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13.1 Introduction

In Chapter 11.2, we used the ideal feedback model to study the properties of feedback amplifiers. The
model is useful only if we can separate a feedback amplifier into the basic amplifier µ(s) and the feedback
network β(s). The procedure is difficult and sometimes virtually impossible, because the forward path
may no be strictly unilateral, the feedback path is usually bilateral, and the input and output coupling
networks are often complicated. Thus, the ideal feedback model is not an adequate representation of a
practical amplifier. In the remainder of this section, we shall develop Bode’s feedback theory, which is
applicable to the general network configuration and avoids the necessity of identifying the transfer
functions µ(s) and β(s).

Bode’s feedback theory [2] is based on the concept of return difference, which is defined in terms of
network determinants. We show that the return difference is a generalization of the concept of the
feedback factor of the ideal feedback model, and can be measured physically from the amplifier itself.
We then introduce the notion of null return difference and discuss its physical significance. Because the
feedback theory will be formulated in terms of the first- and second-order cofactors of the elements of
the indefinite-admittance matrix of a feedback circuit, we first review briefly the formulation of the
indefinite-admittance matrix.

13.2 The Indefinite-Admittance Matrix

Figure 13.1 is an n-terminal network N composed of an arbitrary number of active and passive network
elements connected in any way whatsoever. Let V1, V2, …, Vn be the Laplace-transformed potentials
measured between terminals 1, 2, …, n and some arbitrary but unspecified reference point, and let I1,
I2, …, In be the Laplace-transformed currents entering the terminals 1, 2, …, n from outside the network.
The network N together with its load is linear, so the terminal current and voltages are related by the
equation

1References for this chapter can be found on page 16-17.
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13-2 Circuit Analysis and Feedback Amplifier Theory

(13.1)

or more succinctly as

(13.2)

where Jk (k = 1,2, …, n) denotes the current flowing into the kth terminal when all terminals of N are
grounded to the reference point. The coefficient matrix Y(s) is called the indefinite-admittance matrix
because the reference point for the potentials is some arbitrary but unspecified point outside the network.
Notice that the symbol Y(s) is used to denote either the admittance matrix or the indefinite-admittance
matrix. This should not create any confusion because the context will tell. In the remainder of this section,
we shall deal exclusively with the indefinite-admittance matrix.

We remark that the short-circuit currents Jk result from the independent sources and/or initial con-
ditions in the interior of N. For our purposes, we shall consider all independent sources outside the
network and set all initial conditions to zero. Hence, J(s) is considered to be zero, and (13.2) becomes

(13.3)

where the elements yij of Y(s) can be obtained as

(13.4)

As an illustration, consider a small-signal equivalent model of a transistor in Figure 13.2. Its indefinite-
admittance matrix is found to be

(13.5)

FIGURE 13.1 The general symbolic representation of an n-terminal network.
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General Feedback Theory 13-3

Observe that the sum of elements of each row or column is equal to zero. The fact that these properties
are valid in general for the indefinite-admittance matrix will now be demonstrated.

To see that the sum of the elements in each column of Y(s) equals zero, we add all n equations of
(13.1) to yield

(13.6)

The last equation is obtained by appealing to Kirchhoff ’s current law (KCL) for the node corresponding
to the reference point. Setting all the terminal voltages to zero except the kth one, which is nonzero, gives

(13.7)

Because Vk ≠ 0, it follows that the sum of the elements of each column of Y(s) equals zero. Thus, the
indefinite-admittance matrix is always singular.

To demonstrate that each row sum of Y(s) is also zero, we recognize that because the point of zero
potential may be chosen arbitrarily, the currents Jk and Ik remain invariant when all the terminal voltages
Vk are changed by the same but arbitrary constant amount. Thus, if V0 is an n-vector, each element of
which is v0 ≠ 0, then

(13.8)

which after invoking (13.2) yields that

(13.9)

or

(13.10)

showing that each row sum of Y(s) equals zero.
Thus, if Yuv denotes the submatrix obtained from an indefinite-admittance matrix Y(s) by deleting the

uth row and vth column, then the (first-order) cofactor, denoted by the symbol Yuv, of the element yuv

of Y(s), is defined by

(13.11)

As a consequence of the zero-row-sum and zero-column-sum properties, all the cofactors of the elements
of the indefinite-admittance matrix are equal. Such a matrix is also referred to as the equicofactor matrix.
If Yuv and Yij are any two cofactors of the elements of Y(s), then

FIGURE 13.2  A small-signal equivalent network of a transistor.
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13-4 Circuit Analysis and Feedback Amplifier Theory

(13.12)

for all u, v, i and j. For the indefinite-admittance matrix Y(s) of (13.5) it is straightforward to verify that
all of its nine cofactors are equal to

(13.13)

for u, v = 1, 2, 3.
Denote by Yrp,sq the submatrix obtained from Y(s) by striking out rows r and s and columns p and q.

