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Preface

The concepts and theory of signals and systems are needed in almost all electrical engineering fields 
and in many other engineering and scientific disciplines as well. They form the foundation for further 
studies in areas such as communication, signal processing, and control systems.

This book is intended to be used as a supplement to all textbooks on signals and systems or for self-
study. It may also be used as a textbook in its own right. Each topic is introduced in a chapter with 
numerous solved problems. The solved problems constitute an integral part of the text.

Chapter 1 introduces the mathematical description and representation of both continuous-time and 
discrete-time signals and systems. Chapter 2 develops the fundamental input-output relationship for 
linear time-invariant (LTI) systems and explains the unit impulse response of the system and 
convolution operation. Chapters 3 and 4 explore the transform techniques for the analysis of LTI 
systems. The Laplace transform and its application to continuous-time LTI systems are considered in 
Chapter 3. Chapter 4 deals with the z-transform and its application to discrete-time LTI systems. The 
Fourier analysis of signals and systems is treated in Chapters 5 and 6. Chapter 5 considers the Fourier 
analysis of continuous-time signals and systems, while Chapter 6 deals with discrete-time signals and 
systems. The final chapter, Chapter 7, presents the state space or state variable concept and analysis 
for both discrete-time and continuous-time systems. In addition, background material on matrix 
analysis needed for Chapter 7 is included in Appendix A.

I am grateful to Professor Gordon Silverman of Manhattan College for his assistance, comments, and 
careful review of the manuscript. I also wish to thank the staff of the McGraw-Hill Schaum Series, 
especially John Aliano for his helpful comments and suggestions and Maureen Walker for her great 
care in preparing this book. Last, I am indebted to my wife, Daisy, whose understanding and constant 
support were necessary factors in the completion of this work.

HWEI P. HSU
MONTVILLE, NEW JERSEY
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To the Student

To understand the material in this text, the reader is assumed to have a basic knowledge of calculus, 
along with some knowledge of differential equations and the first circuit course in electrical 
engineering.

This text covers both continuous-time and discrete-time signals and systems. If the course you are 
taking covers only continuous-time signals and systems, you may study parts of Chapters 1 and 2 
covering the continuous-time case, Chapters 3 and 5, and the second part of Chapter 7. If the course 
you are taking covers only discrete-time signals and systems, you may study parts of Chapters 1 and 2 
covering the discrete-time case, Chapters 4 and 6, and the first part of Chapter 7.

To really master a subject, a continuous interplay between skills and knowledge must take place. By 
studying and reviewing many solved problems and seeing how each problem is approached and how it 
is solved, you can learn the skills of solving problems easily and increase your store of necessary 
knowledge. Then, to test and reinforce your learned skills, it is imperative that you work out the 
supplementary problems (hints and answers are provided). I would like to emphasize that there is no 
short cut to learning except by "doing."
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Chapter 1 

Signals and Systems 

1.1 INTRODUCTION 

The concept and theory of signals and systems are needed in almost all electrical 
engineering fields and in many other engineering and scientific disciplines as well. In this 
chapter we introduce the mathematical description and representation of signals and 
systems and their classifications. We also define several important basic signals essential to  
our studies. 

1.2 SIGNALS AND CLASSIFICATION OF SIGNALS 

A signal is a function representing a physical quantity or  variable, and typically it 
contains information about the behavior or  nature of the phenomenon. For instance, in a 
RC circuit the signal may represent the voltage across the capacitor or  the current flowing 
in the resistor. Mathematically, a signal is represented as a function of an independent 
variable t. Usually t represents time. Thus, a signal is denoted by x ( t ) .  

A. Continuous-Time and Discrete-Time Signals: 

A signal x( t )  is a continuous-time signal if t is a continuous variable. If t is a discrete 
variable, that is, x ( t )  is defined at discrete times, then x ( t )  is a discrete-time signal. Since a 
discrete-time signal is defined at discrete times, a discrete-time signal is often identified as 
a sequence of numbers, denoted by {x,) o r  x[n], where n = integer. Illustrations of a 
continuous-time signal x ( t )  and of a discrete-time signal x[n] are shown in Fig. 1-1. 

(4 (b) 

Fig. 1-1 Graphical representation of (a) continuous-time and ( 6 )  discrete-time signals. 

A discrete-time signal x[n] may represent a phenomenon for which the independent 
variable is inherently discrete. For instance, the daily closing stock market average is by its 
nature a signal that evolves at discrete points in time (that is, a t  the close of each day). On 
the other hand a discrete-time signal x[n] may be obtained by sampling a continuous-time 

1 



SIGNALS AND SYSTEMS [CHAP. 1 

signal x(t)  such as 

x(to), +,)' . 7 ~ ( t , ) ,  . . * 
or in a shorter form as 

x[O], x [ l ] ,  ..., x[n ] ,  . .. 
or xo, x ~ , .  . . , x,, . . . 
where we understand that 

x, = x [ n ]  =x(t,)  

and x,'s are called samples and the time interval between them is called the sampling 
interval. When the sampling intervals are equal (uniform sampling), then 

x,, =x [n ]  =x(nT,) 

where the constant T, is the sampling interval. 
A discrete-time signal x[n] can be defined in two ways: 

1. We can specify a rule for calculating the nth value of the sequence. For example, 

2. We can also explicitly list the values of the sequence. For example, the sequence 
shown in Fig. l-l(b) can be written as 

(x,) = (. . . ,  0,0,1,2,2,1,0,1,0,2,0,0 ,... ) 
T 

We use the arrow to denote the n = 0 term. We shall use the convention that if no 
arrow is indicated, then the first term corresponds to n = 0 and all the values of the 
sequence are zero for n < 0. 

(c,) = a(a,) + C, = aa,  a = constant 

B. Analog and Digital Signals: 

If a continuous-time signal x(l)  can take on any value in the continuous interval (a,  b), 
where a may be - 03 and b may be + m, then the continuous-time signal x(t)  is called an 
analog signal. If a discrete-time signal x[n] can take on only a finite number of distinct 
values, then we call this signal a digital signal. 

C. Real and Complex Signals: 

A signal x(t) is a real signal if its value is a real number, and a signal x(t)  is a complex 
signal if its value is a complex number. A general complex signal ~ ( t )  is a function of the 
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form 

SIGNALS AND SYSTEMS 

x ( t )  = x , ( t )  + i x 2 ( t )  

where x,( t )  and x2( t )  are real signals and j = m. 
Note that in Eq. (I.l) t  represents either a continuous or a discrete variable. 

D. Deterministic and Random Signals: 

Deterministic signals are those signals whose values are completely specified for any 
given time. Thus, a deterministic signal can be modeled by a known function of time I .  
Random signals are those signals that take random values at any given time and must be 
characterized statistically. Random signals will not be discussed in this text. 

E. Even and Odd Signals: 

A signal x ( t )  or x [ n ]  is referred to as an even signal if 

x ( - t )  = x ( r )  

x [ - n ]  = x [ n ]  

A signal x ( t )  or x [ n ]  is referred to as an odd signal if 

Examples of even 

x ( - t )  = - x ( t )  

x [ - n ]  = - x [ n ]  

and odd signals are shown in Fig. 1-2. 

(4 (4 
Fig. 1-2 Examples of even signals (a and 6 )  and odd signals ( c  and dl .  
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Any signal x ( t )  or x [ n ]  can be expressed as a sum of two signals, one of which is even 
and one of which is odd. That is, 

where x e ( t )  = $ { x ( t )  + x ( - t ) ]  even part of x ( t )  

x e [ n ]  = i { x [ n ]  + x [ - n ] )  even part of x [ n ]  
( 1 . 5 )  

x , ( t )  = $ { x ( t )  - x ( - t ) )  odd part of x( t  ) 

x , [ n ]  = $ { x [ n ]  - x [ - n ] )  odd part of x [ n ]  
( 1.6 ) 

Note that the product of two even signals or of two odd signals is an even signal and 
that the product of an even signal and an odd signal is an odd signal (Prob. 1.7). 

F. Periodic and Nonperiodic Signals: 

A continuous-time signal x ( t )  is said to be periodic with period T if there is a positive 
nonzero value of T for which 

x( t  + T )  = x ( t )  all t ( 1 . 7 )  

An example of such a signal is given in Fig. 1-3(a). From Eq. (1.7) or  Fig. 1-3(a) it follows 
that 

for all t and any integer m. The fundamental period T, of x ( t )  is the smallest positive 
value of T for which Eq. (1.7) holds. Note that this definition does not work for a constant 

(b )  

Fig. 1-3 Examples of periodic signals. 
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signal x ( t )  (known as a dc signal). For a constant signal x ( t )  the fundamental period is 
undefined since x ( t )  is periodic for any choice of T (and so there is no smallest positive 
value). Any continuous-time signal which is not periodic is called a nonperiodic (or 
aperiodic ) signal. 

Periodic discrete-time signals are defined analogously. A sequence (discrete-time 
signal) x[n] is periodic with period N if there is a positive integer N for which 

x [ n  + N] = x [ n ]  all n (1.9) 

An example of such a sequence is given in Fig. 1-3(b). From Eq. (1.9) and Fig. 1-3(b) it 
follows that 

for all n and any integer m. The fundamental period No of x[n] is the smallest positive 
integer N for which Eq. (1.9) holds. Any sequence which is not periodic is called a 
nonperiodic (or aperiodic sequence. 

Note that a sequence obtained by uniform sampling of a periodic continuous-time 
signal may not be periodic (Probs. 1.12 and 1.13). Note also that the sum of two 
continuous-time periodic signals may not be periodic but that the sum of two periodic 
sequences is always periodic (Probs. 1.14 and 1 .l5). 

G. Energy and Power Signals: 

Consider v(t) to be the voltage across a resistor R producing a current d t ) .  The 
instantaneous power p( t )  per ohm is defined as 

Total energy E and average power P on a per-ohm basis are 
3: 

E = [  i 2 ( t ) d t  joules 
-?O 

i 2 ( t )  dt watts 

For an arbitrary continuous-time signal x(t), the normalized energy content E of x ( t )  is 
defined as 

The normalized average power P of x ( t )  is defined as 

Similarly, for a discrete-time signal x[n], the normalized energy content E  of x[n] is 
defined as 
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The normalized average power P of x[n] is defined as 

1 
P = lim - 

N+-  2 N  + 1 ,,= -N 
Based on definitions (1.14) to (1.17), the following classes of signals are defined: 

1. x(t)  (or x[n]) is said to be an energy signal (or sequence) if and only if 0 < E < m, and 
so P = 0. 

2. x(t)  (or x[n]) is said to be a power signal (or sequence) if and only if 0 < P < m, thus 
implying that E = m. 

3. Signals that satisfy neither property are referred to as neither energy signals nor power 
signals. 

Note that a periodic signal is a power signal if its energy content per period is finite, and 
then the average power of this signal need only be calculated over a period (Prob. 1.18). 

1.3 BASIC CONTINUOUS-TIME SIGNALS 

A. The Unit Step Function: 

The unit step function u(t), also known as the Heaciside unit function, is defined as 

which is shown in Fig. 1-4(a). Note that it is discontinuous at t = 0 and that the value at 
t = 0 is undefined. Similarly, the shifted unit step function u(t - to) is defined as 

which is shown in Fig. 1-4(b). 

(a)  (b) 

Fig. 1-4 ( a )  Unit step function; ( b )  shifted unit step function. 

B. The Unit Impulse Function: 

The unit impulse function 6(t), also known as the Dirac delta function, plays a central 
role in system analysis. Traditionally, 6(t)  is often defined as the limit of a suitably chosen 
conventional function having unity area over an infinitesimal time interval as shown in 
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Fig. 1-5 

Fig. 1-5 and possesses the following properties: 

But an ordinary function which is everywhere 0 except at a single point must have the 
integral 0 (in the Riemann integral sense). Thus, S(t) cannot be an ordinary function and 
mathematically i t  is defined by 

where 4 ( t )  is any regular function continuous at t = 0. 
An alternative definition of S(t) is given by 

Note that Eq. (1.20) or (1.21) is a symbolic expression and should not be considered an 
ordinary Riemann integral. In this sense, S(t) is often called a generalized function and 
4( t )  is known as a testing function. A different class of testing functions will define a 
different generalized function (Prob. 1.24). Similarly, the delayed delta function 6(t - I,) is 
defined by 

m 

4 ( t ) W  - to) dt = 4Po)  (1.22) 

where 4( t )  is any regular function continuous at t = to. For convenience, S(t) and 6 ( t -  to) 
are depicted graphically as shown in Fig. 1-6. 
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( a )  (b) 

Fig. 1-6 ( a )  Unit impulse function; ( b )  shifted unit impulse function. 

Some additional properties of S ( t )  are 

S ( -  t )  = S ( t )  

x ( t ) S ( t )  = x(O)S(t)  

if x ( t )  is continuous at t = 0. 

x ( t )S ( t  - t o )  = x ( t o ) 6 ( t  - t , )  

if x ( t )  is continuous at t = to. 
Using Eqs. (1.22) and ( 1.241, any continuous-time signal x(t can be expressec 

Generalized Derivatives: 

If g( t ) is a generalized function, its nth generalized derivative g("Y t ) = dng( t ) /dt " is 
defined by the following relation: 

where 4 ( t )  is a testing function which can be differentiated an arbitrary number of times 
and vanishes outside some fixed interval and @"' ( t )  is the nth derivative of 4(t) .  Thus, by 
Eqs. ( 1.28) and (1.20) the derivative of S( t )  can be defined as 

where 4 ( t )  is a testing function which is continuous at t = 0  and vanishes outside some 
fixed interval and $(0)  = d4( t ) /d t l ,=o .  Using Eq. (1.28), the derivative of u ( t )  can be 
shown to be S( t )  (Prob. 1.28); that is, 
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Then the unit step function u(t) can be expressed as 

( t )  = S(r) di (1.31) 
- m 

Note that the unit step function u(t) is discontinuous at t = 0; therefore, the derivative of 
u(t) as shown in Eq. (1.30) is not the derivative of a function in the ordinary sense and 
should be considered a generalized derivative in the sense of a generalized function. From 
Eq. (1.31) we see that u(t) is undefined at t = 0 and 

by Eq. (1.21) with $(t) = 1. This result is consistent with the definition (1.18) of u(t). 

C. Complex Exponential Signals: 

The complex exponential signal 

Fig. 1-7 (a )  Exponentially increasing sinusoidal signal; ( b )  exponentially decreasing sinusoidal signal. 
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is an important example of a complex signal. Using Euler's formula, this signal can be 
defined as 

~ ( t )  = eiUo' = cos o,t + jsin w0t (1.33) 

Thus, x ( t )  is a complex signal whose real part is cos mot and imaginary part is sin o o t .  An 
important property of the complex exponential signal x ( t )  in Eq. (1.32) is that it is 
periodic. The fundamental period To of x ( t )  is given by (Prob. 1.9) 

Note that x ( t )  is periodic for any value of o,. 

General Complex Exponential Signals: 

Let s = a + jw be a complex number. We define x ( t )  as 

~ ( t )  = eS' = e("+~")' = e"'(cos o t  + j sin wt ) ( 1  -35) 

Then signal x ( t )  in Eq. (1.35) is known as a general complex exponential signal whose real 
part eu'cos o t  and imaginary part eu'sin wt are exponentially increasing (a > 0) or  
decreasing ( a  < 0) sinusoidal signals (Fig. 1-7). 

Real Exponential Signals: 

Note that if s = a (a real number), then Eq. (1.35) reduces to a real exponential signal 

x ( t )  = em' (1.36) 

(b) 

Fig. 1-8 Continuous-time real exponential signals. ( a )  a > 0; ( b )  a < 0. 
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As illustrated in Fig. 1-8, if a > 0, then x(f ) is a growing exponential; and if a < 0, then 
x ( t )  is a decaying exponential. 

D. Sinusoidal Signals: 

A continuous-time sinusoidal signal can be expressed as 

where A is the amplitude (real), w ,  is the radian frequency in radians per second, and 8 is 
the phase angle in radians. The sinusoidal signal x ( t )  is shown in Fig. 1-9, and it is periodic 
with fundamental period 

The reciprocal of the fundamental period To is called the fundamental frequency fo: 

f o = -  h ertz (Hz) 
7.0 

From Eqs. (1.38) and (1.39) we have 

which is called the fundamental angular frequency. Using Euler's formula, the sinusoidal 
signal in Eq. (1.37) can be expressed as 

where "Re" denotes "real part of." We also use the notation "Im" to denote "imaginary 
part of." Then 

Fig. 1-9 Continuous-time sinusoidal signal. 
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1.4 BASIC DISCRETE-TIME SIGNALS 

A. The Unit Step Sequence: 

The  unit step sequence u[n] is defined as 

which is shown in Fig. 1-10(a). Note that the value of u[n] at n = 0 is defined [unlike the 
continuous-time step function u( f )  at t = 01 and equals unity. Similarly, the shifted unit step 
sequence ii[n - k ]  is defined as 

which is shown in Fig. 1-lO(b). 

( a )  (b)  

Fig. 1-10 ( a )  Unit step sequence; (b)  shifted unit step sequence. 

B. The Unit Impulse Sequence: 

The  unit impulse (or unit sample) sequence 6[n]  is defined as 

which is shown in Fig. 1 - l l ( a ) .  Similarly, the shifted unit impulse (or sample) sequence 
6[n - k ]  is defined as 

which is shown in Fig. 1-1 l (b) .  

( a )  ( b )  

Fig. 1-11 ( a )  Unit impulse (sample) sequence; (6)  shifted unit impulse sequence. 
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Unlike the continuous-time unit impulse function S(f), S [ n ]  is defined without mathe- 
matical complication or difficulty. From definitions (1.45) and (1.46) it is readily seen that 

which are the discrete-time counterparts of Eqs. (1.25) and (1.26), respectively. From 
definitions (1.43) to (1.46), 6 [ n ]  and u [ n ]  are related by 

which are the discrete-time counterparts of Eqs. (1.30) and (1.31), respectively. 
Using definition (1.46), any sequence x [ n ]  can be expressed as 

which corresponds to Eq. (1.27) in the continuous-time signal case. 

C. Complex Exponential Sequences: 

The complex exponential sequence is of the form 

x [ n ]  = e ~ n ~ "  

(1.49) 

(1  SO) 

Again, using Euler's formula, x [ n ]  can be expressed as 

x [ n ]  = eJnnn = cos Ron + j sin Ron (1.53) 

Thus x [ n ]  is a complex sequence whose real part is cos R o n  and imaginary part is sin Ron.  

In order for ejn@ to be periodic with period N ( >  O), R o  must satisfy the following 
condition (Prob. 1.1 1): 

no m = -  m = positive integer 
2 r  N 

Thus the sequence eJnon is not periodic for any value of R,. It is periodic only if R , / ~ I T  is 
a rational number. Note that this property is quite different from the property that the 
continuous-time signal eJwo' is periodic for any value of o,. Thus, if R, satisfies the 
periodicity condition in Eq. (1.54), !& f 0, and N and m have no factors in common, then 
the fundamental period of the sequence x[n]  in Eq. (1.52) is No given by 

Another very important distinction between the discrete-time and continuous-time 
complex exponentials is that the signals el"o' are all distinct for distinct values of w,  but 
that this is not the case for the signals ejRon. 



SIGNALS AND SYSTEMS [CHAP. 1 

0 

0 * 
. . . . . . 

b 
n 

0 

b 

(4 
Fig. 1-12 Real exponential sequences. (a) a > 1; ( b )  1 > a > 0; (c) 0 > a > - 1; (d l  a < - 1. 
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Consider the complex exponential sequence with frequency (R, + 27k) ,  where k is an 
integer: 

e j ( i l o + 2 r r k ) n  = e j R o n  j2r rkn - i n o n  e - e (1 .56) 

since e j 2 " k n  = 1. From Eq. (1.56) we see that the complex exponential sequence at 
frequency R, is the same as that at frequencies (R, f 27),  (R, f 4.~1, and so on. 
Therefore, in dealing with discrete-time exponentials, we need only consider an interval of 
length 2 7  in which to choose R,. Usually, we will use the interval 0 I R, < 2 7  or the 
interval - 7 sr R, < 7 .  

General Complex Exponential Sequences: 

The most general complex exponential sequence is often defined as 

x [ n ]  = Can (1.57) 

where C and a are in general complex numbers. Note that Eq. (1.52) is the special case of 
Eq. (1.57) with C = 1 and a = eJRO. 

. . . . 
a 

-9 -6 t 

I . . . 
0 

t 6 9 

. 
b 

1 n  1 12 -I2 1 

Y l l l  
(b) 

'111' 
Fig. 1-13 Sinusoidal sequences. (a) x[n] = cos(rrn/6); ( b )  x[n] = cos(n/2). 

.3 o 3 
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Real Exponential Sequences: 

If C and a in Eq. (1.57) are both real, then x[n] is a real exponential sequence. Four 
distinct cases can be identified: a > 1 , 0  < a < 1, - 1 < a < 0, and a < - 1. These four real 
exponential sequences are shown in Fig. 1-12. Note that if a = 1, x[n] is a constant 
sequence, whereas if a = - 1, x[n] alternates in value between +C and -C. 

D. Sinusoidal Sequences: 

A sinusoidal sequence can be expressed as 

If n is dimensionless, then both R, and 0 have units of radians. Two examples of 
sinusoidal sequences are shown in Fig. 1-13. As before, the sinusoidal sequence in Eq. 
(1.58) can be expressed as 

As we observed in the case of the complex exponential sequence in Eq. (1.52), the same G. 

observations [Eqs. (1.54) and (1.5611 also hold for sinusoidal sequences. For instance, the 
sequence in Fig. 1-13(a) is periodic with fundamental period 12, but the sequence in Fig. 
l-13( b )  is not periodic. 

1.5 SYSTEMS AND CLASSIFICATION OF SYSTEMS 

A. System Representation: 

A system is a mathematical model of a physical process that relates the input (or 
excitation) signal to the output (or response) signal. 

Let x and y be the input and output signals, respectively, of a system. Then the system 
is viewed as a transformation (or mapping) of x into y. This transformation is represented 
by the mathematical notation 

where T is the operator representing some well-defined rule by which x is transformed 
into y. Relationship (1.60) is depicted as shown in Fig. 1-14(a). Multiple input and/or 
output signals are possible as shown in Fig. 1-14(b). We will restrict our attention for the 
most part in this text to the single-input, single-output case. 

XI  

System Y b - - Sy stem T 

(a)  (b)  

Fig. 1-14 System with single or multiple input and output signals. 
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B. Continuous;Time and Discrete-Time Systems: 

If the input and output signals x and p are continuous-time signals, then the system is 
called a continuous-time system [Fig. I -  15(a)]. If the input and output signals are discrete-time 
signals or sequences, then the system is called a discrete-time s?.stem [Fig. I - 15(h)J. 

(a) (h)  

Fig. 1-15 ( a )  Continuous-time system; ( b )  discrete-time system. 

C. Systems with Memory and without Memory 

A system is said to be memoryless if the output at any time depends on only the input 
at  that same time. Otherwise, the system is said to have memory. An example of a 
memoryless system is a resistor R with the input x ( t )  taken as the current and the voltage 
taken as the output y ( t ) .  The input-output relationship (Ohm's law) of a resistor is 

An example of a system with memory is a capacitor C with the current as the input x( t  ) 
and the voltage as the output y ( 0 ;  then 

A second example of a system with memory is a discrete-time system whose input and 
output sequences are related by 

D. Causal and Noncausal Systems: 

A system is called causal if its output y ( t )  at an  arbitrary time t  = t,, depends on only 
the input x ( t )  for t  I to .  That is, the output of a causal system at the present time depends 
on only the present and/or past values of the input, not on its future values. Thus, in a 
causal system, it is not possible to obtain an output before an input is applied to the 
system. A system is called noncausal if it is not causal. Examples of noncausal systems are 

Note that all memoryless systems are causal, but not vice versa. 
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E. Linear Systems and Nonlinear Systems: 

If the operator T in Eq. (1.60) satisfies the following two conditions, then T is called a 
linear operator and the system represented by a linear operator T is called a linear system: 

1. Additivity: 

Given that Tx, = y ,  and Tx, = y,, then 

T{x, +x2) = y ,  +Y, 

for any signals x ,  and x2. 

2. Homogeneity (or Scaling): 

for any signals x and any scalar a. 
Any system that does not satisfy Eq. (1.66) and/or Eq. (1.67) is classified as a 

nonlinear system. Equations (1.66) and ( 1.67) can be combined into a single condition as 

T { ~ I  + w 2 )  = ~ I Y I  + a 2 Y z  (1.68) 

where a, and a, are arbitrary scalars. Equation (1.68) is known as the superposition 
property. Examples of linear systems are the resistor [Eq. (1.6111 and the capacitor [Eq. 
( 1.62)]. Examples of nonlinear systems are 

y = x  2 (1.69) 

y = cos x (1.70) 

Note that a consequence of the homogeneity (or scaling) property [Eq. (1.6711 of linear 
systems is that a zero input yields a zero output. This follows readily by setting a = 0 in Eq. 
(1.67). This is another important property of linear systems. 

F. Time-Invariant and Time-Varying Systems: 

A system is called rime-inuariant if a time shift (delay or advance) in the input signal 
causes the same time shift in the output signal. Thus, for a continuous-time system, the 
system is time-invariant if 

for any real value of T. For a discrete-time system, the system is time-invariant (or 
shift-incariant ) if 

~ { x [ n  - k ] )  =y[n  - k ]  (1.72) 

for any integer k .  A system which does not satisfy Eq. (1.71) (continuous-time system) or 
Eq. (1.72) (discrete-time system) is called a time-varying system. To check a system for 
time-invariance, we can compare the shifted output with the output produced by the 
shifted input (Probs. 1.33 to 1.39). 

G. Linear Time-Invariant Systems 

If the system is linear and also time-invariant, then it is called a linear rime-invariant 
(LTI) system. 
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H. Stable Systems: 

A system is bounded-input/bounded-output (BIBO) stable if for any bounded input x 
defined by 

the corresponding output y is also bounded defined by 

where k ,  and k, are finite real constants. Note that there are many other definitions of 
stability. (See Chap. 7.) 

I. Feedback Systems: 

A special class of systems of great importance consists of systems having feedback. In a 
feedback system, the output signal is fed back and added to the input to the system as 
shown in Fig. 1-16. 

- - 

Fig. 1-16 Feedback system. 

Solved Problems 

SIGNALS AND CLASSIFICATION OF SIGNALS 

1.1. A continuous-time signal x ( t )  is shown in Fig. 1-17. Sketch and label each of the 
following signals. 

( a )  x( t  - 2); ( b )  x(2t) ;  ( c )  x ( t / 2 ) ;  ( d l  x ( - t )  

- 2 - 1 0  1 2  3 4 5 t 

Fig. 1-17 
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( a )  x(r - 2 )  is sketched in Fig. 1-18(a). 

( 6 )  x ( 2 0  is sketched in Fig. 1-18(b). 
( c )  x(t/2) is sketched in Fig. 1-18(c). 

( d )  X (  - t )  is sketched in Fig. 1-1Nd).  

( c )  

Fig. 1-18 

1.2. A discrete-time signal x [ n ]  is shown in Fig. 1-19. Sketch and label each of the 
following signals. 

( a )  x [ n  - 21; ( b )  x [ 2 n ] ;  ( c )  x [ - n ] ;  ( d )  x [ - n  + 21 

Fig. 1-19 
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( a )  x[n - 21 is sketched in Fig. 1-20(a). 
( b )  x[2n] is sketched in Fig. 1-20(b). 
( c )  x [ -n ]  is sketched in Fig. 1-2Nc). 
( d )  x [ -n  + 21 is sketched in Fig. 1-2Nd). 

(4 
Fig. 1-20 

13. Given the continuous-time signal specified by 

x ( t )  = (A - I t '  - 1 l f l l  
otherwise 

determine the resultant discrete-time sequence obtained by uniform sampling of x(t) 
with a sampling interval of ( a )  0.25 s, ( b )  0.5 s, and (c) 1.0 s. 

It is easier to take the graphical approach for this problem. The signal x(t) is plotted in 
Fig. 1-21(a). Figures 1-21(b) to ( d l  give plots of the resultant sampled sequences obtained for 
the three specified sampling intervals. 

( a )  T, = 0.25 s. From Fig. 1-21(b) we obtain 

x [ n ]  = (. . . ,0,0.25,0.5,0.75,1,0.75,0.5,0.25,0,. . .) 
T 

( b )  T, = 0.5 s. From Fig. 1-21(c) we obtain 

x [ n ] =  { ..., 0,0.5,1,0.5,0 , . . . I  
T 
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(4 
Fig. 1-21 

( c )  T, = 1 s. From Fig. 1-21(d) we obtain 

x [ n ]  = ( .  . . , O ,  1,O.. . .) = S[nl 

1.4. Using the discrete-time signals x , [ n ]  and x , [ n ]  shown in Fig. 1-22, represent each of 
the following signals by a graph and by a sequence of numbers. 

( a )  yJn1 = x , [ n l  + x , [ n l ;  ( b )  y , [ n I =  2 x , [ n l ;  ( c )  y,[nI = x J n I x J n l  

Fig. 1-22 
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(a)  y , [ n ]  is sketched in Fig. 1-23(a). From Fig. 1-23(a) we obtain 

(b) y 2 [ n ]  is sketched in Fig. 1-23(b). From Fig. 1-23(b) we obtain 

(c) y J n ]  is sketched in Fig. 1-23(c). From Fig. 1-23(c) we obtain 

(d 
Fig. 1-23 

1.5. Sketch and label the even and odd components of the signals shown in Fig. 1-24. 

Using Eqs. (1.5) and (1.6), the even and odd components of the signals shown in Fig. 1-24 
are sketched in Fig. 1-25. 
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(4 
Fig. 1-24 

1.6. Find the even and odd components of x ( r )  = eJ' .  

Let x , ( r )  and x , ( I )  be the even and odd components of ei', respectively. 

eJ' = x , ( I )  + x , ( I )  

From Eqs. ( 1 . 5 )  and ( 1 . 6 )  and using Euler's formula, we obtain 

x,( I )  = $ ( e J r  + e - J ' )  = cos I 

x , , ( I )  = f ( e i ' - e - j ' )  = j s i n t  

Show that the product of two even signals or  of two odd signals is an even signal and 
that the product of an even and an odd signaI is an odd signal. 

Let x ( t )  = x l ( t ) x 2 ( t ) .  If X J I )  and x 2 ( l )  are both even, then 

x ( - l )  = x , ( - I ) X , ( - t )  = x I ( I ) x 2 ( t )  = x ( t )  

and x ( t )  is even. If x , ( t )  and x 2 ( t )  are both odd, then 

x ( - I )  = x , ( - I ) x , ( - I )  = - x , ( t ) [ - x 2 ( t ) ]  = x 1 ( t ) x 2 ( t )  = x ( t )  

and x ( t )  is even. If x , ( t )  is even and x 2 ( f )  is odd, then 

and X ( I )  is odd. Note that in the above proof, variable I represents either a continuous or a 
discrete variable. 
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(4 
Fig. 1-25 
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1.8. Show that 

[CHAP. 1 

(a) If x(t) and x [ n ]  are even, then 

(b) If x(t) and x[n] are odd, then 

x(0) = 0 and x[O] = O  
k 

/ a  ~ ( r )  dr = 0 and x x[n] = O  
- a  n =  - k  

( a )  We can write 

Letting t = - A  in the first integral on the right-hand side, we get 

Since x ( t )  is even, that is, x (  - A )  = x ( A ) ,  we have 

Hence, 

Similarly, 

Letting n  = - m  in the first term on the right-hand side, we get 

Since x [ n ]  is even, that is, x [  - m ]  = x [ m ] ,  we have 

Hence, 

(1.75a) 

( I .  75b) 

( 6 )  Since x ( t )  and x [ n ]  are odd, that is, x( - t )  = - x ( t )  and x [  - n ]  = - x [ n ] ,  we have 

X (  - 0 )  = - x ( O )  and x [ - 0 1  = - x [ O ]  
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Hence, 

Similarly, 

and 

in view of Eq. (1.76). 

1.9. Show that the complex exponential signal 

( t ) = , j@d  

is periodic and that its fundamental period is 27r/00. 

By Eq. (1.7), x(t) will be periodic if 
e i @ d t  + TI = e i w d  

Since 
e i w ~ ( r  + T )  = e i q r e i q , T  

we must have 
eimoT = 1 (1.78) 

If w, = 0, then x(t) = 1, which is periodic for any value of T. If o0 # 0, Eq. (1.78) holds if 

27T 
o o T = m 2 r  or T = m -  m = positive integer 

a 0  

Thus, the fundamental period To, the smallest positive T, of x(t) is given by 2 r /oo .  

1.10. Show that the sinusoidal signal 

x ( t )  = cos(w,t + 8 )  

is periodic and that its fundamental period is 27r/wo. 

The sinusoidal signal x(l) will be periodic if 

cos[o,(t + T) + 81 = ws(oot  + 8) 

We note that 

cos[w,(t + T) + 81 = cos[oot + 8 + woT] = cos(oot + 8)  
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2 7  
w0T=m2.rr or T = m -  m = positive integer 

*o 

Thus. the fundamental period To of x ( r )  is given by 2.rr/wo. 

1.11. Show that the complex exponential sequence 

x [ n ]  = e ~ " ~ "  

is periodic only if fl0/2.rr is a rational number. 

By Eq. (1 .9) ,  x[n] will be periodic if 
,iflo(" + N l  = , i n , , n , i ~ h p  = , inon  

or 

e i n ~ N  = 1 

Equation (1 .79)  holds only if 

f l o N  = m 2 ~  m = positive integer 

o r  

a0 m - =  - = rational number 
2.rr N 

Thus, x[n] is periodic only if R0/27r is a rational number 

1.12. Let x ( r )  be the complex exponential signal 

with radian frequency wo and fundamental period To = 2.rr/oo. Consider the 
discrete-time sequence x [ n ]  obtained by uniform sampling of x ( t )  with sampling 
interval Ts. That is, 

x [ n ]  = x ( n T , )  =eJ"unT.  

Find the condition on the value of T, so that x [ n ]  is periodic. 

If x[n] is periodic with fundamental period N,,, then 

, iou(n+N,, )T,  = , iw~nT, , iwuN,J ' ,  = ejwun-l; 

Thus, we must have 

T, m - = - -  - rational number 
To No 

Thus x [ n ]  is periodic if the ratio T,/T,, of the sampling interval and the fundamental period of 
x ( t )  is a rational number. 

Note that the above condition is also true for sinusoidal signals x ( t )  = cos(o,,t + 8) .  
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1.13. Consider the sinusoidal signal 

x ( t )  = cos 15t 

Find the value of sampling interval T, such that x [ n ]  = x(nT, )  is a periodic 
sequence. 

Find the fundamental period of x [ n ]  = x(nT,)  if TT = 0 . 1 ~  seconds. 

The fundamental period of x ( t )  is To = 2*rr/wo = 2 7 / 1 5 .  By Eq. (1.81), x [ n ]  = x ( n T s )  is 
periodic if 

where m  and No are positive integers. Thus, the required value of T, is given by 

Substituting T, = 0 . 1 ~  = ~ / 1 0  in Eq. (1.821, we have 

Thus, x [ n ]  =x(nT,)  is periodic. By Eq. (1.82) 

The smallest positive integer No is obtained with m  = 3. Thus, the fundamental period of 
x [n l  = x ( 0 . l ~ n )  is N ,  = 4. 

.4. Let x , ( t )  and x , ( t )  be periodic signals with fundamental periods T, and T2,  respec- 
tively. Under what conditions is the sum x ( t )  = x , ( t )  + x 2 ( t )  periodic, and what is the 
fundamental period of x( t )  if it is periodic? 

Since x , ( t )  and x , ( t )  are periodic with fundamental periods T I  and T,,  respectively, we 
have 

x l ( t )  = x , ( t  + T I )  = x , ( t  + m T , )  m  = positive integer 

x 2 ( t )  = x 2 ( t  + T 2 )  = x 2 ( f  + kT2)  k  = positive integer 

Thus, 

In order for x ( t )  to be periodic with period T ,  one needs 

Thus, we must have 

mT, = kT2 = T  

T I  k - -  - - =  rational number 
T2 m  

In other words, the sum of two periodic signals is periodic only if the ratio of their respective 
periods can be expressed as a rational number. Then the fundamental period is the least 
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common multiple of T, and T2, and it is given by Eq. (1.84) if the integers m and k are relative 
prime. If the ratio T,/T, is an irrational number, then the signals x,(t)  and x,(t) do not have a 
common period and x(t)  cannot be periodic. 

1.15. Let x,[n] and x2[n] be periodic sequences with fundamental periods N,  and N2, 
respectively. Under what conditions is the sum x[n] =x,[n] +x2[n] periodic, and what 
is the fundamental period of x[n] if it is periodic? 

Since x,[n] and x2[n] are periodic with fundamental periods N, and N2, respectively, we 
have 

x I [ n ]  =x I [n  + N,] =x,[n +mN,]  m = positive integer 

x2[n] =x,[n + N,] =x,[n + kN,] k = positive integer 

Thus, 

~ [ n ]  =x,[n +mN,]  +x2[n  + kN,] 

In order for x[n] to be periodic with period N, one needs 

x[n + N ]  =x,[n + N ]  +x2[n  + N]  =x , [n  + mN,] +x,[n + kN2] 

Thus, we must have 

mN, = kN2 = N 

Since we can always find integers m and k to satisfy Eq. (1.861, it follows that the sum of two 
periodic sequences is also periodic and its fundamental period is the least common multiple of 
N, and N,. 

1.16. Determine whether or not each of the following signals is periodic. If a signal is 
periodic, determine its fundamental period. 

2TT 
( a )  x( t )  = cos ( b )  x ( t ) = s i n p t  

3 
T TT 

( c )  x( t )=cos - I  +sin -t 
3 4 

( d l  x ( t ) = c o s t + s i n f i t  

(e l  x( t )  = sin2 t (f) X(t) = eiI(r/2)f- 11 

( g )  x[n] = ej("/4)" ( h )  x[n]=cosfn  
T T TT 

( i )  x[n] = cos -n + sin -n 
3 4 

( j )  x[n] = cos2 -n 
8 

x(t)  is periodic with fundamental period T,  = 27r/w0 = 27r. 

x(r) is periodic with fundamental period TO = 27r/o,, = 3. 
lr lr 

( c )  x( t )  = cos --I + sin -t =x , ( t )  +x2(t)  
3 4 

where x,(t) = cos(7r/3)r = cos w,t is periodic with T, = 27r/w, = 6 and x2(t)  = 
s in (~ /4 ) t  = sin w2t is periodic with T2 = 21r/w2 = 8. Since T,/T, = = is a rational 
number, x( t)  is periodic with fundamental period To = 4T, = 3T2 = 24. 
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( d l  x(t) = cos r + sin f i r  =x,(r)  +x2(r) 
where x,(t) = cos r = cos o , t  is periodic with TI = 27r/01 = 27r and x2(t) = sin f i t  = 

sin w2t is periodic with T2 = 27r/02 = fir. Since T,/T2 = fi is an irrational number, 
x( t)  is nonperiodic. 

(e) Using the trigonometric identity sin2 0 = t(l - cos 201, we can write 

I where x,(t) = $ is a dc signal with an arbitrary period and x2(t) = - $ cos2r = - cos 0 2 t  
is periodic with T2 = 2n/w2 = 7. Thus, x(t) is periodic with fundamental period To = T. 

7T 
( f )  x( t )  = e j t ( r / 2 ) r -  11 = e - j e j ( r / 2 ) r  = - I  'e j w d  , Wo = Ir 

L 

x(t) is periodic with fundamental period To = 27r/w0 = 4. 

Since R0/27r = $ is a rational number, x[nl is periodic, and by Eq. (1.55) the fundamen- 
tal period is No = 8. 

x[n] = cos f n  = cos n o n  --, R o  = $ 
Since n0/27r = 1 / 8 ~  is not a rational number, x[n] is nonperiodic. 

7r T 
x[n] = cos -n + sin -n = x,[n] + x2[n 1 

3 4 
where 

7r 7r 
x2[n] = sin -n = cos f12n + 0, = - 

4 4 

Since R , / 2 ~ r  = (= rational number), xl[n] is periodic with fundamental period N, = 6, 
and since R2/27r = $ (= rational number), x2[n] is periodic with fundamental period 
N2 = 8. Thus, from the result of Prob. 1.15, x[n] is periodic and its fundamental period is 
given by the least common multiple of 6 and 8, that is, No = 24. 

Using the trigonometric identity cos2 8 = i ( l  + cos28), we can write 

T 1 1 7 r  
x[n]  = cost -n = - + - cos -n =x, [n]  +x2[n]  

8  2 2  4 

where x,[n] = $ = $(l)" is periodic with fundamental period Nl = 1 and x2[n] = 
1 cos(a/4)n = cos R 2 n  --, Q2 = ~ / 4 .  Since R2/27r = ( = rational number), x2[n] is 
periodic with fundamental period N2 = 8. Thus, x[n] is periodic with fundamental period 
No = 8  (the least common multiple of N, and N,). 

1.17. Show that if x ( t  + T )  = x ( t ) ,  then 

for any real a, p, and a. 
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If x(t + T )  = x ( t ) ,  then letting t = 7 - T ,  we have 

X ( T - T + T ) = x ( r )  = x ( T - T )  

and 

Next, the right-hand side of Eq. (1 .88)  can be written as 

By E q .  ( 1 . 8 7 )  we have 

( t )  d  = / x ( t )  dt 
a + T  

Thus. 

1.18. Show that if x ( t )  is periodic with fundamental period To,  then the normalized average 
power P of x ( t )  defined by Eq. ( 1 . 1 5 )  is the same as the average power of x ( 0  over 
any interval of length T , ,  that is, 

By Eq. ( 1.15) 
1 

P = lim - /T'2 1 x ( t )  1' dt 
T-.r: T  - 7 . / 2  

Allowing the limit to be taken in a manner such that T is an integral multiple of the 
fundamental period, T  = kT,, the total normalized energy content of x ( t )  over an interval of 
length T is k times the normalized energy content over one period. Then 

1.19. The following equalities are used on many occasions in this text. Prove their validity. 
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N- 1 

aS=a C an=a+aZ+a" + - .  +aN 
n = O  

Subtracting Eq. (1.95) from Eq. (1.941, we obtain 

Hence if a # 1,  we have 

If a = 1, then by Eq. (1.94) 

( 6 )  For la1 < 1, lim aN = 0. Then by Eq. (1.96) we obtain 
N - m  

m N- l ] - a N  I 
-- x an = lim x an = lim - - 

n - 0  N - m  n = O  N I -  1 - a  

(c) Using Eq. (1.911, we obtain 

(d) Taking the derivative of both sides of Eq. (1.91) with respect to a, we have 

and 

Hence, 

1.20. Determine whether the following signals are energy signals, power signals, or neither. 

( a )  x ( t )=e-" 'u( t ) ,  a > O  ( b )  x ( t ) = A c o s ( w , t + 8 )  
(c) x ( t )  = tu( t )  (d l  x [ n ]  = ( -  0.5)"u[n] 
( e )  x [ n l =  u[nl (f x [ n ]  = 2ej3" 
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Thus, x ( t )  is an energy signal. 

( b )  The sinusoidal signal x ( t )  is periodic with To = 2 7 r / o o .  Then by the result from 
Prob. 1.18, the average power of x( t  ) is 

Thus, x ( t )  is a power signal. Note that periodic signals are, in general, power signals. 

Thus, x ( t )  is neither an energy signal nor a power signal. 

( d )  By definition ( 1 . 1 6 )  and using Eq. (1 .91) ,  we obtain 

Thus, x [ n l  is an energy signal. 

( e )  By definition ( 1 . 1 7 )  

1  N 
P =  lim --- C l x b 1 I 2  

N + %  2 N +  1 , = - N  

1 1 

= lim - 1 = lim ( N + l ) = - < a  
N+C= 2 N +  1 ,,=,, ~ + m  2 N +  1 2  

Thus, x [ n ]  is a power signal. 

(f Since I x [ n ] l =  I2eiJnI = 2IeJ3"l = 2,  

1 N 1 
P = lim --- C l x [ n ] 1 2 =  lim - 

N-+= 2 N  + l n =  - N  
2' 

N - m  2 N  + 1 .= - N  

1 
= lim - 4 ( 2 N +  1 )  = 4 < m  

~ + m  2 N +  1 

Thus, x [ n ]  is a power signal. 

BASIC SIGNALS 

1.21. Show that 
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Let T = - t .  Then by definition (1 .18)  

Since T > 0 and 7 < 0 imply, respectively, that t < 0 and r > 0, we obtain 

which is shown in Fig. 1-26. 

Fig. 1-26 

1.22. A continuous-time signal A t )  is shown in Fig. 1-27. Sketch and label each of the 
following signals. 

( a )  x ( t ) u ( l  - t ) ;  ( b )  x ( t ) [ u ( t )  - u(t - I)]; (c) x ( t ) H t  - 

- 1 0 1 2  t 

Fig. 1-27 

(a) By definition (1 .19)  

and x(r)u(l  - t )  is sketched in Fig. 1-28(a). 

( 6 )  By definitions (1.18) and (1.19) 

O < t l l  u - ( t  - 1 = otherwise 

and x ( t ) [ u ( r )  - u(t - I ) ]  is sketched in Fig. 1-28(b). 
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( c )  By Eq. (1 .26)  

x ( t ) s ( t  - 3) = x ( $ ) s ( t  - $) = 26( t  - $) 
which is sketched in Fig. 1-28(c). 

[CHAP. 1 

(c)  

Fig. 1-28 

1.23. A discrete-time signal x [ n ]  is shown in Fig. 1-29. Sketch and label each of the 
following signals. 

( a )  x [ n ] u [ l  - n ] ;  ( b )  x [ n ] ( u [ n  + 21 - u [ n ] } ;  ( c )  x [ n ] 6 [ n  - 11 

- 4 - 3 - 2 - 1  0 1 2  3 4 5 n 

Fig. 1-29 

( a )  By definition (1 .44 )  

and x[n]u[l  - n ]  is sketched in Fig. 1-30(a). 



CHAP. 11 SIGNALS AND SYSTEMS 

( b )  By definitions (1.43) and (1.44) 

- 2 1 n  < 0  u [ n  + 21 - u [ n ]  = otherwise 

and x[n] (u[n  + 21 - u [ n ] )  is sketched in Fig. 1-30(b). 
(c) By definition (1 .48)  

n = l  x [ n  ] S [ n  - 1 1  = x [ l ] S [ n  - I ]  = S [ n  - 11  = 

which is sketched in Fig. 1-30(c). 

(4 
Fig. 1-30 

1-24 The unit step function u ( t )  can be defined as a generalized function by the following 
relation: 

m 

1- m 
+ ( t ) u ( t )  dt = j w 4 ( t )  dt (1.98) 

0 

where & ( t )  is a testing function which is integrable over 0 < t < m. Using this 
definition, show that 

Rewriting Eq. (1 .98)  as 
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we obtain 

This can be true only if 

0 

1- a 4 ( t ) u ( t )  dt = 0  and k w 4 ( t ) [ l  - u ( t ) ]  dt = 0  

These conditions imply that 

b ( t ) u ( t )  = 0 ,  t  < 0  and c $ ( t ) [ l  - u ( t ) ]  = 0 ,  t > 0  

Since 4 ( t )  is arbitrary, we have 

u ( t ) = O ,  t < O  and 1 - u ( t ) = O , t > O  

that is, 

1.25. Verify Eqs. (1.23) and (1.24), that is, 

1 
( a )  6 (a t )  = -6 ( t ) ;  ( b )  S ( - t )  = S ( t )  

la1 
The proof will be based on the following equiualence property: 
Let g , ( t )  and g 2 ( t )  be generalized functions. Then the equivalence property states that 

g , ( t )  = g t ( t )  i f  and only if 

for all suitably defined testing functions 4 ( t ) .  

( a )  With a change of variable, at = T ,  and hence t = r / a ,  dt = ( l / a )  d r ,  we obtain the 
following equations: 

If a  > 0 ,  

Thus, for any a  
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Now, using Eq. (1.20) for 4(0), we obtain 

for any 4(t) .  Then, by the equivalence property (1.991, we obtain 

1 
6 ( a t )  = - 6 ( t )  

la1 

(6) Setting a = - 1 in the above equation, we obtain 

1 
6( - t )  = - 6 ( t )  = S ( t )  

I -  11 

which shows that S(t)  is an even function. 

1.26. (a) Verify Eq. (1.26): 

x ( t ) 8 ( t  - t o )  =x( t , )S( l  - 1,) 

if x ( t )  is continuous at t  = to. 

( b )  Verify Eq. (1.25): 

x ( r ) S ( t )  =x(O)S( t )  

if x ( t )  is continuous at t  = 0. 

( a )  If x ( t )  is continuous at t  = t o ,  then by definition (1.22) we have 

for all +(t)  which are continuous at t  = to. Hence, by the equivalence property (1.99) we 
conclude that 

x ( t ) 6 ( t  - t o )  = x ( t o ) 6 ( t  - t,,) 

( 6 )  Setting to = 0  in the above expression, we obtain 

x ( t ) b ( t )  =x(O)S(t)  

1.27. Show that 

( a )  t 8 ( t )  = 0  

( b )  sin t 8 ( r )  = 0  

(c) COS tS(t - r) = -S(t - T) 
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1.28. Verify Eq. (1.30): 

From Eq. (1.28) we have 

where 4 ( t )  is a testing function which is continuous at t = 0 and vanishes outside some fixed 
interval. Thus, + I ( ! )  exists and is integrable over 0 < t < rn and +(a) = 0. Then using Eq. (1.98) 
or definition (1.18), we have 

Since 4 ( t )  is arbitrary and by equivalence property (1.991, we conclude that 

1.29. Show that the following properties hold for the derivative of 6( t ) :  

(6) t s ' ( t )  = -6 ( r )  

( a )  Using Eqs. (1.28) and (1.201, we have 

00 

1- rn 

4 ( 1 ) S . ( t )  dl = - /- m . ( t ) 6 ( t )  dl = -4'(O) 
- m 

( b )  Using Eqs. (1.101) and (1.201, we have 

Thus, by the equivalence property (1.99) we conclude that 

t6 ' ( t )  = - 6 ( t )  
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1.30. Evaluate the following integrals: 

( d )  /m e-'S(2t - 2)  dt 
- w 

( a )  By Eq. (1.21), with a  = - 1 and b = 1, we have 

( b )  By Eq. (1 .20 ,  with a = 1 and b = 2, we have 

(c) By Eq. (1.22) 

= l  +COST= 1 -1=0 

( d )  Using Eqs. (1.22) and (1.23), we have 

m 

/ - C t s ( 2 t  - 2)  dt = Irn -m e-'S[2(t - 1 ) ]  dt 

(e l  By Eq. (1.29) 

1.31. Find and sketch the first derivatives of the following signals: 

( a )  x ( t )  = u ( t )  - u(t  - a ) ,  a  > 0 
( b )  ~ ( t )  = t [ u ( t )  - u(t  - a ) ] ,  a > 0 

( a )  Using Eq. (1.301, we have 

u l ( t )  = S ( t )  and u l ( t  - a )  = S(t  - a )  
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Signals x ( t )  and xYt) are sketched in Fig. 1-31(a). 

( b )  Using the rule for differentiation of the product of two functions and the result from part 
( a ) ,  we have 

x l ( t )  = [ u ( t )  - u(l - a ) ]  + t [ 6 ( t )  - S(t - a ) ]  

But by Eqs. (1.25) and (1.26) 

t 6 ( t )  = (O )S ( t )  = 0 and t6(t  - a )  = a 6 ( t  - a )  

Thus, 

Signals x ( t )  and x f ( t )  are sketched in Fig. 1-31(b). 

( c )  x ( t )  = sgn t can be rewritten as 

~ ( t )  = s g n t  = u ( t )  - u ( - t )  

Then using Eq. (1.301, we obtain 

x l ( t )  = u l ( t )  - u l ( - t )  = 6 ( t )  - [ - 6 ( t ) ]  = 2 S ( t )  

Signals x ( t )  and x'( t )  are sketched in Fig. 1-31(c). 

(b)  

Fig. 1-31 
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SYSTEMS AND CLASSIFICATION OF SYSTEMS 

1.32. Consider the RC circuit shown in Fig. 1-32. Find the relationship between the input 
x ( t )  and the output  y ( t )  

If ~ ( t )  = v, ( t )  and y ( r )  = v,( t ). 

If ~ ( t )  = u,(t)  and y ( t )  = i ( t ) .  

Applying Kirchhofs voltage law to the RC circuit in Fig. 1-32, we obtain 

c , ( r )  = R i ( r )  + ~ , ( t )  ( 1.103) 

The current i ( t  ) and voltage or( t ) are related by 

Letting u,(t) = x ( t )  and u,(t) = y ( r )  and substituting Eq. (1.04) into Eq. (1.1031, we obtain 

RC- 
dr 

Thus, the input-output relationship of the RC circuit is described by a first-order linear 
differential equation with constant coefficients. 

Integrating Eq. (1.104), we have 

1 ,  
( t )  = - i ( i )  d i  (1 .106)  

C -, 

Substituting Eq. (1.106) into Eq. (1.103) and letting c , ( t )  = x ( r )  and $11 = y ( t ) ,  we obtain 

R 

Fig. 1-32 R C  circuit. 
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Differentiating both sides of the above equation with respect to 1, we obtain 

Thus. the input-output relationship is described by another first-order linear differential 
equation with constant coefficients. 

1.33. Consider the capacitor shown in Fig. 1-33. Let input x ( t )  = i ( t )  and output y ( t )  = i ; ( t ) .  

(a) Find the input-output relationship. 

( b )  Determine whether the system is (i) memoryless, (ii) causal, ( i i i )  linear, ( i ~ ! )  time- 
invariant, or ( L ! )  stable. 

( a )  Assume the capacitance C is constant. The output voltage y(r) across the capacitor and 
the input current x( t)  are related by [Eq. (1.106)] 

( b )  ( i )  From Eq. (1.108) it is seen that the output p(r) depends on the past and the 
present values of the input. Thus, the system is not memoryless. 

(ii) Since the output y(t) does not depend on the future values of the input, the system 
is causal. 

(iii) Let x(r)  = a ,x , (O  + a 2 x 2 ( 0 .  Then 

Thus, the superposition property (1.68) is satisfied and the system is linear. 

( i r )  Let y,(r)  be the output produced by the shifted input current x,( l )  =x( l  - f,,). 
Then 

Hence, the system is time-invariant. 

Fig. 1-33 
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0 

Fig. 1-34 Unit ramp function. 

( c )  Let x ( t )  = k l u ( t ) ,  with k ,  # 0. Then 

where r ( t )  = t u ( t )  is known as the unit ramp function (Fig. 1-34). Since y ( t )  grows 
linearly in time without bound, the system is not BIB0 stable. 

1.34. Consider the system shown in Fig. 1-35. Determine whether it is (a) memoryless, ( b )  
causal, ( c )  linear, ( d )  time-invariant, or ( e )  stable. 

From Fig. 1-35 we have 

y ( t )  = T { x ( t ) }  = x ( t )  cos w,t 

Since the value of the output y ( t )  depends on only the present values of the input x ( t ) ,  
the system is memoryless. 
Since the output y ( t )  does not depend on the future values of the input x ( t ) ,  the system 
is causal. 

Let x ( t )  = a , x ( t )  + a 2 x ( t ) .  Then 

y ( t )  = T ( x ( t ) }  = [ a , x l ( t )  + a 2 x 2 ( t ) ]  cos w,t 

= a , x , ( t )  cos w,t + a 2 x 2 ( t )  cos w,t 

= " l ~ , ( t )  + f f 2 ~ 2 ( t )  

Thus, the superposition property (1.68) is satisfied and the system is linear. 

Fig. 1-35 
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( d l  Let y , ( t )  be the output produced by the shifted input x , ( t )  = x ( t  - to) .  Then 

y , ( t )  = T { x ( t  - t o ) )  = x ( t  - t,-,)c~s wct 

But 

Hence, the system is not time-invariant. 

( e )  Since Icos w,tl s 1, we have 

Thus, if the input x ( t )  is bounded, then the output y ( t )  is also bounded and the system is 
BIB0 stable. 

1-35. A system has the input-output relation given by 

y  = T { x )  = x 2  

Show that this system is nonlinear. 

2 T ( x ,  + x 2 )  = ( x ,  + x 2 )  = x :  +xS + 2x ,x2  

2 + T { x , }  + T { x , )  = x :  + x ,  

Thus, the system is nonlinear. 

1.36. The discrete-time system shown in Fig. 1-36 is known as the unit delay element. 
Determine whether the system is ( a )  memoryless, ( b )  causal, ( c )  linear, ( d )  time- 
invariant, o r  (e) stable. 

(a) The system input-output relation is given by 

Since the output value at n  depends on the input values at n  - 1, the system is not 
memoryless. 

( b )  Since the output does not depend on the future input values, the system is causal. 

(c) Let .r[n] =cw,x,[n] + a,x2 [ n ] .  Then 

y [ n ]  = T { a , x , [ n ]  + a 2 x 2 [ n ] )  = a , x , [ n  - 11 + a 2 x 2 [ n  - 11 

= ~ I Y I ~ I  + a2y2[nI 

Thus, the superposition property (1.68) is satisfied and the system is linear. 

( d )  Let ~ , [ n ]  be the response to x , [n]  = x [ n  -no] .  Then 

y I [ n ]  = T ( x , [ n ] )  = x , [ n  - 11 = x [ n  - 1 - n o ]  

and y[n - n o ]  = x [ n  - n, - 11 = x [ n  - 1 - n o ]  = y , [ n ]  

Hence, the system is time-invariant. 

xlnl 

Fig. 1-36 Unit delay element 

Unit 
delay 

ylnl = xln-I] 
b 
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(e) Since 

l y [ n ] I  = l x [ n  - 111 I k if I x [ n ] l  s k for all n  

the system is BIB0 stable. 

1.37. Find the input-output relation of the feedback system shown in Fig. 1-37. 

Unit I Y@] ,-+y-lT delay 

I I 
I I 
I I 
I I 

From Fig. 1-37 the input to the unit delay element is x [ n ]  - y [ n ] .  Thus, the output y [ n ]  of 
the unit delay element is [Eq. (1.111)l 

Rearranging, we obtain 

Thus the input-output relation of the system is described by a first-order difference equation 
with constant coefficients. 

1.38. A system has the input-output relation given by 

Determine whether the system is (a) memoryless, ( b )  causal, ( c )  linear, ( d )  time-in- 
variant, or ( e )  stable. 

( a )  Since the output value at n  depends on only the input value at n ,  the system is 
memoryless. 

( b )  Since the output does not depend on the future input values, the system is causal. 
(c) Let x [ n ]  = a , x , [ n l  + a z x , [ n ] .  Then 

Thus, the superposition property (1.68)  is satisfied and the system is linear. 
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- 2 - 1 0  1 2 3 4  n - 2 - 1  0 1 2  3 4  n 

Fig. 1-38 

( d )  Let y  , [ n ]  be the response to x l [ n ]  = x [ n  - no] .  Then 

y  , [ n ]  = ~ { x [ n  - n o ] )  = n x [ n  - n,] 

But ~ [ n  - n o ]  = ( n  - n , ) x [ n  - n o ]  # ~ , ( n ]  

Hence, the system is not time-invariant. 
(el  Let x [ n ]  = u[n l .  Then y [ n l =  nu[nl .  Thus, the bounded unit step sequence produces an 

output sequence that grows without bound (Fig. 1-38) and the system is not B I B 0  stable. 

139. A system has the input-output relation given by 

where k,, is a positive integer. Is the system time-invariant? 

Hence, the system is not time-invariant unless k, = 1. Note that the system described by Eq. 
(1 .114)  is called a compressor. It creates the output sequence by selecting every koth sample of 
the input sequence. Thus, it is obvious that this system is time-varying. 

1.40. Consider the system whose input-output relation is given by the linear equation 

y = a x + b  (1.115) 

where x and y  are the input and output of the system, respectively, and a and b are 
constants. Is this system linear? 

If b + 0, then the system is not linear because x = 0 implies y  = b # 0. If b = 0, then the 
system is linear. 

1.41. The system represented by T in Fig. 1-39 is known to be time-invariant. When the 
inputs to the system are xl[n], x,[n], and x,[n], the outputs of the system are yl[n], 
y,[n], and y , [ n ]  as shown. Determine whether the system is linear. 

From Fig. 1-39 it is seen that 

x 3 [ n ]  = x l [ n ]  + x , [ n  - 21 
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Fig. 1-39 

Thus, if T is linear, then 

T{xJnI) = T{x,[nl}  + T(x,[n - 21) = y , [ n I  + y , [ n  - 21 
which is shown in Fig. 1-40. From Figs. 1-39 and 1-40 we see that 

y 3 b I  +y,[nI + y J n  - 21 

Hence, the system is not linear. 

- 2 - 1 0 1 2 3 4  n -2 - 1  

Fig. 1-90 

1.42. Give an example of a system that satisfies the condition of additivity (1.66) but not the 
condition of  homogeneity ( 1.67). 
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Consider a discrete-time system represented by an operator T  such that 

y [ n ]  = T ( x [ n ] )  = x * [ n ]  (1.116) 

where x * [ n ]  is the complex conjugate of x [n ] .  Then 

T { x l [ n I  + x 2 [ n I }  = { x ~ [ n I  + ~ 2 [ n I } *  = x T [ n I  + x ? [ n I  = ~ l [ n I  + ~ 2 [ n I  

Next, if a is any arbitrary complex-valued constant, then 

T { a x [ n ] }  = { a x [ n ] )  * = cu*x*[n] = a * y [ n ]  # a y [ n ]  

Thus, the system is additive but not homogeneous. 

Show that the causality for a continuous-time linear system is equivalent to the 
following statement: For any time t o  and any input x ( t )  with x ( t )  = 0 for t r r , , ,  
the output y ( t )  is zero for t  I to .  

Find a nonlinear system that is causal but does not satisfy this condition. 
Find a nonlinear system that satisfies this condition but is not causal. 

Since the system is linear, if x ( t )  = 0  for all I ,  then y ( t )  = 0  for all t .  Thus, if the system is 
causal, then x ( r )  = 0  for t  _< to  implies that y ( t )  = 0  for 1 I I,. This is the necessary 
condition. That this condition is also sufficient is shown as follows: let x,( t )  and x,(t) be 
two inputs of the system and let y , ( t )  and y,(t) be the corresponding outputs. If 
x , ( t )  =x, ( t )  for t  I to ,  or x ( r )  = x , ( t )  - x 2 ( t )  = 0  for I s t , ,  then y , ( t )  = y 2 ( t )  for I s t , ,  
or y ( t ) = y , ( ~ ) - y 2 ( t ) = 0  for t s  t,. 

Consider the system with the input-output relation 

y ( t )  = x ( t )  + l 

This system is nonlinear (Prob. 1.40) and causal since the value of y ( t )  depends on only 
the present value of x ( t ) .  But with x ( t )  = 0  for I I I,, y ( t )  = I for t s t,. 
Consider the system with the input-output relation 

y ( t )  = x ( t ) x ( t  + 1 )  

It is obvious that this system is nonlinear (see Prob. 1.35) and noncausal since the value of 
y ( t )  at time I depends on the value of x( t  + I )  of the input at time I + 1. Yet x ( t )  = 0  for 
t  I t, implies that y ( t )  = 0  for I I I,. 

1.44. Let T represent a continuous-time LTI system. Then show that 

T{es'} = ks' 

where s is a complex variable and h is a complex constant. 

Let y ( t )  be the output of the system with input x ( t )  = e". Then 

T{eS t )  = y ( t )  

Since the system is time-invariant, we have 

T(es( '+'( l ))  = y  ( I  + t o )  

for arbitrary real to .  Since the system is linear, we have 

T { ~ ~ ( ' + ' I I ) )  = T{eS' e s ' ~ }  = e"~T{eS')  = e S ' ~ y ( t )  

Hence, y( r  +I,) =eH0y ( t )  
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Setting t = 0, we obtain 

 to) =y(0)eS1" 

Since to is arbitrary, by changing to to t,' we can rewrite Eq. (1.118) as 

y ( t )  = y(0)eS1 = hes' 

or T ( e S ' }  = AeS' 

where A = ~ ( 0 ) .  

1.45. Let T represent a discrete-time LTI system. Then show that 

T { z n )  = h z n  

where z is a complex variable and A is a complex constant. 

