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6.1 Introduction

Network analysis is based on formulation of the relevant equations and on their solutions. Various
approaches are possible. If we wish to get as much theoretical information as possible, we may resort to
hand analysis and keep the elements as variables (literal parameters). In such cases, it is an absolute
necessity to use a method that leads to the smallest possible number of equations. If we plan to use a
computer, then we can accept methods which lead to larger systems, but the methods must be relatively
easy to program. The purpose of this chapter is to give an overview of the various possibilities and point
out advantages and disadvantages. Many more details are available in [1, 2].

Section 6.2 is a summary of the nodal and mesh formulations. We review them because they are the
best ones for analysis of small networks. Tableau formulation, given in Section 6.3, is very general, but
requires special solution routines, probably not available to the reader. Section 6.4 describes the best
method for computerized solutions; it is used in many commercial simulators. If nonlinear elements are
involved, then iterative solution methods must be used; an introduction on how to deal with nonlinear
elements is given in Section 6.5. Finally, Section 6.6 presents a method that is suitable for hand solutions
of active networks and which automatically leads to the smallest system of equations.

6.2 Nodal and Mesh Formulations

Classical methods use two types of network equations formulation: the nodal and the mesh. The first
one is based on Kirchhoft’s current law (KCL): the sum of currents flowing away from a node is equal
to zero. The mesh method is based on Kirchhoff’s voltage law (KVL): the sum of voltages around any
loop is equal to zero.

For simple problems, both methods are about equivalent, but nodal formulation is more general. The
mesh formulation is suitable only for planar networks: It must be possible to draw the network without
any element crossing over any other element. Many practical networks are planar, but it is not always
easy to see that it is actually the case.

We first introduce some definitions. A positive current flows from a terminal with a higher potential
to a terminal with a lower potential. This is sketched on the two-terminal element in Figure 6.1. If we
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6-2 Circuit Analysis and Feedback Amplifier Theory
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voltage source. (b) Direction of the current through an independent
current source.

use this definition, then the product of the current and of the voltage across the element, V,— V, expresses
the power consumed by the element. If the current flows in opposite direction, then the element is
delivering power.

We will use the previous definition of a positive current for all elements of the network, irrespective
of what their role eventually may be. Thus, a positive current through an independent voltage source
will flow from the more positive terminal to the less positive terminal, as sketched in Figure 6.2(a). The
current flowing through an independent current source is indicated on its symbol, Figure 6.2(b), but the
voltage across it is not defined; it depends on the network.

The nodal formulation uses the principle that the sum of currents at any node must be equal to zero
at any instant of time. To apply this rule in an efficient way, we realize that before we solve the equations,
we do not know which way the currents will actually flow. All we know is that if a node is more positive
than all the other nodes, then all currents must flow away from this node.

In nodal formulation, the unknowns are nodal voltages and the equations express the sum of currents
flowing away from the node. To write the equations we use element admittances: in Laplace transform
Y. = sCfor a capacitor, Y; = 1/sL for an inductor, and Y; = G = 1/R for a resistor. It is advantageous to
use G, because we thus avoid fractions in the equations.

We demonstrate how to set up the equations by considering the network in Figure 6.3. The nodal
voltages are denoted V, and V, and ground (the lower line) is considered to be at zero potential. We do
not know which of these nodes is more positive, but we can assume that any node we consider at a given
moment is the most positive one. This assumption has the consequence that all currents must flow away
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FIGURE 6.3 Example for nodal formulation.
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Tableau and Modified Nodal Formulations 6-3

from this node. For the given network, the current through G, will flow down and its value will be I;, =
G,V,, current through G, will flow from left to right and will be I, = G, (V, - V,). Current from the
independent current source flows into the node and thus must be subtracted. Together, the sum of the
currents at node 1 will be zero:

GV,+G,(V,-V,)-]=0

Moving to the second node, we still do not know which node is more positive, but we can still make the
assumption that now it is this node that is the most positive one. If we make such an assumption, then
all currents must flow away from this node: The current through G; will be I;; = G, V,and will flow down,
the current through G, will flow from right to left and will be I;, = G, (V,— V)). In this expression, the
first voltage within the parentheses must be the assumed higher potential. This is expressed by the
equation
G,V,+G,(V,-V,)=0

It is advantageous to put the equations into matrix form, with the known independent source transferred
to the right side:

G+G, -G, |[v][J

-G, G,+G,||V.

