

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

2963

Springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

Richard Sharp

Higher-Level
Hardware Synthesis

Springer

eBook ISBN: 3-540-24657-6
Print ISBN: 3-540-21306-6

©2005 Springer Science + Business Media, Inc.

Print ©2004 Springer-Verlag

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

Berlin Heidelberg

For Kate

This page intentionally left blank

Preface

In the mid 1960s, when a single chip contained an average of 50 transistors,
Gordon Moore observed that integrated circuits were doubling in complexity
every year. In an influential article published by Electronics Magazine in 1965,
Moore predicted that this trend would continue for the next 10 years. Despite
being criticized for its “unrealistic optimism,” Moore’s prediction has remained
valid for far longer than even he imagined: today, chips built using state-of-
the-art techniques typically contain several million transistors. The advances in
fabrication technology that have supported Moore’s law for four decades have
fuelled the computer revolution. However, this exponential increase in transistor
density poses new design challenges to engineers and computer scientists alike.
New techniques for managing complexity must be developed if circuits are to
take full advantage of the vast numbers of transistors available.

In this monograph we investigate both (i) the design of high-level languages
for hardware description, and (ii) techniques involved in translating these high-
level languages to silicon. We propose SAFL, a first-order functional language
designed specifically for behavioral hardware description, and describe the imple-
mentation of its associated silicon compiler. We show that the high-level prop-
erties of SAFL allow one to exploit program analyses and optimizations that
are not employed in existing synthesis systems. Furthermore, since SAFL fully
abstracts the low-level details of the implementation technology, we show how it
can be compiled to a range of different design styles including fully synchronous
design and globally asynchronous locally synchronous (GALS) circuits.

We argue that one of the problems with existing high-level hardware synthe-
sis systems is their “black-box approach”: high-level specifications are translated
into circuits without any human guidance. As a result, if a synthesis tool gen-
erates unsuitable designs there is very little a designer can do to improve the
situation. To address this problem we show how source-to-source transforma-
tion of SAFL programs “opens the black-box,” providing a common language
in which users can interact with synthesis tools whilst exploring the different
architectural tradeoffs arising from a single SAFL specification. We demonstrate
this design methodology by presenting a number of transformations that facili-

VIII Preface

tate resource-duplication/sharing and hardware/software co-design as well as a
number of scheduling and pipelining tradeoffs.

Finally, we extend the SAFL language with (i) style channels and
channel-passing, and (ii) primitives for structural-level circuit description. We
formalize the semantics of these languages and present results arising from the
generation of real hardware using these techniques.

This monograph is a revised version of my Ph.D. thesis which was sub-
mitted to the University of Cambridge Computer Laboratory and accepted in
2003. I would like to thank my supervisor, Alan Mycroft, who provided insight
and direction throughout, making many valuable contributions to the research
described here. I am also grateful to the referees of my thesis, Tom Melham
and David Greaves, for their useful comments and suggestions. The work pre-
sented in this monograph was supported by (UK) EPSRC grant GR/N64256
“A Resource-Aware Functional Language for Hardware Synthesis” and AT&T
Research Laboratories Cambridge.

December 2003 Richard Sharp

Contents

1

2

3

Introduction 1
1
7
8

1.1
1.2

1.3

1.4

Hardware Description Languages
Hardware Synthesis
1.2.1 High-Level Synthesis
Motivation for Higher Level Tools 14

14
15
16

19
19
23
23
25
25
26
26

28
30
31
31
31
33
34

35
35
36
37
37
38

1.3.1 Lack of Structuring Support
1.3.2 Limitations of Static Scheduling
Structure of the Monograph

Related Work
2.1
2.2

2.3

2.4
2.5

2.6
2.7

Verilog and VHDL
The Olympus Synthesis System
2.2.1
2.2.2
2.2.3

The HardwareC Language
Hercules
Hebe

Functional Languages
2.3.1
2.3.2

An Algebra for VLSI Specification
Embedding HDLs
in General-Purpose Functional Languages

Term Rewriting Systems
Occam/CSP-Based Approaches
2.5.1
2.5.2

Handel and Handel-C
Tangram and Balsa

Synchronous Languages
Summary

The SAFL Language
3.1
3.2

Motivation
Language Definition
3.2.1
3.2.2
3.2.3

Static Allocation
Integrating with External Hardware Components
Semantics

X Contents

3.3

3.4

3.5
3.6

3.2.4 Concrete Syntax 38
41
42
42
44
47
48
48
49
50
50

51
52
54
55
56
56
58
58
58
59
61
62
63

65
66
67
71
73
73
75
79
80
81
81
83
85
86

87
87
88
88
89

Hardware Synthesis Using SAFL
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

Automatic Generation of Parallel Hardware
Resource Awareness
Source-Level Program Transformation
Static Analysis and Optimisation
Architecture Independence

Aside: Dealing with Mutual Recursion
3.4.1 Eliminating Mutual Recursion by Transformation
Related Work
Summary

4

5

6

Soft Scheduling
4.1

4.2

4.3

4.4
4.5

Motivation and Related Work
4.1.1 Translating SAFL to Hardware
Soft Scheduling:Technical Details
4.2.1
4.2.2
4.2.3

Removing Redundant Arbiters
Parallel Conflict Analysis (PCA)
Integrating PCA into the FLaSH Compiler

Examples and Discussion
4.3.1
4.3.2
4.3.3

Parallel FIR Filter
Shared-Memory Multi-processor Architecture
Parallel Tasks Sharing Graphical Display

Program Transformation for Scheduling and Binding
Summary

High-Level Synthesis of SAFL
5.1

5.2

5.3

5.4

FLaSH Intermediate Code
5.1.1
5.1.2

The Structure of Intermediate Graphs
Translation to Intermediate Code

Translation to Synchronous Hardware
5.2.1
5.2.2
5.2.3
5.2.4

Compiling Expressions
Compiling Functions
Generated Verilog
Compiling External Functions

Translation to GALS Hardware
5.3.1
5.3.2
5.3.3

A Brief Discussion of Metastability
Interfacing between Different Clock Domains
Modifying the Arbitration Circuitry

Summary

Analysis and Optimisation of Intermediate Code
6.1
6.2
6.3

Architecture-Neutral verses Architecture-Specific
Definitions and Terminology
Register Placement Analysis and Optimisation
6.3.1 Sharing Conflicts

Contents XI

6.3.2
6.3.3
6.3.4
6.3.5

Technical Details 91
92
93
95
97
97
99
99

Resource Dependency Analysis
Data Validity Analysis
Sequential Conflict Register Placement

6.4

6.5

6.6

6.7

Extending the Model: Calling Conventions
6.4.1
6.4.2

Caller-Save Resource Dependency Analysis
Caller-Save Permanisation Analysis

Synchronous Timing Analysis
6.5.1
6.5.2

Technical Details 100
101
104
104
109
110

113
113
115
115
117
118
120
121
124
124
126
126

129
129
130
130
134
136
138

141
142
142
143
144
144
146
148
148
149

Associated Optimisations
Results and Discussion
6.6.1
6.6.2

Register Placement Analysis: Results
Synchronous Timing Optimisations: Results

Summary

7

8

9

Dealing with I/O
7.1

7.2

7.3

7.4

SAFL+ Language Description
7.1.1
7.1.2
7.1.3

Resource Awareness
Channels and Channel Passing
The Motivation for Channel Passing

Translating SAFL+ to Hardware
7.2.1 Extending Analyses from SAFL to SAFL+
Operational Semantics for SAFL+
7.3.1
7.3.2
7.3.3

Transition Rules
Semantics for Channel Passing
Non-determinism

Summary

Combining Behaviour and Structure
8.1
8.2

8.3
8.4

Motivation and Related Work
Embedding Structural Expansion in SAFL
8.2.1
8.2.2

Building Combinatorial Hardware in Magma
Integrating SAFL and Magma

Aside: Embedding Magma in VHDL/Verilog
Summary

Transformation of SAFL Specifications
9.1

9.2

Hardware Software CoDesign
9.1.1 Comparison with Other Work
Technical Details
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6

The Stack Machine Template
Stack Machine Instances
Compilation to Stack Code
The Partitioning Transformation
Validity of Partitioning Functions
Extensions

XII Contents

9.3
9.4

Transformations from SAFL to SAFL+ 151
153

155
155
160
162
167

169
170

171

177

181

185

193

Summary

10

11

Case Study
10.1
10.2

10.3

The SAFL to Silicon Tool Chain
DES Encrypter/Decrypter
10.2.1 Adding Hardware VGA Support
Summary

Conclusions and Further Work
11.1 Future Work

Appendix

A

B

C

DES Encryption/Decryption Circuit

Transformations to Pipeline DES

A Simple Stack Machine and Instruction Memory

References

Index

List of Figures

1.1
1.2
1.3
1.4

1.5
1.6
1.7

1.8
1.9

A diagrammatic view of a circuit to compute 3
4
5

6
7
7

8
9

RTL code for a 3-input multiplexer
RTL code for the control-unit
RTL code to connect the components of the multiplication
example together
A netlist-level Verilog specification of a 3-bit equality tester
Circuit diagram of a 3-bit equality tester
A categorisation of HLS systems and the synthesis tasks
performed at each level of the translation process
Dataflow graph for expression:
The results of scheduling and binding 10

11

22
22
22
24

27

28
28
29

39
41
41
42
43

45

1.10 (left) the dependencies between operations for an expression of the
form Operations are labelled with letters (a)–(e); (centre)
an ASAP Schedule of the expression for a single adder and a
single multiplier. (right) a List Schedule under the same resource
constraints

2.1
2.2
2.3
2.4
2.5

2.6

2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6

VHDL code for a D-type flip-flop
Verilog code for theconfusing_example
Running the confusing_example module in a simulator
HardwareC’s structuring primitives

The hardware-level realisation of the combinator— (i) function

Behavioural interpretation of basis functions AND, OR and NOT
Structural interpretation of basis functionsAND,OR and NOT

A big-step transition relation for SAFL programs
Translating the case statement into core SAFL
Translating let barriers “---” into core SAFL
SAFL’s primitive operators
The SAFL Design-Flow
An application of the unfold rule to unroll the recursive structure
one level

The geometrical (circuit-level) interpretation of some
combining forms. (i) (ii)

(iii)

(ii) the effect of applying the combinator,
yielding a function

XIV List of Figures

3.7
3.8
3.9

4.1
4.2

4.3
4.4

4.5

4.6
4.7
4.8

4.9

An application of the abstraction rule to mult2 46
46

47

52

54
54

55

57
58
59

60

61

63

66
67
68
70
72
73

74
75

75
77
78
79

79

82
83

The result of applying fold transformations to mult3
Three methods of implementing inter-block data-flow and control-
flow

A Comparison Between Soft Scheduling and Soft Typing
A hardware design containing a memory device shared between a
DMA controller and a processor
A table showing the expressivity of various scheduling methods
A structural diagram of the hardware circuit corresponding to a
shared function, called by functions and Data buses are
shown as thick lines, control wires as thin lines

is the set of non-recursive calls which may occur as a result
of evaluating expression

returns the conflict set due to expression
A SAFL description of a Finite Impulse Response (FIR) filter
Extracts from a SAFL program describing a shared-memory
multi-processor architecture
The structure of a SAFL program consisting of several parallel
tasks sharing a graphical display

4.10 A SAFL specification which computes the polynomial expression
whilst respecting the binding and scheduling

constraints shown in Figure 1.9

5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8
5.9

Structure of the FLaSH Compiler
Example intermediate graph
Nodes used in intermediate graphs
Translation of conditional expression:if then else
Intermediate graph representing the body of fun f(x) = x+3
Expressions and Functions
Hardware blocks corresponding to CONDITIONAL_SPLIT (left) and
CONDITIONAL_JOIN (right) nodes
Hardware block corresponding to a CONTROL_JOIN node
How to build a synchronous reset-dominant SR flip-flop from a
D-type flip-flop

5.10
5.11
5.12
5.13

5.14

5.15

A Block Diagram of a Hardware Functional-Unit
The Design of the External Call Control Unit (ECCU)
The Design of a Fixed-Priority Synchronous Arbiter
The Design of a Combinatorial Priority Encoder with 4 inputs.
(Smaller input numbers have higher priorities)
A dual flip-flop synchroniser. Potential metastability occurs at the
point marked “M”. However, the probability of the synchroniser’s
output being in a metastable state is significantly reduced since
any metastability is given a whole clock cycle to resolve
An inter-clock-domain function call

List of Figures XV

5.16

5.17

Building an asynchronous RS latch out of two D-Type flip-flops
with asynchronous resets (clr) 85

85

90

91

95
96
98

Extending the inter-clock-domain call circuitry with an explicit
arbiter release signal

6.1

6.2

6.3

6.4
6.5
6.6
6.7

6.8

6.9

A sequential conflict (left) and a parallel conflict (right). The
horizontal dotted lines show the points where data may become
invalid. These are the points where permanising registers are
required
We insert permanisors on data-edges using this transformation.
The dashed data-edges represent those which do not require
permanisors; the solid data-edges represent those which do require
permanisors
The nodes contained in the highlighted threads are those returned
by
Diagrammatic explanation of
Summary: Register Placement for Sequential Conflicts
Synchronous Timing Analysis 102

103

105
106
107
108
108
108
109

114
116
117

119

120

A block diagram of a circuit-level implementation of 3 parallel
threads. Suppose that our analysis has detected that the “done”
control outputs of the 3 threads will be asserted simultaneously.
Thus we have no need for a CONTROL_JOIN NODE. Since signals
“c_out1” and “c_out3” are no longer connected to anything we
can optimise away the control circuitry of the shaded blocks
How various paramaters (area, number of permanisors, number
of cycles, clock speeds and computation time) vary as the degree
of resource sharing changes
SAFL programs with different degrees of resource sharing

6.10
6.11
6.12
6.13
6.14

Number of Permanising Registers
Chip area (as %-use of FPGA)
Number of clock cycles required for computation
Clock Speeds of Final Design
Time taken for design to perform computation

7.1
7.2
7.3
7.4

7.5

The abstract syntax of SAFL+ programs,
Illustrating Channel Passing in SAFL+
Using SAFL+ to describe a lock explicitly
A Channel Controller. The synchronous RS flip-flops (R-
dominant) are used to latch pending requests (represented as 1-
cycle pulses). Static fixed priority selectors are used to arbitrate
between multiple requests. The three data-inputs are used by the
three writers to put data onto the bus
(i) A READ node connected to three channels; (ii) A WRITE

node connected to two channels. The component marked DMX is
a demultiplexer which routes the control signal to one of the three
channels depending on the value of its select input (ChSel)

XVI List of Figures

7.6
7.7

7.8
7.9

Extending PCA to deal with channel reads and writes 121

122
123

124
125

132
133

134

135

144
145

147
152

156

157

158

159

161

163

164
165

166

166

The Syntax of Program States, P, Evaluation States, and
values,
Structural congruence and structural transitions
A context, defining which sub-expressions may be evaluated in
parallel

7.10 Transition Rules for SAFL+

8.1
8.2
8.3

8.4

9.1
9.2
9.3

9.4

The definition of the BASIS signature (from the Magma library)
A simple ripple-adder described in Magma
A diagrammatic view of the steps involved in compiling a
SAFL/Magma specification
A simple example of integrating Magma and SAFL into a single
specification

A diagrammatic view of the partitioning transformation
The instructions provided by our stack machine
Compiling SAFL into Stack Code for Execution on a Stack
Machine Instance
Top-level pipelining transformation

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8
10.9

10.10

Using the FLaSH compiler to compile a SAFL specification to
RTL Verilog
Using the RTL-synthesis tool Leonardo to map the Verilog
generated by the FLaSH compiler to a netlist
Using the Quartus II package to map the netlist onto an Altera
Apex-II FPGA
Using the ModelSim package to simulate FLaSH-generated code
at the RTL-level
The Altera “Excalibur” Development Board containing an Apex-
II FPGA with our simple VGA interface connected via ribbon
cable
The Altera Development Board driving a test image onto a VGA
monitor
The SAFL DES block connected to the VGA signal generation
circuitry
The definition of function write_hex
Displaying the DES circuits inputs and outputs on a monitor
whenever a micro-switch is pressed
A screenshot of the DES circuit displaying its inputs and outputs
on a VGA monitor

1

Introduction

In 1975 a single Integrated Circuit contained several hundred transistors; by
1980 the number had increased to several thousand. Today, designs fabricated
with state-of-the-art VLSI technology often contain several million transistors.

The exponential increase in circuit complexity has forced engineers to adopt
higher-level tools. Whereas in the 1970s transistor and gate-level design was
the norm, during the 1980s Register Transfer Level (RTL) Hardware Descrip-
tion Languages (HDLs) started to achieve wide-spread acceptance. Using such
languages, designers were able to express circuits as hierarchies of components
(such as registers and multiplexers) connected with wires and buses. The ad-
vent of RTL-synthesis led to a dramatic increase in productivity since, for some
classes of design, time consuming tasks (such as floor-planning and logic synthe-
sis) could be performed automatically.

More recently, high-level synthesis (sometimes referred to as behavioural syn-
thesis) has started to have an impact on the hardware design industry. In the
last few years commercial tools have appeared on the market enabling high-level,
imperative programming languages (referred to as behavioural languages within
the hardware community) to be compiled directly to hardware. Since current
trends predict that the exponential increase in transistor density will continue
throughout the next decade, investigating higher-level tools for hardware de-
scription and synthesis will remain an important field of research.

In this monograph we argue that there is scope for higher-level Hardware
Description Languages and, furthermore, that the development of such languages
and associated tools will help to manage the increasing size and complexity of
modern circuits.

1.1 Hardware Description Languages

Hardware description languages are often categorised according to the level of
abstraction they provide. We have already hinted at this taxonomy in the previ-
ous section. Here we describe their classification in more detail, giving concrete
examples of each style.

2 1 Introduction

As a running example we consider designing a circuit to solve the differential
equation by the forward Euler method in the interval
with step-size dx and initial values This example is
similar to one proposed by Paulin and Knight in their influential paper on High-
Level Synthesis [119]. It has the advantage of being small enough to understand
at a glance yet large enough to allow us to compare and contrast the important
features of the different classes of HDL.

Behavioural Languages

Behavioural HDLs focus on algorithmic specification and attempt to abstract
as many low-level implementation issues as possible. Most behavioural HDLs
support constructs commonly found in high-level, imperative programming lan-
guages (assignment, sequencing, conditionals and iteration). We discuss specific
behavioural languages at length in Chapter 2; this section illustrates the key
points of behavioural HDLs with reference to a generic, C-like language. In such
a language our differential equation solver can be coded as follows:

Note that although this specification encodes the details of the algorithm to
be computed it says very little about how it may be realised in hardware. In
particular:

the design-style of the final implementation is left unspecified (e.g. syn-
chronous or self-timed);
the number of functional-units to appear in the generated circuit is not spec-
ified (e.g. should separate multipliers be generated for the six ‘*’ operations
or should fewer, shared multipliers be used);
the order in which operations within expressions will be evaluated is not
specified;
the execution time of the computation is unspecified (e.g. if we are considering
a synchronous design, how many cycles does each multiplication take? How
much parallelism should be exploited in the evaluation of the expressions?).

Even for this tiny example one can see that there is a large design-space
to consider before arriving at a hardware implementation. To constrain this
design-space behavioural HDLs often provide facility for programmers to anno-
tate specifications with low-level design requirements. For example, a designer

1.1 Hardware Description Languages 3

may specify constraints which bound the execution time of the algorithm (e.g.
< 5 clock cycles) or restrict the resource usage (e.g. one multiplier and three
adders). These constraints are used to guide high-level synthesis packages (see
Section 1.2.1).

Register-Transfer Level Languages

Register-Transfer Level (RTL) Languages take a much lower-level approach to
hardware description. At the top-level an RTL specification models a hardware
design as a directed graph in which nodes represent circuit blocks and edges
correspond to interconnecting wires and buses. At this level of abstraction a
number of design decisions that were left unspecified at the behavioural-level
become fixed. In particular, an RTL specification explicitly defines the number
of resources used (e.g. 3 multipliers and 1 adder) and the precise mechanism by
which data flows between the building blocks of the circuit.

To give a concrete example of this style of programming let us consider spec-
ifying our differential equation solver in RTL Verilog. One of the first points
to note is that, since many of the design decisions left open at the behavioural
level are now made explicit, the RTL specification is a few orders of magnitude
larger. For this reason, rather than specifying the whole differential equation
solver, we will instead focus on one small part, namely computing the subex-
pression

Fig. 1.1. A diagrammatic view of a circuit to compute

Let us assume that our design is synchronous and that it will contain only
one 32-bit single-cycle multiplier. In this case, the circuit we require is shown
diagrammatically in Figure 1.1. (We adopt the convention that thick lines repre-
sent data wires and thin lines represent control wires.) After being latched, the

4 1 Introduction

Fig. 1.2. RTL code for a 3-input multiplexer

output of the multiplier is fed back into one of its inputs; in this way, a new term
is multiplied into the cumulative product every clock cycle. The control-unit is
a finite-state machine which is used to steer data around the circuit by con-
trolling the select inputs of the multiplexers. For the purposes of this example
we introduce a control signal, done, which is asserted when the result has been
computed. We know that the circuit will take 4 cycles to compute its result: 1
cycle for each of the 3 multiplications required and an extra cycle due to the
latency added by the register.

The first stage of building an RTL specification is to write definitions for the
major components which feature in the design. As an example of a component
definition Figure 1.2 gives the RTL-Verilog code for a 3-input multiplexer. The
C-style ‘?’ operator is used to select one of the inputs to connect to the out-
put depending on the value of the 2-bit select input. Whilst the RTL-Verilog
language is discussed in more depth in Section 2.1, for now it suffices to note
that (i) each component is defined as a module parameterised over its input and
output ports; and (ii) the assign keyword is used to drive the value of a given
expression onto a specified wire/bus.

Let us now turn to the internals of the control-unit. In this example, since
we only require 4 sequential control-steps, the state can be represented as a
saturating divide-by-4 counter. At each clock-edge the counter is incremented
by one; when the counter reaches a value of 3 then it remains there indefinitely.
Although the precise details are not important here, RTL-Verilog for the control
unit is presented in Figure 1.3. Control signal arg1_select is used to control
the left-most multiplexer shown in Figure 1.1. In the first control step (when
state = 0) it selects the value 3, otherwise it simply feeds the output of the
register back into the multiplier. Similarly, control signal arg2_select is used
to control the right-most multiplexer shown in Figure 1.1. In each control step,
arg2_select, is incremented by one, feeding each of the multiplexer’s 3 inputs
into the multiplier in turn. Finally done is asserted once all three multiplications
have been performed and the result latched.

1.1 Hardware Description Languages 5

Fig. 1.3. RTL code for the control-unit

If we now assume module-definitions for the rest of the circuit’s components
(multiplier, 2-input-mux and 32-bit-register) we can complete our RTL-
design by specifying the interconnections between these components as shown in
Figure 1.4. We now have a module, compute_product, with aresult output, a
control-wire which signals completion of the computation (done), a clock input
and input ports to read values of x, u and dx.

One can see from this example just how wide the gap between the behavioural-
level and the RTL-level actually is. As well as the sheer amount of code one has
to write, there are a number of other disadvantages associated with RTL-level
specification. In particular, since so many design decisions are ingrained so deeply
in the specification, it is difficult to make any architectural modifications at the
RTL-level. For example, if we wanted to change the code shown in Figure 1.4 to
use 2 separate multipliers (instead of 1), we would essentially have to re-write
the code from scratch—not only would the data-path have to be redesigned, but
the control-unit would have be re-written too.

RTL languages give a hardware designer a great deal of control over the
generated circuit. Whilst, in some circumstances, this is a definite advantage it
must be traded off against the huge complexity involved in making architectural
changes to the design.

6 1 Introduction

Fig. 1.4. RTL code to connect the components of the multiplication example together

Netlist Specification

At the netlist level, a specification is described in terms of an interconnection of
gates. Thus, whereas in the RTL control-unit specification of Figure 1.3 we were
able to use operators such as ‘==’ and ‘+’, at the netlist level these have to be
specified explicitly in terms of their gate-level description.

For example, to specify a 3-bit equality tester (as used in the definition of
control signals in Figure 1.3) in terms of primitive gates (and, xor, not) we can
use the code shown in Figure 1.5. (The corresponding circuit diagram is shown
in Figure 1.6.) Given this definition of 3bitEQ we can replace the ‘==’ operators
of Figure 1.3 with:

where the notation represents the binary number Of course,
to complete the netlist specification we would also have to replace the mod-

1.2 Hardware Synthesis 7

Fig. 1.5. A netlist-level Verilog specification of a 3-bit equality tester

Fig. 1.6. Circuit diagram of a 3-bit equality tester

ules corresponding to the multiplexers, adder and register with their gate-level
equivalents. For space reasons, the details are omitted.

Some HDLs support even lower-level representations than this. For exam-
ple, the Verilog language facilitates the description of circuits in terms of the
interconnections between individual transistors. Other HDLs also allow place-
and-route information to be incorporated into the netlist specification.

1.2 Hardware Synthesis

Hardware synthesis is a general term used to refer to the processes involved in
automatically generating a hardware design from its specification. Mirroring the
classification of HDLs (outlined in Section 1.1), hardware synthesis tools are
typically categorised according to the level of abstraction at which they operate
(see Figure 1.7):

8 1 Introduction

Fig. 1.7. A categorisation of HLS systems and the synthesis tasks performed at each
level of the translation process

High-Level Synthesis is the process of compiling a behavioural language into a
structural description at the register-transfer level. (We discuss high-level
synthesis at length in Section 1.2.1.)

Logic Synthesis refers to the translation of an RTL specification into an op-
timised netlist. Tasks performed at this level include combinatorial logic
optimisation (e.g. boolean minimisation), sequential logic optimisation (e.g.
state-minimisation) and technology mapping (the mapping of generic logic
onto the specific primitives provided by a particular technology).

Physical Layout involves choosing where hardware blocks will be positioned on
the chip (placement) and generating the necessary interconnections between
them (routing). This is an difficult optimisation problem; common techniques
for its solution include simulated annealing and other heuristic function-
minimisation algorithms.

Since this monograph is only concerned with High-Level Synthesis we do not dis-
cuss logic synthesis or place-and-route further. The interested reader is referred
to surveys of these topics [41, 13, 127].

1.2.1 High-Level Synthesis

The roots of High-Level Synthesis (HLS) can be traced back further than one
may expect. One pioneering system, ALERT [50], was developed at the IBM T.
J. Watson Research Centre in the late 1960s. The package was used to automat-
ically translate behavioural specifications written in APL [123] into logic-level

Allocation involves choosing which resources will appear in the final circuit
(e.g. three adders, two multipliers and an ALU).
Binding is the process of assigning operations in the high-level specification
to low-level resources—e.g. the + in line 4 of the source program will be
computed by adder_1 whereas the + in line 10 will be computed by the ALU.
Scheduling involves assigning start times to operations in a given expression
(e.g. for an expression, we may decide to compute and

in parallel at time and perform the addition at time)

Fig. 1.8. Dataflow graph for expression:

Let us illustrate each of these phases with a simple example. Consider a
behavioural specification which contains the expression,

1.2 Hardware Synthesis 9

implementations. A complete IBM 1800 computer was synthesised automatically
(albeit one that required twice as many components as the manually designed
version).

Although in the 1970s most hardware synthesis research focused on lower-
level issues, such as logic synthesis and place-and-route, some forward-looking
researchers concentrated on HLS. For example, the MIMOLA system [146, 95],
which originated at the University of Kiel in 1976, generates a CPU and mi-
crocode from a high-level input specification.

In the 1980s the field of high-level synthesis grew exponentially and started
to spread from academia into industry. A large number of HLS systems were
developed encompassing a diverse range of design-styles and applications (e.g.
digital signal processing [92] and pipelined processors [117]). Today there is a
sizable body of literature on the subject. In the remainder of this section we
present a general survey of the field of high-level synthesis.

Overview of a Typical High-Level Synthesis System

The process of high-level synthesis is commonly divided into three separate sub-
tasks [41]:

10 1 Introduction

where and are previously defined variables. Figure 1.8 shows the data-flow
graph corresponding to this expression. In this example we assume that the user
has supplied us with an allocation of two multipliers (we refer to the multiplier
resources as) and two adders

Fig. 1.9. The results of scheduling and binding

Figure 1.9 shows one possible schedule for under these allocation con-
straints. In the first time step, we perform the multiplications and in
the second time step these products are added together and we compute
the third time step multiplies a previous result by to obtain finally, the
fourth time step contains a single addition to complete the computation of
Note that although the data-dependencies in would permit us to compute
in the first time step our allocation constraints forbid this since we only have
two multipliers available. Each time step in the schedule corresponds to a single
clock-cycle at the hardware level1 (assuming that our multipliers and adders
compute their results in a single cycle). Thus the computation of expression
under the schedule of Figure 1.9 requires four clock cycles.

After scheduling we perform binding. The result of the binding phase is
also shown in Figure 1.9 where operations are annotated with the name of the
hardware-level resource with which they are associated. (Recall that we refer to
our allocated resources as and). We are forced to bind the two
multiplications in the first time-step to separate multipliers since the operations
occur concurrently (and hence cannot share hardware). In binding the other
operations more choices are available. Such choices can be guided in a number of
ways—for example one may choose to minimise the number of resources used or
attempt to bind operations in such a way as to minimise routing and multiplexing
costs.

1 Conventional HLS systems typically generate synchronous implementations.

1.2 Hardware Synthesis 11

The following sections discuss each of the phases of HLS in more detail and
outline a few of the techniques and algorithms which have been most prevalent
in each area.

Scheduling

Scheduling algorithms can be usefully divided into two categories as to whether
they are constructive or transformational in their approach. Transformational
algorithms start with some schedule (typically maximally parallel or maximally
serial) and repeatedly apply transformations in an attempt to bring the schedule
closer to the design requirements. The transformations allow operations to be
parallelised or serialised whilst ensuring that dependency constraints between
operations are not violated. A number of different search strategies governing
the application of transformations have been implemented and analysed. For
example, whereas Expl [18] performs an exhaustive search of the design space,
the Yorktown Silicon Compiler [28] uses heuristics to guide the order in which
transformations are performed. The use of heuristics dramatically reduces the
search space, allowing larger examples to be scheduled at the cost of possibly
settling for a sub-optimal solution.

In contrast, constructive algorithms build up a schedule from scratch by incre-
mentally adding operations. The simplest example of the constructive approach
is As Soon As Possible (ASAP) scheduling [98]. This algorithm involves topo-
logically sorting the operations in the dependency graph and inserting them (in
their topological order) into time steps under the constraints that (i) all prede-
cessors in the dependency graph have already been scheduled in earlier timesteps
and (ii) limits on resource usage (if any) are not exceeded. The MIMOLA [146]
system employs this algorithm.

Fig. 1.10. (left) the dependencies between operations for an expression of the form
Operations are labelled with letters (a)–(e); (centre) an ASAP Schedule of the

expression for a single adder and a single multiplier. (right) a List Schedule under the
same resource constraints

A problem with the ASAP method is that it ignores the global structure of
an expression: whenever there is a choice of which operation to schedule one is
chosen arbitrarily; the implication that this choice has on the latency (number
of time steps required) of the schedule is ignored. Figure 1.10 highlights the

12 1 Introduction

inadequacies of the ASAP algorithm. In this case we see that a non-critical
multiplication, (c), has been scheduled in the first step, blocking the evaluation
of the more critical multiplications, (a) and (b) until later time steps.

List Scheduling alleviates this problem. Whenever there is a choice between
multiple operations a global evaluation function is used to choose intelligently.
A typical evaluation function, maps a node, onto the length of the
longest path in the dependency graph originating from When a choice occurs,
nodes with the largest values of are scheduled first. Figure 1.10 shows an
example of a list schedule using this heuristic function. Notice how the schedule
is more efficient than the one generated by the ASAP algorithm since nodes on
the critical path are prioritised. A number of HLS systems use List Scheduling
(e.g. BUD [97] and Elf [55]). (As an aside, note that List Scheduling is also a
common technique in the field of software compilers where it is used to reduce the
number of pipeline stalls in code generated for pipelined machines with hardware
interlocking [103]).

Allocation and Binding

In many synthesis packages, the tasks of allocation and binding are performed
in a single phase. (Recall that allocation involves specifying how many of each
resource-type will be used in an implementation and binding involves assigning
operations in a high-level specification to allocated resources). This phase is fur-
ther complicated if one considers complex resources: those capable of performing
multiple types of operation [41]. An example of a complex resource is an Arith-
metic Logic Unit (ALU) since, unlike a simple functional-unit (e.g. an adder), it
is capable of performing a whole set of operations (e.g. addition, multiplication,
comparison). The aim of allocation/binding is typically to minimise factors such
as the number of resources used and the amount of wiring and steering logic
(e.g. multiplexers) required to connect resources.

Let us start by considering the simplest case of minimising only the number of
resources used (i.e. ignoring wiring and steering logic). In this case the standard
technique involves building a compatibility graph from the input expression [98].
The compatibility graph has nodes for each operation in the expression and an
undirected edge iff and can be computed on the same resource
(i.e. if they do not occur in the same time-step2 and there is a single resource
type capable of performing the operations corresponding to both and).
Each clique3 in the compatibility graph corresponds to operations which can
share a single resource. The aim of a synthesis tool is therefore to find the min-
imum number of cliques which covers the graph (or, phrased in a different way,
to find the maximal4 cliques of the graph). Unfortunately the maximal clique
problem [6] is NP-complete so, to cope with large designs, heuristic methods are

2 We assume scheduling has already been performed.
3 Consider a graph, G, represented as sets of verticies and edges, (V, E). A clique of

G is a set of nodes, such that
4 A clique is maximal if it is not contained in any other clique.

1.2 Hardware Synthesis 13

often used to find approximate solutions. (Note the duality between this method
and the “conflict-graph / vertex-colouring” technique used for register allocation
in optimising software compilers [33].)

More complicated approaches to allocation/binding attempt to minimise
both the number of resources and the amount of interconnect and multiplexer-
logic required. This is often referred to as the minimum-area binding problem.
Minimising wiring overhead is becoming increasingly important as the feature-
size of transistors decreases; in modern circuits wiring is sometimes the dominant
cost of a design. The compatibility graph (described above) can be extended
to the minimum-area binding problem by adding weights to cliques [133]. The
weights correspond to the cost of assigning the verticies in the clique to a sin-
gle resource (i.e. the cost of the resource itself plus the cost of the necessary
interconnect and steering logic). The aim is now to find a covering set of cliques
with minimal total weight. This is, of course, still an NP-complete problem so
heuristic methods are used in practice.

In contrast to graph-theoretic formulations, some high-level synthesis sys-
tems view allocation/binding as a search problem. Both MIMOLA [95] and
Splicer [116] perform a directed search of the design space to choose a suit-
able allocation and binding. Heuristics are used to reduce the size of the search
space.

The Phase Order Problem

Note that the scheduling, allocation and binding phases are deeply interrelated:
decisions made in one phase impose constraints on subsequent phases. For ex-
ample if a scheduler decides to allocate two operations to the same time-step
then a subsequent binding phase is forbidden from assigning the operations to
the same hardware resource. If a bad choice is unknowingly made in one of the
early phases then poor quality designs may be generated. This is known as the
phase-order problem (sometimes referred to as the phase-coupling problem). In
our simple example (Figures 1.8 and 1.9), we perform scheduling first and then
binding. This is the approach taken by the majority of hardware synthesis sys-
tems (including Facet [136], the System Architect’s Workbench (SAW) [135] and
Cathedral-II [92]). However, some systems (such as BUD [97], and Hebe [88])
choose to perform binding and allocation before scheduling. Each approach has
its own advantages and shortcomings.

A number of systems have tried to solve the phase-order problem by com-
bining scheduling, allocation and binding into a single phase. For example, the
Yorktown Silicon Compiler [28] starts with a maximally parallel schedule where
operations are all bound to separate resources. A series of transformations—each
of which affects the schedule, binding and allocation—are applied in a single
phase. Another approach is to formulate simultaneous scheduling and binding
as an Integer Linear Programming (ILP) problem; a good overview of this tech-
nique is given by De Micheli [41]. Recent progress in solving ILP constraints
and the development of reliable constraint-solving packages [78] has led to an
increased interest in this technique.

14 1 Introduction

1.3 Motivation for Higher Level Tools

Hardware design methodologies and techniques are changing rapidly to keep pace
with advances in fabrication technology. The advent of System-on-a-Chip (SoC)
design enables circuits which previously consisted of multiple components on a
printed circuit board to be integrated onto a single piece of silicon. New design
styles are required to cope with such high levels of integration. For example,
the Semiconductor Industry Association (SIA) Roadmap [1] acknowledges that
distributing a very high frequency clock across large chips is impractical; it
predicts that in the near future chips will contain a large number of separate local
clock domains connected via an asynchronous global communications network.
It is clear that HLS systems must evolve to meet the needs of modern hardware
designers:

Facility must be provided to explore the different design styles arising from a
single high-level specification. For example, a designer may wish to partition
some parts of a design into multiple clock domains and map other parts to
fully asynchronous hardware.
HLS systems must be capable of exploring architectural tradeoffs at the sys-
tem level (e.g. duplication/sharing of large scale resources such as processors,
memories and busses).
Hardware description languages must support the necessary abstractions to
structure large designs (and also to support the restructuring of large designs
without wholesale rewriting).

It is our belief that existing HLS tools and techniques are a long way from
achieving these goals. In particular it seems that conventional HLS techniques
are not well suited to exploring the kind of system-level architectural trade-offs
described above. In this section we justify this statement by discussing some of
the limitations of conventional hardware description languages and high-level
synthesis tools.

1.3.1 Lack of Structuring Support

Although behavioural languages provide higher-level primitives for algorithmic
description, their support for structuring large designs is often lacking. Many be-
havioural HDLs use structural blocks parameterised over input and output ports
as a structuring mechanism. This is no higher-level than the structuring primi-
tives provided at the netlist level. For example, at the top level, a Behavioural
Verilog [74] program still consists of module declarations and instantiations albeit
that the modules themselves contain higher-level constructs such as assignment,
sequencing and while-loops.

Experience has shown that the notion of a block is a useful syntactic abstrac-
tion, encouraging structure by supporting a “define-once, use-many” methodol-
ogy. However, as a semantic abstraction it buys one very little; in particular:
(i) any part of a block’s internals can be exported to its external interface; and

1.3 Motivation for Higher Level Tools 15

(ii) inter-block control- and data-flow mechanisms must be coded explicitly on
an ad-hoc basis.

Point (i) has the undesirable effect of making it difficult to reason about
the global (inter-module) effects of local (intra-module) transformations. For ex-
ample, applying small changes to the local structure of a block (e.g. delaying
a value’s computation by one cycle) may have dramatic effects on the global
behaviour of the program as a whole. We believe point (ii) to be particularly
serious. Firstly, it leads to low-level implementation details scattered through-
out a program—e.g. the definition of explicit control signals used to sequence
operations in separate modules, or (arguably even worse) reliance on unwrit-
ten inter-module timing assumptions. Secondly, it inhibits compiler analysis:
since inter-block synchronisation mechanisms are coded on an ad hoc basis it is
very difficult for the compiler to infer a system-wide ordering on events (a pre-
requisite for many global analyses—see Chapter 6). Based on these observations,
we contend that structural blocks are not a high-level abstraction mechanism.

