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8.1 Introduction and Definition

Symbolic circuit analysis, simply stated, is a term that describes the process of studying the behavior of
electrical circuits using symbols instead of, or in conjunction with, numerical values. As an example to
illustrate the concept, consider the input resistance of the simple circuit in Figure 8.1. Analyzing t8-he
circuit using the unique symbols for each resistor without assigning any numerical values to them yields
the input resistance of the circuit in the form:

(8.1)

Equation (8.1) is the symbolic expression for the input resistance of the circuit in Figure 8.1.
The formal definition of symbolic circuit analysis can be written as:

Definition 1. Symbolic circuit analysis is the process of producing an expression that describes a certain
behavioral aspect of the circuit with one, some, or all the circuit elements represented as symbols.

The idea of symbolic circuit analysis is not new; engineers and scientists have been using the process
to study circuits since the inception of the concept of circuits. Every engineer has used symbolic circuit
analysis during his or her education process. Most engineers still use it in their everyday job functions.
As an example, all electrical engineers have symbolically analyzed the circuit in Figure 8.2. The equivalent
resistance between nodes i and j is known to be:

or

This is the most primitive form of symbolic circuit analysis.
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8-2 Circuit Analysis and Feedback Amplifier Theory

The basic justification for performing symbolic analysis rather than numerical analysis on a circuit can be
illustrated by considering the circuit in Figure 8.1 again. Assume that the values of all the resistances R1 through
R4 are given as 1Ω and that the input resistance was analyzed numerically. The result obtained would be

(8.2)

Now, consider the problem of increasing the input resistance of the circuit by adjusting only one of the
resistor values. Equation (8.2) provides no insight into which resistor has the greatest impact on the input
resistance. However, Eq. (8.1) clearly demonstrates that changing R2, R3, or R4 would have very little impact
on the input resistance because the terms appear in both the numerator and the denominator of the
symbolic expression. It can also be observed that R1 should be the resistor to change because it only appears
in the numerator of the expression. Symbolic analysis has provided an insight into the problem.

From a circuit design perspective, numerical results from the simulation of a circuit can be obtained
by evaluating the results of the symbolic analysis at a specific numerical point for each symbol. Ideally,
only one simulation run is needed in order to analyze the circuit, and successive evaluations of the results
replaces the need for any extra iterations through the simulator. Other applications include sensitivity
analysis, circuit stability analysis, device modeling and circuit optimization [5, 18, 32, 41].

Although the previous “hand calculations” and somewhat trivial examples are used to illustrate sym-
bolic circuit analysis, the thrust of the methods developed for symbolic analysis are aimed at computer
implementations that are capable of symbolically analyzing circuits that cannot be analyzed “by hand.”
Several such implementations have been developed over the years [4, 10, 12, 15, 17, 22, 25, 26, 28, 29,
31, 34, 35, 37, 38, 47, 48, 53, 54, 56–61, 66].

Symbolic circuit analysis, referred to simply as symbolic analysis for the rest of this section, in its
current form is limited to linear,1 lumped, and time-invariant2 networks. The scope of the analysis is

FIGURE 8.1  Symbolic circuit analysis example.

FIGURE 8.2  Common symbolic analysis problem.

1Some references are made to the ability to analyze "weakly nonlinear" circuits [18, 63]; however, the actual
symbolic analysis is performed on a linearized model of the weakly nonlinear circuit. Other techniques are applicable
to circuits with only a single strongly nonlinear variable [65].

2One method is reported in Reference [36] that is briefly discussed in Section 8.6 that does deal with a limited
class of time-variant networks.
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Symbolic Analysis 8-3

primarily concentrated in the frequency domain, both s-domain [10, 12, 15, 17, 22, 25, 28, 29, 34, 38,
43, 47, 48, 54, 56, 59–61, 66] and z-domain [4, 31, 35, 44]; however, the predominant development has
been in the s-domain. Also, recent work has expanded symbolic analysis into the time domain [3, 24, 36].
The next few subsections will discuss the basic methods used in symbolic analysis for mainly s-domain
frequency analysis. However, Section 8.6 highlights the currently known time-domain techniques. 

8.2 Frequency-Domain Analysis

Traditional symbolic circuit analysis is performed in the frequency domain where the results are in terms
of the frequency variable s. The main goal of performing symbolic analysis on a circuit in the frequency
domain is to obtain a symbolic transfer function of the form

(8.3)

The expression is a rational function of the complex frequency variable s, and the variables x1 through
xp representing the variable circuit elements, where p is the number of variable circuit elements and pall

is the total number of circuit elements. Both the numerator and the denominator of H(s,x) are polyno-
mials in s with real coefficients. Therefore, we can write

Most symbolic methods to date concentrate on the first form of H(s,x) and several algorithms exist to
obtain coefficients ai(x) and bi(x) in fully symbolic, partially symbolic (semi-symbolic), or numerical
form. The zero/pole representation of H(s,x), although more useful in gaining insight into circuit behav-
ior, proved to be very difficult to obtain in symbolic form for anything but very simple circuits. For large
circuits, various approximation techniques must be employed [9, 26].

A more recent approach to representing the above network function emerged in the 1980s and is based
on a decomposed hierarchical form of Eq. (8.3) [22, 25, 51, 61, 62]. This hierarchical representation is
referred to as a sequence of expressions representation to distinguish it from the single expression repre-
sentation of Eq. (8.3) and is addressed in Section 8.4.

