Operational

Amplifiers

OPERATIONAL AMPLIFIERS

SECOND EDITION

ARPAD BARNA

University of California
Santa Cruz
and
DAN I. PORAT
Stanford Linear Accelerator Center
Stanford University

A Wiley-Interscience Publication
JOHN WILEY \& SONS
New York • Chichester • Brisbane - Toronto - Singapore

Preface

This second edition has been extensively revised to reflect new developments during the 17 years that have elapsed since the publication of the first edition. These include the substantial technological advances that took place, especially in operational amplifiers with high gain, low input currents and offset voltages, and high speed. The entire text has been thoroughly revised, and the chapters on stability, frequency response, and transient response were considerably expanded and completely rewritten to reflect the vast changes during the last decade.

Chapters 7 and 8 have been most significantly impacted. Chapter 7 describes stability criteria and phase margins of feedback amplifiers using operational amplifiers with up to 4 corner frequencies. Frequency-independent feedback, lag compensation, lead-lag compensation, and lag-lead compensation are treated. Conditional stability is discussed, as well as limitations characteristic of inverting feedback amplifiers.

Chapter 8 provides a detailed description of frequency response and transient response of feedback amplifiers using operational amplifiers with up to 3 corner frequencies. Frequency-independent feedback, lag compensation, lead-lag compensation with and without pole-zero cancellation, and lag-lead compensation are treated, including design graphs based on the solution of the third-order and fourth-order equations that arise. The results are applied to the latest wideband monolithic and hybrid operational amplifiers in worked examples and in problems.

Two new chapters were also added on applications and on internal structure: Chapter 11 describes amplifiers with current source inputs, as well as adders, integrators, differentiators, and nonlinear circuits; Chapter 12 discusses input stages, current mirrors, and output stages in operational amplifiers.

The book now has 12 chapters, 132 worked examples, 319 problems, 102 figures, and 3 appendixes. Answers to selected problems are also given.

We would like to take this opportunity to acknowledge the contributions of Wiley Editor George J. Telecki and his associates in making this second edition a reality.

Arpad Barna

Dan I. Porat
Stanford, California
September 1988

Preface to the First Edition

The availability of mass-produced operational amplifiers at a low cost has resulted in their widespread use in many applications. Because of their performance, these devices have brought about designs with unprecedented precision, speed, reliability, and reproducibility. In order to take full advantage of this potential, thorough and precise design techniques must be applied. This text offers the reader a basic understanding of the use of operational amplifiers in linear circuits fundamental to other applications.

The book developed from a senior elective course in electronic instrumentation given at the University of Hawaii. Over 200 examples and problems expand the book's scope and illustrate realistic applications. These features, and a structure aimed at easy access to the material, make this book useful both as a text and as a reference.

After a general introduction, basic properties of ideal operational amplifiers are described. Feedback is introduced in Chapter 3. The effects of feedback and of component variations on accuracy are discussed in Chapter 4. Transient response and frequency response of operational amplifiers and feedback amplifiers are summarized in Chapters 5 and 6. Stability considerations and criteria are introduced in Chapter 7, compensation techniques are described in Chapter 8. Common mode rejection, input and output impedances, and supply voltage rejection properties are summarized in Chapter 9, input currents, offset voltage, slew rate, noise, and other limitations in Chapter 10. An Appendix provides tables summarizing the results obtained in the text and lists the properties of operational amplifiers used in the examples and problems. Answers to selected problems are also given.

Arpad Barna
Honolulu, Hawaii
February 1971

Contents

CHAPTER 1
Operational Amplifiers 1
1.1 Properties 2
1.2 Applications 3
Problems 3
CHAPTER 2
Ideal Operational Amplifiers 5
2.1 Noninverting Amplifiers 5
2.2 Inverting Amplifiers 6
2.3 Differential Amplifiers 6
2.4 Floating-Input Differential Amplifiers 7
Problems 8
CHAPTER 3
11
11
Feedback
Feedback
11
11
3.2 Inverting Feedback Amplifiers 13
3.3 Differential Feedback Amplifiers 15
3.4 Voltage Followers 19
3.5 Instrumentation Amplifiers 19
Problems 21
CHAPTER 4
Accuracy of the Amplification 27
4.1 Small Variations in Operational Amplifier Amplification 28
4.2 Small Variations in the Feedback Resistor 30
4.3 Small Variations in the Input Resistor 33
4.4 Several Sources of Variations 33
Problems 35
CHAPTER 5
Frequency Response and Transient Response of Operational Amplifiers, Part I 39
5.1 Lag Networks 39
5.2 Bode Plots 44
5.3 Cascaded Lag Networks 45
Problems 55
CHAPTER 6
Frequency Response and Transient Response of Operational Amplifiers, Part II 59
6.1 Modified Lag Networks 59
6.2 Lead Networks 63
6.3 Voltage Divider Networks 66
6.4 Compound Lag Networks 70
6.5 Series RLC Circuits 76
Problems 80
CHAPTER 7
Stability of Feedback Amplifiers 83
7.1 The Nyquist Criterion 83
7.2 Lag Networks 87
7.3 Lag Compensation 94
7.4 Lead-Lag Compensation 96
7.5 Conditional Stability 98
7.6 Phase Margins 99
7.7 Inverting Feedback Amplifiers 114
Problems 115
CHAPTER 8
Frequency Response and Transient Response of Feedback Amplifiers 119
8.1 Operational Amplifiers with $A=A_{\mathrm{dc}}=\infty$ 119
8.2 Operational Amplifiers with $A=A_{\mathrm{dc}} /\left(1+\mathrm{j} f / f_{1}\right)$ 123
8.3 Operational Amplifiers with $A=A_{\mathrm{dc}} /\left[\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)\right]$ 135
8.4 Operational Amplifiers with
$A=A_{\mathrm{dc}} /\left[\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)\left(1+\mathrm{j} f / f_{3}\right)\right]$ 166
8.5 Inverting Feedback Amplifiers 182
8.6 Computer-Aided Design 184
Problems 185
CHAPTER 9
Properties of Real Operational Amplifiers, Part I 197
9.1 Common-Mode Amplification and Common-Mode Rejection 197
9.2 Input Impedances 202
9.3 Output Impedance 205
9.4 Supply-Voltage Rejection 207
Problems 208
CHAPTER 10
Properties of Real Operational Amplifiers, Part II 209
10.1 Input Currents 209
10.2 Input Offset Voltage 211
10.3 Limitations and Ratings 212
10.4 Slew Rate 214
10.5 Noise 215
Problems 217
CHAPTER 11
Other Circuits 219
11.1 Current Source Inputs 219
11.2 Adder Circuits 223
11.3 Integrator Circuits 225
11.4 Differentiator Circuits 237
11.5 Nonlinear Circuits 239
Problems 240
CHAPTER 12
Internal Structure 245
12.1 Input Stages 245
12.2 Current Mirrors 247
12.3 Output Stages 252
Problems 253
APPENDIX A
Mathematical Equations 255
A. 1 Quadratic Equations 255
A. 2 Cubic Equations 255
A. 3 Laplace Transform Pairs 257

APPENDIX B

Derivations 259
B. 1 Proof of Equations 6.31a-e 259
B. 2 The Relative Magnitudes of τ_{L}, τ_{2}, and τ_{u} 264
APPENDIX CProperties of Operational Amplifiers Used in the Examples andProblems267
Answers to Selected Problems 269
Index 271

CHAPTER 1

Operational Amplifiers

This chapter introduces distinctive features of operational amplifiers (OAs) and illustrates the theme of the book.* Detailed treatment of the subject matter begins with Chapter 2.
An operational amplifier (Figure 1.1) is characterized by an output voltage $V_{\text {out }}$ that is proportional to the difference of its two input voltages V_{p} and V_{n} :

$$
\begin{equation*}
V_{\mathrm{out}}=A\left(V_{p}-V_{n}\right) . \tag{1.1}
\end{equation*}
$$

A distinctive feature of operational amplifiers is that amplification (or gain) \boldsymbol{A} is a function of frequency with a nonzero value at dc (zero frequency). This value is usually the maximum of A as a function of frequency.

FIGURE 1.1 Schematic diagram of an operational amplifier.

EXAMPLE 1.1. In an operational amplifier described by Equation $1.1, A=$ $10,000 /(1+\mathrm{j} f / 1 \mathrm{MHz})$, where f is the frequency and $\mathrm{j} \equiv \sqrt{-1}$. The dc value of A, that is, its value at zero frequency, is $A_{\mathrm{dc}} \equiv A_{f=0}=10,000$. The magnitude of amplification A as a function of frequency is

$$
|A|=\frac{10,000}{\sqrt{1+(f / 1 \mathrm{MHz})^{2}}}
$$

This has its maximum equal to A_{dc} at a frequency $f=0$.
*New terms are introduced by italicized letters.

Another distinctive feature of operational amplifiers follows from Equation 1.1: The output voltage-at least in principle-is zero when both input voltages are zero.

1.1 Properties

It would be desirable to have operational amplifiers described by Equation 1.1 with an amplification A that has precisely defined frequency characteristics, that is independent of signal levels, time, and temperature, and that is identical from unit to unit. It would also be desirable to have Equation 1.1 satisfied exactly: $V_{\text {out }}$ should be zero when $V_{p}=V_{n}$, no matter how large they are.

In reality, amplification A is a function of signal level, time, temperature, and power supply voltage, and varies from unit to unit-sometimes by as much as a factor of five. Operational amplifiers also have a nonzero input offset voltage (typically a few millivolts) that adds to $V_{p}-V_{n}$ and that varies with temperature and from unit to unit.

EXAMPLE 1.2. An operational amplifier has a dc amplification $A_{\mathrm{dc}}=1000$ and a maximum input offset voltage $V_{\text {offset }}= \pm 2 \mathrm{mV}$. As a result, for zero input voltages the output voltage can be anywhere within the range given by $V_{\text {out }}=V_{\text {offset }} A=(\pm 2 \mathrm{mV})(1000)= \pm 2 \mathrm{~V}$. Thus, if $V_{p}=V_{n}=0$, output voltage $V_{\text {out }}$ is between -2 V and +2 V .

In the case when the two input voltages are equal but not zero, that is, $V_{p}=V_{n} \neq 0$, some fraction of these input voltages finds its way to the output terminal; this fraction is designated common-mode amplification A_{CM}.

EXAMPLE 1.3. An operational amplifier has a common-mode amplification $A_{\mathrm{CM}}=0.0001$. Thus, if $V_{p}=V_{n}=1 \mathrm{~V}$, the output voltage, neglecting input offset voltage $V_{\text {offsee }}$, is $V_{\text {out }}=A_{\text {CM }} V_{p}=A_{\mathrm{CM}} V_{n}=(0.0001)(1 \mathrm{~V})=0.1 \mathrm{mV}$.

It would also be desirable to have operational amplifiers with zero input currents flowing into their two input terminals. In reality, there is always some (possibly quite small) input current.

EXAMPLE 1.4. The average of the two input currents is designated input bias current. An operational amplifier has a maximum input bias current $I_{B}=40 \mathrm{pA}=40 \times 10^{-12} \mathrm{~A}$. Thus, each of the two input currents could be anywhere between zero and 80 pA . As a result of well-controlled manufacturing technology, however, in this operational amplifier the two input currents are always within 15 pA of each other; this is expressed by stating that the maximum input offset current is 15 pA .

Properties of operational amplifiers will be discussed in detail in subsequent chapters. Whether imperfections of an operational amplifiers are significant or not depends on the requirements of the particular application.

1.2 Applications

Operational amplifiers can be used in many circuits, such as current amplifiers, pulse shapers, and nonlinear circuits. Such applications are discussed in Chapter 11; whereas in Chapters $2-10$ the discussion centers on use as a voltage amplifier-an application that is perhaps basic to all other uses.

It will be seen that by use of feedback, some properties of the resulting amplifier may be improved at the expense of others, whereas some characteristics cannot be altered by feedback. Thus, for example, the dc amplification and its accuracy can be changed by feedback, but the input offset voltage cannot be improved.

It is not practical to discuss all possible amplifier configurations. Emphasis is placed on simple circuits that can be used as building blocks in larger systems.

PROBLEMS

1.1 Find the value of output voltage $V_{\text {out }}$ in Figure 1.1 , if $V_{p}=1 \mathrm{mV}$, $V_{\mathrm{n}}=1.1 \mathrm{mV}$, and $A=10,000$.
1.2 Find the value of $|A|$ at a frequency $f=10 \mathrm{MHz}$, if $A=1000 /(1+\mathrm{j} f / 10 \mathrm{MHz})$.
1.3 An operational amplifier has a maximum input offset voltage $V_{\text {offset }}= \pm 3 \mathrm{mV}$ and a dc amplification $A_{\mathrm{dc}}=1000$. Find the limits of output voltage $V_{\text {out }}$, if the input voltages are $V_{p}=5 \mathrm{mV}$ and $V_{n}=6 \mathrm{mV}$.
1.4 An operational amplifier has a common mode amplification $A_{C M}=0.0002$. Find the magnitude of output voltage $V_{\text {out }}$, if the input voltages are $V_{p}=V_{n}=2 \mathrm{~V}$.
1.5 In the circuit of Figure 1.2, $V_{1}=9 \mathrm{mV}, V_{2}=8 \mathrm{mV}, R_{1}=R_{2}=10 \mathrm{M} \Omega$, and the maximum input offset current of the operational amplifier is 15 pA . Find the limits of $V_{\text {out }}$ if $A=1000$ and if the amplifier obeys Equation 1.1.

FIGURE 1.2

CHAPTER 2

Ideal Operational Amplifiers

An ideal operational amplifier, shown in Figure 2.1, has two input terminals, one output terminal, and one ground terminal. The voltage between the output terminal and the ground terminal, $V_{\text {oul }}$, is related to the voltage between the positive $(+)$ terminal and ground, V_{p}, and to the voltage between the negative $(-)$ terminal and ground, V_{n}, as

$$
\begin{equation*}
V_{\text {out }}=A\left(V_{p}-V_{n}\right) \tag{2.1}
\end{equation*}
$$

The quantity A is called gain, amplification, open-loop gain, open-loop amplification, or differential voltage amplification of the operational amplifier.* An ideal operational amplifier also has zero input currents, that is, in Figure 2.1,

$$
\begin{equation*}
I_{p}=I_{n}=0 . \tag{2.2}
\end{equation*}
$$

2.1 Noninverting Amplifiers

An ideal operational amplifier used as a noninverting amplifier is shown in Figure 2.2, where input voltage $V_{\text {in }}$ is connected to the positive $(+)$ terminal of the OA (operational amplifier). The output voltage, using Equation 2.1 , is given by

$$
\begin{equation*}
V_{\text {out }}=A V_{\mathrm{in}} . \tag{2.3}
\end{equation*}
$$

*In Chapters 2-4, a frequency-independent \boldsymbol{A} is assumed; frequency characteristics of A are introduced in Chapter 5 .

FIGURE 2.2 A noninverting amplifier.

EXAMPLE 2.1. An operational amplifier, used as a noninverting amplifier, has an amplification $A=5000$; input voltage $V_{\text {in }}=1 \mathrm{mV}$. The resulting output voltage is $V_{\text {out }}=A V_{\text {in }}=(5000)(1 \mathrm{mV})=5 \mathrm{~V}$.

2.2 Inverting Amplifiers

An ideal operational amplifier used as an inverting amplifier is shown in Figure 2.3, where input voltage $V_{\text {in }}$ is connected to the negative (-) input terminal of the OA. The output voltage, using Equation 2.1, is given by

FIGURE 2.3 An inverting amplifier.

EXAMPLE 2.2. An operational amplifier, used as an inverting amplifier, has an amplification $A=10,000$; input voltage $V_{\text {in }}=1 \mathrm{mV}$. The resulting output voltage is $V_{\text {out }}=-A V_{\text {in }}=(-10,000)(1 \mathrm{mV})=-10 \mathrm{~V}$.

2.3 Differential Amplifiers

An ideal operational amplifier used as a differential amplifier is shown in Figure 2.4, where input voltages voltages V_{p} and V_{n} are connected, respectively, to the

FIGURE 2.4 A differential amplifier.
positive $(+)$ and negative $(-)$ input terminals of the OA. The output voltage, using Equation 2.1, is given by

$$
\begin{equation*}
V_{\text {out }}=A\left(V_{p}-V_{n}\right) . \tag{2.5}
\end{equation*}
$$

EXAMPLE 2.3. An operational amplifier, used as a differential amplifier, has an amplification $A=20,000$; input voltages are $V_{p}=9 \mathrm{mV}$ and $V_{n}=9.1 \mathrm{mV}$. The resulting output voltage (disregarding the common-mode amplification) is $V_{\text {out }}=A\left(V_{p}-V_{n}\right)=(20,000)(9 \mathrm{mV}-9.1 \mathrm{mV})=-2 \mathrm{~V}$.

2.4 Floating-Input Differential Amplifiers

A differential amplifier with floating inputs is shown in Figure 2.5. It follows from Equation 2.1 that the output voltage is given by

$$
\begin{equation*}
V_{\mathrm{out}}=A V_{\mathrm{in}} . \tag{2.6}
\end{equation*}
$$

EXAMPLE 2.4. An operational amplifier with an amplification $A=1000$ is used in the floating-input differential amplifier of Figure 2.5; input voltage $V_{\mathrm{in}}=1 \mathrm{mV}$. The output voltage is therefore $V_{\text {out }}=A V_{\mathrm{in}}=(1000)(1 \mathrm{mV})=1 \mathrm{~V}$.

FIGURE 2.5 A differential amplifier with floating inputs.

PROBLEMS

2.1 Find the required value of amplification A, if an input voltage $V_{\text {in }}=0.1 \mathrm{mV}$ is to be amplified to an output voltage $V_{\text {out }}=2 \mathrm{~V}$. Which amplifier circuit is to be used?
2.2 An inverting amplifier has an amplification $A=5000$ and an output voltage $V_{\text {out }}=2 \mathrm{~V}$. Find the value of input voltage $V_{\text {in }}$.
2.3 Find the value of V_{p} in the differential amplifier of Figure 2.4, if the operational amplifier is ideal with an amplification $A=10,000$, the output voltage $V_{\text {out }}=1 \mathrm{~V}$, and if $V_{n}=5 \mathrm{mV}$.
2.4 Find the value of output voltage $V_{\text {out }}$ in the circuit of Figure 2.6, if the operational amplifier is ideal with an amplification $A=2000$ and if $V_{\text {in }}=-1 \mathrm{mV}$.

FIGURE 26
2.5 Find the value of output voltage $V_{\text {out }}$ in the circuit of Figure 2.7, if the operational amplifier is ideal with an amplification $A=2000$ and if $V_{\mathrm{in}}=-1 \mathrm{mV}$.

FIGURE 2.7
2.6 Find the values of $V_{\text {out }, 1}$ and $V_{\text {out }, 2}$ in the circuit of Figure 2.8, assuming $A_{1}=10,000, A_{2}=11,000$, and $V_{\text {in }}=-0.2 \mathrm{mV}$.

FIGURE 2.8
2.7 Find the value of $V_{\text {out }}$ in the circuit of Figure 2.9 , if $V_{1}=1 \mathrm{mV}, V_{2}=5 \mathrm{~V}$, $A_{1}=5000$, and $A_{2}=10,000$. Repeat with $A_{1}=5001$.

FIGURE 2.9

10 IDEAL OPERATIONAL AMPLIFIERS
2.8 Find the value of $V_{\text {out }}$ in the circuit of Figure 2.10, if $V_{\text {in }}=10 \mathrm{mV}$ and $A=2000$.

2.9 Find the values of $V_{\text {out, } 1}$ and $V_{\text {out }, 2}$ in the circuit of Figure 2.11, if $V_{1}=V_{2}=V_{3}=1 \mathrm{mV}$ and $A_{1}=A_{2}=4000$.

FIGURE 2.11
2.10 The differential amplifier of Figure 2.4 is used as a comparator with $V_{n}=1 \mathrm{~V}$ and $V_{p}=(t)(1000 \mathrm{~V} /$ second $)$. At what time will $V_{\text {out }}$ equal zero?

CHAPTER 3

Feedback

The characteristics of an amplifier circuit using an operational amplifier can be substantially modified by the application of suitable feedback: The resulting amplification can be altered, its stability improved, the magnitude of spurious signals reduced, the bandwidth and the operating speed increased, and nonlinearities diminished. The discussion is focused on negative feedback, that is, on the case when a fraction of the output voltage is returned to the negative input terminal; some properties of positive feedback are mentioned briefly in Problem 3.16 of this chapter and in Problem 4.12 of Chapter 4.

In this chapter, amplifications of various feedback amplifiers are determined; other properties of feedback are discussed in subsequent chapters.

3.1 Noninverting Feedback Amplifiers

Consider the circuit of Figure 3.1. The input signal, $V_{\text {in }}$, is entered on the positive $(+)$ input terminal of the operational amplifier. The negative $(-)$ input terminal has an input current of $I=0$ and is not connected to ground as previously, but it receives a voltage V_{m} that is a fraction of the output voltage $V_{\text {out }}$:

$$
\begin{equation*}
V_{m}=F_{N} V_{\text {out }} \tag{3.1}
\end{equation*}
$$

FIGURE 3.1 A noninverting amplifier with negative feedback.
where the feedback return of the noninverting amplifier, F_{N}, is defined as

$$
\begin{equation*}
F_{N} \equiv \frac{R_{I}}{R_{I}+R_{F}} \tag{3.2}
\end{equation*}
$$

To find $V_{\text {out }}$ as a function of $V_{\text {in }}$, Equation 2.1 is applied as

$$
\begin{equation*}
V_{\text {out }}=A\left(V_{\text {in }}-V_{m}\right) . \tag{3.3}
\end{equation*}
$$

The combination of Equations 3.1 and 3.3 results in (see Problem 3.3)

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{A}{1+A F_{N}} \tag{3.4}
\end{equation*}
$$

The quantity $V_{\text {out }} / V_{\text {in }}$ is the resulting amplification of the noninverting feedback amplifier, which henceforth is denoted by M_{N} :*

$$
\begin{equation*}
M_{N} \equiv \frac{V_{\text {out }}}{V_{\text {in }}} \tag{3.5}
\end{equation*}
$$

Thus, for the noninverting amplifier with negative feedback,

$$
\begin{equation*}
M_{N}=\frac{A}{1+A F_{N}} \tag{3.6}
\end{equation*}
$$

where feedback return F_{N} is given by Equation 3.2.

EXAMPLE 3.1. The feedback amplifier of Figure 3.1 uses an operational amplifier with an amplification $A=1000$. Resistor values are $R_{I}=1000 \Omega$ and $R_{F}=9000 \Omega$. Thus, the feedback return is given by

$$
F_{N}=\frac{R_{I}}{R_{I}+R_{F}}=\frac{1000 \Omega}{1000 \Omega+9000 \Omega}=0.1
$$

and the resulting amplification of the feedback amplifier is

$$
M_{N}=\frac{A}{1+A F_{N}}=\frac{1000}{1+(1000)(0.1)}=\frac{1000}{101} \cong 9.90 .^{* *}
$$

It is of interest to determine what happens when amplification A of the operational amplifier is sufficiently large, so that the feedback factor of the noninverting amplifier, defined as $A F_{N}$, becomes much larger than unity, that is, when

$$
\begin{equation*}
A F_{N} \gg 1 . \tag{3.7}
\end{equation*}
$$

[^0]In this case, the resulting amplification of Equation 3.6 can be simplified as

$$
\begin{equation*}
M_{N}=\frac{A}{1+A F_{N}} \approx \frac{A}{A F_{N}}=\frac{1}{F_{N}} . \tag{3.8}
\end{equation*}
$$

Thus, if A is sufficiently large to result in a feedback factor $A F_{N} \gg 1$, the resulting amplification of the feedback amplifier, M_{N}, becomes independent of A and is determined entirely by the feedback return, that is, by resistors R_{I} and R_{F}.

EXAMPLE 3.2. The feedback amplifier of Figure 3.1 uses an operational amplifier with an amplification $A=100,000$. Resistor values are $R_{I}=1000 \Omega$ and $R_{F}=9000 \Omega$. Thus, the feedback return is

$$
F_{N}=\frac{R_{I}}{R_{I}+R_{F}}=\frac{1000 \Omega}{1000 \Omega+9000 \Omega}=0.1
$$

The value of feedback factor $A F_{N}=(100,000)(0.1)=10,000 \gg 1$. Hence, the resulting amplification of the feedback amplifier is approximately $M_{N} \approx 1 / F_{N}=1 / 0.1=10$. The exact value of M_{N} is

$$
M_{N}=\frac{A}{1+A F_{N}}=\frac{100,000}{1+10,000}=9.9990
$$

3.2 Inverting Feedback Amplifiers

An inverting amplifier with negative feedback is shown in Figure 3.2. Here, as in the case of the noninverting amplifier, a fraction of the output voltage is returned to the negative input terminal that has an input current of $I=0$. Now, however, input signal V_{in} is entered at the negative terminal via input resistor R_{I}. By use of Equation 2.1,

$$
\begin{equation*}
V_{\mathrm{out}}=-A V_{m} . \tag{3.9}
\end{equation*}
$$

Also, by inspection of Figure 3.2,

$$
\begin{equation*}
I_{m}=\frac{V_{\mathrm{in}}-V_{m}}{R_{i}} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{m}=\frac{V_{m}-V_{\mathrm{out}}}{R_{F}} \tag{3.11}
\end{equation*}
$$

Combining Equations 3.9, 3.10, and 3.11, the resulting amplification of the inverting feedback amplifier, $M_{I},{ }^{*}$ becomes (see Problem 3.6)

$$
\begin{equation*}
M_{I} \equiv \frac{V_{\mathrm{out}}}{V_{\mathrm{in}}}=\frac{-A}{1+(A+1) F_{I}}, \tag{3.12}
\end{equation*}
$$

*Other terms in use for M_{1} are feedback amplification, closed-loop amplification, feedback gain, and closed-toop gain.
where the feedback return of the inverting amplifier, F_{1}, is defined as

$$
\begin{equation*}
F_{I} \equiv \frac{R_{I}}{R_{F}} . \tag{3.13}
\end{equation*}
$$

FIGURE 3.2 An inverting amplifier with negative feedback.

EXAMPLE 3.3. The feedback amplifier of Figure 3.2 uses an operational amplifier with an amplification $A=1000$. Resistor values are $R_{I}=1000 \Omega$ and $R_{F}=10,000 \Omega$. Thus, the feedback return is

$$
F_{I}=\frac{R_{I}}{R_{F}}=\frac{1000}{10,000}=0.1
$$

and the resulting amplification of the feedback amplifier is

$$
M_{I}=\frac{-A}{1+(A+1) F_{I}}=\frac{-1000}{1+(1000+1)(0.1)} \cong-9.89
$$

When amplification A is sufficiently large, so that the feedback factor of the inverting amplifier, defined as $A F_{1}$, is large, that is, when

$$
\begin{equation*}
A F_{1} \gg 1+F_{l} \tag{3.14}
\end{equation*}
$$

then Equation 3.12 can be simplified as

$$
\begin{equation*}
M_{I}=\frac{-A}{1+(A+1) F_{I}}=\frac{-A}{1+F_{I}+A F_{I}} \approx \frac{-A}{A F_{I}}=-\frac{1}{F_{I}} . \tag{3.15}
\end{equation*}
$$

Thus, as in the case of the noninverting amplifier with negative feedback, if amplification A is sufficiently large, the resulting amplification is determined entirely by the feedback return, that is, by resistors R_{I} and R_{F}.

EXAMPLE 3.4. The feedback amplifier of Figure 3.2 uses an operational amplifier with an amplification $A=100,000$. Resistor values are $R_{I}=1000 \Omega$ and $R_{F}=10,000 \Omega$. Thus, the feedback return is

$$
F_{I}=\frac{R_{I}}{R_{F}}=\frac{1000}{10,000}=0.1
$$

The value of feedback factor $A F_{I}=(100,000)(0.1)=10,000 \gg 1+F_{I}=1.1$ Therefore, the resulting amplification of the feedback amplifier is approximately $M_{I} \approx-1 / F_{I}=-1 / 0.1=-10$. The exact value of M_{I} is

$$
M_{I}=\frac{-A}{1+(A+1) F_{I}}=\frac{-100,000}{1+(100,000+1)(0.1)}=-9.9989
$$

3.3 Differential Feedback Amplifiers

A differential amplifier with negative feedback is shown in Figure 3.3. The following equations can be written:

$$
\begin{align*}
V_{\mathrm{out}} & =A\left(V_{p}-V_{m}\right), \tag{3.16}\\
I_{m} & =\frac{V_{n}-V_{m}}{R_{I}}, \tag{3.17}
\end{align*}
$$

and

$$
\begin{equation*}
I_{m}=\frac{V_{m}-V_{\mathrm{out}}}{R_{F}} \tag{3.18}
\end{equation*}
$$

FIGURE 3.3 A differential amplifier with negative feedback.

The combination of Equations 3.16, 3.17, and 3.18 results in (see Problem 3.9)

$$
\begin{equation*}
V_{\mathrm{out}}=\frac{A}{1+A F_{N}} V_{p}-\frac{A}{1+(A+1) F_{I}} V_{n} \tag{3.19}
\end{equation*}
$$

where feedback returns F_{N} and F_{I} are defined as

$$
\begin{equation*}
F_{\mathrm{N}} \equiv \frac{R_{I}}{R_{I}+R_{F}} \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{I} \equiv \frac{R_{I}}{R_{F}} \tag{3.21}
\end{equation*}
$$

Equation 3.19 can also be written

$$
\begin{equation*}
V_{\text {out }}=M_{N} V_{p}+M_{I} V_{n}, \tag{3.22}
\end{equation*}
$$

where M_{N} and M_{I} are defined as

$$
\begin{equation*}
\boldsymbol{M}_{N} \equiv \frac{A}{1+A F_{N}} \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{I} \equiv \frac{-A}{1+(A+1) F_{I}} \tag{3.24}
\end{equation*}
$$

with F_{N} and F_{I} given by Equations 3.20 and 3.21 , respectively.
It can be seen that, in general, the magnitudes of M_{N} and M_{I} are not equal; therefore, the two input signals V_{p} and V_{n} are amplified by different factors. In the limiting case when feedback factors $A F_{N} \gg 1$ and $A F_{I} \gg 1+F_{I},^{*}$ output voltage $V_{\text {out }}$ can be approximated as

$$
\begin{equation*}
V_{\mathrm{out}} \approx \frac{1}{F_{N}} V_{p}-\frac{1}{F_{I}} V_{n} \tag{3.25}
\end{equation*}
$$

EXAMPLE 3.5. The circuit of Figure 3.3 uses an operational amplifier with an amplification $A=100,000$. Resistor values are $R_{i}=1000 \Omega$ and $R_{F}=9000 \Omega$. The value of feedback return F_{N} is

$$
F_{N}=\frac{R_{I}}{R_{I}+R_{F}}=\frac{1000 \Omega}{1000 \Omega+9000 \Omega}=\frac{1}{10}
$$

and the value of feedback return F_{I} is

$$
F_{I}=\frac{R_{I}}{R_{F}}=\frac{1000 \Omega}{9000 \Omega}=\frac{1}{9}
$$

${ }^{*}$ It can be shown that these two conditions are equivalent (see Problem 3.21).

The value of feedback factor $A F_{N}$ is

$$
A F_{N}=\frac{100,000}{10}=10,000 \gg 1 .
$$

Thus, the use of Equation 3.25 is justified:

$$
V_{\mathrm{out}} \approx \frac{1}{F_{N}} V_{p}-\frac{1}{F_{I}} V_{n}=10 V_{p}-9 V_{n}
$$

The exact expression for $V_{\text {out }}$, using Equation 3.19, is

$$
\begin{aligned}
V_{\text {out }} & =\frac{A}{1+A F_{N}} V_{p}-\frac{A}{1+(A+1) F_{I}} V_{n} \\
& =\frac{100,000}{1+100,000 / 10} V_{p}-\frac{100,000}{1+(100,000+1) / 9} V_{n} \\
& =9.9990 V_{p}-8.9991 V_{n} .
\end{aligned}
$$

The magnitudes of the amplifications of the two input signals V_{p} and V_{n} in the differential feedback amplifier can be made equal by modifying the circuit of Figure 3.3 as shown in Figure 3.4.

FIGURE 3.4 A differential amplifier with negative feedback and equalized amplifications.

Using Equation 3.19, the output voltage $V_{\text {out }}$ can now be written

$$
\begin{align*}
V_{\mathrm{out}}= & \frac{A}{1+A F_{N}} \frac{R_{P}}{R_{P}+R_{S}} V_{p}-\frac{A}{1+(A+1) F_{I}} V_{n} \\
= & \frac{A}{1+\frac{R_{S}}{R_{P}}+A \frac{R_{I}}{R_{F}}\left(1+\frac{R_{S}}{R_{P}}\right) /\left(1+\frac{R_{I}}{R_{F}}\right)} V_{p} \\
& -\frac{A}{1+\frac{R_{I}}{R_{F}}+A \frac{R_{I}}{R_{F}}} V_{n} .
\end{align*}
$$

If

$$
\begin{equation*}
\frac{R_{P}}{R_{S}}=\frac{R_{F}}{R_{I}}, \tag{3.27}
\end{equation*}
$$

Equation 3.26 becomes (see Problem 3.11)

$$
\begin{equation*}
V_{\mathrm{out}}=\frac{A}{1+(A+1) F_{t}}\left(V_{p}-V_{n}\right) ; \tag{3.28}
\end{equation*}
$$

that is, the magnitudes of the amplifications of V_{n} and V_{p} are equal. Furthermore, if feedback factors $A F_{N} \gg 1$ and $A F_{I} \gg 1+F_{1}, V_{\text {out }}$ can be approximated as

$$
\begin{equation*}
V_{\mathrm{out}} \approx \frac{1}{F_{1}}\left(V_{p}-V_{n}\right) . \tag{3.29}
\end{equation*}
$$

EXAMPLE 3.6. In the circuit of Figure 3.4, the amplification of the operational amplifier is $A=100,000$. Resistor values are $R_{I}=1000 \Omega, R_{F}=9000 \Omega$, $R_{S}=2000 \Omega$, and $R_{P}=18,000 \Omega$. Hence, $R_{P} / R_{S}=R_{F} / R_{I}$, and the feedback factor is

$$
A F_{I}=A \frac{R_{I}}{R_{F}}=100,000 \frac{1000 \Omega}{9000 \Omega}=11,111 \gg 1+F_{I}=1+\frac{R_{I}}{R_{F}} \cong 1.11 .
$$

Thus, Equation 3.29 is applicable; that is, the output voltage is approximately

$$
V_{\text {out }} \approx \frac{1}{F_{t}}\left(V_{p}-V_{n}\right)=9\left(V_{p}-V_{n}\right) .
$$

The exact expression for $V_{\text {oui }}$, by use of Equation 3.28, is

$$
\begin{aligned}
V_{\text {out }} & =\frac{A}{1+(A+1) F_{I}}\left(V_{p}-V_{n}\right) \\
& =\frac{100,000}{1+(100,000+1) / 9}\left(V_{p}-V_{n}\right)=8.9991\left(V_{p}-V_{n}\right) .
\end{aligned}
$$

3.4 Voltage Followers

A special case of the noninverting feedback amplifier of Figure 3.1 occurs in the limit when $R_{I} \neq 0$ and $R_{F}=0$, or when $R_{I}=\infty$ and $R_{F} \neq \infty$. This special case is the voltage follower, the simplest form of which is shown in Figure 3.5. The value of feedback return $F_{N}=1$; thus, by use of Equation 3.4,

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{A}{1+A} . \tag{3.30}
\end{equation*}
$$

In the limiting case when amplification $A \gg 1$, Equation 3.30 reduces to

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\mathrm{in}}} \approx 1, \tag{3.31}
\end{equation*}
$$

hence the name voltage follower.

FIGURE 35 A voltage follower.

EXAMPLE 3.7. The circuit of Figure 3.5 uses an operational amplifier with an amplification $A=100,000$. Therefore, by use of Equation 3.30,

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{100,000}{1+100,000}=0.999990 .
$$

3.5 Instrumentation Amplifiers

Consider the differential-in differential-out amplifier shown in Figure 3.6. In the limit when the amplifications of the operational amplifiers can be approximated as $A_{1} \rightarrow \infty$ and $A_{2} \rightarrow \infty$, the voltage difference between the positive (+) and negative (-) input terminals of A_{1} is zero, and the voltage difference between the positive (+) and negative (-) input terminals of A_{2} is also zero.

As a result, the voltage across resistor R_{3} equals $V_{\text {in }}$, and the output voltage becomes (see Problem 3.19)

$$
\begin{equation*}
V_{\mathrm{out}}=V_{\mathrm{in}} \frac{R_{1}+R_{2}+R_{3}}{R_{3}} \tag{3.32}
\end{equation*}
$$

where in practice R_{1} and R_{2} are chosen equal.
Thus, a differential-in differential-out amplifier has floating differential inputs with high input impedances, and its amplification is determined mainly by resistor values. This is in contrast to the operational amplifier of Figure 2.5, which has floating differential inputs with high input impedances but its amplification is A; it is also in contrast to the differential feedback amplifier of Figure 3.4, which has its amplification determined mainly by resistor values but does not have high input impedances.

FIGURE 3.6 A differential-in differential-out amplifier.

An instrumentation amplifier is shown in Figure 3.7. It consists of the differential-in differential-out amplifier of Figure 3.6, followed by a differential amplifier with negative feedback and equalized amplification (Figure 3.4). When the amplifications of the operational amplifiers can be approximated as $A_{1} \rightarrow \infty, A_{2} \rightarrow \infty$, and $A_{3} \rightarrow \infty$, and when $R_{P} / R_{S}=R_{F} / R_{1}$, the overall amplification of the circuit of Figure 3.7 can be written

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{1}+R_{2}+R_{3}}{R_{3}} \frac{R_{F}}{R_{I}} . \tag{3.33}
\end{equation*}
$$

Thus, as was the case for the differential-in differential-out amplifier, an instrumentation amplifier also has floating differential inputs with high input impedances, and its amplification is determined mainly by resistor values. However, unlike a differential-in differential-out amplifier, an instrumentation amplifier has only a single output. The principal advantages of an instrumentation amplifier over a differential-in differential-out amplifier are a higher overall amplification and a lower common-mode amplification.

EXAMPLE 3.8. The instrumentation amplifier of Figure 3.7 uses operational amplifiers with amplifications that can be approximated as $A_{1} \rightarrow \infty, A_{2} \rightarrow \infty$, and $A_{3} \rightarrow \infty$. Resistor values are $R_{1}=R_{2}=20 \mathrm{k} \Omega, \quad R_{3}=404 \Omega$, $R_{F}=R_{P}=200 \mathrm{k} \Omega$, and $R_{I}=R_{S}=20 \mathrm{k} \Omega$. Thus, the resulting overall amplification is

$$
\begin{aligned}
\frac{V_{\mathrm{out}}}{V_{\mathrm{in}}} & =-\frac{R_{1}+R_{2}+R_{3}}{R_{3}} \frac{R_{F}}{R_{I}}=-\frac{20 \mathrm{k} \Omega+20 \mathrm{k} \Omega+404 \Omega}{404 \Omega} \frac{200 \mathrm{k} \Omega}{20 \mathrm{k} \Omega} \\
& =-1000.1
\end{aligned}
$$

PROBLEMS

3.1 Find the value of the resulting amplification of a noninverting feedback amplifier, M_{N}, if the operational amplifier used has an amplification $A=10,000 ; R_{I}=100 \Omega$ and $R_{F}=10,000 \Omega$. What is the fractional change of M_{N} in percent, if A is changed to 11,000 ?
3.2 Derive $V_{m} / V_{\text {in }}$ in Figure 3.1. What is $V_{m} / V_{\text {in }}$ if feedback factor $A F_{N} \gg 1$?
3.3 Derive Equation 3.4.
3.4 Find the value of the resulting amplification of an inverting feedback amplifier, M_{I}, in the circuit of Figure 3.2, if the operational amplifier has an amplification $A=10,000 ; R_{I}=100 \Omega$ and $R_{F}=10,000 \Omega$.
3.5 Derive $V_{m} / V_{\text {in }}$ in Figure 3.2. What is $V_{m} / V_{\text {in }}$ if feedback factor $A F_{I} \gg 1+F_{I}$?
3.6 Derive Equation 3.12.
3.7 Derive V_{in} / I_{m} in Figure 3.2. What is $V_{\mathrm{in}} / I_{\mathrm{m}}$ if feedback factor $A F_{I} \gg 1+F_{I}$?
3.8 Find the values of the resulting amplifications M_{N} and M_{I} of a differential amplifier with feedback (Figure 3.3), if the operational amplifier used has an amplification $A=10,000 ; R_{I}=100 \Omega$ and $R_{F}=10,000 \Omega$.
3.9 Derive Equation 3.19.
3.10 In the circuit of Figure 3.4, the operational amplifier has an amplification $A=10,000$. Resistor values are $R_{I}=100 \Omega, R_{F}=10,000 \Omega, R_{S}=100 \Omega$, and $R_{P}=10,000 \Omega$; input voltages are $V_{p}=V_{n}=1 \mathrm{~V}$. What is the value of output voltage $V_{\text {out }}$? Repeat with $R_{P}=10,001 \Omega$.
3.11 Derive Equation 3.28.
3.12 Find the value of $V_{\text {out }} / V_{\text {in }}$ in the voltage follower of Figure 3.5 using an operational amplifier with an amplification $A=1000$.
3.13 Find $V_{\text {out }} / V_{\text {in }}$ in the circuit of Figure 3.8. Comment on the result.

FIGURE 3.8
3.14 Find the value of output voltage $V_{\text {out }}$ in the circuit of Figure 3.9, if $V_{1}=1 \mathrm{mV}$ and amplification $A=1000$.

FIGURE 3.9
3.15 Derive an exact expression for $V_{\text {out }}$ in the compound differential amplifier of Figure 3.10. Evaluate $V_{\text {out }}$ for $V_{1}=10 \mathrm{mV}, V_{2}=11 \mathrm{mV}, R_{1}=0, R_{2}=0$, $A_{1}=11,000, A_{2}=10,000, R_{I}=R_{S}=100 \Omega, R_{F}=R_{P}=100,000 \Omega$, and $A_{3}=10,000$.

FIGURE 3.10 A compound differential amplifier.
3.16 An amplifier with positive feedback is shown in Figure 3.11. Determine the value of $V_{\text {out }} / V_{\text {in }}$, if the amplification of the operational amplifier $A=100$; $R_{I}=100 \Omega$ and $R_{F}=10,000 \Omega$. Comment on the result.

FIGURE 3.11 Positive feedback.
3.17 When the approximate expression of $M_{N} \approx 1 / F_{N}$ is used in place of the exact Equation 3.6, an error in M_{N} will result. The fractional error of M_{N} is defined as

$$
\frac{\Delta M_{N}}{M_{N}} \equiv \frac{M_{N, \text { approx }}-M_{N, \text { exact }}}{M_{N, \text { cxect }}}
$$

where $M_{N, \text { exact }}$ is M_{N} of Equation 3.6 and $M_{N, \text { approx }}=1 / F_{N}$. Show that the fractional error of M_{N} has a magnitude

$$
\left|\frac{\Delta M_{N}}{M_{N}}\right|=\frac{1}{A F_{N}}
$$

3.18 When the approximate expression of $M_{I} \approx-1 / F_{I}$ is used in place of the exact Equation 3.12, an error in M_{1}, will result. The fractional error of M_{I} is defined as

$$
\frac{\Delta M_{I}}{M_{I}}=\frac{M_{I, \mathrm{approx}}-M_{I, \text { exact }}}{M_{I, \text { exact }}}
$$

where $M_{I, \text { exact }}$ is M_{I} of Equation 3.12 and $M_{I, \text { approx }}=-1 / F_{I}$. Show that the fractional error of M_{I} has a magnitude

$$
\left|\frac{\Delta M_{1}}{M_{1}}\right|=\frac{1+F_{1}}{A F_{1}}
$$

Derive Equation 3.32.
3.20 Find $V_{\text {out }} / V_{\text {in }}$ in the potentiometric amplifier of Figure 3.12. Evaluate $V_{\text {out }} / V_{\text {in }}$ for $A_{1}=A_{2}=1000$ and $R_{1}=R_{2}=R_{3}=R_{4}=1000 \Omega$.

FIGURE 3.12 A potentiometric amplifier.
3.21 Show that conditions $A F_{N} \gg 1$ and $A F_{I} \gg 1+F_{I}$ are equivalent, if F_{N} and F_{1} are given by Equations 3.20 and 3.21 , respectively.

CHAPTER 4

Accuracy of the Amplification

Expressions for the resulting amplifications M_{N} and M_{I} derived in Chapter 3 show that they are functions of amplification A of the operational amplifier and of resistor values. It is frequently necessary to evaluate the effects on M_{N} and M_{I} of small changes in amplification A and in resistor values. Of course, this could always be performed by evaluating M_{N} and M_{j}; this process, however, can become quite tedious, particularly for small changes.

EXAMPLE 4.1. A noninverting feedback amplifier with negative feedback (Figure 3.1) uses an operational amplifier with an amplification $A=10,000 \pm 1 \%$. Resistor values are $R_{I}=1000 \Omega$ and $R_{F}=9000 \Omega$. What is the fractional change in the resulting amplification of the feedback amplifier, M_{N}, as a result of the 1% change in A ?

The value of feedback return F_{N} is

$$
F_{N}=\frac{R_{I}}{R_{I}+R_{F}}=\frac{1000 \Omega}{1000 \Omega+9000 \Omega}=0.1
$$

At the nominal value of $A=10,000, M_{N}$ becomes

$$
M_{N, \mathrm{nom}}=\frac{A}{1+A F_{N}}=\frac{10,000}{1+(10,000)(0.1)}=\frac{10,000}{1001} \approx 9.99
$$

At the minimum value of $A=9900, M_{N}$ is

$$
M_{N, \min }=\frac{A}{1+A F_{N}}=\frac{9900}{1+(9900)(0.1)}=\frac{9900}{991}
$$

At the maximum value of $A=10,100, M_{N}$ becomes

$$
M_{N, \max }=\frac{A}{1+A F_{N}}=\frac{10,100}{1+(10,100)(0.1)}=\frac{10,100}{1011}
$$

The difference between the minimum and the nominal values of M_{N} is

$$
M_{N, \text { min }}-M_{N, \text { nom }}=\frac{9900}{991}-\frac{10,000}{1001}=-\frac{100}{991,991} \approx-0.0001
$$

and the fractional change in M_{N} as a result of this is

$$
\frac{M_{N, \min }-M_{N, \mathrm{nom}}}{M_{\mathrm{N}, \mathrm{aom}}} \approx \frac{-0.0001}{9.99} \approx-0.00001=-0.001 \%
$$

The difference between the maximum and the nominal values of M_{N} is

$$
M_{N, \max }-M_{N, \text { nom }}=\frac{10,100}{1011}-\frac{10,000}{1001}=\frac{100}{1,012,011} \approx 0.0001
$$

and the fractional change in M_{N} as a result of this is

$$
\frac{M_{N, \max }-M_{N, \mathrm{aom}}}{M_{N, \mathrm{aom}}} \approx \frac{0.0001}{9.99} \approx 0.00001=0.001 \%
$$

Thus, the resulting amplification can be written

$$
M_{N} \approx 9.99 \pm 0.001 \%
$$

4.1 Small Variations in Operational Amplifier Amplification

Example 4.1 illustrates how cumbersome the evaluation of the change in the resulting amplification M_{N} can become if variations in amplification A of the operational amplifier are small. It will be shown now that simple expressions can be obtained for the fractional changes in M_{N} and M_{I} when $|\Delta A / A| \ll 1$.

Defining

and

$$
\begin{equation*}
\Delta A \equiv A-A_{\mathrm{nom}} \tag{4.1}
\end{equation*}
$$

$$
\begin{equation*}
\Delta M \equiv M-M_{\mathrm{aom}} \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{\mathrm{nom}} \equiv M_{A=A_{\text {naea }}} \tag{4.3}
\end{equation*}
$$

and assuming that $\Delta A / A$ is small, that is,

$$
\begin{equation*}
\left|\frac{\Delta A}{A}\right| \ll 1, \tag{4.4}
\end{equation*}
$$

the resulting amplification M can be expanded in a Taylor series* as

$$
\begin{equation*}
M=M_{\mathrm{nom}}+\left(\frac{\partial M}{\partial A}\right)_{A=A_{\mathrm{mam}}}\left(A-A_{\mathrm{nom}}\right)+\frac{1}{2!}\left(\frac{\partial^{2} M}{\partial A^{2}}\right)_{A=A_{\mathrm{nom}}}\left(A-A_{\mathrm{nom}}\right)^{2}+\cdots \tag{4.5}
\end{equation*}
$$

-The results in this chapter are derived using Taylor series expansions. It is also possible, however, to arrive at these directly-see Problems 4.14 and 4.15

The combination of Equations 4.1, 4.2, 4.3, and 4.5 results in

$$
\begin{equation*}
\Delta M=\left(\frac{\partial M}{\partial A}\right)_{A=A_{\mathrm{nom}}} \Delta A+\frac{1}{2!}\left(\frac{\partial^{2} M}{\partial A^{2}}\right)_{A=A_{\mathrm{nom}}} \Delta A^{2}+\cdots \tag{4.6}
\end{equation*}
$$

It can be shown that, as a result of Equation 4.4, Equation 4.6 can be approximated as

$$
\begin{equation*}
\Delta \boldsymbol{M} \approx\left(\frac{\partial M}{\partial A}\right)_{A=A_{\mathrm{mom}}} \Delta A \tag{4.7}
\end{equation*}
$$

and thus the fractional change in the resulting amplification is approximately

$$
\begin{equation*}
\frac{\Delta M}{M_{\mathrm{nom}}}=\frac{A_{\mathrm{nom}}}{M_{\mathrm{nom}}}\left(\frac{\partial M}{\partial A}\right)_{A=A_{\mathrm{nom}}} \frac{\Delta A}{A_{\mathrm{nom}}} \tag{4.8}
\end{equation*}
$$

In the case of a noninverting feedback amplifier, applying Equation 4.8 to Equation 3.6 with $M=M_{N}$,

$$
\begin{equation*}
\frac{\Delta M_{N}}{M_{N, \text { nom }}}=\frac{1}{1+A_{\text {nom }} F_{N}} \frac{\Delta A}{A_{\text {nom }}} \tag{4.9}
\end{equation*}
$$

When feedback factor $A_{\text {nom }} F_{N} \gg 1$, Equation 4.9 reduces to

$$
\begin{equation*}
\frac{\Delta M_{N}}{M_{N, \mathrm{nom}}} \approx \frac{1}{A_{\mathrm{nom}} F_{N}} \frac{\Delta A}{A_{\mathrm{nom}}} \tag{4.10}
\end{equation*}
$$

EXAMPLE 4.2. The expression of Equation 4.10 is applied to calculate again the fractional change of M_{N} for the preceding example, that is, for $A=10,000 \pm 1 \%$ and $F_{N}=0.1$. The value of feedback factor $A_{\text {nom }} F_{N}=(10,000)(0.1)=1000 \gg 1$; hence, the use of Equation 4.10 is justified:

$$
\frac{\Delta M_{N}}{M_{N, \text { nom }}} \approx \frac{1}{A_{\text {nom }} F_{N}} \frac{\Delta A}{A_{\text {nom }}}=\frac{1}{1000} 1 \%=0.001 \%
$$

The nominal value of the resulting amplification of the feedback amplifier is

$$
M_{N, \mathrm{nom}}=\frac{A_{\mathrm{nom}}}{1+A_{\mathrm{nom}} F_{N}}=\frac{10,000}{1+1000} \approx 9.99
$$

thus, M_{N} can be written

$$
M_{N} \approx 9.99 \pm 0.001 \%
$$

In the case of an inverting feedback amplifier (Figure 3.2), by application of Equation 4.8 to Equation 3.12 with $M=M_{i}$,

$$
\begin{equation*}
\frac{\Delta M_{I}}{M_{I, \mathrm{nom}}}=\frac{1+F_{I}}{1+\left(A_{\mathrm{nom}}+1\right) F_{I}} \frac{\Delta A}{A_{\mathrm{nom}}} \tag{4.11}
\end{equation*}
$$

When feedback factor $A_{\text {nom }} F_{I} \gg 1+F_{I}$, Equation 4.11 reduces to

$$
\begin{equation*}
\frac{\Delta M_{I}}{M_{i, \mathrm{nom}}} \approx \frac{1+F_{I}}{A_{\mathrm{nom}} F_{1}} \frac{\Delta A}{A_{\mathrm{nom}}} . \tag{4.12}
\end{equation*}
$$

EXAMPLE 4.3. An inverting amplifier with negative feedback uses an operational amplifier with an amplification $A=10,000 \pm 1 \%$. Resistor values are $R_{I}=1000 \Omega$ and $R_{F}=10,000 \Omega$. What is the nominal value of M_{1} and its fractional change as a result of the 1% error in A ?

From Equation 3.13,

$$
F_{I}=\frac{R_{I}}{R_{F}}=\frac{1000 \Omega}{10,000 \Omega}=0.1
$$

Applying Equation 3.12, the nominal value of M_{1} is

$$
\begin{aligned}
M_{I, \text { nom }} & =\frac{-A_{\text {nom }}}{1+\left(A_{\text {nom }}+1\right) F_{I}} \\
& =\frac{-10,000}{1+(10,000+1)(0.1)} \approx-9.99 .
\end{aligned}
$$

The value of feedback factor $A_{\text {nom }} F_{I}=(10,000)(0.1)=1000 \gg 1+F_{I}=1.1$; hence, Equation 4.12 is applicable:

$$
\frac{\Delta M_{I}}{M_{I, \text { nom }}} \approx \frac{1+F_{I}}{A_{\text {nom }} F_{I}} \frac{\Delta A}{A_{\text {nom }}}=\frac{1+0.1}{1000} 1 \%=0.0011 \%
$$

Thus, $M_{I} \approx-9.99 \pm 0.0011 \%$.

4.2 Small Variations in the Feedback Resistor

Assume next that, in Figure 3.1 or 3.2, amplification A of the operational amplifier and input resistor R_{I} are constant and only feedback resistor R_{F} varies. In this case,

$$
\begin{align*}
M= & M_{R_{F}=R_{F, \text { mom }}}+\left(\frac{\partial M}{\partial R_{F}}\right)_{R_{F}=R_{f, \text { oom }}}\left(R_{F}-R_{F, \mathrm{nom}}\right) \\
& +\frac{1}{2!}\left(\frac{\partial^{2} M}{\partial R_{F}^{2}}\right)_{R_{\mathrm{F}}=R_{f, \text { nom }}}\left(R_{F}-R_{F, \mathrm{nom}}\right)^{2}+\cdots \tag{4.13}
\end{align*}
$$

Defining

$$
\begin{equation*}
\Delta R_{F} \equiv R_{F}-R_{F . \text { nom }} \tag{4.14}
\end{equation*}
$$

and using the definition given by Equation 4.2 with

$$
\begin{equation*}
M_{\text {nom }} \equiv M_{R_{f}}=R_{f . \mathrm{nom}}, \tag{4.15}
\end{equation*}
$$

Equation 4.13 becomes

$$
\begin{align*}
\Delta M= & \left(\frac{\partial M}{\partial R_{F}}\right)_{R_{F}=R_{F} \text { nom }} \Delta R_{F} \\
& +\frac{1}{2!}\left(\frac{\partial^{2} M}{\partial R_{F}^{2}}\right)_{R_{F}=R_{F, \text { nom }}} \Delta R_{F}^{2}+\cdots \tag{4.16}
\end{align*}
$$

It can be shown that for small fractional variations in feedback resistor R_{F}, that is, for

$$
\begin{equation*}
\left|\frac{\Delta R_{F}}{R_{F, \text { nom }}}\right| \ll 1 \tag{4.17}
\end{equation*}
$$

Equation 4.16 can be approximated as

$$
\begin{equation*}
\Delta M \approx\left(\frac{\partial M}{\partial R_{F}}\right)_{R_{F}=R_{f, n o m}} \Delta R_{F} \tag{4.18}
\end{equation*}
$$

and thus the fractional change in the resulting amplification is approximately

$$
\begin{equation*}
\frac{\Delta M}{M_{\mathrm{nom}}}=\frac{R_{F, \mathrm{nom}}}{M_{\mathrm{nom}}}\left(\frac{\partial M}{\partial R_{F}}\right)_{R_{\mathrm{F}}=R_{\mathrm{F}, \mathrm{mom}}} \frac{\Delta R_{F}}{R_{F, \mathrm{nom}}} \tag{4.19}
\end{equation*}
$$

In the case of a noninverting feedback amplifier, applying Equations 3.2 and 3.6 to Equation 4.19 with $M=M_{N}$,

$$
\begin{equation*}
\frac{\Delta M_{N}}{M_{N, \text { nom }}}=M_{N, \text { nom }} F_{N, \text { nom }}\left(1-F_{N, \text { nom }}\right) \frac{\Delta R_{F}}{R_{F, \text { nom }}} \tag{4.20}
\end{equation*}
$$

where feedback return $F_{N . n o m}$ is defined as

$$
\begin{equation*}
F_{N, \text { nom }} \equiv\left(F_{N}\right)_{R_{F}=R_{F, \text { oom }}}=\frac{R_{I}}{R_{I}+R_{F, \text { nom }}} \tag{4.21}
\end{equation*}
$$

In the limiting case when feedback factor $A F_{N, \text { nom }} \gg 1, M_{N, \text { nom }} \approx 1 / F_{N, \text { nom }}$ (sce Equation 3.8); hence, the fractional change in the resulting amplification becomes

$$
\begin{equation*}
\frac{\Delta M_{N}}{M_{N, \text { nom }}} \approx\left(1-F_{N, \text { nom }}\right) \frac{\Delta R_{F}}{R_{F, \text { nom }}} \tag{4.22}
\end{equation*}
$$

EXAMPLE 4.4. A noninverting feedback amplifier with negative feedback uses an operational amplifier with an amplification $A=10,000$. Resistor values are $R_{i}=1000 \Omega$ and $R_{F}=9000 \Omega \pm 1 \%$. What is the fractional change in the resulting amplification M_{N} as a result of the 1% change in feedback resistor R_{F} ?

The nominal value of feedback return F_{N} is

$$
F_{N, \text { nom }}=\frac{R_{I}}{R_{I}+R_{F, \text { aom }}}=\frac{1000 \Omega}{1000 \Omega+9000 \Omega}=0.1
$$

The value of feedback factor $A F_{N, \text { nom }}=(10,000)(0.1)=1000 \gg 1$; hence, Equation 4.22 is applicable:

$$
\frac{\Delta M_{N}}{M_{N, \text { nom }}} \approx\left(1-F_{N, \text { nom }}\right) \frac{\Delta R_{F}}{R_{F, \text { nom }}}=(1-0.1)(1 \%)=0.9 \% .
$$

In the case of an inverting amplifier with $A \gg 1$, it can be shown, by use of Equations 3.12 and 3.13, that with $M=M_{I}$ Equation 4.19 becomes

$$
\begin{equation*}
\frac{\Delta M_{I}}{M_{I, \mathrm{nom}}}=-M_{I, \mathrm{nom}} F_{I, \mathrm{nom}} \frac{\Delta R_{F}}{R_{F, \mathrm{nom}}} \tag{4.23}
\end{equation*}
$$

where feedback return $F_{I, \text { nom }}$ is defined as

$$
\begin{equation*}
F_{I, \text { nom }} \equiv\left(F_{f}\right)_{R_{f}=R_{f, \ldots m}}=\frac{R_{I}}{R_{F, \text { nom }}} \tag{4.24}
\end{equation*}
$$

In the limiting case when feedback factor $A F_{I, \text { nom }} \gg 1+F_{I, \text { nom }}$, Equation 4.23 reduces to

$$
\begin{equation*}
\frac{\Delta M_{I}}{M_{I, \text { nom }}} \approx \frac{\Delta R_{F}}{R_{F, \text { nom }}} \tag{4.25}
\end{equation*}
$$

EXAMPLE 4.5. An inverting feedback amplifier with negative feedback uses an operational amplifier with an amplification $A=10,000$. Resistor values are $R_{I}=1000 \Omega$ and $R_{F}=10,000 \Omega \pm 1 \%$. What is the fractional change in the resulting amplification M_{I} as a result of the 1% change in feedback resistor R_{F} ?

The nominal value of feedback return F_{I} is

$$
F_{I, \text { nom }}=\frac{R_{I}}{R_{F, \text { nom }}}=\frac{1000 \Omega}{10,000 \Omega}=0.1
$$

The value of feedback factor $A F_{1, \text { nom }}=(10,000)(0.1)=1000 \gg 1+F_{I}=1.1$; hence, Equation 4.25 is applicable:

$$
\frac{\Delta M_{I}}{M_{i, \text { nom }}} \approx \frac{\Delta R_{F}}{R_{F, \text { nom }}}=1 \% .
$$

Since

$$
M_{I, \text { nom }}=\frac{-A}{1+(A+1) F_{I, \text { nom }}}=\frac{-10,000}{1+(10,000+1)(0.1)} \approx-9.99
$$

the resulting amplification of the feedback amplifier can be written $M_{I} \approx-9.99 \pm 1 \%$.

4.3 Small Variations in the Input Resistor

In the case when amplification A of the operational amplifier and feedback resistor R_{F} are constant and only input resistor R_{I} varies, it can be shown that for a noninverting amplifier

$$
\begin{equation*}
\frac{\Delta M_{N}}{M_{N, \mathrm{nom}}}=-M_{N, \mathrm{nom}} F_{N, \mathrm{nom}}\left(1-F_{N, \mathrm{nom}}\right) \frac{\Delta R_{\mathrm{I}}}{R_{i, \mathrm{nom}}} \tag{4.26}
\end{equation*}
$$

where feedback return $F_{N, \text { nom }}$ is defined by Equation 4.21 , and ΔR_{I} is defined as

$$
\begin{equation*}
\Delta R_{I} \equiv R_{I}-R_{I, \text { nom }} \tag{4.27}
\end{equation*}
$$

In the limit when feedback factor $A F_{N, \text { nom }} \gg 1$, Equation 4.26 reduces to

$$
\begin{equation*}
\frac{\Delta M_{N}}{M_{N, \mathrm{nom}}} \approx-\left(1-F_{N, \mathrm{nom}}\right) \frac{\Delta R_{I}}{R_{I, \mathrm{nom}}} \tag{4.28}
\end{equation*}
$$

For an inverting amplifier with $A \gg 1$, it can be shown that

$$
\begin{equation*}
\frac{\Delta M_{I}}{M_{I, \text { nom }}}=M_{I, \text { nom }} F_{I, \text { nom }} \frac{\Delta R_{I}}{R_{I, \text { nom }}} . \tag{4.29}
\end{equation*}
$$

In the limiting case when feedback factor $A F_{I, \text { nom }} \gg 1+F_{1, \text { nom }}$, Equation 4.29 reduces to

$$
\begin{equation*}
\frac{\Delta M_{I}}{M_{I, \text { nom }}} \approx-\frac{\Delta R_{I}}{R_{I, \text { nom }}} \tag{4.30}
\end{equation*}
$$

4.4 Several Sources of Variations

The preceding sections of this chapter computed the errors in the resulting amplification that originate from variations in operational amplifier amplification A and from variations in resistor values. It was found that the fractional error originating from variations in A may be reduced by increasing the value of A; however, errors originating from resistor variations may be reduced only by improving the accuracy of the resistors. In this section, multivariable Taylor series expansion is applied to find the error originating from simultaneous variations in operational amplifier amplification and in resistor values.

If amplification A of the operational amplifier, feedback resistor R_{F}, and input resistor R_{I} vary, the resulting amplification M of the feedback amplifier can be expressed in a multivariable Taylor series as

$$
\begin{align*}
M= & M_{\mathrm{nom}}+\left(\frac{\partial M}{\partial A}\right)\left(A-A_{\mathrm{nom}}\right)+\left(\frac{\partial M}{\partial R_{F}}\right)\left(R_{F}-R_{F, \mathrm{nom}}\right) \\
& +\left(\frac{\partial M}{\partial R_{I}}\right)\left(R_{I}-R_{I, \mathrm{nom}}\right)+\cdots \tag{4.31}
\end{align*}
$$

where all partial derivatives have to be evaluated at $A=A_{\text {nom }}, R_{F}=R_{F, \text { nom }}$, $R_{1}=R_{I, \text { nom }}$
If fractional changes in A, R_{F}, and R_{I} are small, then from Equation 4.31 and with the definitions of Equations $4.1,4.2,4.14$, and 4.27 , the change in M can be approximated as

$$
\begin{equation*}
\Delta M \approx\left(\frac{\partial M}{\partial A}\right) \Delta A+\left(\frac{\partial M}{\partial R_{F}}\right) \Delta R_{F}+\left(\frac{\partial M}{\partial R_{I}}\right) \Delta R_{I} \tag{4.32}
\end{equation*}
$$

where the partial derivatives again have to be evaluated at $A=A_{\text {nom }}$, $R_{F}=R_{F, \text { nom }}, R_{I}=R_{I \text {, nom }}$.

In the case of a noninverting amplifier with a feedback factor $A_{\text {nom }} F_{N, \text { nom }} \gg 1$, the application of Equations 4.10, 4.22, and 4.28 to Equation 4.32 with $M=M_{N}$ results in a fractional change

$$
\begin{align*}
\frac{\Delta M_{N}}{M_{N}} \approx & \frac{1}{A_{\text {nom }} F_{N, \text { nom }}} \frac{\Delta A}{A_{\text {nom }}} \\
& +\left(1-F_{N, \text { nom }}\right) \frac{\Delta R_{F}}{R_{F, \text { nom }}}-\left(1-F_{N, \text { nom }}\right) \frac{\Delta R_{I}}{R_{I, \text { nom }}} \tag{4.33}
\end{align*}
$$

In many cases it is important to find the worst-case $\Delta M_{N} / M_{N}$, which is the maximum of its absolute value:

$$
\begin{align*}
\max \left|\frac{\Delta M_{N}}{M_{N}}\right| \approx & \left|\frac{1}{A_{\text {nom }} F_{N, \text { nom }}} \frac{\Delta A}{A_{\text {nom }}}\right|+\left|\left(1-F_{N, \text { nom }}\right) \frac{\Delta R_{F}}{R_{F, \text { nom }}}\right| \\
& +\left|\left(1-F_{N, \text { nom }}\right) \frac{\Delta R_{I}}{R_{I, \text { nom }}}\right| \tag{4.34}
\end{align*}
$$

EXAMPLE 4.6. A noninverting amplifier with negative feedback uses an operational amplifier with an amplification $A=100,000 \pm 10 \%$. Resistor values are $R_{I}=100 \Omega \pm 0.1 \%$ and $R_{F}=100,000 \Omega \pm 0.1 \%$. Hence,

$$
F_{N, \text { nom }}=\frac{R_{I, \text { nom }}}{R_{I, \text { nom }}+R_{F, \text { nom }}}=\frac{100 \Omega}{100 \Omega+100,000 \Omega} \approx 0.001
$$

and feedback factor $A_{\text {nom }} F_{N, \text { nom }} \approx(100,000)(0.001)=100 \gg 1$; thus, Equation 4.34 is applicable. The worst-case fractional error in M_{N} is therefore

$$
\begin{aligned}
\max \left|\frac{\Delta M_{N}}{M_{N}}\right| & \approx\left|\frac{1}{100}(10 \%)\right|+|(1-0.001)(0.1 \%)|+|(1-0.001)(0.1 \%)| \\
& \approx 0.3 \%
\end{aligned}
$$

Similarly, in the case of an inverting amplifier with a feedback factor $A_{\text {nom }} F_{1, \text { nom }} \gg 1+F_{1, \text { nom }}$, the application of Equations 4.12, 4.25, and 4.30 to Equation 4.32 with $M=M_{1}$ results in

$$
\begin{equation*}
\frac{\Delta M_{I}}{M_{I}} \approx \frac{1+F_{I, \text { nom }}}{A_{\text {nom }} F_{I, \text { nom }}} \frac{\Delta A}{A_{\text {nom }}}+\frac{\Delta R_{F}}{R_{F, \text { nom }}}-\frac{\Delta R_{I}}{R_{I, \text { nom }}} \tag{4.35}
\end{equation*}
$$

Again, it is of importance to find the worst-case $\Delta M_{1} / M_{1}$, which is the maximum of its absolute value:

$$
\begin{equation*}
\max \left|\frac{\Delta M_{I}}{M_{I}}\right| \approx\left|\frac{1+F_{I, \mathrm{nom}}}{A_{\mathrm{nom}} F_{I, \mathrm{nom}}} \frac{\Delta A}{A_{\mathrm{nom}}}\right|+\left|\frac{\Delta R_{F}}{R_{F, \text { nom }}}\right|+\left|\frac{\Delta R_{I}}{R_{I, \mathrm{nom}}}\right| . \tag{4.36}
\end{equation*}
$$

PROBLEMS

4.1 The Type 725C operational amplifier has its amplification A specified as follows: The minimum value of A is 250,000 , the typical value of A is $3,000,000$, and no maximum value of A is specified.

The operational amplifier is used in a noninverting feedback amplifier with $R_{I}=10 \Omega$ and $R_{F}=100 \mathrm{k} \Omega$. Find the range of the resulting amplification M_{N}, if the errors of resistors R_{I} and R_{F} are negligibly small. [Hint: Proceed similarly to Example 4.1; do not use the results of Section 4.1, because they are valid only for $|\Delta A / A| \ll 1$.]
4.2 Retain the second-order term in the expansion of Equation 4.6 and show that the magnitude of the fractional error of Equation 4.9 is less than $\left|\Delta A / A_{\text {nom }}\right|$.
4.3 A noninverting amplifier with negative feedback uses an operational amplifier with an amplification $A=20,000 \pm 10 \%$. Resistor values are $R_{I}=200 \Omega$ and $R_{F}=1800 \Omega$. Find the nominal value of the resulting amplification M_{N} and its error resulting from the 10% change in A.
4.4 Apply Equation 4.10 to the case of the voltage follower. What is the fractional error in the resulting amplification M_{N}, if the operational amplifier used has an amplification $A=10,000 \pm 10 \%$?
4.5 In the noninverting amplifier of Figure 3.1, $A=20,000 \pm 20 \%$, $R_{I}=100 \Omega \pm 1 \%$, and $R_{F}=10,000 \Omega \pm 1 \%$. Find the nominal value of the resulting amplification M_{N} and its worst-case fractional error in percent.
4.6 In the noninverting amplifier of Figure $3.1, A=20,000 \pm 20 \%$, $R_{I}=100 \Omega \pm 0.1 \%$, and $R_{F}=10,000 \Omega \pm 0.1 \%$. Find the nominal value of the resulting amplification M_{N} and its worst-case fractional error in percent. Compare the result to that of Problem 4.5.
4.7 In the noninverting amplifier of Figure 3.1, $A=10,000 \pm 20 \%$, $R_{F}=10,000 \Omega \pm 1 \%$, and input resistor R_{I} is adjustable between its minimum of $R_{I, \text { min }}$ and its maximum of $R_{I, \text { max }}$. Find the maximum value of $R_{I, \text { min }}$ and the minimum value of $R_{I, \text { max }}$ such that M_{N} can always be adjusted to equal 100.
4.8 In the inverting amplifier of Figure 3.2, $A=100 \pm 10 \%$, $R_{I}=100 \Omega \pm 1 \%$, and $R_{F}=10,000 \Omega \pm 1 \%$. Find the nominal value of the resulting amplification M_{I} and its worst-case fractional error in percent.
4.9 In the inverting amplifier of Figure 3.2, $A=10,000$ and $R_{I}=101 \Omega$. Find the value of feedback resistor R_{F} such that the resulting amplification $M_{I}=100$.
4.10 In the noninverting amplifier of Figure 3.1, $A=10,000, R_{I}=100 \Omega$, and $R_{F}=10,000 \Omega$. Find the value of $\Delta M_{N} / M_{N}$ if the values of both R_{I} and R_{F} increase by 10%.
4.11 Consider the compound differential amplifier of Figure 3.10 with components and input voltages as given in Problem 3.15 of Chapter 3. Find the worst-case fractional change in the output voltage $V_{\text {out }}$, if each resistor can vary by as much as $\pm 1 \%$.
4.12 In the amplifier with positive feedback shown in Figure 3.11, $A=100 \pm 0.1 \%, R_{I}=100 \Omega$, and $R_{F}=10,000 \Omega$. Estimate the value of $|\Delta M / M|$ resulting from the 0.1% change in A.
4.13 Find the worst-case error resulting from variations in $R_{1}, R_{2}, R_{3}, R_{F}$, and R_{I} in the instrumentation amplifier of Example 3.8. Assume that the
amplifications of the operational amplifiers can be approximated as $A_{1} \rightarrow \infty, A_{2} \rightarrow \infty$, and $A_{3} \rightarrow \infty$, and that each resistor has a tolerance of $\pm 0.1 \%$.
4.14 Use Equations 3.6, 4.1, 4.2, 4.3, and 4.4, with $M=M_{N}$, and derive Equation 4.9 without using Taylor series expansion.
4.15 Use Equations 3.2, 3.6, 4.2, 4.14, 4.15, and 4.17, with $M=M_{N}$, and derive Equation 4.20 without using Taylor series expansion.
4.16 Derive Equations 4.9, 4.11, 4.20, 4.23, 4.26, and 4.29.

CHAPTER 5

Frequency Response and Transient Response of Operational Amplifiers,

 Part IThus far it has been assumed that amplification A of the operational amplifier is a positive real number. This assumption becomes untenable when frequency response and transient response have to be determined, because a real amplification A would entail infinite bandwidths, zero rise times, and zero delay times-all physically impossible. This chapter and Chapter 6 describe representations of amplification A, as well as of feedback return F that are suitable for frequency responses and transient responses.

5.1 Lag Networks

The lag network of Figure 5.1 often provides a reasonable approximation of an amplifier stage in an operational amplifier.* Variables $I_{\text {in }}$ and $V_{\text {out }}$ are, respectively, a current signal such as the collector current output of a transistor stage and a voltage signal such as the voltage input to the next stage.

