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Preface 

This second edition has been extensively revised to reflect new developments 
during the 17 years that have elapsed since the publication of the first edition. 
These include the substantial technological advances that took place, especially 
in operational amplifiers with high gain, low input currents and offset voltages, 
and high speed. The entire text has been thoroughly revised, and the chapters 
on stability, frequency response, and transient response were consider- 
ably expanded and completely rewritten to reflect the vast changes during the 
last decade. 

Chapters 7 and 8 have been most significantly impacted. Chapter 7 describes 
stability criteria and phase margins of feedback amplifiers using operational 
amplifiers with up to 4 corner frequencies. Frequency-independent feedback, lag 
compensation, lead-lag compensation, and lag-lead compensation are treated. 
Conditional stability is discussed, as well as limitations characteristic of 
inverting feedback amplifiers. 

Chapter 8 provides a detailed description of frequency response and transient 
response of feedback amplifiers using operational amplifiers with up to 3 corner 
frequencies. Frequency-independent feedback, lag compensation, lead-lag com- 
pensation with and without pole-zero cancellation, and lag-lead compensation 
are treated, including design graphs based on the solution of the third-order and 
fourth-order equations that arise. The results are applied to the latest wideband 
monolithic and hybrid operational amplifiers in worked examples and in 
problems. 

Two new chapters were also added on applications and on internal structure: 
Chapter 1 I describes amplifiers with current source inputs, as well as adders, 
integrators, differentiators, and nonlinear circuits; Chapter 12 discusses input 
stages, current mirrors, and output stages in operational amplifiers. 

The book now has 12 chapters, 132 worked examples, 319 problems, 102 
figures, and 3 appendixes. Answers to selected problems are also given. 

We would like to take this opportunity to acknowledge the contributions of 
Wiley Editor George J. Telecki and his associates in making this second edition 
a reality. 
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Preface to the First Edition 

The availability of mass-produced operational amplifiers at a low cost has 
resulted in their widespread use in many applications. Because of their 
performance, these devices have brought about designs with unprecedented 
precision, speed, reliability, and reproducibility. In order to take full advantage 
of this potential, thorough and precise design techniques must be applied. This 
text offers the reader a basic understanding of the use of operational amplifiers 
in linear circuits fundamental to other applications. 

The book developed from a senior elective course in electronic instrumenta- 
tion given at the University of Hawaii. Over 200 examples and problems expand 
the book's scope and illustrate realistic applications. These features, and a 
structure aimed at easy access to the material, make this book useful both as a 
text and as a reference. 

After a general introduction, basic properties of ideal operational amplifiers 
are described. Feedback is introduced in Chapter 3. The effects of feedback and 
of component variations on accuracy are discussed in Chapter 4. Transient 
response and frequency response of operational amplifiers and feedback 
amplifiers are summarized in Chapters 5 and 6. Stability considerations and 
criteria are introduced in Chapter 7, compensation techniques are described in 
Chapter 8. Common mode rejection, input and output impedances, and supply 
voltage rejection properties are summarized in Chapter 9, input currents, offset 
voltage, slew rate, noise, and other limitations in Chapter 10. An Appendix 
provides tables summarizing the results obtained in the text and lists the 
properties of operational amplifiers used in the examples and problems. 
Answers to selected problems are also given. 

Honolulu, Hawaii 
February 1971 
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CHAPTER 1 

Operational Amplifiers 

This chapter introduces distinctive features of operational amplifiers (OAs) and 
illustrates the theme of the book.* Detailed treatment of the subject matter 
begins with Chapter 2. 

An operational amplifier (Figure 1.1) is characterized by an output voltage 
V,,, that is proportional to the difference of its two input voltages V' and V,: 

A distinctive feature of operational amplifiers is that amplijcation (or gain) A 
is a function of frequency with a nonzero value at dc (zero frequency). This value 
is usually the maximum of A as a function of frequency. 

* 
FIGURE 1.1 Schematic diagram of an operational amplifier. 

EXAMPLE 1.1. In an operational amplifier described by Equation 1.1, A = 

10,000/(1 + j f / l  MHz), where f is the frequency and j = G. The dc value of 
A, that is, its value at  zero frequency, is A,, = A,= ,  = 10,000. The magnitude of 
amplification A as  a function of frequency is 

This has its maximum equal to A,, at a frequency f = 0. 

*New terms are introduced by ltaliclud letters. 

1 



2 OPERATIONAL AMPLIFIERS PROBLEMS 3 

Another distinctive feature of operational amplifiers follows from Equation 
1.1: The output voltage-at least in principle-is zero when both input voltages 
are zero. 

1.1 Properties 

It would be desirable to  have operational amplifiers described by Equation 1.1 
with an amplification A that has precisely defined frequency characteristics, that 
is independent of signal levels, time, and temperature, and that is identical from 
unit to unit. It would also be desirable to have Equation 1.1 satisfied exactly: V,,, 
should be zero when Vp = V, ,  no matter how large they are. 

In reality, amplification A is a function of signal level, time, temperature, and 
power supply voltage, and varies from unit to  unit-sometimes by as much as a 
factor of five. Operational amplifiers also have a nonzero input offset voltage 
(typically a few millivolts) that adds to  Vp - V ,  and that varies with temperature 
and from unit to unit. 

EXAMPLE 1.2. An operational amplifier has a dc amplification A,, = 1000 
and a maximum input offset voltage V,,,,, = + 2 mV. As a result, for zero input 
voltages the output voltage can be anywhere within the range given by 
V,,, = V, ,,,, A = (f 2mVX1000) = f 2 V. Thus, if Vp = V,  = 0, output voltage 
V,,, is between - 2 V and + 2 V. 

In the case when the two input voltages are equal but not zero, that is, 
Vp = V,  # 0, some fraction of these input voltages finds its way to the output 
terminal; this fraction is designated common-mode amplijkation AcM. 

EXAMPLE 1.3. An operational amplifier has a common-mode amplification 
AcM = 0.0001. Thus, if Vp = V,  = 1 V, the output voltage, neglecting input offset 
voltage V,, ,,,, is V,,, = AcMVp = AcMV, = (0.0001X1 V) = 0.1 mV. 

It would also be desirable to  have operational amplifiers with zero input 
currents flowing into their two input terminals. In reality, there is always some 
(possibly quite small) input current. 

Properties of operational amplifiers will be discussed in detail in subsequent 
chapters. Whether imperfections of an operational amplifiers are significant or 
not depends on the requirements of the particular application. 

1.2 Applications 

Operational amplifiers can be used in many circuits, such as current amplifiers, 
pulse shapers, and nonlinear circuits. Such applications are discussed in Chapter 
11; whereas in Chapters 2-10 the discussion centers on use as a voltage 
amplifier-an application that is perhaps basic to all other uses. 

It will be seen that by use of feedback, some properties of the resulting 
amplifier may be improved at the expense of others, whereas some character- 
istics cannot be altered by feedback. Thus, for example, the dc amplification and 
its accuracy can be changed by feedback, but the input offset voltage cannot be 
improved. 

It is not practical to discuss all possible amplifier configurations. Emphasis is 
placed on simple circuits that can be used as building blocks in larger systems. 

PROBLEMS 

Find the value of output voltage V,,, in Figure 1.1, if Vp = l mV, 
V ,  = 1.1 mV, and A = 10,000. 

Find the value of [ A ]  at a frequency f =10MHz,  if 
A = 1000/(1 + j j / lO MHz). 

An operational amplifier has a maximum input offset voltage 
V,,,,,, = +3mV and a dc amplification A,, = 1000. Find the limits of 
output voltage V,,,, if the input voltages are Vp = 5 mV and V, = 6 mV. 

An operational amplifier has a common mode amplification A,, = 0.0002. 
Find the magnitude of output voltage V,,,, if the input voltages are 
vp= v , = 2 v .  

In the circuit of Figure 1.2, Vl = 9 mV, V2 = 8 mV, R ,  = R2 = 10 MR, and 
the maximum input offset current of the operational amplifier is 15 PA. 
Find the limits of V,,, if A = 1000 and if the amplifier obeys Equation 1.1. 

EXAMPLE 1.4. The average of the two input currents is designated input bias 
current. An operational amplifier has a maximum input bias current 
I, = 40 pA = 40 x 10- l 2  A. Thus, each of the two input currents could be 
anywhere between zero and 80 PA. As a result of well-controlled manufacturing 
technology, however, in this operational amplifier the two input currents are 
always within 15 pA of each other; this is expressed by stating that the maximum 
input offset current is 15 PA. FIGURE 1.2 



CHAPTER 2 

Ideal Operational Amplifiers 

An ideal operational amplifier, shown in Figure 2.1, has two input terminals, one 
output terminal, and one ground terminal. The voltage between the output 
terminal and the ground terminal, V,,,, is related to the voltage between the 
positive (+) terminal and ground, V,, and to  the voltage between the negative 
(-) terminal and ground, K, as 

The quantity A is called gain, amplification, open-loop gain, open-loop 
amplification, or dzflerential voltage amplification of the operational amplifier.* 
An ideal operational amplifier also has zero input currents, that is, in Figure 2.1, 

-L 

FIGURE 2.1 An ideal operational amplifier. 

2.1 Noninverting Amplifiers 

An ideal operational amplifier used as a noninoertiny ampl$er is shown in 
Figure 2.2, where input voltage vn is connected to the positive (+)  terminal of 
the OA (operational amplifier). The output voltage, using Equation 2.1, is given 
by 

*In Chapters 2-4, a frequency-independent A 1s assumed; frequency characteristics of A are 
mtroduced in Chapter 5. 

5 



6 IDEAL OPERATIONAL AMPLIFIERS 2.4 FLOATING-INPUT DIFFERENTIAL AMPLIFIERS 7 

FIGURE 2.2 A twoinverting amplifier. 

EXAMPLE 2.1. An operational amplifier, used as a noninverting amplifier, 
has an amplification A = 5000, input voltage 6, = 1 mV. The resulting output 
voltage is V,,, = A&, = (5000M1 mV) = 5 V. 

2.2 Inverting Amplifiers 

An ideal operational amplifier used as an intlerting amplifier is shown in Figure 
2.3, where input voltage &, is connected to the negative (-) input terminal of the 
OA. The output voltage, using Equation 2.1, is given by 

v,,, = -A&,. (2.4) 

f 
FIGURE 2.3 An inverting amplifier. 

EXAMPLE 22. An operational amplifier, used as an inverting amplifier, has 
an amplification A = 10,000, input voltage i(,, = 1 mV. The resulting output 
voltage is V,,, = - A &, = ( - 10,000X 1 mV) = - 10 V. 

2.3 Dibreotial  Amplifiers 

FIGURE 2.4 A differential amplifier. 

positive (+) and negative (-) input terminals of the OA. The output voltage, 
using Equation 2.1, is given by 

K", = A(VP - V"). (2.5) 

- - - -- - - -- 

EXAMPLE 2.3. An operational amplifier, used as a differential amplifier, has 
an amplification A = 20,000, input voltages are V, = 9 mV and Vn = 9.1 mV. 
The resulting output voltage (disregarding the common-mode amplification) is 
K,, = A(Vp - V,) = (20,000X9 mV - 9.1 mV) = - 2 V. 

- -- -- - -. - - 

2.4 Floating-Input Differential Amplifiers 

A differential amplifier with floating inputs is shown in Figure 2.5. It follows 
from Equation 2.1 that the output voltage is given by 

v,,, = AK". (2.6) 

EXAMPLE 2.4. An operational amplifier with an amplification A = 1000 is 
used in the floating-input differential amplifier of Figure 2.5; input voltage 
6, = 1 mV. The output voltage is therefore V,,, = A v ,  = (1000)(1 mV) = 1 V. 

~p-- -p~ ~- ~--. 

An ideal operational amplifier used as a dlxerential amplifier is shown in Figure 
2.4, where input voltages voltages V, and V,  are connected, respectively, to the 

4 
FIGURE 2 5  A differential amplifier with floating inputs. 
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PROBLEMS 

21 Find the required value of amplification A, if an input voltage 
Kn = 0.1 mV is to be amplified to an output voltage V,,, = 2 V. Which 
amplifier circuit is to be used? 

2.2 An inverting amplifier has an amplification A  = 5000 and an output 
voltage V,,, = 2 V. Find the value of input voltage 6,. 

23 Find the value of V, in the differential amplifier of Figure 2.4, if the 
operational amplifier is ideal with an amplification A  = 10,000, the 
output voltage V,,, = 1 V, and if V,, = 5 mV. 

2 4  Find the value of output voltage V,,,, in the circuit of Figure 2.6, if the 
operational amplifier is ideal with an amplification A  = 2000 and if 
Vn = - 1 mV. 

XS Find the value of output voltage V,,, in the circuit of Figure 2.7, if the 
operational amplifier is ideal with an amplification A  = 2000 and if 
F,= -1mV. 

2.6 Find the values of V ,,,,, and V,  ,,,, in the circuit of Figure 2.8, assuming 
A ,  = 10,000, A ,  = 11,000, and V,, = -0.2 mV. 

-L 

FIGURE 2.8 

2.7 Find the value of V,,, in the circuit of Figure 2.9, if V, = 1 mV, V, = 5 V, 
A ,  = 5000, and A ,  = 10,000. Repeat with A ,  = 5001. 

FIGURE 2 9  
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2.8 Find the value of V,,, in the circuit of Figure 2.10, if q, = 10 mV and 
A = 2000. 

2.9 Find the values of V,,,,, and V,,,,, in the circuit of Figure 2.11, if 
V l = V , = V , = 1 m V a n d A , = A , = 4 0 0 0 .  

FIGURE 211 

2.10 The differential amplifier of Figure 2.4 is used as a comparator with 
V ,  = 1 V and V, = (tM1000 Vlsecond). At what time will V,,, equal zero? 

CHAPTER 3 

Feedback 

The characteristics of an amplifier circuit using an operational amplifier can be 
substantially modified by the application of suitable feedback: The resulting 
amplification can be altered, its stability improved, the magnitude of spurious 
signals reduced, the bandwidth and the operating speed increased, and non- 
linearities diminished. The discussion is focused on negative feedback, that is, on 
the case when a fraction of the output voltage is returned to the negative input 
terminal; some properties of positive feedback are mentioned briefly in Problem 
3.16 of this chapter and in Problem 4.12 of Chapter 4. 

In this chapter, amplifications of various feedback amplifiers are determined; 
other properties of feedback are discussed in subsequent chapters. 

3.1 Noninverting Feedback Amplifiers 

Consider the circuit of Figure 3.1. The input signal, q,, is entered on the positive 
(+) input terminal of the operational amplifier. The negative ( - )  input terminal 
has an input current of I = 0 and is not connected to ground as previously, but it 
receives a voltage V- that is a fraction of the output voltage Vo,,,: 

Kt = F N  Ku,. (3.1) 

* 
FIGURE 3.1 A noninvertiog amplifier with negative feedback. 
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where the feedback return of the noninoerting amplifier, F,,  is defined as 

To find V,,, as a function of Fn,  Equation 2.1 is applied as 

K u t  = N F n  - (3 .3)  

The combination of Equations 3.1 and 3.3 results in (see Problem 3.3) 

v,,, A =- 
V ,  1 + AF,' 

The quantity V,,,/V,, is the resulting amplification of the noninoerting feedback 
amplifier, which henceforth is denoted by M,:* 

vou, M , = - .  
V,n 

(3.5) 

Thus, for the noninverting amplifier with negative feedback, 

A 
M ,  = --- 

1 + AF,' 

where feedback return F ,  is given by Equation 3.2. 

EXAMPLE 3.1. The feedback amplifier of Figure 3.1 uses an operational 
amplifier with an  amplification A = 1000. Resistor values are R ,  = 1000 R and 
R ,  = 9000 R. Thus, the feedback return is given by 

and the resulting amplification of the feedback amplifier is 

A MN =--- = 1000 loo0 - - 
I + AF, 1 + (1000)(0.1) - 101 - 9.90.** 

It is of interest to determine what happens when amplification A of the 
operational amplifier is sufficiently large, so  that the feedback factor of the 
noninoerting amplifier, defined as A F N ,  becomes much larger than unity, that is, 
when 

*Other terms in use for M, are Jeedbaek ampliJicorion, closed-loop ampliJicution, feedback yuin, and 
closed-loop gain. 

**The signs z and z are both used for approximulely equal in this book. 

In this case, the resulting amplification of Equation 3.6 can be simplified as 

Thus, if A is sufficiently large to result in a feedback factor AF,  >> I ,  the resulting 
amplification of the feedback amplifier, M,, becomes independent of A and is 
determined entirely by the feedback return, that is, by resistors R ,  and R,. 

.- - - -- -- - -- 

EXAMPLE 3.2. The feedback amplifier of Flgure 3.1 uses an operational 
amplifier with an amplification A = 100,000. Reslstor values are R, = lOOOR 
and R,  = 9 0 0 0 R .  Thus, the feedback return 1s 

The value of feedback factor AF, = (100,000HO.l) = 10,000 >> I .  Hence, the 
resulting amplification of the feedback amplifier is approximately 
M ,  x 1/F, = 1/0.1 = 10. The exact value of M ,  is 

3.2 Inverting Feedback Amplifiers 

An inverting amplifier with negative feedback is shown in Figure 3.2. Here, as in 
the case of the noninverting amplifier, a fraction of the output voltage is 
returned to the negative input terminal that has an input current of 1 = 0 .  Now, 
however, input signal v,, is entered at the negative terminal via input resistor R, .  
By use of Equation 2.1, 

V,", = -AVm. (3 .9)  

Also, by inspection of Figure 3.2, 

and 

Combining Equations 3.9, 3.10, and 3.1 1, the resultiny umplificution of the 
inverting feedback umplifier, MI,*  becomes (see Problem 3.6) 

'Other terms In use for M, are frrdback umpllficution, closed-loop umplijicurlon, feedback yuin, and 
closed-loop yuin. 
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where the feedback return of the inverting amplijer, F,, is defined as 

R, F ,m- .  
RF 

FIGURE 3.2 An inverting amplifier with negative feedback. 

EXAMPLE 3.3. The feedback amplifier of Figure 3.2 uses an  operational 
amplifier with an amplification A = 1000. Resistor values are R, = I000 R and 
R, = 10,000 R. Thus, the feedback return is 

and the resulting amplification of the feedback amplifier is 

When amplification A is sufficiently large, so that the feedback f i t o r  of the 
inverting amplifier, defined as AF,, is large, that is, when 

AF, >> 1 + F,, 

then Equation 3.12 can be simplified as 

-A - - -A MI = 
-A 1 =--.=-- 

I + (A + l)F, 1 + F, + AF, AF, F,' (3.1 5) 

Thus, as in the case of the noninverting amplifier with negative feedback, if 
amplification A is sufficiently large, the resulting amplification is determined 
entirely by the feedback return, that is, by resistors R, and R,. 

- - -- . - - - - - - 
- - - - - - -- - 

EXAMPLE 3.4. The feedback amplifier of F~gure  3.2 uses an operat~onal 
amplifier with an amplification A = 100,000. Res~stor values are R, = l000R 
and RF = 10,000R. Thus, the feedback return is 

The value of feedback factor AF, = (100,000)(0.1) = 10,000 >> 1 + F ,  = 1.1. 
Therefore, the resulting amplification of the feedback amplifier is approximately 
MI z - 1/F, = - 110.1 = - 10. The exact value of MI is 

3.3 Differential Feedback Amplifiers 

A differential amplifier with negative feedback is shown in Figure 3.3. The 
following equations can be written: 

K,, = A(V, - Vm), (3.16) 

and 

FIGURE 33 A dikrential amplifier with negative feedback. 
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The combination of Equations 3.16,3.17, and 3.18 results in (see Problem 3.9) The value of feedback factor AFN is 

where feedback returns FN and F, are defined as 
Thus, the use of Equation 3.25 is justified: 

and 

The exact expression for V,,,, using Equation 3.19, is 

Equation 3.19 can also be written 

voU, = MN Vp + MI Vfl, 

where MN and M, are defined as 

= 9.9990Vp - 8.9991 V,. 
-- - - - 

The magnitudes of the amplifications of the two input signals Vp and V, in the 
differential feedback amplifier can be made equal by modifying the circuit of 
Figure 3.3 as shown in Figure 3.4. 

and 

with FN and F, given by Equations 3.20 and 3.21, respectively. 
It can be seen that, in general, the magnitudes of MN and M ,  are not equal; 

therefore, the two input signals Vp and V ,  are amplified by different factors. In the 
limiting case when feedback factors AFN >> 1 and AF, >> 1 + F,,* output 
voltage V,,, can be approximated as 

EXAMPLE 3.5. The circuit of Figure 3.3 uses an operational amplifier with an 
amplification A = 100,000. Resistor values are R,  = IOOOR and RF = 9000R: 
The value of feedback return FN is 

and the value of feedback return F, is 

FIGURE 3.4 A differential amplifier with negative feedback and equalized 
amplifications. *It can be shown that these two conditions are equivalent (see Problem 3.21). 
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Using Equation 3.19, the output voltage V,,, can now be written 

Equation 3.26 becomes (see Problem 3.1 1 )  

that is, the magnitudes of the amplifications of V,  and Vp are equal. Furthermore, 
if feedback factors AF, >> 1 and AFj >> 1 + Fj,  V,,, can be approximated as 

EXAMPLE 3.6. In the circuit of Figure 3.4, the amplification of the opera- 
tional amplifier is A = 100,000. Resistor values are Rj = 1000 R,  RF = 9000 R, 
Rs = 2000Q and R ,  = 18,000R. Hence, Rp/Rs  = R F / R 1 ,  and the feedback 
factor is 

Thus, Equation 3.29 is applicable; that is, the output voltage is approximately 

1 
V,,, x -(Vp - V,) = 9(VP - V,). 

Fl 
The exact expression for V,,,, by use of Equation .3.28, is 

A 
v,,, = 

1 + ( A  + l)F1 (Vp - v.1 

- - 100,000 
1 + (100,000 + 1)/9 

(V, - V,) = 8.9991(Vp - V,). 

3.4 Voltage Followers 
A special case of the noninverting feedback amplifier of Figure 3.1 occurs in the 
limit when R, # 0 and RF = 0 ,  or when R, = oo and RF # CQ. This special case 
is the voltage follower, the simplest form of which is shown in Figure 3.5. The 
value of feedback return FN = 1; thus, by use of Equation 3.4, 

In the limiting case when amplification A >> 1, Equation 3.30 reduces to 

hence the name voltage follower. 

-I 

FIGURE 3.5 A voltage follower. 

EXAMPLE 3.7. The circuit of Figure 3.5 uses an operational amplifier with an 
amplification A = 100,000. Therefore, by use of Equation 3.30, 

3.5 Instrumentation Amplifiers 

Consider the diJierentia1-in drfferential-out amplifier shown in Figure 3.6. In the 
limit when the amplifications of the operational amplifiers can be approximated 
as A ,  -+ CQ and A,  -+ CQ, the voltage difference between the positive (+) and 
negative (-) input terminals of A ,  is zero, and the voltage difference between the 
positive (+) and negative ( - )  input terminals of A,  is also zero. 
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As a result, the voltage across resistor R3 equals vn, and the output voltage 
becomes (see Problem 3.19) 

R1  + R2 + R3 
Vout = K n  (3.32) 

R 3 

where in practice R l  and 4, are chosen equal. 
Thus, a differential-in differential-out amplifier has floating differential inputs 

with high input impedances, and its amplification is determined mainly by 
resistor values. This is in contrast to the operational amplifier of Figure 2.5, 
which has floating differential inputs with high input impedances but its 
amplification is A;  it is also in contrast to the differential feedback amplifier of 
Figure 3.4, which has its amplification determined mainly by resistor values but 
does not have high input impedances. 

FIGURE 3.6 A differential-io dimerentialsut amplifier. 

An instrumentation amplifier is shown in Figure 3.7. It consists of the 
differential-in differential-out amplifier of Figure 3.6, followed by a differential 
amplifier with negative feedback and equalized amplification (Figure 3.4). When 
the amplifications of the operational amplifiers can be approximated as 
A,  + oo, A, + oo, and A ,  + co, and when Rp/Rs = RF/R, ,  the overall amplifi- 
cation of the circuit of Figure 3.7 can be written 

FIGURE 3.7 An instrumentation amplifier. 

Thus, as was the case for the differential-in differential-out amplifier, an 
instrumentation amplifier also has floating differential inputs with high input 
impedances, and its amplification is determined mainly by resistor values. 
However, unlike a differential-in differential-out amplifier, an instrumentation 
amplifier has only a single output. The principal advantages of an in- 
strumentation amplifier over a differential-in differential-out amplifier are a 
higher overall amplification and a lower common-mode amplification. 

EXAMPLE 3.8. The instrumentation amplifier of Figure 3.7 uses operational 
amplifiers with amplifications that can be approximated as A,  + a, A, + a, 
and A, -+ a. Resistor values are R ,  = R,  = 20 kR, R3 = 404 R, 
RF = R, = 200 kR, and R,  = Rs = 20 kR. Thus, the resulting overall amplifi- 
cation is 

PROBLEMS 

3.1 Find the value of the resulting amplification of a noninverting feedback 
amplifier, M,,  if the operational amplifier used has an amplification 
A = 10,000; R, = 100 R and R ,  = 10,000 R. What is the fractional change 
of M ,  in percent, if A is changed to 11,000? 
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Derive Vm/&, in Figure 3.1. What is V,/&, if feedback factor AFN >> l? 

Derive Equation 3.4. 

Find the value of the resulting amplification of an inverting feedback 
amplifier, M I ,  in the circuit of Figure 3.2, if the operational amplifier has 
an amplification A = 10,000. RI = 100 R and R, = 10,000 R. 

Derive Vm/&, in Figure 3.2. What is Vm/&, if feedback factor 
AFI >> 1 + FI? 

Derive Equation 3.12. 

Derive &,/I, in Figure 3.2. What is &,/I, if feedback factor 
AFI >> 1 -t FI? 

Find the values of the resulting amplifications M N  and MI of a differential 
amplifier with feedback (Figure 3.3), if the operational amplifier used has 
an amplification A = 10,000; RI = 100 R and R, = 10,000 R. 

Derive Equation 3.19. 

In the circuit of Figure 3.4, the operational amplifier has an amplification 
A = 10,000. Resistor values are R, = 100Q R, = 1O,000R, Rs = 100Q 
and R,  = 10,000R; input voltages are V, = = 1 V. What is the value of 
output voltage V,,? Repeat with R,  = 10,001 R. 

Derive Equation 3.28. 

Find the value of V,,,/Y;, in the voltage follower of Figure 3.5 using an 
operational amplifier with an amplification A = 1000. 

Find V,,,/&, in the circuit of Figure 3.8. Comment on the result. 

3.14 Find the value of output voltage V,,, in the circuit of Figure 3.9, if 
V, = 1 mV and amplification A = 1000. 

FIGURE 3.9 

3.15 Derive an exact expression for K,,, in the compound dgjerentiul amplifier of 
Figure 3.10. Evaluate KU, for V, = lOmV, V, = 11 mV, R ,  = 0, R ,  = 0, 
A ,  = 11,000, A ,  = 10,000, R, = R, = IWQ, R, = R ,  = lOO,WUQ, and 

FIGURE 3.10 A compound differential amplifier. 
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3.16 An amplifier with positivefeedback is shown in Figure 3.1 1. Determine the 
value of V,,,/&,, if the amplification of the operational amplifier A  = 100, 
RI = 100 R and R ,  = 10,000 R. Comment on the result. 

+ 
FIGURE 3.11 Positive feedback. 

3.17 When the approximate expression of M ,  z l / F N  is used in place of the 
exact Equation 3.6, an error in M N  will result. The fractional error of M ,  
is defined as 

- M~..pprox - M~.exact -- - 
M N  MN,CI.CI 

9 

where MN,,x,cl is M N  of Equation 3.6 and MN,,pp,ox = l / F N .  Show that 
the fractional error of MN has a magnitude 

3.18 When the approximate expression of M I  z - 1/F, is used in place of the 
exact Equation 3.12, an error in M I  will result. The fractional error of M ,  
is defined as 

where M ,,ex,,, is M I  of Equation 3.12 and M,,,pp,ox = - l / F l .  Show that 
the fractional error of MI has a magnitude 

3.20 Find V,,,/K, in the potentiometric. amplifier of Figure 3.12. Evaluate 
V , , , / ~ ,  for A ,  = A ,  = 1000 and R ,  = R ,  = R ,  = R ,  = 1OOOR. 

FIGURE 3.12 A potentiometric amplifier. 

Show that conditions AF, >> 1 and AF, >> 1 + F, are equivalent, 
and F, are given by Equations 3.20 and 3.21, respectively. 

3.19 Derive Equation 3.32. 



CHAPTER 4 

Accuracy of the Amplification 

Expressions for the resulting amplifications M ,  and M ,  derived in Chapter 3 
show that they are functions of amplification A of the operational amplifier 
and of resistor values. It is frequently necessary to evaluate the effects on M N  and 
M I  of small changes in amplification A and in resistor values. Of course, this 
could always be performed by evaluating M N  and M,;  this process, however, can 
become quite tedious, particularly for small changes. 

EXAMPLE 4.1. A noninverting feedback amplifier with negative feedback 
(Figure 3.1) uses an operational amplifier with an amplification 
A = 10,000 f 1 %. Resistor values are R, = 1000 R and R ,  = 9000 0. What is 
the fractional change in the resulting amplification of the feedback amplifier, M N ,  
as a result of the 1 % change in A? 

The value of feedback return FN is 

At the nominal value of A = 10,000, M N  becomes 

A  10,000 
M~.nom = = =-- 10wo + 9.99. 

1 + AF,  1 + (10,000X0.1) 1001 

At the minimum value of A = 9900, M N  is 

At the maximum value of A = 10,100, M ,  becomes 
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The difference between the minimum and the nominal values of M N  is The combination of Equations 4.1, 4.2, 4.3, and 4.5 results in 

and the fractional change in M ,  as a result of this is 
It can be shown that, as a result of Equation 4.4, Equation 4.6 can be 
approximated as 

A )  A = A",, AA.  
The difference between the maximum and the nominal values of M N  is 

and thus the fractional change in the resulting amplification is approximately 
AA 

Mnom Mnom and the fractional change in M N  as a result of this is 

In the case of a noninverting feedback amplifier, applying Equation 4.8 to 
Equation 3.6 with M = M N ,  

Thus, the resulting amplification can be written 

When feedback factor A,,,F, >> 1, Equation 4.9 reduces to 

4.1 Small Variations in Operational Amplifier Amplification 

Example 4.1 illustrates how cumbersome the evaluation of the change in the 
resulting amplification MN can become if variations in amplification A of the 
operational amplifier are small. It will be shown now that simple expressions can 
be obtained for the fractional changes in M N  and M I  when IAAIAI << 1. 

Defining 

_ _ ... - _ _  p--- . 

EXAMPLE 4.2. The expression of Equation 4.10 is applied to calculate again 
the fractional change of M ,  for the preceding example, that is, for 
A = 10,000 f 1 % and F,  = 0.1. The value of feedback factor 
AnomFN = (10,000X0.1) = 1000 >> 1; hence, the use of Equation 4.10 is justified: A A  r A - A,,  

and 

AM = M - Mnom, 
where 

The nominal value of the resulting amplification of the feedback amplifier is 

and assuming that A A / A  is small, that is, 

thus, M ,  can be written 

M ,  z 9.99 + 0.001 "/,. 
- - - 

the resulting amplification M can be expanded in a Taylor series* as 

In the case of an inverting feedback amplifier (Figure 3.2), by application of 
Equation 4.8 to Equation 3.12 witti M = M I ,  

*The results in this chapter are derived using Taylor series expansions. It is also possible, however, 
to arrive at these directly- Problems 4.14 and 4.15. 
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When feedback factor AnomF, >> 1 + F, ,  Equation 4.1 1 reduces to Defining 

ARF RF - R~.nom 
A M ,  1 + F, AA -z-- 

M1,nom AnomF~ Anom ' and using the definition given by Equation 4.2 with 

Mnom 3 

Equation 4.1 3 becomes 
EXAMPLE 43. An inverting amplifier with negative feedback uses an opera- 
tional amplifier with an amplification A = 10,000 & 1 %. Resistor values are 
R ,  = l000R and RF = 10,000R. What is the nominal value of M ,  and its 
fractional change as a result of the 1 % error in A? 

From Equation 3.13, 

It can be shown that for small fractional variations in feedback resistor R,, 
that is, for 

Applying Equation 3.12, the nominal value of M I  is 

Equation 4.16 can be approximated as 

and thus the fractional change in the resulting amplification is approximately The value of feedback factor AnomF, = (10,000X0.1) = 1000 >> 1 + F ,  = 1.1; 
hence, Equation 4.12 is applicable: 

In the case of a noninverting feedback amplifier, applying Equations 3.2 and 
3.6 to Equation 4.19 with M = M , ,  Thus, M I  x - 9.99 f 0.001 1 %. 

4.2 Small Variations in the Feedback Resistor where feedback return F,.,,, is defined as 

Assume next that, in Figure 3.1 or 3.2, amplification A of the operational 
amplifier and input resistor R ,  are constant and only feedback resistor R,  varies. 
In this case, 

In the limiting case when feedback factor AF, ,,,, >> I ,  M, ,,,, z I lF,  ,,,, (see 
Equation 3.8); hence, the fractional change in the resulting amplification 
becomes 
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-- 
EXAMPLE 4.4. A noninverting feedback amplifier with negative feedback 
uses an operational amplifier with an amplification A = 10,000. Resistor values 
are R, = 1000R and R, = 9000R + 1 %. What is the fractional change in the 
resulting amplification M N  as a result of the 1 % change in feedback resistor RF? 

The nominal value of feedback return FN is 

The value of feedback factor AFNVnom = (10,000X0.1) = 1000 >> 1; hence, Equa- 
tion 4.22 is applicable: 

In the case of an inverting amplifier with A >> 1, it can be shown, by use of 
Equations 3.12 and 3.13, that with M  = MI Equation 4.19 becomes 

where feedback return F,,,,, is defined as 

I n  the limiting case when feedback factor AFIVnom >> 1 + F,,,,, Equation 4.23 
reduces to 

EXAMPLE 4.5. An inverting feedback amplifier with negative feedback uses 
a n  operational amplifier with an amplification A = 10,000. Resistor values are 
R,= lOOOR and R,  = 10,000R f 1 %. What is the fractional change in the 
resulting amplification M I  as a result of the 1 % change in feedback resistor R,? 

The nominal value of feedback return F, is 

The value of feedback factor AF,,,, = (10,000)(0.1) = 1000 >> 1 + F, = 1 .l; 
hence, Equation 4.25 is applicable: 

AM, AR z 2 -  - 1%. 
M~.nom R ~ , n o m  

Since 

the resulting amplification of the feedback amplifier can be written 
M I  % -9.99 + 1 %. 

--- 

4.3 Small Variations in the Input Resistor 

In the case when amplification A of the operational amplifier and feedback 
resistor R ,  are constant and only input resistor R, varies, it can be shown that 
for a noninverting amplifier 

where feedback return F,,,,, is defined by Equation 4.21, and AR, is defined as 

ARl RI - RI,nom. (4.27) 

In the limit when feedback factor AF,,,,, >> 1, Equation 4.26 reduces to 

For an inverting amplifier with A >> 1, it can be shown that 

In the limiting case when feedback factor AF,.,,, >> 1 + F,,,,,,, Equation 4.29 
reduces to 

4.4 Several Sources of Variations 

The preceding sections of this chapter computed the errors in the resulting 
amplification that originate from variations in operational amplifier amplifica- 
tion A and from variations in resistor values. It was found that the fractional 
error originating from variations in A may be reduced by increasing the value of 
A; however, errors originating from resistor variations may be reduced only by 
improving the accuracy of the resistors. In this section, multivariable Taylor 
series expansion is applied to find the error originating from simultaneous 
variations in operational amplifier amplification and in resistor values. 
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If amplification A of the operational amplifier, feedback resistor R,, and 
input resistor R,  vary, the resulting amplification M of the feedback amplifier 
can be expressed in a multivariable Taylor series as 

where all partial derivatives have to be evaluated at A = Anom, R ,  = R,.,,,, 
8 1  = R,."",". 

1f fra&onal changes in A, R,, and R, are small, then from Equation 4.31 and 
with the definitions of Equations 4.1,4.2,4.14, and 4.27, the change in M can be 
approximated as 

where the partial derivatives again have to be evaluated at A = A,,,, 
R~ = R~.norn, R~ = 

In the case of a noninverting amplifier with a feedback factor A,,, F,,,,, >> 1, 
the application of Equations 4.10,4.22, and 4.28 to Equation 4.32 with M = M ,  
results in a fractional change 

In many cases it is important to find the worst-case AM,/M,,  which is the 
maximum of its absolute value: 

max IzlX( - ' ~ ~ + ~ ( l - F N , n o m ~ -  
F ~ , ~ o m  Anom R~.nom ARF 1 

- 
--- .--- ~ ~ -~ ~ --- 

EXAMPLE 4.6. A noninverting amplifier with negative feedback uses an 
operational amplifier with an amplification A = 100,000 + 10 %. Resistor 
values are R,  = lOOR 0.1 % and RF = 100,000R f 0.1 %. Hence, 

and feedback factor A,,,F,+,,, = (100,000)(0.001) = 100 >> 1; thus, Equation 
4.34 is applicable. The worst-case fractional error in M ,  is therefore 

Similarly, in the case of an inverting amplifier with a feedback factor 
AnomF1~no, >> 1 + F,,,,,, the application of Equations 4.12, 4.25, and 4.30 to 
 gati ion 4.32 with M = M ,  results in 

1 1 + F n 0  +---- ARF ARI 
Ml A"omF1,nom A,,, RF,,,, R1,"Orn ' 

Again, it is of importance to find the worst-case A M , / M , ,  
maximum of its absolute value: 

which is the 

PROBLEMS 

The Type 725C operational amplifier has its amplification A specified as 
follows: The minimum value of A is 250,000, the typical value of A is 
3,000,000, and no maximum value of A is specified. 

The operational amplifier is used in a noninverting feedback amplifier 
with R, = 10R and R ,  = 100 kR. Find the range of the resulting 
amplification M,,  if the errors of resistors R, and R,  are negligibly small. 
[Hint: Proceed similarly to Example 4.1; do not use the results of Section 
4.1, because they are valid only for IAAIAI << 1.1 

Retain the second-order term in the expansion of Equation 4.6 and show 
that the magnitude of the fractional error of Equation 4.9 is less than 
lAA/AnomI. 
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A noninverting amplifier with negative feedback uses an operational 
amplifier with an amplification A = 20,000 f 10 %. Resistor values are 
R,  = 200R and RF = 1800R. Find the nominal value of the resulting 
amplification M N  and its error resulting from the 10 % change in A. 

Apply Equation 4.10 to the case of the voltage follower. What is the 
fractional error in the resulting amplification M N ,  if the operational 
amplifier used has an amplification A = 10,000 f lo%? 

In the noninverting amplifier of Figure 3.1, A = 20,000 + 20%, 
R, = l00R & 1 %, and RF = 10,000R + 1 %. Find the nominal value of 
the resulting amplification M N  and its worst-case fractional error in 
percent. 

In the noninverting amplifier of Figure 3.1, A = 20,000 + 20 %, 
R, = 100 R f 0.1 %, and RF = 10,000 R f 0.1 %. Find the nominal value 
of the resulting amplification M N  and its worst-case fractional error in 
percent. Compare the result to that of Problem 4.5. 

In the noninverting amplifier of Figure 3.1, A = 10,000 f 20 %, 
RF = 10,000R f 1 %, and input resistor R,  is adjustable between its 
minimum of R,,,, and its maximum of R,,,,,. Find the maximum value 
of RISmi, and the minimum value of R,.,, such that M N  can always be 
adjusted to equal 100. 

In the inverting amplifier of Figure 3.2, A = 100 f lo%, 
R, = 100 R f 1 %, and RF = 10,000 R f 1 %. Find the nominal value of 
the resulting amplification MI and its worst-case fractional error in 
percent. 

In the inverting amplifier of Figure 3.2, A = 10,000 and R,  = 101 R. Find 
the value of feedback resistor R ,  such that the resulting amplification 
MI = 100. 

In the noninverting amplifier of Figure 3.1, A = 10,000, R, = 100 22, and 
RF = 10,000 0. Find the value of A M N / M N  if the values of both R, and RF 
increase by 10 %. 

Consider the compound differential amplifier of Figure 3.10 with compo- 
nents and input voltages as given in Problem 3.15 of Chapter 3. Find the 
worst-case fractional change in the output voltage V,,,, if each resistor can 
vary by as much as f 1 %. 