Several methodologies exist to perform symbolic analysis in the frequency domain. The early work was
to produce a transfer function H(s) with the frequency variable s being the only symbolic variable. Computer
programs with these capabilities include: CORNAP [54] and NASAP [47]. The interest in symbolic analysis
today is in the more general case when some or all of the circuit elements are represented by symbolic
variables. The methods developed for this type of analysis fall under one of the following categories:

Traditional methods (single expression):

1. Tree enumeration methods

• Single graph methods

• Two graph methods

2. Signal flow graph methods
3. Parameter extraction methods

• Modified nodal analysis-based methods

• Tableau formulation-based methods

4. Interpolation method
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8-4 Circuit Analysis and Feedback Amplifier Theory

Hierarchical methods (sequence of expressions):

1. Signal flow graph methods
2. Modified nodal analysis-based methods

The preceding classification includes the exact methods only. For large circuits, the traditional methods
suffer from exponential growth of the number of terms in the formula with circuit size. If a certain degree
of error is allowed, it may be possible to simplify the expression considerably, by including only the most
significant terms. Several approximate symbolic methods have been investigated [26, 28, 69].

The next three sections discuss the basic theory for the above methods. Circuit examples are illustrated
for all major methods except for the interpolation method due to its limited current usage3 and its
inability to analyze fully symbolic circuits.

8.3 Traditional Methods (Single Expressions)

This class of methods attempts to produce a single transfer function in the form of Eq. (8.3). The major
advantage of having a symbolic expression in that form is the insight that can be gained by observing
the terms in both the numerator and the denominator. The effects of the different terms can, perhaps,
be determined by inspection. This process is valid for the cases where relatively few symbolic terms are
in the expression.

Before indulging in the explanation of the different methods covered by this class, some definition of
terms is in order.

Definition 2. RLCgm circuit is one that may contain only resistors, inductors, capacitors, and voltage-
controlled current sources with the gain (transconductance) designated as gm.

Definition 3. Term cancellations is the process in which two equal symbolic terms cancel out each other
in the symbolic expression. This can happen in one of two ways: by having two equal terms with opposite
signs added together, or by having two equal terms (regardless of their signs) divided by each other. For
example, the equation

(8.4)

where a, b, c, d, e, f, g, and h are symbolic terms, can be reduced by observing that the terms ab in the
numerator and denominator cancel each other and the terms +cd and –cd cancel each other in the
numerator. The result is:

(8.5)

Definition 4. Cancellation-free: Equation (8.4) is said to be a cancellation-free equation (that is, no
possible cancellations exist in the expression) while Eq. (8.5) is not.

Definition 5. Cancellation-free algorithm: The process of term cancellation can occur during the execu-
tion of an algorithm where a cancellation-free equation is generated directly instead of generating an
expression with possible term cancellations in it. Cancellation-free algorithms are more desirable because,
otherwise, an overhead is needed to generate and keep the terms that are to be canceled later.

3The main applications of the polynomial interpolation method in symbolic analysis are currently in numerical
reference generation for symbolic approximation [14] and calculation of numerical coefficients in semi-symbolic
analysis [50].
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Symbolic Analysis 8-5

The different methods that fall under the traditional class are explained next.

1. The tree enumeration methods 
Several programs have been produced based on this method [6, 16, 42, 46]. Practical implementations
of the method can only handle small circuits in the range of 15 nodes and 30 branches [7]. The main
reason is the exponential growth in the number of symbolic terms generated. The method can only
handle one type of controlled source, namely, voltage controlled current sources. So only RLCgm circuits
can be analyzed. Also, the method does not produce any symbolic term cancellations for RLC circuits,
and produces only a few for RLCgm circuits.

The basic idea of the tree enumeration method is to construct an augmented circuit (a slightly modified
version of the original circuit), its associated directed graph, and then enumerating all the directed trees
of the graph. The admittance products of these trees are then used to find the node admittance matrix
determinant and cofactors (the matrix itself is never constructed) to produce the required symbolic
transfer functions. For a circuit with n nodes (with node n designated as the reference node) where the
input is an excitation between nodes 1 and n and the output is taken between nodes 2 and n, the transfer
functions of the circuit can be written as:

(8.6)

(8.7)

(8.8)

where ∆ is the determinant of the node admittance matrix Yn (dimension n-1 × n-1) and ∆ij is the ijth
cofactor of Yn. It can be shown that a simple method for obtaining ∆, ∆11, and ∆12 is to construct another
circuit comprised of the original circuit with an extra admittance ŷs in parallel with a voltage controlled
current source, ĝmV2, connected across the input terminals (nodes 1 and n). The determinant of Ŷn (the
node admittance matrix for the new, slightly modified, circuit) can be written as: 

(8.9)

This simple trick allows the construction of the determinant expression of the original circuit and its
two needed cofactors by simply formulating the expression for the new augmented circuit. Example 8.1
below illustrates this process.

The basic steps of the tree enumeration algorithm are (condensed from [7]):

1. Construct the augmented circuit from the original circuit by adding an admittance ŷs and a
transconductance ĝmV2, in parallel between the input node and the reference node.

2. Construct a directed graph Gind associated with the augmented circuit. The stamps used to generate
Gind are illustrated in Figure 8.3.

3. Find all directed trees for Gind. A directed tree rooted at node i is a subgraph of Gind with node i
having no incoming branches and each other node having exactly one incoming branch.

4. Find the admittance product for each directed tree. An admittance product of a directed tree is
simply a term that is the product of all the weights of the branches in that tree. 

5. Apply the following theorem:
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8-6 Circuit Analysis and Feedback Amplifier Theory

Theorem 8.1 [7]: For any RLCgm circuit, the determinant of the node admittance matrix (with any node
as the reference node) is equal to the sum of all directed tree admittance products of Gind (with any node
as the root).