FIGURE 5.1 A lag network.
*An alternative configuration of the lag network is given in Figure 5.8, page 56

5.1.1 Frequency Response of Lag Networks

When $I_{\text {in }}$ and $V_{\text {out }}$ are decomposed into sinusoidal (sine and cosine) waveforms in the frequency domain, then for each component at angular frequency ω the transfer function can be written

$$
\begin{equation*}
\frac{V_{\mathrm{out}}(\omega)}{I_{\mathrm{in}}(\omega)}=\frac{R}{1+\mathrm{j} \omega R C} \tag{5.1}
\end{equation*}
$$

where angular frequency ω is related to cyclic frequency f :

$$
\begin{equation*}
\omega=2 \pi f \tag{5.2}
\end{equation*}
$$

By defining a corner frequency (or pole frequency) f_{0} as

$$
\begin{equation*}
f_{0} \equiv \frac{1}{2 \pi R C} \tag{5.3}
\end{equation*}
$$

the transfer function of Equation 5.1 can be written

$$
\begin{equation*}
\frac{V_{\mathrm{out}}(f)}{I_{\mathrm{in}}(f)}=\frac{R}{1+\mathrm{j} f / f_{0}} \tag{5.4}
\end{equation*}
$$

EXAMPLE 5.1. In the circuit of Figure 5.1, I_{in} is a sinusoidal waveform with a frequency $f=10 \mathrm{MHz} ; R=10,000 \Omega$ and $C=10 \mathrm{pF}$. Thus, from Equation 5.3,

$$
f_{0}=\frac{1}{2 \pi R C}=\frac{1}{2 \pi(10,000)\left(10^{-i 1}\right)}=1.59 \mathrm{MHz}
$$

and the transfer function of Equation 5.4 becomes

$$
\frac{V_{\mathrm{ou}}(f)}{I_{\mathrm{in}}(f)}=\frac{10,000 \Omega}{1+\mathrm{j}(10 \mathrm{MHz} / 1.59 \mathrm{MHz})}=\frac{10,000 \Omega}{1+\mathrm{j} 6.28}
$$

It is of interest to determine the magnitude and the phase of the transfer function. From Equation 5.4, the magnitude is

$$
\begin{equation*}
\left|\frac{V_{\text {out }}(f)}{I_{\mathrm{in}}(f)}\right|=\left|\frac{R}{1+\mathrm{j} f / f_{0}}\right|=\frac{R}{\sqrt{1+\left(f / f_{0}\right)^{2}}} \tag{5.5}
\end{equation*}
$$

and the phase φ is

$$
\begin{align*}
& \varphi \equiv \frac{V_{\text {out }}(f)}{I_{\mathrm{in}}(f)} \\
&=/ \frac{R}{1+\mathrm{j} f / f_{0}} \tag{5.6}\\
&=-\arctan \left(\frac{f}{f_{0}}\right)=-\frac{\pi}{2}+\arctan \left(\frac{f_{0}}{f}\right) .
\end{align*}
$$

EXAMPLE 5.2. In the circuit of Figure $5.1, R=10,000 \Omega, f=10 \mathrm{MHz}$, and $f_{0}=1.59 \mathrm{MHz}$. By use of Equation 5.5 , the magnitude of the transfer function is

$$
\begin{aligned}
\left|\frac{V_{\text {out }}(f)}{I_{\text {in }}(f)}\right| & =\frac{R}{\sqrt{1+\left(f / f_{0}\right)^{2}}} \\
& =\frac{10,000 \Omega}{\sqrt{1+(10 \mathrm{MHz} / 1.59 \mathrm{MHz})^{2}}}=1572 \Omega .
\end{aligned}
$$

Thus, if $I_{\text {in }}(f)$ has a magnitude of 1 mA , the magnitude of $V_{\text {out }}(f)$ is $(1 \mathrm{~mA})(1572 \Omega) \cong 1.57 \mathrm{~V}$. The phase φ, from Equation 5.6 , is

$$
\begin{aligned}
\varphi & =-\arctan \left(\frac{f}{f_{0}}\right)=-\arctan \left(\frac{10 \mathrm{MHz}}{1.59 \mathrm{MHz}}\right) \\
& =-81^{\circ} .
\end{aligned}
$$

For certain ranges of f / f_{0}, Equations 5.5 and 5.6 can be approximated by simpler expressions. For small values of f / f_{0}, several approximations of the magnitude given by Equation 5.5 are possible. One of these is a binomial expansion:

$$
\begin{equation*}
\left|\frac{V_{\mathrm{ou}}(f)}{I_{\mathrm{in}}(f)}\right| \approx R\left[1-\frac{1}{2}\left(\frac{f}{f_{0}}\right)^{2}\right], \quad\left(\frac{f}{f_{0}}\right)^{2} \ll 1 \tag{5.7}
\end{equation*}
$$

Another approximation of Equation 5.5 for small values of f / f_{0} results from a logarithmic expansion:

$$
\begin{equation*}
\left|\frac{V_{\mathrm{out}}(f)}{I_{\mathrm{in}}(f)}\right| \approx R e^{-\frac{1}{2}\left(f / f \mathrm{o}_{0}\right)^{2}}, \quad\left(\frac{f}{f_{0}}\right)^{2} \ll 1 \tag{5.8}
\end{equation*}
$$

For large values of f / f_{0}, Equation 5.5 can be approximated as

$$
\begin{equation*}
\left|\frac{V_{\mathrm{out}}(f)}{I_{\mathrm{in}}(f)}\right| \approx R \frac{f_{0}}{f}, \quad\left(\frac{f}{f_{0}}\right)^{2} \gg 1 \tag{5.9}
\end{equation*}
$$

The phase φ of Equation 5.6 can be approximated for small values of f / f_{0} as

$$
\begin{equation*}
\varphi \approx-\frac{f}{f_{0}}, \quad \frac{f}{f_{0}}<1 \tag{5.10}
\end{equation*}
$$

and for large values of f / f_{0} as

$$
\begin{equation*}
\varphi \approx-\frac{\pi}{2}+\frac{f_{0}}{f}, \quad \frac{f}{f_{0}} \gg 1 . \tag{5.11}
\end{equation*}
$$

EXAMPLE 5.3. In the circuit of Figure $5.1, f_{0}=1 / 2 \pi R C=1 \mathrm{MHz}$. At a frequency $f=0.1 \mathrm{MHz}, f / f_{0}=0.1$. A first approximation of the magnitude of the transfer function, from Equation 5.7, is

$$
\left|\frac{V_{\mathrm{out}}(f)}{I_{\mathrm{in}}(f)}\right| \approx R .
$$

A better approximation, from Equation 5.7, is

$$
\left|\frac{V_{\mathrm{out}}(f)}{I_{\mathrm{in}}(f)}\right| \approx R\left[1-\frac{1}{2}\left(\frac{f}{f_{0}}\right)^{2}\right]=R\left[1-\frac{1}{2}(0.1)^{2}\right]=0.995 R
$$

or, from Equation 5.8,

$$
\begin{aligned}
\left|\frac{V_{\mathrm{out}}(f)}{I_{\mathrm{in}}(f)}\right| & \approx R \mathrm{e}^{-t\left(f /\left(f_{0}\right)^{2}\right.} \\
& =R e^{-t(0.1)^{2}}=0.99501 R .
\end{aligned}
$$

The exact magnitude is given by Equation 5.5 as

$$
\left|\frac{V_{\mathrm{out}}(f)}{I_{\mathrm{in}}(f)}\right|=\frac{R}{\sqrt{1+\left(f / f_{0}\right)^{2}}}=\frac{R}{\sqrt{1+(0.1)^{2}}}=0.995037 R
$$

The value of phase φ can be approximated from Equation 5.10 as

$$
\varphi \approx-\frac{f}{f_{0}}=-0.1 \text { radians }=-5.73^{\circ}
$$

The exact value of phase φ, from Equation 5.6, is

$$
\varphi=-\arctan \left(\frac{f}{f_{0}}\right)=-\arctan (0.1)=-5.71^{\circ}
$$

5.1.2 Transient Response of Lag Networks

When $V_{\text {out }}$ and $I_{\text {in }}$ are represented in the time domain, that is, $V_{\text {out }}=V_{\text {out }}(t)$ and $I_{\mathrm{in}}=I_{\mathrm{in}}(t)$, it can be shown that the ratio of their Laplace transforms can be written

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{ou}}(t)\right\}}{\mathscr{L}\left\{I_{\mathrm{in}}(t)\right\}}=\frac{R}{1+R C s} \tag{5.12}
\end{equation*}
$$

where s is the Laplace transform variable in the transform domain.

EXAMPLE 5.4 In the circuit of Figure $5.1, R=1000 \Omega$ and current $I_{\text {in }}$ is a function of time, $I_{\mathrm{in}}(t)=(1 \mathrm{~mA}) u(t)$; that is, it is a step function with a magnitude of 1 mA . The Laplace transform of $I_{\text {in }}(t)$ is

$$
\mathscr{L}\left\{I_{\mathrm{in}}(t)\right\}=\mathscr{L}\{(1 \mathrm{~mA}) u(t)\}=(1 \mathrm{~mA}) \mathscr{L}\{u(t)\}=\frac{1 \mathrm{~mA}}{s} .
$$

Thus, the Laplace transform of voltage $V_{\text {out }}(t)$ is given by

$$
\mathscr{L}\left\{V_{\text {out }}(t)\right\}=\frac{R}{1+R C s} \mathscr{L}\left\{I_{\text {in }}(t)\right\}=\frac{1000 \Omega}{1+R C s} \frac{1 \mathrm{~mA}}{s}=\frac{1 \mathrm{~V}}{s(1+R C s)} .
$$

The inverse Laplace transform of this is (see Problem 5.12)

$$
\begin{gathered}
V_{\text {out }}(t)=\mathscr{L}^{-1}\left\{\frac{1 \mathrm{~V}}{s(1+R C s)}\right\}=(1 \mathrm{~V})\left(1-e^{-t / R C}\right), \quad t>0 ; \\
V_{\text {oul }}(t)=0, \quad t<0 .
\end{gathered}
$$

Figure 5.2 shows input current $I_{\text {in }}$ and output voltage $V_{\text {out }}$ as functions of $t / R C$.

FIGURE 5.2 Input current $\boldsymbol{I}_{\text {in }}$ and output voltage $\boldsymbol{V}_{\text {out }}$ as functions of $t / R C$ in the lag network of Example 5.4.

5.2 Bode Plots

It is customary to plot the gain G of the lag network, which can be defined as

$$
G \equiv 20 \mathrm{~dB} \log _{10} \frac{1}{\sqrt{1+\left(f / f_{0}\right)^{2}}}
$$

where G is in decibels (dB) as shown in the upper part of Figure 5.3.
This representation, known as the Bode plot of the gain, shows that at $f / f_{0}=1$ the gain G is down by 3 dB from its value at $f=0$. Also, for $f \gg f_{0}$, the gain drops at a rate of $-20 \mathrm{~dB} /$ decade of frequency, or approximately $-6 \mathrm{~dB} /$ octave.

In many cases, the gain can be approximated by two straight lines: $G=G_{\boldsymbol{f}=0}$ for $f \ll f_{0}$, and $G=G_{f=0}-20 \mathrm{~dB} \log _{10}\left(f / f_{0}\right)$ for $f \gg f_{0}$. These two straight lines intersect at the frequency $f=f_{0}$; hence the name corner frequency. This piecewise linear approximation of the gain is shown in Figure 5.3 by broken lines. The Bode plot of phase φ as a function of frequency is also given in the figure.

FIGURE 5.3 Bode plots $G \equiv 20 \mathrm{~dB} \log _{10}\left[1+\left(f / f_{0}\right)^{2}\right]^{-1 / 2}$ and $\varphi \equiv$ $\left\langle\left(1+\mathrm{j} f\left(f_{0}\right)^{-1}\right.\right.$ of a lag network.

5.3 Cascaded Lag Networks

The lag network of Figure 5.1 provides a simple approximation of a stage in an operational amplifier. However, usually more than one stage has to be represented. Fortunately, these can often be separated, and the resulting transfer function can be written as a product of lag-network responses.

5.3.1 Frequency Response of Cascaded Lag Networks

In the frequency domain, the transfer function of a two-stage amplifier can be written in the form

$$
\text { (constant) }\left(\frac{1}{1+\mathrm{j} f / f_{1}}\right)\left(\frac{1}{1+\mathrm{j} f / f_{2}}\right)
$$

In Figure 5.1, a current input and a voltage output were assumed. In the case when an entire operational amplifier is to be represented, both the input and the output signals are voltages. Hence, amplification A of an operational amplifier consisting of two stages can be written

$$
\begin{equation*}
A=\frac{A_{\mathrm{dc}}}{\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)}, \tag{5.13}
\end{equation*}
$$

where $A_{\mathrm{dc}} \equiv A_{f=0}$ is the amplification of the operational amplifier at zero frequency: a positive real dimensionless number.

EXAMPLE 5.5. A two-stage operational amplifier has an amplification at zero frequency $A_{\mathrm{dc}}=1000$ and it can be represented by two separated lag networks. One of these consists of a $100,000-\Omega$ resistance and a $5-\mathrm{pF}$ capacitance, the other one of a $1000-\Omega$ resistance and a $5-\mathrm{pF}$ capacitance. Since the designations of f_{1} and f_{2} are interchangeable, they can be written

$$
f_{1}=\frac{1}{2 \pi(100,000)\left(5 \times 10^{-12}\right)}=318 \mathrm{kHz}
$$

and

$$
f_{2}=\frac{1}{2 \pi(1000)\left(5 \times 10^{-12}\right)}=31.8 \mathrm{MHz}
$$

Thus, amplification A becomes

$$
A=\frac{1000}{(1+\mathrm{j} f / 318 \mathrm{kHz})(1+\mathrm{j} f / 31.8 \mathrm{MHz})}
$$

In general, the gain is defined as $G \equiv 20 \mathrm{~dB} \log _{10}|A|$, and the phase as $\varphi=\angle A$. The gain and the phase plots of a two-stage amplifier described by Equation 5.13 with $f_{2} / f_{1}=100$ and $A_{d c}=1000$ are shown in Figure 5.4. Since the logarithm of a product is the sum of the logarithms, the gain is obtained as the sum of the individual gains of the two stages. The individual phases of the two stages are added linearly to obtain the resulting phase. It can be seen that for $f \gg f_{2} \geqslant f_{1}$ the gain falls off at a rate of $-40 \mathrm{~dB} /$ decade of frequency.

FIGURE 5.4 Bode plots $G \equiv 20 \mathrm{~dB} \log _{10}|A|$ and $\varphi \equiv L A$ for the two-stage operational amplifier of Equation 5.13 with $A_{d c}=1000$ and $f_{2}=100 f_{1}$.

Figure 5.5 shows the special case of two equal corner frequencies $f_{1}=f_{2}$, that is, the case of

$$
\begin{equation*}
A=\frac{A_{\mathrm{dc}}}{\left(1+\mathrm{j} f / f_{1}\right)^{2}} \tag{5.14}
\end{equation*}
$$

FIGURE 5.5 Bode plots $G \equiv 20 \mathrm{~dB} \log _{10}|A|$ and $\varphi \equiv \angle A$ for an operational amplifier with $A_{\mathrm{dc}}=100,000$ and with two equal corner frequencies.

For a three-stage amplifier, Equation 5.13 can be extended to

$$
\begin{equation*}
A=\frac{A_{\mathrm{dc}}}{\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)\left(1+\mathrm{j} f / f_{3}\right)} \tag{5.15}
\end{equation*}
$$

and to similar expressions for larger numbers of stages.

EXAMPLE 5.6. In Equation $5.15, f_{1}=1 \mathrm{MHz}, f_{2}=4 \mathrm{MHz}, f_{3}=40 \mathrm{MHz}$, and $A_{\mathrm{dc}}=10,000$. What is magnitude $|A|$ and phase $\angle A$ at a frequency
$f=0.1 \mathrm{MHz}$?

The magnitude of A is

$$
|A|=\frac{\left|A_{\mathrm{dc}}\right|}{\left|1+\mathrm{j} f / f_{1}\right|\left|1+\mathrm{j} f / f_{2}\right|\left|1+\mathrm{j} f / f_{3}\right|}
$$

By use of Equations 5.5 and 5.7,

$$
\begin{aligned}
& \frac{1}{\left|1+\mathrm{j} f / f_{1}\right|} \approx 1-\frac{1}{2}\left(\frac{f}{f_{1}}\right)^{2}=1-\frac{1}{2}(0.1)^{2}=0.995 \\
& \frac{1}{\left|1+\mathrm{j} f / f_{2}\right|} \approx 1-\frac{1}{2}\left(\frac{f}{f_{2}}\right)^{2}=1-\frac{1}{2}\left(\frac{0.1}{4}\right)^{2}=0.9997
\end{aligned}
$$

and

$$
\frac{1}{\left|1+\mathrm{j} f / f_{3}\right|} \approx 1-\frac{1}{2}\left(\frac{f}{f_{3}}\right)^{2}=1-\frac{1}{2}\left(\frac{0.1}{40}\right)^{2}=0.999997
$$

thus, $|A| \approx(10,000)(0.995)(0.9997)(0.999997) \cong 9947$.
The phase of $A, \angle A$, can be obtained by adding the individual phases:

$$
L A=/ A_{\mathrm{dc}}+/ \frac{1}{1+\mathrm{j} f / f_{1}}+/ \frac{1}{1+\mathrm{j} f / f_{2}}+/ \frac{1}{1+\mathrm{j} f / f_{3}}
$$

By applying Equation 5.6, this can be written

$$
L A=-\arctan \left(\frac{f}{f_{1}}\right)-\arctan \left(\frac{f}{f_{2}}\right)-\arctan \left(\frac{f}{f_{3}}\right)
$$

which by use of the approximation of Equation 5.10 becomes

$$
\begin{gathered}
\angle A \approx-\frac{f}{f_{1}}-\frac{f}{f_{2}}-\frac{f}{f_{3}}=-\frac{0.1}{1}-\frac{0.1}{4}-\frac{0.1}{40} \\
=-0.1275 \text { radians }=-7.3^{\circ} .
\end{gathered}
$$

5.3.2 Transient Response of Cascaded Lag Networks

When input voltage $V_{\text {in }}$ and output voltage $V_{\text {out }}$ in a two-stage operational amplifier are represented in the time domain,

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{A_{\mathrm{dc}}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)} \tag{5.16a}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{1}=\frac{1}{2 \pi f_{1}} \tag{5.16b}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{2}=\frac{1}{2 \pi f_{2}} \tag{5.16c}
\end{equation*}
$$

with f_{1} and f_{2} those of Equation 5.13.
When input voltage $V_{\text {in }}$ is a step function with magnitude V_{0},

$$
\begin{equation*}
\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}=\frac{V_{0}}{s} \tag{5.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{L}\left\{V_{\text {oul }}(t)\right\}=\frac{1}{s} \frac{A_{\mathrm{dc}} V_{0}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)} . \tag{5.18}
\end{equation*}
$$

The inverse Laplace transform of Equation 5.18 can be written for times $t>0$ as

$$
\begin{equation*}
V_{\mathrm{out}}(t)=A_{\mathrm{dc}} V_{0}\left[1-\frac{\frac{e^{-1 / \tau_{1}}}{\tau_{2}}-\frac{e^{-t / \tau_{2}}}{\tau_{1}}}{\frac{1}{\tau_{2}}-\frac{1}{\tau_{1}}}\right] \tag{5.19a}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\tau_{1} \neq \tau_{2} \tag{5.19b}
\end{equation*}
$$

EXAMPLE 5.7. In the two-stage operational amplifier of Example 5.5, $A_{\mathrm{dc}}=1000$. Also, $f_{1}=0.318 \mathrm{MHz}$ and $f_{2}=31.8 \mathrm{MHz}$. Thus, by use of Equation 5.16 b ,

$$
\tau_{1}=\frac{1}{2 \pi f_{1}}=\frac{1}{2 \pi(0.318 \mathrm{MHz})}=0.5 \mu \mathrm{~s}=500 \mathrm{~ns}
$$

Also, by use of Equation 5.16 c ,

$$
\tau_{2}=\frac{1}{2 \pi f_{2}}=\frac{1}{2 \pi(31.8 \mathrm{MHz})}=5 \mathrm{~ns}
$$

Equation 5.19 can be applied, resulting in

$$
V_{\text {out }}(t)=1000 V_{0}\left[1-\frac{\frac{e^{-t / 500 \mathrm{~ns}}}{5 \mathrm{~ns}}-\frac{e^{-t / 5 \mathrm{~ns}}}{500 \mathrm{~ns}}}{\frac{1}{5 \mathrm{~ns}}-\frac{1}{500 \mathrm{~ns}}}\right], \quad t>0
$$

which can also be written

$$
V_{\text {out }}(t)=1000 V_{0}\left(1-\frac{e^{-t / 500 n \mathrm{n}}-0.01 e^{-t / 5 \mathrm{~ns}}}{0.99}\right), \quad t>0 .
$$

Thus, as a result of having $\tau_{1}=500 \mathrm{~ns} \gg \tau_{2}=5 \mathrm{~ns}$, in this example time constant $\tau_{1}=500 \mathrm{~ns}$ dominates the transient response. Therefore, for times $t \gg 5 \mathrm{~ns}$, output voltage $V_{\text {out }}$ can be approximated as

$$
V_{\mathrm{out}}(t) \approx 1000 V_{0}\left(1-e^{-t / 500 \mathrm{~ns}}\right) .
$$

In the special case of a two-stage operational amplifier with two equal corner frequencies, shown in Equation 5.14 and Figure 5.5,

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{A_{\mathrm{dc}}}{\left(1+s \tau_{1}\right)^{2}} \tag{5.20a}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{1}=\frac{1}{2 \pi f_{1}} \tag{5.20b}
\end{equation*}
$$

with f_{1} that of Equation 5.14 .
When input voltage $V_{\text {in }}$ is a step function with magnitude V_{0},

$$
\begin{equation*}
\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}=\frac{V_{0}}{s} \tag{5.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}=\frac{1}{s} \frac{A_{\mathrm{dc}} V_{0}}{\left(1+s \tau_{1}\right)^{2}} . \tag{5.22}
\end{equation*}
$$

The inverse Laplace transform of Equation 5.22 can be written for times $t>0$ as

$$
\begin{equation*}
V_{\mathrm{out}}(t)=A_{\mathrm{dc}} V_{0}\left[1-\left(1+\frac{t}{\tau_{1}}\right) e^{-t / \mathrm{t}_{1}}\right] . \tag{5.23}
\end{equation*}
$$

Figure 5.6 shows $V_{\text {out }}$ as a function of t / τ_{1}.

FIGURE 5.6 Output voltage $V_{\text {out }}$ as a function of $\boldsymbol{t} / \tau_{1}$ for a two-stage operational amplifier with two equal corner frequencies.

When input voltage $V_{\text {in }}$ and output voltage $V_{\text {sut }}$ of a three-stage operational amplifier are represented in the time domain,

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{A_{\mathrm{dc}}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)\left(1+s \tau_{3}\right)} \tag{5.24a}
\end{equation*}
$$

where

$$
\begin{align*}
& \tau_{1}=\frac{1}{2 \pi f_{1}}, \tag{5.24b}\\
& \tau_{2}=\frac{1}{2 \pi f_{2}}, \tag{5.24c}
\end{align*}
$$

and

$$
\begin{equation*}
\tau_{3}=\frac{1}{2 \pi f_{3}} \tag{5.24~d}
\end{equation*}
$$

with f_{1}, f_{2}, and f_{3} those of Equation 5.15.
When input voltage $V_{\text {in }}$ is a step function with magnitude V_{0},

$$
\begin{equation*}
\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}=\frac{V_{0}}{s} \tag{5.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{L}\left\{V_{\text {our }}(t)\right\}=\frac{1}{s} \frac{A_{\text {de }} V_{0}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)\left(1+s \tau_{3}\right)} . \tag{5.26}
\end{equation*}
$$

The inverse Laplace transform of Equation 5.26 can be written for times $t>0$ as
$\left.V_{\mathrm{out}}(t)=A_{\mathrm{dc}} V_{0}\left[1-\frac{\frac{1}{\tau_{3}}-\frac{1}{\tau_{2}}}{\tau_{3} \tau_{2}} e^{-t / \tau_{1}}+\frac{\frac{1}{\tau_{1}}-\frac{1}{\tau_{3}}}{\tau_{1} \tau_{3}} e^{-t / \tau_{2}}+\frac{\frac{1}{\tau_{2}}-\frac{1}{\tau_{1}}}{\tau_{2} \tau_{1}} e^{-t / \tau_{3}}\right) ~\left(\frac{1}{\tau_{1}}-\frac{1}{\tau_{2}}\right)\left(\frac{1}{\tau_{2}}-\frac{1}{\tau_{3}}\right)\left(\frac{1}{\tau_{3}}-\frac{1}{\tau_{1}}\right) \quad\right]$,
provided that
and

$$
\begin{align*}
& \tau_{1} \neq \tau_{2} \tag{5.27~b}\\
& \tau_{2} \neq \tau_{3} \tag{5.27c}\\
& \tau_{3} \neq \tau_{1} \tag{5.27d}
\end{align*}
$$

EXAMPLE 5.8. In the three-stage operational amplifier of Example 5.6, $A_{\mathrm{dc}}=10,000$. Also, $f_{1}=1 \mathrm{MHz}, f_{2}=4 \mathrm{MHz}$, and $f_{3}=40 \mathrm{MHz}$. Thus, by use of Equations $5.24 \mathrm{~b}, 5.24 \mathrm{c}$, and 5.24 d ,

$$
\begin{aligned}
& \tau_{1}=\frac{1}{2 \pi f_{1}}=\frac{1}{2 \pi(1 \mathrm{MHz})} \approx 160 \mathrm{~ns} \\
& \tau_{2}=\frac{1}{2 \pi f_{2}}=\frac{1}{2 \pi(4 \mathrm{MHz})} \approx 40 \mathrm{~ns}
\end{aligned}
$$

and

$$
\tau_{3}=\frac{1}{2 \pi f_{3}}=\frac{1}{2 \pi(40 \mathrm{MHz})} \approx 4 \mathrm{~ns}
$$

Equation 5.27 a can be applied, resulting in
$V_{\text {out }}(t)=10,000 V_{0}\left[1-\frac{e^{-t / 160 \mathrm{~ns}}}{\left(1-\frac{1}{4}\right)\left(1-\frac{1}{40}\right)}+\frac{e^{-1 / 40 \mathrm{~ns}}}{4\left(1-\frac{1}{4}\right)\left(1-\frac{1}{10}\right)}\right.$

$$
\left.-\frac{e^{-t / 4 \mathrm{~ns}}}{400\left(1-\frac{1}{10}\right)\left(1-\frac{1}{40}\right)}\right]
$$

For times $t \gg 4 \mathrm{~ns}$, output voltage $V_{\text {out }}$ can be approximated as

$$
V_{\text {out }}(t) \approx 10,000 V_{0}\left(1-\frac{4}{3} e^{-t / 160 \mathrm{~ns}}+\frac{1}{3} e^{-t / 40 \mathrm{~ns}}\right)
$$

In the special case of a three-stage operational amplifier with two equal corner frequencies,

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{A_{\mathrm{dc}}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)^{2}} \tag{5.28a}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{1}=\frac{1}{2 \pi f_{1}} \tag{5.28b}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{2}=\frac{1}{2 \pi f_{2}}=\frac{1}{2 \pi f_{3}} \tag{5.28c}
\end{equation*}
$$

with f_{1}, f_{2}, and f_{3} those of Equation 5.15.
When input voltage $V_{\text {in }}$ is a step function with magnitude V_{0},

$$
\begin{equation*}
\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}=\frac{V_{0}}{s} \tag{5.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{L}\left\{V_{\text {out }}(t)\right\}=\frac{1}{s} \frac{A_{\mathrm{dc}} V_{0}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)^{2}} \tag{5.30}
\end{equation*}
$$

The inverse Laplace transform of Equation 5.30 can be written for times $t>0$ as

$$
\begin{equation*}
V_{\mathrm{out}}(t)=A_{\mathrm{dc}} V_{0}\left[1-\frac{e^{-t / \tau_{1}}+\frac{\tau_{2}}{\tau_{1}}\left[\frac{\tau_{2}}{\tau_{1}}-2+\left(\frac{\tau_{2}}{\tau_{1}}-1\right) \frac{t}{\tau_{2}}\right] e^{-t / \mathrm{z}_{2}}}{\left(\frac{\tau_{2}}{\tau_{1}}-1\right)^{2}}\right] \tag{5.31a}
\end{equation*}
$$

provided that

$$
\begin{align*}
& \tau_{1} \neq \tau_{2}, \tag{5.31b}\\
& \tau_{1} \neq 0 \tag{5.31c}
\end{align*}
$$

and

$$
\begin{equation*}
\tau_{2} \neq 0 \tag{5.31d}
\end{equation*}
$$

EXAMPLE 5.9. In a three-stage operational amplifier, one corner frequency is at $f_{1}=1 \mathrm{MHz}$ and the two other corner frequencies coincide at $f_{2}=10 \mathrm{MHz}$. Thus, by use of Equations 5.28 b and 5.28 c ,

$$
\tau_{i}=\frac{1}{2 \pi f_{1}}=\frac{1}{2 \pi(1 \mathrm{MHz})} \approx 160 \mathrm{~ns}
$$

and

$$
\tau_{2}=\frac{1}{2 \pi f_{2}}=\frac{1}{2 \pi(10 \mathrm{MHz})} \approx 16 \mathrm{~ns}
$$

Equation 5.31a can be applied, resulting in

$$
V_{\mathrm{out}}(t)=A_{\mathrm{dc}} V_{0}\left(1-\frac{e^{-t / 160 \mathrm{~ns}}-0.1(1.9+0.9 t / 16 \mathrm{~ns}) e^{-t / 16 \mathrm{~ns}}}{0.81}\right), \quad t>0
$$

In the special case of a three-stage operational amplifier with three equal corner frequencies,

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{A_{\mathrm{dc}}}{\left(1+s \tau_{1}\right)^{3}}, \tag{5.32a}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{1}=\frac{1}{2 \pi f_{1}}=\frac{1}{2 \pi f_{2}}=\frac{1}{2 \pi f_{3}} \tag{5.32b}
\end{equation*}
$$

with f_{1}, f_{2}, and f_{3} those of Equation 5.15.
When input voltage $V_{\text {in }}$ is a step function with magnitude V_{0},

$$
\begin{equation*}
\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}=\frac{V_{0}}{s} \tag{5.33}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{L}\left\{V_{\text {out }}(t)\right\}=\frac{1}{s} \frac{A_{\mathrm{dc}} V_{0}}{\left(1+s \tau_{1}\right)^{3}} \tag{5.34}
\end{equation*}
$$

The inverse Laplace transform of Equation 5.34 can be written for times $t>0$ as

$$
\begin{equation*}
V_{\mathrm{out}}(t)=A_{\mathrm{dc}} V_{0}\left\{1-\left[1+\frac{t}{\tau_{1}}+\frac{1}{2}\left(\frac{t}{\tau_{1}}\right)^{2}\right] e^{-t / /_{1}}\right\} \tag{5.35}
\end{equation*}
$$

Output voltage $V_{\text {out }}$ of Equation 5.35 is shown in Figure 5.7 by the graph marked (c). Figure 5.7 also shows the transient response of a single-stage operational amplifier, $V_{\text {out }}=A_{\mathrm{dc}} V_{0}\left(1-e^{-t / t_{1}}\right)$, by graph (a), as well as the transient response of a two-stage operational amplifier with two identical corner frequencies, given by Equation 5.23, by graph (b). Note that the time scale of Figure 5.7 is different from preceding figures.

FIGURE 5.7 Output voltage $\boldsymbol{V}_{\text {out }}$ as a function of $\boldsymbol{t} / \tau_{1}$ for operational amplifiers with identical corner frequencies: (a) Single-stage amplifier, (b) twostage amplifier, and (c) three-stage amplifier.

PROBLEMS

5.1 For the circuit of Figure 5.1, sketch output voltage $V_{\text {out }}$ as a function of time, if input current $I_{\text {in }}$ is a delta function (impulse function) $I_{\mathrm{in}}(t)=\left(10^{-10}\right.$ coulomb $) \delta(t) ; R=1000 \Omega$, and $C=10 \mathrm{pF}$.
5.2 Derive Equations 5.1 and 5.4.
5.3 Evaluate Equations 5.5 and 5.6 if, in the circuit of Figure $5.1, R=2000 \Omega$, $C=20 \mathrm{pF}$, and current I_{in} is a sinewave with a frequency of 20 MHz .
5.4 Show that the phase plot of Figure 5.3 is antisymmetric (invariant under 180° rotation) around the $f / f_{0}=1, \varphi=-45^{\circ}$ point.
5.5 Derive Equations 5.5 and 5.6.
5.6 Show that an approximation of phase φ of Equation 5.6 for small values of f / f_{0}, which is more accurate than that of Equation 5.10 , is given by

$$
\varphi \approx-\frac{f}{f_{0}}+\frac{1}{3}\left(\frac{f}{f_{0}}\right)^{3}
$$

5.7 Show that an approximation of phase φ of Equation 5.6 for large values of f / f_{0}, which is more accurate than that of Equation 5.11 , is given by

$$
\varphi \approx-\frac{\pi}{2}+\frac{f_{0}}{f}-\frac{1}{3}\left(\frac{f_{0}}{f}\right)^{3}
$$

Evaluate this expression, Equation 5.11, and Equation 5.6 for $f / f_{0}=10$. Present the results in degrees.
5.8 Show that the tangent drawn to the phase plot φ of Figure 5.3 at $f / f_{0}=1, \varphi=-45^{\circ}$ reaches $f / f_{0}=10$ at a phase of

$$
\varphi=-45^{\circ}-\frac{180^{\circ} \ln 10}{2 \pi} \approx-45^{\circ}-66^{\circ}=-111^{\circ}
$$

5.9 Derive Equation 5.8 by expanding $\ln \left[1 / \sqrt{1+\left(f / f_{0}\right)^{2}}\right]$ into a Taylor
5.10 Show that the approximation of Equation 5.8 evaluated at $f / f_{0}=1$ would result in a gain that is down by $10 \mathrm{~dB} \log _{10} e \approx 4.3 \mathrm{~dB}$ from its
value at $f=0$. value at $f=0$.
5.11 A stage of an operational amplifier can be represented by the circuit of Figure 5.1 with $R=10,000 \Omega$ and $C=5 \mathrm{pF}$. At what frequency is the gain down by 3 dB from its value at zero frequency?
5.12 Derive Equation 5.12, and verify the results of Example 5.4. [Hint: Use
Appendix A.]
5.13 An alternative configuration of the lag network is shown in Figure 5.8. Derive the expressions $\mathscr{L}\left\{V_{\text {out }}(t)\right\} / \mathscr{L}\left\{V_{\text {in }}(t)\right\}$ and $V_{\text {out }}(f) / V_{\text {in }}(f)$.

FIGURE 5.8
5.14 A two-stage operational amplifier has an amplification at zero frequency of $A_{\mathrm{dc}}=10,000$. It consists of two identical stages, each of which can be represented by a lag network with $R=10,000 \Omega$ and $C=5 \mathrm{pF}$. Sketch the Bode plots, using piecewise linear approximation for the gain.
5.15 Find the output voltage as a function of time for the amplifier described in Problem 5.14 if the input voltage is a step function $V_{\mathrm{in}}(t)=(1 \mathrm{mV}) u(t)$.
5.16 Use Equation 5.8 and show that for $f / f_{1} \ll 1$ and $f / f_{2} \ll 1$ the magnitude of Equation 5.13 can be approximated as

$$
|A| \approx A_{\mathrm{dc}} e^{\left.\left.-\frac{1}{t} \right\rvert\,\left(f / f_{1}\right)^{2}+\left(f / f_{2}\right)^{2}\right]}
$$

5.17 A three-stage operational amplifier has an amplification in the form of Equation 5.15 with $A_{\mathrm{dc}}=1000$. The three stages are characterized by $f_{1}=1 \mathrm{MHz}, f_{2}=10 \mathrm{MHz}$, and $f_{3}=50 \mathrm{MHz}$. Plot the Bode plots of amplification A, using piecewise linear approximation for the gain.
5.18 Derive Equation 5.19 using Appendix A.
5.19 Show that for the exact $V_{\text {out }}$ of Example 5.7
(a) $V_{\text {out }}=0$ at $t=0$;
(b) $d V_{\text {out }} / d t=0 \quad$ at $t=0$;
(c) $V_{\text {out }}=1000 V_{0}$ when $t \rightarrow \infty$.
5.20 Plot for $0 \leqslant t \leqslant 50 \mathrm{~ns}$ the exact and the approximate expressions given for $V_{\text {out }}$ in Example 5.7.
5.21 Derive Equation 5.23 using Appendix A
5.22 Show that for Equation 5.23
(a) $\quad V_{\text {out }}=0$ at $t=0$;
(b) $d V_{\text {out }} / d t=0$ at $t=0$;
(c) $V_{\text {out }}=A_{\mathrm{dc}} V_{0}$ when $t \rightarrow \infty$.
5.23 Derive Equation 5.27 using Appendix A.
5.24 Show that for the exact $V_{\text {out }}$ of Example 5.8
(a) $V_{\text {out }}=0$ at $t=0$;
(b) $d V_{\text {out }} / d t=0$ at $t=0$;
(c) $\quad V_{\text {out }}=10,000 V_{0}$ when $t \rightarrow \infty$.
5.25 Show that for the approximate $V_{\text {out }}$ of Example 5.8
(a) $V_{\text {out }}=0$ at $t=0$;
(b) $V_{\text {out }}=10,000 V_{0}$ when $t \rightarrow \infty$.
5.26 Plot for $0 \leqslant t \leqslant 50 \mathrm{~ns}$ the exact and approximate expressions given for $V_{\text {out }}$ in Example 5.8.
5.27 Derive Equation 5.31 using Appendix A.
5.28 Show that for $V_{\text {out }}$ of Example 5.9
(a) $\quad V_{\text {out }}=0$ at $t=0$;
(b) $d V_{\text {out }} / d t=0$ at $t=0$;
(c) $V_{\text {out }}=A_{\mathrm{dc}} V_{0}$ when $t \rightarrow \infty$.
5.29 Derive Equation 5.35 using Appendix A.
5.30 Show that for Equation 5.35
(a) $\quad V_{\text {out }}=0$ at $t=0$;
(b) $d V_{\text {out }} / d t=0$ at $t=0$;
(c) $V_{\text {out }}=A_{\mathrm{dc}} V_{0}$ when $t \rightarrow \infty$.

CHAPTER 6

Frequency Response and Transient Response of Operational Amplifiers, Part II

This chapter introduces additional networks for representing operational amplifier amplification A and feedback return F. The chapter also includes networks that will be used to represent responses of feedback amplifiers in Chapter 8.

6.1 Modified Lag Networks

Modified lag networks are used for modifying the properties of operational amplifiers. They may be part of the operational amplifier or may be added externally. Two forms of a modified lag network are shown in Figure 6.1, which are equivalent if $V_{\mathrm{in}}=I_{\mathrm{in}} R_{1}$. In what follows, the circuit of Figure $6.1 b$ will be discussed, even though the circuit of Figure $6.1 a$ is used more often.
6.1.1 Frequency Response of Modified Lag Networks

When $V_{\text {in }}$ and $V_{\text {out }}$ are represented in the frequency domain, the transfer function is

$$
\begin{equation*}
\frac{V_{\text {out }}(f)}{V_{\mathrm{in}}(f)}=\frac{1+\mathrm{j} f / f_{2}}{1+\mathrm{j} f / f_{1}} \tag{6.1a}
\end{equation*}
$$

where corner frequency f_{1} (pole frequency) is defined by

$$
\begin{equation*}
f_{1} \equiv \frac{1}{2 \pi\left(R_{1}+R_{2}\right) C} \tag{6.1b}
\end{equation*}
$$

and corner frequency f_{2} (zero frequency) by

$$
\begin{equation*}
f_{2} \equiv \frac{1}{2 \pi R_{2} C} \tag{6.1c}
\end{equation*}
$$

(a)

FIGURE 6.1 Two equivalent forms of a modified lag network.

Bode plots of a modified lag network with $f_{2}=100 f_{1}$ are shown in Figure 6.2. It can be seen from Equations 6.1 b and 6.1 c that $f_{2} \geqslant f_{1}$; thus, the magnitude of Equation 6.1a,

$$
\begin{equation*}
\left|\frac{V_{\text {out }}(f)}{V_{\mathrm{in}}(f)}\right|=\frac{\left|1+\mathrm{j} f / f_{2}\right|}{\left|1+\mathrm{j} f / f_{1}\right|}, \tag{6.2}
\end{equation*}
$$

is monotonically decreasing as a function of frequency f. The phase can be written

$$
\begin{align*}
\left\langle\frac{V_{\text {out }}(f)}{V_{\mathrm{io}}(f)}\right. & =\left\langle\frac{1+\mathrm{j} f / f_{2}}{1+\mathrm{j} f / f_{1}}=\left\langle 1+\mathrm{j} f / f_{2}-1+\mathrm{j} f / f_{1}\right.\right. \\
& =\arctan \left(\frac{f}{f_{2}}\right)-\arctan \left(\frac{f}{f_{1}}\right) . \tag{6.3}
\end{align*}
$$

The ratio of f_{2} and f_{1} can be expressed from Equations 6.1 b and 6.1 c as

$$
\begin{equation*}
\frac{f_{2}}{f_{1}}=\frac{R_{1}+R_{2}}{R_{2}}=1+\frac{R_{1}}{R_{2}} . \tag{6.4}
\end{equation*}
$$

Thus, if f_{2} / f_{1} is given, it determines R_{1} / R_{2}; however, C and either R_{1} or R_{2} can still be chosen.

FIGURE 6.2 Bode plots $G \equiv 20 \mathrm{~dB} \log _{10}\left|\left(1+\mathrm{j} f / f_{2}\right) /\left(1+\mathrm{j} f / f_{1}\right)\right|$ and $\varphi \equiv /\left(1+\mathrm{j} f / f_{2}\right) /\left(1+\mathrm{j} f / f_{1}\right)$ for a modified lag network with $f_{2}=100 f_{1}$.

EXAMPLE 6.1. In the modified lag network of Figure 6.1, $\left(R_{1}+R_{2}\right) / R_{2}=10$; thus $f_{2} / f_{1}=10$. The magnitude of the transfer function, from Equation 6.2, is

$$
\left|\frac{V_{\text {out }}(f)}{V_{\text {in }}(f)}\right|=\frac{\left|1+\mathrm{j} f / f_{2}\right|}{\left|1+\mathrm{j} f / f_{1}\right|}=\frac{\left|1+\mathrm{j} f /\left(10 f_{1}\right)\right|}{\left|1+\mathrm{j} f / f_{1}\right|}
$$

and phase φ of the transfer function becomes

$$
\begin{aligned}
\varphi & =\frac{1+\mathrm{j} f / f_{2}}{1+\mathrm{j} f / f_{1}}=\arctan \left(\frac{f}{f_{2}}\right)-\arctan \left(\frac{f}{f_{1}}\right) \\
& =\arctan \left(\frac{f}{10 f_{1}}\right)-\arctan \left(\frac{f}{f_{1}}\right)
\end{aligned}
$$

If, alternatively, f_{1} and f_{2} are given, R_{1} and R_{2} can be computed from
and

$$
\begin{equation*}
R_{1}=\frac{1}{2 \pi C}\left(\frac{1}{f_{1}}-\frac{1}{f_{2}}\right) \tag{6.5a}
\end{equation*}
$$

$$
\begin{equation*}
R_{2}=\frac{1}{2 \pi C} \frac{1}{f_{2}} \tag{6.5b}
\end{equation*}
$$

6.1.2 Transient Response of Modified Lag Networks

When $V_{\text {in }}$ and $V_{\text {out }}$ are represented in the time domain, it can be shown that for the circuit of Figure 6.1b,

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{ou}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{1+s R_{2} C}{1+s\left(R_{1}+R_{2}\right) C} \tag{6.6}
\end{equation*}
$$

When input voltage $V_{\text {in }}$ is a step function with magnitude V_{0},
and

$$
\begin{equation*}
\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}=\frac{V_{0}}{s} \tag{6.7}
\end{equation*}
$$

$$
\begin{equation*}
\mathscr{L}\left\{V_{\text {out }}(t)\right\}=\frac{1}{s} \frac{1+s R_{2} C}{1+s\left(R_{1}+R_{2}\right) C} V_{0} \tag{6.8}
\end{equation*}
$$

The inverse Laplace transform of Equation 6.8 can be written for times $t>0$ as

$$
\begin{equation*}
V_{\mathrm{out}}(t)=V_{0}\left[1-\frac{R_{1}}{R_{1}+R_{2}} e^{-\Delta t\left(R_{1}+R_{2}\right) C_{1}}\right] \tag{6.9}
\end{equation*}
$$

EXAMPLE 6.2. In the modified lag network of Example 6.1, $\left(R_{1}+R_{2}\right) / R_{2}=10$. Thus, $R_{1} /\left(R_{1}+R_{2}\right)=0.9$ and Equation 6.9 becomes

$$
V_{\text {out }}(t)=V_{0}\left[1-0.9 e^{-t /\left(R_{1}+R_{2}\right) C 1}\right], \quad t>0
$$

Figure 6.3 shows $V_{\text {out }}$ as a function of $t /\left(R_{1}+R_{2}\right) C$. Note the jump of $0.1 V_{0}$ at time $t=0$. This is because for short times capacitor C acts as a short-circuit, and as a result output voltage $V_{\text {out }}$ becomes $V_{0} R_{2} /\left(R_{1}+R_{2}\right)=0.1 V_{0}$ immediately after $t=0$.

FIGURE 6.3 Output voltage $V_{\text {out }}$ as a function of $t /\left[\left(R_{1}+R_{2}\right) C \mid\right.$ in
Example 6.2.

Lead Networks

A lead network is shown in Figure 6.4. As is the case for modified lag networks, lead networks modify the properties of operational amplifiers. They are usually located external to the operational amplifier.

FIGURE 6.4 A lead network.

6.2.1 Frequency Response of Lead Networks

In the frequency domain representation, the transfer function can be written

$$
\begin{equation*}
\frac{V_{\text {out }}(f)}{V_{\text {in }}(f)}=\frac{f_{1}}{f_{2}} \frac{1+\mathrm{j} f / f_{1}}{1+\mathrm{j} f / f_{2}}, \tag{6.10a}
\end{equation*}
$$

where corner frequency f_{1} (zero frequency) is defined by

$$
\begin{equation*}
f_{1} \equiv \frac{1}{2 \pi R_{1} C} \tag{6.10b}
\end{equation*}
$$

and corner frequency f_{2} (pole frequency) by

$$
\begin{equation*}
f_{2} \equiv \frac{1}{2 \pi C \frac{R_{1} R_{2}}{R_{1}+R_{2}}} . \tag{6.10c}
\end{equation*}
$$

It is seen from Equations 6.10 b and 6.10 c that $f_{2} \geqslant f_{1}$; thus, the magnitude of Equation 6.10a,

$$
\begin{equation*}
\left|\frac{V_{\text {out }}(f)}{V_{\mathrm{ia}}(f)}\right|=\frac{f_{1}}{f_{2}} \frac{\left|1+\mathrm{j} f / f_{1}\right|}{\left|1+\mathrm{j} f / f_{2}\right|} \tag{6.11}
\end{equation*}
$$

is monotonically increasing as a function of frequency f. Phase φ of Equation 6.10 a can be written

$$
\begin{equation*}
\varphi=\frac{1+\mathrm{j} f / f_{1}}{1+\mathrm{j} f / f_{2}}=\arctan \left(\frac{f}{f_{1}}\right)-\arctan \left(\frac{f}{f_{2}}\right) \tag{6.12}
\end{equation*}
$$

Bode plots of a lead network with $f_{2}=100 f_{1}$ are shown in Figure 6.5.

FIGURE 6.5 Bode plots $G \equiv 20 \mathrm{~dB} \log _{10}\left|\left(f_{1} / f_{2}\right)\left(1+\mathrm{j} f / f_{1}\right) /\left(1+\mathrm{j} f / f_{2}\right)\right|$
and $\varphi \equiv\left(f_{1} / f_{2}\right)\left(1+\mathrm{j} f / f_{1}\right) /\left(\mathbf{1}+\mathrm{j} f / f_{2}\right)$ for a lead network with $f_{2}=\mathbf{1 0 0} \boldsymbol{f}_{1}$.

It can be seen from Equations 6.10 b and 6.10 c that

$$
\begin{equation*}
\frac{f_{2}}{f_{1}}=\frac{R_{1}+R_{2}}{R_{2}}=1+\frac{R_{1}}{R_{2}} \tag{6.13}
\end{equation*}
$$

Thus, if f_{2} / f_{1} is given, it determines R_{1} / R_{2}; however, C and either R_{1} or R_{2} can still be chosen. If f_{1} and f_{2} are given, R_{1} and R_{2} can be computed from

$$
\begin{equation*}
R_{1}=\frac{1}{2 \pi C} \frac{1}{f_{1}} \tag{6.14a}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{2}=\frac{1}{2 \pi C} \frac{1}{f_{2}-f_{1}} \tag{6.14b}
\end{equation*}
$$

EXAMPLE 6.3. In the lead network of Figure 6.4, $\left(R_{1}+R_{2}\right) / R_{2}=10$; thus, $f_{2} / f_{1}=10$. The magnitude of the transfer function, from Equation 6.11 , is

$$
\left|\frac{V_{\text {out }}(f)}{V_{\text {in }}(f)}\right|=\frac{f_{1}}{f_{2}} \frac{\left|1+\mathrm{j} f / f_{1}\right|}{\left|1+\mathrm{j} f / f_{2}\right|}=\frac{1}{10} \frac{\left|1+\mathrm{j} f / f_{1}\right|}{\left|1+\mathrm{j} f /\left(10 f_{1}\right)\right|}
$$

and phase φ of the transfer function is

$$
\varphi=\frac{1+\mathrm{j} f / f_{1}}{1+\mathrm{j} f / f_{2}}=\arctan \left(\frac{f}{f_{1}}\right)-\arctan \left(\frac{f}{10 f_{1}}\right)
$$

6.2.2 Transient Response of Lead Networks

When $V_{\text {in }}$ and $V_{\text {out }}$ are represented in the time domain, it can be shown that

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\text {in }}(t)\right\}}=\frac{R_{2}}{R_{1}+R_{2}}-\frac{1+s C R_{1}}{1+s C \frac{R_{1} R_{2}}{R_{1}+R_{2}}} \tag{6.15}
\end{equation*}
$$

When input voltage V_{in} is a step function with magnitude V_{0},

$$
\begin{equation*}
\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}=\frac{V_{0}}{s} \tag{6.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{L}\left\{V_{\text {oul }}(t)\right\}=\frac{1}{s} \frac{R_{2}}{R_{1}+R_{2}} \frac{1+s C R_{1}}{1+s C \frac{R_{1} R_{2}}{R_{1}+R_{2}}} V_{0} . \tag{6.17}
\end{equation*}
$$

The inverse Laplace transform of Equation 6.17 can be written for times $t>0$ as

$$
\begin{equation*}
V_{\text {out }}(t)=\frac{R_{2}}{R_{1}+R_{2}} V_{0}\left[1+\frac{R_{1}}{R_{2}} e^{-l /\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}} c\right)}\right] \tag{6.18}
\end{equation*}
$$

EXAMPLE 6.4. In the lead network of Example 6.3, $\left(R_{1}+R_{2}\right) / R_{2}=10$. Thus, $R_{2} /\left(R_{1}+R_{2}\right)=0.1, R_{1} / R_{2}=9$, and Equation 6.18 becomes

$$
V_{\text {out }}(t)=V_{0}\left[0.1+0.9 e^{-t /\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}} c\right)}\right], \quad t>0
$$

Output voltage $V_{\text {out }}$ is shown in Figure 6.6. Note the initial jump of V_{0} at time $t=0$. This is because for short times capacitor C acts as a short-circuit, and as a result output voltage $V_{\text {out }}$ becomes equal to V_{0} immediately after $t=0$. Also note that output voltage $V_{\text {out }}$ becomes $0.1 V_{0}$ for long times.

6.3 Voltage Divider Networks

Figure 6.7 shows a voltage divider network, which is often used for feedback in operational amplifier circuits. This circuit is quite general and, as will be seen, it can have the characteristics of a resistive voltage divider, a lag network, a modified lag network, or a lead network.

6.3.1 Frequency Response of Voltage Divider Networks

When $V_{\text {in }}$ and $V_{\text {oul }}$ are represented in the frequency domain, it can be shown that the transfer function is

$$
\begin{equation*}
\frac{V_{\mathrm{ou} 1}(f)}{V_{\mathrm{in}}(f)}=\frac{R_{P}}{R_{s}+R_{P}} \frac{1+\mathrm{j} f / f_{1}}{1+\mathrm{j} f / f_{2}} \tag{6.19a}
\end{equation*}
$$

where corner frequency f_{1} (zero frequency) is defined by

$$
\begin{equation*}
f_{1} \equiv \frac{1}{2 \pi R_{s} C_{s}} \tag{6.19b}
\end{equation*}
$$

and corner frequency f_{2} (pole frequency) by

$$
\begin{equation*}
f_{2} \equiv \frac{1}{2 \pi \frac{R_{S} R_{P}}{R_{S}+R_{P}}\left(C_{S}+C_{P}\right)} \tag{6.19c}
\end{equation*}
$$

Note that the ratio of the corner frequencies in Equations 6.19 b and 6.19 c is

$$
\begin{equation*}
\frac{f_{2}}{f_{1}}=\frac{R_{S}+R_{P}}{R_{P}} \frac{C_{S}}{C_{S}+C_{P}} \tag{6.20}
\end{equation*}
$$

thus,

$$
\begin{equation*}
\frac{f_{2}}{f_{1}} \leqslant \frac{R_{S}+R_{P}}{R_{P}} \tag{6.21}
\end{equation*}
$$

EXAMPLE 6.5. In the voltage divider network of Figure $6.7, R_{\mathrm{s}}=10,000 \Omega$, $R_{P}=100 \Omega, C_{S}=0.5 \mathrm{pF}$, and $C_{P}=5 \mathrm{pF}$. Thus,

$$
\begin{aligned}
f_{1} & \equiv \frac{1}{2 \pi R_{S} C_{S}}=\frac{1}{2 \pi(10,000)\left(0.5 \times 10^{-12}\right)}=31.8 \mathrm{MHz} \\
f_{2} & \equiv \frac{1}{2 \pi \frac{R_{S} R_{P}}{R_{S}+R_{P}}\left(C_{S}+C_{P}\right)}=292 \mathrm{MHz}
\end{aligned}
$$

and the transfer function becomes

$$
\frac{V_{\text {out }}(f)}{V_{\mathrm{in}}(f)}=\frac{R_{P}}{R_{\mathrm{S}}+R_{P}} \frac{1+\mathrm{j} f / f_{1}}{1+\mathrm{j} f / f_{2}}=0.0099 \frac{1+\mathrm{j} f / 31.8 \mathrm{MHz}}{1+\mathrm{j} f / 292 \mathrm{MHz}}
$$

Limiting cases of the voltage divider network are shown in Figure 6.8. Figure $6.8 a$ is a resistive divider with a frequency-independent $V_{\text {out }} / V_{\mathrm{in}}=R_{P} /\left(R_{P}+R_{S}\right)$. Figure $6.8 b$ has a transfer function of

$$
\begin{equation*}
\frac{V_{\mathrm{out}}(f)}{V_{\mathrm{in}}(f)}=\frac{R_{P}}{R_{P}+R_{S}} \frac{1}{1+\mathrm{j} f / f_{0}} \tag{6.22a}
\end{equation*}
$$

where corner frequency f_{0} is

$$
\begin{equation*}
f_{0} \equiv \frac{R_{P}+R_{S}}{2 \pi R_{P} R_{S} C_{P}} \tag{6.22b}
\end{equation*}
$$

that is, this circuit has the frequency characteristics of a lag network. The circuit of Figure $6.8 c$ is a lead network (see Equations 6.10a-c). The last circuit (Figure $6.8 d$) is a compensated voltage divider network where

$$
\begin{equation*}
R_{S} C_{S}=R_{P} C_{P} \tag{6.23}
\end{equation*}
$$

It can be shown that when Equation 6.23 is satisfied, the transfer function of Equation 6.19a reduces to

$$
\begin{equation*}
\frac{V_{\mathrm{ou} 1}(f)}{V_{\mathrm{in}}(f)}=\frac{R_{P}}{R_{S}+R_{P}} \tag{6.24}
\end{equation*}
$$

(d)

FIGURE 6.8 Limiting cases of the voltage divider network: (a) resistive divider, (b) lag network, (c) lead network, and (d) compensated voltage divider
independent of frequency and identical to the transfer function of the resistive divider of Figure 6.8a. Thus, if the frequency-independent transfer function of the divider of Figure $6.8 a$ is desired but unavoidable capacitances are present, one of the capacitances should be increased such that Equation 6.23 is satisfied.

EXAMPLE 6.6. In the preceding example, $R_{S}=10,000 \Omega, R_{P}=100 \Omega$, $C_{S}=0.5 \mathrm{pF}$, and $C_{P}=5 \mathrm{pF}$ were given for the component values in the circuit of Figure 6.7 and a frequency-dependent transfer function $V_{\text {out }}(f) / V_{\text {in }}(f)$ resulted. If a frequency-independent transfer function is desired, then from Equation 6.23

$$
\frac{C_{P}}{C_{S}}=\frac{R_{S}}{R_{P}}=\frac{10,000 \Omega}{100 \Omega}=100
$$

should hold. In the original circuit, however,

$$
\frac{C_{P}}{C_{S}}=\frac{5 \mathrm{pF}}{0.5 \mathrm{pF}}=10
$$

A $C_{P} / C_{S}=100$ can be attained by connecting an additional $45-\mathrm{pF}$ capacitance in parallel with the original C_{P}, resulting in

$$
\frac{C_{P}}{C_{s}}=\frac{5 \mathrm{pF}+45 \mathrm{pF}}{0.5 \mathrm{pF}}=100
$$

and in a frequency-independent transfer function.

6.3.2 Transient Response of Voltage Divider Networks

When input voltage $V_{\text {in }}$ and output voltage $V_{\text {out }}$ in the circuit of Figure 6.7 are represented in the time domain,

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{ou}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{R_{P}}{R_{s}+R_{P}} \frac{1+s \tau_{1}}{1+s \tau_{2}} \tag{6.25a}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{1}=R_{S} C_{S} \tag{6.25b}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{2}=\frac{R_{S} R_{P}}{R_{S}+R_{P}}\left(C_{S}+C_{P}\right) \tag{6.25c}
\end{equation*}
$$

When input voltage $V_{\text {in }}$ is a step function with magnitude V_{0},

$$
\begin{equation*}
\mathscr{L}\left\{V_{\text {in }}(t)\right\}=\frac{V_{0}}{s} \tag{6.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{L}\left\{V_{\text {oul }}(t)\right\}=\frac{R_{P}}{R_{s}+R_{P}} \frac{1}{s} \frac{1+s \tau_{1}}{1+s \tau_{2}} V_{0} \tag{6.27}
\end{equation*}
$$

The inverse Laplace transform of Equation 6.27 can be written for times $t>0$ as

$$
\begin{equation*}
V_{\text {out }}(t)=\frac{R_{P}}{R_{S}+R_{P}} V_{0}\left[1+\left(\frac{\tau_{1}}{\tau_{2}}-1\right) e^{-t / \mathrm{z}_{2}}\right] \tag{6.28a}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\tau_{2} \neq 0 \tag{6.28b}
\end{equation*}
$$

Depending on the values of τ_{1} and τ_{2}, Equation 6.28a may represent six different characteristics:

1. When $\tau_{1}=0$ and $\tau_{2}=0$, Equation 6.28a is not applicable; however, the circuit is a resistive voltage divider and $V_{\text {out }} / V_{\text {in }}$ is a constant for all times.
2. When $\tau_{1}=\tau_{2}, \tau_{1} / \tau_{2}-1=0$, the circuit is a compensated voltage divider, and $V_{\text {out }} / V_{\text {in }}$ is a constant for all times.
3. When $\tau_{1}=0$ and $\tau_{2} \neq 0, \tau_{1} / \tau_{2}-1=-1$, the circuit has the characteristics of a lag network, and $V_{\text {out }}=$ constant $\cdot\left(1-e^{-t / t_{1}}\right)$ for $t>0$.
4. When $\tau_{1}<\tau_{2}, \tau_{1} / \tau_{2}-1<0$, the circuit has the characteristics of a modified lag network, and the transient has the form of Equation 6.9 and Figure 6.3.
5. When $\tau_{1}>\tau_{2}, \tau_{1} / \tau_{2}-1>0$, the circuit has the characteristics of a lead network, and the transient has the form of Equation 6.18 and Figure 6.6.
6. When $\tau_{1} \neq 0$ and $\tau_{2}=0$, Equation 6.28a is not applicable. Also, according to Equations 6.25 b and $6.25 \mathrm{c}, R_{P}$ becomes 0 in Figure 6.7; thus, $V_{\text {out }}=0$ at all times and the circuit is useless.

6.4 Compound Lag Networks

Two forms of a modified lag network were shown in Figure 6.1. However, in reality there is always stray capacitance in parallel with the output terminals. Two forms of the resulting network are shown in Figure 6.9, which are equivalent if $V_{\mathrm{in}}=I_{\mathrm{in}} R_{\mathbf{1}}$. In what follows, the circuit of Figure 6.9 b is discussed first, even though the circuit of Figure 6.9a is used more often.

As was also the case for modified lag networks, compound lag networks are used for modifying the properties of operational amplifiers. They may be part of the operational amplifier or may be added externally. The discussion of compound lag networks starts here with the Laplace transform domain; this is followed by descriptions of their frequency response and transient response.

6.4.1 Laplace Transforms for Compound Lag Networks

The transfer function of the compound lag network of Figure $6.9 b$ can be written in the Laplace transform domain as

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\text {in }}(t)\right\}}=\frac{1+s R_{2} C_{2}}{1+s\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)+s^{2} R_{1} C_{1} R_{2} C_{2}} \tag{6.29}
\end{equation*}
$$

FIGURE 6.9 Two equivalent forms of a compound lag network.

Equation 6.29 can also be written

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{1+s \tau_{2}}{\left(1+s \tau_{L}\right)\left(1+s \tau_{U}\right)} \tag{6.30a}
\end{equation*}
$$

where

$$
\begin{align*}
& \tau_{2}=R_{2} C_{2}, \tag{6.30b}\\
& \frac{1}{\tau_{L}}=\frac{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}}{2 R_{1} C_{1} R_{2} C_{2}}\left(1-\sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}}\right) \tag{6.30c}\\
& \frac{1}{\tau_{U}}=\frac{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}}{2 R_{1} C_{1} R_{2} C_{2}}\left(1+\sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}}\right) . \tag{6.30d}
\end{align*}
$$

Equations 6.30 c and 6.30 d can be simplified when $R_{2} \ll R_{1}$, which is often the case for operational amplifiers. In such cases, as shown in Appendix B, Section B.1, time constants τ_{L} and τ_{U} can be approximated, and Equations 6.30a-d can be written

$$
\begin{align*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\text {ia }}(t)\right\}} & =\frac{1+s \tau_{2}}{\left(1+s \tau_{L}\right)\left(1+s \tau_{U}\right)} \tag{6.31a}\\
\tau_{2} & =R_{2} C_{2} \tag{6.31b}\\
\tau_{L} & =R_{1}\left(C_{1}+C_{2}\right) \tag{6.31c}\\
\tau_{U} & =R_{2} \frac{C_{1} C_{2}}{C_{1}+C_{2}} \tag{6.31d}
\end{align*}
$$

provided that

$$
\begin{equation*}
\frac{R_{2}}{R_{1}} \ll 1 \tag{6.31e}
\end{equation*}
$$

Reasons for the designations τ_{L} and τ_{U} will be seen in Section 6.4.2. Also, it can be shown (see Appendix B, Section B.2) that in the exact Equations 6.30a-d time constants τ_{L}, τ_{2}, and τ_{U} have the relative magnitudes

$$
\begin{equation*}
\frac{1}{\tau_{L}}<\frac{1}{\tau_{2}}<\frac{1}{\tau_{U}} \tag{6.32a}
\end{equation*}
$$

which can also be written (see Problem 6.20)

$$
\begin{equation*}
\tau_{\mathrm{L}}>\tau_{2}>\tau_{v} \tag{6.32b}
\end{equation*}
$$

6.4.2 Frequency Response of Compound Lag Networks

When $V_{\text {in }}$ and $V_{\text {out }}$ are represented in the frequency domain then, by use of Equations $6.30 \mathrm{a}-\mathrm{d}$ with the substitution $s=\mathrm{j} 2 \pi f$, the transfer function becomes

$$
\begin{equation*}
\frac{V_{\mathrm{ou}}(f)}{V_{\mathrm{in}}(f)}=\frac{1+\mathrm{j} f / f_{2}}{\left(1+\mathrm{j} f / f_{L}\right)\left(1+\mathrm{j} f / f_{U}\right)} \tag{6.33a}
\end{equation*}
$$

where
$f_{2}=\frac{1}{2 \pi R_{2} C_{2}}$,
$f_{L}=\frac{1}{2 \pi} \frac{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}}{2 R_{1} C_{1} R_{2} C_{2}}\left(1-\sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}}\right)$,
$f_{U}=\frac{1}{2 \pi} \frac{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}}{2 R_{1} C_{1} R_{2} C_{2}}\left(1+\sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}}\right)$.
Note that $f_{L}<f_{2}<f_{U}$, hence the use of the subscripts L and U (lower and upper).

When $R_{2} \ll R_{1}$, then, based on Equations 6.31c and 6.31d, Equations 6.33c and 6.33 d can be approximated as

$$
\begin{equation*}
f_{L}=\frac{1}{2 \pi R_{1}\left(C_{1}+C_{2}\right)} \tag{6.34a}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{U}=\frac{C_{1}+C_{2}}{2 \pi R_{2} C_{1} C_{2}} \tag{6.34b}
\end{equation*}
$$

The resulting Bode plots are shown in Figure 6.10 by the graphs marked (a). Four regions can be distinguished. At the lowest frequencies, that is, for $f \ll f_{L}$, the magnitude is a constant 1 and the phase is 0°. The straight-line magnitude segment between f_{L} and f_{2} drops at a rate of $-20 \mathrm{~dB} /$ decade of frequency, and

FIGURE 6.10 Bode plots $G \equiv 20 \mathrm{~dB} \log _{10}\left|V_{\text {out }}(f)\right| V_{\text {in }}(f) \mid$ and $\varphi \equiv$ $V_{\text {out }}(f) / V_{\text {if }}(f)$ for a compound lag network described by Equations 6.33a, $6.33 \mathrm{~b}, 6.34 \mathrm{a}$, and 6.34 b ; (a) $C_{2} \neq 0$ and (b) $C_{2}=0$.
the straight-line magnitude segment between f_{2} and f_{U} has a constant magnitude of f_{L} / f_{2}. At the highest frequencies, that is, for $f \gg f_{U}$, the magnitude is $1 / 2 \pi R_{1} C_{1} f$, dropping at a rate of $-20 \mathrm{~dB} /$ decade of frequency, and the phase is -90°.

Figure 6.10 also shows, by the graphs marked (b), the transfer function for the case when $C_{2}=0$-hence when R_{2} is ineffective. In this case, the circuit becomes a lag network with a corner frequency $f_{1}=1 / 2 \pi R_{1} C_{1}$. Note that the inclusion of R_{2} and C_{2} lowers the magnitude of the frequency response.

The use of compound lag networks is illustrated in Example 6.7.

EXAMPLE 6.7. A Type 2539 wideband operational amplifier includes a compound lag network with $R_{1}=2 \mathrm{M} \Omega, R_{2}=1.47 \mathrm{k} \Omega, C_{1}=0.4 \mathrm{pF}$, and $C_{2}=3.6 \mathrm{pF}$. Thus, by use of Equation 6.33 b ,

$$
f_{2}=\frac{1}{2 \pi R_{2} C_{2}}=\frac{1}{2 \pi(1.47 \mathrm{k} \Omega)(3.6 \mathrm{pF})} \cong 30 \mathrm{MHz}
$$

The ratio $R_{2} / R_{1}=1.47 \mathrm{k} \Omega / 2 \mathrm{M} \Omega \cong 0.74 \times 10^{-3}=0.074 \% \ll 1$. Hence, f_{L} and f_{U} can be approximated by Equations 6.34 a and 6.34 b , resulting in

$$
f_{L}=\frac{1}{2 \pi R_{1}\left(C_{1}+C_{2}\right)}=\frac{1}{2 \pi(2 \mathrm{M} \Omega)(0.4 \mathrm{pF}+3.6 \mathrm{pF})} \cong 20 \mathrm{kHz}
$$

and

$$
f_{U}=\frac{C_{1}+C_{2}}{2 \pi R_{2} C_{1} C_{2}}=\frac{0.4 \mathrm{pF}+3.6 \mathrm{pF}}{2 \pi(1.47 \mathrm{k} \Omega)(0.4 \mathrm{pF})(3.6 \mathrm{pF})} \cong 300 \mathrm{MHz}
$$

The amplification of the remainder of the operational amplifier can be approximated as $A_{\mathrm{dc}} /\left(1+\mathrm{j} f / f_{A}\right)$, where $A_{\mathrm{dc}}=30,000$ and $f_{A}=30 \mathrm{MHz}$.* Thus, by use of Equation 6.33a, the overall amplification becomes

$$
\begin{aligned}
A & =\frac{1+\mathrm{j} f / f_{2}}{\left(1+\mathrm{j} f / f_{L}\right)\left(1+\mathrm{j} f / f_{U}\right)} \frac{30,000}{1+\mathrm{j} f / f_{A}} \\
& =\frac{1+\mathrm{j} f / 30 \mathrm{MHz}}{(1+\mathrm{j} f / 20 \mathrm{kHz})(1+\mathrm{j} f / 300 \mathrm{MHz})} \frac{30,000}{1+\mathrm{j} f / 30 \mathrm{MHz}} \\
& =\frac{30,000}{(1+\mathrm{j} f / 20 \mathrm{kHz})(1+\mathrm{j} f / 300 \mathrm{MHz})} .
\end{aligned}
$$

This is shown by the graphs marked (a) in Figure 6.11. The straight-line magnitude segment between $f_{L}=20 \mathrm{kHz}$ and $f_{U}=300 \mathrm{MHz}$ drops at a rate of -20 dB /decade of frequency, and for $f \gg 300 \mathrm{MHz}$ the magnitude drops at a rate of $-40 \mathrm{~dB} /$ decade of frequency.
*This is only a rough approximation; an additional corner frequency of 300 MHz will be introduced in Chapter 7.

FIGURE 6.11 Bode plots $G \equiv 20 \mathrm{~dB} \log _{10}|A|$ and $\varphi \equiv L A$ for the overall amplifications in Example 6.7: (a) $C_{2}=3.6 \mathrm{pF}$ and (b) $C_{2}=0$.

In the case when $C_{2}=0, R_{2}$ is ineffective, and the overall amplification becomes

$$
\frac{1}{1+\mathrm{j} f / f_{1}} \frac{30,000}{1+\mathrm{j} f / f_{A}}
$$

where

$$
f_{1}=\frac{1}{2 \pi R_{1} C_{1}}=\frac{1}{2 \pi(2 \mathrm{M} \Omega)(0.4 \mathrm{pF})} \cong 200 \mathrm{kHz}
$$

$$
f_{A}=30 \mathrm{MHz}
$$

Hence, when $C_{2}=0$, the overall amplification is

$$
A=\frac{30,000}{(1+\mathrm{j} f / 200 \mathrm{kHz})(1+\mathrm{j} f / 30 \mathrm{MHz})}
$$

shown by the graphs marked (b) in Figure 6.11. The magnitude of this amplification drops at a rate of -40 dB /decade of frequency above a frequency of 30 MHz -as compared to a frequency of 300 MHz in the case of $C_{2}=3.6 \mathrm{pF}$. It will be seen in Chapters 7 and 8 that the $C_{2}=3.6 \mathrm{pF}$ case of graph (a) in Figure 6.11 is preferable, even though the amplification in the $C_{2}=0$ case of graph (b) in Figure 6.11 has a greater magnitude between 20 kHz and 300 MHz (this is because the phase with $\mathrm{C}_{2}=3.6 \mathrm{pF}$ is preferable at frequencies above 3 MHz).

6.4.3 Transient Response of Compound Lag Networks

When input voltage $V_{\text {in }}$ is a step function with magnitude V_{0},

$$
\begin{equation*}
\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}=\frac{V_{0}}{s} \tag{6.35}
\end{equation*}
$$

and, by use of Equation 6.30a,

$$
\begin{equation*}
\mathscr{L}\left\{V_{\text {out }}(t)\right\}=\frac{V_{0}}{s} \frac{1+s \tau_{2}}{\left(1+s \tau_{L}\right)\left(1+s \tau_{U}\right)} . \tag{6.36}
\end{equation*}
$$

The inverse Laplace transform of Equation 6.36 can be written for times $t>0$, as

$$
\begin{equation*}
V_{\text {out }}(t)=V_{0}\left(1-\frac{\tau_{2}-\tau_{U}}{\tau_{L}-\tau_{U}} e^{-t / \tau_{U}}-\frac{\tau_{L}-\tau_{2}}{\tau_{L}-\tau_{U}} e^{-t / \tau_{L}}\right) \tag{6.37}
\end{equation*}
$$

6.5 Series RLC Circuits

Inductances are only rarely significant in operational amplifier circuits. The principal reason for discussing the series RLC circuit, shown in Figure 6.12, is the use of the results in representing feedback amplifiers in Chapter 8. The discussion starts here in the Laplace transform domain; this is followed by descriptions of the frequency response and the transient response.

The transfer function of the series RLC circuit shown in Figure 6.12 can be written in the Laplace transform domain as

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{1}{1+R C s+L C s^{2}} \tag{6.38}
\end{equation*}
$$

which can also be written

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{ou}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{1}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)}, \tag{6.39a}
\end{equation*}
$$

where

$$
\begin{align*}
& \frac{1}{\tau_{1}}=\frac{R}{2 L}(1+\sqrt{1-4 m}) \tag{6.39b}\\
& \frac{1}{\tau_{2}}=\frac{R}{2 L}(1-\sqrt{1-4 m}) \tag{6.39c}
\end{align*}
$$

and

$$
\begin{equation*}
m=\frac{L}{R^{2} C} \tag{6.39~d}
\end{equation*}
$$

Three cases can be distinguished: There are two distinct real roots when $m<0.25$; there are two equal real roots when $m=0.25$; and there are two conjugate complex roots when $m>0.25$.

The resulting frequency response is shown in Figure 6.13 for various values of $m=L / R^{2} C$. It can be shown that there is a peak in the magnitude versus frequency graphs when $m>0.5$.

FIGURE 6.13 Bode plots $G \equiv 20 \mathrm{~dB} \log _{10}\left|V_{\text {our }}(f) / V_{\text {in }}(f)\right|$ and $\varphi \equiv$ $V_{\text {oni }}(f) / V_{i n}(f)$ for the series $R L C$ circuit of Figure 6.12 with various values of $m \equiv L / R^{2} C$ and with $f_{0} \equiv 1 / 2 \pi R C$.

