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10.1 The Concept of States

For resistive (or memoryless) circuits, given the circuit structure, the present output depends only on
the present input. In order to analyze a dynamic circuit, however, in addition to the present input it is
also necessary to know the state of the circuit at some time t0. The state of the circuit at t0 represents the
condition of the circuit at t = t0, and is related to the energy storage of the circuit, or the voltage (or
electric charge) across the capacitor and the currents (or magnetic fluxes) through the inductors. These
voltages and currents are considered as the state of the circuit at t = t0. For t > t0, the behavior of the
circuit is completely characterized by these variables. In view of the preceding, a definition for the state
of a circuit can now be given.

Definition: The state of a circuit at time t0 is the minimum amount of information at t0 that, along with
the input to the circuit for t ≥ t0, uniquely determines the behavior of the circuit for t ≥ t0.

The concept of states is closely related to the order of complexity of the circuit. The order of complexity
of a circuit is the minimum number of initial conditions which, along with the input, is sufficient to
determine the future behavior of the circuit. Furthermore, if a circuit is described by an nth-order linear
differential equation, it is well known that the general solution for t ≥ t0 contains n arbitrary constants
which are determined by n initial conditions. This set of n initial conditions contains information
concerning the circuit prior to t = t0 and constitutes the state of the circuit at t = t0. Thus, the order of
complexity or the order of a circuit is the same as the order of the differential equation that describes
the circuit, and it is also the same as the number of state variables that can be defined in a circuit. For
an nth-order circuit, the state of the circuit at t = t0 consists of a set of n numbers that denotes a vector
in an n-dimensional state space spanned by the n corresponding state variables. This key number n can
simply be obtained by inspection of the circuit. Knowing the total number of energy storage elements,
nLC, the total number of independent capacitive loops, nC, and the total number of independent inductive
cutsets, nL, the order of complexity n of a circuit is given by

(10.1)

A capacitive loop is defined as one that consists of only capacitors and possibly voltage sources while an
inductive cutset represents a cutset that contains only inductors and possibly current sources. The
following two examples illustrate the concept of states.

n n n nLC L C= − −
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10-2 Circuit Analysis and Feedback Amplifier Theory

Example 1. Consider a simple RC-circuit in Figure 10.1. The circuit equation is

(10.2)

and the corresponding capacitor voltage is easily obtained as

(10.3)

For this first-order circuit, it is clear from (10.3) the capacitor voltage for t ≥ t0 is uniquely determined
by the initial condition vc(t0) and the input voltage vin for t ≥ t0. This is independent of the charging
circuit for the capacitor prior to t0. Hence, vc(t0) is the state of the circuit at t = t0 and vc(t) is regarded
as the state variable of the circuit.

Example 2. As another illustration, consider the circuit of Figure 10.2, which is a slight modification of
the circuit considered in the previous example. The circuit equation and its corresponding solution are
readily obtained as

(10.4)

and

(10.5)

respectively. Even though two energy storage elements exist, one can only arbitrarily specify one inde-
pendent initial condition. Once the initial condition on C1, vC1

(t0), is specified, the initial voltage on C2

is automatically constrained by the loop equation vC2
(t) = VC1

(t) – E at t0. The circuit is thus still first
order and only one state variable can be assigned for the circuit. It is clear from (10.5) that with the
input vin, vC1

(t0) is the minimum amount of information that is needed to uniquely determine the behavior
of this circuit. Hence, vC1

(t) is the state variable of the circuit. One can just as well analyze the circuit by
solving a first-order differential equation in terms of vC2

(t) with vC2
(t0) defined as the state of the circuit

at t = t0. The selection of state variables is thus not unique. In this example, either vC1
(t) or vC2

(t) can be
defined as the state variable of the circuit. In fact, it is easily shown that any linear combination of vC1

(t)
and vC2

(t) can also be regarded as state variables.

FIGURE 10.1  A simple RC circuit.

FIGURE 10.2  The circuit for Example 2.
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State-Variable Techniques 10-3

10.2 State-Variable Formulation via Network Topology

Various mathematical descriptions of circuits are available. Depending on the type of analysis used,
different formulations of circuit equations may result. In the state variable formulation, a system of n
first-order differential equations is written in the form

(10.6)

where x is an n x 1 vector consisting of n state variables for an nth-order circuit and t represents the time
variable. This set of equations is usually referred to as the state equation in normal form.

