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11.1 Introduction

Feedback, whether intentional or parasitic, is pervasive of all electronic circuits and systems. In general,
feedback is comprised of a subcircuit that allows a fraction of the output signal of an overall network to
modify the effective input signal in such a way as to produce a circuit response that can differ substantially
from the response produced in the absence of such feedback. If the magnitude and relative phase angle
of the fed back signal decreases the magnitude of the signal applied to the input port of an amplifier, the
feedback is said to be negative or degenerative. On the other hand, positive (or regenerative) feedback,
which gives rise to oscillatory circuit responses, is the upshot of a feedback signal that increases the
magnitude of the effective input signal. Because negative feedback produces stable circuit responses, the
majority of all intentional feedback architectures is degenerative [1], [2]. However, parasitic feedback
incurred by the energy storage elements associated with circuit layout, circuit packaging, and second-
order high-frequency device phenomena often degrades an otherwise degenerative feedback circuit into
either a potentially regenerative or severely underdamped network.

Intentional degenerative feedback applied around an analog network produces four circuit perfor-
mance benefits. First, negative feedback desensitizes the gain of an open-loop amplifier (an amplifier
implemented without feedback) with respect to variations in circuit element and active device model
parameters. This desensitization property is crucial in view of parametric uncertainties caused by aging
phenomena, temperature variations, biasing perturbations, and nonzero fabrication and manufacturing
tolerances. Second, and principally because of the foregoing desensitization property, degenerative feed-
back reduces the dependence of circuit responses on the parameters of inherently nonlinear active devices,
thereby reducing the total harmonic distortion evidenced in open loops. Third, negative feedback broad-
bands the dominant pole of an open-loop amplifier, thereby affording at least the possibility of a closed-
loop network with improved high-frequency performance. Finally, by modifying the driving-point input
and output impedances of the open-loop circuit, negative feedback provides a convenient vehicle for
implementing voltage buffers, current buffers, and matched interstage impedances.
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11-2 Circuit Analysis and Feedback Amplifier Theory

The disadvantages of negative feedback include gain attenuation, a closed-loop configuration that is
disposed to potential instability, and, in the absence of suitable frequency compensation, a reduction in
the open-loop gain-bandwidth product. In uncompensated feedback networks, open-loop amplifier gains
are reduced in almost direct proportion to the amount by which closed-loop amplifier gains are desen-
sitized with respect to open-loop gains. Although the 3-dB bandwidth of the open-loop circuit is increased
by a factor comparable to that by which the open-loop gain is decreased, the closed-loop gain-bandwidth
product resulting from uncompensated degenerative feedback is never greater than that of the open-loop
configuration [3]. Finally, if feedback is incorporated around an open-loop amplifier that does not have
a dominant pole [4], complex conjugate closed-loop poles yielding nonmonotonic frequency responses
are likely. Even positive feedback is possible if substantive negative feedback is applied around an open-
loop amplifier for which more than two poles significantly influence its frequency response.

Although the foregoing detail is common knowledge deriving from Bode’s pathfinding disclosures [5],
most circuit designers remain uncomfortable with analytical procedures for estimating the frequency
responses, I/O impedances, and other performance indices of practical feedback circuits. The purposes
of this section are to formulate systematic feedback circuit analysis procedures and ultimately, to dem-
onstrate their applicability to six specific types of commonly used feedback architectures. Four of these
feedback types, the series-shunt, shunt-series, shunt-shunt, and series-series configurations, are single-
loop architectures, while the remaining two types are the series-series/shunt-shunt and series-
shunt/shunt-series dual-loop configurations.

11.2 Methods of Analysis

Several standard techniques are used for analyzing linear feedback circuits [6]. The most straightforward
of these entails writing the Kirchhoff equilibrium equations for the small-signal model of the entire
feedback system. This analytical tack presumably leads to the idealized feedback circuit block diagram
abstracted in Figure 11.1. In this model, the circuit voltage or current response, XR, is related to the
source current or voltage excitation, XS, by

(11.1)

where Gcl is the closed-loop gain of the feedback circuit, the feedback factor ƒ is the proportion of circuit
response fed back for antiphase superposition with the source signal, and Go represents the open-loop
gain. The product ƒGo is termed the loop gain T.

