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5.1 Network Functions

Jiri Vlach

Definition of Network Functions

Network functions can be defined if the following constraints are satisfied:

1. The network is linear.
2. It is analyzed in the frequency domain using the Laplace transform.
3. All initial voltages and currents are zero (zero state conditions).

This chapter demonstrates how the various functions can be derived, but first we introduce some
explanations and definitions. If we analyze any linear network, we can take as output any nodal voltage,
or a difference of any two nodal voltages; denote such as output voltage by Vout. We can also take as the
output a current through any element of the network; we call it output current, Iout. If the network is
excited by a voltage source, E, then we can also calculate the current delivered into the network by this
source; this is the input current, Iin. If the network is excited by a current source, J, then the voltage across
the current source is the input voltage, Vin.

Suppose that we analyze the network and keep the letter E or J in our derivations. Then, we can define
the following network functions:

(5.1)

Voltage transfer function,

Input admittance,  

Transfer admittance,    

v
out

in
in

tr
out

T
V

E

Y
I

E

Y
I

E

=

=

=

Jiri Vlach
University of Waterloo, Canada

John Choma, Jr.
University of Southern California

© 2006 by Taylor & Francis Group, LLC



5-2 Circuit Analysis and Feedback Amplifier Theory

Output impedance or output admittance are also used, but the concept is equivalent to the input
impedance or admittance. The only difference is that, for calculations, the source is placed temporarily
at a point from which the output normally will be taken. In the Laplace transform, it is common to use
capital letters, V for voltages and I for currents. We also deal with impedances, Z, and admittances, Y.
Their relationships are

The impedance of a capacitor is ZC = 1/sC, the imped-
ance of an inductor is ZL = sL, and the impedance of a
resistor is R. The inverse of these values are admittances:
YC = sC, YL = 1/sL, and the admittance of a resistor is
G = 1/R.

To demonstrate the derivations of the above func-
tions two examples are used. Consider the network in
Figure 5.1, with input delivered by the voltage source,
E. By Kirchhoff ’s current law (KCL), the sum of currents
flowing away from node 1 must be zero:

Similarly, the sum of currents flowing away from node 2 is

The independent source is denoted by the letter E, and is assumed to be known. In mathematics, we
transfer known quantities to the right. Doing so and collecting the equations into one matrix equation
results in

If numerical values from the figure are used, this system simplifies to

or

Any method can be used to solve this system, but for the sake of explanation it is advantageous to use
Cramer’s rule. First, find the determinant of the matrix,
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Analysis in the Frequency Domain 5-3

To obtain the solution for the variable V1 (V2), replace the first (second) column of Y by the right-hand
side and calculate the determinant of such a modified matrix. Denoting such a determinant by the letter
N with an appropriate subscript, evaluate

Then,

Now, divide the equation by E, which results in the voltage transfer function

To find the nodal voltage V2, replace the second column by the elements of the vector on the right-hand
side:

The voltage is

and another voltage transfer function of the same network is

Note that many network functions can be defined for any network. For instance, we may wish to calculate
the currents Iin or Iout, marked in Figure 5.1. Because the voltages are already known, they are used: For
the output current Iout = G3V2 and divided by E

The input current Iin = E – G1V1 = E – V1 = E(2s2 + 9s + 6)/(2s2 + 11s + 11) and dividing by E

In order to define the other possible network functions, we must use a current source, J, as in Figure 5.2,
where we also take the current through the inductor as an output variable. This method of formulating
the network equations is called modified nodal. The sum of currents flowing away from node 1 is
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5-4 Circuit Analysis and Feedback Amplifier Theory

from node 2 it is

and the properties of the inductor are expressed by the additional equation

Inserting numerical values and collecting in matrix form:

The determinant of the system is

To solve for V1, we replace the first column by the right-hand side and evaluate the determinant

Then, V1 = N1/D and dividing by J we obtain the network function

To obtain the inductor current, evaluate the determinant of a matrix in which the third column is replaced
by the right-hand side: N3 = –2J. Then, IL = N3 /D and

In general,

(5.2)

FIGURE 5.2  
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Analysis in the Frequency Domain 5-5

Any method that may be used to formulate the equations will lead to the same result. One example shows
this is true. Reconsider the network in Figure 5.2, but use the admittance of the inductor, YL = 1/sL, and
do not consider the current through the inductor. In such a case, the nodal equations are

We can proceed in two ways:

1. We can multiply each equation by s and thus remove the fractions. This provides the system
equation

The determinant of this matrix is D = 2s3 + 3s2 + 3s. To calculate V1, find N1 = s(2s + 1)J. Their
ratio is the same as before because one s in the numerator can be canceled against the denominator.

2. If we do not remove the fractions and go ahead with the solution, we have the matrix equation

The determinant is D = 2s + 3 + 3/s and the numerator for V1 is N1 = (1/s + 2)J. Taking their ratio

which is the same result as before.

We conclude that it does not matter which method is used to formulate the equations. The result is
always a ratio of two polynomials in the variable s.

Many additional conclusions can be drawn from these examples. The most important result so far is
that all network functions of any given network have the same denominator. It was easy to discover
this property because we used Cramer’s rule, with its evaluation by the ratio of two determinants. It
should be mentioned at this point that we may have network functions in which some terms of the
numerator can cancel against the same terms of the denominator. Such a cancellation represents a
mathematical simplification which does not change the validity of the above statement.

Occasionally, the network may have more than one source. In such cases, we apply the superposition
principle of linear networks. The contribution to the output can be calculated separately for each source
and the results added. All that must be done is to correctly remove those sources which are not considered
at the moment. All unused independent voltage sources must be replaced by short circuits. All unused
independent current sources are replaced by open circuits (removed from the network). Although we did
not use dependent sources in our examples, it is necessary to stress that such removal must not take place
for dependent sources.

Network functions can be used to find responses to any given input signal. First, multiply the network
function by E or J; this will give the expression for the output. Afterward, the letter E or J is replaced by
the Laplace transform of the signal. For instance, if the signal is a unit step, then the source is replaced
by 1/s. If it is cost ωt, then the source is replaced by the Laplace transform, s/(s2 + ω2), and so on.
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5-6 Circuit Analysis and Feedback Amplifier Theory

In the Laplace transform, one special signal exists, the Dirac impulse, commonly denoted by δ(t). It
can be represented as a rectangular pulse having width T and height 1/T. The area of the pulse is always
1, even if we go to lim T → 0, which is the Dirac impulse. Its Laplace transform is 1. Because multiplication
by 1 does not change the network function, we conclude that any network function is also the Laplace
transform of the network response to the Dirac impulse.

A word of caution: In the network function always divide by the independent voltage (current) source.
We cannot take two analysis results, for instance V1 and V2, derived for Figure 5.1, and take their ratio.
This will not be a network function.

Poles and Zeros

Networks with lumped elements have network functions which are always ratios of two polynomials with
real coefficients. For some applications the polynomials may be expressed as functions of some (or all)
elements, but the principle is unchanged.

Because we have a ratio of two polynomials, the network function can be written in two forms:

(5.3)

The middle form is what we obtain from analyses similar to those in the examples. Algebraically, a
polynomial of order N has exactly N roots. This leads to the form on the right. The multiplicative constant,
K, is the ratio

and is obtained by dividing each polynomial by the coefficient of its highest power.
It is easy to find roots of a first- and second-order polynomial because formulas are available, but in

all other cases iterative methods and a computer are utilized. However, even without actually finding the
roots, we can draw a number of important conclusions.

If the highest power of the polynomial is odd, then at least one real root will exist. The other roots
may be either real or complex, but if they are complex, then they always appear in complex conjugate
pairs. The roots of the numerator are called zeros, and those of the denominator are called poles. We
denote the zeros by

where j = . Either a or b may be zero. For the poles, we have similarly

The polynomial also may have multiple roots. For instance, the polynomial P(s) = (s + 1)2 (s + 2)3 has
a double root at s = –1 and a triple root at s = –2. The positions of the poles and zeros, with the constant K,
completely define the network function and also all network properties. The positions can be plotted in
a complex plane, the zeros indicated by small circles and poles by crosses. A multiple pole (zero) is
indicated by a number appearing at the cross (circle). Figure 5.3 shows a network function with two
complex conjugate zeros on the imaginary axis, two complex conjugate poles, and one double real pole.