1.3.2 Limitations of Static Scheduling

We have seen that conventional high-level synthesis systems perform scheduling
at compile time. In this framework mutually exclusive access to shared resources
is enforced by statically serialising operations. While this approach works well
for simple resources (e.g. arithmetic functions) whose execution time is statically
bounded, it does not scale elegantly to system-level resources (e.g. IO-controllers,
processors and busses). In real hardware designs it is commonplace to control
access to shared system-level resources dynamically through the use of arbitra-
tion circuitry [67]. However, existing synthesis systems require such arbitration
to be coded explicitly on an ad-hoc basis at the structural level. This leads to a
design-flow where individual modules are designed separately in a behavioural
synthesis system and then composed manually at the RT-level. It is our belief
that a truly high-level synthesis system should not require this kind of low-level
manual intervention.

Another problem with conventional scheduling methods is that they are
only applicable to synchronous circuits—the act of scheduling operations into
system-wide control steps assumes the existence of a single global clock. Thus,
conventional scheduling techniques cannot be performed across multiple clock
domains and are not applicable to asynchronous systems. Such limitations make
it impossible to explore alternative design styles (e.g. multiple clock-domains or
asynchronous implementations) in the framework of conventional HLS.

The Black-Box Approach

Although some researchers have investigated the possibility of performing high-
level synthesis interactively [52, 145] the majority of HLS tools take a black-
box approach: behavioural specifications are translated into RTL descriptions
without any human guidance. The problem with black-box synthesis is that when

16 1 Introduction

unsuitable designs are generated there is very little a designer can do to improve
the situation. Often one is often reduced to blindly changing the behavioural
specification/constraints whilst trying to second guess the effects this will have
on the synthesis tool.

A number of researchers have suggested that source-level transformation of
behavioural specifications may be one way to open the black-box, allowing more
user-guidance in the process of architectural exploration [53]. However, although
a great deal of work has been carried out in this area [93, 142, 107] behavioural-
level transformations are currently not used in industrial high-level synthesis.
Other than the lack of tools to assist in the process, we believe that there are a
number of reasons why behavioural-level transformation has not proved popular
in practice:

Many features commonly found in behavioural HDLs make it difficult to
apply program-transformation techniques (e.g. an imperative programming
style with low-level circuit structuring primitives such as Verilog’s module
construct).
It is difficult for a designer to know what impact a behavioural-level trans-
formation will have on a generated design.

We see these issues as limitations in conventional high-level hardware description
languages.

1.4 Structure of the Monograph

In this monograph we focus on HLS, addressing the limitations of conventional
hardware description languages and synthesis tools outlined above. Our research
can be divided into two inter-related strands: (i) the design of new high-level
languages for hardware description; and (ii) the development of new techniques
for compiling such languages to hardware.

We start by surveying related work in Chapter 2 where, in contrast to this
chapter which gives a general overview of hardware description languages and
synthesis, a number of specific HDLs and synthesis tools are described in detail.
(Note that this is not the only place where related work is considered: each
subsequent chapter also contains a brief ‘related work’ section which summarises
literature of direct relevance to that chapter.)

The technical contributions of the monograph start in Chapter 3 where the
design of SAFL, a small functional language, is presented. SAFL (which stands
for Statically Allocated Functional Language) is a behavioural HDL which, al-
though syntactically and semantically simple, is expressive enough to form the
core of a high-level hardware synthesis system. SAFL is designed specifically to
support:

1.4 Structure of the Monograph 17

high-level program transformation (for the purposes of architectural explo-
ration) ;
automatic compiler analysis and optimisation—we focus especially on global
analysis and optimisation since we feel that this is an area where existing
HLS systems are currently weak; and
structuring techniques for large SoC designs.

1.

2.

3.

Having defined the SAFL language we use it to investigate a new schedul-
ing technique which we refer to as Soft Scheduling (Chapter 4). In contrast to
existing static scheduling techniques (see Section 1.3.2), Soft Scheduling gener-
ates the necessary circuitry to perform scheduling dynamically. Whole-program
analysis of SAFL is used to statically remove as much of this scheduling logic as
possible. We show that Soft Scheduling is more expressive than static scheduling
and that, in some cases, it actually leads to the generation of faster circuits. It
transpires that Soft Scheduling is a strict generalisation of static scheduling. We
demonstrate this fact by showing how local source-to-source program transfor-
mation of SAFL specifications can be used to represent any static scheduling
policy (e.g. ASAP or List Scheduling—see Section 1.2.1).

In order to justify our claim that “the SAFL language is suitable for hardware
description and synthesis” a high-level synthesis tool for SAFL has been designed
and implemented. In Chapter 5 we describe the technical details of the FLaSH
Compiler: our behavioural synthesis tool for SAFL. The high-level properties of
the SAFL language allow us to compile specifications to a variety of different
design styles. We illustrate this point by describing how SAFL is compiled to
both purely synchronous hardware and also to GALS (Globally Asynchronous
Locally Synchronous) [34, 77] circuits. In the latter case the resulting design is
partitioned into a number of different clock domains all running asynchronously
with respect to each other. We describe the intermediate code format used by
the compiler, the two primary design goals of which are (i) to map well onto
hardware; and (ii) to facilitate analysis and transformation.

In Chapter 6 we demonstrate the utility of the FLaSH compiler’s interme-
diate format by presenting a number of global analyses and optimisations. We
define the concept of architecture-neutral analysis and optimisation and give an
example of this type of analysis. (Architecture-neutral analyses/optimisations
are applicable regardless of the design style being targeted.) We also consider
architecture-specific analyses which are able to statically infer some timing in-
formation for the special case of synchronous implementation. A number of as-
sociated optimisations and experimental results are presented.

Whilst SAFL is an excellent vehicle for high-level synthesis research we
recognise that it is not expressive enough for industrial hardware description.
In particular the facility for I/O is lacking and, in some circumstances, the
“call and wait for result” interface provided by the function model is too re-
strictive. To address these issues we have developed a language, SAFL+, which
extends SAFL with process-calculus features including synchronous channels
and channel-passing in the style of the [100]. The incorporation of
channel-passing allows a style of programming which strikes a balance between

18 1 Introduction

the flexibility of structural blocks and the analysability of functions. In Chap-
ter 7 we describe both the SAFL+ language and the implementation of our
SAFL+ compiler. We demonstrate that our analysis and compilation techniques
for SAFL (Chapters 4 and 6) naturally extend to SAFL+.

A contributing factor to the success of Verilog and VHDL is their support for
both behavioural and structural-level design. The ability to combine behavioural
and structural primitives in a single specification offers engineers a powerful
framework: when the precise low-level details of a component are not critical,
behavioural constructs can be used; for components where finer-grained control
is required, structural constructs can be used. In Chapter 8 we present a single
framework which integrates a structural HDL with SAFL. Our structural HDL,
which is embedded in the functional subset of ML [101], is used to describe acyclic
combinatorial circuits. These circuit fragments are instantiated and composed
at the SAFL-level. Type checking is performed across the behavioural-structural
boundary to catch a class of common errors statically. As a brief aside we show
how similar techniques can be used to embed a functional HDL into Verilog.

Chapter 9 justifies our claim that “the SAFL language is well-suited to
source-level program transformation”. As well as presenting a large global trans-
formation which allows a designer to explore a variety of hardware/software
partitionings. We also describe a transformation from SAFL to SAFL+ which
converts functions into pipelined stream processors.

Finally, a realistic case-study is presented in Chapter 10 where the full
‘SAFL/SAFL+ to silicon’ design flow is illustrated with reference to a DES
encryption/decryption circuit. Having shown that the performance of our DES
circuit compares favourably with a hand-coded RTL version we give an example
of interfacing SAFL to external components by integrating the DES design with
a custom hardware VGA driver written in Verilog.

We include brief summaries and conclusions at the end of each chapter.
Global conclusions and directions for further work are presented in Chapter 11.

2

Related Work

The previous chapter gave a general overview of languages and techniques for
hardware description and synthesis. The purpose of this chapter is to provide a
more detailed overview of work which is directly relevant to this monograph. A
number of languages and synthesis tools are discussed in turn; a single section
is devoted to each topic.

2.1 Verilog and VHDL

The Verilog HDL [74] was developed at Gateway Design Automation and re-
leased in 1983. Just two years later, the Defence Advanced Research Agency
(DARPA) released a similar language called VHDL [73]. In contrast to Verilog,
whose primary design goal is to support efficient simulation, the main objective
of VHDL is to cope with large hardware designs in a more structured way.

Today Verilog and VHDL are by far the most commonly used HDLs in in-
dustry. Although the languages have different syntax and semantics, they share
a common approach to modelling digital circuits, supporting a wide range of
description styles ranging from behavioural specification through to gate-level
design. For the purposes of this survey, a single section suffices to describe both
languages.

Initially Verilog and VHDL were designed to facilitate only the simulation
of digital circuits; it was not until the late 1980s that automatic synthesis tools
started to appear. The expressiveness of the languages makes it impossible for
synthesis tools to realise all VHDL/Verilog programs in hardware and, as a con-
sequence, there are many valid programs which can be simulated but not synthe-
sised. Those programs which can be synthesised are said to be synthesisable. Al-
though there has been much recent effort to precisely define and standardise the
synthesisable subsets of VHDL/Verilog, the reality is that synthesis tools from
different commercial vendors still support different constructs. (At the time of
writing VHDL is ahead in this standardisation effort: a recently published IEEE
standard defines the syntax and semantics of synthesisable RTL-VHDL [75].
Future RTL-VHDL synthesis tools are expected to adhere to this standard.)

20 2 Related Work

The primary abstraction mechanism used to structure designs in both Ver-
ilog and VHDL is the structural block. Structural blocks are parameterised over
input and output ports and can be instantiated hierarchically to form circuits.
The Verilog language, whose more concise syntax is modelled on C [83], uses the
module construct to declare blocks. For example, consider the following com-
mented description of a half-adder circuit:

The more verbose syntax of VHDL is modelled on ADA [9]. In contrast to
Verilog, the VHDL language is strongly typed, supports user-defined datatypes
and forces the programmer to specify interfaces explicitly. In VHDL, each struc-
tural block consists of two components: an interface description and an architec-
tural body. The half-adder circuit (see above), has the following VHDL interface
description:

and the following architectural body:

Both VHDL and Verilog use the discrete-event model to represent hardware.
In this paradigm a digital circuit is modelled as a set of concurrent processes
connected with signals. Signals represent wires whose values change over time.
For each time-frame (unit of simulation time) a signal has a specific value; typical
values include 0, 1, X (undefined) and Z (high-impedance). Processes may be
active (executing) or suspended; suspended processes may be reactivated by
events generated when signals’ values change.

2.1 Verilog and VHDL 21

To see how the discrete-event model can be used to describe hardware con-
sider modelling a simple D-type flip-flop (without reset). The flip-flop has two
inputs: data-input (d), clock (clk); and a single data-output (q). On the ris-
ing edge of each clock pulse the flip-flop copies its input to its output after a
propagation delay of 2 time-frames. In Verilog the flip-flop can be modelled as
follows:

This Verilog specification contains a single process declaration (introduced with
the always keyword). The body of the process is executed every time the event
“posedge clk” occurs (i.e. every time the clk signal changes from 0 to 1).
The body of the process contains a non-blocking assignment, q <= #2 d, which
assigns the value of input d into register q after a delay of 2 time-frames. A non-
blocking assignment, causes no delay in a process’ execution, but
schedules the current value of to be assigned to register after time-frames1.
To see how this differs from conventional imperative assignment consider the
following:

This sequence of non-blocking assignments swaps the values of registers x and
y. The key point to note is that there is no control-dependency between the two
assignments: both the right hand sides are evaluated before either x or y are
updated. For the sake of comparison the equivalent VHDL code for the flip-flop
is given in Figure 2.1.

Although the discrete-event timing model is apposite and powerful for hard-
ware description it is often criticised for being difficult to reason about. To see
some of the issues which can cause confusion consider the Verilog program shown
in Figure 2.2. Although the program is short, its behaviour is not immediately
obvious. To understand the workings of this code one must observe that the
body of the main process always causes a transition on signal, q, which in turn
re-activates the process. Hence an infinite loop is set up in which signal q is
constantly updated. Also recall that although the effect of the non-blocking as-
signments is delayed, it is the current value of the right-hand-side expression
that is written to q. Thus the statement, q <= #5 q, which at first sight ap-
pears to assign q to itself, does in fact change the value of q. Figure 2.3 shows
this Verilog code fragment running in a simulator. Signal q repeatedly remains
low for 3 time frames and then goes high for 2 subsequent time frames.

1 Writing is simply shorthand for

22 2 Related Work

Fig. 2.1. VHDL code for a D-type flip-flop

Fig. 2.2. Verilog code for the confusing_example

Fig. 2.3. Running the confusing_example module in a simulator

2.2 The Olympus Synthesis System 23

The difficulty of reasoning about Verilog/VHDL has inspired a number
of researchers to develop formal semantics for the languages. Chapman and
Hwang [124] give a translation of a subset of behavioural VHDL into Hoare’s
CSP process algebra [31]. Their translation essentially models the structure of a
discrete-event simulator—user defined processes are composed in parallel along
with a kernel process which co-ordinates their activity. Other researchers have
developed semantics using a wide range of different formalisms including higher-
order logic [140], Petri nets [111] and temporal-logic [144]. Although this research
represents a significant step in specifying the behaviour of VHDL/Verilog, to date
only small, tractable subsets of the languages have been formalised. Whether or
not any of these techniques will scale to formalising the full languages remains
to be seen.

For more information on the Verilog/VHDL languages the reader is referred
to HDL textbooks [91, 115].

2.2 The Olympus Synthesis System

Developed as a research project at Stanford University, the Olympus Synthe-
sis System [43] is a vertically integrated set of tools for the synthesis of digital
circuits. Following the Olympus theme, each of the tools is named after a char-
acter in ancient Greek mythology: high-level synthesis is performed by Hercules
and Hebe; simulation is performed by Ariadne; logic synthesis is carried out by
Mercury and technology mapping is the job of Ceres2. Since this monograph
is only concerned with high-level synthesis we choose to focus only on Hercules
and Hebe.

2.2.1 The HardwareC Language

The input to Olympus is a behavioural specification written in a language called
HardwareC [86]. Although the language has a C-like syntax this is where the
similarity with C [83] ends. HardwareC supports the four fundamental struc-
turing primitives outlined in Figure 2.4. Integers and booleans are provided as
primitive types; the only structured type supported is the array. The usual im-
perative constructs (sequencing, assignment, iteration and conditionals) are also
provided.

Synchronous (blocking) channels are used for communication between paral-
lel processes. Channel operations send and receive have their usual meanings;
the msgwait operation takes a channel, as an argument and returns a boolean
flag indicating whether has pending messages. Channels are uni-directional: as

2 Purists may complain that the Olympus metaphor is shattered by the observation
that whereas some the tools take on the identity of characters from Greek mythol-
ogy, others are named after their Roman counterparts. However, since the Romans
borrowed much of their mythology from the Greeks this is really only a point of
pedantry.

24 2 Related Work

Fig. 2.4. HardwareC’s structuring primitives

in the Occam language [76], each channel must be connected to a single reading
process and a single writing process.

An interesting feature of the HardwareC language is its facility for describ-
ing shared resources. The instance statement allows named instances of func-
tions/procedures to be declared. At the hardware level an instance of a procedure
is represented as a shared resource; multiple calls to the same instance corre-
sponds to resource sharing. A call to a procedure or a function may be bound or
unbound. An unbound call to a function (or procedure), does not specify
which instance of is used to perform the computation. In contrast, a bound
call specifies the name of a specific instance which will be used to perform the
computation. For example, the following HardwareC code contains two unbound
calls to a function called adder:

Since the calls are unbound the compiler is free to choose whether the two calls
to adder are synthesised into two separate adders, or whether a shared resource
is used. Demonstrating the use of bound calls, the following code shows how the
programmer can specify explicitly that a single, shared adder should be used:

Note that the programmer must be careful when using unbound calls to func-
tions/procedures with internal state. In this case the language semantics are
undefined.

HardwareC provides constructs to express timing-constraints and resource-
constraints which are used to guide the synthesis process. Timing-constraints
specify upper and lower bounds on times (in terms of implementation-level clock
cycles) between labelled program points. All timing-constraints must be intra-
procedural; that is for each constraint the labelled program points must be in the

2.2 The Olympus Synthesis System 25

same function, procedure or process. Resource constraints specify upper bounds
on the number of resource instances that the synthesis system may generate to
implement unbound calls.

2.2.2 Hercules

The Hercules [42] tool provides the front-end of the behavioural synthesis subsys-
tem. Its job is to parse HardwareC descriptions, perform high-level optimisations
and generate intermediate code.

The optimisations performed at this level are similar to those which would
be applied by an optimising software compiler including loop unrolling, constant
propagation, common sub-expression elimination and dead-code elimination [10].
Note that all the optimisations are intra-procedural. No inter-procedural opti-
misations are performed.

The intermediate code (referred to as Sequencing Intermediate Format—
SIF) is structured as a directed graph with nodes representing operations (such
as assignments, conditionals etc.) and edges representing control- and data-
dependencies. Parallelism is represented explicitly in SIF. The Hercules system
analyses the dependencies in the HardwareC source and attempts to generate
SIF with as much parallelism as possible.

2.2.3 Hebe

Hebe [87] takes its input in SIF form and performs the tasks of resource-binding
and scheduling. Hebe chooses to perform resource-binding first and then schedul-
ing. The whole process is repeated multiple times to investigate the effects of
different possible binding alternatives. The tasks performed by Hebe can be
characterised more precisely as follows:

Select Binding Configuration – a binding configuration is a mapping be-
tween verticies of the SIF graph and hardware-level resources. (Note that
the binding configuration must satisfy the resource constraints specified in
the HardwareC specification.) Hebe supports both exact and heuristic search
of binding configurations. In the latter case, the evaluation function attempts
to minimise the chip-area, interconnect and latency of the final implementa-
tion.
Resolve Resource Conflicts [88] – once a resource binding is selected, opera-
tions bound to the same resource are statically serialised to ensure that they
will be accessed under mutual exclusion. A branch-and-bound search is used
to explore the ordering alternatives. If a serialisation cannot be found then
the binding configuration is discarded and the whole process is repeated.
Relative Scheduling [89] – the scheduling phase has special provision for deal-
ing with operations whose execution times are not statically bounded. We
discuss relative scheduling further in Chapter 4 where we contrast its expres-
sivity with our Soft Scheduling technique.

26 2 Related Work

One of the key differences between HardwareC and Verilog/VHDL is that,
whereas the latter were initially intended for simulation, the former was designed
specifically with synthesis in mind. As a result, all valid HardwareC programs
are synthesisable (subject to the tools finding an implementation which matches
the specified constraints).

HardwareC’s treatment of functions as shared resources is of particular rel-
evance to our research. We adopt a similar technique in our SAFL hardware
description language (defined in Chapter 3).

2.3 Functional Languages

There is a large body of work on using functional programming languages to
describe circuits at the structural level; this methodology offers a number of
potential advantages over structural Verilog/VHDL:

Function composition is a very useful notion, allowing circuits to be composed
directly (without the clutter of defining intermediate signal names explicitly).
Higher-order functions provide a concise and flexible notation for abstracting
commonly used circuit structures (e.g. carry chains).
The polymorphic type systems commonly used in functional languages offer
a greater degree of flexibility than simply typed VHDL and a greater degree
of security than untyped Verilog.
The layout of a circuit can be represented elegantly and concisely by using
higher-order combinators which encapsulate a notion of geometry.

In the remainder of this section we explore these issues with reference to a
number of functional hardware description languages. (Chapter 8 extends the
ideas described here by embedding a functional language for structural hard-
ware description into SAFL, our functional language for behavioural hardware
description.)

2.3.1 An Algebra for VLSI Specification

Sheeran’s [132] is a structural HDL based on Backus’ FP [15, 16]. Whereas
functions in FP take a single input and produce a single output, functions in

map a stream of inputs onto a stream of outputs. The element of a
stream corresponds to the value of a signal at time In this model time is
a discrete quantity, providing a convenient mapping between time intervals and
hardware-level clock cycles3.

Like FP, the language provides a set of higher-order combining forms:
functions which map functions to functions. Some of the important combining
forms (referred to as /R and /L) are given in the table below:

was designed with synchronous circuits in mind.3 3

2.3 Functional Languages 27

Combining Form Description
Function composition:
Map onto each element of sequence
Fold (binary) function onto sequence to
compute
Fold (binary) function onto sequence to
compute

As well as the stream semantics [132] (defined by means of a translation from
to FP) the combining forms of also have a circuit-level geometric

interpretation. Figure 2.5 shows how circuits corresponding to the /L, /R and
combinators are constructed.

Fig. 2.5. The geometrical (circuit-level) interpretation of some combining forms.
(i) (ii) (iii)

The language augments Backus’ FP with a new combining form which
represents state. Given a function of type is a function of
type which has internal state. Figure 2.6 shows how is realised at the
circuit-level. A feedback loop is created using a clocked-latch to hold state.

The simplicity of the language makes it ideal for program transforma-
tion. Transformations are expressed as a series of algebraic identities. The
design philosophy involves deriving an efficient implementation from an abstract
specification by repeated application of transformation rules.

In later work, was refined into a relational VLSI specification language
called Ruby [80]. In Ruby a circuit is modelled as a binary relation between
input and output signals. Guo and Luk [59] present a method for compiling Ruby
specifications to FPGAs. This exploits the structure of Ruby specifications in
order to generate efficient layouts using a syntax-directed translation function.

28 2 Related Work

Fig. 2.6. The hardware-level realisation of the combinator— (i) function
(ii) the effect of applying the combinator, yielding a function

2.3.2 Embedding HDLs in General-Purpose Functional Languages

A number of researchers have investigated embedding HDLs in existing func-
tional languages. For example, the HDRE (pronounced “hydra”) system [109]
was originally implemented on top of the functional programming language
Daisy [85]; the Lava HDL [25] is embedded in Haskell [3].

Both HDRE and Lava use alternative interpretations of basis functions in
order to perform both simulation and net-list generation from the same specifi-
cation [110]. To illustrate this technique we give ML [101] code for boolean basis
functions (AND, OR andNOT) in both a behavioural interpretation and a structural
interpretation. We then demonstrate the effect of executing a simple program
under each of these interpretations.

Fig. 2.7. Behavioural interpretation of basis functions AND, OR and NOT

The behavioural interpretation of the basis functions is simply the usual
interpretation of the function in the boolean domain (see Figure 2.7). In contrast,
the structural interpretation of the basis functions is presented in Figure 2.8.
Note that Figure 2.8 assumes the existence of a function, fresh_wire_name(),
which when invoked returns a string representing the name of a fresh wire.

Let us now consider a simple specification of a simple combinatorial circuit
defined in terms of our basis functions AND, OR and NOT:

Under the behavioural interpretation of our basis functions we can execute this
specification as a boolean function. For example:

2.3 Functional Languages 29

Under the structural interpretation of the basis functions, execution of the spec-
ification generates a Verilog-style netlist and returns the name of the function’s
output wire:

Compare the simplicity of the functional xor specification with the equivalent
Verilog-style net-list. One of the advantages of using functional languages to
describe the structure of hardware is that function composition can be used to
connect hardware blocks without explicitly declaring intermediate wires.

Fig. 2.8. Structural interpretation of basis functions AND, OR and NOT

Although for the purposes of this example we embedded a simple HDL in the
Call-By-Value (CBV) language ML, work on embedding HDLs usually focuses
on lazy functional languages. For describing combinatorial (acyclic) hardware,
CBV and lazy languages are equally appropriate. However, lazy evaluation has

30 2 Related Work

advantages when circuits contain feedback loops. The reason for this is that cir-
cuits with feedback loops are typically represented as mutually recursive stream
equations. Although infinite-streams can be represented in a CBV language, sim-
ulating delayed evaluation by explicitly constructing thunks4 [120], cyclic circuit
definitions are more elegant in a naturally lazy language. The flip side is that
lazy languages have more difficulty operating on graphs with shared nodes (a
particularly useful feature when describing circuits containing feedback). Classen
and Sands propose an extension for Haskell which makes graph sharing observ-
able [37]. Their work is based on immutable references which support test for
equality and is motivated by a desire to embed an HDL in Haskell.

A number of large designs have been simulated and synthesised using HDLs
embedded in functional programming languages. Classen et al describe the syn-
thesis of a parameterisable sorter core [38] using the Lava system. Their imple-
mentation (on a Xilinx FPGA) is significantly smaller than when state-of-the-art
tools were used to synthesise an equivalent sorter described in Verilog.

The Hawk [96] system is another HDL embedded in Haskell designed specif-
ically to facilitate the description and simulation of complex microprocessors.
The system has been used to specify a modern microarchitecture based on the
Intel P6 [39].

Johnson’s DDD (Digital Design Derivation) system [79] manipulates func-
tional S-expressions in the Lisp dialect Scheme [125]. The system allows en-
gineers to refine a behavioural specification into a structural implementation
by means of a library of correctness-preserving transformations. DDD has been
tested on a number of large case-studies, including the derivation of a complete
microprocessor [27].

2.4 Term Rewriting Systems

Hoe and Arvind describe TRAC [69]: a hardware synthesis system which gener-
ates synchronous hardware from a high-level specification expressed in a term-
rewriting system [14]. Broadly speaking, terms correspond to states and rules
correspond to combinatorial logic which calculates the next state of the system.
Restrictions imposed on the structure of rewrite rules facilitate the static alloca-
tion of storage. These closely correspond to the tail-recursion restriction imposed
on SAFL programs to achieve static allocation (see Chapter 3).

As a motivating example, term-rewriting systems are used to specify and
verify the equivalence of two simple RISC processors: a simple processor without
any advanced features, and a more complicated variant with pipelining and
speculative execution [12]. Two languages based on term rewriting systems are
investigated [68], one based on the syntax of Parallel Haskell [108], the other
based on the syntax of C [83].

4 Thunks are closures with a unit argument (e.g.

2.5 Occam/CSP-Based Approaches 31

2.5 Occam/CSP-Based Approaches

Hoare’s CSP process calculus [31] and its related programming language Oc-
cam [76] have proved popular for describing parallel systems. A number of re-
searchers have investigated the use of Occam/CSP-based languages for hardware
description and synthesis.

2.5.1 Handel and Handel-C

The Handel language is a subset of Occam used for hardware synthesis research
at Oxford University during the early nineties. A compiler was built to translate
Handel into hardware, specifically targeting Xilinx FPGAs [112].

The compilation techniques employed are entirely syntax-directed. No schedul-
ing or binding is performed—each occurrence of an operator in the source
(e.g. ‘*’) leads to the generation of a new combinatorial functional-unit at the
hardware-level (e.g. a new combinatorial multiplier). All function calls are in-
lined, leading to the possibility of an exponential blow-up in code size; all ex-
pressions are translated into purely combinatorial hardware.

Despite the crude compilation strategy, the Handel system was used in a
number of interesting hardware/software co-design projects. Transformations for
converting a Handel program into a specialised micro-processor and an associ-
ated machine-code program were investigated [113]. Dynamically reconfiguring
the parameterised processor (by reprogramming an FPGA at run-time) was also
considered [114].

More recently, the Handel language has evolved into a commercial product
called Handel-C [2]. The marketing literature is careful to distance itself from
Occam, describing Handel-C as “a subset of C with extensions”5. However, in
practice subset corresponds to removing the features of C that do not appear in
Handel and with extensions corresponds to adding the features of Handel that
are not in C (i.e. synchronous channels and parallel composition). Thus we can
safely deduce that Handel-C is in fact Occam with a C-like syntax.

Although the Handel-C development environment is significantly more so-
phisticated than the Handel equivalent, the hardware compilation process is still
essentially syntax-directed; no scheduling or binding is performed.

2.5.2 Tangram and Balsa

The Tangram system started life as a PhD Thesis from Eindhoven University of
Technology [137] after which it was adopted by Philip’s Research Laboratories
and developed further [138]. The Tangram compiler takes a circuit specification
expressed in a CSP-like language (with parallel composition and synchronous
channels) and generates an asynchronous circuit.

5 Of course, all languages are extended subsets of each other. For language extensions,
we observe:

32 2 Related Work

One of the major contributions of the Tangram project was the develop-
ment of handshake circuits: an intermediate representation which both (i) ab-
stracts low-level technology-specific details and (ii) supports an elegant transla-
tion to asynchronous hardware. A handshake circuit is built by composing a set
of primitive handshake components to form a graph. The terminals of handshake
components incorporate request/acknowledge signals which explicitly signal the
presence/receipt of data (respectively). Since handshake components all rely on
explicit request/acknowledge signalling, they can be connected together to form
a system which does not require a global clock for synchronisation.

The compilation process consists of two phases: the Tangram language is first
compiled into handshake circuits and then from this form into an asynchronous
circuit. The first phase (compilation to handshake circuits) is syntax directed;
the second phase (compilation to asynchronous circuits) involves a one-to-one
mapping from handshake components to their circuit-level realisation.

In a sense the Tangram compiler is quite simple; it does not perform alloca-
tion, binding or scheduling (the tasks usually associated with high-level synthesis
systems). What makes Tangram interesting and differentiates it from the vast
majority of high-level synthesis systems is that it targets asynchronous circuits.
A number of asynchronous ICs have been compiled using Tangram including a
Compact Disc error decoding circuit [84] and an asynchronous version of the
Intel 80C51 microcontroller [139] which consumes about a quarter of the power
of its synchronous counterpart.

In 1998 a redesigned version of the Tangram language and its associated sil-
icon compiler was released within Philips. Based on the experiences of Philips’
engineers, who had by that time been using Tangram for several years, a num-
ber of new language features were added. Most importantly, primitives such as
sample, wait, and write were provided to manipulate external signals without
the requirement for an external handshake [121].

The Balsa synthesis system [19], developed at the University of Manchester,
is similar to Tangram, translating CSP-like input descriptions into asynchronous
circuits for implementation on FPGAs or standard-cell technologies. The strik-
ing similarity between Balsa and Tangram is not coincidental: Balsa was devel-
oped shortly after the EXACT project (EXplotation of Asynchronous Circuit
Techniques—ESPIRIT project 6143,1992–94) during which Manchester had ac-
cess to the Tangram tools [45]. Balsa has been used to synthesise the DMA
controller for the AMULET3i macrocell (which consists of an AMULET3 asyn-
chronous microprocessor [51], 8Kb RAM, 16Kb ROM and a simple peripheral
bus interface). The most important difference between Tangram and Balsa from
the perspective of the research community is political rather than technical:
whereas Tangram is entirely Philips proprietary, the Balsa tools and associated
research papers are freely available.

2.6 Synchronous Languages 33

2.6 Synchronous Languages

Computerised systems can be divided into three broad categories [64]:

Transformational Systems compute output values from input values and then
stop (e.g. numerical computation programs, compilers).
Interactive Systems constantly interact with their environment, but do so at
a speed governed by the system (rather than the environment). Examples of
interactive systems include operating systems: an operating system listens to
the user when it can and delivers services as and when they are available.
Reactive systems (also known as reflex systems) also constantly interact with
their environment, but do so at a pace that is dictated by the environment.
Signal processors are a typical example of reactive systems—a stream of data
comes into the system (at a speed determined by the environment); the signal
processor must produce corresponding outputs at as fast as the input data
arrives.

Given this taxonomy, concurrent programming languages can also be cate-
gorised accordingly. The synchronous language community divide languages in
two distinct classes that they call the synchronous class and the asynchronous
class. The class of asynchronous languages contains classical concurrent lan-
guages such as CSP [31], Occam [76] and Ada [9]. In such languages concurrent
processes are viewed as independent execution units, each proceeding at their
own pace. Inter-process communication is facilitated by mechanisms such as mes-
sage passing or rendezvous. In this framework communication is asynchronous
in the sense that an arbitrary amount of time can pass between the desire for
communication and its actual completion6. Asynchronous languages are well
suited to describing transformational and interactive systems but are often not
so appropriate where reactive systems are concerned [20].

The most notable examples of synchronous languages are Esterel [23], Lus-
tre [61], Signal [58] and Statecharts [65]. Lustre and Signal are declarative lan-
guages which are designed with real-time DSP systems in mind. In contrast
Esterel and Statecharts are imperative languages which focus instead on de-
scribing real-time controllers. Although the problem domains are varied, the
common factor that unifies all synchronous languages is that they deal with re-
active systems subject to strict timing constraints. In this section we choose to
give an overview of synchronous languages in general rather than focusing on
the specifics of particular languages. (For a good description of the specifics the
reader is referred to Halbwachs’ book [60].)

Programs written in synchronous languages are viewed as reacting instanta-
neously to their inputs by producing the required outputs. Of course in practice
this is an idealised assumption as one cannot construct infinitely fast computers.
In reality synchronous programs are implemented as cycle-based systems where

6 Note that there is a conflict of terminology here as rendezvous is sometimes referred
to as synchronous communication—to avoid confusion the synchronous language
community uses the term synchronising communication rather than synchronous
communication in this context.

34 2 Related Work

a cycle corresponds to “read inputs; perform computation; write outputs”. How-
ever, the assumption of an instantaneous response to the environment (some-
times referred to as the perfect synchrony hypothesis) simplifies the semantic
model of the languages considerably and removes issues regarding computation
time from specifications: the designer hopes that the compiler will produce a de-
sign with a cycle time short enough to meet the system’s real-time constraints.
There is a direct analogy with synchronous circuit design here. When designing
a synchronous circuit at the netlist level one often makes the assumption that
gates and wires have no delays7. It is only when CAD tools map the specification
to hardware that the engineer can determine whether the resulting clock speed
is sufficient to meet real timing constraints.

Another distinction between synchronous and asynchronous languages can
be seen in the style of their Inter-Process Communication (IPC) primitives.
Whereas asynchronous languages rely on rendezvous communication or message
passing, synchronous languages perform IPC by means of instantaneous broad-
cast, the receiver receiving the message at exactly the same time it is sent. In
contrast to asynchronous languages, which usually support non-determinism,
(e.g. Occam’s ALT construct), synchronous languages are fully deterministic: for
any given input sequence there is exactly one corresponding output sequence
that can be generated.

Complex systems often require the capabilities of both synchronous and asyn-
chronous languages. For example, a robot driver must use a specific reactive
program to control each articulation, but the global robot control may be asyn-
chronous due to limitations of networking capabilities. To address this issue
Berry et al motivate Communicating Reactive Processes [24]: a formalism which
supports the capabilities of asynchronous and synchronous languages by unifying
Esterel and CSP.

Research has shown that synchronous languages can be compiled to hardware
efficiently [21, 62]. Although current compilers for synchronous languages only
target synchronous hardware, there is no fundamental reason why synchronous
languages should not be compiled to asynchronous hardware. However, it may
prove to be the case that hard real-time guarantees are less forthcoming in the
asynchronous domain (e.g. for every input, does the circuit always generate its
outputs in a timely manner?). Further research is required to investigate whether
synchronous languages can be usefully implemented as asynchronous hardware.

2.7 Summary

In this chapter we have reviewed a number of existing hardware synthesis
methodologies. We continue by presenting SAFL, our functional language for
hardware synthesis.

7 Of course, this is a bit of an over-simplification as a good engineer will be thinking
about critical paths etc. whilst drawing up a netlist. Despite this, however, there
is still no precise timing information known at this stage—the design philosophy is
very much “suck it and see”!

3

The SAFL Language

SAFL, which stands for Statically Allocated Functional Language, is a be-
havioural HDL which is used throughout this monograph as a vehicle to explore
high-level synthesis. Although the language is syntactically and semantically sim-
ple, it is expressive enough to form the core of a behavioural hardware synthesis
system supporting high-level analysis, optimisation and transformation.

The methodology that underlies our research involves using a small and el-
egant language to explore new possibilities in the field of high-level hardware
description and synthesis. The simplicity of SAFL provides two key benefits:
firstly it allows us to be more productive by minimising implementation and de-
velopment times; secondly it enables us to present our ideas clearly and concisely
without becoming entangled in the complexity of a fully-featured programming
language. Of course, an obvious concern with this methodology is that using an
unrealistically simplistic language to investigate analysis and compilation meth-
ods may result in the development of techniques which are only applicable to
such unrealistic languages. To rebut this argument we dedicate Chapters 7 and 8
to extending SAFL with the capabilities one would expect from an industrial-
strength HDL and demonstrate that the analysis and compilation techniques of
Chapters 4 and 6 scale accordingly.

In this chapter we introduce the SAFL language and outline how it is used
for hardware description and synthesis. Having described the motivation behind
SAFL (Section 3.1) the language’s syntax and semantics are presented (Sec-
tion 3.2). A number of important concepts are defined including static allocation
(Section 3.2.1) and resource awareness (Section 3.3.2). We introduce the idea of
using source-to-source program transformations on SAFL specifications to facil-
itate architectural exploration. Some simple transformations are described and
small examples, based on Burstall/Darlington’s fold/unfold transformations [29],
are presented (Section 3.3.3). Finally we show how mutual-recursion can be dealt
with in the SAFL framework.

3.1 Motivation

Recall that in Chapter 1 we argued that structural blocks (employed as an
abstraction mechanism by many behavioural HDLs) are not suitable for high-

36 3 The SAFL Language

level hardware specification. SAFL is based on the observation that many of the
problems associated with structural blocks (see Section 1.3.1) can be alleviated
by structuring code as a series of function definitions. Firstly, the properties of
functions make it easier to reason about the effects of program transformations.
As a result, source-level program transformation becomes a viable technique for
architectural exploration. Secondly, the “invoke and wait for result” interface
provided by functions removes the programmer from the burden of explicitly
specifying ad hoc inter-module control- and data-flow mechanisms. As well as
making the code shorter and easier to read, the implicit control-flow information
encapsulated in the function-abstraction increases the scope for global compiler
analysis and optimisation (see Section 3.3.4).

A principal aim of this work is to adopt an aggressively high-level stance with
respect to hardware specification. Our goal is to build a system in which (i) the
programming language is clean (e.g. no ‘implementation-defined subsets’); (ii)
the logical structure can be specified early in the design process but its realisation
as a physical structure can easily be modified even at late stages of development;
and (iii) programs are susceptible to compiler analysis and optimisation facilitat-
ing the automatic synthesis of efficient circuits. These requirements are clearly
reflected in the design of SAFL, a first-order, functional, concurrent language
which:

can be statically allocated—all variables are allocated to fixed storage loca-
tions at compile time—there is no stack or heap; and
has independent sub-expressions evaluated in parallel.

While this concept might seem rather odd in terms of the capabilities of modern
processor instruction sets, the view is that it neatly abstracts the primitives
available to a hardware designer. The desire for static allocation is motivated
by an observation that dynamically-allocated storage does not map well onto
silicon: an addressable global store leads to a von Neumann bottleneck which
inhibits the natural parallelism of a circuit.

3.2 Language Definition

SAFL is essentially a language of first-order recurrence equations with an ML-
like syntax [101] and a call-by-value semantics. A user program consists of a
number of function definitions declared using the fun keyword.

Let range over a set of constants, over variables (occurring in let decla-
rations or as formal parameters), over primitive functions (such as addition)
and over user-defined functions. For typographical convenience we abbreviate
formal parameter lists and actual parameter lists to
and respectively; the same abbreviations are used in let definitions. The core
SAFL language has an abstract syntax of:

3.2 Language Definition 37

terms given by:

programs given by:

Programs have a distinguished function main (normally which represents
an external world interface—at the hardware level it accepts values on an input
port and may later produce a value on an output port.

Throughout this document SAFL’s abstract syntax (given above) is used to
simplify the definition of analysis and compilation techniques. In contrast, SAFL
program fragments are given using the concrete syntax defined in Section 3.2.4.