Equation (11.1) demonstrates that, for loop gains with magnitudes that are much larger than one, the
closed-loop gain collapses to 1/ƒ, which is independent of the open-loop gain. To the extent that the

FIGURE 11.1  Block diagram model of a feedback network.
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Feedback Amplifier Theory 11-3

open-loop amplifier, and not the feedback subcircuit, contains circuit elements and other parameters
that are susceptible to modeling uncertainties, variations in the fabrication of active and passive elements,
and nonzero manufacturing tolerances, large loop gain achieves a desirable parametric desensitization.
Unfortunately, the determination of Go and ƒ directly from the Kirchhoff relationships is a nontrivial
task, especially because Go is rarely independent of ƒ in practical electronics. Moreover, (11.1) does not
illuminate the manner in which the loop gain modifies the driving-point input and output impedances
of the open-loop amplifier.

A second approach to feedback network analysis involves modeling the open-loop, feedback, and
overall closed-loop networks by a homogeneous set of two-port parameters [7]. When the two-port
parameter model is selected judiciously, the two-port parameters for the closed-loop network derive from
a superposition of the respective two-port parameters of the open-loop and feedback subcircuits. Given
the resultant parameters of the closed-loop circuit, standard formulas can then be exploited to evaluate
closed-loop values of the circuit gain and the driving-point input and output impedances.

Unfortunately, several limitations plague the utility of feedback network analysis predicated on two-
port parameters. First, the computation of closed-loop two-port parameters is tedious if the open-loop
configuration is a multistage amplifier, or if multiloop feedback is utilized. Second, the two-loop method
of feedback circuit analysis is straightforwardly applicable to only those circuits that implement global
feedback (feedback applied from output port to input port). Many single-ended feedback amplifiers
exploit only local feedback, wherein a fraction of the signal developed at the output port is fed back to
a terminal pair other than that associated with the input port. Finally, the appropriate two-port param-
eters of the open-loop amplifier can be superimposed with the corresponding parameter set of the
feedback subcircuit if and only if the Brune condition is satisfied [8]. This requirement mandates equality
between the preconnection and postconnection values of the two-port parameters of open-loop and
feedback cells, respectively. The subject condition is often not satisfied when the open-loop amplifier is
not a simple three-terminal two-port configuration.

The third method of feedback circuit analysis exploits Mason’s signal flow theory [9–11]. The circuit
level application of this theory suffers few of the shortcomings indigenous to block diagram and two-
port methods of feedback circuit analysis [12]. Signal flow analyses applied to feedback networks effi-
ciently express I/O transfer functions, driving-point input impedances, and driving-point output imped-
ances in terms of an arbitrarily selected critical or reference circuit parameters, say P.

An implicit drawback of signal flow methods is the fact that unless P is selected to be the feedback
factor ƒ, which is not always transparent in feedback architectures, expressions for the loop gain and the
open-loop gain of feedback amplifiers are obscure. However, by applying signal flow theory to a feedback
circuit model engineered from insights that derive from the results of two-port network analyses, the
feedback factor can be isolated. The payoff of this hybrid analytical approach includes a conventional
block diagram model of the I/O transfer function, as well as convenient mathematical models for
evaluating the closed-loop driving-point input and output impedances. Yet, another attribute of hybrid
methods of feedback circuit analysis is its ability to delineate the cause, nature, and magnitude of the
feedforward transmittance produced by interconnecting a certain feedback subcircuit to a given open-
loop amplifier. This information is crucial in feedback network design because feedforward invariably
decreases gain and often causes undesirable phase shifts that can lead to significantly underdamped or
unstable closed-loop responses.

11.3 Signal Flow Analysis

Guidelines for feedback circuit analysis by hybrid signal flow methods can be established with the aid of
Figure 11.2 [13]. Figure 11.2(a) depicts a linear network whose output port is terminated in a resistance,
RL. The output signal variable is the voltage VO , which is generated in response to an input port signal
whose Thévenin voltage and resistance are respectively, VS and RS. Implicit to the linear network is a
current-controlled voltage source (CCVS) Pib, with a value that is directly proportional to the indicated
network branch current ib. The problem at hand is the deduction of the voltage gain Gv(RS, RL) = VO /VS ,
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11-4 Circuit Analysis and Feedback Amplifier Theory

the driving-point input resistance (or impedance) Rin, and the driving-point output resistance (or imped-
ance) Rout, as explicit functions of the critical transimpedance parameter P. Although the following
systematic procedure is developed in conjunction with the diagram in Figure 11.2, with obvious changes
in notation, it is applicable to determining any type of transfer relationship for any linear network in
terms of any type of reference parameter [14].