2

0

2

The preceding steps were simple because we selected elements that can be handled by this formulation.
Unfortunately, many practical elements are not expressed in terms of currents. For instance, a voltage
source connected between nodes i and j, with its positive reference on node i, is described by the equation

A positive current does flow through such an element from i to j, but is not available in its defining
equation. In fact, all voltage sources, independent or dependent, will create this problem. Another element
which cannot be handled directly is a short circuit. It is described by the equation

and current is not a part of its definition.

We can always use transformations by applying various theorems such as the Thévenin and Norton
transformations or source splitting, and eventually arrive at a network in which all elements have voltage
as the independent variable. Such transformations are practical for hand analysis, but are not advanta-
geous for computerized solutions. This is the reason why other formulations have been invented.

Consider next the mesh equations where we use the KVL and impedances of the elements: Z; = sL
for the inductor, Z. = 1/sC for the capacitor, and R for the resistor. In this formulation, we sum the
voltages across the elements in a given closed loop. Because this method is suitable for planar networks
only, we usually use the concept or circulating mesh currents, indicated on the network in Figure 6.4.
The currents I;and I, create voltage drops across the resistors. When considering the first mesh, we take
the current I, as a positive one. The voltage across R, is Vi, = R I,. The voltage across R, is Vi, = R,(I,
— 1) and the voltage source contributes a value E to the equation. According to our earlier definition, a
positive current flows from plus to minus, but I, actually goes in the opposite direction through the
voltage source. Thus, the voltage across E must be taken with a negative sign and the sum of voltages
around the first mesh is

RI+R,(I,-1,)-E=0
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FIGURE 6.4 Example for mesh formulation.

When we move to the second mesh, we consider the current I, as positive and the sum of voltage drops
around the second mesh is

R(I,—I)+R]I,+RI,=0

The equations can be collected into one matrix equation

R +R, R, L[E
-R, R,+R,+R,|[L |0

Each of these fundamental formulations has its problems.
In nodal formulation, we can deal directly with the following elements:

Current source, J

Conductance, G = 1/R

Capacitor admittance, sC

Voltage controlled current source, VC
Inductor admittance, 1/sL

In mesh formulation, we can deal directly with the elements:

Voltage source, E

Resistor, R

Inductor impedance, sL

Current controlled voltage source, CV
Capacitor impedance, 1/sC.

All other elements create problems and must be dealt with by the Thévenin and Norton theorems and/or
source splitting.
As an example, we take the network in Figure 6.5(a). It is directly suitable for mesh formulation, but
we demonstrate both. For simplicity, all resistors have unit values.
The mesh formulation, with the indicated circulating currents I, and I,, leads to the equations
(R +R,)[,-R,J,=E
~R,I, +(R,+R,)I,+3I, =0
Inserting numerical values
2 -1,=E
21, +21,=0

The solution is I, = E/3, I, = —E/3 and V| = R,(I, — I,) = 2E/3.
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R =1 =E-VG Ry=1

+ 31=
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I =1, for mesh formulation
I=G,(E - V) for nodal formulation
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FIGURE 6.5 (a) Example of a network suitable for mesh formulation. (b) Modification of the network in Figure 6.5(a)
to be suitable for nodal formulation.

To use nodal formulation, we must apply several transformation steps. First, we must express the
controlling currents as I = G,(E — V;) = E — V| and replace I in the definition of the current controlled
voltage source. This has been done in the figure. Afterward, applying Thévenin—Norton transformation
we change the voltage sources, in series with resistors, into current sources, in parallel with the same
resistors. We get the network in Figure 6.5(b). It has only one node for which the balance of current is

(G, +G,+G,)V, - EG, -3GG,(E-V,)=0

Inserting numerical values and solving, we get the same V, as previously.

