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Preface

This second edition has been extensively revised to reflect new developments
during the 17 years that have elapsed since the publication of the first edition.
These include the substantial technological advances that took place, especially
in operational amplifiers with high gain, low input currents and offset voltages,
and high speed. The entire text has been thoroughly revised, and the chapters
on stability, frequency response, and transient response were consider-
ably expanded and completely rewritten to reflect the vast changes during the
last decade.

Chapters 7 and 8 have becn most significantly impacted. Chapter 7 describes
stability criteria and phase margins of feedback amplifiers using operational
amplifiers with up to 4 corner frequencies. Frequency-independent feedback, lag
compensation, lead—lag compensation, and lag-lead compensation are treated.
Conditional stability is discussed, as well as limitations characteristic of
inverting feedback amplifiers.

Chapter 8 provides a detailed description of frequency response and transient
response of feedback amplifiers using operational amplifiers with up to 3 corner
frequencies. Frequency-independent feedback, lag compensation, lead-lag com-
pensation with and without pole-zero cancellation, and lag—lead compensation
are treated, including design graphs based on the solution of the third-order and
fourth-order equations that arise. The results are applied to the latest wideband
monolithic and hybrid operational amplifiers in worked examples and in
problems.

Two new chapters were also added on applications and on internal structure:
Chapter 11 describes amplifiers with current source inputs, as well as adders,
integrators, differentiators, and nonlinear circuits; Chapter 12 discusses input
stages, current mirrors, and output stages in operational amplifiers.

The book now has 12 chapters, 132 worked examples, 319 problems, 102
figures, and 3 appendixes. Answers to selected problems are also given.

We would like to take this opportunity to acknowledge the contributions of
Wiley Editor George J. Telecki and his associates in making this second edition
a reality.

ARPAD BARNA

DaN L. Porar
Stanford, California
September 1988
vii



Preface to the First Edition

The availability of mass-produced operational amplifiers at a low cost has
resulted in their widespread use in many applications. Because of their
performance, these devices have brought about designs with unprecedented
precision, speed, reliability, and reproducibility. In order to take full advantage
of this potential, thorough and precise design techniques must be applied. This
text offers the reader a basic understanding of the use of operational amplifiers
in linear circuits fundamental to other applications.

The book developed from a senior elective course in electronic instrumenta-
tion given at the University of Hawaii. Over 200 examples and problems expand
the book’s scope and illustrate realistic applications. These features, and a
structure aimed at easy access to the material, make this book useful both as a
text and as a reference.

After a general introduction, basic properties of ideal operational amplifiers
are described. Feedback is introduced in Chapter 3. The effects of feedback and
of component variations on accuracy are discussed in Chapter 4. Transient
response and frequency response of operational amplifiers and feedback
amplifiers are summarized in Chapters 5 and 6. Stability considerations and
criteria are introduced in Chapter 7, compensation techniques are described in
Chapter 8. Common mode rejection, input and output impedances, and supply
voltage rejection properties are summarized in Chapter 9, input currents, offset
voltage, slew rate, noise, and other limitations in Chapter 10. An Appendix
provides tables summarizing the results obtained in the text and lists the
properties of operational amplifiers used in the examples and problems.
Answers to selected problems are also given.

ARPAD BARNA
Honolulu, Hawaii
February 1971
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CHAPTER 1

Operational Amplifiers

This chapter introduces distinctive features of operational amplifiers (OAs) and
illustrates the theme of the book.* Detailed treatment of the subject matter
begins with Chapter 2.

An operational amplifier (Figure 1.1) is characterized by an output voltage
V. that is proportional to the difference of its two input voltages ¥, and V;:

Vow = AV, — Vo). (L1)

A distinctive feature of operational amplifiers is that amplification (or gain) A
is a function of frequency with a nonzero value at dc (zero frequency). This value
is usually the maximum of A4 as a function of frequency.

y §?1

FIGURE 1.1 Schematic diagram of an operational amplifier.

EXAMPLE 1.1. In an operational amplifier described by Equation 1.1, 4=

10,000/(1 + jf/1 MHz), where f is the frequency and j = /- 1. The dc value of
A, that is, its value at zero frequency, is Ay, = A;_o = 10,000. The magnitude of
amplification A4 as a function of frequency is

10,000

= .
J1+ (f/1 MHz)

This has its maximum equal to A, at a frequency f = 0.

*New terms are introduced by italicized letters.



2 OPERATIONAL AMPLIFIERS

Another distinctive feature of operational amplifiers follows from Equation

1.1: The output voltage—at least in principle—is zero when both input voltages
are zero.

1.1 Properties

It would be desirable to have operational amplifiers described by Equation 1.1
with an amplification A that has precisely defined frequency characteristics, that
is independent of signal levels, time, and temperature, and that is identical from
unit to unit. It would also be desirable to have Equation 1.1 satisfied exactly: V,
should be zero when ¥, = ¥,, no matter how large they are.

In reality, amplification A is a function of signal level, time, temperature, and
power supply voltage, and varies from unit to unit—sometimes by as much as a
factor of five. Operational amplifiers also have a nonzero input offset voltage
(typically a few millivolts) that adds to ¥, — ¥, and that varies with temperature
and from unit to unit.

ut

EXAMPLE 1.2. An operational amplifier has a dc amplification 4,, = 1000
and a maximum input offset voltage Vg, = 12 mV. As a result, for zero input
voltages the output voltage can be anywhere within the range given by
Vou = Vottsad = (£2mV)1000) = £2 V. Thus, if V, = ¥, = 0, output voltage
Vou is between —2V and +2V.

In the case when the two input voltages are equal but not zero, that is,
V, =V, # 0, some fraction of these input voltages finds its way to the output
terminal; this fraction is designated common-mode amplification Acy.

EXAMPLE 13. An operational amplifier has a common-mode amplification
Acy = 0.0001. Thus, if ¥, = ¥, = 1V, the output voltage, neglecting input offset
voltage Vogrsers is Vouo = AcuV, = AcuV, = (0.0001)(1 V) = 0.1 mV.

It would also be desirable to have operational amplifiers with zero input
currents flowing into their two input terminals. In reality, there is always some
(possibly quite small) input current.

* EXAMPLE 14. The average of the two input currents is designated input bias
current. An operational amplifier has a maximum input bias current
I5=40pA =40 x 1072 A. Thus, each of the two input currents could be
anywhere between zero and 80 pA. As a result of well-controlled manufacturing
technology, however, in this operational amplifier the two input currents are
always within 15 pA of each other; this is expressed by stating that the maximum
input offset current is 15 pA.

PROBLEMS 3

Properties of operational amplifiers will be discussed in detail iq subsequem
chapters. Whether imperfections of an operational ampllhc'rs are significant or
not depends on the requirements of the particular application.

1.2 Applications

Operational amplifiers can be used in many circuits, such as current _ampliﬁcrs,
pulse shapers, and nonlinear circuits. Such applications are discussed in Chapter
11; whereas in Chapters 2-10 the discussion centers on use as a voltage
amplifier—an application that is perhaps basic to all other uses.

It will be seen that by use of feedback, some properties of the resulting
amplifier may be improved at the expense of others, whereas some character-
istics cannot be altered by feedback. Thus, for example, the dc amplification and
its accuracy can be changed by feedback, but the input offset voltage cannot be
improved.

It is not practical to discuss all possible amplifier configurations. Emphasis is
placed on simple circuits that can be used as building blocks in larger systems.

PROBLEMS

1.1 Find the value of output voltage V,, in Figure L1, if ¥, =1mV,
V,=11mV, and 4 = 10,000.

1.2 Find the wvalue of |4 at a frequency [ =10MHz, if
A = 1000/(1 + jf/10 MHz).
1.3 An operational amplifier has a maximum input offset voltage

Vireee = £3mV and a dc amplification A4, = 1000. Find the limits of
output voltage V,,,, if the input voltages are ¥, = 5SmV and V, = 6 mV.

1.4 An operational amplifier has a common mode amplification Acy = 0.0002.
Find the magnitude of output voltage V,,, if the input voltages are
V,=V,=2V.

1.5 Inthecircuit of Figure 1.2, ¥V, =9mV, V, = 8 mV, R, = R, = I0MQ, and
the maximum input offset current of the operational amplifier is 15 pA.
Find the limits of V,,, if A = 1000 and if the amplifier obeys Equation L.1.

R,

FIGURE 1.2



CHAPTER 2

Ideal Operational Amplifiers

An ideal operational amplifier, shown in Figure 2.1, has two input terminals, one
output terminal, and one ground terminal. The voltage between the output
terminal and the ground terminal, ¥,,,, is related to the voltage between the
positive (+) terminal and ground, V,, and to the voltage between the negative
(=) terminal and ground, V,, as

Vo = AV, — V). @1
The quantity A is called gain, amplification, open-loop gain, open-loop

amplification, or differential voltage amplification of the operational amplifier.*
An ideal operational amplifier also has zero input currents, that is, in Figure 2.1,

I,=1,=0. (22)

P n

FIGURE 2.1 An ideal operational amplifier.

2.1 Noninverting Amplifiers

Ap ideal operatio_nal amplifier used as a noninverting amplifier is shown in
Figure 2.2, whe.re input voltage ¥, is connected to the positive (+) terminal of
Lhc OA (operational amplifier). The output voltage, using Equation 2.1, is given

Y
Vom = AVm (23)

*In Chapters 2-4, a frequency-independent A is assumed; frequency characteristics of A are
introduced in Chapter 5.

S



6 IDEAL OPERATIONAL AMPLIFIERS

FIGURE 22 A noninverting amplifier.

EXAMPLE _2.]. . An operational amplifier, used as a noninverting amplifier,
has an gmpllﬁcatnon A = 5000; input voltage V;, = 1 mV. The resulting output
voltage is V,,, = AV, = (50001 mV) =5V.

22 Inverting Amplifiers

An ideal operational amplifier used as an inverting amplifier is shown in Figure
2.3, where input voltage V,, is connected to the negative (— ) input terminal of the
OA. The output voltage, using Equation 2.1, is given by

Vow = — AV, 29

Voul

FIGURE 23 An inverting amplifier.

EXAMP.LE 2.2 An operational amplifier, used as an inverting amplifier, has
an amp!lﬁcatlon A = 10,000; input voltage V,, = 1 mV. The resulting output
- voltage is V,,, = — AV, = (—10,000{I mV) = —10 V.

23 Differential Amplifiers

An ideal operational amplifier used as a differential amplifier is shown in Figure
2.4, where input voltages voltages V, and V, are connected, respectively, to the

2.4 FLOATING-INPUT DIFFERENTIAL AMPLIFIERS 7

out

FIGURE 24 A differential amplifier.

positive (+) and negative (—) input terminals of the OA. The output voltage,
using Equation 2.1, is given by

Vow = AV, = V). 2:3)

EXAMPLE 23. An operational amplifier, used as a differential amplifier, has
an amplification 4 = 20,000; input voltages are V, =9mV and V, =9.1mV.
The resulting output voltage (disregarding the common-mode amplification) is
Vou = AV, — V) = (20,0009 mV — 9.1 mV) = -2 V.

24 Floating-Input Differential Amplifiers

A differential amplifier with floating inputs is shown in Figure 2.5. It follows
from Equation 2.1 that the output voltage is given by

Vou = AVia- (2.6)

EXAMPLE 24. An operational amplifier with an amplification 4 = 1000 is
used in the floating-input differential amplifier of Figure 2.5; input voltage
¥,, = 1 mV. The output voltage is therefore V,,, = AV,, = (1000}l mV) =1 V.

Vln1 A

Vout

|
||}—-0 —_—

FIGURE 2.5 A differential amplifier with floating inputs.



8 IDEAL QPERATIONAL AMPLIFIERS

PROBLEMS

21 Find the required value of amplification A, if an input voltage
Via = 0.1mV is to be amplified to an output voltage V,,, = 2 V. Which
amplifier circuit is to be used?

22 An inverting amplifier has an amplification 4 = 5000 and an output
voltage V,,, =2 V. Find the value of input voltage V,,.

23 Find the value of V, in the differential amplifier of Figure 2.4, if the
operational amplifier is ideal with an amplification 4 = 10,000, the
output voltage V,,, = 1V, and if ¥, = SmV.

24 Find the value of output voltage V,,, in the circuit of Figure 2.6, if the
operational amplifier is ideal with an amplification 4 = 2000 and if
Vo= —1mV,

1M
+
A
Vm ' p T cht
FIGURE 2.6
28

Find the value of output voltage V,,, in the circuit of Figure 2.7, if the
operational amplifier is ideal with an amplification 4 = 2000 and if
Vo= —1mV.

FIGURE 2.7

PROBLEMS 9

26 Find the values of V,,, , and V,,, in the circuit of Figure 2.8, assuming
A, = 10,000, A, = 11,000, and V,, = —02mV.

A

r - Vout, 1

ip—o —>

+
- A2

i
—_—

Vout.2

1
Hp—o

FIGURE 238

27  Find the value of V,, in the circuit of Figure 2.9,if ¥, = 1mV, }; =3V,
A, = 5000, and 4, = 10,000. Repeat with 4, = 5001.

| l_/l‘/ N

¥
—

Voul

~
—
'
=0

FIGURE 29
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28 Find the value of ¥, in the circuit of Figure 2.10, if ¥, = 10mV and
A = 2000.

Vou(

10 MQ

'|'—0 ——

FIGURE 2.10

29 Find the values of V,,,; and V,,, in the circuit of Figure 2.1, if '

Vi=Va=V;=1mV and 4, = 4, = 4000.

NN

= Ay

|
—

Vout,1

sfp—0

A
o} .
oA

)
—_—

Vout,2

-||—o

FIGURE 2.11

210 The differential amplifier of Figure 2.4 is used as a comparator with
Vo= 1V and V, = (1000 V/second). At what time will V,,, equal zero?

CHAPTER 3

Feedback

The characteristics of an amplifier circuit using an operational amplifier can be
substantially modified by the application of suitable feedback: The resulting
amplification can be altered, its stability improved, the magnitude of spurious
signals reduced, the bandwidth and the operating speed increased, and non-
linearities diminished. The discussion is focused on negative feedback, that is, on
the case when a fraction of the output voltage is returned to the negative input
terminal; some properties of positive feedback are mentioned briefly in Problem
3.16 of this chapter and in Problem 4.12 of Chapter 4.

In this chapter, amplifications of various feedback amplifiers are determined;
other properties of feedback are discussed in subsequent chapters.

3.1 Noninverting Feedback Amplifiers

Consider the circuit of Figure 3.1. The input signal, V,,,, is entered on the positive
(+) input terminal of the operational amplifier. The negative (—) input terminal
has an input current of I = 0 and is not connected to ground as previously, but it
receives a voltage V,, that is a fraction of the output voltage V,,,:

Vm = FN Vouh (31)
Ry
W
I1=0
Ry b

FIGURE 3.1 A noninverting amplifier with negative feedback.
11



12 FEEDBACK

where the feedback return of the noninverting amplifier, Fy, is defined as

Fy= E%E-. (3.2)
To find V,,, as a function of ¥,,, Equation 2.1 is applied as
Vou = A(Via — Vo) (3.3)
The combination of Equations 3.1 and 3.3 results in (see Problem 3.3)
Voul A
T =TT AR, (3.4)

The quantity V,,,/V,, is the resulting amplification of the noninverting feedback
amplifier, which henceforth is denoted by M,:*

V,
My =22,
nEY (3.5)
Thus, for the noninverting amplifier with negative feedback,
A
My=—"—
M1+ AFy G6)

where feedback return Fy is given by Equation 3.2.

EXAI.VIPLI? 3.1. The feedback amplifier of Figure 3.1 uses an operational
amplifier with an amplification 4 = 1000. Resistor values are R; = 1000 Q and
Rg = 9000 Q. Thus, the feedback return is given by

Foo R _ 1000Q 3
M TR, +Rp 1000Q+9000Q

and the resulting amplification of the feedback amplifier is

__ A 1000 1000
1+ AFy  1+(1000§0.1) 101

0.1,

My

= 9.90.**

It i§ of interest to determine what happens when amplification A of the
operational amplifier is sufficiently large, so that the feedback factor of the

noninverting amplifier, defined as AFy, becomes much larger than unity, that s,
when

AFy > 1. 3.9

*Other terms in use for M, are feedback amplification, closed-loop amplification, feedback gain, and
closed-loop gain.

**The signs = and =~ are both used for approximately equal in this book.

3.2 INVERTING FEEDBACK AMPLIFIERS 13

In this case, the resulting amplification of Equation 3.6 can be simplified as

A A 1

= x = (3.8)
1+AFN AFN FN

My
Thus, if 4 is sufficiently large to result in a feedback factor AFy > 1, the resulting
amplification of the feedback amplifier, My, becomes independent of 4 and is
determined entirely by the feedback return, that is, by resistors R, and Ry.

EXAMPLE 32. The feedback amplifier of Figure 3.1 uses an operational
amplifier with an amplification 4 = 100,000. Resistor values are R, = 1000 Q
and Ry = 9000 Q. Thus, the feedback return is
R 1000 Q _
TR+ R, 1000Q+9000Q
The value of feedback factor AFy = (100,000)0.1) = 10,000 » 1. Hence, the
resulting amplification of the feedback amplifier is approximately
My ~ 1/Fy = 1/0.1 = 10. The exact value of My is

A 100000
T 1+ AFy 1+ 10,000

Fy 0.1.

My = 9.9990.

3.2 Inverting Feedback Amplifiers

An inverting amplifier with negative feedback is shown in Figure 3.2. Here, as in
the case of the noninverting amplifier, a fraction of the output voltage is
returned to the negative input terminal that has an input current of I = 0. Now,
however, input signal V,, is entered at the negative terminal via input resistor R;.
By use of Equation 2.1,

Vouw = — AV (39)

Also, by inspection of Figure 3.2,

[=—2_" (3.10)
and

_ = Yow (3.11)

Combining Equations 3.9, 3.10, and 3.11, the resulting amplification of the
inverting feedback amplifier, M;,* becomes (see Problem 3.6)
Vou . =4
Vio 1+(A+1F,’
*Other terms in use for M, are feedback amplification, closed-loop amplification, feedback gain, and
closed-loop gain.

M, = (3.12)
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where the feedback return of the inverting amplifier, F,, is defined as

F,=—. 3.13
=R, (3.13)
I
—
WV
Rp
I=0
——

FIGURE 3.2 An inverting amplifier with negative feedback.

EXAMPLE 33. The feedback amplifier of Figure 3.2 uses an operational
amplifier with an amplification 4 = 1000. Resistor values are R; = 1000 Q and
Ry = 10,000 Q. Thus, the feedback return is

_ R, 1000 _ 01
""Re 10000
and the resulting amplification of the feedback amplifier is
—A — 1000

M,

ST+ @+ DF, 141000+ 00 = 8

When amplification 4 is sufficiently large, so that the feedback factor of the
inverting amplifier, defined as AF,, is large, that is, when

AF;» 1+ F,, (3.19)
then Equation 3.12 can be simplified as
—A —A —A 1
= = R—= — —. (3.15)
1+(A+ )F, 1+F, +AF, AF, F,

Thus, as in the case of the noninverting amplifier with negative feedback, if
amplification 4 is sufficiently large, the resulting amplification is determined
entirely by the feedback return, that is, by resistors R, and R;.

1

3.3 DIFFERENTIAL FEEDBACK AMPLIFIERS 15

EXAMPLE 34. The feedback amug;liﬁer of Figure 3.2 uses an operational
amplifier with an amplification A = 100,000. Resistor values are R, = 1000 Q
and Ry = 10,000 Q. Thus, the feedback return is

The value of feedback factor AF, = (100,000)0.1) = 10000 » 1+ F! = 1.1
Therefore, the resulting amplification of the feedback amplnﬁer is approximately
M, ~ —1/F; = —1/0.1 = —10. The exact value of M, is

Mo -4 _ — 100,000 = —9.9989.
" 14+ DF, 1+ (100,000 + 1)X0.1)

3.3 Differential Feedback Amplifiers

A differential amplifier with negative feedback is shown in Figure 3.3. The
following equations can be written:

Vo = A(VP - V), (3.16)
=t tn (3.17)
and
I = Vm B Voul‘ (318)
m RF
1,
—
ANN—-
Ry
In
——
4Wv -

et

FIGURE 33 A differential amplifier with negative feedback.
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The combination of Equations 3.16, 3.17, and 3.18 results in (see Problem 3.9)
A A

= v, — v, .19
Vou L+ AFy * 1+(A+DF, " 319)
where feedback returns Fy and F; are defined as
R,
Fy= 3.20
"R +R; .20
and
R
F, ==L, 3.21
1=R, (3:21)

Equation 3.19 can also be written
Vouw = MyV, + M|V, (3.22)

where My and M, are defined as

A
= 2
My 1 + AFy 323
and
—A (3.29)

M =y G+ R,

with Fy and F; given by Equations 3.20 and 3.21, respectively.

It can be seen that, in general, the magnitudes of My and M, are not equal;
therefore, the two input signals ¥, and ¥, are amplified by different factors. In the
limiting case when feedback factors AFy > 1 and AF,; » 1 + F,* output
voltage V,,, can be approximated as

Viu XV, — — V¥, (3.25)

EXAMPLE 35. The circuit of Figure 3.3 uses an operational amplifier with an
amplification A = 100,000. Resistor values are R, = 1000Q and R = 9000 Q,
The value of feedback return Fy is
Fuz R, 1000 Q _1
TR, +Rr 1000Q+9000Q 10

and the value of feedback return F is

*It can be shown that these two conditions are equivalent (see Problem 3.21).

3.3 DIFFERENTIAL FEEDBACK AMPLIFIERS 17

The value of feedback factor AFy is

AFy = 10(1’800 = 10,000 » 1.

Thus, the use of Equation 3.25 is justified:

1 1
Voule_N VPAEV"=10V"_9V’"

The exact expression for V,,,, using Equation 3.19, is

A, 4
Vo =T AFy T+ (A+ DE, "
100,000 100,000

= 13100,000/10 » 1+ (100,000 + 1)/9 "
= 9.9990V), — 8.9991,.

The magnitudes of the amplifications of the two input sigr.lal.s V, and V,, in. the
differential feedback amplifier can be made equal by modifying the circuit of
Figure 3.3 as shown in Figure 3.4.

Rp

Vou\

=<
—
+
[
-1}-—0 —— l

FIGURE 34 A differential amplifier with negative feedback and equalized
amplifications.
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Using Equation 3.19, the output voltage ¥,,, can now be written

A R A
Vou = z V;' - V.
1+ AF, R, + R 1+(4+ )F,
- 4 v,
Rs R, ( Rs R\ °
t+=2+A45 1+ 2 )/(1+2
RTORNATRUT Rr)
- 4 V, 3.26)
& & (3.2
1+t +at
R: "R,
If
R, R
TR (327
Equation 3.26 becomes (see Problem 3.11)
Voo = A v, — V)
out 1+ (A + I)F’ P n)’ (328)

?hat is, the magnitudes of the amplifications of ¥, and ¥, are equal. Furthermore,
if feedback factors AFy » 1 and AF; » 1 + F,, V,,, can be approximated as

1
F,(V" - V) (3.29)

Vou =

I{?XAMPLE 3.6.' In the circuit of Figure 3.4, the amplification of the opera-
tional amplifier is A = 100,000. Resistor values are R, = 1000Q, R, = 90000,

R = 29000, and R, = 18,000Q. Hence, Rp/Rs = R;/R,, and the feedback
factor is

AF; = A— = 100,000 Q=ll,111>>l+F,=1+%§1.11.

F
Thus, Equation 3.29 is applicable; that is, the output voltage is approximately

1
Vow = = (Y, = Vi) = 9V, = V).
F,

The exact expression for V,,,, by use of Equation 3.28, is
Vo= ——
1+ (4 + 1)F,

B 100,000
1 + (100,000 + 1)/9

V=V

(V, — V,) = 89991(V, — V).

3.5 INSTRUMENTATION AMPLIFIERS 19

3.4 Voltage Followers

A special case of the noninverting feedback amplifier of Figure 3.1 occurs in the
limit when R; # 0 and R, = 0, or when R; = o0 and Rg # 0. This special case
is the voltage follower, the simplest form of which is shown in Figure 3.5. The
value of feedback return Fy = 1; thus, by use of Equation 34,

Vou _ 4 . (3.30)
Vo 144
In the limiting case when amplification A » 1, Equation 3.30 reduces to
Vou ~1, (3.3

in

hence the name voltage follower.

vl)ul

.

|p—o

)

FIGURE 35 A voltage follower.

EXAMPLE 3.7. The circuit of Figure 3.5 uses an operational amplifier with an
amplification A = 100,000. Therefore, by use of Equation 3.30,

V, 100,000

out

V.~ 1+ 100,000

m

= 0.999990.

3.5 Instrumentation Amplifiers

Consider the differential-in differential-out amplifier shown in Figure 3.6. In the
limit when the amplifications of the operational amplifiers can be approximated
as A; —» oo and A, — o, the voltage difference between the positive (+) and
negative (— ) input terminals of 4, is zero, and the voitage difference between the
positive (+) and negative (—) input terminals of 4, is also zero.
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As a result, the voltage across resistor R, equals V,,, and the output voltage
becomes (see Problem 3.19)

y R, + R, + R,
0\](= in—-RT.—,
3

where in practice R, and R, are chosen equal.

_ Thus, a differential-in differential-out amplifier has floating differential inputs
w1t.h high input impedances, and its amplification is determined mainly by
resistor values. This is in contrast to the operational amplifier of Figure 2.5,
which has floating differential inputs with high input impedances but its
arppliﬁcation is A; it is also in contrast to the differential feedback amplifier of
Figure 3.4, which has its amplification determined mainly by resistor values but
does not have high input impedances.

(3.32)

Vout

‘N'

Vin 1 C) Ry .

FIGURE 3.6 A differential-in differential-out amplifier.

) An instrumentation amplifier is shown in Figure 3.7. It consists of the
differential-in differential-out amplifier of Figure 3.6, followed by a differential
amplifier with negative feedback and equalized amplification (Figure 3.4). When
the amplifications of the operational amplifiers can be approximated as
A, ~ 0, A; - o, and 4; - ©, and when Rp/Rs = Rg/R,;, the overall amplifi-
cation of the circuit of Figure 3.7 can be written
YVou _ _Ri+Ri+ R Ry

Vin R, R,

(3.33)
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+
Ry
A
- R,
AWV .
R
R 1
Vln 1 C 3‘ RZ
AN Rs Vout
Rp
A2
+

FIGURE 3.7 An instrumentation amplifier.

Thus, as was the case for the differential-in differential-out amplifier, an
instrumentation amplifier also has floating differential inputs with high input
impedances, and its amplification is determined mainly by resistor values.
However, unlike a differential-in differential-out amplifier, an instrumentation
amplifier has only a single output. The principal advantages of an in-
strumentation amplifier over a differential-in differential-out amplifier are a
higher overall amplification and a lower common-mode amplification.

EXAMPLE 38. The instrumentation amplifier of Figure 3.7 uses operational
amplifiers with amplifications that can be approximated as A, = 00, A; — 00,
and A, —>co. Resistor values are R, =R,=20kQ R;= 404 Q,
Rp = Rp = 200kQ, and R, = Ry = 20kQ. Thus, the resulting overall amplifi-

cation is

Vi Ri+Ry+RyRe _ 20kQ+20kQ +404Q 200kQ
Va R, R, 404 Q 20kQ
= —1000.1.
PROBLEMS

3.1  Find the value of the resulting amplification of a noninverting feedback
amplifier, My, if the operational amplifier used has an amplification
A = 10,000; R; = 100 Qand Ry = 10,000 Q. What is the fractional change
of My, in percent, if A is changed to 11,000?
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34

35

36
37

38

310

i
312

313

3.14 Find the value of output voltage ¥, in the circuit of Figure 3.9, if

FEEDBACK

Derive ¥,,/V,, in Figure 3.1. What is V,,/V;, if feedback factor AF, > 1?
Derive Equation 3.4.

Find the value of the resulting amplification of an inverting feedback
amplifier, My, in the circuit of Figure 3.2, if the operational amplifier has
an amplification 4 = 10,000; R, = 100Q and R; = 10,000 Q.

Derive V,/V,, in Figure 3.2. What is V,/V, if feedback factor
AF;» 1+ Fp?

Derive Equation 3.12.

Derive V,,/I,, in Figure 32. What is ¥, /I, if feedback factor
AF;» 1+ Fp?

Find the values of the resulting amplifications M and M, of a differential
amplifier with feedback (Figure 3.3), if the operational amplifier used has
an amplification A = 10,000; R, = 100Q and R; = 10,000 Q.

Derive Equation 3.19.

In the circuit of Figure 3.4, the operational amplifier has an amplification
A = 10,000. Resistor values are R, = 100Q, Ry = 10,000Q, Rs = 1009,
and R, = 10,000 &; input voltages are ¥, = ¥, = 1 V. What is the value of
output voltage V,,? Repeat with Rp = 10,001 Q.

Derive Equation 3.28.

Find the value of ¥,,,/¥,, in the voltage follower of Figure 3.5 using an
operational amplifier with an amplification 4 = 1000.

Find V,,,/V,, in the circuit of Figure 3.8. Comment on the result.

.|}—o?l

FIGURE 338

¥, = 1 mV and amplification 4 = 1000.

FIGURE 39

3.15 Derive an exact expression for ¥, in the compound tren
Figure 3.10. Evaluate V,, for V,=10mV, V; =11mV, K,
A, = 11,000, A, = 10,000, R, = Rs=1009Q, Ry = Rp

A = 10,000.

Ry

A

|
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V

out

.“..-o

23

differential amplifier of

Rs.

|

Rp

f

o O

=0, Rz = 0,
= 100,000 Q, and
RF
g\/\/\v
A3 e ®}

FIGURE 3.10 A compound differential amplifier.

—

Vout

o
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3.16 Anamplifier with positive feedback is shown in Figure 3.11. Determine the
value of ¥,,,/V,,, if the amplification of the operational amplifier 4 = 100;
R; =100Q and R, = 10,000 Q. Comment on the result.

Rp
AA's

Vou(

-||-—o

FIGURE 3.11 Positive feedback.

3.17 When the approximate expression of My ~ 1/Fy is used in place of the

exact Equation 3.6, an error in My will result. The fractional error of M N
is defined as

AMy = MN»llwmx _ MN,exlcl

MN MN.encl ’

where My ... is My of Equation 3.6 and My approx = 1/Fy. Show that
the fractional error of M has a magnitude

AMy|l 1

My | AFy

3.18 When the approximate expression of M, ~ — 1/F, is used in place of the

exact Equation 3.12, an error in M, will result. The fractional error of M f
is defined as

AM! = Ml.uppmx - Ml.eucl
- 3
Ml Ml.encl

where M, ... is M, of Equation 3.12 and M Iapprox = — 1/F ;. Show that
the fractional error of M, has a magnitude

AM,
M,

_1+F,
"~ AF,

3.19 Derive Equation 3.32.
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320 Find V,,/Vi, in the potentiometric amplifier of Figure (3)6102.9Evaluatc
Vyu/Vin for A,=A2=1000andR,=R2=R3=R4=l .

VOU[

.|}-—o

R,

R3

Ry

FIGURE 3.12 A potentiometric amplifier.

321 Show that conditions AFy » 1 and AF,;» 1 + F, are equivalent, if Fy
and F, are given by Equations 3.20 and 3.21, respectively.



CHAPTER 4

Accuracy of the Amplification

Expressions for the resulting amplifications My and M, derived in Chapter 3
show that they are functions of amplification 4 of the operational amplifier
and of resistor values. It is frequently necessary to evaluate the effects on My and
M, of small changes in amplification A and in resistor values. Of course, this
could always be performed by evaluating My and M ; this process, however, can
become quite tedious, particularly for small changes.

EXAMPLE 4.1. A noninverting feedback amplifier with negative feedback
(Figure 3.1) uses an operational amplifier with an amplification
A = 10,000 + 1%, Resistor values are R; = 1000 Q and R, = 9000 Q. What is
the fractional change in the resulting amplification of the feedback amplifier, M ,
as a result of the 19 change in 4?

The value of feedback return Fy is

R, 1000Q

Fv=g%R& ~1w0a+00ma "
At the nominal value of 4 = 10,000, M becomes
A 10,000 10,000
M = = = 4 x Y99,
Moom =1+ AFy 1+ (10,000)0.1) 1001 999
At the minimum value of 4 = 9900, My is
A 9900 9900

MNmin= = el
min S AFy 1+ (9900)0.1) 991

At the maximum value of 4 = 10,100, M, becomes

A 10,100 10,100

MNmnx= = = qn11
= T g Fy T 1+ (10,1000.1) 1011

27
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The difference between the minimum and the nominal values of My, is

9900 10,000 100
M — = - = & (),
wamin = Mivnom = 550 = 001 991,991 ~ ~ 00001
and the fractional change in My as a result of this is
MN,min - MN.nom ~ —0.0001
My aom =999

~ —0.00001 = —0.001 %

The difference between the maximum and the nominal values of My, is

10,100 10,000 100

M - = - =
Nomax — My aom 1011 1001 1,012,011

and the fractional change in My, as a result of this is

MN.mn - MN.nom ~ 0.0001 o,
My~ ggg ~ 000001 = 0001%

Thus, the resulting amplification can be written

My ~9.99 + 0001%,

= 0.0001

4.1 Small Variations in Operational Amplifier Amplification

Example 4.1 illustrates how cumbersome the evaluation of the change in the
resulting amplification My can become if variations in amplification 4 of the
operational amplifier are small. It will be shown now that simple expressions can

be obtained for the fractional changes in M and M ; when |A4/A4] « 1.
Defining

A =A—A,, @1
and
AM=M-M,_,,, 4.2)
where
Myom =M, = Apom?® 4.3)
and assuming that A4/4 is small, that is,
A4 «< 1 44
i , 44

the resulting amplification M can be expanded in a Taylor series* as

oM 1 (M 2
M= Mnom*_(a),{:‘_(A - Anom)+2‘!(W)A=AM(A - Anom) + e

@4.5)

*The results in this chapter are derived using Taylor series expansions. It is also possible, however,
to arrive at these directly—see Problems 4.14 and 4.15.
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The combination of Equations 4.1, 4.2, 4.3, and 4.5 results in

oM 1 02_1". AA2 4 -, (4.6)
AM = (a)num M (Mz A=Ay
It can be shown that, as a result of Equation 4.4, Equation 4.6 can be
approximated as
oM 4.7)
25wy A4, (
AM N (6A>A :Anom

and thus the fractional change in the resulting amplification is approximately

AM  Awm (%) Al (4.8)

M - Mnom A A=A m Anom

In the case of a noninverting feedback amplifier, applying Equation 4.8 to
Equation 3.6 with M = My,
AMy _ 1 AA A (49)
MN,nam 1 + AnomFN Anom

nom

When feedback factor A,..Fy > 1, Equation 4.9 reduces to
AMy 1 AA

~

MN nom - Anom FN Anom ) (410)

EXAMPLE 4.2. The expression of Equalion 4.10 is applied to calculau? again
the fractional change of M, for the preceding example, that is, for
A=10000+1% and Fy=01 The value of . feedbac.k . fgctor
ApomF = (17)000)(0 1) = 1000 > 1; hence, the use of Equation 4.10 is justified:
nom® N — R .
AMy 1 A4 1
MN,nom - AnanN Anom 1000
The nominal value of the resulting amplification of the feedback amplifier is
Apom 10,000

Myoom =134 Fy 1+ 1000

1% = 0.001 %.

thus, My can be written
My ~9.99 + 0.001 9. -

In the case of an inverting feedback amplifier (Figure 3.2), by application of
Equation 4.8 to Equation 3.12 with M = M,,
AM, 1+ F, AA

__\+F, A @.11)
Ml‘nom 1+ (Anom + I)Fl Anom
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When feedback factor A,,,F; » 1 + F,, Equation 4.11 reduces to

AM, _1+F, A4
Ml.nom - AnomFI Anom. (412)

I‘?XAMPLE 43. Aninverting amplifier with negative feedback uses an opera-
tional amplifier with an amplification A = 10,000 + 1%, Resistor values are
R, = 1000Q and Rp = 10,000Q. What is the nominal value of M, and its
fractional change as a result of the 1% error in 4?

From Equation 3.13,

p_Ri_ 10000
'"R, 10000Q

Applying Equation 3.12, the nominal value of M, is

—A
Ml.nom . —
1+ (Agom + 1F,
—10,000

= T+10000 £ o =~ >

The value of feedback factor A,,,F, = (10,000X0.1) = 1000 » 1 + F, = 1.1;
hence, Equation 4.12 is applicable: ,

AM, 1+F A4 _1+01 R
Ml‘nom Ananl Anom_ |000 A—OOOIIA

Thus, M, = —9.99 + 0.0011 %.

4.2 Small Variations in the Feedback Resistor

Assume next that, in Figure 3.1 or 3.2, amplification 4 of the operational

amph:ﬁer and input resistor R, are constant and only feedback resistor R varies.
In this case,

M
M= MR5=RF.- + (W)R R (RF - RF,nom)
F/ Re=Kg nom
1 (0°M
+5i\ 357 (Rp = Rpond® + - 4.13)
21\ 0R} Ry=Ry .o 0o

4.2 VARIATIONS IN THE FEEDBACK RESISTOR 31

Defining
ARy = Re — R om (4.14)
and using the definition given by Equation 4.2 with
Mnom = MR,:R,.,,‘,mv (4 1 5)
Equation 4.13 becomes
oM
AM = AR
(0RF)R,=RF.M f
1 [(*°M
— AR 4+ - (4.16)
* 2! (6R; )RF:RI.nom f

It can be shown that for small fractional variations in feedback resistor Ry,
that is, for

ARy

RF,ncm

« 1, 4.17)

Equation 4.16 can be approximated as

oM
M= — AR, (4.18)
A (aRF)RF=RF.nom f

and thus the fractional change in the resulting amplification is approximately

AM  Riaom (6M) AR;

— . (4.19)
Mnum Mnom aRF R =Rg nom RF,nom

In the case of a noninverting feedback amplifier, applying Equations 3.2 and
3.6 to Equation 4.19 with M = M,

AR
AMN = MN,nomFN.nnm(l - FNJ\Om) erv (420)

F,nom

N.,nom

where feedback return Fy ..., is defined as

R
Fynom = (FRR =Ry pou = m— 4.21)

In the limiting case when feedback factor AFy jom > 1, My om = 1/Fy nom (sc€
Equation 3.8); hence, the fractional change in the resulting amplification
becomes
AM AR
—R = (1 - FN‘m)m)——F

N.nom RF.nom

(4.22)
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EXAMPLE 44 A non.inverting feedback amplifier with negative feedback
uses I;m operational amplifier with an amplification 4 = 10,000. Resistor values
are l 1= 1000'9 an_d Rp =9000Q + 19;. What is the fractional change in the
resulting am.phﬁcatmn M as a result of the 1 9 change in feedback resistor R,?

The nominal value of feedback return Fy is a

R, _ 1000 Q _
Rl + RF,noln 1000 Q + 9000 Q -

The value of feedback factor AF = (10,000)0.1
_ som = (10 1) = 1000 > 1; -
tion 4.22 is applicable: s ( xen > 1 henee, Bqus

AMy AR
M = (l - FN.nom) F

N,nom R F.nom

0.1.

FN.nom =

=(1-01X1%)=09%.

In the case of an inverting amplifier wi i
: plifier with 4 » 1, it can be shown, by use of
Equations 3.12 and 3.13, that with M = M ; Equation 4.19 becomes g

AM, AR,
M',nom = —Ml,nomFl.nom RF,nom H (423)
where feedback return F ,,, is defined as
R
Fl.nom = (Fl)Rp-R; = ! .
- RF‘nom (424)

In the limiting case when feedback factor AF + ion 4
nom 1
. o Inom > F{ om> Equation 4.23

AM; _ AR,
Ml.nom RF.nom ’

(4.25)

E)(AMPle 45. An inverting feedback amplifier with negative feedback uses
amoperational amplifier with an amplification 4 = 10,000. Resistor values are
R;= .10009 gnd I?, = 10,0009 + 19 What is the fractional change in the
resulting amplification M, as a result of the 1 % change in feedback resistor R,?

The nominal value of feedback return F, is "~

F = R, =M_01
I,nom RF,nom 10’0000 =u.l

The value of feedback factor AF; .., = (10,00000.1) = 1000 » 1 + F, = 1.1;
hexce, Equation 4.25 is applicable: T
AM, AR;

~

M {,nom RF,nom

=1%.
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Since
—A —10,000

= ~ —9.99,
1+ (A + DFyom 1 + (10,000 + 1X0.1)

Ml.nom =

the resulting amplification of the feedback amplifier can be written
M~ —999 +1%.

43 Small Variations in the Input Resistor

In the case when amplification A of the operational amplifier and feedback
resistor Ry are constant and only input resistor R, varies, it can be shown that
for a noninverting amplifier

AM AR
_Al—lv,n:_m = _A'lN,nomFN.num(l - FN,nom)R_L;:—m > (426)
where feedback return Fy .on is defined by Equation 4.21, and AR, is defined as
AR, = R; = Ry pom: (@27
In the limit when feedback factor AFy om > 1, Equation 4.26 reduces to
AMy AR,
~ —(1-F . 4.28
MN.nom ( N‘no‘“) Rl,nom ( )
For an inverting amplifier with 4 > 1, it can be shown that
AM, AR,
=M F —_—. 4.29
Ml.nom frnom ™ fimom Rl.nom ( )

In the limiting case when feedback factor AF pom » 1 + F} nom» Equation 4.29
reduces to
AM, AR,
Ml.nam ~ Rl.num '

(4.30)

4.4 Several Sources of Variations

The preceding sections of this chapter computed the errors in the resulting
amplification that originate from variations in operational amplifier amplifica-
tion 4 and from variations in resistor values. It was found that the fractional
error originating from variations in 4 may be reduced by increasing the value of
A; however, errors originating from resistor variations may be reduced only by
improving the accuracy of the resistors. In this section, multivariable Taylor
series expansion is applied to find the error originating from simultaneous
variations in operational amplifier amplification and in resistor values.
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. If amPliﬁcation A of the operational amplifier, feedback resistor R;, and
input resistor R, vary, the resulting amplification M of the feedback amplifier
can be expressed in a multivariable Taylor series as

oM oM
M=M -— — =
nom + (E)A)(A Anom) + (6RF) (RF - RF.nom)
+ oM
3R, (Ry = Rypom) + -7, 431

:hereRall partial derivatives have to be evaluated at 4 = A
1= 8y nom-
If fractional changes in 4, R,, and R ; are small, then from Equation 4.31 and

with the definitions of Equations 4.1, 4.2, 4.14, and 4.27 i
aopro o . y .27, the change in M can be

nom>» RF = RF.nomy

oM oM oM
AM ~ | — —
(aA) AA + (ER,) ARp + (m> ARy, (4.32)
where the partial derivatives again have to be evaluated at A=A
RF = RF.nom) Rl = Rl.nom' -

In thg case of a noninverting amplifier with a feedback factor Ao Fy nom > 1
the app}xcatlon of Equations 4.10, 4.22, and 4.28 to Equation 4.32 with 1\;01 M .
results in a fractional change '

AMy 1 A4

IMN ~ AnomFN.nom Anom
AR AR
+(1 - -
( FN'nom) Rr,,.om (1 FN.an) R]_m,’m (433)

In many cases it is important to find th
‘ : e worst-case AMy/M,, which i
maximum of its absolute value: /M ioh is the

AM,
My

1 AA
-— + (1 - FN.nom)

Anom FN,nom Anom

AR

RF.nnm

~

max

AR,

Rl »nom '

+ ‘(l — Fynom) 4.34)
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EXAMPLE 4.6. A noninverting amplifier with negative feedback uses an
operational amplifier with an amplification 4 = 100,000 + 109%. Resistor
values are R, = 100Q + 0.1 % and R, = 100,000Q + 0.1%, Hence,
F _ Rl‘nom _ 100Q

Nomom = R ymom + Rnom  100Q +100,000Q
and feedback factor A qmFy nom = (100,000)0.001) = 100 > 1; thus, Equation
4.34 is applicable. The worst-case fractional error in My is therefore
AMy
My

~ 0.001,

max + (1 = 0.001X0.1 %)| + (1 — 0.001X0.1 %)

1 [+]
N .m“" %)

~ 037,

Similarly, in the case of an inverting amplifier with a feedback factor
AvpomF1nom ® 1 + Finom, the application of Equations 4.12, 4.25, and 4.30 to
Equation 4.32 with M = M, results in

AM; 1+ Fram AA

+ ARy AR,
Ml AnomFl.nom Anom

RF nom Rl »nom

(4.35)

Again, it is of importance to find the worst-case AM,/M,, which is the
maximum of its absolute value:

AM,

1

1+ Froom A4
AnomFl.nom Anom

ARy

RF.nom

=~

(4.36)

AR
+}——'-

Rl,nom

max }

PROBLEMS

4.1  The Type 725C operational amplifier has its amplification A specified as
follows: The minimum value of 4 is 250,000, the typical value of 4 is
3,000,000, and no maximum value of 4 is specified.

The operational amplifier is used in a noninverting feedback amplifier
with R; =10Q and R =100kQ. Find the range of the resulting
amplification My, if the errors of resistors R, and R are negligibly small.
[Hint: Proceed similarly to Example 4.1; do not use the results of Section
4.1, because they are valid only for |A4/A4] « 1.]

42  Retain the second-order term in the expansion of Equation 4.6 and show
that the magnitude of the fractional error of Equation 4.9 is less than
[AA/Aporl-
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A noninverting amplifier with negative feedback uses an operational
amplifier with an amplification 4 = 20,000 + 10%. Resistor values are
R;=200Q and R; = 1800Q. Find the nominal value of the resulting
amplification M and its error resulting from the 109, change in A.

Apply Equation 4.10 to the case of the voltage follower. What is the
fractional error in the resulting amplification My, if the operational
amplifier used has an amplification 4 = 10,000 + 10%?

In the noninverting amplifier of Figure 3.1, A4 = 20,000 + 20 Y%s
R, =100Q £ 1%, and R; = 10,000Q + 1%, Find the nominal value of
the resulting amplification My and its worst-case fractional error in
percent.

In the noninverting amplifier of Figure 3.1, A = 20,000 + 20%,
R;=100Q + 0.1 %, and Ry = 10,0009 + 0.1 %, Find the nominal value
of the resulting amplification My, and its worst-case fractional error in
percent. Compare the result to that of Problem 4.5.

In the noninverting amplifier of Figure 3.1, 4 = 10,000 + 20%,
Rg =10,000Q + 1%, and input resistor R, is adjustable between its
minimum of R, ,,;, and its maximum of R} ax- Find the maximum value
of R; i, and the minimum value of R, ,, such that M can always be
adjusted to equal 100.

In the inverting amplifier of Figure 32, 4 =100+ 10%,
R;=100Q + 1%, and Ry = 10,000Q + 1 %. Find the nominal value of
the resulting amplification M, and its worst-case fractional error in
percent.

In the inverting amplifier of Figure 3.2, 4 = 10,000 and R, = 101 Q. Find
the value of feedback resistor Ry such that the resulting amplification
M, = 100.

In the noninverting amplifier of Figure 3.1, A = 10,000, R, =100Q, and
Rp = 10,000 Q. Find the value of AM /M, if the values of both R, and R;
increase by 10,

Consider the compound differential amplifier of Figure 3.10 with compo-
nents and input voltages as given in Problem 3.15 of Chapter 3. Find the
worst-case fractional change in the output voltage V,,,, if each resistor can
vary by as much as +19%,.

In the amplifier with positive feedback shown in Figure 3.11,
A =100 +0.1%, R, =1009Q, and R; = 10,000 Q. Estimate the value of
|AM/M] resulting from the 0.1 % change in A.

Find the worst-case error resulting from variations in R, R, R;, Ry, and
R, in the instrumentation amplifier of Example 3.8. Assume that the

4.14

4.15
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amplifiers can be approximated as

i ions of the operational !
ampueatle o d that each resistor has a tolerance of

A, - o0, Ay = 0, and 43 — 0, an
+0.1%. -
Use Equations 3.6, 4.1, 4.2, 4.3, andA 4.4, with' M = My, and derive
Equation 4.9 without using Taylor series expansion.

Use Equations 3.2, 3.6, 4.2, 4.14, 4.15,and 4.17, with M = My, and derive
Equation 4.20 without using Taylor series expansion.

4.16 Derive Equations 4.9, 4.11, 4.20, 4.23, 4.26, and 4.29.



CHAPTER §

Frequency Response and
Transient Response of
Operational Amplifiers,
Part 1

Thus far it has been assumed that amplification A of the operational amplifier is
a positive real number. This assumption becomes untenable when frequency
response and transient response have to be determined, because a real
amplification 4 would entail infinite bandwidths, zero rise times, and zero delay
times—all physically impossible. This chapter and Chapter 6 describe represen-
tations of amplification A4, as well as of feedback return F that are suitable for
frequency responses and transient responses.

