component”) has no impact on
that wave’s harmonic frequency content.

7.5 Circuit effects

The principle of non-sinusoidal, repeating waveforms being equivalent to a series of sine waves at
different frequencies is a fundamental property of waves in general and it has great practical import
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in the study of AC circuits. It means that any time we have a waveform that isn’t perfectly sine-
wave-shaped, the circuit in question will react as though it’s having an array of different frequency
voltages imposed on it at once.

When an AC circuit is subjected to a source voltage consisting of a mixture of frequencies, the
components in that circuit respond to each constituent frequency in a different way. Any reactive
component such as a capacitor or an inductor will simultaneously present a unique amount of
impedance to each and every frequency present in a circuit. Thankfully, the analysis of such circuits
is made relatively easy by applying the Superposition Theorem, regarding the multiple-frequency
source as a set of single-frequency voltage sources connected in series, and analyzing the circuit for
one source at a time, summing the results at the end to determine the aggregate total:

60 Hz

90 Hz

5 V

5 V

R

2.2 kΩ

C 1 µF

Analyzing circuit for 60 Hz source alone:

5 V
60 Hz

R

C 1 µF

2.2 kΩ

XC = 2.653 kΩ
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E

I

Volts

Amps

OhmsZ

R TotalC

2.2k + j0

2.2k ∠ 0o

0 - j2.653k

2.653k ∠ -90o

2.2k - j2.653k

3.446k ∠ -50.328o

5 + j0

5 ∠ 0o

926.22µ + j1.1168m

1.4509m ∠ 50.328o

926.22µ + j1.1168m

1.4509m ∠ 50.328o

926.22µ + j1.1168m

1.4509m ∠ 50.328o

2.0377 + j2.4569 2.9623 - j2.4569

3.8486 ∠ -39.6716o3.1919 ∠ 50.328o

Analyzing the circuit for 90 Hz source alone:

5 V
90 Hz

R

C 1 µF

2.2 kΩ

XC = 1.768 kΩ

E

I

Volts

Amps

OhmsZ

R TotalC

2.2k + j0

2.2k ∠ 0o

5 + j0

5 ∠ 0o

0 - j1.768k

1.768k ∠ -90o

2.2k - j1.768k

2.823k ∠ -38.793o

1.3807m + j1.1098m

1.7714m ∠ 38.793o

1.3807m + j1.1098m

1.7714m ∠ 38.793o

1.3807m + j1.1098m

1.7714m ∠ 38.793o

3.0375 + j2.4415

3.8971 ∠ 38.793o

1.9625 - j2.4415

3.1325 ∠ -51.207o

Superimposing the voltage drops across R and C, we get:

ER = [3.1919 V ∠ 50.328o (60 Hz)] + [3.8971 V ∠ 38.793o (90 Hz)]

EC = [3.8486 V ∠ -39.6716o (60 Hz)] + [3.1325 V ∠ -51.207o (90 Hz)]

Because the two voltages across each component are at different frequencies, we cannot con-
solidate them into a single voltage figure as we could if we were adding together two voltages of
different amplitude and/or phase angle at the same frequency. Complex number notation give us
the ability to represent waveform amplitude (polar magnitude) and phase angle (polar angle), but
not frequency.
What we can tell from this application of the superposition theorem is that there will be a greater

60 Hz voltage dropped across the capacitor than a 90 Hz voltage. Just the opposite is true for the
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resistor’s voltage drop. This is worthy to note, especially in light of the fact that the two source
voltages are equal. It is this kind of unequal circuit response to signals of differing frequency that
will be our specific focus in the next chapter.

We can also apply the superposition theorem to the analysis of a circuit powered by a non-
sinusoidal voltage, such as a square wave. If we know the Fourier series (multiple sine/cosine wave
equivalent) of that wave, we can regard it as originating from a series-connected string of multiple
sinusoidal voltage sources at the appropriate amplitudes, frequencies, and phase shifts. Needless
to say, this can be a laborious task for some waveforms (an accurate square-wave Fourier Series is
considered to be expressed out to the ninth harmonic, or five sine waves in all!), but it is possible. I
mention this not to scare you, but to inform you of the potential complexity lurking behind seemingly
simple waveforms. A real-life circuit will respond just the same to being powered by a square wave
as being powered by an infinite series of sine waves of odd-multiple frequencies and diminishing
amplitudes. This has been known to translate into unexpected circuit resonances, transformer and
inductor core overheating due to eddy currents, electromagnetic noise over broad ranges of the
frequency spectrum, and the like. Technicians and engineers need to be made aware of the potential
effects of non-sinusoidal waveforms in reactive circuits.

Harmonics are known to manifest their effects in the form of electromagnetic radiation as well.
Studies have been performed on the potential hazards of using portable computers aboard passenger
aircraft, citing the fact that computers’ high frequency square-wave ”clock” voltage signals are
capable of generating radio waves that could interfere with the operation of the aircraft’s electronic
navigation equipment. It’s bad enough that typical microprocessor clock signal frequencies are within
the range of aircraft radio frequency bands, but worse yet is the fact that the harmonic multiples of
those fundamental frequencies span an even larger range, due to the fact that clock signal voltages
are square-wave in shape and not sine-wave.

Electromagnetic ”emissions” of this nature can be a problem in industrial applications, too, with
harmonics abounding in very large quantities due to (nonlinear) electronic control of motor and
electric furnace power. The fundamental power line frequency may only be 60 Hz, but those harmonic
frequency multiples theoretically extend into infinitely high frequency ranges. Low frequency power
line voltage and current doesn’t radiate into space very well as electromagnetic energy, but high
frequencies do.

Also, capacitive and inductive ”coupling” caused by close-proximity conductors is usually more
severe at high frequencies. Signal wiring nearby power wiring will tend to ”pick up” harmonic
interference from the power wiring to a far greater extent than pure sine-wave interference. This
problem can manifest itself in industry when old motor controls are replaced with new, solid-state
electronic motor controls providing greater energy efficiency. Suddenly there may be weird electrical
noise being impressed upon signal wiring that never used to be there, because the old controls never
generated harmonics, and those high-frequency harmonic voltages and currents tend to inductively
and capacitively ”couple” better to nearby conductors than any 60 Hz signals from the old controls
used to.

• REVIEW:

• Any regular (repeating), non-sinusoidal waveform is equivalent to a particular series of sine/cosine
waves of different frequencies, phases, and amplitudes, plus a DC offset voltage if necessary.
The mathematical process for determining the sinusoidal waveform equivalent for any wave-
form is called Fourier analysis.
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• Multiple-frequency voltage sources can be simulated for analysis by connecting several single-
frequency voltage sources in series. Analysis of voltages and currents is accomplished by using
the superposition theorem. NOTE: superimposed voltages and currents of different frequencies
cannot be added together in complex number form, since complex numbers only account for
amplitude and phase shift, not frequency!

• Harmonics can cause problems by impressing unwanted (”noise”) voltage signals upon nearby
circuits. These unwanted signals may come by way of capacitive coupling, inductive coupling,
electromagnetic radiation, or a combination thereof.

7.6 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most recent
to first. See Appendix 2 (Contributor List) for dates and contact information.
Jason Starck (June 2000): HTML document formatting, which led to a much better-looking

second edition.
Dennis Crunkilton (May 2005): added nutmeg spice plots
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8.1 What is a filter?

It is sometimes desirable to have circuits capable of selectively filtering one frequency or range of
frequencies out of a mix of different frequencies in a circuit. A circuit designed to perform this
frequency selection is called a filter circuit, or simply a filter. A common need for filter circuits is
in high-performance stereo systems, where certain ranges of audio frequencies need to be amplified
or suppressed for best sound quality and power efficiency. You may be familiar with equalizers,
which allow the amplitudes of several frequency ranges to be adjusted to suit the listener’s taste and
acoustic properties of the listening area. You may also be familiar with crossover networks, which
block certain ranges of frequencies from reaching speakers. A tweeter (high-frequency speaker)
is inefficient at reproducing low-frequency signals such as drum beats, so a crossover circuit is
connected between the tweeter and the stereo’s output terminals to block low-frequency signals,
only passing high-frequency signals to the speaker’s connection terminals. This gives better audio
system efficiency and thus better performance. Both equalizers and crossover networks are examples
of filters, designed to accomplish filtering of certain frequencies.
Another practical application of filter circuits is in the ”conditioning” of non-sinusoidal voltage

waveforms in power circuits. Some electronic devices are sensitive to the presence of harmonics in
the power supply voltage, and so require power conditioning for proper operation. If a distorted
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sine-wave voltage behaves like a series of harmonic waveforms added to the fundamental frequency,
then it should be possible to construct a filter circuit that only allows the fundamental waveform
frequency to pass through, blocking all (higher-frequency) harmonics.
We will be studying the design of several elementary filter circuits in this lesson. To reduce the

load of math on the reader, I will make extensive use of SPICE as an analysis tool, displaying Bode
plots (amplitude versus frequency) for the various kinds of filters. Bear in mind, though, that these
circuits can be analyzed over several points of frequency by repeated series-parallel analysis, much
like the previous example with two sources (60 and 90 Hz), if the student is willing to invest a lot
of time working and re-working circuit calculations for each frequency.

• REVIEW:

• A filter is an AC circuit that separates some frequencies from others within mixed-frequency
signals.

• Audio equalizers and crossover networks are two well-known applications of filter circuits.

• A Bode plot is a graph plotting waveform amplitude or phase on one axis and frequency on
the other.

8.2 Low-pass filters

By definition, a low-pass filter is a circuit offering easy passage to low-frequency signals and difficult
passage to high-frequency signals. There are two basic kinds of circuits capable of accomplishing
this objective, and many variations of each one:

1

0 0

2

Inductive low-pass filter

L1

3 H

Rload 1 kΩV1 1 V

The inductor’s impedance increases with increasing frequency. This high impedance in series
tends to block high-frequency signals from getting to the load. This can be demonstrated with a
SPICE analysis:

inductive lowpass filter

v1 1 0 ac 1 sin

l1 1 2 3

rload 2 0 1k

.ac lin 20 1 200

.plot ac v(2)
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.end

inductive lowpass filter

Load voltage decreases with increasing frequency

1

0 0

2

Capacitive low-pass filter

R1

500 Ω

C1
7 µF

Rload 1 kΩV1 1 V

The capacitor’s impedance decreases with increasing frequency. This low impedance in parallel
with the load resistance tends to short out high-frequency signals, dropping most of the voltage
across series resistor R1.

capacitive lowpass filter
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v1 1 0 ac 1 sin

r1 1 2 500

c1 2 0 7u

rload 2 0 1k

.ac lin 20 30 150

.plot ac v(2)

.end

capacitive lowpass filter

Load voltage decreases with increasing frequency

The inductive low-pass filter is the pinnacle of simplicity, with only one component comprising
the filter. The capacitive version of this filter is not that much more complex, with only a resistor
and capacitor needed for operation. However, despite their increased complexity, capacitive filter
designs are generally preferred over inductive because capacitors tend to be ”purer” reactive com-
ponents than inductors and therefore are more predictable in their behavior. By ”pure” I mean that
capacitors exhibit little resistive effects than inductors, making them almost 100% reactive. Induc-
tors, on the other hand, typically exhibit significant dissipative (resistor-like) effects, both in the
long lengths of wire used to make them, and in the magnetic losses of the core material. Capacitors
also tend to participate less in ”coupling” effects with other components (generate and/or receive
interference from other components via mutual electric or magnetic fields) than inductors, and are
less expensive.
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However, the inductive low-pass filter is often preferred in AC-DC power supplies to filter out
the AC ”ripple” waveform created when AC is converted (rectified) into DC, passing only the pure
DC component. The primary reason for this is the requirement of low filter resistance for the output
of such a power supply. A capacitive low-pass filter requires an extra resistance in series with the
source, whereas the inductive low-pass filter does not. In the design of a high-current circuit like
a DC power supply where additional series resistance is undesirable, the inductive low-pass filter is
the better design choice. On the other hand, if low weight and compact size are higher priorities
than low internal supply resistance in a power supply design, the capacitive low-pass filter might
make more sense.

All low-pass filters are rated at a certain cutoff frequency. That is, the frequency above which
the output voltage falls below 70.7% of the input voltage. This cutoff percentage of 70.7 is not really
arbitrary, all though it may seem so at first glance. In a simple capacitive/resistive low-pass filter,
it is the frequency at which capacitive reactance in ohms equals resistance in ohms. In a simple
capacitive low-pass filter (one resistor, one capacitor), the cutoff frequency is given as:

fcutoff = 
2πRC

1

Inserting the values of R and C from the last SPICE simulation into this formula, we arrive
at a cutoff frequency of 45.473 Hz. However, when we look at the plot generated by the SPICE
simulation, we see the load voltage well below 70.7% of the source voltage (1 volt) even at a frequency
as low as 30 Hz, below the calculated cutoff point. What’s wrong? The problem here is that the
load resistance of 1 kΩ affects the frequency response of the filter, skewing it down from what the
formula told us it would be. Without that load resistance in place, SPICE produces a Bode plot
whose numbers make more sense:

capacitive lowpass filter

v1 1 0 ac 1 sin

r1 1 2 500

c1 2 0 7u

* note: no load resistor!

.ac lin 20 40 50

.plot ac v(2)

.end
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capacitive lowpass filter

At 45.26 Hz, the output voltage is above 70.7 percent;

At 45.79 Hz, the output voltage is below 70.7 percent;

It should be exactly 70.7% at 45.473 Hz!

When dealing with filter circuits, it is always important to note that the response of the filter
depends on the filter’s component values and the impedance of the load. If a cutoff frequency
equation fails to give consideration to load impedance, it assumes no load and will fail to give
accurate results for a real-life filter conducting power to a load.

One frequent application of the capacitive low-pass filter principle is in the design of circuits
having components or sections sensitive to electrical ”noise.” As mentioned at the beginning of the
last chapter, sometimes AC signals can ”couple” from one circuit to another via capacitance (Cstray)
and/or mutual inductance (Mstray) between the two sets of conductors. A prime example of this is
unwanted AC signals (”noise”) becoming impressed on DC power lines supplying sensitive circuits:
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Load

"Noise"
source

Cstray
Mstray

"Clean" DC power
"Dirty" or "noisy" DC power

Zwire Zwire Zwire

Esupply
Eload

The oscilloscope-meter on the left shows the ”clean” power from the DC voltage source. After
coupling with the AC noise source via stray mutual inductance and stray capacitance, though, the
voltage as measured at the load terminals is now a mix of AC and DC, the AC being unwanted.
Normally, one would expect Eload to be precisely identical to Esource, because the uninterrupted
conductors connecting them should make the two sets of points electrically common. However,
power conductor impedance allows the two voltages to differ, which means the noise magnitude can
vary at different points in the DC system.

If we wish to prevent such ”noise” from reaching the DC load, all we need to do is connect a
low-pass filter near the load to block any coupled signals. In its simplest form, this is nothing more
than a capacitor connected directly across the power terminals of the load, the capacitor behaving
as a very low impedance to any AC noise, and shorting it out. Such a capacitor is called a decoupling
capacitor :
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Load

"Noise"
source

Cstray
Mstray

"Clean" DC power

Zwire Zwire Zwire

Esupply

Eload

"Cleaner" DC power with
decoupling capacitor

A cursory glance at a crowded printed-circuit board (PCB) will typically reveal decoupling
capacitors scattered throughout, usually located as close as possible to the sensitive DC loads.
Capacitor size is usually 0.1 µF or more, a minimum amount of capacitance needed to produce a
low enough impedance to short out any noise. Greater capacitance will do a better job at filtering
noise, but size and economics limit decoupling capacitors to meager values.

• REVIEW:

• A low-pass filter allows for easy passage of low-frequency signals from source to load, and
difficult passage of high-frequency signals.

• Inductive low-pass filters insert an inductor in series with the load; capacitive low-pass filters
insert a resistor in series and a capacitor in parallel with the load. The former filter design
tries to ”block” the unwanted frequency signal while the latter tries to short it out.

• The cutoff frequency for a low-pass filter is that frequency at which the output (load) voltage
equals 70.7% of the input (source) voltage. Above the cutoff frequency, the output voltage is
lower than 70.7% of the input, and vice versa.

8.3 High-pass filters

A high-pass filter’s task is just the opposite of a low-pass filter: to offer easy passage of a high-
frequency signal and difficult passage to a low-frequency signal. As one might expect, the inductive
and capacitive versions of the high-pass filter are just the opposite of their respective low-pass filter
designs:
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1

0 0

2

Capacitive high-pass filter

V1 1 V

C1

0.5 µF

Rload 1 kΩ

The capacitor’s impedance increases with decreasing frequency. This high impedance in series
tends to block low-frequency signals from getting to load.

capacitive highpass filter

v1 1 0 ac 1 sin

c1 1 2 0.5u

rload 2 0 1k

.ac lin 20 1 200

.plot ac v(2)

.end
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capacitive highpass filter

Load voltage increases with increasing frequency

1

0 0

2

Inductive high-pass filter

R1

L1

200 Ω

100 mH
Rload

1 kΩV1 1 V

The inductor’s impedance decreases with decreasing frequency. This low impedance in parallel
tends to short out low-frequency signals from getting to the load resistor. As a consequence, most
of the voltage gets dropped across series resistor R1.

inductive highpass filter

v1 1 0 ac 1 sin

r1 1 2 200

l1 2 0 100m

rload 2 0 1k

.ac lin 20 1 200

.plot ac v(2)

.end
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inductive highpass filter

Load voltage increases with increasing frequency

This time, the capacitive design is the simplest, requiring only one component above and beyond
the load. And, again, the reactive purity of capacitors over inductors tends to favor their use in
filter design, especially with high-pass filters where high frequencies commonly cause inductors to
behave strangely due to the skin effect and electromagnetic core losses.
As with low-pass filters, high-pass filters have a rated cutoff frequency, above which the output

voltage increases above 70.7% of the input voltage. Just as in the case of the capacitive low-pass
filter circuit, the capacitive high-pass filter’s cutoff frequency can be found with the same formula:

fcutoff = 
2πRC

1

In the example circuit, there is no resistance other than the load resistor, so that is the value for
R in the formula.
Using a stereo system as a practical example, a capacitor connected in series with the tweeter

(treble) speaker will serve as a high-pass filter, imposing a high impedance to low-frequency bass
signals, thereby preventing that power from being wasted on a speaker inefficient for reproducing
such sounds. In like fashion, an inductor connected in series with the woofer (bass) speaker will
serve as a low-pass filter for the low frequencies that particular speaker is designed to reproduce. In
this simple example circuit, the midrange speaker is subjected to the full spectrum of frequencies
from the stereo’s output. More elaborate filter networks are sometimes used, but this should give
you the general idea. Also bear in mind that I’m only showing you one channel (either left or right)



190 CHAPTER 8. FILTERS

on this stereo system. A real stereo would have six speakers: 2 woofers, 2 midranges, and 2 tweeters.

Stereo Midrange

Woofer

Tweeter

low-pass

high-pass

For better performance yet, we might like to have some kind of filter circuit capable of passing
frequencies that are between low (bass) and high (treble) to the midrange speaker so that none of
the low- or high-frequency signal power is wasted on a speaker incapable of efficiently reproducing
those sounds. What we would be looking for is called a band-pass filter, which is the topic of the
next section.

• REVIEW:

• A high-pass filter allows for easy passage of high-frequency signals from source to load, and
difficult passage of low-frequency signals.

• Capacitive high-pass filters insert a capacitor in series with the load; inductive high-pass filters
insert a resistor in series and an inductor in parallel with the load. The former filter design
tries to ”block” the unwanted frequency signal while the latter tries to short it out.

• The cutoff frequency for a high-pass filter is that frequency at which the output (load) voltage
equals 70.7% of the input (source) voltage. Above the cutoff frequency, the output voltage is
greater than 70.7% of the input, and vice versa.

8.4 Band-pass filters

There are applications where a particular band, or spread, or frequencies need to be filtered from
a wider range of mixed signals. Filter circuits can be designed to accomplish this task by combin-
ing the properties of low-pass and high-pass into a single filter. The result is called a band-pass
filter. Creating a bandpass filter from a low-pass and high-pass filter can be illustrated using block
diagrams:
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Low-pass filter High-pass filterSignal
input

Signal
output

blocks frequencies
that are too high

blocks frequencies
that are too low

What emerges from the series combination of these two filter circuits is a circuit that will only
allow passage of those frequencies that are neither too high nor too low. Using real components,
here is what a typical schematic might look like:

Source Low-pass
filter section

High-pass
filter section

1

0

2 3

0 0

Capacitive band-pass filter

V1 1 V

R1

200 Ω

C1 2.5 µF

C2

1 µF

Rload 1 kΩ

capacitive bandpass filter

v1 1 0 ac 1 sin

r1 1 2 200

c1 2 0 2.5u

c2 2 3 1u

rload 3 0 1k

.ac lin 20 100 500

.plot ac v(3)

.end
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capacitive bandpass filter

Load voltage peaks within narrow frequency range

Band-pass filters can also be constructed using inductors, but as mentioned before, the reactive
”purity” of capacitors gives them a design advantage. If we were to design a bandpass filter using
inductors, it might look something like this:
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Source Low-pass
filter section

High-pass
filter section

Inductive band-pass filter

R1 L2

L1 Rload

The fact that the high-pass section comes ”first” in this design instead of the low-pass section
makes no difference in its overall operation. It will still filter out all frequencies too high or too low.

While the general idea of combining low-pass and high-pass filters together to make a bandpass
filter is sound, it is not without certain limitations. Because this type of band-pass filter works by
relying on either section to block unwanted frequencies, it can be difficult to design such a filter
to allow unhindered passage within the desired frequency range. Both the low-pass and high-pass
sections will always be blocking signals to some extent, and their combined effort makes for an
attenuated (reduced amplitude) signal at best, even at the peak of the ”pass-band” frequency range.
Notice the curve peak on the previous SPICE analysis: the load voltage of this filter never rises
above 0.59 volts, although the source voltage is a full volt. This signal attenuation becomes more
pronounced if the filter is designed to be more selective (steeper curve, narrower band of passable
frequencies).

There are other methods to achieve band-pass operation without sacrificing signal strength within
the pass-band. We will discuss those methods a little later in this chapter.

• REVIEW:

• A band-pass filter works to screen out frequencies that are too low or too high, giving easy
passage only to frequencies within a certain range.

• Band-pass filters can be made by stacking a low-pass filter on the end of a high-pass filter, or
vice versa.

• ”Attenuate” means to reduce or diminish in amplitude. When you turn down the volume
control on your stereo, you are ”attenuating” the signal being sent to the speakers.
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8.5 Band-stop filters

Also called band-elimination, band-reject, or notch filters, this kind of filter passes all frequencies
above and below a particular range set by the component values. Not surprisingly, it can be made
out of a low-pass and a high-pass filter, just like the band-pass design, except that this time we
connect the two filter sections in parallel with each other instead of in series.

Low-pass filter

High-pass filter

Signal
input

Signal
output

passes low frequencies

passes high frequencies

Constructed using two capacitive filter sections, it looks something like this:

source

"Twin-T" band-stop filter

R1 R2

C1
C2 C3

R3 Rload

The low-pass filter section is comprised of R1, R2, and C1 in a ”T” configuration. The high-
pass filter section is comprised of C2, C3, and R3 in a ”T’ configuration as well. Together, this
arrangement is commonly known as a ”Twin-T” filter, giving sharp response when the component
values are chosen in the following ratios:

R1 = R2 = 2(R3)

Component value ratios for
the "Twin-T" band-stop filter

C2 = C3 = (0.5)C1

Given these component ratios, the frequency of maximum rejection (the ”notch frequency”) can
be calculated as follows:
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fnotch = 
4πR3C3

1

The impressive band-stopping ability of this filter is illustrated by the following SPICE analysis:

twin-t bandstop filter

v1 1 0 ac 1 sin

r1 1 2 200

c1 2 0 2u

r2 2 3 200

c2 1 4 1u

r3 4 0 100

c3 4 3 1u

rload 3 0 1k

.ac lin 20 200 1.5k

.plot ac v(3)

.end

twin-t bandstop filter

• REVIEW:
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• A band-stop filter works to screen out frequencies that are within a certain range, giving easy
passage only to frequencies outside of that range. Also known as band-elimination, band-reject,
or notch filters.

• Band-stop filters can be made by placing a low-pass filter in parallel with a high-pass filter.
Commonly, both the low-pass and high-pass filter sections are of the ”T” configuration, giving
the name ”Twin-T” to the band-stop combination.

• The frequency of maximum attenuation is called the notch frequency.

8.6 Resonant filters

So far, the filter designs we’ve concentrated on have employed either capacitors or inductors, but
never both at the same time. We should know by now that combinations of L and C will tend to
resonate, and this property can be exploited in designing band-pass and band-stop filter circuits.

Series LC circuits give minimum impedance at resonance, while parallel LC (”tank”) circuits
give maximum impedance at their resonant frequency. Knowing this, we have two basic strategies
for designing either band-pass or band-stop filters.

For band-pass filters, the two basic resonant strategies are this: series LC to pass a signal, or
parallel LC to short a signal. The two schemes will be contrasted and simulated here:

filter

1 2 3

0 0

Series resonant band-pass filter

L1

1 H

C1

1 µF
Rload 1 kΩV1 1 V

Series LC components pass signal at resonance, and block signals of any other frequencies from
getting to the load.

series resonant bandpass filter

v1 1 0 ac 1 sin

l1 1 2 1

c1 2 3 1u

rload 3 0 1k

.ac lin 20 50 250

.plot ac v(3)

.end
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series resonant bandpass filter

Load voltage peaks at resonant frequency (159.15 Hz)

A couple of points to note: see how there is virtually no signal attenuation within the ”pass
band” (the range of frequencies near the load voltage peak), unlike the band-pass filters made from
capacitors or inductors alone. Also, since this filter works on the principle of series LC resonance,
the resonant frequency of which is unaffected by circuit resistance, the value of the load resistor
will not skew the peak frequency. However, different values for the load resistor will change the
”steepness” of the Bode plot (the ”selectivity” of the filter).

The other basic style of resonant band-pass filters employs a tank circuit (parallel LC combina-
tion) to short out signals too high or too low in frequency from getting to the load:
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filter

1

0 0

2 2 2

00

R1

500 Ω
L1

100
mH

C1
10
µF

Rload 1 kΩV1

1 V

Parallel resonant band-pass filter

The tank circuit will have a lot of impedance at resonance, allowing the signal to get to the load
with minimal attenuation. Under or over resonant frequency, however, the tank circuit will have a
low impedance, shorting out the signal and dropping most of it across series resistor R1.

parallel resonant bandpass filter

v1 1 0 ac 1 sin

r1 1 2 500

l1 2 0 100m

c1 2 0 10u

rload 2 0 1k

.ac lin 20 50 250

.plot ac v(2)

.end
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parallel resonant bandpass filter

Load voltage peaks at resonant frequency (159.15 Hz)

Just like the low-pass and high-pass filter designs relying on a series resistance and a parallel
”shorting” component to attenuate unwanted frequencies, this resonant circuit can never provide
full input (source) voltage to the load. That series resistance will always be dropping some amount
of voltage so long as there is a load resistance connected to the output of the filter.

It should be noted that this form of band-pass filter circuit is very popular in analog radio tuning
circuitry, for selecting a particular radio frequency from the multitudes of frequencies available from
the antenna. In most analog radio tuner circuits, the rotating dial for station selection moves a
variable capacitor in a tank circuit.
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The variable capacitor and air-core inductor shown in the above photograph of a simple radio
comprise the main elements in the tank circuit filter used to discriminate one radio station’s signal
from another.
Just as we can use series and parallel LC resonant circuits to pass only those frequencies within a

certain range, we can also use them to block frequencies within a certain range, creating a band-stop
filter. Again, we have two major strategies to follow in doing this, to use either series or parallel
resonance. First, we’ll look at the series variety:

1

0

2

3

2

0 0

Series resonant band-stop filter

V1 1 V

R1

500 Ω
L1 100 mH

C1 10 µF

Rload 1 kΩ

When the series LC combination reaches resonance, its very low impedance shorts out the signal,
dropping it across resistor R1 and preventing its passage on to the load.

series resonant bandstop filter

v1 1 0 ac 1 sin

r1 1 2 500

l1 2 3 100m

c1 3 0 10u

rload 2 0 1k

.ac lin 20 70 230

.plot ac v(2)

.end
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series resonant bandstop filter

Notch frequency = LC resonant frequency (159.15 Hz)

Next, we will examine the parallel resonant band-stop filter:

1

0 0

2

Parallel resonant band-stop filter

V1 1 V

C1 10 µF

L1 100 mH
Rload 1 kΩ

The parallel LC components present a high impedance at resonant frequency, thereby blocking
the signal from the load at that frequency. Conversely, it passes signals to the load at any other
frequencies.

parallel resonant bandstop filter
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v1 1 0 ac 1 sin

l1 1 2 100m

c1 1 2 10u

rload 2 0 1k

.ac lin 20 100 200

.plot ac v(2)

.end

parallel resonant bandstop filter

Notch frequency = LC resonant frequency (159.15 Hz)

Once again, notice how the absence of a series resistor makes for minimum attenuation for all
the desired (passed) signals. The amplitude at the notch frequency, on the other hand, is very low.
In other words, this is a very ”selective” filter.
In all these resonant filter designs, the selectivity depends greatly upon the ”purity” of the induc-

tance and capacitance used. If there is any stray resistance (especially likely in the inductor), this
will diminish the filter’s ability to finely discriminate frequencies, as well as introduce antiresonant
effects that will skew the peak/notch frequency.
A word of caution to those designing low-pass and high-pass filters is in order at this point. After

assessing the standard RC and LR low-pass and high-pass filter designs, it might occur to a student
that a better, more effective design of low-pass or high-pass filter might be realized by combining
capacitive and inductive elements together like this:
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filter

Capacitive/inductive low-pass filter

V1 1 V

L11

0
0

0

C1

L2

Rload 1 kΩ

100 mH 100 mH

1 µF

2 3

The inductors should block any high frequencies, while the capacitor should short out any high
frequencies as well, both working together to allow only low frequency signals to reach the load.

At first, this seems to be a good strategy, and eliminates the need for a series resistance. However,
the more insightful student will recognize that any combination of capacitors and inductors together
in a circuit is likely to cause resonant effects to happen at a certain frequency. Resonance, as we
have seen before, can cause strange things to happen. Let’s plot a SPICE analysis and see what
happens over a wide frequency range:

lc lowpass filter

v1 1 0 ac 1 sin

l1 1 2 100m

c1 2 0 1u

l2 2 3 100m

rload 3 0 1k

.ac lin 20 100 1k

.plot ac v(3)

.end
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lc lowpass filter

What was supposed to be a low-pass filter turns out to be a band-pass filter with a peak some-
where around 526 Hz! The capacitance and inductance in this filter circuit are attaining resonance
at that point, creating a large voltage drop around C1, which is seen at the load, regardless of
L2’s attenuating influence. The output voltage to the load at this point actually exceeds the input
(source) voltage! A little more reflection reveals that if L1 and C2 are at resonance, they will impose
a very heavy (very low impedance) load on the AC source, which might not be good either. We’ll
run the same analysis again, only this time plotting C1’s voltage and the source current along with
load voltage:
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lc lowpass filter

Sure enough, we see the voltage across C1 and the source current spiking to a high point at the
same frequency where the load voltage is maximum. If we were expecting this filter to provide a
simple low-pass function, we might be disappointed by the results.
Despite this unintended resonance, low-pass filters made up of capacitors and inductors are

frequently used as final stages in AC/DC power supplies to filter the unwanted AC ”ripple” voltage
out of the DC converted from AC. Why is this, if this particular filter design possesses a potentially
troublesome resonant point?
The answer lies in the selection of filter component sizes and the frequencies encountered from an

AC/DC converter (rectifier). What we’re trying to do in an AC/DC power supply filter is separate
DC voltage from a small amount of relatively high-frequency AC voltage. The filter inductors and
capacitors are generally quite large (several Henrys for the inductors and thousands of µF for the
capacitors is typical), making the filter’s resonant frequency very, very low. DC of course, has a
”frequency” of zero, so there’s no way it can make an LC circuit resonate. The ripple voltage,
on the other hand, is a non-sinusoidal AC voltage consisting of a fundamental frequency at least
twice the frequency of the converted AC voltage, with harmonics many times that in addition. For
plug-in-the-wall power supplies running on 60 Hz AC power (60 Hz United States; 50 Hz in Europe),
the lowest frequency the filter will ever see is 120 Hz (100 Hz in Europe), which is well above its
resonant point. Therefore, the potentially troublesome resonant point in a such a filter is completely
avoided.
The following SPICE analysis calculates the voltage output (AC and DC) for such a filter, with

series DC and AC (120 Hz) voltage sources providing a rough approximation of the mixed-frequency
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output of an AC/DC converter.

1

0

2 3 4

0 0

AC/DC power supply filter

V1
1 V

120 Hz

V2 12 V

L1

3 H

L2

2 H

C1
9500

µF
Rload 1 kΩ

ac/dc power supply filter

v1 1 0 ac 1 sin

v2 2 1 dc

l1 2 3 3

c1 3 0 9500u

l2 3 4 2

rload 4 0 1k

.dc v2 12 12 1

.ac lin 1 120 120

.print dc v(4)

.print ac v(4)

.end

v2 v(4)

1.200E+01 1.200E+01 DC voltage at load = 12 volts

freq v(4)

1.200E+02 3.412E-05 AC voltage at load = 34.12 microvolts

With a full 12 volts DC at the load and only 34.12 µV of AC left from the 1 volt AC source
imposed across the load, this circuit design proves itself to be a very effective power supply filter.
The lesson learned here about resonant effects also applies to the design of high-pass filters using

both capacitors and inductors. So long as the desired and undesired frequencies are well to either
side of the resonant point, the filter will work okay. But if any signal of significant magnitude close
to the resonant frequency is applied to the input of the filter, strange things will happen!

• REVIEW:

• Resonant combinations of capacitance and inductance can be employed to create very effective
band-pass and band-stop filters without the need for added resistance in a circuit that would
diminish the passage of desired frequencies.
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•

fresonant = 
2π LC

1

8.7 Summary

As lengthy as this chapter has been up to this point, it only begins to scratch the surface of filter
design. A quick perusal of any advanced filter design textbook is sufficient to prove my point. The
mathematics involved with component selection and frequency response prediction is daunting to
say the least – well beyond the scope of the beginning electronics student. It has been my intent here
to present the basic principles of filter design with as little math as possible, leaning on the power
of the SPICE circuit analysis program to explore filter performance. The benefit of such computer
simulation software cannot be understated, for the beginning student or for the working engineer.
Circuit simulation software empowers the student to explore circuit designs far beyond the reach

of their math skills. With the ability to generate Bode plots and precise figures, an intuitive un-
derstanding of circuit concepts can be attained, which is something often lost when a student is
burdened with the task of solving lengthy equations by hand. If you are not familiar with the use of
SPICE or other circuit simulation programs, take the time to become so! It will be of great benefit
to your study. To see SPICE analyses presented in this book is an aid to understanding circuits, but
to actually set up and analyze your own circuit simulations is a much more engaging and worthwhile
endeavor as a student.

8.8 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most recent
to first. See Appendix 2 (Contributor List) for dates and contact information.
Jason Starck (June 2000): HTML document formatting, which led to a much better-looking

second edition.
Dennis Crunkilton (May 2005): added nutmeg spice plots



208 CHAPTER 8. FILTERS



Chapter 9

TRANSFORMERS

Contents

9.1 Mutual inductance and basic operation . . . . . . . . . . . . . . . . . . 210

9.2 Step-up and step-down transformers . . . . . . . . . . . . . . . . . . . . 223

9.3 Electrical isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

9.4 Phasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

9.5 Winding configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

9.6 Voltage regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

9.7 Special transformers and applications . . . . . . . . . . . . . . . . . . . 242

9.7.1 Impedance matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

9.7.2 Potential transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

9.7.3 Current transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

9.7.4 Air core transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

9.7.5 Tesla Coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

9.7.6 Saturable reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

9.7.7 Scott-T transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

9.7.8 Linear Variable Differential Transformer . . . . . . . . . . . . . . . . . . . 256

9.8 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

9.8.1 Power capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

9.8.2 Energy losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

9.8.3 Stray capacitance and inductance . . . . . . . . . . . . . . . . . . . . . . . 260

9.8.4 Core saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

9.8.5 Inrush current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

9.8.6 Heat and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

9.9 Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

209



210 CHAPTER 9. TRANSFORMERS

9.1 Mutual inductance and basic operation

Suppose we were to wrap a coil of insulated wire around a loop of ferromagnetic material and energize
this coil with an AC voltage source:

wire
coil

iron core

As an inductor, we would expect this iron-core coil to oppose the applied voltage with its inductive
reactance, limiting current through the coil as predicted by the equations XL = 2πfL and I=E/X
(or I=E/Z). For the purposes of this example, though, we need to take a more detailed look at the
interactions of voltage, current, and magnetic flux in the device.
Kirchhoff’s voltage law describes how the algebraic sum of all voltages in a loop must equal

zero. In this example, we could apply this fundamental law of electricity to describe the respective
voltages of the source and of the inductor coil. Here, as in any one-source, one-load circuit, the
voltage dropped across the load must equal the voltage supplied by the source, assuming zero voltage
dropped along the resistance of any connecting wires. In other words, the load (inductor coil) must
produce an opposing voltage equal in magnitude to the source, in order that it may balance against
the source voltage and produce an algebraic loop voltage sum of zero. From where does this opposing
voltage arise? If the load were a resistor, the opposing voltage would originate from the ”friction”
of electrons flowing through the resistance of the resistor. With a perfect inductor (no resistance
in the coil wire), the opposing voltage comes from another mechanism: the reaction to a changing
magnetic flux in the iron core.
Michael Faraday discovered the mathematical relationship between magnetic flux (Φ) and in-

duced voltage with this equation:

dΦ
dt

Where,

N

N =

Φ =
t =

Number of turns in wire coil (straight wire = 1)
Magnetic flux in Webers
Time in seconds

e =

e = (Instantaneous) induced voltage in volts
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The instantaneous voltage (voltage dropped at any instant in time) across a wire coil is equal to
the number of turns of that coil around the core (N) multiplied by the instantaneous rate-of-change
in magnetic flux (dΦ/dt) linking with the coil. Graphed, this shows itself as a set of sine waves
(assuming a sinusoidal voltage source), the flux wave 90o lagging behind the voltage wave:

e = voltage
Φ = magnetic flux

e Φ

Magnetic flux through a ferromagnetic material is analogous to current through a conductor:
it must be motivated by some force in order to occur. In electric circuits, this motivating force
is voltage (a.k.a. electromotive force, or EMF). In magnetic ”circuits,” this motivating force is
magnetomotive force, or mmf. Magnetomotive force (mmf) and magnetic flux (Φ) are related to
each other by a property of magnetic materials known as reluctance (the latter quantity symbolized
by a strange-looking letter ”R”):

Electrical Magnetic

E = IR mmf = Φℜ

A comparison of "Ohm’s Law" for
electric and magnetic circuits:

In our example, the mmf required to produce this changing magnetic flux (Φ) must be supplied
by a changing current through the coil. Magnetomotive force generated by an electromagnet coil
is equal to the amount of current through that coil (in amps) multiplied by the number of turns
of that coil around the core (the SI unit for mmf is the amp-turn). Because the mathematical
relationship between magnetic flux and mmf is directly proportional, and because the mathematical
relationship between mmf and current is also directly proportional (no rates-of-change present in
either equation), the current through the coil will be in-phase with the flux wave:



212 CHAPTER 9. TRANSFORMERS

e = voltage
Φ = magnetic flux

i = coil current

e Φ
i

This is why alternating current through an inductor lags the applied voltage waveform by 90o:
because that is what is required to produce a changing magnetic flux whose rate-of-change produces
an opposing voltage in-phase with the applied voltage. Due to its function in providing magnetizing
force (mmf) for the core, this current is sometimes referred to as the magnetizing current.

It should be mentioned that the current through an iron-core inductor is not perfectly sinusoidal
(sine-wave shaped), due to the nonlinear B/H magnetization curve of iron. In fact, if the inductor
is cheaply built, using as little iron as possible, the magnetic flux density might reach high levels
(approaching saturation), resulting in a magnetizing current waveform that looks something like
this:

e = voltage
Φ = magnetic flux

i = coil current

e Φ
i

When a ferromagnetic material approaches magnetic flux saturation, disproportionately greater
levels of magnetic field force (mmf) are required to deliver equal increases in magnetic field flux (Φ).
Because mmf is proportional to current through the magnetizing coil (mmf = NI, where ”N” is the
number of turns of wire in the coil and ”I” is the current through it), the large increases of mmf
required to supply the needed increases in flux results in large increases in coil current. Thus, coil
current increases dramatically at the peaks in order to maintain a flux waveform that isn’t distorted,
accounting for the bell-shaped half-cycles of the current waveform in the above plot.

The situation is further complicated by energy losses within the iron core. The effects of hysteresis
and eddy currents conspire to further distort and complicate the current waveform, making it even
less sinusoidal and altering its phase to be lagging slightly less than 90o behind the applied voltage
waveform. This coil current resulting from the sum total of all magnetic effects in the core (dΦ/dt
magnetization plus hysteresis losses, eddy current losses, etc.) is called the exciting current. The
distortion of an iron-core inductor’s exciting current may be minimized if it is designed for and
operated at very low flux densities. Generally speaking, this requires a core with large cross-sectional
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area, which tends to make the inductor bulky and expensive. For the sake of simplicity, though,
we’ll assume that our example core is far from saturation and free from all losses, resulting in a
perfectly sinusoidal exciting current.
As we’ve seen already in the inductors chapter, having a current waveform 90o out of phase with

the voltage waveform creates a condition where power is alternately absorbed and returned to the
circuit by the inductor. If the inductor is perfect (no wire resistance, no magnetic core losses, etc.),
it will dissipate zero power.
Let us now consider the same inductor device, except this time with a second coil wrapped

around the same iron core. The first coil will be labeled the primary coil, while the second will be
labeled the secondary :

wire
coil

iron core

wire
coil

If this secondary coil experiences the same magnetic flux change as the primary (which it should,
assuming perfect containment of the magnetic flux through the common core), and has the same
number of turns around the core, a voltage of equal magnitude and phase to the applied voltage will
be induced along its length. In the following graph, the induced voltage waveform is drawn slightly
smaller than the source voltage waveform simply to distinguish one from the other:

Φ = magnetic flux

Φ

ep = primary coil voltage
es = secondary coil voltage

ep

es

ip = primary coil current

ip

This effect is called mutual inductance: the induction of a voltage in one coil in response to a
change in current in the other coil. Like normal (self-) inductance, it is measured in the unit of
Henrys, but unlike normal inductance it is symbolized by the capital letter ”M” rather than the
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letter ”L”:

e = L
di

dt

Inductance Mutual inductance

e2 = M
di1

dt

Where,

e2 = voltage induced in
secondary coil

i1 = current in primary
coil

No current will exist in the secondary coil, since it is open-circuited. However, if we connect a
load resistor to it, an alternating current will go through the coil, in phase with the induced voltage
(because the voltage across a resistor and the current through it are always in phase with each
other).

wire
coil

iron core

wire
coil

At first, one might expect this secondary coil current to cause additional magnetic flux in the
core. In fact, it does not. If more flux were induced in the core, it would cause more voltage to be
induced voltage in the primary coil (remember that e = dΦ/dt). This cannot happen, because the
primary coil’s induced voltage must remain at the same magnitude and phase in order to balance
with the applied voltage, in accordance with Kirchhoff’s voltage law. Consequently, the magnetic
flux in the core cannot be affected by secondary coil current. However, what does change is the
amount of mmf in the magnetic circuit.
Magnetomotive force is produced any time electrons move through a wire. Usually, this mmf is
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accompanied by magnetic flux, in accordance with the mmf=ΦR ”magnetic Ohm’s Law” equation.
In this case, though, additional flux is not permitted, so the only way the secondary coil’s mmf may
exist is if a counteracting mmf is generated by the primary coil, of equal magnitude and opposite
phase. Indeed, this is what happens, an alternating current forming in the primary coil – 180o out of
phase with the secondary coil’s current – to generate this counteracting mmf and prevent additional
core flux. Polarity marks and current direction arrows have been added to the illustration to clarify
phase relations:

wire
coil

iron core

wire
coil

+

-

+

-

+

-

+

-

mmfprimary

mmfsecondary

If you find this process a bit confusing, do not worry. Transformer dynamics is a complex subject.
What is important to understand is this: when an AC voltage is applied to the primary coil, it creates
a magnetic flux in the core, which induces AC voltage in the secondary coil in-phase with the source
voltage. Any current drawn through the secondary coil to power a load induces a corresponding
current in the primary coil, drawing current from the source.
Notice how the primary coil is behaving as a load with respect to the AC voltage source, and

how the secondary coil is behaving as a source with respect to the resistor. Rather than energy
merely being alternately absorbed and returned the primary coil circuit, energy is now being coupled
to the secondary coil where it is delivered to a dissipative (energy-consuming) load. As far as the
source ”knows,” it’s directly powering the resistor. Of course, there is also an additional primary coil
current lagging the applied voltage by 90o, just enough to magnetize the core to create the necessary
voltage for balancing against the source (the exciting current).
We call this type of device a transformer, because it transforms electrical energy into magnetic

energy, then back into electrical energy again. Because its operation depends on electromagnetic
induction between two stationary coils and a magnetic flux of changing magnitude and ”polarity,”
transformers are necessarily AC devices. Its schematic symbol looks like two inductors (coils) sharing
the same magnetic core:

Transformer

The two inductor coils are easily distinguished in the above symbol. The pair of vertical lines
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represent an iron core common to both inductors. While many transformers have ferromagnetic core
materials, there are some that do not, their constituent inductors being magnetically linked together
through the air.

The following photograph shows a power transformer of the type used in gas-discharge lighting.
Here, the two inductor coils can be clearly seen, wound around an iron core. While most transformer
designs enclose the coils and core in a metal frame for protection, this particular transformer is open
for viewing and so serves its illustrative purpose well:

Both coils of wire can be seen here with copper-colored varnish insulation. The top coil is larger
than the bottom coil, having a greater number of ”turns” around the core. In transformers, the
inductor coils are often referred to as windings, in reference to the manufacturing process where wire
is wound around the core material. As modeled in our initial example, the powered inductor of a
transformer is called the primary winding, while the unpowered coil is called the secondary winding.

In the next photograph, a transformer is shown cut in half, exposing the cross-section of the iron
core as well as both windings. Like the transformer shown previously, this unit also utilizes primary
and secondary windings of differing turn counts. The wire gauge can also be seen to differ between
primary and secondary windings. The reason for this disparity in wire gauge will be made clear in
the next section of this chapter. Additionally, the iron core can be seen in this photograph to be
made of many thin sheets (laminations) rather than a solid piece. The reason for this will also be
explained in a later section of this chapter.
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It is easy to demonstrate simple transformer action using SPICE, setting up the primary and
secondary windings of the simulated transformer as a pair of ”mutual” inductors. The coefficient
of magnetic field coupling is given at the end of the ”k” line in the SPICE circuit description, this
example being set very nearly at perfection (1.000). This coefficient describes how closely ”linked”
the two inductors are, magnetically. The better these two inductors are magnetically coupled, the
more efficient the energy transfer between them should be.

(for SPICE to measure current)

1

0

2

0

3 4

5 5

L1 L2

Vi1

0 V

Rload 1 kΩV1 10 V
100 H 100 H

Rbogus1

Rbogus2

0

(very small)

(very large)

transformer

v1 1 0 ac 10 sin

rbogus1 1 2 1e-12

rbogus2 5 0 9e12

l1 2 0 100

l2 3 5 100

** This line tells SPICE that the two inductors

** l1 and l2 are magnetically "linked" together
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k l1 l2 0.999

vi1 3 4 ac 0

rload 4 5 1k

.ac lin 1 60 60

.print ac v(2,0) i(v1)

.print ac v(3,5) i(vi1)

.end

Note: the Rbogus resistors are required to satisfy certain quirks of SPICE. The first breaks
the otherwise continuous loop between the voltage source and L1 which would not be permitted
by SPICE. The second provides a path to ground (node 0) from the secondary circuit, necessary
because SPICE cannot function with any ungrounded circuits.

freq v(2) i(v1)

6.000E+01 1.000E+01 9.975E-03 Primary winding

freq v(3,5) i(vi1)

6.000E+01 9.962E+00 9.962E-03 Secondary winding

Note that with equal inductances for both windings (100 Henrys each), the AC voltages and
currents are nearly equal for the two. The difference between primary and secondary currents is
the magnetizing current spoken of earlier: the 90o lagging current necessary to magnetize the core.
As is seen here, it is usually very small compared to primary current induced by the load, and so
the primary and secondary currents are almost equal. What you are seeing here is quite typical
of transformer efficiency. Anything less than 95% efficiency is considered poor for modern power
transformer designs, and this transfer of power occurs with no moving parts or other components
subject to wear.
If we decrease the load resistance so as to draw more current with the same amount of voltage, we

see that the current through the primary winding increases in response. Even though the AC power
source is not directly connected to the load resistance (rather, it is electromagnetically ”coupled”),
the amount of current drawn from the source will be almost the same as the amount of current that
would be drawn if the load were directly connected to the source. Take a close look at the next two
SPICE simulations, showing what happens with different values of load resistors:

transformer

v1 1 0 ac 10 sin

rbogus1 1 2 1e-12

rbogus2 5 0 9e12

l1 2 0 100

l2 3 5 100

k l1 l2 0.999

vi1 3 4 ac 0

** Note load resistance value of 200 ohms

rload 4 5 200

.ac lin 1 60 60

.print ac v(2,0) i(v1)
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.print ac v(3,5) i(vi1)

.end

freq v(2) i(v1)

6.000E+01 1.000E+01 4.679E-02

freq v(3,5) i(vi1)

6.000E+01 9.348E+00 4.674E-02

Notice how the primary current closely follows the secondary current. In our first simulation,
both currents were approximately 10 mA, but now they are both around 47 mA. In this second
simulation, the two currents are closer to equality, because the magnetizing current remains the
same as before while the load current has increased. Note also how the secondary voltage has
decreased some with the heavier (greater current) load. Let’s try another simulation with an even
lower value of load resistance (15 Ω):

transformer

v1 1 0 ac 10 sin

rbogus1 1 2 1e-12

rbogus2 5 0 9e12

l1 2 0 100

l2 3 5 100

k l1 l2 0.999

vi1 3 4 ac 0

rload 4 5 15

.ac lin 1 60 60

.print ac v(2,0) i(v1)

.print ac v(3,5) i(vi1)

.end

freq v(2) i(v1)

6.000E+01 1.000E+01 1.301E-01

freq v(3,5) i(vi1)

6.000E+01 1.950E+00 1.300E-01

Our load current is now 0.13 amps, or 130 mA, which is substantially higher than the last time.
The primary current is very close to being the same, but notice how the secondary voltage has fallen
well below the primary voltage (1.95 volts versus 10 volts at the primary). The reason for this is
an imperfection in our transformer design: because the primary and secondary inductances aren’t
perfectly linked (a k factor of 0.999 instead of 1.000) there is ”stray” or ”leakage” inductance. In
other words, some of the magnetic field isn’t linking with the secondary coil, and thus cannot couple
energy to it:
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wire
coil

wire
coil

leakage
flux

leakage
flux

core flux

Consequently, this ”leakage” flux merely stores and returns energy to the source circuit via self-
inductance, effectively acting as a series impedance in both primary and secondary circuits. Voltage
gets dropped across this series impedance, resulting in a reduced load voltage: voltage across the
load ”sags” as load current increases.

ideal
transformer

leakage
inductance

leakage
inductance

Equivalent transformer circuit with
leakage inductance shown

Source Load

If we change the transformer design to have better magnetic coupling between the primary and
secondary coils, the figures for voltage between primary and secondary windings will be much closer
to equality again:

transformer

v1 1 0 ac 10 sin

rbogus1 1 2 1e-12

rbogus2 5 0 9e12

l1 2 0 100

l2 3 5 100

** Coupling factor = 0.99999 instead of 0.999

k l1 l2 0.99999

vi1 3 4 ac 0

rload 4 5 15

.ac lin 1 60 60
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.print ac v(2,0) i(v1)

.print ac v(3,5) i(vi1)

.end

freq v(2) i(v1)

6.000E+01 1.000E+01 6.658E-01

freq v(3,5) i(vi1)

6.000E+01 9.987E+00 6.658E-01

Here we see that our secondary voltage is back to being equal with the primary, and the secondary
current is equal to the primary current as well. Unfortunately, building a real transformer with
coupling this complete is very difficult. A compromise solution is to design both primary and
secondary coils with less inductance, the strategy being that less inductance overall leads to less
”leakage” inductance to cause trouble, for any given degree of magnetic coupling inefficiency. This
results in a load voltage that is closer to ideal with the same (heavy) load and the same coupling
factor:

transformer

v1 1 0 ac 10 sin

rbogus1 1 2 1e-12

rbogus2 5 0 9e12

** inductance = 1 henry instead of 100 henrys

l1 2 0 1

l2 3 5 1

k l1 l2 0.999

vi1 3 4 ac 0

rload 4 5 15

.ac lin 1 60 60

.print ac v(2,0) i(v1)

.print ac v(3,5) i(vi1)

.end

freq v(2) i(v1)

6.000E+01 1.000E+01 6.664E-01

freq v(3,5) i(vi1)

6.000E+01 9.977E+00 6.652E-01

Simply by using primary and secondary coils of less inductance, the load voltage for this heavy
load has been brought back up to nearly ideal levels (9.977 volts). At this point, one might ask,
”If less inductance is all that’s needed to achieve near-ideal performance under heavy load, then
why worry about coupling efficiency at all? If it’s impossible to build a transformer with perfect
coupling, but easy to design coils with low inductance, then why not just build all transformers with
low-inductance coils and have excellent efficiency even with poor magnetic coupling?”
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The answer to this question is found in another simulation: the same low-inductance transformer,
but this time with a lighter load (1 kΩ instead of 15 Ω):

transformer

v1 1 0 ac 10 sin

rbogus1 1 2 1e-12

rbogus2 5 0 9e12

l1 2 0 1

l2 3 5 1

k l1 l2 0.999

vi1 3 4 ac 0

rload 4 5 1k

.ac lin 1 60 60

.print ac v(2,0) i(v1)

.print ac v(3,5) i(vi1)

.end

freq v(2) i(v1)

6.000E+01 1.000E+01 2.835E-02

freq v(3,5) i(vi1)

6.000E+01 9.990E+00 9.990E-03

With lower winding inductances, the primary and secondary voltages are closer to being equal,
but the primary and secondary currents are not. In this particular case, the primary current is
28.35 mA while the secondary current is only 9.990 mA: almost three times as much current in the
primary as the secondary. Why is this? With less inductance in the primary winding, there is less
inductive reactance, and consequently a much larger magnetizing current. A substantial amount of
the current through the primary winding merely works to magnetize the core rather than transfer
useful energy to the secondary winding and load.
An ideal transformer with identical primary and secondary windings would manifest equal voltage

and current in both sets of windings for any load condition. In a perfect world, transformers would
transfer electrical power from primary to secondary as smoothly as though the load were directly
connected to the primary power source, with no transformer there at all. However, you can see this
ideal goal can only be met if there is perfect coupling of magnetic flux between primary and secondary
windings. Being that this is impossible to achieve, transformers must be designed to operate within
certain expected ranges of voltages and loads in order to perform as close to ideal as possible. For
now, the most important thing to keep in mind is a transformer’s basic operating principle: the
transfer of power from the primary to the secondary circuit via electromagnetic coupling.

• REVIEW:

• Mutual inductance is where the magnetic flux of two or more inductors are ”linked” so that
voltage is induced in one coil proportional to the rate-of-change of current in another.

• A transformer is a device made of two or more inductors, one of which is powered by AC,
inducing an AC voltage across the second inductor. If the second inductor is connected to a
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load, power will be electromagnetically coupled from the first inductor’s power source to that
load.

• The powered inductor in a transformer is called the primary winding. The unpowered inductor
in a transformer is called the secondary winding.

• Magnetic flux in the core (Φ) lags 90o behind the source voltage waveform. The current drawn
by the primary coil from the source to produce this flux is called the magnetizing current, and
it also lags the supply voltage by 90o.

• Total primary current in an unloaded transformer is called the exciting current, and is com-
prised of magnetizing current plus any additional current necessary to overcome core losses. It
is never perfectly sinusoidal in a real transformer, but may be made more so if the transformer
is designed and operated so that magnetic flux density is kept to a minimum.

• Core flux induces a voltage in any coil wrapped around the core. The induces voltage(s) are
ideally in phase with the primary winding source voltage and share the same waveshape.

• Any current drawn through the secondary winding by a load will be ”reflected” to the primary
winding and drawn from the voltage source, as if the source were directly powering a similar
load.

9.2 Step-up and step-down transformers

So far, we’ve observed simulations of transformers where the primary and secondary windings were of
identical inductance, giving approximately equal voltage and current levels in both circuits. Equality
of voltage and current between the primary and secondary sides of a transformer, however, is not
the norm for all transformers. If the inductances of the two windings are not equal, something
interesting happens:

transformer

v1 1 0 ac 10 sin

rbogus1 1 2 1e-12

rbogus2 5 0 9e12

l1 2 0 10000

l2 3 5 100

k l1 l2 0.999

vi1 3 4 ac 0

rload 4 5 1k

.ac lin 1 60 60

.print ac v(2,0) i(v1)

.print ac v(3,5) i(vi1)

.end

freq v(2) i(v1)

6.000E+01 1.000E+01 9.975E-05 Primary winding
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freq v(3,5) i(vi1)

6.000E+01 9.962E-01 9.962E-04 Secondary winding

Notice how the secondary voltage is approximately ten times less than the primary voltage
(0.9962 volts compared to 10 volts), while the secondary current is approximately ten times greater
(0.9962 mA compared to 0.09975 mA). What we have here is a device that steps voltage down by a
factor of ten and current up by a factor of ten:

Primary
winding

Secondary
winding

10:1  primary:secondary voltage ratio

1:10  primary:secondary current ratio

This is a very useful device, indeed. With it, we can easily multiply or divide voltage and current
in AC circuits. Indeed, the transformer has made long-distance transmission of electric power a
practical reality, as AC voltage can be ”stepped up” and current ”stepped down” for reduced wire
resistance power losses along power lines connecting generating stations with loads. At either end
(both the generator and at the loads), voltage levels are reduced by transformers for safer operation
and less expensive equipment. A transformer that increases voltage from primary to secondary (more
secondary winding turns than primary winding turns) is called a step-up transformer. Conversely,
a transformer designed to do just the opposite is called a step-down transformer.
Let’s re-examine a photograph shown in the previous section:

This is a step-down transformer, as evidenced by the high turn count of the primary winding and
the low turn count of the secondary. As a step-down unit, this transformer converts high-voltage,
low-current power into low-voltage, high-current power. The larger-gauge wire used in the secondary
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winding is necessary due to the increase in current. The primary winding, which doesn’t have to
conduct as much current, may be made of smaller-gauge wire.

In case you were wondering, it is possible to operate either of these transformer types backwards
(powering the secondary winding with an AC source and letting the primary winding power a load)
to perform the opposite function: a step-up can function as a step-down and visa-versa. However,
as we saw in the first section of this chapter, efficient operation of a transformer requires that the
individual winding inductances be engineered for specific operating ranges of voltage and current,
so if a transformer is to be used ”backwards” like this it must be employed within the original
design parameters of voltage and current for each winding, lest it prove to be inefficient (or lest it
be damaged by excessive voltage or current!).

Transformers are often constructed in such a way that it is not obvious which wires lead to
the primary winding and which lead to the secondary. One convention used in the electric power
industry to help alleviate confusion is the use of ”H” designations for the higher-voltage winding
(the primary winding in a step-down unit; the secondary winding in a step-up) and ”X” designations
for the lower-voltage winding. Therefore, a simple power transformer will have wires labeled ”H1”,
”H2”, ”X1”, and ”X2”. There is usually significance to the numbering of the wires (H1 versus H2,
etc.), which we’ll explore a little later in this chapter.

The fact that voltage and current get ”stepped” in opposite directions (one up, the other down)
makes perfect sense when you recall that power is equal to voltage times current, and realize that
transformers cannot produce power, only convert it. Any device that could output more power than
it took in would violate the Law of Energy Conservation in physics, namely that energy cannot be
created or destroyed, only converted. As with the first transformer example we looked at, power
transfer efficiency is very good from the primary to the secondary sides of the device.

The practical significance of this is made more apparent when an alternative is considered: before
the advent of efficient transformers, voltage/current level conversion could only be achieved through
the use of motor/generator sets. A drawing of a motor/generator set reveals the basic principle
involved:

Motor Generator

Shaft
coupling

Power
in

Power
out

A motor/generator set

In such a machine, a motor is mechanically coupled to a generator, the generator designed to
produce the desired levels of voltage and current at the rotating speed of the motor. While both
motors and generators are fairly efficient devices, the use of both in this fashion compounds their
inefficiencies so that the overall efficiency is in the range of 90% or less. Furthermore, because
motor/generator sets obviously require moving parts, mechanical wear and balance are factors in-
fluencing both service life and performance. Transformers, on the other hand, are able to convert
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levels of AC voltage and current at very high efficiencies with no moving parts, making possible the
widespread distribution and use of electric power we take for granted.