If we have a mixture of elements, such transformations will always be lengthy, will require redrawings,
and can lead to errors. To reduce the chance of such errors to a minimum, in computer applications we
need formulations that avoid transformations and use descriptions of the elements as they are given.
This is done in both the tableau and nodal formulations, the subjects of the following sections.

Although the nodal and mesh formulations are not always easy to apply, we must stress that they are
the best ones for hand solutions. They may require several steps of transformations and redrawings, but
ultimately they lead to the smallest possible systems of equations.

6.3 Graphs and Tableau Formulation

Tableau is the most general formulation because the solution simultaneously provides the voltages across
all elements, the currents through all elements, and all nodal voltages. The difficulty is that tableau leads
to such large systems of equations that complicated sparse matrix solvers are an absolute necessity. Most
readers will not have access to such routines, therefore, we will explain its properties only to the extent
necessary for understanding. We advise the reader not to use it.
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FIGURE 6.6 (a) A simple network; (b) its graph.

Tableau formulation needs for its construction the concept of graphs and the concept of the incidence
matrix. Consider the network in Figure 6.6(a). A graph of the network replaces each element by a line.
We will use oriented graphs, with arrows, because they can be identified with the flow of currents. In all
passive elements, the current can flow in any direction and the orientation of the graph is entirely our
choice. We do not have such freedom when we consider sources. The direction of the current through
the current source is given by the arrow marked at its symbol and we use the same direction in the graph.
For the voltage source, the direction of the graph will be from plus to minus, in agreement with our
previous explanations. Each node is marked by the node voltage and the line representing the element
is given the name of the element. Following these rules, we have constructed the graph in Figure 6.6(b).
Because the directions of the arrows are the assumed directions of currents, we can write KCL for the
two nodes: positive direction is away from the node, negative is into the node. The sums of currents for
the nodes are

~I +1.+1,=0
—I,+1,=0

This can also be summarized in one matrix equation

or
AI=0 (6.1)

The matrix A is called the incidence matrix. It has as many rows as there are ungrounded nodes, and as
many columns as the number of elements. Note that +1 in any given row indicates that we expect the
current to flow away from the node, —1 means the opposite.

Still more information can be extracted from this matrix. Denote the nodal voltages by subscripts n
in V,, and V,,, as done in Figure 6.6. The voltages across the elements will have as subscripts the names
of the elements. We can write the following set of equations which couple the voltages across the elements
with the nodal voltages:

V, ==V,
VC =V
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R=Vi =V
L=V
In matrix form, this is equivalent to
vi] [-10
VC 10 nl
V, | v,
v,| |01

The matrix is the transpose of the incidence matrix and we can generalize

V,-A'V =0 (6.2)

Complete formulation needs expressions that couple the element currents and the element voltages.
Writing them in the same sequence as for the graph, and using Laplace transformation, we have

I=]
I.=sCV,
V,=RI,
V, =sLI,

For matrix notation, we need an expression that, with a proper choice of entries, will cover all possible
elements. Such an expression is

YV, +ZI,=W

For instance, if we consider the current source, we set Y = 0, Z = 1 and W = ], which gives the preceding
equation. Similar choices can be made for the other elements.
The KCL equation, AI = 0, the KVL equation, V,, — ATV, = 0, and the previous equation YV, + ZI,

= W are collected in one matrix equation. Any sequence can be used; we have chosen

V,—A"V =0
YV, +Z1,=W (6.3)
Al, =0
and in matrix form
1 0-A"||V, 0
YZ o1, [=|W (6.4)
0 A O \% 0

n

Once the incidence matrix is available, writing this matrix equation is actually quite simple. First deter-
mine its size: it will be twice the number of elements plus the number of nodes. For our example, it will
be 10. The system equation is in Figure 6.7 where all zero entries were omitted to clearly show the
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FIGURE 6.8 Example for modified nodal formulation.