5.1 Lag Networks

The lag network of Figure 5.1 often provides a reasonable approximation of an
amplifier stage in an operational amplifier.* Variables I, and V,,, are, re-
spectively, a current signal such as the collector current output of a transistor
stage and a voltage signal such as the voltage input to the next stage.

O

>
STONNE S

FIGURE 5.1 A lag network.

*An alternative configuration of the lag network is given in Figure 5.8, page 56.
39



L] RESPONSE OF OPERATIONAL AM. #IERS, PART I

5.1.1 Frequency Response of Lag Networks
When I, and V,,, are decomposed into sinusoidal (sine and cosine) waveforms in

the frequency domain, then for each component at angular frequency w the
transfer function can be written

V@) R
Ii(@) 1+ joRC’
where angular frequency o is related to cyclic frequency f:
w =2nf. (5.2)
By defining a corner frequency (or pole frequency) f, as
1

(.1

fo=57c (53)
the transfer function of Equation 5.1 can be written
Vulf) R

1.0 T+ il G4

EXAMPLE 5.1.  In the circuit of Figure 5.1, I, is a sinusoidal waveform with a
frequency f = 10 MHz; R = 10,000 Q and C = 10 pF. Thus, from Equation 5.3,

1 1
" 27RC ~ 2m(10,000(10 1Y)

fo = 1.59 MHz,

and the transfer function of Equation 5.4 becomes

Voul) _ 10,000Q ~10,000Q
I(f) 1+ i(I0MHz/159MHz) 1 +j628°

It .is of interest to determine the magnitude and the phase of the transfer
function. From Equation 5.4, the magnitude is

Voui ) =. R_|_ R
LN [1+iflll 1+ (/) 69

and the phase ¢ is

[

Voulf) _ | R
[ 1D ~ [ T+i77

= —arctan (},L) = — g + arctan (?) (5.6)

0
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EXAMPLE 5.2. In the circuit of Figure 5.1, R =10,000Q, f =10 MHZ., anq
fo = 1.59 MHz. By use of Equation 5.5, the magnitude of the transfer function is

V| _ R
L) V1 + U fo)

_ 10,000Q —1572Q

1+ (10 MHz/1.59 MHz)*

Thus, if I,,(f) has a magnitude of 1mA, the magnitude of V,(f) is
(1 mAX1572Q) = 1.57V. The phase ¢, from Equation 5.6, is

f (1O MHz
= — AN N n|————0
¢ = —arctan{ % Aretat\ 159 MHz

[

= —81°.

For certain ranges of f/f,, Equations 5.5 and 5.6 can be approximated by
simpler expressions. For small values of f/f,, several approximations of the
magnitude given by Equation 5.5 are possible. One of these is a binomial

expansion:
Voul | _ YEAY fy
IR [1 '5<To) ] (ﬁ) «b D

Another approximation of Equation 5.5 for small values of f/f, resulis from a
logarithmic expansion:

VoulS) - 2 (f )"
I~ Re /S0 s 2} « 1. (5.8)
L(f) Jo
For large values of f/f,, Equation 5.5 can be approximated as
VoulS) Jo (f )2
~ R=—, ] » L (5.9)
Iin(f) f fO
The phase ¢ of Equation 5.6 can be approximated for small values of f/f, as
/ J
x-S, —« 1, (5.10)
fO f[)
and for large values of f/f, as
T Jo S
- = 4, —» 1. (5.11)
ETRY R




42 RESPONSE OF OPERATIONAL AM. “IERS, PART I

EXAMPLE 53. In the circuit of Figure 5.1, Jo=1/2aRC = 1 MHz. At a
frequency f = 0.1 MHz, f/f, = 0.1. A first approximation of the magnitude of

the transfer function, from Equation 5.7, is

VoulS)
La(f)

A better approximation, from Equation 5.7, is

l/oul(f) ~ _1 L 2 _ N B
Lo~k [1 2(/0) ] = R[1 ~ 40.1)’] = 0.995R,

or, from Equation 5.8,

~ R.

Voul(f) ~ R E—*(‘NIO)I

La(f)

= Re 101" = 0 99501R.
The exact magnitude is given by Equation 5.5 as

VwlD|___ R R
LD ST+ (/fR /1t 01

The value of phése ¢ can be approximated from Equation 5.10 as

= 0.995037R.

o~ — L = —0.1 radians = —5.73°.
o

The exact value of phase ¢, from Equation 5.6, is

¢ = —arctan (}L) = —arctan(0.1) = —5.71°.
o

5.1.2 Transient Response of Lag Networks

When V,,, and I;, are represented in the time domain, that is, ¥, = V,,(t) and
I, = I;(t), it can be shown that the ratio of their Laplace transforms can be

written

LV} R
L{I(} 1+RCs’

where s is the Laplace transform variable in the transform domain.
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EXAMPLE 54 In the circuit of Figure 5.1, R = 1000Q and current li,f isa
function of time, I,(t) = (1 mA)u(2); that is, it is a step function with a magnitude
of 1 mA. The Laplace transform of I;,(t) is

1 mA

{10} = L{(1 mA(0)} = (1 mA)Z{u(t)} = :

N

Thus, the Laplace transform of voltage V,,(t) is given by

2y,

R
mu(‘)} - 1+ RCs

‘(t){lin(')} =

1000Q 1mA 1V
1+RCs s sl +RCs)

The inverse Laplace transform of this is (see Problem 5.12)

Voult) = f"’{

1V
s(I + RCs)

}:(IV)(I — e VRO t>0;

Vul) =0,  1<0.

Figure 5.2 shows input current I;, and output voltage V;,, as functions of

t/RC.
Ilﬂ
A
1 mA
1 i | | ot
0 1 2 3 4 RC
Vout
1v
, 1 n 1 L, b
0] 1 2 3 4 RC

FIGURE 5.2 Input current I;, and output voltage V,,, as functions of

t/RC in the lag network of Example 54.
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$.2 Bode Plots

It is customary to plot the gain G of the lag network, which can be defined as

G =20dB log,, \_;,
where G is in decibel i g
i ibels (dB) as shown in the upper part of Figure 5.3.
epreseptatlon, known as the Bode plot of the gain, shows that
J/fo =1 the gain G is down by 3 dB from its value at f = 0. ;\lso, for f j) fit

the gain drops at a rat -
~6dB/octave. ¢ of —20dB/decade of frequency, or approximately

In many cases, the gain can be approximated by two straight lines: G = G =0

for f « =

Hnesfmti;;;?gt(:h fG,=0 —20dB log,o(f/f,) for f > f,. These two straight

piscewise e requency S = fo; hence the name corner frequency. This

Peenis near approximation of the gain is shown in Figure 5.3 by broken lines.
ode plot of phase ¢ as a function of frequency is also given in the ﬁgure.

G
0d8
-20 dB

-40 dB

-60 dB

~80 dB
0.1 . f
! 10 100 1000 10,000 fo
’ 0.1
. 1
oh__ A | 10 100 1000 10,000

FIGURE 53 Bode plots G =
f =20dB -
1+ if/f)~ of a lag network. logiolt + (f//)Y)72 and ¢ =
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53 Cascaded Lag Networks

The lag network of Figure 5.1 provides a simple approximation of a stage in an
operational amplifier. However, usually more than one stage has to be
represented. Fortunately, these can often be separated, and the resuiting transfer
function can be written as a product of lag-network responses.

53.1 Frequency Response of Cascaded Lag Networks
In the frequency domain, the transfer function of a two-stage amplifier can be
written in the form

1 1
(constant) ( TSI ><m>

In Figure 5.1, a current input and a voltage output were assumed. In the case
when an entire operational amplifier is to be represented, both the input and the
output signals are voltages. Hence, amplification A of an operational amplifier
consisting of two stages can be written

Az Age
TSR

where A4 = Ag-o is the amplification of the operational amplifier at zero
frequency: a positive real dimensionless number.

(5.13)

EXAMPLE 55. A two-stage operational amplifier has an amplification at
zero frequency Ay, = 1000 and it can be represented by two separated lag
networks. One of these consists of a 100,000-Q resistance and a S-pF
capacitance, the other one of a 1000-£2 resistance and a 5-pF capacitance. Since
the designations of f; and f, are interchangeable, they can be written

1

J1 = 100,005 x 1013 318 kHz

and

1

- _318MHz
J2= 5000005 < 10 ) 31.8 MHz

Thus, amplification A becomes
e 1000
(U +,f/318kHzY1 + jf/31.8 MHz)’
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In general, the gain is defined as G = 20dB log,olAl, and the phase as
p= M The gain and the phase plots of a two-stage amplifier described by
Equation 5.13 with f,/f, = 100 and A4,, = 1000 are shown in Figure 5.4. Since
the logarithm of a product is the sum of the logarithms, the gain is obtained as
the sum of the individual gains of the two stages. The individual phases of the
two stages are added linearly to obtain the resulting phase. It can be seen that
for f » f, > f, the gain falls off at a rate of —40 dB/decade of frequency.

60 d8

40 dB
~ 20 dB/decade slope

2048 |-
0dB |- ~40 dB/decade slope
-20d8 t ] ] 1 Lo f
0.1 1 10 100 1000\ 10,000 fi
[ /
0.1 1 10 100 1000 10,000 /
o 1 { 1 1 | 1l o1
~h
-a5° |-
-90° -
-135° |
~180° }—

FIGURE 54 Bode plots G = 204dB log;o|4| and ¢ = [A for the two-stage
operational amplifier of Equation 5.13 with Ay, = 1000 and f; = 100f;.
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Figure 5.5 shows the special case of two equal corner frequencies f, = fas
that is, the case of

Adc

o Ae (5.14)
SRTESTIING

80 dB

— 40 dB/decade slope
60 dB

40 dB I~

1 i j oL
2048 0.1 1 10 100\ 1000 10,000 fi

e 0.1 1 10 100 1000 10,000
0° £

—45°
-90°
-135°

—180°r—

FIGURE 55 Bode plots G = 20 dB log;o|4] and ¢ = /4 for an operational
amplifier with Ag. = 100,000 and with two equal corner frequencies.

For a three-stage amplifier, Equation 5.13 can be extended to
A Adc
T SAXE AU+ S

and to similar expressions for larger numbers of stages.

(5.15)
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EXAMPLE 56. In Equation 515, fi=1MHz, f, =4MHz, f, = 40 MHz,
and A, = 10,000. What is magnitude |4| and phase /4 at a frequency
f =01MHZ?

The magnitude of A is

lA‘ = lAdcl
W +fIAI 43S/ LI + 5176

By use of Equations 5.5 and 5.7,

RN VA A 2 _
Nk 2<f1) 1 =401y = 0.9,

LENEUPRES ¥ A S V(N AC
X577k 2(fz) : 2(4)‘0‘999”

and

1 1 f)z l(().l)2
1L +jf/fs 2(f3 2\40

thus, |4]| ~ ( 10,0000.995X0.9997)0.999997) = 9947.
The phase of 4, /A, can be obtained by adding the individual phases:

1 1 / 1
[A=[As+ {__1+j(/5 +{ L+if/f; + L+ifify’

By applying Equation 5.6, this can be written

- EA EAN A
/A a‘lrctan ( fl) arctan < A ) arctan < fa)’

which by use of the approximation of Equation 5.10 becomes

= —0.1275 radians = —7.3°.
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i Networks A

Transient Response of Cascaded Lag _ N |

fN.sk.)in inrpul voltage V;, and output voltage V,, in a two-stage operationa
amplifier are represented in the time domain,

L{Voul)} _ Age ) (5.16a)
LV} (L4 st +572)
where
_ 1 (5.16b)
o 2nfy
e i (5.16¢)
tz 2nf,’
with f, and f, those of Equation 5.13. _ . '
Wh:an inpuzt voltage ¥, is a step function with magnitude Vo,
7
L)} == .17
and
1 Ay Ve
LV} = de 0 (5.18)

s+ st +572)°

The inverse Laplace transform of Equation 5.18 can be written for times t > 0
as

eﬂ/u e*l/n

T (5.19a)

T2
Voul®) = Ag Vo | 1 —

provided that

o % (5.19b)

ional amplifier of Example 5.5,
EXAMPLE 5.7. In the two-stage operational amp
A, = 1000. Also, f; = 0.318 MHz and f, = 31.8 MHz. Thus, by use of Equat-
dc — . 1)
ion 5.16b,

:_____,l.___ _—_045;13 = 500 ns.
27(0.318 MHz)

Ty

1
w27‘/1
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Also, by use of Equation 5.16c,

! 1

2T 2f, T mG18MEZ) 0"

Equation 5.19 can be applied, resulting in

e —1/500ns e —t/5ns

5 "~ 500
Voult) = 10007, 1—__1“5__lﬂ . 1>
S—IEQSOOns

which can also be written

—1/500ns __ 0 —t/5ns
Vaul) = 100014,(1 -< Ole ) >0

0.99
Thus, as a result of having 7, = 500ns » 7, = Sns, in this example time
constant 7, = 500 ns dominates the transient response. Therefore, for times

¢t » 5 ns, output voltage ¥,,, can be approximated as

Vou(t) & 1000¥,(1 — ¢=#300us)

In the special case of a two-stage operational amplifier with two equal corner
frequencies, shown in Equation 5.14 and Figure 5.5,

LV} Ay

= s .20:
20} (T +sf (202
where
- 5.20b
= 2, (5.20b)
with f, that of Equation 5.14.
When input voltage ¥, is a step function with magnitude V,,
|Z
LVl =2 (5.21)
and
1 Ay V,
L{Voult)} = - =220 (5.22)

s (1 +s1,)*"
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The inverse Laplace transform of Equation 5.22 can be written for times ¢ > 0
as

Vo) = AaVe [1 - (1 + Ii)e/] (5.23)

1

Figure 5.6 shows V,,, as a function of ¢/7;.

Vout

AdcVo

1 Lot
0 { ; 3 4 Y
FIGURE 56 Output voltage V,, as a function of t/7; for a two-stage
operational amplifier with two equal corner frequencies.

When input voltage V;, and output voltage V,, of a three-stage operational
amplifier are represented in the time domain,

L{Voul)} _ Age , (5.24a)
LV} (1 + st )1+ st + 513)

where
7, = Flfl , (5.24b)
T, = 2—7:E (5.24¢)
and
Ty = 2—;}; s (5.24d)

with f;, f;, and f; those of Equation 5.15. . '
When input voltage ¥, is a step function with magnitude V5,

LV} =22 (5.25)

and

1 Ay Vo (5.26)
LWoult)} = s (14 st Ml + sToXt + sty)
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The inverse Laplace transform of Equation 5.26 can be written for times ¢ > 0

as
1 1 1 1 1 1
T3 T2 ~1/ty + T T3 . + T, Ty .
T3t 7,7 T,T
Voult) = AV | 1 3t2 173 20
oult) = Ay Vo T yT Tyl 1 , (5.27)
Ty T \t2 t3f\13 1,
provided that
T # Ty (5.27b)
Ty #* T3 (5270)
and
Ty # Ty (5.27d)

EXAMPLE 58. In the three-stage operational amplifier of Example 5.6,

Aqyc = 10,000. Also, f; = 1 MHz, f, = 4MHz, and f; = 40 MHz. Thus, by use
of Equations 5.24b, 5.24c, and 5.24d,

1 1
T g = 2ai MHg) 1607
1 1

2= 2afy ~ 2n@ Miz) © 40

and
1 1

BT 2f, T 2n@0 MHZ)
Equation 5.27a can be applied, resulting in

~ 4ns.

e—tllGOn! e—-l/40n|
Voudlt) = 10,000¥, | 1 — 1 <t 1 ]
1—-)1-2 —Yr1-=
(-00-a) «(-0-9)

e—r/4ns

— I I s t>0.
I——)1-—
wo(t -5}~ )
For times ¢ » 4 ns, output voltage V,,, can be approximated as

Voult) = 10,000V0<1 — geﬂ/leons + %e‘l/'ﬂ)ns).
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In the special case of a three-stage operational amplifier with two equal
corner frequencies,

L{Voult)} _ Age . (5.28a)
LVa0) (1 + st + 515)
where
1
= (5.28b)
T,
and
1 1
- - (5.28¢)
T 0nf, T 2y
with f,, f5, and f5 those of Equation 5.15.
When input voltage V,, is a step function with magnitude V;,
Vo
LWV} = (529
and
1 IR Z
L{Voult)} = de_0 (5.30)

s (14 st ] + 517

The inverse Laplace transform of Equation 5.30 can be written for times t > 0
as

‘/mn(t) = AsVo 1 -

provided that
t # T (531b)

7, #0, (5.31¢)
and

 #0. (531d)
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5)(;]\;11:[5 5.9. In a three-stage operational amplifier, one corner frequency is
a i = Hz and th(? two other corner frequencies coincide at f, = 10 MHz
hus, by use of Equations 5.28b and 5.28c, : '

1
I M)

T, = =

1
Zlf_l 160 ns
and

1 1
‘[2 = ——
2nf;  2n(10 MHz)
Equation 5.31a can be applied, resulting in

Vilt) = Ad,Vo(l _eTUeOm _g1(19 4 0,9[/16ns)e—l/16ns> .
, >0

~ 16 ns.

0.81

I spccial asc a lh = i i
.
n thc a C of ree. stagc Opﬁlatlonal ampllﬁer with thlee equal

Lo} A,

2V} "+ sip (322
where
=t o L _ 1
‘T f,  2nf, 2afy (5.320)
with f;, f;, and f; those of Equation 5.15.
When input voltage ¥, is a step function with magnitude V,,
7
LV (1)) =2
{Via®)} P (533)
and
1 Ay ¥,
@z Vou D)) = 470
{Voult)} STrsp (5.34)

The inverse Laplace transform of Equation 5.34 can be written for times ¢ > 0

as
Vou(l)=AgV{l—[l+L LYEAY gy
‘ a0 P e B L (5.35)

maOkutgaut volt‘age Vou of Equation 5.35 is shown in Figure 5.7 by the graph
operraczio r(l;)l Flgulr‘fei 5.7Valso shows the transient response of a single-stage
amplifier, ¥,,, = A4, V5(1 ~ e™"), by graph
) R : X ph (a), as well as the
‘t_rranSlem. response ofa two-s.tage operational amplifier with two identical corner
equencies, given by Equation 5.23, by graph (b). Note that the time scale of
Figure 5.7 is different from preceding figures.

5.1

5.2

53

54

55
5.6

5.7

58

PROBLEMS 55

| I ot

0 1 2 3 4 5 6 7 8 1

FIGURE 57 Output voltage Foy as a function of t[t; for operational
amplifiers with identical corner frequencies: (a) Single-stage amplifier, (b) two-
stage amplifier, and () three-stage amplifier.

PROBLEMS

For the circuit of Figure 5.1, sketch output voltage V,,, as a function of
time, if input current I, is a delta function (impulse function)
1,.(8) = (10~ *° coulomb)d(r); R = 1000Q, and C = 10 pF.

Derive Equations 5.1 and 5.4.

Evaluate Equations 5.5 and 5.6 if, in the circuit of Figure 5.1, R =2000Q,
C = 20 pF, and current [;, is a sinewave with a frequency of 20 MHz.

Show that the phase plot of Figure 5.3 is antisymmetric (invariant under
180° rotation) around the f/f, = 1, ¢ = —45° point.

Derive Equations 5.5 and 5.6.

Show that an approximation of phase ¢ of Equation 5.6 for small values
of f/fe, which is more accurate than that of Equation 5.10, is given by

Y AN
¢ fo+3(fo)'

Show that an approximation of phase ¢ of Equation 5.6 for large values
of f/f,, which is more accurate than that of Equation 5.11, is given by

~ Fo Lo M)
$r3ry 3(f)'

Evaluate this expression, Equation 5.11, and Equation 5.6 for f/f, = 10.
Present the results in degrees.

Show that the tangent drawn to the phase plot ¢ of Figure 5.3 at
flfo=1, @ = —45 reaches f/fo=10at a phase of
0°1In 10
o a5 8O0 e e = —111e.
2n
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5.9

5.10

51

512

5.13

5.14 A two-stage operational am
of Ay, = 10,000. It consists of two iden
represented by a lag network with R =
Bode plots, using piecewise linear app

5.15 Find the output volta,
Problem 5.14 if the i

5.16 Use Equation 5.8 and show that for f/ fi
of Equation 5.13 can be approximated as

5.17 A three-stage operational am
Equation 5.15 with Aye = 1000. The three sta
Ji=1MHz, f, = 10MHz, and fi
amplification A4, using piecewise line

RESPONSE OF OPERATIONAL PLIFIERS, PART I

Derive Equation 5.8 by expanding In[1/,/1 + (f/f6)*] into a Taylor
series.

Show that the a
would result in a
value at f =0,

pproximation of Equation 5.8 evaluated at flfo=1
gain that is down by 10dB log,,e ~ 4.3dB from its

A stage of an operational amplifier can be represented by the circuit of
Figure 5.1 with R = 10,000Q and C

= 5pF. At what frequency is the
gain down by 3 dB from its value at zero frequency?

Derive Equation 5.12, an

d verify the results of Example 5.4. [Hint: Use
Appendix A.]

An alternative configuration of the lag network is shown in F igure 5.8.
Derive the expressions #{V,,(0)/ 2{V,,(0} and Vyu(fy¥.( 1)

40 Lo

FIGURE 538

plifier has an amplification at zero frequency
tical stages, each of which can be
10,000QandC = 5 pF. Sketch the

roximation for the gain,

ge as a function of time for the amplifier described in
nput voltage is a step function Vial®) = (1 mV)u(r).

«land f/f;, « 1 the magnitude
IAI ~ Adc e“il(f/fl)’ﬂl/fz)’]_

plifier has an amplification in the form of
ges are characterized by
= 50 MHz. Plot the Bode plots of
ar approximation for the gain,

5.18 Derive Equation 5.19 using Appendix A.

519

520

5.21
5.22

5.23
5.24

5.25

5.26

5.27
5.28

5.29
5.30

PROBLEMS 57

Show that for the exact V,,, of Example 5.7
@ V=0 att=0;

(b) dV,/dt=0 att=0;

(©)  Vou = 1000V, ‘ -
Plot for 0 < t < 50 ns the exact and the approximate expressions g

for V,,, in Example 5.7.

when t — co.

Derive Equation 5.23 using Appendix A.

Show that for Equation 5.23

@ Vu=0 atr=0;

(b) dV,,/dt=0 atr=0

(€ Vo= AgVo whent— co.

Derive Equation 5.27 using Appendix A.

Show that for the exact V,,, of Example 5.8

(a) V,,, =0 att=0;

(b) dV,,/dt=0 att=0;

(c) V,.= 10,000V, whent— co.

Show that for the approximate V,,, of Example 5.8
@ V=0 att=0

(b) Vou = 10,000V, . |
Plot for 0 < t < 50 ns the exact and approximate expressions given for
V. in Example 5.8.

when ¢ — o0.

Derive Equation 5.31 using Appendix A.

Show that for ¥, of Example 5.9

@ V=0 att=0

(b) dV,,/dt=0 att=0;

(©) Vouw = AgVo whent— oo.

Derive Equation 5.35 using Appendix A.
Show that for Equation 5.35

(a) Voul =0 att=0

(b) dV,,/dt=0 att=0;

(€) Vou = AgVy whent— 0.



CHAPTER 6

Frequency Response and
Transient Response of
Operational Amplifiers,
Part 11

This chapter introduces additional networks for representing operational
amplifier amplification A and feedback return F. The chapter also includes
networks that will be used to represent responses of feedback amplifiers in
Chapter 8.

6.1 Modified Lag Networks

Modified lag networks are used for modifying the properties of operational
amplifiers. They may be part of the operational amplifier or may be added
externally. Two forms of a modified lag network are shown in Figure 6.1, which
are equivalent if ¥}, = I,,R,. In what follows, the circuit of Figure 6.15 will be
discussed, even though the circuit of Figure 6.1a is used more often.

6.1.1 Frequency Response of Modified Lag Networks
When ¥, and V,,, are represented in the frequency domain, the transfer function
is

Voulf) _1+if/12
Vi)~ 1 +iflf’ (6.12)

where corner frequency f; (pole frequency) is defined by
N N

2n(R, + R,)C
and corner frequency f, (zero frequency) by

1
T 2R,C’

N (6.1b)

J2 (6.1c)

59
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—C

AN'
®
£

wh dp

(@)

R,
A‘MV . O

R;

Vin1 C> ch(
T C
%)

FIGURE 6.1 Two equivalent forms of a modified lag network.

—)

Bode plots of a modified lag network with f, = 100f, are shown in Figure 6.2.

It can be seen from Equations 6.1b and 6. 1¢ that f2 2 fi; thus, the magnitude
of Equation 6.1a,

Vel 1)| 1145175
A TSI 62

is monotonically decreasing as a function of frequency f. The phase can be
written

Voul ) _ [14+if11, . :
o =s = + — /1
(%) ™ [Twjgyy, ~ AHillh - A+ ifih,
)~ en(£)
= arctan| — ) — arctan| = ). 6.3
arctan ( A rc T (6.3)
The ratio of f, and f, can be expressed from Equations 6.1b and 6.1c as

2 R +R, R,
t=———= =14t 6.4
LR R, | ©4

Thus, if f,/f, is given, it determines R,/R;; however, C and either R, or R, can
still be chosen.
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0dB

-20dB

-404d8
-60dBj—
. f
) l I | loo 10 l000 T
-80d8 0.1 1 10 100 10 k
1 0.1 1 10 100 1000 10,000

I ] | f

= j ififyl and
RE 62 Bode plots G = 20dB logyp|(1 + jf/]z)/(‘l + jf_
:lgl[il + jf1fIQ1 + if] fy) for a modified lag network with f1 = 100f;.

i w f Figure .1,
EXAMPLE 6.1. In the modified lag net orkk o -6
(R +R )/RZ = 10; thus fz/fl = 10. The magnitudc of the transfer function,
1 2 3 I

from Equation 6.2, is
Voul | _ 1L +3f7f1 _ 11 +if/000)
ValD] U+ ifIfl - +if/Al

and phase ¢ of the transfer function becomes

14+]j f _ 1_ )
@ = l l—ij—%é = arctan <Z) arctan (fx
= arctan (ﬁ) — arctan (%l—) .
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If, alternatively, f, and f, are given, R, and R, can be computed from

(6.53)
and

(6.5b)

6.1.2 Transient Response of Modified Lag Networks

When ¥, and V,,, are represented in the time domain, it can be shown that for
the circuit of Figure 6.15,

LU} 14 sRC o
20] T+ sR, + R)C (66)

When input voltage ¥, is a step function with magnitude Vo,

v,
L{Va0)} = ;" 6.7)
and
1 1+sR,C
sT+sR, + Ry o ©3)

The inverse Laplace transform of Equation 6.8 can be written for times ¢ > 0
as

Lo} =

R
Vil = Vo1 1 — — 1 o~ #lRi+R2)C) . g
(2 o[ R+R® ] 6.9)
EXAMPLE 6.2. In the modified lag network of Example 6.1,

(Ry + R,)/R, = 10. Thus, R /R, + R;) = 0.9 and Equation 6.9 becomes

Voul®) = Vo[1 — 0.9 ¥R+ RaCy - 4

Figure 6.3 shows ¥, , as a function of /Ry + R;)C. Note the jump of 0.1 ¥, at

time ¢ = 0. This is because for short times capacitor C acts as a short-circuit, and

as a result output voltage V,,, becomes VoR, /(R + R;) = 0.1V, immediately
after t = 0.

Vout

Vo

| | ] L ¢
[+] 1 2 3 4 (R + R2)C

FIGURE 63 Output voltage ¥, as a function of t/l(R1 + Ry)C] in
Example 6.2.

-_—
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62 Lead Networks

e 6.4. As is the case for modified lag networks,

A lead network is shown in Figur plifiers. They are usually

lead networks modify the properties of operational am
Jocated external to the operational amplifier.

C
—i—
—0
R,
RZ Vnul
V|ﬂ1
—_—0

FIGURE 6.4 A lead network.

Response of Lead Networks ' ‘ en
?‘z.tlhe il':;z(::nn:: doml:i)n representation, the transfer function can be writte:
n

Vol ) _ S YA TN (6.10a)
V) L 141112
where corner frequency f, (zero frequency) is defined by
I 16.10b)
h=5R.C
and corner frequency f> (pole frequency) by
= ! (6.10¢)
f= - RR
§ R, +R,

; itude of
It is seen from Equations 6.10b and 6.10c that f2 = fy; thus, the magnitude

Equation 6.10a,
6.11)

Val ] _ i W+ 3S141
VNl 2 L +if1f
is monotonically increasing as a function of frequency f. Phase ¢ of Equation
6.10a can be written ,
Q= M = arctan (—f—) — arctan (T)
L+iflfhs /i 2

= 100f, are shown in Figure 6.5.

(6.12)

Bode plots of a lead network with f;
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IGURE 65 Bode plots G = 2048 + +

F p = log j j

and g = /_( N1l + jf] DI+ if/jznluro '(afiea/fjxneltwolrfk/wj}t)h,(; _j{oolf})l
[/ 2 1

It can be seen from Equations 6.10b and 6.10c that

é=M‘—l Rl
AR, TR (6.13)

. . . 2
Thus, if f,/f, is given, it determin

still be chosen. If f, and f, es R, /R,; however, C and either R, or R, can

are given, R, and R, can be computed from

R=-—1 1
‘" (6.14a)
and
-1 1
R Y ol A (6.14b)

6.2 LEAD NETWORKS 65

e N
EXAMPLE 6.3. In the lead network of Figure 6.4, (R, + R,)/R; = 10; thus,
f,/f1 = 10. The magnitude of the transfer function, from Equation 6.11, is

1 +if/

Vol | _ S 1 +iS/10
10 |1+ jfA106)1°

Vo)~ L1 +if11

and phase ¢ of the transfer function is
L+iflh (f ) ( f )
= [~ 22 771 = arctan| —— | — arctan | —— |.
¢ V+iflfs N 10f;

6.2.2 Transient Response of Lead Networks
When V,, and V,,, are represented in the time domain, it can be shown that

LV} Ry 1+ sCR,

= . 6.15
2V} Ko+ K R.A; €19
1+sC——5
R, +R,
When input voltage ¥, is a step function with magnitude Vo,
V.
L0} == (6.16)
and
1 R, 1 + sCR,
Zz{V. =— Vo- 6.17
{ oul(t)} s R1 + Iz2 ) +SC R‘RZ (V] ( )
R, +R,
The inverse Laplace transform of Equation 6.17 can be written for times ¢t > 0
as
- R, Ry _f(RR: ¢
Vould = Vo[l tRe [&5%e)| (6.18)

EXAMPLE 64. In the lead network of Example 6.3, (R, + Ry)/R;, = 10.
Thus, R,/(R, + R;)=0.1, R,/R, =9, and Equation 6.18 becomes

Voull) = Vo[O.l +09 e"/(#;‘{z f)] t>0.

Output voltage V,,, is shown in Figure 6.6. Note the initial jump of V; at time
t = 0. This is because for short times capacitor C acts as a short-circuit, and as a
result output voltage V,, becomes equal to ¥, immediately after ¢ = 0. Also note

that output voltage ¥,,, becomes 0.1 ¥, for long times.

out
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Vout
Vo
5 i : : >
3 4 RiR;
FIGURE 66 Outpat voltage Voo, in Example 6.4, Bt ke

6.3 Voltage Divider Networks

Figure 6.7 shows a voltage divider network, which is often used for feedback in

operational amplifier circuits. This circuit is qui
2 circuit is quite general and, as wi i
can have the characteristics of a resistive vol e moen I

I tase divi
modified lag network, o a lead network. ge divider, a lag network, a

Cg

—i—
W 1

’ 1
] =~ Cp Vout
—O

Vin' CP RP
FIGURE 6.7 A voltage divider network.

63.1 Frequency Response of Voltage Divider Networks

When ¥, and V., ar :
out &€ represented in thy i
the transfer function is ¢ frequency domain, it can be shown that

Vol /) Rp 1+4if/f;

Vo) " Rs+ R, THif/° (619
where corner frequency /1 (zero frequency) is defined by
_ 1
L= 2R.Cs (6.19b)
and corner frequency /2 (pole frequency) by
1
S =
RR . (6.19¢)
2 Sip
"y R, Cs+Cr

6.3 VOLTAGE DIVIDER NETWORKS 67

Note that the ratio of the corner frequencies in Equations 6.19b and 6.19¢
is
fr _Rs+ R Cs

—_— (6.20)
fi Ry Cs+Cp
thus,
S Rs+Rp (621)
h Rp

EXAMPLE 65. In the voltage divider network of Figure 6.7, Ry = 10,000Q,
Rp = 100Q, Cs = 0.5 pF, and Cp = 5pF. Thus,

1 1

= = = 31.8 MHz,
)1 = 50R Cs ~ 2n(10,00005 x 1012 z
L= ! = 292 MHz,
2pRsRe (Cs + Cp)
"Re+Rp 57 P

and the transfer function becomes

Voul(f) RP l + Jf/fl
= = 0.0099
) "Rt R wih

1 +jf/31.8 MHz
1+jf/292MHz

Limiting cases of the voltage divider network are shown in Figure 6.8. Figure
6.8a is a resistive divider with a frequency-independent V,,./¥, = Rp/(Rp + Ry).
Figure 6.8b has a transfer function of

Volf)  Re 1

= - s (6.22a)
Valf)  Rp+Rs1+jflfo
where corner frequency fo is
fo=NetRs (6.22b)
2aRpRsCp

that is, this circuit has the frequency characteristics of a lag network. The circuit
of Figure 6.8¢ is a lead network (see Equations 6.10a—c). The last circuit (Figure
6.8d) is a compensated voltage divider network where

RsCs = RpCp. (6.23)

It can be shown that when Equation 6.23 is satisfied, the transfer function of
Equation 6.19a reduces to

Vould) ___Re 629
Vil T Rs+ Ry’




68  RESPONSE OF OPERATIONAL ¢ LIFIERS, PART II

Rg
AN' | S
Vin ' CP Rp Vout
—0
Rg (@)
ANV T ——C)
v‘"t 9 Rp JF: Cp Vout
v ——)
)
Cs
—0
Rg
>
Vin t P % Rp Vout
<
—C
()
Cs
Rs
Vi" f RP Cp Vaul
—0
RsCs=RpCp

d)

FIGURE 68 Limiting cases of the i
ivi Itage divider network: .
divider, (b) lag netw, ve work: (a) resistive
petwork. g vetwork, (c) lead network, and (d) compensated voltage divider
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independent of frequency and identical to the transfer function of the resistive
divider of Figure 6.8a. Thus, if the frequency-independent transfer function of
the divider of Figure 6.8a is desired but unavoidable capacitances are present,
one of the capacitances should be increased such that Equation 6.23 is satisfied.

EXAMPLE 6.6. In the preceding example, Rg=10000Q, R,=100Q,
Cs = 0.5pF, and C, = 5 pF were given for the component values in the circuit
of Figure 6.7 and a frequency-dependent transfer function V,,(f)/V,(f) resulted.
If a frequency-independent transfer function is desired, then from Equation 6.23

Rg  10000Q
Cr _Rs =100

Cs R, 100Q

should hold. In the original circuit, however,

Cp SpF
—=——=10.
Cs 05pF

A Cp/Cs = 100 can be attained by connecting an additional 45-pF capacitance
in parallel with the original Cp, resulting in

Cp SpF + 45pF
— = =100
Cs 0.5pF

and in a frequency-independent transfer function.

6.3.2 Transient Response of Voltage Divider Networks
When input voltage ¥,, and output voltage V,,, in the circuit of Figure 6.7 are
represented in the time domain,

L{Voul®)} Ry 1437y

= s 6.25
20} Rs+ Ry 141, (625
where
7, = RsCs (6.25b)
and
RsRp
T3 R+ Rp( s + Cp) (6.25¢)
When input voltage ¥V, is a step function with magnitude V;,
Ve
L{Va0} = T° (6.26)
and
R 11+s
LV} = e~ L, (627)

Rs+Rps1+st, °
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The inverse Laplace transform of Equation 6.27 can be written for times ¢ > 0
as

RP Ty -
- -1 t/tz 6.28
V) = 5= R Vo[l + (—12 )e ] (628a)
provided that

7, #0. (6.28b)

Depending on the values of 7, and 1,, Equation 6.28a may represent six
different characteristics:

1. When 7, = 0 and 1, = 0, Equation 6.28a is not applicable; however, the
circuit is a resistive voltage divider and V,,,/V,, is a constant for all times.

2. When 1y = 1,, 1, /1, — 1 = 0, the circuit is a compensated voltage divider,
and V,,,/V,, is a constant for all times.

3. When 1, =0 and 7, #0, 7,/t, — 1 = —1, the circuit has the character-
istics of a lag network, and V,,, = constant+(1 — ¢~*?) for t > 0.

4. When 1, <1;, 1,/1, — 1 <O, the circuit has the characteristics of a
modified lag network, and the transient has the form of Equation 6.9 and
Figure 6.3.

5. When 7, > 1,, 1,/1, — 1 > 0, the circuit has the characteristics of a lead
network, and the transient has the form of Equation 6.18 and Figure 6.6.

6. When 1, # 0 and 1, = 0, Equation 6.28a is not applicable. Also, according
to Equations 6.25b and 6.25¢, R, becomes 0 in Figure 6.7; thus, V,,, = 0 at
all times and the circuit is useless.

64 Compound Lag Networks

Two forms of a modified lag network were shown in Figure 6.1. However, in
reality there is always stray capacitance in parallel with the output terminals.
Two forms of the resulting network are shown in Figure 6.9, which are
equivalent if ¥, = I ,,R,. In what follows, the circuit of Figure 6.9b is discussed
first, even though the circuit of Figure 6.9a is used more often.

As was also the case for modified lag networks, compound lag networks are
used for modifying the properties of operational amplifiers. They may be part of
the operational amplifier or may be added externally. The discussion of
compound lag networks starts here with the Laplace transform domain; this is
followed by descriptions of their frequency response and transient response.

64.1 Laplace Transforms for Compound Lag Networks
The transfer function of the compound lag network of Figure 6.9b can be written
in the Laplace transform domain as

LV} 1+ sR,C,
LV} 1+ s(R,C,+ R,C; + R,C;) + s°R,C,R,C;

(6.29)
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° —_C

R

(@)

R
X —0
— AW~

R2

V
Via 1 Q G out
C2
‘[ —_—0

(b)
FIGURE 69 Two equivalent forms of a compound lag network.

Equation 6.29 can also be written

AL B i S (6.30a)
LiVal)} (L4 st + 570)
where
6 = RyC, (6.30b)

I _RC+RGC+RC ([ 4R,CR,C, 2), (6.30¢)
t_,_ . 2R,C,R,C, (R,C, + R,C; + R,C))

/ C,R,C
i _ R,C, + R,C; + R,C, 1+ [1— 4R,C\R, ZR ¢ )2). (6.30d)
Ty 2R,C,R,C, (R, C, + R,C, + R,C,
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Equations 6.30c and 6.30d can be simplified when R, « R,, which is often the
case for operational amplifiers. In such cases, as shown in Appendix B, Section
B.1, time constants t, and 1, can be approximated, and Equations 6.30a-d can
be written

g{Vut(t)} 1 + s“z

> = , 6.31
PO} 0+ st + 570) (6.31a)
1, =R,C,, (6.31b)
L= Ry(C, + Cy), (6.31c)

C,C,

=R, — 2 31

w=Re e (631d)
provided that

’—;l «1. (6.31¢)

1

Reasons for the designations 7, and t,, will be seen in Section 6.4.2. Also, it
can be shown (see Appendix B, Section B.2) that in the exact Equations 6.30a-d
time constants 7, 7,, and 1, have the relative magnitudes
1 1 1
—<—<—, . (6.32a)
L T2 Ty

which can also be written (see Problem 6.20)

T > Ty > Ty (6.32b)
642 Frequency Response of Compound Lag Networks

When V,; and V,,, are represented in the frequency domain then, by use of
Equations 6.30a-d with the substitution s = j2xf, the transfer function becomes

Voulf) _ 1+iflf

- — 6.3%
V) ~ T+ 31700 +i7712) (6.332)
where
fi=pm (6.33b)
>~ 2aR,C,’ .
ARG HRGHRG ([ 4R,C,R,C, )
2n 2R,CR,C, (R:C, + R,C, + R,C;)%)’ (6.33¢)
1 R,C, + R,C; + R,C, 4R,C,R,C,
= — l - R
To=2 " aRCRG TV TR TR, T Rcy) 639

Note that f; < f, < fy, hence the use of the subscripts L and U (lower and
upper).
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When R, « R, then, based on Equations 6.31c and 6.31d, Equations 6.33c
and 6.33d can be approximated as

1

fi=r——— (6.34a)
L7 2aR,(C, + C))
and
C, +C,
S it 6.34b
Jv=5R,C.C, (6.34b)

The resulting Bode plots are shown in Figure 6.10 by t'he grapl}s marked (a).
Four regions can be distinguished. At the lowest frequencncs? that‘ns, for f « fis
the magnitude is a constant 1 and the phase is 0°. The straight-line magnitude
segment between f; and f, drops at a rate of —20 dB/decade of frequency, and

L

0dB

-20dB

I

-40 dB

-60 dB

-80dB |—

-100 dB

0°
-45°

-90°

FIGURE 6.10 Bode plots G =20dB logyg|Vou S} Vi(f) and o =

éVw,( F)Via(f) for a compound lag network described by Equations 6.33a,
, 6.34a, and 6.34b: (@) C; # 0 and (b)) C; = 0.
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the straight-line magnitude segment between f, and f; has a constant
magnitude of f,/f,. At the highest frequencies, that is, for f > f,, the
magnitude is 1/2zR C, f, dropping at a rate of —20 dB/decade of frequency, and
the phase is —90°.

Figure 6.10 also shows, by the graphs marked (b), the transfer function for the
case when C, = 0—hence when R, is ineffective. In this case, the circuit becomes
alag network with a corner frequency f, = 1/2aR,C,. Note that the inclusion of
R; and C, lowers the magnitude of the frequency response.

The use of compound lag networks is illustrated in Example 6.7.

EXAMPLE 6.7. A Type 2539 wideband operational amplifier includes a

compound lag network with R, =2MQ, R, =147kQ, C, = 04pF, and

C, = 3.6 pF. Thus, by use of Equation 6.33b,

_ 1 _ 1

" 27R,C;,  2m(1.47kQ)3.6 pF)
The ratio R,/R, = 1.47kQ/2MQx 0.74 x 107° = 0074 % « 1. Hence, f;,

and fy can be approximated by Equations 6.34a and 6.34b, resulting in

1 1
T 22R(Cy + C;) 2n(2MQY04 pF + 3.6 pF)

L2

= 30 MHz.

I

20kHz

and

fo= C,+C, . 04pF +36pF
Y7 2zR,C,C,  2n(1.47kQY0.4 pFY3.6 pF)
The amplification of the remainder of the operational amplifier can be

approximated as Ay /(1 +jf/f,), where A4, = 30,000 and f, = 30 MHz.* Thus,
by use of Equation 6.33a, the overall amplification becomes

=~ 300 MHz

A 1+if/f, 30,000
C+JfIA +if/fo) Y +if1fa
_ 1 +jf/30 MHz 30,000
(1 +]f/20kHzX1 +j//300 MHz) 1 + jf/30 MHz
30,000

T (U +jf/20kHz)1 + jf/300 MHz)"

This is shown by the graphs marked (a) in Figure 6.11. The straight-line
magnitude segment between f; = 20 kHz and f;, = 300 MHz drops at a rate of
—20dB/decade of frequency, and for f >> 300 MHz the magnitude drops at a
rate of —40 dB/decade of frequency.

*This is only a rough approximation; an additional corner frequency of 300 MHz will be introduced
in Chapter 7.
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100 dB |— 20 kHz 200 KkHz

80 dB —

60 dB

40 dB

20 dB 300 MHz
| | l [
0dB | : f

1 kHz 10 kHz 100 kHz 1MHz 10 MHz 100 MHz \GHZ

| L L | I Lo s
(b)

(a)

(a)
-135°— (2]

-180° [~

FIGURE 6.11 Bode plots G = 20 dB logg 4| and ¢ = [A for the overall
amplifications in Example 6.7: (a) C; = 3.6 pF and (b)) C; = 0.

In the case when C, =0, R, is ineffective, and the overall amplification
becomes
1 30,000
HifIf Vi

where
1 1

f = =— 200 kHz
V7 2R, C, 2n(2 MQ)O0.4 pF)
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and
J4=30MHz.

Hence, when C, = 0, the overall amplification is

e 30,000
(1 +jf/200kHz)1 + j£/30 MHZ)’

shown by the graphs marked (b) in F igure 6.11. The magnitude of this
amplification drops at a rate of —40 dB/decade of frequency above a frequency
of 30 MHz—as compared to a frequency of 300 MHz in the case of C, = 3.6 pF.
It will be seen in Chapters 7 and 8 that the C, = 3.6 pF case of graph (a) in
Figure 6.11 is preferable, even though the amplification in the C, = 0 case of
graph (b) in Figure 6.11 has a greater magnitude between 20 kHz and 300 MHz

(this is because the phase with C; = 3.6 pF is preferable at frequencies above
3 MHz).

6.4.3 Transient Response of Compound Lag Networks
When input voltage V,, is a step function with magnitude ¥,

LV} =2 (633)
and, by use of Equation 6.30a,
1
LVol)) =20 L3 (636

s (1 + st M1 + stp)°

The inverse Laplace transform of Equation 6.36 can be written for times ¢ > 0,
as

Voult) = Vo <1 ~ : — :Z ey — :: — ;21 e*”‘n). (6.37)

6.5 Series RLC Circuits

Inductances are only rarely significant in operational amplifier circuits. The
principal reason for discussing the series RLC circuit, shown in F igure 6.12, is
the use of the results in representing feedback amplifiers in Chapter 8. The
discussion starts here in the Laplace transform domain; this is followed by
descriptions of the frequency response and the transient response.

6.5 SERIES RLC CIRCUITS 7

— AN
A

o 9 x|
.

FIGURE 6.12 A series RLC circuit.

ircui in Fi .12 can be
The transfer function of the series RLC circuit shown in Figure 6.12 ¢

written in the Laplace transform domain as

L{Voul)} _ ’_/‘_7 (6.38)
2V} 1+ RCs+ LCs

which can also be written

L{Voul)} _ _’_L__,_ (6.392)
LV (1 +st)Ml+ ST,)
where
T_R s SToam), (6.39b)
T, 2L
l=£(1 — /1 —4m), (6.39¢)
t, 2L
and
_ L (6.39d)
m= ch .

shed: There are two distinct real roots when

Three cases can be distingui and there are two

m < 0.25: there are two equal real roots when m = 0.25;
jugate 0.25.
o e equent ooy n in Figure 6.13 for various values of

ulting frequency response is show. . .
m :T/;{CEC. Itgcan be shown that there is a peak in the magnitude versus

frequency graphs when m > 0.5.
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FIGURE 6.13 Bode plots G = 20dB 10810 Vou )/ Via(f)| and o =

Vout(£)/Va(f) for the series RLC circuit of Fi i
[Your(f [Valf 6. i
m = L/R°C and with fy = 1/2zRC. fpure G.12 with various

When input voltage ¥, i
W IS a ste
L{V,u0)} = Vo/s and for times ¢ > 0

Vould) = Vo[x _ (L4 /T —dm)e=00 - /T=3mupzmic
2/1—dam
+ a- m e~ 1+ /1T =amyu2mrC
2/1=4m

when

m < 0.25;

values of

p function with magnitude Vo,

] (6.40a)

(6.40b)
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it is

Voult) = Vo [1 ~(1+ Ezfé)e—w] (6412)
when
m = 0.25; (6.41b)
and it is
in(./m — 025 t/mRC
Vould) = Yo {1 - e_'/z"'RC[cos(. Jm 025 t/mRC) + S 2'" - 2/5 e )]}
m— u.
(6.42a)
when
m > 0.25. (6.42b)

Equations 6.40, 6.41, and 6.42 are illustrated in Figure 6.14 for various values
of m = L/R*C. The transients are free of overshoot and ringing when m < 0.25.

Vaut/ Vo

| | | | l | | | | £
RC

0 1 2 3 4 5 6 7 8 9

FIGURE 6.14 Transient response of the series RLC circuit of Figure 6.12
for a step-function input with maguitude ¥, for various values of m = L/ch.

Figure 6.15 shows, as functions of m = L/R?C, various characteristics of
the transients of Figure 6.14: The propagation delay of the 50 % point, f5o; the
10%-909%, rise time, t,5-90; and the percentage of ringing, ¢, defined as
[(Vaudmax — Yol/Vo in Figure 6.14.
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3RC

20%

10%

li‘lGliRE 6.15 Propagation delay of the 50 % point,
tlme,- 10-90, and percentage of ringing, ¢ .
various values of m = L/RC, '

tsg, 10%-90 9, rise
for the transients of Figure 6.1:, for

PROBLEMS

Show that the two forms of the modified 1

are equivalent if ¥, = R, I,,. ag network shown in Figure 6.1

Derive Equations 6.1 and 6.4,

A modifi .