In all fairness it should be noted that motor/generator sets have not necessarily been obsoleted
by transformers for all applications. While transformers are clearly superior over motor/generator
sets for AC voltage and current level conversion, they cannot convert one frequency of AC power
to another, or (by themselves) convert DC to AC or visa-versa. Motor/generator sets can do all
these things with relative simplicity, albeit with the limitations of efficiency and mechanical factors
already described. Motor/generator sets also have the unique property of kinetic energy storage:
that is, if the motor’s power supply is momentarily interrupted for any reason, its angular momentum
(the inertia of that rotating mass) will maintain rotation of the generator for a short duration, thus
isolating any loads powered by the generator from ”glitches” in the main power system.

Looking closely at the numbers in the SPICE analysis, we should see a correspondence between
the transformer’s ratio and the two inductances. Notice how the primary inductor (l1) has 100
times more inductance than the secondary inductor (10000 H versus 100 H), and that the measured
voltage step-down ratio was 10 to 1. The winding with more inductance will have higher voltage and
less current than the other. Since the two inductors are wound around the same core material in
the transformer (for the most efficient magnetic coupling between the two), the parameters affecting
inductance for the two coils are equal except for the number of turns in each coil. If we take another
look at our inductance formula, we see that inductance is proportional to the square of the number
of coil turns:

Where,

N = Number of turns in wire coil (straight wire = 1)

L =
N2µA

l

L =

µ =

A =

l =

Inductance of coil in Henrys

Permeability of core material (absolute, not relative)
Area of coil in square meters
Average length of coil in meters

So, it should be apparent that our two inductors in the last SPICE transformer example circuit
– with inductance ratios of 100:1 – should have coil turn ratios of 10:1, because 10 squared equals
100. This works out to be the same ratio we found between primary and secondary voltages and
currents (10:1), so we can say as a rule that the voltage and current transformation ratio is equal to
the ratio of winding turns between primary and secondary.

load
many turns few turns

high voltage
low current

low voltage
high current

Step-down transformer
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The step-up/step-down effect of coil turn ratios in a transformer is analogous to gear tooth ratios
in mechanical gear systems, transforming values of speed and torque in much the same way:

LARGE GEAR

SMALL GEAR
(many teeth)

(few teeth)

high torque
low speed

low torque
high speed

Torque reduction geartrain

Step-up and step-down transformers for power distribution purposes can be gigantic in proportion
to the power transformers previously shown, some units standing as tall as a home. The following
photograph shows a substation transformer standing about twelve feet tall:

• REVIEW:

• Transformers ”step up” or ”step down” voltage according to the ratios of primary to secondary
wire turns.

•

Voltage transformation ratio =
Nsecondary

Nprimary

Current transformation ratio =
Nprimary

Nsecondary

N = number of turns in winding

Where,
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• A transformer designed to increase voltage from primary to secondary is called a step-up
transformer. A transformer designed to reduce voltage from primary to secondary is called a
step-down transformer.

• The transformation ratio of a transformer will be equal to the square root of its primary to
secondary inductance (L) ratio.

•
Voltage transformation ratio =

Lsecondary

Lprimary

9.3 Electrical isolation

Aside from the ability to easily convert between different levels of voltage and current in AC and DC
circuits, transformers also provide an extremely useful feature called isolation, which is the ability
to couple one circuit to another without the use of direct wire connections. We can demonstrate an
application of this effect with another SPICE simulation: this time showing ”ground” connections
for the two circuits, imposing a high DC voltage between one circuit and ground through the use of
an additional voltage source:

(for SPICE to measure current)

0 V

1

0

2

0

3 4

5 5

0

Rbogus

V1 10 V L1 L2

10 kH 100 H

Vi1

Rload 1 kΩ

V2 250 V

v1 1 0 ac 10 sin

rbogus1 1 2 1e-12

v2 5 0 dc 250

l1 2 0 10000

l2 3 5 100

k l1 l2 0.999

vi1 3 4 ac 0
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rload 4 5 1k

.ac lin 1 60 60

.print ac v(2,0) i(v1)

.print ac v(3,5) i(vi1)

.end

DC voltages referenced to ground (node 0):

(1) 0.0000 (2) 0.0000 (3) 250.0000

(4) 250.0000 (5) 250.0000

AC voltages:

freq v(2) i(v1)

6.000E+01 1.000E+01 9.975E-05 Primary winding

freq v(3,5) i(vi1)

6.000E+01 9.962E-01 9.962E-04 Secondary winding

SPICE shows the 250 volts DC being impressed upon the secondary circuit elements with respect
to ground, but as you can see there is no effect on the primary circuit (zero DC voltage) at nodes
1 and 2, and the transformation of AC power from primary to secondary circuits remains the same
as before. The impressed voltage in this example is often called a common-mode voltage because
it is seen at more than one point in the circuit with reference to the common point of ground.
The transformer isolates the common-mode voltage so that it is not impressed upon the primary
circuit at all, but rather isolated to the secondary side. For the record, it does not matter that
the common-mode voltage is DC, either. It could be AC, even at a different frequency, and the
transformer would isolate it from the primary circuit all the same.

There are applications where electrical isolation is needed between two AC circuit without any
transformation of voltage or current levels. In these instances, transformers called isolation trans-
formers having 1:1 transformation ratios are used. A benchtop isolation transformer is shown in the
following photograph:

• REVIEW:
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• By being able to transfer power from one circuit to another without the use of interconnect-
ing conductors between the two circuits, transformers provide the useful feature of electrical
isolation.

• Transformers designed to provide electrical isolation without stepping voltage and current
either up or down are called isolation transformers.

9.4 Phasing

Since transformers are essentially AC devices, we need to be aware of the phase relationships be-
tween the primary and secondary circuits. Using our SPICE example from before, we can plot the
waveshapes for the primary and secondary circuits and see the phase relations for ourselves:

spice transient analysis file for use with nutmeg:

transformer

v1 1 0 sin(0 15 60 0 0)

rbogus1 1 2 1e-12

v2 5 0 dc 250

l1 2 0 10000

l2 3 5 100

k l1 l2 0.999

vi1 3 4 ac 0

rload 4 5 1k

.tran 0.5m 17m

.end

nutmeg commands:

setplot tran1

plot v(2) v(3,5)
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In going from primary, V(2), to secondary, V(3,5), the voltage was stepped down by a factor
of ten, above, and the current was stepped up by a factor of 10 below. Both current and voltage
waveforms are in phase in going from primary to secondary, below.

nutmeg commands:

setplot tran1

plot I(L1#branch) I(L2#branch)
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It would appear that both voltage and current for the two transformer windings are in phase
with each other, at least for our resistive load. This is simple enough, but it would be nice to
know which way we should connect a transformer in order to ensure the proper phase relationships
be kept. After all, a transformer is nothing more than a set of magnetically-linked inductors, and
inductors don’t usually come with polarity markings of any kind. If we were to look at an unmarked
transformer, we would have no way of knowing which way to hook it up to a circuit to get in-phase
(or 180o out-of-phase) voltage and current:

+

-

+

- +

-

or ???

Since this is a practical concern, transformer manufacturers have come up with a sort of polarity
marking standard to denote phase relationships. It is called the dot convention, and is nothing more
than a dot placed next to each corresponding leg of a transformer winding:
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Typically, the transformer will come with some kind of schematic diagram labeling the wire leads
for primary and secondary windings. On the diagram will be a pair of dots similar to what is seen
above. Sometimes dots will be omitted, but when ”H” and ”X” labels are used to label transformer
winding wires, the subscript numbers are supposed to represent winding polarity. The ”1” wires (H1

and X1) represent where the polarity-marking dots would normally be placed.
The similar placement of these dots next to the top ends of the primary and secondary windings

tells us that whatever instantaneous voltage polarity seen across the primary winding will be the
same as that across the secondary winding. In other words, the phase shift from primary to secondary
will be zero degrees.
On the other hand, if the dots on each winding of the transformer do not match up, the phase

shift will be 180o between primary and secondary, like this:

Of course, the dot convention only tells you which end of each winding is which, relative to the
other winding(s). If you want to reverse the phase relationship yourself, all you have to do is swap
the winding connections like this:

• REVIEW:

• The phase relationships for voltage and current between primary and secondary circuits of a
transformer are direct: ideally, zero phase shift.
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• The dot convention is a type of polarity marking for transformer windings showing which end
of the winding is which, relative to the other windings.

9.5 Winding configurations

Transformers are very versatile devices. The basic concept of energy transfer between mutual in-
ductors is useful enough between a single primary and single secondary coil, but transformers don’t
have to be made with just two sets of windings. Consider this transformer circuit:

load #1

load #2

Here, three inductor coils share a common magnetic core, magnetically ”coupling” or ”linking”
them together. The relationship of winding turn ratios and voltage ratios seen with a single pair of
mutual inductors still holds true here for multiple pairs of coils. It is entirely possible to assemble
a transformer such as the one above (one primary winding, two secondary windings) in which one
secondary winding is a step-down and the other is a step-up. In fact, this design of transformer
was quite common in vacuum tube power supply circuits, which were required to supply low voltage
for the tubes’ filaments (typically 6 or 12 volts) and high voltage for the tubes’ plates (several
hundred volts) from a nominal primary voltage of 110 volts AC. Not only are voltages and currents
of completely different magnitudes possible with such a transformer, but all circuits are electrically
isolated from one another.

A photograph of a multiple-winding transformer is shown here:

This particular transformer is intended to provide both high and low voltages necessary in an
electronic system using vacuum tubes. Low voltage is required to power the filaments of vacuum
tubes, while high voltage is required to create the potential difference between the plate and cathode
elements of each tube. One transformer with multiple windings suffices elegantly to provide all the
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necessary voltage levels from a single 115 V source. The wires for this transformer (15 of them!) are
not shown in the photograph, being hidden from view.

If electrical isolation between secondary circuits is not of great importance, a similar effect can
be obtained by ”tapping” a single secondary winding at multiple points along its length, like this:

load #1

load #2

A tap is nothing more than a wire connection made at some point on a winding between the very
ends. Not surprisingly, the winding turn/voltage magnitude relationship of a normal transformer
holds true for all tapped segments of windings. This fact can be exploited to produce a transformer
capable of multiple ratios:

load

multi-pole
switch

Carrying the concept of winding taps further, we end up with a ”variable transformer,” where a
sliding contact is moved along the length of an exposed secondary winding, able to connect with it
at any point along its length. The effect is equivalent to having a winding tap at every turn of the
winding, and a switch with poles at every tap position:
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load

Variable transformer

One consumer application of the variable transformer is in speed controls for model train sets,
especially the train sets of the 1950’s and 1960’s. These transformers were essentially step-down
units, the highest voltage obtainable from the secondary winding being substantially less than the
primary voltage of 110 to 120 volts AC. The variable-sweep contact provided a simple means of
voltage control with little wasted power, much more efficient than control using a variable resistor!

Moving-slide contacts are too impractical to be used in large industrial power transformer designs,
but multi-pole switches and winding taps are common for voltage adjustment. Adjustments need
to be made periodically in power systems to accommodate changes in loads over months or years
in time, and these switching circuits provide a convenient means. Typically, such ”tap switches”
are not engineered to handle full-load current, but must be actuated only when the transformer has
been de-energized (no power).

Seeing as how we can tap any transformer winding to obtain the equivalent of several windings
(albeit with loss of electrical isolation between them), it makes sense that it should be possible to
forego electrical isolation altogether and build a transformer from a single winding. Indeed this is
possible, and the resulting device is called an autotransformer :

load

Autotransformer

The autotransformer depicted above performs a voltage step-up function. A step-down auto-
transformer would look something like this:
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load

Autotransformer

Autotransformers find popular use in applications requiring a slight boost or reduction in voltage
to a load. The alternative with a normal (isolated) transformer would be to either have just the
right primary/secondary winding ratio made for the job or use a step-down configuration with the
secondary winding connected in series-aiding (”boosting”) or series-opposing (”bucking”) fashion.
Primary, secondary, and load voltages are given to illustrate how this would work.

First, the ”boosting” configuration. Here, the secondary coil’s polarity is oriented so that its
voltage directly adds to the primary voltage:

"boosting"

120 V 30 V 150 V

Next, the ”bucking” configuration. Here, the secondary coil’s polarity is oriented so that its
voltage directly subtracts from the primary voltage:

"bucking"

120 V 30 V 90 V

The prime advantage of an autotransformer is that the same boosting or bucking function is
obtained with only a single winding, making it cheaper and lighter to manufacture than a regular
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(isolating) transformer having both primary and secondary windings.

Like regular transformers, autotransformer windings can be tapped to provide variations in ratio.
Additionally, they can be made continuously variable with a sliding contact to tap the winding at
any point along its length. The latter configuration is popular enough to have earned itself its own
name: the Variac.

load

The "Variac"
variable autotransformer

Small variacs for benchtop use are popular pieces of equipment for the electronics experimenter,
being able to step household AC voltage down (or sometimes up as well) with a wide, fine range of
control by a simple twist of a knob.

• REVIEW:

• Transformers can be equipped with more than just a single primary and single secondary
winding pair. This allows for multiple step-up and/or step-down ratios in the same device.

• Transformer windings can also be ”tapped:” that is, intersected at many points to segment a
single winding into sections.

• Variable transformers can be made by providing a movable arm that sweeps across the length
of a winding, making contact with the winding at any point along its length. The winding, of
course, has to be bare (no insulation) in the area where the arm sweeps.

• An autotransformer is a single, tapped inductor coil used to step up or step down voltage like
a transformer, except without providing electrical isolation.

• A Variac is a variable autotransformer.

9.6 Voltage regulation

As we saw in a few SPICE analyses earlier in this chapter, the output voltage of a transformer varies
some with varying load resistances, even with a constant voltage input. The degree of variance is
affected by the primary and secondary winding inductances, among other factors, not the least of
which includes winding resistance and the degree of mutual inductance (magnetic coupling) between
the primary and secondary windings. For power transformer applications, where the transformer is
seen by the load (ideally) as a constant source of voltage, it is good to have the secondary voltage
vary as little as possible for wide variances in load current.
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The measure of how well a power transformer maintains constant secondary voltage over a range
of load currents is called the transformer’s voltage regulation. It can be calculated from the following
formula:

Regulation percentage =
Eno-load - Efull-load

Efull-load

(100%)

”Full-load” means the point at which the transformer is operating at maximum permissible
secondary current. This operating point will be determined primarily by the winding wire size
(ampacity) and the method of transformer cooling. Taking our first SPICE transformer simulation
as an example, let’s compare the output voltage with a 1 kΩ load versus a 200 Ω load (assuming
that the 200 Ω load will be our ”full load” condition). Recall if you will that our constant primary
voltage was 10.00 volts AC:

freq v(3,5) i(vi1)

6.000E+01 9.962E+00 9.962E-03 Output with 1k ohm load

freq v(3,5) i(vi1)

6.000E+01 9.348E+00 4.674E-02 Output with 200 ohm load

Notice how the output voltage decreases as the load gets heavier (more current). Now let’s take
that same transformer circuit and place a load resistance of extremely high magnitude across the
secondary winding to simulate a ”no-load” condition:

transformer

v1 1 0 ac 10 sin

rbogus1 1 2 1e-12

rbogus2 5 0 9e12

l1 2 0 100

l2 3 5 100

k l1 l2 0.999

vi1 3 4 ac 0

rload 4 5 9e12

.ac lin 1 60 60

.print ac v(2,0) i(v1)

.print ac v(3,5) i(vi1)

.end

freq v(2) i(v1)

6.000E+01 1.000E+01 2.653E-04

freq v(3,5) i(vi1)

6.000E+01 9.990E+00 1.110E-12 Output with (almost) no load

So, we see that our output (secondary) voltage spans a range of 9.990 volts at (virtually) no load
and 9.348 volts at the point we decided to call ”full load.” Calculating voltage regulation with these
figures, we get:
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Regulation percentage = (100%)
9.990 V - 9.348 V

9.990 V

Regulation percentage = 6.4264 %

Incidentally, this would be considered rather poor (or ”loose”) regulation for a power transformer.
Powering a simple resistive load like this, a good power transformer should exhibit a regulation
percentage of less than 3%. Inductive loads tend to create a condition of worse voltage regulation,
so this analysis with purely resistive loads was a ”best-case” condition.

There are some applications, however, where poor regulation is actually desired. One such case
is in discharge lighting, where a step-up transformer is required to initially generate a high voltage
(necessary to ”ignite” the lamps), then the voltage is expected to drop off once the lamp begins to
draw current. This is because discharge lamps’ voltage requirements tend to be much lower after a
current has been established through the arc path. In this case, a step-up transformer with poor
voltage regulation suffices nicely for the task of conditioning power to the lamp.

Another application is in current control for AC arc welders, which are nothing more than
step-down transformers supplying low-voltage, high-current power for the welding process. A high
voltage is desired to assist in ”striking” the arc (getting it started), but like the discharge lamp, an
arc doesn’t require as much voltage to sustain itself once the air has been heated to the point of
ionization. Thus, a decrease of secondary voltage under high load current would be a good thing.
Some arc welder designs provide arc current adjustment by means of a movable iron core in the
transformer, cranked in or out of the winding assembly by the operator. Moving the iron slug away
from the windings reduces the strength of magnetic coupling between the windings, which diminishes
no-load secondary voltage and makes for poorer voltage regulation.

No exposition on transformer regulation could be called complete without mention of an unusual
device called a ferroresonant transformer. ”Ferroresonance” is a phenomenon associated with the
behavior of iron cores while operating near a point of magnetic saturation (where the core is so
strongly magnetized that further increases in winding current results in little or no increase in
magnetic flux).

While being somewhat difficult to describe without going deep into electromagnetic theory, the
ferroresonant transformer is a power transformer engineered to operate in a condition of persistent
core saturation. That is, its iron core is ”stuffed full” of magnetic lines of flux for a large portion
of the AC cycle so that variations in supply voltage (primary winding current) have little effect
on the core’s magnetic flux density, which means the secondary winding outputs a nearly constant
voltage despite significant variations in supply (primary winding) voltage. Normally, core saturation
in a transformer results in distortion of the sinewave shape, and the ferroresonant transformer is
no exception. To combat this side effect, ferroresonant transformers have an auxiliary secondary
winding paralleled with one or more capacitors, forming a resonant circuit tuned to the power supply
frequency. This ”tank circuit” serves as a filter to reject harmonics created by the core saturation,
and provides the added benefit of storing energy in the form of AC oscillations, which is available
for sustaining output winding voltage for brief periods of input voltage loss (milliseconds’ worth of
time, but certainly better than nothing).
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Ferroresonant transformer

AC power
input

AC power
output

Resonant LC circuit

In addition to blocking harmonics created by the saturated core, this resonant circuit also ”filters
out” harmonic frequencies generated by nonlinear (switching) loads in the secondary winding circuit
and any harmonics present in the source voltage, providing ”clean” power to the load.

Ferroresonant transformers offer several features useful in AC power conditioning: constant out-
put voltage given substantial variations in input voltage, harmonic filtering between the power source
and the load, and the ability to ”ride through” brief losses in power by keeping a reserve of energy in
its resonant tank circuit. These transformers are also highly tolerant of excessive loading and tran-
sient (momentary) voltage surges. They are so tolerant, in fact, that some may be briefly paralleled
with unsynchronized AC power sources, allowing a load to be switched from one source of power to
another in a ”make-before-break” fashion with no interruption of power on the secondary side!

Unfortunately, these devices have equally noteworthy disadvantages: they waste a lot of energy
(due to hysteresis losses in the saturated core), generating significant heat in the process, and
are intolerant of frequency variations, which means they don’t work very well when powered by
small engine-driven generators having poor speed regulation. Voltages produced in the resonant
winding/capacitor circuit tend to be very high, necessitating expensive capacitors and presenting the
service technician with very dangerous working voltages. Some applications, though, may prioritize
the ferroresonant transformer’s advantages over its disadvantages. Semiconductor circuits exist to
”condition” AC power as an alternative to ferroresonant devices, but none can compete with this
transformer in terms of sheer simplicity.

• REVIEW:

• Voltage regulation is the measure of how well a power transformer can maintain constant
secondary voltage given a constant primary voltage and wide variance in load current. The
lower the percentage (closer to zero), the more stable the secondary voltage and the better the
regulation it will provide.

• A ferroresonant transformer is a special transformer designed to regulate voltage at a stable
level despite wide variation in input voltage.
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9.7 Special transformers and applications

9.7.1 Impedance matching

Because transformers can step voltage and current to different levels, and because power is trans-
ferred equivalently between primary and secondary windings, they can be used to ”convert” the
impedance of a load to a different level. That last phrase deserves some explanation, so let’s inves-
tigate what it means.

The purpose of a load (usually) is to do something productive with the power it dissipates. In
the case of a resistive heating element, the practical purpose for the power dissipated is to heat
something up. Loads are engineered to safely dissipate a certain maximum amount of power, but
two loads of equal power rating are not necessarily identical. Consider these two 1000 watt resistive
heating elements:

250 V

I = 4 A

62.5 ΩRload
Pload = 1000 W

125 V

I = 8 A

15.625 ΩRload

Pload = 1000 W

Both heaters dissipate exactly 1000 watts of power, but they do so at different voltage and current
levels (either 250 volts and 4 amps, or 125 volts and 8 amps). Using Ohm’s Law to determine the
necessary resistance of these heating elements (R=E/I), we arrive at figures of 62.5 Ω and 15.625
Ω, respectively. If these are AC loads, we might refer to their opposition to current in terms of
impedance rather than plain resistance, although in this case that’s all they’re composed of (no
reactance). The 250 volt heater would be said to be a higher impedance load than the 125 volt
heater.

If we desired to operate the 250 volt heater element directly on a 125 volt power system, we
would end up being disappointed. With 62.5 Ω of impedance (resistance), the current would only
be 2 amps (I=E/R; 125/62.5), and the power dissipation would only be 250 watts (P=IE; 125 x 2),
or one-quarter of its rated power. The impedance of the heater and the voltage of our source would
be mismatched, and we couldn’t obtain the full rated power dissipation from the heater.

All hope is not lost, though. With a step-up transformer, we could operate the 250 volt heater
element on the 125 volt power system like this:
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1000 watts dissipation at the load resistor

125 V
I = 8 A

I = 4 A

250 V
62.5 Ω
Rload

!

The ratio of the transformer’s windings provides the voltage step-up and current step-down we
need for the otherwise mismatched load to operate properly on this system. Take a close look at
the primary circuit figures: 125 volts at 8 amps. As far as the power supply ”knows,” it’s powering
a 15.625 Ω (R=E/I) load at 125 volts, not a 62.5 Ω load! The voltage and current figures for the
primary winding are indicative of 15.625 Ω load impedance, not the actual 62.5 Ω of the load itself.
In other words, not only has our step-up transformer transformed voltage and current, but it has
transformed impedance as well.

The transformation ratio of impedance is the square of the voltage/current transformation ratio,
the same as the winding inductance ratio:

Voltage transformation ratio =
Nsecondary

Nprimary

Current transformation ratio =
Nprimary

Nsecondary

N = number of turns in winding

Where,

Impedance transformation ratio =
Nprimary

Nsecondary

2

Inductance ratio =
Nsecondary

Nprimary

2

This concurs with our example of the 2:1 step-up transformer and the impedance ratio of 62.5 Ω
to 15.625 Ω (a 4:1 ratio, which is 2:1 squared). Impedance transformation is a highly useful ability
of transformers, for it allows a load to dissipate its full rated power even if the power system is not
at the proper voltage to directly do so.

Recall from our study of network analysis the Maximum Power Transfer Theorem, which states
that the maximum amount of power will be dissipated by a load resistance when that load resistance
is equal to the Thevenin/Norton resistance of the network supplying the power. Substitute the word
”impedance” for ”resistance” in that definition and you have the AC version of that Theorem. If
we’re trying to obtain theoretical maximum power dissipation from a load, we must be able to
properly match the load impedance and source (Thevenin/Norton) impedance together. This is
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generally more of a concern in specialized electric circuits such as radio transmitter/antenna and
audio amplifier/speaker systems. Let’s take an audio amplifier system and see how it works:

Speaker
Audio amplifier

Thevenin/Norton
Z = 500 Ω

Z = 8 Ω

Speaker
Z = 8 Ω

ZThevenin

EThevenin

. . . equivalent to . . .

500 Ω

With an internal impedance of 500 Ω, the amplifier can only deliver full power to a load (speaker)
also having 500 Ω of impedance. Such a load would drop higher voltage and draw less current than
an 8 Ω speaker dissipating the same amount of power. If an 8 Ω speaker were connected directly to
the 500 Ω amplifier as shown, the impedance mismatch would result in very poor (low peak power)
performance. Additionally, the amplifier would tend to dissipate more than its fair share of power
in the form of heat trying to drive the low impedance speaker.
To make this system work better, we can use a transformer to match these mismatched impedances.

Since we’re going from a high impedance (high voltage, low current) supply to a low impedance (low
voltage, high current) load, we’ll need to use a step-down transformer:

Speaker
Audio amplifier

Thevenin/Norton

"matching"
transformer

impedance

impedance ratio = 500 : 8
winding ratio = 7.906 : 1

Z = 500 Ω
Z = 8 Ω

To obtain an impedance transformation ratio of 500:8, we would need a winding ratio equal to
the square root of 500:8 (the square root of 62.5:1, or 7.906:1). With such a transformer in place,
the speaker will load the amplifier to just the right degree, drawing power at the correct voltage
and current levels to satisfy the Maximum Power Transfer Theorem and make for the most efficient
power delivery to the load. The use of a transformer in this capacity is called impedance matching.
Anyone who has ridden a multi-speed bicycle can intuitively understand the principle of impedance

matching. A human’s legs will produce maximum power when spinning the bicycle crank at a partic-
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ular speed (about 60 to 90 revolution per minute). Above or below that rotational speed, human leg
muscles are less efficient at generating power. The purpose of the bicycle’s ”gears” is to impedance-
match the rider’s legs to the riding conditions so that they always spin the crank at the optimum
speed.

If the rider attempts to start moving while the bicycle is shifted into its ”top” gear, he or she
will find it very difficult to get moving. Is it because the rider is weak? No, it’s because the high
step-up ratio of the bicycle’s chain and sprockets in that top gear presents a mismatch between the
conditions (lots of inertia to overcome) and their legs (needing to spin at 60-90 RPM for maximum
power output). On the other hand, selecting a gear that is too low will enable the rider to get
moving immediately, but limit the top speed they will be able to attain. Again, is the lack of speed
an indication of weakness in the bicyclist’s legs? No, it’s because the lower speed ratio of the selected
gear creates another type of mismatch between the conditions (low load) and the rider’s legs (losing
power if spinning faster than 90 RPM). It is much the same with electric power sources and loads:
there must be an impedance match for maximum system efficiency. In AC circuits, transformers
perform the same matching function as the sprockets and chain (”gears”) on a bicycle to match
otherwise mismatched sources and loads.

Impedance matching transformers are not fundamentally different from any other type of trans-
former in construction or appearance. A small impedance-matching transformer (about two cen-
timeters in width) for audio-frequency applications is shown in the following photograph:

Another impedance-matching transformer can be seen on this printed circuit board, in the upper
right corner, to the immediate left of resistors R2 and R1. It is labeled ”T1”:
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9.7.2 Potential transformers

Transformers can also be used in electrical instrumentation systems. Due to transformers’ ability
to step up or step down voltage and current, and the electrical isolation they provide, they can
serve as a way of connecting electrical instrumentation to high-voltage, high current power systems.
Suppose we wanted to accurately measure the voltage of a 13.8 kV power system (a very common
power distribution voltage in American industry):

loadhigh-voltage
power source 13.8 kV

Designing, installing, and maintaining a voltmeter capable of directly measuring 13,800 volts AC
would be no easy task. The safety hazard alone of bringing 13.8 kV conductors into an instrument
panel would be severe, not to mention the design of the voltmeter itself. However, by using a
precision step-down transformer, we can reduce the 13.8 kV down to a safe level of voltage at a
constant ratio, and isolate it from the instrument connections, adding an additional level of safety
to the metering system:
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loadhigh-voltage
power source

fusefuse

V

precision
step-down

ratio
PT

grounded for
safety

Instrument application: the "Potential Transformer"

13.8 kV

0-120 VAC voltmeter range

Now the voltmeter reads a precise fraction, or ratio, of the actual system voltage, its scale set to
read as though it were measuring the voltage directly. The transformer keeps the instrument voltage
at a safe level and electrically isolates it from the power system, so there is no direct connection
between the power lines and the instrument or instrument wiring. When used in this capacity, the
transformer is called a Potential Transformer, or simply PT.

Potential transformers are designed to provide as accurate a voltage step-down ratio as possible.
To aid in precise voltage regulation, loading is kept to a minimum: the voltmeter is made to have
high input impedance so as to draw as little current from the PT as possible. As you can see, a fuse
has been connected in series with the PTs primary winding, for safety and ease of disconnecting the
PT from the circuit.

A standard secondary voltage for a PT is 120 volts AC, for full-rated power line voltage. The
standard voltmeter range to accompany a PT is 150 volts, full-scale. PTs with custom winding ratios
can be manufactured to suit any application. This lends itself well to industry standardization of
the actual voltmeter instruments themselves, since the PT will be sized to step the system voltage
down to this standard instrument level.

9.7.3 Current transformers

Following the same line of thinking, we can use a transformer to step down current through a power
line so that we are able to safely and easily measure high system currents with inexpensive ammeters.
Of course, such a transformer would be connected in series with the power line, like this:
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load

fusefuse

V

precision
step-down

ratio
PT

grounded for
safety

13.8 kV

0-120 VAC voltmeter range

Instrument application: the "Current Transformer"

A
grounded for

safety
0-5 A ammeter range

CT

Note that while the PT is a step-down device, the Current Transformer (or CT ) is a step-up
device (with respect to voltage), which is what is needed to step down the power line current. Quite
often, CTs are built as donut-shaped devices through which the power line conductor is run, the
power line itself acting as a single-turn primary winding:

Some CTs are made to hinge open, allowing insertion around a power conductor without dis-
turbing the conductor at all. The industry standard secondary current for a CT is a range of 0 to
5 amps AC. Like PTs, CTs can be made with custom winding ratios to fit almost any application.
Because their ”full load” secondary current is 5 amps, CT ratios are usually described in terms of
full-load primary amps to 5 amps, like this:

600 : 5 ratio  (for measuring up to 600 A line current)

100 : 5 ratio   (for measuring up to 100 A line current)

1k : 5 ratio   (for measuring up to 1000 A line current)
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The ”donut” CT shown in the photograph has a ratio of 50:5. That is, when the conductor
through the center of the torus is carrying 50 amps of current (AC), there will be 5 amps of current
induced in the CT’s winding.

Because CTs are designed to be powering ammeters, which are low-impedance loads, and they
are wound as voltage step-up transformers, they should never, ever be operated with an open-
circuited secondary winding. Failure to heed this warning will result in the CT producing extremely
high secondary voltages, dangerous to equipment and personnel alike. To facilitate maintenance
of ammeter instrumentation, short-circuiting switches are often installed in parallel with the CT’s
secondary winding, to be closed whenever the ammeter is removed for service:

power conductor current

CT

close switch BEFORE
disconnecting ammeter!

ground connection
(for safety)

0-5 A meter movement range

Though it may seem strange to intentionally short-circuit a power system component, it is
perfectly proper and quite necessary when working with current transformers.

9.7.4 Air core transformers

Another kind of special transformer, seen often in radio-frequency circuits, is the air core trans-
former. True to its name, an air core transformer has its windings wrapped around a nonmagnetic
form, usually a hollow tube of some material. The degree of coupling (mutual inductance) between
windings in such a transformer is many times less than that of an equivalent iron-core transformer,
but the undesirable characteristics of a ferromagnetic core (eddy current losses, hysteresis, satura-
tion, etc.) are completely eliminated. It is in high-frequency applications that these effects of iron
cores are most problematic.

bifilar windings
dual winding with 
center tap
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The inside tapped solenoid winding, above left, without the over winding, could match unequal
impedances when DC isolation is not required. When isolation is required the over winding is added
over one end of the main winding. Air core transformers are used at radio frequencies when iron
core losses are too high. Frequently air core transformers are paralleled with a capacitor to tune
it to resonance. The over winding is connected beween a radio antenna and ground for one such
application. The secondary is tuned to resonance with a variable capacitor. The output may be
taken from the tap point for amplification or detction. Small millimeter size air core transformer
are used in radio receivers. The largest radio transmitters may use meter sized coils. Unshielded air
core solenoid transformers are mounted at right angles to each other to prevent stray coupling.

Stray coupling is minimized when the transformer is wound on a toroid form, above right.
Toroidal air core transformers also show a higher degree of coupling, particularly for bifilar windings.
Bifilar windings are wound from a slightly twisted pair of wires. This implies a 1:1 turns ratio.
Three or four wires may be grouped for 1:2 and other integral ratios. Windings do not have to be
bifilar. This allows arbitrary turns ratios. However, the degree of coupling suffers. Toroidal air core
transformers are rare except for VHF (Vary High Frequency) work. Core materials other than air
such as powdered iron or ferrite are prefered for lower radio frequencies.

9.7.5 Tesla Coil

One notable example of an air-core transformer is the Tesla Coil, named after the Serbian electrical
genius Nikola Tesla, who was also the inventor of the rotating magnetic field AC motor, polyphase
AC power systems, and many elements of radio technology. The Tesla Coil is a resonant, high-
frequency step-up transformer used to produce extremely high voltages. One of Tesla’s dreams
was to employ his coil technology to distribute electric power without the need for wires, simply
broadcasting it in the form of radio waves which could be received and conducted to loads by means
of antennas. The basic schematic for a Tesla Coil looks like this:

discharge terminal

"Tesla Coil"

The capacitor, in conjunction with the transformer’s primary winding, forms a tank circuit. The
secondary winding is wound in close proximity to the primary, usually around the same nonmagnetic
form. Several options exist for ”exciting” the primary circuit, the simplest being a high-voltage, low-
frequency AC source and spark gap:
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spark gaphigh voltage
low frequency

HIGH voltage!
HIGH frequency!

RFC

RFC

The purpose of the high-voltage, low-frequency AC power source is to ”charge” the primary tank
circuit. When the spark gap fires, its low impedance acts to complete the capacitor/primary coil
tank circuit, allowing it to oscillate at its resonant frequency. The ”RFC” inductors are ”Radio
Frequency Chokes,” which act as high impedances to prevent the AC source from interfering with
the oscillating tank circuit.

The secondary side of the Tesla coil transformer is also a tank circuit, relying on the parasitic
(stray) capacitance existing between the discharge terminal and earth ground to complement the
secondary winding’s inductance. For optimum operation, this secondary tank circuit is tuned to the
same resonant frequency as the primary circuit, with energy exchanged not only between capacitors
and inductors during resonant oscillation, but also back-and-forth between primary and secondary
windings. The visual results are spectacular:
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Tesla Coils find application primarily as novelty devices, showing up in high school science fairs,
basement workshops, and the occasional low budget science-fiction movie.
It should be noted that Tesla coils can be extremely dangerous devices. Burns caused by radio-

frequency (”RF”) current, like all electrical burns, can be very deep, unlike skin burns caused by
contact with hot objects or flames. Although the high-frequency discharge of a Tesla coil has the
curious property of being beyond the ”shock perception” frequency of the human nervous system,
this does not mean Tesla coils cannot hurt or even kill you! I strongly advise seeking the assistance
of an experienced Tesla coil experimenter if you would embark on building one yourself.

9.7.6 Saturable reactors

So far, we’ve explored the transformer as a device for converting different levels of voltage, current,
and even impedance from one circuit to another. Now we’ll take a look at it as a completely different
kind of device: one that allows a small electrical signal to exert control over a much larger quantity
of electrical power. In this mode, a transformer acts as an amplifier.
The device I’m referring to is called a saturable-core reactor, or simply saturable reactor. Ac-

tually, it is not really a transformer at all, but rather a special kind of inductor whose inductance
can be varied by the application of a DC current through a second winding wound around the
same iron core. Like the ferroresonant transformer, the saturable reactor relies on the principle of
magnetic saturation. When a material such as iron is completely saturated (that is, all its magnetic
domains are lined up with the applied magnetizing force), additional increases in current through
the magnetizing winding will not result in further increases of magnetic flux.
Now, inductance is the measure of how well an inductor opposes changes in current by developing

a voltage in an opposing direction. The ability of an inductor to generate this opposing voltage is
directly connected with the change in magnetic flux inside the inductor resulting from the change
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in current, and the number of winding turns in the inductor. If an inductor has a saturated core, no
further magnetic flux will result from further increases in current, and so there will be no voltage
induced in opposition to the change in current. In other words, an inductor loses its inductance
(ability to oppose changes in current) when its core becomes magnetically saturated.
If an inductor’s inductance changes, then its reactance (and impedance) to AC current changes

as well. In a circuit with a constant voltage source, this will result in a change in current:

load

L

I

If L changes in inductance,
ZL will correspondingly
change, thus changing the
circuit current.
A saturable reactor capitalizes on this effect by forcing the core into a state of saturation with a

strong magnetic field generated by current through another winding. The reactor’s ”power” winding
is the one carrying the AC load current, and the ”control” winding is one carrying a DC current
strong enough to drive the core into saturation:

load

saturable reactor

I

The strange-looking transformer symbol shown in the above schematic represents a saturable-
core reactor, the upper winding being the DC control winding and the lower being the ”power”
winding through which the controlled AC current goes. Increased DC control current produces
more magnetic flux in the reactor core, driving it closer to a condition of saturation, thus decreasing
the power winding’s inductance, decreasing its impedance, and increasing current to the load. Thus,
the DC control current is able to exert control over the AC current delivered to the load.
The circuit shown would work, but it would not work very well. The first problem is the natural

transformer action of the saturable reactor: AC current through the power winding will induce a
voltage in the control winding, which may cause trouble for the DC power source. Also, saturable
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reactors tend to regulate AC power only in one direction: in one half of the AC cycle, the mmf’s
from both windings add; in the other half, they subtract. Thus, the core will have more flux in it
during one half of the AC cycle than the other, and will saturate first in that cycle half, passing load
current more easily in one direction than the other. Fortunately, both problems can be overcome
with a little ingenuity:

load

I

Notice the placement of the phasing dots on the two reactors: the power windings are ”in phase”
while the control windings are ”out of phase.” If both reactors are identical, any voltage induced
in the control windings by load current through the power windings will cancel out to zero at the
battery terminals, thus eliminating the first problem mentioned. Furthermore, since the DC control
current through both reactors produces magnetic fluxes in different directions through the reactor
cores, one reactor will saturate more in one cycle of the AC power while the other reactor will
saturate more in the other, thus equalizing the control action through each half-cycle so that the
AC power is ”throttled” symmetrically. This phasing of control windings can be accomplished with
two separate reactors as shown, or in a single reactor design with intelligent layout of the windings
and core.

Saturable reactor technology has even been miniaturized to the circuit-board level in compact
packages more generally known as magnetic amplifiers. I personally find this to be fascinating:
the effect of amplification (one electrical signal controlling another), normally requiring the use of
physically fragile vacuum tubes or electrically ”fragile” semiconductor devices, can be realized in a
device both physically and electrically rugged. Magnetic amplifiers do have disadvantages over their
more fragile counterparts, namely size, weight, nonlinearity, and bandwidth (frequency response),
but their utter simplicity still commands a certain degree of appreciation, if not practical application.

Saturable-core reactors are less commonly known as ”saturable-core inductors” or transductors.

9.7.7 Scott-T transformer

Nikola Tesla’s original polyphase power system was based on simple to build 2-phase components.
However, as transmission distances increased, the more transmission line efficient 3-phase system
became more prominent. Both 2-φ and 3-φ components coexisted for a number of years. The
Scott-T transformer connection allowed 2-φ and 3-φ components like motors and alternators to be
interconnected. Yamamoto and Yamaguchi in IEEE Power Engineering report:
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In 1896, General Electric built a 35.5 km (22 mi) three-phase transmission line oper-
ated at 11 kV to transmit power to Buffalo, New York, from the Niagara Falls Project.
The two-phase generated power was changed to three-phase by the use of Scott-T trans-
formations.

Y3Y2

Y1
R3

R2 R1

R4

86.6%
tap

2-phase1 = V∠0°
Scott-T transformer converts 3-φ to 2−φ

T1

T2

3-phase23 = V∠0°
3-phase31 = V∠120°
3-phase12 = V∠240°

2-phase2 = V∠90°

50% tap

The Scott-T transformer set, above, consists of a center tapped transformer T1 and an 86.6%
tapped transformer T2 on the 3-φ side of the circuit. The primaries of both transformers are
connected to the 2-φ voltages. One end of the T2 86.6% secondary winding is a 3-φ output, the
other end is connected to the T1 secondary center tap. Both ends of the T1 secondary are the other
two 3-φ connections.

Application of 2-φ Niagara generator power produced a 3-φ output for the more efficient 3-φ
transmission line. More common these days is the application of 3-φ power to produce a 2-φ output
for driving an old 2-φ motor.

Below we use vectors in both polar and complex notation to prove that the Scott-T converts a
pair of 2-φ voltages to 3-φ. First, one of the 3-φ voltages is identical to a 2-φ voltage due to the 1:1
transformer T1 ratio, VP12= V2P1. The T1 center tapped secondary produces opposite polarities of
0.5V2P1 on the secondary ends. This 6 0

o is vectorially subtracted from T2 secondary voltage due to
the KVL equations V31, V23. The T2 secondary voltage is 0.866V2P2 due to the 86.6% tap. Keep
in mind that this 2nd phase of the 2-φ is 6 90o. This 0.866V2P2 is added at V31, subtracted at V23

in the KVL equations.
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Y1Y2

Y3

R3

R2 R1

R4

86.6%

Scott-T transformer 2-φ to 3−φ conversion equations

T1

T2

Given two 90° phased voltages:

V2P2 =Vsin(θ+90°)=Vcos(θ)=V∠90°=V(0+j1)
V2P1 =Vsin(θ+0°)=V∠0°=V(1+j0)

V2P2

V2P1

V12=V2P1 =Vsin(θ+0°)=V∠0°=V(1+j0)
Derive the three phase voltages V12 , V32 , V13 :

- +

--

--

+

+

+

+

+
− +

−

+−

V23 =(-0.5)V∠0°-0.866V∠90°=V(-0.5(1+j0)-0.866(0+j1))=V(-0.5+-j0.866)=V∠−120°=V∠240°
V31 = (-0.5)V∠0°+0.866V∠90°=V(-0.5(1+j0)+0.866(0+j1))=V(-0.5+j0.866)=V∠120°
V12 = V2P1 = V∠0° 

+
−

+−

V12

V31

V23

A

B

C

D

(3) KVL: -V23 = -VDB - VBA = 0
(2) KVL: -V31 -VCB +VBD = 0
(1) KVL: -V12 +VAC = 0

(3) KVL:  V23 = -VDB - VBA

(2) KVL:  V31 = -VCB +VBD

(1) KVL:  V12 = VAC

 VDB = 0.866V2P2 = 0.866V∠90° = 0.866V(0+j1)

 VCB = VBA = 0.5V2P1 = 0.5V∠0° = 0.5V(1+j0)

50%

We show ”DC” polarities all over this AC only circuit, to keep track of the Kirchhoff voltage
loop polarities. Subtracting 6 0o is equivalent to adding 6 180o. The bottom line is when we add
86.6% of 6 90o to 50% of 6 180o we get 6 120o. Subtracting 86.6% of 6 90o from 50% of 6 180o yields
6 -120o or 6 240o.

0.866V∠90°

-0.5∠0°

-0.866V∠90°

1∠90°

1∠0°

1∠120°

1∠240°

1∠0°, 1∠90° yields 1∠−120° ,1∠240°

a b c

-0.5∠0°

Above we graphically show the 2-φ vectors at (a). At (b) the vectors are scaled by transformers
T1 and T2 to 0.5 and 0.866 respectively. At (c) 1 6 120o = -0.5 6 0o + 0.866 6 90o, and 1 6 240o =
-0.5 6 0o - 0.866 6 90o.

9.7.8 Linear Variable Differential Transformer

A linear variable differential transformer (LVDT) has an AC driven primary wound between two
secondaries on a cylindrical air core form. A movable ferromagnetic slug converts displacement to
a variable voltage by changing the coupling between the driven primary and secondary windings.
The LVDT is a displacement or distance measuring transducer. Units are available for measuirng
displacement over a distance of a fraction of a millimeter to a half a meter. LVDT’s are rugged and
dirt resistant compared to linear optical encoders.
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V1

V2

V3

V1

V13

V3

up center

LVDT,  linear variable differnetial transformer

down

The excitation voltage is in the range of 0.5 to 10 VAC at a frequency of 1 to 200 Khz. A ferrite
core is suitable at these frequencies. It is extended outside the body by an non-magnetic rod. As
the core is moved toward the top winding, the voltage across this coil increases due to increased
coupling, while the voltage on the bottom coil decreases. If the core is moved toward the bottom
winding, the voltage on this coil increases as the voltge decreases across the top coil. Theoretically,
a centered slug yields equal voltages across both coils. In practice leakage inductance prevents the
null from dropping all the way to 0 V.
With a centered slug, the series-opposing wired secondaries cancel yielding V13 = 0. Moving the

slug up increases V13. Note that it is in phase with with V1, the top winding, and 180
o out of phase

with V2, bottom winding.
Moving the slug down from the center position increases V13. However, it is 180

o out of phase
with with V1, the top winding, and in phase with V2, bottom winding. Moving the slug from top
to bottom shows a minimum at the center point, with a 180o phase reversal in passing the center.

• REVIEW:

• Transformers can be used to transform impedance as well as voltage and current. When this
is done to improve power transfer to a load, it is called impedance matching.

• A Potential Transformer (PT) is a special instrument transformer designed to provide a precise
voltage step-down ratio for voltmeters measuring high power system voltages.

• A Current Transformer (CT) is another special instrument transformer designed to step down
the current through a power line to a safe level for an ammeter to measure.

• An air-core transformer is one lacking a ferromagnetic core.

• A Tesla Coil is a resonant, air-core, step-up transformer designed to produce very high AC
voltages at high frequency.

• A saturable reactor is a special type of inductor, the inductance of which can be controlled by
the DC current through a second winding around the same core. With enough DC current, the
magnetic core can be saturated, decreasing the inductance of the power winding in a controlled
fashion.

• A Scott-T transformer converts 3-φ power to 2-φ power and vice versa.

• A linear variable differential transformer, also known as an LVDT, is a distance measuring
device. It has a movable ferromagnetic core to vary the coupling between the excited primary
and a pair of secondaries.
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9.8 Practical considerations

9.8.1 Power capacity

As has already been observed, transformers must be well designed in order to achieve acceptable
power coupling, tight voltage regulation, and low exciting current distortion. Also, transformers
must be designed to carry the expected values of primary and secondary winding current without
any trouble. This means the winding conductors must be made of the proper gauge wire to avoid
any heating problems. An ideal transformer would have perfect coupling (no leakage inductance),
perfect voltage regulation, perfectly sinusoidal exciting current, no hysteresis or eddy current losses,
and wire thick enough to handle any amount of current. Unfortunately, the ideal transformer would
have to be infinitely large and heavy to meet these design goals. Thus, in the business of practical
transformer design, compromises must be made.
Additionally, winding conductor insulation is a concern where high voltages are encountered, as

they often are in step-up and step-down power distribution transformers. Not only do the windings
have to be well insulated from the iron core, but each winding has to be sufficiently insulated from
the other in order to maintain electrical isolation between windings.
Respecting these limitations, transformers are rated for certain levels of primary and secondary

winding voltage and current, though the current rating is usually derived from a volt-amp (VA)
rating assigned to the transformer. For example, take a step-down transformer with a primary
voltage rating of 120 volts, a secondary voltage rating of 48 volts, and a VA rating of 1 kVA (1000
VA). The maximum winding currents can be determined as such:

1000 VA

120 V
= 8.333 A   (maximum primary winding current)

1000 VA

48 V
= 20.833 A   (maximum secondary winding current)

Sometimes windings will bear current ratings in amps, but this is typically seen on small trans-
formers. Large transformers are almost always rated in terms of winding voltage and VA or kVA.

9.8.2 Energy losses

When transformers transfer power, they do so with a minimum of loss. As it was stated earlier,
modern power transformer designs typically exceed 95% efficiency. It is good to know where some
of this lost power goes, however, and what causes it to be lost.
There is, of course, power lost due to resistance of the wire windings. Unless superconducting

wires are used, there will always be power dissipated in the form of heat through the resistance of
current-carrying conductors. Because transformers require such long lengths of wire, this loss can
be a significant factor. Increasing the gauge of the winding wire is one way to minimize this loss,
but only with substantial increases in cost, size, and weight.
Resistive losses aside, the bulk of transformer power loss is due to magnetic effects in the core.

Perhaps the most significant of these ”core losses” is eddy-current loss, which is resistive power
dissipation due to the passage of induced currents through the iron of the core. Because iron is
a conductor of electricity as well as being an excellent ”conductor” of magnetic flux, there will be
currents induced in the iron just as there are currents induced in the secondary windings from the
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alternating magnetic field. These induced currents – as described by the perpendicularity clause
of Faraday’s Law – tend to circulate through the cross-section of the core perpendicularly to the
primary winding turns. Their circular motion gives them their unusual name: like eddies in a stream
of water that circulate rather than move in straight lines.
Iron is a fair conductor of electricity, but not as good as the copper or aluminum from which

wire windings are typically made. Consequently, these ”eddy currents” must overcome significant
electrical resistance as they circulate through the core. In overcoming the resistance offered by
the iron, they dissipate power in the form of heat. Hence, we have a source of inefficiency in the
transformer that is difficult to eliminate.
This phenomenon is so pronounced that it is often exploited as a means of heating ferrous

(iron-containing) materials. The following photograph shows an ”induction heating” unit raising
the temperature of a large pipe section. Loops of wire covered by high-temperature insulation
encircle the pipe’s circumference, inducing eddy currents within the pipe wall by electromagnetic
induction. In order to maximize the eddy current effect, high-frequency alternating current is used
rather than power line frequency (60 Hz). The box units at the right of the picture produce the
high-frequency AC and control the amount of current in the wires to stabilize the pipe temperature
at a pre-determined ”set-point.”

The main strategy in mitigating these wasteful eddy currents in transformer cores is to form the
iron core in sheets, each sheet covered with an insulating varnish so that the core is divided up into
thin slices. The result is very little width in the core for eddy currents to circulate in:

solid iron core

laminated iron core

"eddy"
current

Laminated cores like the one shown here are standard in almost all low-frequency transformers.
Recall from the photograph of the transformer cut in half that the iron core was composed of many
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thin sheets rather than one solid piece. Eddy current losses increase with frequency, so transformers
designed to run on higher-frequency power (such as 400 Hz, used in many military and aircraft
applications) must use thinner laminations to keep the losses down to a respectable minimum. This
has the undesirable effect of increasing the manufacturing cost of the transformer.
Another, similar technique for minimizing eddy current losses which works better for high-

frequency applications is to make the core out of iron powder instead of thin iron sheets. Like
the lamination sheets, these granules of iron are individually coated in an electrically insulating ma-
terial, which makes the core nonconductive except for within the width of each granule. Powdered
iron cores are often found in transformers handling radio-frequency currents.
Another ”core loss” is that of magnetic hysteresis. All ferromagnetic materials tend to retain

some degree of magnetization after exposure to an external magnetic field. This tendency to stay
magnetized is called ”hysteresis,” and it takes a certain investment in energy to overcome this
opposition to change every time the magnetic field produced by the primary winding changes polarity
(twice per AC cycle). This type of loss can be mitigated through good core material selection
(choosing a core alloy with low hysteresis, as evidenced by a ”thin” B/H hysteresis curve), and
designing the core for minimum flux density (large cross-sectional area).
Transformer energy losses tend to worsen with increasing frequency. The skin effect within wind-

ing conductors reduces the available cross-sectional area for electron flow, thereby increasing effective
resistance as the frequency goes up and creating more power lost through resistive dissipation. Mag-
netic core losses are also exaggerated with higher frequencies, eddy currents and hysteresis effects
becoming more severe. For this reason, transformers of significant size are designed to operate effi-
ciently in a limited range of frequencies. In most power distribution systems where the line frequency
is very stable, one would think excessive frequency would never pose a problem. Unfortunately it
does, in the form of harmonics created by nonlinear loads.
As we’ve seen in earlier chapters, nonsinusoidal waveforms are equivalent to additive series of

multiple sinusoidal waveforms at different amplitudes and frequencies. In power systems, these
other frequencies are whole-number multiples of the fundamental (line) frequency, meaning that
they will always be higher, not lower, than the design frequency of the transformer. In significant
measure, they can cause severe transformer overheating. Power transformers can be engineered to
handle certain levels of power system harmonics, and this capability is sometimes denoted with a
”K factor” rating.

9.8.3 Stray capacitance and inductance

Aside from power ratings and power losses, transformers often harbor other undesirable limitations
which circuit designers must be made aware of. Like their simpler counterparts – inductors –
transformers exhibit capacitance due to the insulation dielectric between conductors: from winding
to winding, turn to turn (in a single winding), and winding to core. Usually this capacitance is of
no concern in a power application, but small signal applications (especially those of high frequency)
may not tolerate this quirk well. Also, the effect of having capacitance along with the windings’
designed inductance gives transformers the ability to resonate at a particular frequency, definitely
a design concern in signal applications where the applied frequency may reach this point (usually
the resonant frequency of a power transformer is well beyond the frequency of the AC power it was
designed to operate on).
Flux containment (making sure a transformer’s magnetic flux doesn’t escape so as to interfere

with another device, and making sure other devices’ magnetic flux is shielded from the transformer
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core) is another concern shared both by inductors and transformers.

Closely related to the issue of flux containment is leakage inductance. We’ve already seen the
detrimental effects of leakage inductance on voltage regulation with SPICE simulations early in
this chapter. Because leakage inductance is equivalent to an inductance connected in series with
the transformer’s winding, it manifests itself as a series impedance with the load. Thus, the more
current drawn by the load, the less voltage available at the secondary winding terminals. Usually,
good voltage regulation is desired in transformer design, but there are exceptional applications.
As was stated before, discharge lighting circuits require a step-up transformer with ”loose” (poor)
voltage regulation to ensure reduced voltage after the establishment of an arc through the lamp.
One way to meet this design criterion is to engineer the transformer with flux leakage paths for
magnetic flux to bypass the secondary winding(s). The resulting leakage flux will produce leakage
inductance, which will in turn produce the poor regulation needed for discharge lighting.

9.8.4 Core saturation

Transformers are also constrained in their performance by the magnetic flux limitations of the
core. For ferromagnetic core transformers, we must be mindful of the saturation limits of the core.
Remember that ferromagnetic materials cannot support infinite magnetic flux densities: they tend
to ”saturate” at a certain level (dictated by the material and core dimensions), meaning that further
increases in magnetic field force (mmf) do not result in proportional increases in magnetic field flux
(Φ).

When a transformer’s primary winding is overloaded from excessive applied voltage, the core
flux may reach saturation levels during peak moments of the AC sinewave cycle. If this happens,
the voltage induced in the secondary winding will no longer match the wave-shape as the voltage
powering the primary coil. In other words, the overloaded transformer will distort the waveshape
from primary to secondary windings, creating harmonics in the secondary winding’s output. As we
discussed before, harmonic content in AC power systems typically causes problems.

Special transformers known as peaking transformers exploit this principle to produce brief voltage
pulses near the peaks of the source voltage waveform. The core is designed to saturate quickly and
sharply, at voltage levels well below peak. This results in a severely cropped sine-wave flux waveform,
and secondary voltage pulses only when the flux is changing (below saturation levels):
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Φ = magnetic flux

ep = primary voltage
es = secondary voltage

ep

es

Φ

Voltage and flux waveforms for
a peaking transformer

Another cause of abnormal transformer core saturation is operation at frequencies lower than
normal. For example, if a power transformer designed to operate at 60 Hz is forced to operate
at 50 Hz instead, the flux must reach greater peak levels than before in order to produce the same
opposing voltage needed to balance against the source voltage. This is true even if the source voltage
is the same as before.

e = voltage
Φ = magnetic flux

e Φ

e
Φ

60 Hz

50 Hz

Since instantaneous winding voltage is proportional to the instantaneous magnetic flux’s rate
of change in a transformer, a voltage waveform reaching the same peak value, but taking a longer
amount of time to complete each half-cycle, demands that the flux maintain the same rate of change
as before, but for longer periods of time. Thus, if the flux has to climb at the same rate as before,
but for longer periods of time, it will climb to a greater peak value.

Mathematically, this is another example of calculus in action. Because the voltage is proportional
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to the flux’s rate-of-change, we say that the voltage waveform is the derivative of the flux waveform,
”derivative” being that calculus operation defining one mathematical function (waveform) in terms
of the rate-of-change of another. If we take the opposite perspective, though, and relate the original
waveform to its derivative, we may call the original waveform the integral of the derivative waveform.
In this case, the voltage waveform is the derivative of the flux waveform, and the flux waveform is
the integral of the voltage waveform.

The integral of any mathematical function is proportional to the area accumulated underneath
the curve of that function. Since each half-cycle of the 50 Hz waveform accumulates more area
between it and the zero line of the graph than the 60 Hz waveform will – and we know that the
magnetic flux is the integral of the voltage – the flux will attain higher values:

e

Φ

e

Φ

60 Hz

50 Hz

less area

more area

less height

more height

Yet another cause of transformer saturation is the presence of DC current in the primary winding.
Any amount of DC voltage dropped across the primary winding of a transformer will cause additional
magnetic flux in the core. This additional flux ”bias” or ”offset” will push the alternating flux
waveform closer to saturation in one half-cycle than the other:

e Φ

60 Hz

saturation limit

saturation limit

flux
centerline

For most transformers, core saturation is a very undesirable effect, and it is avoided through
good design: engineering the windings and core so that magnetic flux densities remain well below the
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saturation levels. This ensures that the relationship between mmf and Φ is more linear throughout
the flux cycle, which is good because it makes for less distortion in the magnetization current
waveform. Also, engineering the core for low flux densities provides a safe margin between the
normal flux peaks and the core saturation limits to accommodate occasional, abnormal conditions
such as frequency variation and DC offset.

9.8.5 Inrush current

When a transformer is initially connected to a source of AC voltage, there may be a substantial
surge of current through the primary winding called inrush current. This is analogous to the inrush
current exhibited by an electric motor that is started up by sudden connection to a power source,
although transformer inrush is caused by a different phenomenon.

We know that the rate of change of instantaneous flux in a transformer core is proportional to the
instantaneous voltage drop across the primary winding. Or, as stated before, the voltage waveform
is the derivative of the flux waveform, and the flux waveform is the integral of the voltage waveform.
In a continuously-operating transformer, these two waveforms are phase-shifted by 90o. Since flux
(Φ) is proportional to the magnetomotive force (mmf) in the core, and the mmf is proportional to
winding current, the current waveform will be in-phase with the flux waveform, and both will be
lagging the voltage waveform by 90o:

e = voltage
Φ = magnetic flux

i = coil current

e Φ
i

Let us suppose that the primary winding of a transformer is suddenly connected to an AC voltage
source at the exact moment in time when the instantaneous voltage is at its positive peak value. In
order for the transformer to create an opposing voltage drop to balance against this applied source
voltage, a magnetic flux of rapidly increasing value must be generated. The result is that winding
current increases rapidly, but actually no more rapidly than under normal conditions:
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e = voltage
Φ = magnetic flux

i = coil current

e Φ
i

Instant in time when transformer
is connected to AC voltage source.

Both core flux and coil current start from zero and build up to the same peak values experienced
during continuous operation. Thus, there is no ”surge” or ”inrush” or current in this scenario.
Alternatively, let us consider what happens if the transformer’s connection to the AC voltage

source occurs at the exact moment in time when the instantaneous voltage is at zero. During
continuous operation (when the transformer has been powered for quite some time), this is the point
in time where both flux and winding current are at their negative peaks, experiencing zero rate-of-
change (dΦ/dt = 0 and di/dt = 0). As the voltage builds to its positive peak, the flux and current
waveforms build to their maximum positive rates-of-change, and on upward to their positive peaks
as the voltage descends to a level of zero:

e = voltage
Φ = magnetic flux

i = coil current

e Φ
i

Instant in time when voltage is zero, 
during continuous operation.

A significant difference exists, however, between continuous-mode operation and the sudden
starting condition assumed in this scenario: during continuous operation, the flux and current levels
were at their negative peaks when voltage was at its zero point; in a transformer that has been sitting
idle, however, both magnetic flux and winding current should start at zero. When the magnetic flux
increases in response to a rising voltage, it will increase from zero upward, not from a previously
negative (magnetized) condition as we would normally have in a transformer that’s been powered
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for awhile. Thus, in a transformer that’s just ”starting,” the flux will reach approximately twice its
normal peak magnitude as it ”integrates” the area under the voltage waveform’s first half-cycle:

e

Φ

Instant in time when voltage is zero, 
from a "cold start" condition.

flux peak approximately
twice normal height!

In an ideal transformer, the magnetizing current would rise to approximately twice its normal
peak value as well, generating the necessary mmf to create this higher-than-normal flux. However,
most transformers aren’t designed with enough of a margin between normal flux peaks and the
saturation limits to avoid saturating in a condition like this, and so the core will almost certainly
saturate during this first half-cycle of voltage. During saturation, disproportionate amounts of mmf
are needed to generate magnetic flux. This means that winding current, which creates the mmf to
cause flux in the core, will disproportionately rise to a value easily exceeding twice its normal peak:

e

Φ

Instant in time when voltage is zero, 
from a "cold start" condition.

flux peak approximately
twice normal height!

i

current peak much
greater than normal!