When input voltage $V_{\text {in }}$ is a step function with magnitude V_{0}, $\mathscr{L}\left\{V_{\text {in }}(t)\right\}=V_{o} / s$ and for times $t>0$
$V_{\text {out }}(t)=V_{0}\left[1-\frac{(1+\sqrt{1-4 m}) e^{-(1-\sqrt{1-4 m}) / 2 m R C}}{2 \sqrt{1-4 m}}\right.$

$$
\left.+\frac{(1-\sqrt{1-4 m}) e^{-(1+\sqrt{1-4 m) t / 2 m R C}}}{2 \sqrt{1-4 m}}\right]
$$

when

$$
m<0.25
$$

it is

$$
\begin{equation*}
V_{\text {out }}(t)=V_{0}\left[1-\left(1+\frac{2 t}{R C}\right) e^{-2 t / R C}\right] \tag{6.41a}
\end{equation*}
$$

when

$$
\begin{equation*}
m=0.25 \tag{6.41b}
\end{equation*}
$$

and it is
$V_{\mathrm{out}}(t)=V_{0}\left\{1-e^{-t / 2 m R c}\left[\cos (\sqrt{m-0.25} t / m R C)+\frac{\sin (\sqrt{m-0.25} t / m R C)}{2 \sqrt{m-0.25}}\right]\right\}$
when

$$
\begin{equation*}
m>0.25 \tag{6.42b}
\end{equation*}
$$

Equations $6.40,6.41$, and 6.42 are illustrated in Figure 6.14 for various values of $m=L / R^{2} C$. The transients are free of overshoot and ringing when $m \leqslant 0.25$.

FIGURE 6.14 Transient response of the series RLC circuit of Figure 6.12 for a step-function input with magnitude V_{0}, for various values of $m=L / R^{\mathbf{2}} C$.

Figure 6.15 shows, as functions of $m=L / R^{2} C$, various characteristics of the transients of Figure 6.14: The propagation delay of the 50% point, t_{50}; the $10 \%-90 \%$ rise time, t_{10-90}; and the percentage of ringing, ε, defined as $\left[\left(V_{\text {out }}\right)_{\text {max }}-V_{0}\right] / V_{0}$ in Figure 6.14.

FIGURE 6.15 Propagation delay of the 50% point, $\boldsymbol{t}_{50}, 10 \%-\mathbf{9 0} \%$ rise time, \mathbf{t}_{10-90}, and percentage of ringing, ε, for the transients of Figure 6.14, for varions values of $m=L / R^{2} C$.

PROBLEMS

6.1 Show that the two forms of the modified lag network shown in Figure 6.1
are equivalent if $V=R_{1} l^{2}$ are equivalent if $V_{\mathrm{in}}=R_{1} I_{\mathrm{in}}$.
6.2 Derive Equations 6.1 and 6.4.
6.3 A modified lag network consists of the circuit of Figure $6.1 b$ with $R_{1}=10,000 \Omega, R_{2}=200 \Omega$, and $C=1000 \mathrm{pF}$. What are the values of f_{1} and f_{2} in Equation 6.1? Sketch the Bode plots, using piecewise linear approximation for the gain. Repeat for $R_{1}=5000 \Omega$.
6.4 Derive Equation 6.6.
6.5 Derive Equation 6.9 using Appendix A. [Hint: Break up the second fraction in Equation 6.8 into a sum of two parts, one part with a
6.6 Derive Equations 6.10 other part with a numerator of $s R_{2} C$.]
6.6 Derive Equations 6.10 and 6.14.
6.7 A lead network consists of the circuit of Figure 6.4 with $R_{1}=10,000 \Omega$, $R_{2}=100 \Omega$, and $C=10 \mathrm{pF}$. What are the values of f_{1} and f_{2} in Equations 6.10 b and 6.10 c ? Sketch the Bode plots, using piecewise linear approximation for the gain. Repeat for $R_{1}=5000 \Omega$.
6.8 Derive Equation 6.15.
6.9 Derive Equation 6.18 using Appendix A. [Hint: Break up the third fraction in Equation 6.17 into a sum of two parts, one part with a numerator of 1 and the other part with a numerator of $s C R_{1}$.]
6.10 Sketch the Bode plots for Examples 6.1 and 6.3.
6.11 In the voltage divider network of Figure $6.7, R_{S}=10,000 \Omega, R_{P}=1000 \Omega$, $C_{S}=0.5 \mathrm{pF}$, and $C_{P}=10 \mathrm{pF}$. What is $V_{\text {out }}(f) / V_{\text {in }}(f)$? Modify the circuit by the addition of a capacitance such that the transfer function $V_{\text {oui }}(f) / V_{\text {in }}(f)$ is frequency-independent. Give the location and the value of the capacitance required.
6.12 Sketch output voltage $V_{\text {out }}(t)$ in the voltage divider network of Figure 6.7 if the input voltage is a step function $V_{\text {in }}(t)=(1 \mathrm{~V}) u(t) ; R_{s}=1000 \Omega$, $R_{P}=2000 \Omega$, and $C_{P}=1000 \mathrm{pF}$. Assume $C_{S}=1000 \mathrm{pF}, 2000 \mathrm{pF}$, and 5000 pF .
6.13 Derive Equation 6.28a using Appendix A. [Hint: Break up the third fraction in Equation 6.27 into a sum of two parts, one part with a numerator of 1 and the other part with a numerator of $s \tau_{1}$.]
6.14 Verify the statements following Equation 6.28 b at the end of Section 6.3.2.
6.15 Derive Equation 6.29.
6.16 Derive Equations 6.30a-d from Equation 6.29.
6.17 Show that τ_{L} and τ_{U} of Equations 6.30 c and 6.30 d are always real and positive.
6.18 Demonstrate that $\tau_{L} \tau_{U}=R_{1} C_{1} R_{2} C_{2}$ in Equations 6.30 c and 6.30 d .
6.19 Verify Equations 6.33a-d and Equations 6.34a and 6.34b.
*6.20 Derive Equation 6.32b from Equation 6.32a. [Hint: First show that $\tau_{L}>\tau_{2}$; then show that $\tau_{2}>\tau_{U}$. Next, combine these results to obtain Equation 6.32b.]
6.21 Verify Figure 6.10.
6.22 Verify the results of Example 6.7.
6.23 Derive Equation 6.37 using Appendix A. [Hint: Break up the second fraction in Equation 6.36 into a sum of two parts, one part with a numerator of 1 and the other part with a numerator of $s \tau_{2}$.]
6.24 Show that in Equation 6.37
(a) $V_{\text {out }}=0$ at $t=0$;
(b) $V_{\text {out }}=V_{0}$ when $t \rightarrow \infty$.
6.25 Derive Equation 6.38.
*Optional problem.

Derive Equations 6.39a-d.
*6.27 (a) Compute and sketch into Figure 6.13 the magnitude and the phase of the frequency response for $m=0.25$.
(b) Show that the slope of magnitude G in Figure 6.13 for $f / f_{0} \gg 1$ is $-20 \mathrm{~dB} /$ decade when $m=0$ and it is $-40 \mathrm{~dB} /$ decade when $m \neq 0$.
6.28 Demonstrate that the magnitudes in Figure 6.13 are peaked when $m>0.5$. [Hint: Take the derivative of $\left|V_{\text {out }}(f) / V_{\text {in }}(f)\right|^{2}$ with respect to frequency and equate it to zero.]
6.29 Derive Equation 6.40a using Appendix A.
6.30 Derive Equation 6.41a using Appendix A.
6.31 Derive Equation 6.42a using Appendix A. [Hint: Use the identity
$e^{j x}=\cos x+j \sin x$] $\left.e^{j x}=\cos x+j \sin x.\right]$
6.32 Show that in Equations 6.40a, 6.41a, and 6.42a
(a) $V_{\text {out }}=0$ at $t=0$;
(b) $V_{\text {out }}=V_{0}$ when $t \rightarrow \infty$.

CHAPTER 7

Stability of Feedback Amplifiers

Frequency response and transient response of operational amplifiers were discussed in Chapters 5 and 6. The resulting frequency response and transient response, however, can be altered by the application of feedback. In some cases, the application of feedback results in an unstable system, that is, in a system that provides an output signal without an input signal. This chapter discusses limits and margins of stability in feedback amplifiers.

7.1 The Nyquist Criterion

Whether a noninverting feedback amplifier, characterized by a resulting amplification of

$$
\begin{equation*}
M_{N}=\frac{A}{1+A F_{N}} \tag{7.1}
\end{equation*}
$$

is stable for a given A and F_{N} is determined by the roots of $1+A F_{N}$: The system is stable if all roots have negative real parts. This criterion of stability can be shown to be equivalent to the Nyquist criterion, which is based on the Nyquist diagram. The Nyquist diagram is the line of $A F_{N}$ plotted in the complex plane for frequencies, f, of $-\infty \leqslant f \leqslant+\infty$.

Thus, a Nyquist diagram requires the plotting of $A F_{N}$ not only for positive frequencies but for negative frequencies as well. Fortunately, $A F_{N}$ is easy to find for negative frequencies by use of $A F_{N}$ for positive frequencies. This is because, in all frequency responses considered here, f and j always appear multiplied by each other. Thus, the same result is obtained by multiplying j by -1 as would be obtained by multiplying f by -1 . Hence, $A F_{N}$ for negative frequencies can be obtained by substituting - j for j , that is, by up-down mirroring the line of $A F_{N}$ for positive frequencies with respect to the $\operatorname{Re}\left(A F_{N}\right)$ axis(horizontal axis).

The Nyquist criterion of stability can be expressed as follows: If A and F_{N} of Equation 7.1 describe stable systems, then the system described by M_{N} of Equation 7.1 is stable if and only if the Nyquist diagram of $A F_{N}$ does not encircle the $-1+\mathrm{j} 0$ point. Cases when A and/or F_{N} themselves describe unstable systems are not discussed here. (Continued on page 86.)

FIGURE 7.1 Nyquist diagrams of two stable systems (a and c) and two unstable systems (b and d).

There can be several descriptions of the term encircle. For a physically realizable system, A is zero at $f=-\infty$ and at $f=+\infty$; hence, the Nyquist diagram is a closed curve.. This closed curve can be thought of as a loop of string, with a stake driven into the complex plane at the $-1+j 0$ point. If the loop of string can be removed (without lifting it over the stake), then it does not encircle the stake and the system is stable. Thus, in Figure 7.1a and in Figure 7.1c the loop does not encircle the $-1+\mathrm{j} 0$ point and the system is stable, whereas in Figure $7.1 b$ and in Figure 7.1d the loop encircles the $-1+j 0$ point and the system is unstable.* Alternatively, a vector can be drawn between the $-1+j 0$ point and a point on the line of $A F_{N}$ in the complex plane. If the total angle traversed by this vector is zero as it moves along the line of $A F_{N}$ from $f=-\infty$ to $f=+\infty$, then the loop does not encircle the $-1+\mathrm{j} 0$ point and
the system is stable.

EXAMPLE 7.1. An operational amplifier with an amplification of $A=A_{\mathrm{dc}} /\left(1+\mathrm{j} f / f_{0}\right)$ is used as a noninverting feedback amplifier with a feedback return of F_{N}, where $F_{N}=F_{N, \text { de }}$ is a positive real number. Thus, $A F_{N}=A_{\text {dc }} F_{N, \text { dc }}$ at $f=0$; also, $A F_{N}=0$ at $f=\infty$. It can be shown (see Problem 7.1) that for $f \geqslant 0$ the real part of $A F_{N}, \operatorname{Re}\left(A F_{N}\right)$, and the imaginary part of $A F_{N}, \operatorname{Im}\left(A F_{N}\right)$, are related as

$$
\operatorname{Im}\left(A F_{\mathrm{N}}\right)=-\sqrt{\left(\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{2}\right)^{2}-\left(\operatorname{Re}\left(A F_{N}\right)-\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{2}\right)^{2}}
$$

This equation describes a semicircle below the $\operatorname{Re}\left(A F_{N}\right)$ axis that has a radius of $A_{\mathrm{dc}} F_{N, \mathrm{dc}} / 2$ and its center at $A_{\mathrm{dc}} F_{N, \mathrm{dc}} / 2+\mathrm{j} 0$.
$A F_{N}$ for negative frequencies is obtained by up-down mirroring the line of $A F_{N}$ for positive frequencies. The result is a full circle, as shown in Figure 7.2.

FIGURE 7.2 Nyquist diagram in Example 7.1.
Note that the phase of $A F_{N}$ is always between $+90^{\circ}$ and -90° and it never reaches -180°. Since the $-1+j 0$ point has a phase of -180°, it cannot be encircled and the resulting feedback amplifier is stable for all values of A_{dc}, $F_{N, \text { dc }}$, and f_{0}.

The information presented in a Nyquist diagram for positive frequencies is identical to the information presented in a Bode plot, which uses only positive frequencies. The magnitude, G, of a Bode plot is related to $A F_{N}$ of a Nyquist diagram as

$$
\begin{equation*}
G=20 \mathrm{~dB} \log _{10} \sqrt{\left[\operatorname{Re}\left(A F_{N}\right)\right]^{2}+\left[\operatorname{Im}\left(A F_{N}\right)\right]^{2}} \tag{7.2}
\end{equation*}
$$

Also, the phase, φ, of a Bode plot is related to $A F_{N}$ of a Nyquist diagram as

$$
\begin{equation*}
\varphi=\arctan \left[\frac{\operatorname{lm}\left(A F_{N}\right)}{\operatorname{Re}\left(A F_{N}\right)}\right] \tag{7.3}
\end{equation*}
$$

EXAMPLE 7.2. The Nyquist diagram of Figure 7.2 in Example 7.1 describes a lag network response that has a magnitude of $A_{\mathrm{dc}} F_{\mathrm{N} . \mathrm{dc}}$ at $f=0$. The same information can be described using the Bode plot of Figure 5.3 with $20 \mathrm{~dB} \log _{10}$ ($A_{\mathrm{dc}} F_{N, \mathrm{dc}}$) added to the labels of the G axis.

7.2 Lag Networks

Figure 7.3 illustrates the general characteristics of Nyquist diagrams corresponding to $A F_{N}$ consisting of lag networks with transfer functions of

$$
\begin{align*}
& A F_{N}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{1+\mathrm{j} f / f_{1}} \quad \text { (one lag network), } \tag{7.4}\\
& A F_{N}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)} \text { (two lag networks), } \tag{7.5}\\
& A F_{N}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)\left(1+\mathrm{j} f / f_{3}\right)} \text { (three lag networks), } \tag{7.6}\\
& A F_{N}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)\left(1+\mathrm{j} f / f_{3}\right)\left(1+\mathrm{j} f / f_{4}\right)} \text { (four lag networks), } \tag{7.7}
\end{align*}
$$

where $F_{N, \mathrm{dc}}$ is a positive real number.
It can be seen from Figure 7.3 that $A F_{N}$ of Equations 7.4 and 7.5 always result in stable systems, whereas the stability of a system described by Equation 7.6 or 7.7 depends on the magnitude of $A_{\mathrm{dc}} F_{N, \mathrm{dc}}$ and on the values of the corner frequencies.

The criterion of stability is derived first for an amplifier consisting of three lag networks, that is, for one characterized by Equation 7.6. Separating the real and imaginary parts in the denominator of Equation 7.6 results in

$$
\begin{equation*}
A F_{\mathrm{N}}=\frac{A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}}{1-\frac{f^{2}}{f_{1} f_{2}}-\frac{f^{2}}{f_{1} f_{3}}-\frac{f^{2}}{f_{2} f_{3}}+\mathrm{j}\left(\frac{f}{f_{1}}+\frac{f}{f_{2}}+\frac{f}{f_{3}}-\frac{f^{3}}{f_{1} f_{2} f_{3}}\right)} \tag{7.8}
\end{equation*}
$$

[^1]88 STABILITY OF FEEDBACK AMYLIFIERS

FIGURE 7.3 Nyquist diagrams of lag network responses; (a) one lag network, (b) two lag networks, (c) three lag networks, and (d) four lag
networks.

Since $A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}$ is real, Equation 7.8 is real if

$$
\begin{equation*}
\frac{f}{f_{1}}+\frac{f}{f_{2}}+\frac{f}{f_{3}}-\frac{f^{3}}{f_{1} f_{2} f_{3}}=0 \tag{7.9}
\end{equation*}
$$

One solution of Equation 7.9, is $f=0$, corresponding to the intersection of the line of $A F_{N}$ in Figure $7.3 c$ with the positive real axis. It is of interest here, however, to determine whether the intersection of the line with the negative real axis is to the right or to the left of the $-1+\mathrm{j} 0$ point. If $f \neq 0$, then Equation 7.9 can be divided by f, resulting in

$$
\begin{equation*}
f=\sqrt{f_{1} f_{2}+f_{1} f_{3}+f_{2} f_{3}} \tag{7.10}
\end{equation*}
$$

This frequency represents the point where the line of $A F_{N}$ intersects the negative real axis in Figure $7.3 c$. At this frequency, $A F_{N}$ of Equation 7.8 is real:

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{1-\frac{f^{2}}{f_{1} f_{2}}-\frac{f^{2}}{f_{1} f_{3}}-\frac{f^{2}}{f_{2} f_{3}}} \tag{7.11}
\end{equation*}
$$

The substitution of Equation 7.10 into Equation 7.11 results in

$$
\begin{equation*}
A F_{N}=\frac{-A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{2+\frac{f_{2}+f_{3}}{f_{1}}+\frac{f_{1}+f_{3}}{f_{2}}+\frac{f_{1}+f_{2}}{f_{3}}} \tag{7.12}
\end{equation*}
$$

The system is stable if this is to the right of the $-1+j 0$ point, that is, if in Equation $7.12 A F_{N} \geqslant-1$ (the stability is marginal when $A F_{N}=-1$). This results in the criterion

$$
\begin{equation*}
A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}} \leqslant 2+\frac{f_{2}+f_{3}}{f_{1}}+\frac{f_{1}+f_{3}}{f_{2}}+\frac{f_{1}+f_{2}}{f_{3}} \tag{7.13a}
\end{equation*}
$$

Thus, if a stable system is desired, the maximum permitted value of $A_{\mathrm{dc}} F_{N, \mathrm{dc}}$ is

$$
\begin{equation*}
\left(A_{\mathrm{dc}} F_{N, \mathrm{dc}}\right)_{\max }=2+\frac{f_{2}+f_{3}}{f_{1}}+\frac{f_{1}+f_{3}}{f_{2}}+\frac{f_{1}+f_{2}}{f_{3}} \tag{7.13b}
\end{equation*}
$$

EXAMPLE 7.3. An operational amplifier is characterized by an amplification that can be described by three lag networks with corner frequencies of $f_{1}=1 \mathrm{MHz}, f_{2}=4 \mathrm{MHz}$, and $f_{3}=40 \mathrm{MHz}$. Thus, Equation 7.13a becomes

$$
\begin{aligned}
A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}} & \leqslant 2+\frac{4 \mathrm{MHz}+40 \mathrm{MHz}}{1 \mathrm{MHz}}+\frac{1 \mathrm{MHz}+40 \mathrm{MHz}}{4 \mathrm{MHz}}+\frac{1 \mathrm{MHz}+4 \mathrm{MHz}}{40 \mathrm{MHz}} \\
& =56.4 .
\end{aligned}
$$

The amplifier has a dc amplification $A_{\mathrm{dc}}=4000$; hence, a stable system will result if the feedback return is

$$
F_{N, d c} \leqslant \frac{56.4}{A_{\mathrm{dc}}}=\frac{56.4}{4000}=0.014
$$

This criterion of stability can also be expressed by stating that, in order to satisfy the inequality on dc feedback return $F_{N, \mathrm{dc}}$ it is required that $M_{N, d c}$ be at least

$$
M_{N, \mathrm{dc}}=\frac{A_{\mathrm{dc}}}{1+A_{\mathrm{dc}} F_{N, \mathrm{dc}}}=\frac{4000}{1+56.4}=70
$$

If $M_{N, d c}$ is less than 70 , then $F_{N, d c}$ is greater than 0.014 and the system is unstable. Therefore, it can be concluded that this configuration is not suitable for resulting amplifications of $M_{N, d c}<70$, because the feedback amplifier would oscillate at approximately the frequency given by Equation 7.10, that is, at

$$
\begin{aligned}
f & =\sqrt{f_{1} f_{2}+f_{1} f_{3}+f_{2} f_{3}} \\
& =\sqrt{(1 \mathrm{MHz})(4 \mathrm{MHz})+(1 \mathrm{MHz})(40 \mathrm{MHz})+(4 \mathrm{MHz})(40 \mathrm{MHz})} \\
& =14.3 \mathrm{MHz} .
\end{aligned}
$$

The exact frequency and amplitude of the oscillation would depend on the nonlinear properties of the operational amplifier and will not be analyzed here.

In the case of an inverting feedback amplifier, by use of Equation 3.12, the resulting amplification is

$$
\begin{equation*}
M_{I, \mathrm{dc}}=\frac{-A}{1+(A+1) F_{I, \mathrm{dc}}}=\frac{-1}{1+F_{I, \mathrm{dc}}} \frac{A}{1+\frac{A F_{I, \mathrm{dc}}}{1+F_{I, \mathrm{dc}}}}, \tag{7.14}
\end{equation*}
$$

and the criterion of stability reduces to the case of the noninverting amplifier if feedback return $F_{1, \mathrm{dc}} \ll 1$. If, however, $F_{1, \text { dc }}$ is not much less than 1, it can be shown that the criterion of Equation 7.13 a becomes

$$
\begin{equation*}
\frac{A_{\mathrm{dc}} F_{I, \mathrm{dc}}}{1+F_{I, \mathrm{dc}}} \leqslant 2+\frac{f_{2}+f_{3}}{f_{1}}+\frac{f_{1}+f_{3}}{f_{2}}+\frac{f_{1}+f_{2}}{f_{3}} \tag{7.15}
\end{equation*}
$$

that is, $A_{\mathrm{dc}} F_{1, \mathrm{dc}} /\left(1+F_{I, \mathrm{dc}}\right)$ has to be substituted in place of $A_{\mathrm{dc}} F_{N, \mathrm{dc}}$ in
Equations 7.13 a and 7.13 b .*
In the limiting case when one of the corner frequencies is much lower than the other two, the transfer function of Equation 7.6 can be written

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{\left(\mathrm{j} f / f_{0}\right)\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)} \tag{7.16a}
\end{equation*}
$$

Note that corner frequency f_{0} was introduced instead of f_{3} of Equation 7.6 to emphasize that in Equation 7.16a

$$
\begin{equation*}
f_{0} \ll f_{1} \tag{7.16b}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{0} \ll f_{2} \tag{7.16c}
\end{equation*}
$$

The separation of the real and imaginary parts in the denominator of Equation 7.16 a results in

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{-\frac{f^{2}}{f_{0} f_{1}}-\frac{f^{2}}{f_{0} f_{2}}+\mathrm{j}\left(\frac{f}{f_{0}}-\frac{f^{3}}{f_{0} f_{1} f_{2}}\right)} \tag{7.17}
\end{equation*}
$$

Since $A_{\mathrm{dc}} F_{N, \mathrm{dc}}$ is real, Equation 7.17 is real if

$$
\begin{equation*}
\frac{f}{f_{0}}-\frac{f^{3}}{f_{0} f_{1} f_{2}}=0 \tag{7.18}
\end{equation*}
$$

One solution of Equation 7.18 is $f=0$, corresponding to the intersection of $A F_{N}$ in Figure $7.3 c$ with the positive real axis. If $f \neq 0$, Equation 7.18 can be divided by f, resulting in

$$
\begin{equation*}
f=\sqrt{f_{1} f_{2}} \tag{7.19}
\end{equation*}
$$

*In fact, with this substitution, all stability criteria derived in this chapter for noninverting amplifiers
can be applied to inverting amplifiers (see Problem 7i1). can be applied to inverting amplifiers (see Problem 7.11).

This frequency represents the point where the line of $A F_{N}$ intersects the negative real axis in Figure $7.3 c$. At this frequency, $A F_{N}$ of Equation 7.17 is real:

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{-\frac{f^{2}}{f_{0} f_{1}}-\frac{f^{2}}{f_{0} f_{2}}} \tag{7.20}
\end{equation*}
$$

The substitution of Equation 7.19 into Equation 7.20 results in

$$
\begin{equation*}
A F_{N}=-A_{\mathrm{dc}} F_{N, \mathrm{dc}} \frac{f_{0}}{f_{1}+f_{2}} \tag{7.21}
\end{equation*}
$$

The system is stable if this point is to the right of the $-1+\mathrm{j} 0$ point, that is, if in Equation $7.21 A F_{\mathrm{N}} \geqslant-1$. This results in the criterion

$$
\begin{equation*}
A_{\mathrm{dc}} F_{N, \mathrm{dc}} \leqslant\left(A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}\right)_{\max }=\frac{f_{1}+f_{2}}{f_{0}} \tag{7.22}
\end{equation*}
$$

EXAMPLE 7.4. A Type 2539 wideband monolithic operational amplifier is characterized by an amplification that can be described by three lag networks with corner frequencies of $20 \mathrm{kHz}, 300 \mathrm{MHz}$, and 300 MHz . ${ }^{*}$ Since $20 \mathrm{kHz} \ll 300 \mathrm{MHz}$, Equation 7.16 a can be used with $f_{0}=20 \mathrm{kHz}$, $f_{1}=300 \mathrm{MHz}$, and $f_{2}=300 \mathrm{MHz}$. Thus, according to Equation 7.22 ,

$$
A_{\mathrm{dc}} F_{N, \mathrm{dc}} \leqslant \frac{f_{1}+f_{2}}{f_{0}}=\frac{300 \mathrm{MHz}+300 \mathrm{MHz}}{20 \mathrm{kHz}}=30,000
$$

The amplifier has a typical dc amplification of $A_{\mathrm{dc}}=30,000$; hence, a stable system will result if

$$
F_{N, \mathrm{dc}} \leqslant \frac{30,000}{A_{\mathrm{dc}}}=\frac{30,000}{30,000}=1
$$

This criterion of stability can also be expressed by stating that, in order to satisfy the inequality on feedback return $F_{N, d c}$, it is required that

$$
M_{N, \mathrm{dc}}=\frac{A_{\mathrm{dc}}}{1+A_{\mathrm{dc}} F_{N, \mathrm{dc}}} \geqslant \frac{30,000}{1+30,000} \cong 1 .
$$

Therefore, it can be concluded that the Type 2539 operational amplifier is marginally stable when used as a voltage follower, because small variations could make it unstable. Also, in this case, the approximate frequency of the resulting oscillation, from Equation 7.19 , would be

$$
f=\sqrt{f_{1} f_{2}}=\sqrt{(300 \mathrm{MHz})(300 \mathrm{MHz})}=300 \mathrm{MHz}
$$

*In reality, the characterization of a Type 2539 operational amplifier by these three corner frequencies is only an approximation.

In the case when amplification A consists of four lag networks

$$
\begin{equation*}
A=\frac{A_{\mathrm{dc}}}{\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)\left(1+\mathrm{j} f / f_{3}\right)\left(1+\mathrm{j} f / f_{4}\right)} \tag{7.23}
\end{equation*}
$$

it can be shown that the criterion of stability can be written

$$
\begin{align*}
& A_{\mathrm{dc}} F_{N, \mathrm{dc}} \leqslant\left(A_{\mathrm{dc}} F_{N, \mathrm{dc}}\right)_{\max } \\
&= 2+\frac{f_{1} f_{2} f_{3} f_{4}}{\left(f_{1}+f_{2}+f_{3}+f_{4}\right)^{2}}\left[\frac{1}{f_{1}^{2}}\left(2+\frac{f_{3}+f_{4}}{f_{2}}+\frac{f_{2}+f_{4}}{f_{3}}+\frac{f_{2}+f_{3}}{f_{4}}\right)\right. \\
&+\frac{1}{f_{2}^{2}}\left(2+\frac{f_{3}+f_{4}}{f_{1}}+\frac{f_{1}+f_{4}}{f_{3}}+\frac{f_{1}+f_{3}}{f_{4}}\right) \\
&+\frac{1}{f_{3}^{2}}\left(2+\frac{f_{2}+f_{4}}{f_{1}}+\frac{f_{1}+f_{4}}{f_{2}}+\frac{f_{1}+f_{2}}{f_{4}}\right) \\
&\left.+\frac{1}{f_{4}^{2}}\left(2+\frac{f_{2}+f_{3}}{f_{1}}+\frac{f_{1}+f_{3}}{f_{2}}+\frac{f_{1}+f_{2}}{f_{3}}\right)\right] . \tag{7.24}
\end{align*}
$$

In the limiting case when one of the corner frequencies is much lower than the other three, the transfer function of Equation 7.23 can be written

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}}{\left(\mathrm{j} f / f_{0}\right)\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)\left(1+\mathrm{j} f / f_{3}\right)} \tag{7.25a}
\end{equation*}
$$

with

$$
\begin{align*}
& f_{0}<f_{1}, \tag{7.25b}\\
& f_{0} \ll f_{2} \tag{7.25c}
\end{align*}
$$

and

$$
\begin{equation*}
f_{0} \ll f_{3} \tag{7.25d}
\end{equation*}
$$

and the criterion of stability becomes

$$
\begin{align*}
A_{\mathrm{dc}} F_{N . \mathrm{dc}} & \leqslant\left(A_{\mathrm{dc}} F_{N, \mathrm{dc}}\right)_{\max } \\
& =\frac{2 f_{1} f_{2} f_{3}+f_{1}^{2}\left(f_{2}+f_{3}\right)+f_{2}^{2}\left(f_{1}+f_{3}\right)+f_{3}^{2}\left(f_{1}+f_{2}\right)}{f_{0}\left(f_{1}+f_{2}+f_{3}\right)^{2}} . \tag{7.26}
\end{align*}
$$

Note that corner frequency f_{0} was introduced instead of f_{4} of Equation 7.24 to emphasize that f_{0} is much lower than f_{1}, f_{2}, and f_{3}.

EXAMPLE 7.5. An operational amplifier is characterized by an amplification A of Equation 5.15 with $f_{1}=1 \mathrm{MHz}, f_{2}=4 \mathrm{MHz}, f_{3}=40 \mathrm{MHz}$, and $A_{\mathrm{dc}}=4000$. The operational amplifier is used as a voltage follower, that is, feedback return $F_{N}=F_{N . d c}=1$; hence, $A_{\mathrm{dc}} F_{N, \mathrm{dc}}=4000$. It was shown in Example 7.3 that under these conditions the feedback amplifier is not stable. To obtain a stable system, a fourth lag network with $f_{0}=1 \mathrm{kHz}$ will be incorporated in $A F_{N}$ (either inside or outside the operational amplifier). With these values of f_{1}, f_{2}, f_{3}, and f_{0}, the condition of stability given by Equation 7.26 becomes $A_{\mathrm{dc}} F_{N, \mathrm{dc}} \leqslant 4454$. Thus, an $A_{\mathrm{dc}} F_{N, \mathrm{dc}}=4000$ results in a stable system.

Several other limiting cases are also of interest. When $f_{3}=f_{2}$ in Equation 7.6,

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)^{2}}, \tag{7.27}
\end{equation*}
$$

and the criteria of stability, Equations 7.13 a and 7.13 b , become

$$
\begin{equation*}
A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}} \leqslant\left(A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}\right)_{\max }=4+2\left(\frac{f_{2}}{f_{1}}+\frac{f_{1}}{f_{2}}\right) \tag{7.28}
\end{equation*}
$$

Also, when $f_{2}=f_{1}$ in Equation 7.16a,

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{\left(\mathrm{j} f / f_{0}\right)\left(1+\mathrm{j} f / f_{1}\right)^{2}} \tag{7.29}
\end{equation*}
$$

and the criterion of stability, Equation 7.22, becomes

$$
\begin{equation*}
A_{\mathrm{dc}} F_{N, \mathrm{dc}} \leqslant\left(A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}\right)_{\max }=\frac{2 f_{1}}{f_{0}} \tag{7.30}
\end{equation*}
$$

When $f_{4}=f_{3}=f_{2}$ in Equation 7.23,

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)^{3}} \tag{7.31}
\end{equation*}
$$

and the criterion of stability, Equation 7.24, becomes

$$
\begin{equation*}
A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}} \leqslant\left(A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}\right)_{\mathrm{max}}=8 \frac{\left(1+f_{2} / f_{1}\right)^{3}}{\left(1+3 f_{2} / f_{\mathrm{t}}\right)^{2}} \tag{7.32}
\end{equation*}
$$

Also, when $f_{3}=f_{2}=f_{1}$ in Equation 7.25a,

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{dc}} F_{N, d \mathrm{c}}}{\mathrm{j} f / f_{0}\left(1+\mathrm{j} f / f_{\mathrm{t}}\right)^{3}} \tag{7.33}
\end{equation*}
$$

and the criterion of stability, Equation 7.26, becomes

$$
\begin{equation*}
A_{\mathrm{dc}} F_{N, \mathrm{dc}} \leqslant\left(A_{\mathrm{dc}} F_{N, \mathrm{dc}}\right)_{\max }=\frac{8}{9} \frac{f_{1}}{f_{0}} \tag{7.34}
\end{equation*}
$$

7.3 Lag Compensation

It was seen in Example 7.5 how an amplification A that would result in an unstable system could be modified by the inclusion of an additional lag network to arrive at a stable system. The added lag network had a corner frequency f_{0} that was lower than the other corner frequencies of the operational amplifier by a factor in the rough vicinity of $A_{d c} F_{N, d c}$. This modification is called lag compensation, compensation by a dominant corner frequency, or dominant-pole compensation, where the term pole refers to a corner frequency in the denominator of the transfer function.* When such a compensation is included as part of an operational amplifier, the result is an internally compensated operational amplifier.**

When an operational amplifier with an amplification A is used as a noninverting feedback amplifier, the resulting amplification is

$$
\begin{equation*}
M_{N}=\frac{A}{1+A F_{N}} \tag{7.35}
\end{equation*}
$$

Depending on the characteristics of $A F_{N}$, the feedback amplifier may or may not be stable. If the operational amplifier without feedback is stable and it can be represented by a frequency-dependent amplification A, then it can be shown that the resulting amplification of the feedback amplifier, M_{N}, can always be made stable by modifying (compensating) amplification A by the addition of a lag network (Figure 5.1), resulting in a compensated $A_{\text {comp }} F_{N}$ that can be approximated as

$$
\begin{equation*}
A_{\text {comp }} F_{N} \cong \frac{A F_{N}}{1+\mathrm{j} f / f_{0}} \tag{7.36}
\end{equation*}
$$

EXAMPLE 7.6. The amplification of an operational amplifier can be represented as $A=A_{\mathrm{dc}} /\left(1+\mathrm{j} f / f_{1}\right)^{4}$ with $f_{1}=1 \mathrm{MHz}$ and $A_{\mathrm{dc}}=10,000$. The amplifier is used as a noninverting feedback amplifier with a feedback return of $F_{N}=F_{N, \mathrm{dc}}=0.1$.

Without any compensation, at a frequency f_{1} phase $\angle A=(-4)\left(45^{\circ}\right)=-180^{\circ}$ and magnitude $\left|A F_{N}\right|=(10,000)(0.1) / 4=250>1$. Thus, the feedback amplifier
is not stable.

Modifying A by the addition of a lag network with a corner frequency $f_{0}=100 \mathrm{~Hz}$ (see Equation 7.36), the compensated $\left|A_{\text {comp }} F_{N}\right|$ becomes unity at approximately $f_{0} A_{\mathrm{dc}} F_{N}=(100 \mathrm{~Hz})(10,000)(0.1)=100 \mathrm{kHz}$. At this frequency, phase $\angle A F_{N} \approx-{ }^{1} 13^{\circ}$; hence, the feedback amplifier is stable.

[^2]In the case of an operational amplifier with an amplification of

$$
\begin{equation*}
A=\frac{A_{\mathrm{dc}}}{\left(1+\mathrm{j} f / f_{1}\right)^{3}}, \tag{7.37}
\end{equation*}
$$

compensated by the addition of a lag network with a corner frequency f_{0}, the resulting (compensated) $A_{\text {comp }} F_{N}$ is

$$
\begin{equation*}
A_{\mathrm{comp}} F_{N}=\frac{A_{\mathrm{dc}} F_{N \mathrm{dc}}}{\left(1+\mathrm{j} f / f_{0}\right)\left(1+\mathrm{j} f / f_{1}\right)^{3}} \tag{7.38}
\end{equation*}
$$

It is seen from Equation 7.32 that this results in a stable system if

$$
\begin{equation*}
A_{\mathrm{dc}} F_{N, \mathrm{dc}} \leqslant 8 \frac{\left(1+f_{1} / f_{0}\right)^{3}}{\left(1+3 f_{1} / f_{0}\right)^{2}} \tag{7.39}
\end{equation*}
$$

For a stable system with $A_{\mathrm{dc}} F_{N . \mathrm{dc}} \gg 1$, it can be shown that $f_{0} \ll f_{1}$ and the condition of Equation 7.39 becomes

$$
\begin{equation*}
A_{\mathrm{dc}} F_{N, \mathrm{dc}} \leqslant \frac{8}{9} \frac{f_{1}}{f_{0}} \tag{7.40}
\end{equation*}
$$

Alternatively, for a given feedback factor $A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}} \gg 1$ and for a given f_{1},

$$
\begin{equation*}
f_{0} \leqslant \frac{8}{9} \frac{f_{1}}{A_{\mathrm{dc}} F_{N, d c}} \tag{7.41}
\end{equation*}
$$

is the criterion of stability.
For an operational amplifier with given A_{dc} and f_{1}, the required corner frequency f_{0} is lowest when $F_{N, \mathrm{dc}}$ is highest, which is the case of the voltage follower where $F_{N, d c}=1$. Thus, the criterion of stability for a voltage follower becomes

$$
\begin{align*}
f_{0} \leqslant\left(f_{0}\right)_{\min } & =\frac{8}{9} \frac{f_{1}}{A_{\mathrm{dc}}} \tag{7.42a}\\
F_{N, \mathrm{dc}} & =1 \tag{7.42b}
\end{align*}
$$

The incorporation of a lag network with a corner frequency $\left(f_{0}\right)_{\text {min }}$ given by Equation 7.42a results in a stable system for all values of $F_{N, d e}$. Such an internally compensated operational amplifier can be used for any resulting dc amplification between 1 and A_{dc} with only two external resistors R_{F} and R_{I}, and without a need for any additional external component. However, as will be seen in Chapter 8, this convenience is attained at a cost whereby the bandwidth of the resulting feedback amplifier is lower than the bandwidth attainable by other compensation methods using additional external components.

7.4 Lead-Lag Compensation

Lead-lag compensation consists of the inclusion of an external frequencydependent feedback network, as shown in Figure 7.4. According to Equations 6.19a-c, the feedback return F_{N} in Figure 7.4 is

$$
\begin{equation*}
F_{N}=F_{N . \mathrm{dc}} \frac{1+\mathrm{j} f / f_{L}}{1+\mathrm{j} f / f_{U}} \tag{7.43a}
\end{equation*}
$$

where

$$
\begin{align*}
F_{N, \mathrm{dc}} & =\frac{R_{I}}{R_{F}+R_{I}} \tag{7.43b}\\
f_{L} & =\frac{1}{2 \pi R_{F} C_{F}} \tag{7.43c}
\end{align*}
$$

and

$$
\begin{equation*}
f_{U}=\frac{1}{2 \pi \frac{R_{F} R_{I}}{R_{F}+R_{I}}\left(C_{F}+C_{I}\right)} \tag{7.43d}
\end{equation*}
$$

FIGURE 7.4 Lead-lag compensation.

Note that the subscripts have been changed from those of Equation 6.19. Also, that

$$
\begin{equation*}
f_{L}<f_{U} \tag{7.44}
\end{equation*}
$$

hence the subscripts L and U (lower and upper). The ratio f_{U} / f_{L} can be written, based on Equation 6.20,

$$
\begin{equation*}
\frac{f_{U}}{f_{L}}=\frac{1}{F_{N, \mathrm{dc}}} \frac{1}{1+C_{I} / C_{F}} ; \tag{7.45}
\end{equation*}
$$

hence,

$$
\begin{equation*}
\frac{f_{U}}{f_{L}} \leqslant \frac{1}{F_{N, \mathrm{dc}}} . \tag{7.46}
\end{equation*}
$$

When $A_{\mathrm{dc}} F_{N, \mathrm{dc}} \gg 1$, then $M_{N, \mathrm{dc}} \cong 1 / F_{N, \mathrm{dc}}$, and Equation 7.46 becomes

$$
\begin{equation*}
\frac{f_{U}}{f_{L}} \leqslant M_{N, \mathrm{dc}} . \tag{7.47}
\end{equation*}
$$

Thus, Equation 7.47 limits the ratio of f_{U} / f_{L} to the resulting dc amplification of the feedback amplifier. The limit of $f_{U} / f_{L}=M_{N, \text { dc }}$ can be approached when the ratio C_{I} / C_{F} is small, that is, when the sum C_{I} of the input capacitance of the operational amplifier and of stray capacitances is small compared to feedback capacitance C_{F}.

EXAMPLE 7.7. A feedback amplifier uses the lead-lag compensation of Figure 7.4 with $F_{N, \mathrm{dc}}=0.01$ and $C_{I}=5 \mathrm{pF}$. Thus, according to Equation 7.46, $f_{U} / f_{L} \leqslant 1 / F_{N . d e}=1 / 0.01=100$. Corner frequency f_{L} is chosen as $f_{L}=1 \mathrm{MHz}$. Also, from Equation 7.43c, $C_{F}=1 / 2 \pi R_{F} f_{L}$.

When the dc feedback return, $F_{N . d c}$, is realized by $R_{F}=1980 \Omega$ and $R_{I}=20 \Omega$, then $C_{F}=1 /[2 \pi(1980 \Omega)(1 \mathrm{MHz})]=80 \mathrm{pF}$. Thus, according to Equation $7.45, f_{U} / f_{L}=(1 / 0.01) /(1+5 \mathrm{pF} / 80 \mathrm{pF})=94.1$, close to the maximum possible 100 given by Equation 7.46. Also, with $f_{L}=1 \mathrm{MHz}$, $f_{U}=94.1 f_{L}=(94.1)(1 \mathrm{MHz})=94.1 \mathrm{MHz}$. Note that the Bode plots of F_{N} in this case are close to those of Figure 6.5 with $f_{1}=1 \mathrm{MHz}$.

When the dc feedback return, $F_{N, d c}$, is realized by $R_{F}=19,800 \Omega$ and $R_{\mathrm{I}}=200 \Omega$, then $C_{F}=1 /[2 \pi(19,800 \Omega)(1 \mathrm{MHz})]=8 \mathrm{pF}$. Thus, according to Equation $7.45, f_{V} / f_{L}=(1 / 0.01) /(1+5 \mathrm{pF} / 8 \mathrm{pF})=61.5$, significantly less than the maximum possible 100 given by Equation 7.46. Also, in this case, $f_{U}=61.5 f_{L}=(61.5)(1 \mathrm{MHz})=61.5 \mathrm{MHz}$. The Bode plots of this case are the subject of Problem 7.16.

The value of corner frequency f_{L} is often chosen to be in the vicinity of a corner frequency of the operational amplifier. The discussion here is limited to the simplest case when f_{L} equals a corner frequency of the operational amplifier, thus canceling its effect (pole-zero cancellation).*

If the amplification of an operational amplifier is given by Equation 7.37 as

$$
\begin{equation*}
A=\frac{A_{\mathrm{dc}}}{\left(1+\mathrm{j} f / f_{1}\right)^{3}} \tag{7.48}
\end{equation*}
$$

and lead-lag compensation in the form of Equation 7.43a is applied, the compensated $A F_{N}, A_{\text {comp }} F_{N}$, can be written

$$
\begin{equation*}
A_{\mathrm{comp}} F_{N}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{\left(1+\mathrm{j} f / f_{1}\right)^{3}} \frac{1+\mathrm{j} f / f_{L}}{1+\mathrm{j} f / f_{U}} \tag{7.49}
\end{equation*}
$$

When f_{L} is chosen to equal f_{1}, Equation 7.49 becomes

$$
\begin{equation*}
A_{\mathrm{comp}} F_{N}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{\left(1+\mathrm{j} f / f_{1}\right)^{2}\left(1+\mathrm{j} f / f_{U}\right)}, \tag{7.50}
\end{equation*}
$$

where $f_{v}>f_{1}$.

EXAMPLE 7.8. An operational amplifier has an amplification of $A=A_{\mathrm{dc}} /\left(1+\mathrm{j} f / f_{1}\right)^{3}$ with $A_{\mathrm{dc}}=10,000$ and $f_{1}=1 \mathrm{MHz}$. It is used as a noninverting feedback amplifier with a feedback return $F_{N, d c}=0.01$. Thus, the feedback factor is $A_{\mathrm{dc}} F_{N, \mathrm{dc}}=(10,000)(0.01)=100$ and, according to Equation 7.13 a , the feedback amplifier is not stable.

To make the feedback amplifier stable, lead-lag compensation in the form of Equation 7.43 a is introduced with $f_{L}=1 \mathrm{MHz}$. It can be shown that the criterion of stability, Equation 7.28, becomes approximately

$$
f_{U} \geqslant A_{\mathrm{dc}} F_{N, \mathrm{dc}} \frac{f_{1}}{2}=100 \frac{1 \mathrm{MHz}}{2}=50 \mathrm{MHz}
$$

It was seen in Example 7.7 that $f_{U}=94.1 \mathrm{MHz}$ when $R_{F}=1980 \Omega$ and $R_{I}=20 \Omega$, and $f_{U}=61.5 \mathrm{MHz}$ when $R_{F}=19,800 \Omega$ and $R_{I}=200 \Omega$. Since both of these cases provide $f_{U} \geqslant 50 \mathrm{MHz}$, they both result in a stable feedback amplifier; however, the latter case provides a smaller margin of safety.

7.5 Conditional Stability

All feedback amplifiers considered thus far could be made stable by lowering $A_{\text {dc }}$ of the operational amplifier while holding all other parameters constant. Consider, however, a feedback amplifier characterized by the Nyquist diagram of Figure 7.1c. The line of $A F_{N}$ in Figure $7.1 c$ does not encircle the $-1+\mathrm{j} 0$ point; hence, the feedback amplifier is stable. However, if A_{dc} is lowered, the diagram shrinks and the unstable feedback amplifier characterized by Figure
7.1d may result.

Thus, the stability of a feedback amplifier characterized by the Nyquist diagram of Figure 7.1 c requires not only that $A_{\text {de }}$ be below a certain value, but the stability is also conditional on not having A_{dc} too low. Such amplifiers are called conditionally stable, as opposed to absolutely stable feedback amplifiers such as characterized by the Nyquist diagram of Figure 7.1a, where the magnitude $\left|A F_{N}\right|<1$ for all frequencies when the phase $\varphi=-180^{\circ}$. Next, feedback factor $A F_{N}$ of a conditionally stable feedback amplifier is described.

Consider the amplifier with the feedback factor

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{\left[1+\mathrm{j} f / f_{1}\right]^{3}}\left[\frac{1+\mathrm{j} f /\left(f_{C} / w\right)}{1+\mathrm{j} f /\left(f_{C} w\right)}\right]^{2} \tag{7.51}
\end{equation*}
$$

where crossover frequency f_{C} and $w>1$ are positive real numbers to be specified later. $A F_{N}$ of Equation 7.51 includes the responses of three identical lag networks with corner frequencies f_{1}, as well as of two identical lead-lag networks with $f_{L}=f_{C} / w$ and $f_{U}=f_{C} w$. Such feedback factors occur in systems that include more than one operational amplifier.

When $f_{1}<f_{C} / w$, Equation 7.51 can be approximated for $f \geqslant f_{C} / w$ as

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}}{\left(\mathrm{j} f / f_{1}\right)^{3}}\left[\frac{1+\mathrm{j} f /\left(f_{\mathrm{C}} / w\right)}{1+\mathrm{j} f /\left(\overline{\left.f_{c} w\right)}\right.}\right]^{2} \tag{7.52}
\end{equation*}
$$

Also, if $A_{\mathrm{dc}} F_{N, \mathrm{dc}}$ is chosen as

$$
\begin{equation*}
A_{\mathrm{dc}} F_{N, \mathrm{dc}}=\frac{1}{w^{2}} \frac{f_{\mathrm{c}}^{3}}{f_{1}^{3}} \tag{7.53}
\end{equation*}
$$

Equation 7.52 becomes

$$
\begin{equation*}
A F_{N}=\frac{1}{w^{2}} \frac{1}{\left(\mathrm{j} f / f_{C}\right)^{3}}\left[\frac{1+\mathrm{j} f /\left(f_{c} / w\right)}{1+\mathrm{j} f /\left(f_{C} w\right)}\right]^{2} \tag{7.54}
\end{equation*}
$$

Figure 7.5 shows the Bode plots of Equation 7.54 with $w=5$.
It can be shown (see Problem 7.19) that, for any value of w, at $f=f_{c}$ the magnitude of $A F_{N}$ of Equation 7.54 becomes 1 and the phase of $A F_{N}$ becomes $-90^{\circ}-4 \arctan (1 / w)$. It can also be shown (see Problem 7.20) that the feedback amplifier is stable if $w>1+\sqrt{2}=2.41$ in Equation 7.54. The upper and tower limits of $A_{\mathrm{dc}} F_{N, \mathrm{dc}}$ required for stability are the subject of Problem 7.21.

7.6 Phase Margins

The Nyquist criterion has been found to be a useful tool for determining the limits of stability, and safety margins could be provided by staying away from these limits. However, the Nyquist criterion does not always provide a reliable indication of safety margins.

FIGURE 75 Bode plots of $A F_{N}$ of Equation 7.54 with $w=5: G \equiv$
$20 \mathrm{~dB} \log \mathrm{lo}_{10}\left|A F_{N}\right|$ and $\varphi \equiv \mid A F_{N .}$.
EXAMPLE 7.9. The frequency response of an amplifier consisting of two transistor stages is represented by Equation 7.5. According to the Nyquist criterion, such an amplifier is always stable. However, in reality a transistor amplifier stage also has an excess phase that makes the actual phase $1 \%-10 \%$ more negative than the phase computed from Equation 7.5. Thus, the actual phase may become several degrees more negative than -180°, and the feedback amplifier may become unstable.

An alternative approach imposes a requirement on the phase that is stricter than the Nyquist criterion. It requires that, at a frequency where $\left|A F_{N}\right|=1$, the phase φ should be more positive than or equal to $-180^{\circ}+\varphi_{M}$, where φ_{M} is positive. Thus, it is required that

$$
\begin{equation*}
\varphi_{\left|A F_{N}\right|=1} \geqslant-180^{\circ}+\varphi_{M} \tag{7.55}
\end{equation*}
$$

where φ_{M} is a positive phase margin that is typically between 30° and 60°. Note that Equation 7.55 reverts to the Nyquist criterion if $\varphi_{M}=0$.

As was also the case for the Nyquist criterion, phase margins can be directly evaluated graphically by use of Bode plots. In what follows here, phase margins of several simple transfer functions are considered.

7.6.1 Two Lag Networks

The transfer function of Equation 7.5 consists of two lag network responses and is always stable according to the Nyquist criterion. Its phase φ can be written (see Problem 7.24)

$$
\begin{equation*}
\varphi=\angle A F_{N}=-\arctan \left(\frac{f}{f_{1}}\right)-\arctan \left(\frac{f}{f_{2}}\right) \tag{7.56}
\end{equation*}
$$

To find the frequency where $\left|A F_{N}\right|=1$, the phase given by Equation 7.56 is substituted into Equation 7.55 , resulting in

$$
\begin{equation*}
-\arctan \left(\frac{f}{f_{1}}\right)-\arctan \left(\frac{f}{f_{2}}\right) \geqslant-180^{\circ}+\varphi_{M} . \tag{7.57}
\end{equation*}
$$

It can be shown (see Problem 7.25) that, for $0<\varphi_{M}<90^{\circ}$ and $f>0, f$ can be expressed from Equation 7.57 as

$$
\begin{equation*}
f \leqslant \frac{f_{1}+f_{2}}{2} \cot \varphi_{M}+\sqrt{\left(\frac{f_{1}+f_{2}}{2} \cot \varphi_{M}\right)^{2}+f_{1} f_{2}} \tag{7.58}
\end{equation*}
$$

The magnitude $\left|A F_{N}\right|$ can be written, from Equation 7.5,

$$
\begin{equation*}
\left|A F_{N}\right|=A_{\mathrm{dc}} F_{N, \mathrm{dc}} \frac{1}{\sqrt{1+\left(\frac{f}{f_{1}}\right)^{2}}} \frac{1}{\sqrt{1+\left(\frac{f}{f_{2}}\right)^{2}}} \tag{7.59}
\end{equation*}
$$

hence, the criterion $\left|A F_{N}\right|=1$ becomes

$$
\begin{equation*}
A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}=\sqrt{1+\left(\frac{f}{f_{1}}\right)^{2}} \sqrt{1+\left(\frac{f}{f_{2}}\right)^{2}} \tag{7.60}
\end{equation*}
$$

with f given by Equation 7.58. Equations 7.58 and 7.60 can also be combined as

$$
\begin{equation*}
A_{\mathrm{dc}} F_{N, \mathrm{dc}} \leqslant\left(A_{\mathrm{dc}} F_{N, \mathrm{dc}}\right)_{\max }=\sqrt{1+\left(\frac{f}{f_{1}}\right)^{2}} \sqrt{1+\left(\frac{f}{f_{2}}\right)^{2}} \tag{7.61a}
\end{equation*}
$$

where

$$
\begin{equation*}
f=\frac{f_{1}+f_{2}}{2} \cot \varphi_{M}+\sqrt{\left(\frac{f_{1}+f_{2}}{2} \cot \varphi_{M}\right)^{2}+f_{1} f_{2}} \tag{7.61b}
\end{equation*}
$$

EXAMPLE 7.10. Feedback factor $A F_{N}$ of a feedback amplifier is represented by Equation 7.5 with $f_{1}=1 \mathrm{MHz}$ and $f_{2}=4 \mathrm{MHz}$. What is the maximum permitted value of $A_{\mathrm{dc}} F_{N, \mathrm{dc}}$ for $\varphi_{M}=45^{\circ}$?
Using Equation 7.61b,

$$
f=\frac{1 \mathrm{MHz}+4 \mathrm{MHz}}{2} \cot 45^{\circ}+\sqrt{\left(\frac{1 \mathrm{MHz}+4 \mathrm{MHz}}{2} \cot 45^{\circ}\right)^{2}+(1 \mathrm{MHz})(4 \mathrm{MHz})}
$$

$$
=5.7 \mathrm{MHz}
$$

By use of Equation 7.61a,

$$
\left(A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}\right)_{\max }=\sqrt{1+\left(\frac{5.7 \mathrm{MHz}}{1 \mathrm{MHz})^{2}} \sqrt{1+\left(\frac{5.7 \mathrm{MHz}}{4 \mathrm{MHz}}\right)^{2}} \cong 10\right.}
$$

In the limiting case when one of the corner frequencies is much lower than the other, Equation 7.5 can be written

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{\left(\mathrm{j} f / f_{0}\right)\left(1+\mathrm{j} f / f_{1}\right)} \tag{7.62a}
\end{equation*}
$$

Note that corner frequency f_{0} was introduced instead of f_{2} of Equation 7.5 to emphasize that in Equation 7.62a

$$
\begin{equation*}
f_{0} \ll f_{1} \tag{7.62b}
\end{equation*}
$$

The phase of Equation 7.62a can be written

$$
\begin{equation*}
\varphi=\angle A F_{N}=-90^{\circ}-\arctan \frac{f}{f_{1}} . \tag{7.63}
\end{equation*}
$$

To find the frequency where $\left|A F_{N}\right|=1$, the phase given by Equation 7.63 is substituted into Equation 7.55, resulting in

$$
\begin{equation*}
-90^{\circ}-\arctan \left(\frac{f}{f_{1}}\right) \geqslant-180^{\circ}+\varphi_{M} \tag{7.64}
\end{equation*}
$$

which can also be written

$$
\begin{equation*}
f \leqslant f_{1} \cot \varphi_{M} \tag{7.65}
\end{equation*}
$$

The magnitude $\left|A F_{N}\right|$ can be written, from Equation 7.62a,

$$
\begin{equation*}
\left|A F_{\mathrm{N}}\right|=A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}} \frac{f_{0}}{f} \frac{1}{\sqrt{1+\left(\frac{f}{f_{1}}\right)^{2}}} \tag{7.66}
\end{equation*}
$$

The combination of Equations 7.65 and 7.66 with $\left|A F_{N}\right|=1$ results in

$$
\begin{equation*}
A_{\mathrm{dc}} F_{N, \mathrm{dc}} \leqslant\left(A_{\mathrm{dc}} F_{N, \mathrm{dc}}\right)_{\max }=\frac{f_{1}}{f_{0}} \cot \varphi_{M} \sqrt{1+\cot ^{2} \varphi_{\mathrm{M}}} \tag{7.67}
\end{equation*}
$$

EXAMPLE 7.11. A Type 9914A wideband hybrid operational amplifier is characterized by feedback factor $A F_{N}$ that can be approximated by Equation 7.62 a with $A_{\mathrm{dc}}=5000, f_{0}=0.5 \mathrm{MHz}$, and $f_{1}=50 \mathrm{MHz}$. What is the maximum permitted value of $A_{\mathrm{dc}} F_{N, \mathrm{dc}}$ for $\varphi_{M}=45^{\circ}$?

Using Equation 7.67,

$$
\left(A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}\right)_{\max }=\frac{50 \mathrm{MHz}}{0.5 \mathrm{MHz}} \cot 45^{\circ} \sqrt{1+\cot ^{2} 45^{\circ}}=141.4
$$

Thus, the maximum permitted value of $F_{N, d c}$ is

$$
\left(F_{N, \mathrm{dc}}\right)_{\max }=\frac{141.4}{A_{\mathrm{dc}}}=\frac{141.4}{5000} \cong 0.028
$$

and the minimum permitted value of the resulting amplification $M_{N, d c}$ is approximately

$$
\left(M_{N, \mathrm{dc}}\right)_{\min } \cong \frac{1}{\left(F_{N, \mathrm{dc}}\right)_{\max }}=\frac{1}{0.028} \cong 35 .
$$

The phase margins may be improved by the introduction of lead-lag compensation of the form of Equations $7.43 \mathrm{a}-\mathrm{d}$ with $f_{L}<f_{V}$. For example, if f_{L} is chosen to equal f_{1} of Equation 7.62a, the resulting feedback factor becomes

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{dc}} F_{N . \mathrm{dc}}}{\left(\mathrm{j} f / f_{0}\right)\left(1+\mathrm{j} f / f_{U}\right)}, \tag{7.68}
\end{equation*}
$$

and Equation 7.67 becomes

$$
A_{\mathrm{dc}} F_{N, \mathrm{dc}} \leqslant\left(A_{\mathrm{dc}} F_{N, \mathrm{dc}}\right)_{\max }=\frac{f_{U}}{f_{0}} \cot \varphi_{M} \sqrt{1+\cot ^{2} \varphi_{M}}
$$

EXAMPLE 7.12. Feedback return F_{N} of Example 7.11 is changed from a frequency-independent $F_{N . d c}$ to the F_{N} given by Equation 7.43a with $f_{L}=50 \mathrm{MHz}$ and $f_{U}=250 \mathrm{MHz}$. Thus, for $\varphi_{M}=45^{\circ}$,

$$
\begin{aligned}
\left(A_{\mathrm{dc}} F_{N, \mathrm{dc}}\right)_{\max } & =\frac{250 \mathrm{MHz}}{0.5 \mathrm{MHz}} \cot 45^{\circ} \sqrt{1+\cot ^{2} 45^{\circ}}=707 \\
\left(F_{N, \mathrm{dc}}\right)_{\max } & =\frac{707}{A_{\mathrm{dc}}}=\frac{707}{5000} \cong 0.1414
\end{aligned}
$$

and

$$
\left(M_{N, d c}\right)_{\min } \cong \frac{1}{\left(F_{N, d c}\right)_{\max }}=\frac{1}{0.1414} \cong 7 .
$$

Note that this is a significant improvement over the $\left(M_{N, d c}\right)_{\text {min }}=35$ of Example 7.11.

According to Equation 7.69, it is desirable to have f_{U} as large as possible in order to be able to use a large value of $A_{\mathrm{dc}} F_{N, \mathrm{dc}}$. However, the value of f_{U} is constrained by Equations 7.43a-d. It will now be assumed, and seen later, that in practice the limitations on the choice of feedback capacitance C_{F} do not limit the choice of other values in Equations 7.43a-d. Thus, C_{F} is eliminated by combining Equations $7.43 \mathrm{~b}, 7.43 \mathrm{c}$, and 7.43 d , resulting in

$$
\begin{equation*}
\frac{1}{f_{U}}=F_{N, \mathrm{dc}}\left(\frac{1}{f_{L}}+2 \pi R_{F} C_{I}\right) \tag{7.70}
\end{equation*}
$$

the required value of C_{F} is given, from Equation 7.43c, as

$$
\begin{equation*}
C_{F}=\frac{1}{2 \pi R_{F} f_{L}} \tag{7.71}
\end{equation*}
$$

To have f_{U} large, $1 / f_{U}$ of Equation 7.70 has to be small. With corner frequency f_{L} chosen to equal a corner frequency of the operational amplifier, for a given $F_{N, \mathrm{dc}}$ the only remaining avenue to reduce l / f_{U} in Equation 7.70 is to reduce $R_{F} C_{I}$. It can be seen in Figure 7.4 that capacitance C_{I} is the sum of the operational amplifier input capacitance and of stray capacitances; hence, C_{t} cannot be reduced below a minimum value. This leaves feedback resistor R_{F} to be reduced. Resistance R_{F} can be expressed from Equation 7.70 as

$$
\begin{equation*}
R_{F}=\frac{1}{2 \pi C_{I} f_{L}}\left(\frac{f_{L}}{F_{N, \mathrm{dc}} f_{V}}-1\right) \tag{7.72}
\end{equation*}
$$

where $R_{F} \geqslant 0$ as a consequence of Equation 7.46. Note that the value of R_{F} given by Equation 7.72 may be impractically low, because the current required for a given output voltage swing may exceed the current capability of the output of the operational amplifier. Output current limitations of operational amplifiers will be discussed in Chapter 10.

EXAMPLE 7.13. In the feedback amplifier of Example 7.12, $f_{\mathrm{L}}=50 \mathrm{MHz}$, $f_{U}=250 \mathrm{MHz}$, and $F_{\mathrm{N}, \mathrm{dc}}=\left(F_{N, \mathrm{dc}}\right)_{\text {max }}=0.1414$. Also, $C_{\mathrm{I}}=10 \mathrm{pF}$. Thus, according to Equation 7.72,

$$
R_{F}=\frac{1}{2 \pi(10 \mathrm{pF})(50 \mathrm{MHz})}\left(\frac{50 \mathrm{MHz}}{(0.1414)(250 \mathrm{MHz})}-1\right) \cong 132 \Omega
$$

The required value of C_{F}, from Equation 7.71, is

$$
C_{F}=\frac{1}{2 \pi(132 \Omega)(50 \mathrm{MHz})} \cong 24 \mathrm{pF}
$$

The value of R_{1} can be obtained from Equation 7.43 b as

$$
R_{1}=\frac{F_{N, \mathrm{dc}}}{1-F_{N, \mathrm{dc}}} R_{F}=\frac{0.1414}{1-0.1414} 132 \Omega \cong 22 \Omega
$$

Thus,

$$
R_{F}+R_{I}=132 \Omega+22 \Omega=154 \Omega
$$

As will be seen in Chapter 10, this resistance is sufficiently low to limit the voltage swing at the output of the Type 9914A wideband hybrid operational amplifier.

Consider the amplifier with the feedback factor

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{dc}} F_{N . \mathrm{dc}}}{\left(1+\mathrm{j} f / f_{1}\right)^{2}} \frac{1+\mathrm{j} f /\left(f_{\mathrm{c}} / w\right)}{1+\mathrm{j} f /\left(f_{c} w\right)} \tag{7.73}
\end{equation*}
$$

where crossover frequency f_{C} and $w>1$ are positive real numbers to be specified later. $A F_{N}$ of Equation 7.73 includes the responses of two identical lag networks with corner frequency f_{1}, as well as of a lead-lag compensation with $f_{L}=f_{C} / w$ and $f_{v}=f_{c} w$. Note that the resulting feedback amplifier is always stable according to the Nyquist criterion.

When $f_{1}<f_{c} / w$, Equation 7.73 can be approximated for $f \geqslant f_{c} / w$ as

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{d}} F_{N, \mathrm{dc}}}{\left(\mathrm{j} f / f_{\mathrm{i}}\right)^{2}} \frac{1+\mathrm{j} f /\left(f_{C} / w\right)}{1+\mathrm{j} f /\left(f_{C} w\right)} . \tag{7.74}
\end{equation*}
$$

106 STABILITY OF FEEDBACK AM IFIERS

Also, if $A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}$ is chosen as

$$
\begin{equation*}
A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}=\frac{1}{w} \frac{f_{C}^{2}}{f_{1}^{2}} \tag{7.75}
\end{equation*}
$$

Equation 7.74 becomes

$$
\begin{equation*}
A F_{N}=\frac{1}{w} \frac{1}{\left(\mathrm{j} f / f_{\mathrm{C}}\right)^{2}} \frac{1+\mathrm{j} f /\left(f_{C} / w\right)}{1+\mathrm{j} f /\left(f_{C} w\right)} . \tag{7.76}
\end{equation*}
$$

Figure 7.6 shows the Bode plots of Equation 7.76 with $w=3$.
It can be shown (see Problem 7.32) that, for any value of w, at frequency f_{C} the magnitude of $A F_{N}$ of Equation 7.76 becomes 1 and the phase of $A F_{N}$ becomes $-90^{\circ}-2 \arctan (1 / w)$. Thus, by use of Equation 7.55,

$$
\begin{equation*}
-90^{\circ}-2 \arctan \left(\frac{1}{w}\right) \geqslant-180^{\circ}+\varphi_{M} \tag{7.77a}
\end{equation*}
$$

hence,

$$
\begin{equation*}
\varphi_{M} \leqslant 90^{\circ}-2 \arctan \left(\frac{1}{w}\right) \tag{7.77b}
\end{equation*}
$$

Also, from Equation 7.77b,

$$
\begin{equation*}
w \geqslant \frac{1+\tan \left(\frac{\varphi_{M}}{2}\right)}{1-\tan \left(\frac{\varphi_{M}}{2}\right)} \tag{7.78}
\end{equation*}
$$

EXAMPLE 7.14. In Figure $7.6, w=3$. Thus, according to Equation 7.77b,

$$
\varphi_{M} \leqslant 90^{\circ}-2 \arctan \left(\frac{1}{3}\right)=53.1^{\circ}
$$

that is, the Bode plots of Figure 7.6 satisfy all phase margin requirements of $\varphi_{M} \leqslant 53.1^{\circ}$. If the phase margin requirement is $\varphi_{M}=45^{\circ}$ then, from Equation 7.78,

$$
w \geqslant \frac{1+\tan \left(\frac{45^{\circ}}{2}\right)}{1-\tan \left(\frac{45^{\circ}}{2}\right)}=\frac{1+(\sqrt{2}-1)}{1-(\sqrt{2}-1)}=1+\sqrt{2}=2.41
$$

that is, any $w \geqslant 2.41$ satisfies the phase margin requirement of $\varphi_{M}=45^{\circ}$.

FIGURE 7.6 Bode plots of $A F_{N}$ of Equation 7.76 with $w=3: G \equiv$ $20 \mathrm{~dB} \log _{10}\left|A F_{N}\right|$ and $\varphi \equiv\left\lfloor A F_{N}\right.$.

7.6.2 Three Lag Networks

The transfer function of Equation 7.6 consists of three lag network responses. In the limiting case when one of the corner frequencies is much lower than the other two, the transfer function of Equation 7.6 can be written

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{\left(\mathrm{j} f / f_{0}\right)\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)} . \tag{7.79a}
\end{equation*}
$$

Note that corner frequency f_{0} was introduced instead of f_{3} of Equation 7.6 to emphasize that in Equation 7.79a

$$
\begin{equation*}
f_{0} \ll f_{1} \tag{7.79b}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{0} \ll f_{2} \tag{7.79c}
\end{equation*}
$$

The phase of Equation 7.79a can be written

$$
\begin{equation*}
\varphi=\angle A F_{N}=-90^{\circ}-\arctan \left(\frac{f}{f_{1}}\right)-\arctan \left(\frac{f}{f_{2}}\right) \tag{7.80}
\end{equation*}
$$

To find the frequency where $\left|A F_{N}\right|=1$, the phase given by Equation 7.80 is substituted into Equation 7.55 , resulting in

$$
\begin{equation*}
-90^{\circ}-\arctan \left(\frac{f}{f_{1}}\right)-\arctan \left(\frac{f}{f_{2}}\right) \geqslant-180^{\circ}+\varphi_{M} . \tag{7.81}
\end{equation*}
$$

It can be shown (see Problem 7.35) that, for $0 \leqslant \varphi_{M}<90^{\circ}$ and $f>0, f$ can be expressed from Equation 7.81 as

$$
\begin{equation*}
f \leqslant-\frac{f_{1}+f_{2}}{2} \tan \varphi_{M}+\sqrt{\left(\frac{f_{1}+f_{2}}{2} \tan \varphi_{M}\right)^{2}+f_{1} f_{2}} \tag{7.82}
\end{equation*}
$$

Also, by equating $\left|A F_{N}\right|=1$, it follows from Equation 7.79a that

$$
\begin{equation*}
A_{\mathrm{dc}} F_{N, \mathrm{dc}} \leqslant\left(A_{\mathrm{dc}} F_{N, \mathrm{dc}}\right)_{\max }=\frac{f}{f_{0}} \sqrt{1+\left(\frac{f}{f_{1}}\right)^{2}} \sqrt{1+\left(\frac{f}{f_{2}}\right)^{2}} \tag{7.83a}
\end{equation*}
$$

where

$$
\begin{equation*}
f=-\frac{f_{1}+f_{2}}{2} \tan \varphi_{M}+\sqrt{\left(\frac{f_{1}+f_{2}}{2} \tan \varphi_{M}\right)^{2}+f_{1} f_{2}} \tag{7.83b}
\end{equation*}
$$

EXAMPLE 7.15. A Type 2539 wideband monolithic operational amplifier is characterized by $A_{\mathrm{dc}}=30,000, f_{0}=20 \mathrm{kHz}$, and $f_{1}=f_{2}=300 \mathrm{MHz}$. The phase margin is specified as $\varphi_{M}=45^{\circ}$. Thus, Equation 7.83 b becomes

$$
\begin{aligned}
f= & -\frac{300 \mathrm{MHz}+300 \mathrm{MHz}}{2} \tan 45^{\circ} \\
& +\sqrt{\left(\frac{300 \mathrm{MHz}+300 \mathrm{MHz}}{2} \tan 45^{\circ}\right)^{2}+(300 \mathrm{MHz})(300 \mathrm{MHz})} \\
= & 124 \mathrm{MHz},
\end{aligned}
$$

and Equation 7.83a becomes
$\left(A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}\right)_{\max }=\frac{124 \mathrm{MHz}}{0.02 \mathrm{MHz}} \sqrt{1+\left(\frac{124 \mathrm{MHz}}{300 \mathrm{MHz}}\right)^{2}} \sqrt{1+\left(\frac{124 \mathrm{MHz}}{300 \mathrm{MHz}}\right)^{2}}=7259$.
Hence,

$$
\left(M_{N, \mathrm{dc}}\right)_{\min } \cong \frac{1}{\left(F_{N, \mathrm{dc}}\right)_{\max }}=\frac{A_{\mathrm{dc}}}{7259}=\frac{30,000}{7259}=4.1
$$

Phase margins of transfer functions consisting of three lag network responses may be improved by lead-lag compensation, as was also the case for transfer functions consisting of two lag network responses. If f_{L} is chosen to equal f_{2} in Equation 7.79a, the resulting feedback factor becomes

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}}{\left(\mathrm{j} f / f_{0}\right)\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{U}\right)} \tag{7.84}
\end{equation*}
$$

and Equations 7.83 are applicable with f_{U} substituted for f_{2}. However, lead-lag compensation relocates only one corner frequency and its effects are limited for transfer functions with three lag network responses-especially at low values of $M_{N, \mathrm{dc}}$.

EXAMPLE 7.16. A Type 2539 wideband monolithic operational amplifier is characterized by $\boldsymbol{A}_{\mathrm{dc}}=30,000, f_{0}=20 \mathrm{kHz}$, and $f_{1}=f_{2}=300 \mathrm{MHz}$. The phase margin is specified as $\varphi_{M}=45^{\circ}$. Lead-lag compensation is introduced with $C_{I}=1.8 \mathrm{pF}, R_{F}=150 \Omega$, and $R_{I}=75 \Omega$. Thus,

$$
M_{N, \mathrm{dc}} \cong\left(F_{N, \mathrm{dc}}\right)^{-1}=\left(\frac{R_{I}}{R_{I}+R_{F}}\right)^{-1}=\left(\frac{75 \Omega}{75 \Omega+150 \Omega}\right)^{-1}=3 .
$$

The value of capacitance $C_{I}=1.8 \mathrm{pF}$, and $f_{L}=f_{1}=300 \mathrm{MHz}$. Thus,
and

$$
C_{F}=\frac{1}{2 \pi R_{F} f_{L}}=\frac{1}{2 \pi(150 \Omega)(300 \mathrm{MHz})}=3.5368 \mathrm{pF}
$$

$$
\begin{aligned}
f_{U} & =\frac{1}{2 \pi \frac{R_{F} R_{I}}{R_{F}+R_{I}}\left(C_{F}+C_{I}\right)}=\frac{1}{2 \pi \frac{(150 \Omega)(75 \Omega)}{150 \Omega+75 \Omega}(3.5368 \mathrm{pF}+1.8 \mathrm{pF})} \\
& =596.45 \mathrm{MHz}
\end{aligned}
$$

Also, by use of Equation 7.83 b with f_{U} substituted for f_{2},

$$
\begin{aligned}
f= & -\frac{300 \mathrm{MHz}+596.45 \mathrm{MHz}}{2} \\
& +\sqrt{\left(\frac{300 \mathrm{MHz}+596.45 \mathrm{MHz}}{2}\right)^{2}+(300 \mathrm{MHz})(596.45 \mathrm{MHz})} \\
= & 168.09 \mathrm{MHz} .
\end{aligned}
$$

Hence, by use of Equation 7.83a with f_{U} substituted for f_{2},

$$
\begin{aligned}
\left(A_{\mathrm{dc}} F_{N, \mathrm{dc}}\right)_{\max } & =\frac{168.09 \mathrm{MHz}}{0.02 \mathrm{MHz}} \sqrt{1+\left(\frac{168.09 \mathrm{MHz}}{300 \mathrm{MHz}}\right)^{2}} \sqrt{1+\left(\frac{168.09 \mathrm{MHz}}{596.45 \mathrm{MHz}}\right)^{2}} \\
& =10009 .
\end{aligned}
$$

Thus,

$$
\left(A_{\mathrm{dc}}\right)_{\max }=\frac{\left(A_{\mathrm{dc}} F_{N, \mathrm{dc}}\right)_{\max }}{F_{N, \mathrm{dc}}}=\frac{10009}{1 / 3}=30027
$$

This is greater than the specified $A_{\mathrm{dc}}=30,000$; hence, the feedback amplifier satisfies the phase margin requirement of $\varphi_{M}=45^{\circ}$. Note, however, that this phase margin requirement would not be satisfied if A_{dc} were increased by 0.1%
to a value of 30,030 . Also note the

$$
R_{F}+R_{I}=150 \Omega+75 \Omega=225 \Omega
$$

As will be seen in Chapter 10, this low value of resistance provides a significant limitation on the output voltage swing of the Type 2539 wideband monolithic
operational amplifier.