Let y[n] be the output of the system with input x[n]  = zn.  Then 

T b n j  = y b l  

Since the system is time-invariant, we have 

T { z n + " ~ j  = y[n + no] 

for arbitrary integer no. Since the system is linear, we have 

Hence, y[n + n o  ] = znOy[n]  

Setting n = 0, we obtain 

Since no is arbitrary, by changing no to n, we can rewrite Eq. (1.120) as 

y[n 3 = y[O]zn = Azn 

or T ( z n )  = Azn 

where A = y[O]. 
In mathematical language, a function x( . )  satisfying the equation 

is called an eigenfunction (or characteristic function) of the operator T ,  and the constant A is 
called the eigenvalue (or characteristic value) corresponding to the eigenfunction x(.) .  Thus 
Eqs. (1.117) and (1.119) indicate that the complex exponential functions are eigenfunctions of 
any LTI system. 

Supplementary Problems 

1.46. Express the signals shown in Fig. 1-41 in terms of unit step functions. 

t 
Ans. ( a )  x ( t )  = - [u ( t )  - u(t - 2)1 

2 
(6) ~ ( t )  = u(t + 1) + 2u(t)  - u(t - 1 )  - u(t - 2) - ~ ( t  - 3) 
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(4 
Fig. 1-41 

1.47. Express the sequences shown in Fig. 1-42 in terms of unit step functions. 

Am. ( a )  x[nl=u[n]-u[n - ( N  + I)] 
( b )  x[n]= -u[-n - 11 

(c) x[nl = u[n + 21 - u[n - 41 

(4 
Fig. 1-42 
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Determine the even and odd components of the following signals: 

Am. (a)  xe(t) = i ,  xo(t) = i sgn t 
1 1 

(b) x,(t) = -cos wot, xJt) = -sin wot fi fi 
(c) x,[nl = jcos n,n,  xo[nl = -sin Ron 

(d l  xe[nl = S[nI, xo[nl = 0 

Let x(t) be an arbitrary signal with even and odd parts denoted by xe(t) and xo(t), 
respectively. Show that 

Hint: Use the results from Prob. 1.7 and Eq. (1.77). 

Let x[n] be an arbitrary sequence with even and odd parts denoted by x,[nl and xo[n], 
respectively. Show that 

Hinr: Use the results from Prob. 1.7 and Eq. (1.77). 

Determine whether or not each of the following signals is periodic. If a signal is periodic, 
determine its fundamental period. 

( a )  x(r) = cos 2r + - ( 1) 

( g )  x[nl=cos - cos - ( 1  ("4") 
(h)  x[n] = cos (2 - + sln . ( y  ) - 2cos(?) 

Am. ( a )  Periodic, period = .rr ( b )  Periodic, period = .rr 

(c) Nonperiodic ( d l  Periodic, period = 2 
(el  Nonperiodic (f Periodic, period = 8 

( g  ) Nonperiodic (h) Periodic, period = 16 
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1.52. Show that if x [ n ]  is periodic with period N, then 

Hint: See Prob. 1.17. 

1.53. ( a )  What is S(2t)? 

( b )  What is S[2n]? 

Am. ( a )  S ( 2 t ) = $ ( t )  

( b )  S [2n l=  S [ n ]  

1.54. Show that 

sy -I) = - S 1 ( t )  

Hint: Use Eqs. (1.101) and (1.99). 

1.55. Evaluate the following integrals: 

Ans. ( a )  sin t 

( b )  1 for t  > 0 and 0 for t  < 0; not defined for t = 0 

( c )  0 

( d )  .sr 

1.56. Consider a continuous-time system with the input-output relation 

Determine whether this system is ( a )  linear, ( b )  time-invariant, ( c )  causal. 

1.57. Consider a continuous-time system with the input-output relation 

Determine whether this system is ( a )  linear, ( b )  time-invariant. 

Am. ( a )  Linear; ( b )  Time-varying 

1.58. Consider a discrete-time system with the input-output relation 

y [ n ]  = T { x [ n ] )  = x 2 [ n ]  

Determine whether this system is ( a )  linear, ( b )  time-invariant. 

Ans. ( a )  Nonlinear; ( b )  Time-invariant 
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1.59. Give an example of a system that satisfies the condition of homogeneity (1 .67)  but not the 
condition of additivity (1.66).  

Ans. Consider the system described by 

1.60. Give an example of a linear time-varying system such that with a periodic input the correspond- 
ing output is not periodic. 

Ans. y [n]  = T { x [ n ] )  = m [ n ]  

1.61. A system is called invertible if we can determine its input signal x uniquely by observing its 
output signal y. This is illustrated in Fig. 1-43. Determine if each of the following systems is 
invertible. If the system is invertible, give the inverse system. 

Fig. 1-43 

X 

Ans. ( a )  Invertible; x ( t ) =  i y ( r )  
( b )  Not invertible 

d y ( 0  
( c )  Invertible; x(t ) = - 

dt 
( d )  Invertible; x [ n ]  = y[n]  - y[n - 11 

System 

(el Not invertible 

Y Inverse 
system 

x - 



Chapter 2 

Linear Time-Invariant Systems 

2.1 INTRODUCTION 

Two most important attributes of systems are linearity and time-invariance. In this 
chapter we develop the fundamental input-output relationship for systems having these 
attributes. It will be shown that the input-output relationship for LTI systems is described 
in terms of a convolution operation. The importance of the convolution operation in LTI 
systems stems from the fact that knowledge of the response of an LTI system to the unit 
impulse input allows us to find its output to any input signals. Specifying the input-output 
relationships for LTI systems by differential and difference equations will also be dis- 
cussed. 

2.2 RESPONSE OF A CONTINUOUS-TIME LTI SYSTEM AND 
THE CONVOLUTION INTEGRAL 

A. Impulse Response: 

The impulse response h(t)  of a continuous-time LTI system (represented by T) is 
defined to be the response of the system when the input is 6(t), that is, 

B. Response to an Arbitrary Input: 

From Eq. (1.27) the input x (  t )  can be expressed as 

Since the system is linear, the response y( t of the system to an arbitrary input x( t ) can be 
expressed as 

Since the system is time-invariant, we have 

Substituting Eq. (2.4) into Eq. (2.31, we obtain 
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Equation (2.5) indicates that a continuous-time LTI system is completely characterized by 
its impulse response h( t 1. 

C. Convolution Integral: 

Equation (2.5)  defines the convolution of two continuous-time signals x ( t )  and h ( t )  
denoted by 

Equation (2.6) is commonly called the convolution integral. Thus, we have the fundamental 
result that the output of any continuous-time LTI system is the convolution of the input x ( t )  
with the impulse response h ( t )  of the system. Figure 2-1 illustrates the definition of the 
impulse response h ( t )  and the relationship of Eq. (2.6). 

Fig. 2-1 Continuous-time LTl system. 

D. Properties of the Convolution Integral: 

The convolution integral has the following properties. 

I .  Commutative: 

~ ( t )  * h ( t )  = h ( t )  * ~ ( t )  

2. Associative: 

{ x P )  * h l ( 4  * h , ( t )  = x ( t )  * { h l ( f )  * h 2 ( 4  
3. Distributive: 

x ( t )  * { h , ( t ) )  + h N  = x ( t )  * h l ( t )  + x ( t )  * h , ( t )  

E. Convolution Integral Operation: 

Applying the commutative property (2.7) of convolution to Eq. (2.61, we obtain 
00 

( t )  = h )  * x )  = h ( r ) x ( t  - r )  d r  (2 .10 )  
- m 

which may at times be easier to evaluate than Eq. (2.6). From Eq. (2 .6)  we observe that 
the convolution integral operation involves the following four steps: 

1. The impulse response h ( ~ )  is time-reversed (that is, reflected about the origin) to 
obtain h( -7) and then shifted by t to form h( t  - r )  = h [ - ( r  - t ) ]  which is a function 
of T with parameter t .  

2. The signal x ( r )  and h( t  - r )  are multiplied together for all values of r with t fixed at 
some value. 
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3. The product x ( ~ ) h ( t  - T)  is integrated over all T to produce a single output value 
At) .  

4. Steps 1 to 3 are repeated as I varies over - 03 to 03 to produce the entire output y( t ). 

Examples of the above convolution integral operation are given in Probs. 2.4 to 2.6. 

F. Step Response: 

The step response s(t)  of a continuous-time LTI system (represented by T) is defined to 
be the response of the system when the input is 41) ;  that is, 

In many applications, the step response d t )  is also a useful characterization of the system. 
The step response s ( t )  can be easily determined by Eq. (2.10); that is, 

Thus, the step 
Differentiating 

response s(t) can be obtained by integrating the impulse response h(t). 
Eq. (2.12) with respect to t, we get 

Thus, the impulse response h( t )  can be determined by differentiating the step response 
d l ) .  

2.3 PROPERTIES OF CONTINUOUS-TIME LTI SYSTEMS 

A. Systems with or without Memory: 

Since the output y(t)  of a memoryless system depends on only the present input x(t), 
then, if the system is also linear and time-invariant, this relationship can only be of the 
form 

Y ( [ )  = Kx(t) (2.14) 

where K is a (gain) constant. Thus, the corresponding impulse response h(f) is simply 

h( t )  = K6(t) (2.15) 

Therefore, if h(tJ # 0 for I,, # 0, the continuous-time LTI system has memory. 

B. Causality: 

As discussed in Sec. 1.5D, a causal system does not respond to an input event until that 
event actually occurs. Therefore, for a causal continuous-time LTI system, we have 

Applying the causality condition (2.16) to Eq. (2.101, the output of a causal continuous-time 



CHAP. 21 LINEAR TIME-INVARIANT SYSTEMS 

LTI system is expressed as 

Alternatively, applying the causality condition ( 2.16) to  Eq. (2.61, we have 

y ( t )  = lt x ( r ) h ( t  - T )  d r  (2.18) 
- w 

Equation (2.18) shows that the only values of the input x ( t )  used to evaluate the output 
y( t )  are those for r 5 t .  

Based on the causality condition (2.161, any signal x( t )  is called causal if 

and is called anticausal if 

x ( t )  = 0 t > O  

Then, from Eqs. (2.17), (2. I8), and (2. Iga), when the input x ( t )  is causal, the output y(t ) 
of a causal continuous-time LTI system is given by 

C. Stability: 

The BIBO (bounded-input/bounded-output) stability of an LTI system (Sec. 1.5H) is 
readily ascertained from its impulse response. It can be shown (Prob. 2.13) that a 
continuous-time LTI system is BIBO stable if its impulse response is absolutely integrable, 
that is, 

2.4 EIGENFUNCTIONS OF CONTINUOUS-TIME LTI SYSTEMS 

In Chap. 1 (Prob. 1.44) we saw that the eigenfunctions of continuous-time LTI systems 
represented by T are the complex exponentials eS', with s a complex variable. That is, 

where h is the eigenvalue of T associated with e"'. Setting x( t )  = es' in Eq. (2.10), we have 

where 

Thus, the eigenvalue of a continuous-time LTI system associated with the eigenfunction es' 
is given by H(s )  which is a complex constant whose value is determined by the value of s 
via Eq. (2.24). Note from Eq. (2.23) that y(0) = H(s)  (see Prob. 1.44). 

The above results underlie the definitions of the Laplace transform and Fourier 
transform which will be discussed in Chaps. 3 and 5. 
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2.5 SYSTEMS DESCRIBED BY DIFFERENTIAL EQUATIONS 

A. Linear Constant-Coefficient Differential Equations: 

A general Nth-order linear constant-coefficient differential equation is given by 

where coefficients a ,  and b, are real constants. The order N refers to the highest 
derivative of y ( 0  in Eq. (2.25).  Such differential equations play a central role in describing 
the input-output relationships of a wide variety of electrical, mechanical, chemical, and 
biological systems. For instance, in the RC circuit considered in Prob. 1.32, the input 
x ( 0  = il,(O and the output y ( l )  = i - , . ( t)  are related by a first-order constant-coefficient 
differential equation [Eq. ( l . 1 0 5 ) ]  

The general solution of Eq. (2 .25)  for a particular input x ( t )  is given by 

where y , ( t )  is a particular solution satisfying Eq. (2 .25)  and y h ( t )  is a homogeneous 
solution (or complementary solution) satisfying the homogeneous differential equation 

The exact form of yh( t )  is determined by N auxiliary conditions. Note that Eq. (2 .25)  does 
not completely specify 
conditions are specified. 

the output y ( t )  in terms of the input x ( t )  unless auxiliary 
In general, a set of auxiliary conditions are the values of 

at some point in time. 

B. Linearity: 

The system specified by Eq. (2.25) will be linear only if all of the auxiliary conditions 
are zero (see Prob. 2.21). If the auxiliary conditions are not zero, then the response y ( t )  of 
a system can be expressed as 

where yzi(O, called the zero-input response, is the response to the auxiliary conditions, and 
yz,( t) ,  called the zero-state response, is the response of a linear system with zero auxiliary 
conditions. This is illustrated in Fig. 2-2. 

Note that y, ,( t)  # yh( t )  and y, ,( t)  2 y,(t)  and that in general yZi( 0 contains yh( t )  and 
y,,( t )  contains both yh ( t  and y,( t (see Prob. 2.20). 
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Y,(O 

Fig. 2-2 Zero-state and zero-input responses. 

C. Causality: 

In order for the linear system described by Eq. (2.25) to be causal we must assume the 
condition of initial rest (or an initially relaxed condition). That is, if x(  t)  = 0 for t I t,,, then 
assume y(t)  = 0 for t 5 to (see Prob. 1.43). Thus, the response for t > to can be calculated 
from Eq. (2.25) with the initial conditions 

where 

Clearly, at initial rest y,,(t) = 0. 

D. Time-Invariance: 

For a linear causal system, initial rest also implies time-invariance (Prob. 2.22). 

E. Impulse Response: 

The impulse response h(t)  of the continuous-time LTI system described by Eq. (2.25) 
satisfies the differential equation 

with the initial rest condition. Examples of finding impulse responses are given in Probs. 
2.23 to 2.25. In later chapters, we will find the impulse response by using transform 
techniques. 

2.6 RESPONSE OF A DISCRETE-TIME LTI SYSTEM AND CONVOLUTION SUM 

A. Impulse Response: 

The impulse response (or unit sample response) h [ n ]  of a discrete-time LTI system 
(represented by T) is defined to be the response of the system when the input is 6[n], that 
is, 
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B. Response to an Arbitrary Input: 

From Eq. ( 1.51) the input x [ n ]  can be expressed as 

Since the system is linear, the response y [ n ]  of the system to an arbitrary input x [ n ]  can be 
expressed as 

= x [ k ] T { S [ n  - k]} 

Since the system is time-invariant, we have 

h [ n  - k ]  = T { S [ n  - k ] )  (2 .33)  

Substituting Eq. (2.33) into Eq. (2.321, we obtain 
x 

Y [ ~ I  = C x [ k l h [ n  - k l  
k =  - m  

Equation (2 .34)  indicates that a discrete-time LTI system is completely characterized by its 
impulse response h [ n ] .  

C. Convolution Sum: 

Equation (2.34) defines the convolution of two sequences x [ n ]  and h [ n ]  denoted by 

Equation (2.35) is commonly called the con~~olution sum. Thus, again, we have the 
fundamental result that the output of any discrete-time LTI system is the concolution of the 
input x [ n ]  with the impulse response h[n]  of the system. 

Figure 2-3 illustrates the definition of the impulse response h [ n ]  and the relationship 
of Eq. (2.35).  

D. Properties of the Convolution Sum: 

6 1 4  
). 

xlnl 

The following properties of the convolution sum are analogous to the convolution 
integral properties shown in Sec. 2.3. 

Fig. 2-3 Discrete-time LTI system. 

~n 
system 

hlnl 

v l n l =  x [ n l *  hlnj 



CHAP. 21 LINEAR TIME-INVARIANT SYSTEMS 

I .  Commutative: 

x [ n ]  * h [ n ]  = h [ n ]  * x [ n ]  (2.36) 

2. Associative: 

{ ~ [ n ]  * h , [ n ] } *  h2[nl =+I * ( h , [ n l  *h ,[nI l  (2 .37)  

3. Distributive: 

x [ n ]  * { h , [ n ] ]  + h , [ n ] ]  =+I * h , [n l  + x b ]  * h , [ n l  (2.38) 

E. Convolution Sum Operation: 

Again, applying the commutative property (2.36) of the convolution sum to Eq. (2.351, 
we obtain 

which may at times be easier to evaluate than Eq. (2.35). Similar to the continuous-time 
case, the convolution sum [Eq. (2.391 operation involves the following four steps: 

1. The impulse response h [ k ]  is time-reversed (that is, reflected about the origin) to 
obtain h [ - k ]  and then shifted by n  to form h[n  - k ]  = h [ - ( k  - n) ]  which is a 
function of k with parameter n.  

2. Two sequences x [ k ]  and h[n  - k ]  are multiplied together for all values of k  with n  
fixed at some value. 

3. The product x [ k ] h [ n  - k ]  is summed over all k  to produce a single output sample 
y[nI. 

4. Steps 1 to 3 are repeated as n  varies over -GO to GO to produce the entire output y[n]. 

Examples of the above convolution sum operation are given in Probs. 2.28 and 2.30. 

F. Step Response: 

The step response s [n]  of a discrete-time LTI system with the impulse response h [ n ]  is 
readily obtained from Eq. (2.39) as 

From Eq. (2.40) we have 

h [ n ]  = s [ n ]  - s [ n  - l ]  (2.41) 

Equations (2,401 and (2.41) are the discrete-time counterparts of Eqs. (2.12) and (2,131, 
respectively. 

2.7 PROPERTIES OF DISCRETE-TIME LTI SYSTEMS 

A. Systems with or without Memory: 

Since the output y[n]  of a memoryless system depends on only the present input x [ n ] ,  
then, if the system is also linear and time-invariant, this relationship can only be of the 
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form 

Y[.] = K x [ n ]  ( 2 . 4 2 )  

where K is a (gain) constant. Thus, the corresponding impulse response is simply 

h[n] = K 6 [ n ]  ( 2 . 4 3 )  

Therefore, if h[n,] # 0 for n, # 0, the discrete-time LTI system has memory. 

B. Causality: 

Similar to the continuous-time case, the causality condition for a discrete-time LTI 
system is 

Applying the causality condition (2 .44)  to Eq. (2.391, the output of a causal discrete-time 
LTI system is expressed as 

72 

Y[.] = C h [ k ] x [ n  - k ]  ( 2 . 4 5 )  
k = O  

Alternatively, applying the causality condition (2 .44)  to Eq. (Z..V), we have 

Equation (2 .46)  shows that the only values of the input x[n] used to evaluate the output 
y[n] are those for k I n. 

As in the continuous-time case, we say that any sequence x[n] is called causal if 

and is called anticausal if 

Then, when the input x[n] is causal, the output y[n] of a causal discrete-time LTI system 
is given by 

C. Stability: 

It can be shown (Prob. 2.37) that a discrete-time LTI system is B I B 0  stable if its 
impulse response is absolutely summable, that is, 

2.8 EIGENFUNCTIONS OF DISCRETE-TIME LTI SYSTEMS 

In Chap. 1 (Prob. 1.45) we saw that the eigenfunctions of discrete-time LTI systems 
represented by T are the complex exponentials z n ,  with z a complex variable. That is, 

T(zn) = Azn ( 2 . 5 0 )  
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where A is the eigenvalue of T associated with zn. Setting x[n] = zn in Eq. (2.391, we have 

k =  - m  

= H(z)zn  = Azn 

where A = H(z)  = 

Thus, the eigenvalue of a discrete-time LTI 

(2.51) 
rn x h [ k ]  zPk  (2.52) 

k =  -ra 

system associated with the eigenfunction zn  is 
given by H(z)  which is a complex constant whose value is determined by the value of z via 
Eq. (2.52). Note from Eq. (2.51) that y[O] = H(z) (see Prob. 1.45). 

The above results underlie the definitions of the z-transform and discrete-time Fourier 
transform which will be discussed in Chaps. 4 and 6. 

2.9 SYSTEMS DESCRIBED BY DIFFERENCE EQUATIONS 

The role of differential equations in describing continuous-time systems is played by 
difference equations for discre te-time systems. 

A. Linear Constant-Coefficient Difference Equations: 

The discrete-time counterpart of the general differential equation (2.25) is the Nth- 
order linear constant-coefficient difference equation given by 

N M 

where coefficients a, and b, are real constants. The order N refers to the largest delay of 
y[n] in Eq. (2.53). An example of the class of linear constant-coefficient difference 
equations is given in Chap. I (Prob. 1.37). Analogous to the continuous-time case, the 
solution of Eq. (2.53) and all properties of systems, such as linearity, causality, and 
time-invariance, can be developed following an approach that directly parallels the 
discussion for differential equations. Again we emphasize that the system described by Eq. 
(2.53) will be causal and LTI if the system is initially at rest. 

B. Recursive Formulation: 

An alternate and simpler approach is available for the solution of Eq. (2.53). Rear- 
ranging Eq. (2.53) in the form 

we obtain a formula to compute the output at time n in terms of the present input and the 
previous values of the input and output. From Eq. (2.54) we see that the need for auxiliary 
conditions is obvious and that to calculate y[n] starting at n = no, we must be given the 
values of y[n,, - 11, y[no - 21,. . . , y[no - N ]  as well as the input x[n] for n 2 n,, - M. The 
general form of Eq. (2.54) is called a recursiue equation since i t  specifies a recursive 
procedure for determining the output in terms of the input and previous outputs. In the 
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special case when N = 0, from Eq. (2.53) we have 

which is a nonrecursice equation since previous output values are not required to compute 
the present output. Thus, in this case, auxiliary conditions are not needed to determine 
Y ~ I .  

C. Impulse Response: 

Unlike the continuous-time case, the impulse response h[n] of a discrete-time LTI 
system described by Eq. (2.53) or, equivalently, by Eq. (2.54) can be determined easily as 

For the system described by Eq. (2.55) the impulse response h[n] is given by 

Note that the impulse response for this system has finite terms; that is, it is nonzero for 
only a finite time duration. Because of this property, the system specified by Eq. (2.55) is 
known as a finite impulse response (FIR) system. On the other hand, a system whose 
impulse response is nonzero for an infinite time duration is said to be an infinite impulse 
response (IIR) system. Examples of finding impulse responses are given in Probs. 2.44 and 
2.45. In Chap. 4, we will find the impulse response by using transform techniques. 

Solved Problems 

RESPONSES OF A CONTINUOUS-TIME LTI SYSTEM AND CONVOLUTION 

2.1. Verify Eqs. ( 2 . 7 )  and ( 2 . 8 ) ,  that is, 

( a )  x ( t ) * h ( t ) = h ( t ) * x ( t )  

( b )  ( x ( t ) *  h , ( t ) J *  h , ( t )  = x ( t ) * ( h , ( t ) *  h,(t)J 

( a )  By definition (2.6) 

By changing the variable t - T = A ,  we have 
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( b )  Let x( t )*  h , ( t ) =  f , ( t )  and h, ( t )*  h 2 ( t ) =  f2( t) .  Then 

Substituting A = a  - T and interchanging the order of integration, we have 

Now, since 

we have 

Thus, 

2.2. Show that 

I - t o  

( d )  x ( t )  * u ( t  - t o )  = 

( a )  By definition (2 .6)  and Eq. (1.22) we have 

( b )  By Eqs. (2 .7 )  and (1.22) we have 

(c) By Eqs. (2 .6 )  and (1.19) we have 

since u(t - 7 )  = 
7 < t  
7 > t '  
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(d l  In a similar manner, we have 

m 

x ( t )  * u(t  - t , , )  = x ( r ) u ( t  - 7 - t o )  d r  = 

2.3. Let y ( r )  = x ( r )  * h(t  1. Then show that 

and 

By Eq. ( 2 . 6 )  we have 

Let r  - t ,  = A .  Then T = A + t ,  and Eq. (2.63b) becomes 

Comparing Eqs. ( 2 . 6 3 ~ )  and (2.63~1,  we see that replacing I in Eq. ( 2 . 6 3 ~ )  by r - r , - r,, we 
obtain Eq. ( 2 . 6 3 ~ ) .  Thus, we conclude that 

2.4. The input x ( t )  and the impulse response h ( t )  of a continuous time LTI system are 
given by 

(a) Compute the output y ( t )  by Eq. ( 2 . 6 ) .  

( b )  Compute the output y ( t )  by Eq. (2.10).  

( a )  By Eq. ( 2 . 6 )  

Functions X ( T )  and h(t - r )  are shown in Fig. 2-4(a) for t  < 0 and t > 0. From Fig. 2-4(a) 
we see that for t < 0, x ( r )  and h(t - T )  do not overlap, while for t > 0, they overlap from 
T = 0 to T = I .  Hence, for t < 0, y ( t )  = 0. For t > 0, we have 

Thus, we can write the output y ( t )  as 
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( b )  By Eq. (2.10) 

LINEAR TIME-INVARIANT SYSTEMS 

Functions h(r)  and x(t - 7) are shown in Fig. 2-4(b) for t  < 0 and t > 0. Again from Fig. 
2-4(b) we see that for t < 0, h(7) and x(t - 7 )  do not overlap, while for t > 0, they overlap 
from 7 = 0 to r  = t .  Hence, for t < 0, y ( t )  = 0. For t > 0, we have 

Thus, we can write the output y ( t )  as 

which is the same as Eq. (2.64). 

(a) 

Fig. 2-4 
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2.5. Compute the output y(t for a continuous-time LTI system whose impulse response 
h ( t )  and the input x ( 0  are given by 

By Eq. ( 2 . 6 )  
m 

y )  ( t )  * h )  = 1 x ( r ) h ( t  - r )  d r  
- m 

Functions ~ ( 7 )  and h(t - 7 )  are shown in Fig. 2-5(a) for t < 0 and t > 0. From Fig. 2-5(a) we 
see that for t < 0, X ( T )  and h(t - 7 )  overlap from 7 = - w to 7 = t ,  while for t > 0, they overlap 
from 7 = -01 to 7 = 0. Hence, for t < 0, we have 

y ( r )  = j' e'Te- 'V-T)  
1 

dr = e - a ' G 2 a ' d r  = -eat  ( 2 . 6 6 ~ )  
- rn 2 a 

For t > 0, we have 

(4 
Fig. 2-5 
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Combining Eqs. ( 2 . 6 6 ~ )  and (2.6681, we can write y ( t )  as 

1 
y ( t )  = -e-uIrl CY>O 

2 a  

which is shown in Fig. 2 - S b ) .  

2.6. Evaluate y ( t )  = x ( t )  * h ( t  ), where x ( t )  and h ( t )  are shown in Fig. 2-6, ( a )  by an 
analytical technique, and ( b )  by a graphical method. 

0 1 2  3 1  

Fig. 2-6 

( a )  We first express x(t  and h ( t )  in functional form: 

Then, by Eq. ( 2 . 6 )  we have 

Since u ( 7 ) u ( t  - 7 )  = 
O < r < t , t > O  
otherwise 

u ( r ) u ( t  - 2  - 7 )  = (A 0 < 7 < t - 2 , t > 2  
otherwise 

~ ( 7 -  3 ) u ( t  - 7 )  = 
3 < 7 < t , t > 3  
otherwise 

U ( T - ~ ) U ( ~ - ~ - T )  = 
3 < ~ < t - 2 , t > 5  
otherwise 
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we can express y(t  ) as 

= t u ( t )  - ( t  - 2 ) u ( t  - 2 )  - ( t  - 3 ) u ( t  - 3 )  + ( r  - 5 ) u ( t  - 5 )  

which is plotted in Fig. 2-7. 

Fig. 2-7 

( b )  Functions h ( r ) ,  X ( T )  and h(t - 71, x ( r )h ( t  - 7 )  for different values of t are sketched in 
Fig. 2-8. From Fig. 2-8 we see that x ( r )  and h(t - 7 )  do not overlap for t  < 0 and t  > 5,  
and hence y ( t )  = 0 for t  < 0 and t  > 5. For the other intervals, x ( r )  and h(t - T )  overlap. 
Thus, computing the area under the rectangular pulses for these intervals, we obtain 

which is plotted in Fig. 2-9. 

2.7. Let h ( t )  be the triangular pulse shown in Fig. 2-10(a) and let x ( t )  be the unit impulse 
train [Fig. 2-10(b)] expressed as 

Determine and sketch y ( t )  = h ( t )  * x( t )  for the following values of T: ( a )  T = 3, ( b )  
T = 2, ( c )  T = 1.5. 
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-2 - 1  0 1 2  3 1 4  S t 6  r 

1 - 2  

Fig. 2-8 
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- 1 0 1 2 3 4 5 6  I 

Fig. 2-9 

(b) 
Fig. 2-10 

Using Eqs. (2.59) and (2.91, we obtain 

( a )  For T = 3, Eq. (2.69) becomes 

which is sketched in Fig. 2-1 l(ah 
( b )  For T = 2, Eq. (2.69) becomes 

which is sketched in Fig. 2-1 1(b). 

( c )  For T = 1.5, Eq. (2.69) becomes 

which is sketched in Fig. 2-l l (c) .  Note that when T < 2 ,  the triangular pulses are no 
longer separated and they overlap. 
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(c) 

Fig. 2-11 

2.8. If x , ( t )  and x 2 ( t )  are both periodic signals with a common period To, the convolution 
of x  ,( t ) and x 2 ( t )  does not converge. In this case, we define the periodic conaolution 
of x , ( t )  and x 2 ( t )  as 

( a )  Show that f ( t )  is periodic with period To. 
( b )  Show that 

f  ( t )  = la' T 0 x , ( ( l x 2 ( t  - 7) d~ (2.71) 
a 

for any a .  

( c )  Compute and sketch the periodic convolution of the square-wave signal x ( t )  
shown in Fig. 2-12 with itself. 
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( b )  

Fig. 2-13 
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( a )  Since x2( t )  is periodic with period To, we have 

x2( t  + To - 7 )  = x Z ( t  - T )  

Then from Eq. (2.70) we have 

Thus, f ( t )  is periodic with period To. 
( b )  Since both x l ( r )  and x , ( i )  are periodic with the same period To, x1(7)x2(t - T )  is also 

periodic with period To. Then using property (1.88) (Prob. 1.17), we obtain 

for an arbitrary a. 

(c) We evaluate the periodic convolution graphically. Signals x ( r ) ,  x(t - T ) ,  and x ( r )x ( t  - T )  

are sketched in Fig. 2-13(a), from which we obtain 

0 < t  5 T0/2 

f ( t )  = I!& - To)  T0/2 < t  I To 
and f ( t  + To)  = f ( t )  

which is plotted in Fig. 2-13(b). 

PROPERTIES OF CONTINUOUS-TIME LTI SYSTEMS 

2.9. The signals in Figs. 2-14(a) and ( b )  are the input x ( t )  and the output y ( t ) ,  respec- 
tively, of a certain continuous-time LTI system. Sketch the output to  the following 
inputs: ( a )  x ( t  - 2); ( b )  i x ( t ) .  

( a )  Since the system is time-invariant, the output will be y(t - 2) which is sketched in Fig. 
2-14(~).  

( b )  Since the system is linear, the output will be fy( t)  which is sketched in Fig. 2-14(d). 

2.10. Consider a continuous-time LTI system whose step response is given by 

s ( t )  = e b r u ( t )  

Determine and sketch the output of this system to the input x ( t )  shown in Fig. 
2-15(a). 

From Fig. 2-15(a) the input x ( t )  can be expressed as 

x ( t )  = u ( t  - 1)  - u ( t  - 3 )  

Since the system is linear and time-invariant, the output y ( t )  is given by 

y ( t ) = s ( t - 1 ) - s ( t - 3 )  

= e - ( l -  l ) u ( t  - 1)  - e-(+3u(t - 3 )  

which is sketched in Fig. 2-15(b). 
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(4 
Fig. 2-14 

(b)  

Fig. 2-15 

2.11. Consider a continuous-time LTI system described by (see Prob. 1.56) 

( a )  Find and sketch the impulse response h ( t )  of the system. 
( b )  Is this system causal? 

( a )  Equation (2.72) can be rewritten as 
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Using Eqs. (2.61) and (2 .9 ) ,  Eq. (2.73) can be expressed as 

Thus, we obtain 

h ( t )  = : [ ~ ( t +  T f) - u ( ~ -  f)] = 0 
- T / 2 < t r  T / 2  ( 2.75) 
otherwise 

which is sketched in Fig. 2-16. 

( b )  From Fig. 2-16 or Eq. (2.75) we see that h ( t )  # 0 for t < 0. Hence, the system is not 
causal. 

-Tn 0 rn t 

Fig. 2-16 

2.12. Let y ( t )  be the output of a continuous-time LTI system with input x ( t ) .  Find the 
output of the system if the input is x l ( t ) ,  where x l ( t )  is the first derivative of x ( t ) .  

From Eq. (2 .10)  

Differentiating both sides of the above convolution integral with respect to 1 ,  we obtain 

which indicates that y l ( t )  is the output of the system when the input is x l ( t ) .  

2.13. Verify the B I B 0  stability condition [Eq. (2 .21)]  for continuous-time LTI systems. 

Assume that the input x ( t )  of a continuous-time LTI system is bounded, that is, 

I x ( t ) l l  k, all t ( 2 . 7 7 )  
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Then, using Eq. (2.10), we have 

since lx(t - 711 1 k, from Eq. (2.77). Therefore, if the impulse response is absolutely inte- 
grable, that is, 

then l y ( t  )I s k ,K = k, and the system is BIBO stable. 

2.14. The system shown in Fig. 2-17(a) is formed by connecting two systems in cascade. The 
impulse responses of the systems are given by h , ( t )  and h 2 ( 0 ,  respectively, and 

h , ( t )  = e - 2 ' u ( t )  h , ( t )  = 2 e - ' u ( t )  

( a )  Find the impulse response h ( t )  of the overall system shown in Fig. 2-17(b). 
( b )  Determine if the overall system is BIBO stable. 

(b) 

Fig. 2-17 

( a )  Let w ( t )  be the output of the first system. By Eq. (2 .6 )  

~ ( t )  = ~ ( t )  * h , ( t )  (2 .78)  

Then we have 

~ ( t )  = w ( t )  * h2( t )  = [ x ( O  * h,( t ) ]  * h2( t )  ( 2 .79 )  

But by the associativity property of convolution (2.81, Eq. (2.79) can be rewritten as 

~ ( t )  = x ( t )  * [ h l ( t ) * h 2 ( t ) ]  = ~ ( t ) * h ( O  (2 .80)  

Therefore, the impulse response of the overall system is given by 

h ( t )  = h d t )  * h 2 ( t )  (2.81) 
Thus, with the given h  ,( t ) and h2(t ), we have 
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( 6 )  Using the above h( t ), we have 

= 2 ( 1 - + ) = I  <a: 

Thus, the system is BIB0 stable. 

EIGENFUNCTIONS OF CONTINUOUS-TIME LTI SYSTEMS 

2.15. Consider a continuous-time LTI system with the input-output relation given by 

y ( t )  = 1' e - ( ' - ' ' x ( r )  d r  (2.82) 
-03  

( a )  Find the impulse response h(t) of this system. 

( b )  Show that the complex exponential function e"' is an eigenfunction of the system. 
( c )  Find the eigenvalue of the system corresponding to eS' by using the impulse 

response h(t) obtained in part ( a ) .  

( a )  From Eq. (2.821, definition (2.1),  and Eq. (1.21) we get 

h ( f  ) = /' e - ( 1 - T ) 6 ( 7 )  d7  = e - ( ' - ' ) I 7 =  0 - e  - t > O 
- m 

Thus, h ( t )  = e - ' ~ ( 1 )  ( 2.83) 

( 6 )  Let x ( f  ) = e". Then 

Thus, by definition (2 .22)  e" is the eigenfunction of the system and the associated 
eigenvalue is 

(c) Using Eqs. (2 .24)  and (2.83),  the eigenvalue associated with e"' is given by 

which is the same as Eq. (2.85). 

2.16. Consider the continuous-time LTI system described by 
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( a )  Find the eigenvalue of the system corresponding to the eigenfunction es'. 

( b )  Repeat part ( a )  by using the impulse function h ( t )  of the system. 

(a)  Substituting x ( r )  = e" in Eq. (2.861, we obtain 

Thus, the eigenvalue of the system corresponding to eS' is 

( b )  From Eq. (2.75) in Prob. 2.1 1 we have 

h ( t )  = A T [ u ( t  + :) - u ( l  - :)I = (:IT 
- T / 2 < t s T / 2  
otherwise 

Using Eq. (2.241, the eigenvalue H(s) corresponding to eS' is given by 

which is the same as Eq. (2.87). 

2.17. Consider a stable continuous-time LTI system with impulse response h ( t )  that is real 
and even. Show that cos w t  and sin wt  are eigenfunctions of this system with the same 
real eigenvalue. 

By setting s = jw in Eqs. (2.23) and (2.241, we see that eJ"' is an eigenfunction of a 
continuous-time LTI system and the corresponding eigenvalue is 

A = H( jw) = ) h ( r )  e-"'dr (2.88) 
- Z 

Since the system is stable, that is, 

since le-j"'J = 1. Thus, H( jw) converges for any w. Using Euler's formula, we have 
Ti 

H( jw) = / -?(r)  e '~" 'd i  = jW h(r) (cos  o r  - j sin w r )  dr 
- x 

w 

= j::(r) cos wr dr - j h ( r )  sin o r  d r  I-. 
Since cos o r  is an even function of r  and sin o r  is an odd function of 7 ,  and if h ( t )  is real and 
even, then h(r)cos o r  is even and h ( r )  sin wr is odd. Then by Eqs. (1 .75~)  and (1.77), Eq. 
(2.89 becomes 

m 

H( jo) = 2/ h ( r )  cos o r  dr  (2.90) 
0 
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Since cos wr  is an even function of w, changing w to -w in Eq. (2.90) and changing j to - j  in 
Eq. (2.891, we have 

m 

H (  - jw )  = H (  jw)* = 2 /  h ( r )  COS( - o r )  d r  
0 

= 2 j r n h ( r )  cos o r  d r  = H(  jw)  
0 

Thus, we see that the eigenvalue H ( j w )  corresponding to the eigenfunction el"' is real. Let the 
system be represented by T .  Then by Eqs. (2.231, (2.241, and (2.91) we have 

T(e jU ' }  = H (  jw)  e'"' ( 2 . 9 2 ~ )  

T [ ~ - J " ' }  = H (  - j w )  e-J"' = H (  j o )  e-I"' ( 2.92b) 

Now, since T is linear, we get 

T[COS o t }  = T{;(ej" '  + e-'"I ) }  = ; T ( ~ J ~ ' }  + : T ( ~ - J " '  1 
= ~ ( j ~ ) { ; ( ~ j " '  + e-Jwr ) }  = ~ ( j w ) c o s  wt ( 2 . 9 3 ~ )  

Thus, from Eqs. (2 .93~)  and (2.93b) we see that cos wt and sin wt are the eigenfunctions of the 
system with the same real eigenvalue H( j o )  given by Eq. (2.88) or (2.90). 

SYSTEMS DESCRIBED BY DIFFERENTIAL EQUATIONS 

2.18. The continuous-time system shown in Fig. 2-18 consists of one integrator and one 
scalar multiplier. Write a differential equation that relates the output y( t ) and the 
input x(  t 1. 

Fig. 2-18 

Let the input of the integrator shown in Fig. 2-18 be denoted by e(t). Then the 
input-output relation of the integrator is given by 

Differentiating both sides of Eq. (2.94) with respect to t ,  we obtain 
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Next, from Fig. 2-18 the input e(t) to the integrator is given by 

e ( t )  = x ( t )  - ay ( t )  

Substituting Eq. (2.96) into Eq. (2.95), we get 

which is the required first-order linear differential equation. 

2.19. The  continuous-time system shown in Fig. 2-19 consists of two integrators and two 
scalar multipliers. Write a differential equation that relates the output y ( t )  and the 
input x (  t ). 

Fig. 2-19 

Let e ( 0  and w(t) be the input and the output of the first integrator in Fig. 2-19, 
respectively. Using Eq. (2.951, the input to the first integrator is given by 

Since w(t) is the input to the second integrator in Fig. 2-19, we have 

Substituting Eq. (2.99) into Eq. (2.98), we get 

which is the required second-order linear differential equation. 
Note that, in general, the order of a continuous-time LTI system consisting of the 

interconnection of integrators and scalar multipliers is equal to the number of integrators in 
the system. 
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2.20. Consider a continuous-time system whose input x ( t )  and output y ( t )  are related by 

where a is a constant. 

( a )  Find y ( t )  with the auxiliary condition y(0) = y, and 

x ( t )  = ~ e - ~ ' u ( t )  (2.102) 

( b )  Express y ( t )  in terms of the zero-input and zero-state responses. 

( a )  Let 

where y p ( t )  is the particular solution satisfying Eq. (2.101) and y h ( t )  is the homogeneous 
solution which satisfies 

Assume that 

yp(t )  = ~ e - ~ '  t>O 

Substituting Eq. (2.104) into Eq. (2.101), we obtain 

- b ~ e - 6 '  + a ~ e - b '  = K ~ - ~ '  

from which we obtain A = K / ( a  - b), and 

To obtain yh( t ) ,  we assume 

y h ( t )  = BeS' 

Substituting this into Eq. (2.103) gives 

sBe"+aBe"=(s+a)Be"'=O 

from which we have s = -a  and 

yh(t )  = Be-"' 

Combining yp(t) and yh(t), we get 

K 
y ( t )  =Be-"+ - e - b ~  t > O  

a - b  

From Eq. (2.106) and the auxiliary condition y(O) =yo, we obtain 

K 
B = y o -  - 

a - b  

Thus, Eq. (2.106) becomes 
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For t < 0, we have x(t)  = 0, and Eq. (2.101 becomes Eq. (2.103). Hence, 

y ( r )  = Bepa' 1 <O 

From the auxiliary condition y(0) = y,, we obtain 

~ ( r )  =yoe-"' r < O  ( 2.108) 

(b)  Combining Eqs. (2.107) and (2.108), y(r) can be expressed in terms of y,,(t) (zero-input 
response) and y,,(t) (zero-state response) as 

where 

2.21. Consider the system in Prob. 2.20. 

( a )  Show that the system is not linear if y(0) = y,, # 0. 

( b )  Show that the system is linear if  y(0) = 0. 

( a )  Recall that a linear system has the property that zero input produces zero output (Sec. 
1.5E). However, if we let K = 0 in Eq. (2.102), we have x(r)  = 0, but from Eq. (2.109) we 
see that 

y ( t )  = y,,e-" + 0 Y o  + 0 
Thus, this system is nonlinear if y(0) = yo # 0. 

(b)  If  y(0) = 0, the system is linear. This is shown as follows. Let x J t )  and x,(t) be two input 
signals and let y , ( t )  and y,(r) be the corresponding outputs. That is, 

with the auxiliary conditions 

= ~ 2 ( 0 )  = 0 

Consider 

x ( r )  = a , x , ( t )  + a , x * ( t )  

where a ,  and a, are any complex numbers. Multiplying Eq. 
by a ?  and adding, we see that 

) ' ( r )  = a I ~ l ( t )  +azy , ( t )  

satisfies the differential equation 

dy ( t )  + a y ( t )  = x ( I )  
dr 

and also, from Eq. (2.113) 

(2.111) by a ,  and Eq. (2.112) 

~ ( 0 )  = a,y,(O) + ~ , Y , ( O )  = 0 

Therefore, y(t) is the output corresponding to x(t),  and thus the system is linear. 
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2.22. Consider the system in Prob. 2.20. Show that the initial rest condition y(0)  = 0 also 
implies that the system is time-invariant. 

Let y,( t )  be the response to an input x,( t )  and 

x I ( t )  = 0 t 1 0  (2.114) 

Then 

and Y d o )  = 0 (2.116) 

Now, let y2( t )  be the response to the shifted input x2( t ) = x ,(t - T).  From Eq. (2.114) we have 

x 2 ( t )  = 0 t s r  (2.117) 

Then y ,( t must satisfy 

and ~ ~ ( 7 1  = 0 

Now, from Eq. (2.115) we have 

If we let y2( t )  = y l ( t  - T), then by Eq. (2.116) we have 

yz(7) = Y,(T  - 7 )  = ~ 1 ( 0 )  = 0 

Thus, Eqs. (2.118) and (2.119) are satisfied and we conclude that the system is time-invariant. 

2.23. Consider the system in Prob. 2.20. Find the impulse response h ( r )  of the system. 

The impulse response h ( t )  should satisfy the differential equation 

The homogeneous solution hh( t )  to Eq. (2.120) satisfies 

To obtain hh(t )  we assume 

h h ( t )  = ceS' 

Substituting this into Eq. (2.121) gives 

sces' + aces' = ( s  + a)ces' = 0 

from which we have s = - a  and 

h h ( t )  = ce-"'u(t) 

We predict that the particular solution hp( t )  is zero since hp( t )  cannot contain N t ) .  Otherwise, 
h ( t )  would have a derivative of S(t)  that is not part of the right-hand side of Eq. (2.120). Thus, 

h ( t )  =ce-" 'u(t)  (2.123) 
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To find the constant c ,  substituting Eq. (2.123) into Eq. (2.120), we obtain 

Using Eqs. (1 .25)  and (1.301, the above equation becomes 

so that c = 1. Thus, the impulse response is given by 

h ( t )  = e -" 'u ( t )  

2-24 Consider the system in Prob. 2.20 with y(0) = 0. 

(a)  Find the step response s ( t )  of the system without using the impulse response 
h( t  1. 

( b )  Find the step response d r )  with the impulse response h ( t )  obtained in Prob. 
2.23. 

(c) Find the impulse response h(r from s ( t  ). 

( a )  In Prob. 2.20 

Setting K = 1, b = 0, we obtain x ( t )  = u ( t )  and then y ( t )  = s ( t  1. Thus, setting K = 1, 
b = 0, and y ( 0 )  = y o  = 0 in Eq. (2.109), we obtain the step response 

( b )  Using Eqs. (2 .12)  and (2.124) in Prob. 2.23, the step response s ( t )  is given by 

which is the same as Eq. (2.125). 

(c) Using Eqs. (2.13) and (2.125), the impulse response h ( t )  is given by 

Using Eqs. (1 .25)  and (1.30), we have 

Thus, h ( t )  = e -" 'u ( t )  

which is the same as Eq. (1.124). 
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2.25. Consider the system described by 

y f ( t )  + 2 y ( t )  = x ( t )  + x l ( t )  

Find the impulse response h ( t )  of the system. 

The impulse response h ( t )  should satisfy the differential equation 

h ' ( t )  + 2 h ( t )  = 6 ( r )  + S ' ( t )  ( 2.127) 

The homogeneous solution h,( t )  to Eq. (2.127) is [see Prob. 2.23 and Eq. (2.12211 

h h ( t )  = ~ ~ e - ~ ' u ( t )  

Assuming the particular solution h J t )  of the form 

the general solution is 

h ( t )  = C ~ ~ - ~ ' U ( I )  + c t 6 ( t )  (2 .128)  

The delta function 6 ( t )  must be present so that h l ( t )  contributes S1(t)  to the left-hand side of 
Eq. (1.127).  Substituting Eq. (2.128) into Eq. (2.1271, we obtain 

= 6 ( t )  + 6 ' ( t )  

Again, using Eqs. (1.25) and (1.301, we have 

( c ,  + 2c2 )  6 ( t )  + c 2 S 1 ( t )  = 6 ( t )  + 6 ' ( t )  

Equating coefficients of 6 ( t )  and 6'(t) ,  we obtain 

from which we have c ,  = - 1 and c,  = 1. Substituting these values in Eq. (2.128). we obtain 

RESPONSES OF A DISCRETE-TIME LTI SYSTEM AND CONVOLUTION 

2.26. Verify Eqs. ( 2 . 36 )  and (2.37), that is, 

( a )  By definition (2.35) 

By changing the variable n - k = m, we have 

( b )  Let x[nl* h,[nl  = fJn1 and h,[nI* h2[nl = f 2 [ n l .  Then 
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Substituting r = m - k  and interchanging the order of summation, we have 

Now, since 

we have 

2.27. Show that 

( a )  x [ n ]  * 6 [ n ]  = x [ n ]  
( b )  x [ n ] * 6 [ n  - n , ] = x [ n  - n o ]  

n 

(el x [ n ] * u [ n ] =  x [ k l  
k =  - m  

" -"11  

(dl x [ n ] *  u[n - no]  = x l k ]  
k =  - r, 

( a )  By Eq. (2.35)and property(1.46)of 6 [ n  - & ] w e  have 

( b )  Similarly, we have 
m 

~ [ n ]  * S [ n  - n o ]  = C x [ k ]  S [ n  - k  - n , , ]  = x [ n  - n o ]  
k =  - m  

(c) By Eq. (2.35) and definition (1.44) of u[n  - k ]  we have 

( d l  In a similar manner, we have 
rn n -ntl 

x [ n ] * u [ n - n o ] =  z x [ k ] u [ n - k - n o ] =  x [ k ]  
k =  - m  k =  - m  
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2.28. The input x [ n ]  and the impulse response h [ n ]  of a discrete-time LTI system are given 
by 

(a) Compute the output y[n] by Eq. (2.35). 
( b )  Compute the output y [ n ]  by Eq. (2.39). 

( a )  By Eq. (2.35) we have 

Sequences x [ k ]  and h[n - k ]  are shown in Fig. 2-20(a) for n  < 0 and n  > 0. From Fig. 
2-20(a) we see that for n  < 0, x [ k ]  and h[n  - k ]  do not overlap, while for n  2 0, they 
overlap from k  = 0 to k  = n .  Hence, for n  < 0, y [ n ]  = 0. For n r 0, we have 

Changing the variable of summation k  to m = n - k  and using Eq. (1.901, we have 

(a) 

Fig. 2-20 
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Thus, we can write the output y [ n ]  as 

which is sketched in Fig. 2-20(b). 

( b )  By Eq. (2.39) 

Sequences h [ k l  and x [ n  - k ]  are shown in Fig. 2-21 for n  < 0 and n > 0. Again from Fig. 
2-21 we see that for n  < 0, h [ k ]  and x[n - k l  d o  not overlap, while for n 2 0,  they overlap 
from k  = 0 to k  = n.  Hence, for n  < 0, y [ n ]  = 0. For n  2 0, we have 

Thus, we obtain the same result as shown in Eq. (2.134). 

- 1  0 n 

Fig. 2-21 

2.29. Compute y [ n ]  = x [ n ]  * h [ n ] ,  where 

( a )  x [ n ]  = cunu[n], h [ n ]  = pnu[n]  
( b )  x [ n ]  = cunu[n], h [ n ]  = a - " u [ - n ] ,  0 < a < 1 



CHAP. 21 LINEAR TIME-INVARIANT SYSTEMS 

(a) From Eq. (2.35) we have 

Since O s k s n  u [ k ] u [ n  - k ]  = otherwise 

we have 

Using Eq. (1.90), we obtain 

m 

y [ n ]  = x [ k ] h [ n  - k ]  = f a k u [ k ] a - ' " - * ' u [ - ( n  - k ) ]  
k =  -m k -  -m 

For n  1 0 ,  we have 

u [ k ] u [ k  - n  J = 
O s k  
otherwise 

Thus, using Eq. (1.911, we have 

For n  r 0, we have 

u [ k ] u [ k  - n ]  = 
n s k  
otherwise 

Thus, using Eq. (1.921, we have 
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Combining Eqs. (2 .136~)  and (2. I36b), we obtain 

[CHAP. 2  

(2.137) 

which is sketched in Fig. 2-22. 

- 2 - 1 0  1 2  3 

Fig. 2-22 

2.30. Evaluate y [ n ]  = x [ n ]  * h [ n ] ,  where x [ n ]  and h [ n ]  are shown in Fig. 2-23, (a)  by an 
analytical technique, and ( b )  by a graphical method. 

- 1 0 1 2 3  n - I  0 1 2  n 

Fig. 2-23 

(a) Note that x [ n ]  and h [ n ]  can be expressed as 

x [ n ]  = 6 [ n ] + 6 [ n  - l ] + 6 [ n  - 2 ] + 6 [ n  -31 

h [ n ]  = 6 [ n ]  + S [ n  - 1 ] + S [ n  - 21 

Now, using Eqs. (2.38), (2.130), and (2. I3l),  we have 

x [ n ]  * h [ n ]  = x [ n ]  * { S [ n ]  + 6 [ n  - 1 ] + 6 [ n  - 21)  

= ~ [ n ]  * S [ n ]  + x [ n ]  * S[n  - I ] + x [ n ]  * S[n  - 21)  

= x [ n ]  + x [ n  - 1 ]  + x [ n  - 21 

Thus, y [ n ]  = S [ n ]  + S [ n  - I ]  + S[n  - 21 + 6 [ n  - 31 

+ 6 [ n -  1 ] + 8 [ n - 2 ] + 6 [ n - 3 ] + 6 [ n - 4 1  

+ S [ n - 2 ] + 6 [ n - 3 ] + 6 [ n - 4 ] + 6 [ n - 5 ]  

or y [ n ]  = S [ n ]  + 2S[n  - 1 ]  + 36[n - 21 + 36[n  - 31 + 26[n  - 41 + 6 [ n  - 51 

or Y [ ~ I =  {1 ,2 ,3 ,3 ,2 , l }  
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Fig. 2-24 
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( b )  Sequences h [ k ] ,  x [ k l  and h [ n  - k ] ,  x [ k ] h [ n  - k l  for different values of n  are sketched in 
Fig. 2-24. From Fig. 2-24 we see that x [ k  J and h[n  - k ]  do not overlap for n  < 0 and 
n  > 5, and hence y [ n ]  = 0 for n  < 0 and n  > 5. For 0 5 n  1: 5, x [ k ]  and h [ n  - k ]  overlap. 
Thus, summing x [ k ] h [ n  - k ]  for 0 s n  2 5, we obtain 

which is plotted in Fig. 2-25. 

Fig. 2-25 

2.31. If x , [ n ]  and x 2 [ n ]  are both periodic sequences with common period N, the convolu- 
tion of x , [ n ]  and x 2 [ n ]  does not converge. In this case, we define the periodic 
convolution of x , [ n ]  and x 2 [ n ]  as 

Show that f [ n ]  is periodic with period N. 

Since x , [ n ]  is periodic with period N, we have 

Then from Eq. (2.138) we have 

Thus, f [ n  1 is periodic with period N. 

2.32. The step response s [ n ]  of a discrete-time LTI system is given by 

s [ n ]  = a n u [ n ]  O < a < l  

Find the impulse response h [ n ]  of the system. 
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From Eq. (2.41) the impulse response h[nl is given by 

h[n] = s [n]  - s[n - 11 = crnu[n] - a"-'u[n - 11 

= {S[n] + a n u [ n  - 11) -an- 'u[n  - 11 

= 6[n] - (1 - a)crn-'u[n - 11 

PROPERTIES OF DISCRETE-TIME LTI SYSTEMS 

2.33. Show that if the input x[n]  to a discrete-time LTI system is periodic with period N ,  
then the output y[n] is also periodic with period N .  

Let h[n] be the impulse response of the system. Then by Eq. (2.39) we have 

Let n = m + N . T h e n  
m 10 

y[m + N ]  = h[k]x[m + N - k ]  = C h[k]x[(m - k )  + N ]  
k =  - m  k =  -03 

Since x[n] is periodic with period N, we have 

x [ ( m - k )  + N ]  = x [ m - k ]  
OD 

Thus, y[m + N ]  = h[k]x[m - k ]  = y[m] 
k -  -OD 

which indicates that the output y[n] is periodic with period N. 

2.34. The impulse response h[n]  of a discrete-time LTI system is shown in Fig. 2-26(a). 
Determine and sketch the output y[n] of this system to  the input x[n] shown in Fig. 
2-26(b) without using the convolution technique. 

From Fig. 2-26(b) we can express x[n] as 

x[n] = 6[n - 21 - S[n - 41 

(b)  

Fig. 2-26 
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Since the system is linear and time-invariant and by the definition of the impulse response, we 
see that the output y [ n ]  is given by 

y [ n ]  = h [ n  - 2 1  - h [ n  - 4 1  

which is sketched in Fig. 2-27. 

Fig. 2-27 

2.35. A discrete-time system is causal if for every choice of no  the value of the output 
sequence y [ n ]  at n  = n o  depends on only the values of the input sequence x [ n ]  for 
n  I no (see Sec. 1.5D). From this definition derive the causality condition (2.44) for a 
discrete-time LTI system, that is, 

From Eq. (2.39) we have 
ffi 

Y [ . ]  = C h [ k l x [ n  - k l  
k =  -=  

Note that the first summation represents a weighted sum of future values of x [ n ] .  Thus, if the 
system is causal, then 
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This can be true only if 

h [ n ]  = 0 n < O  

Now if h[n] = 0 for n < 0,  then Eq. (2.139) becomes 
m 

which indicates that the value of the output y[n] depends on only the past and the present 
input values. 

2.36. Consider a discrete-time LTI system whose input x [ n ]  and output y [ n ]  are related by 

Is the system causal? 

By definition (2.30) and Eq. (1.48) the impulse response h[n]  of the system is given by 

k =  - x k =  - x k =  - m  

By changing the variable k + 1 = m and by Eq. (1.50) we obtain 
n +  1 

h [ n ]  = 2-("+' )  x S [ m ]  = 2-("+"u[n + 1 ]  ( 2.140) 
,,,= - m  

From Eq. (2.140) we have h [ -  11 = u[O] = 1 + 0.  Thus, the system is not causal. 

2.37. Verify the BIBO stability condition [Eq. (2 .49)]  for discrete-time LTI systems. 

Assume that the input x[n]  of a discrete-time LTl system is bounded, that is, 

Ix[n]l l k l  all n (2.141) 

Then, using Eq. (2.351, we have 

Since lxIn - k)l i k ,  from Eq. (2.141). Therefore, if the impulse response is absolutely 
summable, that is, 

we have 

l y [ n ] l ~ k , K = k ~  < m  

and the system is BIB0 stable. 

2.38. Consider a discrete-time LTI system with impulse response h [ n ]  given by 

( a )  Is this system causal? 

( b )  Is this system BIBO stable? 
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( a )  Since h[n]  = 0 for n < 0, the system is causal. 

( b )  Using Eq. (1.91) (Prob. 1,191, we have 

Therefore, the system is B I B 0  stable if la1 < 1 and unstable if la1 2 1. 

SYSTEMS DESCRIBED BY DIFFERENCE EQUATIONS 

239. The discrete-time system shown in Fig. 2-28 consists of one unit delay element and one 
scalar multiplier. Write a difference equation that relates the output y [ n ]  and the 
input x [ n ] .  

Y I ~ I  

Fig. 2-28 

In Fig. 2-28 the output of the unit delay element is y[n - 11. Thus, from Fig. 2-28 we see 
that 

which is the required first-order linear difference equation. 

2.40. The discrete-time system shown in Fig. 2-29 consists of two unit delay elements and 
two scalar multipliers. Write a difference equation that relates the output y[n] and the 
input x [ n ] .  

~ I n l  

Fig. 2-29 
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In Fig. 2-29 the output of the first (from the right) unit delay element is y[n - 11 and the 
output of the second (from the right) unit delay element is y[n - 21. Thus, from Fig. 2-29 we 
see that 

y [ n ] = a , y [ n - l ] + a , y [ n - 2 ] + x [ n ]  (2.144) 

or y [ n ]  - a , y [ n  - 1 ]  - a,y[n  - 21 = x [ n ]  (2.145) 

which is the required second-order linear difference equation. 
Note that, in general, the order of a discrete-time LTI system consisting of the interconnec- 

tion of unit delay elements and scalar multipliers is equal to the number of unit delay elements 
in the system. 

2.41. Consider the discrete-time system in Fig. 2-30. Write a difference equation that relates 
the output y [ n ]  and the input x [ n ] .  

Unit 
delay 

I 
q b  - 11 

Fig. 2-30 

Let the input to the unit delay element be q[nl. Then from Fig. 2-30 we see that 

q [ n ]  = 2 q [ n  - 1 1  + x [ n ]  ( 2.146a) 

~ [ n ]  = s [ n I +  3q[n - 1 1 (2.1466) 

Solving Eqs. (2.146a) and (2.146b) for q[n]  and q[n - 11 in terms of x [ n ]  and y[n],  we obtain 

9 [ n ] =  f y [ n ]  + $+I (2.147a) 

q [ n  - 1 1  = i y [ n ]  - i x [ n ]  (2.147b) 

Changing n  to ( n  - 1) in Eq. (2.147a), we have 

q [ n  - 1 1  = f y [n  - 11 + i x [ n  - 1 1  (2.147~) 

Thus, equating Eq. (2.1476) and (Eq. (2.147c), we have 

; y [ n ] -  f x [ n ]  = f y [ n -  1 1  + + x [ n -  11 

Multiplying both sides of the above equation by 5 and rearranging terms, we obtain 

y [ n ]  - 2 y [ n  - 1 1  = x [ n ]  + 3 x [ n  - 1 1  (2.148) 

which is the required difference equation. 

2.42. Consider a discrete-time system whose input x [ n ]  and output y [ n ]  are related by 

y [ n ]  - a y [ n  - 11 = x [ n ]  (2.149) 
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where a is a constant. Find y [ n ]  with the auxiliary condition y [ -  l]  = y -  , and 

x [ n ]  = K b n u [ n ]  (2.150) 

Let yLn1 =ypLn1 + y h L n 1  

where y,[n] is the particular solution satisfying Eq. (2.149) and yh[n]  is the homogeneous 
solution which satisfies 

y [ n ]  -ay [n  - 1 1  = O  

Assume that 

y,[n] = Abn n r O  

Substituting Eq. (2.1521 into Eq. (2.1491, we obtain 

Abn -aAbn- '  =Kbn 

from which we obtain A = Kb/(b - a), and 

To obtain yh["], we assume 

y,[n] = Bzn 

Substituting this into Eq. (2.151) gives 

from which we have z = a and 

~ ~ [ n ]  =Ban 

Combining yp[n] and yh[n], we get 

K 
y [ n ]  =Ban + - b"+l n 2 0  

b - a  

In order to determine B in Eq. (2.155) we need the value of y[O]. Setting n = 0 in Eqs. (2.149) 
and (2.1501, we have 

Y [ O ]  -ay [ -11 =y[O] - a y - ,  =x [O]  = K  

or y[O] = K + a y - ,  

Setting n = 0 in Eq. (2.155), we obtain 

b 
y[O] = B  +K- 

b - a  

Therefore, equating Eqs. (2.156) and (2.1571, we have 

from which we obtain 

B =ay- ,  - K- 
b - a  

Hence, Eq. (2.155) becomes 
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For n  < 0, we have x [ n ]  = 0, and Eq. (2.149) becomes Eq. (2.151). Hence. 

y [ n ]  = B a n  (2.159) 

From the auxiliary condition y[ - 11 = y  - ,, we have 

y [ -  1 1  = y - ,  = B U - '  

from which we obtain B = y  - ,a .  Thus, 

Combining Eqs. (2.158) and (2.160), y [ n ]  can be expressed as 

Note that as in the continuous-time case (Probs. 2.21 and 2.221, the system described by 
Eq. (2.149) is not linear if y [ -  1 1  # 0. The system is causal and time-invariant if i t  is initially at 
rest, that is, y [ -  1 1  = 0. Note also that Eq. (2.149) can be solved recursively (see Prob. 2.43). 

2.43. Consider the discrete-time system in Prob. 2.42. Find the output y [ n ]  when x [ n ]  = 

K S [ n ]  and y [ - l ]  = y - ,  =a. 

We can solve Eq. (2.149) for successive values of y [ n ]  for n  r 0 as follows: rearrange Eq. 
(2.149) as 

y [ n ]  = a y [ n  - 1 1  + x [ n ]  

Then 

y [ n ]  = a y [ n  - 1 1  + x [ n ]  =an(acu + K )  =an+'cu + anK ( 2.16.3) 

Similarly, we can also determine y [ n ]  for n  < 0 by rearranging Eq. (2.149) as 

Then y [ - 1 1  = a  

1 
y [ - n ]  = - { y [ - n  + 1 1  - x [ - n  + 1 1 )  = a - " + ' a  

a 

Combining Eqs. (2.163) and (2.169, we obtain 

y [ n ]  = a n + ' a  + K a n u [ n ]  



1 04 LINEAR TIME-INVARIANT SYSTEMS [CHAP. 2 

2.44. Consider the discrete-time system in Prob. 2.43 for an initially at rest condition. 

( a )  Find in impulse response h [ n ]  of the system. 
( b )  Find the step response s [ n ]  of the system. 
(c) Find the impulse response h [ n ]  from the result of part ( b ) .  

( a )  Setting K = 1 and y [ -  11  = a = 0 in Eq. (2.166), we obtain 

( b )  Setting K = 1, b = 1 ,  and y [ -  1] = y - ,  = 0 in Eq. (2.161), we obtain 

( c )  From Eqs. (2.41) and (2.168) the impulse response h[n]  is given by 

When n = 0. 