1. Set P = 0, as depicted in Figure 11.2(b), and compute the resultant voltage gain Gvo (RS, RL), where
the indicated notation suggests an anticipated dependence of gain on source and load resistances.
Also, compute the corresponding driving-point input and output resistances Rin, and Rout, respec-
tively. In this case, the “critical” parameter P is associated with a controlled voltage source.
Accordingly, P = 0 requires that the branch containing the controlled source be supplanted by a
short circuit. If, for example, P is associated with a controlled current source, P = 0 mandates the
replacement of the controlled source by an open circuit.

2. Set the Thévenin source voltage VS to zero, and replace the original controlled voltage source Pib

by an independent voltage source of symbolic value, vx. Then, calculate the ratio, iy /vx, where, as
illustrated in Figure 11.2(c), iy flows in the branch that originally conducts the controlling current
ib. Note, however, that the reference polarity of iy is opposite to that of ib. The computed transfer
function iy /vx is denoted by QS (RS, RL). This transfer relationship, which is a function of the source
and load resistances, is used to determine the return ratio Ts(P, RS, RL ) with respect to parameter
P of the original network. In particular,

FIGURE 11.2  (a) Linear network with an identified critical parameter P. (b) Model for calculating the P = 0 value
of voltage gain. (c) The return ratio with respect to P is PQs (RS, RL ). (d) The null return ratio with respect to P is
PQr (RS, RL ).
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(11.2)

If P is associated with a controlled current source, the controlled generator Pib is replaced by a
current source of value ix. If the controlling variable is a voltage, instead of a current, the ratio
vy /vx, is computed, where vy , where the polarity is opposite to that of the original controlling
voltage, is the voltage developed across the controlling branch.

3. The preceding computational step is repeated, but instead of setting VS to zero, the output variable,
which is the voltage VO in the present case, is nulled, as indicated in Figure 11.2(d). Let the
computed ratio iy /vx, be symbolized as Qr (RS, RL ). In turn, the null return ratio Tr (P, RS, RL ), with
respect to parameter P is

(11.3)

4. The desired voltage gain Gv (RS, RL ), of the linear network undergoing study can be shown to be
[5, 12]

(11.4)

5. Given the function Qs(RS, RL ), the driving-point input and output resistances follow straightfor-
wardly from [12]

(11.5)

(11.6)

An important special case entails a controlling electrical variable ib associated with the selected param-
eter P that is coincidentally the voltage or current output of the circuit under investigation. In this
situation, a factor P of the circuit response is fed back to the port (not necessarily the input port) defined
by the terminal pair across which the controlled source is incident. When the controlling variable ib is
the output voltage or current of the subject circuit Qr (RS, RL ), which is evaluated under the condition
of a nulled network response, is necessarily zero. With Qr (RS, RL ) = 0, the algebraic form of (11.4) is
identical to that of (11.1), where the loop gain T is the return ratio with respect to parameter P; that is,

(11.7)

Moreover, a comparison of (11.4) to (11.l) suggests that Gv(RS, RL) symbolizes the closed-loop gain of
the circuit, Gvo(RS, RL ) represents the corresponding open-loop gain, and the circuit feedback factor ƒ is

(11.8)

11.4 Global Single-Loop Feedback

Consider the global feedback scenario illustrated in Figure 11.3(a), in which a fraction P of the output
voltage VO is fed back to the voltage-driven input port. Figure 11.3(b) depicts the model used to calculate
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11-6 Circuit Analysis and Feedback Amplifier Theory

the return ratio Qs(RS, RL), where, in terms of the branch variables in the schematic diagram, Qs(RS, RL) =
vy /vx. An inspection of this diagram confirms that the transfer function vy/vx, is identical to the P = 0
value of the gain VO /VS, which derives from an analysis of the structure in Figure 11.3(a). Thus, for global
voltage feedback in which a fraction of the output voltage is fed back to a voltage-driven input port,
Qs(RS, RL) is the open-loop voltage gain; that is, Qs(RS, RL) ≡ Gvo(RS, RL). It follows from (11.8) that the
feedback factor ƒ is identical to the selected critical parameter P. Similarly, for the global current feedback
architecture of Figure 11.4(a), in which a fraction P of the output current, IO, is feed back to the current-
driven input port ƒ = P. As implied by the model of Figure 11.4(b), Qs(RS, RL) ≡ Gio(RS, RL), the open-
loop current gain.