In other words

(8.10)

Arranging Eq. (8.10) in the form of Eq. (8.9) results in the necessary determinant and cofactors of the
original circuit and the required transfer functions are generated from Eqs. (8.6), (8.7), and (8.8).

Example 1. A circuit and its augmented counterpart are illustrated in Figure 8.4. The circuit is the small-
signal model of a simple inverting CMOS amplifier, shown with the coupling capacitance CC taken into
account. Figure 8.5 depicts the directed graph associated with the augmented circuit constructed using
the rules in Figure 8.3. The figure also presents all the directed trees rooted at node 3 of the graph. Parallel
branches heading in the same direction are combined into one branch with a weight equal to the sum
of the weights of the individual parallel branches.

FIGURE 8.3 Element stamps for generating Gind.

FIGURE 8.4  Circuit of Example 8.1 and its augmented equivalent diagram.
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Symbolic Analysis 8-7

Applying Eq. (8.10) and rearranging the terms results in:

(8.11)

Note the fact that Eq. (8.11), which is the direct result of the algorithm, is not cancellation-free. Some
terms cancel out to result in the determinant of the original circuit and its two cofactors of interest. The
final transfer functions can be obtained readily by substituting the preceding results into Eq. (8.6)
through (8.8).

2. The signal flow graph method 
Two types of flow graphs are used in symbolic analysis. The first is referred to as a Mason’s SFG and the
second as Coates graph. Mason’s SFG is by far a more popular and well-known SFG that has been used
extensively in symbolic analysis among other controls applications. Both the Mason’s SFG and the Coates
graph are used as a basis for hierarchical symbolic analysis. However, the Coates graph was introduced
to symbolic analysis by Starzyk and Konczykowska [61] solely for the purpose of performing hierarchical
symbolic analysis. This section covers the Mason’s SFG only.

The symbolic methods developed here are based on the idea formalized by Mason [45] in the 1950s.
Formulation of the signal flowgraph and then the evaluation of the gain formula associated with it
(Mason’s formula) is the basis for symbolic analysis using this method. This method is used in the publicly
available programs NASAP [47, 49] and SNAP [38]. The method has the same circuit size limitations as
the tree enumeration method due to the exponential growth in the number of symbolic terms. However,

FIGURE 8.5  Graph and its directed trees of Example 8.1.
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8-8 Circuit Analysis and Feedback Amplifier Theory

the signal flowgraph method allows all four types of controlled sources to be analyzed which made it a
more popular method for symbolic analysis. The method is not cancellation-free, which contributes to
the circuit size limitation mentioned earlier. An improved signal flowgraph method that avoids term
cancellations was described in [48].

The analysis process of a circuit consists of two parts: the first is constructing the SFG for the given
circuit and the second is to perform the analysis on the SFG. Some definitions are needed before
proceeding to the details of these two parts.

Definition 6. Signal Flow Graph: An SFG is a weighted directed graph representing a system of simul-
taneous linear equations. Each node (xi) in the SFG represents a circuit variable (node voltage, branch
voltage, branch current, capacitor charge, or inductor flux) and each branch weight (wij) represents a
coefficient relating xi to xj. 

Every node in the SFG can be looked at as a summer. For a node xk with m incoming branches

(8.12)

where i spans the indices of all incoming branches from xi to xk. 

Definition 7. Path Weight: The weight of a path from xi to xj (Pij) is the product of all the branch weights
in the path. 

Definition 8. Loop Weight: The weight of a loop is the product of all the branch weights in that loop.
This also holds for a loop with only one branch in it (self-loop).

Definition 9. nth Order Loop: An nth order loop is a set of n loops that have no common nodes between
any two of them. The weight of an nth order loop is the product of the weights of all n loops.

Any transfer function xj /xi, where xi is a source node, can be found by the application of Mason’s
formula:

(8.13)

where

(8.14)

(8.15)

The use of the preceding equations can be illustrated via an example.
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Symbolic Analysis 8-9

Example 2. Consider the circuit in Figure 8.6. The formulation of the SFG for this circuit takes on the
following steps:

1. Find a tree and a co-tree of the circuit such that all current sources are in the co-tree and all
voltage sources are in the tree.

2. Use Kirchhoff ’s current law (KCL), branch admittances, and tree branch voltages to find an
expression for every co-tree link current. In the case of a controlled source, simply use the branch
relationship. For the previous example, this yields:

3. Use Kirchhoff ’s voltage law (KVL), branch impedances, and co-tree link currents to find an
expression for every tree branch voltage. In the case of a controlled source, simply use the branch
relationship. For the previous example, this yields:

4. Create the SFG by drawing a node for each current source, voltage source, tree branch voltage,
and co-tree link current.

5. Use Eq. (8.12) to draw the branches between the nodes that realize the linear equations developed
in the previous steps.

Figure 8.7 is the result of executing the preceding steps on the example circuit. This formulation is referred
to as the compact SFG. Any other variables that are linear combinations of the variables in the SFG (e.g.,
node voltages) can be added to the SFG by simply adding the extra node and implementing the linear
relationship using SFG branches. A more detailed discussion of SFGs can be found in [7] and [40].

Now applying Eqs. (8.14) and (8.15) yields:

FIGURE 8.6  Circuit for Example 8.2 with its tree highlighted.