When n r 1,  

Thus, h [ n ]  = anu[n ]  

which is the same as Eq. (2.167). 

2.45. Find the impulse response h [ n ]  for each of the causal LTI discrete-time systems 
satisfying the following difference equations and indicate whether each system is a FIR 
or an IIR system. 

( a )  y [ n ]  = x [ n ]  - 2 x [ n  - 21 + x [ n  - 31 
( b )  y [ n ]  + 2 y [ n  - 11 = x [ n ]  + x [ n  - 11 
(c)  y [ n ]  - t y [ n  - 21 = 2 x [ n ]  - x [ n  - 21 

( a )  By definition (2.56) 

Since h[n]  has only four terms, the system is a FIR system. 
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( b )  h[nl = -2h[n - 11 + 6[n]  + 6[n  - 11 
Since the system is causal, h[ - 1 ]  = 0. Then 

h[O] = -2h[ - 1 ]  + 6[0]  + 6[ - 1 1  = S [ O ]  = 1 

h [ l ]  = -2h[O] + 6[1]  + S [ O ]  = -2 + 1 = - 1 

h[2]  = - 2 h [ l ]  + 6[2]  + S [ l ]  = -2(  - 1 )  = 2 

h[3]  = -2h[2] + 6[3]  + 6[2]  = - 2 ( 2 )  = -2' 

Hence, h [ n ]  = 6 [ n ]  + ( - 1)"2"- 'u[n  - 1 1  

Since h[nl has infinite terms, the system is an IIR system. 

(c) h[nl = i h [n  - 21 + 26[n] - 6[n - 21 
Since the system is causal, h[ -  21 = h[ - 11 = 0. Then 

Hence, h [ n ]  = 2 6 [ n ]  

Since h[nl has only one term, the system is a FIR system. 

Supplementary Problems 

2.46. Compute the convolution y(t ) = x (  t  * h(t ) of the following pair of signals: 

-a < t  <a  1 
, h ( t )  = I 0  -a < t  l a  ( a )  X ( I )  = 

otherwise otherwise 
O < r s T  
otherwise ' 

2a - It1 It( < 2a 
Am. ( a )  Y O ) =  

111 L 2a 

O < r 5 2 T  
otherwise 

r<O 
O < t _ < T  

T < r s 2 T  

2 T < r s 3 T  

3 T < t  
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2.47. Compute the convolution sum y [ n ]  = x [ n l *  h[nl of the following pairs of sequences: 

Am. ( a )  y [ n ]  = n s 0  
n > O  

2.48. Show that if y ( t )  = x ( t ) *  h ( t ) ,  then 

y l ( r )  = ~ ' ( r )  * h ( r )  = x ( t )  * h l ( t )  

Hint: Differentiate Eqs. (2.6) and (2 .10)  with respect to t .  

2.49. Show that 

~ ( t )  * S'(1) = x t ( t )  

Hint: Use the result from Prob. 2.48 and Eq. (2 .58) .  

2.50. Let y [ n ]  = x [ n ] *  h[n] .  Then show that 

x [ n  - n , ] *  h [ n  - n , ]  = y [ n  - n ,  - n , ]  

Hint: See Prob. 2.3. 

2.51. Show that 

for an arbitrary starting point no. 

Hint: See Probs. 2.31 and 2.8. 

2.52. The step response s ( t )  of a continuous-time LTI system is given by 

Find the impulse response h(r)  of the system. 

Am. h ( t )  = S( t )  - w,[sin w, , f lu ( t )  
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2.53. The system shown in Fig. 2-31 is formed by connection two systems in parallel. The impulse 
responses of the systems are given by 

h )  = e 2 ( )  and h , ( t )  = 2 e e ' u ( t )  

( a )  Find the impulse response h( t )  of the overall system. 
( b )  Is the overall system stable? 

Ans. (a) h( t )  = ( e -2 '  + 2e-')u(t)  
( b )  Yes 

2.54. Consider an integrator whose input x( t )  and output y ( t )  are related by 

( a )  Find the impulse response h ( t )  of the integrator. 
( b )  Is the integrator stable? 

Ans. ( a )  h ( t )  = u ( t )  
( b )  No 

2.55. Consider a discrete-time LTI system with impulse response h[n]  given by 

h [ n ]  = S [ n  - 1 1  

Is this system memoryless? 

Am. No, the system has memory. 

2.56. The impulse response of a discrete-time LTI system is given by 

h [ n ]  = (f )"u[n]  

Let y[nl be the output of the system with the input 

x [ n ]  = 2S[n]  + S[n - 31 

Find y [ l ]  and y[4]. 

Am. y[ll  = 1 and y[4] = 5.  
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2.57. Consider a discrete-time LTI system with impulse response h [ n ]  given by 

h [ n ]  = ( - ; ) l 1 u [ n  - I ]  

( a )  Is the system causal? 
( b )  Is the system stable? 

Ans. ( a )  Yes; ( b )  Yes 

2.58. Consider the RLC circuit shown in Fig. 2-32. Find the differential equation relating the output 
current y ( t )  and the input voltage x ( t ) .  

d 2 y ( t )  R d y ( t )  1 
Ans. --- +--  1 & ( [ I  + - y ( t )  = - - 

dt' L dt LC L dl 

Fig. 2-32 

2.59. Consider the RL circuit shown in Fig. 2-33. 

Find the differential equation relating the output voltage y ( t )  across R and the input 
voltage x( t  1. 
Find the impulse response h ( t )  of the circuit. 

Find the step response d t )  of the circuit. 

Fig. 2-33 
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2.60. Consider the system in Prob. 2.20. Find the output y ( t )  if x ( t )  = e-"'u(t)  and y(0) = 0. 

Am. te-"u(t) 

2.61. Is the system described by the differential equation 

linear? 

Am. No, it is nonlinear 

2.62. Write the input-output equation for the system shown in Fig. 2-34. 

Am. 2y [n ]  - y[n - 11 = 4x[n]  + 2x[n  - 11 

Fig. 2-34 

2.63. Consider a discrete-time LTI system with impulse response 

h [ n ]  = n = 0 , 1  
otherwise 

Find the input-output relationship of the system. 

Am. y[n]  = x [n ]  + x[n - 11 

2.64. Consider a discrete-time system whose input x [n ]  and output y[n]  are related by 

y [ n ]  - i y [ n  - 1 1  = x [ n ]  

with y [ -  l ]  = 0. Find the output y [n ]  for the following inputs: 

( a )  x[nl  = (f )"u[nl; 

( b )  xtnl= (f )"u[nl 

Am. ( a )  y [n]  = 6[(;)"+' - ( f ) "+ ' ]u [n ]  

( b )  y [n l=  ( n  + lX;)"u[n] 

2.65. Consider the system in Prob. 2.42. Find the eigenfunction and the corresponding eigenvalue of 
the system. 

z 
A m  zn ,A  = - 

z - a  



Chapter 3 

Laplace Transform and Continuous-Time 
LTI Systems 

3.1 INTRODUCTION 

A basic result from Chapter 2 is that the response of an LTI system is given by 
convolution of the input and the impulse response of the system. In this chapter and the 
following one we present an alternative representation for signals and LTI systems. In this 
chapter, the Laplace transform is introduced to represent continuous-time signals in the 
s-domain ( s  is a complex variable), and the concept of the system function for a 
continuous-time LTI system is described. Many useful insights into the properties of 
continuous-time LTI systems, as well as the study of many problems involving LTI systems, 
can be provided by application of the Laplace transform technique. 

3.2 THE LAPLACE TRANSFORM 

In Sec. 2.4 we saw that for a continuous-time LTI system with impulse response h(t),  
the output y(0 of the system to the complex exponential input of the form e" is 

where 

A. Definition: 

The function H ( s )  in Eq. (3.2) is referred to as the Laplace transform of h(t).  For a 
general continuous-time signal x(t),  the Laplace transform X(s) is defined as 

The variable s is generally complex-valued and is expressed as 

The Laplace transform defined in Eq. (3.3) is often called the bilateral (or two-sided) 
Laplace transform in contrast to the unilateral (or one-sided) Laplace transform, which is 
defined as 
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where 0-=  lim,,,(O - E ) .  Clearly the bilateral and unilateral transforms are equivalent 
only if x(t)  = 0 for t < 0. The unilateral Laplace transform is discussed in Sec. 3.8. We will 
omit the word "bilateral" except where it is needed to avoid ambiguity. 

Equation (3.3) is sometimes considered an operator that transforms a signal x( t )  into a 
function X(s) symbolically represented by 

and the signal x( t )  and its Laplace transform X(s) are said to form a Laplace transform 
pair denoted as 

B. The Region of Convergence: 

The range of values of the complex variables s for which the Laplace transform 
converges is called the region of convergence (ROC). To illustrate the Laplace transform 
and the associated ROC let us consider some examples. 

EXAMPLE 3.1. Consider the signal 

x ( t )  =e-O1u(t) a real 

Then by Eq. (3.3) the Laplace transform of x(t) is 

because lim, ,, e-("'")' = 0 only if Re(s + a )  > 0 or Reb) > -a. 

Thus, the ROC for this example is specified in Eq. (3.9) as Re(s) > -a  and is displayed 
in the complex plane as shown in Fig. 3-1 by the shaded area to the right of the line 
Re(s) = -a. In Laplace transform applications, the complex plane is commonly referred to 
as the s-plane. The horizontal and vertical axes are sometimes referred to as the a-axis and 
the jw-axis, respectively. 

EXAMPLE 3.2. Consider the signal 

~ ( t )  = -e-"u( - t )  a real 

Its Laplace transform X(s) is given by (Prob. 3.1) 

Thus, the ROC for this example is specified in Eq. (3.11) as Re(s) < -a and is displayed 
in the complex plane as shown in Fig. 3-2 by the shaded area to the left of the line 
Re(s) = -a. Comparing Eqs. (3.9) and (3.11), we see that the algebraic expressions for X(s) 
for these two different signals are identical except for the ROCs. Therefore, in order for the 
Laplace transform to be unique for each signal x(t), the ROC must be specified as par1 of the 
transform. 
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s-plane 

(a )  (b) 

Fig. 3-1 ROC for Example 3.1. 

C. Poles and Zeros of X (  s 1: 
Usually, X(s) will be a rational function in s, that is, 

The coefficients a, and b, are real constants, and m and n are positive integers. The X(s) 
is called a proper rational function if n > m, and an improper rational function if n I m. 
The roots of the numerator polynomial, z,, are called the zeros of X(s)  because X(s) = 0 
for those values of s. Similarly, the roots of the denominator polynomial, p,, are called the 
poles of X(s) because X(s) is infinite for those values of s. Therefore, the poles of X(s) 
lie outside the ROC since X(s) does not converge at the poles, by definition. The zeros, on 
the other hand, may lie inside or outside the ROC. Except for a scale factor ao/bo, X(s) 
can be completely specified by its zeros and poles. Thus, a very compact representation of 
X(s) in the s-plane is to show the locations of poles and zeros in addition to the ROC. 

Traditionally, an " x " is used to indicate each pole location and an " 0 " is used to 
indicate each zero. This is illustrated in Fig. 3-3 for X(s) given by 

Note that X(s) has one zero at s = - 2 and two poles at s = - 1 and s = - 3 with scale 
factor 2. 

D. Properties of the ROC: 

As we saw in Examples 3.1 and 3.2, the ROC of X(s)  depends on the nature of d r ) .  
The properties of the ROC are summarized below. We assume that X(s) is a rational 
function of s. 
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(a) (b)  

Fig. 3-2 ROC for Example 3.2. 

Fig. 3-3 s-plane representation of X ( s )  = (2s + 4)/(s2 + 4s + 3). 

Property 1: The ROC does not contain any poles. 

Property 2: If x ( t )  is a f initeduration signal, that is, x ( r )  = 0 except in a finite interval r ,  5 r 2 r ,  
( - m  < I ,  and I ,  < m), then the ROC is the entire s-plane except possibly s = 0 or s = E. 

Property 3: If x ( t )  is a right-sided signal, that is, x ( r )  = 0 for r < r ,  < m, then the ROC is of the form 
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where a,,, equals the maximum real part of any of the poles of X(s). Thus, the ROC is 
a half-plane to the right of the vertical line Reb) = a,,, in the s-plane and thus to the 
right of all of the poles of Xb).  

Property 4: If x(t) is a left-sided signal, that is, x(t) = O for t > t, > -=, then the ROC is of the 
form 

where a,,, equals the minimum real part of any of the poles of X(s). Thus, the ROC is 
a half-plane to the left of the vertical line Re(s) =amin in the s-plane and thus to the left 
of all of the poles of X(s). 

Property 5: If x(t) is a two-sided signal, that is, x(t) is an infinite-duration signal that is neither 
right-sided nor left-sided, then the ROC is of the form 

where a, and a, are the real parts of the two poles of X(s). Thus, the ROC is a vertical 
strip in the s-plane between the vertical lines Re(s) = a, and Re(s) = a,. 

Note that Property 1 follows immediately from the definition of poles; that is, X(s) is 
infinite at a pole. For verification of the other properties see Probs. 3.2 to 3.7. 

3 3  LAPLACE TRANSFORMS OF SOME COMMON SIGNALS 

A. Unit Impulse Function S( t ): 

Using Eqs. (3.3) and (1.20), we obtain 

J [ s ( t ) ]  = /- s( t )e -"  dt = 1 all s 
- m 

B. Unit Step Function u ( t  1: 

where O +  = lim, , "(0 + €1. 

C. Laplace Transform Pairs for Common Signals: 

The Laplace transforms of some common signals are tabulated in Table 3-1. Instead of 
having to reevaluate the transform of a given signal, we can simply refer to such a table 
and read out the desired transform. 

3.4 PROPERTIES OF THE LAPLACE TRANSFORM 

Basic properties of the Laplace transform are presented in the following. Verification 
of these properties is given in Probs. 3.8 to 3.16. 
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Table 3-1 Some Laplace Transforms Pairs 

1 All s 

cos wotu(t) 

sin wotu(t 

s + a  
e-"' cos wotu(t) Re(s) > - Re(a) 

( s + a 1 2 + w ;  

A. Linearity: 

If 

The set notation A I B means that set A contains set B, while A n B denotes the 
intersection of sets A and B, that is, the set containing all elements in both A and B. 
Thus, Eq. (3.15) indicates that the ROC of the resultant Laplace transform is at least as 
large as the region in common between R ,  and R 2 .  Usually we have simply R' = R ,  n R , .  
This is illustrated in Fig. 3-4. 
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Fig. 3-4 ROC of a ,  X , ( s )  + a ,  X , ( s ) .  

B. Time Shifting: 

If 

) ' - * X ( S )  ROC = R 

then x ( t  - t o )  -e-"[)X ( s 1 R ' = R  (3 .16)  

Equation (3 .16)  indicates that the ROCs before and after the time-shift operation are the 
same. 

C. Shifting in the s-Domain: 

If 

then e+"x( t )  - X ( s  - so )  R' = R + Re(so)  ( 3 . 1 7 )  

Equation (3.1 7 )  indicates that the ROC associated with X ( s  - so)  is that of X ( s )  shifted 
by Re(s,,). This is illustrated in Fig. 3-5. 

D. Time Scaling: 

I f 

then 

x ( t )  + + X ( S )  ROC = R 

( R 1 = a R  x ( a t ) -  - X  - 
la l 
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(4 (b)  

Fig. 3-5 Effect on the ROC of shifting in the s-domain. ( a )  ROC of X(s); ( b )  ROC of X ( s  - so). 

Equation (3.18) indicates that scaling the time variable t by the factor a causes an inverse 
scaling of the variable s by l / a  as well as an amplitude scaling of X ( s / a )  by I/ Jal. The 
corresponding effect on the ROC is illustrated in Fig. 3-6. 

E. Time Reversal: 

If 

Fig. 3-6 Effect on the ROC of time scaling. (a) ROC of X(s ) ;  ( b )  ROC of X(s/a). 
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then x ( - t )  *X(-S) R' = - R  (3.19) 

'Thus, time reversal of x( t )  produces a reversal of both the a- and jw-axes in the s-plane. 
Equation (3.19) is readily obtained by setting a = - 1 in Eq. (3.18). 

F. Differentiation in the Time Domain: 

If 

~ ( t )  ++X(S) ROC = R 

then 

Equation (3.20) shows that the effect of differentiation in the time domain is multiplication 
of the corresponding Laplace transform by s. The associated ROC is unchanged unless 
there is a pole-zero cancellation at s = 0. 

G. Differentiation in the s-Domain: 

If 

41) ++X(S) ROC = R 

then - 

H. Integration in the Time Domain: 

If 

then 

Equation (3.22) shows that the Laplace transform operation corresponding to time-domain 
integration is multiplication by l/s, and this is expected since integration is the inverse 
operation of differentiation. The form of R' follows from the possible introduction of an 
additional pole at s = 0 by the multiplication by l/s. 

I. Convolution: 

1 f 

x d l )  * w )  R O C =  R ,  

~ 2 ( 4  ++XZ(S) ROC = R2 
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Table 3-2 Properties of the Laplace Transform 

Property Signal Transform ROC 

x ( t )  X ( s )  R  
x , ( t )  x ,w  R  1 

x 2 W  x,w R2 
Linearity a , x , ( t )  + a 2 x 2 ( l )  a ,  X , ( s )  + a ,  X 2 ( s )  R ' I R ,  n R 2  
Time shifting x(t - t o )  e-""X(s) R' = R  
Shifting in s  es"'x( t X ( s  - so)  R' = R  + Re(s,)  

1 
Time scaling x( at - X ( s )  R' = aR 

la l 
Time reversal R ' =  - R  

Differentiation in t 

Differentiation in s  - t x ( t )  
dX( s )  R f = R  

ds 

Integration 

Convolution 

then % ( t )  * ~ 2 0 )  H X I ( ~ ) X ~ ( ~ )  R ' I R ,  n R 2  (3.23)  

This convolution property plays a central role in the analysis and design of continuous-time 
LTI systems. 

Table 3-2 summarizes the properties of the Laplace transform presented in this 
section. 

3.5 THE INVERSE LAPLACE TRANSFORM 

Inversion of the Laplace transform to find the signal x ( t )  from its Laplace transform 
X(s)  is called the inverse Laplace transform, symbolically denoted as 

A. Inversion Formula: 

There is a procedure that is applicable to  all classes of transform functions that 
involves the evaluation of a line integral in complex s-plane; that is, 

In this integral, the real c is to be selected such that if the ROC of X(s) is a, < Re(s) <a2, 
then a, < c < u2. The evaluation of this inverse Laplace transform integral requires an 
understanding of complex variable theory. 
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B. Use of Tables of Laplace Transform Pairs: 

In the second method for the inversion of X(s), we attempt to express X(s) as a sum 

X(s) = X,(s) + . . . +Xn(s) (3.26) 

where X,(s), . . . , Xn(s) are functions with known inverse transforms xl(t), . . . , xn(t). From 
the linearity property (3.15) it follows that 

x ( t )  = x l ( t )  + - - +xn(t) (3.27) 

C. Partial-Fraction Expansion: 

If X(s) is a rational function, that is, of the form 

a simple technique based on partial-fraction expansion can be used for the inversion of 
Xb). 

( a )  When X(s) is a proper rational function, that is, when m < n: 

1. Simple Pole Case: 

If all poles of X(s), that is, all zeros of D(s), are simple (or distinct), then X(s) can be 
written as 

where coefficients ck are given by 

If D(s) has multiple roots, that is, if it contains factors of the form (s  -pi)', we say that 
pi is the multiple pole of X(s) with multiplicity r .  Then the expansion of X(s) will consist of 
terms of the form 

where 

( b )  When X(s) is an improper rational function, that is, when m 2 n: 
If m 2 n, by long division we can write X(s) in the form 

where N(s) and D(s) are the numerator and denominator polynomials in s, respectively, 
of X(s), the quotient Q(s) is a polynomial in s with degree rn - n, and the remainder R(s) 
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is a polynomial in s  with degree strictly less than n. The inverse Laplace transform of X ( s )  
can then be computed by determining the inverse Laplace transform of Q ( s )  and the 
inverse Laplace transform of R ( s ) / D ( s ) .  Since R ( s ) / D ( s )  is proper, the inverse Laplace 
transform of R ( s ) / D ( s )  can be computed by first expanding into partial fractions as given 
above. The inverse Laplace transform of Q ( s )  can be computed by using the transform 
pair 

3.6 THE SYSTEM FUNCTION 

A. The System Function: 

In Sec. 2.2 we showed that the output y ( t )  of a continuous-time LTI system equals the 
convolution of the input x ( t )  with the impulse response h( t ) ;  that is, 

Applying the convolution property (3.23), we obtain 

where Y ( s ) ,  X(s ) ,  and H ( s )  are the Laplace transforms of y ( t ) ,  x ( t ) ,  and h( t ) ,  respec- 
tively. Equation (3.36) can be expressed as 

The Laplace transform H ( s )  of h ( t )  is referred to as the system function (or the transfer 
function) of the system. By Eq. (3.37), the system function H(s )  can also be defined as the 
ratio of the Laplace transforms of the output y ( t )  and the input x( t ) .  The system function 
H ( s )  completely characterizes the system because the impulse response h ( t )  completely 
characterizes the system. Figure 3-7 illustrates the relationship of Eqs. (3.35) and (3.36).  

B. Characterization of LTI Systems: 

Many properties of continuous-time LTI systems can be closely associated with the 
characteristics of H ( s )  in the s-plane and in particular with the pole locations and the 
ROC. 

Fig. 3-7 Impulse response and system function. 
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I .  Causality: 

For a causal continuous-time LTI system, we have 

h ( t )  = 0 t < O  

Since h( t )  is a right-sided signal, the corresponding requirement on H(s)  is that the ROC 
of H(s )  must be of the form 

R e W  > a m a x  

That is, the ROC is the region in the s-plane to the right of all of the system poles. 
Similarly, if the system is anticausal, then 

h ( t )  = 0 t > O  

and h ( t )  is left-sided. Thus, the R O C  of H(s)  must be of the form 

Re( s ) < %in 

That is, the ROC is the region in the s-plane to the left of all of the system poles. 

2. Stabilio: 

In Sec. 2.3 we stated that a continuous-time LTI system is B I B 0  stable if and only if 
[Eq. (2-2111 

The corresponding requirement 
(that is, s = j w )  (Prob. 3.26). 

on H(s)  is that the R O C  of H ( s )  contains the jw-axis 

3. Causal and Stable Systems: 

If the system is both causal and stable, then all the poles of H(s)  must lie in the left 
half of the s-plane; that is, they all have negative real parts because the ROC is of the 
form Re(s) >amax,  and since the jo axis is included in the ROC, we must have a,, < 0. 

C. System Function for LTI Systems Described by Linear Constant-Coefficient Differential 
Equations: 

In Sec. 2.5 we considered a continuous-time LTI system for which input x ( t )  and 
output y( t )  satisfy the general linear constant-coefficient differential equation of the form 

Applying the Laplace transform and using the differentiation property (3.20) of the 
Laplace transform, we obtain 
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or 

Thus, 

Hence, H(s)  is always rational. Note that the ROC of H(s) is not specified by Eq. (3.40) 
but must be inferred with additional requirements on the system such as the causality or 
the stability. 

D. Systems Interconnection: 

For two LTI systems [with hl(t)  and h2(t), respectively] in cascade [Fig. 3-Nu)], the 
overall impulse response h(t) is given by [Eq. (2.811, Prob. 2.141 

Thus, the corresponding system functions are related by the product 

This relationship is illustrated in Fig. 3-8(b). 
Similarly, the impulse response of a parallel combination of two LTI systems 

[Fig. 3-9(a)] is given by (Prob. 2.53) 

Thus, 

This relationship is illustrated in Fig. 3-9(b). 

Fig. 3-8 Two systems in cascade. ( a )  Time-domain representation; ( b )  s-domain representation. 
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(b)  

Fig. 3-9 Two systems in parallel. ( a )  Time-domain representation; Ib) s-domain representation. 

3.7 THE UNILATERAL LAPLACE TRANSFORM 

A. Definitions: 

The unilateral (or one-sided) Laplace transform X,(s) of a signal x( t )  is defined as 
[Eq. (3.5)l 

The lower limit of integration is chosen to be 0- (rather than 0 or O+) to permit x( t )  to 
include S(t) or its derivatives. Thus, we note immediately that the integration from 0- to 
O +  is zero except when there is an impulse function or its derivative at the origin. The 
unilateral Laplace transform ignores x( t )  for t < 0. Since x( t )  in Eq. (3.43) is a right-sided 
signal, the ROC of X,(s) is always of the form Re(s) > u,,, that is, a right half-plane in 
the s-plane. 

B. Basic Properties: 

Most of the properties of the unilateral Laplace transform are the same as for the 
bilateral transform. The unilateral Laplace transform is useful for calculating the response 
of a causal system to a causal input when the system is described by a linear constant- 
coefficient differential equation with nonzero initial conditions. The basic properties of the 
unilateral Laplace transform that are useful in this application are the time-differentiation 
and time-integration properties which are different from those of the bilateral transform. 
They are presented in the following. 
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I .  Differentiation in the Time Domain: 

provided that lim , ,, x(t  )e-"' = 0. Repeated application of this property yields 

where 

2. Integration in the Time Domain: 

C. System Function: 

Note that with the unilateral Laplace transform, the system function H ( s )  = Y ( s ) / X ( s )  
is defined under the condition that the LTI system is relaxed, that is, all initial conditions 
are zero. 

D. Transform Circuits: 

The solution for signals in an electric circuit can be found without writing integrodif- 
ferential equations if the circuit operations and signals are represented with their Laplace 
transform equivalents. [In this subsection the Laplace transform means the unilateral 
Laplace transform and we drop the subscript I in X,(s).] We refer to a circuit produced 
from these equivalents as a transform circuit. In order to use this technique, we require the 
Laplace transform models for individual circuit elements. These models are developed in 
the following discussion and are shown in Fig. 3-10. Applications of this transform model 
technique to electric circuits problems are illustrated in Probs. 3.40 to 3.42. 

I .  Signal Sources: 

where u ( t )  and i ( t )  are the voltage and current source signals, respectively. 

2. Resistance R: 
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Circuit element Representation 

Voltage source 

Current source 

Resistance 

Inductance 

Capacitance 

V(s) 

Fig. 3-10 Representation of Laplace transform circuit-element models. 
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3. Inductance L: 

di(t ) 
~ ( t )  = L -  t, V ( s )  = sLI(s)  - Li(0- )  (3 .50)  

dt 

The second model of the inductance L in Fig. 3-10 is obtained by rewriting Eq. (3.50) as 

1 1 
i ( t )  t, I ( s )  = - V ( s )  + -i(O-) 

sL 
(3.51) 

S 

4. Capacitance C: 

d m  i ( t )  = C- t* I ( s )  = sCV(s)  - Cu(0-)  (3.52)  
dt 

The second model of the capacitance C in Fig. 3-10 is obtained by rewriting Eq. (3.52) as 

1 1 
u ( t )  t* V ( s )  = - I ( s )  + -u(O-) 

s c  S 
(3.53)  

Solved Problems 

LAPLACE TRANSFORM 

3.1. Find the Laplace transform of 

( a )  x ( t )  = -e-atu( - t )  

( b )  x ( t ) = e a ' u ( - t )  

( a )  From Eq. (3.3) 

m 
( )  = - ( e - a f u ( - r ) e - f l d t  = - (O-e-("")' d f  

Thus, we obtain 

1 
-e-"'u( - I )  H - 

s + a  
( b )  Similarly, 
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Thus, we obtain 

1 
ealu( - t )  H - - Re(s) < a  

s - a  

3.2. A finite-duration signal x ( t )  is defined as 

t ,  I t  I t ,  

= 0  otherwise 

where I ,  and I, are finite values. Show that if X ( s )  converges for at least one value of 
s ,  then the ROC of X ( s )  is the entire s-plane. 

Assume that X(s) converges at s = a,; then by Eq. (3.3) 

Since (u, - 0,) > 0, e-(ul-"~)l is a decaying exponential. Then over the interval where x ( t )  + 0, 
the maximum value of this exponential is e-("l-"o)'l, and we can write 

Thus, X(s) converges for Re(s) = a, > u,,. By a similar argument, if a, < u,, then 

/ I2 ( " 1 1  dl < e ( w ~ - ~ ~ ) l ~  l ' ' l ~ ( r ) l e - ~ ~ ' d t  < m  (3.57) 
' 1 ' I  

and again X(s) converges for Re(s) = u, <u,. Thus, the ROC of X(s) includes the entire 
s-plane. 

3.3. Let 

O I t l T  ~ ( t )  = 
otherwise 

Find the Laplace transform of x ( t ) .  

By Eq. (3.3) 

- - - - e [ 1 -e - (s+u)T~ ( 3.58) 
s + a  , s + a  

Since x(f is a finite-duration signal, the ROC of X(s) is the entire s-plane. Note that from Eq. 
(3.58) i t  appears that X(s) does not converge at s = -a. But this is not the case. Setting 
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s = -a in the integral in Eq. (3.581, we have 

The same result can be obtained by applying L'Hospitalls rule to Eq. (3.58). 

3.4. Show that if x ( t )  is a right-sided signal and X(s) converges for some value of s ,  then 
the R O C  of X ( s )  is of the form 

where amax equals the maximum real part of any of the poles of X ( s ) .  

Consider a right-sided signal x(t) so that 

and X(s) converges for Re(s) = a,. Then 

Thus, X(s) converges for Re(s) =a, and the ROC of X(s) is of the form Re($) > a ( , .  Since the 
ROC of X(s) cannot include any poles of X(s), we conclude that it is of the form 

Re( s > ~ m a x  

where a,,,,, equals the maximum real part of any of the poles of X(s). 

3.5. Find the Laplace transform X ( s )  and sketch the pole-zero plot with the ROC for the 
following signals x( t  ): 

( a )  x ( t )  = e -"u( t )  + e P 3 ' u ( t )  
( b )  x ( t )  = e -"u( t )  + e 2 ' u ( - t )  
(c) x ( t )  = e2 'u( t )  + e - 3 ' u ( - t )  

(a) From Table 3-1 
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(b )  

Fig. 3-1 1 

We see that the ROCs in Eqs. (3.59) and (3.60) overlap, and thus, 

From Eq. (3.61) we see that X(s) has one zero at s = - 5 and two poles at s = - 2  and 
s = - 3 and that the ROC is Re(s) > - 2, as sketched in Fig. 3-1 l(a). 

(b) From Table 3-1 

We see that the ROCs in Eqs. (3.62) and (3.63) overlap, and thus, 

From Eq. (3.64) we see that X(s) has no zeros and two poles at s = 2 and s = -3  and 
that the ROC is - 3 < Re(s) < 2, as sketched in Fig. 3-1 l(b). 

(c) From Table 3-1 

1 
e - 3 r ~ (  - t )  - - - Re(s) < - 3 (3.66) 

s + 3 

We see that the ROCs in Eqs. (3.65) and (3.66) do not overlap and that there is no 
common ROC; thus, x(t)  has no transform X(s). 
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3.6. Let 

Find X(s) and sketch the zero-pole plot and the ROC for a > 0 and a < 0. 

The signal x ( t )  is sketched in Figs. 3-12(a) and ( b )  for both a  > 0  and a  < 0. Since x ( t )  is 
a two-sided signal, we can express it as 

x ( t )  = e - " u ( t )  + e a ' u ( - r )  ( 3 . 6 7 )  

Note that x ( t )  is continuous at t = 0  and x(O-) =x(O) =x (O+)  = 1 .  From Table 3-1 

1 
earu( - t )  H - - R e ( s )  < a  ( 3 . 6 9 )  

s - a  

(c )  

Fig. 3-12 
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If a > 0, we see that the ROCs in Eqs. (3.68) and (3.69) overlap, and thus, 

1 1 - 2a x ( s )  = - - - = - -a  < Re(s) < a  
s + a  s - a  s Z - a Z  

From Eq. (3.70)  we see that X ( s )  has no zeros and two poles at s = a  and s = -a  and that the 
ROC is -a  < Re(s)  < a ,  as sketched in Fig. 3-12(c). If a < 0, we see that the ROCs in Eqs. 
(3.68) and (3.69) do not overlap and that there is no common ROC; thus, X ( I )  has no 
transform X(s) .  

PROPERTIES OF THE LAPLACE TRANSFORM 

3.7. Verify the time-shifting property (3.161, that is, 

x ( t  - t o )  H e - " o X ( S )  R 1 = R  

By definition (3 .3)  

By the change of variables T = t - I ,  we obtain 

with the same ROC as for X ( s )  itself. Hence, 

where R and R' are the ROCs before and after the time-shift operation. 

3.8. Verify the time-scaling property (3.181, that is, 

By definition (3 .3)  

By the change of variables 7 = a t  with a > 0, we have 

I w 

( x a )  = - x(r)e-('/")'dr = - X  - 
a -, a ( )  R P = a R  

Note that because of the scaling s / a  in the transform, the ROC of X ( s / a )  is aR. With a < 0, 
we have 
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Thus, combining the two results for a > 0 and a < 0, we can write these relationships as 

3.9. Find the Laplace transform and the associated ROC for each of the following signals: 

( a )  x ( t )  = S(t  - t o )  

( b )  x ( t )  = u ( t  - t o )  

(c )  ~ ( t )  = e - " [ u ( t )  - u ( t  - 5 ) ]  
ffi 

( d l  x ( t )  = S( t  - k T )  
k=O 

( e )  x ( t )  = S(at + b) ,  a ,  b real constants 

( a )  Using Eqs. (3.13) and (3.161, we obtain 

S ( I  - I,,) H e-s'fl all s 

( b )  Using Eqs. (3.14) and (3.16), we obtain 

( c )  Rewriting x ( l )  as 

Then, from Table 3-1 and using Eq. (3.161, we obtain 

( d )  Using Eqs. (3.71) and (1.99), we obtain 

m m 

~ ( s )  = C e-.~'T= C (e-sT)li = 
1 

1 - e s T  
k=O k -0 

( e )  Let 

f (0  = s ( a t )  
Then from Eqs. (3.13) and (3.18) we have 

1 
f ( t )  = S(a1) - F ( s )  = - 

la l 

Re(s) > 0 (3.73) 

all s 

Now 

Using Eqs. (3.16) and (3.741, we obtain 

1 
X ( s )  = e s b / a ~ ( S )  = -esh/" all s 

la l 
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3.10. Verify the time differentiation property (3.20),  that is, 

From Eq. (3.24) the inverse Laplace transform is given by 

Differentiating both sides of the above expression with respect to t, we obtain 

Comparing Eq. (3 .77 )  with Eq. (3.76), we conclude that h ( t ) / d t  is the inverse Laplace 
transform of sX(s). Thus, 

Note that the associated ROC is unchanged unless 

3.11. Verify the differentiation in s property (3.21), 

R ' 3 R  

a pole-zero cancellation exists at s = 0. 

that is, 

From definition (3 .3)  
- IIj 

Differentiating both sides of the above expression with respect to s ,  we have 

Thus, we conclude that 

3.12. Verify the integration property (3.22), that is, 

Let 

Then 
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Applying the differentiation property (3.20), we obtain 

X(s) =sF(s) 

Thus, 

The form of the ROC R' follows from the possible introduction of an additional pole at s = 0 
by the multiplying by l/s. 

Using the various Laplace transform properties, derive the Laplace transforms of the 
following signals from the Laplace transform of u(t). 

( a )  6(t) ( b )  6'(t) 

(c) tu(t) ( d )  e-"'u(t) 

(e) te-"'u(t) (f) coso,tu(t) 

(g) e-"'cos w,tu(t) 

(a) From Eq. (3.14)we have 

1 
u(t)  H - for Re( s) > 0 

S 

From Eq. ( 1.30) we have 

Thus, using the time-differentiation property (3.20), we obtain 

1 
S(t) HS-  = 1 all s 

S 

( b )  Again applying the time-differentiation property (3.20) to the result from part (a), we 
obtain 

a'(!) H S  all s ( 3.78) 

(c) Using the differentiation in s property (3.211, we obtain 

(dl Using the shifting in the s-domain property (3.17), we have 

1 
e-a'u(t) w - Re(s) > -a 

s + a  

(el From the result from part (c) and using the differentiation in s property (3.21), we obtain 

(f) From Euler's formula we can write 
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Using the linearity property (3.15) and the shifting in the s-domain property (3.17), we 
obtain 

( g )  Applying the shifting in the s-domain property (3.17) to the result from part (f), we 
obtain 

3.14. Verify the convolution property (3.23), that is, 

m 

y ( t )  = x , ( t )  * x2( t )  = j x , ( r )x2 ( t  - r )  d r  
- m 

Then, by definition (3.3) 

Noting that the bracketed term in the last expression is the Laplace transform of the shifted 
signal x2(t - 71, by Eq. (3.16) we have 

with an ROC that contains the intersection of the ROC of X,(s) and X2(s). If a zero of one 
transform cancels a pole of the other, the ROC of Y(s) may be larger. Thus, we conclude that 

3.15. Using the convolution property (3.23), verify Eq. (3.22), that is, 

We can write [Eq. (2.601, Prob. 2.21 

From Eq. (3.14) 
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and thus, from the convolution property (3.23) we obtain 

1 
x ( t )  * ~ ( t )  - -X(S) 

5 

with the ROC that includes the intersection of the ROC of X(s) and the ROC of the Laplace 
transform of u( t 1. Thus, 

INVERSE LAPLACE TRANSFORM 

3.16. Find the inverse Laplace transform of the following X(s):  
1 

( a )  X(s>  = - , Re(s) > - 1 
s + l  

1 
(b) X ( s ) =  - , Re(s) < - 1 

s + l  
S 

( c )  X(s)  = - , Re(s) > 0 
s 2 + 4  

s + l  
(d l  X(s)  = , Re(s) > - 1 

( s +  1 ) '+4  

(a)  From Table 3-1 we obtain 

( b )  From Table 3-1 we obtain 

~ ( t )  = -e-'u(-t) 

( c )  From Table 3-1 we obtain 

x( t )  = cos2tu(t) 

( d )  From Table 3-1 we obtain 

~ ( t )  = e-'cos2tu(t) 

3.17. Find the inverse Laplace transform of the following X(s): 
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Expanding by partial fractions, we have 

Using Eq. (3.30), we obtain 

Hence, 

(a) The ROC of X(s) is Re(s) > - 1. Thus, x(t) is a right-sided signal and from Table 3-1 we 
obtain 

x ( t )  = eP'u(t)  + e - 3 ' ~ ( t )  = (e - '  + e - 3 ' ) ~ ( t )  

( b )  The ROC of X(s) is Re(s) < -3. Thus, x( t)  is a left-sided signal and from Table 3-1 we 
obtain 

x ( t )  = -e - 'u ( - t )  - eC3'u( -1) = - ( e - '  +e-3 ' )u(  -1) 

(c) The ROC of X(s) is - 3  < Re(s) < - 1. Thus, x(t) is a double-sided signal and from 
Table 3-1 we obtain 

3.18. Find the inverse Laplace transform of 

We can write 

Then 

where 
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Thus, 

The ROC of X(s) is Re(s) > 0. Thus, x ( t )  is a right-sided signal and from Table 3-1 we obtain 

into the above expression, after simple computations we obtain 

Alternate Solution: 

We can write X(s) as 

As before, by Eq. (3.30) we obtain 

Then we have 

Thus, 

Then from Table 3-1 we obtain 

3.19. Find the inverse Laplace transform of 

We see that X(s) has one simple pole at s = - 3 and one multiple pole at s = -5 with 
multiplicity 2. Then by Eqs. (3.29) and (3.31) we have 
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By Eqs. (3.30) and (3.32) we have 

Hence, 

The ROC of X(s) is R d s )  > -3. Thus, x(t) is a right-sided signal and from Table 3-1 we 
obtain 

Note that there is a simpler way of finding A ,  without resorting to differentiation. This is 
shown as follows: First find c ,  and A, according to the regular procedure. Then substituting the 
values of c ,  and A, into Eq. (3.84), we obtain 

Setting s = 0 on both sides of the above expression, we have 

from which we obtain A ,  = 

3.20. Find the inverse Laplace transform of the following X(s): 

2 s +  1 
( a )  X(s) = - , Re(s) > -2 

s + 2  

s3 + 2s' + 6 
( c )  X(S) = , Re(s) > 0 

sz  + 3s 
2s + 1 2(s + 2) - 3 

- 
3 

( a )  X ( s ) =  - - = 2 -  - 
s + 2 s + 2 s + 2  

Since the ROC of X(s) is Re(s) > -2, x ( t )  is a right-sided signal and from Table 3-1 we 
obtain 



( b )  Performing long division, we have 

Let 

where 

Hence, 

The ROC of X(s) is Re(s) > - 1. Thus, x ( r )  is a right-sided signal and from Table 3-1 
we obtain 

(c) Proceeding similarly, we obtain 

Let 

where 

Hence, 

The ROC of X(s) is Re(s) > 0. Thus, x(t) is a right-sided signal and from Table 3-1 and 
Eq. (3.78) we obtain 

Note that all X(s) in this problem are improper fractions and that x(t) contains S(t) or 
its derivatives. 
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3.21. Find the inverse Laplace transform of 

2 + 2se-" + 4eP4' 
X ( s )  = Re(s)  > - 1 

s2 + 4s  + 3 

We see that X ( s )  is a sum 

where 

2 2 s  4  

X I ( $ )  = s 2  + 4s + 3 X 2 ( s )  = s t  + 4s + 3 X A s )  = s 2  + 4s + 3 

If 

x l ( f  ) - X d s )  x 2 ( t )  # X Z ( S )  ~ 3 ( f  - X 3 ( s )  

then by the linearity property (3 .15)  and the time-shifting property (3 .16)  we obtain 

~ ( t )  = x l ( t )  + x 2 ( t  - 2 )  + x 3 ( t - 4 )  ( 3 . 8 5 )  

Next, using partial-fraction expansions and from Table 3-1, we obtain 

3.22. Using the differentiation in s property (3.211, find the inverse Laplace transform of 

We have 

and from Eq. (3.9) we have 

1 
e - " u ( t )  o - R e ( s )  > - a  

s + a  

Thus, using the differentiation in s  property (3.21), we obtain 

X ( I )  = t e -" 'u( t )  
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SYSTEM FUNCTION 

3.23. Find the system function H(s) and the impulse response h ( t )  of the RC circuit in Fig. 
1-32 (Prob. 1.32). 

( a )  Let 

In this case, the RC circuit is described by [Eq. (1.105)] 

Taking the Laplace transform of the above equation, we obtain 

Hence, by Eq. (3.37) the system function H(s) is 

Since the system is causal, taking the inverse Laplace transform of H(s), the impulse 
response h(t ) is 

( b )  Let 

In this case, the RC circuit is described by [Eq. (1.107)l 

Taking the Laplace transform of the above equation, we have 

1 
or (s  + &)Y(S) = Rsx(s )  

Hence, the system function H(s) is 
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In this case, the system function H(s) is an improper fraction and can be rewritten as 

Since the system is causal, taking the inverse Laplace transform of H(s), the impulse 
response h(t ) is 

Note that we obtained different system functions depending on the different sets of input 
and output. 

3.24. Using the Laplace transform, redo Prob. 2.5. 

From Prob. 2.5 we have 

h ( t )  = e-"'u(t) ~ ( t )  =ea 'u( - t )  a>O 

Using Table 3-1, we have 

1 
H ( s )  = - Re(s) > -a 

s + a  

1 
X(s )  = - - Re(s)  < a  

s - a  

Thus, 

and from Table 3-1 (or Prob. 3.6) the output is 

which is the same as Eq. (2.67). 

3.25. The output y ( t )  of a continuous-time LTI system is found to be 2e-3 'u( t)  when the 
input x (  t is u( t  ). 

(a) Find the impulse response h ( t )  of the system. 
(6) Find the output y ( t )  when the input x ( t )  is e-'u(f). 

( a )  x(f) = u(t), y(t) = 2e-3'u(t) 

Taking the Laplace transforms of x( t)  and we obtain 
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Hence, the system function H(s) is 

Rewriting H(s)  as 

and taking the inverse Laplace transform of H(s), we have 

Note that h ( t )  is equal to the derivative of 2 e - " d l )  which is the step response s(r)  of 
the system [see Eq. (2.1311. 

I 
x ( t )  = e - ' d t )  ++ - Re(s)> - 1  

s + l  

Thus, 

Using partial-fraction expansions, we get 

Taking the inverse Laplace transform of Y(s), we obtain 

y ( t )  = ( - e - '  + 3 e - " ) u ( r )  

3.26. If a continuous-time LTI system is BIBO stable, then show that the ROC of its system 
function H ( s )  must contain the imaginary axis, that is, s = jo. 

A continuous-time LTI system is BIBO stable if and only if its impulse response h ( t )  is 
absolutely integrable, that is [Eq. (2.2111, 

By Eq. (3.3) 

Let s = jw.  Then 

Therefore, we see that if the system is stable, then H(s) converges for s = jo. That is, for a 
stable continuous-time LTI system, the ROC of H(s) must contain the imaginary axis s = jw .  
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3.27. Using the Laplace transfer, redo Prob. 2.14. 

( a )  Using Eqs. ( 3 . 3 6 )  and ( 3 . 4 0 ,  we have 

Y ( s )  = X ( s ) H , ( s ) H , ( s )  = X ( s ) H ( s )  

where H ( s )  = H , ( s ) H , ( s )  is the system function of the overall system. Now from Table 
3-1 we have 

Hence, 

Taking the inverse Laplace transfer of H ( s ) ,  we get 

h ( t )  = 2 ( e p '  - e - 2 ' ) u ( t )  

(b) Since the ROC of H ( s ) ,  Re(s) > - 1, contains the jo-axis, the overall system is stable. 

3.28. Using the Laplace transform, redo Prob. 2.23. 

The system is described by 

Taking the Laplace transform of the above equation, we obtain 

s Y ( s )  + a Y ( s )  = X ( s )  or ( s  + a ) Y ( s )  = X ( s )  

Hence, the system function H ( s )  is 

Assuming the system is causal and taking the inverse Laplace transform of H(s ) ,  the impulse 
response h ( t  ) is 

h ( t )  = e - " ' u ( t )  

which is the same as Eq. (2.124). 

3.29. Using the Laplace transform, redo Prob. 2.25. 

The system is described by 

y f ( t )  + 2 y ( t )  = x ( t )  + x l ( t )  

Taking the Laplace transform of the above equation, we get 

s Y ( s )  + 2 Y ( s )  = X ( s )  + s X ( s )  

or ( s  + 2 ) Y ( s )  = ( s  + l ) X ( s )  
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Hence, the system function H(s) is 

Assuming the system is causal and taking the inverse Laplace transform of H(s), the impulse 
response h(t ) is 

3.30. Consider a continuous-time LTI system for which the input x ( t )  and output y ( t )  are 
related by 

~ " ( 1 )  + y l ( t )  - 2 y ( t )  = x ( t )  (3.86) 

( a )  Find the system function H(s) .  

( b )  Determine the impulse response h ( t )  for each of the following three cases: (i) 
the system is causal, (ii) the system is stable, (iii) the system is neither causal nor 
stable. 

( a )  Taking the Laplace transform of Eq. (3.86), we have 

s 2 ~ ( s )  + sY(s) - 2Y(s) = X(s )  

or ( s 2  + s - ~ ) Y ( s )  = X ( s )  

Hence, the system function H(s) is 

( b )  Using partial-fraction expansions, we get 

(i)  If the system is causal, then h(t) is causal (that is, a right-sided signal) and the 
ROC of H(s) is Re(s) > 1. Then from Table 3-1 we get 

(ii) If the system is stable, then the ROC of H(s) must contain the jo-axis. Conse- 
quently the ROC of H(s) is - 2 < Re(s) < 1. Thus, h(t) is two-sided and from 
Table 3-1 we get 

(iii) If the system is neither causal nor stable, then the ROC of H(s) is Re(s) < -2. 
Then h(r) is noncausal (that is, a left-sided signal) and from Table 3-1 we get 

331. The feedback interconnection of two causal subsystems with system functions F ( s )  
and G ( s )  is depicted in Fig. 3-13. Find the overall system function H ( s )  for this 
feedback system. 
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- 
Fig. 3-13 Feedback system. 

Then, 

Y ( s )  = E ( s )  F ( s )  (3 .87)  

R ( s )  = Y ( s ) G ( s )  (3 .88)  

Since 

e ( t )  = x ( t )  + r ( t )  

we have 

E ( s )  = X ( s )  + R ( s )  (3 .89)  

Substituting Eq. (3.88) into Eq. (3.89) and then substituting the result into Eq. (3.87), we 
obtain 

Y ( s )  = [ X ( s )  + Y ( s ) G ( s ) l F ( s )  
or [ l  - ~ ( s ) G ( s ) ]  ~ ( s )  = F ( s )  X ( s )  
Thus, the overall system function is 

UNILATERAL LAPLACE TRANSFORM 

3.32. Verify Eqs. (3 .44)  and (3 .45) ,  that is, 

d-41) 
( a )  - H s X I ( s )  - x ( O - )  

dl 

( a )  Using Eq. (3.43) and integrating by parts, we obtain 

Thus, we have 



CHAP. 31 LAPLACE TRANSFORM AND CONTINUOUS-TIME LTI SYSTEMS 

(b) Applying the above property to signal xt(t) = du(t)/dt, we obtain 

Note that Eq. (3.46) can be obtained by continued application of the above proce- 
dure. 

3.33. Verify Eqs. (3.47) and (3.481, that is, 
1 

( a )  L-X(T) d~ ++ - X , ( S )  
S 

(a) Let 

Then 

Now if 

dl) ++G,(s) 

then by Eq. (3.44) 

X1(s) =sG1(s) -g(O-) =sGI(s) 

Thus, 

(b) We can write 

Note that the first term on the right-hand side is a constant. Thus, taking the unilateral 
Laplace transform of the above equation and using Eq. (3.47), we get 

3.34. (a )  Show that the bilateral Laplace transform of x ( t )  can be computed from two 
unilateral Laplace transforms. 

(b) Using the result obtained in part (a ) ,  find the bilateral Laplace transform of 
e-21rl. 
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( a )  The bilateral Laplace transform of x ( t )  defined in Eq. (3.3) can be expressed as 

Now / : x ( t ) e p "  dl = X , ( s )  R e ( s )  > o+ (3 .92)  

Next. let 

ffi 

Then ~ , ~ x ( - ~ ) e " d r  = / ~ ( - r ) e - ' ~ ' ~ ' d t  = X ; ( - s )  R e ( s )  < o- (3 .94 )  
0 - 

Thus, substituting Eqs. (3.92) and (-3.94) into Eq. (3.91), we obtain 

X ( s )  = X , ( s )  + X , (  - s )  a+< Re(s)  <a- (3 .95 )  

( b )  X ( t )  = e-21'I 

( 1 )  x(t = e-2' for t > 0, which gives 

(2)  x(t ) = e2' for t < 0. Then x (  - t )  = e-2' for t > 0, which gives 

Thus, 

(3 )  According to Eq. (3.95), we have 

which is equal to Eq. (3.701, with a  = 2, in Prob. 3.6. 

3.35. Show that 

( a )  ~ ( 0 ' )  = lim s X , ( s )  ( 3 . 9 7 )  
s-m 

( b )  lim x (  t ) = lirn sX,(s )  
t += s -0 

( 3 . 9 8 )  

Equation (3 .97 )  is called the initial value theorem, while Eq. (3.98) is called the final 
calue theorem for the unilateral Laplace transform. 
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( a )  Using Eq. (3.441, we have 

m k ( ' )  e-" SX,(S) -x(o-) = / - 
0- dt 

W t )  = / O ' d ' o e - s ' d t  +cT e -" dt 
0- dt 

a e-s t  dt = x ( t ) E ? +  / - 
o+ dt 

- W f )  e-s,dt =x(O+) -x(o-)  + / - 
o+ dt 

Thus, 

and lirn sX,(s) =x(O+) + 
5-07 

since lim, ,, e-" = 0. 

( b )  Again using Eq. (3.441, we have 

a & ( t )  
lirn [sX,(s) - x(0-)] = 1im / - ePS' dt 
s-o s-o 0- dt 

lirn e-"' 

= lirn x(t  ) - ~ ( 0 ~ )  
t - r m  

Since lirn [sX,(s) -x(0-)] = lim [sx,(s)] -x(O-) 
s-ro s-ro 

we conclude that 

limx(t) = lirnsX,(s) 
t--t- s-ro 

3.36. The unilateral Laplace transform is sometimes defined as 

with O+ as the lower limit. (This definition is sometimes referred to as the 0' 
definition.) 

( a )  Show that 
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( b )  Show that 

( a )  Let x ( t )  have unilateral Laplace transform X,?(s). Using Eq. (3.99) and integrating by 
parts, we obtain 

Thus, we have 

( b )  By definition (3.99) 
Oe OC 

P + { u ( t ) )  = ,/ u ( t ) e - " d t =  ,/ e-"dt 
0' 0 '  

1 
R e ( s )  > 0 

From Eq. (1.30) we have 

Taking the 0' unilateral Laplace transform of Eq. (3.103) and using Eq. (3.100), we 
obtain 

This is consistent with Eq. (1.21); that is, 

Note that taking the 0 unilateral Laplace transform of Eq. (3.103) and using Eq. (3.44), 
we obtain 

APPLICATION OF UNILATERAL LAPLACE TRANSFORM 

337. Using the unilateral Laplace transform, redo Prob. 2.20. 
The system is described by 

~ ' ( t )  + a y ( t )  = x ( l )  

with y(0) = yo and x(t = ~ e - ~ ' u (  t 1. 
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Assume that y(0) = y(0-1. Let 

~ ( t )  -Y,(s) 

Then from Eq. (3.44) 

y l ( t )  -sY,(s) -y(O-) =sY,(s)  - Y o  

From Table 3-1 we have 

K 
x ( t )  -X, (S)  = - R e ( s )  > -b 

s + b  

Taking the unilateral Laplace transform of Eq. (3.1041, we obtain 

or 

Thus, 

+ K 
Y1(s) = - 

s + a  ( s + a ) ( s + b )  

Using partial-fraction expansions, we obtain 

Taking the inverse Laplace transform of Y,(s), we obtain 

K 
y ( t )  = 

yoe-"+ - ( e - b r  - e - a : )  [ a - b  

which is the same as Eq. (2.107). Noting that y(O+) = y(0) = y(0-) = yo,  we write y( t )  as 

K 
y ( t )  = y0e-O1 + - (e-br - e - a ' )  t 2 0  

a - b  

3.38. Solve the second-order linear differential equation 

y " ( t )  + 5 y 1 ( t )  + 6 y ( t )  = x ( t )  

with the initial conditions y(0) = 2, yl(0) = 1, and x ( t )  = e P ' u ( t ) .  

Assume that y(0) = y(0-) and yl(0) = yl(O-). Let 

~ ( t )  -Y,(s) 

Then from Eqs. (3.44) and (3.45) 

y l ( t )  -sY,(s)  - y ( 0 - )  =sY , ( s )  - 2 

y N ( t )  - s2Y1(s) - sy(0-)  - y l ( O - )  = s 2 Y J s )  - 2s - I 

From Table 3-1 we have 
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Taking the unilateral Laplace transform of Eq. (3.105), we obtain 

Thus, 

Using partial-fraction expansions, we obtain 

Taking the inverse Laplace transform of Yl(s) ,  we have 

Notice that y(O+) = 2 = y(O) and y'(O+) = 1 = yl(0); and we can write y ( f )  as 

3.39. Consider the  RC circuit shown in Fig. 3-14(a). T h e  switch is closed at t  = 0 .  Assume 
that there is an  initial voltage on  the capacitor and uC(Om) = u,,. 

( a )  Find the current i ( t ) .  

( 6 )  Find the voltage across the capacitor uc( t ) .  

vc (0- )=v, 

( a )  (b)  

Fig. 3-14 RC circuit. 

( a )  With the switching action, the circuit shown in Fig. 3-14(a) can be represented by the 
circuit shown in Fig. 3-14(b) with i.f,(t) = Vu(t). When the current i ( t )  is the output and 
the input is r,(t),  the differential equation governing the circuit is 

1 
Ri( t )  + -1' i ( r )  d~ = c s ( t )  (3.106) 

C -, 
Taking the unilateral Laplace transform of Eq. (3.106) and using Eq. (3.481, we obtain 
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1 I 
Now ( t )  = - i ( r )  d r  

C -, 

and 

Hence, Eq. (3.107) reduces to 

Solving for I(s) ,  we obtain 

v-0, 1 v - u ,  1 
I ( s )  = - =- 

s R + 1/Cs R s + l /RC  

Taking the inverse Laplace transform of I(s) ,  we get 

( b )  When u,(r) is the output and the input is u,(t), the differential equation governing the 
circuit is 

Taking the unilateral Laplace transform of Eq. (3.108) and using Eq. (3.441, we obtain 

Solving for V,(s), we have 

v 1 + uo 
Vc ( s )  = - 

R C s ( s + l / R C )  s + l / R C  

Taking the inverse Laplace transform of I/,(s), we obtain 

u c ( t )  = V [ 1  - e - t / R C ] u ( t )  + ~ , e - ' / ~ ~ u ( t )  

Note that uc(O+) = u, = u,(O-). Thus, we write uc(t) as 

u c ( t )  = V(1  -e-'IRC) + ~ ~ e - ' / ~ ~  t r O  

3.40. Using the transform network technique, redo Prob. 3.39. 

( a )  Using Fig. 3-10, the transform network corresponding to Fig. 3-14 is constructed as shown 
in Fig. 3-15. 
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Fig. 3-15 Transform circuit, 

Writing the voltage law for the loop, we get 

Solving for I(s),  we have 

v - u ,  1 v - u ,  1 
I ( s )  = - - -- 

s  R +  1/Cs R s +  l /RC 

Taking the inverse Laplace transform of I(s) ,  we obtain 

( b )  From Fig.3.15 we have 

Substituting I (s )  obtained in part (a) into the above equation, we get 

Taking the inverse Laplace transform of V,(s),  we have 

3.41. In the circuit in Fig. 3-16(a) the switch is in the closed position for a long time before 
it is opened at t = 0. Find the inductor current i(t) for t 2 0. 

When the switch is in the closed position for a long time, the capacitor voltage is charged 
to 10 V and there is no current flowing in the capacitor. The inductor behaves as a short circuit, 
and the inductor current is = 2 A. 

Thus, when the switch is open, we have i (O-)=  2 and u,(O-) = 10; the input voltage is 10 
V, and therefore it can be represented as lOu(t). Next, using Fig. 3-10, we construct the 
transform circuit as shown in Fig. 3-16(b). 
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(b) 

Fig. 3-16 

From Fig. 3-16(b) the loop equation can be written as 

or 

Hence, 

Taking the inverse Laplace transform of I(s), we obtain 

Note that i(O+) = 2 = i(0-); that is, there is no discontinuity in the inductor current before and 
after the switch is opened. Thus, we have 

3.42. Consider the circuit shown in Fig. 3-17(a). The two switches are closed simultaneously 
at t = 0. The voltages on capacitors C, and C, before the switches are closed are 1 
and 2 V, respectively. 

(a)  Find the currents i , ( t )  and i,(t). 
( b )  Find the voltages across the capacitors at t = 0' 

( a )  From the given initial conditions, we have 

uCl(O-) = 1 V and L!=~(O-) = 2 V 

Thus, using Fig. 3-10, we construct a transform circuit as shown in Fig. 3-17(b). From 
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(b )  
Fig. 3-17 

Fig. 3-17(b) the loop equations can be written directly as 

Solving for I ,(s)  and I,(s) yields 

Taking the inverse Laplace transforms of I , ( s )  and 12(s), we get 

i l ( t )  = 6 ( t )  + i e - ' l 4 u ( t )  

i 2 ( t )  = 6 ( t )  - f e - ' / 4 ~ ( t )  

( b )  From Fig. 3-17(b) we have 

Substituting I,(s) and 12(s) obtained in part ( a )  into the above expressions, we get 
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Then, using the initial value theorem (3.971, we have 

s + l  
v , , ( O + )  = lim sVcl(s)  = lim --7 + 1 = 1 + 1 = 2 V 

s 4 m  s - r m  S + a 

I S - 7  
ucJO+) = lim sVC-(s) = lim ---7 + 2 = 1 + 2 = 3 V 

s - + m  s - + m  S + , 
Note that ucl(O+)# u,1(0-) and ucz(O+)# ~ ~ $ 0 - ) .  This is due to the existence of a 
capacitor loop in the circuit resulting in a sudden change in voltage across the capacitors. 
This step change in voltages will result in impulses in i , ( t )  and i2 ( t ) .  Circuits having a 
capacitor loop or an inductor star connection are known as degener~t i~e circuits. 

Supplementary Problems 

3.43. Find the Laplace transform of the following x(t 1: 

2 s  
( c )  If a  > 0 ,  X ( s )  = - - a  < Re(s) < a. If a < 0, X ( s )  does not exist since X ( s )  does s z  - ,2 ' 

not have an ROC. 
( d )  Hint: x ( t )  = u ( t )  + u ( - t )  

X ( s )  does not exist since X ( s )  does not have an ROC. 
( e l  Hint: x ( t ) = u ( t )  - u ( - t )  

X ( s )  does not exist since X ( s )  does not have an ROC. 

3.44. Find the Laplace transform of x ( t )  given by 

t ,  _< t  s t ,  
x ( t )  = 

0  otherwise 

1 
Am. X ( s )  = - [e-"I  - e-"21, all s  

S 
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3.45. Show that if X(I) is a left-sided signal and X(s) converges for some value of s, then the ROC 
of X(s)  is of the form 

where amin equals the minimum real part of any of the poles of X(s). 

Hint: Proceed in a manner similar to Prob. 3.4. 

3.46. Verify Eq. (3.21), that is, 

Hint: Differentiate both sides of Eq. (3.3) with respect to s. 

3.47. Show the following properties for the Laplace transform: 

(a )  If x ( t )  is even, then X( -s) = X(s); that is, X(s) is also even. 

(b)  If ~ ( t )  isodd, then X(-s )=  -X(s); that is, X(s) is  alsoodd. 

(c) If x ( t )  is odd, then there is a zero in X(s) at s = 0. 

Hint: 

( a )  Use Eqs. (1.2) and (3.17). 
(b)  Use Eqs. (1.3) and (3.17). 

(c )  Use the result from part (b)  and Eq. (1.83~). 

3.48. Find the Laplace transform of 

x ( t )  = (e- 'cos21- Se-*')u(t) + :e2'u(-t) 

s + l  5 1 1  
Ans. X ( s ) =  , - 1  < Re(s )<2  

( ~ + 1 ) ~ + 4  S + 2  2 s - 2  

3.49. Find the inverse Laplace transform of the following X(s); 

1 
( b )  X(s) = - 

s(s + l)? ' 

s +  l 
(d) X(s) = , Re(s) > -2 

s 2 + 4 s +  13 
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Am. 

( a )  x ( r )  = ( 1  - e-' - t e - ' M t )  

( b )  x ( t )  = - 4 - t )  -( l  + t ) e - ' d t )  

(c) ~ ( t )  = (- 1 + e-' + t e - ' I d - t )  

( d )  x ( t )  = e - 2 ' ( ~ o s 3 t  - f sin 3 t )u ( t )  

( e l  x ( t )  = at sin 2tu(t) 
( f )  x ( t ) = ( -  $e-2'+ Acos3t- t  &sin3t )u( t )  

3.50. Using the Laplace transform, redo Prob. 2.46. 

Hint: Use Eq. (3.21) and Table 3-1. 

3.51. Using the Laplace transform, show that 

( a )  Use Eq. (3.21) and Table 3-1. 

( b )  Use Eqs. (3.18) and (3.21) and Table 3-1. 

3.52. Using the Laplace transform, redo Prob. 2.54. 

Hint: 

( a )  Find the system function H ( s )  by Eq. (3.32) and take the inverse Laplace transform of 
H(s) .  

( 6 )  Find the ROC of H ( s )  and show that it does not contain the jo-axis. 

3.53. Find the output y ( t )  of the continuous-time LTI system with 

for the each of the following inputs: 

(a) x ( t )  = e- 'u( t)  
( b )  x ( t )  = e-'u(-t) 

Ans. 

( a )  y ( r )  = (e- ' -e-")u(t)  
( b )  y ( t )  = e- 'u(- f )+e- 2 ' ~ ( t )  

3.54. The step response of an continuous-time LTI system is given by (1 - e- ' )u( t) .  For a certain 
unknown input x ( t ) ,  the output y ( t )  is observed to be (2 - 3e-' + e-3')u(r).  Find the input 
x( t ) .  
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Fig. 3-18 

Determine the overall system function H ( s )  for the system shown in Fig. 3-18. 