FIGURE 11.3  (a) Voltage-driven linear network with global voltage feedback. (b) Model for the calculation of loop
gain.

FIGURE 11.4  (a) Current-driven linear network with global current feedback. (b) Model for the calculation of loop
gain. 
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Driving-Point I/O Resistances

Each of the two foregoing circuit architectures has a closed-loop gain where the algebraic form mirrors
(11.1). It follows that for sufficiently large loop gain [equal to either PGvo(RS, RL) or PGio(RS, RL)], the
closed-loop gain approaches (1/P) and is therefore desensitized with respect to open-loop gain param-
eters. However, such a desensitization with respect to the driving-point input and output resistances (or
impedances) cannot be achieved. For the voltage feedback circuit in Figure 11.3(a), Qs(∞, RL), is the RS

= ∞ value, Gvo(RS,RL), of the open-loop voltage gain. This particular open-loop gain is zero, because RS

= ∞ decouples the source voltage from the input port of the amplifier. On the other hand, Qs(0, RL) is
the RS = 0 value, Gvo(0, RL), of the open-loop voltage gain. This gain is at least as large as Gvo(RS, RL),
since a short circuited Thévenin source resistance implies lossless coupling of the Thévenin signal to the
amplifier input port. Recalling (11.5), the resultant driving-point input resistance of the voltage feedback
amplifier is

(11.9)

which shows that the closed-loop driving-point input resistance is larger than its open-loop counterpart
and is dependent on open-loop voltage gain parameters.

Conversely, the corresponding driving-point output resistance in Figure 11.3(a) is smaller than the
open-loop output resistance and approximately inversely proportional to the open-loop voltage gain.
These assertions derive from the facts that Qs(RS, 0) is the RL = 0 value of the open-loop voltage gain
Gvo(RS, RL). Because RL = 0 corresponds to the short-circuited load resistance, Gvo(RS, 0) = 0. In contrast,
Qs(RS, ∞), is the RL = ∞ value, Gvo(RS, ∞), of the open-loop gain, which is a least as large as Gvo(RS, RL).
By (11.6),

(11.10)

Similarly, the driving-point input and output resistances of the global current feedback configuration
of Figure 11.4(a) are sensitive to open-loop gain parameters. In contrast to the voltage amplifier of
Figure 11.3(a), the closed-loop, driving-point input resistance of current amplifier is smaller than its
open-loop value, while the driving-point output resistance is larger than its open-loop counterpart.
Noting that the open-loop current gain Gio(RS, RL) is zero for both RS = 0 (which short circuits the input
port), and RL = ∞ (which open circuits the load port), (11.5) and (11.6) give

(11.11)

(11.12)

Diminished Closed-Loop Damping Factor

In addition to illuminating the driving-point and forward transfer characteristics of single-loop feedback
architectures, the special case of global single-loop feedback illustrates the potenital instability problems
pervasive of almost all feedback circuits. An examination of these problems begins by returning to (11.1)
and letting the open-loop gain, Go, be replaced by the two-pole frequency-domain function,

(11.13)
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11-8 Circuit Analysis and Feedback Amplifier Theory

where Go(0) symbolizes the zero-frequency open-loop gain. The pole frequencies p1 and p2 in (11.13)
are either real numbers or complex conjugate pairs. Alternatively, (11.13) is expressible as

(11.14)

where

(11.15)

represents the undamped natural frequency of oscillation of the open-loop configuration, and

(11.16)

is the damping factor of the open-loop circuit.
In (11.1), let the feedback factor ƒ be the single left-half-plane zero function,

(11.17)

where z is the frequency of the real zero introduced by feedback, and ƒo is the zero-frequency value of
the feedback factor. The resultant loop gain is

(11.18)

the zero-frequency value of the loop gain is

(11.19)

and the zero frequency closed-loop gain Gcl(0), is

(11.20)

Upon inserting (11.14) and (11.17) into (11.1), the closed-loop transfer function is determined to be 

(11.21)
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Moreover, the closed-loop damping factor ζ cl is

(11.23)

A frequency invariant feedback factor ƒ (s) applied to the open-loop configuration whose transfer
function is given by (11.13) implies an infinitely large frequency, z, of the feedback zero. For this case,
(11.23) confirms a closed-loop damping factor that is always less than the open-loop damping factor.
Indeed, for a smaller than unity open-loop damping factor (which corresponds to complex conjugate
open-loop poles) and reasonable values of the zero-frequency loop gain T(0), ζ cl � 1. Thus, constant
feedback applied around an underdamped two-pole open-loop amplifier yields a severely underdamped
closed-loop configuration. It follows that the closed-loop circuit has a transient step response plagued
by overshoot and a frequency response that displays response peaking within the closed-loop passband.
Observe that underdamping is likely even in critically damped (identical real open-loop poles) or over-
damped (distinct real poles) open-loop amplifiers, which, respectively, correspond to ζol = 1 and ζol > 1,
when a large zero-frequency loop gain is exploited.