When compared with other circuit descriptions, the state-variable representation is not necessarily the
simplest. It does, however, simultaneously provide the solution of all state variables and hence yields the
behavior of the entire circuit. The state equation is also particularly suitable for analysis by numerical
techniques. Another distinct advantage of the state-variable approach is that it can be easily extended to
nonlinear and/or time varying circuits.

Example 3. Consider the linear circuit of Figure 10.3. By inspection, the order of complexity of this circuit
is three. Hence, three state variables are selected as x1 = vC1

, x2 = vC2
, and x3 = iL. Because the left-hand side

of the normal form equation is the derivative of the state vector, it is necessary to express the voltage across
the inductors and the currents through the capacitors in terms of the state variables and the input sources.

The current through C1 can be obtained by writing a Kirchhoff ’s current law (KCL) equation at node
1 to yield

or

(10.7)

In a similar manner, applying KCL to node 2 gives

or

(10.8)

FIGURE 10.3  The circuit for
Example 3.
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10-4 Circuit Analysis and Feedback Amplifier Theory

The expression for the inductor voltage is derived by applying KVL to the mesh containing L, R2, C2,
and C1 yielding

or

(10.9)

Equations (10.7), (10.8), and (10.9) are the state equations that can be expressed in matrix form as

(10.10)

Any number of branch voltages and/or currents may be chosen as output variables. If iR1
 and vR2

 are
considered as outputs for this example, then the output equations, written as a linear combination of
state variables and input sources become

(10.11)

(10.12)

or in matrix form

(10.13)

In general, for an nth-order linear circuit with r input sources and m outputs, the state and output
equations are represented by

(10.14)

and

(10.15)

where x is an n × 1 state vector, u is an r × 1 vector representing the r input sources, m × 1-vector y
denotes the m output variables, A, B, C, and D are of order n × n, n × r, m × n, and m × r, respectively.

In the preceding example, the state equations are obtained by inspection for a simple circuit by writing
voltage equations for inductors and current equations for capacitors and properly eliminating the non-
state variables. For more complicated circuits, a systematic procedure for eliminating the nonstate vari-
ables is desirable. Such a procedure can be generated with the aid of a proper tree. A proper tree is a tree
obtained from the associated network graph that contains all capacitors, independent voltage sources,
and possibly some resistive elements, but does not contain inductors and independent current sources.
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The selection of such a tree is always possible if the circuit contains no capacitive loops and no inductive
cutsets. The reason for providing such a tree for writing state equations is obvious. With each tree branch,
there is a unique cutset known as the fundamental cutset that contains only one tree branch and some
links. Thus, if capacitors are in the tree, a fundamental cutset equation may be written for the corre-
sponding currents through the capacitors. Similarly, every link (together with some tree branches) forms
a unique loop called a fundamental loop. If inductors are selected as links, inductor voltages may be
obtained by writing the corresponding fundamental loop equations. With the selection of a proper tree,
state variables can be defined as the capacitor tree-branch voltages and inductive link currents. In view
of the above observation, a systematic procedure for writing state equations can now be stated as follows:

STEP 1: From the associated directed graph, pick a proper tree.

STEP 2: Write fundamental cutset equations for the capacitive tree branches and express the capacitor
currents in terms of link currents.

STEP 3: Write fundamental loop equations for the inductive links and express the inductor voltages in
terms of tree-branch voltages.

STEP 4: Define the state variables. Capacitive tree-branch voltages and inductive link currents are selected
as state variables. Other quantities such as capacitor charges and inductor fluxes may also be used.

STEP 5: Group the branch relations and the remaining fundamental equations according to their element
types into three sets: resistor, inductor, and capacitor equations. Solve for the nonstate variables that
appeared in the equations obtained in Steps 2 and 3 from the corresponding set of equations in terms
of the state variables and independent sources.

STEP 6: Substitute the result of Step 5 into the equations obtained in Steps 2 and 3, and rearrange them
in normal form.

Example 4. Consider again the same circuit in Figure 10.3. The various steps outlined previously are
used to write the state equations.

STEP 1: The associated graph and the proper tree of the circuit are shown in Figure 10.4. The tree
branches include vs, C1, C2, and R2.