structure. In the top partition is a unit matrix and the negative of the transpose of the A matrix. In the
bottom partition is the incidence matrix, A. The middle portion is filled, element by element, using the
previous element equation. For better understanding, it is a good idea to write the variables above the
matrix, as shown, because each column of the matrix is multiplied by the variable which appears above it.
We have used this simple example to point out the main difficulty of the tableau formulation: the
system becomes very large. In nodal formulation, this problem would lead to only two equations.
However, the tableau system matrix has many zeros and is said to be sparse. Sparse systems are always
solved by special routines which, roughly speaking, do not store the zeros and do not operate on them.
Such codes are quite difficult to write, and in tableau we have the additional difficulty that the matrix
has a complicated structure. We discussed this formulation more as a warning instead of a recommen-
dation. Unless a suitable sparse matrix solver is already available, this formulation should be avoided.

6.4 Modified Nodal Formulation

Modified nodal formulation is an extension of the nodal formulation and is the method of choice for
computerized analysis. It is used in most commercial simulators, and we will explain it in considerable
detail.

When nodal formulation is taught in schools, inductors are usually taken as admittances, Y; = 1/sL.
This is fine, as long as we work by hand and derive the network function. For instance, nodal equations
for the network in Figure 6.8 would be written in the form
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1 1
G +sC+—|V,——V, =
(1 1 SL) Lo 2 J

1 1
_EVI +(G2+SCZ+5L) V,=0

However, this creates a problem for computerized solutions. Multiplication by s represents differentiation
in the Laplace transform and 1/s represents integration. As a result, the two equations are actually a set
of two integro-differential equations, and we do not normally have methods to solve them directly in
such a form. In all computerized methods, we use integration of systems of first-order differential
equations and the preceding equations cannot be arranged into such a form. What we need is a method
which will keep all frequency-dependent elements in the form sC or sL, with the variable s in the
numerator. Such possibility exists if we take into account a new variable, the current through the inductor.
Writing KCL for the two nodes of Figure 6.8

(G +sC)Vi+1,=]
(G, +sC,)v,-1, =0

We now have two equations but three variables. What we have not used yet is an expression which couples
the voltages across the inductor with the current through it. The relationship is V, — V, = sLI,, but because
we do not know any of these three variables, we transfer everything to the left and write the last equation

V=V, =sLI, =0 (6.5)
All three can be put into a matrix form
G, +sC, 0 1 1[v, ]
0 G,+sC, -1||v,|=]o
1 -1 —sL||1I 0

L

In this equation, the nodal portion is the 2 X 2 matrix in the upper left corner and information about
the inductor is collected in the right-most column and the lowest row. A larger network will have a larger
nodal portion, but we still increase the matrix by one row and column for each inductor. This can be
prepared as a general stamp as shown in Figure 6.9. The previous matrix is the empty box, separated by
the dashed lines, the voltages and the current above the stamp indicate the variables relevant to the
inductor, while on the left the letters 7 and j give the rows (node numbers) where L is connected. Should
we have a network with two inductors, we add one row and one column for each.

The next element we take is the voltage-controlled current source; it was already mentioned is
Section 6.2 as an element which can be taken into the nodal formulation. The VC is shown in Figure 6.10.

Vi
R

I

i [

1

j -l

L1 -1 -sL
Vi FIGURE 6.9 Stamp of an inductor.
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FIGURE 6.10 Stamp for a voltage-controlled current source.

Vi
rhs
i =J
l J ] +J
Vi FIGURE 6.11 Stamp for an independent current source.

It adds the current g(V, — Vj) to node k and subtracts the same current at node I It permits us to write
the stamp, Figure 6.10. The element influences the balance of currents at node i and j, and the variables
which multiply its transconductance are V; and V..

