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12.1 Introduction

Four basic types of single-loop feedback amplifiers are available: the series-shunt, shunt-series, shunt-
shunt, and series-series architectures [1]. Each of these cells is capable of a significant reduction of the
dependence of forward transfer characteristics on the ill-defined or ill-controlled parameters implicit to
the open-loop gain; but none of these architectures can simultaneously offer controlled driving-point
input and output impedances. Such additional control is afforded only by dual global loops comprised
of series and/or shunt feedback signal paths appended to an open-loop amplifier [2], [3]. Only two types
of global dual-loop feedback architectures are used: the series-series/shunt-shunt feedback amplifier
and the series-shunt/shunt-series feedback amplifier.

Although only bipolar technology is exploited in the analysis of the aforementioned four single-loop
and two dual-loop feedback cells, all disclosures are generally applicable to metaloxide-silicon (MOS),
heterostructure bipolar transistor (HBT), and III–V compound metal-semiconductor field-effect tran-
sistor (MESFET) technologies. All analytical results derive from an application of a hybrid, signal
flow/two-port parameter analytical tack. Because the thought processes underlying this technical
approach apply to all feedback circuits, the subject analytical procedure is developed in detail for only
the series-shunt feedback amplifier.

12.2 Series-Shunt Feedback Amplifier

Circuit Modeling and Analysis

Figure 12.1(a) depicts the ac schematic diagram (a circuit diagram divorced of biasing details) of a series-
shunt feedback amplifier. In this circuit, the output voltage VO, which is established in response to a
single source represented by the Thévenin voltage VST, and the Thévenin resistance, RST, is sampled by
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12-2 Circuit Analysis and Feedback Amplifier Theory

the feedback network composed of the resistances, REE and RF. The sampled voltage is fed back in such
a way that the closed-loop input voltage, VI, is the sum of the voltage, V1A, across the input port of the
amplifier and the voltage V1F, developed across REE in the feedback subcircuit. Because VI = V1A + V1F,
the output port of the feedback configuration can be viewed as connected in series with the amplifier
input port. On the other hand, output voltage sampling constrains the net load current, IO, to be the
algebraic sum of the amplifier output port current, I2A, and the feedback network input current, I2F.
Accordingly, the output topology is indicative of a shunt connection between the feedback subcircuit
and the amplifier output port. The fact that voltage is fed back to a voltage-driven input port renders
the driving point input resistance, Rin, of the closed-loop amplifier large, whereas the driving-point output
resistance, Rout, seen by the terminating load resistance, RLT, is small. The resultant closed-loop amplifier
is therefore best suited for voltage amplification, in the sense that the closed-loop voltage gain, VO/VST,
can be made approximately independent of source and load resistances. For large loop gain, this voltage
transfer function is also nominally independent of transistor parameters.

Assuming that transistors Q1 and Q2 are identical devices that are biased identically, Figure 12.1(b)
is the applicable low-frequency equivalent circuit. This equivalent circuit exploits the hybrid-π model
[4] of a bipolar junction transistor, subject to the proviso that the forward Early resistance [5] used to
emulate base conductivity modulation is sufficiently large to warrant its neglect. Because an infinitely

FIGURE 12.1  (a) The ac schematic diagram of a bipolar series-shunt feedback amplifier. (b) Low-frequency small-
signal equivalent circuit of the feedback amplifier.
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Feedback Amplifier Configurations 12-3

large forward Early resistance places the internal collector resistance (not shown in the figure) of a bipolar
junction transistor in series with the current controlled current source, this collector resistance can be
ignored as well.

The equivalent circuit of Figure 12.1(b) can be reduced to a manageable topology by noting that the
ratio of the signal current, IV, flowing into the base of transistor Q2 to the signal current, I1A, flowing
into the base of transistor Q1 is

(12.1)

where

(12.2)

is the small-signal, short-circuit common base current gain, and

(12.3)

symbolizes the short-circuit input resistance of a common base amplifier. It follows that the current
source βIv in Figure 12.1(b) can be replaced by the equivalent current (–βKβI1A).

A second reduction of the equivalent circuit in Figure 12.1(b) results when the feedback subcircuit is
replaced by a model that reflects the h-parameter relationships

(12.4)

where V1F(VO) represents the signal voltage developed across the output (input) port of the feedback
subcircuit and I1F(I2F) symbolizes the corresponding current flowing into the feedback output (input)
port. Although any homogeneous set of two-port parameters can be used to model the feedback subcir-
cuit, h parameters are the most convenient selection herewith. In particular, the feedback amplifier
undergoing study is a series-shunt configuration. The h-parameter equivalent circuit represents its input
port as a Thévenin circuit and its input port as a Norton configuration, therefore, the h-parameter
equivalent circuit is likewise a series-shunt structure.

For the feedback network at hand, which is redrawn for convenience in Figure 12.2(a), the h-parameter
equivalent circuit is as depicted in Figure 12.2(b). The latter diagram exploits the facts that the short-
circuit input resistance hif is a parallel combination of the resistance REE and RF, and the open-circuit
output conductance hof , is 1/(REE + RF). The open-circuit reverse voltage gain hrf is

(12.5)

while the short-circuit forward current gain hff is

(12.6)

Figure 12.2(c) modifies the equivalent circuit in Figure 12.2(b) in accordance with the following two
arguments. First, hrf in (12.5) is recognized as the fraction of the feedback subcircuit input signal that is
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12-4 Circuit Analysis and Feedback Amplifier Theory

fed back as a component of the feedback subcircuit output voltage, V1F . But this subcircuit input voltage
is identical to the closed-loop amplifier output signal VO . Moreover, V1F superimposes with the Thévenin
input signal applied to the feedback amplifier to establish the amplifier input port voltage, V1A. It follows
that hrf is logically referenced as a feedback factor, say f, of the amplifier under consideration; that is,

(12.7)

and by (12.6),

(12.8)