In the amplifier with positive feedback shown in Figure 3.11, 
A = 100 f 0.1 %, R, = 1 0 0 4  and RF = 10,000R. Estimate the value of 
IAM/M( resulting from the 0.1 % change in A. 

Find the worst-case error resulting from variations in R , ,  R, ,  R, ,  R,, and 
R, in the instrumentation amplifier of Example 3.8. Assume that the 
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amplifications of the operational amplifiers can be approximated as 
A ,  4 a, A ,  -+ m, and A ,  + m, and that each resistor has a tolerance of 
+O.l%. - 

4.14 Use Equations 3.6, 4.1, 4.2, 4.3, and 4.4, with M = M N ,  and derive 
Equation 4.9 without using Taylor series expansion. 

4.15 Use Equations 3.2, 3.6,4.2,4.14,4.15, and 4.17, with M = M N ,  and derive 
Equation 4.20 without using Taylor series expansion. 

4.16 Derive Equations 4.9, 4.1 1, 4.20,4.23, 4.26, and 4.29. 



CHAPTER 5 

Frequency Response and 
Transient Response of 
Operational Amplifiers, 
Part I 

Thus far it has been assumed that amplification A of the operational amplifier is 
a positive real number. This assumption becomes untenable when frequency 
response and transient response have to be determined, because a real 
amplification A would entail infinite bandwidths, zero rise times, and zero delay 
times-all physically impossible. This chapter and Chapter 6 describe represen- 
tations of amplification A, as well as of feedback return F that are suitable for 
frequency responses and transient responses. 

5.1 Lag Networks 

The lag network of Figure 5.1 often provides a reasonable approximation of an 
amplifier stage in an operational amplifier.* Variables li, and V,,, are, re- 
spectively, a current signal such as the collector current output of a transistor 
stage and a voltage signal such as the voltage input to the next stage. 

FIGURE 5.1 A lag network. 

'An alternative contigurat~on of the lag network is given in F~gure 5.8, page 56 
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-p ---- 
_ ~- ~ -- - . - -~ . ----- 

EXAMPLE 5.2. In the circuit of Figure 5.1, R = 10,000 R, f = 10 MHz, and 
fo = 1.59 MHz. By use of Equation 5.5, the magnitude of the transfer function is 

5.1.1 Frequeocy Response of Lag Networks 
When I,, and V,,, are decomposed into sinusoidal (sine and cosine) waveforms in 
the frequency domain, then for each component at angular frequency o the 
transfer function can be written 

where angular frequency o is related to cyclic frequency f :  

w = 2xt (5.2) 
By defining a corner frequency (or pole frequency) fo as 

Thus, if li,(f) has a magnitude of I mA, the magnitude of VJf) is 
(1 mAX1572 R) E 1.57 V. The phase cp, from Equation 5.6, is 

1 
fo 3- 

2xRC ' (5.3) 

the transfer function of Equation 5.1 can be written 

10 MHz 
q = -arctan (i) = - arctan (-1 

For certain ranges of f/fo, Equations 5.5 and 5.6 can be approximated by 
simpler expressions. For small values of f /  f,, several approximations of the 
magnitude given by Equation 5.5 are possible. One of these is a binomial 
expansion: 

EXAMPLE 5.1. In the circuit of Figure 5.1, Ii, is a sinusoidal waveform with a 
frequency f = 10 MHz; R = 10,000 R and C = 10 pF. Thus, from Equation 5.3, 

Another approximation of Equation 5.5 for small values off / fo results from a 
logarithmic expansion: 

and the transfer function of Equation 5.4 becomes 

K U S f  -- - 10,000 R - -- 10,000 R 
lin(f) 1 + j(l0 MHzf1.59 MHz) 1 + i6.28 ' 

j For large values of f/fo, Equation 5.5 can be approximated as 

It is of interest to determine the magnitude and the phase of the transfer 
function. From Equation 5.4, the magnitude is 

I The phase cp of Equation 5.6 can be approximated for small values off / fo as 

and the phase cp is 
cpz -- f - < < I ,  (5.10) 

f o  ' f o  

and for large values of f / fo as 
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EXAMPLE 5.3. In the circuit of Figure 5.1, f,  = ll2rrRC =; 1 MHz. At a 
frequency f = 0.1 MHz, f /  f ,  = 0.1. A first approximation of the magnitude of 
the transfer function, from Equation 5.7, is 

A better approximation, from Equation 5.7, is 

or, from Equation 5.8, 

The exact magnitude is given by Equation 5.5 as 

The value of phase cp can be approximated from Equation 5.10 as 

f cp x - - = -0.1 radians = - 5.73". 
fo 

The exact value of phase cp, from Equation 5.6, is 

5.1.2 Transient Response of Lag Networks 
When V,,, and lin are represented in the time domain, that is, Vou, = KU,(t) and 
I,, = I,(?), it can be shown that the ratio of their Laplace transforms can be 
written 

where s is the Laplace transform variable in the transform domain. 

-- - - - 
- - -  - 

EXAMPLE 5.4 In the circuit of Flgure 5.1, R = l O O O R  and current I , ,  IS a 
function of tlme, I,,(?) = ( 1  mA)u(t);  that IS, ~t IS a step functlon wlth a magnitude 
of 1 mA. The Laplace transform of I&) IS 

Thus, the Laplace transform of voltage V,,,(t) is given by 

R l O O O R  I mA - 1 v 
Y {  vOut(t)} = - 1 + RCs 9 { l , , ( t ) )  = - --- - 1 + RCs s s ( l  + RCs) '  

The inverse Laplace transform of this is (see Problem 5.12) 

Figure 5.2 shows input current I,, and output voltage V,,, as functions of 
t /RC. 

FIGURE 5.2 Input current li, and output voltage V,, as functions of  
t /RC in the lag network of Example 5.4. 
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5.2 Bode Plots 

It is customary to plot the gain G of the lag network, which can be defined as 

G = 20dB log,, 1 ,/mm' 
where G is in decibels (dB) as shown in the upper part of Figure 5.3. 

This representation, known as the Bode plot of the gain, shows that at 
Illo = 1 the gain G is down by 3 dB from its value at f = 0. Also, for f >> fo, 
the gain drops at a rate of -2OdBldecade of frequency, or approximately 
- 6 dB/octave. 

In many cases, the gain can be approximated by two straight lines: G = GI=, 
for f << f ~ ,  and G = G,., - 20dB log,df/fo) for f >> f,. These two straight 
lines intersect a t  the frequency f = f,; hence the name comer frequency. This 
piecewise linear approximation of the gain is shown in Figure 5.3 by broken lines. 
The Bode plot of phase p as a function of frequency is also given in the figure. 

FIGURE 5.3 Bode plots G E 20 dB loglo[l + (f / fo)2j-1~2 and q E 
/(I + j f / fo)-I of a lag wtwork. 

5 3  Cascaded Lag Networks 

The lag network of Figure 5.1 provides a simple approximation of a stage in an 
operational amplifier. However, usually more than one stage has to be 
represented. Fortunately, these can often be separated, and the resulting transfer 
function can be written as a product of lag-network responses. 

53.1 Frequency Response of Cascaded Lag Networks 
In the frequency domain, the transfer function of a two-stage amplifier can be 
written in the form 

(constant) P ------- . 
i l  + ; f / f , ) i l  +h2) 

In Figure 5.1, a current input and a voltage output were assumed. In the case 
when an entire operational amplifier is to be represented, both the input and the 
output signals are voltages. Hence, amplification A of an operational amplifier 
consisting of two stages can be written 

where A,, = AjZo is the amplification of the operational amplifier at zero 
frequency: a positive real dimensionless number. 

EXAMPLE 5.5. A two-stage operational amplifier has an amplification at 
zero frequency A,, = 1000 and it can be represented by two separated lag 
networks. One of these consists of a 100,000-R resistance and a 5-pF 
capacitance, the other one of a 1000-R resistance and a 5-pF capacitance. Since 
the designations off ,  and fi are interchangeable, they can be written 

1 = 318 kHz 
f' = 2n(100,000)(5 x 10-12) 

and 

1  
= 31.8 MHz. 

f2  = 2n(1000)(5 x lo-'') 

Thus, amplification A becomes 
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In general, the gain is defined as G r 20dB log,,lAl, and the phase as 
c~ = ,&. The gain and the phase plots of a two-stage amplifier described by 
Equation 5.13 with f2/ f, = 100 and A,, = 1000 are shown in Figure 5.4. Since 
the logarithm of a product is the sum of the logarithms, the gain is obtained as 
the sum of the individual gains of the two stages. The individual phases of the 
two stages are added linearly to obtain the resulting phase. It can be seen that 
for f >> f2 2 f, the gain falls off at a rate of -40 dB/decade of frequency. 

- 
- 2 0  dBldecade slope \ 

-2OdB 1 1 I I 1 
0.1 1 10 loo loo0 \  

1 %f 
10,000- fl 

FIGURE 5.4 Bode plots G E 20 dB loglo (A( and cp = &for the two-stclge 
o p e n t i d  a m p h r  of Equation 5.13 witb A& = 1000 and f2 = 100fl. 

Figure 5.5 shows the special case of two equal corner frequencies fi = f2, 
that is, the case of 

FlGURE 5 5  Bode plots G = 20dBlogloIAl and cp r ,!&for an operational 
amplifier with Ad, = 100,000 and witb two equal corner frequencies. 

For a three-stage amplifier, Equation 5.13 can be extended to 

and to similar expressions for larger numbers of stages. 
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EXAMPLE 5.6. In Equation 5.15, f, = 1 MHz, f2 = 4 MHz, f3 = 40 MHz, 
and Adc = 10.000. What is magnitude IAl and phase @ at a frequency 
/ = 0.1 MHz? 

The magnitude of A is 

By use of Equations 5.5 and 5.7, 

and 

thus, IAI % (10,000)(0.995)(0.9997)(0.999997) 2 9947. 
The phase of A, A can be obtained by adding the individual phases: 

By applying Equation 5.6, this can be written 1 

which by use of the approximation of Equation 5.10 becomes 

= -0.1275 radians = - 7.3". 
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5.3.2 Transient Response of Cascaded Lag Networks 
When input voltage R and output voltage KU, in a two-stage operational 
amplifier are represented in the time domain, 

and 

where 

with f, and f, those of Equation 5.13. 
When input voltage Kn is a step function with magnitude Vo, 

and 

The inverse Laplace transform of Equation 5.18 can be written for times t > 0 

provided that 

_ _  -._.pp_ . - 

EXAMPLE 57. In the two-stage operational amplifier of Example 5.5, 
A,, = 1000. Also, f1 = 0.318 MHz and f2 = 31.8 MHz. Thus, by use of Equat- 
ion 5.16b, 

1 - 1 
T I = - -  = 0.5 ps = 500 ns. 

2nf1 2n(0.318 MHz) 
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Also, by use of Equation 5.16c, 

1 
' F 2 = - =  

1 
2nf; 2n(31.8 M H z )  

= 5 ns. 

Equation 5.19 can be applied, resulting in 

- 1 / 5 0 0 n s  -115 ns 

500 ns 

which can also be written 

Thus, as a result of having 7 ,  = 500 ns >> 7 ,  = 5 ns, in this example time 
constant r, = 50011s dominates the transient response. Therefore, for times 
t >> 5 ns, output voltage V,,, can be approximated as 

In the special case of a two-stage operational amplifier with two equal corner 
frequencies, shown in Equation 5.14 and Figure 5.5, 

where 

1 
7 ,  =- 

2nf1 
with f ,  that of Equation 5.14. 

When input voltage Y;, is a step function with magnitude Vo, 

2 { v i n ( t ) }  = 5 

and 

{ u t ( t ) }  = ",Y, 
s ( 1  + ST,)' ' 

The inverse Laplace transform of Equation 5.22 can be written for times t > 0 

Figure 5.6 shows V,,, as a function of t / r 1  

FIGURE 5.6 Output voltage V,, as a function of t / r l  for a two-stage 
operational amplifier with two equal corner frequencies. 

When input voltage I/, , ,  and output voltage Vo,, of a three-stage operational 
amplifier are represented in the time domain, 

where 

1 
7 ,  =- 

2Kl-I' 

and 

with f,, f2, and f ,  those of Equation 5.15. 
When input voltage v, is a step function with magnitude Vo, 
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The inverse Laplace transform of Equation 5.26 can be written for times t > 0 
as 

I 
1 1  ---  1 1  - - -  1 1  

U e 2 1 / n  + --- Tl  '3 ,-tir2 + '2 e-t/u 

V,Ul(t) = AdCV0 1  - T3T2 T1T3 
, (5.27a) 

provided that 

and 

EXAMPLE 5.8. In the three-stage operational amplifier of Example 5.6, 
Ad, = 10,000. Also, f, = 1  MHz, f2 = 4 MHz, and f3 = 40 MHz. Thus, by use 
of Equations 5.24b, 5.24c, and 5.24,  

1  
T I = - =  

1  
2nf1 2n(l MHz) 

x 160 ns, 

1  
T 2 = =  

1  
2nf2 2n(4 MHz) 

z 40 ns, 

and 
1  

T 3 = =  
1  

2nf3 2440 MHz) x 4 ns. 

Equation 5.27a can be applied, resulting in 

,-1/160ns , - 1/40 ns 

For times t >> 4 ns, output voltage V,,, can be approximated as 

e-'i'60ns + 
-- 3 

- 

In the special case of a three-stage operational amplifier with two equal 
corner frequencies, 

where 

1 
T I  = - 

2zh 

and 

with f,, f,, and f, those of Equation 5.15. 
When input voltage v, is a step function with magnitude Vo, 

and 

The inverse Laplace transform of Equation 5.30 can be written for times t > 0 

provided that 

and 



54 RESPONSE OF OPERATIONAL P 3LIFIERS, PART I PROBLEMS 55 

EXAMPLE 5.9. In a three-stage operational amplifier, one corner frequency is 
at f, = 1 MHz and the two other corner frequencies coincide at f, = 10 MHz. 
Thus, by use of Equations 5.28b and 5.28c, 

1 
T I = - =  

1 
2nfI 2141MHz) 

z 16011s 

and 

1 x 2 = - =  1 
2nf2 22110 MHz) x 1611s. 

Equation 5.31a can be applied, resulting in 

( 
e-cl160na - O.l(l.9 + 0.9~116 n ~ ) e - ' l ' ~ ~ "  

V,uc(t) = Ad, Vo 1 - 
0.8 1 , t > 0 .  

In the special case of a three-stage operational amplifier with three equal 
corner frequencies, 

where 

1 1 1  =- =-- -- I 
2nf1 2nfi %f,' (5.32b) i 

i 
with f,, j2,  and f3 those of Equation 5.15. 

When input voltage Y;, is a step function with magnitude Vo, I 

and 

The inverse Laplace transform of Equation 5.34 can be written for times t > 0 
as 

Output voltage Y,,, of Equation 5.35 is shown in Figure 5.7 by the graph 
marked (c). Figure 5.7 also shows the transient response of a single-stage 
operational amplifier, Y,,, = Ad, Vo(l - e-'Iu), by graph (a), as well as the 
transient response of a two-stage operational amplifier with two identical corner 
frequencies, given by Equation 5.23, by graph (b). Note that the time scale of 
Figure 5.7 is different from preceding figures. 

FIGURE 5.7 Output voltage VQut as a function of t/rl for operational 
amplifiers with identical comer freqwoeia: (a) Singl~tage  amplifier, (b )  tw+ 
stage amplifier, and (c) threestage ampli6er. 

PROBLEMS 

5.1 For the circuit of Figure 5.1, sketch output voltage VOu, as a function of 
time, if input current 1, is a delta function (impulse function) 
Iin(t) = (10- lo  coulomb)6(t); R = 1000 R, and C - 10 pF. 

5.2 Derive Equations 5.1 and 5.4. 

5 3  Evaluate Equations 5.5 and 5.6 if, in the circuit of Figure 5.1, R = 2000 R, 
C = 20 pF, and current 1, is a sinewave with a frequency of 20 MHz. 

5.4 Show that the phase plot of Figure 5.3 is antisymmetric (invariant under 
180" rotation) around the f /  fo = 1, cp = -45" point. 

5.5 Derive Equations 5.5 and 5.6. 

5.6 Show that an approximation of phase cp of Equation 5.6 for small values 
of f/fo, which is more accurate than that of Equation 5.10, is given by 

5.7 Show that an approximation of phase cp of Equation 5.6 for large values 
of f /  fo, which is more accurate than that of Equation 5.1 1, is given by 

Evaluate this expression, Equation 5.1 1, and Equation 5.6 for f/ f, = 10. 
Present the results in degrees. 

5.8 Show that the tangent drawn to the phase plot cp of Figure 5.3 at 
f / f o = l , c p =  -4S0reaches f / f o = l O a t a p h a s e o f  





CHAPTER 6 

Frequency Response and 
Transient Response of 
Operational Amplifiers, 
Part I1 

This chapter introduces additional networks for representing operational 
amplifier amplification A and feedback return F. The chapter also includes 
networks that will be used to represent responses of feedback amplifiers in 
Chapter 8. 

6.1 Modified Lag Networks 

Modified lag networks are used for modifying the properties of operational 
amplifiers. They may be part of the operational amplifier or may be added 
externally. Two forms of a modified lag network are shown in Figure 6.1, which 
are equivalent if q, = I,,R,. In what follows, the circuit of Figure 6. lb  will be 
discussed, even though the circuit of Figure 6.la is used more often. 

6.1.1 Frequency Response of Modified Lag Networks 
When 6, and V,,, are represented in the frequency domain, the transfer function 
is 

K J f  ) - 1 + jf I f 2  
W f  1' 1 + j f  If, ' 

where corner frequency f ,  (pole frequency) is defined by 

and corner frequency f2 (zero frequency) by 

(6. lc) 

59 
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(6) 

FIGURE 6.1 Two equivalent forms of a modified lag network. 

Bode plots of a modified lag network with f2 = 100fl are shown in Figure 6.2. 
It can be seen from Equations 6.lb and 6.lc that f2 2 f l ;  thus, the magnitude 

of Equation 6.la, 

is monotonically decreasing as a function of frequency f: The phase can be 
written 

= arctan - - arctan - . (3 (9 
The ratio of f2 and f ,  can be expressed from Equations 6.lb and 6.lc as 

Thus, if f 2 /  f ,  is given, it determines R , / R 2 ;  however, C and either R ,  or R, can 
still be chosen. 

6.1 MODIFIED LAG NETWORKS 61 

FIGURE 6.2 Bode plots G r 20 dB loglo [(I + j f /f2)/(1 + j f / fl)l and 
cp = /(1 + j j /  ft)/(l + j f / fl) for a modified lag network with f2 = 100fi. 

_ - _- _ _ 

EXAMPLE6.1. In the modified lag network of Figure 6.1, 
( R ,  + R2) /R2  = 10; thus f , / f l  = 10. The magnitude of the transfer function, 
from Equation 6.2, is 

and phase cp of the transfer function becomes 
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If, alternatively, f ,  and f2 are given, R ,  and R2 can be computed from 

and 

61.2 Transient Response of Modified Lag Networks 
When Y and V,,, are represented in the time domain, it can be shown that for 
the circuit of Figure 6. lb, 

q V,,I(t)l 1 + sR,C -= 
9 1 1 + s(R,  + R2)C ' (6.6) 

When input voltage C.;, is a step function with magnitude Vo, 

O{ b(r)} = V" 
and 

The inverse Laplace transform of Equation 6.8 can be written for times t > 0 
as 

EXAMPLE6.2. In the modified lag network of Example 6.1, 
(R, + R2)/R2 = 10. Thus, R, / (R,  + R,) = 0.9 and Equation 6.9 becomes 

Figure 6.3 shows Y,, as a function of t / (R ,  + R2)C. Note the jump of 0.1 Vo at 
time t = 0. This is because for short times capacitor C acts as a short-circuit, and 
as a result output voltage V,,, becomes VoR2/(R, + R2)  = 0.1 Vo immediately 
after t = 0. 

c t  FIGURE 6.3 Output voltage V', as a function of tl((R1 + 4 R2)C( (R~+c in 

Example 6.2 

6.2 LEAD NETWORKS 63 

6.2 Lead Networks 

A l e d  network is shown in Figure 6.4. As is the case for modified lag networks, 
lead networks modify the properties of operational amplifiers. They are usually 
located external to the operational amplifier. 

FIGURE 6.4 A lead network. 

6.2.1 Frequency Response of Lead Networks 
In the frequency domain representation, the transfer function can be written 

where corner frequency f, (zero frequency) 1 is defined by 

f =- (6. lob) 
- 2nR,C 

and corner frequency f2 (pole frequency) by 

It is seen from Equations 6.10b and 6.10~ that f, 3 fi;  thus, the magnitude of 
Equation 6.10a, 

is monotonically increasing as a function of frequency j: Phase cp of Equation 
6.10a can be written 

Bode plots of a lead network with f, = LMfl are shown in Figure 6.5, 
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45' - 
oo 

I 

1 
1 - f  

0.1 10 loo 1000 ~10,ooo' 77 
FIGURE 6.5 Ba* flats C 20 dB 1910 Xh //&I + if /fl)/(l + j f / f1)I 
a.' 9 /(/l/f&I + illhMl + j f / fjl for a lead network with f2 = lWfI. 

It can be seen from Equations 6.10b and 6.10~ that 

Thus, if f 2 / f ,  is given, it determines R , / R 2 ;  however, C and either R ,  or R ,  can 
still be chosen. If f l  and f2 are given, R ,  and R2 can be computed from 

-_-- __._ 

EXAMPLE 6.3. In the lead network of Figure 6.4, ( R ,  + R2) /R2  = 10; thus. 
f J f ,  = 10. The magnitude of the transfer function, from Equation 6.1 1, is 

and phase cp of the transfer function is 

6.2.2 Transient Response of Lead Networks 
When Kn and V,,, are represented in the time domain, it can be shown that 

When input voltage q, is a step function with magnitude Vo, 

and 

The inverse Laplace transform of Equation 6.17 can be written for times t > 0 
as 

EXAMPLE 6.4. In the lead network of Example 6.3, ( R ,  + R,) /R ,  = 10. 
Thus, R 2 / ( R ,  + R,) = 0.1, R , / R ,  = 9, and Equation 6.18 becomes 

Output voltage V,,, is shown in Figure 6.6. Note the initial jump of Vo at time 
t = 0. This is because for short times capacitor C acts as a short-circuit, and as a 
result output voltage V",, becomes equal to V, immediately after t = 0. Also note 
that output voltage V,,, becomes 0.1 V, for long times. 
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rn FIGURE 6.6 Output voltage V, in 3 Example 6.4 4 -C R1 - RiRz + RZ 

6.3 Voltage Divider Network 

Figure 6.7 shows a voltage divider network, which is often used for feedback in 
operational amplifier circuits. This circuit is quite general and, as will be seen, it 
can have the characteristics of a resistive voltage divider, a lag network, a 
modified lag network, or a lead network. 

v,"tv Rp+Twt 
FIGURE 6.7 A voltage divider wtnork. 

6.3.1 Frequency Response of Voltage Divider Networks 
When Vn and V,,., are represented in the frequency domain, it can be shown that 
the transfer function is 

where corner frequency f, (zero frequency) is defined by 

1 
f1 = ----- 

2xRsCs (6.19b) 

and corner frequency f, (pole frequency) by 
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Note that the ratio of the comer frequencies in Equations 6.19b and 6 . 1 9 ~  

thus, 

EXAMPLE 65. In the voltage divider network of Figure 6.7, Rs = 10,000 Q 
Rp = 100 R, C, = 0.5 pF, and Cp = 5 pF. Thus, 

1 - f =-- 
1 

= 31.8 MHz, 
- 2xRsCs 2n(10,000)(0.5 x 10-12) 

1 
fi z = 292 MHz, 

RsRp (C, + Cp) 2n - 
Rs + RP 

and the transfer function becomes 

Voul(f RP 1 + j f / f i  1 + j fj3l.8 MHz - = - --- = 
0MB9 1 + j//292 MHz ' ( Rs + Rp 1 + j / / h  

Limiting cases of the voltage divider network are shown in Figure 6.8. Figure 
6.8a is a resistive divider with a frequency-independent Kut/l/i, = Rp/(Rp + R,). 
Figure 6.8b has a transfer function of 

where corner frequency fo is 

that is, this circuit has the frequency characteristics of a lag network. The circuit 
of Figure 6 . 8 ~  is a lead network (see Equations 6.10a-c). The last circuit (Figure 
6.8d) is a compensated voltage divider network where 

RsCs = RpCp. (6.23) 

It can be shown that when Equation 6.23 is satisfied, the transfer function of 
Equation 6.19a reduces to 
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The inverse Laplace transform of Equation 6.27 can be written for times t > 0 
as 

provided that 

Depending on the values of T ,  and T , ,  Equation 6.28a may represent six 
different characteristics: 

1. When T ,  = 0 and T ,  = 0, Equation 6.28a is not applicable; however, the 
circuit is a resistive voltage divider and V o U l / ~ ,  is a constant for all times. 

2. When T 1  = T , ,  T , / T ,  - 1 = 0, the circuit is a compensated voltage divider, 
and V,,,/V,, is a constant for all times. 

3. When 7 ,  = 0 and T ,  # 0, r 1 / . t 2  - 1 = - 1, the circuit has the character- 
istics of a lag network, and V,, = constant - ( l  - e-'/") for t > 0. 

4. When T ,  < T , ,  T , / T ,  - 1 < 0, the circuit has the characteristics of a 
modified lag network, and the transient has the form of Equation 6.9 and 
Figure 6.3. 

5. When T ,  > T , ,  r 1 / r2  - 1 > 0, the circuit has the characteristics of a lead 
network, and the transient has the form of Equation 6.18 and Figure 6.6. 

6. When T ,  # 0 and 1, = 0, Equation 6.28a is not applicable. Also, according 
to Equations 6.25b and 6.2%, R,  becomes 0 in Figure 6.7; thus, Vou, = 0 at 
all times and the circuit is useless. 

6.4 Compouod Lag Networks 

Two forms of a modified lag network were shown in Figure 6.1. However, in 
reality there is always stray capacitance in parallel with the output terminals. 
Two forms of the resulting network are shown in Figure 6.9, which are 
equivalent if V,, = I i m R l .  In what follows, the circuit of Figure 6.9b is discussed 
first, even though the circuit of Figure 6 . 9 ~  is used more often. 

As was also the case for modified lag networks, compound lag networks are 
used for modifying the properties of operational amplifiers. They may be part of 
the operational amplifier or may be added externally. The discussion of 
compound lag networks starts here with the Laplace transform domain; this is 
followed by descriptions of their frequency response and transient response. 

64.1 Laplace Transforms for Compouod Lag Networks 
The transfer function of the compound lag network of Figure 6.96 can be written 
in the Laplace transform domain as 

(b)  

FIGURE 6.9 Two equivalent forms of a compound lag network. 

Equation 6.29 can also be written 
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Equations 6.30~ and 6.30d can be simplified when R, << R,, which is often the 
case for operational amplifiers. In such cases, as shown in Appendix B, Section 
B.l, time constants TL and T, can be approximated, and Equations 6.30a-d can 
be written 

provided that 

Reasons for the designations TL and r, will be seen in Section 6.4.2. Also, it 
can be shown (see Appendix B, Section B.2) that in the exact Equations 6.30a-d 
time constants TL, r,, and r, have the relative magnitudes 

which can also be written (see Problem 6.20) 

64.2 Frequency Response of Compound Lag Networks 
When 6, and V,,, are represented in the frequency domain then, by use of 
Equations 6.30a-d with the substitution s = j2nJ the transfer function becomes 

where 

Note that fL < f, c f,, hence the use of the subscripts L and U (lower and 
upper). 
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When R, << R,, then, based on Equations 6 . 3 1 ~  and 6.31d, Equations 6 .33~  
and 6.33d can be approximated as 

and 

The resulting Bode plots are shown in Figure 6.10 by the graphs marked (a). 
Four regions can be distinguished. At the lowest frequencies, that is, for f cc fL, 
the magnitude is a constant 1 and the phase is 0". The straight-line magnitude 
segment between fL and f, drops at a rate of - 20 dB/decade of frequency, and 

FIGURE 6.10 Bode plots C a 20 dB loglo lVo,,( f ) / v , ( j )  and cp = 
by Equations 6.33a, 
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the straight-line magnitude segment between f, and f" has a constant 
magnitude of fL/f2. At the highest frequencies, that is, for f >> f,, the 
magnitude is 1/2xR1C1S, dropping at a rate of -20 dB/decade of frequency, and 
the phase is -90". 

Figure 6.10 also shows, by the graphs marked (b), the transfer function for the 
case when C2 = 0-hence when R, is ineffective. In this case, the circuit becomes 
a lag network with a corner frequency f, = 1/2xRlCl. Note that the inclusion of 
R, and C, lowers the magnitude of the frequency response. 

The use of compound lag networks is illustrated in Example 6.7. 

EXAMPLE 6.7. A Type 2539 wideband operational amplifier includes a 
compound lag network with R, = 2 MQ R, = 1.47 kQ C1 = 0.4 pF, and 
C, = 3.6 pF. Thus, by use of Equation 6.33b, 

1 
fi = ----- = 

1 
2nR,C2 2n(1.47 kRX3.6 pF) 

= 30 MHz. 

The ratio R,/Rl = 1.47 kR/2 MR r 0.74 x 10- = 0.074 % << 1. Hence, fL 

and fu can be approximated by Equations 6.34a and 6.34b, resulting in 

1 - 1 
f L  = - 20 kHz 2nRl(Cl + C,) - 242 MRM0.4 pF + 3.6 pF) - 

and 

Cl +C, - - 0.4 pF + 3.6 pF 
lu = 2nR2C,C2 h(1.47 kQXO.4 pFX3.6 pF) 

z 300 MHz 

The amplification of the remainder of the operational amplifier can be 
approximated as A,Nl + j f/fA), where A,, = 30,000 and fA = 30 MHz.' Thus, 
by use of Equation 6.33a, the overall amplification becomes 

- - 1 + j f130 MHz 30,000 
(1 + j f 120 kHzXl + j f I300 MHz) 1 + j f /3O MHz 

This is shown by the graphs marked (a) in Figure 6.11. The straight-line 
magnitude segment between fL = 20 kHz and f, = 300 MHz drops at a rate of 
-20 dB/decade of frequency, and for f >> 300 MHz the magnitude drops at a 
rate of - 40 dB/decade of frequency. 

*This is only a rough approximation; an additional comer frequency of 300 MHz will be introduced 
in Chapter 7. 
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\ 30 MHz 

- 
MHz 10 MHz 100 MHz \1 

FIGURE 6.11 Bode plots G = 20 dB loglo IAl and cp E &for tbe overall 
ampli6catioos in Example 6.7: (a) C2 = 3.6 pF and (b) Cz = 0. 

In the case when C, = 0, R ,  is ineffective, and the overall amplification 
becomes 

where 
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and 

fA = 30 MHz. 

Hence, when C ,  = 0, the overall amplification is 

shown by the graphs marked (b) in Figure 6.11. The magnitude of this 
amplification drops at a rate of -40 dB/decade of frequency above a frequency 
of 30 MHz-as compared to a frequency of 300 MHz in the case of C ,  = 3.6 pF. 
It will be seen in Chapters 7 and 8 that the C ,  = 3.6pF case of graph (a) in 
Figure 6.1 1 is preferable, even though the amplification in the C ,  = 0 case of 
graph (b) in Figure 6.1 1 has a greater magnitude between 20 kHz and 300 MHz 
(this is because the phase with C ,  = 3.6 pF is preferable at frequencies above 
3 MHz). 

6.4.3 Transient Response of Compound Lag Networks 
When input voltage v, is a step function with magnitude Vo, 

and, by use of Equation 6.30a, 

The inverse Laplace transform of Equation 6.36 can be written for times t > 0, 
as 

6.5 Series RLC Circuits 

Inductances are only rarely significant in operational amplifier circuits. The 
principal reason for discussing the series RLC circuit, shown in Figure 6.12, is 
the use of the results in representing feedback amplifiers in Chapter 8. The 
discussion starts here in the Laplace transform domain; this is followed by 
descriptions of the frequency response and the transient response. 
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FIGURE 6.12 A series RLC circuit. 

The transfer function of the series RLC circuit shown in Figure 6.12 can be 
written in the Laplace transform domain as 

Y {  Vout(d} - 1 

Y { ~ , ~ ( t ) }  1 + RCs + LCs2 ' 

which can also be written 

where 

and 
L 

rn=- (6.39d) 
R 2 c '  

Three cases can be distinguished: There are two distinct real roots when 
m < 0.25; there are two equal real roots when rn = 0.25; and there are two 
conjugate complex roots when rn > 0.25. 

The resulting frequency response is shown in Figure 6.13 for various values of 
rn = L/RZC. It can be shown that there is a peak in the magnitude versus 
frequency graphs when m > 0.5. 
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G 

FIGURE au ~ o a c  *a G = Z B ~ B  ~op,~~v,~f)lv~(f)~ 
v, / V  f )  f) for the m*r RLC circuit of Figure 6.12 with VMOW valr. of 

m = L/R C and with fO = 112nRC. 

When input voltage Vn is a step function with magnitude Vo, 
.EP{Vn(t)} = Vo/s and for times t > 0 

when 
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when 
m = 0.25; 

when 

m 3 0.25. 

Equations 6.40,6.41, and 6.42 are illustrated in Figure 6.14 for various values 
of m = UR2C. The transients are free of overshoot and ringing when m < 0.25. 

FIGURE 6.14 Transient respolse of the series RLC circuit of Figure 6.12 
for a step-fuoctioo input with magnitude Yo, for various values of m = LIR'C. 

Figure 6.15 shows, as functions of m = L/RZC, various characteristics o< 
the transients of Figure 6.14: The propagation delay of the 50 % point, r,,; the 
10%-90% rise time, t , , - , , ;  and the percentage of ringing, E ,  defined as 
[(V&,,),, - Vo]/Vo in Figure 6.14. 
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m 
FIGURE 6.15 Ropagatim delay of the 50 % pint, t ~ ,  10 %-PO % r(r 

r i m  and percentage of ringing, E, for the t r a i n &  of Figure 6.14, for 
variocls vdws of m = L/R%. 

PROBLEMS 

Show that the two forms of the modihed lag network shown in Figure 6.1 
are equivalent if Qn = R,I,,. 

Derive Equations 6.1 and 6.4. 

A modified lag network consists of the circuit of Figure 6.lb with 
RI = l O , m  fk R2 = 200 Q, and C = 1000 p F  What are the values off,  
and f2 in Equation 6.1? Sketch the Bode plots, using piecewise linear 
approximation for the gain. Repeat for R,  = 5000n. 

Derive Equation 6.6. 

Derive Equation 6.9 using Appendix A. [Hint: Break up the wcond 
fraction in Equation 6.8 into a sum of two parts, one part with a 
numerator of 1 and the other part with a numerator of sR,C.l 

- - 
Derive Equations 6.10 and 6.14. 

A lead network consists of the circuit of Figure 6.4 with R, = 10,000 Q 
R, = 100 Q, and C = 10 p F  What are the values off, and f2 in Equations 
6.10b and 6.10c? Sketch the Bode plots, using piecewiw linear approxi- 
mation for the gain. Repeat for R, = 5000R. 

PROBLEMS 81 

6.8 Derive Equation 6.15. 

6.9 Derive Equation 6.18 using Appendix A. [Hint: Break up the third 
fraction in Equation 6.17 into a sum of two parts, one part with a 
numerator of 1 and the other part with a numerator of sCR,.] 

6.10 Sketch the Bode plots for Examples 6.1 and 6.3. 

6.11 In the voltage divider network of Figure 6.7, Rs = 10,000 R. R, = 1000 R, 
C, = 0.5 pF, and C, = 10 pF. What is VOuI(f)/VJf)? Modify the circuit 
by the addition of a capacitance such that the transfer function 
V,,,( j) is frequency-independent. Give the location and the value of 
the capacitance required. 

6.12 Sketch output voltage V,,,(t) in the voltage divider network of Figure 6.7 if 
the input voltage is a step function I$,([) = (1 V)u(t); Rs = I O R ,  
R,  = 2000Q and C, = 1000 pF. Assume Cs = lOOOpF, 2000 pF, and 
5000 pF. 

6.13 Derive Equation 6.28a using Appendix A. [Hint: Break up the third 
fraction in Equation 6.27 into a sum of two parts, one part with a 
numerator of 1 and the other part with a numerator of sr,.] 

6.14 Verify the statements following Equation 6.28b at the end of Section 6.3.2. 

6.15 Derive Equation 6.29. 

6.16 Derive Equations 6.30a-d from Equation 6.29. 

6.17 Show that T, and T, of Equations 6 .30~ and 6.30d are always real and 
positive. 

6.18 Demonstrate that r,r, = RlClR,C2 in Equations 6.30~ and 6.30d. 

6.19 Verify Equations 6.33a-d and Equations 6.34a and 6.34b. 

*6.20 Derive Equation 6.32b from Equation 6.32a. [Hint: First show that 
T, > T ~ ;  then show that r ,  > r,. Next, combine these results to obtain 
Equation 6.32b.l 

6.21 Verify Figure 6.10. 

6.22 Verify the results of Example 6.7. 

6.23 Derive Equation 6.37 using Appendix A. [Hint: Break up the second 
fraction in Equation 6.36 into a sum of two parts, one part with a 
numerator of 1 and the other part with a numerator of ST,.] 

6.24 Show that in Equation 6.37 
(a) V,,, = 0 at t = 0; 
(b) Kut = V, when t -+ Q. 

6.25 Derive Equation 6.38. 
*Optional problem. 
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6.26 Derive Equations 6.39a-d. 

'6.27 (a) Compute and sketch into Figure 6.13 the magnitude and the phase of 
the frequency response for m = 0.25. 
(b) Show that the slope of magnitude G in Figure 6.13 for f /  fo >> 1 is 
- 20 dB/decade when m = 0 and it is - 40 dB/decade when m # 0. 

6.28 Demonstrate that the magnitudes in Figure 6.13 are peaked when 
m > 0.5. [Hint: Take the derivative of IV,,,(f)/V&)J2 with respect to 
frequency and equate it to zero.] 

6.29 Derive Equation 6.40a using Appendix A. 

6.30 Derive Equation 6.41a using Appendix A. 

6.31 Derive Equation 6.42a using Appendix A. [Hint: Use the identity 
ejx = cos x + j sin x.] 

6.32 Show that in Equations 6.40a, 6.41a, and 6.42a 
(a) K u l = O  a t t = O ;  
(b) KUl = Vo when t + co. 

'Optional problem. 

CHAPTER 7 

Stability of 
~eedback Amplifiers 

Frequency response and transient response of operational amplifiers were 
discussed in Chapters 5 and 6. The resulting frequency response and transient 
response, however, can be altered by the application of feedback. In some cases, 
the application of feedback results in an unstable system, that is, in a system that 
provides an output signal without an input signal. This chapter discusses limits 
and margins of stability in feedback amplifiers. 

7.1 The Nyquist Criterion 

Whether a noninverting feedback amplifier, characterized by a resulting 
amplification of 

is stable for a given A and F ,  is determined by the roots of 1 + AF,: The system 
is stable if all roots have negative real parts. This criterion of stability can be 
shown to be equivalent to the Nyquist criterion, which is based on the Nyquist 
diagram. The Nyquist diagram is the line of AF, plotted in the complex plane for 
frequencies, f, of - co < f < + co. 

Thus, a Nyquist diagram requires the plotting of AF, not only for positive 
frequencies but for negative frequencies as well. Fortunately, AF, is easy to find 
for negative frequencies by use of AF, for positive frequencies. This is because, 
in all frequency responses considered here, f and j always appear multiplied by 
each other. Thus, the same result is obtained by multiplying j by - 1 as would be 
obtained by multiplying f by - 1. Hence, AF, for negative frequencies can be 
obtained by substituting -j for j, that is, by up-down mirroring the line of AF, 
for positive frequencies with respect to the Re(AF,) axis(horizontal axis). 

The Nyquist criterion of stability can be expressed as follows: If A and F N  of 
Equation 7.1 describe stable systems, then the system described by M N  of 
Equation 7.1 is stable if and only if the Nyquist diagram of AFN does not encircle 
the - 1 + jO point. Cases when A and/or F, themselves describe unstable 
systems are not discussed here. (Continued on page 86.) 

83 
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I (b)  
FIGURE 7.1 Nyquist diagram of two stable system (a and c) and two 
unstable system (b  am1 d). 

