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1. CHARACTERISTICS AND PARAMETERS OF
OPERATIONAL AMPLIFIERS

The characteristics of an ideal operational amplifier are described first, and the
characteristics and performance limitations of a practical operational amplifier are
described  next.  There is a section on classification of operational amplifiers and
some notes on how to select an operational amplifier for an application. 

1.1 IDEAL OPERATIONAL AMPLIFIER

1.1.1 Properties of An Ideal Operational Amplifier

The characteristics or the properties of an ideal operational amplifier are:

i. Infinite Open Loop Gain,
ii. Infinite Input Impedance,
iii. Zero Output Impedance,
iv. Infinite Bandwidth,
v. Zero Output Offset, and
vi. Zero Noise Contribution.

The opamp, an abbreviation for the operational amplifier, is the most important
linear IC.  The circuit  symbol of an opamp shown in Fig. 1.1.  The three terminals
are: the non-inverting input terminal, the inverting input terminal and the output
terminal.   The details of power supply are not shown in a circuit symbol. 

1.1.2 Infinite Open Loop Gain

From Fig.1.1, it is found that  vo = - Ao × vi,  where ̀ Ao' is known as the open-loop
gain of the opamp.  Let vo be  -10 Volts, and Ao be 105. Then vi is 100 :V.   Here
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the input voltage is very small compared to the output voltage.  If Ao is very large,
vi is negligibly small for a finite vo.    For  the ideal opamp, Ao is taken to be
infinite in value.   That means, for an ideal opamp vi = 0 for a finite vo.   Typical
values of Ao range from 20,000 in low-grade consumer audio-range opamps to
more than 2,000,000 in premium grade opamps ( typically 200,000 to 300,000).

The first property of an ideal opamp: Open Loop Gain Ao = infinity.

1.1.3 Infinite Input Impedance and Zero Output Impedance

An ideal opamp  has an infinite  input impedance and  zero output impedance. The
sketch  in Fig. 1.2 is used to illustrate  these  properties. From Fig. 1.2, it can be
seen that iin is zero if Rin is equal to infinity. 

The second property of an ideal opamp: Rin = infinity or iin =0.

From Fig. 1.2, we get that

If the output resistance Ro is very small, there is no drop in output voltage due to
the output resistance of an opamp.

The third property of an ideal opamp: Ro = 0.
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1.1.4  Infinite Bandwidth

An ideal opamp has an infinite bandwidth.  A practical opamp has a limited
bandwidth, which falls far short of the ideal value.  The variation of gain with
frequency has been shown in Fig. 1.3,  which is obtained by modelling the opamp
with a single dominant pole, whereas the practical opamp may have more than a
single pole. 

The asymptotic log-magnitude plot in Fig. 1.3  can be expressed by a first-order
equation shown below.

It  is seen that two frequencies, wH and wT,  have been marked in the frequency
response plot in Fig. 1.3..  Here wT is the frequency at which the gain A(jw) is
equal to unity. If A(jwT) is to be equal to unity, 

Since Ao is very large, it means that wT = Ao * wH .
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1.1.5 Zero Noise Contribution and Zero Output Offset

A practical opamp generates noise signals, like any other device, whereas an ideal
opamp produces no noise.   Premium opamps are available which contribute very
low noise to the rest of circuits.  These devices are usually called as premium low-
noise types.

The output offset voltage of any amplifier is the output voltage that exists when
it should be zero.  In an ideal opamp, this offset voltage is zero.

1.2 PRACTICAL OPERATIONAL AMPLIFIERS

This section describes the properties of practical opamps and relates these
characteristics to design of analog electronic circuits.  A practical operational
amplifier has limitations to its performance.  It is necessary to understand these
limitations in order to select the correct opamp for an application and design the
circuit properly.  

Like any other semiconductor device, a practical opamp also has a code number.
For example, let us take the code LM 741CP.  The first two letters, LM here,
denote the manufacturer.  The next three digits, 741 here, is the type number. 741
is a general-purpose opamp.  The letter following the type number, C here,
indicates the temperature range. The temperature range codes are:

C  commercial  0o C to 70o C,
I  industrial -25o C to 85o C and
M  military  -55o C to 125o C.

The last letter indicates the package. Package codes are:

D    Plastic dual-in-line for surface mounting on a pc board
J    Ceramic dual-in-line
N,P  Plastic dual-in-line for insertion into sockets.

1.2.1 Standard Operational Amplifier Parameters

Understanding operational amplifier circuits requires knowledge of the parameters
given in specification sheets.  The list below represents the most commonly
needed parameters.   Methods of measuring some of these parameters are
described later in this lesson.
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Open-Loop Voltage Gain.  Voltage gain is defined as the ratio of output voltage
to an input  signal voltage, as shown in Fig. 1.1.   The voltage gain is a
dimensionless quantity.

Large Signal Voltage Gain.  This is the ratio of the maximum allowable output
voltage swing (usually one to several volts less than V- and V++) to the input
signal required to produce a swing of ± 10 volts (or some other standard).

Slew rate. The slew rate is the maximum rate at which the output voltage of an
opamp can change  and is measured in terms of voltage change per unit of time.
It varies from 0.5 V/:s to 35 V/:s.  Slew rate is usually measured in the unity gain
noninverting amplifier configuration.

Common Mode Rejection Ratio.  A common mode voltage is one that is
presented simultaneously to both inverting and noninverting inputs.  In an ideal
opamp, the output signal due to the common mode input voltage is zero, but it is
nonzero in a practical device. The common mode rejection ratio (CMRR) is the
measure of the device's ability to reject common mode signals, and is expressed
as the ratio of the differential gain to the common mode gain.  The CMRR is
usually expressed in decibels, with common devices having ratings between 60 dB
to 120 dB.  The higher the CMRR is, the better the device is deemed to be.