Second, the feedback subcircuit output current, I1F, is, as indicated in Figure 12.1(b), the signal current,
(β + 1)I1A. Thus, in the model of Figure 12.2(b),

(12.9)

If the model in Figure 12.2(c) is used to replace the feedback network in Figure 12.1(b) the equivalent
circuit of the series-shunt feedback amplifier becomes the alternative structure offered in Figure 12.3. In

FIGURE 12.2 (a) The feedback subcircuit in the series-shunt feedback amplifier of Figure 12.1(a). (b) The h-
parameter equivalent circuit of the feedback subcircuit. (c) Alternative form of the h-parameter equivalent circuit.
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Feedback Amplifier Configurations 12-5

arriving at this model, care has been exercised to ensure that the current flowing through the emitter of
transistor Q1 is (β + 1)I1A. It is important to note that the modified equivalent circuit delivers transfer
and driving point impedance characteristics that are identical to those implicit to the equivalent circuit
of Figure 12.1(b). In particular, the traditional analytical approach to analyzing a series-shunt feedback
amplifier tacitly presumes the satisfaction of the Brune condition [6] to formulate a composite structure
where the h-parameter matrix is the sum of the respective h-parameter matrices for the open-loop and
feedback circuits. In contrast, the model of Figure 12.3 derives from Figure 12.1(b) without invoking the
Brune requirement, which is often not satisfied. It merely exploits the substitution theorem; that is, the
feedback network in Figure 12.1(b) is substituted by its h-parameter representation.

In addition to modeling accuracy, the equivalent circuit in Figure 12.3 boasts at least three other
advantages. The first is an illumination of the vehicle by which feedback is implemented in the series-
shunt configuration. This vehicle is the voltage controlled voltage source, f VO, which feeds back a fraction
of the output signal to produce a branch voltage that algebraically superimposes with, and thus modifies,
the applied source voltage effectively seen by the input port of the open-loop amplifier. Thus, with f =
0, no feedback is evidenced, and the model at hand emulates an open-loop configuration. But even with
f = 0, the transfer and driving-point impedance characteristics of the resultant open-loop circuit are
functionally dependent on the feedback elements, REE and RF, because appending the feedback network
to the open-loop amplifier incurs additional impedance loads at both the input and the output ports of
the amplifier.

The second advantage of the subject model is its revelation of the magnitude and nature of feed-
forward through the closed loop. In particular, note that the signal current, IN, driven into the effective
load resistance comprised of the parallel combination of (REE + RF) and RLT , is the sum of two current
components. One of these currents, βKβI1A, materializes from the transfer properties of the two transistors
utilized in the amplifier. The other current, f (β + 1)I1A, is the feed-forward current resulting from the
bilateral nature of the passive feedback network. In general, negligible feed-forward through the feedback
subcircuit is advantageous, particularly in high-frequency signal-processing applications. To this end, the
model in Figure 12.3 suggests the design requirement,

(12.10)

When the resistance, R, in Figure 12.1(a) is the resistance associated with the output port of a PNP
current source used to supply biasing current to the collector of transistor Q1 and the base of transistor
Q2, Kβ approaches β, and (12.10) is easily satisfied; however, PNP current sources are undesirable in
broadband low-noise amplifiers. In these applications, the requisite biasing current must be supplied by

FIGURE 12.3 Modified small-signal model of the series-shunt feedback amplifier.
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12-6 Circuit Analysis and Feedback Amplifier Theory

a passive resistance, R, connected between the positive supply voltage and the junction of the Q1 collector
and the Q2 base. Unfortunately, the corresponding value of Kβ can be considerably smaller than β, with
the result that (12.10) may be difficult to satisfy. Circumvention schemes for this situation are addressed later.

A third attribute of the model in Figure 12.3 is its disposition to an application of signal flow theory.
For example, with the feedback factor f selected as the reference parameter for signal flow analysis, the
open-loop voltage gain Gvo(RST, RLT), of the series-shunt feedback amplifier is computed by setting f to
zero. Assuming that (12.10) is satisfied, circuit analysis reveals this gain as

(12.11)

The corresponding input and output driving point resistances, Rino and Routo, respectively, are

(12.12)

and

(12.13)

It follows that the closed-loop gain Gv (RST, RLT) of the series-shunt feedback amplifier is

(12.14)

where the loop gain T is

(12.15)

For T � 1, which mandates a sufficiently large Kβ in (12.11), the closed-loop gain collapses to

(12.16)

which is independent of active element parameters. Moreover, to the extent that T � 1 the series-shunt
feedback amplifier behaves as an ideal voltage controlled voltage source in the sense that its closed-loop
voltage gain is independent of source and load terminations. The fact that the series-shut feedback
network behaves approximately as an ideal voltage amplifier implies that its closed-loop driving point
input resistance is very large and its closed-loop driving point output resistance is very small. These facts
are confirmed analytically by noting that

(12.17)
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and

(12.18)

To the extent that the interstage biasing resistance, R, is sufficiently large to allow Kβ to approach β,
observe that Rin in (12.17) is nominally proportional to β2, while Rout in (12.18) is inversely proportional
to β.

Feed-Forward Compensation

When practical design restrictions render the satisfaction of (12.10) difficult, feed-forward problems can
be circumvented by inserting an emitter follower between the output port of transistor Q2 in the circuit
diagram of Figure 12.1(a) and the node to which the load termination and the input terminal of the feedback
subcircuit are incident [2]. The resultant circuit diagram, inclusive now of simple biasing subcircuits, is
shown in Figure 12.4. The buffer transistor Q3 increases the original short-circuit forward current gain,
Kββ, of the open-loop amplifier by a factor approaching (β + 1), while not altering the feed-forward factor
implied by the feedback network in Figure 12.1(a). In effect, Kβ is increased by a factor of almost (β + 1),
thereby making (12.10) easy to satisfy. Because of the inherently low output resistance of an emitter follower,
the buffer also reduces the driving-point output resistance achievable by the original configuration.