7.1 THE NYQUIST CRITERION 85 
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There can be several descriptions of the term encircle. For a physically 
realizable system, A is zero at f = - m and at f = + m; hence, the Nyquist 
diagram is a closed curve.. This closed curve can be thought of as a loop of 
string, with a stake driven into the complex plane at the - 1 + jO point. If the 
loop of string can be removed (without lifting it over the stake), then it does not 
encircle the stake and the system is stable. Thus, in Figure 7.10 and in Figure 
7.lc the loop does not encircle the - 1 + j0 point and the system is stable, 
whereas in Figure 7.lb and in Figure 7.ld the loop encircles the - 1 + j0 point 
and the system is unstable.* Alternatively, a vector can be drawn between the 
- 1 + jO point and a point on the line of AFN in the complex plane. If the total 
angle traversed by this vector is zero as it moves along the line of AF, from 
f = -m to f = + m, then the loop does not encircle the - 1 + jO point and 
the system is stable. 

EXAMPLE 7.1. An operational amplifier with an amplification of 
A = Adc/(l + j flf,) is used as a noninverting feedback amplifier with a 
feedback return of FN, where FN = FN,,, is a positive real numbcr. Thus, 
AFN = Ad,FN,,, at f =O; also, AFN = 0 at f = a. It can be shown (see 
Problem 7.1) that for f > 0 the real pan of AFN. Rs(AFN), and the Maginary 
part of AF,, Im(AF,), are related as 

This equation describes a semicircle below the Re(AFN) axis that has a radius of 
Ad,F~,d,/2 and its center at AdcFN.dc/2 + JO. 

AFN for negative frequencies is obtained by up-down mirroring the line of 
AFN for positive frequencies. The result is a full circle, as shown in Figure 7.2. 

Irn (AFN) 

FIGURE 7.2 Nyquist digram in Example 7.1. 

Note that the phase of AFN is always between + 90" and - 90" and it never 
reaches - 180". Since the - 1 + jO point has a phase of - 18O0, it cannot be 
encircled and the resulting feedback amplifier is stable for all values of A,,, 

F~.dc, and f0. 

'Figure 7.1 is located on pages 84 and 85. 
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The information presented in a Nyquist diagram for positive frequencies is 
identical to the information presented in a Bode plot, which uses only positive 
frequencies. The magnitude, 6 ,  of a Bode plot is related to AF, of a Nyquist 
diagram as 

G = 20 dB log,, ,/[R~(AF,)J' + [lm(AF,)]' 

Also, the phase, p, of a Bode plot is related to AF, of a Nyquist diagram as 

(7.3) 

___- - - - -  - -. 

EXAMPLE 7.2. The Nyquist diagram of Figure 7.2 In Example 7.1 describes a 
lag network response that has a magn~tude of AdcF,,dc at f = 0. The same 
information can be described using the Bode plot of Flgure 5.3 wrth 20 dB log,, 
(AdCFN.,,) added to the labels of the G axis. - 

-- -- 
-- - - 

7.2 Lag Networks 

Figure 7.3 illustrates the general characteristics of Nyquist diagrams corre- 
sponding to AF, consisting of lag networks with transfer functions of 

AF - (one lag network), 
- 1 +~f l f i  

AF - AdcF~.dc (two lag networks), 
- (1 + jflflX1 + jflf2) 

A d c F ~ . d c  
AF - (three lag networks), 

- (I + jflfiX1 + j f l f d l  + jf1.L) 

AF, = 
(four lag networks), (7.7) 

(1 + jf/ flX1 + jflf2X1 + jf lf3X1 + jflf4) 

where F,,,, is a positive real number. 
1t can be seen from Figure 7.3 that AF, of Equations 7.4 and 7.5 always result 

in stable systems, whereas the stability of a system described by Equation 7.6 or 
7.7 depends on the magnitude of AdCF,,. and on the values of the corner 
frequencies. 

The criterion of stability is derived first for an amplifier consisting of three lag 
networks, that is, for one characterized by Equation 7.6. Separating the real and 
imaginary parts in the denominator of Equation 7.6 results in 
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la) 
FIGURE 73 Nyquist diagrams of lag network r a p o m  (a) one lag 
network, ( 1  two lag networks, (c) thee lag networks, and (d) four lag 
networks. 

Since AdcF,,dC is real, Equation 7.8 is real if 

f f f  f 3  -+-+---=o. 
fl f2 f3 f l f 2 f 3  

One solution of Equation 7.9, is f = 0, corresponding to the inters~t ion of the 
line of AFN in Figure 7 . 3 ~  with the positive real axis. It is of interest here, 
however, to determine whether the intersection of the line with the negative real 
axis is to the right or to the left of the - 1 + j0 point. Iff # 0, then Equation 7.9 
can be divided by f, resulting in 

This frequency represents the point where the line of AFN intersects the negative 
real axis in Figure 7.3~. At this frequency, AFN of Equation 7.8 is real: 
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The substitution of Equation 7.10 into Equation 7.1 1 results in 

The system is stable if this is to the right of the - 1 + jO point, that is, if in 
Equation 7.12 AF, 2 - 1 (the stability is marginal when AFr = - I). This 
results in the criterion 

f 2 + h ,  X + h  , h+h 
AdcF~.d,  2 + - (7.1 3a) 

fi f 2  f 3  ' 

Thus, if a stable system is desired, the maximum permitted value of Ad,FN,d,  is 

f 2  + f 3  + fl + f 3  ; fl + r 2  
(AdcF~.dc)m.x = + - (7.1 3b) 

fl f 2  f 3  ' 

. _  _ _ _  __--- 

EXAMPLE 7.3. An operational amplifier is characterized by an amplification 
that can be described by three lag networks with corner frequencies of 
f, = 1 MHz, f2 = 4 MHz, and f3 = 40 MHz. Thus, Equation 7.13a becomes 

The amplifier has a dc amplification A,, = 4000; hence, a stable system will 
result if the feedback return is 

This criterion of stability can also be expressed by stating that, in order to satisfy 
the inequality on dc feedback return F,,,, it is required that M N , d ,  be at least 

If M,,,, is less than 70, then FNVdc is greater than 0.014 and the system is 
unstable. Therefore, it can be concluded that this configuration is not suitable 
for resulting amplifications of M,,,, < 70, because the feedback amplifier would 
oscillate at approximately the frequency given by Equation 7.10, that is, at 

f = J f ~ 2  + f1 f3  + f 2 f 3  

= J(1 MHzX4 MHz) + (I MHzX40 MHz) + (4 MHzX40 MHz) 
= 14.3 MHz. 

The exact frequency and amplitude of the oscillation would depend on the 
nonlinear properties of the operational amplifier and will not be analyzed here. 

- - 
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In the case of an inverting feedback amplifier, by use of Equation 3.12, the 
resulting amplification is 

and the criterion of stability reduces to the case of the noninvening amplifier if 

feedback return Fl,.. << 1. If, however, is not much less than 1, it can be 
shown that the criterion of Equation 7.13a becomes 

that is, AdcF,,dc/(l + FI,dC) has to be substituted in p l a a  of AdCFN,. in 
Equations 7.13a and 7.13b.* 

In the limiting case when one of the corner frequencies is much lower than the 
other two, the transfer function of Equation 7.6 can be written 

Note that corner frequency fo was introduced instead off, of Equation 7.6 to 
emphasize that in Equation 7.16a 

fo << f ,  
and 

fo << f2.  (7.16~) 
The separation of the real and ima.nary parts in the denominator of 

Equation 7.16a results in 

- -. 
Since AdcFN,dc is real, Equation 7.17 is real if 

f f' - - - = 0. 
fo f o f i f 2  (7.1 8)  

One solution of Equation 7.18 is f = 0, corresponding to the intersection of 
AFN in Figure 7 . 3 ~  with the positive real axis. If f # 0, Equation 7.18 can be 
divided by f, resulting in 

*In fact, with this substitution, all stability criteria derived in this chapter for noninverting amplifiers 
Can be applied to inverting amplifiers (see Problem 7.1 1). 
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This frequency represents the point where the line of AF, intersects the negative 
real axis in Figure 7.3~. At this frequency, AF,  of Equation 7.17 is real: 

(7.20) 
f 2  f 2  

' 

f 0 f i  fOf2  

The substitution of Equation 7.19 into Equation 7.20 results in 

fo 
AFN = - AdCFN,dC - (7.21) 

f i  + fi ' 

The system is stable if this point is to the right of the - 1 + jO point, that is, if in 
Equation 7.21 A F ,  - 1. This results in the criterion 

- - - pp - 

EXAMPLE 7.4. A Type 2539 wideband monolithic operational amplifier is 
characterized by an amplification that can be described by three lag networks 
with corner frequencies of 20 kHz, 300 MHz, and 300 MHz.* Since 
20 kHz << 300 MHz, Equation 7.16a can be used with fo = 20 kHz, 
fl = 300 MHz, and j2 = 300 MHz. Thus, according to Equation 7.22, 

The amplifier has a typical dc amplification of Ad. = 30,000: hence, a stable 
system will result if 

30,000 30000 
FNadC < - = -- = 1. 

Ad,  30,000 

This criterion of stability can also be expressed by stating that, in order to satisfy 
the inequality on feedback return FN.dC,  it is required that 

Therefore, it can be concluded that the Type 2539 operational amplifier is 
marginally stable when used as a voltage follower, because small variations 
could make it unstable. Also, in this case, the approximate frequency of the 
resulting oscillation, from Equation 7.19, would be 

f = Jf,f, = J(300 MHzX300 MHz) = 300 MHz. 
pp - 

*In reality, the charactermation of a Type 2539 operat~onal amphfier by these three corner 
frequencies is only an approximat~on. 
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In the case when amplification A consists of four lag networks: 

A =  A d c  

(1 + j f / f ~ X l  + jfIf2H1 + jf/f3XI + jflf4) ' 

it can be shown that the criterion of stability can be written 

AdC F ~ . d C  (AdcFN.dc)mpx 

In the limiting case when one of the corner frequencies is much lower than the 
other three, the transfer function of Equation 7.23 can be written 

with 

and 

and th 
fo << f 3  9 

~e criterion of stability becomes 

Note that corner frequency fo was introduced instead of f4 of Equation 7.24 to 
emphasize that fo is much lower than fL,  f,, and f,. 
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- - - -- 

EXAMPLE 75. An operational amplifier is characterized by an amplification 
- 
A of Equation 5.15 with f, = I MHz, f 2  = 4 MHz, f3  = 40 MHz, and 

= 4000 The operational amplifier is used as a voltage follower, that is, 
W b a c k  return F N  = FNSdc = 1; hence, Ad,F,,. = 4000. It was shown in 
Example 7.3 that under these conditions the feedback amplifier is not stable. To 
obtain a stable system, a fourth lag network with fo = 1 kHz will be in- 
corporated in AFN (either inside or outside the operational ampl~fier). With 
thew values off, ,  f,, A, and fo, the condition of stability given by Equation 
7.26 becomes A d c F N , d c  < 4454. Thus, an A d c F N , d c  = 4000 results in a stable 
system. -_-- 

Several other limiting cases are also of interest. When f3 = fz in Equation 

and the criteria of stability, Equations 7.13a and 7.13b, become 

A d C F N . d c  < ( A d c F ~ , d c ) r n a x  = 4 + (2 - + - 3 . (7.28) 

Also, when f, = fl in Equation 7.16a, 

AF - 
A d c F ~ . d c  (7.29) 

- CiflfoX1 + jflfA2 ' 

and the criterion of stability, Equation 7.22, becomes 

2fl 
A d c F ~ . d c  ( A d c F ~ . d c ) r n a x  = - f 0  . 

When f4 = f3 = f2 in Equation 7.23, 

AF - A d e F ~ . d c  

- (1 + j f l f J 1  + jflf2I3 ' 

and the criterion of stability, Equation 7.24, becomes 

AdcFN,dc ( A d e F ~ . d c ) r n a x  = 
(1 + f2/fA3 
(1 + 3f21f1)z ' 

Also, when f3 = f2 = f, in Equation 7.25a, 

and the criterion of stability, Equi 

A d c F ~ . d c  

ation 7.26, becomes 
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73 Lag Compensation 

It was seen in Example 7.5 how an amplification A that would result in an 
unstable system could be modified by the inclusion of an additional lag network 
to arrive at a stable system. The added lag network had a corner frequency jo 
that was lower than the other corner frequencies of the operational amplifier by 
a factor in the rough vicinity of AdcFN,dc. This modification is called lag 
compensation, compensation by a dominant corner frequency, or dominant-pole 
compensation, where the term pole refers to a corner frequency in the denomi- 
nator of the transfer function.* When such a compensation is included as part of 
an operational amplifier, the result is an internally compensated operational 
amplijier.** 

When an operational amplifier with an amplification A is used as a 
noninverting feedback amplifier, the resulting amplification is 

Depending on the characteristics of A F N ,  the feedback amplifier may or may not 
be stable. If the operational amplifier without feedback is stable and it can be 
represented by a frequency-dependent amplification A, then it can be shown that 
the resulting amplification of the feedback amplifier, M,,  can always be made 
stable by modifying (compensating) amplification A by the addition of a lag 
network (Figure 5.1), resulting in a compensated AcOmpFN that can be approxi- 
mated as 

EXAMPLE 7.6. The amplification of an operational amplifier can be repre- 
sented as A = Ad& + j f /  flr with f, = 1 MHz and Ad, = 10,000. The 
amplifier is used as a noninverting feedback amplifier with a feedback return of 
F N  = F N . d e  = 0.1. 

without any compensation, at a frequency fl phase@ = (-4X4S0) = - 180. 
and magnitude 1AF.I = (lO,MO)(O.1)/4 = 250 > 1. Thus, the feedback amplifier 
is not stable. 

Modifying A by the addition of a lag network with a corner frequency 
fo = 100 Hz (see Equation 7.36), the compensated (Ac,,,FN( becomes unity at 
approximately fo AdcFN = (100 Hz)(lO,OOO)(O. 1) = 100 kHz At this frequency, 
phase EN % - -' 13"; hence, the feedback amplifier is stable. 

'Similarly, the term zero refers to a comer frequency in the numerator of a transfer function. 
''Operational amplifiers that are not internally compensated are often called decompensured 
operational amplifiers. 
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In the case of an operational amplifier with an amplification of 

by the addition of a lag network with a corner frequency fh. the 
resulting (compensated) AcOmpFN is 

It is seen from Equation 7.32 that this results in a stable system if 

For a stable system with A,cF,.d, >> 1, it can be shown that fh u 1; and the 
condition of Equation 7.39 becomes 

8 f l  
Adc F ~ . d ~  - 9 - f o  . 

(7.40) 

Alternatively, for a given feedback factor AdcFN,dc >> I and for a given f , ,  

is the criterion of stability. 
For an operational amplifier with given Ad. and f,, the required corner 

frequency fo is lowest when F,,dc is highest, which is the case of the voltage 
follower where FnSdc = 1. Thus, the criterion of stability for a voltage follower 
becomes 

The incorporation of a lag network with a corner frequency (folmin given by 
Equation 7.42a results in a stable system for all values of FN,dc.  Such an 
internally compensated operational amplifier can be used for any resulting dc 
amplification between 1 and Arc with only two external resistors Rr and R,, and 
without a need for any additional external component. However, as will be seen 
in Chapter 8. this convenience is attained at a cost whereby the bandwidth of the 
resulting feedback amplifier is lower than the bandwidth attainable by other 
compensation methods using additional external components. 
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7.4 Lad-Lag Compensation 

had-lag compensation consists of the inclusion of an external frequency- 
dependent feedback network, as shown in Figure 7.4. According to Equationr 
6-1%-c. the feedback return FN in Figure 7.4 . 
where 

and 
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hence the subscripts L and U (lower and upper). The ratio fu/ f, can be written, 
based on Equation 6.20, 

hence, 

When AdcFNsdc >> 1, then MNVdc 2 1/FNSd,, and Equation 7.46 becomes 

f u  
- f~ < M ~ , d c .  (7.47) 

Thus, Equation 7.47 limits the ratio of fu/ fL to the resulting dc amplification 
of the feedback amplifier. The limit of fu/f, = M,,,, can be approached when 
the ratio CI/CF is small, that is, when the sum C, of the input capacitance of the 
operational amplifier and of stray capacitances is small compared to feedback 
capacitance C,. 

EXAMPLE 7.7. A feedback amplifier uses the lead-lag compensation of 
Figure 7.4 with FN,d, = 0.01 and C, = 5 pF. Thus, according to Equation 7.46, 
fu/ fL < l/FN,dc = 1/0.01 = 100. Corner frequency f, is chosen as f, = 1 MHz. 
Also, from Equation 7.43c, C, = 1/2nRF f,. 

When the dc feedback return, FN,,,, is realized by RF = 1980R and 
R, = 20 R, then CF = 1/[2~(1980 RXl MHz)] = 80 pF. Thus, according to 
Equation 7.45, fu/ f, = (1/0.01)/(1 + 5 pF/80 pF) = 94.1, close to the maximum 
possible 100 given by Equation 7.46. Also, with fL = 1 MHz, 
fu = 94.1fL = (94.1)(1 MHz) = 94.1 MHz. Note that the Bode plots of F ,  in this 
case are close to those of Figure 6.5 with f, = 1 MHz. 

When the dc feedback return, FN,d,, is realized by RF = 19,800R and 
R, = 200R, then C, = 1/[2n(19,800RXl MHz)] = 8 pF. Thus, according to 
Equation 7.45, fu/fL = (1/0.01)/(1 + 5 pF/8 pF) = 61.5, significantly less than 
the maximum possible 100 given by Equation 7.46. Also, in this case, 
fu = 61.5fL = (61.5X1 MHz) = 61.5 MHz. The Bode plots of this case are the 
subject of Problem 7.16. 

The value of corner frequency fL is often chosen to be in the vicinity of a 
corner frequency of the operational amplifier. The discussion here is limited to 
the simplest case when fL equals a corner frequency of the operational amplifier, 
thus canceling its effect (pole-zero cancellation).* 

*This limitation will be removed and the general case will be discussed later in the book 
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If the amplification of an operational amplifier is given by Equation 7.37 as 

A = 
(1 + jf1fd3 (7.48) 

and lead-lag ~0mpensation in the form of Equation 7.43a is applied, the 
compensated AF,, A,,,,F,, can be written 

When fL is chosen to equal f,, Equation 7.49 becomes 

Acomp F N  = A d s F ~ , d c  

(1 + ~ f l f , ) ~ ( l  + j f l f 2  ' (7.50) 

where f, > f,. 

EXAMPLE7.8. An operational amplifier has an amplification of 
A = + jf l f l ) h i t h  Ad, = 10,000 and f, = 1 MHz. It is used as a 
noninverting feedback amplifier with a feedback return FN,. = 0.01. Thus, the 
feedback factor is *dcFN,dc = (10,WO)(0.01) = 100 and, according to Equation 
7.13a, the feedback amplifier is not stable. 

-... 

To make the feedback amplifier stable, lead-lag compensation in the form of 
Equation 7.43a is introduced with fL = 1 MHz. It can be shown that the 
criterion of stability, Equation 7.28, becomes approximately 

fi 1 MHz 
fU 3 AdcF~,d,  - = 100 - = 50 MHz. 2 2 

It was seen in Example 7.7 that f, = 94.1 MHz when R, = 19800 and 
R, = 20 R, and fu = 61.5 MHz when R, = 19,800 Rand R, = 200 R. Since both 
of these cases provide fu 2 50 MHz, they both result in a stable feedback 
amplifier; however, the latter case provides a smaller margin of safety. 

7 5  Conditional Stability 

All feedback amplifiers considered thus far could be made stable by lowering Adc 
of the operational amplifier while holding all other parameters constant. 
Consider, however, a feedback amplifier characterized by the Nyquist diagram 
of Figure 7.1~. The line of AFN in Figure 7 . 1 ~  does not encircle the - 1 + jO 
point; hence, the feedback amplifier is stable. However, if Ad. is lowered. the 
diagram shrinks and the unstable feedback amplifier characterized by Figure 
7.ld may result. 

7.6 PHASE MARGINS YY 

Thus, the stability of a feedback amplifier charasterized by the Nyquist 
diagram of Figure 7.lc requires not only that A,, be below a certain value, but 
the stability is also conditional on not having Ad, too low. Such amplifiers arc 

condi~ionolly stable, as opposed to ubsolutely srubh feedback ampliliers- 
such as characterized by the Nyquist diagram of Figure 7.111, where the 
magnitude IAFNI < 1 for all frequencies when the phase q = - 180'. Next. 
feedback factor AFN of a conditionally stable feedback amplilicr is describcd. .--- - 

Consider the amplifier with the feedback factor 

where cros~ouerfrequen~yf~ and w > 1 are positive real numbers to be specilied 
later. AF,  of Equation 7.51 includes the responses of three identical lag 
networks with corner frequencies f , ,  as well as of two identical lead-lag 
networks with fL = fC/w and fu = few. Such feedback factors occur in systems 
that include more than one operational ampllher. 

When f, << fc/w, Equation 7.51 can be approximated for / b f c / r  as 

Also, if AdcFN,d, is chosen as 

Equation 7.52 becomes 

Figure 7.5 shows the Bode plots of Equation 7.54 with w = 5. 
It can be shown (see Problem 7.19) that, for any value of w, at f = fr the 

magnitude of AF,  of Equation 7.54 becomes 1 and the phase of AF, becomes 
-90" - 4 arctan(l/w). It can also be shown (see Problem 7.20) that the feedback 
amplifier is stable if u > 1 + 3 = 2.41 in Equation 7.54. The upper and lower 
limits of Ad,FN.dc required for stability are the subject of Problem 7.21. 

7.6 Phase Margins 

The Nyquist criterion has been found to be a useful tool for determining the 
limits of stability, and safety margins could be provided by staying away from 
these limits. However, the Nyquist criterion does not always provide a reliable 
indication of safety margins. 
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G 
7.6 PHASE MARGINS 101 

--- -- -- - - - - - 

EXAMPLE 7.9. The frequency response of an amphfier cons~stlng of two 
transistor stages is represented by Equat~on 7.5. Accord~ng to the Nyqu~st 
criterion, such an amplifier is always stable. However, in reahty a trans~stor 
amplifier stage also has an excess phase that makes the actual phase 1 %-lo % 
more negatlve than the phase computed from Equation 7.5. Thus, the actual 
phase may become several degrees more negatlve than - 18OU, and the feedback 
amplifier may become unstable. 

pp - - -- - - -- 

An alternative approach imposes a requirement on the phase that is stricter 
than the Nyquist criterion. It requires that, at  a frequency where lAFNI = 1, the 
phase cp should be more positive than or equal to  - 180" + cp,, where cp, is 
positive. Thus, it is required that 

P~AF, I=I  2 - 180' + V M ~  (7.55) 

where cp, is a positive phase margin that is typically between 30" and 60". Note 
that Equation 7.55 reverts to the Nyquist criterion if cp, = 0. 

As was also the case for the Nyquist criterion, phase margins can be d~rectly 
evaluated graphically by use of Bode plots. In what follows here, phase margins 
of several simple transfer functions are considered. 

7.6.1 Two Lag Networks 
The transfer function of Equation 7.5 consists of two lag network responses and 
is always stable according to the Nyquist criterion. Its phase cp can be written 
(see Problem 7.24) 

cp = EN = - arctan - arctan - . (9 (2 
T o  find the frequency where IAFNI = 1, the phase given by Equation 7.56 is 
substituted into Equation 7.55, resulting in 

-arctan - - arctan - 2 - 180" + cp,. (L) (9 
It can be shown (see Problem 7.25) that, for 0 < cp, < 90" and f > 0, f can be 
expressed from Equation 7.57 as 

The magnitude lAFN1 can be written, from Equation 7.5, 
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hence, the criterion JAFNI = 1 becomes 

with f given by Equation 7.58. Equations 7.58 and 7.60 can also be combined as 

where 

EXAMPLE 7.10. Feedback factor AFN of a feedback amplifier is represented 
by Equation 7.5 with f, = 1 MHz and f, = 4 MHz. What is the maximum 
permitted value of AdcFN,dc for p, = 45"? 

Using Equation 7.61b, 

= 5.7 MHz. 

By use of Equation 7.61a, 

4 MHz 

In the limiting case when one of the corner frequencies is much lower than the 
other, Equation 7.5 can be written 

Note that comer frequency fo was introduced instead off' of Equation 7.5 to 
emphasize that in Equation 7.62a 

fo << fi. 
The phase of Equation 7.62a can be written 

f =a= -90" - arctan - 
fi 
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To find the frequency where IAFNl = 1, the phase given by Equation 7.63 is 
substituted into Equation 7.55, resulting in 

which can also be written 

f G f i C o t V ~ .  (7.65) 

The magnitude lAFNl can be written, from Equation 7.62a, 

The combination of Equations 7.65 and 7.66 with J A F , )  = 1 results in 

AdcF~,dc (AdcF~,dc)max 

(7.67) 
fo 

EXAMPLE 7.11. A Type 9914A wideband hybrid operational amplifier is 
characterized by feedback factor AFN that can be approximated by Equation 
7.62a with Ad. = 5000, fo = 0.5 MHz, and f, = 50 MHz. What is the maximum 
uermitted value of AdcFN.,, for cp, = 45"? 

Using Equation 7.67, 

Thus, the maximum permitted value of F,,,, is 
141.4 141.4 ( ) - - = -- 0.028 

~ . d c  max - Ad, 5Cm - 

and the minimum permitted value of the resulting amplification MN,dc  is 
approximately 

The phase margins may be improved by the introduction of lead-lag 
compensation of the form of Equations 7.43a-d with fr < f,. For example, if f, 
is chosen to equal f l  of Equation 7.62% the resulting feedback factor becomes 
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and Equation 7.67 becomes 

EXAMPLE 7.12. Feedback return FN of Example 7.11 is changed from a 
frequency-independent F N , d C  to the F N  given by Equation 7.43a with 
fL = 50 MHz and f, = 250 MHz. Thus, for cp, = 45", 

250 MHz 
( A d c F ~ . d = ) -  = cot 450J- = 707, 

and 

1 1 
( M ~ . d c ) m i n  2 --- = - CV 7. (FNSdc)- 0.1414 = 

Note that this is a significant improvement over the (M,,dc),,,in = 35 of Example 
7.11. 

According to Equation 7.69, it is desirable to have f, as large as possible in 
0" to be able to use a large value of A d c F N , d c .  However, the value off, is 
constrained by Equations 7.43a-d. It will now be assumed, and seen later, that 
in practice the limitations on the choice of feedback capacitance CF do not Emit 
the choice of other values in Equations 7.43a-d. Thus, CF is eliminated by 
combining Equations 7.434 7.43c, and 7.43d, resulting in 

1 = ~ N , d c  (i + 2nRFcI) ; (7.70) 

the required value of CF is given, from Equation 7.43c, as 

1 
CF=- (7.71) 

~ X R F ~ L  ' 

TO have f, large, I//, of Equation 7.70 has to be small. With comer 
frequency fL chosen to equal a corner frequency of the operational amplifier, for 
a given FN.,jc the only remaining avenue to reduce I /  f, in Equation 7.70 is to 
reduce R&. It can be seen in Figure 7.4 that capacitance C, is the sum of the 
operational amplifier input capacitance and of stray capacitances; hence, C, 
cannot be reduced below a minimum value. This leaves feedback resistor RF to 
be reduced. Resistance RF can be expressed from Equation 7.70 as 

where RF b 0 as a consequents of Equation 7.46. Note that the value of R, given 
by Equation 7.72 may be impractically low, because the current required for a 
given output voltage swing may exceed the current capability of the output of 
the merational amplifier. Output current limitations of operational amplifiers ...- - = 

will be discussed in Chapter 10. 

-_--- -- -- - 

EXAMPLE 7.13. In the feedback amplifier of Example 7 12. f L  = 50 MHz. 
f.. F 250 MHz, and FN,dc  = (FN,dc),,,ax = 0.1414. Also, C, = 10 pF. Thus, ac- J U  

cording to Equation 7.72, 

The required value of C,, from Equation 7.71, is 

The value of R, can be obtained from Equation 7.43b as 

Thus, 

R F + R I =  132!2+22R= 154R. 

As will be seen in Chapter LO, this resistance is sufficiently low to limit the 
voltage swing at the output of the Type 9914A wideband hybrid operational 
amplifier. .- - -  

Consider the amplifier with the feedback factor 

where crossover frequency fc and w > I are positive real numbers to be specified 
later. AFN of Equation 7.73 includes the responses of two identical lag networks 
with corner frequency h ,  as well as of a lead-lag compensation with /r = fC /w  
and fu = jCw. Note that the resulting feedback amplifier is always stable 
according to the Nyquist criterion. 

When f; K f J w ,  Equation 7.73 can be approximated for 1' > fc/w as 
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Also, if AdCFN,,, is chosen as 

Equation 7.74 becomes 

Figure 7.6 shows the Bode plots of Equation 7.76 with w  = 3. 
It can be shown (see Problem 7.32) that, for any value of w, at frequency fc the 

magnitude of AFN of Equation 7.76 becomes 1 and the phase of AFN becomes 
-90" - 2 arctan(l/w). Thus, by use of Equation 7.55, 

(7.77a) 

hence, 

cp, < 90" - 2 arctan (7.77b) 

Also, from Equation 7.77b, 

1 + tan (y) 
w 2  

I - tan (y) 

EXAMPLE 7.14. In Figure 7.6, w = 3. Thus, according to Equation 7.77b, 

that is, the Bode plots of Figure 7.6 satisfy all phase margin requirements of 
rp, ,< 53.1". If the phase margin requirement is cp, = 45" then, from Equation 
7.78, 

that is, any w 3 2.41 satisfies the phase margin requirement of cp, = 45". 
-- 
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FIGURE 7.6 Bode plots of AFN of Equation 7.76 with w = 3: G = 
20 dB loglo (AFN(  PIMI cp s & 
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- 
The transfer function of Equation 7.6 consists of three lag network responses. In 
the limiting case when one of the corner frequencies is much lower than the 
other two, the transfer function of Equation 7.6 can be written 

AFN = AdcF~.dc 

Ciflf0M1 + jflf1M1 + j f l f2)  ' (7.79a) 

Note that corner frequency fo was introduced instead off, of Equation 7.6 to 
emphasize that in Equation 7.79a 

fo << fl 

and 

The phase of Equation 7.79a can be written 

TO find the frequency where 1AF.I = 1, the phase given by Equation 7.80 is 
substituted into Equation 7.55, resulting in 

(7.81) 

It can be shown (see Problem 7.35) that, for 0 o cpM c 990. and f > 0, f can be 
expressed from Equation 7.81 as 

/ 6 ---- 'I f2 tan 9, + Jw. 
Also, by equating IAFNI = 1, it follows from Equation 7.79a that 

where 

j-=-- 'I tan p, + J(v. 
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___________ - -  - 
--- -- 

EXAMPLE 7.15. A Type 2539 wideband monol~th~c operat~onal ampl~fier IS 

characterized by Ads = 30,000, fo = 20 kHz, and f, = j2 = 300 MHz. The 
phase margin is specified as cp, = 45". Thus, Equation 7.83b becomes 

f = -  
300 MHz + 300 MHz tan 450 

2 

+ pH' 300 MHz tan 45' + (300 MHz)(300 MHz) Y 
= 124 MHz, 

and Equation 7.83a becomes - 

124 MHz Jm Jm = 7259, 
(AdcF~.dc)max = 300 MHz 300 MHz 

Hence, 

Phase margins of transfer functions consisting of three lag network responses 
may be improved by lead-lag compensation, as was also the case for transfer 
functions consisting of two lag network responses. Iff, is chosen to equal f2 in 
Equation 7.79a, the resulting feedback factor becomes 

and Equations 7.83 are applicable with fu substituted for f,. However, lead-lag 
compensation relocates only one corner frequency and its effects are limited for 
transfer functions with three lag network responses-especially at low values of 
M ~ . d c .  

EXAMPLE 7.16. A Type 2539 wideband monolithic operational amplifier is 
characterized by Ad, = 30,000, fo = 20 kHz, and f, = f2 = 300 MHz. The 
phase margin is specified as cp, = 45". Lead-lag compensation is introduced 
withC,= 1.8pF,RF= 150Qand RI=75R.Thus,  
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1 CF=-= 1 
2nRFfL 2741 50 0x300 MHz) = 3.5368 pF 

and 

= 596.45 MHz. 

A h  by U s  of Equation 7.83b with fu substituted for f,, 

f = -  300 MHz + 596.45 MHz 

2 

300 MHz + 596.45 MHz 2 

2 ) + (300 MHa596.45 MHz) 

= 168.09 MHz. 

Hence, by use of Equation 7.83a with fu substituted for f, ,  

(AdcF~d-  = 168.09 MHz 
0.02 MHz 300 MHz 596.45 MHz 

= 10009. 

Thus, 

This is greater than the specified Adc = 3O.W hence, the fedback amplifier 
satisfies the phase margin requirement of qw = 450. ~ o t e ,  however, that this 

p h e  margin requirement would not be satisfiaj if were increased by 0.1 % 
to a value of 30,030. Also note that 

will be seen in Chapter 10, this low value of resistance provides a Ggnificant 
limitation on the OUtput voltage swing of the Type 2539 wideband monolithic 
operational amplifier. 
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Resulting bandwidths of feedback amplifiers will be discussed in detail in 
Chapter 8. It will be seen that an operational amplifier built with a given 

can be optimized to attain a maximum resulting bandwidth for a 
spscified resulting amplification MNVd,. For example. the Type 2539 wideband 

operational amplifier of the preceding two examples is optimized for 
resulting amplifications M,,,, in the rough vicinity of 10. However, its design 
could be changed to permit its use as a voltage follower (see Problem 7.37). 
Hence, one way out of the limitations on MNVdc in the preceding two examples is 
to find an operational amplifier that is more suited for operation at a low value 
of hfN,dc-such as the operational amplifier of Problem 7.37. However, if such 
an operational amplifier is not readily available, there remain two other 
approaches for the improvement of phase margins for low values of MNSdc. 

Consider the use of the voltage divider network of Figure 6.7 (page 66) as a 
feedback network. However, unlike in a lead-lag compensation, an f ,  > f2 is 
chosen in Equation 6.19a. Thus, 

where 

and 
1 

fL = 
(7.85d) 

2n - RFR1 (C, + C,) ' 
RF + R, 

Note that subscripts Land U are interchanged from those of Equation 7.43a 
describing lead-lag compensation, because here the corner frequency in the 
numerator is higher than the corner frequency in the denominator. For this 
reason, this compensation is called lag-lead compensation (other names are also 
in use). Also, Equations 7.85b-d do not limit the ratio f u / f L  > 1 because fL can 
be decreased by increasing C, in Equation 7.85d without altering f ,  in Equation 
7.85~. 

Frequency response characteristics of Equations 7.85a-d can be illustrated 
for f,/ fL = 100 using the Bode plots of Figure 6.2 with fL substituted for f , ,  f,  
substituted for f, ,  and 20 dB 1 0 g , , ( F ~ ~ ~ ~ )  added to the labels of the vertical axis. 
At frequencies of f  >> fu, feedback factor FN = FN,,, f L / f u  = 

hence, F, is reduced from its dc value by a factor of f u / f L  > 1. Also, in this 
frequency range, the phase of F, approaches zero; hence, it does not alter the 
phase of the operational amplifier. 
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Consider the case when f ,  is much lower than the frequency where & 
= - 180" + rp,. In this case, for the purpose of phase margins, FN,,, is replaced 

by the lesser FN,dc/(fu/fJ, because F,= FN,&/( f u / f d  and EN= ,@ at the 
frequency where = - 180" + cp,. Therefore, FNvd,  can be chosen greater, and 
MN.,, can be chosen smaller, than would be the case without the factor 
f J f L  > 1. 

- 
EXAMPLE 7.17. A Type 2539 wideband monolithic operational amplifier is 
characterized by A,, = 30,000, fo = 20 kHz, and f ,  = f, = 300 MHz and is to 
be used as a feedback amplifier with M,,,, 2 1 .  The feedback network described 
by Equation 7.85a is used with FN,d, = 1, f,, = 20 MHz, and f,  = 2 MHz. Thus, 
the feedback factor can be approximated for frequencies off  >> fo = 20 kHz as 

- - (30,OOON 1 M 1 + j f 120 MHz) 
( j  f / 2 0  kHzM1 + j f/3OO MH#(l + j f  / 2  MHz) 

Bode plots of the exact AFN are shown in Figure 7.7. Note that (AFNI = 1 at a 
frequency of approximately 60 MHz, and f,  = 20 MHz is less than this only by 
a factor of 3. However, the resulting phase margin is a reasonable cp, = 51". 

The feedback network is realized by that of Figure 7.4 with R, an open circuit 
and with an arbitrary choice of RF = 1 kQ. Thus, from Equation 7.85c, 

1 C F = - =  1 2 8 pF. 
2aR, f,  2741 kQX20 MHz) - 

Also, for R, -r a, Equation 7.85d becomes 

hence, 

1 c --- I - C ,  = 
1 

~ Z R F ~ L  2 4 1  k 4 2  MHz) 
- 8 pF? 72pF. 

The resulting feedback amplifier provides a resulting dc amplification of 
MNvdc = l/FN,dc = 1 .  However, M N  becomes different from 1 at frequencies 
greater than or equal to fL = 2 MHz. For this reason, the circuit is frequently 
not called a voltage follower, but only a unity-gain feedback amplifier. 
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I 2 0 M H z ~  \ 100 MHz 

o d;'k~z 1O1kHz 10; kHz 1 ;Hz 10 

1 

FIGURE 7.7 Bode plots F = 20 dB loglolAF~l and p = &in Example 
7.17. 

A disadvantage of lag-lead compensation is that the resulting amplification 
starts changing from its dc value at frequency fL, which is very low compared to 
the corner frequencies of the operational amplifier: fL = 2 MHz as compared to 
f, = 300MHz in Example 7.17. This limitation will be discussed further in 
chapter 8. 

Still another approach for obtaining low values of resulting amplifications 
M N  is to attenuate the signal by a resistive attenuator, while building the 
feedback amplifier with a higher M N  than required. Crude as this may seem, it 
has some advantages in inverting feedback amplifiers discussed in Sections 7.7 
and 8.5. 
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7.7 Inverting Feedback Amplifiers 

Thus far, the discussions of stability and phase margins have been based on a 
noninverting feedback amplifier, as in Figure 7.4. An inverting feedback 
amplifier is shown in Figure 7.8. 

Figures 7.4 and 7.8 differ in the location of voltage source F,. Therefore, the 
two circuits become identical when 6, = 0. Since stability and phase margin 
considerations have been independent of magnitudes of input voltages, it would 
seem that they would be equally valid for both Figures 7.4 and 7.8. This is 
completely correct in principle; however, a practical difference arises from the 
effects of nonzero source impedances of voltage sources q,. 

The stability and phase margins in the noninverting feedback amplifier of 
Figure 7.4 are quite insensitive to any impedance in series with voltage source 
Go. In contrast, it was seen that stability and phase margins can critically depend 
on resistance R,, therefore also on any impedance in series with voltage source 
6. in Figure 7.8. 

FIGURE 7.8 An inverting feedback amplifier. 

The situation is especially critical when 6, in Figure 7.8 is at a remote 
location and is connected through a transmission line. When the termination at 
the sending end of the transmission line is not close to its characteristic 
impedance at all frequencies, the impedance presented by the transmission line 
at the receiving end-that is, at the inverting feedback amplifier-is dependent 
on its length and on frequency; hence, it cannot be relied on. In such cases, 
stability and phase margins have to hold up even when a large impedance 
appears in series with voltage source 6, in Figure 7.8. This leads to the circuit of 
Figure 7.9, where stability and phase margins can be assured by a suitable choice 
of R , ,  R , ,  and R,.  In practice, these resistors are chosen such that stability and 
phase margin requirements are satisfied for any resistive source impedance 
Rmurc,. 

Rsource - - 
- 

FIGURE 7.9 An inverting feedback amplifier that is suitable for operation 
with any R,,. 

--- 

EXAMPLE 7.18. A Type 2539 wideband monolithic operational amplifier is 
characterized by A,, = 30,000, fo = 20 kHz, and f, = f2 = 300 MHz. It is used 
as an inverting feedback amplifier in the circuit of Figure 7.9 with C, = 1.8 pF, 
C, = 3.5368 pF, R, = 150Q and R ,  + R ,  = 75 Q. Thus, when R ,,,,,, = a, in 
Figure 7.9, the circuit becomes identical to that of Example 7.16; hence, it 
satisfies a phase margin requirement of cp, = 45". 