3.2.1 Static Allocation

We say that SAFL is statically allocatable, meaning that we can allocate all stor-
age required for a SAFL program at compile-time. In order to achieve static al-
locability we impose the restriction that all recursive calls must be tail-recursive.
This is formalised as a well-formedness check: define the tailcall contexts, by

The well-formedness condition is then that, for every user-function application
within function definition we have that:

The first part is merely static scoping (definitions are in scope if previ-
ously declared) while the second part says that if the call is recursive
then it must be in tailcall context.

To emphasise the hardware connection we define the area of a SAFL program
to be the total space required for its execution. Due to static allocation we see
that area is O(length of program).

3.2.2 Integrating with External Hardware Components

Although the SAFL language in itself is powerful enough to specify many hard-
ware designs in full (e.g. Chapter 10 contains a DES Encrypter/Decrypter writ-
ten in SAFL) there are often circumstances where a SAFL hardware design must
interface with external hardware components. In the SAFL language, as imple-
mented, facility is provided to access externally defined hardware via a function
call interface. The signature of external functions is given using the extern key-
word. For example, one may declare an interface to an external RAM block as
follows:

38 3 The SAFL Language

where the annotations are used to specify the bit-widths of the argument
and result types (see Section 3.2.4).

Whilst the details of the interfacing mechanism are described in Chapter 5,
it is worth noting at this stage that external calls may be side-effecting. We take
an ML-style view of side-effects: since SAFL is a strict language it is easy to
reason about where side-effects will occur in a program’s execution. Of course,
we intend that programmers write as much as possible of their specification in
SAFL, only relying on external calls when absolutely necessary.

3.2.3 Semantics

At an abstract level, the semantics of SAFL is straightforward; Figure 3.1
presents a Structural Operational Semantics [122] for the language in only seven
rules. However, although this semantics is able to determine the result of a SAFL
program’s execution, it is does not model many of the important properties of the
language such as concurrency or calls to external (possibly side-effecting) func-
tions. These issues are dealt with formally in Chapter 7 where a finer-grained
semantics based on the Chemical Abstract Machine [22] is presented. For now,
since most of our SAFL examples are purely functional (i.e. do not rely on
external functions), the semantics of Figure 3.1 suffices to define the meaning
of SAFL programs.

One aspect of SAFL which is highlighted by the operational semantics given
here is its call-by-value nature: the rule specifies that a function call’s
arguments must be evaluated fully before the body of the called function can be
executed. Our decision to use eager evaluation, as opposed to lazy evaluation,
is based on an observation that a strict semantics offers more opportunity for
concurrent execution. Whereas with lazy evaluation one always has a single (i.e.
sequential) idea of ‘the next redex’1, call-by-value execution permits all function-
call arguments to be evaluated in parallel. Concurrency is a very important
consideration in the design of an HDL, since, in contrast to software, hardware
is inherently parallel.

3.2.4 Concrete Syntax

Whilst for many constructs SAFL’s concrete syntax mirrors the abstract syntax
given earlier in this section, there are a few differences worth highlighting. Firstly,
as in ML, the val keyword is used to introduce let declarations, and the end
keyword delimits the end of the body. For example:

1 Note that strictness analysis [36] of a lazy language can be used to determine which
of a function’s parameters may safely be called by value (and hence those parameters
which may be executed concurrently). However, decidability issues limit the accuracy
of the analysis meaning that in practice opportunity for parallelism is not exploited
fully.

3.2 Language Definition 39

Let S be a function mapping (immutable) variables onto their integer values. As before
we use as shorthand for (similarly for and represents
a function which is as S but maps each onto for Let be a global
function environment mapping function names onto the SAFL expressions representing
their bodies. We use to refer to a function’s formal parameters. Then a big-
step transition relation, for SAFL can be defined with the following rules:

Fig. 3.1. A big-step transition relation for SAFL programs

specifies that the values of x and y are to be computed and then used as argu-
ments to the function g. Variables defined in a let construct are only in scope
in the body of the let2.

Type System

For most of the examples in the text, we will omit type information. However,
the types of all variables must clearly be known to compile the appropriate width

2 Note that we adopt a different syntactic convention from ML in this respect. In
ML, var-declared variables are bound in subsequent declarations within the same
let-block (unless the and keyword is used explicitly).

40 3 The SAFL Language

of hardware register. All SAFL variables are explicitly typed with a type
in concrete syntax we use the form (where is an integer constant) to
annotate variables at their introduction. All constants also have a type (explicitly
given or inferred from their value). Built-in functions, such as addition and
concatenation, may have a family of types (e.g. or

the result type (and hardware generated) depends on the types of the
arguments. User-defined functions also require the type of result to be provided
when it cannot be inferred from the type of result; this is only really necessary
for odd (and useless) forms like fun f(x : 8) = f (x). The value, (), of width 0
plays a special role and has type unit (which is synonymous with We adopt
the convention that all functions return a single result; side-effecting functions
which do not need to return a value can return () instead.

To make examples more readable we introduce the notion of record types,
extending the top-level syntax of SAFL programs as follows:

Type variables range over both integers (in which case they represent bit
widths) and other (previously defined) record types. We use the usual dot-
notation to select field from record

We choose not to focus on type systems for HDLs in this monograph: the
type system employed here is just the “bare minimum” required to make SAFL
usable. A topic for future work is to investigate the impact of applying more so-
phisticated type systems (e.g. the introduction of parametric polymorphism [99])
to SAFL.

Operators

Figure 3.4 shows SAFL’s arithmetic, logical and relational primitive operators.
A number of other operations are also provided. These are discussed briefly be-
low. Note that these operators are merely concrete syntax (providing convenient
special cases of the abstract syntax’s production).

We write e[n:m] to select a bit-field [n..m] from the result of expression e
(where n and m are integer constants).
Conversely, we use the special operator join to concatenate values at the
bit-level. The result of

is a single value which is the bit-level concatenation of the results of expres-
sions

3.3 Hardware Synthesis Using SAFL 41

Fig. 3.2. Translating the case statement into core SAFL

Fig. 3.3. Translating let barriers “---” into core SAFL

Syntactic Sugarings

It is convenient to extend SAFL with a number of syntactic sugarings:

We define a case construct which is translated into code which evaluates the
left-hand expressions in parallel and then performs a series of iterated tests
(see Figure 3.2).
We define sequential composition of expressions as:

and data-flow parallel composition, as:

Where x and y are fresh variable names.
We define the lexical symbol “---” as a let-barrier (see Figure 3.3). The
let-barrier is useful because it provides us with a concise way to control the
order of execution of let-declarations. All expressions before a let-barrier are
evaluated fully before any subsequent expressions are evaluated. Our primary
motivation for the let-barrier sugaring is that it enables static scheduling of
shared resources to be described concisely in SAFL (see Section 4.4).

3.3 Hardware Synthesis Using SAFL

Having defined the syntax and semantics of SAFL we continue by describing
the core principles involved in building a high-level synthesis system around the

42 3 The SAFL Language

Fig. 3.4. SAFL’s primitive operators

language. Here we introduce and motivate the concept of resource-awareness,
present a SAFL-to-silicon design-flow and outline some of the advantages of
generating hardware from SAFL specifications.

3.3.1 Automatic Generation of Parallel Hardware

Hammond [63] observes:

“It is almost embarrassingly easy to partition a program written in a
strict [functional] language [into parallel threads]. Unfortunately, the
partition that results often yields a large number of very fine-grained
tasks.”

He uses the word unfortunately because his discussion takes place in the context
of software, where fairly course-grained parallelism is required to ensure the
overhead of fork/join does not outweigh the benefits of parallel evaluation.

In contrast, we consider the existence of “a large number of very fine-grained
tasks” to be a very fortunate occurrence: in a silicon implementation, very
fine-grained parallelism is provided with virtually no overhead3. The referen-
tial transparency of SAFL allows us to evaluate function-call arguments and
let-declarations concurrently.

3.3.2 Resource Awareness

The static allocation properties of SAFL allow our compiler to enforce a direct
mapping between a function definition:

and a hardware block, with output port, consisting of:

a fixed amount of storage (registers holding values of the arguments
a circuit to compute to

3 Hardware is the exact opposite of software in this respect: separate components of
a circuit naturally operate in parallel—special effort must be taken to force them to
execute sequentially!

3.3 Hardware Synthesis Using SAFL 43

We say that our SAFL compiler is resource aware since each function declara-
tion at the source-level is translated into a single resource at the hardware level.
In this framework, multiple calls to a function corresponds directly to sharing
the resource at the hardware level. We believe that resource awareness offers
a number of benefits:

The function-resource correspondence allows SAFL to express both logical
specification and physical structure without requiring any extra language
features.
A designer is able to visualise how a SAFL program will be structured at
the hardware-level. This intuitive understanding prevents one from having
to “second guess” the compiler.
Source-to-source program transformation becomes a powerful technique.
(See Section 3.3.3).

1.

2.

3.

At first sight there appears to be contention between our goal to develop a
truly high-level specification language on the one hand, and the decision to en-
force a 1-1 correspondence between function definitions and hardware resources
on the other. Recall that in Section 1.3.1 we claimed that a high-level hardware
specification language should not fix low-level implementation details. Thus, at
least on the surface, it appears that by advocating resource-awareness we have
violated our own design criteria.

Fig. 3.5. The SAFL Design-Flow

These apparently conflicting beliefs are resolved via an extra program-trans-
formation step in the SAFL-to-silicon design-flow (see Figure 3.5). We intend

44 3 The SAFL Language

that designers initially write SAFL specifications as clearly as possible, without
considering any implementation-level issues. A source-level program transfor-
mation phase is then used to refine a given specification towards a suitable
implementation whilst preserving its logical semantics. Hence SAFL frees a de-
signer from low-level concerns in the initial phases of development but is still
expressive enough to encode important implementation-level choices later in the
design process.

Hardware designers frequently complain that it is difficult to visualise the
circuits that will be generated by black-box HLS tools. However, the desire for
an intuitive understanding of the compilation process must be traded off against
the benefits of automatic analysis and optimisation: a compiler which performs
significant optimisation is necessarily harder to predict than one which performs
only syntax-directed translation. A strong argument in favour of resource aware-
ness is that it explicitly defines the boundary between human specification and
compiler optimisation—a SAFL program fixes the top-level circuit structure but
leaves a compiler free to optimise function-internals and inter-function commu-
nication structures.

It is important to observe the interaction between parallel execution and
resource-awareness. Since our compiler generates concurrent hardware we have
to be careful to ensure that multiple accesses to a shared hardware resource will
not occur simultaneously. This is related to the scheduling problem described in
the first chapter. However whereas existing silicon compilers statically serialise
access to shared resources we take a contrasting approach, resolving conflicts
dynamically via arbiters generated as part of the synthesis process. (Chapter 4
considers this technique in detail and presents a global static analysis which
allows redundant arbiters to be optimised away.)

3.3.3 Source-Level Program Transformation

Source-level program transformation of SAFL specifications is a powerful tech-
nique. We argue that SAFL is better suited to source-to-source manipulation
than conventional HDLs for the following reasons:

The functional properties of SAFL allow equational reasoning and hence
make a wide range of transformations applicable.
Resource-awareness gives transformations precise meaning at the design-level
(e.g. we know that duplicating a function definition in the source is guaran-
teed to duplicate the corresponding resource in the generated circuit).

A designer can explore a wide range of hardware implementations by repeat-
edly transforming an initial specification. Here we illustrate this technique by
showing how Burstall and Darlington’s fold/unfold transformations [29] can be
used to trade area for time. (Chapter 9 investigates more complex transforma-
tions which can be used to explore a wide range of architectural tradeoffs.)

Consider the following SAFL specification:

3.3 Hardware Synthesis Using SAFL 45

The two calls to f are serialised by mutual exclusion before g is called. Now use
fold/unfold to duplicate f as f’, replacing the second call to f with one to f’.
This can be done using an unfold, a definition rule and a fold yielding

The second program has more area than the original (by the size of f) but runs
more quickly because the calls to f(x) and f’(y) execute in parallel.

Fig. 3.6. An application of the unfold rule to unroll the recursive structure one level

Although the example given above is trivial, we find fold/unfold to be a
useful technique in choosing a hardware implementation of a given specification.
Note that fold/unfold allows us to do more than resource/duplication sharing
tradeoffs. For example, consider the SAFL description of a shift-add multiplier:

This corresponds to a single multiply unit containing an adder, two shifters and
some control logic. If we now unfold the recursive call one level our specification
is transformed into the one shown in Figure 3.6. The function mult2 corresponds
to a multiply unit with 4 adders, 6 shifters and twice as much control logic as our
previous example. We have increased the area, and in return gained performance.
When this specification is fed through our synchronous compiler, mult2 is able
to do ‘twice as much per clock-cycle’ as mult at the cost of a higher gate count4.
Note, however, that mult2 is doing needless work computing some expressions
repeatedly. An application of the abstraction rule solves this (see Figure 3.7).
Using let to share the output of expressions leads to a decrease in time and
area: we only need to compute expressions once (less time) and we only require
a single circuit to compute a single expression (less area).

4 Of course the clock frequency may be reduced if mult2 is on the critical path of the
design.

46 3 The SAFL Language

Fig. 3.7. An application of the abstraction rule to mult2

Finally, consider the application of fold transformations to mult3 yielding
the code shown in figure 3.8. The fold transformation has reduced the area of

Fig. 3.8. The result of applying fold transformations to mult3

the generated circuit by specifying that the adder, lshift and rshift units are
to be shared. As a result of this, mult4 may take longer to compute its result
than mult3 since parallelism is inhibited by the shared resources: if two expres-
sions require access to the same shared resource then they must be evaluated
sequentially. Note that in practice one must be careful that the cost of sharing
a resource—i.e. the extra multiplexing and control-logic—does not lead to an
increase in area. (An example where resource sharing inadvertently leads to an
increase in chip area can be seen in the experimental results of Section 6.6.)

3.3 Hardware Synthesis Using SAFL 47

3.3.4 Static Analysis and Optimisation

Recall that one of the key differences between structural blocks and function
definitions is that, unlike structural blocks, the function abstraction implicitly
encapsulates a notion of control- and data-flow. We have already observed that
the function call-return interface removes low-level details from specifications,
reducing program length and making code easier to read (see Section 3.1). Here
we argue that functional hardware specification greatly increases the scope for
global compiler analysis and optimisation.

Fig. 3.9. Three methods of implementing inter-block data-flow and control-flow

Consider the case where a hardware component, wishes to synchronise
with a component, in order to transfer a value into one of registers. There
are many ways that this rendezvous could be realised at the hardware level.
Figure 3.9 shows three possible implementation techniques. (Note that in this
figure we adopt the convention, followed throughout this document, of using
thin lines to represent control signals and thicker lines to represent data signals.)
Figure 3.9(i) involves an explicit control signal which allows to inform when
the data is ready to be latched—in this case it is assumed that will always be
ready to latch the data so no explicit backwards acknowledgement is required.
Figure 3.9(ii) shows the two blocks synchronising the transfer with respect to a
global clock (e.g. both and may adopt the convention that a transfer will
take place every 15 cycles). Finally, Figure 3.9(iii) shows and communicating
via a shared register. A separate control unit is employed to co-ordinate the
transfer (i.e. to inform when data is waiting and inform when the data has
been read). The three implementation techniques shown here are by no means
exhaustive—one can easily imagine a plethora of other circuits which achieve
the same effect.

Using structural blocks to define the separate components and inevitably
results in specifications which fix low-level implementation choices (through ex-
plicit definition of control-signals, data busses, registers etc.). Although in some

48 3 The SAFL Language

sense each of the designs of Figure 3.9 perform the same high-level data-transfer,
their structural specifications look radically different. This makes global anal-
ysis problematical: a pre-requisite for global static analysis is a model of how
separate components of a design communicate either in terms of control-flow,
data-flow or possibly both. Clearly, the problem of inferring the high-level con-
trol structures and data-flow information from structural-level specifications is
very difficult in general. This is why existing HLS tools for languages such as
Verilog/VHDL only perform local analysis and optimisation at the behavioural
level.

In contrast, an equivalent SAFL specification for our communicating compo-
nents would represent both and as separate function definitions, with function

containing a call, At this higher level the intention is clear: a compiler is
able to automatically infer control-flow and data-flow information across the re-
source boundary. Chapters 4 and 6 present global control- and data-flow analyses
which allow us to optimise SAFL-generated hardware.

3.3.5 Architecture Independence

Although we try to make SAFL well-suited to describing hardware in general,
we are careful not to favour the description of any particular circuit design
paradigm. We say that SAFL is architecture neutral to mean that it abstracts a
number of implementation styles. For example, a single SAFL specification could
be compiled into either synchronous or asynchronous hardware; or, as a less
extreme example, we could choose to implement inter-function communication
either over a shared bus or as point-to-point links.

In particular, resource-awareness provides a useful abstraction since it opens
up the possibility of compiling different source-level function definitions into dif-
ferent design styles (e.g. synchronous or asynchronous). Hardware to interface
between these different design styles can then be generated automatically. We il-
lustrate this technique in Chapter 5, where we show how SAFL can be translated
into both synchronous and GALS (Globally Asynchronous Locally Synchronous)
design styles; and in Chapter 9 where a source-to-source transformation for hard-
ware/software partitioning is presented.

3.4 Aside: Dealing with Mutual Recursion

In previous work [105] we showed how SAFL could be extended to allow mu-
tual recursion whilst maintaining both static allocation and a resource-aware
compilation strategy. To show that the decision to ignore mutual recursion does
not result in a loss of expressivity, Section 3.4.1 outlines a simple semantics-
preserving transformation which translates mutually-recursive SAFL programs
into non-mutually-recursive SAFL programs.

Let us start by extending the syntax of SAFL programs, with an ML-style
and keyword:

3.4 Aside: Dealing with Mutual Recursion 49

We refer to a phrase of the form

as a (mutually recursive) function group. The notation just means the
function of group

By stratifying a program into mutually-recursive function groups we are able
to generalise our resource-aware compilation strategy: whereas previously a func-
tion definition constituted a single hardware-level resource, now a single function
group corresponds to a hardware-level resource. Thus a compiler generates ar-
biters to enforce mutual exclusion at the granularity of groups rather than func-
tion definitions (see Chapter 4). At the hardware-level each group has a single
output-port which gives the result of a call to any function within the group.

We extend the static allocation restriction presented in Section 3.2.1. For
every user-function application within function definition in
group

Thus we require that mutually-recursive calls (i.e. calls between members of the
same group) must be in tail-call context.

In a hardware implementation, calls to other functions in the same group
correspond to a simple transfer of control and data (no locking required). In
contrast calls between groups involve (i) acquiring mutually exclusive access to
the called group; (ii) transferring data into the called function’s registers; and
(iii) returning the result of the call (via the group’s single output port).

3.4.1 Eliminating Mutual Recursion by Transformation

The transformation for mutual-recursion elimination simply involves replacing
each function group:

with a single function:

and replacing each call of the form, with a call Before applying
this transformation we need to ensure that all functions in the group have the

50 3 The SAFL Language

same formal parameters by (i) renaming and (ii) padding function definitions
and their associated calls with extra formal parameters as necessary.

Note that if a mutually-recursive SAFL program satisfies the static allocation
restriction given in the previous section, then this transformation ensures that
the resulting non-mutually-recursive SAFL program satisfies the static allocation
restriction given in Section 3.2.1.

3.5 Related Work

The motivation for static allocation is not new. Gomard and Sestoft [57] de-
scribe globalization which detects when stack or heap allocation of function pa-
rameters can be implemented more efficiently with global variables. However,
whereas globalization is an optimisation which may in some circumstances im-
prove performance, in our work static allocation is a fundamental property of
SAFL enforced by the syntactic restrictions described in Section 3.2.1.

Hofmann [70] describes a type system which allows space pre-allocated for
argument data-structures to be re-used by in-place update. Boundedness there
means that no new heap space is allocated although stack space may be un-
bounded. As such our notion of static allocatability is more restrictive. In a
similar vein sized types have been proposed as a means of statically verifying
that a program runs in bounded space [72]. In this scheme a list containing
elements each of type would have the type Sized types have been in-
tegrated into a variant of ML designed for programming embedded systems [71].

Johnson’s Digital Design Derivation (DDD) system [26] uses a scheme-like
language to describe circuit behaviour. A series of semantics-preserving transfor-
mations are presented which can be used to refine a behavioural specification into
a circuit structure; the transformations are applied manually by an engineer. In
some ways this is similar to our use of semantics-preserving transformations on
SAFL specifications for architectural exploration. However, although we advo-
cate the use of source-level transformations to explore architectural tradeoffs (in-
cluding allocation, binding and scheduling), SAFL specifications are translated
to hardware automatically using our optimising silicon compiler. In contrast, in
the DDD framework it is the manually applied transformations themselves that
are the compilation process.

3.6 Summary

We have defined syntax and semantics of SAFL and motivated the particular
combination of features which comprise the language. Our methodology for the
high-level synthesis of SAFL has also been presented with a particular emphasis
on the (pre-compilation) program transformation phase. The following three
chapters expand on this foundation by describing the technical details of our
HLS tool for SAFL.

4

Soft Scheduling

We have seen that the SAFL language facilitates the description of hardware
as a set of interconnected resources. These resources run concurrently and may
be shared. The interaction between parallelism and resource-sharing leads to
an obvious problem: how does one ensure that shared resources are accessed
mutually exclusively?

Recall that existing silicon compilers solve the mutual exclusion problem
by statically serialising operations during a compile-time scheduling phase (see
Chapter 1). Whilst this approach is well-suited to fine-grained resources (e.g.
arithmetic circuits) it does not scale to system-level resources (e.g. processors,
IO controllers, busses). At the system-level, choices regarding the acquisition
and use of resources are typically governed by dynamic considerations such as
“the particular program that a processor is executing” or the actions of a user.

One alternative to static serialisation is to employ arbitration circuitry to
perform scheduling dynamically. This technique is well-suited to system-level
resources and is commonly used in practice to control access to shared busses1.
Unfortunately, the use of dynamic arbitration is often inappropriate for fine-
grained resources. The problem with attaching arbiters to fine-grained resources
is that the time/area overhead of arbitration can become unacceptably large
compared with the time/area overhead of the resource itself.

It seems therefore that if a scheduling technique is to be appropriate for both
system-level and fine-grained resources a compromise must be reached between
static serialisation and dynamic arbitration. Based on this observation we moti-
vate a new approach to the scheduling problem in which (i) circuitry to perform
scheduling dynamically is generated automatically; and (ii) static analysis is
employed to detect cases where arbiters can be optimised away.

Our method is to scheduling as Soft Typing [32] is to type checking (see
Figure 4.1): the aim is to retain the flexibility of dynamic scheduling whilst using
static analysis to remove as many dynamic checks as possible. To highlight this
analogy we choose to call our method Soft Scheduling.

1 Note that even though this technique is commonly used in real hardware designs,
arbiters are coded explicitly at the structural level. Existing high-level synthesis
tools still only perform static scheduling.

52 4 Soft Scheduling

Fig. 4.1. A Comparison Between Soft Scheduling and Soft Typing

In this chapter we describe Soft Scheduling and show how it is implemented
as part of our SAFL silicon-compiler. We start by exploring related work (Sec-
tion 4.1) after which we describe technical details: outlining how arbiters are
generated to schedule access to shared resources (Section 4.2) and presenting a
SAFL-based static analysis to remove redundant arbiters (Section 4.2.2). Three
motivating examples are then presented demonstrating that (i) the removal of
superfluous arbitration is critical in achieving efficient circuits (Section 4.3.1);
(ii) soft scheduling is more expressive than static scheduling (Section 4.3.2); and
(iii) dynamic scheduling can offer performance benefits over static serialisation
(Section 4.3.3). We show how the Soft Scheduling framework allows conventional
static scheduling algorithms to be represented as SAFL-level source-to-source
transformations (Section 4.4).

Note that although, for expository purposes, this chapter describes Soft
Scheduling in the framework of SAFL, the technique is applicable to any high-
level HDL which allows function definitions to be treated as shared resources
(e.g. HardwareC [86], Balsa [44], Tangram [138]). Indeed, in Chapter 7 we ex-
tend SAFL with [100] style channels and assignment and demonstrate
that the Soft Scheduling technique scales accordingly.

4.1 Motivation and Related Work

Traditional high-level synthesis packages perform scheduling using a data-
structure called a sequencing graph—a partial ordering which makes dependen-
cies between operations explicit. In this context, scheduling is performed by
assigning a start time to each operation in the graph such that operations which
invoke a shared resource do not occur in parallel [41] (see Section 1.2.1). There
are a number of problems with this approach:

4.1 Motivation and Related Work 53

The time taken to execute each operation in the sequencing graph must be
bounded statically (and in general padded to this length). This restriction
means that conventional scheduling techniques are not expressive enough to
handle a large class of practical designs. For example, it is impossible to
statically schedule an operation to perform a bus transaction of unknown
length.
Since operations are scheduled statically one must be pessimistic about what
may be invoked in parallel in order to achieve safety. This can inhibit par-
allelism in the final design by unnecessarily serialising operations.

1.

2.

Ku and De Micheli have proposed Relative Scheduling [89] which extends the
method outlined above to handle operations with statically unbounded compu-
tation times. Their technique partitions a flow-graph into statically-schedulable
segments separated by anchor nodes—nodes which have unbounded execution
delays. Each segment is scheduled separately at compile-time. Finally, the com-
piler connects segments together by generating logic to signal the completion of
anchor nodes dynamically.

In [88] Ku and De Micheli show how Relative Scheduling of shared resources
is integrated into their Olympus Hardware Synthesis System [43]. Their method
permits the scheduling of operations whose execution time is not statically
bounded, hence alleviating Problem 1 (above). However, potential contention
for shared resources is still resolved by serialising operations at compile time so
Problem 2 remains. Furthermore, there is still a class of practical designs which
cannot be scheduled by Olympus:

Figure 4.2(i) shows a processor and a DMA (Direct Memory Access) con-
troller both connected to a shared memory. In a high-level HDL, such as
SAFL, we would essentially like to describe this system as three functions,
Processor(...), DMA_Controller(...) and Memory(...), where Processor
and DMA_Controller operate in parallel and both access the shared (external)
function Memory. Note that since theProcessor andDMA_Controller functions
both access a shared resource, Olympus-style static scheduling requires that calls
to these functions must be serialised. However, if neither the call to Processor
nor the call toDMA_Controller terminate2, attempting to sequentialise the op-
erations is futile; the correct operation of the system relies on their parallel
operation.

In contrast, Soft Scheduling is expressive enough to cope with such scenarios:
an arbiter is automatically generated to ensure mutually exclusive access to the
Memory whilst allowing the Processor andDMA_Controller to operate in parallel
(see Figure 4.2.ii). The table of Figure 4.3 summarises the expressivity of various
scheduling methods.

Of course, existing HDLs are capable of describing arbiters but they require
arbitration to be coded explicitly at the structural level on an ad hoc basis.
Since arbitration can impose an overhead both in terms of chip area and time,

2 This is not merely a contrived example. In real designs both Processors and DMA
Controllers are typically non-terminating processes which constantly update the
machine state.

54 4 Soft Scheduling

Fig. 4.2. A hardware design containing a memory device shared between a DMA
controller and a processor

Fig. 4.3. A table showing the expressivity of various scheduling methods

designers aim to eliminate unnecessary locking operations manually. For large
designs this is a tedious and error-prone task which often results in badly struc-
tured and less reusable code. In contrast the Soft Scheduling approach analyses
a behavioural specification, automatically inserting arbiters on a where-needed
basis. This facilitates readable and maintainable source code without sacrificing
efficiency.

Although we only consider the application of Soft Scheduling to hardware
synthesis, the technique is also applicable to software compilation. Aldrich et
al. [8] advocate a similar approach which uses static analysis to remove redundant
synchronisation from Java programs.

4.1.1 Translating SAFL to Hardware

The full details of SAFL’s translation to hardware are presented in the next
chapter. However, in order to understand how arbiters are generated (the topic
of this chapter), it is helpful to outline a little of the translation process at this
stage. For the moment we assume that the generated hardware is synchronous;
other design styles are considered in Chapter 5.

As in Relative Scheduling [89] control-signals are generated to signal the com-
pletion of operations explicitly. More precisely, each SAFL function definition,

is compiled into a single resource, consisting of:

4.2 Soft Scheduling: Technical Details 55

logic to compute its body expression,
multiple control and data inputs: one control/data input-pair for each call
site
multiple control outputs (one to return control to each caller)
a single data output (which is shared between all callers)

An example of function connectivity is given in Figure 4.4. In this example
resource is shared between and Notice how data output is
shared, but the control structure is duplicated on a per call basis.

To perform a call to resource the caller places the argument values on its
data input into before triggering a call event on the corresponding control
input. Some point later, when has finished computing, the result of the
call is placed on shared data-output and an event is generated on the
corresponding control output.

4.2 Soft Scheduling: Technical Details

To protect shared resources the FLaSH compiler automatically generates schedul-
ing logic to resolve conflicts dynamically (see Figure 4.4). The scheduling cir-
cuitry consists of two parts: (i) an arbiter to select which caller to service;
and (ii) a locking mechanism to ensure the resource is accessed mutually ex-
clusively. For the sake of brevity, we use the term arbiter to refer to both the
arbiter and locking structure. Note that the insertion of arbiters is essentially

Fig. 4.4. A structural diagram of the hardware circuit corresponding to a shared
function, called by functions and Data buses are shown as thick lines, control
wires as thin lines

56 4 Soft Scheduling

the hardware equivalent of using binary semaphores to protect critical regions
in multi-threaded software.

4.2.1 Removing Redundant Arbiters

Just because a resource is shared does not necessarily mean that arbitration is
required. For example consider the following SAFL program:

In this case, the two calls to f cannot occur in parallel: the innermost call must
complete before the outermost call can begin (recall that SAFL is a call-by-value
language). We do not need to generate an arbiter to serialise the calls to
from the structure of the program we can statically determine that the two calls
will not try to access f simultaneously.

We use Parallel Conflict Analysis (see Section 4.2.2) in order to detect redun-
dant arbiters. Removing unnecessary arbitration is important for two reasons:

1.

2.

Arbitration takes time: in the current version of the FLaSH compiler ar-
bitration adds one cycle latency to a call even if the requested resource is
available at the time of call. Although we may accept this latency if it is
small in comparison to the callee’s average execution time, consider the case
where the callee is a frequently used resource with a small execution delay. In
this case an arbiter may significantly degrade the performance of the whole
system (see Example 4.3.1).
Arbitration uses chip area: although the gate-count of an arbiter is typically
small compared to the resource as a whole, the extra wiring complexity
required to represent request and grant signals adds to the area of the final
design.

Arbiters are inserted at the granularity of calls. This offers increased perfor-
mance over inserting arbiters on a per-resource basis. For example, in a design
containing a function, shared between five callers, we may infer that only two
calls to require an arbiter—the other three calls need not suffer the overhead
of arbitration.

Parallel Conflict Analysis (PCA)4.2.2

Parallel Conflict Analysis (PCA) is performed over the structure of a whole
SAFL program in order to determine which function calls may occur in parallel.
If a group of calls to the same function may occur in parallel then we say that the
group is conflicting. In the presentation of PCA it it is essential to differentiate
between function definitions and function calls. In order to distinguish distinct
calls we assume that each abstract-syntax node is labelled with a unique identi-
fier, writing to indicate a call to function at abstract-syntax
node

4.2 Soft Scheduling: Technical Details 57

The result of PCA is a conflict set: a set of calls which require arbiters.
For example, if the resulting conflict set is then we would
synthesise two arbiters: one for the conflicting group the other for
conflicting group

We now proceed to define PCA. Let represent the body of function
Let the predicate hold iff is a recursive call (i.e. occurs
within the body of). Figure 4.5 defines the set of non-recursive calls which
may occur as a result of evaluating expression takes sets of

Fig. 4.5. is the set of non-recursive calls which may occur as a result of evaluating
expression

calls, and returns the conflict set resulting from the assumption
that calls in each are evaluated in parallel with calls in each

The conflict set due to expression is defined in Figure 4.6.
Finally, for a program, consisting of a sequence of user-function definitions:

returns the conflict set resulting from program, The letter is used
since represents the calls which require arbiters:

Notice that the equation for is a little unusual in that it
is not defined compositionally. This reflects the fact that PCA depends on the
global structure of a whole SAFL program as opposed to just the local structure
of a function definition. is well-defined due to the predicate RecursiveCall
and the source restrictions on SAFL which ensure that the call-graph is acyclic
(see Section 3.2.1).

58 4 Soft Scheduling

Fig. 4.6. returns the conflict set due to expression

4.2.3 Integrating PCA into the FLaSH Compiler

After computing at the abstract-syntax level the FLaSH Synthesis System
translates into an intermediate flow-graph representation which makes both
control and data paths explicit. At this level, the Call-nodes (see Section 6)
which require arbitration are tagged (i.e. we tag node, iff represents Call

and
When the circuit for is generated only tagged calls to are fed through

an arbiter, other calls are merely multiplexed. If none of the calls to are in
then arbiter is eliminated completely. As Section 4.3.1 shows, using Parallel
Conflict Analysis to remove redundant arbitration can significantly improve the
performance of a large class of designs.

4.3 Examples and Discussion

We provide three practical examples of applying Soft Scheduling to SAFL hard-
ware designs. Each example illustrates a different point: Example 4.3.1 demon-
strates that using static analysis to remove redundant arbiters is critical to
achieving efficient circuits; Example 4.3.2 highlights the extra expressivity of
Soft Scheduling over static scheduling techniques; Example 4.3.3 shows that dy-
namically controlling access to shared resources can lead to better performance
than generating a single schedule statically.

4.3.1 Parallel FIR Filter

Finite Impulse Response (FIR) filters are commonly used in Digital Signal Pro-
cessing where they are used to remove certain frequencies from a discrete-time
sampled signal. Assuming the existence of (external) functions read_next_value
and write_value, Figure 4.7 gives SAFL code corresponding to an integer arith-
metic FIR filter.

4.3 Examples and Discussion 59

Fig. 4.7. A SAFL description of a Finite Impulse Response (FIR) filter

Recall that the semantics of the let statement requires all val-declarations
to be computed fully before the body is executed (see the SAFL semantics in
Figure 3.1). Although this design contains two shared combinatorial multipliers,
mult1 and mult2, the outermost let statement ensures that the calls to the
shared multipliers do not occur in parallel. As a result Parallel Conflict Analysis
infers that no arbitration is required.

The shared combinatorial multipliers, mult1 and mult2 take a single cycle to
compute their result. Generating an arbiter for a shared resource adds an extra
cycle latency to each call (irrespective of whether the resource is busy at the
time of call). Thus, in this case, if we naively generated arbiters for all shared
resources, the performance of the design would be degraded by a factor of two.

This example illustrates the importance of using static analysis to remove
redundant arbiters. For this design, using Parallel Conflict Analysis to remove
unnecessary arbiters leads to a 50% speed increase over a policy which simply
inserts arbiters on each shared resource.

4.3.2 Shared-Memory Multi-processor Architecture

Figure 4.8 contains SAFL code fragments describing a simple shared-memory
multi-processor architecture. The system consists of two processors which have
separate instruction memories but share a data memory. Such architectures are
common in control-dominated embedded systems where multiple heterogenous
processors perform separate tasks using a common memory to synchronise on
shared data structures.

The example starts by defining the type of instructions (records contain-
ing 4-bit opcodes and 12-bit operands), declaring 2 constants and specifying
the signatures of various (externally defined) memory functions. The function
Shared_memory takes three arguments: WriteSelect indicates whether a read
or a write is to be performed; Address specifies the memory location concerned;

60 4 Soft Scheduling

Fig. 4.8. Extracts from a SAFL program describing a shared-memory multi-processor
architecture

4.3 Examples and Discussion 61

Data gives the value to be written (this argument is ignored if a read operation
is performed). It always returns the value of memory location Address.

Functions proc1 and proc2 define two simple 16-bit processors. Argument
PC represents the program counter, RX and RY represent processor registers and
A is the accumulator. The processor state is updated on recursive calls—neither
processor terminates.

The main function initialises the system by calling proc1 and proc2 in par-
allel with PC, RX, RY and A initialised to 0.

Since the SAFL code contains parallel non-terminating calls to proc1 and
proc2 both of which share a single resource, neither static nor relative schedul-
ing are applicable (see Section 4.1): this example cannot be synthesised using
conventional silicon compilers.

Soft Scheduling is expressive enough to deal with non-terminating resources:
a circuit is synthesised which contains an arbiter protecting the shared memory
whilst allowing proc1 and proc2 to operate in parallel.

4.3.3 Parallel Tasks Sharing Graphical Display

Consider a hardware design which can perform a number of tasks in parallel
with each task having the facility to update a graphical display. Many real-life
systems have this structure. For example in preparation for printing an ink-jet
printer performs a number of tasks in parallel: feed paper, reset position of print
head, check ink levels etc. Each one of these tasks can fail in which case an error
code is printed on the graphical display.

Fig. 4.9. The structure of a SAFL program consisting of several parallel tasks sharing
a graphical display

A controller for such a printer in SAFL may have a structure similar to
that shown in Figure 4.9. Let us assume that each of the tasks terminates in a

62 4 Soft Scheduling

statically bounded time. Given this assumption, both static scheduling and Soft
Scheduling can be used to ensure mutually exclusive access to display. It is
interesting to compare and contrast the circuits resulting from the application
of these different techniques.

Since the tasks invoke a common resource (display), applying static schedul-
ing techniques results in the tasks being serialised. In contrast, Soft Scheduling
allows the tasks to operate in parallel and automatically generates an arbiter
which dynamically schedules access to the shared display function.

Errors occur infrequently and hence contention for the display is rare. Under
this condition, and assuming that the tasks take all roughly the same amount
of time, Soft Scheduling yields a printer whose initialisation time is three times
faster than an equivalent statically scheduled printer. More generally, for a sys-
tem of this form with balanced tasks, Soft Scheduling generates designs which
are times faster.

4.4 Program Transformation for Scheduling and Binding

In this section we show how existing static scheduling and binding algorithms can
be represented as SAFL-level transformations. By representing static schedul-
ing/binding choices at the source level we gain a significant advantage over tra-
ditional “black-box” synthesis tools, since the engineer is able to “see what the
tool has done”.

We return to the example of Section 1.2.1 which involves statically scheduling
the polynomial expression, using two multipliers and two adders.
Let us assume that, as part of a larger specification, a designer has written a
SAFL program to compute this polynomial expression:

If we synthesise poly directly the resulting design will contain two adders
and five multipliers. Imagine, however, that we instead we require a design which
uses only two multipliers. We start to transform the program by adding two fresh
fun-definitions corresponding to these two multiplier resources:

It is now clear that we can transform poly into a specification which com-
putes the same function, but respects our required binding constraints (two
multipliers). For example:

Function poly2 requires arbiters to dynamically control access to m1. How-
ever, in this instance a static schedule would be more appropriate. Figure 4.10
shows how poly2 can be further transformed into poly3, a function which imple-
ments the static schedule shown in Figure 1.9. (Note the use of the “let-barrier”
syntactic sugar defined in Section 3.2.4. We are able to avoid the multiple nested

4.5 Summary 63

Fig. 4.10. A SAFL specification which computes the polynomial expression
whilst respecting the binding and scheduling constraints shown in Figure 1.9

let declarations by using the “---” construct.) When we apply soft scheduling
to the specification of Figure 4.10 no arbiters will be generated since the analy-
sis detects that neither shared resource will be subjected to multiple concurrent
accesses.

4.5 Summary

Soft Scheduling is a powerful technique which provides a number of advantages
over current scheduling technology:

More expressive: in contrast to existing scheduling methods, Soft Scheduling can
handle arbitrary networks of shared inter-dependent resources.