The foregoing contentions can be confirmed through an analysis of the small-signal model for the
modified amplifier in Figure 12.4. Such an analysis is expedited by noting that the circuit to the left of
the current controlled current source, KββI1A, in Figure 12.3 remains applicable. For zero feedback, it
follows that the small-signal current I1A flowing into the base of transistor Q1 derives from

(12.19)

The pertinent small-signal model for the buffered series-shunt feedback amplifier is resultantly the
configuration offered in Figure 12.5.

FIGURE 12.4  A series-shunt feedback amplifier that incorporates an emitter follower output stage to reduce the
effects of feed-forward through the feedback network.
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12-8 Circuit Analysis and Feedback Amplifier Theory

Letting

(12.20)

an analysis of the structure in Figure 12.5 reveals

(12.21)

which suggests negligible feed-forward for

(12.22)

Note that for large R1, (12.22) implies the requirement f � βKβ, which is easier to satisfy than is (12.10).
Assuming the validity of (12.22), (12.21), and (12.19) deliver an open-loop voltage gain,. Gvo(RST, RLT), of

(12.23)

Recalling (12.1), which demonstrates that Kβ approaches β for large R, (12.23) suggests an open-loop
gain that is nominally proportional to β2 if R1 is also large.

FIGURE 12.5  Small-signal model of the buffered series-shunt feedback amplifier.
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Using the concepts evoked by (12.17) and (12.18), the driving-point input and output impedances can
now be determined. In a typical realization of the buffered series-shunt feedback amplifier, the resistance,
R2, in Figure 12.4 is very large because it is manifested as the output resistance of a common base current
sink that is employed to stabilize the operating point of transistor Q3. For this situation, and assuming
the resistance R1 is large, the resultant driving-point input resistance is larger than its predecessor input
resistance by a factor of approximately (β + 1). Similarly, it is easy to show that for large R1 and large R2,
the driving-point output resistance is smaller than that predicted by (12.18) by a factor approaching (β + 1).

Although the emitter follower output stage in Figure 12.4 all but eliminates feed-forward signal trans-
mission through the feedback network and increases both the driving point input resistance and output
conductance, a potential bandwidth penalty is paid by its incorporation into the basic series-shunt
feedback cell. The fundamental problem is that if R1 is too large, potentially significant Miller multipli-
cation of the base-collector transition capactiance of transistor Q2 materializes. The resultant capacitive
loading at the collector of transistor Q1 is exacerbated by large R, which may produce a dominant pole
at a frequency that is too low to satisfy closed-loop bandwidth requirements. The bandwidth problem
may be mitigated by coupling resistance R1 to the collector of Q2 through a common base cascode. This
stage appears as transistor Q4 in Figure 12.6.

Unfortunately, the use of the common base cascode indicated in Figure 12.6 may produce an open-
loop amplifier with transfer characteristics that do not emulate a dominant pole response. In other words,
the frequency of the compensated pole established by capacitive loading at the collector of transistor Q1
may be comparable to the frequencies of poles established elsewhere in the circuit, and particularly at
the base node of transistor Q1. In this event, frequency compensation aimed toward achieving acceptable
closed-loop damping can be implemented by replacing the feedback resistor RF with the parallel combi-
nation of RF and a feedback capacitance, say CF, as indicated by the dashed branch in Figure 12.6. The
resultant frequency-domain feedback factor f (s) is

(12.24)

FIGURE 12.6 Buffered series-shunt feedback amplifier with common base cascode compensation of the common
emitter amplifier formed by transistor Q2. A feedback zero is introduced by the capacitance CF to achieve acceptable
closed-loop damping.
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12-10 Circuit Analysis and Feedback Amplifier Theory

where f is the feedback factor given by (12.7) and z is the frequency of the introduced compensating zero, is

(12.25)

The pole in (12.24) is inconsequential if the closed-loop amplifier bandwidth Bcl satisfies the restriction,
f BclRFCF = Bcl(REE ��RF)CF �1.

12.3 Shunt-Series Feedback Amplifier

Although the series-shunt circuit functions as a voltage amplifier, the shunt-series configuration (see the
ac schematic diagram depicted in Figure 12.7(a)) is best suited as a current amplifier. In the subject
circuit, the Q2 emitter current, which is a factor of (1/α) of the output signal current, IO, is sampled by
the feedback network formed of the resistances, REE and RF. The sampled current is fed back as a current
in shunt with the amplifier input port. Because output current is fed back as a current to a current-

FIGURE 12.7  (a) AC schematic diagram of a bipolar shunt-series feedback amplifier. (b) Low-frequency small-
signal equivalent circuit of the feedback amplifier.
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driven input port, the resultant driving point output resistance is large, and the driving-point input
resistance is small. These characteristics allow for a closed-loop current gain, G1(RST, RLT) = Io /IST, that
is relatively independent of source and load resistances and insensitive to transistor parameters.

In the series-shunt amplifier, h parameters were selected to model the feedback network because the
topology of an h-parameter equivalent circuit is, similar to the amplifier in which the feedback network
is embedded, a series shunt, or Thévenin–Norton, topology, In analogous train of thought compels the
use of g-parameters to represent the feedback network in Figure 12.7(a). With reference to the branch
variables defined in the schematic diagram,

(12.26)

Noting that the feedback network current, I2F, relates to the amplifier output current, IO, in accordance
with

(12.27)

and letting the feedback factor, f, be

(12.28)

the small-signal equivalent circuit of shunt-series feedback amplifier becomes the network diagrammed
in Figure 12.7(b). Note that the voltage controlled voltage source, αf V1F, models the feed-forward transfer
mechanism of the feedback network, where the controlling voltage, V1F, is

(12.29)

An analysis of the model in Figure 12.7(b) confirms that the second-stage, signal-base current Iw relates
to the first-stage, signal-base current Iv as

(12.30)

For

(12.31)

which offsets feed-forward effects,

(12.32)

Observe that the constant Kr tends toward β for large R, as can be verified by an inspection of
Figure 12.7(b).
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12-12 Circuit Analysis and Feedback Amplifier Theory

Using (12.32), the open-loop current gain, found by setting f to zero, is

(12.33)

and, recalling (12.28), the loop gain T is

(12.34)

By inspection of the model in Figure 12.7(b), the open-loop input resistance, Rino, is

(12.35)

and, within the context of an infinitely large Early resistance, the open-loop output resistance, Routo, is
infinitely large.