R, = 1(;0%% gsRnf»\;%gk consists of the circuit of Figure 6.1b with

and f, in Equation 6,17 ‘S}i(::lc(ljz e 1]30(:10 PF What are the values of f,

approximation for the gain. Repeat foroRe Elcs)z)séouémg piccewise lincar
1= 3

Derive Equation 6.6.

Derive Equation 6.9 usi
L -9 using Appendix A int:
fracti ; > . [Hint: Break
nume(::t In l‘?qumon 6.8 into a sum of two parts on:p ;h:: eond
or of 1 and the other part with a numc:rato,-’of R 1(): ; with a
20,

Derive Equations 6.10 and 6.14.

A lead network consists of the cir

R,=100Q,and C — cuit of Figure 6.4 with R, = 10,000 Q,

10 pF. What are the values of f, and £, in Equations

. ch the Bode pl . . !
mation for the gain. Repeat for R1P=0l53601(1)s;;1g piecewise linear approxi-

68
6.9

6.10
6.11

6.12

6.13

6.14
6.15
6.16
6.17

6.18
6.19
*6.20

6.21
6.22
6.23

6.24

PROBLEMS 81

Derive Equation 6.15.

Derive Equation 6.18 using Appendix A. [Hint: Break up the third
fraction in Equation 6.17 into a sum of two parts, one part with a
numerator of 1 and the other part with a numerator of sCR;.]

Sketch the Bode plots for Examples 6.1 and 6.3.

In the voltage divider network of Figure 6.7, Rs = 10,0009, R = 1000,
Cs = 0.5pF, and Cp = 10 pF. What is Vo) Via(/)? Modify the circuit
by the addition of a capacitance such that the transfer function
Vool ) Vial f) 18 frequency-independent. Give the location and the value of
the capacitance required.

Sketch output voltage V,,(¢)in the voltage divider network of Figure 6.7 if
the input voltage is a step function V,(t) = (1 V)u(t); Ry = 10000,
Ry = 20009, and C, = 1000 pF. Assume Cg = 1000 pF, 2000 pF, and
5000 pF.

Derive Equation 6.28a using Appendix A. [Hint: Break up the third
fraction in Equation 627 into a sum of two parts, one part with a
numerator of 1 and the other part with a numerator of s51,.]

Verify the statements following Equation 6.28b at the end of Section 6.3.2.

Derive Equation 6.29.

Derive Equations 6.30a—d from Equation 6.29.

Show that 7, and t, of Equations 6.30c and 6.30d are always real and
positive.

Demonstrate that 1,7, = R,C,R,C, in Equations 6.30c and 6.30d.
Verify Equations 6.33a-d and Equations 6.34a and 6.34b.

Derive Equation 6.32b from Equation 6.32a. [Hint: First show that
1, > 1,; then show that 7, > 7. Next, combine these results to obtain

Equation 6.32b.]
Verify Figure 6.10.
Verify the results of Example 6.7.

Derive Equation 6.37 using Appendix A. [Hint: Break up the second
fraction in Equation 6.36 into a sum of two parts, one part with a
numerator of 1 and the other part with a numerator of st,.]

Show that in Equation 6.37
@ V=0 att=0

(b) Vouw= Vo whent— c0.

6.25 Derive Equation 6.38.

*Optional problem.
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6.26
*6.27

6.28

6.29
6.30

6.32

RESPONSE OF OPERATIONAL A LIF IERS, PART 11

Derive Equations 6.39a-d.
(a) Compute and sketch into Fi i

gure 6.13 the m
the frequency response for m = 0.25. nenitude and the phase of
(b) Show that the slope of magnitude G in Figure 6.13 for f/f, » 1 is
—20dB/decade when m = 0 and it is —40 dB/decade when m # 0.

Demonstrau? that the magnitudes in Figure 6.13 are peaked when
m > 0.5. [Hint: Take the derivative of WVoudl /Y Vil NI? with respect to
frequency and equate it to zero.]

Derive Equation 6.40a using Appendix A.
Derive Equation 6.41a using Appendix A.

Derive Equation 6.42a usin : .
- g Appendix A. [Hins: N
e =cosx + jsinx.] P [Hin:: Use the identity

Show that in Equations 6.40a, 6.41a, and 6.42a
@ V=0 atr=0
() Viu=V, whent— 0.

*Optional problem.

CHAPTER 7

Stability of
Feedback Amplifiers

Frequency response and transient response of operational amplifiers were
discussed in Chapters 5 and 6. The resulting frequency response and transient
response, however, can be altered by the application of feedback. In some cases,
the application of feedback results in an unstable system, that is, in a system that
provides an output signal without an input signal. This chapter discusses limits
and margins of stability in feedback amplifiers.

7.1 The Nyquist Criterion

Whether a noninverting feedback amoplifier, characterized by a resulting
amplification of
A

= 7.1
1+ AFy 7.

My
is stable for a given A and Fy is determined by the roots of 1 + AFy: The system
is stable if all roots have negative real parts. This criterion of stability can be
shown to be equivalent to the Nyquist criterion, which is based on the Nyquist
diagram. The Nyquist diagram is the line of AFy plotted in the complex plane for
frequencies, f, of —o < f < + .

Thus, a Nyquist diagram requires the plotting of AFy not only for positive
frequencies but for negative frequencies as well. Fortunately, AFy is easy to find
for negative frequencies by use of AFy for positive frequencies. This is because,
in all frequency responses considered here, f and j always appear multiplied by
each other. Thus, the same result is obtained by multiplying j by — 1 as would be
obtained by multiplying f by — 1. Hence, AFy for negative frequencies can be
obtained by substituting —j for j, that is, by up-down mirroring the line of 4Fy
for positive frequencies with respect to the Re(4Fy) axis(horizontal axis).

The Nyquist criterion of stability can be expressed as follows: If Aand Fy of
Equation 7.1 describe stable systems, then the system described by M, of
Equation 7.1 is stable if and only if the Nyquist diagram of AF y does not encirc le
the —1 + jO point. Cases when 4 and/or Fy themselves describe unstable

systems are not discussed here. (Continued on page 86.)
83
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Im (AFy)

—>» Re (AFy)

i

(a)

Im (AFpy)

> Re (AFy)

N

)

FIGURE 7.1 Nygquist diagrams of two stable systems (a and c) and two
unstable systems (b and d).

Im (AFN)

1

7.1 THE NYQUIST CRITERION 85

—>= Re (AFN)

im (AFpN)

-~
_/

()

Re (AFN)

—
_

(d)
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There can be several descri
realizable system,
diagram is a close

ptions of the term encircle. For a physically
Aiszeroat f= —oo and at f= + ao; hence, the Nyquist
d curve.. This closed curve can be thought of as a loop of
string, with a stake driven into the complex plane at the —1 + jO point. If the
loop of string can be removed (without lifting it over the stake), then it does not
encircle the stake and the system is stable. Thus, in Figure 7.1z and in Figure
7.1c the loop does not encircle the — 1 +jO point and the system is stable,
whereas in Figure 7.1b and in F igure 7.1d the loop encircles the — 1 + jO point
and the system is unstable,* Alternatively, a vector can be drawn between the
—1 4+ jO point and a point on the line of AF, ~ in the complex plane. If the total
angle traversed by this vector is zero as it moves along the line of AF, from

J = - to f = +co, then the loop does not encircle the —1 + jO point and
the system is stable.

EXAMPLE 7.1. An operational amplifier with an amplification of
A=A, /(1 +jf/f,) is used as a noninverting feedback amplifier with a
feedback return of F, where F ~ = Fy 4. is a positive real number. Thus,
AFy = A4 Fy 4. at f=0; also, AFy =0 at J =oo. It can be shown (sce

Problem 7.1) that for f > 0 the real part of AFy, Re(AFy), and the imaginary
part of AFy, Im(AFy), are related as

2 F)
Im(AFN) = — \/(ﬁf_"_'d_‘) -~ (Re(AFN) _ AdciN.dc) )

This equation describes a semicircle below the Re(A4 Fy) axis that has a radius of
A4 Fy 4./2 and its center at Ay Fy4c/2 +JO.

AFy, for negative frequencies is obtained by up~down mirroring the line of
AF ), for positive frequencies, The result is a full circle, as shown in Figure 7.2.

Im (AFN)

4\
\_/

Re (AFy)

FIGURE 72 Nyquist diagram in Example 7.1.

Note that the phase of AF, is always between +90° and —90° and it never
reaches —180°, Since the —1 + JO point has a phase of —180°, it cannot be
encircled and the resulting feedback amplifier is stable for all values of 4,,,
Fyqc, and f,.

*Figure 7.1 is located on pages 84 and 85.
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lhe nior 0 y i 1 itivi frcquencies is
i i t dlagram for pOSltl (4 Nt

i f mation presented mna N (.lulS ) l o

‘denticall to the illlorma‘ion Presentcd mna BOde pl0t1 Wthh uses on () pos! t ;e

I uCnCiCS The magn'm)de, G, of a Bode plot 18 related to N q

fl'eq . al d AF 0( a qu uist

diagram as .
G =20dB log;o « /[Rc(AFN)]2 + [lm(AFN)]’. (7.2)

ist diz as
Also, the phase, ¢, of a Bode plot is related to AFy of a Nyquist diagram
S0, s @5

Im(AFy) (13)
¢ = arctan m .

yquist diagra i i ample” ibes a
EXAMPLE 7.2. The Nyquist diagram of Figure 7.2n Exam;}le_’l.(; dﬁlcens :[Sn :
fag network response that has a magnitude of AJ Nide a5t ; w?th .20 e
in%ormation can be described using the Bode plot of Figure 5.
(A4 Fy ac) added to the labels of the G axis.
e N S

7.2 Lag Networks

isti i iz s corre-
Figure 7.3 illustrates the general characterlst{cs of Nyquflst ci;gﬁrsag
spindiné to AFy consisting of lag networks with transfer func

7.4)
AFy = AscFrac (one lag network), (
YT +ifi
= ;’ﬁfﬂ'd‘—,—— (two lag networks), (7.5)
AFN =TT/ + 301D
AscFuac . (three lag networks), (1.6)
AFN =T33 777K0 + 3100 + 3155
AaFrac (four lag networks), (1.7)

ey TR TEST I A TESTIA (RSN

is a positive real number. ‘ .
Wh;tr ia?t': sl:en ?rom Figure 7.3 that AFy of Equations 7.4 and 7‘.55 al’v::ag: ;ez\:a '
in stable systems, whereas the stability of a system described :)y c(l)\;alhe c(;mer
1.7 depends on the magnitude of AycFnac and on the values

i A . . . l
fregfl;lecn::::tserion of stability is derived first for an amplifier consisting of three lag

i i 1 eal and
networks, that is, for one characterized by Equ.atlon 7.6. Se‘pal.'atmg the r
imaginar;v parts in the denominator of Equation 7.6 results in

AchN.dc 5 . (78)
AFy = IE I 1B .(f ff ¥ )

e Ay v A Y AR VAR A AR VS )
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Im (AFy)
m AN The substitution of Equation 7.10 into Equation 7.11 results in
_AchN dc
AFy = : . (71.12)
N 2 hLtfs Liths Lith
+ + +
—>Re (AFN) h J2 S5
> Re (AFy) The system is stable if this is to the right of the —1 + jO point, that is, if in
Equation 7.12 AFy > —1 (the stability is marginal when AFy = —1). This
results in the criterion
@ + + +
Im (AFy) ’ G AchN,.,cs2+f’ f’+f1 f’+f‘ff2. (7.13a)
im (AFy) Ji f2 3
r Thus, if a stable system is desired, the maximum permitted value of Ay Fy ac i
+ + +
(AgcFradmn =2 + fith hith f2, (7.13b)

(b

FIGURE 73 Nyquist di
quist diagrams of lag network

setwork, (B e ] ork respomses: (a) one lag

e g networks, (c) three lag networks, and (d) four lag

( _/ & \/ > Re (4R

Since A4 Fy 4, is real, Equation 7.8 is real if

L L. L r

YRR TR @9
One solution of E

_ quation 7.9, is f = 0, correspondi i
. . ? ng t i
line of AF, in Figure 7.3¢ with the positivepreal zgxi0 i amersection of the

S = fxfz+f,f3+f2_f;

This frequenc i
“quency represents the point where the li
real axis in Figure 7.3¢. At this frequency, Pttt

(7.10)

~ intersects the negative
AFy of Equation 7.8 is real:

AFy = AacFr a6
_ Pt (7.11)

L L ffs

N f2 fs

EXAMPLE 7.3. An operational amplifier is characterized by an amplification

that can be described by three lag networks with corner frequencies of

fi =1MHz, f, =4MHz, and f; = 40 MHz. Thus, Equation 7.13a becomes

4MHz + 40MHz 1 MHz + 40 MHz N 1 MHz + 4 MHz
1 MHz 4 MHz 40 MHz

AgeFra. <2+
= 564.

The amplifier has a dc amplification 44, = 4000; hence, a stable system will
result if the feedback return is

564 564
Fye <——=—==0014
wae <= 4000 = ° ol

This criterion of stability can also be expressed by stating that, in order to satisfy
the inequality on dc feedback return Fy 4 it is required that My 4. be at least

Age _ 4000
1+ AgFyae 14564
If My 4 is less than 70, then Fy 4 is greater than 0.014 and the system is
unstable. Therefore, it can be concluded that this configuration is not suitable

for resulting amplifications of My 4. < 70, because the feedback amplifier would
oscillate at approximately the frequency given by Equation 7.10, that is, at

f=Jyhh+hs+ fafs

- /(I MHz)4 MHz) + (I MHz)40 MHz) + (4 MHz)40 MHz)
= 143MHz

The exact frequency and amplitude of the oscillation would depend on the
nonlinear properties of the operational amplifier and will not be analyzed here.

Myge = 70.
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In the case of an inverting feedback amplifier,

by use of Equation 3.12, the
resulting amplification is

—A -1 A
Mg = - : 7.14
TR A O T4 Fra AR 7149
14 Zl0ae :
1 + Fl.dc

and the criterion of stability reduces to the case of the noninver
feedback return F rde < 1. If, however, F,

shown that the criterion of Equation 7.13a

ting amplifier if
is not much less than 1, it can be

becomes
AgeFrq. L+fi i+ fy h+ 1
h'<2+—_~+—§_+§; 7.15
V4 Frg N f2 S (7.13)

that is, A, F 19¢/(1 + F;4) has to be substituted in
Equations 7.13a and 7.13b.*

In the limiting case when one of
other two, the transfer function o

place of Ay Fy 4 in
the corner frequencies is much lower than the
f Equation 7.6 can be written
= Ach N.dc

GS/IXY +if 11X +if/f,)

Note that corner frequency f, was intr
emphasize that in Equation 7.16a

AF,

(7.16a)

oduced instead of f; of Equation 7.6 to

Jo< fi (7.16b)

and

Jfo< fy. (7.16¢c)

The separation of the real and imaginary parts in the denominator of

Equation 7.16a resuits in

AchN dc
AFy = - . .
" R S L £ i
Lty foha Jo  Sohit:
Since A4, Fy 4, is real, Equation 7.17 is real if

A
L _ =0 7.18
Jo Sohifs 19

One solution of Equation 7.18 is
AFy in Figure 7.3¢ with the positi
divided by f, resulting in

S =0, corresponding to the intersection of
ve real axis. If f # 0, Equation 7.18 can be

f =V flfz-

*In fact, with this substitution, all stability criteria derived in this chapter for noninverting amplifiers
can be applied to inverting amplifiers (see Problem 7.1 1).

(7.19)

r
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This frequency represents the point where he line of AFy intersects he negative
‘ T il‘t t Fll l 7 17l iS( real:

eall axis in Figure 7.3c. At this frequency, AFy of Equation /. .

I

AacFpae (1.20)
AFy = _TF .
“ofi foha
The substitution of Equation 7.19 into Equation 7.20 results in
fo (7.21)

AFy = —AgFyac m :

i jO point, that is, if in
The system is stable if this point is to the right of'thc‘ —1 4+ j0 point, tha
Eqia:,ion 721 AFy 2 —1. This results in the criterion
Lt 1

(122)
fo

AchN.dc < (AchN.dc)max =

i ithic operational amplifier is
4. A Type 2539 wideband monolit . 'plifer 13
Elf?x:kzicz by an amplification that can be described t;y t?(r)geh:lasz.* orks
: 'ah orner frequencies of 20 kHz, 300MHz, an Ok,
20Ktz 300 MHz, Equation 7.16a can be used wnt' 7022
,2fo k]PI3Z()(()<MI-IZ and’ £, = 300 MHz. Thus, according to Equation 7.22,
1= >

fi+ [, _300MHz + 300MHz _ 4, 0,
fo - 20kHz

The amplifier has a typical dc amplification of Ay,
system will result if

AgcFrae <

= 30,000; hence, a stable

30,000 30,000

Fyac < Ag. =30,000_ ’

1 i r to satisfy
This criterion of stability can also be express.ed by sAtaltlintght}:at, in orde
the inequality on feedback return Fy 4, it is required tha

Age 30000

= 2 TS n =
MN,dc - l + AdCFN.dc - 1 + 30’000

i lifier is
Therefore, it can be concluded that the Tgr;ﬁ: 2539 bzgz;z:zr;?il?r::riations
inally le when used as a voltage foliower, be lions
marl%imr?lgiesgbuflstable Also, in this case, the approximate frequency o
cou . , 1n
resulting oscillation, from Equation 7.19, would be

f =1 f. = /(300 MHz)(300 MHz) = 300 MHz.

. s
In reality the characteriza T 2539 operational a mplmer by these three corner
, acterization of a Type pe

frequencies is only an approximation.
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In the ificati
case when amplification 4 consists of four lag networks:

Adc

C+ S TIX+ S TTX + 577X T 37770 .23

it ca iteri
n be shown that the criterion of stability can be written
AdeFN.dc < (AchN,dc)mu

(fl+fz+}34+ﬁ')2 Tf(2+f3;f4+fz;f4+fz;f3)
3 4

1 fi+
+f_§(2+ 3f1f4+f1};f;+f1;;f3)

1 Lt fo S+
+f§(“ it fz4+fl}:fz)

1 Lt fsi S+
+fi(2+ A lfzfs’“fx}:fz)}

In the limitin,
g case when one of the corn ies i
er frequenc
other three, the transfer function of Equation 7qz3 cal:sbl: l‘:rlruifthe]ower than the
. n

(7.24)

AFy = —.%
WS X1 +if/ X +ifIX+]f/f)’ (7.25a)
with
Jo< i, (7.25b)
and fo < fo (7.25¢)
Jo< f,
and the criterion of stability becomes (7239
AscFrge < (AgcFy g, max
HLSH S+ S+ U+ S+ 13+ )
Slh + f + f3)? . (1.26)

Note that corner fre was i ed instead of f, of E uation 7.24 to
h. quency f, was introduced j 4 quati
emphasize that Jo is much lower than f, ) :mc; f- g y A
’ » 3

7.2 LAG NETWORKS 93

[ e
EXAMPLE 75. An operational amplifier is characterized by an amplification
A of Equation 515 with f; = 1 MHz, f, =4MHz, f,=40MHz aqd
Age = 4000. The operational amplifier is used as a voltage follower, that is,
feedback return Fy = Fy 4. = 1; hence, AgcFygc = 4000, It was shown in
Example 7.3 that under these conditions the feedback amplifier is not stable. ’_l‘o
obtain a stable system, a fourth lag network with f; = 1 kHz will be in-
corporated in AFy (either inside or outside the operational amplifier). With
these values of f,, f2, f3, and fo, the condition of stability given by Equation
7.26 becomes Ay Fyq. < 4454. Thus, an Ay Fyac = 4000 results in a stable
system.

Several other limiting cases are also of interest. When f; = f, in Equation
7.6,

AchN dc
AF, = 8 e s (7.27)
NTHSIAXL SR
and the criteria of stability, Equations 7.13a and 7.13b, become
AchN.dc < (AchN,dc)max =4+ 2 (& + £) (728)
i fa
Also, when f, = f; in Equation 7.16a,
Ay F
AFy = _ de N.fic , (729)
NG+
and the criterion of stability, Equation 7.22, becomes
2
AchN,dc < (AchN.dc)max = _‘j/:—l' . (730)
o
When f, = f3 = f, in Equation 7.23,
AchN dc
AFy = . de , (71.31)
SRS TTA TR A
and the criterion of stability, Equation 7.24, becomes
0+ L)
Ay Fyac € (AgeFrnadmax =8 7777 (7.32
dcf'N.a (AgcFn.ac) a+ 3f2/f1)2 )
Also, when f; = f, = f; in Equation 7.25a,
Ay F
AFy = —— 2R (7.33)
ST TRSTIINY
and the criterion of stability, Equation 7.26, becomes
8
AucFrae < AFy o = S 2 (7.34)

9%
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7.3 Lag Compensation

It was seen in Example 7.5 how an amplification A4 that would result in an
unstable system could be modified by the inclusion of an additional lag network
to arrive at a stable system. The added lag network had a corner frequency Jo
that was lower than the other corner frequencies of the operational amplifier by
a factor in the rough vicinity of Ag.Fy 4. This modification is called lag
compensation, compensation by a dominant corner Jrequency, or dominant-pole
compensation, where the term pole refers to a corner frequency in the denomi-
nator of the transfer function.* When such a compensation is included as part of
an operational amplifier, the result is an internally compensated operational
amplifier **

When an operational amplifier with an amplification A is used as a
noninverting feedback amplifier, the resulting amplification is

A
- l—:/iF_N (7.35)

Depending on the characteristics of AF > the feedback amplifier may or may not
be stable. If the operational amplifier without feedback is stable and it can be
represented by a frequency-dependent amplification A, then it can be shown that
the resulting amplification of the feedback amplifier, My, can always be made
stable by modifying (compensating) amplification A by the addition of a lag

network (Figure 5.1), resulting in a compensated AcompF x that can be approxi-
mated as

My

AF,

AcomoFy = T¥iflfs (7.36)

EXAMPLE 7.6. The amplification of an operational amplifier can be repre-
sented as A = A, (1 +jf/f,)* with fi=1MHz and A, = 10,000. The
amplifier is used as a noninverting feedback amplifier with a feedback return of
Fy=Fyq =01

Without any compensation, at a frequency f, phase /4 = (—4)45°) = — 180°

and magnitude [4F,| = (10,000%0.1)/4 = 250 > 1. Thus, the feedback amplifier
is not stable.

Modifying 4 by the addition of a lag network with a corner frequency
Jo= 100 Hz (see Equation 7.36), the compensated |4compFyl becomes unity at
approximately f,44.Fy = (100 Hz)(10,0000.1) = 100 kHz. At this frequency,
phase /AFy ~ ~113° hence, the feedback amplifier is stable.

*Similarly, the term zero refers to a corner frequency in the numerator of a transfer function.

**Operational amplifiers that are not internally compensated are often called decompensated
operational amplifiers.

7.3 LAG COMPENSATION 95

In the case of an operational amplifier with an amplification 0

Aac (7.37)

A=TTI

lk COor r trequenc N th
ompensaled by the add“loﬂ Of a klg netwo W\[h a corne fi quen y jl)

C [+
resuh’“lg (CO“\PE"Saied) ‘lcompl N 15

AchN.dc (738)

AcomsFN = (T 77N+ S T1F

It is seen from Equation 7.32 that this results in a stable system if

U+ filfo)? ) (7.39)
(1 +36,/f)

> 1, it can be shown that fo « f, and the

AgcFrac <8

For a stable system with Ay Fy ac
condition of Equation 7.39 becomes

8/, (7.40)
AgFrae < 9 ﬁ-

Alternatively, for a given feedback factor AyFy.qa » 1 and for a given fis

8§_ 4 : (7.41)
fO < 5 AchN.dc

is the criterion of stability. .
For an operational amplifier wit

frequency fo is lowest when Fy.ac 18

follower where Fy 4, = 1. Thus, the cri

i ired corner
h given A, and f,, the require
highest, which is the case of the voltage
iterion of stability for a voltage follower

becomes ,
8 Ju, (7.42a)
fo < (fo)min = § 2;:,
Frgc = (7.42b)
Nde — **
min Siven by

The incorporation of a lag netl:/lork ‘;\;ié;afg?r:ﬁr irael?l::ns? (Ff;)‘)dc. gven by
Equaﬁon v ;isal:::s (l)r;laeer‘atsitcz:nz:l3 :t)rllpliﬁer can be uscd. for any resul};ing d:j:
b er | 0 o (s Tl 510 8
?:t(}lll(::]t)li: g,e?hg: :::rl:zeﬁ:rllgg ?sa:n‘:girel:iaat z: l::osbt‘ ::\l::i:)‘);‘ tl;::‘:?r?;t;vgdé;\ c:)ft ::i
T e o sdonal exirmal components.
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74 Lead—Lag Compensation

Lead-la ; .

depend fmc;’;:‘dl’;:::‘:;lwzzzsnsts :f the inclusion of an external frequency
» as shown in Fi . -

6.19a-c, the feedback return Fy in Figurrel 7 :f?sre 74. According to Equations

Leify,

F, =
) T+if/fy’ (7.43a)

F N.de¢
where

- Rl
R +R,’ (7.43b)

FN.dc

T 27R,C; (7.43¢)
and

(7.43d)

fe
1

FIGURE 74 Lead-lag compensation,

]JOtc that the SUbSC1Ipts ha.e been Channg hOﬂ] tho

. it se of Equati
that pensation circuit of Figure 7.4, Auation 6.19. Also,

Ju and f are chosen such

fo<to, (1.44)
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hence the subscripts L and U (lower and upper). The ratio fy/f, can be written,
based on Equation 6.20,

So_ + 1 (7.45)
So Fng 1 +Ci/Ce
hence,
fo < ! . (7.46)
L FN.dc
When Ay Fyg. » 1, then My 4. = 1/Fy 4., and Equation 7.46 becomes
§! < Myg.. (7.47)
L

Thus, Equation 7.47 limits the ratio of fy/f; to the resulting dc amplification
of the feedback amplifier. The limit of fy/f, = My 4. can be approached when
the ratio C,/Cy is small, that is, when the sum C, of the input capacitance of the
operational amplifier and of stray capacitances is small compared to feedback
capacitance Cr.

EXAMPLE 7.7. A feedback amplifier uses the lead-lag compensation of
Figure 7.4 with Fy 4, = 0.01 and C; = 5 pF. Thus, according to Equation 7.46,
folfu < 1/Fy 4. = 1/0.01 = 100. Corner frequency f, is chosen as fu=1MHz.
Also, from Equation 7.43c, Cy = 1/22Rgf;.

When the dc feedback return, Fyg4., is realized by Ry =1980Q and
R, =20Q, then C;=1/[2x(1980 QX! MHz)] = 80 pF. Thus, according to
Equation 7.45, fy/f, = (1/0.01)/(1 + 5 pF/80 pF) = 94.1, close to the maximum
possible 100 given by Equation 746. Also, with f; = 1MHz,
fu = 94.1f, = (94.1X1 MHz) = 94.1 MHz. Note that the Bode plots of Fy in this
case are close to those of Figure 6.5 with f;, = 1 MHz

When the dc feedback return, Fy g4, is realized by Ry = 19,800Q and
R, =200Q, then Cy = 1/[2n(19,800 QX1 MHz)] = 8 pF. Thus, according to
Equation 7.45, fy/f. =(1/0.01)/(1 + 5pF/8 pF) =615, significantly less than
the maximum possible 100 given by Equation 7.46. Also, in this case,
fu = 61.5f, = (61.5X1 MHz) = 61.5 MHz. The Bode plots of this case are the
subject of Problem 7.16.

The value of corner frequency f is often chosen to be in the vicinity of a
corner frequency of the operational amplifier. The discussion here is limited to
the simplest case when f; equals a corner frequency of the operational amplifier,
thus canceling its effect (pole-zero cancellation).*

*This limitation will be removed and the general case will be discussed later in the book.
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If the i i i
amplification of an operational amplifier is given by Equation 7.37 ag
A= \Adch
- TESTHIAY 749
and lead-lag compensation in th
e form of E
compensated AF,, A ompF ., can be written

_AscFyae 1+if/fy

quation 7.43a is applied, the

com; N= n PRV
_ NI TR (749)
en fy is chosen to equal f,, Equation 7.49 becomes
compFN - _ AchN,d:
A+ 11050 +17770)" (7-50

where f, > f,.

EXAMPLE 78. An operati
b perational  amplifi R ;
A= . plifier has an
noni:\"it;l-/t('l +fJ SN with A 4c = 10,000 and f, = 1 MHz 3;:\ pilslﬁcangn of
feedback }:ft ;C*_le;ck :mphﬁer with a feedback return F, ‘,. =00 lufl?husastha
18 Ay Fy g0 = (10,00040.01) = de T > the
7.13a, the feedback amPli(;‘icr is not st)z(lb?el.) 100 and, according to Equation

To make the feedback ampli
1 ced| mplifier stable, lead-lag com ion i
(I:ir?tua.non 7.43a.1.s introduced with f, = | MHz. It clz:fxnsk::l(s)ﬁ A
erion of stability, Equation 7.28, becomes approximately o that the

S 1 MHz
Jo 2 Ay Fyq. 3= 100 35— = S0 MHz,

R,I=t wzlvoa(s) s:::: fm _E):llmple 7.7 that fy = 94.1 MHz when R, = 19809 and

of e C,a ne ,;0—_d .5 MHz when R; = 19,800 Q and R, = 200 Q. Since both

amplier provide fy > 50 MHz, they both result in a stable feedb k
; however, the latter case provides a smaller margin of safety "

75 Conditional Stability

All £ i i

o tﬁ:dl;z;l; ::ir(\)p;l;t]’lers c01.1s1dered .thus far could be made stable by lowering A4

Contiter prationa a;n[glﬁer whlle. holding all other parameters constandtc

o Figure, how Thé z;' eedback aryphl?er characterized by the Nyquist diagran;

Doint b . t.h ine of AF) in F_:gure 7.1¢ does not encircle the —1 +
H ce, the feedback amplifier is stable. However, if 4,_ is lowered +tljl(e)

diagram shrinks and th i
Ty e unstable feedback amplifier characterized by Figure

7.6 PHASE MARGINS 99

k amplifier characterized by the Nyquist
diagram of Figure 7.1c requires not only that A, be below a certain va!ue, but
the stability is also conditional on not having Ay, too low. Such amplifiers are
called conditionally stable, as opposed to absolutely stable feedback amplifiers —
such as characterized by the Nyquist diagram of Figure 7.1a, where the
magnitude |4Fy| <1 for all frequencies when the phase ¢ = —180“. Next,
feedback factor AFy of a conditionally stable feedback amplifier is described.
Consider the amplifier with the feedback factor
— AchN,dc [] +.|f/(j(/w)]2 (75”
O+if P LT +iflfew 1
and w > 1 are positive real numbers to be specified
later. AFy of Equation 7.51 includes the responses of three identical lag

networks with corner frequencies fy, as well as of two identical lead-lag
networks with f, = fo/wand fy = fcw- Such feedback factors occur in systems

that include more than one operational amplifier.
When f, « fc/w, Equation 7.51 can be approximated for f
= éf‘,‘FL"‘si [l_i.l,f/_(fﬂ]‘ (1.52)
Gf/A)? LY +iSew)

Also, if AgcFy 4. is chosen as

Thus, the stability of a feedbac

AFy

where crossover frequency Jc

= fe/w as

AFy

3
AgFrae = % % (7.53)
Equation 7.52 becomes
1 1 1 +jf/(fc/W):\2
AFy = — | e | - 7.54
NG [ T+ i e (.54

Figure 7.5 shows the Bode plots of Equation 7.54 with w = 5.

It can be shown (see Problem 7.19) that, for any value of w, at f = f¢ the
magnitude of AFy of Equation 7.54 becomes 1 and the phase of AFy becomes
—90° — 4 arctan(1/w). It can also be shown (see Problem 7.20) that the feedback
amplifier is stable if w > 1 + \/E = 2.41 in Equation 7.54. The upper and lower
limits of Ay Fy o required for stability are the subject of Problem 7.2L

7.6 Phase Margins

The Nyquist criterion has been found to be a useful tool for determining the
limits of stability, and safety margins could be provided by staying away from
these limits. However, the Nyquist criterion does not always provide a reliable
indication of safety margins.
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G
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FIGURE 75 Bode plots of AFy of

M‘Bb‘IOMFN‘lﬂ {AFN Equation 7.54 with w=35§; ¢ =

100 1000 7,
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EXAMPLE 7.9. The frequency response o[ an amphﬁer conmslmg of two
transistor stages is represented by Equation 7.5. According to the Nyquist
criterion, such an amplifier is always stable. However, in reality a transistor
amplifier stage also has an excess phase that makes the actual phase 1 %-10%,
more negative than the phase computed from Equation 7.5. Thus, the actual
phase may become several degrees more negative than — 180°, and the feedback
amplifier may become unstable.

An alternative approach imposes a requirement on the phase that is stricter
than the Nyquist criterion. It requires that, at a frequency where [4Fy| = 1, the
phase ¢ should be more positive than or equal to —180° + @y, where ¢, is
positive. Thus, it is required that

Puar =1 = — 180° + @y, (7.55)

where ¢, is a positive phase margin that is typically between 30° and 60°. Note
that Equation 7.55 reverts to the Nyquist criterion if ¢, = 0.

As was also the case for the Nyquist criterion, phase margins can be directly
evaluated graphically by use of Bode plots. In what follows here, phase margins
of several simple transfer functions are considered.

7.6.1 Two Lag Networks
The transfer function of Equation 7.5 consists of two lag network responses and

is always stable according to the Nyquist criterion. Its phase ¢ can be written
(see Problem 7.24)

¢ = [AFy = —arctan <L) — arctan (f ) (7.56)
h S

To find the frequency where |4Fy| = 1, the phase given by Equation 7.56 is
substituted into Equation 7.55, resuiting in

—arctan (;1) — arctan (}é) = —180° + @y (7.57)

It can be shown (see Problem 7.25) that, for 0 < ¢, < 90° and f > 0, f can be
expressed from Equation 7.57 as

relts f’ ot gy + \/(f‘ % cot qm) + fifa- (7.58)
The magnitude |[4F ) can be written, from Equation 7.5,
1 1
; (7.59)

AFy) = AgcFya
N A%
\/”(fl) ﬁ*(f;)
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hence, the criterion |AFy| = 1 becomes

AgeFyge= \/I—(T)Z \/\f—z
’ v b+ Z) (7.60)

with f given by Equa"on 7.58. Equatlons ]58 and 7.60 can also be CO"lblﬂed as

Auise < Uacbradu = [1+(L) Ji 4 (L)
act N dchmax + 7, 1+ (Z) ) (7.61a)
N+ f;
f= 2 Si +
3oL gy + /( ! 5 J2 ot (pu)2+f1fz. (7.61b)

EXAMPLE 7.10. F
<& 1.10.  Feedback fact 3
by Equation 7.5 with /, actor AFy of a feedback amplifier is represented

. =1 MH = .
permitted value of Ay Fy 4, for <puz :T;o«;fz =4MHz. What is the maximum

Using Equation 7.61b,

1
j: MHZ+4MHZCOt4S°+ lMHZ+4MHz 2
2 ﬁ“comsf’) +(1 MHz)(4 MHz)

=5.7MHz
By use of Equation 7.6la,

(AchN.dc)mlx = 1+ (w 2 1 5.7 MHz\2
1 MHz vz ) =10

-_ Y

where

In the limiting case when one of the

. cor jes i
other, Equation 7.5 can be written ner frequencies is much lower than the

— AaFra
GfIfXY +jf1f) (7.62a)

Note th.at corner frequency f, was in
emphasize that in Equation 7.62a

N

troduced instead of f, of Equation 7.5 to

o Jo< fi. (7.62b
¢ phase of Equation 7.62a can be written -

¢=/[AFy= ‘90°—arctan7f—_

. (7.63)
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To find the frequency where |AFy| = 1, the phase given by Equation 7.63 is
substituted into Equation 7.55, resulting in

—90° — arctan (—}i) > —180° + @u, (7.64)

1

which can also be written

f < ficot@y. (7.65)
The magnitude |AFy| can be written, from Equation 7.62a,
1
|AFy = AgcFrN.ac _fg . (7.66)
T s (L)
h

The combination of Equations 7.65 and 7.66 with |4Fy] = 1 results in

AucFuse < (acFradn = S oot u T H 000w 060
V]

= S
EXAMPLE 7.11. A Type 9914A wideband hybrid operational amplifier is
characterized by feedback factor AFy that can be approximated by Equation
7.62a with 4,4, = 5000, fo = 0.5 MHz, and f, = 50 MHz. What is the maximum
permitted value of AgcFy ac for @y = 4577

Using Equation 7.67,

50 MHz

F =" cot45°/1 + cot?45° = 141.4.
(AacFn acdmax 0.5 MHz cot + co

Thus, the maximum permitted value of Fy 4 18

1414 1414

—— =——= 0028

Ay, 5000

and the minimum permitted value of the resulting amplification My 4 18
approximately

(FN.dc)max =

1 1
My g ————— = o 35,
( N.d:)mm (FN,dc)max 0.028 5

The phase margins may be improved by the introduction of lead-lag
compensation of the form of Equations 7.43a-d with f; < fy. For example, if
is chosen to equal f, of Equation 7.62a, the resulting feedback factor becomes

AchN.dc (7 68)

ST TATESTIIAY



104 STABILITY OF FEEDBACK AM  FIERS

and Equation 7.67 becomes

AchN“’c < (AchN,dc)nux = %CO[ (PM\/IHT(/)M (7 69)

0

E\\‘\*\\
XAMPLE 7.12. Feedb

L ack return Fy of -

frequ = ~ of Example 7.11

£ iesom,yu'"ldepe“"em Fya. to the Fy given by E Jit'ehanged o
L zand fy = 250 MHz. Thus, for ¢,, = 45° quation 7.43a with

(AaeFya. - 250 MHz o
FN,dc)max 05 M SOt 45 V1 + cot?45° = 707,
707 707
(FN. c) ==
dc/max Adc 5000= 0.1414
and
My go)min = ! ! 7

Fradme 01413

Note that this is a signi i
b significant improvement over the (M N.acmin = 35 of Example

According to E i it i
quation 7.69, it is desirabl

oo A rable to have f;, as | ible i
constra(i)n:; ;bl;e5 to use a large value of 4,.Fy 4. Ho{v‘éver at;ﬁ: 5;']:058;516 P
i ractioe theyl' Qltlat_lons 7.43a—d. It will now be assumed, a,md seen le to So s
e oo ol:]l:: :t::::‘: on theE choice of feedback capacitance Cr doite):’l:rl;?:

hoi \ es in Equations 7.43a- is elimi l
combining Equations 7.43b, 7.43c, and 7.43d, :es(lix'lt'il:;“:n Cr is climinated by

i 1
—=F il .
% N.de (fl. + 21tRFC,), (7.70)
the required value of Cr is given, from Equation 7.43c, as
Cr=ri_.
TR, (7.71)

To have f, 1
v large, 1/f, of Equati
e, v quation 7.70 has to be small. Wi
x g(}ven I'!Nf: ctl;:;szr:ﬂt; equal_ a corner frequency of the operatioimz;l z\?x:;}lliﬁce(:";er
de remaining avenue to red i i o
roduoe R ning o reduce !/ f,, in Equatio i
oneratin ;:al ,a n: (i?f‘il be seen in Fi igure 74 that capacita:,xce C,q is tlllens;.rzo ;S lt10
e pnal an cx:d ;;] ;nput capacitance and of stray capacitances; henc(:: lCe
W a minimum val i ’ ' to
tonne ' alue. This leaves feed i
uced. Resistance Ry can be expressed from Equation ‘;a;:(l)( ;:Slswr Reto

RF = 1 ( fL _ l
2C1fy \Fuaefu ’ (1.712)

where R 2
by Equation N
given output vo

the operational
will be discussed in Chapter 10.

e
EXAMPLE 7.13. In the feedback amplifier of Example
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ote that the value of Rg given
se the current required for a
t capability of the output of
perational amplifiers

> 0 as a consequence of Equation 7.46. N
2 may be impractically low, becau
ltage swing may exceed the curren
amplifier. Output current limitations of o

7.12, f. = 50 MHz,
Also, C, = 10pF. Thus, ac-

fv = 250 MHz, and Fyqoc = (Fyadma = 0.1414.
cording to Equation 772,

1 50 MHz
Ry = | o — 1)E 132Q.
22(10 pFX50 MHz) \ (0.1414)(250 MHz)

The required value of Cy, from Equation 7.71, is

1

-~ 24pF.
Cr = 13200 MHz) "

The value of R, can be obtained from Equation 7.43b as

Fue 0.1414

__TNds poo T 132Q= 22Q
I—FN.chF 170.141413(2 29

R,

Thus,
R+ R, =132Q+ 220 =154Q.

is resistance is sufficiently low to limit the

As will be seen in Chapter 10, th
ybrid operational

voltage swing at the output of the Type 9914A wideband h
amplifier.
a“a - [

Consider the amplifier with the feedback factor

AgcFnac 1 + 3 felw)
AFy = 8. : i 773
S TP NTITA ST TN a7y

uency fcand w > lare positive real numbers to be specified
udes the responses of two identical lag networks
11 as of a lead—lag compensation with fo= felw
feedback amplifier is always stable

where crossover freq
later. AFy of Equation 7.73 incl
with corner frequency f, as we
and fy = few. Note that the resulting

according to the Nyquist criterion.
When f, « f/w, Equation 7.73 can be approximated for [ = fe/w as

_ AgcFrnac 1+ /Uc/W) (1.74)

Fy=—"—rs — .
AFw=GA7107 T+ if N ew)



106 STABILITY OF FEEDBACK AN  IFIERS

Also, if Ay Fy 4. is chosen as

12
Ay Fy 4o = v (7.75)
Equation 7.74 becomes

L iU 076
YT w G Vi few)
Figure 7.6 shows the Bode plots of Equation 7.76 with w = 3.

It can be shown (see Problem 7.32) that, for any value of w, at frequency f the
magnitude of AFy of Equation 7.76 becomes 1 and the phase of AF, becomes
~—90° — 2 arctan(1/w). Thus, by use of Equation 7.55,

1
~90° — 2arctan (;) > —180° + @y; (7.77a)
hence,

1
@ < 90° — 2arctan (;)

(7.770)
Also, from Equation 7.77b,
1 + tan (‘p—?_-”)
we—— L. (1.78)
1 —tan (925)

EXAMPLE 7.14. In Figure 7.6, w = 3. Thus, according to Equation 7.77b,

@y < 90° — 2arctan G) = 53.1%

that is, the Bode plots of Figure 7.6 satisfy all phase margin requirements of

@y < 53.1°. If the phase margin requirement is ¢, = 45° then, from Equation
7.78,

45°
!+tan(—)
W 4;, =l+(ﬁ”)=1+ﬁ=2.41;
l—tan(—) 1—(\/5_ 1

2

that is, any w > 2.41 satisfies the phase margin requirement of ¢, = 45°.

60 dB|—

40 dB

20 dB

0d8

-20 dB —
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~40 dB —
-60d8 L
10 100 1000
® 0.01 01 l____J_—y—f—
| | L fe
0°
-45° }—
-90°1—

-135° p—
-180°

i i =3 G=
FIGURE 7.6 Bode plots of AFy of Equation 1.76 with w=3

204dB logmlAFNi and ¢ = lAFN
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:;::.Zt Three Lag Networks

€ tran: i i i

s limiu's;: i\;ncuon of Equation 7.6 consists of three lag network responses, |

other ! se when one _of the corner frequencies is much lower th the
» the transfer function of Equation 7.6 can be written an the

=,—~A‘°FN"'°\_
S IXY + 511X + 51/ 1) (7.79a)

AFy

Note that corner fre y i
i quenc S i i
v u. f;)‘ wa lntroduced nstead Of‘f3 Of Equatlon 1.6 to

- Jo< Sy (7.79b)

Jo< . (7.79)

The phase of Equation 7.79a can be written
¢ =/AFy= —90° _ arctan<£ - )
[AFy 7. arctan 72) (7.80)

To find the fre
! quency where [AF,| = :
substituted into Equation 7.55l, reglllltinlg’ ltrl: ® phase given by Equation 7.80 s

—90° — arctan (L) - L °
T arctan 7 2 ~180° + ¢,,. (7.81)
It can be shown (see Problem 7.35

. t °
expressed from Equation 7.81 as ) et for0.< ou < 90" and J>0.J cane

Lt )

S < - t :
an @, + 3 tantpu> + fifs. (7.82)

L+ /)
2

Also, by equating |[4F al = 1, it follows from Equation 7.79a that

AdCFN.dc < (AchN,dc)max = “/f—;) , 1+ (}f_)z ,1 + (%)2, (7838,)
1 2

=_f1+fz fi +
f 3 tan ¢, + ( L 5 f2 tan (pu)z + fife (7.83b)

where

S
EXAMPLE 7.15. A Type 2539 wideba
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;;A(;norlriitrhic operational amplifier is
characterized by A, = 30,000, fo =20 kHz, and f, = f, = 300 MHz. The
se margin is specified as @y = 45°. Thus, Equation 7.83b becomes

pha
_ _300MHz +300MHz o
2
2
+ \Km MHz ; 300MHz o 45°) + (300 MH2)(300 MH2)
= 124 MHz,
and Equation 7.83a becomes
124 MHz 124 MHz \? 124 MHz\?
- Z o vz 2T = 7289
(AacFn.admnx = 57 MHz (300 MHz) (300 MHz)
Hence,
1 Age 30000 _

(Macmio ™ (F oo 7259~ 7259

Phase margins of transfer functions consisting of three lag network responses
may be improved by lead-lag compensation, as was also the case for transfer
functions consisting of two lag network responses. If f is chosen to equal f; in
Equation 7.79a, the resulting feedback factor becomes

=— Af‘°F”"‘° - , (7.84)
GITSNY+ 3 f11X0 +3111o)

AFy

and Equations 7.83 are applicable with f,, substituted for f,. However, lead-lag
compensation relocates only one corner frequency and its effects are limited for
transfer functions with three lag network responses—especially at low values of

MN.dc'

EXAMPLE 7.16. A Type 2539 wideband monolithic operational amplifier is
characterized by A, = 30,000, f, =20kHz, and f, = f; =300 MHz. The
phase margin is specified as @) = 45°. Lead-lag compensation is introduced
with C, = 1.8 pF, R, = 1509, and R, = 75Q. Thus,

R -1 75Q !
Mo~ -1 ! =] =3
N (Frao) (RI T Rr) <7SQ + 150 Q) 3
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The value of capaci
pacitance C; = 1.8 pF, and /i
. R L= /i = 300 MHz. Thus

Comsmt oo L
2nRef,  2n(150 QY300 MHgZ) — 2368 PF
and
fU = RR% - 1
2L (¢ (150 QY75 Q
F+ C 2 \)
R, ¥R, ) a1 755 (5368 pF + 18 pF)
= 596.45 MHz.

Also, i
0, by use of Equation 7.83b with Ju substituted for I

f=_ 300 MHz + 596.45 MH2
2

. /(300 MHz + 59645 MHZ\2
— ) + (300 MHz)(596.45 MHz)

= 168.09 MHz.

Ilence’ b’ use of Equatlo ;‘833 “lth ubstl"]ted ‘01 s
n fU s f
2

(AaFya).. - 16809 MHZ <16809MH 7
" |, (180 MH; 168.00 MHz 2
0.02 MHz 300 MHz ) T+ (596.45 MH;)

= 10009,
Thus,

(Aay, = AocF o _ 10009
Fy g 1/3
This is greater than th i
. € specified 4, = 3 .
satisfies th ' . 4c = 30,000; hence, .
phase marziliJ ?ase [Margin requirement of ¢,, = 45°. Nott}::e {.eedba(:k amplifier
t a val cquirement would not be satisfied if 4  inoreanry that this
ue of 30,030. Also note that ¢ Were increased by 0.1 %

= 30027,

Re+ R =150Q + 750 = 225

AS will be seéen in Chaptel l(), lhls lOW value of resistance pr ()VldeS a Slglllﬂcallt
]llnlta[lon on the outpul VOltage swmg of the lype 2539 Wldel)all(l (m()h(lnc
m .
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Resulting bandwidths of feedback amplifiers will be discussed in detail in
Chapter 8. It will be seen that an operational amplifier built with a given
technology can be optimized to attain a maximum resulting bandwidth for a
specified resulting amplification M 4. For example, the Type 2539 yvidcband
monolithic operational amplifier of the preceding two examples is optimized for
resulting amplifications My 4 in the rough vicinity of 10. However, its design
could be changed to permit its use as a voltage follower (see Problem 7.37).
Hence, one way out of the limitations on My 4 in the preceding two examples is
to find an operational amplifier that is more suited for operation at a low value
of My 4c—such as the operational amplifier of Problem 7.37. However, if such
an operational amplifier is not readily available, there remain two other
approaches for the improvement of phase margins for low values of My gc.