FIGURE 8.7  SFG for Example 8.2.
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8-10 Circuit Analysis and Feedback Amplifier Theory

Equation (8.13) then produces the final transfer function

3. The parameter extraction method 
This method is best suited when few parameters in a circuit are symbolic while the rest of the parameters
are in numeric form (s being one of the symbolic variables). The method was introduced in 1973 [2].
Other variations on the method were proposed later in [50, 56, 59]. The advantage of the method is that
it is directly related to the basic determinant properties of widely used equation formulation methods such
as the modified nodal method [27] and the tableau method [21]. As the name of the method implies, it
provides a mechanism for extracting the symbolic parameters out of the matrix formulation, breaking the
matrix solution problem into a numeric part and a symbolic part. The numeric part can then be solved
using any number of standard techniques and recombined with the extracted symbolic part. The method
has the advantage of being able to handle larger circuits than the previously discussed fully symbolic
methods if only a few parameters are represented symbolically. If the number of symbolic parameters in
a circuit is high, the method will exhibit the same exponential growth in the number of symbolic terms
generated and will have the same circuit size limitations as the other algorithms previously discussed.

The method does not limit the type of matrix formulation used to analyze the circuit. However, the
extraction rules depend on the pattern of the symbolic parameters in the matrix. Alderson and Lin [1]
use the indefinite admittance matrix as the basis of the analysis and the rules depend on the appearance
of a symbolic parameter in four locations in the matrix: (i,i), (i,j), (j,i), and (j,j). Singhal and Vlach [59]
use the tableau equations and can handle a symbolic parameter that only appears once in the matrix.
Sannuti and Puri [56] force the symbolic parameters to appear only on the diagonal using a two-graph
method [7] to write the tableau equations. The parameter extraction method was further simplified in
[50], where the formula is given to calculate a coefficient (generally a polynomial in s) at every symbol
combination. Some invalid symbol combinations (i.e., the ones that do not appear in the final formula)
can be eliminated before calculations by topological considerations. To illustrate both approaches to
parameter extraction, this section presents the indefinite admittance matrix (IAM) formulation and the
most recent two-graph method. Details of other formulations can be found in [40, 48, 56, 59].

Indefinite Admittance Matrix Approach

One of the basic properties of the IAM is the symmetric nature of the entries sometimes referred to as
quadrantal entries [7, 40]. A symbolic variable α will always appear in four places in the indefinite
admittance matrix, +α in entries (i, k) and (j, m), and -α in entries (i, m) and (j, k) as demonstrated in
the following equation:

where i ≠ j and k ≠ m. For the case of an admittance y between nodes i and j, we have k = i and j = m.
The basic process of extracting the parameter (the symbol) α can be performed by applying the following
equation [2, 7]:

V

V sC

g

g

g

sC

g

sC g

sC gC

o

m

o

C

o

C m

C o

2

1

1

1
=

+
− +







= −
+

                        k m

i

j

M M

L

M M

L

M M

α α

α α

−

− −



























© 2006 by Taylor & Francis Group, LLC
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(8.16)

where Yα is a matrix that does not contain α and is obtained by:

1. Adding row j to row i
2. Adding column m to column k
3. Deleting row j and column m

For the case where several symbols exist, the previous extraction process can be repeated and would
result in

where Pj is some product of symbolic parameters including the sign and Yj is a matrix with the frequency
variable s, possibly being the only symbolic variable. The cofactor of Yj may be evaluated using any of
the usual evaluation methods [7, 64]. Programs implementing this technique include NAPPE2 [40] and
SAPWIN [37].

Example 4 [7]. Consider the resistive circuit in Figure 8.8. The goal is to find the input impedance Z14

using the parameter extraction method where gm is the only symbolic variable in the circuit. In order to
use Eqs. (8.6) and (8.9), an admittance ŷs is added across the input terminals of the circuit to create the
augmented circuit.

The IAM is then written as (conductances in siemens [S])

Applying Eq. (8.16) to extract ŷs results in

FIGURE 8.8  Circuit for the parameter extraction method (resistances in ohms [Ω]).
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8-12 Circuit Analysis and Feedback Amplifier Theory

Applying Eq. (8.16) again to extract gm yields

After evaluating the cofactors numerically, the equation reduces to

From Eq. (8.9), this results in

Two-Graph-Based Tableau Approach [50]

This approach also employs the circuit augmentation by ŷs and ĝmVo, as in the tree enumeration method.
It calls for the construction of two graphs: the voltage graph (GV or V-graph) and the current graph (GI

or I-graph). For the purpose of parameter extraction (as well as generation of approximate symbolic
expressions; see Section 8.5), it is required that both graphs have the same number of nodes (n). This
means that the method can be directly applied only to RLCgm circuits. (All basic circuit components,
including ideal op amps, can be handled by this approach after some circuit transformations [40, 64].
For the sake of simplicity, however, only RLCgm circuits will be considered in this presentation.) The two
graphs are constructed based on the element stamps shown in Figure 8.9. Once the two graphs are
constructed, a common spanning tree (i.e., a set of n-1 branches that form a spanning tree in both voltage
and current graphs) is chosen. Choosing the common spanning tree (referred to just as “tree” in the
remainder of this section) uniquely determines the co-tree in each graph.

FIGURE 8.9  Element stamps for generating GV and GI.
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Symbolic Analysis 8-13

The tableau equation for such a network can be written as

(8.17)

The first and last row of the system matrix H in Eq. (8.17) consists of tree (●T ) and co-tree (●C ) branch
voltage-current relationships, and the second and third rows consist of fundamental loop and funda-
mental cut-set equations for GV and GI, respectively.

Let the circuit have n nodes and b branches and contain k symbolic components (YS1, …, YSk) in the
co-tree branches (links) and l symbolic components (ZS1, …, ZSl ) in the tree branches; we define w =
b – n – k + 1, t = n – l – 1. Diagonal matrices YC and ZT can be partitioned as follows

(8.18)

where subscript s denotes immitances of symbolic components and subscript n denotes immitances of
components given numerically.