This is the mechanism causing inrush current in a transformer’s primary winding when connected
to an AC voltage source. As you can see, the magnitude of the inrush current strongly depends on
the exact time that electrical connection to the source is made. If the transformer happens to have
some residual magnetism in its core at the moment of connection to the source, the inrush could
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be even more severe. Because of this, transformer overcurrent protection devices are usually of the
”slow-acting” variety, so as to tolerate current surges such as this without opening the circuit.

9.8.6 Heat and Noise

In addition to unwanted electrical effects, transformers may also exhibit undesirable physical effects,
the most notable being the production of heat and noise. Noise is primarily a nuisance effect,
but heat is a potentially serious problem because winding insulation will be damaged if allowed to
overheat. Heating may be minimized by good design, ensuring that the core does not approach
saturation levels, that eddy currents are minimized, and that the windings are not overloaded or
operated too close to maximum ampacity.
Large power transformers have their core and windings submerged in an oil bath to transfer heat

and muffle noise, and also to displace moisture which would otherwise compromise the integrity of
the winding insulation. Heat-dissipating ”radiator” tubes on the outside of the transformer case
provide a convective oil flow path to transfer heat from the transformer’s core to ambient air:

Core

Oil

Primary
terminals

Secondary
terminals

Radiator
tube

flow

Heat Heat

Radiator
tube

Oil-less, or ”dry,” transformers are often rated in terms of maximum operating temperature
”rise” (temperature increase beyond ambient) according to a letter-class system: A, B, F, or H.
These letter codes are arranged in order of lowest heat tolerance to highest:

• Class A: No more than 55o Celsius winding temperature rise, at 40o Celsius (maximum)
ambient air temperature.

• Class B:No more than 80o Celsius winding temperature rise, at 40o Celsius (maximum)ambient
air temperature.
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• Class F:No more than 115o Celsius winding temperature rise, at 40o Celsius (maximum)ambient
air temperature.

• Class H:No more than 150o Celsius winding temperature rise, at 40o Celsius (maximum)ambient
air temperature.

Audible noise is an effect primarily originating from the phenomenon of magnetostriction: the
slight change of length exhibited by a ferromagnetic object when magnetized. The familiar ”hum”
heard around large power transformers is the sound of the iron core expanding and contracting
at 120 Hz (twice the system frequency, which is 60 Hz in the United States) – one cycle of core
contraction and expansion for every peak of the magnetic flux waveform – plus noise created by
mechanical forces between primary and secondary windings. Again, maintaining low magnetic flux
levels in the core is the key to minimizing this effect, which explains why ferroresonant transformers
– which must operate in saturation for a large portion of the current waveform – operate both hot
and noisy.
Another noise-producing phenomenon in power transformers is the physical reaction force be-

tween primary and secondary windings when heavily loaded. If the secondary winding is open-
circuited, there will be no current through it, and consequently no magneto-motive force (mmf)
produced by it. However, when the secondary is ”loaded” (current supplied to a load), the wind-
ing generates an mmf, which becomes counteracted by a ”reflected” mmf in the primary winding
to prevent core flux levels from changing. These opposing mmf’s generated between primary and
secondary windings as a result of secondary (load) current produce a repulsive, physical force be-
tween the windings which will tend to make them vibrate. Transformer designers have to consider
these physical forces in the construction of the winding coils, to ensure there is adequate mechanical
support to handle the stresses. Under heavy load conditions, though, these stresses may be great
enough to cause audible noise to emanate from the transformer.

• REVIEW:

• Power transformers are limited in the amount of power they can transfer from primary to
secondary winding(s). Large units are typically rated in VA (volt-amps) or kVA (kilo volt-
amps).

• Resistance in transformer windings contributes to inefficiency, as current will dissipate heat,
wasting energy.

• Magnetic effects in a transformer’s iron core also contribute to inefficiency. Among the effects
are eddy currents (circulating induction currents in the iron core) and hysteresis (power lost
due to overcoming the tendency of iron to magnetize in a particular direction).

• Increased frequency results in increased power losses within a power transformer. The presence
of harmonics in a power system is a source of frequencies significantly higher than normal, which
may cause overheating in large transformers.

• Both transformers and inductors harbor certain unavoidable amounts of capacitance due to
wire insulation (dielectric) separating winding turns from the iron core and from each other.
This capacitance can be significant enough to give the transformer a natural resonant frequency,
which can be problematic in signal applications.
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• Leakage inductance is caused by magnetic flux not being 100% coupled between windings in a
transformer. Any flux not involved with transferring energy from one winding to another will
store and release energy, which is how (self-) inductance works. Leakage inductance tends to
worsen a transformer’s voltage regulation (secondary voltage ”sags” more for a given amount
of load current).

• Magnetic saturation of a transformer core may be caused by excessive primary voltage, opera-
tion at too low of a frequency, and/or by the presence of a DC current in any of the windings.
Saturation may be minimized or avoided by conservative design, which provides an adequate
margin of safety between peak magnetic flux density values and the saturation limits of the
core.

• Transformers often experience significant inrush currents when initially connected to an AC
voltage source. Inrush current is most severe when connection to the AC source is made at
the moment instantaneous source voltage is zero.

• Noise is a common phenomenon exhibited by transformers – especially power transformers
– and is primarily caused by magnetostriction of the core. Physical forces causing winding
vibration may also generate noise under conditions of heavy (high current) secondary winding
load.

9.9 Contributors
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to first. See Appendix 2 (Contributor List) for dates and contact information.
Bart Anderson (January 2004): Corrected conceptual errors regarding Tesla coil operation and

safety.
Jason Starck (June 2000): HTML document formatting, which led to a much better-looking

second edition.
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10.1 Single-phase power systems

load load
#1 #2

Depicted above is a very simple AC circuit. If the load resistor’s power dissipation were substan-
tial, we might call this a ”power circuit” or ”power system” instead of regarding it as just a regular
circuit. The distinction between a ”power circuit” and a ”regular circuit” may seem arbitrary, but
the practical concerns are definitely not.
One such concern is the size and cost of wiring necessary to deliver power from the AC source to

the load. Normally, we do not give much thought to this type of concern if we’re merely analyzing
a circuit for the sake of learning about the laws of electricity. However, in the real world it can
be a major concern. If we give the source in the above circuit a voltage value and also give power
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dissipation values to the two load resistors, we can determine the wiring needs for this particular
circuit:

load load
#1 #2

P = 10 kW P = 10 kW

120 V

I =
P

E

I = 
10 kW

120 V

(for each load resistor)

Itotal = Iload#1 + Iload#2

Itotal = 166.67 A

83.33 AI = 

Itotal = (83.33 A) + (83.33 A)

Ptotal = (10 kW) + (10 kW)

Ptotal = 20 kW

83.33 amps for each load resistor adds up to 166.66 amps total circuit current. This is no small
amount of current, and would necessitate copper wire conductors of at least 1/0 gage. Such wire
is well over 1/4 inch in diameter, weighing over 300 pounds per thousand feet. Bear in mind that
copper is not cheap either! It would be in our best interest to find ways to minimize such costs if
we were designing a power system with long conductor lengths.

One way to do this would be to increase the voltage of the power source and use loads built
to dissipate 10 kW each at this higher voltage. The loads, of course, would have to have greater
resistance values to dissipate the same power as before (10 kW each) at a greater voltage than before.
The advantage would be less current required, permitting the use of smaller, lighter, and cheaper
wire:

load load
#1 #2240 V

P = 10 kW P = 10 kW
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I =
P

E

I = 
10 kW

(for each load resistor)

Itotal = Iload#1 + Iload#2

I = 

Ptotal = (10 kW) + (10 kW)

Ptotal = 20 kW

240 V

41.67 A

Itotal = (41.67 A) + (41.67 A)

Itotal = 83.33 A

Now our total circuit current is 83.33 amps, half of what it was before. We can now use number
4 gage wire, which weighs less than half of what 1/0 gage wire does per unit length. This is a consid-
erable reduction in system cost with no degradation in performance. This is why power distribution
system designers elect to transmit electric power using very high voltages (many thousands of volts):
to capitalize on the savings realized by the use of smaller, lighter, cheaper wire.

However, this solution is not without disadvantages. Another practical concern with power
circuits is the danger of electric shock from high voltages. Again, this is not usually the sort of
thing we concentrate on while learning about the laws of electricity, but it is a very valid concern in
the real world, especially when large amounts of power are being dealt with. The gain in efficiency
realized by stepping up the circuit voltage presents us with increased danger of electric shock. Power
distribution companies tackle this problem by stringing their power lines along high poles or towers,
and insulating the lines from the supporting structures with large, porcelain insulators.

At the point of use (the electric power customer), there is still the issue of what voltage to use for
powering loads. High voltage gives greater system efficiency by means of reduced conductor current,
but it might not always be practical to keep power wiring out of reach at the point of use the way it
can be elevated out of reach in distribution systems. This tradeoff between efficiency and danger is
one that European power system designers have decided to risk, all their households and appliances
operating at a nominal voltage of 240 volts instead of 120 volts as it is in North America. That
is why tourists from America visiting Europe must carry small step-down transformers for their
portable appliances, to step the 240 VAC (volts AC) power down to a more suitable 120 VAC.

Is there any way to realize the advantages of both increased efficiency and reduced safety hazard
at the same time? One solution would be to install step-down transformers at the end-point of power
use, just as the American tourist must do while in Europe. However, this would be expensive and
inconvenient for anything but very small loads (where the transformers can be built cheaply) or very
large loads (where the expense of thick copper wires would exceed the expense of a transformer).

An alternative solution would be to use a higher voltage supply to provide power to two lower
voltage loads in series. This approach combines the efficiency of a high-voltage system with the
safety of a low-voltage system:
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load

load

#1

#2

+

-
240 V

83.33 A

83.33 A

240 V

10 kW

10 kW

120 V

120 V

+

-

+

-

+

-

Notice the polarity markings (+ and -) for each voltage shown, as well as the unidirectional
arrows for current. For the most part, I’ve avoided labeling ”polarities” in the AC circuits we’ve
been analyzing, even though the notation is valid to provide a frame of reference for phase. In later
sections of this chapter, phase relationships will become very important, so I’m introducing this
notation early on in the chapter for your familiarity.

The current through each load is the same as it was in the simple 120 volt circuit, but the currents
are not additive because the loads are in series rather than parallel. The voltage across each load is
only 120 volts, not 240, so the safety factor is better. Mind you, we still have a full 240 volts across
the power system wires, but each load is operating at a reduced voltage. If anyone is going to get
shocked, the odds are that it will be from coming into contact with the conductors of a particular
load rather than from contact across the main wires of a power system.

There’s only one disadvantage to this design: the consequences of one load failing open, or being
turned off (assuming each load has a series on/off switch to interrupt current) are not good. Being
a series circuit, if either load were to open, current would stop in the other load as well. For this
reason, we need to modify the design a bit:

load

load

#1

#2

+

-

+

-

"hot"

"hot"

"neutral"

120 V
∠ 0o

120 V
∠ 0o

83.33 A

83.33 A

+

-

+

-

240 V
+

-

120 V
∠ 0o

120 V
∠ 0o

0 A
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Etotal = (120 V ∠ 0o) + (120 V ∠ 0o) 

Etotal = 240 V ∠ 0o

I =
P

E

I =
10 kW

120 V

I = 83.33 A   (for each load resistor)

Ptotal = (10 kW) + (10 kW)

Ptotal = 20 kW

Instead of a single 240 volt power supply, we use two 120 volt supplies (in phase with each other!)
in series to produce 240 volts, then run a third wire to the connection point between the loads to
handle the eventuality of one load opening. This is called a split-phase power system. Three smaller
wires are still cheaper than the two wires needed with the simple parallel design, so we’re still ahead
on efficiency. The astute observer will note that the neutral wire only has to carry the difference
of current between the two loads back to the source. In the above case, with perfectly ”balanced”
loads consuming equal amounts of power, the neutral wire carries zero current.

Notice how the neutral wire is connected to earth ground at the power supply end. This is
a common feature in power systems containing ”neutral” wires, since grounding the neutral wire
ensures the least possible voltage at any given time between any ”hot” wire and earth ground.

An essential component to a split-phase power system is the dual AC voltage source. Fortunately,
designing and building one is not difficult. Since most AC systems receive their power from a step-
down transformer anyway (stepping voltage down from high distribution levels to a user-level voltage
like 120 or 240), that transformer can be built with a center-tapped secondary winding:

Step-down transformer with
center-tapped secondary winding

2.4 kV

120 V

120 V

240 V
+

-

+

-
+

-

+

-

If the AC power comes directly from a generator (alternator), the coils can be similarly center-
tapped for the same effect. The extra expense to include a center-tap connection in a transformer
or alternator winding is minimal.

Here is where the (+) and (-) polarity markings really become important. This notation is often
used to reference the phasings of multiple AC voltage sources, so it is clear whether they are aiding
(”boosting”) each other or opposing (”bucking”) each other. If not for these polarity markings, phase
relations between multiple AC sources might be very confusing. Note that the split-phase sources
in the schematic (each one 120 volts 6 0o), with polarity marks (+) to (-) just like series-aiding
batteries can alternatively be represented as such:
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+

-

+

-

+

-

"hot"

"hot"

120 V
∠ 0o

120 V
∠ 180o

240 V
∠ 0o

To mathematically calculate voltage between ”hot” wires, we must subtract voltages, because
their polarity marks show them to be opposed to each other:

120 + j0 V

240 + j0 V

120 ∠ 0o

120 ∠ 180o

240 ∠ 0o

Polar Rectangular

- - (-120 + j0) V

If we mark the two sources’ common connection point (the neutral wire) with the same polarity
mark (-), we must express their relative phase shifts as being 180o apart. Otherwise, we’d be denoting
two voltage sources in direct opposition with each other, which would give 0 volts between the two
”hot” conductors. Why am I taking the time to elaborate on polarity marks and phase angles? It
will make more sense in the next section!

Power systems in American households and light industry are most often of the split-phase
variety, providing so-called 120/240 VAC power. The term ”split-phase” merely refers to the split-
voltage supply in such a system. In a more general sense, this kind of AC power supply is called
single phase because both voltage waveforms are in phase, or in step, with each other.

The term ”single phase” is a counterpoint to another kind of power system called ”polyphase”
which we are about to investigate in detail. Apologies for the long introduction leading up to the
title-topic of this chapter. The advantages of polyphase power systems are more obvious if one first
has a good understanding of single phase systems.

• REVIEW:

• Single phase power systems are defined by having an AC source with only one voltage wave-
form.

• A split-phase power system is one with multiple (in-phase) AC voltage sources connected in
series, delivering power to loads at more than one voltage, with more than two wires. They
are used primarily to achieve balance between system efficiency (low conductor currents) and
safety (low load voltages).

• Split-phase AC sources can be easily created by center-tapping the coil windings of transformers
or alternators.
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10.2 Three-phase power systems

Split-phase power systems achieve their high conductor efficiency and low safety risk by splitting up
the total voltage into lesser parts and powering multiple loads at those lesser voltages, while drawing
currents at levels typical of a full-voltage system. This technique, by the way, works just as well for
DC power systems as it does for single-phase AC systems. Such systems are usually referred to as
three-wire systems rather than split-phase because ”phase” is a concept restricted to AC.

But we know from our experience with vectors and complex numbers that AC voltages don’t
always add up as we think they would if they are out of phase with each other. This principle,
applied to power systems, can be put to use to make power systems with even greater conductor
efficiencies and lower shock hazard than with split-phase.

Suppose that we had two sources of AC voltage connected in series just like the split-phase
system we saw before, except that each voltage source was 120o out of phase with the other:

load

load

#1

#2

+

-

+

-

"hot"

"hot"

"neutral"
+

-

120 V
∠ 0o

120 V
∠ 120o

83.33 A

83.33 A

+

-

+

-

120 V
∠ 0o

120 V
∠ 120o

∠ -30o

∠ 0o

∠ 120o

207.85 V

Since each voltage source is 120 volts, and each load resistor is connected directly in parallel with
its respective source, the voltage across each load must be 120 volts as well. Given load currents of
83.33 amps, each load must still be dissipating 10 kilowatts of power. However, voltage between the
two ”hot” wires is not 240 volts (120 6 0o - 120 6 180o) because the phase difference between the
two sources is not 180o. Instead, the voltage is:

Etotal = (120 V ∠ 0o) - (120 V ∠ 120o)

Etotal = 207.85 V ∠ -30o

Nominally, we say that the voltage between ”hot” conductors is 208 volts (rounding up), and
thus the power system voltage is designated as 120/208.

If we calculate the current through the ”neutral” conductor, we find that it is not zero, even with
balanced load resistances. Kirchhoff’s Current Law tells us that the currents entering and exiting
the node between the two loads must be zero:
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load

load

#1

#2

"hot"

"hot"

"neutral"
Node

83.33 A ∠ 0o

83.33 A ∠ 120o

+

-

+

-

120 V ∠ 0o

120 V ∠ 120o

Ineutral

Ineutral = Iload#1 + Iload#2

-Iload#1 - Iload#2 - Ineutral = 0

-

Ineutral = -Iload#1 - Iload#2

Ineutral = - (83.33 A ∠ 0o) - (83.33 A ∠ 1200)

Ineutral = 83.33 A ∠ 240o   or   83.33 A ∠ -120o

So, we find that the ”neutral” wire is carrying a full 83.33 amps, just like each ”hot” wire.

Note that we are still conveying 20 kW of total power to the two loads, with each load’s ”hot”
wire carrying 83.33 amps as before. With the same amount of current through each ”hot” wire, we
must use the same gage copper conductors, so we haven’t reduced system cost over the split-phase
120/240 system. However, we have realized a gain in safety, because the overall voltage between the
two ”hot” conductors is 32 volts lower than it was in the split-phase system (208 volts instead of
240 volts).

The fact that the neutral wire is carrying 83.33 amps of current raises an interesting possibility:
since it’s carrying current anyway, why not use that third wire as another ”hot” conductor, powering
another load resistor with a third 120 volt source having a phase angle of 240o? That way, we could
transmit more power (another 10 kW) without having to add any more conductors. Let’s see how
this might look:
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load

load

#1

#2

+

-

+

-

+

-

load #3- +

83.33 A ∠ 0o

83.33 A ∠ 240o

83.33 A ∠ 120o

120 V

120 V

120 V

∠ 0o

∠ 120o

∠ 240o

208 V
∠ -30o

120 V

120 V

120 V

10 kW

10 kW

10 kW

A full mathematical analysis of all the voltages and currents in this circuit would necessitate the
use of a network theorem, the easiest being the Superposition Theorem. I’ll spare you the long,
drawn-out calculations because you should be able to intuitively understand that the three voltage
sources at three different phase angles will deliver 120 volts each to a balanced triad of load resistors.
For proof of this, we can use SPICE to do the math for us:

+

-

+

-

- +

1

2

3
0

3

1

2

4

120 V

120 V

120 V

∠ 0o

∠ 240o

∠ 120o

R1

R3

R2

1.44 Ω

1.44 Ω

1.44 Ω

120/208 polyphase power system

v1 1 0 ac 120 0 sin

v2 2 0 ac 120 120 sin

v3 3 0 ac 120 240 sin

r1 1 4 1.44

r2 2 4 1.44

r3 3 4 1.44

.ac lin 1 60 60

.print ac v(1,4) v(2,4) v(3,4)

.print ac v(1,2) v(2,3) v(3,1)

.print ac i(v1) i(v2) i(v3)

.end

VOLTAGE ACROSS EACH LOAD

freq v(1,4) v(2,4) v(3,4)
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6.000E+01 1.200E+02 1.200E+02 1.200E+02

VOLTAGE BETWEEN "HOT" CONDUCTORS

freq v(1,2) v(2,3) v(3,1)

6.000E+01 2.078E+02 2.078E+02 2.078E+02

CURRENT THROUGH EACH VOLTAGE SOURCE

freq i(v1) i(v2) i(v3)

6.000E+01 8.333E+01 8.333E+01 8.333E+01

Sure enough, we get 120 volts across each load resistor, with (approximately) 208 volts between
any two ”hot” conductors and conductor currents equal to 83.33 amps. At that current and voltage,
each load will be dissipating 10 kW of power. Notice that this circuit has no ”neutral” conductor to
ensure stable voltage to all loads if one should open. What we have here is a situation similar to our
split-phase power circuit with no ”neutral” conductor: if one load should happen to fail open, the
voltage drops across the remaining load(s) will change. To ensure load voltage stability in the even
of another load opening, we need a neutral wire to connect the source node and load node together:

load

load

#1

#2

+

-

+

-

load #3- +

83.33 A ∠ 0o

83.33 A ∠ 240o

83.33 A ∠ 120o

120 V

120 V

120 V

∠ 0o

∠ 120o

∠ 240o

120 V

120 V

120 V

10 kW

10 kW

10 kW

"neutral"

"hot"

"hot"

"hot"

0 A

So long as the loads remain balanced (equal resistance, equal currents), the neutral wire will not
have to carry any current at all. It is there just in case one or more load resistors should fail open
(or be shut off through a disconnecting switch).
This circuit we’ve been analyzing with three voltage sources is called a polyphase circuit. The

prefix ”poly” simply means ”more than one,” as in ”polytheism” (belief in more than one deity),
polygon” (a geometrical shape made of multiple line segments: for example, pentagon and hexagon),
and ”polyatomic” (a substance composed of multiple types of atoms). Since the voltage sources are
all at different phase angles (in this case, three different phase angles), this is a ”polyphase” circuit.
More specifically, it is a three-phase circuit, the kind used predominantly in large power distribution
systems.
Let’s survey the advantages of a three-phase power system over a single-phase system of equivalent

load voltage and power capacity. A single-phase system with three loads connected directly in parallel
would have a very high total current (83.33 times 3, or 250 amps:
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load load
#1 #2

load
#3

120V

250 A 10 kW 10 kW 10 kW

This would necessitate 3/0 gage copper wire (very large!), at about 510 pounds per thousand
feet, and with a considerable price tag attached. If the distance from source to load was 1000 feet,
we would need over a half-ton of copper wire to do the job. On the other hand, we could build a
split-phase system with two 15 kW, 120 volt loads:

load

load

#1

#2

240 V

+

-

+

-

"hot"

"hot"

"neutral"

0 A

+

-

125 A ∠ 0o

125 A ∠ 180o

120 V
∠ 0o

120 V
∠ 180o

120 V

120 V

15 kW

15 kW

∠ 0o

Our current is half of what it was with the simple parallel circuit, which is a great improvement.
We could get away with using number 2 gage copper wire at a total mass of about 600 pounds,
figuring about 200 pounds per thousand feet with three runs of 1000 feet each between source and
loads. However, we also have to consider the increased safety hazard of having 240 volts present
in the system, even though each load only receives 120 volts. Overall, there is greater potential for
dangerous electric shock to occur.
When we contrast these two examples against our three-phase system, the advantages are quite

clear. First, the conductor currents are quite a bit less (83.33 amps versus 125 or 250 amps),
permitting the use of much thinner and lighter wire. We can use number 4 gage wire at about 125
pounds per thousand feet, which will total 500 pounds (four runs of 1000 feet each) for our example
circuit. This represents a significant cost savings over the split-phase system, with the additional
benefit that the maximum voltage in the system is lower (208 versus 240).
One question remains to be answered: how in the world do we get three AC voltage sources whose

phase angles are exactly 120o apart? Obviously we can’t center-tap a transformer or alternator
winding like we did in the split-phase system, since that can only give us voltage waveforms that
are either in phase or 180o out of phase. Perhaps we could figure out some way to use capacitors
and inductors to create phase shifts of 120o, but then those phase shifts would depend on the phase
angles of our load impedances as well (substituting a capacitive or inductive load for a resistive load
would change everything!).
The best way to get the phase shifts we’re looking for is to generate it at the source: construct

the AC generator (alternator) providing the power in such a way that the rotating magnetic field
passes by three sets of wire windings, each set spaced 120o apart around the circumference of the
machine:
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N

S

N

S

winding
1a

winding
1b

winding
1a

winding
1b

winding
2a

winding
2b

winding
3a

winding
3b

Single-phase alternator

Three-phase alternator

Together, the six ”pole” windings of a three-phase alternator are connected to comprise three
winding pairs, each pair producing AC voltage with a phase angle 120o shifted from either of the other
two winding pairs. The interconnections between pairs of windings (as shown for the single-phase
alternator: the jumper wire between windings 1a and 1b) have been omitted from the three-phase
alternator drawing for simplicity.

In our example circuit, we showed the three voltage sources connected together in a ”Y” config-
uration (sometimes called the ”star” configuration), with one lead of each source tied to a common
point (the node where we attached the ”neutral” conductor). The common way to depict this
connection scheme is to draw the windings in the shape of a ”Y” like this:

+

-
-

+

-

+

120 V 120 V

120 V

∠ 0o ∠ 120o

∠ 240o

The ”Y” configuration is not the only option open to us, but it is probably the easiest to
understand at first. More to come on this subject later in the chapter.

• REVIEW:
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• A single-phase power system is one where there is only one AC voltage source (one source
voltage waveform).

• A split-phase power system is one where there are two voltage sources, 180o phase-shifted from
each other, powering a two series-connected loads. The advantage of this is the ability to have
lower conductor currents while maintaining low load voltages for safety reasons.

• A polyphase power system uses multiple voltage sources at different phase angles from each
other (many ”phases” of voltage waveforms at work). A polyphase power system can deliver
more power at less voltage with smaller-gage conductors than single- or split-phase systems.

• The phase-shifted voltage sources necessary for a polyphase power system are created in al-
ternators with multiple sets of wire windings. These winding sets are spaced around the
circumference of the rotor’s rotation at the desired angle(s).

10.3 Phase rotation

Let’s take the three-phase alternator design laid out earlier and watch what happens as the magnet
rotates:

N

S
winding

1a
winding

1b

winding
2a

winding
2b

winding
3a

winding
3b

Three-phase alternator

The phase angle shift of 120o is a function of the actual rotational angle shift of the three pairs
of windings. If the magnet is rotating clockwise, winding 3 will generate its peak instantaneous
voltage exactly 120o (of alternator shaft rotation) after winding 2, which will hits its peak 120o after
winding 1. The magnet passes by each pole pair at different positions in the rotational movement
of the shaft. Where we decide to place the windings will dictate the amount of phase shift between
the windings’ AC voltage waveforms. If we make winding 1 our ”reference” voltage source for phase
angle (0o), then winding 2 will have a phase angle of -120o (120o lagging, or 240o leading) and
winding 3 an angle of -240o (or 120o leading).

This sequence of phase shifts has a definite order. For clockwise rotation of the shaft, the order
is 1-2-3 (winding 1 peaks first, them winding 2, then winding 3). This order keeps repeating itself
as long as we continue to rotate the alternator’s shaft:
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1 2 3

1 2 3- - - 1 - 2 - 3 - 1 - 2 - 3
phase sequence:

TIME 

However, if we reverse the rotation of the alternator’s shaft (turn it counter-clockwise), the
magnet will pass by the pole pairs in the opposite sequence. Instead of 1-2-3, we’ll have 3-2-1. Now,
winding 2’s waveform will be leading 120o ahead of 1 instead of lagging, and 3 will be another 120o

ahead of 2:

123

3 - 1-2 -
phase sequence:

TIME 

3 - 2 - 1 - 3 - 2 - 1

The order of voltage waveform sequences in a polyphase system is called phase rotation or phase
sequence. If we’re using a polyphase voltage source to power resistive loads, phase rotation will
make no difference at all. Whether 1-2-3 or 3-2-1, the voltage and current magnitudes will all be
the same. There are some applications of three-phase power, as we will see shortly, that depend on
having phase rotation being one way or the other. Since voltmeters and ammeters would be useless
in telling us what the phase rotation of an operating power system is, we need to have some other
kind of instrument capable of doing the job.

One ingenious circuit design uses a capacitor to introduce a phase shift between voltage and
current, which is then used to detect the sequence by way of comparison between the brightness of
two indicator lamps:
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to phase
#1

to phase
#2

to phase
#3

C

The two lamps are of equal filament resistance and wattage. The capacitor is sized to have
approximately the same amount of reactance at system frequency as each lamp’s resistance. If the
capacitor were to be replaced by a resistor of equal value to the lamps’ resistance, the two lamps
would glow at equal brightness, the circuit being balanced. However, the capacitor introduces a
phase shift between voltage and current in the third leg of the circuit equal to 90o. This phase
shift, greater than 0o but less than 120o, skews the voltage and current values across the two lamps
according to their phase shifts relative to phase 3. The following SPICE analysis demonstrates what
will happen:

120 V

120 V

+

-

+

-
120 V

- +

1

2

3
0

3

1

2

4

2650 Ω

2650 Ω

R1

R2

C1

1 µF

∠ 0o

∠ 240o

∠ 120o

phase rotation detector -- sequence = v1-v2-v3

v1 1 0 ac 120 0 sin

v2 2 0 ac 120 120 sin

v3 3 0 ac 120 240 sin

r1 1 4 2650

r2 2 4 2650

c1 3 4 1u

.ac lin 1 60 60

.print ac v(1,4) v(2,4) v(3,4)

.end

freq v(1,4) v(2,4) v(3,4)

6.000E+01 4.810E+01 1.795E+02 1.610E+02
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The resulting phase shift from the capacitor causes the voltage across phase 1 lamp (between
nodes 1 and 4) to fall to 48.1 volts and the voltage across phase 2 lamp (between nodes 2 and 4) to
rise to 179.5 volts, making the first lamp dim and the second lamp bright. Just the opposite will
happen if the phase sequence is reversed:

phase rotation detector -- sequence = v3-v2-v1

v1 1 0 ac 120 240 sin

v2 2 0 ac 120 120 sin

v3 3 0 ac 120 0 sin

r1 1 4 2650

r2 2 4 2650

c1 3 4 1u

.ac lin 1 60 60

.print ac v(1,4) v(2,4) v(3,4)

.end

freq v(1,4) v(2,4) v(3,4)

6.000E+01 1.795E+02 4.810E+01 1.610E+02

Here, the first lamp receives 179.5 volts while the second receives only 48.1 volts.

We’ve investigated how phase rotation is produced (the order in which pole pairs get passed
by the alternator’s rotating magnet) and how it can be changed by reversing the alternator’s shaft
rotation. However, reversal of the alternator’s shaft rotation is not usually an option open to an end-
user of electrical power supplied by a nationwide grid (”the” alternator actually being the combined
total of all alternators in all power plants feeding the grid). There is a much easier way to reverse
phase sequence than reversing alternator rotation: just exchange any two of the three ”hot” wires
going to a three-phase load.

This trick makes more sense if we take another look at a running phase sequence of a three-phase
voltage source:

1-2-3 rotation: 1-2-3-1-2-3-1-2-3-1-2-3-1-2-3 . . .

3-2-1 rotation: 3-2-1-3-2-1-3-2-1-3-2-1-3-2-1 . . .

What is commonly designated as a ”1-2-3” phase rotation could just as well be called ”2-3-1” or
”3-1-2,” going from left to right in the number string above. Likewise, the opposite rotation (3-2-1)
could just as easily be called ”2-1-3” or ”1-3-2.”

Starting out with a phase rotation of 3-2-1, we can try all the possibilities for swapping any two
of the wires at a time and see what happens to the resulting sequence:
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Original 1-2-3
phase rotation End result

1

2

3 3

2

1
(wires 1 and 2 swapped)

1

2

3 2

3

1
(wires 2 and 3 swapped)

phase rotation = 2-1-3

phase rotation = 1-3-2

1

2

3 1

3

2
(wires 1 and 3 swapped)

phase rotation = 3-2-1

No matter which pair of ”hot” wires out of the three we choose to swap, the phase rotation ends
up being reversed (1-2-3 gets changed to 2-1-3, 1-3-2 or 3-2-1, all equivalent).

• REVIEW:

• Phase rotation, or phase sequence, is the order in which the voltage waveforms of a polyphase
AC source reach their respective peaks. For a three-phase system, there are only two possible
phase sequences: 1-2-3 and 3-2-1, corresponding to the two possible directions of alternator
rotation.

• Phase rotation has no impact on resistive loads, but it will have impact on unbalanced reactive
loads, as shown in the operation of a phase rotation detector circuit.

• Phase rotation can be reversed by swapping any two of the three ”hot” leads supplying three-
phase power to a three-phase load.

10.4 Polyphase motor design

Perhaps the most important benefit of polyphase AC power over single-phase is the design and
operation of AC motors. As we studied in the first chapter of this book, some types of AC motors
are virtually identical in construction to their alternator (generator) counterparts, consisting of
stationary wire windings and a rotating magnet assembly. (Other AC motor designs are not quite
this simple, but we will leave those details to another lesson).
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AC motor operation

If the rotating magnet is able to keep up with the frequency of the alternating current energizing
the electromagnet windings (coils), it will continue to be pulled around clockwise. However, clockwise
is not the only valid direction for this motor’s shaft to spin. It could just as easily be powered in a
counter-clockwise direction by the same AC voltage waveform:
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AC motor operation

Notice that with the exact same sequence of polarity cycles (voltage, current, and magnetic poles
produced by the coils), the magnetic rotor can spin in either direction. This is a common trait of all
single-phase AC ”induction” and ”synchronous” motors: they have no normal or ”correct” direction
of rotation. The natural question should arise at this point: how can the motor get started in the
intended direction if it can run either way just as well? The answer is that these motors need a little
help getting started. Once helped to spin in a particular direction. they will continue to spin that
way as long as AC power is maintained to the windings.

Where that ”help” comes from for a single-phase AC motor to get going in one direction can
vary. Usually, it comes from an additional set of windings positioned differently from the main set,
and energized with an AC voltage that is out of phase with the main power:
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N

S
winding

1a
winding

1b

winding
2a

winding
2b

winding 2’s voltage waveform is 90 degrees
out of phase with winding 1’s voltage waveform

winding 2’s voltage waveform is 90 degrees
out of phase with winding 1’s voltage waveform

Unidirectional motor

These supplementary coils are typically connected in series with a capacitor to introduce a phase
shift in current between the two sets of windings:

1a

1b

2a

2b

out of phase with each other
these two branch currents are

C

I I

That phase shift creates magnetic fields from coils 2a and 2b that are equally out of step with
the fields from coils 1a and 1b. The result is a set of magnetic fields with a definite phase rotation.
It is this phase rotation that pulls the rotating magnet around in a definite direction.

Polyphase AC motors require no such trickery to spin in a definite direction. Because their supply
voltage waveforms already have a definite rotation sequence, so do the respective magnetic fields
generated by the motor’s stationary windings. In fact, the combination of all three phase winding
sets working together creates what is often called a rotating magnetic field. It was this concept of
a rotating magnetic field that inspired Nikola Tesla to design the world’s first polyphase electrical
systems (simply to make simpler, more efficient motors). The line current and safety advantages of
polyphase power over single phase power were discovered later.

What can be a confusing concept is made much clearer through analogy. Have you ever seen a
row of blinking light bulbs such as the kind used in Christmas decorations? Some strings appear to
”move” in a definite direction as the bulbs alternately glow and darken in sequence. Other strings
just blink on and off with no apparent motion. What makes the difference between the two types
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of bulb strings? Answer: phase shift!

Examine a string of lights where every other bulb is lit at any given time:

When all of the ”1” bulbs are lit, the ”2” bulbs are dark, and vice versa. With this blinking
sequence, there is no definite ”motion” to the bulbs’ light. Your eyes could follow a ”motion” from
left to right just as easily as from right to left. Technically, the ”1” and ”2” bulb blinking sequences
are 180o out of phase (exactly opposite each other). This is analogous to the single-phase AC
motor, which can run just as easily in either direction, but which cannot start on its own because
its magnetic field alternation lacks a definite ”rotation.”

Now let’s examine a string of lights where there are three sets of bulbs to be sequenced instead
of just two, and these three sets are equally out of phase with each other:

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

phase sequence = 1-2-3

all "1" bulbs lit

all "2" bulbs lit

all "3" bulbs lit

all "1" bulbs lit

Time

bulbs appear to be "moving" from left to right

If the lighting sequence is 1-2-3 (the sequence shown), the bulbs will appear to ”move” from left
to right. Now imagine this blinking string of bulbs arranged into a circle:



292 CHAPTER 10. POLYPHASE AC CIRCUITS

1 1

2 3

23

all "1" bulbs lit

all "2" bulbs lit

all "3" bulbs lit

The bulbs appear to
"move" in a clockwise
direction

1

32

1

3 2

1

32

1

3 2

Now the lights appear to be ”moving” in a clockwise direction because they are arranged around
a circle instead of a straight line. It should come as no surprise that the appearance of motion will
reverse if the phase sequence of the bulbs is reversed.

The blinking pattern will either appear to move clockwise or counter-clockwise depending on the
phase sequence. This is analogous to a three-phase AC motor with three sets of windings energized
by voltage sources of three different phase shifts:

N

S
winding

1a
winding

1b

winding
2a

winding
2b

winding
3a

winding
3b

A phase sequence of 1-2-3 will spin the magnet
in a clockwise direction.  A phase sequence of
3-2-1 will spin the magnet in a counter-clockwise
direction.

Three-phase AC motor

With phase shifts of less than 180o we get true rotation of the magnetic field. With single-phase
motors, the rotating magnetic field necessary for self-starting must to be created by way of capacitive
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phase shift. With polyphase motors, the necessary phase shifts are there already. Plus, the direction
of shaft rotation for polyphase motors is very easily reversed: just swap any two ”hot” wires going
to the motor, and it will run in the opposite direction!

• REVIEW:

• AC ”induction” and ”synchronous” motors work by having a rotating magnet follow the al-
ternating magnetic fields produced by stationary wire windings.

• Single-phase AC motors of this type need help to get started spinning in a particular direction.

• By introducing a phase shift of less than 180o to the magnetic fields in such a motor, a definite
direction of shaft rotation can be established.

• Single-phase induction motors often use an auxiliary winding connected in series with a ca-
pacitor to create the necessary phase shift.

• Polyphase motors don’t need such measures; their direction of rotation is fixed by the phase
sequence of the voltage they’re powered by.

• Swapping any two ”hot” wires on a polyphase AC motor will reverse its phase sequence, thus
reversing its shaft rotation.

10.5 Three-phase Y and ∆ configurations

Initially we explored the idea of three-phase power systems by connecting three voltage sources
together in what is commonly known as the ”Y” (or ”star”) configuration. This configuration of
voltage sources is characterized by a common connection point joining one side of each source:

+

-

+

-

- +

120 V

120 V

120 V

∠ 0o

∠ 120o

∠ 240o

If we draw a circuit showing each voltage source to be a coil of wire (alternator or transformer
winding) and do some slight rearranging, the ”Y” configuration becomes more obvious:
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+

-
-

+

-

+

120 V 120 V

120 V

"line"

"line"

"line"

"neutral"

3-phase, 4-wire "Y" connection

∠ 0o ∠ 120o

∠ 240o

The three conductors leading away from the voltage sources (windings) toward a load are typically
called lines, while the windings themselves are typically called phases. In a Y-connected system,
there may or may not be a neutral wire attached at the junction point in the middle, although it
certainly helps alleviate potential problems should one element of a three-phase load fail open, as
discussed earlier:

+

-
-

+

-

+

120 V 120 V

120 V

"line"

"line"

"line"

∠ 0o ∠ 120o

∠ 240o

(no "neutral" wire)

3-phase, 3-wire "Y" connection

When we measure voltage and current in three-phase systems, we need to be specific as to
where we’re measuring. Line voltage refers to the amount of voltage measured between any two line
conductors in a balanced three-phase system. With the above circuit, the line voltage is roughly
208 volts. Phase voltage refers to the voltage measured across any one component (source winding
or load impedance) in a balanced three-phase source or load. For the circuit shown above, the
phase voltage is 120 volts. The terms line current and phase current follow the same logic: the
former referring to current through any one line conductor, and the latter to current through any
one component.

Y-connected sources and loads always have line voltages greater than phase voltages, and line
currents equal to phase currents. If the Y-connected source or load is balanced, the line voltage will
be equal to the phase voltage times the square root of 3:
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Eline = Ephase3

Iline = Iphase

For "Y" circuits:

However, the ”Y” configuration is not the only valid one for connecting three-phase voltage
source or load elements together. Another configuration is known as the ”Delta,” for its geometric
resemblance to the Greek letter of the same name (∆). Take close notice of the polarity for each
winding in the drawing below:

"line"

"line"

"line"

+ -

+

- +

-
120 V120 V

120 V

3-phase, 3-wire ∆ connection

∠ 0o

∠ 240o ∠ 120o

At first glance it seems as though three voltage sources like this would create a short-circuit,
electrons flowing around the triangle with nothing but the internal impedance of the windings to
hold them back. Due to the phase angles of these three voltage sources, however, this is not the
case.

One quick check of this is to use Kirchhoff’s Voltage Law to see if the three voltages around
the loop add up to zero. If they do, then there will be no voltage available to push current around
and around that loop, and consequently there will be no circulating current. Starting with the top
winding and progressing counter-clockwise, our KVL expression looks something like this:

(120 V ∠ 0o) + (120 V ∠ 240o) + (120 V ∠ 120o)

Does it all equal 0?

Yes!

Indeed, if we add these three vector quantities together, they do add up to zero. Another way to
verify the fact that these three voltage sources can be connected together in a loop without resulting
in circulating currents is to open up the loop at one junction point and calculate voltage across the
break:
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+ -

+

- +

-

120 V120 V

120 V ∠ 0o

∠ 240o ∠ 120o

Ebreak should equal 0 V

Starting with the right winding (120 V 6 120o) and progressing counter-clockwise, our KVL
equation looks like this:

(120 V ∠ 120o) + (120 ∠ 0o) + (120 V ∠ 240o) + Ebreak = 0

0 + Ebreak = 0

Ebreak = 0

Sure enough, there will be zero voltage across the break, telling us that no current will circulate
within the triangular loop of windings when that connection is made complete.
Having established that a ∆-connected three-phase voltage source will not burn itself to a crisp

due to circulating currents, we turn to its practical use as a source of power in three-phase circuits.
Because each pair of line conductors is connected directly across a single winding in a ∆ circuit, the
line voltage will be equal to the phase voltage. Conversely, because each line conductor attaches
at a node between two windings, the line current will be the vector sum of the two joining phase
currents. Not surprisingly, the resulting equations for a ∆ configuration are as follows:

Eline = Ephase

For ∆ ("delta") circuits:

Iline = 3 Iphase

Let’s see how this works in an example circuit:

+ -

+

- +

-

120 V120 V

10 kW

10 kW 10 kW

120 V ∠ 0o

∠ 120o∠ 240o

With each load resistance receiving 120 volts from its respective phase winding at the source,
the current in each phase of this circuit will be 83.33 amps:
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I =
P

E

I =
10 kW

120 V

I = 83.33 A  (for each load resistor and source winding)

Iline = 3 Iphase

Iline = 3 (83.33 A)

Iline = 144.34 A

So, the each line current in this three-phase power system is equal to 144.34 amps, substantially
more than the line currents in the Y-connected system we looked at earlier. One might wonder if
we’ve lost all the advantages of three-phase power here, given the fact that we have such greater
conductor currents, necessitating thicker, more costly wire. The answer is no. Although this circuit
would require three number 1 gage copper conductors (at 1000 feet of distance between source and
load this equates to a little over 750 pounds of copper for the whole system), it is still less than the
1000+ pounds of copper required for a single-phase system delivering the same power (30 kW) at
the same voltage (120 volts conductor-to-conductor).

One distinct advantage of a ∆-connected system is its lack of a neutral wire. With a Y-connected
system, a neutral wire was needed in case one of the phase loads were to fail open (or be turned
off), in order to keep the phase voltages at the load from changing. This is not necessary (or even
possible!) in a ∆-connected circuit. With each load phase element directly connected across a
respective source phase winding, the phase voltage will be constant regardless of open failures in the
load elements.

Perhaps the greatest advantage of the ∆-connected source is its fault tolerance. It is possible for
one of the windings in a ∆-connected three-phase source to fail open without affecting load voltage
or current!
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+ -

+

-

120 Vwinding
failed open!

Even with the winding failure in the source,
line voltage will still be 120 V and load phase
voltage will still be 120 V.  The only difference
will be extra current in the remaining functioning
source windings.

120 V

120 V 120 V

120 V ∠ 0o

∠ 120o

The only consequence of a source winding failing open for a ∆-connected source is increased
phase current in the remaining windings. Compare this fault tolerance with a Y-connected system
suffering an open source winding:

+

-

+

-
120 V120 V

winding
failed open!

208 V

104 V 104 V∠ 0o ∠ 120o

With a ∆-connected load, two of the resistances suffer reduced voltage while one remains at the
original line voltage, 208. A Y-connected load suffers an even worse fate with the same winding
failure in a Y-connected source:

+

-

+

-
120 V120 V

winding
failed open!

104 V 104 V

0 V

∠ 0o ∠ 120o

In this case, two load resistances suffer reduced voltage while the third loses supply voltage
completely! For this reason, ∆-connected sources are preferred for reliability. However, if dual
voltages are needed (e.g. 120/208) or preferred for lower line currents, Y-connected systems are the
configuration of choice.

• REVIEW:
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• The conductors connected to the three points of a three-phase source or load are called lines.

• The three components comprising a three-phase source or load are called phases.

• Line voltage is the voltage measured between any two lines in a three-phase circuit.

• Phase voltage is the voltage measured across a single component in a three-phase source or
load.

• Line current is the current through any one line between a three-phase source and load.

• Phase current is the current through any one component comprising a three-phase source or
load.

• In balanced ”Y” circuits, line voltage is equal to phase voltage times the square root of 3,
while line current is equal to phase current.

•

Eline = Ephase3

Iline = Iphase

For "Y" circuits:

• In balanced ∆ circuits, line voltage is equal to phase voltage, while line current is equal to
phase current times the square root of 3.

•

Eline = Ephase

For ∆ ("delta") circuits:

Iline = 3 Iphase

• ∆-connected three-phase voltage sources give greater reliability in the event of winding failure
than Y-connected sources. However, Y-connected sources can deliver the same amount of
power with less line current than ∆-connected sources.

10.6 Three-phase transformer circuits

Since three-phase is used so often for power distribution systems, it makes sense that we would need
three-phase transformers to be able to step voltages up or down. This is only partially true, as
regular single-phase transformers can be ganged together to transform power between two three-
phase systems in a variety of configurations, eliminating the requirement for a special three-phase
transformer. However, special three-phase transformers are built for those tasks, and are able to
perform with less material requirement, less size, and less weight from their modular counterparts.
A three-phase transformer is made of three sets of primary and secondary windings, each set

wound around one leg of an iron core assembly. Essentially it looks like three single-phase trans-
formers sharing a joined core:
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Three-phase transformer core

Those sets of primary and secondary windings will be connected in either ∆ or Y configurations
to form a complete unit. The various combinations of ways that these windings can be connected
together in will be the focus of this section.

Whether the winding sets share a common core assembly or each winding pair is a separate
transformer, the winding connection options are the same:

• Primary - Secondary

• Y - Y

• Y - ∆

• ∆ - Y

• ∆ - ∆

The reasons for choosing a Y or ∆ configuration for transformer winding connections are the
same as for any other three-phase application: Y connections provide the opportunity for multiple
voltages, while ∆ connections enjoy a higher level of reliability (if one winding fails open, the other
two can still maintain full line voltages to the load).

Probably the most important aspect of connecting three sets of primary and secondary windings
together to form a three-phase transformer bank is attention to proper winding phasing (the dots
used to denote ”polarity” of windings). Remember the proper phase relationships between the phase
windings of ∆ and Y:
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+

-

+

-
-

+

+ -

+

-

-

+

the center point of the Y
must tie either all "-" or all
"+" winding ends together.

With these phase angles,
the winding polarities must

With these phase angles,

stack together in a complementary
manner (+ to -).

∠ 0o

∠ 0o

∠ 120o

∠ 120o

∠ 240o

∠ 240o

Getting this phasing correct when the windings aren’t shown in regular Y or ∆ configuration
can be tricky. Let me illustrate:

T1 T2 T3

A1

B1

C1

A2

B2

C2

Three individual transformers are to be connected together to transform power from one three-
phase system to another. First, I’ll show the wiring connections for a Y-Y configuration:
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A1

B1

C1

N1

N2

A2

B2

C2

T1 T2 T3

Y - Y

Note how all the winding ends marked with dots are connected to their respective phases A,
B, and C, while the non-dot ends are connected together to form the centers of each ”Y”. Having
both primary and secondary winding sets connected in ”Y” formations allows for the use of neutral
conductors (N1 and N2) in each power system.

Now, we’ll take a look at a Y-∆ configuration:

T1 T2 T3

A1

B1

C1

N1

A2

B2

C2

Y - ∆

Note how the secondary windings (bottom set) are connected in a chain, the ”dot’” side of one
winding connected to the ”non-dot” side of the next, forming the ∆ loop. At every connection point
between pairs of windings, a connection is made to a line of the second power system (A, B, and C).

Now, let’s examine a ∆-Y system:
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A1

B1

C1

N2

A2

B2

C2

T1 T2 T3

∆ - Y

Such a configuration would allow for the provision of multiple voltages (line-to-line or line-to-
neutral) in the second power system, from a source power system having no neutral.

And finally, we turn to the ∆-∆ configuration:

T1 T2 T3

A1

B1

C1

A2

B2

C2

∆ - ∆

When there is no need for a neutral conductor in the secondary power system, ∆-∆ connection
schemes are preferred because of the inherent reliability of the ∆ configuration.

Considering that a ∆ configuration can operate satisfactorily missing one winding, some power
system designers choose to create a three-phase transformer bank with only two transformers, rep-
resenting a ∆-∆ configuration with a missing winding in both the primary and secondary sides:
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A1

B1

C1

A2

B2

C2

T1 T2

"Open ∆"

This configuration is called ”V” or ”Open-∆.” Of course, each of the two transformers have to be
oversized to handle the same amount of power as three in a standard ∆ configuration, but the overall
size, weight, and cost advantages are often worth it. Bear in mind, however, that with one winding
set missing from the ∆ shape, this system no longer provides the fault tolerance of a normal ∆-∆
system. If one of the two transformers were to fail, the load voltage and current would definitely be
affected.

The following photograph shows a bank of step-up transformers at the Grand Coulee hydroelectric
dam in Washington state. Several transformers (green in color) may be seen from this vantage point,
and they are grouped in threes: three transformers per hydroelectric generator, wired together
in some form of three-phase configuration. The photograph doesn’t reveal the primary winding
connections, but it appears the secondaries are connected in a Y configuration, being that there is
only one large high-voltage insulator protruding from each transformer. This suggests the other side
of each transformer’s secondary winding is at or near ground potential, which could only be true
in a Y system. The building to the left is the powerhouse, where the generators and turbines are
housed. On the right, the sloping concrete wall is the downstream face of the dam:
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10.7 Harmonics in polyphase power systems

In the chapter on mixed-frequency signals, we explored the concept of harmonics in AC systems:
frequencies that are integer multiples of the fundamental source frequency. With AC power systems
where the source voltage waveform coming from an AC generator (alternator) is supposed to be a
single-frequency sine wave, undistorted, there should be no harmonic content . . . ideally.

This would be true were it not for nonlinear components. Nonlinear components draw current
disproportionately with respect to the source voltage, causing non-sinusoidal current waveforms. Ex-
amples of nonlinear components include gas-discharge lamps, semiconductor power-control devices
(diodes, transistors, SCRs, TRIACs), transformers (primary winding magnetization current is usu-
ally non-sinusoidal due to the B/H saturation curve of the core), and electric motors (again, when
magnetic fields within the motor’s core operate near saturation levels). Even incandescent lamps
generate slightly nonsinusoidal currents, as the filament resistance changes throughout the cycle due
to rapid fluctuations in temperature. As we learned in the mixed-frequency chapter, any distortion
of an otherwise sine-wave shaped waveform constitutes the presence of harmonic frequencies.

When the nonsinusoidal waveform in question is symmetrical above and below its average cen-
terline, the harmonic frequencies will be odd integer multiples of the fundamental source frequency
only, with no even integer multiples. Most nonlinear loads produce current waveforms like this, and
so even-numbered harmonics (2nd, 4th, 6th, 8th, 10th, 12th, etc.) are absent or only minimally
present in most AC power systems.

Examples of symmetrical waveforms – odd harmonics only:

These waveforms are
composed exclusively
of odd harmonics

Pure sine wave =
1st harmonic only

Examples of nonsymmetrical waveforms – even harmonics present:
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These waveforms contain
even harmonics

Even though half of the possible harmonic frequencies are eliminated by the typically symmetrical
distortion of nonlinear loads, the odd harmonics can still cause problems. Some of these problems are
general to all power systems, single-phase or otherwise. Transformer overheating due to eddy current
losses, for example, can occur in any AC power system where there is significant harmonic content.
However, there are some problems caused by harmonic currents that are specific to polyphase power
systems, and it is these problems to which this section is specifically devoted.

It is helpful to be able to simulate nonlinear loads in SPICE so as to avoid a lot of complex
mathematics and obtain a more intuitive understanding of harmonic effects. First, we’ll begin our
simulation with a very simple AC circuit: a single sine-wave voltage source with a purely linear load
and all associated resistances:

Vsource

Rsource

Rline

Rload

120 V

1 Ω
1 Ω

1 kΩ

0

1

2 3

0

The Rsource and Rline resistances in this circuit do more than just mimic the real world: they also
provide convenient shunt resistances for measuring currents in the SPICE simulation: by reading
voltage across a 1 Ω resistance, you obtain a direct indication of current through it, since E = IR.

A SPICE simulation of this circuit with Fourier analysis on the voltage measured across Rline

should show us the harmonic content of this circuit’s line current. Being completely linear in nature,
we should expect no harmonics other than the 1st (fundamental) of 60 Hz, assuming a 60 Hz source:
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linear load simulation

vsource 1 0 sin(0 120 60 0 0)

rsource 1 2 1

rline 2 3 1

rload 3 0 1k

.options itl5=0

.tran 0.5m 30m 0 1u

.plot tran v(2,3)

.four 60 v(2,3)

.end

fourier components of transient response v(2,3)

dc component = 4.028E-12

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 6.000E+01 1.198E-01 1.000000 -72.000 0.000

2 1.200E+02 5.793E-12 0.000000 51.122 123.122

3 1.800E+02 7.407E-12 0.000000 -34.624 37.376

4 2.400E+02 9.056E-12 0.000000 4.267 76.267

5 3.000E+02 1.651E-11 0.000000 -83.461 -11.461

6 3.600E+02 3.931E-11 0.000000 36.399 108.399

7 4.200E+02 2.338E-11 0.000000 -41.343 30.657

8 4.800E+02 4.716E-11 0.000000 53.324 125.324

9 5.400E+02 3.453E-11 0.000000 21.691 93.691

total harmonic distortion = 0.000000 percent
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A .plot command appears in the SPICE netlist, and normally this would result in a sine-wave
graph output. In this case, however, I’ve purposely omitted the waveform display for brevity’s sake –
the .plot command is in the netlist simply to satisfy a quirk of SPICE’s Fourier transform function.
No discrete Fourier transform is perfect, and so we see very small harmonic currents indicated

(in the pico-amp range!) for all frequencies up to the 9th harmonic (in the table ), which is as far
as SPICE goes in performing Fourier analysis. We show 0.1198 amps (1.198E-01) for the ”fourier
component” of the 1st harmonic, or the fundamental frequency, which is our expected load current:
about 120 mA, given a source voltage of 120 volts and a load resistance of 1 kΩ.
Next, I’d like to simulate a nonlinear load so as to generate harmonic currents. This can be done

in two fundamentally different ways. One way is to design a load using nonlinear components such
as diodes or other semiconductor devices which as easy to simulate with SPICE. Another is to add
some AC current sources in parallel with the load resistor. The latter method is often preferred
by engineers for simulating harmonics, since current sources of known value lend themselves better
to mathematical network analysis than components with highly complex response characteristics.
Since we’re letting SPICE do all the math work, the complexity of a semiconductor component
would cause no trouble for us, but since current sources can be fine-tuned to produce any arbitrary
amount of current (a convenient feature), I’ll choose the latter approach:

Vsource

Rsource

Rline

Rload

120 V

1 Ω
1 Ω

1 kΩ

0

1

2 3

0

3

0

60 Hz

50 mA
180 Hz

Nonlinear load simulation

vsource 1 0 sin(0 120 60 0 0)

rsource 1 2 1

rline 2 3 1

rload 3 0 1k

i3har 3 0 sin(0 50m 180 0 0)

.options itl5=0

.tran 0.5m 30m 0 1u

.plot tran v(2,3)

.four 60 v(2,3)

.end

In this circuit, we have a current source of 50 mA magnitude and a frequency of 180 Hz, which
is three times the source frequency of 60 Hz. Connected in parallel with the 1 kΩ load resistor, its
current will add with the resistor’s to make a nonsinusoidal total line current. I’ll show the waveform
plot here just so you can see the effects of this 3rd-harmonic current on the total current, which
would ordinarily be a plain sine wave:
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fourier components of transient response v(2,3)

dc component = 1.349E-11

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 6.000E+01 1.198E-01 1.000000 -72.000 0.000

2 1.200E+02 1.609E-11 0.000000 67.570 139.570

3 1.800E+02 4.990E-02 0.416667 144.000 216.000

4 2.400E+02 1.074E-10 0.000000 -169.546 -97.546

5 3.000E+02 3.871E-11 0.000000 169.582 241.582

6 3.600E+02 5.736E-11 0.000000 140.845 212.845

7 4.200E+02 8.407E-11 0.000000 177.071 249.071

8 4.800E+02 1.329E-10 0.000000 156.772 228.772

9 5.400E+02 2.619E-10 0.000000 160.498 232.498

total harmonic distortion = 41.666663 percent
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In the Fourier analysis, the mixed frequencies are unmixed and presented separately. Here we
see the same 0.1198 amps of 60 Hz (fundamental) current as we did in the first simulation, but
appearing in the 3rd harmonic row we see 49.9 mA: our 50 mA, 180 Hz current source at work. Why
don’t we see the entire 50 mA through the line? Because that current source is connected across the
1 kΩ load resistor, so some of its current is shunted through the load and never goes through the
line back to the source. It’s an inevitable consequence of this type of simulation, where one part of
the load is ”normal” (a resistor) and the other part is imitated by a current source.
If we were to add more current sources to the ”load,” we would see further distortion of the line

current waveform from the ideal sine-wave shape, and each of those harmonic currents would appear
in the Fourier analysis breakdown:

Vsource

Rsource

Rline

Rload

120 V

1 Ω
1 Ω

1 kΩ

0

1

2 3

0

3

0

60 Hz
50 mA
180 Hz

0

3

50 mA
300 Hz

50 mA

3

0

420 Hz

3

0

50 mA
540 Hz

Nonlinear load: 1st, 3rd, 5th, 7th, and 9th
harmonics present

Nonlinear load simulation

vsource 1 0 sin(0 120 60 0 0)

rsource 1 2 1
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rline 2 3 1

rload 3 0 1k

i3har 3 0 sin(0 50m 180 0 0)

i5har 3 0 sin(0 50m 300 0 0)

i7har 3 0 sin(0 50m 420 0 0)

i9har 3 0 sin(0 50m 540 0 0)

.options itl5=0

.tran 0.5m 30m 0 1u

.plot tran v(2,3)

.four 60 v(2,3)

.end

fourier components of transient response v(2,3)

dc component = 6.299E-11

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 6.000E+01 1.198E-01 1.000000 -72.000 0.000

2 1.200E+02 1.900E-09 0.000000 -93.908 -21.908

3 1.800E+02 4.990E-02 0.416667 144.000 216.000

4 2.400E+02 5.469E-09 0.000000 -116.873 -44.873

5 3.000E+02 4.990E-02 0.416667 0.000 72.000

6 3.600E+02 6.271E-09 0.000000 85.062 157.062

7 4.200E+02 4.990E-02 0.416666 -144.000 -72.000

8 4.800E+02 2.742E-09 0.000000 -38.781 33.219

9 5.400E+02 4.990E-02 0.416666 72.000 144.000

total harmonic distortion = 83.333296 percent
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As you can see from the Fourier analysis, every harmonic current source is equally represented
in the line current, at 49.9 mA each. So far, this is just a single-phase power system simulation.
Things get more interesting when we make it a three-phase simulation. Two Fourier analyses will
be performed: one for the voltage across a line resistor, and one for the voltage across the neutral
resistor. As before, reading voltages across fixed resistances of 1 Ω each gives direct indications of
current through those resistors:

Rload1 kΩ
50 mA
180 Hz

50 mA
300 Hz

50 mA
420 Hz

50 mA
540 Hz

Rload1 kΩ
50 mA
180 Hz

50 mA
300 Hz

50 mA
420 Hz

50 mA
540 Hz

Rload
1 kΩ

50 mA
180 Hz

50 mA
300 Hz

50 mA
420 Hz

50 mA
540 Hz

Vsource

Rsource

120 V

1 Ω

60 Hz

Rline

1 Ω

Vsource

Rsource

120 V

1 Ω

60 Hz

Vsource

Rsource

120 V

1 Ω

60 Hz

Rline

1 Ω

1 Ω

Rline

1 Ω

Rneutral

0

1

2

3

4

5

6

120o0o

240o

7

8 9

10

Y-Y source/load 4-wire system with harmonics

*

* phase1 voltage source and r (120 v / 0 deg)

vsource1 1 0 sin(0 120 60 0 0)

rsource1 1 2 1

*

* phase2 voltage source and r (120 v / 120 deg)

vsource2 3 0 sin(0 120 60 5.55555m 0)

rsource2 3 4 1

*

* phase3 voltage source and r (120 v / 240 deg)

vsource3 5 0 sin(0 120 60 11.1111m 0)

rsource3 5 6 1

*

* line and neutral wire resistances

rline1 2 8 1

rline2 4 9 1

rline3 6 10 1

rneutral 0 7 1

*

* phase 1 of load

rload1 8 7 1k

i3har1 8 7 sin(0 50m 180 0 0)

i5har1 8 7 sin(0 50m 300 0 0)
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i7har1 8 7 sin(0 50m 420 0 0)

i9har1 8 7 sin(0 50m 540 0 0)

*

* phase 2 of load

rload2 9 7 1k

i3har2 9 7 sin(0 50m 180 5.55555m 0)

i5har2 9 7 sin(0 50m 300 5.55555m 0)

i7har2 9 7 sin(0 50m 420 5.55555m 0)

i9har2 9 7 sin(0 50m 540 5.55555m 0)

*

* phase 3 of load

rload3 10 7 1k

i3har3 10 7 sin(0 50m 180 11.1111m 0)

i5har3 10 7 sin(0 50m 300 11.1111m 0)

i7har3 10 7 sin(0 50m 420 11.1111m 0)

i9har3 10 7 sin(0 50m 540 11.1111m 0)

*

* analysis stuff

.options itl5=0

.tran 0.5m 100m 12m 1u

.plot tran v(2,8)

.four 60 v(2,8)

.plot tran v(0,7)

.four 60 v(0,7)

.end

Fourier analysis of line current:

fourier components of transient response v(2,8)

dc component = -6.404E-12

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 6.000E+01 1.198E-01 1.000000 0.000 0.000

2 1.200E+02 2.218E-10 0.000000 172.985 172.985

3 1.800E+02 4.975E-02 0.415423 0.000 0.000

4 2.400E+02 4.236E-10 0.000000 166.990 166.990

5 3.000E+02 4.990E-02 0.416667 0.000 0.000

6 3.600E+02 1.877E-10 0.000000 -147.146 -147.146

7 4.200E+02 4.990E-02 0.416666 0.000 0.000

8 4.800E+02 2.784E-10 0.000000 -148.811 -148.811

9 5.400E+02 4.975E-02 0.415422 0.000 0.000

total harmonic distortion = 83.209009 percent



314 CHAPTER 10. POLYPHASE AC CIRCUITS

Fourier analysis of neutral current:

fourier components of transient response v(0,7)

dc component = 1.819E-10

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 6.000E+01 4.337E-07 1.000000 60.018 0.000

2 1.200E+02 1.869E-10 0.000431 91.206 31.188

3 1.800E+02 1.493E-01 344147.7638 -180.000 -240.018

4 2.400E+02 1.257E-09 0.002898 -21.103 -81.121

5 3.000E+02 9.023E-07 2.080596 119.981 59.963

6 3.600E+02 3.396E-10 0.000783 15.882 -44.136

7 4.200E+02 1.264E-06 2.913955 59.993 -0.025

8 4.800E+02 5.975E-10 0.001378 35.584 -24.434

9 5.400E+02 1.493E-01 344147.4889 -179.999 -240.017
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This is a balanced Y-Y power system, each phase identical to the single-phase AC system simu-
lated earlier. Consequently, it should come as no surprise that the Fourier analysis for line current
in one phase of the 3-phase system is nearly identical to the Fourier analysis for line current in the
single-phase system: a fundamental (60 Hz) line current of 0.1198 amps, and odd harmonic currents
of approximately 50 mA each.