STEP 2: The fundamental cutset associated with C1 consists of tree branch C1 and two links R1 and L.
By writing the current equation for this cutset, the capacitor current ic1

 is expressed in terms of link
currents as

(10.16)

FIGURE 10.4  The directed graph associated with the circuit of Figure 10.3.
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10-6 Circuit Analysis and Feedback Amplifier Theory

Similarly, the fundamental cutset {L, C2, R3, is} associated with C2 leads to

(10.17)

STEP 3: The fundamental loop associated with link L consists of L and tree branches R2, C2, and C1. By
writing the voltage equation around this loop, the inductor voltage can be written in terms of tree-branch
voltages as

(10.18)

STEP 4: The tree-branch capacitor voltages vC1
, VC2

, and inductive link current iL are defined as the state
variables of the circuit.

STEP 5: The branch relation and the remaining two fundamental loops for R1 and R2, and the fundamental
cutset equation for R2 are grouped into three sets.

Resistor equations:

(10.19)

(10.20)

(10.21)

(10.22)

(10.23)

(10.24)

Inductor equations:

(10.25)

Capacitor equations:

(10.26)

(10.27)

The resistive link currents rR1
, iR3

, and resistive tree-branch voltage VR2
 are solved from (10.19)–(10.24)

in terms of the inductive link current iL, the capacitive tree-branch voltages vC1
 and vC2

, and sources as

(10.28)
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(10.29)

and

(10.30)

For this example, iL, vC1
, and vC2

 have already been defined as state variables.

STEP 6: Substituting (10.28)–(10.30) into (10.16), (10.17), and (10.18) yields the desired state equation
in matrix form:

(10.31)

which, as expected, is the same as (10.10) obtained previously by inspection.
As mentioned earlier, the selection of state variables is not unique. Instead of using capacitor voltages

and inductor currents as state variables, basic quantities such as the capacitor charges and inductor fluxes
may also be considered. If q1, q2, and φL are defined as state variables in Step 4, the inductive link current
iL and capacitive tree-branch voltages, vC1

 and vC2
, can be solved from the inductor and capacitor equations

in terms of state variables and possibly sources in Step 5 as

(10.32)

(10.33)

(10.34)

Finally, state equations are obtained by substituting Eqs. (10.28)–(10.30) and (10.32)–(10.34) into
(10.16)–(10.18) as

(10.35)

In the systematic procedure outlined previously, it is assumed that the network exists with neither
inductive cutsets nor capacitive loops so that the selection of proper tree is always guaranteed. For networks
that do have these constraints, it is not possible to include all the capacitors in a tree without forming a
closed path. Also, in order for a tree to contain all the nodes, some inductors will have to be included in a
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10-8 Circuit Analysis and Feedback Amplifier Theory

tree. A tree that includes independent voltage sources, some resistors, and a maximum number of
capacitors but no independent current sources is called a modified proper tree. In writing a state equation
for such networks, the same systematic procedure can be applied with the selection of a modified proper
tree. However, if capacitor tree-branch voltages and inductive link currents are defined as the state
variables, the standard (A, B, C, D) description (10.14) and (10.15) may not exist. In fact, if inductive
cutsets contain independent current sources and/or capacitive loops contain independent voltage sources,
the derivative of these sources will appear in the state equation and the general equation is of the form

(10.36)

where B1 and B2 are n × r matrices and A, x, and u are defined as before. To recast (10.36) into the
standard form, it is necessary to redefine.

(10.37)

as new state variables. Substituting (10.37) into (10.36), yields

(10.38)

where 

(10.39)

It is noted from (10.37), the new state variables represent a linear combination of sources and capacitor
voltages or inductor currents which, except for the mathematical convenience, may not have sound
physical significance. To avoid such state variables and transformation (10.37), Step 4 of the systematic
procedure described earlier needs to be modified. By defining state variables as the algebraic sum of
capacitor charges in the fundamental cutset associated with each of the capacitor tree branches, and the
algebraic sum of inductor fluxes in the fundamental loop associated with each of the inductive links, the
resulting state equation will be in the standard form. The preceding generalizations are illustrated by the
following two examples.