Resulting bandwidths of feedback amplifiers will be discussed in detail in Chapter 8. It will be seen that an operational amplifier built with a given technology can be optimized to attain a maximum resulting bandwidth for a specified resulting amplification $\boldsymbol{M}_{N, d c}$. For example, the Type 2539 wideband monolithic operational amplifier of the preceding two examples is optimized for resulting amplifications $M_{N . d c}$ in the rough vicinity of 10 . However, its design could be changed to permit its use as a voltage follower (see Problem 7.37). Hence, one way out of the limitations on $M_{N, d c}$ in the preceding two examples is to find an operational amplifier that is more suited for operation at a low value of $M_{N, d c}$-such as the operational amplifier of Problem 7.37. However, if such an operational amplifier is not readily available, there remain two other approaches for the improvement of phase margins for low values of $M_{N, d c}$.

Consider the use of the voltage divider network of Figure 6.7 (page 66) as a feedback network. However, unlike in a lead-lag compensation, an $f_{1}>f_{2}$ is chosen in Equation 6.19a. Thus,

$$
F_{N}=F_{N, \mathrm{dc}} \frac{1+\mathrm{j} f / f_{U}}{1+\mathrm{j} f / f_{\mathrm{L}}}
$$

(7.85a)
where

$$
\begin{align*}
F_{\mathrm{N}, \mathrm{dc}} & =\frac{R_{I}}{R_{F}+R_{I}} \tag{7.85b}\\
f_{U} & =\frac{1}{2 \pi R_{F} C_{F}} \tag{7.85c}
\end{align*}
$$

and

$$
\begin{equation*}
f_{L}=\frac{1}{2 \pi \frac{R_{F} R_{I}}{R_{F}+R_{I}}\left(C_{F}+C_{J}\right)} \tag{7.85d}
\end{equation*}
$$

Note that subscripts L and U are interchanged from those of Equation 7.43a describing lead-lag compensation, because here the corner frequency in the numerator is higher than the corner frequency in the denominator. For this reason, this compensation is called lag-lead compensation (other names are also in use). Also, Equations $7.85 \mathrm{~b}-\mathrm{d}$ do not limit the ratio $f_{U} / f_{L}>1$ because f_{L} can be decreased by increasing C_{I} in Equation 7.85 d without altering f_{U} in Equation 7.85c.

Frequency response characteristics of Equations $7.85 \mathrm{a}-\mathrm{d}$ can be illustrated for $f_{U} / f_{L}=100$ using the Bode plots of Figure 6.2 with f_{L} substituted for f_{1}, f_{U} substituted for f_{2}, and $20 \mathrm{~dB} \log _{10}\left(F_{N . d c}\right)$ added to the labels of the vertical axis. At frequencies of $f \gg f_{U}$, feedback factor $F_{N}=F_{N, d c} f_{L} / f_{U}=F_{N, \mathrm{dc}} /\left(f_{U} / f_{L}\right)$; hence, F_{N} is reduced from its dc value by a factor of $f_{U} / f_{L}>1$. Also, in this frequency range, the phase of F_{N} approaches zero; hence, it does not alter the phase of the operational amplifier.

Consider the case when f_{V} is much lower than the frequency where $=-180^{\circ}+\varphi_{M}$. In this case, for the purpose of phase margins, $F_{N, \text { dc }}$ is replaced by the lesser $F_{N, \mathrm{dc}} /\left(f_{U} / f_{L}\right)$, because $F_{N} \cong F_{N, \mathrm{dc}} /\left(f_{U} / f_{L}\right)$ and $\angle A F_{N} \cong \angle A$ at the frequency where $\angle A=-180^{\circ}+\varphi_{M}$. Therefore, $F_{N, \mathrm{dc}}$ can be chosen greater, and $M_{N, d c}$ can be chosen smaller, than would be the case without the factor $f_{v} / f_{L}>1$.

EXAMPLE 7.17. A Type 2539 wideband monolithic operational amplifier is characterized by $A_{\mathrm{dc}}=30,000, f_{0}=20 \mathrm{kHz}$, and $f_{1}=f_{2}=300 \mathrm{MHz}$ and is to be used as a feedback amplifier with $M_{N, \text { dc }} \cong 1$. The feedback network described by Equation 7.85 a is used with $F_{N . \mathrm{dc}}=1, f_{U}=20 \mathrm{MHz}$, and $f_{L}=2 \mathrm{MHz}$. Thus, the feedback factor can be approximated for frequencies of $f \gg f_{0}=20 \mathrm{kHz}$ as

$$
\begin{aligned}
& A F_{N}=\frac{A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}\left(1+\mathrm{j} f / f_{U}\right)}{\left(\mathrm{j} f / f_{0}\right)\left(1+\mathrm{j} f / f_{1}\right)^{2}\left(1+\mathrm{j} f / f_{L}\right)} \\
& =\quad(30,000)(1 \times 1+\mathrm{j} / 20 \mathrm{MHz}) \\
& =\frac{(\mathrm{j} / / 20 \mathrm{kHzz})(1+\mathrm{j} f / 300 \mathrm{MHz})^{2}(1+\mathrm{j} \mathrm{j} / 2 \mathrm{MHz})}{(2)}
\end{aligned}
$$

Bode plots of the exact $A F_{N}$ are shown in Figure 7.7. Note that $\left|A F_{N}\right|=1$ at a frequency of approximately 60 MHz , and $f_{U}=20 \mathrm{MHz}$ is less than this only by a factor of 3 . However, the resulting phase margin is a reasonable $\varphi_{M}=51^{\circ}$.
The feedback network is realized by that of Figure 7.4 with R_{I} an open circuit and with an arbitrary choice of $R_{F}=1 \mathrm{k} \Omega$. Thus, from Equation 7.85 c ,

$$
C_{F}=\frac{1}{2 \pi R_{F} f_{U}}=\frac{1}{2 \pi(1 \mathrm{k} \Omega)(20 \mathrm{MHz})} \cong 8 \mathrm{pF}
$$

Also, for $R_{I} \rightarrow \infty$, Equation 7.85 d becomes

$$
f_{L}=\frac{1}{2 \pi R_{F}\left(C_{F}+C_{I}\right)}
$$

hence,

$$
C_{i}=\frac{1}{2 \pi R_{F} f_{\mathrm{L}}}-C_{f}=\frac{1}{2 \pi(1 \mathrm{k} \Omega)(2 \mathrm{MHz})}-8 \mathrm{pF} \cong 72 \mathrm{pF}
$$

The resulting feedback amplifier provides a resulting dc amplification of $M_{N, \mathrm{dc}}=1 / F_{N, \mathrm{dc}}=1$. However, M_{N} becomes different from 1 at frequencies greater than or equal to $f_{L}=2 \mathrm{MHz}$. For this reason, the circuit is frequently not called a voltage follower, but only a unity-gain feedback amplifier.

FIGURE 7.7 Bode plots $F \equiv 20 \mathrm{~dB} \log { }_{10}\left|A F_{N}\right|$ and $\varphi \equiv \angle A F_{N}$ in Example 7.17.

A disadvantage of lag-lead compensation is that the resulting amplification starts changing from its dc value at frequency f_{L}, which is very low compared to the corner frequencies of the operational amplifier: $f_{L}=2 \mathrm{MHz}$ as compared to $f_{1}=300 \mathrm{MHz}$ in Example 7.17. This limitation will be discussed further in Chapter 8.
Still another approach for obtaining low values of resulting amplifications M_{N} is to attenuate the signal by a resistive attenuator, while building the feedback amplifier with a higher M_{N} than required. Crude as this may seem, it has some advantages in inverting feedback amplifiers discussed in Sections 7.7 and 8.5.

7.7 Inverting Feedback Amplifiers

Thus far, the discussions of stability and phase margins have been based on a noninverting feedback amplifier, as in Figure 7.4. An inverting feedback amplifier is shown in Figure 7.8.

Figures 7.4 and 7.8 differ in the location of voltage source $V_{\text {in }}$. Therefore, the two circuits become identical when $V_{\mathrm{in}}=0$. Since stability and phase margin considerations have been independent of magnitudes of input voltages, it would seem that they would be equally valid for both Figures 7.4 and 7.8. This is completely correct in principle; however, a practical difference arises from the effects of nonzero source impedances of voltage sources $V_{\text {in }}$.

The stability and phase margins in the noninverting feedback amplifier of Figure 7.4 are quite insensitive to any impedance in series with voltage source $V_{\text {in }}$. In contrast, it was seen that stability and phase margins can critically depend on resistance R_{I}, therefore also on any impedance in series with voltage source $V_{\text {in }}$ in Figure 7.8.

FIGURE 7.8 An inverting feedback amplifier.
The situation is especially critical when $V_{i n}$ in Figure 7.8 is at a remote location and is connected through a transmission line. When the termination at the sending end of the transmission line is not close to its characteristic impedance at all frequencies, the impedance presented by the transmission line at the receiving end-that is, at the inverting feedback amplifier-is dependent on its length and on frequency; hence, it cannot be relied on. In such cases, stability and phase margins have to hold up even when a large impedance appears in series with voltage source $V_{\text {in }}$ in Figure 7.8. This leads to the circuit of Figure 7.9, where stability and phase margins can be assured by a suitable choice of R_{1}, R_{2}, and R_{3}. In practice, these resistors are chosen such that stability and phase margin requirements are satisfied for any resistive source impedance $R_{\text {source }}$.

FIGURE 7.9 An inverting feedback amplifier that is suitable for operation with any $R_{\text {source }}$.

EXAMPLE 7.18. A Type 2539 wideband monolithic operational amplifier is characterized by $A_{\mathrm{dc}}=30,000, f_{0}=20 \mathrm{kHz}$, and $f_{1}=f_{2}=300 \mathrm{MHz}$. It is used as an inverting feedback amplifier in the circuit of Figure 7.9 with $C_{I}=1.8 \mathrm{pF}$, $C_{F}=3.5368 \mathrm{pF}, R_{F}=150 \Omega$, and $R_{2}+R_{3}=75 \Omega$. Thus, when $R_{\text {source }}=\infty$ in Figure 7.9, the circuit becomes identical to that of Example 7.16; hence, it satisfies a phase margin requirement of $\varphi_{M}=45^{\circ}$.

When $R_{\text {source }} \neq \infty$, it lowers the value of R_{I} below $R_{2}+R_{3}=75 \Omega$. This leaves the value of f_{L} unchanged. However, it increases f_{U}, thereby increasing the phase margin. Also, it lowers $F_{N, \mathrm{dc}}$, thus increasing $M_{N, \mathrm{dc}} \cong 1 / F_{N, \mathrm{dc}}$ and further increasing the phase margin. Therefore, a phase margin requirement of $\varphi_{M}=45^{\circ}$ is satisfied with any value of $R_{\text {source }}$ and R_{1}.

In addition to stability and phase margin, the choice of resistors R_{1}, R_{2}, and R_{3} is also governed by other requirements such as the resulting frequency response, transient response, and input impedance of the feedback amplifier. For this reason, further discussion of Figure 7.9 is postponed until Chapter 8.

PROBLEMS

7.1 Show that the Nyquist diagram of Figure 7.2 is a circle that has a radius of $A_{\mathrm{dc}} F_{N, \mathrm{dc}} / 2$ and has its center at $A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}} / 2+\mathrm{j} 0$. [Hint: Multiply the numerator and the denominator of A in Example 7.1 by $\left(1-\mathrm{j} f / f_{0}\right)$ and show that the resulting denominator is real; then express $\operatorname{Im}\left(A F_{N}\right)$ as a function of $\operatorname{Re}\left(A F_{N}\right)$.]
7.2 Derive Equations 7.8, 7.10, and 7.12.
7.3 An internally compensated operational amplifier can be characterized by an A of the form of Equation 5.15 with $f_{1}=10 \mathrm{~Hz}, f_{2}=f_{3}=10 \mathrm{MHz}$ and $A_{\mathrm{dc}}=200,000$. Show that the operational amplifier is stable without additional compensation when it is used as a voltage follower.
7.4 Derive Equations 7.17 and 7.22.
7.5 An operational amplifier is characterized by an A in the form of Equation 7.23 with $f_{1}=1 \mathrm{MHz}, f_{2}=4 \mathrm{MHz}, f_{3}=40 \mathrm{MHz}, f_{4}=100 \mathrm{MHz}$, and $A_{\mathrm{dc}}=4000$. Sketch the Bode plots of $A F_{N}$ if $A_{\mathrm{dc}} F_{N, \mathrm{dc}}=40$. Use the Bode plots and sketch an approximate Nyquist diagram. Is the system
stable?
7.6 An operational amplifier includes a frequency-independent time delay and is characterized by an $A=1000 e^{-j} / / f_{D} /\left(1+\mathrm{j} f / f_{1}\right)$. Sketch the Bode plots of $A F_{N}$, assuming $F_{N}=1$, and $f_{D} / f_{1}=1,100$, and 10,000 . Discuss stability conditions.
*7.7 Use the methods of Appendix B and show that the fractional error of Equation 7.22 has a magnitude of less than $f_{0} / f_{1}+f_{0} / f_{2}$.
*7.8 Derive Equations 7.24 and 7.26.
7.9 Sketch the Bode plots of $A F_{N}$ of Example 7.5 using piecewise linear approximation.
7.10 Sketch the gain plot of $A F_{N}$ of Problem 7.9, but without using piecewise linear approximation.
7.11 Demonstrate that the stability considerations derived in this chapter for noninverting feedback amplifiers can be applied to inverting feedback amplifiers if $F_{i, \mathrm{dc}} /\left(1+F_{I, \mathrm{dc}}\right)$ is substituted in place of $F_{N, \mathrm{dc}}$. [Hint: Express $F_{N, \mathrm{dc}}$ and $F_{I, \mathrm{dc}}$ by resistors R_{F} and $\left.R_{I} \cdot\right]$
*7.12 An approximate rule of stability states that a system is stable if the Bode plot of the gain of $\left|A F_{N}\right|$, or of $\left|A F_{I} /\left(1+F_{I}\right)\right|$, crosses the $0-\mathrm{dB}$ axis with a slope that is not steeper than $-40 \mathrm{~dB} /$ decade. Show that this rule is exact if $A F_{N}$ is of the form of Equation 7.6 with $f_{1} \ll f_{2} \leqslant f_{3}$. Show that the error resulting from the application of this rule in the maximum allowed $A_{\mathrm{dc}} F_{N \text {,dc }}$ is -35% if $A F_{N}$ is in the form of Equation 7.6 with $f_{1}=f_{2}=f_{3}$.
Show that the rule may break down completely in a case Show that the rule may break down completely in a case such as the one
discussed in Problem 7.6.
7.13 Derive Equations 7.28, 7.30, 7.32, and 7.34.
7.14 Derive Equations 7.40 and 7.41.
7.15 Verify Equations 7.43, 7.45, 7.46, and 7.47.
*Optional problem.
7.16 Sketch into Figure 6.5 the Bode plots of Example 7.7 with $f_{1}=f_{L}=1 \mathrm{MHz}$ and $f_{U}=61.5 \mathrm{MHz}$.
7.17 Repeat Example 7.7 with $C_{I}=10 \mathrm{pF}, 50 \mathrm{pF}$, and 100 pF .
7.18 Repeat Example 7.8 with $C_{I}=10 \mathrm{pF}, 50 \mathrm{pF}$, and 100 pF .
7.19 Show that, for any value of w, at $f=f_{C}$ the magnitude of $A F_{N}$ of Equation 7.54 becomes 1 and the phase of $A F_{N}$ becomes $-90^{\circ}-4 \arctan (1 / w)$. [Hint: To find the magnitude of the fraction, divide the magnitude of the numerator by the magnitude of the denominator. To find the phase, use the identity $\arctan x=90^{\circ}-\arctan (1 / x)$, which is valid for $x \geqslant 0$.]
7.20 Show that the feedback amplifier described by Equation 7.54 is stable if $w>1+\sqrt{2} \cong 2.41$. [Hint: Set the phase of $A F_{N}$ to -180°, and use the identity $\tan 2 x=(2 \tan x) /\left(1-\tan ^{2} x\right)$.]
7.21 Use Figure 7.5 to show that, for $w=5$, the feedback amplifier described by Equation 7.52 is stable if $A_{\mathrm{dc}} F_{N, \mathrm{dc}} \leqslant 8.4 f_{c}^{3} / f_{1}^{3} w^{2}$ and if $A_{\mathrm{dc}} F_{N, \mathrm{dc}} \geqslant 0.12 f_{c}^{3} / f_{1}^{3} w^{2}$. [Hint: Consider that Figure 7.5 shows Equation 7.52 with the $A_{\mathrm{dc}} F_{N, \mathrm{dc}}$ of Equation 7.53, and set $\left|A F_{N}\right|=1$ at the frequencies where the phase is -180°.]
7.22 Show that the phase margin in Figure 7.5 is $\varphi_{M}=44.76^{\circ}$.
7.23 Show that the phase margin of the feedback amplifier described by Equation 7.54 is $\varphi_{M}=45^{\circ}$ when $w=1+\sqrt{2}+\sqrt{4+2 \sqrt{2}}=5.027$. [Hint: Use the identities $\tan x=(\sin x) /(\cos x), \tan (x / 2)=(\sin x) /$ $(1+\cos x), 1+\tan ^{2} x=1 / \cos ^{2} x$, and express $1 / w=\tan \left(45^{\circ} / 4\right)$ as a function of $\tan 45^{\circ}=1$.]
7.24 Derive Equation 7.56 from Equation 7.5. [Hint: Note that for any complex $W, X, Y, Z, \angle W X=\angle W+\lfloor X$ and $\angle \underline{Y} / \underline{Z}=\angle Y-\underline{Y}$.
7.25 Derive Equation 7.58 from Equation 7.57. [Hint: Use the identities $\tan (x+y)=(\tan x+\tan y) /(1-\tan x \tan y)$ and $\cot x=\tan \left(90^{\circ}-x\right) ;$ also, assume at the outset and prove at the end that $f^{2}<f_{1} f_{2}$.]
7.26 Verify the results of Example 7.10.
7.27 Sketch the Bode plots for the feedback amplifier of Example 7.10.
7.28 Sketch the Bode plots for the feedback amplifier of Example 7.11. What is the phase margin if $M_{N, \mathrm{dc}}=50$?
7.29 Sketch the Bode plots for the feedback amplifier of Example 7.12. What is the phase margin if $M_{N, \mathrm{dc}}=10$?
7.30 Verify Equations 7.70 and 7.72 .
7.31 Show that when the feedback network of Example 7.12 is realized by that of Figure 7.4 with $F_{N, \mathrm{dc}}=0.1$ and $C_{I}=10 \mathrm{pF}$, then $C_{F}=10 \mathrm{pF}$, $R_{F} \cong 318.3 \Omega$, and $R_{I} \cong 35.4 \Omega$.
7.32 Show that, for any value of w, at $f=f_{c}$ the magnitude of $A F_{N}$ of Equation 7.76 becomes 1 and the phase of $A F_{N}$ becomes $-90^{\circ}-2 \arctan (1 / w)$. [Hint: To find the magnitude of the fraction, divide the magnitude of the numerator by the magnitude of the denominator. To find the phase, use the identity $\arctan x=90^{\circ}-\arctan (1 / x)$, which is valid for $x \geqslant 0$.]
7.33 Derive Equation 7.78 from Equation 7.77b. [Hint: Use the identity $\tan (x-y)=(\tan x-\tan y) /(1+\tan x \tan y)$.
7.34 Use Figure 7.6 to show that, for $w=3$, the feedback amplifier described by Equation 7.74 has a phase margin of at least 45° if $A_{\mathrm{dc}} F_{N . \mathrm{dc}} \leqslant$ $2.7 f_{c}^{2} / f_{1}^{2} w$ and if $A_{\mathrm{dc}} F_{N, \mathrm{dc}} \geqslant 0.37 f_{c}^{2} / f_{1}^{2} w$. [Hint: Consider that Figure 7.6 shows Equation 7.74 with the $A_{\mathrm{dc}} F_{N, \mathrm{dc}}$ of Equation 7.75, and set $\left|A F_{N}\right|$ $=1$ at the frequencies where the phase is $-180^{\circ}+\varphi_{M}=-135^{\circ}$.]
7.35 Derive Equation 7.82 from Equation 7.81. [Hint: Use the identities $\tan (x+y)=(\tan x+\tan y) /(1-\tan x \tan y)$ and $\cot x=\tan \left(90^{\circ}-x\right)$, also, assume at the outset and prove at the end that $f^{2}<f_{1} f_{2}$.]
7.36 Repeat Example 7.15 with $\varphi_{M}=30^{\circ}$, and show that $\left(M_{N, \mathrm{dc}}\right)_{\min } \cong 2.6$.
7.37 Refer to the compound lag network described in Example 6.7, and show that with $R_{2}=294 \Omega$ and $C_{2}=18 \mathrm{pF}$ the overall amplification of the operational amplifier, including the additional corner frequency of 300 MHz in the footnote to Example 6.6, becomes
$\frac{30,000}{(1+\mathrm{j} f / 4.3 \mathrm{kHz})(1+\mathrm{j} f / 300 \mathrm{MHz})(1+\mathrm{j} f / 1380 \mathrm{MHz})}$.
Also show that, when used as a voltage follower, the resulting feedback amplifier satisfies
(a) a phase margin requirement of $\varphi_{M}=60^{\circ}$,
(b) a phase margin requirement of $\varphi_{M}=45^{\circ}$, even if A_{dc} is raised from 30,000 to 60,000 .

CHAPTER 8

Frequency Response and Transient Response of Feedback Amplifiers

Chapter 7 covered stability conditions and margins of feedback amplifiers. This chapter evaluates the frequency responses and the transient responses of the resulting amplifications, M_{N} and M_{I}, as well as input impedances. As in Chapter 7 , the discussion here is also based on noninverting feedback amplifiers; inverting feedback amplifiers are discussed in Section 8.5.

8.1 Operational Amplifiers with $A=A_{\mathrm{dc}}=\infty$

This simple case of the ideal operational amplifier was introduced in Chapter 3 With amplification $A=\infty$ at all frequencies and at all times, the resulting amplification $M_{N}=1 / F_{N}$. This limiting case clearly shows the effects of feedback return F_{N} on the frequency response and the transient response of the resulting amplification M_{N}; this relation will be obscured with the introduction of frequency-dependent amplifications A in later sections.

8.1.1 Frequency-Independent Feedback

This is the simplest possibility, described by Equation 3.8, whereby

$$
\begin{equation*}
M_{N}=M_{N, \mathrm{dc}}=\frac{1}{F_{N}}=\frac{1}{F_{N, \mathrm{dc}}} \tag{8.1}
\end{equation*}
$$

at all frequencies and at all times. This would be an ideal response for amplification without altering the shape of the input signal. Also, unattainable as it is, the limit of Equation 8.1 provides a useful basis for evaluating properties of practical feedback amplifiers.
8.1.2 Lead-Lag Compensation

In lead-lag compensation,

$$
\begin{equation*}
F_{N}=F_{N, \mathrm{dc}} \frac{1+\mathrm{j} f / f_{L}}{1+\mathrm{j} f / f_{U}} \tag{8.2a}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{L}<f_{v} \tag{8.2b}
\end{equation*}
$$

Lead-lag compensation can be implemented using Figure 7.4 with $F_{N, d c}, f_{L}$, and f_{U} given by Equations $7.43 \mathrm{~b}-\mathrm{d}$. When $A=A_{\mathrm{dc}}=\infty$ at all frequencies, the resulting amplification of the feedback amplifier becomes

$$
\begin{equation*}
M_{N}=\frac{1}{F_{N}}=\frac{1}{F_{N, \mathrm{dc}}} \frac{1+\mathrm{j} f / f_{U}}{1+\mathrm{j} f / f_{L}}=M_{N, \mathrm{dc}} \frac{1+\mathrm{j} f / f_{U}}{1+\mathrm{j} f / f_{L}} \tag{8.3}
\end{equation*}
$$

Equation 8.3 can be illustrated for $f_{V} / f_{L}=100$ using the Bode plots of Figure 6.2 with $f_{1}=f_{L}, f_{2}=f_{V}$, and $20 \mathrm{~dB} \log _{10} M_{N, \mathrm{dc}}$ added to the labels of the vertical axis G, which now represents the resulting amplification M_{N}. Thus, M_{N} starts decreasing from its dc value at a frequency of f_{L}. Note that f_{L} is the location of the corner frequency that was cancelled from feedback factor $A F_{N}$ by the introduction of the lead-lag compensation in Chapter 7. For example, $f_{L}=300 \mathrm{MHz}$ in Example 7.16; thus, the decrease of M_{N} resulting from the frequency dependence of F_{N} starts at 300 MHz .

When $V_{\text {in }}$ and $V_{\text {out }}$ are represented in the time domain, the ratio of their Laplace transforms can be written, by use of Equation 8.3,

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=M_{N . \mathrm{dc}} \frac{1+s \tau_{U}}{1+s \tau_{L}} \tag{8.4a}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{U}=\frac{1}{2 \pi f_{U}} \tag{8.4b}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{L}=\frac{1}{2 \pi f_{L}} \tag{8.4c}
\end{equation*}
$$

Note that $f_{U}>f_{L}$; hence, $\tau_{U}<\tau_{L}$. Also, when input voltage $V_{\text {in }}$ is a step function with magnitude V_{0},

$$
\begin{equation*}
\mathscr{L}\left\{V_{\mathrm{la}}(t)\right\}=\frac{V_{0}}{s} \tag{8.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{L}\left\{V_{\mathrm{ou} 1}(t)\right\}=\frac{1}{s} \frac{1+s \tau_{U}}{1+s \tau_{L}} M_{N, \mathrm{dc}} V_{0} \tag{8.6}
\end{equation*}
$$

The inverse Laplace transform of Equation 8.6 can be written for times $t>0$ as

$$
\begin{equation*}
V_{\mathrm{out}}(\mathrm{t})=M_{N, \mathrm{dc}} V_{0}\left[1-\left(1-\frac{\tau_{U}}{\tau_{L}}\right) e^{-1 / \tau_{L}}\right] . \tag{8.7}
\end{equation*}
$$

EXAMPLE 8.1. In Equation 8.7, $\tau_{L} / \tau_{U}=10$. Thus, $\tau_{U} / \tau_{L}=0.1$ and Equation 8.7 becomes

$$
V_{\mathrm{ou}}(t)=M_{N, \mathrm{dc}} V_{0}\left(1-0.9 e^{-t / t_{L}}\right)
$$

A comparison with Example 6.2 shows that $V_{\text {out }}$ of this example can be illustrated using Figure 6.3 with τ_{L} substituted for $\left(R_{1}+R_{2}\right) C$ and $M_{N, d c} V_{0}$ substituted for V_{0}. Thus, in this example, an initial jump of $0.1 M_{N, d c} V_{0}$ is followed by an exponential rise with a magnitude of $0.9 M_{N, d c} V_{0}$ and with a time constant of τ_{L}, to a final value of $M_{N, d e} V_{0}$.

8.1.3 Lag-Lead Compensation

In lag-lead compensation,

$$
\begin{equation*}
F_{N}=F_{N, \mathrm{dc}} \frac{1+\mathrm{j} f / f_{U}}{1+\mathrm{j} f / f_{L}} \tag{8.8a}
\end{equation*}
$$

with

$$
\begin{equation*}
f_{L}<f_{U} \tag{8.8b}
\end{equation*}
$$

Lag-lead compensation can be implemented using Figure 7.4 with $F_{N, d c}, f_{L}$, and f_{U} given by Equations $7.85 \mathrm{~b}-\mathrm{d}$. When $A=A_{\mathrm{dc}}=\infty$ at all frequencies, the resulting amplification of the feedback amplifier becomes

$$
\begin{equation*}
M_{N}=\frac{1}{F_{N}}=\frac{1}{F_{N, d c}} \frac{1+\mathrm{j} f / f_{L}}{1+\mathrm{j} f / f_{U}}=M_{N, \mathrm{dc}} \frac{1+\mathrm{j} f / f_{L}}{1+\mathrm{j} f / f_{U}} \tag{8.9}
\end{equation*}
$$

Equation 8.9 can be illustrated for $f_{v} / f_{L}=100$ using the Bode plots of Figure 6.5 with $f_{1}=f_{L}, f_{2}=f_{U}$, and $40 \mathrm{~dB}+20 \mathrm{~dB} \log _{10} M_{N, \mathrm{dc}}$ added to the labels of the vertical axis G, which now represents the resulting amplification M_{N}. Thus, M_{N} starts increasing from its dc value at a frequency of f_{L}. Note that this corner frequency was a comparatively low $f_{L}=2 \mathrm{MHz}$ in Example 7.17 where, as will be seen later, M_{N} starts increasing from its dc value at a frequency of 2 MHz .

When $V_{\text {in }}$ and $V_{\text {out }}$ are represented in the time domain, the ratio of their Laplace transforms can be written, by use of Equation 8.9,

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{ou}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=M_{N, \mathrm{dc}} \frac{1+s \tau_{\mathrm{L}}}{1+s \tau_{U}} \tag{8.10a}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{L}=\frac{1}{2 \pi f_{L}} \tag{8.10b}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{U}=\frac{1}{2 \pi f_{U}} \tag{8.10c}
\end{equation*}
$$

Note that $f_{U}>f_{L}$; hence, $\tau_{U}<\tau_{L}$. Also, when input voltage $V_{i n}$ is a step function with magnitude V_{0},

$$
\begin{equation*}
\mathscr{L}\left\{V_{\text {out }}(t)\right\}=\frac{1}{s} \frac{1+s \tau_{L}}{1+s \tau_{U}} M_{\mathrm{N}, \mathrm{dc}} V_{0} \tag{8.11}
\end{equation*}
$$

The inverse Laplace transform of Equation 8.11 can be written for times $t>0$ as

$$
\begin{equation*}
V_{\mathrm{out}}(t)=\left[1+\left(\frac{\tau_{L}}{\tau_{U}}-1\right) e^{-t / \tau_{v}}\right] M_{N, \mathrm{dc}} V_{0} \tag{8.12}
\end{equation*}
$$

EXAMPLE 8.2. In Equation 8.12, $\tau_{L} / \tau_{U}=10$. Thus, Equation 8.12 becomes

$$
V_{\text {out }}(t)=\left(1+9 e^{-t / \tau} v\right) M_{N, d c} V_{0} .
$$

A comparison with Example 6.4 shows that $V_{\text {out }}$ of this example can be illustrated using Figure 6.6 with t / τ_{U} as the variable of the horizontal axis and with $10 M_{N, \text { ac }} V_{0}$ substituted for V_{0}. Thus, in this example, an initial jump of $10 M_{N, d c} V_{0}$ is followed by an exponential decay with a magnitude of $9 M_{N, d c} V_{0}$ and with a time constant of τ_{U}, to a final value of $M_{N, \mathrm{dc}} V_{0}$.

Thus, there is an overshoot in the resulting output voltage with a magnitude that is ($\tau_{L} / \tau_{U}-1$) times the final value-nine times the final value in Example 8.2 above. This overshoot can be eliminated and the frequency response can be made flat by inserting in the signal path, preceding or following the feedback amplifier, a voltage divider network of Figure $6.8 d$ with R_{P} omitted, $R_{S} C_{S}=1 / 2 \pi f_{V}$, and $R_{S}\left(C_{S}+C_{P}\right)=1 / 2 \pi f_{L}$. The use of Equations $6.19 \mathrm{a}-\mathrm{c}$ with $R_{P}=\infty$ shows that the frequency response of this network is

$$
\begin{equation*}
\left(\frac{V_{\text {out }}(f)}{V_{\text {in }}(f)}\right)_{\text {network }}=\frac{1+\mathrm{j} f / f_{U}}{1+\mathrm{j} f / f_{L}} \tag{8.13}
\end{equation*}
$$

This frequency response multiplies the frequency response of Equation 8.9, resulting in an overall amplification that is a constant $M_{N}=M_{N, d c}$ at all frequencies and at all times.
8.2 Operational Amplifiers with $A=A_{\text {dc }} /\left(1+\mathrm{j} f / f_{\mathbf{l}}\right)$

Except for the frequency-independent $A=A_{\mathrm{dc}}$ discussed in Section 8.1, this is the simplest representation of the frequency dependence of operational amplifiers. Although too simple to fully characterize realistic operational amplifiers, it can be used to illustrate some basic properties. This is done here for frequency-independent feedback and for lag-lead compensation; however, leadlag compensation is not included, because it requires more complex representations of \boldsymbol{A} for meaningful results.

8.2.1 Frequency-Independent Feedback

In the case of a noninverting feedback amplifier using an operational amplifier that, in the frequency domain, has an amplification of

$$
\begin{equation*}
A=\frac{A_{\mathrm{dc}}}{1+\mathrm{j} f / f_{1}} \tag{8.14}
\end{equation*}
$$

the resulting amplification, M_{N}, becomes

$$
\begin{equation*}
M_{N}=\frac{A}{1+A F_{N, \mathrm{dc}}} \tag{8.15}
\end{equation*}
$$

where feedback return $F_{N, \text { dc }}$ is a positive real dimensionless number. Substitution of Equation 8.14 into Equation 8.15 results in an expression for M_{N} that can be written as

$$
\begin{equation*}
M_{N}=\frac{M_{N, \mathrm{dc}}}{1+\mathrm{j} f /\left[f_{1}\left(1+A_{\mathrm{dc}} F_{N, \mathrm{dc}}\right)\right]}, \tag{8.16a}
\end{equation*}
$$

or as

$$
\begin{equation*}
M_{N}=\frac{M_{N, \mathrm{dc}}}{1+\mathrm{j} f /\left(f_{1} A_{\mathrm{dc}} / M_{N, \mathrm{dc}}\right)} \tag{8.16b}
\end{equation*}
$$

where $M_{N, d c}$ is the resulting amplification of the feedback amplifier at zero frequency,

$$
\begin{equation*}
M_{N, \mathrm{dc}} \equiv \frac{A_{\mathrm{dc}}}{1+A_{\mathrm{dc}} F_{N, \mathrm{dc}}} \tag{8.16c}
\end{equation*}
$$

Equations 8.16a-c are illustrated in Figure 8.1 where Bode plots of magnitudes are plotted for the case of $A_{\mathrm{dc}}=10,000$ with $M_{N, d c}=10,000$ (i.e., $F_{N, d c}=0$), and with $M_{\mathrm{N}, \mathrm{dc}}=100$ (i.e., $F_{\mathrm{N}, \mathrm{dc}}=0.0099$).

It is seen that the corner frequency B of $\left|M_{N}\right|$ has a value of $B=f_{1} A_{\mathrm{dc}} / M_{N, \mathrm{dc}}$. For frequencies of $f \gg B,\left|M_{N}\right| \approx A_{\mathrm{dc}} f_{1} / f$, independent of $F_{N, \mathrm{dc}}$ and thus of $M_{N, d c}$. As a result, the gain plot of $\left|M_{N}\right|$ can be approximated by two straight lines: $\left|M_{N}\right| \approx M_{N, \mathrm{dc}}$ for $f \ll B$ and $\left|M_{N}\right| \approx A_{\mathrm{dc}} f_{1} / f$ for $f \gg B$. Here B equals the $3-d B$ bandwidth (or simply bandwidth) of M_{N} : the frequency at which $\left|M_{N}\right|$ is down by 3 dB from its value at zero frequency.

> FIGURE 8.1 Bode plots of gain $\left|M_{N}\right|$ of Equations $8.16 a-c$ for $A_{d c}=$ 10,000 with $M_{\mathrm{dc}}=10,000$ and 100 .

EXAMPLE 8.3. An operational amplifier is characterized by an amplification given by Equation 8.14 with $f_{1}=1 \mathrm{MHz}$ and $A_{\mathrm{dc}}=10,000$. It is used as a noninverting feedback amplifier with a resulting amplification at zero frequency of $M_{N, \mathrm{dc}}=200$. The resulting amplification M_{N} of the feedback amplifier circuit, from Equation 8.16b, is

$$
\begin{aligned}
M_{N} & =\frac{M_{N, \mathrm{dc}}}{1+\mathrm{j} f /\left(f_{1} A_{\mathrm{dc}} / M_{N, \mathrm{dc}}\right)}=\frac{200}{1+\mathrm{j} f /[(1 \mathrm{MHz})(10,000) / 200]} \\
& =\frac{200}{1+\mathrm{j} f / 50 \mathrm{MHz}}
\end{aligned}
$$

Thus, the $3-\mathrm{dB}$ bandwidth of the feedback amplifier is $B=50 \mathrm{MHz}$.

Equations 8.16 may also be used to approximate M_{N} for operational amplifiers that have more than one corner frequency. This can be done when only one corner frequency of A is within the resulting bandwidth B, and all other
corner frequencies of A are much greater than B.

EXAMPLE 8.4. As a very rough approximation, for frequencies below 1 MHz , the amplification of a Type 741 internally compensated monolithic operational amplifier can be represented by Equation 8.14 with $A_{\mathrm{dc}}=200,000$ and $f_{1}=10 \mathrm{~Hz}$. This approximation ignores an additional corner frequency at 10 MHz , which significantly alters the phase for frequencies above 1 MHz .

When $M_{N, \mathrm{dc}}=10$ then, based on Equation 8.16 b , the $3-\mathrm{dB}$ bandwidth of the resulting feedback amplifier is $B=f_{1} A_{\mathrm{dc}} / M_{N, \mathrm{dc}}=(10 \mathrm{~Hz})(200,000) / 10=$ 200 kHz . Since the approximation of A is valid up to 1 MHz , the $B=200 \mathrm{kHz}$ approximation is valid.

When $M_{N, d c}=1$, the $3-\mathrm{dB}$ bandwidth of the resulting feedback amplifier is $B=f_{1} A_{\mathrm{dc}} / M_{N, \mathrm{dc}}=(10 \mathrm{~Hz})(200,000) / 1=2 \mathrm{MHz}$. Since the approximation of A is valid only up to 1 MHz , the $B=2 \mathrm{MHz}$ approximation is inaccurate.

When $V_{\text {in }}$ and $V_{\text {out }}$ are represented in the time domain, the ratio of their Laplace transforms can be written, based on Equation 8.16b,

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{M_{N, \mathrm{dc}}}{1+s \tau} \tag{8.17a}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau=\frac{M_{N, \mathrm{dc}}}{2 \pi f_{1} A_{\mathrm{dc}}} \tag{8.17b}
\end{equation*}
$$

When input voltage $V_{\text {in }}(t)$ is a step function with magnitude V_{0},

$$
\begin{equation*}
\mathscr{L}\left\{V_{\text {out }}(t)\right\}=\frac{1}{s} \frac{M_{N, \mathrm{dc}}}{1+s \tau} V_{0} \tag{8.18}
\end{equation*}
$$

The inverse Laplace transform of Equation 8.18 can be written for times $t>0$ as

$$
\begin{equation*}
V_{\text {out }}(t)=M_{N, \mathrm{dc}} V_{0}\left(1-e^{-t / \tau}\right) \tag{8.19}
\end{equation*}
$$

with τ given by Equation 8.17 b.

8.2.2 Lag-Lead Compensation

In lag-lead compensation

$$
\begin{equation*}
F_{N}=F_{N, \mathrm{dc}} \frac{1+\mathrm{j} f / f_{U}}{1+\mathrm{j} f / f_{L}} \tag{8.20a}
\end{equation*}
$$

hence also

$$
\begin{equation*}
\frac{1}{F_{N}}=\frac{1}{F_{N, \mathrm{dc}}} \frac{1+\mathrm{j} f / f_{L}}{1+\mathrm{j} f / f_{U}} \tag{8.20b}
\end{equation*}
$$

where in the above equations

$$
\begin{equation*}
f_{L}<f_{U} \tag{8.20c}
\end{equation*}
$$

Figure 8.2 shows piecewise linear approximations for $\left|1 / F_{N}\right|$ of Equation 8.20 b and for $|A|$ of Equation 8.14 by light lines. A piecewise linear approximation of the resulting $\left|M_{N}\right|$ is shown by the heavy line. Also, note that Figure 8.2 assumes $A_{\mathrm{dc}} F_{N, \mathrm{dc}} \gg 1$; hence, $M_{N, d c} \cong 1 / F_{N, \mathrm{dc}}$. Furthermore, note that Figure 8.2 shows equally spaced corner frequencies f_{1}, f_{L}, f_{U}, and f_{C} : This is only for the purpose of the illustration; in reality, these are rarely spaced evenly.

The piecewise linear approximation of $\left|M_{N}\right|$ in Figure 8.2 is obtained as the lesser of $|A|$ and $\left|1 / F_{N}\right|$. The validity of this approximation can be demonstrated as follows.

The expression for M_{N} is given by Equation 3.6 as

$$
\begin{equation*}
M_{N}=\frac{A}{1+A F_{N}} \tag{8.21a}
\end{equation*}
$$

and can also be written as

$$
\begin{equation*}
\frac{1}{M_{N}}=\frac{1}{A}+F_{N} . \tag{8.21b}
\end{equation*}
$$

FIGURE 8.2 Piecewise linear approximations of Bode plots for iag-iead compensation. Light lines illustrate $|A|$ from Equation 8.14 and $\left|1 / F_{N}\right|$ from Equation 8.20 b . The piecewise linear approximation of the resulting $\left|M_{N}\right|$ is shown by the heavy line.

Consider first the case when $|1 / A| \gg\left|F_{N}\right|$, that is, when $|A| \ll\left|1 / F_{N}\right|$. In this case, the second term on the right side of Equation 8.21 b becomes negligibly small. Hence, $\left|1 / M_{N}\right| \cong|1 / A|$; that is,

$$
\begin{equation*}
\left|M_{N}\right| \cong|A|, \tag{8.22a}
\end{equation*}
$$

for

$$
\begin{equation*}
|A| \ll\left|\frac{1}{F_{N}}\right| \tag{8.22b}
\end{equation*}
$$

In the other extreme, $|1 / A| \ll\left|F_{N}\right| ;$ that is, $|A| \gg\left|1 / F_{N}\right|$. In this case, the first term on the right side of Equation 8.21 b becomes negligibly small. Hence, $\left|1 / M_{N}\right| \cong\left|F_{N}\right|$; that is,

$$
\begin{equation*}
\left|M_{N}\right| \cong\left|\frac{1}{F_{N}}\right| \tag{8.23a}
\end{equation*}
$$

for

$$
\begin{equation*}
\left|\frac{1}{F_{N}}\right|<|A| . \tag{8.23b}
\end{equation*}
$$

Thus, $\left|M_{N}\right|$ can be approximated by $|A|$ or by $\left|1 / F_{N}\right|$, whichever is much less than the other.

Special attention is required when $|A|$ is comparable to $\left|1 / F_{N}\right|$. This may result in a smooth rounding of the frequency response in the vicinity of the frequency where $|A|=\left|1 / F_{N}\right|$-as was the case for $M_{N, d c}=100$ in Figure 8.1. However, there is another possibility: The imaginary parts of $1 / A$ and F_{N} in Equation 8.21 b may cancel each other near the frequency where $|1 / A|=\left|F_{N}\right|$, that is, where $|A|=\left|1 / F_{N}\right|$. This may result in a minimum in $\left|1 / M_{N}\right|$ and hence in a peak in M_{N}-as was the case in the frequency responses for $m>0.5$ in Figure 6.13.

Note that in Figure 8.2, the magnitude of the resulting amplification, $\left|M_{N}\right|$, starts at its dc value, $M_{N, \mathrm{dc}}$, and it reaches $M_{N, \mathrm{dc}} f_{U} / f_{L}$ at a frequency of f_{U}. It then stays constant up to a frequency of $f_{\mathcal{C}}$, which is the frequency where $|A|=M_{N, \mathrm{dc}} f_{U} / f_{L}$. Since $|A|=A_{\mathrm{dc}} /\left(f / f_{1}\right)$ for $f \gg f_{1}$, frequency f_{C} is given by $M_{N, \mathrm{dc}} f_{U} / f_{L}=A_{\mathrm{dc}} /\left(f_{c} / f_{1}\right)$; hence,

$$
\begin{equation*}
f_{C}=\frac{A_{\mathrm{dc}} f_{1} f_{L}}{M_{N, \mathrm{dc}} f_{U}} \tag{8.24}
\end{equation*}
$$

Also note that the exact expression for M_{N} is

$$
\begin{align*}
M_{N}=\frac{A}{1+A F_{N}} & =\frac{\frac{A_{\mathrm{dc}}}{1+\mathrm{j} f / f_{1}}}{1+\frac{A_{\mathrm{dc}}}{1+\mathrm{j} f / f_{1}} F_{N, \mathrm{dc}} \frac{1+\mathrm{j} f / f_{U}}{1+\mathrm{j} f / f_{L}}} \\
& =\frac{A_{\mathrm{dc}}\left(1+\mathrm{j} f / f_{L}\right)}{\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{L}\right)+A_{\mathrm{dc}} F_{N, \mathrm{dc}}\left(1+\mathrm{j} f / f_{U}\right)} \tag{8.25}
\end{align*}
$$

As discussed in Chapter 7, lag-lead compensation is used in feedback amplifiers to reduce feedback factor $A F_{N}$ in the vicinity of the frequency where $\left|A F_{N}\right|=1$ and thus enhance the phase margin. Therefore, to be effective, a laglead compensation must have f_{L} and f_{U} lower than the frequency where $\left|A F_{N}\right|=1$.

EXAMPLE 8.5. As a rough approximation, the amplification of a Type 2539 wideband monolithic operational amplifier can be represented as $A=30,000 /(1+\mathrm{j} f / 20 \mathrm{kHz})$, which is the same as in Example 7.17 but without the two corner frequencies at 300 MHz . Lag-lead compensation is introduced with $f_{v}=20 \mathrm{MHz}, f_{L}=2 \mathrm{MHz}$, and $F_{N, \text { dc }}=1$ (same as in Example 7.17).
It can be shown (see Problem 8.10) that the magnitude of the resulting amplification, $\left|A F_{N}\right|$, becomes 1 at a frequency of approximately 60 MHz . Thus, $f_{U}=20 \mathrm{MHz}$ is lower than the frequency where $\left|A F_{N}\right|=1$ by about a factor of 3.

In general, a low value of f_{U} is desirable for improving the phase margin. However, as was seen in Section 8.1.3, the resulting amplification M_{N} starts increasing from its dc value at a frequency of f_{L}; hence, a high value of f_{L} is desirable. Thus, there is a conflict in the choice of f_{L} and f_{U} when the ratio f_{U} / f_{L} is given.

The above suggests that it is useful to consider the value of corner frequency f_{U} compared to the frequency where $\left|A F_{N}\right|=1$. However, for simplicity, in what follows here f_{U} is compared to the frequency f_{C} where the piecewise linear approximation of $\left|A F_{N}\right|=1$-and not to the frequency where $\left|A F_{N}\right|$ itself is 1 . Thus, f_{c} is the frequency where the piecewise linear approximations of $|A|$ and $\left|1 / F_{N}\right|$ are equal (see Figure 8.2).

EXAMPLE 8.6. The feedback factor $A F_{N}$ of Example 8.5 can be written

$$
\begin{aligned}
A F_{N} & =A_{\mathrm{dc}} F_{N, \mathrm{dc}} \frac{1+\mathrm{j} f / f_{U}}{\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{L}\right)} \\
& =(30,000)(1) \frac{1+\mathrm{j} f / 20 \mathrm{MHz}}{(1+\mathrm{j} f / 20 \mathrm{kHz})(1+\mathrm{j} f / 2 \mathrm{MHz})}
\end{aligned}
$$

The piecewise linear approximation of $\left|A F_{N}\right|$ for frequencies $f>f_{U}$ is obtained by approximating $\left|A F_{N}\right|$ for $f \gg f_{U}=20 \mathrm{MHz}$ as

$$
\begin{aligned}
\left|A F_{N}\right| & \cong\left|(30,000)(1) \frac{\mathrm{j} f / 20 \mathrm{MHz}}{(\mathrm{j} f / 20 \mathrm{kHz})(\mathrm{j} f / 2 \mathrm{MHz})}\right| \\
& =(30,000)(1) \frac{(20 \mathrm{kHz})(2 \mathrm{MHz})}{f(20 \mathrm{MHz})}=\frac{60 \mathrm{MHz}}{f} .
\end{aligned}
$$

The frequency f_{c} where this becomes 1 can be found by substituting f_{c} for f and equating $\left|A F_{N}\right|=1$:

$$
\left|A F_{N}\right|=1=\frac{60 \mathrm{MHz}}{f_{C}} ;
$$

hence,

$$
f_{c}=60 \mathrm{MHz}
$$

Thus, in this example, f_{U} is less than f_{C} by exactly a factor of 3 .

When A is given by Equation 8.14 and F_{N} is given by Equation 8.20a, feedback factor $A F_{N}$ becomes

$$
\begin{equation*}
A F_{N}=A_{\mathrm{dc}} F_{N, \mathrm{dc}} \frac{1+\mathrm{j} f / f_{U}}{\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{L}\right)} \tag{8.26}
\end{equation*}
$$

Thus, with $f_{1}<f_{U}$, the piecewise linear approximation of $\left|A F_{N}\right|$ for $f>f_{U}$ becomes

$$
\begin{equation*}
\left|A F_{N}\right|=\left|A_{\mathrm{dc}} F_{N, \mathrm{dc}} \frac{\mathrm{j} f / f_{U}}{\left(\mathrm{j} f / f_{1}\right)\left(\mathrm{j} f / f_{\mathrm{L}}\right)}\right|=A_{\mathrm{dc}} F_{N, \mathrm{dc}} \frac{f_{1} f_{L}}{f f_{U}} \tag{8.27}
\end{equation*}
$$

The frequency where $\left|A F_{N}\right|=1$ can be found by substituting f_{C} for f in Equation 8.27 and equating the result to 1 :

$$
\begin{equation*}
\left|A F_{N}\right|=1=A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}} \frac{f_{1} f_{L}}{f_{\mathrm{c}} f_{U}} \tag{8.28}
\end{equation*}
$$

hence,

$$
\begin{equation*}
f_{\mathrm{C}}=A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}} \frac{f_{1} f_{\mathrm{L}}}{f_{U}} \tag{8.29}
\end{equation*}
$$

Also, using Equation 8.29, Equation 8.25 can be approximated for $A_{\mathrm{dc}} F_{N, \mathrm{dc}} \gg 1$ as*

$$
\begin{equation*}
M_{N}=M_{N, \mathrm{dc}} \frac{1+\frac{\mathrm{j} f}{f_{L}}}{1+\frac{\mathrm{j} f}{f_{U}}\left(1+\frac{f_{L}}{f_{c}}\right)+\frac{(\mathrm{j} f)^{2}}{f_{C} f_{U}}} \tag{8.30a}
\end{equation*}
$$

provided that

$$
\begin{equation*}
A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}} \gg \frac{f_{\mathrm{C}}}{f_{\mathrm{U}}} \frac{f_{\mathrm{U}}}{f_{L}}\left(\frac{f_{\mathrm{U}}}{f_{\mathrm{L}}}-1\right) \tag{8.30b}
\end{equation*}
$$

*The proof of Equations 8.30a and 8.30b is the subject of Problem 8.12.

EXAMPLE 8.7. In Example 8.6, $A_{\mathrm{dc}}=30,000, F_{N, \mathrm{dc}}=1, f_{U}=20 \mathrm{MHz}$ $f_{L}=2 \mathrm{MHz}$, and $f_{c}=60 \mathrm{MHz}$. Thus, Equation 8.30 b becomes

$$
(30,000)(1)=30,000 \gg \frac{60 \mathrm{MHz}}{20 \mathrm{MHz}} \frac{20 \mathrm{MHz}}{2 \mathrm{MHz}}\left(\frac{20 \mathrm{MHz}}{2 \mathrm{MHz}}-1\right)=270 .
$$

Since 30,000 is indeed much greater than 270 , Equation 8.30 a is applicable:

$$
M_{N}=\frac{1+\frac{\mathrm{j} f}{2 \mathrm{MHz}}}{1+\frac{\mathrm{j} f}{20 \mathrm{MHz}}\left(1+\frac{2 \mathrm{MHz}}{60 \mathrm{MHz}}\right)+\frac{(\mathrm{j} f)^{2}}{(60 \mathrm{MHz})(20 \mathrm{MHz})}}
$$

where $M_{N, \mathrm{dc}}$ is approximated as $1 / F_{N, \mathrm{dc}}=1 / 1=1$ since $A_{\mathrm{dc}} F_{N, \mathrm{dc}} \gg 1$.
When $V_{\text {in }}$ and $V_{\text {out }}$ are represented in the time domain then, by use of Equation 8.25 , the ratio of their Laplace transforms becomes

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{A_{\mathrm{dc}}\left(1+\frac{s}{2 \pi f_{L}}\right)}{\left(1+\frac{s}{2 \pi f_{\mathrm{L}}}\right)\left(1+\frac{s}{2 \pi f_{L}}\right)+A_{\mathrm{dc}} F_{N \mathrm{dc}}\left(1+\frac{s}{2 \pi f_{U}}\right)} . \tag{8.31}
\end{equation*}
$$

By use of Equation 8.29, Equation 8.31 can be written*

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\text {in }}(t)\right\}}=M_{N, \mathrm{dc}} \frac{1+\frac{s}{2 \pi f_{L}}}{\left(1+s \tau_{A}\right)\left(1+s \tau_{B}\right)}, \tag{8.32a}
\end{equation*}
$$

where

$$
\begin{align*}
M_{N, \mathrm{dc}} & =\frac{A_{\mathrm{dc}}}{1+A_{\mathrm{dc}} F_{N, \mathrm{dc}}} \tag{8.32b}\\
\frac{1}{\tau_{A}} & =\frac{b}{2}+\sqrt{\left(\frac{b}{2}\right)^{2}-c} \tag{8.32c}\\
\frac{1}{\tau_{B}} & =\frac{b}{2}-\sqrt{\left(\frac{b}{2}\right)^{2}-c} \tag{8.32~d}
\end{align*}
$$

with

$$
\begin{equation*}
b=2 \pi f_{L}+2 \pi f_{c}\left(1+\frac{1}{A_{\mathrm{dc}} F_{N, \mathrm{dc}}} \frac{f_{U}}{f_{L}}\right) \tag{8.32e}
\end{equation*}
$$

and

$$
\begin{equation*}
c=\left(2 \pi f_{\mathrm{U}}\right)\left(2 \pi f_{\mathrm{c}}\right)\left(1+\frac{1}{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}\right) \tag{8.32f}
\end{equation*}
$$

*The derivation of Equations 8.32a-f is the subject of Problem 8.14.

Note that $f_{U}>f_{L}$ in lag-lead compensation; hence, if $A_{\mathrm{dc}} F_{N, \mathrm{dc}} f_{L} / f_{U} \gg 1$ then also $A_{\mathrm{dc}} F_{N, \mathrm{dc}} \gg 1$. In such a case, which is quite common, Equations 8.32 e and 8.32f become

$$
\begin{equation*}
b=2 \pi f_{L}+2 \pi f_{C} \tag{8.33a}
\end{equation*}
$$

and

$$
\begin{equation*}
c=\left(2 \pi f_{v}\right)\left(2 \pi f_{\mathcal{C}}\right) \tag{8.33b}
\end{equation*}
$$

when

$$
\begin{equation*}
A_{\mathrm{dc}} F_{N, \mathrm{dc}} \frac{f_{L}}{f_{U}} \gg 1 \tag{8.33c}
\end{equation*}
$$

τ_{A} and τ_{B} of Equations 8.32 c and 8.32 d are determined by f_{L}, f_{U}, and f_{C}. There are three possibilities for τ_{A} and τ_{B} : distinct and real $\tau_{A} \neq \tau_{B}$, equal and real $\tau_{A}=\tau_{B}$, and complex conjugates τ_{A} and τ_{B}. It can be shown (see Problem 8.15) that t_{A} and τ_{B} are distinct and real when

$$
\begin{equation*}
\frac{f_{U}}{f_{C}}<\left(\frac{f_{U}}{f_{C}}\right)_{\max } \tag{8.34a}
\end{equation*}
$$

τ_{A} and τ_{B} are equal and real when

$$
\begin{equation*}
\frac{f_{\mathrm{U}}}{f_{\mathrm{C}}}=\left(\frac{f_{\mathrm{U}}}{f_{c}}\right)_{\max } \tag{8.34b}
\end{equation*}
$$

and τ_{A} and τ_{B} are complex conjugates when

$$
\begin{equation*}
\frac{f_{U}}{f_{c}}>\left(\frac{f_{U}}{f_{c}}\right)_{\max } \tag{8.34c}
\end{equation*}
$$

where in Equations 8.34a-c

$$
\begin{equation*}
\left(\frac{f_{U}}{f_{C}}\right)_{\max }=\frac{1}{4}\left(1+\frac{f_{L}}{f_{c}}\right)^{2} \tag{8.35a}
\end{equation*}
$$

is the maximum permitted value of f_{U} / f_{C} if real τ_{A} and τ_{B} are desired. It can be shown (see Problem 8.16) that Equation 8.35a can also be written

$$
\begin{equation*}
\left(\frac{f_{U}}{f_{c}}\right)_{\max }=\left(\frac{1-\sqrt{1-\frac{f_{L}}{f_{U}}}}{\frac{f_{L}}{f_{U}}}\right)^{2} \tag{8.35b}
\end{equation*}
$$

Equation 8.35 b is plotted in Figure 8.3 for $0<f_{L} / f_{U}<1$, as is the case for lag-lead compensation. Also, as expected, f_{U} is less than f_{c} for this range of f_{L} / f_{U}.

FIGURE 8.3 The maximum value of f_{U} / f_{C} for real roots, $\left(f_{U} / f_{C}\right)_{\max }$, as a
function of f_{L} / f_{U} in lag-lead compensation.

For small values of f_{L} / f_{U}, Equation 8.35 b can be approximated (see Problems 8.17 and 8.18) as
for

$$
\begin{equation*}
\left(\frac{f_{U}}{f_{c}}\right)_{\max } \cong \frac{1}{4}+\frac{1}{8} \frac{f_{L}}{f_{v}} \tag{8.36a}
\end{equation*}
$$

$$
\begin{equation*}
0<\frac{f_{L}}{f_{U}} \ll 1 \tag{8.36b}
\end{equation*}
$$

EXAMPLE 8.8. In Example 8.5 (page 128) the amplification of a Type 2539 wideband monolithic operational amplifier was approximated as $A=A_{\mathrm{dc}} /\left(1+\mathrm{j} f / f_{1}\right)$ with $A_{\mathrm{dc}}=30,000$ and $f_{1}=20 \mathrm{kHz}$. The amplifier is used
with $F^{2}=1$ and with with $F_{N, \mathrm{dc}}=1$ and with lag-lead compensation with $f_{U} / f_{L}=10$. Thus, accord-
ing to Equation 8.29 , ing to Equation 8.29,

$$
f_{C}=A_{\mathrm{dc}} F_{N, \mathrm{dc}} \frac{f_{1} f_{L}}{f_{U}}=(30,000)(1) \frac{0.02 \mathrm{MHz}}{10}=60 \mathrm{MHz}
$$

By use of Equation 8.35b with $f_{L} / f_{U}=0.1,\left(f_{U} / f_{C}\right)_{\text {max }}=0.2633$; also, the approximate Equation 8.36 a yields $\left(f_{U} / f_{c}\right)_{\text {max }} \cong 0.2625$. Therefore, if real roots are desired, f_{U} must be at most $0.2633 f_{C}=(0.2633)(60 \mathrm{MHz})=15.8 \mathrm{MHz}$. For example, a choice of $f_{\mathrm{L}}=1.5 \mathrm{MHz}$ and $f_{U}=15 \mathrm{MHz}$ would result in real roots. However, the choice of $f_{L}=2 \mathrm{MHz}$ and $f_{U}=20 \mathrm{MHz}$ in Example 8.5 does not result in real roots.

The information given by Equation 8.35b and Figure 8.3 can also be presented as shown in Figure 8.4, where $\left(f_{c} / f_{U}\right)_{\text {min }}=1 /\left(f_{U} / f_{C}\right)_{\text {max }}$. Also, $\left(f_{c} / f_{U}\right)_{\min }$ can be approximated as $\left(f_{c} / f_{U}\right)_{\min } \cong 4-2 f_{L} / f_{U}$ when $0<f_{L} / f_{U} \ll 1$ (see Problems 8.20 and 8.21).

FIGURE 8.4 The minimum value of f_{C} / f_{U} for real roots, $\left(f_{C} / f_{U}\right)_{\text {min }}$, as a function of f_{L} / f_{U} in lag-lead compensation.

As was also the case in other transients with step-function input voltage, output voltage $V_{\text {oui }}(t)$ is free of ringing here too when the roots are real. Thus, if a transient with no ringing is desired, f_{U} / f_{C} should be at most $\left(f_{U} / f_{C}\right)_{\text {max }}$ given by Equations 8.35a and 8.35b. In what follows here, the transient response is derived for critical damping, that is, for the case when $f_{U} / f_{C}=\left(f_{V} / f_{C}\right)_{\max }$ as in Equation 8.34b.

In this case, τ_{A} and τ_{B} are equal and Equations $8.32 \mathrm{a}-\mathrm{d}$ become

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=M_{N, \mathrm{dc}} \frac{1+\frac{s}{2 \pi f_{L}}}{(1+s \tau)^{2}} \tag{8.37a}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{N, \mathrm{dc}}=\frac{A_{\mathrm{dc}}}{1+A_{\mathrm{dc}} F_{N, \mathrm{dc}}} \tag{8.37b}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau=\frac{2}{2 \pi f_{L}+2 \pi f_{C}} \tag{8.37c}
\end{equation*}
$$

Using Equation 8.35 a with $\left(f_{U} / f_{C}\right)_{\max }=f_{U} / f_{C}$,

$$
\begin{equation*}
\frac{f_{U}}{f_{C}}=\frac{1}{4}\left(1+\frac{f_{L}}{f_{c}}\right)^{2} \tag{8.38a}
\end{equation*}
$$

hence,

$$
\begin{equation*}
f_{L}+f_{c}=2 \sqrt{f_{U} f_{c}} \tag{8.38b}
\end{equation*}
$$

By use of Equation 8.38b, Equation 8.37 c becomes

$$
\begin{equation*}
\tau=\sqrt{\frac{f_{C}}{f_{U}}} \frac{1}{2 \pi f_{C}} \tag{8.39}
\end{equation*}
$$

When input voltage $V_{\text {in }}$ is a step function with magnitude V_{0},

$$
\begin{equation*}
\mathscr{L}\left\{V_{\text {out }}(t)\right\}=M_{N . \mathrm{dc}} V_{0} \frac{1+\frac{s}{2 \pi f_{L}}}{s(1+s \tau)^{2}}, \tag{8.40}
\end{equation*}
$$

where $M_{N, d c}$ and τ are given by Equations 8.37 b and 8.39.
From Equation 8.40, $V_{\text {out }}(t)$ can be found, by use of Equation 8.39 and Appendix A, as

$$
\begin{equation*}
V_{\mathrm{ou} 1}(t)=M_{N, \mathrm{dc}} V_{0}\left[1-e^{-t / \tau}+\left(\frac{f_{U}}{f_{L}} \sqrt{\frac{f_{C}}{f_{U}}}-1\right) \frac{t}{\tau} e^{-t / \mathrm{t}}\right] \tag{8.41}
\end{equation*}
$$

where again $M_{N, d c}$ and τ are given by Equations 8.37 b and 8.39 .

EXAMPLE 8.9. When $f_{U} / f_{L}=10$ then, by use of Equation 8.35b, $\left(f_{U} / f_{C}\right)_{\text {max }}=0.2633$. For critical damping, $f_{U} / f_{C}=\left(f_{U} / f_{C}\right)_{\text {max }}=0.2633$, and Equation 8.41 becomes

$$
\begin{aligned}
V_{\mathrm{out}}(t) & =M_{N, \mathrm{dc}} V_{0}\left[1-e^{-t / \tau}+\left(10 \sqrt{\frac{1}{0.2633}}-1\right) \frac{t}{\tau} e^{-t / \tau}\right] \\
& =M_{N, \mathrm{dc}} V_{0}\left[1-e^{-t / \tau}+18.5 \frac{t}{\tau} e^{-t / \tau}\right]
\end{aligned}
$$

where, from Equation 8.39,

$$
\tau=\sqrt{\frac{f_{C}}{f_{U}}} \frac{1}{2 \pi f_{C}}=\sqrt{\frac{1}{0.2633}} \frac{1}{2 \pi f_{C}}=\frac{1.95}{2 \pi f_{C}} .
$$

Figure 8.5 shows output voltage $V_{\text {out }}(t)$ as a function of t / τ. It has an initial slope of $19.5 M_{N, d c} V_{0}$ at $t / \tau=0$, it rises to a peak of about $7.5 M_{N, d c} V_{0}$ at $t / \tau \cong 1.05$, and it settles to $M_{N, d c} V_{0}$ for long times.

FIGURE 8.5 Transient response of a feedback amplifier using lag-lead compensation with critical damping and with $f_{U} / f_{L}=10$.

Thus, as was the case for an ideal operational amplifier, the transient response has a large overshoot in this case too, as shown by the last term in Equation 8.41. Again, the overshoot can be eliminated by inserting in the signal path a voltage divider network that precedes or follows the feedback amplifier. Also, the situation is similar for distinct real $\tau_{A} \neq \tau_{B}$.

8.3 Operational Amplifiers with $A=A_{\mathrm{dc}} /\left[\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)\right.$]

This form of A provides an accurate representation of many operational amplifier types. In what follows, frequency response and transient response are described with frequency-independent feedback, lead-lag compensation, and lag-lead compensation.

8.3.1 Frequency-Independent Feedback

The discussion of this case starts in the Laplace transform domain; this is followed by descriptions of the frequency response and the transient response.

When $V_{\text {in }}$ and $V_{\text {out }}$ are represented in the Laplace transform domain,

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{ous}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{id}}(t)\right\}}=\frac{\frac{A_{\mathrm{dc}}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)}}{1+\frac{A_{\mathrm{d}} F_{N, \mathrm{dc}}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)}}, \tag{8.42}
\end{equation*}
$$

which can also be written

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\text {in }}(t)\right\}}=\frac{M_{N, \mathrm{dc}}}{\left(1+s \tau_{A}\right)\left(1+s \tau_{B}\right)}, \tag{8.43a}
\end{equation*}
$$

where

$$
\begin{align*}
& \frac{1}{\tau_{A}}=\frac{1}{2} \frac{\tau_{1}+\tau_{2}}{\tau_{1} \tau_{2}}(1-\sqrt{1-4 m}), \tag{8.43b}\\
& \frac{1}{\tau_{B}}=\frac{1}{2} \frac{\tau_{1}+\tau_{2}}{\tau_{1} \tau_{2}}(1+\sqrt{1-4 m}), \tag{8.43c}
\end{align*}
$$

with m defined as

$$
\begin{equation*}
m \equiv \frac{A_{\mathrm{dc}}}{M_{N, \mathrm{dc}}} \frac{\tau_{1} \tau_{2}}{\left(\tau_{1}+\tau_{2}\right)^{2}}, \tag{8.43d}
\end{equation*}
$$

and with

$$
\begin{equation*}
M_{N, \mathrm{dc}}=\frac{A_{\mathrm{dc}}}{1+A_{\mathrm{dc}} F_{N, \mathrm{dc}}} . \tag{8.43e}
\end{equation*}
$$

The similarity of Equations $8.43 \mathrm{a}-\mathrm{d}$ here to Equations $6.39 \mathrm{a}-\mathrm{d}$ describing series RLC circuits in Section 6.5 permits the use of the results given there Equations 6.39a-d can be used with the substitution of $\left(\tau_{1}+\tau_{2}\right) / \tau_{1} \tau_{2}$ for R / L, and with $R C=(L / R) / m$ from Equation 6.39d. Also, it can be shown that in the frequency domain, with $\tau_{1}=1 / 2 \pi f_{1}, \tau_{2}=1 / 2 \pi f_{2}$, and $s=j 2 \pi f$,

$$
\begin{equation*}
\left|M_{N}\right|=\frac{M_{N, \mathrm{dc}}}{\sqrt{\left[1-\left(\frac{f}{f_{c}}\right)^{2}\right]^{2}+\left(\frac{f_{1}+f_{2}}{f_{C}} \frac{f}{f_{c}}\right)^{2}}} \tag{8.44a}
\end{equation*}
$$

where f_{c} is defined as

$$
\begin{equation*}
f_{c} \equiv \sqrt{\frac{A_{\mathrm{dc}}}{M_{N, \mathrm{dc}}} f_{1} f_{2}} \tag{8.44b}
\end{equation*}
$$

As expected, Equation 8.44 a becomes equal to $M_{N, d c}$ for small values of frequency f. Furthermore, it can be shown that Equation 8.44 a can be approximated for $f \gg f_{C}$ as

$$
\begin{equation*}
\left|M_{N}\right| \cong M_{N . d c}\left(\frac{f_{C}}{f}\right)^{2} \tag{8.45a}
\end{equation*}
$$

when

$$
\begin{equation*}
\frac{f}{f_{c}} \gg 1 \tag{8.45b}
\end{equation*}
$$

Note that $\left|M_{N}\right|$ of Equation 8.45 a becomes equal to $\left|M_{N, \mathrm{dc}}\right|$ when frequency $f=f_{c}$.

When $f_{2} \gg f_{1}$, which is the usual case, then also $\tau_{1} \gg \tau_{2}$, and

$$
\begin{gather*}
m \cong \frac{A_{\mathrm{dc}}}{M_{\mathrm{N}, \mathrm{dc}}} \frac{f_{1}}{f_{2}} \tag{8.46a}\\
f_{c} \cong f_{2} \sqrt{m}=\sqrt{\frac{A_{\mathrm{dc}}}{M_{N, \mathrm{dc}}} f_{1} f_{2}} \tag{8.46b}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|M_{N}\right| \cong \frac{M_{N, \mathrm{dc}}}{\sqrt{\left[1-\left(\frac{f}{f_{c}}\right)^{2}\right]^{2}+\left(\frac{f_{2}}{f_{c}} \frac{f}{f_{c}}\right)^{2}}} \tag{8.46c}
\end{equation*}
$$

As expected, Equation 8.46 c becomes equal to $M_{N, d c}$ for small values of frequency f. Furthermore, Equation 8.46 c can be approximated for $f \gg f_{C}$, with f_{C} now given by Equation 8.46 b ,

$$
\begin{equation*}
\left|M_{N}\right| \cong M_{N, \mathrm{dc}}\left(\frac{f_{C}}{f}\right)^{2} \tag{8.47a}
\end{equation*}
$$

when

$$
\begin{equation*}
\frac{f}{f_{c}} \gg 1 \tag{8.47b}
\end{equation*}
$$

Note that $\left|M_{N}\right|$ of Equation 8.47 a becomes equal to $M_{N, d c}$ when frequency $f=f_{c}$.

EXAMPLE 8.10. A Type 9914A wideband hybrid operational amplifier is characterized by $A_{\mathrm{dc}}=5000, f_{1}=0.5 \mathrm{MHz}$, and $f_{2}=50 \mathrm{MHz}$. Thus, $f_{2} \gg f_{1}$ and Equations $8.46 \mathrm{a}-\mathrm{c}$ are applicable.

The operational amplifier is used in a noninverting feedback amplifier, and it is desired that the magnitude of the resulting frequency response, $\left|M_{N}\right|$, should have no peaking. Therefore, according to Figure 6.13 and subsequent discussion in Section 6.5, the value of m must be at most 0.5 . By use of Equation 8.46a, this constraint leads to

$$
M_{N, \mathrm{dc}} \geqslant \frac{A_{\mathrm{dc}}}{0.5} \frac{f_{1}}{f_{2}}=\frac{5000}{0.5} \frac{0.5 \mathrm{MHz}}{50 \mathrm{MHz}}=100 .
$$

Thus, the resulting dc amplification, $M_{N, \mathrm{dc}}$, must be at least 100 if a frequency response magnitude without peaking is desired.

If $M_{N, \mathrm{dc}}=100$ is chosen, then $m=0.5$ and, from Equation 8.46 b ,

$$
f_{c}=f_{2} \sqrt{m}=(50 \mathrm{MHz}) \sqrt{0.5} \cong 35.4 \mathrm{MHz}
$$

The piecewise linear approximation of $\left|M_{N}\right|$ is shown by the heavy graph (a) in Figure 8.6. As before, $\left|M_{N}\right|$ is obtained as the lesser of $|A|$ and of $\left|1 / F_{N}\right| \cong 100=40 \mathrm{~dB}$. According to Equation 8.47 a , for $f \gg f_{C}=35.4 \mathrm{MHz}$ the magnitude $\left|M_{N}\right|$ can be approximated as $100(35.4 \mathrm{MHz} / f)^{2}$. This intersects the $\left|1 / F_{N}\right|=40 \mathrm{~dB}$ line at $f_{c}=35.4 \mathrm{MHz}$ as shown by the broken lines in Figure 8.6.

Details of the frequency response may be found using Figure 6.13 in Section 6.5 with $\left|M_{N}\right| / M_{N, d c}$ substituted for $|G|$. When $f_{2} \gg f_{1}$ then also $\tau_{1} \gg \tau_{2}$, and L / R can be replaced by $\tau_{2}=1 / 2 \pi f_{2}$ and $R C$ by $1 / 2 \pi f_{2} m$. Also, it can be shown that in Figure 6.13

$$
\frac{f_{c}}{f_{0}}=\frac{1}{\sqrt{m}}
$$

where $f_{0}=1 / 2 \pi R C$ and f_{C} is given by Equation 8.46 b .

EXAMPLE 8.11. In Example 8.10, the value of m is 0.5 . Thus, by use of Equation 8.48, $f_{c} / f_{0}=1 / \sqrt{0.5} \cong 1.4$ in Figure 6.13. Indeed, for $m=0.5$, the piecewise linear approximations for $f / f_{0} \ll 1$ and $f / f_{0} \gg 1$ intersect at $f / f_{0} \cong 1.4$ in Figure 6.13 .