As derived previously, all network functions of any given network have the same poles. Their positions
depend only on the structure of the network and are independent of the signal or where the signal is
applied. Because of this fundamental property, the poles are also called natural frequencies of the network.
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Analysis in the Frequency Domain 5-7

The zeros depend on the place at which we attach the source and also on the point where we take the
output.

It is possible to have networks in which a pole is in exactly the same position as a zero; mathematically,
such terms cancel. Figure 5.4 is an example. Writing the sum of currents at nodes 1, 2, and 3, we obtain

and in matrix form

By carefully evaluating the determinant we discover that we can keep the term (2s + 2) separate and get
D = (2s + 2)(s2 + 2s + 5). Replacing the third column by the right-hand side, we calculate the numerator
N3 = (2s + 2)(s2 + 1)E. Because the output is KV3, the voltage transfer function is

FIGURE 5.3  
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5-8 Circuit Analysis and Feedback Amplifier Theory

Mathematically, the term (2s + 2) cancels and the network function is sometimes written as

Such cancellation makes the denominator different from other network functions that we might derive
for the same network, but it is not a correct way to describe the properties of the network. The cancellation
gives the impression that we have a second-order network, while it is actually a third-order network.

Network Stability

Stability of the network depends entirely on the positions of its poles. The following is a list of the
conditions in order for the network to be stable, with subsequent explanation of the reasons:

1. The network is stable if all its poles are in the left half of the complex plane.
2. The network is unstable if at least one of its poles is in the right-half plane.
3. The network is marginally stable if all its poles are simple and exactly on the imaginary axis.
4. The network is unstable if it has all poles on the imaginary axis, but at least one of them has

multiplicity two or more.

Courses on mathematics teach the process of decomposing a rational function into partial fractions. We
show an example with one simple real pole and a pair of simple complex conjugate poles,

The poles are p1 = –1 and p2,3 = –1 ± j, all with negative real parts and all lying in the left-half plane.
Partial fraction decomposition is on the right of the preceding equation. It is always true, for any lumped
network, that the decomposition for a real pole has a real constant in the numerator. Complex poles
always appear in complex conjugate pairs and the decomposition constants, if complex, also are complex
conjugate. Once such a decomposition is available, tables can be used to invert the functions into time
domain. The decomposition may be quite a laborious process, however, only a few types of terms need
be considered for lumped networks. All are collected in Table 5.1. Each time domain expression is
multiplied by unit step, u(t), which is zero for t < 0 and is one for t ≥ 0. Such multiplication correctly
expresses the fact that the time functions start at t = 0.

Formula one in Table 5.1 shows that a real, single pole in the left-half plane will lead to a time-domain
function which decreases as e – ct. This response is called stable. If c = 0, then the response becomes u(t).
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Should the pole be in the right-half plane, the exponent will be positive and ect will grow rapidly and
without bound. This network is said to be unstable.

Formula two shows what happens if the pole is real, with multiplicity n. If it is in the left-half plane,
then tn – 1 is a growing function, but e –ct decreases faster, and for large t the result tends to zero. The
function is still stable.

Formula three considers the case of two simple complex conjugate poles. Their real parts influence
the exponent, and the imaginary parts contribute to oscillations. If the real part is negative, the oscillations
will be damped, the response will become zero for large t, and the network will be stable. If the real part
is zero, then the oscillations continue indefinitely with constant amplitude. For the positive real part, the
network becomes unstable.

Formula four considers a pair of multiple complex conjugate poles. As long as the real part is negative,
the oscillations will decrease with time and the network will be stable. If a real part is zero or positive,
the network is unstable because the oscillations will grow.

Initial and Final Value Theorems

Finding the poles and evaluating the time domain response is a complicated process, which normally
requires the use of a computer. It is, therefore, advisable to use all possible steps that may provide
information about the network behavior without actually finding the full time-domain response.

Two Laplace transform theorems help in finding how the network behaves at t = 0 and at t → ∞. Both
theorems are derived from the Laplace transform formula for differentiation,

(5.4)

where 0– indicates that we are considering the instant just before the signal is applied. If we let s → 0,
then e 0 = 1, and the integral of the derivative becomes the function itself. Inserting the integrating limits
we get

Cancelling f (0–) on both sides, we arrive at the final value theorem

(5.5)

Another possibility is to let s → ∞ ; then e–st in (5.4) will be zero and the whole left side becomes zero.
This can be written as

and because f (0–) is nothing but the limit of f (t) for t → 0–, we obtain the initial value theorem

(5.6)
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5-10 Circuit Analysis and Feedback Amplifier Theory

If we take any large value of s, the highest powers will dominate and in limit, for s → ∞, we get 3. This
is the value of the time-domain response at t = 0. The limit for s = 0 is zero, and from the final value
theorem we know that f (t) will be zero for t → ∞.

To extract still more information, use the example collected in Table 5.2. Scrolling down the table,
each Laplace domain function is s times that above it. Each multiplication by s means differentiation in
the time domain, as follows from (5.4). Scrolling down the second column of Table 5.2, each function
is the derivative of that above it. To apply the limiting theorems, take the Laplace domain formula, which
is one level lower, and insert the limits. The limiting is also shown and is confirmed by inserting either
t = 0 or t → ∞ into the time functions.

Although the two theorems are useful, the final value theorem is valid only if the function is stable.
Consider the unstable function with two poles in the right-half plane

Its time-domain response is

and the term e+t will cause the function to grow for large t. If the final value theorem is applied, we consider

Inserting s = 0, the theorem predicts that the time function will approach zero for large t. This is
disappointing, but some additional simple rules can be applied. The function is unstable if some coef-
ficients of the denominator are missing, or if the denominator coefficients do not all have the same sign
(all + or all –). Such situations are easily detected, but if all coefficients have the same sign, nothing can
be said about stability. Additional theorems exist (e.g., Hurwitz theorem), but if in doubt, it is probably
simplest to go to the computer and find the poles.

5.2 Advanced Network Analysis Concepts

John Choma, Jr.

Introduction

The systematic analysis of an electrical or electronic network entails formulating and solving the relevant
Kirchhoff equations of equilibrium. The analysis is conducted to acquire a theoretically sound under-
standing of circuit responses. Such an understanding minimally delineates the dynamical effects of
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topology, controllable circuit branch variables, and observable parameters for active devices embedded
in the circuit. It also illuminates circuit node and branch impedances to which the relevant responses of
the circuit undergoing investigation are especially sensitive. Unfortunately, the complexity of modern
networks, and particularly integrated analog electronic circuits, often inhibits the mathematical tracta-
bility that underpins an engineering understanding of circuit behavior. It is therefore not surprising that
when mathematical analyses accompany a computer-assisted circuit design venture, the subcircuits iden-
tified for manual study are simplified representations of the corresponding subcircuits in the draft design
solution. Unless care is exercised, these approximations can mask a satisfying understanding, and they
can even lead to erroneous results.

Analytical and modeling approximations notwithstanding, the key to assimilating a satisfying under-
standing of the electrical characteristics of complex circuits is appropriate studies of simpler partitions
of these circuits. To this end, Kron [1, 2] has provided, and others have explained and reinforced [3–5],
an elegant theory that allows the circuit response solutions of these network partitions to be coalesced
so that the desired response of the interconnected circuit is reconstructed exactly. Aside from formalizing
an analytical mechanism for studying complicated circuits in terms of the solutions gleaned for more
manageable subcircuits of the composite network [6], Kron’s work allows for a computationally efficient
study of feedback network responses. The theory also allows for the investigation of the sensitivity of
overall network performance with respect to both small and large parametric changes [7]. In view of the
exclusive focus on linear circuits in this section, it is worth interjecting that a form of Kron’s partitioning
theory is also applicable to certain classes of nonlinear circuits [8].