The closed-loop current gain of the shunt-series feedback amplifier is now found to be

(12.36)

where the indicated approximation exploits the presumption that the loop gain T is much larger than
one. As a result of the large loop-gain assumption, note that the closed-loop gain is independent of the
source and load resistances and is invulnerable to uncertainties and perturbations in transistor param-
eters. The closed-loop output resistance, which exceeds its open-loop counterpart, remains infinitely
large. Finally, the closed-loop driving point input resistance of the shunt-series amplifier is

(12.37)

12.4 Shunt-Shunt Feedback Amplifier

Circuit Modeling and Analysis

The ac schematic diagram of the third type of single-loop feedback amplifier, the shunt-shunt triple, is
drawn in Figure 12.8(a). A cascade interconnection of three transistors Q1, Q2, and Q3, forms the open
loop, while the feedback subcircuit is the single resistance, RF. This resistance samples the output voltage,
VO, as a current fed back to the input port. Output voltage is fed back as a current to a current-driven
input port, so both the driving point input and output resistances are very small. Accordingly, the circuit
operates best as a transresistance amplifier in that its closed-loop transresistance, RM (RST, RLT) = VO /IST,
is nominally invariant with source resistance, load resistance, and transistor parameters.

The shunt-shunt nature of the subject amplifier suggests the propriety of y-parameter modeling of
the feedback network. For the electrical variables indicated in Figure 12.8(a),
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(12.38)

which implies that a resistance, RF, loads both the input and the output ports of the open-loop three-
stage cascade. The short-circuit admittance relationship in (12.38) also suggests a feedback factor, f, given
by

(12.39)

The foregoing observations and the small-signal modeling experience gained with the preceding two
feedback amplifiers lead to the equivalent circuit submitted in Figure 12.8(b). For analytical simplicity,
the model reflects the assumption that all three transistors in the open loop have identical small-signal
parameters. Moreover, the constant, Kε, which symbolizes the ratio of the signal base current flowing
into transistor Q3 to the signal base current conducted by transistor Q1, is given by

(12.40)

Finally, the voltage-controlled current source, f V1F, accounts for feed-forward signal transmission through
the feedback network. If such feed-forward is to be negligible, the magnitude of this controlled current

FIGURE 12.8  (a) AC schematic diagram of a bipolar shunt-shunt feedback amplifier. (b) Low-frequency small-
signal equivalent circuit of the feedback amplifier.
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12-14 Circuit Analysis and Feedback Amplifier Theory

must be significantly smaller than KεβIv, a current that emulates feed-forward through the open-loop
amplifier. Noting that the input port voltage, V1F, in the present case remains the same as that specified
by (12.29), negligible feed-forward through the feedback network mandates

(12.41)

Because the constant Kε in (12.40) tends toward β2 if R1 and R2 are large resistances, (12.41) is relatively
easy to satisfy.

With feed-forward through the feedback network ignored, an analysis of the model in Figure 12.8(b)
provides an open-loop transresistance, RMO(RST, RLT), of

(12.42)

while the loop gain is

(12.43)

For T � 1, the corresponding closed-loop transresistance RM (RST, RLT) is

(12.44)

Finally, the approximate driving-point input and output resistances are, respectively,

(12.45)

(12.46)

Design Considerations

Because the shunt-shunt triple uses three gain stages in the open-loop amplifier, its loop gain is signifi-
cantly larger than the loop gains provided by either of the previously considered feedback cells. Accord-
ingly, the feedback triple affords superior desensitization of the closed-loop gain with respect to transistor
parameters and source and load resistances; but the presence of a cascade of three common emitter gain
stages in the open loop of the amplifier complicates frequency compensation and limits the 3-dB band-
width. The problem is that, although each common emitter stage approximates a dominant pole amplifier,
none of the critical frequencies in the cluster of poles established by the cascade interconnection of these
units is likely to be dominant. The uncompensated closed loop is therefore predisposed to unacceptable
underdamping, thereby making compensation via an introduced feedback zero difficult.

At least three compensation techniques can be exploited to optimize the performance of the shunt-
shunt feedback amplifier [3], [7–9]. The first of these techniques entail pole splitting of the open-loop
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interstage through the introduction of a capacitance, Cc, between the base and the collector terminals of
transistor Q2, as depicted in the ac schematic diagram of Figure 12.9. In principle, pole splitting can be
invoked on any one of the three stages of the open loop; but pole splitting of the interstage is most
desirable because such compensation of the first stage proves effective only for large source resistance.
Moreover, the resultant dominant pole becomes dependent on the source termination. On the other
hand, pole splitting of the third stage produces a dominant pole that is sensitive to load termination. In
conjunction with pole splitting, a feedback zero can be introduced, if necessary, to increase closed-loop
damping by replacing the feedback resistance, RF, by the parallel combination of RF and a feedback
capacitance, CF, as illustrated in Figure 12.9. This compensation produces left-half-plane zero in the
feedback factor at s = –(1/RF).

A second compensation method broadbands the interstage of the open-loop amplifier through local
current feedback introduced by the resistance, RX, in Figure 12.10. Simultaneously, the third stage is broad-
banded by way of a common base cascode transistor Q4. Because emitter degeneration of the interstage
reduces the open-loop gain, an emitter follower (transistor Q5) is embedded between the feedback network

FIGURE 12.9  AC schematic diagram of a frequency compensated shunt-shunt triple. The capacitance, Cc, achieves
open-loop pole splitting, while the capacitance, CF, implements a compensating feedback network zero.