Therefore, the value of m must be at most 0.5 ; hence, assuming $f_{2} \gg f_{1}$ and using Equation 8.46a, $M_{N . d c}$ must be at least $A_{\text {dc }} f_{1} / m f_{2}$ if a frequency response magnitude without peaking is desired. However, lesser values of $M_{N, d c}$ are possible when peaking in the frequency response magnitude is acceptable.

FIGURE 8.6 Piecewise linear approximations of Bode plots for frequencyindependent feedbacks. The magnitude $|A|$ is shown by the light line and the magnitudes $\left|M_{N}\right|$ by the heavy lines. (a) $\left|M_{N}\right|$ in Example 8.10 and (b) $\left|M_{N}\right|$ in Example 8.12.

EXAMPLE 8.12. A Type 9914A wideband hybrid operational amplifier is characterized by $A_{\mathrm{dc}}=5000, f_{1}=0.5 \mathrm{MHz}$, and $f_{2}=50 \mathrm{MHz}$. Thus, $f_{2} \gg f_{1}$ and Equations $8.46 \mathrm{a}-\mathrm{c}$ are applicable.

The operational amplifier is used in a noninverting feedback amplifier, and an $M_{N, d c}=25$ is desired. By use of Equation 8.46a,

$$
m \cong \frac{A_{\mathrm{dc}}}{M_{N, \mathrm{dc}}} \frac{f_{1}}{f_{2}}=\frac{5000}{25} \frac{0.5 \mathrm{MHz}}{50 \mathrm{MHz}}=2
$$

and, by use of Equation 8.46b,

$$
f_{c} \cong f_{2} \sqrt{m}=(50 \mathrm{MHz}) \sqrt{2} \cong 70.7 \mathrm{MHz}
$$

The piecewise linear approximation of $\left|M_{N}\right|$ is shown by the heavy graph (b) in Figure 8.6. As before, $\left|M_{N}\right|$ is obtained as the lesser of $|A|$ and of $\left|1 / F_{N}\right| \cong 25=28 \mathrm{~dB}$. According to Equation 8.47 a , for $f \gg f_{C}=70.7 \mathrm{MHz}$ the magnitude $\left|M_{N}\right|$ can be approximated as $25(70.7 \mathrm{MHz} / f)^{2}$. This intersects the $\left|1 / F_{N}\right|=28 \mathrm{~dB}$ line at $f_{\mathrm{C}}=70.7 \mathrm{MHz}$ as can be seen in Figure 8.6.

By use of Equation 8.48, $f_{c} / f_{0}=1 / \sqrt{2} \cong 0.7$ in Figure 6.13. Indeed, for $m=2$, the piecewise linear approximations for $f / f_{0} \ll 1$ and $f / f_{0} \gg 1$ intersect at $f / f_{0} \cong 0.7$ in Figure 6.13. It can also be seen that there is a peaking of about 50\% (note logarithmic scale of G).

The characteristics of a feedback amplifier are influenced by variations of operational amplifier parameters A_{dc}, f_{1}, and f_{2}. The influence of A_{dc} on the resulting dc amplification $M_{N, \mathrm{dc}}$ was discussed in Chapter 4; here $M_{N, \mathrm{dc}}$ is approximated as constant.

In the feedback amplifier discussed here, peaking in the frequency response magnitude is governed by m of Equation 8.46a, and the bandwidth is in the vicinity of f_{c} of Equation 8.46 b . An increase in the value of f_{2}, with all other parameters held constant, reduces m and reduces peaking, and it also increases f_{c}. Both of these effects are desirable; hence, an increase in f_{2} is always beneficial.

An increase in A_{dc} and/or f_{1} increases m and increases peaking, and it also increases $f_{\boldsymbol{C}}$. The latter effect is desirable; the former is not. The situation is reversed when A_{dc} and/or f_{1} decreases. Note that variations of A_{dc} and f_{1} have no effect when the product $A_{\mathrm{dc}} f_{1}$ remains constant, as is often the case in integrated circuits (see Problem 8.35).
When input voltage $V_{\text {in }}$ is a step function with magnitude V_{0} and $f_{2} \gg f_{1}$, Equations $6.40 \mathrm{a}, \mathrm{b}, 6.41 \mathrm{a}, \mathrm{b}$ and, $6.42 \mathrm{a}, \mathrm{b}$ of Section 6.5 are applicable with $m=A_{\mathrm{dc}} f_{1} / M_{N, \mathrm{dc}} f_{2}, L / R=\tau_{2}=1 / 2 \pi f_{2}, R C=\tau_{2} / m$, and $M_{N, d c} V_{0}$ substituted for V_{0}.

EXAMPLE 8.13. A Type 9914A wideband hybrid operational amplifier is characterized by $A_{\mathrm{dc}}=5000, f_{1}=0.5 \mathrm{MHz}$, and $f_{2}=50 \mathrm{MHz}$. Thus, $f_{2} \gg f_{1}$.

The operational amplifier is used in a noninverting feedback amplifier with $M_{N, \mathrm{dc}}=200$. Therefore,

$$
\begin{aligned}
& m=\frac{A_{\mathrm{dc}}}{M_{N, \mathrm{dc}}} \frac{f_{1}}{f_{2}}=\frac{5000}{200} \frac{0.5 \mathrm{MHz}}{50 \mathrm{MHz}}=0.25 \\
& \frac{L}{R}=\tau_{2}=\frac{1}{2 \pi f_{2}}=\frac{1}{2 \pi(50 \mathrm{MHz})} \cong 3.18 \mathrm{~ns}
\end{aligned}
$$

and

$$
R C=\frac{\tau_{2}}{m}=\frac{3.18 \mathrm{~ns}}{0.25} \cong 12.73 \mathrm{~ns} .
$$

By use of Equation 6.41 a with $M_{N, \mathrm{dc}} V_{0}$ substituted for V_{0},

$$
V_{\mathrm{out}}(t)=M_{\mathrm{N}, \mathrm{dc}} V_{0}\left[1-\left(1+\frac{2 t}{R C}\right) e^{-2 t / R C}\right]
$$

which becomes

$$
V_{\mathrm{out}}(t)=M_{N, \mathrm{dc}} V_{0}\left[1-\left(1+\frac{t}{6.37 \mathrm{~ns}}\right) e^{-t / 6.37 \mathrm{~ns}}\right]
$$

This is shown in Figure 8.7. The propagation delay of the 50% point is $t_{50} \cong 11.5 \mathrm{~ns}$, and the $10 \%-90 \%$ rise time is $t_{10-90} \cong 21.7 \mathrm{~ns}$.

FIGURE 8.7 Transient response of a Type 9914A wideband hybrid operational amplifier with $M_{N, d c}=200$ in Example 8.13.

Note that $M_{N, d c}=200$ is the lowest possible resulting dc amplification if a transient without ringing is desired. This is because $M_{N . d c}<200$ would result in $m>0.25$ and therefore in transients that include sinusoidal (sine and/or cosine) functions of time (see Equations 6.42a and 6.42b in Section 6.5).

The influence of variations in operational amplifier parameters on the transient response is similar to the case for the frequency response. An increase in the value of f_{2}, with all other parameters held constant, reduces m and reduces ringing in the transient, and it also increases the speed of the transient. Both of these effects are desirable; hence, an increase in f_{2} is always beneficial.

An increase in A_{dc} and/or f_{1} increases m and increases ringing, and it also increases the speed of the transient. The latter effect is desirable; the former is not. The situation is reversed when A_{dc} and/or f_{1} decreases. Again, variations of A_{dc} and f_{1} have no effect when the product $A_{\mathrm{dc}} f_{1}$ remains constant (as in Problem 8.35).

8.3.2 Lead-Lag Compensation

Lead-lag compensation consists of the inclusion of a frequency-dependent feedback network as shown in Figure 7.4 (page 96) and described by Equations 7.43-7.47 in Section 7.4.

When $V_{\text {in }}$ and $V_{\text {out }}$ are represented in the Laplace transform domain then, with $\tau_{1}=1 / 2 \pi f_{1}, \tau_{2}=1 / 2 \pi f_{2}, \tau_{L}=1 / 2 \pi f_{L}$, and $\tau_{U}=1 / 2 \pi f_{U}$,

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{\frac{A_{\mathrm{dc}}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)}}{1+\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)} \frac{1+s \tau_{L}}{1+s \tau_{U}}} \tag{8.49}
\end{equation*}
$$

where $\tau_{L}>\tau_{U}$ hence also $f_{L}<f_{U}$.
The value of τ_{L} is usually in the vicinity of τ_{2}. The simplest possibility is $\tau_{L}=\tau_{2}$; that is, $f_{L}=f_{2}$: This case is discussed in Section 8.3.2.1. The case of $f_{L}>f_{2}$ (i.e., $\tau_{L}<\tau_{2}$) is discussed in Section 8.3.2.2, and the case of $f_{L}<f_{2}$ (i.e., $\left.\tau_{L}>\tau_{2}\right)$ in Section 8.3.2.3.

8.3.2.1 LEAD-LAG COMPENSATION WITH $f_{L}=f_{2}$

In this case (pole-zero cancellation), Equation 8.49 becomes

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{ou}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{\frac{A_{\mathrm{dc}}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)}}{1+\frac{A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{U}\right)}} \tag{8.50}
\end{equation*}
$$

which can also be written

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{our}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{M_{N, \mathrm{dc}}}{\left(1+s \tau_{A}\right)\left(1+s \tau_{B}\right)} \frac{1+s \tau_{U}}{1+s \tau_{2}} \tag{8.51a}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{\tau_{A}}=\frac{1}{2} \frac{\tau_{1}+\tau_{U}}{\tau_{1} \tau_{U}}(1-\sqrt{1-4 m}) \tag{8.5lb}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\tau_{B}}=\frac{1}{2} \frac{\tau_{1}+\tau_{U}}{\tau_{1} \tau_{U}}(1+\sqrt{1-4 m}) \tag{8.51c}
\end{equation*}
$$

with \boldsymbol{m} defined as

$$
\begin{equation*}
m \equiv \frac{A_{\mathrm{dc}}}{M_{N, \mathrm{dc}}} \frac{\tau_{1} \tau_{U}}{\left(\tau_{1}+\tau_{U}\right)^{2}} \tag{8.51d}
\end{equation*}
$$

and with

$$
\begin{equation*}
M_{N, \mathrm{dc}}=\frac{A_{\mathrm{dc}}}{1+A_{\mathrm{dc}} F_{N, \mathrm{dc}}} \tag{8.51e}
\end{equation*}
$$

When $f_{U} \gg f_{1}$, which is the usual case, then also $\tau_{U}<\tau_{1}$, and

$$
\begin{align*}
& \frac{1}{\tau_{A}} \cong \frac{1}{2 \tau_{U}}(1-\sqrt{1-4 m}), \tag{8.52a}\\
& \frac{1}{\tau_{B}} \cong \frac{1}{2 \tau_{U}}(1+\sqrt{1-4 m}), \tag{8.52b}
\end{align*}
$$

and

$$
\begin{equation*}
m \cong \frac{A_{\mathrm{dc}}}{M_{N, \mathrm{dc}}} \frac{\tau_{U}}{\tau_{1}}=\frac{A_{\mathrm{dc}}}{M_{N, \mathrm{dc}}} \frac{f_{1}}{f_{U}} \tag{8.52c}
\end{equation*}
$$

In the limiting case of critical damping, $m=0.25$ and $\tau_{A}=\tau_{B}$. In this case, for a $V_{\text {in }}(t)$ that is a step function with magnitude $V_{0}, V_{\text {out }}(t)$ becomes (see Problem 8.40)

$$
\begin{align*}
V_{\mathrm{out}}(t)= & M_{N, \mathrm{dc}} V_{0}\left[1-\frac{1-\frac{\tau_{U}}{\tau_{2}}}{\left(1-\frac{\tau_{A}}{\tau_{2}}\right)^{2}} e^{-t / \mathrm{z}_{2}}\right. \\
& \left.+\frac{\left(2-\frac{\tau_{A}}{\tau_{2}}\right) \frac{\tau_{A}-\tau_{U}}{\tau_{2}}+\left(1-\frac{\tau_{A}}{\tau_{2}}\right) \frac{\tau_{U}}{\tau_{2}}+\left(1-\frac{\tau_{A}}{\tau_{2}}\right)\left(1-\frac{\tau_{U}}{\tau_{A}}\right) \frac{t}{\tau_{2}}}{\left(1-\frac{\tau_{A}}{\tau_{2}}\right)^{2}} e^{-i, \tau_{A}}\right] \tag{8.53}
\end{align*}
$$

EXAMPLE 8.14. A Type 9914A wideband hybrid operational amplifier is characterized by $A_{\mathrm{dc}}=5000, f_{1}=0.5 \mathrm{MHz}$, and $f_{2}=50 \mathrm{MHz}$. Thus, $f_{2} \gg f_{1}$.

The operational amplifier is to be used in a noninverting feedback amplifier with $M_{N, d c}=20$, and a transient response with no ringing is desired. It was seen in the preceding section that for a transient response with no ringing the lowest possible $M_{N, d c}$ is 200 when frequency-independent feedback is used. For this reason, lead-lag compensation is introduced here. An $f_{L}=f_{2}$ is used for simplicity and, somewhat arbitrarily, an $m=0.25$ (critical damping) is chosen. Since $f_{U}>f_{\mathrm{L}}=f_{2} \gg f_{1}$, Equation 8.52 c is applicable; hence,

$$
f_{U}=\frac{A_{\mathrm{dc}}}{M_{N, \mathrm{dc}}} \frac{f_{1}}{m}=\frac{5000}{20} \frac{0.5 \mathrm{MHz}}{0.25}=500 \mathrm{MHz}
$$

and

$$
\tau_{U}=\frac{1}{2 \pi f_{U}}=\frac{1}{2 \pi(500 \mathrm{MHz})} \cong 0.318 \mathrm{~ns}
$$

Also,

$$
\tau_{2}=\frac{1}{2 \pi f_{2}}=\frac{1}{2 \pi(50 \mathrm{MHz})} \cong 3.18 \mathrm{~ns} .
$$

From Equations 8.52a and 8.52b, with the chosen $m=0.25, \tau_{A}=\tau_{B}=$ $2 \tau_{U}=2(0.318 \mathrm{~ns}) \cong 0.637 \mathrm{~ns}$. With these values, Equation 8.53 becomes

$$
V_{\mathrm{out}}(t) \cong M_{N, \mathrm{dc}} V_{0}\left[1-1.4 e^{-t / 3.18 \mathrm{~ns}}+\left(0.4+\frac{t}{5.09 \mathrm{~ns}}\right) e^{-t / 0.637 \mathrm{~ns}}\right] .
$$

This is plotted as graph (a) in Figure 8.8; the propagation delay of the 50% point is $t_{50} \cong 3.25 \mathrm{~ns}$, and the $10 \%-90 \%$ rise time is $t_{10-90} \cong 7.5 \mathrm{~ns}$. It can also be seen in Figure 8.8 that a faster transient response is provided by graph (b), which will be discussed later.

FIGURE 8.8 Transients in a Type 9914A wideband hybrid operational amplifier with $M_{N, d c}=20$ (a) in Example 8.14, (b) in Example 8.21, and (c) in Example 8.22.

When $V_{\text {in }}$ and $V_{\text {out }}$ are represented in the frequency domain then, from Equation 8.51 a ,

$$
\begin{equation*}
\left|M_{N}\right|=\frac{M_{N, \mathrm{dc}}}{\left(1+\mathrm{j} f / f_{A}\right)\left(1+\mathrm{j} f / f_{B}\right)} \frac{1+\mathrm{j} f / f_{U}}{1+\mathrm{j} f / f_{2}}, \tag{8.54a}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{A}=\frac{1}{2 \pi \tau_{A}} \tag{8.54b}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{B}=\frac{1}{2 \pi \tau_{B}} \tag{8.54c}
\end{equation*}
$$

It can be shown (see Problem 8.42) that the resulting bandwidth of the feedback amplifier is approximately $B=f_{1} A_{\mathrm{dc}} / M_{N, \mathrm{dc}}$ when $m \leqslant 1$. Also, when $m \geqslant 0.5$, it can be shown (see Problem 8.43) that the resulting bandwidth is in the vicinity of

$$
\begin{equation*}
f_{C}=\sqrt{\frac{A_{\mathrm{dc}}}{M_{N, \mathrm{dc}}} f_{1} f_{2}} \tag{8.55}
\end{equation*}
$$

which is identical to the rightmost expression of Equation 8.46b.

EXAMPLE 8.15. In Example 8.14, $A_{\mathrm{dc}}=5000, M_{N, \mathrm{dc}}=20, f_{1}=0.5 \mathrm{MHz}$, $f_{2}=50 \mathrm{MHz}$, and $m=0.25$. Thus, the resulting bandwidth of the feedback amplifier is approximately

$$
B=\frac{f_{1} A_{\mathrm{dc}}}{M_{\mathrm{N} . \mathrm{dc}}}=\frac{(0.5 \mathrm{MHz})(5000)}{20}=125 \mathrm{MHz}
$$

The design of lead-lag compensation also includes determining the values of C_{l}, C_{F}, R_{F}, and R_{l}, as was done in Section 7.4.

EXAMPLE 8.16. In Example 8.14, $f_{L}=f_{2}=50 \mathrm{MHz}, f_{U}=500 \mathrm{MHz}$, and $F_{N, \mathrm{dc}} \cong 1 / M_{N, \mathrm{dc}}=1 / 20=0.05$. The value of C_{I} is 5 pF , which includes the input capacitance of the operational amplifier and stray capacitances. Thus, by use of Equation 7.45,

$$
C_{F}=\frac{C_{I}}{\frac{1}{F_{N, \mathrm{dc}} f_{U} / f_{L}}-1} \cong \frac{C_{1}}{\frac{M_{N, \mathrm{dc}}}{f_{U} / f_{L}}-1}=\frac{5 \mathrm{pF}}{\frac{20}{500 \mathrm{MHz} / 50 \mathrm{MHz}}-1}=5 \mathrm{pF}
$$

Also,

$$
R_{F}=\frac{1}{2 \pi f_{L} C_{F}}=\frac{1}{2 \pi(50 \mathrm{MHz})(5 \mathrm{pF})} \cong 637 \Omega
$$

and, from $F_{N, \mathrm{dc}}=R_{I} /\left(R_{I}+R_{F}\right)$,

$$
R_{I}=\frac{R_{F}}{\frac{1}{F_{N, \mathrm{dc}}}-1} \cong \frac{R_{F}}{M_{N, \mathrm{dc}}-1}=\frac{637 \Omega}{20-1} \cong 33.5 \Omega
$$

The influence of variations in A_{dc} and f_{1} is similar to that described earlier. However, variations in f_{2} result in $f_{2}<f_{L}$ or $f_{2}>f_{L}$ and are considered in Sections 8.3.2.2 and 8.3.2.3.

8.3.2.2 LEAD-LAG COMPENSATION WITH $f_{L}>f_{2}$

Equation 8.49 is applicable here too; however, its evaluation becomes more involved than for $f_{L}=f_{2}$. As a first step, a frequency ratio R is introduced as

$$
\begin{equation*}
R=\frac{f_{2}}{f_{L}}=\frac{\tau_{L}}{\tau_{2}} . \tag{8.56}
\end{equation*}
$$

Note that $R<1$ when $f_{L}>f_{2}$, which is the case here; also, $R=1$ when $f_{L}=f_{2}$.

Next a crossover frequency f_{C} is introduced as

$$
\begin{equation*}
f_{C}=A_{\mathrm{dc}} F_{N, \mathrm{dc}} R f_{1} \tag{8.57a}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\tau_{C}=\frac{1}{2 \pi f_{c}}=\frac{\tau_{1}}{A_{\mathrm{dc}} F_{N, \mathrm{dc}} R} \tag{8.57b}
\end{equation*}
$$

It can be shown (see Problem 8.46) that f_{C} is the frequency where the piecewise linear approximation of the Bode plot of $\left|A F_{N}\right|$ becomes 1 , provided that $f_{2} \leqslant f_{C}, f_{L} \leqslant f_{C}$, and $f_{U} \geqslant f_{C}$, which conditions will be seen to be valid here. Also, two more frequency ratios, w_{1} and w_{2}, are introduced as

$$
\begin{equation*}
w_{1}=\frac{f_{C}}{f_{L}}=\frac{\tau_{L}}{\tau_{C}} \tag{8.58a}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{2}=\frac{f_{U}}{f_{C}}=\frac{\tau_{C}}{\tau_{U}} . \tag{8.58b}
\end{equation*}
$$

Note that $w_{1}>1$ when $f_{L}<f_{C}$, and that $w_{2}>1$ when $f_{U}>f_{C}$.
With the above, Equation 8.49 can be written

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{M_{N, \mathrm{dc}}\left(1+s \tau_{u}\right)}{1+M_{N, \mathrm{dc}} F_{N, \mathrm{dc}} \frac{1}{r}\left[\left(s \tau_{c}\right)^{3}+p\left(s \tau_{c}\right)^{2}+q\left(s \tau_{c}\right)\right]} \tag{8.59a}
\end{equation*}
$$

where $M_{N, \mathrm{dc}}=A_{\mathrm{dc}} /\left(1+A_{\mathrm{dc}} F_{N, \mathrm{dc}}\right)$,

$$
\begin{equation*}
p=w_{2}+\frac{R}{w_{1}} \tag{8.59b}
\end{equation*}
$$

$$
\begin{equation*}
q=w_{2}\left(1+\frac{R}{w_{1}}\right) \tag{8.59c}
\end{equation*}
$$

and

$$
\begin{equation*}
r=\frac{w_{2}}{w_{1}} . \tag{8.59~d}
\end{equation*}
$$

When $A_{\mathrm{dc}} F_{N, \mathrm{dc}} \gg 1$, as is the usual case, $M_{N, \mathrm{dc}} \cong 1 / F_{N, \mathrm{dc}}$ and Equation 8.59 a becomes

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{ou}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{M_{\mathrm{N}, \mathrm{dr}} r\left(1+s \tau_{v}\right)}{\left(s \tau_{c}\right)^{3}+p\left(s \tau_{c}\right)^{2}+q\left(s \tau_{\mathrm{c}}\right)+r}, \tag{8.60}
\end{equation*}
$$

with p, q, and r given by Equations $8.59 \mathrm{~b}, 8.59 \mathrm{c}$, and 8.59 d .

Equation 8.60 can also be written

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{ou}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{M_{\mathrm{N}, \mathrm{dc}} r\left(1+s \tau_{U}\right)}{\left(s \tau_{C}+\tau_{C} / \tau_{A}\right)\left(s \tau_{C}+\tau_{C} / \tau_{B}\right)\left(s \tau_{C}+\tau_{C} / \tau_{D}\right)}, \tag{8.61}
\end{equation*}
$$

where τ_{A}, τ_{B}, and τ_{D} remain to be found. Appendix A outlines a procedure for solving the third-order (cubic) equation in the denominator of Equation 8.60 , yielding τ_{A}, τ_{B}, and τ_{D}. However, the procedure can become quite lengthy. This is not the case when $R=0$ which will be discussed later. The procedure also simplifies somewhat when at least two of τ_{A}, τ_{B}, and τ_{D} are equal. This is convenient, because (see Problem 8.48) it marks the transition between two regions: All three of τ_{A}, τ_{B}, and τ_{D} are real in one region, whereas in the other region only one of τ_{A}, τ_{B}, and τ_{D} is real and the remaining two are complex. The importance of this transition is that real τ_{A}, τ_{B}, and τ_{D} imply a transient response that is free of ringing. For this reason, the discussion that follows here examines the case when at least two of τ_{A}, τ_{B}, and τ_{D} are equal. The three are interchangeable in Equation 8.61 and, somewhat arbitrarily, $\tau_{D}=\tau_{A}$ is assumed. Thus, Equation 8.61 becomes

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{oul}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{M_{N, \mathrm{dc}} r\left(1+s \tau_{U}\right)}{\left(s \tau_{C}+\tau_{C} / \tau_{A}\right)^{2}\left(s \tau_{C}+\tau_{C} / \tau_{B}\right)} \tag{8.62a}
\end{equation*}
$$

Performing squaring and multiplication operations in the denominator of Equation 8.62a results in

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{oux}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{M_{\mathrm{N}, \mathrm{dc}} r\left(1+s \tau_{U}\right)}{\left(s \tau_{C}\right)^{3}+\left(2 \frac{\tau_{C}}{\tau_{A}}+\frac{\tau_{C}}{\tau_{B}}\right)\left(s \tau_{C}\right)^{2}+\frac{\tau_{C}}{\tau_{A}}\left(\frac{\tau_{C}}{\tau_{A}}+2 \frac{\tau_{C}}{\tau_{B}}\right)\left(s \tau_{C}\right)+\left(\frac{\tau_{C}}{\tau_{A}}\right)^{2} \frac{\tau_{C}}{\tau_{B}}} . \tag{8.62b}
\end{equation*}
$$

The comparison of Equation 8.62b with Equations 8.60, 8.59b, 8.59c, and 8.59 d shows that

$$
\begin{gather*}
w_{2}+\frac{R}{w_{1}}=2 \frac{\tau_{C}}{\tau_{A}}+\frac{\tau_{C}}{\tau_{B}} \tag{8.63a}\\
w_{2}\left(1+\frac{R}{w_{1}}\right)=\frac{\tau_{C}}{\tau_{A}}\left(\frac{\tau_{C}}{\tau_{A}}+2 \frac{\tau_{C}}{\tau_{B}}\right), \tag{8.63b}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{w_{2}}{w_{1}}=\left(\frac{\tau_{C}}{\tau_{A}}\right)^{2} \frac{\tau_{C}}{\tau_{B}} . \tag{8.63c}
\end{equation*}
$$

These three equations can provide $\tau_{C} / \tau_{A}, \tau_{c} / \tau_{B}$, and w_{2} for given R and w_{1}, at least in principle. In reality, this leads to complications and it is preferable to express w_{1} and w_{2} as functions of R and τ_{c} / τ_{A} (see Problem 8.50) as

$$
\begin{equation*}
w_{1}=\frac{3-\left(2 \frac{\tau_{C}}{\tau_{A}}-1\right) R+\sqrt{\left[3-\left(2 \frac{\tau_{C}}{\tau_{A}}-1\right) R\right]^{2}-4 \frac{\tau_{C}}{\tau_{A}}\left(2-\frac{\tau_{C}}{\tau_{A}}\right) R\left(2 \frac{\tau_{A}}{\tau_{C}}-R\right)}}{2 \frac{\tau_{C}}{\tau_{A}}\left(2-\frac{\tau_{C}}{\tau_{A}}\right)} \tag{8.64a}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{2}=\frac{2 \frac{\tau_{C}}{\tau_{A}} w_{1}-R}{w_{1}-\left(\frac{\tau_{A}}{\tau_{C}}\right)^{2}} \tag{8.64b}
\end{equation*}
$$

Also, from Equation 8.63a,

$$
\begin{equation*}
\frac{\tau_{C}}{\tau_{B}}=w_{2}+\frac{R}{w_{1}}-2 \frac{\tau_{C}}{\tau_{A}} \tag{8.64c}
\end{equation*}
$$

Varying τ_{c} / τ_{A} between 0.5 and 2 results in the relations between w_{1} and w_{2} shown in Figure 8.9 for $R<1$. (The $R=1$ line is obtained from Section 8.3.2.1; results for $R>1$ will be discussed in Section 8.3.2.3.)

The use of Figure 8.9 requires finding τ_{c} / τ_{A} for given R, w_{1}, and w_{2}. It can be shown (see Problem 8.52) that

$$
\begin{equation*}
\frac{\tau_{c}}{\tau_{A}}=\frac{1}{3}\left[\left(w_{2}+\frac{R}{w_{1}}\right) \pm \sqrt{\left(w_{2}+\frac{R}{w_{1}}\right)^{2}-3\left(1+\frac{R}{w_{1}}\right) w_{2}}\right] \tag{8.65}
\end{equation*}
$$

where the plus sign is applicable to the lower (horizontal) branches of the graphs and the minus sign to the upper (vertical) branches.

EXAMPLE 8.17. A Type 9914A wideband hybrid operational amplifier is characterized by $A_{\mathrm{dc}}=5000, f_{1}=0.5 \mathrm{MHz}$, and $f_{2}=50 \mathrm{MHz}$. Thus, $f_{2} \gg f_{1}$.
The operational amplifier is to be used in a noninverting feedback amplifier with $M_{N, \mathrm{dc}}=10$, and a transient response with no ringing is desired. It can be shown (see Problem 8.53) that this cannot be attained using lead-lag compensation with $f_{L}=f_{2}$ (pole-zero cancellation). Thus, use of lead-lag compensation with $f_{L}>f_{2}$ is considered.
Somewhat arbitrarily, a frequency ratio $R=0.625$ is assumed. Thus, by use of Equation 8.56,

$$
f_{L}=\frac{f_{2}}{R}=\frac{50 \mathrm{MHz}}{0.625}=80 \mathrm{MHz}
$$

FIGURE 8.9 Roots of the denominator of Equation 8.60 with p, q, and r given by Equations 8.59b, 8.59c, and 8.59d.
Also, from Equation 8.57a,

$$
f_{C}=A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}} R f_{1} \cong \frac{A_{\mathrm{dc}} R f_{1}}{M_{N, \mathrm{dc}}}=\frac{(5000)(0.625)(0.5 \mathrm{MHz})}{10}=156.25 \mathrm{MHz} .
$$

Furthermore,

$$
\tau_{c}=\frac{1}{2 \pi f_{C}}=\frac{1}{2 \pi(156.25 \mathrm{MHz})} \cong 1 \mathrm{~ns}
$$

and, from Equation 8.58a,

$$
w_{1}=\frac{f_{C}}{f_{L}}=\frac{156.25 \mathrm{MHz}}{80 \mathrm{MHz}} \cong 1.95 .
$$

According to Figure 8.9, all roots are real for $R=0.625$ and $w_{1}=1.95$ when w_{2} is between approximately 3.4 and 3.5. This is a narrow range that would be difficult to guarantee with realistic variations of circuit parameters. However, for the purpose of this example, $w_{2}=3.4$ is used here, which lies on the lower branch of the $R=0.625$ graph. Because of this, Equation 8.62 a and the subsequent equations are applicable (otherwise, Equation 8.61 with distinct τ_{A}, τ_{B}, and τ_{D} would have to be used, which would be much more difficult).

With $w_{2}=3.4$, from Equation 8.58 b ,

$$
f_{U}=w_{2} f_{c}=(3.4)(156.25 \mathrm{MHz}) \cong 531 \mathrm{MHz}
$$

and

$$
\tau_{U}=\frac{1}{2 \pi f_{v}}=\frac{1}{2 \pi(531 \mathrm{MHz})} \cong 0.3 \mathrm{~ns}
$$

Also, from Equation 8.65 with the plus sign,

$$
\begin{aligned}
\frac{\tau_{c}}{\tau_{A}} & =\frac{1}{3}\left[\left(w_{2}+\frac{R}{w_{1}}\right)+\sqrt{\left(w_{2}+\frac{R}{w_{1}}\right)^{2}-3\left(1+\frac{R}{w_{1}}\right) w_{2}}\right] \\
& =\frac{1}{3}\left[\left(3.4+\frac{0.625}{1.95}\right)+\sqrt{\left(3.4+\frac{0.625}{1.95}\right)^{2}-3\left(1+\frac{0.625}{1.95}\right) 3.4}\right] \cong 1.44
\end{aligned}
$$

Hence,
$\tau_{A}=\frac{\tau_{C}}{1.44}=\frac{1}{2 \pi f_{c}(1.44)}=\frac{1}{2 \pi(156.25 \mathrm{MHz})(1.44)} \cong 0.71 \mathrm{~ns}$.
Furthermore, from Equation 8.64c,

$$
\tau_{B}=\frac{\tau_{C}}{w_{2}+\frac{R}{w_{1}}-2 \frac{\tau_{C}}{\tau_{A}}}=\frac{1 \mathrm{~ns}}{3.4+\frac{0.625}{1.95}-2(1.44)} \cong 1.2 \mathrm{~ns}
$$

Figure 8.10 shows the piecewise linear approximation of the Bode plot for $\left|A F_{N}\right|$. The transient response of the circuit is the subject of Example 8.18.

It is now assumed that the value of C_{I} is 5 pF , which includes the input capacitance of the operational amplifier and stray capacitances. Thus, by use of Equation 7.45,

$$
C_{F}=\frac{C_{I}}{\frac{1}{F_{N, \mathrm{dc}} f_{V} / f_{L}}-1} \cong \frac{C_{1}}{\frac{M_{N, \mathrm{dc}}}{f_{V} / f_{L}}-1}=\frac{5 \mathrm{pF}}{\frac{10}{531 \mathrm{MHz} / 80 \mathrm{MHz}}-1} \cong 10 \mathrm{pF}
$$

Also,

$$
R_{F}=\frac{1}{2 \pi f_{L} C_{F}}=\frac{1}{2 \pi(80 \mathrm{MHz})(10 \mathrm{pF})} \cong 200 \Omega
$$

and, from $F_{N, \mathrm{dc}}=R_{I} /\left(R_{I}+R_{F}\right)$,

$$
R_{I}=\frac{R_{F}}{\frac{1}{F_{N, \mathrm{dc}}}-1} \cong \frac{R_{F}}{M_{\mathrm{N}, \mathrm{dc}}-1}=\frac{200 \Omega}{10-1} \cong 22 \Omega
$$

FIGURE 8.10 Piecewise linear approximation of the Bode plot for $\left|A F_{N}\right|$ in Example 8.17.

It can be shown (see Problem 8.54) that Equation 8.62a can also be written

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=M_{N, \mathrm{dc}} \frac{1+s \tau_{U}}{\left(1+s \tau_{A}\right)^{2}\left(1+s \tau_{B}\right)} \tag{8.66}
\end{equation*}
$$

When $V_{\mathrm{in}}(t)$ is a step function with magnitude V_{0},

$$
\begin{equation*}
\mathscr{L}\left\{V_{\text {out }}(t)\right\}=\frac{1}{s} \frac{M_{N, \mathrm{dc}} V_{0}\left(1+s \tau_{v}\right)}{\left(1+s \tau_{A}\right)^{2}\left(1+s \tau_{B}\right)} \tag{8.67a}
\end{equation*}
$$

A comparison of Equation 8.66 and Equation 8.51a with $\tau_{B}=\tau_{A}$ shows that Equation 8.53 is applicable with τ_{B} substituted for τ_{2}; that is,

$$
\begin{align*}
V_{\text {oul }}(t) & =M_{N, \mathrm{dc}} V_{0}\left[1-\frac{\left(1-\frac{\tau_{U}}{\tau_{B}}\right)}{\left(1-\frac{\tau_{A}}{\tau_{B}}\right)^{2}} e^{-\mathrm{t} / \tau_{B}}\right. \\
& \left.+\frac{\left(2-\frac{\tau_{A}}{\tau_{B}}\right) \frac{\tau_{A}-\tau_{U}}{\tau_{B}}+\left(1-\frac{\tau_{A}}{\tau_{B}}\right) \frac{\tau_{U}}{\tau_{B}}+\left(1-\frac{\tau_{A}}{\tau_{B}}\right)\left(1-\frac{\tau_{U}}{\tau_{A}}\right) \frac{t}{\tau_{B}}}{\left(1-\frac{\tau_{A}}{\tau_{B}}\right)^{-t / \tau_{A}}}\right] . \tag{8.67b}
\end{align*}
$$

EXAMPLE 8.18. In Example 8.17, $M_{N, d c}=10, \tau_{A}=0.71 \mathrm{~ns}, \tau_{B}=1.2 \mathrm{~ns}$, and $\tau_{v}=0.3 \mathrm{~ns}$. With these, Equation 8.67 b becomes

$$
V_{\mathrm{out}}(t) \cong M_{N, \mathrm{dc}} V_{0}\left[1-4.5 e^{-t / 1.2 \mathrm{~ns}}+\left(3.5+\frac{t}{0.85 \mathrm{~ns}}\right) e^{-t / 0.71 \mathrm{~ns}}\right]
$$

This is shown by graph (a) in Figure 8.11; the propagation delay of the 50% point is $t_{50} \cong 2 \mathrm{~ns}$ and the $10 \%-90 \%$ rise time is $t_{10-90} \cong 3.7 \mathrm{~ns}$.

FIGURE 8.11 Transients in a Type 9914A wideband hybrid operational amplifier with $M_{N, d c}=10$: (a) in Example 8.18 and (b) in Example 8.20.

The choice of $\tau_{D}=\tau_{A}$ in Equation 8.61 resulted in Equation 8.62a. When, in addition, $\tau_{B}=\tau_{A}$ in Equation 8.62a, that is, when $\tau_{D}=\tau_{B}=\tau_{A}$ in Equation 8.61, then Equation 8.62a becomes

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{id}}(t)\right\}}=\frac{M_{N, \mathrm{dc}} r\left(1+s \tau_{U}\right)}{\left(s \tau_{\mathrm{C}}+\tau_{c} / \tau_{A}\right)^{3}} \tag{8.68a}
\end{equation*}
$$

which can also be written

$$
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\text {in }}(t)\right\}}=\frac{M_{N, \mathrm{dc}} r\left(1+s \tau_{U}\right)}{\left(s \tau_{c}\right)^{3}+3 \frac{\tau_{c}}{\tau_{A}}\left(s \tau_{c}\right)^{2}+3\left(\frac{\tau_{c}}{\tau_{A}}\right)^{2}\left(s \tau_{c}\right)+\left(\frac{\tau_{c}}{\tau_{A}}\right)^{3}}
$$

Comparison of Equation 8.68 b with Equations $8.60,8.59 \mathrm{~b}, 8.59 \mathrm{c}$, and 8.59 d shows that

$$
\begin{gather*}
w_{2}+\frac{R}{w_{1}}=3 \frac{\tau_{c}}{\tau_{A}}, \tag{8.69a}\\
w_{2}\left(1+\frac{R}{w_{1}}\right)=3\left(\frac{\tau_{c}}{\tau_{A}}\right)^{2}, \tag{8.69b}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{w_{2}}{w_{1}}=\left(\frac{\tau_{C}}{\tau_{A}}\right)^{3} \tag{8.69c}
\end{equation*}
$$

Frequency ratios w_{2} and w_{1} can be expressed as functions of τ_{C} / τ_{A} (see Problem 8.59) as

$$
\begin{equation*}
w_{2}=\frac{1}{2}\left(1+3 \frac{\tau_{c}}{\tau_{A}}\right)+\sqrt{\left[\frac{1}{2}\left(1+3 \frac{\tau_{c}}{\tau_{A}}\right)\right]^{2}-3\left(\frac{\tau_{C}}{\tau_{A}}\right)^{2}} \tag{8.70a}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{1}=w_{2}\left(\frac{\tau_{A}}{\tau_{C}}\right)^{3} \tag{8.70b}
\end{equation*}
$$

and frequency ratio R is given by

$$
\begin{equation*}
R=\left(3 \frac{\tau_{\mathrm{C}}}{\tau_{\mathrm{A}}}-w_{2}\right) w_{1} \tag{8.70c}
\end{equation*}
$$

Varying τ_{C} / τ_{A} between 1 and 2 results in the graphs of w_{1}, w_{2}, and τ_{C} / τ_{A} as functions of R shown in Figure 8.12. The figure also shows, for later use, R^{2} / w_{1} and $R w_{2}$ as functions of R.

Figure 8.12 represents the special case when all three roots of the denominator of Equation 8.60 are equal. A comparison with Figure 8.9 shows that w_{1} and w_{2} of Figure 8.12 provide the locations of the cusps in Figure 8.9, that is, the points where the upper and the lower branches of a graph meet.

Before proceeding to use Figure 8.12, Equations 8.56, 8.57a, and 8.58a are combined to yield R^{2} / w_{1}. By expressing f_{L} from Equation 8.56 and substituting it into Equation 8.58a, and by substituting $f_{\mathcal{C}}$ of Equation 8.57a into Equation 8.58a,

$$
\begin{equation*}
w_{1}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}} R f_{1}}{f_{2} / R} ; \tag{8.71a}
\end{equation*}
$$

hence,

$$
\begin{equation*}
\frac{R^{2}}{w_{1}}=\frac{f_{2}}{A_{\mathrm{dc}} F_{N, \mathrm{dc}} f_{1}} \tag{8.71b}
\end{equation*}
$$

Note that Equations 8.71a and 8.71 b are valid in general and can be used whether f_{L} is greater than, equal to, or less than f_{2}.

The use of Figure 8.12 and of Equation 8.71b is illustrated in Example 8.19.

FIGURE 8.12 Solution of the demominator of Equation 8.60 for three equal roots, with p, q, and r given by Equations $8.59 b, 8.59 \mathrm{c}$, and 8.59 d .

EXAMPLE 8.19. In Examples 8.17 and 8.18, a Type 9914A wideband hybrid operational amplifier was used with $M_{N, \mathrm{dc}}=10$ and with lead-lag compensation using $f_{L}>f_{2}$ and $R=0.625$. This example and Example 8.20 choose R so as to result in a transfer function of the form of Equation 8.68 a .
From Equation 8.71 b , with $F_{N, \mathrm{dc}} \cong 1 / M_{N, \mathrm{dc}}=1 / 10=0.1$,

$$
\frac{R^{2}}{w_{1}}=\frac{f_{2}}{A_{\mathrm{dc}} F_{N, \mathrm{dc}} f_{1}}=\frac{50 \mathrm{MHz}}{(5000)(0.1)(0.5 \mathrm{MHz})}=0.2
$$

In Figure $8.12, R^{2} / w_{1}=0.2$ occurs at $R \cong 0.61$. Also, at $R=0.61, w_{1} \cong 1.86$, $w_{2} \cong 3.3$, and $\tau_{c} / \tau_{A} \cong 1.2$.

Thus, by use of Equation 8.56,

$$
f_{L}=\frac{f_{2}}{R}=\frac{50 \mathrm{MHz}}{0.61} \cong 82 \mathrm{MHz}
$$

Furthermore, from Equation 8.58 a ,

$$
f_{C}=w_{1} f_{L}=(1.86)(82 \mathrm{MHz}) \cong 152.5 \mathrm{MHz}
$$

and, from Equation 8.58 b ,
Also,

$$
f_{U}=w_{2} f_{C}=(3.3)(152.5 \mathrm{MHz}) \cong 503.2 \mathrm{MHz}
$$

$$
\begin{gathered}
\tau_{L}=1 / 2 \pi f_{L}=1 /[2 \pi(82 \mathrm{MHz})] \cong 1.94 \mathrm{~ns} \\
\tau_{C}=1 / 2 \pi f_{C}=1 /[2 \pi(152.5 \mathrm{MHz})] \cong 1.04 \mathrm{~ns} \\
\tau_{A}=\tau_{C} / 1.2=1.04 \mathrm{~ns} / 1.2 \cong 0.87 \mathrm{~ns}
\end{gathered}
$$

and

$$
\tau_{U}=1 / 2 \pi f_{U}=1 /[2 \pi(503.2 \mathrm{MHz})] \cong 0.32 \mathrm{~ns}
$$

It is now assumed that the value of C_{1} is 5 pF , which includes the input capacitance of the operational amplifier and stray capacitances. Thus, by use of Equation 7.45,

$$
C_{F}=\frac{C_{1}}{\frac{1}{F_{N, \mathrm{dc}} f_{U} / f_{L}}-1} \cong \frac{C_{I}}{\frac{M_{N, \mathrm{dc}}}{f_{U} / f_{L}}-1}=\frac{5 \mathrm{pF}}{\frac{10}{503.2 \mathrm{MHz} / 82 \mathrm{MHz}}-1} \cong 8 \mathrm{pF}
$$

Also,

$$
R_{F}=\frac{1}{2 \pi f_{L} C_{F}}=\frac{1}{2 \pi(82 \mathrm{MHz})(8 \mathrm{pF})} \cong 243 \Omega
$$

and, from $F_{N, \mathrm{dc}}=R_{I} /\left(R_{I}+R_{F}\right)$,

$$
R_{\mathrm{r}}=\frac{R_{F}}{\frac{1}{F_{N, \mathrm{dc}}}-1} \cong \frac{R_{F}}{M_{N, \mathrm{dc}}-1}=\frac{243 \Omega}{10-1}=27 \Omega
$$

Note that the values of $R_{F}=243 \Omega$ and $R_{I}=27 \Omega$ are by about 20% greater than the $R_{F}=200 \Omega$ and $R_{I}=22 \Omega$ in Example 8.17.

It can be shown (see Problem 8.64) that Equation 8.68a can also be written

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\text {in }}(t)\right\}}=M_{N, \mathrm{dc}} \frac{1+s \tau_{U}}{\left(1+s \tau_{A}\right)^{3}} . \tag{8.72}
\end{equation*}
$$

When $V_{\text {in }}(t)$ is a step function with magnitude V_{0},

$$
\begin{equation*}
\mathscr{L}\left\{V_{\text {out }}(t)\right\}=\frac{1}{s} \frac{M_{N, \mathrm{dc}} V_{0}\left(1+s \tau_{U}\right)}{\left(1+s \tau_{A}\right)^{3}} . \tag{8.73a}
\end{equation*}
$$

The inverse Laplace transform of Equation 8.73a can be written (see Problem 8.65)

$$
\begin{equation*}
V_{\mathrm{out}}(t)=M_{N, \mathrm{dc}} V_{0}\left\{1-\left[1+\frac{t}{\tau_{A}}+\frac{1}{2}\left(1-\frac{\tau_{U}}{\tau_{A}}\right)\left(\frac{t}{\tau_{A}}\right)^{2}\right] e^{-t / \tau_{A}}\right\} . \tag{8.73b}
\end{equation*}
$$

EXAMPLE 8.20. In Example 8.19, $\tau_{A}=0.87 \mathrm{~ns}$ and $\tau_{U}=0.32 \mathrm{~ns}$. With these, Equation 8.73 b becomes

$$
V_{\text {out }}(t)=M_{\mathrm{N}, \mathrm{dc}} V_{0}\left\{1-\left[1+\frac{t}{0.87 \mathrm{~ns}}+\left(\frac{t}{1.55 \mathrm{~ns}}\right)^{2}\right] e^{-t / 0.87 \mathrm{~ns}}\right\}
$$

This is shown by graph (b) in Figure 8.11. The propagation delay of the 50% point is $t_{50} \cong 2 \mathrm{~ns}$. Also, the $10 \%-90 \%$ rise time is $t_{10-90} \cong 3.6 \mathrm{~ns}-$ only slightly less than the $t_{10-90} \cong 3.7 \mathrm{~ns}$ of graph (a).

The special case of Equations 8.68 a and 8.72 is compared to lead-lag compensation with $f_{L}=f_{2}$ (pole-zero cancellation) in Example 8.21 .

EXAMPLE 8.21. In Example 8.14, a Type 9914A wideband hybrid operational amplifier was used with $M_{N, d c}=20$ and with lead-lag compensation using $f_{L}=f_{2}$ (pole-zero cancellation). This example uses a transfer function of the form of Equation 8.72

From Equation 8.71b, with $F_{N, \mathrm{dc}} \cong 1 / M_{N, \mathrm{dc}}=1 / 20=0.05$,

$$
\frac{R^{2}}{w_{1}}=\frac{f_{2}}{A_{\mathrm{dc}} F_{N, \mathrm{dc}} f_{1}}=\frac{50 \mathrm{MHz}}{(5000)(0.05)(0.5 \mathrm{MHz})}=0.4 .
$$

In Figure $8.12, R^{2} / w_{1}=0.4$ occurs at $R \cong 0.77$. Also, at $R=0.77, w_{1} \cong 1.52$, $w_{2} \cong 3.45$, and $\tau_{c} / \tau_{A} \cong 1.32$.

Thus, by use of Equation 8.56,

$$
f_{\mathrm{L}}=\frac{f_{2}}{R}=\frac{50 \mathrm{MHz}}{0.77} \cong 64.9 \mathrm{MHz} .
$$

Furthermore, from Equation 8.58a,

$$
f_{C}=w_{1} f_{L}=(1.52)(64.9 \mathrm{MHz}) \cong 98.7 \mathrm{MHz}
$$

and, from Equation 8.58 b ,

$$
f_{U}=w_{2} f_{C}=(3.45)(98.7 \mathrm{MHz})=340.5 \mathrm{MHz}
$$

Also, $\tau_{L}=1 / 2 \pi f_{L} \cong 2.45 \mathrm{~ns}, \tau_{C}=1 / 2 \pi f_{C} \cong 1.6 \mathrm{~ns}, \tau_{A}=\tau_{c} / 1.32 \cong 1.2 \mathrm{~ns}$, and $\tau_{U}=1 / 2 \pi f_{U} \cong 0.47 \mathrm{~ns}$. Figure 8.13 shows the piecewise linear approximation of the Bode plot for $\left|A F_{N}\right|$

FIGURE 8.13 Piecewise linear approximation of the Bode plot for $\left|A F_{N}\right|$ in Example 8.21.

It is now assumed that the value of C_{I} is 5 pF , which includes the input capacitance of the operational amplifier and stray capacitances. Thus, by use of Equation 7.45,

$$
C_{F}=\frac{C_{I}}{\frac{1}{F_{N, \mathrm{dc}} f_{U} / f_{L}}-1} \cong \frac{C_{I}}{\frac{M_{N, \mathrm{dc}}}{f_{U} / f_{L}}-1}=\frac{5 \mathrm{pF}}{\frac{20}{340.5 \mathrm{MHz} / 64.9 \mathrm{MHz}}-1} \cong 1.8 \mathrm{pF}
$$

Also,

$$
R_{F}=\frac{1}{2 \pi f_{L} C_{F}}=\frac{1}{2 \pi(64.9 \mathrm{MHz})(1.8 \mathrm{pF})} \cong 1370 \Omega
$$

and, from $F_{N, \mathrm{dc}}=R_{\mathrm{I}} /\left(R_{I}+R_{F}\right)$,

$$
R_{I}=\frac{R_{F}}{\frac{1}{F_{N, d c}}-1} \cong \frac{R_{F}}{M_{N, \mathrm{dc}}-1}=\frac{1370 \Omega}{20-1} \cong 72 \Omega
$$

Note that the values $R_{F}=1370 \Omega$ and $R_{I}=72 \Omega$ obtained here are significantly greater than the values $R_{F}=637 \Omega$ and $R_{I}=33.5 \Omega$ in Examples 8.14, 8.15, and 8.16 .

When $V_{\text {in }}(t)$ is a step function with magnitude V_{0}, by use of Equation 8.73b, $V_{\text {out }}(t)$ becomes

$$
V_{\text {out }}(t)=M_{N, \mathrm{dc}} V_{0}\left\{1-\left[1+\frac{t}{1.2 \mathrm{~ns}}+\left(\frac{t}{2.17 \mathrm{~ns}}\right)^{2}\right] e^{-t / 1.2 \mathrm{~ns}}\right\} .
$$

This is shown by graph (b) in Figure 8.8. The propagation delay of the 50% point is $t_{50} \cong 2.7$ ns and the $10 \%-90 \%$ rise time is $t_{10-90} \cong 5 \mathrm{~ns}$. Note that these are less than the $t_{50}=3.25 \mathrm{~ns}$ and the $t_{10-90}=7.5 \mathrm{~ns}$ of graph (a) of Example 8.14. Thus, in this case, the use of $f_{L}>f_{2}$ led to improvements in t_{50} and t_{10-90}, as well as in $R_{F}+R_{i}$.

8.3.2.3 LEAD-LAG COMPENSATION WITH $f_{L}<f_{2}$

This region is rarely used intentionally, because the performance of the resulting feedback amplifier is inferior to that attainable with $f_{L} \geqslant f_{2}$. However, $f_{L}<f_{2}$ may also occur as a result of variations in parameter values. Example 8.22 discusses a feedback amplifier where f_{L} is intentionally chosen to be less than f_{2}.

EXAMPLE 8.22. A Type 9914A wideband hybrid operational amplifier is characterized by $A_{\mathrm{dc}}=5000, f_{1}=0.5 \mathrm{MHz}$, and $f_{2}=50 \mathrm{MHz}$. It is used in a noninverting feedback amplifier with $M_{N, \mathrm{dc}}=20$, and a transient response without ringing is desired.

Preceding examples implemented this feedback amplifier using $f_{L}=f_{2}=50 \mathrm{MHz}$ and $f_{L}=64.9 \mathrm{MHz}$. This example implements the feedback amplifier with $f_{L}=40 \mathrm{MHz}$ and with a transfer function of the form of Equation 8.66. Thus, $R=f_{2} / f_{L}=50 \mathrm{MHz} / 40 \mathrm{MHz}=1.25$. Also, from Equation 8.71a,

$$
w_{1}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}} R^{2} f_{1}}{f_{2}}=\frac{(5000)(0.05)(1.25)^{2}(0.5 \mathrm{MHz})}{50 \mathrm{MHz}} \cong 3.9
$$

hence, by use of Equation 8.58a,

$$
f_{c}=w_{1} f_{L}=(3.9)(40 \mathrm{MHz}) \cong 156 \mathrm{MHz} .
$$

At $w_{1}=3.9$, the $R=1.25$ graph in Figure 8.9 yields $w_{2} \cong 4.15$. Thus, by use of Equation 8.58 b ,

$$
f_{U}=w_{2} f_{\mathcal{C}}=(4.15)(156 \mathrm{MHz}) \cong 647 \mathrm{MHz}
$$

Note that this choice of w_{2} and f_{U} results in a transfer function of the form of Equation 8.66. Figure 8.14 shows the piecewise linear approximation of the Bode plot for $\left|A F_{N}\right|$.

From the above, $\tau_{2}=1 / 2 \pi f_{2} \cong 3.2 \mathrm{~ns}, \tau_{L}=1 / 2 \pi f_{L} \cong 4 \mathrm{~ns}, \tau_{\mathrm{C}}=1 / 2 \pi f_{\mathrm{C}} \cong$ 1 ns , and $\tau_{U}=1 / 2 \pi f_{U} \cong 0.25 \mathrm{~ns}$. Also, from Equation 8.65 with the plus sign,

$$
\frac{\tau_{\mathrm{C}}}{\tau_{A}}=\frac{1}{3}\left[\left(w_{2}+\frac{R}{w_{1}}\right)+\sqrt{\left(w_{2}+\frac{R}{w_{1}}\right)^{2}-3\left(1+\frac{R}{w_{1}}\right) w_{2}}\right] \cong 2.1
$$

hence, $\tau_{A}=\tau_{\boldsymbol{c}} / 2.1=1 \mathrm{~ns} / 2.1 \cong 0.48 \mathrm{~ns}$. Furthermore, from Equation 8.64 c ,

$$
\frac{\tau_{C}}{\tau_{B}}=w_{2}+\frac{R}{w_{1}}-2 \frac{\tau_{C}}{\tau_{A}}=0.27
$$

hence, $\tau_{B}=\tau_{C} / 0.27=1 \mathrm{~ns} / 0.27 \cong 3.7 \mathrm{~ns}$.

FIGURE 8.14 Piecewise linear approximation of the Bode plot for $\left|A F_{N}\right|$ in
Example 8.22.

When input voltage $V_{\text {in }}$ is a step function with magnitude V_{0}, Equation 8.67 b is applicable and $V_{\text {out }}(t)$ becomes

$$
V_{\text {out }}(t) \cong 1-1.23 e^{-t / 3.7 \mathrm{~ns}}+\left(0.23+\frac{t}{6.72 \mathrm{~ns}}\right) e^{-t / 0.48 \mathrm{~ns}}
$$

This is shown as graph (c) in Figure 8.8. It can be seen that it is slightly slower than the transient response with $f_{L}=f_{2}=50 \mathrm{MHz}$ shown by graph (a). Thus, lowering f_{L} from 50 MHz to 40 MHz is unfavorable to the transient response. When C_{1} is 5 pF then, by use of Equation 7.45,

$$
C_{F}=\frac{C_{I}}{\frac{1}{F_{N, \mathrm{dc}} f_{V} / f_{L}}-1} \cong \frac{C_{I}}{\frac{M_{N, \mathrm{dc}}}{f_{U} / f_{L}}-1}=\frac{5 \mathrm{pF}}{\frac{20}{647 \mathrm{MHz} / 40 \mathrm{MHz}}-1} \cong 21 \mathrm{pF}
$$

Also,

$$
R_{F}=\frac{1}{2 \pi f_{L} C_{F}}=\frac{1}{2 \pi(40 \mathrm{MHz})(21 \mathrm{pF})} \cong 190 \Omega
$$

and, from $F_{N, \mathrm{dc}}=R_{I} /\left(R_{I}+R_{F}\right)$,

$$
R_{I}=\frac{R_{F}}{\frac{1}{F_{N, \mathrm{dc}}}-1} \cong \frac{R_{F}}{M_{N, \mathrm{dc}}-1}=\frac{190 \Omega}{20-1}=10 \Omega
$$

These values are less than those of Example $8.16\left(R_{F}=637 \Omega\right.$ and $\left.R_{I}=33.5 \Omega\right)$ for graph (a) in Figure 8.8; they are also less than those of Example 8.21 ($R_{F}=1370 \Omega$ and $R_{I}=72 \Omega$) for graph (b) in Figure 8.8. Thus, the use of $f_{L}=40 \mathrm{MHz}$ is unfavorable for operating speed, as well as for R_{F} and R_{l} as compared to the use of $f_{L}=f_{2}=50 \mathrm{MHz}$ of Examples $8.14,8.15$, and 8.16 [graph (a) in Figure 8.8], as well as compared to the use of $f_{L}=64.9 \mathrm{MHz}$ of Example 8.21 [graph (b) in Figure 8.8].

8.3.3 Lag-Lead Compensation

In this case, in the frequency domain,

$$
\begin{equation*}
A=\frac{A_{\mathrm{dc}}}{\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)} \tag{8.74a}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{N}=F_{N, \mathrm{dc}} \frac{1+\mathrm{j} f / f_{U}}{1+\mathrm{j} f / f_{L}} \tag{8.74b}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{1}<f_{L}<f_{U}<f_{2} \tag{8.74c}
\end{equation*}
$$

Figure 8.15 illustrates the magnitude $|A|$, as well as $\left|1 / F_{N}\right|$ and the resulting $\left|M_{N}\right|$. Note that Figure 8.15 shows equally spaced corner frequencies $f_{1}, f_{L}, \mathfrak{f}_{U}$, f_{c}, and f_{2} : This is only for the purpose of the illustration; in reality, these are rarely spaced evenly. However, the sequencing of the corner frequencies given 'oy Equation 8.74 c has to be followed.

From Equations 8.74 a and 8.74 b , feedback factor $A F_{N}$ can be written

$$
\begin{equation*}
A F_{N}=\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)} \frac{1+\mathrm{j} f / f_{\mathrm{U}}}{1+\mathrm{j} f / f_{L}} \tag{8.74d}
\end{equation*}
$$

FIGURE 8.15 Piecewise linear approximations of Bode plots for lag-lead compensation. Light lines illustrate $|A|$ from Equation $8.74 a$ and $\left|1 / F_{N}\right|$ from Equation 8.74b. The piecewise linear approximation of the resulting $\left|M_{N}\right|$ is shown by the heavy line.

EXAMPLE 8.23. A Type 13741 internally compensated FET-input operational amplifier is characterized by $A_{\mathrm{dc}}=100,000, f_{1}=10 \mathrm{~Hz}$, and $f_{2}=1 \mathrm{MHz}$ Lag-lead compensation is applied with $F_{N, \mathrm{dc}}=1$ (voltage follower), $f_{L}=41.1 \mathrm{kHz}$, and $f_{U}=129.8 \mathrm{kHz}$. (The reason for this choice of f_{L} and f_{U} will be seen later.)

With these, feedback factor $A F_{N}$ becomes

$$
A F_{N}=\frac{100,000}{(1+\mathrm{j} f / 10 \mathrm{~Hz})(1+\mathrm{j} f / 1 \mathrm{MHz})} \frac{1+\mathrm{j} f / 129.8 \mathrm{kHz}}{1+\mathrm{j} f / 41.1 \mathrm{kHz}}
$$

Figure 8.16 shows the piecewise linear approximation of the Bode plot for $\left|A F_{N}\right|$.

FIGURE 8.16 Piecewise linear approximation of the Bode plot for $\left|A F_{N}\right|$ in
Example 8.23.

An inspection of feedback factor $A F_{N}$ for lag-lead compensation shows that it is identical to that of lead-lag compensation with $f_{L}>f_{2}$, but with f_{L} substituted for f_{2}, f_{U} substituted for f_{L}, and f_{2} substituted for f_{U}.

EXAMPLE 8.24. Figure 8.13 shows the piecewise linear approximation of the Bode plot for $\left|A F_{N}\right|$ for a lead-lag compensation with $f_{L}>f_{2}$. A comparison with Figure 8.16 shows that the patterns of the corner frequencies are identical. However, corner frequencies f_{2}, f_{L}, and f_{U} of Figure 8.13 are replaced by f_{L}, f_{U}, and f_{2}, respectively, in Figure 8.16.

In the Laplace transform domain, by use of $M_{N}=A /\left(1+A F_{N}\right)$ and of Equations 8.74 a and 8.74 b with $s=\mathrm{j} 2 \pi f, \tau_{1}=1 / 2 \pi f_{1}, \tau_{2}=1 / 2 \pi f_{2}, \tau_{U}=1 / 2 \pi f_{U}$, and $\tau_{L}=1 / 2 \pi f_{L}$,

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{\frac{A_{\mathrm{dc}}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)}}{1+\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)} \frac{1+s \tau_{U}}{1+s \tau_{L}}} . \tag{8.75a}
\end{equation*}
$$

Equation 8.75a can also be written

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{A_{\mathrm{dc}}\left(1+s \tau_{L}\right)}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)\left(1+s \tau_{L}\right)+A_{\mathrm{dc}} F_{N, \mathrm{dc}}\left(1+s \tau_{U}\right)} \tag{8.75b}
\end{equation*}
$$

Also, when $A_{\mathrm{dc}} F_{N, \mathrm{dc}} \gg 1$, which is the usual case, Equation 8.75 b becomes

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=M_{N, \mathrm{dc}} \frac{1+s \tau_{L}}{1+s \tau_{U}+\frac{M_{N, \mathrm{dc}}}{A_{\mathrm{dc}}}\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)\left(1+s \tau_{L}\right)} \tag{8.75c}
\end{equation*}
$$

This can also be written

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=M_{N, \mathrm{dc}} \frac{1+s \tau_{L}}{\left(1+s \tau_{A}\right)\left(1+s \tau_{B}\right)\left(1+s \tau_{D}\right)} \tag{8.75d}
\end{equation*}
$$

where τ_{A}, τ_{B}, and τ_{D} remain to be found. It can be shown (see Problem 8.72) that τ_{A}, τ_{B}, and τ_{D} are identical with those in Section 8.3.2.2 (lead-lag compensation with $f_{L}>f_{2}$, but with τ_{2}, τ_{L}, and τ_{U} replaced by τ_{L}, τ_{U}, and τ_{2}, respectively, and with f_{2}, f_{L}, and f_{U} replaced by f_{L}, f_{U}, and f_{2}, respectively. Note that this replacement does not apply to the numerator of Equation 8.75 d because it includes $\tau_{\boldsymbol{L}}$, whereas the corresponding numerator in Section 8.3.2.2 includes τ_{U}-and not τ_{2}.

EXAMPLE 8.25. A Type 13741 internally compensated FET-input operational amplifier is characterized by $A_{\mathrm{dc}}=100,000, f_{1}=10 \mathrm{~Hz}$, and $f_{2}=1 \mathrm{MHz}$. Lag-lead compensation is applied with $F_{N, \mathrm{dc}}=1$ (voltage follower), and a transient response without ringing is desired.

By choosing, somewhat arbitrarily, $\tau_{A}=\tau_{B}=\tau_{D}$ in Equation 8.75 d , the results of Figure 8.12 can be used. However, in the expression $R=f_{2} / f_{L}$ of Equation 8.56, f_{2} has to be replaced by f_{L} and f_{L} by f_{U}; thus, R becomes $R=f_{L} / f_{U}$. Also, in the expression $w_{2}=f_{U} / f_{C}$ of Equation $8.58 \mathrm{~b}, f_{U}$ has to be replaced by f_{2}; thus w_{2} becomes $w_{2}=f_{2} / f_{c}$. Equation 8.57 a is still applicable because τ_{1} is unaltered in Equation 8.75 c; hence, f_{1} remains unaltered as wellhowever, now $R=f_{L} / f_{u}$.

Combining the above results, the product $R w_{2}$ can be written

$$
R w_{2}=\frac{f_{L}}{f_{U}} \frac{f_{2}}{f_{c}}
$$

Also, Equation 8.57a can now be written

$$
f_{C}=A_{\mathrm{dc}} F_{N, \mathrm{dc}} R f_{1}=A_{\mathrm{dc}} F_{N, \mathrm{dc}} \frac{f_{L}}{f_{U}} f_{1}
$$

Thus, the product $R w_{2}$ becomes

$$
R w_{2}=\frac{f_{L}}{f_{U}} \frac{f_{2}}{A_{\mathrm{dc}} F_{N, \mathrm{dc}} \frac{f_{L}}{f_{U}} f_{1}}=\frac{f_{2}}{A_{\mathrm{dc}} F_{N, \mathrm{dc}} f_{1}}
$$

With the parameters of this example

$$
R w_{2}=\frac{1 \mathrm{MHz}}{(100,000)(1)(10 \mathrm{~Hz})}=1
$$

For $R w_{2}=1$, Figure 8.12 provides $R=0.317, w_{1}=2.47, w_{2}=3.12$, and $\tau_{c} / \tau_{A}=1.1$. Therefore, from $w_{2}=f_{2} / f_{C}$,

$$
f_{c}=\frac{f_{2}}{w_{2}}=\frac{1 \mathrm{MHz}}{3.12}=320.5 \mathrm{kHz}
$$

Also, replacing f_{L} by f_{U}, w_{1} of Equation 8.58 a becomes $w_{1}=f_{C} / f_{U}$; hence,

$$
f_{U}=\frac{f_{c}}{w_{1}}=\frac{320.5 \mathrm{kHz}}{2.47}=129.8 \mathrm{kHz}
$$

Finally, using $R=f_{L} / f_{U}$,

$$
f_{L}=R f_{U}=(0.317)(129.8 \mathrm{kHz})=41.1 \mathrm{kHz}
$$

Note that the resulting $\left|A F_{N}\right|$ as a function of frequency was plotted in Figure 8.16, where f_{L} and f_{U} were chosen to coincide with the values of this example.

The transfer functions and the time responses of Equations $8.67 \mathrm{a}, \mathrm{b}$ and $8.73 \mathrm{a}, \mathrm{b}$ can be used with τ_{U} replaced by τ_{L}.

EXAMPLE 8.26. In Example $8.25, f_{L}=41.1 \mathrm{kHz}, \quad f_{C}=320.5 \mathrm{kHz}$, and $\tau_{C} / \tau_{A}=1.1$. Thus,

$$
\begin{aligned}
& \tau_{L}=\frac{1}{2 \pi f_{L}}=\frac{1}{2 \pi(41.1 \mathrm{kHz})}=3.87 \mu \mathrm{~s} \\
& \tau_{c}=\frac{1}{2 \pi f_{C}}=\frac{1}{2 \pi(320.5 \mathrm{kHz})}=0.496 \mu \mathrm{~s}
\end{aligned}
$$

and

$$
\tau_{A}=\frac{\tau_{c}}{1.1}=\frac{0.496 \mu \mathrm{~s}}{1.1}=0.45 \mu \mathrm{~s}
$$

Equation 8.73 a is applicable with τ_{v} replaced by τ_{L}. Thus, for an input voltage that is a step function with magnitude V_{0} :

$$
\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}=\frac{1}{s} \frac{M_{N, \mathrm{dc}} V_{0}\left(1+s \tau_{L}\right)}{\left(1+s \tau_{A}\right)^{3}}
$$

with $M_{N, d c} \cong 1, \tau_{L}=3.87 \mu \mathrm{~s}$, and $\tau_{A}=0.45 \mu \mathrm{~s}$. Also, by use of Equation 8.73 b , $V_{\text {out }}(t)$ becomes

$$
\begin{aligned}
V_{\text {out }}(t) & =M_{N, \mathrm{dc}} V_{0}\left\{1-\left[1+\frac{t}{\tau_{A}}+\frac{1}{2}\left(1-\frac{\tau_{L}}{\tau_{A}}\right)\left(\frac{t}{\tau_{A}}\right)^{2}\right] e^{-t / \tau_{A}}\right\} \\
& =M_{N, \mathrm{dc}} V_{0}\left\{1-\left[1+2.22 t-18.8 t^{2}\right] e^{-t / 0.45}\right\}
\end{aligned}
$$

where time t is in microseconds ($\mu \mathrm{s}$).
Graph (a) of Figure 8.17 shows $V_{\text {out }}(t) / M_{N, d c} V_{0}$ as a function of time. As expected, there is a large overshoot: The peak of the transient is about 2.7 times its final value. As before, this overshoot can be eliminated by inserting a compensating network preceding or following the feedback amplifier. The insertion of a network with a transfer function of $\left(1+s \tau_{A}\right) /\left(1+s \tau_{L}\right)$ results in graph (b) of Figure 8.17, whereas the somewhat simpler transfer function of $1 /\left(1+s \tau_{L}\right)$ results in graph (c) of Figure 8.17. The propagation delay of the 50% point is $0.75 \mu \mathrm{~s}$ for graph (b) and it is $1.25 \mu \mathrm{~s}$ for graph (c); also, the $10 \%-90 \%$ rise time is $1.5 \mu \mathrm{~s}$ for graph (b) and it is 1.9μ for graph (c). (See also Problems 8.75, 8.76, and 8.77.)

FIGURE 8.17 Tramsient response of a Type 13741 operational amplifier used as a voltage follower with lag-lead compensation: (a) transient response of the feedback amplifier, (b) transient response using a network with a transfer function of $\left(1+s \tau_{A}\right) /\left(1+s \tau_{L}\right)$ preceding or following the feedback amplifier, and (c) transient response using a network with a transfer function of $1 /\left(1+s \tau_{L}\right)$ preceding or following the feedback amplifier.

8.4 Operational Amplifiers with $\left.A=A_{\text {dc }} /\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} / / f_{2}\right)\left(1+\mathrm{j} f / f_{3}\right)\right]$

This form of A is required for the accurate representation of high-performance operational amplifiers, such as those built using dielectric isolation technology. In what follows, frequency response is considered briefly, followed by descriptions of transient responses with frequency-independent feedback, lead-lag compensation, and lag-lead compensation.

8.4.1 Frequency Response

As before, the piecewise linear approximation of $\left|M_{N}\right|$ is obtained as the lesser of the piecewise linear approximation of $|A|$ and the piecewise linear approximation of $\left|1 / F_{N}\right|$.

EXAMPLE 8.27. A Type 2539 wideband monolithic operational amplifier is built using dielectric isolation technology and, as an approximation, it is characterized by $A_{\mathrm{dc}}=30,000, f_{1}=20 \mathrm{kHz}$, and $f_{2}=f_{3}=300 \mathrm{MHz}$. Thus, for frequencies between 20 kHz and 300 MHz , the piecewise linear approximation of $|A|$ becomes $30,000 /(f / 20 \mathrm{kHz})=600 \mathrm{MHz} / f$.

The operational amplifier is used with a frequency-independent feedback of $1 / F_{N}=20$. The piecewise linear approximation of $|A|$ becomes 20 at the frequency f where $600 \mathrm{MHz} / f=20$, that is, at $f=600 \mathrm{MHz} / 20=30 \mathrm{MHz}$. Thus, the piecewise linear approximation of $\left|M_{N}\right|$ equals $\left|1 / F_{N}\right|=20$ for frequencies up to 30 MHz and it equals $600 \mathrm{MHz} / f$ for frequencies between 30 MHz and 300 MHz .

Bode plots for $|A|,\left|1 / F_{N}\right|$, and $\left|M_{N}\right|$ are the subject of Problem 8.78.
8.4.2 Transient Response with Frequency-Independent Feedback

The transient response is now evaluated for the simplest case when corner frequency f_{1} of A is much less than the other two corner frequencies. In this case, A can be approximated as

$$
\begin{equation*}
A=\frac{A_{\mathrm{dc}}}{\left(\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)\left(1+\mathrm{j} f / f_{3}\right)} \tag{8.76}
\end{equation*}
$$

For a frequency-independent feedback return $F_{N}=F_{N, \mathrm{dc}}$, the resulting amplification can be written in the Laplace transform domain as

$$
\begin{align*}
\frac{\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}}{\mathscr{L}\left\{\boldsymbol{V}_{\mathrm{in}}(t)\right\}} & =\frac{A}{1+A F_{N}}=\frac{A}{1+A F_{N, \mathrm{dc}}} \\
& =\frac{\frac{A_{\mathrm{dc}}}{\left(s / 2 \pi f_{1}\right)\left(1+s / 2 \pi f_{2}\right)\left(1+s / 2 \pi f_{3}\right)}}{1+\frac{A_{\mathrm{dc}} F_{N, \mathrm{dc}}}{\left(s / 2 \pi f_{1}\right)\left(1+s / 2 \pi f_{2}\right)\left(1+s / 2 \pi f_{3}\right)}} \\
& =\frac{A_{\mathrm{dc}}}{A_{\mathrm{dc}} F_{N, \mathrm{dc}}+\left(s / 2 \pi f_{1}\right)\left(1+s / 2 \pi f_{2}\right)\left(1+s / 2 \pi f_{3}\right)} \tag{8.77}
\end{align*}
$$

When $A_{\mathrm{dc}} F_{N, \mathrm{dc}} \gg 1$, which is the usual case, Equation 8.77 can be approximated as

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\text {in }}(t)\right\}}=\frac{M_{N, \mathrm{dc}}}{1+\left(s / 2 \pi f_{C}\right)\left(1+s / 2 \pi f_{2}\right)\left(1+s / 2 \pi f_{3}\right)} \tag{8.78a}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{N, \mathrm{dc}}=\frac{A_{\mathrm{dc}}}{1+A_{\mathrm{dc}} F_{N, \mathrm{dc}}} \tag{8.78b}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{C}=A_{\mathrm{dc}} F_{N, \mathrm{dc}} f_{1} \tag{8.78c}
\end{equation*}
$$

It can be shown (see Problem 8.80) that f_{C} is the frequency where the piecewise linear approximation of $\left|A F_{N}\right|$ becomes 1 , provided that f_{2} and f_{3} are above f_{c}.