Input Offset Voltage.  The dc voltage that must be applied at the  input  terminal
to force the quiescent dc output voltage to zero or other level, if specified, given
that the input signal voltage is zero.   The output of an ideal opamp is zero when
there is no input signal applied to it. 

Power-supply rejection ratio. The power-supply  rejection  ratio  PSRR is  the
ratio  of the change in input offset voltage to the corresponding  change in one
power-supply,  with  all  remaining  power  voltages  held constant.   The PSRR
is also called  "power supply insensitivity".  Typical values are in :V / V or mV/V.

Input Bias Current.  The average of the currents  into the two input terminals
with the output at zero volts.

Input Offset Current.  The difference between the currents into the two  input
terminals with the output held at zero.

Differential Input Impedance.  The resistance between the inverting and the
noninverting inputs.  This value is typically very high: 1 MS in low-cost bipolar
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opamps and over 1012 Ohms in premium BiMOS devices.

Common-mode Input Impedance
The impedance between the ground and the input terminals, with the input
terminals tied together.  This is a large value, of the order of several tens of MS
or more.

Output Impedance.  The output resistance is typically less than 100 Ohms.

Average Temperature Coefficient of Input Offset Current.  The ratio of the
change in input offset current to the  change in free-air or ambient  temperature.
This  is  an average value for the specified range.

Average Temperature Coefficient of Input Offset Voltage.  The ratio of the
change in input offset voltage to the  change in free-air or ambient temperature. 
This  is  an average value for the specified range.

Output offset voltage.  The output  offset voltage is the voltage at the output
terminal with respect to ground when both the  input  terminals are grounded. 

Output Short-Circuit Current.  The current that flows in the output terminal
when the output load resistance external to the amplifier is zero ohms (a short to
the common terminal).

Channel Separation.  This parameter is used on multiple opamp ICs (device in
which two or more opamps sharing the same package with common supply
terminals).  The separation specification describes part of the isolation between the
opamps inside the same package.  It is measured in decibels.  The 747 dual opamp,
for example, offers 120 dB of channel separation.  From this specification, we may
state that a 1 :V change will occur in the output of one of the amplifiers,  when the
other amplifier output changes by 1 volt.

1.2.2 Minimum and Maximum Parameter Ratings
 
Operational amplifiers, like all electronic components, are subject to maximum
ratings.  If these ratings are exceeded, the device failure is the normal consequent
result.  The ratings described below are commonly used.

Maximum Supply Voltage.   This is the maximum voltage that can be applied to
the opamp without damaging it.  The opamp uses a positive and a negative DC
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power supply, which are typically ± 18 V. 

Maximum Differential Supply Voltage.  This is  the  maximum  difference
signal that can be  applied safely to the opamp power supply terminals.  Often this
is not the same as the sum of the maximum supply voltage ratings.  For example,
741 has ± 18 V as the maximum power supply voltage, whereas the maximum
differential supply voltage is only 30 V.  It means that if the positive supply is 18
V, the negative supply can be only -12 V.

Power dissipation, Pd.  This rating is the maximum power dissipation of the
opamp in the normal ambient temperature range.  A typical rating is 500 mW.

Maximum Power Consumption.  The maximum power dissipation, usually under
output short circuit conditions, that the device can survive.   This rating includes
both internal power dissipation as well as device output power requirements.

Maximum Input Voltage.   This is the maximum voltage that can be applied
simultaneously to both inputs.  Thus, it is also the maximum common-mode
voltage.  In most bipolar opamps, the maximum input voltage is nearly equal to the
power supply voltage.  There is also a maximum input voltage that can be applied
to either input when the other input is grounded.
  
Differential Input Voltage.  This is the maximum differential-mode voltage that
can be applied  across the inverting and noninverting inputs.
  

Maximum Operating Temperature.  The maximum temperature is the highest
ambient temperature at which the device will operate according to specifications
with a specified level of reliability.

Minimum Operating Temperature.  The lowest temperature at which the device
operates within specification.

Output Short-Circuit Duration.  This is the length of time the opamp will safely
sustain a short circuit of the output terminal.  Many modern opamps can carry
short circuit current indefinitely.

Maximum Output Voltage.  The maximum output potential of the opamp is
related to the DC power supply voltages.  Typical for a bipolar opamp with ± 15
V power supply, the maximum output voltage is typically about 13 V and the
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minimum - 13 V. 

Maximum Output Voltage Swing.  This  is the maximum output  swing  that  can
be obtained without significant distortion(at a given load resistance).

Full-power bandwidth.  This is the maximum  frequency  at which a sinusoid
whose size is the output voltage range is obtained.

1.2.3 Comparisons and Typical Values

Table 1.1 presents a summary of features of an ideal and a typical practical opamp.

Table 1.1:  Comparison of an ideal and a typical practical opamp 

Property  Ideal    Practical(Typical)

Open-loop gain  Infinite Very high (>10000 )

Open-loop bandwidth  Infinite Dominant pole(–10
Hz)

CMRR  Infinite High (> 60 dB)

Input Resistance Infinite High (>1 MS)

Output Resistance Zero Low(<  100 S)

Input Bias Currents Zero Low (<  50 nA)

Offset Voltages Zero Low (< 10 mV)

Offset Currents Zero Low (< 50 nA)

Slew Rate Infinite A few V/:s

Drift Zero Low

Table 1.2 shown below presents a summary of the effects of opamp characteristics
on a circuit's performance. It is a simplified summary.