FIGURE 12.10  AC schematic diagram of an alternative compensation scheme for the shunt-shunt triple. Transistor
Q2 is broadbanded by the emitter degeneration resistance RX and transistor Q3 is broadbanded by the common base
cascode transistor Q4. The emitter follower transistor, Q5, minimizes feed-forward signal transmission through the
feedback network.
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12-16 Circuit Analysis and Feedback Amplifier Theory

and the output port of the open-loop third stage. As in the case of the series-shunt feedback amplifier,
the first-order effect of this emitter follower is to increase feed-forward signal transmission through the
open-loop amplifier by a factor that approaches (β + 1).

A final compensation method is available if shunt-shunt feedback is implemented as the balanced
differential architecture (see the ac schematic diagram offered in Figure 12.11). By exploiting the antiphase
nature of opposite collectors in a balanced common emitter topology, a shunt-shunt feedback amplifier
can be realized with only two gain stages in the open loop. The resultant closed loop 3-dB bandwidth is
invariably larger than that of its three-stage single-ended counterpart, because the open loop is now
characterized by only two, as opposed to three, fundamental critical frequencies. Because the forward
gain implicit to two amplifier stages is smaller than the gain afforded by three stages of amplification, a
balanced emitter follower (transistors Q3A and Q3B) is incorporated to circumvent the deleterious relative
effects of feed-forward signal transmission through the feedback network.

12.5 Series-Series Feedback Amplifier

Figure 12.12(a) is the ac schematic diagram of the series-series feedback amplifier. Three transistors, Q1,
Q2, and Q3, are embedded in the open-loop amplifier, while the feedback subcircuit is the wye config-
uration formed of the resistances RX, RY, and RZ. Although it is possible to realize series-series feedback
via emitter degeneration of a single-stage amplifier, the series-series triple offers substantially more loop
gain and thus better desensitization of the forward gain with respect to both transistor parameters and
source and load terminations.

FIGURE 12.11 AC schematic diagram of a differential realization of the compensated shunt-shunt feedback ampli-
fier. The balanced stage boasts improved bandwidth over its single-ended counterpart because of its use of only two
high-gain stages in the open loop. The emitter follower pair Q3A and Q3B diminishes feed-forward transmission
through the feedback network composed of the shunt interconnection of resistor RF with capacitor CF .
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In Figure 12.12(a), the feedback wye senses the Q3 emitter current, which is a factor of (1/α) of the
output signal current Io. This sampled current is fed back as a voltage in series with the emitter of Q1.
Because output current is fed back as a voltage to a voltage-driven input port, both the driving point
input and output resistances are large. The circuit is therefore best suited as a transconductance amplifier
in the sense that for large loop gain, its closed-loop transconductance, GM (RST, RLT) = IO/VST, is almost
independent of the source and load resistances.

The series-series topology of the subject amplifier conduces z-parameter modeling of the feedback
network. Noting the electrical variables delineated in the diagram of Figure 12.12(a),

(12.47)

Equation (12.47) suggests that the open-circuit feedback network resistances loading the emitters of
transistors Q1 and Q3 are (RX + RZ ) and (RY + RZ ), respectively, and the voltage fed back to the emitter
of transistor Q1 is RZI2F. Because the indicated feedback network current I2F is (–IO /α), this fed back
voltage is equivalent to (–RZIO /α), which suggests a feedback factor, f, of

FIGURE 12.12  (a) AC schematic diagram of a bipolar series-series feedback amplifier. (b) Low-frequency, small-
signal equivalent circuit of the feedback amplifier.
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12-18 Circuit Analysis and Feedback Amplifier Theory

(12.48)

Finally, the feed-forward through the feedback network if RZ I1F. Because I1F relates to the signal base
current IV flowing into transistor Q1 by I1F = (β + 1)Iv, this feed-forward voltage is also expressible as
(–f βIv). The foregoing observations and the hybrid-pi method of a bipolar junction transistor produce
the small-signal model depicted in Figure 12.12(b). In this model, all transistors are presumed to have
identical corresponding small-signal parameters, and the constant, K1, is

(12.49)

An analysis of the model of Figure 12.12(b) confirms that the ratio of the signal current, IW, flowing
into the base of transistor Q3 to the signal base current, IV, of transistor Q1 is

(12.50)

This result suggests that feed-forward effects through the feedback network are negligible if � f � � K1R2,
which requires

(12.51)

In view of the fact that the constant, K1, approaches β for large values of the resistance, R1, (12.51) is not
a troublesome inequality. Introducing a second constant, K2, such that

(12.52)

the ratio IW /IV in (12.50) becomes

(12.53)

assuming (12.51) is satisfied.
Given the propriety of (12.50) and using (12.53) the open-loop transconductance, GMO(RST, RLT) is

found to be

(12.54)

and recalling (12.48), the loop gain T is

(12.55)

It follows that for T � 1, the closed-loop transconductance is

(12.56)
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The Early resistance is large enough to justify its neglect, so the open-loop, and thus the closed-loop,
driving-point output resistances are infinitely large. On the other hand, the closed-loop driving point
input resistance Rin can be shown to be

(12.57)

Similar to its shunt-shunt counterpart, the series-series feedback amplifier uses three open-loop gain
stages to produce large loop gain. However, also similar to the shunt-shunt triple, frequency compensation
via an introduced feedback zero is difficult unless design care is exercised to realize a dominant pole
open-loop response. To this end, the most commonly used compensation is pole splitting in the open
loop, combined, if required, with the introduction of a zero in the feedback factor. The relevant ac
schematic diagram appears in Figure 12.13 where the indicated capacitance, Cc, inserted across the base-
collector terminals of transistor Q3 achieves the aforementioned pole splitting compensation. The capac-
itance, CF, in Figure 12.13 delivers a frequency-dependent feedback factor, f (s) of

(12.58)

where the frequency z of the introduced zero derives from

(12.59)

The corresponding pole in (12.58) is insignificant if the closed-loop amplifier is designed for a bandwidth,
Bcl that satisfies the inequality, Bc1(RX + RY)CF � 1.