When R ,,,,, # CQ, it lowers the value of R ,  below R ,  + R ,  = 75R. This 
leaves the value off, unchanged. However, it increases fu, thereby increasing 
the phase margin. Also, it lowers F,,,,, thus increasing MN., ,= 1/FNSdc and 
further increasing the phase margin. Therefore, a phase margin requirement of 
cp, = 45" is satisfied with any value of R,,,,,, and R , .  

In addition to stability and phase margin, the choice of resistors R , ,  R, ,  and 
R ,  is also governed by other requirements such as the resulting frequency 
response, transient response, and input impedance of the feedback amplifier. For 
this reason, further discussion of Figure 7.9 is postponed until Chapter 8. 

PROBLEMS 

7.1 Show that the Nyquist diagram of Figure 7.2 is a circle that has a radius of 
AdCFN,,,/2 and has its center at AdCFN,, , /2  + jO. [Hint :  Multiply the 
numerator and the denominator of A in Example 7.1 by (1 - jf/fo) and 
show that the resulting denominator is real; then express Im(AFN) as a 
function of Re(AFN).]  
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Derive Equations 7.8, 7.10, and 7.12. 

An internally compensated operational amplifier can be characterized by 
an A of the form of Equation 5.15 with f, = 10 Hz, f, = f, = 10 MHz, 
and A,, = 200,000. Show that the operational amplifier is stable without 
additional compensation when it is used as a voltage follower. 

Derive Equations 7.17 and 7.22. 

An operational amplifier is characterized by an A in the form of Equation 
7.23 with f, = 1 MHz, j2 = 4 MHz, f, = 40 MHz, fk = 100 MHg and 
Ad, = 4000. Sketch the Bode plots of AFN if A,,F,,,, = 40. Use the Bode 
plots and sketch an approximate Nyquist diagram. Is the system 
stable? 

An operational amplifier includes a frequency-independent time delay 
and is characterized by an A = 1000e-Jflfo/(l + j flf,). Sketch the Bode 
plots of A F N ,  assuming FN = 1, and fD/ f, = 1, 100, and 10,000. Discuss 
stability conditions. 

Use the methods of Appendix B and show that the fractional error of 
Equation 7.22 has a magnitude of less than f,/ f, + f,/ f2. 

Derive Equations 7.24 and 7.26. 

Sketch the Bode plots of AFN of Example 7.5 using piecewise linear 
approximation. 

Sketch the gain plot of AFN of Problem 7.9, but without using piecewise 
linear approximation. 

Demonstrate that the stability considerations derived in this chapter for 
noninverting feedback amplifiers can be applied to inverting feedback 
amplifiers if F,,,,/(l + F,,,,) is substituted in place of FN,,. [Hint :  
Express FNVdc and F,,,, by resistors R, and R,.] 

An approximate rule of stability states that a system is stable if the Bode 
plot of the gain of IAFNI, or of JAF,/( l  + F,)(, crosses the 0-dB axis with a 
slope that is not steeper than -40dBtdecade. Show that this rule is exact 
if AFN is of the form of Equation 7.6 with f, << f2 < f3. Show that the 
error resulting from the application of this rule in the maximum allowed 
A,,FN,d, is - 35 % if AFN is in the form of Equation 7.6 with f, = f2 = f, 
Show that the rule may break down completely in a case such as the one 
discussed in Problem 7.6. 

7.13 Derive Equations 7.28, 7.30, 7.32, and 7.34. 

7.14 Derive Equations 7.40 and 7.41. 

7.15 Verify Equations 7.43, 7.45, 7.46, and 7.47. 

*Optional problem. 

PROBLEMS 117 

7.16 Sketch into Figure 6.5 the Bode plots of Example 7.7 with 
f, = f, = 1 MHz and f, = 61.5 MHz. 

Repeat Example 7.7 with C, = 10 pF, 50 pF, and 100 pF. 

Repeat Example 7.8 with C, = 10 pF, 50 pF, and 100 pF. 

Show that, for any value of w, at j = fc the magnitude of A F ,  of 
Equation 7.54 becomes 1 and the phase of AFN becomes 
-90" - 4 arctan(l/w). [Hint :  To find the magnitude of the fraction, divide 
the magnitude of the numerator by the magnitude of the denominator. To 
find the phase, use the identity arctan x = 90" - arctan(l/.x), which is 
valid for x 2 0.1 

Show that the feedback amplifier described by Equation 7.54 is stable if 
w > 1 + $ g 2.41. [Hint :  Set the phase of AF, to - 180•‹, and use the 
identity tan 2x = (2 tan x)/(l - tan2x).] 

Use Figure 7.5 to show that, for w = 5, the feedback amplifier described 
by Equation 7.52 is stable if A,,F,,,, < 8 . 4 f ~ / f ~ w 2  and if 
A,,F,,,, 2 0.12ffl f iw2. [Hint :  Consider that Figure 7.5 shows Equation 
7.52 with the A,,F,,,, of Equation 7.53, and set (AF,( = 1 at the 
frequencies where the phase is - 18V.l 

Show that the phase margin in Figure 7.5 is cp, = 44.76". 

Show that the phase margin of the feedback amplifier described by 
Equation 7.54 is cp, = 45" when w = 1 + f i  + = 5.027. 
[Hint: Use the identities tan x = (sin x)/(cos x), tan(xj2) = (sin x)/ 
(1 + cos x), 1 + tan2x = l/cos2x, and express l/w = tan(45"/4) as a 
function of tan 45" = 1.1 

Derive Equation 7.56 from Equation 7.5. [Hint :  Note that for any 
complex W, X, Y, 2, E X =  w+ B a n d  /Y/Z = fl- B . 1  

Derive Equation 7.58 from Equation 7.57. [Hint :  Use the identities 
tan(x + y) = (tan x + tan y)/(l - tan x tan y) and cot x = tan(9O0 - x); 
also, assume at the outset and prove at the end that f < f,j2.] 

Verify the results of Example 7.10. 

Sketch the Bode plots for the feedback amplifier of Example 7.10. 

Sketch the Bode plots for the feedback amplifier of Example 7.1 1. What is 
the phase margin if M,,,, = 50? 

Sketch the Bode plots for the feedback amplifier of Example 7.12. What is 
the phase margin if MN,,, = lo? 

Verify Equations 7.70 and 7.72. 
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Show that when the feedback network of Example 7.12 is realized by that 
of Figure 7.4 with F,,, = 0.1 and C, = lOpF, then C, = IOpF, 
R,z 318.3 R, and R,z 35.4 R. 

Show that, for any value of w, at f = f, the magnitude of AFN of Equa- 
tion 7.76 becomes l and the phase of AFN becomes - 90" - 2 arctan(l/w). 
[Hint: To find the magnitude of the fraction, divide the magnitude of the 
numerator by the magnitude of the denominator. To find the phase, use 
the identity arctan x = 90" - arctan(l/x), which is valid for x 2 0.1 

Derive Equation 7.78 from Equation 7.77b. [Hint: Use the identity 
tan(x - y) = (tan x - tan y)/(l + tan x tan y).] 

Use Figure 7.6 to show that, for w = 3, the feedback amplifier described 
by Equation 7.74 has a phase margin of at least 45" if AdCFN,,, 
2.7fS/f :w and if A,,F,,,, >, O.37f :/f:w. [Hint: Consider that Figure 7.6 
shows Equation 7.74 with the Ad,FN,*, of Equation 7.75, and set IAF,I 
= 1 at the frequencies where the phase is - 180" + cp, = - 13S0.] 

Derive Equation 7.82 from Equation 7.81. [Hint: Use the identities 
tan(x + y) = (tan x + tan y)/(l - tan x tan y) and cot x = tan(9O0 - x); 
also, assume at the outset and prove at the end that f < fi f2.] 

Repeat Example 7.15 with cp, = 30•‹, and show that (MNsd,),,~ 2.6. 

Refer to the compound lag network described in Example 6.7, and show 
that with R2 = 294R and C2 = 18 p F  the overall amplification of the 
operational amplifier, including the additional corner frequency of 
300 MHz in the footnote to Example 6.6, becomes 

30,000 
(1 + jfl4.3 kHz)(l + j f/300 MHz)(l + j f/l38O MHz) ' 

Also show that, when used as a voltage follower, the resulting feedback 
amplifier satisfies 

(a) a phase margin requirement of cp, = 60", 
(b) a phase margin requirement of p, = 45", even if A,, is raised from 

30,000 to 60,000. 

CHAPTER 8 

Frequency Response and 
Transient Response of 
Feedback Amplifiers 

Chapter 7 covered stability conditions and margins of feedback amplifiers. This 
chapter evaluates the frequency responses and the transient responses of the 
resulting amplifications, M, and M,, as well as input impedances. As in Chapter 
7, the discussion here is also based on noninverting feedback amplifiers; 
inverting feedback amplifiers are discussed in Section 8.5. 

81 Operational Amplifiers with A = A& = 

This simple case of the ideal operational amplifier was introduced in Chapter 3. 
With amplification A = co at all frequencies and a€ all times, the resulting 
amplification M N  = l/FN. This limiting case clearly shows the effects of feedback 
return F, on the frequency response and the transient response of the resulting 
amplification M,; this relation will be obscured with the introduction of 
frequency-dependent amplifications A in later sections. 

8.1.1 Frequency-Independent Feedback 
This is the simplest possibility, described by Equation 3.8, whereby 

at all frequencies and at all times. This would be an ideal response for 
amplification without altering the shape of the input signal. Also, unattainable 
as it is, the limit of Equation 8.1 provides a useful basis for evaluating properties 
of practical feedback amplifiers. 

119 
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8.13 Lead-Lag Compensation 
In lead-lag compensation, 

where 

f~ < fu. (8.2b) 
Lead-lag compensation can be implemented using Figure 7.4 with FN,,., f,, 
and f ,  given by Equations 7.43b-d. When A = A,, = co at all frequencies, the 
resulting amplification of the feedback amplifier becomes 

Equation 8.3 can be illustrated for f,/ fL = 100 using the Bode plots of Figure 
6.2 with f ,  = fL, f ,  = f,, and 20 dB log,, M,,, added to the labels of the 
vertical axis G, which now represents the resulting amplification M,. Thus, M, 
starts decreasing from its dc value at a frequency of fL. Note that fL is the 
location of the corner frequency that was cancelled from feedback factor AFN by 
the introduction of the lead-lag compensation in Chapter 7. For example, 
fL = 300MHz in Example 7.16; thus, the decrease of MN resulting from the 
frequency dependence of FN starts at 300 MHz. 

When C.;, and V,,, are represented in the time domain, the ratio of their 
Laplace transforms can be written, by use of Equation 8.3, 

where 

and 

Note that f, > fL; hence, r ,  < TL. Also, when input voltage 6, is a step 
function with magnitude V,, 

and 

8.1 OAs WITH A = Adc  = 121 

The inverse Laplace transform of Equation 8.6 can be written for times t > 0 as 

- 

EXAMPLE 8.1. In Equation 8.7, rL /rU = 10. Thus, ru / rL  = 0.1 and Equation 
8.7 becomes 

Kul(t) = MNSdc VO(l - 0.9 e-'lr~). 

A comparison with Example 6.2 shows that VOu, of this example can be 
illustrated using Figure 6.3 with T ,  substituted for ( R ,  + R,)C and MN,,,V0 
substituted for V,. Thus, in this example, an initial jump of 0.1 MN,,,V0 is 
followed by an exponential rise with a magnitude of 0.9MN,,,VO and with a time 
constant of T , ,  to a final value of MN,dcVo. 

8 1 3  Lag-Lead Compensation 
In lag-lead compensation, 

with 

fL < fu. 

Lag-lead compensation can be implemented using Figure 7.4 with FN,dC, fL,  
and f ,  given by Equations 7.85b-d. When A = A,, = co at all frequencies, the 
resulting amplification of the feedback amplifier becomes 

Equation 8.9 can be illustrated for fu/ fL = 100 using the Bode plots of Figure 
6.5 with f ,  = fL, f2 = fU ,  and 40dB + 20dB log,,MN,,, added to the labels of 
the vertical axis G, which now represents the resulting amplification M,. Thus, 
MN starts increasing from its dc value at a frequency of fL. Note that this corner 
frequency was a comparatively low fL = 2 MHz in Example 7.17 where, as will 
be seen later, MN starts increasing from its dc value at a frequency of 2 MHz. 

When 6, and V,,, are represented in the time domain, the ratio of their 
Laplace transforms can be written, by use of Equation 8.9, 
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where 

1 
7,, = - 

2 ~ f ~  
@.lob) 

and 

Note that f, > f,; hence, 7, < 7,. Also, when input voltage K, is a step 
function with magnitude V,, 

The inverse Laplace transform of Equation 8.1 1 can be written for times t > 0 as 

EXAMPLE 8.2 In Equation 8.12, r,/ru = 10. Thus, Equation 8.12 becomes 

A comparison with Example 6.4 shows that V,,, of this example can be 
illustrated using Figure 6.6 with t / r ,  as the variable of the horizontal axis and 
with 10MN,dcVo substituted for V,. Thus, in this example, an initial jump of 
10MN,dcVo is followed by an exponential decay with a magnitude of 9MN,,,V0 
and with a time constant of r,, to a final value of MN,dcVo. 

Thus, there is an overshoot in the resulting output voltage with a magnitude 
that is (r,/r, - 1) times the final value-nine times the final value in Example 
8.2 above. This overshoot can be eliminated and the frequency response can be 
made flat by inserting in the signal path, preceding or following the feedback 
amplifier, a voltage divider network of Figure 6.8d with R, omitted, 
RsCs = 1/2zfu, and Rs(Cs + C,) = 1/2nh. The use of Equations 6.19a-c with 
R p  = 03 shows that the frequency response of this network is 

This frequency response multiplies the frequency response of Equation 8.9, 
resulting in an overall amplification that is a constant M ,  = MNmd,  at all 
frequencies and at all times. 

Operational Amplifiers with A = Ad,/(l + j f / fi) 

~ x c e p t  for the frequency-independent A = Ad,  discussed in Section 8.1, this is 
the simplest representation of the frequency dependence of operational 
amplifiers. Although too simple to fully characterize realistic operational 
amplifiers, it can be used to illustrate some basic properties. This is done here for 
frequency-independent feedback and for lag-lead compensation; however, lead- 
lag compensation is not included, because it requires more complex represen- 
tations of A for meaningful results. 

82.1 Frequency-Independent Feedback 
In the case of a noninverting feedback amplifier using an operational amplifier 
that, in the frequency domain, has an amplification of 

the resulting amplification, M , ,  becomes 

where feedback return F,.,, is a positive real dimensionless number. Substitu- 
tion of Equation 8.14into Equation 8.15 results in an expression for M ,  that can 
be written as 

where MN,dc is the resulting amplification of the feedback amplifier at zero 
frequency, 

Equations 8.16a-c are illustrated in Figure 8.1 where Bode plots of magnitudes 
are plotted for the case of A,, = 10,000 with M,,,, = 10,000 (i.e., FNUdc = O), and 
with M,,, = 100 (i.e., F,,*, = 0.0099). 

It is seen that the corner frequency B of IM,I has a value of B = f l A d , l M ~ , d , .  
For frequencies of f >> B, IM,I z A,, f, If, independent of FNedC and thus of 
MNed, .  As a result, the gain plot of ( M , (  can be approximated by two straight 
lines: IM,( z M,,,, for S << Band lMNl z A,, f , / f  for f >> B. Here B equals the 
3-dB bandwidth (or simply bandwidth) of M,: the frequency at which ) M N )  is 
down by 3 dB from its value at zero frequency. 
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FIGURE 81 Bode plots of gain IMN( of Equatioos 816a-c for Ad, = 
10,000 with M& = 10,000 and 100. 

EXAMPLE 8.3. An operational amplifier is characterized by an amplification 
given by Equation 8.14 with fl = 1 MHz and A,, = 10,000. It is used as a 
noinverting feedback amplifier with a resulting amplification at zero frequency 
of MN,dC = 200. The resulting amplification M N  of the feedback amplifier circuit, 
from Equation 8.16b, is 

Thus, the 3-dB bandwidth of the feedback amplifier is B = 50 MHz. 

Equations 8.16 may also be used to approximate M N  for operational 
amplifiers that have more than one corner frequency. This can be done when 
only one comer frequency of A is within the resulting bandwidth 8, and all other 
corner frequencies of A are much greater than B. 

8.2 OAs WITH A = Ad,I(l + 125 

_ _ _ _  - _  ~ - 
EXAMPLE 8.4. As a very rough approximation, for frequencies below 
1 MHz, the amplification of a Type 741 internally compensated monolithic 
operational amplifier can be represented by Equation 8.14 with A,, = 200,000 
and f l  = 10 Hz. This approximation ignores an additional corner frequency at 
10 MHz, which significantly alters the phase for frequencies above 1 MHz. 

When M,,,, = 10 then, based on Equation 8.16b, the 3-dB bandwidth of 
the resulting feedback amplifier is B = f l  AdC/MN,,, = (10 Hz)(200,000)/10 = 

200 kHz. Since the approximation of A is valid up to 1 MHz, the B = 200 kHz 
approximation is valid. 

When MNBdc = 1, the 3-dB bandwidth of the resulting feedback amplifier is 
B = f1Adc /MN, , ,  = (10 Hz)(200,000)/1 = 2 MHz. Since the approximation of A 
is valid only up to 1 MHz, the B = 2 MHz approximation is inaccurate. -_ _._--p p-~ p- - - -  ~ - -  p-- 

When q, and VOu, are represented in the time domain, the ratio of their 
Laplace transforms can be written, based on Equation 8.16b, 

where 

When input voltage v,(t) is a step function with magnitude Vo, 

The inverse Laplace transform of Equation 8.18 can be written for times t > 0 as 

with r given by Equation 8.17b. 

8.2.2 Lag-Lead Compensation 
In lag-lead compensation 

hence also 

where in the above equations 
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Figure 8.2 shows piecewise linear approximations for Il/F,I of Equation 
8.20b and for IAJ of Equation 8.14 by light lines. A piecewise linear approxi. 
mation of the resulting JM,I is shown by the heavy line. Also, note that Figure 
8.2 assumes Ad,FN,,, >> 1; hence, M,,, z l/F,,,,. Furthermore, note that 
Figure 8.2 shows equally spaced corner frequencies f,, fL, f,, and fc: This is 
only for the purpose of the illustration; in reality, these are rarely spaced evenly. 

The piecewise linear approximation of (M,J in Fjgure 8.2 is obtained as the 
lesser of IAl and (l/FNI. The validity of this approximation can be demonstrated 
as follows. 

The expression for MN is given by Equation 3.6 as 

and can also be written as 

. - 
FIGURE 8.2 Piecewise linear approximations of Bode plots for iag-iad 
compematioa Light lines illustrate (A1 from Equatioo 8.14 and (I/FN( from 
Equation 824%. The piecewise l i m r  approximation of the resulting lMN1 is 
sbown by the heavy he 

Consider first the case when Il/AJ >> IF,J, that is, when (A1 << ll/FN1. In this case, 
the second term on the right side of Equation 8.21b becomes negligibly small. 
Hence, l l / M N l ~  (l/Al; that is, 

IMNI (8.22a) 

for 

In the other extreme, Il/Al << IF,1; that is, IAl >> (l/FNI. In this case, the first term 
on the right side of Equation 8.21b becomes negligibly small. Hence, 
I 1 / M N I ~  IFN[; that is, 

for 

(8.23b) 

Thus, IMNJ can be approximated by IAl or by I1/FN1, whichever is much less than 
the other. 

Special attention is required when IAJ is comparable to J1/FN(. This may result 
in a smooth rounding of the frequency response in the vicinity of the frequency 
where (A1 = I1/FN1-as was the case for MNSdc = 100 in Figure 8.1. However, 
there is another possibility: The imaginary parts of 1/A and F, in Equation 
8.21b may cancel each other near the frequency where Il/Al = IFNI, that is, where 
IAI = I1/FNI This may result in a minimum in I1/MN( and hence in a peak in 
IMNI-as was the case in the frequency responses for m > 0.5 in Figure 6.13. 

Note that in Figure 8.2, the magnitude of the resulting amplification, IMNI, 
starts at its dc value, MNvdc, and it reaches MNVdc fu/  fL at a frequency of f,. It 
then stays constant up to a frequency of fc, which is the frequency where 
IAI = MN.defu/ fL. Since IAl = Ad,/( f / f,) for f >> f, , frequency fc is given by 

Also note that the exact expression for M, is 
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As discussed in Chapter 7, lag-lead compensation is used in feedback 
amplifiers to reduce feedback factor AFN in the vicinity of the frequency where 
)AFNI = 1 and thus enhance the phase margin. Therefore, to be effective, a lag- 
lead compensation must have fL and f, lower than the frequency where 
JAFNI = 1. 

EXAMPLE 8.5. As a rough approximation, the amplification of a Type 2539 
wideband monolithic operational amplifier can be represented as 
A = 30,000/(1 + j f/20 kHz), which is the same as in Example 7.17 but without 
the two corner frequencies at 300 MHz. Lag-lead compensation is introduced 
with f, = 20 MHz, fL = 2 MHz, and FNedC = 1 (same as in Example 7.17). 

It can be shown (see Problem 8.10) that the magnitude of the resulting 
amplification, IAFNI, becomes 1 at a frequency of approximately 60 MHz. Thus, 
fU = 20 MHz is lower than the frequency where lAFNI = 1 by about a factor of 
3. 

In general, a low value off, is desirable for improving the phase margin. 
However, as was seen in Section 8.1.3, the resulting amplification M N  starts 
increasing from its dc value at a frequency of fL; hence, a high value of fL is 
desirable. Thus, there is a conflict in the choice of fL and f, when the ratio fu/ fL 

is given. 
The above suggests that it is useful to consider the value of corner frequency 

fU compared to the frequency where IAFN1 = 1. However, for simplicity, in what 
follows here f, is compared to the frequency f, where the piecewise linear 
approximation of (AFN( = l-and not to  the frequency where )AFN1 itself is 1.  
Thus, fc is the frequency where the piecewise linear approximations of IAl and 
(l/FN( are equal (see Figure 8.2). 

EXAMPLE 8.6. The feedback factor AFN of Example 8.5 can be written 

The piecewise linear approximation of (AFNI for frequencies f > fu is obtained 
by approximating (AFNI for j >> fu = 20 MHz as 

= (30,OOOx 1) 
(20 kHz12 MHz) 60 MHz - -- 

f (20 MHz) f .  

8.2 OAs WITH A = A,J(1 + gyn) 129 

The frequency fc where this becomes 1 can be found by substituting /L. for f and 
equating )AFNJ = 1: 

60 MHz. 
(AFN(  = 1 = ------, 

f c  

hence, 
fc = 60 MHz. 

Thus, in this example, fu is less than fc by exactly a factor of 3. 
- - -- 

When A is given by Equation 8.14 and FN is given by Equation 8.20a, 
feedback factor AFN becomes 

Thus, with fl i fu, the piecewise linear approximation of IAFNI for f > f, 
becomes 

f if~ J '  I = AdcFN,dc -- . IAFNI = AdcF~.dc ( j f l f , ~  jf/fL) 
(8.27) 

f fu  

The frequency where lAFNl = 1 can be found by substituting fc for f in 
Equation 8.27 and equating the result to 1: 

flf~ , 

l A F N l  = = A d c F ~ . d c  - (8.28) 
f c h  ' 

hence, 

Also, using Equation 8.29, Equation 8.25 can be approximated for AdCFNsd, >> 1 
as* 

provided that 

*The proof of Equations 8.30a and 8.30b is the subject of Problem 8.12 
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- EXAMPLE 8.7. In Example 8.6, A,, = 30,000, F,,,, = 1, fu = 20 MHz, 
fL = 2 MHz, and fc = 60 MHz. Thus, Equation 8.30b becomes 

MI MHz 20 MHz (20 MHz 
= 270. (30,000X1) = 30,000 >> --- - - - 

20MHz 2 MHz 2 MHz 

Since 30,000 is indeed much greater than 270, Equation 8.30a is applicable: 

M ,  = a ' 2MHz 
2MHz + j f  I + -  ( j f  P + ( 60 MHz) (60 MHzX2O MHz) 

where M,,,, is approximated as l / F , , ,  = 111 = 1 since AdCFN.,, >> 1. 

When IS, and V,,, are represented in the time domain then, by use of 
Equation 8.25, the ratio of their Laplace transforms becomes 

By use of Equation 8.29, Equation 8.31 can be written* 

where 

with 

and 

*The derivation of Equations 8.32a-f is the subject of Problem 8.14 

Note that fv > h in lag-lead compensation; hence, if Ad,FN.,. fL/  fu >> 1 then 
also AdCFrdc >> 1. In such a case, which is quite common, Equations 8.32s and 
8.32f become 

b = 2nfL + 2nfc 

and 

T, and T, of Equations 8.326 and 8.326 are determined by fL,  f u ,  and fc. 
There are three possibilities for T, and T,: distinct and real T, # is, equal and 
real T. = T., and complex conjugates r,  and rB. It can be shown (see Problem .- - 

8.15) that T, and T, are distinct and real when 

TA and T, are equal and real when 

and z4 and zB are complex conjugates when 

where in Equations 8.34a-c 

is the maximum permitted value of fu/ fc if real T, and T, are desired. It can be 
shown (see Problem 8.16) that Equation 8.35a can also be written 

Equation 8.3Sb is plotted in Figure 8.3 for 0 < fL/ fu < 1. as is the case for 
lag-lead compensation. Also, as expected, fu is less than fc for this range of 
f L l f U .  
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FIGURE 8.3 The maximum value of fu/ fc for red roots, ( fu/ f c L r ,  .g a 
f d m  of fL/ fU in lag-lead compensatiop 

For small values of fL/fu, Equation 8.35b can be approximated (see 
Problems 8.17 and 8.18) as 

for 

EXAMPLE Ph In Example 8.5 (page 128) the amplihation of a Type 
2539 wideband monolithic operational amplifier was approximated as 
A = + Jflfl) with Ad. = 30,000 and fl = 20 kHz The amplifier is used 
with I ; , d c  = 1 and with lag-lead compensation with fu/ fL = 10. Thus, award- 
ing to Equation 8.29, 

8.2 OAs WITH A = A,,l(l + U/fI) 133 

By use of Equation 8.35b with fL/ fu = 0.1, (fu/f~),,,, = 0.2633; also, the 
approximate Equation 8.36a yields ( fu/ fc)max E 0.2625. Therefore, if real roots 
are desired, fu must be at most 0.2633fc = (0.26333(60 MHz) = 15.8 MHz. For 
example, a choice of fL = 1.5 MHz and fu = 15 MHz would result in real roots. 
However, the choice off, = 2 MHz and fu = 20 MHz in Example 8.5 does not 
result in real roots. 

The information given by Equation 8.35b and Figure 8.3 can also be 
presented as shown in Figure 8.4, where ( fc/ fu)mi, = I/( fu/fc),,,. Also, 
(fc/fU)mim Can be approximated as (fclfu)min = 4 - 2f~ / fu  when 0 < f J h  << 1 
(see Problems 8.20 and 8.21). 

f~ - 
fu 

FIGURE 8 4  The minimum value of fc/ fu for real roots, (fcl f ~ ) ~ i m  as a 
function of jJ fu in lag-lead compensation. 

As was also the case in other transients with step-function input voltage, 
output voltage V',,(t) is free of ringing here too when the roots are real. Thus, if a 
transient with no ringing is desired, fu/ fc should be at most ( fu/ fCfmnx given by 
Equations 8.35a and 8.35b. In what follows here, the transient response is 
derived for critical damping, that is, for the case when fu/ fc = (fu/ fC),,,.* as in 
Equation 8.34b. 



134 RESPONSE OF FEEDBACK AM1 .r'IERS 

In this case, T, and T, are equal and Equations 8.32a-d become 

where 

and 

Using Equation 8.35a with ( fu/fc),,, = fu/ f,, 

hence, 

h + f c = 2 r n .  

By use of Equation 8.38b, Equation 8 .37~ becomes 

, = JZ' 
fu 2 6  ' 

When input voltage I.;, is a step function with magnitude V,, 

where M,,, and T are given by Equations 8.37b and 8.39. 
From Equation 8.40, V,,,(t) can be found, by use of Equation 8.39 and 

Appendix A, as 

8.3 OAs WITH A = A,J[(l + gfi)(l  + ifljdl 135 

pp 
- - 

EXAMPLE 8.9. When fu/fL = 10 then, by use of Equat~on 8.35b, 

( fu/j,),,, = 0.2633. For critical damping, fu/ fc = ( fu/ fc)mnr = 0.2633, and 
Equation 8.41 becomes 

where, from Equation 8.39, 

Figure 8.5 shows output voltage Vou,(t) as a function of tlr. It has an initial 
slope of 19.5MN,dcV0 at t/r = 0, it rises to a peak of about 7.5MN,d,V0 at 
t/r= 1.05, and it settles to MN,dcVo for long times. 

FIGURE 85  Transient response of a feedback amplifier using lag-lead 
compensation with critical damping and with fu/ fL= 10. 

Thus, as was the case for an ideal operational amplifier, the transient 
response has a large overshoot in this case too, as shown by the last term in 
Equation 8.41. Again, the overshoot can be eliminated by inserting in the signal 
path a voltage divider network that precedes or follows the feedback amplifier. 
Also, the situation is similar for distinct real r, # TB. 

8.3 Operational Amplifiers with A = Ad,/l(l + j f 1 f ,)(I + j f / j z ) l  

This form of A provides an accurate representation of many operational 
amplifier types. In what follows, frequency response and transient response are 
described with frequency-independent feedback, lead-lag compensation, and 
lag-lead compensation. 
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8.3.1 Frequeocy-Indepeodent Feedback 
The discussion of this case starts in the Laplace transform domain; this is 
followed by descriptions of the frequency response and the transient response. 

When &, and V,,, are represented in the Laplace transform domain, 

which can also be written 

where 

with m defined as 

and with 

The similarity of Equations 8.43a-d here to Equations 6.39a-d describing 
series RLC circuits in Section 6.5 permits the use of the results given there: 
Equations 6.39a-d can be used with the substitution of ( 7 ,  + 7 2 ) / ~ 1 7 2  for RIL, 
and with RC = (L/R)/m from Equation 6.39d. Also, it can be shown that in the 
frequency domain, with 7 ,  = 1/2nf1, 7 2  = 1/2nf2, and s = j2nJ 

where fc is defined as 

As expected, Equation 8.44a becomes equal to M,,,. for small values of 
frequency .f Fuflhermore, it can be shown that Equation 8.Ma can be 
approximated for f >> fc as 

when 

Note that IMNI of Equation 8.45a becomes equal to IMN,,,I when frequency 
f = fc. 

When f2 >> f I ,  which is the usual case, then also 7 ,  ;.> 7 2 ,  and 

and 

As expected, Equation 8 .46~ becomes equal to M N s d c  for small values of 
frequency .f Furthermore, Equation 8 .46~ can be approximated for f >> f,, with 
fc now given by Equation 8.46b, 

l " ~ l  M N , d c  ($y (8.47a) 

when 

Note that ( M N (  of Equation 8.47a becomes equal to M,,dc when frequency 
f = f c .  

EXAMPLE 8.10. A Type 9914A wideband hybrid operational amplifier is 
characterized by Ad,  = 5000, f, = 0 3  MHz, and f2 = 50 MHz. Thus, f2 >> fl 
and Equations 8.46a-c are applicable. 
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The operational amplifier is used in a noninverting feedback amplifier, and it 
is desired that the magnitude of the resulting frequency response, ( M N ( ,  should 
have no peaking. Therefore, according to Figure 6.1 3 and subsequent discussion 
in Section 6.5, the value of m must be at most 0.5. By use of Equation 8.46a, this 
constraint leads to 

A,, fl 5000 0.5 MHz MNndC 2 - - = - --- - 
0.5 f ,  0.5 50 MHz 

- 100. 

Thus, the resulting dc amplification, MN.,,, must be at least 100 if a frequency 
response magnitude without peaking is desired. 

If M , , ,  = 100 is chosen, then m = 0.5 and, from Equation 8.46b, 

fc = f& = (50 MHZ)@ 2 35.4 MHz. 

The piecewise linear approximation of IMNJ is shown by the heavy graph (a) 
in Figure 8.6. As before, JMNI is obtained as the lesser of IAl and of 
(l/FNI r 100 = 40 dB. According to Equation 8.47a, for f  >> fc = 35.4 MHz the 
magnitude IMNI can be approximated as 100 (35.4 MHz/ f)'. This intersects the 
Il/FN( = 40 dB line at fc = 35.4 MHz as shown by the broken lines in Figure 8.6. 

Details of the frequency response may be found using Figure 6.13 in 
Section 6.5 with (M, ( /MN,d ,  substituted for IGI. When f ,  >> f, then also T ,  >> T , ,  

and L/R can be replaced by r ,  = 1/2zf2 and RC by 1/2nf,m. Also, it can be 
shown that in Figure 6.13 

where fo = 1/2nRC and fc is given by Equation 8.46b. 

EXAMPLE 8.11. In Example 8.10, the value of m is 0.5. Thus, by use of 
Equation 8.48, fc / fo  = 1/m z 1.4 in Figure 6.13. Indeed, for rn = 0.5, the 
piecewise linear approximations for f  / fo <c 1 and f /  fo >> 1 intersect at 
f/ fo r 1.4 in Figure 6.13. 

Therefore, the value of m must be at most 0.5; hence, assuming f,  >> f ,  and 
usinn Equation 8.46a, MN.,, must be at least Adcf1 /mf ,  if a frequency response 
magnitude without peaking is desired. However, lesser values of M , , ,  are 
possible when peaking in the frequency response magnitude is acceptable. 

8.3 OAs WITH A = Ad,l[(l + gIf,)(l + ill/,)] I39 

1 I I ,  
0 dB 

I f 
1 MHz 10  MHz 100 MHz \ GHz 

FIGURE 8.6 Piecewise linear approximations of Bode plots foi frequency- 
independent feedbacks. The magnitude JAl is shown by the light line and the 
magnitudes lMNl by the heavy lines. (a) )MN) in Example 8.10 and (b) )MN) in 
Example 812. 

EXAMPLE 8.12. A Type 9914A wideband hybrid operational amplifier is 
characterized by A,. = 5000, f, = 0.5 MHz, and f2 = 50 MHz. Thus, f i  >> fi - - -  
and Equations 8.46a-c are applicable. 

The operational amplifier is used in a noninverting feedback amplifier, and 
an M,,,, = 25 is desired. By use of Equation 8.46a, 

f 5000 0.5 MHz , , A,, 1 = - -------- = 2 
MN,, ,  f2 25 50 MHz 

and, by use of Equation 8.46b, 

fc z fi& = (50 M H Z ) ~  z 70.7 MHz. 
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The piecewise linear approximation of IMNI is shown by the heavy graph (b) 
in Figure 8.6. As before, IMNI is obtained as the lesser of IAl and of 
I1/FNI r 25 = 28 dB. According to Equation 8.47a, for f >> fc = 70.7 MHz the 
magnitude IMNI can be approximated as 25(70.7 MHz/ f)'. This intersects the 
I1/FN( = 28 dB line at fc = 70.7 MHz as can be seen in Figure 8.6. 

By use of Equation 8.48, fc/fo = I/& 2 0.7 in Figure 6.13. Indeed, for 
m = 2, the piecewise linear approximations for f /  fo << I and f /  fo >> 1 intersect 
at f/fo z 0.7 in Figure 6.13. It can also be seen that there is a peaking of about 
50% (note logarithmic scale of G ) .  

The characteristics of a feedback amplifier are influenced by variations of 
operational amplifier parameters A,,, f l ,  and f,. The influence of A,, on the 
resulting dc amplification MNVdc was discussed in Chapter 4; here MNSd, is 
approximated as constant. 

In the feedback amplifier discussed here, peaking in the frequency response 
magnitude is governed by m of Equation 8.46a, and the bandwidth is in the 
vicinity of fc of Equation 8.46b. An increase in the value off,, with all other 
parameters held constant, reduces m and reduces peaking, and it also increases 
fc. Both of these effects are desirable; hence, an increase in f, is always 
beneficial. 

An increase in A,, and/or f, increases m and increases peaking, and it also 
increases f,. The latter effect is desirable; the former is not. The situation is 
reversed when A,, and/or f, decreases. Note that variations of A,, and f, have 
no effect when the product A,,f, remains constant, as is often the case in 
integrated circuits (see Problem 8.35). 

When input voltage V;, is a step function with magnitude Vo and f, >> f,, 
Equations 6.40a,b, 6.41a,b and, 6.42a,b of Section 6.5 are applicable with 
m = A,, f,/MN,,, f2, L/R = 7, = 1/2nf2, RC = 7,/m, and MNvdc Vo substituted 
for Vo. 

-- 

EXAMPLE 8.13. A Type 9914A wideband hybrid operational amplifier is 
characterized by A,, = 5000, f, = 0.5 MHz, and f, = 50 MHz. Thus, f, >> f,. 

The operational amplifier is used in a noninverting feedback amplifier with 
MNVdc = 200. Therefore, 

L - - 1 
- T 2 = - =  

I 
R 

- 3.18 ns, 
2nf2 2N50 MHz) - 

and 
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By use of Equation 6.41a with M,,,, Vo substituted for Vo, 

which becomes 

This is shown in Figure 8.7. The propagation delay of the 50% point is 
t,,r 11.5 ns, and the 10%-90% rise time is t , o - 9 0 ~  21.7 ns. 

FIGURE 8 7  Transient response of a Type 9914A wideband hybrid opera- 
t i o d  amplifier with MN,& = 200 in Example 8.13. 

Note that M,,,, = 200 is the lowest possible resulting dc amplification if a 
transient without ringing is desired. This is because M,.,, < 200 would result in 
m > 0.25 and therefore in transients that include sinusoidal (sine and/or cosine) 
functions of time (see Equations 6.42a and 6.42b in Section 6.5). 

The influence of variations in operational amplifier parameters on the 
transient response is similar to the case for the frequency response. An increase 
in the value of f,, with all other parameters held constant, reduces m and 
reduces ringing in the transient, and it also increases the speed of the transient. 
Both of these effects are desirable; hence, an increase in f, is always beneficial. 

An increase in A,, and/or f, increases m and increases ringing, and it also 
increases the speed of the transient. The latter effect is desirable; the former is 
not. The situation is reversed when A,, and/or f, decreases. Again, variations of 
A,, and fl have no effect when the product A,,f, remains constant (as in 
Problem 8.35). 

8.3.2 Lead-Lag Compensation 
Lead-lag compensation consists of the inclusion of a frequency-dependent 
feedback network as shown in Figure 7.4 (page 96) and described by Equations 
7.43-7.47 in Section 7.4. 
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When 6, and V,,, are represented in the Laplace transform domain then, 
with r1 = 1/2nf1, T, = 1/2nf,, T, = 1/2nfL, and T, = 1/2nfu, 

where TL > 7, hence also fL < f,. 
The value of T, is usually in the vicinity of r2. The simplest possibility is 

TL = T,; that is, f, = f,: This case is discussed in Section 8.3.2.1. The case of 
fL > fZ (i.e., TL < T,) is discussed in Section 8.3.2.2, and the case of fL < f2 (i.e., 
TL > T,) in Section 8.3.2.3. 

8.3.2.1 LEAD-LAG COMPENSATION WITH fL = f2 

In this case (pole-zero cancellation), Equation 8.49 becomes 

which can also be written 

where 

with m defined as 

and with 

When fu >> f,, which is the usual case, then also T, << r , ,  and 

and 

In the limiting case of critical damping, rn = 0.25 and 7, = T,. In this case, for 
a Y(t) that is a step function with magnitude V,, &,,(t) becomes (see Problem 

EXAMPLE 8.14. A Type 9914A wideband hybrid operational amplifier is 
characterized by A,, = 5000, f, = 0.5 MHz, and f2 = 50 MHz. Thus, f, >> fl .  

The operational amplifier is to be used in a noninverting feedback amplifier 
with M,,,, = 20, and a transient response with no ringing is desired. It was seen 
in the preceding section that for a transient response with no ringing the lowest 
possible M,,,, is 200 when frequency-independent feedback is used. For this 
reason, lead-lag compensation is introduced here. An fL = f, is used for 
simplicity and, somewhat arbitrarily, an rn = 0.25 (critical damping) is chosen. 
Since f, > fL = f, >> f,, Equation 8 .52~ is applicable; hence, 

and 

1 - - 1 
T, =-- 2 0.3 18 ns. 