1.2.4 Effect of Feedback on Frequency Response

The effect of feedback on the frequency response of a system has already been
described. Here the effect of feedback is described using the log-magnitude plot.
Given that the transfer function of the forward path is specified as:
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TABLE 1.2 EFFECTS OF CHARACTERISTICS ON OPAMP
APPLICATIONS

__________________________________________________________________
OPAMP APPLICATION

 ___________________________________________
DC amplifier AC amplifier               

         _________________ __________________
Opamp Characteristic 
that may affect Small Large Small

Large
performance output  output output  output
__________________________________________________________________

1. Input bias current    Yes   Maybe   No   No
2. Offset current Yes   Maybe   No No
3. Input offset voltage  Yes        Maybe     No         No
4. Drift   Yes        Maybe      No         No
5. Frequency Response No         No          Yes        Yes
6. Slew rate     No         Yes        No         Yes
________________________________________________________________

If the closed-loop transfer function T(s) of the circuit is

On  substituting for A(s) by its expression in equation (1.1), we get that

The plot of frequency response for open loop and closed-loop is shown in Fig. 1.4.
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1.3 CLASSIFICATION OF OPAMPS

The classification of an opamp can be based on either its function or its family
type.  The classification based on function is described below.

i. General-purpose amplifier.   These general purpose opamps are neither
special purpose or premium devices.  Most of them are internally compensate, so
designers trade off bandwidth for inherent stability.  A general purpose opamp is
the default choice for an application unless a property of another class brings a
unique advantage to this application.

ii. Instrumentation amplifier.   Although an instrumentation amplifier is
arguably a special purpose device, it is sufficiently universal to warrant a class of
its own.  

iii. Voltage Comparators.  These devices are not true opamps, but are based
on opamp circuitry.  While all opamps can be used as voltage comparators, the
reverse is not true.  The special feature of a comparator is the speed at which its
output level can change from one level to the other.  

iv. Low Input Current.  The quiescent current needed for these opamps is
low.  This class of opamps typical uses MOSFET , JFET or superbeta (Darlington)
transistors for the input stage instead of npn/pnp bipolar devices.

v. Low Noise.    These devices are usually optimized to reduce internally
generated noise.
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vi. Low Power.  This category of opamp optimizes internal circuitry to reduce
power consumption.   Many of these devices also operate at very low DC power
supply potentials.

vii. Low Drift.  All DC amplifiers  suffer from drift.   Devices in this category
are internally compensated to minimize drift due to temperature.   These devices
are typically used in instrumentation circuits where drift is an important concern,
especially when handling low level input signals.
  
viii. Wide Bandwidth.  The devices in this class are also called as video opamps
and have a very high gain-bandwidth level, as high as 100 MHz.  Note that 741
has a gain-bandwidth product of about 1 MHz .

ix Single DC Supply.  These devices are designed to operate from a single DC
power supply.

x. High Voltage.  The power supply for these devices can be as high as ± 44
V.  
xi. Multiple devices.  Two or quad arrangement in one IC.

The classification based on family type:
i.  Bipolar opamps,  ii.  BiFET opamps,  iii. JET opamps, iv. CMOS opamps etc.
The characteristics of opamps  change  with the internal architecture also.  Some
opamps have two-stage architecture,  whereas some have three-stage architecture.

The purpose of this section is to highlight the facts that  it is necessary to select
a  suitable opamp for the  application in hand and that there is  a wide choice
available.  Choosing the right opamp is not simple.   Aspects to be considered are:
technology,dc performance,ac performance,output drive requirements, supply
requirements, quiescent current level,  temperature range  of  operation,  nature of
input signal, costs etc. Table 1.3  presents  a  summary of  characteristics of  a  few
selected opamps.  It is preferable to go through the databooks on linear ICs for
selecting the right opamp. 

1.3.1 BiFET  OPAMP

Although the LM741 and other bipolar opamps are still widely used, they are
nearly obsolete.  Bipolar technology has been replaced by BiFET technology.  The
term, "BiFET" stands for bipolar-field effect transistor.  It is a combination of two
technologies, bipolar and junction field-effect, making use of the advantages of
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each.  Bipolar devices are good for power handling and speed whereas field-effect
devices have very high input impedances and low power consumption.  Most
modern general-purpose opamps are now produced with BiFET technology.

BiFET opamps generally have enhanced characteristics over bipolar opamps.
They have a much greater input impedance, a wider bandwidth, a higher slew rate
and larger power output than the corresponding ratings of bipolar opamps. A
variety of BiFET opamps are now available: the TL060 low-power, TL070 low-
noise and TL080 general purpose from Texas Instruments, LF350 and LF440
series from National semiconductor, the MC34000 and MC35000 series from
Motorola etc. The performance of most of them are similar and are normally
pinout compatible with 741C.  

Extremely low bias currents make a BiFET opamp to be more suitable for
applications such as an integrator, a sample and hold circuit and filter circuits. But
the bias currents double for every 10o C and at high temperature, a BiFET opamp
may have a larger bias current than a bipolar opamp!   Both BiFET and CMOS
have less noise current, which is an important  consideration when dealing with
sources of high impedance.

A BiFET opamp has some disadvantages too.  It tends to have a far greater offset
voltage than its bipolar counterpart.  The offset voltages tend to be unstable too.
In addition, a BiFET opamp has poorer CMRR, PSRR and open-loop gain
specifications.  But some of the recent BiFET do not have these drawbacks.  It
may please be noted that a BiFET opamp needs a dual power supply.