Example 5. As a simple illustration, consider the same circuits given in Figure 10.2, where the constant
DC voltage source E is replaced by a time-varying source e(t). It can easily be demonstrated that the
equation describing the circuit now becomes

(10.40)

The preceding equation is the same as the state Eq. (10.4) with the exception of an additional term
involving the first-order derivative of source e(t). Equation (10.40) is clearly not the standard state
equation described in (10.41) with capacitor voltage vC1

 defined as the state variable.

Example 6. As another illustration, consider the circuit shown in Figure 10.5 which consists of an
inductive cutset {L1, L2, is} and a capacitive loop (C1, vs2

, C2). The state equations are determined from
the systematic procedure by first using the transformation (10.37) and then by defining the algebraic
sum of charges and fluxes as state variables.

STEP 1: The directed graph of the circuit is shown in Figure 10.6 where branches denoted by vs1
, vs2

, C1,
R2, and L2 are selected to form a modified proper tree.
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STEP 2: The fundamental cutset associated with C1 consists of branches R1, C1, L1, is, C2, and R3. Applying
KCL to this cutset yields

(10.41)

STEP 3: The fundamental loop equation associated with the inductive link L1 is given by 

(10.42)

where the link voltage vL1
 has been expressed in terms of tree-branch voltages.

STEP 4: In the first illustration, the tree-branch capacitor voltage vC1
 and the inductive link current iL1

are defined as the state variables.

STEP 5: The branch relation and the remaining two fundamental equations are grouped into the following
three sets:

Resistor equations:

(10.43)

(10.44)

(10.45)

FIGURE 10.5  A circuit with a capacitive loop and an inductive cutset.

FIGURE 10.6  The directed graph associated with the circuit of Figure 10.5.
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(10.46)

(10.47)

(10.48)

Inductor equations:

(10.49)

(10.50)

(10.51)

Capacitor equations:

(10.52)

(10.53)

(10.54)

For this example, the nonstate variables are identified as iR1
, vR2

, iR3
, vL2

, and iC2
, from (10.41) and (10.42).

These variables are now solved from the corresponding group of equations in terms of state variables
and independent sources:

(10.55)

(10.56)

(10.57)

(10.58)

(10.59)

STEP 6: Assuming the existence of the first-order derivatives of sources with respect to time and substi-
tuting eqs. (10.50), (10.53), and (10.55)–(10.59) into (10.41) and (10.42) yields
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(10.60)

Clearly, Eq. (10.60) is not in the standard form. Applying transformation (10.37) with x1 = vc1
, x1 = iL2

,
u1 = vs1

, u2 = vs2
, and u3 = is gives the state equation in normal form

(10.61)

where new state variables are defined as

(10.62)

Alternatively, if the state variables are defined in Step 4 as

(10.63)

(10.64)
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10-12 Circuit Analysis and Feedback Amplifier Theory

then Eqs. (10.41) and (10.42) become

(10.65)

(10.66)

respectively. In Step 5, the resistive link currents iR1
, iR3

, and the resistive tree-branch voltage VR2
 are solved

from resistive eqs. (10.43)–(10.48) in terms of inductive link currents, capacitive tree-branch voltages,
and independent sources. The results are those given in (10.55)–(10.57). By solving the inductor Eqs.
(10.49), (10.50), and (10.64), inductive link current iL1

 is expressed as a function of state variables and
independent sources:

(10.67)

Similarly, solving vC1
 from capacitor Eqs. (10.52)–(10.54), and (10.63), yields the capacitor tree-branch

voltage

(10.68)

Finally, in Step 6, Eqs. (10.55)–(10.57), (10.67), and (10.68) are substituted into (10.65) and (10.66) to
form the state equation in normal form:

(10.69)

10.3 Natural Response and State Transition Matrix

In the preceding section, the state-variable description has been presented for linear time-invariant
circuits. The response of the circuit depends on the solution of the state equation. The behavior of the
circuit due to any arbitrary input sources can easily be obtained once the zero-input response or the
natural response of the circuit is known. In order to find its natural response, the homogeneous state
equation of the circuit

(10.70)

is considered, where independent source term u(t) has been set equal to zero. The preceding state equation
is analogous to the scalar equation

(10.71)

where the solution is given by 

(10.72)
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(10.73)

if the initial time is specified at t = t0.
It is thus reasonable to assume a solution for (10.70) of the form

(10.74)

where λ is a scalar constant and p is a constant n-vector. Substituting (10.74) into (10.70) leads to

(10.75)