What should be surprising here is the analysis for the neutral conductor’s current, as determined
by the voltage drop across the Rneutral resistor between SPICE nodes 0 and 7. In a balanced 3-
phase Y load, we would expect the neutral current to be zero. Each phase current – which by itself
would go through the neutral wire back to the supplying phase on the source Y – should cancel each
other in regard to the neutral conductor because they’re all the same magnitude and all shifted 120o

apart. In a system with no harmonic currents, this is what happens, leaving zero current through
the neutral conductor. However, we cannot say the same for harmonic currents in the same system.

Note that the fundamental frequency (60 Hz, or the 1st harmonic) current is virtually absent
from the neutral conductor. Our Fourier analysis shows only 0.4337 µA of 1st harmonic when
reading voltage across Rneutral. The same may be said about the 5th and 7th harmonics, both of
those currents having negligible magnitude. In contrast, the 3rd and 9th harmonics are strongly
represented within the neutral conductor, with 149.3 mA (1.493E-01 volts across 1 Ω) each! This
is very nearly 150 mA, or three times the current sources’ values, individually. With three sources
per harmonic frequency in the load, it appears our 3rd and 9th harmonic currents in each phase are
adding to form the neutral current.

This is exactly what’s happening, though it might not be apparent why this is so. The key to
understanding this is made clear in a time-domain graph of phase currents. Examine this plot of
balanced phase currents over time, with a phase sequence of 1-2-3:
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1 2 3

1 2 3- - - 1 - 2 - 3 - 1 - 2 - 3
phase sequence:

TIME 

With the three fundamental waveforms equally shifted across the time axis of the graph, it is easy
to see how they would cancel each other to give a resultant current of zero in the neutral conductor.
Let’s consider, though, what a 3rd harmonic waveform for phase 1 would look like superimposed on
the graph:

1 2 3

TIME 

Observe how this harmonic waveform has the same phase relationship to the 2nd and 3rd fun-
damental waveforms as it does with the 1st: in each positive half-cycle of any of the fundamental
waveforms, you will find exactly two positive half-cycles and one negative half-cycle of the har-
monic waveform. What this means is that the 3rd-harmonic waveforms of three 120o phase-shifted
fundamental-frequency waveforms are actually in phase with each other. The phase shift figure of
120o generally assumed in three-phase AC systems applies only to the fundamental frequencies, not
to their harmonic multiples!
If we were to plot all three 3rd-harmonic waveforms on the same graph, we would see them

precisely overlap and appear as a single, unified waveform (shown here in bold):

1 2 3

TIME 

For the more mathematically inclined, this principle may be expressed symbolically. Suppose
that A represents one waveform and B another, both at the same frequency, but shifted 120o from
each other in terms of phase. Let’s call the 3rd harmonic of each waveform A’ and B’, respectively.
The phase shift betweenA’ and B’ is not 120o (that is the phase shift betweenA and B), but 3 times
that, because the A’ and B’ waveforms alternate three times as fast as A and B. The shift between
waveforms is only accurately expressed in terms of phase angle when the same angular velocity is
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assumed. When relating waveforms of different frequency, the most accurate way to represent phase
shift is in terms of time; and the time-shift between A’ and B’ is equivalent to 120o at a frequency
three times lower, or 360o at the frequency of A’ and B’. A phase shift of 360o is the same as a
phase shift of 0o, which is to say no phase shift at all. Thus, A’ and B’ must be in phase with each
other:

Fundamental
A B C
0o 120o 240o

A’ B’ C’
3 x 0o 3 x 120o 3 x 240o

(0o) (360o = 0o) (720o = 0o)

Phase sequence = A-B-C

3rd harmonic

This characteristic of the 3rd harmonic in a three-phase system also holds true for any integer
multiples of the 3rd harmonic. So, not only are the 3rd harmonic waveforms of each fundamental
waveform in phase with each other, but so are the 6th harmonics, the 9th harmonics, the 12th
harmonics, the 15th harmonics, the 18th harmonics, the 21st harmonics, and so on. Since only odd
harmonics appear in systems where waveform distortion is symmetrical about the centerline – and
most nonlinear loads create symmetrical distortion – even-numbered multiples of the 3rd harmonic
(6th, 12th, 18th, etc.) are generally not significant, leaving only the odd-numbered multiples (3rd,
9th, 21st, etc.) to significantly contribute to neutral currents.

In polyphase power systems with some number of phases other than three, this effect occurs
with harmonics of the same multiple. For instance, the harmonic currents that add in the neutral
conductor of a star-connected 4-phase system where the phase shift between fundamental waveforms
is 90o would be the 4th, 8th, 12th, 16th, 20th, and so on.

Due to their abundance and significance in three-phase power systems, the 3rd harmonic and
its multiples have their own special name: triplen harmonics. All triplen harmonics add with
each other in the neutral conductor of a 4-wire Y-connected load. In power systems containing
substantial nonlinear loading, the triplen harmonic currents may be of great enough magnitude to
cause neutral conductors to overheat. This is very problematic, as other safety concerns prohibit
neutral conductors from having overcurrent protection, and thus there is no provision for automatic
interruption of these high currents.

The following illustration shows how triplen harmonic currents created at the load add within
the neutral conductor. The symbol ”ω” is used to represent angular velocity, and is mathematically
equivalent to 2πf. So, ”ω” represents the fundamental frequency, ”3ω ” represents the 3rd harmonic,
”5ω” represents the 5th harmonic, and so on:
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Source Load

ω
3ω

5ω
7ω

9ω

ω
3ω

5ω
7ω

9ω
ω

3ω
5ω
7ω
9ω

ω 3ω 5ω 7ω 9ω

ω 3ω 5ω 7ω 9ω

ω 3ω 5ω 7ω 9ω

3ω 9ω
3ω 9ω
3ω 9ω

Triplen harmonic currents add in neutral conductor

line

line

line

neutral

In an effort to mitigate these additive triplen currents, one might be tempted to remove the
neutral wire entirely. If there is no neutral wire in which triplen currents can flow together, then
they won’t, right? Unfortunately, doing so just causes a different problem: the load’s ”Y” center-
point will no longer be at the same potential as the source’s, meaning that each phase of the load
will receive a different voltage than what is produced by the source. We’ll re-run the last SPICE
simulation without the 1 Ω Rneutral resistor and see what happens:

Y-Y source/load (no neutral) with harmonics

*

* phase1 voltage source and r (120 v / 0 deg)

vsource1 1 0 sin(0 120 60 0 0)

rsource1 1 2 1

*

* phase2 voltage source and r (120 v / 120 deg)

vsource2 3 0 sin(0 120 60 5.55555m 0)

rsource2 3 4 1

*

* phase3 voltage source and r (120 v / 240 deg)

vsource3 5 0 sin(0 120 60 11.1111m 0)

rsource3 5 6 1

*

* line resistances

rline1 2 8 1

rline2 4 9 1

rline3 6 10 1

*

* phase 1 of load

rload1 8 7 1k

i3har1 8 7 sin(0 50m 180 0 0)

i5har1 8 7 sin(0 50m 300 0 0)
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i7har1 8 7 sin(0 50m 420 0 0)

i9har1 8 7 sin(0 50m 540 0 0)

*

* phase 2 of load

rload2 9 7 1k

i3har2 9 7 sin(0 50m 180 5.55555m 0)

i5har2 9 7 sin(0 50m 300 5.55555m 0)

i7har2 9 7 sin(0 50m 420 5.55555m 0)

i9har2 9 7 sin(0 50m 540 5.55555m 0)

*

* phase 3 of load

rload3 10 7 1k

i3har3 10 7 sin(0 50m 180 11.1111m 0)

i5har3 10 7 sin(0 50m 300 11.1111m 0)

i7har3 10 7 sin(0 50m 420 11.1111m 0)

i9har3 10 7 sin(0 50m 540 11.1111m 0)

*

* analysis stuff

.options itl5=0

.tran 0.5m 100m 12m 1u

.plot tran v(2,8)

.four 60 v(2,8)

.plot tran v(0,7)

.four 60 v(0,7)

.plot tran v(8,7)

.four 60 v(8,7)

.end

Fourier analysis of line current:
fourier components of transient response v(2,8)

dc component = 5.423E-11

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 6.000E+01 1.198E-01 1.000000 0.000 0.000

2 1.200E+02 2.388E-10 0.000000 158.016 158.016

3 1.800E+02 3.136E-07 0.000003 -90.009 -90.009

4 2.400E+02 5.963E-11 0.000000 -111.510 -111.510

5 3.000E+02 4.990E-02 0.416665 0.000 0.000

6 3.600E+02 8.606E-11 0.000000 -124.565 -124.565

7 4.200E+02 4.990E-02 0.416668 0.000 0.000

8 4.800E+02 8.126E-11 0.000000 -159.638 -159.638

9 5.400E+02 9.406E-07 0.000008 -90.005 -90.005

total harmonic distortion = 58.925539 percent

Fourier analysis of voltage between the two ”Y” center-points:
fourier components of transient response v(0,7)
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dc component = 6.093E-08

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 6.000E+01 1.453E-04 1.000000 60.018 0.000

2 1.200E+02 6.263E-08 0.000431 91.206 31.188

3 1.800E+02 5.000E+01 344147.7879 -180.000 -240.018

4 2.400E+02 4.210E-07 0.002898 -21.103 -81.121

5 3.000E+02 3.023E-04 2.080596 119.981 59.963

6 3.600E+02 1.138E-07 0.000783 15.882 -44.136

7 4.200E+02 4.234E-04 2.913955 59.993 -0.025

8 4.800E+02 2.001E-07 0.001378 35.584 -24.434

9 5.400E+02 5.000E+01 344147.4728 -179.999 -240.017

total harmonic distortion = ************ percent

Fourier analysis of load phase voltage:

fourier components of transient response v(8,7)

dc component = 6.070E-08

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 6.000E+01 1.198E+02 1.000000 0.000 0.000

2 1.200E+02 6.231E-08 0.000000 90.473 90.473

3 1.800E+02 5.000E+01 0.417500 -180.000 -180.000

4 2.400E+02 4.278E-07 0.000000 -19.747 -19.747

5 3.000E+02 9.995E-02 0.000835 179.850 179.850

6 3.600E+02 1.023E-07 0.000000 13.485 13.485

7 4.200E+02 9.959E-02 0.000832 179.790 179.789

8 4.800E+02 1.991E-07 0.000000 35.462 35.462

9 5.400E+02 5.000E+01 0.417499 -179.999 -179.999

total harmonic distortion = 59.043467 percent

Strange things are happening, indeed. First, we see that the triplen harmonic currents (3rd and
9th) all but disappear in the lines connecting load to source. The 5th and 7th harmonic currents are
present at their normal levels (approximately 50 mA), but the 3rd and 9th harmonic currents are
of negligible magnitude. Second, we see that there is substantial harmonic voltage between the two
”Y” center-points, between which the neutral conductor used to connect. According to SPICE, there
is 50 volts of both 3rd and 9th harmonic frequency between these two points, which is definitely not
normal in a linear (no harmonics), balanced Y system. Finally, the voltage as measured across one
of the load’s phases (between nodes 8 and 7 in the SPICE analysis) likewise shows strong triplen
harmonic voltages of 50 volts each.

The following illustration is a graphical summary of the aforementioned effects:
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Source Load

ω
3ω

5ω
7ω

9ω

ω
3ω

5ω
7ω

9ω
ω

3ω
5ω
7ω
9ω

ω 5ω 7ω

ω 5ω 7ω

ω 5ω 7ω

line

line

line

3ω 9ω

Triplen voltages appear between Y centers.
Triplen voltages appear across load phases.

Non-triplen currents appear in line conductors.

V

V
3ω 9ω

In summary, removal of the neutral conductor leads to a ”hot” center-point on the load ”Y”,
and also to harmonic load phase voltages of equal magnitude, all comprised of triplen frequencies.
In the previous simulation where we had a 4-wire, Y-connected system, the undesirable effect from
harmonics was excessive neutral current, but at least each phase of the load received voltage nearly
free of harmonics.
Since removing the neutral wire didn’t seem to work in eliminating the problems caused by

harmonics, perhaps switching to a ∆ configuration will. Let’s try a ∆ source instead of a Y, keeping
the load in its present Y configuration, and see what happens. The measured parameters will be
line current (voltage across Rline, nodes 0 and 8), load phase voltage (nodes 8 and 7), and source
phase current (voltage across Rsource, nodes 1 and 2):

Rload1 kΩ
50 mA
180 Hz

50 mA
300 Hz

50 mA
420 Hz

50 mA
540 Hz

Rload1 kΩ
50 mA
180 Hz

50 mA
300 Hz

50 mA
420 Hz

50 mA
540 Hz

Rload
1 kΩ

50 mA
180 Hz

50 mA
300 Hz

50 mA
420 Hz

50 mA
540 Hz

Vsource Rsource

120 V

1 Ω

60 Hz

Rline

1 Ω

Rsource

120 V

1 Ω

60 Hz

120 V

1 Ω

60 Hz

Rline

1 Ω

Rline

1 Ω

0 1 2

3

4

5
120o

0o

240o

7

8 9

10

Vsource

Vsource

Rsource

0

4

4

4

2

Delta-Y source/load with harmonics

*
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* phase1 voltage source and r (120 v / 0 deg)

vsource1 1 0 sin(0 207.846 60 0 0)

rsource1 1 2 1

*

* phase2 voltage source and r (120 v / 120 deg)

vsource2 3 2 sin(0 207.846 60 5.55555m 0)

rsource2 3 4 1

*

* phase3 voltage source and r (120 v / 240 deg)

vsource3 5 4 sin(0 207.846 60 11.1111m 0)

rsource3 5 0 1

*

* line resistances

rline1 0 8 1

rline2 2 9 1

rline3 4 10 1

*

* phase 1 of load

rload1 8 7 1k

i3har1 8 7 sin(0 50m 180 9.72222m 0)

i5har1 8 7 sin(0 50m 300 9.72222m 0)

i7har1 8 7 sin(0 50m 420 9.72222m 0)

i9har1 8 7 sin(0 50m 540 9.72222m 0)

*

* phase 2 of load

rload2 9 7 1k

i3har2 9 7 sin(0 50m 180 15.2777m 0)

i5har2 9 7 sin(0 50m 300 15.2777m 0)

i7har2 9 7 sin(0 50m 420 15.2777m 0)

i9har2 9 7 sin(0 50m 540 15.2777m 0)

*

* phase 3 of load

rload3 10 7 1k

i3har3 10 7 sin(0 50m 180 4.16666m 0)

i5har3 10 7 sin(0 50m 300 4.16666m 0)

i7har3 10 7 sin(0 50m 420 4.16666m 0)

i9har3 10 7 sin(0 50m 540 4.16666m 0)

*

* analysis stuff

.options itl5=0

.tran 0.5m 100m 16m 1u

.plot tran v(0,8) v(8,7) v(1,2)

.four 60 v(0,8) v(8,7) v(1,2)

.end

Note: the following paragraph is for those curious readers who follow every detail of my SPICE
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netlists. If you just want to find out what happens in the circuit, skip this paragraph! When simu-
lating circuits having AC sources of differing frequency and differing phase, the only way to do it in
SPICE is to set up the sources with a delay time or phase offset specified in seconds. Thus, the 0o

source has these five specifying figures: ”(0 207.846 60 0 0)”, which means 0 volts DC offset, 207.846
volts peak amplitude (120 times the square root of three, to ensure the load phase voltages remain
at 120 volts each), 60 Hz, 0 time delay, and 0 damping factor. The 120o phase-shifted source has
these figures: ”(0 207.846 60 5.55555m 0)”, all the same as the first except for the time delay factor
of 5.55555 milliseconds, or 1/3 of the full period of 16.6667 milliseconds for a 60 Hz waveform. The
240o source must be time-delayed twice that amount, equivalent to a fraction of 240/360 of 16.6667
milliseconds, or 11.1111 milliseconds. This is for the ∆-connected source. The Y-connected load,
on the other hand, requires a different set of time-delay figures for its harmonic current sources,
because the phase voltages in a Y load are not in phase with the phase voltages of a ∆ source. If
∆ source voltages VAC , VBA, and VCB are referenced at 0

o, 120o, and 240o, respectively, then ”Y”
load voltages VA, VB , and VC will have phase angles of -30

o, 90o, and 210o, respectively. This is an
intrinsic property of all ∆-Y circuits and not a quirk of SPICE. Therefore, when I specified the delay
times for the harmonic sources, I had to set them at 15.2777 milliseconds (-30o, or +330o), 4.16666
milliseconds (90o), and 9.72222 milliseconds (210o). One final note: when delaying AC sources in
SPICE, they don’t ”turn on” until their delay time has elapsed, which means any mathematical
analysis up to that point in time will be in error. Consequently, I set the .tran transient analysis
line to hold off analysis until 16 milliseconds after start, which gives all sources in the netlist time
to engage before any analysis takes place.
The result of this analysis is almost as disappointing as the last. Line currents remain unchanged

(the only substantial harmonic content being the 5th and 7th harmonics), and load phase voltages
remain unchanged as well, with a full 50 volts of triplen harmonic (3rd and 9th) frequencies across
each load component. Source phase current is a fraction of the line current, which should come as
no surprise. Both 5th and 7th harmonics are represented there, with negligible triplen harmonics:

Fourier analysis of line current:
fourier components of transient response v(0,8)

dc component = -6.850E-11

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 6.000E+01 1.198E-01 1.000000 150.000 0.000

2 1.200E+02 2.491E-11 0.000000 159.723 9.722

3 1.800E+02 1.506E-06 0.000013 0.005 -149.996

4 2.400E+02 2.033E-11 0.000000 52.772 -97.228

5 3.000E+02 4.994E-02 0.416682 30.002 -119.998

6 3.600E+02 1.234E-11 0.000000 57.802 -92.198

7 4.200E+02 4.993E-02 0.416644 -29.998 -179.998

8 4.800E+02 8.024E-11 0.000000 -174.200 -324.200

9 5.400E+02 4.518E-06 0.000038 -179.995 -329.995

total harmonic distortion = 58.925038 percent

Fourier analysis of load phase voltage:
fourier components of transient response v(8,7)

dc component = 1.259E-08
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harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 6.000E+01 1.198E+02 1.000000 150.000 0.000

2 1.200E+02 1.941E-07 0.000000 49.693 -100.307

3 1.800E+02 5.000E+01 0.417222 -89.998 -239.998

4 2.400E+02 1.519E-07 0.000000 66.397 -83.603

5 3.000E+02 6.466E-02 0.000540 -151.112 -301.112

6 3.600E+02 2.433E-07 0.000000 68.162 -81.838

7 4.200E+02 6.931E-02 0.000578 148.548 -1.453

8 4.800E+02 2.398E-07 0.000000 -174.897 -324.897

9 5.400E+02 5.000E+01 0.417221 90.006 -59.995

total harmonic distortion = 59.004109 percent

Fourier analysis of source phase current:

fourier components of transient response v(1,2)

dc component = 3.564E-11

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 6.000E+01 6.906E-02 1.000000 -0.181 0.000

2 1.200E+02 1.525E-11 0.000000 -156.674 -156.493

3 1.800E+02 1.422E-06 0.000021 -179.996 -179.815

4 2.400E+02 2.949E-11 0.000000 -110.570 -110.390

5 3.000E+02 2.883E-02 0.417440 -179.996 -179.815

6 3.600E+02 2.324E-11 0.000000 -91.926 -91.745

7 4.200E+02 2.883E-02 0.417398 -179.994 -179.813

8 4.800E+02 4.140E-11 0.000000 -39.875 -39.694

9 5.400E+02 4.267E-06 0.000062 0.006 0.186

total harmonic distortion = 59.031969 percent
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Source Load

ω
3ω

5ω
7ω

9ω

ω
3ω

5ω
7ω

9ω
ω

3ω
5ω
7ω
9ω

ω 5ω 7ω

ω 5ω 7ω

ω 5ω 7ω

line

line

line

3ω 9ω

Triplen voltages appear across load phases.

V

ω 5ω 7ωω 5ω 7ω

ω 5ω 7ω

Non-triplen currents appear in line conductors
and in source phase windings.

Really, the only advantage of the ∆-Y configuration from the standpoint of harmonics is that
there is no longer a center-point at the load posing a shock hazard. Otherwise, the load components
receive the same harmonically-rich voltages and the lines see the same currents as in a three-wire Y
system.
If we were to reconfigure the system into a ∆-∆ arrangement, that should guarantee that each

load component receives non-harmonic voltage, since each load phase would be directly connected
in parallel with each source phase. The complete lack of any neutral wires or ”center points” in a
∆-∆ system prevents strange voltages or additive currents from occurring. It would seem to be the
ideal solution. Let’s simulate and observe, analyzing line current, load phase voltage, and source
phase current:

Rload

1 kΩ

50 mA
180 Hz
50 mA
300 Hz
50 mA
420 Hz
50 mA
540 Hz

Rload1 kΩ
50 mA
180 Hz

50 mA
300 Hz

50 mA
420 Hz

50 mA
540 Hz

Rload
1 kΩ

50 mA
180 Hz

50 mA
300 Hz

50 mA
420 Hz

50 mA
540 Hz

Vsource Rsource

120 V

1 Ω

60 Hz

Rline

1 Ω

Rsource

120 V

1 Ω

60 Hz

120 V

1 Ω

60 Hz

Rline

1 Ω

Rline

1 Ω

0 1 2

3

4

5
120o

0o

240o

Vsource

Vsource

Rsource

0

4

4

4

2 6 7

8
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Delta-Delta source/load with harmonics

*

* phase1 voltage source and r (120 v / 0 deg)

vsource1 1 0 sin(0 120 60 0 0)

rsource1 1 2 1

*

* phase2 voltage source and r (120 v / 120 deg)

vsource2 3 2 sin(0 120 60 5.55555m 0)

rsource2 3 4 1

*

* phase3 voltage source and r (120 v / 240 deg)

vsource3 5 4 sin(0 120 60 11.1111m 0)

rsource3 5 0 1

*

* line resistances

rline1 0 6 1

rline2 2 7 1

rline3 4 8 1

*

* phase 1 of load

rload1 7 6 1k

i3har1 7 6 sin(0 50m 180 0 0)

i5har1 7 6 sin(0 50m 300 0 0)

i7har1 7 6 sin(0 50m 420 0 0)

i9har1 7 6 sin(0 50m 540 0 0)

*

* phase 2 of load

rload2 8 7 1k

i3har2 8 7 sin(0 50m 180 5.55555m 0)

i5har2 8 7 sin(0 50m 300 5.55555m 0)

i7har2 8 7 sin(0 50m 420 5.55555m 0)

i9har2 8 7 sin(0 50m 540 5.55555m 0)

*

* phase 3 of load

rload3 6 8 1k

i3har3 6 8 sin(0 50m 180 11.1111m 0)

i5har3 6 8 sin(0 50m 300 11.1111m 0)

i7har3 6 8 sin(0 50m 420 11.1111m 0)

i9har3 6 8 sin(0 50m 540 11.1111m 0)

*

* analysis stuff

.options itl5=0

.tran 0.5m 100m 16m 1u

.plot tran v(0,6) v(7,6) v(2,1) i(3har1)

.four 60 v(0,6) v(7,6) v(2,1)

.end
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Fourier analysis of line current:
fourier components of transient response v(0,6)

dc component = -6.007E-11

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 6.000E+01 2.070E-01 1.000000 150.000 0.000

2 1.200E+02 5.480E-11 0.000000 156.666 6.666

3 1.800E+02 6.257E-07 0.000003 89.990 -60.010

4 2.400E+02 4.911E-11 0.000000 8.187 -141.813

5 3.000E+02 8.626E-02 0.416664 -149.999 -300.000

6 3.600E+02 1.089E-10 0.000000 -31.997 -181.997

7 4.200E+02 8.626E-02 0.416669 150.001 0.001

8 4.800E+02 1.578E-10 0.000000 -63.940 -213.940

9 5.400E+02 1.877E-06 0.000009 89.987 -60.013

total harmonic distortion = 58.925538 percent

Fourier analysis of load phase voltage:
fourier components of transient response v(7,6)

dc component = -5.680E-10

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 6.000E+01 1.195E+02 1.000000 0.000 0.000

2 1.200E+02 1.039E-09 0.000000 144.749 144.749

3 1.800E+02 1.251E-06 0.000000 89.974 89.974

4 2.400E+02 4.215E-10 0.000000 36.127 36.127

5 3.000E+02 1.992E-01 0.001667 -180.000 -180.000

6 3.600E+02 2.499E-09 0.000000 -4.760 -4.760

7 4.200E+02 1.992E-01 0.001667 -180.000 -180.000

8 4.800E+02 2.951E-09 0.000000 -151.385 -151.385

9 5.400E+02 3.752E-06 0.000000 89.905 89.905

total harmonic distortion = 0.235702 percent

Fourier analysis of source phase current:
fourier components of transient response v(2,1)

dc component = -1.923E-12

harmonic frequency fourier normalized phase normalized

no (hz) component component (deg) phase (deg)

1 6.000E+01 1.194E-01 1.000000 179.940 0.000

2 1.200E+02 2.569E-11 0.000000 133.491 -46.449

3 1.800E+02 3.129E-07 0.000003 89.985 -89.955

4 2.400E+02 2.657E-11 0.000000 23.368 -156.571

5 3.000E+02 4.980E-02 0.416918 -180.000 -359.939

6 3.600E+02 4.595E-11 0.000000 -22.475 -202.415

7 4.200E+02 4.980E-02 0.416921 -180.000 -359.939

8 4.800E+02 7.385E-11 0.000000 -63.759 -243.699

9 5.400E+02 9.385E-07 0.000008 89.991 -89.949
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total harmonic distortion = 58.961298 percent

As predicted earlier, the load phase voltage is almost a pure sine-wave, with negligible harmonic
content, thanks to the direct connection with the source phases in a ∆-∆ system. But what happened
to the triplen harmonics? The 3rd and 9th harmonic frequencies don’t appear in any substantial
amount in the line current, nor in the load phase voltage, nor in the source phase current! We
know that triplen currents exist, because the 3rd and 9th harmonic current sources are intentionally
placed in the phases of the load, but where did those currents go?
Remember that the triplen harmonics of 120o phase-shifted fundamental frequencies are in phase

with each other. Note the directions that the arrows of the current sources within the load phases
are pointing, and think about what would happen if the 3rd and 9th harmonic sources were DC
sources instead. What we would have is current circulating within the loop formed by the ∆-connected
phases. This is where the triplen harmonic currents have gone: they stay within the ∆ of the load,
never reaching the line conductors or the windings of the source. These results may be graphically
summarized as such:

Source Load

ω
3ω

5ω
7ω

9ω

ω 5ω 7ω

ω 5ω 7ω

ω 5ω 7ω

line

line

line

ω 5ω 7ωω 5ω 7ω

ω 5ω 7ω

Non-triplen currents appear in line conductors
and in source phase windings.

9ω3ω
9ω3ω
9ω3ω

ω 5ω 7ω3ω 9ω

ω

5ω
7ω

3ω

9ωVω

Load phases receive undistorted sine-wave voltage.
Triplen currents are confined to circulate within load phases.

This is a major benefit of the ∆-∆ system configuration: triplen harmonic currents remain
confined in whatever set of components create them, and do not ”spread” to other parts of the
system.

• REVIEW:

• Nonlinear components are those that draw a non-sinusoidal (non-sine-wave) current waveform
when energized by a sinusoidal (sine-wave) voltage. Since any distortion of an originally pure
sine-wave constitutes harmonic frequencies, we can say that nonlinear components generate
harmonic currents.

• When the sine-wave distortion is symmetrical above and below the average centerline of the
waveform, the only harmonics present will be odd-numbered, not even-numbered.
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• The 3rd harmonic, and integer multiples of it (6th, 9th, 12th, 15th) are known as triplen har-
monics. They are in phase with each other, despite the fact that their respective fundamental
waveforms are 120o out of phase with each other.

• In a 4-wire Y-Y system, triplen harmonic currents add within the neutral conductor.

• Triplen harmonic currents in a ∆-connected set of components circulate within the loop formed
by the ∆.

10.8 Harmonic phase sequences

In the last section, we saw how the 3rd harmonic and all of its integer multiples (collectively called
triplen harmonics) generated by 120o phase-shifted fundamental waveforms are actually in phase
with each other. In a 60 Hz three-phase power system, where phases A, B, and C are 120o apart,
the third-harmonic multiples of those frequencies (180 Hz) fall perfectly into phase with each other.
This can be thought of in graphical terms, and/or in mathematical terms:

TIME 

A B C

Fundamental
A B C
0o 120o 240o

A’ B’ C’
3 x 0o 3 x 120o 3 x 240o

(0o) (360o = 0o) (720o = 0o)

Phase sequence = A-B-C

3rd harmonic

If we extend the mathematical table to include higher odd-numbered harmonics, we will notice
an interesting pattern develop with regard to the rotation or sequence of the harmonic frequencies:
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Fundamental
A B C
0o 120o 240o

A’ B’ C’
3 x 0o 3 x 120o 3 x 240o

(0o) (360o = 0o) (720o = 0o)

A-B-C

no
rotation

5th harmonic
A’’ B’’ C’’

5 x 0o 5 x 120o 5 x 240o

(0o)
(600o = 720o - 120o)

(-120o)
(1200o = 1440o - 240o)

(-240o)

C-B-A

7th harmonic
A’’’ B’’’ C’’’

7 x 0o

(0o)
7 x 120o 7 x 240o

(840o = 720o + 120o)

(120o)
(1680o = 1440o + 240o)

(240o)

A-B-C

A’’’’ B’’’’ C’’’’
9 x 0o

(0o)
9 x 120o

(1080o = 0o)

9 x 240o

(2160o = 0o)

no
rotation

3rd harmonic

9th harmonic

Harmonics such as the 7th, which ”rotate” with the same sequence as the fundamental, are
called positive sequence. Harmonics such as the 5th, which ”rotate” in the opposite sequence as
the fundamental, are called negative sequence. Triplen harmonics (3rd and 9th shown in this table)
which don’t ”rotate” at all because they’re in phase with each other, are called zero sequence.

This pattern of positive-zero-negative-positive continues indefinitely for all odd-numbered har-
monics, lending itself to expression in a table like this:

+

-

0

1st

3rd

5th

7th

9th

11th

13th

15th

17th

19th

21st

23rd

Rotation sequences according
to harmonic number

Rotates with fundamental

Rotates against fundamental

Does not rotate

Sequence especially matters when we’re dealing with AC motors, since the mechanical rotation of
the rotor depends on the torque produced by the sequential ”rotation” of the applied 3-phase power.
Positive-sequence frequencies work to push the rotor in the proper direction, whereas negative-
sequence frequencies actually work against the direction of the rotor’s rotation. Zero-sequence
frequencies neither contribute to nor detract from the rotor’s torque. An excess of negative-sequence
harmonics (5th, 11th, 17th, and/or 23rd) in the power supplied to a three-phase AC motor will result
in a degradation of performance and possible overheating. Since the higher-order harmonics tend to
be attenuated more by system inductances and magnetic core losses, and generally originate with
less amplitude anyway, the primary harmonic of concern is the 5th, which is 300 Hz in 60 Hz power
systems and 250 Hz in 50 Hz power systems.
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10.9 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most recent
to first. See Appendix 2 (Contributor List) for dates and contact information.
Ed Beroset (May 6, 2002): Suggested better ways to illustrate the meaning of the prefix ”poly-”.
Jason Starck (June 2000): HTML document formatting, which led to a much better-looking

second edition.
Dennis Crunkilton (June 2005): Spice-Nutmeg plot, Fourier impulse plots.
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11.1 Power in resistive and reactive AC circuits

Consider a circuit for a single-phase AC power system, where a 120 volt, 60 Hz AC voltage source
is delivering power to a resistive load:

120 V
60 Hz

R 60 Ω

ZR = 60 + j0 Ω   or   60 Ω ∠ 0o

I =
E

Z

I =
120 V

60 Ω

I = 2 A

333
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In this example, the current to the load would be 2 amps, RMS. The power dissipated at the
load would be 240 watts. Because this load is purely resistive (no reactance), the current is in phase
with the voltage, and calculations look similar to that in an equivalent DC circuit. If we were to
plot the voltage, current, and power waveforms for this circuit, it would look like this:

Time 

+

-

e =
i =

p =

Note that the waveform for power is always positive, never negative for this resistive circuit. This
means that power is always being dissipated by the resistive load, and never returned to the source
as it is with reactive loads. If the source were a mechanical generator, it would take 240 watts worth
of mechanical energy (about 1/3 horsepower) to turn the shaft.

Also note that the waveform for power is not at the same frequency as the voltage or current!
Rather, its frequency is double that of either the voltage or current waveforms. This different fre-
quency prohibits our expression of power in an AC circuit using the same complex (rectangular
or polar) notation as used for voltage, current, and impedance, because this form of mathemati-
cal symbolism implies unchanging phase relationships. When frequencies are not the same, phase
relationships constantly change.

As strange as it may seem, the best way to proceed with AC power calculations is to use scalar
notation, and to handle any relevant phase relationships with trigonometry.

For comparison, let’s consider a simple AC circuit with a purely reactive load:

120 V
60 Hz L 160 mH
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I =
E

Z

I =
120 V

XL = 60.319 Ω

ZL = 0 + j60.319 Ω   or   60.319 Ω ∠ 90o

60.319 Ω

I = 1.989 A

Time 

+

-

e =
i =

p =

Note that the power alternates equally between cycles of positive and negative. This means that
power is being alternately absorbed from and returned to the source. If the source were a mechanical
generator, it would take (practically) no net mechanical energy to turn the shaft, because no power
would be used by the load. The generator shaft would be easy to spin, and the inductor would not
become warm as a resistor would.

Now, let’s consider an AC circuit with a load consisting of both inductance and resistance:

120 V
60 Hz

Lload

Rload

Load

160 mH

60 Ω
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I =
E

Z

I =
120 V

XL = 60.319 Ω

ZL = 0 + j60.319 Ω   or   60.319 Ω ∠ 90o

ZR = 60 + j0 Ω   or   60 Ω ∠ 0o

Ztotal = 60 + j60.319 Ω   or   85.078 Ω ∠ 45.152o

85.078 Ω

I = 1.410 A

At a frequency of 60 Hz, the 160 millihenrys of inductance gives us 60.319 Ω of inductive reac-
tance. This reactance combines with the 60 Ω of resistance to form a total load impedance of 60
+ j60.319 Ω, or 85.078 Ω 6 45.152o. If we’re not concerned with phase angles (which we’re not at
this point), we may calculate current in the circuit by taking the polar magnitude of the voltage
source (120 volts) and dividing it my the polar magnitude of the impedance (85.078 Ω). With a
power supply voltage of 120 volts RMS, our load current is 1.410 amps. This is the figure an RMS
ammeter would indicate if connected in series with the resistor and inductor.

We already know that reactive components dissipate zero power, as they equally absorb power
from, and return power to, the rest of the circuit. Therefore, any inductive reactance in this load
will likewise dissipate zero power. The only thing left to dissipate power here is the resistive portion
of the load impedance. If we look at the waveform plot of voltage, current, and total power for this
circuit, we see how this combination works:

Time 

+

-

e =
i =

p =

As with any reactive circuit, the power alternates between positive and negative instantaneous
values over time. In a purely reactive circuit that alternation between positive and negative power
is equally divided, resulting in a net power dissipation of zero. However, in circuits with mixed
resistance and reactance like this one, the power waveform will still alternate between positive and
negative, but the amount of positive power will exceed the amount of negative power. In other
words, the combined inductive/resistive load will consume more power than it returns back to the
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source.
Looking at the waveform plot for power, it should be evident that the wave spends more time on

the positive side of the center line than on the negative, indicating that there is more power absorbed
by the load than there is returned to the circuit. What little returning of power that occurs is due to
the reactance; the imbalance of positive versus negative power is due to the resistance as it dissipates
energy outside of the circuit (usually in the form of heat). If the source were a mechanical generator,
the amount of mechanical energy needed to turn the shaft would be the amount of power averaged
between the positive and negative power cycles.
Mathematically representing power in an AC circuit is a challenge, because the power wave

isn’t at the same frequency as voltage or current. Furthermore, the phase angle for power means
something quite different from the phase angle for either voltage or current. Whereas the angle
for voltage or current represents a relative shift in timing between two waves, the phase angle for
power represents a ratio between power dissipated and power returned. Because of this way in which
AC power differs from AC voltage or current, it is actually easier to arrive at figures for power by
calculating with scalar quantities of voltage, current, resistance, and reactance than it is to try to
derive it from vector, or complex quantities of voltage, current, and impedance that we’ve worked
with so far.

• REVIEW:

• In a purely resistive circuit, all circuit power is dissipated by the resistor(s). Voltage and
current are in phase with each other.

• In a purely reactive circuit, no circuit power is dissipated by the load(s). Rather, power is
alternately absorbed from and returned to the AC source. Voltage and current are 90o out of
phase with each other.

• In a circuit consisting of resistance and reactance mixed, there will be more power dissipated
by the load(s) than returned, but some power will definitely be dissipated and some will merely
be absorbed and returned. Voltage and current in such a circuit will be out of phase by a value
somewhere between 0o and 90o.

11.2 True, Reactive, and Apparent power

We know that reactive loads such as inductors and capacitors dissipate zero power, yet the fact that
they drop voltage and draw current gives the deceptive impression that they actually do dissipate
power. This ”phantom power” is called reactive power, and it is measured in a unit called Volt-Amps-
Reactive (VAR), rather than watts. The mathematical symbol for reactive power is (unfortunately)
the capital letter Q. The actual amount of power being used, or dissipated, in a circuit is called true
power, and it is measured in watts (symbolized by the capital letter P, as always). The combination
of reactive power and true power is called apparent power, and it is the product of a circuit’s voltage
and current, without reference to phase angle. Apparent power is measured in the unit of Volt-Amps
(VA) and is symbolized by the capital letter S.
As a rule, true power is a function of a circuit’s dissipative elements, usually resistances (R).

Reactive power is a function of a circuit’s reactance (X). Apparent power is a function of a circuit’s
total impedance (Z). Since we’re dealing with scalar quantities for power calculation, any complex
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starting quantities such as voltage, current, and impedance must be represented by their polar
magnitudes, not by real or imaginary rectangular components. For instance, if I’m calculating true
power from current and resistance, I must use the polar magnitude for current, and not merely the
”real” or ”imaginary” portion of the current. If I’m calculating apparent power from voltage and
impedance, both of these formerly complex quantities must be reduced to their polar magnitudes
for the scalar arithmetic.
There are several power equations relating the three types of power to resistance, reactance, and

impedance (all using scalar quantities):

P = true power P = I2R P = 
E2

R

Q = reactive power
E2

X

Measured in units of Watts

Measured in units of Volt-Amps-Reactive (VAR)

S = apparent power

Q =Q = I2X

S = I2Z
E2

S =
Z

S = IE

Measured in units of Volt-Amps (VA)

Please note that there are two equations each for the calculation of true and reactive power.
There are three equations available for the calculation of apparent power, P=IE being useful only
for that purpose. Examine the following circuits and see how these three types of power interrelate:

Resistive load only:

120 V
60 Hz

Rno
reactance

I = 2 A

60 Ω

P = true power = I2R = 240 W

Q = reactive power = I2X = 0 VAR

S = apparent power = I2Z = 240 VA

Reactive load only:
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120 V
60 Hz L 160 mH

I = 1.989 A

XL = 60.319 Ω

no
resistance

P = true power = I2R = 0 W

Q = reactive power = I2X = 238.73 VAR

S = apparent power = I2Z = 238.73 VA

Resistive/reactive load:

120 V
60 Hz

160 mHLload

Rload

Load
I = 1.410 A

XL = 60.319 Ω

60 Ω

P = true power = I2R = 119.365 W

Q = reactive power = I2X = 119.998 VAR

S = apparent power = I2Z = 169.256 VA

These three types of power – true, reactive, and apparent – relate to one another in trigonometric
form. We call this the power triangle:
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True power (P)

Reactive power (Q)

Apparent power (S)

phase angle

measured in Watts

measured in VA

measured in VAR

The "Power Triangle"

Impedance

Using the laws of trigonometry, we can solve for the length of any side (amount of any type of
power), given the lengths of the other two sides, or the length of one side and an angle.

• REVIEW:

• Power dissipated by a load is referred to as true power. True power is symbolized by the letter
P and is measured in the unit of Watts (W).

• Power merely absorbed and returned in load due to its reactive properties is referred to as
reactive power. Reactive power is symbolized by the letter Q and is measured in the unit of
Volt-Amps-Reactive (VAR).

• Total power in an AC circuit, both dissipated and absorbed/returned is referred to as apparent
power. Apparent power is symbolized by the letter S and is measured in the unit of Volt-Amps
(VA).

• These three types of power are trigonometrically related to one another. In a right triangle,
P = adjacent length, Q = opposite length, and S = hypotenuse length. The opposite angle is
equal to the circuit’s impedance (Z) phase angle.

11.3 Calculating power factor

As was mentioned before, the angle of this ”power triangle” graphically indicates the ratio between
the amount of dissipated (or consumed) power and the amount of absorbed/returned power. It also
happens to be the same angle as that of the circuit’s impedance in polar form. When expressed
as a fraction, this ratio between true power and apparent power is called the power factor for this
circuit. Because true power and apparent power form the adjacent and hypotenuse sides of a right
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triangle, respectively, the power factor ratio is also equal to the cosine of that phase angle. Using
values from the last example circuit:

Power factor =
True power

Apparent power

Power factor =
119.365 W

169.256 VA

Power factor = 0.705

cos 45.152o = 0.705

It should be noted that power factor, like all ratio measurements, is a unitless quantity.

For the purely resistive circuit, the power factor is 1 (perfect), because the reactive power equals
zero. Here, the power triangle would look like a horizontal line, because the opposite (reactive
power) side would have zero length.

For the purely inductive circuit, the power factor is zero, because true power equals zero. Here,
the power triangle would look like a vertical line, because the adjacent (true power) side would have
zero length.

The same could be said for a purely capacitive circuit. If there are no dissipative (resistive)
components in the circuit, then the true power must be equal to zero, making any power in the
circuit purely reactive. The power triangle for a purely capacitive circuit would again be a vertical
line (pointing down instead of up as it was for the purely inductive circuit).

Power factor can be an important aspect to consider in an AC circuit, because any power factor
less than 1 means that the circuit’s wiring has to carry more current than what would be necessary
with zero reactance in the circuit to deliver the same amount of (true) power to the resistive load. If
our last example circuit had been purely resistive, we would have been able to deliver a full 169.256
watts to the load with the same 1.410 amps of current, rather than the mere 119.365 watts that
it is presently dissipating with that same current quantity. The poor power factor makes for an
inefficient power delivery system.

Poor power factor can be corrected, paradoxically, by adding another load to the circuit drawing
an equal and opposite amount of reactive power, to cancel out the effects of the load’s inductive
reactance. Inductive reactance can only be canceled by capacitive reactance, so we have to add a
capacitor in parallel to our example circuit as the additional load. The effect of these two opposing
reactances in parallel is to bring the circuit’s total impedance equal to its total resistance (to make
the impedance phase angle equal, or at least closer, to zero).

Since we know that the (uncorrected) reactive power is 119.998 VAR (inductive), we need to
calculate the correct capacitor size to produce the same quantity of (capacitive) reactive power.
Since this capacitor will be directly in parallel with the source (of known voltage), we’ll use the
power formula which starts from voltage and reactance:
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E2

X

. . . solving for X . . .

X =
E2

Q =

Q

X = 
(120 V)2

119.998 VAR

X = 120.002 Ω

XC = 
2πfC

1

. . . solving for C . . .

C = 
2πfXC

1

C =
2π(60 Hz)(120.002 Ω)

1

C = 22.105 µF

Let’s use a rounded capacitor value of 22 µF and see what happens to our circuit:

120 V
60 Hz

160 mHLload

Rload

Load

C

995.257
mA

Iload = 1.41 AIC = 

Itotal = 994.716 mA

22 µF

60 Ω

XL = 60.319 Ω
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Ztotal = ZC // (ZL -- ZR)

Ztotal = (120.57 Ω ∠ -90o) // (60.319 Ω ∠ 90o -- 60 Ω ∠ 0o)

Ztotal = 120.64 - j573.58m Ω   or   120.64 Ω ∠ 0.2724o

P = true power = I2R = 119.365 W

S = apparent power = I2Z = 119.366 VA

The power factor for the circuit, overall, has been substantially improved. The main current has
been decreased from 1.41 amps to 994.7 milliamps, while the power dissipated at the load resistor
remains unchanged at 119.365 watts. The power factor is much closer to being 1:

Power factor =
True power

Apparent power

Power factor =
119.365 W

119.366 VA

Power factor = 0.9999887

Impedance (polar) angle = 0.272o

cos 0.272o = 0.9999887

Since the impedance angle is still a positive number, we know that the circuit, overall, is still
more inductive than it is capacitive. If our power factor correction efforts had been perfectly on-
target, we would have arrived at an impedance angle of exactly zero, or purely resistive. If we had
added too large of a capacitor in parallel, we would have ended up with an impedance angle that
was negative, indicating that the circuit was more capacitive than inductive.
It should be noted that too much capacitance in an AC circuit will result in a low power factor just

as well as too much inductance. You must be careful not to over-correct when adding capacitance
to an AC circuit. You must also be very careful to use the proper capacitors for the job (rated
adequately for power system voltages and the occasional voltage spike from lightning strikes, for
continuous AC service, and capable of handling the expected levels of current).
If a circuit is predominantly inductive, we say that its power factor is lagging (because the current

wave for the circuit lags behind the applied voltage wave). Conversely, if a circuit is predominantly
capacitive, we say that its power factor is leading. Thus, our example circuit started out with a
power factor of 0.705 lagging, and was corrected to a power factor of 0.999 lagging.

• REVIEW:

• Poor power factor in an AC circuit may be ”corrected,” or re-established at a value close to
1, by adding a parallel reactance opposite the effect of the load’s reactance. If the load’s
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reactance is inductive in nature (which is almost always will be), parallel capacitance is what
is needed to correct poor power factor.

11.4 Practical power factor correction

When the need arises to correct for poor power factor in an AC power system, you probably won’t
have the luxury of knowing the load’s exact inductance in henrys to use for your calculations. You
may be fortunate enough to have an instrument called a power factor meter to tell you what the
power factor is (a number between 0 and 1), and the apparent power (which can be figured by taking
a voltmeter reading in volts and multiplying by an ammeter reading in amps). In less favorable
circumstances you may have to use an oscilloscope to compare voltage and current waveforms,
measuring phase shift in degrees and calculating power factor by the cosine of that phase shift.

Most likely, you will have access to a wattmeter for measuring true power, whose reading you can
compare against a calculation of apparent power (from multiplying total voltage and total current
measurements). From the values of true and apparent power, you can determine reactive power and
power factor. Let’s do an example problem to see how this works:

P

wattmeter

A

ammeter

Wattmeter reading = 1.5 kW
Ammeter reading = 9.615 A RMS

240 V
RMS

60 Hz

Load

First, we need to calculate the apparent power in kVA. We can do this by multiplying load
voltage by load current:

S = IE

S = (9.615 A)(240 V)

S = 2.308 kVA

As we can see, 2.308 kVA is a much larger figure than 1.5 kW, which tells us that the power
factor in this circuit is rather poor (substantially less than 1). Now, we figure the power factor of
this load by dividing the true power by the apparent power:
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Power factor =
P

S

Power factor =
1.5 kW

2.308 kVA

Power factor = 0.65

Using this value for power factor, we can draw a power triangle, and from that determine the
reactive power of this load:

True power (P)

Reactive power (Q)

Apparent power (S)

1.5 kW

2.308 kVA

???

To determine the unknown (reactive power) triangle quantity, we use the Pythagorean Theorem
”backwards,” given the length of the hypotenuse (apparent power) and the length of the adjacent
side (true power):

Reactive power = (Apparent power)2 - (True power)2

Q = 1.754 kVAR

If this load is an electric motor, or most any other industrial AC load, it will have a lagging
(inductive) power factor, which means that we’ll have to correct for it with a capacitor of appropriate
size, wired in parallel. Now that we know the amount of reactive power (1.754 kVAR), we can
calculate the size of capacitor needed to counteract its effects:
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E2

X

. . . solving for X . . .

X =
E2

Q =

Q

X = 

XC = 
2πfC

1

. . . solving for C . . .

C = 
2πfXC

1

C =
1

(240)2

1.754 kVAR

X = 32.845 Ω

2π(60 Hz)(32.845 Ω)

C = 80.761 µF

Rounding this answer off to 80 µF, we can place that size of capacitor in the circuit and calculate
the results:

P

wattmeter

A

ammeter

240 V
RMS

60 Hz

C
80 µF

Load

An 80 µF capacitor will have a capacitive reactance of 33.157 Ω, giving a current of 7.238 amps,
and a corresponding reactive power of 1.737 kVAR (for the capacitor only). Since the capacitor’s
current is 180o out of phase from the the load’s inductive contribution to current draw, the capacitor’s
reactive power will directly subtract from the load’s reactive power, resulting in:

Inductive kVAR - Capacitive kVAR = Total kVAR

1.754 kVAR - 1.737 kVAR = 16.519 VAR

This correction, of course, will not change the amount of true power consumed by the load, but
it will result in a substantial reduction of apparent power, and of the total current drawn from the
240 Volt source:
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True power (P)

Reactive power (Q)

Apparent power (S)

1.5 kW

2.308 kVA

1.754 kVAR
(inductive)

1.737 kVAR
(capacitive)

Reactive power (Q)
16.519 VAR

True power (P)
1.5 kW

Apparent power (S)

Power triangle for uncorrected (original) circuit

Power triangle after adding capacitor

The new apparent power can be found from the true and new reactive power values, using the
standard form of the Pythagorean Theorem:

Apparent power = (Reactive power)2 + (True power)2

Apparent power = 1.50009 kVA

This gives a corrected power factor of (1.5kW / 1.5009 kVA), or 0.99994, and a new total current
of (1.50009 kVA / 240 Volts), or 6.25 amps, a substantial improvement over the uncorrected value of
9.615 amps! This lower total current will translate to less heat losses in the circuit wiring, meaning
greater system efficiency (less power wasted).
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11.5 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most recent
to first. See Appendix 2 (Contributor List) for dates and contact information.
Jason Starck (June 2000): HTML document formatting, which led to a much better-looking

second edition.
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AC METERING CIRCUITS
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12.1 AC voltmeters and ammeters

AC electromechanical meter movements come in two basic arrangements: those based on DC move-
ment designs, and those engineered specifically for AC use. Permanent-magnet moving coil (PMMC)
meter movements will not work correctly if directly connected to alternating current, because the
direction of needle movement will change with each half-cycle of the AC. Permanent-magnet meter
movements, like permanent-magnet motors, are devices whose motion depends on the polarity of
the applied voltage (or, you can think of it in terms of the direction of the current).

349
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wire coil

magnet magnet

"needle"

D’Arsonval electromechanical meter movement

0

50

100

AC through this movement will cause
the needle to flutter back and forth
uselessly.

In order to use a DC-style meter movement such as the D’Arsonval design, the alternating current
must be rectified into DC. This is most easily accomplished through the use of devices called diodes.
We saw diodes used in an example circuit demonstrating the creation of harmonic frequencies from
a distorted (or rectified) sine wave. Without going into elaborate detail over how and why diodes
work as they do, just remember that they each act like a one-way valve for electrons to flow: acting
as a conductor for one polarity and an insulator for another. Oddly enough, the arrowhead in each
diode symbol points against the permitted direction of electron flow rather than with it as one might
expect. Arranged in a bridge, four diodes will serve to steer AC through the meter movement in a
constant direction throughout all portions of the AC cycle:

wire coil

magnet magnet

"needle"

0

50

100

- +

Bridge
rectifier

AC
source

Meter movement needle
will always be driven in 
the proper direction.

"Rectified" AC meter movement
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Another strategy for a practical AC meter movement is to redesign the movement without the
inherent polarity sensitivity of the DC types. This means avoiding the use of permanent magnets.
Probably the simplest design is to use a nonmagnetized iron vane to move the needle against spring
tension, the vane being attracted toward a stationary coil of wire energized by the AC quantity to
be measured.

"needle"

0

50

100

Iron-vane electromechanical meter movement

wire coil
iron vane

Electrostatic attraction between two metal plates separated by an air gap is an alternative
mechanism for generating a needle-moving force proportional to applied voltage. This works just as
well for AC as it does for DC, or should I say, just as poorly! The forces involved are very small,
much smaller than the magnetic attraction between an energized coil and an iron vane, and as such
these ”electrostatic” meter movements tend to be fragile and easily disturbed by physical movement.
But, for some high-voltage AC applications, the electrostatic movement is an elegant technology. If
nothing else, this technology possesses the advantage of extremely high input impedance, meaning
that no current need be drawn from the circuit under test. Also, electrostatic meter movements are
capable of measuring very high voltages without need for range resistors or other, external apparatus.

When a sensitive meter movement needs to be re-ranged to function as an AC voltmeter, series-
connected ”multiplier” resistors and/or resistive voltage dividers may be employed just as in DC
meter design:
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Voltage
to be

measured

Sensitive
meter movement

Rmultiplier

AC voltmeter

Voltage
to be

measured

Sensitive
meter movement

Rmultiplier

AC voltmeter

Capacitors may be used instead of resistors, though, to make voltmeter divider circuits. This
strategy has the advantage of being non-dissipative (no true power consumed and no heat produced):

Voltage
to be

measured

Sensitive
meter movement

Rmultiplier

AC voltmeter
with capacitive divider

If the meter movement is electrostatic, and thus inherently capacitive in nature, a single ”mul-
tiplier” capacitor may be connected in series to give it a greater voltage measuring range, just as
a series-connected multiplier resistor gives a moving-coil (inherently resistive) meter movement a
greater voltage range:
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Voltage
to be

measured

meter movement

Cmultiplier

Electrostatic

The Cathode Ray Tube (CRT) mentioned in the DC metering chapter is ideally suited for
measuring AC voltages, especially if the electron beam is swept side-to-side across the screen of the
tube while the measured AC voltage drives the beam up and down. A graphical representation of
the AC wave shape and not just a measurement of magnitude can easily be had with such a device.
However, CRT’s have the disadvantages of weight, size, significant power consumption, and fragility
(being made of evacuated glass) working against them. For these reasons, electromechanical AC
meter movements still have a place in practical usage.

With some of the advantages and disadvantages of these meter movement technologies having
been discussed already, there is another factor crucially important for the designer and user of AC
metering instruments to be aware of. This is the issue of RMS measurement. As we already know,
AC measurements are often cast in a scale of DC power equivalence, called RMS (Root-Mean-
Square) for the sake of meaningful comparisons with DC and with other AC waveforms of varying
shape. None of the meter movement technologies so far discussed inherently measure the RMS value
of an AC quantity. Meter movements relying on the motion of a mechanical needle (”rectified”
D’Arsonval, iron-vane, and electrostatic) all tend to mechanically average the instantaneous values
into an overall average value for the waveform. This average value is not necessarily the same as
RMS, although many times it is mistaken as such. Average and RMS values rate against each other
as such for these three common waveform shapes:
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RMS = 0.707 (Peak)

AVG = 0.637 (Peak)

P-P = 2 (Peak)

RMS = Peak

AVG = Peak

P-P = 2 (Peak)

RMS = 0.577 (Peak)

AVG = 0.5 (Peak)

P-P = 2 (Peak)

Since RMS seems to be the kind of measurement most people are interested in obtaining with an
instrument, and electromechanical meter movements naturally deliver average measurements rather
than RMS, what are AC meter designers to do? Cheat, of course! Typically the assumption is made
that the waveform shape to be measured is going to be sine (by far the most common, especially
for power systems), and then the meter movement scale is altered by the appropriate multiplication
factor. For sine waves we see that RMS is equal to 0.707 times the peak value while Average is 0.637
times the peak, so we can divide one figure by the other to obtain an average-to-RMS conversion
factor of 1.109:

0.707

0.637
= 1.1099

In other words, the meter movement will be calibrated to indicate approximately 1.11 times
higher than it would ordinarily (naturally) indicate with no special accommodations. It must be
stressed that this ”cheat” only works well when the meter is used to measure pure sine wave sources.
Note that for triangle waves, the ratio between RMS and Average is not the same as for sine waves:

0.577

0.5
= 1.154

With square waves, the RMS and Average values are identical! An AC meter calibrated to
accurately read RMS voltage or current on a pure sine wave will not give the proper value while
indicating the magnitude of anything other than a perfect sine wave. This includes triangle waves,
square waves, or any kind of distorted sine wave. With harmonics becoming an ever-present phe-
nomenon in large AC power systems, this matter of accurate RMS measurement is no small matter.
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The astute reader will note that I have omitted the CRT ”movement” from the RMS/Average
discussion. This is because a CRT with its practically weightless electron beam ”movement” displays
the Peak (or Peak-to-Peak if you wish) of an AC waveform rather than Average or RMS. Still, a
similar problem arises: how do you determine the RMS value of a waveform from it? Conversion
factors between Peak and RMS only hold so long as the waveform falls neatly into a known category
of shape (sine, triangle, and square are the only examples with Peak/RMS/Average conversion
factors given here!).

One answer is to design the meter movement around the very definition of RMS: the effective
heating value of an AC voltage/current as it powers a resistive load. Suppose that the AC source
to be measured is connected across a resistor of known value, and the heat output of that resistor
is measured with a device like a thermocouple. This would provide a far more direct measure-
ment means of RMS than any conversion factor could, for it will work with ANY waveform shape
whatsoever:

thermocouple bonded
with resistive heating 
element

sensitive
meter

movement

AC voltage to
be measured

While the device shown above is somewhat crude and would suffer from unique engineering
problems of its own, the concept illustrated is very sound. The resistor converts the AC voltage or
current quantity into a thermal (heat) quantity, effectively squaring the values in real-time. The
system’s mass works to average these values by the principle of thermal inertia, and then the meter
scale itself is calibrated to give an indication based on the square-root of the thermal measurement:
perfect Root-Mean-Square indication all in one device! In fact, one major instrument manufacturer
has implemented this technique into its high-end line of handheld electronic multimeters for ”true-
RMS” capability.