Matrices BT (fundamental loop matrix in GV) and QC (fundamental cut-set matrix in GI) can also be
partitioned as follows:

(8.19)

Rows of B11 and B12 correspond to symbolic co-tree branches (in GV) and their columns correspond
to symbolic and numeric tree branches, respectively. Rows of B21 and B22 correspond to numeric co-tree
branches. Rows of Q11 and Q12 correspond to symbolic tree branches and their columns correspond to
symbolic and numeric co-tree branches, respectively. Rows of Q21 and Q22 correspond to numeric tree
branches. The submatrices are therefore of the following order: B11: k × l, B22: w × t, Q11: l × k, Q22: t × w.

Let Sx = {1, 2, …, x}. For a given matrix F of order a × b let F(Iu, Jv) be the submatrix of F consisting
of the rows and columns corresponding to the integers in the sets Iu, Jv, respectively. The sets Iu = {i1, i2,
…, iu} and Jv = {j1, j2, …, jv} are subsets of Sa and Sb, respectively. Let us also introduce the following notation:

The determinant of the system matrix H in Eq. (8.17), when some parameters take fixed numerical values,
is

(8.20)
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8-14 Circuit Analysis and Feedback Amplifier Theory

where the summations are taken over all possible symbol combinations αv (symbolic tree elements) and
βu (symbolic co-tree elements), and the numerical coefficients are given by:

(8.21)

In the preceding equations, 0 represents a zero matrix of appropriate order, and the submatrices B′ij
and Q′ij are defined as:

(8.22)

where the submatrix B21(Iw, Jv) is obtained from the submatrix B21 by including all of its rows and only
columns corresponding to a particular combination (αv) of symbolic tree elements; submatrix Q21(Jt, Iu)
is obtained from the submatrix Q21 by including all of its rows and only columns corresponding to a
particular combination (βu) of symbolic co-tree elements.

Application of Eqs. (8.20) and (8.21) for a circuit with m symbolic parameters requires, theoretically,
the calculation of 2m determinants. Not all of these determinants may need to be calculated due to the
following property of the determinants in Eq. (8.21). If a set of symbolic tree elements (αv) forms a cut-
set in GI (symbolic tree cut-set), then the corresponding coefficients b(αv) and d(αv βu) in Eq. (8.20) equal
to zero. Likewise, if the set of symbolic co-tree elements (βu) forms a loop in GV (symbolic co-tree loop),
the corresponding coefficients c(βu) and d(αv βu) in Eq. (8.20) equal to zero.

Once the determinant det(H) is obtained from Eq. (8.20), the sorting scheme, identical to that
expressed in Eq. (8.9), is applied and the required network function(s) can be calculated using Eqs. (8.6)
through (8.8).

The main feature of this approach is the fact that each coefficient at a valid symbol combination is
obtained directly by calculating a single, easily formulated determinant (a polynomial in s, in general
case). The method was implemented in a computer program called UTSSNAP [52]. The following
example illustrates this technique of parameter extraction.

Example 5. Consider again the circuit in Figure 8.8. Assume this time that two components, R1 and gm,
are given symbolically. The goal is again to find the input impedance Z41 in a semi-symbolic form using
the parameter extraction method based on the two-graph tableau formulation.

The voltage and current graphs of the circuit are shown in Figure 8.10. The common spanning tree
chosen is T = {R1, R2, R3} with one symbolic element. For this circuit, we have: n = 4, b = 7, k = 2, l = 1,
w = 2, and t = 2.
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The matrices YC , ZT, QC, and BT can now be determined as: 

Using Eq. (8.22), we can calculate matrices B′22 and Q′22:

Now, applying Eq. (8.21), the coefficient a in Eq. (8.20) is calculated as:

Because only one symbolic tree element exists, namely R1, we have: αv = {R1} and the associated sets:
Jv = {1}, Iw = {1,2}. Using Eq. (8.22), we calculate

The coefficient b(R1) can now be obtained from:

FIGURE 8.10 The current and voltage graphs for the circuit in Figure 8.8 with the common spanning tree highlighted.

3

4

R

R R

R
R

y

g

1

2

7

m

6

3

s

R2

R1 R7

R6

R3

ys

gm

1           21           2

3

4
G           GVI

Y Z

Q B

C

S

m

T

C T

y

g
R

=























=



















= − − −



















=

− −

−

− −

−






















ˆ

.
.

.
0 1

10

0 2

0 5

1 1 1 1

0 1 1 1

1 0 1 0

1 0 1

1 0 0

1 1 1

1 1 0

1



′ =












−











=
−











′ =












− −











=
− −











B Q22 22

0 1 0

0 10

1 1

1 0

0 1 0 1

10 0

0 2 0

0 0 5

1 1

1 0

0 2 0 2

0 5 0

. . .
,

.

.

. .

.

a =












+
−









 −





















 =













=det
. . . .

.
det

. .
.

1 0

0 1

0 1 0 1

10 0

0 2 0 2

0 5 0

1 07 0 02

2 3
3 17

′ ( ) = ( ) =












−

−













=
−

−













B Y B21 21

0 1 0

0 10

1

1

0 1

10
I J I Jw v Cn w v, ,

. .

© 2006 by Taylor & Francis Group, LLC



8-16 Circuit Analysis and Feedback Amplifier Theory

Other numerical coefficients in Eq. (8.20) are calculated in a similar way: 

Adding all terms, sorting according to Eq. (8.9), and applying Eq. (8.6) finally results in:

Matrices in Eq. (8.21) may contain terms dependent on the complex frequency s. Determinants of
such matrices are polynomials in s as long as all matrix elements are of the form: a = α + sβ. An
interpolation method may be used to calculate the coefficients of those polynomials. One such method
is briefly described in the next paragraph.