Network theory defines two independent sources: the current and the voltage source. The current source
can be taken into consideration in the right-hand side (r.h.s.) of the nodal portion; its stamp is in Figure 6.11.
The independent voltage source cannot be taken directly and we must add its current as a new variable.
Consider the source with a resistor in series, shown in Figure 6.12. The voltage relationships are

V=V, =1, =E (6.6)

The current I; adds to the balance of currents at node i, because it flows away from it. It is subtracted
from the balance of currents at node j. The current is taken as a new variable and the equation is attached
to previous equations. The stamp is as shown. It is, in fact, a combined stamp for several elements. If
we set r = 0, we have an ideal voltage source. If we set both r and E equal to zero, we have a stamp for
a short circuit. For better understanding, consider the example in Figure 6.13. The network has two
ungrounded nodes for which we can write the nodal equations:

Vi
Ig
r Vi VI rhes
i bl
+ ; 1
EL ) .. H -
- E[1 -1 -r E
v

FIGURE 6.12 Stamp for an independent voltage source. The resistor value can be zero.
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FIGURE 6.13 Example with a floating voltage source.
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V.o oV,

wil-u u 1 -1 - |
FIGURE 6.14 Stamp for a voltage-controlled voltage source. The resistor value can be zero.

To these equations, we must add the equation describing the properties of the ideal voltage source,

V-V, =E (6.7)
Collecting into matrix form
G, +sC, 0 1] [v, 0
0 G,+sC, -1]|V,|=1|0
1 -1 0 I E

We still need stamps for the remaining three dependent sources. The voltage controlled voltage source,
VV, is shown in Figure 6.14. For generality, we added the internal resistor. The output is described by
the equation

w(V,=v,)+r1y = V-V, (6.8)

None of the voltages is known, so we transfer everything to the left side. Input terminals do not influence
the balance of currents, but the output terminals do. At node k we must add I, and subtract the same
at node I. The stamp is in Figure 6.14.

The current controlled current source, CC, is shown in Figure 6.15. The input terminals are short
circuited and

V.-V. =0 (6.9)

' J

No information is available about the output voltages, but we know that the current is o times the input
current, and thus only one additional variable is needed. Balances of currents are influenced at all four
nodes: positive I at node 7, negative at node j, positive current oI at node k, and negative o at node L.
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FIGURE 6.15 Stamp for a current-controlled current source.
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FIGURE 6.16 Stamp for a current-controlled voltage source. The resistor value can be zero.
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FIGURE 6.17 Stamp for a transformer.

The stamp is in Figure 6.15, where the added column takes care of the currents and the additional row
describes the properties of the short circuit.

The most complicated dependent source is the current-controlled voltage source, CV, shown in
Figure 6.16. We can consider it as a combination of a short circuit and a voltage source. The equation
for the short circuit is the same as for the CC. The output is defined by the equation

V, =V, = pl, + rl, (6.10)

and because none of the variables is known, we transfer everything to the left. This element adds two
rows and two columns to the previously defined matrix. Its stamp is in Figure 6.16. As before, the internal
resistor r can be set equal to zero.

Modified nodal formulation easily takes into account a transformer (see Figure 6.17). It is described
by the equations
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FIGURE 6.18 Stamp for an ideal operational amplifier.

V.=V, =sLI, +sMI,

(6.11)
V, =V, =sLI +sL,I,

None of the variables is known, and we transfer everything to the left. The currents influence the balance
of currents at all nodes. The stamp of the transformer is in Figure 6.17.

The last element we consider is an ideal operational amplifier. It is sometimes taken as a voltage-
controlled voltage source with very high gain, but it is preferable to have a stamp that can take into
account ideal properties as well. The element is shown in Figure 6.18. The terminal / is usually grounded,
but we will keep it floating to make the stamp more general. No current flows into the device at the
input terminals. The output equation is

V=V, =A(V,-V)) (6.12)
Because a computer cannot handle infinity, it is advantageous to introduce the inverted gain

B=-1/A (6.13)

and modify the previous equation to

V,=V,+BV,-BV,=0 (6.14)

This equation is attached to the set of equations and the balance of currents is influenced at nodes k and
I. This leads to the stamp in Figure 6.18. If we set B = 0, the operational amplifier becomes ideal, with
no approximation.