Increased efficiency: in some circumstances, controlling access to shared re-
sources dynamically yields significantly better performance than statically
choosing a single schedule (see Example 4.3.3).

Higher level of abstraction: current hardware synthesis paradigms require a de-
signer to code arbiters explicitly at the structural level. Soft Scheduling ab-
stracts mutual exclusion concerns completely, increasing the readability of
source code without sacrificing efficiency.

One of the aims of the FLaSH Synthesis System is to facilitate the use of
source-level program transformation in order to investigate a range of possible
designs arising from a single specification. The simplicity of our transformation
system is partly due to the resource abstraction provided by Soft Scheduling—
transformations involving shared resources would be much more complex if lock-
ing and arbitration details had to be considered at the SAFL-level. Furthermore
Soft Scheduling allows us to use SAFL-level program transformation to represent
static scheduling under resource constraints.

The program transformation given in Section 4.4 contrasts the local na-
ture of existing static scheduling algorithms with the global nature of our Soft

64 4 Soft Scheduling

Scheduling approach. Whereas static scheduling techniques (such as ASAP, List-
scheduling etc.) can only be applied to a single expression within a SAFL func-
tion, Soft Scheduling operates over the structure of a whole program and is
capable of scheduling calls to global resources originating from different func-
tions.

Another advantage of Soft Scheduling over traditional static scheduling
methodologies is that, since it does not statically partition operations into global
time-steps, it is applicable to other design-styles than purely synchronous hard-
ware. Not only can we design arbiters to cope with a number of different de-
sign styles (see Section 5.3.3), but Parallel Conflict Analysis itself is applicable
regardless of the design-style targetted (since it makes no assumptions about
the underlying target technology). We say that Parallel Conflict Analysis is
architecture-neutral and explore the concept of architecture-neutral analyses fur-
ther in Chapter 6.

When the parallel interleaving of non-terminating resources is required dy-
namic scheduling is essential (see Example 4.3.2); in other cases dynamic
scheduling can offer increased performance (see Example 4.3.3). However, for
fine-grained sharing of smaller resources whose execution delays are known at
compile-time (such as arithmetic units), static scheduling techniques are more
appropriate. Soft Scheduling provides a powerful framework which strikes a com-
promise between the two approaches. The designer has the flexibility either to
describe a single static schedule (see Example 4.3.1) in which case dynamic ar-
bitration is optimised away; or to leave scheduling details to the compiler (see
Example 4.3.3) in which case dynamic arbitration is inserted where needed. Rep-
resenting local scheduling decisions as semantics-preserving program transforma-
tions alleviates the black-box problem associated with other high-level synthesis
methodologies (see Section 1.3.2).

5

High-Level Synthesis of SAFL

In order to justify our claim that “the SAFL language is suitable for hardware
description and synthesis” a high-level synthesis tool for SAFL has been designed
and implemented. We refer to our HLS tool for SAFL as The FLaSH compiler1.

As can be seen in the block diagram of Figure 5.1, the FLaSH compiler
consists of a single front-end and multiple back-ends. The tasks performed by
the front-end are as follows:

SAFL source is lexed and parsed into an abstract syntax tree. We check that
the source complies with the restrictions described in Section 3.2.1; invalid
SAFL is rejected.
Simple type-checking is performed. This ensures that the bit-widths of func-
tion call arguments match those specified in the function’s signature.
We perform parallel conflict analysis (as described in Chapter 4).
The abstract syntax tree is translated into intermediate code. Our inter-
mediate representation is based on a control/data-flow graph model (see
Section 5.1). At this level architecture-neutral analysis and optimisation is
performed (see Chapter 6).

Each of the FLaSH compiler’s separate back-ends targets a different design-
style. We have implemented a back-end to generate synchronous hardware (Sec-
tion 5.2) and propose another which targets GALS hardware (Section 5.3). To
ensure the generation of efficient hardware, architecture-specific analyses and
optimisations are sometimes performed in the back-end before the code gener-
ation phase (see Section 6.5). The compiler is designed in a modular fashion
to allow new back-ends and additional analysis and optimisation phases to be
incorporated with minimal effort.

In this chapter we describe the technical details of how the FLaSH Compiler
translates SAFL programs into structural hardware descriptions. The interme-

1 Initially, FLaSH, which stands for Functional Languages for Synthesising Hardware,
was a term that we coined to refer to the whole research project. However, as time
went on it gradually evolved into being the name of the compiler.

66 5 High-Level Synthesis of SAFL

Fig. 5.1. Structure of the FLaSH Compiler

diate code format is presented in Section 5.1 and two back-end implementations
are described in Sections 5.2 and 5.3.

5.1 FLaSH Intermediate Code

There are many analysis and optimisation techniques which are more suited to
a lower level of representation than abstract syntax. For this reason the FLaSH
compiler translates designs into intermediate code. The intermediate code is
designed with the following aims:

to map well onto hardware (many of the intermediate operations can be
represented directly by simple circuit templates);
to be architecture neutral (that is, not to favour the description of one par-
ticular design style—e.g. synchronous hardware);
to make all control and data dependencies explicit; and
to facilitate analysis and transformation.

As in many compilers, the intermediate representation is a graph-like structure
best modelled as sets of nodes and edges.

5.1 FLaSH Intermediate Code 67

Fig. 5.2. Example intermediate graph

5.1.1 The Structure of Intermediate Graphs

An intermediate graph is a triple where:
is a set of nodes

is a set of control edges
i.e. control flows out of into

is a set of data edges
i.e. data flows out of into

Intermediate graphs are best viewed pictorially. We adopt the convention that
thin lines represent control edges and thick lines represent data edges. Fig-
ure 5.2 gives an example of an intermediate graph and the SAFL expression
it represents. The types of node used in intermediate graphs are summarised in
Figure 5.3. Given a node we define the formula to hold iff is a
call node (and similarly for other node forms).

68 5 High-Level Synthesis of SAFL

As can be seen from Figure 5.3, nodes have at most one data output-port.
We say that a node is a data-producer if it has a data output-port. If is a
data-producer then we define DataOut to refer to (single) data output-port.

When compiling an expression to an intermediate graph, we mark two dis-
tinguished intermediate nodes: start and end. The node marked start represents
an expression’s entry point and the node marked end is a data-producer whose
value will ultimately yield the result of the expression.

The meanings of nodes (and their pictorial representations) are outlined in-
formally in the following sections. In order to describe the semantics of nodes
we often talk of control and the act of propagating control. This will become
clearer when we outline the translation to hardware, but until then it may help
the reader to imagine control edges propagating events cf. asynchronous circuit
design.

Fig. 5.3. Nodes used in intermediate graphs

Fork/Join Parallelism

Parallelism is made explicit through control fork/join nodes:

When control reaches a CONTROL_FORK node’s single input then control is
propagated to its many control outputs.
Conversely, a CONTROL_JOIN node waits for control to arrive at all its inputs,
before propagating control to its single output.

5.1 FLaSH Intermediate Code 69

Examples of the use of CONTROL_FORK and CONTROL_JOIN can be seen in
Figure 5.2 where they are used to facilitate the parallel evaluation of let-
declarations and function arguments.

Conditionals

We represent conditional execution using two nodes: CONDITIONAL_SPLIT and
CONDITIONAL_JOIN. The style of these nodes may seem unusual to people famil-
iar with software compilers, but they map well onto hardware. In particular the
CONDITIONAL_JOIN node mimics a multiplexer.

A CONDITIONAL_SPLIT node channels control from Control_in to either Con-
trol_true or Control_false output depending on the boolean data value on the
Select input.
The CONDITIONAL_JOIN node has two control/data input pairs correspond-
ing to the true and false branches of a corresponding CONDITIONAL_SPLIT.
When control arrives at either control input it is propagated to Control_out.
Similarly, data on one of the two data-inputs is propagated to Data_out. The
boolean value on Select is used to determine which of the data values to
forward.

Figure 5.4 shows how conditionals are translated into intermediate structures.

Recursive Calls

We use the JUMP node to represent recursive calls. (Recall that we can always
implement recursive calls as jumps because all recursive calls are restricted to
tail-calls.)

70 5 High-Level Synthesis of SAFL

Fig. 5.4. Translation of conditional expression: if then else

A JUMP returns no data and never propagates control—hence its outputs are
ignored; we can treat the data output as some random undefined value and the
control output as never asserted. In practice, its control and data outputs are
not realised at the hardware level. (We only include them at the intermediate
level because it allows us to maintain the invariant that a closed expression is
represented by an intermediate graph with a control input, a control output and
a data output.)

Primitive and User-Defined Function Calls

Although they are treated very differently at the hardware level, primitive func-
tion calls and user-defined function calls look similar at the intermediate level:

Both these nodes read their data-inputs when control reaches their single control-
input, perform their operation and then return their result on the single data-
output, propagating control forwards when the operation is complete. (Note that
the CALL node is only used to represent non-recursive calls to external functional-
units. We have already shown how we use JUMP to represent recursive calls.)

5.1 FLaSH Intermediate Code 71

Constants

The CONSTANT node simply propagates control whilst continually writing its
value, onto its data-output.

Variables

Variables can be subdivided into two separate categories:

let-bound variables
formal parameters

Although let-bound variables are represented implicitly by sharing a node’s
data-output (see Figure 5.2) we require a special node to deal with formal pa-
rameters:

This node propagates control whilst writing the value of the local function’s
formal parameter, to its data-output. Figure 5.5 shows an example of the
READ_FORMAL node by translating the body of fun f(x) = x+3.

5.1.2 Translation to Intermediate Code

The main translation phase is implemented by a recursive function which walks
the abstract-syntax tree, constructing parts of intermediate graph and then glu-
ing them together. There are a number of issues worth mentioning explicitly:

Intermediate graphs represent expressions rather than programs. Thus, in
order to compile a SAFL program into intermediate form we compile each
of the function bodies separately and maintain a list of (function name,
intermediate expression) pairs. The start and end nodes of the intermediate
expression then correspond to the entry and exit points of the function.

1.

72 5 High-Level Synthesis of SAFL

Fig. 5.5. Intermediate graph representing the body of fun f(x) = x+3

We translate abstract syntax expressions into intermediate graphs where all
let-declarations, primitive function call arguments and user-defined function
call arguments are evaluated in parallel. (This parallelism is made explicit
through the use of CONTROL_SPLIT and CONTROL_JOIN nodes.)
We perform a simple reachability analysis and dead-code elimination phase
to remove redundant nodes from the graph before any analysis takes place.
For example consider the intermediate graph corresponding to the body of:

2.

3.

In this case, since both of the conditional branches contain tail recursive
calls (represented as JUMP nodes) we know that the corresponding CONDI-
TIONAL_JOIN node will never be reached and is hence unnecessary.

It is useful to briefly compare our intermediate format with other program
graphs which have been developed previously [129]. The structure of FLaSH in-
termediate graphs is similar to that of Program Dependence Graphs (PDGs) [47]
in the sense that both control- and data-dependencies are represented explicitly.
Like the PDG, we essentially combine the Control Flow Graph (CFG) and the
Data Dependence Graph (DDG) [5] in a single unified framework. Our CON-
TROL_JOIN node essentially performs the same function as in the Gated
Single-Assignment (GSA) framework [66].

The explicit representation of parallelism through CONTROL_FORK and CON-
TROL_JOIN nodes has some similarities with the Parallel Program Graph (PPG)
[128]. The CONTROL_FORK node, used to explicitly represent parallelism per-
forms the same function as the PPG’s MGOTO node. However, unlike the PPG,
we do not provide facility for arbitrary synchronisation between threads. The
only way threads can synchronise in our model is via a CONTROL_JOIN node.

5.2 Translation to Synchronous Hardware 73

5.2 Translation to Synchronous Hardware

After SAFL programs have been translated into intermediate code, various anal-
yses and optimisations are performed. The details of intermediate-code-level
analyses are found in Chapter 6. Here, we continue by describing the internals
of the FLaSH compiler’s synchronous back-end focusing on how intermediate
graphs are mapped onto circuit templates. Our compiler targets hierarchical
RTL-Verilog; we use existing RTL-compilers to map the generated Verilog to
hardware (see Chapter 10). In this way we avoid having to consider low-level
issues which are not directly relevant to this monograph (e.g. place-and-route
and logic minimisation).

The synchronous hardware generated is based on a matched-delay protocol
where each group of data-wires is bundled with a control wire. Control wires
propagate events which, in this framework, are represented as one-cycle pulses.
The circuits are designed so that control events propagate at the same speed as
valid data. When the control wire is high the corresponding data wires are guar-
anteed to be valid. Firstly we discuss how expressions are compiled; Section 5.2.2
explains how function definitions are compiled into hardware functional-units.

5.2.1 Compiling Expressions

An expression is compiled into a hardware-block with one control input, one
control output and one data output—see Figure 5.6 (left). Signalling an event on
the control input triggers the expression which computes its value and places its
result on the data output, signalling an event on its control output when the data
output becomes valid. Our method of translating expressions to synchronous
hardware has some similarities with Page’s scheme for the high-level synthesis
of Occam [113]. The major difference is that since Page adopts the convention
that every expression will be computed in a single cycle his expressions do not
need explicit control signals. We take a more general view: SAFL expressions can
take an arbitrary number of cycles. (Of course, if we can statically determine
the number of cycles in which a particular expression will execute, then we can
optimise the control signals away—see Section 6.5.)

Fig. 5.6. Expressions and Functions

74 5 High-Level Synthesis of SAFL

Our compiler maintains the following invariant: once an expression, has
been computed (i.e. its control output has been asserted), remains
valid indefinitely as long as all its data inputs remain valid. One point worth
considering further here is our decision to give the CONDITIONAL_JOIN node an
explicit select input (see Figure 5.4). After all, in some sense the select input is
redundant: why not just let the CONDITIONAL_JOIN select which data input to
propagate based solely on which of the two control inputs is asserted?

Our motivation for the explicit select input is that it provides an efficient way
of ensuring that conditional expressions maintain the aforementioned invariant.
If, at the hardware level, we used the control inputs as select lines into the
multiplexer used to implement a CONDITIONAL_JOIN then the node’s data output
would only be valid for a single cycle (since the active control input would only be
asserted for a single cycle). Whilst we could alleviate this problem by explicitly
latching the control signals, the need for extra latches is eliminated if we simply
use the data output of the conditional test expression as the select input for the
CONDITIONAL_JOIN multiplexer.

Fig. 5.7. Hardware blocks corresponding to CONDITIONAL_SPLIT (left) and CONDI-
TIONAL_JOIN (right) nodes

CALL nodes are synthesised into connections to other hardware level functional-
units; JUMP nodes (representing recursive calls) are synthesised into a connection
back into the current functional unit; all other intermediate nodes are translated
into a corresponding circuit template. Figure 5.7 shows the circuit templates
corresponding to conditional split and join nodes; Figure 5.8 shows the hard-
ware block corresponding to a CONTROL_JOIN node. Some of our schematics use
synchronous reset-dominant SR flip-flops. Figure 5.9 shows how these can be
constructed from the more familiar D-type flip-flop.

Other nodes have their obvious translations. For example a CONTROL_SPLIT
node is just a wire connecting its control input to all its control outputs, and a
BUILT_IN: <op> node contains combinatorial logic to perform operation <op>.

5.2 Translation to Synchronous Hardware 75

Fig. 5.8. Hardware block corresponding to a CONTROL_JOIN node

Fig. 5.9. How to build a synchronous reset-dominant SR flip-flop from a D-type flip-
flop

5.2.2 Compiling Functions

A function definition is compiled into a single hardware-block (functional-unit)
with multiple control and data inputs: one control/data input-pair for each call—
see Figure 5.6 (right). There are multiple control outputs (one to return control
to each caller), but only a single data output (which is shared between all callers).
Each function contains logic to compute its body expression.

Calling Protocol

We have already seen how functional-units are composed to form larger struc-
tures in the previous chapter. Recall that Figure 4.4 showed a functional-unit

shared between resources and and described the calling protocol. The
important point to remember is that although data output is shared, the
control structure is duplicated on a per call basis.

There is another important point which is worth mentioning here. Consider
the following SAFL expression which involves computing f(4), then computing
f(5) (once the first call has terminated) and finally computing the sum of the
two results:

76 5 High-Level Synthesis of SAFL

Since f represents a shared resource, with a single output, the value of
f(4) must be latched into a temporary register (since the subsequent call f(5)
will change the value on shared output). We call these temporary registers
permanising registers since they make the result of computing an expression
permanent, decoupling the caller from the callee. In Chapter 6 we present an
analysis which allows us to eliminate redundant permanising registers. For now
we assume a naïve translation scheme which simply inserts a permanising register
on the output of each call to a shared resource.

Function Unit Internals

The internals of a functional-unit are shown in Figure 5.10. First consider the
control path. Each control/data input-pair to a functional-unit, corresponds
to a single call. If any of the control inputs may trigger calls in parallel (as inferred
by the soft scheduling analysis presented in Chapter 4) then these control wires
are passed through an arbiter which ensures that only one call is dealt with at
a time.

Having been through the arbiter, the control inputs are fed into the External
Call Control Unit (ECCU—see Figure 5.11), which:

1.
2.

3.
4.

remembers which of the control inputs triggered the call;
invokes the function body expression (by generating an event on the
FB_invoke wire);
waits for completion (signalled by the FB_finished wire); and finally
generates an event on the corresponding control output, signalling to the
caller that the result is waiting on shared data output.

Now let us consider the data-path. The data inputs are fed into a multiplexer
which uses the corresponding control inputs as select lines. The selected data
input is latched into the argument registers. (Obviously, the splitter is somewhat
arbitrary; it is included in the diagram to emphasise that multiple arguments are
all placed on the single data-input.) Note that recursive calls feed back into the
multiplexer to create loops, re-triggering the body expression as they do so. The
D-type flip-flop is used to insert a 1-cycle delay onto the control path to match
the 1-cycle delay of latching the arguments into the registers on the data-path.

The function body expression contains connections to the other functional-
units that it calls. These connections are the ones marked “calls to other func-
tions” in Figure 5.10 and are seen in context in Figure 4.4.

5.2 Translation to Synchronous Hardware 77

Fig. 5.10. A Block Diagram of a Hardware Functional-Unit

78 5 High-Level Synthesis of SAFL

Fig. 5.11. The Design of the External Call Control Unit (ECCU)

Arbiter Design

The SAFL language semantics do not dictate a specific arbitration policy. As
a result there are a number of different arbitration policies that could be im-
plemented by the compiler (e.g. round-robin, static fixed priority etc.). In the
FLaSH compiler we chose to implement static fixed priority arbitration in the
synchronous back-end. Our motivation behind this choice is primarily because
it yields the simplest circuits—in particular the arbiter does not require state
that persists between separate calls2.

Figure 5.12 shows the circuit corresponding to a fixed-priority arbiter with 3
control-inputs. Once latched the incoming control pulses are fed into a priority
encoder which selects one of them. Figure 5.13 shows the simple combinatorial
circuit we use as a priority encoder. The flip-flop whose data output is marked
“locked” stores whether or not the function resource is currently busy. By form-
ing the conjunction of the locked signal and the outputs of the priority encoders
we ensure that (i) at most one call can be active at a time; and (ii) a call can
only proceed when the function is not locked. As control leaves the arbiter the
“lock flip-flop” is set, ensuring that further calls cannot proceed until “release”
is signalled.

2 The reader may be worried about the lack of fairness with this arbitration policy.
We concede that this may prove problematical where state and IO are concerned
(see Chapter 7). A topic for future work is to investigate other dynamic scheduling
policies and assess the efficiency of their hardware implementation.

5.2 Translation to Synchronous Hardware 79

Fig. 5.12. The Design of a Fixed-Priority Synchronous Arbiter

Fig. 5.13. The Design of a Combinatorial Priority Encoder with 4 inputs. (Smaller
input numbers have higher priorities)

5.2.3 Generated Verilog

The FLaSH compiler produces RTL Verilog to express the generated hardware.
The Verilog is hierarchical in the sense that each function definition in the SAFL
source has a corresponding module definition in the generated Verilog. This is
useful for two reasons:

it makes the Verilog more readable, since the high-level circuit structure is
explicit; and

80 5 High-Level Synthesis of SAFL

a hierarchical design is useful when performing place-and-route/logic synthe-
sis, since typical RTL compilers operate more efficiently when provided with
modular designs. Furthermore, typical logic synthesisers often allow users to
specify optimisation priorities (e.g. area vs. time) on a per-module basis.

5.2.4 Compiling External Functions

The SAFL language allows functions to be declared as extern. Such functions
are called external functions since their bodies are written in some other lan-
guage (e.g. Verilog). At the SAFL level only signatures are provided for extern
functions. However, although the function bodies are omitted the FLaSH com-
piler still generates logic which deals with the call/return mechanism.

For an external function, all the hardware shown in Figure 5.10 is generated
by the compiler except for the function body itself. The details are best illus-
trated with an example. Assume that a SAFL specification contains the following
declaration:

As with normal (i.e. non-extern) functions the FLaSH compiler generates a Ver-
ilog module definition, corresponding to the SAFL function memory.
As well as all the logic to deal with the function call mechanism, arbitration etc.

contains a Verilog module instantiation of the following form:

Compiling the generated Verilog directly using a standard RTL compiler will lead
to an error, since module extern_memory is not defined. It is up to the designer
to supply a module with this name and interface before compiling the FLaSH-
generated code. The technical details of the interfacing mechanism required to
implement theextern_memory module are given below:

1.

2.

3.

4.

Receiving a single cycle pulse on input c_in signifies that computation can
begin.
The data-inputs address, value and write are used to transmit the argu-
ment values of the incoming call. From the moment c_in goes high, these
data-inputs contain valid data.
Once computation is complete, a single-cycle pulse must be generated on
output c_out.
The result of the function must be placed on data-output d_out and be valid
from the point that c_out goes high.

Note that although the extern_memory module must be provided in Verilog form,
this does not mean that one can only integrate Verilog with SAFL code. Indeed
one is able to implement external functions in any synthesis system which can
generate synthesisable Verilog (e.g. Lava, HandelC—see Chapter 2). When im-
plementing SAFL on FPGAs, we commonly map extern functions onto vendor-
supplied IP blocks such as dual-ported RAMs, ROMs etc. (see Chapter 10).

5.3 Translation to GALS Hardware 81

5.3 Translation to GALS Hardware

Globally Asynchronous Locally Synchronous (GALS) designs consist of a num-
ber of separately clocked synchronous subsystems connected via an asynchronous
communication architecture. The GALS methodology is attractive as it offers a
potential compromise between (i) the difficulty of distributing a fast clock in
large synchronous systems; and (ii) the seeming area-time overhead of fully-
asynchronous circuits. Another compelling argument in favour of GALS is that
one is able to use existing industrial hardware design tools to synthesise and sim-
ulate the synchronous subsystems. It is only for the asynchronous interconnect
that special techniques and tools are required.

We extend the SAFL syntax with a new primitive ClockDomain which allows
fun declarations to be grouped together in the following manner:

The FLaSH compiler generates a separate clock domain for each ClockDomain
block. The ClockDomain primitive is followed by the name of the defined clock
domain. For each block,ClockDomain a new clock signal is generated
with name In the example above two clock signals(clk_my_domain1
andclk_my_domain2) would appear in the Verilog output. It is up to the designer
to connect these signals to appropriate clock generation circuitry at the RTL-
level.

Functions in separate ClockDomains are free to call each other. Hardware to
interface separate clock-domains is automatically inserted at domain boundaries.
Note that ClockDomains cannot be nested.

5.3.1 A Brief Discussion of Metastability

Before launching into the technical details of the inter-clock-domain interfacing
circuitry it is first necessary to consider the problem of metastability [143].

A synchronisation failure may occur if the data and clock inputs of a flip-flop
do not satisfy the necessary setup- and hold-time constraints. More specifically,
a synchronisation failure occurs when, at the point of latching the data, the
voltage on the latch’s input is close to the threshold voltage of the inverters
in the latching circuit. When this happens, the latch may enter a metastable
state: an unstable equilibrium between making a decision to resolve to a logic-
1 or a logic-0. Although in practice slight imbalances will eventually force the

82 5 High-Level Synthesis of SAFL

latch to resolve one way or the other, the time for the metastability to resolve
is unbounded.

Analysis of the metastability problem [56] tells us that the probability, P, of
a latch remaining in a metastable state (i.e. not resolving to a valid logic-1 or
logic-0) for time can be approximated by:

where constants and are determined by the physical properties of a given
target technology (e.g. CMOS or TTL). Thus we can reduce the probability of
metastability to an arbitrarily small level3 by waiting for a predetermined time
before reading the value of a potentially metastable register. If one is transferring
data between two clock domains which operate asynchronously with respect to
each other then one must consider metastability issues carefully. The problem
is that the data in one clock domain may be changing just as the second clock
domain is trying to latch it.

Fig. 5.14. A dual flip-flop synchroniser. Potential metastability occurs at the point
marked “M”. However, the probability of the synchroniser’s output being in a
metastable state is significantly reduced since any metastability is given a whole clock
cycle to resolve

A number of researchers have investigated techniques for dealing with metasta-
bility. Common techniques include:

designing circuitry to delay the clock if a latch input violates the setup
time [102]; and
latching asynchronous signals multiple times (sequentially), thus allowing
more time for metastability to resolve before the signal is read [143].

3 The precise definition of a “satisfactory level” depends entirely on the application
domain in which the circuit is employed. For example, in applications where failure
results in a machine having to be rebooted then a Mean Time Between Failure
(MTBF) of once a month may be tolerable; however, if failure results in widespread
death and destruction than a longer MTBF may be more appropriate.

5.3 Translation to GALS Hardware 83

The pros and cons of each approach and their technical details is not the subject
of our research. Indeed when compiling SAFL to GALS circuits we are free to
choose any of these implementation techniques. For expository purposes this
chapter adopts the latter method, employing the simple technique of double
latching asynchronous signals. The circuit we use is known as a dual flip-flop
synchroniser and is shown in Figure 5.14. The first flip-flop latches the data and
potentially enters a metastable state. However, a whole clock-cycle goes by before
the data is read (by the second latch). Thus, by the time the data enters the
second latch sufficient time has elapsed to make the probability of metastability
sufficiently small for our purposes. (If required, more registers may be cascaded
to decrease the probability of metastability—and hence the Mean Time Between
Failure—at a cost of increased latency through the synchroniser.)

5.3.2 Interfacing between Different Clock Domains

There are two separate elements involved in dealing with inter-clock-domain
function calls. Firstly there is the design of the control circuitry to interface
the two clock domains (described below); secondly we must modify our arbiter
design slightly (see Section 5.3.3).

Fig. 5.15. An inter-clock-domain function call

Figure 5.15 shows the control circuitry that we use to deal with calls between
separate clock domains. The diagram shows an inter-clock-domain call where the
callee is clocked by clk1 and the caller is clocked by clk2.

84 5 High-Level Synthesis of SAFL

As with the synchronous translation described in Section 5.2 a one-cycle
pulse arrives at the call’s control input, ctrl_in. The first thing we do is to
feed this control pulse into a D-Type flip-flop to delay the pulse by one cycle
(in the caller’s clock domain). The reason for this one cycle delay is to allow the
function call’s argument values on the corresponding data-path to stabilise.

The control pulse is then fed into the set-input of an asynchronous RS-latch.
A small delay after the positive edge of the control pulse arrives on the set-input
the latch’s D-output goes high (and remains high until the R input is asserted).
Thus the one-cycle pulse has now been converted into a signal which will remain
high until the callee has sampled it. This signal is fed into a synchroniser which
samples it in the callee’s clock domain. Since the signal remains high indefinitely
we know that it will eventually be sampled regardless of the relative speeds of
the two domains. We use a dual flip-flop synchroniser to latch the signal into a
new clock domain (see Figure 5.14)4.

On leaving the synchroniser the signal is fed into a small piece of circuitry
(consisting of a flip-flop, an inverter and an AND-gate) which simply converts
the constant logic-1 value back into a single-cycle pulse (in the clk1-domain)5.
We also reset the RS-latch since, by this stage, we know that its output has been
successfully sampled. The resulting one-cycle pulse in the clk1-domain can now
be fed directly into the called function’s arbitration/ECCU circuitry in the usual
way (see Figures 5.11 and 5.12). Note that the data-inputs to the function can
be read directly from the clk2-domain since we know for sure that their values
are stable and will remain so.

On completing execution a one-cycle pulse (in the clk1-domain) is emitted
on the function’s corresponding control output, fn_control_out. As before we
delay the pulse by a single cycle to ensure that the function’s data output has
stabilised. This pulse is fed into a circuit (symmetrical to the one just described)
which converts it into a one-cycle pulse in the clk2-domain.

The circuit of Figure 5.15 makes a number of assumptions about the relative
speeds of the two clock domains:

the output of the synchroniser must remain high for at least 1 cycle (in its
own clock domain) after the RS-latch (in the other clock domain) is reset.
Note that this is indeed the case for the dual flip-flop synchroniser shown in
Figure 5.14;
the synchronisers must have time to reset to their initial state (i.e. output =
logic-0) before their inputs are reasserted.

One of the benefits of the synchronisation scheme just described is that, since
it uses standard components, it can be implemented easily on an FPGA. We can

 We assume that the clock speeds and target technology are such that a single cycle
delay is sufficient for the probability of meta-stability to be negligible. However,
should this not be the case for a particular design more flip-flops can be added to
the synchroniser in the usual way to allow the meta-stability longer to resolve.

 Note that the circuit to convert the constant logic-1 back into a single-cycle pulse
does not add an extra cycle latency.

4

5

5.3 Translation to GALS Hardware 85

Fig. 5.16. Building an asynchronous RS latch out of two D-Type flip-flops with asyn-
chronous resets (clr)

Fig. 5.17. Extending the inter-clock-domain call circuitry with an explicit arbiter
release signal

implement asynchronous RS latches on FPGAs using 2 D-Type flip-flops with
asynchronous resets as shown in Figure 5.16.

5.3.3 Modifying the Arbitration Circuitry

The synchronous arbiter shown in Figure 5.12 (and in context in Figure 5.10)
uses the function’s control output to release the lock. This is fine when both
caller and callee are in the same clock domain as we know that the result will
have been latched in the single cycle it takes to reset the lock flip-flop.

However, more care must be taken when dealing with separate clock domains:
we need to make absolutely sure that the caller will have had time to read the
result before the lock on the callee is released. To ensure that this is the case we
need to modify the design of a functional-unit (Figure 5.10) so that the arbiter’s
release signal is only asserted once the caller has safely latched the function’s
shared data output.

For asynchronous calls (those which emanate from a different clock domain to
the callee) we make the generation of the release signal the duty of the caller. The
caller’s control output signal (see Figure 5.15) is fed into the “result latched”
signal of the circuit shown in Figure 5.17. The circuit operates on the same
principle as the design of Figure 5.15 to convert a one-cycle pulse in the clk2

86 5 High-Level Synthesis of SAFL

domain back into a one-cycle pulse in the clk1 domain. Since the caller’s control
output is only asserted once the function’s result has been latched we ensure that
the function resource remains locked until its result has been read by the caller.

5.4 Summary

In this Chapter we have described the technical details involved in translating
SAFL to hardware. Two back-ends have been described: one which targets syn-
chronous designs; another which targets GALS circuits. One of SAFL’s strengths
is that it can be compiled to different design styles. Recall that this is not the case
for behavioural HDLs which rely on structural blocks as an abstraction mech-
anism (e.g. Behavioural Verilog) since architecture-specific details necessarily
become ingrained in the specification of inter-block communication mechanisms
(see Section 3.1).

A topic of future work is to investigate synthesising SAFL to other design
styles. In particular we are interested in various flavours of asynchronous design
(e.g. fully delay-insensitive, matched delay etc. [40]).

6

Analysis and Optimisation of Intermediate Code

In this chapter we give examples of the kinds of analyses and optimisations
which can be applied to the FLaSH compiler’s intermediate graphs. The analyses
and optimisations presented here have been implemented as part of the FLaSH
compiler.

6.1 Architecture-Neutral verses Architecture-Specific

Before handing control over to one of the compiler’s back-ends architecture-
neutral analysis and optimisation is performed. We say that an optimisation is
architecture-neutral if it does not rely on low-level assumptions about the chosen
target technology. The key point is that architecture-neutral optimisation is able
to improve the efficiency of generated hardware regardless of the specific design-
style being targetted (e.g. it would be equally applicable to a synchronous design
or a fully asynchronous design). Such analyses and optimisations are only made
possible due to the high-level nature of SAFL. In languages such as Verilog and
VHDL, even at the behavioural level, low-level assumptions about the underlying
technology (e.g. timing assumptions) become too ingrained in the specification
to support any concept of architecture-neutrality.

We have already seen an example of architecture-neutral analysis and opti-
misation in Chapter 4: Parallel Conflict Analysis (PCA), which operates at the
abstract-syntax level, does not make any low-level assumptions about the target
design-style but instead relies only on the temporal ordering of events enforced
by the SAFL semantics (e.g. in computing f (g(x), h(y)) the innermost calls
g(x) and h(y) must have completed before the outermost call to f can take
place).

In contrast, an architecture-specific analysis/optimisation is one which is only
applicable to a particular design style (e.g. synchronous hardware). Architecture-
specific optimisation helps the FLaSH compiler to generate more efficient de-
signs: the more details known about the target technology, the greater the po-
tential for analysis and optimisation.

88 6 Analysis and Optimisation of Intermediate Code

In this chapter we describe one analysis of each form which, in contrast to
PCA, operate at the intermediate-code level:

Register Placement Analysis (Section 6.3) is an architecture-neutral optimi-
sation which allows us to reduce the number of temporary registers required
to latch values of SAFL-expressions. (Recall that in the naïve compilation
strategy outlined in the previous chapter, each call to a shared user-defined
function, requires a separate temporary register to latch the value of
shared output.)
Synchronous Timing Analysis (Section 6.5) is an architecture-specific anal-
ysis which allows us to statically infer some timing information (in terms
of cycle counts) about the resulting circuit. A number of optimisations are
presented which make use of such timing information (Section 6.5.2).

6.2 Definitions and Terminology

Recall that a FLaSH intermediate graph is a triple where:

is a set of nodes
is a set of control edges

i.e. control flows out of into
is a set of data edges

i.e. data flows out of into

Also recall that given a node we define the formula to hold
iff is a call node (and similarly for other node forms). We say that a node
is a data-producer if it has a data output-port. If is a data-producer then we
define to refer to (single) data output-port.

We define functions to compute successors/predecessors as follows:

We define to be the transitive closure of relation R. For example,
is the set of nodes which occur after on the control path. Similarly

is the reflexive-transitive closure of relation R.

6.3 Register Placement Analysis and Optimisation

The SAFL code fragment shown below was first presented in Section 5.2.2:

6.3 Register Placement Analysis and Optimisation 89

According to the naïve compilation scheme described in Chapter 5 two tem-
porary registers are synthesised: one for each call to f. The purpose of these
temporary registers is to latch the value of f ’s shared output (see Section 5.2.2).
Recall that these temporary registers are called permanising registers since they
make the result of computing an expression permanent, decoupling the caller
from the callee.

It turns out that we can do significantly better than simply adding a per-
manising register on the output of every call node. In some circumstances we
can infer that an expression will remain valid for as long as is necessary without
requiring a temporary latch. In such cases permanisors are not required.

In this section we describe a new compilation scheme. To start with we assume
an intermediate graph which has no permanisors. We then apply analyses to
determine which expressions will become invalid prematurely if permanisors are
not added. (Note that the only reason an expression can become invalid is if
it depends on the output of a shared resource which is subsequently invoked
by another caller—see example above). Temporary latches are then added to
permanise precisely this set of expressions.

6.3.1 Sharing Conflicts

If, at run-time, an expression, is invalidated (i.e. another call is made to a
shared resource on which depends) we say that has been subjected to a shar-
ing conflict. It turns out that it is useful to further categorise sharing conflicts
into two classes: parallel sharing conflicts and sequential sharing conflicts1.

Sequential Sharing Conflicts

Assume that a SAFL program contains two calls to a shared function Follow-
ing the notation of Chapter 4 we refer to these two distinct calls as and
Let us further assume that the first call to complete, is subjected to a shar-
ing conflict as the second call, may change the shared output of hardware
resource

We say that the sharing conflict is sequential if will always be executed
strictly before (or vice-versa) regardless of the target technology in which the
design is finally implemented. We have already seen an example of a sequential
sharing conflict in Section 6.3. We can determine (due to the semantics of let)
that the call f(5) only takes place after the call f(4) has terminated.

Parallel Sharing Conflicts

In contrast if and are involved in a parallel sharing conflict then (given
no extra details about the underlying implementation) the order in which

1 The reason why this classification is helpful is that we already have an analysis
that we can use to detect potential parallel sharing conflicts: namely, PCA (see
Chapter 4). Hence we only need to develop a new analysis to detect sequential
sharing conflicts.

90 6 Analysis and Optimisation of Intermediate Code

and are executed in is non-deterministic. This is the case when the two calls
occur in separate parallel threads (compare and contrast the two intermediate
graphs shown in Figure 6.1). Although Soft Scheduling ensures that an arbiter
will be generated to dynamically serialise the concurrent accesses to the shared
resource (see Chapter 4) we do not know which of the calls will be computed
first2. Hence we have to place permanising registers after both calls—either may
be corrupted by the other.

Representing Permanising Registers in Intermediate Code

An example of both a sequential conflict and a parallel conflict is shown in
Figure 6.1. The horizontal dotted lines show the points where data may become
invalid. It is at these points that permanising registers must be placed. In order
to represent permanising registers at the intermediate level we introduce a new
node which models a latch:

Fig. 6.1. A sequential conflict (left) and a parallel conflict (right). The horizontal
dotted lines show the points where data may become invalid. These are the points
where permanising registers are required

Of course, if we had specific details about the target technology we could deter-
mine this information statically. However, by not making any assumptions about
arbitration policies etc. we ensure that Register Placement Analysis is architecture-
neutral—even after register placement has been performed a back-end is still free to
choose different arbitration schemes for different functional units.

2

6.3 Register Placement Analysis and Optimisation 91

Fig. 6.2. We insert permanisors on data-edges using this transformation. The dashed
data-edges represent those which do not require permanisors; the solid data-edges rep-
resent those which do require permanisors

On receiving control, this node latches its data input, propagating control
once the data output (read directly from the latch) is valid. Once we have deter-
mined which data-edges require permanising we can insert PERMANISOR nodes
using the transformation shown in Figure 6.2. The transformation is based on
the observation that multiple data-edges originating at a single node can all
share a permanisor if necessary.

6.3.2 Technical Details

Our register placement optimisation works by determining the places where an
expression may be invalidated unless its value is latched. Rather than adopting
the naïve approach of placing a PERMANISOR node on the output of a call to
a shared function, we insert PERMANISORs only if the value of an expression is
required after it may have become invalid.

The first stage is to insert permanising registers on the output of each call
which is subject to a parallel sharing conflict (according to the results of Par-
allel Conflict Analysis—see Chapter 4). In this section we assume that this has
already been done and continue by presenting a data-flow style analysis over in-
termediate graphs which allows us to infer which data-edges require permanising
due to sequential conflicts. We also make the assumptions that hardware-level
functional-units respect the following invariants:

Invariant 6.3.1 After a call to a functional-unit, the data on (shared)
output remains valid until another call to occurs.

Invariant 6.3.2 Functions latch their arguments when called.

Invariant 6.3.2 (analogous to callee-save in software compilers) means that the
caller does not have to worry about keeping arguments valid throughout the
duration of a call; arguments need only be valid at the point of call. The reader
may wish to verify that our hardware implementation of functions does indeed
satisfy these invariants (see Figure 5.10). In Section 6.4 we show how to modify
the analysis to deal with a hybrid of both callee-save and caller-save policies.