Then the second-order cofactor, denoted by the symbol Yrp,sq of the elements yrp, and ysq of Y(s) is a scalar
quantity defined by the relation

(13.14)

where r ≠ s and p ≠ q, and

(13.15a)

(13.15b)

The symbols Yuv and Yuv or Yrp,sq and Yrp,sq should not create any confusion because one is in boldface
whereas the other is italic. Also, for our purposes, it is convenient to define

(13.16a)

or

(13.16b)

This convention will be followed throughout the remainder of this section.
As an example, consider the hybrid-pi equivalent network of a transistor in Figure 13.3. Assume that

each node is an accessible terminal of a four-terminal network. Its indefinite-admittance matrix is:

(13.17)

FIGURE 13.3  The hybrid-pi equivalent network of a transistor.
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General Feedback Theory 13-5

The second-order cofactor Y31,42 and Y11,34 of the elements of Y(s) of (13.17) are computed as follows:

(13.18a)

(13.18b)

The usefulness of the indefinite-admittance matrix lies in the fact that it facilitates the computation of
the driving-point or transfer functions between any pair of nodes or from any pair of nodes to any other
pair. In the following, we present elegant, compact, and explicit formulas that express the network
functions in terms of the ratios of the first- and/or second-order cofactors of the elements of the indefinite-
admittance matrix.

Assume that a current source is connected between any two nodes r and s so that a current Isr is injected
into the rth node and at the same time is extracted from the sth node. Suppose that an ideal voltmeter
is connected from node p to node q so that it indicates the potential rise from q to p, as depicted
symbolically in Figure 13.4. Then the transfer impedance, denoted by the symbol zrp,sq, between the node
pairs rs and pq of the network of Figure 13. 4 is defined by the relation

(13.19)

with all initial conditions and independent sources inside N set to zero. The representation is, of course,
quite general. When r = p and s = q, the transfer impedance zrp,sq, becomes the driving-point impedance
zrr,ss between the terminal pair rs.

In Figure 13.4, set all initial conditions and independent sources in N to zero and choose terminal q
to be the reference-potential point for all other terminals. In terms of (13.1), these operations are
equivalent to setting J = 0, Vq = 0, Ix = 0 for x ≠ r, s and Ir = –Is = Isr. Because Y(s) is an equicofactor
matrix, the equations of (13.1) are not linearly independent and one of them is superfluous. Let us
suppress the sth equation from (13.1), which then reduces to

(13.20)

where I–s and V–q denote the subvectors obtained from I and V of (13.3) by deleting the sth row and qth
row, respectively. Applying Cramer’s rule to solve for Vp yields

FIGURE 13.4  The symbolic representation for the measurement of the transfer impedance.
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13-6 Circuit Analysis and Feedback Amplifier Theory

(13.21)

where Ỹsq is the matrix derived from Ysq by replacing the column corresponding to Vp by I–s. We recognize
that I–s is in the pth column if p < q but in the (p – 1)th column if p > q. Furthermore, the row in which
Isr appears is the rth row if r < s, but is the (r – 1)th row if r > s. Thus, we obtain

(13.22)

In addition, we have

(13.23)

Substituting these in (13.21) in conjunction with (13.19), we obtain

(13.24)

(13.25)

in which we have invoked the fact that Ysq = Yuv.
The voltage gain, denoted by grp, sq, between the node pairs rs and pq of the network of Figure 13.4 is

defined by

(13.26)

again with all initial conditions and independent sources in N being set to zero. Thus, from (13.24) and
(13.25) we obtain

(13.27)

The symbols have been chosen to help us remember. In the numerators of (13.24), (13.25), and (13.27),
the order of the subscripts is as follows: r, the current injecting node; p, the voltage measurement node;
s, the current extracting node; and q the voltage reference node. Nodes r and p designate the input and
output transfer measurement, and nodes s and q form a sort of double datum.