An example will show how the stamps are used. Consider the network in Figure 6.19. It has no practical
application, but serves well for the demonstration of how to set up the modified nodal matrix. A short
circuit, indicating the controlling current of the current-controlled voltage source is taken into account

FIGURE 6.19 Example showing the use of modified nodal formulation.
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by increasing the number of nodes. The network has five nongrounded nodes, and thus the dimension
of its nodal portion will be 5. The voltage source will increase the system matrix by one row and one
column, the inductor also, and the CV will need two more rows and columns; altogether the matrix will
be 9 X 9. Write first the nodal portion by disregarding entirely the other elements. This creates the upper
left partition. Using the stamps we add first the voltage source, then the inductor, next the short circuit,
and finally the current-controlled voltage source. The system matrix is

G, -G, 0 0 o1t 1101 0 o]V 0
G, G,+sC, 0 0 0 o: 1 : o of|lv,| o
0 0 0 0 o0l -1 1 of|v,| |o
0 0 0 sC,+G, -G, 0: ol =1 oflv,| Jo
0 0 0 -G, GZEO\ o: o 1f|v.|=]o
71777()77077()777(010\0 of |1, E
0 1 -1 0o 0o o —sL} o ol 0
0 o 1 -1 0 o o o oflr.| o
K 0 0 0 10 0o - of|r,| [0

Modified nodal formulation is the most important method for computer applications. The reader can
find additional information in the books [1, 2].

6.5 Nonlinear Elements

In previous sections, we used the Laplace transform to explain the various methods of formulation.
Because we dealt with linear elements, the systems of equations were linear and it was possible to cast
them into matrix forms.

If we must consider nonlinear elements, we face many restrictions. The Laplace transform cannot be
used. Various concepts based on it, like the network functions, the poles and the zeros, cannot be applied.
Only two types of analysis are available:

The dc solution (operating point)
Time-domain solution for a given input signal

Once we have nonlinear elements, we cannot write the equations in matrix form; all we can do is
write KCL equations. We must also find another method for the solution of such nonlinear equations.
Consider two differentiable equations in two unknowns

ﬁ(vl’vz)zo
fz(vl’vz)zo

The functions can be expanded into Taylor series and the series truncated after the linear terms:

(6.15)

fl(vl+Av], v2+Av2) = f1(V1r v2)+% Avl+% Ay, +---=0
o, v

2

a )
1, (V1+AV1, v2+Av2) = fz(vl, v2)+% Avl+a% Av,+---=0
1 2
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We are not considering higher-order terms, so the equation will not be exactly zero, but we can still try
to find Av, and Av,. Transferring the known function values to the right

) )
% Avl+% Av2=—fl(v1, vz)

1 2

9 d
LA Av, +aL Av, =—f2(v1,vz)

v, v,

This is a system of linear equations, and we can rewrite it in matrix form

o o,

w o, H _ [ Aben) (6,16
o | |la| |- '
ov ov " fz(vl) Vz)

The matrix on the left is called the Jacobian; on the right is the negative of the functions. Once this linear
system is solved, we can get new values of the variables by writing

p 0 =y 0 7y )

(6.17)

4 =y 04 7y 0

In this equation, we added the superscript to indicate iteration. The process is repeated until all Av,
become sufficiently small. This iterative method is usually referred to as the Newton—Raphson iteration
and is written in the form

J(V(i)) AV = — f(v(i)) (6.18)
Vi) = ) 4 Ayl

Suppose that we now take the network in Figure 6.3, consider the conductances G, and G; as linear and
replace G, by a nonlinear function

i=g (ve,)
where V,, is the voltage across this element,
Va =V1™V,
and g represents a nonlinear function. The two KCL equations are
Gy, +g(1/e])— J=0
-g (Ve1)+G3Vz =0