92 6 Analysis and Optimisation of Intermediate Code

The register placement analyses for detecting sequential conflicts are per-
formed in three stages:

Resource Dependency Analysis tags each data-producing node, with the set
of functional-units that depends upon. (We say that a node,
depends on a functional-unit, iff changing the value on (shared)
output may invalidate (i.e. change) the value of

Validity Analysis tags each node, with the set of nodes whose data output is
guaranteed to be valid when control reaches (We say that is
valid if its value has not been corrupted by a subsequent call which changes
a shared function output on which depends.)

Sequential Conflict Register Placement uses validity information to decide
which data-edges require permanising registers to resolve sequential con-
flicts.

We require the following definition:

Definition 6.3.1. CG is the call-graph relation of the program being translated.
Thus, is the set of functions that may call directly and is the
set of all functions which may be invoked as a result of invoking

Dataflow equations for the register placement analysis are summarised in
Figure 6.5. The following sections clarify some of the terminology and describe
the intuition behind the equations:

6.3.3 Resource Dependency Analysis

Recall that a data-producing node, depends on a functional-unit, iff chang-
ing the value on (shared) output may invalidate the value of
The resource dependency equations map a node, onto the set of functional-
units on which depends.

Definition 6.3.2. Given a node, is the set of (names of) functional-
units that depends on.

The resource dependency equations reflect the following observations:

1. If is a JUMP or a PERMANISOR then its output is not dependent on any
functional-units.

6.3 Register Placement Analysis and Optimisation 93

2.

3.

If is a CALL node (n : CALL then is dependent on and
the functional-units that may access. We know that is not
dependent on any of its data-predecessors since latches these values at
the beginning of the call decoupling from all
Otherwise is dependent on the same functional-units as its data-prede-
cessors since changes to the data-outputs of any may be
propagated through to This clause also handles the case of
being an ENTRY_NODE since in this case

6.3.4 Data Validity Analysis

The data validity equations form the core of the register placement analysis.
Defined mutually recursively, and map a node, onto the set of nodes
whose data-output is guaranteed to be valid when control respectively reaches
and leaves However, before launching into the data validity equations we must
first introduce some auxiliary definitions. Definitions 6.3.3 and 6.3.4 formalise
the notion of a thread allowing us to reason precisely about parallelism (they are
shown diagrammatically in Figure 6.3). Definition 6.3.5 defines kill which maps
a node, onto the set of nodes whose data outputs are invalidated as a result
of control passing through

Definition 6.3.3. Given a CONTROL_SPLIT node, is the correspond-
ing CONTROL_JOIN node3.

Definition 6.3.4. Given a CONTROL_SPLIT node, such that

let (for Then, is
the set of nodes in each of threads except the thread containing node

Definition 6.3.5. Given a node is the set of nodes whose data outputs
are invalidated as a result of control passing through

3 Due to the properties of the translation to intermediate code each CONTROL_SPLIT

node has a corresponding CONTROL_JOIN node (cf. bras and kets in a well-bracketed
string).

94 6 Analysis and Optimisation of Intermediate Code

The equations for kill reflect the following observations:

The only way a node’s data output can be invalidated by executing is if
invokes some shared resource. Thus if is not a CALL node then nothing

can be invalidated.
If is a call node then every node which is dependent on some-
thing which may invoke (either directly or indirectly) is invalidated.

The data validity equations are now presented:

Definition 6.3.6. Given a node, is the set of nodes whose data-output
is guaranteed to be valid when control reaches

Definition 6.3.7. Given nodes and is the set of nodes which are
guaranteed to be valid when control leaves along edge

For the sake of clarity, in cases where we know that has only one control
successor (i.e. we write to mean

The intuition behind is as follows:

1.

2.

If is a CONDITIONAL_JOIN node then at run-time control will arrive at
from either its true-branch or its false-branch. Thus the nodes guaranteed
to be valid when control reaches are those that are guaranteed to be valid
at both the end of the true-branch and the end of the false-branch.
If is not a CONDITIONAL_JOIN node then the nodes that are guaranteed to
be valid when control reaches are those that were guaranteed to be valid
just after control-predecessors have been executed.

reflects the following intuition:

If is not a CONTROL_SPLIT node then the nodes guaranteed to be valid
when control leaves are precisely:

those nodes which were valid when control arrived at
plus itself;
minus the nodes that were invalidated as a result of executing i.e. those
nodes in

6.3 Register Placement Analysis and Optimisation 95

Fig. 6.3. The nodes contained in the highlighted threads are those returned by

If is a CONTROL_SPLIT node then things are a little more complicated since
we have to cope with the parallelism that introduces. As we do not know
statically which interleaving of parallel operations will occur at run-time we
are forced to make a safe approximation: when analysing a particular thread
(e.g. the one containing in Figure 6.3) we assume that every other parallel
thread has already been executed (i.e. we assume that any nodes whose data
may be invalidated have been invalidated).

6.3.5 Sequential Conflict Register Placement

Sequential conflict register placement is the process where we decide which data-
edges require registers to resolve sequential conflicts. We define a
predicate which holds iff data-edge requires a permanisor. As
a first approximation, we simply observe that if a node is not guaranteed to
be valid at then we must place a permanising register on data-edge

Although this works, it has a tendency to insert unnecessary permanisors where
conditionals are concerned. To see the problem consider the following code frag-
ment

and visualise the corresponding intermediate graph. The problem is that, ac-
cording to our data validity analysis, neither f(x) nor g(x) are valid on entry
to the CONDITIONAL_JOIN node (since the equations for validity analysis state
that the only nodes which are guaranteed to be valid when control reaches a
CONDITIONAL_JOIN are those which are valid at the end of both branches of the
conditional). Thus two permanisors will be inserted to latch the results of the
calls to f(x) and g(x). It is clear, however, that these permanisors are unnec-
essary: if we take the true-branch of the conditional then f(x) will be valid and
we do not care about g(x); conversely if we take the false-branch g(x) will be
valid and we do not care about f(x).

96 6 Analysis and Optimisation of Intermediate Code

We can improve the accuracy of our model (i.e. make it insert considerably
fewer permanisors) by giving CONDITIONAL_JOIN nodes a special treatment.

Definition 6.3.8. Given a CONDITIONAL_JOIN node, and a node, which
occurs before on the control path4, is the set of
nodes guaranteed to be valid on entry to given the extra information that
control passes through node

This is based on the observation that if we know which way a CONDITIONAL_SPLIT

has branched, we can do much better at predicting the nodes that are going to
be valid at the corresponding CONDITIONAL_JOIN: the nodes which are valid at

are those which are valid at the end of the conditional branch in which
occurs. We use the equation to calculate the final node in
the conditional branch containing (shown graphically in Figure 6.4). Note that
if is not in either of the conditional branches joining at then (since occurs
before on the control path) Thus, in this
case reduces to (intuitively this is what we expect: if is
not in either of the conditional branches joining at then we have not gained
any extra information by stating that control passes through

Fig. 6.4. Diagrammatic explanation of

Now we can use to define a more accurate version of Perm as follows:
4 I.e.

6.4 Extending the Model: Calling Conventions 97

Definition 6.3.9. holds iff data-edge requires permanising:

6.4 Extending the Model: Calling Conventions

The equations presented in Figure 6.5 assume a callee-save model. In a hardware
implementation this corresponds to every functional-unit latching its arguments
on a call. Sometimes these latches are unnecessary and savings can be made by
adopting a caller-save model, where functional-units do not latch their argu-
ments but make the assumption that the caller will keep the arguments valid
throughout the duration of the call.

For the sake of completeness we show in this section how the data-flow anal-
yses can be modified to cope with a combination of both callee-save and caller-
save conventions. Let predicate hold for a function, iff adopts
a callee-save model. In this way we can specify on a per-resource basis which
functional-units latch their arguments and which functional-units require their
arguments to remain valid throughout a call. (We use a suitable pragma to con-
vey this information to the compiler; however, one could imagine a global analysis
which attempts to choose the best strategy). Thus, for caller-save functional-
units, our invariants (see Section 6.1) are replaced with the following:

Invariant 6.4.1 After a call to a (caller-save) functional-unit, the data on
(shared) output remains valid until either (i) another call to occurs or

(ii) the values on inputs change.

Invariant 6.4.2 The caller keeps the arguments valid throughout the duration
of the call.

It turns out that we only have to modify the resource dependency analysis
and the permanisation analysis; validity analysis remains unchanged.

6.4.1 Caller-Save Resource Dependency Analysis

We add an extra clause to the definition of (see Section 6.3.3) reflecting the
observation that for a node : CALL where does not latch its arguments,

is dependent upon:

the functional-units that data predecessors are dependent upon; and
all the functional-units that may invoke.

98 6 Analysis and Optimisation of Intermediate Code

Resource Dependency Analysis

Data Validity Analysis

where (see Definition 6.3.4 and Figure 6.3) is the set of nodes in each of
CONTROL_SPLIT node threads except the thread containing node

and is the set of nodes whose data outputs are invalidated as a result of control
passing through

is the set of nodes valid on entry to the CONDITIONAL_JOIN node given
the extra information that control passes through node

Sequential Conflict Register Placement

Fig. 6.5. Summary: Register Placement for Sequential Conflicts

6.5 Synchronous Timing Analysis 99

Hence we have:

6.4.2 Caller-Save Permanisation Analysis

We update our definition of Perm to reflect the observation that if we are not
dealing with a callee-save function, it is the duty of the caller to keep the function
arguments valid until after the call.

6.5 Synchronous Timing Analysis

This section turns to the problem of architecture-specific analysis. We have devel-
oped several architecture-specific optimisations which can improve the efficiency
of generated synchronous hardware. Each of these optimisations is based on an
analysis which statically infers the number of cycles that operations will take to
execute.

Although, in general, it is an undeciable problem to determine the length of
a function’s execution, in practice there are many cases where it is feasible. For
example, consider the following SAFL program:

100 6 Analysis and Optimisation of Intermediate Code

Here, assuming that g and f are both callee-save functions (which latch their
arguments), we can deduce that a call to f will take 2 cycles: one cycle to latch
its arguments, and a second cycle for g to latch its argument. Note that our
analysis has to take permanising registers into account since these add an extra
cycle latency. Hence we apply synchronous timing analysis at the intermediate-
code level after register placement has been performed since it is only at this
point that we know where permanisors have been inserted.

6.5.1 Technical Details

First some more definitions. We define to be the set of non-negative integers
augmented with the symbol

Integer addition is extended to by adopting the rule:

The integers in are subject to the usual total ordering; is larger than every
integer element of We use the notation, to represent closed intervals
in (where The following operations are defined on intervals:

Predicate holds iff node is marked as a function’s entry node
(see Section 5.1.2). Predicate holds iff the SAFL function with
name contains at least one (tail) recursive call. The function

maps a function name, onto the exit node of intermediate graph. Given a
CALL node, predicate holds iff is a call node, and the call
is subject to a parallel sharing conflict (as detected by PCA—see Chapter 4).

The Synchronous Timing Analysis equations are defined in Figure 6.6. The
functions and map nodes in an intermediate graph to intervals
in If for a node, contained in the intermediate graph of a function,

then we know that control will leave a minimum of
cycles after is called and a maximum of cycles after is called. Similarly
if then we know that control will arrive at a minimum of
cycles after is called and a maximum of cycles after is called. If is
then this signifies that our analysis cannot statically infer the maximum time
(respectively) that control will leave 5. This section continues by explaining
the informal intuition behind the equations of Figure 6.6.

5 Due to the structure of the equations—see Figure can never be

6.5 Synchronous Timing Analysis 101

Definition 6.5.1. Given a node, is the interval during which control
is guaranteed to arrive at

If is an entry-node then it will be executed 1 cycle after its enclosing
function is invoked. (The 1 cycle latency is due to the time taken to latch its
arguments—see Section 5.2.2. Note that, for the purposes of this presentation,
we assume that functions are caller-save; a callee-save function does not incur
this 1 cycle latency.)
If is a CONTROL_JOIN node then we wait for control to arrive from each

before proceeding. (This behaviour is reflected by the join
operator,
Otherwise, we determine the interval at which control arrives at by widen-
ing the intervals of control predecessors.

Definition 6.5.2. Given a node, is an interval during which control is
guaranteed leave (and hence the interval during which DataOut is guaranteed
to become valid).

If then we know that 1 cycle is required for to latch its
data input.
If then the time control leaves is determined by the time that
control enters and also the time taken for function to be executed. If the
call has a parallel sharing conflict (as detected by PCA—see Chapter 4) then
we do not know how long will take to execute since the execution time
depends on whether is busy/free. However, we do know that will take
a minimum of 2 cycles to execute since the arbiter presented in Section 5.2.2
adds an extra cycle latency to the call.
If is not any of the nodes listed above then control passes straight through
without taking any extra cycles.

Definition 6.5.3. Given a SAFL function name is the interval which
safely bounds the execution time of the function.

If contains (tail) recursive calls then we do not try and analyse its maximum
execution time; instead we safely approximate it as However, even if
is recursive we know that the minimum time possible for execution is 1
cycle since this is the time required for to latch its incoming arguments.
If is not recursive then the time taken for to execute is determined by
the time that control leaves exit node.

6.5.2 Associated Optimisations

The optimisations associated with synchronous timing analysis are outlined in
this section. We start by extending our functions min and max to operate on
intervals in the obvious way:

102 6 Analysis and Optimisation of Intermediate Code

Fig. 6.6. Synchronous Timing Analysis

Removing Unnecessary Arbitration

Consider translating the following SAFL program into synchronous hardware:

Note that we can remove the arbiter for h if we can infer that the execution of k
always requires more cycles than the execution of h. More generally, if and
occur in parallel threads of an intermediate graph and are both of type (CALL

then if:

we know that the call at will have fully completed before the call at
starts (since the minimum time at which control can enter is greater than the
maximum time at which control leaves Conversely, if:

then we know that the call at will have fully completed before the call at
starts.

6.5 Synchronous Timing Analysis 103

If either of these two conditions hold then we know that the two calls to
will occur in non-overlapping time intervals, thus the need for dynamic ar-

bitration is eliminated. This optimisation essentially allows us to improve the
accuracy of PCA given more information about the target technology (in this
case synchronous hardware). Obviously this optimisation is not applicable to
asynchronous designs as it stands. However, it may be possible to use detailed
feedback from model simulations incorporating layout delays to enable a similar
type of optimisation in the asynchronous case. Investigating this claim is a topic
of future work.

Eliminating Control_Joins and Function Call Control Signals

In many cases we can use cycle counting to optimise CONTROL_JOINs away. If
we can infer that control will arrive at each of the control inputs simultaneously
then we no longer need a CONTROL_JOIN node. Instead, we can pick any one of
the control inputs (arbitrarily) and connect it to the control output. As well as
removing the need for a CONTROL_JOIN circuit (see Section 5.2.1) this optimi-
sation offers another potential saving: since some control signals are no longer
connected to anything, we can remove the circuitry that generates them (see
Figure 6.7).

Fig. 6.7. A block diagram of a circuit-level implementation of 3 parallel threads.
Suppose that our analysis has detected that the “done” control outputs of the 3 threads
will be asserted simultaneously. Thus we have no need for a CONTROL_JOIN NODE. Since
signals “c_out1” and “c_out3” are no longer connected to anything we can optimise away
the control circuitry of the shaded blocks

Thus we know that a CONTROL_JOIN node can be eliminated if:

In fact we can do better than this. If we know which of a CONTROL_JOlN’s inputs
will be asserted last then we can simply connect this input to the control output

104 6 Analysis and Optimisation of Intermediate Code

(and leave other control inputs unconnected). Let be a CONTROL_JOIN node.
The set of control predecessors whose control outputs finish last is given by:

Intuitively these are the nodes whose earliest possible completion times are
greater than the latest possible completion times of the rest of control pre-
cessors. Instead of implementing an explicit CONDITIONAL_JOIN node we can
simply choose a node from this set and propogate its control output (see Fig-
ure 6.7)6. Of course if the set is empty it means that our analysis has not been
able to infer any useful information. In this case a the CONDITIONAL_JOIN must
be implemented in hardware in the usual way.

Recall that, for each function call, control circuitry is required to implement
the call/return mechanism (see Figure 4.4). However, if we can statically deter-
mine the number of cycles that a function call will take then there is scope to
eliminate some of this control circuit. Instead of using a control signal from the
callee to detect the termination of the call, the caller can instead use a counter to
simply wait for the appropriate number of cycles. In this way the need for a con-
trol return wire from the callee is eliminated. As a result the callee’s ECCU (see
Figure 5.11) can also be simplified since the callee no longer has to remember
the caller’s identity.

Let be a node which represents a function call. We can statically
determine the exact time of the call if:

6.6 Results and Discussion

In this section we present experimental results (area/time figures) which demon-
strate the effects of both Register Placement Analysis and the synchronous tim-
ing optimisations.

6.6.1 Register Placement Analysis: Results

We start by comparing designs generated using the register placement techniques
(described in Section 6.3.2 with the naïve compilation strategy outlined in Sec-
tion 5.2.2). As expected, when a design contains no shared resources, both com-
pilation strategies produce identical results. As the amount of resource sharing
increases the differences between the two approaches becomes more apparent.

To measure the effects of register placement analysis we consider compiling
the expression (taken from the differential equation

Although we are free to choose any node from this set it is advantageous to choose
the one with the least amount of control circuitry in its thread. Since we remove
much of the control circuitry from the other threads this strategy allows us to save
more area.

6

6.6 Results and Discussion 105

Fig. 6.8. How various paramaters (area, number of permanisors, number of cycles,
clock speeds and computation time) vary as the degree of resource sharing changes

solver example of Section 1.1) using different numbers of 32-bit multipliers. For
any given number of multipliers there are a variety of possible SAFL programs
which can compute this expression (reflecting different scheduling and binding
decisions). Thus it is important that we specify the exact code fragments we used
in this experiment: Figure 6.9 presents the 5 SAFL programs which were chosen
to measure the effects of Register Placement Analysis. Note that we use the let
constructs to specify our chosen static schedules explicitly in each case. Thus,
no dynamic arbitration is required to schedule access to the shared multipliers.

106 6 Analysis and Optimisation of Intermediate Code

Fig. 6.9. SAFL programs with different degrees of resource sharing

6.6 Results and Discussion 107

We deliberately choose an arithmetic example since this is where the register
placement analysis has the most impact. Although our examples are small, we
argue that the savings are still meaningful in the context of larger designs. For
example, consider a larger design which repeatedly computes the value of our
arithmetic expression, as part of an inner-loop. In
this case reducing the number of permanisors in the arithmetic expression may
significantly improve the overall performance of the system (recall that each
permanising register adds another cycle of latency).

We compiled each of the SAFL programs of Figure 6.9 to synchronous hard-
ware using both the naïve compilation strategy (Section 5.2.2) and the more
complex register placement strategy (Section 6.3.2). The RTL output of the
FLaSH compiler was mapped to an Altera Apex-II FPGA (EP20K200EFC484-
2X; gate equivalent) using the industrial synthesis tools Leonardo
(Altera edition) and Quartus-II. The results, which show how the degree of re-
source sharing affects different parameters (chip area, number of permanisors,
number of cycles taken to compute, clock speeds and actual computation time in
seconds), are presented graphically in Figure 6.8. We give the results in tabular
form and discuss their significance in the following sections.

Chip Area

Figure 6.10 demonstrates that the Register Placement strategy does indeed in-
sert fewer permanising registers than the naïve compilation strategy. Figure 6.11
shows how these area savings are reflected at the chip-level. As expected, the
%-saving (both in terms of number of permanisors and chip area) shows a down-
wards trend as the number of multipliers in the design are increased. Finally,
when the design contains 5 multipliers then, since there is no longer any resource
sharing, there is no difference between the two compilation strategies.

Fig. 6.10. Number of Permanising Registers

Computation Time

Figure 6.12 shows how the number of clock cycles required for the computation
decreases as the number of multipliers in the circuit increases. The reason for this
decrease is simply because the increased number of multipliers allows more of

108 6 Analysis and Optimisation of Intermediate Code

Fig. 6.11. Chip area (as %-use of FPGA)

Fig. 6.12. Number of clock cycles required for computation

Fig. 6.13. Clock Speeds of Final Design

the computation to be performed in parallel. Note that the Register Placement
compilation strategy offers less savings in terms of cycle time as the number
of multipliers in the circuit increases. This is exactly as we would expect: the
savings in cycle time are entirely due to the reduction in permanising registers
(since it takes an extra cycle to latch data into a permanising register).

Figure 6.13 shows how the clock speeds of the generated designs are affected
by the degree of sharing. The interesting point to note is that the Register Place-
ment strategy actually leads to slower clock speeds than the naïve compilation
scheme. The reason for this is that as permanising registers are removed the
critical path becomes longer. These results also show just how difficult it is to
predict how a design will behave when it is finally mapped to hardware. The
huge drop in clock speed to 28MHz is incurred as the designs become larger
because the place-and-route tool starts spreading single multipliers right across
the FPGA rather than positioning them in contiguous regions of space. This
vastly increases the amount of wiring on the chip increasing the length of the
critical path significantly.

6.6 Results and Discussion 109

However, even though the clock speeds of the design are decreased by the
register placement scheme note that the actual computation time is generally
faster as a result of register placement (see Figure 6.14). This is because the
drop in clock-speed is compensated for by a corresponding drop in the number
of cycles required for the computation.

An interesting observation is that although the Register Placement Analysis
is architecture-neutral (e.g. applicable to both synchronous and asynchronous
implementations) the effects that it would have in the asynchronous case are
quite different. In the synchronous world Register Placement Analysis is guar-
anteed to save chip area and cycles (since we are removing registers). However,
in turn this can increase the length of the critical path which may (as we have
seen in this Figure 6.13) decrease the clock frequency. Although we hope that the
loss of clock frequency may be compensated for by the decrease in the number
of cycles leading to faster overall computation times this may not always be the
case. For asynchronous implementations the result is more predictable: since one
does not have to worry about critical paths a decrease in both time (since we
remove the time-overhead incurred in latching data) and area (since we remove
the circuitry required to perform the latching) is attained.

Fig. 6.14. Time taken for design to perform computation

6.6.2 Synchronous Timing Optimisations: Results

We tried compiling the SAFL code fragments of Figure 6.9 with and without
the control-join elimination and function call control signal optimisations (see
Section 6.5.2). For these programs we found that the optimisations only saved
us a small percentage in chip area: between 0.8% and 1.0% of the FPGA. The
savings are small because for each of these programs the control circuitry is only
a small fraction of the circuit as a whole—the vast majority of area is taken up
by combinatorial multipliers which are not affected by the optimisations.

In contrast, applying the same optimisations to the SAFL DES encrypter/
decrypter of Section 10.2 results in more impressive savings. For the DES circuit,
156 control joins were optimised away leading to a 7.94% reduction in chip area.
Here the saving is much larger because the control circuitry forms a greater
percentage of the design.

110 6 Analysis and Optimisation of Intermediate Code

Unlike the register placement optimisation, the optimisations based on syn-
chronous timing analysis (see Section 6.5.2) cannot increase the length of the
critical path7. Therefore the savings in area gained from these optimisations
need not be traded against a possible decrease in clock speed.

Applying the Optimisations

Recall that the Register Placement optimisation is architecture-neutral. This
means that it can always be applied to a whole SAFL program, regardless of the
design style (e.g. synchronous or asynchronous) being targetted. In contrast the
optimisations based on Synchronous Timing Analysis are architecture specific:
they can only be applied if we are targetting synchronous hardware.

An interesting scenario is to consider what happens when we target GALS
(Globally Asynchronous Locally Synchronous) hardware—see Section 5.3. In
this case, as usual, we are able to apply our Register Placement optimisation.
However, we are also able to optimise hardware in each clock domain separately
by applying our Synchronous Timing optimisations on a per clock-domain basis.

6.7 Summary

In this chapter we presented two analyses:

register Placement Analysis (Section 6.3),
synchronous Timing Analysis (Section 6.5)

and three corresponding optimisations:

removing unnecessary temporary registers,
removing redundant arbitration (on top of arbiters already removed by Par-
allel Conflict Analysis—see Chapter 4),
eliminating unnecessary control circuitry.

Obviously this is not an exhaustive survey. There are many more analyses and
optimisations which could be employed to improve the efficiency of hardware
generated from SAFL code. However, for reasons of time and space, we do not
consider any further optimisations in this monograph.

Although we have presented the technical details and experimental results
arising from a number of different analyses and optimisations, the primary mo-
tivation of this chapter is to justify our claim (first stated in Section 1.4) that:

SAFL is designed specifically to support ... [global] analysis and optimi-
ation

7 It is possible that the optimisations may decrease the length of the critical path
since control-join elimination removes OR gates from the control path. However we
have found that this seldom happens in practice as the control circuitry is rarely on
the critical path.

6.7 Summary 111

Global analyses such as these are not feasible in existing behavioural HDLs
which employ structural blocks as their primary abstraction mechanism (see
Section 3.3.4). In contrast SAFL is able to support global static analysis.

We feel that the concept of architecture-neutrality is an important one. Ex-
isting behavioural HDLs and their corresponding synthesis tools typically only
focus on a single design style. If we are to move towards tools which can target
different design styles8 then architecture-neutral analyses allow one to migrate
complex optimisation code into compiler phases which are executed before con-
trol is passed to one of the many back-ends. This simplifies the design and coding
of each of the multiple backends at the cost of increasing the complexity of the
single front-end.

As it becomes increasingly difficult to distribute a single clock across large chips
we believe that being able to target different design styles from a single high-level
specification will become important (see Section 1.3 and the Semiconductor Industry
Association (SIA) Roadmap [1]).

8

This page intentionally left blank

7

Dealing with I/O

Whilst SAFL is an excellent vehicle for high-level synthesis research we recognise
that it is not expressive enough for industrial hardware description. In particular
the facility for I/O is lacking and, in some circumstances, the “call and wait for
result” interface provided by the function model is too restrictive. To address
these issues we have developed a language, which extends SAFL with
process calculus features including synchronous channels and channel-passing in
the style of the [100].

This chapter is structured as follows:

We extend SAFL with synchronous channels and assignment and argue that
the resulting combination of functional, concurrent and imperative styles is
a powerful framework in which to describe a wide range of hardware designs
(Section 7.1).
Channel passing in the style of the [100] is introduced. By param-
eterising functions over both data and channels the fun declaration
becomes a powerful abstraction mechanism unifying a range of structuring
techniques treated separately by existing HDLs (Section 7.1.3).
We show how is implemented at the circuit-level (Section 7.2) and
define the language formally by means of an operational semantics (Sec-
tion 7.3).

7.1 Language Description

In this section we present the syntax of and informally describe its
semantics. The language semantics are defined formally in Section 7.3.

is a concurrent, first-order, call-by-value language which, in the style
of ML [101], supports a combination of functional and imperative programming.
Function call arguments and let-definitions are evaluated in parallel as in SAFL;
synchronous channels allow parallel threads to communicate with each other.

Function declarations take the form:

114 7 Dealing with I/O

We make a syntactic distinction between arguments used to pass data,
and arguments used to pass channels Iteration is provided in the form
of self-tail-recursive calls. As with SAFL, general recursion is forbidden to permit
static allocation of storage (see Section 3.3.2). Programs have a distinguished
function, main, which represents an external world interface—at the hardware
level it accepts values on an input port and may later produce a value on an
output port.

We use slightly different notation in this chapter in order to be consistent
with our published work on [131, 104]. In the following ranges over
primitive functions (such as +, * etc.), ranges over user-defined functions and

ranges over record field labels. We use for array variables, for channel
variables, for other variables, and for integer constants. The abstract syntax
of programs, is presented in Figure 7.1.

Fig. 7.1. The abstract syntax of programs,

Our existing compiler provides a number of simple syntactic sugarings on top
of those already discussed in Section 3.2.4:

The declaration array [1] r can be written reg r. When accessing arrays
of unit size one writes r instead of r[0].
Functions without channel parameters can omit their square brackets com-
pletely (both in definition and calls).
A case-statement is translated into nested conditionals in the usual way.

The static construct, which is used to introduce local definitions, is provided
purely for syntactic convenience. It has no dynamic significance (and hence must

7.1 Language Description 115

not be confused with the kind of dynamic channel-creation present in the
We note the similarity between static construct and the C

language’s static storage-class.

7.1.1 Resource Awareness

We extend the concept of resource awareness first introduced in Section 3.3.2
to our extended language. As with SAFL, our approach is to model hardware
as a fixed set of communicating and (possibly) shared resources. As can be
seen from Figure 7.1, a program consists of a series of resource declarations.
However, whereas SAFL only supports function resources, facilitates
the declaration of three different types of resource, each of which addresses a
key element of hardware design:

Resource type
Function
Channel

Array

Purpose
Computation

Communication
Storage

H/w Representation
General Purpose Logic

Buses, Wires and Control Logic
Memories or Registers

We say that is resource-aware since each declaration, (be it a
function, channel or array declaration) corresponds to a single hardware block,

Multiple references to at the source-level (e.g. multiple calls to a function
or multiple assignments to an array) correspond to the sharing of at the
circuit-level.

A call, corresponds to: (i) acquiring mutually exclusive access to
resource, (ii) passing data and channel-parameters into (i i i) waiting
for to terminate; and (iv) latching1 the result from shared output.

For a concrete example see the code fragment in Figure 7.3 which
describes a lock shared between functions f1 and f2. Synthesising this example
leads to three resources: and Note that is shared between
resources and

Resource-awareness means that, although a compiler is free to opti-
mise the internals of fun definitions, it must respect the circuit structure specified
by the programmer (i.e. one declaration = one hardware-level resource).

7.1.2 Channels and Channel Passing

provides synchronous channels to allow parallel threads to synchronise
and transfer information. Channels can be used to transfer data locally within
a function, or globally, between concurrently executing functions.

Our channels generalise Occam [76] and Handel-C [2] channels in a number
of ways: channels can have any number of readers and writers, are bidi-
rectional and can connect any number of parallel processes. As in the
if there are multiple readers and multiple writers all wanting to communicate

1 Register Placement Analysis (see Section 6.3) can be used to optimise these latches
away under certain circumstances.

116 7 Dealing with I/O

on the same channel then a single reader and a single writer are chosen non-
deterministically.

At the hardware level a channel is implemented as a many-to-many commu-
nications bus supporting the atomic transfer of single values between readers and
writers (see Section 7.2). No language-support is provided for bus-transactions
(e.g. lock the bus for 20 cycles and write the following sequence of data values
onto it). In Figure 7.3 a code fragment is presented which shows how
such transactions can be implemented by using explicit locking.

Channels declared as external are used for I/O: writing to an external chan-
nel corresponds to an output action; reading an external channel corresponds to
reading an input. There is no synchronisation on external channels although
writes are guaranteed to occur under mutual exclusion. For example, for an ex-
ternal channel c, the only two possible output sequences occurring as a result of
evaluating expression are or (See Section 7.3).

Fig. 7.2. Illustrating Channel Passing in

The code fragment of Figure 7.2 illustrates how channel passing is supported
by Two resources parameterised over channel parameters are defined:

Accumulate reads integers from a channel, returning their total when a 0 is
read;
GenNumbers writes a decreasing stream of integers to a channel, terminating
when 0 is reached.

The function, sum(x) calculates the sum of the first x integers by composing the
two resources in parallel and linking them with a common channel, connect.
(Note that the parallel composition operator, waits for both its components
to terminate before returning the value of the rightmost one.)

Channel parameters are not passed on recursive calls. Once a function re-
source, has been acquired by means of an external (i.e. non-recursive) call,

channel parameters remain bound to until terminates. See the
operational semantics presented in Section 7.3 for a more precise description.

7.1 Language Description 117

7.1.3 The Motivation for Channel Passing

By parameterising functions over both data and channel parameters, the
fun definition becomes a powerful abstraction mechanism, encapsulating a wide
range of structuring primitives treated separately in existing HDLs:

Pure functions can be expressed by omitting channel parameters:

Structural-level blocks (cf. Verilog’s module construct) can be expressed as
non-terminating fun declarations parameterised over channels:

HardwareC-style process declarations can be expressed as non-terminating
fun definitions (possibly without channel or data parameters):

HardwareC-style procedures can be expressed as fun declarations that re-
turn a unit result:

Fig. 7.3. Using to describe a lock explicitly

As well as unifying a number of common abstraction primitives, also
supports a style of programming not exploited by existing HDLs. Recall the
definition ofAccumulate in Section 7.1.2. TheAccumulate function can be seen
as a hybrid between a structural-level block (since it is parameterised over a
port, c) and a function (since it terminates, returning a result). More generally,
by passing in locally defined channels, a caller, is able to synchronise and
communicate with its callee, during execution. For example, consider the

code in Figure 7.3 which declares a lock shared between functions f1
and f2. The lock is used to enforce mutual exclusion between critical regions
contained within the function bodies: The lock function is parameterised over

118 7 Dealing with I/O

two channels: acquired is signalled as soon as lock starts executing, indicating
to the caller that the lock has been acquired; release is used by the caller to
signal that it has finished with the lock (at which point lock terminates). Recall
that resource-awareness means that lock represents a single resource shared by
functions f 1 and f 2: the compiler ensures that only one caller can acquire it at
a time. By passing in locally defined channels, functions f 1 and f 2 are able to
communicate with lock during its execution. (Note that, since channels
are bidirectional, we could use a single control channel to signal both acquisition
and release requests; we use two channels merely for expository purposes.)

7.2 Translating to Hardware

In Chapter 5 we have already described how we translate the functional subset
of into hardware. The basic principle involves translating each function
definition into a single hardware block consisting of logic to serialise concurrent
accesses and registers to latch arguments. Tail-recursive calls are translated into
feedback loops at the circuit level.

Here we extend this by showing how the non-functional features (i.e. chan-
nels and arrays) can be integrated into our existing framework and compiled to
synchronous hardware. As before, we adopt the graphical convention that thick
lines represent data-wires and thin lines represent control signals.

A channel is translated into a shared bus surrounded with the necessary
control logic to arbitrate between waiting readers and writers. Figure 7.4 shows
channel control circuitry in a case where there are two readers and three writers.
Since we are primarily targeting FPGAs we choose to multiplex data onto the
bus rather than using tri-state buffers. To perform a read operation the reader
signals its read-request and blocks until the corresponding read-acknowledge
is signalled. We adopt the convention that the read-acknowledge line remains
high for one cycle during which time the reader samples the data from the
channel. To perform a write operation the writer places the data to be written
onto a channel’s data-input and signals the corresponding write-request line; the
writer blocks until the corresponding write-acknowledge is signalled. Our current
compiler synthesises static fixed-priority arbiters (see Section 5.13) to resolve
multiple simultaneous read requests or multiple simultaneous write requests.
However, since the semantics do not specify an arbitration policy, future
compilers are free to exploit other selection mechanisms.

Our compiler performs a static flow-analysis to determine which
actual channels (those bound directly by the channel construct) a given formal-
channel-parameter may range over. This information enables the compiler to
statically connect each channel operation (read or write) to every possible actual
channel that it may need to access dynamically. At the circuit level channel values
are represented as (small) integers which are passed as additional parameters on
a function call.

The FLaSH intermediate code (Chapter 5) is augmented with READ and
WRITE nodes representing channel operations. In cases where our flow-analysis

7.2 Translating to Hardware 119

Fig. 7.4. A Channel Controller. The synchronous RS flip-flops (R-dominant) are used
to latch pending requests (represented as 1-cycle pulses). Static fixed priority selectors
are used to arbitrate between multiple requests. The three data-inputs are used by the
three writers to put data onto the bus

detects that a channel operation may refer to a number of possible actual chan-
nels, multiplexers and demultiplexers are used to dynamically route to the ap-
propriate channel. READ nodes have a control-input (used to signal the start of
the operation), a control-output (used to signal the completion of the operation),
a channel-select-input (used to select which actual channel to read from) and
a data-output (the result of the read operation). Similarly WRITE nodes have
a control-input, a control-output, a channel-select-input and a data-output. As
in Chapter 5, our current compiler represents control events as 1-cycle pulses.
Figure 7.5 shows (i) a READ node connected to three channels and (ii) a WRITE

node connected to two channels. Each of the boxes labelled ‘Chan’ is a chan-
nel (as in Figure 7.4). Although each such channel may well have other read-
ers/writers these are not shown in the figure. The data-wires labelled ‘CB’ are
the channel busses, those labelled ‘DI’ are channels’ data-inputs (multiplexed
onto the channel busses—see Fig. 7.4). ‘ChSel’ is the channel-select-input. Note
that (although not shown in this figure) channel busses may be shared among
many readers. The dotted line represents the boundary between the resource
performing the channel operation and the channel circuits themselves.

We extend the translation of fun declarations to include extra registers to
latch channel-parameters. At the circuit-level channel-parameters are fed into
the select lines of the multiplexers and demultiplexers seen in Figure 7.5. In this

120 7 Dealing with I/O

Fig. 7.5. (i) A READ node connected to three channels; (ii) A WRITE node connected
to two channels. The component marked DMX is a demultiplexer which routes the
control signal to one of the three channels depending on the value of its select input
(ChSel)

example ‘ChSel’ would be read directly from the registers storing the enclosing
function’s channel-parameters.

Arrays are represented as RAMs wrapped up in the necessary logic to arbi-
trate between multiple concurrent accesses. Our compiler translates array dec-
larations:

into function definitions with signature:

Calling r always returns the value stored at memory location addr. If wr_select
is 1 then location addr is updated to contain data. Hence array assignments,

are translated into function calls of the form

and (similarly) array accesses, r [e], are translated into calls of the form
r(0,0,e). Treating arrays as functions in this way allows us to use
the compiler’s existing machinery to synthesise the necessary logic to serialise
concurrent accesses to the array and latch address lines. The compiler automat-
ically generates the body of r, which consists solely of RAM.

7.2.1 Extending Analyses from SAFL to

We have just seen how arrays, regs and assignment are treated as function calls.
We have also already shown (in Section 3.2.4) how sequential “;” and

7.3 Operational Semantics for 121

parallel composition operators can be translated into plain SAFL. Thus,
when extending our analyses of Chapters 4 and 6.1, we only need to consider
how to deal with channel reads and writes.

The current version of our Register Placement Optimisation treats channels
in a naïve manner, inserting a permanisor after every read operation. In fact,
given the circuit diagram of a channel shown in Figure 7.4 there is often little
alternative, since the output of the channel is only guaranteed to be valid for a
single cycle. As an architecture-specific analysis we can optimise away perman-
isors on channel reads when we can infer that the result is only required for a
single cycle (e.g. because it is immediately fed back into the enclosing function’s
argument registers as part of a tail-recursive call).

Fig. 7.6. Extending PCA to deal with channel reads and writes

Parallel Conflict Analysis, which detects which function calls to a shared
functional-unit may occur simultaneously, can be trivially extended to deal with
channel read/write constructs by augmenting it with the equations shown in
Figure 7.6.

7.3 Operational Semantics for

In this section we define the meaning of the language formally through
an operational semantics. Although, at first sight, the semantics may seem the-
oretical and far-removed from hardware-implementation we argue that this is
not the case. It is worth pointing out that many of the symbols in Figure 7.10
have a direct correspondence to circuit-level components. For example, channel
resources, (see below), represent channel controller circuits (as shown in
Figure 7.4) and the (Call) rule (see Figure 7.10) corresponds directly to trans-
ferring data into the callee’s argument registers (circuits corresponding to this
can be seen in Section 5.10).