Hint: Use the result from Prob. 3.31 to simplify the block diagram. 
S 

Am. H ( s ) =  
s 3 + 3 s 2 + s - 2  

If x ( t )  is a periodic function with fundamental period T, find the unilateral Laplace transform 
of x ( t ) .  

Find the unilateral Laplace transforms of the periodic signals shown in Fig. 3-19. 

Using the unilateral Laplace transform, find the solution of 

y " ( t )  - y l ( t )  - 6 y ( t )  = e t  

with the initial conditions y ( 0 )  = 1 and y ' (0 )  = 0  for t  2 0.  

Am. y ( t ) =  - ; e l +  fe -2 '+  ;e3', t z O  

Using the unilateral Laplace transform, solve the following simultaneous differential equations: 

y l ( t )  + y ( t )  + x f ( r )  + x ( t )  = 1 

y l ( t )  - y ( t )  - 2 x ( t )  = O  

with x ( 0 )  = 0  and y ( 0 )  = 1 for t  1 0 .  

Ans. x ( t )  = e-'  - 1 ,  y ( t )  = 2 - e - ' ,  t  r 0  

Using the unilateral Laplace transform, solve the following integral equations: 

A m .  ( a )  y ( t )  =ea t ,  t  2 0 ;  ( 6 )  y ( t )  = e 2 ' ,  t  2 0  
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(b) 
Fig. 3-19 

3.61. Consider the RC circuit in Fig. 3-20. The switch is closed at t = 0 .  The capacitor voltage before 
the switch closing is u,. Find the capacitor voltage for t 2 0.  

Ans. u , ( t ) = ~ , e - ' / ~ ~ ,  1 2 0  

3.62. Consider the RC circuit in Fig. 3-21. The switch is closed at t  = 0.  Before the switch closing, 
the capacitor C ,  is charged to u, V and the capacitor C ,  is not charged. 

( a )  Assuming c ,  = c ,  = c ,  find the current i ( t )  for t 2 0 .  
( b )  Find the total energy E dissipated by the resistor R and show that E is independent of R 

and is equal to half of the initial energy stored in C , .  

Fig. 3-20 RC circuit. 
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Fig. 3-21 RC circuit. 

(c) Assume that R = 0 and C ,  = C ,  = C .  Find the current i ( r )  for I 2 0 and voltages u,1(0+) 
and uC2(0+). 



Chapter 4 

The z-Transform and Discrete-Time 
LTI Systems 

4.1 INTRODUCTION 

In Chap. 3 we introduced the Laplace transform. In this chapter we present the 
z-transform, which is the discrete-time counterpart of the Laplace transform. The z-trans- 
form is introduced to represent discrete-time signals (or sequences) in the z-domain ( z  is a 
complex variable), and the concept of the system function for a discrete-time LTI system 
will be described. The Laplace transform converts integrodifferential equations into 
algebraic equations. In a similar manner, the z-transform converts difference equations 
into algebraic equations, thereby simplifying the analysis of discrete-time systems. 

The properties of the z-transform closely parallel those of the Laplace transform. 
However, we will see some important distinctions between the z-transform and the 
Laplace transform. 

4.2 THE Z-TRANSFORM 

In Sec. 2.8 we saw that for a discrete-time LTI system with impulse response h[n], the 
output y[n] of the system to the complex exponential input of the form z" is 

where 

A. Definition: 

The  function H ( z )  in Eq. (4.2) is referred to as the z-transform of h[n]. For a general 
discrete-time signal x[n], the z-transform X ( z )  is defined as 

m 

X(Z) = x[n]z -"  
n =  -OD 

( 4 . 3 )  

The  variable z is generally complex-valued and is expressed in polar form as 

where r is the magnitude of z and R is the angle of z .  The z-transform defined in Eq. 
(4 .3)  is often called the bilateral (or two-sided) z-transform in contrast to the unilateral (or 
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one-sided) z-transform, which is defined as 

Clearly the bilateral and unilateral z-transforms are equivalent only if x[n] = 0 for n < 0. 
The unilateral z-transform is discussed in Sec. 4.8. We will omit the word "bilateral" 
except where it is needed to avoid ambiguity. 

As in the case of the Laplace transform, Eq. (4.3) is sometimes considered an operator 
that transforms a sequence x[n] into a function X ( z ) ,  symbolically represented by 

The x[n] and X ( z )  are said to form a z-transform pair denoted as 

B. The Region of Convergence: 

As in the case of the Laplace transform, the range of values of the complex variable z 
for which the z-transform converges is called the region of convergence. T o  illustrate the 
z-transform and the associated R O C  let us consider some examples. 

EXAMPLE 4.1. Consider the sequence 

x [ n  ] = a " u [ n ]  a real 

Then by Eq. (4.3) the z-transform of x [ n ]  is 

For the convergence of X(z) we require that 

Thus, the ROC is the range of values of z for which laz - ' I  < 1 or, equivalently, lzl > lal. Then 

Alternatively, by multiplying the numerator and denominator of Eq. (4.9) by z, we may write X(z) as 
z 

X ( z )  = - 
z - a  Izl > la1 

Both forms of X ( z )  in Eqs. ( 4 . 9 )  and (4.10) are useful depending upon the application. 
From Eq. (4.10) we see that X ( z )  is a rational function of z. Consequently, just as with 
rational Laplace transforms, it can be characterized by its zeros (the roots of the numerator 
polynomial) and its poles (the roots of the denominator polynomial). From Eq. (4.10) we see 
that there is one zero at z = 0 and one pole at z = a .  The ROC and the pole-zero plot for 
this example are shown in Fig. 4-1. In z-transform applications, the complex plane is 
commonly referred to as the z-plane. 
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Unit circle t 1 

- I  c a < O  a < - I  

Fig.4-1 ROCofthe form lz l>lal .  

EXAMPLE 4.2. Consider the sequence 

x [ n ]  = - a n u [ - n  - 1 1  

Its z-transform X(z) is given by (Prob. 4.1) 
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Again, as before, X ( z )  may be written as 
z 

X ( z )  = - 
z - a  

Izl < la1 

Thus, the ROC and the pole-zero plot for this example are shown in Fig. 4-2. Comparing 
Eqs. (4.9) and (4.12) [or Eqs. (4.10) and (4.13)], we see that the algebraic expressions of 
X ( z )  for two different sequences are identical except for the ROCs. Thus, as in the Laplace 

Fig. 4-2 ROC of the form I z I <  lal. 
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transform, specification of the z-transform requires both the algebraic expression and the 
ROC. 

C. Properties of the ROC: 

As we saw in Examples 4.1 and 4.2, the ROC of X ( z )  depends on the nature of x [ n ] .  
The properties of the ROC are summarized below. We assume that X ( Z )  is a rational 
function of z. 

Property 1: The ROC does not contain any poles. 

Property 2: If x [ n ]  is a finite sequence (that is, x [ n ]  = 0 except in a finite interval N l  ~ n  s N, ,  
where N ,  and N ,  are finite) and X(z) converges for some value of z, then the ROC is 
the entire z-plane except possibly z = 0 or z = co. 

Property 3: If x [ n ]  is a right-sided sequence (that is, x [ n ]  = 0 for n  < N, < 03) and X(z) converges 
for some value of z, then the ROC is of the form 

where r,, equals the largest magnitude of any of the poles of X(z). Thus, the ROC is 
the exterior of the circle lzl= r,, in the z-plane with the possible exception of z = m. 

Property 4: If x [ n ]  is a left-sided sequence (that is, x [ n l  = 0 for n  > N ,  > - 03) and X(z) converges 
for some value of z, then the ROC is of the form 

where r,, is the smallest magnitude of any of the poles of X(z). Thus, the ROC is the 
interior of the circle lzlE rmin in the z-plane with the possible exception of z = 0. 

Property 5: If x [ n ]  is a two-sided sequence (that is, x [ n ]  is an infinite-duration sequence that is 
neither right-sided nor left-sided) and X(z)  converges for some value of z, then the 
ROC is of the form 

where r ,  and r,  are the magnitudes of the two poles of X(z). Thus, the ROC is an 
annular ring in the z-plane between the circles lzl= r ,  and lzl = r2  not containing any 
poles. 

Note that Property 1 follows immediately from the definition of poles; that is, X(z) 
is infinite at a pole. For verification of the other properties, see Probs. 4.2 and 4.5. 

4.3 z-TRANSFORMS OF SOME COMMON SEQUENCES 

A. Unit Impulse Sequence 61 nl: 

From definition (1 .45)  and ( 4 . 3 )  

m 

X ( z )  = 6[n] z-" = z-O = 1 all z 
n =  -m 
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Thus, 

6[n] H 1 all z 

B. Unit Step Sequence d n l :  
Setting a = 1 in Eqs. (4.8) to (4.101, we obtain 

C. z-Transform Pairs: 

The z-transforms of some common sequences are tabulated in Table 4-1. 

Table 4-1. Some Common z-Transform Pairs 

All z 

lzl > 1 

Izl< 1 

Z-"' All z except 0 if ( m  > 0) or m if ( m  < 0) 
1 Z 

1 - a z - ' ' 2 - a  Izl > lal 

z 2  - (COS n o ) z  
(COS Ron)u[nl 

z 2  - (2cos Ro)  t + 1 
lzl> 1 

(sin n o )  z 
(sin R,n)u[n] 

z 2  - (2cos R,)z + 1 
Izl> 1 

z2 - ( r c o s R 0 ) z  
( r n  cos R,n)u[n] 

z 2  - (2r cos Ro)z  + r 2  
Izl> r 

( r  sin R,)z 
( r n  sin R,n)u[nI 

z 2  - (2r cos R,)z + r 2  
Izl> r  

O < n s N - 1  1 - ~ " ' z - ~  ( otherwise 1 - az- '  lzl> 0 



CHAP. 41 THE z-TRANSFORM AND DISCRETE-TIME LTI SYSTEMS 171 

4.4 PROPERTIES OF THE 2-TRANSFORM 

Basic properties of the z-transform are presented in the following discussion. Verifica- 
tion of these properties is given in Probs. 4.8 to 4.14. 

A. Linearity: 

If 

x l b ]  ++X1(z) ROC = R, 

~ 2 b I  -Xz(z) R O C =  R, 

then 

Q I X I [ ~ ]  + a,xz[n] ++alXl(z) + a2XAz) R r ~ R l  n R 2  (4.1 7) 
where a ,  and a, are arbitrary constants. 

B. Time Shifting: 

If 

+I ++X(z) ROC = R 
then 

x[n  - n,] -z-"oX(z) R' = R n {O < (21 < m} (4.18) 

Special Cases: 

Because of these relationships [Eqs. (4.19) and (4.20)1, z- '  is often called the unit-delay 
operator and z is called the unit-advance operator. Note that in the Laplace transform the 
operators s - ' = 1 /s and s correspond to time-domain integration and differentiation, 
respectively [Eqs. (3.22) and (3.2011. 

C. Multiplication by z,": 

If 

then 

In particular, a pole (or zero) at z = z ,  in X(z) moves to z = zoz, after multiplication by 
2," and .the ROC expands or contracts by the factor (z,(. 

Special Case: 
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In this special case, all poles and zeros are simply rotated by the angle R, and the ROC is 
unchanged. 

D. Time Reversal: 

If 

then 

Therefore, a pole (or zero) in X ( z )  at z  = z ,  moves to l / z ,  after time reversal. The 
relationship R' = 1 / R  indicates the inversion of R ,  reflecting the fact that a right-sided 
sequence becomes left-sided if time-reversed, and vice versa. 

E. Multiplication by n (or Differentiation in 2) :  

If 

~ [ n l  + + X ( Z )  ROC = R  
then 

F. Accumulation: 

If 

x[nI  + + X ( z )  ROC = R  
then 

Note that C z ,  _ , x [ k ]  is the discrete-time counterpart to integration in the time domain 
and is called the accumulation. The comparable Laplace transform operator for integra- 
tion is l / ~ .  

G. Convolution: 

If 

% [ n ]  + + X I ( Z )  ROC = R 1  

~ 2 [ n ]  + + X 2 ( 4  ROC = R 2  

then 

X I [ . ]  * x 2 b I  + + X I ( Z ) X Z ( Z )  R t 3 R 1  n R 2  ( 4 . 2 6 )  
This relationship plays a central role in the analysis and design of discrete-time LTI 
systems, in analogy with the continuous-time case. 
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Table 4-2. Some Properties of the z-Transform 

Property Sequence Transform ROC 

Linearity 
Time shifting 

Multiplication by z," 

Multiplication by einon 

Time reversal 

Multiplication by n 

Accumulation 

Convolution 

&(z)  
-2- 

d.? 

H. Summary of Some z-transform Properties 

For convenient reference, the properties of the z-transform presented above are 
summarized in Table 4-2. 

4.5 THE INVERSE Z-TRANSFORM 

Inversion of the z-transform to find the sequence x [ n ]  from its z-transform X(z )  is 
called the inverse z-transform, symbolically denoted as 

~ [ n ]  =s - ' {X(z>}  (4.27) 

A. Inversion Formula: 

As in the case of the Laplace transform, there is a formal expression for the inverse 
z-transform in terms of an integration in the z-plane; that is, 

where C is a counterclockwise contour of integration enclosing the origin. Formal 
evaluation of Eq. (4.28) requires an understanding of complex variable theory. 

B. Use of Tables of z-Transform Pairs: 

In the second method for the inversion of X(z), we attempt to express X(z) as a sum 

X ( z )  =X,(z)  + . . . +X,(z) (4.29) 
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where X,(z ), . . . , Xn( z )  are functions with known inverse transforms x,[n], . . . , xn[n]. 
From the linearity property (4.17) it follows that 

C. Power Series Expansion: 

The defining expression for the z-transform [Eq. (4.3)] is a power series where the 
sequence values x[n] are the coefficients of z-". Thus, if X( z) is given as a power series in 
the form 

we can determine any particular value of the sequence by finding the coefficient of the 
appropriate power of 2 - ' .  This approach may not provide a closed-form solution but is 
very useful for a finite-length sequence where X(z) may have no simpler form than a 
polynomial in z - ' (see Prob. 4.15). For rational r-transforms, a power series expansion 
can be obtained by long division as illustrated in Probs. 4.16 and 4.17. 

D. Partial-Fraction Expansion: 

As in the case of the inverse Laplace transform, the partial-fraction expansion method 
provides the most generally useful inverse z-transform, especially when Xtz )  is a rational 
function of z. Let 

Assuming n 2 m and all poles pk are simple, then 

where 

Hence, we obtain 

Inferring the ROC for each term in Eq. (4.35) from the overall ROC of X(z)  and using 
Table 4-1, we can then invert each term, producing thereby the overall inverse z-transform 
(see Probs. 4.19 to 4.23). 

If rn > n in Eq. (4.321, then a polynomial of z must be added to the right-hand side of 
Eq. (4.351, the order of which is (m - n). Thus for rn > n, the complete partial-fraction 
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expansion would have the form 

If X(Z) has multiple-order poles, say pi is the multiple pole with multiplicity r, then 
the expansion of X(z)/z will consist of terms of the form 

where 

4.6 THE SYSTEM FUNCTION OF DISCRETE-TIME LTI SYSTEMS 

A. The System Function: 

In Sec. 2.6 we showed that the output y[n] of a discrete-time LTI system equals the 
convolution of the input x[n] with the impulse response h[n]; that is [Eq. (2.3511, 

Applying the convolution property (4.26) of the z-transform, we obtain 

where Y(z), X(z), and H(z)  are the z-transforms of y[n], x[n], and h[n], respectively. 
Equation (4.40) can be expressed as 

The z-transform H(z)  of h[n] is referred to as the system function (or the transfer 
function) of the system. By Eq. (4.41) the system function H(z)  can also be defined as the 
ratio of the z-transforms of the output y[n] and the input x[n.l. The system function H(z )  
completely characterizes the system. Figure 4-3 illustrates the relationship of Eqs. (4.39) 
and (4.40). 

t t t  
X(Z) Y(z)=X(z)H(z) 

+ 

Fig. 4-3 Impulse response and system function. 

H(z) t 
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B. Characterization of Discrete-Time LTI Systems: 

Many properties of discrete-time LTI systems can be closely associated with the 
characteristics of H(z)  in the z-plane and in particular with the pole locations and the 
ROC. 

1. Causality: 

For a causal discrete-time LTI system, we have [Eq. (2.4411 

since h[n] is a right-sided signal, the corresponding requirement on H(z)  is that the ROC 
of H ( z )  must be of the form 

That is, the ROC is the exterior of a circle containing all of the poles of H(z)  in the 
z-plane. Similarly, if the system is anticausal, that is, 

then h[n] is left-sided and the ROC of H(z)  must be of the form 

That is, the ROC is the interior of a circle containing no poles of H ( z )  in the z-plane. 

2. Stability: 

In Sec. 2.7 we stated that a discrete-time LTI system is BIB0 stable if and only if [Eq. 
(2.4911 

The corresponding requirement on H(z)  is that the ROC of H(z1 contains the unit circle 
(that is, lzl= 1). (See Prob. 4.30.) 

3. Ctzusal and Stable Systems: 

If the system is both causal and stable, then all of the poles of H(z )  must lie inside the 
unit circle of the z-plane because the ROC is of the form lzl> r,,, and since the unit 
circle is included in the ROC, we must have r,, < 1. 

C. System Function for LTI Systems Described by Linear Constant-Coefficient Difference 
Equations: 

!n Sec. 2.9 we considered a discrete-time LTI system for which input x[n] and output 
y[n] satisfy the general linear constant-coefficient difference equation of the form 
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Applying the z-transform and using the time-shift property (4.18) and the linearity 
property (4.17) of the z-transform, we obtain 

or  

Thus, 

Hence, H ( z )  is always rational. Note that the ROC of H ( z )  is not specified by Eq. (4.44) 
but must be inferred with additional requirements on the system such as the causality or  
the stability. 

D. Systems Interconnection: 

For two LTI systems (with h,[n] and h2[n], respectively) in cascade, the overall 
impulse response h[n] is given by 

h[nl  = h ,  [n l  * h 2 b l  (4.45) 

Thus, the corresponding system functions are related by the product 

Similarly, the impulse response of a parallel combination of two LTI systems is given 
by 

+I = h , [ n l  + h * l n l  (4.47) 
and 

4.7 THE UNILATERAL Z-TRANSFORM 

A. Definition: 

The unilateral (or one-sided) z-transform X,(z) of a sequence x[n] is defined as [Eq. 
(4.511 

m 

X,(z) = z x[n]z-" (4.49) 
n-0 

and differs from the bilateral transform in that the summation is carried over only n 2 0. 
Thus, the unilateral z-transform of x[n] can be thought of as the bilateral transform of 
x[n]u[n]. Since x[n]u[n] is a right-sided sequence, the ROC of X,(z)  is always outside a 
circle in the z-plane. 
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B. Basic Properties: 

Most of the properties of the unilateral z-transform are the same as for the bilateral 
z-transform. The unilateral z-transform is useful for calculating the response of a causal 
system to a causal input when the system is described by a linear constant-coefficient 
difference equation with nonzero initial conditions. The basic property of the unilateral 
z-transform that is useful in this application is the following time-shifting property which is 
different from that of the bilateral transform. 

Time-Shifting Property: 

If x[n] t, X,( z ), then for m 2 0, 

x[n - m ]  - Z - ~ X , ( Z )  +z-"+'x[-11 + z - " + ~ x [ - ~ ]  + - +x[-m]  

x[n  + m] t ,zmX,(z)  -zmx[O] - zm- 'x [ l ]  - . . - - ~ [ m  - 11 

The proofs of Eqs. (4.50) and (4.51) are given in Prob. 4.36. 

D. System Function: 

Similar to the case of the continuous-time LTI system, with the unilateral z-transform, 
the system function H(z)  = Y(z)/X(z) is defined under the condition that the system is 
relaxed, that is, all initial conditions are zero. 

Solved Problems 

THE Z-TRANSFORM 

4.1. Find the z-transform of 

(a) From Eq. ( 4 . 3 )  

By Eq. (1.91) 

1 
( a - ~ z ) ~  = if la-'zl< 1 or lz( < la1 

n = O  I - a - ' z  
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Thus, 

1 -a-'z z - - =-- - 
1 

X ( z )  = 1 - 
1-a - ' z  1 -a - ' z  z - a  1-az- '  

Izl < I4 (4.52) 

( b )  Similarly, 

Again by Eq. (1.91) 

Thus, 

4.2. A finite sequence x [ n ]  is defined as 

N ,  I n  I N ,  
= O  otherwise 

where N, and N, are finite. Show that the ROC of X(z)  is the entire z-plane except 
possibly z = 0 or z = m. 

From Eq. (4.3) 

For z not equal to zero or infinity, each term in Eq. (4.54) will be finite and thus X(z) will 
converge. If N, < 0 and N2 > 0, then Eq. (4.54) includes terms with both positive powers of z 
and negative powers of z. As lzl- 0, terms with negative powers of z become unbounded, 
and as lzl+ m, terms with positive powers of z become unbounded. Hence, the ROC is the 
entire z-plane except for z = 0 and z = co. If N, 2 0, Eq. (4.54) contains only negative powers 
of z, and hence the ROC includes z = m. If N, I 0, Eq. (4.54) contains only positive powers of 
z, and hence the ROC includes z = 0. 

4.3. A finite sequence x [ n ]  is defined as 

Find X(z) and its ROC. 
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From Eq. (4.3) and given x [ n ]  we have 

= 5 ~ ~ + 3 ~ - 2 + 4 z - ~ - 3 z - ~  

For z  not equal to zero or infinity, each term in X ( z )  will be finite and consequently X ( z )  will 
converge. Note that X ( z )  includes both positive powers of z  and negative powers of z. Thus, 
from the result of Prob. 4.2 we conclude that the ROC of X ( z )  is 0 < lzl < m. 

4.4. Consider the sequence 

O s n s N - l , a > O  
otherwise 

Find X ( z )  and plot the poles and zeros of X(z). 
By Eq. (4.3) and using Eq. (1.90), we get 

N- I N -  I I - ( a z - ~ ) ~  1  z N - a N  
X ( Z )  = C anz-"= C ( a z - I ) " =  =- 

1 - a z - ~  z ~ - ~  z - a  (4 .55)  
n = O  n = O  

From Eq. (4.55) we see that there is a pole of ( N  - 1)th order at z  = 0  and a pole at z  = a .  
Since x[n] is a finite sequence and is zero for n < 0, the ROC is IzI > 0. The N  roots of the 
numerator polynomial are at 

Zk  = a e i ( 2 r k / N )  k = 0 , 1 ,  ..., N -  1 ( 4 .56 )  

The root at k = 0 cancels the pole at z  = a.  The remaining zeros of X ( z )  are at 

The pole-zero plot is shown in Fig. 4-4 with N = 8. 

Fig. 4-4 Pole-zero plot with N = 8. 
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4.5. Show that if x [ n ]  is a right-sided sequence and X(z)  converges for some value of z, 
then the ROC of X(z)  is of the form 

where r,, is the maximum magnitude of any of the poles of X(z). 

Consider a right-sided sequence x[nl  so that 

and X(z) converges for (zl = r,. Then from Eq. (4.3) 

Now if r, > r,, then 

since (r ,  /r,)-" is a decaying sequence. Thus, X(z) converges for r = r, and the ROC of X(z) 
is of the form 

Since the ROC of X(z) cannot contain the poles of X(z), we conclude that the ROC of X(z) 
is of the form 

where r,, is the maximum magnitude of any of the poles of X(z). 
If N, < 0, then 

That is, X(z) contains the positive powers of z and becomes unbounded at z = m. In this case 
the ROC is of the form 

From the above result we can tell that a sequence x [ n ]  is causal (not just right-sided) from the 
ROC of XCz) if z = oo is included. Note that this is not the case for the Laplace transform. 

4.6. Find the z-transform X(z) and sketch the pole-zero plot with the ROC for each of the 
following sequences: 
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( a )  From Table 4-1 

We see that the ROCs in Eqs. ( 4 . 5 8 )  and ( 4 . 5 9 )  overlap, and thus, 

From Eq. ( 4 . 6 0 )  we see that X ( z )  has two zeros at z = 0 and z  = & and two poles at 
z  = and z  = and that the ROC is l z l  > 4, as sketched in Fig. 4-5(a) .  

( b )  From Table 4-1 

We see that the ROCs in Eqs. (4 .61)  and (4 .62)  overlap, and thus 

From Eq. (4 .63)  we see that X ( z )  has one zero at z  = 0 and two poles at z  = $ and z  = 4 
and that the ROC is 3 < l z l <  :, as sketched in Fig. 4-5(b). 

Fig. 4-5 
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(c) FromTable4-1 

We see that the ROCs in Eqs. (4.64) and (4.65) do not overlap and that there is no 
common ROC, and thus x[n] will not have X ( z ) .  

4.7. Let 

( a )  Sketch x [ n ]  for a < 1 and a > 1. 
( b )  Find X ( z )  and sketch the zero-pole plot and the ROC for a < 1 and a > 1. 

( a )  The sequence x[n]  is sketched in Figs. 4 4 a )  and ( b )  for both a < 1 and a > 1. 

( b )  Since x[n]  is a two-sided sequence, we can express it as 

~ [ n ]  = a n u [ n ]  + a m n u [ - n  - 11 ( 4 . 6 7 )  

From Table 4-1 

If a < 1, we see that the ROCs in Eqs. (4.68) and (4.69) overlap, and thus, 

z z a 2 -  1 z 
X ( z )  = - - - - -- 

1 
a < lzl < - (4 .70 )  

z - a  z - l / a  a ( z  - a ) ( z -  l / a )  a 

From Eq. (4.70) we see that X ( z )  has one zero at the origin and two poles at z = a  and 
z = l / a  and that the ROC is a < lzl< l / a ,  as sketched in Fig. 4-7. If a > 1 ,  we see that 
the ROCs in Eqs. (4.68) and (4.69) do not overlap and that there is no common ROC, 
and thus x[n] will not have X ( z ) .  

(4 

Fig. 4-6 
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Fig. 4-7 

PROPERTIES OF THE Z-TRANSFORM 

4.8. Verify the  time-shifting property (4.18), that is, 

By definition (4.3) 

By the change of variables m = n - no, we obtain 

Because of the multiplication by 2-"0, for no > 0, additional poles are introduced at r = 0 and 
will be deleted at z = w. Similarly, if no < 0, additional zeros are introduced at z = 0 and will 
be deleted at z = m. Therefore, the points z = 0 and z = oo can be either added to or deleted 
from the ROC by time shifting. Thus, we have 

where R and R' are the ROCs before and after the time-shift operation. 
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4.9. Verify Eq. (4.211, that is, 

By definition (4.3) 

A pole (or zero) at z = zk in X(z) moves to z = zoz,, and the ROC expands or contracts by 
the factor Izol. Thus, we have 

4.10. Find the z-transform and the associated ROC for each of the following sequences: 

(a) From Eq. (4.15) 

S [ n ]  - 1 all z 

Applying the time-shifting property (4.181, we obtain 

( b )  From Eq. (4.16) 

Z 
4.1 IZI> I 

Again by the time-shifting property (4.18) we obtain 

( c )  From Eqs. (4.8) and (4.10) 

Z 
anu[n] w - 

z - a  
Izl> la1 

By Eq. (4.20) we obtain 

Z z 
an+  'u[n + I] - z -  = - 

z - a  z - a  
lal< lzl < m (4.73) 

( d l  From Eq. (4.16) 
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By the time-reversal property (4.23) we obtain 

( e )  From Eqs. (4.8) and (4.10) 

Z 
anu[n] - - 

2 - a  
Izl> la1 

Again by the time-reversal property (4.23) we obtain 

4.11. Verify the multiplication by n (or differentiation in z )  property (4.24), that is, 

From definition (4.3) 

Differentiating both sides with respect to 2 ,  we have 

and 

Thus, we conclude that 

4.12. Find the z-transform of each of the following sequences: 

(a) x [ n ]  = nanu[n] 

( b )  x [ n ]  = nan- lu[n] 

(a)  From Eqs. (4.8) and (4.10) 

Z 
anu[n] o - 

z - a  
I z I  > la1 

Using the multiplication by n property (4.24), we get 
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( b )  Differentiating Eq. (4.76) with respect to a ,  we have 

Note that dividing both sides of Eq. (4.77) by a ,  we obtain Eq. (4.78). 

4.13. Verify the convolution property (4.26),  that is, 

By definition (2.35) 

Thus, by definition (4.3) 

Noting that the term in parentheses in the last expression is the z-transform of the shifted 
signal x 2 [ n  - k ] ,  then by the time-shifting property (4.18) we have 

with an ROC that contains the intersection of the ROC of X,(z )  and X,(z) .  If a zero of one 
transform cancels a pole of the other, the ROC of Y ( z )  may be larger. Thus, we conclude that 

4.14. Verify the accumulation property (4.25), that is, 

From Eq. (2.40) we have 

Thus, using Eq. (4.16) and the convolution property (4.26), we obtain 

with the ROC that includes the intersection of the ROC of X ( z )  and the ROC of the 
z-transform of u [ n ] .  Thus, 
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INVERSE Z-TRANSFORM 

4.15. Find the inverse z-transform of 

X ( z )  = z 2 ( l  - i2 - ' ) (1  - 2 - ' ) ( I  + 2 2 - 7  0 < lzl< 00 (4.79) 
Multiplying out the factors of Eq. (4.79), we can express X ( z )  as 

X ( Z )  = z 2 +  t z -  3 + z - I  

Then, by definition (4 .3)  

X ( z )  = x [ - 2 ] z 2 + x [ - 1 ] z  + x [ o ]  + x [ 1 ] z - '  

and we get 

x [ n ]  = { ..., O , l , $ ,  - 5 , 1 , 0  ,... } 

T 

4.16. Using the power series expansion technique, find the inverse z-transform of the 
following X (  2): 

( a )  Since the ROC is ( z ( >  
Thus, we must divide 
division, we obtain 

la(, that is, the exterior of a circle, x[n]  is a right-sided sequence. 
to obtain a series in the power of z - ' .  Carrying out the long 

Thus, 

1 
X ( z )  = = 1 + a ~ - ' + a ~ z - ~ +  

1 - az-'  

and so by definition (4 .3 )  we have 

x [ n ] = O  n < O  

x [ O ] = 1  x [ l ] = a  x [ 2 ] = a 2  * . .  

Thus, we obtain 

x [ n ]  = a n u [ n ]  

( 6 )  Since the ROC is lzl < lal, that is, the interior of a circle, x[n] is a left-sided sequence. 
Thus, we must divide so as to obtain a series in the power of z  as follows, Multiplying 
both the numerator and denominator of X ( z )  by z ,  we have 

z  
X ( z )  = - 

z - a  
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and carrying out the long division, we obtain 
-a-'z - a - 2 z 2 - a - 3 z 3 -  . - 

Thus, 

and so by definition (4.3)  we have 

x [ n ] = O  n 2 0  
x [ -  11 = -a-1 x[-2] = -a-2 x[-'j] = - 0 - 3  

Thus, we get 

x[n] = -anu[-n - I] 

4.17. Find the inverse z-transform of the following X(z): 

(a) The power series expansion for log(1 - r) is given by 

Now 

1 
X(z) = log - a z - , )  = -lo@ - a f l )  Izl> lal 

Since the ROC is lzl> lal, that is, laz-'I< 1 ,  by Eq. (4.80), X(z) has the power sel 
expansion 

from which we can identify x[n] as 
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Since the ROC is J z J  < lal, that is, la-'zl < 1, by Eq. (4.801, X(z) has the power series 
expansion 

from which we can identify x [ n ]  as 

4.18. Using the power series expansion technique, find the inverse z-transform of the 
following X( z): 

Z 1 
( a )  X(z)= IzI< - 

2z2  - 3z + 1 2 

(a) Since the ROC is (zl < i, x [ n ]  is a left-sided sequence. Thus, we must divide to obtain a 
series in power of z. Carrying out the long division, we obtain 

z + 3z2 + 7z3 + 15z4 + - . . 

15z4 - 
Thus, 

and so by definition (4.3) we obtain 

( b )  Since the ROC is lzl> 1, x [ n ]  is a right-sided sequence. Thus, we must divide so as to 
obtain a series in power of z-  ' as follows: 

Thus, 
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and so by definition (4.3) we obtain 
1 3 7  x[n] = {O,T,~ ,E, .  -. ) 

4.19. Using partial-fraction expansion, redo Prob. 4.18. 
Z - Z - 

1 
( a )  X ( z ) = 2 ~ 2 - 3 ~ + 1  2 ( z - l ) ( z - + )  lzl< - 2 

Using partial-fraction expansion, we have 

where 

and we get 

Since the ROC of X(z)  is lzl < i, x[n] is a left-sided sequence, and from Table 4-1 we 
get 

x[n] = -u[-n - I] + - I ]  = [(i)n - I]u[-n - 11 

which gives 

x[n] = (..., 15,7,3,l,O) 

Since the ROC of X(z) is lzl> 1, x[n] is a right-sided sequence, and from Table 4-1 we 
get 

x[n] = u[n] - (i) 'u[n] = [I - (i) ']u[n] 

which gives 

4.20. Find the inverse z-transform of 

Using partial-fraction expansion, we have 

where 
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Substituting these values into Eq. (4,831, we have 

Setting z = 0 in the above expression, we have 

Thus, 

Since the ROC is lzl> 2, x [ n ]  is a right-sided sequence, and from Table 4-1 we get 

4.21. Find the inverse t-transform of 

Note that X(Z) is an improper rational function; thus, by long division, we have 

Let 

Then 

where 

Thus. 

3 Z 1 2  
and X ( z ) = 2 z + - - -  + -- 

2  2 - 1  2 2 - 2  
121 < 1  

Since the ROC of X ( z )  is ( z  ( < 1, x [ n ]  is a left-sided sequence, and from Table 4-1 we get 

x [ n ]  = 2 S [ n  + 1 1  + i S [ n ]  + u [ - n  - 1 1  - $2"u[ -n  - 1 )  

= 2 S [ n  + 1 1  + $ [ n ]  + (1  - 2 " - ' ) u [ - n  - 1 1  
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4.22. Find the inverse z-transform of 
2 

X( 2) can be rewritten as 

Since the ROC is J z J  > 2, x[n] is a right-sided sequence, 

lzl > 2 

and from Table 4-1 we have 

Using the time-shifting property (4.181, we have 

Z 1 
2n-Lu[n - l ]  ~ z - 1  

Thus, we conclude that 

x[n] = 3(2)"-'u[n - 1 1  

4.23. Find the inverse z-transform of 

2 + z - ~  + 32-4 
X ( 2 )  = 

z 2  + 4z + 3 121 > 0 

We see that X(z)  can be written as 

X ( z )  = (2.7-I + z - ~  + ~ z - ~ ) x , ( z )  

where 

Thus, if 

then by the linearity property (4.17) and the time-shifting property (4.18), we get 

where 

1 z 1 z 
Then X , ( z )  = - - - - - 

2 z + 1  2 z + 3  lz1 > 0 

Since the ROC of X,(z)  is Izl > 0, x,[n] is a right-sided sequence, and from Table 4-1 we get 

x1[n] = ;[(-I)" - (-3)"]u[n] 

Thus, from Eq. (4.84) we get 

x[n] = [ ( - I )"- '  - (-3)"-']u[n - I ]  + f [ ( - I ) " - '  - (-3)"-']u[n - 3 1  

+ f [( -I)"-'  - (-3)"-']u[n - 51 
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4.24. Find the inverse z-transform of 

1 Z 

X(2) = - - 
2 2 l z l>  lal 

( 1  a z )  ( z  - a )  

From Eq. (4.78) (Prob. 4.12) 

Now, from Eq. (4.85) 

and applying the time-shifting property (4.20) to Eq. (4.86), we get 

~ [ n ]  = ( n  + l ) a n u [ n  + 1 ]  = ( n  + l ) a n u [ n ]  

since x [ - 1 ] = 0 a t  n =  - 1 .  

SYSTEM FUNCTION 

4.25. Using the z-transform, redo Prob. 2.28. 

From Prob. 2.28, x [ n ]  and h [ n ]  are given by 

x [ n ]  = u [ n ]  h [ n ]  = a n u [ n ]  O < a < 1  

From Table 4-1 

L 

h [ n ]  = a n u [ n ]  - H ( z )  = - 
Z - a  

l z l>  la1 

Then, by Eq. (4.40) 

Using partial-fraction expansion, we have 

where 

Thus, 
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Taking the inverse z-transform of Y(z), we get 

which is the same as Eq. (2.134). 

Using the z-transform, redo Prob. 2.29. 

(a) From Prob. 2.29(a), x [ n ]  and h [ n ]  are given by 

x [ n ]  = a n u [ n ]  h [ n ]  = P n u [ n ]  

From Table 4-1 

Then 

z 
~ [ n ]  = a n u [ n ]  H X(Z)  = - 

z - a  
Izl> la1 

Using partial-fraction expansion, we have 

where 

Thus, 

and 

a ( =- C, = - P I = - -  C2 = - 
z - P , = ,  a - P  z - a ~ = p  a - p  

a 2 P z 
y ( z )  = - - - - - 

a - p  2 - ( Y  a - p  2 - p  
lzl > max(a, p )  

which is the same as Eq. (2.135). When a = P,  

Using partial-fraction expansion, we have 

where 

and 
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Setting z  = 0 in the above expression, we have 

Thus, 
z a z 

Y(z) = - + 2 Izl> a 
2-a  ( z - a )  

and from Table 4-1 we get 

Thus, we obtain the same results as Eq. (2.135). 

( b )  From Prob. 2.29(b), x [ n ]  and h[nl are given by 

From Table 4-1 and Eq. (4.75) 

1 z 1 
Then Y(z) = X ( z )  H ( z )  = - - a < l z l <  - 

a ( z  - a ) ( z  - I/a) a 

Using partial-fraction expansion, we have 

Y( z  -- 1 
- -- 

1 
= - -  - +"-) 

z a ( z - a ) ( z - a )  a z - a  z - 1 / a  

a 1 a 
where C, = - 

Thus, 

1 Z 1 z 
Y ( z ) =  -- - - 1  

a < l z l < -  
1  -a2  Z - a  1 -a2  Z -  1/a a 

and from Table 4-1 we obtain 

which is the same as Eq. (2.137). 

4.27. Using the  z-transform, redo Prob. 2.30. 

From Fig. 2-23 and definition (4 .3)  

~ [ n ]  = ( l , l , l , l ]  - X ( z )  = 1 + z - '  +z-2z-3  

h [ n ]  = ( l , l ,  1) - H ( z )  = 1 + z - '  + z - *  
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Thus, by the convolution property (4.26) 

Y(Z)  =x (z )H(z )  = ( I  + Z - ' + Z - ~ + Z - ~ ) ( I  + Z - ' + Z - ~ )  

= 1 + 2 ~ 4  + + 3 ~ - ~  + + 2 4  

Hence, 

h [ n l =  {1,2,3,3,2,1) 

which is the same result obtained in Prob. 2.30. 

4.28. Using the z-transform, redo Prob. 2.32. 

Let x[nl  and y[nl be the input and output of the system. Then 

Z 

x [ n ]  = u [ n ]  -X(z)  = - 
2- 1 

lzl > 1 

Then, by Eq. (4.41) 

Using partial-fraction expansion, we have 

1 a - 1  1 -a  
where c, = - C2 = - 

a 

Thus, 

1 1 - a  z 
H ( z ) =  - -  -- l z l >  a 

a a Z - a  

Taking the inverse z-transform of H(z), we obtain 

When n = 0, 

Then 

Thus, h [ n ]  can be rewritten as 

which is the same result obtained in Prob. 2.32. 
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4.29. The output y [ n ]  of a discrete-time LTI system is found to be 2(f )"u[n] when the input 
x [ n ]  is u [ n ] .  

( a )  Find the impulse response h [ n ]  of the system. 
( b )  Find the output y[n] when the input x [ n ]  is ( ; ) " u [ n ] .  

Hence, the system function H(z) is 

Using partial-fraction expansion, we have 

where 

Thus, 

Taking the inverse z-transform of H(z), we obtain 

h [ n ]  = 6 6 [ n ]  - 4(; ) 'u[n]  

Then, 

Again by partial-fraction expansion we have 

2(z  - 1 )  2(z - 1) 
where C, = , I  = - 6  c2 = 

2 - 7  r - L / 2  

Thus, 

Taking the inverse z-transform of Y(z), we obtain 

y [ n ]  = [ -6( ; ) '  + 8($ ) ' lu [n ]  
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If a discrete-time LTI system is BIBO stable, show that the ROC of its system function 
H ( z )  must contain the unit circle, that is, lzl = 1. 

A discrete-time LTI system is BIBO stable if and only if its impulse response h[nl is 
absolutely summable, that is [Eq. (2.49)1, 

Now 

Let z = ejR so that lzl = lejRI = 1. Then 

Therefore, we see that if the system is stable, then H ( z )  converges for z = ei". That is, for a 
stable discrete-time LTI system, the ROC of H(z )  must contain the unit circle lzl = 1. 

Using the z-transform, redo Prob. 2.38. 

( a )  From Prob. 2.38 the impulse response of the system is 

Then 

Since the ROC of H(z)  is Izl > IaI, z = oo is included. Thus, by the result from Prob. 4.5 
we conclude that h[n] is a causal sequence. Thus, the system is causal. 

( b )  If la1 > 1, the ROC of H(z )  does not contain the unit circle lz l= 1, and hence the system 
will not be stable. If la1 < 1, the ROC of H(z)  contains the unit circle lzl = 1, and hence 
the system will be stable. 

A causal discrete-time LTI system is described by 

y [ n ]  - ;y[n - 11 + iy[n - 21 = x [ n ]  (4.88) 

where x[n] and y[n] are the input and output of the system, respectively. 

( a )  Determine the system function H(z ) .  

( b )  Find the impulse response h[n] of the system. 
( c )  Find the step response s[n] of the system. 

( a )  Taking the z-transform of Eq. (4.88), we obtain 

Y(2) - $ z - ' ~ ( z )  + ; z - ~ Y ( z )  = X ( z )  
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Thus, 

( b )  Using partial-fraction expansion, we have 

Thus, 

Taking the inverse z-transform of H(z), we get 

2 
Then Y(z) = X ( Z )  H ( z )  = 

( z  - l ) ( z  - ; ) ( z  - i) 121 > 1 

Again using partial-fraction expansion, we have 

Thus, 

Taking the inverse z-transformation of Y(z), we obtain 
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4.33. Using the z-transform, redo Prob. 2.41. 

As in Prob. 2.41, from Fig. 2-30 we see that 

q [ n ]  = 2 q [ n  - 1 1  + x [ n ]  

~ [ n l =  s [ n l +  34[n  - 1 1  

Taking the z-transform of the above equations, we get 

Q ( z )  = 2 2 - ' Q ( z )  + X ( z )  

Y ( z )  = Q ( z )  + ~ z - ' Q ( z )  

Rearranging, we get 

( 1  - 2 2 - ' ) Q ( L )  = X ( z )  

( 1  + 3 . 2 - ' ) Q ( z )  = Y ( z )  

from which we obtain 

Rewriting Eq. (4.89),  we have 

(1  - 2 2 - ' ) Y ( 2 )  = ( 1  + 3 2 - ' ) x ( ~ )  

or 

Y ( z )  - 2 2 - ' Y ( z )  = X ( z )  + 3 2 - ' X ( z )  ( 4 . 9 0 )  

Taking the inverse z-transform of Eq. (4.90) and using the time-shifting property (4.181, we 
obtain 

y [ n ]  - 2 y [ n  - 1 1  = x [ n ]  + 3 x [ n  - 1 1  

which is the same as Eq. (2.148). 

4.34. Consider the discrete-time system shown in Fig. 4-8. For what values of k is the 
system BIB0 stable? 
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From Fig. 4-8 we see that 

Taking the z-transform of the above equations, we obtain 

k 
Y(z)  = Q ( z )  + ?z - 'Q(z )  

Rearranging, we have 

from which we obtain 

which shows that the system has one zero at z = -k /3  and one pole at z = k / 2  and that the 
ROC is Jz l>  lk/2l. Thus, as shown in Prob. 4.30, the system will be BIB0 stable if the ROC 
contains the unit circle, lzl= 1. Hence the system is stable only if IkJ < 2. 

UNILATERAL Z-TRANSFORM 

4.35. Find the unilateral z-transform of the following x[n]: 

( a )  x[n] = anu[n]  

( b )  x[n] = a n  + 'u[n + 11 
(a) Since x[nl = 0 for n < 0, X,(z) = X(z) and from Example 4.1 we have 

( b )  By definition (4.49) we have 

1 az 
= a  =-  

1 - a z - '  z - a  
Izl > la1 

Note that in this case x[n] is not a causal sequence; hence X,(z) + X(z) [see Eq. (4.73) in 
Prob. 4.101. 
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4.36. Verify Eqs. (4.50) and (4.51), that is, for m  2 0, 

( a )  x [ n  - m ]  -z -"x , (z )  + Z - ~ + ' X [ -  11 + Z-"" ' x [ - 2 ]  + a - + x [ - m ]  

( a )  By definition (4.49) with m  2 0 and using the change in variable k = n  - m, we have 

( b )  With m 1 0  
m m 

8 , { x [ n  + m ] )  = C x [ n  + m ] z - "  = C x [ k ] ~ - ( ~ - ~ )  
n = O  k = m  

4.37. Using the unilateral z-transform, redo Prob. 2.42. 

The system is described by 

~ [ n ]  - ay[n - 11 = x [ n ]  

with y [  - 11 = y - , and x[n 1 = Kbnu[n]. Let 

~ [ " l  * Y I ( z )  

Then from Eq. (4.50) 

~ [ n  - 11 - z - ~ Y , ( z )  + y [ - I ]  = Z - ' & ( Z )  + y - I  

From Table 4-1 we have 
Z 

x [ n ]  -X,(Z) =K- 
t - b  Izl> lbl 

Taking the unilateral z-transform of Eq. (4.931, we obtain 

& ( z )  - a { z - ' ~ ( z )  + y - J  = KZ z - b  
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Thus, 

z z 
y ( z )  = ay - \  - + K  

z - a  ( z - a ) ( z - b )  

Using partial-fraction expansion, we obtain 

z K z z 
Y,(z) =ay-,- +-  - 

z - a  b - ~ ( ~ z - b  z - a  

Taking the inverse z-transform of Y,(z), we get 

b a 
Y[n ]  =ay-  ,anu[n]  + K-bnu[n] - K-anu[n] 

b - a  b - a  

which is the same as Eq. (2.158). 

4.38. For each of the following difference equations and associated input and initial 
conditions, determine the output y[n I: 
( a )  y[nl  - fy[n  - 11 =x[nl ,  with x [n ]  = (:In, y[- 11 = 1 

( b )  3y[n]  - 4y[n  - 11 + y[n - 21 = A n ] ,  with x[n]  = (i)", y[ - 11 = 1, y[- 21 = 2 

Taking the unilateral z-transform of the given difference equation, we get 

Y,(z) - +{z-'Y,(z) +y [ -  I]} =X, (z )  

Substituting y[- 11 = 1 and X,(z) into the above expression, we get 

Thus, 

Hence, 

y [n )  = 7(;)"+' - 2( f )n  n 2  - 1  

z 
(b)  x[n] ++ X,(z) = ---7 

2 - 2  

Taking the unilateral z-transform of the given difference equation, we obtain 

3Y,(z) - 4{z- ' 5  ( z ) + Y [ - I ] } + { ~ -  2Y, ( z )  +z- 'y [ -  11 + ~ [ - 2 ] }  = X I ( Z )  
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Substituting y[- 11 = 1, y[-2]= 2, and X,(z) into the above expression, we get 

Thus, 

Hence, 

y [ n ]  = $ - (f)" + +(f)" n r  - 2  

439. Let x[n]  be a causal sequence and 

x b l  -X(z) 
Show that 

x[O] = lim X(z) 
Z'W 

Equation (4.94) is called the initial value theorem for the z-transform. 

Since x [ n ]  = 0 for n < 0, we have 

As z -+ oa, z-" -+ 0 for n > 0. Thus, we get 

lim X (  z )  = x[O]  
2--.m 

4.40. Let x[n ]  be a causal sequence and 

Show that if X(z) is a rational function with all its poles strictly inside the unit circle 
except possibly for a first-order pole at z = 1, then 

lim x [ N ]  = lim (1 -2- ')X(z) (4.95) 
N - t m  1-1 

Equation (4.95) is called the final value theorem for the z-transform. 

From the time-shifting property (4.19) we have 

The left-hand side of Eq. (4.96) can be written as 
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If we now let z ---, 1, then from Eq. (4 .96)  we have 

lim ( I  - 2 - ' ) X ( z )  = lim ( x [ n ]  - x [ n  - I]} = lim x [ N ]  
z-+ 1 N-+m n = O  N + w  

Supplementary Problems 

4.41. Find the z-transform of the following x [ n ] :  

( a )  x [ n l =  ( ; , I ,  - $1 
( b )  x [ n ]  = 2S[n  + 21 - 3S[n - 21 
( c )  x [ n ]  = 3 ( -  f )"u[n]  - 2(3)"u[-n - I ]  
( d )  x [ n l =  3 ( i ) " u [ n l -  2(a)"u[-n - 11 

A m .  ( a )  X ( z )  = f + z - '  - $z-', 0 < lzl 

( d )  X(  z )  does not exist. 

4.42. Show that if x [ n ]  is a left-sided sequence and X ( z )  converges from some value of z ,  then the 
ROC of X ( z )  is of the form 

IzI<rmin or O<IzI<rmin 

where rmin is the smallest magnitude of any of the poles of X ( z ) .  

Hint: Proceed in a manner similar to Prob. 4.5. 

4.43. Given 

( a )  State all the possible regions of convergence. 
( b )  For which ROC is X ( z )  the z-transform of a causal sequence? 

Ans. ( a )  0 < lzl < 1 , l  < lzI< 2,2 < I z k  3, l z l> 3 
( b )  lz1>3 

4.44. Verify the time-reversal property (4.23), that is, 

Hint: Change n to - n  in definition (4.3).  
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4.45. Show the following properties for the z-transform. 

( a )  If x [ n ]  is even, then X ( z L ' )  = X ( z ) .  

( b )  If x [ n ]  is odd, then X ( z - ' )  = - X ( z ) .  
( c )  If x [ n ]  is odd, then there is a zero in X ( z )  at z = 1. 

Hint: ( a )  Use Eqs. (1.2)  and (4.23). 

( b )  Use Eqs. (1.3) and (4.23). 
( c )  Use the result from part (b ) .  

4.46. Consider the continuous-time signal 

Let the sequence x [ n ]  be obtained by uniform sampling of x ( t )  such that x [ n ]  = x(nT,), where 
T, is the sampling interval. Find the z-transform of x[n] .  

Am. 

4.47. Derive the following transform pairs: 

(sin R o ) z  
(sin n 0 n ) u [ n ]  - 

z 2  - (2cos R o ) z  + 1 
l z l >  I 

Hint: Use Euler's formulas. 

and use Eqs. (4.8)  and (4.10) with a = e * ''0. 

4.48. Find the z-transforms of the following x[n]:  

( a )  x [ n ]  = ( n  - 3)u[n - 31 
( b )  x[nl = ( n  - 3)u[n] 

( c )  x[nl = u[n]  - u[n  - 31 
( d l  x[nl = n{u[nl-  u[n  - 33) 

z - ~  
Am. ( a )  , ,  lz1> 1 

( 2 -  1) 
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4.49. Using the relation 
Z 

a n u [ n ]  H - 
z - a  

Izl> la1 

find the z-transform of the following x[n] :  

( a )  x [ n ]  = nun- 'u [n ]  

( b )  x [ n ]  = n(n - l ) a " - 2 u [ n ]  

( c )  x [n l  = n(n - 1 ) .  . . ( n  - k + l ) ~ " - ~ u [ n ]  

Hint: Differentiate both sides of the given relation consecutively with respect to a .  

4.50. Using the z-transform, verify Eqs. (2.130) and (2.131) in Prob. 2.27, that is, 

Hint: Use Eq. (4.26) of the z-transform and transform pairs 1  and 4 from Table 4-1. 

4.51. Using the z-transform, redo Prob. 2.47. 

Hint: Use Eq. (4.26) and Table 4-1. 

4.52. Find the inverse z-transform of 

X (  z )  = ea/' 1.4 > 0 

Hint: Use the power series expansion of the exponential function er .  

Am. 

4.53. Using the method of long division, find the inverse z-transform of the following X ( z ) :  
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4.54. Using the method of partial-fraction expansion, redo Prob. 4.53. 

Ans. ( a )  x [ n ]  = (1 - 2 9 4 - n  - 11 
(6) x [ n ]  = - u [ n ]  - 2"u[-n - 11 
(c) ~ [ n ]  = (- 1 + 2")u[n] 

4.55. Consider the system shown in Fig. 4-9. Find the system function H ( z )  and its impulse response 
h b l .  

1 
Am. H ( z )  = , -, , h [ n l =  

1 - 72 

u 

Fig. 4-9 

4.56. Consider the system shown in Fig. 4-10. 

( a )  Find the system function H ( z ) .  

( b )  Find the difference equation relating the output y [ n ]  and input x [ n ] .  

Fig. 4-10 
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4.57. Consider a discrete-time LTI system whose system function H(z) is given by 

( a )  Find the step response s[n]. 

( b )  Find the output y[n] to the input x[n]  = nu[n]. 

Ans. ( a )  s[n] = [2 - ( ~ ) " ] u [ n ]  

( 6 )  y[nl = 2[(4)" + n  - llu[nl 

4.58. Consider a causal discrete-time system whose output y[n] and input x[n]  are related by 

y [ n ]  - : y [ n  - 1 1  + i y [ n  -21 = x [ n ]  

( a )  Find its system function H(z) .  

( b )  Find its impulse response h[n]. 

z * 1 
Am. ( a )  H ( z ) =  , lzl> - 

( z  - $ ) ( z  - 3) 2  

( b )  h[n]  = [3($)" - 2(f)"]u[n] 

4.59. Using the unilateral z-transform, solve the following difference equations with the given initial 
conditions. 

( a )  y[n]  - 3y[n - 11 = x [ n ] ,  with x[n]  = 4u[n], y [ -  11 = 1 

( b )  y[n] - 5y[n - 11 + 6y[n - 21 = x [ n ] ,  with x[n]  = u[n],  y [ -  I ]  = 3, y[-2]= 2  

Am. ( a )  y [ n ] = - 2 + 9 ( 3 ) " , n r  - 1  
( b )  y[n] = 4 + 8(2In - Z(3ln, n  2 -2 

4.60. Determine the initial and final values of x[n]  for each of the following X(z ) :  

z 
( b )  X ( z ) =  

2z2  - 3.2 + 1 
, 121 > 1 

Ans. (a )  x[O]=2, x[w]= 0  

( b )  x[Ol = 0, x[wl= 1 



Chapter 5 

Fourier 

5.1 INTRODUCTION 

Analysis of Continuous-Time 
Signals and Systems 

In previous chapters we introduced the Laplace transform and the z-transform to 
convert time-domain signals into the complex s-domain and z-domain representations that 
are, for many purposes, more convenient to analyze and process. In addition, greater 
insights into the nature and properties of many signals and systems are provided by these 
transformations. In this chapter and the following one, we shall introduce other transfor- 
mations known as Fourier series and Fourier transform which convert time-domain signals 
into frequency-domain (or spectral) representations. In addition to providing spectral 
representations of signals, Fourier analysis is also essential for describing certain types of 
systems and their properties in the frequency domain. In this chapter we shall introduce 
Fourier analysis in the context of continuous-time signals and systems. 

5.2 FOURIER SERIES REPRESENTATION OF PERIODIC SIGNALS 

A. Periodic Signals: 

In Chap. 1 we defined a continuous-time signal x ( t )  to be periodic if there is a positive 
nonzero value of T for which 

x ( t  + T )  = x ( t )  all t ( 5 . 1 )  

The fundamental period To of x ( t )  is the smallest positive value of T for which Eq. (5.1) 
is satisfied, and l / T o  = fo is referred to as the fundamental frequency. 

Two basic examples of periodic signals are the real sinusoidal signal 

and the complex exponential signal 

X ( t )  = e~%' ( 5 . 3 )  
where oo = 2n-/To = 2n- fo is called the fundamental angular frequency. 

B. Complex Exponential Fourier Series Representation: 

The complex exponential Fourier series representation of a periodic signal x ( t )  with 
fundamental period To is given by 



212 FOURIER ANALYSIS O F  TIME SIGNALS AND SYSTEMS [CHAP. 5 

where c ,  are known as the complex Fourier coefficients and are given by 

where 1," denotes the integral over any one period and 0 to To or - T o / 2  to T 0 / 2  is 
commonly used for the integration. Setting k = 0 in Eq. ( 5 3 ,  we have 

which indicates that co equals the average value of x ( t )  over a period. 
When x ( t )  is real, then from Eq. (5 .5 )  it follows that 

* 
C - ,  = C ,  ( 5 . 7 )  

where the asterisk indicates the complex conjugate. 

C. Trigonometric Fourier Series: 

The trigonometric Fourier series representation of a periodic signal x ( t )  with funda- 
mental period T,, is given by 

a0 02 23T 
x ( t )  = - + x (a,cos ko,t + b ,  sin kwot)  w 0  = - 

k = l  To 
( 5 . 8 )  

where a ,  and b, are the Fourier coefficients given by 

x ( t ) cos  kw,tdt (5 .9a)  

The coefficients a ,  and b, and the complex Fourier coefficients c ,  are related by 
(Prob. 5.3) 

From Eq. (5 .10)  we obtain 

c ,  = + ( a ,  - jb,) c - ,  = : ( a k  + jb,) (5 .11)  

When x ( t )  is real, then a ,  and b,  are real and by Eq. (5.10) we have 

a ,  = 2 R e [ c , ]  b, = - 2  Im[c,] (5 .12)  

Even and Odd Signals: 

If a periodic signal x ( t )  is even, then b, = 0 and its Fourier series (5 .8 )  contains only 
cosine terms: 

a0 
ffi 23T 

x ( t )  = - + x a ,  cos kwot o0 = - 
2 k = l  T" 
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If x ( t )  is odd, then a, = 0 and its Fourier series contains only sine terms: 
m 2TT 

x ( t )  = b, sin kwot w0= - 
k =  1 To 

D. Harmonic Form Fourier Series: 

Another form of the Fourier series representation of a real periodic signal x ( t )  with 
fundamental period To is 

Equation (5.15) can be derived from Eq. (5.8) and is known as the harmonic form Fourier 
series of x(t) .  The term Co is known as the dc  component, and the term C, cos(kwot - 0,) 
is referred to as the kth harmonic component of x(t). The first harmonic component 
C,  C O S ( ~ , ~  - 8,)  is commonly called the fundamental component because it has the same 
fundamental period as x(t). The coefficients C, and the angles 8, are called the harmonic 
amplitudes and phase angles, respectively, and they are related to  the Fourier coefficients 
a, and b, by 

For a real periodic signal ~ ( r ) ,  the Fourier series in terms of complex exponentials as 
given in Eq. (5.4) is mathematically equivalent to either of the two forms in Eqs. (5.8) and 
(5.15). Although the latter two are common forms for Fourier series, the complex form in 
Eq. (5.4) is more general and usually more convenient, and we will use that form almost 
exclusively. 

E. Convergence of Fourier Series: 

It is known that a periodic signal x(t)  has a Fourier series representation if it satisfies 
the following Dirichlet conditions: 

1. x( t )  is absolutely integrable over any period, that is, 

2. x(t )  has a finite number of maxima and minima within any finite interval of t .  

3. x(t)  has a finite number of discontinuities within any finite interval of t, and each of 
these discontinuities is finite. 

Note that the Dirichlet conditions are sufficient but not necessary conditions for the Fourier 
series representation (Prob. 5.8). 

F. Amplitude and Phase Spectra of a Periodic Signal: 

Let the complex Fourier coefficients c, in Eq. (5.4) be expressed as 
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A plot of lckl versus the angular frequency w is called the amplitude spectrum of the 
periodic signal x ( t ) ,  and a plot of 4, versus w is called the phase spectrum of x( t  1. Since 
the index k assumes only integers, the amplitude and phase spectra are not continuous 
curves but appear only at the discrete frequencies k o , , .  They are therefore referred to as 
discrete frequency spectra or line spectra. 

For a real periodic signal x ( t )  we have c - ,  = c:. Thus, 

Hence, the amplitude spectrum is an even function of w ,  and the phase spectrum is an odd 
function of o for a real periodic signal. 

C .  Power Content of a Periodic Signal: 

In Chap. 1 (Prob. 1.18) we introduced the average power of a periodic signal x ( t )  over 
any period as 

If x ( t )  is represented by the complex exponential Fourier series in Eq. ( 5 . 4 ) ,  then it can be 
shown that (Prob. 5.14) 

Equation (5 .21)  is called Parserlal's identity (or Parse~lal's theorem) for the Fourier series. 

5.3 THE FOURIER TRANSFORM 

A. From Fourier Series to Fourier Transform: 

Let X (  t ) be a nonperiodic signal of finite duration, that is, 

x ( t )  = 0 Itl> TI 

Such a signal is shown in Fig. 5 - l ( a ) .  Let x,,)(t) be a periodic signal formed by repeating 
x ( r )  

The 

with fundamental period T,, as shown i n " ~ i ~ .  5- l (  b). 

lim x T , l t )  = x ( t )  
TO+= 

complex exponential Fourier series of xril( t)  is given 

m 

where 

If we let To --+ m, we have 

Since ~ , , ~ ( t  ) = x ( r )  for It 1 < T, , /2  and also since x( t )  = 0 outside this interval, Eq. (5.24a) 
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(6) 

Fig. 5-1 (a) Nonperiodic signal x(r); ( b )  periodic signal formed by periodic extension of x(r ). 

can be rewritten as 

Let us define X(w) as 

Then from Eq. (5.246) the complex Fourier coefficients c, can be expressed as 

Substituting Eq. (5.26) into Eq. (5.231, we have 

As To -+ m, o, = 27r/T, becomes infinitesimal ( w ,  - 0). Thus, let w,, = Aw. Then 
Eq. (5.27) becomes 



216 

Therefore, 
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x,Jt) = lim X(k Am) ejkA"' Aw 
A w - 0  2 r  ,= -, 

[CHAP. 5 

The sum on the right-hand side of Eq. (5.29) can be viewed as the area under the function 
X(w) ei"', as shown in Fig. 5-2. Therefore, we obtain 

which is the Fourier representation of a nonperiodic x(t). 

0 k Aw w 

Fig. 5-2 Graphical interpretation of Eq. (5.29). 

B. Fourier Transform Pair: 

The function X(o )  defined by Eq. (5.25) is called the Fourier transform of x(t), and 
Eq. (5.30) defines the inuerse Fourier transform of X(o).  Symbolically they are denoted by 

and we say that x( t )  and X(w) form a Fourier transform pair denoted by 

4 4  - X ( 4  (5.33) 

C. Fourier Spectra: 

The Fourier transform X(w) of x(t)  is, in general, complex, and it can be expressed as 

X ( o )  = ( X ( o ) (  eJd(") (5.34) 

By analogy with the terminology used for the complex Fourier coefficients of a periodic 
signal x( t ) ,  the Fourier transform X(w) of a nonperiodic signal x(t)  is the frequency- 
domain specification of x(t)  and is referred to as the spectrum (or Fourier spectrum) of 
x (  t ). The quantity I X( w)( is called the magnitude spectrum of x(t), and $(w) is called the 
phase spectrum of x(t). 
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If x ( t )  is a real signal, then from Eq. (5.31) we get 

Then it follows that 

and Ix ( -o ) l  = Ix (o) l  4 ( - 4  = -$(@) (5.36b) 

Hence, as in the case of periodic signals, the amplitude spectrum IX(o)( is an even 
function and the phase spectrum 4 ( o )  is an odd function of o .  

D. Convergence of Fourier Transforms: 

Just as in the case of periodic signals, the sufficient conditions for the convergence of 
X ( o )  are the following (again referred to as the Dirichlet conditions): 

1. x( l )  is absolutely integrable, that is, 

2. x( t )  has a finite number of maxima and minima within any finite interval. 
3. x ( t )  has a finite number of discontinuities within any finite interval, and each of these 

discontinuities is finite. 

Although the above Dirichlet conditions guarantee the existence of the Fourier transform for 
a signal, if impulse functions are permitted in the transform, signals which do not satisfy 
these conditions can have Fourier transforms (Prob. 5.23). 