Fundamental Network Analysis Concepts

The derivation of Kron’s formula, as well as the development of a general methodology for applying
Kron’s partitioning mechanism to the analyses of complex circuits, requires a fundamental understanding
of the classical techniques exploited in the analysis of linear networks. Such an understanding begins by
considering the (n + 1) node, b branch linear network abstracted in Figure 5.5(a). The input port, which
is defined by the node pair, 1-2, is excited by a signal source whose Thévenin voltage is Vs and whose
Thévenin impedance is Zs. In response to this excitation, a load voltage, VL, is developed across a load
impedance, ZL, which shunts the output port consisting of the node pair, 3-4. Two other nodes, nodes
m and p, are explicitly delineated for future reference. In response to the applied signal source, the voltage
across the input port is VI, while the voltage established across the node pair, m-p is Vk. In addition, the
reference, or ground, node is labeled node 0. Either node 2, node 4, or both of these nodes can be incident
with the ground node; that is, the signal source and/or the load impedance can be terminated to the

FIGURE 5.5  (a) Generalized linear network driven by a voltage source. (b) The network of (a), but with the signal
excitation represented by its Norton equivalent circuit.
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5-12 Circuit Analysis and Feedback Amplifier Theory

network ground. The diagram in Figure 5.5(b) is identical to that of Figure 5.5(a) except for the fact that
the applied signal source is represented by its Norton equivalent circuit, where the Norton signal current,
Is, is

(5.7)

Assuming that a nodal admittance matrix exists for the linear (n + 1) node network at hand, the n
equilibrium KCL equations can be expressed as the matrix relationship

(5.8)

where J is an n-vector whose ith entry, Ji, is an independent current flowing into the ith circuit node, E
is an n-vector of node voltages such that its ith entry, Ei, is ith node voltage referenced to network ground,
and Y, a square matrix of order n, is the nodal admittance matrix of the circuit. If Y is nonsingular, the
node voltages follow as

(5.9)

Note that (5.9) is useful symbolically, but not necessarily computationally. In particular, (5.9) shows that
the n node voltages of the (n + 1) node, b branch network of Figure 5.5 can be straightforwardly computed
in terms of the known independent current source vector and the parameters embedded in the network
nodal admittance matrix. In an actual analytical environment, however, the nodal admittance matrix is
rarely formulated and inverted. Instead, some or all of the n node voltages of interest are determined
merely by algebraically manipulating and solving either the n independent KCL equations or the (b – n)
independent Kirchhoff ’s voltage law (KVL) equations that are required to establish the equilibrium
conditions of the subject network.

If the n vector, E, is indeed evaluated, all n independent node voltages are known, because

(5.10)

where the superscript T indicates the operation of matrix transposition. In general, Ei, for i = 1, 2, …, n,
is the voltage developed at node i with respect to ground. It follows that the voltage between any two
nodes derives directly from the network solution inferred by (5.9). For example, the input port voltage,
VI, is (E1 – E2), the output port voltage, VL, is (E3 – E4), and the voltage, Vk, from node m to node p is
Vk = (Em – Ep). 

The calculation of the voltage appearing between any two circuit nodes can be formalized with the
help of the generalized network diagrammed in Figure 5.6 and through the introduction of the connection
vector concept. In particular, let Aij denotes the (n × 1) connection vector for the port defined by the
node pair, i-j. Moreover, let the voltage, V, at node i be taken as positive with respect to node j, and allow
a current, I (which may be zero), to flow into node i and out of node j, as indicated in the diagram.
Then, the elements of the connection vector, Aij, are all zero except for a + 1 in its ith row and a – 1 in

FIGURE 5.6  Generalized network diagram used to define the connection vector concept.
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Analysis in the Frequency Domain 5-13

its jth row. If node j is the reference node, all elements of Aij, which in the case can be written simply as
Ai, are zero except for the ith row element, which remains +1. Thus, Aij has the form

(5.11)

For the special case in which a circuit branch element interconnects every pair of circuit nodes, Aij is the
appropriate column of the node to branch incidence matrix, which is a rectangular matrix of order (n × b),
for the (n + 1) node, b branch network at hand [9].

Returning to the calculation of VI, VL, and Vk, it follows from (5.9) through (5.11) that

(5.12)

(5.13)

and

(5.14)

Assuming that Is is the only independent source of excitation in the network of Figure 5.5

(5.15)

which is the mathematical equivalent of the observation that the Norton source current, IS, is entering
node 1 of the network and leaving node 2. Accordingly,

(5.16)

(5.17)

and

(5.18)

Several noteworthy features are implicit to the foregoing three relationships. First, each of the three
parenthesized matrix products on the right-hand sides of the equations is a scalar. This observation
follows from the facts that a transposed connection vector is a row matrix of order (1 × n), the inverse
nodal admittance matrix is an n-square, and a connection vector is an n-vector. Second, these scalar
products represent transimpedances from the input port to the port at which the voltage of interest is
extracted. In the case of (5.16), the ratio, VI IS, is actually the impedance, ZSS, seen by the Norton current,
IS; that is,

(5.19)

where, as asserted previously, IS is presumed to be the only source of energy applied to the network
undergoing study. Similarly,

(5.20)
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5-14 Circuit Analysis and Feedback Amplifier Theory

is the transimpedance from the input port to the output port, while

(5.21)

is the transimpedance from the input port to the port defined by the node pair, m-p.
The impedance in (5.19) and the transimpedances given by (5.20) and (5.21) are cast as explicit

algebraic functions of the inverse of the network nodal admittance matrix. However, similar to the node
voltages in (5.19) and (5.10), network transimpedances are rarely calculated manually through an actual
delineation and inversion of the nodal admittance matrix. Instead, they usually derive from a straight-
forward analysis of the considered network, subject to the proviso that all excitations applied to the
subject network, save for the single test current source, are reduced to zero. For example, in the abstraction
shown in Figure 5.7, the transimpedance, Zij, from any port j to any port i is

(5.22)

For the case of j = i, this transimpedance becomes the effective impedance seen at port i by the test
current source. In view of the preceding discussion, and the node pairs indicated in Figure 5.7, the
transimpedance (or impedance) quantity that derives from (5.22) is identical to the matrix relationship

(5.23)

The last result highlights the fact that all network transimpedances are directly related to the inverse
of the nodal admittance matrix. Hence, these transimpedances are inversely proportional to the deter-
minant, ∆Y(s), of the admittance matrix, Y. It follows that the poles of all transimpedances and effective
port impedances are the roots of the characteristic polynomial

(5.24)

Note from (5.7), (5.17), and (5.20) that the voltage gain of the considered linear network is

(5.25)

FIGURE 5.7  An illustration of a practical manual technique for computing the transimpedance between any port j
to any port i of a linear network.
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Analysis in the Frequency Domain 5-15

Thus, if the source impedance in Figure 5.5 is a real number, ZS = RS, the roots of (5.24) also comprise
the poles of the voltage transfer function and, indeed, of the linear network.

Kron’s Formula

Assume now that the network depicted in Figure 5.5 has been analyzed in the sense that all network node
voltages developed in response to the signal source have been determined. Assume further that subsequent
to this analysis, an impedance, Zk, appended to nodes m and p, as shown in Figure 5.8. In addition to
causing a current, I, to flow into node m and out of node p, this additional branch element is likely to
perturb the values of all of the originally computed circuit node and circuit branch voltages. The matrix,
E′, of new node voltages can be evaluated for the modified topology in Figure 5.8 by determining the
new nodal admittance matrix Y′, and the reapplying (5.9). The tedium associated with a second network
analysis, along with the inefficiency of discarding the results of a study performed on a network whose
topology differs only modestly from that of the original configuration, can be circumvented through the
use of Kron’s theorem. As illuminated next, this theorem derives from a methodical application of such
classical concepts as the theories of superposition, substitution, and Thévenin. In addition to providing
a computationally efficient mechanism for determining E′, Kron’s technique allows for a direct compar-
ison of E′ to the matrix, E, of original node voltages. It therefore allows for a convenient response
sensitivity analysis with respect to the appended branch element.

It is appropriate to interject that the problem postulated previously possesses more than mere academic
interest. It is, in fact, a problem that is commonly encountered, for example, in the analysis of electronic
circuits. In order to linearize these circuits around specified quiescent operating points, it is necessary to
supplant the utilized active devices by small signal equivalent circuits. Such models are invariably sim-
plified, often through the tacit neglect of presumably noncritical branch elements, to mitigate analytical
complexity and tedium. Thus, while the circuit properly identified for investigation might be of the
topological form appearing in Figure 5.8, the circuit actually subjected to manual circuit analysis is likely
the reduced structure depicted in Figure 5.5; that is, the ostensibly noncritical impedance, Zk

 is removed
in the interest of analytical tractability. Questions naturally arise in regard to the degree of error incurred
by the invoked circuit simplification. Kron’s method, as developed next, answers these questions in terms
of the results already deduced for the approximate network and without requiring explicit analytic results
for the “exact” network.