Consider the use of the voltage divider network of Figure 6.7 (page 66) asa
feedback network. However, unlike in a lead-lag compensation, an f; > f, is
chosen in Equation 6.19a. Thus,

L+iflfu
ooy, LT (7.85a)
N N yiflf
where
R,
__R 7.85b
Fy . R; + R, ( !
1
ot 7.85
fU anFCp ’ ( C)
and
1
L= ReR . e
FAM
C C
2nRF+R,( rtCo)

Note that subscripts L and U are interchanged from those of Equation 7.43a
describing lead-lag compensation, because here the corner frequency in the
numerator is higher than the corner frequency in the denominator. For this
reason, this compensation is called lag—lead compensation (other names are also
in use). Also, Equations 7.85b—d do not limit the ratio fy/f, > 1 because f; can
be decreased by increasing C, in Equation 7.85d without altering Sy in Equation
7.85c.

Frequency response characteristics of Equations 7.85a—d can be illustrated
for f,/f, = 100 using the Bode plots of Figure 6.2 with f, substituted for f;, fy
substituted for f;, and 20 dB log, o(Fy 4.) added to the labels of the vertical axis.
At frequencies of f > fy, feedback factor Fy= Fuacfi/fu =Fy.acful f1);
hence, Fy is reduced from its dc value by a factor of fy/fy > 1. Also, in this
frequency range, the phase of Fy approaches zero; hence, it does not alter the
phase of the operational amplifier.
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Consider the case when f;, is much lower than the frequency where /A
= —180° + ¢,,. In this case, for the purpose of phase margins, Fy 4. is replaced
by the lesser Fy 4./(fy/fy), because Fy= Fy .. /(fy/f.) and [AFx= [A at the
frequency where /4 = —~180° + ¢,,. Therefore, Fy 4, can be chosen greater, and
My 4. can be chosen smaller, than would be the case without the factor

folfu> 1

EXAMPLE 7.17. A Type 2539 wideband monolithic operational amplifier is
characterized by A4, = 30,000, f, = 20kHz, and f, = f, = 300 MHz and is to
be used as a feedback amplifier with My 4= 1. The feedback network described
by Equation 7.85a is used with Fy 4, = 1, f; = 20 MHz, and fi = 2MHz. Thus,
the feedback factor can be approximated for frequencies of f > f, = 20 kHz as

_ AscFnadl +if1 1)
G/ foX + 314 + i)
_ (30,000X1X1 + jf/20 MHz)
B (if/20kHz)X1 + j{/300 MHz)*(1 +jf/2MHz)"

AFy

Bode plots of the exact AFy are shown in Figure 7.7. Note that |AFy| = 1ata
frequency of approximately 60 MHz, and f,, = 20 MHz is less than this only by
a factor of 3. However, the resulting phase margin is a reasonable @y = 51°

The feedback network is realized by that of Figure 7.4 with R ; an open circuit
and with an arbitrary choice of Ry = 1kQ. Thus, from Equation 7.85c,

1 1
Cr = R Ty = I 0 Mg = 8P

F.

Also, for R, - o, Equation 7.85d becomes

1

Ju= 27R,(Cs + Cp)°

hence,

1

1
Ci=rr - Cp=—ooo =~
"7 2R, T sk Muz) ~ SPF= T2pF.

The resulting feedback amplifier provides a resulting dc amplification of
My,4. = 1/Fy 4. = 1. However, M, becomes different from 1 at frequencies
greater than or equal to f, = 2 MHz. For this reason, the circuit is frequently
not called a voltage follower, but only a unity-gain feedback amplifier.
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FIGURE 7.7 Bode plots F = 20dB logrolAFn| and ¢ = [AFN in Example
117.
e

A disadvantage of lag-lead compensation is that the rcsultilng ampliﬁcagc:g
i i , which is very low compare!
starts changing from its dc value at frequency L o itz as compared to

ies of the operational amplifier: f, ‘ .
l}lefog‘(;lgl;\;r:guf: c;*lcxample 7.17. This limitation will be discussed further in
L=
8. . . .
ChSatLi)ltle;nother approach for obtaining low values of resulmkll_gl argp};?;;:gtu:::
i isti tenuator, while bui

is to attenuate the signal by a resistive at ’ :
?e,!e’:‘lti;ck amplifier with a higher My than requlrgd. erde as thxis nslay §e::‘rsrx,7 1;
has some advantages in inverting feedback amplifiers discussed in Sections /.

and 8.5.
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7.7 Inverting Feedback Amplifiers

Thu§ far, _the discussions of stability and phase margins have been based on a
noninverting feedback amplifier, as in Figure 7.4. An inverting feedback
amplifier is shown in Figure 7.8.
an.urefs 7.4 and 7.8 differ in the location of voltage source V,,. Therefore, the
two .CIl'CI.uFS become identical when V,, = 0. Since stability and phase ma‘rgin
considerations have been independent of magnitudes of input voltages, it would
seem that they would be equally valid for both Figures 7.4 and 7.8. This is
completely correct in principle; however, a practical difference arises from the
effects of nonzero source impedances of voltage sources V,,.
'Thc stability and phase margins in the noninverting feedback amplifier of
Figure 7.4 are quite insensitive to any impedance in series with voltage source
Vio- In contrast, it was seen that stability and phase margins can critically depend

on resistance R, therefore also on any impedance in series with voltage source
Vix in Figure 7.8.

FIGURE 78 An inverting feedback amplifier.

Tl?c situation is especially critical when ¥, in Figure 7.8 is at a remote
location and is connected through a transmission line. When the termination at
?he sending end of the transmission line is not close to its characteristic
impedance at all frequencies, the impedance presented by the transmission line
at tpc receiving end—that is, at the inverting feedback amplifier—is dependent
on lts length and on frequency; hence, it cannot be relied on. In such cases
stablhty.and phase margins have to hold up even when a large impedancé
appears in series with voltage source ¥, in Figure 7.8. This leads to the circuit of
Figure 7.9, where stability and phase margins can be assured by a suitable choice
of R,, R,, agd R;. In practice, these resistors are chosen such that stability and
phase margin requirements are satisfied for any resistive source impedance

Rwur:e'
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FIGURE 7.9 An inverting feedback amplifier that is suitable for operation
with any Ryource-

EXAMPLE 7.18. A Type 2539 wideband monolithic operational amplifier is
characterized by 4, = 30,000, fo = 20kHz,and f, = f, = 300 MHz. It is used
as an inverting feedback amplifier in the circuit of Figure 7.9 with C; = 1.8 pF,
Cr = 3.5368 pF, R; = 150Q, and R, + R; = 75Q. Thus, when R gy = o0 in
Figure 7.9, the circuit becomes identical to that of Example 7.16; hence, it
satisfies a phase margin requirement of @ = 45°.

When R, # o, it lowers the value of R, below R, + R; =75Q. This
leaves the value of f; unchanged. However, it increases fy, thereby increasing
the phase margin. Also, it lowers Fy 4, thus increasing My ¢c= 1/Fy.4. and
further increasing the phase margin. Therefore, a phase margin requirement of
@y = 45° is satisfied with any value of Ry and R,

In addition to stability and phase margin, the choice of resistors Ry, R, and
R, is also governed by other requirements such as the resulting frequency
response, transient response, and input impedance of the feedback amplifier. For
this reason, further discussion of Figure 7.9 is postponed until Chapter 8.

PROBLEMS

7.1  Show that the Nyquist diagram of Figure 7.2 is a circle that hasa radius of
AyoFy.ac/2 and has its center at Ay Fy /2 + j0. [Hint: Multiply the
numerator and the denominator of A in Example 7.1 by {1 ~jf/fo) and
show that the resulting denominator is real; then express Im(AFy) as a
function of Re(4Fy).]
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72 Derive Equations 7.8, 7.10, and 7.12.

73 Aninternally compensated operational amplifier can be characterized b
an A of the form of Equation 5.15 with Si=10Hz f,=f,=10 MHy
and',f‘,c = 200,000. Show that the operational amplifier is stable withouz{
additional compensation when it is used as a voltage follower.

74  Derive Equations 7.17 and 7.22.

15 :’\n opetrational amplifier is characterized by an A4 in the form of Equation
A.23 with f, = 1 MHz, f, = 4MHz, f, = 40 MHz, f4+ = 100 MHz, and
¢c = 4000, Sketch the Bode plots of AF ~if Ay Fy 4. = 40. Use the Bode

plots and i i i
el sketch an approximate Nyquist diagram. Is the system

76 An (?perational_ampliﬁer includes a frequency-independent time delay
and is characterized by an 4 = 1000 e ~///o/(1 + jf/f,). Sketch the Bode

plots of AFy, assuming Fy = 1, and f,/f, = 1, 100, and i
. ’ s =1, X 10, .
stability conditions. D/Jy 0,000. Discuss

. .
7.7 Use the methods of Appendix B and show that the fractional error of
Equation 7.22 has a magnitude of less than Solfi + fol fa.

*78  Derive Equations 7.24 and 7.26.

.. B p]OtS of AFy of Exaﬂl le 7.5 SIn, CCwWise
19 SketCh the Ode N p! using pie ise linear

7.10  Sketch the gain plot of AF i ing pi
> '~ of Problem 7.9, but without i
linear approximation. oW feing piecewise

7.11 Denllonstltate that the stability considerations derived in this chapter for
nomx?vertm.g feedback amplifiers can be applied to inverting feedback
amplifiers if F;,./(1 + F;4.) is substituted in place of Fy,.. [Hint:
Express Fy 4. and F, 4, by resistors Rpand R,.] “ .

. .
712 An approximate rule of stability states that a system is stable if the Bode

plot of the gain of |4F), or of |[AF,/(1 i
| R 1/(1 + F})|, crosses the 0-dB axis with a
sfl(;p; that 1s not steeper than —40 dB/decade. Show that this rule is exact
i N is of the form of Equation 7.6 with fi < f5 < f5. Show that the
:rror resgltmg f{)o{n the a_pplication of this rule in the maximum allowed
sﬁcoFNﬁ: lf (;35 f,lfAFN 1s in the form of Equation 7.6 with h=fh=fs
oW that the rule may break down completely i '
discussed in Problem 7.6. pietely i case such as the one

7.13  Derive Equations 7.28, 7.30), 7.32, and 7.34.
7.14  Derive Equations 7.40 and 7.41.
715 Verify Equations 7.43, 7.45, 7.46, and 7.47.

*Optional problem.

1.16

717
7.18
7.19

720

7.21

7.22
7.23

7.24

125

7.26

727
7.28

129

7.30
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Sketch into Figure 6.5 the Bode plots of Example 7.7 with
f, = fo=1MHz and f, = 61.5MHz.

Repeat Example 7.7 with C; = 10 pF, 50 pF, and 100 pF.
Repeat Example 7.8 with C; = 10 pF, 50 pF, and 100 pF.

Show that, for any value of w, at f = fc the magnitude of AFy of
Equation 7.54 becomes 1 and the phase of AFy becomes
—90° ~ 4 arctan(1/w). [Hint: To find the magnitude of the fraction, divide
the magnitude of the numerator by the magnitude of the denominator. To
find the phase, use the identity arctan x = 90° — arctan(1/x), which is
valid for x > 0.]

Show that the feedback amplifier described by Equation 7.54 is stable if
w> 1+ /2 = 241. [Hint: Set the phase of AFy to — 180", and use the
identity tan 2x = (2 tan x)/(1 — tan®x).]

Use Figure 7.5 to show that, for w = 5, the feedback amplifier described
by Equation 7.52 is stable if Ay Fyge < 84f2/fIw? and if
AgoFyac = 01272/ f3w?. [Hint: Consider that Figure 7.5 shows Equation
7.52 with the Ay Fyq. of Equation 7.53, and set [AFy|= 1 at the
frequencies where the phase is —180°.]

Show that the phase margin in Figure 7.5 is ¢y = 44.76°.
Show that the phase margin of the feedback amplifier described by

Equation 7.54 is @, =45° when w=1+ \/i +./4+2/2=5027.
[Hint: Use the identities tan x = (sin x)/(cos x), tan(x/2) = (sin x)/
(1 + cosx), 1+ tan®x = l/cos’x, and express l/w =tan(45°/4) as a
function of tan 45° = 1.]

Derive Equation 7.56 from Equation 7.5. [Hint: Note that for any
complex W, X, Y, Z, /WX = /W + [Xand [Y/Z =Y — [Z]

Derive Equation 7.58 from Equation 7.57. [Hint: Use the identities
tan(x + y) = (tan x + tan y)/(1 — tanx tany) and cotx = tan(90° — x);
also, assume at the outset and prove at the end that i< fif>]

Verify the results of Example 7.10.
Sketch the Bode plots for the feedback amplifier of Example 7.10.

Sketch the Bode plots for the feedback amplifier of Example 7.11. What is
the phase margin if My 4 = 50?7

Sketch the Bode plots for the feedback amplifier of Example 7.12. What is
the phase margin if My 4, = 10?

Verify Equations 7.70 and 7.72.
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7.31

732

7.33

134

735

7.36
7.37
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Show that when the feedback network of Example 7.12 is realized by that
of Figure 74 with Fy4 =01 and C,=10pF, then C;=10 pF,
Ry= 3183Q, and R, = 354Q.

Show that, for any value of w, at f = f. the magnitude of AFy of Equa-
tion 7.76 becomes 1 and the phase of AFy becomes —90° — 2 arctan(1/w).
[Hint: To find the magnitude of the fraction, divide the magnitude of the
numerator by the magnitude of the denominator. To find the phase, use
the identity arctan x = 90° — arctan(1/x), which is valid for x > 0.]

Derive Equation 7.78 from Equation 7.77b. [Hint: Use the identity
tan(x — y) = (tan x — tan y)/(1 + tan x tan y).]

Use Figure 7.6 to show that, for w = 3, the feedback amplifier described
by Equation 7.74 has a phase margin of at least 45° if AgcFyac <
2.7f/fiw and if Ay Fy o > 0.37f%/f3w. [Hint: Consider that Figure 7.6
shows Equation 7.74 with the A, Fy 4. of Equation 7.75, and set |AF |
=1 at the frequencies where the phase is —180° + ¢, = — 135°]

Derive Equation 7.82 from Equation 7.81. [Hint: Use the identities
tan(x + y) = (tanx + tan y)/(1 — tanx tany) and cotx = tan(90° — x);
also, assume at the outset and prove at the end that < fifs]

Repeat Example 7.15 with ¢,, = 30°, and show that (M N.admin > 2.6.

Refer to the compound lag network described in Example 6.7, and show
that with R, =294 Q and C, = 18 pF the overall amplification of the
operational amplifier, including the additional corner frequency of
300 MHz in the footnote to Example 6.6, becomes
30,000

(I +jf/43kHz)1 + jf/300 MHzX1 + jf/1380 MHz)
Also show that, when used as a voltage follower, the resulting feedback
amplifier satisfies
(@) a phase margin requirement of ¢,, = 60°,

(b) a phase margin requirement of @,, = 45°, even if Ay, is raised from
30,000 to 60,000.

CHAPTER 8

Frequency Response and
Transient Response of
Feedback Amplifiers

Chapter 7 covered stability conditions and margins of feeqback amplifiers. t:I‘hr:s
chapter evaluates the frequency responses am'i the _transnent rcspor}seé }? tt 3
resulting amplifications, My and M, as well as input 1rppedances. Asin ap cr‘
7, the discussion here is also based on noninverting feedback amplifiers;
inverting feedback amplifiers are discussed in Section 8.5.

8.1 Operational Amplifiers with 4 = Ag. = ©

This simple case of the ideal operational amplifier was imroQuced in Chaptef' 3.
With amplification 4 = co at all frequencies and at all times, the resulting
amplification My = 1/F y. This limiting case clearly shows the effects of feedbe}ck
return Fy on the frequency response and the transient Tesponse of the respltmg
amplification M; this relation will be obscureq with the introduction of
frequency-dependent amplifications A in later sections.

8.1.1 Frequency-Independent Feedback .
This is the simplest possibility, described by Equation 3.8, whereby

1 1 81
MN=MN.dc=F;=F~dC ®.h

at all frequencies and at all times. This would bc' an ideal response for
amplification without altering the shape of the input signal. Also,. unattamat_ﬂe
as it is, the limit of Equation 8.1 provides a useful basis for evaluating properties
of practical feedback amplifiers.

119
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812 Lead-Lag Compensation
In lead-lag compensation,

L+jf/f,
Fy=Fy4 —-2t
N = e T (8.2a)
where
fo<Jo. (8.2v)
Lead-lag compensation can be implemented using Figure 7.4 with Fyaeo Iy

and fy given by Equations 7.43b-d. When A :
. A ‘ - = A4, = 0 at all fre
resulting amplification of the feedback amplifier d comes requencies, the

=2 1Hii_ 1+iflty
Fy Fyge V+if/fe V1 4if/f

. 2Eq_\:;uonf.3 can be illustrated for f/f; = 100 using the Bode plots of Figure
-2 Wi f_, =fi, f2 = fu, and 20dB log,, My 4. added to the labels of the
vertical axis Q, which now represents the resulting amplification M,. Thus, M
startg decreasing from its dc value at a frequency of f,. Note thI:t i}/ i; th:
loca!lon of tht? corner frequency that was cancelled from feedback factor ;F by
the mtroductlo{x of the lead-lag compensation in Chapter 7. For cxarrfple
Ju=300MHz in Example 7.16; thus, the decrease of My resulting from the:
frecg;;ncy :,iepcn:jiencc of Fy starts at 300 MHz.
en W, and V,,, are represented in i i i i
Laplace transforms can be wl:itten, by uset(l)l: l;:::nu:.tﬁ::lm;.g,l’ the ratio of their

8.3)

LWl _ L4y
U S T (8.4a)
where
o = 1
v= 2xf, (8.4b)
and
o = 1
L _i’f—f:.' (8.4c)

Note that f, > f;; hence, 1, < 7,. Al i
: : ; 2 . Also, when input a1
function with magnitude Vo, e put voltage W is a step

V,
LV =2
{Via(0)} P 8.5)
and
_11+sty
g{ Voul(t)} = ; 1+ st MN,A::V0~ (86)
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The inverse Laplace transform of Equation 8.6 can be written for times t > 0 as

- 32) e”"L]. 8.7)
TL

EXAMPLE 8.1. In Equation 8.7, 7, /1y = 10. Thus, 1y/7, = 0.1 and Equation
8.7 becomes

Voul®) = MN.d::VO[l - (1

Voult) = My 4 Vo(1 — 09 e~ ),

A comparison with Example 6.2 shows that V. of this example can be
illustrated using Figure 6.3 with 7, substituted for (R, + R;)C and My 4. Vo
substituted for V. Thus, in this example, an initial jump of 01IMy 4. Vo 1s
followed by an exponential rise with a magnitude of 0.9M y 4 V, and with a time
constant of 7., to a final value of My 4. Vo.

8.1.3 Lag-Lead Compensation
In lag-lead compensation,

o +iflf
Fi=Frae 15177, (882
with
o< o (8.8b)

Lag-lead compensation can be implemented using Figure 7.4 with Fy 4¢, fo,
and f;, given by Equations 7.85b—d. When A = 4, = 0 at all frequencies, the
resulting amplification of the feedback amplifier becomes

_b U Y+ V+iflf ®9)
Fy Frac U+iflfy " 1+iflfu

My

Equation 8.9 can be illustrated for f/f, = 100 using the Bode plots of Figure
6.5 with f, = fi, f» = fy,and 40dB + 20 dB log,, My 4. added to the labels of
the vertical axis G, which now represents the resulting amplification M. Thus,
M), starts increasing from its dc value at a frequency of f;. Note that this corner
frequency was a comparatively low f, = 2 MHz in Example 7.17 where, as will
be seen later, M, starts increasing from its dc value at a frequency of 2 MHz.

When ¥, and V,,, are represented in the time domain, the ratio of their
Laplace transforms can be written, by use of Equation 8.9,

"S’p{ Voul(t)} _ 1 + ST
20 - e T s, (8.10a)




122 RESPONSE OF FEEDBACK Al.. IFIERS

where

1
b ers (8.10b)

and

1
W= g (8.10¢)

Note that f; > f;; hence, 1, < 1,. Also, when input voltage V,, is a step
function with magnitude ¥,

11+STL
s 1+ sty

L{Voul®)} = My 4 Vo (8.11)

The inverse Laplace transform of Equation 8.11 can be written for times ¢ > 0 as

Vo) = [1 + (:—L - l)e""U] My oo 312

v

EXAMPLE 82. In Equation 8.12, 1, /r, = 10. Thus, Equation 8.12 becomes
Voul®) = (1 + 9~ u)My 4. V.

A comparison with Example 6.4 shows that Vou Of this example can be
illustrated using Figure 6.6 with t/1,, as the variable of the horizontal axis and
with 10My 4.V, substituted for Vo. Thus, in this example, an initial jump of
10My o ¥, is followed by an exponential decay with a magnitude of 9My 4.V,
and with a time constant of 7, to a final value of M nacVor

Thus, there is an overshoot in the resulting output voltage with a magnitude
that is (1, /ty — 1) times the final value—nine times the final value in Example
8.2 above. This overshoot can be eliminated and the frequency response can be
made flat by inserting in the signal path, preceding or following the feedback
amplifier, a voltage divider network of Figure 6.84 with R, omitted,
RsCs = 1/2nfy, and Rg(Cs + Cp) = 1/2rf,. The use of Equations 6.19a—c with
Rp = o0 shows that the frequency response of this network is

Vulf)) 1+l .
( Vin(f))nelwork VHif/f (8.13)

This frequency response multiplies the frequency response of Equation 8.9,
resulting in an overall amplification that is a constant My =My, at all
frequencies and at all times.
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82 Operational Amplifiers with A = A4 /(1 +f 110

Except for the frequency-independent 4 = A, discussed in Secufono&elr,attli)(l)sn ;S[
the simplest representation of the frequency dept'andence;‘ .9 0p ratona
amplifiers. Although too simple to fully c‘haractenz'e rez;1 }st_xcdop:herc el
amplifiers, it can be used to illustrate some basic properties. T 15. 1}51 nver re for
frequency-independent fecdback and for lag—‘lead cgmpensatlon, c;w: © ,resen-
lag compensation is not included, because it requires more complex rep
tations of A for meaningful results.

8.2.1 Frequency-Independent Feedback ) ) _ »
In the case of a noninverting feedback amplifier using an operational amplifier
that, in the frequency domain, has an amplification of

A= _ A , (8.14)
L+iflf
the resulting amplification, My, becomes
= A (8.15)
Mv=17 AFyq.’

where feedback return Fy 4 is a positive real dimcnsionlessA number. Substitu-
tion of Equation 8.14 into Equation 8.15 results in an expression for M that can
be written as

My= My .ac s (8.16a)
MU+ f/LA0 + AgeFrad)]
or as
MN.dc (816b)

My = T T Aac Miad”

where My 4. is the resulting amplification of the feedback amplifier at zero
frequency,

Adc
1+ AchN.dc .

Equations 8.16a—c are illustrated in Figure 8.1 where Bode p!ots of magmtude;
are plotted for the case of 4, = 10(:;90(9))0 with My 4, = 10,000 (i.¢., Fy 4. = 0), an
i =100 (i.e., Fyq4. = 0. .

w“lhl r;::: that th(c corn‘;:frequcncy B of [My| has a value of B = fiAgc/My qc-
For frequencies of f >» B, Myl = Ag.fi/f, independen_t of Fyq. and thu§ of
My ... As a result, the gain plot of |[M| can be approximated by two straight
lines: Myl & My 4 for f « Band |My| =~ Ay f,/f for f > B. Here B.equals the
3-dB bandwidth (or simply bandwidth) of My: the frequency at which |M N s
down by 3 dB from its value at zero frequency.

Myg= (8.16¢)
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o dBG My g = Agc = 10,000

60 dB |-

40 d8

2008 |-

0dB | 1 | 1 !

0.1 1 10 100 1000

FIGURE 8.1 Bode plots of gain
10,000 with M, = 10,000 and 100.

10,000 f,
IMn| of Equations 8.16a—c for Age =

E):AN:)PL;: 8.3.' An opera_tional amplifier is characterized by an amplification
S en by Equation 8.14 w1.th Ji=1MHz and 4, = 10,000. It is used as a
oninverting feedback amplifier with a resulting amplification at zero frequency

of My 4. = 200. The resulting amplificati i ircui
from Bguation 8,165, 1 g amplification My of the feedback amplifier circuit,

e My, _ 200
V+iffiAac/Mn o)~ 1 + jf/[(1 MH2ZX10,000)/200]
200

T 1+jf/SOMHz"

Thus, the 3-dB bandwidth of the feedback amplifier is B = 50 MHz.

Equations 8.16 may also be used to approximate M,

amplifiers that have more than one corner frequency. This ca

only one corner frequency of A is within the resulting bandwidt
corner frequencies of 4 are much greater than B,

for operational
n be done when
h B, and all other
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EXAMPLE 84. As a very rough approximation, for frequencies below
{ MHz, the amplification of a Type 741 internally compensated monolithic
operational amplifier can be represented by Equation 8.14 with 4y = 200,000
and f; = 10 Hz. This approximation ignores an additional corner frequency at
10 MHz, which significantly alters the phase for frequencies above | MHz.

When M, 4 = 10 then, based on Equation 8.16b, the 3-dB bandwidth of
the resulting feedback amplifier is B = SiAge/Mpae = (10 Hz)200,000)/10 =
200 kHz. Since the approximation of A is valid up to 1 MHz, the B = 200 kHz
approximation is valid.

When My, 4. = 1, the 3-dB bandwidth of the resulting feedback amplifier is
B = fiAg/My 4 = (10 Hz)(200,000)/1 = 2 MHz. Since the approximation of 4
is valid only up to 1 MHz, the B =2 MHz approximation is inaccurate.

When V,, and V,,, are represented in the time domain, the ratio of their
Laplace transforms can be written, based on Equation 8.16b,

L{Vour(8)} My

= s 8.17
2,0} T4st ®172)
where
MN d
= < 8.17b
’ 2nf, Ayc ¢ )
When input voltage V,,(¢) is a step function with magnitude V,
1 MN dc
=-—"V,. 8.18
_‘[’{ Voul(’)} s 1 + ST VO ( )

The inverse Laplace transform of Equation 8.18 can be written for times ¢ > 0 as
Voult) = My acVo(l — e™), 8.19)
with 7 given by Equation 8.17b.

8.22 Lag-Lead Compensation
In lag-lead compensation

o +iflh

Fy=Fya ST (8.20a)
hence also

1 1 1+jfif (8.20b)

Fy Frac V+iflfe’

where in the above equations

< fo (8.20¢)
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Figure 8.2 shows piecewise linear approximations for |1 i

‘ /Fy| of Equat
:;i(t)il:) :1:;: tt;c:: rI;‘il ?f Equatlo.n 8.14 by light lines. A piecewise linear a%prc:;l:
g oo the u 8111: ting IAT {,,l is shown by the heavy line. Also, note that Figure
Figue 8 ahe ‘:; c,,_dc 1>|> ; hence, My, = I/F Nde- Furthermore, note that
o ih qually spaced corner frquencnes S fus fus and f¢: This is
’I)‘/hor . € plfrpo'se of the illustration; in reality, these are rarely spaced evenly
lesscrt:) fF"ll;Tez:’::i ll;;ezltr ;};:prox‘m‘lation of |My] in Figure 8.2 is obtained as the.
e ~l- The validity of this approximation can be demonstrated

The expression for My is given by Equation 3.6 as

A
My=—"_
N1+ arF, (8:212)
and can also be written as
1
=gt e (8:21b)
4]
1
[
|Mn|
[
Agc

1
My %" — IFN’
My g | JA|
] 1 ] | |
h fL fu fo !

FIGURE 82 Piecewise linear a imati

¢ pproximations of
compensation. Light lines illustrate oation 8,
Equation 8.20b. The piecewise linea
shown by the heavy line.

plots for iag—iead
14| from.Equation 8.14 and |1/Fy)| from
¥ approximation of the resulting |Mp| is
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Consider first the case when |1/A] » |Fyl, that is, when |4] < |1/F|. In this case,
the second term on the right side of Equation 8.21b becomes negligibly small.
Hence, |1/My|= [1/A]; that is,

Myl = 1AL, (8.222)

for

1] < (8.22b)

N

In the other extreme, |1/A| « |Fyl; that is, |A| > [1/F ] In this case, the first term
on the right side of Equation 8.21b becomes negligibly small. Hence,
[1/Myl= |Fyl; that is,

i
M = ‘F;\ (8.23a)

for

N

<l (8.23b)

Thus, |[M | can be approximated by |4| or by |1/F x|, whichever is much less than
the other.

Special attention is required when | A} is comparable to |1/F ). This may result
in a smooth rounding of the frequency response in the vicinity of the frequency
where |A| = [1/Fy|—as was the case for My 4. = 100 in Figure 8.1. However,
there is another possibility: The imaginary parts of 1 /A and Fy in Equation
8.21b may cancel each other near the frequency where |1/A4] = |Fyl, that is, where
|A] = {1/Fyl. This may result in a minimum in |1/My| and hence in a peak in
|M y|—as was the case in the frequency responses for m > 0.5 in Figure 6.13.

Note that in Figure 8.2, the magnitude of the resulting amplification, [M |,
starts at its dc value, My 4., and it reaches My 4. fulfi, at a frequency of fy. It
then stays constant up to a frequency of fc, which is the frequency where
|A| = My 4 fu/ fo- Since |A]| = AgJf11) for f > f, frequency fc is given by
My Sulfe = Ay /(fc! £1); hence,

Adcflfl.
=——=. (8.24)
fC MN.dch
Also note that the exact expression for My is
Adc
My = A 1 +iflh
N~ - B
1+ AFy 1+ Asc 1+jf/fu

TSl TSI

_ Aol +3f/13)
TN+ 1D + AacFnadd +3f170) 2
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As discussed in Chapter 7, lag-lead compensation is used in feedback
amplifiers to reduce feedback factor AFy in the vicinity of the frequency where
|4Fy| = 1 and thus enhance the phase margin. Therefore, to be effective, a lag-

lead compensation must have f; and f; lower than the frequency where
JAFM = 1.

EXAMPLE 85. As a rough approximation, the amplification of a Type 2539
wideband monolithic operational amplifier can be represented as
A = 30,000/(1 + jf/20 kHz), which is the same as in Example 7.17 but without
the two corner frequencies at 300 MHz. Lag-lead compensation is introduced
with fy = 20MHz, f, =2 MHz, and Fy 4. = 1 (same as in Example 7.17).

It can be shown (sec Problem 8.10) that the magnitude of the resulting
amplification, |4 F |, becomes 1 at a frequency of approximately 60 MHz. Thus,

Ju =20 MHz is lower than the frequency where |4Fy| = 1 by about a factor of
3.

In general, a low value of f, is desirable for improving the phase margin.
However, as was seen in Section 8.1.3, the resulting amplification My starts
increasing from its dc value at a frequency of f;; hence, a high value of fois
desirable. Thus, there is a conflict in the choice of f; and f;, when the ratio Julfo
is given.

The above suggests that it is useful to consider the value of corner frequency
Sy compared to the frequency where |4F,| = 1. However, for simplicity, in what
follows here f,, is compared to the frequency f. where the piecewise linear
approximation of |JAFy| = 1—and not to the frequency where |AF,]| itself is 1.
Thus, f is the frequency where the piecewise linear approximations of |A| and
|1/F x| are equal (see Figure 8.2).

EXAMPLE 86. The feedback factor AFy of Example 8.5 can be written

_ L+iflfy
AFy = AgcFyae (7 XY +if/f)

1 +jf/20 MHz
(1 +jf/20kHz\1 + jf/2MHz)"

The piecewise linear approximation of |4 F | for frequencies f > f; is obtained
by approximating |4Fy| for f > f, = 20 MHz as

= (30,000)1)

N jf/20 MHz |
14F x| = (30,0001) (3120 kHz)j f/2 MH2)|
_ (20kHzX2 MHz) _ 60 MHz
= (30,0001) fQOMHz) ~
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The frequency fc where this becomes 1 can be found by substituting f for f and
equating |AFN = 1t

AFy| = 1 60 MHz
b=t
hence,

fc = 60 MHz.

Thus, in this example, fy is less than f¢ by cht}l a f:icior 9(,3' B

When A is given by Equation 814 and Fy is given by Equation 8.20a,
feedback factor AFy becomes
L +5f/f (8.26)
AFy = AscFrnae (777X + 775D
Thus, with f; < fy, the piecewise linear approximation of |AFy| for > fy
becomes

/v = e, (8.27)
[AF | = |AacFn.ac GIY o~ AgcFyac 71

The frequency where |[AFy| =1 can be found by substituting f¢ for f in
Equation 8.27 and equating the result to i

flfL . 8.28
|AFul =1 = AacFrac 755 @28
hence,
Je = AacFnac 5l . (8.29)
Ju

Also, using Equation 8.29, Equation 8.25 can be approximated for Ag.Fy gc » 1
as*

i
_ L (8.30a)
A’IN’A'!N.d‘:1 l(l+il__)+(1f)2
AANES R
provided that
e &(& _ 1), (8.30b)
Bk WAV

*The proof of Equations 8.30a and 8.30b is the subject of Problem 8.12.



130 RESPONSE OF FEEDBACK AM. _(FIERS

fx_m;a;w 87. In Example 86, A, = 30000, Fy, = 1
. =2MHz, and f, = 60 MHz Thus, Equation 8.30b becomes

(30,000)1) = 30,000 » 60 MHz 20 MHz (20 MHz —1)=2
20MHz 2MHz \ 2 MHz =270,
Since 30,000 is indeed much greater than 270, Equation 8.30a is applicable:
if
2MHz

Ju=20MHz,

1+

MN=

if ( 2MHz j
20 MHz 60 MHz) (60 MHzX20 MHz)

where M, ;. is approximated as 1/F Nac = 1/1 =1 since A4 Fy 4. > 1
o c dc .

When V,, and V,, are i i
I n ot represented in the time domain th
Equation 8.25, the ratio of their Laplace transforms becomes them by use of

L{Voult)) _ Aac (‘ + m)
L{V,(t)} (1 R s TV (8.31)
2xf, (l + —zn—fL) + AacFrgc (1 + -zn—fu)

By use of Equation 8.29, Equation 8.31 can be written*
s

Lol Y
- N,dc
where L{Va)} (1 + st X1 + stp)’ (8.32)
A
My, =— f4_
Wi = T Fon (8.32b)
1 b b\’
w2t (5) -6 (8.320)
1 b b\2
==27J5) ¢ (8.32d)
with
b = 2nf, + 2xf, (1 b1 &)
c AaFna 1o (8.32¢)
and
¢ =(2nfu)2n (1 + !
u)2nfc) AFus) (8.32f)

. N
The derivation of Equations 8.32a—f is the subject of Problem 8.14.
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Note that f, > fin lag-lead compensation; hence, if Ag.Fy.ac f,_/ fu > 1 then
also AgcFuac» 1. In such a case, which is quite common, Equations 8.32¢ and

8.32f become

b = 2nf, + 2nfc (8.33a)
and
¢ = 2nfyl2nfc) (8.33b)
when
AgF —f—" » 1 (8.33¢c)
dc? N.dc . .
Ju

1, and 15 of Equations 8.32¢ and 8.32d are determined by fi» fu, and fc.
There are three possibilities for 7, and 75: distinct and real 1, # 75, equal and
real T, = 15, and complex conjugates 1, and 5. It can be shown (see Problem
8.15) that ©, and t, are distinct and real when

f U (f U )
L=} (8.34a)
Jo  \Jc/mmx
1, and 1, are equal and real when
Jo_ (IL’> , (8.34b)
Jo o \Jc/msx
and 1, and 1, are complex conjugates when
Ju (fu)
Ls=] ., (8.34¢)
Je o \Jc/max
where in Equations 8.34a~c
fu) 1 ( h)‘
EA ={1+= (8.35a)
(o34 %

is the maximum permitted value of fy/fc if real T, and 15 are desired. It can be
shown (see Problem 8.16) that Equation 8.35a can also be written

i \?
1— [1-2¢
(&) N A ' I (8.35b)

fe S
fo

Equation 8.35b is plotted in Figure 8.3 for 0 < fi/fy <1, 8s is the case for
lag-lead compensation. Also, as expected, fy is less than fc for this range of

S/t
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1.0 T

0.8

0.6
fu
1 /e

0.4

FIG!JRE 83 The maximum value of
function of f,/fy, in lag-lead compe!

For small values of Ji/fe
Problems 8.17 and 8.18) asL u,

for

-
EXAMPLE 88. In Example 8.5
2539 wideband monolithic o
A = Ay /(1 +f/f,) with 4,4,
with Fy o = 1 and with lag

ing to Equation 8.29,

fC = AchN,dc f f

Jul fc for real roots, (fy/ fC)max, 88 a

Equation 8.35b can be approximated (see

_—

(Page 128) the amplification of a Type
perational amplifier was approximated as
= 30,000 and f1 = 20kHz The amplifier is used
~lead compensation with Ju/fi = 10. Thus, accord-
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By use of Equation 8.35b with fi/fy = 0.1, (fu/fc)max = 0.2633; also, the
approximate Equation 8.36a yields (fy/ fc)max = 0.2625. Therefore, if real roots
are desired, fy must be at most 0.2633f; = (0.2633)60 MHz) = 15.8 MHz. For
example, a choice of f; = 1.5MHz and fy = 15MHz would result in real roots.
However, the choice of f; = 2MHz and f, = 20 MHz in Example 8.5 does not

result in real roots.

The information given by Equation 8.35b and Figure 8.3 can also be
presented as shown in Figure 84, where (fo/fu)min = V(fu/fmax- Also,
(fe/ fo)min can be approximated as (f/fu)min= 4 — 2f1/fu when 0 < fi/fy « 1
(see Problems 8.20 and 8.21).

5 r I T T T T T

fu

fu
FIGURE 84 The minimum value of fc/fu for real roots, (fc/fu)min, 8s 2
function of f;/ fy in lag-lead compensation.

As was also the case in other transients with step-function input voltage,
output voltage V,,,(t) is free of ringing here too when the roots are real. Thus, if a
transient with no ringing is desired, fy/fc should be at most (fy/fc)max given by
Equations 8.35a and 8.35b. In what follows here, the transient response is
derived for critical damping, that is, for the case when fy/fc = (fu/f)max @S in
Equation 8.34b.
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In this case, 7, and 7, are equal and Equations 8.32a-d become

145
L {Voult)} _ o
L{Val0)} Mo (1 + s1)2°
where
A
M = —*—
N.dc 1 ¥ AchN,dc
and

2
T
2nf, + 2nf.

Using Equation 8.35a with (fy/fe)ma = fu/fe.
ARYRAY
a3

ot fe= 2\/ Jofe.

By use of Equation 8.38b, Equation 8.37c becomes

I=JE¢
fuzﬂfc"

When input voltage ¥, is a step function with magnitude ¥,

hence,

1+
2af,

L0 = __
(Vo) = Mg ¥y

where My ,. and 1 are given by Equations 8.37b and 8.39.

(8.37a)

(8.37b)

(8.37¢)

(8.38a)

(8.38b)

(8.39)

(8.40)

From Equation 8.40, V,,(r) can be found, by use of Equation 8.39 and

Appendix A, as

Voull) = My 4.V, [l— e (&\/E_ )f ~1/e
N.dc¥o e+foulte/,

where again M, 4. and 7 are given by Equations 8.37b and 8.39.

(8.41)

8.3 OAs WITH A = AJl(1 + ififp1 + D] 135

EXAMPLE 89. When fy/f, =10 then, by use of Equation 8.35b,
(fu/fc)m,=0.2633. For critical damping, fu/fc=(fu/fc)m,,=0.2633, and
Equation 8.41 becomes

[t t
_ ot _ _p it
Vou(®) MN,cho[l e "+ (lo 02633 1)18 ]

t
= MN.cho [1 —e Mt 18.5;8_'/{1,

where, from Equation 8.39,

_fe b t 1195
=T 2nfe T 02633 2mf  2afc
Figure 8.5 shows output voltage V,.(t) as a function of ¢/z. It has an initial

slope of 19.5My 4.V, at t/1= 0, it rises to a peak of about 7.5My Vo at
t/r= 1.05, and it settles to My 4.V, for long times.

Vout

10My Vo

| S AN I N SR N SN S "
0123456787

FIGURE 85 Transient response of a feedback amplifier using lag-lead
compensation with critical damping and with fy/f. = 10.

Thus, as was the case for an ideal operational amplifier, the transient
response has a large overshoot in this case too, as shown by the last term in
Equation 8.41. Again, the overshoot can be eliminated by inserting in the signal
path a voltage divider network that precedes or follows the feedback amplifier.
Also, the situation is similar for distinct real 7, # 5.

8.3 Operational Amplifiers with 4 = 4y /I(1 +if /)1 + if1h)l

This form of A provides an accurate representation of many operational
amplifier types. In what follows, frequency response and transient response are
described with frequency-independent feedback, lead-lag compensation, and
lag-lead compensation.
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83.1 Frequency-Independent Feedback

The discussion of this case starts in the Laplace transform domain; this js

followed by descriptions of the frequency response and the transient response,
When ¥, and V,,, are represented in the Laplace transform domain,

Age
L) T+ stX 455
20} = AuFrg ®42

(1'+ st,)1 +57;)

which can also be written

LUV} My,
g{ Vin(‘)} h (1 + SIAXI + sru)’ (8-433)

where

1
L. lutn, . r—am (8.43b)

T4 2 Tyt

1 1
=30 T am) (8:43¢)
1%2

]
with m defined as

Age U1,
m= Pl 8.43d)
My (ty + 15)° (
and with
A
My.q. - (8.43¢)

- I+ AchN.dc '

The similarity of Equations 8.43a~d here to Equations 6.39a-d describing
series RLC circuits in Section 6.5 permits the use of the results given there:
Equations 6.39a-d can be used with the substitution of (ry + 15)/1,7, for R/L,
and with RC = (L/R)/m from Equation 6.39d. Also, it can be shown that in the
frequency domain, with ¢, = 12nf,, 1, = 1/2nf,, and 5 = j2xf,

MN.dc

M N = >
-T2
Je fe [
where f. is defined as
/ A4
Je= M:,:c Nfa. (8.44b)

(8.44a)
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i 1 to My 4 for smaill values of
expected, Equation 8.44a becomes equa ac f0
fre‘?jenc;,e /. Furthermore, it can be shown that Equation 8.44a can be

approximated for f» fcas

2
IMyl = My 4 (f7c~> (8.45a)

when

L » 1. (8.45b)

c

Note that |My| of Equation 8.45a becomes equal to |My 4| when frequency

/ ?N{fe;n f, » f,, which is the usual case, then also 1, » 1,, and
~ Adc ﬂ
"= Myg 12’ (8.46a)
~ o [ 1S (8.46b)
fe = fi/m= [y il
and
Myl = My.ce (8.46¢)

272 2
RAIRG
Je Je fe
As expected, Equation 8.46c becomes equal to My 4 for small values of

frequency f. Furthermore, Equation 8.46¢ can be approximated for f > fc, with
fc now given by Equation 8.46b,

f 2
IMyl = My g (f) (8.47a)

when
L » 1. (8.47b)
C

Note that |My| of Equation 8.47a becomes equal to My 4 when frequency
S =fc-

i hybrid operational amplifier is
EXAMPLE 8.10. A Type 9914A wideband hy
characterized by A, = 5000, f, = 0.5MHz, and f, = 50 MHz. Thus, f; » f,

and Equations 8.46a—c are applicable.
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The operational amplifier is used in a noninverting feedback amplifier, and i
is desired that the magnitude of the resulting frequency response, |M |, should
have no peaking. Therefore, according to Figure 6.13 and subsequent discussion
in Section 6.5, the value of m must be at most 0.5. By use of Equation 8.46a, this
constraint leads to

Ay fi 5000 0.5 MHz
2 —_—— = e——— ———————— = .
Mre27s f. 05 S0MHz 100
Thus, the resulting dc amplification, My 4., must be at least 100 if a frequency
response magnitude without peaking is desired.
If My 4. = 100 is chosen, then m = 0.5 and, from Equation 8.46b,

fe = fr/m = (50 MH2),/0.5 = 354 MHz.

The piecewise linear approximation of [My| is shown by the heavy graph (a)
in Figure 8.6. As before, |M,] is obtained as the lesser of |4] and of
[1/Fy| = 100 = 40 dB. According to Equation 8.47a, for f » f. = 35.4 MHz the
magnitude |My| can be approximated as 100 (35.4 MHz/f)2. This intersects the
|1/Fy| = 40 dB line at f; = 35.4 MHz as shown by the broken lines in Figure 8.6.

Details of the frequency response may be found using Figure 6.13 in
Section 6.5 with [M y}/M, 4 substituted for |G|. When f, > f, thenalso 1, » 1,,
and L/R can be replaced by 1, = 1/2xnf, and RC by 1/2nf,m. Also, it can be
shown that in Figure 6.13

Je_ 1 (8.48)

Jo \/r_n-‘

where f, = 1/2zRC and f_ is given by Equation 8.46b.

EXAMPLE 811. In Example 8.10, the value of m is 0.5. Thus, by use of

Equation 848, f/fo = 1/./0.5 = 1.4 in Figure 6.13. Indeed, for m = 0.5, the
piecewise linear approximations for f/f;« 1 and f/f,> 1 intersect at
f/fo = 1.4 in Figure 6.13.

Therefore, the value of m must be at most 0.5; hence, assuming f; > f, and
using Equation 8.46a, M 4. must be at least A, f, /mf, if a frequency response
magnitude without peaking is desired. However, lesser values of My 4, are
possible when peaking in the frequency response magnitude is acceptable.

8.3 OAs WITHA = Aul(1L + YL + i1 19

1Al

1|
Fn
| Mn]

80 dB|—
Adc

60 dB|— 14|

(a)

40 dB \
{b)

20 dB|—

1 | | |~

008 1 MHz 10 MHz 100MHz N\ 1GHz

i ise li imati for frequency-
FIGURE 8.6 Piecewise linear approximations of Bode plofs |
independent feedbacks. The magnitude |4] is shown by the light line and ll‘le
magaitudes |Mp| by the heavy lines. (a) }M | in Example 8.10 and (b) |M x| in
Example 8.12.

EXAMPLE 8.12. A Type 9914A wideband hybrid operational amplifier is
characterized by 4, = 5000, f; = 0.5MHz, and f; = 50 MHz. Thus, f; » f;

and Equations 8.46a-c are applicable. . .
Th&:1 operational amplifier is used in a noninverting feedback amplifier, and

an My 4 = 25 is desired. By use of Equation 8.46a,
Age fi _ S00005MHz _
"= Mua f2 25 SOMHz

and, by use of Equation 8.46b,
fe = f/m = (50 MHz),/2 = 70.7 MHz.
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The piecewise linear approximation of |M | is shown by the heavy graph (b)
in Figure 8.6. As before, |M,| is obtained as the lesser of |A] and of
[1/Fyl= 25 = 28 dB. According to Equation 8.47a, for f » Jo =70.7 MHz the
magnitude |[My| can be approximated as 25(70.7 MHz/ f)2. This intersects the
[1/Fy| = 28 dB line at f = 70.7 MHz as can be seen in Figure 8.6.

By use of Equation 848, fc/fo = 1/./2 = 0.7 in Figure 6.13. Indeed, for
m = 2, the piecewise linear approximations for f/f, « 1 and f/f, » 1 intersect
at f/fo = 0.7 in Figure 6.13. It can also be seen that there is a peaking of about
50% (note logarithmic scale of G).

The characteristics of a feedback amplifier are influenced by variations of
operational amplifier parameters Ay, f,, and f,. The influence of 4,, on the
resulting dc amplification My, was discussed in Chapter 4; here My 4. is
approximated as constant.

In the feedback amplifier discussed here, peaking in the frequency response
magnitude is governed by m of Equation 8.46a, and the bandwidth is in the
vicinity of f¢ of Equation 8.46b. An increase in the value of f,, with all other
parameters held constant, reduces m and reduces peaking, and it also increases
Jc- Both of these effects are desirable; hence, an increase in f, is always
beneficial.

An increase in Ay, and/or f, increases m and increases peaking, and it also
increases fc. The latter effect is desirable; the former is not. The situation is
reversed when A, and/or f; decreases. Note that variations of 4, and f, have
no effect when the product A, f, remains constant, as is often the case in
integrated circuits (see Problem 8.35).

When input voltage ¥, is a step function with magnitude ¥, and f, » f;,
Equations 6.40a,b, 6.41a,b and, 6.42a,b of Section 6.5 are applicable with
m= Ay f/Myac.f2, L/R = 1, = 1/2nf,, RC = 1,/m, and My 4.V, substituted
for V.

EXAMPLE 8.13. A Type 9914A wideband hybrid operational amplifier is
characterized by A, = 5000, f; = 0.5MHz, and f, = 50 MHz. Thus, f, » f;.