E. Connection between the Fourier Transform and the Laplace Transform: 

Equation (5.31) defines the Fourier transform of x(r as 

The bilateral Laplace transform of x(t), as defined in Eq. (4.31, is given by 

Comparing Eqs. (5.38) and (5.39), we see that the Fourier transform is a special case of 
the Laplace transform in which s = j o ,  that is, 

Setting s = u + jo in Eq. (5.39), we have 
m m 

e-("+~")'dt = 1 [ x ( t )  e-"1 e-jW'dt 
- m  

X ( u  + jw) = Y ( x ( t )  e-"'1 
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which indicates that the bilateral Laplace transform of x( t )  can be interpreted as the 
Fourier transform of x (  t )  e-"'. 

Since the Laplace transform may be considered a generalization of the Fourier 
transform in which the frequency is generalized from jw to s = a  + jo ,  the complex 
variable s is often referred to as the complexfrequency. 

Note that since the integral in Eq. (5.39) is denoted by X(s), the integral in Eq. (5.38) 
may be denoted as X( jw) .  Thus, in the remainder of this book both X ( o )  and X ( j w )  
mean the same thing whenever we connect the Fourier transform with the Laplace 
transform. Because the Fourier transform is the Laplace transform with s = jo, it should 
not be assumed automatically that the Fourier transform of a signal ~ ( r )  is the Laplace 
transform with s replaced by jw .  If x( t )  is absolutely integrable, that is, if x(r)  satisfies 
condition (5.37),  the Fourier transform of x ( t )  can be obtained from the Laplace 
transform of x ( t )  with s = jw. This is not generally true of signals which are not absolutely 
integrable. The following examples illustrate the above statements. 

EXAMPLE 5.1. Consider the unit impulse function S( t ) .  
From Eq. (3.13) the Laplace transform of S( t )  is 

J ( S ( t ) }  = 1 all s 

By definitions (5 .31)  and (1 .20)  the Fourier transform of 6 ( t )  is 

Thus, the Laplace transform and the Fourier transform of S( t )  are the same. 

EXAMPLE 5.2. Consider the exponential signal 

From Eq. ( 3 . 8 )  the Laplace transform of x ( t )  is given by 

By definition (5.31) the Fourier transform of x ( t )  is 

Thus, comparing Eqs. (5 .44)  and (5.451, we have 

X(w)  =X(s)ls-jcu 

Note that x ( t )  is absolutely integrable. 

EXAMPLE 5.3. Consider the unit step function u(t ). 
From Eq. (3.14) the Laplace transform of u ( t )  is 
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The Fourier transform of u(r) is given by (Prob. 5.30) 

1 
F { u ( t ) }  = ns(o) + - 

1 0  

Thus, the Fourier transform of u(t) cannot be obtained from its Laplace transform. Note that the unit 
step function u(t) is not absolutely integrable. 

5.4 PROPERTIES OF THE CONTINUOUS-TIME FOURIER TRANSFORM 

Basic properties of the Fourier transform are presented in the following. Many of these 
properties are similar to those of the Laplace transform (see Sec. 3.4). 

B. Time Shifting: 

Equation (5 .50)  shows that the effect of a shift in the time domain is simply to add a linear 
term -ot, to the original phase spectrum 8(w) .  This is known as a linear phase shift of the 
Fourier transform X( w ) .  

C. Frequency Shifting: 

The multiplication of x ( t )  by a complex exponential signal eJ"l)' is sometimes called 
complex modulation. Thus, Eq. (5.51) shows that complex modulation in the time domain 
corresponds to a shift of X ( w )  in the frequency domain. Note that the frequency-shifting 
property Eq. (5.51) is the dual of the time-shifting property Eq. (5 .50) .  

D. Time Scaling: 

where a is a real constant. This property follows directly from the definition of the Fourier 
transform. Equation (5 .52)  indicates that scaling the time variable t by the factor a causes 
an  inverse scaling of the frequency variable o by l / a ,  as well as an amplitude scaling of 
X ( o / a )  by l / l a ( .  Thus, the scaling property (5 .52)  implies that time compression of a 
signal ( a  > 1) results in its spectral expansion and that time expansion of the signal ( a  < 1 )  
results in its spectral compression. 
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E. Time Reversal: 

[CHAP. 5 

Thus, time reversal of x ( t )  produces a like reversal of the frequency axis for X(o) .  
Equation (5.53) is readily obtained by setting a = - 1 in Eq. (5.52). 

F. Duality (or Symmetry): 

The duality property of the Fourier transform has significant implications. This property 
allows us to obtain both of these dual Fourier transform pairs from one evaluation of 
Eq. (5.31) (Probs. 5.20 and 5.22). 

G. Differentiation in the Time Domain: 

Equation (5.55) 
multiplication of 

shows that the effect of differentiation in the time domain is the 
X(w) by jw in the frequency domain (Prob. 5.28). 

H. Differentiation in the Frequency Domain: 

d X ( 4  
( - P ) x ( t )  - ,o 

Equation (5.56) is the dual property of Eq. (5.55). 

I. Integration in the Time Domain: 

Since integration is the inverse of differentiation, Eq. (5.57) shows that the frequency- 
domain operation corresponding to time-domain integration is multiplication by l/jw, but 
an additional term is needed to account for a possible dc component in the integrator 
output. Hence, unless X(0) = 0, a dc component is produced by the integrator (Prob. 5.33). 

J. Convolution: 
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Equation (5.58) is referred to as the time convolution theorem, and it states that convolu- 
tion in the time domain becomes multiplication in the frequency domain (Prob. 5.31). As 
in the case of the Laplace transform, this convolution property plays an important role in 
the study of continuous-time LTI systems (Sec. 5.5) and also forms the basis for our 
discussion of filtering (Sec. 5.6). 

K. Multiplication: 

The multiplication property (5.59) is the dual property of Eq. (5.58) and is often referred 
to as the frequency convolution theorem. Thus, multiplication in the time domain becomes 
convolution in the frequency domain (Prob. 5.35). 

L. Additional Properties: 

If x ( t )  is real, let 

where x,( t ) and xo(t)  are the even and odd components of x( t 1, respectively. Let 

Then 

Equation ( 5 . 6 1 ~ )  is the necessary and sufficient condition for x( t ) to be real (Prob. 5.39). 
Equations (5.61b) and ( 5 . 6 1 ~ )  show that the Fourier transform of an even signal is a real 
function of o and that the Fourier transform of an odd signal is a pure imaginary function 
of w .  

M. Parseval's Relations: 
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Equation (5.64) is called Parseual's identity (or Parseual's theorem) for the Fourier 
transform. Note that the quantity on the left-hand side of Eq. (5.64) is the normalized 
energy content E of x(t) [Eq. (1.14)]. Parseval's identity says that this energy content E 
can be computed by integrating I x(w)12 over all frequencies w.  For this reason I x(w)l2 is 
often referred to as the energy-density spectrum of x(t), and Eq. (5.64) is also known as 
the energy theorem. 

Table 5-1 contains a summary of the properties of the Fourier transform presented in 
this section. Some common signals and their Fourier transforms are given in Table 5-2. 

Table 5-1. Properties of the Fourier Transform 

Property Signal Fourier transform 

Linearity 
Time shifting 
Frequency shifting 

Time scaling 

Time reversal 
Duality 

Time differentiation 

Frequency differentiation 

Integration 

Convolution 

Multiplication 

Real signal 

Even component 
Odd component 

Parseval's relations 
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Table 5-2. Common Fourier Transforms Pairs 

sin at 

5.5 THE FREQUENCY RESPONSE OF CONTINUOUS-TIME LTI SYSTEMS 

A. Frequency Response: 

In Sec. 2.2 we showed that the output y ( t )  of a continuous-time LTI system equals the 
convolution of the input x(t)  with the impulse response h(t 1; that is, 

Applying the convolution property (5.58), we obtain 
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where Y(w), X(o) ,  and H(w) are the Fourier transforms of y(f), d t ) ,  and h(t), 
respectively. From Eq. (5.66) we have 

The function H ( o )  is called the frequency response of the system. Relationships repre- 
sented by Eqs. (5.65) and (5.66) are depicted in Fig. 5-3. Let 

H(w) = I H(w)I ei@~(O) (5.68) 

Then IH(o)l is called the magnitude response of the system, and 0 , ( 0 )  the phase response 
of the system. 

X ( w )  Y(w)=X(w)H(w)  

Fig. 5-3 Relationships between inputs and outputs in an LTI system. 

Consider the complex exponential signal 

with Fourier transform (Prob. 5.23) 

X(w) = 2 d q w  - 0,) 

Then from Eqs. (5.66) and ( I .26) we have 

Y(o) = 27rH(wo) 6(w - too) 

Taking the inverse Fourier transform of Y(w), we obtain 

y(f ) = H(wo) eioll' 

which indicates that the complex exponential signal ei"l)' is an eigenfunction of the LTI 
system with corresponding eigenvalue H(w,), as previously observed in Chap. 2 (Sec. 2.4 
and Prob. 2.171. Furthermore, by the linearity property (5.491, if the input x( t )  is periodic 
with the Fourier series 

m 

~ ( 1 )  = C ckejkw,+ (5.73) 
& =  - m 

then the corresponding output y( l )  is also periodic with the Fourier series 
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If x ( t )  is not periodic, then from Eq. (5.30) 

and using Eq. (5.66), the corresponding output y ( t )  can be expressed as 

Thus, the behavior of a continuous-time LTI system in the frequency domain is completely 
characterized by its frequency response H(w 1. Let 

X ( w )  = IX(o)leiexcw) Y ( o )  = lY(w)leiey(o) (5.77) 

Then from Eq. (5.66) we have 

b'(o)l= IX(w)llH(o)l (5.78a) 

e y ( 4  = e x b >  + e ~ b )  (5.78b) 

Hence, the magnitude spectrum IX(o)(  of the input is multiplied by the magnitude 
response JH(w)l of the system to  determine the magnitude spectrum JY(w)l of the output, 
and the phase response O,(o) is added to the phase spectrum O,(w) of the input to 
produce the phase spectrum Oy(o) of the output. The magnitude response IH(o)l is 
sometimes referred to as the gain of the system. 

B. Distortionless Transmission: 

For distortionless transmission through an LTI system we require that the exact input 
signal shape be reproduced at the output although its amplitude may be different and it 
may be delayed in time. Therefore, if x ( t )  is the input signal, the required output is 

Y ( t  ) = q t  - t , )  (5.79) 

where t ,  is the time delay and K ( >  0) is a gain constant. This is illustrated in Figs. 5-4(a) 
and (b ) .  Taking the Fourier transform of both sides of Eq. (5.791, we get 

Y ( o )  = Ke-jw'dX(w) (5.80) 

Thus, from Eq. (5.66) we see that for distortionless transmission the system must have 

H ( w )  = I H ( ~ ) ~ ~ ~ ~ H ( W )  = Ke-ju'd (5.81) 

Thus, 

That is, the amplitude of H ( o )  must be constant over the entire frequency range, and the 
phase of H(w) must be linear with the frequency. This is illustrated in Figs. 5-4(c) and (d l .  

Amplitude Distortion and Phase Distortion: 

When the amplitude spectrum IH(o)( of the system is not constant within the 
frequency band of interest, the frequency components of the input signal are transmitted 
with a different amount of gain or  attenuation. This effect is called amplitude distortion. 
When the phase spectrum OH(w) of the system is not linear with the frequency, the output 
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Cl Id ' I  + I d  I 

(b) 

Fig. 5-4 Distortionless transmission. 

signal has a different waveform than the input signal because of different delays in passing 
through the system for different frequency components of the input signal. This form of 
distortion is called phase distortion. 

C. LTI Systems Characterized by Differential Equations: 

As discussed in Sec. 2.5, many continuous-time LTI systems of practical interest are 
described by linear constant-coefficient differential equations of the form 

with M I N .  Taking the Fourier transform of both sides of Eq. (5.83) and using the 
linearity property (5.49) and the time-differentiation property (5.551, we have 
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Thus, from Eq. (5.67) 

which is a rational function of o. The result (5.85) is the same as the Laplace transform 
counterpart H(s)  = Y(s)/X(s) with s = jo [Eq. (3.40)] ,  that is, 

5.6 FILTERING 

One of the most basic operations in any signal processing system is filtering. Filtering is 
the process by which the relative amplitudes of the frequency components in a signal are 
changed or perhaps some frequency components are suppressed. As we saw in the 
preceding section, for continuous-time LTI systems, the spectrum of the output is that of 
the input multiplied by the frequency response of the system. Therefore, an LTI system 
acts as a filter on the input signal. Here the word "filter" is used to denote a system that 
exhibits some sort of frequency-selective behavior. 

A. Ideal Frequency-Selective Filters: 

An ideal frequency-selective filter is one that exactly passes signals at one set of 
frequencies and completely rejects the rest. The band of frequencies passed by the filter is 
referred to as the pass band, and the band of frequencies rejected by the filter is called the 
stop band. 

The most common types of ideal frequency-selective filters are the following. 

1. Ideal Low-Pass Filter: 

An ideal low-pass filter (LPF) is specified by 

which is shown in Fig. 5-5(a). The frequency o, is called the cutoff frequency. 

2. Ideal High-Pass Filter: 

An ideal high-pass filter (HPF) is specified by 

which is shown in Fig. 5-5(b). 
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( c )  (4 
Fig. 5-5 Magnitude responses of ideal frequency-selective filters. 

3. Ideal Bandpass Filter: 

An ideal bandpass filter (BPF) is specified by 

0, < lwl  < 0 2  
I H ( w ) l =  

otherwise 

which is shown in Fig. 5-5(c). 

4. Ideal Bandstop Filter: 

An ideal bandstop filter (BSF) is specified by 

0 0 ,  < 101 < w 2  
H ( w ) 1 =  

otherwise 

which is shown in Fig. 5-5(d). 
In the above discussion, we said nothing regarding the phase response of the filters. T o  

avoid phase distortion in the filtering process, a filter should have a linear phase 
characteristic over the pass band of the filter, that is [Eq. (5.82b11, 

where t ,  is a constant. 
Note that all ideal frequency-selective filters are noncausal systems. 
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B. Nonideal Frequency-Selective Filters: 

As an example of a simple continuous-time causal frequency-selective filter, we 
consider the RC filter shown in Fig. 5-6(a). The output y(t)  and the input x ( t )  are related 
by (Prob. 1.32) 

Taking the Fourier transforms of both sides of the above equation, the frequency response 
H(w) of the RC filter is given by 

where w 0  = 1/RC.  Thus, the amplitude response (H(w)l and phase response OJw) are 
given by 

(b) 

Fig. 5-6 RC filter and its frequency response. 
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which are plotted in Fig. 5-6(b). From Fig. 5-6(b) we see that the RC network in 
Fig. 5-6(a) performs as a low-pass filter. 

5.7 BANDWIDTH 

A. Filter (or System) Bandwidth: 

One important concept in system analysis is the bandwidth of an LTI system. There are 
many different definitions of system bandwidth. 

I .  Absolute Bandwidth: 

The bandwidth WB of an ideal low-pass filter equals its cutoff frequency; that is, 
WB = w, [Fig. 5-5(a)]. In this case W, is called the absolute bandwidth. The absolute 
bandwidth of an ideal bandpass filter is given by W, = w 2  - w ,  [Fig. 5-5(c)]. A bandpass 
filter is called narrowband if W, << w,, where w,, = ;( w ,  + w 2 )  is the center frequency of 
the filter. No bandwidth is defined for a high-pass or a bandstop filter. 

2. 3-dB (or Half-Power) Bandwidth: 

For causal or practical filters, a common definition of filter (or system) bandwidth is 
the 3-dB bandwidth W, ,,. In the case of a low-pass filter, such as the RC filter described 
by Eq. (5.92) or in Fig. 5-6(b), W, ,, is defined as the positive frequency at which 
the amplitude spectrum IH(w)l drops to a value equal to I H ( o ) I / ~ ,  as illustrated in 
Fig. 5-7(a). Note that (H(O)I is the peak value of H ( o )  for the low-pass RC filter. The 
3-dB bandwidth is also known as the half-power bandwidth because a voltage or current 
attenuation of 3 dB is equivalent to a power attenuation by a factor of 2. In the case of a 
bandpass filter, W, ,, is defined as the difference between the frequencies at which )H(w)l 
drops to a value equal to 1/a times the peak value IH(w,)l as illustrated in Fig. 5-7(b). 
This definition of W ,  ,, is useful for systems with unimodal amplitude response (in the 
positive frequency range) and is a widely accepted criterion for measuring a system's 
bandwidth, but it may become ambiguous and nonunique with systems having multiple 
peak amplitude responses. 

Note that each of the preceding bandwidth definitions is defined along the positive 
frequency axis only and always defines positive frequency, or one-sided, bandwidth only. 

( 6 )  

Fig. 5-7 Filter bandwidth. 
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B. Signal Bandwidth: 

The bandwidth of a signal can be defined as the range of positive frequencies in which 
"most" of the energy or power lies. This definition is rather ambiguous and is subject to 
various conventions (Probs. 5.57 and 5.76). 

3-dB Bandwidth: 

The bandwidth of a signal x( t )  can also be defined on a similar basis as a filter 
bandwidth such as the 3-dB bandwidth, using the magnitude spectrum (X(o)l  of the signal. 
Indeed, if we replace IH(o)l by IX(o)l in Figs. 5-5(a) to ( c ) ,  we have frequency-domain 
plots of low-pass, high-pass, and bandpass signals. 

Band-Limited Signal: 

A signal x( t )  is called a band-limited signal if 

Thus, for a band-limited signal, it is natural to define o, as the bandwidth. 

Solved Problems 

FOURIER SERIES 

5.1. We call a set of signals {*,Jt)} orthogonal on an interval ( a ,  b) if any two signals ql,,(t) 
and q k ( t )  in the set satisfy the condition 

where * denotes the complex conjugate and a + 0. Show that the set of complex 
exponentials {ejk"o': k = 0, f 1, f 2,. . . ) is orthogonal on any interval over a period To, 
where To = 2.rr/oU. 

For any t o  we have 

since eJm2" = 1. When m = 0, we have eJm"o'lm=o = 1 and 
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Thus, from Eqs. (5 .96)  and ( 5 . 9 7 )  we conclude that 

which shows that the set {eJkwo': k = 0, +_ 1, f 2,. . . ) is orthogonal on any interval over a period 
To. 

5.2. Using the orthogonality condition (5.98), derive Eq. (5 .5 )  for the complex Fourier 
coefficients. 

From Eq. ( 5 . 4 )  

Multiplying both sides of this equation by e-imwo' and integrating the result from to to 
( t o  + To), we obtain 

Then by Eq. (5 .98)  Eq. (5 .99)  reduces to 

Changing index m to k, we obtain Eq. (5.51, that is, 

We shall mostly use the following two special cases for Eq. (5.101): to = 0 and to = - T0/2 ,  
respectively. That is, 

5.3. Derive the trigonometric Fourier series Eq. (5 .8 )  from the complex exponential 
Fourier series Eq. (5.4). 

Rearranging the summation in Eq. ( 5 . 4 )  as 

and using Euler's formulas 
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~ ( t )  = c ,  + C [ ( c k  + c P k )  cos kwOt + j (ck - C - , )  sin k ~ , t ]  (5 .103)  
k -  1 

Setting 

a ,  
-5- c ,  + c - ,  = a k  j (ck  - c - ~ )  = bk 

Eq. (5.103) becomes 
m 

a0 
~ ( t )  = - + C ( a k  cos kwot + bk sin kw, , t )  

k = l  

5.4. Determine the complex exponential Fourier series representation for each of the 
following signals: 

( a )  x ( t )  = cos w,t 

(6) x ( t )  = sin w,t  

( c )  x ( t )  = cos 2 t  + - ( 3 
(d l  x ( t )  = cos4t + sin 6 t  

(el x ( t )  = sin2 t  

( a )  Rather than using Eq. ( 5 . 5 )  to evaluate the complex Fourier coefficients c ,  using Euler's 
formula, we get 

Thus, the complex Fourier coefficients for cos w,t are 

( b )  In a similar fashion we have 

Thus, the complex Fourier coefficients for sin w,t are 

( c )  The fundamental angular frequency w ,  of x ( t )  is 2. Thus, 

Now 
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Thus, the complex Fourier coefficients for cos(2t + 7r/4) are 

( d )  By the result from Prob. 1.14 the fundamental period To of x( t )  is 7r and w,, = 21r/T, = 2. 
Thus, 

Again using Euler's formula, we have 

Thus, the complex Fourier coefficients for cos 4t + sin 6t are 

and all other c, = 0. 

(e) From Prob. 1.16(e) the fundamental period To of x(t)  is rr and w, = 2rr/T,, = 2. Thus, 

Again using Euler's formula, we get 

Thus, the complex Fourier coefficients for sin2 t are 

- I 
C p l  - - -  4 c 0 = $  c , = - $  

and all other c, = 0. 

5.5. Consider the periodic square wave x ( t )  shown in Fig. 5-8. 

( a )  Determine the complex exponential Fourier series of x ( t  ). 

( b )  Determine the trigonometric Fourier series of x (  t  1. 
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Fig. 5-8 

( a )  Let 

Using Eq. (5.102a), we have 

since ooTo = 27r and ePik" = ( - I)&. Thus, 

c k  = 0  k = 2 m # O  

Hence, 

and we obtain 

A A "  1 
x ( t ) = - + -  C - ej(2m + I)""' 

2  ~ ~ , , , ~ - ~ 2 r n + l  

( b )  From Eqs. (5.1051, (5.10), and (5.12) we have 
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Substituting these values in Eq. (5.81, we get 

- - 1 1 
sin w,l + -sin3wot + -sin5w0t + . 

2 7r 3 5 
) (.5.107) 

5.6. Consider the periodic square wave x ( t )  shown in Fig. 5-9. 

(a )  Determine the complex exponential Fourier series of x ( t  1. 
( b )  Determine the trigonometric Fourier series of x ( r ) .  

Fig. 5-9 

( a )  Let 

Using Eq. (5.102b), we have 

Thus. 

Hence. 

A rn A 
c0 = - c,,,, = 0, m z 0 C ~ + I =  ( - 1 )  (2m + I ) a  ( 5.108) 

2 
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and we obtain 

A A "  
m 

( - I )  ej(2m+1)q,t x ( t ) = - + -  C - 
2 ~ , , - , Z r n + l  

(b) From Eqs. (5.108), (5.10), and (5.12) we have 

Substituting these values into Eq. (5.81, we obtain 

1 1 
cos wOt - -cos3w0t + -cos5wot - . - 

2 n- 3 5 
) (5.110) 

Note that x(t) is even; thus, x(t) contains only a dc term and cosine terms. Note also that 
x(t) in Fig. 5-9 can be obtained by shifting x(t) in Fig. 5-8 to the left by T0/4. 

5.7. Consider the periodic square wave x ( t )  shown in Fig. 5-10. 

(a) Determine the complex exponential Fourier series of x(t).  

( b )  Determine the trigonometric Fourier series of x(t).  

Note that x(t) can be expressed as 

~ ( t )  =x1(t)  - A  

where x,(t) is shown in Fig. 5-11. Now comparing Fig. 5-11 and Fig. 5-8 in Prob. 5.5, we 
see that x,(t) is the same square wave of x(t) in Fig. 5-8 except that A becomes 2A. 

j -A 

Fig. 5-10 
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Fig. 5-11 

( a )  Replacing A  by 2 A  in Eq. (5.106), we have 

Thus, 

( b )  Similarly, replacing A by 2A in Eq. (5.107), we have 

Thus, 

1 1 
= 2 (sin o,t + -sin3w,,t + -sin 5w,r + - . - 

7T 3 5 

Note that x ( t )  is odd; thus, x(t) contains only sine terms. 

5.8. Consider the periodic impulse train S G , ( t )  shown in Fig. 5-12 and defined by 
33 

- 70 0 70 2 70 I 

Fig. 5-12 
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( a )  Determine the complex exponential Fourier series of ST$t). 

( 6 )  Determine the trigonometric Fourier series of ST$t). 

( a )  Let 

Since S( t )  is involved, we use Eq. (5.1026) to determine the Fourier coefficients and we 
obtain 

Hence, we get 

a0 
30 2n 

a T J t )  = i + z ( a ,  cos kwot + bk sin ko, t )  oo = - 
k - 1  To 

Since aT,$t) is even, b, = 0, and by Eq. (5.9a), a, are given by 

2 2 
a, = -/"'/* S ( t )  cos kw0tdt = - 

To - T0/2 To 

Thus, we get 

5.9. Consider the triangular wave x ( t )  shown in Fig. 5-13(a). Using the differentiation 
technique, find ( a )  the complex exponential Fourier series of d t ) ,  and ( 6 )  the 
trigonometric Fourier series of x( t 1. 

The derivative x l ( t )  of the triangular wave x ( t )  is a square wave as shown in Fig. 5-13(b). 

( a )  Let 

Differentiating Eq. (5.118), we obtain 
m 

x l ( t )  = z jko o c k ejkW~1' 
& =  - m 

Equation (5.119) shows that the complex Fourier coefficients of xYt)  equal jkw,c,. Thus, we 
can find ck ( k  # 0) if the Fourier coefficients of x l ( t )  are known. The term c, cannot be 
determined by Eq. (5.119) and must be evaluated directly in terms of x ( t )  with Eq. (5.6). 
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(b)  

Fig. 5-13 

Comparing Fig. 5-13(b) and Fig. 5-10, we see that xf(r)  in Fig. 5-13(b) is the same as x(r )  in 
Fig. 5-10 with A replaced by 2 A / T 0 .  Hence, from Eq. (5.111). replacing A by 2 A / T 0 ,  we have 

Equating Eqs. (5.119) and (5.1201, we have 

From Fig. 5-1Na) and Eq. (5.6)  we have 

Substituting these values into Eq. (5.118), we obtain 
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(b) In a similar fashion, differentiating Eq. (5.81, we obtain 
OC 

x'(r) = z kwo(bkcos kwot -aksin kw,r) (5.122) 
k-1 

Equation (5.122) shows that the Fourier cosine coefficients of xf(t)  equal nw,,b, and that the 
sine coefficients equal -nwOak. Hence, from Eq. (5.112), replacing A by 2 A / T 0 ,  we have 

Equating Eqs. (5.122) and (5.1231, we have 

b, = 0  a, = O  k = 2 m # O  

From Eqs. (5.61 and (5.10) and Fig. 5-13(a) we have 

Substituting these values into Eq. (5.8), we get 

5.10. Consider the triangular wave x( t )  shown in Fig. 5-14(a). Using the differentiation 
technique, find the triangular Fourier series of x(t ). 

From Fig. 5-14(a) the derivative x'(t) of the triangular wave x(t) is, as shown in 
Fig. 5-l4( b), 

Using Eq. (5.1171, Eq. (5.125) becomes 

Equating Eqs. (5.126) and (5.122), we have 

From Fig. 5-14(a) and Eq. ( 5 . 9 ~ )  we have 

Thus, substituting these values into Eq. (5.81, we get 

A A W L  2  T 
x ( t )  = - + - z -sin kw,t 

k  
W,, = - 

2 T k = ,  To 
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(b) 

Fig. 5-14 

5-11. Find and sketch the magnitude spectra for the periodic square pulse train signal x ( t )  
shown in Fig. 5-15(a) for ( a )  d = T0/4 ,  and ( b )  d = T0/8 .  

Using Eq. (5.102a), we have 

Note that c, = 0 whenever k w o d / 2  = m7r; that is, 
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-T O d T  2T t 

d=I 

Inn 
Fig. 5-15 

The magnitude spectrum for this case is shown in Fig. 5-15(b). 

( b )  d = T0/8,  k w , d / 2  = krrd/T,  = k a / 8 ,  

The magnitude spectrum for this case is shown in Fig. 5-15(c). 
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5.12. If x J t )  and x 2 ( t )  are periodic signals with fundamental period To and their complex 
Fourier series expressions are 

show that the signal x ( t )  = x , ( t ) x 2 ( t )  is periodic with the same fundamental period To 
and can be expressed as 

where ck is given by 

Now x( t  + T o ) = x l ( t  + To)x2( t  + T , ) = x 1 ( t ) x 2 ( t ) = x ( t )  
Thus, x ( t )  is periodic with fundamental period To. Let 

Then 

since 

and the term in brackets is equal to e,- , .  

5.13. Let x l (  t )  and x2( t )  be the two periodic signals in Prob. 5.12. Show that 

Equation ( 5.130) is known as Parseoal's relation for periodic signals. 

From Prob. 5.12 and Eq. (5.129) we have 

Setting k = 0 in the above expression, we obtain 
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5.14. Verify Parseval's identity (5.21) for the Fourier series, that is, 

r m w  

then C k e j k w ~ r  = x C-e-ikW = C C*_keikwo' (5.131) 
k- - m  k =  - w  

where * denotes the complex conjugate. Equation (5.131). indicates that if the Fourier 
coefficients of x(t) are c,, then the Fourier coefficients of x*(t) are c?,. Setting x,(O =x(O 
and x2(t) =x*(t) in Eq. (5.1301, we have d ,  = c, and ek = c?, or (e-, = c:), and we obtain 

5.15. (a) The periodic convolution f(r)  = x ,(t ) @ x2(t) was defined in Prob. 2.8. If d, and 
en are the complex Fourier coefficients of x,(r) and x2(t), respectively, then show that 
the complex Fourier coefficients ck of f( t )  are given by 

where To is the fundamental period common to x,(t), x2( t), and f(t) .  

(b) Find the complex exponential Fourier series of f ( t )  defined in Prob. 2.8(c). 

( a )  From Eq. (2.70) (Prob. 2.8) 

Let 

Then 

Since 

we get 

which shows that the complex Fourier coefficients c, of f ( t )  equal Todkek. 
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( b )  In Prob. 2.8(c), x , (r )  = x 2 ( t )  = x ( t ) ,  as shown in Fig. 2-12, which is the same as Fig. 5-8 
(Prob. 5.5). From Eq. (5.105) we have 

Thus, by Eq. (5.133) the complex Fourier coefficients ck of f ( t )  are 

Note that in Prob. 2.8(c), f ( t )  = x , ( r )  @x, ( t ) ,  shown in Fig. 2-13(b), is proportional to 
x( t ) ,  shown in Fig. 5-13(a). Thus, replacing A by A ~ T , / ~  in the results from Prob. 5.9, 
we get 

which are the same results obtained by using Eq. (5.133). 

FOURIER TRANSFORM 

5.16. ( a )  Verify the time-shifting property (5.50),  that is, 

x(t - t o )  H e-jw'~lX ( o ) 

By definition (5.31) 

By the change of variable T = r - t,,, we obtain 

Hence, 

5.17. Verify the frequency-shifting property (5.511, that is, 

x ( t )  eiwuJ H X ( O  - wO) 

By definition (5.31) 
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Hence, 

~ ( t )  e i " ~ ' w  X(w - w,) 

5-18. Verify the duality property (5.54), that is, 

From the inverse Fourier transform definition (5.321, we have 

Changing t to - t ,  we obtain 

Now interchanging r and o, we get 

Since 

we conclude that 

5.19. Find the Fourier transform of the rectangular pulse signal x ( t )  [Fig. 5-16(a)] defined 
by 

By definition (5.31) 

(4 (b) 

Fig. 5-16 Rectangular pulse and its Fourier transform. 
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Hence, we obtain 

sin o a  sin ma 
pu( t )  -2- =2a- 

o wa 

The Fourier transform X(o) of x(t) is sketched in Fig. 5-16(b). 

5.20. Find the Fourier transform of the signal [Fig. 5-17(a)] 

sin at 
x ( t )  = - 

7Tt 

From Eq. (5.136) we have 

sin o a  
pa(!) t-, 2- 

W 

Now by the duality property (5.541, we have 

sin at 
2- - 257pa( - o )  

I 

Dividing both sides by 2~ (and by the linearity property), we obtain 

sin at - -pa(-o) = pa(w) 
Tt 

where pa(w) is defined by [see Eq. (5.135) and Fig. 5-1Xb)I 

(a)  (b)  

Fig. 5-17 sin a t / ~ t  and its Fourier transform. 

5.21. Find the Fourier transform of the signal [Fig. 5-18(a)] 

x ( t )  = e-alfl a > O  

Signal x(t) can be rewritten as 
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Then 

0 I 0 

Fig. 5-18 e-Ial' and its Fourier transform. 

Hence, we get 

The Fourier transform X ( w )  of x ( l )  is shown in Fig. 5-18(b). 

Find the Fourier transform of the signal [Fig. 5-19(a)] 

1 
x ( t )  = - 

a2 + t 2  

From Eq. (5.138) we have 

Now by the duality property (5 .54)  we have 

Fig. 5-19 l/(a2 + 1 2 ,  and its Fourier transform. 
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Dividing both sides by 2 a ,  we obtain 

The Fourier transform X ( w )  of x ( t )  is shown in Fig. 5-19(b). 

5.23. Find the Fourier transforms of the following signals: 

( a )  x(t)  = 1 ( b )  x(t) =eJWO' 
(c) x(t)=e-JWu' ( d )  x(t) = cos o,t 
(e) x ( t )=s ino , t  

( a )  By Eq. (5 .43)  we have 

Thus, by the duality property (5.54) we get 

Figures 5-20(a) and ( b )  illustrate the relationships in Eqs. (5.140) and ( 5 . 1 4 0 ,  respec- 
tively. 

( b )  Applying the frequency-shifting property (5.51) to Eq. (5.1411, we get 

Fig. 5-20 ( a )  Unit impulse and its Fourier transform; ( 6 )  constant (dc) signal and its Fourier 
transform. 
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From Eq. (5.142) it follows that 

e-j"~' H 2rTTS(o + wo)  

From Euler's formula we have 

COS mot = L ( e ~ " ' ~ '  + e - ~ w ~ ' )  
2 

Thus, using Eqs. (5.142) and (5.143) and the linearity property (5.49), we get 

cos wot - ~ [ 6 ( w  - w,,) + 6(w + wo)]  (5.144) 

Figure 5-21 illustrates the relationship in Eq. (5.144). 
Similarly, we have 

and again using Eqs. (5.142) and (5.143), we get 

sin wot - - j.rr[S(o - wo)  - 6(w + wo)]  (5.145) 

(b) 

Fig. 5-21 Cosine signal and its Fourier transform. 

5.24. Find the Fourier transform of a periodic signal x ( t )  with period To.  

We express x(t ) as 

Taking the Fourier transform of both sides and using Eq. (5.142) and the linearity property 
(5.49), we get 

which indicates that the Fourier transform of a periodic signal consists of a sequence of 
equidistant impulses located at the harmonic frequencies of the signal. 
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5.25. Find the Fourier transform of the periodic impulse train [Fig. 5-22(a)] 

From Eq. (5.115) in Prob. 5.8, the complex exponential Fourier series of 6,,,(t) is given by 

Using Eq. (5.1461, we get 

m 

= W() C S(w - kw,) = w,G,,(w) 
k =  - m 

Thus, the Fourier transform of a unit impulse train is also a similar impulse 

(5.147) 

train [Fig. 5-22(b)]. 

(0 )  (6) 

Fig. 5-22 Unit impulse train and its Fourier transform. 

5.26. Show that 

x ( t )  cos o, , t  - i X ( o  - o,,) + i X ( o  + oo) 

and x ( t  ) sin w,,t - - j  [ : ~ ( w  - w,) - : ~ ( o  + w,)] 

Equation (5.148) is known as the modulation theorem. 

From Euler's formula we have 

cos wol = i ( e j W  + - jW 1 
Then by the frequency-shifting property (5.51) and the linearity property (5.491, we obtain 

~ [ x ( t ) c o s  wet] = . ~ [ i x ( t )  ei"ut + 'x(t) 2 e-jU~lt I 
= ;x (w - wo) + f x ( w  + w,) 

Hence, 

X ( ~ ) C O S  ~ ( ) t  c-' $X(W - w,) + ; x (w  + w") 
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In a similar manner we have 

and 
1 1 

Y [ x ( t )  sin w , t ]  = Y - x ( t )  eJ"ot - - [ 2 i  
x  ( t  ) e -'"o' I 

1 1 
= - X ( w  - w , )  - - X ( w  + w, )  

2J 2 J 

Hence, 

x ( t )  sin wot t* - j [ i ~ ( w  - w o )  - ; X ( O  + w o ) ]  

5.27. The Fourier transform of a signal x ( t )  is given by [Fig. 5-23(a)] 

X ( w )  = $pa(w - wo) + ; P ~ ( W  + ~ 0 )  

Find and sketch x ( r ) .  

From Eq. (5.137) and the modulation theorem (5.148) it follows that 
sin at 

x ( t )  = - COS wot 
T f 

which is sketched in Fig. 5-23(b). 

(4 
Fig. 5-23 
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5.28. Verify the 
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differentiation property (5.55), that is, 

From Eq. (5.321 the inverse Fourier transform of X(w) is 

[CHAP. 5 

Then 

Comparing Eq. (5.151) with Eq. (5.150), we conclude that dr(t)/dt is the inverse Fourier 
transform of jwX(w). Thus, 

5.29. Find the Fourier transform of the signum function, sgn(t) (Fig. 5-24), which is defined 
as 

The signum function, sgn(t), can be expressed as 

sgn(t) = 2u(t )  - 1 

Using Eq. (1.301, we have 

Fig. 5-24 Signum function. 
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sgn(t) -X(w) 

Then applying the differentiation property (5.551, we have 

2 
jwX(w) = F [ 2 6 ( t ) ]  = 2 +X(w)  = - 

i w  

Hence, 

Note that sgn(t) is an odd function, and therefore its Fourier transform is a pure imaginary 
function of w (Prob. 5.41). 

530. Verify Eq. (5.481, that  is, 

1 
~ ( t )  H ~ s ( 0 . l )  + y- 

I 

As shown in Fig. 5-25, u(t) can be expressed as 

Note that $ is the even component of u(t) and sgn(t) is the odd component of d t ) .  Thus, by 
Eqs. (5.141) and (5.153) and the linearity property (5.49) we obtain 

Fig. 5-25 Unit step function and its even and odd components. 

531. Prove the  time convolution theorem (5.581, that  is, 

-4) * - 4 1 )  -X,(4X*(4 
By definitions (2.6) and (5.311, we have 

Changing the order of integration gives 
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By the time-shifting property (5.50) 

Thus, we have 

5.32. Using the time convolution theorem (5.58), find the inverse Fourier transform of 
X ( w )  = l / (a  + j ~ ) ~ .  

From Eq. (5 .45)  we have 

Now 

Thus, by the time convolution theorem (5.58) we have 

x ( r )  = e - " u ( r )  * e - " u ( t )  

Hence, 

5.33. Verify the integration property (5.57), that is, 

From Eq. (2.60) we have 
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Thus, by the time convolution theorem (5 .58)  and Eq. (5.154) we obtain 

since X ( o ) S ( o )  = X(O)S(w) by Eq. (1.25). Thus, 

5.34. Using the integration property ( 5 . 5 7 )  and Eq. (1 .31) ,  find the Fourier transform of 
u ( t ) .  

From Eq. (1.31) we have 

( t )  = / S ( r )  d r  
- m 

Now from Eq. (5.140) we have 

S ( t )  - 1 

Setting x ( r )  = S(7) in Eq. (5.571, we have 

x ( t )  = s ( t )  - X ( o )  = 1 and X ( 0 )  = 1 

and 

5.35. Prove the frequency convolution theorem (5.591, that is, 

1 
x d f  ) x 2 W  " % X I ( 4  * X 2 ( 4  

By definitions (5.31) and (5 .32)  we have 

. F [ x l ( t ) x 2 ( t ) ]  = jm ~ ~ ( t ) x , ( t ) e - ~ " ' d t  
- m  

X,(h)eJ" dA ~ , ( t ) e - ~ " ' d t  

1 m  

1 
= - / X , ( A )  x , ( t )e- j ("-*) 'dt  

2~ - w  - m  

1 m 1 
= -/ X , ( A ) X , ( o  - A) d l  = - X , ( o )  * X , ( o )  

2 7 ~  -, 27r 

Hence, 
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5.36. Using the frequency convolution theorem (5.59), derive the modulation theorem 
(5.148). 

From Eq. (5.144) we have 

cos w,t - a6(w - 0,) + a 6 ( 0  + w 0 )  

By the frequency convolution theorem (5.59) we have 

1 
~ ( t )  cos 0 , t  - - X ( 0 ) *  [ a S ( w  - 00) + d ( 0  + w ~ ) ]  

2lT 

= + X ( O  - 0,) + $X(w + 0, )  

The last equality follows from Eq. (2.59). 

5.37. Verify Parseval's relation (5.63), that is, 

From the frequency convolution theorem (5.59) we have 

Setting w = 0, we get 

By changing the dummy variable of integration, we obtain 

5.38. Prove Parseval's identity [Eq. (5.6411 or Parseval's theorem for the Fourier transform, 
that is, 

By definition (5.31) we have 

where * denotes the complex conjugate. Thus, 

x * ( t )  - X * ( - w )  
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Setting x,(t) = x(r) and x2(t) =x*(t) in Parseval's relation (5.631, we get 

5.39. Show that Eq. (5.61a), that is, 

X*(O)  = X ( - 0 )  

is the necessary and sufficient condition for x( t )  to be real. 

By definition (5.31) 

If x(t) is real, then x*(t) = x(t) and 

Thus, X*(w) = X(-w) is the necessary condition for x(t) to be real. Next assume that 
X * ( o )  = X( - o). From the inverse Fourier transform definition (5.32) 

Then 

which indicates that x(t) is real. Thus, we conclude that 

X*(W) =X(-W)  

is the necessary and sufficient condition for x(t) to be real. 

5.40. Find the Fourier transforms of the following signals: 

(a)  x ( t ) = u ( - t )  

( b )  x( t )=ea 'u(- t ) ,  a > O  
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From Eq. (5.53) we have 

X (  - t )  - X ( - w )  

Thus, if x ( t )  is real, then by Eq. (5 .61~)  we have 

x( -1) - X ( - 0 )  = X * ( w )  

( a )  From Eq. (5.154) 

Thus, by Eq. (5.158) we obtain 

( b )  From Eq. (5.155) 

1 
e-" 'u( t )  - - 

a + j w  

Thus, by Eq. (5.158) we get 

5.41. Consider a real signal x ( t  ) and let 

X ( o )  = F [ x ( t ) ]  = A ( w )  + j B ( o )  

where x,( t )  and x,(t) are the even and odd components of x ( t ) ,  respectively. Show 
that 

x&)  + N o )  ( 5 . 1 6 1 ~ )  

x,( t ) - j B ( o  ) (5.161b) 

From Eqs. (1.5) and (1.6) we have 

x, ( t )  = f [.(I) + X (  - t ) ]  

x , ( t )  = f [ x ( t )  - x ( - t ) ]  

Now if x ( t )  is real, then by Eq. (5.158) we have 

X ( t )  H X ( O )  = A ( @ )  + jB (w)  

x ( - t )  H X ( - W )  = X * ( W )  = A ( w )  - j B ( w )  

Thus, we conclude that 

x,(t) - ~ x ( w )  + ; X * ( O )  = A ( w )  

x,(t) t--, ~ x ( w )  - $ x * ( o )  = jB(w)  

Equations (5.161~) and (5.161b) show that the Fourier transform of a real even signal is a real 
function of o, and that of a real odd signal is an imaginary function of w, respectively. 



CHAP. 51 FOURIER ANALYSIS OF TIME SIGNALS AND SYSTEMS 

5-42, Using Eqs. ( 5 . 1 6 1 ~ )  and (5.1551, find the Fourier transform of e-"Itl ( a  > 0). 

From Eq. (5.155) we have 

By Eq. (1.5) the even component of e-"'u(t) is given by 

Thus, by Eq. ( 5 . 1 6 1 ~ )  we have 

which is the same result obtained in Prob. 5.21 [Eq. (5.138)l. 

5.43. Find the Fourier transform of a gaussian pulse signal 

By definition (5.31) 

Taking the derivative of both sides of Eq. (5.162) with respect to o, we have 

Now, using the integration by parts formula 

and letting 

= - jw l  and do = dr 

we have 

and 
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since a > 0. Thus, we get 

[CHAP. 5 

d X ( w )  w  -- - - - X ( w )  
d w  2a 

Solving the above separable differential equation for X ( w ) ,  we obtain 

where A is an arbitrary constant. To evaluate A we proceed as follows. Setting w  = 0 in 
Eq. (5.162) and by a change of variable, we have 

Substituting this value of A into Eq. (5.1631, we get 

Hence, we have 

Note that the Fourier transform of a gaussian pulse signal is also a gaussian pulse in the 
frequency domain. Figure 5-26 shows the relationship in Eq. (5.165). 

Fig. 5-26 Gaussian pulse and its Fourier transform. 

FREQUENCY RESPONSE 

5.44. Using the  Fourier transform, redo Prob. 2.25. 

The system is described by 

y ' ( t )  + 2 y ( t )  = x ( t )  + x f ( t )  

Taking the Fourier transforms of the above equation, we get 

j w Y ( w )  + 2 Y ( w )  = X ( w )  + j w X ( w )  
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( jw + 2)Y(w) = (1 + jw) X(w ) 

Hence, by Eq. (5.67) the frequency response H(w) is 

Taking the inverse Fourier transform of H(w), the impulse response h(t) is 

Note that the procedure is identical to that of the Laplace transform method with s replaced 
by j w  (Prob. 3.29). 

5.45. Consider a continuous-time LTI system described by 

Using the Fourier 
signals: 

transform, find the output y(t)  to each of the following input 

( a )  x( t )  = e P ' u ( t )  

( b )  x ( r ) = u ( t )  

( a )  Taking the Fourier transforms of Eq. (5.1661, we have 

jwY(w) + 2Y(w) = X(w) 

Hence, 

From Eq. (5.155) 

and 

Therefore, 
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( b )  From Eq. (5.154) 

[CHAP. 5 

Thus, by Eq. (5.66) and using the partial-fraction expansion technique, we have 

1 1 
= q w )  - + 

2 + jw jw(2 + jw)  

where we used the fact that f (w)6(w)  = f (O)6(o)  [Eq.  (1.2511. Thus, 

We observe that the Laplace transform method is easier in this case because of the 
Fourier transform of d t ) .  

5.46. Consider the LTI system in Prob. 5.45. If the input x ( t )  is the periodic square 
waveform shown in Fig. 5-27, find the amplitude of the first and third harmonics in the 
output y ( t ) .  

Note that x ( t )  is the same x ( t )  shown in Fig. 5-8 [Prob. 5.51. Thus, setting A = 10, To = 2, 
and w ,  = 2rr/T0 = rr in Eq. (5.1061, we have 

Next, from Prob. 5.45 

Fig. 5-27 
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Thus, by Eq. (5.74) we obtain 

Let 

The harmonic form of y(r) is given by [Eq. (5.15)] 

where Dk is the amplitude of the kth harmonic component of y(t ). By Eqs. (5.11) and (5.16), 
D, and d ,  are related by 

Thus, from Eq. (5.167), with m = 0, we obtain 

10 
D ,  = 21d,I = 2 1 I=1.71 

ja(2 + ja) 
With m = 1, we obtain 

5.47. The most widely used graphical representation of the frequency response H(w) is the 
Bode plot in which the quantities 2010glo~H(w)l and 8,(0) are plotted versus w, with 
w plotted on a logarithmic scale. The quantity 2010glolH(o)l is referred to as the 
magnitude expressed in decibel! (dB), denoted by (H(o)l,,. Sketch the Bode plots for 
the following frequency responses: 

104(1 + j o )  
( c )  H(w) = 

(10 + jw)(lOO + jw) 

For o << 10, 
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For o s 10, 

On a log frequency scale, 2010glo(w/10) is a straight line with a slope of 20 dB/decade 
(a decade is a 10-to-1 change in frequency). This straight line intersects the 0-dB axis at 
o = 10 [Fig. 5-28(a)]. (This value of o is called the comer frequency.) At the corner 
frequency w = 10 

~(10)1,, = 2010glo11 + jll = 2010glofi -- 3 dB 

The plot of (H(w)ldB is sketched in Fig. 5-28(a). Next, 

Then 
W 

O,(o) = tan-' - --, 0 a s o - 0  
10 

At w = 10, OH(lO) = tan-' 1 = ~ / 4  radian (rad). The plot of BH(o) is sketched in 
Fig. 5-28(b). Note that the dotted lines represent the straight-line approximation of the 
Bode plots. 

For o 100, 

For w >> 100, 

On a log frequency scale -2010glo(w/100) is a straight line with a slope of 
-20 dB/decade. This straight line intersects the 0-dB axis at the corner frequency 
o = 100 [Fig. 5-29(a)]. At the corner frequency o = 100 

H(100)1,, = -2010glofi  = -3 dB 

The plot of IH(w)ldB is sketched in Fig. 5-29(a). Next 

Then 

At o = 100, 8,(100) = -tanp' 1 = - ~ / 4  rad. The plot of OH(w) is sketched in 
Fig. 6) .  
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(c) First, we rewrite H(w) in standard form as 

lO(1 + jw) 
H ( o )  = 

(1  + jw/lO)(l + jo/100) 

Then 

Note tha ,t corner ~t there are three corner frequencies, o = 1, w = 10, and w = 100. A 
frequency w = 1 

H ( ~ ) I , ,  = 20 + 20loglO& - 2010g,,m6- - 2 0 1 0 g , ~ ~  % 23 dB 

At corner frequency w = 10 

~ ( 1 0 ) ~ ~ , = 2 0 + 2 0 l o ~ , , ~ - 2 0 1 o ~ , , & -  2 0 1 0 g l o m b  37dB 

At corner frequency w = 100 

The Bode amplitude plot is sketched in Fig. 5-30(a). Each term contributing to the 
overall amplitude is also indicated. Next, 

w 0 
OH(w) = tan-' w - tan-' - - tan- '  - 

10 100 

Then 

and 

eH( l )  = tan-'(1) - tan-'(0.1) - tan-'(0.01) = 0.676 rad 

eH(lO) = tan-'(10) - tan-'(1) - tan-'(0.1) = 0.586 rad 

8,(100) = tan-'(100) - tan-'(10) - tan-'(1) = -0.696 rad 

The plot of eH(w) is sketched in Fig. 5-30(b). 

5.48. An ideal ( -7r/2) radian (or -90") phase shifter (Fig. 5-31) is defined by the frequency 
response 

(a )  Find the impulse response h(t ) of this phase shifter. 
(6) Find the output y( t )  of this phase shifter due to an arbitrary input x(t). 

( c )  Find the output y(t)  when x( t )  = cos o o t .  

(a)  Since e-j" l2 = -j and eJ"/2 = j, H(w) can be rewritten as 

H(w) = -jsgn(w) (5.170) 
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Fig. 5-30 Bode plots. 
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- 
Fig. 5-31 -n /2  rad phase shifter. 

where 

Now from Eq. (5.153) 
2 

sgn(t) - jo 

and by the duality property (5.54) we have 

1 
- C, - jsgn(w) (5.172) 
T t  

since sgn(w) is an odd function of w. Thus, the impulse response h(t)  is given by 
1 

h( t )  = F - ' [ ~ ( w ) ]  = F- ' [ - j sgn(w)]  = - (5.173) 
nt 

( b )  By Eq. (2.6)  

The signal y(t)  defined by Eq. (5.174) is called the Hilbert transform of x ( t )  and is 
usually denoted by f (l). 

( c )  From Eq. (5.144) 

cos wet H T[S(W - w,,) + a(  w + wO)] 

Then 

Y(w) = X(w)H(w)  = T [ s ( ~  - w,) + S(w + w,)][-jsgn(w)] 

= - j ~  sgn(w,)S(w - w,,) - jT sgn( -w,,)S(w + w,) 

= - j d ( w  - w,) + j.rrS(w + w,) 

since sgn(oo) = 1 and sgn( -w,) - 1. Thus, from Eq. (5.145) we get 

y ( t )  =sin w,t 

Note that cos(w,t - 7/21 = sin wot. 

5.49. Consider a causal continuous-time LTI system with frequency response 

H ( o )  = A ( w )  + j B ( o )  

Show that the impulse response h ( t )  of the system can be obtained in terms of A(w) 
or B(w) alone. 
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Since the system is causal, by definition 

h ( t )  = 0  r < O  

Accordingly, 

Let 

where he(r) and h,( t)  are the even and odd components of h(r), respectively. Then from 
Eqs. (1 .5)  and (1 .6)  we can write 

h ( r )  = 2he(r)  = 2h, (r )  

From Eqs. (5.616) and ( 5 . 6 1 ~ )  we have 

h , ( t )  - A ( w )  and h , ( t )  - j B ( w )  

Thus, by Eq. (5.175) 

Equations ( 5 . 1 7 6 ~ )  and (5.176b) indicate that h ( t )  can be obtained in terms of A(w)  or B(w)  
alone. 

5.50. Consider a causal continuous-time LTI system with frequency response 

H ( o )  = A ( o )  + j B ( o )  

If the impulse response h ( t )  of the system contains no impulses at the origin, then 
show that A ( w )  and B ( w )  satisfy the following equations: 

As in Prob. 5.49, let 

h ( r )  = h e ( r )  + ho( t )  

Since h ( t )  is causal, that is, h(r)  = 0 for t < 0, we have 

h e ( t )  = - h O ( t )  t <O 

Also from Eq. (5.175) we have 

h , ( t )  = h , ( t )  r > O  

Thus, using Eq. (5.1521, we can write 

h , ( t )  = h , ( r )  sgn(r) 

h o ( r )  = h e ( r )  sgn(t) 

Now, from Eqs. (5.6161, (5.61~1,  and (5.153) we have 
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Thus, by the frequency convolution theorem (5.59) we obtain 

and 

Note that A ( w )  is the Hilbert transform of B ( w )  [Eq. (5.17411 and that B ( w )  is the negative of 
the Hilbert transform of A(w). 

5.51. The real part of the frequency response H ( w )  of a causal LTI system is known to be 
r S ( w ) .  Find the frequency response H ( o )  and the impulse function h ( t )  of the 
system. 

Let 

H ( w )  = A ( w )  + jB( w )  

Using Eq. (5.177b1, with A(w)  = 7~8(w) ,  we obtain 

Hence, 

and by Eq. (5.154) 

h ( t )  = u ( t )  

FILTERING 

Consider an ideal low-pass filter with frequency response 

The input to this filter is 

sin at 
x ( r )  = - 

7T t 

( a )  Find the output y ( r )  for a < w,. 

( b )  Find the output y( t )  for a > w,. 

( c )  In which case does the output suffer distortion? 
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( a )  From Eq. (5.137) (Prob. 5.20) we have 

sin at 
~ ( t )  = - - X ( w )  = p 0 ( w )  = I4 < a  

~ t  Iwl > a  

Then when a < w,, we have 

Y ( w )  = X ( w ) H ( w )  = X ( w )  

Thus, 

sin at 
y ( t )  = x ( t )  = - 

X t  

( b )  When a  > w,, we have 

Y ( w )  = X ( w ) H ( w )  = H ( w )  

Thus, 

sin o,t 
y ( t )  = h ( t )  = - 

Xt 

(c) In case ( a ) ,  that is, when w, > a ,  y ( t )  = x ( t )  and the filter does not produce any 
distortion. In case ( b ) ,  that is, when w, < a,  y ( t )  = h ( t )  and the filter produces distortion. 

5.53. Consider an ideal low-pass filter with frequency response 

The input to this filter is the periodic square wave shown in Fig. 5-27. Find the output 
y(  t 1. 

Setting A = 10, T, = 2, and w,  = 2n/To = n in Eq. (5.107) (Prob. 5.9 ,  we get 

Since the cutoff frequency o, of the filter is 4 7 ~  rad, the filter passes all harmonic components 
of x ( t )  whose angular frequencies are less than 4 n  rad and rejects all harmonic components of 
x ( t )  whose angular frequencies are greater than 477 rad. Therefore, 

20 20 
y ( t )  = 5 + - s inn t  + - s i n 3 ~ t  

x 3 n  

5-54 Consider an ideal low-pass filter with frequency response 

The input to this filter is 

Find the value of o, such that this filter passes exactly one-half of the normalized 
energy of the input signal x ( t  ). 
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From Eq. (5.155) 

Then 

The normalized energy of x ( t )  is 

Using Parseval's identity (5.641, the normalized energy of y ( t )  is 

1 w ,  d o  =-/ -- 1 
-- w,  1 1 

tan-' - = - E  = - 
T O  4 + 0 2  2 7  2 2 "  8 

from which we obtain 

'" c I T  
- =  tan - = 1 and o, = 2 rad/s 
2 4 

5.55. T h e  equivalent bandwidth of a filter with frequency response H ( o )  is defined by 

where IH(w)lm,  denotes the maximum value of the magnitude spectrum. Consider the 
low-pass RC filter shown in Fig. 5-6 (a ) .  

( a )  Find its 3-dB bandwidth W, ,,. 
( b )  Find its equivalent bandwidth We,. 

( a )  From Eq. (5.91) the frequency response H ( w )  of the RC filter is given by 

1 - - 1 
H ( o )  = 

l + j o R C  l + j ( o / o , )  

where o, = 1 /RC. Now 

The amplitude spectrum lH(w)l is plotted in Fig. 5-6(b).  When w = o, = 1/RC, 
IH(o,)l = I /&.  Thus, the 3-dB bandwidth of the RC filter is given by 
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( 6 )  From Fig. 5-6(b) we see that IH(O)I = 1 is the maximum of the magnitude spectrum. 
Rewriting H(w) as 

and using Eq. (5.179), the equivalent bandwidth of the RC filter is given by (Fig. 5-32) 

0 Wa Weq w 

Fig. 5-32 Filter bandwidth. 

5.56. The risetime t ,  of the low-pass RC filter in Fig. 5-6(a) is defined as the time required 
for a unit step response to go from 10 to 90 percent of its final value. Show that 

where f, ,, = W, ,,/2.rr = 1/2.rrRC is the 3-dB bandwidth (in hertz) of the filter. 

From the frequency response H(w) of the RC filter, the impulse response is 

Then, from Eq. (2.12) the unit step response d t )  is found to be 

Dividing the first equation by the second equation on the right-hand side, we obtain 

e ( r ~ - r d / R C  = 9 
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Fig. 5-33 

which indicates the inverse relationship between bandwidth and risetime. 

5.57. Another definition of bandwidth for a signal x ( t )  is the 90 percent energy containment 
bandwidth W,, defined by 

where Ex is the normalized energy content of signal x( t ) .  Find the W ,  for the 
following signals: 

( a )  x ( t )  = e-"'u(t), a > 0 
sin at 

( b )  x ( t )  = - 
rr l 

( a )  From Eq. (5.155) 

1 
~ ( t )  = e - " u ( t )  - X( W )  = - 

a +jo 

From Eq. (1.14) 

Now, by Eq. (5.180) 
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from which we get 

Thus. 

( b )  From Eq. (5.137) 

sin at 
~ ( t )  = - -X(w) =pu(w)  = 

Iwl < a  
7 ~ t  Iwl > a  

Using Parseval's identity (5.64), we have 

Then, by Eq. (5.180) 

from which we get 

Ww = 0.9a rad/s 

Note that the absolute bandwidth of x( t)  is a (radians/second). 

5.58. Let x ( t )  be a real-valued band-limited signal specified by [Fig. 5-34(b)] 

Let x,(t be defined by 

( a )  Sketch x$t )  for T,  < r/o, and for T,  > r/oM. 

( b )  Find and sketch the Fourier spectrum X $ o )  of x J r )  for T, < r/oM and for 
T,  > n/w,. 

(a) Using Eq. (I .26) ,  we have 

The sampled signal x , ( r )  is sketched in Fig. 5-34(c) for Tq < r/w,, and in Fig. 5-34(i) for 
T, > T / w ~ .  

The signal x,(t) is called the ideal sampled signal, T, is referred to as the sampling 
interr.al (or period), and f ,  = 1/T, is  referred to as the sampling rate (or frequency ). 
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Fig. 5-34 Ideal sampling. 
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( h )  From Eq. (5.147) (Prob. 5.25) we have 

Let 

Then, according to the frequency convolution theorem (5.59), we have 

Using Eq. (1.261, we obtain 

which shows that X,(w) consists of periodically repeated replicas of X(w) centered about 
kw, for all k .  The Fourier spectrum X,(w) is shown in Fig. 5-34 f ) for T, < r/w, (or 
w, > 2wM), and in Fig. 5-34( j )  for T, > r / w M  (or w, < 2wM), where w, = 27~/T,. It is 
seen that no overlap of the replicas X(o - ko,) occurs in X,(o) for w, r 2wM and that 
overlap of the spectral replicas is produced for w,$ < 2wM. This effect is known as 
aliasing. 

5.59. Let x ( t  ) be a real-valued band-limited signal specified by 

Show that x (  t )  can be expressed as 
cC sin wM(t - kT,) 

41) = C x(kTs) 
& -  - m  - kT-) 

where T, = rr/w,. 
Let 

From Eq. ( 5.183 we have 
Xi 

T,X,(w) = C X ( o  - ko,)  
k =  - m  

Then, under the following two conditions, 
7T 

(1)  X ( o ) = O , I w I > o ,  and (2) T,= -  
WM 

we see from Eq. (5.1185 that 
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Next, taking the Fourier transform of Eq. (5.182), we have 

Substituting Eq. (5.187) into Eq. (5.186), we obtain 

Taking the inverse Fourier transform of Eq. (5.1881, we get 

a sin w M (  t - kT,) 
= C x ( k T , )  

k =  -m W M ( ~  -kTs)  

From Probs. 5.58 and 5.59 we conclude that a band-limited signal which has no frequency 
components higher that f M  hertz can be recovered completely from a set of samples taken at 
the rate of f, (1 2 fM) samples per second. This is known as the uniform sampling theorem for 
low-pass signals. We refer to T,  = X / W ,  = 1 / 2  fM (oM = 27r fM as the Nyquist sampling 
interval and f, = 1/T,  = 2 fM as the Nyquist sampling rate. 

5.60. Consider the system shown in Fig. 5-35(a) .  The frequency response H ( w )  of the ideal 
low-pass filter is given by [Fig. 5-35(b) ]  

Show that if w, = 0J2,  then for any choice of T,, 

Fig. 5-35 
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From Eq. (5.137) the impulse response h ( t )  of the ideal low-pass filter is given by 

sin w, t T5wc sin w,t 
h ( t )  = T5----- = - - 

a t  i~ w,t 

From Eq. (5.182) we have 

By Eq. (2.6) and using Eqs. (2 .7 )  and (1.261, the output y ( t )  is given by 

Using Eq. (5.1891, we get 

cc T p ,  sin w,(t - k c )  
~ ( t )  = C x(kT , ) -  

k =  - cc 77 w,(t - kT,) 

If w, = wJ2 ,  then T,w,/a = 1 and we have 

Setting t = mT, ( m  = integer) and using the fact that w,T, = 2 ~ ,  we get 

rn sin ~ ( m  - k )  
Y ( ~ T )  = X (  k T S )  77(m - k) 

k =  -a 

Since 

we have 

which shows that without any restriction on x ( t ) ,  y(mT5) = x(mT,) for any integer value of m .  
Note from the sampling theorem (Probs. 5.58 and 5.59) that if w, = 2 a / T 5  is greater than 

twice the highest frequency present in x ( t )  and w, = wJ2 ,  then y ( t )  = x( t ) .  If this condition 
on the bandwidth of x ( t )  is not satisfied, then y ( t )  z x ( t ) .  However, if w, = 0, /2 ,  then 
y(mT,) = x(mT5) for any integer value of m .  
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Supplementary Problems 

5.61. Consider a rectified sine wave signal x ( t )  defined by 

x ( l )  = IAsin.srt( 

( a )  Sketch x ( t )  and find its fundamental period. 
(6) Find the complex exponential Fourier series of x ( ! ) .  

( c )  Find the trigonometric Fourier series of x ( t  1. 
Am. ( a )  X ( t )  is sketched in Fig. 5-36 and T, = 1.  

2A 4 A m  1 
( c )  x ( t ) =  - - - C - cos k 2 r t  

.sr IT 4 k 2 - 1  

Fig. 5-36 

5.62. Find the trigonometric Fourier series of a periodic signal x ( t )  defined by 

x ( t )  = t 2 ,  -a < t  < .rr and x ( r  + 2a) = x ( t )  

a2 a (-ilk 
Am. x ( t ) = -  + 4  - 

k 
cos kt 

3 k-l 

5.63. Using the result from Prob. 5.10, find the trigonometric Fourier series of the signal x ( t )  shown 
in Fig. 5-37. 

A A " 1  2 a  
A ~ S .  ~ ( t )  = - - - - sin ko,! 

k 
wo= - 

2 .rr & = I  To 

-To 0 To 2T" r 

Fig. 5-37 
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5.64. Derive the harmonic form Fourier series representation (5.15) from the trigonometric Fourier 
series representation (5.8).  

Hint: Rewrite a ,  cos kw, t  + b, sin kw, t  as 

,/, 
cos kw, t  + bk 

,/, sin kw, t  
( 4  + b:) 

and use the trigonometric formula cod A  - B) = cos A cos B + sin A  sin B. 