The process of evaluating the perturbation on network node voltages incurred by the action of shunting
nodes m and p in the circuit of Figure 5.5 by the impedance Zk begins by determining the Thévenin
equivalent circuit that drives the appended branch. To this end, Zk is removed in the diagram of Figure 5.8,
thereby collapsing the network to Figure 5.5(a). The relevant Thévenin voltage, Vth, at the node pair, m-p,
is, in fact, Vk, as defined by (5.18). Recalling (5.21), this voltage is 

(5.26)

FIGURE 5.8  The inclusion of an impedance, Zk, between nodes m And p, subsequent to the analysis of the network
in Figure 5.5.
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5-16 Circuit Analysis and Feedback Amplifier Theory

The corresponding Thévenin impedance, Zth, derives from a study of the test configuration of
Figure 5.9, in which the independent source current, IS, is nulled, the impedance, Zk, in Figure 5.8 is
replaced by a test current of value Itest, and the ratio of the resultant port voltage, Vtest, to Itest is understood
to be the desired Thévenin impedance. For this configuration, the network nodal admittance matrix, Y,
is unchanged, but the independent network current vector, J, becomes AmpItest. Thus, the resultant n-
vector, E″, of nodal voltages is

(5.27)

and by (5.8), the voltage, Vtest, is

(5.28)

It follows that the requisite Thévenin impedance, Zth, is

(5.29)

FIGURE 5.9 (a) Circuit diagram for evaluating the Thévenin impedance seen by the appended impedance Zk.
(b) Circuit diagram used to compute the current, I, conducted by Zk. (c) The application of the substitution theorem
with respect to Zk.
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Analysis in the Frequency Domain 5-17

Insofar as the appended impedance, Zk, is concerned, the network in Figure 5.8 behaves in accordance
with the circuit abstraction of Figure 5.9. The current, I, conducted by Zk is, without approximation,

(5.30)

where (5.26) has been used, and Zth is understood to be given by (5.29). However, by the substitution
theorem, the impedance, Zk in Figure 5.8 can be supplanted by an independent current source of value I,
as suggested in Figure 5.9(c). Specifically, this substitution of the impedance of interest with a current
source with a value that is dictated by (5.30) guarantees that the n-vector of node voltages for the modified
circuit in Figure 5.9(c) is identical to the n-vector, E′, of node voltages for the topology given in Figure 5.8.

The circuit of Figure 5.9(c) now has two independent excitations: the original current sources, IS, and
the current, I, substituted for the appended impedance, Zk. Accordingly, the current source vector for
the subject circuit superimposes two current components and is given by 

(5.31)

The corresponding vector of node voltages is, by (5.9),

(5.32)

If analytical attention focuses on the general output voltage, V̂ij , developed between nodes i and j in the
circuit of Figure 5.8,

(5.33)

where

(5.34)

The result in (5.34) is one of many possible versions of Kron’s formula. It states that when an impedance,
Zk, is appended between nodes m and p of a linear network whose nodal admittance matrix is Y, the
perturbed voltage established between any two nodes, i and j, can be determined as a function of the
parameters indigenous to the original network (prior to the inclusion of Zk ). In particular, the evaluation
is executed on the original network (with Zk absent) and exploits the original nodal admittance matrix,
Y, the original transimpedance, ZkS, between the input port and the port to which Zk is ultimately appended,
and the Thévenin impedance, Zth, is observed when looking into the terminal pair to which Zk is connected.

Engineering Application of Kron’s Formula

The engineering utility of Kron’s formula, (5.34), is best demonstrated by examining the voltage transfer
function of the network in Figure 5.8 in terms of the companion gain for the network depicted in
Figure 5.5(a). Using (5.7) and noting that the perturbed output voltage is developed from node 3 to node 4,
the perturbed voltage gain, Âv, is

(5.35)
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5-18 Circuit Analysis and Feedback Amplifier Theory

The first matrix product on the right-hand side of this relationship represents the transimpedance, ZLS,
from the input port to the output port of the original network, as given by (5.20). Moreover, the resultant
impedance ratio, ZLS /ZS, is the voltage gain, Av, of the original (Zk = ∞) network, as delineated in (5.25).
The second matrix product symbolizes the transimpedance, ZLK, from the port to which the appended
impedance, Zk, is connected to the output port; that is,

(5.36)

Assuming Av ≠ 0, (5.35) can then be reduced to

(5.37)

This result expresses the perturbed voltage gain as a function of the original voltage gain, Av, the input
to output transimpedance, ZLS, the transimpedance, ZkS, from the input port to the port at which Zk is
appended, and ZLK, the transimpedance from the port to which Zk is incident to the output port. Observe
that when the appended impedance is infinitely large, the perturbed gain reduces to the original voltage
gain, as expected.

In an actual analytical situation, however, all of the transimpedances indicated in (5.37) need not be
calculated. In order to demonstrate this contention, rewrite (5.37) in the form

(5.38)

where

(5.39)

is the admittance of the appended impedance, Zk. Now consider the test structure of Figure 5.10(a), which
is the modified circuit shown in Figure 5.8, but with the appended branch supplanted by a test current
source, Itest. With two sources, IS and Itest, activating the network, superposition yields a resultant output
port voltage, VLL, of

(5.40)

FIGURE 5.10 Network diagram pertinent to the computation of the null Thévenin impedance seen by the imped-
ance appended to the node pair, m-p.
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and a test port voltage, Vtest, of

(5.41)

For IS = 0, the network in Figure 5.10(a) reduces to the configuration in Figure 5.9(a), and (5.41) delivers
Vtest/Itest = Zkk. It follows that the impedance parameter, Zkk, is the Thévenin impedance seen by Zk, as
determined in conjunction with an analytical consideration of Figure 5.5(a); that is, (5.41) is equivalent
to the expression

(5.42)

Consider the case, suggested in Figure 5.10, in which the output port voltage, VLL, is constrained to
zero for any and all values of the load impedance, ZL. From (5.40), this case requires a source excitation
that satisfies

(5.43)

If this result is substituted into (5.42), the ratio, Vtest /Itest, is found to be

(5.44)

which mirrors the parenthesized numerator term on the right-hand side of (5.38). The ratio in (5.44)
might rightfully be termed a null Thévenin impedance, Ztho, seen by Zk, in the sense that it is indeed the
Thévenin impedance witnessed by Zk, but under the special circumstance of a nonzero source excitation
selected to null the output response variable of the network undergoing investigation. Thus, in Figure 5.10,

(5.45)

Equation (5.38) now reduces to the simpler result

(5.46)

Equation (5.46) is both computationally useful and philosophically important. From a computational
viewpoint, it allows for an efficient evaluation of the voltage transfer function of a linear network,
perturbed by the addition of an impedance element between two extant nodes of the network, in terms
of the voltage gain of the original, unperturbed circuit. As expected, this original voltage gain, Av, is the
voltage gain of the perturbed network for the special case of a perturbing impedance where the admittance
is zero (or whose impedance value is infinitely large). Only two other parameters are required to complete
the evaluation of the perturbed gain. The first is the Thévenin impedance, Zth, seen by the appended
impedance element. This Thévenin impedance is calculated traditionally by nulling all independent
sources applied to the subject network. The second parameter is the null Thévenin impedance, Ztho,
which is the value of Zth for the special circumstance of a test current source and independent source
excitations selected to constrain the output response variable to zero. Once Ztho and Zth are determined,
the degree to which the voltage transfer function is dependent on the appended impedance is easily
determined. For example, the per-unit change in gain owing to the addition of Zk between nodes m and
p in the network of Figure 5.8 is
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5-20 Circuit Analysis and Feedback Amplifier Theory

(5.47)

it is important to note that the transfer function sensitivity implied by (5.47) imposes no a priori
restrictions on the value of Zk. In particular, Zk can assume any value from that of a short circuit to that
of the opposite extreme of an open circuit.