The operational amplifier is used in a noninverting feedback amplifier with
My 4 = 200. Therefore,

Ay fi 5000 0.5 MHz

=t T T 025
"= Mya f; 200 SOMHz '
L 1 1
C=ty=a— = >3]
R~ "2 2a7, = 2250 MHz) = 1808
and
7, 3.18ns
c=2-22%2 1p73ns.
R =02 = 12.73 ns
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By use of Equation 6.41a with My 4 ¥, substituted for V;,

2\ ke
Voult) = MN,chol:l - (1 + RE)‘Z R,

t —1/6.37ns
Voult) = My 4Vo [1 - (1 + 637 ns)e ‘ ]

This is shown in Figure 8.7. The propagation delay of the 507, point is
~ 11.5 ns, and the 10%-90 % rise time is t;o_go= 21.7ms.

which becomes

tso

1.0

Vout
Mpy.acVo
0.5

1 | I | L | Lt (o)
0 5 10 15 20 25 30 35

FIGURE 8.7 Transient response of a Type 9914A wideband hybrid opera-
tional amplifier with M-y . = 200 in Example 8.13.

Note that M 4. = 200 is the lowest possible resulting dc amplification if a
transient without ringing is desired. This is because My 4. < 200 would result in
m > 0.25 and therefore in transients that include sinusoidal (sine and/or cosine)
functions of time (see Equations 6.42a and 6.42b in Section 6.5).

The influence of variations in operational amplifier parameters on the
transient response is similar to the case for the frequency response. An increase
in the value of f,, with all other parameters held constant, reduces m .and
reduces ringing in the transient, and it also increases the speed of the transient.
Both of these effects are desirable; hence, an increase in f; is always beneficial.

An increase in 4,4, and/or f, increases m and increases ringing, and it also
increases the speed of the transient. The latter effect is desirable; the former is
not. The situation is reversed when A, and/or f, decreases. Again, variations of
Ay, and f; have no effect when the product A, f; remains constant (as in
Problem 8.35).

8.32 Lead-Lag Compensation

Lead-lag compensation consists of the inclusion of a frequency-dependent
feedback network as shown in Figure 7.4 (page 96) and described by Equations
7.43-7.47 in Section 7.4.
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When ¥, and V,,, are represented in the La i
. n ou place transform domain thep
with 7, = 1/2nf,, 1, = 1/2nf,, 7, = 1/2nf,, and 1y = 1/2xf,, ’

Adc
Z{Veult)} _ (1 + st )1 + s1q)
Z{Va)} AscFrae  1+s7,’ (8.49)

1+
(1 + st X1 +515) 1+ 574

where 1, > 1, hence also f, < f,.

The value _of T, is usual]y in the vicinity of t,. The simplest possibility is
tf,_ : rfz;(.that is, fi = f;: This case is discussed in Section 8.3.2.1. The case of
L > J2 (1€, T, < 7,) is discussed in Section 8.3.2.2, and the case of i
T, > 1,) in Section 8.3.2.3. “olfu< e,

8.3.2.1 LEAD-LAG COMPENSATION WITH = f

In this case (pole-zero cancellation), Equation 8.49 becomes

Adc
Lo} _ (451,01 + 577)
L{Va0} AgFy 4 : (8.50)
(1 +stX1 + 51)
which can also be written
Y{ l/olll(t)} _ MN.dc 1 + sty
L{Va} (1 + st + stg) 1 + 51, (8.51a)
where
Lotutg . g
T, 2 11, —4m) (8.51b)
and

1 11,41
—=-L"Y1+ /1= d4m), (8.51¢)

B 2 Ty

with m defined as

m= Age _ Nty
My g (11 + 14)? (8.51d)
and with
Adc
Myg4e = (8.51e)

1+ AgFug
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When fy » fi, which is the usual case, then also 7y « 1,, and

oo i), (8.52a)
T

1, 2ty
ot as ST=m, (8.52b)
15 21y
and
L Aty Aw S (8.520)

In the limiting case of critical damping, m = 0.25and 1, = 75. In this case, for
a V(1) that is a step function with magnitude V;, ¥, .(t) becomes (see Problem

8.40)
24
T2

Voul(t)zMN,chO 1- \2
-4
(%)

1 —

Palis

2

(8.53)

EXAMPLE 8.14. A Type 9914A wideband hybrid operational amplifier is
characterized by Ay, = 5000, f; = 0.5 MHz, and f, = 50 MHz. Thus, f; » fi.

The operational amplifier is to be used in a noninverting feedback amplifier
with M, 4. = 20, and a transient response with no ringing is desired. It was seen
in the preceding section that for a transient response with no ringing the lowest
possible My 4. is 200 when frequency-independent feedback is used. For this
reason, lead-lag compensation is introduced here. An f, = f> is used for
simplicity and, somewhat arbitrarily, an m = 0.25 (critical damping) is chosen.
Since fy > f, = f, » fi, Equation 8.52c is applicable; hence,

Ag fi 5000 0.5 MHz

= Aw Si R0 = 500 MH
Jo=Myam ™ 20 035 z
and

1 1
- = > 03I8ns.
S g, 2(500 MHz) ns
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Also,
L1
" 2nf,  2n(50 MHz)

From Equations 8.52a and 8.52b, with the chosen m = 0.25, < 4
2ty = 2(0.318 ns) = 0.637 ns. With these values, Equation 8.53 become

Voul(t); MN.chO [1 - 1.48-1/3.18nc + (04 +

T2 x~ 3.18 ns.

=Tg=
S

d e ~1/0.637ns
ns

5.09

This is plotted as graph (a) in F igure 8.8; the propagation delay of the 50%
pointis t5, = 3.25 ns, and the 10 %909, rise time is ;49 = 7.5 ns. It can also

be seen in Figure 8.8 that a faster transient response is provided by graph (b),
which will be discussed later.

suul

My 4.Vo 05

(c)

Lo L1 e
2 3 4 5 6 7 8
FIGURE 88 Transients in a Type 9914A wideband hybrid operational

amplifier with My 4. = 20: (a) in Example 8.14, (b) in Example 8.21, and ()
in Example 8.22.

0 1

When ¥, and V,,

« are represented in the frequency domain then, from
Equation 8.51a,

My 4 L+jf/fu
Myl = — Muge__ Ly 54
M = 357770 37T T L (8:54)
where
1
I =5 (8.54b)
and
1
fa= pre (8.54¢c)

It can be shown (see Problem 8.42) that the resulting bandwidth of the
feedback amplifier is approximately B = f, A,./M ~.ac When m < 1. Also, when
m 2 0.5, it can be shown (see Problem 8.43) that the resulting bandwidth is in the

vicinity of
A C
Je= m :

which is identical to the rightmost expression of Equation 8.46b.

(8.55)

T
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S AMPLE 8.15. In E le 8.14, A, = 5000- M .= 20, f, = 0.5 MHz,

.15. In Example 8.14, A4 s Miygc - :
?XAI;:)PI\IJE: and m = 0.25. Thus, the resulting bandwidth of the feedback
2 =

amplifier is approximately

fidge _ (0.5 MH2)5000)
T Mye 20

B =125 MHz

The design of lead-lag compensation also includes determining the values of
C:» Cr, Ry, and Ry, as was done in Section 7.4.

= f, = S0 MHz, f, = 500 MHz, and
E 8.16. In Example 8.14, f, = f, : Ju .
?xm;ﬂ)l[;M 4c = 1/20 = 0.05. The value of C, is 5 pF, Vt{hlch includes the mputf
c:};:ci_tance gf :hc operational amplifier and stray capacitances. Thus, by use of
Equation 7.45,

C, ~ C, _ SpF — 5pF.
Cr="7 L Mae 20 .
Fyacul o i 500 MHz/50 MHz

Also,

Re=stm= : = 637Q

F= 2mf,Cr 2m(50 MHz)5 pF)
and, from Fy 4. = R{/(R; + Rg),
Re . _Re 6378, 5550
Ri=— | Myg—1 201
FN,dc

The influence of variations in 44 and f; is similar to that descnbe:'c:1 ::;'(lilei;
However, variations in f, result in f, < f, or f, > f, and are consi
Sections 8.3.2.2 and 8.3.2.3.

8.3.2.2 LEAD-LAG COMPENSATION WITH f, > f;

Equation 8.49 is applicable here too; however, its evalu_ationA b.ecomes n:’ore
in?/olvcd than for f, = f,. As a first step, a frequency ratio R is introduced as

.
L

Note that R < 1 when f, > f,, which is the case here; also, R = 1 when f; = f;.

Ty

R . (8.56)
T2
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Next a crossover frequency f;. is introduced as

Jo= AyFy RS, (8.57a)
Therefore,
S S TS
¢ 27‘fC AchN.ch ' (857b)

I.t can be shov»:n (see Problem 8.46) that f is the frequency where the piecewise
linear approximation of the Bode plot of |4Fy| becomes 1, provided that
2 € fo, fu< fe, and fy > fc, which conditions will be seen to be valid here

Also, two more frequency ratios, w; and w,, are introduced as -

wo=de_n
s (8.58a)
and
_Ju_
W= = (8.58b)

Note that w, > 1 when f, < fe
. L < Jc, and that w, > 1 when f, > f..
With the above, Equation 8.49 can be wrzitten Jo> e

L{Vou)} _ My o1 + s14)
2V (0} = 1 (8.59a)
* 1+ My gcFy g 7 [(stc)* + plsto)® + q(stc)]
where MN.dc = Adc/(l + AchN.dc);
_ R
pP=w, + ;:, (8.59b)
g=wy{1+ W_n R (8.59¢)
and
)
r= W—x (8.59d)

When 4, F i ~ :
boone AgeFivac > 1, asis the usual case, My % 1/Fy.q. and Equation 8.59%

L{Vou)} _ My 4 (1 + sty)
L{Va®} (570 + plste)® + glste) + (8.60)

with p, g, and r given by Equations 8.59b, 8.59¢, and 8.59d,
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Equation 8.60 can also be written

L{Voult)) _ My 4 r(1 + s1y)

= s 8.61
PLVa)}  (s1c + 1/t N5t + T /TRNSTE + 1c/tp) @61)

where T4, Tg, and 7, remain to be found. Appendix A outlines a procedure for
solving the third-order (cubic) equation in the denominator of Equation 8.60,
yielding 14, 75, and 7. However, the procedure can become quite lengthy. This
is not the case when R = 0 which will be discussed later. The procedure also
simplifies somewhat when at least two of 1, 75, and t,, are equal. This is
convenient, because (see Problem 8.48) it marks the transition between two
regions: All three of t,, 5, and 7, are real in one region, whereas in the other
region only one of 7, Tg, and 7, is real and the remaining two are complex. The
importance of this transition is that real 7., 75, and 7, imply a transient response
that is free of ringing. For this reason, the discussion that follows here examines
the case when at least two of t,, 15, and 1, arc equal. The three are
interchangeable in Equation 8.61 and, somewhat arbitrarily, 7, = 7, is assumed.
Thus, Equation 8.61 becomes

g{ Voul([)} _ MN,dcr(‘ + SIU)

PVald))  (5tc + te/1)5Te + 1c/T8) (8.62a)

Performing squaring and multiplication operations in the denominator of
Equation 8.62a results in

L Voudt)} _ My acr(l + s1¢)
W0} (stc)* + (2 :—C + ;:5) (stc)* + —:£ (I—C + 2?) (st0) + (:—C>Z ks
A B, A

A\Ta B s

(8.62b)

The comparison of Equation 8.62b with Equations 8.60, 8.59b, 8.59¢, and
8.59d shows that

wy+ Rt Te (8.63a)
Wy Ta Tp
R
wz(1+—)=‘_f<1£+zi), (863b)
wy Ta\T4 17’

and

W2 _ (LC)z Tc (8.63¢)

w, T4/ g
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These three equations can provide 1¢/1,, T¢/15, and w, for given R and w,—
at least in principle. In reality, this leads to complications and it is preferable to
express w, and w, as functions of R and 1./, (see Problem 8.50) as

I 12
3—(23—1)R+ 3—(2’—0—1)R —419(2—’—0)1((2’—‘—11)
Ta L Ta i T4 Tq Ic
2’—C<2—19)
Ta Ta

W=

(8.64a)
and
2k w; — R
Wy (8.64b)
T4
v ()
Also, from Equation 8.63a,
s R gt (8.64¢)
T wy Ta

Varying t./t, between 0.5 and 2 results in the relations between w, and w,
shown in Figure 8.9 for R < 1. (The R = 1 line is obtained from Section 8.3.2.1;
results for R > 1 will be discussed in Section 8.3.2.3.)

The use of Figure 8.9 requires finding t¢/z,, for given R, w,, and w,. It can be
shown (see Problem 8.52) that

Tc _1 R £ : - 5
; ; 3[(W2 * W_l) * \/(w2 * Wl) 3(1 * Wl) wz]’ 869

where the plus sign is applicable to the lower (horizontal) branches of the graphs
and the minus sign to the upper (vertical) branches.

EXAMPLE 8.17. A Type 9914A wideband hybrid operational amplifier is
characterized by 4, = 5000, f, = 0.5MHz, and f, = 50 MHz. Thus, > fi.

The operational amplifier is to be used in a noninverting feedback amplifier
with My 4. = 10, and a transient response with no ringing is desired. It can be
shown (see Problem 8.53) that this cannot be attained using lead-lag com-
pensation with f; = f, (pole-zero cancellation). Thus, use of lead-lag com-
pensation with f; > f, is considered.

Somewhat arbitrarily, a frequency ratio R = 0.625 is assumed. Thus, by use
of Equation 8.56,

8.3 OAs WITH A = A Jl(1 + ) + [ 149

2}
.5%\%\0,9
10 ¥ I T | T ' ! ‘
=0.75 .
R \ b— 0.1
R =2 be—0
8 R = 1.5 All roots
are real R
- in this
region
6l 1
w2 -
= 1.25
s R
R=1 o
0.75 /0.5 0 —
— 0
2 0.625 0.1
1 | L l ) | l l L To
0 2 4 6 8

wy

FIGURE 89 Roots of the denominator of Equation 8.60 with p, g, and r
given by Equations 8.59b, 8.59¢, and 8.59d.

Also, from Equation 8.57a,
_ A4Rf, _ (5000Y0.625)0.5 MHz)

Jo = AacFrnacRN = My, 0 = 156.25 MHz.
Furthermore,
1 1
Tc=——= —_— 2> 1ns
2nf,  2n(156.25 MHz)
and, from Equation 8.58a,
W, = k _ 156.25 MHz; 195,

T, T 80MHz

According to Figure 8.9, all roots are real for R = 0.625 and w, = 1.95 when
w, is between approximately 3.4 and 3.5. This is a narrow range that would be
difficult to guarantee with realistic variations of circuit paramcters. However, for
the purpose of this example, w, = 3.4 is used here, which lies on the lower branch
of the R = 0.625 graph. Because of this, Equation 8.62a aqd the subsequent
equations are applicable (otherwise, Equation 8.61 with distinct 7, 75, and 1
would have to be used, which would be much more difficult).
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With w, = 3.4, from Equation 8.58b,
Su = w, fc = (3.4Y156.25 MHz) >~ 531 MHz
and

1 1
VS 2y T 23(531 MHy)
Also, from Equation 8.65 with the plus sign,

e 1 R R\? _R_
rfs[(w’*w—l)*\/(‘”’*w.) 3145w,
1 0625 0625\ 0,625
=z 205 200\ _ 20034 | = 144
3[(3'4+ 1.95)+\/(3'4+ 1.95) 3(” 1.95)3 ]

Hence,

=~ 0.3 ns.

_ T _ 1 _ 1
T L4 2nf{144)  2n(156.25 MHz)(1.44)
Furthermore, from Equation 8.64c,

Ta =~ 0.71 ns.

Tc 1ns
g = = >~ 1.2ns.
R 1. 0.625
——2-5 344222 0.
Wit 2“ 34+ S5 — 2A144)

Figure 8.10 shows the piecewise linear approximation of the Bode plot for
|AFy). The transient response of the circuit is the subject of Example 8.18.
It is now assumed that the value of C, is 5 pF, which includes the input

capacitance of the operational amplifier and stray capacitances. Thus, by use of
Equation 7.45,

Cl C[ 5 pF
Cr= = = =~ :
’ 1 1 My 4 _ 10 1 10pF
Fyacfolfo Jolfy 531 MHz/80 MHz
Also,
Rp=t = ! = 2000
F " 2nf,C; ~ 22(80 MHzX10 pF) —
and, from Fy 4. = R//(R; + Ry),
___ R _ R 2000
Ri=— _1=M~_dc—1_10—1=229'
FN.dc
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|AFN|

fi = 0.5MHz
60 dB{—

40 dB

20 dB|— f2 = 50 MHz
fu = 80 MHz
fc = 156.25 MHz
| | | >
048 1 MHz 10 MHz 100 MHz 1 GHz

L fu = 531 MHz
-20d8

FIGURE 8.10 Piecewise linear approximation of the Bode plot for [4Fx] in
Example 8.17.

It can be shown (see Problem 8.54) that Equation 8.62a can also be written

f{ Vom(t)} =My, _‘1_“’231'_11___- (8.66)
2{V0)} Nde (14 st X1 + s1p)

When V, (1) is a step function with magnitude Vo,

1 My o Voll + 570) (8.67a)

LUVl = {14 52,070 + 515)
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g ior?par;son ‘of qufation 8.66 and Equation 8.51a with 1, = ¢
quation 8.53 is applicable with 7, substituted for 7,; that i: *

(-%)
Vould) = My o Vo[ 1 = > T8/ -u

RESPONSE OF FEEDBACK AM. LIFIERS

(8.67b)

EXAMPLE 8.!8. In Example 8.17, My ,.
Ty = 0.3 ns. With these, Equation 8.67b i)ecomes

Voult) = My ..V, [1 —4.5¢7 Y12 4 (3.5 +

.ThiS is shown by graph (a)
point is t54 x

1.0

=10,7,=071ns, 15 = 1.2 ns, and

in Figure 8.11; the propagati
.11; gation delay of the 50
2ns and the 10%-90 % rise time is tio-90 = 3.7 nz. )

Vear (b

My 4cVo 05 @

] | | | 1

0 1 2 3 4 5

:"LGI.JR:I s..ilMTnnsients in s Type 9914A wideband hybrid operational
plifier with M 4 = 10: (a) in Example 8.18 and () in Example 8.20.

The choice of 1, = ¢
addition, 15 = 7, in Equation 8.62a, th

then Equation 8622 oron’ at is, when tp = 15 = 1, in Equation 8.61,

y{Von((”} = MN.dcr(l + STU)
L{Val0)} (stc + tc/t)*

which can also be written

L{Veul®)} My 4o1(1 + s1p)

4 in Equation 8.61 resulted in Equation 8.62a. When, in

2{V, () “(

.86
sto)® + 3;—2(%)2 +3 (:—:)z(stc) + (:0)3 ef

T
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shows thy Comparison of Equation 8.68b with Equations 8.60, 8.59b, 8.59¢, and 8.59d
shows that
wy + X=3ke (8.69a)
Wy T4
R 2
" (1 + *) =3 (’-f> , (8.69b)
w, T4
and
3
Y2 _ (’—C) . (8.69¢)
Wy T4

Frequency ratios w, and w, can be expressed as functions of /7, (see
Problem 8.59) as

2 2
e (TR N (| R
4 4 4

and
T 3
W =W, (—‘) , (8.70b)
Tc
o and frequency ratio R is given by
R= (3’—° - w2> " (8.70¢)
Ta

Varying t¢/t, between 1 and 2 results in the graphs of wy, w,, and t¢/7, as
functions of R shown in Figure 8.12. The figure also shows, for later use, R%/w,
and Rw, as functions of R.

Figure 8.12 represents the special case when all three roots of the denomi-
nator of Equation 8.60 are equal. A comparison with Figure 8.9 shows that w,
and w, of Figure 8.12 provide the locations of the cusps in Figure 8.9, that is, the
points where the upper and the lower branches of a graph meet.

Before proceeding to use Figure 8.12, Equations 8.56, 8.57a, and 8.58a are
combined to yield R/w,. By expressing f, from Equation 8.56 and substituting
it into Equation 8.58a, and by substituting fe of Equation 8.57a into Equation

8.58a,
AgcFn o RSy
. = AacFrnocRfy (8.71a)
! J2/R
hence,
2
R fa (8.7tb)

Wy N AchN.dcfl '

Note that Equations 8.71a and 8.71b are valid in general and can be used
whether f; is greater than, equal to, or less than fa-
The use of Figure 8.12 and of Equation 8.71b is illustrated in Example 8.19.
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' T o e
! l ' I ' | ! EXAMPLE 8.19. In Examples 8.17 and 8.18, a Type 9914A wideband hybrid
B operational amplifier was used with My, =10 and with lead-lag com-
] pensation using f, > f, and R = 0.625. This example and Example 8.20 choose
T R so as to result in a transfer function of the form of Equation 8.68a.
] From Equation 8.71b, with Fy 4= 1/My 4. = 1/10 = 0.1,
i 1 R®  f, _ SOMHz
6 f— Wy AgFyafi (5000)0.1%0.5 MHz)
] In Figure 8.12, R?*/w, = 0.2 occurs at R = 0.61. Also,at R = 0.6], w, = 1.86,
B } w, =33,and 1c/1, = 1.2.
Thus, by use of Equation 8.56,
5 ——
— f, SOMHz
=22 = >~ 82 MHz.
S =% = osl z
ol 1 Furthermore, from Equation 8.58a,
fo=w f, = (1.86{82 MHz)= 152.5 MHz
B and, from Equation 8.58b,
w2 e
3 v = wafc =(3.3X152.5 MH2)=~ 503.2 MHz.
— Also,
| 1, = 1/2nf, = 1/[2n(82 MHz)]= 1.94 ns,
L 2 fwz ] te = 1/2nf = 1/[2n(152.5 MHZ)] = 1.04 ns,
— T,=1c/1.2 = 1.04 ns/1.2= 0.87 ns,
o and
relna ty = 1/2nfy = 1/[27(503.2 MHz)] = 0.32 ns.
1
It is now assumed that the value of C, is 5 pF, which includes the input
- capacitance of the operational amplifier and stray capacitances. Thus, by use of
R%w, Equation 7.45,
) 1 ] " ] C C 5pF
0 . 1 [ Cr = ! ~ = p =~ 8 pF.
%2 04 os 08 1o PR T M 10 o0
R Fyacfulfo SulfL 503.2 MHz/82 MHz
FIG i . Also,
rootsl,J:ilg;h&lz ’.S:.:utlofn of the denon!malor of Equation 8.60 for three equal * 1 1
P. 4. and r given by Equations 8.59b, 8.59c, and 8.594, Re = 2y~ 3a@2 MR8 pF) = 2 O
nfiCr 2m zX8 p
and, from Fy 4. = R//(R; + Ry),
R R 243Q
R, = ~ = = .
= T Myg—1 10-1 274

-1

FN,dc
Note that the values of R, = 243 Q and R; = 27 Q are by about 20 Y, greater
than the Ry = 200Q and R, = 22Q in Example 8.17.
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It can be shown (see Problem 8.64) that Equation 8.68a can also be written
’g{Voul([)} _ 1 + STy

20} = M Ty &7
When V(1) is a step function with magnitude V;,
1 My .. Ve
L) =1 Miy.acVoll + st0) (8.73a)

(1 + s,

The inverse Laplace transform of Equation 8.73a can be written (see Problem

8.65)
t 1 2
Voult) = My 4.V, { 1- [1 +— 4= (1 — ’—“)(i) :le"/u}. (8.73b)
T, 2 T4/\T4

EXAMPLE 8.20. In Example 8.19, 7, = 0.87 ns and 1, = 0.32 ns. With these,
Equation 8.73b becomes

t t 2
Voult) = My 4 — —_ A ~1/0.87ns
)= M V"{l [1 T o870s t (1.55 ns) ]e }

Th.is is. shown by graph (b) in Figure 8.11. The propagation delay of the 50%
point is t5o 2ns. Also, the 10%,-90% rise time is 7,4_40% 3.6 ns—only
slightly less than the ¢;,_402 3.7 ns of graph (a).

The spe.cial case of Equations 8.68a and 8.72 is compared to lead-lag
compensation with f; = f, (pole-zero cancellation) in Example 8.21.

E}XAMPLE 821. In Example 8.14, a Type 9914A wideband hybrid opera-
uqnal amplifier was used with My 4 = 20 and with lead—lag compensation
using f; = f, (pole-zero cancellation). This example uses a transfer function of
the form of Equation 8.72,

From Equation 8.71b, with Fy 4,= 1/M, 4 = 1/20 = 0.05,
R___f __ SOMHz ~
Wy Ay Fya fi  (5000)0.05(0.5 MHz)

In Figure 8.12, R’/w, = 04 occursat R = 0.77. Also, at R = 0.77, w, = 1.52,
w, =345, and 1¢/t, > 1.32.
Thus, by use of Equation 8.56,

04.

50 MHz
0.77

=5

fu= = 64.9 MHz
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Furthermore, from Equation 8.58a,
fo = wy fu = (1.52)(64.9 MHz)= 98.7 MHz

and, from Equation 8.58b,
. = w, fe = (3.45)(98.7 MHz) = 340.5 MHz
P =1./1.32 = 1.2 ns, and
= 1/2nf, =245ns, 10 = /2nfc = L.Oms, T, = 1/l 2ns,
?lsﬁ’ ljf‘).nfu /= f)fl;17 ns. Figure g‘l’j shows the piecewise linear approximation of
I/ = U
the Bode plot for |AFy}.

|AFN
)
60 dB }—
A = 0.5 MHz
40 dB —
20d8 |—
fo = 50 MHz
fL = 64.9 MHz
100 MHz |
| l -
08 1 MHz 10 MHz 1 GHz
fc = 98.7 MH.
fu = 340.5 MHz
-20dB L
FIGURE 8.13 Piecewise linear approximation of the Bode plot for |[AFn| in
Example 8.21.

It is now assumed that the value of C, is 5 pF, which includes the input
capacitance of the operational amplifier and stray capacitances. Thus, by use of
Equation 7.45,

G .G MS pF = 1.8 pF.
1 T Myao : 20 .
Fracdolf — Jullu 340.5 MHz/64.9 MHz

Ce=
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Also,
Re=— b= ! ~ 1370Q
P 2nf,C; ~ 2n(64.9 MHzX1.8 pF) —
and, from Fy 4. = R//(R; + R;),
R R 1370Q
= ~ = x> 72Q.
R, L7 Mya—1 20-1
FN.dc

Note that the values Ry = 1370Q and R, = 72 Q obtained here are significantly
greater than the values Ry = 637 Q and R, = 33.5Q in Examples 8.14, 8.15, and
8.16.

When ¥,() is a step function with magnitude V,, by use of Equation 8.73b,
V,u(t) becomes

_ t t 2 ~1/1.2ns
Voudlt) = MN,.uVo{l - [l tioms T (2_17_115) ]e '

This is shown by graph (b) in Figure 8.8. The propagation delay of the 509%
point is 5o = 2.7ns and the 10%-90% rise time is ¢;o_go= 5ns. Note that
these are less than the t5, = 3.25ns and the t,4_go = 7.5ns of graph (a) of
Example 8.14. Thus, in this case, the use of f, > f; led to improvements in ¢4,
and t,4_g0, as well as in R, + R,.

8323 LEAD-LAG COMPENSATION WITH f, < f,

This region is rarely used intentionally, because the performance of the resulting
feedback amplifier is inferior to that attainable with Jfu 2 f,. However, f; < f,
may also occur as a result of variations in parameter values. Example 8.22
discusses a feedback amplifier where f; is intentionally chosen to be less than Jfa-

EXAMPLE 822. A Type 9914A wideband hybrid operational amplifier is
characterized by 4, = 5000, f, = 0.5 MHz, and f» =50 MHz, It is used in a
noninverting feedback amplifier with My 4. = 20, and a transient response
without ringing is desired.

Preceding examples implemented this feedback amplifier using
Ju= f, =50MHz and f; = 64.9 MHz. This example implements the feedback
amplifier with f; =40MHz and with a transfer function of the form of
Equation 8.66. Thus, R = f,/f; = 50 MHz/40 MHz = 1.25. Also, from Equa-
tion 8.71a,

. = AacFracR%, _ (5000X0.05K1.25)%0.5 MHz) .3
! A 50 MHz =

9;
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hence, by use of Equation 8.58a,
fo = w, fy = (3.9¥40 MHz)= 156 MHz.

At w, = 3.9, the R = 1.25 graph in Figure 8.9 yields w, = 4.15. Thus, by use
of Equation 8.58b,
fy = Wafe = (4.15(156 MHz)= 647 MHz.

Note that this choice of w, and f; results in a transfer function‘ of lbe form of
Equation 8.66. Figure 8.14 shows the piecewise linear approximation of the

Bode plot for |AFy|. ‘ ' B
From the above, 1, = 1/2nf, =3.2ns, 1, = l/‘27tj,‘ = 4135, T = 1/2nf(< =
1ns, and 1, = 1/2nfy, = 0.25ns. Also, from Equation 8.65 with the plus sign,

R\? R .
e _ 1 R w +,) '3(14’4)“’2]5 215
—_5[<W’+w1>+ (z Wi Wi

Ta |
hence, T, = 1¢/2.1 = 1ns/2.1= 048 ns. Furthermore, from Equation 3.64c,
s YA T .
T+ N 2% o027,
T8 wy Ta

hence, 15 = 7¢/0.27 = 1 ns/0.27= 3.7 ns.

|AFN|

)

60 dB —

fi = 0.5 MHz

40 d8

fL = 40 MHz
f2 = 50 MHz

20 dB

fc = 156 MHz

[

|
100 MHz 1 GHz

| |

1 MHz 10 MHz

0dB

L fu = 647 MHz
-20d8

FIGURE 8.14 Piecewise linear approximation of the Bode plot for |AF Nl in
Example 8.22.
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When input voltage V,, is a step function with magnitude V;, Equation 8.67b
is applicable and V(1) becomes

t
V. ~ — 1. —43.7ns . —:I0.48|u'
()= 1 —1.23¢ +(023+6.72ns>e
This is shown as graph (c) in Figure 8.8. It can be seen that it is slightly slower
than the transient response with f, = J2 = 50 MHz shown by graph (a). Thus,
lowering f; from S0 MHz to 40 MHz is unfavorable to the transient response.
When C; is 5 pF then, by use of Equation 7.45,

Cl C' 5 pF
= = = >~ 2] pF.
CF 1 1 - MN.dc 20 —1 p
Fyacfulfi Jolfo 647 MHz/40 MHz
Also,

1 1
" 2nf,Cr 22(40 MHz)21 pF)
and, from Fy 4. = R,/(R; + R;),

Re Ry 1900
L Mye—1 201
FN.dc

These values are less than those of Example 8.16 (R = 637Qand R, = 33.5Q)
for graph (a) in Figure 8.8; they are also less than those of Example 821
(RF=1370Q and R, =72Q) for graph (b) in Figure 8.8. Thus, the use of
Ju =40 MHz is unfavorable for operating speed, as well as for Rp and R, as
compared to the use of f, = f, = SOMHz of Examples 8.14, 8.15, and 8.16
[graph (a) in Figure 8.8], as well as compared to the use of f; = 64.9 MHz of
Example 8.21 [graph (b) in Figure 8.8].

Ry = 190Q

R =

=10Q.

833 Lag-Lead Compensation
In this case, in the frequency domain,

Adc
= . 8.74
SRTESTIIA (ESTTIA (8.74)
and
U+if/fy
=FNae T, > 8.74b
Fu=Frae 05770, (8.740)
where
fi<fu<fo<fo (8.74c)
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Figure 8.15 illustrates the magnitude |4}, as well as |1/Fy} and the resulting

{Myl. Note that Figure 8.15 shows equally spaced corner freguencli;:tsy f:t,lc S,_e, ;;,e,
" is i he illustration; in reality,
: This is only for the purpose of t y, these a
rf;;;(slpﬁzccd evenly. However, the sequencing of the corner frequencies given Jy

ion 8.74¢ has to be followed. )
Eq:::)lm Equations 8.74a and 8.74b, feedback factor AFy can be written

AycFyac 1+ ):f/fu. (8.74d)
ARy = T + 1) 1+ S,

1
iFN
MN o %—
1
MnN,4c
1 | 1 L L,

FIGURE 8.15 Piecewise linear approximations of Bode plots for lag-lead
compensation. Light lines illustrate |4} from Equation 8.74a and I} JFn) irol‘n
Equation 8.74b. The piecewise linear approximation of the resulting [Mn]| is
shown by the heavy line.
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F'JXAMPLE‘ 8.23.. A Type 13741 internally compensated FET-input opera-
tional amplifier is characterized by Ay4=100,000, f, =10Hz, and f,=1MHz
Lag-lead compensation is applied with Fy, =1 (voltage followar)‘

Ju=411kHz and f, = ; { r
b’;: seen later;’ Ju = 129.8 kHz. (The reason for this choice of f, and f, will

With these, feedback factor AFy becomes

_ 100000 1 +jf/129.8 kHz
(1+jf/10HzX1 +jf/IMHz) 1 + jf/41.1kHz °

AFy

Figure 8.16 shows the piecewise linear approximation of the Bode plot for |4 F ).
|AFN|

A = 10 Hz

100 d8

80 dB

60 dB

40 dB

fL = 41.1 kHz

20 dB

fu = 129.8 kHz

| fc = 320.5 kHz
0dB I ] |
10Hz  100Hz 1kHz 10kHz 100 KkHz d

-20dB L~ f2 = 1 MHz

FIGURE8.16 Pi ise li imati .
Example 823, iecewise linear approximation of the Bode plot for |[AFy] in

An inspection of feedback factor AFy for lag-lead compensation shows that

it is identical to that of lead—lag compensation with f; > f,, b i
i . , but with
substituted for f,, f, substituted for f;, and 12 subslitutefi for 2f,,. S
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EXAMPLE 8.24. Figure 8.13 shows the piecewise lincar approximation of the
Bode plot for |[AFy| for a lead-lag compensation with f; > f;. A comparison
with Figure 8.16 shows that the patterns of the corner frequencies are identical.
However, corner frequencies f;, fi, and fy of Figure 8.13 are replaced by f;, fu,
and f,, respectively, in Figure 8.16.

In the Laplace transform domain, by use of My = A/(1 + AFy) and of
Equations 8.74a and 8.74b with s = j2nf, 7, = 1/2nf,, 1, = 1/20f;, 1y = 1/20fy,
and 1, = 1/2nf],

Adc
LV} _ (1 + st,)(1 + 57) ‘ (8.753)
L{Va(0)} 1+ AgeFn.ac 1 + sty
(1 + st X1 +s75) 1 + 57,
Equation 8.75a can also be written
.S,”{Vom(t)} _ Ayl +s7,) (8.75b)

LWa®) (1 + st + st + s1) + AgeFradl +570)
{

Also, when A, Fy 4. » 1, which is the usual case, Equation 8.75b becomes

——f;,{{‘:;““:))}} = My AL . (8.750)
i 14 sty + A”"" (1 + st X1 + st X1 + s1p)
dc
This can also be written
'?{ an(l)} _ 1 + STL (875d)

LW} V4 st M+ stll +5Tp)

where 1,, 75 and 1, remain to be found. It can be shown (see Problem
8.72) that t,, 15, and 1, are identical with those in Section 8.3.2.2 (lead-lag
compensation with f > f,), but with 7,, 7,, and 1, replaced by 7., 7y, and 1,
respectively, and with f;, f;, and fj, replaced by f;, fu, and f,, respectively.
Note that this replacement does not apply to the numerator of Equation 8.75d
because it includes 7., whereas the corresponding numerator in Section 8.3.2.2
includes ty,—and not t,.
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l‘_IXAMPLl'? 8.25 A Type 13741 internally compensated F ET-input opera-
tional ampilifier is characterized by Aqe = 100,000, f; = 10Hz,and f, = 1 MHz
Lag—}cad compensation is applied with Fy, =1 (voltage follower), and ;;
tra;;snent response without ringing is desired. '
y choosing, somewhat arbitrarily, 1, =153 =1,, i i
s A = 1, in Equation 8.75d, the
results. of Figure 8.12 can be used. However, in the expression R = f,/f; of
iquatlon 8.56, f2 has to be replaced by f; and f; by fy; thus, R becomes
=1 Ji/fu- Also, in the expression w, = f/f. of Equation 8.58b, f;, has to be
l[:;); aced b)f f»; thus wy become§ wy = [/ fc. Equation 8.57a is still applicable
ause 7, is unaltered in Equation 8.75c; hence, f; remains unaltered as well—
however, now R = f, /.
Combining the above resuits, the product Rw, can be written

Also, Equation 8.57a can now be written

Jfe= AyFyacRfy = AgFyq. %fl'
(7]

Thus, the product Rw, becomes
j;. f2 fl

RW2 =— = .
Jo g g S AuFuahh
dc

FN.dc~ 1

Ju

With the parameters of this example
_ 1 MHz
(100,0001X10 Hz)

For Rw, = 1, Figure 8.12 provides R = 0.317, w, =247, w, = 3.12, and
Tc/t4 = L. Therefore, from w; = f/fe, '

f___é_lMHz
T w, 312

Also, replacing f; by fy, w; of Equation 8.58a becomes w, = f¢/fu; hence,
fom fe  3205kHz
v =25 =

w, 247
Finally, using R = f,/f,,,
fi = Rfy = (0317(129.8 kHz) = 41.1 kHz.

o Note that the resulting |AF | as a function of frequency was plotted in Figure
.16, where £, and f;, were chosen to coincide with the values of this example.

Rw, 1.

= 320.5kHz

= 129.8kHz.
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The transfer functions and the time responses of Equations 8.67a,b and
8.73a,b can be used with 7 replaced by 7.

EXAMPLE 826. In Example 825, f, =4l.1kHz, f-=3205 kHz, and
1¢/t4 = 1.1. Thus,

1 1

LS S VY
L= 2nf,  2mAL1kH2) -
1 1
o o496
€= 2nfe ~ 2n(320.5 kHz) -
and
e 0496 s
=T 008 o4ss
10 1 e

Equation 8.73a is applicable with 7, replaced by t,. Thus, for an input
voltage that is a step function with magnitude Vy:

1 My g Vol + 511)
LVl = sy

with My 5. 1,7, = 3.87 ys, and 7, = 045 pis. Also, by use of Equation 8.73b,
V,u(t) becomes

t 1 ATAAY ~tfr,
Voul®) = My acVo {1 - [1 + T4 + 2(1 B TA‘)(tA) ]e

= MyaVoll — [1 + 222t — 188:2] 7/%%%}

where time ¢ is in microseconds (us).

Graph () of Figure 8.17 shows V,(t)/My 4V, as a function of time. As
expected, there is a large overshoot: The peak of the transient is about 2.7 times
its final value. As before, this overshoot can be eliminated by inserting a
compensating network preceding or following the feedback amplifier. The
insertion of a network with a transfer function of (1 + st ,)/(1 + st,) results in
graph (b) of Figure 8.17, whereas the somewhat simpler transfer function of
1/(1 + st,) results in graph () of Figure 8.17. The propagation delay of the 50 %,
point is 0.75 us for graph (b) and it is 1.25 ps for graph (c); also, the 10 %,-90 %,
rise time is 1.5 us for graph (b) and it is 1.9 us for graph (¢). (See also Problems
8.75, 8.76, and 8.77.)
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1 |
0 1 2 3 4 5 6

]7 = t(us)

FIGURE 8.17 Transient response of a Type 13741 operational amplifier
used as a voltage follower with lag-lead compensation: (a) transient response
of the feedback amplifier, (b) tramsient response using a network with a
transfer function of (1 + st4)/(1 + st;) preceding or following the feedback
amplifier, snd (c) transient response using a network with a transfer function
of 1/(1 + st1) preceding or following the feedback amplifier.

84 Operational Amplifiers with A = Ay /[(1 + if[f)1 + if 1)1 + jf1f)]

This form of A4 is required for the accurate representation of high-performance
operational amplifiers, such as those built using dielectric isolation technology.
In what follows, frequency response is considered briefly, followed by de-
scriptions of transient responses with frequency-independent feedback, lead—lag
compensation, and lag—lead compensation.

84.1 Frequency Response
As before, the piecewise linear approximation of |M ] is obtained as the lesser of

the piecewise linear approximation of |4| and the piecewise linear approxi-
mation of |1/F,]|.

EXAMPLE 827. A Type 2539 wideband monolithic operational amplifier is
built using diclectric isolation technology and, as an approximation,
it is characterized by A, = 30,000, f, = 20kHz, and J2 = f3 = 300 MHz.
Thus, for frequencies between 20kHz and 300 MHz, the piecewise linear
approximation of |A] becomes 30,000/(f/20 kHz) = 600 MHz/ f.

The operational amplifier is used with a frequency-independent feedback of
1/Fy = 20. The piecewise linear approximation of |A| becomes 20 at the
frequency f where 600 MHz/f = 20, that is, at f = 600 MHz/20 = 30 MHz.
Thus, the piecewise linear approximation of |M,| equals |1/Fy| = 20 for
frequencies up to 30 MHz and it equals 600 MHz/f for frequencies between
30 MHz and 300 MHz.

Bode plots for |4|, |1/F,|, and |M,] are the subject of Problem 8.78.
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8.4.2 Transient Response with Frequemz;-lfnde?le;nd:il:l ;Zc;ib;cslé “hen cormer
.4, ‘ _ "
transient response 1S now evaluated for € ¢
;l;:;uency f, of A is much less than the other two corner frequencies. In this case,

A can be approximated as
.. S (8.76)
TGS +if 100 + 3115

For a frequency-independent feedback return Fy=F N.de> the resulting
amplification can be written in the Laplace transform domain as

A

LWl _ A _ A
PVa()) 1+AFy 1+ AFyq
Age
(s/2nf X1 + s/2nf2)1 + s/2nf3)
a AchN.dc

L+ SR XL + s/2nfoXL + 5/2nf3)

A . 877
T AgFrge + (127fiX1 + 5/280:X1 + 5/2f3)
When A4 Fy 4o » 1, which is the usual case, Equation 8.77 can be approxi-
mated as

_(f{ Voul(‘)} — MN.dc , (8788.)
PV} 1+ (52nfX1 + s/2nfoX1 + 5/2f3)
where
e (8.78b)
Mpy.ac = 1+ Ay Fyac
d
" Sfo= AacFracfi- (8.78¢)

It can be shown (see Problem 8.80) that f¢ is the. frequency where the
piecewise linear approximation of |AF | becomes 1, provided that f; and f, are

above fc. )
Equation 8.78a can also be written
L{Voul)} _ My .ac ) (8.79a)
PV} 1+ (5/2nfN1 + 8/2efcwa X+ 8/20fewsy)
where
Wy = L = O (8.79b)
M fC AchN,d:fl
and
Wy, = Lo L (8.79¢)

T fe T AaFuati
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Furthermore, Equation 8.79a can also be written

g{Voul(t)} _ MN.dcr
2{Va0} (L)3 N ( s )2 (= , (8.80a)
2afc P 2nf, 4 2nf, +r
where
P =Wy, -+ Wi, (880b)
q = W W3, (8.80¢)
and
r= Wwy;wy,. (880([)

Note that g = r; they are distinguished only to conform to Appendix A.
The transient response is free of ringing when all three roots of the

denominator of Equation 8.80a are real. According to Appendix A, this occurs
when )

b? a’

vy < - 7 (8.81a)
where

t 2

=300-p) (8.81b)

and
1 3
b= ﬁ(2p ~ 9pq + 27r). 8.81¢)

It can be shown (see Problem 8.82) that the criterion of Equation 8.81a leads
to

way 27238 (ﬁ + 1)[1 - 2(Yﬂ - 1)(ﬁ _3
W21 \\Wz; W21 w2
N R ) ek
W21 W2y wy 2 W21 \W2y

(8.82)

By \{arying W3y /Wy, the criterion of Equation 8.82 can be represented as
sho.wn in Figure 8.18. Note that w;, and w;, are interchangeable in Figure 8.18,
as is expected from Equation 8.76—although this interchangeability is not
obvious in Equation 8.82.
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25 T ‘ T I T | T I T
20 - 7
All roots
are real
15 - in this -
region
w3} o 7
10 — ]
5 L —
1 | 1 il | | 1 l 1
0 5 10 15 20 25
w21

FIGURE 8.18 Conditions for real roots in a feedback amplifier with the
amplification A of Equation 8.76 and with a frequency-independent feedback
FN 4 Variables wa; and w3 are given by Equations 8.79b and 8.79c.

EXAMPLE 8.28. A Type 2539 wideband monolithic operational amplifier is
characterized by A4, = 30,000, f; =20kHz, and f; = f; = 300 MHz. Thus,
fi < f, and f; « f; therefore, Equations 8.76 and 8.77 are applicable. The
operational amplifier is used in a noninverting feedback amplifier with a
frequency-independent feedback of Fy= Fy4. =1/20. Thus, A4Fyac=
(30,000)(1/20) = 1500 > 1; therefore, Equations 8.78—-8.82 and Figure 8.18 are
applicable.
From Equation 8.78b,

Aq, 30,000

= =19.987 = 20
1+ Ag.Frae 1+ 30,000/20

MN.dc =

and, from Equation 8.78c,
Je = AgcFyacfi = (30,000(1/2020 kHz) = 30 MHz.
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Also, from Equation 8.79b,
- J: _300MHz
2T 30MHz
and, from Equation 8.79c,
f3 _300MHz
fo 30MHz

According to Equation 8.82 and Figure 8.18, all roots are real and the
transient response is free of ringing when W32, = w3, = 6.75. Thus, the transient

response of the feedback amplifier in this example is free of ringing because it has
Wai = wy; = 10.

Wiy = 10.

In Example 8.28, a Type 2539A wideband monolithic operational amplifier
was used with a frequency-independent feedback of F ~ = Fyq4.=1/20 and a
resulting dc amplification My 4. 20. It was seen that the transient response of

the feedback amplifier is free of ringing. Example 8.29 shows that this is not the
case with My 4. = 10.

EXAMPLE 829. A Type 2539A wideband monolithic operational amplifier is
characterized by 4, = 30,000, f, = 20kHz, and f2 = f3 =300 MHz. Thus,
fi < f; and f, « f;; therefore, Equations 8.76 and 8.77 are applicable. The
operational amplifier is used in a noninverting feedback amplifier with a
frequency-independent feedback of F N=Fyg.=1/10. Thus, A, Fy, =
(30,000X1/10) = 3000 > 1; therefore, Equations 8.78-8.82 and Figure 8.18 are
applicable.
From Equation 8.78b,

Age _ 30,000
1+ Ag.Fyq 1+ 30,000/10
and, from Equation 8.78c,

Je = AgcFy o f1 = (30,000)(1/10)20 kHz) = 60 MHz.
Also, from Equation 8.79b,

M Nde =

=9997x 10

w é 300 MHz _
27 fc 60MHz
and, from Equation 8.79¢,
e o $2 _300MHz _
e 60MHz

According to Equation 8.82 and Figure 8.18, all roots are real and the
transient response is free of ringing when w,, = w3, 2 6.75. Thus, the transient

response of the feedback amplifier in this example is not free of ringing because it
has wy, = w,, = 5.
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i tion
Transient Response with Lead-Lag Compensa
%:il—lag compensa:’i(:)n consists of the inclusion of a freguency-(]iiepfrltqez:
feedback network as shown in Figure 7.4 (page 96) and described by Equatio
43-7.47 in Section 7.4. -
! When ¥V, and V,,, are represented in the Laplace transform domdmd‘h?:;;
with 1, = 1/20f;, 1, = 1/2nf5, 13 = 1/20f3, 1. = 1/2nf,, 1y = 1/2nfy, and W

fi« f;and f, < f,

Adc
L{Voudt)} (1 + sty 1+ sTo)L + 574)
2V} AgcF.se 1+ 51,
b+ I + st
(1 + st X1 + st )1 + 573) v
Adc
- sTy(1 4 sto)l + s1y) , 883)
= AgcFy e 1+ 574

1+ sTy(1 + sT01 4 513) 1+ 579

where 1, > 1y, therefore also f; < fy- . o .
The \’;alueuof 7, is usually chosen to be in the vm!mty Of'Tz or 1?.(? s1mplfl
choice is 7, = 15; that is, f, = f; (pole-zero cancellation): This case is discusse
L — ’ ]

in Section 8.4.3.1. The case of f > f3 .(i.e., 1 < 1,) is outlined in Section 8.4.3.2,
and the case of fi < f3 (ie, T, > T3) is not discussed.