5.65. Show that the mean-square value of a real periodic signal x ( r )  is the sum of the mean-square 
values of its harmonics. 

1 
Hint: Use Parseval's identity (5.21) for the Fourier series and Eq. (5.168). 

5.66. Show that if 

then 

Hint: Repeat the time-differentiation property (5.55). 

5.67. Using the differentiation technique, find the Fourier transform of the triangular pulse signal 
shown in Fig. 5-38. 

sin( w d / 2 )  2 

A r . . A d [  w d / 2  ] 

-d 0 d I 

Fig. 5-38 

5.68. Find the inverse Fourier transform of 

Hint: Differentiate Eq. (5.155) N times with respect to (a) .  
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5.69. Find the inverse Fourier transform of 

1 
X ( w )  = 

2 - w2 + j3w 

Hint: Note that 

2 - w2 + j3w = 2 + ( jw12 + j3w = ( 1  + j w ) ( 2  + j w )  

and apply the technique of partial-fraction expansion. 

Am. x ( t )  = (e-' - e - 2 ' ) u ( t )  

5.70. Verify the frequency differentiation property (5.561, that is, 

Hint: Use definition (5.31) and proceed in a manner similar to Prob. 5.28. 

5.71. Find the Fourier transform of each of the following signals: 

( a )  x ( t )  = cos wotu(t )  
( b )  x ( t )  = sin wotu(t )  
( c )  x ( t ) = e - " ' ~ ~ ~ w ~ t u ( t ) ,  a > O  

( d l  x ( t )  = e-"'sin w,tu(t) ,  a  > 0  

Hint: Use multiplication property (5.59).  
X X i w  

Am. ( a )  X ( w )  = -S(w - w o )  + -S(w + w,)  + 
2 2 ( jw)' + w i  

0 0  
( d l  X ( w )  = 

( a  + jo12 + 
5.72. Let x ( t )  be a signal with Fourier transform X ( w )  given by 

Consider the signal 

Find the value of 

Hint: Use Parseval's identity (5.64) for the Fourier transform. 
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5.73. Let x ( t )  be a real signal with the Fourier transform X(w) .  The analytical signal x + ( t )  
associated with x ( t )  is a complex signal defined by 

x + ( t )  = x ( t )  + j i ( t )  

where is the Hilbert transform of x(t 1. 

( a )  Find the Fourier transform X + ( w )  of x+( t  1. 
( 6 )  Find the analytical signal x + ( t )  associated with cos w,t and its Fourier transform X + ( w ) .  

5.74. Consider a continuous-time LTI system with frequency response H(w).  Find the Fourier 
transform S ( w )  of the unit step response s ( t )  of the system. 

Hint: Use Eq. (2.12) and the integration property (5 .57) .  

Am.  S ( w )  = .rrH(O)G(o) + ( l / j w ) H ( w )  

5.75. Consider the RC filter shown in Fig. 5-39. Find the frequency response H ( w )  of this filter and 
discuss the type of filter. 

i w  
Ans. H ( o ) =  , high-pass filter 

( l / R C )  + jw 

- 

Fig. 5-39 

5.76. Determine the 99 percent energy containment bandwidth for the signal 

Ans. W,, = 2.3/a radians/second or f, = 0.366/a hertz 

5.77. The sampling theorem in the frequency domain states that if a real signal x ( t )  is a duration- 
limited signal. that is, 
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then its Fourier transform X ( w )  can be uniquely determined from its values X(nsr / t , )  at a 
series of equidistant points spaced n / t ,  apart. In fact, X ( w )  is given by 

n =  -00 o t ,  - n.rr 

Verify the above sampling theorem in the frequency domain. 

Hint: Expand x ( t )  in a complex Fourier series and proceed in a manner similar to that for 
Prob. 5.59. 



Chapter 6 

Fourier Analysis of Discrete-Time 
Signals and Systems 

6.1 INTRODUCTION 

In this chapter we present the Fourier analysis in the context of discrete-time signals 
(sequences) and systems. The Fourier analysis plays the same fundamental role in discrete 
time as in continuous time. As we will see, there are many similarities between the 
techniques of discrete-time Fourier analysis and their continuous-time counterparts, but 
there are also some important differences. 

6.2 DISCRETE FOURIER SERIES 

A. Periodic Sequences: 

In Chap. 1 we defined a discrete-time signal (or sequence) x [ n ]  to be periodic if there 
is a positive integer N for which 

x [ n  + N ]  = x [ n ]  all n  (6.1) 

The fundamental period No of x [ n ]  is the smallest positive integer N for which Eq. (6.1) is 
satisfied. 

As we saw in Sec. 1.4, the complex exponential sequence 

where no = 27r/Nu, is a periodic sequence with fundamental period Nu. As we discussed 
in Sec. 1.4C, one very important distinction between the discrete-time and the continuous- 
time complex exponential is that the signals  el"^' are distinct for distinct values of wO, but 
the sequences eiR~~", which differ in frequency by a multiple of 2rr, are identical. That is, 

Let 

and more generally, 

* k [ . I  = * k + o ~ N , , [ ~ l  rn = integer 

Thus, the sequences q k [ n ]  are distinct only over a range of No successive values of k. 
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B. Discrete Fourier Series Representation: 

The discrete Fourier series representation of a periodic sequence x[n] with fundamen- 
tal period No is given by 

where c, are the Fourier coefficients and are given by (Prob. 6.2) 

Because of Eq. (6.5) [or Eq. (6.6)], Eqs. (6.7) and (6.8) can be rewritten as 

where C,, denotes that the summation is on k as k varies over a range of No 
successive integers. Setting k = 0 in Eq. (6.101, we have 

which indicates that co equals the average value of x[n] over a period. 
The Fourier coefficients c, are often referred to as the spectral coefficients of x[n]. 

C. Convergence of Discrete Fourier Series: 

Since the discrete Fourier series is a finite series, in contrast to the continuous-time 
case, there are no convergence issues with discrete Fourier series. 

D. Properties of Discrete Fourier Series: 

I. Periodicity of Fourier Coeficients: 

From Eqs. (6 .5 )  and (6.7) [or (6.911, we see that 

C,+N, = Ck 

which indicates that the Fourier series coefficients c, are periodic with fundamental 
period No. 

2. Duality: 

From Eq. (6.12) we see that the Fourier coefficients c, form a periodic sequence with 
fundamental period No. Thus, writing c, as c[k], Eq. (6.10) can be rewritten as 
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Let n = -m in Eq. (6.13). Then 

Letting k = n and m = k in the above expression, we get 

Comparing Eq. (6.14) with Eq. (6.91, we see that (l/N,,)x[-k] are the Fourier coefficients 
of c[n]. If we adopt the notation 

x [n ]  B c k  = c [ k ]  (6.15) 

to denote the discrete Fourier series pair, then by Eq. (6.14) we have 

DFS 1 
~ [ n ]  c--) -x[-k] 

No 

Equation (6.16) is known as the duality property of the discrete Fourier series. 

3. Other Properties: 

When x[n] is real, then from Eq. (6.8) or [Eq. (6.10)] and Eq. (6.12) it follows that 
* 

C P k  =CN,,-k = ck (6.1 7) 

where * denotes the complex conjugate. 

Even and Odd Sequences: 

When x[n] is real, let 

x[nl =xe[nl + ~ o [ n l  
where xe[n] and xo[n] are the even and odd components of x[n], respectively. Let 

x[n]  S c k  

Then 

xe[n] Re[ck] (6 .18~)  

xo[n] 2% j Im[ck] (6.186) 

Thus, we see that if x[n] is real and even, then its Fourier coefficients are real, while if 
x[n] is real and odd, its Fourier coefficients are imaginary. 

E. Parseval's Theorem: 

If x[n] is represented by the discrete Fourier series in Eq. (6.9), then it can be shown 
that (Prob. 6.10) 

Equation (6.19) is called Parseval's identity (or Parseual's theorem) for the discrete 
Fourier series. 
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6 3  THE FOURIER TRANSFORM 

A. From Discrete Fourier Series to Fourier Transform: 

Let x [ n ]  be a nonperiodic sequence of finite duration. That is, for some positive 
integer N , ,  

Such a sequence is shown in Fig. 6-l(a).  Let x,Jn]  be a periodic sequence formed by 
repeating x [ n ]  with fundamental period No as shown in Fig. 6-l(b). If we let No -, m, we 
have 

lim x N o [ n ]  = x [ n ]  
No+- 

The discrete Fourier series of xNo[n ]  is given by 

where 

(4 
Fig. 6-1 ( a )  Nonperiodic finite sequence x[n] ;  ( 6 )  periodic sequence formed by periodic extension of 

x h l .  
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Since xN, , [n]  = x [ n ]  for In1 I N, and also since x [ n ]  = 0 outside this interval, Eq. (6.22~) 
can be rewritten as 

Let us define X(R) as 

Then, from Eq. (6.22b) the Fourier coefficients c ,  can be expressed as 

Substituting Eq. (6.24) into Eq. (6.21), we have 

From Eq. (6.231, X(R) is periodic with period 27r and so is eJRn. Thus, the product 
X(R)e*'" will also be periodic with period 27r. As shown in Fig. 6-2, each term in the 
summation in Eq. (6.25) represents the area of a rectangle of height ~ ( k R , ) e ' ~ ~ 1 1 "  and 
width R,. As No + m, 0, = 27r/N0 becomes infinitesimal (R, + 0) and Eq. (6.25) passes 
to an integral. Furthermore, since the summation in Eq. (6.25) is over N,, consecutive 
intervals of width 0, = 27r/N,,, the total interval of integration will always have a width 
27r. Thus, as NO + a: and in view of Eq. (6.20), Eq. (6.25) becomes 

1 
x [ n ]  = - / ~ ( 0 )  ejRn d R  (6.26) 

27r 2 v  

Since X(R)e 'On is periodic with period 27r, the interval of integration in Eq. (6.26) can be 
taken as any interval of length 27r. 

Fig. 6-2 Graphical interpretation of Eq. (6.25).  
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B. Fourier Transform Pair: 

The function X(R) defined by Eq. (6.23) is called the Fourier transform of x[n], and 
Eq. (6.26) defines the inverse Fourier transform of X(R). Symbolically they are denoted by 

m 

X(R) = F{x[n] )  = x x[n] ePJRn (6.27) 
n =  - m  

and we say that x[n] and X(R) form a Fourier transform pair denoted by 

44 ++X(fl) (6.29) 
Equations (6.27) and (6.28) are the discrete-time counterparts of Eqs. (5.31) and (5.32). 

C. Fourier Spectra: 

The Fourier transform X(R) of x[n] is, in general, complex and can be expressed as 

As in continuous time, the Fourier transform X(R) of a nonperiodic sequence x[n] is the 
frequency-domain specification of x[n] and is referred to as the spectrum (or Fourier 
spectrum) of x[n]. The quantity IX(R)I is called the magnitude spectrum of x[n], and #d R ) 
is called the phase spectrum of x[n]. Furthermore, if x[n] is real, the amplitude spectrum 
IX(R)I is an even function and the phase spectrum 4((n) is an odd function of R. 

D. Convergence of X(R): 

Just as in the case of continuous time, the sufficient condition for the convergence of 
X(R) is that x[n] is absolutely summable, that is, 

m 

C Ix [n ]kw (6.31) 
n =  -oo 

E. Connection between the Fourier Transform and the z-Transform: 

Equation (6.27) defines the Fourier transform of x[n] as 
D5 

X(R) = z x[n] e-jnn 
n =  - m  

The z-transform of x[n], as defined in Eq. (4.3), is given by 
m 

X(Z)  = z x[n]z-" 
n -  - m  

Comparing Eqs. (6.32) and (6.331, we see that if the ROC of X(z) contains the unit circle, 
then the Fourier transform X(R) of x[n] equals X(z) evaluated on the unit circle, that is, 

~ ( a )  = ~ ( z ) l , = , , ~ ~  (6.34) 

Note that since the summation in Eq. (6.33) is denoted by X(z), then the summation 
in Eq. (6.32) may be denoted as X(ejn). Thus, in the remainder of this book, both X(R) 
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and X(ejn) mean the same thing whenever we connect the Fourier transform with the 
z-transform. Because the Fourier transform is the z-transform with z = ein, i t  should not 
be assumed automatically that the Fourier transform of a sequence x [ n ]  is the z-transform 
with z replaced by eiR. If x [ n ]  is absolutely summable, that is, if x [ n ]  satisfies condition 
(6.311, the Fourier transform of x [ n ]  can be obtained from the z-transform of x [ n ]  with 

= eifl since the ROC of X(z) will contain the unit circle; that is, leinJ = 1. This is not 

generally true of sequences which are not absolutely summable. The following examples 
illustrate the above statements. 

EXAMPLE 6.1. Consider the unit impulse sequence 6[n l .  
From Eq. (4.14) the z-transform of 6 [ n ]  is 

By definitions (6.27) and (1.45) the Fourier transform of 6 [ n ]  is 

Thus, the z-transform and the Fourier transform of 6 [ n ]  are the same. Note that 6 [ n ]  is absolutely 
summable and that the ROC of the z-transform of 6[n l  contains the unit circle. 

EXAMPLE 6.2. Consider the causal exponential sequence 

x [ n ]  = a n u [ n ]  a  real 

From Eq. (4 .9 )  the z-transform of x [ n ]  is given by 

Thus, X(ei") exists for la1 < 1 because the ROC of X ( z )  then contains the unit circle. That is, 

Next, by definition (6.27) and Eq. (1.91) the Fourier transform of x [ n ]  is 

Thus, comparing Eqs. (6.37) and (6.38), we have 

X ( R )  = X ( z ) l , = p  

Note that x [ n ]  is absolutely summable. 

EXAMPLE 6.3. Consider the unit step sequence u[nl .  
From Eq. (4.16) the z-transform of u[nl is 

The Fourier transform of u [ n ]  cannot be obtained from its z-transform because the ROC of the 
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z-transform of u[n] does not include the unit circle. Note that the unit step sequence u[n] is not 
absolutely summable. The Fourier transform of u[n] is given by (Prob. 6.28) 

6.4 PROPERTIES OF THE FOURIER TRANSFORM 

Basic properties of the Fourier transform are presented in the following. There are 
many similarities to and several differences from the continuous-time case. Many of these 
properties are also similar to those of the z-transform when the ROC of X (  z) includes the 
unit circle. 

A. Periodicity: 

As a consequence of Eq. (6.41), in the discrete-time case we have to consider values of R 
(radians) only over the range 0 I R < 27r or -7r I R < 7r, while in the continuous-time 
case we have to consider values of o (radians/second) over the entire range - m < o < m. 

B. Linearity: 

C. Time Shifting: 

D. Frequency Shifting: 

x * [ n ]  -X*(-R) 

where * denotes the complex conjugate. 

F. Time Reversal: 
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G. Time Scaling: 

In Sec. 5.4D the scaling property of a continuous-time Fourier transform is expressed 
as [Eq. (5.5211 

However, in the discrete-time case, x[an] is not a sequence if a is not an integer. On the 
other hand, if a is an integer, say a = 2, then x[2n] consists of only the even samples 
of x[n]. Thus, time scaling in discrete time takes on a form somewhat different from 
Eq. (6.47). 

Let m be a positive integer and define the sequence 

x[n/m] = x [ k ]  if n = km, k = integer 
i f n # k m  

Then we have 

Equation (6.49) is the discrete-time counterpart of Eq. (6.47). It states again the inverse 
relationship between time and frequency. That is, as the signal spreads in time (m > I), its 
Fourier transform is compressed (Prob. 6.22). Note that X(rnR) is periodic with period 
27r/m since X(R)  is periodic with period 27r. 

H. Duality: 

In Sec. 5.4F the duality property of a continuous-time Fourier transform is expressed 
as [Eq. (5.5411 

There is no discrete-time counterpart of this property. However, there is a duality between 
the discrete-time Fourier transform and the continuous-time Fourier series. Let 

From Eqs. (6.27) and (6.41) 

Since fl is a continuous variable, letting R = t and n = -k in Eq. (6.51), we have 
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Since X ( t )  is periodic with period To = 27r and the fundamental frequency oo = 27r/T0 = 1 ,  
Eq. (6.53) indicates that the Fourier series coefficients of ~ ( t )  will be x [ - k ] .  This duality 
relationship is denoted by 

~ ( t )  B c ,  = x [ - k ]  (6 .54)  

where FS denotes the Fourier series and c, are its Fourier coefficients. 

I. Differentiation in Frequency: 

J. Differencing: 

The sequence x [ n ]  - x [ n  - 11 is called the firsf difference sequence. Equation (6.56) is 
easily obtained from the linearity property (6.42) and the time-shifting property (6.43).  

K. Accumulation: 

Note that accumulation is the discrete-time counterpart of integration. The impulse term 
on the right-hand side of Eq. (6 .57)  reflects the dc or average value that can result from 
the accumulation. 

L. Convolution: 

As in the case of the z-transform, this convolution property plays an important role in the 
study of discrete-time LTI systems. 

M. Multiplication: 
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where @ denotes the periodic convolution defined by [Eq. (2.70)] 

The multiplication property (6.59) is the dual property of Eq. (6.58). 

N. Additional Properties: 

If x[n] is real, let 

where x,[n] and xo[n] are the even and odd components of x[n], respectively. Let 

x [n]  t, X ( n )  = A(R) + jB(R) = I X(R)leJe(n) (6.61) 

Then 

Equation (6.62) is the necessary and sufficient condition for x[n] to be real. From 
Eqs. (6.62) and (6.61) we have 

A( -R)  =A(R)  B ( - R )  = -B(R) (6.64a) 

Ix(-fl)I= Ix(R)I + a )  = - 9 ( ~ )  (6.646) 

From Eqs. ( 6 . 6 3 ~ ) ~  (6.636), and (6.64~) we see that if x[n] is real and even, then X(R) is 
real and even, while if x[n] is real and odd, X(R) is imaginary and odd. 

0. Parseval's Relations: 

Equation (6.66 ) is known as Parseual's identity (or Parseual's theorem) for the discrete-time 
Fourier transform. 

Table 6-1 contains a summary of the properties of the Fourier transform presented in 
this section. Some common sequences and their Fourier transforms are given in Table 6-2. 
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Table 6-1. Properties of the Fourier Transform 

Property Sequence Fourier transform 

Periodicity 

Linearity 

Time shifting 

Frequency shifting 

Conjugat ion 

Time reversal 

Time scaling 

Frequency differentiation 

First difference 

Accumulation 

Convolution 

Multiplication 

Real sequence 

Even component 

Odd component 

Parseval's relations 
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Table 6-2. Common Fourier Transform Pairs 

sin Wn 
,o<w<sr 

77 n 

6.5 THE FREQUENCY RESPONSE OF DISCRETE-TIME LTI SYSTEMS 

A. Frequency Response: 

In Sec. 2.6 we showed that the output y [ n ]  of a discrete-time LTI system equals the 
convolution of the input x [ n ]  with the impulse response h [ n ] ;  that is, 

Applying the convolution property (6.581, we obtain 
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where Y(R), X(R), and H(R) are the Fourier transforms of y [n] ,  x [ n ] ,  and h[n] ,  
respectively. From Eq. ( 6.68) we have 

Relationships represented by Eqs. (6.67) and (6.68) are depicted in Fig. 6-3. Let 

As in the continuous-time case, the function H(R) is called the frequency response of the 
system, I H(R)l the magnitude response of the system, and BH(R) the phase response of the 
system. 

Consider the complex exponential sequence 

6InI 

xfnl 

Then, setting z = ejRo in Eq. (4.1), we obtain 

which indicates that the complex exponential sequence ejRnn is an eigenfunction of the 
LTI system with corresponding eigenvalue H(Ro), as previously observed in Chap. 2 
(Sec. 2.8). Furthermore, by the linearity property (6.42), if the input x [ n ]  is periodic with 
the discrete Fourier series 

I 
X(W 

t 
Y(n)=X(R)H(n) 

Fig. 6-3 Relationships between inputs and outputs in an LTI discrete-time system. 

hlnl 
4 0 )  

then the corresponding output y [ n ]  is also periodic with the discrete Fourier series 

hlnl 
L - 

y[n]=x[n] * h[n] 

If x [ n ]  is not periodic, then from Eqs. (6.68) and (6.28) the corresponding output y [ n ]  can 
be expressed as 



302 FOURIER ANALYSIS OF DISCRETE-TIME SIGNALS AND SYSTEMS [CHAP. 6 

B. LTI Systems Characterized by Difference Equations: 

As discussed in Sec. 2.9, many discrete-time LTI systems of practical interest are 
described by linear constant-coefficient difference equations of the form 

N M 

C a k y [ n  - k ]  = C b,x[n - k ]  (6.76) 
k = O  k = O  

with M I  N. Taking the Fourier transform of both sides of Eq. (6.76) and using the 
linearity property (6.42) and the time-shifting property (6.43), we have 

N M 

C a, e-jkRY(R) = C bk e-Jkb'X 
k = O  k = O  

( a )  

or, equivalently, 
M 

The result (6.77) is the same as the 2-transform counterpart H(z )  = Y(z)/X(z) with 
z = eJ" [Eq. (4.4411; that is, 

C. Periodic Nature of the Frequency Response: 

From Eq. (6.41) we have 

H ( R )  = H ( n  + 27r) 

Thus, unlike the frequency response of continuous-time systems, that of all discrete-time 
LTI systems is periodic with period 27r. Therefore, we need observe the frequency 
response of a system only over the frequency range 0 I R R 27r or -7r I I R T .  

6.6 SYSTEM RESPONSE TO SAMPLED CONTINUOUS-TIME SINUSOIDS 

A. System Responses: 

We denote by y,[n], y,[n], and y[n] the system responses to cos Rn ,  sin Rn ,  and eJRn, 
respectively (Fig. 6-4). Since e ~ ~ ' "  = cos R n  + j sin Rn,  it follows from Eq. (6.72) and the 
linearity property of the system that 

y [n ]  = y,[n] + jy,[n] = H ( R )  eJRn 

~ , [ n ]  = Re{y[n]) = R ~ ( H ( R )  eJRn) 

y,[n] = I ~ { Y  [nl  ) = Im{H(R) 

Fig. 6-4 System responses to elnn, cos Rn, and sin Rn. 
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When a sinusoid cos R n  is obtained by sampling a continuous-time sinusoid cos w t  
with sampling interval T,, that is, 

cos R n  = cos w t = cos wT,n (6.80) 

all the results developed in this section apply if we substitute wT, for R :  

R = oT, (6.81) 

For a continuous-time sinusoid cos wt there is a unique waveform for every value of o in 
the range 0 to w. Increasing w results in a sinusoid of ever-increasing frequency. On  the 
other hand, the discrete-time sinusoid cos R n  has a unique waveform only for values of R 
in the range 0 to 27r because 

COS[(R + 27rm)nI = cos(Rn + 27rmn) = cos R n  m = integer (6.82) 

This range is further restricted by the fact that 

cos(7r f R ) n  = cos .rrn cos R n  T sin 7rn sin R n  

Therefore, 

Equation (6.84) shows that a sinusoid of frequency (7r + R )  has the same waveform as one 
with frequency (.rr - R). Therefore, a sinusoid with any value of R outside the range 0 to 
7r is identical to a sinusoid with R in the range 0 to 7r. Thus, we conclude that every 
discrete-time sinusoid with a frequency in the range 0 I R < .rr has a distinct waveform, 
and we need observe only the frequency response of a system over the frequency range 
O s R < 7 r .  

B. Sampling Rate: 

Let w, ( =  27rfM) be the highest frequency of the continuous-time sinusoid. Then 
from Eq. (6.81) the condition for a sampled discrete-time sinusoid to  have a unique 
waveform is 7r 

wMTs < 7 r +  Ts< - or  f ,>  2fM (6.85) 
W M  

where f, = l/T, is the sampling rate (or frequency). Equation (6.85) indicates that to 
process a continuous-time sinusoid by a discrete-time system, the sampling rate must not 
be less than twice the frequency (in hertz) of the sinusoid. This result is a special case of 
the sampling theorem we discussed in Prob. 5.59. 

6.7 SIMULATION 

Consider a continuous-time LTI system with input x ( t )  and output y(t). We wish to 
find a discrete-time LTI system with input x[n] and output y[n] such that 

if x [ n ]  =x(nT,)  then y [ n ]  = y(nT,) (6.86) 

where T,  is the sampling interval. 
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Let H,(s) and HJz) be the system functions of the continuous-time and discrete-time 
systems, respectively (Fig. 6-51. Let 

Then from Eqs. (3.1) and (4.1) we have 

y (t ) = H,( jw ) elw' Y [ n ]  = H ~ ( ~ J W ~ )  eJnwTs (6.88) 

Thus, the requirement y[n] = y(nTs) leads to the condition 

H,(jo) eJnwT, = Hd(ejwK) e~nwrs 

from which it follows that 

H,(jw) = Hd(ejwT1) 

In terms of the Fourier transform, Eq. (6.89) can be expressed as 

H A 4  = HdW) R = wTs (6.90) 

Note that the frequency response Hd(R) of the discrete-time system is a periodic function 
of w (with period 27r/Ts), but that the frequency response H,(o) of the continuous-time 
system is not. Therefore, Eq. (6.90) or Eq. (6.89) cannot, in general, be true for every w. If 
the input x(t) is band-limited [Eq. (5.9411, then it is possible, in principle, to satisfy 
Eq. (6.89) for every w in the frequency range (-rr/Ts,r/Ts) (Fig. 6-6). However, from 
Eqs. (5.85) and (6.771, we see that Hc(w) is a rational function of w, whereas Hd(R) is a 
rational function of eJn (R = wT,). Therefore, Eq. (6.89) is impossible to satisfy. However, 
there are methods for determining a discrete-time system so as to satisfy Eq. (6.89) with 
reasonable accuracy for every w in the band of the input (Probs. 6.43 to 6.47). 

Fig. 6-5 Digital simulation of analog systems. 

2n " n -- - - 0 - 2n - lo 
T, T, T, r, 

Fig. 6-6 
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6.8 THE DISCRETE FOURIER TRANSFORM 

In this section we introduce the technique known as the discrete Fourier transform 
(DFT) for finite-length sequences. It should be noted that the DFT should not be confused 
with the Fourier transform. 

A. Definition: 

Let x [ n ]  be a finite-length sequence of length N, that is, 

x [ n ]  = O  outside the range 0 I n I N - 1 

The DFT of x [ n ] ,  denoted as X [ k ] ,  is defined by 
N- l 

X [ k ]  = x[n]W,kn k = 0 , 1 ,  ..., N -  1 
n = O  

where WN is the Nth root of unity given by 

The inverse DFT (IDFT) is given by 

The DFT pair is denoted by 

x b l  - X [ k I  
Important features of the DFT are the following: 

1. There is a one-to-one correspondence between x [ n ]  and X [ k ] .  
2 .  There is an extremely fast algorithm, called the fast Fourier transform (FFT) for its 

calculation. 
3. The DFT is closely related to the discrete Fourier series and the Fourier transform. 
4. The DFT is the appropriate Fourier representation for digital computer realization 

because it is discrete and of finite length in both the time and frequency domains. 

Note that the choice of N in Eq. (6.92) is not fixed. If x [ n ]  has length N ,  < N, we want to 
assume that x [ n ]  has length N by simply adding ( N  - Nl) samples with a value of 0. This 
addition of dummy samples is known as zero padding. Then the resultant x [ n ]  is often 
referred to as an N-point sequence, and X [ k ]  defined in Eq. (6.92) is referred to as an 
N-point DFT. By a judicious choice of N, such as choosing it to be a power of 2, 
computational efficiencies can be gained. 

B. Relationship between the DET and the Discrete Fourier Series: 

Comparing Eqs. (6.94) and (6.92) with Eqs. (6.7) and (6.81, we see that X [ k ]  of finite 
sequence x [ n ]  can be interpreted as the coefficients c, in the discrete Fourier series 
representation of its periodic extension multiplied by the period N,, and NO = N. That is, 

X [ k ]  = Nc, (6.96) 

Actually, the two can be made identical by including the factor 1/N with the D R  
rather than with the IDFT. 
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C. Relationship between the DFT and the Fourier Transform: 

By definition (6.27) the Fourier transform of x [ n ]  defined by Eq. (6.91) can be 
expressed as 

N -  1 

X ( f l )  = x [ n ]  e-j"" (6.97) 
n = 0 

Comparing Eq. (6.97) with Eq. (6.92), we see that 

Thus, X [ k ]  corresponds to the sampled X(fl)  at the uniformly spaced frequencies 
f l  = k27r/N for integer k .  

D. Properties of the D m  

Because of the relationship (6.98) between the DFT and the Fourier transform, we 
would expect their properties to be quite similar, except that the DFT X [ k ]  is a function 
of a discrete variable while the Fourier transform X(R)  is a function of a continuous 
variable. Note that the DFT variables n and k  must be restricted to the range 0 I n, 
k  < N, the DFT shifts x [ n  - no]  or X [ k  - k , ]  imply x [ n  -no],, ,  or X [ k  - k,],,, ., 
where the modulo notation [m],,, means that 

for some integer i such that 

0 [ m I m o d ~  < N  (6.100) 
For example, if x [ n ]  = 6 [ n  - 31, then 

x [ n  - 4],,, = 6 [ n  - 7],, , ,  = S [ n  - 7  + 61 = 6 [ n  - 11 

The DFT shift is also known as a circular shift. Basic properties of the DFT are the 
following: 

2. Time ShifCing: 

3. Frequency Shifiing: 

4. Conjugation: 

' * I n ]  ~ ~ * [ - ~ l m o d N  
where * denotes the complex conjugate. 
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5. Time Reversal: 

6. Duality: 

7. Circular Convolution: 

where 

The convolution sum in Eq. (6.108) is known as the circular conuolution of x , [ n ]  and 
4 n I .  

8. Multiplication: 

where 

9. Additional Properties: 

When x [ n ]  is real, let 

where x,[n]  and xo[n]  are the even and odd components of x [ n ] ,  respectively. Let 

x [ n ]  - X [ k ]  = A [ k ]  + j B [ k ]  = IX[k] le ie[kl  

Then x [  - k I m ~ d ~  = X * [ k l  (6 .1  10) 

x e [ n ]  w R ~ { X  [ k ] )  = A [ k ]  (6.111a) 

x o [ n ]  - j  I m { X [ k ] )  = j B [ k ]  (6.111b) 

From Eq. (6.110) we have 

10. Parseval's Relation: 

Equation (6.113) is known as Parseual's identity (or Parseual's theorem) for the DFT. 
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Solved Problems 

DISCRETE FOURIER SERIES 

6.1. We call a set of sequences ( q k [ n ] )  orthogonal on an interval [ N , ,  N , ]  if any two signals 
W,[n] and q k [ n ]  in the set satisfy the condition 

where * denotes the complex conjugate and a # 0. Show that the set of complex 
exponential sequences 

is orthogonal on any interval of length N .  

From Eq. (1.90) we note that 

Applying Eq. (6.116), with a = eik(2"/N), we obtain 

since e'k(2"/N'N = e jk2" = 1 .  Since each of the complex exponentials in the summation in 
Eq. (6.117) is periodic with period N, Eq. (6.117) remains valid with a summation carried over 
any interval of length N. That is, 

C e i W n / N ) n ,  k = O , f  N , f  2 N ,  ... 
n = ( N )  

otherwise 

Now, using Eq. (6.118), we have 

where m, k < N. Equation (6.119) shows that the set ( e ~ ~ ( ~ " / ~ ) " :  k = 0.1 , .  . . , N - 1 )  is orthog- 
onal over any interval of length N. Equation (6.114) is the discrete-time counterpart of 
Eq. (5.95) introduced in Prob. 5.1. 
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6.2. Using the orthogonality condition Eq. (6.119), derive Eq. (6.8) for the Fourier 
coefficients. 

Replacing the summation variable k by m in Eq. (6.71, we have 

Using Eq. (6.115) with N = NO, Eq. (6.120) can be rewritten as 

Multiplying both sides of Eq. (6.121) by q t [ n ]  and summing over n  = 0 to (No - l), we obtain 

Interchanging the order of the summation and using Eq. (6.1191, we get 

Thus, 

6.3. Determine the Fourier coefficients for the periodic sequence x [ n ]  shown in Fig. 6-7. 

From Fig. 6-7 we see that x [ n ]  is the periodic extension of (0,1,2,3) with fundamental 
period No = 4. Thus, 

By Eq. (6.8) the discrete-time Fourier coefficients c, are 

Note that c, = c,-, = cT [Eq. (6.17)]. 
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- 4 - 3 - 2 - 1  0 1 2  3 4  5 6 7  

Fig. 6-7 

6.4. Consider the periodic sequence x [ n ]  shown in Fig. 6-8(a). Determine the Fourier 
coefficients c ,  and sketch the magnitude spectrum lc,(. 

From Fig. 6-8(a) we see that the fundamental period of x [ n ]  is N o =  10 and R,, = 

27r/N,, = ~ / 5 .  By  Eq. (6 .8 )  and using Eq. (1.90), we get 

The magnitude spectrum lckl is plotted in Fig. 6-8(b). 

(b)  
Fig. 6-8 
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6.5. Consider a sequence 

Sketch x[n]. 
Find the Fourier coefficients c,  of x[n]. 
The sequence x[n]  is sketched in Fig. 6-9(a). It is seen that x[n] is the periodic extension 
of the sequence {1,0,0, O }  with period No = 4. 

(b)  

Fig. 6-9 

From Eqs. (6 .7)  and (6.8)  and Fig. 6-9(a) we have 

and 

since x[ l ]  = x[2]  = x[3] = 0. The Fourier coefficients of x[n] are sketched in Fig. 6-9(b). 

6.6. Determine the discrete Fourier series representation for each of the following se- 
quences: 

7T 
( a )  x[nl = cos-n 

4 
7T T 

( b )  x[n]=cos-n+sin-n 
3 4 
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( a )  The fundamental period of x [ n ]  is No = 8, and Ro = 277/N0 = n / 4 .  Rather than using 
Eq. (6 .8 )  to evaluate the Fourier coefficients c,, we use Euler's formula and get 

Thus, the Fourier coefficients for x [ n ]  are c l  = f ,  c - ,  = c - , + , = c 7  = $, and all other 
c, = 0. Hence, the discrete Fourier series of x(n1 is 

( b )  From Prob. 1.16(i) the fundamental period of x [ n ]  is No = 24, and R, = 277/N0 = 77/12. 
Again by Euler's formula we have 

I I Thus, c3 = -j(4),c4 = $ ,c - ,  = c - ~ + ~ ~  =cZO = ? , c P 3  = c - ~ + ~ ~  =c2]  = I ( ? ) ,  and all other 
c, = 0. Hence, the discrete Fourier series of x [ n ]  is 

(c) From Prob. l.l6( j )  the fundamental period of x [ n ]  is No = 8, and Ro = 277/No = n / 4 .  
Again by Euler's formula we have 

I 1 Thus, c0 = f ,  c1  = a, c -  = c -  + n  = c7 = a ,  and all other c, = 0. Hence, the discrete 
Fourier series of x[nl  is 

6.7. Let x[n] be a real periodic sequence with fundamental period N, and Fourier 
coefficients ck = a k  + jb,, where a ,  and b, are both real. 

( a )  Show that a - , = a k  and b-,= -bk. 
(b)  Show that c,,,,, is real if No is even. 

(c)  Show that x [ n ]  can also be expressed as a discrete trigonometric Fourier series of 
the form 

(Nu- 1)/2 27r 
x [ n ]  = c o + 2  (a,coskfl,n -b,sinkfl,n) fl, = - (6.123) 

k =  1 No 

if No is odd or 
( N o  - 2)/2 

x[n]  = c, + ( -  1)'ch/, + 2 (a, cos kR,n - bk sin kf lon)  (6.124) 
k = l  

if N,, is even. 
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( a )  If x[nl  is real, then from Eq. (6 .8)  we have 

Thus, 

C d k  = a _ , + j b - ,  = ( a ,  + jbk )*  = a ,  

and we have 
a - , = a ,  and b - , = - b k  

( 6 )  If No is even, then from Eq. (6 .8)  

1 No-' 
= - C ( - l ) " x [ n ]  = real 

NO n = o  

If No is odd, then (No - 1) is even and we can write x [ n ]  as 

Now, from Eq. (6.17) 

Thus, 

(No- 1)/2 

= c, + 2 z ( a ,  cos kRon - bk sin kRon)  
k = l  

If No is even, we can write x[n]  as 
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(Nu-2)/2 
Then x [ n ]  = c0 + ( - I ) ~ C , ~ / ,  + x 2Re(ckejkRun) 

k = l  

(Nu-2) /2 
= c, + ( - l ) n c , v / 2  + 2 x (a ,  cos kf l , ,n  - b, sin k R o n )  

k  = 1 

6.8. Let x , [ n ]  and x , [ n ]  be periodic sequences with fundamental period No and their 
discrete Fourier series given by 

Show that the sequence x [ n ]  = x , [ n ] x , [ n ]  is periodic with the same fundamental 
period No and can be expressed as 

where ck is given by 

Now note that 

Thus, x [ n ]  is periodic with fundamental period No. Let 

1 Nu-' 1 No-' 

Then C k  = - C X [ n ] e - i k f M  = - z x l [ n ] x 2 [ n ]  e-',"on 
No .=o No n=o  

since 

and the term in parentheses is equal to ek-,.  
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6.9. Let x,[n] and x,[n] be the two periodic signals in Prob. 6.8. Show that 

Equation (6.127) is known as Parseval's relation for periodic sequences. 

From Eq. (6.126) we have 

1 N 0 - I  No-  1 

ck = - C x , [ n ] x 2 [ n ]  e-jknon = C d d k - m  
NO n = o  m =O 

Setting k = 0 in the above expression, we get 

6.10. (a) Verify Parseval's identity [Eq. (6.19)] for the discrete Fourier series, that is, 

(6) Using x [ n ]  in Prob. 6.3, verify Parseval's identity [Eq. (6.19)]. 

( a )  Let 

and 

1 N o - '  ] No-' 
Then d  - -  C X * [ n ~ e - ~ k ~ o n =  - C X [ n ] e ~ k R o n  (6.128) 

- NO n = O  NO n = o  

Equation (6.128) indicates that if the Fourier coefficients of x [ n ]  are c , ,  then the Fourier 
coefficients of x * [ n ]  are c?,. Setting x , [ n ]  = x [ n ]  and x 2 [ n ]  = x * [ n ]  in Eq. (6.1271, we 
have d k  = c k  and ek = c?,  (or e - ,  = c : )  and we obtain 

( b )  From Fig. 6-7 and the results from Prob. 6.3, we have 

and Parseval's identity is verified. 
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FOURIER TRANSFORM 

6.11. Find the Fourier transform of 

x [ n ]  = - a n u [ - n  - 11 a  real 

From Eq. (4.12) the z-transform of x[n] is given by 

1 
X ( z )  = 

I -az- '  
Izl< lal 

Thus, X(eJf') exists for la1 > 1 because the ROC of X( z)  then contains the unit circle. Thus, 

6.12. Find the Fourier transform of the rectangular pulse sequence (Fig. 6-10) 

x [ n ]  = u [ n ]  - u [ n  - N ]  

Using Eq. (1.90), the z-transform of x[nl is given by 

N -  1 1 - Z N  

X(Z)  = C zn = - 1-4 > 0 (6.131) 
n=O 1 - 2  

Thus, ~ ( e ' " )  exists because the ROC of X(z) includes the unit circle. Hence, 

6.13. Verify the time-shifting property (6.431, that is, 

- - 

By definition (6.27) 

1 0 .  . . . . 
... 

- F 

m 

F ( x [ n  - n,]) = C x[n - no] e-j"" 
n =  - m  

0 1 2 3  N -  1 n 

Fig. 6-10 



CHAP. 61 FOURIER ANALYSIS OF DISCRETE-TIME SIGNALS AND SYSTEMS 317 

By the change of variable m = n  - no,  we obtain 

Hence, 

6.14. (a) Find the Fourier transform X ( 0 )  of the rectangular pulse sequence shown in 
Fig. 6-1 l(a). 

(b)  

Fig. 6-1 1 

( b )  Plot X(R) for N, = 4 and N, = 8. 

( a )  From Fig. 6-11 we see that 

x [ n ]  = x , [ n  + N, ]  

where x , [ n ]  is shown in Fig. 6- l l (b) .  Setting N = 2 N 1  + 1 in Eq. (6.132), we have 

Now, from the time-shifting property (6.43) we obtain 

( b )  Setting N, = 4 in Eq. (6.133), we get 
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which is plotted in Fig. 6-12(a). Similarly. for N ,  = 8 we get 

which is plotted in Fig. 6.12(b). 

(6)  
Fig. 6-12 

6.15. ( a )  Find the inverse Fourier transform x[n] of the rectangular pulse spectrum X ( n )  
defined by [Fig. 6-13(a)] 

( b )  Plot x[n] for W = r / 4 .  

I xcn) 

.tl n I 
I 
4 f )  

a 0 

a 0 

d l -  w w t A 

1' - 4 - 3 - 2 - 1 0  1 2  3 4 1 lo r r  - 
(6)  

Fig. 6-13 
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( a )  From Eq. (6.28) 
1 IW 

sin Wn 
x [ n ]  = - IT X ( R )  dfi  = - elnn d o  = - 

2 7  -, 2 7  - w  r n  

Thus, we obtain 

sin Wn - x ( n )  = 
IRl s w 

7 n  W C I ~ I S T  

( b )  The sequence x[n] is plotted in Fig. 6-13(b) for W = 7 / 4 .  

6.16. Verify the frequency-shifting property (6.44,  that is, 

eJnonx[n] tt X(n - 0,) 

By Eq. (6.27) 
m 

~ ( ~ j f l t ~ ~ [ ~ ] )  = C e ~ f l ~ " X [ n ]  e -~f l"  
,,= - m  

m 

= C x [ n ]  e - ~ ( f l - f l t ~ ) n  = 
,,= -m 

X(fl -a , )  
Hence, 

e ~ ~ o " x [ n ]  - X ( R  - a,) 

6.17. Find the inverse Fourier transform x [ n ]  of 

x(n) = 2 ~ q n  - no) WI, lfiol 5 

From Eqs. (6.28) and (1.22) we have 

Thus, we have 

ejnon - 2 r S ( R  - R, )  

6.18. Find the Fourier transform of 

x [ n ]  = 1 

Setting R ,  = 0 in Eq. (6.1351, we get 

x [ n ]  = 1 o 2 n S ( R )  

Equation (6.136) is depicted in Fig. 6-14. 

all n 

In1 I 

Fig. 6-14 A constant sequence and its Fourier transform. 
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6.19. Find the Fourier transform of the sinusoidal sequence 

x [ n ]  = cos R o n  lflolS 

From Euler's formula we have 

cos Ron = ; (e in~"  + e-' IJ n,  

Thus, using Eq. (6.135) and the linearity property (6.42), we get 

X ( R )  = T [ S ( ~  - 0 , )  + 6(R  + a , ) ]  IRI, Ia0I 5 

which is illustrated in Fig. 6-15. Thus, 

cos Ron - a [ 6 ( R  - R o )  + 6 ( R +  a , ) ]  Ia l ,  IRol r T (6.137)  

Fig. 6-15 A cosine sequence and its Fourier transform. 

6.20. Verify the conjugation property (6.45) ,  that is, 

x * [ n ]  -X*(-R) 
From Eq. (6.27) 

m 

. F ( x * [ n ] )  = C x * [ n ]  e-inn = 
n = - m  n =  - m  

Hence, 

x * [ n ]  -X*( -0) 

6.21. Verify the time-scaling property (6.491, that is, 

From Eq. (6.48) 

x [ n / m ]  = x [ k ]  if n  = km, k = integer 
i f n z k m  

Then, by Eq. (6.27) 
m 

.F(-qrn)b1) = C ~(,)bl e-jnn ,,= -m 
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Changing the variable n = km on the right-hand side of the above expression, we obtain 

Hence, 

6.22. Consider the sequence x [ n ]  defined by 

I n 1 2  ~ [ n ]  = 
otherwise 

(a) Sketch x [ n ]  and its Fourier transform X(R) .  
( b )  Sketch the time-scaled sequence x ( , j n ]  and its Fourier transform Xo,(R). 
( c )  Sketch the time-scaled sequence ~ ( ~ j n ]  and its Fourier transform Xo,(R). 
(a) Setting N ,  = 2 in Eq. (6.1331, we have 

The sequence x [ n ]  and its Fourier transform X ( 0 )  are sketched in Fig. 6-16(n). 

Fig. 6-16 
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From Eqs. (6.49) and (6.138) we have 

The time-scaled sequence xo,[n]  and its Fourier transform Xo,(R) are sketched in Fig. 
6-16(b). 
In a similar manner we get 

The time-scaled sequence x(, , [n]  and its Fourier transform 
6 - 1 6 ( ~ ) .  

6.23. Verify the differentiation in frequency property (6.55), that 

X,,,(R) are sketched in Fig. 

is, 

From definition (6.27) 

Differentiating both sides of the above expression with respect to R and interchanging the 
order of differentiation and 

Multiplying both sides by j, 

summation, we obtain 

we see that 

Hence, 

6.24. Verify the convolution theorem (6.581, that is, 

x , [ n l *  x 2 b I  -X,(~)x,(n) 
By definitions (2.35) and (6.27), we have 

F { x , [ n ]  * x , [ n ] )  = z ( z x , [ k ] x , [ n  - k ] )  e-j"" 
n -  - m  k =  -m 

Changing the order of summation, we get 
m / m 
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By the time-shifting property Eq. (6.43) 

Thus, we have 
m  

. F { x l [ n ]  * x 2 [ n  1) = x , [ k ]  e - j n k X 2 ( f l )  
k =  - m  

6.25. Using the convolution theorem (6.58), find the inverse Fourier transform x [ n ]  of 

From Eq. (6.37) we have 
1 

anu[nI cr - ae-jn la1 < 1 

Now 

Thus, by the convolution theorem Eq. (6.58) we get 

Hence, 

6.26. Verify the multiplication property (6.59), that is, 

Let x [ n ]  = x l [ n ] x 2 [ n ] .  Then by definition (6.27) 

By Eq. (6.28) 
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Then 

Interchanging the order of summation and integration, we get 

1  w 

X )  = ( 0  ( 1 x , [ n ]  e'j("-@" 

n =  -00 

Hence, 

6.27. Verify the properties (6.62), (6 .63~1,  and (6.63b); that is, if x [ n ]  is real and 

x [ n ]  = x , [ n ]  + x o [ n ]  + + X ( f l )  = A ( R )  + jB(R) (6.140) 

where x , [ n ]  and x o [ n ]  are the even and odd components of x [ n ] ,  respectively, then 

X ( - R )  = X * ( R )  

x , [ n ]  ++ Re{X(R)}  = A(i2) 

x , [ n ]  ++ j Im{X(i2)} = jB( f l )  

If x [ n ]  is real, then x * [ n ]  = x [ n ] ,  and by Eq. (6.45) we have 

x * [ n ]  -X*(  - R )  

from which we get 

x ( n )  = x * (  -n )  or x( -0 )  = x * ( n )  

Next, using Eq. (6.46) and Eqs. (1.2) and (1.3), we have 

X [  - n ]  = x , [ n ]  - x , [ n ]  c-, X( -0 )  = X * ( R )  = A ( R )  - jB(R) (6.141) 

Adding (subtracting) Eq. (6.141) to (from) Eq. (6.1401, we obtain 

x , [ n ]  - A ( R )  = R e ( X ( R ) }  

x , [ n ]  H jB( 0 )  = j Im{ X ( R ) )  

6.28. Show that 

Let 

44 + + X ( R >  
Now, note that 

s [ n ]  = u [ n ]  - u [ n  - 11 

Taking the Fourier transform of both sides of the above expression and by Eqs. (6.36) and 
(6.431, we have 
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Noting that (1 - e-jn) = 0 for R  = 0, X ( R )  must be of the form 

where A is a constant. To determine A we proceed as follows. From Eq. (1.5) the even 
component of u[nl is given by 

u, [n ]  = $ + f 6 [ n ]  

Then the odd component of u[n]  is given by 

u o [ n ]  = u [ n ]  - u , [n ]  = u [ n ]  - f - $ [ n ]  

1 1 
and y { u o [ n l ]  = A  + - e-jn - a S ( R )  - - 

2 
From Eq. (6.63b) the Fourier transform of an odd real sequence must be purely imaginary. 
Thus, we must have A = a ,  and 

6.29. Verify the accumulation property (6.571, that is, 

From Eq. (2.132) 

Thus, by the convolution theorem (6.58) and Eq. (6.142) we get 

6.30. Using the accumulation property (6.57) and Eq. (1.501, find the Fourier transform of 
4 n I .  

From Eq. (1.50) 

Now, from Eq. (6.36) we have 

s[n] H 1 

Setting x [ k l =  6 [ k ]  in Eq. (6.571, we have 

x [ n ]  = 6 [ n ]  H X ( R )  = 1 and X(0) = 1 
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and 

FREQUENCY RESPONSE 

6.31. A causal discrete-time LTI system is described by 

y[n] - +y[n - 11 + $y[n - 21 = x [ n ]  (6.143) 

where x[n] and y[n] are the input and output of the system, respectively (Prob. 4.32). 

( a )  Determine the frequency response H ( n )  of the system. 
( b )  Find the impulse response h[n] of the system. 

( a )  Taking the Fourier transform of Eq. (6.1431, we obtain 

Y ( R )  - i e - ' " ~ ( f l )  + ;e-j2'y ( a )  = X ( R )  

or 

(1  - i e - i f l  + Le - j  2 n ) Y ( R )  = X ( R )  

Thus, 

( 6 )  Using partial-fraction expansions, we have 

1 - - 2 - 1 
H ( R )  = ( 1  - - I 1 - Ie- in  1 - Le-in 

2 

Taking the inverse Fourier transform of H(fl ) ,  we obtain 

h [ n ]  = [ 2 ( i l n  - ( f ) " ] u [ n ]  

which is the same result obtained in Prob. 4.32(6). 

6.32. Consider a discrete-time LTI system described by 

y[n] - ;y[n - 11 = x [ n ]  + ix[n - 11 

( a )  Determine the frequency response H ( n )  of the system. 
( b )  Find the impulse response h[n] of the system. 
( c )  Determine its response y[n] to the input 

iT 
~ [ n ]  = cos-n 

2 

( a )  Taking the Fourier transform of Eq. (6.1441, we obtain 

Y ( R )  - i e - j n Y ( R )  = X ( R )  + ; e - j n x ( R )  
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Thus, 

Taking the inverse Fourier transform of H(R), we obtain 

(c) From Eq.(6.137) 

Then 

Taking the inverse Fourier transform of Y(R) and using Eq. (6.1351, we get 

6.33. Consider a discrete-time LTI system with impulse response 

Find the output y[n] if the input x [ n ]  is a periodic sequence with fundamental period 
No = 5 as shown in Fig. 6-17. 

From Eq. (6.134) we have 

Since R, = 27r/NO = 2 ~ / 5  and the filter passes only frequencies in the range lRl I 7r/4, only 
the dc term is passed through. From Fig. 6-17 and Eq. (6.11) 
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- 2 - 1 0  1 2  3 4  5 n 

Fig. 6-17 

Thus, the output y[nl is given by 

~ [ n l  = 5 all n  

634. Consider the discrete-time LTI system shown in Fig. 6-18. 

(a) Find the frequency response H ( n )  of the system. 
( b )  Find the impulse response h [ n ]  of the system. 
( c )  Sketch the magnitude response IH(n)I and the phase response NR) .  
( d )  Find the 3-dB bandwidth of the system. 

(a) From Fig. 6-18 we have 

y [ n ]  = x [ n ]  + x [ n  - 11 (6.145) 

Taking the Fourier transform of Eq. (6.145) and by Eq. (6.77), we have 

( b )  By the definition of h[nl [Eq. (2.3011 and Eq. (6.145) we obtain 

h [ n ]  = 6 [ n ]  + 6 [ n  - 11 

h [ n ]  = 
O s n s l  
otherwise 

( c )  From Eq. (6.146) 

xlnl 

Fig. 6-18 



CHAP. 61 FOURIER ANALYSIS OF DISCRETE-TIME SIGNALS AND SYSTEMS 

R 
and 9 ( ~ ) =  -- 

2 
IRI I T 

which are sketched in Fig. 6-19. 

Fig. 6-19 

( d l  Let R, ,, be the 3-dB bandwidth of the system. Then by definition (Sec. 5.7) 

we obtain 

1 'lT 
and i13dB = 

We see that the system is a discrete-time wideband low-pass finite impulse response 
(FIR) filter (Sec. 2 . 9 0 .  

6.35. Consider the discrete-time LTI system shown in Fig. 6-20. where a is a constant and 

Fig. 6-20 
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( a )  Find the frequency response H(S1) of the system. 

( b )  Find the impulse response h [ n ]  of the system. 

( c )  Sketch the magnitude response ( H ( a ) (  of the system for a  = 0.9 and a  = 0.5. 

( a )  From Fig. 6-20 we have 

y [ n ]  - ay[n - 1 1  = x [ n ]  (6.147) 

Taking the Fourier transform of Eq. (6.147) and by Eq. (6.771, we have 

( b )  Using Eq. (6.371, we obtain 

h [ n ]  = anu[n]  

(c) From Eq. (6.148) 

and 

which is sketched in Fig. 6-21 for a = 0.9 and a = 0.5. 
We see that the system is a discrete-time low-pass infinite impulse response (IIR) 

filter (Sec. 2 . 9 0  

n 
- 

-TI - - o T ?r n 
2 2 

Fig. 6-21 

6.36. Let h L p F [ n ]  be the impulse response of a discrete-time 10~4-pass filter with frequency 
response H L p F ( R ) .  Show that a discrete-time filter whose impulse response h [ n ]  is 
given by 

h [ n l  = ( -  l ) " h L P F [ n l  

is a high-pass filter with the frequency response 

H ( S 1 )  = H L P F ( a  T) 
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Since - 1 = el", we can write 

h [ n ]  = ( - l ) " h L P F [ n ]  = eJ""hLPF[n] ( 6.152) 

Taking the Fourier transform of Eq. (6.152) and using the frequency-shifting property (6.44),  
we obtain 

H ( R )  = H L P F ( R - ~ )  
which represents the frequency response of a high-pass filter. This is illustrated in Fig. 6-22. 

-n -a, 0 R, 7r R -n -7r + -a, 0 n-R, n R 

Fig. 6-22 Transformation of a low-pass filter to a high-pass filter. 

6.37. Show that if a discrete-time low-pass filter is described by the difference equation 

then the discrete-time filter described by 

is a high-pass filter. 

Taking the Fourier transform of Eq. (6.153), we obtain the frequency response H L p F ( R )  of 
the low-pass filter as 

M 

If we replace R by ( R  - a )  in Eq. (6.155), then we have 

which corresponds to the difference equation 
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6.38. Convert the discrete-time low-pass filter shown in Fig. 6-18 (Prob. 6.34) to a high-pass 
filter. 

From Prob. 6.34 the discrete-time low-pass filter shown in Fig. 6-18 is described by [Eq. 
( 6.145 )I 

Using Eq. (6.154), the converted high-pass filter is described by 

which leads to the circuit diagram in Fig. 6-23. Taking the Fourier transform of Eq. (6.157) and 
by Eq. (6.77 ), we have 

From Eq. (6.158) 

and 

which are sketched in Fig. 6-24. We see that the system is a discrete-time high-pass FIR filter. 

Fig. 6-23 

6.39. The system function H(z)  of a causal discrete-time LTI system is given by 

where a is real and la1 < 1. Find the value of b so that the frequency response H(R)  
of the system satisfies the condition 

IH(n)l= 1 all R (6.160) 

Such a system is called an all-pass filter. 

By Eq. (6.34) the frequency response of the system is 
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Fig. 6-24 

Then, by Eq. (6.160) 

which leads to 

Jb + e-]'I= 11 - ae-jnl 

or Ib+cosn - j s inRI=I l  - acosR+jas inRl  

or 1 + b 2 +  2 b c o s R =  1 + a 2 -  2acosO (6.162) 

and we see that if b  = -a,  Eq. (6.162) holds for all R and Eq. (6.160) is satisfied. 

6.40. Let h [ n ]  be the impulse response of an FIR filter so that 

h [ n ]  = 0 n < O , n r N  

Assume that h [ n ]  is real and let the frequency response H ( R )  be expressed as 

H(I2)  = 1 H ( f l ) ) e ~ ~ ( ~ )  

( a )  Find the phase response 8 ( R )  when h [ n ]  satisfies the condition [Fig. 6-25(a)] 

h [ n ]  = h [ N -  1 - n ]  (6 .163)  

( b )  Find the phase response B(R)  when h [ n ]  satisfies the condition [Fig. 6-25(b)] 

h [ n ]  = - h [ N - 1  - n ]  (6 .164)  
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N even 

N -  I 
n 

I 
I 
I a N odd 
I 
I 
I - 

w - 
0 

b 
N n 

t 

Fig. 6-25 

( a )  Taking the Fourier transform of Eq. (6.163) and using Eqs. (6.431, (6.461, and (6.62). we 
obtain 

H ( R )  = H * ( R )  e-j(N-')R 

or IH(f)) le1flf l )  = ) H ( n ) ( e - i o ( ~ ~ e - ~ ( N - I ) n  

Thus, 

e ( n )  = - e ( n )  - ( N -  i ) n  

and e ( n )  = - + ( N  - 1 ) ~  

which indicates that the phase response is linear. 

( b )  Similarly, taking the Fourier transform of Eq. (6.164,  we get 

~ ( n )  = - H * ( R )  e - ~ ( " - ' ) f l  

or I H ( f l ) l e i 0 ( n ) ,  IH(n)(e~ne-l@(fl)e-~(N-l)fl 

Thus, 

e(n)  = T - q n )  - ( N - i p  

and 

which indicates that the phase response is also linear. 
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6.41. Consider a three-point moving-average discrete-time filter described by the difference 
equation 

( a )  Find and sketch the impulse response h [ n ]  of the filter. 
( b )  Find the frequency response H(IR) of the filter. 

(c) Sketch the magnitude response IH(IR)I and the phase response 8(IR) of the filter. 

(a) By the definition of h[n] [Eq. (2.30)] we have 

O s n s 2  
h[n] = 

otherwise 

which is sketched in Fig. 6-26(a). Note that h[n] satisfies the condition (6.163) with 
N = 3 .  

( b )  Taking the Fourier transform of Eq. (6.168), we have 

Fig. 6-26 
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By Eq. (1.90),  with a = e-jR, we get 

1 1 - e - i 3 f i  1 e - i 3 f i / 2 ( e j 3 R / 2  - ,  - j 3 R / 2  

H ( R )  = - = - 1 
3 ~ - ~ - j n  3 e - i R / 2 ( e j R / 2 - e - i ~ / 2  ) 

where 

and 
when H r ( R )  > 0 e(n) = 
when H r ( R )  < 0 

which are sketched in Fig. 6-26(b). We see that the system is a low-pass FIR filter with 
linear phase. 

6.42. Consider a causal discrete-time FIR filter described by the impulse response 

h [ n ]  = {2,2, - 2, - 2) 

( a )  Sketch the impulse response h [ n ]  of the filter. 
( b )  Find the frequency response H ( R )  of the filter. 
(c) Sketch the magnitude response I H(R)I and the phase response 8 ( R )  of the filter. 
( a )  The impulse response h [ n ]  is sketched in Fig. 6-27(a). Note that h [ n ]  satisfies the 

condition (6.164) with N = 4. 

( b )  By definition (6 .27)  

where 

IH(R)l= IHr(R)l = sln - + sin - I ( 1  ("z")i 

which are sketched in Fig. 6-27(b). We see that the system is a bandpass FIR filter with 
linear phase. 
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Fig. 6-27 

SIMULATION 

6.43. Consider the RC low-pass filter shown in Fig. 6-28(a) with RC = 1 

Construct a discrete-time filter such that 

h d [ n ]  = h c ( t ) l ,  = n ~ ,  = hc(nTS)  (6.1 72) 

where h c ( t )  is the impulse response of the RC filter, h,[n] is the impulse 
response of the discrete-time filter, and T, is a positive number to be chosen as 
part of the design procedures. 
Plot the magnitude response I H , ( o ) )  of the RC filter and the magnitude response 
( H J w T J  of the discrete-time filter for T, = 1 and T, = 0.1. 

The system function H,(s) of the RC filter is given by (Prob. 3.23) 

1 
H J s )  = - 

s +  1 

and the impulse response h$) is 

h c ( t )  = e - ' u ( t )  

By Eq. (6.172) the corresponding h,[nl is given by 

h , [ n ]  = e - n c u [ n ]  = (e-")"u[d 
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(b) 

Fig. 6-28 Simulation of an RC filter by the impulse invariance method. 

Then, taking the z-transform of Eq. (6.175), the system function Hd(z) of the discrete- 
time filter is given by 

1 
= , - e - T s z - ,  

from which we obtain the difference equation describing the discrete-time filter as 

y [ n ]  - e -Tsy [n  - 1) = x [ n ]  (6.176) 

from which the discrete-time filter that simulates the RC filter is shown in Fig. 6-28(b). 

(b) By Eq. (5.40) 

Then 

By Eqs. (6.34) and (6.81) 

From Eq. (6.149) 
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From T, = 1, 

For T, = 0.1, 

The magnitude response IHc(w)l of the RC filter and the magnitude response IH,(wq)l 
of the discrete-time filter for T, = 1 and T, = 0.1 are plotted in Fig. 6-29. Note that the 
plots are scaled such that the magnitudes at w = 0 are normalized to 1. 

The method utilized in this problem to construct a discrete-time system to simulate 
the continuous-time system is known as the impulse-inuariance method. 

0 5 10 15 

Fig. 6-29 

6.44. By applying the impulse-invariance method, determine the frequency response H d ( f l )  
of the discrete-time system to simulate the continuous-time LTI system with the 
system function 

Using the partial-fraction expansion, we have 

Thus, by Table 3-1 the impulse response of the continuous-time system is 

h c ( t )  = ( e - t  - e - " ) u ( t )  (6.177) 

Let hd[nl be the impulse response of the discrete-time system. Then, by Eq. (6.177) 

h d [ n ]  = h,(nT,)  = (e-"'5 - e-'"'j ) 4 n ]  
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and the system function of the discrete-time system is given by 

Thus, the frequency response H d ( f l )  of the discrete-time system is 

1 - 1 
H d ( f l )  = H d ( z ) l , , , , ~ ~  = 1 - e-nTs e - ~ n  1 - e - 2 n ~ ,  ,-in (6 .179)  

Note that if the system function of a continuous-time LTI system is given by 

then the impulse-invariance method yields the corresponding discrete-time system with the 
system function H,( z given by 

6.45. A differentiator is a continuous-time LTI system with the system function [Eq. (3.2011 

A discrete-time LTI system is constructed by replacing s in H c ( s )  by the following 
transformation known as the bilinear transformation: 

to simulate the differentiator. Again T, in Eq. (6 .183)  is a positive number to be 
chosen as part of the design procedure. 

( a )  Draw a diagram for the discrete-time system. 
( b )  Find the frequency response H d ( f l )  of the discrete-time system and plot its 

magnitude and phase responses. 

( a )  Let H,(z )  be the system function of the discrete-time system. Then, from Eqs. (6.182) 
and (6.183) we have 

Writing Hd( z )  as 

then, from Probs. (6.35) and (6.38) the discrete-time system can be constructed as a 
cascade connection of two systems as shown in Fig. 6-3Ma). From Fig. 6-3Ma) it is seen 
that we can replace two unit-delay elements by one unit-delay element as shown in Fig. 
6-30( 6). 
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(b) 

Fig. 6-30 Simulation of a differentiator. 

( b )  By Eq. (6.184) the frequency response Hd(R) of the discrete-time system is given by 

Note that when R -C 1, we have 

if R = oT, (Fig. 6-31). 

2 R R  
Hd(R) = j-tan- = j- = jw 

T, 2 Ts 

Fig. 631 
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6.46. Consider designing a discrete-time LTI system with system function H J z )  obtained by 
applying the bilinear transformation to a continuous-time LTI system with rational 
system function H,(s).  That is, 

Show that a stable, causal continuous-time system will always lead to a stable, causal 
discrete-time system. 