4. The interpolation method 
This method is best suited when s is the only symbolic variable. In such case, a transfer function has the
rational form

where N(s) and D(s) are polynomials in s with real coefficients and m ≤ n.
Coefficients of an nth-order polynomial

can be obtained by calculating the value of P(s) at n + 1 distinct points si and then solving the following
set of equations:

(8.23)
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Symbolic Analysis 8-17

Because the matrix in Eq. (8.23) is nonsingular, the unique solution exists. It is well known [58, 64] that
for numerical accuracy and stability, the best choice of the interpolation points is a set of q ≥ n + 1 points
si uniformly spaced on the unit circle in the complex plane. Once all the values of P(si) are known, the
polynomial coefficients can be calculated through the discrete Fourier transform (DFT).

To apply this technique to the problem of finding a transfer function, let us assume that a circuit
behavior is described by a linear equation

(8.24)

in which the coefficient matrix has entries of the form: a = α + sβ (both the modified nodal and the
tableau methods have this property). Then, each transfer function of such circuit has the same denom-
inator D(s) = �A�. If the circuit Eq. (8.24) is solved by LU factorization at s = si, both the transfer function
H(si) and its denominator D(si) are obtained simultaneously. The value of the numerator is then calculated
simply as N(si) = H(si)D(si). Repeating this process for all points si (i = 0, 1, …, q) and then applying
the DFT to both sets of values, D(si) and N(si), gives the required coefficients of the numerator and
denominator polynomials.

If the number of interpolation points is an integer power of 2 (q = 2k), the method has the advantage
that the fast Fourier transform can be used to find the coefficients. This greatly enhances the execution
time [40]. The method has been extended to handle several symbolic variables in addition to s [58]. The
program implementation [64] allows a maximum of five symbolic parameters in a circuit.

With the emergence of approximate symbolic analysis, the polynomial interpolation method has
attracted new interest. (It is desirable to know the accurate numerical value of polynomial coefficients
before one attempts an approximation.) Recently, a new adaptive scaling mechanism was proposed [14]
that significantly increases the circuit size that can be handled accurately and efficiently. 

Other classifications of symbolic methods have been reported [18]. These methods can be considered
as variations on the previous basic four methods. The reported methods include elimination algorithms,
recursive determinant-expansion algorithms, and nonrecursive nested-minors method. All three are
based on the use of Cramer’s rule to find the determinant and the cofactors of a matrix. Another reported
class of algorithms uses Modified Nodal Analysis [27] as the basis of the analysis, sometimes referred to
as a direct network approach [22, 36]. This class of methods is covered in the next section. 

The first generation of computer programs available for symbolic circuit simulation based on these
methods includes NASAP [47] and SNAP [38]. Research in the late 1980s and early 1990s produced
newer symbolic analysis programs. These programs include ISSAC [18], SCAPP [22], ASAP [12], EASY
[60], SYNAP [57], SAPEC [43], SAPWIN [37], SCYMBAL [31], GASCAP [29], SSPICE [66], and STAINS
[53].

8.4 Hierarchical Methods (Sequence of Expressions)

All the methods presented in the previous section have circuit size limitations. The main problem is the
exponential growth of the number of symbolic terms involved in the expression for the transfer function
in Eq. (8.3) as the circuit gets larger. The solution to analyzing large-scale circuits lies in a total departure
from the traditional procedure of trying to state the transfer function as a single expression and using a
sequence of expressions (SoE) procedure instead. The idea is to produce a succession of small expressions
with a backward hierarchical dependency on each other. The growth of the number of expressions in
this case will be, at worst case, quadratic [22].

The advantage of having the transfer function stated in a single expression lies in the ability to gain
insight to the relationship between the transfer function and the network elements by inspection [39].
For large expressions, though, this is not possible and the single expression loses that advantage. ISSAC
[67], ASAP [13], SYNAP [57], and Analog Insydes [26] attempt to handle larger circuits by maintaining
the single expression method and using circuit dependent approximation techniques. The tradeoff is

Ax b=
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8-18 Circuit Analysis and Feedback Amplifier Theory

accuracy for insight. Therefore, the SoE approach is more suitable for accurately handling large-scale
circuits. The following example illustrates the features of the sequence of expressions.

Example 6. Consider the resistance ladder network in Figure 8.11. The goal is to obtain the input
impedance function of the network, Zin = Vin /Iin. The single expression transfer function Z4 is:

The number of terms in the numerator and denominator are given by the Fibonacci numbers satisfying
the following difference equation: 

An explicit solution to the preceding equation is: 

The solution demonstrates that the number of terms in Zn increases exponentially with n. Any single
expression transfer function has this inherent limitation.

Now, using the SoE procedure, the input impedance can be obtained from the following expressions:

It is obvious for each additional resistance added, the sequence of expressions will grow by one expression,
either of the form Zi– 1 + Ri or Zi – 1Ri/Zi –1 + Ri. The number of terms in the sequence of expressions can
be calculated from the formula:

which exhibits a linear growth with respect to n. Therefore, to find the input impedance of a 100-resistor
ladder network, the single expression methods would produce 7.9 × 1020 terms, which requires unreal-
istically huge computer storage capabilities. On the other hand, the SoE method would produce only
248 terms, which is even within the scope of some desk calculators.

Another advantage of the SoE is the number of arithmetic operations needed to evaluate the transfer
function. To evaluate Z9, for example, the single expression methods would require 302 multiplications

FIGURE 8.11  Resistive ladder network.
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and 87 additions. The SoE method would only require eight multiplications and eight additions, a large
reduction in computer evaluation time. All this makes the concept of symbolic circuit simulation of
large-scale networks very possible.