8.4.3.1 LEAD-LAG COMPENSATION WITH f, = f3

In this case (pole—zero cancellation), Equation 8.83 becomes
Adc
LVl 5Tl + 51K + sT3)
20 1 AgcFn,ac
st4(1 + st )1 + styp)
Age 1+ sty
= AaFuge + 511+ 5101+ 579) 1+ 573
Age 1 + s2nfy ‘
T Ay Fy e + 6/20fiX1 + /20 X1 + 5/2nfu) 1+ 5/2f,

(8.84)

In considering the last form of this equation, note that.n is a product ;)t;xtl‘::
fractions. The root of the denominator of the second fraction is always rear. " Y
the first fraction equals Equation 8.77 with f; replaced by fy. Thus., or84;
purpose of determining whether all roots are real, the results of Section 8.4.

may be used with f; replaced by fy.
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EXAMPL . i
characic, uﬁd 8-1:)0 AA Type 2539 wideband monolithic operational amplifier is
haracterized by Ay. = 30000, f, = 20kHz, and f, = f, = 300MHz Th
compensaﬁoanmp];ﬁe_r :s used ]m a noninverting feedback amplifier with lead la;
. Resistor values are R, =900Q -
F,. = - F and R, =100Q; h
n.de = 1/10and My .= 10. The value of C,is 1.8 pF, which’includes the i‘::;)cli

capacitance of the operational i i
s hosen ao 0?9 pF(')na amplifier and stray capacitances. The value of C

Thus, from Equation 7.43c,
_ 1 1
" 22R;C;  Zn(900 QX0.59 pF) = 00 MHz
and, from Equation 7.434,
1 1

Jo= %R =
2n N~ (900 QX100 Q)
R,+Rl( p+Cl) 27{m(059pF+18pF)

. Thus, f; = f,. Also,
linear approximation o
applicable.

L

= 738 MHz.

{,A« fz_, h<fs, aqd AgcFy qc > 1. Hence, the piecewise
{4Fy is as shown in Figure 8.19; also, Equation 8.84 is

|AF
4
80 dB |—

60 dB

40 dB

20 dB
100 MHz
0dB | { | | | ]
0.1MHz 1MHz 10 MHz T6hz 1oz >/
wal f2 = f3 = fi = 300 MHz
fu = 738 MHz
-40 dB L

FIG . I~ .
URE 8.19 Piecewise linear approximation of |4Fy| in Example 8.30,
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The value of f is, from Equation 8.78c,
fo = AgFy.acfi = (30,000)1/10(20 kHz) = 60 MHz
and, from Equation 8.79b,

f» _300MHz _
fo 60MHz

W2 =

However, in evaluating Equation 8.79¢ for wj,, f, has to be replaced by fy:

fy _138MHz _

Ju _8VZ_ g3,
fo _ 60MHz

Wy =

A close inspection of Figure 8.18 shows that the wy, = 5, wy, = 12.3 point is
within the region where all roots are real (see also Problem 8.91). Thus, in this
example, the transient response of the feedback amplifier is free of ringing. This
is an improvement over the feedback amplifier of Example 8.29 that also had
My .= 10, but it used frequency-independent feedback and its transient
response was not free of ringing.

To find the transient response, the transfer function of Equation 8.84 has to
be rewritten using the roots of the denominator.

EXAMPLE 831. TIn Example 8.30, the values of w,, and wy, were such that
the point they represented in Figure 8.18 was barely within the region where all
roots are real. Also, Problem 8.91 indicates that the two sides in the inequality of
Equation 8.81a are almost equal. In what follows, the approximation is made
that the point in Figure 8.18 lies on the boundary line between the two regions,
and that Equation 8.81a is an equality. In this case, the roots of the denominator
in the left fraction of Equation 8.84 can be computed with Equations 8.80b,
8.80c, 8.80d, 8.81b, and 8.81c with f; replaced by fy (this is a result of the
similarity of Equation 8.77 and the left fraction in Equation 8.84).
Thus, with w,, = 5 and w;, = 12.3,

p=way +wyy =5+123=173,

g=r=wywy =(5X123) = 615,

and

1
b= %(zf — 9pq + 271) = 5 (2073 — 9(17.3X61.8) + 27(61.5)] = 90.4.
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. T}l\e r:ots 2[ a cubic ;:quatiop are given in Appendix A, with at least two roots
qual when b%/4 = —a3/27, which is the case here. The two equal roots are given

as
(L)=_3_l_’__p=_3 90.4 17.3
2nfc/a 273 T Ty 2

and the third root is given as

The corresponding time constants are

= L_1 1 1 1
Sa 222nf, 22 n60MHz) = 2™
and
U B N T
ss 129 2xf, 129 2x(60 MHz) ~ 0209 1s.
The time constants corresponding to f, and f; are
ol 1
U= 2nf, ~ 2n(738 MHg) - 021318
and
fo L1
> = 2nf, ~ 2aG00 MHZ ~ @30S
Thus (see Problem 8.92), the transfer function becomes
2L {Voult)} _ My q. 1+ 51,
LV} 1+ ST + s15) 1 + 5Ty
My 4 1 + 5(0.215 ns)

[1 + s(1.2ns)][1 + 5(0.205 ns)] 1+ s(0.53ns) ’
which can be approximated (see Problem 8.93) as
L{Voud)} ~ My
L{Va)} T [1 4+ (1.2 n)]°[1 + 5(0.53 ns)]

The output voltage as a function of time i i
i time is obtained by multiplying t
.transfer function by the Laplace transform of the input voltage and ‘t)a{(li?lg t:e
Inverse Laplace transform of the product. s
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EXAMPLE 8.32. In the feedback amplifier of Example 8.31, the.input voltage
is a step function with magnitude V,. Thus, Equation 5.30 is applicable and the
resulting output voltage is given by Equation 531a with 7, = 0.53 ns,
1, =12ns, and with As replaced by Mpygq. = 10.  Therefore,

1,/t, = 1.2 ns/0.53 ns = 2.26 in Equation 5.31a, and

t
— — —/0.53ns _ —1/1.2ns .
Voult) = My acVo [1 0.63e (0.37 + 557 ns) e ]

This is shown in Figure 8.20. The propagation delay of the 50%, point is
tso ~ 2.6 ns and the 10 %-90 %, rise time IS 1,9-90 = 4.3 1s.

1.0
Vout

Mn.acVo
7 05

| | ] ] | | Lo ¢ (ns)

[0} 1 2 3 4 5 6 7 8
FIGURE 820 Transient respouse of a Type 2539 operational amplifier
using lead-lag compensation with f; = f3; also, My 4. = 10.

8.4.3.2 LEAD-LAG COMPENSATION WITH f; > f;

As was the case without corner frequency f; in Section 8.3.2.2, here too it is
convenient to introduce the frequency ratio R by Equation 8.56, the crossover
frequency f. by Equation 8.57a, and the frequency ratios w, and w, by
Equations 8.58a and 8.58b. However, because Equation 8.83 is more com-
plicated than Equation 8.49, the equations corresponding to Equations 8.59—
8.61 become more complicated here. Specifically, the denominators of Equa-
tions 8.59a and 8.60 become fourth order in s and the denominator of Equation
8.61 becomes a product of four terms. Finding criteria for transients without
ringing—hence for real roots—becomes more difficult, and only limited results
are outlined here.

Figure 8.21 shows results for the case when frequency ratio R of Equation
8.56 can be approximated as R = 0, that is, when f; « f;. As before, frequency
ratios w, and w, are given by Equations 8.58a and 8.58b. The derivation of
Figure 8.21 is the subject of Problem 8.97.

Note that, as expected from a comparison of Equations 8.49 and 8.83, the
f3/f2 = o graph of Figure 8.21 is identical with the R = 0 graph of Figure 8.9.
Also, when real roots are desired, lowering f3/f, necessitates increasing
w, = fy/fc, which is not unreasonable.
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FIGURE 821 Criteria for real roots—bence for transients without ring-
ing—for lead-lag compensation with f; > f; and with f; « f;. Frequency
ratios wy and w; are given by Equation 8.58a and 8.58b.

The cusps of the graphs represent solutions where three roots out of the four
roots are equal. This limit is detailed as a function of f,/f; in Figure 8.22.

Note that, as expected, data for f/f, = co—that is, for f,/f; = 0 in Figure
8.22—is identical with data for R = 0 in Figure 8.12. The three identical real
roots are represented by t,, and the fourth root by 7, in Figure 8.22, where also
w; and w, are given by Equations 8.58a and 8.58b.

Note that corner frequency f, is usually chosen in the vicinity of f;. Because
J2 < fi, when R =0, this implies f, « f;. Hence, the R = 0 approximation is
only of limited use in lead-lag compensation when f} is significant. (However, it
it often provides a useful approximation in lag-lead compensation discussed in
the next section.)

Figures 8.23-8.25 (pages 178-180) describe criteria for real roots with three
identical roots, for f3/f; = 1, 2, and 5. They are similar to Figure 8.12, which
represents the limit of f3/f, = co. The three identical roots are represented by
14, the fourth root by 7,. (See also Problem 8.98.)

8.4 OAs WITH A = Ag/l(1 + /)0 + WA + iH)
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FIGURE 822 Criteria for real roots, inc 0
lead -lag compensation with f > f3 and with f3 « fi. Frequency ratios w) and
w3 are given by Equations 8.58a and 8.58b.
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FIGURE 823 Criteria for real roots, including three identical roots 1 ,, for

lead-lag compensation and f3 = f;.
Equations 8.58a and 8.58b,

Frequency ratios w; and w; are given by

8.4 OAs WITH A = AuJ[(1 + iif + i1 + ifify)]
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FIGURE 8.24 Criteria for real roots, including three identical roots T for
lead-lag compensation and f3 = 2f2. Frequency ratios wy and w; are given by

Equations 8.58a and 8.58b.
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FIGURE 8.25 Criteria for real roo
lead-lag compensation and f; =
8.58b.

Eqult‘ions&ssaand

R

ts, including three identical roots 14, for
5f2. Frequeacy ratios w; and w2 are given by
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84.4 Transient Response with Lag-Lead Compensation

In a way similar to Section 8.3.3, the results of lead-lag compensation are
applicable here too with 75, 7, and 1y replaced by 1., 7y, and 1,, respectively,
and with f,, fi, and f, replaced by f., fu, and f;, respectively, in the
denominator of the transfer function.

EXAMPLE 8.33. A Type 2539 wideband monolithic operational amplifier is
characterized by A,. = 30,000, f, = 20kHz, and f, = f; = 300 MHz. Lag-lead
compensation is applied with Fy 4 =1 (voltage follower), and a transient
response without ringing is desired.

By choosing, somewhat arbitrarily, three equal roots, the results of Figure
8.23 can be used. However, in the R = f,/f; of Equation 8.56, f, has to be
replaced by f; and f; by fy; thus, R becomes R = f;/fy. Also,in the w, = fy/fc
of Equation 8.58b, f;, has to be replaced by f,; thus, w, becomes w, = f5/fc.
Equation 8.57a is still applicable because 7, of Equation 8.75c remains
unaltered. Hence f, remains unaltered as well; however, now R = f, /f,.

Combining the above results, product Rw, can be written

Also, Equation 8.57a can now be written

S
Je= AacFN,chfl = AchN.dc f_Lf]
[

Thus, the product Rw, becomes

RW2 =§L‘ f2 f :A F{-z f .
U Adr,FN,dc '_Lfl dc? N.dc/1
Ju
With the parameters of this example
300 MHz
Rwy=—"-"""_ =(5.
W2 = Go.000K1)20 ki) ~ >

For Rw, =0.5, Figure 823 provides R =0.095 w; =272, w, =325,
Tc/t4 = 1.12, and to/15 = 7.17. Thus, from w, = f,/fc,

_ f» _300MHz
fC = W—z = ——ST = 57.1 MHz.
Also, replacing f; by fy, w, of Equation 8.58a becomes w, = f¢/fy; hence,
57.1 MH
fo=te JSTIMHZ e,

T w, 272
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Finally, using R = f,//y,
Jr = Rfy = (0.095)21 MHz) = 2 MHz.

The transfer functions and the time responses may also be found in a way
similar to Section 8.3.3.

EXAMPLE 8.34. In Example 8.33, f; = 2MHz, fc=57.1 MHz, 1c/1,=
1.12, and ¢/t = 7.17. Thus,

1

'c,_=57:_fl=mg 80 ns,
tc:?i:Tc‘:-Zn_(STllﬁﬁ?)g 2.8 ns,
1:4=-JTC2=2fl;s; 2.5 ns,

and
t,=-%=3%27§§ 0.4 ns.

For an input voltage that is a step function with magnitude V;,

i) = Maraitt 2520
s (1 + st (1 + s1p)

with My 4= 1, 1, 80ns, 1,2 2.5ns, and 152 0.4 ns. It can be shown (see
Problem 8.100) that the inverse Laplace transform of £{V,.(t)} is as shown in
Figure 8.26.

Note that the transient response has a large overshoot: The peak is almost
nine times the final value. As before, the overshoot can be eliminated by
inserting a compensating network preceding or following the feedback amplifier.

85 Inverting Feedback Amplifiers

An inverting feedback amplifier was shown in Figure 7.8 and an extended circuit
in Figure 7.9. It was seen that if the performance of the circuit using lead—lag
compensation with f; = f, (pole-zero cancellation) was acceptable for
R,urce = 00, then it was also acceptable for any value of R,

Whether the transient response is free of ringing or not is determined by AFy
and is independent of the input. Thus, if the transient response of the circuit of
Figure 7.9 using lead-lag compensation with f, = f, (or f, = f3) is free of
ringing for R, ... = oo, then it is also free of ringing for any value of R

source’

T
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FIGURE 826 Transient response of a Type 2539 operational amplifier used
as 2 voltage follower.

EXAMPLE 8.35. In Example 8.30, a Type 2539 wideband monolithic opera-
tional amplifier was used with f; = f;. The values of the feedback network were
R, =900Q, R, =100Q, C,=059pF, and C; =18 pF, and the transient
response was free of ringing. A . o
Thus, the transient response of the circuit of Figure 7.9 is free of ringing for
any value of R,y if it uses a Type 2539 operational amplifier, Ry = 900 Q.
R, + R; = 100Q, C; = 0.59 pF, and C, = 1.8 pF.

The situation becomes more complicated when R, .. gf Figu{c.7.9 is not a
pure resistance. In such cases, it is often necessary to specify a minimum value
for R, if a transient response without ringing is desired.
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8.6 Computer-Aided Design

In the foregoing, this chapter introduced analytical and graphical methods for
finding the frequency response and the transient response of feedback amplifiers,
These methods also provided guidance for the choice of component values
required to achieve desired performance characteristics, such as transients that
are free of ringing. In some cases, they also provided insight into the tradeoffs
that are possible in a given circuit, such as the tradeoff between operating speed
and the maximum output voltage swing.

It was also seen that the derivation of these methods could become difficult
even in the simple circuits discussed here. Also, in some cases, the use of the
resulting equations and design graphs required a substantial amount of work.

An alternative to the analytical and graphical methods is provided by
computer-aided design methods. Contrary to their name, these methods are
suitable mainly for analyzing the performance of a given circuit. The transient
response is usually computed by advancing the time in small time increments
and evaluating voltages and currents in the circuit at each time step. Thus, the
writing of equations is eliminated, and the transient response is obtained directly
as a graph or a listing. The frequency response can also be found, as well as the
effects of input offset voltage, input currents, and other parameters.

Computer-aided design is often a convenient tool for finding the performance
of a given circuit when a computer and a suitable program are available. Also,
changing the values of components (circuit parameters) is usually easy; hence,
circuits can be evaluated with different combinations of component values.

EXAMPLE 836. A Type 9914A wideband hybrid operational amplifier was
used in Examples 8.17 and 8.18 with My 4. = 10 and with lead-lag com-
pensation with f, > f,. It was found that, with f; =15625MHz and
J1 = 80 MHz, the transient was free of ringing when w, = f,/f. was between 3.4
and 3.5, that is, when f, was between 531 MHz and 547 MHz.

In practice, such a narrow range of JSu is difficult to guarantee with realistic
variations of circuit parameters. On the other hand, a small amount of ringing
on the transient response may be acceptable.

A computer-aided design process may proceed as follows. As a starting point,
the feedback amplifier is designed with Ju =34f; = 531 MHz. The resulting
transient response is found using computer-aided methods. Next, circuit
parameters are varied and the resulting transient responses found, again by
computer-aided methods. As a last step, the transient responses are evaluated to
determine whether the resulting ringing is acceptable.

Computer-aided design can also be used for generating design graphs, such as
Figures 8.21-8.25. This can be attained by an exhaustive evaluation of transients
with all possible combinations of the variables of the horizontal and vertical
axes. Such a procedure requires the evaluation of many transients: in the rough
vicinity of 10,000 transients for the accuracy of Figures 8.21-8.25. This may
become expensive and time-consuming; nevertheless, such use of computer-
aided design is often practical, especially by use of mainframe computers.
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PROBLEMS

Verify Equation 8.3.

Verify Equations 8.4-8.6. o
Derive Equation 8.7 from Equation 8.6. [Hint: Note the similarities
between Equations 8.6 and 6.8.]

Verify Equation 8.9.

Verify Equations 8.10 and 8.11.

Derive Equation 8.12 from Equation 8.11. '

Verify the statement following Equation 8.13 at the end of Section 8.1.3.
i i i ional amplifier in Example

the amplification of the operationa plific .

7A‘1";I):’sx:1m:t§0 0;0/(1p+ if/20 kHz) and sketch piecewise linear approxi-

mations for |4j, |1/Fyl, and [Myl.

Verify Equations 8.24 and 8.25. f

Approximate 1+ jf/20kHz by jf/20kHz, and show that {AFy\} ©

Example 8.5 becomes 1 at a frequency of 63 MHz.

Verify Equations 8.26-8.29.

Prove Equations 8.30a and 8.30b.

Verify Equation 8.31.
Derive Equations 8.32a—f from Equations 8.29 and 8.31.
Derive Equations 8.34 and 8.35a from Equations 8.32c, 8.32d, and 8.33.

Derive Equation 8.35b from Equation 8.35a by the. follm;sing steps:

(a) Substitute (fy/fulfu/fmax fOr fulfcin EquatloxT 8.35a. Sorder

(b) Find the two solutions ( Su/f)max Of the resulting second-o
equation. ' .

() Show that one solution is as given by‘Equatnon 8.35b, where
o/ fdm <1 for 0 < fi/fu <1, which is the case for lag-lead
compensation. .

(d) Show that the other solution results in (fy/fc)mx > 1 for
0 < fi/fu < L; hence, it is of no interest.

Verify that Figure 8.3 is consistent with Equations 8.36a and 8.36b.

Derive Equations 8.36a and 8.36b from Equation 8:3§b using‘the s;rslis
expansion of the square root for small values of f/Jv in Equation 8.35b.

. 2 .
[Hint: Use the approximation /1 + x = 1 + x/2 — x?/8 for |x| « 1.]

Verify that the condition Ay Fy g.fi/fu > 1 of Equation 8.33c¢ is valid in
Example 8.8.

*Optional problem.
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Verify that Figure 84 is consistent

e/ fohmin= 4 — 21/ fy when 0 < fi/f, « 1.

(\)/erify that the approximz_ation (fe/fodmin= 4 — 2f/fy is valid when
< fulfu < 1. QSc the series expansion of the square root for small
values of f,/f, given in Problem 8.18.

Verify Equations 8.37a—c.

with the approximation

Derive Equation 8.38b from Equation 8.38a.
Verify Equations 8.39 and 8.40.
Derive Equation 8.41.

Use Equation 8.41 and show that V., of Fi initi
TV A igure 8.5 has an initial slope of

Use Equation 8.41 and show that V. i i
| . ou Of Figure 8.5 h i
approximately 7.5My 4.V, at t/t ~ 1505. ¢ s 1ts maximom of

Derive Equations 8.43a-¢ from Equation 8.42.
Derive Equations 8.44a, 8.45, 8.46, and 8.47.
Verify the results of Example 8.10.

Verify Equation 8.48.

Verify the results of Example 8.11.

Verify the results of Example 8.12.

Find the phase margin in Example 8.12.

;:' stage in an operation?ll amplifier is represented by the lag network of
igure 5.1 (Page 39), with I, proportional to the input voltage of the
;tage. Capacitance C is controlled within + 10 Y%; however, variations of
. are much greater becausF R represents collector (or drain) resistances
that are Poorly controlled in the integrated circuit process. Show that an
increase in the value of R increases the dc amplification arld reduces th

value of the corner frequency f, = 1/27RC; however, it has no inﬂuenc:

on the amplification of the st i
' age at frequencies
remains constant. ! Ty as long as €

Verify the statements followin
. 1 g Example 8.13 at the end of i
{Hint: Use Equations 6.40-6.42 and Figure 6.14.] of Section 831

3} ;);;:CZ:ZL én;erzall{ compensated monolithic operational amplifier is
Csed it z ae = 200,000, f; = 10 Hz, and f, = 10 MHz, and it is
reomom ‘?'tegcx-mdependem 'feedback. Show that the frequency
of ponse m gnitude is free of pea,kmg and the transient response is free

ninging for all possible M, ,, including My 4. = 1 (voltage follower)

*Optional problem.
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A Type 13741 internally compensated FET-input operational amplifier

is characterized by 4, = 100,000, f, = 10 Hz, and f, = | MHz,and itis

used with frequency-independent feedback.

(@) Show that the magnitude of the frequency response is free of
peaking if, and only if, My 4 > 2.

(b) Show that the transient response is free of ringing if, and only if,
MN‘dc 2 4.

Derive Equations 8.51a—e from Equation 8.50.

Derive Equation 8.53 from Equations 8.51a and 8.52 for a step-function
input, using Appendix A.
Derive the equation for V,,, in Example 8.14 from Equation 8.53.

Verify that the bandwidth approximations given in the text following

Example 8.14 are valid for frequency-independent feedback and for

lead-lag compensation with f; = f; (pole-zero cancellation). Ignore the

region of m > 1 and show the following:

(a) The bandwidth is approximately f; g/ My ae when m < 1.

(b) The bandwidth is approximately . NAge/My.ao)f1 S when m =1
(but not when m » 1). [Hint: Use the piecewise linear approxima-
tions of the Bode plots for [My|.]

Show that the approximate bandwidth given in (b) of Problem 842 is
also applicable for 0.5 < m < 1. [Hint: Use the results of Figure 6.13.]

Verify the results of Example 8.16.

A Type 13741 internally compensated FET-input operational amplifier
is characterized by A, = 100,000, f; = 10Hz, and [, = 1 MHz. It is
used in a noninverting feedback amplifier with Fy = Fy 4. = 1 (voltage
follower). Find the resulting value of m and estimate the bandwidth of
the feedback amplifier.

Use Equation 8.49 and show that the piecewise linear approximation of
the Bode plot of |AFy| becomes 1 at f given by Equation 8.57a when
£ € fer Ju < Je, and fy = fc. Assume AgcFyac>» 1.

Verify Equations 8.59a-d and Equation 8.60.

Consider the procedure given in Appendix A for the solution of third-
order (cubic) equations. Verify that the case of 7p = 1,4 in Equation 8.61
marks the transition between two regions: All three of 1, 5, and 1) are
real in one region, whereas in the other region only one of 14, 15, and 7
is real and the remaining two are complex. Assume NnONZero s, T4, g, T¢,
and 1.

Verify Equations 8.62b, 8.63a, 8.63b, and 8.63c.

*Optional problem.
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Derive Equations 8.64a—c from Equations 8.63a—c as follows:
(a) Express 7¢/ty from Equation 8.63a; the result is Equation 8.64c.

(b) Substitute the result of (a) above (i.c., Equation 8.64¢) into Equation
8.63c.

(c) Obtain Equation 8.64b from the result of (b) above.

(d) Substitute the result of (a) above (i.e., Equation 8.64c) and the result
of (c) above (i.., Equation 8.64b) into Equation 8.63b. Simplify and
express w,; the result is Equation 8.64a.

Compute Equations 8.64a and 8.64b with R = 0.625 and Telts = 144,
Verify that the results are consistent with F igure 8.9.

Derive Equation 8.65 by substituting tc/t; of Equation 8.64c into
Equation 8.63b and solving the resulting equation for Tc/T 4

Show that lead-lag compensation with f, = f, (pole-zero cancellation)
would require fy/f;, =20 in Example 8.17, which cannot be im-
plemented because My 4, is only 10.

Derive Equation 8.66 from Equation 8.62a. {Hint: Use Equations 8.59d
and 8.63c.}

Verify Equation 8.67b.

Verify the equation for V,,,(t) in Example 8.18.
Verify Equations 8.68a and 8.68b.

Verify Equations 8.69a—c.

Derive Equations 8.70a—c from Equations 8.69a—c¢ as follows:

(a) Express R/w, from Equation 8.69a and substitute it into Equation
8.69b.

(b) Express w, from the result of (a) above. The result is Equation
8.70a.

(c) Express w, from Equation 8.69c. The result is Equation 8.70b.
(d) Express R from Equation 8.69a. The result is Equation 8.70c.

Verify that w, and w, of Figure 8.12 provide the locations of the cusps
for R =0, 0.1, 0.2, 0.5, 0.625, and 0.75 in Figure 8.9.

Compute Equations 8.70a-c at tc/1, = 1.2. Verify that the results are
consistent with Figure 8.12.

Verify Equations 8.71a and 8.71b.
Verify the results of Example 8.19.

Derive Equation 8.72 from Equation 8.68a. [Hint: Use Equations 8.59d
and 8.63c with 15 = 1,.}

*Optional problem.
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Derive Equation 8.73b from Equation 8.73a using Appendix A.
Verify the equation for ¥,,(t) in Example 8.20.
Verify the results of Example 8.21.

Show that 1/(R%/w,) is equal to the piecewise linear approximation of the

Bode plot for |[AF,| at f = f:

(a) in Figure 8.10;

(b) in Figure 8.13;

(¢) in general when f, > f; and f, 2 fo.

A Type 9914A wideband hybrid operational ampliﬁer is ch.aractcri;ed

by A, = 5000, f; = 0.5 MHz, and f, = SOMHz It is useq in a nonin-

verting feedback amplifier with My 4 = 50, anfl a transient response

without ringing is desired. Input voltage V,,(t) is a step function with

magnitude V. ' .

(a) Find output voltage V,, (1) if lead—lag compensation with f; = f,
and m = 0.25 is used.

(b) Find 150 and t;4_go of (a) above. . ,

(¢) Find output voltage V,, () if lead-lag compensation with _f,_ > fris
used and if the transfer function is of the form of Equation 8.72.

(d) Find tso and t;4_go of (c) above.
Verify the results of Example 8.22.
Verify Equations 8.74a—d and 8.75a-d.
Verify the statements following Equation 8.75d by the steps given below:
(a) Show that Equation 8.49 can also be written
L{Veul)} _ Agl + sty) '
LV} (14 st X+ sto)l + 575) + AgeFuaell + 571)
(b) Show that when A, Fy 4. > 1, the result of (a) above can be written
L{Voult)} _ 1 + sty »
Z{Vul} o 1451+ ﬂANi“-(l + st 01 + stpll + s12)

dec

(c) Verify that the denominator of Equation 8.75c is identical to the
denominator of the result of (b) above with 7,, 7, and 7, replaced
by 7., Ty, and 1, respectively.

(d) Verify that, in general, the numerators of Equations 8.75c and 8.75d
are not identical to the numerator of the result of (b) above.

Verify the results of Example 8.25.

(a) Verify the equation given for V,,(t) in Example 8.26.

(b) Evaluate the equation at ¢t = 1 us and compare the result with
graph (a) of Figure 8.17.
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Deriv_e the equation representing graph (b) in Figure 8.17. Evaluate the
equation at t = 1 us and compare the result with the figure.

Derivle the equation representing graph (c) in Figure 8.17. Evaluate the
equation at t = 1 us and compare the result with the figure.

In Example 8.25, the value of C; is 10 pF, which includes the input
capacitance of the operational amplifier and stray capacitances. Show
that a feedback network consisting of Ry = 265k in parallel with
Cr = 4.6 pF results in f; = 129.8 kHz and f; = 41.1 kHz, as required.

Sketch pi(?cewise linear approximations of the Bode plots for |4, [1/F,),
and |[M,] in Example 8.27. Use a logarithmic horizontal scale of 10 kHz
to 1 GHz and a vertical scale of —20 dB to 100 dB.

Verify Equations 8.77 and 8.78a—c.

Use Equations 8.76 and 8.77, and show that f;. of Equation 8.78c is the
frequency where the piecewise linear approximation of |4F,| becomes 1
when f; > frand f, > f.

Verify Equations 8.79a—~c and 8.80a-d.

Derive Equation 8.82 from Equations 8.80a—d and 8.81a—c. [Hint: Asa
first step show that Equation 8.81a can be written

2
27&(_1_) - (ﬂ + 1)[1811'& -4(1&.4. 1 L
Wi1 \W21 W2y W2y W21 W21
W21
then solve for 1/w,,.]

Show that w,, given by Equation 8.82 becomes 27/4 = 6.75 when
w3, = wy,. Verify Figure 8.18 at this point.

Show that, based on previous results of this chapter, w,, of Equation
8.79b a}nd Figure 8.18 is expected to become 4 when w; — co in Equation
8.79c (i.e., when f; — o). Verify that Figure 8.18 is consistent with this
result.

Show that w,, of Equation 8.82 becomes 4 when wj,/w,, — co. [Hint:
First show that 1/w,, can be approximated as

1 Wi /W2,)? 7

1L Away/wa))® [_1 T Pp— |
W2, 27 4wy /way)

then use the approximatien /1 + x = 1 + x/2 for |x] « 1.]

Evaluate Equation 8.82 and verify Figure 8.18 at w;,/w,, = 0.2, 0.5, %,
1.5, 2, and S.

*Optional problem.
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Verify the results of Examples 8.28 and 8.29.

A Type 2539 wideband monolithic operational amplifier is characterized
by A, = 30,000, f; = 20kHz, and f, = f; = 300 MHz. The operational
amplifier is used in a noninverting feedback amplifier with frequency-
independent feedback. Show that the transient response is free of ringing
if, and only if, the resulting dc amplification, My, is at least
~27/2 = 13.5.

Verify Equations 8.83 and 8.84.
Verify the results of Example 8.30.

Evaluate Equation 8.81a for Example 8.30 and show that the right side
of Equation 8.81a is greater by roughly 1.5 %, than its left side.

Verify the results of Example 8.31.

The end result of Example 8.31 was reached by approximating by 1 the
transfer function [1 + s(0.215ns)]/[1 + s(0.205ns)]. Show that the
transient response corresponding to this transfer function multiplied by
1/sis 1 + 0.05e74°-205 which can be approximated by 1 with an error
of less than 2% for times greater than 0.2 ns.

Verify the results of Example 8.32.

The results of Section 8.4.3.2 are expected to reduce to those of Section
8.3.2.2 when f; » f,. Verify that this indeed is the case in Figure 8.22.

Verify that the R = 0 limits of Figures 8.23-8.25 are consistent with
Figure 8.22.

Derive the results of Figures 8.21 and 8.22 as follows:
(a) Show that the fourth-order equation to be solved can be written

st ( fs) s? fs f3 w} f.
+5 w1+ )+5 2—+— 224 22 1.
4 S f é L2 fz wy fa

(b) Show that the expression (s+sA)2(s + sp)s + sp) can also be
written

s% + 53254 + Sp + sp) + s2[8% + 25,(s5 + Sp) + SaSp)
+ 554[5,4(58 + Sp) + 2553p] + $4385p.

(¢) Multiply the equation in (a) by s¢ and match the coefficients of the
result with the coefficients of (b).
(d) Write the equation resulting from the s> terms of (a) and (b) as

,+_:( é)_w .
Sa S2) sa :

*Optional problem.
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(e) Write the equation resulting from the s terms of (a) and (b) as

fs( >2=s_,, s,,+sp+2s,,s,,
S \s4 Sc Sa 53/

(f) Combine the equations resulting from the s* and s? terms of (a)and

(b) as
S50 _ S : 5
5,21 fZ(sA 2) _2< E)_w2+3

(8) Write the equations resulting from the constant terms of (a) and (b)

as
fa <Sc )z(sc)z 1 SsSp
—=w) =) —===.
S \s4 Sa/ Wy 55

(h) Combine the results of (f) and (g) and express w, as

w fs ( ) Sa Wz) »
A 2 '
;:(%wz) —2( ;Z) w23

(i) Substitute the results of (d) and (f) into (¢) and express s,/sc as
55, Y
Sa A 2
Sc £ (Sc )2 S
22({Xyw,) -3 i)
ARG 1+ 7 ) wy + 4

() Multiply the result of (i) by (Sc/s 4w, to obtain w, as
)
£
£ (Sc ) J;
2:2 (€ -3 2)x
7.\, w, ( fz ) wy + 4
(k) Evaluate the results of (h) and (j) for Sf3/f2 =2 and (s¢/s Jw, = 2.5.

Verify that the results are consistent with Fi
gure 8.21. Repeat for
fi/fz =5 and (sc/swa = 2.3. P

*8.98  Derive the results of Figures 8.23-8.25 as follows:
(a) Show that the fourth-order equation to be solved can be written

s‘ $3 £ 2
el (o)l dn gl (1)

W, =

*Optional problem.

(b)

©
()

©

)
(8

(h)
@
@

(&)
)

(m

(n)

-~
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Show that the expression (s + 5,)°(s + sg) can also be written
s* 4 $°(35, + ) + 52354(54 + 5g) + 554(5.4 + 3s8) + 545

Multiply the equation in (a) by s& and match the coefficients of the
result with the coefficients of (b).
Combine the equations resulting from the s3 and s? terms of (a) and

(b) as
£n) A
wr 2 lem) (e ) e
5w, J;
3= ( f)(h Wz)

[Hint: Express s, from the equation resulting from the s> terms and
substitute it into the equation resulting from the s* terms.]

Rearrange the equation resulting from the s2 terms of (a) and (b) as
f3 (Sc Wz)
Sa_ fz S4
Sc 53 sc S (Sc )2 ] sc R’
3(t+ —8— wy) =3 —
( fz)( ) |:f2 Sa 2 S4 Wy
Muitiply the result of (d) with the result of (¢) and obtain R/w,.

Combine the equations resulting from the s* terms and the constant
terms of (a) and (b) such as to eliminate sz. Write the result as

=_f3<kw)2§££ !
A

Sc 2/\84 Wy

Divide the result of (g) by the result of (f) to obtain w;.
Multiply the result of () by (s¢/s)w, to obtain w,.
Express sp/sc from the equation resulting from the s* terms of (a)

and (b) as
L. [( f3) x 3] R
Sc S2/ s4 Wl

Note that 1./1, = 5,/sc and t¢/t5 = sg/sc.

Evaluate the results of (d)—(k) above, in the order given, for
fi/f2 =1 and (s¢/s)w, = 4. Verify that the results are consistent
with Figure 8.23. Repeat for f3/f; = 1 and (s¢/sw, = 4.5.
Evaluate the results of (d)-(k) above, in the order given, for
fs/f» = 2 and (s¢/s )w, = 3. Verify that the results are consistent
with Figure 8.24. Repeat for f3/f, = 2 and (s¢/sw, = 3.5.
Evaluate the results of (d)-(k) above, in the order given, for
fs/f. = 5 and (s¢/sw, = 3. Verify that the results are consistent
with Figure 8.25.
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899  Verify the results of Example 8.33.
*8.100 Verify Figure 8.26 as follows:
(a) Verify that for any g, b, and s,
1 1 1 ! 1
-aPs—b) @—bs—-a® @-bZF(s—a]
+ 1 1 1 1
@-b’Gs-a @—-b>(—-b’
(b) Use the result of (a) above and show that in Example 8.34

K:/‘(t) =1—e""u lt - :_B 11: 2 + (:—H)z l 3
B o e
Ta Ta Ta
_ueft8)? 1 i 1 T 1
+e'/.<t—) T 3_1ﬂe1A tp T, T
4 (l __g) 4 1 B 4 (1 _ B)
T4 Ta T4
— l(L)ze—m‘
2\7,4 Tp

[Hint: Use Laplace transforms from Appendix A.]

(c) Evaluate V() at t = 5ns and 10ns, and show that the resulting
values of ¥,,(¢) are consistent with Figure 8.26.

*8.101 Equation 7.76 and Figure 7.6 describe feedback factor AF v of a feedback
amplifier in the vicinity of frequency f = f, where |4F,| = 1 at f=f.
(a) Show analytically that the denominator of the resulting amplifica-
tion My can be written (1 + stc)® when w = 3, where time constant
Tc = 1/2af,.
(b) Sketch a piecewise linear approximation for the Bode plot of |AF,]
for the feedback amplifier of Figure 8.12 with R = 0.
{¢) Compare the plot of (b) above with Figure 7.6, and show that the

results of (a) above provide an analytical verification of F igure 8.12
with R = 0.

*Optional problem.
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i 54 and Figure 7.5 describe feedback factor AFy of a

"8102 fg:(;littliz?]a;]l; stable feegdback amplifier in the' vicinity of frcqucncy
f = fc, where |AF | =1 at f = fc. Show analytlca}lly that the d;:noml-

nator of the resulting amplification My can be written 1+ src} when

w = 5, where time constant 1¢ = 1/27fc. (que: Although straightfor-

ward, working this problem is time-consuming because of the many

terms involved.)

*Optional problem.



CHAPTER 9

Properties of Real
Operational Amplifiers,
Part 1

In the preceding, ideal operational amplifiers were assumed in accordance with
Equations 2.1 and 2.2. In the case of a real operational amplifier, however, these
equations can be considered only as approximations. In this chapter and in
Chapter 10, departures of real operational amplifiers from Equations 2.1 and 2.2
are discussed.

9.1 Common-Mode Amplification and Common-Mode Rejection

Consider the circuit of Figure 9.1. If the amplifier is ideal, the output voltage is
given by
Vou = AV, 6.1

and voltage V. has no effect whatsoever on the output voltage.

Vou\

=
—
||+—O

FIGURE 9.1 Circuit for determining the common-mode rejection of an
operational amplifier.

197
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In reality, a small fraction of ¥, finds its way to the output; that is,
Vow = AV + AcuV,, 9.2

where Acy is designated common-mode amplification. In the case of a real
operational amplifier, Acy # 0, but usually its magnitude is much smaller than
that of A:

Aol « Al 9.3)
The output voltage of the amplifier, ¥,,,, can be approximated as
Vou = DgVa + DAV, + V,/2) + K, (9.4a)

where D,;, D, and K are constants (in general, D, and D, are the partial
derivatives of V,,, with respect to ¥, and V., respectively). Note that the second
term in Equation 9.4a is the constant D, multiplied by the average of the
voltages at the positive (+) and negative (—) input terminals of the operational
amplifier. With the foregoing, the common-mode rejection ratio (CMRR) is
defined as

CMRR = —20dB log,, . (9.4b)

D, D
D—‘I = 20dB log,, Fj

It can be seen that for an ideal operational amplifier, that is, for D, = 0, the
common-mode rejection ratio is CMRR = o0. For the circuit of Figure 9.1,
D, = Acy and D, = A; hence, Equation 9.4b becomes

ACM

CMRR = —20dB log,, =20dB log,,

A
. 9.5
Aom 9.5

In many cases, it is of interest to specify CMRR as a function of frequency. In
general, the common-mode rejection ratio is best (CMRR the largest in
magnitude) at dc, that is, at zero frequency, where

Ao Age

CM, .,

CMRR,_, = 20dBlog,,

=20dBlog,,

) 9.6)

f=0

designated as dc common-mode rejection ratio, or in many instances simply as
common-mode rejection ratio.

EXAMPLE 9.1. An operational amplifier is characterized by an amplification
at zero frequency of Ay, = 4000 and by a common-mode amplification at zero
frequency of |A¢y| = 0.04. Thus, at zero frequency |4cy/A| = 0.04/4000 = 1075,
and the dc common-mode rejection ratio becomes

CMRR,_, = —20dBlog,o(107%) = 20 dB log,,(10%) = 100 dB.
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For many operational amplifiers, the common-mode rejection ratio as a
function of frequency can be approximated as

Adc }
~20dB1 ———
CMRR(f) ~ 2 810 (M +if/femdem,
Aq i ’
- < | -20dB lo 1+
20 dB log,o Aom . 810 fem

ey
~ CMRR,_, — 20 dB log,OF(i) , 9.7)
Jem
where foy is the corner frequency of the common-mode rejection ratio.

EXAMPLE 9.2. An operational amplifier has a dc common-mode rejection
ratio of 95 dB. When driven from a zero-impedance source, as in Figure 9.1, the
corner frequency of the common-mode rejection ratio is fom = Q.S MHz. By use
of Equation 9.7, the common-mode rejection ratio as a function of frequency

becomes

f 2
CMRR(f) = CMRR,_, — 20dBlog,o [1+ (T
CM

f 2
=95dB —20dBlog,, (1 + (m) .

Thus, for example, at a frequency f = 2 MHz,

2 MHz \?
CMRR; -, my, = 95dB — 20dBlog,o /1 +{ 5o

=95dB — 12.3dB = 82.7dB.

It is of importance to determine the common-mode rejection properties of
feedback amplifiers, in particular those of the differential feedback amplifier with
equalized amplifications (Figure 3.4). If the operational amplifier is ideal, that s,
if Acy = 0, then the circuit, shown again in Figure 9.2q, has an output voltage
(see Equation 3.26)

A
4 Vi+ V) —

V. = S
oul Rs R, < RS)/( R,) R, R,
Baeatr+ 2+t L+t at
&R\ TR, Rr R R,

9.8)
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Rg

M

+
y 2
R X A

out

]

=
-
=
-
f—o

= (a)

Ry
W
Ry
\ h
Va t Rg A Y
+
Vout

v} _ i

)

FIGURE 9.2 Two equivalent circuits for determining the
rejection of a differential amplifier with feedback. ¢ common-mode

It can be shown that, if A, # 0, the output voltage in Figure 9.2a is given by

Vou =—7p R AR et ¥
1+—“+A—’(1 Rs R ‘
Ry Ry +Rr 1+RF
R
14+-1L
4 A
- v+ ou Rey, 09
1420, 4R R R R©

1+-— L =S
R, R, +R,+A 1+

plonded h. . “ s P
that Equaﬁon 93 18 Vah‘d and that 1 + Rg/R
(1 + R’/RF) - ” « A. Equatmn 9.9 1S now Cval“a‘ed ‘OI several cases. / )/
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If Rg/Rp = R;/Ry and Ay = 0, Equation 9.9 becomes

Vo = ———— Vs (9.10)

and the common-mode rejection ratio of the circuit is CMRR = co.
If Rg/Rp = R;/Rg, but Ay # 0, Equation 9.9 becomes

AVy + AcuV

R, R,
1+-L At
+Rr + Ry

Vou = (9.11)

and the common-mode rejection ratio of the circuit, by use of Equation 9.4b, is

A
CMRR = —20dBlog,, % =20dBlog,, 9.12)

ACM. ’

the same as that of an amplifier without feedback. Thus, if the resistors are
perfectly balanced, the feedback has no effect on the common-mode rejection
ratio.

If Aoy = 0 but Rg/R, # R,/Rg, it can be shown by use of Equations 9.4b and
9.8 that the common-mode rejection ratio of the circuit is

Rs Ry Ry
(-Re)+%)
Ry R R,
1+ 2F _ s ZF
( +R.)/(1 Ry R.)

In the case when Ay # 0 and Rs/Rp # R;/Rg, but

CMRR = —20dBlog,,

= 20dBlog,, . (9.13)

Rs/Rp — R,/R¢

=2 - i,
Rs/Rp + R;/R¢

by use of Equations 9.4b and 9.9, the worst-case limit of CMRR can be given as

Rg Ry R\ *
(-rr)( )] e

*It would seem that, based on Equation 9.9, a nonzero Aqy could be compensated by a suitable
choice of parameters. Unfortunately, as a rule, only the magnitude of Acw is known; hence, only the
worst-case limit of the common-mode rejection ratio can be determined.

Acw

+
A

CMRR > —20dB logw[
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EXAMPLE 93. An operational amplifier with a common-mode rejection
ratio of CMRR = 80dB is used in the circuit of Figure 9.2a. Nominally,
R; = Rg = 1000Q and R; = R, = 10,000 , but all four resistors havea +0.19%,
tolerance. By use of Equation 9.5,

Acu
A

= 1(~CMRR/20dB _ |~ 80dB/20dB _ 1~ 4.

The worst-case limit of CMRR, from Equation 9.14, is given by

fr-mR) -

1001 10,010 10,010
_ —a _ 1001 10, ,
204Blogio| 10 +|(1 w353 ) [ (1+ 550

—20dBlog,o(107% + 3.6 x 107%) = 66.7dB.

Acwm

CMRR > —20dB logm[

9.2 Input Impedances

In the case of a real operational amplifier, input currents I, and I, of Figure 2.1
are different from zero. Two approximately equivalent representations of the
input terminals of a real operational amplifier are shown in Figure 9.3. Input
current I, can be decomposed into a voltage-independent I, , and a voltage-
dependent component. Input current I, can also be decomposed into a voltage-
independent I,, and a voltage-dependent component. In this section, the
voltage-dependent components of the input currents are discussed, whereas 1, 4
and I, , will be discussed in Chapter 10.

The differential input impedance of an operational amplifier represented by
Figure 9.3 can be defined as

o,

Z,=— 9.15
d F) Ip ’ ( )
and the common-mode input impedance as
ov,
Z,=—"—-. 9.16
Al + 1) ©-16)

EXAMPLE 94. At zero frequency, an operational amplifier has a differential
input impedance of 7000 Q and a common-mode input impedance of 1 MQ.
Thus, in Figure 9.3, R, = 7000 Q and R, = 1 MQ. It might also be useful to
separate capacitances C, and C, of Figure 9.3; unfortunately, such a separation
is rarely specified on present-day data sheets of operational amplifiers.
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J- 20,

Ry )
1, F T
o R, C,
Vct ( ) In,O ‘
= (@
IP
+ -
e
o ‘ 2R, r
>
c
\7 t C Ry % d
I’l
em—-- _

2R, l _CL
ch In.o; 2
) =

= ®

FIGURE 9.3 Two representations of the input terminals of an operational
amplifier that are equivalent if Ry « R. and Cy > C¢.
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It is of significant interest to investi i i
i . 4 gate the input impedance of feedback
a}xl'nphﬁers.‘The noninverting feedback amplifier of Figure 3.1 with the input of
the operational amplifier represented by Figure 9.3b is shown in F igure 9.4. It

can be shown that for 2R, » R,R /R ing i i
< 1Rr/(R; + Ry), the resulting input imped
zero frequency, R;,, can be approximated as & 1P pecance at

av, 1
R, = n =
(alp)f=0 1 1 ’ ©.17)

2R, RRy _ A,
I7VF + Rd de
R +Ry T MM,

where M, is Fhe resulting dc amplification of the feedback amplifier as given by
My of Equation 3.6 with Fy that of Equation 3.2.

Ry
AW

.F IGURE 9.4 Tbe noninverting feedback amplifier of Figure 3.1 with the
input of the operational amplifier represented by the circuit of Figure 9.3b.
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EXAMPLE 95. An operational amplifier with R, = 7000Q, R, = 1 MQ, and
Aqe = 1000 is used as a noninverting feedback amplifier with R; = 1000 Q and
Ry = 9000 Q. Thus,

M. = Aqe a 1000 <10
°°‘1+ A R, (100051000 Q)
R, + R 1000 Q + 9000 Q

and Ag./Mg. ~ 1000/10 =~ 100. From Equation 9.17, the input impedance at
zero frequency is

-1
Rin = 2(1(;"9)+(10009)(90000)1 = 0.52MQ.
Q9000 ) Q100
10000 3 S000g T (1000 SN100)

9.3 Output Impedance

In the case of an ideal operational amplifier, Equation 2.1 states that the output
voltage is determined by the input voltages and is independent of the output
current. In reality, the output voltage is a function of the output current; that is,
in Figure 2.1,
0V,

Zow=— 503“—: #0. (9.18)
In general, output impedance Z,,,, is a function of frequency; in many cases, it can
be represented as a resistance in series with an inductance.

EXAMPLE 96. The output impedance of an operational amplifier
can be approximated by a resistance of 75 Q in series with an inductance
of 40uH. Thus, Z,(f)=75Q+j2n40 pH)f and |Z,, (/)=
75% + [2n(40 x 107 %f)]2. For example, at a frequency of f =1MHz,

1Z,ul ) = /757 + [27(40 x 10~ 5(105)]% = 262Q.