A program consists of a series of function definitions of the form:

We write for the body of function, for formal parameters and
for channel parameters. Again, we write to mean and,

similarly, to mean

122 7 Dealing with I/O

Due to the static nature of we can simplify matters by assuming
that: (i) programs have been to make all variable names
distinct; and (ii) scope-flattening has been performed, bringing local declarations
to the top level and eliminating static statements. (Note that bringing a locally
defined function to the top level may require extra arguments to be added to
the function in order to pass in values for its free variables.)

We give the semantics by describing how one program state, P, evolves into
another, say Q, by means of a transition: where represents an optional
I/O action taking one of the following forms:

Output on external channel c
Read a value from external channel c
Pass parameters into the main function
Read result from the main function

Note that we use a bold-face c to range over external channels (in contrast to
which ranges over non-external channels).

A program state consists of a parallel composition of function resources,
channel resources and array resources (see Figure 7.7). Our presentation borrows
notation and ideas from Marlow et al [94].

Fig. 7.7. The Syntax of Program States, P, Evaluation States, and values,

Each non-external channel declaration, channel corresponds to a channel
resource. When an empty channel resource (written reacts with a waiting
writer a value, is transferred and becomes full (written On reacting
with a waiting reader, the value is consumed and the enters an acknowledge
state (written The Ack interacts with the writer, notifying it that com-
munication has taken place and returning to the empty state, The explicit

7.3 Operational Semantics for 123

use of Ack models the synchronous nature of channels ensuring that a
writer is blocked until its data has been consumed by a reader.

Array resources, correspond to array declarations, The
contents of the array, is a function mapping indexes onto values.
We write to denote the function which is as but maps index onto
value Accessing elements outside the bounds of an array leads to undefined
behaviour. To reflect this we define to be an undefined value if
Furthermore if then represents an undefined state mapping
indexes onto undefined values.

Each function declaration, fun is represented by a
function resource. At any given time a function resource may be busy (performing
a computation) or available (waiting to perform a computation). An available
function resource, is written signifying that is not in use; a busy function
resource takes the form signifying that is currently in evaluation state
The syntax of evaluation states (see Figure 7.7) is essentially the same as the
syntax of expressions augmented with the construct which represents
waiting for a result from function resource

As with the Chemical Abstract Machine [22] program states can be viewed as
a “solution” of reacting resources. We formalise this notion in the standard way
by defining structural congruence, to be the least congruence which satisfies
the (Comm) and (Assoc) equations of Figure 7.8. Rule (Par) allows transitions
within parallel compositions and (Equiv) makes it possible to use the structural
congruence relation to bring different parts of the program state together.

is an implicitly parallel language—an expression may contain a num-
ber of sub-expressions which can be evaluated concurrently. To formalise this
notion we use a context, to highlight the parts of an evaluation state which
can be evaluated concurrently (see Figure 7.9). Intuitively a context, is an
evaluation state with a hole into which we can insert an evaluation state,
to derive a new evaluation state

Fig. 7.8. Structural congruence and structural transitions

A useful mental model is to consider a frontier of evaluation which is de-
fined by and advanced by applying the transition rules (see Section 7.3.1 and
Figure 7.10).

124 7 Dealing with I/O

Fig. 7.9. A context, defining which sub-expressions may be evaluated in parallel

7.3.1 Transition Rules

For clarity, we present the transition rules for in two parts: Figure 7.10(a)
gives the rules for without channel passing. Figure 7.10(b) and Sec-
tion 7.3.2 explain how the rules can be modified to handle channel passing.

Substitution of values, for variables, in an evaluation state,
is written, and for convenience abbreviated to
The rules in Figure 7.10 are divided into six categories:

(Call) and (Return) deal with interaction between separate functional re-
sources.
(Ch-Write), (Ch-Read) and (Ch-Ack) model communication over syn-
chronous channels.
(Input) and (Output) deal with I/O through reading and writing external
channels.
(Ar-Write) and (Ar-Read) handle writing and reading of array resources
respectively.
(Start) and (End) correspond to externally invoking and receiving the result
from the main function.
The remainder of the rules deal with local computation within a function
resource.

Note that the left hand side of the (Tail-Rec) rule is not enclosed in a context.
This reflects the fact that tail recursive calls cannot occur in parallel with any
other expressions; hence a context is unnecessary.

7.3.2 Semantics for Channel Passing

To deal with channel passing, function resources need to store the channel pa-
rameters passed from an external call. We use the notation to represent

7.3 Operational Semantics for SAFL+ 125

Fig. 7.10. Transition Rules for SAFL+

126 7 Dealing with I/O

a function resource which has been called with actual channel parameters,
For convenience we allow ourselves to omit the channel parameters from a rule,
defining to mean Under this convention the only
modifications required for channel passing are to the (Call) , (Ret) and (Tail-Rec)
rules—see Figure 7.10(b).

7.3.3 Non-determinism

There are three sources of non-determinism in SAFL+ specifications. Firstly,
when expressions are composed in parallel, no order of evaluation is speci-
fied. Thus if two parallel expressions have conflicting side-effects then non-
determinism is introduced. For example, may terminate
in a state in which x is either 3 or 4. Secondly, as in the chan-
nels with multiple readers and writers select one reader and one writer non-
deterministically. For example could evaluate to
either –3 or 3. Finally, reading or writing elements outside the bounds of an
array leads to undefined behaviour. Recall that returns a random value if

and, similarly, assigning to an out-of-bounds element corrupts the entire
array.

Although we could make SAFL+ completely deterministic we choose not to
for the following reasons:

An unspecified evaluation order for function calls and let-definitions allows
more freedom for the compiler to exploit parallelism, leading to the genera-
tion of more efficient hardware.
Imposing Occam-style restrictions on SAFL+ channels (i.e. unidirectional,
connecting exactly two processes) would reduce the expressivity of SAFL+.
To see an example of this consider the problem of merging data from two
separate channels onto a single channel. Since SAFL+ does not provide an
explicit non-deterministic choice operator (cf. Occam’s ALT construct), the
only way to represent such a system is to exploit a multiple-writer, single-
reader channel.
Array bounds checking incurs a serious penalty since every array access re-
quires a comparison. Not only would this reduce the performance of the
generated hardware, but the extra comparators required may significantly
increase the area (gate-count) of the circuit. In general we feel that this is
unacceptable.

7.4 Summary

In this chapter we have described how the SAFL language, and its associated
compiler, can be extended with state, synchronous channels and
channel passing, thus extending the IO capabilities of the language significantly.

7.4 Summary 127

By allowing functions to be parameterised over channels we believe that the
resulting abstraction mechanism offers an elegant compromise between:

1. the high-level properties of functions; and
2. the flexibility of structural blocks (cf. Verilog modules).

We justify this claim by observing that, as with structural blocks, a programmer
is now able to parameterise blocks of hardware over input and output ports.
However, unlike structural blocks, SAFL+ functions still abstract data-flow and
control-flow. Thus the global analyses that we advocate in Chapters 4 and 6 are
still applicable.

This page intentionally left blank

8

Combining Behaviour and Structure

A contributing factor to the success of Verilog and VHDL is their support for
both behavioural and structural-level design. The ability to combine behavioural
and structural primitives in a single specification offers engineers a powerful
framework: when the precise low-level details of a component are not critical,
behavioural constructs can be used; for components where finer-grained control
is required, structural constructs can be used1. However, the flip-side is that by
supporting multiple levels of abstraction both Verilog and VHDL are very large
languages which are difficult to analyse, transform and reason about.

Resource awareness allows SAFL to describe the system-level structure of
a design by mapping fun declarations to circuit-level functional units. In con-
trast, systems such as and Lava offer much finer-grained control over circuit
structure, taking logic-gates (rather than function definitions) as their structural
primitives. In this chapter we present a single, pure-functional framework which
integrates Lava-style structural expansion with SAFL. We illustrate this tech-
nique with a realistic example in Chapter 10 where it is used in the SAFL
specification of a fully functional DES encryption/decryption circuit.

8.1 Motivation and Related Work

In Chapter 2 we observed that there is a large body of work on using func-
tional languages to describe hardware at the structural level. Notable systems
in this area include [132], Hydra [109], Hawk [96] and Lava [25]. Recall
that the central idea behind each of these systems is to use the powerful fea-
tures found in existing functional languages (e.g. higher-order functions, poly-
morphism and lazy evaluation) to build netlists from simple primitives. These
primitives can be given different semantic interpretations allowing, for example,
the same specification to be either simulated or translated into a netlist. How-
ever, whilst this technique is obviously appealing, there are problems involved
in generating netlists for circuits which contain feedback loops. The difficulty

1 Note the analogy with embedding assembly code in a higher-level software language.

130 8 Combining Behaviour and Structure

is that, in a pure functional language, a cyclic circuit (expressed as a series of
mutually recursive equations) naturally evaluates to an infinite tree preventing
the netlist translation phase from terminating.

A number of solutions to this problem have been proposed: O’Donnell advo-
cates the explicit tagging of components at the source-level [110]. In this system
the programmer is responsible for labelling distinct components of a circuit with
unique values. Whilst this allows a pure functional graph traversal algorithm to
detect cycles trivially (by maintaining a list of tags which have already been seen)
it imposes an extra burden on the programmer and significantly increases po-
tential for manual error (since it is the programmer’s job to ensure that distinct
components have unique tags). Lava [25] also uses tagging to identify cycles, but
employs a state monad [141] to generate fresh tags automatically. Although this
neatly abstracts the low-level tagging details from the designer, Claessen and
Sands argue that the resulting style of programming is “unnatural” and “incon-
venient” [37]. In the same paper, Claessen and Sands propose another solution
which involves augmenting Haskell (the functional language in which Lava is
embedded) with immutable references which support a test for equality. This
extension makes graph sharing observable at the source-level but, although it
is shown that many useful laws still hold, full equational reasoning is no longer
possible—for example, no longer preserves equality.

In this chapter we present an alternative approach: a single, pure-functional
framework in which we can describe hardware at both structural and behavioural
levels of abstraction. At the structural level (where recursion is realised as static
expansion) circuits are restricted to being acyclic; these acyclic circuit frag-
ments are then composed at the SAFL-level (where tail-recursion corresponds
to feedback loops in the generated hardware). As well as gaining the engineering
benefits of a system capable of structural and behavioural design (see above) we
also eliminate the observable sharing problem. Since cycles are not permitted at
the structural level we do not have to worry about infinite loops being statically
expanded. Conversely, since feedback loops are represented as tail-recursive calls
at the SAFL-level there is no need to introduce impure language features.

8.2 Embedding Structural Expansion in SAFL

We have developed our own system for structural hardware description which
we refer to as Magma2. Section 8.2.1 describes the details of the Magma system.
In Section 8.2.2 we show how Magma is integrated with SAFL.

8.2.1 Building Combinatorial Hardware in Magma

An argument in favour of Lava, Hydra and other similar systems, is that since
they are embedded in existing functional languages they are able to leverage
existing tools and compilers. Furthermore, use of non-standard interpretation

2 As it is a restricted form of Lava.

8.2 Embedding Structural Expansion in SAFL 131

of basis functions means that the same compiler can be used to perform both
hardware simulation and synthesis. These compelling benefits lead us to adopt a
similar approach. However, in contrast to Lava, which is embedded in Haskell [3],
we choose to embed Magma in ML [101]. The choice of ML is fitting for two
main reasons: firstly, since we only wish to describe acyclic circuits, ML’s strict
evaluation is appropriate for both simulation and synthesis interpretations; sec-
ondly, since SAFL also borrows much of its syntax and semantics from ML,
both Magma and SAFL share similar conventions (an important consideration
when we are dealing with specifications containing a mixture of both Magma
and SAFL).

An ML Module System Primer

In order to understand the workings of Magma some familiarity with the ML
module system is required. Whilst we do not describe the full details of the
ML-module system here, this section is sufficient to allow readers unfamiliar the
module system to understand the remainder of this chapter. For more informa-
tion the reader is referred to an in-depth survey [120].

The basic element of ML’s module system is the structure. The structure
provides a way of packaging both type and value (including function) definitions
into a single entity. An important feature of structures is that they provide a
hierarchical name-space. For example, if a function, is defined in a structure

we refer to it as
An ML signature provides a mechanism to specify interfaces. A signature

contains a set of name and type-declarations. One can use a signature to con-
strain a structure using the “:” operator. Only values whose types are explicitly
declared in the constraining signature are visible outside the constrained struc-
ture.

Finally, the ML module system provides functors. A functor is essentially a
parameterised structure, dependent on another structure which is later passed
into it. For example, consider the following (contrived) code fragment which
defines a functor, FTR, parameterised over a structure, S (where S is constrained
by signature, SSIG):

Passing a structure, T, into FTR yields a new structure containing a single item,
a, which has the value T.f(3). Magma makes use of functors to parameterise
hardware specifications over interpretations of their basis functions. This pro-
vides a convenient way of using the same code for both simulation and synthesis
(see below).

132 8 Combining Behaviour and Structure

Specifying Hardware in Magma

The Magma system essentially consists of a library of ML code. A signature
called BASIS is provided which declares the types of supported basis functions
(see Figure 8.1). Valuesb0 and b1 correspond to logic-0 (false) and logic-1 (true)
respectively. Functions orb, andb, notb and xorb correspond to logic functions
or, and, not and xor. Following the ideas first presented in Section 2.3.2 two
structures which implement BASIS are provided:

SimulateBasis provides a simulation interpretation. We implement bits as
boolean values; functions orb,andb etc. have their usual boolean interpreta-
tions.
SynthesisBasis provides a synthesis interpretation. We implement bits as
strings representing names of wires in a net-list. Functions orb,andb etc. take
input wires as arguments and return a (fresh) output wire. Calling one of the
basis functions results in its netlist declaration being written to the selected
output stream as a side-effect. For example, if the result of calling andb with
string arguments “in_wire1” and “in_wire2” is the string “out_wire” then
the following is output to StdOut:

and(out_wire,in_wire1,in_wire2);

Fig. 8.1. The definition of the BASIS signature (from the Magma library)

Figure 8.2 shows a Magma specification of a ripple-adder. As with all Magma
programs, the main body of code is contained within an ML functor. This
provides a convenient abstraction, allowing us to parameterise a design over its
basis functions. By passing in the structure SimulateBasis (see above) we are
able to instantiate a copy of the design for simulation purposes; similarly, by
passing in SynthesisBasis we instantiate a version of the design which, when
executed, outputs its netlist. The signature RP_ADD is used to specify the type
of the ripple_add function. Using this signature to constrain the RippleAdder
functor also means that only the ripple_add function is externally visible; the
functions carry_chain and adder can only be accessed from within the functor.
The use of signatures to specify interfaces in this way is not compulsory but, for
the usual software-engineering reasons, it is recommended.

8.2 Embedding Structural Expansion in SAFL 133

Fig. 8.2. A simple ripple-adder described in Magma

Let us imagine that a designer has just written the ripple-adder specification
shown in Figure 8.2 and now wants to test it. This can be done by instantiating
a simulation version of the design in an interactive ML session:

The adder can now be tested by passing in arguments (a tuple of bit lists) and
examining the result. For example:

Let us now imagine that the net-list corresponding to the rippler-adder is
required. We start by instantiating a synthesis version of the design:

If we pass in lists of input wires as arguments, the ripple_add function prints
its netlist to the screen and returns a list of output wires:

134 8 Combining Behaviour and Structure

The function new_bus, part of the Magma library, is used to generate a bus of
given width (represented as a list of wires).

8.2.2 Integrating SAFL and Magma

Our approach to integrating Magma and SAFL involves using delimiters to em-
bed Magma code fragments inside SAFL programs. At compile time the em-
bedded Magma is synthesised and the resulting netlist is incorporated into the
generated circuit (see Figure 8.3). This technique was partly inspired by web-
scripting frameworks such as ASP and PHP [4] which can be embedded in HTML
documents. (When a dynamic web-page is fetched the ASP or PHP code is ex-
ecuted generating HTML which is returned to the client.) To highlight this
analogy we use ASP-style delimiters “<%” and “%>” to mark the start and end
points of Magma code fragments. Our compiler performs type checking across
the SAFL-Magma boundary, ensuring the validity of the final design.

Fig. 8.3. A diagrammatic view of the steps involved in compiling a SAFL/Magma
specification

The SAFL parser is extended to allow a special type of Magma code fragment
at the beginning of a specification. This initial Magma fragment, which is referred
to as the library block, contains an ML functor called Magma_Code. Functions
within Magma_Code can be called from other Magma fragments in the remainder
of the specification. Figure 8.4 illustrates these points with a simple example in
which the Magma ripple adder (initially defined in Figure 8.2) is invoked from a
SAFL specification. Although the programmer could have just written “+” in this
instance, this would leave the compiler free to implement the adder with a design
of its choosing. The key point is that Magma gives the designer greater control

Embedding Structural Expansion in SAFL 135

Fig. 8.4. A simple example of integrating Magma and SAFL into a single specification

over the design: the generated adder will have the precise structural configuration
specified in Figure 8.2. The details of the SAFL-Magma integration are discussed
later in this section; for now it suffices to observe that Magma fragments are
treated as functions at the SAFL-level and applied to SAFL expressions.

The treatment of Magma fragments is similar to that of primitive functions
(such as +, -, * etc.). In particular, Magma code fragments are expanded in-
place. For example, if a specification contains two Magma fragments of the form,
<% ripple_add %>, then the generated hardware contains two separate ripple
adders. Note that if we require a shared ripple_adder then we can encapsulate
the Magma fragment in a SAFL function definition and rely on SAFL’s resource-
awareness properties. For example, the specification:

contains a single ripple adder shared between the two invocations within the
definition of the mult_3(x) function. Since embedded Magma code fragments
represent pure functions (i.e. do not cause side effects) they do not inhibit SAFL-
level program transformation. Thus our existing SAFL-level transformations
(corresponding to resource duplication/sharing [105], hardware/software co-
design [106]—see Chapter 9 etc.) remain valid. A larger example of SAFL/Magma
integration is presented in the DES example described in Chapter 10 and Ap-
pendix Appendix A. Various source-level transformations are applied to the DES
specification in Appendix Appendix B.

Implementation and Technical Details

Consider the general case of a Magma fragment, embedded in SAFL:

8.2

136 Combining Behaviour and Structure

where are SAFL expressions. On encountering the embedded Magma
code fragment, <% %>, our compiler performs the following operations:

1.

2.

3.

An ML program, (represented as a string) is constructed by concatenat-
ing the library block together with commands to instantiate the Magma_Code
functor in its synthesis interpretation (see above).
The bit-widths of SAFL expressions, are determined (bit-widths of
variables are known to the SAFL compiler) and ML code is added to to
construct corresponding busses, of the appropriate widths (using
the Magma.new_bus library call).

is further augmented with code to:
a)

b)

execute ML expression, which, since the library block has
been instantiated in its synthesis interpretation, results in the generation
of a netlist; and
wrap up the resulting netlist in a Verilog module declaration (adding
Verilog wire declarations as appropriate).

4.

5.

A new ML session is spawned as a separate process and program is
executed within it.
The output of a Verilog module declaration representing the compiled
Magma code fragment, is returned to the SAFL compiler where it is added
to the object code. Our SAFL compiler also generates code to instantiate
the module, connecting it to the wires corresponding to the output ports of
SAFL expressions The module’s output is connected to the wires
which give the result of the SAFL expression.

In order that the ML-expression type checks, must evaluate
to a function, with a type of the form:

with the arity of argument tuple equal to If does not have the right type
then a type-error is generated in the ML-session spawned to execute Our
SAFL compiler traps this ML type-error and generates a meaningful error of its
own, indicating the offending line-number of the SAFL/Magma specification. In
this way we ensure that the bit-widths and number of arguments applied to <%

%> at the SAFL-level match those expected at the Magma-level.
Another property we wish to ensure at compile time is that the output port

of a Magma-generated circuit is of the right width. We achieve this by incorpo-
rating width information corresponding to the output port of Magma-generated
hardware into our SAFL compiler’s type-checking phase. Determining the width
of a Magma specification’s output port is trivial—it is simply the length of the
bit list returned when is executed.

8.3 Aside: Embedding Magma in VHDL/Verilog

A common practice in the hardware design industry is to generate repetitive
combinatorial logic by writing scripts (in a language such as Perl) which, when

8

8.3 137

executed, generates the necessary VHDL or Verilog code. The output of the script
is then cut and pasted into the VHDL/Verilog design and the glue-code required
to integrate the two written manually. Clearly there are a number of ways in
which this design methodology can be improved. In particular it would be bene-
ficial if (i) type checking could be performed across the Verilog/VHDL–scripting
language boundary and (ii) the necessary glue-code generated automatically at
compile time. The question that naturally arises is whether it is possible to use
the SAFL-Magma integration techniques we have already described to integrate,
say, Verilog and Magma.

Although the complex syntax of the Verilog language makes integration with
Magma more difficult the basic principles outlined earlier in the paper are still
applicable. Since the widths of Verilog variables are statically known to the
Verilog compiler we can use the same width-checking techniques across the
Verilog-Magma boundary that we employed across the SAFL-Magma divide in
Section 8.2.2. We have devised three different forms of integration mechanism
which we believe would be of use to Verilog programmers. These are mentioned
briefly below:

Expressions

In the context of a Verilog expression (e.g. the right-hand-side of an assign
statement), integration can be performed using the function-call mechanism al-
ready described in the context of SAFL. For example, a Verilog design may
contain code such as:

Here, the Magma expression is statically expanded and treated in a similar way
to one of Verilog’s primitive operators. The Magma code for perm and p_initial
can be seen in Appendix Appendix A.

Explicit Module Definitions

In some cases an engineer may wish to treat a Magma function as a named Ver-
ilog module which can subsequently be instantiated in the usual Verilog fashion.
To handle this type of integration we introduce the following form:

We use the symbol --> to indicate that the module’s body is specified by the
given Magma expression. Note that an explicit output port, out, is required to
read the result of the function. This form of integration can be seen as syntactic
sugar. In general, it can be translated into the expression-integration form as
follows:

Aside: Embedding Magma in VHDL/Verilog

138 8

Implicit Module Definitions

It is often convenient to avoid the explicit definition of a named module (e.g. if it
is instantiated only once). For this reason we propose a third form of integration
as follows:

In this case the augmented Verilog compiler automatically generates a fresh
module definition (with a name of its choosing), instantiates it (with instance
name my_perm) and connects it to existing wires out_w and in_w. Again, notice
that in the Verilog domain it is necessary to explicitly mention the output of
the function. In contrast, in the Magma domain, function composition can still
be used to connect hardware blocks together without the overhead of explicitly
declaring connecting wires. For this reason, designers may wish to move as much
of the combinatorial logic specification as possible into the Magma portion of
the design.

8.4 Summary

In this chapter we have motivated and described a technique for combining
both behavioural and structural-level hardware specification in a stratified pure
functional language. We believe that the major advantages of our approach are
as follows:

As in Verilog and VHDL, we are able to describe systems consisting of both
behavioural and structural components.
SAFL-level program transformation remains a powerful technique for archi-
tectural exploration. The functional nature of the SAFL/Magma integration
means that our library of SAFL transformations are still applicable.
By only dealing with combinatorial circuits at the structural-level we elim-
inate the problems associated with graph-sharing in a pure functional lan-
guage (see Section 8.1). We do not sacrifice expressivity: cyclic (sequential)
circuits can still be formed by composing combinatorial fragments at the
SAFL-level in a more controlled way.

We also showed how similar techniques can be used to embed languages such
as Magma into industrial HDLs such as Verilog or VHDL. We believe that this
approach offers a great deal over the ad-hoc “Perl-script” technique so commonly

Combining Behaviour and Structure

8.4 139

employed in practice. In particular: (i) type-checking across the Verilog-scripting
language boundary catches a class of common errors; (ii) time-consuming glue-
code required for the integration is generated automatically; and (iii) as is often
argued, the features of a functional language such as polymorphism, static type-
checking and higher-order functions, encourage code-reuse and aid correctness.
Another compelling benefit for integrating a functional-language (such as Lava or
Magma) into Verilog/VHDL is that the techniques of Claessen et al. for concisely
encapsulating place-and-route information [38] can potentially be employed to
generate efficient layouts for repetitive combinatorial logic.

Whilst we accept that the majority of working hardware engineers are not
familiar with functional programming (and hence not likely to embrace the tech-
nique) we also observe that there are an increasing number of Computer Science
graduates (as opposed to Electronic Engineering graduates) seeking employment
in the hardware design sector3. With this in mind, it is conceivable that an easily
implementable integration mechanism between languages such as Magma/Lava
and industrial HDLs such as Verilog/VHDL (see Section 8.3) may help to make
the tried-and-tested technique of structural hardware specification using func-
tional languages more attractive to the hardware design industry.

3 We do not wish to imply that EE graduates are inferior to their CS counterparts!
We are simply commenting that they often have different areas of expertise.

Summary

This page intentionally left blank

9

Transformation of SAFL Specifications

In their survey paper [98], McFarland et al highlight source-level transformation
of input specifications as an important technique for the future of HLS. The
idea is that high-level transformation of behavioural specifications will be used
to express a number of architectural trade-offs. Such transformations may be ap-
plied fully automatically, fully manually or (ideally) within a unified framework
facilitating a combination of the two approaches.

Some researchers have investigated high-level transformations: Walker and
Thomas formulated behavioural transformations [142] within the framework of
the System Architect’s Workbench [135] and Source-level transformations of be-
havioural VHDL where proposed by Nijhar and Brown [107]. Despite this, how-
ever, program transformation has had very little impact on the hardware design
industry. We believe that the two main reasons why this is the case are:

1.

2.

Many features commonly found in behavioural HDLs make it difficult to
apply program-transformation techniques (e.g. an imperative programming
style with low-level circuit structuring primitives such as Verilog’s module
construct).
It is difficult for a designer to know what the impact of a behavioural-level
transformation will have on a generated design.

In contrast, the SAFL language is designed to facilitate source-to-source
transformation. Whereas traditional “black-box” synthesis systems synthesise
hardware according to user-supplied constraints, our approach is to select a par-
ticular implementation by applying transformation rules to the SAFL source as
a pre-compilation phase. The two points above are addressed specifically in the
design of SAFL:

The functional properties of the language allow equational reasoning and
hence make a wide range of transformations applicable (as we do not have
to worry about side effects).
The resource-aware properties of SAFL give many transformations precise
meaning at the design-level (e.g. we know that duplicating a function defi-
nition in the source is guaranteed to duplicate the corresponding resource in
the generated circuit).

142 9

Recall that we have already seen several examples of source-to-source pro-
gram transformation of SAFL specifications: in Chapter 4 we saw how local
transformation of SAFL expressions can be used to represent static scheduling
policies; Chapter 3 demonstrated that simple applications of Burstall and Dar-
lington’s fold/unfold transformations [29] can be used to represent structural
tradeoffs (e.g. resource duplication vs. sharing). In this chapter we:

1.

2.

3.

give an example of a much more complicated transformation which allows
a designer to investigate hardware/software partitioning by transforming
SAFL specifications (Section 9.1);
demonstrate a pipelining transformation which makes use of the extra capa-
bilities offered by the SAFL+ language (Section 9.3); and
present our thoughts on how these transformations could be integrated into
a semi-automatic transformation tool.

9.1 Hardware Software CoDesign

The purpose of this section is to demonstrate how hardware/software partition-
ing can be seen as a source-to-source transformation at the SAFL level thus
providing a formal framework in which to investigate hardware/software co-
design. In fact we go one step further than traditional co-design since as well as
partitioning a specification into hardware and software parts our transformation
procedure can also synthesise an architecture tailored specifically for executing
the software part. This architecture consists of any number of interconnected
heterogeneous processors. There are a number of advantages to our approach:

Synthesising an architecture specifically to execute a known piece of software
can offer significant advantages over a fixed architecture [113].
The ability to synthesise multiple processors allows a wide range of area-
time tradeoffs to be explored. Not only does hardware/software partitioning
affect the area-time position of the final design, but the number of processors
synthesised to execute the software part is also significant: increasing the
number of processors pushes the area up whilst potentially reducing execution
time (as the processors can operate in parallel).
Resource-awareness allows a SAFL specification to represent shared re-
sources. This increases the power of our partitioning transformation since,
for example, multiple processors can access a shared resource (see Figure 9.1
for an example).

9.1.1 Comparison with Other Work

Hardware/software co-design is well-studied and many tools have been built
to aid the partitioning process [17, 35]. Although these systems differ in their

Transformation of SAFL Specifications

9.2 143

approach to co-design they are similar in so far as partitioning is a “black-
box” phase performed as part of the synthesis process. By making partition-
ing visible at the source-level we believe our approach to be more flexible—
hardware/software co-design is just one of a library of source-to-source transfor-
mations which can be applied incrementally to explore a wide range of architec-
tural trade-offs.

The idea of converting a program into a parameterised processor and corre-
sponding instruction memory is not new; Page described a similar transforma-
tion [113] within the framework of Handel [112] (a subset of Occam for which
a silicon compiler was written). However, the extra transformational power pro-
vided by our functional specification language allows us to generalise this work
in a number of ways. Rather than synthesising a single parameterised processor
our method allows one to generate a much more general architecture consist-
ing of multiple communicating processors accessing a set of (potentially shared)
hardware resources.

9.2 Technical Details

The first step in the partitioning transformation is to define a partitioning func-
tion, specifying which SAFL functions are to be implemented directly in
hardware and which are to be mapped to a processor for software execution.
Automated partitioning is not considered here; we assume that is supplied by
the user. For expository purposes we initially describe a transformation where
all processors are variants of a stack machine: Section 9.2.1 describes the oper-
ation of the stack machine and Section 9.2.2 shows how it can be encoded as a
SAFL function; a compiler from SAFL to stack code is presented in Section 9.2.3.
In Section 9.2.6 we generalise our partitioning transformation to a network of
heterogeneous processors.

Let be the set of processor instances used in the final design. We assume
a (partial) partitioning function

mapping the function definitions in our SAFL specification onto processors in
is the processor on which function is to be implemented. If

then we realise in hardware, otherwise we say that is located on machine
Note that multiple functions can be mapped to the same processor.

We extend to a transformation function

such that given a SAFL program, P, is another SAFL program which
respects the partitioning function Figure 9.1 shows the effect of a partitioning
transformation, where

Technical Details

144 9

Fig. 9.1. A diagrammatic view of the partitioning transformation

In this example we see that and are implemented in hardware since
contains function definitions: and k where

and are processor instances and and are instruction memories (see
Section 9.2.2).

9.2.1 The Stack Machine Template

Our stack machine can be seen as a cut-down version of both Landin’s SECD
machine [90] and Cardelli’s Functional Abstract Machine [30]. Each instruction
has an op-code field and an operand field Figure 9.2 defines the instructions
supported by the stack machine.

The stack machine template, SMT, is an abstract model of the stack machine
parameterised on the code it will have to execute. Given a stack machine pro-
gram, (i.e. a list of stack machine instructions as outlined above) is a
stack machine instance: a SAFL function encoding a stack machine specialised
for executing Our notion of a template is similar to a VHDL generic.

9.2.2 Stack Machine Instances

A stack machine instance, is a SAFL function of the form:

Arguments PC and SP are used to store the program counter and stack pointer re-
spectively; are used to receive arguments of functions located on
Each stack machine instance is associated with an instruction memory function,

of the form:

Transformation of SAFL Specifications

9.2 145

calls to load instructions for execution.

Technical Details

Fig. 9.2. The instructions provided by our stack machine

For example, consider a stack machine instance, where we choose to
locate functions (of arity 2) and (of arity 3). Then yielding signa-
ture: is an instruction memory containing compiled
code for and To compute the value of we invoke with argu-
ments external entry point—see
Section 9.2.3) and SP = 0. Similarly to compute the value of we invoke

with arguments and SP = 0. Note
how we pad the a-arguments with 0’s since

The co-design of hardware and software means that instructions and ALU
operations are only added to if they appear in Parameterising the stack
machine template in this way can considerably reduce the area of the final design
since we remove redundant logic in each processor instance.

We can consider many other areas of parameterisation. For example we can
adjust the op-code width and assign op-codes to minimise instruction-decoding
delay [113]. Appendix Appendix C gives the SAFL code for a 16-bit stack ma-

146 9 Transformation of SAFL Specifications

chine instance1, an alu2 function and and an example stack machine program
which computes triangular numbers.

9.2.3 Compilation to Stack Code

Figure 9.3 gives a compilation function from SAFL to stack-based code. Although
the translation of many SAFL constructs is self-explanatory, the compilation
rules for function definition and function call require further explanation:

Compiling Function Definitions

The code generated for function definition

requires explanation in that we create 2 distinct entry points for and
The internal entry point, is used when is invoked internally

(i.e. with a Call_Int instruction). The external entry point, is used
when is invoked externally (i.e. via a call to the machine on which
is implemented). In this latter case, we simply execute PushA instructions to
push arguments onto the stack before jumping to internal entry point,

Compiling Function Calls

Suppose function is in software and calls function The code
generated for the call depends on the location of relative to There are three
possibilities:

1.

2.

3.

If and are both implemented in software on the same machine
then we simply push each of arguments to the

stack and branch to internal entry point with a Call_Int instruction.
The Call_Int instruction pushes the return address and jumps to
the compiled code for is responsible for popping the arguments and link
leaving the return value on the top of the stack.
If is implemented in hardware then we push each of
arguments to the stack and invoke the hardware resource corresponding to

by means of a instruction. The instruction pops each
of arguments, invokes resource and pushes return value to the stack.
If and are both implemented in software but on different machines

then needs to invoke (the machine on which
is located). We push arguments to the stack: the arguments for

possibly padded by 0s (see Section 9.2.2) followed by the program counter
PC initialised to and the stack pointer SP initialised to 0. We then
invoke using a instruction.

Approximately 2000 2-input equivalent gates when implemented in hardware. For
simplicity we consider a simple stack machine with no Call_Ext instructions.

1

9.2 Technical Details 147

Let be an environment mapping variable names to stack offsets (offset 0 signifies the
top of the stack). Let be the name of the function we are compiling. Then gives
an instruction list corresponding to (We omit for readability in the following—it
is only used to identify whether a called function is located on the same machine).
We use the notation to represent environment extended with mapping
to represents an environment constructed by incrementing all stack offsets in

by is the empty environment. The infix operator @
appends instruction lists. Repeat is @ . . . @ times); (this is used to generate
instruction sequences to pad argument lists with 0s).

Fig. 9.3. Compiling SAFL into Stack Code for Execution on a Stack Machine Instance

148 9 Transformation of SAFL Specifications

9.2.4 The Partitioning Transformation

Having introduced the stack machine (Section 9.2,1) and the associated compi-
lation function (Section 9.2.3) the details of the partitioning transformation,
are as follows:

Let P be the SAFL program we wish to transform using Let be a SAFL
function in P with definition of the form

We construct a partitioned program from P as follows:

1. For each function definition to be mapped to hardware (i.e.
create a variant in which is as but for each call,

If then replace the call with a call:

where the stack machine instance on which is located.
2. For each

a)

b)

c)

d)

Compile instruction sequences for functions located on

Generate machine code for by resolving symbols in
assigning opcodes and converting into binary representation.
Generate an instruction memory for by adding a function definition,

to of the form:

where each is taken from
Generate a stack machine instance, and append it to

For each contains a corresponding processor instance and
instruction memory function. When is compiled to hardware resource-
awareness ensures that each processor definition function becomes a single pro-
cessor and each instruction memory function becomes a single instruction mem-
ory. The remaining functions in are mapped to hardware resources as
required. Function calls are synthesised into optimised communication paths be-
tween the hardware resources—see Figure 9.1(c).

9.2.5 Validity of Partitioning Functions

This section concerns some fine technical details—it can be skipped on first read-
ing. Recall the static-allocation restriction on mutually-recursive SAFL programs
given in Section 3.4. Phrased informally the restriction can be written:

9.2 Technical Details 149

In order for a SAFL program to be valid, all recursive calls, including
those calls which form part of mutually-recursive cycle, may only occur
in tail-context. Non-recursive calls may appear freely.

Unfortunately, in general, a partitioning function, may transform a valid
SAFL program, P, into an invalid SAFL program, which does not satisfy
the recursion restrictions. For example consider the following program,

Partitioning with yields a new program, of
the form:

has invalid recursion between g and SM. The problem is that the call to
SM in the body of g is part of a mutually-recursive cycle and is not in tail-context.

We therefore require a restriction on partitions to ensure that if P is a
valid SAFL program then will also be a valid SAFL program. We give the
following sufficient condition:

is a valid partition with respect to SAFL program, P, iff all cycles occurring
in the call graph of already exist in the call graph of P, with the exception
of self-cycles generated by direct tail-recursion.

Thus, in particular, new functions in —i.e. stack machines and their in-
structions memories—must not have mutual recursion with any other functions.

9.2.6 Extensions

Fine Grained Partitioning

We have presented a program transformation to map function definitions to
hardware or software, but what if we want to map part of a function definition to
hardware and the rest to software? This can be achieved by applying fold/unfold
transformations before our partitioning transformation. For example, consider
the function

If we choose to map f to software our design will contain a processor and associ-
ated machine code consisting of a sequence of instructions representing multiply
x and y, subtract 7, add 5 times x. However, consider transforming f with a
single application of the fold-rule [29]:

150 9 Transformation of SAFL Specifications

Now mapping f to software and i to hardware leads to a software representation
for f containing fewer instructions and a specialised processor with a x*y-7 +
5*x instruction.

Dealing with Heterogeneous Processors

So far we have only considered executing software on a network of stack ma-
chines. Although the stack machine is a familiar choice for expository purposes,
in a real design one would often prefer to use different architectures. For exam-
ple, specialised VLIW [67] architectures are a typical choice for data-dominated
embedded systems since many operations can be performed in parallel without
the overhead of dynamic instruction scheduling. In general, designs often consist
of multiple communicating processors chosen to reflect various area and per-
formance constraints. Our framework can be extended to handle a network of
heterogeneous processors as follows:

Let Templates be a set of processor templates (cf. the stack machine template,
SMT, in section 9.2.1).

Let Compilers be a set of compilers from SAFL to machine code for processor
templates.

As part of the transformation process, the user now specifies two extra func-
tions:

maps each processor instance, onto a SAFL processor template and
maps each onto an associated compiler. We then modify the transfor-

mation procedure described in Section 9.2.4 to generate a partitioned program,
as follows: for each we generate machine code, us-

ing compiler we then use processor template, to generate
processor instance and append this to

Extending the SAFL Language

Recall that the SAFL language specifies that all recursive calls must be in tail-
context. Since only tail-recursive calls are permitted, our silicon compiler is able
to statically allocate all the storage needed for a SAFL program.

As an example of these restrictions consider the following definitions of the
factorial function:

9.3 Transformations from SAFL to SAFL+ 151

rfact is not a valid SAFL program since the recursive call is not in a tail-
context. However the equivalent tail-recursive factorial function, ifact which
uses a second argument to accumulate partial results is a valid SAFL program.

Although one can sometimes transform a non-tail recursive program into an
equivalent tail-recursive one [29], this is not always easy or natural. The trans-
formation of factorial into its tail-recursive equivalent is only possible because
multiplication is an associative operator. Thus, in general we require a way
of extending SAFL to handle general unrestricted recursion. Our partitioning
transformation provides us with one way to do this:

Consider a new language, constructed by removing the recursion
restrictions from SAFL. We can use our partitioning transformation to transform

to SAFL simply by ensuring that each function definition containing
recursion other than in a tail-call context is mapped to software. Note that
our compilation function (Figure 9.3) is already capable of dealing with general
recursion without any modification.