Consider the bilinear transformation of Eq. (6.183) 

Solving Eq. (6.188) for z, we obtain 

Setting s = jw in Eq. (6.1891, we get 

Thus, we see that the jw-axis of the s-plane is transformed into the unit circle of the z-plane. 
Let 

z =re'" and s = a  + jo 
Then from Eq. (6.188) 

r 2 -  1 2r  sin $2 

1 + r 2 + 2 r c o s R  + ' 1 + r 2 + 2 r c o s ~  

Hence, 

2 2 r  sin R 
w = -  

T, 1 + r 2 + 2 r c o s R  

From Eq. (6.191a) we see that if r < 1, then a < 0, and if r > 1, then cr > 0. Consequently, the 
left-hand plane (LHP) in s maps into the inside of the unit circle in the z-plane, and the 
right-hand plane (RHP) in s maps into the outside of the unit circle (Fig. 6-32). Thus, we 
conclude that a stable, causal continuous-time system will lead to a stable, causal discrete-time 
system with a bilinear transformation (see Sec. 3.6B and Sec. 4.6B). When r = 1, then o = 0 
and 

2 sin 0 
w = -  

2 R 
= -tan- 

T, I + cos R T, 2 
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s-plane 

I U ~ I  circle 

z-plane 

Fig. 6-32 Bilinear transformation. 

From Eq. (6.193) we see that the entire range -a, < w <a, is mapped only into the range 
-Trsn I T .  

6.47. Consider the low-pass RC filter in Fig. 6-28(a). Design a low-pass discrete-time filter 
by the bilinear transformation method such that its 3-dB bandwidth is ~ / 4 .  

Using Eq. (6.192), R, ,, = 7r/4 corresponds to 

2 R,,, 2 7r 0.828 
w,,, = -tan- = -tan- = - 

Ts 2 Ts 8 Ts 

From Prob. 5.55(a), w ,  ,, = l / R C .  Thus, the system function H,(s) of the RC filter is given by 

Let H J z )  be the system function of the desired discrete-time filter. Applying the bilinear 
transformation (6.183) to Eq. (6.1951, we get 

from which the system in Fig. 6-33 results. The frequency response of the discrete-time filter is 

At R = 0, Hd(0) = 1 ,  and at R = ~ / 4 ,  J H d ( r / 4 ) (  = 0.707 = I /  fi, which is the desired re- 
sponse. 
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0.414 

Fig. 6-33 Simulation of an RC filter by the bilinear transformation method. 

6.48. Let h [ n ]  denote the impulse response of a desired IIR filter with frequency response 
H(R)  and let h , [n ]  denote the impulse response of an FIR filter of length N with 
frequency response H,(R). Show that when 

h o [ n ]  = (:["I O s n s N - 1  
(6.198) 

otherwise 

the mean-square error e 2  defined by 

is minimized. 

By definition (6.27) 

Let 

ffi m  

H ( R )  = C h[n]e-J'" and H , ( R ) =  z h o [ n ] e - J R n  
n = -m n -  - m  

where e [ n ]  = h [ n ]  - h, [n] .  By Parseval's theorem (6.66) we have 

The last two terms in Eq. (6.201) are two positive constants. Thus, E' is minimized when 

that is, 

Note that Eq. (6.198) can be expressed as 

where w [ n ]  is known as a rectangular window function given by 

O s n s N - 1  w [ n ]  = 
otherwise 
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DISCRETE FOURIER TRANSFORM 

6.49. Find the N-point DFT of the following sequences x [ n ] :  

( a )  From definitions (6.92) and (1.45), we have 

Figure 6-34 shows x [ n ]  and its N-point DFT X [ k ] .  

n 

Fig. 6-34 

( b )  Again from definitions (6.92) and (1.44) and using Eq. (1.90), we obtain 

Figure 6-35 shows x [ n ]  and its N-point DFT X [ k ] .  

Fig. 6-35 
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6.50. Consider two sequences x [ n ]  and h [ n ]  of length 4 given by 

(a>  Calculate y [ n ]  = x [ n ]  8 h [ n ]  by doing the circular convolution directly. 
( b )  Calculate y [ n ]  by DFT. 

( a )  The sequences x [ n ]  and h [ n ]  can be expressed as 

I 1 1  x [ n ]  = { l , O , -  1 , O )  and h [ n ]  = ( l , ~ , ~ , ~ )  

By Eq. (6.108) 

The sequences x [ i ]  and h[n  - iImod4 for n = 0 , 1 , 2 , 3  are plotted in Fig. 6-36(a). Thus, by 
Eq. (6.108) we get 

which is plotted in Fig. 6-36(b). 
( b )  By Eq. (6 .92)  

Then by Eq. (6 .107)  the DFT of y [ n ]  is 

Y [ k ]  = X [ k ] H [ k ]  = ( 1  - w,Zk)( l  + i~qk + ;wqZk + twak) 
- - 1 + i w k  - l w 2 k -  1 ~ 3 k  - L w 4 k  - L w 5 k  

2 4  4 4  8 4  4 4  $ 4  

Since W:k = (w:)~  = l k  and wdjk = W ( 4 + ' ) k  4 = wqk, we obtain 

y [ k ] = $ + $ ~ q k - f ~ : ~ - i w ~ ~ ~  k = 0 , 1 , 2 , 3  

Thus, by the definition of DFT [Eq. (6.9211 we get 
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6.51. Consider the finite-length complex exponential sequence 

O s n s N - 1  ~ [ n ]  = 
otherwise 

( a )  Find the Fourier transform X(fl) of x[n]. 
( b )  Find the N-point DFT X[k] of x[n]. 
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( a )  From Eq. (6.27)and usingEq.(1.90), we have 

- , j (R -RuXN-  I)/Z 
sin [( R - R,) ~ / 2 ]  

- 
sin[(R - R , ) / 2 ]  

( b )  Note from Eq. (6.98) that 

we obtain 

6.52. Show that if x[n]  is real, then its DFT X [ k ]  satisfies the relation 

where * denotes the complex conjugate. 

From Eq. (6.92) 

Hence, if x [ n ]  is real, then x * [ n ]  = x [ n ]  and 

6.53. Show that 

where * denotes the complex conjugate and 

X [ k ]  = D F T { x [ n ] )  

We can write Eq. (6.94) as 
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Noting that the term in brackets in the last term is the DFT of X * [ k ] ,  we get 

which shows that the same algorithm used to evaluate the DFT can be used to evaluate the 
IDFT. 

6.54. The  DFT definition in Eq. (6.92) can be expressed in a matrix operation form as 

X = W N x  (6.206) 

where 

x =  

The N x N matrix WN is known as the DFT matrix. Note that WN is symmetric; that is, 
W z  = WN, where W: is the transpose of WN. 

(a) Show that 

where W; ' is the inverse of WN and W,* is the complex conjugate of WN. 
(6) Find W, and W;' explicitly. 

( a )  If we assume that the inverse of W, exists, then multiplying both sides of Eq. (6.206) by 
W i  ', we obtain 

which is just an expression for the IDFT. The IDFT as given by Eq. (6.94) can be 
expressed in matrix form as 

Comparing Eq. (6.210) with Eq. (6.2091, we conclude that 
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( b )  Let Wn+, , ,+ ,  denote the entry in the (n  + 1)st row and (k + 1)st column of the W4 
matrix. Then, from Eq. (6.207) 

and we have 

6.55. ( a )  Find the DFT X [ k ]  of x [ n ]  = (0 ,1 ,2 ,3) .  

( b )  Find the IDFT x [ n ]  from X [ k ]  obtained in part (a). 

( a )  Using Eqs. (6.206) and (6.212), the DFT XIk] of x[n] is given by 

( b )  Using Eqs. (6.209) and (6.212), the IDFT x[n] of X [ k ]  is given by 

1 1 1 1 6 

1 - 1 = - 
1 - 1 1 - 1 4 

1 -j - 1 j - 2 - j 2  - 

6.56. Let x [ n ]  be a sequence of finite length N such that 

x [ n ]  = 0 n < O , n > N  

Let the N-point DFT X [ k ]  of x [ n ]  be given by [Eq. (6.9211 
N- 1 

Suppose N is even and let 

The sequences f [ n ]  and g [ n ]  represent the even-numbered and odd-numbered 
samples of x [ n ] ,  respectively. 

( a )  Show that 

N 
f [ n ]  = 4.1 = 0 outside 0 s n  5 - - 1 

2 
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( b )  Show that the N-point DFT X [ k ]  of x [ n ]  can be expressed as 

(N/2)- 1 N 
where F [ k ] =  C f[n]W$2 k  =0,1,...9 - - 1 ( 6 . 2 1 8 ~ )  2 n=O 

( c )  Draw a flow graph to illustrate the evaluation of X [ k ]  from Eqs. ( 6 . 2 1 7 ~ )  and 
(6.2176) with N = 8. 

( d )  Assume that x [ n ]  is complex and w,"~ have been precomputed. Determine the 
numbers of complex multiplications required to evaluate X [ k ]  from Eq. (6.214) 
and from Eqs. (6.217a) and (6.217b) and compare the results for N = 2'' = 1024. 

( a )  From Eq. (6.213) 

f [ n ]  = x [ 2 n ]  = 0 ,  n  < 0  and f[:] = x [ N ]  =O 

Thus 

Similarly 

Thus, 

g [ n ] = x [ 2 n + l ] = O , n < O  and g - = x [ N +  1 ] = O  KI 
( b )  We rewrite Eq. (6.214) as 

X [ k ]  = x x [ n ]  Win + C x [ n ]  W,kn 
n even n odd 

With this substitution Eq. (6.219) can be expressed as 
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( N / 2 ) -  I N 
where F [ k l  = C f[nlW,k;2 k = O , l ,  ...,- - 

2 
1 

n = O  

Note that F [ k ]  and G [ k ]  are the (N/2)-point DFTs of f i n ]  and g i n ] ,  respectively. Now 

Hence, Eq. (6.221) can be expressed as 

(c) The flow graph illustrating the steps involved in determining X [ k ]  by Eqs. (6.217~) and 
(6.21 76) is shown in Fig. 6-37. 

( d )  To  evaluate a value of X [ k ]  from Eq. (6.214) requires N complex multiplications. Thus, 
the total number of complex multiplications based on Eq. (6.214) is N ~ .  The number of 
complex multiplications in evaluating F [ k ]  or G [ k ]  is (N/2)2. In addition there are N 
multiplications involved in the evaluation of ~ , k ~ [ k ] .  Thus, the total number of complex 
multiplications based on Eqs. (6.217~) and (6.217b) is 2 ( ~ / 2 ) ~  + N = ~ ' / 2  + N. For 
N = 2"'= 1024 the total number of complex multiplications based on Eq. (6.214) is 
22" -- l o h  and is 106/2 + 1024 .= 106/2 based on Eqs. (6.217~) and (6.217b). So we see 
that the number of multiplications is reduced approximately by a factor of 2 based on 
Eqs. (6 .217~)  and (6.2176). 

The method of evaluating X [ k  I based on Eqs. (6.217~) and (6.217b) is known as the 
decimation-in-time fast Fourier transform (FFT) algorithm. Note that since N/2 is even, 
using the same procedure, F [ k l  and G [ k ]  can be found by first determining the 
(N/4)-point DFTs of appropriately chosen sequences and combining them. 

Fig. 6-37 Flow graph for an 8-point decimation-in-time F l T  algorithm. 
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6.57. Consider a sequence 

x [ n ]  = { l , l , - 1 , - 1 , - l , l , l , - 1 )  

Determine the DFT X [ k ]  of x [ n ]  using the decimation-in-time FFT algorithm. 
From Figs. 6-3Na) and (61, the phase factors W: and W,k are easily found as follows: 

wb)= 1 w; = - ,  w~~ = - 1 w~~ = j 

1 w,' = - 1 w+ - j  
1 1 

and W:= 1 w+ - - - , -  a -'7T a a 

Next, from Eqs. (6 .215~)  and (6.2156) 

f 1.1 = x [ 2 n ]  = (x [O] ,  x [ 2 ] ,  x [ 4 ] ,  x [ 6 ] )  = ( 1 ,  - 1 , -  1 , l )  

g [ n ] = x [ 2 n +  1 ] =  { x [ l ] , x [ 3 ] , x [ S ] , x [ 7 ] }  = { I , -  1 , 1 , -  1 )  

Then, using Eqs. (6.206) and (6.2121, we have 

(4 (b)  

Fig. 638 Phase factors W: and W,". 
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and by Eqs. ( 6 . 2 1 7 ~ )  and (6.21 76) we obtain 

Noting that since x[n] is real and using Eq. (6.204),. X[7], X[6] ,  and X[5] can be easily 
obtained by taking the conjugates of X [ l ] ,  X[2], and X[3], respectively. 

6.58. Let x [ n ]  be a sequence of finite length N such that 

x [ n ]  = 0 n < 0 ,  n r N  

Let the N-point DFT X [ k ]  of x [ n ]  be given by [Eq. (6.92)] 
N - 1  

X [ k ]  = x [ n ]  w,kn w N -  - e - ~ ( 2 7 7 / N )  k = 0 , 1 ,  ..., N - 1  (6.224) 
n = O  

Suppose N is even and let 

(a) Show that the N-point DFT X [ k ]  of x [ n ]  can be expressed as 

N 
X [ 2 k  + 11 = Q [ k ]  k = 0 , 1 ,  ..., - -  1 (6.2266) 

2 
( N / 2 )  - 1 N 

where P [ k l =  C p[nlW,k;z k = 0 , 1 ,  ..., - -  1 (6.227~) 
2 n = O  

( N / 2 ) -  1 N 
Q [ k ]  = C 4[nlW,k;2 k = 0 , 1 ,  ..., 1 (6.2276) - - 

2 n = O  

(6) Draw a flow graph to illustrate the evaluation of X [ k ]  from Eqs. (6.226~) and 
(6.2266) with N = 8. 

( a )  We rewrite Eq. (6.224) as 

Changing the variable n = m + N / 2  in the second term of Eq. (6.228), we have 
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Noting that [Eq. (6.223)l 

Eq. (6.229) can be expressed as 

For k even, setting k = 2r in Eq. (6.230), we have 

where the relation in Eq. (6.220) has been used. Similarly, for k odd, setting k = 2r + 1 
in Eq. (6.230). we get 

Equations (6.231) and (6.232) represent the (N/2)-point DFT of ~ [ n l  and &I, respec- 
tively. Thus, Eqs. (6.231) and (6.232) can be rewritten as 

( N / 2 ) -  1 N 
where P [ k l =  C ~[nlW,k;2 k=O, l ,  ...,- - 

2 
1 

n-0 

(6) The flow graph illustrating the steps involved in determining X[k] by Eqs. (6.227~) and 
(6.2276) is shown in Fig. 6-39. 

The method of evaluating X[k] based on Eqs. (6.227~) and (6.2276) is known as the 
decimation-in-frequency fast Fourier transform (FFT) algorithm. 

Fig. 6-39 Flow graph for an &point decimation-in-frequency FFT algorithm. 
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6.59. Using the decimation-in-frequency FFT technique, redo Prob. 6.57. 

From Prob. 6.57 

x [ n ] = ( l , l , - 1 , - 1 , - l , l , l , - 1 )  

By Eqs. (6.225a) and (6.225b) and using the values of W," obtained in Prob. 6.57, we have 

= (2,0, 12,O) 
Then using Eqs. (6.206) and (6.212). we have 

and by Eqs. (6.226a) and (6.2266) we get 

X[0] = P[0] = 0 X[4] = P[2] = o  

X[1] = Q[O] = 2 + j2 X[5] = Q[2] = 2 + j2 

X[2] = P[1] = -j4 X[6] = P[3] = j4 

X[3] = Q[l] = 2 - j2 X[7] = Q[3] = 2 - j2 

which are the same results obtained in Prob. 6.57. 

6.60. Consider a causal continuous-time band-limited signal x ( t )  with the Fourier transform 
X(w). Let 

where Ts is the sampling interval in the time domain. Let 

X [ k ]  = X ( k  Aw) 

where Aw is the sampling interval in the frequency domain known as the frequency 
resolution. Let T, be the record length of x ( t )  and let w, be the highest frequency of 
x ( t ) .  Show that x [ n ]  and X [ k ]  form an N-point DFT pair if 

TI 2% -=-  w ~ T 1  
= N  and N 2 -  

T, Aw T 
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Since x(t ) = 0 for t < 0, the Fourier transform X(w) of x(t ) is given by [Eq. 

Let TI  be the total recording time of x( t )  required to evaluate X(w). Then the above integral 
can be approximated by a finite series as 

N - l  

X(w) = At z x ( t n )  e-;"'" 
n = O  

where tn = n At and T, = NAt. Setting w = w, in the above expression, we have 
N- 1 

X(wk)  = At x(t,) e- '" 'k ln (6.237) 
n = O  

Next, since the highest frequency of x(t) is w,, the inverse Fourier transform of ~ ( w )  is given 
by [Eq. (5.3211 

Dividing the frequency range -oM I w I w, into N (even) intervals of length Aw, the above 
integral can be approximated by 

where 2wM = NAw. Setting t = t, in the above expression, we have 

Since the highest frequency in x(t)  is w,, then from the sampling theorem (Prob. 5.59) we 
should sample x(t) so that 

where T, is the sampling interval. Since T, = At, selecting the largest value of A t  (the Nyquist 
interval), we have 

7 
At = - 

OM 

and 

Thus, N is a suitable even integer for which 

T ,  ~ W M  - -  -- WM T I  
= N  and N 2 -  

T, Aw T 

From Eq. (6.240) the frequency resolution Aw is given by 
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Let t n = n A t  and w k = k A w .  Then 

Substituting Eq. (6.243) into Eqs. (6.237) and (6.239), we get 
N -  1 

X ( k  A o )  = C A t x ( n  A t )  e-j(2"/N)nk 
n = O  

and 
(N/2)-1 

x ( n  A t )  = - C ~ ( k  b w )  e(2"/N)nk 
2a k =  -N/Z 

Rewrite Eq. (6.245) as 

- 1 

X ( k  Aw)  e'(2"/N'nk + C X ( k  Aw)  ei(2"/N)nk 
k =  -N/2 1 

Then from Eq. (6.244) we note that X ( k  Aw)  is periodic in k with period N. Thus, changing 
the variable k = m - N in the second sum in the above expression, we get 

Multiplying both sides of Eq. (6.246) by At and noting that Aw At = 2,rr/N, we have 
1 N-1 

x ( n  A t )  At = - C X ( k  A w )  ei(2"/N)nk 
k = O  

Now if we define 

x [ n ]  = Atx(n  A t )  = T,x(nT,) (6.248) 

X [ k ]  = X ( k  A w )  

then Eqs. (6.244) and (6.247) reduce to the DFT pair, that is, 

6.61. ( a )  Using the DFT, estimate the Fourier spectrum X ( w )  of the continuous-time 
signal 

Assume that the total recording time of x ( t )  is T, = 10 s and the highest 
frequency of x ( t )  is w ,  = 100 rad/s. 

( b )  Let X [ k ]  be the DFT of the sampled sequence of x ( t ) .  Compare the values of 
X[O], X [ l ] ,  and X[10]  with the values of X(O), X ( A w ) ,  and X ( 1 0 A w ) .  
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From Eq. (6.241) 

Thus, choosing N = 320, we obtain 

Aw = 2 = =0.625 rad 

Then from Eqs. (6.244), (6.249), and (1.921, we have 

N -  1 

X [ k ]  = Atx(n  A t )  e- j (2T/N'nk 
n = O  

which is the estimate of X ( k  A o ) .  
Setting k = 0 ,  k = 1 ,  and k = 10 in Eq.  (6.250), we have 

From Table 5-2 

and 

1 
x ( l 0  A o )  = X(6 .25)  = - - 0,158e-11.412 

1 + j6.25 

Even though x ( t )  is not band-limited, we see that X [ k l  offers a quite good approxima- - - .  
tion to X ( w )  for the frequency range we specified. 
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Supplementary Problems 

6.62. Find the discrete Fourier series for each of the following periodic sequences: 

(a) x[n] = cos(0,l~n) 
(b) x[n] = sin(0.l.rrn) 
(c) x[n] = 2cos(1.6~n) + sin(2.47rn) 

Am. (a) x[n] = $ e j n o n  + 1 ze  ~ ~ ~ ~ 0 ~ ,  R0 = 0 . 1 ~  

6.63. Find the discrete Fourier series for the sequence x[n] shown in Fig. 6-40. 

Fig. 6-40 

6.64. Find the trigonometric form of the discrete Fourier series for the periodic sequence x[n] 
shown in Fig. 6-7 in Prob. 6.3. 

3 Tr Tr 1 
Am. x[n] = - - cos-n - sin-n - -cos r n  

2 2 2 2 

6.65. Find the Fourier transform of each of the following sequences: 

(a) x[nl= al"l, la1 < 1 
(6) x[n] = sin(flon), IRoI < 7r 

(c) x[nl= u[ -n - 11 

1 - a2  
Am. (a) X(fl)= 

1 -2acos f l+a2  
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Find the Fourier transform of the sequence x[n] shown in Fig. 6-41 

Am. X(R) = j2(sin R + 2 sin 2 R  + 3 sin 3R) 

Fig. 6-41 

Find the inverse Fourier transform of each of the following Fourier transforms: 

( a )  X(R)  = cos(2R) 
(6) X(R) = j R  

Am. (a) x[n l=  f8[n - 21 + 3 [ n  + 21 

Consider the sequence y[n] given by 

n even 
n odd 

Express y(R) in terms of X(R). 

Ans. Y(R) = $X(R) + $x(R - 7) 

Let 

(a) Find y[n 1 = x[n] * x[n]. 
(b )  Find the Fourier transform Y(0) of y[n]. 

Am. (a) y[n] = In15 5 
In1 > 5 

Verify 

Hint: 

Parseval's theorem [Eq. (6.66)] for the discrete-time Fourier transform, that is, 
m 1 

Proceed in a manner similar to that for solving Prob. 5.38. 



362 FOURIER ANALYSIS O F  DISCRETE-TIME SIGNALS AND SYSTEMS [CHAP. 6 

6.71. A causal discrete-time LTI system is described by 

y [ n ]  - i y [ n  - 1 1  + i y [ n  - 21 = x [ n ]  

where x [ n ]  and y[nl are the input and output of the system, respectively. 

( a )  Determine the frequency response H ( R )  of the system. 
( b )  Find the impulse response h [ n ]  of the system. 

( c )  Find y[nl if x[nl = ( i )"u[n l .  

6.72. Consider a causal discrete-time LTI system with frequency response 

H ( R )  = Re{ H ( R ) )  + j I m { H ( R ) )  = A ( R )  + j B ( R )  

( a )  Show that the impulse response h [ n ]  of the system can be obtained in terms of A ( R )  or 
B ( R )  alone. 

( b )  Find H ( R )  and h [ n ]  if 

( a )  Hint: Process in a manner similar to that for Prob. 5.49. 

( b )  Ans. H ( R )  = 1 + ePin, h [ n ]  = ~ [ n ]  + S[n - 1 1  

6.73. Find the impulse response h [ n ]  of the ideal discrete-time HPF with cutoff frequency R ,  
(0 < R ,  < r) shown in Fig. 6-42. 

sin R,n 
Am. h [ n ]  = S[n]  - - 

T n  

Fig. 6-42 

6.74. Show that if HLPF(z )  is the system function of a discrete-time low-pass filter, then the 
discrete-time system whose system function H ( z )  is given by H ( z )  = H L P F ( - z )  is a high-pass 
filter. 

Hint: Use Eq. (6.156) in Prob. 6.37. 
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6.75. Consider a continuous-time LTI system with the system function 

Determine the frequency response H d ( R )  of the discrete-time system designed from this 
system based on the impulse invariance method. 

-in 
Am. H ( n )  = T, e-Ts , , where T, is the sampling interval of h c ( t ) .  

( 1  - e-T3 e-ia ) 

6.76. Consider a continuous-time LTI system with the system function 

1 
H A S )  = s+l 

Determine the frequency response H d ( R )  of the discrete-time system designed from this 
system based on the step response invariance, that is, 

where sc ( t )  and s d [ n ]  are the step response of the continuous-time and the discrete-time 
systems, respectively. 

6.77. Let H p ( z )  be the system function of a discrete-time prototype low-pass filter. Consider a new 
discrete-time low-pass filter whose system function H ( z )  is obtained by replacing z in H p ( z )  
with ( z  - a ) / ( l  - a z ) ,  where a is real. 

( a )  Show that 

( b )  Let R, ,  and R ,  be the specified frequencies ( <  T )  of the prototype low-pass filter and 
the new low-pass filter, respectively. Then show that 

e i n ~  - a 
Hint: Set einpl = 1 - a  e i n ~  and solve for a. 

6.78. Consider a discrete-time prototype low-pass filter with system function 

( a )  Find the 3-dB bandwidth of the prototype filter. 
(6) Design a discrete-time low-pass filter from this prototype filter so that the 3-dB bandwidth 

of the new filter is 2 1 ~ / 3 .  
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Hint: Use the result from Prob. 6.77. 
7T 

Ans. ( a )  a,,,= - 
2 

6.79. Determine the DFT of the sequence 

I - a N  
Ans. X [ k ] =  1 - ae- i (2 r /N)k  k  =0 .1 ,  ..., N -  1 

6.80. Evaluate the circular convolution 

where 

( a )  Assuming N = 4. 

(b)  Assuming N = 8 .  

Ans. (a)  y [ n ] = ( 3 , 3 , 3 , 3 )  

( b )  y [ n I = ~ l , 2 , 3 , 3 , 2 , l , O , O )  

6.81. Consider the sequences x[nl and h[nl in Prob. 6.80. 

(a)  Find the 4-point DFT of x[nl ,  hln] ,  and y[n] .  
(b)  Find y [ n ]  by taking the IDFT of Y [ k ] .  

Ans. ( a )  [ X[Ol, X[11, X[21, X[311 = [4,O, 0,Ol 

[H[Ol, H[11, HI21, H[311= [3,  - j ,  1 ,  jl 

[ Y[Ol, Y [  1 1 ,  Y P l ,  Y[311 = [ 12,0,0,01 

(6) y[nI=  { 3 , 3 , 3 , 3 )  

6.82. Consider a continuous-time signal A t )  that has been prefiltered by a low-pass filter with a 
cutoff frequency of 10 kHz. The spectrum of x ( t )  is estimated by use of the N-point DFT. The 
desired frequency resolution is 0.1 Hz. Determine the required value of N (assuming a power 
of 2)  and the necessary data length T I .  

Ans. N = 2'' and T ,  = 13.1072 s 



Chapter 7 

State Space Analysis 

7.1 INTRODUCTION 

So far we have studied linear time-invariant systems based on their input-output 
relationships, which are known as the external descriptions of the systems. In this chapter 
we discuss the method of state space representations of systems, which are known as the 
internal descriptions of the systems. The representation of systems in this form has many 
advantages: 

1. It provides an insight into the behavior of the system. 
2. It allows us to handle systems with multiple inputs and outputs in a unified way. 
3.  It can be extended to nonlinear and time-varying systems. 

Since the state space representation is given in terms of matrix equations, the reader 
should have some familiarity with matrix or  linear algebra. A brief review is given in App. 
A. 

7.2 THE CONCEPT OF STATE 

A. Definition: 

The state of a system at time to (or n o )  is defined as the minimal information that is 
sufficient to determine the state and the output of the system for all times t 2 to (or 
n 2 n o )  when the input to the system is also known for all times t 2 to  (or n 2 no) .  The 
variables that contain this information are called the state variables. Note that this 
definition of the state of the system applies only to causal systems. 

Consider a single-input single-output LTI electric network whose structure is known. 
Then the complete knowledge of the input x ( t )  over the time interval -m to t is sufficient 
to determine the output y ( t )  over the same time interval. However, if the input x ( t )  is 
known over only the time interval t o  to t ,  then the current through the inductors and the 
voltage across the capacitors at some time to must be known in order to determine the 
output y ( t )  over the time interval to  to t .  These currents and voltages constitute 
the "state" of the network at time t o .  In this sense, the state of the network is related to 
the memory of the network. 

B. Selection of State Variables: 

Since the state variables of a system can be interpreted as the "memory elements" of 
the system, for discrete-time systems which are formed by unit-delay elements, amplifiers, 
and adders, we choose the outputs of the unit-delay elements as the state variables of the 
system (Prob. 7.1).  For continuous-time systems which are formed by integrators, ampli- 
fiers, and adders, we choose the outputs of the integrators as the state variables of the 
system (Prob. 7.3).  For a continuous-time system containing physical energy-storing ele- 
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ments, the outputs of these memory elements can be chosen to be the state variables of the 
system (Probs. 7.4 and 7.5). If the system is described by the difference or differential 
equation, the state variables can be chosen as shown in the following sections. 

Note that the choice of state variables of a system is not unique. There are infinitely 
many choices for any given system. 

7.3 STATE SPACE REPRESENTATION OF DISCRETE-TIME LTI SYSTEMS 

A. Systems Described by Difference Equations: 

Suppose that a single-input single-output discrete-time LTI system is described by an 
Nth-order difference equation 

y [ n ]  + a , y [ n  - 1 1  + + a N y [ n  - N ]  = x [ n ]  (7.1) 

We know from previous discussion that if x [ n ]  is given for n  2 0, Eq. (7.1) requires N 
initial conditions y [ -  I ] ,  y [ -21 , .  . ., y [ - N ]  to uniquely determine the complete solution 
for n  > 0. That is, N  values are required to specify the state of the system at any time. 

Let us define N state variables q , [ n ] ,  q 2 [ n ] ,  . . . , q N [ n ]  as 

and y [ n ]  = - a N q , [ n ]  - a N -  , q 2 [ n ]  - - .  . - a , q ~ [ ~ l  + x [ n l  
In matrix form Eqs. ( 7 . 3 ~ )  and (7.36) can be expressed as 

Now we define an N x 1 matrix (or N-dimensional vector) q [ n ]  which we call the state 
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vector : 
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Then Eqs. ( 7 . 4 ~ )  and (7.46) can be rewritten compactly as 

where 

Equations ( 7 . 6 ~ )  and (7.66) are called an N-dimensional state space representation (or 
state equations) of the system, and the N x N matrix A is termed the system matriu. The 
solution of Eqs. ( 7 . 6 ~ )  and (7.66) for a given initial state is discussed in Sec. 7.5. 

B. Similarity Transformation: 

As mentioned before, the choice of state variables is not unique and there are infinitely 
many choices of the state variables for any given system. Let T be any N X N nonsingular 
matrix (App. A) and define a new state vector 

v [ n ]  = m [ n ]  (7 .7)  
where q[n]  is the old state vector which satisfies Eqs. ( 7 . 6 ~ )  and (7.66). Since T is 
nonsingular, that is, T-I exists, and we have 

q [ n ]  = T - ' v [ n ]  (7.8) 

Now 
v [n  + 11 = Tq[n  + 11 = T ( ~ q [ n ]  + b x [ n ] )  

= TAq[n] + Tbx[n]  = TAT- 'v[n]  + Tbx[n]  ( 7 . 9 ~ )  

Thus, if we let 

A 

b = T b  ;=(q-' i = d  
then Eqs. ( 7 . 9 ~ )  and (7.9b) become 

v [ n  + 11 = R [ n ] +  b x ~ n l  
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Equations (7.11a) and (7.11b) yield the same output y[n] for a given input x[n] with 
different state equations. In matrix algebra Eq. (7.10a) is known as the similarity transfor- 
mation and matrices A and are called similar matrices (App. A). 

C. Multiple-Input Multiple-Output Systems: 

If a discrete-time LTI system has m inputs and p outputs and N state variables, then a 
state space representation of the system can be expressed as 

q[n + 11 = Aq[n] + Bx[n] 

y[nI = Cq[n] + Dx[n] 
where 

and 

A = 

- 

- N X r n  

7.4 STATE SPACE REPRESENTATION OF CONTINUOUS-TIME LTI SYSTEMS 

A. Systems Described by Differential Equations: 

Suppose that a single-input single-output continuous-time LTI system is described by 
an Nth-order differential equation 

One possible set of initial conditions is y(O), y(l)(O), . . . , Y(~-' ) (O),  where y(k)(O = 

dk y(t)/dt '. Thus, let us define N state variables ql( 0, q,( 0,. . . , qN(O as 

q1W = y ( t )  

qz(1) = Y ( ' ) ( ~ )  
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where q,( t ) = dq,( t ) / d l .  
In matrix form Eqs. (7.15a) and (7.156) can be expressed as 

Now we define an N X 1 matrix (or N-dimensional vector) q(t)  which we call the state 
vector: 

The derivative of a matrix is obtained by taking the derivative of each element of the 
matrix. Thus 

Then Eqs. (7.16a) and (7.166) can be rewritten compactly as 
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where 

As in the discrete-time case, Eqs. (7.19~) and (7.19b) are called an N-dimensional state 
space representation (or state equations) of the system, and the N x N matrix A is termed 
the system matrix. In general, state equations of a single-input single-output continuous- 
time LTI system are given by 

As in the discrete-time case, there are infinitely many choices of state variables for any 
given system. The solution of Eqs. (7.20a) and (7.206) for a given initial state are discussed 
in Sec. 7.6. 

B. Multiple-Input Multiple-Output Systems: 

If a continuous-time LTI system has m inputs, p outputs, and N state variables, then a 
state space representation of the system can be expressed as 

q(t)  = Aq(t) + Bx(t) 

YO) = Cq(t) + Dx(t) 

where 

and 

A =  

N x N  :I 
l p x N  
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7.5 SOLUTIONS OF STATE EQUATIONS FOR DISCRETE-TIME LTI SYSTEMS 

A. Solution in the Time Domain: 

Consider an N-dimensional state representation 

q[n  + 1] = Aq[n] + bx[n] (7.22a) 

Y [n] = cq[n] + &[n] (7.226) 

where A, b, c, and d are N x N, N x  1, 1 x N, and 1 X 1 matrices, respectively. One 
method of finding q[n], given the initial state q[O], is to solve Eq. (7.22a) iteratively. Thus, 

q[l]  = Aq[OJ + bx[O] 

q[2] = Aq[l] + bx[l] = A{~q[0]  + bx[O] ] + bx[l] 

= A ~ ~ [ O ]  + Abx[O] + bx[l] 

By continuing this process, we obtain 

If the initial state is q[n,] and x[n] is defined for n 2 no, then, proceeding in a similar 
manner, we obtain 

The matrix An is the n-fold product 

n 
and is known as the state-transition matrix of the discrete-time system. Substituting 
Eq. (7.23) into Eq. (7.2231, we obtain 

n -  I 

y[n] =cAnq[O] + C A " - ' - ~  bx[k] + & [ n ]  n > O  (7.25) 
k = O  

The first term cAnq[O] is the zero-input response, and the second and third terms together 
form the zero-state response. 

B. Determination of An: 

Method 1: Let A be an N X N matrix. The characteristic equation of A is defined to be (App. A) 

where J A I  - Al means the determinant of Al - A  and I is the identiry matrix (or unit 
matrir) of Nth order. The roots of c(A) = 0, A ,  ( k  = 1,2 , .  . . , N ) ,  are known as the 
eigenualues of A. By the Cayley-Hamilton theorem An can be expressed as [App. A, Eq. 
(AS7)I 

When the eigenvalues A ,  are all distinct, the coefficients b,, b,, . . . , 6,- , can be found 
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from the conditions 

For the case of repeated eigenvalues, see Prob. 7.25. 

Method 2: The second method of finding An is based on the diagonalization of a matrix A. If 
eigenvalues A, of A are all distinct, then An can be expressed as [App. A, Eq. (A.53)] 

where matrix P is known as the diagonalization matrix and is given by [App. A, Eq. 
(A.3611 

p = [ x ,  x, a . B  x,] (7.30) 

and x, ( k  = 1,2,. . . , N )  are the eigenvectors of A defined by 

Method 3: The third method of finding An is based on the spectral decomposition of a matrix A. 
When all eigenvalues of A are distinct, then A can be expressed as 

where A, ( k  = 1,2,. . . , N )  are the distinct eigenvalues of A and E, (k = 1,2, . . . , N )  are 
called constituent matrices which can be evaluated as [App. A, Eq. ( A H ) ]  

N 

Then we have 

Method 4: The fourth method of finding An is based on the z-transform. 

which is derived in the following section [Eq. (7.41)l. 

C. The z-Transform Solution: 

Taking the unilateral z-transform of Eqs. (7.22a) and (7.226) and using Eq. (4.51), we 
get 
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Rearranging Eq. (7.36a), we have 

(21 - A)Q(z) = zq(0) + bX(z) (7.37) 

Premultiplying both sides of Eq. (7.37) by ( z I  - A)-' yields 

Q )  = 1 - A ) - ~ Z ~ ( O )  + (21 - A ) - ' ~ x ( z )  (7.38) 

Hence, taking the inverse unilateral z-transform of Eq. (7.38), we get 

q[n] = ~ ; ' ( ( Z I  - A)- ' z )~ (o )  + ~ ~ ' ( ( ~ 1  - A ) - ' b ~ ( z ) )  (7.39) 

Substituting Eq. (7.39) into Eq. (7.2261, we get 

y[n]=~~;~((z1-~)~'z)~(0)+~~;'((~1-~)~'b~(z))+dr[n] (7.40) 

A comparison of Eq. (7.39) with Eq. (7.23) shows that 

D. System Function H ( z ) :  

In Sec. 4.6 the system function H(z )  of a discrete-time LTI system is defined by 
H ( z )  = Y(z)/X(z) with zero initial conditions. Thus, setting q[O] = 0 in Eq. (7.38), we have 

Q(Z) = (21 - A)- '~x (z )  

The substitution of Eq. (7.42) into Eq. (7.36b) yields 

Y(z) = [c(z1- A)-'b + d ] x ( z )  

Thus, 

E. Stability: 

From Eqs. (7.25) and (7.29) o r  (7.34) we see that if the magnitudes of all eigenvalues 
A, of the system matrix A are less than unity, that is, 

b k l  < 1 all k (7.45) 

then the system is said to be asymptotically stable; that is, if, undriven, its state tends to 
zero from any finite initial state q,. It can be shown that if all eigenvalues of A are distinct 
and satisfy the condition (7.45), then the system is also BIB0 stable. 
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7.6 SOLUTIONS OF STATE EQUATIONS FOR CONTINUOUS-TIME LTI SYSTEMS 

A. Laplace Transform Method: 

Consider an N-dimensional state space representation 

where A, b, c, and d are N x N, N X 1, 1 X N, and 1 X 1 matrices, respectively. In the 
following we solve Eqs. (7 .46~)  and (7.46b) with some initial state q(0) by using the 
unilateral Laplace transform. Taking the unilateral Laplace transform of Eqs. (7 .46~)  and 
(7.466) and using Eq. (3.441, we get 

Rearranging Eq. (7.47~1, we have 

( s I  - A)Q(s) = q(0) + bX(s) 

Premultiplying both sides of Eq. (7.48) by (sI - A)-' yields 

Q(S) = ( S I -  A ) - ' ~ ( o )  + ( S I -  A) - '~x ( s )  (7.49) 

Substituting Eq. (7.49) into Eq. (7.47b1, we get 

Taking the inverse Laplace transform of Eq. (7.501, we obtain the output y(t). Note that 
c(sI - A)-'q(0) corresponds to the zero-input response and that the second term corre- 
sponds to  the zero-state response. 

B. System Function H(s): 

As in the discrete-time case, the system function H(s) of a continuous-time LTI system 
is defined by H(s) = Y(s)/X(s) with zero initial conditions. Thus, setting q(0) = 0 in 
Eq. (7.501, we have 

Thus, 
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C. Solution in the Time Domain: 

Following 

we define 

where k! = k(k - 1) . . -2.1. If t = 0, then Eq. (7.53) reduces to 

e0 = I (7.54) 

where 0 is an N x N zero matrix whose entries are all zeros. As in ea('-') = ea'e-a' = 
e - a r  at e , we can show that 

e A ( t - r )  = e A ~ e - A r  = e - A r e A ~  (7.55) 

Setting T = t in Eq. (7.55), we have 
eAte-Ar = e-AteAt  = e O = I  (7.56) 

Thus, 

which indicates that e-A' is the inverse of eA'. 
The differentiation of Eq. (7.53) with respect to t yields 

which implies 

d 
- e A t  = AeA'  = e A t ~  
dt 

Now using the relationship [App. A, Eq. (A.70)] 

and Eq. (7.581, we have 
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Now premultiplying both sides of Eq. (7.46a) by e--A' ,  we obtain 

ePA'q(t  ) = L? - A ' ~ q ( t )  + e A ' b x ( t )  

or e P A ' q ( t )  - ePA'Aq( t )  = e - A ' b x ( t )  

From Eq. (7.59) Eq. (7.60) can be rewritten as 

d 
- [ e - A ' q ( t ) ]  = C A ' b x ( t )  
dl 

Integrating both sides of Eq. (7.61) from 0 to I ,  we get 

Hence e - * ' q ( t )  = q(0)  + /'e-*'bx(r) d i  (7 .62)  
0 

Premultiplying both sides of Eq. (7.62) by eA' and using Eqs. (7.55) and (7.561, we obtain 

If the initial state is q(t , ,)  and we have x( t )  for t 2 I , ,  then 

which is obtained easily by integrating both sides of Eq. (7.61) from t ,  to t .  The matrix 
function eA' is known as the state-transition matrix of the continuous-time system. 
Substituting Eq. (7.63) into Eq. (7.466), we obtain 

D. Evaluation of eA': 

Method 1: As in the evaluation of An, by the Cayley-Hamilton theorem we have 

When the eigenvalues A ,  of A are all distinct, the coefficients b,, b , ,  . . . , b N - ,  can be 
found from the conditions 

For the case of repeated eigenvalues see Prob. 7.45. 
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Method 2: 

Method 3: 

Method 4: 
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Again, as in the evaluation of An we can also evaluate eA' based on the diagonalization of 
A. If all eigenvalues A,  of A are distinct, we have 

eA' = P 

where P is given by Eq. (7.30). 

We could also evaluate eA' using the spectral decomposition of A, that is, find constituent 
matrices E, (k = 1,2,. . . , N )  for which 

A = A , E l  + A2E2 + . . .  +ANEN ( 7.69) 

where A,  ( k  = 1,2,. . . , N )  are the distinct eigenvalues of A. Then, when eigenvalues A,  of 
A are all distinct, we have 

eAt  = e A ~ ' E l  + e A ~ ' ~ ,  + . . . +eAN'E, (7 .70)  

Using the Laplace transform, we can calculate eA'. Comparing Eqs. (7.63) and (7.49), we 
see that 

E. Stability: 

From Eqs. (7.63) and (7.68) or (7.70), we see that if all eigenvalues A, of the system 
matrix A have negative real parts, that is, 

Re{A,) < 0 all k (7.72) 

then the system is said to be asymptotically stable. As in the discrete-time case, if all 
eigenvalues of A are distinct and satisfy the condition (7.721, then the system is also BIB0 
stable. 

Solved Problems 

STATE SPACE REPRESENTATION 

7.1. Consider the discrete-time LTI system shown in Fig. 7-1. Find the state space 
representation of the system by choosing the outputs of unit-delay elements 1 and 2 as 
state variables q,[n] and q2[n], respectively. 

From Fig. 7-1 we have 

4 1 b  + 11 = 4 2 M  

42[n + 11 = 2q,[n l+ 3q2bI  + x b I  

y b I =  2q , [n l+  3 q h I  + x b I  
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Fig. 7-1 

In matrix form 

or 

where 

7.2. Redo Prob. 7.1 by choosing the outputs of unit-delay elements 2 and 1 as state 
variables u,[n] and u,[n], respectively, and verify the relationships in Eqs. ( 7 . 1 0 ~ )  and 
(7. lob). 

We redraw Fig. 7-1 with the new state variables as shown in Fig. 7-2. From Fig. 7-2 we have 

u , [ n  + 11 = 3 u l [ n ]  + 2 u , [ n ]  + x [ n ]  

~ l ~ [ n  + 11 = c , [ n ]  

y [ n ]  = 3 u l [ n ]  + 2 u 2 [ n ]  + x [ n ]  

Fig. 7-2 
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In matrix form 

or 

where 

Note that u,[n] = q,[n] and u,[n] = q,[n]. Thus, we have 

Now using the results from Prob. 7.1, we have 

which are the relationships in Eqs. (7.10a) and (7.10b). 

73. Consider the continuous-time LTI system shown in Fig. 7-3. Find a state space 
representation of the system. 

Fig. 7-3 
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In matrix form 

Consider the mechanical system shown in Fig. 7-4. It consists of a block with mass m 
connected to a wall by a spring. Let k ,  be the spring constant and k ,  be the viscous 
friction coefficient. Let the output y( f )  be the displacement of the block and the input 
x(f) be the applied force. Find a state space representation of the system. 

By Newton's law we have 

The potential energy and kinetic energy of a mass are stored in its position and velocity. Thus, 
we select the state variables q , ( t )  and q2( t )  as 

Then we have 

y ( 0  y 4  
Fig. 7-4 Mechanical system. 
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In matrix form 

STATE SPACE ANALYSIS 

7.5. Consider the RLC circuit shown in Fig. 7-5. Let the output y ( t )  be the loop current. 
Find a state space representation of the circuit. 

We choose the state variables q , ( t )  = i , ( t )  and q 2 ( l )  = u,(t) .  Then by Kirchhoffs law we 
get 

L 4 , ( t )  + R s , ( t )  + q2(1) = x ( t )  

c q , ( t )  = d l )  

Y ( t )  = 4 1 ( t )  

Rearranging and writing in matrix form, we get 

Fig. 7-5 RLC circuit. 

7.6. Find a state space representation of the circuit shown in Fig. 7-6, assuming that the 
outputs are the currents flowing in R ,  and R , .  

We choose the state variables q , ( t )  = i , ( t )  and q 2 ( t )  = r;(t) .  There are two voltage sources 
and let x , ( t )  = u , ( t )  and x J t )  = u2(t) .  Let y , ( t )  = i , ( t )  and y , ( t )  = i , ( t ) .  Applying krchhoffs  
law to each loop, we obtain 
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Fig. 7-6 

Rearranging and writing in matrix form, we get 

where 

STATE EQUATIONS OF DISCRETE-TIME LTI =STEMS DESCRIBED 
BY DIFFERENCE EQUATIONS 

7.7. Find state equations of a discrete-time system described by 

y [ n ]  - f y [ n  - 11 + $ y [ n  - 21 = x [ n ]  

Choose the state variables q , [n ]  and q2[n]  as 

41[nl = y [ n  - 21 

4Jn I  = y [ n  - 11  

Then from EqsJ7.79) and (7.80) we have 

4 d n  + 11 =q , [n I  

42[n + 11 = - $ q l [ n ]  + $?2 [n ]  + x [ n ]  

Y [ ~ I  = - $ s J n I  + %2[nI  +-+I 
In matrix form 
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7.8. Find state equations of a discrete-time system described by 

Because of the existence of the term $x[n - 11 on the right-hand side of Eq. (7.82), the 
selection of y [n  - 21 and y [ n  - 11 as state variables will not yield the desired state equations of 
the system. Thus, in order to find suitable state variables we construct a simulation diagram of 
Eq. (7.82) using unit-delay elements, amplifiers, and adders. Taking the z-transforms of both 
sides of Eq. (7.82) and rearranging, we obtain 

from which (noting that z - &  corresponds to k unit time delays) the simulation diagram in 
Fig. 7-7 can be drawn. Choosing the outputs of unit-delay elements as state variables as shown 
in Fig. 7-7, we get 

Y [ ~ I  = s , [ n l  + x [ n l  

4 J n  + 11 = q , [ n I  + : y [ n ]  + $+I  
= f s , [ n l + 4 2 [ n l +  $ [nI  

q 2 [ n  + 1 1  = - i y [ n ]  = - i q l [ n ]  - i x [ n ]  

In matrix form 

Fig. 7-7 

7.9. Find state equations of a discrete-time LTI system with system function 
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From the definition of the system function [Eq. (4.4111 

we have 

( 1  + a , z - '  + ~ , Z - ~ ) Y ( Z )  = ( 6 ,  + b , z - I  + b , ~ - ~ ) ~ ( z )  

Rearranging the above equation, we get 

Y ( z )  = - a , z - ' Y ( z )  - ~ , z - ~ Y ( z )  + b o X ( z )  + b , z - I ~ ( z )  + b , ~ - ~ ~ ( z )  

from which the simulation diagram in Fig. 7-8 can be drawn. Choosing the outputs of unit-delay 
elements as state variables as shown in Fig. 7-8, we get 

Y ~ I  = 9 , [ n l  + b , x [ n l  

q , [ n  + 1 1  = - a , y [ n I  + q 2 b I  + b , x [ n l  

In matrix form 

Note that in the simulation diagram in Fig. 7-8 the number of unit-delay elements is 2 (the 
order of the system) and is the minimum number required. Thus, Fig. 7-8 is known as the 
canonical simulation of the first form and Eq. (7.85) is known as the canonical state representa- 
tion of the first form. 

Fig. 7-8 canonical simulation of the first form. 
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7.10. Redo Prob. 7.9 by expressing H ( z )  as 

H ( z  = H , ( z ) H , ( z  ) 

Let 

Then we have 

W ( z )  + a , z - ' W ( z )  + ~ ~ z - ~ W ( z )  = X ( z )  

Y ( z )  = b , W ( z )  + b , z - ' ~ ( z )  + b , z - ' ~ ( z )  

Rearranging Eq. (7.881, we get 

W ( z )  = - a , z - ' W ( z )  - a , ~ - ~ ~ ( z )  + ~ ( z )  

From Eqs. (7.89) and (7.90) the simulation diagram in Fig. 7-9 can be drawn. Choosing the 
outputs of unit-delay elements as state variables as shown in Fig. 7-9, we have 

u l [ n  + l ]  = I I ~ [ ~ ]  

u , [n  + 1 1  = - a , ~ ! , [ n ]  - a , u , [ n ]  + x [ n ]  

Y [ ~ I  = b,u,[nI + b,u,[nI + b,u,[n + 1 1  

= (b2  - b o a 2 ) u , [ n l +  ( 6 1  -b ,a , )c2 tnI  +b&l 

Fig. 7-9 Canonical simulation of the second form. 
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In matrix form 

The simulation in Fig. 7-9 is known as the canonical simulation of the second form, and 
Eq. (7.91) is known as the canonical state representation of the second form. 

7.11. Consider a discrete-time LTI system with system function 

H ( z )  = 
2 z 2  - 3z + 1 

Find a state representation of the system. 

Rewriting H( z )  as 

Comparing Eq. (7.93) with Eq. (7.84) in Prob. 7.9, we see that 
a = - 2  

1 
= 1  

2 2 2 bo = 0 b ,  = f b2 = 0 

Substituting these values into Eq. (7.85) in Prob. 7.9, we get 

7.12. Consider a discrete-time LTI system with system function 
Z Z 

H ( z )  = - - (7.95) 
2 z 2  - 32 + 1 2 ( z  - l ) ( z  - $) 

Find a state representation of the system such that its system matrix A is diagonal. 

First we expand H ( z )  in partial fractions as 

where 

Let 

Then (1 - p k z - ' ) Y k ( z )  = a k X ( z )  

or Y k ( z )  = p k z - I Y k ( z )  + a k X ( z )  

from which the simulation diagram in Fig. 7-10 can be drawn. Thus, H( z )  = HI( z )  + H2( z  ) can 
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Fig. 7-10 

Fig. 7-11 

be simulated by the diagram in Fig. 7-11 obtained by parallel connection of two systems. 
Choosing the outputs of unit-delay elements as state variables as shown in Fig. 7-11, we have 

In matrix form 

Note that the system matrix A is a diagonal matrix whose diagonal elements consist of the poles 
of M z ) .  

7.13. Sketch a block diagram of a discrete-time system with the state representation 
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We rewrite Eq. (7.98) as 

4 d n  + 11 = q z b l  

q2[n + 11 = & l [ n ]  + :q , [n]  + x [ n ]  

Y ~ I  = 3 q , [ n l  - 2 q 2 b I  

from which we can draw the block diagram in Fig. 7-12. 

Fig. 7-12 

STATE EQUATIONS OF CONTINUOUS-TIME LTI SYSTEMS DESCRIBED 
BY DIFFERENTIAL EQUATIONS 

7.14. Find state equations of a continuous-time LTI system described by 

y ( t )  + 3 j ( t )  + 2 y ( t )  = x ( t )  (7.100) 

Choose the state variables as 

s d t )  = y ( t )  

92(1) = ~ ( t )  

Then from Eqs. (7.100) and (7,101) we have 

4 1 ( ~ )  = q 2 ( l )  

4 2 ( t )  = - 2 q l ( f )  -392(1)  + x ( t )  

Y ( t )  = 4 d t )  

In matrix form 
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7.15. Find state equations of a continuous-time LTI system described by 

y ( t )  + 3 y ( t )  + 2 y ( t )  = 4 x ( t )  + x ( t )  (7.103) 

Because of the existence of the term 41( t )  on the right-hand side of Eq. (7.103), the 
selection of y ( t )  and y ( t )  as state variables will not yield the desired state equations of the 
system. Thus, in order to find suitable state variables we construct a simulation diagram of 
Eq. (7.103) using integrators, amplifiers, and adders. Taking the Laplace transforms of both 
sides of Eq. (7.103), we obtain 

s 2 ~ ( s )  + 3sY(s)  + 2 Y ( s )  = 4 s X ( s )  + X ( s )  

Dividing both sides of the above expression by s2  and rearranging, we get 

Y ( s )  = - 3 Y 1 Y ( s )  - 2 s C 2 ~ ( s )  + 4 s - ' ~ ( s )  + s - ~ x ( s )  

from which (noting that corresponds to integration of k times) the simulation diagram in 
Fig. 7-13 can be drawn. Choosing the outputs of integrators as state variables as shown in 

In matrix form 

Fig. 7-13 

7.16. Find state equations of a continuous-time LTI system with system function 



STATE SPACE ANALYSIS [CHAP. 7 

From the definition of the system function [Eq. (3.37)] 

we have 

( s 3  + a l s2  + a2s + a 3 ) Y ( s )  = (bos3 + b l sZ  + b2s + b 3 ) x ( s )  

Dividing both sides of the above expression by s3 and rearranging, we get 

from which (noting that s -k  corresponds to integration of k times) the simulation diagram in 
Fig. 7-14 can be drawn. Choosing the outputs of integrators as state variables as shown in 
Fig. 7-14, we get 

As in the discrete-time case, the simulation of H(s) shown in Fig. 7-14 is known as the 
canonical simulation of the first form, and Eq. (7.106) is known as the canonical state 
representation of the first form. 

Fig. 7-14 Canonical simulation of the first form. 
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7.17. Redo Prob. 7.16 by expressing H ( s )  as 

H ( s )  = H , ( s ) H * ( s )  

1 
where 

H 1 ( s )  = s3  + a , s 2  + a 2 s  + a ,  

Let 

Then we have 

Rearranging the above equations, we get 

s 3 W ( s )  = - a 1 s 2 w ( s )  - a2sW(s )  - a3W(s)  + X ( s )  

Y ( s )  = b,s3W(s)  + b l s 2 ~ ( s )  + b , sW(s )  + b,W(s)  

from which, noting the relation shown in Fig. 7-15, the simulation diagram in Fig. 7-16 can be 

Fig. 7-16 Canonical simulation of the second form. 
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drawn. Choosing the outputs of integrators as state variables as shown in Fig. 7-16, we have 

C l ( t )  = u , ( t )  

In matrix form 

As in the discrete-time case, the simulation of H(s )  shown in Fig. 7-16 is known as the 
canonical simulation of the second form, and Eq. (7.109) is known as the canonical state 
representation of the second form. 

7.18. Consider a continuous-time LTI system with system function 

Find a state representation of the system. 

Rewrite H ( s )  as 

Comparing Eq. (7.111) with Eq. (7.105) in Prob. 7.16, we see that 

b , = b ,  =O b,  = 3 a ,  = 8  a ,  = 17 a ,  = 10 

Substituting these values into Eq. (7.106) in F 

y ( t )  = [ 1  0 0 

'rob. 7.16, we get 

7.19. Consider a continuous-time LTI system with system function 

Find a state representation of the system such that its system matrix A is diagonal. 
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First we expand H ( s )  in partial fractions as 

1 I 2 - - 
3 3 

where H , ( s )  = - H Z ( s )  = - - H 3 ( s )  = - - 
s + l  s + 2  s + 5  

Let 
f f k  y k ( ~ )  

H k ( s )  = - = - 
s  -Pk X ( s )  

Then ( S  - p k ) Y k ( s )  = % X ( S )  

or Y k ( s )  = P ~ s - ~ Y ~ ( s )  + a k s - ' X ( s )  

from which the simulation diagram in Fig. 7-17 can be drawn. Thus, H( S )  = H J s )  + H 2 ( s )  + 
H,(s )  can be simulated by the diagram in Fig. 7-18 obtained by parallel connection of three 
systems. Choosing the outputs of integrators as state variables as shown in Fig. 7-18, we get 

4 4 1 )  = - s , ( t )  + x ( t )  

& ( t )  = - 2 q ~ ( t )  - ; x ( t )  

q 3 ( t )  = - 5 q 3 ( t )  - : x ( t )  

~ ( t )  = q , ( t )  + q z ( t )  + q , ( t )  

In matrix form 

Note that the system matrix A is a diagonal matrix whose diagonal elements consist of the poles 
of H ( s ) .  

Fig. 7-17 
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Fig. 7-18 

SOLUTIONS OF STATE EQUATIONS FOR DISCRETE-TIME LTI SYSTEMS 

7.20. Find An for 

by the Cayley-Hamilton theorem method. 

First, we find the characteristic polynomial c(A) of A. 

= - ?A + = ( A  - L ) ( A  - L )  
4 8 2 4 

Thus, the eigenvalues of A are A ,  = i and A,  = a. Hence, by Eqs. (7.27) and (7.28) we have 

An = b,I + b,A = 
- b b,, + 36, i bo b1 I 

and b, and b, are the solutions of 

bo + b,(;) = (4)" 
bo + b,(+) = ($)" 
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from which we get 

bo = - (;ln + 2(;ln b ,  = 4($ - 4($)" 

Hence, 

7.21. Repeat Prob. 7.20 using the diagonalization method. 

Let x be an eigenvector of A associated with A .  Then 

[ A l  - A]x = 0 

For A=Al = ; we have 

The solutions of this system are given by x,  = 2x2. Thus, the eigenvectors associated with A ,  
are those vectors of the form 

For A = A 2  = $ we have 

The solutions of this system are given by x, = 4x2. Thus, the eigenvectors associated with A ,  
are those vectors of the form 

8 + 0  

Let a = p = 1 in the above expressions and let 

Then 
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and by Eq. (7.29) we obtain 

7.22. Repeat Prob. 7.20 using the spectral decomposition method. 

Since all eigenvalues of A are distinct, by Eq. (7.33) we have 

Then, by Eq. (7.34) we obtain 

7.23. Repeat Prob. 7.20 using the z-transform method. 

First, we must find ( z l  - A)-'. 
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Then by Eq. (7.35) we obtain 

= ~ ; , { ( z I  - A)-'z) 

From the above results we note that when the eigenvalues of A are all distinct, the spectral 
decomposition method is computationally the most efficient method of evaluating An. 

7.24. Find An for 

The characteristic polynomial c(A) of A is 

4 5A + + = (A - l)(A - $1 
Thus, the eigenvalues of A are A ,  = 1 and A, = 4, and by Eq. (7.33) we have 

1 1 3 
2 

E2= - ( A - ( A -  
A 2  - 4  5 - 1 2 

Thus, by Eq. (7.34) we obtain 
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7.25. Find An for 
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The characteristic polynomial c(A) of A is 

Thus, the eigenvalues of A are A ,  = A, = 2. We use the Cayley-Hamilton theorem to evaluate 
An. By Eq. (7.27) we have 

where b, and b, are determined by setting A = 2 in the following equations [App. A, 
Eqs. (A.59) and (A.60)I: 

b, +b,A =An 

b,  = n ~ " - '  

Thus, 

b, + 2b, = 2" 

b, =n2"-' 

from which we get 

b,= ( 1  -n)2" b, = n2"-' 

and 

7.26. Consider the matrix A in Prob. 7.25. Let A be decomposed as 

where D = [i i] and N = [: i] 
(a) Show that N2 = 0. 

(b) Show that D and N commute, that is, DN = ND. 
( c )  Using the results from parts ( a )  and ( b ) ,  find An. 

( a )  By simple multiplication we see that 

(b) Since the diagonal matrix D can be expressed as 21, we have 

DN = 21N = 2N = 2NI = N(2I) = ND 

that is, D and N commute. 
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(c) Using the binomial expansion and the result from part (b), we can write 

Since N* = 0, then Nk = 0 for k 2 2, and we have 

Thus [see App. A, Eq. (A.431, 

which is the same result obtained in Prob..7.25. 
Note that a square matrix N is called nilpotent of index r if Nr-' # 0 and Nr = 0. 

7.27. The minimal polynomial m(A) of A is the polynomial of lowest order having 1 as its 
leading coefficient such that m(A) = 0. Consider the matrix 

0 0 

( a )  Find the minimal polynomial m(A) of A. 

( b )  Using the result from part (a ) ,  find An. 

(a) The characteristic polynomial c(A) of A is 

Thus, the eigenvalues of A are A ,  = - 3 and A, = A, = 2. Consider 

Now 

Thus, the minimal polynomial of A is 

(b) From the result from part (a) we see that An can be expressed as a linear combination of 
I and A only, even though the order of A is 3. Thus, similar to the result from the 
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Cayley-Hamilton theorem, we have 

where 6, and 6 ,  are determined by setting A = -3  and A = 2 in the equation 

b0+b,A =An 

Thus, 

b,- 36, = ( -3)"  

b,+ 26, = 2" 

from which we get 

b O =  $(-3)" + $(2)" 6 ,  = - f ( -3 ) "+  f(2)" 

and 

7.28. Using the spectral decomposition method, evaluate An for matrix A in Prob. 7.27. 

Since the minimal polynomial of A is 

which contains only simple factors, we can apply the spectral decomposition method to 
evaluate A". Thus, by Eq. (7.33) we have 
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Thus, by Eq. (7.34) we get 

which is the same result obtained in Prob. 7.27(6). 

7.29. Consider the discrete-time system in Prob. 7.7. Assume that the system is initially 
relaxed. 

(a) Using the state space representation, find the unit step response of the system. 
( b )  Find the system function H(z). 
(a) From the result from Prob. 7.7 we have 

q [ n  + 11 = A q [ n ]  + b x [ n ]  

Y [ ~ I  = c q [ n l +  d u b 1  

Setting q[O] = 0 and x[n]  = u[n]  in Eq. ( 7 . 2 9 ,  the unit step response s [ n ]  is given by 

Now, from Prob. 7.20 we have 

n - l - k  1 4  n -  l - k  

and c ~ n - ' - k b  = [ 

n - l - k  
- 4  0 + ( f )  [ - s  [ -,][,] 

n -  l - k  n - k  n - k 
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Thus, 
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which is the same result obtained in Prob. 4.32(c). 

(6) By Eq. (7.44) the system function H(z) is given by 

- I  1 3 
2 - T i  

Now ( I  A )  = [ z112] = 
8 ( ) (  [ -i :] 

Thus, 

which is the same result obtained in Prob. 4.32(a). 

7.30. Consider the discrete-time LTI system described by 

q [ n  + 11 = Aq[n]  + b x [ n ]  

Y [ n ]  = c q [ n ]  + h [ n ]  

( a )  Show that the unit impulse response h [ n ]  of the system is given by 

(6) Using Eq. (7. ] I T ) ,  find the unit impulse response hlnl of the system in Prob. 
7.29. 

(a> By setting q[O] = 0, x[k] = 6[k], and x[n] = 6[n] in Eq. (7.25), we obtain 
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Note that the sum in Eq. (7.118) has no terms for n  = 0 and that the first term is cA"-'b 
for n  > 0. The second term on the right-hand side of Eq. (7.118) is equal to d for n  = 0 
and zero otherwise. Thus, we conclude that 

(6) From the result from Prob. 7.29 we have 

and & - I , ,  = ( + ) " - '  - ' ( ' )"-I  4 4 n 2 l  

Thus, by Eq. (7.117) h [ n ]  is 

which is the same result obtained in Prob. 4.32(b). 

7.31. Use the state space method to solve the difference equation [Prob. 4 .38(6 ) ]  

3 y [ n ]  - 4 y [ n  - 11 + y [ n  - 21 = x [ n ]  (7.119) 

with x [ n ]  = ( ; ) " u [ n ]  and y [ -  11 = 1 ,  y [ - 2 ] =  2 .  

Rewriting Eq. (7.119), we have 

y [ n ]  - $ y [ n  - 1 1  + + y [ n  - 21 = i x [ n ]  

Let q , [ n ]  = y [n  - 21 and q , [n ]  = y [ n  - 11. Then 

d n  + 1 1  = + I  
s z [ n  + 1 1  = - f q l [ n ]  + ; q 2 [ n ]  + i x [ n ]  

~ [ n l =  - f q l [ n l  + ; q 2 [ n ]  + + [ n l  

In matrix form 

and 

Then, by Eq. (7.25) 
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Now from the result from Prob. 7.24 we have 

and c A n q [ 0 ] =  [ - 4  $1 

= f + '(9)" 
6 3 

,.An- I - k  b =  [ - )  ;I 

Thus, 

1 1 1 " "-1 ] , n + l - k  1 I n  

I + (  [ ( j  ](i) +&) 

which is the same result obtained in Prob. 4.38(b). 