When an operational amplifier with a nonzero output impedance is used in a
feedback amplifier, Figure 9.5, the resulting output impedance of the circuit is a
function of the output impedance Z,,, of the operational amplifier, of amplifica-
tion A of the operational amplifier, and of resistors R, and Rg. It can be shown
that the resulting output impedance of the feedback amplifier of Figure 9.5 is

aVnul — Znut (9 19)

Miea
load 1 + (A + Znul) Rl
R, /R, + Rg
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Ry

l—w.
o}

FIGURE 9.5 _Circuit for determini .
feedback amplificr or determining the output impedance 9¥,q¢/aljoag of 2

If, as is the usual case,

ZOIII
——| « |4}, (9.20)
Equation 9.19 becomes
aVnm ~ Zoul = Zou( =Z MN
Olos |, R 1+ AF, "4 ©2y

EX?XI:Lf 9.7. .An operational amplifier with an output impedance
Zou ) = 5Q + ]2.n(40 ;{H) f and an amplification 4 ~ 200,000/(1 + jf/10 Hz)
1s used in the circuit of Figure 9.5 with R; = 100Q and R; = 10,000 Q. Hence

F, = R, 100 Q2

- FN.dc

"R+ Ry 1000+ 10,0000
and the resulting amplification at zero frequency is

= 0.01,

Mdc = Adc - 200,000
I+ A4Fyg. 1+ (200,00000.01)

The resulting output impedance at zero frequency, by use of Equation 9.21, is

aVout) ( M 100
SO [z Mn _ B
(6110.4 s=o "4 )M, 750550000 = 003750

100.
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9.4 Supply-Voltage Rejection

The output voltage of an ideal operational amplifier depends only on the input
voltages and it is independent of the power supply voltage. In reality, the output
voltage is a function of the power supply voltage, or supply voltages if there are
more than one. It has been customary to define a supply-voltage rejection ratio,
or power supply rejection ratio, PSRR, as

1 OVou
Adc aVsupply

that is, as the ratio of the equivalent voltage change at the input of the amplifier
to a change in supply voltage.*

PSRR = , 9.22)

EXAMPLE 9.8. The supply-voltage rejection ratio of an operational amplifier
is 30 uV/V = 30 x 107%, and its dc amplification is 44, = 200,000. Thus, if there
is @ AV, pny = 10mV ripple on the power supply, this will be equivalent to a
(10mV)30 x 1076) = 0.3 4V on the input of the amplifier. Thus, without
feedback, the ripple voltage on the output JAV,,| = (0.3 xV)200,000) = 60 mV.
This result can also be obtained directly by use of Equation 9.22:

|AV,.| = PSRR|Ay| |AV,,ppy] = (30 x 107)200,000§10 mV) = 60mYV.

In the case of an operational amplifier with negative feedback and a resulting
amplification of My, it can be shown that the output voltage AV,,, resulting
from a supply-voltage change of AV, is given by

|AVoul = IPSRRIMAXAV, yppy)l 9.23)

EXAMPLE 99. An operational amplifier has a supply-voltage rejection ratio
of PSRR = 30 uV/V and a dc amplification of 4, = 200,000. It is used as a
feedback amplifier with a resulting feedback amplification of My = 100, and
there is a AV,,,p, = 10mV ripple on the power supply voltage. As a result, by
use of Equation 9.23, the ripple at the output of the amplifier is

[AV,] = IPSRR(M y}AV;uppny)l = (30 x 10710010 mV) = 30 uV.

In general, the supply-voltage rejection ratio, PSRR, is a function of
frequency having, as a rule, its best (lowest) value at dc; this frequency
dependence is also a function of the compensation scheme used. Unfortunately.
information in present-day operational amplifier data sheets on the frequency
dependence of the supply-voltage rejection ratio is very limited.

*Note that PSRR of Equation 9.22 is referred to the input (RTI).
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9.2

93

94

9.5

9.6
9.7

CMRR=—HMBM&0[

98
99

9.10

9.11

9.12

PROPERTIES, PART I
PROBLEMS

Common-mode rejection properties of an operational amplifier are
measured in the circuit of Figure 9.1. At ¥,=0 and V,=1mV, 4
Vou =5V is measured. At V,=1mV and V;=0,a V,,, = —0.5mV s

measured. Find A, |Acyl, and the dc common-mode rejection ratio
CMRR.

An operational amplifier has a dc common-mode rejection ratio of
CMRR,_,=90dB. At f = | MHz, CMRR,_ yy, = 16 dB. Find corner
frequency fc of the common-mode rejection ratio.

Show that the common-mode rejection ratio does not change if in the
circuit of Figure 9.1 the positive and negative input terminals of the
operational amplifier are interchanged.

Show that the common-mode rejection ratios of the circuits of Figures
9.2a and 9.2b are identical if the components are identical.

A Type 108A operational amplifier with a common-mode rejection ratio
of CMRR = 96 dB is used in the circuit of Figure 9.24. The useful signal is
Vi = 10 4V and the undesired noise is ¥, = 10 mV. Find the ratio of the
useful signal to the undesired noise at the output of the circuit.

Derive Equations 9.9-9.14.

Show that the worst-case limit of the common-mode rejection ratio of the
compound differential amplifier of Figure 3.10 can be approximated as

R, Rs A, 1+ A4,
1—-114— 1 4+——= .
( +R,,)/( +R,)

1+4, A
Derive Equation 9.17.
Estimate the input impedance seen at the positive input terminal of the
circuit of Figure 3.1 with the voltage source removed, if the operational
amplifier input terminals can be represented by the circuits of Figure 9.3
with C, = 10pF, C, = 1 pF, R, = 10,0000, and R, = 1 MQ.

An operational amplifier with an output impedance consisting of a
resistance of 75 Q in series with an inductance of 40 zH has an amplifica-
tion A4 ~200,000/(1 + j f/10 Hz). Find the resulting output impedance at
zero frequency and the magnitude of the resulting output impedance at a
frequency f = 1 MHz if the operational amplifier is used as a voltage
follower.

+i-

An operational amplifier has a dc amplification 44, = 4000 and a supply-
voltage rejection ratio PSRR = 75 4V/V. Find the ripple on the output, if
the amplifier is used without feedback and if there is a ripple of 10 mV on
the power supply voltage.

Derive Equation 9.23.

CHAPTER 10

Properties of .
Real Operational Amplifiers,

Part 11

In Chapter 9, various linear attributes of real operation@ .am‘pliﬁers were
described. This chapter presents additional properties and limitations.

10.1 Input Currents

The input circuit of an operational amplifier has been rc.prcsented by tllle circuit
of Figure 9.3. It can be seen that when V.= Vf, = (, that is, when }he vo tagc:slon
both input terminals of the operational amplifier are zero, there is a curren 'n; 10
flowing into the positive terminal and a current 1,0 into the negative terminal.

For many practical operational amplifiers,

Lo * no 10.1
Hpo = Lnol < |55 (10.1)
Thus, it is reasonable to define an input bias current I as the average of I, o and
Lo
I. = Ip.O + In.O (102)
B = 2 »

and an input offset current Iy as

(10.3)

— _ *
Logpser = 'p-O I"vo'

I ifi ] in some cases, input
*Frequently, the input offset current is specified as Wostserl OF @8 L ygqpcll- AlsO, 1 p

currents 1, 4 and I, o of Equation 10.2 are specified separately.

209
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EXAMPLE lp.l. At a temperature of 25°C, a Type 741 operational amplifier
has a typical input bias current I B.yp = 80nA, a maximum input bias current
{ B.max = 300 nA, a typical input offset current Hottserhyp = 20 nA, and a maximum
input offset current |Lryeilmax = 200 nA. No minimum is specified for I, and it is
assutged that this minimum is zero. Thus, if the current into the positive input
terminal is I, = 250 nA, the current into the negative input terminal, I,, can be
between 50 nA and 450 nA; if I, = 600 nA, I, = 400 nA; and if I, = 10 nA, 1, can
be between zero and 210 nA. ’ o

W_hen operation over a certain temperature range is desired, it is important to
take into account the temperature dependence of the input currents.

EXAMPLE 10.2. At a temperature of —55°C, a Type 741 operational
?mpliﬁer has a maximum input bias current I, = 1.5 4A and a maximum
input offset current |Iyclmex = 0.5puA. At a temperature of +125°C,
Ip.max = 0.5 pA and | gyeilmax = 0.2 uA. Comparison with the data in Example

10.1 shows that I .., and |l .clmsx are the same at +125°C as they are at
+25°C but are worse at — 55°C.

In some cases, the temperature dependence is given in terms of a temperature
coefficient. If the temperature coefficient # (eta) of a current is measured in
amperes per degree centigrade (°C), the current change Al over a temperature
range AT can be approximated as

Al = n AT, (10.4)

EXAMPLE 103. The maximum temperature coefficient of the input offset
current of an operational amplifier is Ioryelmax = 0.1 nA/°C. Thus, if the
temperature varies by AT = 10°C, the input offset current varies by
Al = |nygpyerlmax AT = (0.1 nA/°CY10°C) = 1 nA, or by less.

When an operatiom.nl amplifier with an input bias current of I, and an input
offset current of I, is used in the feedback amplifier of Figure 3.4, it can be
shown that, for V, =V, = 0, ¥,,, can be approximated as

R,R R/R RsR
Vou ~ —-M _I7F 1 +M _A7F _TsTe
it d¢ R,+RF offset de R,+RF RS+RP lBa (1053)
where the resulting dc amplification of the feedback amplifier, M,_, is defined as
Adc
Adc Rl ’
1 —
R, + Ry

and A, is the amplification of the operational amplifier at zero frequency.

M, = (10.5b)
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EXAMPLE 104. At a temperature of 25°C, an operational amplifier has a
maximum input offset current [/ greilmex = 50 PA, a maximum input bias current
[glmax = 100 pA, and a dc amplification Ay, = 30,000. The amplifier is used in
the circuit of Figure 3.4 with Ry=R,=10MQ, R, =Rp =90 MQ, and
V, =V, = 0.Thus, the resulting dc amplification of the feedback amplifier, M.,

18

A 30,000 N
“= T AcR | BO000NIOMD)

R, +R; ' 10MQ+90MQ

Since Rs = R, and Rp = Ry, input bias current I has no effect on the output
voltage (see Equation 10.5a). Input offset current |Iye.fmax results in an output
voltage with a magnitude of

RiR

R; + R¢
Thus, in this example, output voltage V,,, is always between +4.5mV and
—4.5mV.

10.

Voul = | —Mac S0 pA| =4.5mV.

'Iol'[szllmax =

| (1FMQY90 MQ)
10 MO + 90 MQ

10.2 Input Offset Voltage

In the case of an ideal operational amplifier, the output voltage is zero if both
input voltages are zero. In the case of a real operational amplifier, however, there
may be a nonzero output voltage even if both input voltages are zero. It has been
customary to define, for the operational amplifier of Figure 2.1 with a dc
amplification of A4, an input offset voltage Vg, as

Vou(.VE=0.V,.=0
Adc

Vof{lel -

. (10.6)

Thus, V.. is an equivalent offset voltage at the input of the amplifier.* The
input offset voltage can also be represented by a battery Ve, connected in
series with one of the input terminals of the operational amplifier.

EXAMPLE 10.5. The input offset voltage of an operational amplifier with a
dc amplification 4,4, = 10,000 is measured by grounding both input terminals
and measuring the output voltage. An output voltage V,,, = 5V is measured this
way. Thus, the input offset voltage is Ve = 5 V/ 10,000 = 0.5 mV.

*Frequently, the input offset voltage is specified as + Ve, Also, the input offset voltage is often
called the offset voltage referred to the input (RTI), as opposed to the offset voitage referred to the
output (RTO) which is My 4 times the offset voltage referred to the input.
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The input offset voltage V,q,., is, in general, a function of temperature. Thijg
temperature dependence can be described either by specifying V.., at severa]

temperatures, or by a temperature coefficient \dV,g,.,/dT), where T is the
temperature.

EXAMPLE 10.6. The temperature coefficient of the input offset voltage V.,
of an operational amplifier is specified as being at most 10 uV/°C between the
temperatures of — 55°C and + 125°C; also, A, = 4000. Thus, if the temperature
changes from 0°C to +50°C, input offset voltage V.. changes by
(50°CK10 uV/°C) = 500 uV, or by less. If the operational amplifier is operated
without feedback, then, since its dc amplification is A4, = 4000, the output
voltage changes by (500 uV}4000) =2V, or by less, over the 0°C-50°C
temperature range.

If the operational amplifier is used as a feedback amplifier in the circuit of
Figure 3.4 with ¥, = ¥, = 0, it can be shown that an input offset voltage V...
results in an output voltage

Voul = Mdc Voffscl ’ (1073)
where the resulting dc amplification, M, is defined as

Adc

M, = (10.7b)

R, ~’

1+ Ay, ——
+ dc R, + RF

and A, is the amoplification of the operational amplifier at zero frequency. Thus,

the voltage at the positive (+) input of the operational amplifier and input offset

voltage V., are both amplified by the same amount.

103 Limitations and Ratings

In the preceding, it was assumed that dc amplification A, of the operational
amplifier was constant. In reality, ignoring the offset voltage, the output voltage
as a function of input voltage can be characterized by a curve such as shown in
Figure 10.1. It can be seen that the slope of the curve, that is, dc amplification
Age = 0V, /0V,,, is a fairly constant A, = 10,000 between a maximum output
voltage of approximately +20 V and a minimum output voltage of approximately
—10V. A realistic design must take these limiting voltages (output voltage swing)
into account.

The output voltage swing is specified at a given output current, which may
lead to additional limitations.
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Voul
30V +—
20V I
10V I—
] i ] i | | | v,
_3mv -2mV -1mV 1mv 2mv 3Imv 4 mv
-10V |—
~-20V +—
for a real

FIGURE 10.1 Output voltage Vou versus input voltage Vp
operational amplifier.

EXAMPLE 10.7. The output voltage swing of the Type 2539 mi‘:,t::n:f
monolithic operational amplifier is specificd as + 10V at out%utb cu(rjrh s o
+10mA, and the output voltage swing of the Type 9914A wi es(;m A "{‘hus
o_perational amplifier is specified as + 10V at output currents of if _rrn .e 2539,
if the full + 10 V output voltage swings are desired, the output ob a ypiswncc
wideband monolithic operational amplifier should not be loaded'dyba rcijsh nee
less than 10 V/10 mA = 1kQ, and the output of a Type 9914/.\ wide a;1 ! y‘han
operational amplifier should not be loaded by a resistance les

10 V/50mA = 200

Particular care should be exercised in the design to assure that t'he mfz:(:lr:zl:::n
ratings of an operational ampliﬁer‘are not exceeded. Such rapn\g;jn i ou‘pu;
although are not restricted to, maximum supply voh?ges, n:;"()](']m n e
current, maximum and minimum input voltages, maximum difieren cra[ﬁre
voltage, power dissipation, opera(ipg temperature range, s%(;ragc tzmep rate
range, and lead temperature during soldering. In general, amag o e
structure of the operational amplifier may result if a maximum rating

exceeded.
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104 Slew Rate

The slew rate is a limitation on i

oliulerational amplifier. The sourc;h:f :::: l(::;:t};?: o be e e of e

;'1 Zr:nzi::?:e (());’ ax; operational amp]iﬁe.r is represented by the circuit of Figure

and o fa aa(xm-mA gxrrcqt source in parallel with a resistance R = 1000

o (i 3 thance LIt is seen that for a step-function input current of

a;';l L md) , the voltage is Vo.',. =(1 V)1 —e™"R%), In a real operational
plifier, the source of current I, is a transistor that cannot deliver arbitrarily

1
arge currents. Thus, I;, and hence dV,,,,/dt are limited. Such limitations lead toa

specification of the output slew rate, usually given in units of V/us.

n can be seen in Example 54

i?:A‘MPLE 19.8. lfl the circuit of Figure 5.1, capacitance C = 10 pF, and the
Ximum available input current is I;, = 1 mA. Voltage V,,, can be v:/ritten

Vou = ia R(1 — e7/RC),

From this,
dVou = Ije—r/xc
ad C )
The slew rate § is the maximum of |d Vow/dt], which occurs at ¢ = 0,
sl  _|ha| _[1mA J
dt | |C| " [T0pF| = 100 V/ns.

The finite slew rate also imposes a limitation on the maximum amplitude of a

S a € operal al ll T .
inewave [h operation amp ﬁe can dehvel at 1its Output In [he case 0‘ a

V, = V, sin 2xft, (10.8)
the rate of change of voltage V, is
v,
Fr Vo2nf cos 2nft. (10.9)
The maximum value of [dV,/d¢} is limited by slew rate S:
s=|2%
= |2l & vetns; {10.10)

hence, the maximum of amplitude

given by Vo» Vo,max that is available at a frequency f is

S
Vo max = prrd (10.11)
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EXAMPLE 109. A Type 741 internally compensated operational amplifier
has a slew rate of 0.5 V/us. Thus, for a sinewave with a frequency of f/ = 10kHz,
the maximum amplitude available at the output of the amplifier is
v 5 0.5V/us _
omax = 5.f ~ 2n(10kHz) ~

In general, the slew rate and the maximum output amplitude as a function of
frequency depend on the resulting amplification and on the frequency com-
pensation used. For this reason, the slew rate is usually specified for a given
circuit.

105 Noise

Electrical conduction takes place by means of discrete charge carriers, such as
electrons and holes. As a result, noise voltage and noise currents are superim-
posed on the inputs of an operational amplifier. When the signal levels are low,
these noise sources may become significant.

If the operational amplifier “sees” a resistance R at its input terminals, the
resulting total input noise power per unit bandwidth, designated as narrow-band
noise or spot noise, can be approximated as
2 2

Uy Un i2
L =4kT + — + Ri. 10.12
: +o + Ri (10.12)

The term 4kT is the thermal noise power per unit bandwidth contributed by
resistance R, vZ/R is the noise power per unit bandwidth contributed by the
input noise voltage v, of the operational amplifier, and Ri; is the noise power per
unit bandwidth contributed by the input noise current i, of the operational
amplifier. The value of kT at room temperature is 0.4 x 1072° VA/Hz v, and v,
are measured in V/\/ﬁ'z, i, in A/\/E.

When v, and i, can be considered constants within the bandwidth of interest
B, the resulting input noise power, Ppg, is given by

2
_ By

i (10.13)

Py

where v2/R is given by Equation 10.12.* Also, the rms input noise voltage, Vg, can

be written
Vy = /PsR = v,/B. (10.14)

*When v, or i, cannot be considered constant, the resulting wideband noise has 1o be determined by
integrating over the bandwidth the product of the amplification and the input noise power per unit
bandwidth.
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EXAMPLE 10.10. Ata frequency of 10kHz, an o

in, i

1()pu‘,:/:7§ voltage v, = 10nV/./Hz and an input noise current j =

haspan A Z,l '(limth‘ constant within the bandwidth of interest; B = 100 Hz" It

ciscutt O;ngil cat1<3)n A = 10,000 and it is operated in the inverting ampliﬁer

amplification s M, ey b rosind Ry = 10kQ. Thus, the resulting
P = - and the resi i .

at its input termin'a iR 1006 resistance seen by the operational amplifier

The resulting total in i i i
Equation 10_12;8 Input noise power per unit bandwidth is given by

perational amplifier hag an

LA S
R + E + Ri}
- - 10-1¢y2H
=16x1072° 0 "V/Hz -
VA/Hz + 1000 + (100 Q)10 22 A%/Hz)
=1.026 x 107 '8 VA/Hz.

The resulting input noise ithi i
Equation 1053 power within the bandwidth B = 100 Hz, from
2

P. = By
=R = (100 Hzx1.026 x 10718 VA/Hz) = 1.026 x 10~ 'S VA

and the resulting rms noise voltage at the input, from Equation 10.14, is

Va=\/PsR = /(1026 x 10~ "6 VAX100Q) = 101 nV.

The resulting rms noise volta

¢ at the . .
IM,1V, = (100X101 nV) = 10.1 #V.B output of the amplifier is

I . .

Mis:: ?any c;fes, th_e noise performance of an amplifier circuit is described bya

noise gtt;]re > which is a measure of the noise degradation resulting from
g the noise of the operational amplifier to the thermal noise of input

resistance R. When the resultin: ification i
: g amplification is lar
noise figure can be approximated by oMl > Lor My 1), the

2 .
# =10dB logw(l +M).

kT (10.15)
It can be shown that the noise fi i ini F
gure # has its
o and it minimum value, &, , when
Foin=Froou = 10d L R,
R=0afin Blogo 1+ 2kTP' . (10.16)
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EXAMPLE 10.11. In Example 10.10, u,,=10‘8V/\/E, i,=10"'""A//Hz,

R =1009Q, and |M,| > 1. Thus, from Equation 10.15 and with kT =04

% 10729 VA/Hz, the noise figure becomes

v?/R + iZR
4kT

F = lOdBlogm(l + ): 10dB log,, 64.1 = 18 dB.

The minimum noise figure is attained at R = Rop = Uafiy =
(1078 V//Hz)/(107 ' A//Hz) = 1k, and its value, from Equation 10.16, is

_ va/Rop ) _ (107 ' VZ/Hz)/1000 Q
F min = 10dB log,o(l + X =10dBlog,o| 1 + 304 % 10° 2 VA/Hz)

2kT
= 10dBlog,, 13.5=11.3dB.

Above considerations apply equally well to inverting and noninverting
amplifiers. In the case of differential amplifiers with signals applied to both
inputs, the evaluation of the noise becomes slightly more involved.

PROBLEMS

101 At a temperature of +25°C, a hybrid operational amplifier has a
maximum input bias current of +10 4A and a maximum input offset
current of + 1 yA. Find the maximum and minimum values of current I,
into the positive input terminal, if I, = 0.5 yA, 5 pA, and 10.5 uA.

102  The Type 13741 operational amplifier uses field-effect transistors (FETs)
at its inputs and as a result it has low input currents. At a temperature of
+25°C, the maximum input bias current is 200 pA and the maximum
input offset current is 50 pA. The signs of the currents are not specified
and it is assumed that they can be either positive or negative. Three of
these amplifiers are used in the circuit of Figure 3.10 with R, = 10 M{Q,
R, = 11MQ, R, = Rg=100Q, Ry = Rp = 10,0009, and 4, =4, =
A, = 100,000. Find the maximum change in output voltage V,,, re-
sulting from the input bias currents and from the input offset cur-
rents.

10.3  Derive Equation 10.5a.

104 The input offset current of a hybrid operational amplifier has a
maximum temperature coefficient of 0.1 uA/°C. Find the minimum and
maximum values of the input offset current I ., if the temperature is
varied between — 55°C and + 125°C, and if at a temperature of +25°C
the input offset current is Iy = | HA.
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The input offset voltage Vittsee Of an operational amplifier has a
temperature coefficient |dV,,.,/dT| of less than 25 uV/°C; the dc amplif;.
cation is 4,4, = 30,000. Find the maximum change in the output voltage
as a result of the nonzero dV,,,.,/dT, if the amplifier is operated withoy,
feedback.

Derive Equation 10.7a.

At a temperature of +25°C, the maximum input offset voltage of a Type
13741 operational amplifier is Vottsee = 15mV. This operationa]
amplifier is used in the differential amplifier of Figure 34 with
V,=V,=0, Ry =R, = 10MQ, and Rp = Ry = 90 MQ. Find the max-
imum change in output voltage V,,, as a result of input offset voltage
v,

offset*

At a temperature of +25°C, a Type 108A operational amplifier has a
maximum input bias current of 2 nA, a maximum input offset current of
0.2 nA, a maximum input offset voltage of 0.5mV, and a dc amplification
of 43, = 300,000. Find the range of the output voltage, if the amplifier is
used in the circuit of Figure 3.4 with Rs =R, =10MQ, R, =R, =
9OMQ, and V, =V, =0.

A Type 9914A hybrid operational amplifier has a slew rate of 1000 V/us.
Find the maximum frequency at which this amplifier can supply a 10-V
peak-to-peak sinewave.

When lead-lag compensation is applied to an operational amplifier, for
an M, =10 its slew rate is 50 V/us. The maximum and minimum
voltages that the amplifier can provide at its outputare +5Vand -5V,
respectively. Sketch the maximum available sinewave amplitude as a
function of frequency for frequencies between 1 kHz and 10 MHz.

The noise characteristics of the Type 9914A hybrid operational amplifier
are specified at a frequency of 10kHz by v, =20 nV/\/l-E and i, =
10pA/,/Hz. It has an amplification A = 5000 and it is used in the
noninverting feedback amplifier of Figure 3.1 with a resulting amplifica-
tion My = 100 and with a bandwidth B = 10Hz. Find the values of
input resistor R, and feedback resistor Rp such that the minimum noise
figure is attained. Also, find the value of the minimum noise figure. What
is the resulting rms noise voltage at the output of the amplifier?

Show that the noise figure of Equation 10.15 has its minimum value
when R = v, /i,.

CHAPTER 11

Other Circuits

The preceding chapters described the use of operational amplifiers as voltage

icati i describes
amplifiers; this chapter discusses other apphcatlong Se;:lnignu: lc.l:rrem e
amplifiers with current source inputs, u;cd for converting a d% current fn 10
ap:,oportional output voltage V. chtlon 11.2 presentls ;“:1(;:; ri beer cire ty;;es "
mainly for analog computation. Sccnor}s 113 _and 1 s e s two
pulse-shaping circuits: integrators and @fferenuators. e‘ihmic a.mp“ﬁcr.
nonlinear circuits: an exponential amplifier and a logari

11.1 Current Source Inputs

i i : i fa voltage
There are two basic representations of signal sources: One con;lstscc:) 2 volia fga
source V. in series with a source resistance Ryguree; gnd the other S O
current I;ouroe: I, in parallel with a source resistance Rource-
n

i i .f I =V /Rsource'

representations are equivalent if I;, in : o e
epThus far, this book has used the representation consisting of a voltage s
s

V i i i 7.7 and 8.5
in iN series with a source resistance Rso‘"“. AlSO, CXCCpt in Sections
n

i f
dealing with inverting feedback amplifiers, it was assumed that the effects o

nonzero R, are negligibly small and the schematic diagrams were shown
wn?h}izs“:er:ti;nodeals with the other extreme, when? it is preferabl:i;:)a;cc;;rt:cnt j
signal source by a current source [;, in.par‘flllel with a sourcj re tance s:;ma :
Such situations arise, for example, in hlgh-xmpedar}ce lransousoedewces
the collectors of bipolar transistors and at the dralps of .M 5 ce th'e esults
Because of the equivalence of the two representations, m_prmv;:ll:;I (;wever oy
derived previously are also appl-icable for a current' so_urcfe Iznpu ._. " whi’c e
approach does not readily provide rcsl}lts for} t'he limit o s‘;‘g;:iously’ob[ained
often a realistic approximation. Thus, in addition to using p

s i € lica I urrent source lllpulS.
results, this section pr OVldeS IeSul[S tha[ are appli bietoc
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1L11 de Characteristics

Figure 11.1 shows the ic di
11 schematic diagram of a f i i
source input I;,. It can be shown (see Problem iidlt;atcl:(a? plifier with curreu

;/onl l

=-~Rp—— -~
I F '
. R (ita
. A
With
R
Fy, =— "1
| M S R (11.1b)
Equation 11.1a can also be written as
You _ _ ReR, A
Lo~ "Ry +R, T+ AFypy (.10
oras '
V t
oul A
M= _R.F,. 2
1. FENge ] + AFng. (11.1d)
Also, V,,,/1,, can be approximated as
Vou o o
| L, =R (11.2a)
provided that
R
A»1+-E
+ R (11.2b)

which is the usual case.

V)

Iin R;
+
I Vout
- = = = i

FIGURE 11.1 A dc schematic di
curveat source input, matic diagram of a feedback amplifier with a
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11.1.2 Transient Response and Frequency Response
Figure 11.2 shows the schematic diagram of a feedback amplifier with current

source input I;, and with capacitances Cy and C; in addition to resistances Ry
and R,. Capacitance C, is the sum of the input capacitance of the operational
amplifier, the capacitance of the current source, stray capacitances, and in some
cases it also includes a capacitance added intentionally. Capacitance Cp includes
stray capacitances, and often it also includes a capacitance added to improve

stability and transient response.

AT L L‘i
11 v :

FIGURE 11.2 Schematic diagram of a feedback amplifier with a current
source input.

It can be shown (see Problem 11.3) that in the Laplace transform domain

LUl R 4
N F 1.
‘Y{Iin(t)} 1 + sRgCy N 1+ AFy 4 (11 33)

where
1+ sty
Fy=F - 11.3b
N N'dcl+STL (13)
with Fy 4 given by Equation 11.1b and with
1y = Ry Cy (11.3¢)
and
ReR,
=—F(C . .
T R;+R,( r+ C)) (11.3d)
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Note that Equation 11.3a can also be written

L{Vou()} _ Fyac A
L)} Fl+st, 1+ AF, (14
Also note that when
A= #
| (T +stX1 +515)° (1152
Equation 11.4 can be written*
LV} 4
g Vint = R, de
{Valt)} Aael + 519) + (1 + 51,1 + SN + st)/Fpq.”  (115b)

Whethe i i
Lb AR nr él(l; ;:'ia:::ls;e:lﬁ:ponsc is free of ringing or not is determined by
amplificy wip - on ! . xactly as was the case for a noninverting feedback
Bquation 114 isaconstge tsource input. However, because the numerator of
ofovershoon o som ant, a t'ransu?nt response that is free of ringing is also free
¢ 1n a noninverting feedback amplifier with a voltage source

input where there is a 1 L i
. §T; term i
» ™ + in the numerator of the equation equivalent

EXAMPLE 1.1, AT 13741 i

;l:)]:al: ;’;P“ﬁ;r is_ cha{rac{s:ized by ;:ctznf(igoggfnf?e:s?(t)cgnFiEi}lpmlopera-
capacnan:; to fet;:l:’cunt of F igure 11.2' with C; = 10 pF, which includ;s ther;flﬂzi
by capacnanoperiuonal amoplifier, the capacitance of the current soufol:e
the lng onracit t;es. A Iso, Rp = 265kQ and Cy = 4.6 pF are chosen based on’
8 The veod co R?ejs s;::izlx: used in Example 8.25 and Problem 8.77 of Chapter
Figure 112, s £y o l.grcater than R;, and its presence can be ignored in

It can be shown (See Ploble p . q
m 1].5) that, baSCd on Exa]n le 8 26, Equation

0y 1
‘?{ Vln(‘)} r(l + sr,) m’

where Ry = 265kQ, 1, = 3.87 ys, and 14 =045 us.

To ()btam the flequcl]cy response, y (he vari b C lla to be
S * Youl
f { )}/ ) l(f)/lin(f)a abl s ]

- L .
The derivation of Equation 11.5b is the subject of Problem 11.4

e -
EXAMPLE 11.2. The frequency response of the cir
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cuit described in Example

11.1 can be written

Voul) _ _p._ ! I ,
L) FYx if/f (U +3f/f°

where Ry = 265kQ, fi = 41 kHz, and f,= 354kHz.
The magnitude of the frequency response is

Vaulf)| _
L)

Also, the phase is

@ = —arctan L —3 arctan .
if 4

-

11.2 Adder Circuits
Adder circuits are capable of summing several input signals. This section
describes basic properties of two simple circuits.

11.2.1 dc Characteristics

Figure 11.3 shows the schematic diagram of a noninverting adder with three
input voltages ¥y, ¥, and V; (the circuit can also be extended to more inputs). It
can be shown (see Problem 11.7) that at low frequencies the output voltage in

Figure 11.3 is given by
Vow = Myac N 5 . = (11.6)
Rl RZ R3
the resulting dc amplification of the feedback amplifier. Note that
Figure 11.3; however, this can be altered
amplifier,

where My 4 is
the value of M 4 is approximately 1 in
by adding a feedback network at the negative input of the operational
as in previous noninverting amplifiers.

Figure 11.4 shows the schematic diagram of an inverting adder with three
input voltages Vy, V2, and V, (as before, the circuit can also be extended to more
inputs). It can be shown (see Problem 11.8) that at low frequencies the output

voltage in Figure 11.4 is given by

v, ¥V, W A
Vo= —Rp|->+-24+—")Frnac7—5 1.7
out F(Rl + R, "R, N4 T AFp 0 (11.7a)
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where
R,
Fo. = (11.7b
s )
with
1 1 1 1
e — 11.7¢
R "R, + R + R, ( )

11.2.2 Transient Response and Frequency Response

The transient response and frequency response of adder circuits can be found as
was discussed for feedback amplifiers in Chapter 8. Thus, V,,, in the nonin-
verting adder of Figure 11.3 is given by Equation 11.6 with My 4. replaced by
M, of the feedback amplifier, which may include a feedback network consisting
of Ry, R;, Cg, and C,, as in previous noninverting feedback amplifiers. The
situation is similar in the inverting adder of Figure 11.4; however, in this case,
the limitations discussed in Sections 7.7 and 8.5 must also be taken into account.

11.3 Integrator Circuits

An integrator provides an approximation of the time integral of the input
voltage, that is, V,, = constant- [ V.,dt. Figure 11.5 shows a simple integrator
circuit that uses an operational amplifier.*

RF

AN'

Ry

I [

Vi"t + ) —TVW,
T L

FIGURE 11.5 Integrator circuit using an operational amplifier.

*The circuit may also include a capacitance C, between the negative input of the operational
amplifier and ground. This is discussed in Problem 11.15.
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In tllC Lapla/ce t]alls‘()llll)d()maln, by use of Equatlons 3.12 and 3.13 with RF

LUVl _ —A
U N P — (11.8)

R
T+ A+ D)2 (1+ sReCp)

F

where 4 is the amplificati

5t plification of the operati . .

frequencies, in the Laplace transfontx:e dac::r(::;:,1 amplifier. For 4 with two corner
.

(45t )1+ 575

It can be shown (see P,
N roblem 11.10 . .
Equation 11.8 can be approximated as) that for the A4 given by Equation 119,

(11.9)

ol0) =
1+ (Ag + 1)=L Ay + 1 1 (11.10)
d )Rr 1+\SR,C, + A
T+ (e + Dt
when F
1
T 1 <! (11.11a)
R, 1,71,
1+2L,5 T2
Rt
RICF
and
1
«1 (11.11b)

R,Cy
. T +1,
can also be shown (see Problem
} 11, iti
Equations 11.11a and 11.11b can be \a:rliittel:xat For falR <1, the conditions of
1

R,Cr |
1 1« (11.12a)

14+ R
+R—F+(Adc+1)

and, for 4, » 1,

7, +
BT I
A4 R,Cp (11.12b)

Note that the re
quirement f()l' Equatlons 11 123 and 12b to be Va]ld 1S
R‘/RF <« l, hOWeVeI, the stricter conditlon (Adc + l)R’/RF « 1 1S not re d
quired.
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> 1,; thatis, f; « f,, which is

Another limiting case of interest arises when 7,
11.11a and 11.11b

common in operational amplifiers. In this case, Equations

become
——Rl—ﬁc— «l (11.13a)
1 __l + _.'_f
M Rg L%
and

! (11.13b)

«< 1.

Rl RICF
1+E;+(Adc+ D=

Also, for 7, » 1, and R;/Rf « 1, the conditions of Equations 11.13a and 11.13b

can be written

12
1 11.14a
R,C; < ( )
and, for A4, » 1,
M« (11.14b)
Ay R Ck

EXAMPLE 11.3. A Type 13741 internally compensated FET-input opera-
tional amplifier is characterized by 44, = 100,000, f, =10Hz, and f, = | MHz.
It is used in the integrator circuit of Figure 11.5 with R; = 1 MQ and with a
feedback capacitance Cp = 1 yF that has an unavoidable leakage resistance of
Ry = 10 GQ. Also, there is a capacitance C; = 10 pF (not shown in Figure 11.5)
between the negative input of the operational amplifier and ground. However,
this C, is ignored because C,/C¢ = 10 pF/1 pF = 1073 « 1 (see Problem 11.15);

hence, the results for C; = 0 are applicable.
From the above, fy/fi = 1,/t, = 1 MH2/10Hz = 10% » 1; also, R,;/R¢ =

1 MQ/10GQ = 10~ * « 1. Hence, Equations 11.14a and 1 1.14b can be used. The
left side of Equation 11.14a becomes

w1 ! ~016 x 10°°.
R,C,  21f,R,C; _ 2n(1 MHzX1 MQX1 uF)

The left side of Equation 11.14b becomes

LN ! = L =016 x 10°°
A.R,Cr 21, AR, C;  2n(10 HzK100,0001 M1 uF) ~ :
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Thus. in thi ciren: .
us, in this circuit, the left sides of Equations 11.14a and 11.14b are equal. Al
. - Also

'hey are bOth much lCSS
! than 1, he iti i
lL , li ltt nce, the COndn]OnS are Sa"sﬁed and Equatio

g{ Voul(')} ~ _9091 A
L{Va0} T 1+ 59091 seconds) 1 + 4’

,

n

where
— 100,000
. (1 + 57,01 + 5T5)
with
=t __ 1
' 7 2af, ‘mg 16 ms
and
1 1

Ty ===~
27 2nf, T 21 MHg) = 01648

The ri . . .
fractionnifl: cs(l:li;tof Equation 11.10 is the product of three fractions. The first
ant and the second fraction approximates integration: These

113.1 Integration
In this section, Equation 11.10 is approximated as

'Z{{i;mt((t))}} ~ _ Adc + l l
\h PV e , (1115
l+(A,,c+1)% 14— Aetl  oc Y
" R I“F
1+ (A, + 1)1
. RF
with the assumption that
A ~1
741 (11.15b)

Not . .
ol :‘:::r t‘i:l:; t?:el?; gs:tile;, :t; Equtatlfor;l 11.15b is the transfer function of a voltage
. . nput of the operational amplifier di
. : ifier directl
itoilstss t(;l:)tlgu;. sTh:s colnﬁg:ratlon has the highest operatlzng speedecpr{):?dil;ef;‘:::
. . a result, the approximation of Equatio! is i
: n 11.1 i
wide range of times and frequencies: This is dis?:ussed later. 18 realstic for a

[ ——
EXAMPLE 114. Example 11.3 used a Type

the integrator circuit of Figure 1L :
Cp = 1 yF. Using the results obtained there, Equation 11.15a ca
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137741 operational amplifier in
S with R, = 1MQ, Ry =10G%Q, and
n be written as

Ll _ 9!
LV} "1 + s(9091 seconds)

Also, in the condition of Equation 11.15b,
A= ______fL'
(1 + st 1 +515)°

where 1, = 16 ms, 1, = 0.16 s, and A, = 100,009; o -

When input voltage ¥;,(1) is a step function with magnitude V; then, by use of

Equation 11.15a,

Voult) = — M Vo1 — e~ IMIRERD, (11.16)
where
’Adld'_ld (11.17)

lMdJEH(A +1)R'
dc RF

plification of the circuit. Note that the time

constant is a large |My|R;Cg—not R;Cr. Also note that output voltage Vo, (t)
becomes — |M 4|V, for times ¢ »> [M 4c/R;Cp. Furthermore, it can be shown (see
Problem 11.20) that for short times Equation 11.16 can be approximated as

(11.18a)

is the magnitude of the dc voltage am

t
Voult) = — Vom
1

when

¢ « Mg IR,C. (11.18b)

EXAMPLE 115. In Example 11.4, 4, = 100,000, R; = t MQ, R = 10GQ,
and Cy = 1 yF. Hence, from Equation 11.17,
Ay + 1 _ 100,000 + 1 ~ 9091

R, MQ
—L 100,000
1+(A,,c+l)R’ 1+ (100000 + 1) 7oo=r

My =

Thus, for an input voltage ¥,(t) that is a step function with magnitude V;,
from Equation 11.16,

Voull) = —IMacl Voll —
= —9091 V(1 — e PPLseconds),

e-l/[IM«]R.C:]) = —9091 V,(1 - e*‘l/[‘)o‘)l(lMQlluF)])
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Also, from Equation 11.18a, V, (t) can be approximated as

t t
Vould = ~Voomm —pp Lt
R,C, ° (1 MQY1 gF) °1 second

when, according to Equation 11.18b,

t < [M|R;Cp = 9091(1 MQX1 uF) = 9091 seconds.

In many applications, input voltage V,, is a narrow pulse that can be
approxnma?ed by an impulse function, &), which is also known as a d function
(delta function). For the purposes of this discussion, the impulse function can be

consi.dered t9 be the time derivative of a step function with magnitude 1, that is,
the time derivative of u(z):

du(t)
6(t)=—dt—, (11.19a)
whereby also
u(t) = f o(t)de. (11.19b)

Nou? that &(z) has a dimension of 1/second.
S{nce u(t)=0fort <Oanditis 1 for t > 0, its time derivative 4(1) is zero for
all times except at t = 0 where it is infinitely large; also the area under the

impu}sc function is 1. Also note that the Laplace transform of the impulse
function is 1:

2{8(1)} = 1. (11.20)
When input voltage V(1) = Dod(t) then, by use of Equation 11.15a,

Vo) = — % e~ IMAIR,CF] (11.21)
I“~F

where |M,| is given by Equation 11.17. Note that @, has a dimension of
volt * second.

Also, it can be shown (see Problem 11.24) that for short times Equation 11.21
can be approximated as

s
Voult) = — R g (11.22a)
F

when

t < [My|R,Cy. (11.22b)

11.3 INTEGRATOR CIRCUITS 231

1.#577is replaced by

EXAMPLE 11.6. The step-function input in Example 1
Vialt) = ®o6(2). Thus, from Equation 11.21,

o, CIMLRCH ’L —1/[9091(} MQX) pF)]
Vom(t) = - R,Cp‘e (1 MQ)(I #F)

_ —(Do_ ~1/9091 seconds

= 1 second

Also, from Equation 11.22a, V() can be approximated as
@, .
Voull) = = p-c. = “(IMQY1 puF) 1 second
when, according to Equation 11.22b,
t « 9091 seconds.

The time integral of a step function with magnitude V,, that is, the time
integral of Vu(t), can be written

Jn Veult)dz = Vi, (11.23a)

for times
or >0, (11.23b)

and the integral is zero for t < 0. Also, the time integral of an imp_ulse function
with magnitude ®,, that is, the time integral of ®,d(t), can be written

J‘t Do)t = ®,, (11.24a)

for times >0, (11.24b)

and the integral is zero for t <0. .

The output voltage, ¥,,(t), in the integrator of Figure 11.5 was a_pproxnmated
by Equations 11.18aand 11.22a for times ¢ « |MyJR;CE: by quanon 11.18a .for
a step-function input V,u(t) and by Equation ll‘l22a for an 1mpulse-funf:tlon
input ®,8(2). Thus, at least for these two input functions, the integrator of Figure
11.5 provides an output voltage

VoulO) = — f Vialt)dt (11.252)
0

R,Cr

for times
0 <t«|My|R,Cp (11.25b)

provided that V() =0 fort < 0.
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Thus, according to Equation 11.25a, the circuit of Figure 11.5 provides
integration with a scale factor of — 1/R,Cr in the time range limited by Equation
11.25b. It can be shown that, based on Equation 11.15a, this is also true for any
input voltage V,,() and not only for the step-function and impulse-function
inputs discussed above. (See also Problem 11.27.)

113.2  Response at High Frequencies and Short Times

In Section 11.3.1, the fraction 4/(1 + A) was approximated as 1 (see Equation
11.15b). This section discusses the frequency response and the transient response
resulting from A/(1 + A).

The transfer function A/(1 + A)is that of a voltage follower with the negative
input of the operational amplifier directly connected to its output. This transfer
function is applicable to Figure 11.5, which omits capacitance C, between the
negative input of the operational amplifier and ground; however, it is also
applicable to nonzero C; when C, « Cy (see Problem 11.15).

The voltage follower represented by A/(1 + A) may be unstable. In such a
case, the circuit is useless.

EXAMPLE 11.7. A Type 2539 wideband monolithic operational amplifier is
characterized by 4,, = 30,000, f, = 20 kHz, and JS2 = f3 =300 MHz. It is used
in the integrator circuit of Figure 11.5 with R, =1kQ, Cg=1yF, and
R = 10GQ. Also, there is a capacitance C,; = 5pF (not shown in Figure 11.5)
between the negative input of the operational amplifier and ground. However,
this C, is ignored because C,/C; = 5pF/1 uF = 0.5 x 10”3 « 1 (see Problem
11.15); hence, the results for C; = 0 are applicable.
From the above,

*—l ~ 8us
2(20kHz) —

T =

l —_—
2nf,
and

1 1 1
12*13—E—m—m =~ 0.5ns.

Thus, 7, » 7, and the conditions given in Problem 11.14 may be used for the
validity of Equation 11.10. The left side of the first condition becomes

1 1
R, | RCy |, 1k (TKOX1uF)
10GQ  05ns + 0.5ns

= 1076,
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ition i i i f th
This is much less than 1; hence, the first condition 18 satisfied. The left side of the
second condition becomes

1
1 R S
= (1kQX1 uF)
R RiCr 1kQ 30,000 + 1)
1+R—:+(Adc+l) f; l+loGQ+( 8
=~ 027 x 10°°

ch less than 1; hence, the second condition is also satisfied. Therefore,

This is mu n 11.10 is applicable, and the high-

both conditions are satisfied, eql:at,iq(;u Y
onse is represented by - . .

ﬁe(}\uci[:)?:iifzpto Exampﬁ: 7.4, a voltage follower with l.hlS A/l + /}l‘) is onetrfl)e;

verge of instability. Thus, the circuit of this example is also on the verg

instability and is useless.

i i i hase margin of the integrator is
hen Equation 11.10 is valid, the p argin : !
det:vrmeirx:ed %y the phase margin of 4/(1 + 4). This is illustrated in Example

11.8.

EXAMPLE 11.8. In the integrator of Example 11.3,
100,000
A= TFjf/10HX +if/I MH2)’
Since 10 Hz « 1 MHz, for the purpose of finding the phase margin A can be
approximated as

100,000 _
A =G 7/10HzK1 + j//1 MH2)

Thus, Equation 7.62a is applicable with Ach,!,.dc = 100,000, fo = 10 Hz, ar?d
fi=1 l\,/le Hence, Equation 7.67 can be applied to find phase margin @y
1= o >

/ 2 .
AchN,dc = % cot Pum 1 + cot PMms

that is,

100,000 = 1 MHz cot @u/1 + cot’@y.

10Hz

From this, ¢, can be expressed (see Problem 11.28) as

/ 5-1 o
@u = arccot ‘[2 = 51.8°




234 OTHER CIRCUITS

When Equfmon 11.10 is valid, the frequency response for high frequenci
and the transient response for short times are determined by A/(1 + A) Tl:s
frequ_cncy response for high frequencies is illustrated in Example 11.9 an;i the
transient response for short times in Example 11.10. ‘ )

EXAMPLE 11.9. In the integrator of Example 11.3,

A= 100,000
(1 +jf/10HzX1 + jf/1 MHz)
and feedback return F = 1.

1 Ac;:ordmg to Segtion 8.3.!, the piecewise linear approximation of the Bode
p'ot or tl.1e resulting ?mpl.lﬁcation, IMyl, is obtained as the lesser of the
piecewise linear approximations of |4] and {1/Fy]. In this example, |1/Fy| = I;
also |A| > 1 for frequencies f < 1 MHz and |4l = (1 MHz/f)? for f > INMHz’
Thus, [My| = 1 for f < 1MHz and |My| = (1 MHz/f)? for f > 1 MHz. .

EXAMPLE 11.10. In the integrator of

Example 113, =
Age/(1 + A,) = 1. Also, A can be written p 3, My,

A = Adc
(L+if/ +iflf)’
where f, = 10Hz, f, = 1 MHgz, and A4,, = 100,000

chording to the discussion following Example 8.12 (see page 140), the
transients of Figure 6.14 are applicable with

Ascfi _ (10000010Hz)

m= - =1
Myaofs (1Xt MHz) ’
L _ 1 1
R™ % =sz=2_"(THZ) = 0.16 us,
and
RC=2 22108 _ g6,

Hence, the m= 1 graph of Figure 6.14 is applicable with each division of t/RC
corrgspondmg tq 0.16 ps. Also, there is an overshoot of about 15% on the
tra;lswnt, which is followed by a decaying ringing ’
t is of interest to find a time ¢, be i ient i
It t min D€yond which the transient is ¢
within a band of 1 + ¢. Equation 6.42a shows a multiplier of e~%2mkC goslc]rﬁnr;z:
this decay. From this, as a rough approximation,

£ = e ‘mn/2mRC,
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hence,
1
Emin = 2mMRC lng.

For example, for ¢ = 0.1 % = 0.001,

!min

0.001

1
= 2(1X0.16 ps)in -—— = 2.2 us.

11.3.3 The Overall Response

When Equation 11.10 is applicable, the overall transfer function is the product
of two transfer functions: One of these was discussed in Section 11.3.1 and the
other in Section 11.3.2. Also, the overall frequency response can be obtained by
substituting j2nf for s in the overall transfer function.

Finding the overall transient response is more difficult because, in general, the
overall transient response is not the product of the two individual transient
responses. However, the overall transient response can be approximated as the
product of the two individual transient responses for times when at least one of
the two individual transient responses can be approximated by a constant.

EXAMPLE 11.11. In Example 11.6 of Section 11.3.1, for an input voltage of
Vilt) = ®od(2),

V. = _____(’i_o__ —1/9091 seconds
out 1 second

For times ¢ « 9091 seconds, V,,, can be approximated as V,,, = —®/1 second.
The fractional error ¢ committed by this approximation at times less than t,,,, is

e=1-— e—lmx/90915¢conds’

which can be approximated for {,,, « 9091 seconds as

tmax

¢ =3091 seconds’
hence,
Imax = (£X9091 seconds).
For example, for ¢ = 0.1%, = 0.001,
t = (0.001X9091 seconds) = 9 seconds.

max =
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Hence, with an accuracy of 0.1 %, the transient response of Example 11.6 in
Section 11.3.1 can be approximated by a constant for times less than about 9
seconds. Also, the transient response in Example 11.10 in Section 11.3.2 can be
approximated by a constant for times greater than 2.2 microseconds. Thus, in
this case it is true that at least one of the two transient responses can be
approximated by a constant at all times: Within an error of 0.1 %% the transient
response of Example 11.6 is constant for 1 < 2.2 s, both transient responses are
constant for 2.2 us <t < 9s, and the transient response of Example 11.10 is
constant for ¢ > 9s,

Thus, in the integrator discussed in Examples 11.6 and 11.10, the overall

transient response can be approximated as the product of the two individual
transient responses.