As an illustration, we consider the hybrid-pi transistor equivalent network of Figure 13.3. For this
transistor, suppose that we connect a 100-Ω load resistor between nodes 2 and 4, and excite the resulting
circuit by a voltage source V14, as depicted in Figure 13.5. To simplify our notation, let p = 10–9 s. The
indefinite-admittance matrix of the amplifier is:

(13.28)
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General Feedback Theory 13-7

To compute the voltage gain g12, 44, we appeal to (13.27) and obtain

(13.29)

The input impedance facing the voltage source V14 is determined by

(13.30)

To compute the current gain defined as the ratio of the current I24 in the 100-Ω resistor to the input
current I41, we apply (13.24) and obtain

(13.31)

Finally, to compute the transfer admittance defined as the ratio of the load current I24 to the input voltage
V14, we appeal to (13.27) and obtain

(13.32)

13.3 The Return Difference

In the study of feedback amplifier response, we are usually interested in how a particular element of the
amplifier affects that response. This element is either crucial in terms of its effect on the entire system
or of primary concern to the designer. It may be the transfer function of an active device, the gain of an
amplifier, or the immittance of a one-port network. For our purposes, we assume that this element x is
the controlling parameter of a voltage-controlled current source defined by the equation

(13.33)

To focus our attention on the element x, Figure 13.6 is the general configuration of a feedback amplifier
in which the controlled source is brought out as a two-port network connected to a general four-port
network, along with the input source combination of Is and admittance Y1 and the load admittance Y2.

We remark that the two-port representation of a controlled source (13.33) is quite general. It includes
the special situation where a one-port element is characterized by its immittance. In this case, the
controlling voltage V is the terminal voltage of the controlled current source I, and x become the one-
port admittance.

FIGURE 13.5 A transistor amplifier used to illustrate the computation of grp,sq.
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13-8 Circuit Analysis and Feedback Amplifier Theory

The return difference F(x) of a feedback amplifier with respect to an element x is defined as the ratio
of the two functional values assumed by the first-order cofactor of an element of its indefinite-admittance
matrix under the condition that the element x assumes its nominal value and the condition that the
element x assumes the value zero. To emphasize the importance of the feedback element x, we express
the indefinite-admittance matrix Y of the amplifier as a function of x, even though it is also a function
of the complex-frequency variable s, and write Y = Y(x). Then, we have [3]

(13.34)

where

(13.35)

The physical significance of the return difference will now be considered. In the network of Figure 13.6,
the input, the output, the controlling branch, and the controlled source are labeled as indicated. Then,
the element x enters the indefinite-admittance matrix Y(x) in a rectangular pattern as shown next:

(13.36)

If in Figure 13.6 we replace the controlled current source xV by an independent current source of x A
and set the excitation current source Is to zero, the indefinite-admittance matrix of the resulting network
is simply Y(0). By appealing to (13.24), the new voltage V ′ab appearing at terminals a and b of the
controlling branch is:

(13.37)

Notice that the current injecting point is terminal d, not c.

FIGURE 13.6  The general configuration of a feedback amplifier.
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General Feedback Theory 13-9

The preceding operation of replacing the controlled current source by an independent current source
and setting the excitation Is to zero can be represented symbolically as in Figure 13.7. Observe that the
controlling branch is broken off as marked and a 1-V voltage source is applied to the right of the breaking
mark. This 1-V sinusoidal voltage of a fixed angular frequency produces a current of x A at the controlled
current source. The voltage appearing at the left of the breaking mark caused by this 1-V excitation is
then V ′ab  as indicated. This returned voltage V ′ab has the same physical significance as the loop transmission

ideal feedback model to zero, break the forward path, and apply a unit input to the right of the break,
as depicted in Figure 13.8. The signal appearing at the left of the break is precisely the loop transmission.

For this reason, we introduce the concept of return ratio T, which is defined as the negative of the
voltage appearing at the controlling branch when the controlled current source is replaced by an inde-
pendent current source of x A and the input excitation is set to zero. Thus, the return ratio T is simply
the negative of the returned voltage V ′ab, or T = – V ′ab. With this in mind, we next compute the difference
between the 1-V excitation and the returned voltage V ′ab obtaining 

(13.38)

in which we have invoked the indentities Yuv = Yij and

FIGURE 13.7  The physical interpretation of the return difference with respect to the controlling parameter of a
voltage-controlled current source.