Calibrating AC voltmeters and ammeters for different full-scale ranges of operation is much the
same as with DC instruments: series ”multiplier” resistors are used to give voltmeter movements
higher range, and parallel ”shunt” resistors are used to allow ammeter movements to measure cur-
rents beyond their natural range. However, we are not limited to these techniques as we were with
DC: because we can to use transformers with AC, meter ranges can be electromagnetically rather
than resistively ”stepped up” or ”stepped down,” sometimes far beyond what resistors would have
practically allowed for. Potential Transformers (PT’s) and Current Transformers (CT’s) are pre-
cision instrument devices manufactured to produce very precise ratios of transformation between
primary and secondary windings. They can allow small, simple AC meter movements to indicate ex-
tremely high voltages and currents in power systems with accuracy and complete electrical isolation
(something multiplier and shunt resistors could never do):
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loadhigh-voltage
power source 13.8 kV

fusefuse

V

precision
step-down

ratio
PT

precision

ratio
step-upCT

A

0-5 A AC movement range

0-120 V AC movement range

Shown here is a voltage and current meter panel from a three-phase AC system. The three
”donut” current transformers (CTs) can be seen in the rear of the panel. Three AC ammeters (rated
5 amps full-scale deflection each) on the front of the panel indicate current through each conductor
going through a CT. As this panel has been removed from service, there are no current-carrying
conductors threaded through the center of the CT ”donuts” anymore:

Because of the expense (and often large size) of instrument transformers, they are not used to
scale AC meters for any applications other than high voltage and high current. For scaling a milliamp
or microamp movement to a range of 120 volts or 5 amps, normal precision resistors (multipliers
and shunts) are used, just as with DC.

• REVIEW:

• Polarized (DC) meter movements must use devices called diodes to be able to indicate AC
quantities.
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• Electromechanical meter movements, whether electromagnetic or electrostatic, naturally pro-
vide the average value of a measured AC quantity. These instruments may be ranged to
indicate RMS value, but only if the shape of the AC waveform is precisely known beforehand!

• So-called true RMS meters use different technology to provide indications representing the
actual RMS (rather than skewed average or peak) of an AC waveform.

12.2 Frequency and phase measurement

An important electrical quantity with no equivalent in DC circuits is frequency. Frequency measure-
ment is very important in many applications of alternating current, especially in AC power systems
designed to run efficiently at one frequency and one frequency only. If the AC is being generated by
an electromechanical alternator, the frequency will be directly proportional to the shaft speed of the
machine, and frequency could be measured simply by measuring the speed of the shaft. If frequency
needs to be measured at some distance from the alternator, though, other means of measurement
will be necessary.

One simple but crude method of frequency measurement in power systems utilizes the principle
of mechanical resonance. Every physical object possessing the property of elasticity (springiness)
has an inherent frequency at which it will prefer to vibrate. The tuning fork is a great example of
this: strike it once and it will continue to vibrate at a tone specific to its length. Longer tuning forks
have lower resonant frequencies: their tones will be lower on the musical scale than shorter forks.

Imagine a row of progressively-sized tuning forks arranged side-by-side. They are all mounted
on a common base, and that base is vibrated at the frequency of the measured AC voltage (or
current) by means of an electromagnet. Whichever tuning fork is closest in resonant frequency to
the frequency of that vibration will tend to shake the most (or the loudest). If the forks’ tines were
flimsy enough, we could see the relative motion of each by the length of the blur we would see as
we inspected each one from an end-view perspective. Well, make a collection of ”tuning forks” out
of a strip of sheet metal cut in a pattern akin to a rake, and you have the vibrating reed frequency
meter:

to AC voltagesheet metal reeds
shaken by magnetic
field from the coil

The user of this meter views the ends of all those unequal length reeds as they are collectively
shaken at the frequency of the applied AC voltage to the coil. The one closest in resonant frequency
to the applied AC will vibrate the most, looking something like this:
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Frequency Meter

120 Volts AC

6058565452 62 64 66 68

Vibrating reed meters, obviously, are not precision instruments, but they are very simple and
therefore easy to manufacture to be rugged. They are often found on small engine-driven generator
sets for the purpose of setting engine speed so that the frequency is somewhat close to 60 (50 in
Europe) Hertz.

While reed-type meters are imprecise, their operational principle is not. In lieu of mechanical
resonance, we may substitute electrical resonance and design a frequency meter using an inductor
and capacitor in the form of a tank circuit (parallel inductor and capacitor). One or both components
are made adjustable, and a meter is placed in the circuit to indicate maximum amplitude of voltage
across the two components. The adjustment knob(s) are calibrated to show resonant frequency
for any given setting, and the frequency is read from them after the device has been adjusted for
maximum indication on the meter. Essentially, this is a tunable filter circuit which is adjusted and
then read in a manner similar to a bridge circuit (which must be balanced for a ”null” condition
and then read).

Sensitive AC
meter movement

variable capacitor with
adjustment knob calibrated

in Hertz.

Resonant Frequency Meter

This technique is a popular one for amateur radio operators (or at least it was before the advent
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of inexpensive digital frequency instruments called counters), especially because it doesn’t require
direct connection to the circuit. So long as the inductor and/or capacitor can intercept enough stray
field (magnetic or electric, respectively) from the circuit under test to cause the meter to indicate,
it will work.

In frequency as in other types of electrical measurement, the most accurate means of measurement
are usually those where an unknown quantity is compared against a known standard, the basic
instrument doing nothing more than indicating when the two quantities are equal to each other.
This is the basic principle behind the DC (Wheatstone) bridge circuit and it is a sound metrological
principle applied throughout the sciences. If we have access to an accurate frequency standard (a
source of AC voltage holding very precisely to a single frequency), then measurement of any unknown
frequency by comparison should be relatively easy.

For that frequency standard, we turn our attention back to the tuning fork, or at least a more
modern variation of it called the quartz crystal. Quartz is a naturally occurring mineral possessing
a very interesting property called piezoelectricity. Piezoelectric materials produce a voltage across
their length when physically stressed, and will physically deform when an external voltage is applied
across their lengths. This deformation is very, very slight in most cases, but it does exist.

Quartz rock is elastic (springy) within that small range of bending which an external voltage
would produce, which means that it will have a mechanical resonant frequency of its own capable
of being manifested as an electrical voltage signal. In other words, if a chip of quartz is struck, it
will ”ring” with its own unique frequency determined by the length of the chip, and that resonant
oscillation will produce an equivalent voltage across multiple points of the quartz chip which can be
tapped into by wires fixed to the surface of the chip. In reciprocal manner, the quartz chip will tend
to vibrate most when it is ”excited” by an applied AC voltage at precisely the right frequency, just
like the reeds on a vibrating-reed frequency meter.

Chips of quartz rock can be precisely cut for desired resonant frequencies, and that chip mounted
securely inside a protective shell with wires extending for connection to an external electric circuit.
When packaged as such, the resulting device is simply called a crystal (or sometimes ”xtal”), and
its schematic symbol looks like this:

crystal or xtal

Electrically, that quartz chip is equivalent to a series LC resonant circuit. The dielectric proper-
ties of quartz contribute an additional capacitive element to the equivalent circuit, and in the end
it looks something like this:
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C

L

characteristics 
of the quartz

Ccapacitance
caused by wire
connections

across quartz

Crystal equivalent circuit

The ”capacitance” and ”inductance” shown in series are merely electrical equivalents of the
quartz’s mechanical resonance properties: they do not exist as discrete components within the crys-
tal. The capacitance shown in parallel due to the wire connections across the dielectric (insulating)
quartz body is real, and it has an effect on the resonant response of the whole system. A full discus-
sion on crystal dynamics is not necessary here, but what needs to be understood about crystals is
this resonant circuit equivalence and how it can be exploited within an oscillator circuit to achieve
an output voltage with a stable, known frequency.

Crystals, as resonant elements, typically have much higher ”Q” (quality) values than tank circuits
built from inductors and capacitors, principally due to the relative absence of stray resistance,
making their resonant frequencies very definite and precise. Because the resonant frequency is solely
dependent on the physical properties of quartz (a very stable substance, mechanically), the resonant
frequency variation over time with a quartz crystal is very, very low. This is how quartz movement
watches obtain their high accuracy: by means of an electronic oscillator stabilized by the resonant
action of a quartz crystal.

For laboratory applications, though, even greater frequency stability may be desired. To achieve
this, the crystal in question may be placed in a temperature stabilized environment (usually an
oven), thus eliminating frequency errors due to thermal expansion and contraction of the quartz.

For the ultimate in a frequency standard though, nothing discovered thus far surpasses the
accuracy of a single resonating atom. This is the principle of the so-called atomic clock, which uses
an atom of mercury (or cesium) suspended in a vacuum, excited by outside energy to resonate at
its own unique frequency. The resulting frequency is detected as a radio-wave signal and that forms
the basis for the most accurate clocks known to humanity. National standards laboratories around
the world maintain a few of these hyper-accurate clocks, and broadcast frequency signals based on
those atoms’ vibrations for scientists and technicians to tune in and use for frequency calibration
purposes.

Now we get to the practical part: once we have a source of accurate frequency, how do we
compare that against an unknown frequency to obtain a measurement? One way is to use a CRT as
a frequency-comparison device. Cathode Ray Tubes typically have means of deflecting the electron
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beam in the horizontal as well as the vertical axis. If metal plates are used to electrostatically deflect
the electrons, there will be a pair of plates to the left and right of the beam as well as a pair of
plates above and below the beam.

electron "gun"

electrons

electrons

light

view-
screen(vacuum)

horizontal
deflection
plates

deflection
plates

vertical

CRT with horizontal and vertical deflection plates

If we allow one AC signal to deflect the beam up and down (connect that AC voltage source to
the ”vertical” deflection plates) and another AC signal to deflect the beam left and right (using the
other pair of deflection plates), patterns will be produced on the screen of the CRT indicative of the
ratio of these two AC frequencies. These patterns are called Lissajous figures and are a common
means of comparative frequency measurement in electronics.
If the two frequencies are the same, we will obtain a simple figure on the screen of the CRT,

the shape of that figure being dependent upon the phase shift between the two AC signals. Here
is a sampling of Lissajous figures for two sine-wave signals of equal frequency, shown as they would
appear on the face of an oscilloscope (an AC voltage-measuring instrument using a CRT as its
”movement”). The first picture is of the Lissajous figure formed by two AC voltages perfectly in
phase with each other:

Lissajous figure: same frequency, 0 degrees phase shift

trigger

timebase

s/div
DC GND AC

X

GNDDC
V/div

vertical

OSCILLOSCOPE

Y

AC

If the two AC voltages are not in phase with each other, a straight line will not be formed.
Rather, the Lissajous figure will take on the appearance of an oval, becoming perfectly circular if
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the phase shift is exactly 90o between the two signals, and if their amplitudes are equal:

Lissajous figure: same frequency, 90 or 270 degrees phase shift

trigger

timebase

s/div
DC GND AC

X

GNDDC
V/div

vertical

OSCILLOSCOPE

Y

AC

Finally, if the two AC signals are directly opposing one another in phase (180o shift), we will end
up with a line again, only this time it will be oriented in the opposite direction:

Lissajous figure: same frequency, 180 degrees phase shift

trigger

timebase

s/div
DC GND AC

X

GNDDC
V/div

vertical

OSCILLOSCOPE

Y

AC

When we are faced with signal frequencies that are not the same, Lissajous figures get quite a
bit more complex. Consider the following examples and their given vertical/horizontal frequency
ratios:
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trigger

timebase

s/div
DC GND AC

X

GNDDC
V/div

vertical

OSCILLOSCOPE

Y

AC

Lissajous figure: Horizontal frequency is twice that of vertical

The more complex the ratio between horizontal and vertical frequencies, the more complex the
Lissajous figure. Consider the following illustration of a 3:1 frequency ratio between horizontal and
vertical:

trigger

timebase

s/div
DC GND AC

X

GNDDC
V/div

vertical

OSCILLOSCOPE

Y

AC

Lissajous figure: Horizontal frequency is three times that of vertical

. . . and a 3:2 frequency ratio (horizontal = 3, vertical = 2):
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trigger

timebase

s/div
DC GND AC

X

GNDDC
V/div

vertical

OSCILLOSCOPE

Y

AC

Lissajous figure: Horizontal/Vertical frequency ratio is 3:2

In cases where the frequencies of the two AC signals are not exactly a simple ratio of each other
(but close), the Lissajous figure will appear to ”move,” slowly changing orientation as the phase
angle between the two waveforms rolls between 0o and 180o. If the two frequencies are locked in an
exact integer ratio between each other, the Lissajous figure will be stable on the viewscreen of the
CRT.
The physics of Lissajous figures limits their usefulness as a frequency-comparison technique to

cases where the frequency ratios are simple integer values (1:1, 1:2, 1:3, 2:3, 3:4, etc.). Despite this
limitation, Lissajous figures are a popular means of frequency comparison wherever an accessible
frequency standard (signal generator) exists.

• REVIEW:

• Some frequency meters work on the principle of mechanical resonance, indicating frequency by
relative oscillation among a set of uniquely tuned ”reeds” shaken at the measured frequency.

• Other frequency meters use electric resonant circuits (LC tank circuits, usually) to indicate
frequency. One or both components is made to be adjustable, with an accurately calibrated
adjustment knob, and a sensitive meter is read for maximum voltage or current at the point
of resonance.

• Frequency can be measured in a comparative fashion, as is the case when using a CRT to
generate Lissajous figures. Reference frequency signals can be made with a high degree of
accuracy by oscillator circuits using quartz crystals as resonant devices. For ultra precision,
atomic clock signal standards (based on the resonant frequencies of individual atoms) can be
used.

12.3 Power measurement

Power measurement in AC circuits can be quite a bit more complex than with DC circuits for the
simple reason that phase shift makes complicates the matter beyond multiplying voltage by current
figures obtained with meters. What is needed is an instrument able to determine the product
(multiplication) of instantaneous voltage and current. Fortunately, the common electrodynamometer
movement with its stationary and moving coil does a fine job of this.
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Three phase power measurement can be accomplished using two dynamometer movements with
a common shaft linking the two moving coils together so that a single pointer registers power on
a meter movement scale. This, obviously, makes for a rather expensive and complex movement
mechanism, but it is a workable solution.

An ingenious method of deriving an electronic power meter (one that generates an electric signal
representing power in the system rather than merely move a pointer) is based on the Hall effect. The
Hall effect is an unusual effect first noticed by E. H. Hall in 1879, whereby a voltage is generated
along the width of a current-carrying conductor exposed to a perpendicular magnetic field:

N

S

currentcurrent

voltage

The "Hall Effect"

S

N

The voltage generated across the width of the flat, rectangular conductor is directly proportional
to both the magnitude of the current through it and the strength of the magnetic field. Mathemati-
cally, it is a product (multiplication) of these two variables. The amount of ”Hall Voltage” produced
for any given set of conditions also depends on the type of material used for the flat, rectangular
conductor. It has been found that specially prepared ”semiconductor” materials produce a greater
Hall voltage than do metals, and so modern Hall Effect devices are made of these.

It makes sense then that if we were to build a device using a Hall-effect sensor where the current
through the conductor was pushed by AC voltage from an external circuit and the magnetic field
was set up by a pair or wire coils energized by the current of the AC power circuit, the Hall voltage
would be in direct proportion to the multiple of circuit current and voltage. Having no mass to
move (unlike an electromechanical movement), this device is able to provide instantaneous power
measurement:
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voltage

LoadAC
power
source

Rmultiplier

A Hall effect power sensor

Not only will the output voltage of the Hall effect device be the representation of instantaneous
power at any point in time, but it will also be a DC signal! This is because the Hall voltage polarity
is dependent upon both the polarity of the magnetic field and the direction of current through the
conductor. If both current direction and magnetic field polarity reverses – as it would ever half-cycle
of the AC power – the output voltage polarity will stay the same.

If voltage and current in the power circuit are 90o out of phase (a power factor of zero, meaning
no real power delivered to the load), the alternate peaks of Hall device current and magnetic field
will never coincide with each other: when one is at its peak, the other will be zero. At those points in
time, the Hall output voltage will likewise be zero, being the product (multiplication) of current and
magnetic field strength. Between those points in time, the Hall output voltage will fluctuate equally
between positive and negative, generating a signal corresponding to the instantaneous absorption
and release of power through the reactive load. The net DC output voltage will be zero, indicating
zero true power in the circuit.

Any phase shift between voltage and current in the power circuit less than 90o will result in
a Hall output voltage that oscillates between positive and negative, but spends more time positive
than negative. Consequently there will be a net DC output voltage. Conditioned through a low-pass
filter circuit, this net DC voltage can be separated from the AC mixed with it, the final output signal
registered on a sensitive DC meter movement.

Often it is useful to have a meter to totalize power usage over a period of time rather than
instantaneously. The output of such a meter can be set in units of Joules, or total energy consumed,
since power is a measure of work being done per unit time. Or, more commonly, the output of the
meter can be set in units of Watt-Hours.

Mechanical means for measuring Watt-Hours are usually centered around the concept of the
motor: build an AC motor that spins at a rate of speed proportional to the instantaneous power
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in a circuit, then have that motor turn an ”odometer” style counting mechanism to keep a running
total of energy consumed. The ”motor” used in these meters has a rotor made of a thin aluminum
disk, with the rotating magnetic field established by sets of coils energized by line voltage and load
current so that the rotational speed of the disk is dependent on both voltage and current.

12.4 Power quality measurement

It used to be with large AC power systems that ”power quality” was an unheard-of concept, aside
from power factor. Almost all loads were of the ”linear” variety, meaning that they did not distort
the shape of the voltage sine wave, or cause non-sinusoidal currents to flow in the circuit. This is not
true anymore. Loads controlled by ”nonlinear” electronic components are becoming more prevalent
in both home and industry, meaning that the voltages and currents in the power system(s) feeding
these loads are rich in harmonics: what should be nice, clean sine-wave voltages and currents are
becoming highly distorted, which is equivalent to the presence of an infinite series of high-frequency
sine waves at multiples of the fundamental power line frequency.

Excessive harmonics in an AC power system can overheat transformers, cause exceedingly high
neutral conductor currents in three-phase systems, create electromagnetic ”noise” in the form of radio
emissions that can interfere with sensitive electronic equipment, reduce electric motor horsepower
output, and can be difficult to pinpoint. With problems like these plaguing power systems, engineers
and technicians require ways to precisely detect and measure these conditions.

Power Quality is the general term given to represent an AC power system’s freedom from har-
monic content. A ”power quality” meter is one that gives some form of harmonic content indication.

A simple way for a technician to determine power quality in their system without sophisticated
equipment is to compare voltage readings between two accurate voltmeters measuring the same
system voltage: one meter being an ”averaging” type of unit (such as an electromechanical move-
ment meter) and the other being a ”true-RMS” type of unit (such as a high-quality digital meter).
Remember that ”averaging” type meters are calibrated so that their scales indicate volts RMS,
based on the assumption that the AC voltage being measured is sinusoidal. If the voltage is anything
but sinewave-shaped, the averaging meter will not register the proper value, whereas the true-RMS
meter always will, regardless of waveshape. The rule of thumb here is this: the greater the dispar-
ity between the two meters, the worse the power quality is, and the greater its harmonic content.
A power system with good quality power should generate equal voltage readings between the two
meters, to within the rated error tolerance of the two instruments.

Another qualitative measurement of power quality is the oscilloscope test: connect an oscilloscope
(CRT) to the AC voltage and observe the shape of the wave. Anything other than a clean sine wave
could be an indication of trouble:
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trigger
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s/div
DC GND AC

X

GNDDC
V/div

vertical

OSCILLOSCOPE

Y

AC

This is a moderately ugly "sine" wave.  Definite harmonic content here!

Still, if quantitative analysis (definite, numerical figures) is necessary, there is no substitute for
an instrument specifically designed for that purpose. Such an instrument is called a power quality
meter and is sometimes better known in electronic circles as a low-frequency spectrum analyzer.
What this instrument does is provide a graphical representation on a CRT or digital display screen
of the AC voltage’s frequency ”spectrum.” Just as a prism splits a beam of white light into its
constituent color components (how much red, orange, yellow, green, and blue is in that light), the
spectrum analyzer splits a mixed-frequency signal into its constituent frequencies, and displays the
result in the form of a histogram:

1 3 5 7 9 11 13
Total distortion = 43.7 %

Power Quality Meter

Each number on the horizontal scale of this meter represents a harmonic of the fundamental fre-
quency. For American power systems, the ”1” represents 60 Hz (the 1st harmonic, or fundamental),
the ”3” for 180 Hz (the 3rd harmonic), the ”5” for 300 Hz (the 5th harmonic), and so on. The black
rectangles represent the relative magnitudes of each of these harmonic components in the measured
AC voltage. A pure, 60 Hz sine wave would show only a tall black bar over the ”1” with no black
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bars showing at all over the other frequency markers on the scale, because a pure sine wave has no
harmonic content.

Power quality meters such as this might be better referred to as overtone meters, because they
are designed to display only those frequencies known to be generated by the power system. In three-
phase AC power systems (predominant for large power applications), even-numbered harmonics tend
to be canceled out, and so only harmonics existing in significant measure are the odd-numbered.

Meters like these are very useful in the hands of a skilled technician, because different types of
nonlinear loads tend to generate different spectrum ”signatures” which can clue the troubleshooter
to the source of the problem. These meters work by very quickly sampling the AC voltage at
many different points along the waveform shape, digitizing those points of information, and using a
microprocessor (small computer) to perform numerical Fourier analysis (the Fast Fourier Transform
or ”FFT” algorithm) on those data points to arrive at harmonic frequency magnitudes. The process
is not much unlike what the SPICE program tells a computer to do when performing a Fourier
analysis on a simulated circuit voltage or current waveform.

12.5 AC bridge circuits

As we saw with DC measurement circuits, the circuit configuration known as a bridge can be a very
useful way to measure unknown values of resistance. This is true with AC as well, and we can apply
the very same principle to the accurate measurement of unknown impedances.

To review, the bridge circuit works as a pair of two-component voltage dividers connected across
the same source voltage, with a null-detector meter movement connected between them to indicate
a condition of ”balance” at zero volts:

R1

R2

R3

R4

null

Any one of the four resistors in the above bridge can be the resistor of unknown value, and its
value can be determined by a ratio of the other three, which are ”calibrated,” or whose resistances
are known to a precise degree. When the bridge is in a balanced condition (zero voltage as indicated
by the null detector), the ratio works out to be this:
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R1

R2

=
R3

R4

In a condition of balance:

One of the advantages of using a bridge circuit to measure resistance is that the voltage of the
power source is irrelevant. Practically speaking, the higher the supply voltage, the easier it is to
detect a condition of imbalance between the four resistors with the null detector, and thus the more
sensitive it will be. A greater supply voltage leads to the possibility of increased measurement
precision. However, there will be no fundamental error introduced as a result of a lesser or greater
power supply voltage unlike other types of resistance measurement schemes.

Impedance bridges work the same, only the balance equation is with complex quantities, as both
magnitude and phase across the components of the two dividers must be equal in order for the null
detector to indicate ”zero.” The null detector, of course, must be a device capable of detecting very
small AC voltages. An oscilloscope is often used for this, although very sensitive electromechanical
meter movements and even headphones (small speakers) may be used if the source frequency is
within audio range.

One way to maximize the effectiveness of audio headphones as a null detector is to connect them
to the signal source through an impedance-matching transformer. Headphone speakers are typically
low-impedance units (8 Ω), requiring substantial current to drive, and so a step-down transformer
helps ”match” low-current signals to the impedance of the headphone speakers. An audio output
transformer works well for this purpose:

Test
leads

Headphones

8 Ω

made from audio headphones
Null detector for AC bridge

To test
Press button

1 kΩ

Using a pair of headphones that completely surround the ears (the ”closed-cup” type), I’ve
been able to detect currents of less than 0.1 µA with this simple detector circuit. Roughly equal
performance was obtained using two different step-down transformers: a small power transformer
(120/6 volt ratio), and an audio output transformer (1000:8 ohm impedance ratio). With the
pushbutton switch in place to interrupt current, this circuit is usable for detecting signals from DC
to over 2 MHz: even if the frequency is far above or below the audio range, a ”click” will be heard
from the headphones each time the switch is pressed and released.

Connected to a resistive bridge, the whole circuit looks like this:



12.5. AC BRIDGE CIRCUITS 371

Headphones

R1

R2

R3

R4

Listening to the headphones as one or more of the resistor ”arms” of the bridge is adjusted, a
condition of balance will be realized when the headphones fail to produce ”clicks” (or tones, if the
bridge’s power source frequency is within audio range) as the switch is actuated.

When describing general AC bridges, where impedances and not just resistances must be in
proper ratio for balance, it is sometimes helpful to draw the respective bridge legs in the form of
box-shaped components, each one with a certain impedance:

Z1

Z2

Z3

Z4

General impedance bridge

A box with a "Z" written
inside is the symbol for
any nonspecific impedance.

null

For this general form of AC bridge to balance, the impedance ratios of each branch must be
equal:

=
Z1

Z2

Z3

Z4

Again, it must be stressed that the impedance quantities in the above equation must be complex,
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accounting for both magnitude and phase angle. It is insufficient that the impedance magnitudes
alone be balanced; without phase angles in balance as well, there will still be voltage across the
terminals of the null detector and the bridge will not be balanced.
Bridge circuits can be constructed to measure just about any device value desired, be it capaci-

tance, inductance, resistance, or even ”Q.” As always in bridge measurement circuits, the unknown
quantity is always ”balanced” against a known standard, obtained from a high-quality, calibrated
component that can be adjusted in value until the null detector device indicates a condition of
balance. Depending on how the bridge is set up, the unknown component’s value may be deter-
mined directly from the setting of the calibrated standard, or derived from that standard through a
mathematical formula.
A couple of simple bridge circuits are shown below, one for inductance and one for capacitance:

standard
inductance

unknown
inductance

Lx
Ls

R R

null

standard

unknown

R R

capacitanceCsCx

capacitance

null

Simple ”symmetrical” bridges such as these are so named because they exhibit symmetry (mirror-
image similarity) from left to right. The two bridge circuits shown above are balanced by adjusting
the calibrated reactive component (Ls or Cs). They are a bit simplified from their real-life coun-
terparts, as practical symmetrical bridge circuits often have a calibrated, variable resistor in series
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or parallel with the reactive component to balance out stray resistance in the unknown component.
But, in the hypothetical world of perfect components, these simple bridge circuits do just fine to
illustrate the basic concept.

An example of a little extra complexity added to compensate for real-world effects can be found
in the so-called Wien bridge, which uses a parallel capacitor-resistor standard impedance to balance
out an unknown series capacitor-resistor combination. All capacitors have some amount of internal
resistance, be it literal or equivalent (in the form of dielectric heating losses) which tend to spoil
their otherwise perfectly reactive natures. This internal resistance may be of interest to measure,
and so the Wien bridge attempts to do so by providing a balancing impedance that isn’t ”pure”
either:

R R

Cx

Rx

Cs

Rs

The Wien bridge

null

Being that there are two standard components to be adjusted (a resistor and a capacitor) this
bridge will take a little more time to balance than the others we’ve seen so far. The combined effect
of Rs and Cs is to alter the magnitude and phase angle until the bridge achieves a condition of
balance. Once that balance is achieved, the settings of Rs and Cs can be read from their calibrated
knobs, the parallel impedance of the two determined mathematically, and the unknown capacitance
and resistance determined mathematically from the balance equation (Z1/Z2 = Z3/Z4).

It is assumed in the operation of the Wien bridge that the standard capacitor has negligible
internal resistance, or at least that resistance is already known so that it can be factored into the
balance equation. Wien bridges are useful for determining the values of ”lossy” capacitor designs
like electrolytics, where the internal resistance is relatively high. They are also used as frequency
meters, because the balance of the bridge is frequency-dependent. When used in this fashion, the
capacitors are made fixed (and usually of equal value) and the top two resistors are made variable
and are adjusted by means of the same knob.

An interesting variation on this theme is found in the next bridge circuit, used to precisely
measure inductances.
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Rx

Lx

The Maxwell-Wien bridge

Cs

Rs

R

R

null

This ingenious bridge circuit is known as the Maxwell-Wien bridge (sometimes known plainly as
the Maxwell bridge), and is used to measure unknown inductances in terms of calibrated resistance
and capacitance. Calibration-grade inductors are more difficult to manufacture than capacitors of
similar precision, and so the use of a simple ”symmetrical” inductance bridge is not always practical.
Because the phase shifts of inductors and capacitors are exactly opposite each other, a capacitive
impedance can balance out an inductive impedance if they are located in opposite legs of a bridge,
as they are here.

Another advantage of using a Maxwell bridge to measure inductance rather than a symmetrical
inductance bridge is the elimination of measurement error due to mutual inductance between two
inductors. Magnetic fields can be difficult to shield, and even a small amount of coupling between
coils in a bridge can introduce substantial errors in certain conditions. With no second inductor to
react with in the Maxwell bridge, this problem is eliminated.

For easiest operation, the standard capacitor (Cs) and the resistor in parallel with it (Rs) are
made variable, and both must be adjusted to achieve balance. However, the bridge can be made to
work if the capacitor is fixed (non-variable) and more than one resistor made variable (at least the
resistor in parallel with the capacitor, and one of the other two). However, in the latter configuration
it takes more trial-and-error adjustment to achieve balance, as the different variable resistors interact
in balancing magnitude and phase.

Unlike the plain Wien bridge, the balance of the Maxwell-Wien bridge is independent of source
frequency, and in some cases this bridge can be made to balance in the presence of mixed frequencies
from the AC voltage source, the limiting factor being the inductor’s stability over a wide frequency
range.

There are more variations beyond these designs, but a full discussion is not warranted here.
General-purpose impedance bridge circuits are manufactured which can be switched into more than
one configuration for maximum flexibility of use.

A potential problem in sensitive AC bridge circuits is that of stray capacitance between either
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end of the null detector unit and ground (earth) potential. Because capacitances can ”conduct”
alternating current by charging and discharging, they form stray current paths to the AC voltage
source which may affect bridge balance:

R R

CsCx

null

Cstray Cstray

Cstray

Cstray

The problem is worsened if the AC voltage source is firmly grounded at one end, the total
stray impedance for leakage currents made far less and any leakage currents through these stray
capacitances made greater as a result:

R R

CsCx

null

Cstray Cstray

One way of greatly reducing this effect is to keep the null detector at ground potential, so there
will be no AC voltage between it and the ground, and thus no current through stray capacitances.
However, directly connecting the null detector to ground is not an option, as it would create a direct
current path for stray currents, which would be worse than any capacitive path. Instead, a special
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voltage divider circuit called a Wagner ground or Wagner earth may be used to maintain the null
detector at ground potential without the need for a direct connection to the null detector.

R R

CsCx

null

Cstray Cstray

Wagner
earth

Cstray

Cstray

The Wagner earth circuit is nothing more than a voltage divider, designed to have the voltage
ratio and phase shift as each side of the bridge. Because the midpoint of the Wagner divider is
directly grounded, any other divider circuit (including either side of the bridge) having the same
voltage proportions and phases as the Wagner divider, and powered by the same AC voltage source,
will be at ground potential as well. Thus, the Wagner earth divider forces the null detector to be at
ground potential, without a direct connection between the detector and ground.

There is often a provision made in the null detector connection to confirm proper setting of the
Wagner earth divider circuit: a two-position switch, so that one end of the null detector may be
connected to either the bridge or the Wagner earth. When the null detector registers zero signal
in both switch positions, the bridge is not only guaranteed to be balanced, but the null detector is
also guaranteed to be at zero potential with respect to ground, thus eliminating any errors due to
leakage currents through stray detector-to-ground capacitances:
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• REVIEW:

• AC bridge circuits work on the same basic principle as DC bridge circuits: that a balanced
ratio of impedances (rather than resistances) will result in a ”balanced” condition as indicated
by the null-detector device.

• Null detectors for AC bridges may be sensitive electromechanical meter movements, oscillo-
scopes (CRT’s), headphones (amplified or unamplified), or any other device capable of register-
ing very small AC voltage levels. Like DC null detectors, its only required point of calibration
accuracy is at zero.

• AC bridge circuits can be of the ”symmetrical” type where an unknown impedance is balanced
by a standard impedance of similar type on the same side (top or bottom) of the bridge. Or,
they can be ”nonsymmetrical,” using parallel impedances to balance series impedances, or
even capacitances balancing out inductances.

• AC bridge circuits often have more than one adjustment, since both impedance magnitude
and phase angle must be properly matched to balance.

• Some impedance bridge circuits are frequency-sensitive while others are not. The frequency-
sensitive types may be used as frequency measurement devices if all component values are
accurately known.

• A Wagner earth or Wagner ground is a voltage divider circuit added to AC bridges to help
reduce errors due to stray capacitance coupling the null detector to ground.
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12.6 AC instrumentation transducers

Just as devices have been made to measure certain physical quantities and repeat that information
in the form of DC electrical signals (thermocouples, strain gauges, pH probes, etc.), special devices
have been made that do the same with AC.

It is often necessary to be able to detect and transmit the physical position of mechanical parts
via electrical signals. This is especially true in the fields of automated machine tool control and
robotics. A simple and easy way to do this is with a potentiometer:

+
V

-

potentiometer shaft moved
by physical motion of an object

voltmeter indicates
position of that object

However, potentiometers have their own unique problems. For one, they rely on physical contact
between the ”wiper” and the resistance strip, which means they suffer the effects of physical wear
over time. As potentiometers wear, their proportional output versus shaft position becomes less
and less certain. You might have already experienced this effect when adjusting the volume control
on an old radio: when twisting the knob, you might hear ”scratching” sounds coming out of the
speakers. Those noises are the result of poor wiper contact in the volume control potentiometer.

Also, this physical contact between wiper and strip creates the possibility of arcing (sparking)
between the two as the wiper is moved. With most potentiometer circuits, the current is so low
that wiper arcing is negligible, but it is a possibility to be considered. If the potentiometer is to
be operated in an environment where combustible vapor or dust is present, this potential for arcing
translates into a potential for an explosion!

Using AC instead of DC, we are able to completely avoid sliding contact between parts if we use
a variable transformer instead of a potentiometer. Devices made for this purpose are called LVDT’s,
which stands for Linear Variable Differential Transformers. The design of an LVDT looks like this:



12.6. AC INSTRUMENTATION TRANSDUCERS 379

movable core

AC "excitation"
voltage

AC output

(LVDT)
The Linear Variable Differential Transformer

voltage

Obviously, this device is a transformer : it has a single primary winding powered by an external
source of AC voltage, and two secondary windings connected in series-bucking fashion. It is variable
because the core is free to move between the windings. It is differential because of the way the two
secondary windings are connected. Being arranged to oppose each other (180o out of phase) means
that the output of this device will be the difference between the voltage output of the two secondary
windings. When the core is centered and both windings are outputting the same voltage, the net
result at the output terminals will be zero volts. It is called linear because the core’s freedom of
motion is straight-line.
The AC voltage output by an LVDT indicates the position of the movable core. Zero volts means

that the core is centered. The further away the core is from center position, the greater percentage
of input (”excitation”) voltage will be seen at the output. The phase of the output voltage relative
to the excitation voltage indicates which direction from center the core is offset.
The primary advantage of an LVDT over a potentiometer for position sensing is the absence

of physical contact between the moving and stationary parts. The core does not contact the wire
windings, but slides in and out within a nonconducting tube. Thus, the LVDT does not ”wear” like
a potentiometer, nor is there the possibility of creating an arc.
Excitation of the LVDT is typically 10 volts RMS or less, at frequencies ranging from power line

to the high audio (20 kHz) range. One potential disadvantage of the LVDT is its response time,
which is mostly dependent on the frequency of the AC voltage source. If very quick response times
are desired, the frequency must be higher to allow whatever voltage-sensing circuits enough cycles
of AC to determine voltage level as the core is moved. To illustrate the potential problem here,
imagine this exaggerated scenario: an LVDT powered by a 60 Hz voltage source, with the core being
moved in and out hundreds of times per second. The output of this LVDT wouldn’t even look like
a sine wave because the core would be moved throughout its range of motion before the AC source
voltage could complete a single cycle! It would be almost impossible to determine instantaneous
core position if it moves faster than the instantaneous source voltage does.
A variation on the LVDT is the RVDT, orRotaryVariableDifferential Transformer. This device

works on almost the same principle, except that the core revolves on a shaft instead of moving in a
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straight line. RVDT’s can be constructed for limited motion of 360o (full-circle) motion.

Continuing with this principle, we have what is known as a Synchro or Selsyn, which is a device
constructed a lot like a wound-rotor polyphase AC motor or generator. The rotor is free to revolve
a full 360o, just like a motor. On the rotor is a single winding connected to a source of AC voltage,
much like the primary winding of an LVDT. The stator windings are usually in the form of a
three-phase Y, although synchros with more than three phases have been built:

rotor
winding

three-phase
stator winding

AC voltage
source

modern schematic symbol

stator
connections

rotor
connections

Synchro (a.k.a "Selsyn")

Voltages induced in the stator windings from the rotor’s AC excitation are not phase-shifted by
120o as in a real three-phase generator. If the rotor were energized with DC current rather than AC
and the shaft spun continuously, then the voltages would be true three-phase. But this is not how
a synchro is designed to be operated. Rather, this is a position-sensing device much like an RVDT,
except that its output signal is much more definite. With the rotor energized by AC, the stator
winding voltages will be proportional in magnitude to the angular position of the rotor, phase either
0o or 180o shifted, like a regular LVDT or RVDT. You could think of it as a transformer with one
primary winding and three secondary windings, each secondary winding oriented at a unique angle.
As the rotor is slowly turned, each winding in turn will line up directly with the rotor, producing
full voltage, while the other windings will produce something less than full voltage.

Synchros are often used in pairs. With their rotors connected in parallel and energized by the
same AC voltage source, their shafts will match position to a high degree of accuracy:
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Synchro "transmitter" Synchro "receiver"

The receiver rotor will turn to match position with the
transmitter rotor so long as the two rotors remain energized.

Such ”transmitter/receiver” pairs have been used on ships to relay rudder position, or to relay
navigational gyro position over fairly long distances. The only difference between the ”transmitter”
and the ”receiver” is which one gets turned by an outside force. The ”receiver” can just as easily
be used as the ”transmitter” by forcing its shaft to turn and letting the synchro on the left match
position.

If the receiver’s rotor is left unpowered, it will act as a position-error detector, generating an AC
voltage at the rotor if the shaft is anything other than 90o or 270o shifted from the shaft position
of the transmitter. The receiver rotor will no longer generate any torque and consequently will no
longer automatically match position with the transmitter’s:

Synchro "transmitter" Synchro "receiver"

AC voltmeter

AC voltmeter registers a voltage if receiver rotor
position isn’t exactly 90 or 270 degrees shifted from
the position of the transmitter rotor.

This can be thought of almost as a sort of bridge circuit that achieves balance only if the receiver
shaft is brought to one of two (matching) positions with the transmitter shaft.

One rather ingenious application of the synchro is in the creation of a phase-shifting device,
provided that the stator is energized by three-phase AC:
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three-phase AC voltage
source (can be Y or Delta)

Synchro

full rotation of the rotor

voltage signal
output

will cause output voltage to
smoothly shift phase from 0
degrees all the way to 360
degrees (back to 0).

As the synchro’s rotor is turned, the rotor coil will progressively align with each stator coil, their
respective magnetic fields being 120o phase-shifted from one another. In between those positions,
these phase-shifted fields will mix to produce a rotor voltage somewhere between 0o, 120o, or 240o

shift. The practical result is a device capable of providing an infinitely variable-phase AC voltage
with the twist of a knob (attached to the rotor shaft).

So far the transducers discussed have all been of the inductive variety. However, it is possible to
make transducers which operate on variable capacitance as well, AC being used to sense the change
in capacitance and generate a variable output voltage.

Remember that the capacitance between two conductive surfaces varies with three major factors:
the overlapping area of those two surfaces, the distance between them, and the dielectric constant of
the material in between the surfaces. If two out of three of these variables can be fixed (stabilized)
and the third allowed to vary, then any measurement of capacitance between the surfaces will be
solely indicative of changes in that third variable.

Medical researchers have long made use of capacitive sensing to detect physiological changes in
living bodies. As early as 1907, a German researcher named H. Cremer placed two metal plates on
either side of a beating frog heart and measured the capacitance changes resulting from the heart
alternately filling and emptying itself of blood. Similar measurements have been performed on human
beings with metal plates placed on the chest and back, recording respiratory and cardiac action by
means of capacitance changes. For more precise capacitive measurements of organ activity, metal
probes have been inserted into organs (especially the heart) on the tips of catheter tubes, capacitance
being measured between the metal probe and the body of the subject. With a sufficiently high AC
excitation frequency and sensitive enough voltage detector, not just the pumping action but also the
sounds of the active heart may be readily interpreted.

Like inductive transducers, capacitive transducers can also be made to be self-contained units,
unlike the direct physiological examples described above. Some transducers work by making one of
the capacitor plates movable, either in such a way as to vary the overlapping area or the distance
between the plates. Other transducers work by moving a dielectric material in and out between two
fixed plates:
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capacitance changes with
changes in plate overlap

capacitance changes with
changes in distance

capacitance changes with
changes in dielectric

Transducers with greater sensitivity and immunity to changes in other variables can be obtained
by way of differential design, much like the concept behind the LVDT (Linear Variable Differential
Transformer). Here are a few examples of differential capacitive transducers:

capacitance changes with
changes in plate overlap

capacitance changes with
changes in distance

capacitance changes with
changes in dielectric

Differential capacitive transducers

As you can see, all of the differential devices shown in the above illustration have three wire
connections rather than two: one wire for each of the ”end” plates and one for the ”common”
plate. As the capacitance between one of the ”end” plates and the ”common” plate changes, the
capacitance between the other ”end” plate and the ”common” plate is such to change in the opposite
direction. This kind of transducer lends itself very well to implementation in a bridge circuit:
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V

Differential capacitive transducer
bridge measurement circuit

Pictoral diagram

Schematic diagram

sensor
capacitive

Capacitive transducers provide relatively small capacitances for a measurement circuit to operate
with, typically in the picofarad range. Because of this, high power supply frequencies (in the
megahertz range!) are usually required to reduce these capacitive reactances to reasonable levels.
Given the small capacitances provided by typical capacitive transducers, stray capacitances have
the potential of being major sources of measurement error. Good conductor shielding is essential
for reliable and accurate capacitive transducer circuitry!

The bridge circuit is not the only way to effectively interpret the differential capacitance output
of such a transducer, but it is one of the simplest to implement and understand. As with the LVDT,
the voltage output of the bridge is proportional to the displacement of the transducer action from its
center position, and the direction of offset will be indicated by phase shift. This kind of bridge circuit
is similar in function to the kind used with strain gauges: it is not intended to be in a ”balanced”
condition all the time, but rather the degree of imbalance represents the magnitude of the quantity
being measured.

An interesting alternative to the bridge circuit for interpreting differential capacitance is the
twin-T. It requires the use of diodes, those ”one-way valves” for electric current mentioned earlier
in the chapter:
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Rload EoutC1 C2

Differential capacitive transducer
twin-T measurement circuit

+

- +

-

This circuit might be better understood if re-drawn to resemble more of a bridge configuration:

RR

Rload

C1 C2

Differential capacitive transducer
twin-T measurement circuit

Output voltage measured across Rload

+
- +

-

Capacitor C1 is charged by the AC voltage source during every positive half-cycle (positive as
measured in reference to the ground point), while C2 is charged during every negative half-cycle.
While one capacitor is being charged, the other capacitor discharges (at a slower rate than it was
charged) through the three-resistor network. As a consequence, C1 maintains a positive DC voltage
with respect to ground, and C2 a negative DC voltage with respect to ground.

If the capacitive transducer is displaced from center position, one capacitor will increase in
capacitance while the other will decrease. This has little effect on the peak voltage charge of each
capacitor, as there is negligible resistance in the charging current path from source to capacitor,
resulting in a very short time constant (τ). However, when it comes time to discharge through the
resistors, the capacitor with the greater capacitance value will hold its charge longer, resulting in a
greater average DC voltage over time than the lesser-value capacitor.

The load resistor (Rload), connected at one end to the point between the two equal-value resistors
(R) and at the other end to ground, will drop no DC voltage if the two capacitors’ DC voltage charges
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are equal in magnitude. If, on the other hand, one capacitor maintains a greater DC voltage charge
than the other due to a difference in capacitance, the load resistor will drop a voltage proportional to
the difference between these voltages. Thus, differential capacitance is translated into a DC voltage
across the load resistor.

Across the load resistor, there is both AC and DC voltage present, with only the DC voltage
being significant to the difference in capacitance. If desired, a low-pass filter may be added to the
output of this circuit to block the AC, leaving only a DC signal to be interpreted by measurement
circuitry:

R

R

EoutC1 C2
+

- +

-

Low-pass 
filter

Rfilter

Cfilter
Rload

As a measurement circuit for differential capacitive sensors, the twin-T configuration enjoys many
advantages over the standard bridge configuration. First and foremost, transducer displacement is
indicated by a simple DC voltage, not an AC voltage whose magnitude and phase must be interpreted
to tell which capacitance is greater. Furthermore, given the proper component values and power
supply output, this DC output signal may be strong enough to directly drive an electromechanical
meter movement, eliminating the need for an amplifier circuit. Another important advantage is
that all important circuit elements have one terminal directly connected to ground: the source, the
load resistor, and both capacitors are all ground-referenced. This helps minimize the ill effects of
stray capacitance commonly plaguing bridge measurement circuits, likewise eliminating the need for
compensatory measures such as the Wagner earth.

This circuit is also easy to specify parts for. Normally, a measurement circuit incorporating
complementary diodes requires the selection of ”matched” diodes for good accuracy. Not so with
this circuit! So long as the power supply voltage is significantly greater than the deviation in
voltage drop between the two diodes, the effects of mismatch are minimal and contribute little to
measurement error. Furthermore, supply frequency variations have a relatively low impact on gain
(how much output voltage is developed for a given amount of transducer displacement), and square-
wave supply voltage works as well as sine-wave, assuming a 50% duty cycle (equal positive and
negative half-cycles), of course.

Personal experience with using this circuit has confirmed its impressive performance. Not only
is it easy to prototype and test, but its relative insensitivity to stray capacitance and its high output
voltage as compared to traditional bridge circuits makes it a very robust alternative.
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13.1 Introduction

After the introduction of the DC electrical distribution system by Edison in the United States, a
gradual transition to the more economical AC system commenced. Lighting worked as well on AC
as on DC. Transmission of electrical energy covered longer distances at lower loss with alternating
current. However, motors were a problem with alternating current. Initially, AC motors were
constructed like DC motors. Numerous problems were encountered due to changing magnetic fields,
as compared to the static fields in DC motor motor field coils.
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Charles P. Steinmetz contributed to solving these problems with his investigation of hysteresis
losses in iron armatures. Nikola Tesla envisioned an entirely new type of motor when he visualized
a spinning turbine, not spun by water or steam, but by a rotating magnetic field. His new type
of motor, the AC induction motor, is the workhorse of industry to this day. Its ruggedness and
simplicity make for long life, high reliability, and low maintenance. Yet small brushed AC motors,
similar to the DC variety, persist in small appliances along with small Tesla induction motors. Above
one horsepower (750kW), the Tesla motor reigns supreme.

Modern solid state electronic circuits drive brushless DC motors with AC waveforms generated
from a DC source. The brushless DC motor, actually an AC motor, is replacing the conventional
brushed DC motor in many applications. And, the stepper motor, a digital version of motor, is
driven by alternating current square waves, again, generated by solid state circuitry.

Cruise ships and other large vessels replace reduction geared drive shafts with large multi-
megawatt generators and motors. Such has been the case with diesel-electric locomotives on a
smaller scale for many years.

Heat

Electrical energy
Mechanical enegy

Motor system level diagram

At the system level, a motor takes in electrical energy in terms of a potential difference and a
current flow, converting it to mechanical work. Alas, electric motors are not 100% efficient. Some of
the electric energy is lost to heat, another form of energy, due to I2R losses in the motor windings.
The heat is an undesired byproduct of the conversion. It must be removed from the motor and may
adversely affect longevity. Thus, one goal is to maximize motor efficiency, reducing the heat loss.
AC motors also have some losses not encountered by DC motors.

13.1.1 Hysteresis and Eddy Current

Early designers of AC motors encountered problems traced to losses unique to alternating current
magnetics. These problems were encountered when adapting DC motors to AC operation. Though
few AC motors today bear any resemblance to DC motors, these problems had to be solved before
AC motors of any type could be properly designed before they were built.

Both rotor and stator cores of AC motors are composed of a stack of insulated laminations. The
laminations are coated with insulating varnish before stacking and bolting into the final form. Eddy
currents are minimized by breaking the potential conductive loop into smaller less lossy segments
below. The current loops look like shorted transformer secondary turns. The thin isolated lami-
nations break these loops. Also, the silicon added to the alloy used in the laminations increases
electrical resistance which decreases the magnitude of eddy currents.
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solid core laminated core

If the laminations are made of silicon alloy grain oriented steel, hysteresis losses are minimized.
Magnetic hysteresis is a lagging behind of magnetic field strength as compared to magnetizing force.
If a soft iron nail is temporarily magnetized by a solenoid, one would expect the nail to lose the
magnetic field once the solenoid is de-energized. However, a small amount of residual magnetization,
Br due to hysteresis remains. An alternating current has to expend energy, -Hc the coercive force,
in overcomming this residual magnetization before it can magnetize the core back to zero, let alone
in the opposite direction. Hysteresis loss is encountered each time the polarity of the AC reverses.
The loss is proportional to the area enclosed by the hysteresis loop on the B-H curve. ”Soft” iron
alloys have lower losses than ”hard” high carbon steel alloys. Silicon grain oriented steel, 4% silicon,
rolled to preferentially orient the grain or crystalline structure, has still lower losses.
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Once Steinmetz’s Laws of hysteresis could predict iron core losses, it was possible to design AC
motors which performed as designed. This was akin to being able to design a bridge ahead of time
that would not collapse once it was actually built. This knowledge of eddy current and hysteresis was
first applied to building AC commutator motors similar to their DC counterparts. Today this is but
a minor category of AC motors. Others invented new types of AC motors bearing little resemblance
to their DC kin.

13.2 Synchronous Motors

Single phase synchronous motors are available in small sizes for applications requiring precise timing
such as time keeping, (clocks) and tape players. Though battery powered quartz regulated clocks
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are widely available, the AC line operated variety has better long term accuracy−− over a period
of months. This is due to power plant operators purposely maintaining the long term accuracy of
the frequency of the AC distribution system. If it falls behind by a few cycles, they will make up
the lost cycles of AC so that clocks lose no time.
Above 10 Horsepower (10 Kw) the higher efficiency and leading powerfactor make large syn-

chronous motors useful in industry. Large synchronous motors are a few percent more efficient than
the more common induction motors. Though, the synchronous motor is more complex.
Since motors and generators are similar in construction, it should be possible to use a generator

as a motor, conversely, use a motor as a generator. A synchronous motor is similar to an alternator
with a rotating field. The figure below shows small alternators with a permanent magnet rotating
field. This figure could either be two paralleled and synchronized alternators driven by a mechanical
energy source, or an alternator driving a synchronous motor. Or, it could be two motors, if an
external power source were connected. The point is that in either case the rotors must run at the
same nominal frequency, and be in phase with each other. That is, they must be synchronized. The
procedure for synchronizing two alternators is to (1) open the switch, (2) drive both alternators at
the same rotational rate, (3) advance or retard the phase of one unit until both AC outputs are in
phase, (4) close the switch before they drift out of phase. Once synchronized, the alternators will be
locked to each other, requiring considerable torque to break one unit loose (out of synchronization)
from the other.
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If more torque in the direction of rotation is applied to the rotor of one of the above rotating
alternators, the angle of the rotor will advance (opposite of (3)) with respect to the magnetic field
in the stator coils while still synchronized and the rotor will deliver energy to the AC line like an
alternator. The rotor will also be advanced with respect to the rotor in the other alternator. If a
load such as a brake is applied to one of the above units, the angle of the rotor will lag the stator
field as at (3), extracting energy from the AC line, like a motor. If excessive torque is applied or
excessive drag applied, the rotor will exceed the torque angle and advance or lag respectively so
much that synchronization is lost. Torque is developed only when synchronization of the motor is
maintained.
In the case of a small synchronous motor in place of the alternator above right, it is not necessary

to go through the elaborate synchronization procedure for alternators. However, the synchronous
motor is not self starting and must still be brought up to the approximate alternator electrical speed
before it will lock (synchronize) to the generator rotational rate. Once up to speed, the synchronous
motor will maintain synchronism with the AC power source and develop torque.
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Assuming that the motor is up to synchronous speed, as the sine wave changes to positive at
(1) above, the lower north coil pushes the north rotor pole, while the upper south coil attracts that
rotor north pole. In a similar manner the rotor south pole is repelled by the upper south coil and
attracted to the lower north coil. By the time that the sine wave reaches a peak at (2), the torque
holding the north pole of the rotor up is at a maximum. This torque decreases as the sine wave
decreases to 0 VDC at (3) with the torque at a minimum.
As the sine wave changes to negative between (3&4), the lower south coil pushes the south rotor

pole, while attracting rotor north rotor pole. In a similar manner the rotor north pole is repelled by
the upper north coil and attracted to the lower south coil. At (4) the sinewave reaches a negative
peak with holding torque again at a maximum. As the sine wave changes from negative to 0 VDC

to positive, The process repeats for a new cycle of sine wave.
Note, the above figure illustrates the rotor position for a no-load condition (α=90o). In actual

practice, loading the rotor will cause the rotor to lag the positions shown by angle α. This angle
increases with loading until the maximum motor torque is reached at α=90o electrical. Synchro-
nization and torque are lost beyond this angle.
The current in the coils of a single phase synchronous motor pulsates while alternating polarity.

If the permanent magnet rotor speed is close to the frequency of this alternation, it synchronizes
to this alternation. Since the coil field pulsates and does not rotate, it is necessary to bring the
permanent magnet rotor up to speed with an auxiliary motor. This is a small induction motor
similar to those in the next section.

N

S
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A 2-pole (pair of N-S poles) alternator will generate a 60 Hz sine wave when rotated at 3600 rpm
(revolutions per minute). The 3600 rpm corresponds to 60 revolutions per second. A similar 2-pole
permanent magnet synchronous motor will also rotate at 3600 rpm. A lower speed motor may be
constructed by adding more pole pairs. A 4-pole motor would rotate at 1800 rpm, a 12-pole motor
at 600 rpm. The style of construction shown above is for illustration. Higher efficiency higher torque
multi-pole stator synchronous motors actually have multiple poles in the rotor.

Rather than wind 12-coils for a 12-pole motor, wind a single coil with twelve interdigitated steel
poles pieces as shown above. Though the polarity of the coil alternates due to the appplied AC,
assume that the top is temporarily north, the bottom south. Pole pieces route the south flux from
the bottom and outside of the coil to the top. These 6-souths are interleaved with 6-north tabs
bent up from the top of the steel pole piece of the coil. Thus, a permanent magnet rotor bar will
encounter 6-pole pairs corresponding to 6-cycles of AC in one physical rotation of the bar magnet.
The rotation speed will be 1/6 of the electrical speed of the AC. Rotor speed will be 1/6 of that
experienced with a 2-pole synchronous motor. Example: 60 Hz would rotate a 2-pole motor at 3600
rpm, or 600 rpm for a 12-pole motor.

Reprinted by permission of Westclox History at www.clockHistory.com (www.clockHistory.com)

The above photo shows a 12-pole Westclox synchronous clock motor. Construction is similar
to the previous drawing with a single coil. The one coil style of construction is economical for low
torque motors. This 600 rpm motor drives reduction gears moving clock hands.
If the Westclox motor were to run at 600 rpm from a 50 Hz power source, how many poles

would be required? A 10-pole motor would have 5-pairs of N-S poles. It would rotate at 50/5 = 10
rotations per second or 600 rpm (10 s−1 x 60 s/minute.)

Reprinted by permission of Westclox History at www.clockHistory.com (www.clockHistory.com)

The rotor, as shown above, consists of a permanent magnet bar and a steel induction motor
cup. The synchronous motor bar rotating within the pole tabs keeps accurate time. The induction
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motor cup outside of the bar magnet fits outside and over the tabs for self starting. At one time
non-self-starting motors without the induction motor were manufactured.

A 3-phase synchronous motor as shown below generates an electrically rotating field in the stator.
Such motors are not self starting if started from a fixed frequency power source such as 50 or 60
Hz as found in an industrial setting. Furthermore, the rotor is not a permanent magnet as shown
below for the multi-horsepower (multi-kilowatt) motors used in industry, but an electromagnet.
Large industrial synchronous motors are more efficient than induction motors. They are used when
constant speed is required. Having a leading power factor, they can correct the AC line for a lagging
power factor.

The three phases of stator excitation add vectorially to produce a single resultant magnetic field
which rotates f/2n times per second, where f is the power line frequency, 50 or 60 Hz for industrial
power line operated motors. The number of poles is n. For rotor speed in rpm, multiply by 60.

S = f120/n

where: S = rotor speed in rpm

f = AC line frequency

n = number of poles per phase

The 3-phase 4-pole (per phase) synchronous motor shown below will rotate at 1800 rpm with 60
Hz power or 1500 rpm with 50 Hz power. If the coils are energized one at a time in the sequence φ-1,
φ-2, φ-3, the rotor should point to the corresponding poles in turn. Since the sine waves actually
overlap, the resultant field will rotate, not in steps, but smoothly. For example, when the φ-1 and
φ-2 sinewaves coincide, the field will be at a peak pointing between these poles. The bar magnet
rotor shown is only appropriate for clock motors. The rotor with multiple magnet poles (below right)
is used in any efficient motor driving a substantial load. These will be slip ring fed electromagnets in
large industrial motors. Large industrial synchronous motors are self started by embedded squirrel
cage conductors in the armature, acting like an induction motor. The electromagnetic armature is
only energized after the rotor is brought up to near synchronous speed.
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Small multi-phase synchronous motors like the above right figure may be started by ramping the
drive frequency from zero to the final running frequency. The multi-phase drive signals are generated
by electronic circuits, and will be square waves in all but the most demanding applications. Such
motors are known as brushless DC motors. True synchronous motors are driven by sine waveforms.
Two or three phase drive may be used by supplying the appropriate number of windings in the
stator. Only 3-phase is shown above.
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The above block diagram shows the drive electronics associated with a low voltage (12 VDC)
synchronous motor. These motors have a position sensor integrated within the motor, which
provides a low level digital signal with a frequency proportional to the speed of rotation of the
motor. The position sensor could be as simple as as solid state magnetic field sensors such as Hall
effect devices providing commutation (armature current direction) timing to the drive electronics
The position sensor could be a high resolution angular sensor such as a resolver or, magnetic or
optical encoder. If constant and accurate speed of rotation is required, (as for a disk drive) a
tachometer and phase locked loop may be optionally included. This tachometer signal, a pulse train
proportional to motor speed, is fed back to a phase locked loop, which compares the tachometer
frequency and phase to a stable reference frequency source such as a crystal oscillator.
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A motor driven by square waves of current, as proviced by simple hall effect sensors, is known as
a brushless DC motor. This type of motor has higher ripple torque torque variation through a shaft
revolution than a sine wave driven motor. This is not a problem for many applications. Though we
are primarily interested in synchronous motors in this section.

N
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Ripple torque mechanical analog

Ripple torque, or cogging caused by the steel pole pieces is illustrated above. Note that there
are no stator coils, not even a motor. The PM rotor may be rotated by hand but will encounter
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attraction to the pole pieces when near them. This is analogous to the mechanical situation above
right. Would ripple torque be a problem for a motor used in a tape player? Yes, we do not want
the motor to alternately speed and slow as it moves audio tape past a tape playback head. Would
ripple torque be a problem for a fan motor? No.

3-φ distributed winding Single phase belt

If a motor is driven by sinewaves of current synchronous with the motor back emf, it is classified
as a synchronous AC motor, regardless of whether the drive waveforms are generated by electronic
means. A synchronous motor will generate a sinusoidal back emf if the stator magnetic field has a
sinusoidal distribution. It will be more sinusoidal if pole windings are distributed in a belt across
many slots instead of concentrated on one large pole (as drawn in most of our simplified illustrations).
This arrangement cancels many of the stator field odd harmonics. Slots having fewer windings at
the edge of the phase winding may share the space with other phases. For a 2-phase motor, driven
by a sinewave, the torque is constant throughout a revolution by the trigonometric identity:

sin2θ + cos2θ = 1

The generation and synchronization of the drive waveform requires a more precise rotor position
indication than provided by the hall effect sensors used in brushless DC motors. A resolver, or optical
or magnetic encoder provides resolution of hundreds to thousands of parts (pulses) per revolution.
A resolver provides analog angular position signals in the form of signals proportional to the sine
and cosine of shaft angle. Encoders provide a digital angular position indication in either serial or
parallel format. The sine wave drive may actually be from a PWM, Pulse Width Modulator, a high
efficiency method of approximating a sinewave with a digital waveform, shown below. Each phase
requires drive electronics for this wave form phase-shifted by the appropriate amount per phase.
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PWM

Synchronous motor efficiency is higher than that of induction motors. The synchronous motor
can also be smaller, especially if high energy permanent magnets are used in the rotor. The advent
of modern solid state electronics makes it possible to drive these motors at variable speed. Induction
motors are mostly used in railway traction. However, a small synchronous motor, which mounts
inside a drive wheel, makes it attractive for such applications. The high temperature superconducting
version of this motor is one fifth to one third the weight of a copper wound motor. The largest
experimental superconducting synchronous motor is capable of driving a naval destroyer class ship.
In all these applications the electronic variable speed drive is essential.
The variable speed drive must also reduce the drive voltage at low speed due to decreased

inductive reactance at lower frequency. To develop maximum torque, the rotor needs to lag the
stator field direction by 90o. Any more, it loses synchronization. Much less results in reduced
torque. Thus, the position of the rotor needs to be known accurately. And the position of the
rotor with respect to the stator field needs to be calculated, and controlled. This type of control is
known as vector phase control. It is implemented with a fast microprocessor driving a pulse width
modulator for the stator phases.