From a philosophical perspective, when analytical attention focuses explicitly on feedback circuits,
(5.46) can be derived from signal flow theory [10, 11] and is actually Bode’s classical gain equation [12].
In the context of Bode’s theory Yk is referred to as a reference parameter, or a critical parameter, of the
feedback circuit. The product, YkZth, is termed the return ratio with respect to the critical parameter, while
the product YkZtho, is identified as the null return ratio with respect to the cricital parameter. Finally, when
(5.46) is applied as Bode’s equation, the transfer function, Av is termed the null transfer function, in the
sense that it is the actual transfer function of the network at hand, under the special case of a critical
parameter constrained to zero.

Example 5.1. In an attempt to demonstrate the engineering utility of the foregoing theoretical disclosures,
consider the problem of determining the voltage gain of the common emitter amplifier — a schematic
diagram is offered in Figure 5.11(a). Without detracting from the primary intent of this example, the
schematic diagram at hand has been simplified in that requisite biasing subcircuitry is not shown.
Assuming that the bipolar junction transistor embedded in the amplifier operates in its linear regime,
the pertinent small signal equivalent circuit is the topology depicted in Figure 5.11(b).

Assume that the amplifier source resistance, RS, is 600 Ω and that the load resistance, RK, is 10 kΩ.
Assume further that the model parameters for the transistor are as follows: rb (internal emitter resistance) =
2.5 Ω , r0 (forward early resistance) = 18 kΩ , β (forward short circuit current gain) = 90, and rc (internal
collector resistance) = 70 Ω. Determine the voltage gain of the amplifier and the effect exerted on the
gain by neglecting the Early resistance, R0.

Solution. 

1. Analytical simplicity traditionally dictates the tacit neglect of the forward Early resistance, r0. This
commonly invoked approximation reduces the model given in Figure 5.11(b) to the equivalent
circuit in Figure 5.12(a). By inspection of the latter diagram, the approximate gain of the common
emitter voltage is

FIGURE 5.11 (a) Simplified schematic diagram of a common emitter amplifier. (b) The small signal equivalent
circuit of the common emitter amplifier.
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Analysis in the Frequency Domain 5-21

2. In order to determine the impact that r0 has on this voltage gain, r0 is removed from the equivalent
circuit and replaced by a test current source, Itest, as depicted in Figure 5.12(b). With the indepen-
dent input voltage, VS, set to zero, the Thévenin resistance seen by r0, which is the ratio, Vtest /Itest,
is easily shown to be

On the other hand, if VX is constrained to zero, no current flows through the load resistance
branch, and therefore, Itest is necessarily βi. This condition gives a null Thévenin resistance of

3. With Av = –388.3 v/v, Zk = r0 = 18 kΩ, Zth = Rth = 9.10 kΩ, and Ztho = Rtho = – 27.78 × 10–3′ Ω ,
(5.46) produces a corrected voltage gain of

From (5.47), the presence of r0, as opposed to its absence, decreases the voltage gain of the subject
amplifier by almost 34%.

Example 5.2. As a second example, consider the series-shunt feedback amplifier whose schematic dia-
gram, neglecting requisite biasing circuitry, appears in Figure 5.13(a). The analysis of this circuit is
simplified by the removal of the connection of the feedback resistance, RF, at the emitter of transistor
Q1, as shown in Figure 5.13(b). If the voltage gain of the simplified topology is denoted as Av, the voltage
gain of the closed loop configuration in Figure 5.13(a) derives from (5.46), provided that the impedance,
Zk, between the indicated node pair, m-p, is taken as a short circuit; that is, Zk = 0.

Assume that the amplifier source resistance, RS, is 300 Ω , the load resistance, RL, is 3.5 kΩ , the feedback
resistance, RF, is 1.5 kΩ , and the emitter degeneration resistance, REE, is 100 Ω. The transistor model
invoked for small signal analysis is identical to that used in the preceding example, save for the proviso

FIGURE 5.12 (a) The approximate small signal equivalent circuit of the common emitter amplifier in Figure 5.11(a).
The approximation entails the tacit neglect of the forward Early resistance, r0. (b) The test equivalent circuit used to
compute the Thévenin and the null Thévenin resistances seen by r0 in (a).
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5-22 Circuit Analysis and Feedback Amplifier Theory

that the Early resistance, r0, is ignored herewith. Both transistors are presumed to have identical small
signal model parameters as follows: rb = 90 Ω , rπ = 1.4 kΩ,  re = 2.5 Ω,  β = 90, and rc = 70 Ω. Use Kron’s
theorem to determine the voltage gain of the closed loop series-shunt feedback amplifier.

Solution. 

1. The voltage gain of the pertinent equivalent circuit in Figure 5.14 is straightforwardly derived as

Observe that the feedback resistance, RF, does not enter into this calculation because of its
disconnection at the emitter of transistor Q1. Furthermore, the internal collector resistance, rc, is
inconsequential for both transistor stages because the neglect of the forward Early resistance, r0,
places rc in series with a controlled current source.

2. The Thévenin resistance, Rth, seen by the ultimately appended short circuit between nodes m and
p is now calculated through use of the model in Figure 5.14(b). For this calculation, the signal
voltage, VS, is reduced to zero. With VS = 0,

Noting that i2 = –βi1, KVL yields

Using the preceding result, introducing the resistance variable, RX, such that

and letting

FIGURE 5.13 (a) Simplified schematic diagram of a series-shunt feedback bipolar junction transistor amplifier. The
biasing subcircuitry is not shown. (b) The amplifier in (a), but with the feedback resistance connection to the emitter
of transistor Q1 removed. 

RS RSRL

RF

REE REE

VS VS

V̂O

Q1 Q2 Q2Q1

RL

RFm pm p

(a) (b)

++

−−

V̂O

A
V

V

R

R r r r Rv
O

S

L

S b e EE

= =
+ + + +( ) +( ) =β

βπ

2

1
2550 v v

i

i

R

R r r r R
EE

S b e EE

1

1test

= −
+ + + +( ) +( )π β

V R R R I R R iEE L F EE Ltest test= + +( ) + +( ) −[ ]β β1 2
1

R r
R r r

X e
S b= +

+ +
+

=∆ Ωπ

β 1
22 17.

α β
β

=
+

=∆

1
0 989.

© 2006 by Taylor & Francis Group, LLC



Analysis in the Frequency Domain 5-23

Rth, which is the ratio Vtest /Itest, is found to be

3. For the evaluation of null Thévenin resistance, Rtho, the output voltage variable, VX, in
Figure 5.14(b) is nulled, thereby forcing the current relationship, Itest = –βi2 = +β2i1. Accordingly,

4. With Zk = 0, Zth = Rth = 260 kΩ , and Ztho = Rtho = 1601 Ω , (5.46) provides, after reconnection of
the feedback element, an amplifier gain of

FIGURE 5.14 (a) Small signal equivalent circuit of the feedback amplifier in Figure 5.13(b). This circuit is used to
compute the voltage gain with the feedback resistance disconnected at the emitter of transistor Q1. (b) The small
signal model used to compute the Thévenin and the null Thévenin resistances seen by the short circuit that is
ultimately appended to the node pair, m-p, in Figure 5.13(b).
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5-24 Circuit Analysis and Feedback Amplifier Theory

It is interesting to note that, if the transistors utilized in the feedback amplifier have very large β,
which is tantamount to very small RX and a ≈ 1, the voltage gain with the feedback element
disconnected is

Moreover,

and

It follows from (5.46) that the approximate voltage gain, subsequent to the reconnection of the
feedback resistance, RF, to the emitter of transistor Q1 is

which is within 2% of the accurately estimated voltage gain.

Generalization of Kron’s Formula

The Kron–Bode equation in (5.46) was derived expressly for investigating the voltage transfer function
of a linear network to which an impedance element is appended between two network nodes. This
equation also can be adapted to the problem of determining the explicit dependence of any type of
transfer relationship on any parameter within any linear network.