732. Consider the discrete-time LTI system shown in Fig. 7-19. 

(a)  Is the system asymptotically stable? 
( b )  Find the system function H ( z ) .  
(c)  Is the system BIB0 stable? 

(a) From Fig. 7-19 and choosing the state variables q , [ n ]  and q , [ n ]  as shown, we obtain 

9 , [ n  + 1 1  = tc l z [n1 + x [ n l  

9 2 [ n  + 1 1  = - $ ? l [ n ]  + 2 9 2 [ n ]  

Y ~ I  = q , [ n l - 9 * [ n l  

In matrix form 

q [ n  + 1 ]  = A q [ n ]  + b x [ n ]  

Y [ ~ I  = cq[nl 
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Fig. 7-19 

where 

Thus, the eigenvalues of A are A ,  = $ and A, = ;. Since IAz l  > 1, the system is not 
asymptotically stable. 

( b )  By Eq. ( 7 . 4 4 )  the system function H ( z )  is given by 

( c )  Note that there is pole-zero cancellation in H ( z )  at z  = :. Thus, the only pole of H ( z )  is 
I which lies inside the unit circle of the z-plane. Hence, the system is BIBO stable. 

Note that even though the system is BIBO stable, it is essentially unstable if it is not 
initially relaxed. 

7.33. Consider an Nth-order discrete-time LTI system with the state equation 

The system is said to be controllable if it is possible to find a sequence of N input 
samples x[n , ] ,  x [ n ,  + 11, . . . , x [ n ,  f N - 1 ]  such that it will drive the system from 
q [ n , ]  = q,  to q [ n ,  + N ]  = q ,  and q ,  and q ,  are any finite states. Show that the system 
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is controllable if the controllability matrix defined by 

M , =  [b A b  - . -  ~ ~ - ' b ]  
has rank N. 

We assume that no = 0 and q[O] = 0. Then, by Eq. (7.23) we have 

which can be rewritten as 

Thus, if q[N] is to be an arbitrary N-dimensional vector and also to have a nonzero input 
sequence, as required for controllability, the coefficient matrix in Eq. (7.122) must be nonsingu- 
lar, that is, the matrix 

must have rank N. 

734. Consider an  Nth-order discrete-time LTI system with state space representation 

The system is said to  be obseruable if, starting at an arbitrary time index nu, it is 
possible to determine the state q[n,] = q ,  from the output sequence y[n,], y[nO + 
I ] ,  . . . , y[n, + N - 11. Show that the system is observable if the obseruability matrix 
defined by 

has rank N .  

We assume that n, = 0 and x [ n ]  = 0. Then, by Eq. (7.25) the output y[n] for n = 
0,1,.  . . , N - 1, with x[n] = 0, is given by 
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Rewriting Eq. (7.125) as a matrix equation, we get 

Thus, to find a unique solution for q[O], the coefficient matrix of Eq. (7.126) must be 
nonsingular; that is, the matrix 

M, = 

must have rank N. 

7.35. Consider the system in Prob. 7.7 

( a )  Is the system controllable? 
( b )  Is the system observable? 
( c )  Find the system function H ( z ) .  

( a )  From the result from Prob. 7.7 we have 

Now 

and by Eq. (7.120) the controllability matrix is 

and IM,l = - 1 # 0. Thus, its rank is 2 and hence the system is controllable. 
( b )  Similarly, 

and by Eq. (7.123) the observability matrix is 

and (MoI = - & # 0. Thus, its rank is 2 and hence the system is observable. 
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( c )  By Eq. (7.44) the system function H ( z )  is given by 

7.36. Consider the system in Prob. 7.7. Assume that 

Find x[O] and x[l] such that q[2] = 0. 

From Eq. (7.23) we have 

Thus, 

x[ol 
= [: j + [m + :x[ol] 

from which we obtain x[O] = - and x[l]  = i. 

7.37. Consider the system in Prob. 7.7. We observe y[O] = 1 and y[l] = 0 with x[O] = x[l] = 0. 
Find the initial state q[O]. 

Using Eq. (7.1251, we have 

Thus, 

Solving for ql[Ol and q,[Ol, we obtain 
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7.38. Consider the system in Prob. 7.32. 

( a )  Is the system controllable? 
(6) Is the system observable? 

( a )  From the result from Prob. 7.32 we have 

Now 

and by Eq. (7.120) the controllability matrix is 

and IM,I = - 4 # 0. Thus, its rank is 2 and hence the system is controllable. 
( b )  Similarly, 

and by Eq. (7.123) the observability matrix is 

and IMol = 0. Thus, its rank is less than 2 and hence the system is not observable. 
Note from the result from Prob. 7.32(b) that the system function H ( z )  has pole-zero 

cancellation. If H ( z )  has pole-zero cancellation, then the system cannot be both control- 
lable and observable. 

SOLUTIONS OF STATE EQUATIONS FOR CONTINUOUS-TIME LTI SYSTEMS 

7.39. Find eA' for 

using the Cayley-Hamilton theorem method. 

First, we find the characteristic polynomial c(A) of A. 

=A'+  5A + 6  = ( A  + 2)(A + 3) 

Thus, the eigenvalues of A are A ,  = - 2 and A ,  = - 3. Hence, by Eqs. (7.66) and (7.67) we have 
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and b, and b ,  are the solutions of 

from which we get 

Hence, 

7.40. Repeat Prob. 7.39 using the diagonalization method. 

Let x  be an eigenvector of A associated with A .  Then 

[ A 1  - A]x = 0 

For A  = A ,  = - 2  we have 

The solutions of this system are given by x ,  = - 2 x 1 .  Thus, the eigenvectors associated with A ,  
are those vectors of the form 

X l  = a [  -;I with a # 0 

For A  = A 2 =  -3 we have 

The solutions of this system are given by x ,  = - 3 x , .  Thus, the eigenvectors associated with A ,  
are those vectors of the form 

Let a = p = 1 in the above expressions and let 

Then 
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7.41. Repeat Prob. 7.39 using the spectral decomposition method. 

Since all eigenvalues of A are distinct, by Eq. (7.33) we have 

1 
El = - ( A - A 2 1 ) = A + 3 1 =  3 

A I  - A 2  [ - 6  -:] 
1 

E 2 =  - (A-AII) = - (A+21)  = 
A 2  - A1 [-: -:I 

Then by Eq. (7.70) we obtain 

7.42. Repeat Prob. 7.39 using the Laplace transform method. 

First, we must find (SI -A)-' 

Then, by Eq. (7.71) we obtain 

Again we note that when the eigenvalues of A are all distinct, the spectral decomposition 
method is computationally the most efficient method of evaluating eA'. 

7.43. Find eA' for 

The characteristic polynomial c(A) of A  is 

= h 2 + 4 ~ + 3 = ( ~ +  1)(A + 3 )  

Thus, the eigenvalues of A  are A ,  = - 1 and A ,  = -3. Since all eigenvalues of A  are distinct, by 
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Eq. (7.33) we have 

Then, by Eq. (7.70) we obtain 

7.44. Given matrix 

( a )  Show that A is nilpotent of index 3. 
( 6 )  Using the result from part ( a )  find eA'. 

( a )  By direct multiplication we have 

Thus, A  is nilpotent of index 3. 

( b )  By definition (7.53) and the result from part ( a )  

7.45. Find eA' for matrix A in Prob. 7.44 using the Cayley-Hamilton theorem method. 

First, we find the characteristic polynomial c(A) of A. 

A 2 -  
c ( A ) = l A l - A ,  = I 0  A - i l = A 3  

0 0 
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Thus, A = 0 is the eigenvalues of A with multiplicity 3. By Eq. (7.66) we have 

eA' = b,I + b,A + b2A2 

where b,, b , ,  and b2 are determined by setting A = 0 in the following equations [App. A, Eqs. 
(A.  59)  and (A .  60 )I: 

b, + b,A + b2h2 = eA' 

Thus, 

Hence, 

t 
eA' = I + tA + -A' 

2 

which is the same result obtained in Prob. 7.44(b). 

7.46. Show that 
e A + B  = eAeB 

provided A and B commute, that is, AB = BA. 

By Eq. (7.53) 

1 1 1 1 
= I + A + B + - A ~ + - A B + - B A + - B ~ +  . . .  

2 !  2 2 2 !  

and eAeB - eA+B = L , (AB - BA) + . 
Thus, if AB = BA, then 

e A + B  = eAeB 

7.47. Consider the matrix 
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Now we decompose A as 

[CHAP. 7 

A = A + N  

[ 2 0 0 ]  and [ 0 1 0  
where A = O 2  0 N = O O  1 

0 0 2  0 0 0  

( a )  Show that the matrix N is nilpotent of index 3. 
( b )  Show that A and N commute, that is, AN = N h  
( c )  Using the results from parts ( a )  and ( b ) ,  find eA'. 

( a )  By direct multiplication we have 

0 1 0 0 1 0  0 0  
N ~ = N N =  o o 1 o o 1 = o o 

l o  0  o l i o  0  01 ( 0  0  

0 0 1 0 1 0  0 0  
N 3 = N 2 N = 0  0  0  0 0  1 = 0  0 

[o 0  oI[o 0  01 [o 0  

Thus, N  is nilpotent of index 3. 

( b )  Since the diagonal matrix A can be expressed as 21, we have 

that is, A and N commute. 
( c )  Since A and N  commute, then, by the result from Prob. 7.46 

Now [see App. A, Eq. (A.4911 

and using similar justification as in Prob. 7.44(b), we have 

Thus, 
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7.48. Using the state variables method, solve the second-order linear differential equation 

y " ( t )  + 5 y ' ( t )  + 6 y ( t )  = x ( t )  (7.127) 

with the initial conditions y(0) = 2, y l (0)  = 1 ,  and x ( t )  = e - ' u ( t )  (Prob. 3.38). 

Let the state variables q J t )  and q, ( t )  be 

q d t )  = Y ( I )  ~ 2 (  f ) = ~ ' ( t )  

Then the state space representation of Eq. (7.127) is given by [Eq. (7.19)l 

q ( t )  = Aq(t )  + b x ( t )  

~ t t )  = c q ( t )  

with A = [ - :  -:I b = [ y ]  c = [ l  O ]  q'ol = [ q 2 ( 0 ) ]  qdo)  = [i] 
Thus, by Eq. (7.65) 

with d = 0. Now, from the result from Prob. 7.39 

and c ~ q ( 0 )  = [ I  ~ ] ( e - ~ ' [ - :  -:I + e - ' ' [ - :  -:I)[:] 

Thus, 

7.49. Consider the network shown in Fig. 7-20. The initial voltages across the capacitors C, 
and C, are f V and 1 V, respectively. Using the state variable method, find the 
voltages across these capacitors for t  > 0 .  Assume that R ,  = R,  = R, = 1 0 and 
C, = C 2 =  1 F. 

Let the state variables q , ( t )  and q2( t )  be 
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Fig. 7-20 

Applying Kirchhoffs current law at nodes 1 and 2,  we get 

Substituting the values of R , ,  R 2 ,  R,, C , ,  and C2 and rearranging, we obtain 

41(t)  = -291( t )  + q 2 ( t )  

42 ( t )  = 9 l ( t )  - 2 9 2 ( t )  

In matrix form 

i l ( t )  = A q ( t )  

with 

Then, by Eq. (7.63) with x ( t )  = 0 and using the result from Prob. 7.43, we get 

7.50. Consider the continuous-time LTI system shown in Fig. 7-21. 

(a) Is the system asymptotically stable? 
( b )  Find the system function H(s). 
( c )  IS the system B I B 0  stable? 

( a )  From Fig. 7-21 and choosing the state variables q , ( t )  and q2( t )  as shown, we obtain 

41( t )  = 9 2 ( t )  + x ( t )  

4 2 ( t )  = 2 9 l ( t )  + 9 2 ( t )  - x ( t )  

~ ( t )  = 9 L t )  - % ( t )  
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In matrix form 

where 

Now 

Thus, the eigenvalues of A are A ,  = - 1 and A t  = 2. Since Re{A,) > 0, the system is not 
asymptotically stable. 

( b )  By Eq. (7.52) the system function H(s) is given by 

(c) Note that there is pole-zero cancellation in H(s) at s = 2. Thus, the onIy pole of H(s)  
is - 1 which is located in the left-hand side of the s-plane. Hence, the system is BIB0 
stable. 

Again it is noted that the system is essentially unstable if the system is not initially 
relaxed. 

7.51. Consider an Nth-order continuous-time LTI system with state equation 

The system is said to be controllable if it is possible to find an input x ( t )  which will 
drive the system from q(t,)  = q ,  to q(t ,) = q ,  in a specified finite time and q ,  and q ,  
are any finite state vectors. Show that the system is controllable if the controllability 
matrix defined by 

has rank N. 
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We assume that r ,  = 0 and q[Ol = 0. Then, by Eq. (7.63) we have 

Now, by the Cayley-Hamilton theorem we can express e-A' as 

Substituting Eq. (7.130) into Eq. (7.129) and rearranging, we get 

Let 

Then Eq. (7.131) can be rewritten as 

For any given state q ,  we can determine from Eq. (7.132) unique Pk's (k = 0,1,. . . , N - I), and 
hence x(t), if the coefficients matrix of Eq. (7.132) is nonsingular, that is, the matrix 

has rank N. 

7.52. Consider an Nth-order continuous-time LTI system with state space representation 

q ( t )  = Aq(t)  + b x ( t )  

~ ( t )  = c 4 t )  
The  system is said to be observable if any initial state q(t , )  can be determined by 
examining the system output y ( t )  over some finite period of time from to  to t , .  Show 
that the system is observable if the observability matrix defined by 

has rank N. 

We prove this by contradiction. Suppose that the rank of M, is less than N. Then there 
exists an.initia1 state q[O] = q, f 0 such that 

Moq, = 0 
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Now from Eq. (7.65), for x(t ) = 0 and t o  = 0, 

However, by the Cayley-Hamilton theorem eA' can be expressed as 

Substituting Eq. (7.136) into Eq. (7.135), we get 

in view of Eq. (7.134). Thus, qo is indistinguishable from the zero state and hence the system is 
not observable. Therefore, if the system is to be observable, then Mo must have rank N. 

7.53. Consider the system in Prob. 7.50. 

( a )  Is the system controllable? 
( 6 )  Is the system observable? 

( a )  From the result from Prob. 7.50 we have 

Now 

and by Eq. (7.128) the controllability matrix is 

M, = [b Ab] = [ - 1  -11 
and IM,I = 0. Thus, it has a rank less than 2 and hence the system is not controllable. 

( b )  Similarly, 

and by Eq. (7.133) the observability matrix is 

and J M J  = - 2 # 0. Thus, its rank is 2 and hence the system is observable. 
Note from the result from Prob. 7.50(b) that the system function H(s) has pole-zero 

cancellation. As in the discrete-time case, if H(s) has pole-zero cancellation, then the 
system cannot be both controllable and observable. 

7.54. Consider the system shown in Fig. 7-22. 

( a )  Is the system controllable? 
( b )  Is the system observable? 

( c )  Find the system function H(s). 
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Fig. 7-22 

In matrix form 

where 

Now 

and by Eq. (7.128) the controllability matrix is 

M,= [b Ab] = [: :] 
and lM,I = 0. Thus, its rank is less than 2 and hence the system is not controllable. 

( b )  Similarly, 

and by Eq. (7.133) the observability matrix is 

and lMoI = 0. Thus, its rank is less than 2 and hence the system is not observable. 

( c )  By Eq. (7.52) the system function H(s) is given by 

H ( S )  = c ( s ~ - A ) - ' ~  

Note that the system is both uncontrollable and unobservable. 
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Supplementary Problems 

7.55. Consider the discrete-time LTI system shown in Fig. 7-23. Find the state space representation 
of the system with the state variables q , [ n ]  and q , [ n ]  as shown. 

Fig. 7-23 

7.56. Consider the discrete-time LTI system shown in Fig. 7-24. Find the state space representation 
of the system with the state variables q , [ n ]  and q , [ n ]  as shown. 

Fig. 7-24 
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7.57. Consider the discrete-time LTI system shown in Fig. 7-25. 

( a )  Find the state space representation of the system with the state variables q, [n ]  and q2[n]  
as shown. 

( b )  Find the system function H ( z ) .  

(c) Find the difference equation relating x [n ]  and y[n] .  

Fig. 7-25 
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7.58. A discrete-time LTI system is specified by the difference equation 

y [ n ]  + y [ n  - 1 1  - 6 y [ n  - 21 = 2 x [ n  - 1 1  + x [ n  - 21 

Write the two canonical forms of state representation for the system. 

7.59. Find A" for 

( a )  Using the Cayley-Hamilton theorem method. 
( b )  Using the diagonalization method. 

- 2(+)" + 3 0 ) "  6 ( f  )" - 6 ( f  )" 
Am. A" = 

- (i)" + (4)" 3($)" - 2(;)" I 
7.60. Find A" for 

( a )  Using the spectral decomposition method. 
( b )  Using the z-transform method. 

[ ( 3 ) "  0 0 
Am. An= 0 f ( 2 ) " +  ; ( - 3 ) "  f(2)" - + ( - 3 ) "  I 0 ;(2)" - ; ( - 3 ) "  j (2 )"  - j ( - 3 ) "  

7.61. Given a matrix 

( a )  Find the minimal polynomial m(A)  of A. 
( b )  Using the result from part (a ) ,  find An. 

Ans. ( a )  m(A) = ( A  - 3XA + 3) = A' - 9 
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7.62. Consider the discrete-time LTI system with the following state space representation: 

(a)  Find the system function H(z). 
(b)  Is the system controllable? 

(c) IS the system observable? 
1 
1 

Ans. (a)  H ( z ) =  
( 2 -  1)*  

(b) The system is controllable. 

(c) The system is not observable. 

7.63. Consider the discrete-time LTI system in Prob. 7.55. 

(a)  Is the system asymptotically stable? 
( b )  Is the system BIBO stable? 
(c) IS the system controllable? 

(d l  Is the system observable? 

Am. (a)  The system is asymptotically stable. 

(b) The system is BIBO stable. 
(c) The system is controllable. 

(d l  The system is not observable. 

7.64. The controllability and observability of an LTI system may be investigated by diagonalizing the 
system matrix A. A system with a state space representation 

v [ n  + 1 1  = Av[n] + *bx[n] 

y [ n ]  = b [ n ]  

(where A is a diagonal matrix) is controllable if the vector Ib has no zero elements, and it is 
observable if the vector e has no zero elements. Consider the discrete-time LTI system in Prob. 
7.55. 

Let d n ]  = Tq[n].  Find the matrix T such that the new state space representation will have 
a diagonal system matrix. 

Write the new state space representation of the system. 

Using the result from part (b) ,  investigate the controllability and observability of the 
system. 

(c) The system is controllable but not observable. 
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7.65. Consider the network shown in Fig. 7-26. Find a state space representation for the network 
with the state variables q , ( t )  = i , ( t ) ,  q , ( t )  = o&) and outputs y , ( t )  = i , ( t ) ,  y , ( t )  = uc(t ) ,  
assuming R ,  = R , =  1 $2, L = 1 H, and C = 1 F. 

Fig. 7-26 

7.66. Consider the continuous-time LTI system shown in Fig. 7-27. 

( a )  Find the state space representation of the system with the state variables q , ( t )  and q , ( t )  
as shown. 

( 6 )  For what values of n  will the system be asymptotically stable? 

- 3  1 Am. ( a )  4 ( t ) = [ - n  l ] q ( t ) + [ y ] x ( t )  

Fig. 7-27 
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7.67. A continuous-time LTI system is described by 

3s2 - 1 
H ( s )  = 

s3 + 3sZ - s  - 2 
Write the two canonical forms of state representation for the system. 

7.68. Consider the continuous-time LTI system shown in Fig. 7-28. 

( a )  Find the state space representation of the system with the state variables q , ( t )  and q2( t )  
as shown. 

( b )  Is the system asymptotically stable? 

( c )  Find the system function Hts).  
( d l  Is the system BIBO stable? 

y( t )  = [ I  l lq(t) 
The system is not asymptotically stable. 

The system is BIBO stable. 

Fig. 7-28 

7.69. Find e A' for 

( a )  Using the Cayley-Hamilton theorem method. 
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(b) Using the spectral decomposition method. 

Am, eA' =e-'  cos t sin t 
-sin t cos t I 

Consider the matrix A in Prob. 7.69. Find e-A' and show that eWA' = [eA']- '. 
Am. e - A t = e  

sin t cos t I 
Find eA' for 

(a)  Using the diagonalization method. 

(b) Using the Laplace transform method. 

Consider the network in Prob. 7.65 (Fig. 7.26). Find u,(t) if x( t)  = u(t)  under an initially 
relaxed condition. 

Am. v,(t)= $0 +e- 's int  -e-'cost), t > O  

Using the state space method, solve the linear differentia! equation 

y V ( t )  + 3y1(t) + 2y( t )  = 0 

with the initial conditions y(O) = 0, yl(0) = 1. 

Am. y(t) = e-' - e-", t > 0 

As in the discrete-time case, controllability and observability of a continuous-time LTI system 
may be investigated by diagonalizing the system matrix A. A system with state space representa- 
tion 

where A is a diagonal matrix, is controllable if the vector b has no zero elements and is 
observable if the vector C has no zero elements. Consider the continuous-time system in Prob. 
7.50. 

(a) Find a new state space representation of the system by diagonalizing the system matrix A. 
(b) Is the system controllable? 
(c) IS the system observable? 

A m  (a) ir(t)= [ - A  ;]*(I) + [;]x(t) 

y(t) = [2 - llv(t) 
(b) The system is not controllable. 
( c )  The system is observable. 



Appendix A 

Review of Matrix Theory 

A.l MATRIX NOTATION AND OPERATIONS 

A. Definitions: 

1.  An m X n matrix A is a rectangular array of elements having m rows and n columns 
and is denoted as 

When m = n, A is called a square matrix of order n. 
2. A 1 x n matrix is called an n-dimensional row vector: 

An m x 1 matrix is called an m-dimensional column uector: 

3. A zero matrix 0 is a matrix having all its elements zero. 
4. A diagonal matrix D is a square matrix in which all elements not on the main diagonal 

are zero: 

Sometimes the diagonal matrix D in Eq. (A .4 )  is expressed as 

D = diag(d, d 2  . 4 ) 
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5. The idenrity (or unit) matrix I is a diagonal matrix with all of its diagonal elements 
equal to 1. 

B. Operations: 

Let A = [a i j lmxn,  B = [b i i lmxn,  and C = [C~~I , , , .  
a. Equality of Two Matrices: 

A =  B = , a . . = b . .  
I J  11 

b. Addition: 

C = A + B  =s c i j  = ai j  + bij 

c. Multiplication by a Scalar: 

B = a A  =s bij = aai j  

If a = - 1, then B = - A is called the negative of A. 

EXAMPLE A.l Let 

Then 

Notes: 

1. 
2. 
3. 
4. 
5. 
6 .  
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d. Multiplication: 

[APP. A 

Let A  = [a,,],.,, B  = [bijInxp, and C = [cijImxp. 
n 

C = A B  = C i j =  aikbkj 
k = l  

The matrix product AB is defined only when the number of columns of A  is equal to the number of 
rows of B. In this case A  and B  are said to be conformable. 

EXAMPLE A.2 Let 

Then 

0(1)+(-1)3 0(2)+(-I)(-1)  

1(1) + 2(3) 
2(1) + ( -3)3 2(2) + ( -3)( - 1) 

but BA is not defined. 

Furthermore, even if both AB and BA are defined, in general 

AB # BA 

EXAMPLE A.3 Let 

A -;] B -;I 
Then B=[;  [ -:I=[-: A] 

2 0 
.A=[: - :I=[-:  -:]- 

An example of the case where AB = BA follows. 

EXAMPLE A.4 Let 

1 0  2 0 
0  31 ~ = [ o  4 1  

Then A B = B A = [ ~  

Notes: 

1. AO=OA=O 
2. A1 = LA = A 
3. (A + B)C = AC + BC 
4. A ( B + C ) = A B + A C  
5. (AB)C = A(BC) = ABC 
6. a(AB) = (aA)B = A(aB) 
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It is important to note that AB = 0 does not necessarily imply A = 0 or B = 0. 

EXAMPLE A.5 Let 

Then 

A.2 TRANSPOSE AND INVERSE 

A. Transpose: 

Let A be an n x m matrix. The transpose of A, denoted by AT, is an m x n matrix 
formed by interchanging the rows and columns of A. 

B = A T + b . , = a . .  
1 )  11 ( A .  14) 

EXAMPLE A.6 

If AT = A, then A is said to be symmetric, and if AT = -A, then A is said to be skew-symmetric. 

EXAMPLE A.7 Let 

Then A is a symmetric matrix and B is a skew-symmetric matrix. 

Note that if a matrix is skew-symmetric, then its diagonal elements are all zero. 

Notes: 

1 .  (AT)T=A 
2. (A + B ) ~  = + B~ 
3. ( a ~ ) ~ =  Q A ~  
4. ( A B ) ~ = B ~ A ~  

B. Inverses: 

A matrix A is said to be invertible if there exists a matrix B such that 

B A = A B = I  

The matrix B is called the inverse of A and is denoted by A-I. Thus, 

A - ~ A = M - ~  = I  

( A .  1.5) 

( A .  16a) 

( A .  l6b) 



432 REVIEW OF MATRIX THEORY [APP. A 

EXAMPLE A.8 

Thus, 

Notes: 

1.  ( A - y  = A  
2. ( A - ' ) ~ = ( A ~ ) - '  

Note that if A is invertible, then AB = 0 implies that B = 0 since 

A.3 LINEAR INDEPENDENCE AND RANK 

A. Linear independence: 

Let A=[a ,  a ,  . . .  a,], where ai denotes the ith column vector of A. A set of 
column vectors a; ( 1  = 1,2, .  . . , n) is said to be linearly dependent if there exist numbers a i  
( i  = 1,2,. . . , n)  not all zero such that 

If Eq. (A.18) holds only for all cui = 0, then the set is said to be linearly independent. 

EXAMPLE A.9 Let 

Since 2a, + (-3)a, + a, = 0, a,, a,, and a, are linearly dependent. Let 

Then 

implies that a, = a, = a, = 0. Thus, d , ,  d,,  and d, are linearly independent. 
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B. Rank of a Matrix: 

The number of linearly independent column vectors in a matrix A is called the column 
rank of A, and the number of linearly independent row vectors in a matrix A is called the 
row rank of A. It can be shown that 

Rank of A = column rank of A = row rank of A (A.19) 

Note: 

If the rank of an N  x N  matrix A is N ,  then A is invertible and A-' exists. 

A.4 DETERMINANTS 

A. Definitions: 

Let A = [ai j]  be a square matrix of order N. We associate with A a certain number 
called its determinant, denoted by detA or  IAl. Let M,, be the square matrix of order 
( N  - 1) obtained from A by deleting the ith row and jth column. The number A,j  defined 
by 

is called the cofactor of a,,. Then det A is obtained by 

N 

d e t A = I A l = C a i k A i k  i=1,2, ..., N ( A . 2 1 ~ )  
k = l  

N 

or  detA = (A1 = C akjAk, j = 192?.  . . N ( A.21b) 
k = l  

Equation ( A . 2 1 ~ )  is known as the Laplace expansion of IAl along the ith row, and Eq. 
(A.21b) the Laplace expansion of IAl along the j th column. 

EXAMPLE A.10 For a 1 x 1 matrix, 

A =  [a , , ]  --, IAl = a , ,  

For a 2 x 2 matrix, 

For a 3 x 3 matrix, 
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Using Eqs. (A.21~) and (A.231, we obtain 

B. Determinant Rank of a Matrix: 

The determinant rank of a matrix A is defined as the order of the largest square 
submatrix M of A such that det M # 0. It can be shown that the rank of A is equal to the 
determinant rank of A. 

EXAMPLE A. l l  Let 

Note that IAl = 0. One of the largest submatrices whose determinant is not equal to zero is 

Hence the rank of the matrix A is 2. (See Example A.9.) 

C. Inverse of a Matrix: 

Using determinants, the inverse of an N x N matrix A can be computed as 

1 
~ - 1 ~ -  adj A 

det A 

and 

A11 A21 ... A N I  
. . .  

a d j A = [ ~ , , ] ~ = [ ~ :  A I N  A: ... ... A:] 

ANN 

where A,, is the cofactor of a i j  defined in Eq. (A.20) and "adj" stands for the adjugate (or 
adjoint). Formula (A.25) is used mainly for N = 2 and N = 3. 

EXAMPLEA.12 Let 
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Then 

adj A = 

Thus, 

For a 2 x 2 matrix, 

From Eq. (A.25) we see that if det A = 0, then A-' does not exist. The matrix A is called 
singular if det A = 0, and nonsingular if det A # 0. Thus, if a matrix is nonsingular, then it is 
invertible and A-' exists. 

AS EIGENVALUES AND EIGENVECTORS 

A. Definitions: 

Let A be an N x N matrix. If 

Ax = Ax (A.28)  

for some scalar A and nonzero column vector x, then A is called an eigenvalue (or 
characteristic value) of A and x is called an eigenuector associated with A. 

B. Characteristic Equation: 

Equation (A.28) can be rewritten as 

(A1 -A)x  = 0 (A.29) 

where I is the identity matrix of Nth order. Equation (A.29) will have a nonzero 
eigenvector x only if A1 - A is singular, that is, 

IAI-A1 = O  (A.30) 

which is called the characteristic equation of A. The polynomial c(A) defined by 

c(A)  = IAI - Al =A" + c,-,A"-' + - .  . +c,A + co ( A.31) 

is called the characteristic polynomial of A. Now if A,, A,, . . . , A, are distinct eigenvalues of 
A, then we have 

c ( A )  = ( A  - A , ) ~ ' ( A  - A ~ ) ~ *  - . . ( A  - (A.32) 

where m ,  + m2 + - - +mi = N and mi is called the algebraic multiplicity of A,. 
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THEOREM A.l: 

Let A, (k  = 1,2, .  . . , i) be the distinct eigenvalues of A and let x, be the eigenvectors 
associated with the eigenvalues A,. Then the set of eigenvectors x,, x,, . . . , x, are linearly 
independent. 

Proof. The proof is by contradiction. Suppose that x,, x,, . . . , x i  are linearly dependent. 
Then there exists a , ,  a,, . . . , ai not all zero such that 

1 

a 1 x ,  + a 2 x 2  + a .  + a i x i  = C a k x k  = 0 ( A.33) 
K =  l 

Assuming a,  # 0, then by Eq. (A.33) we have 

(A,I - A)(A,I - A) (A.34) 

Now by Eq. (A.28) 

(A,I - A)x, = ( A j  - A,)x, j # k 

and (A,I - A)x, = 0 

Then Eq. (A.34) can be written as 

a,(A2 - A , ) ( A ,  -A,) - - - (Ai - A,)x, = 0 (A.35) 

Since A, (k = 1,2, .  . . , i) are distinct, Eq. (A.35) implies that a, = 0, which is a contradic- 
tion. Thus, the set of eigenvectors x,, x,, . . . , xi are linearly independent. 

A.6 DIAGONALIZATION AND SIMILARITY TRANSFORMATION 

A. Diagonalization: 

Suppose that all eigenvalues of an N X N matrix A are distinct. Let x1,x2, .  . . , x N  be 
eigenvectors associated with the eigenvalues A,, A,, . . . , A N .  Let 

P =  [x, x, - e m  x,] (A.36) 

Then A P = A [ X ,  x, x,] 

'[AX] AX2 ' "  AXN] 

= [A,x, A2x2 ANxN] 

where 
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By Theorem A.1, P has N linearly independent column vectors. Thus, P is nonsingular 
and P-' exists, and hence 

We call P the diagonalization matrix or eigenvector matrix, and A the eigenvalue matrix. 

Notes: 

1. A sufficient (but not necessary) condition that an N x N matrix A be diagonalizable is 
that A has N distinct eigenvalues. 

2. If A does not have N independent eigenvectors, then A is not diagonalizable. 
3. The diagonalization matrix P is not unique. Reordering the columns of P or multiply- 

ing them by nonzero scalars will produce a new diagonalization matrix. 

B. Similarity Transformation: 

Let A and B be two square matrices of the same order. If there exists a nonsingular 
matrix Q such that 

B = Q-'AQ (A.40)  

then we say that B is similar to A and Eq. (A.40) is called the similarity transformation. 

Notes: 

1. If B is similar to A, then A is similar to B. 
2. If A is similar to B and B is similar to C, then A is similar to C. 

3. If A and B are similar, then A and B have the same eigenvalues. 
4. An N X N matrix A is similar to a diagonal matrix D if and only if there exist N 

linearly independent eigenvectors of A. 

A.7 FUNCTIONS O F  A MATRIX 

A. Powers of a Matrix: 

We define powers of an N x N matrix A as 
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It can be easily verified by direct multiplication that if 

then 

[APP. A 

Notes: 

1.  If the eigenvalues of A are A,, A,, . . . , A,, then the eigenvalues of An are A;, A;, . . .,A:. 
2. Each eigenvector of A is still an eigenvector of An. 
3. If P diagonalizes A, that is, 

then it also diagonalizes An, that is, 

since 

B. Function of a Matrix: 

Consider a function of A defined by 
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With any such function we can associate a function of an N x N matrix A: 
m 

f(A) =a,I  + a , A  +a2A2 + . = x a , ~ ~  (A.48) 
k = O  

If A is a diagonal matrix D in Eq. (A.421, then using Eq. (A.431, we have 

If P diagonalizes A, that is [Eq. (A.4411, 

P-'AP = A  
then we have 

A = PAP-' 

and 

Thus, we obtain 

f ( ~ )  = P ~ ( A ) P -  

Replacing D by A in Eq. (A.491, we get 

where A, are the eigenvalues of A. 

C. The Cayley-Hamilton Theorem: 

Let the characteristic polynomial c(A) of an N x N matrix A be given by [Eq. (A.3111 

c(A) = IAI - AJ = AN + C N - i  AN-]  + . . . +c1A + C, 

The Cayley-Hamilton theorem states that the matrix A satisfies its own characteristic 
equation; that is, 

c(A) = AN + + +c,A + cOI = 0 (A.54) 
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EXAMPLE A.13 Let 
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Then, its characteristic polynomial is 

and 

Rewriting Eq. (A.54) ,  we have 

Multiplying through by A and then substituting the expression (A .55 )  for AN on the right and 
rearranging, we get 

By continuing this process, we can express any positive integral power of A as a linear combination of 
I ,A, .  . . , A ~ - ' .  Thus, f(A) defined by Eq. (A .48 )  can be represented by 

In a similar manner, if A is an eigenvalue of A, then f ( A )  can also be expressed as 
N -  l 

f ( A )  = b , +  blA + . a .  + b , - , ~ ~ - l  = C b,Arn ( A.58) 
m = O  

Thus, if all eigenvalues of A are distinct, the coefficients bm ( r n  = 0,1,. . . , N - 1 )  can be determined 
by the following N equations: 

If all eigenvalues of A are not distinct, then Eq. (A .59 )  will not yield N equations. Assume that an 
eigenvalue A ,  has multiplicity r and all other eigenvalues are distinct. In this case differentiating both 
sides of Eq. (A .58 )  r times with respect to A and setting A = A ; ,  we obtain r equations corresponding 
to A i :  

Combining Eqs. (A .59 )  and (A.601, we can determine all coefficients bm in Eq. (A .57 ) .  

D. Minimal Polynomial of A: 

The minimal (or minimum) polynomial m ( h )  of an N x N matrix A is the polynomial 
of lowest degree having 1 as its leading coefficient such that m ( A )  = 0. Since A satisfies its 
characteristic equation, the degree of m(A) is not greater than N. 
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EXAMPLE A.14 Let 

The characteristic polynomial is 

and the minimal polynomial is 

m(A) = A  -a 

since 

Notes: 

1. Every eigenvalue of A is a zero of m(A). 
2. If all the eigenvalues of A are distinct, then c(A) = m(A). 
3. C(A) is divisible by m(A). 
4. m(A) may be used in the same way as c(A) for the expression of higher powers of A in 

terms of a limited number of powers of A. 

It can be shown that m(A) can be determined by 

where d(A) is the greatest common divisor (gcd) of all elements of adj(A1 -A). 

EXAMPLE A.15 Let 

Then 
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Thus, d(A) = A - 2 and 

0 0 0 
and m(A) = ( A - I ) ( A -  21) = 

E. Spectral Decomposition: 

It can be shown that if the minimal polynomial m(A) of an N x N matrix A has the 
form 

then A can be represented by 

where Ej ( j  = 1,2,. . . , i) are called consrituent matrices and have the following properties: 

Any matrix B for which B2 = B is called idempotent. Thus, the constituent matrices Ej are 
idempotent matrices. The set of eigenvalues of A is called the spectrum of A, and Eq. (A.63)  
is called the spectral decomposition of A. Using the properties of Eq. (A.641, we have 

The constituent matrices E, can be evaluated as follows. The partial-fraction expansion of 

kl k 2 =-+ ------ + . . .  ki +- 
A - A ,  A - A ,  A - A ,  
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leads to 

Then 

where 
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Let e,(A) = kjgj(A). Then the constituent matrices E, can be evaluated as 

EXAMPLE A.16 Consider the matrix A in Example A.15: 

From Example A.15 we have 

Then 

and e,(A)= - (A-2)  e , (A)=A-1 

6 
Then E , = e , ( A ) =  - (A-21)= 
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A.8 DIFFERENTIATION AND INTEGRATION OF MATRICES 

A. Definitions: 

The derivative of an m x n matrix A(t) is defined to be the m x n matrix, each element 
of which is the derivative of the corresponding element of A; that is, 

Similarly, the integral of an m x n matrix A(t) is defined to be 

EXAMPLE A.17 Let 

Then 

and 

B. Differentiation of the Product of Two Matrices: 

If the matrices A(t) and B(t) can be differentiated with respect to t ,  then 



Appendix B 

Properties of Linear Time-Invariant Systems 
and Various Transforms 

B.l CONTINUOUS-TIME LTI SYSTEMS 

Unit impulse response: h( t )  
w 

Convolution: y ( t )  =x( t )*  h(t) = 

Causality: h( t ) = 0, t < 0 
w 

Stability: / Ih(t)l dt < m 
- ?D 

B.2 THE LAPLACE TRANSFORM 

The Bilateral (or Two-sided) Laplace Transform 

Definition: 

Properties of the Bilateral Laplace Transform: 

Linearity: a ,x , ( t )  + a,x,(t) -a,X,(s) + a,X,(s), R ' 3 R ,  n R ,  
Time shifting: x( t - t,) H e-"oX(s), R' = R 
Shifting in s: e"llx(t) - X(s - so), R' = R + Re(s,) 

1 
Time scaling: x(at)  H -X(S), R' = aR 

la l 
Time reversal: x( - t)  - X( -s), R' = -R 

Wt)  
Differentiation in t :  - -sX(s), R' 3 R  

dt 
f l ( s )  

Differentiation in s: - tx(t - - , R ' = R  
ds 

I 1 
Integration: x ( r )  d r  - -X(s), R' > R  n {Re(s) > 0) 1- w S 

Convolution: x,( t )  * x,( t )  t, X,(s)X,(s), R' 3 R ,  n R, 
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Some taplace Transforms Pairs: 

6 ( t )  - 1 ,  all s 

s + a  
e-"' cos w&t) H , Re(s) > - R e ( a )  

( s  + a)2 + w i  

The Unilateral (or One-sided) Laplace Transform 

Definition: 

x , ( s )  = /mx( t )e -s tdr  0 - =  lirn (0  - E )  
0 - € 4 0  

Some Special Properties: 

Differentiation in the Time Domain: 

dnx(t  ) - S " X I ( S )  - S " - I X ( O - )  - S " - 2 X y 0 - )  - . . . -x (n - ' )  
dt" ( 0 -  
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Integration in the Time Domain: 

Initial value theorem: ~ ( 0 ' )  = lirn sX,(s) 
S-m 

Final value theorem: lim x ( t )  = lim sX,(s) 
t -oc s-0 

B.3 THE FOURIER TRANSFORM 

DeJinition: 

Properties of the Fourier Transform: 

Linearity: a l x l ( t )  + a 2 x 2 ( t )  c * a l X , ( o )  + a 2 X 2 ( o )  
Time shifting: x ( t  - t o )  c* e - ~ " ' o ~ ( w )  
Frequency shifting: e J w ~ ~ ' x ( t )  c * X ( o  - oo) 

Time scaling: x ( a t )  - 
Time reversal: x( - t  ) c* X(  - o)  

Duality: X ( t )  c* 2lrx( -o) 

W t )  
Time differentiation: - c*jwX(w) 

dt 
d X ( 4  

Frequency differentiation: ( -jt ) x ( t )  c* - 
d o  

Convolution: x , ( t )*  x 2 ( t )  -X , (w)X2(w)  

1 
Multiplication: x,(t ) x 2 ( t )  - -X , (o)  * X2( W )  

2lr 
Real signal: x ( t )  = x e ( t )  + x o ( t )  - X ( o )  = A ( o )  + jB (o )  

X(  -0) = X * ( o )  
Even component: xe ( t )  - R e { X ( o ) )  = A ( w )  
Odd component: xo ( t )  c* j  I m ( X ( o ) )  = j B ( o )  
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Parseval's Relations: 

Common Fourier Transforms Pairs: 

sin wa 
p,(O = +, 2a --- 

wa 

sin at 
- p a ( w )  = 

Iwl < a  
l T t  

2 
sgn t o - 

1 w  
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B.4 DISCRETE-TIME LTI SYSTEMS 

Unit sample response: h [ n ]  
m 

Convolution: y [ n ]  = x [ n ]  * h [ n ]  = x [ k ] h [ n  - k ]  
k =  -m 

Causality: h [ n ]  = 0, n  < 0 
m 

Stability: ( h [ n ] ( d t  < a: 
n =  - m  

B.5 THE Z-TRANSFORM 

The Bilateral (or Two-sided) z-Transform: 

Dejnition: 

Properties of the z- Transform: 

Linearity: a l x l [ n ]  + a 2 x 2 [ n ]  t - , a , X 1 ( z )  + a 2 X 2 ( z ) ,  R' 3 R ,  n R2 
Time shifting: x [ n  - no]  -2-"oX(z) ,  R' 3 R  n (0 < lzl < w) 

Z 
Multiplication by z:: z :x[n]  - x(% 1, R' = lzdR 

Multiplication by ejR1tN: e ~ ~ o " ~ [ n ]  - ~ ( e - j n l ) z ) ,  R' = R  
1 

Time reversal: x[ - n ]  t-, X 

d X (  z  ) 
Multiplication by n: nx[n]  o - z -, R' = R  

dz  
n 1 

Accumulation: x [ n ]  - 
1 - 2 - '  

X ( z ) ,  R' 3 R  n {lzl > 1) 
k =  - OC 

Some Common z-Transforms Pairs: 

6 [ n ]  - 1 ,  all z  
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6[n - m] -zPm, all z except 0 if m > 0, or 03 if m < 0 
1 Z 

anu[n] - =- 
1-az - '  z - a  

, I z I  > la1 

1 Z 
-anu[-n - 11- =- 

1-az - '  z - a  
, Izl < lal 

z2  - (cos 0,)z 
(COS fl,n)u[n 1 - 

z 2  - (2cos n o ) z  + 1 
, lzl > 1 

(sin 0 , )z  
(sin n,n)u[n] - 

z 2  - (2cos Ro)z + 1 
, 121 > 1 

z 2  - ( r  cos n o ) z  
( r n  cos R,n)u[n] - 

z2 - (2r cos n,)z + r 2  ' Izl > r 

( r  sin 0 , )z  
( r n  sin fl,n)u[n] - 

~ ~ - ( 2 r c o s ~ ~ ) z + r ~ '  Izl > r 

O s n s N - 1 -  1 -aNz-N 
otherwise 1 - az-I 9 IzI>O 

The Unilateral (or One-sided) z-Transform: 

Some Special Properties: 

Time-Shifting Property: 

Initial value theorem: x[O] = lim X( z) 
z - r m  

Final value theorem: lim x[N] = lim (1 - z- ')X( z) 
N-m z- 1 
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B.6 THE DISCRETE-TIME FOURIER TRANSFORM 

Definition: 

m 

X ( R )  = C x [ n ]  eeJf'" 
n= - 0 c  

Properties of the Discrete-Time Fourier Transform: 

Periodicity: x [ n ]  - X ( R )  = X ( R  + 2rr) 
Linearity: a , x , [ n ]  + a 2 x 2 [ n ]  ++ a ,  X J R )  + a 2 X 2 ( R )  
Time shifting: x [ n  - no]  ++ e - ~ ~ " l l X ( R )  
Frequency shifting: e ~ " ~ " x [ n ]  - X ( R  - R,) 
Conjugation: x* [n]  - X*( - R )  
Time Reversal: x[  - n ]  - X( - R )  

i f n = k m  
Time Scaling: x(,,,[n] = - X ( m R )  

i f n z k m  

d X ( R )  
Frequency differentiation: m [ n ]  - j------ 

d R  
First difference: x [ n ]  - x [ n  - 11 ++ ( 1  - e - j o ) x ( f l )  

n 1 

Accumulation: C x [k  ] - rrX(0) S(R) + A x(n) 1 - e -jn 
k =  - C C  

Convolution: x , [ n ]  * x 2 [ n ]  ++ X , ( R ) X , ( R )  
1 

Multiplication: x , [ n ] x 2 [ n ]  - - X , ( R )  @ X 2 ( R )  
2rr 

Real sequence: x [ n ]  =x , [n]  + x,[n] ++ X ( R )  = A ( R )  + j B ( R )  
X ( - R )  = X * ( R )  

Even component: x,[n] - R e { X ( R ) )  = A ( R )  
Odd component: x,[n] - j 1 m { X ( R ) )  = j B ( R )  

Parseval's Relations: 
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Some Common Fourier Transform Pairs: 

sin Wn 0  i IRIS w 
( 0 < W c n - 1 - X ( f l ) =  W < l n , 5 T  

n-n 

B.7 DISCRETE FOURIER TRANSFORM 

Definition: 

x [ n ]  =O outside the range 0  I n  I N - 1 

x [ n ]  ~ [ k ]  

Properties of the DFT: 

Linearity: a , x , [ n ]  + a 2 x 2 [ n ]  - a ,  X , [ k ]  + a ,  X , [ k ]  
Time shifting: x [ n  - no],, - w,knux[k] 
Frequency shifting: ~ ; ~ " u x [ n ]  - X[k - k,] , ,  
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Conjugation: x * [ n ]  H X * [ -  k  Imod , 
Time reversal: x[ - n],,, , w X [  - k  I,,, , 
Duality: X [ n ]  - Nx[-k],, ,  
Circular convolution: x , [ n ]  @ x 2 [ n ]  - X , [ k ] X , [ k ]  

1 
Multiplication: x , [ n ] x 2 [ n ]  o - X , [ k ]  @ X 2 [ k ]  

N 
Real sequence: x [ n ]  = x e [ n ]  + xo[n]  - X [ k ]  = A [ k ]  + j B [ k ]  

x [ - k l m o , ,  = X * [ k l  
Even component: x e [ n ]  t, R e ( X [ k  1 )  = A [ k  ] 
Odd component: xo[n]  - j  Im{ X [ k ] )  = jB[k ] 

Parseval S Relation: 

Note 

B.8 FOURIER SERIES 

Complex hkponential Fourier Series: 

Trigonometric Fourier Series: 

a0 m 

~ ( t )  = - + x ( a k  cos kwOt + bk sin k ~ , t )  
k = l  

2 
x ( t )  sin kw,tdt  

Harmonic Form Fourier Series: 
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Relations among Various Fourier Coefiients: 

Parseval's Theorem for Fourier Series: 

1 m 

- / I )  l2 dt = C Icx12 
To To k =  - m  

B.9 DISCRETE FOURIER SERIES 

Parseval's Theorem for Discrete Fourier Series: 



Appendix C 

Review of Complex Numbers 

C.l REPRESENTATION OF COMPLEX NUMBERS 

The complex number z can be expressed in several ways. 

Cartesian or rectangular form: 

z = a + j b  

where j = and a and b are real numbers referred to the real part and the imaginary 
part of z. a and b are often expressed as 

a = Re{z) b = lrn{z) (c.2) 

where "Re" denotes the "real part o f '  and "Im" denotes the "imaginary part of." 

Polar form: 

z = 

where r > 0 is the magnitude of z and 6 is the angle or phasc~ of z. These quantities are 
often written as 

r = IzI O = L Z  (C-4) 

Figure C-1 is the graphical representation of z. Using Euler's formula, 
= cos6 +js inO ( C . 5 )  

or from Fig. C-1 the relationships between the cartesian and polar representations of z are 

a = r cos 6 b = I- sin 0 (C .6a)  

Fig. C-1 

455 
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C.2 ADDITION, MULTIPLICATION, AND DMSION 

If z ,  = a ,  + jb ,  and z, =a ,  + jb,, then 

z, + z2 = ( a ,  +a , )  + j(b, + b,) 

z l z 2  = ( a l a2  - b,b2) +j(a ,b,  + b p , )  

C.3 THE COMPLEX CONJUGATE 

The complex conjugate of z is denoted by z* and is given by 

Useful relationships: 

1. zz* = r 2  

4. z - z *  =j2Im(z} 

C.4 POWERS AND ROOTS OF COMPLEX NUMBERS 

The nth power of the complex number z = reie is 

n = neine = r "(cos n8 + j sin n8) 

from which we have DeMoivre's relation 

(C. 10) 

(C. I I)  

(C. 13) 

(C.14) 
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The nth root of a complex z is the number w such that 

W n  = z = re je  ( C .  15) 

Thus, to find the nth root of a complex number z we must solve 

W n  - re je  = 0 ( C .  16)  

which is an equation of degree n and hence has n roots. These roots are given by 
- l /ne i [e+2(k  - l ) ~ ] / n  

Wk - k = 1,2, ..., n (C.17)  



Appendix D 

Useful Mathematical Formulas 

D.1 SUMMATION FORMULAS 

D.2 EULER'S FORMULAS 

D.3 TRIGONOMETRIC IDENTITIES 

sin2B +cos26 = 1 
sin2 B = $ ( I  - cos20) 

cos2 0 = i(1 + cos20) 

sin20 = 2sinOcosO 

cos 26 = cos' 0 - sin2 0 = 1  - 2 cos2 0 

sin(a f P )  = sin a cos p + cos a sin p 
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cos(a + p) = cos a cos p T cos a cos /3 

sin a sin P = [cos(a - /3) - cos(a + P)] 

COS a COS p = 3 [COS((Y - p) + cos(a + P)] 

sin a cos P = $[sin(a - P) + sin(a + P)] 

a + p  a - p  
s ina+s inp=2s in -  

2 
COS - 

2 

a + @  a-/3 
cosa + c o s p  = 2cos - 

2 
COS - 

2 

a cos a + b sin a = cos ( a-tan-'!) a 

D.4 POWER SERIES EXPANSIONS 

D.5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS 

log, N 
log, N = log, N log, a = - 

log, b 
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D.6 SOME DEFINITE INTEGRALS 

[APP. D 
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A
Absolute bandwidth, 230
Accumulation, 172
Additivity, 18
Adjoint (or adjugate) matrix, 434
Advance, unit, 171
Aliasing, 280
All-pass filter, 332
Amplitude distortion, 225
Analog signals, 2
Analytic signal, 286
Anticausal sequence, 64
Anticausal signals, 59
Aperiodic sequences (see Nonperiodic sequences)
Aperiodic signals (see Nonperiodic signals)
Asymptotically stable systems, 373, 377
Auxiliary conditions

difference equations, 65
differential equations, 60

Average power, 5
normalized, 5

B
Band-limited signal, 231, 278
Bandpass signal, 231
Bandwidth

absolute, 230
energy containment, 277
equivalent, 275
filter (or system), 230
signal, 231

Bilateral (or two-sided) Laplace transform, 110
Bilateral (or two-sided) z-transform, 165
Bilinear transformation, 340
Bode plots, 265
Bounded-input / bounded-output (BIBO) stability, 19, 59, 64, 79, 99, 122, 145, 199

C
Canonical simulation

the first form, 384
the second form, 386

Canonical State representation
the first form, 384, 390
the second form, 386, 392

Causal signal, 59, 64

461
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Causality, 50, 58, 61, 64, 98, 122, 176
Cayley-Hamilton theorem, 371, 376, 439
Characteristic equation, 371
Characteristic function (see Eigenfunction)
Characteristic polynomial, 435
Characteristic values (see Eigenvalues)
Circular convolution, 307
Circular shift, 306
Cofactor, 433
Complex frequency, 218
Complex numbers, 455
Complex signals, 2
Compressor, 48
Connection between

the Fourier transform (continuous-time) and the Laplace transform, 217
the Fourier transform (discrete-time) and the z-transform, 293

Constituent matrix, 372, 377, 442
Continuous-time LTI systems, 56

causality, 122
described by differential equations, 60, 226
eigenfunctions, 59
frequency response, 223
impulse response, 56
properties, 58
response, 56
stability, 59
state space representation, 368
system (or transfer) function, 121

Continuous-time signals, 1
Continuous-time systems, 17
Controllability matrix, 406, 417
Controllable systems, 405, 417
Convolution

circular, 307
continuous-time, 57
discrete-time, 62
in frequency, 221
integral, 57
periodic, 75, 96
properties, 57, 62
sum, 62

Convolution property
discrete Fourier transform (DFT), 307
Fourier transform (continuous-time), 220, 225
Fourier transform (discrete-time), 297, 322
Laplace transform, 119
z-transform, 172, 187

Convolution theorem
frequency, 221, 257
time, 221, 255

D
Decimation-in-frequency, 355
Decimation-in-time, 352
Degenerative circuits, 159
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Delay, unit, 46
Determinants, 433

Laplace expansion, 433
Deterministic signals, 3
DFS (see Discrete Fourier series)
DFT (see Discrete Fourier transform)
DFT matrix, 349
Diagonal matrix, 428
Diagonalization matrix, 436
Difference equations, 65

recursive, 60
Differential equations, 60

homogeneous solution, 60
particular solution, 60

Digital signals, 2
Digital simulation of analog signals, 304
Dirac delta function (d-function) (see Unit impulse function)
Dirichlet conditions

for Fourier series, 213
for Fourier transforms, 217

Discrete Fourier series (DFS), 288
properties, 289

Discrete Fourier transform (DFT)
definition, 305
inverse, 305
N-point, 305
properties, 306

Discrete-time LTI systems
causality, 64
described by difference equations, 65
eigenfunctions, 64
finite impulse response (FIR), 66
impulse response, 61
infinite impulse response (IIR), 66
response, 61
stability, 64
state space representation, 366
system function, 175

Discrete-time signals, 1
Discrete-time systems, 17
Distortionless transmission, 225
Duality property

discrete Fourier series, 289
discrete Fourier transform, 307
Fourier transform (continuous-time), 220, 247
Fourier transform (discrete-time), 296

Duration-limited signal, 286

E
Eigenfunctions, 51

of continuous-time LTI systems, 59
of discrete-time LTI systems, 64

Eigenvalues (characteristic values), 51, 371
Eigenvectors, 372
Energy containment bandwidth, 277
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Energy content, 5
normalized, 5

Energy-density spectrum, 222
Energy signal, 5
Energy theorem, 222
Equivalence property, 38
Equivalent bandwidth, 275
Even signal, 3
Exponential sequences

complex, 13
real, 16

Exponential signals
complex, 9
real, 10

F
Fast Fourier transform (FFT)

decimation-in-frequency algorithm, 355
decimation-in-time algorithm, 352

Feedback systems, 19
FFT (see Fast Fourier transform)
Filter

bandwidth, 230
ideal band pass, 228
ideal band stop, 228
ideal low-pass, 227
ideal high-pass, 227

Filtering, 227, 273
Final-value theorem

unilateral Laplace transform, 150
unilateral z-transform, 205

Finite-duration signal, 113
Finite impulse response (FIR), 66
Finite sequence, 169
FIR (see Finite impulse response)
First difference, 297
Fourier series

coefficients, 212
complex exponential, 211
continuous-time, 211
convergence, 213
discrete (DFS), 288
harmonic form, 213
trigonometric, 212

Fourier spectra, 216, 293
Fourier transform (continuous-time), 216

convergence, 217
definition, 216
inverse, 216
properties, 219
tables, 222, 223

Fourier transform (discrete-time), 293
convergence, 293
definition, 293
inverse, 293
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Fourier transform (continued)
properties, 295
tables, 299, 300

Frequency
angular, 211
complex, 218
fundamental, 11, 211
radian, 11

Frequency response
continuous-time LTI systems, 223, 262
discrete-time LTI systems, 300, 326

Frequency selective filter, 227

G
Gain, 225
Gaussian pulse, 261
Generalized derivatives, 8
Generalized functions, 7, 37

H
Harmonic component, 213
Hilbert transform, 271
Homogeneity. 18

I
Identity matrix, 371
IIR (see Infinite impulse response)
Impulse-invariant method, 339
Impulse response

continuous-time LTI systems, 56
discrete-time LTI systems, 61

Impulse train, periodic, 238
Infinite impulse response (IIR), 66
Initial condition, 61
Initial rest, 61
Initial state, 418
Initial-value theorem

unilateral Laplace transform, 150
unilateral z-transform, 205

Initially relaxed condition (see Initial rest)
Interconnection of systems, 80, 123
Inverse transform (see Fourier, Laplace, etc.)
Invertible system, 55

L
Laplace transform

bilateral (two-sided), 110
definition, 110
inverse, 119
properties, 114, 132
region of convergence (ROC), 111
tables, 115, 119
unilateral (one-sided), 110, 124, 151

Left-sided signal, 114
Linear-phase filter, 334
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Linear system, 18
Linear time-invariant (LTI) system, 18

continuous-time, 56
discrete-time, 61

Linearity, 60, 115

M
Magnitude response, 224, 301
Magnitude spectrum, 216, 293
Matrix (or matrices)

characteristic equation, 435
characteristic polynomial, 435
conformable, 430
constituent, 372, 377, 442
controllability, 406, 417
diagonal, 428
diagonalization, 436
differentiation, 444
eigenvalues, 435
eigenvectors, 435
function of, 437
idempotent, 442
identity (or unit), 429
integration, 444
inverse, 431, 434
minimal polynomials, 440
nilpotent, 399
nonsingular, 367, 435
observability, 406, 418
power, 437
rank, 433
similar, 368
singular, 435
skew-symmetric, 431
spectral decomposition, 372, 377, 442
spectrum, 442
state-transition, 371
symmetric, 431
system, 367
transpose, 431

N
N-dimensional state equations, 367
Nilpotent, 399
Noncausal system, 17
Nonideal frequency-selective filter, 229
Nonlinear system, 17
Nonperiodic (or aperiodic) signals, 5
Nonrecursive equation, 66
Nonsingular matrix, 367
Normalized average power, 5, 32
Normalized energy content, 5
N-point DFT, 305
Nyquist interval, 281
Nyquist sampling rate, 281



Index   467

O
Observability matrix, 406, 418
Observable system, 406, 418
Odd signal, 3
Orthogonal sequences, 308
Orthogonal signals, 231

P
Parseval's identity (see Parseval's theorem)
Parseval's relation

discrete Fourier series (DFS), 315
discrete Fourier transform (DFT), 307
Fourier series, 244
Fourier transform (continuous-time), 221, 258
Fourier transform (discrete-time), 298

Parseval's theorem
discrete Fourier series (DFS), 290, 315
discrete Fourier transform (DFT), 307
Fourier series, 214
Fourier transform (continuous-time), 222, 258
Fourier transform (discrete-time), 361

Partial fraction expansion, 120, 174
Pass band, 227
Period, 4

fundamental, 4
Periodic convolution

continuous-time, 75
discrete-time, 96

Periodic impulse train, 238
Periodic sequences, 288
Periodic signals, 4
Phase distortion, 225
Phase response, 224, 301
Phase shifter, 269
Poles, 112
Power, 5

average, 5
Power series expansion, 174, 188
Power signals, 5

R
Random signals, 3
Real signals, 2
Recursive equation, 65
Region of convergence (ROC)

Laplace transform, 111
z-transform, 166

Relationship between
the DFT and the DFS, 305
the DFT and the Fourier transform (discrete-time), 306

Response
frequency, 223, 262, 300, 326
impulse, 56, 61
magnitude, 224, 301
phase, 224, 301
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Response (continued)
step, 58, 63
system, 302
zero-input, 60
zero-state, 60

Right-sided signal, 113
Rise time, 276

S
Sampled signal, ideal, 278
Samples, 2
Sampling, 1

interval, 2, 278
Nyquist, 281

rate, 281, 303
Nyquist, 281

Sampling theorem
in the frequency domain, 286
uniform, 281

Sequence, 1
complex exponential, 13
exponential, 16
finite, 169
nonperiodic, 5
periodic, 5
sinusoidal, 16

Sift-invariant, 18
Signal bandwidth, 231
Signals

analog, 2
analytical, 286
anticausal, 59
band-limited, 231, 278, 280
bandpass, 231
causal, 59, 64
complex, 2
complex exponential, 9
continuous-time, 1
deterministic, 3
digital, 2
discrete-time, 1
duration-limited, 286
energy, 5
even, 3
finite-duration, 113
left-sided, 114
nonperiodic, 5
odd, 3
periodic, 4
power, 5
random, 3
real, 2
real exponential, 10
right-sided, 113
sinusoidal, 11, 27, 29
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Signals (continued)
time-limited, 113
two-sided, 114

Signum function, 254
Similar matrices, 368
Similarity transformation, 367, 436
Simulation, 303, 337

by bilinear transformation, 340
canonical, 384, 386
impulse-invariance method, 339

Singular matrix, 435
Sinusoidal sequences, 16
Sinusoidal signals, 11, 27, 29
Spectral coefficients, 289
Spectral decomposition, 372, 377, 442
Spectrum (or spectra), 216

amplitude, 214
discrete frequency, 214
energy-density, 222
Fourier, 216
line, 214
magnitude, 216
phase, 214, 216
s-plane, 111

Stability
asymptotical, 373, 377
bounded-input / bounded-output (BIBO), 19, 59, 64, 79, 99, 122, 145, 176, 199

Stable systems, 19
State, 365
State equations

continuous-time, 374, 388, 409
discrete-time, 371, 382, 394

State space, 365
State space representation

continuous-time LTI systems, 368
discrete-time LTI systems, 366
canonical

the first form, 384, 390
the second form, 386, 392

State-transition matrix, 371, 376
State variables, 365
State vectors, 366, 369
Step response, 58, 63
Stop band, 227
Superposition property, 18
Systems

causal and noncausal, 17
continuous-time and discrete-time, 17
continuous-time LTI, 110
described by difference equations, 65, 100
described by differential equations, 60, 83
discrete-time LTI, 165
feedback, 19
invertible, 55
linear and nonlinear, 18
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Systems (continued)
linear time-invariant (LTI), 18, 56
memoryless, 17
stable, 19
time-invariant and time-varying, 18
with and without memory, 17, 58, 63

System function
continuous-time LTI systems, 121, 143, 374
discrete-time LTI systems, 175, 194, 373

System representation, 16
System response, 302

T
Testing function, 7

3-dB bandwidth, 230
Time convolution theorem, 221, 255
Time delay, 225
Time-invariance, 61
Time-invariant systems, 18
Time reversal, 117, 172, 220, 295, 307
Time scaling, 116, 219, 296
Time shifting, 116, 171, 219, 295, 306
Time-varying systems, 18
Transfer function, 121
Transform circuits, 125
Transforms (see Fourier, Laplace, etc.)
Two-sided signal, 114

U
Uniform sampling theorem, 281
Unilateral Laplace transform, 124, 148
Unilateral z-transform, 177, 202
Unit, advance, 171
Unit circle, 167, 176
Unit-delay, 171
Unit-delay element, 46
Unit impulse function, 6
Unit impulse sequence, 12
Unit ramp function, 45
Unit sample response, 61 (See also Impulse response)
Unit sample sequence (see Unit impulse sequence)
Unit step function, 6, 37
Unit step sequence, 12

Z
z-plane, 166
z-transform

bilateral (or two-sided), 165
definition, 165
inverse, 173
properties, 171, 184
region of convergence (ROC), 166
tables, 170, 173
unilateral (or one-sided), 177, 202

Zero-input response, 60
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Zero padding, 305
Zero-state response, 60
Zeros, 112
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