Equation 8.78 a can also be written

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\text {in }}(t)\right\}}=\frac{M_{N, \mathrm{dc}}}{1+\left(s / 2 \pi f_{C}\right)\left(1+s / 2 \pi f_{C} w_{21}\right)\left(1+s / 2 \pi f_{C} w_{31}\right)}, \tag{8.79a}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{21}=\frac{f_{2}}{f_{C}}=\frac{f_{2}}{A_{\mathrm{dc}} F_{N, \mathrm{dc}} f_{1}} \tag{8.79b}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{31}=\frac{f_{3}}{f_{C}}=\frac{f_{3}}{A_{\mathrm{dc}} F_{N, \mathrm{dc}} f_{1}} \tag{8.79c}
\end{equation*}
$$

Furthermore, Equation 8.79a can also be written

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {ous }}(t)\right\}}{\mathscr{L}\left\{V_{\text {in }}(t)\right\}}=\frac{M_{N, \mathrm{dc}} r}{\left(\frac{s}{2 \pi f_{c}}\right)^{3}+p\left(\frac{s}{2 \pi f_{c}}\right)^{2}+q\left(\frac{s}{2 \pi f_{c}}\right)+r} \tag{8.80a}
\end{equation*}
$$

where

$$
p=w_{21}+w_{31},
$$

$$
\begin{equation*}
q=w_{21} w_{31} \tag{8.80c}
\end{equation*}
$$

and

$$
\begin{equation*}
r=w_{21} w_{31} \tag{8.80d}
\end{equation*}
$$

Note that $q=r$; they are distinguished only to conform to Appendix A.
The transient response is free of ringing when all three roots of the denominator of Equation 8.80a are real. According to Appendix A, this occurs when

$$
\begin{equation*}
\frac{b^{2}}{4} \leqslant-\frac{a^{3}}{27} \tag{8.81a}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\frac{1}{3}\left(3 q-p^{2}\right) \tag{8.81b}
\end{equation*}
$$

and

$$
\begin{equation*}
b=\frac{1}{27}\left(2 p^{3}-9 p q+27 r\right) \tag{8.81c}
\end{equation*}
$$

It can be shown (see Problem 8.82) that the criterion of Equation 8.81a leads to

$$
\begin{aligned}
& w_{21} \geqslant 27 \frac{w_{31}}{w_{21}}\left(\left(\frac{w_{31}}{w_{21}}+1\right)\left[1-2\left(\frac{w_{31}}{w_{21}}-1\right)\left(\frac{w_{31}}{w_{21}}-\frac{3}{2}\right)\right]\right. \\
& +\sqrt{\left.\left\{\left(\frac{w_{31}}{w_{21}}+1\right)\left[1-2\left(\frac{w_{31}}{w_{21}}-1\right)\left(\frac{w_{31}}{w_{21}}-\frac{3}{2}\right)\right]\right\}^{2}+27\left[\frac{w_{31}}{w_{21}}\left(\frac{w_{31}}{w_{21}}-1\right)\right]^{2}\right)^{-1}}
\end{aligned}
$$

By varying w_{31} / w_{21}, the criterion of Equation 8.82 can be represented as shown in Figure 8.18. Note that w_{21} and w_{31} are interchangeable in Figure 8.18, as is expected from Equation 8.76 -although this interchangeability is not obvious in Equation 8.82.

FIGURE 8.18 Conditions for real roots in a feedback amplifier with the amplification A of Equation 8.76 and with a frequency-independent feedback $F_{N, 1 \mathrm{c}}$. Variables \boldsymbol{w}_{21} and w_{31} are given by Equations 8.79 b and 8.79 c .

EXAMPLE 8.28. A Type 2539 wideband monolithic operational amplifier is characterized by $A_{\mathrm{dc}}=30,000, f_{1}=20 \mathrm{kHz}$, and $f_{2}=f_{3}=300 \mathrm{MHz}$. Thus, $f_{1}<f_{2}$ and $f_{1} \ll f_{3}$; therefore, Equations 8.76 and 8.77 are applicable. The operational amplifier is used in a noninverting feedback amplifier with a frequency-independent feedback of $F_{N}=F_{N, \mathrm{dc}}=1 / 20$. Thus, $A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}=$ $(30,000)(1 / 20)=1500 \gg 1$; therefore, Equations $8.78-8.82$ and Figure 8.18 are applicable.

From Equation 8.78b,

$$
M_{N, \mathrm{dc}}=\frac{A_{\mathrm{dc}}}{1+A_{\mathrm{dc}} F_{N, \mathrm{dc}}}=\frac{30,000}{1+30,000 / 20}=19.987 \cong 20
$$

and, from Equation 8.78 c ,

$$
f_{\mathrm{C}}=A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}} f_{\mathrm{l}}=(30,000)(1 / 20)(20 \mathrm{kHz})=30 \mathrm{MHz}
$$

Also, from Equation 8.79b,

$$
w_{21}=\frac{f_{2}}{f_{c}}=\frac{300 \mathrm{MHz}}{30 \mathrm{MHz}}=10
$$

and, from Equation 8.79c,

$$
w_{31}=\frac{f_{3}}{f_{c}}=\frac{300 \mathrm{MHz}}{30 \mathrm{MHz}}=10
$$

According to Equation 8.82 and Figure 8.18, all roots are real and the transient response is free of ringing when $w_{21}=w_{31} \geqslant 6.75$. Thus, the transient response of the feedback amplifier in this example is free of ringing because it has $w_{21}=w_{31}=10$

In Example 8.28, a Type 2539A wideband monolithic operational amplifier was used with a frequency-independent feedback of $F_{N}=F_{N, \mathrm{dc}}=1 / 20$ and a resulting de amplification $M_{N, \mathrm{dc}} \cong 20$. It was seen that the transient response of the feedback amplifier is free of ringing. Example 8.29 shows that this is not the case with $M_{N, \mathrm{dc}} \cong 10$.

EXAMPLE 8.29. A Type 2539A wideband monolithic operational amplifier is characterized by $A_{\mathrm{dc}}=30,000, f_{1}=20 \mathrm{kHz}$, and $f_{2}=f_{3}=300 \mathrm{MHz}$. Thus, $f_{1} \ll f_{2}$ and $f_{1}<f_{3}$; therefore, Equations 8.76 and 8.77 are applicable. The operational amplifier is used in a noninverting feedback amplifier with a frequency-independent feedback of $F_{N}=F_{N, \mathrm{dc}}=1 / 10$. Thus, $A_{\mathrm{dc}} F_{N, \mathrm{dc}}=$ $(30,000)(1 / 10)=3000 \gg 1$; therefore, Equations $8.78-8.82$ and Figure 8.18 are applicable.

From Equation 8.78b,

$$
M_{N, \mathrm{dc}}=\frac{A_{\mathrm{dc}}}{1+A_{\mathrm{dc}} F_{N, \mathrm{dc}}}=\frac{30,000}{1+30,000 / 10}=9.997 \cong 10
$$

and, from Equation 8.78c,

$$
f_{C}=A_{\mathrm{dc}} F_{N, \mathrm{dc}} f_{1}=(30,000)(1 / 10)(20 \mathrm{kHz})=60 \mathrm{MHz}
$$

Also, from Equation 8.79 b,

$$
w_{21}=\frac{f_{2}}{f_{C}}=\frac{300 \mathrm{MHz}}{60 \mathrm{MHz}}=5
$$

and, from Equation 8.79 c ,

$$
w_{31}=\frac{f_{3}}{f_{C}}=\frac{300 \mathrm{MHz}}{60 \mathrm{MHz}}=5 .
$$

According to Equation 8.82 and Figure 8.18, all roots are real and the transient response is free of ringing when $w_{21}=w_{31} \geqslant 6.75$. Thus, the transient response of the feedback amplifier in this example is not free of ringing because it has $w_{21}=w_{31}=5$.
8.4.3 Transient Response with Lead-Lag Compensation

Lead-lag compensation consists of the inclusion of a frequency-dependent feedback network as shown in Figure 7.4 (page 96) and described by Equations 7.43-7.47 in Section 7.4.

When $V_{\text {in }}$ and $V_{\text {out }}$ are represented in the Laplace transform domain then, with $\tau_{1}=1 / 2 \pi f_{1}, \tau_{2}=1 / 2 \pi f_{2}, \tau_{3}=1 / 2 \pi f_{3}, \tau_{L}=1 / 2 \pi f_{L}, \tau_{U}=1 / 2 \pi f_{U}$, and with $f_{1} \ll f_{2}$ and $f_{1} \ll f_{3}$,

$$
\begin{align*}
\frac{\mathscr{L}\left\{V_{\mathrm{ou}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}} & =\frac{\frac{A_{\mathrm{dc}}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)\left(1+s \tau_{3}\right)}}{1+\frac{A_{\mathrm{dc}} F_{N . \mathrm{dc}}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)\left(1+s \tau_{3}\right)} \frac{1+s \tau_{L}}{1+s \tau_{U}}} \\
& \cong \frac{A_{\mathrm{dc}}}{1+\frac{s \tau_{1}\left(1+s \tau_{2}\right)\left(1+s \tau_{3}\right)}{s \tau_{1}\left(1+s \tau_{2}\right)\left(1+s \tau_{3}\right)} \frac{1+s \tau_{L}}{1+s \tau_{U}}} \tag{8.83}
\end{align*}
$$

where $\tau_{L}>\tau_{U}$, therefore also $f_{L}<f_{U}$.
The value of τ_{L} is usually chosen to be in the vicinity of τ_{2} or τ_{3}. A simple choice is $\tau_{L}=\tau_{3}$; that is, $f_{L}=f_{3}$ (pole-zero cancellation): This case is discussed in Section 8.4.3.1. The case of $f_{L}>f_{3}$ (i.e., $\tau_{L}<\tau_{3}$) is outlined in Section 8.4.3.2, and the case of $f_{L}<f_{3}$ (i.e., $\tau_{L}>\tau_{3}$) is not discussed.

8.4.3.1 LEAD-LAG COMPENSATION WITH $f_{L}=f_{3}$

In this case (pole-zero cancellation), Equation 8.83 becomes

$$
\begin{align*}
\frac{\mathscr{L}\left\{V_{\mathrm{ou}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}} & \cong \frac{\frac{A_{\mathrm{dc}}}{s \tau_{1}\left(1+s \tau_{2}\right)\left(1+s \tau_{3}\right)}}{1+\frac{A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}}}{s \tau_{1}\left(1+s \tau_{2}\right)\left(1+s \tau_{U}\right)}} \\
& =\frac{A_{\mathrm{dc}}}{A_{\mathrm{dc}} F_{N, \mathrm{dc}}+s \tau_{1}\left(1+s \tau_{2}\right)\left(1+s \tau_{U}\right)} \frac{1+s \tau_{U}}{1+s \tau_{3}} \\
& =\frac{A_{\mathrm{dc}}}{A_{\mathrm{dc}} F_{N, \mathrm{dc}}+\left(s / 2 \pi f_{1}\right)\left(1+s / 2 \pi f_{2}\right)\left(1+s / 2 \pi f_{U}\right)} \frac{1+s / 2 \pi f_{U}}{1+s / 2 \pi f_{3}} \tag{8.84}
\end{align*}
$$

In considering the last form of this equation, note that it is a product of two fractions. The root of the denominator of the second fraction is always real. Also, the first fraction equals Equation 8.77 with f_{3} replaced by f_{v}. Thus, for the purpose of determining whether all roots are real, the results of Section 8.4.2 may be used with f_{3} replaced by f_{v}.

EXAMPLE 8.30. A Type 2539 wideband monolithic operational amplifier is characterized by $A_{\mathrm{dc}}=30,000, f_{1}=20 \mathrm{kHz}$, and $f_{2}=f_{3}=300 \mathrm{MHz}$. The operational amplifier is used in a noninverting feedback amplifier with lead-lag compensation. Resistor values are $R_{F}=900 \Omega$ and $R_{I}=100 \Omega$; hence, $F_{N, \mathrm{dc}}=1 / 10$ and $M_{N, \mathrm{dc}} \cong 10$. The value of C_{I} is 1.8 pF , which includes the input capacitance of the operational amplifier and stray capacitances. The value of C_{F} is chosen as $C_{F}=0.59 \mathrm{pF}$.

Thus, from Equation 7.43c,

$$
f_{L}=\frac{1}{2 \pi R_{F} C_{F}}=\frac{1}{2 \pi(900 \Omega)(0.59 \mathrm{pF})} \cong 300 \mathrm{MHz}
$$

and, from Equation 7.43d,

$$
f_{U}=\frac{1}{2 \pi \frac{R_{F} R_{I}}{R_{F}+R_{I}}\left(C_{F}+C_{I}\right)}=\frac{1}{2 \pi \frac{(900 \Omega)(100 \Omega)}{900 \Omega+100 \Omega}(0.59 \mathrm{pF}+1.8 \mathrm{pF})} \cong 738 \mathrm{MHz}
$$

Thus, $f_{L}=f_{3}$. Also, $f_{1} \ll f_{2}, f_{1} \ll f_{3}$, and $A_{\mathrm{dc}} F_{N, \mathrm{dc}} \gg 1$. Hence, the piecewise linear approximation of $\left|A F_{N}\right|$ is as shown in Figure 8.19 ; also, Equation 8.84 is applicable.

FIGURE 8.19 Piecewise linear approximation of $\left|A F_{N}\right|$ in Example 8.30.

The value of f_{c} is, from Equation 8.78c,

$$
f_{C}=A_{\mathrm{dc}} F_{\mathrm{N}, \mathrm{dc}} f_{1}=(30,000)(1 / 10)(20 \mathrm{kHz})=60 \mathrm{MHz}
$$

and, from Equation 8.79 b,

$$
w_{21}=\frac{f_{2}}{f_{c}}=\frac{300 \mathrm{MHz}}{60 \mathrm{MHz}}=5 .
$$

However, in evaluating Equation 8.79 c for w_{31}, f_{3} has to be replaced by f_{U} :

$$
w_{31}=\frac{f_{U}}{f_{C}}=\frac{738 \mathrm{MHz}}{60 \mathrm{MHz}}=12.3
$$

A close inspection of Figure 8.18 shows that the $w_{21}=5, w_{31}=12.3$ point is within the region where all roots are real (see also Problem 8.91). Thus, in this example, the transient response of the feedback amplifier is free of ringing. This is an improvement over the feedback amplifier of Example 8.29 that also had $M_{N, \mathrm{dc}} \cong 10$, but it used frequency-independent feedback and its transient response was not free of ringing.

To find the transient response, the transfer function of Equation 8.84 has to be rewritten using the roots of the denominator.

EXAMPLE 8.31. In Example 8.30, the values of w_{21} and w_{31} were such that the point they represented in Figure 8.18 was barely within the region where all roots are real. Also, Problem 8.91 indicates that the two sides in the inequality of Equation 8.81a are almost equal. In what follows, the approximation is made that the point in Figure 8.18 lies on the boundary line between the two regions, and that Equation 8.81a is an equality. In this case, the roots of the denominator in the left fraction of Equation 8.84 can be computed with Equations 8.80 b , $8.80 \mathrm{c}, 8.80 \mathrm{~d}, 8.81 \mathrm{~b}$, and 8.81 c with f_{3} replaced by f_{U} (this is a result of the similarity of Equation 8.77 and the left fraction in Equation 8.84).

Thus, with $w_{21}=5$ and $w_{31}=12.3$,

$$
\begin{aligned}
& p=w_{21}+w_{31}=5+12.3=17.3 \\
& q=r=w_{21} w_{31}=(5)(12.3)=61.5
\end{aligned}
$$

and

$$
b=\frac{1}{27}\left(2 p^{3}-9 p q+27 r\right)=\frac{1}{27}\left[2(17.3)^{3}-9(17.3)(61.5)+27(61.5)\right]=90.4
$$

The roots of a cubic equation are given in Appendix A, with at least two roots equal when $b^{2} / 4=-a^{3} / 27$, which is the case here. The two equal roots are given as

$$
\left(\frac{s}{2 \pi f_{C}}\right)_{A}=-\sqrt[3]{-\frac{b}{2}}-\frac{p}{3}=-\sqrt[3]{-\frac{90.4}{2}}-\frac{17.3}{3}=-2.2
$$

and the third root is given as

$$
\left(\frac{s}{2 \pi f_{C}}\right)_{B}=2 \sqrt[3]{-\frac{b}{2}}-\frac{p}{3}=2 \sqrt[3]{-\frac{90.4}{2}}-\frac{17.3}{3}=-12.9 .
$$

The corresponding time constants are

$$
\tau_{A}=-\frac{1}{s_{A}}=\frac{1}{2.2} \frac{1}{2 \pi f_{C}}=\frac{1}{2.2} \frac{1}{2 \pi(60 \mathrm{MHz})}=1.2 \mathrm{~ns}
$$

and

$$
\tau_{B}=-\frac{1}{s_{B}}=\frac{1}{12.9} \frac{1}{2 \pi f_{C}}=\frac{1}{12.9} \frac{1}{2 \pi(60 \mathrm{MHz})}=0.205 \mathrm{~ns}
$$

The time constants corresponding to f_{U} and f_{3} are

$$
\tau_{U}=\frac{1}{2 \pi f_{v}}=\frac{1}{2 \pi(738 \mathrm{MHz})}=0.215 \mathrm{~ns}
$$

and

$$
\tau_{3}=\frac{1}{2 \pi f_{3}}=\frac{1}{2 \pi(300 \mathrm{MHz})}=0.53 \mathrm{~ns}
$$

Thus (see Problem 8.92), the transfer function becomes

$$
\begin{aligned}
\frac{\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}} & =\frac{M_{N, \mathrm{dc}}}{\left(1+s \tau_{A}\right)^{2}\left(1+s \tau_{B}\right)} \frac{1+s \tau_{U}}{1+s \tau_{3}} \\
& =\frac{M_{N, \mathrm{dc}}}{[1+s(1.2 \mathrm{~ns})]^{2}[1+s(0.205 \mathrm{~ns})]} \frac{1+s(0.215 \mathrm{~ns})}{1+s(0.53 \mathrm{~ns})},
\end{aligned}
$$

which can be approximated (see Problem 8.93) as

$$
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\text {in }}(t)\right\}} \cong \frac{M_{N, \mathrm{dc}}}{[1+s(1.2 \mathrm{~ns})]^{2}[1+s(0.53 \mathrm{~ns})]}
$$

The output voltage as a function of time is obtained by multiplying the transfer function by the Laplace transform of the input voltage and taking the inverse Laplace transform of the product.

EXAMPLE 8.32. In the feedback amplifier of Example 8.31, the input voltage is a step function with magnitude V_{0}. Thus, Equation 5.30 is applicable and the resulting output voltage is given by Equation 5.31 a with $\tau_{1}=0.53 \mathrm{~ns}$, $\tau_{2}=1.2 \mathrm{~ns}$, and with A_{dc} replaced by $M_{N, \mathrm{dc}} \cong 10$. Therefore, $\tau_{2} / \tau_{1}=1.2 \mathrm{~ns} / 0.53 \mathrm{~ns}=2.26$ in Equation 5.31a, and

$$
V_{\mathrm{out}}(t)=M_{N, \mathrm{dc}} V_{0}\left[1-0.63 e^{-t / 0.53 \mathrm{~ns}}-\left(0.37+\frac{t}{0.67 \mathrm{~ns}}\right) e^{-t / 1.2 \mathrm{~ns}}\right]
$$

This is shown in Figure 8.20. The propagation delay of the 50% point is $t_{50} \approx 2.6 \mathrm{~ns}$ and the $10 \%-90 \%$ rise time is $t_{10-90} \approx 4.3 \mathrm{~ns}$.

FIGURE 8.20 Transient response of a Type 2539 operational amplifier using lead-lag compensation with $f_{L}=f_{3} ;$ also, $M_{N, \mathrm{dc}} \cong \mathbf{1 0}$.

8.4.3.2 LEAD-LAG COMPENSATION WITH $f_{L}>f_{3}$

As was the case without corner frequency f_{3} in Section 8.3.2.2, here too it is convenient to introduce the frequency ratio R by Equation 8.56, the crossover frequency f_{C} by Equation 8.57a, and the frequency ratios w_{1} and w_{2} by Equations 8.58 a and 8.58 b . However, because Equation 8.83 is more complicated than Equation 8.49, the equations corresponding to Equations 8.598.61 become more complicated here. Specifically, the denominators of Equations 8.59 a and 8.60 become fourth order in s and the denominator of Equation 8.61 becomes a product of four terms. Finding criteria for transients without ringing-hence for real roots-becomes more difficult, and only limited results are outlined here.

Figure 8.21 shows results for the case when frequency ratio R of Equation 8.56 can be approximated as $R=0$, that is, when $f_{2} \ll f_{L}$. As before, frequency ratios w_{1} and w_{2} are given by Equations 8.58 a and 8.58 b . The derivation of Figure 8.21 is the subject of Problem 8.97.

Note that, as expected from a comparison of Equations 8.49 and 8.83, the $f_{3} / f_{2}=\infty$ graph of Figure 8.21 is identical with the $R=0$ graph of Figure 8.9. Also, when real roots are desired, lowering f_{3} / f_{2} necessitates increasing $w_{2}=f_{v} / f_{C}$, which is not unreasonable.

FIGURE 8.21 Criteria for real roots-hence for transients without ring-ing-for lead-lag compensation with $f_{L}>f_{3}$ and with $f_{2}<f_{L}$. Frequency ratios w_{1} and w_{2} are given by Equation 8.58 a and 8.58b.

The cusps of the graphs represent solutions where three roots out of the four roots are equal. This limit is detailed as a function of f_{2} / f_{3} in Figure 8.22.

Note that, as expected, data for $f_{3} / f_{2}=\infty$-that is, for $f_{2} / f_{3}=0$ in Figure 8.22-is identical with data for $R=0$ in Figure 8.12. The three identical real roots are represented by τ_{A} and the fourth root by τ_{B} in Figure 8.22, where also w_{1} and w_{2} are given by Equations 8.58a and 8.58b.

Note that corner frequency f_{L} is usually chosen in the vicinity of f_{3}. Because $f_{2} \ll f_{L}$, when $R \cong 0$, this implies $f_{2} \ll f_{3}$. Hence, the $R=0$ approximation is only of limited use in lead-lag compensation when f_{3} is significant. (However, it it often provides a useful approximation in lag-lead compensation discussed in the next section.)

Figures 8.23-8.25 (pages 178-180) describe criteria for real roots with three identical roots, for $f_{3} / f_{2}=1,2$, and 5 . They are similar to Figure 8.12, which represents the limit of $f_{3} / f_{2}=\infty$. The three identical roots are represented by τ_{A}, the fourth root by τ_{B}. (See also Problem 8.98.)

FIGURE 8.22 Criteria for real roots, including three identical roots τ_{A}, for lead-lag compensation with $f_{L}>f_{3}$ and with $f_{2} \ll f_{L}$. Frequency ratios w_{1} and w_{2} are given by Equations 8.58a and 8.58b.

RESPONSE OF FEEDBACK AMI
IIERS

FIGURE 8.23 Criteria for real roots, including three identical roots τ_{A}, for lead-lag compensation and $f_{3}=f_{2}$. Frequency ratios w_{1} and w_{2} are given by Equations 8.58a and 8.58b.

FIGURE 8.24 Criteria for real roots, including three identical roots τ_{A}, for lead-lag compensation and $f_{3}=2 f_{2}$. Frequency ratios w_{1} and w_{2} are given by Equations 8.58a and 8.58b.

FIGURE 8.25 Criteria for real roots, including three identical roots τ_{A}, for lead-lag compensation and $f_{3}=5 f_{2}$. Frequency ratios identical roots τ_{1}, for
Equations 8.58 and 8.58 b .

8.4.4 Transient Response with Lag-Lead Compensation

In a way similar to Section 8.3.3, the results of lead-lag compensation are applicable here too with τ_{2}, τ_{L}, and τ_{U} replaced by τ_{L}, τ_{U}, and τ_{2}, respectively, and with f_{2}, f_{L}, and f_{U} replaced by f_{L}, f_{U}, and f_{2}, respectively, in the denominator of the transfer function.

EXAMPLE 8.33. A Type 2539 wideband monolithic operational amplifier is characterized by $A_{\mathrm{dc}}=30,000, f_{1}=20 \mathrm{kHz}$, and $f_{2}=f_{3}=300 \mathrm{MHz}$. Lag-lead compensation is applied with $F_{N, \mathrm{dc}}=1$ (voltage follower), and a transient response without ringing is desired.
By choosing, somewhat arbitrarily, three equal roots, the results of Figure 8.23 can be used. However, in the $R=f_{2} / f_{L}$ of Equation $8.56, f_{2}$ has to be replaced by f_{L} and f_{L} by f_{U}; thus, R becomes $R=f_{L} / f_{U}$. Also, in the $w_{2}=f_{U} / f_{C}$ of Equation $8.58 \mathrm{~b}, f_{u}$ has to be replaced by f_{2}; thus, w_{2} becomes $w_{2}=f_{2} / f_{c}$. Equation 8.57 a is still applicable because τ_{1} of Equation 8.75 c remains unaltered. Hence f_{1} remains unaltered as well; however, now $R=f_{L} / f_{U}$.

Combining the above results, product $R w_{2}$ can be written

$$
R w_{2}=\frac{f_{L}}{f_{U}} \frac{f_{2}}{f_{c}}
$$

Also, Equation 8.57 a can now be written

$$
f_{c}=A_{\mathrm{dc}} F_{N, \mathrm{dc}} R f_{1}=A_{\mathrm{dc}} F_{N, \mathrm{dc}} \frac{f_{L}}{f_{U}} f_{1}
$$

Thus, the product $R w_{2}$ becomes

$$
R w_{2}=\frac{f_{\mathrm{L}}}{f_{U}} \frac{f_{2}}{A_{\mathrm{dc}} F_{N, \mathrm{dc}} \frac{f_{\mathrm{L}}}{f_{U}} f_{1}}=\frac{f_{2}}{A_{\mathrm{dc}} F_{N, \mathrm{dc}} f_{1}} .
$$

With the parameters of this example

$$
R w_{2}=\frac{300 \mathrm{MHz}}{(30,000)(1)(20 \mathrm{kHz})}=0.5 .
$$

For $R w_{2}=0.5$, Figure 8.23 provides $R=0.095, w_{1}=2.72, w_{2}=5.25$, $\tau_{C} / \tau_{A}=1.12$, and $\tau_{c} / \tau_{B}=7.17$. Thus, from $w_{2}=f_{2} / f_{C}$,

$$
f_{C}=\frac{f_{2}}{w_{2}}=\frac{300 \mathrm{MHz}}{5.25}=57.1 \mathrm{MHz}
$$

Also, replacing f_{L} by f_{U}, w_{1} of Equation 8.58 a becomes $w_{1}=f_{C} / f_{U}$; hence,

$$
f_{U}=\frac{f_{C}}{w_{1}}=\frac{57.1 \mathrm{MHz}}{2.72}=21 \mathrm{MHz}
$$

Finally, using $R=f_{L} / f_{U}$,

$$
f_{L}=R f_{U}=(0.095)(21 \mathrm{MHz})=2 \mathrm{MHz}
$$

The transfer functions and the time responses may also be found in a way similar to Section 8.3.3.

EXAMPLE 8.34. In Example 8.33, $f_{L}=2 \mathrm{MHz}, f_{C}=57.1 \mathrm{MHz}, \tau_{C} / \tau_{A}=$ 1.12 , and $\tau_{C} / \tau_{B}=7.17$. Thus,

$$
\begin{aligned}
& \tau_{L}=\frac{1}{2 \pi f_{L}}=\frac{1}{2 \pi(2 \mathrm{MHz})} \cong 80 \mathrm{~ns} \\
& \tau_{C}=\frac{1}{2 \pi f_{\mathrm{C}}}=\frac{1}{2 \pi(57.1 \mathrm{MHz})} \cong 2.8 \mathrm{~ns}, \\
& \tau_{A}=\frac{\tau_{C}}{1.12}=\frac{2.8 \mathrm{~ns}}{1.12} \cong 2.5 \mathrm{~ns}
\end{aligned}
$$

and

$$
\tau_{B}=\frac{\tau_{c}}{7.17}=\frac{2.8 \mathrm{~ns}}{7.17} \cong 0.4 \mathrm{~ns}
$$

For an input voltage that is a step function with magnitude V_{0},

$$
\mathscr{L}\left\{V_{\text {out }}(t)\right\}=\frac{1}{s} \frac{M_{N, \mathrm{da}} V_{0}\left(1+s \tau_{L}\right)}{s\left(1+s \tau_{A}\right)^{3}\left(1+s \tau_{B}\right)},
$$

with $M_{\text {N.dc }} \cong 1, \tau_{L} \cong 80 \mathrm{~ns}, \tau_{A} \cong 2.5 \mathrm{~ns}$, and $\tau_{B} \cong 0.4 \mathrm{~ns}$. It can be shown (see Problem 8.100) that the inverse Laplace transform of $\mathscr{L}\left\{V_{\text {out }}(t)\right\}$ is as shown in Figure 8.26.

Note that the transient response has a large overshoot: The peak is almost nine times the final value. As before, the overshoot can be eliminated by inserting a compensating network preceding or following the feedback amplifier.

8.5 Inverting Feedback Amplifiers

An inverting feedback amplifier was shown in Figure 7.8 and an extended circuit in Figure 7.9. It was seen that if the performance of the circuit using lead-lag compensation with $f_{L}=f_{2}$ (pole-zero cancellation) was acceptable for $R_{\text {source }}=\infty$, then it was also acceptable for any value of $R_{\text {source }}$

Whether the transient response is free of ringing or not is determined by $A F_{N}$ and is independent of the input. Thus, if the transient response of the circuit of Figure 7.9 using lead-lag compensation with $f_{L}=f_{2}$ (or $f_{L}=f_{3}$) is free of ringing for $R_{\text {tource }}=\infty$, then it is also free of ringing for any value of $R_{\text {source }}$.

FIGURE 8.26 Transient response of a Type 2539 operational amplifier used as a voltage follower.

EXAMPLE 8.35. In Example 8.30, a Type 2539 wideband monolithic operational amplifier was used with $f_{L}=f_{3}$. The values of the feedback network were $R_{F}=900 \Omega, R_{1}=100 \Omega, C_{F}=0.59 \mathrm{pF}$, and $C_{I}=1.8 \mathrm{pF}$, and the transient response was free of ringing.

Thus, the transient response of the circuit of Figure 7.9 is free of ringing for any value of $R_{\text {source }}$, if it uses a Type 2539 operational amplifier, $R_{F}=900 \Omega$. $R_{2}+R_{3}=100 \Omega, C_{F}=0.59 \mathrm{pF}$, and $C_{1}=1.8 \mathrm{pF}$.

The situation becomes more complicated when $R_{\text {source }}$ of Figure 7.9 is not a pure resistance. In such cases, it is often necessary to specify a minimum value for R_{1} if a transient response without ringing is desired.

8.6 Computer-Aided Design

In the foregoing, this chapter introduced analytical and graphical methods for finding the frequency response and the transient response of feedback amplifiers. These methods also provided guidance for the choice of component values required to achieve desired performance characteristics, such as transients that are free of ringing. In some cases, they also provided insight into the tradeoffs that are possible in a given circuit, such as the tradeoff between operating speed and the maximum output voltage swing.
It was also seen that the derivation of these methods could become difficult even in the simple circuits discussed here. Also, in some cases, the use of the resulting equations and design graphs required a substantial amount of work.

An alternative to the analytical and graphical methods is provided by computer-aided design methods. Contrary to their name, these methods are suitable mainly for analyzing the performance of a given circuit. The transient response is usually computed by advancing the time in small time increments and evaluating voltages and currents in the circuit at each time step. Thus, the writing of equations is eliminated, and the transient response is obtained directly as a graph or a listing. The frequency response can also be found, as well as the effects of input offset voltage, input currents, and other parameters.
Computer-aided design is often a convenient tool for finding the performance of a given circuit when a computer and a suitable program are available. Also, changing the values of components (circuit parameters) is usually easy; hence, circuits can be evaluated with different combinations of component values.

EXAMPLE 8.36. A Type 9914A wideband hybrid operational amplifier was used in Examples 8.17 and 8.18 with $M_{N, \mathrm{dc}}=10$ and with lead-lag compensation with $f_{L}>f_{2}$. It was found that, with $f_{C}=156.25 \mathrm{MHz}$ and $f_{L}=80 \mathrm{MHz}$, the transient was free of ringing when $w_{2}=f_{U} / f_{C}$ was between 3.4 and 3.5 , that is, when f_{U} was between 531 MHz and 547 MHz .

In practice, such a narrow range of f_{U} is difficult to guarantee with realistic variations of circuit parameters. On the other hand, a small amount of ringing on the transient response may be acceptable.

A computer-aided design process may proceed as follows. As a starting point, the feedback amplifier is designed with $f_{U}=3.4 f_{c}=531 \mathrm{MHz}$. The resulting transient response is found using computer-aided methods. Next, circuit parameters are varied and the resulting transient responses found, again by computer-aided methods. As a last step, the transient responses are evaluated to determine whether the resulting ringing is acceptable.

Computer-aided design can also be used for generating design graphs, such as Figures $8.21-8.25$. This can be attained by an exhaustive evaluation of transients with all possible combinations of the variables of the horizontal and vertical axes. Such a procedure requires the evaluation of many transients: in the rough vicinity of 10,000 transients for the accuracy of Figures 8.21-8.25. This may become expensive and time-consuming; nevertheless, such use of computeraided design is often practical, especially by use of mainframe computers.

PROBLEMS

8.12 Prove Equations 8.30a and 8.30b.
8.13 Verify Equation 8.31.
*8.16 Derive Equation 8.35 b from Equation 8.35 a by the following steps:
(a) Substitute $\left(f_{L} / f_{U}\right)\left(f_{U} / f_{C}\right)_{\text {max }}$ for f_{L} / f_{C} in Equation 8.35a.
(b) Find the two solutions $\left(f_{U} / f_{C}\right)_{\text {max }}$ of the resulting second-order equation.
(c) Show that one solution is as given by Equation 8.35b, where $\left(f_{U} / f_{C}\right)_{\max }<1$ for $0<f_{L} / f_{U}<1$, which is the case for lag-lead compensation.
(d) Show that the other solution results in $\left(f_{U} / f_{C}\right)_{\max }>1$ for $0<f_{L} / f_{U}<1$; hence, it is of no interest.
8.17 Verify that Figure 8.3 is consistent with Equations 8.36 a and 8.36 b .
*8.18 Derive Equations 8.36 a and 8.36 b from Equation 8.35 b using the series expansion of the square root for small values of f_{L} / f_{U} in Equation 8.35 b . [Hint: Use the approximation $\sqrt{1+x} \cong 1+x / 2-x^{2} / 8$ for $|x| \ll 1$.]
8.19 Verify that the condition $A_{\mathrm{dc}} F_{N, \mathrm{dc}} f_{\nu} / f_{U} \gg 1$ of Equation 8.33 c is valid in Example 8.8.
8.20 Verify that Figure 8.4 is consistent with the approximation $\left(f_{C} / f_{U}\right)_{\min } \cong 4-2 f_{L} / f_{U}$ when $0<f_{L} / f_{U} \ll 1$.
*8.21 Verify that the approximation $\left(f_{C} / f_{U}\right)_{\min } \cong 4-2 f_{L} / f_{U}$ is valid when $0<f_{V} / f_{U} \ll 1$. Use the series expansion of the square root for small values of f_{L} / f_{U} given in Problem 8.18.
8.22 Verify Equations $8.37 \mathrm{a}-\mathrm{c}$.
8.23 Derive Equation 8.38b from Equation 8.38a.
8.24 Verify Equations 8.39 and 8.40 .
8.25 Derive Equation 8.41.
8.26 Use Equation 8.41 and show that $V_{\text {out }}$ of Figure 8.5 has an initial slope of $19.5 M_{N, d c} V_{0}$ at $t / \tau=0$.
8.27 Use Equation 8.41 and show that $V_{\text {out }}$ of Figure 8.5 has its maximum of approximately $7.5 M_{N, \mathrm{dc}} V_{0}$ at $t / \tau \cong 1.05$.
8.28 Derive Equations 8.43a-e from Equation 8.42.
8.29 Derive Equations 8.44a, 8.45, 8.46, and 8.47.
8.30 Verify the results of Example 8.10.
8.31 Verify Equation 8.48.
8.32 Verify the results of Example 8.11.
8.33 Verify the results of Example 8.12.
8.34 Find the phase margin in Example 8.12.
8.35 A stage in an operational amplifier is represented by the lag network of Figure 5.1 (page 39), with $I_{\text {in }}$ proportional to the input voltage of the stage. Capacitance C is controlled within $\pm 10 \%$; however, variations of R are much greater because R represents collector (or drain) resistances that are poorly controlled in the integrated circuit process. Show that an increase in the value of R increases the dc amplification and reduces the value of the corner frequency $f_{1}=1 / 2 \pi R C$; however, it has no influence on the amplification of the stage at frequencies $f \gg f_{1}$ as long as C remains constant.
*8.36 Verify the statements following Example 8.13 at the end of Section 8.3.1. [Hint: Use Equations 6.40-6.42 and Figure 6.14.]
8.37 A Type 741 internally compensated monolithic operational amplifier is characterized by $A_{\mathrm{dc}}=200,000, f_{1}=10 \mathrm{~Hz}$, and $f_{2}=10 \mathrm{MHz}$, and it is used with frequency-independent feedback. Show that the frequency response magnitude is free of peaking and the transient response is free of ringing for all possible $M_{N, d c}$, including $M_{N, d c} \cong 1$ (voltage follower).

A Type 13741 internally compensated FET-input operational amplifier is characterized by $A_{\mathrm{dc}}=100,000, f_{1}=10 \mathrm{~Hz}$, and $f_{2}=1 \mathrm{MHz}$, and it is used with frequency-independent feedback.
(a) Show that the magnitude of the frequency response is free of peaking if, and only if, $M_{N, d s} \geqslant 2$.
(b) Show that the transient response is free of ringing if, and only if, $M_{\mathrm{N}, \mathrm{dc}} \geqslant 4$.
8.39 Derive Equations 8.51a-e from Equation 8.50.
*8.40 Derive Equation 8.53 from Equations 8.51 a and 8.52 for a step-function input, using Appendix A.
8.41 Derive the equation for $V_{\text {out }}$ in Example 8.14 from Equation 8.53.
*8.42 Verify that the bandwidth approximations given in the text following Example 8.14 are valid for frequency-independent feedback and for lead-lag compensation with $f_{L}=f_{2}$ (pole-zero cancellation). Ignore the region of $m \gg 1$ and show the following:
(a) The bandwidth is approximately $f_{1} A_{\mathrm{dc}} / M_{N, \mathrm{dc}}$ when $m \leqslant 1$.
(b) The bandwidth is approximately $\sqrt{\left(A_{\text {dc }} / M_{N, d c}\right) f_{1} f_{2}}$ when $m \geqslant 1$ (but not when $m \gg 1$). [Hint: Use the piecewise linear approximations of the Bode plots for $\left.\left|M_{N}\right| \cdot\right]$
*8.43 Show that the approximate bandwidth given in (b) of Problem 8.42 is also applicable for $0.5 \leqslant m \leqslant 1$. [Hint: Use the results of Figure 6.13.]
8.44 Verify the results of Example 8.16.
8.45 A Type 13741 internally compensated FET-input operational amplifier is characterized by $A_{\mathrm{dc}}=100,000, f_{1}=10 \mathrm{~Hz}$, and $f_{2}=1 \mathrm{MHz}$. It is used in a noninverting feedback amplifier with $F_{N}=F_{N, \text { dc }}=1$ (voltage follower). Find the resulting value of m and estimate the bandwidth of the feedback amplifier.
8.46 Use Equation 8.49 and show that the piecewise linear approximation of the Bode plot of $\left|A F_{N}\right|$ becomes 1 at δ_{C} given by Equation 8.57 a when $f_{2} \leqslant f_{C}, f_{L} \leqslant f_{C}$, and $f_{U} \geqslant f_{C}$. Assume $A_{\mathrm{dc}} F_{N, \mathrm{dc}} \gg 1$.
8.47 Verify Equations 8.59a-d and Equation 8.60.
*8.48 Consider the procedure given in Appendix A for the solution of thirdorder (cubic) equations. Verify that the case of $\tau_{D}=\tau_{A}$ in Equation 8.61 marks the transition between two regions: All three of τ_{A}, τ_{B}, and τ_{D} are real in one region, whereas in the other region only one of τ_{A}, τ_{B}, and τ_{D} is real and the remaining two are complex. Assume nonzero $s, \tau_{A}, \tau_{B}, \tau_{C}$, and τ_{D}.
8.49 Verify Equations $8.62 \mathrm{~b}, 8.63 \mathrm{a}, 8.63 \mathrm{~b}$, and 8.63 c .
*Optional problem.
*8.50 Derive Equations 8.64a-c from Equations 8.63a-c' as follows:
(a) Express τ_{c} / τ_{B} from Equation 8.63 a ; the result is Equation 8.64 c .
(b) Substitute the result of (a) above (i.e., Equation 8.64 c) into Equation 8.63c.
(c) Obtain Equation 8.64 b from the result of (b) above.
(d) Substitute the result of (a) above (i.e., Equation 8.64c) and the result of (c) above (i.e., Equation 8.64b) into Equation 8.63b. Simplify and express w_{1}; the result is Equation $8.64 a$.
8.51 Compute Equations 8.64a and 8.64 b with $R=0.625$ and $\tau_{\mathrm{c}} / \tau_{\mathrm{A}}=1.44$ Verify that the results are consistent with Figure 8.9.
*8.52 Derive Equation 8.65 by substituting τ_{c} / τ_{B} of Equation 8.64 c into Equation 8.63 b and solving the resulting equation for τ_{C} / τ_{A}.
853 Show that lead-lag compensation with $f_{L}=f_{2}$ (pole-zero cancellation) would require $f_{U} / f_{L}=20$ in Example 8.17, which cannot be implemented because $M_{N, d c}$ is only 10 .
8.54 Derive Equation 8.66 from Equation 8.62a. [Hint: Use Equations 8.59d and 8.63 c .]
8.55 Verify Equation 8.67b.
8.56 Verify the equation for $V_{\text {out }}(t)$ in Example 8.18
*8.59 Derive Equations 8.70a-c from Equations 8.69a-c as follows:
(a) Express R / w_{1} from Equation 8.69 a and substitute it into Equation 8.69b.
(b) Express w_{2} from the result of (a) above. The result is Equation 8.70a.
(c) Express w_{1} from Equation 8.69 c . The result is Equation 8.70 b.
(d) Express R from Equation 8.69a. The result is Equation 8.70 c .
8.60 Verify that w_{1} and w_{2} of Figure 8.12 provide the locations of the cusps for $\boldsymbol{R}=0,0.1,0.2,0.5,0.625$, and 0.75 in Figure 8.9.
8.61 Compute Equations $8.70 \mathrm{a}-\mathrm{c}$ at $\tau_{\boldsymbol{c}} / \tau_{\boldsymbol{A}}=1.2$. Verify that the results are consistent with Figure 8.12.
8.62 Verify Equations 8.71 a and 8.71 b
8.63 Verify the results of Example 8.19.
8.64 Derive Equation 8.72 from Equation 8.68a. [Hint: Use Equations 8.59d and 8.63 c with $\tau_{B}=\tau_{A}$.]
*Optional problem.
8.65 Derive Equation 8.73b from Equation 8.73a using Appendix A.
8.66 Verify the equation for $V_{\text {out }}(t)$ in Example 8.20.
8.67 Verify the results of Example 8.21.
8.68 Show that $1 /\left(R^{2} / w_{1}\right)$ is equal to the piecewise linear approximation of the Bode plot for $\left|A F_{N}\right|$ at $f=f_{2}$:
(a) in Figure 8.10;
(b) in Figure 8.13;
(c) in general when $f_{L} \geqslant f_{2}$ and $f_{U} \geqslant f_{2}$.
8.69 A Type 9914A wideband hybrid operational amplifier is characterized by $A_{\mathrm{dc}}=5000, f_{1}=0.5 \mathrm{MHz}$, and $f_{2}=50 \mathrm{MHz}$. It is used in a noninverting feedback amplifier with $M_{N, \mathrm{dc}}=50$, and a transient response without ringing is desired. Input voltage $V_{\text {in }}(t)$ is a step function with magnitude V_{0}.
(a) Find output voltage $V_{\text {out }}(t)$ if lead-lag compensation with $f_{L}=f_{2}$ and $m=0.25$ is used.
(b) Find t_{50} and t_{10-90} of (a) above.
(c) Find output voltage $V_{\text {out }}(t)$ if lead-lag compensation with $f_{L}>f_{2}$ is used and if the transfer function is of the form of Equation 8.72.
(d) Find t_{50} and t_{10-90} of (c) above.
8.70 Verify the results of Example 8.22.

Verify Equations $8.74 \mathrm{a}-\mathrm{d}$ and $8.75 \mathrm{a}-\mathrm{d}$.
Verify the statements following Equation 8.75 d by the steps given below:
(a) Show that Equation 8.49 can also be written

$$
\frac{\mathscr{L}\left\{V_{\mathrm{ou}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{id}}(t)\right\}}=\frac{A_{\mathrm{dc}}\left(1+s \tau_{U}\right)}{\left(1+s \tau_{1}\right)\left(1+s \tau_{U}\right)\left(1+s \tau_{2}\right)+A_{\mathrm{dc}} F_{N, \mathrm{dc}}\left(1+s \tau_{\mathrm{L}}\right)} .
$$

(b) Show that when $A_{\mathrm{dc}} F_{N, \mathrm{dc}} \gg 1$, the result of (a) above can be written

$$
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\text {in }}(t)\right\}}=M_{N, \mathrm{dc}} \frac{1+s \tau_{U}}{1+s \tau_{L}+\frac{M_{N, \mathrm{dc}}}{A_{\mathrm{dc}}}\left(1+s \tau_{1}\right)\left(1+s \tau_{U}\right)\left(1+s \tau_{2}\right)} .
$$

(c) Verify that the denominator of Equation 8.75 c is identical to the denominator of the result of (b) above with τ_{2}, τ_{L}, and τ_{U} replaced by τ_{L}, τ_{U}, and τ_{2}, respectively.
(d) Verify that, in general, the numerators of Equations 8.75 c and 8.75 d are not identical to the numerator of the result of (b) above.

Verify the results of Example 8.25
(a) Verify the equation given for $V_{\text {out }}(t)$ in Example 8.26.
(b) Evaluate the equation at $t=1 \mu \mathrm{~s}$ and compare the result with graph (a) of Figure 8.17.
8.75 Derive the equation representing graph (b) in Figure 8.17. Evaluate the equation at $t=1 \mu \mathrm{~s}$ and compare the result with the figure.
*8.76 Derive the equation representing graph (c) in Figure 8.17. Evaluate the equation at $t=1 \mu \mathrm{~s}$ and compare the result with the figure.
8.77 In Example 8.25, the value of C_{I} is 10 pF , which includes the input capacitance of the operational amplifier and stray capacitances. Show that a feedback network consisting of $R_{F}=265 \mathrm{k} \Omega$ in parallel with $C_{F}=4.6 \mathrm{pF}$ results in $f_{U}=129.8 \mathrm{kHz}$ and $f_{L}=41.1 \mathrm{kHz}$, as required.
8.78 Sketch piecewise linear approximations of the Bode plots for $|A|,\left|1 / F_{N}\right|$, and $\left|M_{N}\right|$ in Example 8.27. Use a logarithmic horizontal scale of 10 kHz to 1 GHz and a vertical scale of -20 dB to 100 dB .
8.79 Verify Equations 8.77 and $8.78 \mathrm{a}-\mathrm{c}$.
8.80 Use Equations 8.76 and 8.77, and show that f_{c} of Equation 8.78 c is the frequency where the piecewise linear approximation of $\left|A F_{N}\right|$ becomes 1 when $f_{2} \geqslant f_{c}$ and $f_{3} \geqslant f_{c}$.
881 Verify Equations $8.79 \mathrm{a}-\mathrm{c}$ and $8.80 \mathrm{a}-\mathrm{d}$.
*8.82 Derive Equation 8.82 from Equations 8.80a-d and 8.81a-c. [Hint: As a first step show that Equation 8.81 a can be written

$$
\begin{aligned}
27 \frac{w_{31}}{w_{21}}\left(\frac{1}{w_{21}}\right)^{2} & -\left(\frac{w_{31}}{w_{21}}+1\right)\left[18 \frac{w_{31}}{w_{21}}-4\left(\frac{w_{31}}{w_{21}}+1\right)^{2}\right]\left(\frac{1}{w_{21}}\right) \\
& -\frac{w_{31}}{w_{21}}\left(\frac{w_{31}}{w_{21}}-1\right)^{2} \leqslant 0,
\end{aligned}
$$

then solve for $1 / w_{21}$.]
8.83 Show that w_{21} given by Equation 8.82 becomes $27 / 4=6.75$ when $w_{31}=w_{21}$. Verify Figure 8.18 at this point.
*8.84 Show that, based on previous results of this chapter, w_{21} of Equation 8.79 b and Figure 8.18 is expected to become 4 when $w_{3} \rightarrow \infty$ in Equation 8.79c (i.e., when $f_{3} \rightarrow \infty$). Verify that Figure 8.18 is consistent with this result.
8.85 Show that w_{21} of Equation 8.82 becomes 4 when $w_{31} / w_{21} \rightarrow \infty$. [Hint: First show that $1 / w_{21}$ can be approximated as

$$
\frac{1}{w_{21}} \cong \frac{2\left(w_{31} / w_{21}\right)^{2}}{27}\left[-1+\sqrt{1+\frac{27}{4\left(w_{31} / w_{21}\right)^{2}}}\right]
$$

then use the approximation $\sqrt{1+x} \cong 1+x / 2$ for $|x| \ll 1$.
8.86 Evaluate Equation 8.82 and verify Figure 8.18 at $w_{31} / w_{21}=0.2,0.5, \frac{2}{3}$, $1.5,2$, and 5.
*Optional problem.
8.87 Verify the results of Examples 8.28 and 8.29.
8.88 A Type 2539 wideband monolithic operational amplifier is characterized by $A_{\mathrm{dc}}=30,000, f_{1}=20 \mathrm{kHz}$, and $f_{2}=f_{3}=300 \mathrm{MHz}$. The operational amplifier is used in a noninverting feedback amplifier with frequencyindependent feedback. Show that the transient response is free of ringing if, and only if, the resulting dc amplification, $M_{N, \mathrm{dc}}$, is at least $\approx 27 / 2=13.5$.
Verify Equations 8.83 and 8.84 .
Verify the results of Example 8.30.
8.91 Evaluate Equation 8.81a for Example 8.30 and show that the right side of Equation 8.81 a is greater by roughly 1.5% than its left side.
8.92 Verify the results of Example 8.31.
*8.93 The end result of Example 8.31 was reached by approximating by 1 the transfer function $[1+s(0.215 \mathrm{~ns})] /[1+s(0.205 \mathrm{~ns})]$. Show that the transient response corresponding to this transfer function multiplied by $1 / s$ is $1+0.05 e^{-t / 0.205 \text { ns }}$, which can be approximated by 1 with an error of less than 2% for times greater than 0.2 ns .
8.94 Verify the results of Example 8.32.
8.95. The results of Section 8.4.3.2 are expected to reduce to those of Section 8.3.2.2 when $f_{3} \gg f_{2}$. Verify that this indeed is the case in Figure 8.22.
8.96 Verify that the $R=0$ limits of Figures 8.23-8.25 are consistent with Figure 8.22.
*8.97 Derive the results of Figures 8.21 and 8.22 as follows:
(a) Show that the fourth-order equation to be solved can be written

$$
\frac{s^{4}}{s_{C}^{4}}+\frac{s^{3}}{s_{C}^{3}} w_{2}\left(1+\frac{f_{3}}{f_{2}}\right)+\frac{s^{2}}{s_{C}^{2}} w_{2}^{2} \frac{f_{3}}{f_{2}}+\frac{s}{s_{C}} w_{2}^{2} \frac{f_{3}}{f_{2}}+\frac{w_{2}^{2}}{w_{1}} \frac{f_{3}}{f_{2}}=0
$$

(b) Show that the expression $\left(s+s_{A}\right)^{2}\left(s+s_{B}\right)\left(s+s_{D}\right)$ can also be written

$$
\begin{aligned}
s^{4}+s^{3}\left(2 s_{A}+s_{B}+s_{D}\right)+s^{2}\left[s_{A}^{2}\right. & \left.+2 s_{A}\left(s_{B}+s_{D}\right)+s_{B} s_{D}\right] \\
& +s s_{A}\left[s_{A}\left(s_{B}+s_{D}\right)+2 s_{B} s_{D}\right]+s_{A}^{2} s_{B} s_{D}
\end{aligned}
$$

(c) Multiply the equation in (a) by s_{C}^{4} and match the coefficients of the result with the coefficients of (b).
(d) Write the equation resulting from the s^{3} terms of (a) and (b) as

$$
\frac{s_{B}+s_{D}}{s_{A}}=\left(1+\frac{f_{3}}{f_{2}}\right) \frac{s_{C}}{s_{A}} w_{2}-2
$$

*Optional problem.
(e) Write the equation resulting from the s terms of (a) and (b) as

$$
\frac{f_{3}}{f_{2}}\left(\frac{s_{C}}{s_{A}} w_{2}\right)^{2}=\frac{s_{A}}{s_{C}}\left(\frac{s_{B}+s_{D}}{s_{A}}+2 \frac{s_{B} s_{D}}{s_{A}^{2}}\right) .
$$

(f) Combine the equations resulting from the s^{3} and s^{2} terms of (a) and (b) as

$$
\frac{s_{B} s_{D}}{s_{A}^{2}}=\frac{f_{3}}{f_{2}}\left(\frac{s_{C}}{s_{A}} w_{2}\right)^{2}-2\left(1+\frac{f_{3}}{f_{2}}\right) \frac{s_{C}}{s_{A}} w_{2}+3
$$

(g) Write the equations resulting from the constant terms of (a) and (b) as

$$
\frac{f_{3}}{f_{2}}\left(\frac{s_{C}}{s_{A}} w_{2}\right)^{2}\left(\frac{s_{C}}{s_{A}}\right)^{2} \frac{1}{w_{1}}=\frac{s_{B} s_{D}}{s_{A}^{2}}
$$

(h) Combine the results of (f) and (g) and express w_{1} as

$$
w_{1}=\frac{f_{3}}{f_{2}}\left(\frac{s_{C}}{s_{A}}\right)^{2} \frac{\left(\frac{s_{C}}{s_{A}} w_{2}\right)^{2}}{\frac{f_{3}}{f_{2}}\left(\frac{s_{C}}{s_{A}} w_{2}\right)^{2}-2\left(1+\frac{f_{3}}{f_{2}}\right) \frac{s_{C}}{s_{A}} w_{2}+3}
$$

(i) Substitute the results of (d) and (f) into (e) and express s_{A} / s_{C} as

$$
\frac{s_{A}}{s_{C}}=\frac{\frac{f_{3}}{f_{2}}\left(\frac{s_{C}}{s_{A}} w_{2}\right)^{2}}{2 \frac{f_{3}}{f_{2}}\left(\frac{s_{C}}{s_{A}} w_{2}\right)^{2}-3\left(1+\frac{f_{3}}{f_{2}}\right) \frac{s_{C}}{s_{A}} w_{2}+4}
$$

(j) Multiply the result of (i) by $\left(s_{C} / s_{A}\right) w_{2}$ to obtain w_{2} as

$$
w_{2}=\frac{\frac{f_{3}}{f_{2}}\left(\frac{s_{C}}{s_{A}} w_{2}\right)^{3}}{2 \frac{f_{3}}{f_{2}}\left(\frac{s_{C}}{s_{A}} w_{2}\right)^{2}-3\left(1+\frac{f_{3}}{f_{2}}\right) \frac{s_{C}}{s_{A}} w_{2}+4} .
$$

(k) Evaluate the results of (h) and (j) for $f_{3} / f_{2}=2$ and $\left(s_{c} / s_{A}\right) w_{2}=2.5$. Verify that the results are consistent with Figure 8.21. Repeat for $f_{3} / f_{2}=5$ and $\left(s_{C} / s_{A}\right) w_{2}=2.3$.

* 8.98 Derive the results of Figures $8.23-8.25$ as follows:
(a) Show that the fourth-order equation to be solved can be written

$$
\begin{aligned}
\frac{s^{4}}{s_{C}^{4}}+\frac{s^{3}}{s_{C}^{3}}\left[w_{2}\left(1+\frac{f_{3}}{f_{2}}\right)+\frac{R}{w_{1}}\right] & +\frac{s^{2}}{s_{C}^{2}} w_{2}\left[w_{2} \frac{f_{3}}{f_{2}}+\frac{R}{w_{1}}\left(1+\frac{f_{3}}{f_{2}}\right)\right] \\
& +\frac{s}{s_{C}} w_{2}^{2} \frac{f_{3}}{f_{2}}\left(1+\frac{R}{w_{1}}\right)+\frac{w_{2}^{2}}{w_{1}} \frac{f_{3}}{f_{2}}=0
\end{aligned}
$$

(b) Show that the expression $\left(s+s_{A}\right)^{3}\left(s+s_{B}\right)$ can also be written

$$
s^{4}+s^{3}\left(3 s_{A}+s_{B}\right)+s^{2} 3 s_{A}\left(s_{A}+s_{B}\right)+s s_{A}^{2}\left(s_{A}+3 s_{B}\right)+s_{A}^{3} s_{B} .
$$

(c) Multiply the equation in (a) by s_{C}^{4} and match the coefficients of the result with the coefficients of (b).
(d) Combine the equations resulting from the s^{3} and s^{2} terms of (a) and (b) as

$$
\frac{s_{C}}{s_{A}} \frac{R}{w_{1}}=\frac{\frac{f_{3}}{f_{2}}\left(\frac{s_{C}}{s_{A}} w_{2}\right)^{2}-3\left(1+\frac{f_{3}}{f_{2}}\right)\left(\frac{s_{C}}{s_{A}} w_{2}\right)+6}{3-\left(1+\frac{f_{3}}{f_{2}}\right)\left(\frac{s_{C}}{s_{A}} w_{2}\right)}
$$

[Hint: Express s_{B} from the equation resulting from the s^{3} terms and substitute it into the equation resulting from the s^{2} terms.]
(e) Rearrange the equation resulting from the s^{2} terms of (a) and (b) as

$$
\frac{s_{A}}{s_{C}}=\frac{\frac{f_{3}}{f_{2}}\left(\frac{s_{C}}{s_{A}} w_{2}\right)^{2}}{3\left(1+\frac{f_{3}}{f_{2}}\right)\left(\frac{s_{C}}{s_{A}} w_{2}\right)-8-\left[\frac{f_{3}}{f_{2}}\left(\frac{s_{C}}{s_{A}} w_{2}\right)^{2}-3\right] \frac{s_{C}}{s_{A}} \frac{R}{w_{1}}}
$$

(f) Multiply the result of (d) with the result of (e) and obtain R / w_{1}.
(g) Combine the equations resulting from the s^{3} terms and the constant terms of (a) and (b) such as to eliminate s_{B}. Write the result as

$$
R=\frac{f_{3}}{f_{2}}\left(\frac{s_{C}}{s_{A}} w_{2}\right)^{2} \frac{s_{C}}{s_{A}} \frac{R}{w_{1}} \frac{1}{\frac{s_{A}}{s_{C}}\left[\left(1+\frac{f_{3}}{f_{2}}\right)\left(\frac{s_{C}}{s_{A}} w_{2}\right)-3\right]+\frac{R}{w_{1}}}
$$

(h) Divide the result of (g) by the result of (f) to obtain w_{1}.
(i) Multiply the result of (e) by $\left(s_{c} / s_{A}\right) w_{2}$ to obtain w_{2}.
(j) Express s_{B} / s_{C} from the equation resulting from the s^{3} terms of (a) and (b) as

$$
\frac{s_{B}}{s_{C}}=\frac{s_{A}}{s_{C}}\left[\left(1+\frac{f_{3}}{f_{2}}\right) \frac{s_{C}}{s_{A}} w_{2}-3\right]+\frac{R}{w_{1}}
$$

(k) Note that $\tau_{C} / \tau_{A}=s_{A} / s_{C}$ and $\tau_{C} / \tau_{B}=s_{B} / s_{C}$.
(l) Evaluate the results of (d)-(k) above, in the order given, for $f_{3} / f_{2}=1$ and $\left(s_{C} / s_{A}\right) w_{2}=4$. Verify that the results are consistent with Figure 8.23. Repeat for $f_{3} / f_{2}=1$ and $\left(s_{C} / s_{A}\right) w_{2}=4.5$.
(m) Evaluate the results of (d)-(k) above, in the order given, for $f_{3} / f_{2}=2$ and $\left(s_{C} / s_{A}\right) w_{2}=3$. Verify that the results are consistent with Figure 8.24. Repeat for $f_{3} / f_{2}=2$ and $\left(s_{C} / s_{A}\right) w_{2}=3.5$.
(n) Evaluate the results of (d)-(k) above, in the order given, for $f_{3} / f_{2}=5$ and $\left(s_{C} / s_{A}\right) w_{2}=3$. Verify that the results are consistent with Figure 8.25.
8.99 Verify the results of Example 8.33.
*8.100 Verify Figure 8.26 as follows:
(a) Verify that for any a, b, and s,

$$
\begin{aligned}
& \frac{1}{(s-a)^{3}(s-b)}=\frac{1}{(a-b)} \frac{1}{(s-a)^{3}}-\frac{1}{(a-b)^{2}} \frac{1}{(s-a)^{2}} \\
& \\
& \quad+\frac{1}{(a-b)^{3}} \frac{1}{(s-a)}-\frac{1}{(a-b)^{3}} \frac{1}{(s-b)}
\end{aligned}
$$

(b) Use the result of (a) above and show that in Example 8.34

$$
\begin{aligned}
\frac{V_{\mathrm{oul}}(t)}{V_{0}} & =1-e^{-t / \mathrm{r}_{A}}\left[\frac{1}{1-\frac{\tau_{B}}{\tau_{A}}}-\frac{\tau_{B}}{\tau_{A}} \frac{1}{\left(1-\frac{\tau_{B}}{\tau_{A}}\right)^{2}}+\left(\frac{\tau_{B}}{\tau_{A}}\right)^{2} \frac{1}{\left(1-\frac{\tau_{B}}{\tau_{A}}\right)^{3}}\right] \\
& +e^{-t / \tau_{B}}\left(\frac{\tau_{B}}{\tau_{A}}\right)^{3} \frac{1}{\left(1-\frac{\tau_{B}}{\tau_{A}}\right)^{3}}-\frac{t}{\tau_{A}} e^{-t / \tau_{A}}\left[\frac{1}{1-\frac{\tau_{B}}{\tau_{A}}}-\frac{\tau_{B}}{\tau_{A}} \frac{1}{\left(1-\frac{\tau_{B}}{\tau_{A}}\right)^{2}}\right] \\
& -\frac{1}{2}\left(\frac{t}{\tau_{A}}\right)^{2} e^{-t / \tau_{A}} \frac{1}{1-\frac{\tau_{B}}{\tau_{A}}} .
\end{aligned}
$$

[Hint: Use Laplace transforms from Appendix A.]
(c) Evaluate $V_{\text {out }}(t)$ at $t=5 \mathrm{~ns}$ and 10 ns , and show that the resulting values of $V_{\text {oul }}(t)$ are consistent with Figure 8.26.
*8.101 Equation 7.76 and Figure 7.6 describe feedback factor $A F_{N}$ of a feedback amplifier in the vicinity of frequency $f=f_{C}$, where $\left|A F_{N}\right|=1$ at $f=f_{C}$.
(a) Show analytically that the denominator of the resulting amplification M_{N} can be written $\left(1+s \tau_{C}\right)^{3}$ when $w=3$, where time constant $\tau_{C}=1 / 2 \pi f_{c}$.
(b) Sketch a piecewise linear approximation for the Bode plot of $\left|A F_{N}\right|$ for the feedback amplifier of Figure 8.12 with $R=0$.
(c) Compare the plot of (b) above with Figure 7.6, and show that the results of (a) above provide an analytical verification of Figure 8.12 with $R=0$.
*8.102 Equation 7.54 and Figure 7.5 describe feedback factor $A F_{N}$ of a conditionally stable feedback amplifier in the vicinity of frequency $f=f_{C}$, where $\left|A F_{N}\right|=1$ at $f=f_{C}$. Show analytically that the denominator of the resulting amplification M_{N} can be written $\left(1+s \tau_{C}\right)^{5}$ when $w=5$, where time constant $\tau_{\mathcal{C}}=1 / 2 \pi f_{\mathcal{C}}$. (Note: Although straightforward, working this problem is time-consuming because of the many terms involved.)

CHAPTER 9

Properties of Real Operational Amplifiers, Part I

In the preceding, ideal operational amplifiers were assumed in accordance with Equations 2.1 and 2.2. In the case of a real operational amplifier, however, these equations can be considered only as approximations. In this chapter and in Chapter 10, departures of real operational amplifiers from Equations 2.1 and 2.2 are discussed.

9.1 Common-Mode Amplification and Common-Mode Rejection

Consider the circuit of Figure 9.1. If the amplifier is ideal, the output voltage is given by

$$
\begin{equation*}
V_{\mathrm{out}}=A V_{d} \tag{9.1}
\end{equation*}
$$

and voltage V_{c} has no effect whatsoever on the output voltage.

FIGURE 9.1 Circuit for determining the common-mode rejection of an operational amplifier.

In reality, a small fraction of V_{c} finds its way to the output; that is,

$$
V_{\mathrm{out}}=A V_{d}+A_{\mathrm{CM}} V_{c},
$$

where $A_{C M}$ is designated common-mode amplification. In the case of a real operational amplifier, $A_{\text {CM }} \neq 0$, but usually its magnitude is much smaller than that of A :

$$
\begin{equation*}
\left|A_{\mathrm{CM}}\right| \ll|A| \tag{9.3}
\end{equation*}
$$

The output voltage of the amplifier, $V_{\text {out }}$, can be approximated as

$$
\begin{equation*}
V_{\mathrm{out}}=D_{d} V_{d}+D_{c}\left(V_{c}+V_{d} / 2\right)+K \tag{9.4a}
\end{equation*}
$$

where D_{d}, D_{c}, and K are constants (in general, D_{d} and D_{c} are the partial derivatives of $V_{\text {out }}$ with respect to V_{d} and V_{c}, respectively). Note that the second term in Equation 9.4a is the constant D_{c} multiplied by the average of the voltages at the positive $(+)$ and negative (-) input terminals of the operational amplifier. With the foregoing, the common-mode rejection ratio (CMRR) is defined as

$$
\begin{equation*}
\mathrm{CMRR} \equiv-20 \mathrm{~dB} \log _{10}\left|\frac{D_{c}}{D_{d}}\right|=20 \mathrm{~dB} \log _{10}\left|\frac{D_{d}}{D_{c}}\right| . \tag{9.4b}
\end{equation*}
$$

It can be seen that for an ideal operational amplifier, that is, for $D_{c}=0$, the common-mode rejection ratio is CMRR $=\infty$. For the circuit of Figure 9.1, $D_{c}=A_{\mathrm{CM}}$ and $D_{d}=A$; hence, Equation 9.4 b becomes

$$
\begin{equation*}
\mathrm{CMRR}=-20 \mathrm{~dB} \log _{10}\left|\frac{A_{\mathrm{CM}}}{A}\right|=20 \mathrm{~dB} \log _{10}\left|\frac{A}{A_{\mathrm{CM}}}\right| . \tag{9.5}
\end{equation*}
$$

In many cases, it is of interest to specify CMRR as a function of frequency. In general, the common-mode rejection ratio is best (CMRR the largest in magnitude) at dc, that is, at zero frequency, where

$$
\begin{equation*}
\mathrm{CMRR}_{f=0}=20 \mathrm{~dB} \log _{10}\left|\frac{A_{f=0}}{A_{\mathrm{CM}_{f=0}}}\right|=20 \mathrm{~dB} \log _{10}\left|\frac{A_{\mathrm{dc}}}{A_{\mathrm{CM}_{f-0}}}\right| \text {, } \tag{9.6}
\end{equation*}
$$

designated as dc common-mode rejection ratio, or in many instances simply as common-mode rejection ratio.

EXAMPLE 9.1. An operational amplifier is characterized by an amplification at zero frequency of $A_{\mathrm{dc}}=4000$ and by a common-mode amplification at zero frequency of $\left|A_{\mathrm{CM}}\right|=0.04$. Thus, at zero frequency $\left|A_{\mathrm{CM}} / A\right|=0.04 / 4000=10^{-5}$, and the de common-mode rejection ratio becomes
$\mathrm{CMRR}_{f=0}=-20 \mathrm{~dB} \log _{10}\left(10^{-5}\right)=20 \mathrm{~dB} \log _{10}\left(10^{5}\right)=100 \mathrm{~dB}$.

For many operational amplifiers, the common-mode rejection ratio as a function of frequency can be approximated as

$$
\begin{align*}
\operatorname{CMRR}(f) & \approx 20 \mathrm{~dB} \log _{10}\left|\frac{A_{\mathrm{dc}}}{\left(1+\mathrm{j} f / f_{\mathrm{CM}}\right) A_{\mathrm{CM}_{j-1}}}\right| \\
& =20 \mathrm{~dB} \log _{10}\left|\frac{A_{\mathrm{dc}}}{A_{\mathrm{CM}_{f-0}}}\right|-20 \mathrm{~dB} \log _{10}\left|1+\frac{\mathrm{j} f}{f_{\mathrm{CM}}}\right| \\
& =\mathrm{CMRR}_{f=0}-20 \mathrm{~dB} \log _{10} \sqrt{1+\left(\frac{f}{f_{\mathrm{CM}}}\right)^{2}} \tag{9.7}
\end{align*}
$$

where f_{CM} is the corner frequency of the common-mode rejection ratio.

EXAMPLE 9.2. An operational amplifier has a de common-mode rejection ratio of 95 dB . When driven from a zero-impedance source, as in Figure 9.1, the corner frequency of the common-mode rejection ratio is $f_{\mathrm{CM}}=0.5 \mathrm{MHz}$. By use of Equation 9.7, the common-mode rejection ratio as a function of frequency becomes

$$
\begin{aligned}
\operatorname{CMRR}(f) & =\mathrm{CMRR}_{f=0}-20 \mathrm{~dB} \log _{10} \sqrt{1+\left(\frac{f}{f_{\mathrm{CM}}}\right)^{2}} \\
& =95 \mathrm{~dB}-20 \mathrm{~dB} \log _{10} \sqrt{1+\left(\frac{f}{0.5 \mathrm{MHz}}\right)^{2}} .
\end{aligned}
$$

Thus, for example, at a frequency $f=2 \mathrm{MHz}$,

$$
\begin{aligned}
\mathrm{CMRR}_{f=2 \mathrm{MHz}} & =95 \mathrm{~dB}-20 \mathrm{~dB} \log _{10} \sqrt{1+\left(\frac{2 \mathrm{MHz}}{0.5 \mathrm{MHz}}\right)^{2}} \\
& =95 \mathrm{~dB}-12.3 \mathrm{~dB}=82.7 \mathrm{~dB}
\end{aligned}
$$

It is of importance to determine the common-mode rejection properties of feedback amplifiers, in particular those of the differential feedback amplifier with equalized amplifications (Figure 3.4). If the operational amplifier is ideal, that is, if $A_{\mathrm{CM}}=0$, then the circuit, shown again in Figure $9.2 a$, has an output voltage (see Equation 3.26)

$$
V_{\text {out }}=\frac{A}{1+\frac{R_{S}}{R_{P}}+A \frac{R_{I}}{R_{F}}\left(1+\frac{R_{S}}{R_{P}}\right) /\left(1+\frac{R_{I}}{R_{F}}\right)}\left(V_{d}+V_{c}\right)-\frac{A}{1+\frac{R_{I}}{R_{F}}+A \frac{R_{1}}{R_{F}}} V_{c} .
$$

FIGURE 9.2 Two equivalent circuits for determining the common-mode rejection of a differential amplifier with feedback.

It can be shown that, if $\boldsymbol{A}_{\mathrm{CM}} \neq 0$, the output voltage in Figure $9.2 a$ is given by $V_{\text {out }}=\frac{A}{1+\frac{R_{S}}{R_{P}}+A \frac{R_{I}}{R_{F}}\left(1+\frac{R_{S}}{R_{P}}\right) /\left(1+\frac{R_{I}}{R_{F}}\right)}\left(V_{d}+V_{c}\right)$

$$
\begin{equation*}
-\frac{A}{1+\frac{R_{I}}{R_{F}}+A \frac{R_{I}}{R_{F}}} V_{c}+\frac{A_{\mathrm{CM}}}{1+\frac{R_{I}}{R_{F}}+A \frac{R_{I}}{R_{F}}} \frac{1+\frac{R_{I}}{R_{F}}}{1+\frac{R_{S}}{R_{P}}} V_{c}, \tag{9.9}
\end{equation*}
$$

provided that Equation 9.3 is valid and that $\mid\left(1+R_{S} / R_{P}\right)$ $\left(1+R_{I} / R_{F}\right)-1 \mid \ll A$. Equation 9.9 is now evaluated for several cases.

If $\boldsymbol{R}_{S} / \boldsymbol{R}_{\boldsymbol{P}}=\boldsymbol{R}_{\mathrm{I}} / \boldsymbol{R}_{\boldsymbol{F}}$ and $\boldsymbol{A}_{\mathrm{CM}}=0$, Equation 9.9 becomes

$$
\begin{equation*}
V_{\text {out }}=\frac{A}{1+\frac{R_{I}}{R_{F}}+A \frac{R_{I}}{R_{F}}} V_{d} \tag{9.10}
\end{equation*}
$$

and the common-mode rejection ratio of the circuit is CMRR $=\infty$.
If $R_{S} / R_{P}=R_{I} / R_{F}$, but $A_{C M} \neq 0$, Equation 9.9 becomes

$$
\begin{equation*}
V_{\mathrm{out}}=\frac{A V_{\mathrm{d}}+A_{\mathrm{CM}} V_{\mathrm{c}}}{1+\frac{R_{I}}{R_{F}}+A \frac{R_{I}}{R_{F}}}, \tag{9.11}
\end{equation*}
$$

and the common-mode rejection ratio of the circuit, by use of Equation 9.4b, is

$$
\begin{equation*}
\mathrm{CMRR}=-20 \mathrm{~dB} \log _{10}\left|\frac{A_{\mathrm{CM}}}{A}\right|=20 \mathrm{~dB} \log _{10}\left|\frac{A}{A_{\mathrm{CM}}}\right|, \tag{9.12}
\end{equation*}
$$

the same as that of an amplifier without feedback. Thus, if the resistors are perfectly balanced, the feedback has no effect on the common-mode rejection ratio.