For the Newton—Raphson equation, we need the derivatives with respect to v, and v,. Consider now only
the nonlinear element. Using the chain rule of differentiation we can write
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— el _
v, - v, ov, - av,
ag(vfl) — ag (Vfl) avel - ag (Vfl)
v ov ov ov

With these preliminary steps, we can now write the Newton—Raphson equation:

9g ("et) 9g ("et)

G+ v, aw, | Ml [em g(vy)-T
_ og (Vel) G + og (Vel) Av, - g(ve,) +G,v,
ov M- 1%

el el

Comparing the Jacobian of the Newton—Raphson equation with the nodal formulation, we reach the
important conclusion, valid for networks of any size:

1. Linear elements will be in the Jacobian in the same position as they were in the linear system matrix.
2. Nonlinear elements will have entries in the same positions as if they were linear; only their
numerical values will be equal to the derivative dg/dv,,, evaluated with already available variables.

This conclusion will also be true for the other formulations, similar to the tableau or the modified nodal.
So far, we considered only nonlinear resistive elements and the operating point.

Nonlinear storage elements (capacitors and inductors) contribute to the equations with their fluxes
and charges. The current through the nonlinear capacitor is defined by

i = dqgf) (6.19)

where ¢q(v,) is the charge and v, is the voltage across the capacitor. The voltage across the nonlinear
inductor is given by
doliy)

= (6.20)

with ¢ denoting the flux.

Integration of systems with storage elements is always done by first replacing the derivative by a suitable
algebraic expression and then solving the resulting nonlinear algebraic system by the Newton—Raphson
method derived previously.

Many methods are available to replace the time domain derivatives by algebraic expressions. Books
on numerical analysis usually describe the Runge-Kutta method. We mention it here because it is not
suitable for solution of networks. There are several reasons for this, the main one being that the preferred
modified nodal formulation does not lead to systems of differential, but rather to systems of algebraic-
differential equations. Only two methods are widely used, the trapezoidal formula and a family of
backward differentiation formulas (BDF). Among the BDFs, the simplest is the backward Euler, and we
will base our explanations on this formula. It replaces the derivative by the difference of the previous
and new value, divided by the step size, h,

dq(vc) _ qnew (Vc) B qold

dt h
dq)(lL) _ (I)new (1L) - q)old
dt h
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FIGURE 6.20 Network with a nonlinear capacitor and inductor.

Consider the network in Figure 6.20 with nonlinear storage elements and with a linear conductance, G.
It can be described by three equations:

dqlv
1= q(gtC) +G(v1 —vz)—](t)=0
f, ——G(vl —v2)+zL =0
fi =1’2_d¢(IL) =0

The time derivatives are replaced by the backward Euler formula

q"ew(vlh)_qohi+G(vl— v,)=i(t)=0
-G (Vl _V2)+il =0

y. — q)rxew(iL)_q)old —

2 h 0

thus changing the system into an algebraic one. If we now differentiate with respect to the variables v,,
v,, and i;, we obtain the Jacobian

Pl aqnew(vl) + G —G 0 ]
h o oy
-G +G 1
_ l aq)m’w (1L )
| 0 h o |

It can be observed that values of the derivatives are in the same places as would be the values of C(L) of

linear capacitors (inductors). In addition, the variable s from the Laplace domain is replaced by 1/h.
The example used a grounded capacitor and a grounded inductor. Figure 6.21 gives the stamps for

floating nonlinear elements and for the Newton—Raphson iteration, based on the backward Euler formula.

6.6 Nodal Analysis of Active Networks

Low-frequency analog filters are often built with active RC networks and the active elements are almost
always operational amplifiers. We have seen in Section 6.4 that each such element adds one row and one
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Vi Vi
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FIGURE 6.21 Stamp for a nonlinear capacitor and inductor.