To this end, consider any linear network, such as the generalization shown in Figure 5.15, whose, load
impedance is ZL and whose source impedance is ZS. Identify a critical network parameter, say P, to which
the dependence on, and sensitivity to, the overall transfer performance of the network undergoing study
is of particular interest. This parameter can be, for example, a circuit branch impedance or an active
element gain factor where numerical values cannot be determined accurately or controlled adequately
in view of potentially unacceptable manufacturing tolerances or device fabrication uncertainties. Let the
transfer function of interest be

(5.48)

where XR(s) denotes the transform of the voltage or current response variable, and XS(s) is the transform
of the voltage or current input variable. The functional notation, H(P, ZS, ZL ), underscores the observation

FIGURE 5.15  Generalized block diagram nodal of the I-O transfer characteristics of a linear network. 
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Analysis in the Frequency Domain 5-25

that the transfer function of the liner network is likely to be dependent on the critical parameter, P, the
source impedance, ZS, and the load impedance, ZL. The corresponding extension of the Kron–Bode
relationship is

(5.49)

where H(0, ZS, ZL ), termed the null gain or zero parameter gain, signifies the value of the network transfer
function, H(P, ZS, ZL ), when P is set to zero. This null gain must be finite and nonzero. With reference
to the appended impedance formulation in (5.46), observe that the critical parameter, P, is Yk, the
admittance of the appended impedance element, while H(0, ZS, ZL ) is the gain, Av, of the network, under
the condition of an absent impedance element (Yk = 0).

The product, PQS (ZS, ZL ), is termed the return ratio with respect to parameter P, Ts (P, ZS, ZL ), and
the product, PQR (ZS, ZL ), is referred to as the null return ratio with respect to P, TR (P, ZS, ZL ); that is,

(5.50a)

(5.50b)

It is to be understood that both QS (ZS, ZL ) and QR (ZS, ZL ) are independent of the critical parameter,
P. With reference once again to (5.46), note that QS (ZS, ZL ) is the Thévenin impedance seen by the
appended admittance, Yk, while QS (ZS, ZL ) is the null Thévenin impedance facing YK.

Equation (5.49) can now be rewritten as

(5.51)

Alternatively,

(5.52)

where

(5.53a)

(5.53b)

respectively, denote the return difference with respect to P and the null return difference with respect to P.
An initial appreciation of the engineering significance of the zero parameter gain, H (0, ZS, ZL) ≡ H0

(⋅), the return ratio, TS (P, ZS, ZL) ≡ TS (⋅), and the null return ratio, TR (P, ZS, ZL) ≡ TR (⋅), is gleaned by
using (5.51) to write

(5.54)

In view of the generality of the Kron–Bode formula, this algebraic manipulation of (5.51) implies that
the dynamical input/output transfer relationship of all linear networks can be symbolically represented
by the block diagram offered in Figure 5.15. This block diagram makes clear that because TS (⋅) and TR (⋅)
are zero for P = 0, H0 (⋅) is the gain afforded by the network as a result of input–output electrical paths
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5-26 Circuit Analysis and Feedback Amplifier Theory

that exclude the parameter, P. The diagram also suggests that TS (⋅) is a measure of the amount of feedback
incurred by parameter P around that part of the circuit that excludes parameter P. Finally, the diagram
at hand implies that TR (⋅) is a measure of the amount of feedforward incurred by parameter P. In
particular, if feedback is removed, two paths remain for the transmission of a signal from the input port
to the output port of a linear network. One of these paths, the transmittance of which is measured by
H0 (⋅), is direct and entails the processing of the input signal by that part of the circuit that excludes P.
The other nonfeedback path has an effective transmittance of TR (⋅) H0 (⋅). The latter path is the
feedforward path in the sense that signal is processed through a signal path that is divorced from feedback
and is not a result of direct source coupling through the topological part of the network that excludes
parameter P.

Return Ratio Calculations

In the generalized transfer relationship of (5.49), the critical parameter, P, can assume one of only six
possible forms: circuit branch admittance, circuit branch impedance, transimpedance, transadmittance,
gain associated with a current-controlled current source (CCCS), and gain associated with a voltage-
controlled voltage source (VCVS) [13]. The methodology underlying the computation of the return ratio
and the null return ratio with respect to each of these critical parameter possibilities is given below. The
case of P = Yk, a circuit branch admittance, was investigated in the context of Kron’s partitioning theorem.
Nevertheless, it is reinvestigated next for the purpose of establishing an analytical common denominator
for return ratio calculations with respect to the five other reference parameter possibilities.

Circuit Branch Admittance

Consider the network abstraction of Figure 5.16(a), which identifies a branch admittance, Yk, as a critical
parameter for analysis; that is, P = Yk in (5.49). The input excitation can be either a voltage source, or a
current source and is therefore indicated as a general transformed input variable, XS(s). Similarly, the

FIGURE 5.16  (a) Linear circuit for which the identified critical parameter is a branch admittance, Yk. (b) The ratio,
XR (s)/XS (s), is the zero parameter gain H (0, ZS, ZL ). (c) The ratio, Vx /Ix, is the function QS (ZS, ZL ), in (5.49). (d)
The ratio, Vx /Ix, is the function, QR (ZS, ZL ), in (5.49). 
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output or response variable can be either a voltage or a current, thereby encouraging the generalized
transformed response notation, XR(s). The source and load impedances (or admittances) are absorbed
into the network. In order to evaluate the zero parameter gain, H (0, ZS, ZL ), Yk is set to zero by removing
it from the network. An analysis is then conducted to determine the ratio XR(s)/XS(s), of output to input
variables, as suggested in Figure (5.16(b)).

As demonstrated for the case of P = Yk, a circuit branch admittance, the function, QS (ZS, ZL ), in
(5.49) is the Thévenin impedance, Zth, facing Yk. This impedance is computed by determining the ratio,
Vx /Ix, with the signal source, XS(s), nulled, as indicated in Figure 5.16(c). Note in Figure 5.16(a), that the
volt–ampere relationship of the branch housing Yk is Ik = Yk Vk, where the direction of the branch current,
Ik, coincides with the direction of the test current source, Ix, used in the determination of Zth. A comparison
Figures 5.16(c) and 5.16(a) alludes to the methodology of replacing the admittance branch by a source
of excitation (a current source) where the electrical nature is identical to the dependent electrical variable
(a current, Ik ) of the branch volt–ampere characteristic. Note that the polarity of the voltage, Vx, used
in the determination of the test ratio, Vx /Ix, is opposite to that of the original branch voltage Vk. This is
to say that although Ik and Vk are in associated reference polarity in Figure 5.16(a), Ix and Vx in the test
cell of Figure 5.16(c) are in disassociated polarity.

The computation of the function, QR (ZS, ZL), in (5.49) mirrors the computation of QS (ZS, ZL ), except
for the fact that instead of setting the source excitation to zero, the output response, XR(s), is nulled. The
source excitation, XS(s), remains at some computationally unimportant nonzero value, such that its
effects, when superimposed over those of the test current, Ix, forces XR(s) to zero. The situation at hand
is diagrammed in Figure 5.16(d).

Example 5.3. Return to the series-shunt feedback amplifier of Figure 5.29(a). Evaluate the voltage gain
of the circuit, but, take the conductance, GF, of the feedback resistance, RF, as the critical parameter. The
circuit and device model parameters remain the same as in Example 5.2: RS = 300 Ω, RL = 3.5 kΩ, RF =
1.5 kΩ, REE = 100 Ω, rb = 90 Ω, rπ = 1.4 kΩ, re = 2.5 Ω, β = 90, and rc = 70 Ω .

Solution. 

1. The zero parameter voltage gain, Avo, of the subject amplifier is the voltage gain of the circuit with
GF = 0. But GF = 0 amounts to a removal of the feedback resistance, RF. Such removal is electrically
equivalent to open circuiting the indicated node pair, m-p, as diagrammed in the small signal
model of Figure 5.14(a). Thus, Avo is identical to the gain, computed in Step (1) of Example 5.2.
In particular, 

2. The model pertinent to computing the functions, QS (ZS, ZL ), and QR (ZS, ZL ), is offered in
Figure 5.17. Note that the test current source, Ix, which replaces the critical conductance element,
GF, and the resultant test response voltage, Vx, are in disassociated reference polarity. As in
Example 5.2, let
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5-28 Circuit Analysis and Feedback Amplifier Theory

Then, with VS = 0, and writing QS (ZS, ZL) as QS (RS, RL) because of the lack of energy storage
elements in the circuit undergoing study,

On the other hand,

3. Substituting the preceding results into (5.49), and recalling that GF = 1/RF, the voltage gain of the
series-shunt feedback amplifier is found to be

which is the gain result deduced previously.