Underdamped closed-loop amplifiers are not unstable systems, but they are nonetheless unacceptable.
From a practical design perspective, closed-loop underdamping predicted by relatively simple mathe-
matical models of the loop gain portend undesirable amplifier responses or even closed-loop instability.
The problem is that simple transfer function models invoked in a manual circuit analysis are oblivious
to presumably second-order parasitic circuit layout and device model energy storage elements with effects
that include a deterioration of phase and gain margins.

Frequency Invariant Feedback Factor

Let the open-loop amplifier be overdamped, such that its real satisfy the relationship

(11.24)

If the open-loop amplifier pole p1 is dominant, κ2 is a real number that is greater than the magnitude,
�Go(0)�, of the open-loop zero frequency gain, which is presumed to be much larger than one. The open-
loop damping factor in (11.16) resultantly reduces to ζo1 ≈ κ/2. With κ2 > �Go(0)� � 1, which formally
reflects the dominant pole approximation, the 3-dB bandwidth Bol of the open-loop amplifier is given
approximately by [15]

(11.25)

As expected, (11.25) predicts an open-loop 3-dB bandwidth that is only slightly smaller than the frequency
of the open-loop dominant pole.

The frequency, z, in (11.23) is infinitely large if frequency invariant degenerative feedback is applied
around on open-loop amplifier. For a critically damped or overdamped closed-loop amplifier, ζcl > 1.
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(11.26)
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difficult to satisfy, especially if feedback is implemented expressly to realize a substantive desensitization
of response with respect to open-loop parameters. On the chance that (11.26) can be satisfied, and if the
closed-loop amplifier emulates a dominant pole response, the closed-loop bandwidth is, using (11.22),
(11.23), and (11.25),

(11.27)

Observe from (11.27) and (11.26) that the maximum possible closed-loop 3-dB bandwidth is 2 octaves
below the minimum acceptable frequency of the nondominant open-loop pole.

Although (11.27) theoretically confirms the broadbanding property of negative feedback amplifiers,
the attainment of very large closed-loop 3-dB bandwidths is nevertheless a challenging undertaking. The
problem is that (11.26) is rarely satisfied. As a result, the open-loop configuration must be suitably
compensated, usually by pole splitting methodology [16–18], to force the validity of (11.26). However,
the open-loop poles are not mutually independent, so any compensation that increases p2 is accompanied
by decreases in p1. The pragmatic upshot of the matter is that the closed-loop 3-dB bandwidth is not
directly proportional to the uncompensated value of p1 but instead, it is proportional to the smaller,
compensated value of p1.

Frequency Variant Feedback Factor (Compensation)

Consider now the case where the frequency, z, of the compensating feedback zero is finite and positive.
Equation (11.23) underscores the stabilizing property of a left-half-plane feedback zero in that a suffi-
ciently small positive z renders a closed-loop damping factor ζcl that can be made acceptably large,
regardless of the value of the open-loop damping factor ζol. To this end, ζcl > 1/  is a desirable design
objective in that it ensures a monotonically decreasing closed-loop frequency response. If, as is usually
a design goal, the open-loop amplifier subscribes to pole dominance, (11.23) translates the objective,
ζcl > 1/ , into the design constraint

(11.28)

where use is made of (11.25) to cast ζ in terms of the open-loop bandwidth Bol. When the closed-loop
damping factor is precisely equal to 1/  a maximally flat magnitude closed-loop response results for
which the 3-dB bandwidth is ωncl. Equation (11.28) can then be cast into the more useful form

(11.29)

where (11.20) is exploited, GBPol is the gain-bandwidth product of the open-loop circuit, and GBPcl is
the gain-bandwidth product of the resultant closed-loop network.