FIGURE 13.8  The physical interpretation of the loop transmission.
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(13.39)

We remark that we write Yca,db (x) as Yca,db because it is independent of x. In other words, the return
difference F(x) is simply the difference of the 1-V excitation and the returned voltage V ′ab as illustrated
in Figure 13.7, and hence its name. Because

(13.40)

we conclude that the return difference has the same physical significance as the feedback factor of the
ideal feedback model. The significance of the previous physical interpretations is that it permits us to
determine the return ratio T or –µβ by measurement. Once the return ratio is measured, the other
quantities such as return difference and loop transmission are known.

To illustrate, consider the voltage-series or the series-parallel feedback amplifier of Figure 13.9. Assume
that the two transistors are identical with the following hybrid parameters:

(13.41)

After the biasing and coupling circuitry have been removed, the equivalent network is presented in
Figure 13.10. The effective load of the first transistor is composed of the parallel combination of the 10,
33, 47, and 1.1-kΩ resistors. The effect of the 150- and 47-kΩ resistors can be ignored; they are included
in the equivalent network to show their insignificance in the computation.

To simplify our notation, let 

(13.42)

FIGURE 13.9 A voltage-series feedback amplifier together with its biasing and coupling circuitry.
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The subscript k is used to distinguish the transconductances of the first and the second transistors. The
indefinite-admittance matrix of the feedback amplifier of Figure 13.9 is:

(13.43)

By applying (13.27), the amplifier voltage gain is computed as

(13.44)

To calculate the return differences with respect to the transconductances α̃k of the transistors, we short-
circuit the voltage source Vs. The resulting indefinite-admittance matrix is obtained from (13.43) by
adding the first row to the fifth row and the first column to the fifth column and then deleting the first
row and column. Its first-order cofactor is simply Y11,55. Thus, the return differences with respect to α̃k are: 

(13.45a)

(13.45b)

FIGURE 13.10 An equivalent network of the feedback amplifier of Figure 13.9.
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13-12 Circuit Analysis and Feedback Amplifier Theory

13.4 The Null Return Difference

In this section, we introduce the notion of null return difference, which is found to be very useful in
measurement situations and in the computation of the sensitivity for the feedback amplifiers.

The null return difference F̂(x) of a feedback amplifier with respect to an element x is defined to be
the ratio of the two functional values assumed by the second-order cofactor Yrp,sq of the elements of its
indefinite-admittance matrix Y under the condition that the element x assumes its nominal value and
the condition that the element x assumes the value zero where r and s are input terminals, and p and q
are the output terminals of the amplifier, or 

(13.46)

Likewise, the null return ratio T̂, with respect to a voltage-controlled current source I = xV, is the
negative of the voltage appearing at the controlling branch when the controlled current source is replaced
by an independent current source of x A and when the input excitation is adjusted so that the output of
the amplifier is identically zero.

Now, we demonstrate that the null return difference is simply the return difference in the network
under the situation that the input excitation Is has been adjusted so that the output is identically zero.
In the network of Figure 13.6, suppose that we replace the controlled current source by an independent
current source of x A. Then by applying formula (13.24) and the superposition principle, the output
current Ipq at the load is:

(13.47)

Setting Ipq = 0 or Vpq = 0 yields

(13.48)

in which Ydp,cq is independent of x. This adjustment is possible only if a direct transmission occurs from
the input to the output when x is set to zero. Thus, in the network of Figure 13.7, if we connect an
independent current source of strength I0 at its input port, the voltage V ′ab is the negative of the null
return ratio T̂. Using (13.24), we obtain [4]

(13.49)

where

(13.50)
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This leads to

(13.51)

which demonstrates that the null return difference F̂(x) is simply the difference of the 1-V excitation
applied to the right of the breaking mark of the broken controlling branch of the controlled source and
the returned voltage V ′ab appearing at the left of the breaking mark under the situation that the input
signal Is is adjusted so that the output is identically zero.

As an illustration, consider the voltage-series feedback amplifier of Figure 13.9, an equivalent network
of which is presented in Figure 13.10. Using the indefinite-admittance matrix of (13.43) in conjunction
with (13.42), the null return differences with respect to α̂k are:

(13.52a)

(13.52b)

Alternatively, F̂(α̃1) can be computed by using its physical interpretation as follows. Replace the con-
trolled source α̃1V13 in Figure 13.10 by an independent current source of α̃1 A. We then adjust the voltage
source Vs so that the output current I25 is identically zero. Let I0 be the input current resulting from this
source. The corresponding network is presented in Figure 13.11. From this network, we obtain

(13.53)

Likewise, we can use the same procedure to compute the return difference F̂(α̃2).

FIGURE 13.11  The network used to compute the null return difference F̂(α̃ 1) by its physical interpretation.
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