Circuit Branch Impedance

In the circuit of Figure 5.18(a), a branch impedance, Zk, is selected as a critical parameter for analysis;
that is P = Zk in (5.49). The zero parameter gain, H(0, ZS, ZL ), is evaluated by replacing Zk with a short
circuit, as suggested in Figure 5.18(b).

The volt–ampere characteristic equation of the critical impedance branch is Vk = Zk Ik, where, of course,
the branch voltage, Vk, and the branch current, Ik, are in associated reference polarity. Because the
dependent variable in this volt–ampere expression is a branch voltage, the return and null return ratios
are calculated by replacing the subject branch impedance by a test voltage source, Vx . As suggested in
Figure 5.18(c), the ratio, Ix /Vx, under the condition of nulled independent sources, gives the function QS

(ZS, ZL ) in (5.49). On the other hand, and as depicted in Figure 5.18(d), the ratio Ix /Vx, with a nulled

FIGURE 5.17 Circuit used to compute the return ratio and the null return ratio with respect to the conductance,
GF, in the series-shunt feedback amplifier of Figure 5.13(a).
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response, yields QR (ZS, ZL ). Observe that in the present situation, the functions, QS (ZS, ZL ) and QR

(ZS, ZL ) are, respectively, the Thévenin and the null Thévenin admittances facing the branch impedance,
Zk.

Circuit Transimpedance

In the circuit of Figure 5.19(a), a circuit transimpedance, Zt, is selected as a critical parameter for analysis;
that is, P = Zt in (5.49). The zero parameter gain, H(0, ZS, ZL ), is evaluated by replacing the current-
controlled voltage source (CCVS) by a short circuit, as shown in Figure 5.19(b).

The volt–ampere characteristic equation of the critical transimpedance branch is Vk = Zt Ik, where Ik

is the controlling current for the controlled source branch. Because the dependent variable in this
volt–ampere expression is a branch voltage, the return and null return ratios are calculated by replacing
the CCVS with a test voltage source, Vx. However, as indicated in Figures 5.19(c) and (d), the polarity
of Vx mirrors that of the voltage, Vk, developed across the controlled branch. With Ix taken as a current
flowing in the controlling branch in a direction opposite to the polarity of the original controlling current,
Ik, the ratio, Ix /Vx, under the condition of nulled independent sources, gives the function, QS (ZS, ZL ) in
(5.49). On the other hand, and as depicted in Figure 5.19(d), the ratio, Ix /Vx, with a nulled response,
yields QR(ZS, ZL ).

Circuit Transadmittance

In the network of Figure 5.20(a), a circuit transadmittance, Yt, is selected as the critical parameter. The
zero parameter gain, H(0, ZS, ZL), is evaluated by replacing the voltage-controlled current source (VCCS)
with an open circuit, as shown in Figure 5.20(b).

The volt–ampere characteristic question of the critical transadmittance branch is Ik = Yt Vk, where Vk

is the controlling voltage for the VCCS. Because the dependent variable in this volt-ampere expression
is a branch current, the return and null return ratios are calculated by replacing the VCCS with a test
current source, Ix, where, as indicated in Figures 5.20(c) and (d), the polarity of Ix mirrors that of the
current, Ik, flowing through the controlled branch. With Vx taken as a voltage developed across the

FIGURE 5.18  (a) Linear circuit for which the identified critical parameter is a branch impedance, Zk. (b) The ratio,
XR (s)/XS (s), is the zero parameter gain, H (0, ZS, ZL ). (c) The ratio, Ix /Vx , is the function, QS (ZS, ZL ), in (5.49). (d)
The ratio, Ix /Vx, is the function, QR (ZS, ZL ), in (5.49).
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5-30 Circuit Analysis and Feedback Amplifier Theory

controlling branch in a direction opposite to the polarity of the original controlling voltage, Vk, the ratio,
Vx /Ix, under the condition of nulled independent sources, gives the function, QS (ZS, ZL ) in (5.43). On
the other hand, and as offered in Figure 5.20(d), the ratio, Vx /Ix, under the condition of a nulled response,
yields QR (ZS, ZL ).

FIGURE 5.19  (a) Linear circuit for which the identified critical parameter is a circuit transimpedance, Zt. (b) The
ratio, XR (s)/XS (s), is the zero parameter gain, H (0, ZS, ZL ). (c) The ratio, Ix /Vx , is the function, QS (ZS, ZL ), in (5.49).
(d) The ratio, Ix /Vx, is the function, QR (ZS, ZL ), in (5.49).

FIGURE 5.20  (a) Linear circuit for which the identified critical parameter is a circuit transadmittance, Yt, (b) The
ratio, XR (s)/XS (s), is the zero parameter gain, H (0, ZS, ZL). (c) The ratio, Vx /Ix, is the function QS (ZS, ZL ), in (5.49).
(d) The ratio, Vx /Ix, is the function QR (ZS, ZL ), in (5.49). 
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Example 5.4. The circuit in Figure 5.21(a) is a low-frequency, small-signal model of a voltage feedback
amplifier. With the transconductance, gm, selected as the reference parameter of interest, derive a general
expression for the voltage gain, Av = VO/VS. Approximate the final result for the special case of very large gm.

Solution. 

1. The zero parameter voltage gain, Avo, derives from an analysis of the circuit structure given in
Figure 5.21(b). The diagram differs from Figure 5.21(a) in that the current conducted by the
controlled source branch has been nulled by open circuiting said branch. By inspection of the
subject model,

2. The diagram given in Figure 5.21(c) is appropriate to the computation of the return ratio, TS(gm,
ZS, ZL ) = gmQS(RS, RL ) with respect to the critical transconductance, gm. A comparison of the
model at hand with the diagram in Figure 5.21(a) confirms that the controlled source, gmV, is
replaced by an independent current source, Ix, which flows in a direction identical to that of the
controlled source it supplants. The ratio, Vx /Ix, is to be computed, where Vx is developed, antiphase
to V, across the branch that supports the original controlling voltage for the VCCS. A straightfor-
ward analysis produces

3. The null return ratio, TR (gm, ZS, ZL ) = gmQR(RS, RL ), with respect to gm is obtained from an
analysis of the circuit in Figure 5.21(d). Observe a nulled output voltage, with zero current flow
through the load resistance, RL. Observe further that the signal source voltage is nonzero. The
specific value of this source voltage is not crucial, and is therefore not delineated. An analysis reveals

FIGURE 5.21  (a) The low-frequency, small-signal model of a voltage feedback amplifier. (b) The circuit used to
evaluate the zero parameter (gm = 0) gain. (c) The circuit used to evaluate the return ratio with respect to gm. (d) The
circuit used to computer the null return ratio with respect to gm.
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5-32 Circuit Analysis and Feedback Amplifier Theory

4. Using (5.49), the voltage gain of the circuit undergoing study is found to be

which, for large gm, reduces to

Gain of a Current-Controlled Current Source

For the network in Figure 5.22(a), the reference parameter is αk, the gain associated with a CCCS. The
zero parameter gain, H(0, ZS, ZL ), is evaluated by replacing this CCCS with an open circuit, as depicted
in Figure 5.22(b).

The volt–ampere characteristic equation of the branch in which the reference parameter is embedded
is Ik = αk Ij, where Ij is the controlling current for the CCCS. Because the dependent variable in this volt-
ampere characteristic is a branch current, the return and null return ratios are calculated by replacing
the CCCS with a test current source, Ix. As indicated in Figures 5.22(c) and (d), the polarity for Ix mirrors
that of the current, Ik, flowing through the controlled branch. Let Iy be the resultant current conducted
by the controlling branch, and let this current flow a direction opposite to the polarity of the original
controlling current. Then, the current ratio, Iy /Ix, computed under the condition of nulled independent
sources, is the function, QS (ZS, ZL) in (5.49). Similarly, and as suggested in Figure 5.22(d), the ratio, Iy /Ix,
under the condition of a nulled response, yields QR (ZS, ZL ).