9.3 Transformations from SAFL to SAFL+

Since SAFL is a pure functional language2 program transformation can often be
applied quite elegantly (as one does not have to worry about the complexity of
side-effects). In contrast, the additional imperative features make program trans-
formation awkward in the SAFL+ world. For this reason, we do not consider
transformations which operate solely within the larger SAFL+ domain. However,
we have found that we can usefully employ a class of transformations which con-
vert pure functional SAFL code into SAFL+ code. We argue that SAFL to
SAFL+ transformations give us the best of both worlds: since the transforma-
tion’s source is pure SAFL, its application is not restricted by the presence of
potential side-effects; furthermore, the code resulting from the transformation’s
application is able to take advantage of the extra IO capabilities (channels and
references) provided by SAFL+. We use transformations from SAFL to SAFL+
to encode explicitly implementation-specific details which are left implicit at the
SAFL-level. In the remainder of this section we outline one such transformation
which converts a top-level SAFL function (in a particular form) into a pipelined
stream processor.

Recall that a SAFL specification has one top-level function which is not
called anywhere in the specification. The top-level function is often referred to
as main; its formal parameters and result are realised as input/output ports
(respectively).

Figure 9.4 shows a transformation which converts a top-level SAFL function
(which provides a “fire-arguments-and-wait” interface) into a pipelined stream
processor which reads its input data and writes its output data over synchronous
channels. In order for the transformation to be applicable the top-level SAFL
function must be in the specific form shown on the left hand side of Figure 9.4.

2 As long as side-effecting extern functions are not used.

152 9 Transformation of SAFL Specifications

Fig. 9.4. Top-level pipelining transformation

We intend that functional transformations are used to manipulate the SAFL
specification into this form if required.

Whereas the left hand side of Figure 9.4 computes each expression sequen-
tially the pipelined version computes the expressions in parallel, using its argu-
ment registers to store intermediate values between pipeline stages. Two channels
parameters are added: f_in is used to feed data into the pipeline, f_out is used
to read data out of the pipeline. Each time the function is executed it reads its
input, performs all pipeline stages and writes its output in parallel. (The un-
derscore symbol used in the left hand side of a val-declaration is an ML-style
anonymous binding.) On a recursive call the function’s arguments are shifted
right one place as data moves down the pipeline.

Let us illustrate the transformation with a simple example. Consider the
function:

Two applications of the fold/unfold abstraction rule transforms this into a form
ready for pipelining:

Applying the pipelining transformation yields:

9.4 Summary 153

The following code fragment gives an example of how the pipeline may be used:

Function f_pipe is composed in parallel with a process which continuously writes
data to the locally defined channel my_in. Function f continuously reads the data
from my_in, computes each pipeline stage in parallel and writes data to my_out.
Since my_out is defined as an external channel it is non-blocking (Our intention
is that the data from my_out is read by some external device.) The first two
values written to my_out are not valid outputs of f. However, from the third
value onwards (once the pipeline has been filled with useful data), the value of
my_out reflects f applied to the data written to the input channel.

The pipelining transformation is particularly useful in data-processing ap-
plications. Appendix Appendix B uses a combination of fold/unfold and the
pipelining transformation to convert a non-pipelined SAFL DES specification
into a 4-stage pipelined version. The example of Appendix Appendix B demon-
strates how a concise (and hence hopefully correct!) SAFL specification can be
mechanically transformed into a more efficient (but more complicated) design
using a series of semantics-preserving transformations.

9.4 Summary

Source-level program transformation of a high level HDL is a powerful tech-
nique for exploring a wide range of architectural tradeoffs from an initial spec-
ification. We believe that transformation in the SAFL domain is particularly
powerful since its functional properties make it easy to apply transformations
and resource-awareness gives the transformations a precise meaning at the
implementation-level.

A class of transformation that deserves further investigation is Partial Eval-
uation [81]. Although we have not studied the application of Partial Evaluation
techniques to SAFL in depth, we believe that it could be used to transform a
processor definition function and its corresponding instruction memory function
into a single specialised unit with hardwired control.

We ultimately envisage the transformations described in this chapter (and
also those described in chapters 3 and 4) being integrated into a transforma-
tion tool which helps designers apply source-to-source transformations to SAFL

154 9 Transformation of SAFL Specifications

specifications. Although we do not consider the proposed transformation assis-
tant further here, we note that the development of such tools has been active
research area for a long time. For example, in his 1979 PhD Thesis [46], Martin
Feather designed a command driven transformation tool which assists a pro-
grammer apply fold/unfold transformations to a simple language of first-order
recursion equations similar, in many respects, to SAFL. More recently Renault
et al have developed a graphical tool which provides semi-automated support
for applying fold/unfold transformations [126]. Having studied this system and
other similar research [7, 118] we believe that much of the ground work for de-
veloping transformation assistants has already been investigated. It seems likely
that a SAFL-specific transformation tool could be designed along similar lines.

10

Case Study

The purpose of this chapter is give an overview of the tools we use to translate
SAFL(+) to silicon (see Section 10.1) with reference to a realistic example. A
DES encryption/decryption circuit is specified in SAFL and implemented on an
Altera Apex-II FPGA; area-time performance figures are given (Section 10.2).

To be applicable to real hardware design an HDL must be able to integrate
with existing systems. We demonstrate that this is the case for SAFL by de-
signing a SAFL interface which allows our DES design to write values on a
monitor using a VGA driver that we implemented directly in RTL Verilog (Sec-
tion 10.2.1).

We start by demonstrating the tools which we use for mapping SAFL(+) onto
FPGAs. Figure 10.1 shows a screenshot of the FLaSH compiler (see Chapter 5)
in operation. FLaSH is implemented in the SML/NJ language [11], a dialect of
Standard ML [101]. The leftmost window shows FLaSH running in an interac-
tive SML/NJ session. In this window the user can enter commands to simulate
SAFL(+) programs and compile SAFL(+) programs to RTL-Verilog. FLaSH
also provides a number of visualisation tools which aid the designer. The middle
window shows a graphical representation of the SAFL specification’s correspond-
ing intermediate graph; this gives the designer an intuition into how parts of a
design will be mapped to hardware. The rightmost window shows a graphical
representation of the SAFL specification’s call graph. Edges on the call graph
are annotated with the line/character position at which the corresponding call
appears in the SAFL source. If an edge is highlighted in red then this indi-
cates that the call is subject to a parallel sharing conflict. We find that this is
a useful way for the designer to see at a glance which calls in a SAFL spec-
ification require arbitration. (The FLaSH compiler is integrated with AT&T’s
GraphViz [54] package to produce this graphical output.)

Once FLaSH has performed its task of high-level synthesis we feed the re-
sulting RTL-Verilog file into the Leonardo tool which performs the task of logic

10.1 The SAFL to Silicon Tool Chain

156 10 Case Study

Fig. 10.1. Using the FLaSH compiler to compile a SAFL specification to RTL Verilog

synthesis, translating the RTL code into a netlist for implementation on a speci-
fied FPGA. (Note that there is no reason why we have to map SAFL to FPGAs;
at this stage we could direct Leonardo to target a generic ASIC process.) Fig-
ure 10.2 shows Leonardo in operation. Note that the “Clock Frequency Report”

10.1 The SAFL to Silicon Tool Chain 157

Fig. 10.2. Using the RTL-synthesis tool Leonardo to map the Verilog generated by
the FLaSH compiler to a netlist

shown is only a rough estimate since we do not have any detailed place-and-route
information at this stage of the design flow.

158 10 Case Study

Fig. 10.3. Using the Quartus II package to map the netlist onto an Altera Apex-II
FPGA

The Leonardo-generated netlist is loaded into Quartus-II which performs
placement and routing analysis with respect to a specific FPGA. Figure 10.3
shows the floorplan of a DES circuit (which started as a SAFL specification)
on an Altera APEX-II FPGA. The times in white boxes are displaying precise

10.1 The SAFL to Silicon Tool Chain 159

Fig. 10.4. Using the ModelSim package to simulate FLaSH-generated code at the
RTL-level

routing delays. At this stage we know the exact value of the circuit’s maximum
clock frequency. Finally Quartus is used to load the design into an FPGA.

The FLaSH tool (Figure 10.1) provides a SAFL(+) interpreter which allows
designers to check parts of their designs quickly. However, if lower level informa-
tion is required (e.g. how many cycles will this take to compute?) or if the design

160 10 Case Study

makes heavy use of extern functions, it is often useful to simulate the design at a
lower-level (perhaps in conjunction with Verilog models representing the extern
parts of the design). In this case we use FLaSH to compile the SAFL specifica-
tion to RTL-Verilog and feed this into industrial hardware simulation software.
Figure 10.4 shows a synchronous design generated by the FLaSH compiler being
simulated in ModelSim.

10.2 DES Encrypter/Decrypter

Appendix Appendix A presents a SAFL specification of a Data Encryption Stan-
dard (DES) encryption/decryption circuit. Here we describe the code for the
DES example; the details of the DES algorithms are not discussed in depth—
we refer readers who are interested in knowing more about DES to Scheier’s
cryptography textbook [130].

The library block at the beginning of the DES specification defines three
functions used later in the specification:

perm is a curried function which takes a permutation pattern, (represented
as a list of integers) and a list of bits, It returns permuted according to
pattern
ror is a curried function which takes an integer, and a list of bits, It
returns rotated right by
rol is as ror but rotates bits left (as opposed to right).

A set of permutation patterns required by the DES algorithm are also declared.
The DES algorithm requires 8 S-boxes, each of which is a substitution func-

tion which takes a 6-bit input and returns a 4-bit output. The S-boxes’ definitions
make use of one of SAFL’s syntactic sugarings:

Semantically the lookup construct is equivalent to a case expression:

To ensure that each input value to the lookup expression has a corresponding
output value we enforce the constraint that where is the width
of expression Our compiler is often able to map lookup statements directly
into ROM blocks, leading to a significantly more efficient implementation than
a series of iterated tests.

Before applying its substitution each S-box permutes its input. We use our
Magma permutation function to represent this permutation: <% perm p_inSbox
%>(x). Other examples of SAFL-Magma integration can be seen throughout
the specification. The keyshift function makes use of the Magma ror and rol
functions to generate a key schedule. Other invocations of the Magma perm
function can be seen in the bodies of SAFL-level functions: round and main. We
find the use of higher-order Magma functions (such as perm,ror and rol) to be
a powerful idiom.

10.2 DES Encrypter/Decrypter 161

Fig. 10.5. The Altera “Excalibur” Development Board containing an Apex-II FPGA
with our simple VGA interface connected via ribbon cable

We used our SAFL compiler to map the DES specification to synthesisable
RTL-Verilog. A commercial RTL-synthesis tool (Leonardo from Exemplar) was
used to synthesise the RTL-Verilog for an Altera Apex E20K200E FPGA (200K
gate equivalent). The resulting circuit utilised 8% of the FPGA’s resources and
could be clocked up to 48MHz. The design was mapped onto an Altera Excalibur
Development Board and, using the board’s 33MHz reference clock a throughput
of 15.8Mb/s (132 Mbits/s) was achieved. The performance figures of our DES
implementation compare favourably to a hand-coded DES implementation writ-
ten in VHDL by Kapps and Paar [82]. In practice our implementation runs 30%
faster; however this is probably, at least in part, due to the fact that we are using
different FPGA technology. A more meaningful comparison is to observe that
both implementations take the same number of cycles to process a DES block.

Figure 10.5 shows the Altera Excalibur development board onto which we
loaded our synthesised DES circuit. We wrote a synthesisable Verilog wrapper
which instantiates and tests our SAFL-generated DES design. Two DES circuit

162 10 Case Study

are instantiated in series: one which performs encryption and one which performs
decryption. Data is continuously fed into the input of the first DES block and
read back from the output of second. The input to the first DES block is com-
pared with the output of the second and checked for equality. Two status LEDs
on the development board are used: one blinks every time data blocks
are processed; the other comes on only if an error is detected (i.e. the output of
the second DES circuit is not equal to the input of the first DES circuit).

10.2.1 Adding Hardware VGA Support

To extend the output capability of the DES circuit we designed a VGA interface
for the development board and modified our SAFL program to drive a monitor,
displaying the values of the DES input and output data on a VGA monitor.
The addition of the VGA interface is more significant than merely making the
circuit more impressive to demonstrate: it gives an example of a SAFL program
interfacing with a timing-critical system (VGA output) and demonstrates the
use of SAFL extern functions for interfacing with lower-level components. In
the remainder of this section we briefly describe how the VGA interface was
constructed and, more importantly, how we interfaced it to the SAFL part of
the design.

VGA Interface: Low-Level Details

To control a VGA monitor one must drive 5 analog signals referred to as R, G,
B, H and V. Signals R, G and B transmit the intensity of the Red, Green and
Blue components of the current pixel (respectively) as an analog voltage between
0V (black) and 0.7V (maximum intensity). Our VGA interface supports 6-bit
colour (2-bits for each of R, G and B) allowing us to use pairs of binary-weighted
resistors as crude 2-bit DACs. Since the output pins of our FPGA are LVTTL
(Low Voltage TTL: 0–3.3V) and a VGA monitor has a load-resistance of
we use resistances of and for our 2-bit resistor DACs.

At the hardware-level we built 3 such DACs and connected them via a ribbon
cable to the Excalibur development board (see Figure 10.5). The other end of
the circuit is connected to the R,G,B,H,V (and earth) wires of a standard VGA
monitor cable. Signals H and V, which respectively supply periodic horizontal
and vertical synchronisation pulses, are connected directly to two separate out-
put pins of the FPGA1. Figure 10.5 shows the VGA interface connected to the
Excalibur development board; Figure 10.6 shows the circuit driving a test image
onto a VGA monitor.

A VGA driver, responsible for outputting pixel and synchronisation infor-
mation from the FPGA, was implemented in RTL Verilog. To ensure the frame

1 The VGA specification require that H and V signals must use TTL-levels. However,
we are able to drive them directly using LVTTL levels since 3.3V is within the
acceptable voltage range of a TTL logic-1. (It also helps that monitors are designed
to handle noisy signals from cheap graphics cards.)

10.2 DES Encrypter/Decrypter 163

Fig. 10.6. The Altera Development Board driving a test image onto a VGA monitor

164 10 Case Study

Fig. 10.7. The SAFL DES block connected to the VGA signal generation circuitry

buffer is small enough to fit in the the screen is divided into 8 × 8
character squares and the frame buffer split into two parts accordingly:

a character map (which stores the character code and colour for character
square); and
sprite data (which stores the 8 × 8 sprite representing a particular character).

The character map is implemented as a dual-ported RAM. One port is used
to write new characters to the screen, the other port is used to continuously
read character data for display purposes. The sprite data is stored in single-
ported ROM: supplying a character number and row offset returns an 8-bit value
representing the requested row (8 pixels) of the specified character. (Both the
dual-ported RAM and the single-ported ROM are implemented on the FPGA
by instantiating vendor supplied IP blocks.)

A separate signal generator is responsible for the generation of synchronisa-
tion signals (H, V) and also contains the control logic required to lookup character
data and output pixel data (R,G,B) to the screen. Figure 10.7 shows a block di-
agram of the VGA interface. Input wires wr_addr and wr_data are used to write
new characters to the screen: wr_addr specifies the character square to write to;
wr_data specifies the character code and colour to write. The VGA circuit is
pipelined so as the sprite-data for the previous character is being looked up and
outputted, the next character code and colour are being read from the character
map in parallel.

The VGA interface requires a pixel clock of 25.175 MHz. We provide this by
using the FPGA’s on-chip PLLs (as clock multipliers) and clock divide circuitry
to generate the required frequency from the development board’s 33.3 MHz
reference clock.

2 Unfortunately a straightforward 640x480 frame-buffer is too much for our Altera
EP20K200 FPGA.

10.2 DES Encrypter/Decrypter 165

Interfacing SAFL to the Verilog VGA Interface

We start by declaring an extern function:

where char_sqaure is the number of the character square to write to (since we
are using a 60 × 80 character display 0 is top left and 4799 is bottom right),
char_code is a numerical value representing the character to write and colour
is the 6-bit colour code (2 bits for each of R, G, B). The externally provided
body of write_char (see Section 5.2.4) is the Verilog VGA circuitry described
in the previous section. Formal parameters char_square and char_code map
directly onto the write port of the character map, supplying values for wr_addr
and wr_data respectively.

Fig. 10.8. The definition of function write_hex

Next we write a function which prints a 64-bit value as a 16 character hex
string starting at a specified character square (see Figure 10.8). For the sake of
simplicity, we arrange the first 16 character codes (numbered 0 to 15) to be the
hex digits 0 ,1 , . . . ,F respectively.

We modify the DES program of Appendix Appendix A to display every
(input,output) pair on the monitor whenever microswitch-7 (on the development
board) is pressed. First we rename the main function as compute_DES and define
a number of constants:

Constant
Encrypt
Red

Yellow
Row_Length
Max_Square

Meaning
Perform DES encryption [rather than decryption]: (Set to 1)

Colour code for red
Colour code for yellow

The number of character squares in a row: (Set to 80)
The character square beyond which vertical wrap occurs

Figure 10.9 gives the SAFL code which defines an external channel3 (which
is used to read whether microswitch-7 is currently depressed) and a new main
function which stimulates the DES circuit, displaying the inputs and outputs on
a monitor if switch-7 is pressed.

3 Recall that external channels can be read without blocking.

166 10 Case Study

Fig. 10.9. Displaying the DES circuits inputs and outputs on a monitor whenever a
micro-switch is pressed

Fig. 10.10. A screenshot of the DES circuit displaying its inputs and outputs on a
VGA monitor

Figure 10.10 shows a screenshot of the DES circuit in operation. The left
column shows inputs to the DES block; the right column shows outputs to the
DES block. The character map is initialised with data which represents the text
shown on the screen. The animated pattern at the bottom right of the screen
is integrated into the Verilog VGA signal generator; it was initially used for

10.3 Summary 167

debugging vertical synchronisation issues in an early version of the VGA driver
and subsequently remained for aesthetic reasons!

A Note on GALS

It is worth revisiting the GALS issue at this stage as the DBS/VGA design
provides a good opportunity to demonstrate the benefits of supporting multiple
clock domains in a high-level HDL.

We have already seen that the maximum clock frequency of the DES circuit
is 48MHz, however the VGA driver requires a pixel clock of 25.175MHz. In our
initial design, which contains only a single clock domain, we simply reduce the
clock frequency of the DES circuit to match the 25.175MHz pixel clock.

The dual-ported RAM is a clocked memory which operates at a frequency
of 25.175MHz; all read and write accesses to the character map must be syn-
chronised with this clock. Thus we can partition our DES specification into two
separate clock domains:

Clk_DES: contains the DES functions; and
Clk_VGA: contains the extern function write_char and the SAFL function
write_hex

Even when the increased latency of calls to write_hex (incurred due to synchro-
nisation delay when switching clock domains) is taken into account, the circuit
as a whole still runs faster since DES blocks can now be computed nearly twice
as fast (as the DES part of the circuit is now clocked at 48MHz as opposed to
25MHz).

10.3 Summary

We have presented our SAFL-to-silicon tool chain implementation with reference
to a realistic example. There are two interesting points which we have demon-
strated in this chapter which we feel are worth emphasising here:

1.

2.

SAFL designs (where precise timing information is not made explicit) can
be interfaced with timing-critical systems by connecting them via a shared
buffer. In this example we saw our SAFL DES circuit communicating with
a timing-critical VGA system by means of a dual-ported RAM.
Mapping separate extern functions onto separate ports of a multi-ported
memory provides a useful way to implement resource sharing without having
to worry about scheduling. Since SAFL will treat separate extern functions
independently no arbitration circuitry will be generated, even though in
practice they access the same resource. Here we used this technique to bind
the extern function write_char to one port of a shared dual-ported memory.

We believe that this chapter, in particular the favourable performance com-
parison between the SAFL-generated DES circuit and a hand-coded DES circuit

168 10 Case Study

written by a third party [82] (see Section 10.2), demonstrates that generating
hardware directly from the SAFL/SAFL+ languages is a viable technique. In
previous chapters we have claimed that designing hardware in SAFL(+) offers a
number of advantages; here we have actually managed to realise some of those ad-
vantages in practice. Not only is our SAFL DES specification is much shorter and
easier to analyse/transform than a hand-coded RTL equivalent (see Section 10.2
and Appendix Appendix B) but it also yields a more efficient implementation in
silicon.

11

Conclusions and Further Work

Recall from Chapter 1 that the thesis of this work is

that there is scope for higher-level Hardware Description Languages and,
furthermore, that the development of such languages and associated tools
will help to manage the increasing size and complexity of modern circuits.

Let us start by considering the first part of the claim: “that there is scope for
higher-level Hardware Description Languages”. We justify this statement firstly
by arguing that many existing HDLs are not as high-level as they could be, par-
ticularly in their choice of abstraction primitives (see Sections 1.3.1 and 3.3.4).
Having made this point we go on to describe SAFL and argue that it is a higher-
level language than existing behavioural HDLs (see Chapter 3).

The second part of the thesis, “that the development of such languages and
associated tools will help to manage the increasing size and complexity of modern
circuits”, is justified with respect to our experiences of designing the SAFL(+)
language and its associated tool chain:

in Chapter 4 we present a scheduling technique which is more suited to large
system-on-a-chip designs than existing scheduling methodologies;
in Chapter 5 we show how SAFL can be compiled to hardware and, in par-
ticular, that its high-level properties allow it to be compiled to a variety of
different design styles;
in Chapter 6 we present global compiler analyses which rely on high-level
properties of the SAFL language; and
in Chapter 9 (and also in Sections 3.3.3 and 4.4) we describe source-to-
source transformations which facilitate architectural exploration. Again, it is
the high-level properties of SAFL which make such transformations possible.

However, “the development of such languages and associated tools” will only
“help to manage the increasing size and complexity of modern circuits” if they
offer practical implementations capable of generating efficient circuits. We justify
that this is the case with reference to Chapters 7 and 8 (which extend SAFL with
some of the capabilities one would expect in a realistic HDL) and Chapter 10
which illustrates our SAFL-to-silicon tool chain implementation by means of a
realistic case study.

170 11 Conclusions and Further Work

11.1 Future Work

We designed the SAFL/SAFL+ languages solely to investigate different combi-
nations of language features in high-level HDLs and, to this end, they served
their purpose well. However, if the languages were to be used in anger by the
hardware design community we believe that they would need to be extended. In
particular, although SAFL+ contains many of the features one would expect in
a behavioural HDL, it is still lacking a strong type system and a module system.
We believe that the addition of both of these components is more an implemen-
tation project than a research project but nevertheless time consuming.

There are a number of other directions for future work which could help
develop this research further:

One area of particular interest is compiling SAFL(+) to a combination of
different flavours of asynchronous hardware (e.g. compiling function internals
to matched-delay circuits for efficiency whilst using Delay Insensitive (DI)
interconnect for inter-function communication. We refer the interested reader
to Davis and Nowick’s survey of matched-delay and DI design techniques [40]
for more information.)
A transformation tool for SAFL(+) could be implemented to provide assis-
tance in applying source-to-source transformations to SAFL specifications.
Although there is already a great deal of work on developing transformation
assistants [46, 126, 7, 118], research has so far been focused on the transfor-
mation of software-based systems; it would be beneficial to see whether there
are any issues which should be addressed differently in the SAFL domain.
It would also be beneficial to develop further case studies of designing hard-
ware in the SAFL and SAFL+ languages. Our hope is that the experiences
learnt from such experiments could be used to improve the design of the
languages.

A number of researchers are investigating other ways of extending the re-
search presented in this monograph. Edwards et al used a compilation scheme
based on ours (see Chapter 5) to convert a subset of C into a netlist and ex-
perimented with feeding the resulting circuit into a standard hardware model
checker [134]. Frankau is currently investigating how lazy lists and algebraic
datatypes can be integrated into the SAFL framework whilst maintaining static
allocation [49, 48]. The aim is provide a pure-functional alternative to SAFL+’s
synchronous channels.

Appendix A

DES Encryption/Decryption Circuit

Start of Magma Library Block-------------------------------
<%
signature DES =
sig

functor Magma_code (B:BASIS):DES =
struct

DES permutation patterns.

val p_initial

val p_key

val p_compress

= [58,50,42,34,26,18,10,2,60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
57,49,41,33,25,17,9,1,59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7]

= [57,49,41,33,25,17,9,1,58,50,42,34,26,18,
10,2,59,51,43,35,27,19,11,3,60,52,44,36,
63,55,47,39,31,23,15,7,62,54,46,38,30,22,
14,6,61,53,45,37,29,21,13,5,28,20,12,4]

= [14,17,11,24,1,5,3,28,15,6,21,10,
23,19,12,4,26,8,16,7,27,20,13,2,
41,52,31,37,47,55,30,40,51,45,33,48,
44,49,39,56,34,53,46,42,50,36,29,32]

val perm: int list -> ’a list -> ’a list
val ror: int -> ’a list -> ’a list
val rol: int -> ’a list -> ’a list
val p_initial
val p_key
val p_compress
val p_expansion
val p_pbox
val p_final
val p_inSbox

end

: int list
: int list
: int list
: int list
: int list
: int list
: int list

172 A DES Encryption/Decryption Circuit

val p_expansion

val p_pbox

val p_final

val p_inSbox

= [32,1,2,3,4,5,4,5,6,7,8,9,
8,9,10,11,12,13,12,13,14,15,16,17,
16,17,18,19,20,21,20,21,22,23,24,25,
24,25,26,27,28,29,28,29,30,31,32,1]

= [16,7,20,21,29,12,28,17,1,15,23,26,5,18,31,10,
2,8,24,14,32,27,3,9,19,13,30,6,22,11,4,25]

= [40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58,26,33,1,41,9,49,17,57,25]

= [1,5,2,3,4]

Permutation function -- given a permutation pattern
(list of ints)
and a list of bits it returns a
permuted list of bits:

fun perm positions input =
let val inlength = length input

fun do_perm [] _ = []
| do_perm (p::ps) input =

(List.nth (input,inlength-p))::(do_perm ps input)
in do_perm positions input
end

Rotate bits right by specified amount:
fun ror n l =

let val last_n = rev (List.take (rev l, n))
val rest = List.take (l, (length l)-n)

in last_n @ rest
end

Rotate bits left by specified amount:
fun rol n l =

let val first_n = List.take (l, n)
val rest = List.drop (l, n)

in rest @ first_n
end

end
%>

End of Magma Library Block ----------------------------------

(* Definitions of S-Boxes (implemented as simple lookup tables).
The ’inline’ pragma tells the compiler to inline each call to
a function rather than treating it as a shared resource. We use
inline here because the resources as so small they are not
worth sharing.

A DES Encryption/Decryption Circuit 173

inline fun sbox1(x:6):4 =
lookup <% perm p_inSbox %> (x)

with {14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13}

fun sbox2(x:6):4 =
lookup <% perm p_inSbox %> (x)

with {14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13}:4

fun sbox3(x:6):4 =
lookup <% perm p_inSbox %> (x)

with {10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12}:4

fun sbox4(x:6):4 =
lookup <% perm p_inSbox %> (x)

with {7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14}:4

fun sbox5(x:6):4 =
lookup <% perm p_inSbox %> (x)

with {2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3}:4

fun sbox6(x:6):4 =
lookup <% perm p_inSbox %> (x)

with {12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13}:4

fun sbox7(x:6):4 =
lookup <% perm p_inSbox %> (x)

with {4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12}:4

174 A DES Encryption/Decryption Circuit

fun sbox8(x:6):4 =
lookup <% perm p_inSbox %> (x)

with {13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11}:4

Do s_box substitution on data-block:

fun s_sub(x:48):32 =
join(sbox1(x[47:42]), sbox2(x[41:36]),

sbox3(x[35:30]), sbox4(x[29:24]),
sbox5(x[23:18]), sbox6(x[17:12]),
sbox7(x[11:6]), sbox8(x[5:0]))

Define a record which contains the left and right halves
of a 64-bit DES block and the 56-bit key.

type round_data = record {left:32, right:32, key:56}

A single DES round:

fun round(bl:round_data,rd:4,encrypt:1):round_data =

static

Successive keys are calculated by circular shifts.
The degree of the shift depends on the round (rd).
We shift either left/right depending on whether we are
decrypting/encrypting.

fun keyshift(key_half:28,rd:4,encrypt:1):28 =
define val shift_one = (rd=0 or rd=1 or rd=8 or rd=15)
in

if encrypt then if shift_one then <% rol 1 %> (key_half)
else <% rol 2 %> (key_half)

else if rd=0 then key_half
else if shift_one then <% ror 1 %> (key_half)

else <% ror 2 %> (key_half)
end

in

let
val lkey = keyshift(slice(bl.key,55,28),rd,encrypt)
val rkey = keyshift(slice(bl.key,27,0),rd,encrypt)
val keybits = <% perm p_compress %> (join(lkey.rkey))
val new_right =

let val after_p = <% perm p_expansion %>(bl.right)
in s_sub (after_p xor keybits xor bl.left)

A DES Encryption/Decryption Circuit 175

end

in {left=bl.right, right=new_right, key=join(lkey,rkey)}

end

end

Do 16 DES rounds:

fun des(c:4, rd:round_data,encrypt:1):round_data =

let val new_data = round(rd, c, encrypt)

in if c=15 then new_data

else des(c+l, new_data,encrypt)

end

Apply initial permuations to DES block and key:

fun initial_perms (rd:round_data):round_data =

let val new_block = <% perm p_initial %> (join(rd.left,

rd.right))

val new_key = <% perm p_key %> (rd.key)

in {left = slice(new_block,63,32),

right = slice(new_block,31,0),

key = new_key}

end

Do input/output permutations and 16 rounds of DES:

fun main(rd:round_data, encrypt:1):round_data =

let

val perm_rd = initial_perms (rd)

val output = des(0:4, perm_rd, encrypt)

in <% perm final %> (join(output.right, output.left))

end

This page intentionally left blank

Appendix B

Transformations to Pipeline DES

In this section we apply a series of transformations to the DES specification
in Appendix Appendix A in order to transform it into a 4-stage pipelined ver-
sion (where each pipeline stage performs 4 rounds of encryption). To reduce the
amount of code that needs to be written we choose to specify only a DES encryp-
tion circuit (i.e. we partially evaluate the des function from Appendix Appendix
A with encrypt as a static parameter set to 1).

We start by using basic equational reasoning steps and fold/unfold trans-
formations to manipulate the DES specification into the form required by our
top-level pipelining transformation (see Section 9.3).

Unfolding the recursive call in the des function 15 times and using the in-
stantiation rule to set the formal parameter c to 0, yields a function des_c0:

fun des_c0(rd:round_data):round_data =

let val nd1 = round(rd, 0)

val nd2 = round(nd1, 1)

val nd3 = round(nd2, 2)

val nd4 = round(nd3, 3)

val nd5 = round(nd4, 4)

val nd6 = round(nd5, 5)

val nd7 = round(nd6, 6)

val nd8 = round(nd7, 7)

val nd9 = round(nd8, 8)

val nd10 = round(nd9, 9)

178 B Transformations to Pipeline DES

We replace the call, des(0,...), in the main function with a call des_c0(...)
and group the calls to round into blocks of 4 by repeatedly replacing bindings
with their declarations:

We now introduce a new function round_CtoN which has a copy of the round
function definition nested within it:

val nd11 = round(nd10, 10)

in

nd16

end

fun des_c0(rd:round_data):round_data =

let val nd4 = round(round(round(round(rd, 0),

1),

2),

3)

val nd12 = round(nd11, 11)

val nd13 = round(nd12, 12)

val nd14 = round(nd13, 13)

val nd15 = round(nd14, 14)

val nd16 = round(nd15, 15)

val nd8 = round(round(round(round(nd4, 4),

5),

6),

7)

val nd12 = round(round(round(round(nd8, 8),

9),
10),

11)

val nd16 = round(round(round(round(ndl2,12),

13),

14),

15)

in

nd16

end

B Transformations to Pipeline DES 179

Next we duplicate the function definition round_CtoN 4 times as pipe_stage1,
pipe_stage2, pipe_stage3 and pipe_stage4. (Note that since the keyshift and
round functions are defined within round_CtoN these are implicitly duplicated
at the same time.) We then Transform des_c0 into:

fun round_CtoN (c:4, n:4, rd:round_data):round_data =

static fun round(bl:round_data,rd:4,encrypt:1):round_data =

... <<body of round ommitted to save space>> ...

in

let val new_data = round(rd)

if c=n then new_data

else round_CtoN(c+1, n, new_data)

end

end

fun des_c0(rd:round_data):round_data =

let val nd4 = pipe_stage1(0,3,rd)

val nd8 = pipe_stage2(4,7,nd4)

val nd12 = pipe_stage3(8,11,nd8)

val nd16 = pipe_stage4(12,15,nd12)

in

nd16

end

fun main(rd:round_data, encrypt:1):round_data =

let

val perm_rd = initial_perms (rd)

val output = let val nd4 = pipe_stage1(0,3,perm_rd)

val nd8 = pipe_stage2(4,7,nd4)

and inline the call to des_c0 in main:

and transform des_c0 into:

fun des_c0(rd:round_data):round_data =

let val nd4 = round_CtoN(0,3,rd)

val nd8 = round_CtoN(4, 7,nd4)

val nd12 = round_CtoN(8,11,nd8)

val nd16 = round_CtoN(12,15,nd12)

in

nd16

end

180 B Transformations to Pipeline DES

Collapsing the nested let declarations yields a function which is in a form
to which we can apply our pipelining transformation (see Section 9.3):

Finally, applying our pipeline transformation to top-level function, main, yields:

val nd12 = pipe_stage3(8,11,nd8)

val nd16 = pipe_stage4(12,15,nd12)

in

nd16

end

in <% perm final %> (join(output.right, output.left))

end

fun main(rd:round_data, encrypt:1):round_data =

let

val perm_rd = initial_perms (rd)

val nd4 = pipe_stage1(0,3,perm_rd)

val nd8 = pipe_stage2(4,7,nd4)

val nd12 = pipe_stage3(8,11,nd8)

val output = pipe_stage4(12,15,nd12)

in <% perm final %> (join(output.right, output.left))

end

val new_perm_rd = initial_perms(rd)

val new_nd4 = pipe_stage1(0,3,perm_rd)

val new_nd8 = pipe_stage2(4,7,nd4)

val new_nd12 = pipe_stage3(8,11,nd8)

val new_output = pipe_stage4(12,15,nd12)

val _ = out ! <% perm final %>

(join(output.right,output.left))

in

pipe_des(new_rd, new_perm_rd, new_d4, new_d8,

new_nd12, new_output)

end

fun main(rd, perm_rd, nd4, nd8, nd12, output)[in,out] =

let

val new_rd = in?

Appendix C

A Simple Stack Machine
and Instruction Memory

ALU

Instruction memory

The following codes: f(x) = if x then x+f(x–1) else 0;
i.e. it computes triangular numbers

fun load_instruction (address:16):24 = case address of
0 =>
1 =>
2 =>
3 =>
4 =>
5 =>
6 =>
7 =>
8 =>
9 =>
10=>
11=>
12=>
13=>

%000010010000000000000001
%000001010000000000000011
%00000000000000000000000

%000000100000000000000001
%000001110000000000001100
%000000100000000000000001
%000000100000000000000010
%000000010000000000000001
%000010000000000000000001
%000001010000000000000011
%000010000000000000000000
%000001100000000000001101
%000000010000000000000000
%000001000000000000000001

f:

l1:
l2:

pusha 1
call_int f
halt

pushv 1
jz l1
pushv 1
pushv 2
pushc 1
alu2 sub
call_int f
alu2 add
jmp l2
pushc 0
return 1

fun alu2(op:16, a1:16, a2:16):16 =
case op of 0 => a1+a2

16
17
18
19
20
21

=>
=>
=>
=>
=>
=>

a1<a2
a1>a2
a1=a2
a1>=a2
a1<=a2
a1<>a2

1
2
3
4

=>
=>
=>
=>

a1-a2
and(a1,a2)
or(a1,a2)
xor(a1,a2)

182 C A Simple Stack Machine and Instruction Memory

default => %101010101010101010101010 illop

external mem_acc (address:16,data:16,write:1):16

inline fun data_read (address:16):16 = mem_acc(address,0,0)
inline fun data_write (address:16,data:16):16 =

mem_acc(address,data,1)

fun SMachine (a1:16, PC:16, SP:16):16 =

in case op_code of
0 => halt, returning TOS

data_read(SP)

let var new_PC : 16 = PC + 1
var instr : 24 = load_instruction(PC)
var op_code : 8 = instr [23,16]
var op_rand : 16 = instr[15,0]
var inc_SP : 16 = SP + 1
var dec_SP : 16 = SP – 1

1 => push constant operation
data_write(dec_SP, op_rand);
SMachine (a1, new_PC, dec_SP)

2 => push variable operation
let var data:16 = data_read(SP+op_rand)
in data_write(dec_SP, data);

SMachine (a1, new_PC, dec_SP)
end

9 => push a–argument operation
data_write(dec_SP, a1);
SMachine (a1, new_PC, dec_SP)

3 => squeeze operation
op_rand is how many locals to pop

let var new_SP:16 = SP + op_rand
var v:16 = data_read(SP)

in data_write(new_SP, v);
SMachine (a1, new_PC, new_SP)

end

4 => return operation
op_rand is how many actuals to pop

let var new_SP:16 = inc_SP + op_rand
var rv:16 = data_read(SP)

in let var rl:16 = data_read(inc_SP)
in data_write(new_SP, rv);

SMachine (a1, rl, new.SP)
end

end

C A Simple Stack Machine and Instruction Memory 183

5 => call_int operation
data_write(dec_SP, new_PC);
SMachine (a1, op_rand, dec_SP)

6 => jmp (abs) operation
SMachine (a1, op_rand, SP)

7 => jz (abs) operation
let var v:16 = data_read(SP)
in SMachine (a1, if v=0 then op_rand

else new_PC, inc_SP)
end

8 => alu2: binary alu operation
specified by immediate field

let var v2:16 = data_read(SP)
in let var v1:16 = data_read(inc_SP)

in data_write(inc_SP, alu2(op_rand, v1, v2));
SMachine (a1, new.PC, inc_SP)

end
end

default => halt, returning Oxffff -- illegal opcode
%1111111111111111

end

This page intentionally left blank

References

The national technology roadmap for semiconductors. Semiconductor Industry
Association, 1999. Available from: SEMATECH, 3101 Industrial Terrace Suite
106 Austin TX 78758.
Handel-C language datasheet. Available from Celoxica Ltd:
http://www.celoxica.com/.
Haskell98 report. Available from http://www.haskell.org/.
PHP hypertext preprocessor. See http://www.php.net/.
Afred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison Wesley, 1986.
A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.
Marco Aldinucci. The meta transformation tool for skeleton-based lan-
guages. In Proceedings of the 2nd International Workshop on Construc-
tive Methods for Parallel Programming (CMPP), 2000. Available from:
http://citeseer.nj.nee.com/486282.html.
J. Aldrich, C. Chambers, E. Sirer, and S. Eggers. Static analyses for eliminating
unnecessary synchronization from Java programs. In Proceedings of the Inter-
national Symposium on Static Analysis, volume 1694 of LNCS. Springer-Verlag,
1999.
American National Standards Institute, Inc. The Programming Language ADA
Reference Manual. Springer-Verlag, 1983.
A. Appel. Modern Compiler Implementation in Java/ML/C. Cambridge Univer-
sity Press, 1998.
A. W. Appel and D. B. MacQueen. Standard ML of New Jersey. In
and M. Wirsing, editors, Proceedings of the Third International Symposium on
Programming Language Implementation and Logic Programming, number 528,
pages 1–13. Springer-Verlag, 1991.
Arvind and Xiaowei Shen. Using term rewriting systems to design and verify
processors. IEEE Micro (Special Issue on Modeling and Validation of Micropro-
cessors, May/June 1999.
B. Preas and M. Lorenzetti. Physical Design Automation of VLSI-Systems. Ben-
jamin Cummings, 1989.
F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

1.