Unlike 741C, TL080 does not have internal compensation and needs an external
capacitor of value ranging from 10 pF to 20 pF to be connected between pins 1 and
8.  The smaller the capacitor is, the wider the bandwidth is, but the opamp tends
to become more underdamped at higher frequencies.

1.3.2 CMOS OPAMPs

Although originally considered to be unstable for linear applications, a CMOS
opamp is now a real alternative to many bipolar, BiFET and even dielectrically
isolated opamps.

The major advantage of a CMOS opamp is that it operates well with a single
supply.  The input common-mode range is more or less the same as the power
supply range.  A CMOS opamp needs very low supply currents, less than 10 :A



13

and can operate with a supply voltage as low as 1.4 V, making it ideally suitable
for battery-powered applications.  In addition, a CMOS opamp has high input
impedance and low bias currents.  On the other hand, a CMOS tends to have
limited supply voltage range.  Its offset voltages tend to be higher than those of a
bipolar opamp.

TABLE 1.3 Typical Performance of Selected Opamp Types

Type 741 
2-stage

LM 118
3-stage

LM 108
Super $

AD 611
BiFET

AD 570K
Wide-
band

Input offset
voltage
(mV)

<5 <4 <2 <0.5 <5

Bias
Current
(nA)

<500 <250 <2 <0.025 <15

Offset
Current
(nA)

<200 <50 <0.4 <0.01 <15

Open-loop
gain (dB)

106 100 95 98 100

Input
Resistance
(MS)

2 5 100 106 300

Slew Rate
(V/:s)

0.5 >50 0.2 13 35

Unity-gain
bandwidth
(MHz)

1 15 1 2 35

Full-power
bandwidth
(kHz)

10 1000 4 200 600

Settling
time(:s)

1.5 4 1 3 0.9

CMRR(dB) 80 90 95 80 100
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2. BASIC OPAMP APPLICATIONS

2.1 NONINVERTING AMPLIFIER

The basic noninverting amplifier can be represented as shown in Fig. 2.1.   Note
that a circuit diagram normally does not show the power supply connections
explicitly.  

2.1.1 
Analysis For An Ideal Opamp

An ideal opamp has infinite gain.  This means that 

Thus,

An ideal opamp has infinite input resistance.  That is, 

We obtain the output voltage as:
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The gain of the noninverting amplifier is then:

2.1.2  Analysis For an Opamp with a finite gain, Ao

Let the opamp have a finite gain.  Then the noninverting amplifier can be
represented by the equivalent circuit in Fig. 2.2.

From Fig 2.2,

On re-arranging,
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We can represent the circuit in Fig. 2.2 by a block diagram that represents the
feedback that is present in the circuit.  From Fig. 2.2, we can state that,

The above equation can be represented by a block diagram as shown in Fig. 2.3.
From the block diagram, we get the same expression for the gain of the circuit.  It
can be seen that if the open loop gain Ao tends to infinity,  equation (2.7) reduces
to equation (2.6).

Next we analyse the same circuit when the opamp has a  finite input resistance, a
finite gain and a nonzero output resistance. 

2.2 INVERTING AMPLIFIER

The inverting amplifier is analysed below using both network theory and feedback
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theory approach.

2.2.1 Analysis Based On Circuit Theory

Analysis is as follows. Apply KCL (Kirchoff's Current Law)  at node `a' in Fig.
2.4.
Then

For an ideal opamp, ii = 0.    Hence is + i2 = 0.  Thus the KCL at node 'a'  is:

For an ideal opamp, its output resistance  is zero.  Hence   - Aovi  = vo.

When the gain is infinity, vi is also zero. Therefore,

In other words,  

When an opamp is considered to be ideal, vi and ii have zero  value.  If the NI input
(noninverting input) is grounded, the inverting input is at zero potential. We can
find is & i2 by treating the  potential  at inverting input terminal to  be zero volts.
In this condition,  the inverting input terminal behaves as if it is grounded and is
called as ̀ virtual ground'. When the NI input  is not  grounded, the  inverting input
is not at ground potential,it does not behave as if it is grounded and it is no longer
called the virtual ground.  All that happens is  that its potential is the same  as that
at the NI input.

2.2.2 Analysis Based on Negative Feedback 

Now the circuit in Fig. 2.4 is to be represented as a system with feedback.  From
Fig. 2.4,  we get that

We can arrive at the result shown above by the use of either superposition theorem
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or by adding the drop across R1 to Vs. From Fig. 2.4, we get that 

where Ao is the gain of the opamp.   Here  it is appropriate to call it as the opamp's
open loop gain. The above two equations can be represented by a block diagram
as shown in Fig. 2.5.

For the block diagram in Fig. 2.5, we get the ratio Vo/Vs as

Since the open loop gain tends to be infinite, we get the same ratio for Vo/Vs as
obtained earlier. In this case, the feedback that is present in the circuit is negative
because  the  opamp  has a negative gain.   An opamp has a negative gain when vi
is measured as shown in Fig. 2.4.

2.2.3 Applications and Extensions to Inverting Amplifier

An inverter is a basic application using opamp.    An opamp's output can be
described by the equation

where 

With v+ = 0, and v- = 0, vcm = 0.  Even though the common-mode gain Acm of
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opamp may not be zero(common-mode gain is zero for ideal opamp), its
contribution to output is almost zero in the case of an inverting amplifier, because
vcm = 0.  The  circuit of an inverting amplifier can be extended to more than one
input.  A circuit with two inputs is shown in Fig. 2.6.   For the circuit in Fig. 2.6,

If v1 and v2 be of opposite signs, the circuit in Fig. 2.6  can be used as a
proportional controller.  Even though  the inverting  amplifier is a reliable and
useful circuit,it is not suitable if the source vs has a large source resistance.
Normally the value of source  resistance  is  not  known precisely.  With a source
resistance Rs,  the  output of  circuit in Fig. 2,4 is given by

It can be seen that the output may be unreliable in this case. For such applications,
we need a circuit with a very high input resistance.  A non-inverting amplifier built
with an opamp  is  highly suitable for this purpose.  