For a given open-loop gain-bandwidth product GBPol, a desired low-frequency closed-loop gain, Gcl(0),
and a desired closed-loop gain-bandwidth product, GBPcl, (11.29) provides a first-order estimate of the
requisite feedback compensation zero. Additionally, note that (11.29) imposes an upper limit on the
achievable high-frequency performance of the closed-loop configuration. In particular, because z must
be positive to ensure acceptable closed-loop damping, (11.29) implies
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(11.30)

In effect, (11.30) imposes a lower limit on the required open-loop gain-bandwidth product commensurate
with feedback compensation implemented to achieve a maximally flat, closed-loop frequency response.

11.5 Pole Splitting Open-Loop Compensation

Equation (11.26) underscores the desirability of achieving an open-loop dominant pole frequency
response in the design of a feedback network. In particular, (11.26) shows that if the ultimate design goal
is a closed-loop dominant pole frequency response, the frequency, p2, of the nondominant open-loop
amplifier pole must be substantially larger than its dominant pole counterpart, p1. Even if closed-loop
pole dominance is sacrificed as a trade-off for other performance merits, open-loop pole dominance is
nonetheless a laudable design objective. This contention follows from (11.23) and (11.16), which combine
to suggest that the larger p2 is in comparison to p1, the larger is the open-loop damping factor. In turn,
the unacceptably underdamped closed-loop responses that are indicative of small, closed-loop damping
factors are thereby eliminated. Moreover, (11.23) indicates that larger, open-loop damping factors impose
progressively less demanding restrictions on the feedback compensation zero that may be required to
achieve acceptable closed-loop damping. This observation is important because in an actual circuit design
setting, small z in (11.23) generally translates into a requirement of a correspondingly large RC time
constant, where implementation may prove difficult in monolithic circuit applications.

Unfortunately, many amplifiers, and particularly broadbanded amplifiers, earmarked for use as open-
loop cells in degenerative feedback networks, are not characterized by dominant pole frequency responses.
The frequency response of these amplifiers is therefore optimized in accordance with a standard design
practice known as pole splitting compensation. Such compensation entails the connection of a small
capacitor between two high impedance, phase inverting nodes of the open-loop topology [17, 19–21].
Pole splitting techniques increase the frequency p2 of the uncompensated nondominant open-loop pole
to a compensated value, say p2c. The frequency, p1, of the uncompensated dominant open-loop pole is
simultaneously reduced to a smaller frequency, say plc. Although these pole frequency translations com-
plement the design requirement implicit to (11.26) and (11.23), they do serve to limit the resultant
closed-loop bandwidth, as discussed earlier. As highlighted next, they also impose other performance
limitations on the open loop.

The Open-Loop Amplifier

The engineering methods, associated mathematics, and engineering trade-offs underlying pole splitting
compensation are best revealed in terms of the generalized, phase inverting linear network abstracted in
Figure 11.5. Although this amplifier may comprise the entire open-loop configuration, in the most general
case, it is an interstage of the open loop. Accordingly, Rst in this diagram is viewed as the Thévenin
equivalent resistance of either an input signal source or a preceding amplification stage. The response to
the Thévenin driver, Vst, is the indicated output voltage, Vl , which is developed across the Thévenin load
resistance, Rlt, seen by the stage under investigation. Note that the input current conducted by the
amplifier is Is, while the current flowing into the output port of the unit is denoted as Il. The dashed
branch containing the capacitor Cc, which is addressed later, is the pole splitting compensation element.

Because the amplifier under consideration is linear, any convenient set of two-port parameters can be
used to model its terminal volt–ampere characteristics. Assuming the existence of the short circuit
admittance, or y parameters,

(11.31)
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Defining

(11.32)

(11.31) implies

(11.33)

(11.34)

The last two expressions produce the y-parameter model depicted in Figure 7.6(a), in which yi represents
an effective shunt input admittance, yo is a shunt output admittance, yf is a forward transadmittance,
and yr reflects voltage feedback intrinsic to the amplifier.

Amplifiers amenable to pole splitting compensation have capacitive input and output admittances;
that is, yi and yo are of the form

(11.35)

Similarly,

(11.36)

In (11.36), the conductance component Gf of the forward transadmittance yf positive in a phase-inverting
amplifier. Moreover, the reactive component –sCf of yf produces an excess phase angle, and hence, a group

FIGURE 11.5 A linear amplifier for which a pole splitting compensation capacitance Cc is incorporated.
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delay, in the forward gain function. This component, which deteriorates phase margin, can be ignored
to first order if the signal frequencies of interest are not excessive in comparison to the upper-frequency
limit of performance of the amplifier. Finally, the feedback internal to many practical amplifiers is
predominantly capacitive so that the feedback resistance Rr can be ignored. These approximations allow
the model in Figure 7.6(a) to be drawn in the form offered in Figure 11.6(b).