As is the case with shunt-shunt feedback, an alternative frequency compensation scheme is available
if series-series feedback is implemented as a balanced differential architecture. The pertinent ac schematic

FIGURE 12.13  AC schematic diagram of a frequency compensated series-series feedback triple. The capacitance,
Cc, achieves pole splitting in the open-loop configuration, while the capacitance, CF, introduces a zero in the feedback
factor of the closed-loop amplifier.
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12-20 Circuit Analysis and Feedback Amplifier Theory

diagram, inclusive of feedback compensation, appears in Figure 12.14. This diagram exploits the fact that
the feedback wye consisting of the resistances, RX, RY, and RZ as utilized in the single-ended configurations
of Figures 12.12(a) and 12.13 can be transformed into the feedback delta of Figure 12.15. The terminal
volt-ampere characteristics of the two networks in Figure 12.15 are identical, provided that the delta
subcircuit elements, RF, RU, and RV, are chosen in accordance with

(12.60)

(12.61)

(12.62)

FIGURE 12.14 AC schematic diagram of a balanced differential version of the series-series feedback amplifier. The
circuit utilizes only two, as opposed to three, gain stages in the open loop.

FIGURE 12.15 Transformation of the wye feedback subcircuit used in the amplifier of Figure 12.13 to the delta
subcircuit exploited in Figure 12.14. The resistance transformation equations are given by (12.60)–(12.62).
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12.6 Dual-Loop Feedback

As mentioned previously, a simultaneous control of the driving point I/O resistances, as well as the closed-
loop gain, mandates the use of dual global loops comprised of series and shunt feedback signal paths.
The two global dual-loop feedback architectures are the series-series/shunt-shunt feedback amplifier
and the series-shunt/shunt-series feedback amplifier. In the following subsections, both of these units
are studied by judiciously applying the relevant analytical results established earlier for pertinent single-
loop feedback architectures. The ac schematic diagrams of these respective circuit realizations are pro-
vided, and engineering design considerations are offered.

Series-Series/Shunt-Shunt Feedback Amplifier

Figure 12.16 is a behavioral abstraction of the series-series/shunt-shunt feedback amplifier. Two port z
parameters are used to model the series-series feedback subcircuit, for which feed-forward is tacitly
ignored and the feedback factor associated with its current controlled voltage source is fss. On the other
hand, y parameters model the shunt-shunt feedback network, where the feedback factor relative to its
voltage controlled current source is fpp. As in the series-series network, feed-forward in the shunt-shunt
subcircuit is presumed negligible. The four-terminal amplifier around which the two feedback units are
connected has an open loop (meaning fss = 0 and fpp = 0, but with the loading effects of both feedback
circuits considered) transconductance of GMO (RST, RLT).

With fpp set to zero to deactivate shunt-shunt feedback, the resultant series-series feedback network is
a transconductance amplifier with a closed-loop transconductance, GMS (RST, RLT), is

(12.63)

where the loop gain, fssGMO (RST, RLT), is presumed much larger than one, and the loading effects of both
the series-series feedback subcircuit and the deactivated shunt-shunt feedback network are incorporated

FIGURE 12.16  System-level diagram of a series-series/shunt-shunt dual-loop feedback amplifier. Note that feed-
forward signal transmission through either feedback network is ignored.
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12-22 Circuit Analysis and Feedback Amplifier Theory

into GMO(RST, RLT). The transresistance, RMS(RST, RLT), implied by (12.63), which expedites the study of
the shunt-shunt component of the feedback configuration, is

(12.64)

The series-series feedback input and output resistances Rins and Routs, respectively, are large and given by

(12.65)

and

(12.66)

where the zero feedback ( fss = 0 and fpp = 0) values, Rino and Routo, of these driving point quantities are
computed with due consideration given to the loading effects imposed on the amplifier by both feedback
subcircuits.

When shunt-shunt feedback is applied around the series-series feedback cell, the configuration
becomes a transresistance amplifier. The effective open-loop transresistance is RMS(RST, RLT), as defined
by (12.64). Noting a feedback of fpp, the corresponding closed-loop transresistance is

(12.67)

which is independent of amplifier model parameters, despite the unlikely condition of an effective loop
gain fpp RST RLT /fss that is much larger than one. It should be interjected, however, that (12.67) presumes
negligible feed-forward through the shunt-shunt feedback network. This presumption may be inappro-
priate owing to the relatively low closed-loop gain afforded by the series-series feedback subcircuit.
Ignoring this potential problem temporarily, (12.67) suggests a closed-loop voltage gain AV (RST, RLT) of

(12.68)

The closed-loop, driving-point output resistance Rout, can be straightforwardly calculated by noting
that the open circuit (RLT → ∞) voltage gain, AVO, predicted by (12.68) is AVO = 1/fpp RST. Accordingly,
(12.68) is alternatively expressible as

(12.69)

Because (12.69) is a voltage divider relationship stemming from a Thévenin model of the output port of
the dual-loop feedback amplifier, as delineated in Figure 12.17, it follows that the driving-point output
resistance is

(12.70)
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Observe that, similar to the forward gain characteristics, the driving-point output resistance is nominally
insensitive to changes and other uncertainties in open-loop amplifier parameters. Moreover, this output
resistance is directly proportional to the ratio fss/fpp of feedback factors. As is illustrated in preceding
sections, the individual feedback factors, and thus the ratio of feedback factors, is likely to be proportional
to a ratio of resistances. In view of the fact that resistance ratios can be tightly controlled in a monolithic
fabrication process, Rout in (12.70) is accurately prescribed for a given source termination.