2.3 DIFFERENCE AMPLIFIER

The circuit of a difference amplifier is shown in Fig. 2.7.  Here we find out its
output assuming that the opamp is ideal. It is easy to get the output using the
superposition theorem. When we apply this theorem, we consider one input at a
time.  With v1 = 0, we can find output due to v2.

Due to v2 only:
Using the result obtained for the non-inverting amplifier, we get
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Given v2,

Then,

Due to v1 only:

Here we get the output from the result obtained for the inverting amplifier.

Due to both v2 and v1 :

If R1 = R3 and R2 = R4, then

The above equation explains why this circuit is known  as  the difference
amplifier. The difference amplifier circuit is used for measuring the difference
between two sources.  Such circuits, or improved difference amplifier circuits are
used widely in instrumentation.  Configuration using three opamps, with two
opamps as buffer and the third  as the difference amplifier, is used more often.
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3 AN INTRODUCTION TO FEEDBACK IN AMPLIFIERS 

3.0 OBJECTIVES

(i) To show how to identify negative and positive feedback in a
circuit.

(ii) To identify applications suitable for positive or negative feedback.
(iii) To outline the effects of feedback.
(iv) To stress the need for negative feedback in amplifiers by outlining

the advantages of using feedback. 
(v) To show the block diagram of the four feedback topologies.

3.1 IDENTIFYING THE NATURE OF FEEDBACK IN A CIRCUIT

A system with feedback is usually represented by a block diagram as shown in
Fig. 3.1(a).  To identify the nature of feedback,  

(i)  assume that the input is grounded,
(ii) break the loop as shown in Fig. 3.1b, and
(iii) find the ratio of V2 / V1 .
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This ratio of V2 / V1 is known as the loop gain.  If the loopgain is negative, then
the system has negative feedback and the system has positive feedback if the
loop gain is positive.

Quiz Problem 3.1

Identify the nature of feedback for the block diagrams shown in Fig. 3.2.

Answer:

(a) Positive ,  (b)  positive,  (c) negative, and (d) positive.
_______________________________________________________________

3.2 EFFECT OF FEEDBACK ON PERFORMANCE

Feedback in a system can be either positive or negative. Negative feedback
improves the linearity of a system and is hence employed  in  a linear system
such as an amplifier.  On the other hand,  positive  feedback  tends to produce a
two-state output in a system and is used in circuits such as square-wave
oscillators, comparators, Schmitt triggers etc.  However, it may be noted that
every circuit with positive feedback need not have  a two-state output. For
example, a sinewave oscillator circuit has positive feedback without having a
two-state output.  The Laplace transform of 

is
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It can be seen that V(s) has a conjugate pair of poles on the imaginary axis of s-
plane.   A physical system tends to have poles on the left-hand side of s-plane.
Positive feedback tends to shift some of the poles of the system towards the
right-side of s-plane.  Due to positive feedback, a system can have conjugate
poles on the imaginary axis and such a system oscillates. In sinewave
oscillators, positive feedback must be  closely  controlled  to  maintain
oscillations  and waveform purity.   On the other hand, in a square-wave
oscillator or a comparator, the effect of positive feedback at cross-over points is
to increase the speed of  transition  from one level  to the other and prevent
unwanted spikes at changeover points.   In  terms  of  control theory
terminology applied to linear systems,  an  amplifier  in  general  represents a
stable system, whereas a sinewave oscillator  is  a marginally stable system and
a square-wave or  a Schmitt trigger circuit is an `unstable' system. It is
necessary to know what stability means.  Where `stability' is desired as in the
case of an amplifier, negative feedback is used.  Where two-state/digital output
is desired,  positive  feedback is used.  

It is worth remembering that the nature of feedback can change with frequency.
Feedback may change from negative  to positive as the frequency varies and the
system may be unstable at high frequencies. Gain of the system also affects
stability. Variation in component values and characteristics of devices due to
operating conditions such as temperature, voltage, or current, can bring about
instability despite negative feedback.  Ageing leads to variation in component
values and  can hence affect stability.

Negative  feedback is  widely used in an amplifier design because it produces
several benefits.  These benefits are:

i.   Negative  feedback stabilizes  the  gain of an amplifier despite the
parameter changes  in  the  active devices due to  supply voltage
variation, temperature change, or ageing. Negative feedback

permits a wider range for parameter variations than what would be
feasible without feedback. 
      

ii.  Negative feedback allows the designer to modify the input and
output impedances of a circuit in any desired fashion.

  
iii. It reduces distortion in the output of an amplifier.   These

distortions arise due to nonlinear gain characteristic of  devices
used.   Negative feedback causes the gain of  the  amplifier to be
determined by the feedback network and  thus  reduces distortion.

iv.  Negative feedback can increase the bandwidth.

v.   It can reduce the effect of noise.

These benefits are obtained by sacrificing the gain of a system. Another aspect
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to be borne in mind is  that unless the feedback circuit is properly designed, the
system tends to be unstable.   Mathematical analysis to support the above
statements can be found in section 3.4.