2nf, 2n(500 MHz) - 
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Also, 

1 r2=-= 1 - 3.18 ns. 
2nf2 2n(50 MHz) = 

From Equations 8.52a and 8.524 with the chosen m = 0.25, r ,  = r B =  
2ru = m.318 ns) = 0.637 ns. With these values, Equation 8.53 becomes 

This is plotted as graph (a) in Figure 8.8; the propagation delay of the 50% 
point is t,, 2 3.25 ns, and the 10 %-90 % rise time is t,,-,, z 7.5 ns. It can also 
be seen in Figure 8.8 that a faster transient response is provided by graph (b), 
which will be discussed later. 

FIGURE 8.8 Transients io a Type 9914A wideband hybrid operational 
amplifier with MN+ = U): (a) io Example 814, (b) in Example 8.21, and (c) 
io Example 822 

When I.;, and Y,, are represented in the frequency domain then, from 
Equation 8.51% 

where 

and 

It can be shown (see Problem 8.42) that the resulting bandwidth of the 
feedback amplifier is approximately B = flAd,/MN.dc when m < 1. Also, when 
m 2 0.5, it can be shown (see Problem 8.43) that the resulting bandwidth is in the 
vicinity of 

L = J & f l f 2 .  N.dc . (8.55) 

which is identical to the rightmost expression of Equation 8.46b. 
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- 

-/__ _-____ - - 

EXAMPLE 8.15. In Example 8.14, A, = 5000, M,,dc = 20, f ,  = 0.5 MHz, 
L = 50 MHz, and m = 0.25. Thus, the result~ng bandw~dth of the feedback 

J I  

amplifier is approximately 

The design of lead-lag compensation also includes determining the values of 
C,, CF,  R F ,  and R,, as was done in Section 7.4. 

EXAMPLE 8.16. In Example 8.14, fL = f2 = 50 MHz, fu = 500 MHz, and 
F N S d c r  1/MNndC = 1/20 = 0.05. The value of C, is 5 pF, which includes the input 
ca~acitance of the operational amplifier and stray capacitances. Thus, by use of 
Equation 7.45, 

c, C CF = =I= - 
5 PF = 5 pF. 

1 MN.dC - 1  -- 
20 

- 1 
F ~ . d ~ f ~ / f ~  f u l f ~  500 MHz/SO MHz 

Also, 

and, from F,,, = R,/(R, + RF), 

The influence of variations in A,, and f ,  is similar to that described earlier. 
However, variations in f2 result in f2 < fL or f2 > fL and are considered in 
Sections 8.3.2.2 and 8.3.2.3. 

8.3.2.2 LEAD-LAG COMPENSATION WlTH fL fL ffi 

Equation 8.49 is applicable here too; however, its evaluation becomes more 
involved than for fL = f2.  As a first step, a frequency ratio R is introduced as 

f2  T L  

R = ~ = ~ .  
(8.56) 

Note that R < 1 when fL > f2,  which is the case here; also, R = 1 when fL = f2. 



146 RESPONSE OF FEEDBACK Ah IFIERS 

Next a crossover frequency fc is introduced as 

It can be shown (see Problem 8.46) that fc is the frequency where the piecewise 
linear approximation of the Bode plot of IAFNI becomes 1, provided that 
f2 Q fC, jL d fc, and ju 2 f,, which conditions will be seen to be valid here. 

Also, two more frequency ratios, w, and w,, are introduced as 

and 

Note that w ,  > 1 when fL < fc, and that w, > 1 when fu > fc. 
With the above, Equation 8.49 can be written 

and 

When &FN.~, >> 1, as is the usual case, MN,dc z l/FN,d, and Equation 8.59a 
becomes 

with p, q, and r given by Equations 8.59b, 8.59c, and 8.59d. 

Equation 8.60 can also be written 

where r,, TB, and T, remain to be found. Appendix A outlines a procedure for 
solving the third-order (cubic) equation in the denominator of Equation 8.60, 
yielding r,, r,, and r,. However, the procedure can become quite lengthy. This 
is not the case when R = 0 which will be discussed later. The procedure also 
simplifies somewhat when at least two of T,, T,, and r, are equal. This is 
convenient, because (see Problem 8.48) it marks the transition between two 
regions: All three of r,, r,, and T, are real in one region, whereas in the other 
region only one of r,, r,, and T, is real and the remaining two are complex. The 
importance of this transition is that real r,, r,, and 7, imply a transient response 
that is free of ringing. For this reason, the discussion that follows here examines 
the case when at least two of r,, r,, and r, are equal. The three are 
interchangeable in Equation 8.61 and, somewhat arbitrarily, T, = T, is assumed. 
Thus, Equation 8.61 becomes 

Performing squaring and multiplication operations in the denominator of 
Equation 8.62a results in 

The comparison of Equation 8.62b with Equations 8.60, 8.59b. 8 . 5 9 ~  and 
8.59d shows that 

and 



148 RESPONSE OF FEEDBACK AM* JFIERS 

These three equations can provide T,/T,, 'F,/T,, and w, for given R and w,- 
at least in principle. In reality, this leads to complications and it is preferable to 
express w, and w, as functions of R and sC/rA (see Problem 8.50) as 

and 

Also, from Equation 8.63a, 

Varying rc/rA between 0.5 and 2 results in the relations between w, and w ,  
shown in Figure 8.9 for R < 1. (The R = 1 line is obtained from Section 8.3.2.1; 
results for R > 1 will be discussed in Section 8.3.2.3.) 

The use of Figure 8.9 requires finding rC/rA for given R, w,, and w,. It can be 
shown (see Problem 8.52) that 

where the plus sign is applicable to the lower (horizontal) branches of the graphs 
and the minus sign to the upper (vertical) branches. 

EXAMPLE 8.17. A Type 9914A wideband hybrid operational amplifier is 
characterized by A,, = 5000, f, = 0.5 MHz, and f, = 50 MHz. Thus, f, >> f,. 

The operational amplifier is to be used in a noninverting feedback amplifier 
with MN,,, = 10, and a transient response with no ringing is desired. It can be 
shown (see Problem 8.53) that this cannot be attained using lead-lag com- 
pensation with f, = f, (pole-zero cancellation). Thus, use of lead-lag com- 
pensation with fL > f, is considered. 

Somewhat arbitrarily, a frequency ratio R = 0.625 is assumed. Thus, by use 
of Equation 8.56, 

I I I I 

-* 0.1 

- 0  

All roots 
are real - 
~n this 
region 

- 

W l  

FIGURE 8.9 Roots of the denominator of Equation 8.60 with p, q, and r 
given by Equations 8.59b, 8.59~. and 859d. 

Also, from Equation 8.57a, 

Furthermore, 

1 - - 1 
rC = - - I n s  

2nfc 2n(156.25 MHz) = 

and, from Equation 8.58a, 
jc ', 156.25 MHz - 

w l = - -  = 1.95. 
fL 80MHz 

According to Figure 8.9, all roots are real for R = 0.625 and w, = 1.95 when 
W, is between approximately 3.4 and 3.5. This is a narrow range that would be 
difficult to guarantee with realistic variations of circuit parameters. However, for 
the purpose of this example, w, = 3.4 is used here, which lies on the lower branch 
of the R = 0.625 graph. Because of this, Equation 8.62a and the subsequent 
equations are applicable (otherwise, Equation 8.61 with distinct r,, T,, and r ,  
would have to be used, which would be much more difficult). 
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With w 2  = 3.4, from Equation 8.58b, 

fu = w2 fc = (3.4X156.25 MHz)z 531 MHz 

and 

1 
Tu=-= 1 - 0.3 ns. 

2nfu 2n(531 MHz) ' 

Also, from Equation 8.65 with the plus sign, 

-1 

Hence, 

1 
T A = X -  - 1 - 0.71 ns. 1.44 2nfd1.44) - 2n(156.25 MHzX1.44) = 

Furthermore, from Equation 8.64c, 

Tg = 7c - - 1 ns 
0 625 r 1.2 ns. 

R 7, W, + - - 2- 3.4 + - - 2(1.44) 
W 1  7~ 1.95 

Figure 8.10 shows the piecewins linear approximation of the Bode plot for 
1AFNF.I. The transient response of the circuit is the subject of Example 8.18. 

It is now assumed that the value of C, is 5pF, which includes the input 
capacitance of the operational amplifier and n n y  capacitanesp Thus, by use of 
Equation 7.45, 

c, = CI - = -- CI = 5 PF  
1 10 2 10pF. 

- 1 M~.dc 
F ~ . d ~ h / f ~  

1 
f u / j ~  531 MHz180 MHz 

- 1 

Also, 

\ ,fc = 156.25 MHz 

10 MHz 100 MHz 

fu = 531 

FIGURE 810 Piecewise linear approximation of the Bode plot for lAFNl in 
Example 817. 

It can be shown (see Problem 8.54) that Equation 8.62a can also be written 

w v,",(N 1 + ST, 

g{ Vn(t)J 
= M ~ . d c  (I + s ~ , ) ~ ( 1  + STB) ' 

When V,,(t) is a step function with magnitude V,, 
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A comparison of Equation 8.66 and Equation 8.51a with T ,  = T A  shows that 
Equation 8.53 is applicable with T ,  substituted for 1,; that is, 

EXAMPLE 8.18. In Example 8.17, MN... = 10, T A  = 0.71 ns, T ,  = 1.2 ns, and 
TU = 0.3 ns. With these, Equation 8.67b becomes 

This is shown by graph (a) in Figure 8.1 1; the propagation delay of the 50 % 
point is t,, 1 2 ns and the 10%-90% rise time is t , , - , ,  z 3.7 ns. 

FIGURE 8.11 Trsosieots in a Type 9914A wideband hybrid operational 
amplifier with MNL = 10: (a) in Example 818 and (&in Example 820. 

The choice of T D  = T A  in Equation 8.61 resulted in Equation 8.62a. When, in 
addition, T ,  = T ,  in Equation 8.62a, that is, when T D  = T B  = T ,  in Equation 8.61. 
then Equation 8.62a becomes 

which can also be written 
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Comparison of Equation 8.68b with Equations 8.60, 8.59b, 8 . 5 9 ~  and 8.59d 
that 

and 

Frequency ratios w ,  and w ,  can be expressed as functions of T , / T ,  (see 
Problem 8.59) as 

and 

and frequency ratio R  is given by 

Varying r C / r A  between 1 and 2 results in the graphs of w , ,  w, ,  and T , / T ,  as 
functions of R  shown in Figure 8.12. The figure also shows, for later use, R 2 / w ,  
and Rw, as functions of R. 

Figure 8.12 represents the special case when all three roots of the denomi- 
nator of Equation 8.60 are equal. A comparison with Figure 8.9 shows that w ,  
and w ,  of Figure 8.12 provide the locations of the cusps in Figure 8.9, that is, the 
points where the upper and the lower branches of a graph meet. 

Before proceeding to use Figure 8.12, Equations 8.56, 8.57a, and 8.58a are 
combined to yield R 2 / w , .  By expressing fL from Equation 8.56 and substituting 
it into Equation 8.58a, and by substituting fc of Equation 8.57a into Equation 
8.58a, 

hence, 

Note that Equations 8.71a and 8.71b are valid in general and can be used 
whether fL is greater than, equal to, or less than f,. 

The use of Figure 8.12 and of Equation 8.71b is illustrated in Example 8.19. 
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FIGURE 8.12 Solution oftbe denominator of Equation 8.60 for t& q r l  
rm@ with P, q. a* r given by Equtiom W b ,  8.5%, a d  8 . 5 ~ .  

-- -- - - - - - - - 

EXAMPLE 8.19. In Examples 8.17 and 8.18, a Type 9914A wideband hybrid 
operational amplifier was used with M,,,, = 10 and with lead-lag com- 
pensation using f, > fz and R = 0.625. This example and Example 8.20 choose 
R so as to result in a transfer function of the form of Equation 8.68a. 

From Equation 8.71b, with FN,,z l/M,,dc = 1/10 = 0.1, 

RZ -- - fz - 50 MHz 
= 0.2. 

w, A,,FN,,, f, - (50M)XO.l H0.5 MHz) 

In Figure8.12,RZ/w, = 0.20ccursat R z 0.61. Also,at R = 0.61, w ,  1.86, 
w, = 3.3, and rC/r, z 1.2. 

Thus, by use of Equation 8.56, 

f -2 =------ SO MHz_  82 MHz. 
L - ~  0.61 

Furthermore, from Equation 8.58a, 

f, = w ,  f, = (136x82 MHz)z  152.5 MHz 

and, from Equation 8.58b, 

fu = wz f, = (3.3X152.5 MHz)= 503.2 MHz. 
Also, 

7, = 1/2nfL = 1/[2n(82 MHz)] z 1.94 ns, 

7, = 1/2nfc = 1/[2n(152.5 MHz)] z 1.04 ns, 

7, = 7J1.2 = 1.04 n s / 1 . 2 ~  0.87 ns, 
and 

T, = 1/2nf, = 1/[2n(503.2 MHz)]z 0.32 ns. 

It is now assumed that the value of C, is 5 pF, which includes the input 
capacitance of the operational amplifier and stray capacitances. Thus, by use of 
Equation 7.45, 

Also, 
1 R,=-- - 

1 
243 R 

2nfLCF 2n(82 MHzH8 pF) - 

and, from FNVd, = R,/(R, + RF), 

Note that the values of R ,  = 243 R and R, = 27 R are by about 20 "/, greater 
than the R ,  = 200R and R, = 22 R in Example 8.17. 
- -- -- - - - -- - 
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It can be shown (see Problem 8.64) that Equation 8.68a can also be written 

When &(t) is a step function with magnitude V,, 

The inverse Laplace transform of Equation 8.73a can be written (see Problem 
8.65) 

EXAMPLE a20. In Example 8.19, T, = 0.87 ns and T, = 0.32 ns. With these, 
Equation 8.73b becomes 

This is shown by graph (b) in Figure 8.1 1. The propagation delay of the 50% 
point is tsar 2 ns. Also, the 10%-90 % rise time is tlo-,,r 3.6 ns--only 
slightly less than the t,,-,,r 3.7 ns of graph (a). 

The special case of Equations 8.68a and 8.72 is compared to lead-lag 
compensation with f, = f2 (pole-zero cancellation) in Example 8.21. 

EXAMPLE 821. In Example 8.14, a Type 9914A wideband hybrid opera- 
tional amplifier was used with MNmdC = 20 and with lead-lag compensation 
using f, = f2 (pole-zero cancellation). This example uses a transfer function of 
the form of Equation 8.72. 

From Equation 8.71b, with F,.,,= l/M,,, = 1/20 = 0.05, 

R2 f2 - -- - 50 MHz 
= 0.4. 

W, AdCF,,,, fl - (5000)(0.05)(0.5 MHz) 

In Figure 8.12, R'/w, = 0.4 occurs at R z 0.77. Also, at R = 0.77, w, E 1.52, 
w2 = 3.45, and T,-/?, 2 1.32. 

Thus, by use of Equation 8.56, 

Furthermore, from Equation 8.58a, 

f, = w,fL = (1.52m64.9 MHz)z 98.7 MHz 

and, from Equation 8.58b, 

f, = w2 f, = (3.45N98.7 M H z )  = 340.5 MHz. 

AIso, T, = l/2zjL z 2.45ns, T, = 1/2nfc z 1.6ns, 7, = ~,/1.32 z 1.2ns, and 
T,, = 1/2nfu : 0.47 ns. Figure 8.13 shows the piecewise linear approximation of 
the Bode plot for IAFNI. 

FIGURE 813 P i d i s e  linear approximation of the Bode plot for ~ A F N ~  in 
Example 8.21. 

It is now assumed that the value of C, is 5 pF, which includes the input 
capacitance of the operational amplifier and stray capacitances. Thus, by U% of 
Equation 7.45. 

c, - C 
5 L =  - 5 PF 

C,  = E 1.8 pF. 
1 M~.dc - 1  -- 

20 - 1 
F~ .dc fu / f~  J u / f ~  340.5 MHz164.9 MHz 
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Also, 

Note that the values RF = 1370 R and R, = 72 R obtained here are significantly 
greater than the values R, = 637 Rand R, = 33.5 R in Examples 8.14,8.15, and 
8.16. 

When VJt) is a step function with magnitude V,, by use of Equation 8.73b, 
V,,&) becomes 

This is shown by graph (b) in Figure 8.8. The propagation delay of the 50% 
point is t , ,  2 2.7ns and the 10%-90% rise time is t , , - , , ~  5 ns. Note that 
these are less than the t , ,  = 3.25 ns and the t l o - , ,  = 7.5 ns of graph (a) of 
Example 8.14. Thus, in this case, the use of fL > f2 led to improvements in t,, 
and t , , - , , ,  as well as in RF + R,. 

8.3.2.3 LEAD-LAG COMPENSATION WITH fL < f2 

This region is rarely used intentionally, because the performance of the resulting 
feedback amplifier is inferior to that attainable with fL 2 f,. However, fL < f, 
may also occur as a result of variations in parameter values. Example 8.22 
discusses a feedback amplifier where f, is intentionally chosen to be less than f2. 

EXAMPLE 8.22. A Type 9914A wideband hybrid operational amplifier is 
characterized by Ad, = 5000, f, = 0.5 MHz, and f, = 50 MHz. It is used in a 
noninverting feedback amplifier with MNmdC = 20, and a transient response 
without ringing is desired. 

Preceding examples implemented this feedback amplifier using 
fL = fi = 50 MHz and fL = 64.9 MHz. This example implements the feedback 
amplifier with J1 = 40MHz and with a transfer function of the form of 
Equation 8.66. Thus, R = f2/fL = 50 MHz/40 MHz = 1.25. Also, from Equa- 
tion 8.71a, 

W 1  = 
AdcF~,dcR% (5OOO)(O.O5)( 1 .25)2(0.5 MHz) - - 

f 2  50 MHz 
E 3.9; 

hence, by use of Equation 8.58a. 

fc = w ,  fL = (3.9)(40 MHz)= 156 MHz. 

At w, = 3.9, the R = 1.25 graph in Figure 8.9 yields w,? 4.15. Thus, by use 
of Equation 8.58b, 

fu = w2 fc = (4.lSXl56 M H z ) z  647 MHz. 

Note that this choice of w, and f, results in a transfer function of the form of 
Equation 8.66. Figure 8.14 shows the piecewise linear approximation of the 
Bode plot for IAF,J. 

From the above, r2  = 1/2nf2 2 3.2 ns, T, = 1/2nj;* 2 4 ns, 7,- = 1/2nf,- 2 

1 ns, and T,, = 1/2& z 0.25 ns. Also, from Equation 8.65 with the plus sign, 

hence, T, = ~,/2.1 = 1 ns12.1 E 0.48 ns. Furthermore, from Equation 8.64c, 

hence, T, = ~ ~ 1 0 . 2 7  = 1 nsl0.27 2 3.7 ns. 

fL = 40  MHz \ I f 2 = 5 0 M H z  

C r f c  = 156 MHz 

10 MHz 100 MHz Of 
FIGURE 8.14 Piecewise linear approximation of the Bode plot for ( A F N (  in 
Example 8.22. 
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When input voltage I(, is a step function with magnitude V,, Equation 8.67b 
is applicable and V,,,(t) becomes 

This is shown as graph (c) in Figure 8.8. It can be seen that it is slightly slower 
than the transient response with fL = f, = 50 MHz shown by graph (a). Thus, 
lowering fL from 50 MHz to 40 MHz is unfavorable to the transient response. 

When C, is 5 p F  then, by use of Equation 7.45, 

C, = Cl c, - - - 5 PF 
1 20 z 21 pF. 

- 1  %- 1 
F ~ . d ~ f u / f ~  fulfr. 647 MHz140 MHz 

- 1 

Also, 

1 R,=-- - 1 5 1900  
2nfLCF 2~(40MH~)(21pF) -  

and, from FN.,, = R,/(R, + RF), 

These values are less than those of Example 8.16 (RF = 637 R and R, = 33.5 R) 
for graph (a) in Figure 8.8; they are also less than those of Example 8.21 
(RF = 1370R and RI = 72R) for graph (b) in Figure 8.8. Thus, the use of 
fL = 40 MHz is unfavorable for operating speed, as well as for RF and R, as 
compared to the use of fL = f, = 5OMHz of Examples 8.14, 8.15, and 8.16 
[graph (a) in Figure 8.81, as well as compared to the use of fL = 64.9 MHz of 
Example 8.21 [graph (b) in Figure 8.83. 

-- 

8.33 Lag-Lead Compensation 
In this case, in the frequency domain, 

and 

where 

Figure 8.15 illustrates the magnitude lA1, as well as \ l /FN\  and the resulting 
1MNl. Note that Figure 8.15 shows equally spaced corner frequencies f,, h, fu, 
fc, and h: This is only for the purposs of the illustration; in reality, these are 
rarely spaced evenly. However, the sequencing of the corner frequencies given by 
Equation 8 .74~ has to be followed. 

From Equations 8.74a and 8.74b, feedback factor AF, can be written 

FIGURE 8.15 Piecewise Linear approximatioos of Bode plots for lag-lend 
compemation. Light lines illustrate IAl from Equation 8.74~ and II/FNI from 
Equatiw 8.74b. Tbe piecewise lioear approximation of the resulting lMNl is 
shown by the heavy lioe. 
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EXAMPLE 823. A Type 13741 internally compensated FET-input opera- 
tional amplifier is characterized by Ad, = 100,000, f, = 10 Hz, and f2 = 1 MHz. 
Lag-lead compensation is applied with FN.dC = 1 (voltage follower), 
fL = 41.1 kHz, and f, = 129.8 kHz. (The reason for this choice of fL and f, will 
be seen later.) 

With these, feedback factor AFN becomes 

AF - 100,000 1 + j fl129.8 kHz 
- (1 + j f/lOHz)(l + jfl l  MHz) 1 + jfl41.1 kHz ' 

Figure 8.16 shows the piecewise linear approximation of the Bode plot for IAFNI. 

MFNI 
4 f i  = lo  Hz 

I fu = 129.8 kHz 
r fc = 320.5 kHz 

FIGURE 8.16 Piecewise linear approximation of the Bode plot for lAFNl in 
Example 823. 

An inspection of feedback factor AF, for lag-lead compensation shows that 
i t  is identical to that of lead-lag compensation with fL > f2, but with f, 
substituted for f2, f, substituted for f,, and f2 substituted for f,. 

~ 

EXAMPLE 824. Figure 8.13 shows the piecewise linear approximation of the 
Bode plot for IAFNI for a lead-lag compensation with f, > f2. A comparison 
with Figure 8.16 shows that the patterns of the corner frequencies are identical. 
However, corner frequencies f2, f,, and fU of Figure 8.13 are replaced by f,, f,, 
and f2, respectively, in Figure 8.16. 

-- 

In the Laplace transform domain, by use of MN = Al(1 + AFN) and of 
Equations 8.74a and 8.74b with s = j2nJ r,  = 1/2nf,, r, = 1/2nf,, T, = 1/2nfu, 
and TL = 1/2xfL, 

Equation 8.75a can also be written 

avo"t(t)} - -- AdCU + ST,) (8.75b) 
9{Kn(t)} (1 + sr,)(l + sr2)(1 + ST,) + AdcFN,dc(I + ST,) ' 

Also, when AdcFN,d, >> 1, which is the usual case, Equation 8.75b becomes 

This can also be written 

where T,, T,, and 7, remain to be found. It can be shown (see Problem 
8.72) that r,, T,, and r, are identical with those in Section 8.3.2.2 (lead-lag 
compensation with f, > f2), but with r2 ,  T,, and r, replaced by r,, r,, and T,,  

respectively, and with f2, f,, and f, replaced by f,, f,, and 1;, respectively. 
Note that this replacement does not apply to the numerator of Equation 8.75d 
because it includes r,, whereas the corresponding numerator in Section 8.3.2.2 
includes r,-and not r,. 
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- 
EXAMPLE 8.25. A Type 13741 internally compensated FET-input opera- 
tional amplifier is characterized by A,, = 100,000, f ,  = 10 Hz, and f2 = 1 MHz. 
Lag-lead compensation is applied with F,,,, = 1 (voltage follower), and a 
transient response without ringing is desired. 

By choosing, somewhat arbitrarily, r ,  = r ,  = 7 ,  in Equation 8.75d, the 
results of Figure 8.12 can be used. However, in the expression R = f , /  f, of 
Equation 8.56, f2 has to be replaced by fL and fL by f,; thus, R becomes 
R = fL/fu.  Also, in the expression w2 = fu/ fc of Equation 8.58b, fu has to be 
replaced by f2; thus w ,  becomes w ,  = f2/fc.  Equation 8.57a is still applicable 
because r ,  is unaltered in Equation 8.75~; hence, f ,  remains unaltered as well- 
however, now R = fL/ f,. 

Combining the above results, the product Rw, can be written 

Also, Equation 8.57a can now be written 

fL 
fC = AdcF~.dcRfl = Ads F~.dc  - fl . 

fu 
Thus, the product Rw, becomes 

With the parameters of this example 

Rw2 = 
1 MHz 

( l o O , ~ 1 ~ l O H z )  = '. 
For Rw, = 1, Figure 8.12 provides R = 0.317, w1 = 2.47, w, = 3.12, and 

rC/rA = 1.1. Therefore, from w,  = f 2 /  f,, 

f, 1 MHz 
fc = - = - = 320.5 kHz. 

w, 3.12 

Also, replacing jL by f,, w 1  of Equation 8.58a becomes w,  = fc/fu; hence, 

fc 320.5 kHz 
u - - = ------ = 129.8 kHz. 
- w ,  2.47 

Finally, using R = fL/fu,  

fL = Rfu = (0.317M129.8 kHz) = 41.1 kHz. 

Note that the resulting (AFNJ as a function of frequency was plotted in Figure 
8.16, where fL and fu were chosen to coincide with the values of this example. 

The transfer functions and the time responses of Equations 8.67a,b and 
8.73a,b can be used with T ,  replaced by r,. 

- - - - - - - - - -.- 

EXAMPLE 8.26. In Example 8.25, f, = 41.1 kHz, fc = 320.5 kHz, and 
r c / r ,  = 1.1. Thus, 

1 1 
T L = =  2zfL 2n(41.1 kHz) = 3.87 ps, 

1 1 
r c = =  = 0.496 ps, 

2nfc 2n(320.5 kHz) 

and 

0.496 ps 
7C = - = 0.45 ps. 7 ,  = - 
1.1 1.1 

Equation 8.73a is applicable with 7 ,  replaced by r,. Thus, for an input 
voltage that is a step function with magnitude Vo: 

with M N , , , r  1, rL = 3.87 ps, and T,, = 0.45 ps. Also, by use of Equation 8.73b, 
V0&) becomes 

where time t is in microseconds (ps). 
Graph (a) of Figure 8.17 shows Vo,~(t) /MN,d,Vo as a function of time. As 

expected, there is a large overshoot: The peak of the transient is about 2.7 times 
its final value. As before, this overshoot can be eliminated by inserting a 
compensating network preceding or following the feedback amplifier. The 
insertion of a network with a transfer function of ( 1  + sr,)/(l + ST,) results in 
graph (b) of Figure 8.17, whereas the somewhat simpler transfer function of 
1 / ( 1  + ST,) results in graph (c) of Figure 8.17. The propagation delay of the 50% 
point is 0.75 ps for graph (b) and it is 1.25 ps for graph (c); also, the 10 %-90 "/, 
rise time is 1.5 ps for graph (b) and it is 1.9 ps for graph (c). (See also Problems 
8.75, 8.76, and 8.77.) 
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FIGURE 817 Tramieot response of a Type 13741 operational amplifier 
lrped as a voltage follower with lag-lead compematioo: (a) trndeot response 
of the feedback amplifier, (b) transient response d o g  a network with a 
traosfer function of (1 + ssA)/(l + s q )  prccedii or following tbe feedback 
amplifier, and (c) transient response using a network with a transfer function 
of 1/(1 + s r 3  preceding or following the feedback amplifier. 

8.4 Operational Amplifiers with A = A&(1 + jf l /,XI + j f l fa1 + j f l f.)] 
This form of A is required for the accurate representation of high-performance 
operational amplifiers, such as those built using dielectric isolation technology. 
In what follows, frequency response is considered briefly, followed by de- 
scriptions of transient responses with frequency-independent feedback, lead-lag 
compensation, and lag-lead compensation. 

8.4.1 Frequency Response 

As before, the piecewise linear approximation of IMNI is obtained as the lesser of 
the piecewise linear approximation of IAl and the piecewise linear approxi- 
mation of 11/F,I. 

EXAMPLE 8.27. A Type 2539 wideband monolithic operational amplifier is 
built using dielectric isolation technology and, as an approximation, 
it is characterized by Ad, = 30,000, fl = 20 kHz, and f2 = f, = 300 MHz. 
Thus, for frequencies between 2OkHz and 300MHz, the piecewise linear 
approximation of IAI becomes 30,0OO/(f/20 kHz) = 600 MHz/l: 

The operational amplifier is used with a frequency-independent feedback ot 
1/FN = 20. The piecewise linear approxin~atlon of IAl becomes 20 at the 
frequency f where 600 MHz/ f = 20, that is, at f = 600 MHz120 = 30 MHz. 
Thus, the piecewise linear approximation of IMNI equals I1/FNJ = 20 for 
frequencies up to 30MHz and it equals 600 MHz/ f for frequencies between 
30 MHz and 300 MHz. 

Bode plots for IA(, I1/FNI, and IMN( are the subject of Problem 8.78. 

4 . 2  Transient Respan* with Frequency-Independent Feedback 
The transient response is now evaluated for the simplest case when corner 
frequency fl of A is much less than the other two corner frequencies. In this caw, 
A can be approximated as 

For a frequency-independent feedback return FN = FN,dc ,  the resulting 
amplification can be written in the Laplace transform domain as 

When AdcFNVdc >> 1, which is the usual case, Equation 8.77 can be approxi- 
mated as 

where 

and 

It can be shown (see Problem 8.80) that fc is the frequency where the 
piecewise linear approximation of JAFN1 becomes 1 ,  provided that f, and f, are 
above fc. 

Equation 8.78a can also be written 

where 

and 
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Furthermore, Equation 8.79a can also be written 

where 

= "'21W31r 

and 

Note that q = r; they are distinguished only to conform to Appendix A. 
The transient response is free of ringing when all three roots of the 

denominator of Equation 8.80a are real. According to Appendix A, this occurs 
when 

where 

and 

It can be shown (see Problem 8.82) that the criterion of Equation 8.81a leads 
to 

By varying w,,/w,,, the criterion of Equation 8.82 can be represented as 
shown in Figure 8.18. Note that w,, and "'31 are interchangeable in Figure 8.18, 
as is expected from Equation 8.76although this interchangeability is not 
obvious in Equation 8.82. 

All roots 
are real 
tn this 
region 

FIGURE 818  Conditiom for real roots in a feedback amplifier with the 
ampli6cation A of Equation 8.76 and with a frequency-independent feedback 
FN+ Variables w l l  and w3l are given by Equations 8.79b and 8.7%. 

EXAMPLE 8.28. A Type 2539 wideband monolithic operational amplifier is 
characterized by A,,  = 30,000, fl = 20 kHz, and f, = f3 = 300 MHz. Thus, 
f, << f2 and fl << f,; therefore, Equations 8.76 and 8.77 are applicable. The 
operational amplifier is used in a noninverting feedback amplifier with a 
frequency-independent feedback of F ,  = F,,,, = 1/20. Thus, Ad,FN,,, = 

(30,000)(1/20) = 1500 >> 1; therefore, Equations 8.78-8.82 and Figure 8.18 are 
applicable. 

From Equation 8.78b, 

and, from Equation 8.78c, 
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Also, from Equation 8.79b, 

f 300MHz w2, =2=---= 
fc 30MHz 

and, from Equation 8.79c, 

f 300MHz w,, =2=--.- 
fc 30 MHz 

- 10. 

According to Equation 8.82 and Figure 8.18, all roots are real and the 
transient response is free of ringing when w,, = w,, 2 6.75. Thus, the transient 
response of the feedback amplifier in this example is free of ringing because it has 
w,, = W j l  = 10. 

In Example 8.28, a Type 2539A wideband monolithic operational amplifier 
was used with a frequency-independent feedback of FN = FNSdc = 1/20 and a 
resulting dc amplification MNVdc  z 20. It was seen that the transient response of 
the feedback amplifier is free of ringing. Example 8.29 shows that this is not the 
case with MN,dc= 10. 

EXAMPLE 8.29. A Type 2539A wideband monolithic operational amplifier is 
characterized by Ad, = 30,000, f, = 20 kHz, and f, = f, = 300 MHz. Thus, 
f, << f2 and f, << f,; therefore, Equations 8.76 and 8.77 are applicable. The 
operational amplifier is used in a noninverting feedback amplifier with a 
frequency-independent feedback of FN = F,,d, = 1/10. Thus, AdcFN,dc = 

(30,000)(1/10) = 3000 >> 1; therefore, Equations 8.78-8.82 and Figure 8.18 are 
applicable. 

From Equation 8.78b, 

and, from Equation 8.78c, 

fc = AdcFN.dC fl = (30,000Ml/lO)(20 kHz) = 60 MHz. 

Also, from Equation 8.79b, 
f 300 MHz 

=- =---= 
fc 60MHz 

5 

and, from Equation 8.79c, 
f 300 MHz w,, =2 =--- - 
fc 60 MHz 

- 5. 

According to Equation 8.82 and Figure 8.18, all roots are real and the 
transient response is free of ringing when w,, = w,, 2 6.75. Thus, the transient 
response of the feedback amplifier in this example is nor free of ringing because it 
has w,, = w,, = 5. 

8.4 OAs WITH A = Ad,l[(l + jfIfl)(l + i/7j2)(l + $IfJ)) 171 

k4.3 Transient Response witb Lead-Lag Compensation 
Lead-lag compensation consists of the inclusion of a frequency-dependent 
feedback network as shown in Figure 7.4 (page 96) and described by Equations 
7.43-7.47 in Section 7.4. 

When and V,,, are represented in the Laplace transform domain then, 
with r,  = 1/27tf,, 7, = 1/2nf2, T, = 1/2nf3, rL = 1/23cfL, rU = l/2nfu, and with 
fl << f~ and fl << f3 ,  

AdC 

Y { V O U X t ) }  - -- (1 + ST, ) (~  + ~ 7 ~ x 1  + S T ~ )  

y{Kn(f)} , + AdcF~.do 
1 + sr, 

(1 + sr,)(l + srZ)(1 + ST,) 1 + ST, 

Ad. 

where rL > ru ,  therefore also fL < fu. 
The value of T, is usually chosen to be in the vicinity of 7, or 7,. A simple 

choice is rL = T,; that is, fL = f, (pole-zero cancellation): This case is discussed 
in Section 8.4.3.1. The case of fL > f, (i.e., r, < r,) is outlined in Section 8.4.3.2, 
and the case of fL < f3 (i.e., r, > 7,) is not discussed. 

8.4.3.1 LEAD-LAG COMPENSATION WITH fL = f3 

In this case (pole-zero cancellation), Equation 8.83 becomes 

A,. 

In considering the last form of this equation, note that it is a product of two 
fractions. The root of the denominator of the second fraction is always real. Also, 
the first fraction equals Equation 8.77 with f, replaced by f,. Thus, for the 
purpose of determining whether all roots are real, the results of Section 8.4.2 
may be used with f, replaced by f,. 
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E p s  
characterized by A,  = 30,000, f, = 20 k H s  and f, = f, = 300 MHz. The 
operational amplifier is used in a noninverting feedback amplifier with lead-lag 
compensation. Resistor values are RF = 900 i2 and R, = 100 Q hen=, 
FNsdc = 1/10 and MN,dc 2 10. The value of C,  is 1.8 pF, which includes the input 
capacitance of the operational amplifier and stray capacitances. The value of C, 
is chosen as C, = 0.59 DF. 

c- - 
Thus, from 'Equation 7.43c, 

1 1 
2: 300 MHz = 

= 2n(9W i2)(0.59 pF) - 
and, from Equation 7.43d, 

Thus, f, = f3. Also, f, << 1,. f, << f,, and AdCFN,. >> 1. Hence, the piecewise 
linear approximation of lAFNI is as shown in Figure 8.19; also, Equation 8.84 is 
applicable. 

- 
r- fl = 20 kHz 

f2 = f3  = f~ = 

y fu - 738 MHz 

FIGURE 819 Piecewise linear approximation of IAFN( in Example 830. 

MHz 
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The value of fc is, from Equation 8.78c, 

and, from Equation 8.79b, 

However, in evaluating Equation 8 .79~  for w,, , f3 has to be replaced by fu: 

fu 738 MHz - 12.3, w3, =- =-- 
f, 60 MHz 

A close inspection of Figure 8.18 shows that the w,, = 5, w,, = 12.3 point is 
within the region where all roots are real (see also Problem 8.91). Thus, in this 
example, the transient response of the feedback amplifier is free of ringing. This 
is an improvement over the feedback amplifier of Example 8.29 that also had 
MN,dc= 10, but it used frequency-independent feedback and its transient 
response was not free of ringing. 

To find the transient response, the transfer function of Equation 8.84 has to 
be rewritten using the roots of the denominator. 

-- 

EXAMPLE 8.31. !n Example 8.30, the values of w,, and w,, were such that 
the point they represented in Figure 8.18 was barely within the region where all 
roots are real. Also, Problem 8.91 indicates that the two sides in the inequality of 
Equation 8.81a are almost equal. In what follows, the approximation is made 
that the point in Figure 8.18 lies on the boundary line between the two regions, 
and that Equation 8.81a is an equality. In this case, the roots of the denominator 
in the left fraction of Equation 8.84 can be computed with Equations 8.80b, 
8.80c, 8.80d, 8.81b, and 8 .81~  with f, replaced by f, (this is a result of the 
similarity of Equation 8.77 and the left fraction in Equation 8.84). 

Thus, with w,, = 5 and w,, = 12.3, 

p = w,, + w,, = 5 + 12.3 = 17.3, 

and 



174 RESPONSE OF FEEDBACK AMPLATERS 

The roots of a cubic equation are given in Appendix A, with at least two roots 
equal when b2/4 = -a3/27, which is the case here. The two equal roots are given 
as 

and the third root is given as 

The corresponding time constants are 

1 1 1  1 
T A = - - = -  -- -- 1 

SA 2.2 2nfc 2.2 2n(60 MHz) = 1.211s 

and 

1 1 1  1 -- 1 
T ~ =  - 0.205 ns. s, 12.9 2nfc 12.9 2n(60 MHz) - 

The time constants corresponding to j, and f3 are 

1 
T U = - =  1 

2 6  2n(738 MHz) = 0.215 ns 

and 

1 
T 3 = - =  1 

2nf3 2n(300 MHz) = 0.53 ns. 

Thus (see Problem 8.92), the transfer function becomes 

- - M,v,dC 1 + 40.2 15 ns) 
[I + s(1.2 ns)I2[1 + 40.205 ns)] 1 + s(0.53 ns) ' 

which can be approximated (see Problem 8.93) as 

The output voltage as a function of time is obtained by multiplying the 
transfer function by the Laplace transform of the input voltage and taking the 
inverse Laplace transform of the product. 
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- .~ ~- 

EXAMPLE 8.32. In the feedback amplifier of Example 8.31, the input voltage 
is a step function with magnitude V 0  Thus, Equation 5.30 is applicable and the 
resulting output voltage is given by Equation 5.31a with r ,  = 0 . 5 3 ~  
,.=1.2ns. and with A,, replaced by M N , , , ~  10. Therefore, 
.2 ---. -. 

T,/T, = 1.2 ns/0.53 ns = 2.26 in Equation 5.31a, and 

This is shown in Figure 8.20. The propagation delay of the 50% point is 
t , ,  x 2.6 ns and the 10 %-90 % rise time is t lo - , ,  % 4.3 ns. 

FIGURE 8.20 Transient response of a Type 2539 operational amplifier 
wing lead-lag compensation with fL = j3; also, MN,dc 2 10. 

8.4.3.2 LEAD-LAG COMPENSATION WITH f, > f, 

As was the case without corner frequency f, in Section 8.3.2.2, here too it is 
convenient to introduce the frequency ratio R by Equation 8.56, the crossover 
frequency fc by Equation 8.57a, and the frequency ratios w, and w 2  by 
Equations 8.58a and 8.58b. However, because Equation 8.83 is more com- 
plicated than Equation 8.49, the equations corresponding to Equations 8.59- 
8.61 become more complicated here. Specifically, the denominators of Equa- 
tions 8.59a and 8.60 become fourth order in s and the denominator of Equation 
8.61 becomes a product of four terms. Finding criteria for transients without 
ringing-hence for real roots-becomes more difficult, and only limited results 
are outlined here. 