The driving-point input resistance Rin can be determined from a consideration of the input port
component of the system level equivalent circuit depicted in Figure 12.17. This resistance is the ratio of
VST to I, under the condition of RS = 0. With RS = 0, (12.68) yields VO = RLTVST /fss and thus, Kirchhoff ’s
voltage law (KVL) applied around the input port of the model at hand yields

 (12.71)

where the “open-loop” input resistance Rins, defined by (12.65), is presumed large. Similar to the driving-
point output resistance of the series-series/shunt-shunt feedback amplifier, the driving-point input resis-
tance is nominally independent of open-loop amplifier parameters.

It is interesting to observe that the input resistance in (12.71) is inversely proportional to the load
resistance by the same factor (fss /fpp) that the driving-point output resistance in (12.70) is inversely
proportional to the source resistance. As a result,

(12.72)

Thus, in addition to being stable performance indices for well-defined source and load terminations, the
driving-point input and output resistances track one another, despite manufacturing uncertainties and
changes in operating temperature that might perturb the individual values of the two feedback factors
fss and fpp.

FIGURE 12.17  Norton equivalent input and Thévenin equivalent output circuits for the series-series/shunt-shunt
dual-loop feedback amplifier.
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12-24 Circuit Analysis and Feedback Amplifier Theory

The circuit property stipulated by (12.72) has immediate utility in the design of wideband commun-
ication transceivers and other high-speed signal-processing systems [10–14]. In these and related appli-
cations, a cascade of several stages is generally required to satisfy frequency response, distortion, and
noise specifications. A convenient way of implementing a cascade interconnection is to force each member
of the cascade to operate under the match terminated case of RST = Rin = RLT = Rout =

∆ R. From (12.72)
match terminated operation demands feedback factors selected so that

(12.73)

which forces a match terminated closed-loop voltage gain A∗
V  of

(12.74)

The ac schematic diagram of a practical, single-ended series-series/shunt-shunt amplifier is submitted
in Figure 12.18. An inspection of this diagram reveals a topology that coalesces the series-series and
shunt-shunt triples studied earlier. In particular, the wye network formed of the three resistances, RXx,
RY, and RZ, comprises the series-series component of the dual-loop feedback amplifier. The capacitor,
Cc, narrowbands the open-loop amplifier to facilitate frequency compensation of the series-series loop
through the capacitance, CF1. Compensated shunt feedback of the network is achieved by the parallel
combination of the resistance, RF and the capacitance, CF2. If CF1 and Cc combine to deliver a dominant
pole series-series feedback amplifier, CF2 is not necessary. Conversely, CF1 is superfluous if CF2 and Cc

interact to provide a dominant pole shunt-shunt feedback amplifier. As in the single ended series-series
configuration, transistor Q3 can be broadbanded via a common base cascode. Moreover, if feedback
through the feedback networks poses a problem, an emitter follower can be inserted at the port to which
the shunt feedback path and the load termination are incident.

FIGURE 12.18  AC schematic diagram of a frequency-compensated, series-series/shunt-shunt, dual-loop feedback
amplifier. The compensation is affected by the capacitances CF1 and CF2, while Cc achieves pole splitting in the open-
loop amplifier.
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A low-frequency analysis of the circuit in Figure 12.18 is expedited by assuming high beta transistors
having identical corresponding small-signal model parameters. This analysis, which in contrast to the
simplified behavioral analysis, does not ignore the electrical effects of the aforementioned feed-forward
through the shunt-shunt feedback network, yields a voltage gain AV (RST, RLT), of

(12.75)

where the driving-point input resistance of the amplifier Rin is

(12.76)

The driving-point output resistance Rout is

(12.77)

As predicted by the behavioral analysis Rin, Rout, and AV (RST, RLT), are nominally independent of transistor
parameters. Observe that the functional dependence of Rin on the load resistance, RLT , is identical to the
manner in which Rout is related to the source resistance RST. In particular, Rin ≡ Rout if RST ≡ RLT . For the
match terminated case in which RST = Rin = RLT = Rout =

∆ R,

(12.78)

The corresponding match terminated voltage gain in (12.75) collapses to

(12.79)

Similar to the series-series and shunt-shunt triples, many of the frequency compensation problems
implicit to the presence of three open-loop stages can be circumvented by realizing the series-series/shunt-
shunt amplifier as a two-stage differential configuration. Figure 12.19 is the acschematic diagram of a
compensated differential series-series/shunt-shunt feedback dual.

Series-Shunt/Shunt-Series Feedback Amplifier

The only other type of global dual loop architecture is the series-shunt/shunt-series feedback amplifier;
the behavioral diagram appears in Figure 12.20. The series-shunt component of this system, which is
modeled by h-parameters, has a negligibly small feed-forward factor and a feedback factor of fsp. Hybrid
g-parameters model the shunt-series feedback structure, which has a feedback factor of fps and a presum-
ably negligible feed-forward factor. The four-terminal amplifier around which the two feedback units
are connected has an open-loop (meaning fsp = 0 and fps = 0, but with the loading effects of both feedback
circuits considered) voltage gain of AVO(RST, RLT).

For fps = 0, the series-shunt feedback circuit voltage gain AVS(RST, RLT), is

(12.80)
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12-26 Circuit Analysis and Feedback Amplifier Theory

FIGURE 12.19  AC schematic diagram of the differential realization of a compensated series-series/shunt-shunt
feedback amplifier.