In a circuit with negative feedback,  the gain of the circuit with feedback
depends almost only on the feedback network used if the loop gain is
sufficiently large.  It is often possible to build the feedback circuit by using
only passive components.  Since the passive components tend to have a stable
value, the circuit performance is then independent of the parameters of the
active device used, and the circuit performance becomes more reliable.  

The four basic feedback configurations are specified according to the nature of
the  input signal/input circuit and output signal/feedback arrangement.    Since
both the input and the output signals can be either voltage  or current, there are
four  configurations as described in section 3.1.

3.3.  FEEDBACK TOPOLOGIES

The four feedback topologies are:

(i) Series-shunt topology 
(ii) Shunt-series topology,
(iii) Series-series topology and
(iv) Shunt-shunt topology.

The block diagrams for these topologies are shown in Fig. 3.3. It is seen that
each topological configuration is described by two terms.  The first term refers
to the input stage and the second to the output.  If the two signals are connected
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in series, the term 'series' is used.  It is logical to connect two voltage signals in
series.  For series-shunt topology, the source signal vs and the feedback signal vf
are connected in series at the input and the difference ve is applied to the
voltage amplifier.

On the other hand if two signals are connected in parallel, the term 'shunt' is
used. It is logical to connect two current sources in parallel.    If the amplifier in
the forward path is either a current or a transresistance amplifier, it needs a
current signal at its input, which in turn is obtained as the difference of the
source signal Is and the feedback current If. In either of these cases, the first
term to be used is 'shunt'.

The second term that describes a feedback topology is related to its output.  If
the output signal is a voltage and a feedback signal is to be derived from it, then
the feedback network must be connected across the output terminals.   It is
appropriate to use the term 'shunt' here.  On the other hand, if a feedback signal
is to be obtained from the output current, the feedback network must be
connected such that the output current flows through it to produce a feedback
signal and the feedback network is then connected in 'series'.  

At this stage, identifying the feedback topology of a circuit may appear to be
simple.   Given a circuit with feedback, it turns out that it is not so
straightforward to identify its topology.  This aspect will be described in greater
length after the study of the four topological configurations.  

3.4 ANALYSIS

3.4.1 Gain Sensitivity

The block diagram of a system with feedback is shown in Fig. 3.1, where G is
the gain of the amplifier in the forward path.  In most practical situations, gain
G of the amplifier in the forward path is not well defined. For example, if we
consider BJT devices with the same type number, the current gain can vary
from one device to another, by as much as 50%.    In addition, the gain of the
forward amplifier is dependent on temperature, and other operating conditions.
If an amplifier is used without feedback, the output is more sensitive to the
changes in the gain of the amplifier.  

For example, let Vo be the output voltage and Vs be the input voltage of an
amplifier with gain G.  Then

If the gain of the amplifier changes by )G, the output changes by ()G * Vs).
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The fractional change in output is then ()G) / G .  Thus for an open-loop
amplifier,

With a closed-loop system, the output is not as sensitive to changes in gain G.
Ideally, variations in G should not affect output at all.  From Fig. 2.1, the gain T
of the closed-loop system is:

Then

From equations (3.3) and (3.4), we get that

For example, let G = 100, *G = 5 and H = 0.1.  From equation (3.2), the
fractional change in the output of the amplifier operating in open-loop is 0.05. 
On the other hand, the fractional change in the output of the circuit operating in
closed-loop is only (0.05/11).    It is seen that the output is less sensitive to
changes in the gain of the amplifier in the forward path.   We define the
sensitivity function as follows:

3.4.2 The Effect of Feedback on Nonlinear Distortion

Feedback reduces the nonlinear distortion in output.  Let an amplifier be
operating in open loop, as shown in Fig. 3.4a.  Here it is assumed that
essentially all the nonlinear distortion is produced by the output stage of the
amplifier, which is typically the case.   From Fig. 3.4a, we can state that 
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where Vd represents the nonlinear content in output.  As illustrated in Fig. 3.4b,
if the same amount of nonlinear distortion is produced at the output stage in an
amplifier with feedback,  the resultant output is obtained to be

For the same amount of distortion Vd introduced, the circuit with feedback has
less distortion in its output.  From equations (3.7) and (3.8),

3.4.3 The Effect of feedback on Frequency Response

If the gain of the amplifier in the forward path be A and the feedback factor be
$,  the  closed-loop  gain T is then A/(1 + A$).  Gain A, instead of being be a
constant.  can be a function of frequency, with poles and zeros.  Let A be
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defined as follows.

where Ao is the mid-frequency gain, wL is the low-frequency pole and wH is the
high-frequency pole.  Then the frequency response is as shown in Fig. 3.5.
Since the gain is a function of frequency,  the closed-loop gain T also becomes
a function of frequency.  

At low frequencies, where w << wH, we can approximate A(s) as

Since

we get the closed-loop gain at low frequencies by substituting for A(s) from
equation (3.11) . 