13.3 Synchronous condenser

Synchronous motors load the power line with a leading power factor. This is often usefull in cancelling
out the more commonly encountered lagging power factor caused by induction motors and other
inductive loads. Originally, large industrial synchronous motors came into wide use because of this
ability to correct the lagging power factor of induction motors.
This leading power factor can be exaggerated by removing the mechanical load and over exciting

the field of the synchronous motor. Such a device is known as a synchronous condenser. Furthermore,
the leading power factor can be adjusted by varying the field excitation. This makes it possible to
nearly cancel an arbitrary lagging power factor to unity by paralleling the lagging load with a
synchronous motor. A synchronous condenser is operated in a borderline condition between a motor
and a generator with no mechanical load to fulfill this function. It can compensate either a leading
or lagging power factor, by absorbing or supplying reactive power to the line. This enhances power
line voltage regulation as compared.
Since a synchronous condenser does not supply a torque, the output shaft may be dispensed with

and the unit easily enclosed in a gas tight shell. The synchronous condenser may then be filled with
hydrogen to aid cooling and reduce windage losses. Since the density of hydrogen is 7% of that of
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air, the windage loss for a hydrogen filled unit is 7% of that encountered in air. Furthermore, the
thermal conductivity of hydrogen is ten times that of air. Thus, heat removal is ten times more
efficient. As a result, a hydrogen filled synchronous condenser can be driven harder than an air
cooled unit, or it may be physically smaller for a given capacity. There is no explosion hazard as
long as the hydrogen concentration is maintained above 70%, typically above 91%.

The efficiency of long power transmission lines may be increased by placing synchronous con-
densers along the line to compensate lagging currents caused by line inductance. More real power
may be transmitted through a fixed size line if the power factor is brough closer to unity by syn-
chronous condensers absorbing reactive power.

The ability of synchronous condensers to absorb or produce reactive power on a transient basis
stabilizes the power grid against short circuits and other transient fault conditions. Transient sags
and dips of milliseconds duration are stabilized. This supplements longer response times of quick
acting voltage regulation and excitation of generating equipment. The synchronous condenser aids
voltage regulation by drawing leading current when the line voltage sags, which increases generator
excitation thereby restoring line voltage. A capacitor bank does not have this ability.
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The capacity of a synchronous condenser can be increased by replacing the copper wound iron
field rotor with an ironless rotor of high temperature superconducting wire, which must be cooled to
the liquid nitrogen boiling point of 77oK (-196oC). The superconducting wire carries 160 times the
current of comparable copper wire, while producing a flux density of 3 Teslas or higher. An iron
core would saturate at 2 Teslas in the rotor air gap. Thus, an iron core, approximate µr=1000,
is of no more use than air, or any other material with a relative permeability µr=1, in the rotor.
Such a machine is said to have considerable additional transient ability to supply reactive power
to troublesome loads like metal melting arc furnaces. The manufacturer describes it as being a
”reactive power shock absorber”. Such a synchronous condenser has a higher power density (smaller
physically) than a switched capacitor bank. The ability to absorb or produce reactive power on a
transient basis stabilizes the overall power grid against fault conditions.

13.4 Reluctance motor

The variable reluctance motor is based on the principle that an unrestrained piece of iron will
move to complete a magnetic flux path with minimum reluctance, the magnetic analog of electrical
resistance.
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13.4.1 Synchronous reluctance

If the rotating field of a large synchronous motor with salient poles is de-energized, it will still develop
10 or 15% of synchronous torque. This is due to variable reluctance throughout a rotor revolution.
There is no practical application for a large synchronous reluctance motor. However, it is practical
in small sizes.
If slots are cut into the conductorless rotor of an induction motor, corresponding to the stator

slots, a synchronousreluctance motor results. It starts like an induction motor but runs with a
small amount of synchronous torque. The synchronous torque is due to changes in reluctance of the
magnetic path from the stator through the rotor as the slots align. This motor is an inexpensive
means of developing a moderate synchronous torque. Low power factor, low pull-out torque, and
low efficiency are characteristics of the direct power line driven variable reluctance motor. Such was
the status of the variable reluctance motor for a century before the development of semiconductor
power control.

13.4.2 Switched reluctance

If an iron rotor with poles, but without any conductors, is fitted to a multi-phase stator, a switched
reluctance motor, capable of synchronizing with the stator field results. When a stator coil pole
pair is energized, the rotor will move to the lowest magnetic reluctance path. A switched reluctance
motor is also known as a variable reluctance motor.
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Sequential switching of the stator phases moves the rotor from one position to the next. The
mangetic flux seeks the path of least reluctance, the magnetic analog of electric resistance.
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One end of each 3-phase winding of a switched reluctance motor is usually brought out via
a common power supply wire, above left. The other coil connections are successively pulled to
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ground, one at a time, in a wave drive pattern. This attracts the rotor to the counterclockwise
rotating magnetic field, above center, in 30o increments. Above right, double the number of poles
decreases the rotating speed. A variable reluctance motor intended to move in discrete steps, stop,
and start is a variable reluctance stepper motor, covered in another section. If smooth rotation is
the goal, there is an electronic driven version of the switched reluctance motor.

13.4.3 Electronic driven variable reluctance motor

Variable reluctance motors are poor performers when direct power line driven. However, micropro-
cessors and solid state power drive makes this motor an economical high performance solution in
some high volume applications.
Though difficult to control, this motor is easy to spin. Sequential switching of the field coils

creates a rotating magnetic field which drags the irregularly shaped rotor around with it as it seeks
out the lowest magnetic reluctance path. The relationship between torque and stator current is
highly nonlinear– difficult to control.
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While the variable reluctance motor is simple, even more so than an induction motor, it is
difficult to control. Electronic control solves this problem and makes it practical to drive the motor
well above and below the power line frequency. A variable reluctance motor driven by a servo, an
electronic feedback system, controls torque and speed, minimizing ripple torque.
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This is the opposite of the high ripple torque desired in stepper motors. Rather than a stepper,
a variable reluctance motor is optimized for continuous high speed rotation with minimum ripple
torque. It is necessary to measure the rotor position with a rotary position sensor like an optical
encoder, or derive this from monitoring the stator back EMF. A microprocessor performs complex
calculations for switching the windings at the proper time with solid state devices. This must be
done precisely to minimize audible noise and ripple torque. For lowest ripple torque, winding current
must be monitored and controlled. The strict drive requirements make this motor only practical
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for high volume applications like energy efficient vacuum cleaner motors, fan motors, pump motors.
One such vacuum cleaner uses a compact high efficiency electronic driven 100,000 rpm fan motor.
The simplicity of the motor compensates for the drive electronics cost. No brushes, no commutator,
no rotor windings, no permanent magnets, simplifies motor manufacture. The efficiency of this
electronic driven motor can be high. But, it requires considerable optimization, using specialized
design techniques, which is only justified for large manufacturing volumes.

Advantages

• Simple construction- no brushes, commutator, or permanent magnets, no Cu or Al in the rotor.

• High efficiency and reliability compared to conventional AC or DC motors.

• High starting torque.

• Cost effective compared to bushless DC motor in high volumes.

• Adaptable to very high ambient temperature.

• Low cost accurate speed control possible if volume is high enough.

Disadvantages

• Current versus torque is highly nonlinear

• Phase switching must be precise to minimize ripple torque

• Phase current must be controlled to minimize ripple torque

• Acoustic and electrical noise

• Not applicable to low volumes due to complex control issues

13.5 Stepper motors

A stepper motor is a ”digital” version of the electric motor. The rotor moves in discrete steps as
commanded, rather than rotating continuously like a conventional motor. When stopped but ener-
gized, a stepper (short for stepper motor) holds its load steady with a holding torque. Wide spread
acceptance of the stepper motor within the last two decades was driven by the ascendancy of digital
electronics. Modern solid state driver electronics was a key to its success. And, microprocessors
readily interface to stepper motor driver circuits.

Application wise, the predecessor of the stepper motor was the servo motor. Today this is a
higher cost solution to high performance motion control applications. The expense and complexity
of a servomotor is due to the additional system components: position sensor and error amplifier. It
is still the way to position heavy loads beyond the grasp of lower power steppers. High acceleration
or unusually high accuracy still requires servo motors. Otherwise, the default is the stepper due to
low cost, simple drive electronics, good accuracy, good torque, moderate speed, and low cost.
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A stepper motor positions the read-write heads in a floppy drive. They were once used for the
same purpose in harddrives. However, the high speed and accuracy required of modern harddrive
head positioning dictates the use of a linear servomotor (voice coil).
The servo amplifier is a linear amplifier with some difficult to integrate discrete components.

A considerable design effort is required to optimize the servo amplifier gain vs phase response to
the mechanical components. The stepper motor drivers are less complex solid state switches, being
either ”on” or ”off”. Thus, a stepper motor controller is less complex and costly than a servo motor
controller.
At one time there were available slo-syn steppers (synchronous motors) capable of running from

AC line voltage like a single-phase permanent-capacitor induction motor. The capacitor generates
a 90o second phase. With the direct line voltage, we have a 2-phase drive. Drive waveforms of
bipolar square waves of 2-24V are more common these days. The bipolar magnetic fields may also
be generated from unipolar voltages applied to alternate ends of a center tapped winding. In other
words, DC can be switched to the motor so that it sees AC. As the windings are energized in
sequence, the rotor synchronizes with the consequent stator magnetic field. Thus, we treat stepper
motors as a class of AC synchronous motor.
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unipolarbipolar
Stepper sees alternating field

13.5.1 Characteristics

Stepper motors are rugged and inexpensive because the rotor contains no winding slip rings, or
commutator. The rotor is a cylindrical solid, which may also have either salient poles or fine teeth.
More often than not the rotor is a permanent magnet. Determine that the rotor is a permanent
magnet by unpowered hand rotation showing detent torque, torque pulsations. Stepper motor coils
are wound within a laminated stator, except for can stack construction. There may be as few as
two winding phases or as many as five. These phases are frequently split into pairs. Thus, a 4-pole
stepper motor may have two phases composed of in-line pairs of poles spaced 90o apart. There may
also be multiple pole pairs per phase. For example a 12-pole stepper has 6-pairs of poles, three pairs
per phase.
Since stepper motors do not necessarily rotate continuously, there is no horsepower rating. If

they do rotate continuously, they do not even approach a sub-fractional hp rated capability. They
are truly small low power devices compared to other motors. They have torque ratings to a thousand
in-oz (inch-ounces) or ten n-m (newton-meters) for a 4 kg size unit. A small ”dime” size stepper
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has a torque of a hundredth of a newton-meter or a few inch-ounces. Most steppers are a few inches
in diameter with a fraction of a n-m or a few in-oz torque. The torque available is a function of
motor speed, load inertia, load torque, and drive electronics as illustrated on the speed vs torque
curve below. An energized, holding stepper has a relatively high holding torque rating. There is less
torque available for a running motor, decreasing to zero at some high speed. This speed is frequently
not attainable due to mechanical resonance of the motor load combination.

Stepper speed characteristics
Speed
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e

cutoff speed

maximum speed
holding torque

Stepper motors move one step at a time, the step angle, when the drive waveforms are changed.
The step angle is related to motor construction details: number of coils, number of poles, number of
teeth. It can be from 90o to 0.75o, corresponding to 4 to 500 steps per revolution. Drive electronics
may halve the step angle by moving the rotor in half-steps.

Steppers cannot achieve the speeds on the speed torque curve instantaneously. The maximum
start frequency is the highest rate at which a stopped and unloaded stepper can be started. Any
load will make this parameter unattainable. In practice, the step rate is ramped up during starting
from well below the maximum start frequency. When stopping a stepper motor, the step rate may
be decreased before stopping.

The maximum torque at which a stepper can start and stop is the pull-in torque. This torque
load on the stepper is due to frictional (brake) and inertial (flywheel) loads on the motor shaft. Once
the motor is up to speed, pull-out torque is the maximum sustainable torque without losing steps.

There are three types of stepper motors in order of increasing complexity: variable reluctance,
permanent magnet, and hybrid. The variable reluctance stepper has s solid soft steel rotor with
salient poles. The permanent magnet stepper has a cylindrical permanent magnet rotor. The
hybrid stepper has soft steel teeth added to the permanent magnet rotor for a smaller step angle.

13.5.2 Variable reluctance stepper

A variable reluctance stepper motor relies upon magnetic flux seeking the lowest reluctance path
through a magnetic circuit. This means that an irregularly shaped soft magnetic rotor will move
to complete a magnetic circuit, minimizing the length of any high reluctance air gap. The stator
typically has three windings distributed between pole pairs , the rotor four salient poles, yielding a
30o step angle. A de-energized stepper with no detent torque when hand rotated is identifiable as a
variable reluctance type stepper.
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The required stepper drive waveforms for the 3-φ stepper, above left, can be seen in the ”Re-
luctance motor” section. The drive for a 4-φ stepper are shown below. Sequentially switching the
stator phases produces a rotating magnetic field which the rotor follows. However, due to the lesser
number of rotor poles, the rotor moves less than the stator angle for each step. For a variable
reluctance stepper motor, the step angle is given by:

ΘS = 360o/NS

ΘR = 360o/NR

ΘST = ΘR - ΘS

where: ΘS = stator angle, ΘR = Rotor angle, ΘST = step angle

NS = number stator poles, NP = number rotor poles
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Stepping sequence for variable reluctance stepper

Above, in moving from φ1 to φ2, etc., the stator magnetic field rotates clockwise. The rotor
moves counterclockwise (CCW). Note what does not happen! The dotted rotor tooth does not move
to the next stator tooth. Instead, the φ2 stator field attracts a different tooth in moving the rotor
CCW, which is a smaller angle (15o) than the stator angle of 30o. The rotor tooth angle of 45o

enters into the calculation by the above equation. The rotor moved CCW to the next rotor tooth
at 45o, but it aligns with a CW by 30o stator tooth. Thus, the actual step angle is the difference
between rotor and stepper angle of 45o. How far would the stepper rotate if the rotor and stator
had the same number of teeth? Zero– no notation.
Starting at rest with phase φ1 energized, three pulses are required (φ2, φ3, φ4) to align the

”dotted” rotor tooth to the next CCW stator Tooth, which is 45o. With 3-pulses per stator tooth,
and 8-stator teeth, 24-pulses or steps move the rotor through 360o.
By reversing the sequence of pulses, the direction of rotation is reversed above right. The

direction, step rate, and number of steps are controlled by a stepper motor controller feeding a
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driver or amplifier. This could be combined into a single circuit board. The controller could be a
microprocessor or a specialized integrated circuit. The driver is not a linear amplifier, but a simple
on-off switch capable of high enough current to energize the stepper. In principle, the driver could
be a relay or even a toggle switch for each phase. In practice, the driver is either discrete transistor
switches or an integrated circuit. Both driver and controller may be combined into a single integrated
circuit accepting a direction command and step pulse. It outputs current to the proper phases in
sequence.

Above, we show the internal construction of a variable reluctance stepper motor.The rotor has
protruding poles so that they may be attracted to the rotating stator field as it is switched. An
actual motor, is much longer than our simplified illustration. The shaft is frequently fitted with a
drive screw, below.

Stepper screw drive 

stepper
motor

optical
interrupter

knife edge

guide rails carriage

Variable reluctance stepper motors are applied when only a moderate level of torque is required
and a coarse step angle is adequate. A screw drive, as used in a floppy disk drive is such an
application. When the controller powers-up, it does not know the position of the carriage. However,
it can drive the carriage toward the optical interrupter, calibrating the position at which the knife
edge cuts the interrupter as ”home”. The controller counts step pulses from this position. As long
as the load torque does not exceed the motor torque, the controller will know the carriage position.
Summary: variable reluctance stepper motor

• The rotor is a soft iron cylinder with salient (protruding) poles.

• This is the least complex, most inexpensive stepper motor.

• The only type stepper with no detent torque in hand rotation of a de-energized motor shaft.

• Large step angle
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• A lead screw is often mounted to the shaft for linear stepping motion.

13.5.3 Permanent magnet stepper

A permanent magnet stepper motor has a cylindrical permanent magnet rotor. The stator usually
has two windings. The windings could be center tapped to allow for a unipolar driver circuit where
the polarity of the magnetic field is changed by switching a voltage from one end to the either end
of the winding. A bipolar drive of alternating polarity is required to power windings without the
center tap. A pure permanent magnet stepper usually has a large step angle. Rotation of the shaft
of a de-energized motor exhibits detent torque. If the detent angle is large, say 7.5o to 90o, it is
likely a permanent magnet stepper rather than a hybrid stepper (next subsection).

Permanent magnet stepper motors require phased alternating currents applied to the two (or
more) windings. In practice, this is almost always square waves generated from DC by solid state
electronics. Bipolar drive is square waves alternating between (+) and (-) polarities, say, +2.5 V to
-2.5 V. Unipolar drive supplies a (+) and (-) alternating current to the coils, but is developed from
a pair of positive square waves applied to opposite ends of a center tapped coil. The timing of the
bipolar or unipolar wave is wave drive, single step, or half step.

Wave drive
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Wave drive

Conceptually, the simplest drive is wave drive as illustrated above. The rotation sequence left
to right is positive φ-1 points rotor north pole up, (+) φ-2 points rotor north right, negative φ-1
attracts rotor north down, (-) φ-2 points rotor left. The wave drive waveforms below show that only
one coil is energized at a time. While simple, this does not produce as much torque as other drive
techniques.

+

-
+

-

a b c d
φ2

φ1

φ1’

φ1

φ2’φ2

Bipolar wave drive

The above waveforms are bipolar because both polarities , (+) and (-) are required to drive the
stepper. The coil magnetic field reverses because the current was reversed. Below, the waveforms
are of only positive polarity.
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φ1φ2

V+

φ1

φ2

φ1’

φ2’

Unipolar wave drive
φ1’

φ2’V+

6-wire

The above waveforms are unipolar because only one polarity is required. This simplifies the drive
electronics. There are twice as many waveforms because a pair of (+) waves is required to produce
an alternating magnetic field by application to opposite ends of a center tapped coil. The motor
requires alternating magnetic fields. These may be produced by either unipolar or bipolar waves.
However, motor coils must have center taps for unipolar drive.

Below are the wiring diagrams for permanent magnet stepper motors, also applicable to hybrid
steppers.

φ1φ2

V+

φ1’

φ2’V+ φ1φ2

φ1’

φ2’V+

6-wire
unipolar

5-wire
unipolar

φ1a

φ2a

φ1b’

φ2b’

8-wire bipolar
or unipolar

φ1a’

φ1b

φ2a’ φ2b’

φ1’

φ1

φ2’φ2

2-wire
bipolar

The 4-wire motor can only be driven by bipolar waveforms. The 6-wire motor, the most common
arrangement, is intended for unipolar drive because of the center taps. Though, it may be driven
by bipolar waves if the center taps are ignored. The 5-wire motor can only be driven by unipolar
waves, as the common center tap interferes if both windings are energized simultaneously. The
8-wire configuration is rare, but provides maximum flexibility. It may be wired for unipolar drive as
for the 6-wire or 5-wire motor. A pair of coils may be connected in series for high voltage bipolar
low current drive, or in parallel for low voltage high current drive.

A bifilar winding is produced by winding the coils with two wires in parallel, often a red and green
enamelled wire. This method produces exact 1:1 turns ratios. This winding method is applicable to
all but the 4-wire arrangement above.

Full step drive

Full step drive provides more torque than wave drive because both coils are energized at the same
time. This attracts the rotor poles midway between the two field poles .
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Single step

Single step bipolar drive is shown above. The step angle is the same as for wave drive. Unipolar
drive (not shown) would require a pair of unipolar waveforms for each of the above bipolar waveforms
applied to the ends of a center tapped winding.

Half step drive

The step angle for a given stepper motor geometry is cut in half with half step drive. This corresponds
to twice as many step pulses per revolution.
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Half step

Half step drive is a combination of wave drive and full step drive with one winding energized,
followed by both windings energized, yielding twice as many steps. The unipolar waveforms for half
step drive are shown above. The rotor can align with the field poles as for wave drive and between
the poles as for full step drive.

Microstepping is possible with specialized controllers. By varying the currents to the windings
sinusoidally many microsteps can be interpolated between the normal positions.

Construction

The contruction of a permanent magnet stepper motor is considerably different from the drawings
above. It is desirable to increase the number of poles beyond that illustrated above so as to produce
a smaller step angle. It is also desirable to reduce the number of windings, or at least not increase
the number of windings for ease of manufacture.
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Permanent magnet stepper, 24-pole (can-stack)

north

south

ceramic permanent magnet
rotor

φ-1 coil φ-2 coil

SN

The permanent magnet stepper above only has two windings, yet has 24-poles in each of two
phases. This style of construction is known as can stack. A phase winding is wrapped with a mild
steel shell, with fingers brought to the center. One phase, on a transient basis, will have a north side
and a south side. Each side wraps around to the center of the doughnut with twelve interdigitated
fingers for a total of 24 poles. These alternating north-south fingers will attract the permanent
magnet rotor. If the polarity of the phase were reversed, the rotor would jump 360o/24 = 15o. We
do not know which direction, which is not usefull. However, if we energize φ-1 followed by φ-2, the
rotor will move 7.5o because the φ-2 is offset (rotated) by 7.5o from φ-1. See below for offset. And,
it will rotate in a reproducible direction if the phases are alternated. Application of any of the above
waveforms will rotate the permanent magnet rotor.

Note that the rotor is a gray ferrite ceramic cylinder magnetized in the 24-pole pattern shown.
This can be viewed with magnet viewer film or iron fillings applied to a paper wrapping. Though,
the colors will be green for both north and south poles with the film.

Can stack permanent magnet stepper

dust coverφ−1 coil
φ−2 coil

PM rotor

90° offset

φ−1 coil

φ−2 coil

xx’

x’

x

Above is the external package of a can-stack permanent magnet stepper motor.
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Summary: permanent magnet stepper motor

• The rotor is a permanent magnet, often a ferrite sleeve magnetized with numerous poles.

• Can-stack construction provides numerous poles from a single coil with interleaved fingers of
soft iron.

• Large to moderate step angle.

• Often used in computer printers to advance paper.

13.5.4 Hybrid stepper motor

The hybrid stepper motor combines features of both the variable reluctance stepper and the perma-
nent magnet stepper to produce a smaller step angle. The rotor is a cylindrical permanent magnet,
magnetized along the axis with radial soft iron teeth. The stator coils are wound on alternating
poles with corresponding teeth. There are typically two winding phases distributed between pole
pairs. This winding may be center tapped for unipolar drive. The center tap is achieved by a bifilar
winding, a pair of wires wound physically in parallel, but wired in series. The north-south poles
of a phase swap polarity when the phase drive current is reversed. Bipolar drive is required for
un-tapped windings.

Hybrid stepper motor

N S

N S

rotor pole detail

permanent magnet
rotor, 96-pole

8-pole stator

Note that the 48-teeth on one rotor section are offset by half a pitch from the other. See rotor
pole detail above. This rotor tooth offset is also shown below. Due to this offset, the rotor effectively
has 96 interleaved poles of opposite polarity.This offset allows for rotation in 1/96 th of a revolution
steps by reversing the field polarity of one phase. Two phase windings are common as shown above
and below. There could be as many as five phases.
The stator teeth on the 8-poles correspond to the 48-rotor teeth, except for missing teeth in the

space between the poles. Thus, one pole of the rotor, say the south pole, may align with the stator
in 48 distinct positions. However, the teeth of the south pole are offset from the north teeth by half
a tooth. Therefore, the rotor may align with the stator in 96 distinct positions. This half tooth
offset shows in the rotor pole detail above, or the figure below.
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As if this were not complicated enough, the stator main poles are divided into two phases (φ-1,
φ-2). These stator phases are offset from one another by one-quarter of a tooth. This detail is only
discernable on the pictorial and schematic diagram below. The result is that the rotor moves in
steps of a quarter of a tooth when the phases are alternately energized. In other words, the rotor
moves in 2x96=192 steps per revolution for the above stepper.
The above drawing is representative of an actual hybrid stepper motor. However, we provide a

simplified pictorial and schematic representation below to illustrate details not obvious above. Note
the reduced number of coils and teeth in rotor and stator. In the next two figures, we attempt to
illustrate the quarter tooth rotation produced by the two stator phases offset by a quarter tooth,
and the rotor half tooth offset. The quarter tooth stator offset in conjunction with drive current
timing also defines direction of rotation.

PM South

PM
North

Stator South

stator North

Hybrid stepper motor schematic

alignment

alignment N φ1

S φ1′

φ2′ φ2

1/2 tooth 
offset

1/4 tooth offset

Features of hy-
brid stepper schematic (above)

• The top of the permanent magnet rotor is the south pole, the bottom north.

• The rotor north-south teeth are offset by half a tooth.

• If the φ-1 stator is temporarily energized north top, south bottom.

• The top φ-1 stator teeth align north to rotor top south teeth.

• The bottom φ-1’ stator teeth align south to rotor bottom north teeth.

• Enough torque applied to the shaft to overcome the hold-in torque would move the rotor by
one tooth.

• If the polarity of φ-1 were reversed, the rotor would move by one-half tooth, direction unknown.
The alignment would be south stator top to north rotor bottom, north stator bottom to south
rotor.

• The φ-2 stator teeth are not aligned with the rotor teeth when φ-1 is energized. In fact, the
φ-2 stator teeth are offset by one-quarter tooth. This will allow for rotation by that amount if
φ-1 is de-energized and φ-2 energized. Polarity of φ-1 and ¡phi-2¿ drive determines direction
of rotation.
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(a) (b) (c)
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Hybrid step sequence
align top align right align bottom

φ2

φ1

φ2′

φ1′

φ1

φ1′

φ1

φ1′

φ2′ φ2φ2′ φ2

off

off

off
off off

off

Hybrid stepper
motor rotation (above)

• Rotor top is permanent magnet south, bottom north. Fields φ1, φ-2 are switchable: on, off,
reverse.

• (a) φ-1=on=north-top, φ-2=off. Align (top to bottom): φ-1 stator-N:rotor-top-S, φ-1’
stator-S: rotor-bottom-N. Start position, rotation=0.

• (b) φ-1=off, φ-2=on. Align (right to left): φ-2 stator-N-right:rotor-top-S, φ-2’ stator-S:
rotor-bottom-N. Rotate 1/4 tooth, total rotation=1/4 tooth.

• (c) φ-1=reverse(on), φ-2=off. Align (bottom to top): φ-1 stator-S:rotor-bottom-N, φ-1’
stator-N:rotor-top-S. Rotate 1/4 tooth from last position. Total rotation from start: 1/2 tooth.

• Not shown: φ-1=off, φ-2=reverse(on). Align (left to right): Total rotation: 3/4 tooth.

• Not shown: φ-1=on, φ-2=off (same as (a)). Align (top to bottom): Total rotation 1-tooth.

An un-powered stepper motor with detent torque is either a permanent magnet stepper or a
hybrid stepper. The hybrid stepper will have a small step angle, much less than the 7.5o of permanent
magnet steppers. The step angle could be a fraction of a degree, corresponding to a few hundred
steps per revolution.

Summary: hybrid stepper motor

• The step angle is smaller than variable reluctance or permanent magnet steppers.

• The rotor is a permanent magnet with fine teeth. North and south teeth are offset by half a
tooth for a smaller step angle.

• The stator poles have matching fine teeth of the same pitch as the rotor.

• The stator windings are divided into no less than two phases.

• The poles of one stator windings are offset by a quarter tooth for an even smaller step angle.
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13.6 Brushless DC motor

Brushless DC motors were developed from conventional brushed DC motors with the availability of
solid state power semiconductors. So, why do we discuss brushless DC motors in a chapter on AC
motors? Brushless DC motors are similar to AC synchronous motors. The major difference is that
synchronous motors develop a sinusoidal back EMF, as compared to a rectangular, or trapezoidal,
back EMF for brushless DC motors. Both have stator created rotating magnetic fields producing
torque in a magnetic rotor.
Synchronous motors are usually large multi-kilowatt size, often with electromagnet rotors. True

synchronous motors are considered to be single speed, a submultiple of the powerline frequency.
Brushless DC motors tend to be small– a few watts to tens of watts, with permanent magnet rotors.
The speed of a brushless DC motor is not fixed unless driven by a phased locked loop slaved to a
reference frequency. The style of construction is either cylindrical or pancake.

Cylindrical motors

Stator

Stator

Rotor

Rotor

The most usual construction, cylindrical, can take on two forms, above. The most common
cylindrical style is with the rotor on the inside, above right. This style motor is used in hard disk
drives. It is also possible the put the rotor on the outside surrounding the stator. Such is the case
with brushless DC fan motors, sans the shaft. This style of construction may be short and fat.
However, the direction of the magnetic flux is radial with respect to the rotational axis.

Rotor

RotorStator

Stator

Stator

Pancake motors

High torque pancake motors may have stator coils on both sides of the rotor as above right.
Lower torque applications like floppy disk drive motors suffice with a stator coils on one side of the
rotor, above left. The direction of the magnetic flux is axial, that is, parallel to the axis of rotation.
The commutation function may be performed by various shaft position sensors: optical encoder,

magnetic encoder (resolver, synchro, etc), or Hall effect magnetic sensors. Small inexpensive motors
use Hall effect sensors. A Hall effect sensor is a semiconductor device where the electron flow is



13.6. BRUSHLESS DC MOTOR 417

affected by a magnetic field perpendicular to the direction of current flow.. It looks like a four
terminal variable resistor network. The voltage at the two outputs is complementary. Application
of a magnetic field to the sensor causes a small voltage change at the output. The Hall output
may drive a comparator to provide for more stable drive to the power device. Or, it may drive
a compound transistor stage if properly biased. More modern Hall effect sensors may contain an
integrated amplifier, and digital circuitry. This 3-lead device may directly drive the power transistor
feeding a phase winding. The sensor must be mounted close to the permanent magnet rotor to sense
its position.
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V+

V+
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V+

NC

H3 H2

V+

H1

V+

A3

A2

A1

Hall effect sensors commutate 3-φ brushless DC motor

The simple cylindrical 3-φ motor above is commutated by a Hall effect device for each of the
three stator phases. The changing position of the permanent magnet rotor is sensed by the Hall
device as the polarity of the passing rotor pole changes. This Hall signal is amplified so that the
stator coils are driven in the proper sequence, above. Not shown here, sometimes the Hall signals
are processed by combinatorial logic for more efficient drive waveforms.

The above cylindrical motor could drive a harddrive if it were equipped with a phased locked
loop (PLL) to maintain constant speed. Similar circuitry could drive the pancake floppy disk drive
motor below. Again, it would need a PLL to maintain constant speed.
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RotorStator
Hall effect sensor

φ−1 φ−2
φ−3

φ−1′

Brushless pancake motor

The 3-φ pancake motor above has 6-stator poles and 8-rotor poles. The rotor is a flat ferrite
ring magnetized with eight axially magnetized alternating poles. We do not show that the rotor
is capped by a mild steel plate for mounting to the bearing in the middle of the stator. The steel
plate also helps complete the magnetic circuit. The stator poles are also mounted atop a steel plate,
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helping to close the magnetic circuit. The flat stator coils are trapezoidal to more closely fit the
coils, and approximate the rotor poles. The 6-stator coils comprise three winding phases.
If the three stator phases were successively energized, a rotating magnetic field would be gen-

erated. The permanent magnet rotor would follow as in the case of a synchronous motor. A two
pole rotor would follow this field at the same rotation rate as the rotating field. However, our 8-pole
rotor will rotate at a submultiple of this rate due the the extra poles in the rotor.
The brushless DC fan motor below has these feature:
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2-φ brushless fan motor

• The stator has 2-phases distributed between 4-poles

• There are 4-salient poles with no windings to eliminate zero torque points.

• The rotor has four main drive poles.

• The rotor has 8-poles superimposed to help eliminate zero torque points.

• The Hall effect sensors are spaced at 45o physical.

• The fan housing is placed atop the rotor, which is placed over the stator.

The goal of a brushless fan motor is to minimize complexity to minimize the cost of manufacture.
This is an incentive to move lower performance products to a 2-φ configuration. Depending on how
it is driven, it may be called a 4-φ motor.
You may recall that conventional DC motors cannot have an even number of armature poles (2,4,

etc) if they are to be self-starting, 3,5,7 being common. Thus, it is possible for a hypothetical 4-pole
motor to come to rest at a torque minima, where it cannot be started from rest. The addition of the
four small salient poles with no windings superimposes a ripple torque upon the torque vs position
curve. When this ripple torque is added to normal energized-torque curve, the result is that torque
minima are partially removed. This makes it possible to start the motor for all possible stopping
positions. The addition of eight permanant magnet poles to the normal 4-pole permanent magnet
rotor superimposes a small second harmonic ripple torque upon the normal 4-pole ripple torque.
This further removes the torque minima. As long as the torque minima does not drop to zero, we
should be able to start the motor. The more successful we are in removing the torque minima, the
easier the motor starting.
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The 2-φ stator requires that the Hall sensors be spaced apart by 90o electrical. If the rotor were
a 2-pole rotor, the Hall sensors would be placed 90o physical. Since we have a 4-pole permanent
magnet rotor, the sensors must be placed 45o physical to achieve the 90o electrical spacing. Note
Hall spacing above. The majority of the torque is due to the interaction of the inside stator 2-φ coils
with the 4-pole section of the rotor. Moreover, the 4-pole section of the rotor must be on the bottom
so that the Hall sensors will sense the proper commutation signals. The 8-poles rotor section is only
for improving motor starting.
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2-φ push-pull drive for brushless DC motor
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Above, the 2-φ push-pull drive (also known as 4-φ drive) uses two Hall effect sensors to drive
four windings. The sensors are spaced 90o electrical apart, which is 90o physical for a single pole
rotor. Since the Hall sensor has two complementary outputs, one sensor provides commutation for
two opposing windings.

13.7 Tesla polyphase induction motors

Most AC motors are induction motors. Induction motors are favored due to their ruggedness and
simplicity. In fact, 90% of industrial motors are induction motors.
Nikola Tesla conceived the basic principals of the polyphase induction motor in 1883, and had

a half horsepower (400 watt) model by 1888. Though he received a million dollars from George
Westinghouse for the rights to manufacture this invention, he died penniless.
Most large ( > 1 hp or 1 Kw) industrial motors are poly-phase induction motors. By poly-phase,

we mean that the stator contains multiple distinct windings per motor pole, driven by corresponding
time shifted sine waves. In practice, this is two or three phases. Large industrial motors are 3-phase.
While we include numerous illustrations of two-phase motors for simplicity, we must emphasize that
nearly all poly-phase motors are three-phase. By induction motor, we mean that the stator windings
induce a current flow in the rotor conductors, like a transformer, unlike a brushed DC commutator
motor.

13.7.1 Construction

An induction motor is composed of a rotor, known as an armature, and a stator containing windings
connected to a poly-phase energy source as shown below. The simple 2-phase induction motor below
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is similar to the 1/2 horsepower motor which Nikola Tesla introduced in 1888.

Stator
Rotor

The above stator is wound with pairs of coils corresponding to the phases of electrical energy
available. The 2-phase induction motor stator above has 2-pairs of coils, one pair for each of the two
phases of AC. The individual coils of a pair are connected in series and correspond to the opposite
poles of an electromagnet. That is, one coil corresponds to a N-pole the other to a S-pole until the
phase of AC changes polarity. The other pair of coils is oriented 90o in space to the first pair. This
pair of coils is connected to AC shifted in time by 90o in the case of a 2-phase motor. In theory, the
source of the two phases of AC could be a 2-phase alternator.
The above stator has salient, obvious protruding poles, as used on Tesla’s early induction motor.

This design is used to this day for sub-fractional horsepower motors (<50 watts). However, for
larger motors less torque pulsation and higher efficiency results if the coils are embedded into slots
cut into the stator laminations. See below.

The stator laminations are thin insulated rings with slots punched from sheets of electrical grase
steel. A stack of these is secured by end screws, which may also hold the end housings.



13.7. TESLA POLYPHASE INDUCTION MOTORS 421

two phase three phase

φ−3

φ−1

φ−1
φ−2 φ−2

Above, the windings for both a two-phase motor and a three-phase motor have been installed in
the stator slots. The coils are wound on an external fixture, then worked into the slots. Insulation
wedged between the coil periphery and the slot protects against abrasion.
Actual stator windings are more complex than the single windings per pole above. Comparing

the 2-φ motor to Tesla’s 2-φ motor with salient poles, the number of coils is the same. In actual large
motors, a pole winding, is divided into identical coils inserted into many smaller slots than above.
This group is called a phase belt. The distributed coils of the phase belt cancel some of the odd
harmonics, producing a more sinusoidal magnetic field distribution across the pole. This is shown
in the synchronous motor section. The slots at the edge of the pole may have fewer turns than the
other slots. Edge slots may contain windings from two phases. That is, the phase belts overlap.
The key to the popularity of the AC induction motor is simplicity as evidenced by the simple

rotor below. The rotor consists of a shaft, a steel laminated rotor, and an embedded copper or
aluminum squirrel cage, shown below right, removed from the rotor. As compared to a DC motor
armature, there is no commutator. This eliminates the brushes, arcing, sparking, graphite dust,
brush adjustment and replacement, and re-machining of the commutator.

The squirrel cage conductors may be skewed, twisted, with respsect to the shaft. The misalign-
ment with the stator slots reduces torque pulsations.
Both rotor and stator cores are composed of a stack of insulated laminations. The laminations
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are coated with insulating oxide or varnish to minimize eddy current losses. The alloy used in the
laminations is selected for low hysteresis losses.

13.7.2 Theory of operation

A short explanation of operation is that the stator creates a rotating magnetic field which drags the
rotor around.

The theory of operation of induction motors is based on a rotating magnetic field. One means of
creating a rotating magnetic field is to rotate a permanent magnet as shown below. If the moving
magnetic lines of flux cut a conductive disk, it will follow the motion of the magnet. The lines of flux
cutting the conductor will induce a voltage, and consequent current flow, in the conductive disk.
This current flow creates an electromagnet whose polarity opposes the motion of the permanent
magnet– Lenz’s Law. The polarity of the electromagnet is such that it pulls against the permanent
magnet. The disk follows with a little less speed than the permanent magnet.

The torque developed by the disk is proportional to the number of flux lines cutting the disk. If
the disk were to spin at the same rate as the permanent magnet, there would be no flux cutting the
disk, no induced current flow, no electromagnet field, no torque. Thus, the disk speed will always
fall behind that of the rotating permanent magnet, so that lines of flux cut the disk induce a current,
create an electromagnetic field in the disk, which follows the permanent magnet. If a load is applied
to the disk slowing it, more torque will be developed. Torque is proportional to slip, the degree to
which the disk falls behind the rotating magnet. More slip corresponds to more flux cutting the
conductive disk.

An analog automotive eddy current speedometer is based on the principle illustrated above. With
the disk restrained by a spring, disk and needle deflection is proportional to magnet rotation rate.

A rotating magnetic field is created by two coils placed at right angles to each other, driven
by currents which are 90o out of phase. This should not be surprising if you are familiar with
oscilloscope Lissajous patterns.
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Above a circular Lissajous is produced by driving the horizontal and vertical oscilloscope inputs
with 90o out of phase sine waves. Starting at (a) with maximum ”X” and minimum ”Y” deflection,
the trace moves up and left toward (b). Between (a) and (b) the two waveforms are equal to 0.707
Vpk at 45

o. This point (0.707, 0.707) falls on the radius of the circle between (a) and (b) The trace
moves to (b) with minimum ”X” and maximum ”Y” deflection. With maximum negative ”X” and
minimum ”Y” deflection, the trace moves to (c). Then with minimum ”X” and maximum negative
”Y”, it moves to (d), and on back to (a), completing one cycle.
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Above we illustrate that the two 90o phase shifted sine waves are applied to oscilloscope deflection
plates which are at right angles in space. If this were not the case, a one dimensional line would
display. The combination of 90o phased sine waves and right angle deflection, results in a two
dimensional pattern– a circle. This circle is traced out by a counterclockwise rotating spot.

Below for reference, we show why in-phase sine waves will not produce a circular pattern. Equal
”X” and ”Y” deflection moves the illuminated spot from the origin at (a) up to right (1,1) at (b),
back down left to origin at (c),down left to (-1.-1) at (d), and back up right to origin. The line is
produced by equal deflections along both axes; y=x is a straight line.
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If a pair of 90o out of phase sine waves produces a circular Lissajous, a similar pair of currents
should be able to produce a circular rotating magnetic field. Such is the case of a 2-phase motor. By
analogy three windings placed 120o apart in space, and fed with corresponding 120o phased currents
will also produce a rotating magnetic field.
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As the 90o phased sinewaves, above left, progress from points (a) through (d), the magnetic field
rotates counterclockwise (figures a-d) as follows:

• (a) φ-1 maximum, φ-2 zero

• (a’) φ-1 70%, φ-2 70%

• (b) φ-1 zero, φ-2 maximum

• (c) φ-1 maximum negative, φ-2 zero

• (d) φ-1 zero, φ-2 maximum negative
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Motor speed

The rotation rate of rotating magnetic field is related to the number of pole pairs per stator phase.
The ”full speed” figure below has a total of six poles or three pole-pairs and three phases. There
it but one pole pair per phase– the number we need. The magnetic field will rotate once per sine
wave cycle. In the case of 60 Hz power, the field rotates at 60 times per second or 3600 revolutions
per minute (rpm). For 50 Hz power, it rotates at 50 rotations per second, or 3000 rpm. The 3600
and 3000 rpm, are the synchronous speed of the motor. Though the rotor of an induction motor
never achieves this speed, it certainly is an upper limit. If we double the number of motor poles, the
synchronous speed is cut in half because the magnetic field rotates 180oin space for 360oelectrical
sine wave.

φ1

φ2
φ3

φ3

φ1

φ2

full speed half speed

The synchronous speed is given by:

Ns = 120f/P

Ns = synchronous speed in rpm

f = frequency of applied power, Hz

P = total number of poles per phase, a multiple of 2

Example:

The above half ”speed figure” has four poles per phase (3-phase). The synchronous speed for 50
Hz power is:

S = 120*50/4 = 1500 rpm

The short explanation of the induction motor is that the rotating magnetic field produced by
the stator drags the rotor around with it.
The longer more correct explanation is that the stator’s magnetic field induces an alternating

current into the rotor squirrel cage conductors which constitutes a transformer secondary. This
induced rotor current in turn creates a magnetic field. The rotating stator magnetic field interacts
with this rotor field. The rotor field attempts to align with the rotating stator field. The result
is rotation of the squirrel cage rotor. If there were no mechanical motor torque load, no bearing,
windage, or other losses, the rotor would rotate at the synchronous speed. However, the slip between
the rotor and the synchronous speed stator field develops torque. It is the magnetic flux cutting the
rotor conductors as it slips which develops torque. Thus, a loaded motor will slip in proportion to
the mechanical load. If the rotor were to run at synchronous speed, there would be no stator flux
cutting the rotor, no current induced in the rotor, no torque.
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Torque

When power is first applied to the motor, the rotor is at rest, while the stator magnetic field rotates
at the synchronous speed Ns. The stator field is cutting the rotor at the synchronous speed Ns.
The current induced in the rotor shorted turns is maximum, as is the frequency of the current, the
line frequency. As the rotor speeds up, the rate at which stator flux cuts the rotor is the difference
between synchronous speed Ns and actual rotor speed N, or (Ns - N). The ratio of actual flux cutting
the rotor to synchronous speed is defined as slip:

s = (Ns - N)/(Ns

where Ns = synchronous speed, N = rotor speed

The frequency of the current induced into the rotor conductors is only as high as the line frequency
at motor start, decreasing as the rotor approaches synchronous speed. Rotor frequency is given by:

fr = sf

where s = slip, f = stator power line frequency

Slip at 100% torque is typically 5% or less in induction motors. Thus for f = 50 Hz line frequency,
the frequency of the induced current in the rotor fr = 0.05*50 = 2.5 Hz. Why is it so low? The
stator magnetic field rotates at 50 Hz. The rotor speed is 5% less. The rotating magnetic field is
only cutting the rotor at 2.5 Hz. The 2.5 Hz is the difference between the synchronous speed and
the actual rotor speed. If the rotor spins a little faster, at the synchronous speed, no flux will cut
the rotor at all, fr = 0.
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The above graph shows that starting torque known as locked rotor torque (LRT) is higher than
100% of the full load torque (FLT), the safe continuous torque rating. The locked rotor torque is
about 175% of FLT for the example motor graphed above. Starting current known as locked rotor
current (LRC) is 500% of full load current (FLC), the safe running current. The current is high
because this is analogous to a shorted secondary on a transformer. As the rotor starts to rotate
the torque may decrease a bit for certain classes of motors to a value known as the pull up torque.
This is the lowest value of torque ever encountered by the starting motor. As the rotor gains 80% of
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synchronous speed, torque increases from 175% up to 300% of the full load torque. This breakdown
torque is due to the larger than normal 20% slip. The current has decreased only slightly at this
point, but will decrease rapidly beyond this point. As the rotor accelerates to within a few percent
of synchronous speed, both torque and current will decrease substantially. Slip will be only a few
percent during normal operation. For a running motor, any portion of the torque curve below
100% rated torque is normal. The motor load determines the operating point on the torque curve.
While the motor torque and current may exceed 100% for a few seconds during starting, continuous
operation above 100% can damage the motor. Any motor torque load above the breakdown torque
will stall the motor. The torque, slip, and current will approach zero for a ”no mechanical torque”
load condition. This condition is analogous to an open secondary transformer.

There are several basic induction motor designs showing consideable variation from the torque
curve above. The different designs are optimized for starting and running different types of loads.
The locked rotor torque (LRT) for various motor designs and sizes ranges from 60% to 350% of full
load torque (FLT). Starting current or locked rotor current (LRC) can range from 500% to 1400%
of full load current (FLC). This current draw can present a starting problem for large induction
motors.

NEMA design classes

Various standard classes (or designs) for motors, corresponding to the torque curves below have been
developed to better drive various type loads. The National Electrical Manufacturers Association
(NEMA) has specified motor classes A, B, C, and D to meet these drive requirements. Similar
International Electrotechnical Commission (IEC) classes N and H correspond to NEMA B and C
designs respectively.
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All motors, except class D, operate at %5 slip or less at full load.

• Class B (IEC Class N) motors are the default motor to use in most applications. With a
starting torque of LRT = 150% to 170% of FLT, it can start most loads, without excessive
starting current (LRT). Efficiency and power factor are high. It typically drives pumps, fans,
and machine tools.

• Class A starting torque is the same as class B. Drop out torque and starting current (LRT)are
higher. This motor handles transient overloads as encountered in injection molding machines.
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• Class C (IEC Class H) has higher starting torque than class A and B at LRT = 200% of
FLT. This motor is applied to hard-starting loads which need to be driven at constant speed
like conveyors, crushers, and reciprocating pumps and compressors.

• Class D motors have the highest starting torque (LRT) coupled with low starting current due
to high slip ( 5% to 13% at FLT). The high slip results in lower speed. Speed regulation is
poor. However, the motor excels at driving highly variable speed loads like those requiring an
energy storage flywheel. Applications include punch presses, shears, and elevators.

• Class E motors are a higher efficiency version of class B.

• Class F motors have much lower LRC, LRT, and break down torque than class B. Can be
used with constant easily started loads.

Power factor

Induction motors present a lagging (inductive) power factor to the power line.The power factor in
large fully loaded high speed motors can be as favorable as 90% for large high speed motors. At
3/4 full load the largest high speed motor power factor can be 92%. The power factor for small low
speed motors can be as low as 50%. At starting, the power factor can be in the range of 10% to
25%, rising as the rotor achieves speed.
Power factor (PF) varies considerably with the motor mechanical load. An unloaded motor is

analogous to a transformer with no resistive load on the secondary. Little resistance is reflected from
the secondary (rotor) to the primary (stator). Thus the power line sees a reactive load, as low as
10% PF. As the rotor is loaded an increasing resistive component is reflected from rotor to stator,
increasing the power factor.

0              20             40             60              80         100  % load

20%

40%

ef
fic

ie
nc

e,
 

po
w

er
 fa

ct
or

60%

80%

100%

power factor

efficiency

Efficiency

Large three phase motors are more efficient than smaller 3-phase motors, and most all single phase
motors. Large induction motor efficiency can be as high as 95% at full load, though 90% is more
common. Efficiency for a lightly load or no-loaded induction motor is poor because most of the
current is involved with maintaining magnetizing flux. As the torque load is increased, more current
is consumed in generating torque, while current associated with magnetizing remains fixed. Efficiency
at 75% FLT can be slightly higher than that at 100% FLT. Efficiency is decreased a few percent at
50% FLT, and decreased a few more percent at 25% FLT. Efficiency only becomes poor below 25%
FLT.
Most induction motors are typically oversized to guarantee that the mechanical load can be

started and driven under all operating conditions. If the motor is loaded at less than 75% of rated
torque where efficiency peaks, efficiency suffers only slightly down to 25% FLT.
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Nola power factor corrrector

Frank Nola of NASA proposed a power factor corrector as an energy saving device for single phase
induction motors in the late 1970’s. It is based on the premise that a less than fully loaded induction
motor is less efficient and has a lower power factor than a fully loaded motor. Thus, there is energy to
be saved in partially loaded motors, 1-φ motors in particular. The energy consumed in maintaining
the stator magnetic field is relatively fixed with respect to load changes. While there is nothing to
be saved in a fully loaded motor, the voltage to a partially loaded motor may be reduced to decrease
the energy required to maintain the magnetic field. This will increase power factor and efficiency.
This was a good concept for the notoriously inefficient single phase motors for which it was intended.

This concept is not very applicable to large 3-phase motors. Because of their high efficiency
(90%+), there is not much energy to be saved. Moreover, a 95% efficient motor is still 94% efficient
at 50% full load torque (FLT) and 90% efficient at 25% FLT. The potential energy savings in going
from 100% FLT to 25% FLT is the difference in efficiency 95% - 90% = 5%. This is not 5% of the
full load wattage but 5% of the wattage at the reduced load. The Nola power factor corrector might
be applicable to a 3-phase motor which idles most of the time (below 25% FLT), like a punch press.
The pay-back period for the expensive electronic controller has been estimated to be unattractive
for most applications. Details: (http://www.lmphotonics.com/energy.htm) Though, it might be
economical as part of an electronic motor starter or speed Control.

Induction motor alternator

An induction motor may function as an alternator if it is driven by a torque at greater than 100%
of the synchronous speed. This corresponds to a few % of ”negative” slip, say -5% slip. This means
that as we are rotating the motor faster than the synchronous speed, the rotor is advancing 5%
faster than the stator rotating magnetic field. It normally lags by 5% in a motor. Since the rotor
is cutting the stator magnetic field in the opposite direction (leading), the rotor induces a voltage
into the stator feeding electrical energy back into the power line.
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Such an induction generator must be excited by a ”live” source of 50 or 60 Hz power. No power
can be generated in the event of a power company power failure. This type of alternator appears
to be unsuited as a standby power source. As an auxiliary power wind turbine generator, it has the
advantage of not requiring an automatic power failure disconnect switch to protect repair crews.

Start up procedure is to bring the wind turbine up to speed in motor mode by application of
normal power line voltage to the stator. Any wind induced turbine speed in excess of synchronous
speed will develop negative torque, feeding power back into the power line, reversing the normal
direction of the electric kilowatt-hour meter. Whereas an induction motor presents a lagging power
factor to the power line, an induction alternator presents a leading power factor. Induction generators
are not widely used, even for wind turbines.

13.7.3 Motor starting and speed control

Some induction motors can draw over 1000% of full load current during starting; though, a few
hundred percent is more common. Small motors of a few kilowatts or smaller can be started by
direct connection to the power line. Starting larger motors can cause line voltage sag, affecting
other loads. Motor-start rated circuit breakers should replace standard circuit breakers for starting
motors of a few kilowatts. This breaker accepts high over-current for the duration of starting.
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Motors over 50 Kw use motor starters to reduce line current from several hundred to a few
hundred percent of full load current. An intermittent duty autotarnsformer may reduce the stator
voltage for a fraction of a minute during the start interval, followed by application of full line voltage
as above. Closure of the S contacts applies reduced voltage during the start interval. The S contacts
open and the R contacts close after starting. This reduces starting current to, say, 200% of full
load current. Since the autotransformer is only used for the short start interval, it may be sized
considerably smaller than a continuous duty unit.

Multiple fields

Induction motors may contain multiple field windings, for example a 4-pole and an 8-pole winding
corresponding to 1800 and 900 rpm synchronous speeds. Energizing one field or the other is less
complex than rewiring the stator coils below.
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4-pole 2-pole

φ1 φ1

If the field is segmented with leads brought out, it may be rewired (or switched) from 4-pole to
2-pole as shown above for a 2-phase motor. The 22.5o segments are switchable to 45o segments.
Only the wiring for one phase is shown above for clarity. Thus, our induction motor may run at
multiple speeds. When switching the above 60 Hz motor from 4 poles to 2 poles the synchronous
speed increases from 1800 rpm to 3600 rpm. If the motor is driven by 50 Hz, what would be the
corresponding 4-pole and 2-pole synchronous speeds?

Ns = 120f/P = 120*50/4 = 1500 rpm (4-pole)

Ns = 3000 rpm (2-pole)

Variable voltage

The speed of small squirrel cage induction motors for applications such as driving fans, may be
changed by reducing the line voltage. This reduces the torque available to the load which reduces
the speed.
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Electronic speed control

Modern solid state electronics increase the options for speed control. By changing the 50 or 60
Hz line frequency to higher or lower values, the synchronous speed of the motor may be changed.
However, decreasing the frequency of the current fed to the motor also decreases reactance XL which
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increases the stator current. This may cause the stator magnetic circuit to saturate with disastrous
results. In practice, the voltage to the motor needs to be decreased when frequency is decreased.

M1

AC line
Inverter,
variable
frequency
& voltagespeed

Conversely, the drive frequency may be increased to increase the synchronous speed of the motor.
However, the voltage needs to be increased to overcome increasing reactance to keep current up to
a normal value and maintain torque. The above inverter approximates sinewaves to the motor with
pulse width modulation outputs. This is a chopped waveform which is either on or off, high or low,
the percentage of ”on” time corresponds to the instantaneous sine wave voltage.
Once electronics is applied to induction motor control, many control methods are available,

varying from the simple to complex:
Summary: Speed control

• Scaler Control Low cost method described above to control only voltage and frequency, without
feedback.

• Vector Control Also known as vector phase control. The flux and torque producing components
of stator current are measured or estimated on a real-time basis to enhance the motor torque-
speed curve. This is computation intensive.

• Direct Torque Control An elaborate adaptive motor model allows more direct control of flux
and torque without feedback. This method quickly responds to load changes.

Summary: Tesla induction motors

• A polyphase induction motor consists of a polyphase winding embedded in a laminated stator
and a conductive squirrel cage embedded in a laminated rotor.

• Three phase currents flowing within the stator create a rotating magnetic field which induces
a current, and consequent magnetic field in the rotor. Rotor torque is developed as the rotor
slips a little behind the rotating stator field.

• Unlike single phase motors, polyphase induction motors are self-starting.

• Motor starters minimize loading of the power line while providing a larger starting torque than
required during running. Starters are only required for large motors.

• Multiple field windings can be rewired for multiple discrete motor speeds by changing the
number of poles.

13.7.4 Linear induction motor

The wound stator and the squirrel cage rotor of an induction motor may be cut at the circumference
and unrolled into a linear induction motor. The direction of linear travel is controlled by the sequence
of the drive to the stator phases.
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The linear induction motor has been proposed as a drive for high speed passenger trains. Up to
this time, the linear induction motor with the accompanying magnetic repulsion levitation system
required for a smooth ride has been too costly for all but experimental installations. However, the
linear induction motor is scheduled to replace steam driven catapult aircraft launch systems on the
next generation of naval aircraft carrier, CVNX-1, in 2013. This will increase efficiency and reduce
maintenance.

13.8 Wound rotor induction motors

A wound rotor induction motor has a stator like the squirrel cage induction motor, but a rotor with
insulated windings brought out via slip rings and brushes. However, no power is applied to the slip
rings. Their sole purpose is to allow resistance to be placed in series with the rotor windings while
starting. This resistance is shorted out once the motor is started to make the rotor look electrically
like the squirrel cage counterpart.
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Stator Rotor Start resistance

φ2
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φ3

Why put resistance in series with the rotor? Squirrel cage induction motors draw 500% to over
1000% of full load current (FLC) during starting. While this is not a severe problem for small
motors, it is for large (10’s of Kw) motors. Placing resistance in series with the rotor windings
not only decreases start current, locked rotor current (LRC), but also increases the starting torque,
locked rotor torque (LRT). The figure above shows that by increasing the rotor resistance from R0

to R1 to R2, the breakdown torque peak is shifted left to zero speed.Note that this torque peak is
much higher than the starting torque available with no rotor resistance (R0) Slip is proportional
to rotor resistance, and pullout torque is proportional to slip. Thus, high torque is produced while
starting.
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The resistance decreases the torque available at full running speed. But that resistance is shorted
out by the time the rotor is started. A shorted rotor operates like a squirrel cage rotor. Heat
generated during starting is mostly dissipated external to the motor in the starting resistance. The
complication and maintenance associated with brushes and slip rings is a disadvantage of the wound
rotor as compared to the simple squirrel cage rotor.
This motor is suited for starting high inertial loads. A high starting resistance makes the high

pull out torque available at zero speed. For comparison, a squirrel cage rotor only exhibits pull out
(peak) torque at 80% of its’ synchronous speed.

13.8.1 Speed control

Motor speed may be varied by putting variable resistance back into the rotor circuit. This reduces
rotor current and speed. The high starting torque available at zero speed, the down shifted break
down torque, is not available at high speed. See R2 curve at 90% Ns, below. Resistors R0R1R2R3

increase in value from zero. A higher resistance at R3 reduces the speed further. Speed regulation
is poor with respect to changing torque loads. This speed control technique is only usefull over a
range of 50% to 100% of full speed. Speed control works well with variable speed loads like elevators
and printing presses.
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Wound rotor induction motor qualities.

• Excellent starting torque for high inertia loads.

• Low starting current compared to squirrel cage induction motor.

• Speed is resistance variable over 50% to 100% full speed.

• Higher maintenance of brushes and slip rings compared to squirrel cage motor.

13.9 Single-phase induction motors

A three phase motor may be run from a single phase power source. However, it will not self-start. It
may be hand started in either direction, comming up to speed in a few seconds. It will only develop
2/3 of the 3-φ power rating because one winding is not used.
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The single coil of a single phase induction motor does not produce a rotating magnetic field, but
a pulsating field reaching maximum intensity at 0o and 180o electrically.

∠90o

∠180o ∠0o

∠-90o a b c d e

Another view is that the single coil excited by a single phase current produces two counter
rotating magnetic field phasors, coinciding twice per revolution at 0o (figure a) and 180o (figure e).
When the phasors rotate to 90o and -90o they cancel in figure b. At 45o and -45o (figure c) they
are partially additive along the +x axis and cancel along the y axis. An analogous situation exists
in figure d. The sum of these two phasors is a phasor stationary in space, but alternating polarity
in time. Thus, no starting torque is developed.

However, if the rotor is rotated forward at a bit less than the synchronous speed, It will develop
maximum torque at 10% slip with respect to the forward rotating phasor. Less torque will be
developed above or below 10% slip. The rotor will see 200% - 10% slip with respect to the counter
rotating magnetic field phasor. Little torque (see torque vs slip curve) other than a double freqency
ripple is developed from the counter rotating phasor. Thus, the single phase coil will develop torque,
once the rotor is started. If the rotor is started in the reverse direction, it will develop a similar
large torque as it nears the speed of the backward rotating phasor.

Single phase induction motors use a copper or aluminum squirrel cage embedded in a cylinder
of steel laminations, typical of poly-phase induction motors.

13.9.1 Permanent-split capacitor motor

One way to solve the single phase problem is to build a 2-phase motor, deriving 2-phase power from
single phase. This requires a motor with two windings spaced apart 90o electrical, fed with two
phases of current displaced 90o in time. This is called a permanent-split capacitor motor as shown
below.



436 CHAPTER 13. AC MOTORS

This type of motor suffers increased current magnitude and backward time shift as the motor
comes up to speed, with torque pulsations at full speed. The solution is to keep the capacitor
(impedance) small to minimize losses. The losses are less than for a shaded pole motor. This motor
configuration works well up to 1/4 horsepower (200watt), though, usually applied to smaller motors.
The direction of the motor is easily reversed by switching the capacitor in series with the other
winding. This type of motor can be adapted for use as a servo motor, described elsewhere is this
chapter.

This type of motor may have coils embedded into the stator as shown above for larger size motors.
The smaller sizes may use the less complex to build salient pole design.

13.9.2 Capacitor-start induction motor

A larger capacitor may be used to start a single phase induction motor via the auxiliary winding
if it is switched out by a centrifugal switch once the motor is up to speed. Moreover, the auxiliary
winding may be many more turns of heavier wire than used in a resistance split-phase motor to
mitigate excessive temperature rise. The result is that more starting torque is available for heavy
loads like air conditioning compressors. This motor configuration works so well that it is available
in multi-horsepower (multi-kilowatt) sizes.
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13.9.3 Capacitor-run motor

A variation of the capacitor-start motor is to start the motor with a relatively large capacitor for
high starting torque, but leave a smaller value capacitor in place after starting to improve running
characteristics while not drawing excessive current. The additional complexity of the capacitor-run
motor is justified for larger size motors.