Figure 8.21 shows results for the case when frequency ratio R of Equation 
8.56 can be approximated as R = 0, that is, when j; << 1;. As before, frequency 
ratios w ,  and w, are given by Equations 8.58a and 8.58b. The derivation of 
Figure 8.21 is the subject of Problem 8.97. 

Note that, as expected from a comparison of Equations 8.49 and 8.83, the 
f,/f, = co graph of Figure 8.21 is identical with the R = 0 graph of Figure 8.9. 
Also, when real roots are desired, lowering f , / j2 necessitates increasing 
w ,  = fu/fc, which is not unreasonable. 
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FIGURE 821 Criteria for red roots--heoce for transients witbout ring- 
ing-for hi- lag compensation witb fL > f3 and witb f2 << fL. Frequency 
ntb wl  d w2 are given by Equation 85& a d  858b. 

The cusps of the graphs represent solutions where three roots out of the four 
roots are equal. This limit is detailed as a function of f , / f ,  in Figure 8.22. 

Note that, as expected, data for f3 / f2  = a-that is, for f , / f ,  = 0 in Figure 
8.22-is identical with data for R = 0 in Figure 8.12. The three identical real 
roots are represented by r,  and the fourth root by 7, in Figure 8.22, where also 
w ,  and w ,  are given by Equations 8.58a and 8.58b. 

Note that corner frequency f,  is usually chosen in the vicinity off,. Because 
f2 << fL, when R 2 0, this implies f2 << f,. Hence, the R = 0 approximation is 
only of limited use in lead-lag compensation when f ,  is significant. (However, it 
it often provides a useful approximation in lag-lead compensation discussed in 
the next section.) 

Figures 8.23-8.25 (pages 178-180) describe criteria for real roots with three 
identical roots, for f , / f 2  = 1, 2, and 5. They are similar to Figure 8.12, which 
represents the limit of f , / f2  = co. The three identical roots are represented by 
TA, the fourth root by t,. (See also Problem 8.98.) 

FIGURE 822 Criteria for real roots, including three identical roots r A ,  for 
lead-lag compensation witb f L r  fj a d  witb fz << f L .  Freqwncyratios w l  and 
w2 are given by Equations 8.588 a d  8.58b. 
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R 
FIGURE 823 Criteria for real roots, including three identical roots 7". for 
lead-lag compensatim and J3 =h. Frequency ratios wl and w2 are given by 
Equatim 858a and 8.588. 

R 

FIGURE 8.24 Criteria for real roots, including three identical roots 7,4, for 
lead-lag compensation and J3 = 2J2. Frequency ratios wl and w2 are given by 
Equations 858n and 858b. 
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R 
FIGURE 8.25 Criteria far red roots, including three identical roots T A ,  for 
lead-lag eompematim a d  (3 = 5j% Frequency ratio. wl a d  wz are given by 
4m!iom 85& d 858b. 

g4.4 Transient Response with Lag-Lead Compensation 
In a way similar to  Section 8.3.3, the results of lead-lag compensation are 
applicable here too with r,, r,, and r ,  replaced by r L ,  T,, and r,, respectively, 
and with f,, fL ,  and f ,  replaced by fL,  f,, and f,, respectively, in the 
denominator of the transfer function. 

. 

EXAMPLE 8.33. A Type 2539 wideband monolithic operational amplifier is 
&aracterized by Ad,  = 30,000, f ,  = 20 kHz, and f ,  = f ,  = 300 MHz. Lag-lead 
compensation is applied with FNvdc = 1 (voltage follower), and a transient 
response without ringing is desired. 

By choosing, somewhat arbitrarily, three equal roots, the results of Figure 
8.23 can be used. However, in the R = f 2 / f L  of Equation 8.56, f ,  has to  be 
replaced by fL and fL by f,; thus, R becomes R = fL/  f,. Also, in the w, = f,/ fc 
of Equation 8.58b, f,, has to be replaced by f,; thus, w, becomes w, = f , / fc .  
Equation 8.57a is still applicable because T ,  of Equation 8.7% remains 
unaltered. Hence f ,  remains unaltered as  well; however, now R = fL/f, .  

Combining the above results, product Rw,  can be written 

Also, Equation 8.57a can now be written 

Thus, the product Rw,  becomes 

With the parameters of this example 

R w  - 300 MHz 
- (30,000)(1)(20 kHz) 

= 0.5. 

For R w ,  = 0.5, Figure 8.23 provides R = 0.095, w ,  = 2.72, w ,  = 5.25, 
r,/rA = 1.12, and rc/r ,  = 7.17. Thus, from w, = f 2 / f c ,  

f, 300MHz 
- 57.1 MHz. / c = ~ = ~ -  

Also, replacing fL by f,, w ,  of Equation 8.58a becomes w ,  = fc/ f,; hence, 

fc 57.1 MHz 
f u = K = ~ = 2 1 M H ~ .  
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Finally, using R = fL/ fl, 

The transfer functions and the time responses may also be found in a way 
similar to Section 8.3.3. 

EXAMPLE 8.34. In Example 8.33, fL = 2 MHz, fc = 57.1 MHz, t,-IT, = 
1.12, and T&, = 7.17. Thus, 

1 
TL=--  - 1 - 80 ns, 

2nfL 2742 MHz) - 
1 zc=-- - 1 - 2.8 ns, 

2nfc 2x(57.1 MHz) - 

TC 2.8 ns 
TA =- = -% 

1.12 1.12 = 
2.5 ns, 

and 

Tc 2.8 ns_ 
T, = - 

7.17 7.17 = 
0.4 ns. 

For an input voltage that is a step function with magnitude V,, 

with M ,.,, r 1, 7 , s  80 ns, T,= 2.5 ns, and T,Z 0.4 ns. It can be shown (see 
Problem 8.100) that the inverse Laplace transform of O{V,,,(t)} is as shown in 
Figure 8.26. 

Note that the transient response has a large overshoot: The peak is almost 
nine times the final value. As before, the overshoot can be eliminated by 
inserting a compensating network preceding or following the feedback amplifier. 

85 Inverting Feedback Amplifiers 

An inverting feedback amplifier was shown in Figure 7.8 and an extended circuit 
in Figure 7.9. It was seen that if the performance of the circuit using lead-lag 
compensation with fL = f2 (pole-zero cancellation) was acceptable for 
R ,,,,, = oo, then it was also acceptable for any value of R,, ,,,,. 

Whether the transient response is free of ringing or not is determined by AF,  
and is independent of the input. Thus, if the transient response of the circuit of 
Figure 7.9 using lead-lag compensation with fL = f2 (or fL = f3) is free of 
ringing for R,,,,, = oo, then it is also free of ringing for any value of R ,,,,,,. 

8.5 INVERTING FEEDBACK AMPLlFlERS 

FIGURE 8.26 Transient response of a Type 2539 operational amplifier used 

as n voltage follower. 

- 

EXAMPLE 8.35. In Example 8 30, a Type 2539 wldeband monohthlc operd- 
tional ampllfier was used w~th  jL = f3 The values of the feedback network were 
RF = 900 R, R, = 100 R, CF = 0.59 pF, and C, = 1 8 pF, dnd the translent 
response was free of rlnglng 

Thus, the translent response of the clrcult of Flgure 7 9 IS free of rlnglnp for 
any value of R,,,,,,, if ~t uses a Type 2539 operat~onal ampllfier, R,  = 900R. 
R 2 + R , = 1 0 0 R , C F = 0 5 9 p F , a n d C , = 1 8 p F  -- -pp - - -- - - 

The situation becomes more complicated when R,,,,,, of Figure 7.9 is not a 
pure resistance. In such cases, it is often necessary to specify a minimum value 
for R, if a transient response without ringing is desired. 
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8.6 Computer-Aided Design 

In the foregoing, this chapter introduced analytical and graphical methods for 
finding the frequency response and the transient response of feedback amplifiers. 
These methods also provided guidance for the choice of component values 
required to achieve desired performance characteristics, such as transients that 
are free of ringing. In some cases, they also provided insight into the tradeoffs 
that are possible in a given circuit, such as the tradeoff between operating speed 
and the maximum output voltage swing. 

It was also seen that the derivation of these methods could become difficult 
even in the simple circuits discussed here. Also, in some cases, the use of the 
resulting equations and design graphs required a substantial amount of work. 

An alternative to the analytical and graphical methods is provided by 
computer-aided design methods. Contrary to their name, these methods are 
suitable mainly for analyzing the performance of a given circuit. The transient 
response is usually computed by advancing the time in small time increments 
and evaluating voltages and currents in the circuit at each time step. Thus, the 
writing of equations is eliminated, and the transient response is obtained directly 
as a graph or a listing. The frequency response can also be found, as well as the 
effects of input offset voltage, input currents, and other parameters. 

Computer-aided design is often a convenient tool for finding the performance 
of a given circuit when a computer and a suitable program are available. Also, 
changing the values of components (circuit parameters) is usually easy; hence, 
circuits can be evaluated with different combinations of component values. 

EXAMPLE 8.36. A Type 9914A wideband hybrid operational amplifier was 
used in Examples 8.17 and 8.18 with MN,,, = 10 and with lead-lag com- 
pensation with f, > f,. It was found that, with fc = 156.25 MHz and 
fL = 80 MHz, the transient was free of ringing when w, = f,/ fc was between 3.4 
and 3.5, that is, when f, was between 531 MHz and 547 MHz. 

- 

In practice, such a narrow range of f, is difficult to guarantee with realistic 
variations of circuit parameters. On the other hand, a small amount of ringing 
on the transient response may be acceptable. 

A computer-aided design process may proceed as follows. As a starting point, 
the feedback amplifier is designed with f, = 3.4fc = 531 MHz. The resulting 
transient response is found using computer-aided methods. Next, circuit 
parameters are varied and the resulting transient responses found, again by 
computer-aided methods. As a last step, the transient responses are evaluated to 
determine whether the resulting ringing is acceptable. 

Computer-aided design can also be used for generating design graphs, such as 
Figures 8.21-8.25. This can be attained by an exhaustive evaluation of transients 
with all possible combinations of the variables of the horizontal and vertical 
axes. Such a procedure requires the evaluation of many transients: in the rough 
vicinity of 10,000 transients for the accuracy of Figures 8.21-8.25. This may 
become expensive and time-consuming; nevertheless, such use of computer- 
aided design is often practical, especially by use of mainframe computers. 
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PROBLEMS 

Verify Equation 8.3. 

Verify Equations 8.4-8.6. 

Derive Equation 8.7 from Equation 8.6. [Hint: Note the similarities 
between Equations 8.6 and 6.8.1 

Verify Equation 8.9. 

Verify Equations 8.10 and 8.11. 

Derive Equation 8.12 from Equation 8.1 1. 

Verify the statement following Equation 8.13 at the end of Section 8.1.3. 

Approximate the amplification of the operational amplifier in Example 
7.17 as A = 30,000/(1 + j fJ20 kHz) and sketch piecewise linear approxi- 
mations for IAl, I1/FNI, and JMNI. 

Verify Equations 8.24 and 8.25. 

Approximate 1 + j f/2O kHz by j f/20 kHz, and show that JAFNI of 
Example 8.5 becomes 1 at a frequency of 63 MHz. 

Verify Equations 8.26-8.29. 

Prove Equations 8.30a and 8.30b. 

Verify Equation 8.3 1. 

Derive Equations 8.32a-f from Equations 8.29 and 8.31. 

Derive Equations 8.34 and 8.35a from Equations 8.32c, 8.32d, and 8.33. 

Derive Equation 8.35b from Equation 8.35a by the following steps: 
(a) Substitute ( fL/ fox fu/ fc)max for fL/ fc in Equation 8.35a. 
(b) Find the two solutions (fu/fc)ma, of the resulting second-order 

equation. 

(c) Show that one solution is as given by Equation 8.35b, where 
(fu/fc)mu < 1 for 0 < fL/ f, < 1, which is the case for lag-lead 
compensation. 

(d) Show that the other solution results in ( Iu/  fC)max > 1 for 
0 < fL/ f, < 1; hence, it is of no interest. 

8.17 Verify that Figure 8.3 is consistent with Equations 8.36a and 8.36b. 

*8.18 Derive Equations 8.36a and 8.36b from Equation 8.35b using the series 
expansion of the square root for small values of fL/j" in Equation 8.35b. 
[Hint: Use the approximation z 1 + 4 2  - x2/8 for 1x1 << 1.1 

8.19 Verify that the condition A,,FN,,, fJ f, >> 1 of Equation 8 .33~  is valid in 
Example 8.8. 

'Optional problem. 
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Verify that Figure 8.4 is consistent with the approximation 
(f~/f~)ming 4 - 2fdfu when 0 < f d f u  << 1. 

Verify that the approximation ( fc/fu)min z 4 - 2fJfu is valid when 
0 < fJfu << I. Use the series expansion of the square root for small 
values of fJfu given in Problem 8.18. 

Verify Equations 8.37a-c. 

Derive Equation 8.38b from Equation 8.38a. 

Verify Equations 8.39 and 8.40. 

Derive Equation 8.41. 

Use Equation 8.41 and show that V,,, of Figure 8.5 has an initial slope of 
19.5MN,,, Vo at t/r = 0. 

Use Equation 8.41 and show that V,,, of Figure 8.5 has its maximum of 
approximately 7.5MN,,, V, at t/r 2 1.05. 

Derive Equations 8.43a-e from Equation 8.42. 

Derive Equations 8.44a, 8.45, 8.46, and 8.47. 

Verify the results of Example 8.10. 

Verify Equation 8.48. 

Verify the results of Example 8.1 1. 

Verify the results of Example 8.12. 

Find the phase margin in Example 8.12. 

A stage in an operational amplifier is represented by the lag network of 
Figure 5.1 (page 39), with Ii, proportional to the input voltage of the 
stage. Capacitance C is controlled within 10 %; however, variations of 
R are much greater because R represents collector (or drain) resistances 
that are poorly controlled in the integrated circuit process. Show that an 
increase in the value of R increases the dc amplification and reduces the 
value of the corner frequency f, = 1/2nRC; however, it has no influence 
on the amplification of the stage at frequencies f >> f, as long as C 
remains constant. 

Verify the statements following Example 8.13 at the end of Section 8.3.1. 
[Hint: Use Equations 6.40-6.42 and Figure 6.14.1 

A Type 741 internally compensated monolithic operational amplifier is 
characterized by A,= = 200,000, fl = 10 Hz, and /, = 10 MHz, and it is 
used with frequency-independent feedback. Show that the frequency 
response magnitude is free of peaking and the transient response is free 
of ringing for all possible MN,dc, including M,,, z I (voltage follower). 

*Optional problem. 
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A Type 13741 internally compensated FET-input operational amplifier 
is characterized by A,, = 100,000,1; = 10 Hz, and f2 = 1 MHz, and it is 
used with frequency-independent feedback. 

(a) Show that the magnitude of the frequency response is free of 
peaking if, and only if, M,,,, 2 2. 

(b) Show that the transient response is free of ringing if, and only if, 
M ~ . d c  2 4. 

Derive Equations 8.51a-e from Equation 8.50. 

Derive Equation 8.53 from Equations 8.51a and 8.52 for a step-function 
input, using Appendix A. 

Derive the equation for but in Example 8.14 from Equation 8.53. 

Verify that the bandwidth approximations given in the text following 
Example 8.14 are valid for frequency-independent feedback and for 
lead-lag compensation with f, = f2 (pole-zero cancellation). Ignore the 
region of m >> 1 and show the following: 
(a) The bandwidth is approximately flAd JMNVdc when m < 1. 

(b) The bandwidth is approximately J ( A ~ ~ / M ~ , ~ ~ ) ~ ~  f2  when m 2 1 
(but not when m >> 1). [Hint: Use the piecewise linear approxima- 
tions of the Bode plots for IMNI.] 

Show that the approximate bandwidth given in (b) of Problem 8.42 is 
also applicable for 0.5 < rn < 1. [Hint: Use the results of Figure 6.13.1 

Verify the results of Example 8.16. 

A Type 13741 internally compensated FET-input operational amplifier 
is characterized by A,, = 100,000, f, = 10 Hz, and 1; = 1 MHz. It is 
used in a noninverting feedback amplifier with FN = FN.dc = 1 (voltage 
follower). Find the resulting value of m and estimate the bandwidth of 
the feedback amplifier. 

Use Equation 8.49 and show that the piecewise linear approximation of 
the Bode plot of IAF,I becomes 1 at fc given by Equation 8.57a when 
f2 < fc, fL < fC, and fu 2 fc. Assume AdcFN.dc >> 1. 

Verify Equations 8.59a-d and Equation 8.60. 

Consider the procedure given in Appendix A for the solution of third- 
order (cubic) equations. Verify that the case of T, = T, in Equation 8.61 
marks the transition between two regions: All three of T,, TB. and T, are 
real in one region, whereas in the other region only one of T,, T,, and s, 
is real and the remaining two are complex. Assume nonzero s, T,, T,, T ~ ,  

and 7,. 

Verify Equations 8.62b, 8.63a, 8.63b, and 8.63~. 

'Op~ional problem. 
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Derive Equations 8.64a-c from Equations 8.63a-c' as follows: 
(a) Express T,/T, from Equation 8.63a; the result is Equation 8.64~. 
(b) Substitute the result of (a) above (i.e., Equation 8.644 into Equation 

8.63~. 
(c) Obtain Equation 8.64b from the result of (b) above. 
(d) Substitute the result of (a) above (i.e., Equation 8.644 and the result 

of (c) above (i.e., Equation 8.64b) into Equation 8.63b. Simplify and 
express w,; the result is Equation 8.64a. 

Compute Equations 8.64a and 8.64b with R = 0.625 and T,/T, = 1.44. 
Verify that the results are consistent with Figure 8.9. 

Derive Equation 8.65 by substituting T,/T, of Equation 8 .64~ into 
Equation 8.63b and solving the resulting equation for T&,. 

Show that lead-lag compensation with f, = f2 (pole-zero cancellation) 
would require fu/fL = 20 in Example 8.17, which cannot be im- 
plemented because M N n d ,  is only 10. 

Derive Equation 8.66 from Equation 8.62a. [Hint: Use Equations 8.5961 
and 8.63c.j 

Verify Equation 8.67b. 

Verify the equation for V,,,(t) in Example 8.18. 

Verify Equations 8.68a and 8.68b. 

Verify Equations 8.69a-c. 

Derive Equations 8.70a-c from Equations 8.69a-c as follows: 

(a) Express R/w, from Equation 8.69a and substitute it into Equation 
8.69b. 

(b) Express w2 from the result of (a) above. The result is Equation 
8.70a. 

(c) Express w, from Equation 8.69~. The result is Equation 8.70b. 
(d) Express R from Equation 8.69a. The result is Equation 8.70~. 

Verify that w, and w, of Figure 8.12 provide the locations of the cusps 
for R = 0, 0.1, 0.2, 0.5, 0.625, and 0.75 in Figure 8.9. 

Compute Equations 8.70a-c at T,-/T, = 1.2. Verify that the results are 
consistent with Figure 8.12. 

Verify Equations 8.71a and 8.71b. 

Verify the results of Example 8.19. 

Derive Equation 8.72 from Equation 8.68a. [Hint: Use Equations 8.59d 
and 8 .63~  with TB = T,.] 

*Optional problem. 
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Derive Equation 8.73b from Equation 8.73a using Appendix A. 

Verify the equation for V,,,(t) in Example 8.20. 

Verify the results of Example 8.21. 

Show that 1/(R2/wl) is equal to the piecewise linear approximation of the 
Bode plot for IAF,] at f = f2: 
(a) in Figure 8.10; 
(b) in Figure 8.13; 
(c) in general whenf, 3 f2 and f, 2 f2. 

A Type 9914A wideband hybrid operational amplifier is characterized 
by Ad,  = 5000, fl = 0.5 MHz, and f2  = 50 MHz. It is used in a nonin- 
verting feedback amplifier with M,,,, = 50, and a transient response 
without ringing is desired. Input voltage VJt) is a step function with 
magnitude V,. 

(a) Find output voltage Vou,(t) if lead-lag compensation with f, = f2 

and m = 0.25 is used. 

(b) Find tS0  and t lo  -,, of (a) above. 
(c) Find output voltage V,,,(t) if lead-lag compensation withf, > f2 is 

used and if the transfer function is of the form of Equation 8.72. 

(d) Find t,, and tlo-,, of (c) above. 

Verify the results of Example 8.22. 

Verify Equations 8.74a-d and 8.75a-d. 

Verify the statements following Equation 8.75d by the steps given below: 
(a) Show that Equation 8.49 can also be written 

(b) Show that when Ad,FN,dc >> 1, the result of (a) above can be written 

(c) Verify that the denominator of Equation 8 . 7 5 ~  is identical to the 
denominator of the result of (b) above with T,, T,, and T, replaced 
by T,, ru, and T,, respectively. 

(d) Verify that, in general, the numerators of Equations 8 .75~ and 8.75d 
are not identical to the numerator of the result of (b) above. 

Verify the results of Example 8.25. 

(a) Verify the equation given for Vou,(t) in Example 8.26. 
(b) Evaluate the equation at t = 1 ps and compare the result with 

graph (a)  of Figure 8.1 7. 
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Derive the equation representing graph (b) in Figure 8.17. Evaluate the 
equation at t = 1 ps and compare the result with the figure. 

Derive the equation representing graph (c) in Figure 8.17. Evaluate the 
equation at t = 1 ps and compare the result with the figure. 

In Example 8.25, the value of C, is lOpF, which includes the input 
capacitance of the operational amplifier and stray capacitances. Show 
that a feedback network consisting of R,  = 265 kR in parallel with 
C, = 4.6 p F  results in f, = 129.8 kHz and f, = 41.1 kHz, as required. 

Sketch piecewise linear approximations of the Bode plots for IA(, (l/F,I, 
and JM,J in Example 8.27. Use a logarithmic horizontal scale of 10 kHz 
to 1 GHz and a vertical scale of -20 dB to 100 dB. 

Verify Equations 8.77 and 8.78a-c. 

Use Equations 8.76 and 8.77, and show that f, of Equation 8 .78~ is the 
frequency where the piecewise linear approximation of (AF,( becomes 1 
when f2 2 fc and f3 Z fc. 

Verify Equations 8.79a-c and 8.80a-d. 

Derive Equation 8.82 from Equations 8.80a-d and 8.81a-c. [Hint: As a 
first step show that Equation 8.81a can be written 

then solve for l/w,,.] 

Show that w,, given by Equation 8.82 becomes 2714 = 6.75 when 
w3, = w,,. Verify Figure 8.18 at this point. 

Show that, based on previous results of'this chapter, w,, of Equation 
8.79b and Figure 8.18 is expected to become 4 when w3 -+ oo in Equation 
8.79~ (i.e., when f3 -t oo). Verify that Figure 8.18 is consistent with this 
result. 

Show that w,, of Equation 8.82 becomes 4 when w ~ ~ / w ~ ~  + a. [Hint: 
First show that l/w,, can be approximated as 

then use the approximati~n m s  1 + 4 2  for 1x1 << 1.1 

Evaluate Equation 8.82 and verify Figure 8.18 at w3,/w2, = 0.2, 0.5, 3, 
1.5, 2, and 5. 

'Optional problem. 
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Verify the results of Examples 8.28 and 8.29. 

A Type 2539 wideband monolithic operational amplifier is characterized 
by A,, = 30,000, f, = 20 kHz, and j, = f 3  = 300 MHz. The operational 
amplifier is used in a noninverting feedback amplifier with frequency- 
independent feedback. Show that the transient response is free of ringing 
if, and only if, the resulting dc amplification, M,,, , ,  is at least 
~ 2 7 1 2  = 13.5. 

Verify Equations 8.83 and 8.84. 

Verify the results of Example 8.30. 

Evaluate Equation 8.81a for Example 8.30 and show that the right side 
of Equation 8.81a is greater by roughly 1.5 % than its left side. 

Verify the results of Example 8.31. 

The end result of Example 8.31 was reached by approximating by 1 the 
transfer function [l + ~(0.215 ns)]/[l + s(0.205 ns)]. Show that the 
transient response corresponding to this transfer function multiplied by 
l/s is 1 + 0.05 e-'10.205ns, which can be approximated by 1 with an error 
of less than 2% for times greater than 0.2 ns. 

Verify the results of Example 8.32. 

The results of Section 8.4.3.2 are expected to reduce to those of Section 
8.3.2.2 when f, >> f,. Verify that this indeed is the case in Figure 8.22. 

Verify that the R = 0 limits of Figures 8.23-8.25 are consistent with 
Figure 8.22. 

Derive the results of Figures 8.21 and 8.22 as follows: 

(a) Show that the fourth-order equation to be solved can be written 

(b) Show that the expression (s + s,)'(s + s,Xs + sD) can also be 
written 

(c) Multiply the equation in (a) by s: and match the coefficients of the 
result with the coefficients of (b). 

(d) Write the equation resulting from the s3 terms of (a) and (b) as 

'Optional problem. 
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(e) Write the equation resulting from the s terms of (a) and (b) as 

(I) Combine the equations resulting from the s3 and s2 terms of (a) and 
(b) as 

(g) Write the equations resulting from the constant terms of (a) and (b) 
as 

(h) Combine the results of (f) and (g) and express wl as 

(i) Substitute the results of (d) and (f) into (e) and express sA/sc as 

(j) Multiply the result of (i) by (sc/sA)w2 to obtain w2 as 

(k) Evaluate the results of (h) and (j) for f3/ f2 = 2 and (sc/sA)w2 = 2.5. 
Verify that the results are consistent with Figure 8.21. Repeat for 
f3/f2 = 5 and (sc/sA)w2 = 2.3. 

*&98 Derive the results of Figures 8.23-8.25 as follows: 
(a) Show that the fourth-order equation to be solved can be written 

'Optional problem. 
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(b) Show that the expression (s + sJ3(s + s,) can also be written 

s4 + s3(3s,, + s,) + s23sA(sA + s,) + ssi(s* + 3s,) + s;ss 
(c) Multiply the equation in (a) by s t  and match the coefficients of the 

result with the coefficients of (b). 
(d) Combine the equations resulting from the s3 and s2 terms of (a) and 

(b) as 

[Hint: Express s, from the equation resulting from the s3 terms and 
substitute it into the equation resulting from the s2 terms.] 

(e) Rearrange the equation resulting from the s2 terms of (a) and (b) as 

(f) Multiply the result of (d) with the result of (e) and obtain Rlw,. 

(g) Combine the equations resulting from the s3 terms and the constant 
terms of (a) and (b) such as to eliminate s,. Write the result as 

(h) Divide the result of (g) by the result of (f) to obtain w,. 
(i) Multiply the result of (e) by (sc/sA)w2 to obtain w2. 
(j) Express s,/sc from the equation resulting from the s3 terms of (a) 

and (b) as 
R 

Sc Sc 

(k) Note that rC/rA = sA/sc and rC/r, = s,/s,. 
(1) Evaluate the results of (d)-(k) above, in the order given, for 

f3/f2 = 1 and (sc/sA)w2 = 4. Verify that the results are consistent 
with Figure 8.23. Repeat for f3/f2 = 1 and (sc/sA)w2 = 4.5. 

(m) Evaluate the results of (d)-(k) above, in the order given, for 
f3/f2 = 2 and (sc/sA)w2 = 3. Verify that the results are consistent 
with Figure 8.24. Repeat for f3/f2 = 2 and (s,/sA)w2 = 3.5. 

(n) Evaluate the results of (d)-(k) above, in the order given, for 
f3/f2 = 5 and (sc/sA)w2 = 3. Verify that the results are consistent 
with Figure 8.25. 
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8.99 Verify the results of Example 8.33. 

*8100 Verify Figure 8.26 as follows: 

(a) Verify that for any a, b, and s, 

(b) Use the result of (a) above and show that in Example 8.34 

[Hint: Use Laplace transforms from Appendix A.] 

(c) Evaluate V,,,(t) at t = 5 ns and 10 ns, and show that the resulting 
values of V,,,(t) are consistent with Figure 8.26. 

* 8101 Equation 7.76 and Figure 7.6 describe feedback factor AF, of a feedback 
amplifier in the vicinity of frequency f = f,, where JAFNJ = 1 at f = f,. 

(a) Show analytically that the denominator of the resulting amplifica- 
tion M, can be written (I + ST$ when w = 3, where time constant 
7, = 1/2nfc. 

(b) Sketch a piecewise linear approximation for the Bode plot of )AFN1 
for the feedback amplifier of Figure 8.12 with R = 0. 

(c) Compare the plot of (b) above with Figure 7.6, and show that the 
results of (a) above provide an analytical verification of Figure 8.12 
with R = 0. 

*Optional problem. 
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*8.102 Equation 7.54 and Figure 7.5 describe feedback factor AF, of a 
conditionally stable feedback amplifier in the vicinity of frequency 
f = f,, where IAF,I = 1 at f = f,. Show analytically that the denomi- 
nator of the resulting amplification M N  can be written (1 + ST$ when 
w = 5, where time constant 7, = 1/2nf,. (Note: Although straightfor- 
ward, working this problem is time-consuming because of the many 
terms involved.) 

'Optional problem 



I CHAPTER 9 

Properties of Real 
Operational Amplifiers, 
Part I 

In the preceding, ideal operational amplifiers were assumed in accordance with 
Equations 2.1 and 2.2. In the case of a real operational amplifier, however, these 
equations can be considered only as approximations. In this chapter and in 
Chapter 10, departures of real operational amplifiers from Equations 2.1 and 2.2 
are discussed. 

9.1 Common-Mode Amplification and Common-Mode Rejection 

Consider the circuit of Figure 9.1. If the amplifier is ideal, the output voltage is 
given by 

v,", = Al/, (9.1) 

and voltage V ,  has no effect whatsoever on the output voltage. 

FIGURE 9.1 Circuit for determining the common-mode rejection of an 
operational amplifier. 
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In reality, a small fraction of V,  finds its way to the output; that is, 

where AcM is designated common-mode amplification. In the case of a real 
operational amplifier, AcM # 0, but usually its magnitude is much smaller than 
that of A:  

The output voltage of the amplifier, V,,,, can be approximated as 

where D,, D,, and K are constants (in general, Dd and D, are the partial 
derivatives of V,,, with respect to V, and V,, respectively). Note that the second 
term in Equation 9.4a is the constant D, multiplied by the average of the 
voltages at the positive (+) and negative (-) input terminals of the operational 
amplifier. With the foregoing, the common-mode rejection ratio (CMRR) is 
defined as 

It can be seen that for an ideal operational amplifier, that is, for D, = 0, the 
cornmon-mode rejection ratio is CMRR = a. For the circuit of Figure 9.1, 
D, = AcM and D, = A;  hence, Equation 9.4b becomes 

CMRR = -2068 loglo = 20 dB loglo 121. (9.5) 

In many cases, it is of interest to specify CMRR as a function of frequency. In 
general, the common-mode rejection ratio is best (CMRR the largest in 
magnitude) at dc, that is, at zero frequency, where 

CMRR, ., = 20dBloglo -!k-!L. = 20dBloglo 1 A C M , . j  

designated as dc common-mode rejection ratio, or in many instances simply as 
common-mode rejection ratio. 

EXAMPLE 9.1. An operational amplifier is characterized by an amplification 
at zero frequency of A,, = 4000 and by a common-mode amplification at zero 
frequency of (AcM( = 0.04. Thus, at zero frequency (AcM/AI = 0.04/4000 = lo-', 
and the dc common-mode rejection ratio becomes 

COMMON-MODE AMPLIFICATION AND REJECTION 199 

For many operational amplifiers, the common-mode rejection ratio as a 
function of frequency can be approximated as 

- 20 dB log,, 1 + - I .;c'M I 

where fCM is the corner frequency of the common-mode rejection ratio. 

-- - --- - - 

EXAMPLE 9.2. An operational amplifier has a dc common-mode rejection 
ratio of 95 dB. When driven from a zero-impedance source, as In F~gure 9.1, the 
corner frequency of the common-mode rejection ratio is f,, = 0.5 MHz. By use 
of Equation 9.7, the common-mode rejection ratio as a functlon of frequency 
becomes 

CMRR(/) = CMRR, ,, - 20dB log,, 

= 95 dB - 20 dB loglo /-. 0.5 MHz 

Thus, for example, at a frequency f = 2 MHz, 

It is of importance to determine the common-mode rejection properties of 
feedback amplifiers, in particular those of the differential feedback amplifier with 
equalized amplifications (Figure 3.4). If the operational amplifier is ideal, that is, 
if A,, = 0, then the circuit, shown again in Figure 9.2a, has an output voltage 
(see Equation 3.26) 
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(b) 

FIGURE 9.2 Two equivalent circuits for determining the common-mode 
rejection of a differentid amplifier with feedback. 

It can be shown that, if A, # 0, the output voltage in Figure 9 . 2 ~  is given by 

provided that Equation 9.3 is valid and that Hl + Rs/Rp)/ 
(1 + R,/RF) - 11 << A. Equation 9.9 is now evaluated for several cases. 

A COMMON-MODE AMPLIFICATION AND REJECTION 

If Rs/Rp = Rl/RF and A,, = 0, Equation 9.9 becomes 

and the common-mode rejection ratio of the circuit is CMRR = co. 
If Rs/Rp = R I / R F ,  but A,, # 0, Equation 9.9 becomes 

and the common-mode rejection ratio of the circuit, by use of Equation 9.4b, is 

CMRR = -20 dB log,, 

the same as that of an amplifier without feedback. Thus, if the resistors are 
perfectly balanced, the feedback has no effect on the common-mode rejection 
ratio. 

If AcM = 0 but Rs/R, # R,/RF, it can be shown by use of Equations 9.4b and 
9.8 that the common-mode rejection ratio of the circuit is 

CMRR = - 20 dB log,, 1 - - 2 I( :: RRI )/(I + %)I 

by use of Equations 9.4b and 9.9, the worst-case limit of' CMRR can be given as 

CMRR -20dB log,, [ + ( 1  - 1 + 1 .  (9.14, 

*It would seem that, based on Equation 9.9, a nonzero A, could be compensated by a suitable 
choice of parameters. Unlortunately, as a rule, only the magnitude of A,, is known; hence, only the 
worst-case limit of the common-mode rejection ratio can be determined. 
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EXAMPLE 93. An operational amplifier with a common-mode rejection 
ratio of CMRR = 80dB is used in the circuit of Figure 9.2a. Nominally, 
R, = Rs = 1000 R and R, = R,  = 10,000 R, but all four resistors have a & 0.1 % 
tolerance. By use of Equation 9.5, 

The worst-case limit of CMRR, from Equation 9.14, is given by 

CMRR 2 -20dBl0g,~ [l%l+ I(1 - 2 $)/(I + z)l] 

9.2 Input Impedances 

In the case of a real operational amplifier, input currents I, and I, of Figure 2.1 
are different from zero. Two approximately equivalent representations of the 
input terminals of a real operational amplifier are shown in Figure 9.3. Input 
current I, can be decomposed into a voltage-independent I,, and a voltage- 
dependent component. Input current I, can also be decomposed into a voltage- 
independent I, ,  and a voltage-dependent component. In this section, the 
voltage-dependent components of the input currents are discussed, whereas 
and I, ,  will be discussed in Chapter 10. 

The dtferential input impedance of an operational amplifier represented by 
Figure 9.3 can be defined as 

and the common-mode input impedance as 

av, z = --- 
'- - 81, + I"). 

EXAMPLE 9.4. At zero frequency, an operational amplifier has a differential 
input impedance of 7000R and a common-mode input impedance of 1 MR. 
Thus, in Figure 9.3, Rd = 7000R and R, = 1 MR. It might also be useful to 
separate capacitances Cd and C,  of Figure 9.3; unfortunately, such a separation 
is rarely specified on present-day data sheets of operational amplifiers. 
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FIGURE 9.3 Two representatioaf of the input terminals of an operational 
ampli6er that are equivalent if Rd K RR, and Cd w CCc. 
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It is of significant interest to investigate the input impedance of feedback 
amplifiers. The noninverting feedback amplifier of Figure 3.1 with the input of 
the operational amplifier represented by Figure 9.36 is shown in Figure 9.4. It 
can be shown that for 2Rc >> R,R,/(R, + R,), the resulting input impedance at 
zero frequency, R,,, can be approximated as 

where Mdc is the resulting dc amplification of the feedback amplifier as given by 
M N  of Equation 3.6 with FN that of Equation 3.2. 

FIGURE 9.4 The ooaioverting feedback amplifier of Figure 3.1 with the 
input of tbe operatianal ampli6er represented by the circuit of Figure 9.3b. 
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E X A M P L E  9.5. An operational amplifier with Rd = 7000R, R, = 1 MR,  and 
A,,= = 1000 is used as a noninverting feedback amplifier with R, = 1000 R and 
R,= 9000 R. Thus, 

and Adc/Mdc  % 1000/10 x 100. From Equation 9.17, the input impedance at 
zero frequency is 

93 Output Impedance 

In the case of an ideal operational amplifier, Equation 2.1 states that the output 
voltage is determined by the input voltages and is independent of the output 
current. In reality, the output voltage is a function of the output current; that is, 
in Figure 2.1, 

avo,, # 0. ZOUI = - - (9.18) 
a ~ o u ,  

In general, output impedance Z,,, is a function of frequency; in many cases, it can 
be represented as a resistance in series with an inductance. 

E X A M P L E  9.6. The output impedance of an operational amplifier 
can be approximated by a resistance of 75 R in series with an inductance 
of 40 pH. Thus, Z,,,(f) = 75 R + j2n(40 pH) f and IZ,,,(f)( = 
$5' + [2n(40 x 10-6f)]2.  For example, at a frequency off  = 1 MHz, 

lz,,,(f)I = J75' + [2n(40 x 10 -6~106) ]2  = 262 R. 

When an operational amplifier with a nonzero output impedance is used in a 
feedback amplifier, Figure 9.5, the resulting output impedance of the circuit is a 
function of the output impedance Z,,, of the operational amplifier, of amplifica- 
tion A of the operational amplifier, and of resistors R, and R,. It can be shown 
that the resulting output impedance of the feedback amplifier of Figure 9.5 is 



206 PROPERTIES, PART I 

FIGURE 9.5 Circuit for determining the output impedance dV&/alkd of a 
feedback ampli6er. 

If, as is the usual case, 

Equation 9.19 becomes 

EXAMPLE 9.7. An operational amplifier with an output impedancs 
Zoul(f = 75 R + j2n(40 pH) f and an amplification A x 200,000/(1 + j f /I0 Hz) 
is used in the circuit of Figure 9.5 with R,  = 100 R and R, = 10,000 R. Hence, 

and the resulting amplification at zero frequency is 

The resulting output impedance at zero frequency, by use of Equation 9.21, is 
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9.4 Supply-Voltage Rejection 

The output voltage of an ideal operational amplifier depends only on the input 
voltages and it is independent of the power supply voltage. In reality, the output 
voltage is a function of the power supply voltage, or supply voltages if there are 
more than one. It has been customary to define a supply-voltage rejection ratio, 
or power supply rejection ratio, PSRR, as 

that is, as the ratio of the equivalent voltage change at the input of the amplifier 
to a change in supply voltage.* 

EXAMPLE 9.8. The supply-voltage rejection ratio of an operational amplifier 
is 30 pV/V = 30 x and its dc amplification is A,, = 200,000. Thus, if there 
is a AV,u,,l, = 10mV ripple on the power supply, this will be equivalent to a 
(10mVX30 x = 0.3pV on the input of the amplifier. Thus, without 
feedback, the ripple voltage on the output JAl/,,,l = (0.3 pVX200,000) = 60 mV. 
This result can also be obtained directly by use of Equation 9.22: 

In the case of an operational amplifier with negative feedback and a resulting 
amplification of M,, it can be shown that the output voltage AVO,, resulting 
from a supply-voltage change of AV,upply is given by 

- 

EXAMPLE 9.9. An operational amplifier has a supply-voltage rejection ratio 
of PSRR = 30pV/V and a dc amplification of A,, = 200,000. It is used as a 
feedback amplifier with a resulting feedback amplification of M ,  = 100, and 
there is a AV,uppIy = 10 mV ripple on the power supply voltage. As a result, by 
use of Equation 9.23, the ripple at the output of the amplifier is 

In general, the supply-voltage rejection ratio, PSRR, is a function of 
frequency having, as a rule, its best (lowest) value at dc; this frequency 
dependence is also a function of the compensation scheme used. Unfortunately. 
information in present-day operational amplifier data sheets on the frequency 
dependence of the supply-voltage rejection ratio is very limited. 