Therefore, (10.74) is a solution of (10.70) precisely when p is an eigenvector of A associated with the
eigenvalue λ. For simplicity, it is assumed that A has n distinct eigenvalues λ1, λ2, …, λn. Because the
corresponding eigenvectors denoted by p1, p2, …, pn are linearly independent, the general solution of
(10.70) can be uniquely written as a linear combination of n distinct normal modes of the form (10.74):

(10.76)

where c1, c2, …, cn are n arbitrary constants determined by the given initial conditions. Specifically,

(10.77)

The general solution (10.76) can also be written in the form

(10.78)

where the exponential function of a matrix is defined by a power series:

(10.79)

In fact, taking the derivative of (10.78) with respect to t yields

(10.80)

Also, at t = t0, (10.78) gives
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10-14 Circuit Analysis and Feedback Amplifier Theory

(10.81)

Thus, expression (10.78) satisfies both eq. (10.70) and the initial conditions and hence is the unique
solution. The matrix e(t–t0)A, usually denoted by �(t – t0), is called the state transition matrix or the
fundamental matrix of the circuit described by (10.70). The transition of the initial state x(t0) to the state
x(t) at any time t is thus governed by

(10.82)

where

(10.83)

is an n × n matrix with the following properties:

(10.84)

(10.85)

(10.86)

(10.87)

(10.88)

Once the state transition matrix is known, the solution of the state equation can be obtained from (10.82).
In general, it is rather difficult to obtain a closed-form solution from the infinite series representation
of the state transition matrix. The formula given by (10.79) is useful only if numerical solution by digital
computer is desired. Several methods are available for finding a closed form expression for �(t – t0). The
relationship between solution (10.76) and the state transition matrix is first established.

For simplicity, let t0 = 0. According to (10.82), the first column of �(t) is the solution of the state
equation generated by the initial condition

(10.89)

Indeed, if (10.89) is substituted into (10.82), then

(10.90)
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which can be computed from (10.76) and the arbitrary constants ci =
∆ ci

(1) for i = 1, 2, …, n are solved
from (10.77). The first column of the state transition matrix is thus given by

(10.91)

Instead of (10.89), if

(10.92)

is used, the arbitrary constants c1, c2, …, cn denoted by c1
(2), c2

(2), … cn
(2) are solved. Then, the second column

of �(t) is given

(10.93)

In a similar manner, the remaining columns of �(t) are determined.
The closed form expression for state transition matrix can also be obtained by means of a similarity

transformation of the form

or

(10.94)

where P is a nonsingular matrix. If the eigenvalues of A, λ1, λ2, …, λn, are assumed to be distinct, J is a
diagonal matrix with eigenvalues on its main diagonal:

(10.95)

and

(10.96)
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10-16 Circuit Analysis and Feedback Amplifier Theory

where pi’s, for i = 1,2,… n, are the corresponding eigenvectors associated with the eigenvalue λi, for i =
1,2,….,n. Substituting (10.94) into (10.83), the state transition matrix can now be written in the closed form

(10.97)

where

(10.98)

is a diagonal matrix.
In the more general case, where the A matrix has repeated eigenvalues, a diagonal matrix of the form

(10.95) may not exist. However, it can be shown that any square matrix A can be transformed by a
similarity transformation to the Jordan canonical form

(10.99)

where Ji’s, for i = 1, 2,…, l are known as Jordan blocks. Assuming that A has m distinct eigenvalues, λi,
with multiplicity ri, for i = 1, 2, …, m, and r1 + r2 + ⋅ ⋅ ⋅ + rm = n. Associated with each λi there may exist
several Jordan blocks. A Jordon block is a block diagonal matrix of order k × k(k ≤ ri ) with λi on its main
diagonal, all 1’s on the superdiagonal, and zeros elsewhere. In the special case when k = 1, the Jordan
block reduces to a 1 × 1 scalar block with only one element λi.