A motor starting capacitor may be a double-anode non-polar electrolytic capacitor which could be
two + to + (or - to -) series connected polarized electrolytic capacitors. Such AC rated electrolytic
capacitors have such high losses that they can only be used for intermittent duty (1 second on,
60 seconds off) like motor starting. A capacitor for motor running must not be of electrolytic
construction, but a lower loss polymer type.

13.9.4 Resistance split-phase motor

If an auxiliary winding of much fewer turns of smaller wire is placed at 90o electrical to the main
winding, it can start a single phase induction motor. With lower inductance and higher resistance,
the current will experience less phase shift than the main winding. About 30o of phase difference may
be obtained. This coil produces a moderate starting torque, which is disconnected by a centrifugal
switch at 3/4 of synchronous speed. This simple (no capacitor) arrangement serves well for motors
up to 1/3 horsepower (250 watts) driving easily started loads.
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This motor has more starting torque than a shaded pole motor (next section), but not as much
as a two phase motor built from the same parts. The current density in the auxiliary winding is
so high during starting that the consequent rapid temperature rise precludes frequent restarting or
slow starting loads.

13.9.5 Nola power factor corrrector

Frank Nola of NASA proposed a power factor corrector for improving the efficiency of AC induction
motor in the mid 1970’s. It is based on the premise that induction motors are inefficient at less
than full load. This inefficiency correlates to a low power factor. The less than unity power factor is
due to magnetizing current required by the stator. This fixed current is a larger proportion of total
motor current as motor load is decreased. At light load, the full magnetizing current is not required.
It could be reduced by decreasing the applied voltage, improving the power factor and efficiency.
The power factor corrector senses power factor, and decreases motor voltage, thus restoring a higher
power factor and decreasing losses.

Since single-phase motors are about 2 to 4 times as inefficient as three-phase motors, there is
potential energy savings for 1-φ motors. There is no savings for a fully loaded motor since all the
stator magnetizing current is required. The voltage cannot be reduced. But there is potential savings
from a less than fully loaded motor. A nominal 117 VAC motor is designed to work at as high as
127 VAC, as low as 104 VAC. That means that it is not fully loaded when operated at greater than
104 VAC, for example, a 117 VAC refrigerator. It is safe for the power factor controller to lower the
line voltage to 104-110 VAC. The higher the initial line voltage, the greater the potential savings.
Of course, if the power company delivers closer to 110 VAC, the motor will operate more efficiently
without any add-on device.

Any substantially idle, 25% FLC or less, single phase induction motor is a candidate for a PFC.
Though, it needs to operate a large number of hours per year. And the more time it idles, as in a
lumber saw, punch press, or conveyor, the greater the possibility of paying for the controller in a
few years operation. It should be easier to pay for it by a factor of three as compared to the more
efficient 3-φ-motor. The cost of a PFC cannot be recovered for a motor operating only a few hours
per day.

Summary: Single-phase induction motors
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• Single-phase induction motors are not self-starting without an auxiliary stator winding driven
by an out of phase current of near 90o. Once started the auxiliary winding is optional.

• The auxiliary winding of a permanent-split capacitor motor has a capacitor in series with it
during starting and running.

• A capacitor-start induction motoronly has a capacitor in series with the auxiliary winding
during starting.

• A capacitor-run motor typically has a large non-polarized electrolytic capacitor in series with
the auxiliary winding for starting, then a smaller non-electrolytic capacitor during running.

• The auxiliary winding of a resistance split-phase motor develops a phase difference versus the
main winding during starting by virtue of the difference in resistance.

13.10 Other specialized motors

13.10.1 Shaded pole induction motor

An easy way to provide starting torque to a single phase motor is to embed a shorted turn in each
pole at 30o to 60o to the main winding. Typically 1/3 of the pole is enclosed by a bare copper strap.
These shading coils produce a time lagging damped flux spaced 30o to 60o from the main field. This
lagging flux with the undamped main component, produces a rotating field with a small torque to
start the rotor.

shorting bars

stator coils
Large shaded pole induction motor Small shaded pole motor

rotor

Starting torque is so low that shaded pole motors are only manufactured in smaller sizes, below
50 watts. Low cost and simplicity suit this motor to small fans, air circulators, and other low torque
applications. Motor speed can be lowered by switching reactance in series to limit current and
torque, or by switching motor coil taps as below



440 CHAPTER 13. AC MOTORS

Speed control of shaded pole motor

L1

13.10.2 2-φ servo motor

A servo motor is typically part of a feedback loop containing electronic, mechanical, and electrical
components. The servo loop is a means of controlling the motion of an object via the motor. A
requirement of many such systems is fast response. To reduce acceleration robbing inertial, the iron
core is removed from the rotor leaving only a shaft mounted aluminum cup to rotate. The iron core
is reinserted within the cup as a static (non-rotating) component to complete the magnetic circuit.
Otherwise, the construction is typical of a two phase motor. The low mass rotor can accelerate more
rapidly than a squirrel cage rotor.

rotor cup

iron core

φ−1

φ−2

High speed 2-φ servo motor
φ−2

φ−1

rotor cup

One phase is connected to the single phase line; the other is driven by an amplifier. One of the
windings is driven by a 90o phase shifted waveform. In the above figure, this is accomplished by a
series capacitor in the power line winding. The other winding is driven by a variable amplitude sine
wave to control motor speed. The phase of the waveform may invert (180o phase shift) to reverse
the direction of the motor. This variable sine wave is the output of an error amplifier. See synchro
CT section for example. Aircraft control surfaces may be positioned by 400 Hz 2-φ servo motors.

13.10.3 Hysteresis motor

If the low hysteresis Si-steel laminated rotor of an induction motor is replaced by a slotless windingless
cylinder of hardened magnet steel, hysteresis, or lagging behind of rotor magnetization, is greatly
accentuated. The resulting low torque synchronous motor develops constant torque from stall to
synchronous speed. Because of the low torque, the hysteresis motor is only available in very small
sizes, and is only used for constant speed applications like clock drives, and formerly, phonograph
turntables.
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13.10.4 Eddy current clutch

If the stator of an induction motor or a synchronous motor is mounted to rotate independently of the
rotor, an eddy current clutch results. The coils are excited with DC and attached to the mechanical
load. The squirrel cage rotor is attached to the driving motor. The drive motor is started with
no DC excitation to the clutch. The DC excitation is adjusted from zero to the desired final value
providing a continuously and smoothly variable torque. The operation of the eddy current clutch is
similar to an analog eddy current automotive speedometer.

Summary: Other specialized motors

• The shaded pole induction motor, used in under 50 watt low torque applications, develops a
second phase from shorted turns in the stator.

• Hysteresis motors are a small low torque synchronous motor once used in clocks and phono-
graphs.

• The eddy current clutch provides an adjustable torque.

13.11 Selsyn (synchro) motors

Normally, the rotor windings of a wound rotor induction motor are shorted out after starting. During
starting, resistance may be placed in series with the rotor windings to limit starting current. If these
windings are connected to a common starting resistance, the two rotors will remain synchronized
during starting. This is usefull for printing presses and draw bridges, where two motors need to be
synchronized during starting. Once started, and the rotors are shorted, the synchronizing torque
is absent. The higher the resistance during starting, the higher the synchronizing torque for a
pair of motors. If the starting resistors are removed, but the rotors still paralleled, there is no
starting torque. However there is a substantial synchronizing torque. This is a selsyn, which is an
abbreviation for ”self synchronous”.

M1

Stator Rotor Start resistance

φ2

φ1

φ3

M2

φ2

φ1

φ3

Rotor Stator

The rotors may be stationary. If one rotor is moved through an angle θ, the other selsyn shaft
will move through an angle θ. If drag is applied to one selsyn, this will be felt when attempting to
rotate the other shaft. While multi-horsepower (multi-kilowatt) selsyns exist, the main appplication
is small units of a few watts for instrumentation applications– remote position indication.
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Instrumentation selsyns have no use for starting resistors. They are not intended to be self
rotating. Since the rotors are not shorted out nor resistor loaded, no starting torque is developed.
However, manual rotation of one shaft will produce an unbalance in the rotor currents until the
parallel unit’s shaft follows. Though we show three phase rotors above, a single phase rotor is
sufficient as shown below. Note that a common source of three phase power is applied to both
stators above.

13.11.1 Transmitter - receiver

Small instrumentation selsyns, also known as sychros for self synchronous, use single phase paralleled,
AC energized rotors, retaining the 3-phase paralleled stators, which are not externally energized.
Synchros function as rotary transformers. If the rotors of both the torque transmitter (TX) and
torque receiver (RX) are at the same angle, the phases of the induced stator voltages will be identical
for both, and no current will flow. Should one rotor be displaced from the other, the stator phase
voltages will differ between transmitter and receiver. Stator current will flow developing torque.
The receiver shaft is electrically slaved to the transmitter shaft. Either the transmitter or receiver
shaft may be rotated to turn the opposite unit.

M1

Stator Rotor

M2

Rotor Stator

S3 S3
S1 S1

S2 S2

R1 R1

R2R2
60 Hz

R1

R2

S1
S2
S3

R1

R2

S1
S2
S3

TX RX

TX RX

Alternate abreviated symbols
Torque transmitter - TX Torque receiver - RX

Synchro stators are wound with 3-phase windings brought out to external terminals. The single
rotor winding of a torque transmitter or receiver is brough out by brushed slip rings. Synchro
transmitters and receivers are electrically identical. However, a synchro receiver has inertial damping
built in. A synchro torque transmitter may be substituted for a torque receiver.

Remote position sensing is the main synchro application. For example, a synchro transmitter
coupled to a radar antenna indicates antenna position on an indicator in a control room. A synchro
transmitter coupled to a weather vane indicates wind direction at a remote console. Synchros are
available for use with 240 Vac 50 Hz, 115 Vac 60 Hz, 115 Vac 400 Hz, and 26 Vac 400 Hz power.
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13.11.2 Differential transmitter - receiver

A synchro differential transmitter (TDX) has both a three phase rotor and stator. A synchro
differential transmitter adds a shaft angle input to an electrical angle input on the rotor inputs,
outputting the sum on the stator outputs. This stator electrical angle may be displayed by sending
it to an RX. For example, a synchro receiver displays the position of a radar antenna relative to a
ship’s bow. The addition of a ship’s compass heading by a synchro differential transmitter, displays
antenna postion on an RX relative to true north, regardless of ship’s heading. Reversing the S1-S3
pair of stator leads between a TX and TDX subtracts angular positions.

M1 M3
M2

∠Μ3 = ∠Μ1 + ∠Μ2 

S3 S1

S2

S3 S1S3 S1

S2 S2

R2

R1

R3
R1

R1

R2
R2

TX
TR

TDX

Torque
Transmitter Torque 

Receiver

Torque 
Differential 
Transmitter

A shipboard radar antenna coupled to a synchro transmitter encodes the antenna angle with
respect to ship’s bow. It is desired to display the antenna position with respect to true north. We
need to add the ships heading from a gyrocompass to the bow-relative antenna position to display
antenna angle with respect to true north. 6 antenna + 6 gyro
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∠rx = ∠tx + ∠gy

∠rx

∠tx ∠gy

6 antenna-N = 6 antenna + 6 gyro
6 rx = 6 tx + 6 gy

For example, ship’s heading is 6 30o, antenna position relative to ship’s bow is 6 0o, 6 antenna-N
is:

6 rx = 6 tx + 6 gy
6 30o = 6 30o + 6 0o

Example, ship’s heading is 6 30o, antenna position relative to ship’s bow is 6 15o, 6 antenna-N is:
6 45o = 6 30o + 6 15o

Addition vs subtraction

For reference we show the wiring diagrams for subtraction and addition of shaft angles using both
TDX’s (Torque Differential transmitter) and TDR’s (Torque Differential Receiver). The TDX has
a torque angle input on the shaft, an electrical angle input on the three stator connections, and an
electrical angle output on the three rotor connections. The TDR has electrical angle inputs on both
the stator and rotor. The angle output is a torque on the TDR shaft. The difference between a
TDX and a TDR is that the TDX is a torque transmitter and the TDR a torque receiver.

R1

R2

S1
S2
S3

S1
S2
S3

TX TDX

TDX subtraction:  ∠TX - ∠TDX = ∠TR

R1

R2

S1
S2
S3

TR

R1
R2
R3

The torque inputs above are TX and TDX. The torque output angular difference is TR.
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TDX addition:  ∠TX + ∠TDX = ∠TR
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The torque inputs above are TX and TDX. The torque output angular sum is TR.
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TDR subtraction:  ∠TDR = ∠TX1 - ∠TX2
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The torque inputs above are TX1 and TX2. The torque output angular difference is TDR.
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TDR addition:  ∠TDR =  ∠TX1 + ∠TX2

R1

R2

S1
S2
S3

TX2

R1
R2
R3

The torque inputs above are TX1 and TX2. The torque output angular sum is TDR.

13.11.3 Control transformer

A variation of the synchro transmitter is the control transformer. It has three equally spaced stator
windings like a TX. Its rotor is wound with more turns than a transmitter or receiver to make it
more sensitive at detecting a null as it is rotated, typically, by a servo system. The CT (Control
Transformer) rotor output is zero when it is oriented at a angle right angle to the stator magnetic
field vector. Unlike a TX or RX, the CT neither transmits nor receives torque. It is simply a
sensitive angular position detector.
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The shaft of the TX is set to the desired position of the radar antenna. The servo system
will cause the servo motor to drive the antenna to the commanded position. The CT compares
the commanded to actual position and signals the servo amplifier to drive the motor until that
commanded angle is achieved.
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When the control transformer rotor detects a null at 90o to the axis of the stator field, there
is no rotor output. Any rotor displacement would produce an AC error voltage proportional to
displacement. A servo seeks to minimize the error between a commanded and measured variable due
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to negative feedback. The control transformer compares the shaft angle to the the stator magnetic
field angle, sent by the TX stator. When it measures a minimum, or null, the servo has driven
the antenna and control transformer rotor to the commanded position. There is no error between
measured and commanded position, no CT, control transformer, output to be amplified. The servo
motor, a 2-phase motor, stops rotating. However, any CT detected error drives the amplifier which
drives the motor until the error is minimized. This corresponds to the servo system having driven
the antenna coupled CT to match the angle commanded by the TX.

The servo motor may drive a reduction gear train and be large compared to the TX and CT
synchros. However, the poor efficiency of AC servo motors limits them to smaller loads. They are
also difficult to control since they are constant speed devices. However, they can be controlled to
some extent by varying the voltage to one phase with line voltage on the other phase. Heavy loads
are more efficiently driven by large DC servo motors.

Airborne applications use 400Hz components– TX, CT, and servo motor. Size and weight of
the AC magnetic components is inversely proportional to frequency. Therefore, use of 400 Hz
components for aircraft applications, like moving control surfaces, saves size and weight.

13.11.4 Resolver

A resolver has two stator winding placed at 90o to each other, and a single rotor winding driven by
alternating current. A resolver is used for polar to rectangular conversion. An angle input at the
rotor shaft produces rectangular co-ordinates sinθ and cosθ on the stator windings.

φ2 = sinθ

φ1

θ

φ1 = cosθ

resolver

For example, a black-box within a radar encodes the distance to a target as a sine wave propor-
tional voltage V, with the bearing angle as a shaft angle. Convert to X and Y co-ordinates. The
sine wave is fed to the rotor of a resolver. The bearing angle shaft is coupled to the resolver shaft.
The coordinates (X, Y) are available on the resolver stator coils:

X=V(cos( 6 bearing))

Y=V(sin( 6 bearing))

The Cartesian coordinates (X, Y) may be plotted on a map display.

A TX (torque transmitter) may be adapted for service as a resolver.
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It is possible to derive resolver-like quadrature angular components from a synchro transmitter
by using a Scott-T transformer. The three TX outputs, 3-phases, are processed by a Scott-T
transformer into a pair of quadrature components. See the chapter 9 for details.
Summary: Selsyn (synchro) motors

• A synchro, also known as a selsyn, is a rotary transformer used to transmit shaft torque.

• A TX, torque transmitter, accepts a torque input at its shaft for transmission on three-phase
electrical outputs.

• An RX, torque receiver, accepts a three-phase electrical representation of an angular input for
conversion to a torque output at its shaft. Thus, TX transmits a torque form an input shaft
to a remote RX output shaft.

• A TDX, torque differential transmitter, sums an electrical angle input with a shaft angle input
producing an electrical angle output

• A TDR, torque differential receiver, sums two electrical angle inputs producing a shaft angle
output

• A CT, control transformer, detects a null when the rotor is positioned at a right angle to the
stator angle input. A CT is typically a component of a servo– feedback system.

• A Resolver outputs a quadrature sinθ and cosine(theta) representation of the shaft angle input
instead of a three-phase output.

• The three-phase output of a TX is converted to a resolver style output by a Scott-T transformer.

13.12 AC commutator motors

Charles Proteus Steinmetz’s first job after arriving in America was to investigate problems encoun-
tered in the design of the alternating current version of the brushed commutator motor. The situation
was so bad that motors could not be designed ahead of the actual construction. The success or fail-
ure of a motor design was not known until after it was actually built at great expense and tested.
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He formlated the laws of magnetic hysteresis in finding a solution. Hysteresis is a lagging behind of
the magnetic field strength as compared to the magnetizing force. This produces a loss not present
in DC magnetics. Low hysteresis alloys and breaking the alloy into thin insulated laminations made
it possible to accurately design AC commutator motors before building.

AC commutator motors, like comparable DC motors, have higher starting torque and higher
speed than AC induction motors. The series motor operates well above the synchronous speed of
a conventional AC motor. AC commutator motors may be either single-phase or poly-phase. The
single-phase AC version suffers a double line frequency torque pulsation, not present in poly-phase
motor. Since a commutator motor can operate at much higher speed than an induction motor, it
can output more power than a similar size induction motor. However commutator motors are not
as maintenance free as induction motors, due to brush and commutator wear.

13.12.1 Single phase series motor

If a DC series motor equipped with a laminated field is connected to AC, the lagging reactance of
the field coil will considerably reduce the field current. While such a motor will rotate, operation
is marginal. While starting, armature windings connected to commutator segments shorted by the
brushes look like shorted transformer turns to the field. This results in considerable arcing and
sparking at the brushes as the armature begins to turn. This is less of a problem as speed increases,
which shares the arcing and sparking between commutator segments The lagging reactance and
arcing brushes are only tolerable in very small uncompensated series AC motors operated at high
speed. Series AC motors smaller than hand drills and kitchen mixers may be uncompensated.

Uncompensated series AC motor

field
field

13.12.2 Compensated series motor

The arcing and sparking is mitigated by placing a compensating winding the stator in series with
the armature positioned so that its magnetomotive force (mmf) cancels out the armature AC mmf.
A smaller motor air gap and fewer field turns reduces lagging reactance in series with the armature
improving the power factor. All but very small AC commutator motors employ compensating
windings. Motors as large as those employed in a kitchen mixer, or larger, use compensated motors.
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13.12.3 Universal motor

It is possible to design small (under 300 watts) universal motors which run from either DC or AC.
Very small universal motors may be uncompensated. Larger higher speed universal motors use a
compensating winding. A motor will run slower on AC than DC due to the reactance encountered
with AC. However, the peaks of the sine waves saturate the magnetic path reducing total flux below
the DC value, increasing the speed of the ”series” motor. Thus, the offsetting effects result in a
nearly constant speed from DC to 60 Hz. Small line operated appliances, such as drills, vacuum
cleaners, and mixers, requiring 3000 to 10,000 rpm use universal motors. Though, the development
of solid state rectifiers and inexpensive permanent magnets is making the DC permanent magnet
motor an alternative.

13.12.4 Repulsion motor

A repulsion motor consists of a field directly connected to the AC line voltage and a pair of shorted
brushes offset by 15oto 25o from the field axis. The field induces a current flow into the shorted
armature whose magnetic field oppose that of the field coils. Speed can be conrolled by rotating
the brushes with respect to the field axis. This motor has superior commutation below synchronous
speed, inferior commutation above synchronous speed. Low starting current produces high starting
torque.

Repulsion AC motor

field

compensating
winding

shorting
brushes
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13.12.5 Repulsion start induction motor

When an induction motor drives a hard starting load like a compressor, the high starting torque
of the repulsion motor may be put to use. The induction motor rotor windings are brought out to
commutator segments for starting by a pair of shorted brushes. At near running speed, a centrifugal
switch shorts out all commutator segments, giving the effect of a squirrel cage rotor . The brushes
may also be lifted to prolong bush life. Starting torque is 300% to 600% of the full speed value as
compared to under 200% for a pure induction motor.
Summary: AC commutator motors

• The single phase series motor is an attempt to build a motor like a DC commutator motor.
The resulting motor is only practical in the smallest sizes.

• The addition of a compensating winding yields the compensated series motor, overcoming
excessive commutator sparking. Most AC commutator motors are this type. At high speed
this motor provides more power than a same-size induction motor, but is not maintenance
free.

• It is possible to produce small appliance motors powered by either AC or DC. This is known
as a Universal Motor.

• The AC line is directly connected to the stator of a repulsion motor with the commutator
shorted by the brushes.

• Retractable shorted brushes may start a wound rotor induction motor. This is known as a
repulsion start induction motor.
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14.1 A 50-ohm cable?

Early in my explorations of electricity, I came across a length of coaxial cable with the label ”50
ohms” printed along its outer sheath. Now, coaxial cable is a two-conductor cable made of a single
conductor surrounded by a braided wire jacket, with a plastic insulating material separating the
two. As such, the outer (braided) conductor completely surrounds the inner (single wire) conductor,
the two conductors insulated from each other for the entire length of the cable. This type of cabling
is often used to conduct weak (low-amplitude) voltage signals, due to its excellent ability to shield
such signals from external interference.

453
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I was mystified by the ”50 ohms” label on this coaxial cable. How could two conductors, insulated

from each other by a relatively thick layer of plastic, have 50 ohms of resistance between them?
Measuring resistance between the outer and inner conductors with my ohmmeter, I found it to be
infinite (open-circuit), just as I would have expected from two insulated conductors. Measuring
each of the two conductors’ resistances from one end of the cable to the other indicated nearly zero
ohms of resistance: again, exactly what I would have expected from continuous, unbroken lengths
of wire. Nowhere was I able to measure 50 Ω of resistance on this cable, regardless of which points
I connected my ohmmeter between.

What I didn’t understand at the time was the cable’s response to short-duration voltage ”pulses”
and high-frequency AC signals. Continuous direct current (DC) – such as that used by my ohmmeter
to check the cable’s resistance – shows the two conductors to be completely insulated from each
other, with nearly infinite resistance between the two. However, due to the effects of capacitance
and inductance distributed along the length of the cable, the cable’s response to rapidly-changing
voltages is such that it acts as a finite impedance, drawing current proportional to an applied voltage.
What we would normally dismiss as being just a pair of wires becomes an important circuit element
in the presence of transient and high-frequency AC signals, with characteristic properties all its own.
When expressing such properties, we refer to the wire pair as a transmission line.

This chapter explores transmission line behavior. Many transmission line effects do not appear
in significant measure in AC circuits of powerline frequency (50 or 60 Hz), or in continuous DC
circuits, and so we haven’t had to concern ourselves with them in our study of electric circuits thus
far. However, in circuits involving high frequencies and/or extremely long cable lengths, the effects
are very significant. Practical applications of transmission line effects abound in radio-frequency
(”RF”) communication circuitry, including computer networks, and in low-frequency circuits subject
to voltage transients (”surges”) such as lightning strikes on power lines.

14.2 Circuits and the speed of light

Suppose we had a simple one-battery, one-lamp circuit controlled by a switch. When the switch is
closed, the lamp immediately lights. When the switch is opened, the lamp immediately darkens:
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Battery

Switch

Lamp

Actually, an incandescent lamp takes a short time for its filament to warm up and emit light
after receiving an electric current of sufficient magnitude to power it, so the effect is not instant.
However, what I’d like to focus on is the immediacy of the electric current itself, not the response
time of the lamp filament. For all practical purposes, the effect of switch action is instant at the
lamp’s location. Although electrons move through wires very slowly, the overall effect of electrons
pushing against each other happens at the speed of light (approximately 186,000 miles per second !).

What would happen, though, if the wires carrying power to the lamp were 186,000 miles long?
Since we know the effects of electricity do have a finite speed (albeit very fast), a set of very long
wires should introduce a time delay into the circuit, delaying the switch’s action on the lamp:

Battery

Switch

Lamp

. . .

. . .

186,000 miles

Assuming no warm-up time for the lamp filament, and no resistance along the 372,000 mile
length of both wires, the lamp would light up approximately one second after the switch closure.
Although the construction and operation of superconducting wires 372,000 miles in length would
pose enormous practical problems, it is theoretically possible, and so this ”thought experiment” is
valid. When the switch is opened again, the lamp will continue to receive power for one second of
time after the switch opens, then it will de-energize.

One way of envisioning this is to imagine the electrons within a conductor as rail cars in a
train: linked together with a small amount of ”slack” or ”play” in the couplings. When one rail car
(electron) begins to move, it pushes on the one ahead of it and pulls on the one behind it, but not
before the slack is relieved from the couplings. Thus, motion is transferred from car to car (from
electron to electron) at a maximum velocity limited by the coupling slack, resulting in a much faster
transfer of motion from the left end of the train (circuit) to the right end than the actual speed of
the cars (electrons):
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First car begins to move

. . . and then the last car moves!

. . . then the second car moves . . .

Another analogy, perhaps more fitting for the subject of transmission lines, is that of waves in
water. Suppose a flat, wall-shaped object is suddenly moved horizontally along the surface of water,
so as to produce a wave ahead of it. The wave will travel as water molecules bump into each other,
transferring wave motion along the water’s surface far faster than the water molecules themselves
are actually traveling:

Object
water surface

wave

water molecule

wave

wave
Likewise, electron motion ”coupling” travels approximately at the speed of light, although the

electrons themselves don’t move that quickly. In a very long circuit, this ”coupling” speed would
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become noticeable to a human observer in the form of a short time delay between switch action and
lamp action.

• REVIEW:

• In an electric circuit, the effects of electron motion travel approximately at the speed of light,
although electrons within the conductors do not travel anywhere near that velocity.

14.3 Characteristic impedance

Suppose, though, that we had a set of parallel wires of infinite length, with no lamp at the end.
What would happen when we close the switch? Being that there is no longer a load at the end of
the wires, this circuit is open. Would there be no current at all?

Battery

Switch

. . .

. . .

infinite length

Despite being able to avoid wire resistance through the use of superconductors in this ”thought
experiment,” we cannot eliminate capacitance along the wires’ lengths. Any pair of conductors
separated by an insulating medium creates capacitance between those conductors:

Battery

Switch

. . .

. . .

infinite length

Equivalent circuit showing stray
capacitance between conductors

Voltage applied between two conductors creates an electric field between those conductors. En-
ergy is stored in this electric field, and this storage of energy results in an opposition to change in
voltage. The reaction of a capacitance against changes in voltage is described by the equation i
= C(de/dt), which tells us that current will be drawn proportional to the voltage’s rate of change
over time. Thus, when the switch is closed, the capacitance between conductors will react against



458 CHAPTER 14. TRANSMISSION LINES

the sudden voltage increase by charging up and drawing current from the source. According to the
equation, an instant rise in applied voltage (as produced by perfect switch closure) gives rise to an
infinite charging current.

However, the current drawn by a pair of parallel wires will not be infinite, because there exists
series impedance along the wires due to inductance. Remember that current through any conductor
develops a magnetic field of proportional magnitude. Energy is stored in this magnetic field, and this
storage of energy results in an opposition to change in current. Each wire develops a magnetic field
as it carries charging current for the capacitance between the wires, and in so doing drops voltage
according to the inductance equation e = L(di/dt). This voltage drop limits the voltage rate-of-
change across the distributed capacitance, preventing the current from ever reaching an infinite
magnitude:

Battery

Switch

. . .

. . .

infinite length

Equivalent circuit showing stray
inductance and capacitance

Battery

Switch

. . .

. . .

infinite length

magnetic field

electric field

Because the electrons in the two wires transfer motion to and from each other at nearly the speed
of light, the ”wave front” of voltage and current change will propagate down the length of the wires
at that same velocity, resulting in the distributed capacitance and inductance progressively charging
to full voltage and current, respectively, like this:
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. . .

. . .

. . .

. . .

+

-

+

-

Switch closes!

. . .

. . .

+

-

+
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+

-

+

-
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. . .

. . .
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Speed of light (approximately)

The end result of these interactions is a constant current of limited magnitude through the
battery source. Since the wires are infinitely long, their distributed capacitance will never fully
charge to the source voltage, and their distributed inductance will never allow unlimited charging
current. In other words, this pair of wires will draw current from the source so long as the switch
is closed, behaving as a constant load. No longer are the wires merely conductors of electrical
current and carriers of voltage, but now constitute a circuit component in themselves, with unique
characteristics. No longer are the two wires merely a pair of conductors, but rather a transmission
line.

As a constant load, the transmission line’s response to applied voltage is resistive rather than
reactive, despite being comprised purely of inductance and capacitance (assuming superconduct-
ing wires with zero resistance). We can say this because there is no difference from the battery’s
perspective between a resistor eternally dissipating energy and an infinite transmission line eter-
nally absorbing energy. The impedance (resistance) of this line in ohms is called the characteristic
impedance, and it is fixed by the geometry of the two conductors. For a parallel-wire line with air
insulation, the characteristic impedance may be calculated as such:

d
r

Where,

Z0 = Characteristic impedance of line
d = Distance between conductor centers
r = Conductor radius

d r

Z0 =
276 log

k

between conductors
k = Relative permittivity of insulation

If the transmission line is coaxial in construction, the characteristic impedance follows a different



14.3. CHARACTERISTIC IMPEDANCE 461

equation:

Where,

Z0 = Characteristic impedance of line
d1 = Inside diameter of outer conductor
d2 = Outside diameter of inner conductor

d1

d2

d1 d2

Z0 = 138 log
k

k = Relative permittivity of insulation
between conductors

In both equations, identical units of measurement must be used in both terms of the fraction. If
the insulating material is other than air (or a vacuum), both the characteristic impedance and the
propagation velocity will be affected. The ratio of a transmission line’s true propagation velocity
and the speed of light in a vacuum is called the velocity factor of that line.

Velocity factor is purely a factor of the insulating material’s relative permittivity (otherwise
known as its dielectric constant), defined as the ratio of a material’s electric field permittivity to
that of a pure vacuum. The velocity factor of any cable type – coaxial or otherwise – may be
calculated quite simply by the following formula:

Where,

between conductors
k = Relative permittivity of insulation

Velocity of wave propagation
+

-

+

-

+

-

+

-

+ + +

- - -

+ + +

- - -

+ + +

- - -

+ + +

- - -

+ + +

- - -

+ + +

- - -

Velocity factor = v
c = 1

k

v = Velocity of wave propagation
c = Velocity of light in a vacuum

Characteristic impedance is also known as natural impedance, and it refers to the equivalent
resistance of a transmission line if it were infinitely long, owing to distributed capacitance and
inductance as the voltage and current ”waves” propagate along its length at a propagation velocity
equal to some large fraction of light speed.

It can be seen in either of the first two equations that a transmission line’s characteristic
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impedance (Z0) increases as the conductor spacing increases. If the conductors are moved away from
each other, the distributed capacitance will decrease (greater spacing between capacitor ”plates”),
and the distributed inductance will increase (less cancellation of the two opposing magnetic fields).
Less parallel capacitance and more series inductance results in a smaller current drawn by the line
for any given amount of applied voltage, which by definition is a greater impedance. Conversely,
bringing the two conductors closer together increases the parallel capacitance and decreases the se-
ries inductance. Both changes result in a larger current drawn for a given applied voltage, equating
to a lesser impedance.

Barring any dissipative effects such as dielectric ”leakage” and conductor resistance, the char-
acteristic impedance of a transmission line is equal to the square root of the ratio of the line’s
inductance per unit length divided by the line’s capacitance per unit length:

Where,

Z0 = Characteristic impedance of line

Z0 = 
L
C

L = Inductance per unit length of line
C = Capacitance per unit length of line

• REVIEW:

• A transmission line is a pair of parallel conductors exhibiting certain characteristics due to
distributed capacitance and inductance along its length.

• When a voltage is suddenly applied to one end of a transmission line, both a voltage ”wave”
and a current ”wave” propagate along the line at nearly light speed.

• If a DC voltage is applied to one end of an infinitely long transmission line, the line will draw
current from the DC source as though it were a constant resistance.

• The characteristic impedance (Z0) of a transmission line is the resistance it would exhibit if it
were infinite in length. This is entirely different from leakage resistance of the dielectric sepa-
rating the two conductors, and the metallic resistance of the wires themselves. Characteristic
impedance is purely a function of the capacitance and inductance distributed along the line’s
length, and would exist even if the dielectric were perfect (infinite parallel resistance) and the
wires superconducting (zero series resistance).

• Velocity factor is a fractional value relating a transmission line’s propagation speed to the
speed of light in a vacuum. Values range between 0.66 and 0.80 for typical two-wire lines and
coaxial cables. For any cable type, it is equal to the reciprocal (1/x) of the square root of the
relative permittivity of the cable’s insulation.
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14.4 Finite-length transmission lines

A transmission line of infinite length is an interesting abstraction, but physically impossible. All
transmission lines have some finite length, and as such do not behave precisely the same as an
infinite line. If that piece of 50 Ω ”RG-58/U” cable I measured with an ohmmeter years ago had
been infinitely long, I actually would have been able to measure 50 Ω worth of resistance between
the inner and outer conductors. But it was not infinite in length, and so it measured as ”open”
(infinite resistance).

Nonetheless, the characteristic impedance rating of a transmission line is important even when
dealing with limited lengths. An older term for characteristic impedance, which I like for its de-
scriptive value, is surge impedance. If a transient voltage (a ”surge”) is applied to the end of a
transmission line, the line will draw a current proportional to the surge voltage magnitude divided
by the line’s surge impedance (I=E/Z). This simple, Ohm’s Law relationship between current and
voltage will hold true for a limited period of time, but not indefinitely.

If the end of a transmission line is open-circuited – that is, left unconnected – the current ”wave”
propagating down the line’s length will have to stop at the end, since electrons cannot flow where
there is no continuing path. This abrupt cessation of current at the line’s end causes a ”pile-up”
to occur along the length of the transmission line, as the electrons successively find no place to go.
Imagine a train traveling down the track with slack between the rail car couplings: if the lead car
suddenly crashes into an immovable barricade, it will come to a stop, causing the one behind it to
come to a stop as soon as the first coupling slack is taken up, which causes the next rail car to stop
as soon as the next coupling’s slack is taken up, and so on until the last rail car stops. The train
does not come to a halt together, but rather in sequence from first car to last:

First car stops

. . . then the second car stops . . .

. . . and then the last car stops!

A signal propagating from the source-end of a transmission line to the load-end is called an
incident wave. The propagation of a signal from load-end to source-end (such as what happened in
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this example with current encountering the end of an open-circuited transmission line) is called a
reflected wave.

When this electron ”pile-up” propagates back to the battery, current at the battery ceases,
and the line acts as a simple open circuit. All this happens very quickly for transmission lines
of reasonable length, and so an ohmmeter measurement of the line never reveals the brief time
period where the line actually behaves as a resistor. For a mile-long cable with a velocity factor of
0.66 (signal propagation velocity is 66% of light speed, or 122,760 miles per second), it takes only
1/122,760 of a second (8.146 microseconds) for a signal to travel from one end to the other. For the
current signal to reach the line’s end and ”reflect” back to the source, the round-trip time is twice
this figure, or 16.292 µs.

High-speed measurement instruments are able to detect this transit time from source to line-end
and back to source again, and may be used for the purpose of determining a cable’s length. This
technique may also be used for determining the presence and location of a break in one or both of
the cable’s conductors, since a current will ”reflect” off the wire break just as it will off the end of an
open-circuited cable. Instruments designed for such purposes are called time-domain reflectometers
(TDRs). The basic principle is identical to that of sonar range-finding: generating a sound pulse
and measuring the time it takes for the echo to return.

A similar phenomenon takes place if the end of a transmission line is short-circuited: when the
voltage wave-front reaches the end of the line, it is reflected back to the source, because voltage
cannot exist between two electrically common points. When this reflected wave reaches the source,
the source sees the entire transmission line as a short-circuit. Again, this happens as quickly as the
signal can propagate round-trip down and up the transmission line at whatever velocity allowed by
the dielectric material between the line’s conductors.

A simple experiment illustrates the phenomenon of wave reflection in transmission lines. Take
a length of rope by one end and ”whip” it with a rapid up-and-down motion of the wrist. A wave
may be seen traveling down the rope’s length until it dissipates entirely due to friction:



14.4. FINITE-LENGTH TRANSMISSION LINES 465

wave

wave

wave

This is analogous to a long transmission line with internal loss: the signal steadily grows weaker
as it propagates down the line’s length, never reflecting back to the source. However, if the far end
of the rope is secured to a solid object at a point prior to the incident wave’s total dissipation, a
second wave will be reflected back to your hand:
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wave

wave

wave

wave

Usually, the purpose of a transmission line is to convey electrical energy from one point to
another. Even if the signals are intended for information only, and not to power some significant
load device, the ideal situation would be for all of the original signal energy to travel from the source
to the load, and then be completely absorbed or dissipated by the load for maximum signal-to-noise
ratio. Thus, ”loss” along the length of a transmission line is undesirable, as are reflected waves,
since reflected energy is energy not delivered to the end device.

Reflections may be eliminated from the transmission line if the load’s impedance exactly equals
the characteristic (”surge”) impedance of the line. For example, a 50 Ω coaxial cable that is either
open-circuited or short-circuited will reflect all of the incident energy back to the source. However,
if a 50 Ω resistor is connected at the end of the cable, there will be no reflected energy, all signal
energy being dissipated by the resistor.

This makes perfect sense if we return to our hypothetical, infinite-length transmission line ex-
ample. A transmission line of 50 Ω characteristic impedance and infinite length behaves exactly like
a 50 Ω resistance as measured from one end. If we cut this line to some finite length, it will behave
as a 50 Ω resistor to a constant source of DC voltage for a brief time, but then behave like an open-
or a short-circuit, depending on what condition we leave the cut end of the line: open or shorted.
However, if we terminate the line with a 50 Ω resistor, the line will once again behave as a 50 Ω
resistor, indefinitely: the same as if it were of infinite length again:
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Battery

Switch
. . .

infinite length

50 Ω coaxial cable

Exactly like a 50 Ω resistor

Cable’s behavior from perspective of battery:

Battery

Switch

50 Ω coaxial cable

Cable’s behavior from perspective of battery:

1 mile

Like a 50 Ω resistor for 16.292 µs,
then like an open (infinite resistance)

open

Velocity factor = 0.66

Battery

Switch

50 Ω coaxial cable

Cable’s behavior from perspective of battery:

1 mile

Like a 50 Ω resistor for 16.292 µs,

Velocity factor = 0.66

shorted

then like a short (zero resistance)



468 CHAPTER 14. TRANSMISSION LINES

Battery

Switch

50 Ω coaxial cable

Cable’s behavior from perspective of battery:

1 mile

Velocity factor = 0.66

Exactly like a 50 Ω resistor

50 Ω

In essence, a terminating resistor matching the natural impedance of the transmission line makes
the line ”appear” infinitely long from the perspective of the source, because a resistor has the ability
to eternally dissipate energy in the same way a transmission line of infinite length is able to eternally
absorb energy.

Reflected waves will also manifest if the terminating resistance isn’t precisely equal to the charac-
teristic impedance of the transmission line, not just if the line is left unconnected (open) or jumpered
(shorted). Though the energy reflection will not be total with a terminating impedance of slight
mismatch, it will be partial. This happens whether or not the terminating resistance is greater or
less than the line’s characteristic impedance.

Re-reflections of a reflected wave may also occur at the source end of a transmission line, if
the source’s internal impedance (Thevenin equivalent impedance) is not exactly equal to the line’s
characteristic impedance. A reflected wave returning back to the source will be dissipated entirely if
the source impedance matches the line’s, but will be reflected back toward the line end like another
incident wave, at least partially, if the source impedance does not match the line. This type of
reflection may be particularly troublesome, as it makes it appear that the source has transmitted
another pulse.

• REVIEW:

• Characteristic impedance is also known as surge impedance, due to the temporarily resistive
behavior of any length transmission line.

• A finite-length transmission line will appear to a DC voltage source as a constant resistance
for some short time, then as whatever impedance the line is terminated with. Therefore, an
open-ended cable simply reads ”open” when measured with an ohmmeter, and ”shorted” when
its end is short-circuited.

• A transient (”surge”) signal applied to one end of an open-ended or short-circuited transmission
line will ”reflect” off the far end of the line as a secondary wave. A signal traveling on a
transmission line from source to load is called an incident wave; a signal ”bounced” off the
end of a transmission line, traveling from load to source, is called a reflected wave.

• Reflected waves will also appear in transmission lines terminated by resistors not precisely
matching the characteristic impedance.



14.5. ”LONG” AND ”SHORT” TRANSMISSION LINES 469

• A finite-length transmission line may be made to appear infinite in length if terminated by
a resistor of equal value to the line’s characteristic impedance. This eliminates all signal
reflections.

• A reflected wave may become re-reflected off the source-end of a transmission line if the source’s
internal impedance does not match the line’s characteristic impedance. This re-reflected wave
will appear, of course, like another pulse signal transmitted from the source.

14.5 ”Long” and ”short” transmission lines

In DC and low-frequency AC circuits, the characteristic impedance of parallel wires is usually ig-
nored. This includes the use of coaxial cables in instrument circuits, often employed to protect weak
voltage signals from being corrupted by induced ”noise” caused by stray electric and magnetic fields.
This is due to the relatively short timespans in which reflections take place in the line, as compared
to the period of the waveforms or pulses of the significant signals in the circuit. As we saw in the
last section, if a transmission line is connected to a DC voltage source, it will behave as a resistor
equal in value to the line’s characteristic impedance only for as long as it takes the incident pulse to
reach the end of the line and return as a reflected pulse, back to the source. After that time (a brief
16.292 µs for the mile-long coaxial cable of the last example), the source ”sees” only the terminating
impedance, whatever that may be.

If the circuit in question handles low-frequency AC power, such short time delays introduced
by a transmission line between when the AC source outputs a voltage peak and when the source
”sees” that peak loaded by the terminating impedance (round-trip time for the incident wave to
reach the line’s end and reflect back to the source) are of little consequence. Even though we
know that signal magnitudes along the line’s length are not equal at any given time due to signal
propagation at (nearly) the speed of light, the actual phase difference between start-of-line and end-
of-line signals is negligible, because line-length propagations occur within a very small fraction of
the AC waveform’s period. For all practical purposes, we can say that voltage along all respective
points on a low-frequency, two-conductor line are equal and in-phase with each other at any given
point in time.

In these cases, we can say that the transmission lines in question are electrically short, because
their propagation effects are much quicker than the periods of the conducted signals. By contrast,
an electrically long line is one where the propagation time is a large fraction or even a multiple of
the signal period. A ”long” line is generally considered to be one where the source’s signal waveform
completes at least a quarter-cycle (90o of ”rotation”) before the incident signal reaches line’s end. Up
until this chapter in the Lessons In Electric Circuits book series, all connecting lines were assumed
to be electrically short.

To put this into perspective, we need to express the distance traveled by a voltage or current
signal along a transmission line in relation to its source frequency. An AC waveform with a frequency
of 60 Hz completes one cycle in 16.66 ms. At light speed (186,000 m/s), this equates to a distance of
3100 miles that a voltage or current signal will propagate in that time. If the velocity factor of the
transmission line is less than 1, the propagation velocity will be less than 186,000 miles per second,
and the distance less by the same factor. But even if we used the coaxial cable’s velocity factor from
the last example (0.66), the distance is still a very long 2046 miles! Whatever distance we calculate
for a given frequency is called the wavelength of the signal.
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A simple formula for calculating wavelength is as follows:

λ = v
f

Where,

λ = Wavelength
v = Velocity of propagation
f = Frequency of signal

The lower-case Greek letter ”lambda” (λ) represents wavelength, in whatever unit of length used
in the velocity figure (if miles per second, then wavelength in miles; if meters per second, then
wavelength in meters). Velocity of propagation is usually the speed of light when calculating signal
wavelength in open air or in a vacuum, but will be less if the transmission line has a velocity factor
less than 1.
If a ”long” line is considered to be one at least 1/4 wavelength in length, you can see why all

connecting lines in the circuits discussed thusfar have been assumed ”short.” For a 60 Hz AC power
system, power lines would have to exceed 775 miles in length before the effects of propagation time
became significant. Cables connecting an audio amplifier to speakers would have to be over 4.65
miles in length before line reflections would significantly impact a 10 kHz audio signal!
When dealing with radio-frequency systems, though, transmission line length is far from trivial.

Consider a 100 MHz radio signal: its wavelength is a mere 9.8202 feet, even at the full propagation
velocity of light (186,000 m/s). A transmission line carrying this signal would not have to be more
than about 2-1/2 feet in length to be considered ”long!” With a cable velocity factor of 0.66, this
critical length shrinks to 1.62 feet.
When an electrical source is connected to a load via a ”short” transmission line, the load’s

impedance dominates the circuit. This is to say, when the line is short, its own characteristic
impedance is of little consequence to the circuit’s behavior. We see this when testing a coaxial cable
with an ohmmeter: the cable reads ”open” from center conductor to outer conductor if the cable
end is left unterminated. Though the line acts as a resistor for a very brief period of time after
the meter is connected (about 50 Ω for an RG-58/U cable), it immediately thereafter behaves as a
simple ”open circuit:” the impedance of the line’s open end. Since the combined response time of
an ohmmeter and the human being using it greatly exceeds the round-trip propagation time up and
down the cable, it is ”electrically short” for this application, and we only register the terminating
(load) impedance. It is the extreme speed of the propagated signal that makes us unable to detect
the cable’s 50 Ω transient impedance with an ohmmeter.
If we use a coaxial cable to conduct a DC voltage or current to a load, and no component in

the circuit is capable of measuring or responding quickly enough to ”notice” a reflected wave, the
cable is considered ”electrically short” and its impedance is irrelevant to circuit function. Note how
the electrical ”shortness” of a cable is relative to the application: in a DC circuit where voltage
and current values change slowly, nearly any physical length of cable would be considered ”short”
from the standpoint of characteristic impedance and reflected waves. Taking the same length of
cable, though, and using it to conduct a high-frequency AC signal could result in a vastly different
assessment of that cable’s ”shortness!”
When a source is connected to a load via a ”long” transmission line, the line’s own character-

istic impedance dominates over load impedance in determining circuit behavior. In other words,
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an electrically ”long” line acts as the principal component in the circuit, its own characteristics
overshadowing the load’s. With a source connected to one end of the cable and a load to the other,
current drawn from the source is a function primarily of the line and not the load. This is increas-
ingly true the longer the transmission line is. Consider our hypothetical 50 Ω cable of infinite length,
surely the ultimate example of a ”long” transmission line: no matter what kind of load we connect
to one end of this line, the source (connected to the other end) will only see 50 Ω of impedance,
because the line’s infinite length prevents the signal from ever reaching the end where the load is
connected. In this scenario, line impedance exclusively defines circuit behavior, rendering the load
completely irrelevant.
The most effective way to minimize the impact of transmission line length on circuit behavior is

to match the line’s characteristic impedance to the load impedance. If the load impedance is equal
to the line impedance, then any signal source connected to the other end of the line will ”see” the
exact same impedance, and will have the exact same amount of current drawn from it, regardless
of line length. In this condition of perfect impedance matching, line length only affects the amount
of time delay from signal departure at the source to signal arrival at the load. However, perfect
matching of line and load impedances is not always practical or possible.
The next section discusses the effects of ”long” transmission lines, especially when line length

happens to match specific fractions or multiples of signal wavelength.

• REVIEW:

• Coaxial cabling is sometimes used in DC and low-frequency AC circuits as well as in high-
frequency circuits, for the excellent immunity to induced ”noise” that it provides for signals.

• When the period of a transmitted voltage or current signal greatly exceeds the propagation
time for a transmission line, the line is considered electrically short. Conversely, when the
propagation time is a large fraction or multiple of the signal’s period, the line is considered
electrically long.

• A signal’s wavelength is the physical distance it will propagate in the timespan of one period.
Wavelength is calculated by the formula λ=v/f, where ”λ” is the wavelength, ”v” is the
propagation velocity, and ”f” is the signal frequency.

• A rule-of-thumb for transmission line ”shortness” is that the line must be at least 1/4 wave-
length before it is considered ”long.”

• In a circuit with a ”short” line, the terminating (load) impedance dominates circuit behavior.
The source effectively sees nothing but the load’s impedance, barring any resistive losses in
the transmission line.

• In a circuit with a ”long” line, the line’s own characteristic impedance dominates circuit
behavior. The ultimate example of this is a transmission line of infinite length: since the
signal will never reach the load impedance, the source only ”sees” the cable’s characteristic
impedance.

• When a transmission line is terminated by a load precisely matching its impedance, there are
no reflected waves and thus no problems with line length.
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14.6 Standing waves and resonance

Whenever there is a mismatch of impedance between transmission line and load, reflections will
occur. If the incident signal is a continuous AC waveform, these reflections will mix with more of
the oncoming incident waveform to produce stationary waveforms called standing waves.

The following illustration shows how a triangle-shaped incident waveform turns into a mirror-
image reflection upon reaching the line’s unterminated end. The transmission line in this illustrative
sequence is shown as a single, thick line rather than a pair of wires, for simplicity’s sake. The incident
wave is shown traveling from left to right, while the reflected wave travels from right to left:
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Direction of propagation

. . .Source Unterminated
line

Time

Incident wave

Reflected wave

Incident wave

Reflected wave

If we add the two waveforms together, we find that a third, stationary waveform is created along
the line’s length:
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Direction of propagation

. . .Source Unterminated
line

Time

Incident wave

Reflected wave

Incident wave

Reflected wave

This third, ”standing” wave, in fact, represents the only voltage along the line, being the repre-
sentative sum of incident and reflected voltage waves. It oscillates in instantaneous magnitude, but
does not propagate down the cable’s length like the incident or reflected waveforms causing it. Note
the dots along the line length marking the ”zero” points of the standing wave (where the incident
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and reflected waves cancel each other), and how those points never change position:

. . .Source Unterminated
line

Time

Standing waves are quite abundant in the physical world. Consider a string or rope, shaken at
one end, and tied down at the other (only one half-cycle of hand motion shown, moving downward):
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Both the nodes (points of little or no vibration) and the antinodes (points of maximum vibration)
remain fixed along the length of the string or rope. The effect is most pronounced when the free end
is shaken at just the right frequency. Plucked strings exhibit the same ”standing wave” behavior,
with ”nodes” of maximum and minimum vibration along their length. The major difference between
a plucked string and a shaken string is that the plucked string supplies its own ”correct” frequency
of vibration to maximize the standing-wave effect:

Plucked string

Wind blowing across an open-ended tube also produces standing waves; this time, the waves are
vibrations of air molecules (sound) within the tube rather than vibrations of a solid object. Whether
the standing wave terminates in a node (minimum amplitude) or an antinode (maximum amplitude)
depends on whether the other end of the tube is open or closed:
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1/4 wave

3/4 wave

1/2 wave

3/2 waves

2 waves

5/4 waves

1 wave

7/4 waves

5/2 waves9/4 waves

Standing sound waves in open-ended tubes

A closed tube end must be a wave node, while an open tube end must be an antinode. By
analogy, the anchored end of a vibrating string must be a node, while the free end (if there is any)
must be an antinode.

Note how there is more than one wavelength suitable for producing standing waves of vibrating
air within a tube that precisely match the tube’s end points. This is true for all standing-wave
systems: standing waves will resonate with the system for any frequency (wavelength) correlating
to the node/antinode points of the system. Another way of saying this is that there are multiple
resonant frequencies for any system supporting standing waves.

All higher frequencies are integer-multiples of the lowest (fundamental) frequency for the system.
The sequential progression of harmonics from one resonant frequency to the next defines the overtone
frequencies for the system:
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1/4 wave

3/4 wave

1/2 wave

3/2 waves

2 waves

5/4 waves

1 wave

7/4 waves

5/2 waves9/4 waves

1st

overtone

Fundamental

overtone

overtone

overtone

2nd

3rd

4th

1st 1st

harmonicharmonic

harmonic harmonic

harmonic harmonic

harmonic harmonic

harmonic harmonic

3rd

5th

7th

9th

2nd

3rd

4th

5th

The actual frequencies (measured in Hertz) for any of these harmonics or overtones depends on
the physical length of the tube and the waves’ propagation velocity, which is the speed of sound in
air.
Because transmission lines support standing waves, and force these waves to possess nodes and

antinodes according to the type of termination impedance at the load end, they also exhibit resonance
at frequencies determined by physical length and propagation velocity. Transmission line resonance,
though, is a bit more complex than resonance of strings or of air in tubes, because we must consider
both voltage waves and current waves.
This complexity is made easier to understand by way of computer simulation. To begin, let’s

examine a perfectly matched source, transmission line, and load. All components have an impedance
of 75 Ω:

Zsource

Esource

Transmission line
(75 Ω)

1

0

2

0

3

0

75 Ω
75 ΩRload

Using SPICE to simulate the circuit, we’ll specify the transmission line (t1) with a 75 Ω charac-
teristic impedance (z0=75) and a propagation delay of 1 microsecond (td=1u). This is a convenient
method for expressing the physical length of a transmission line: the amount of time it takes a wave
to propagate down its entire length. If this were a real 75 Ω cable – perhaps a type ”RG-59B/U”
coaxial cable, the type commonly used for cable television distribution – with a velocity factor of
0.66, it would be about 648 feet long. Since 1 µs is the period of a 1 MHz signal, I’ll choose to sweep
the frequency of the AC source from (nearly) zero to that figure, to see how the system reacts when
exposed to signals ranging from DC to 1 wavelength.
Here is the SPICE netlist for the circuit shown above:
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Transmission line

v1 1 0 ac 1 sin

rsource 1 2 75

t1 2 0 3 0 z0=75 td=1u

rload 3 0 75

.ac lin 101 1m 1meg

* Using "Nutmeg" program to plot analysis

.end

Running this simulation and plotting the source impedance drop (as an indication of current),
the source voltage, the line’s source-end voltage, and the load voltage, we see that the source voltage
– shown as vm(1) (voltage magnitude between node 1 and the implied ground point of node 0) on
the graphic plot – registers a steady 1 volt, while every other voltage registers a steady 0.5 volts:

In a system where all impedances are perfectly matched, there can be no standing waves, and
therefore no resonant ”peaks” or ”valleys” in the Bode plot.

Now, let’s change the load impedance to 999 MΩ, to simulate an open-ended transmission line.
We should definitely see some reflections on the line now as the frequency is swept from 1 mHz to
1 MHz:
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Zsource

Esource

Transmission line
(75 Ω)

1

0

2

0

3

0

75 Ω
Rload

999 MΩ
(open)

Transmission line

v1 1 0 ac 1 sin

rsource 1 2 75

t1 2 0 3 0 z0=75 td=1u

rload 3 0 999meg

.ac lin 101 1m 1meg

* Using "Nutmeg" program to plot analysis

.end

Here, both the supply voltage vm(1) and the line’s load-end voltage vm(3) remain steady at 1
volt. The other voltages dip and peak at different frequencies along the sweep range of 1 mHz to
1 MHz. There are five points of interest along the horizontal axis of the analysis: 0 Hz, 250 kHz,
500 kHz, 750 kHz, and 1 MHz. We will investigate each one with regard to voltage and current at
different points of the circuit.



14.6. STANDING WAVES AND RESONANCE 481

At 0 Hz (actually 1 mHz), the signal is practically DC, and the circuit behaves much as it would
given a 1-volt DC battery source. There is no circuit current, as indicated by zero voltage drop
across the source impedance (Zsource: vm(1,2)), and full source voltage present at the source-end
of the transmission line (voltage measured between node 2 and node 0: vm(2)).

Zsource

Esource

Transmission line
(75 Ω)

75 Ω
1 V 1 V

0 V = 0 A

At 250 kHz, we see zero voltage and maximum current at the source-end of the transmission line,
yet still full voltage at the load-end:

Zsource

Esource
Transmission line

(75 Ω)

75 Ω
1 V

250 kHz

1 V = 13.33 mA

0 V

You might be wondering, how can this be? How can we get full source voltage at the line’s open
end while there is zero voltage at its entrance? The answer is found in the paradox of the standing
wave. With a source frequency of 250 kHz, the line’s length is precisely right for 1/4 wavelength to
fit from end to end. With the line’s load end open-circuited, there can be no current, but there will
be voltage. Therefore, the load-end of an open-circuited transmission line is a current node (zero
point) and a voltage antinode (maximum amplitude):

Zsource

Esource
75 Ω

250 kHz

Maximum I

Zero E
Maximum E

Zero I

At 500 kHz, exactly one-half of a standing wave rests on the transmission line, and here we
see another point in the analysis where the source current drops off to nothing and the source-end
voltage of the transmission line rises again to full voltage:
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Zsource

Esource
75 Ω

Maximum I

Maximum E

Zero I

500 kHz

Maximum E

Zero I

Zero E

At 750 kHz, the plot looks a lot like it was at 250 kHz: zero source-end voltage (vm(2)) and
maximum current (vm(1,2)). This is due to 3/4 of a wave poised along the transmission line,
resulting in the source ”seeing” a short-circuit where it connects to the transmission line, even
though the other end of the line is open-circuited:

Zsource

Esource
75 Ω

Maximum I

Maximum E

Zero I Zero I

Zero EZero E
Maximum E

Maximum I

750 kHz

When the supply frequency sweeps up to 1 MHz, a full standing wave exists on the transmission
line. At this point, the source-end of the line experiences the same voltage and current amplitudes
as the load-end: full voltage and zero current. In essence, the source ”sees” an open circuit at the
point where it connects to the transmission line.

Zsource

Esource
75 Ω

Maximum I

Maximum E

Zero I

Zero I

Zero EZero EMaximum E

Maximum I

Zero I

Maximum E

1 MHz
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In a similar fashion, a short-circuited transmission line generates standing waves, although the
node and antinode assignments for voltage and current are reversed: at the shorted end of the line,
there will be zero voltage (node) and maximum current (antinode). What follows is the SPICE
simulation and illustrations of what happens at all the interesting frequencies: 0 Hz, 250 kHz, 500
kHz, 750 kHz, and 1 MHz. The short-circuit jumper is simulated by a 1 µΩ load impedance:

Zsource

Esource

Transmission line
(75 Ω)

1

0

2

0

3

0

75 Ω
Rload

1 µΩ
(shorted)

Transmission line

v1 1 0 ac 1 sin

rsource 1 2 75

t1 2 0 3 0 z0=75 td=1u

rload 3 0 1u

.ac lin 101 1m 1meg

* Using "Nutmeg" program to plot analysis

.end
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Zsource

Esource
Transmission line

(75 Ω)

75 Ω

1 V = 13.33 mA

0 V
0 Hz

0 V

Zsource

Esource
75 Ω

250 kHz

Maximum I

Zero E
Maximum E

Zero I

Zsource

Esource
75 Ω

Maximum I

Maximum E

500 kHz

Zero I

Zero E Zero E

Maximum I

Zsource

Esource
75 Ω

Maximum I

Maximum E

Zero I

Zero I

Zero E

Zero EMaximum E

Maximum I

750 kHz
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Zsource

Esource
75 Ω

Maximum I

Maximum E

Zero I

Zero EZero E

Maximum I
Zero I

Maximum E

1 MHz

Zero E

Maximum I

In both these circuit examples, an open-circuited line and a short-circuited line, the energy
reflection is total: 100% of the incident wave reaching the line’s end gets reflected back toward the
source. If, however, the transmission line is terminated in some impedance other than an open or a
short, the reflections will be less intense, as will be the difference between minimum and maximum
values of voltage and current along the line.