*Note that PSRR of Equation 9.22 is reJerred to rhu input (RTI ) .  
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PROBLEMS 

Common-mode rejection properties of an operational amplifier are 
measured in the circuit of Figure 9.1. At V,  = 0 and V, = 1 mV, a 
V,,,= 5V is measured. At V,= 1mV and V,=O, a V,,, = -0.5mV is 
measured. Find A, IAcMI, and the dc common-mode rejection ratio 
CMRR. 

An operational amplifier has a dc common-mode rejection ratio of 
CMRR,=, = 90 dB. At f = 1 MHz, CMRR,=, ,,, = 16 dB. Find corner 
frequency fcM of the common-mode rejection ratio. 

Show that the common-mode rejection ratio does not change if in the 
circuit of Figure 9.1 the positive and negative input terminals of the 
operational amplifier are interchanged. 

Show that the common-mode rejection ratios of the circuits of Figures 
9.2a and 9.2b are identical if the components are identical. 

A Type 108A operational amplifier with a common-mode rejection ratio 
of CMRR = 96 dB is used in the circuit of Figure 9.2~. The useful signal is 
V, = 10 pV and the undesired noise is V,  = 10 mV. Find the ratio of the 
useful signal to the undesired noise at the output of the circuit. 

Derive Equations 9.9-9.14. 

Show that the worst-case limit of the common-mode rejection ratio of the 
compound differential amplifier of Figure 3.10 can be approximated as 

Derive Equation 9.17. 

Estimate the input impedance seen at the positive input terminal of the 
circuit of Figure 3.1 with the voltage source removed, if the operational 
amplifier input terminals can be represented by the circuits of Figure 9.3 
with C, = 10 pF, C, = 1 pF, R, = 10,00OR, and R, = 1 MR. 

An operational amplifier with an output impedance consisting of a 
resistance of 75 R in series with an inductance of 40 pH has an amplifica- 
tion A % 200,000/(1 + j f/lOHz). Find the resulting output impedance at 
zero frequency and the magnitude of the resulting output impedance at a 
frequency f = 1 MHz if the operational amplifier is used as a voltage 
follower. 

An operational amplifier has a dc amplification A,, = 4000 and a supply- 
voltage rejection ratio PSRR = 75 pV/V. Find the ripple on the output, if 
the amplifier is used without feedback and if there is a ripple of 10 mV on 
the power supply voltage. 

Derive Equation 9.23. 

CHAPTER 10 

Properties of 
Real Operational Amplifiers, 
Part I1 

In Chapter 9, various linear attributes of real operational amplifiers were 
described. This chapter presents additional properties and limitations. 

10.1 Input Currents 

The input circuit of an operational amplifier has been represented by the circuit 
of Figure 9.3. It can be seen that when 1/, = V, = 0, that is, when the voltages on 
both input terminals of the operational amplifier are zero, there is a current 
flowing into the positive terminal and a current I,,, into the negative terminal. 
For many practical operational amplifiers, 

Thus, it is reasonable to define an input bias current I, as the average of I , ,  and 
Lo:  

IB IP.0 + 1n.o (10.2) 
2 ' 

and an input offset current IOff,,, as 

*Frequently, the input offset current 1s specified as II,,,,.,I or as f Il,,,,,,I. Also, in some cases, input 
currents I,,, and I,~, of Equation 10.2 are specified separately. 

209 
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EXAMPLE 10.1. At a temperature of 25T,  a Type 741 operational amplifier 
has a typical input bias current I,,,, = 80 nA, a maximum input bias current 
I , ,  = 500 nA, a typical input offset current I1ofr,,rI,,p = 20 nA, and a maximum 
input offset current II,,,,I,, = 200 nA. No minimum is specified for I , ,  and it is 
assumed that this minimum is zero. Thus, if the current into the positive input 
terminal is I ,  = 250 nA, the current into the negative input terminal, I,, can be 
between 50 nA and 450 nA; if I ,  = 600 nA, I ,  = 400 nA; and if I ,  = 10 nA, I ,  can 
be between zero and 210 nA. 

When operation over a certain temperature range is desired, it is important to 
take into account the temperature dependence of the input currents. 

EXAMPLE 10.2 At a temperature of -5S•‹C, a Type 741 operational 
amplifier has a maximum input bias current I,,,, = 1.5 pA and a maximum 
input offset current (I,fa,rI, = 0.5pA. At a temperature of +125"C, 
I,, = 0.5 pA and 11, f f , , r I , , ,  = 0.2 pA. Comparison with the data in Example 
10.1 shows that I , ,  and IIO,,,,I,, are the same at + 125OC as they are at 
+ 25•‹C but are worse at - 55•‹C. 

In some cases, the temperature dependence is given in terms of a temperature 
coeficient. If the temperature coefficient q (eta) of a current is measured in 
amperes per degree centigrade ("C), the current change A 1  over a temperature 
range A T  can be approximated as 

EXAMPLE 10.3. The maximum temperature coefficient of the input offset 
current of an operational amplifier is I ~ f a . t ( ,  = 0.1 nA/"C. Thus, if the 
temperature varies by A T  = lWC, the input offset current varies by 
A 1  = IhrSetl- A T  = (0.1 nA/"C)(lO•‹C) = 1 nA, or by less. 

When an operational amplifier with an input bias current of 1 ,  and an input 
offset current of Iof,,, is used in the feedback amplifier of Figure 3.4, it can be 
shown that, for V, = V,  = 0, V,,, can be approximated as 

RI RF 
Your X - Mdc --- R I R F  RsRp 

R,  + RF 
- ---)I., (10.5a) 

RI + RF R, + RP 
where the resulting dc amplification of the feedback amplifier, Mdc,  is defined as 

and A,, is the amplification of the operational amplifier at zero frequency. 
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EXAMPLE 10.4. At a temperature of 2YC, an operational amplifier has a 
maximum input offset current ~ l o f f s , , ~ m , ,  = 50 PA, a maximum Input bias current 
llB1,,, = 100 PA, and a dc amplification Ad, = 30,000. The amplifier is used in 
the circuit of Figure 3.4 with Rs = R, = 10 MR, R p  = RF = 90 MR, and 
Vp = V, = 0. Thus, the resulting dc amplification of the feedback amplifier, M,,, 
is 

Adc - - 
30,000 

Mdc = z 10. 
Ad,% (30,000)(10 MR) 1 +- 

RI f RF 1 + 1 0 ~ ~ + 9 0 ~ R  

Since Rs = R, and R p  = R,, input bias current 1 ,  has no effect on the output 
voltage (see Equation 10.5a). Input offset current ~lo, , , , , )m, ,  results in an output 
voltage with a magnitude of 

Thus, in this example, output voltage V,,, is always between +4.5 mV and 
- 4.5 mV. 

-- .- - - - 

10.2 Input Offset Voltage 

In the case of an ideal operational amplifier, the output voltage is zero if both 
input voltages are zero. In the case of a real operational amplifier, however, there 
may be a nonzero output voltage even if both input voltages are zero. It has been 
customary to define, for the operational amplifier of Figure 2.1 with a dc 
amplification of Ad,, an input oflset voltage V,,,,,, as 

Thus, V,,,,,, is an equivalent offset voltage at the input of the amplifier.* The 
input offset voltage can also be represented by a battery V,,,,,, connected in 
series with one of the input terminals of the operational amplifier. 

EXAMPLE 10.5. The input offset voltage of an operational amplifier with a 
dc amplification Ad, = 10,000 is measured by grounding both input terminals 
and measuring the output voltage. An output voltage Vo,, = 5 V is measured this 
way. Thus, the input - offset voltage is V,,f,,, = 5 V/10,000 = 0.5 mV. 

'Frequently. the input olfset voltage is spec~fied as f Y,,r,.,. Also, the input olTset voltage is often 
called the offset voltage referred to rhe input (RTI ) ,  as opposed to the olfset voltage referred to rhr 
ourput (RTO) whlch is M,,, times the olfset voltage referred to the input. 
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The input offset voltage K,',,,,, is, in general, a function of temperature. This 
temperature dependence can be described either by specifying V,ffSet at several 
temperatures, or by a temperature coefficient )dV,,, , , , /d~, where T is the 
temperature. 

EXAMPLE 10.6. The temperature coefficient of the input offset voltage V&, 
of an operational amplifier is specified as being at most 10pV/"C between the 
temperatures of - 55•‹C and + 125•‹C; also, A,, = 4000. Thus, if the temperature 
changes from 0•‹C to +5O0C, input offset voltage Kc,,,, changes by 
(50•‹C)(10pV/"C) = 500pV, or by less. If the operational amplifier is operated 
without feedback, then, since its dc amplification is A,, = 4000, the output 
voltage changes by (500pV)(4000) = 2V, or by less, over the 0•‹C-5O"C 
temperature range. 

If the operational amplifier is used as a feedback amplifier in the circuit of 
Figure 3.4 with V, = V ,  = 0, it can be shown that an input offset voltage I/,,,, 
results in an output voltage 

where the resulting dc amplification, M,,, is defined as 

Mdc = Adc 
R1 ' 1 + A',, - 

R1 + RF 

and A,, is the amplification of the operational amplifier at zero frequency. Thus, 
the voltage at the positive (+) input of the operational amplifier and input offset 
voltage V,,,,, are both amplified by the same amount. 

103 Limihtiom and Ratings 

In the preceding, it was assumed that dc amplification A,, of the operational 
amplifier was constant. In reality, ignoring the offset voltage, the output voltage 
as a function of input voltage can be characterized by a curve such as shown in 
Figure 10.1. It can be seen that the slope of the curve, that is, dc amplification 
Ad, = aV,,,/d&,, is a fairly constant A,, = 10,000 between a maximum output 
voltage of approximately + 20 V and a minimum output voltage of approximately 
- 10 V. A realistic design must take these limiting voltages (output voltage swing) 
into account. 

The output voltage swing is specified at a given output current, which may 
lead to additional limitations. 
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FIGURE 10.1 Output voltage V' versls input voltage Vi,, for a real 
operational amplifier. 

-- 

EXAMPLE 10.7. The output voltage swing of the Type 2539 wideband 
monolithic operational amplifier is specified as f 10V at output currents of 
+ 10 mA, and the output voltage swing of the Type 9914A wideband hybrid 
operational amplifier is specified as f 10 V at output currents of & 50 mA. Thus, 
if the full f 10 V output voltage swings are desired, the output of a Type 2539 
wideband monolithic operational amplifier should not be loaded by a resistance 
less than 10 V/lO mA = 1 kR, and the output of a Type 9914A wideband hybrid 
o~erational amplifier should not be loaded by a resistance less than 

Particular care should be exercised in the design to assure that the maximum 
ratings of an operational amplifier are not exceeded. Such ratings include, 
although are not restricted to, maximum supply voltages, maximum output 
current, maximum and minimum input voltages, maximum differential input 
voltage, power dissipation, operating temperature range, storage temperature 
range, and lead temperature during soldering. In general, damage to the 
structure of the operational amplifier may result if a maximum rating is 
exceeded. 
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10.4 Slew Rate 

The slew rate is a limitation on the rate of change in the output voltage of an 
operational amplifier. The source of this limitation can be seen in Example 5.4, 
where a stage of an operational amplifier is represented by the circuit of Figure 
5.1 consisting of a l-mA current source in parallel with a resistance R = 1000 Q 
and with a capacitance C. It is seen that for a stepfunction input current of 
I,, = (1 mA)u(t), the voltage is V,,, = (1 VX1 - e-'IRC). In a real operational 
amplifier, the source of current lin is a transistor that cannot deliver arbitrarily 
large currents. Thus, lin and hence dV,,,/dt are limited. Such limitations lead to a 
specification of the output slew rate, usually given in units of V/p. 

EXAMPLE 10.8. In the circuit of Figure 5.1, capacitance C = 10 pF, and the 
maximum available input current is Iin = 1 mA. Voltage Y,,, can be written 

KUt = IinR(l - e-'IRc). 

From this, 

The slew rate S is the maximum of IdV,,,/dt(, which occurs at t = 0, 

The finite slew rate also imposes a limitation on the maximum amplitude of a 
sinewave the operational amplifier can deliver at its output. In the case of a 
sinewave in the form 

= Vo sin 2nft, 

the rate of change of voltage Y,  is 

dV, - = V02lrf cos 2lrft. 
dt (10.9) 

The maximum value of IdV,/dtl is limited by slew rate S: 

hence, the maximum of amplitude Vo, V,,,, that is available at a frequency f is 
given by 
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EXAMPLE 10.9. A Type 741 internally compensated operational amplifier 
has a slew rate of 0.5 V/p.  Thus, for a sinewave with a frequency of j' = 1 0  kHz, 
the maximum amplitude available at the output of the amplifier is 

S 0.5 VIP _ 
VO*max = 2nf = 2n(10 kHz) - 

In general, the slew rate and the maximum output amplitude as a function of 
frequency depend on the resulting amplification and on the frequency com- 
pensation used. For this reason, the slew rate is usually specified for a given 
circuit. 

10.5 Noise 

Electrical conduction takes place by means of discrete charge carriers, such as 
electrons and holes. As a result, noise voltage and noise currents are superim- 
posed on the inputs of an operational amplifier. When the signal levels are low, 
these noise sources may become significant. 

If the operational amplifier "sees" a resistance R at its input terminals, the 
resulting total input noise power per unit bandwidth, designated as narrow-band 
noise or spot noise, can be approximated as 

The term 4kT is the thermal noise power per unit bandwidth contributed by 
resistance R, v f / R  is the noise power per unit bandwidth contributed by the 
input noise voltage v, of the operational amplifier, and Rii is the noise power per 
unit bandwidth contributed by the input noise current in of the operational 
amplifier. The value of kT at room temperature is 0.4 x lo-'' VA/Hz; v, and vn 

are measured in v/& in in ~/fi. 
When v,  and i, can be considered constants within the bandwidth of interest 

B, the resulting input noise power, P,, is given by 

where $ 1 ~  is given by Equation 10.12.* Also, the rms input noise voltage, V,, can 
be written 

V, = Jig = v,>. (10.14) 

'When v, or i, cannot be considered constant, the resulting widrband noise has to be determined by 
inlegrating over the bandwidth the product of the amplification and the input noise power per unit 
bandwidth. 
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EXAMPLE 10.10. At a frequency of 10 kHz, an operational amplifier has an - 
input noise voltage v. = 10 n v / a  and an input noise current in a 
10 PA/& both constant within the bandwidth of interest; B = 100 Hz. 11 
has an amplification A = 10,000 and it is operated in the inverting amplifier 
"rcuit of Figure 3.2 with R, = 101 R and R, = 10 ki2. Thus, the resulting 
amplification is M, = - 1 00 and the resistance seen by the operational amplifier 
a t  its input terminals is R = 100n. 

~ - 

The resulting total input noise power per unit bandwidth is given by 
Equation 10.12: 

The resulting input noise power within the bandwidth B = 100Hz, from 
Equation 10.13, is 

and the resulting rms noise voltage at  the input, from Equation 10.14, is 

V, = = J(1.026 x 1 0 1 6  VAM100R) = 101 nV. 

The resulting rms noise voltage a t  the output of the amplifier is 
lMIl V' = (100)(lOl nV) = 10.1 pV. 

i n  many cases, the noise performance of an  amplifier circuit is described by a 
noise figure 9, which is a measure of the noise degradation resulting from 
adding the noise of the operational amplifier to  the thermal noise of input 
resistance R. When the resulting amplification is large (lM,l >> 1 or M, >> I), the 
noise figure can be approximated by 

It can be shown that the noise figure 4F has its minimum value, Smin, when 
R = R, = v,/i,, and it is 

P,,, = 4FR="",,, = 10 dB log,, 1 + - ( v:*RTI) 
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EXAMPLE 10.11. In Example 10.10, u,,= 10- ' ~/fi, 1. = 10 I '  ~la~, 
R = 100R, and IM,I >> I .  Thus, from Equat~on 10.15 and w ~ t h  kT = 0.4 
x VA/Hz, the noise figure becomes 

The minimum noise figure is attained at R = R,,, = o,/i, = 

( 1 0 - " ~ / ~ ) / ( 1 0 - "  A/&) = 1 kR, and its value, from Equation 10.16, is 

Above considerations apply equally well to inverting and noninverting 
amplifiers. In the case of differential amplifiers with signals applied to both 
inputs, the evaluation of the noise becomes slightly more involved. 

PROBLEMS 

At a temperature of +25"C, a hybrid operational amplifier has a 
maximum input bias current of + 10pA and a maximum input offset 
current of + 1 pA. Find the maximum and minimum values of current I ,  
into the positive input terminal, if I, = 0.5 pA, 5 FA, and 10.5 pA. 

The Type 13741 operational amplifier uses field-effect transistors (FETs) 
at  its inputs and as  a result it has low input currents. At a temperature of 
+ 25"C, the maximum input bias current is 200 pA and the maximum 
input offset current is 50 PA. The signs of the currents are not specified 
and it is assumed that they can be either positive or negative. Three of 
these amplifiers are used in the circuit of Figure 3.10 with R, = 10 MR, 
R1= l l M R ,  R , = R s =  1 0 0 4  R ,=R,=  10,00OR, and A , = A 2 =  
A, = 100,000. Find the maximum change in output voltage V,,, re- 
sulting from the input bias currents and from the input offset cur- 
rents. 

Derive Equation 10.5a. 

The input offset current of a hybrid operational amplifier has a 
maximum temperature coefficient of 0.1 pA/"C. Find the minimum and 
maximum values of the input offset current I,,,,,,, if the temperature is 
varied between - 55•‹C and + 12S•‹C, and if at a temperature of + 25•‹C 
the input offset current is I,,,,,, = 1 pA. 
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The input offset voltage V,,,,,, of an operational amplifier has a 
temperature coefficient IdV,,,,,,/dTI of less than 25 pV/"C; the dc amplifi. 
cation is Ad. = 30,000. Find the maximum change in the output voltage 
as a result of the nonzero dV,,,,,,/d7; if the amplifier is operated withoul 
feedback. 

Derive Equation 10.7a. 

At a temperature of +25"C, the maximum input offset voltage of a Type 
13741 operational amplifier is V,,,, = 15mV. This operational 
amplifier is used in the differential amplifier of Figure 3.4 with 
V,  = V ,  = 0, Rs = R, = 10 MR. and R, = R, = 90 MR. Find the max- 
imum change in output voltage Y.., as a result of input offset voltage 
L C , .  

At a temperature of +2S•‹C, a Type 108A operational amplifier has a 
maximum input bias current of 2 nA, a maximum input offset current of 
0.2 nA, a maximum input offset voltage of 0.5 mV, and a dc amplification 
of Ad, = 300,000. Find the range of the output voltage, if the amplifier is 
used in the circuit of Figure 3.4 with Rs = R, = 10 MR, R, = R, = 
90 MR, and V, = V,  = 0. 

A Type 9914A hybrid operational amplifier has a slew rate of 1000 V/ps. 
Find the maximum frequency at which this amplifier can supply a 10-V 
peak-to-peak sinewave. 

When lead-lag compensation is applied to an operational amplifier, for 
an Mdc = 10 its slew rate is 50 V/ps. The maximum and minimum 
voltages that the amplifier can provide at its output are + 5 V and - 5 V, 
respectively. Sketch the maximum available sinewave amplitude as a 
function of frequency for frequencies between 1 kHz and 10 MHz. 

The noise characteristics of the Type 9914A hybrid operational amplifier 
are specified at a frequency of 10 kHz by v, = 20 n ~ / &  and i, = 

lOp~/&.  It has an amplification A = 5000 and it is used in the 
noninverting feedback amplifier of Figure 3.1 with a resulting amplifica- 
tion M, = 100 and with a bandwidth B = 10Hz. Find the values of 
input resistor R, and feedback resistor R, such that the minimum noise 
figure is attained. Also. find the value of the minimum noise figure. What 
is the resulting rms noise voltage at the output of the amplifier? 

10.12 Show that the noise figure of Equation 10.15 has its minimum value 
when R = vJi,. 

CHAPTER I 1  

Other Circuits 

The preceding chapters described the use of operational amplifiers as voltage 
amplifiers; this chapter discusses other applications. Section 11.1 describes 
amplifiers with current source inputs, used for converting an input current I,, to 
a proportional output voltage V,,,,. Section 11.2 presents two adder circuits, used 
mainly for analog computation. Sections 11.3 and 11.4 describe two types of 
pulse-shaping circuits: integrators and differentiators. Section 1 1.5 outlines two 
nonlinear circuits: an exponential amplifier and a logarithmic amplifier. 

11.1 Current Source Inputs 

There are two basic representations of signal sources: One consists of a voltage 
source 5,  in series with a source resistance R,,,,,, and the other consists of a 
current source l in in parallel with a source resistance R,,,,,,. The two 
representations are equivalent if l in = VJRsourcc. 

Thus far, this book has used the representation consisting of a voltage source 
hn in series with a source resistance R,,,,,. Also, except in Sections 7.7 and 8.5 
dealing with inverting feedback amplifiers, it was assumed that the effects of 
nonzero R,,,, are negligibly small and the schematic diagrams were shown 
with R,ou,c, = 0. 

This section deals with the other extreme, where it is preferable to represent a 
signal source by a current source li, in parallel with a source resistance R,,urcc 
Such situations arise, for example, in high-impedance transducers as well as at 
the collectors of bipolar transistors and at the drains of MOS devices. 

Because of the equivalence of the two representations, in principle, the results 
derived previously are also applicable for a current source input. However, this 
approach does not readily provide results for the limit of R,,,,cc -+ co, which is 
often a realistic approximation. Thus, in addition to using previously obtained 
results, this section provides results that are applicable to current source inputs. 219 
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11.1.1 dc Characteristia 
Figure 11.1 shows the schematic diagram of a feedback amplifier with current 
source input I,, .  It can be shown (see Problem 11.1) that 

A 
With 

Equation 1 l.la can also be written as 

Also, &, , / I in  can be approximated as 

Ku, -= - - R F  
Iin 

provided that 

which is the usual case. 

FIGURE 11.1 A dc schematic diagram of a feedback amplifier with a 
current rource input. 
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11.1.2 Transient Response and Frequency Response 
Figure 11.2 shows the schematic diagram of a feedback amplifier with current 
source input I in  and with capacitances C ,  and C ,  in addition to resistances R, 
and R,. Capacitance C ,  is the sum of the input capacitance of the operational 
amplifier, the capacitance of the current source, stray capacitances, and in some 
cases it also includes a capacitance added intentionally. Capacitance C, includes 
stray capacitances, and often it also includes a capacitance added to improve 
stability and transient response. 

FIGURE 11.2 Schematic diagram of a feedback amplifier with a current 
source input. 

It can be shown (see Problem 11.3) that in the Laplace transform domain 

where 

with F,,,, given by Equation 1 l . lb and with 

T, = R,C, 

and 

R,R,  ( C ,  + C,) .  TL. = - (1 1.3d) 
RF + R, 
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Note that Equation 11.3a can also be written 

Also note that when 

Equation 1 1.4 can be written* 

Whether the transient response is free of ringing or not is determined by 
1 + AFN in Equation 11.4--exactly as was the case for a noninverting feedback 
amplifier with a voltage source input. However, because the numerator of 
Equation 11.4 is a constant, a transient response that is free of ringing is also free 
of overshoot-unlike in a noninverting feedback amplifier with a voltage source 
input where there is a 1 + STL term in the numerator of the equation equivalent 
to Equation 11.4. 

EXAMPLE 11.1. A Type 13741 internally compensated FET-input opera- 
tional amplifier is c h a r a c t e r  by A,. = 100,000, fl = 10 Hr, and f2 = 1 MHz. 
It is used in the circuit of Figure 11.2 with C, = 10 pF, which includes the input 
capacitance of the operational amplifier, the capacitance of the current source, 
and stray capacitances. Also, RF = 265 kR and CF = 4.6 p F  are chosen based on 
the lag-kad compensation used in Example 8.25 and Problem 8.77 of Chapter 
8. The value of RI is much greater than R,, and its presence can be ignored in 
Figure 11.2; thus, FNSdc = 1. 

It can be shown (see Problem 11.5) that, based on Example 8.26, Equation 
11.4 can also be written 

where RF = 265 kQ T, = 3.87 p, and TA = 0.45 ps. 

To obtain the frequency response, Y,,,(f)/lin(f), the variable s has to be 
replaced by j2nf in Y{V,,,(t)}/9'{l,,(t)}. 

T h e  derivation of Equation 11.5b is the subject of Problem 11.4. 
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EXAMPLE 11.2. The frequency response of the circuit described in Example 
11.1 can be written 

where RF = 265 kR, fL= 41 kHz, and f ,  = 354 kHz. 
The magnitude of the frequency response is 

Also, the phase is 

11.2 Adder Circuits 

Adder circuits are capable of summing several input signals. This section 
describes basic properties of two simple circuits. 

11.2.1 dc Characteristics 
Figure 11.3 shows the schematic diagram of a noninwrriny adder with three 
input voltages V,, V2, and V3 (the circuit can also be extended to more inputs). It 
can be shown (see Problem 11.7) that at low frequencies the output voltage in 
Figure 11.3 is given by 

where MN,dc is the resulting dc amplification of the feedback amplifier. Note that 
the value of MN,dc is approximately 1 in Figure 11.3; however, this can be altered 
by adding a feedback network at the negative input of the operational amplifier, 
as in noninverting amplifiers. 

Figure 11.4 shows the schematic diagram of an inuertiny adder with three 
input voltages V,, V2, and V3 (as before, the circuit can also be extended to more 
inouts). It can be shown (see Problem 11.8) that at low frequencies the output . . 
voltage in Figure 11.4 is given by 



f 

FIGURE 11.3 Noinverti~~g adder with three inputs 

- 
FIGURE 11.4 Inverting adder with three inpue 
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where 

with 

11.2.2 Transient Response and Frequency Response 
The transient response and frequency response of adder circuits can be found as 
was discussed for feedback amplifiers in Chapter 8. Thus, V,,, in the nonin- 
verting adder of Figure 11.3 is given by Equation 11.6 with M,,,, replaced by 
M N  of the feedback amplifier, which may include a feedback network consisting 
of R,, R,, C,, and C,,  as in previous noninverting feedback amplifiers. The 
situation is similar in the inverting adder of Figure 11.4; however, in this case, 
the limitations discussed in Sections 7.7 and 8.5 must also be taken into account. 

113 Integrator Circuits 

An integrator provides an approximation of the time integral of the input 
voltage, that is, V,,,Z constant &,dt. Figure 11.5 shows a simple integrator 
circuit that uses an operational amplifier.* 

FIGURE 11.5 Integrator circuit using an operational amplifier. 

*The circuit may also include a capacitance C, between the negative input of the uperat~onal 
amplifier and ground. This is d~scusscd in Problem 11.15. 
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Thus, in this circuit, the left sides of Equations 1114a and 11.14b are equal. Also, 
they are both much less than 1; hence, the conditions are satisfied and Equation 
11.10 is valid and can be written 

2 {  KUI(t)} ------ 5 
-9091 A 

y{&(t)} - 1 + 49091 seconds) 1 + A ' 
where 

with 

1 1 
T I  = - = ----- 

2nfl 2n(lO Hz) ' 16 ms 

and 

The right side of Equation 11.10 is the product of three fractions. The first 
fraction is a constant and the second fraction approximates integration: These 
are discussed in Section 11.3.1. The third fraction is near 1 except at very high 
frequencies and very short times; it also determines whether the circuit is stable: 
This is discussed in Section 11.3.2. The overall frequency response and transient 
response are discussed in Section 11.3.3. 

113.1 Integration 
In this section, Equation 1 1.10 is approximated as 

KF 
with the assumption that 

Note that the left side of Equation 11.lSb is the transfer function of a voltage 
follower with the negative input of the operational amplifier directly connected 
to its output. This configuration has the highest operating sped,  provided that 
it is stable. As a result, the approximation of Equation 11.lSb is realistic for a 
wide range of times and frequencies: This is discussed later. 
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-- 

EXAMPLE 11.4. Example 11.3 used a Type 13741 operational amplifier in 
the integrator circuit of F~gure 11.5 wlth R, = 1 MR. RF = IOGR. and 
Cr = 1 pF. Using the results obta~ned there, Equatlon 11 1Sa can be written as 

Also, in the condition of Equation 11.1 Sb, 

A =  Adc 
(1 + srl)(l + ST,) ' 

where 71 z 16ms, T 2  0.16 ps, and A,, = 100,000. - ______- - 

When input voltage K,,(t) is a step function with magnitude V, then. by use of 
Equation 11.1 5a, 

Voul(t) z - IMd,l vo(l - e-'IIIM~.IRIC~I), 
(11.16) 

where 

Ad, + 1 
l"dcl Zi R 

1 + (A,, + 1 ) 1  RF 

is the magnitude of the dc voltage amplification of the circuit. Note that the time 
constant is a large IMd,JR,Crnot R,C,. Also note that output voltage Vou,(t) 
becomes - JMdclVo for times t >> (MdcIR,CF. Furthermore, it can be shown (see 
Problem 11.20) that for short times Equation 11.16 can be approximated as 

when 

- 

EXAMPLE 11.5. In Example 11.4, A,, = 100,000, R, = 1 MR, RF = 10GQ 
and CF = 1 pF. Hence, from Equation 11.17, 

Ad, + 1 - - 100,000 + 1 
l"dcl = z 9091. R 1 MR 

l + ( A d + l )  RF 1+(100,000+1)---- 10 GR 

Thus, for an input voltage V,,(t) that is a step function with magnitude Vo, 
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Also, from Equation 11.18a, <,,(t) can be approximated as 

t v,,,,(t) 2 - Vo ----- = - t t 
kc ,  V0 ( I  M Q ~ ~  p ~ )  = - ---- 1 second 

when, according to Equation 11.18b, 

t << IMd,IRICF = 9091(1 MRXl pF) = 9091 seconds. 

In many applications, input voltage v, is a narrow pulse that can be 
approximated by an impulse function, &t), which is also known as a 6 function 
(delta function). For the purposes of this discussion, the impulse function can be 
considered to be the time derivative of a step function with magnitude 1, that is, 
the time derivative of u(t): 

whereby also 

Note that at) has a dimension of l/second. 
Since 14) = 0 for t < 0 and it is 1 for t > 0, its time derivative 6(t) is zero for 

all times except at t = 0 where it is infinitely large; also the area under the 
impulse function is 1. Also note that the Laplace transform of the impulse 
function is 1: 

U{S(t)) = 1. (1 1.20) 

When input voltage &,(t) = 'Qo6(t) then, by use of Equation 11.15a, 

&,,,(l) 2 - 2 e-t/~lMd~lRlc~l, (11.21) 
R I G  

where IM,,J is given by Equation 11.17. Note that 'Q, has a dimension of 
volt second. 

Also, it can be shown (see Problem 11.24) that for short times Equation 11.21 
can be approximated as 

'Qo Kul(t) 2 - - (1 1.22a) 
R1 CF 

t << I M ~ M I C F .  (1 1.22b) 

when 

_ _  - - -- -_ - _ -. - A_- 

EXAMPLE 11.6. The step-function input in Example 11.5 is replaced by 
yi,(t) = 'QoS(t). Thus, from Equation 11.21, 

- 'Qo - 1/9091 seconds, - - ----- e 
1 second 

Also, from Equation 11.22a, V,,,(t) can be approximated as 

4 0  
KJt) z - - = - 

@o @o = ----- 
RICF (1 MRXl pF) 1 second 

when, according to Equation 11.22b, 
t << 9091 seconds. --- 

The time integral of a step function with magnitude Vo, that is, the time 
integral of V,u(t), can be written 

for times 

and the integral is zero for t < 0. Also, the time integral of an impulse function 
with magnitude 'Q,, that is, the time integral of 'Q06(t), can be written 

for times 

and the integral is zero for t < 0. 
The output voltage, K,,,(t), in the integrator of Figure 11.5 was approximated 

by Equations 11.18a and 11.22a for times t << /Md,IRICF: by Equation 11.18a for 
a step-function input Vou(t) and by Equation 11.22a for an impulse-function 
input 'Q06(t). Thus, at least for these two input functions, the integrator of Figure 
11.5 provides an output voltage 

for times 
0 < t << JMd,JRICF 

provided that V,,,(t) = 0 for t < 0. 
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Thus, according to Equation 11.25a, the circuit of Figure 11.5 provides 
integration with a scale factor of - l/R,C, in the time range limited by Equation 
11.25b. It can be shown that, based on Equation 11.15a, this is also true for any 
input voltage h,(t) and not only for the step-function and impulse-function 
inputs discussed above. (See also Problem 11.27.) 

113.2 Response at High Frquemries and Short Times 
In Section 11.3.1, the fraction AN1 + A) was approximated as 1 (see Equation 
11.1%). This section discusses the frequency response and the transient response 
resulting from AM1 + A). 

The transfer function A/(1 + A) is that of a voltage follower with the negative 
input of the operational amplifier directly connected to its output. This transfer 
function is applicable to Figure 11.5, which omits capacitance C, between the 
negative input of the operational amplifier and ground; however, it is also 
applicable to nonzero C, when C, << C, (see Problem 1 1.15). 

The voltage follower represented by A/(1 + A) may be unstable. In such a 
case, the circuit is useless. 

EXAMPLE 11.7. A Type 2539 wideband monolithic operational amplifier is 
characterized by A,, = 30,000, f, = 20 kHz, and f, = f3 = 300 MHz. It is used 
in the integrator circuit of Figure 11.5 with R, = 1 k Q  CF = 1 yF, and 
R, = 10 GR. Also, there is a capacitance C, = 5 pF (not shown in Figure 11.5) 
between the negative input of the operational amplifier and ground. However, 
this C, is ignored because C,/CF = 5 pF/1 y F  = 0.5 x lo-' << 1 (see Problem 
11.15); hence, the results for C, = 0 are applicable. 

- 

From the above, 

1 
7, =-= 1 

27cf, 27420 kHz) yS 

and 

Thus, 7, >> 7, and the conditions given in Problem 11.14 may be used for the 
validity of Equation 11.10. The left side of the first condition becomes 
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This is much less than 1; hence, the first condition is satisfied. The left side of the 
second condition becomes 

This is much less than 1; hence, the second condition is also satisfied. Therefore, 
both conditions are satisfied, Equation 11.10 is applicable, and the high- - ~ 

frequency response is represented by A/(1 + A). 
According to Example 7.4, a voltage follower with this A/(l + A)  is on the 

verge of instability. Thus, the circuit of this example is also on the verge of - 
instability and is useless. --_ .- _- 

When Equation 11.10 is valid, the phase margin of the integrator is 
determined by the phase margin of Al(1 + A). This is illustrated in Example 
11.8. 

- 

EXAMPLE 11.8. In the integrator of Example 11.3, 

100,000 
A =  

(1 + j f/lO HzXl + j f / l  MHz) 

Since 10 Hz << 1 MHz, for the purpose of finding the phase margin A can be 
approximated as 

100,000 
A = .  

(jf/lOHzXl + j f / l  MHz)' 

Thus, Equation 7.62a is applicable with Ad,F,,,, = 100,000, fo = 10 Hz. and 
f, = 1 MHz. Hence, Equation 7.67 can be applied to find phase margin c p M :  

1 that is. 

1 MHz 
100,000 = - 

10 Hz 
cot PM JE. 

From this, cp, can be expressed (see Problem 11.28) as 
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When Equation 11.10 is valid, the frequency response for high frequencies 
and the transient response for short times are determined by Al(1 + A). The 
frequency response for high frequencies is illustrated in Example 11.9 and the 
transient response for short times in Example 11.10. 

EXAMPLE 11.9. In the integrator of Example 11.3, 

A =  
100,000 

( 1  + j f l lOHzXl + j f l l  MHz)  

and feedback return FN = 1. 
According to Section 8.3.1, the piecewise linear approximation of the Bode 

plot for the resulting amplification, IMNI, is obtained as the lesser of the 
piecewise linear approximations of (A( and ( l /F , ( .  In this example, (l/FNI = 1;  
also IAl > 1 for frequencies f < 1 MHz and IAl = ( 1  MHzIf)' for f > 1 MHz. 
Thus, IMNI = 1 for f < 1 MHz and ( M N (  = ( 1  MHzIf)' for f > 1 MHz. 

EXAMPLE11.10. In the integrator of Example 11.3, MN., ,= 
Adc/(l + Ad,) z 1. Also, A can be written 

A =  Ad, 
( 1  + j f l f l ) ( l  + j f l f z )  ' 

where f1 = 10 Hz, fz = 1 MHz,  and Ad, = 100,000. 
According to the discussion following Example 8.12 (see page 140), the 

transients of Figure 6.14 are applicable with 

and 

Hence, the m = 1 graph of Figure 6.14 is applicable with each division of tIRC 
corresponding to 0 . 1 6 ~ s .  Also, there is an overshoot of about 15% on the 
transient, which is followed by a decaying ringing. 

It is of interest to find a time tmin beyond which the transient is confined 
within a band of 1 f E. Equation 6.42a shows a multiplier of e-'IzmRC governing 
this decay. From this, as a rough approximation, 
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hence, 

For example, for E = 0.1 % = 0.001, 

11.3.3 The Overall Response 
When Equation 11.10 is applicable, the overall transfer function is the product 
of two transfer functions: One of these was discussed in Section 11.3.1 and the 
other in Section 11.3.2. Also, the overall frequency response can be obtained by 
substituting j2nf for s in the overall transfer function. 

Finding the overall transient response is more difficult because, in general, the 
overall transient response is not the product of the two individual transient 
responses. However, the overall transient response can be approximated as the 
product of the two individual transient responses for times when at least one of 
the two individual transient responses can be approximated by a constant. 

EXAMPLE 11.11. In Example 11.6 of Section 11.3.1, for an input voltage of 
Kn(t) = @oS(t), 

@O e -  1,9091 seconds V,", = - ---- 
1 second 

For times t << 9091 seconds, V,,, can be approximated as V,,, z - a o / l  second. 
The fractional error E committed by this approximation at times less than t,,, is 

which can be approximated for tma, << 9091 seconds as 

fmax . 
& z 

9091 seconds ' 

hence, 

t,,, g (~X9091 seconds). 

For example, for E = 0.1 % = 0.001, 

t,,, = (O.001)(909 1 seconds) r 9 seconds. 
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Hence, with an accuracy of 0.1 %, the transient response of Example 11.6 in 
Section 11.3.1 can be approximated by a constant for times less than about 9 
seconds. Also, the transient response in Example 11.10 in Section 11.3.2 can be 
approximated by a constant for times greater than 2.2 microseconds. Thus, in 
this case it is true that at least one of the two transient responses can be 
approximated by a constant at all times: Within an error of 0.1 %, the transient 
response of Example 11.6 is constant for t g 2.2 ps, both transient responses are 
constant for 2.2 ps < t 6 9 s, and the transient response of Example 11.10 is 
constant for t 2 9 s. 

Thus, in the integrator discussed in Examples 11.6 and 11.10, the overall 
transient response can be approximated as the product of the two individual 
transient responses. 

Thus far, it has been assumed that an integrator remains within its linear 
region of operation. However, this is not always the case, especially when 6, is a 
narrow pulse with a high peak voltage (over 100 volts) that can be delivered by 
some transducers. 

The output impedance of an operational amplifier includes an inductive 
component and, as a result, capacitance C ,  cannot protect the negative input of 
.the operational amplifier from large voltage excursions in Figure 11.5. If the 
maximum input voltage rating of the operational amplifier is exceeded, even for 
a short time, this may result in a large input current and hence in a loss of charge 
and in an incorrect output. However, the situation is alleviated by a nonzero 
capacitance C, (not shown in Figure 11.5) between the negative input of the 
operational amplifier and ground. 

EXAMPLE 11.12. The integrator of Example 11.3 includes a C, = 10 pF. 
Input voltage &, is a pulse of 100 V for a duration of 100 ns. Assuming that the 
output of the operational amplifier can be approximated as an open circuit for 
such a short time, the entire charge delivered through the R, = 1 MR resistor 
goes into C,. By assuming (subject to later verification) that the voltage across 
C,  always remains much less than 100V, at the end of the 100-ns pulse this 
voltage can be approximated as 

This is less than the maximum input voltage rating of the operational amplifier, 
and output voltage V,,, will settle (within roughly 10 microseconds) to the 
correct value of 

*The exact value of the voltage is 100 V(1 - e-'m""c" MnN'opF)l) = 0.995 V 
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11.4 Differentiator Circuits 

A differentiator provides an approximation of the time derivative of the input 
that is, V,, is of the form VOu, = r,d~,,/dt. The transfer function 

corresponding to this is ST, and the corresponding frequency response is j2rrrLf: 
Clearly, these are not realizable because they require an amplification that 
increases without bound for increasing frequency f: For this reason, practical 
realizations provide transfer functions in the forms s~ , / ( l  + ST,), 
.ST. /r(l + sr,Xl + ST,)], and so on, where parasitic time constants T" and T, are - - z., L \  ,., . 
much smaller than d~yerentiating time constant TL. 