FIGURE 12.20  System level diagram of a series-shunt/shunt-series, dual-loop feedback amplifier. Note that feed-
forward signal transmission through either feedback network is ignored.
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where the approximation reflects an assumption of a large loop gain. When the shunt-series component
of the feedback amplifier is activated, the dual-loop configuration functions as a current amplifier. Its
effective open-loop transfer function is the current gain, AIS (RST, RLT), established by the series-shunt
amplifier; namely,

(12.81)

It follows that the current gain, AI (RST, RLT), of the closed loop is

(12.82)

while the corresponding voltage gain, AV (RST, RLT), assuming negligible feed-forward through the shunt-
series feedback network, is

(12.83)

Repeating the analytical strategy employed to determine the input and output resistances of the series-
series/shunt-shunt configuration, (12.83) delivers a driving-point input resistance of

(12.84)

and a driving-point output resistance of

(12.85)

Similar to the forward voltage gain, the driving-point input and output resistances of the series-
shunt/shunt-series feedback amplifier are nominally independent of active element parameters. Note, how-
ever, that the input resistance is directly proportional to the load resistance by a factor (fsp /fps), which is the
inverse of the proportionality constant that links the output resistance to the source resistance. Specifically,

(12.86)

Thus, although Rin and Rout are reliably determined for well-defined load and source terminations, they
do not track one another as well as they do in the series-series/shunt-shunt amplifier. Using (12.86), the
voltage gain in (12.83) is expressible as

(12.87)

A R R
I

I

R

R

V

V

R

f R
O O

sp
IS ST LT

ST

ST

LT ST

ST

LT

,( ) = =






≈

A R R

R

f R

f
R

f R

R

f R f R
sp

ps
sp

sp ps
I ST LT

ST

LT

ST

LT

ST

LT ST

,( ) ≈
+ 





=
+

1

A R R
R

R
A R R

R

f R f RV I
sp ps

ST LT
LT

ST
ST LT

LT

LT ST

, ,( ) = ( ) ≈
+

R
f R

f
sp

ps
in

LT≈

R
f R

f
ps

sp
out

ST≈

f

f

R

R

R

R
sp

ps

= =in

LT

ST

out

A R R

f
R R

R R

V

sp

ST LT

out ST

in LT

,( ) ≈

+










1

1

© 2006 by Taylor & Francis Group, LLC



12-28 Circuit Analysis and Feedback Amplifier Theory

The simplified ac schematic diagram of a practical series-shunt/shunt-series feedback amplifier appears
in Figure 12.21. In this circuit, series-shunt feedback derives from the resistances, REE1 and RF1, and shunt-
series feedback is determined by the resistances, REE2 and RF2. Because this circuit topology merges the
series-shunt and shunt-series pairs, requisite frequency compensation, which is not shown in the subject
figure, mirrors the relevant compensation schemes studied earlier. Note, however, that a cascade of only
two open-loop gain stages renders compensation easier to implement and larger 3-dB bandwidths easier
to achieve in the series-series/shunt-shunt circuit, which requires three open-loop gain stages for a single-
ended application.

For high beta transistors having identical corresponding small-signal model parameters, a low-fre-
quency analysis of the circuit in Figure 12.21 gives a voltage gain of

(12.88)

where the driving-point input resistance, Rin, of the subject amplifier is

(12.89)

The driving-point output resistance, Rout, is

(12.90)

FIGURE 12.21  AC schematic diagram of a series-shunt/shunt-series, dual-loop feedback amplifier.
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12.7 Summary

This section documents small-signal performance equations, general operating characteristics, and engi-
neering design guidelines for the six most commonly used global feedback circuits. These observations
derive from analyses based on the judicious application of signal flow theory to the small-signal model
that results when the subject feedback network is supplanted by an appropriate two-port parameter
equivalent circuit.

Four of the six fundamental feedback circuits are single-loop architectures.

1. The series-shunt feedback amplifier functions best as a voltage amplifier in that its input resistance
is large, and its output resistance is small. Because only two gain stages are required in the open
loop, the amplifier is relatively easy to compensate for acceptable closed-loop damping and features
potentially large 3-dB bandwidth. A computationally efficient analysis aimed toward determining
loop gain, closed-loop gain, I/O resistances, and the condition that renders feed-forward through
the feedback network inconsequential is predicated on replacing the feedback subcircuit with its
h-parameter model.

2. The shunt-series feedback amplifier is a current amplifier in that its input resistance is small, and
its output resistance is large. Similar to its series-shunt dual, only two gain stages are required in
the open loop. Computationally efficient analyses are conducted by replacing the feedback sub-
circuit with its g-parameter model.

3. The shunt-shunt feedback amplifier is a transresistance signal processor in that both its input and
output resistances are small. Although this amplifier can be realized theoretically with only a single
open-loop stage, a sufficiently large loop gain generally requires a cascade of three open-loop
stages. As a result, pole splitting is invariably required to ensure an open-loop dominant pole
response, thereby limiting the achievable closed-loop bandwidth. In addition compensation of the
feedback loop may be required for acceptable closed-loop damping. The bandwidth and stability
problems implicit to the use of three open-loop gain stages can be circumvented by a balanced
differential realization, which requires a cascade of only two open-loop gain stages. Computation-
ally efficient analyses are conducted by replacing the feedback subcircuit with its y-parameter
model.

4. The series-series feedback amplifier is a transconductance signal processor in that both its input
and output resistances are large. Similar to its shunt-shunt counterpart, its implementation gen-
erally requires a cascade of three open-loop gain stages. Computationally efficient analyses are
conducted by replacing the feedback subcircuit with its z-parameter model.

The two remaining feedback circuits are dual-loop topologies that can stabilize the driving-point input
and output resistances, as well as the forward gain characteristics, with respect to shifts in active element
parameters. One of these latter architectures, the series-series/shunt-shunt feedback amplifier, is partic-
ularly well suited to electronic applications that require a multistage cascade.

1. The series-series/shunt-shunt feedback amplifier coalesces the series-series architecture with its
shunt-shunt dual. It is particularly well suited to applications, such as wideband communication
networks, which require match terminated source and load resistances. Requisite frequency com-
pensation and broadbanding criteria mirror those incorporated in the series-series and shunt-
shunt single-loop feedback topologies.

2. The series-shunt/shunt-series feedback amplifier coalesces the series-shunt architecture with its
shunt-series dual. Although its input resistance can be designed to match the source resistance
seen by the input port of the amplifier, and its output resistance can be matched to the load
resistance driven by the amplifier, match terminated operating (Rin = RST = RLT = Rout) is not
feasible. Requisite frequency compensation and broadbanding criteria mirror those incorporated
in the series-shunt and shunt-series single-loop feedback topologies.
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