It is worthwhile interjecting that the six parameters indigenous to the model in Figure 11.6(b) need
not be deduced analytically from the small-signal models of the active elements embedded in the subject
interstage. Instead, SPICE can be exploited to evaluate the y parameters in (11.31) at the pertinent biasing
level. Because these y parameters display dependencies on signal frequency, care should be exercised to
evaluate their real and imaginary components in the neighborhood of the open-loop, 3-dB bandwidth
to ensure acceptable computational accuracy at high frequencies. Once the y parameters in (11.31) are
deduced by computer-aided analysis, the alternate admittance parameters in (11.23), as well as numerical
estimates for the parameters, Ri, Ci, Ro, Co, Cr, and Gf , in (11.35) and (11.36) follow straightforwardly.

Pole Splitting Analysis

An analysis of the circuit in Figure 11.6(b) produces a voltage transfer function Av(s) of the form

(11.37)

Letting

(11.38)

FIGURE 11.6 (a) The y-parameter equivalent circuit of the phase-inverting linear amplifier in Fig. 11.5. (b) An
approximate form of the model in (a).
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an inspection of the circuit in Figure 11.6(b) confirms that

(11.39)

is the zero frequency voltage gain. Moreover, the frequency, zr, of the right-half-plane zero is

(11.40)

The lower pole frequency, p1, and the higher pole frequency, p2, derive implicitly from

(11.41)

and

(11.42)

where

(11.43)

Most practical amplifiers, and particularly amplifiers realized in bipolar junction transistor technology,
have very large forward transconductance, Gf , and small internal feedback capacitance, Cr. The combi-
nation of large Gf and small Cr renders the frequency in (11.40) so large as to be inconsequential to the
passband of interest. When utilized in a high-gain application, such as the open-loop signal path of a
feedback amplifier, these amplifiers also operate with a large effective load resistance, Rll. Accordingly,
(11.41) can be used to approximate the pole frequency p1 as

(11.44)

Substituting this result into (11.42), the approximate frequency p2 of the high-frequency pole is

(11.45)

Figure 11.7 illustrates asymptotic frequency responses corresponding to pole dominance and to a two-
pole response. Figure 11.7(a) depicts the frequency response of a dominant pole amplifier, which does
not require pole splitting compensation. Observe that its high-frequency response is determined by a
single pole (p1 in this case) through the signal frequency at which the gain ultimately degrades to unity.
In this interpretation of a dominant pole amplifier, p2 is not only much larger than p1, but is in fact larger
than the unity gain frequency, which is indicated as ωu in the figure. This unity gain frequency, which
can be viewed as an upper limit to the useful passband of the amplifier, is approximately, �Av(0)�p1. To
the extent that p1 is essentially the 3-dB bandwidth when p2 � p1, the unity gain frequency is also the
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gain-bandwidth product (GBP) of the subject amplifier. In short, with �Av(jωu)� =
∆ 1, p2 � p1 in (11.37)

implies

(11.46)

The contrasting situation of a response indigenous to the presence of two significant open-loop poles
is illustrated in Figure 11.7(b). In this case, the higher pole frequency p2 is smaller than ωu and hence, the
amplifier does not emulate a single-pole response throughout its theoretically useful frequency range. The
two critical frequencies, p1 and p2, remain real numbers, and as long as p2 ≠ p1, the corresponding damping
factor, is greater than one. However, the damping factor of the two-pole amplifier (its response is plotted
in Figure 11.7(b)) is nonetheless smaller than that of the dominant pole amplifier. It follows that, for
reasonable loop gains, unacceptable underdamping is more likely when feedback is invoked around the

FIGURE 11.7  (a) Asymptotic frequency response for a dominant pole amplifier. Such an amplifier does not require
pole splitting compensation because the two lowest frequency amplifier poles, p1 and p2, are already widely separated.
(b) The frequency response of an amplifier with high-frequency response that is strongly influenced by both of its
lowest frequency poles. The basic objective of pole splitting compensation is to transform the indicated frequency
response to a form that emulates that depicted in (a).
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11-16 Circuit Analysis and Feedback Amplifier Theory

two-pole amplifier, as opposed to the same amount of feedback applied around a dominant pole amplifier.
Pole splitting attempts to circumvent this problem by transforming the pole conglomeration of the two
pole amplifier into one that emulates the dominant pole situation inferred by Figure 11.7(a).