2.

3.
4.
5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

186 References

J. Backus. Can functional programming be liberated from the von Neumann
style? Communications of the ACM, 21(8):613–641, 1978.
J. Backus. The algebra of functional programs: Function level reasoning, linear
equations and extended definitions. In Proceedings of the Symposium on Func-
tional Languages and Computer Architecture, June 1981.
F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone,
A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara. Hardware-
Software Co-Design of Embedded Systems: The Polis Approach. Kluwer Academic
Press, June 1997.
Mario R. Barbacci and Daniel P. Siewiorek. Automated exploration of the de-
sign space for register transfer (RT) systems. In Proceedings of the 1st Annual
Symposium on Computer Architecture (ISCA), pages 101–106, 1973.
A. Bardsley and D. A. Edwards. The Balsa asynchronous circuit synthesis system.
In Proceedings of the Forum on Design Languages, 2000. Available on request from
European Electronic Chips and Systems design Initiative (ECSI).
G. Berry. Real time programming: special purpose or general purpose langages.
Technical Report RR-1065, INRIA, August 1989.
G. Berry. A hardware implementation of pure esterel. SADHANA – Academy
Proceedings in Engineering Sciences, 17:95–130, March 1992.
G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96:217–248, 1992.
G. Berry and G. Gonthier. The Esterel synchronous programming language:
design, semantics, implementation. Technical Report 842, INRIA, 1988.
G. Berry, S. Ramesh, and R. K. Shyamasundar. Communicating reactive pro-
cesses. In Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 85–98. Charleston,
South Carolina, 1993.
P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware description
in Haskell. In Proceedings of the 3rd International Conference on Functional
Programming, SIGPLAN. ACM, 1998.
B. Bose. DDD: A transformation system for digital design derivation. Technical
Report 331, Indiana University, 1991.
B. Bose. DDD-FM9001: Derivation of a Verified Microprocessor. PhD thesis,
Indiana University, 1994.
R. Brayton, R. Camposano, G. De Micheli, R. Otten, and J. van Eijndhoven. The
Yorktown Silicon Compiler System. Addison-Wesley, 1988.
R.M. Burstall and J. Darlington. A transformation system for developing recur-
sive programs. In JACM 24(1), 1977.
L. Cardelli. The functional abstract machine. Technical Report TR-107, AT&T
Bell Laboratories, April 1983.
C.A.R.Hoare. Communicating Sequential Processes. Prentice-Hall International,
1985.
R. Cartwright and M. Fagan. Soft typing. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, SIGPLAN.
ACM, 1991.
Gregory J. Chaitin. Register allocation spilling via graph coloring. In SIGPLAN
Symposium on Compiler Construction, pages 98–105, 1982.
D. Chapiro. Globally-Asynchronous Locally-Synchronous systems. PhD thesis,
University of Stanford, 1984.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

References 187

P. Chou, R. Ortega, and G. Borriello. The Chinook hardware/software co-
synthesis system. In Proceedings of the 8th International Symposium on System
Synthesis, 1995.
C. Clack and S. L. Peyton-Jones. Strictness analysis – a practical approach. In
Functional Languages and Computer Architecture, LNCS, pages 35–49. Springer-
Verlag, 1985.
Koen Claessen and David Sands. Observable sharing for functional circuit de-
scription. In Asian Computing Science Conference, pages 62–73, 1999.
Koen Classen, Mary Sheeran, and Stanam Singh. The design and verification
of a sorter core. In Proceedings of the 11th Advanced Working Conference on
Correct Hardware Design and Verification Methods, volume 2144 of LNCS, pages
355–369. Springer-Verlag, 2001.
B. Cook, J. Launchbury, and J. Matthews. Specifying superscalar microprocessors
with Hawk. In Proceedings of the workshop on formal techniques for hardware,
June 1998.
A. Davis and S. M. Nowick. An introduction to asynchronous circuit design.
Technical Report UUCS-97-013, University of Utah, September 1997.
G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill Inc.,
1994.
G. De Micheli and D. Ku. HERCULES - a system for high-level synthesis. In
Proceedings of the Design Automation Conference, pages 483–488. ACM Press,
June 1988.
G. De Micheli, D. Ku, F. Mailhot, and T. Truong. The Olympus synthesis system
for digital design. Design & Test of Computers, October 1990.
D. Edwards and A. Bardsley. Balsa 3.0 user manual. Available from
http://www.cs.man.ac.uk/amulet/projects/balsa/.
C. Famsworth, D.A. Edwards, J. Liu, and S.S. Sikand. A hybrid asynchronous
system design environment. In Proceedings of the Second Working Conference on
Asynchronous Design Methodologies (ASYNC 95). IEEE.
Martin Feather. A system for developing programs by transformation. PhD thesis,
University of Edinburgh, 1979.
Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming Languages
and Systems, 9(3):319–349, July 1987.
Simon Frankau and Alan Mycroft. Stream processing hardware from functional
language specifications. In Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS). IEEE Computer Society Press, January
2003.
Simon Frankau, Alan Mycroft, and Simon Moore. Statically-allocated languages
for hardware stream processing (extended abstract). In Sambuddhi Hettiaratchi,
editor, UK ACM SIGDA Workshop on Electronic Design Automation. UK ACM
SIGDA, Bournemouth University, September 2002.
T.D. Friedman and S.C. Yang. Methods used in an automatic logic design gen-
erator (ALERT). IEEE Transactions in Computing, C-18:593-614, 1969.
S. Furber, D. Edwards, and J. Garside. AMULET3: a 100 MIPS asynchronous
embedded processor. pages 329-334. IEEE, 2000.
Daniel Gajski, T. Ishii, V. Chaiyukul, H. Juan, and T. Hadley. A design method-
ology and environment for interactive behavioural synthesis. Technical Report
96-26, Department of Information and Computer Science, University of Califor-
nia, Irvine, June 1996.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

188 References

D.D. Gajski and L. Ramachandran. Introduction to high-level synthesis. Design
& Test of Computers, 11(4), 1994.
Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. Software Practice and Experience,
30(11):1203–1233, September 2000. ISSN 0038-0644.
E.F. Girczcy. Automatic Generation of Microsequenced Data Paths to Realize
ADA Circuit Descriptions. PhD thesis, Carleton University, Ottowa, Canada,
July 1984.
Lance Glasser and Daniel Dobberpuhl. The Design and Analysis of VLSI Circuits.
Addison-Wesley, 1985.
C.K. Gomard and P. Sestoft. Globalization and live variables. In Proceedings of
the Symposium on Partial Evaluation and Semantics-Based Program Manipula-
tion, pages 166–177. ACM Press, 1991.
P. Le Guernic, M. Le Borgne, T. Gautier, and C. Le maire. Programming real
time applications with Signal. Proceedings of the IEEE, 79:1321–1336, September
1991.
S. Guo and W. Luk. Compiling Ruby into FPGAs. In Field Programmable Logic
and Applications, volume 975 of LNCS, pages 188–197. Springer-Verlag, 1995.
N. Halbwachs, Synchronous programming of reactive systems. Kluwer Academic
Press, 1993.
N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data
flow programming language Lustre. Proceedings of the IEEE, 79(9):1305–1321,
September 1991.
N. Halbwachs, A. Lonchampt, and D. Pilaud. Describing and designing circuits
by means of the synchronous data-flow programming language Lustre. In IFIP
Working Conference: From HDL Descriptions to Guaranteed Correct Circuit De-
signs, Grenoble, September 1986.
K. Hammond. Parallel functional programming: An introduction. In Proceed-
ings of the International Symposium on Parallel Symbolic Computation. World
Scientific, 1994.
D. Harel and A. Pnueli. On the development of reactive systems. In K.R.Apt,
editor, Logics and Models of Concurrent Systems, volume F-13 of NATO ASI.
Springer-Verlag, 1985.
David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, June 1987.
Paul Havlak. Construction of thinned gated single-assignment form. In 1993
Workshop on Languages and Compilers for Parallel Computing, number 768 in
LNCS, pages 477–499. Springer-Verlag, 1993.
J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers Inc., 1990.
James Hoe, Martin Rinard, and Arvind. An exercise in high-level architectural
description using a synthesizable subset of term rewriting systems, 1997. Com-
putation Structures Group Memo 403.
J.C. Hoe and Arvind. Hardware synthesis from term rewriting systems. In Pro-
ceedings of X IFIP International Conference on VLSI, 1999.
M. Hofmann. A type system for bounded space and functional in-place update. In
Proceedings of the 9th European Symposium On Programming, LNCS. Springer-
Verlag, 2000.
J. Hughes and L. Pareto. Recursion and dynamic data-structures in bounded
space: Towards embedded ML programming. Proceedings of the International
Conference on Functional Programming (ICFP), 34(9):70–81, 1999.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

References 189

John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive
systems using sized types. In Symposium on Principles of Programming Lan-
guages, pages 410–423, 1996.
IEEE. Standard VHDL Reference Manual, 1993. IEEE Standard 1076-1993.
IEEE. Verilog HDL language reference manual. IEEE Draft Standard 1364,
October 1995.
IEEE. Standard for VHDL Register Transfer Level (RTL) Synthesis, 1999. IEEE
Standard 1076.6-1999.
Inmos (Ltd.). Occam 2 Reference Manual. Prentice Hall, 1998.
Wolfgang Fichtner Jens Muttersbach, Thomas Villiger. Practical design of
globally-asynchronous locally-synchronous systems. In 6th International Sympo-
sium on Advanced Research in Asynchronous Circuits and Systems. IEEE Press,
2000.
E.L. Johnson and G.L. Nemhauser M.W.P. Savelsbergh. Progress in integer linear
programming: an exposition. Technical Report LEC-97-02, Georgia Institute of
Technology, School of Industrial and Systems Engineering, January 1997.
S.D. Johnson and B. Bose. DDD: A system for mechanized digital design deriva-
tion. Technical Report 323, Indiana University, 1990.
G. Jones and M. Sheeran. Circuit design in Ruby. In J. Staunstrup, editor,
Formal Methods for VLSI design, pages 13-70. North-Holland, 1990.
N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice Hall, 1993.
Jens-Peter Kaps and Christof Paar. Fast DES implementation for FPGAs and its
application to a universal key-search machine. In Selected Areas in Cryptography,
volume 1556 of Lecture Notes in Computer Science, pages 234–247. Springer-
Verlag, 1998. URL citeseer.nj.nec.com/119314.html.
B. Kernighan and D. Ritchie. The C Programming Language. Second Edition.
Prentice Hall, 1988.
Joep Kessels, Kees van Berkel, Ronan Burgess, Marly Roncken, and Frits Schalij.
An error decoder for the compact disc player as an example of VLSI program-
ming. In Proc. European Conference on Design Automation (EDAC), pages 69–74.
IEEE, 1992.
Anne T. Kohlstaedt. Daisy 1.0 reference manual. Technical Report 119, Indiana
University Computer Science Department, 1981.
D. Ku and G. De Micheli. HardwareC—a language for hardware design (version
2.0). Technical Report CSL-TR-90-419, Stanford University, 1990.
D. Ku and G. De Micheli. High-level synthesis and optimization strategies in
Hercules and Hebe. In Proceedings of the European ASIC Conference, pages 124-
129, May 1990.
D. Ku and G. De Micheli. Constrained resource sharing and conflict resolution
in Hebe. Integration—The VLSI Journal, December 1991.
D. Ku and G. De Micheli. Relative scheduling under timing constraints: Algorithm
for high-level synthesis of digital circuits. Transactions on CAD/ICAS, pages
697–718, June 1992.
P. Landin. The mechanical evaluation of expressions. The Computer Journal, 6
(4):308–320, 1964.
R. Lipsett, C. Schaefer, and C. Ussery. VHDL: Hardware Description and Design.
Kluwer Academic Publishers, Boston, MA, 1992.
H. De Man, J. Rabaey, P. Six, and L. Claesen. Cathedral-II: A silicon compiler
for digital signal processing. Design & Test of Computers, December 1986.

72.

73.
74.

75.

76.
77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

190 References

G. Marchioro, J. Daveau, and A. Jerraya. Transformation partitioning for co-
design of multiprocessor systems. In Proceedings of the International Conference
on Computer Aided Design (ICCAD). IEEE, 1997.
S. Marlow, S. Peyton Jones, A. Moran, and J. Reppy. Asynchronous exceptions
in Haskell. In Proceedings of the Conference on Programming Language Design
and Implementation (PLDI), SIGPLAN. ACM, 2001.
P. Marwedel. A new synthesis algorithm for the mimola software system. In
Proceedings of the 23rd Design Automation Conference, pages 271–277. ACM
Press, 1986.
J. Matthews, B. Cook, and J. Launchbury. Microprocessor specification in Hawk.
In Proceedings of the IEEE International Conference on Computer Languages,
1998.
M. McFarland. Using bottom-up design techniques in the synthesis of hardware
from abstract behavioral descriptions. In Proceedings of the 23rd Design Automa-
tion Conference, pages 474–480. ACM Press, 1986.
M. McFarland, A. Parker, and R. Camposano. The high-level synthesis of digital
systems. Proceedings of the IEEE, 78(2), February 1990.
R. Milner. A theory of type-polymorphism in programming. Journal of Computer
and System Sciences, 17(3), 1978.
R. Milner. The polyadic A tutorial. Technical Report ECS-LFCS-91-
180, University of Edinburgh, October 1991.
R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.
S.W. Moore, G.S. Taylor, P.A. Cunningham, R.D. Mullins, and P.Robinson. Using
stoppable clocks to safely interface asynchronous and synchronous subsystems. In
Proceedings of the AINT (Asynchronous INTerfaces) Workshop, July 2000.
Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, San Francisco, CA, 1997.
A. Mycroft and R. Sharp. Higher-level techniques for hardware description and
synthesis. Software Tools for Technology Transfer (STTT). To Appear.
A. Mycroft and R.W. Sharp. A statically allocated parallel functional language.
In Proceedings of the International Conference on Automata, Languages and Pro-
gramming, volume 1853 of LNCS. Springer-Verlag, 2000.
A. Mycroft and R.W. Sharp. Hardware/software co-design using functional lan-
guages. In Proceedings of TACAS, volume 2031 of LNCS. Springer-Verlag, 2001.
T. Nijhar and A. Brown. Source-level optimisation of VHDL for behavioural
synthesis. Proceedings on Computers and Digital Techniques, 144(1):1–6, January
1997.
Rishiyur Nikhil and Arvind. Implicit Parallel Programming in pH. Morgan Kauf-
mann, May 2001.
John O’Donnell. Hardware description with recursion equations. In Proceedings
of the IFIP 8th International Symposium on Computer Hardware Description
Languages and their Applications, pages 363–382. North-Holland, April 1987.
John O’Donnell. Generating netlists from executable circuit specifications in a
pure functional language. In Functional Programming, Workshops in Computing,
Proceedings, pages 178–194. Springer-Verlag, 1992.
S. Olcoz and J. Colom. Towards a formal semantics of IEEE std. VHDL 1076. In
Proceedings of 1993 European Design Automation Conference with Euro-VHDL.
IEEE, 1993.
I. Page. Compiling Occam into Field-Programmable Gate Arrays. In Moore and
Luk, editors, FPGAs, pages 271-283. Abingdon EE&CS Books, 1991.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

References 191

I. Page. Parameterised processor generation. In Moore and Luk, editors, More
FPGAs, pages 225–237. Abingdon EE&CS Books, 1993.
I. Page. Reconfigurable processor architectures. Microprocessors and Microsys-
tems, 20(3): 185–196, May 1996.
Samir Palnitkar. Verilog HDL: A guide to digital design and synthesis. Prentice
Hall, 1996. ISBN 0-13-451675-3.
B. M. Pangrle. Splicer: A heuristic approach to connectivity binding. In Proc-
eedings of the 25th Design Automation Conference, pages 536–541. ACM Press,
June 1988.
N. Park and A. Parker. Sehwa: A software package for synthesis of pipelines from
behavioral specifications. IEEE Transactions on Computer-Aided Design, pages
356–370, March 1988.
Helmuth Partsch, Wolfram Schulte, and Ton Vullinghs. System support for the
interactive transformation of functional programs. In Proceedings of the 5th Work-
shop on Tools for System Design and Verification (FM-TOOLS), 2002. Available
from http://citeseer.nj.nec.com/336476.html.
P. Paulin and J. Knight. Force-directed scheduling for the behavioral synthesis
of ASICs. IEEE transactions on Computer-Aided Design, 6:661–679, July 1989.
Lawrence Paulson. ML for the working programmer. Cambridge University Press,
1996.
Ad Peeters. Re: Tangram and balsa. Personal communication by email. (Peeters
is a Senior Scientist at Philips Research Eindhoven).
G. D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.
S. Pommier. An Introduction to APL. Cambridge University Press, 1983.
R. Chapman and Deok-Hyun Hwang. A pro cess-algebraic semantics for VHDL.
In W. Ecker, editor, SIG-VHDL Spring ’96 Working Conference, pages 157–168.
Shaker Verlag, Dresden, Germany, 1996.
Jonathan Rees, W. Clinger, et al. The revised report 3 on the algorithmic language
SCHEME. SIGPLAN Notices, 21(12):37–79, 1986.
S. Renault, A. Pettorossi, and M. Proietti. Design, implementation, and use of
the MAP transformation system. Technical Report R. 491, IASI-CNR, Roma,
Italy, December 1998.
Richard L. Rudell. Tutorial: Design of a logic synthesis system. In Proceedings of
the Design Automation Conference, pages 191–196. ACM Press, 1996.
V. Sarkar. A concurrent execution semantics for parallel program graphs and pro-
gram dependence graphs. In U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua,
editors, Proceedings of the 5th International Workshop in Languages and Compil-
ers for Parallel Computing, volume 757 of LNCS, pages 16–30. Springer-Verlag,
1992.
V. Sarkar and B. Simons. Parallel program graphs and their classification. In
Proceedings of the Sixth Workshop on Languages and Compilers for Parallel Com-
puting, volume 768 of LNCS, pages 633–655. Springer-Verlag, 1993.
Bruce Schneier. Applied cryptography: protocols, algorithms, and sourcecode in C.
John Wiley and Sons, New York, 1994. ISBN 0-471-59756-2.
R.W. Sharp and A. Mycroft. A higher-level language for hardware synthesis. In
Proceedings of the 11th Advanced Research Working Conference on Correct Hard-
ware Design and Verification Methods, volume 2144 of LNCS. Springer-Verlag,
2001.
M. Sheeran. muFP, a language for VLSI design. In Proceedings of the ACM
Symposium on LISP and Functional Programming, 1984.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.
124.

125.

126.

127.

128.

129.

130.

131.

132.

192 References

D. Springer and D. Thomas. Exploiting the special structure of conflict and
compatibility graphs in high-level synthesis. In Proceedings of the International
Conference on Computer Aided Design, pages 254–257, 1990.
Tony Ma Stephen A. Edwards and Robert Damiano. Using a hardware model
checker to verify software. In Proceedings of the 4th International Conference on
ASIC (ASICON). IEEE Press, 2001.
Donald E. Thomas, E. M. Dirkes, Robert A. Walker, Jayanth V. Rajan, J. A.
Nestor, and Robert L. Blackburn. The system architect’s workbench. In Pro-
ceedings of the 25th Design Automation Conference, pages 337–343. ACM Press,
1988.
C. Tseng and D.P. Siewiorek. Automated synthesis of data paths in digital sys-
tems. IEEE Transactions on Computer-Aided Design, 5(3), July 1986.
C. Van Berkel. Handshake circuits: An Intermediary Between Communicating
Processes and VLSI. PhD thesis, Eindhoven University of Technology, 1992.
K. Van Berkel. Handshake Circuits: an Asynchronous Architecture for VLSI Pro-
gramming, volume 5 of International Series on Parallel Computation. Cambridge
University Press, 1993.
Hans van Gageldonk, Daniel Baumann, Kees van Berkel, Daniel Gloor,
Ad Peeters, and Gerhard Stegmann. An asynchronous low-power 80C51 microcon-
troller. In Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 96–107, 1998.
J. van Tassel. Femto-VHDL: The Semantics of a Subset of VHDL and its Em-
bedding in the HOL Proof Assistant. PhD thesis, University of Cambridge, 1992.
P. Wadler. Monads for functional programming. In Advanced Functional Pro-
gramming, volume 925 of LNCS. Springer-Verlag, 1995.
R. Walker and D. Thomas. Behavioral transformations for algorithmic level IC
design. IEEE Transactons on Computer-Aided Design, 8(10):1115–1127, 1989.
Neil Weste and Kamran Eshraghian. Principles of CMOS VLSI design: A systems
perspective (second edition). Addison-Wesley, 1993.
Philip A. Wilsey. Developing a formal semantic definition of VHDL. In Jean
Mermet, editor, VHDL for Simulation, Synthesis and Formal Proofs of Hardware,
pages 245–256. Kluwer Academic Publishers, 1992.
Z. Zhu and S.D. Johnson. An example of interactive hardware transformation.
Technical Report TR383, Computer Science Department, Indiana University,
1993.
G. Zimmerman. Eine Methode zum Entwurf von Digitalrechnern mit der Pro-
grammiersprache MIMOLA. Informatik-Fachberichte, 5, 1976.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

Index

ADA, 20
ALERT, 8
Allocation, 9, 12
Arbitration circuitry, 51, 78, 85, 102
Architecture-neutral analysis, 64, 87, 111
Architecture-specific analysis, 65, 87, 99
Ariadne, 23
Array construct (SAFL+), 120
ASAP scheduling, 11
Asynchronous circuit, 15, 32

Balsa, 32
Behavioural language, 1, 2
Behavioural synthesis, 1
Behavioural-level transformation, see

Source-level transformation
Binding, 9, 12
Black-box synthesis, 15, 44, 141
BUD, 12, 13

Callee-save, 97
Caller-save, 97
Cathedral-II, 13
Ceres, 23
Channel circuit, 118
Channel passing, 113, 116
Chemical abstract machine, 123
Compatability graph, 12
Congruence, 123
Context, 123
Control edge, 67, 88
Control flow graph, 72
CSP, 31, 33
Cycle counting, 99

Daisy, 28
Data dependence graph, 72
Data edge, 67, 88
Data producer, 68, 88
DDD system, 30, 50
DES, 155, 160
Discrete-event model, 20
Dual flip-flop synchroniser, 83
Dual-ported RAM, 164, 167

Elf, 12
Esterel, 33
Evaluation state, 123
Expl, 11
Explicit module definition, 137
External Call Control Unit (ECCU), 76,

104
External channel, 116, 165

Facet, 13
FLaSH compiler, 65, 155
Fold/unfold transformation, 44, 149
FPGA, 155
Functional Abstract Machine, 144
Functional programming language, 26,

129
Functional unit, 75
functor, 131

Gated single assignment, 72
General recursion, 151
Globalization, 50
Globally Asynchronous Locally Syn-

chronous (GALS), 81, 110,
167

194 Index

Handel, 31
Handel-C, 31
Hardware description language, 1
Hardware/software co-design, 142
HardwareC, 23, 52
Haskell, 28, 131
Hawk, 30
HDRE, 28
Hebe, 13, 23
Hercules, 23, 25
Heterogeneous multiprocessor architec-

ture, 143
High-level synthesis, 1
Higher-order function, 26

Implicit module definition, 138
Integer Linear Programming (ILP), 13
Intermediate code, 87
Intermediate graph, 67, 88
Interval analysis, 100

Lava, 28, 129
Lazy evaluation, 29
Leonardo, 155
Library block, 134
List Scheduling, 12
Logic synthesis, 8
Lustre, 33

Magma, 130
Mercury, 23
Metastability, 81
MIMOLA, 9, 13
ML, 38, 113, 131
ModelSim, 160
Monad, 130
muFP, 26, 129

Netlist, 6
Non-determinism, 126

Occam, 31, 33
Olympus Synthesis System, 23, 53
Operational semantics, 121

Parallel conflict analysis, 56, 87
Parallel program graph, 72
Parameterised processor, 143
Partial evaluation, 153
Partitioning function, 143

Perl, 138
Permanising register, 89, 90
Phase order problem, 13
Physical layout, 8

113
Pipelining transformation, 142, 151
Pixel clock, 167
Place and route, 8
Polymorphic type, 26
Process calculus, 113
Processor instance, 144
Processor template, 144
Program dependence graph, 72
Program state, 122

Quartus-II, 158

Reactive system, 33
Register placement analysis, 88
Relative scheduling, 53
RTL Language, 3
RTL synthesis, 1
Ruby, 27

S-box, 160
SAFL

circuit area, 37, 107
interfacing with external functions, 80,

165
resource awareness, 43
scheduling, 51
side-effects, 38
software compilation, 146
static analysis of, 56, 87
type system, 39

SAFL+, 113, 151
Scheduling, 9, 11, 44, 51
Scheme, 30
SECD machine, 144
Sequencing graph, 52
Sharing conflict, 89
Signal, 33
Signal generator, 164
signature, 131
Sized types, 50
SML/NJ, 155
Soft scheduling, 51
Soft typing, 51
Source-level transformation, 16, 44, 62,

141
Splicer, 13

Index 195

Stack machine, 143, 144
Statecharts, 33
Static allocation, 37
Structural block, 14, 20, 47
structure, 131
Synchronisation failure, 81
Synchronous channel, 113, 115
Synchronous language, 33
Synchronous timing analysis, 88
Synthesis constraint, 3
System Architect’s Workbench, 13, 141
System-on-a-Chip, 14

Tangram, 31, 52
Term-rewriting system, 30
TRAC, 30
Transformation function, 143
Transistor density, 1
Transition relation, 122

Verilog, 14, 19, 79, 129, 137
VGA interface, 162
VHDL, 19, 129, 137
VLIW architecture, 150

Yorktown Silicon Compiler, 11, 13

This page intentionally left blank

Lecture Notes in Computer Science

For information about Vols. 1–2865

please contact your bookseller or Springer-Verlag

Vol. 2996: V. Diekert, M. Habib (Eds.), STACS 2004. XVI,
658 pages. 2004.

Vol. 2993: R. Alur, G.J. Pappas (Eds.), Hybrid Systems:
Computation and Control. XII, 674 pages. 2004.

Vol. 2992: E. Bertino, S. Christodoulakis, D. Plexousakis,
V. Christophides, M. Koubarakis, K. Böhm, E. Ferrari
(Eds.), Advances in Database Technology - EDBT 2004.
XVIII, 877 pages. 2004.

Vol. 2991: R. Alt, A. Frommer, R.B. Kearfott, W. Luther
(Eds.), Numerical Software with Result Verification. X,
315 pages. 2004.

Vol. 2985: E. Duesterwald (Ed.), Compiler Construction.
X, 313 pages. 2004.

Vol. 2983: S. Istrail, M. Waterman, A. Clark (Eds.), Com-
putational Methods for SNPs and Haplotype Inference.
IX, 153 pages. 2004. (Subseries LNBI).

Vol. 2982: N. Wakamiya, M. Solarski, J. Sterbenz (Eds.),
Active Networks. XI, 308 pages. 2004.

Vol. 2981: C. Müller-Schloer, T. Ungerer, B. Bauer (Eds.),
Organic and Pervasive Computing –ARCS 2004. XI, 339
pages. 2004.

Vol. 2980: A. Blackwell, K. Marriott, A. Shimojima(Eds.),
Diagrammatic Representation and Inference. XV, 448
pages. 2004. (Subseries LNAI).

Vol. 2978: R. Groz, R.M. Hierons (Eds.), Testing of Com-
municating Systems. XII, 225 pages. 2004.

Vol. 2976: M. Farach-Colton (Ed.), LATIN 2004: Theo-
retical Informatics. XV, 626 pages. 2004.

Vol. 2973: Y. Lee, J. Li, K.-Y. Whang, D. Lee (Eds.),
Database Systems for Advanced Applications. XXIV, 925
pages. 2004.

Vol. 2970: F. Fernández Rivera, M. Bubak, A. Gómez Tato,
R. Doallo (Eds.), Grid Computing. XI, 328 pages. 2004.

Vol. 2964: T. Okamoto (Ed.), Topics in Cryptology – CT-
RSA 2004. XI, 387 pages. 2004.

Vol. 2963: R. Sharp, Higher-Level Hardware Synthesis.
XVI, 195 pages. 2004.

Vol. 2962: S. Bistarelli, Semirings for Soft Constraint
Solving and Programming. XII, 279 pages. 2004.

Vol. 2961: P. Eklund (Ed.), Concept Lattices. IX, 411
pages. 2004. (Subseries LNAI).

Vol. 2960: P.D. Mosses, CASL Reference Manual. XVII,
528 pages. 2004.

Vol. 2958: L. Rauchwerger (Ed.), Languages and Compil-
ers for Parallel Computing. XI, 556 pages. 2004.

Vol. 2957: P. Langendoerfer, M. Liu, I. Matta, V. Tsaous-
sidis (Eds.), Wired/Wireless Internet Communications.
XI, 307 pages. 2004.

Vol. 2954: F. Crestani, M. Dunlop, S. Mizzaro (Eds.), Mo-
bile and Ubiquitous Information Access. X, 299 pages.
2004.

Vol. 2953: K. Konrad, Model Generation for Natural Lan-
guage Interpretation and Analysis. XIII, 166 pages. 2004.
(Subseries LNAI).

Vol. 2952: N. Guelfi, E. Astesiano, G. Reggio (Eds.), Sci-
entific Engineering of Distributed Java Applications. X,
157 pages. 2004.

Vol. 2951: M. Naor (Ed.), Theory of Cryptography. XI,
523 pages. 2004.

Vol. 2949: R. De Nicola, G. Ferrari, G. Meredith (Eds.),
Coordination Models and Languages. X, 323 pages. 2004.

Vol. 2947: F. Bao, R. Deng, J. Zhou (Eds.), Public Key
Cryptography – PKC 2004. XI, 455 pages. 2004.

Vol. 2946: R. Focardi, R. Gorrieri (Eds.), Foundations of
Security Analysis and Design II. VII, 267 pages. 2004.

Vol. 2943: J. Chen, J. Reif (Eds.), DNA Computing. X,
225 pages. 2004.

Vol. 2941: M. Wirsing, A. Knapp, S. Balsamo (Eds.), Rad-
ical Innovations of Software and Systems Engineering in
the Future. X, 359 pages. 2004.

Vol. 2940: C. Lucena, A. Garcia, A. Romanovsky, J. Cas-
tro, P.S. Alencar (Eds.), Software Engineering for Multi-
Agent Systems II. XII, 279 pages. 2004.

Vol. 2939: T. Kalker, I.J. Cox, Y.M. Ro (Eds.), Digital
Watermarking. XII, 602 pages. 2004.

Vol. 2937: B. Steffen, G. Levi (Eds.), Verification, Model
Checking, and Abstract Interpretation. XI, 325 pages.
2004.

Vol. 2934: G. Lindemann, D. Moldt, M. Paolucci (Eds.),
Regulated Agent-Based Social Systems. X, 301 pages.
2004. (Subseries LNAI).

Vol. 2930: F. Winkler (Ed.), Automated Deduction in Ge-
ometry. VII, 231 pages. 2004. (Subseries LNAI).

Vol. 2926: L. van Elst, V. Dignum, A. Abecker (Eds.),
Agent-Mediated Knowledge Management. XI, 428 pages.
2004. (Subseries LNAI).

Vol. 2923: V. Lifschitz, I. Niemelä (Eds.), Logic Program-
ming and Nonmonotonic Reasoning. IX, 365 pages. 2004.
(Subseries LNAI).

Vol. 2919: E. Giunchiglia, A. Tacchella (Eds.), Theory and
Applications of Satisfiability Testing. XI, 530 pages. 2004.

Vol. 2917: E. Quintarelli, Model-Checking Based Data
Retrieval. XVI, 134 pages. 2004.

Vol. 2916: C. Palamidessi (Ed.), Logic Programming. XII,
520 pages. 2003.

Vol. 2915: A. Camurri, G. Volpe (Eds.), Gesture-Based
Communication in Human-Computer Interaction. XIII,
558 pages. 2004. (Subseries LNAI).

Vol. 2914: P.K. Pandya, J. Radhakrishnan (Eds.), FST TCS
2003: Foundations of Software Technology and Theoret-
ical Computer Science. XIII, 446 pages. 2003.

Vol. 2913: T.M. Pinkston, V.K. Prasanna (Eds.), High Per-
formance Computing - HiPC 2003. XX, 512 pages. 2003.
(Subseries LNAI).

Vol. 2911: T.M.T. Sembok, H.B. Zaman, H. Chen, S.R.
Urs, S.H. Myaeng (Eds.), Digital Libraries: Technology
and Management of Indigenous Knowledge for Global
Access. XX, 703 pages. 2003.

Vol. 2910: M.E. Orlowska, S. Weerawarana, M.M.P. Pa-
pazoglou, J. Yang (Eds.), Service-Oriented Computing -
ICSOC 2003. XIV, 576 pages. 2003.

Vol. 2909: K. Jansen, R. Solis-Oba (Eds.), Approximation
and Online Algorithms. VIII, 269 pages. 2004.

Vol. 2909: R. Solis-Oba, K. Jansen (Eds.), Approximation
and Online Algorithms. VIII, 269 pages. 2004.

Vol. 2908: K. Chae, M. Yung (Eds.), Information Security
Applications. XII, 506 pages. 2004.

Vol. 2907: I. Lirkov, S. Margenov, J. Wasniewski, P.
Yalamov (Eds.), Large-Scale Scientific Computing. XI,
490 pages. 2004.

Vol. 2906: T. Ibaraki, N. Katoh, H. Ono (Eds.), Algorithms
and Computation. XVII, 748 pages. 2003.

Vol. 2905: A. Sanfeliu, J. Ruiz-Shulcloper (Eds.), Progress
in Pattern Recognition, Speech and Image Analysis. XVII,
693 pages. 2003.

Vol. 2904: T. Johansson, S. Maitra (Eds.), Progress in
Cryptology - INDOCRYPT 2003. XI, 431 pages. 2003.

Vol. 2903: T.D. Gedeon, L.C.C. Fung (Eds.), AI 2003: Ad-
vances in Artificial Intelligence. XVI, 1075 pages. 2003.
(Subseries LNAI).

Vol. 2902: F.M. Pires, S.P. Abreu (Eds.), Progress in Artifi-
cial Intelligence. XV, 504 pages. 2003. (Subseries LNAI).

Vol. 2901: F. Bry, N. Henze, (Eds.), Prin-
ciples and Practice of Semantic Web Reasoning. X, 209
pages. 2003.

Vol. 2900: M. Bidoit, P.D. Mosses (Eds.), Casl User Man-
ual. XIII, 240 pages. 2004.

Vol. 2899: G. Ventre, R. Canonico (Eds.), Interactive Mul-
timedia on Next Generation Networks. XIV, 420 pages.
2003.

Vol. 2898: K.G. Paterson (Ed.), Cryptography and Coding.
IX, 385 pages. 2003.

Vol. 2897: O. Balet, G. Subsol, P. Torguet (Eds.), Virtual
Storytelling. XI, 240 pages. 2003.

Vol. 2896: V.A. Saraswat (Ed.), Advances in Computing
Science –ASIAN 2003. VIII, 305 pages. 2003.

Vol. 2895: A. Ohori (Ed.), Programming Languages and
Systems. XIII, 427 pages. 2003.

Vol. 2894: C.S. Laih (Ed.), Advances in Cryptology - ASI-
ACRYPT 2003. XIII, 543 pages. 2003.

Vol. 2893: J.-B. Stefani, I. Demeure, D. Hagimont (Eds.),
Distributed Applications and Interoperable Systems. XIII,
311 pages. 2003.

Vol. 2892: F. Dau, The Logic System of Concept Graphs
with Negation. XI, 213 pages. 2003. (Subseries LNAI).

Vol. 2891: J. Lee, M. Barley (Eds.), Intelligent Agents
and Multi-Agent Systems. X, 215 pages. 2003. (Subseries
LNAI).

Vol. 2890: M. Broy, A.V. Zamulin (Eds.), Perspectives of
System Informatics. XV, 572 pages. 2003.

Vol. 2889: R. Meersman, Z. Tari (Eds.), On The Move
to Meaningful Internet Systems 2003: OTM 2003 Work-
shops. XIX, 1071 pages. 2003.

Vol. 2888: R. Meersman, Z. Tari, D.C. Schmidt (Eds.), On
The Move to Meaningful Internet Systems 2003: CoopIS,
DOA, and ODBASE. XXI, 1546 pages. 2003.

Vol. 2887: T. Johansson (Ed.), Fast Software Encryption.
IX, 397 pages. 2003.

Vol. 2886: I. Nyström, G. Sanniti di Baja, S. Svensson
(Eds.), Discrete Geometry for Computer Imagery. XII,
556 pages. 2003.

Vol. 2885: J.S. Dong, J. Woodcock (Eds.), Formal Meth-
ods and Software Engineering. XI, 683 pages. 2003.

Vol. 2884: E. Najm, U. Nestmann, P. Stevens (Eds.), For-
mal Methods for Open Object-Based Distributed Systems.
X, 293 pages. 2003.

Vol. 2883: J. Schaeffer, M. Müller, Y. Björnsson (Eds.),
Computers and Games. XI, 431 pages. 2003.

Vol. 2882: D. Veil, Matchmaking in Electronic Markets.
XV, 180 pages. 2003. (Subseries LNAI).

Vol. 2881: E. Horlait, T. Magedanz, R.H. Glitho (Eds.),
Mobile Agents for Telecommunication Applications. IX,
297 pages. 2003.

Vol. 2880: H.L. Bodlaender (Ed.), Graph-Theoretic Con-
cepts in Computer Science. XI, 386 pages. 2003.

Vol. 2879: R.E. Ellis, T.M. Peters (Eds.), Medical Image
Computing and Computer-Assisted Intervention - MIC-
CAI 2003. XXXIV, 1003 pages. 2003.

Vol. 2878: R.E. Ellis, T.M. Peters (Eds.), Medical Image
Computing and Computer-Assisted Intervention - MIC-
CAI 2003. XXXIII, 819 pages. 2003.

Vol. 2877: T. Böhme, G. Heyer, H. Unger (Eds.), Innova-
tive Internet Community Systems. VIII, 263 pages. 2003.

Vol. 2876: M. Schroeder, G. Wagner (Eds.), Rules and
Rule Markup Languages for the Semantic Web. VII, 173
pages. 2003.

Vol. 2875: E. Aarts, R. Collier, E.v. Loenen, B.d. Ruyter
(Eds.), Ambient Intelligence. XI, 432 pages. 2003.

Vol. 2874: C. Priami (Ed.), Global Computing. XIX, 255
pages. 2003.

Vol. 2871: N. Zhong, S. Tsumoto, E. Suzuki
(Eds.), Foundations of Intelligent Systems. XV, 697 pages.
2003. (Subseries LNAI).

Vol. 2870: D. Fensel, K.P. Sycara, J. Mylopoulos (Eds.),
The Semantic Web - ISWC 2003. XV, 931 pages. 2003.

Vol. 2869: A. Yazici, (Eds.), Computer and Infor-
mation Sciences - ISCIS 2003. XIX, 1110 pages. 2003.

Vol. 2868: P. Perner, R. Brause, H.-G. Holzhütter (Eds.),
Medical Data Analysis. VIII, 127 pages. 2003.

Vol. 2866: J. Akiyama, M. Kano (Eds.), Discrete and Com-
putational Geometry. VIII, 285 pages. 2003.

		2005-05-11T15:35:36+0800
	TeAm YYePG
	I attest to the accuracy and integrity of this document