G,

() G,

FIGURE 6.22 Example showing how to reduce the number of nodal equations.

column to the modified nodal system matrix, thus making the system too large for hand solutions. We
need a method that can reduce the size of the matrix to the minimum. Such reduction is possible [1, 2],
and becomes extremely simple if the voltage sources (dependent or independent) have one of their
terminals grounded. Almost all practical networks meet this condition.

To introduce the method, consider the network in Figure 6.22. If we are not interested in the current
through the voltage source, we can write only one nodal equation for the node on the right:

(G,+G,) V,-EG, =0

The source is known, the term in which it appears is transferred to the right side and, instead of three
equations of the modified nodal formulation, we must solve only one. Consider next the network in
Figure 6.23 with a voltage source and an ideal operational amplifier. One of the output terminals of the
operational amplifier is grounded. Such amplifier is described by the equation

(v.-v.)a=vV, (6.21)

— Tout
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FIGURE 6.23 Nodal analysis of a network with one ideal operational amplifier.

where A — eo. Divide first by A and then substitute

B=-1/A (6.22)

This changes the equation into

V.-V_+BV ,=0 (6.23)

out

If the operational amplifier is ideal, set B = 0 and in such case V, = V_; the operational amplifier will
have the same voltages at its input terminals. We can take this into consideration, by simply writing the
voltage with the same subscript to both input terminals of the operational amplifier, as was done in
Figure 6.23. We are not interested in the current of the voltage source, nor in the current flowing into
the operational amplifier. We mark our lack of interest by crossing out the nodes that have grounded
voltage source; this was also done in Figure 6.23. Each node is given a voltage, but we write the nodal
equations only at nodes that were not crossed out. For our example:

G,+G,) V,~G,V,, —EG, =0
(G +G,) v, 1

2" out

5" out

(G,+G,+G,)V,-G,V,, —EG, =0

Terms with the known source voltage are transferred to the right and we have the system

G+G, -G][v

1

GE

G,+G,+G, -G,||V,.| |GE
A modified modal formulation would have required six equations.

This method can be used for any network if one node of each voltage source, dependent or independent,
is grounded. All we have to do is assign every node a voltage, cross out nodes with voltage sources, and
write nodal equations for the rest. It is advantageous to use conductances for resistors, because this way
we avoid the fractions.

The method remains valid if the operational amplifier is not ideal and has the inverted gain B. The
only difference is that for a nonideal amplifier we cannot make any assumptions on the voltages at its
input terminals and the subscripts of such voltages must be different. This second case is also illustrated
in Figure 6.23 by the voltage V, (in brackets) at the lower node. We still write nodal equations for the
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=

FIGURE 6.24 Nodal analysis of a network with two ideal operational amplifiers.

two input terminals, but to complete the system we must also attach the equation of the operational
amplifier. The result is

V(G +G,)-G,V,, =GE

2" out

Vi(G,+G,+G,)V,-GV,, =G,E

5" out

V,—V,+BV, =0

out

and in matrix from

G, +G, 0 -G,][ v, |[GE
0  G,+G,+G, -G.||V, ||GE
1 -1 B ||V, || 0

out

where B can be set zero for an ideal operational amplifier.

We will give one example of a practical network, Figure 6.24. The operational amplifiers are ideal and
thus the input voltage, E, appears at three terminals of the network. The other terminal voltages are
marked by V, and V,. The terminals with voltage sources are marked by crosses and only nodes 3 and 5,
counting from left, remain for writing the KCL. They are

(G, +sC,)E-G,V,-sC,V, =0
(G,+G,)E-G,V, =0

Transferring terms containing the independent voltage source, E, to the other side of the equation, we
arrive at the system

G, sC]|[v (G,+sC,)E

0 G ||V (G,+G,)E
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Conclusion

It was demonstrated that hand calculations should use nodal or mesh formulations. Computer applica-
tions should be based on modified nodal formulation. For active networks, it is advantageous to use the
method of Section 6.6.
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