To the foregoing end, append the compensation capacitance Cc between the input and the output
ports of the phase-inverting linear amplifier, as suggested in Figure 11.5. With reference to the equivalent
circuit in Figure 11.6(b), the electrical impact of this additional element is the effective replacement of
the internal feedback capacitance Cr by the capacitance sum (Cr + Cc). Letting

(11.47)

it is apparent that (11.40)–(11.42) remain applicable, provided that Cr in these relationships is supplanted
by Cp. Because Cp is conceivably significantly larger than Cc, however, the approximate expressions for
the resultant pole locations differ from those of (11.44) and (11.45). In particular, a reasonable approx-
imation for the compensated value, say P1c, of the lower pole frequency is now

(11.48)

while the higher pole frequency, p2c, becomes

(11.49)

Clearly, p1c < p1 and p2c > p2. Moreover, for large Gf , p2c is potentially much larger than p1c. It should also
be noted that the compensated value, say, zrc, of the right-half-plane zero is smaller than its uncompen-
sated value, zr, because (11.40) demonstrates that

(11.50)

Although zrc can conceivably exert a significant influence on the high-frequency response of the com-
pensated amplifier, the following discussion presumes tacitly that zrc > p2c [2].

Assuming a dominant pole frequency response, the compensated unity gain frequency, ωuc, is, using
(11.39), (11.46), and (11.48),

(11.51)

It is interesting to note that

(11.52)

that is, the unity gain frequency is limited by the inverse of the RC time constant formed by the Thévenin
source resistance Rst and the net capacitance Cp appearing between the input port and the phase inverted
output port. The subject inequality comprises a significant performance limitation, for if p2c is indeed
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much larger than pic, ωuc is approximately the GBP of the compensated cell. Accordingly, for a given
source resistance, a required open-loop gain, and a desired open-loop bandwidth, (11.52) imposes an
upper limit on the compensation capacitance that can be exploited for pole splitting purposes.

In order for the compensated amplifier to behave as a dominant pole configuration, p2c must exceed
ωuc, as defined by (11.51). Recalling (11.49), the requisite constraint is found to be

(11.53)

Assuming Gf (Rss/Rll) � 1, (11.53) reduces to the useful simple form

(11.54)

which confirms the need for large forward transconductance Gf if pole splitting is to be an effective
compensation technique.

11.6 Summary

The use of negative feedback is fundamental to the design of reliable and reproducible analog electronic
networks. Accordingly, this chapter documents the salient features of the theory that underlies the efficient
analysis and design of commonly used feedback networks. Four especially significant points are postulated
in this section.

1. By judiciously exploiting signal flow theory, the classical expression, (11.1), for the I/O transfer
relationship of a linear feedback system is rendered applicable to a broad range of electronic
feedback circuits. This expression is convenient for design-oriented analysis because it clearly
identifies the open-loop gain, Go, and the loop gain, T. The successful application of signal flow
theory is predicated on the requirement that the feedback factor, to which T is proportional and
that appears in the signal flow literature as a “critical” or “reference” parameter, can be identified
in a given feedback circuit.

2. Signal flow theory, as applied to electronic feedback architectures, proves to be an especially expe-
dient analytical tool because once the loop gain T is identified, the driving-point input and output
impedances follow with minimal additional calculations. Moreover, the functional dependence of
T on the Thévenin source and terminating load impedances unambiguously brackets the magni-
tudes of the driving point I/O impedances attainable in particular types of feedback arrangements.

3. The damping factor concept is advanced herewith as a simple way of assessing the relative stability
of both the open and closed loops of a feedback circuit. The open-loop damping factor derives
directly from the critical frequencies of the open-loop gain, while these frequencies and any zeros
appearing in the loop gain unambiguously define the corresponding closed-loop damping factor.
Signal flow theory is once again used to confirm the propensity of closed loops toward instability
unless the open-loop subcircuit functions as a dominant pole network. Also confirmed is the
propriety of the common practice of implementing a feedback zero as a means of stabilizing an
otherwise potentially unstable closed loop.

4. Pole splitting as a means to achieve dominant pole open-loop responses is definitively discussed.
Generalized design criteria are formulated for this compensation scheme, and limits of perfor-
mance are established. Of particular interest is the fact that pole splitting limits the GBP of the
compensated amplifier to a value that is determined by a source resistance-compensation capac-
itance time constant.
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