Two topological analysis methods for symbolic simulation of large-scale circuits have been proposed
in [61] and in [25]. The first method utilizes the SoE idea to obtain the transfer functions. The method
operates on the Coates graph [8] representing the circuit. A partitioning is proposed onto the flowgraph
and not the physical network. The second method also utilizes the sequence of expressions and a Mason’s
signal flow graph [45] representation of the circuit. The method makes use of partitioning on the physical
level instead of on the graph level. Therefore, for a hierarchical circuit, the method can operate on the
subcircuits in a hierarchical fashion in order to produce a final solution. The fundamentals of both signal
flow graph methods were described in the previous section.

Another hierarchical approach is one that is based on Modified Nodal Analysis [27]. This method [22]
exhibits a linear growth (for practical circuits) in the number of terms in the symbolic solutions. The
analysis methodology introduces the concept of the RMNA (Reduced Modified Nodal Analysis) matrix.
This allows the characterization of symbolic circuits in terms of only a small subset of the network
variables (external variables) instead of the complete set of variables. The method was made even more
effective by introducing a locally optimal pivot selection scheme during the reduction process [53]. For
a circuit containing several identical4 subcircuits, the analysis algorithm is most efficient when network
partitioning is used. For other circuits, the best results (the most compact SoE) are obtained when the
entire circuit is analyzed without partitioning.

The SoE generation process starts with the formulation of a symbolic Modified Node Admittance
Matrix (MNAM) for a circuit [40, 64]. Then all internal variables are suppressed one by one using
Gaussian elimination with locally optimal pivot selection. Each elimination step produces a series of
expressions and modifies some entries in the remaining portion of the MNAM. When all internal variables
are suppressed, the resulting matrix is known as the Reduced Modified Node Admittance Matrix
(RMNAM). Usually it will be a 2 × 2 matrix of a two-port.5 Most transfer functions of interest to a circuit
designer can be represented by formulas involving the elements of RMNAM and the terminating admit-
tances. A detailed discussion of the method can be found in [53]. Based on this approach, a computer
program called STAINS was developed.

For a circuit with several identical subcircuits, the reduction process is first applied to all internal
variables6 of the subcircuit, resulting in an intermediate RMNAM describing the subcircuit. Those
RMNAMs are then recombined with the MNAM of the remaining circuit and the reduction process is
repeated on the resulting matrix.

To further illustrate the SoE approach, we present the following example.

Example 7. Consider a bipolar cascade stage with bootstrap capacitor CB illustrated in Figure 8.12 [18].
With the BJTs replaced by their low-frequency hybrid-π models (with rB, gm, and ro only), the full symbolic
analysis yields the output admittance formula outlined in Figure 8.13. The formula requires 48 additions
and 117 multiplication/division operations. STAINS can generate several different sequences of expres-
sions. One of them is presented in Figure 8.14. It requires only 24 additions and 17 multiplica-
tions/divisions.7

4The subcircuits have to be truly identical, i.e., they must have the same topology and component symbols. A
typical example would be a large active filter containing a number of identical, nonideal op amps. 

5In sensitivity calculations using SoE [5], the final RMNAM may need to be larger than 2 × 2. 
6The internal variables are the variables not directly associated with the subcircuit’s connections to the rest of the

circuit.
7Counting of visible arithmetic operations gives only a rough estimate of the SoE complexity, especially when

complex numbers are involved. Issues related to SoE computational efficiency are discussed in Reference [55].
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8-20 Circuit Analysis and Feedback Amplifier Theory

8.5 Approximate Symbolic Analysis

The SoE approach offers a solution for the exact symbolic analysis of large circuits. For some applications,
it may be more important to obtain a simpler inexact expression, but the one that would clearly identify
the dominant circuit components and their role in determining circuit behavior. Approximate symbolic

FIGURE 8.12  Bipolar cascode stage.

FIGURE 8.13  Full symbolic expression for Zo of the cascode in Figure 8.12.

FIGURE 8.14  The SoE generated by STAINS for the cascode in Figure 8.12.
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s*(Cb*Go1*G1*Gp1+Cb*Go1*Gp1*Gp2+Cb*Go1*G2*Gp1+Cb*Go1*G1*Go2+Cb*Go1*Go2*Gp2+…
Cb*Go1*G2*Go2)); 

d1 = -(G2+Gp2+s*Cb)/(s*Cb);

x1 = (Go1+Gm1)*d1-Gp2-Gm2;

x2 = -s*Cb-(G1+Gp1+Go1+Gm1+s*Cb)*d1;

d2 = Gp2/(s*Cb);

x3 = Go1+Gp2+Go2+Gm2+(Go1+Gm1)*d2;

x4 = -Go1-(G1+Gp1+Go1+Gm1+s*Cb)*d2;

d3 = x2/(x4);

x5 = Gm2+(Go2+Gm2)*d3;

x6 = x1-x3*d3;

Yo = Go2+x5*Go2/(x6);

Zo = 1/Yo;
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analysis provides the answer. Of course, manual approximation (simplification) techniques have been
known and practiced by engineers for decades. To obtain compact and meaningful expressions by
computer, symbolic analysis software must be capable of performing those approximations that are
applied in manual circuit analysis in an automatic fashion. In addition to that, computer algorithms
should be able to employ simplification strategies not available (or impractical) in manual approximation.

In the last decade, a number of symbolic approximation algorithms have been developed and imple-
mented in symbolic circuit analysis programs. Depending on the stage in the circuit analysis process in
which they are applied, these algorithms can be categorized as: simplification before generation (SBG),
simplification during generation (SDG), and simplification after generation (SAG). Figure 8.15, adapted
from [26], presents an overview of the three types of approximation algorithms.