We get the expression shown above by assuming that the high frequency pole
would not the affect the performance at low frequencies and hence it can be
neglected.  At high frequencies, we neglect both the zero at origin and the low
frequency pole.  Then at high frequencies,  the closed-loop gain can be stated to
be

Combining the two equations (3.13) and (3.14) , we get that
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The frequency response of closed-loop system is also shown in Fig. 3.5.  It is
seen that the range of frequency response has increased significantly.    In Fig.
3.5, 

3.5 SUMMARY

This chapter has described briefly the four types of feedback topologies and has
highlighted the effect of feedback 
i. on the sensitivity of amplifier to changes in the gain of the amplifier in
the forward path,
ii. on the nonlinear distortion and
iii. on the frequency response.
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4 SERIES-SHUNT TOPOLOGY

4.1 IDEAL SERIES-SHUNT NETWORK 

The  block diagram of a circuit with series-shunt feedback configuration is
shown in Fig. 4.1. It is seen that the amplifier in the forward path is an ideal
voltage amplifier.  An ideal voltage amplifier has an infinite input resistance
and a zero output resistance.  It can be seen that the feedback network senses
the output voltage vo and produces a feedback voltage signal, vf.   For this
feedback network, vo is the input voltage signal and vf is its output signal and
hence the feedback network is functionally only a voltage amplifier with a low
gain, called here as the feedback ratio $. The block representation is thus drawn
based on  the assumption that  the voltage amplifier and the  feedback network
are ideal.  This implies that:

i.  the input resistance of voltage amplifier is infinity,
ii.  the output resistance of voltage amplifier is zero,
iii. the input resistance of feedback network is infinity and
iv.  the output resistance of feedback network is zero.

4.2 NONIDEAL NETWORK

When a voltage amplifier is nonideal, it has a large input resistance and a low
output resistance.  Since the feedback network functions as a voltage amplifier,
its equivalent circuit or model is the same as that of a voltage amplifier and in
addition, it should have a large input resistance and a low output resistance, like
a voltage amplifier.  That the feedback network has a large input resistance
means that it draws negligible current from the output port of the voltage
amplifier in the forward path and that it does not load the voltage amplifier.
That the feedback network has a low output resistance means that the error that
can result from its non-zero output resistance is less and often negligible. 
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Even though the feedback network functions as a voltage amplifier, it must be
borne in mind that it is usually a passive network and that we usually associate
the word 'amplifier' with a circuit that contains an active device.

The equivalent circuit of the series-shunt topology with these nonideal
parameters is shown in Fig. 4.2.  It is worth remembering that a practical circuit
will have other limitations such as limited frequency response, drift in
parameters due to ageing, ambient temperature , but these aspects have been
ignored here.

4.3 EFFECTS OF FEEDBACK

The principal aim of using feedback is to make the gain of the closed-loop
system to be dependent on the feedback ratio $ and to free it from its
dependence on the gain  of the amplifier in the forward path.  As outlined
earlier, the closed-loop system has larger bandwidth.  In addition, feedback has
the effects stated below for a series-shunt topology.

(i) The input resistance of the closed-loop  system is far greater than the
input resistance Ri of the voltage amplifier.

(ii) The output resistance of the closed-loop system is far lower than the
output resistance Ro of the voltage amplifier.
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4.4 RESULTS OF ANALYSIS OF THE CIRCUIT WITH FEEDBACK

The circuit in Fig. 4.2 can be reduced to the block diagram shown in Fig. 4.3.
From Fig.4.3, the closed-loop gain T is expressed to be:

where A is the gain of the forward path.  It is shown in section 4.5.1 that the
gain A of the forward path is:

The value of A is not normally much less than G, the gain of the voltage
amplifier. 

The input resistance Rx of the closed-loop network is obtained to be:

It is seen that Rx is much larger than Ri, the input resistance of the voltage
amplifier since the magnitude of loop gain is much greater than unity.  The
derivation of expression (4.3) for Rx is shown in section 4.5.2.

The output resistance Ry of the closed-loop network is obtained to be:
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It is seen that Ry is much smaller than Ro.  The derivation of expression (3.4)
for Ry is shown in section 4.5.3.

4.5 DERIVATIONS

4.5.1 Obtaining an expression for Gain of the forward path

The circuit for obtaining the gain A of the forward path is shown in Fig. 4.4.
This gain is the gain that would exist were there no feedback.  This means that
the dependent source representing the feedback ratio in Fig. 4.2 is to be
bypassed.  The bypass arrangement should ensure that there is a path for current
Is shown in Fig. 4.2 , and that the dependent source $Vo does not affect Is.  This
condition is met if the dependent source  $Vo is replaced by a short-circuit.  The
circuit that results by replacing  $Vo by a short-circuit is shown in Fig. 4.4.   We
define A as

From Fig. 4.4, we get that

While the dependent source $Vo is replaced by a short-circuit, its output
resistance R3 is left in the circuit. (Why ?)

4.5.2 Input Resistance with Feedback

The input resistance is the resistance seen by the source at its terminals.   If the
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source, as shown in Fig. 4.2, has an internal resistance Rs which is normally
referred to as the source resistance, then the input resistance Rx is defined to be

where Vx is the voltage at the terminals of the source and Is is the current
supplied by the source.  Please note that the source voltage Vs and the voltage
Vx at its terminals are not one and the same.  Normally Vx would be slightly
less than Vs in magnitude.

The input resistance Rx is obtained to be:

where Rif is the input resistance of the circuit used for obtaining the forward
gain A.  It is fairly easy to remember the above expression.  Draw the circuit for
obtaining the forward gain, as shown in Fig. 4.4.  Then Rif is the input
resistance of that circuit which includes Rs too.    This resistance gets magnified
(1+A$) times and the value of the source resistance Rs is subtracted from the
product Rif(1+A$) to obtain Rx, the input resistance with feedback.   For a
circuit with negative feedback, the real part of loop gain (-A$) is negative,
which means that the product (A$) has a positive real part.  It means that if A
has a positive real part, then $ also has a positive real part and that if A has a
negative real part, $ also has a negative real part.

The derivation of an expression for Rx is as follows. From Fig. 4.2, we can state
that 

Since Rx is just the ratio (Vx/Is), we can get an expression for Rx if we can
express Ve and Vo in terms of Is.  From Fig. 4.2, we find that

In addition, we have that

Here the load on the output port is Rp, the parallel value of load resistance
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RL,and the input resistance R2 of the feedback network.  