If $A_{\mathrm{CM}}=0$ but $R_{S} / R_{p} \neq R_{J} / R_{F}$, it can be shown by use of Equations 9.4 b and 9.8 that the common-mode rejection ratio of the circuit is

$$
\begin{align*}
\mathrm{CMRR} & =-20 \mathrm{~dB} \log _{10}\left|\left(1-\frac{R_{S}}{R_{P}} \frac{R_{F}}{R_{I}}\right) /\left(1+\frac{R_{F}}{R_{I}}\right)\right| \\
& =20 \mathrm{~dB} \log _{10}\left|\left(1+\frac{R_{F}}{R_{I}}\right) /\left(1-\frac{R_{S}}{R_{P}} \frac{R_{F}}{R_{I}}\right)\right| . \tag{9.13}
\end{align*}
$$

In the case when $A_{\mathrm{CM}} \neq 0$ and $R_{S} / R_{P} \neq R_{I} / R_{F}$, but

$$
\left|\frac{R_{S} / R_{P}-R_{I} / R_{F}}{R_{S} / R_{P}+R_{I} / R_{F}}\right| \ll 1,
$$

by use of Equations 9.4b and 9.9, the worst-case limit of CMRR can be given as

$$
\begin{equation*}
\mathrm{CMRR} \geqslant-20 \mathrm{~dB} \log _{10}\left[\left|\frac{A_{\mathrm{CM}}}{A}\right|+\left|\left(1-\frac{R_{S}}{R_{P}} \frac{R_{F}}{R_{t}}\right) /\left(1+\frac{R_{F}}{R_{t}}\right)\right|\right] . \tag{9.14}
\end{equation*}
$$

*It would seem that, based on Equation 9.9, a nonzero A_{CM} could be compensated by a suitable choice of parameters. Unfortunately, as a rule, only the magnitude of A_{cc} is known; hence, only the worst-case limit of the common-mode rejection ratio can be determined.

EXAMPLE 9.3. An operational amplifier with a common-mode rejection ratio of CMRR $=80 \mathrm{~dB}$ is used in the circuit of Figure 9.2a. Nominally, $R_{I}=R_{S}=1000 \Omega$ and $R_{F}=R_{P}=10,000 \Omega$, but all four resistors have a $\pm 0.1 \%$ tolerance. By use of Equation 9.5,

$$
\left|\frac{A_{\mathrm{CM}}}{A}\right|=10^{-\mathrm{CMRR} / 20 \mathrm{~dB}}=10^{-80 \mathrm{~dB} / 20 \mathrm{~dB}}=10^{-4}
$$

The worst-case limit of CMRR, from Equation 9.14, is given by

$$
\begin{aligned}
\mathrm{CMRR} & \geqslant-20 \mathrm{~dB} \log _{10}\left[\left|\frac{A_{\mathrm{CM}}}{A}\right|+\left|\left(1-\frac{R_{S}}{R_{P}} \frac{R_{F}}{R_{I}}\right) /\left(1+\frac{R_{F}}{R_{I}}\right)\right|\right] \\
& =-20 \mathrm{~dB} \log _{10}\left[10^{-4}+\left|\left(1-\frac{1001}{9990} \frac{10,010}{999}\right) /\left(1+\frac{10,010}{999}\right)\right|\right] \\
& =-20 \mathrm{~dB} \log _{10}\left(10^{-4}+3.6 \times 10^{-4}\right)=66.7 \mathrm{~dB} .
\end{aligned}
$$

9.2 Input Impedances

In the case of a real operational amplifier, input currents I_{p} and I_{n} of Figure 2.1 are different from zero. Two approximately equivalent representations of the input terminals of a real operational amplifier are shown in Figure 9.3. Input current I_{p} can be decomposed into a voltage-independent $I_{p, 0}$ and a voltagedependent component. Input current I_{n} can also be decomposed into a voltageindependent $I_{n, 0}$ and a voltage-dependent component. In this section, the voltage-dependent components of the input currents are discussed, whereas $I_{p, 0}$ and $I_{n, 0}$ will be discussed in Chapter 10.

The differential input impedance of an operational amplifier represented by Figure 9.3 can be defined as

$$
\begin{equation*}
Z_{d} \equiv \frac{\partial V_{d}}{\partial I_{p}} \tag{9.15}
\end{equation*}
$$

and the common-mode input impedance as

$$
\begin{equation*}
Z_{c} \equiv \frac{\partial V_{c}}{\partial\left(I_{p}+I_{n}\right)} \tag{9.16}
\end{equation*}
$$

EXAMPLE 9.4. At zero frequency, an operational amplifier has a differential input impedance of 7000Ω and a common-mode input impedance of $1 \mathrm{M} \Omega$. Thus, in Figure 9.3, $R_{d}=7000 \Omega$ and $R_{c}=1 \mathrm{M} \Omega$. It might also be useful to separate capacitances C_{d} and C_{c} of Figure 9.3; unfortunately, such a separation is rarely specified on present-day data sheets of operational amplifiers.

FIGURE 9.3 Two representations of the input terminals of an operational amplifier that are equivalent if $R_{d} \ll R_{c}$ and $C_{d} 》 C_{c}$.

It is of significant interest to investigate the input impedance of feedback amplifiers. The noninverting feedback amplifier of Figure 3.1 with the input of the operational amplifier represented by Figure $9.3 b$ is shown in Figure 9.4. It can be shown that for $2 R_{c} \gg R_{i} R_{F} /\left(R_{I}+R_{F}\right)$, the resulting input impedance at zero frequency, $R_{\text {in }}$, can be approximated as

$$
\begin{equation*}
R_{\mathrm{in}} \equiv\left(\frac{\partial V_{\mathrm{in}}}{\partial I_{p}}\right)_{s=0}=\frac{1}{\frac{1}{2 R_{c}}+\frac{1}{\frac{R_{I} R_{F}}{R_{I}+R_{F}}+R_{d} \frac{A_{\mathrm{dc}}}{M_{\mathrm{dc}}}}} \tag{9.17}
\end{equation*}
$$

where M_{dc} is the resulting dc amplification of the feedback amplifier as given by M_{N} of Equation 3.6 with F_{N} that of Equation 3.2.

FIGURE 9.4 The noninverting feedback amplifier of Figure 3.1 with the input of the operational amplifier represented by the circuit of Figure 9.3 .

EXAMPLE 9.5. An operational amplifier with $R_{d}=7000 \Omega, R_{c}=1 \mathrm{M} \Omega$, and $A_{\mathrm{dc}}=1000$ is used as a noninverting feedback amplifier with $R_{I}=1000 \Omega$ and $R_{F}=9000 \Omega$. Thus,

$$
M_{\mathrm{dc}}=\frac{A_{\mathrm{dc}}}{1+\frac{A_{\mathrm{dc}} R_{I}}{R_{I}+R_{F}}}=\frac{1000}{1+\frac{(1000)(1000 \Omega)}{1000 \Omega+9000 \Omega}} \approx 10
$$

and $A_{\mathrm{dc}} / M_{\mathrm{dc}} \approx 1000 / 10 \approx 100$. From Equation 9.17 , the input impedance at zero frequency is

$$
R_{\mathrm{in}}=\left[\frac{1}{2\left(10^{6} \Omega\right)}+\frac{1}{\frac{(1000 \Omega)(9000 \Omega)}{1000 \Omega+9000 \Omega}+(7000 \Omega)(100)}\right]^{-1}=0.52 \mathrm{M} \Omega
$$

9.3 Output Impedance

In the case of an ideal operational amplifier, Equation 2.1 states that the output voltage is determined by the input voltages and is independent of the output current. In reality, the output voltage is a function of the output current; that is, in Figure 2.1,

$$
\begin{equation*}
Z_{\text {out }} \equiv-\frac{\partial V_{\text {out }}}{\partial I_{\text {out }}} \neq 0 \tag{9.18}
\end{equation*}
$$

In general, output impedance $Z_{\text {out }}$ is a function of frequency; in many cases, it can be represented as a resistance in series with an inductance.

EXAMPLE 9.6. The output impedance of an operational amplifier can be approximated by a resistance of 75Ω in series with an inductance of $\quad 40 \mu \mathrm{H}$. Thus, $\quad Z_{\text {out }}(f)=75 \Omega+j 2 \pi(40 \mu \mathrm{H}) f \quad$ and $\quad\left|Z_{\text {out }}(f)\right|=$ $\sqrt{75^{2}+\left[2 \pi\left(40 \times 10^{-6} f\right)\right]^{2}}$. For example, at a frequency of $f=1 \mathrm{MHz}$,

$$
\left|Z_{\mathrm{out}}(f)\right|=\sqrt{75^{2}+\left[2 \pi\left(40 \times 10^{-6}\right)\left(10^{6}\right)\right]^{2}}=262 \Omega
$$

When an operational amplifier with a nonzero output impedance is used in a feedback amplifier, Figure 9.5 , the resulting output impedance of the circuit is a function of the output impedance $Z_{\text {out }}$ of the operational amplifier, of amplification A of the operational amplifier, and of resistors R_{I} and R_{F}. It can be shown that the resulting output impedance of the feedback amplifier of Figure 9.5 is

$$
\begin{equation*}
\frac{\partial V_{\text {out }}}{\partial I_{\text {load }}}=\frac{Z_{\text {out }}}{1+\left(A+\frac{Z_{\text {out }}}{R_{I}}\right) \frac{R_{I}}{R_{I}+R_{F}}} \tag{9.19}
\end{equation*}
$$

FIGURE 9.5 Circuit for determining the output impedance $\partial V_{\text {out }} / \partial I_{\text {load }}$ of a feedback amplifier.

If, as is the usual case,

$$
\begin{equation*}
\left|\frac{Z_{\text {out }}}{R_{I}}\right| \ll|A| \tag{9.20}
\end{equation*}
$$

Equation 9.19 becomes

$$
\begin{equation*}
\frac{\partial V_{\mathrm{out}}}{\partial I_{\mathrm{load}}} \approx \frac{Z_{\text {out }}}{1+A \frac{R_{I}}{R_{I}+R_{F}}}=\frac{Z_{\text {out }}}{1+A F_{N}}=Z_{\text {out }} \frac{M_{N}}{A} \tag{9.21}
\end{equation*}
$$

EXAMPLE 9.7. An operational amplifier with an output impedance $Z_{\text {out }}(f)=75 \Omega+\mathrm{j} 2 \pi(40 \mu \mathrm{H}) f$ and an amplification $A \approx 200,000 /(1+\mathrm{j} f / 10 \mathrm{~Hz})$ is used in the circuit of Figure 9.5 with $R_{I}=100 \Omega$ and $R_{F}=10,000 \Omega$. Hence,

$$
F_{N}=F_{N, \mathrm{dc}}=\frac{R_{I}}{R_{I}+R_{F}}=\frac{100 \Omega}{100 \Omega+10,000 \Omega} \approx 0.01
$$

and the resulting amplification at zero frequency is

$$
M_{\mathrm{dc}}=\frac{A_{\mathrm{dc}}}{1+A_{\mathrm{dc}} F_{N, \mathrm{dc}}}=\frac{200,000}{1+(200,000)(0.01)} \approx 100
$$

The resulting output impedance at zero frequency, by use of Equation 9.21, is

$$
\left(\frac{\partial V_{\mathrm{out}}}{\partial I_{\text {load }}}\right)_{S=0}=\left(Z_{\text {out }} \frac{M_{N}}{A}\right)_{S=0}=75 \Omega \frac{100}{200,000}=0.0375 \Omega
$$

9.4 Supply-Voltage Rejection

The output voltage of an ideal operational amplifier depends only on the input voltages and it is independent of the power supply voltage. In reality, the output voltage is a function of the power supply voltage, or supply voltages if there are more than one. It has been customary to define a supply-voltage rejection ratio, or power supply rejection ratio, PSRR, as

$$
\begin{equation*}
\operatorname{PSRR} \equiv\left|\frac{1}{A_{\mathrm{dc}}} \frac{\partial V_{\mathrm{out}}}{\partial V_{\mathrm{supply}}}\right|, \tag{9.22}
\end{equation*}
$$

that is, as the ratio of the equivalent voltage change at the input of the amplifier to a change in supply voltage.*

EXAMPLE 9.8. The supply-voltage rejection ratio of an operational amplifier is $30 \mu \mathrm{~V} / \mathrm{V}=30 \times 10^{-6}$, and its dc amplification is $A_{\mathrm{dc}}=200,000$. Thus, if there is a $\Delta V_{\text {supply }}=10 \mathrm{mV}$ ripple on the power supply, this will be equivalent to a $(10 \mathrm{mV})\left(30 \times 10^{-6}\right)=0.3 \mu \mathrm{~V}$ on the input of the amplifier. Thus, without feedback, the ripple voltage on the output $\left|\Delta V_{\text {out }}\right|=(0.3 \mu \mathrm{~V})(200,000)=60 \mathrm{mV}$. This result can also be obtained directly by use of Equation 9.22:

$$
\left|\Delta V_{\text {out }}\right|=\operatorname{PSRR}\left|A_{\text {dc }}\right|\left|\Delta V_{\text {supply }}\right|=\left(30 \times 10^{-6}\right)(200,000)(10 \mathrm{mV})=60 \mathrm{mV}
$$

In the case of an operational amplifier with negative feedback and a resulting amplification of M_{N}, it can be shown that the output voltage $\Delta V_{\text {out }}$ resulting from a supply-voltage change of $\Delta V_{\text {supply }}$ is given by

$$
\begin{equation*}
\left|\Delta V_{\text {out }}\right|=\left|\operatorname{PSRR}\left(M_{N}\right)\left(\Delta V_{\text {supply }}\right)\right| . \tag{9.23}
\end{equation*}
$$

EXAMPLE 9.9. An operational amplifier has a supply-voltage rejection ratio of $\operatorname{PSRR}=30 \mu \mathrm{~V} / \mathrm{V}$ and a dc amplification of $A_{\mathrm{dc}}=200,000$. It is used as a feedback amplifier with a resulting feedback amplification of $M_{N}=100$, and there is a $\Delta V_{\text {supply }}=10 \mathrm{mV}$ ripple on the power supply voltage. As a result, by use of Equation 9.23 , the ripple at the output of the amplifier is

$$
\left|\Delta V_{\text {out }}\right|=\left|\operatorname{PSRR}\left(M_{N}\right)\left(\Delta V_{\text {supply }}\right)\right|=\left(30 \times 10^{-6}\right)(100)(10 \mathrm{mV})=30 \mu \mathrm{~V}
$$

In general, the supply-voltage rejection ratio, PSRR, is a function of frequency having, as a rule, its best (lowest) value at dc; this frequency dependence is also a function of the compensation scheme used. Unfortunately, information in present-day operational amplifier data sheets on the frequency dependence of the supply-voltage rejection ratio is very limited.
*Note that PSRR of Equation 9.22 is referred to the input ($R T$) .

PROBLEMS

9.1 Common-mode rejection properties of an operational amplifier are measured in the circuit of Figure 9.1. At $V_{c}=0$ and $V_{d}=1 \mathrm{mV}$, a $V_{\text {out }}=5 \mathrm{~V}$ is measured. At $V_{c}=1 \mathrm{mV}$ and $V_{d}=0$, a $V_{\text {out }}=-0.5 \mathrm{mV}$ is measured. Find $A,\left|A_{\text {CM }}\right|$, and the de common-mode rejection ratio CMRR.
9.2 An operational amplifier has a dc common-mode rejection ratio of
 frequency $f_{C M}$ of the common-mode rejection ratio.
9.3 Show that the common-mode rejection ratio does not change if in the circuit of Figure 9.1 the positive and negative input terminals of the operational amplifier are interchanged.
9.4 Show that the common-mode rejection ratios of the circuits of Figures $9.2 a$ and $9.2 b$ are identical if the components are identical.
9.5 A Type 108A operational amplifier with a common-mode rejection ratio of CMRR $=96 \mathrm{~dB}$ is used in the circuit of Figure 9.2a. The useful signal is $V_{d}=10 \mu \mathrm{~V}$ and the undesired noise is $V_{c}=10 \mathrm{mV}$. Find the ratio of the useful signal to the undesired noise at the output of the circuit.
9.6 Derive Equations 9.9-9.14.
9.7 Show that the worst-case limit of the common-mode rejection ratio of the compound differential amplifier of Figure 3.10 can be approximated as
CMRR $=-20 \mathrm{~dB} \log _{10}\left[\left|1-\left(1+\frac{R_{I}}{R_{F}}\right) /\left(1+\frac{R_{S}}{R_{P}}\right)\right|+\left|1-\frac{A_{2}}{1+A_{2}} \frac{1+A_{1}}{A_{1}}\right|\right]$.
9.8 Derive Equation 9.17.
9.9 Estimate the input impedance seen at the positive input terminal of the circuit of Figure 3.1 with the voltage source removed, if the operational amplifier input terminals can be represented by the circuits of Figure 9.3 with $C_{d}=10 \mathrm{pF}, C_{c}=1 \mathrm{pF}, R_{d}=10,000 \Omega$, and $R_{c}=1 \mathrm{M} \Omega$.
9.10 An operational amplifier with an output impedance consisting of a resistance of 75Ω in series with an inductance of $40 \mu \mathrm{H}$ has an amplification $A \approx 200,000 /(1+\mathrm{j} f / 10 \mathrm{~Hz})$. Find the resulting output impedance at zero frequency and the magnitude of the resulting output impedance at a frequency $f=1 \mathrm{MHz}$ if the operational amplifier is used as a voltage follower.
9.11 An operational amplifier has a dc amplification $A_{d c}=4000$ and a supplyvoltage rejection ratio PSRR $=75 \mu \mathrm{~V} / \mathrm{V}$. Find the ripple on the output, if the amplifier is used without feedback and if there is a ripple of 10 mV on the power supply voltage.
9.12 Derive Equation 9.23.

CHAPTER 10

Properties of Real Operational Amplifiers, Part II

In Chapter 9, various linear attributes of real operational amplifiers were described. This chapter presents additional properties and limitations.

10.1 Input Currents

The input circuit of an operational amplifier has been represented by the circuit of Figure 9.3. It can be seen that when $V_{c}=V_{d}=0$, that is, when the voltages on both input terminals of the operational amplifier are zero, there is a current $I_{p, 0}$ flowing into the positive terminal and a current $I_{n, 0}$ into the negative terminal. For many practical operational amplifiers,

$$
\begin{equation*}
\left|I_{p, 0}-I_{n, 0}\right| \ll\left|\frac{I_{p, 0}+I_{n, 0}}{2}\right| . \tag{10.1}
\end{equation*}
$$

Thus, it is reasonable to define an input bias current I_{B} as the average of $I_{p, 0}$ and $I_{n, 0}$:

$$
\begin{equation*}
I_{B} \equiv \frac{I_{p, 0}+I_{n, 0}}{2}, \tag{10.2}
\end{equation*}
$$

and an input offset current $I_{\text {offset }}$ as

$$
\begin{equation*}
I_{\text {offset }} \equiv I_{p, 0}-I_{n, 0} .^{*} \tag{10.3}
\end{equation*}
$$

*Frequently, the input offset current is specified as $\mid I_{\text {offeel }}$ or as $\pm \mid I_{\text {offrect }}$. Also, in some cases, input currents $I_{\text {p, }}$ and $I_{\text {n. }}$ of Equation 10.2 are specified separately.

EXAMPLE 10.1. At a temperature of $25^{\circ} \mathrm{C}$, a Type 741 operational amplifier has a typical input bias current $I_{B, t y p}=80 \mathrm{nA}$, a maximum input bias current $I_{B, \text { max }}=500 \mathrm{nA}$, a typical input offset current $\left.\right|_{\text {off teetlyp }}=20 \mathrm{nA}$, and a maximum input offset current $\mid I_{\text {offsel }} \|_{\max }=200 \mathrm{nA}$. No minimum is specified for I_{B}, and it is assumed that this minimum is zero. Thus, if the current into the positive input terminal is $I_{p}=250 \mathrm{nA}$, the current into the negative input terminal, I_{n}, can be between 50 nA and 450 nA ; if $I_{p}=600 \mathrm{nA}, I_{n}=400 \mathrm{nA}$; and if $I_{p}=10 \mathrm{nA}, I_{n}$ can be between zero and 210 nA .

When operation over a certain temperature range is desired, it is important to take into account the temperature dependence of the input currents.

EXAMPLE 10.2. At a temperature of $-55^{\circ} \mathrm{C}$, a Type 741 operational amplifier has a maximum input bias current $I_{B, \max }=1.5 \mu \mathrm{~A}$ and a maximum input offset current $\left|I_{\text {offset }}\right|_{\max }=0.5 \mu \mathrm{~A}$. At a temperature of $+125^{\circ} \mathrm{C}$, $I_{B . \max }=0.5 \mu \mathrm{~A}$ and $\left|I_{\text {offeet }}\right|_{\text {max }}=0.2 \mu \mathrm{~A}$. Comparison with the data in Example 10.1 shows that $I_{B, \text { max }}$ and $\left|I_{\text {offsect }}\right|_{\text {max }}$ are the same at $+125^{\circ} \mathrm{C}$ as they are at $+25^{\circ} \mathrm{C}$ but are worse at $-55^{\circ} \mathrm{C}$

In some cases, the temperature dependence is given in terms of a temperature coefficient. If the temperature coefficient η (eta) of a current is measured in amperes per degree centigrade $\left({ }^{\circ} \mathrm{C}\right)$, the current change ΔI over a temperature range ΔT can be approximated as

$$
\begin{equation*}
\Delta I=\eta \Delta T \tag{10.4}
\end{equation*}
$$

EXAMPLE 10.3. The maximum temperature coefficient of the input offset current of an operational amplifier is $\left|\eta_{\text {offsect }}\right|_{\text {max }}=0.1 \mathrm{nA} /{ }^{\circ} \mathrm{C}$. Thus, if the temperature varies by $\Delta T=10^{\circ} \mathrm{C}$, the input offset current varies by $\Delta I=\left|\eta_{\text {offeet }}\right|_{\text {max }} \Delta T=\left(0.1 \mathrm{nA} /{ }^{\circ} \mathrm{C}\right)\left(10^{\circ} \mathrm{C}\right)=1 \mathrm{nA}$, or by less.

When an operational amplifier with an input bias current of I_{B} and an input offset current of $I_{\text {oftset }}$ is used in the feedback amplifier of Figure 3.4, it can be shown that, for $V_{p}=V_{n}=0, V_{\text {out }}$ can be approximated as

$$
\begin{equation*}
V_{\mathrm{out}} \approx-M_{\mathrm{dc}} \frac{R_{I} R_{F}}{R_{I}+R_{F}} I_{\mathrm{offset}}+M_{\mathrm{dc}}\left(\frac{R_{I} R_{F}}{R_{I}+R_{F}}-\frac{R_{S} R_{P}}{R_{S}+R_{P}}\right) I_{\mathrm{B}} \tag{10.5a}
\end{equation*}
$$

where the resulting dc amplification of the feedback amplifier, M_{dc}, is defined as

$$
\begin{equation*}
M_{\mathrm{dc}} \equiv \frac{A_{\mathrm{dc}}}{1+\frac{A_{\mathrm{dc}} R_{I}}{R_{I}+R_{F}}}, \tag{10.5b}
\end{equation*}
$$

and A_{dc} is the amplification of the operational amplifier at zero frequency.

EXAMPLE 10.4. At a temperature of $25^{\circ} \mathrm{C}$, an operational amplifier has a maximum input offset current $\mid I_{\text {offset }} \|_{\text {max }}=50 \mathrm{pA}$, a maximum input bias current $\left|I_{B}\right|_{\text {max }}=100 \mathrm{pA}$, and a dc amplification $A_{\mathrm{dc}}=30,000$. The amplifier is used in the circuit of Figure 3.4 with $R_{S}=R_{I}=10 \mathrm{M} \Omega, R_{P}=R_{F}=90 \mathrm{M} \Omega$, and $V_{p}=V_{n}=0$. Thus, the resulting dc amplification of the feedback amplifier, M_{dc}, is

$$
M_{\mathrm{dc}}=\frac{A_{\mathrm{dc}}}{1+\frac{A_{\mathrm{dc}} R_{I}}{R_{I}+R_{F}}}=\frac{30,000}{1+\frac{(30,000)(10 \mathrm{M} \Omega)}{10 \mathrm{M} \Omega+90 \mathrm{M} \Omega}} \approx 10
$$

Since $R_{S}=R_{I}$ and $R_{P}=R_{F}$, input bias current I_{B} has no effect on the output voltage (see Equation 10.5a). Input offset current $\left|I_{\text {offsel }}\right|_{\text {max }}$ results in an output voltage with a magnitude of

$$
\left|V_{\text {out }}\right|=\left.\left|-M_{\mathrm{dc}} \frac{R_{I} R_{F}}{R_{I}+R_{F}}\right| I_{\text {offsel }}\right|_{\max }\left|=\left|-10 \frac{(10 \mathrm{M} \Omega)(90 \mathrm{M} \Omega)}{10 \mathrm{M} \Omega+90 \mathrm{M} \Omega} 50 \mathrm{pA}\right|=4.5 \mathrm{mV} .\right.
$$

Thus, in this example, output voltage $V_{\text {out }}$ is always between +4.5 mV and -4.5 mV .

10.2 Input Offset Voltage

In the case of an ideal operational amplifier, the output voltage is zero if both input voltages are zero. In the case of a real operational amplifier, however, there may be a nonzero output voltage even if both input voltages are zero. It has been customary to define, for the operational amplifier of Figure 2.1 with a dc amplification of A_{dc}, an input offset voltage $V_{\text {offset }}$ as

$$
\begin{equation*}
V_{\text {offset }}=\left|\frac{V_{\text {out }, V_{p}}=0, V_{n}=0}{A_{\mathrm{dc}}}\right| . \tag{10.6}
\end{equation*}
$$

Thus, $V_{\text {offset }}$ is an equivalent offset voltage at the input of the amplifier.* The input offset voltage can also be represented by a battery $V_{\text {offsel }}$ connected in series with one of the input terminals of the operational amplifier.

EXAMPLE 10.5. The input offset voltage of an operational amplifier with a dc amplification $A_{\mathrm{dc}}=10,000$ is measured by grounding both input terminals and measuring the output voltage. An output voltage $V_{\text {out }}=5 \mathrm{~V}$ is measured this way. Thus, the input offset voltage is $V_{\text {offset }}=5 \mathrm{~V} / 10,000=0.5 \mathrm{mV}$.

[^3]The input offset voltage $V_{\text {offsel }}$ is, in general, a function of temperature. This temperature dependence can be described either by specifying $V_{\text {offset }}$ at several temperatures, or by a temperature coefficient $\left|d V_{\text {offsel }} / d T\right|$, where T is the temperature.

EXAMPLE 10.6. The temperature coefficient of the input offset voltage $V_{\text {offst }}$ of an operational amplifier is specified as being at most $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ between the temperatures of $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$; also, $A_{\mathrm{dc}}=4000$. Thus, if the temperature changes from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, input offset voltage $V_{\text {offset }}$ changes by $\left(50^{\circ} \mathrm{C}\right)\left(10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)=500 \mu \mathrm{~V}$, or by less. If the operational amplifier is operated without feedback, then, since its dc amplification is $A_{\mathrm{dc}}=4000$, the output voltage changes by $(500 \mu \mathrm{~V})(4000)=2 \mathrm{~V}$, or by less, over the $0^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$ temperature range.

If the operational amplifier is used as a feedback amplifier in the circuit of Figure 3.4 with $V_{p}=V_{n}=0$, it can be shown that an input offset voltage $V_{\text {offset }}$ results in an output voltage

$$
\begin{equation*}
V_{\text {out }}=M_{\mathrm{dc}} V_{\text {offset }} \tag{10.7a}
\end{equation*}
$$

where the resulting dc amplification, M_{dc}, is defined as

$$
\begin{equation*}
M_{\mathrm{dc}} \equiv \frac{A_{\mathrm{dc}}}{1+A_{\mathrm{dc}} \frac{R_{I}}{R_{I}+R_{F}}} \tag{10.7b}
\end{equation*}
$$

and A_{dc} is the amplification of the operational amplifier at zero frequency. Thus, the voltage at the positive $(+$) input of the operational amplifier and input offset voltage $V_{\text {offset }}$ are both amplified by the same amount.

103 Limitations and Ratings

In the preceding, it was assumed that dc amplification A_{dc} of the operational amplifier was constant. In reality, ignoring the offset voltage, the output voltage as a function of input voltage can be characterized by a curve such as shown in Figure 10.1. It can be seen that the slope of the curve, that is, dc amplification $A_{\mathrm{dc}} \equiv \partial V_{\text {out }} / \partial V_{\text {in }}$, is a fairly constant $A_{\mathrm{dc}}=10,000$ between a maximum output voltage of approximately +20 V and a minimum output voltage of approximately -10 V . A realistic design must take these limiting voltages (output voltage swing) into account.

The output voltage swing is specified at a given output current, which may lead to additional limitations.

FIGURE 10.1 Output voltage $V_{\text {out }}$ versus input voltage $V_{\text {in }}$ for a real operational amplifier.

EXAMPLE 10.7. The output voltage swing of the Type 2539 wideband monolithic operational amplifier is specified as $\pm 10 \mathrm{~V}$ at output currents of $\pm 10 \mathrm{~mA}$, and the output voltage swing of the Type 9914A wideband hybrid operational amplifier is specified as $\pm 10 \mathrm{~V}$ at output currents of $\pm 50 \mathrm{~mA}$. Thus, if the full $\pm 10 \mathrm{~V}$ output voltage swings are desired, the output of a Type 2539 wideband monolithic operational amplifier should not be loaded by a resistance less than $10 \mathrm{~V} / 10 \mathrm{~mA}=1 \mathrm{k} \Omega$, and the output of a Type 9914 A wideband hybrid operational amplifier should not be loaded by a resistance less than $10 \mathrm{~V} / 50 \mathrm{~mA}=200 \Omega$.

Particular care should be exercised in the design to assure that the maximum ratings of an operational amplifier are not exceeded. Such ratings include, although are not restricted to, maximum supply voltages, maximum output current, maximum and minimum input voltages, maximum differential input voltage, power dissipation, operating temperature range, storage temperature range, and lead temperature during soldering. In general, damage to the structure of the operational amplifier may result if a maximum rating is exceeded.

10.4 Slew Rate

The slew rate is a limitation on the rate of change in the output voltage of an operational amplifier. The source of this limitation can be seen in Example 5.4, where a stage of an operational amplifier is represented by the circuit of Figure 5.1 consisting of a $1-\mathrm{mA}$ current source in parallel with a resistance $R=1000 \Omega$ and with a capacitance C. It is seen that for a step-function input current of $I_{\text {in }}=(1 \mathrm{~mA}) u(t)$, the voltage is $V_{\text {out }}=(1 \mathrm{~V})\left(1-e^{-t / R C}\right)$. In a real operational amplifier, the source of current $I_{\text {in }}$ is a transistor that cannot deliver arbitrarily large currents. Thus, $I_{\text {in }}$ and hence $d V_{\text {out }} / d t$ are limited. Such limitations lead to a specification of the output slew rate, usually given in units of $\mathrm{V} / \mu \mathrm{s}$.

EXAMPLE 10.8. In the circuit of Figure 5.1, capacitance $C=10 \mathrm{pF}$, and the maximum available input current is $I_{\mathrm{in}}=1 \mathrm{~mA}$. Voltage $V_{\text {out }}$ can be written

$$
V_{\text {out }}=I_{\mathrm{in}} R\left(1-e^{-t / R C}\right) .
$$

From this,

$$
\frac{d V_{\text {out }}}{d t}=\frac{I_{\text {in }}}{C} e^{-t / R C} .
$$

The slew rate S is the maximum of $\left|d V_{\text {out }} / d t\right|$, which occurs at $t=0$,

$$
S=\left|\frac{d V_{\text {out }}}{d t}\right|_{\text {max }}=\left|\frac{I_{\text {in }}}{C}\right|=\left|\frac{1 \mathrm{~mA}}{10 \mathrm{pF}}\right|=100 \mathrm{~V} / \mu \mathrm{s} .
$$

The finite slew rate also imposes a limitation on the maximum amplitude of a sinewave the operational amplifier can deliver at its output. In the case of a sinewave in the form

$$
\begin{equation*}
V_{\mathrm{s}}=V_{0} \sin 2 \pi f t, \tag{10.8}
\end{equation*}
$$

the rate of change of voltage V_{s} is

$$
\begin{equation*}
\frac{d V_{s}}{d t}=V_{0} 2 \pi f \cos 2 \pi f t . \tag{10.9}
\end{equation*}
$$

The maximum value of $\left|d V_{\mathrm{s}} / d t\right|$ is limited by slew rate S :

$$
\begin{equation*}
S=\left|\frac{d V_{s}}{d t}\right|_{\max } \geqq V_{0} 2 \pi f ; \tag{10.10}
\end{equation*}
$$

hence, the maximum of amplitude $V_{0}, V_{0, \max }$, that is available at a frequency f is
given by given by

$$
\begin{equation*}
V_{0, \max }=\frac{S}{2 \pi f} \tag{10.11}
\end{equation*}
$$

EXAMPLE 10.9. A Type 741 internally compensated operational amplifier has a slew rate of $0.5 \mathrm{~V} / \mu \mathrm{s}$. Thus, for a sinewave with a frequency of $f=10 \mathrm{kHz}$, the maximum amplitude available at the output of the amplifier is

$$
V_{0, \max }=\frac{S}{2 \pi f}=\frac{0.5 \mathrm{~V} / \mu \mathrm{s}}{2 \pi(10 \mathrm{kHz})} \cong 8 \mathrm{~V}
$$

In general, the slew rate and the maximum output amplitude as a function of frequency depend on the resulting amplification and on the frequency compensation used. For this reason, the slew rate is usually specified for a given circuit.

10.5 Noise

Electrical conduction takes place by means of discrete charge carriers, such as electrons and holes. As a result, noise voltage and noise currents are superimposed on the inputs of an operational amplifier. When the signal levels are low, these noise sources may become significant.
If the operational amplifier "sees" a resistance R at its input terminals, the resulting total input noise power per unit bandwidth, designated as narrow-band noise or spot noise, can be approximated as

$$
\begin{equation*}
\frac{v_{t}^{2}}{R}=4 k T+\frac{v_{n}^{2}}{R}+R i_{n}^{2} \tag{10.12}
\end{equation*}
$$

The term $4 k T$ is the thermal noise power per unit bandwidth contributed by resistance $R, v_{n}^{2} / R$ is the noise power per unit bandwidth contributed by the input noise voltage v_{n} of the operational amplifier, and $R i_{n}^{2}$ is the noise power per unit bandwidth contributed by the input noise current i_{n} of the operational amplifier. The value of $k T$ at room temperature is $0.4 \times 10^{-20} \mathrm{VA} / \mathrm{Hz} ; v_{t}$ and v_{n} are measured in $\mathrm{V} / \sqrt{\mathrm{Hz}}, i_{n}$ in $\mathrm{A} / \sqrt{\mathrm{Hz}}$.

When v_{n} and i_{n} can be considered constants within the bandwidth of interest B, the resulting input noise power, P_{B}, is given by

$$
\begin{equation*}
P_{B}=\frac{B v_{t}^{2}}{R} \tag{10.13}
\end{equation*}
$$

where v_{t}^{2} / R is given by Equation 10.12.* Also, the rms input noise voltage, V_{B}, can be written

$$
\begin{equation*}
V_{B}=\sqrt{P_{B} R}=v_{1} \sqrt{B} . \tag{10.14}
\end{equation*}
$$

*When v_{n} or i_{n} cannot be considered constant, the resulting wideband noise has to be determined by integrating over the bandwidth the product of the amplification and the input noise power per unit bandwidth.

EXAMPLE 10.10. At a frequency of 10 kHz , an operational amplifier has an input noise voltage $v_{n}=10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ and an input noise current $i_{n}=$ $10 \mathrm{pA} / \sqrt{\mathrm{Hz}}$, both constant within the bandwidth of interest; $B=100 \mathrm{~Hz}$. It has an amplification $A=10,000$ and it is operated in the inverting amplifier circuit of Figure 3.2 with $R_{I}=101 \Omega$ and $R_{F}=10 \mathrm{k} \Omega$. Thus, the resulting amplification is $M_{I}=-100$ and the resistance seen by the operational amplifier at its input terminals is $R=100 \Omega$.
The resulting total input noise power per unit bandwidth is given by Equation 10.12:

$$
\begin{aligned}
\frac{v_{i}^{2}}{R} & =4 k T+\frac{v_{n}^{2}}{R}+R i_{n}^{2} \\
& =1.6 \times 10^{-20} \mathrm{VA} / \mathrm{Hz}+\frac{10^{-16} \mathrm{~V}^{2} / \mathrm{Hz}}{100 \Omega}+(100 \Omega)\left(10^{-22} \mathrm{~A}^{2} / \mathrm{Hz}\right) \\
& =1.026 \times 10^{-18} \mathrm{VA} / \mathrm{Hz}
\end{aligned}
$$

The resulting input noise power within the bandwidth $B=100 \mathrm{~Hz}$, from Equation 10.13 , is

$$
P_{B}=\frac{B v_{t}^{2}}{R}=(100 \mathrm{~Hz})\left(1.026 \times 10^{-18} \mathrm{VA} / \mathrm{Hz}\right)=1.026 \times 10^{-16} \mathrm{VA}
$$

and the resulting rms noise voltage at the input, from Equation 10.14, is

$$
V_{B}=\sqrt{P_{B} R}=\sqrt{\left(1.026 \times 10^{-16} \mathrm{VA}\right)(100 \Omega)}=101 \mathrm{nV}
$$

The resulting rms noise voltage at the output of the amplifier is
$\left|M_{I}\right| V_{B}=(100)(101 \mathrm{nV})=10.1 \mu \mathrm{~V}$ $\left|M_{I}\right| V_{B}=(100)(101 \mathrm{nV})=10.1 \mu \mathrm{~V}$.

In many cases, the noise performance of an amplifier circuit is described by a noise figure \mathscr{F}, which is a measure of the noise degradation resulting from adding the noise of the operational amplifier to the thermal noise of input resistance R. When the resulting amplification is large $\left(\left|M_{I}\right| \gg 1\right.$ or $\left.M_{N} \gg 1\right)$, the
noise figure can be approximated by noise figure can be approximated by

$$
\begin{equation*}
\mathscr{F}=10 \mathrm{~dB} \log _{10}\left(1+\frac{v_{n}^{2} / R+i_{n}^{2} R}{4 k T}\right) \tag{10.15}
\end{equation*}
$$

It can be shown that the noise figure \mathscr{F} has its minimum value, $\mathscr{F}_{\text {min }}$, when $R=R_{\text {opt }}=v_{n} / i_{n}$, and it is

$$
\begin{equation*}
\mathscr{F}_{\min }=\mathscr{F}_{R=v_{n} / i_{n}}=10 \mathrm{~dB} \log _{10}\left(1+\frac{v_{n}^{2} / R_{\mathrm{op1}}}{2 k T}\right) \tag{10.16}
\end{equation*}
$$

EXAMPLE 10.11. In Example $10.10, v_{n}=10^{-8} \mathrm{~V} / \sqrt{\mathrm{Hz}}, i_{n}=10^{-11} \mathrm{~A} / \sqrt{\mathrm{Hz}}$, $R=100 \Omega$, and $\left|M_{1}\right| \gg 1$. Thus, from Equation 10.15 and with $k T=0.4$ $\times 10^{-20} \mathrm{VA} / \mathrm{Hz}$, the noise figure becomes

$$
\mathscr{F}=10 \mathrm{~dB} \log _{10}\left(1+\frac{v_{n}^{2} / R+i_{n}^{2} R}{4 k T}\right)=10 \mathrm{~dB} \log _{10} 64.1=18 \mathrm{~dB} .
$$

The minimum noise figure is attained at $R=R_{\text {opt }}=v_{n} / i_{n}=$ $\left(10^{-8} \mathrm{~V} / \sqrt{\mathrm{Hz}}\right) /\left(10^{-11} \mathrm{~A} / \sqrt{\mathrm{Hz}}\right)=1 \mathrm{k} \Omega$, and its value, from Equation 10.16 , is $\mathscr{F}_{\min }=10 \mathrm{~dB} \log _{10}\left(1+\frac{v_{n}^{2} / R_{\text {opp }}}{2 k T}\right)=10 \mathrm{~dB} \log _{10}\left(1+\frac{\left(10^{-16} \mathrm{~V}^{2} / \mathrm{Hz}\right) / 1000 \Omega}{2\left(0.4 \times 10^{-20} \mathrm{VA} / \mathrm{Hz}\right)}\right)$ $=10 \mathrm{~dB} \log _{10} 13.5=11.3 \mathrm{~dB}$.

Above considerations apply equally well to inverting and noninverting amplifiers. In the case of differential amplifiers with signals applied to both inputs, the evaluation of the noise becomes slightly more involved.

PROBLEMS

10.1 At a temperature of $+25^{\circ} \mathrm{C}$, a hybrid operational amplifier has a maximum input bias current of $\pm 10 \mu \mathrm{~A}$ and a maximum input offset current of $\pm 1 \mu \mathrm{~A}$. Find the maximum and minimum values of current I_{p} into the positive input terminal, if $I_{n}=0.5 \mu \mathrm{~A}, 5 \mu \mathrm{~A}$, and $10.5 \mu \mathrm{~A}$.
10.2 The Type 13741 operational amplifier uses field-effect transistors (FETs) at its inputs and as a result it has low input currents. At a temperature of $+25^{\circ} \mathrm{C}$, the maximum input bias current is 200 pA and the maximum input offset current is 50 pA . The signs of the currents are not specified and it is assumed that they can be either positive or negative. Three of these amplifiers are used in the circuit of Figure 3.10 with $R_{1}=10 \mathrm{M} \Omega$, $R_{2}=11 \mathrm{M} \Omega, R_{1}=R_{S}=100 \Omega, R_{F}=R_{P}=10,000 \Omega$, and $A_{1}=A_{2}=$ $A_{3}=100,000$. Find the maximum change in output voltage $V_{\text {out }}$ resulting from the input bias currents and from the input offset currents.
10.3 Derive Equation 10.5a.
10.4 The input offset current of a hybrid operational amplifier has a maximum temperature coefficient of $0.1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$. Find the minimum and maximum values of the input offset current $I_{\text {offset }}$, if the temperature is varied between $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$, and if at a temperature of $+25^{\circ} \mathrm{C}$ the input offset current is $I_{\text {offset }}=1 \mu \mathrm{~A}$.
10.5 The input offset voltage $V_{\text {offset }}$ of an operational amplifier has a temperature coefficient $\left|d V_{\text {offset }} / d T\right|$ of less than $25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$; the dc amplif. cation is $A_{\mathrm{dc}}=30,000$. Find the maximum change in the output voltage as a result of the nonzero $d V_{\text {offset }} / d T$, if the amplifier is operated without feedback.

10.6 Derive Equation 10.7a

10.7 At a temperature of $+25^{\circ} \mathrm{C}$, the maximum input offset voltage of a Type 13741 operational amplifier is $V_{\text {offset }}=15 \mathrm{mV}$. This operational amplifier is used in the differential amplifier of Figure 3.4 with $V_{n}=V_{p}=0, R_{S}=R_{I}=10 \mathrm{M} \Omega$, and $R_{P}=R_{F}=90 \mathrm{M} \Omega$. Find the maximum change in output voltage $V_{\text {out }}$ as a result of input offset voltage $V_{\text {offsel }}$.
10.8 At a temperature of $+25^{\circ} \mathrm{C}$, a Type 108 A operational amplifier has a maximum input bias current of 2 nA , a maximum input offset current of 0.2 nA , a maximum input offset voltage of 0.5 mV , and a dc amplification of $A_{\mathrm{dc}}=300,000$. Find the range of the output voltage, if the amplifier is used in the circuit of Figure 3.4 with $R_{S}=R_{i}=10 \mathrm{M} \Omega, R_{P}=R_{F}=$
$90 \mathrm{M} \Omega$, and $V_{P}=V^{\prime}=0$ $90 \mathrm{M} \Omega$, and $V_{p}=V_{n}=0$.
10.9 A Type 9914A hybrid operational amplifier has a slew rate of $1000 \mathrm{~V} / \mu \mathrm{s}$. Find the maximum frequency at which this amplifier can supply a $10-\mathrm{V}$ peak-to-peak sinewave.
10.10 When lead-lag compensation is applied to an operational amplifier, for an $M_{\mathrm{dc}}=10$ its slew rate is $50 \mathrm{~V} / \mu \mathrm{s}$. The maximum and minimum voltages that the amplifier can provide at its output are +5 V and -5 V , respectively. Sketch the maximum available sinewave amplitude as a function of frequency for frequencies between 1 kHz and 10 MHz .
10.11 The noise characteristics of the Type 9914A hybrid operational amplifier are specified at a frequency of 10 kHz by $v_{n}=20 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ and $i_{n}=$ $10 \mathrm{pA} / \sqrt{\mathrm{Hz}}$. It has an amplification $A=5000$ and it is used in the noninverting feedback amplifier of Figure 3.1 with a resulting amplification $M_{N}=100$ and with a bandwidth $B=10 \mathrm{~Hz}$. Find the values of input resistor R_{I} and feedback resistor R_{F} such that the minimum noise figure is attained. Also, find the value of the minimum noise figure. What is the resulting rms noise voltage at the output of the amplifier?
10.12 Show that the noise figure of Equation 10.15 has its minimum value when $R=v_{n} / i_{n}$.

CHAPTER 11

Other Circuits

The preceding chapters described the use of operational amplifiers as voltage amplifiers; this chapter discusses other applications. Section 11.1 describes amplifiers with current source inputs, used for converting an input current $I_{\text {in }}$ to a proportional output voltage $V_{\text {out }}$. Section 11.2 presents two adder circuits, used mainly for analog computation. Sections 11.3 and 11.4 describe two types of pulse-shaping circuits: integrators and differentiators. Section 11.5 outlines two nonlinear circuits: an exponential amplifier and a logarithmic amplifier.

11.1 Current Source Inputs

There are two basic representations of signal sources: One consists of a voltage source $V_{\text {in }}$ in series with a source resistance $R_{\text {source }}$, and the other consists of a current source $I_{\text {in }}$ in parallel with a source resistance $R_{\text {source }}$. The two representations are equivalent if $I_{\text {in }}=V_{\text {in }} / R_{\text {source }}$.

Thus far, this book has used the representation consisting of a voltage source $V_{\text {in }}$ in series with a source resistance $R_{\text {source }}$. Also, except in Sections 7.7 and 8.5 dealing with inverting feedback amplifiers, it was assumed that the effects of nonzero $R_{\text {source }}$ are negligibly small and the schematic diagrams were shown with $R_{\text {source }}=0$.

This section deals with the other extreme, where it is preferable to represent a signal source by a current source $I_{\text {in }}$ in parallel with a source resistance $R_{\text {source }}$. Such situations arise, for example, in high-impedance transducers as well as at the collectors of bipolar transistors and at the drains of MOS devices.

Because of the equivalence of the two representations, in principle, the results derived previously are also applicable for a current source input. However, this approach does not readily provide results for the limit of $R_{\text {source }} \rightarrow \infty$, which is often a realistic approximation. Thus, in addition to using previously obtained results, this section provides results that are applicable to current source inputs.

11.1.1 de Characteristics

Figure 11.1 shows the schematic diagram of a feedback amplifier with current source input $I_{\text {in }}$. It can be shown (see Problem 11.1) that

$$
\begin{equation*}
\frac{V_{\mathrm{out}}}{I_{\mathrm{in}}}=-R_{F} \frac{1}{1+\frac{1+R_{F} / R_{I}}{A}} \tag{11.1a}
\end{equation*}
$$

With

$$
\begin{equation*}
F_{N, \mathrm{dc}}=\frac{R_{I}}{R_{F}+R_{I}} \tag{11.1b}
\end{equation*}
$$

Equation 11.1a can also be written as

$$
\begin{equation*}
\frac{V_{\text {out }}}{I_{\mathrm{in}}}=-\frac{R_{F} R_{I}}{R_{F}+R_{I}} \frac{A}{1+A F_{N, \mathrm{dc}}} \tag{11.1c}
\end{equation*}
$$

or as

$$
\begin{equation*}
\frac{V_{\mathrm{out}}}{I_{\mathrm{in}}}=-R_{F} F_{N, \mathrm{dc}} \frac{A}{1+A F_{N, \mathrm{dc}}} \tag{11.1d}
\end{equation*}
$$

Also, $V_{\text {out }} / I_{\text {in }}$ can be approximated as

$$
\begin{equation*}
\frac{V_{\text {out }}}{I_{\mathrm{in}}} \cong-R_{F} \tag{11.2a}
\end{equation*}
$$

provided that

$$
\begin{equation*}
A \gg 1+\frac{R_{F}}{R_{I}} \tag{11.2b}
\end{equation*}
$$

which is the usual case.

FIGURE 11.1 A de schematic diagram of a feedback amplifier with a current source input.

11.1.2 Transient Response and Frequency Response

Figure 11.2 shows the schematic diagram of a feedback amplifier with current source input $I_{\text {in }}$ and with capacitances C_{F} and C_{I} in addition to resistances R_{F} and R_{I}. Capacitance C_{I} is the sum of the input capacitance of the operational amplifier, the capacitance of the current source, stray capacitances, and in some cases it also includes a capacitance added intentionally. Capacitance C_{F} includes stray capacitances, and often it also includes a capacitance added to improve stability and transient response.

FIGURE 11.2 Schematic diagram of a feedback amplifier with a current source input.

It can be shown (see Problem 11.3) that in the Laplace transform domain

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{I_{\mathrm{in}}(t)\right\}}=\frac{-R_{F}}{1+s R_{F} C_{F}} F_{N} \frac{A}{1+A F_{N}}, \tag{11.3a}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{N}=F_{N, \mathrm{dc}} \frac{1+s \tau_{U}}{1+s \tau_{L}} \tag{11.3b}
\end{equation*}
$$

with $F_{N, \mathrm{dc}}$ given by Equation 11.1 b and with

$$
\begin{equation*}
\tau_{U}=R_{F} C_{F} \tag{11.3c}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{L}=\frac{R_{F} R_{I}}{R_{F}+R_{I}}\left(C_{F}+C_{i}\right) \tag{11.3d}
\end{equation*}
$$

Note that Equation 11.3a can also be written

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{I_{\text {in }}(t)\right\}}=-R_{F} \frac{F_{N . \mathrm{dc}}}{1+s \tau_{L}} \frac{A}{1+A F_{N}} . \tag{11.4}
\end{equation*}
$$

Also note that when

$$
\begin{equation*}
A=\frac{A_{\mathrm{dc}}}{\left(1+s \tau_{2}\right)\left(1+s \tau_{2}\right)}, \tag{11.5a}
\end{equation*}
$$

Equation 11.4 can be written*
$\frac{\mathscr{L}\left\{V_{\mathrm{ou}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=-R_{\mathrm{F}} \frac{A_{\mathrm{dc}}}{A_{\mathrm{dc}}\left(1+s \tau_{U}\right)+\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)\left(1+s \tau_{L}\right) / F_{N, \mathrm{dc}}}$.
Whether the transient response is free of ringing or not is determined by $1+A F_{N}$ in Equation 11.4 exactly as was the case for a noninverting feedback amplifier with a voltage source input. However, because the numerator of Equation 11.4 is a constant, a transient response that is free of ringing is also free of overshoot-unlike in a noninverting feedback amplifier with a voltage source input where there is a $1+s \tau_{L}$ term in the numerator of the equation equivalent to Equation 11.4.

EXAMPLE 11.1. A Type 13741 internally compensated FET-input operational amplifier is characterized by $A_{\mathrm{dc}}=100,000, f_{1}=10 \mathrm{~Hz}$, and $f_{2}=1 \mathrm{MHz}$ It is used in the circuit of Figure 11.2 with $C_{I}=10 \mathrm{pF}$, which includes the input capacitance of the operational amplifier, the capacitance of the current source, and stray capacitances. Also, $R_{F}=265 \mathrm{k} \Omega$ and $C_{F}=4.6 \mathrm{pF}$ are chosen based on the lag-lead compensation used in Example 8.25 and Problem 8.77 of Chapter 8. The value of R_{I} is much greater than R_{F}, and its presence can be ignored in Figure 11.2; thus, $F_{N, \mathrm{dc}}=1$.
It can be shown (see Problem 11.5) that, based on Example 8.26, Equation 11.4 can also be written

$$
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=-R_{F} \frac{1}{\left(1+s \tau_{L}\right)} \frac{1}{\left(1+s \tau_{A}\right)^{3}}
$$

where $R_{F}=265 \mathrm{k} \Omega, \tau_{L}=3.87 \mu \mathrm{~s}$, and $\tau_{A}=0.45 \mu \mathrm{~s}$.

To obtain the frequency response, $V_{\text {out }}(f) / I_{\text {in }}(f)$, the variable s has to be replaced by $\mathrm{j} 2 \pi f$ in $\mathscr{L}\left\{V_{\text {out }}(t)\right\} / \mathscr{L}\left\{I_{\text {in }}(t)\right\}$.

EXAMPLE 11.2. The frequency response of the circuit described in Example 11.1 can be written

$$
\frac{V_{\text {out }}(f)}{I_{\mathrm{in}}(f)}=-R_{F} \frac{1}{1+\mathrm{j} f / f_{L}} \frac{1}{\left(1+\mathrm{j} f / f_{A}\right)^{3}}
$$

where $R_{F}=265 \mathrm{k} \Omega, f_{L} \cong 41 \mathrm{kHz}$, and $f_{A} \cong 354 \mathrm{kHz}$.
The magnitude of the frequency response is

$$
\left|\frac{V_{\text {oul }}(f)}{I_{\mathrm{in}}(f)}\right|=\frac{R_{F}}{\sqrt{\left[1+\left(\frac{f}{f_{L}}\right)^{2}\right]\left[1+\left(\frac{f}{f_{A}}\right)^{2}\right]^{3}}}
$$

Also, the phase is

$$
\varphi=-\arctan \frac{f}{f_{L}}-3 \arctan \frac{f}{f_{A}}
$$

11.2 Adder Circuits

Adder circuits are capable of summing several input signals. This section describes basic properties of two simple circuits.

11.2.1 de Characteristics

Figure 11.3 shows the schematic diagram of a noninverting adder with three input voltages V_{1}, V_{2}, and V_{3} (the circuit can also be extended to more inputs). It can be shown (see Problem 11.7) that at low frequencies the output voltage in Figure 11.3 is given by

$$
\begin{equation*}
V_{\text {out }}=M_{N . d c} \frac{\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}} \tag{11.6}
\end{equation*}
$$

where $M_{N, d c}$ is the resulting dc amplification of the feedback amplifier. Note that the value of $M_{N, d c}$ is approximately 1 in Figure 11.3; however, this can be altered by adding a feedback network at the negative input of the operational amplifier, as in previous noninverting amplifiers.

Figure 11.4 shows the schematic diagram of an inverting adder with three input voltages V_{1}, V_{2}, and V_{3} (as before, the circuit can also be extended to more inputs). It can be shown (see Problem 11.8) that at low frequencies the output voltage in Figure 11.4 is given by

$$
\begin{equation*}
V_{\mathrm{out}}=-R_{F}\left(\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}\right) F_{N, \mathrm{dc}} \frac{A}{1+A F_{N, \mathrm{dc}}} \tag{11.7a}
\end{equation*}
$$

FIGURE 11.3 Noninverting adder with three iaputs.

where

$$
\begin{equation*}
F_{N, \mathrm{dc}}=\frac{R_{I}}{R_{F}+R_{I}} \tag{11.7b}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{1}{R_{1}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \tag{11.7c}
\end{equation*}
$$

11.2.2 Transient Response and Frequency Response

The transient response and frequency response of adder circuits can be found as was discussed for feedback amplifiers in Chapter 8. Thus, $V_{\text {out }}$ in the noninverting adder of Figure 11.3 is given by Equation 11.6 with $M_{N, d c}$ replaced by M_{N} of the feedback amplifier, which may include a feedback network consisting of R_{F}, R_{I}, C_{F}, and C_{I}, as in previous noninverting feedback amplifiers. The situation is similar in the inverting adder of Figure 11.4 ; however, in this case, the limitations discussed in Sections 7.7 and 8.5 must also be taken into account.

11.3 Integrator Circuits

An integrator provides an approximation of the time integral of the input voltage, that is, $V_{\text {out }} \cong$ constant $\cdot \int V_{\text {in }} d t$. Figure 11.5 shows a simple integrator circuit that uses an operational amplifier.*

FIGURE 11.5 Integrator circuit using an operational amplifier.
*The circuit may also include a capacitance C_{I} between the negative input of the operational amplifier and ground. This is discussed in Problem 11.15.

In the Laplace transform domain, by use of Equations 3.12 and 3.13 with R_{F} replaced by $R_{F} /\left(1+s R_{F} C_{F}\right)$,

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{-A}{1+(A+1) \frac{R_{I}}{R_{F}}\left(1+s R_{F} C_{F}\right)} \tag{11.8}
\end{equation*}
$$

where A is the amplification of the operational amplifier. For A with two corner frequencies, in the Laplace transform domain,

$$
\begin{equation*}
A=\frac{A_{\mathrm{dc}}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)} \tag{11.9}
\end{equation*}
$$

It can be shown (see Problem 11.10) that for the A given by Equation 11.9, Equation 11.8 can be approximated as

$$
\begin{align*}
& \frac{\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=-\frac{A_{\mathrm{dc}}+1}{1+\left(A_{\mathrm{dc}}+1\right) \frac{R_{I}}{R_{F}}} \frac{1}{1+\frac{A_{\mathrm{dc}}+1}{1+\left(A_{\mathrm{dc}}+1\right) \frac{R_{I}}{R_{F}}} s R_{I} C_{F}} \frac{A}{1+A} \tag{11.10}\\
& \text { when }
\end{align*}
$$

$$
\begin{equation*}
\frac{1}{1+\frac{R_{I}}{R_{F}}+\frac{\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}}{\frac{1}{R_{I} C_{F}}}} \ll 1 \tag{11.11a}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{1+\frac{R_{I}}{R_{F}}+\left(A_{\mathrm{dc}}+1\right) \frac{R_{I} C_{F}}{\tau_{1}+\tau_{2}}} \ll 1 \tag{11.11b}
\end{equation*}
$$

It can also be shown (see Problem 11.11) that for $R_{i} / R_{F} \ll 1$, the conditions of Equations 11.11a and 11.11 b can be written

$$
\begin{equation*}
\frac{\frac{1}{R_{I} \overline{C_{F}}}}{\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}} \ll 1 \tag{11.12a}
\end{equation*}
$$

and, for $A_{\mathrm{dc}} \gg 1$,

$$
\begin{equation*}
\frac{\tau_{1}+\tau_{2}}{A_{\mathrm{dc}} R_{I} C_{F}} \ll 1 \tag{11.12b}
\end{equation*}
$$

Note that the requirement for Equations 11.12 a and 11.12 b to be valid is $R_{I} / R_{F} \ll 1$; however, the stricter condition $\left(A_{\mathrm{dc}}+1\right) R_{I} / R_{F} \ll 1$ is not required.

Another limiting case of interest arises when $\tau_{1} \gg \tau_{2}$; that is, $f_{1} \ll f_{2}$, which is common in operational amplifiers. In this case, Equations 11.11 a and 11.11 b become

$$
\begin{equation*}
\frac{1}{1+\frac{R_{I}}{R_{F}}+\frac{R_{I} C_{F}}{\tau_{2}}} \ll 1 \tag{11.13a}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{1+\frac{R_{I}}{R_{F}}+\left(A_{\mathrm{dc}}+1\right) \frac{R_{I} C_{F}}{\tau_{1}}} \ll 1 \tag{11.13b}
\end{equation*}
$$

Also, for $\tau_{1} \gg \tau_{2}$ and $R_{I} / R_{F} \ll 1$, the conditions of Equations 11.13a and 11.13b can be written

$$
\begin{equation*}
\frac{\tau_{2}}{R_{1} C_{F}} \ll 1 \tag{11.14a}
\end{equation*}
$$

and, for $A_{\mathrm{dc}} \gg 1$,

$$
\begin{equation*}
\frac{\tau_{1}}{A_{\mathrm{dc}} R_{l} C_{F}} \ll 1 . \tag{11.14b}
\end{equation*}
$$

EXAMPLE 11.3. A Type 13741 internally compensated FET-input operational amplifier is characterized by $A_{\mathrm{dc}}=100,000, f_{1}=10 \mathrm{~Hz}$, and $f_{2}=1 \mathrm{MHz}$. It is used in the integrator circuit of Figure 11.5 with $R_{I}=1 \mathrm{M} \Omega$ and with a feedback capacitance $C_{F}=1 \mu \mathrm{~F}$ that has an unavoidable leakage resistance of $R_{F}=10 \mathrm{G} \Omega$. Also, there is a capacitance $C_{I}=10 \mathrm{pF}$ (not shown in Figure 11.5) between the negative input of the operational amplifier and ground. However, this C_{I} is ignored because $C_{I} / C_{F}=10 \mathrm{pF} / 1 \mu \mathrm{~F}=10^{-5} \ll 1$ (see Problem 11.15); hence, the results for $C_{I}=0$ are applicable.

From the above, $f_{2} / f_{1}=\tau_{1} / \tau_{2}=1 \mathrm{MHz} / 10 \mathrm{~Hz}=10^{5} \gg 1$; also, $R_{I} / R_{F}=$ $1 \mathrm{M} \Omega / 10 \mathrm{G} \Omega=10^{-4}$ < 1 . Hence, Equations 11.14 a and 11.14 b can be uscd. The left side of Equation 11.14 a becomes

$$
\frac{\tau_{2}}{R_{I} C_{F}}=\frac{1}{2 \pi f_{2} R_{1} C_{F}}=\frac{1}{2 \pi(1 \mathrm{MHz})(1 \mathrm{M} \Omega)(1 \mu \mathrm{~F})} \cong 0.16 \times 10^{-6} .
$$

The left side of Equation 11.14b becomes

$$
\frac{\tau_{1}}{A_{\mathrm{dc}} R_{1} C_{F}}=\frac{1}{2 \pi f_{1} A_{\mathrm{dc}} R_{I} C_{F}}=\frac{1}{2 \pi(10 \mathrm{~Hz})(100,000)(1 \mathrm{M} \Omega)(1 \mu \mathrm{~F})} \cong 0.16 \times 10^{-6}
$$

Thus, in this circuit, the left sides of Equations 11.14 a and 11.14 b are equal. Also, they are both much less than 1; hence, the conditions are satisfied and Equation 11.10 is valid and can be written

$$
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}} \cong \frac{-9091}{1+s(9091 \text { seconds })} \frac{A}{1+A}
$$

where

$$
A=\frac{100,000}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)}
$$

with

$$
\tau_{1}=\frac{1}{2 \pi f_{1}}=\frac{1}{2 \pi(10 \mathrm{~Hz})} \cong 16 \mathrm{~ms}
$$

and

$$
\tau_{2}=\frac{1}{2 \pi f_{2}}=\frac{1}{2 \pi(1 \mathrm{MHz})} \cong 0.16 \mu \mathrm{~s}
$$

The right side of Equation 11.10 is the product of three fractions. The first fraction is a constant and the second fraction approximates integration: These are discussed in Section 11.3.1. The third fraction is near 1 except at very high frequencies and very short times; it also determines whether the circuit is stable: This is discussed in Section 11.3.2. The overall frequency response and transient
response are discussed in Section 11.3.3.

11.3.1 Integration

In this section, Equation 11.10 is approximated as

$$
\begin{equation*}
\frac{\mathscr{L}\left\{V_{\mathrm{ou} 1}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}} \cong-\frac{A_{\mathrm{dc}}+1}{1+\left(A_{\mathrm{dc}}+1\right) \frac{R_{I}}{R_{F}}} \frac{1}{1+\frac{A_{\mathrm{dc}}+1}{1+\left(A_{\mathrm{dc}}+1\right) \frac{R_{I}}{R_{F}}} s R_{I} C_{F}} \tag{11.15a}
\end{equation*}
$$

with the assumption that

$$
\begin{equation*}
\frac{A}{1+A} \cong 1 \tag{11.15b}
\end{equation*}
$$

Note that the left side of Equation $11.15 b$ is the transfer function of a voltage follower with the negative input of the operational amplifier directly connected to its output. This configuration has the highest operating speed, provided that it is stable. As a result, the approximation of Equation 11.15 b is realistic for a wide range of times and frequencies: This is discussed later.

EXAMPLE 11.4. Example 11.3 used a Type 13741 operational amplifier in the integrator circuit of Figure 11.5 with $R_{i}=1 \mathrm{M} \Omega, R_{F}=10 \mathrm{G} \Omega$, and $C_{F}=1 \mu \mathrm{~F}$. Using the results obtained there, Equation 11.15 a can be written as

$$
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\text {in }}(t)\right\}}=\frac{-9091}{1+s(9091 \text { seconds })}
$$

Also, in the condition of Equation 11.15b,

$$
A=\frac{A_{\mathrm{dc}}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)},
$$

where $\tau_{1} \cong 16 \mathrm{~ms}, \tau_{2} \cong 0.16 \mu \mathrm{~s}$, and $A_{\mathrm{dc}}=100,000$.
When input voltage $V_{\mathrm{in}}(t)$ is a step function with magnitude V_{0} then, by use of Equation 11.15a,

$$
\begin{equation*}
V_{\mathrm{out}}(t) \cong-\left|M_{\mathrm{dc}}\right| V_{0}\left(1-e^{-t /\left[M_{\mathrm{ds}} \mid R_{t} C_{\mathrm{F}}\right]}\right) \tag{11.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|M_{\mathrm{dc}}\right| \equiv \frac{A_{\mathrm{dc}}+1}{1+\left(A_{\mathrm{dc}}+1\right) \frac{R_{I}}{R_{F}}} \tag{11.17}
\end{equation*}
$$

is the magnitude of the dc voltage amplification of the circuit. Note that the time constant is a large $\left|M_{\mathrm{dc}}\right| R_{I} C_{F}$ not $R_{\mathrm{F}} C_{F}$. Also note that output voltage $V_{\text {oul }}(t)$ becomes $-\left|M_{\mathrm{dc}}\right| V_{0}$ for times $t \gg\left|M_{\mathrm{dc}}\right| R_{1} C_{F}$. Furthermore, it can be shown (see Problem 11.20) that for short times Equation 11.16 can be approximated as

$$
\begin{equation*}
V_{\text {out }}(t) \cong-V_{0} \frac{t}{R_{I} C_{F}} \tag{11.18a}
\end{equation*}
$$

when

$$
\begin{equation*}
t \ll\left|M_{\mathrm{dc}}\right| R_{I} C_{\mathrm{F}} \tag{11.18b}
\end{equation*}
$$

EXAMPLE 11.5. In Example 11.4, $A_{\mathrm{dc}}=100,000, R_{1}=1 \mathrm{M} \Omega, R_{F}=10 \mathrm{G} \Omega$, and $C_{F}=1 \mu \mathrm{~F}$. Hence, from Equation 11.17,

$$
\left|M_{\mathrm{dc}}\right|=\frac{A_{\mathrm{dc}}+1}{1+\left(A_{\mathrm{dc}}+1\right) \frac{R_{i}}{R_{F}}}=\frac{100,000+1}{1+(100,000+1) \frac{1 \mathrm{M} \Omega}{10 \mathrm{G} \Omega}} \cong 9091
$$

Thus, for an input voltage $V_{\mathrm{in}}(t)$ that is a step function with magnitude V_{0}, from Equation 11.16,

$$
\begin{aligned}
V_{\mathrm{out}}(t) & =-\left|M_{\mathrm{dc}}\right| V_{0}\left(1-e^{-t /\left[\left|M_{\mathrm{dc}}\right| R_{t} C_{\mathrm{F}}\right]}\right)=-9091 V_{0}\left(1-e^{-t /[909 \mid(1 \mathrm{M} \Omega)(1 \mu \mathrm{~F})]}\right) \\
& =-9091 V_{0}\left(1-e^{-t / 9091 \text { seconds }}\right) .
\end{aligned}
$$

Also, from Equation 11.18a, $V_{\text {out }}(t)$ can be approximated as

$$
V_{\mathrm{out}}(t) \cong-V_{0} \frac{t}{R_{t} C_{F}}=-V_{0} \frac{t}{(1 \mathrm{M} \Omega)(1 \mu \mathrm{~F})}=-V_{0} \frac{t}{1 \text { second }}
$$

when, according to Equation 11.18 b ,

$$
t \ll\left|M_{\mathrm{dc}}\right| R_{I} C_{F}=9091(1 \mathrm{M} \Omega)(1 \mu \mathrm{~F})=9091 \text { seconds. }
$$

In many applications, input voltage $V_{\text {in }}$ is a narrow pulse that can be approximated by an impulse function, $\delta(t)$, which is also known as a δ function (delta function). For the purposes of this discussion, the impulse function can be considered to be the time derivative of a step function with magnitude 1 , that is, the time derivative of $u(t)$:

$$
\begin{equation*}
\delta(t)=\frac{d u(t)}{d t} \tag{11.19a}
\end{equation*}
$$

whereby also

$$
\begin{equation*}
u(t)=\int \delta(t) d t \tag{11.19b}
\end{equation*}
$$

Note that $\delta(t)$ has a dimension of $1 /$ second.
Since $u(t)=0$ for $t<0$ and it is 1 for $t>0$, its time derivative $\delta(t)$ is zero for all times except at $t=0$ where it is infinitely large; also the area under the impulse function is 1 . Also note that the Laplace transform of the impulse
function is 1 :

$$
\begin{equation*}
\mathscr{L}\{\delta(t)\}=1 \tag{11.20}
\end{equation*}
$$

When input voltage $V_{\mathrm{in}}(t)=\Phi_{0} \delta(t)$ then, by use of Equation 11.15a,

$$
\begin{equation*}
V_{\text {out }}(t) \cong-\frac{\Phi_{0}}{R_{1} C_{F}} e^{-t /\left[\mid M_{\mathrm{ol}}\left[R_{t} C_{F}\right]\right.} \tag{11.21}
\end{equation*}
$$

where $\left|M_{\text {dc }}\right|$ is given by Equation 11.17. Note that Φ_{0} has a dimension of volt - second.

Also, it can be shown (see Problem 11.24) that for short times Equation 11.21 can be approximated as

$$
\begin{equation*}
V_{\mathrm{out}}(t) \cong-\frac{\Phi_{0}}{R_{I} C_{F}} \tag{11.22a}
\end{equation*}
$$

when

$$
\begin{equation*}
t \ll\left|M_{\mathrm{dc}}\right| R_{I} C_{F} \tag{11.22b}
\end{equation*}
$$

EXAMPLE 11.6. The step-function input in Example 11.5 is replaced by $V_{\mathrm{in}}(t)=\Phi_{0} \delta(t)$. Thus, from Equation 11.21,

$$
\begin{gathered}
V_{\text {out }}(t)=-\frac{\Phi_{0}}{R_{I} C_{F}} e^{-t /\left[\left|M_{\mathrm{dc}}\right| R_{I} C_{F}\right]}=-\frac{\Phi_{0}}{(1 \mathrm{M} \Omega)(1 \mu \mathrm{~F})} e^{-t /[9091(1 \mathrm{M} \Omega)(1 \mu \mathrm{~F})]} \\
=-\frac{\Phi_{0}}{1 \text { second }} e^{-t / 9091 \text { seconds }}
\end{gathered}
$$

Also, from Equation 11.22a, $V_{\text {out }}(t)$ can be approximated as

$$
V_{\mathrm{out}}(t) \cong-\frac{\Phi_{0}}{R_{I} C_{F}}=-\frac{\Phi_{0}}{(1 \mathrm{M} \Omega)(1 \mu \mathrm{~F})}=-\frac{\Phi_{0}}{1 \text { second }}
$$

when, according to Equation 11.22 b,

$$
t \ll 9091 \text { seconds. }
$$

The time integral of a step function with magnitude V_{0}, that is, the time integral of $V_{0} u(t)$, can be written

$$
\begin{equation*}
\int_{-\infty}^{t} V_{0} u(t) d t=V_{0} t \tag{11.23a}
\end{equation*}
$$

for times

$$
\begin{equation*}
t>0 \tag{11.23b}
\end{equation*}
$$

and the integral is zero for $t<0$. Also, the time integral of an impulse function with magnitude Φ_{0}, that is, the time integral of $\Phi_{0} \delta(t)$, can be written

$$
\begin{equation*}
\int_{-\infty}^{t} \Phi_{0} \delta(t) d t=\Phi_{0} \tag{11.24a}
\end{equation*}
$$

for times

$$
\begin{equation*}
t>0 \tag{11.24b}
\end{equation*}
$$

and the integral is zero for $t<0$.
The output voltage, $V_{\text {oui }}(t)$, in the integrator of Figure 11.5 was approximated by Equations 11.18 a and 11.22 a for times $t \ll\left|M_{\mathrm{dc}}\right| R_{\mathrm{J}} C_{F}$: by Equation 11.18 a for a step-function input $V_{0} u(t)$ and by Equation 11.22 a for an impulse-function input $\Phi_{0} \delta(t)$. Thus, at least for these two input functions, the integrator of Figure 11.5 provides an output voltage

$$
\begin{equation*}
V_{\mathrm{out}}(t)=-\frac{1}{R_{I} C_{F}} \int_{0}^{t} V_{\mathrm{in}}(t) d t \tag{11.25a}
\end{equation*}
$$

for times

$$
\begin{equation*}
0<t \ll\left|M_{\mathrm{dc}}\right| R_{l} C_{F} \tag{11.25b}
\end{equation*}
$$

provided that $V_{\text {out }}(t)=0$ for $t<0$.

Thus, according to Equation 11.25 a , the circuit of Figure 11.5 provides integration with a scale factor of $-1 / R_{I} C_{F}$ in the time range limited by Equation 11.25 b . It can be shown that, based on Equation 11.15a, this is also true for any input voltage $V_{\text {in }}(t)$ and not only for the step-function and impulse-function inputs discussed above. (See also Problem 11.27.)

11.3.2 Response at High Frequencies and Short Times

In Section 11.3.1, the fraction $A /(1+A)$ was approximated as 1 (see Equation 11.15b). This section discusses the frequency response and the transient response resulting from $A /(1+A)$.

The transfer function $A /(1+A)$ is that of a voltage follower with the negative input of the operational amplifier directly connected to its output. This transfer function is applicable to Figure 11.5, which omits capacitance C_{I} between the negative input of the operational amplifier and ground; however, it is also applicable to nonzero C_{I} when $C_{I} \ll C_{F}$ (see Problem 11.15).

The voltage follower represented by $A /(1+A)$ may be unstable. In such a case, the circuit is useless.