EXAMPLE 11.13. A Type 9914A wideband hybrid operational amplifier is 
characterized by A,, = 5000, fl = 0.5 MHz, and f2 = 50 MHz. It is used in the 
differentiator circuit shown in Figure 11.6 with 1/2nRC = 25 Hz. 

It can be shown (see Problem 11.34) that the resulting frequency response can 
be approximated as 

and the resulting transfer function as 

FIGURE 11.6 Differentiator circuit using an operational amplifier. 
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Another approach provides V,,, = constant .(1 + r,d&,/dt), with a corre- 
sponding transfer function of constant. (1 + ST,) and a corresponding frequency 
response of constant. (1 + j2n7, f). Again, these are not realizable, and practical 
realizations provide transfer functions in the form (1 + ST,)/(~ + ST,), 
(1 + sr,)/[(l + sr,)(l + ST,)], and so on, where parasitic time constants TA and 
T, are much smaller than differentiating time constant TL. * 

EXAMPLE 11.14. Example 8.33 described a voltage follower circuit using a 
Type 2539 wideband monolithic operational amplifier. Lag-lead compensation 
was used with f, = 2 MHz and f, = 21 MHz. This resulted in a transfer 
function of 

with MN.dC a 1, 7, 80ns. TA r 2.5 ns, and T, r 0.4ns. 

Thus, this circuit can be used as a differentiator with the differentiating time 
constant of 80 ns and with the four parasitic time constants of 2.5 ns, 2.5 ns, 
2.5 ns, and 0.4 ns. 

Differentiator circuits are often used in feedback systems for alleviating the 
effects of unavoidable slow time constants that introduce a transfer function in 
the form 1/(1 + ST,,,). Such a transfer function may be cancelled, and time 
constant TSl,, may be replaced by faster time constants by use of a differentiator 
circuit. 

EXAMPLE 11.15. A feedback system includes a power amplifier that is 
characterized by the transfer function constant/(l + s~,,,,) where time constant 
T , ~ , ,  = 80 ns. To enhance the stability of the system, the differentiator described 
in Example 11.14 is inserted in the signal path. This results in a transfer function 

with T ,,,, = 80 ns, TL = 80 ns, TA = 2.5 ns, and T, = 0.4 ns. Since T, = T,,,,, the 
transfer function becomes 

Constant 
(1 +  ST,)^(^ + ST,) ' 

Thus, the introduction of the differentiator replaced the T,,,, = 80ns time 
constant by the four time constants of 2.5 ns, 2.5 ns, 2.5 ns, and 0.4 ns. 

*The effect of the I in the numerator can be cancelled by a subtraction (not discussed here). 
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115 Nonlinear Circuits 

Operational amplifiers may also be used in conjunction with nonlinear 
components such as diodes and transistors. The nonlinear properties of bipolar 
transistors are used in an exponential amplifier in Example 11.16. 

- . - 

EXAMPLE 11.16. The collector current I c  of a bipolar transistor is an 
exponential function of base-emitter voltage VB,; that is. I, = constant. uVn~~"r ,  

where V, is a constant. An exponential amplijer with input voltage K, and 
output voltage V,,, is built by applying v, as V',, using a voltage follower, and 
by converting I, to a proportional output voltage Vo,,, using the current input 
amplifier of Figure 1 1.1. 

.. -- -. -- -- 

Operational amplifiers may also be used to convert a nonlinear function to 
another nonlinear function. This is illustrated for a logarithmic amplifrrr in 
Example 1 1.17. 

ppp 

EXAMPLE 11.17. Figure 11.7 shows a logarithmic amplifier that consists of 
operational amplifier A and of exponential amplifier B. The latter is character- 
ized by V, = vKeV~IV~,  where V, and VT are constants. It can be shown (see 
Problem 11.36) that this results in V,,, r VTln(v,/VK) when amplification 

FIGURE 11.7 Logarithmic amplifier circuit using operational amplifier A 
and exponential amplifier B. 

- -- .- - --- - -- - - 
- - 
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PROBLEMS 

Verify Equations 1l.la-d and 11.2a,b by writing loop and node 
equations in Figure 11.1 and by noting that VoUl = -A<. 

Expand the circuit of Figure 11.1 by including a resistor R, in series with 
the positive (+) input of the operational amplifier. Show that this 
eliminates the effects of the input bias currents, but not the effects of the 
input offset current, when R, = RFR,/(R, + R,). 

Verify Equations 11.3a-d and 11.4 by writing loop and node equations 
or by using results from Section 6.3. 

Derive Equation 11.5b from Equations 11.3a-d, 11.4, and 11.5a. 

Verify the results of Example 11.1 by use of Examples 8.25 and 8.26 and 
Problem 8.77 of Chapter 8. 

Verify the results of Example 11.2. 

Derive Equation 11.6. [Hint:  Replace the series combination of Vl and 
R, by the parallel combination of R1 and a current source of Vl/R,; 
repeat for V, and R,, and V, and R,. Then use Equation 1 l.ld.1 

Derive Equations 11.7a-c. [Hint: Replace the series combination of V, 
and R1 by the parallel combination of R, and a current source of Vl/R,; 
repeat for V2 and R,, and V, and R,. Then use Equation ll.ld.1 

Verify Equation 11.8. 

Derive Equations 1 1.1 l a  and 1 1.1 1 b as follows: 

(a) Use Equation 1,l.g and bring both the exact Equation 11.8 
and the approximate Equation 11.10 to the form con- 
stant/(s3 + ps2 + qs + r). 

(b) Show that the coefficients r are identical in the two equations. 
(c) Show that )(p,pp,,i-l, - pe,,cl)/p,,,ll equals the left side of Equa- 

tion 1l.lla. 

(d) Show that I(q.pproIinu,c - q.I.cl)/qeI.clJ equals the left side of Equa- 
tion 1l.llb. 

Show that Equations 1 l . l l a  and 1l . l lb  can be approximated by 
Equation 11.12 when R,/RF << 1. 

Verify Equations 11.1 3a.b and ll.l4a,b. 

*Optional problems. 
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* 11.13 Show that the approximation of Equation 11.10 is also valid when 

A = 
Ad, 

(1 + sr1H1 + S T ~ ) ( I  + ST,) 

and when the conditions of Equations 1 I. l la  and 11.1 I b are replaced by 

and 

11.14 

and 

11.15 

[Hint: Proceed as in Problem 11.10: Show that the coefficients of the 
constant and the s4 terms are equal in the exact and the approximate 
denominators, and show that the condition originating from the s3 terms 
is not constraining because the )el resulting from it is always less than the 

resulting from the s2 terms.] 

Verify that for fl < < f 2  and f, << f,, that is, for T, >> T, and 
T,  >> T,, the conditions given in Problem 11.13 for A = 

Ad,/[(l + sr1)(1 + s~,Ml + ST,)] become 

Compare these conditions with those of Equations 11.13a and 11.13b. 

Expand the integrator circuit of Figure 11.5 by including a capacitance 
C ,  between the negative (-) input of the operational amplifier and 
ground. 
(a) Show that the resulting transfer function can be written 

(b) Verify that the transfer function of (a) above reverts to the C ,  = 0 
case of Equation 11.8 when C ,  << C,. 
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Verify the results of Example 11.3. 

Verify the results of Example 11.4. 

Verify Equation 1 1.16. 

Verify Equation 11.18a by using (but not proving) the approximation 
e - " ~ 1 - x f o r O < x < < 1 .  

Show that the exponential function e-" can be expanded as 
e-" = 1 - x + A,, where )All < x2/2 when 0 < x < 1. Use the following 
steps: 

Write the series expansion of the exponential function as 

x2 e-" = 1 - x + - - A,CricI. 
2 

Note that 

Verify that the magnitudes of the terms diminish in 4c,ies of (b) 
above. 
Note that the series expansion given in (a) is absolutely convergent; 
therefore (c) above implies that 0 < Aseri,, < x3/6. 
Verify that, based on the above, the series of (a) can be written 

e-" = 1 - x + A,, 

where (A,) < x2/2 when 0 < x < 1. 
Note that both 14cric,( and IA,I represent error magnitudes and not 
fractional errors. 

Verify the results of Example 11.5. 

Verify Equation 1 1.2 1. 

Verify Equation 11.22a by using (but not proving) the approximation 
e-" z 1 for 0 < x << 1. 

Show that the exponential function e-" can be expanded as 
e-' = 1 - A,, where lAol < x when 0 < x < 1. [Hint: Consider the 
process used in Problem 11.20 and alter it as required.] 

Verify the results of Example 11.6. 

Verify Equation 11.25a for &,(t) = V,u(t) and &,(t) = mO6(t). Compare 
with Equations 11.18a and 11.22a. 
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*11.27 Provide a support, but not a proof, of Equation 11.25a for any input 
&,(t) as follows: 

(a) Show that Equation 1 l.l5a can be written 

where IMdc( is defined by Equation 1 1.17. 
(b) Consider that, in a way, large values of s correspond to small values 

oft, and show that the result of (a) above can be approximated as 

provided that IsMdCRICFI >> 1. 

(c) Note that the condition in (b) above is not easy to evaluate because 
Laplace transform variable s is complex. However, if s is replaced 
by l/t (without any proof), then for t > 0 this results in 

(d) Verify that the condition of (c) above is identical to those of 
Equations 11.18b, 11.22b, and 11.25b. 

(e) Verify that the transfer function in (b) above represents integration 
with a scale factor of - l/RICF. 

11.28 Verify the result of Example 11.8. [Hint: Introduce a variable x defined 
as x = cotzV,, find x, and express phase margin q, as q, = arccot 

&.I 
11.29 Verify the results of Example 11.9. 

1130 Verify the results of Example 11.10. 

1131 Verify the results of Example 11.11. 

1132 Verify the results of Example 11.12. 

* 1133 Show that the output voltage in Example 11.12 settles to its correct value 
of - 10pV with an accuracy of 0.01 % in about 6.6 ps. [Hint: Use the 
equation for t,,, given in Example 11.10.1 

* 1134 Derive the results of Example 11.13 as follows. 
(a) Show that 

Y {  VOUdt)} - -- -sRCA,, 

Y{v,(t)} (1 + sRC)(l + sr,)(l + ST,) + A,, ' 

where T,  = 1/[2n(0.5 MHz)] and T, = 1/[2n(50 MHz)]. 
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Verify that, since r, << r,  < RC, the result of (a) above can be 
approximated as 

Verify that the fraction on the right in (b) above equals the right 
side of Equation 8.42 with F,,, = 1 and with r, replaced by RC. 
Verify that the result of (c) above also equals Equation 8.43a with 
MN.,, 2 1, and that Equations 8.43b, 8.43c, and 8.43d are 
applicable with r, replaced by RC. 
Show that Equation 8.43d becomes m r 0.25, and that Equations 
8.43b and 8 .43~  lead to r, 2 r, 2 2r,. 
Substitute MN,,, = 1 and the results of (e) above into the right side 
of Equation 8.43a. 
Note that the result of (f) above equals the fraction on the right side 
in (b) above. 

1135 A Type 9914A wideband hybrid operational amplifier is charac- 
terized by Ad, = 5000, fl = 0.5 MHz, and f2 = 50 MHz. It is used as 
a voltage follower with lag-lead compensation; that is, FN = 
(1 + j f l  fu)l(l + j f l  fL), where fL = 37 kHz and f, = 5.5 MHz. 
(a) Sketch a piecewise linear approximation of the Bode plot for IAFNI. 

*(b) Show that the resulting transfer function of the voltage follower can 
be approximated as 

[Hint: Use the results of Section 8.3.3.1 

(c) The voltage follower is inserted into the signal path of a feedback 
system that includes a power amplifier with a transfer function of 
1/[1 + s(4.3 p)]. Use the transfer function given in (b) above and 
verify that the overall transfer function is 1/[1 + s(9.5 ns)I3; that is, 
the 4.3-ps time constant of the power amplifier is replaced by three 
time constants of 9.5 ns each. 

11.36 Derive the equation for V,,, given in Example 11.17 for an operational 
amplifier with an amplification A that can be approximated as A = a. 
[Hint: Note that an amplification A = oo implies zero voltage between 
the positive and negative input terminals of an operational amplifier.] 

CHAPTER 12 

Internal Structure 

This chapter outlines three important circuits used in operational amplifiers 
input stages, current mirrors, and output stages. Although present technology 
permits elaborate circuits, only the simplest circuits are discussed here. 

121 Input Stages 

Figure 12.1 shows the circuit diagram of a simple input stage. The positive and 
negative inputs, Vp and K,  of the operational amplifier are connected to the 
bases of npn transistors Q1 and Q,. The emitters of the transistors are connected 
together and they share dc current I,,; details of current source 1,. are described 
in Section 12.2. The collectors of the transistors are connected to the positive 
power supply, V + ,  through resistors Rcl and R,, and through balance 

- 

adjustment potentiometer Rbnlancc. 
Current I,,. splits evenly between Q ,  and Q, when Vp = K,  R,, = R,,, and 

when Q, and Q, are identical and Rba,ance is set at its center. In this ideal case, 
each emitter carries a current of ldJ2, each collector a current of 
(Idc/2)hFE/(l + hFE), and each base a current of (ldC/2)/(l + hFr), where hFE is the 
current gain of the transistor. 

The input bias current, I,, of the operational amplifier equals the base 
current; thus, 

-- 

EXAMPLE 12.1 The circuit of Figure 12.1 uses two identical transistors with 
hFE = 100; also, I,, = 1OmA. Transistors Q, and Q, are identical and the 
circuit, all voltages, and all currents are symmetrical. Thus, the input bias 
current of the operational amplifier is, from Equation 12.1, 
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FIGURE 12.1 Circuit diagram of a simple input stage 

When the circuit is not symmetrical, a nonzero input offset current I,, may 
result: 

EXAMPLE 12.2 The positive and negative input voltages, V' and Y.,  are 
identical in Figure 12.1; also, I,, = 10 mA and the current gain of each transistor 
is h,  = 100. Because of asymmetries in Q, and Q,, the emitter of Q, caries a 
current of 4 mA and the emitter of Q, a current of 6 mA. Thus, the input offset 
current becomes 

. - - -  

The output voltages of the input stage are available for further use at points 
OUT, and OUT, in Figure 12.1. They are developed as voltage drops across 
resistors Rc, and R,, and portions of balance adjustment potentiometer 
R,,.,,,. This potentiometer is replaced by short-circuits in the simplest 
operational amplifiers, it can be connected externally in others, and it is internal 
in some advanced operational amplifiers (in the form of a resistor network that 
is individually trimmed as a last step of the manufacturing process). 
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The purpose of potentiometer RbaIan,, is to zero out any nonzero input offset 
voltage V,,,,, of the operational amplifier. This is preferable to offsetting one of 
the inputs, in which case there would remain a temperature coefficient of 
approximately 

where T is the absolute temperature in OK, about 273•‹C above the temperature 
expressed in degrees centigrade ("C). Note that a difference of I K equals a 
difference of 1•‹C. 

- - 

EXAMPLE 12.3 An operational amplifier has an input offset voltage of 
Voff,,, = 6 mV that is zeroed out at one of the inputs of the operational amplifier. 
Thus, the output voltage of the operational amplifier is zero at the temperature 
where the zeroing was performed, which is approximately 27•‹C; hence, 
T 273•‹C + 27•‹C = 300•‹K. However, there remains a temperature coefficient 
that, from Equation 12.3, is 

If, for example, the temperature changes by 1O0C, there will appear an input 
offset voltage of (10"C)(20pV/"C) = 0.2 mV. 

.- 

Note that the inclusion of potentiometer Rbalancc does not completely 
eliminate the temperature coefficient of the input ofset voltage, because there 
remains the temperature coefficient of the second stage of the operational 
amplifier. However, the effect of this is reduced by the amplification of the first 
stage, which is usually at least 100. 

12.2 Current Mirrors 

Figure 12.2 shows the circuit diagram of a simple current mirror using two 
identical npn transistors Q, and Q,; current mirrors are also built using pnp 
transistors. It is now shown that, with the directions of currents as in Figure 
12.2, I,, approximately equals I, as long as the external load connected to 
output OUT is such that VC2 > V,. 

The emitters of both Q, and Q, are connected to VE, which is usually a power 
supply voltage. The bases of Q, and Q, are connected together and they settle to 
a voltage of V,, which is about 0.7 V higher than VE. The collector of Q, is also 
connected to V,, thus this transistor operates with a collector-emitter voltage of 
about 0.7 V. The collector of Q, is connected to output OUT. The design of 
transistors Q, and Q, is such that the collector-emitter voltage does not have 
much influence on the collector current, as long as it is at least 0.7 V. 
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FIGURE 12.2 Circuit diagram of a simpk current mirror. 

Thus, 

in Figure 12.2 as long as Vc2 > V,, because Q, and Q2 are identical. For the 
same reason, 

and also 

and 

where hFE is the current gain of Q, and of Q,. 
Furthermore, a nodeequation can be written for node V,:  

It can be shown (see Problem 12.3) that Equations 12.4-12.7 can be 
combined as 

Thus, I,,, is close to 1, when hFE is large. This can also be seen in Figure 12.2, 
where the baseemitter voltages of Q, and Q, are equal; hence, IOU, = 1, when 
the base currents are negligibly small. 

Therefore, the insertion of a current mirror circuit between a source 
(generator) and a load reverses (inverts) the direction of the current through the 
load from the direction without the current mirror. Consider, for example, a 
current that flows from the source into the load without a current mirror. If a 
current mirror circuit is now inserted between the source and the load, the 
current from the source flows into the current mirror circuit, and a current with 
an approximately equal magnitude flows out o j  the load. 
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_ . -  ~ - 

EXAMPLE 12.4 Output O U T  in Figure 12.2 is loaded such that V& b VB; 
hence, Equation 12.8 is applicable. 

(a) If hFE = 100, which is common for npn transistors. then, from Equation 
12.8, 

1 1 
! ! ? ! E = p  1in z 0.98, 

- 2 2 
1 + -  I + -  

~ F E  100 

a loss of 2 %. 
(b) If hFE = 10, which is common for pnp transistors in some processes, then, 

from Equation 12.8, 

a loss of 17%. -- 

Figure 12.3 illustrates the use of a current mirror for generating I,, in the 
input stage of Figure 12.1, which is only partially shown. The voltage across 
resistor R, is about 14.3 V and current I,, is in the vicinity of 14.3 V I R , .  

t 
- 15 V 

FIGURE 12.3 Use of a current mirror for generating I& in Figure 12.1. 
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Figure 12.4 illustrates the use of a current mirror for signal inversion in the 
input stage of Figure 12.1. Current Imi,,,, I,, flows into node A in Figure 12.4. 
(Note that a direct connection of the left collector to node O U T  would make I,, 
flow out of node OUT and would result in a useless circuit.) 

FIGURE 12.4 Use of a current mirror for signal inversion. 

Figure 12.5 shows a current mirror with two outputs. It can be shown (see 
Problem 12.5) that when OUT, and OUT, are at least 0.7 V above V,, 

Figure 12.6 illustrates the use of a two-output current mirror in the input 
stage of Figure 12.1. The FEEDBACK signal is derived from subsequent 
circuitry not shown, and it sets the dc operating points of OUT, and OUT,. 

12.2 CURRENT MIRRORS 251 

FIGURE 125 A current mirror with two outputs. 

FIGURE 12.6 Use of a current mirror with two outputs. 

Note that neither Figure 12.4 nor Figure 12.6 has a provision for zeroing out 
input offset voltage Vo,,scl, as was done by R,,,,,,, in Figure 12.1. However, the 
balancing feature can be incorporated in either circuit by the inclusion of 
additional circuitry. One way of doing this is to use two of the current mirrors of 
Figure 12.2. Output O U T  of one current mirror is connected to the left 
collectors and output O U T  of the other current mirror to the right collectors. 
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The 6 terminals of both current mirrors are connected to a negative power 
supply voltage, as in Figure 12.3. Also, input IN of each current mirror is 
connected to ground via a resistor, and zeroing is performed by varying one of 
these resistors (see Problem 12.6). 

12.3 Output Stages 

Figure 12.7 shows an output stage using complementary npn and pnp trans- 
istors. Output transistors Q, and Q,  are capable of delivering high currents with 
both polarities: npn transistor Q, can provide a high current flowing out of the 
circuit and pnp transistor Q, can provide a high current flowing into the circuit. 

Transistors Q, and Q, provide level shifting. The circuit is designed such that 
the base-emitter voltage drops of Q, and Q, are equal, and also the base-emitter 
voltage drops of Q, and Q ,  are equal. 

OUT 

t 
-15 V 

FIGURE 127 An output stage using npn and pnp transistors 
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PROBLEMS 

The circuit of Figure 12.1 uses two identical transistors with hFE = 200, 
also, I,, = 0.1 mA. Find the input bias current. 

An operational amplifier has an input offset voltage V,,,,,, = 3 mV which 
is zeroed out at one of the inputs of the operational amplifier. Find the 
input offset voltage for a temperature change of 1OC. 

Derive Equation 12.8 from Equations 12.4- 12.7. [Hint: Express I,, from 
Equation 12.6a and I,, from Equation 12.6b; substitute them into 
Equation 12.7. Express I,, from the result and substitute it into Equation 
12.4.1 

Find I,,,/Ii, in the current mirror circuit of Figure 12.2 if V,, > V, and 
hFE = 5. 

Derive Equation 12.9 by writing equations similar to Equations 12.4- 
12.7 and manipulating them as in Problem 12.3. 

Incorporate input offset voltage balancing in Figure 12.4 by adding two 
current mirrors. Sketch a complete circuit diagram. 
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Mathematical Equations 

This appendix provides a short summary of the mathematical equations that are 
frequently used in this book: quadratic equations, cubic equations, and Laplace 
transform pairs. 

A.l Quadratic Equations 

Any quadratic equation may be reduced to the form 

Then 

If a, b, and c are real then: 
If bz - 4ac is positive, the roots are real and unequal. 
If b2 - 4ac is zero, the roots are real and equal. 
If b2 - 4ac is negative, the roots are complex and unequal. 

A.2 Cubic Equations 

Any cubic equation, 

y3 + py2 + qy + r = 0 

may be reduced to the form 

x 3 + u x + b = 0  

by substituting for y the value, 
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Also, 

1 
a = - (3q - p2)  

3 

and 

For solution, define 

and 

then the three values of x  are given by 

A + B  A - B  x = - -  
2 +-J3, 2 

and 

A + B  A - B  x = - - - -  
2 2 J-3. 

If P, q, r are real, then: 

b2 a3 
If - + - > 0, there is one real root and two conjugate complex roots. 

4 27 

bZ a3 
If - + - = 0, there are three real roots of which at least two are equal. 

4 27 

bZ a' 
If - + - < 0, there are three real and unequal roots. 

4 27 
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A.3 Laplace Transform Pairs 
--- 

f ( t )  for t  > 0 
- 

- 

bce - " ace - b' abe-" 
1 - + + I 

a - b  

(S + a)(s + b) 

abc 

4s  + a)(s + b)(s + c) 

(S + a)" 

a" + 1 

s(s+a)"+' 

ab(a - b) 

S(S + a)(s + b) 
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Derivations 

This appendix provides details of derivations that are too extensive to be 
included in the main text. 

Rl  Proof of Equations 6.31a-e 

In this section, the validity of Equations 6.31a-e is demonstrated. Specifically, it 
is shown that the magnitudes of the fractional errors of rL and r, of Equations 
6 . 3 1 ~  and 6.31d are always less than R2 /R l .  

The fractional error e of a time constant 7 can be written 

E = Tapproximato - *exact 

*exact 

which can be rearranged as 

(B. 1 a) 

- *approximate - 1. (B.1 b) 
'5exact 

To find the fractional error E ,  of time constant r,, the approximate .rL from 
Equation 6.31~ has to be substituted for r,ppr,ximate in Equations B.la and B.lb, 
and the exact T~ from Equation 6.30~ has to be substituted for T,,,,, in Equations 
B.la and B.lb. 

Thus, Equation B.lb becomes 

Now it is determined whether E, is positive, zero, or negative, that is, whether 
in the equation 

EL 5 0 (B.3) 

the top sign (>), the center sign (= ), or the bottom sign (< ) is valid. 

259 
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By substitution of Equation B.2, Equation B.3 becomes 

4RiCiR2C2 
( I  - 

- 
(R,c, + RlC2 + R2C2)' 

-1;o .  

Equation B.4 can be rearranged as 

The right side of Equation B.5 is always positive or zero because, by convention, 
f i  2 0 for any positive real x. When the left side of Equation 8.5 is negative, 
the bottom sign (<) is valid in Equation B.5 and hence in Equation B.3 as well. 
Thus, in this case, 

&, < 0 
and also 

I&,I = -EL. (B.7) 
When the left side of Equation B.5 is positive or zero, none of the three possible 
signs (>, =, and <) is altered if both sides of Equation B.5 are squared, because 
in this case both sides of Equation B.5 are positive or zero. This results in 
Equation B.8: 

(B.8) 
It can be shown that Equation B.8 can be rearranged as 

Clearly, the bottom sign (<) is valid in Equation B.9 and hence in Equation B.3 
as well. Thus, Equations B.6 and B.7 are valid in this case too. 

Now it is determined whether JE,J is greater than, equal to, or less than R2/Rl; 
that is, whether in the equation 

the top sign (>), the center sign (=), or the bottom sign (<) is valid. 

(B. 10) 

B.I PROOF OF EQUATIONS 6.31a-e 

By use of Equations B.2 and B.7, Equation B.10 becomes 

Equation B . l l  can be rearranged as 
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(B. 1 1 )  

(B. 1 2) 

The left side of Equation B.12 is always positive or zero because. by convention. 
f i  2 0 for any positive real x. The right side of Equation 8.12 is also always 
positive. Thus, none of the three possible signs (>, =, and <) is altered if both 
sides of Equation B.12 are squared. This results in Equation B.13: 

Equation B.13 can be rearranged as 

The left side of Equation B.14 is always negative and the right side is always 
positive; hence, the left side is always less than the right side.Thus,the bottom 
sign (<) is valid in Equation 8.14 and hence in Equation B.10 as well. Therefore, 
Equation B.10 becomes 

(B. 15) 

Thus, the magnitude of the fractional error of r ,  of Equation 6.31c, JcLI, is 
indeed always less than R2/Rl. 
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To find the fractional error E, of time constant r ,  the approximate r, from 
Equation 6.31d has to be substituted for r,,,,,,,,,,, in Equations B.la and B.lb, 
and the exact 7. from Equation 6.3W has to be substituted for re,., in 
Equations B.la and B.1 b. Thus, Equation B.lb becomes 

Now it is determined whether e, is positive, zero, or negative; that is, whether 
in the equation 

2 
8. 7 0 (B. 1 7) 

the top sign (>), the center sign (=), or the bottom sign (c) is valid. By 
substitution of Equation B.16, Equation B.17 becomes 

Equation B. 18 can be rearranged as 

1 - 4RlClRK2 2 RlCl + RlC2 - R2C2 
(B. 19) (RICl + RIC, + R2C$ < RICl + RIC2 + R2C2 ' 

- - 
The left side of Equation B.19 is always positive because, by convention, 
f i  > 0 for any positive real r. When the right side of Equation B.19 is negative, 
then the top sign (>) is valid in Equation B.19 and hence in Equation B.17 as 
well. Thus, in this case 

E. > 0 
and also 

I%( = Eu. (B.2 1) 
When the right side of Equation B.19 is positive or zero, then none of the three 
possible signs (>, =, and <) is altered if both sides of Equation B.19 are 
squared, because in this case both sides of Equation B.19 are positive or zero. 
This results in Equation B.22: 

B.1 PROOF OF EQUATIONS 6.3la-e 
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Equation B.22 can be rearranged as 
4R,ClRzCz $0.  

Clearly, the top sign (>) is valid in Equation 8.23 and hence in Equation B.17 as 
well. Thus, Equations B.20 and B.21 are valid in this case too. 

Now it is determined whether /&,I is greater than, equal to. or less than R2/Rl; 
that is, whether in the equation 

the top sign (>), the center sign (=), or the bottom sign 
Equations B.16 and B.21, Equation B.24 becomes 

(B.24) 

<) is valid. By use of 

Equation B.25 can be rearranged as 

The left side of Equation 8.26 is always positive or zero because, by convention, 
6 > 0 for any positive real x. The right side of Equation 8.26 is also always 
positive. Thus, none of the three possible signs (>, =, and <) is altered if both 
sides of Equation 8.26 are squared. This results in Equation 8.27: 

Equation B.27 can be rearranged as 

Clearly, the bottom sign (<) is valid. Therefore, Equation 8.24 becomes 

Thus, the magnitude of the fractional error of r, of Equation 6.3ld. 
is 

indeed always less than Rz/Rl. This completes the proof of the statement that 
the magnitudes of the fractional errors of T, and T, of Equations 6.3 lc and 6.316 
are always less than R2/R1. 
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8 2  The Relative Magnitudes of q ,  TZ, and T,, 

First, the relative magnitudes of T, and TL, from Equations 6.30b 
compared; that is, it is determined whether in the equation 

1 2 1  
-< -  
TL Tz  

and 6.30~ are 

the top sign (>), the center sign (=), or the bottom sign (<) is valid. By 
substitution of Equations 6.30b and 6.30c, Equation B.30 becomes 

(B.3 1) 
Equation B.31 can be rearranged as 

The validity of an inequality is not altered if both sides are multiplied by - 1 
and are interchanged. Hence, Equation B.32 can be written 

The right side of Equation B.33 is always positive or zero because, by 
convention, f i  3 0 for any positive real x. When the left side of Equation B.33 
is negative, the bottom sign (<) is valid in Equation B.33 and hence in Equation 
B.30 as well. Thus, in this case, 

1 1  - < -. (B.34) 
' 5 ~  '52 

When the left side of Equation B.33 is positive or zero, none of the three possible 
signs (>, =, and <) is altered if both sides of Equation B.33 are squared, 
because in this case both sides of Equation B.33 are positive or zero. This results 
in Equation B.35: 

It can be shown that Equation B.35 can be rearranged as 
> 

0 : 4R:ClC2. (B.36) 

Clearly, the bottom sign (<) is valid in Equation B.36 and hence in Equation 
B.30 as well. Thus, Equation B.34 is valid in this case too. 
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Next, the relative magnitudes of r 2  and T, from Equations 6.30b and 6.30d 
are compared; that is, it is determined whether in the equation 

The top sign (>), the center sign (=), or the bottom sign (<) is valid. By 
substitution of Equations 6.30b and 6.30d, Equation B.37 becomes 

Equation B.38 can be rearranged as 

The left side of Equation B.39 is always positive or zero because, by convention, 
f i  2 Ofor any positive real x. When the right side of Equation 8.39 is negative. 
the top sign (>) is valid in Equation B.39 and hence in Equation B.37 as well. 
Thus, in this case, 

When the right side of Equation B.39 is positive or zero, none of the three 
possible signs (>, =, and <) is altered if both sides of Equation 8.39 are 
squared, because in this case both sides of Equation 8.39 are positive or zero. 
This results in Equation B.41: 

It can be shown that Equation B.41 can be rearranged as 

4R:ClC2 5 0. (B.42) 

Clearly, the top sign (>) is valid in Equation B.42 and hence in Equation B.37 as 
well. Thus, Equation B.40 is valid in this case too. 

The combination of Equations B.34 and B.40 results in Equation 6.32a. This 
completes the proof of Equation 6.32a. 
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Answers to Selected Problems 

CHAPTER 1 

1.1 - 1 V 

CHAPTER 7 

CHAPTER 2 
CHAPTER 8 

2.7 0, 10V 

2.10 1 millisecond 

CHAPTER 3 

3.10 0, 10 mV 

3.14 -0.999 mV 

3.16 - 10,000 

CHAPTER 4 

4.1 9616.3 to 10,001 

4.10 0 

4.12 10% 

4.13 z f 0.4% 

CHAPTER 5 

5.11 3.18 MHz 

8.34 38.7" 

8.45 1 , l  MHz 

8.75 1 - (1 + 2 . 2 2 t ) ~ - ' ' ~ . ~ ~  

8.76 1 - (1 + 2.221 + 2.47t"e-'10.45 

CHAPTER 9 

CHAPTER 10 

10.7 150 mV 

10.8 23 mV 



Index 

Adder, 223-225.240 
Amplification, 1-3, 5, 8-10, 28-30, 33-37, 

39, 268 
accuracy, 3, 24, 27-37 
closed-loop, see Resulting amplification 
infinite, 12-25, 119-122 

Balance adjustment, 246-247, 251-253 
Bandwidth, 39, 123-127, 187 
Bias current, see Input bias current 
Bode plot, 44, 55-56, 87, 116 

Common-mode amplification, 2-3, 197-202 
Common-mode rejection, 197-201, 208, 268 
Common-mode rejection ratio, 198-202, 208, 

268 dc, 198, 208 
frequency characteristics, 198-199, 208 

Comparator, 10 
Compound differential amplifier, 23, 36, 208 
Compound lag network, 70-76, 81, 118, 259- 

265 
Computer-aided design. 184 
Corner frequency. 40.44, 59, 87, 94, 115- 

118, 119, 268 
four, 87, 92-94 
no, 119-122 
one, 87, 115, 123-135, I X S - I ~ ~ I  
three, 87-91, 93-95. 98, 108-1 13, 116, 

118, 166-182, IW-194 

two, 87, 101-107, 117-1 18, 135-166, 186- 
1W 

Crossover frequency, 99 
Cubic equation, see Th~rd-order equation 
Current mirror, 247-253 
Current source input, 219-223, 240 
Cyclic frequency, 40 

Decibel, 44 
Decompensated operat~onal amphfier, 94 
Delay, 39, 116 
Delta function, 55, 230-232, 235 
Differential amplification, 5 
Differential amplifier, 6-10, 23. See ulso 

Feedback amplifier, differential 
Differential gain, see Differential 

amplification 
Differential-in differential-out amplifier, 19- 

2 1 - ~ 

Differential voltage amplification, 5 
Differential voltage gain, see Differential 

voltage amplification 
Differentiator, 237-238, 243-244 
Drift, temperature, see Temperature 

coefficient 

Encircling, 83-86 
Excess phase, 101 
Expansion, binom~al, 41-42 
Expansion, logarithmic, 41-42. 56 
Exponential amplifier, 239 

Feedback. 3, 11-25 
frequency-independent, 119, 123-125, 136- 

141, 166-170, 187, 191 
negative, 11 
positive, 24, 36 

Feedback amplification, see Resulting 
amplification 
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Feedback amplifier, 11-25, 83-118, 119-195, 
210-212 

resulting amplification, 12-25, 27-37 
resulting amplification, fractional change, 

27-37, see also Feedback amplifier, 
resulting amplification, fractional error 

resulting amplification, fractional error, 24, 
33-37, see also Feedback amplifier, 
resulting amplification, fractional 
change 

Feedback amplifier, differential, 15-18, 20- 
22, 199-202,210-212 

equalized amplification, 17-18, 20-22, 
199-202.210-212 

feedback factor, 16-18 
feedback return, 16 
resulting amplification, 16-18, 20-22, 24, 

27-37 
Feedback amplifier, inverting, 13-15, 22, 24, 

29-30, 32-37, 90, 114-116, 182-183 
feedback factor, 14-15, 22 
feedback return, 14-15 
resulting amplification, 13-15, 22, 24 
resulting amplification, fractional change, 

29-30.32-37, see also Feedback 
amplifier, inverting, fractional error 

resulting amplification, fractional error, 24, 
33-37, see also Feedback amplifier, 
inverting, fractional change 

Feedback amplifier, noninverting, 11-13, 19, 
21-22, 24,27-29, 31-37 

feedback factor, 12-13 
feedback return, 12-13, 19 
resulting amplification, 12-13, 19, 21-22, 

24 
resulting amplification, fractional change, 

27-29, 31-37, see also Feedback 
amplifier, noninverting, fractional 
error 

resulting amplification, fractional error, 24, 
33-37, see also Feedback amplifier, 
noninverting, fractional change 

Feedback factor, 12-18, 25, 31-33 
Feedback gain, see Resulting amplification 
Feedback resistor, 30-37 
Feedback return, 12-16, 31-33 
Fifth-order equation, 195 
Fourth-order equation, 175-180, 182, 191- 

1 94 
Frequency, 1-3, 5 
Frequency response, 39-57, 59-82, 119-195 

Gain, 1, 5 
closed-loop, see Resulting amplification 
resulting, see Resulting amplification 

Ideal operational amplifier, 5-10 
Impulse function, 55, 230-232, 235 
Input bias current, 2, 209-211, 217-218, 245, 

253, 268 
Input capacitance, 202-205, 208 
Input current, 2, 209-211, 217-218, 245-246, 

253, 268 
Input impedance, 202-205, 208, 268 
Input offset current, 2-3, 209-211, 217-218, 

246, 268 
Input offset voltage, 2-3, 211-212, 218, 253, 

268 
Input resistance, 202-205, 208, 268 
Input resistor, 33-37 
Input stage, 245-247, 249-251 
Instrumentation amplifier, 19-21, 36-37 
Integrator, 225-236, 240-243 
Internally compensated operational 

amplifier, 94-95, 116 
Inverting amplifier, 6. See also Feedback 

amplifier, inverting 

Lag compensation, 94-95 
Lag-lead compensation, 111-113, 121-122, 

125-135, 1 6 1 6 6 ,  181-183, 194, 238, 
244 

Lag network, 39-57, 87-93. See also Corner 
frequency 

Laplace transform, 42-43, 257 
Lead network, 63-66, 80-81 
Lead-lag compensation, %-loo, 103-107, 

109-110, 117-118, 120-121, 141-160, 
171-180, 182-183, 187-195, 218 

Limitation, 212-213 
Logarithmic amplifier, 239, 244 
Loop gain, see Feedback factor 

Magnitude, 1, 40-42 
Modified lag network, 59-62, 80-81 

Noise, 215-218 
Noninverting amplifier, 5-6. See also 

Feedback amplifier, noninverting 
Nyquist criterion, 83-87, 99, 101 
Nyquist diagram, 83-87, 115 

Open-loop amplification, 5 
Open-loop gain, see Open-loop amplification 
Output current, 212-213 
Output impedance, 205-206, 208 
Output stage, 252 
Output voltage, 212-213 

Phase, 40-42, 55, 117 
Phase margin, 99, 101-113, 117-1 18, 128, 

233, 243 
Piecewise linear approximation, 44, 56 
Pole, 40, 94 
Pole frequency, 40, 59 
Pole-zero cancellation, 97-98. 142-145, 156- 

158, 171-175, 182-183, 187-191 
Potentiometric amplifier, 25 
Power supply rejection ratio, 207-208, 268 
Property, 267-268 

Quadratic equation, see Second-order 
equation 

Quartic equation, see Fourth-order equation 
Quintic equation, see Fifth-order equation 

RLC circuit, 76-80, 82 
Rating, 212-213, 236 
Real operational amplifier, 197-208, 209-218 
Referred to the input, 211 
Referred to the output, 211 
Resulting amplification, 11-25 
Rise time, 39 

Second-order equation, 255 
Slew rate, 214-215, 218, 268 
Stability, 83-118 

absolute, 99 
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conditional, 98-1(W, 117, 195 
marginal, 89 

Step function, 43 
Structure, internal, 245-253 
supply-voltage rejection, 207-208 
Supp[y-voltage rejection ratio, 207-208, 268 

frequency characteristics, 207 

Taylor series, 28-31, 34-37, 56 
Temperature coefficient, 210-212, 217-218, 

247,268 
Temperature dr~ft ,  see Temperature 

coefficient 
Third-order equation, 146-156, 158-160, 

163-169, 173-174, 187-191, .194, 255- 
256 

Transfer function, 40 
Translent response, 39-57, 59-82, 119-195 

Voltage amplification, 5 
Voltage divider network, 66-70, 81 

compensated, 67-70 
Voltage follower, 19, 22, 36, 95. 238, 244 
Voltage gain, see Voltage amplification 

Zero, 59, 94 
Zero frequency, 59 
Zeroing, see Balance adjustment 
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