SBG involves removing circuit components and/or individual entries in the circuit matrix (the sifting
approach [28]) or eliminating some graph branches (the sensitivity-based two-graph simplification [69])
that do not contribute significantly to the final formula.

SDG is based on generation of symbolic terms in a decreasing order of magnitude. The generation
process is stopped when the error reaches the specified level. The most successful approach to date is
based on the two-graph formulation [68]. It employs an algorithm to generate the common spanning
trees in strictly decreasing order of magnitude [30]. In the case of frequency-dependent circuit, this
procedure is applied separately to different powers of s. Mathematical formalism of matroids is well suited
to describe problems of SDG [69].

When applied alone, SAG is a very ineffective technique, because it requires generation and storage
of a large number of unnecessary terms. When combined with SBG and SDG methods, however, it can
produce the most compact expressions by pruning redundant terms not detected earlier in the simplifi-
cation process.

All simplification techniques require careful monitoring of the approximation amplitude and phase
errors (εA and εp). The error criteria can be expressed as follows:

FIGURE 8.15  Classification of symbolic approximation techniques [26].
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for s = jω, ω ∈ (ω1,ω2), and x ∈ (x1,x2), where H(s,x) is the exact transfer function, defined by Eq. (8.3),
and H*(s,x) is the approximating function. The majority of the approximation methods developed to
date use the simplified criteria, where the errors are measured only for a given set of circuit parameters
x0 (the nominal design point) [33].

The following example, although quite simple, illustrates very well the advantages of approximate
symbolic analysis.

Example 8 [18]. Consider again the bipolar cascode stage, depicted in Figure 8.12 and its fully symbolic
expression for the output impedance, depicted in Figure 8.13. Even for such a simple circuit, the full
symbolic result is very hard to interpret and therefore not able to provide insight into the circuit behavior.
Sequential form of the output impedance formula, presented in Figure 8.14, is more compact than the
full expression but also cannot be utilized for interpretation.

A plot of �Zo� for a nominal set of component values (rπ = 5 kΩ , gm = 20 mS, ro = 100 kΩ for both
BJTs), obtained numerically from the SoE in Figure 8.14, is plotted in Figure 8.16. By examining the plot,
one can appreciate the general behavior of the function, but it is difficult to predict the influence of
various circuit components on the output impedance.

Applying symbolic approximation techniques we can obtain less accurate but still more revealing
formulas. If a 10% maximum amplitude error is accepted, the simplified function takes the following
form:

If we allow a 25% magnitude error,8 the output impedance formula can be simplified further:

(8.25)

FIGURE 8.16 Plot of �Zo � of the cascode, obtained numerically from the exact formula.

8It is important to note that the approximate expressions were developed taking into account variations of BJT
parameters; the fact that both simplified formulas give identical results at the nominal design point is purely
coincidental.
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The impedance levels as well as pole and zero estimates can be easily obtained from Eq. (8.25):

(8.26)

An asymptotic plot of �Zo �, based on Eq. (8.26), is plotted in Figure 8.16. 

8.6 Time-Domain Analysis

The previous sections discussed the different frequency domain techniques for symbolic analysis. Sym-
bolic analysis methods in the transient domain did not appear until the beginning of the 1990s [3, 24,
36]. The main limitation to symbolic time-domain analysis is the difficulty in handling the symbolic
integration and differentiation needed to handle the energy storage elements (mainly capacitors and
inductors). This problem, of course, does not exist in the frequency domain because of the use of Laplace
transforms to represent these elements. Although symbolic algebra software packages are available, such
as MATHMATICA, MAXIMA, and MAPLE, which can be used to perform integration and differentia-
tions, they have not been applied to transient symbolic analysis due to the execution time complexity of
these programs. All but one of the approaches in the time domain are actually semi-symbolic. The semi-
symbolic algorithms use a mixture of symbolic and numeric techniques to perform the analysis. The
work here is still in its infancy. This section briefly discusses the three contributions published in the
literature thus far.

All symbolic time domain techniques deal with linear circuits and can be classified under one of the
two categories.

Fully Symbolic

Only one method has been reported in the literature that is fully symbolic [20]. This method utilizes a
direct and hierarchical symbolic transient analysis approach similar to the one reported in [22]. The
formulation is based on the well-known discrete models for numerical integration of linear differential

FIGURE 8.17 Asymptotic plot of �Zo � of the cascode based on Eq. (8.26).
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8-24 Circuit Analysis and Feedback Amplifier Theory

equations. Three of these integration methods are implemented symbolically: the Backward Euler, the
Trapezoidal, and Gear’s 2nd-Order Backward Differentiation [20]. The inherent accuracy problems due
to the approximations in these methods show up when the symbolic expressions are evaluated numeri-
cally. A detailed discussion of this method can be found in [20].

Semi-Symbolic

Three such algorithms have been reported in the literature thus far. Two of them [24, 36] simply take
the symbolic expressions in the frequency domain, evaluate them numerically for a range of frequencies,
and then perform a numeric inverse laplace transformation or a fast Fourier transformation (FFT) on
the results. The approach reported in [36] uses an MNA, then a state-variable symbolic formulation to
get the frequency domain response and can handle time-varying circuits, namely, switch power convert-
ers. The approach in [24] uses a hierarchical network approach [22] to generate the symbolic frequency
domain response. The third algorithm reported in [3] is a hierarchical approach that uses an MNA and
a state-variable symbolic formulation and then uses the eigenvalues of the system to find a closed-form
numerical transient solution.
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