EXAMPLE 11.7. A Type 2539 wideband monolithic operational amplifier is characterized by $A_{\mathrm{dc}}=30,000, f_{1}=20 \mathrm{kHz}$, and $f_{2}=f_{3}=300 \mathrm{MHz}$. It is used in the integrator circuit of Figure 11.5 with $R_{I}=1 \mathrm{k} \Omega, C_{F}=1 \mu \mathrm{~F}$, and $R_{F}=10 \mathrm{G} \Omega$. Also, there is a capacitance $C_{1}=5 \mathrm{pF}$ (not shown in Figure 11.5) between the negative input of the operational amplifier and ground. However,
this C_{I} is ignored because $C_{I} / C_{F}=5 \mathrm{pF} / 1 \mu \mathrm{~F}=0.5 \times 10^{-5} \ll 1$ (see Problem this C_{I} is ignored because $C_{I} / C_{F}=5 \mathrm{pF} / 1 \mu \mathrm{~F}=0.5 \times 10^{-5} \ll 1$ (see Problem 11.15); hence, the results for $C_{I}=0$ are applicable.

From the above,

$$
\tau_{1}=\frac{1}{2 \pi f_{1}}=\frac{1}{2 \pi(20 \mathrm{kHz})} \cong 8 \mu \mathrm{~s}
$$

and

$$
\tau_{2}=\tau_{3}=\frac{1}{2 \pi f_{2}}=\frac{1}{2 \pi f_{3}}=\frac{1}{2 \pi(300 \mathrm{MHz})} \cong 0.5 \mathrm{~ns}
$$

Thus, $\tau_{1} \gg \tau_{2}$ and the conditions given in Problem 11.14 may be used for the validity of Equation 11.10. The left side of the first condition becomes

$$
\frac{1}{1+\frac{R_{I}}{R_{F}}+\frac{R_{I} C_{F}}{\tau_{2}+\tau_{3}}}=\frac{1}{1+\frac{1 \mathrm{k} \Omega}{10 \mathrm{G} \Omega}+\frac{(1 \mathrm{k} \Omega)(1 \mu \mathrm{~F})}{0.5 \mathrm{~ns}+0.5 \mathrm{~ns}}} \cong 10^{-6}
$$

This is much less than 1 ; hence, the first condition is satisfied. The left side of the second condition becomes

$$
\begin{aligned}
\frac{1}{1+\frac{R_{I}}{R_{F}}+\left(A_{\mathrm{dc}}+1\right) \frac{R_{I} C_{F}}{\tau_{1}}} & =\frac{1}{1+\frac{1 \mathrm{k} \Omega}{10 \mathrm{G} \Omega}+(30,000+1) \frac{(1 \mathrm{k} \Omega)(1 \mu \mathrm{~F})}{8 \mu \mathrm{~s}}} \\
& \cong 0.27 \times 10^{-6}
\end{aligned}
$$

This is much less than 1 ; hence, the second condition is also satisfied. Therefore, both conditions are satisfied, Equation 11.10 is applicable, and the highfrequency response is represented by $A /(1+A)$.

According to Example 7.4, a voltage follower with this $A /(1+A)$ is on the verge of instability. Thus, the circuit of this example is also on the verge of instability and is useless.

When Equation 11.10 is valid, the phase margin of the integrator is determined by the phase margin of $A /(1+A)$. This is illustrated in Example 11.8.

EXAMPLE 11.8. In the integrator of Example 11.3,

$$
A=\frac{100,000}{(1+\mathrm{j} f / 10 \mathrm{~Hz})(1+\mathrm{j} f / 1 \mathrm{MHz})}
$$

Since $10 \mathrm{~Hz} \ll 1 \mathrm{MHz}$, for the purpose of finding the phase margin A can be approximated as

$$
A=\frac{100,000}{(\mathrm{j} f / 10 \mathrm{~Hz})(1+\mathrm{j} f / 1 \mathrm{MHz})}
$$

Thus, Equation 7.62a is applicable with $A_{\mathrm{dc}} F_{N . d \mathrm{c}}=100,000, f_{0}=10 \mathrm{~Hz}$, and $f_{1}=1 \mathrm{MHz}$. Hence, Equation 7.67 can be applied to find phase margin φ_{M} :

$$
A_{\mathrm{dc}} F_{N, \mathrm{dc}}=\frac{f_{1}}{f_{0}} \cot \varphi_{M} \sqrt{1+\cot ^{2} \varphi_{M}}
$$

that is,

$$
100,000=\frac{1 \mathrm{MHz}}{10 \mathrm{~Hz}} \cot \varphi_{M} \sqrt{1+\cot ^{2} \varphi_{M}}
$$

From this, φ_{M} can be expressed (see Problem 11.28) as

$$
\varphi_{M}=\operatorname{arccot} \sqrt{\frac{\sqrt{5}-1}{2}}=51.8^{\circ}
$$

When Equation 11.10 is valid, the frequency response for high frequencies and the transient response for short times are determined by $A /(1+A)$. The frequency response for high frequencies is illustrated in Example 11.9 and the transient response for short times in Example 11.10.

EXAMPLE 11.9. In the integrator of Example 11.3,

$$
A=\frac{100,000}{(1+\mathrm{j} f / 10 \mathrm{~Hz})(1+\mathrm{j} f / 1 \mathrm{MHz})}
$$

and feedback return $F_{N}=1$.
According to Section 8.3.1, the piecewise linear approximation of the Bode plot for the resulting amplification, $\left|M_{N}\right|$, is obtained as the lesser of the piecewise linear approximations of $|A|$ and $\left|1 / F_{N}\right|$. In this example, $\left|1 / F_{N}\right|=1$; also $|A|>1$ for frequencies $f<1 \mathrm{MHz}$ and $|A|=(1 \mathrm{MHz} / f)^{2}$ for $f>1 \mathrm{MHz}$. Thus, $\left|M_{N}\right|=1$ for $f<1 \mathrm{MHz}$ and $\left|M_{N}\right|=(1 \mathrm{MHz} / f)^{2}$ for $f>1 \mathrm{MHz}$.

EXAMPLE 11.10. In the integrator of Example 11.3, $M_{N, d \mathrm{c}}=$ $A_{\mathrm{dc}} /\left(1+A_{\mathrm{dc}}\right) \cong 1$. Also, A can be written

$$
A=\frac{A_{\mathrm{dc}}}{\left(1+\mathrm{j} f / f_{1}\right)\left(1+\mathrm{j} f / f_{2}\right)},
$$

where $f_{1}=10 \mathrm{~Hz}, f_{2}=1 \mathrm{MHz}$, and $A_{\mathrm{dc}}=100,000$
According to the discussion following Example 8.12 (see page 140), the transients of Figure 6.14 are applicable with

$$
\begin{gathered}
m=\frac{A_{\mathrm{dc}} f_{1}}{M_{\mathrm{N}, \mathrm{dc}} f_{2}}=\frac{(100,000)(10 \mathrm{~Hz})}{(1)(1 \mathrm{MHz})}=1, \\
\frac{L}{R}=\tau_{2}=\frac{1}{2 \pi f_{2}}=\frac{1}{2 \pi(1 \mathrm{MHz})} \cong 0.16 \mu \mathrm{~s},
\end{gathered}
$$

and

$$
R C=\frac{\tau_{2}}{m} \cong \frac{0.16 \mu \mathrm{~s}}{1}=0.16 \mu \mathrm{~s}
$$

Hence, the $m=1$ graph of Figure 6.14 is applicable with each division of $t / R C$ corresponding to $0.16 \mu \mathrm{~s}$. Also, there is an overshoot of about 15% on the transient, which is followed by a decaying ringing.

It is of interest to find a time $t_{\text {min }}$ beyond which the transient is confined within a band of $1 \pm \varepsilon$. Equation 6.42 a shows a multiplier of $e^{-t / 2 m R C}$ governing this decay. From this, as a rough approximation,

$$
\varepsilon=e^{-t_{\min } / 2 m R C}
$$

hence,

$$
t_{\min }=2 m R C \ln \frac{1}{\varepsilon}
$$

For example, for $\varepsilon=0.1 \%=0.001$,

$$
t_{\min }=2(1)(0.16 \mu \mathrm{~s}) \ln \frac{1}{0.001} \cong 2.2 \mu \mathrm{~s}
$$

11.3.3 The Overall Response

When Equation 11.10 is applicable, the overall transfer function is the product of two transfer functions: One of these was discussed in Section 11.3.1 and the other in Section 11.3.2. Also, the overall frequency response can be obtained by substituting $\mathrm{j} 2 \pi f$ for s in the overall transfer function.

Finding the overall transient response is more difficult because, in general, the overall transient response is not the product of the two individual transient responses. However, the overall transient response can be approximated as the product of the two individual transient responses for times when at least one of the two individual transient responses can be approximated by a constant

EXAMPLE 11.11. In Example 11.6 of Section 11.3.1, for an input voltage of $V_{\mathrm{in}}(t)=\Phi_{0} \delta(t)$,

$$
V_{\text {out }}=-\frac{\Phi_{0}}{1 \text { second }} e^{-t / 9091 \text { seconds }}
$$

For times $t \ll 9091$ seconds, $V_{\text {out }}$ can be approximated as $V_{\text {out }} \cong-\Phi_{0} / 1$ second. The fractional error ε committed by this approximation at times less than $t_{\text {max }}$ is

$$
\varepsilon=1-e^{-t_{\max } / 9091 \text { seconds}}
$$

which can be approximated for $t_{\max } \ll 9091$ seconds as

$$
\varepsilon \cong \frac{t_{\max }}{9091 \text { seconds }}
$$

hence,

$$
t_{\max } \cong(\varepsilon)(9091 \text { seconds })
$$

For example, for $\varepsilon=0.1 \%=0.001$,
$t_{\text {max }} \cong(0.001)(9091$ seconds $) \cong 9$ seconds.

Hence, with an accuracy of 0.1%, the transient response of Example 11.6 in Section 11.3.1 can be approximated by a constant for times less than about 9 seconds. Also, the transient response in Example 11.10 in Section 11.3 .2 can be approximated by a constant for times greater than 2.2 microseconds. Thus, in this case it is true that at least one of the two transient responses can be approximated by a constant at all times: Within an error of 0.1%, the transient response of Example 11.6 is constant for $t \leqslant 2.2 \mu \mathrm{~s}$, both transient responses are constant for $2.2 \mu \mathrm{~s} \leqslant t \leqslant 9 \mathrm{~s}$, and the transient response of Example 11.10 is constant for $t \geqslant 9 \mathrm{~s}$.

Thus, in the integrator discussed in Examples 11.6 and 11.10, the overall transient response can be approximated as the product of the two individual transient responses.

Thus far, it has been assumed that an integrator remains within its linear region of operation. However, this is not always the case, especially when $V_{\text {in }}$ is a narrow pulse with a high peak voltage (over 100 volts) that can be delivered by some transducers.

The output impedance of an operational amplifier includes an inductive component and, as a result, capacitance C_{F} cannot protect the negative input of the operational amplifier from large voltage excursions in Figure 11.5. If the maximum input voltage rating of the operational amplifier is exceeded, even for a short time, this may result in a large input current and hence in a loss of charge and in an incorrect output. However, the situation is alleviated by a nonzero capacitance C_{I} (not shown in Figure 11.5) between the negative input of the operational amplifier and ground.

EXAMPLE 11.12. The integrator of Example 11.3 includes a $C_{1}=10 \mathrm{pF}$. Input voltage $V_{\text {in }}$ is a pulse of 100 V for a duration of 100 ns . Assuming that the output of the operational amplifier can be approximated as an open circuit for such a short time, the entire charge delivered through the $R_{I}=1 \mathrm{M} \Omega$ resistor goes into C_{I}. By assuming (subject to later verification) that the voltage across C_{f} always remains much less than 100 V , at the end of the 100 -ns pulse this voltage can be approximated as

$$
\frac{(100 \mathrm{~V})(100 \mathrm{~ns})}{(1 \mathrm{M} \Omega)(10 \mathrm{pF})}=1 \mathrm{~V} . *
$$

This is less than the maximum input voltage rating of the operational amplifier, and output voltage $V_{\text {out }}$ will settle (within roughly 10 microseconds) to the correct value of

$$
-\frac{(100 \mathrm{~V})(100 \mathrm{~ns})}{(1 \mathrm{M} \Omega)(1 \mu \mathrm{~F})}=-10 \mu \mathrm{~V}
$$

[^4]
11.4 Differentiator Circuits

A differentiator provides an approximation of the time derivative of the input voltage; that is, $V_{\text {out }}$ is of the form $V_{\text {out }}=\tau_{L} d V_{\text {in }} / d t$. The transfer function corresponding to this is $s \tau_{L}$ and the corresponding frequency response is $2 \pi \tau_{L} f$. Clearly, these are not realizable because they require an amplification that increases without bound for increasing frequency f. For this reason, practical realizations provide transfer functions in the forms $s \tau_{L} /\left(1+s \tau_{A}\right)$, $s \tau_{L} /\left[\left(1+s \tau_{A}\right)\left(1+s \tau_{B}\right)\right]$, and so on, where parasitic time constants τ_{A} and τ_{B} are much smaller than differentiating time constant τ_{L}.

EXAMPLE 11.13. A Type 9914A wideband hybrid operational amplifier is characterized by $A_{\mathrm{dc}}=5000, f_{1}=0.5 \mathrm{MHz}$, and $f_{2}=50 \mathrm{MHz}$. It is used in the differentiator circuit shown in Figure 11.6 with $1 / 2 \pi R C=25 \mathrm{~Hz}$.

It can be shown (see Problem 11.34) that the resulting frequency response can be approximated as

$$
\frac{V_{\mathrm{ou}}(f)}{V_{\mathrm{in}}(f)}=\frac{-f / 25 \mathrm{~Hz}}{(1+f / 250 \mathrm{kHz})^{2}}
$$

and the resulting transfer function as

FIGURE 11.6 Differentiator circuit using an operational amplifier.

Another approach provides $V_{\text {out }}=$ constant $\cdot\left(1+\tau_{L} d V_{\text {in }} / d t\right)$, with a corresponding transfer function of constant $\cdot\left(1+s \tau_{L}\right)$ and a corresponding frequency response of constant $\cdot\left(1+\mathrm{j} 2 \pi \tau_{L} f\right)$. Again, these are not realizable, and practical realizations provide transfer functions in the form $\left(1+s \tau_{L}\right) /\left(1+s \tau_{A}\right)$, $\left(1+s \tau_{L}\right) /\left[\left(1+s \tau_{A}\right)\left(1+s \tau_{B}\right)\right]$, and so on, where parasitic time constants τ_{A} and τ_{B} are much smaller than differentiating time constant τ_{L}.*

EXAMPLE 11.14. Example 8.33 described a voltage follower circuit using a Type 2539 wideband monolithic operational amplifier. Lag-lead compensation was used with $f_{L}=2 \mathrm{MHz}$ and $f_{\nu}=21 \mathrm{MHz}$. This resulted in a transfer function of

$$
\frac{\mathscr{L}\left\{V_{\text {oul }}(t)\right\}}{\mathscr{L}\left\{V_{\text {in }}(t)\right\}}=M_{N . \mathrm{dc}} \frac{1+s \tau_{L}}{\left(1+s \tau_{A}\right)^{3}\left(1+s \tau_{B}\right)}
$$

with $M_{N, d c} \cong 1, \tau_{L} \cong 80 \mathrm{~ns}, \tau_{A} \cong 2.5 \mathrm{~ns}$, and $\tau_{B} \cong 0.4 \mathrm{~ns}$.
Thus, this circuit can be used as a differentiator with the differentiating time constant of 80 ns and with the four parasitic time constants of $2.5 \mathrm{~ns}, 2.5 \mathrm{~ns}$, 2.5 ns , and 0.4 ns .

Differentiator circuits are often used in feedback systems for alleviating the effects of unavoidable slow time constants that introduce a transfer function in the form $1 /\left(1+s \tau_{\text {slow }}\right)$. Such a transfer function may be cancelled, and time constant $\tau_{\text {slow }}$ may be replaced by faster time constants by use of a differentiator circuit.

EXAMPLE 11.15. A feedback system includes a power amplifier that is characterized by the transfer function constant $/\left(1+s \tau_{\text {slow }}\right)$ where time constant $\tau_{\text {slow }}=80 \mathrm{~ns}$. To enhance the stability of the system, the differentiator described in Example 11.14 is inserted in the signal path. This results in a transfer function

$$
\frac{\text { constant }}{1+s \tau_{\text {slow }}} \frac{1+s \tau_{L}}{\left(1+s \tau_{A}\right)^{3}\left(1+s \tau_{B}\right)}
$$

with $\tau_{\text {slow }}=80 \mathrm{~ns}, \tau_{L}=80 \mathrm{~ns}, \tau_{A}=2.5 \mathrm{~ns}$, and $\tau_{B}=0.4 \mathrm{~ns}$. Since $\tau_{L}=\tau_{\text {slow }}$, the transfer function becomes

$$
\frac{\text { constant }}{\left(1+s \tau_{A}\right)^{3}\left(1+s \tau_{B}\right)} .
$$

Thus, the introduction of the differentiator replaced the $\tau_{\text {slow }}=80 \mathrm{~ns}$ time constant by the four time constants of $2.5 \mathrm{~ns}, 2.5 \mathrm{~ns}, 2.5 \mathrm{~ns}$, and 0.4 ns .
*The effect of the I in the numerator can be cancelled by a subtraction (not discussed here).

115 Nonlinear Circuits

Operational amplifiers may also be used in conjunction with nonlinear components such as diodes and transistors. The nonlinear properties of bipolar transistors are used in an exponential amplifier in Example 11.16.

EXAMPLE 11.16. The collector current $I_{\boldsymbol{c}}$ of a bipolar transistor is an exponential function of base-emitter voltage $V_{B E}$; that is, $I_{C}=$ constant $\cdot e^{V_{B E} V_{T}}$, where V_{T} is a constant. An exponential amplifier with input voltage $V_{\text {in }}$ and output voltage $V_{\text {out }}$ is built by applying $V_{\text {in }}$ as $V_{B E}$, using a voltage follower, and by converting I_{C} to a proportional output voltage $V_{\text {out }}$, using the current input amplifier of Figure 11.1.

Operational amplifiers may also be used to convert a nonlinear function to another nonlinear function. This is illustrated for a logarithmic amplifier in Example 11.17.

EXAMPLE 11.17. Figure 11.7 shows a logarithmic amplifier that consists of operational amplifier A and of exponential amplifier B. The latter is characterized by $V_{2}=V_{K} e^{V_{\mathbf{I}} / V_{T}}$, where V_{K} and V_{T} are constants. It can be shown (see Problem 11.36) that this results in $V_{\text {out }} \cong V_{T} \ln \left(V_{\text {in }} / V_{K}\right)$ when amplification $A \cong \infty$.

FIGURE 11.7 Logarithmic amplifier circuit using operational amplifier A and exponential amplifier B.

PROBLEMS

11.1 Verify Equations $11.1 \mathrm{a}-\mathrm{d}$ and $11.2 \mathrm{a}, \mathrm{b}$ by writing loop and node equations in Figure 11.1 and by noting that $V_{\text {out }}=-A V_{n}$.
11.2 Expand the circuit of Figure 11.1 by including a resistor R_{p} in series with the positive (+) input of the operational amplifier. Show that this eliminates the effects of the input bias currents, but not the effects of the input offset current, when $R_{p}=R_{F} R_{I} /\left(R_{F}+R_{I}\right)$.
11.3 Verify Equations $11.3 \mathrm{a}-\mathrm{d}$ and 11.4 by writing loop and node equations or by using results from Section 6.3.
11.4 Derive Equation 11.5b from Equations 11.3a-d, 11.4, and 11.5a.
11.5 Verify the results of Example 11.1 by use of Examples 8.25 and 8.26 and Problem 8.77 of Chapter 8.
11.6 Verify the results of Example 11.2.
11.7 Derive Equation 11.6. [Hint: Replace the series combination of V_{1} and R_{1} by the parallel combination of R_{1} and a current source of V_{1} / R_{1}; repeat for V_{2} and R_{2}, and V_{3} and R_{3}. Then use Equation 11.1d.]
11.8 Derive Equations $11.7 \mathrm{a}-\mathrm{c}$. [Hint: Replace the series combination of V_{1} and R_{1} by the parallel combination of R_{1} and a current source of V_{1} / R_{1}; repeat for V_{2} and R_{2}, and V_{3} and R_{3}. Then use Equation 11.1d.]
11.9 Verify Equation 11.8 .
*11.10 Derive Equations 11.11a and 11.11b as follows:
(a) Use Equation 11.9 and bring both the exact Equation 11.8 and the approximate Equation 11.10 to the form con$\operatorname{stant} /\left(s^{3}+p s^{2}+q s+r\right)$.
(b) Show that the coefficients r are identical in the two equations.
(c) Show that $\left|\left(p_{\text {approximate }}-p_{\text {exact }}\right) / p_{\text {exect }}\right|$ equals the left side of Equation 11.11a.
(d) Show that $\mid\left(q_{\text {approximate }}-q_{\text {exact }}\right) / q_{\text {exact }}$ equals the left side of Equation 11.11 b .
11.11 Show that Equations 11.11 a and 11.1 b can be approximated by Equation 11.12 when $R_{I} / R_{F} \ll 1$.
11.12 Verify Equations $11.13 \mathrm{a}, \mathrm{b}$ and $11.14 \mathrm{a}, \mathrm{b}$.
*11.13 Show that the approximation of Equation 11.10 is also valid when

$$
A=\frac{A_{\mathrm{dc}}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)\left(1+s \tau_{3}\right)}
$$

and when the conditions of Equations 11.11 a and 11.11 b are replaced by

$$
\frac{1}{1+\frac{R_{1}}{R_{F}}+\frac{\frac{\tau_{1}+\tau_{2}+\tau_{3}}{\tau_{1} \tau_{2}+\tau_{1} \tau_{3}+\tau_{2} \tau_{3}}}{\frac{1}{R_{1} C_{F}}}} \ll 1
$$

and

$$
\frac{1}{1+\frac{R_{I}}{R_{F}}+\left(A_{\mathrm{dc}}+1\right) \frac{R_{I} C_{F}}{\tau_{1}+\tau_{2}+\tau_{3}}} \ll 1
$$

[Hint: Proceed as in Problem 11.10: Show that the coefficients of the constant and the s^{4} terms are equal in the exact and the approximate denominators, and show that the condition originating from the s^{3} terms is not constraining because the $|\varepsilon|$ resulting from it is always less than the $|\varepsilon|$ resulting from the s^{2} terms.]
11.14 Verify that for $f_{1}<f_{2}$ and $f_{1}<f_{3}$, that is, for $\tau_{1} \gg \tau_{2}$ and $\tau_{1} \gg \tau_{3}$, the conditions given in Problem 11.13 for $A=$ $A_{\mathrm{dc}} /\left[\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)\left(1+s \tau_{3}\right)\right]$ become

$$
\frac{1}{1+\frac{R_{1}}{R_{F}}+\frac{R_{I} C_{F}}{\tau_{2}+\tau_{3}}} \ll 1
$$

and

$$
\frac{1}{1+\frac{R_{I}}{R_{F}}+\left(A_{\mathrm{dc}}+1\right) \frac{R_{I} C_{F}}{\tau_{1}}} \ll 1
$$

Compare these conditions with those of Equations 11.13 a and 11.13 b .
11.15 Expand the integrator circuit of Figure 11.5 by including a capacitance C_{f} between the negative $(-)$ input of the operational amplifier and ground.
(a) Show that the resulting transfer function can be written

$$
\frac{\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{-A}{1+(A+1) \frac{R_{I}}{R_{F}}+s A R_{I} C_{F}+s R_{I}\left(C_{F}+C_{I}\right)}
$$

(b) Verify that the transfer function of (a) above reverts to the $C_{I}=0$ case of Equation 11.8 when $C_{I} \ll C_{F}$.
11.16 Verify the results of Example 11.3.
11.17 Verify the results of Example 11.4.
11.18 Verify Equation 11.16 .
11.19 Verify Equation 11.18 a by using (but not proving) the approximation $e^{-x} \cong 1-x$ for $0 \leqslant x \ll 1$.
*11.20 Show that the exponential function e^{-x} can be expanded as $e^{-x}=1-x+\Delta_{1}$, where $\left|\Delta_{1}\right|<x^{2} / 2$ when $0 \leqslant x<1$. Use the following steps:
(a) Write the series expansion of the exponential function as

$$
e^{-x}=1-x+\frac{x^{2}}{2}-\Delta_{\text {series }} .
$$

(b) Note that

$$
\Delta_{\text {series }}=\frac{x^{3}}{2 \cdot 3}-\frac{x^{4}}{2 \cdot 3 \cdot 4} \pm \cdots
$$

(c) Verify that the magnitudes of the terms diminish in $\Delta_{\text {series }}$ of (b) above.
(d) Note that the series expansion given in (a) is absolutely convergent; therefore (c) above implies that $0<\Delta_{\text {serics }}<x^{3} / 6$.
(e) Verify that, based on the above, the series of (a) can be written

$$
e^{-x}=1-x+\Delta_{1},
$$

where $\left|\Delta_{t}\right|<x^{2} / 2$ when $0 \leqslant x<1$.
(f) Note that both $\left|\Delta_{\text {neries }}\right|$ and $\left|\Delta_{1}\right|$ represent error magnitudes and not fractional errors.
11.21 Verify the results of Example 11.5.
11.22 Verify Equation 11.21.
11.23 Verify Equation 11.22a by using (but not proving) the approximation $e^{-x} \cong 1$ for $0 \leqslant x \ll 1$.
*11.24 Show that the exponential function e^{-x} can be expanded as $e^{-x}=1-\Delta_{0}$, where $\left|\Delta_{0}\right|<x$ when $0 \leqslant x<1$. [Hint: Consider the process used in Problem 11.20 and alter it as required.]
11.25 Verify the results of Example 11.6.
11.26 Verify Equation 11.25 a for $V_{\mathrm{in}}(t)=V_{0} u(t)$ and $V_{\mathrm{in}}(t)=\Phi_{0} \delta(t)$. Compare with Equations 11.18a and 11.22a.
*11.27 Provide a support, but not a proof, of Equation 11.25a for any input $V_{\text {in }}(t)$ as follows:
(a) Show that Equation 11.15a can be written

$$
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=-\frac{\left|M_{\mathrm{dc}}\right|}{1+s\left|M_{\mathrm{dc}}\right| R_{I} C_{F}},
$$

where $\left|M_{\mathrm{dc}}\right\rangle$ is defined by Equation 11.17.
(b) Consider that, in a way, large values of s correspond to small values of t, and show that the result of (a) above can be approximated as

$$
\frac{\mathscr{L}\left\{V_{\text {out }}(t)\right\}}{\mathscr{L}\left\{V_{\text {in }}(t)\right\}} \cong-\frac{1}{s R_{I} C_{F}}
$$

provided that $\left|S M_{\mathrm{dc}} R_{I} C_{F}\right| \gg 1$.
(c) Note that the condition in (b) above is not easy to evaluate because Laplace transform variable s is complex. However, if s is replaced by $1 / t$ (without any proof), then for $t>0$ this results in

$$
t \ll\left|M_{\mathrm{dc}}\right| R_{I} C_{\mathrm{F}}
$$

(d) Verify that the condition of (c) above is identical to those of Equations $11.18 \mathrm{~b}, 11.22 \mathrm{~b}$, and 11.25 b .
(e) Verify that the transfer function in (b) above represents integration with a scale factor of $-1 / R_{I} C_{F}$.
11.28 Verify the result of Example 11.8. [Hint: Introduce a variable x defined as $x \equiv \cot ^{2} \varphi_{M}$, find x, and express phase margin φ_{M} as $\varphi_{M}=\operatorname{arccot}$ \sqrt{x}.]
11.29 Verify the results of Example 11.9.
11.30 Verify the results of Example 11.10.
11.31 Verify the results of Example 11.11.
11.32 Verify the results of Example 11.12.
*11.33 Show that the output voltage in Example 11.12 settles to its correct value of $-10 \mu \mathrm{~V}$ with an accuracy of 0.01% in about $6.6 \mu \mathrm{~s}$. [Hint: Use the equation for $t_{\text {min }}$ given in Example 11.10.]
*11.34 Derive the results of Example 11.13 as follows.
(a) Show that

$$
\frac{\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{-s R C A_{\mathrm{dc}}}{(1+s R C)\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)+A_{\mathrm{dc}}}
$$

where $\tau_{1}=1 /[2 \pi(0.5 \mathrm{MHz})]$ and $\tau_{2}=1 /[2 \pi(50 \mathrm{MHz})]$.
(b) Verify that, since $\tau_{2}<\tau_{1}<R C$, the result of (a) above can be approximated as

$$
\frac{\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=-s R C \frac{A_{\mathrm{dc}}}{(1+s R C)\left(1+s \tau_{1}\right)+A_{\mathrm{dc}}}
$$

(c) Verify that the fraction on the right in (b) above equals the right side of Equation 8.42 with $F_{N, d e}=1$ and with τ_{2} replaced by $R C$.
(d) Verify that the result of (c) above also equals Equation 8.43 a with $M_{N, \mathrm{dc}} \cong 1$, and that Equations $8.43 \mathrm{~b}, 8.43 \mathrm{c}$, and 8.43 d are applicable with τ_{2} replaced by $R C$.
(e) Show that Equation 8.43 d becomes $m \cong 0.25$, and that Equations 8.43 b and 8.43 C lead to $\tau_{\Lambda} \cong \tau_{B} \cong 2 \tau_{1}$.
(f) Substitute $M_{N, d c}=1$ and the results of (e) above into the right side of Equation 8.43a.
(g) Note that the result of (f) above equals the fraction on the right side in (b) above.
11.35 A Type 9914A wideband hybrid operational amplifier is characterized by $A_{\mathrm{dc}}=5000, f_{1}=0.5 \mathrm{MHz}$, and $f_{2}=50 \mathrm{MHz}$. It is used as a voltage follower with lag-lead compensation; that is, $F_{N}=$ $\left(1+\mathrm{j} f / f_{U}\right) /\left(1+\mathrm{j} f / f_{L}\right)$, where $f_{L}=37 \mathrm{kHz}$ and $f_{U}=5.5 \mathrm{MHz}$.
(a) Sketch a piecewise linear approximation of the Bode plot for $\left|A F_{N}\right|$.
*(b) Show that the resulting transfer function of the voltage follower can be approximated as

$$
\frac{\mathscr{L}\left\{V_{\mathrm{out}}(t)\right\}}{\mathscr{L}\left\{V_{\mathrm{in}}(t)\right\}}=\frac{1+s(4.3 \mu \mathrm{~s})}{[1+s(9.5 \mathrm{~ns})]^{3}}
$$

[Hint: Use the results of Section 8.3.3.]
(c) The voltage follower is inserted into the signal path of a feedback system that includes a power amplifier with a transfer function of $1 /[1+s(4.3 \mu \mathrm{~s})]$. Use the transfer function given in (b) above and verify that the overall transfer function is $1 /[1+s(9.5 \mathrm{~ns})]^{3}$; that is,
the $4.3-\mu \mathrm{s}$ time constant of the power amplifier is replaced by three the $4.3-\mu \mathrm{s}$ time constant of the power amplifier is replaced by three time constants of 9.5 ns each.
11.36 Derive the equation for $V_{\text {oul }}$ given in Example 11.17 for an operational amplifier with an amplification A that can be approximated as $A=\infty$. [Hint: Note that an amplification $A=\infty$ implies zero voltage between the positive and negative input terminals of an operational amplifier.]

CHAPTER 12

Internal Structure

This chapter outlines three important circuits used in operational amplifiers: input stages, current mirrors, and output stages. Although present technology permits elaborate circuits, only the simplest circuits are discussed here.

12.1 Input Stages

Figure 12.1 shows the circuit diagram of a simple input stage. The positive and negative inputs, V_{p} and V_{n}, of the operational amplifier are connected to the bases of npn transistors Q_{1} and Q_{2}. The emitters of the transistors are connected together and they share dc current I_{dc}; details of current source I_{dc} are described in Section 12.2. The collectors of the transistors are connected to the positive power supply, V_{+}, through resistors $R_{C 1}$ and $R_{C 2}$ and through balance adjustment potentiometer $R_{\text {balance }}$.

Current I_{dc} splits evenly between Q_{1} and Q_{2} when $V_{p}=V_{n}, R_{C 1}=R_{C 2}$, and when Q_{1} and Q_{2} are identical and $R_{\text {balence }}$ is set at its center. In this ideal case, each emitter carries a current of $I_{\mathrm{dc}} / 2$, each collector a current of $\left(I_{\mathrm{dc}} / 2\right) h_{F E} /\left(1+h_{F E}\right)$, and each base a current of $\left(I_{\mathrm{dc}} / 2\right) /\left(1+h_{F E}\right)$, where $h_{F E}$ is the current gain of the transistor.

The input bias current, I_{B}, of the operational amplifier equals the base current; thus,

$$
\begin{equation*}
I_{B}=\frac{I_{\mathrm{dc}} / 2}{1+h_{F E}} \tag{12.1}
\end{equation*}
$$

EXAMPLE 12.1 The circuit of Figure 12.1 uses two identical transistors with $h_{F E}=100$; also, $I_{\mathrm{dc}}=10 \mathrm{~mA}$. Transistors Q_{1} and Q_{2} are identical and the circuit, all voltages, and all currents are symmetrical. Thus, the input bias current of the operational amplifier is, from Equation 12.1,

$$
I_{B}=\frac{J_{\mathrm{dc}} / 2}{1+h_{\mathrm{FE}}}=\frac{10 \mathrm{~mA} / 2}{1+100} \cong 49.5 \mu \mathrm{~A}
$$

FIGURE 12.1 Circuit diagram of a simple input stage.

When the circuit is not symmetrical, a nonzero input offset current $I_{\text {offset }}$ may result:

$$
\begin{equation*}
I_{\text {offret }}=\left|I_{B 1}-I_{B 2}\right| . \tag{12.2}
\end{equation*}
$$

EXAMPLE 12.2 The positive and negative input voltages, V_{p} and V_{n}, are identical in Figure 12.1; also, $I_{\mathrm{dc}}=10 \mathrm{~mA}$ and the current gain of each transistor is $h_{F E}=100$. Because of asymmetries in Q_{1} and Q_{2}, the emitter of Q_{1} carries a current of 4 mA and the emitter of Q_{2} a current of 6 mA . Thus, the input offset
current becomes

$$
I_{\text {offset }}=\left|I_{B 1}-I_{B 2}\right|=\left|\frac{4 \mathrm{~mA}}{1+100}-\frac{6 \mathrm{~mA}}{1+100}\right| \cong 19.8 \mu \mathrm{~A}
$$

The output voltages of the input stage are available for further use at points $O U T_{1}$ and $O U T_{2}$ in Figure 12.1. They are developed as voltage drops across resistors $R_{C_{1}}$ and $R_{C 2}$ and portions of balance adjustment potentiometer $R_{\text {beleace }}$. This potentiometer is replaced by short-circuits in the simplest operational amplifiers, it can be connected externally in others, and it is internal in some advanced operational amplifiers (in the form of a resistor network that is individually trimmed as a last step of the manufacturing process).

The purpose of potentiometer $R_{\text {balance }}$ is to zero out any nonzero input offset voltage $V_{\text {offset }}$ of the operational amplifier. This is preferable to offsetting one of the inputs, in which case there would remain a temperature coefficient of approximately

$$
\begin{equation*}
\frac{d V_{\text {offset }}}{d T} \cong \frac{V_{\text {offset }}}{T} \tag{12.3}
\end{equation*}
$$

where T is the absolute temperature in ${ }^{\circ} \mathrm{K}$, about $273^{\circ} \mathrm{C}$ above the temperature expressed in degrees centigrade $\left({ }^{\circ} \mathrm{C}\right)$. Note that a difference of $1^{\circ} \mathrm{K}$ equals a difference of $1^{\circ} \mathrm{C}$.

EXAMPLE 12.3 An operational amplifier has an input offset voltage of $V_{\text {offset }}=6 \mathrm{mV}$ that is zeroed out at one of the inputs of the operational amplifier. Thus, the output voltage of the operational amplifier is zero at the temperature where the zeroing was performed, which is approximately $27^{\circ} \mathrm{C}$; hence, $T \cong 273^{\circ} \mathrm{C}+27^{\circ} \mathrm{C}=300^{\circ} \mathrm{K}$. However, there remains a temperature coefficient that, from Equation 12.3, is

$$
\frac{d V_{\text {offset }}}{d T} \cong \frac{V_{\text {offset }}}{T}=\frac{6 \mathrm{mV}}{300^{\circ} \mathrm{K}}=20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{K}=20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} .
$$

If, for example, the temperature changes by $10^{\circ} \mathrm{C}$, there will appear an input offset voltage of $\left(10^{\circ} \mathrm{C}\right)\left(20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)=0.2 \mathrm{mV}$.

Note that the inclusion of potentiometer $R_{\text {balance }}$ does not completely eliminate the temperature coefficient of the input offset voltage, because there remains the temperature coefficient of the second stage of the operational amplifier. However, the effect of this is reduced by the amplification of the first stage, which is usually at least 100 .

12.2 Current Mirrors

Figure 12.2 shows the circuit diagram of a simple current mirror using two identical npn transistors Q_{1} and Q_{2}; current mirrors are also built using pnp transistors. It is now shown that, with the directions of currents as in Figure 12.2, $I_{\text {out }}$ approximately equals $I_{\text {in }}$ as long as the external load connected to output $O U T$ is such that $V_{C 2} \geqslant V_{B}$.

The emitters of both Q_{1} and Q_{2} are connected to V_{E}, which is usually a power supply voltage. The bases of Q_{1} and Q_{2} are connected together and they settle to a voltage of V_{B}, which is about 0.7 V higher than V_{E}. The collector of Q_{1} is also connected to V_{B}, thus this transistor operates with a collector-emitter voltage of about 0.7 V . The collector of Q_{2} is connected to output OUT. The design of transistors Q_{1} and Q_{2} is such that the collector-emitter voltage does not have much influence on the collector current, as long as it is at least 0.7 V .

Thus,

$$
\begin{equation*}
I_{\text {out }} \cong I_{c_{1}} \tag{12.4}
\end{equation*}
$$

in Figure 12.2 as long as $V_{C 2} \geqslant V_{B}$, because Q_{1} and Q_{2} are identical. For the same reason,

$$
\begin{equation*}
I_{B 1}=I_{B 2}, \tag{12.5}
\end{equation*}
$$

and also

$$
\begin{equation*}
I_{C 1}=h_{F E} I_{B 1} \tag{12.6a}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{\text {out }}=h_{F E} I_{B 2}, \tag{12.6b}
\end{equation*}
$$

where $h_{F E}$ is the current gain of Q_{1} and of Q_{2}. Furthermore, a node equation can be written for node V_{B} :

$$
\begin{equation*}
I_{\mathrm{in}}=I_{C 1}+I_{B 1}+I_{B 2} \tag{12.7}
\end{equation*}
$$

It can be shown (see Problem 12.3) that Equations 12.4-12.7 can be combined as

$$
\begin{equation*}
I_{\mathrm{out}} \cong \frac{I_{\mathrm{in}}}{1+\frac{2}{h_{F E}}} \tag{12.8}
\end{equation*}
$$

Thus, $I_{\text {out }}$ is close to $I_{\text {in }}$ when $h_{F E}$ is large. This can also be seen in Figure 12.2, where the base-emitter voltages of Q_{1} and Q_{2} are equal; hence, $I_{\text {out }} \cong I_{\text {in }}$ when the base currents are negligibly small.

Therefore, the insertion of a current mirror circuit between a source (generator) and a load reverses (inverts) the direction of the current through the load from the direction without the current mirror. Consider, for example, a current that flows from the source into the load without a current mirror. If a current mirror circuit is now inserted between the source and the load, the current from the source flows into the current mirror circuit, and a current with an approximately equal magnitude flows out of the load.

EXAMPLE 12.4 Output OUT in Figure 12.2 is loaded such that $V_{C 2} \geqslant V_{B}$; hence, Equation 12.8 is applicable.
(a) If $h_{F E}=100$, which is common for $n p n$ transistors, then, from Equation 12.8,

$$
\frac{I_{\mathrm{out}}}{I_{\mathrm{in}}} \cong \frac{1}{1+\frac{2}{h_{\mathrm{FE}}}}=\frac{1}{1+\frac{2}{100}} \cong 0.98
$$

a loss of 2%
(b) If $h_{F E}=10$, which is common for $p n p$ transistors in some processes, then, from Equation 12.8,

$$
\frac{I_{\text {out }}}{I_{\text {in }}} \cong \frac{1}{1+\frac{2}{h_{F E}}}=\frac{1}{1+\frac{2}{10}} \cong 0.83
$$

a loss of 17%.

Figure 12.3 illustrates the use of a current mirror for generating I_{dc} in the input stage of Figure 12.1, which is only partially shown. The voltage across resistor R_{1} is about 14.3 V and current I_{dc} is in the vicinity of $14.3 \mathrm{~V} / R_{1}$.

FIGURE 12.3 Use of a current mirror for generating $I_{d c}$ in Figure 12.1.

Figure 12.4 illustrates the use of a current mirror for signal inversion in the input stage of Figure 12.1. Current $I_{\text {mirror }} \cong I_{C 1}$ flows into node A in Figure 12.4. (Note that a direct connection of the left collector to node OUT would make $I_{C 1}$ flow out of node OUT and would result in a useless circuit.)

FIGURE 12.4 Use of a current mirror for signal inversion.

Figure 12.5 shows a current mirror with two outputs. It can be shown (see Problem 12.5) that when $O U T_{1}$ and $O U T_{2}$ are at least 0.7 V above V_{E},

$$
\begin{equation*}
I_{\mathrm{out}, 1} \cong I_{\mathrm{out}, 2} \cong \frac{I_{\mathrm{in}}}{1+\frac{3}{h_{F E}}} \tag{12.9}
\end{equation*}
$$

Figure 12.6 illustrates the use of a two-output current mirror in the input stage of Figure 12.1. The FEEDBACK signal is derived from subsequent circuitry not shown, and it sets the dc operating points of $O U T_{1}$ and $O U T_{2}$.

FIGURE 12.5 A current mirror with two outputs.

FIGURE 12.6 Use of a current mirror with two outputs.

Note that neither Figure 12.4 nor Figure 12.6 has a provision for zeroing out input offset voltage $V_{\text {offset }}$, as was done by $R_{\text {balance }}$ in Figure 12.1. However, the balancing feature can be incorporated in either circuit by the inclusion of additional circuitry. One way of doing this is to use two of the current mirrors of Figure 12.2. Output $O U T$ of one current mirror is connected to the left collectors and output $O U T$ of the other current mirror to the right collectors.

The V_{E} terminals of both current mirrors are connected to a negative power supply voltage, as in Figure 12.3. Also, input $I N$ of each current mirror is connected to ground via a resistor, and zeroing is performed by varying one of these resistors (see Problem 12.6).

12.3 Output Stages

Figure 12.7 shows an output stage using complementary npn and pnp transistors. Output transistors Q_{3} and Q_{4} are capable of delivering high currents with both polarities: npn transistor Q_{3} can provide a high current flowing out of the circuit and pnp transistor Q_{4} can provide a high current flowing into the circuit.

Transistors Q_{1} and Q_{2} provide level shifting. The circuit is designed such that the base-emitter voltage drops of Q_{1} and Q_{4} are equal, and also the base-emitter voltage drops of Q_{2} and Q_{3} are equal.

FIGURE 12.7 An output stage using npn and pnp transistors.

PROBLEMS

12.1 The circuit of Figure 12.1 uses two identical transistors with $h_{F E}=200$, also, $I_{\mathrm{dc}}=0.1 \mathrm{~mA}$. Find the input bias current.
12.2 An operational amplifier has an input offset voltage $V_{\text {offset }}=3 \mathrm{mV}$ which is zeroed out at one of the inputs of the operational amplifier. Find the input offset voltage for a temperature change of $10^{\circ} \mathrm{C}$.
12.3 Derive Equation 12.8 from Equations 12.4-12.7. [Hint: Express $I_{B 1}$ from Equation 12.6a and $I_{B 2}$ from Equation 12.6b; substitute them into Equation 12.7. Express $I_{C 1}$ from the result and substitute it into Equation 12.4.]
12.4 Find $I_{\text {out }} / I_{\text {in }}$ in the current mirror circuit of Figure 12.2 if $V_{C 2}>V_{B}$ and $h_{F E}=5$.
12.5 Derive Equation 12.9 by writing equations similar to Equations 12.4 12.7 and manipulating them as in Problem 12.3.
12.6 Incorporate input offset voltage balancing in Figure 12.4 by adding two current mirrors. Sketch a complete circuit diagram.

APPENDIX A

Mathematical Equations

This appendix provides a short summary of the mathematical equations that are frequently used in this book: quadratic equations, cubic equations, and Laplace transform pairs.

A. 1 Quadratic Equations

Any quadratic equation may be reduced to the form

$$
a x^{2}+b x+c=0
$$

Then

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

If a, b, and c are real then:
If $b^{2}-4 a c$ is positive, the roots are real and unequal.
If $b^{2}-4 a c$ is zero, the roots are real and equal.
If $b^{2}-4 a c$ is negative, the roots are complex and unequal.

A. 2 Cubic Equations

Any cubic equation,

$$
y^{3}+p y^{2}+q y+r=0
$$

may be reduced to the form

$$
x^{3}+a x+b=0
$$

by substituting for y the value,

$$
y=x-\frac{p}{3} .
$$

Also,

$$
a=\frac{1}{3}\left(3 q-p^{2}\right)
$$

and

$$
b=\frac{1}{27}\left(2 p^{3}-9 p q+27 r\right)
$$

For solution, define

$$
A \equiv \sqrt[3]{-\frac{b}{2}+\sqrt{\frac{b^{2}}{4}+\frac{a^{3}}{27}}}
$$

and

$$
B \equiv \sqrt[3]{-\frac{b}{2}-\sqrt{\frac{b^{2}}{4}+\frac{a^{3}}{27}}}
$$

then the three values of x are given by

$$
\begin{aligned}
& x=A+B \\
& x=-\frac{A+B}{2}+\frac{A-B}{2} \sqrt{-3},
\end{aligned}
$$

and

$$
x=-\frac{A+B}{2}-\frac{A-B}{2} \sqrt{-3}
$$

If p, q, r are real, then:
If $\frac{b^{\mathbf{2}}}{4}+\frac{a^{\mathbf{3}}}{27}>0$, there is one real root and two conjugate complex roots. If $\frac{b^{\mathbf{2}}}{4}+\frac{a^{\mathbf{3}}}{27}=0$, there are three real roots of which at least two are equal. If $\frac{b^{\mathbf{2}}}{4}+\frac{a^{3}}{27}<0$, there are three real and unequal roots.
A. 3 Laplace Transform Pairs

APPENDIX B

Derivations

This appendix provides details of derivations that are too extensive to be included in the main text.

B. 1 Proof of Equations 6.31a-e

In this section, the validity of Equations 6.31a-e is demonstrated. Specifically, it is shown that the magnitudes of the fractional errors of τ_{L} and τ_{U} of Equations 6.31 c and 6.31 d are always less than R_{2} / R_{1}

The fractional error ε of a time constant τ can be written

$$
\begin{equation*}
\varepsilon=\frac{\tau_{\text {approximate }}-\tau_{\text {exact }}}{\tau_{\text {exact }}} \tag{B.1a}
\end{equation*}
$$

which can be rearranged as

$$
\begin{equation*}
\varepsilon=\frac{\tau_{\text {approximate }}}{\tau_{\text {exact }}}-1 \tag{B.1b}
\end{equation*}
$$

To find the fractional error ε_{L} of time constant τ_{L}, the approximate τ_{L} from Equation 6.31 c has to be substituted for $\tau_{\text {approximate }}$ in Equations B.1a and B.1b, and the exact τ_{L} from Equation 6.30 c has to be substituted for $\tau_{\text {exact }}$ in Equations B.1a and B.1b.

Thus, Equation B. 1 b becomes

$$
\varepsilon_{L}=R_{1}\left(C_{1}+C_{2}\right) \frac{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}}{2 R_{1} C_{1} R_{2} C_{2}}
$$

$$
\begin{equation*}
\times\left(1-\sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}}\right)-1 . \tag{B.2}
\end{equation*}
$$

Now it is determined whether ε_{L} is positive, zero, or negative, that is, whether in the equation

$$
\begin{equation*}
\varepsilon_{L} \gtreqless 0 \tag{B.3}
\end{equation*}
$$

the top sign $(>)$, the center sign $(=)$, or the bottom sign $(<)$ is valid.

By substitution of Equation B.2, Equation B. 3 becomes

$$
\begin{align*}
& R_{1}\left(C_{1}+C_{2}\right) \frac{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}}{2 R_{1} C_{1} R_{2} C_{2}} \\
& \times\left(1-\sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}}\right)-1 \gtreqless 0 . \tag{B.4}
\end{align*}
$$

Equation B. 4 can be rearranged as

$$
\begin{equation*}
1-\frac{1}{R_{1}\left(C_{1}+C_{2}\right)} \frac{2 R_{1} C_{1} R_{2} C_{2}}{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}} \gtreqless \sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}} . \tag{B.5}
\end{equation*}
$$

The right side of Equation B. 5 is always positive or zero because, by convention, $\sqrt{x} \geqslant 0$ for any positive real x. When the left side of Equation B. 5 is negative, the bottom sign (<) is valid in Equation B. 5 and hence in Equation B. 3 as well. Thus, in this case,

$$
\begin{equation*}
\varepsilon_{L}<0 \tag{B.6}
\end{equation*}
$$

and also

$$
\begin{equation*}
\left|\varepsilon_{L}\right|=-\varepsilon_{L} \tag{B.7}
\end{equation*}
$$

When the left side of Equation B. 5 is positive or zero, none of the three possible signs ($>,=$, and $<$) is altered if both sides of Equation B. 5 are squared, because in this case both sides of Equation B. 5 are positive or zero. This results in Equation B.8:

$$
\begin{equation*}
\left(1-\frac{1}{R_{1}\left(C_{1}+C_{2}\right)} \frac{2 R_{1} C_{1} R_{2} C_{2}}{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}}\right)^{2} \geqq 1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}} \tag{B.8}
\end{equation*}
$$

It can be shown that Equation B. 8 can be rearranged as

$$
\begin{equation*}
-\frac{R_{2}}{R_{1}}\left(\frac{C_{2}}{C_{1}+C_{2}}\right)^{2} \gtreqless 0 . \tag{B.9}
\end{equation*}
$$

Clearly, the bottom sign ($<$) is valid in Equation B. 9 and hence in Equation B. 3 as well. Thus, Equations B. 6 and B. 7 are valid in this case too.

Now it is determined whether $\left|\varepsilon_{L}\right|$ is greater than, equal to, or less than R_{2} / R_{1}; that is, whether in the equation

$$
\begin{equation*}
\left|\varepsilon_{L}\right| \gtreqless \frac{R_{2}}{R_{1}} \tag{B.10}
\end{equation*}
$$

the top sign ($>$), the center sign $(=)$, or the bottom sign $(<)$ is valid.

By use of Equations B. 2 and B.7, Equation B. 10 becomes

$$
\begin{align*}
-R_{1}\left(C_{1}+C_{2}\right) & \frac{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}}{2 R_{1} C_{1} R_{2} C_{2}} \\
& \times\left(1-\sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}}\right)-1 \gtreqless \frac{R_{2}}{R_{1}} \tag{B.11}
\end{align*}
$$

Equation B. 11 can be rearranged as

$$
\begin{align*}
& \sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}} \\
& \tag{B.12}\\
& \quad \geqq>1+\left(1+\frac{R_{2}}{R_{1}}\right) \frac{1}{R_{1}\left(C_{1}+C_{2}\right)} \frac{2 R_{1} C_{1} R_{2} C_{2}}{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}} .
\end{align*}
$$

The left side of Equation $B .12$ is always positive or zero because, by convention, $\sqrt{x} \geqslant 0$ for any positive real x. The right side of Equation B. 12 is also always positive. Thus, none of the three possible signs ($>,=$, and $<$) is altered if both sides of Equation B. 12 are squared. This results in Equation B.13:

$$
\begin{align*}
& 1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}} \\
& \quad \gtreqless \tag{B.13}\\
& \quad \gtreqless\left[1+\left(1+\frac{R_{2}}{R_{1}}\right) \frac{1}{R_{1}\left(C_{1}+C_{2}\right)} \frac{2 R_{1} C_{1} R_{2} C_{2}}{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}}\right]^{2}
\end{align*}
$$

Equation B. 13 can be rearranged as

$$
\begin{align*}
& -\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}} \\
& \quad \gtreqless\left[1+\left(1+\frac{R_{2}}{R_{1}}\right) \frac{1}{R_{1}\left(C_{1}+C_{2}\right)} \frac{2 R_{1} C_{1} R_{2} C_{2}}{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}}\right]^{2}-1 . \tag{B.14}
\end{align*}
$$

The left side of Equation B. 14 is always negative and the right side is always positive; hence, the left side is always less than the right side. Thus, the bottom $\operatorname{sign}(<)$ is valid in Equation B. 14 and hence in Equation B. 10 as well. Therefore, Equation B. 10 becomes

$$
\begin{equation*}
\left|\varepsilon_{L}\right|<\frac{R_{2}}{R_{1}} \tag{B.15}
\end{equation*}
$$

Thus, the magnitude of the fractional error of τ_{L} of Equation 6.31c, $\left|\varepsilon_{L}\right|$, is indeed always less than R_{2} / R_{1}.

To find the fractional error ε_{U} of time constant τ_{U}, the approximate τ_{U} from Equation 6.31 d has to be substituted for $\tau_{\text {approximate }}$ in Equations B.1a and B.1b, and the exact τ_{U} from Equation 6.30 d has to be substituted for $\tau_{\text {exact }}$ in Equations B.1a and B.1b. Thus, Equation B.1b becomes

$$
\begin{align*}
\varepsilon_{U}= & R_{2} \frac{C_{1} C_{2}}{C_{1}+C_{2}} \frac{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}}{2 R_{1} C_{1} R_{2} C_{2}} \\
& \times\left(1+\sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}}\right)-1 \tag{B.16}
\end{align*}
$$

Now it is determined whether ε_{U} is positive, zero, or negative; that is, whether in the equation

$$
\begin{equation*}
\varepsilon_{v} \gtreqless 0 \tag{B.17}
\end{equation*}
$$

the top sign $(>)$, the center sign $(=)$, or the bottom sign $(<)$ is valid. By substitution of Equation B.16, Equation B. 17 becomes

$$
\begin{align*}
& R_{2} \frac{C_{1} C_{2}}{C_{1}+C_{2}} \frac{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}}{2 R_{1} C_{1} R_{2} C_{2}} \\
& \times\left(1+\sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}}\right)-1 \gtreqless 0 . \tag{B.18}
\end{align*}
$$

Equation B. 18 can be rearranged as

$$
\begin{equation*}
\sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}} \gtreqless \frac{R_{1} C_{1}+R_{1} C_{2}-R_{2} C_{2}}{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}} \tag{B.19}
\end{equation*}
$$

The left side of Equation $B .19$ is always positive because, by convention, $\sqrt{x} \geqslant 0$ for any positive real x. When the right side of Equation B. 19 is negative, then the top sign $(>)$ is valid in Equation B. 19 and hence in Equation B. 17 as well. Thus, in this case

$$
\begin{equation*}
\varepsilon_{U}>0 \tag{B.20}
\end{equation*}
$$

and also

$$
\begin{equation*}
\left|\varepsilon_{U}\right|=\varepsilon_{U} \tag{B.21}
\end{equation*}
$$

When the right side of Equation B. 19 is positive or zero, then none of the three possible signs ($>,=$, and $<$) is altered if both sides of Equation B. 19 are squared, because in this case both sides of Equation B. 19 are positive or zero. This results in Equation B.22:

$$
\begin{equation*}
1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}} \gtreqless \frac{\left(R_{1} C_{1}+R_{1} C_{2}-R_{2} C_{2}\right)^{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}} . \tag{B.22}
\end{equation*}
$$

Equation B. 22 can be rearranged as

$$
\begin{equation*}
4 R_{1} C_{1} R_{2} C_{2} \gtreqless 0 . \tag{B.23}
\end{equation*}
$$

Clearly, the top $\operatorname{sign}(>)$ is valid in Equation B. 23 and hence in Equation B. 17 as well. Thus, Equations B. 20 and B. 21 are valid in this case too.

Now it is determined whether $\left|\varepsilon_{v}\right|$ is greater than, equal to, or less than R_{2} / R_{1}; that is, whether in the equation

$$
\begin{equation*}
\left|\varepsilon_{U}\right| \gtreqless \frac{R_{2}}{R_{1}} \tag{B.24}
\end{equation*}
$$

the top sign $(>)$, the center sign $(=$), or the bottom sign $(<)$ is valid. By use of Equations B. 16 and B.21, Equation B. 24 becomes

$$
\begin{align*}
& R_{2} \frac{C_{1} C_{2}}{C_{1}+C_{2}} \frac{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}}{2 R_{1} C_{1} R_{2} C_{2}} \\
& \times\left(1+\sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}}\right)-1 \gtreqless \frac{R_{2}}{R_{1}} \tag{B.25}
\end{align*}
$$

Equation $B .25$ can be rearranged as

$$
\begin{equation*}
\sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}} \gtreqless \frac{R_{1} C_{1}+R_{1} C_{2}+2 R_{2} C_{1}+R_{2} C_{2}}{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}} . \tag{B.26}
\end{equation*}
$$

The left side of Equation $B .26$ is always positive or zero because, by convention, $\sqrt{x} \geqslant 0$ for any positive real x. The right side of Equation B. 26 is also always positive. Thus, none of the three possible signs ($>,=$, and $<$) is altered if both sides of Equation B. 26 are squared. This results in Equation B. 27 :

$$
\begin{equation*}
1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}} \gtreqless \frac{R_{1} C_{1}+R_{1} C_{2}+2 R_{2} C_{1}+R_{2} C_{2}}{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}} \tag{B.27}
\end{equation*}
$$

Equation B. 27 can be rearranged as

$$
\begin{equation*}
-2 \gtreqless 1+\frac{C_{1}}{C_{2}}+\frac{R_{2}}{R_{1}} . \tag{B.28}
\end{equation*}
$$

Clearly, the bottom $\operatorname{sign}(<)$ is valid. Therefore, Equation B. 24 becomes

$$
\begin{equation*}
\left|\varepsilon_{v}\right|<\frac{R_{2}}{R_{1}} \tag{B.29}
\end{equation*}
$$

Thus, the magnitude of the fractional error of τ_{U} of Equation $6.31 \mathrm{~d},\left|\varepsilon_{U}\right|$, is indeed always less than R_{2} / R_{1}. This completes the proof of the statement that the magnitudes of the fractional errors of τ_{L} and τ_{U} of Equations 6.31 c and 6.31 d are always less than R_{2} / R_{1}.

B. 2 The Relative Magnitudes of τ_{L}, τ_{2}, and τ_{U}

First, the relative magnitudes of τ_{2} and τ_{L}, from Equations 6.30 b and 6.30 c are compared; that is, it is determined whether in the equation

$$
\begin{equation*}
\frac{1}{\tau_{L}} \gtreqless \frac{1}{\tau_{2}} \tag{B.30}
\end{equation*}
$$

the top sign ($>$), the center sign ($=$), or the bottom sign ($<$) is valid. By substitution of Equations 6.30 b and 6.30 c , Equation B. 30 becomes

$$
\begin{equation*}
\frac{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}}{2 R_{1} C_{1} R_{2} C_{2}}\left(1-\sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}}\right) \gtreqless \frac{1}{R_{2} C_{2}} . \tag{B.31}
\end{equation*}
$$

Equation B. 31 can be rearranged as

$$
\begin{equation*}
-\sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}} \gtreqless \frac{R_{1} C_{1}-R_{1} C_{2}-R_{2} C_{2}}{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}} . \tag{B.32}
\end{equation*}
$$

The validity of an inequality is not altered if both sides are multiplied by -1 and are interchanged. Hence, Equation B. 32 can be written

$$
\begin{equation*}
\frac{-R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}}{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}} \gtreqless \sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}} \tag{B.33}
\end{equation*}
$$

The right side of Equation B. 33 is always positive or zero because, by convention, $\sqrt{x} \geqslant 0$ for any positive real x. When the left side of Equation B. 33 is negative, the bottom sign ($<$) is valid in Equation B. 33 and hence in Equation B. 30 as well. Thus, in this case,

$$
\begin{equation*}
\frac{1}{\tau_{L}}<\frac{1}{\tau_{2}} \tag{B.34}
\end{equation*}
$$

When the left side of Equation B. 33 is positive or zero, none of the three possible signs ($>,=$, and $<$) is altered if both sides of Equation B. 33 are squared, because in this case both sides of Equation B. 33 are positive or zero. This results in Equation B. 35 :

$$
\begin{equation*}
\frac{\left(-R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}} \gtreqless 1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}} . \tag{B.35}
\end{equation*}
$$

It can be shown that Equation B. 35 can be rearranged as

$$
\begin{equation*}
0 \gtreqless 4 R_{1}^{2} C_{1} C_{2} \tag{B.36}
\end{equation*}
$$

Clearly, the bottom sign ($<$) is valid in Equation B. 36 and hence in Equation B. 30 as well. Thus, Equation B. 34 is valid in this case too.

Next, the relative magnitudes of τ_{2} and τ_{U} from Equations 6.30 b and 6.30 d are compared; that is, it is determined whether in the equation

$$
\begin{equation*}
\frac{1}{\tau_{U}} \gtreqless \frac{1}{\tau_{2}} \tag{B.37}
\end{equation*}
$$

The top sign ($>$), the center sign ($=$), or the bottom sign ($<$) is valid. By substitution of Equations 6.30b and 6.30d, Equation B. 37 becomes

$$
\begin{equation*}
\frac{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}}{2 R_{1} C_{1} R_{2} C_{2}}\left(1+\sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}}\right) \geqslant \frac{1}{R_{2} C_{2}} . \tag{B.38}
\end{equation*}
$$

Equation B. 38 can be rearranged as

$$
\begin{equation*}
\sqrt{1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}}} \gtreqless \frac{R_{1} C_{1}-R_{1} C_{2}-R_{2} C_{2}}{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}} . \tag{B.39}
\end{equation*}
$$

The left side of Equation B. 39 is always positive or zero because, by convention, $\sqrt{x} \geqslant 0$ for any positive real x. When the right side of Equation B. 39 is negative, the top sign $(>)$ is valid in Equation B. 39 and hence in Equation B. 37 as well. Thus, in this case,

$$
\begin{equation*}
\frac{1}{\tau_{U}}>\frac{1}{\tau_{2}} \tag{B.40}
\end{equation*}
$$

When the right side of Equation B. 39 is positive or zero, none of the three possible signs ($>,=$, and $<$) is altered if both sides of Equation B. 39 are squared, because in this case both sides of Equation B. 39 are positive or zero. This results in Equation B.41:

$$
\begin{equation*}
1-\frac{4 R_{1} C_{1} R_{2} C_{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}} \gtreqless \frac{\left(R_{1} C_{1}-R_{1} C_{2}-R_{2} C_{2}\right)^{2}}{\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right)^{2}} \tag{B.41}
\end{equation*}
$$

It can be shown that Equation $B .41$ can be rearranged as

$$
\begin{equation*}
4 R_{1}^{2} C_{1} C_{2} \gtreqless 0 \tag{B.42}
\end{equation*}
$$

Clearly, the top sign ($>$) is valid in Equation B. 42 and hence in Equation B. 37 as well. Thus, Equation B. 40 is valid in this case too.

The combination of Equations B. 34 and B. 40 results in Equation 6.32a. This completes the proof of Equation 6.32a.

APPENDIX C

Properties of Operational Amplifiers Used in the Examples and Problems

The properties listed in this appendix are typical except where stated otherwise

Type:	108A	725C	741	2539	9914A	13741
Description:	Precision Monolithic	High-Gain Monolithic	Internally Compensated Monolithic	Wideband Monolithic	Wideband Hybrid	Internally Compensated FET-Input
Dc Amplification Maximum	300,000	3,000,000	200,000	30,000	5000	100,000
input bias current Maximum	2 nA	125 nA	500 nA	$20 \mu \mathrm{~A}$	$20 \mu \mathrm{~A}$	0.2 nA
input offset current Maximum	0.2 nA	35 nA	200 nA	$6 \mu \mathrm{~A}$	$20 \mu \mathrm{~A}$	0.05 nA
input offset voltage Temperature coefficient	0.5 mV	2.5 mV	5 mV	15 mV	30 mV	15 mV
of input offset voltage Minimum de common-	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
mode rejection ratio Differential	96 dB	94 dB	70 dB	60 dB	90 dB	70 dB
input resistance	$70 \mathrm{M} \Omega$	$1.5 \mathrm{M} \Omega$	$2 \mathrm{M} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$500 \mathrm{G} \Omega$
rejection ratio	96 dB	90 dB	77 dB	60 dB	70 dB	77 dB
	$20 \mathrm{~Hz}^{\text {a }}$	$2 \mathrm{~Hz}^{\text {a }}$	10 Hz	20 kHz	500 kHz	10 Hz
Corner frequencies	$2 \mathrm{MHz}^{\text {a }}$	$1.5 \mathrm{MHz}^{\text {a }}$	10 MHz	$\begin{aligned} & 300 \mathrm{MHz} \\ & 300 \mathrm{MHz} \end{aligned}$	50 MHz	1 MHz
Slew rate	$1.5 \mathrm{~V} / \mu \mathrm{s}$	$10 \mathrm{~V} / \mu \mathrm{s}$	$0.5 \mathrm{~V} / \mu \mathrm{s}$	$600 \mathrm{~V} / \mu \mathrm{s}$	$1000 \mathrm{~V} / \mu \mathrm{s}$	$0.5 \mathrm{~V} / \mu \mathrm{s}$

Answers to Selected Problems

CHAPTER 1

1.1-1 V

CHAPTER 2
$2.70,10 \mathrm{~V}$
2.101 millisecond

CHAPTER 3
$3.100,10 \mathrm{mV}$
$3.14-0.999 \mathrm{mV}$
$3.16-10,000$

CHAPTER 4
4.19616 .3 to 10,001
$4.10 \quad 0$
$4.12 \quad 10 \%$
$4.13 \approx \pm 0.4 \%$

CHAPTER 7
7.2852°
7.2952°

CHAPTER 8
$8.34 \quad 38.7^{\circ}$
$8.451,1 \mathrm{MHz}$
$8.751-(1+2.22 t) e^{-i / 0.45}$
$8.761-\left(1+2.22 t+2.47 t^{2}\right) e^{-1 /(0.45}$

CHAPTER 9
$9.15000,0.5,80 \mathrm{~dB}$
9.2200 Hz

CHAPTER 10
10.7150 mV
10.823 mV

Index

108A, 208, 218, 268
725C, 35, 268
741, 186, 215, 268
2539, 74-76, 91, 109-115, 118, 166, 169-170, 172-175, 181-183, 185, 190-191, 213, 232-233, 238, 268
9914A, 103-105, 117-118, 137-141, 143-145,
148-152, 155-160, 184, 188-189, 213, 218, 237, 244, 268
13741, 162-166, 187-190, 217-218, 222-223, 227-231, 233-236, 243-244, 268

Adder, 223-225, 240
Amplification, 1-3, 5, 8-10, 28-30, 33-37, 39, 268
accuracy, 3, 24, 27-37
closed-loop, see Resulting amplification infinite, 12-25, 119-122

Balance adjustment, 246-247, 251-253 Bandwidth, 39, 123-127, 187
Bias current, see Input bias curren
Bode plot, 44, 55-56, 87, 116

Common-mode amplification, 2-3, 197-202 Common-mode rejection, 197-201, 208, 268 Common-mode rejection ratio, 198-202, 208, $268 \mathrm{dc}, 198,208$
frequency characteristics, 198-199, 208
Comparator, 10
Compound differential amplifier, 23, 36, 208 Compound lag network, 70-76, 81, 118, 259265
Computer-aided design, 18
Corner frequency, 40, 44, 59, 87, 94, 115$118,119,268$
four, 87, 92-9
no, 119-122
one, 87, 115, 123-135, 185-186
three, 87-91, 93-95, 98, 108-113, 116,
118, 166-182, 190-194
two 87,101-107,117-118, 135-166, 186 190
Crossover frequency, 99
Cubic equation, see Third-order equation
Current mirror, 247-253
Current source input, 219-223, 240
Cyclic frequency, 40

Decibel, 44

Decompensated operational amplifier, 94
Delay, 39, 116
Delta function, 55, 230-232, 235
Differential amplification, 5
Differential amplifier, 6-10, 23. See also Feedback amplifier, differential
Differential gain, see Differential amplification
Differential-in differential-out amplifier, 19 21
Differential voltage amplification, 5
Differential voltage gain, see Differentia voltage amplification
Differentiator, 237-238, 243-244
Drift, temperature, see Temperature coefficient

Encircling, 83-86
Excess phase, 101
Expansion, binomial, 41-42
Expansion, logarithmic, 41-42, 56
Exponential amplifier, 239

Feedback, 3, 11-25
frequency-independent, 119, 123-125, 136-$141,166-170,187,191$
negative, 11
positive, 24,36
Feedback amplification, see Resulting amplification

Feedback amplifier, 11-25, 83-118, 119-195, 210-212
resulting amplification, 12-25, 27-37
resulting amplification, fractional change, 27-37, see also Feedback amplifier, resulting amplification, fractional error
resulting amplification, fractional error, 24 33-37, see also Feedback amplifier,

resulting amplification, fractional

 changeFeedback amplifier, differential, 15-18, 20-
22, 199-202, 210-212
equalized amplification, $17-18,20-22$, 199-202, 210-212
feedback factor, 16-18
feedback return, 16
resulting amplification, $16-18,20-22,24$, 27-37
Feedback amplifier, inverting, 13-15, 22, 24 , $29-30,32-37,90,114-116,182-183$
feedback factor, 14-15, 22
feedback return, 14-15
resulting amplification, 13-15, 22, 24
resulting amplification, fractional change, 29-30, 32-37, see also Feedback amplifier, inverting, fractional error
resulting amplification, fractional error, 24 , 33-37, see also Feedback amplifier, inverting, fractional change
Feedback amplifier, noninverting, 11-13, 19, 21-22, 24, 27-29, 31-37
feedback factor, 12-13
feedback return, 12-13, 19
resulting amplification, $12-13,19,21-22$, 24
resulting amplification, fractional change, 27-29, 31-37, see also Feedback amplifier, noninverting, fractional error
resulting amplification, fractional error, 24, 33-37, see also Feedback amplifier, noninverting, fractional change
Feedback factor, 12-18, 25, 31-33
Feedback gain, see Resulting amplification
Feedback resistor, 30-37
Feedback return, 12-16, 31-33
Fifth-order equation, 195
Fourth-order equation, 175-180, 182, 191194
Frequency, 1-3, 5
Frequency response, 39-57, 59-82, 119-195
Gain, 1, 5
closed-loop, see Resulting amplification
resulting, see Resuiting amplification

Ideal operational amplifier, 5-10
Impulse function, 55, 230-232, 235
Input bias current, 2, 209-211, 217-218, 245, 253, 268
Input capacitance, 202-205, 208
Input current, 2, 209-211, 217-218, 245-246, 253, 268
Input impedance, 202-205, 208, 268
Input offset current, 2-3, 209-211, 217-218, 246, 268
Input offset voltage, 2-3, 211-212, 218, 253, 268
Input resistance, 202-205, 208, 268
Input resistor, 33-37
Input stage, 245-247, 249-251
Instrumentation amplifier, 19-21, 36-37
Integrator, 225-236, 240-243
Internally compensated operational amplifier, 94-95, 116
Inverting amplifier, 6. See also Feedback amplifier, inverting

Lag compensation, 94-95
Lag-lead compensation, 111-113, 121-122, 125-135, 160-166, 181-183, 194, 238, 244
Lag network, 39-57, 87-93. See also Corner frequency
Laplace transform, 42-43, 257
Lead network, 63-66, 80-81
Lead-lag compensation, 96-100, 103-107,
109-110, 117-118, 120-121, 141-160,
171-180, 182-183, 187-195, 218
Limitation, 212-213
Logarithmic amplifier, 239, 244
Loop gain, see Feedback factor

Magnitude, 1, 40-42
Modified lag network, 59-62, 80-81

Noise, 215-218
Noninverting amplifier, 5-6. See also
Feedback amplifier, noninverting
Nyquist criterion, 83-87, 99, 101
Nyquist diagram, 83-87, 115

Open-loop amplification, 5
Open-loop gain, see Open-loop amplification
Output current, 212-213
Output impedance, 205-206, 208
Output stage, 252
Output voltage, 212-213

Phase, 40-42, 55, 117
Phase margin, 99, 101-113, 117-118, 128,

233, 243

Piecewise linear approximation, 44, 56
Pole, 40, 94
Pole frequency, 40, 59
Pole-zero cancellation, 97-98, 142-145, 156-
158, 171-175, 182-183, 187-191
Potentiometric amplifier, 25
Power supply rejection ratio, 207-208, 268
Property, 267-268
Quadratic equation, see Second-order equation
Quartic equation, see Fourth-order equation Quintic equation, see Fifth-order equation

RLC circuit, 76-80, 82
Rating, 212-213, 236
Real operational amplifier, 197-208, 209-218
Referred to the input, 211
Referred to the output, 211
Resulting amplification, 11-25
Rise time, 39
Second-order equation, 255
Slew rate, 214-215, 218, 268
Stability, 83-118
absolute, 99
conditional, $98-100,117,195$
marginal, 89
Step function, 43
Step function, 43
Structure, internal, 245-253
Supply-voltage rejection ratio, 207-208, 268
frequency characteristics, 207
Taylor series, 28-31, 34-37, 56
Temperature coefficient, 210-212, 217-218, 247, 268
Temperature drift, see Temperature coefficient
Third-order equation, 146-156, 158-160, 163-169, 173-174, 187-191, 194, 255256
Transfer function, 40
Transient response, 39-57, 59-82, 119-195
Voltage amplification, 5
Voltage divider network, 66-70, 81 compensated, 67-70
Voltage follower, 19, 22, 36, 95, 238, 244
Voltage gain, see Voltage amplification

Zero, 59, 94

Zero frequency, 59
Zeroing, see Balance adjustment

[^0]: *Other terms in use for M_{N} are feedback amplification, closed-loop amplification, feedback gain, and closed-loop gain.
 **The signs \cong and \approx are both used for approximately equal in this book.

[^1]: *Figure 7.1 is located on pages 84 and 85 .

[^2]: *Similarly, the term zero refers to a corner frequency in the numerator of a transfer function
 **Operational amplifiers that are not internally compensated are often called decompensated operational amplifiers.

[^3]: *Frequently, the input offset voltage is specified as $\pm V_{\text {offset }}$. Also, the input offset voltage is often called the offset voltage referred to the input ($R T I$), as opposed to the offset voltage referred to the output ($R T O$) which is $M_{N, d c}$ times the offset voltage referred to the input.

[^4]: *The exact value of the voltage is $100 \mathrm{~V}\left(1-e^{-100 \mathrm{~ns} /[1 / \mathrm{Mox}(10 \mathrm{pF})}\right)=0.995 \mathrm{~V}$