In fact, the number of Jordan blocks associated with the eigenvalue λi is equal to the dimension of the
null space of (λi I – A). For each k × k Jordan block J(k) associated with the eigenvalue λi of the form

(10.100)

the exponential function of J(k) takes the form

(10.101)
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and the corresponding k columns of P, known as the generalized eigenvectors, satisfy the equations

(10.102)

The closed form expression �(t – t0) for this general case now becomes

(10.103)

where

(10.104)

and each of the e(t–t0)Ji, for i = 1, 2, …, l, is of the form given in (10.101).
The third approach for obtaining closed form expression for the state transition matrix involves the

Laplace transform technique. Taking the Laplace transform of (10.70) yields

sX(s) – x(0) = AX(s)

or

X(s) = (sI – A)–1 x(0)  (10.105)

where (sI – A)–1 is known as the resolvent matrix. The time response

(10.106)

is obtained by taking the inverse Laplace transform of (10.105). It is observed by comparing (10.106) to
(10.82) and (10.83) with t0 = 0 that

(10.107)

By way of illustration, the following example is considered. The state transition matrix is obtained by
using each of the three approaches presented previously.

Example 7. Consider the parallel RLC circuit in Figure 10.7. The state equation of the circuit is obtained as

(10.108)
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With R = 2/3 Ω, L = 1 H, and C = 1/2 F, the A matrix becomes

(10.109)

(a) Normal Mode Approach: The eigenvalues and the corresponding eigenvectors of the A are found to be

λ1 = –1 λ2 = –2 (10.110)

and

(10.111)

Therefore, the natural response of the circuit is given as a linear combination of the two distinct normal
modes as

(10.112)

When evaluated at t = 0, (10.112) becomes

(10.113)

In order to find the first column of �(t), it is assumed that

(10.114)

With this initial condition, the solution of (10.113) becomes 

(10.115)

Substituting (10.115) into (10.112) results in the first column of �(t):

(10.116)

FIGURE 10.7  A parallel RLC circuit.
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Similarly, for

(10.117)

constants c1 and c2 are solved from (10.113) to give

(10.118)

The second column of �(t):

(10.119)

is obtained by substituting (10.118) into (10.112). Combining (10.116) and (10.119) yields the state
transition matrix in closed form

(10.120)

(b) Similarity Transformation Method: The eigenvalues are distinct, so the nonsingular transformation P
is constructed from (10.96) by the eigenvectors of A:

(10.121)

with

(10.122)

Substituting λ1, λ2, and P into (10.97) and (10.98) yields the desired state transition matrix

(10.123)

which is in agreement with (10.120).

(c) Laplace Transform Technique: The state transition matrix can also be computed in the frequency
domain from (10.107). The resolvent matrix is

(10.124)
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where partial-fraction expansion has been applied. Taking the inverse Laplace transform of (10.124)
yields the same closed form expression as given previously in (10.120) for �(t).

10.4 Complete Response

When independent sources are present in the circuit, the complete response depends on the initial states
of the circuits as well as the input sources. It is well known that the complete response is the sum of the
zero-input (or natural) response and the zero-state (or forced) response and satisfies the nonhomoge-
neous state equation

(10.125)

subject to the given initial condition x(t0) = x0. Equation (10.125) is again analogous to the scalar equation

(10.126)

which has the unique solution of the form

(10.127)

It is thus assumed that the solution to the state equation is given by

(10.128)

Indeed, one can show by direct substitution that (10.128) satisfies the state Eq. (10.125). Differentiating
both sides of (10.128) with respect to t yields

(10.129)

Also, at t = t0, (10.128) becomes
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The assumed solution (10.128) thus satisfies both the state Eq. (10.125) and the given initial condition.
Hence, x(t) as given by (10.128) is the unique solution.

It is observed from (10.128) that if u(t) is set to zero, the solution reduces to the zero-input response
or the natural response given in (10.82). On the other hand, if the original circuit is relaxed, i.e., x(t0) =
0, the solution represented by the convolution integral, the second term on the right-hand side of (10.128),
is the forced response on the zero-state response. Thus, Eq. (10.128) verifies the fact that the complete
response is the sum of the zero-input response and the zero-state response. The previous result is
illustrated by means of the following example.

Example 8. Consider again the same circuit given in Example 7, where the input current source is assumed
to be a unit step function applied to the circuit at t = 0.

The state equation of the circuit is found from (10.108) to be

(10.131)

where the state transition matrix �(t) is given in (10.120).
The zero-state response for t > 0 is obtained by evaluating the convolution integral indicated in

(10.128):

(10.132)

By adding the zero-input response represented by �(t)x(0) to (10.132), the complete response for any
given initial condition x(0) becomes

(10.133)

for t > 0.
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