Thus far, it has been assumed that an integrator remains within its linear
region of operation. However, this is not always the case, especially when V_ is a
narrow pulse with a high peak voltage (over 100 volts) that can be delivered by
some transducers.

The output impedance of an operational amplifier includes an inductive
component and, as a result, capacitance Cy cannot protect the negative input of
the operational amplifier from large voltage excursions in Figure 11.5. If the
maximum input voltage rating of the operational amplifier is exceeded, even for
a short time, this may result in a large input current and hence in a loss of charge
and in an incorrect output. However, the situation is alleviated by a nonzero
capacitance C; (not shown in Figure 11.5) between the negative input of the
operational amplifier and ground.

EXAMPLE 11.12. The integrator of Example 11.3 includes a C; = 10pF.
Input voltage ¥, is a pulse of 100 V for a duration of 100 ns. Assuming that the
output of the operational amplifier can be approximated as an open circuit for
such a short time, the entire charge delivered through the R; = 1 MQ resistor
goes into C;. By assuming (subject to later verification) that the voltage across
C, always remains much less than 100V, at the end of the 100-ns pulse this
voltage can be approximated as

(100 VY100 ns)
(IMQY10pF)

This is less than the maximum input voltage rating of the operational amplifier,

and output voltage V,,, will settle (within roughly 10 microseconds) to the
correct value of

1 *

_ (100 V)100ns)

= —10uV.
(1 MQY1 uF) s

*The exact value of the voltage is 100 V(1 — ¢~ 00 ns/[t MaxX10 PR = 0995 v.
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11.4 Differentiator Circuits

A differentiator provides an approximation of the time ?;lvittvr;c‘g:fr tl;:l: r:;;l):;
voltage; that is, V,, is of the form Vou = 1ud V;n/dt. The rdo: er funetion
corresponding to this is s7, and the corresponding freguency respl‘ﬁcaltion : tfat
Clearly, these are not realizable be.cause they require ar;1 ampli cation th
increases without bound for increasing frequel?cy f. For this reaso /(;1) actien
realizations provide transfer functions in. the forms srLand - ;ré
st /(1 + st X1 + st5)], and so on, where parasitic time constants t, 8
much smaller than differentiating time constant 7.

EXAMPLE 11.13. A Type 9914A wideband hybrid operationa! arrilp(;ifliert l:s

characterized by A4, = 5000, f; = 0.5 MHz, gnd f, = 50 MHz. It is used in the

differentiator circuit shown in Figure 11.6 with l/ZnBC =25Hz e can
It can be shown (see Problem 11.34) that the resulting frequency respon

be approximated as

Vilf)  —f]25Hz
Vaf) (1 + f/250kH2)’

and the resulting transfer function as

LVout)) __ —s(64ms)
PV 0} [l +0.64pus))’

AM—

Pt
[~

FIGURE 11.6 Differentiator circuit using an operational amplifier.
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Anqther approach provides V,,, = constant - (1 + t,dV,,/dt), with a corre.
sponding transfer function of constant * (1 + st;) and a corresponding frequency
response of constant - (1 + j2nt, f). Again, these are not realizable, and practical
realizations provide transfer functions in the form (1 + st )/l + st )
(1 + st.)/[(1 + st X1 + s15)), and so on, where parasitic time constants t a;&
g are much smaller than differentiating time constant 7,.* !

EXAMPLE .ll.l4. Example 8.33 described a voltage follower circuit using a
ype 2539 w!deband monolithic operational amplifier. Lag-lead compensation
was used with f; =2MHz and f, = 21 MHz. This resulted in a transfer

function of
L{Voult)} — 1+ 7,
L{Va)} Mo (1 + st )% + stp)

with My 4. = 1,7, > 80ns, 7, = 2.5ns, and 15 = 0.4 ns.

Thus, this circuit can be used as a differentiator with the differentiating time
constant of 80 ns and with the four parasitic time constants of 2.5 ns, 2.5 ns
2.5ns, and 0.4 ns. ' ’

ﬁ‘Dlﬂ'ereﬂtiatog' circuits are.often used in feedback systems for alleviating the
effects of unavoidable slow time constants that introduce a transfer function in
the form 1/(1 + st,,,). Such a transfer function may be cancelled, and time

c_onst_ztmt Taow May be replaced by faster time constants by use of a differentiator
circuit.

EXAMPI.E 11.15. A feedback system includes a power amplifier that is
characterized by the transfer function constant/(1 + st,,,,) where time constant
Tolow = 80 ns. To enhance the stability of the system, the differentiator described
in Example 11.14 is inserted in the signal path. This results in a transfer function

constant 1+ st
1 + STyiow (1 + St4)3(1 + STB)

with t,,,, = 80ns, 7, = 80ns, 1, = 2.50ns, and 15 = 04 i
X 3 X 3 8 = 0.4 ns. Since 1, = 1,,,, th
transfer function becomes ‘ o 218
constant
(1 + st )% + st5)

Thus, the introduction of the differentiator replaced the t,,, = 80ns time
constant by the four time constants of 2.5 ns, 2.5 ns, 2.5 ns, and 0.4 ns.

*The effect of the 1 in the numerator can be cancelled by a subtraction (not discussed here).
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11.5 Nonlinear Circuits

Operational amplifiers may also be used in conjunction with nonlinear
components such as diodes and transistors. The nonlinear properties of bipolar
transistors are used in an exponential amplifier in Example 11.16.

EXAMPLE 11.16. The collector current I of a bipolar transistor is an
exponential function of base-emitter voltage Vgg; that is, I = constant - VeV
where Vy is a constant. An exponential amplifier with input voltage V;, and
output voltage ¥,,, is built by applying Vi, as Vs, using a voltage follower, and
by converting I to a proportional output voltage V,,,, using the current input
amplifier of Figure 11.1.

Operational amplifiers may also be used to convert a nonlinear function to
another nonlinear function. This is illustrated for a logarithmic amplifier in

Example 11.17.

EXAMPLE 11.17. Figure 11.7 shows a logarithmic amplifier that consists of
operational amplifier 4 and of exponential amplifier B. The latter is character-
ized by V, = Vge""r, where Vi and Vp are constants. It can be shown (see
Problem 11.36) that this results in V,, = VriIn(V,/Vx) when amplification

A = .

]
-1

—_—

Voul

=<
£l
——
=0

FIGURE 11.7 Logarithmic amplifier circuit using operational amplifier 4
and exponential amplifier B.
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PROBLEMS

1.1 Verify Equations 11.1a-d and 11.2a,b by writing loop and node
equations in Figure 11.1 and by noting that V,,, = —AV,.

11.2  Expand the circuit of Figure 11.1 by including a resistor R,, in seties with
the positive (+) input of the operational amplifier. Show that this
eliminates the effects of the input bias currents, but not the effects of the
input offset current, when R, = RyR,/(Rf + R)).

113 Verify Equations 11.3a~d and 11.4 by writing loop and node equations
or by using results from Section 6.3.

114  Derive Equation 11.5b from Equations 11.3a-d, 11.4, and 11.5a.

115 Verify the results of Example 11.1 by use of Examples 8.25 and 8.26 and
Problem 8.77 of Chapter 8.

11.6  Verify the results of Example 11.2.

11.7  Derive Equation 11.6. [Hint: Replace the series combination of ¥, and
R, by the parallel combination of R, and a current source of V;/R;;
repeat for ¥, and R,, and V; and R,. Then use Equation 11.1d.}

118  Derive Equations 11.7a—c. [Hint: Replace the series combination of V;
and R, by the parallel combination of R, and a current source of V,/R;;
repeat for ¥, and R,, and V; and R;. Then use Equation 11.1d.]

11.9  Verify Equation 11.8.

*1L10 Derive Equations 11.11a and 11.11b as follows:

(@) Use Equation 11.9 and bring both the exact Equation 11.8
and the approximate Equation 11.10 to the form con-
stant/(s* + ps? + ¢s + ).

(b) Show that the coefficients r are identical in the two equations.

(c) Show that |(pupproximate — Pexact)/Pexacil €quals the left side of Equa-
tion 11.11a.

(d) Show that )(quppreximate — Fexact)/dexacd €quals the left side of Equa-
tion 11.11b.

11.11 Show that Equations 11.11a and 11.11b can be approximated by
Equation 11.12 when R,/Rp « 1.

11.12 Verify Equations 11.13a,b and 11.14ab.

*Optional problems.
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*11.13 Show that the approximation of Equation 11.10 is also valid when

Adc
(14 sy + st A 8T3)

and when the conditions of Equations 11.11a and 11.11b are replaced by

1

A

« 1
T, + 17, + 13
R, 1.1, + 1473 + 1,73
l+——+—7—
Ry 1
R,Cy
and
1
«< 1.

R,Cg

R;
S (Age + 1
1+R,+( st )r,+tz+z3

[Hint: Proceed as in Problem 11.10: Show that the coefficients of the
constant and the s* terms are equal in the exact and the approximate
denominators, and show that the condition originating from the s° terms
is not constraining because the |¢| resulting from it is always less than the
Je| resulting from the s? terms.]

11.14 Verify that for f, « f, and f, « f;, that is, for 1, >» 1, and
1, »1;, the conditions given in Problem 1113 for A=
Ay /I(1 + st 01 + sty)1 + s15)] become

I « 1

R R,C
1+ Ly —E
Ry 1+ 71,

and

! « 1.

R,Cy

L3

R
14 -5+ (Age + 1)
Ry

Compare these conditions with those of Equations 11.13a and 11.13b.

11.15 Expand the integrator circuit of Figure 11.5 by including a capacitancc
C, between the negative (—) input of the operational amplifier and

ground.
(a) Show that the resulting transfer function can be written
g{Vout(I)} _ —A4

I+(4+ g+ sARCy + 5R,(Ce + C)

220 R,
. F

(b) Verify that the transfer function of (a) above reverts to the C, =0
case of Equation 11.8 when C; « Cy.
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11.16
11.17
11.18
11.19

*11.20

11.21
11.22
11.23

*11.24

11.25
11.26

OTHER CIRCUITS

Verify the results of Example 11.3.
Verify the results of Example 11.4.
Verify Equation 11.16.

V_erify Equation 11.18a by using (but not proving) the approximation
e *xl—-xfor0<x«1.

Show that the exponential function e * can be expanded as

et"‘ =1—-x+A,,where |A| < x2/2when 0 < x < 1. Use the following
steps:

(a) Write the series expansion of the exponential function as
2
_ X
e F=1 _x+—_Auri=s'
2
(b) Note that

3 4

x X
A eries — 5 .7 o
¢ 2-3 2-3-4 t
(c) Verify that the magnitudes of the terms diminish in A,.ries Of (b)

above.

(d) Note that the series expansion given in (a) is absolutel y convergent;
therefore (c) above implies that 0 < A,,,., < x*/6.

() Verify that, based on the above, the series of (a) can be written
e =1-x+A,,
where |A,} < x?/2 when 0 < x < 1.

(f) Note that both |A,.,;.,| and |A,| represent error magnitudes and not
Jractional errors.

Verify the results of Example 11.5.
Verify Equation 11.21.

V_erify Equation 11.22a by using (but not proving) the approximation
e *x1for0<x« 1.

Silow that the exponential function e™* can be expanded as
e *=1-— Ao', where |Aj] < x when 0 < x < 1. [Hint: Consider the
process used in Problem 11.20 and alter it as required.]

Verify the results of Example 11.6.

Vf.rify Equation 11.25a for V,,(t) = Vou(t) and V(1) = ®y8(¢). Compare
with Equations 11.18a and 11.22a.

*11.27

11.28

11.29
11.30
11.31
11.32
*11.33

*11.34
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Provide a support, but not a proof, of Equation 11.25a for any input
V..(t) as follows:
(a) Show that Equation 11.15a can be written

LV} __ M|
2V} 1+ s|My|R,Cr’

where |M,| is defined by Equation 11.17.
(b) Consider that, in a way, large values of s correspond to small values
of t, and show that the result of (a) above can be approximated as

ALY U U
L{Vat)} —  sRCk
provided that |sMy R, Cg| > 1.
() Note that the condition in (b) above is not easy to evaluate because

Laplace transform variable s is complex. However, if s is replaced
by 1/t (without any proof), then for ¢ > O this results in

t < |My|R;Cp.

(d) Verify that the condition of (c) above is identical to those of
Equations 11.18b, 11.22b, and 11.25b.

(¢) Verify that the transfer function in (b) above represents integration
with a scale factor of —1/R,Cy.

Verify the result of Example 11.8. [Hint: Introduce a variable x defined
as x = cot?gy,, find x, and express phase margin ¢, as @, = arccot

J*]

Verify the results of Example 11.9.
Verify the results of Example 11.10.
Verify the results of Example 11.11.
Verify the results of Example 11.12.

Show that the output voltage in Example 11.12 settles to its correct value
of —10 uV with an accuracy of 0.01 % in about 6.6 us. [Hint: Use the
equation for t,,, given in Example 11.10.]
Derive the results of Example 11.13 as follows.
(a) Show that

g{Vom(l)} _ “SRCAdc

L{Va)) (14 sROXL + st X1 + s1,) + Ay

where 7, = 1/[2r(0.5 MH2)] and 7, = 1/[27(50 MHz)].




244

11.35

11.36

OTHER CIRCUITS

(b) Verify .that, since 1, « 7, < RC, the result of (a) above can be
approximated as

.?{Vm"(t)} - _ Adc
2.0 - RCaT SROXT + s1,) + Ay,

(c) Ycrify that the fraction on the right in (b) above equals the right
side of Equation 8.42 with F N.gc = 1 and with t, replaced by RC.

(d) Verify that the result of (c) above also equals Equation 8.43a with
My, =1, and that Equations 8.43b, 8.43c, and 8.43d are
applicable with t, replaced by RC.

(e) Show that Equation 8.43d becomes m = 0.25, and that Equations
8.43b and 8.43c lead to 1, = 1p = 21,.

(f) Substitute My 4, = 1 and the results of (e) above into the right side
of Equation 8.43a.

(8) Note that the result of (f) above e
in (b) above.

quals the fraction on the right side

A ‘Type 9914A wideband hybrid operational amplifier is charac-
terized by 4y, = 5000, f, = 0.5 MHz, and J> = 50MHz. 1t is used as
a vqltage follower with lag-lead compensation; that is, Fy =
(L +5f/fu)Q + jf/f,), whete f, = 37kHz and Jv=55MHz )

(a) Sketch a piecewise linear approximation of the Bode plot for |4F|.

*(b) Show that the resulting transfer function of the voltage follower can
be approximated as

L{Veu®} _ 1+ (43 ps)
L{Vu®)} 1+ 509.5n9]%"
[Hint: Use the results of Section 8.3.3]

(c) The voltage follower is inserted into the signal path of a feedback
system that includes a power amplifier with a transfer function of
l/[} + 5(4.3 us)]. Use the transfer function given in (b) above and
verify that the overall transfer function is 1/[1 + 5(9.5 ns)]3; that is,

tpe 4.3-ps time constant of the power amplifier is replaced by three
time constants of 9.5 ns each.

Deri\_le the equation for V,,, given in Example 11.17 for an operational
amplifier with an amplification 4 that can be approximated as 4 = co.
[Hint: N9te that an amplification 4 = oo implies zero voltage between
the positive and negative input terminals of an operational amplifier.]

CHAPTER 12

Internal Structure

This chapter outlines three important circuits used in operational anlllpht;\ers:
input stages, current mirrors, and output stages. Althougt} presemhtcc nology
permits elaborate circuits, only the simplest circuits are discussed here.

12.1 Input Stages

Figure 12.1 shows the circuit diagram of a simple inp}lt stage. The potSl(tjw[f) atrlx‘ci
negative inputs, V, and V,, of the opcratnfmal amplifier are connecte to the
bases of npn transistors @, and Q,. The emx}ters of the transistors are c;m nected
together and they share dccurrent I; detal_ls of current source I ar:‘ [ ibed
in Section 12.2. The collectors of the transistors ar¢ connected to t he ;;071 v
power supply, V., through resistors R, and R¢; and through balan
adjustment potentiometer Rpgiance-

JCurrent ;:c splits evenly between o, anfi Q, wh'en Vy="Va Rch,‘ ='dRC]2’c:[sl:
when @, and Q, are identical and Ry,iunce is Set at its center. In this idea t 0}
each emitter carries a current of 14/2, each collector a cul:req o
4o/Dhee/(1 + heg), and each base a current of (I4./2)/(1 + hpg), where hgg 18

i ansistor.
cur’?l:let ig:::ltoia::: :::rurrent, 15 of the operational amplifier equals the base

current; thus,

_ a2 a2
Bt 4 e

EXAMPLE 12.1 The circuit of Figure 12.1 uses two idemicgl trapsistors with
heg = 100; also, Iy = 10 mA. Transistors Q; and .Qz are ndcntnca} and bt.he
circuit, all voltages, and all currents are symmet_rlcal. Thus, the input bias
current of the operational amplifier is, from Equation 12.1,

ldc/2 — IOmAl/_z_

= 49.5 pA.
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A

\ 4

Rbatance

V.

FIGURE 12.1 Circuit diagram of » simple input stage.

hcﬂ e ci ui{ 1s not ly
y
W th rcuit 1 ot symmetrical a nonzero mput Oﬂ.set current loffsel may

Lotteer = gy — Ipy|. (12.2)

‘l:‘.i)e(nAulZla'P:;EFlz.Z The positive and negative input voltages, ¥, and V,, are
o otealn igure 12.1; also, I, = !0 rpA and the current gain of each tran"s’istor
FE . Because of asymmetries in Q 1 and Q,, the emitter of Q, carries a

current 0‘ 4mA and the emitter 0‘ QZ a current Of 6“1A- lhus, the lﬂput Oﬂset

4mA 6mA

1 = — =
oftsee = |Igy — Ip,y| = 1+ 100 T+100 = 19.8 uA.

The output voltages of the i i
OUT, and oUT, g € Input stage are available for further use at points

oL and dmRI-‘lgure 12.1. They are developed as voltage drops across

. T}:il an c2 and pprtlons of balance adjustment potentiometer

o,...r.,,;?. 1 S pgtenﬁqmeter is replaced by short-circuits in the simplest

inpzoa:n Lo::vampgﬁers, it can tl)econnected externally in others, and it is internal
anced operational amplifiers (in the form of a is

n some ¢ resistor netw.

Is individually trimmed as a last step of the manufacturing process) ok that
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The purpose of potentiometer Ry,jance is t0 Z€ro out any nonzero input offset
voltage V... of the operational amplifier. This is preferable to offsetting one of
the inputs, in which case there would remain a temperature coefficient of
approximately

dVof[set ~ Vol’lsel , (123)
daT T
where T is the absolute temperature in °K, about 273°C above the temperature

expressed in degrees centigrade (°C). Note that a difference of 1'K equals a
difference of 1°C.

EXAMPLE 123 An operational amplifier has an input offset voltage of
Vittar = 6 mV that is zeroed out at one of the inputs of the operational amplifier.
Thus, the output voltage of the operational amplifier is zero at the temperature
where the zeroing was performed, which is approximately 27°C; hence,
T = 273°C + 27°C = 300°K. However, there remains a temperature coefficient
that, from Equation 12.3, is

dVofI’sel Voﬂ'scl _ 6 mV

~

e = 350K = 20 HV/K =204V/°C.

If, for example, the temperature changes by 10°C, there will appear an input
offset voltage of (10°C)20 uV/°C) = 0.2 mV.

Note that the inclusion of potentiometer Ryance does mnot completely
eliminate the temperature coefficient of the input offset voltage, because there
remains the temperature coefficient of the second stage of the operational
amplifier. However, the effect of this is reduced by the amplification of the first
stage, which is usually at least 100.

12.2 Current Mirrors

Figure 12.2 shows the circuit diagram of a simple current mirror using two
identical npn transistors Q, and Q,; current mirrors are also built using pnp
transistors. It is now shown that, with the directions of currents as in Figure
12.2, 1,,, approximately equals I;, as long as the external load connected to
output OUT is such that V¢, = V3.

The emitters of both @, and Q, are connected to Vg, which is usually a power
supply voltage. The bases of @, and Q, are connected together and they settle to
a voltage of Vj, which is about 0.7 V higher than V. The collector of @, is also
connected to Vj, thus this transistor operates with a collector-emitter voltage of
about 0.7 V. The collector of Q, is connected to output OUT. The design of
transistors @, and Q, is such that the collector-emitter voltage does not have
much influence on the collector current, as long as it is at least 0.7 V.



248 INTERNAL STRUCTURE

fin Tout
v our
* Ic:
Vei Veo
Vs
(43} \L @
B —
Ip Is>
—0VE

FIGURE 122 Circuit diagram of a simple current mirror.

Thus,

Low = Iy (12.4)

in Figure 12.2 as long as V, > V;, because Q, and Q, are identical. For the
same reason,

I, = Ig,, (12.5)
and also
Ter = hyelp, (12.6a)
and
Loy = hpglp, (12.6b)

where hg is the current gain of Q, and of Q,.
Furthermore, a node equation can be written for node Vj:
Lig =1Icy + I, + Ip,. (12.7)

It can be shown (see Problem 12.3) that Equations 12.4-12.7 can be
combined as

Iy = I“‘2 - (12.8)
1+
hFE
Thus, I, is close to I,, when hg is large. This can also be seen in Figure 12.2,
where the base-emitter voltages of Q, and Q, are equal; hence, I,,, 2 I,, when
the base currents are negligibly small.

Therefore, the insertion of a current mirror circuit between a source
(generator) and a load reverses (inverts) the direction of the current through the
load from the direction without the current mirror. Consider, for example, a
current that flows from the source into the load without a current mirror. If a
current mirror circuit is now inserted between the source and the load, the
current from the source flows into the current mirror circuit, and a current with
an approximately equal magnitude flows out of the load.
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EXAMPLE 124 Output OUT in Figure 12.2 is loaded such that V¢; 2>

hence, Equation 12.8 is applicable. '
(a) If heg = 100, which is common for npn transistors,

12.8,

then, from Equation

=~ 098,

f 2%. . .
: l(();; (l)f hn/= 10, which is common for pnp transistors in SOme processes, then,

from Equation 12.8,
1 1

2=1+2
g 5

o~

out

Iin

~ 0.83,

~

a loss of 17%,.

Figure 12.3 illustrates the use of a current mirror for generating I, in the
input stage of Figure 12.1, which is only partially sh.ox.vr.l. The voltage across
resistor R, is about 14.3 V and current I is in the vicinity of 143 V/R,.

Va

= Ry
l Tac

~-15V
FIGURE 12.3 Use of a current mirror for generating Iy in Figure 12.1.



250 INTERNAL STRUCTURE

Figure 12.4 illustrates the use of a current mirror for signal inversion in the
input stage of Figure 12.1. Current Iicror = Iciflows intonode A in Figure 12.4.
(Note that a direct connection of the left collector to node OUT would make I,
flow out of node OUT and would result in a useless circuit.)

£

‘ Iniror =1y
A

Qe OUT

l tor ‘ lez
v, O_‘; :‘_0 Vo

Igc

V.

FIGURE 124 Use of a current mirror for signal inversion.

Figure 12.5 shows a current mirror with two outputs. It can be shown (see
Problem 12.5) that when OUT, and OUT, are at least 0.7 V above Ve

in

I

~
out,1 = Ioul,z =

T (12.9)
1+—
heg
Figure 12.6 illustrates the use of a two-output current mirror in the input
stage of Figure 12.1. The FEEDBACK signal is derived from subsequent
circuitry not shown, and it sets the dc operating points of OUT, and OUT,,.
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Iin ouTy OUT2

l o tlom,z
N
c (.

FIGURE 125 A current mirror with two outputs.

IN

il

+15 V O

S B

0 OUT, OUT:2

)

FEEDBACK

V-

FIGURE 12.6 Use of a current mirror with two outputs.

Note that neither Figure 12.4 nor Figure 12.6 ha‘s a provision fo;l zerg::s c:;\l;
input offset voltage Vogrser, 85 Was done by Rmhﬁ“ ln.Flg'L:l'tL 12;:1.6 iﬁzusm;‘ e
i i ted in either circuit by
balancing feature can be incorporated 1n '
additionil circuitry. One way of doing this is to use two of the current mlrlrlorsl c(;f
Figure 12.2. Output OUT of one current mirror 1s connect.cd to 1t1 et .
collectors and output OUT of the other current mirror to the right collectors.
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The lVE terminals of bot.h current mirrors are connected to a negative power
supply voltage, as in Figure 12.3. Also, input IN of each current mirror is

connected to ground via a resistor, and zeroing i
: s er i
these resistors (see Problem 12.6). °in s performed by varying one of

123 Output Stages

il::(g’l::eolft.;ustht?:v; an output stage using complementary npn and pnp trans-
stor X utput sistors Q s and Q, are capable of delivering high currents with
oth polarities: npn t‘rans1stor @5 can provide a high current flowing out of the
circuit al?d pnp transistor Q, can provide a high current flowing into the circuit

Transistors Q, and Q, provide level shifting. The circuit is designed such thai

the base-emitter voltage dro
ps of @, and Q, are equal, a -emi
voltage drops of ¢, and Q, are eqlual. & i nd #lso the base-emiter

+15V

1

Q3

IN O
0 OUT

Qs

-15v
FIGURE 12.7 An output stage using npn and pnp transistors.

121

12.2

123

124

12.5

12.6
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PROBLEMS

The circuit of Figure 12.1 uses two identical transistors with hy = 200,
also, Iy, = 0.1 mA. Find the input bias current.

An operational amplifier has an input offset voltage Vg, = 3 mV which
is zeroed out at one of the inputs of the operational amplifier. Find the
input offset voltage for a temperature change of 10°C.

Derive Equation 12.8 from Equations 12.4-12.7. [Hint: Express I, from
Equation 12.6a and I, from Equation 12.6b; substitute them into
Equation 12.7. Express I, from the result and substitute it into Equation
124.]

Find I,,,/I;, in the current mirror circuit of Figure 122 if V¢, > Vj and
heg = 5.

Derive Equation 12.9 by writing equations similar to Equations 12.4-
12.7 and manipulating them as in Problem 12.3.

Incorporate input offset voltage balancing in Figure 12.4 by adding two
current mirrors. Sketch a complete circuit diagram.



APPENDIX A

Mathematical Equations

This appendix provides a short summary of the mathematical equations that are
frequently used in this book: quadratic equations, cubic equations, and Laplace
transform pairs.

Al Quadratic Equations

Any quadratic equation may be reduced to the form
ax? +bx +c¢=0.
Then

—b + /b? — dac

x= 2a

If a, b, and c are real then:
If b* — 4ac is positive, the roots are real and unequal.
If b? — 4ac is zero, the roots are real and equal.
If b* — 4ac is negative, the roots are complex and unequal.

A.2 Cubic Equations

Any cubic equation,
V+py+qy+r=0
may be reduced to the form
X tax+b=0

by substituting for y the value,

255
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Also,
~(3q - %)
a=-(3q -
3 q—p
and
1 3
b= 5(21’ —9pq + 27r).
For solution, define
b b @
A= 3Y_2 bl
vV 2tyatay
and
3 b b? + a’
2 4 27

B=

then the three values of x are given by
x=A+ B,
A+B A-—-B
- 2 + T v -3

and

If p, g, r are real, then:

b a
If vy + 7 > 0, there is one real root and two conjugate complex roots.

2 3

If Y + ;—7 = 0, there are three real roots of which at least two are equal.

2 3

If vy + % < 0, there are three real and unequal roots.

A.3 LAPLACE TRANSFORM PAIRS

A3 Laplace Transform Pairs

it ———

f@)fore>0
[

Mt —a)
1
e
te™®
e‘bl —e ™
ae"“ _ be“bl

(=B +(a—ce ™ +(b—ae ™
bce™ ™ ace™ N abe™ ]
l_[(b—a)(c—a)+(a—b)(c—b) @—ofb— o

e —[l—(a—ble™

bl (a(a—2b) abt)e_m

— | ——+
T@-b? @b a-b
1—e™™
(l _ at)e-m
t““e“'

(n—1)
(at)'
1 —e“‘(l +‘:—f+~- +—>

n!

a—b—ae ™™ +be ™

J U
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e

~as

(4

— | -

s+a
1
+a?

a—-b
(s+aks+b)
(s+aNs+b)

(s + aXs + b)s + ¢)
abe
o+ aks +bXs + )
(s + aXs + by
ab?
a
s(s + a)

s
+a?
1

+1
a*

s +artt
abla — b)
sis + a)s + b)




APPENDIX B

Derivations

This appendix provides details of derivations that are too extensive to be
included in the main text.

B.1 Proof of Equations 6.31a—e¢

In this section, the validity of Equations 6.31a—e is demonstrated. Specifically, it
is shown that the magnitudes of the fractional errors of 7, and 1., of Equations
6.31c and 6.31d are always less than R,/R;.

The fractional error ¢ of a time constant t can be written

6= Tapproximate — Texact , (Bla)
Texnct
which can be rearranged as
£ = 1:llppw:(imulc ~1. (Blb)
Texact

To find the fractional error ¢, of time constant 7,, the approximate t, from
Equation 6.31c has to be substituted for t,,cosimaic it Equations B.1a and B.1b,
and the exact 7, from Equation 6.30c has to be substituted for t.,,., in Equations
B.1a and B.1b.

Thus, Equation B.1b becomes

R,C, + R,C, + R,C,
2R,C,R,C,

x<1 —\/1 — 4R1CR, Gy )-1 (B.2)
(R,C, + R,C; + R,Cy)? ' ’

Now it is determined whether ¢, is positive, zero, or negative, that is, whether
in the equation

g, =R(C, + ()

>
20 (B.3)
the top sign (>), the center sign (=), or the bottom sign (<) is valid.
259
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By substitution of Equation B.2, Equation B.3 becomes

R,C, +R,C, + R,C,
2R,C,R,C,

4R,C,R,C,
x(1— [1- —1zo0. 4
( \/ R.C, R,C, + Rcp2) ~ 120 (B

Equation B.4 can be rearranged as
‘- 1 2R,C,R,C, 2\/ _ 4R,C,R,C,
R(C, + C))R,C, +R,C, + R,Cy < (R,Cy + R,C; + R,C,)*
(B.5)

The right side of Equation B.5 is always positive or zero because, by convention,

\/; 2 0 for any positive real x. When the left side of Equation B.S is negative,

the bottom sign (<) is valid in Equation B.5 and hence in Equation B.3 as well.
Thus, in this case,

Ry(Cy + Cy)

e <0 (B.6)
and also

et = —ep. (B.7)

When the left side of Equation B.5 is positive or zero, none of the three possible
signs (>, =,and <)is altered if both sides of Equation B.5 are squared, because
in this case both sides of Equation B.5 are positive or zero. This results in
Equation B.8:

2
(1 _ 1 2R,C\R,C, ) > 4R,C,R,C,
R(C, + C)R,C, + R C, + R,C,) S (R,C, + R,C, + R,C,)*"
(B.8)
It can be shown that Equation B.8 can be rearranged as
R, C, 2 2
—-——={—=] £0. 3
R, (CI + Cz) = ®9)

Clearly, the bottom sign (<) is valid in Equation B.9 and hence in Equation B.3
as well. Thus, Equations B.6 and B.7 are valid in this case too.

Now it is determined whether |¢,| is greater than, equal to, or less than R, /R,;
_that is, whether in the equation

>R
leg) S R~: (B.10)

the top sign (>), the center sign (=), or the bottom sign (<) is valid.
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By use of Equations B.2 and B.7, Equation B.10 becomes

R,Cl + RICZ + R2C2
2R,C,R,C,

___4_’*@&&4_—2) iz e
"(‘“ l—(R,C,+R1C2+R2C2) R,

Equation B.11 can be rearranged as

~R\(C, + C3)

4R,C,R,C,
V=G, TR,C, + R,CF
> 1 Bl __1,____2&_CL&2£2__ (B.12)

2+ F R, JRIC, ¥ C) RC + RiCy + RaC

iti 7 ention,
The left side of Equation B.12 is always positive or zero because, by conv

\/; > 0 for any positive real x. The right side of Equation B. 1.2 i? als?1 :lafl\;’lzzz
posit?vc. Thus, none of the three possible signs (>' , =, andv <) éslz; .tere
sides of Equation B.12 are squared. This results in Equation B.13:

4R,C,R,C,
1= R,C, + R,C; + R,y

> { R, 1 2R,C,R,C, ]2' (B.13)
TR RI(C, + C) RiC, + RiC, + R,C,

Equation B.13 can be rearranged as

4R,C,R,C,
T (R,C, + R,C, + RyCyY

R, __L____ER_Q&_CL__T —1.  (B.14)
LR, R(C + G RiCo + Ry + RiC,

The left side of Equation B.14 is always negative an’d the' right side is always
positive; hence, the left side is always less than the r}ght side. Thus,the bottom
sign (<), is valid in Equation B.14 and hence in Equation B.10 as well. Therefore,

Equation B.10 becomes

AV

2 B.15
ferl < E: ( )

Thus, the magnitude of the fractional error of 1, of Equation 6.31c, |e], is
indeed always less than R,/R;.
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To find the fractional error &y of time constant t,,
Equation 6.31d has to be substituted for Tapproximate i EqQuations B.1a and B.1b,

and the exact 1, from Equation 6.30d has to be substituted for ., in
Equations B.1a and B.1b. Thus, Equation B.1b becomes

the approximate 7, from

e =R, C1C2 RC +R,C, +R,C,
TG+ G 2R,C,\R,C,

4R,C.R,C
1— 1C1R,C, - 16
"(H\/ (R1C1+R,C2+R2C2)2) (B.16)

Now it is determined whether ¢
in the equation

u is positive, zero, or negative; that is, whether

£y 20 (B.17)

the top sign (>), the center sign (=), or the bottom sign (<) is valid. By
substitution of Equation B.16, Equation B.17 becomes

CiC, R,C, +R,C, +R,C,
*c+C, 2R,C,R,C,

4R,C,R,C,
1 1- —-120. 1
) ( * \/ (R,Cy + R,C; + R,C,)? <0 (B.18)

Equation B.18 can be rearranged as

\/1 _ 4R,C,R,C, 2 R,C, + R,C, ~ R,C, (B19)
(R,C, + R,C; + R,C,)* “R,C, + R,C, + R,C,’ )

The left side of Equation B.19 is always positive because, by convention,
J; 2 O for any positive real x. When the right side of Equation B.19 is negative,

then the top sign (>) is valid in Equation B.19 and hence in Equation B.17 as
well. Thus, in this case

e >0 (B.20)

and also
leyl = gy. (B.21)
When the right side of Equation B.19 is positive or zero, then none of the three
possible signs (>, =, and <) is altered if both sides of Equation B.19 are

squared, because in this case both sides of

Equation B.19 are positive or zero.
This results in Equation B.22:

B 4R,C,R,C, 2 (R,C, + R,C, — R,C,)? (822)
(RiCi + R,C; + Ry,Co)* S(R,C, + R,C, + RyCp)F :
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Equation B.22 can be rearranged as N
4R,C,R,C, 20. >
i i tion B.17 as
Clearly, the top sign (>) is valid in Equation B.23 and hence in Equa

i lid in this case too.
uations B.20 and B.21 are va tban Ro/R
Wel}:;f\:l liltsislz‘l‘:termined whether |¢,| is greater than, equal to, or less 2/Ry

that is, whether in the equation

(B.23)

> R, (B.24)

leul 2 R,
i is valid. By use of
the top sign (>), the center sign (=), or the bottom sign (<) is valid. By
€ tof X (
Equat‘i)ons B.16 and B.21, Equation B.24 becomes

CiCs RiC,+RC: 3 RC,
2 m 2R,C,R,C,

4R,C,R,C, 2> 4 %&‘ (B.25)
~ 4RCRC
8 (1 T (R,C,y + R,C, + R,C)) Ry

Equation B.25 can be rearranged as

4R,C,R,C, LRCL+RC+2RC+ RGy g
I-RG TRG+RCF S RC+RGHRG

. n,
The left side of Equation B.26 is always posi.tnve or Zero t?c:czu};sz;,6 bi); ZT::ZT:JZ),S
0 for any positive real x. The right §|de of Equation B. 6 I a0 ot
\/;2 Thus, none of the three possible signs (>., =, anq <) [l;s;] \
fi‘c)is:sug.liquat’ion B.26 are squared. This results in Equation B.27:
4R,C,R,C, > R.C, +R1C2+2R2CI;-2R2C2. (B.27)
(R,C, + R,C2 + R,Cy) < R\C, + R, C; + Ry(,

Equation B.27 can be rearranged as

21480, (B.28)
23+t
Clearly, the bottom sign (<) is valid. Therefore, Equation B.24 becomes
< Ry (B.29)
feul R,

i i f 1, of Equation 6.31d, lel, is

magnitude of the fractional error of 1y b

i dTh: Sz;lg‘:ys leis than R,/R,. This completes the proof of the 6st3altcer::: 5 lad
lt‘llle‘;:\agnitudes of the fractional errors of 7, and 7, of Equations 0.

are always less than R;/R,.
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B.2 The Relative Magnitudes of t, 15, and 1,

First, the relative magnitudes of 7, and ,, from Equations 6.30b and 6.30c are
compared; that is, it is determined whether in the equation

1 (B.30)
T

the top sign (>), the center sign (=), or the bottom sign (<) is valid. By
substitution of Equations 6.30b and 6.30c, Equation B.30 becomes

R,C, + R,C,; + R,C, <1 B \/1 4R,C,R,C, )2 1

2R,C,R,C, T (R.C, +R,C, + RGP ) <R, Gy
(B31)
Equation B.31 can be rearranged as
_ \/1 — RCORG S RC-RG-RG o
(R,C, + R,C; + R,C,)* R,C, + R,C, + R,C, :

The validity of an inequality is not altered if both sides are multiplied by —1
and are interchanged. Hence, Equation B.32 can be written

—R,C, + R,C, + R,C, z /- 4R,C\R,C,
R.C, +R,C, +R,C, < (R,C;y + R,C, + R,Cy)*
The right side of Equation B.33 is always positive or zero because, by

convention, \/x > 0 for any positive real x. When the left side of Equation B.33
is negative, the bottom sign (<) is valid in Equation B.33 and hence in Equation
B.30 as well. Thus, in this case,

(B.33)

1 1
—_—< (B.34)
L T2

When the left side of Equation B.33 is positive or zero, none of the three possible
signs (>, =, and <) is altered if both sides of Equation B.33 are squared,

because in this case both sides of Equation B.33 are positive or zero. This results
in Equation B.35;

(=R.C, + RC, + R, Gy > 4R,C,R,C,
(R + R,C; + R,Co = (R,C, + R,C; + R,Cy)*
It can be shown that Equation B.35 can be rearranged as
02 4R2C,C,. (B.36)

Clearly, the bottom sign (<) is valid in Equation B.36 and hence in Equation
B.30 as well. Thus, Equation B.34 is valid in this case too.

(B.35)

S
L THE RELATIVE MAGNITUDES OF 71, 72 AND 1y 26

i d 6.30d
Next, the relative magnitudes of 7, and 7y from Equations 6.30b an

are compared; that is, it is determined whether in the equation

(B.37)

AV

1
T2

Si=

i i = the bottom sign (<) is valid. By
The top sign (>), the center sign (=), or ‘
substitt?lion of Equations 6.30b and 6.30d, Equation B.37 becomes

4R,C,R,C, > 1
R,C, + R,C, + R,C, ~ .G, 2 .
R, CR.C, T+ J1=[RC, +RC, + RiC) KRGy
- (B.38)
Equation B.38 can be rearranged as
4R,C,R,C, 2RC —RC—RCy g
b= (R,C, + R,C; + RGP S R,Cy + Ry Gy + RoCy

The left side of Equation B.39 is always positive or zero because, by convention,

iti ight side of Equation B.39 is negative,
> 0 for any positive real x. When the rig : on
:l{c;top sign (>y) is valid in Equation B.39 and hence in Equation B.37 as well.

Thus, in this case,

1
-1_ >—. (B40)
Tu T2

i i iti of the three
ight side of Equation B.39 is positive or zero, none
VZ)l;:;;)thzi;;gs (>, =, and <) is altered if both sides of Equau.ovn B.39 are
gquared because in this case both sides of Equation B.39 are positive or zero.

This results in Equation B.41: 2
4R1C1R2C2 = (Rlcl — RICZ - chz)z . (B41)
TRCy + RC; + R,Cof? T (RCy+ R, Gy + RyC)
It can be shown that Equation B.41 can be rearranged as
4R3C,C, 20. (B.42)
Clearly, the top sign (>)is valid in Equation B.42 and hence in Equation B.37 as

11. Thus, Equation B.40 is valid in this case too. . ' '
we’l‘he c:l)mbi?lation of Equations B.34 and B.40 results in Equation 6.32a. This

completes the proof of Equation 6.32a.

1



APPENDIX C

Properties of Operational
Amplifiers Used in the
Examples and Problems

The properties listed in this appendix are typical except where stated otherwise.
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Index

108A, 208, 218, 268

725C, 35, 268

741, 186, 215, 268

2539, 74-76, 91, 109-115, 118, 166, 169-170,
172-175, 181-183, 185, 190-191, 213,
232-233, 238, 268

9914A, 103-105, 117-118, 137-141, 143-145,
148-152, 155-160, 184, 188-189, 213,
218, 237, 244, 268

13741, 162-166, 187-190, 217-218, 222-223,
227-231, 233-236, 243-244, 268

Adder, 223-225, 240
Amplification, 1-3, 5, 8-10, 28-30, 33-37,
39, 268
accuracy, 3, 24, 27-37
closed-loop, see Resulting amplification
infinite, 12-25, 119-122

Balance adjustment, 246-247, 251-253
Bandwidth, 39, 123-127, 187

Bias current, see Input bias current
Bode plot, 44, 55-56, 87, 116

Common-mode amplification, 2-3, 197-202
Common-mode rejection, 197-201, 208, 268
Common-mode rejection ratio, 198-202, 208,
268 dc, 198, 208
frequency characteristics, 198-199, 208
Comparator, 10
Compound differential amplifier, 23, 36, 208
Compound lag network, 70-76, 81, 118, 259~
265
Computer-aided design, 184
Corner frequency, 40, 44, 59, 87, 94, 115~
118, 119, 268
four, 87, 92~94
no, 119-122
one, 87, 115, 123-135, 185-186
three, 87-91, 93-95. 98, 108-113, 116,
118, 166-182, 190-194

two, 87, 101-107, 117-118, 135-1606, 186~
190
Crossover frequency, 99
Cubic equation, see Third-order equation
Current mirror, 247-253
Current source input, 219-223, 240
Cyclic frequency, 40

Decibel, 44

Decompensated operational amplifier, 94

Delay, 39, 116

Delta function, 55, 230-232, 235

Differential amplification, 5

Differential amplifier, 6-10, 23. See also
Feedback amplifier, differential

Differential gain, see Differential
amplification

Differential-in differential-out amplifier, 19—
21

Differential voltage amplification, 5

Differential voltage gain, see Differential
voltage amplification

Differentiator, 237-238, 243-244

Drift, temperature, see Temperature
coefficient

Encircling, 83-86

Excess phase, 101

Expansion, binomial, 41-42
Expansion, logarithmic, 41-42, 56
Exponential amplifier, 239

Feedback, 3, 11-25
frequency-independent, 119, 123-125, 136-
141, 166-170, 187, 191
negative, 11
positive, 24, 36
Feedback amplification, see Resulting
amplification

271
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Feedback amplifier, 11-25, 83-118, 119-195,
210-212
resulting amplification, 12-25, 27-37
resulting amplification, fractional change,
27-37, see also Feedback amplifier,
resulting amplification, fractionai error
resulting amplificatien, fractional error, 24,
33-37, see also Feedback amplifier,
resulting amplification, fractional
change
Feedback amplifier, differential, 15-18, 20~
22, 199-202, 210-212
equalized amplification, 17-18, 20-22,
199-202, 210-212
feedback factor, 16-18
feedback return, 16
resulting amplification, 16-18, 20-22, 24,
27-37
Feedback amoplifier, inverting, 13-15, 22, 24,
29-30, 32-37, 90, 114-116, 182-183
feedback factor, 14-15, 22
feedback return, 14-15
resulting amplification, 13-15, 22, 24
resulting amplification, fractional change,
29-30, 32-37, see also Feedback
amplifier, inverting, fractional error
resulting amplification, fractional error, 24,
33-37, see also Feedback amplifier,
inverting, fractional change
Feedback amplifier, noninverting, 11-13, 19,
21-22, 24, 27-29, 31-37
feedback factor, 12-13
feedback return, 12-13, 19
resulting amplification, 1213, 19, 21-22,
24
resulting amplification, fractional change,
27-29, 31-37, see also Feedback
amplifier, noninverting, fractional
error
resulting amplification, fractional error, 24,
33-37, see also Feedback amplifier,
noninverting, fractional change
Feedback factor, 12-18, 25, 31-33
Feedback gain, see Resulting amplification
Feedback resistor, 30-37
Feedback return, 12-16, 31-33
Fifth-order equation, 195
“Fourth-order equation, 175-180, 182, 191-
194
Frequency, 1-3, §
Frequency response, 39-57, 59-82, 119-195

Gain, 1, 5
closed-loop, see Resulting amplification
resulting, see Resulting amplification

Ideal operational amplifier, 5-10

Impulse function, 55, 230-232, 235

Input bias current, 2, 209-211, 217-218, 245,
253, 268

Input capacitance, 202-205, 208

Input current, 2, 209-211, 217-218, 245-246,
253, 268

Input impedance, 202-205, 208, 268

Input offset current, 2-3, 209-211, 217-218,
246, 268

Input offset voltage, 2-3, 211-212, 218, 253,
268

Input resistance, 202-205, 208, 268

Input resistor, 33-37

Input stage, 245-247, 249-251

Instrumentation amplifier, 19-21, 36-37

Integrator, 225-236, 240-243

Internally compensated operational
amplifier, 94-95, 116

Inverting amplifier, 6. See also Feedback
amplifier, inverting

Lag compensation, 94-95

Lag-lead compensation, 111-113, 121-122,
125-135, 160-166, 181-183, 194, 238,
244

Lag network, 39-57, 87-93. See also Corner
frequency

Laplace transform, 42-43, 257

Lead network, 63-66, 80-81

Lead-lag compensation, 96-100, 103-107,
109-110, 117-118, 120-121, 141-160,
171-180, 182-183, 187-195, 218

Limitation, 212-213

Logarithmic amplifier, 239, 244

Loop gain, see Feedback factor

Magnitude, 1, 40-42
Modified lag network, 59-62, 80-81

Noise, 215-218

Noninverting amplifier, 5-6. See also
Feedback amplifier, noninverting

Nyquist criterion, 83-87, 99, 101

Nyquist diagram, 83-87, 115

Open-loop amplification, 5

Open-loop gain, see Open-loop amplification
Output current, 212-213

Output impedance, 205-206, 208

Output stage, 252

Output voltage, 212-213

Phase, 40-42, 55, 117

Phase margin, 99, 101-113, 117-118, 128,
233, 243 4

Piecewise linear approximation, 44, 56

Pole, 40, 94 o 50

Pole frequency, 40,

Pole-zero cancellation, 97-98, 142-145, 156~
158, 171-175, 182-183, 187-191

Potentiometric amplifier, ;5

Power supply rejection ratio, 207-208, 268

Property, 267-268

Quadratic equation, see Second-order
equation N

Quartic equation, see Fourth-order cqu.anon

Quintic equation, see Fifth-order equation

RLC circuit, 76—80,682
i -213, 23
Eli::;lng;)::azlional amplifier, 197-208, 209-218
Referred to the input, 211
Referred to the output, 211
Resulting amplification, 11-25
Rise time, 39

Second-order equation, 255
Slew rate, 214-215, 218, 268
Stability, 83-118

absolute, 99

INDEX 273

conditional, 98-100, 117, 195
marginal, 89
Step function, 43
Structure, inlcma}, 245—2;37 -
Supply-voltage rejection, 2U/=
Su‘;):’)lz-vollage rejection ratio, 207-208, 268
frequency characteristics, 207

i -37, 56

Taylor series, 28-31, 34-37,

Tezlnperalurc coefficient, 210-212, 217-218,
247, 268

Temperature drift, see Temperature
coefficient

Third-order equation, 146-156, 158-160,
163-169, 173-174, 187-191, 194, 255-
256 .

Transfer function, 4

Transient response, 39-57, 59-82, 119-195

Voltage amplification, 5

Voltage divider network, 66-70, 81
compensated, 67-70

Voltage follower, 19, 22, 36, 95.‘.238.‘ 244

Voltage gain, see Voltage amplification

Zero, 59, 94
Zero frequency, 59 )
Zeroing, see Balance adjustment
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