Suppose we were to terminate our example line with a 100 Ω resistor instead of a 75 Ω resistor.
Examine the results of the corresponding SPICE analysis to see the effects of impedance mismatch
at different source frequencies:

Zsource

Esource

Transmission line
(75 Ω)

1

0

2

0

3

0

75 Ω
Rload 100 Ω

Transmission line

v1 1 0 ac 1 sin

rsource 1 2 75

t1 2 0 3 0 z0=75 td=1u

rload 3 0 100

.ac lin 101 1m 1meg

* Using "Nutmeg" program to plot analysis

.end
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If we run another SPICE analysis, this time printing numerical results rather than plotting them,
we can discover exactly what is happening at all the interesting frequencies (DC, 250 kHz, 500 kHz,
750 kHz, and 1 MHz):

Transmission line

v1 1 0 ac 1 sin

rsource 1 2 75

t1 2 0 3 0 z0=75 td=1u

rload 3 0 100

.ac lin 5 1m 1meg

.print ac v(1,2) v(1) v(2) v(3)

.end

freq v(1,2) v(1) v(2) v(3)

1.000E-03 4.286E-01 1.000E+00 5.714E-01 5.714E-01

2.500E+05 5.714E-01 1.000E+00 4.286E-01 5.714E-01

5.000E+05 4.286E-01 1.000E+00 5.714E-01 5.714E-01

7.500E+05 5.714E-01 1.000E+00 4.286E-01 5.714E-01

1.000E+06 4.286E-01 1.000E+00 5.714E-01 5.714E-01

At all frequencies, the source voltage, v(1), remains steady at 1 volt, as it should. The load
voltage, v(3), also remains steady, but at a lesser voltage: 0.5714 volts. However, both the line input
voltage (v(2)) and the voltage dropped across the source’s 75 Ω impedance (v(1,2), indicating
current drawn from the source) vary with frequency.
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Zsource

Esource

Transmission line
(75 Ω)

75 Ω

0 Hz

0.4286 V =
5.715 mA

100 Ω0.5714 V 0.5714 V

Zsource

Esource

Transmission line
(75 Ω)

75 Ω
100 Ω0.5714 V

250 kHz

0.5714 V =
7.619 mA

0.4286 V

Zsource

Esource

Transmission line
(75 Ω)

75 Ω

0.4286 V =
5.715 mA

100 Ω0.5714 V 0.5714 V
500 kHz

Zsource

Esource

Transmission line
(75 Ω)

75 Ω
100 Ω0.5714 V

0.5714 V =
7.619 mA

0.4286 V
750 kHz
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Zsource

Esource

Transmission line
(75 Ω)

75 Ω

0.4286 V =
5.715 mA

100 Ω0.5714 V 0.5714 V
1 MHz

At odd harmonics of the fundamental frequency (250 kHz and 750 kHz), we see differing levels
of voltage at each end of the transmission line, because at those frequencies the standing waves
terminate at one end in a node and at the other end in an antinode. Unlike the open-circuited and
short-circuited transmission line examples, the maximum and minimum voltage levels along this
transmission line do not reach the same extreme values of 0% and 100% source voltage, but we still
have points of ”minimum” and ”maximum” voltage. The same holds true for current: if the line’s
terminating impedance is mismatched to the line’s characteristic impedance, we will have points of
minimum and maximum current at certain fixed locations on the line, corresponding to the standing
current wave’s nodes and antinodes, respectively.
One way of expressing the severity of standing waves is as a ratio of maximum amplitude (antin-

ode) to minimum amplitude (node), for voltage or for current. When a line is terminated by an open
or a short, this standing wave ratio, or SWR is valued at infinity, since the minimum amplitude will
be zero, and any finite value divided by zero results in an infinite (actually, ”undefined”) quotient.
In this example, with a 75 Ω line terminated by a 100 Ω impedance, the SWR will be finite: 1.333,
calculated by taking the maximum line voltage at either 250 kHz or 750 kHz (0.5714 volts) and
dividing by the minimum line voltage (0.4286 volts).
Standing wave ratio may also be calculated by taking the line’s terminating impedance and the

line’s characteristic impedance, and dividing the larger of the two values by the smaller. In this
example, the terminating impedance of 100 Ω divided by the characteristic impedance of 75 Ω yields
a quotient of exactly 1.333, matching the previous calculation very closely.

SWR =
Zload

Z0
or

Zload

Z0

SWR =
Emaximum

Eminimum

=
Imaximum

Iminimum

which ever is greater

A perfectly terminated transmission line will have an SWR of 1, since voltage at any location
along the line’s length will be the same, and likewise for current. Again, this is usually considered
ideal, not only because reflected waves constitute energy not delivered to the load, but because the
high values of voltage and current created by the antinodes of standing waves may over-stress the
transmission line’s insulation (high voltage) and conductors (high current), respectively.
Also, a transmission line with a high SWR tends to act as an antenna, radiating electromagnetic
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energy away from the line, rather than channeling all of it to the load. This is usually undesirable,
as the radiated energy may ”couple” with nearby conductors, producing signal interference. An
interesting footnote to this point is that antenna structures – which typically resemble open- or
short-circuited transmission lines – are often designed to operate at high standing wave ratios, for
the very reason of maximizing signal radiation and reception.
The following photograph shows a set of transmission lines at a junction point in a radio trans-

mitter system. The large, copper tubes with ceramic insulator caps at the ends are rigid coaxial
transmission lines of 50 Ω characteristic impedance. These lines carry RF power from the radio
transmitter circuit to a small, wooden shelter at the base of an antenna structure, and from that
shelter on to other shelters with other antenna structures:

Flexible coaxial cable connected to the rigid lines (also of 50 Ω characteristic impedance) conduct
the RF power to capacitive and inductive ”phasing” networks inside the shelter. The white, plastic
tube joining two of the rigid lines together carries ”filling” gas from one sealed line to the other.
The lines are gas-filled to avoid collecting moisture inside them, which would be a definite problem
for a coaxial line. Note the flat, copper ”straps” used as jumper wires to connect the conductors of
the flexible coaxial cables to the conductors of the rigid lines. Why flat straps of copper and not
round wires? Because of the skin effect, which renders most of the cross-sectional area of a round
conductor useless at radio frequencies.
Like many transmission lines, these are operated at low SWR conditions. As we will see in

the next section, though, the phenomenon of standing waves in transmission lines is not always
undesirable, as it may be exploited to perform a useful function: impedance transformation.

• REVIEW:

• Standing waves are waves of voltage and current which do not propagate (i.e. they are station-
ary), but are the result of interference between incident and reflected waves along a transmission
line.

• A node is a point on a standing wave of minimum amplitude.

• An antinode is a point on a standing wave of maximum amplitude.

• Standing waves can only exist in a transmission line when the terminating impedance does not
match the line’s characteristic impedance. In a perfectly terminated line, there are no reflected
waves, and therefore no standing waves at all.
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• At certain frequencies, the nodes and antinodes of standing waves will correlate with the ends
of a transmission line, resulting in resonance.

• The lowest-frequency resonant point on a transmission line is where the line is one quarter-
wavelength long. Resonant points exist at every harmonic (integer-multiple) frequency of the
fundamental (quarter-wavelength).

• Standing wave ratio, or SWR, is the ratio of maximum standing wave amplitude to minimum
standing wave amplitude. It may also be calculated by dividing termination impedance by
characteristic impedance, or vice versa, which ever yields the greatest quotient. A line with
no standing waves (perfectly matched: Zload to Z0) has an SWR equal to 1.

• Transmission lines may be damaged by the high maximum amplitudes of standing waves.
Voltage antinodes may break down insulation between conductors, and current antinodes may
overheat conductors.

14.7 Impedance transformation

Standing waves at the resonant frequency points of an open- or short-circuited transmission line
produce unusual effects. When the signal frequency is such that exactly 1/2 wave or some multiple
thereof matches the line’s length, the source ”sees” the load impedance as it is. The following pair
of illustrations shows an open-circuited line operating at 1/2 and 1 wavelength frequencies:

Zsource

Esource
75 Ω

Maximum I

Maximum E

Zero I

500 kHz

Maximum E

Zero I

Zero E
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Zsource

Esource
75 Ω

Maximum I

Maximum E

Zero I

Zero I

Zero EZero EMaximum E

Maximum I

Zero I

Maximum E

1 MHz

In either case, the line has voltage antinodes at both ends, and current nodes at both ends.
That is to say, there is maximum voltage and minimum current at either end of the line, which
corresponds to the condition of an open circuit. The fact that this condition exists at both ends of
the line tells us that the line faithfully reproduces its terminating impedance at the source end, so
that the source ”sees” an open circuit where it connects to the transmission line, just as if it were
directly open-circuited.

The same is true if the transmission line is terminated by a short: at signal frequencies corre-
sponding to 1/2 wavelength or some multiple thereof, the source ”sees” a short circuit, with minimum
voltage and maximum current present at the connection points between source and transmission line:

Zsource

Esource
75 Ω

Maximum I

Maximum E

500 kHz

Zero I

Zero E Zero E

Maximum I
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Zsource

Esource
75 Ω

Maximum I

Maximum E

Zero I

Zero EZero E

Maximum I
Zero I

Maximum E

1 MHz

Zero E

Maximum I

However, if the signal frequency is such that the line resonates at 1/4 wavelength or some multiple
thereof, the source will ”see” the exact opposite of the termination impedance. That is, if the line
is open-circuited, the source will ”see” a short-circuit at the point where it connects to the line; and
if the line is short-circuited, the source will ”see” an open circuit:

Line open-circuited; source ”sees” a short circuit:

Zsource

Esource
75 Ω

250 kHz

Maximum I

Zero E
Maximum E

Zero I

Zsource

Esource
75 Ω

Maximum I

Maximum E

Zero I Zero I

Zero EZero E
Maximum E

Maximum I

750 kHz

Line short-circuited; source ”sees” an open circuit:
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Zsource

Esource
75 Ω

250 kHz

Maximum I

Zero E
Maximum E

Zero I

Zsource

Esource
75 Ω

Maximum I

Maximum E

Zero I

Zero I

Zero E

Zero EMaximum E

Maximum I

750 kHz

At these frequencies, the transmission line is actually functioning as an impedance transformer,
transforming an infinite impedance into zero impedance, or vice versa. Of course, this only occurs at
resonant points resulting in a standing wave of 1/4 cycle (the line’s fundamental, resonant frequency)
or some odd multiple (3/4, 5/4, 7/4, 9/4 . . .), but if the signal frequency is known and unchanging,
this phenomenon may be used to match otherwise unmatched impedances to each other.

Take for instance the example circuit from the last section where a 75 Ω source connects to a 75
Ω transmission line, terminating in a 100 Ω load impedance. From the numerical figures obtained
via SPICE, let’s determine what impedance the source ”sees” at its end of the transmission line at
the line’s resonant frequencies:
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Zsource

Esource

Transmission line
(75 Ω)

75 Ω
100 Ω0.5714 V

250 kHz

0.5714 V =
7.619 mA

0.4286 V

1/4 λ

Source "sees" 0.4286 V
7.619 mA

= 56.25 Ω

Fundamental frequency
(1st harmonic)

Zsource

Esource

Transmission line
(75 Ω)

75 Ω

0.4286 V =
5.715 mA

100 Ω0.5714 V 0.5714 V
500 kHz

Source "sees"
0.5714 V

5.715 mA
= 100 Ω

1/2 λ

2nd harmonic

Zsource

Esource

Transmission line
(75 Ω)

75 Ω
100 Ω0.5714 V

0.5714 V =
7.619 mA

0.4286 V

Source "sees" 0.4286 V
7.619 mA

= 56.25 Ω

3/4 λ

750 kHz

3rd harmonic
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Zsource

Esource

Transmission line
(75 Ω)

75 Ω

0.4286 V =
5.715 mA

100 Ω0.5714 V 0.5714 V

Source "sees"
0.5714 V

5.715 mA
= 100 Ω

1 MHz

1 λ

4th harmonic

A simple equation relates line impedance (Z0), load impedance (Zload), and input impedance
(Zinput) for an unmatched transmission line operating at an odd harmonic of its fundamental fre-
quency:

Z0 = Zinput Zload

One practical application of this principle would be to match a 300 Ω load to a 75 Ω signal source
at a frequency of 50 MHz. All we need to do is calculate the proper transmission line impedance
(Z0), and length so that exactly 1/4 of a wave will ”stand” on the line at a frequency of 50 MHz.
First, calculating the line impedance: taking the 75 Ω we desire the source to ”see” at the source-

end of the transmission line, and multiplying by the 300 Ω load resistance, we obtain a figure of
22,500. Taking the square root of 22,500 yields 150 Ω for a characteristic line impedance.
Now, to calculate the necessary line length: assuming that our cable has a velocity factor of

0.85, and using a speed-of-light figure of 186,000 miles per second, the velocity of propagation will
be 158,100 miles per second. Taking this velocity and dividing by the signal frequency gives us a
wavelength of 0.003162 miles, or 16.695 feet. Since we only need one-quarter of this length for the
cable to support a quarter-wave, the requisite cable length is 4.1738 feet.
Here is a schematic diagram for the circuit, showing node numbers for the SPICE analysis we’re

about to run:

Zsource

Esource
Transmission line

1

0

2

0

3

0

75 Ω

50 MHz
300 ΩZloadZ0 = 150 Ω

150 = (75)(300)

We can specify the cable length in SPICE in terms of time delay from beginning to end. Since
the frequency is 50 MHz, the signal period will be the reciprocal of that, or 20 nano-seconds (20 ns).
One-quarter of that time (5 ns) will be the time delay of a transmission line one-quarter wavelength
long:

Transmission line
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v1 1 0 ac 1 sin

rsource 1 2 75

t1 2 0 3 0 z0=150 td=5n

rload 3 0 300

.ac lin 1 50meg 50meg

.print ac v(1,2) v(1) v(2) v(3)

.end

freq v(1,2) v(1) v(2) v(3)

5.000E+07 5.000E-01 1.000E+00 5.000E-01 1.000E+00

At a frequency of 50 MHz, our 1-volt signal source drops half of its voltage across the series 75 Ω
impedance (v(1,2)) and the other half of its voltage across the input terminals of the transmission
line (v(2)). This means the source ”thinks” it is powering a 75 Ω load. The actual load impedance,
however, receives a full 1 volt, as indicated by the 1.000 figure at v(3). With 0.5 volt dropped across
75 Ω, the source is dissipating 3.333 mW of power: the same as dissipated by 1 volt across the 300 Ω
load, indicating a perfect match of impedance, according to the Maximum Power Transfer Theorem.
The 1/4-wavelength, 150 Ω, transmission line segment has successfully matched the 300 Ω load to
the 75 Ω source.
Bear in mind, of course, that this only works for 50 MHz and its odd-numbered harmonics. For

any other signal frequency to receive the same benefit of matched impedances, the 150 Ω line would
have to lengthened or shortened accordingly so that it was exactly 1/4 wavelength long.
Strangely enough, the exact same line can also match a 75 Ω load to a 300 Ω source, demonstrating

how this phenomenon of impedance transformation is fundamentally different in principle from that
of a conventional, two-winding transformer:

Transmission line

v1 1 0 ac 1 sin

rsource 1 2 300

t1 2 0 3 0 z0=150 td=5n

rload 3 0 75

.ac lin 1 50meg 50meg

.print ac v(1,2) v(1) v(2) v(3)

.end

freq v(1,2) v(1) v(2) v(3)

5.000E+07 5.000E-01 1.000E+00 5.000E-01 2.500E-01

Here, we see the 1-volt source voltage equally split between the 300 Ω source impedance (v(1,2))
and the line’s input (v(2)), indicating that the load ”appears” as a 300 Ω impedance from the source’s
perspective where it connects to the transmission line. This 0.5 volt drop across the source’s 300 Ω
internal impedance yields a power figure of 833.33 µW, the same as the 0.25 volts across the 75 Ω
load, as indicated by voltage figure v(3). Once again, the impedance values of source and load have
been matched by the transmission line segment.
This technique of impedance matching is often used to match the differing impedance values of

transmission line and antenna in radio transmitter systems, because the transmitter’s frequency is
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generally well-known and unchanging. The use of an impedance ”transformer” 1/4 wavelength in
length provides impedance matching using the shortest conductor length possible.

Radio
Transmitter

Z0 = 75 Ω

1/4 λ

Z0 = 150 Ω
. . .

. . .

Dipole
antenna
300 Ω

Impedance 
"transformer"

• REVIEW:

• A transmission line with standing waves may be used to match different impedance values if
operated at the correct frequency(ies).

• When operated at a frequency corresponding to a standing wave of 1/4-wavelength along the
transmission line, the line’s characteristic impedance necessary for impedance transformation
must be equal to the square root of the product of the source’s impedance and the load’s
impedance.

14.8 Waveguides

A waveguide is a special form of transmission line consisting of a hollow, metal tube. The tube wall
provides distributed inductance, while the empty space between the tube walls provide distributed
capacitance:
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Wave
propagation

Wave-
guide

Wave-
guide

Waveguides are practical only for signals of extremely high frequency, where the wavelength
approaches the cross-sectional dimensions of the waveguide. Below such frequencies, waveguides are
useless as electrical transmission lines.

When functioning as transmission lines, though, waveguides are considerably simpler than two-
conductor cables – especially coaxial cables – in their manufacture and maintenance. With only a
single conductor (the waveguide’s ”shell”), there are no concerns with proper conductor-to-conductor
spacing, or of the consistency of the dielectric material, since the only dielectric in a waveguide is
air. Moisture is not as severe a problem in waveguides as it is within coaxial cables, either, and so
waveguides are often spared the necessity of gas ”filling.”

Waveguides may be thought of as conduits for electromagnetic energy, the waveguide itself acting
as nothing more than a ”director” of the energy rather than as a signal conductor in the normal
sense of the word. In a sense, all transmission lines function as conduits of electromagnetic energy
when transporting pulses or high-frequency waves, directing the waves as the banks of a river direct a
tidal wave. However, because waveguides are single-conductor elements, the propagation of electrical
energy down a waveguide is of a very different nature than the propagation of electrical energy down
a two-conductor transmission line.

All electromagnetic waves consist of electric and magnetic fields propagating in the same direction
of travel, but perpendicular to each other. Along the length of a normal transmission line, both
electric and magnetic fields are perpendicular (transverse) to the direction of wave travel. This is
known as the principal mode, or TEM (Transverse Electric and Magnetic) mode. This mode of
wave propagation can exist only where there are two conductors, and it is the dominant mode of
wave propagation where the cross-sectional dimensions of the transmission line are small compared
to the wavelength of the signal.
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Electric field

Magnetic field

Magnetic field

Both field planes perpendicular (transverse) to 
direction of signal propagation.

TEM mode Wave
propagation

At microwave signal frequencies (between 100 MHz and 300 GHz), two-conductor transmission
lines of any substantial length operating in standard TEM mode become impractical. Lines small
enough in cross-sectional dimension to maintain TEM mode signal propagation for microwave signals
tend to have low voltage ratings, and suffer from large, parasitic power losses due to conductor ”skin”
and dielectric effects. Fortunately, though, at these short wavelengths there exist other modes of
propagation that are not as ”lossy,” if a conductive tube is used rather than two parallel conductors.
It is at these high frequencies that waveguides become practical.
When an electromagnetic wave propagates down a hollow tube, only one of the fields – either

electric or magnetic – will actually be transverse to the wave’s direction of travel. The other field
will ”loop” longitudinally to the direction of travel, but still be perpendicular to the other field.
Whichever field remains transverse to the direction of travel determines whether the wave propagates
in TE mode (Transverse Electric) or TM (Transverse Magnetic) mode.

Wave
propagation

TM mode

Electric
field

Magnetic
field

TE mode

Magnetic
field

field
Electric

Magnetic flux lines appear as continuous loops
Electric flux lines appear with beginning and end points

Many variations of each mode exist for a given waveguide, and a full discussion of this is subject
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well beyond the scope of this book.

Signals are typically introduced to and extracted from waveguides by means of small antenna-like
coupling devices inserted into the waveguide. Sometimes these coupling elements take the form of a
dipole, which is nothing more than two open-ended stub wires of appropriate length. Other times,
the coupler is a single stub (a half-dipole, similar in principle to a ”whip” antenna, 1/4λ in physical
length), or a short loop of wire terminated on the inside surface of the waveguide:

Waveguide

Coaxial
cable

Coupling loop

Waveguide

Coaxial
cable

Coupling "stub"

In some cases, such as a class of vacuum tube devices called inductive output tubes (the so-
called klystron tube falls into this category), a ”cavity” formed of conductive material may intercept
electromagnetic energy from a modulated beam of electrons, having no contact with the beam itself:

DC supply

RF
signal
input

toroidal 
cavity

coaxial
output
cable

electron beam

RF power 
output

The inductive output tube (IOT)

Just as transmission lines are able to function as resonant elements in a circuit, especially when
terminated by a short-circuit or an open-circuit, a dead-ended waveguide may also resonate at
particular frequencies. When used as such, the device is called a cavity resonator. Inductive output
tubes use toroid-shaped cavity resonators to maximize the power transfer efficiency between the
electron beam and the output cable.

A cavity’s resonant frequency may be altered by changing its physical dimensions. To this end,
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cavities with movable plates, screws, and other mechanical elements for tuning are manufactured to
provide coarse resonant frequency adjustment.
If a resonant cavity is made open on one end, it functions as a unidirectional antenna. The

following photograph shows a home-made waveguide formed from a tin can, used as an antenna
for a 2.4 GHz signal in an ”802.11b” computer communication network. The coupling element is
a quarter-wave stub: nothing more than a piece of solid copper wire about 1-1/4 inches in length
extending from the center of a coaxial cable connector penetrating the side of the can:

A few more tin-can antennae may be seen in the background, one of them a ”Pringles” potato
chip can. Although this can is of cardboard (paper) construction, its metallic inner lining provides
the necessary conductivity to function as a waveguide. Some of the cans in the background still have
their plastic lids in place. The plastic, being nonconductive, does not interfere with the RF signal,
but functions as a physical barrier to prevent rain, snow, dust, and other physical contaminants
from entering the waveguide. ”Real” waveguide antennae use similar barriers to physically enclose
the tube, yet allow electromagnetic energy to pass unimpeded.

• REVIEW:

• Waveguides are metal tubes functioning as ”conduits” for carrying electromagnetic waves.
They are practical only for signals of extremely high frequency, where the signal wavelength
approaches the cross-sectional dimensions of the waveguide.

• Wave propagation through a waveguide may be classified into two broad categories: TE (Trans-
verse Electric), or TM (Transverse Magnetic), depending on which field (electric or magnetic)
is perpendicular (transverse) to the direction of wave travel. Wave travel along a standard,
two-conductor transmission line is of the TEM (Transverse Electric and Magnetic) mode,
where both fields are oriented perpendicular to the direction of travel. TEM mode is only
possible with two conductors and cannot exist in a waveguide.

• A dead-ended waveguide serving as a resonant element in a microwave circuit is called a cavity
resonator.

• A cavity resonator with an open end functions as a unidirectional antenna, sending or receiving
RF energy to/from the direction of the open end.
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Appendix A-1

ABOUT THIS BOOK

A-1.1 Purpose

They say that necessity is the mother of invention. At least in the case of this book, that adage
is true. As an industrial electronics instructor, I was forced to use a sub-standard textbook during
my first year of teaching. My students were daily frustrated with the many typographical errors
and obscure explanations in this book, having spent much time at home struggling to comprehend
the material within. Worse yet were the many incorrect answers in the back of the book to selected
problems. Adding insult to injury was the $100+ price.

Contacting the publisher proved to be an exercise in futility. Even though the particular text I
was using had been in print and in popular use for a couple of years, they claimed my complaint
was the first they’d ever heard. My request to review the draft for the next edition of their book
was met with disinterest on their part, and I resolved to find an alternative text.

Finding a suitable alternative was more difficult than I had imagined. Sure, there were plenty of
texts in print, but the really good books seemed a bit too heavy on the math and the less intimidating
books omitted a lot of information I felt was important. Some of the best books were out of print,
and those that were still being printed were quite expensive.

It was out of frustration that I compiled Lessons in Electric Circuits from notes and ideas I had
been collecting for years. My primary goal was to put readable, high-quality information into the
hands of my students, but a secondary goal was to make the book as affordable as possible. Over the
years, I had experienced the benefit of receiving free instruction and encouragement in my pursuit
of learning electronics from many people, including several teachers of mine in elementary and high
school. Their selfless assistance played a key role in my own studies, paving the way for a rewarding
career and fascinating hobby. If only I could extend the gift of their help by giving to other people
what they gave to me . . .

So, I decided to make the book freely available. More than that, I decided to make it ”open,”
following the same development model used in the making of free software (most notably the various
UNIX utilities released by the Free Software Foundation, and the Linux operating system, whose
fame is growing even as I write). The goal was to copyright the text – so as to protect my authorship
– but expressly allow anyone to distribute and/or modify the text to suit their own needs with a
minimum of legal encumbrance. This willful and formal revoking of standard distribution limitations
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under copyright is whimsically termed copyleft. Anyone can ”copyleft” their creative work simply
by appending a notice to that effect on their work, but several Licenses already exist, covering the
fine legal points in great detail.
The first such License I applied to my work was the GPL – General Public License – of the

Free Software Foundation (GNU). The GPL, however, is intended to copyleft works of computer
software, and although its introductory language is broad enough to cover works of text, its wording
is not as clear as it could be for that application. When other, less specific copyleft Licenses began
appearing within the free software community, I chose one of them (the Design Science License, or
DSL) as the official notice for my project.
In ”copylefting” this text, I guaranteed that no instructor would be limited by a text insufficient

for their needs, as I had been with error-ridden textbooks from major publishers. I’m sure this book
in its initial form will not satisfy everyone, but anyone has the freedom to change it, leveraging my
efforts to suit variant and individual requirements. For the beginning student of electronics, learn
what you can from this book, editing it as you feel necessary if you come across a useful piece of
information. Then, if you pass it on to someone else, you will be giving them something better than
what you received. For the instructor or electronics professional, feel free to use this as a reference
manual, adding or editing to your heart’s content. The only ”catch” is this: if you plan to distribute
your modified version of this text, you must give credit where credit is due (to me, the original
author, and anyone else whose modifications are contained in your version), and you must ensure
that whoever you give the text to is aware of their freedom to similarly share and edit the text. The
next chapter covers this process in more detail.
It must be mentioned that although I strive to maintain technical accuracy in all of this book’s

content, the subject matter is broad and harbors many potential dangers. Electricity maims and
kills without provocation, and deserves the utmost respect. I strongly encourage experimentation
on the part of the reader, but only with circuits powered by small batteries where there is no risk of
electric shock, fire, explosion, etc. High-power electric circuits should be left to the care of trained
professionals! The Design Science License clearly states that neither I nor any contributors to this
book bear any liability for what is done with its contents.

A-1.2 The use of SPICE

One of the best ways to learn how things work is to follow the inductive approach: to observe
specific instances of things working and derive general conclusions from those observations. In
science education, labwork is the traditionally accepted venue for this type of learning, although
in many cases labs are designed by educators to reinforce principles previously learned through
lecture or textbook reading, rather than to allow the student to learn on their own through a truly
exploratory process.
Having taught myself most of the electronics that I know, I appreciate the sense of frustration

students may have in teaching themselves from books. Although electronic components are typically
inexpensive, not everyone has the means or opportunity to set up a laboratory in their own homes,
and when things go wrong there’s no one to ask for help. Most textbooks seem to approach the task
of education from a deductive perspective: tell the student how things are supposed to work, then
apply those principles to specific instances that the student may or may not be able to explore by
themselves. The inductive approach, as useful as it is, is hard to find in the pages of a book.
However, textbooks don’t have to be this way. I discovered this when I started to learn a
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computer program called SPICE. It is a text-based piece of software intended to model circuits and
provide analyses of voltage, current, frequency, etc. Although nothing is quite as good as building
real circuits to gain knowledge in electronics, computer simulation is an excellent alternative. In
learning how to use this powerful tool, I made a discovery: SPICE could be used within a textbook
to present circuit simulations to allow students to ”observe” the phenomena for themselves. This
way, the readers could learn the concepts inductively (by interpreting SPICE’s output) as well as
deductively (by interpreting my explanations). Furthermore, in seeing SPICE used over and over
again, they should be able to understand how to use it themselves, providing a perfectly safe means
of experimentation on their own computers with circuit simulations of their own design.
Another advantage to including computer analyses in a textbook is the empirical verification

it adds to the concepts presented. Without demonstrations, the reader is left to take the author’s
statements on faith, trusting that what has been written is indeed accurate. The problem with
faith, of course, is that it is only as good as the authority in which it is placed and the accuracy
of interpretation through which it is understood. Authors, like all human beings, are liable to err
and/or communicate poorly. With demonstrations, however, the reader can immediately see for
themselves that what the author describes is indeed true. Demonstrations also serve to clarify the
meaning of the text with concrete examples.
SPICE is introduced early in volume I (DC) of this book series, and hopefully in a gentle enough

way that it doesn’t create confusion. For those wishing to learn more, a chapter in the Reference
volume (volume V) contains an overview of SPICE with many example circuits. There may be more
flashy (graphic) circuit simulation programs in existence, but SPICE is free, a virtue complementing
the charitable philosophy of this book very nicely.

A-1.3 Acknowledgements

First, I wish to thank my wife, whose patience during those many and long evenings (and weekends!)
of typing has been extraordinary.
I also wish to thank those whose open-source software development efforts have made this en-

deavor all the more affordable and pleasurable. The following is a list of various free computer
software used to make this book, and the respective programmers:

• GNU/Linux Operating System – Linus Torvalds, Richard Stallman, and a host of others too
numerous to mention.

• Vim text editor – Bram Moolenaar and others.

• Xcircuit drafting program – Tim Edwards.

• SPICE circuit simulation program – too many contributors to mention.

• Nutmeg post-processor program for SPICE – Wayne Christopher.

• TEX text processing system – Donald Knuth and others.

• Texinfo document formatting system – Free Software Foundation.

• LATEX document formatting system – Leslie Lamport and others.
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• Gimp image manipulation program – too many contributors to mention.

• Winscope signal analysis software – Dr. Constantin Zeldovich. (Free for personal and academic
use.)

Appreciation is also extended to Robert L. Boylestad, whose first edition of Introductory Circuit
Analysis taught me more about electric circuits than any other book. Other important texts in
my electronics studies include the 1939 edition of The ”Radio” Handbook, Bernard Grob’s second
edition of Introduction to Electronics I, and Forrest Mims’ original Engineer’s Notebook.
Thanks to the staff of the Bellingham Antique Radio Museum, who were generous enough to let

me terrorize their establishment with my camera and flash unit. Similar thanks to Jim Swartos and
KARI radio in Blaine, Washington for a very informative tour of their expanded (50 kW) facilities
as well as their vintage transmitter equipment.
I wish to specifically thank Jeffrey Elkner and all those at Yorktown High School for being willing

to host my book as part of their Open Book Project, and to make the first effort in contributing to its
form and content. Thanks also to David Sweet (website: (http://www.andamooka.org)) and Ben
Crowell (website: (http://www.lightandmatter.com)) for providing encouragement, constructive
criticism, and a wider audience for the online version of this book.
Thanks to Michael Stutz for drafting his Design Science License, and to Richard Stallman for

pioneering the concept of copyleft.
Last but certainly not least, many thanks to my parents and those teachers of mine who saw in

me a desire to learn about electricity, and who kindled that flame into a passion for discovery and
intellectual adventure. I honor you by helping others as you have helped me.

Tony Kuphaldt, April 2002

”A candle loses nothing of its light when lighting another”
Kahlil Gibran
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CONTRIBUTOR LIST

A-2.1 How to contribute to this book

As a copylefted work, this book is open to revision and expansion by any interested parties. The
only ”catch” is that credit must be given where credit is due. This is a copyrighted work: it is not
in the public domain!
If you wish to cite portions of this book in a work of your own, you must follow the same

guidelines as for any other copyrighted work. Here is a sample from the Design Science License:

The Work is copyright the Author. All rights to the Work are reserved

by the Author, except as specifically described below. This License

describes the terms and conditions under which the Author permits you

to copy, distribute and modify copies of the Work.

In addition, you may refer to the Work, talk about it, and (as

dictated by "fair use") quote from it, just as you would any

copyrighted material under copyright law.

Your right to operate, perform, read or otherwise interpret and/or

execute the Work is unrestricted; however, you do so at your own risk,

because the Work comes WITHOUT ANY WARRANTY -- see Section 7 ("NO

WARRANTY") below.

If you wish to modify this book in any way, you must document the nature of those modifications
in the ”Credits” section along with your name, and ideally, information concerning how you may be
contacted. Again, the Design Science License:

Permission is granted to modify or sample from a copy of the Work,

producing a derivative work, and to distribute the derivative work

under the terms described in the section for distribution above,

provided that the following terms are met:
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(a) The new, derivative work is published under the terms of this

License.

(b) The derivative work is given a new name, so that its name or

title can not be confused with the Work, or with a version of

the Work, in any way.

(c) Appropriate authorship credit is given: for the differences

between the Work and the new derivative work, authorship is

attributed to you, while the material sampled or used from

the Work remains attributed to the original Author; appropriate

notice must be included with the new work indicating the nature

and the dates of any modifications of the Work made by you.

Given the complexities and security issues surrounding the maintenance of files comprising this
book, it is recommended that you submit any revisions or expansions to the original author (Tony R.
Kuphaldt). You are, of course, welcome to modify this book directly by editing your own personal
copy, but we would all stand to benefit from your contributions if your ideas were incorporated into
the online ”master copy” where all the world can see it.

A-2.2 Credits

All entries arranged in alphabetical order of surname. Major contributions are listed by individual
name with some detail on the nature of the contribution(s), date, contact info, etc. Minor contri-
butions (typo corrections, etc.) are listed by name only for reasons of brevity. Please understand
that when I classify a contribution as ”minor,” it is in no way inferior to the effort or value of a
”major” contribution, just smaller in the sense of less text changed. Any and all contributions are
gratefully accepted. I am indebted to all those who have given freely of their own knowledge, time,
and resources to make this a better book!

A-2.2.1 Tony R. Kuphaldt

• Date(s) of contribution(s): 1996 to present

• Nature of contribution: Original author.

• Contact at: liec0@lycos.com

A-2.2.2 Jason Starck

• Date(s) of contribution(s): May-June 2000

• Nature of contribution: HTML formatting, some error corrections.

• Contact at: jstarck@yhslug.tux.org
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A-2.2.3 Dennis Crunkilton

• Date(s) of contribution(s): April 2005 to present

• Nature of contribution: Spice-Nutmeg plots, gnuplot Fourier plots chapters 6, 7, 8, 9, 10;
04/2005.

• Nature of contribution: Broke ”Special transformers and applications” section into sub-
sections. Scott-T and LVDT subsections inserted, added to Air core transformers subsections
chapter 9; 09/2005.

• Nature of contribution: Chapter 13: AC motors; 01/2006.

• Nature of contribution: Mini table of contents, all chapters except appedicies; html, latex,
ps, pdf; See Devel/tutorial.html; 01/2006.

• Contact at: dcrunkilton(at)att(dot)net

A-2.2.4 Bill Stoddard, bill@billsclockworks.com

• Date(s) of contribution(s): June 2005

• Nature of contribution: Granted permission to reprint synchronous westclox motor jpg’s,
Reprinted by permission of Westclox History at www.clockHistory.com, chapter 13

• Contact at: my email@provider.net

A-2.2.5 Your name here

• Date(s) of contribution(s): Month and year of contribution

• Nature of contribution: Insert text here, describing how you contributed to the book.

• Contact at: my email@provider.net

A-2.2.6 Typo corrections and other ”minor” contributions

• line-allaboutcircuits.com (June 2005) Typographical error correction in Volumes 1,2,3,5,
various chapters, (s/visa-versa/vice versa/).

• The students of Bellingham Technical College’s Instrumentation program.

• Bart Anderson (January 2004) Corrected conceptual and safety errors regarding Tesla coils.

• Ed Beroset (May 2002) Suggested better ways to illustrate the meaning of the prefix ”poly-”
in chapter 10.

• Duane Damiano (February 2003) Pointed out magnetic polarity error in DC generator illus-
tration.

• Jeff DeFreitas (March 2006)Improve appearance: replace “/” and ”/” Chapters: 11, A1, A2.
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• Sean Donner (January 2005) Typographical error correction in ”Series resistor-inductor cir-
cuits” section, Chapter 3: REACTANCE AND IMPEDANCE – INDUCTIVE ”Voltage and
current” section, (If we were restrict ourselves /If we were to restrict ourselves), (Across voltage
across the resistor/ Voltage across the resistor); More on the ”skin effect” section, (corrected
for the skin effect/corrected for the skin effect).

(January 2005),Typographical error correction in ”AC capacitor circuits” section, Chapter
4: REACTANCE AND IMPEDANCE – CAPACITIVE (calculate the phase angle of the
inductor’s reactive opposition / calculate the phase angle of the capacitor’s reactive opposition).
¡/para/¿

(January 2005),Typographical error correction in ” Parallel R, L, and C” section, Chapter
5: REACTANCE AND IMPEDANCE – R, L, AND C, (02083.eps, change Vic to Vir above
resistor in image) ¡/para/¿

(January 2005),Typographical error correction in ”Other waveshapes” section, Chapter 7:
MIXED-FREQUENCY AC SIGNALS, (which only allow passage current in one direction./
which only allow the passage of current in one direction.) ¡/para/¿

(January 2005),Typographical error correction in ”What is a filter?” section, Chapter 8: FIL-
TERS, (from others in within mixed-frequency signals. / from others within mixed-frequency
signals.), (dropping most of the voltage gets across series resistor / dropping most of the voltage
across series resistor) ¡para/¿

• Harvey Lew (February 2003) Typo correction in Basic AC chapter: word ”circuit” should
have been ”circle”.

• Richard Cooper (December 2005) Clarification of 02206.eps, 02209.eps 3-phase transformer
images. Correction of 02210.eps open-delta image.

• Jim Palmer (May 2002) Typo correction on complex number math.

• Don Stalkowski (June 2002) Technical help with PostScript-to-PDF file format conversion.

• John Symonds (March 2002) Suggested an improved explanation of the unit ”Hertz.”

• Joseph Teichman (June 2002) Suggestion and technical help regarding use of PNG images
instead of JPEG.

• Mark D. Zarella (April 2002) Suggested an improved explanation for the ”average” value of
a waveform.
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DESIGN SCIENCE LICENSE

Copyright c© 1999-2000 Michael Stutz stutz@dsl.org
Verbatim copying of this document is permitted, in any medium.

A-3.1 0. Preamble

Copyright law gives certain exclusive rights to the author of a work, including the rights to copy,
modify and distribute the work (the ”reproductive,” ”adaptative,” and ”distribution” rights).
The idea of ”copyleft” is to willfully revoke the exclusivity of those rights under certain terms

and conditions, so that anyone can copy and distribute the work or properly attributed derivative
works, while all copies remain under the same terms and conditions as the original.
The intent of this license is to be a general ”copyleft” that can be applied to any kind of work

that has protection under copyright. This license states those certain conditions under which a work
published under its terms may be copied, distributed, and modified.
Whereas ”design science” is a strategy for the development of artifacts as a way to reform the

environment (not people) and subsequently improve the universal standard of living, this Design
Science License was written and deployed as a strategy for promoting the progress of science and
art through reform of the environment.

A-3.2 1. Definitions

”License” shall mean this Design Science License. The License applies to any work which contains
a notice placed by the work’s copyright holder stating that it is published under the terms of this
Design Science License.
”Work” shall mean such an aforementioned work. The License also applies to the output of

the Work, only if said output constitutes a ”derivative work” of the licensed Work as defined by
copyright law.
”Object Form” shall mean an executable or performable form of the Work, being an embodiment

of the Work in some tangible medium.
”Source Data” shall mean the origin of the Object Form, being the entire, machine-readable,

preferred form of the Work for copying and for human modification (usually the language, encoding
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or format in which composed or recorded by the Author); plus any accompanying files, scripts or
other data necessary for installation, configuration or compilation of the Work.

(Examples of ”Source Data” include, but are not limited to, the following: if the Work is an
image file composed and edited in ’PNG’ format, then the original PNG source file is the Source
Data; if the Work is an MPEG 1.0 layer 3 digital audio recording made from a ’WAV’ format audio
file recording of an analog source, then the original WAV file is the Source Data; if the Work was
composed as an unformatted plaintext file, then that file is the the Source Data; if the Work was
composed in LaTeX, the LaTeX file(s) and any image files and/or custom macros necessary for
compilation constitute the Source Data.)

”Author” shall mean the copyright holder(s) of the Work.

The individual licensees are referred to as ”you.”

A-3.3 2. Rights and copyright

The Work is copyright the Author. All rights to the Work are reserved by the Author, except
as specifically described below. This License describes the terms and conditions under which the
Author permits you to copy, distribute and modify copies of the Work.

In addition, you may refer to the Work, talk about it, and (as dictated by ”fair use”) quote from
it, just as you would any copyrighted material under copyright law.

Your right to operate, perform, read or otherwise interpret and/or execute the Work is unre-
stricted; however, you do so at your own risk, because the Work comes WITHOUT ANY WAR-
RANTY – see Section 7 (”NO WARRANTY”) below.

A-3.4 3. Copying and distribution

Permission is granted to distribute, publish or otherwise present verbatim copies of the entire Source
Data of the Work, in any medium, provided that full copyright notice and disclaimer of warranty,
where applicable, is conspicuously published on all copies, and a copy of this License is distributed
along with the Work.

Permission is granted to distribute, publish or otherwise present copies of the Object Form of
the Work, in any medium, under the terms for distribution of Source Data above and also provided
that one of the following additional conditions are met:

(a) The Source Data is included in the same distribution, distributed under the terms of this
License; or

(b) A written offer is included with the distribution, valid for at least three years or for as long
as the distribution is in print (whichever is longer), with a publicly-accessible address (such as a
URL on the Internet) where, for a charge not greater than transportation and media costs, anyone
may receive a copy of the Source Data of the Work distributed according to the section above; or

(c) A third party’s written offer for obtaining the Source Data at no cost, as described in para-
graph (b) above, is included with the distribution. This option is valid only if you are a non-
commercial party, and only if you received the Object Form of the Work along with such an offer.

You may copy and distribute the Work either gratis or for a fee, and if desired, you may offer
warranty protection for the Work.
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The aggregation of the Work with other works which are not based on the Work – such as but
not limited to inclusion in a publication, broadcast, compilation, or other media – does not bring
the other works in the scope of the License; nor does such aggregation void the terms of the License
for the Work.

A-3.5 4. Modification

Permission is granted to modify or sample from a copy of the Work, producing a derivative work,
and to distribute the derivative work under the terms described in the section for distribution above,
provided that the following terms are met:

(a) The new, derivative work is published under the terms of this License.

(b) The derivative work is given a new name, so that its name or title can not be confused with
the Work, or with a version of the Work, in any way.

(c) Appropriate authorship credit is given: for the differences between the Work and the new
derivative work, authorship is attributed to you, while the material sampled or used from the Work
remains attributed to the original Author; appropriate notice must be included with the new work
indicating the nature and the dates of any modifications of the Work made by you.

A-3.6 5. No restrictions

You may not impose any further restrictions on the Work or any of its derivative works beyond those
restrictions described in this License.

A-3.7 6. Acceptance

Copying, distributing or modifying the Work (including but not limited to sampling from the Work
in a new work) indicates acceptance of these terms. If you do not follow the terms of this License,
any rights granted to you by the License are null and void. The copying, distribution or modification
of the Work outside of the terms described in this License is expressly prohibited by law.

If for any reason, conditions are imposed on you that forbid you to fulfill the conditions of this
License, you may not copy, distribute or modify the Work at all.

If any part of this License is found to be in conflict with the law, that part shall be interpreted
in its broadest meaning consistent with the law, and no other parts of the License shall be affected.

A-3.8 7. No warranty

THE WORK IS PROVIDED ”AS IS,” AND COMES WITH ABSOLUTELY NO WARRANTY,
EXPRESS OR IMPLIED, TO THE EXTENT PERMITTED BY APPLICABLE LAW, INCLUD-
ING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.
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A-3.9 8. Disclaimer of liability

IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LI-
ABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS WORK, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

END OF TERMS AND CONDITIONS

[$Id: dsl.txt,v 1.25 2000/03/14 13:14:14 m Exp m $]
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λ, symbol for wavelength, 470
ω, symbol for angular velocity, 59, 81, 317
400 Hz AC power, aircraft, 259

Absolute value, vector, 36
AC, 1
AC circuit analysis, 112
AC motor, 390
Admittance, 112
Alternating current, 1
Alternator, 2, 281
alternator, induction, 429
Ammeter, 349
Amp-turn, unit, 211
Amplifier, 252
Amplifier, magnetic, 254
Amplitude, 13
Amplitude, average, 14
Amplitude, peak, 13
Amplitude, peak-to-peak, 13
Amplitude, RMS, 16
Amplitude, vector, 31
Analysis, AC circuit, 112
Analysis, Fourier, 151
Analysis, frequency domain, 154
Analysis, parallel, 100
Analysis, series, 95
Analysis, series-parallel, 103, 112
Analysis, time domain, 154
Analyzer, spectrum, 154
Angle, vector, 36
Angular velocity, 59, 81, 317
Antenna, 23, 74
Antinode, 476
Antiresonance, 134
Antiresonance, mechanical, 137
Arithmetic, with complex numbers, 41

Artifact, measurement, 163
Atomic clock, 360
Attenuation, 193
Autotransformer, 236
Average amplitude, AC, 14, 354

B, symbol for magnetic flux density, 112
B, symbol for susceptance, 112
Band-elimination filter, 194
Band-pass filter, 190
Band-reject filter, 194
Band-stop filter, 194
bifilar winding, stepper motor, 410, 413
Bode plot, 123, 154, 180
Boosting, AC voltage sources, 275
Boosting, transformer connection, 237
Bridge circuit, 369, 384
Bridge, Maxwell-Wien, 374
Bridge, symmetrical, 372
Bridge, Wheatstone, 359
Bridge, Wien, 373
Brush, generator, 3
brushless DC motor, 398, 416
Bucking, AC voltage sources, 275
Bucking, transformer connection, 237

C, symbol for capacitance, 79
Cable, coaxial, 453
Cable, shielded, 140
Cable, twisted pair, 140
Calculus, 57, 79
can stack, stepper motor, 411
Capacitance, 79
Capacitive coupling, 139, 177
Capacitive reactance, 78, 80
Capacitor, 78
Capacitor, decoupling, 185

515
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Capacitor, multiplier, 352
Capacitor, variable, 382
Cathode Ray Tube, 353
Celsius, unit, 9
Centigrade, unit, 9
Characteristic impedance, 460
Chord, music, 142
Class, transformer heat rating, 267
Clock, atomic, 360
Coaxial cable, 453
Coil, primary, 213
Coil, secondary, 213
Coil, Tesla, 250
Color (musical), 143
Common-mode voltage, 229
Complex number, 22, 27, 337
Complex number arithmetic, 41
Conductance, 111
Conservation of Energy, Law of, 225
control transformer, synchro, 445
Core loss, 135
Counter, 358
Coupling, signal, 139, 177
CPS, unit, 9
Crest, 13
Crest factor, 17
Crossover network, 179
CRT, 353
Crystal, 359
CT, 248, 355
Current transformer, 248, 355
Current, line, 294
Current, phase, 294
Cutoff frequency, 183, 189
Cycle, 8

D’Arsonval meter movement, 17, 350
DC, 1
DC equivalent, AC measurement, 16
Decoupling capacitor, 185
Degree vs. radian, 59
Delta configuration, 293
Derivative, calculus, 262
Detector, null, 369
Dielectric constant, 461
Dielectric heating, 90

Dielectric loss—hyperpage, 90
Diode, 156, 157, 350
Dipole antenna, 24
Direct current, 1
Distortion, inductor current, 212
Domain, frequency, 154
Domain, time, 154
Dot convention, transformer, 232
Duty cycle, 386

e, symbol for instantaneous voltage, 56, 57,
78, 79

E, symbol for voltage, 62, 83
ECG, 9
Eddy current, 71
eddy current, 392, 421
eddy current clutch, 441
Eddy current loss, 135, 258
eddy current speedometer, 422
Effective resistance, 72
EKG, 9
Electric field, 23, 115
Electrocardiograph, 9
Electrolytic capacitor, 91
Electromagnetic induction, 2
Electromagnetic wave, 23
Electrostatic meter movement, 353
encoder, magnetic, 399
encoder, optical, 399
Energy, kinetic, 117
Energy, potential, 117
Equalizer, 179
Equalizer, graphic, 153
Equivalent, AC to DC, 16
Exciting current, 212, 215

f, symbol for frequency, 59, 80
Factor, crest, 17
Factor, form, 17
Factor, power, 333
Farad, 79
Fast Fourier Transform, 153, 369
Ferrite, 72
Ferroresonant transformer, 240
FFT, 153, 369
Field, electric, 23, 115
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Field, magnetic, 23, 115
Figure, Lissajous, 361
Filter, 128, 179
Filter selectivity—hyperpage, 197
Filter, band-elimination, 194
Filter, band-pass, 190
Filter, band-reject, 194
Filter, band-stop, 194
Filter, high-pass, 186
Filter, low-pass, 180
Filter, notch, 194
Filter, resonant, 196
Form factor, 17
Fourier analysis, 151
Fourier Transform, 151
Frequency, 9, 357
Frequency meter, 357
Frequency, cutoff, 183, 189
Frequency, fundamental, 142, 477
Full-wave rectification, 160
Function, sine, 7
Fundamental frequency, 142, 477

G, symbol for conductance, 111
Generator, 3, 281
generator, induction, 429
Graphic equalizer, 153
Ground, 32

Half-wave rectification, 157
Hall effect, 365
Harmonic, 142, 305, 477
Harmonic sequence, 330
Harmonic, even vs. odd, 172, 305
Harmonics and waveform symmetry, 172, 305
Harmonics, triplen, 317, 329
Headphones, as sensitive null detector, 370
Heating, dielectric, 90
Heating, inductive, 71
Henry, 57
Hertz, unit, 9
High-pass filter, 186
Hot conductor, 274
hybrid stepper motor, 413
Hyperbolic function, trigonometry, 42
Hysteresis, 260

i, imaginary operator, 37
I, symbol for current, 62, 83
i, symbol for instantaneous current, 56, 78, 79
i, symbol for instantaneous voltage, 57
Imaginary number, 38
Impedance, 27, 61, 83, 95, 112
Impedance matching, 243, 244
Impedance, characteristic, 460
Incident wave, 463
Inductance, 57
Inductance, leakage, 219, 221, 261
induction alternator, 429
induction motor efficiency, 428
induction motor power factor corrector, 429,

438
induction motor slip, 425
induction motor speed, 425, 430
induction motor starting, 430
induction motor synchronous speed, 425
induction motor torque, 426
induction motor, 2-phase, 419
induction motor, linear, 432
induction motor, NEMA designs, 427
induction motor, poly-phase, 419
induction motor, power factor, 428
induction motor, repulsion start, 450
induction motor, single phase, 434
induction motor, speed control, 431, 434
induction motor, wound rotor, 433
Induction, electromagnetic, 2
Induction, mutual, 4
Inductive coupling, 139, 177
Inductive heating, 71
Inductive reactance, 56, 58
Inductor, 56
Inrush current, transformer, 264
Instantaneous value, 56, 78
Integral, calculus, 262
Iron-vane meter movement, 17, 353
Isolation transformer, 229
Isolation, transformer, 228

j, imaginary operator, 37
Joule, 366
Joule’s Law, 48
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KCL, 20, 96
Keyboard, piano, 11
Kirchhoff’s Current Law, 20, 96
Kirchhoff’s Voltage Law, 20, 48, 96
Klystron tube, 500
KVL, 20, 48, 96

L, symbol for inductance, 57
Lagging phase shift, 22, 57, 79, 343
Laminated iron core, 259
Leading phase shift, 22, 57, 79, 343
Leakage inductance, 219, 221, 261
Lenz’s Law, 56, 422
Line, polyphase system, 294
linear induction motor, 432
linear variable differential transformer, 256
Lissajous figure, 361
Litz wire, 72
Load, nonlinear, 367
Loop antenna, 24
Low-pass filter, 180
LVDT, 256, 378

M, symbol for mutual inductance, 213
Magnetic amplifier, 254
magnetic encoder, 399
Magnetic field, 23, 115
Magnetic field, rotating, 290
Magnetizing current, 212
Magnetomotive force, 211
Magnetostriction, 267
Magnitude, 13
Maximum Power Transfer Theorem, 243
Maxwell-Wien bridge circuit, 374
Meter movement, 349
Meter, power factor, 344
Mho, unit, 111
Microwaves, 499
MMF, 211
Modulus. vector, 36
Motor, 287
motor, AC, 390
motor, AC commutator, 448
motor, AC series, 449
motor, AC servo, 440
motor, AC, compensated series motor, 449

motor, AC, servo, 446
motor, AC, synchronous, 393
motor, AC, universal, 450
motor, capacitor-run, 437
motor, capacitor-start, 436
motor, DC, brushless, 398, 416
motor, hysteresis, 440
Motor, induction, 289
motor, induction, efficiency, 428
motor, induction, NEMA designs, 427
motor, induction, power factor, 428
motor, induction, slip, 425
motor, induction, speed, 425, 430
motor, induction, speed control, 431, 434
motor, induction, starting, 430
motor, induction, synchronous speed, 425
motor, induction, torque, 426
motor, induction, wound rotor, 433
motor, permanent-split capacitor, 435
motor, power factor corrector, 429, 438
motor, reluctance, 401
motor, repulsion, 450
motor, repulsion start induction, 450
motor, shaded pole, 439
motor, split-phase, 437
motor, stepper, hybrid, 413
motor, stepper, permanent magnet, 409
motor, stepper, variable reluctance, 401, 406
motor, switched reluctance, 401
Motor, synchronous, 289
motor, synchronous, 393
motor, variable reluctance, 401
Motor/generator set, 225
Multiplier, 351
Mutual inductance, 213
Mutual induction, 4

Natural impedance, 461
Negative sequence, 330
NEMA induction motor designs, 427
Network, crossover—hyperpage, 179
Neutral conductor, 274
Node, vs. antinode, 476
Noise, transformer, 267
Nola power factor corrector, 429, 438
Non-sinusoidal, 12
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Nonlinear components, 157, 305, 367
Nonsinusoidal, 139
Norton’s Theorem, 243
Notation, polar, 36
Notation, rectangular, 36
Notch filter, 194
Null detector, 369
Null detector, AC bridge, 370
Null meter, 369
Number, complex, 22, 27, 337
Number, imaginary, 38
Number, real, 38
Number, scalar, 27, 337

Octave, 11
Ohm’s Law, 20, 48, 83, 96
Ohm’s Law , 62
Ohm, unit, 112
optical encoder, 399
Oscillation, 117
Oscillator, 127
Oscilloscope, 9, 361
Overtone, 143, 369, 477

p, symbol for instantaneous power, 56, 78
P, symbol for true power, 337
Parallel analysis, 100
Parallel circuit rules, 96
Parallel LC resonance, 121
PCB, 186
Peak, 13
Peak-to-peak, 13
Peaking transformer, 261
Pendulum, 115
Period, 9
Permanent magnet moving coil, 349
permanent magnet stepper motor, 409
Permittivity, relative, 461
Phase, 21
Phase rotation, 283
Phase sequence, 284
Phase shift, 21
Phase shift, vector, 31
Phase, transformer, 230
Piano, 11
Piezoelectricity, 359

Pitch (musical), 10
PMMC, 349
Polar notation, 36
Polarity, AC, 43, 53, 274
Pole, alternator, 282
poly-phase induction motor, 419
Polyphase, 277, 280
Positive sequence, 330
Potential transformer, 247, 355
Potentiometer, 378
Powdered iron core, 260
Power factor, 333
Power factor meter, 344
power factor, induction motor, 428
Power quality, 367
Power quality meter, 368
Power triangle, 339
Power, apparent, 337
Power, negative, 58
Power, reactive, 337
Power, true, 337
Primary coil, 213
Primary transformer coil, 5
Principal mode, 498
Printed circuit board, 186
PT, 247, 355
Pythagorean Theorem, 40

Q, quality factor, 360
Q, symbol for quality factor, 72
Q, symbol for reactive power, 337
Quality factor, 72
Quartz crystal, 359

R, symbol for resistance, 62, 83, 111
Radian, angular measurement, 59, 81
Radio, 23, 74
Radio wave, 23
Ratio, transformer, 224
Reactance, 112
Reactance, capacitive, 78, 80
Reactance, inductive, 56, 58
Real number, 38
Rectangular notation, 36
Rectification, full-wave, 160
Rectification, half-wave, 157
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Rectifier, 350
Rectifier, silicon-controlled, 156
Reflected wave, 463
Reflectometer, time-domain, 464
Relative permittivity, 461
Reluctance, 211
reluctance motor, 401
repulsion motor, 450
repulsion start induction motor, 450
Resistance, 111
Resistance, AC, 73
Resistance, DC, 73
Resistance, effective, 72
Resistor, multiplier, 351, 355
Resistor, shunt, 355
resolver, 399
resolver, synchro, 447
Resonance, 119, 477
Resonance, mechanical, 137, 357
Resonance, parallel, 119
Resonance, parallel LC, 121
Resonance, series LC, 124
Resonance, series-parallel, 128
Resonance, transformer and inductor, 260
Resonant filter, 196
Resonant frequency formula, 119
Resonant frequency meter, 358
Resonate, 118
Resultant vector, 52
RF: Radio Frequency, 74, 454
ripple torque, 398
RMS, 16, 353
Root-Mean-Square, 16, 353
Rotating magnetic field, 290
Rules, parallel circuits, 96
Rules, series circuits, 96
RVDT, 379

S, symbol for apparent power, 337
Saturable reactor, 252
Sawtooth wave, 12
Sawtooth wave , 171
Scalar number, 27, 337
Scott-T transformer, 254, 448
SCR, 156
Secondary coil, 213

Secondary transformer coil, 5
Selectivity, 197
Self-inductance, 212
Selsyn, 380
selsyn, 441
selsyn, differential transmitter, 443
selsyn, receiver, 442
selsyn, transmitter, 442
Sequence, harmonic, 330
Sequence, phase, 284
Series analysis, 95
Series circuit rules, 96
Series LC resonance, 124
Series-parallel analysis, 103, 112
servo motor, AC, 446
Shield grounding, 140
Shielded cable, 140
SHM, 118
Siemens, unit, 111
Silicon-controlled rectifier, 156
Simple Harmonic Motion, 118
Sine function, 7
Sine wave, 7
Single-phase, 271, 276
Sinusoidal, 12, 139
Skin effect, 71, 73, 135, 250, 489, 499
Sound waves, 10
Spectrum analyzer, 154, 368
Spectrum, frequency, 368
speed control, induction motor, 431
speed control,induction motor, 434
speedometer, eddy current, 422
SPICE, 50
SPICE simulation, 121
Split-phase, 275
Square wave, 12, 144
squirrel cage rotor, 421
Standard, measurement, 359
Standing wave ratio, 488
Standing waves, 472
Star configuration, 282, 293
stepper motor, bifilar winding, 410, 413
stepper motor, can stack, 411
stepper motor, hybrid, 413
stepper motor, permanent magnet, 409
stepper motor, variable reluctance, 401, 406
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Superposition Theorem, 175, 279
Surge impedance, 463
Susceptance, 112
Switch, tap, 236
switched reluctance motor, 401
SWR, 488
Synchro, 380
synchro (selsyn), 441
synchro, control transformer, 445
synchro, differential transmitter, 443
synchro, receiver, 442
synchro, resolver, 447
synchro, transmitter, 442
synchronous condenser, 400
synchronous motor, 393
synchronous speed, induction motor, 425

Tank circuit, 118, 240
Tap switch, 236
TE mode, 499
TEM mode, 498
Tesla Coil, 250
Tesla, Nikola, 390, 419
Theorem, Maximum Power Transfer, 243
Theorem, Norton’s, 243
Theorem, Pythagorean, 40
Theorem, Superposition, 175, 279
Theorem, Thevenin’s, 243
Thevenin’s Theorem, 243
Three-phase, 277, 280
Three-wire DC system, 277
Timbre, 143
Time-domain reflectometer, 464
TM mode, 499
Transducer, 378
Transductor, 254
Transform, Fourier, 151
Transformer, 4, 215
Transformer coils, primary and secondary, 5
Transformer core, laminated, 259
Transformer core, powdered iron, 259
Transformer inrush current, 264
Transformer isolation, 228
Transformer ratio, 224
Transformer, ferroresonant, 240
Transformer, peaking, 261

transformer, Scott-T, 254, 448
Transformer, step-down, 224
Transformer, step-up, 224
Transformer, variable, 235, 378
Transistor, 156
Transmission line, 454
Triangle wave, 12
Triangle wave , 170
Triangle, power, 339
Triplen harmonics, 317, 329
True-RMS meter, 17
Tube, vacuum, 234
Tuner circuit, radio, 128, 199
Twin-T circuit, differential capacitance, 384
Twisted pair cable, 140

Unit, amp-turn, 211
Unit, Celsius, 9
Unit, Centigrade, 9
Unit, CPS, 9
Unit, farad, 79
Unit, henry, 57
Unit, Hertz, 9
Unit, joule, 366
Unit, mho, 111
Unit, ohm, 112
Unit, siemens, 111
Unit, volt-amp, 258, 337
Unit, volt-amp-reactive, 337
Unit, watt, 337
universal AC motor, 450

v, symbol for instantaneous voltage, 57, 79
VA, unit, 337
Vacuum tube, 234
Value, instantaneous, 56, 78
VAR, unit, 337
Variable capacitor, 382
variable reluctance motor, 401
variable reluctance stepper motor, 401, 406
Variable transformer, 235, 378
Variac, 238
Vector, 28, 337
Vector amplitude, 31
Vector angle, 36
Vector length, 36
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Vector magnitude, 36
Vector modulus, 36
Vector phase shift, 31
Vector sum, 52
Vector, absolute value, 36
Velocity factor, transmission line, 461
Vibrating reed frequency meter, 357
Volt-amp, 258
Volt-amp, unit, 337
Volt-amp-reactive, unit, 337
Voltage polarity, AC, 43, 53, 274
Voltage regulation, 238
Voltage, common-mode, 229
Voltage, line, 294
Voltage, phase, 294
Voltmeter, 349

Wagner earth, 375
Watt, unit, 337
Wave, electromagnetic, 23
Wave, sawtooth, 12, 171
Wave, sine, 7
Wave, square, 12, 144
Wave, triangle, 12, 170
Waveform symmetry and harmonics, 172, 305
Waveform, nonsinusoidal, 139
Waveform, sinusoidal, 139
Waveguide, 497
Wavelength, 469
Weston meter movement, 17
Wheatstone bridge, 359
Wien bridge circuit, 373
Winding, primary, 217
Winding, secondary, 217
Wire, Litz , 72
wound rotor induction motor, 433

X, symbol for reactance, 58, 62, 80, 83, 112
Xtal, 359

Y configuration, 282, 293
Y, symbol for admittance, 112

Z, symbol for impedance, 61, 62, 83, 112
Zero sequence, 330
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