FIGURE 5.22  (a) Linear circuit for which the identified critical parameter is the current gain αk associated with a
CCCS. (b) The ratio, XR (s)/XS (s), is the zero parameter gain, H (0, ZS, ZL ). (c) The ratio, Iy /Ix, is the function, QS (ZS,
ZL ), in (5.49). (d) The ratio, Iy /Ix, is the function, QR (ZS, ZL ), in (5.49).
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Gain of a Voltage-Controlled Voltage Source

In the network of Figure 5.23(a), the selected reference parameter is µk, the gain corresponding to a
VCVS. The zero parameter gain, H (0, ZS, ZL ), is evaluated by replacing this VCVS with a short circuit,
as per Figure 5.23(b).

The volt–ampere characteristic equation of the dependent generator branch is Vk = µkVj , where Vj is
the controlling voltage for the VCVS. Because the dependent variable in this volt–ampere expression is
a branch voltage, the return and null return ratios are calculated by replacing the VCVS with a test voltage
source, Vx, where as indicated in Figures 5.23(c) and (d), the polarity of Vx is identical to that of the
voltage, Vk, developed across the controlled branch. Let Vy be the resultant voltage established across the
controlling branch, and let the polarity of this voltage be in a direction opposite to that of the original
controlling voltage. Then, the voltage ratio, Vy /Vx, computed under the condition of nulled independent
sources, is the function, QS (ZS, ZL ), in (5.49). As suggested in Figure 5.23(d), the voltage ratio, Vy/Vx,
under the condition of a nulled response, yields QR (ZS, ZL ).

Evaluation of Driving Point Impedances

Having formulated generalized techniques for computing the return ratio and the null return ratio with
respect to any of the six possible types of critical circuit parameters, the application of (5.49) is established
as a powerful and computationally expedient vehicle for evaluating any transfer function of any linear
network. The only restriction limiting the utility of (5.49) is that parameter P must be selected in such
a way as to ensure that the zero parameter transfer function is finite and nonzero.

Equation (5.49) is commonly used to evaluate the voltage gain, current gain, transimpedance gain, or
transadmittance gain of feedback and other types of complex circuitry. However, the expression is equally
well suited to determining the driving point input impedance seen by the source impedance, as well as
the driving point output impedance seen by the terminating load impedance. In fact, once the return
ratios relevant to the gain of interest are found, these I-O impedances can be determined with minimal
additional analysis.

FIGURE 5.23  (a) Linear circuit for which the identified critical parameter is the voltage gain, µk1 associated with a
VCVS. (b) The ratio, XR (s)/XS (s), is the zero parameter gain, H (0, ZS, ZL ). (c) The ratio, Vy /Vx, is the function QS

(ZS, ZL ), in (5.49). (d) The ratio, Vy /Vx, is the function, QR (ZS, ZL ), in (5.49). 
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5-34 Circuit Analysis and Feedback Amplifier Theory

Without loss of generality, the foregoing contention is explicitly demonstrated in conjunction with a
transimpedance amplifier whose reference parameter is selected to be a branch impedance, Zk. To this
end, consider the circuit abstracted in Figure 5.24, for which the driving point input impedance, Zin, is
to be determined. The input excitation is a current, IS, and in response to this input, a signal voltage, VL,
is developed across the load impedance, ZL. Using (5.49), the I-O transimpedance, ZT (Zk, ZS, ZL ), is

(5.55)

where ZT (0, ZS, ZL ) is the circuit transimpedance for Zk = 0, Zk QR (ZS, ZL ) is the null return ratio with
respect to Zk, and ZK QS (ZS, ZL ) is the return ratio with respect to Zk. For future reference, the circuit
appropriate to the calculation of the function, QS (ZS, ZL ), is drawn in Figure 5.24(b).

The input impedance derives from an analytical consideration of the cell depicted in Figure 5.24(c),
in which the Norton representation of the signal source has been supplanted by a test current source of
value Iz. Note that the load impedance remains as the terminating element for the output port. The
transfer relationship of interest is the ratio, Vz /Iz, which is the desired driving point input impedance,
Zin. Taking care to choose Zk, the reference parameter for the gain enumeration, as the reference parameter
for the input impedance determination, (5.49) gives

(5.56)

In this expression, Zino generally derives straightforwardly because it is the Zk = 0 value of Zin; that is, Zin

is evaluated for the special case of a nulled reference parameter. Such a null in the present situation is
equivalent to short-circuiting Zk, as indicated in Figure 5.25(a). The function, QSS (ZS, ZL ), is the delineated

FIGURE 5.24  (a) A liner amplifier for which the input impedance is to be determined. (b) The circuit used for
calculating the return ratio with respect to Zk. (c) The circuit used for calculating the driving point input impedance.
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Ix /Vx ratio, for the case of a source excitation (Iz in the present case) set to zero. The pertinent circuit
diagram is the structure in Figure 5.25(b). This last circuit differs from the circuit, shown in
Figure 5.24(b), exploited to find QS (ZS, ZL ) in the gain relationship of (5.50) in only one way: ZS has
been removed, and thus, effectively, ZS has been set to an infinitely large value. It follows that

(5.57)

In other words, a circuit analysis aimed toward determining QSS (ZS, ZL ) is unnecessary. Instead, QSS

(ZS, ZL ) is found by evaluating QS(ZS, ZL ), which is already known from the gain analysis, at ZS = ∞.
To evaluate QRR (ZS, ZL ), the foregoing Ix /Vx ratio is calculated for the case of zero response. In the

present situation the response is the voltage, Vz, and accordingly, the appropriate circuit is depicted in
Figure 5.25(c). However, a comparison of the circuit at hand with the structure in Figure 5.24, which is
exploited to evaluate the return ratio in the gain equation, indicates that it differs only in that ZS is now
constrained to zero to ensure Vz = 0. It is therefore apparent that in (5.56)

(5.58)

Equation (5.56) is now expressible as

(5.59)

which is occasionally referred to as Blackman’s formula [14].

FIGURE 5.25  (a) The circuit used to evaluate the zero parameter driving point input impedance. (b) The compu-
tation, relative to input impedance, of the return ratio with respect to Zk. (c) The computation, relative to input
impedance, of the null return ratio with respect to Zk.
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5-36 Circuit Analysis and Feedback Amplifier Theory

Analogous considerations at the output port in the circuit of Figure 5.24(a) dictate a driving point
output impedance, Zout, of

(5.60)

where, similar to Zino, Zouto, the Zk = 0 value of Zout, must be finite and nonzero. Although the preceding
two relationships were derived for the case in which the selected reference parameter is a branch imped-
ance, both expressions are applicable for any reference parameter, P. In general,

(5.61a)

(5.61b)

Example 5.5. Use the pertinent results of Example 5.4 to derive expression for the driving point input
resistance, Rin, and the driving point output resistance, Rout, of the feedback amplifier in Figure 5.21(a).

Solution. 

1. With gm set to zero, an inspection of the circuit diagram in Figure 5.21(b) delivers

2. From the second step in the solution to Example 5.4, the function, QS (RS, RL ), to which the return
ratio, TS (gm, RS, RL ) is directly proportional, was found to be

It follows that

Moreover,

3. Equations (5.61a) and (b) resultantly yield
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for the driving point input resistance and

for the driving point output resistance.

Sensitivity Analysis

Yet another advantage of the Kron–Bode formula is its amenability to evaluating the impact exerted on
a circuit transfer relationship by potentially large fluctuations in the reference parameter P. This conve-
nience stems from the fact that parameter P is isolated in (5.49); that is, H (0, ZS, ZL ), QR (ZS, ZL ), and
(ZS, ZL ) are each independent of P. A quantification of this impact is achieved by exploiting the sensitivity
function,

(5.62)

which compares the per unit change in transfer function, ∆H/H, resulting from a specified per unit
change ∆P/P in a critical parameter. In particular, the notation in this definition is such that if H designates
the transfer characteristic, H (P0, ZS, ZL ), at the nominal parameter setting, P = P0, (H + ∆H) signifies
the perturbed characteristic, H(P0 + ∆P, ZS, ZL ) where P0 is altered by an amount ∆P0. Using (5.49) and
dropping the functional notation in (5.53a) and (5.53b), it can be demonstrated that

(5.63)

where FS and FR are understood to be evaluated at the nominal parameter setting, P = P0. It should be
emphasized that unlike a more traditional sensitivity analysis, such as that predicated on the adjoint
network [15], (5.63) is easy to use manually and does not rely on an a priori assumption of small
parametric changes.
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