Substitute for Ve and Vo  in equation (4.8) from equations (4.9) and (4.10) and
then obtain the ratio of Vx /Is.  

Usually Rp is far greater than Ro.  Then 

In addition, the approximation that Rx . Ri(1 + G$) is  usually valid.  It may be
seen from Fig. 4.2 that R3 is the output resistance of the feedback network.  The
feedback network functions as a voltage amplifier, but  its output resistance
need not be negligible since a passive network is used in the feedback path.  On
the other hand, the input resistance Ri of the voltage amplifier is large and in
reality, it by itself should be much greater than R3. In addition, the term (1 +
G$) is also much greater than unity.  Hence

It is seen that negative feedback  has  increased the input resistance seen by the
source. 

Equation (4.11) expresses the input resistance in terms of the voltage gain G of
the voltage amplifier. An alternative expression for Rx can be obtained in terms
of the forward gain A, the feedback factor $ and the other resistors.  From
equation (4.5), we get that

Therefore, based on equation (4.14), equation (4.11) becomes

A more compact expression can be obtained as follows.
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It can be seen that Rif is the input resistance of the circuit in Fig. 4.4 which has
been used for obtaining the gain of the forward path.

4.5.3 Output Resistance with feedback

An ideal voltage amplifier has zero output resistance. In practice, it has a small
and finite output resistance, which is denoted as Ro in Fig. 4.2. The output
resistance is the resistance of the circuit seen by the load.  That is, we can
replace the load resistance by a voltage source.  The resistance as seen by this
source with the input source Vs removed is  usually defined as the output
resistance. By definition, output resistance Ry is:

For the sake of convenience, the output resistance is defined here to be (Vo/Io)
with Vs = 0,  where the load resistor is replaced by a source,say Vo. The circuit
that results is shown in Fig. 3.5 and  the expression obtained for Ry is:
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It is easy to remember the above equation.  It is known that the output
resistance gets reduced to feedback.  It means that the output conductance gets
magnified due to feedback.  Obtain the output conductance of the circuit used
for getting the forward gain.  With RL in circuit, the output conductance (1/Rof)
of circuit in Fig. 4.4 is 

The above expression is obtained with the input source Vs replaced by a short-
circuit. When Vs has zero value, the dependent source GVe also has zero value
and can hence be replaced by a short-circuit.  To obtain the output conductance
of the circuit with feedback, multiply (1/Rof) by (1 + A$) and remove from the
product the conductance 1/RL due to load resistor.   

The expression for Ro can be derived as follows.  From Fig. 4.5,

The ratio of Vo/ Io gives Ro.  Then if can express Ve in terms of Vo, an
expression for Ro can be obtained.  From Fig. (3.5), we get that

Replace  Ve in equation (4.20) by  its  expression  in   equation (4.21).  On re-
arranging, we get that

Usually Ri >>(Rs + R3). Hence (Ri +Rs + R3) is nearly equal to  Ri.  Also R2, the
input resistance of the feedback network tends to be far greater than Ro/(1 +
G$).  Thus 
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It is seen  that the output resistance with feedback  is much smaller than the
output  resistance of the voltage amplifier, since G$ » 1.

It is preferable to find an alternative expression for output resistance Ry in
terms of the forward path gain A.  From equation (4.5), we get that

From equations (4.22) and (4.24), we get that

Since Rp = (R2 || RL),  the above equation can be stated as:

We can get a more compact expression by using equation (4.19).  Then

4.5.4 Closed-Loop Gain

Next an expression for the closed-loop gain is obtained. Let the closed-loop
gain be T. The expression for T shown in equation (3.1) is obtained as follows.
From Fig. 3.2,

Substitute for Is in the expression for Ve. Then
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On using equation (3.2) and re-arranging, we get the expression (4.1) for
closed-loop gain. 

4.6 SUMMARY

Given a circuit which has the series-shunt topology, first obtain its forward gain
A, and then obtain the input resistance Rif and the  output resistance Rof the
circuit drawn for obtaining the gain A.  From the values of A and $, we can get
the closed-loop gain T. 

With a practical circuit, the analysis is slightly more complicated.  The given
circuit has to be reduced to the form in Fig. 4.2 before we can apply the results
derived in this lesson.  
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5   SHUNT-SERIES TOPOLOGY

5.1 IDEAL NETWORK

The block diagram of a circuit with shunt-series feedback topology is shown in
Fig. 5.1.   It can be seen that the error current Ie , obtained as the difference
between Is and If, is amplified by the current amplifier.  The feedback signal If is
obtained from the load current Io.

The ideal network with this topology can be represented by an equivalent circuit
as shown in Fig. 5.2. This topology is the dual of series-shunt topology considered
in the previous section.This topology uses a current amplifier in the forward path.
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The feedback network also has a current signal as its input and output signal.
Ideally,

i.   the input resistance of a current amplifier is zero,
ii.  the output resistance of current amplifier is infinity,
iii. the input resistance of feedback network is zero and
iv.  the output resistance of feedback network is infinity.

Since the feedback network provides a current signal derived from another current
signal, it behaves essentially as a current amplifier and it also has the same ideal
parameters.   Again it is worth reiterating that the feedback may have only passive
components and no active device.  Hence its gain, shown as the feedback ratio $,
is less than unity.   In practice, the source, the current amplifier and the feedback
network are not ideal and the equivalent circuit representing the nonideal shunt-
series topology is shown in Fig. 5.3.

5.3 EFFECTS OF FEEDBACK

Due to feedback, the closed-loop circuit has reduced sensitivity to changes in gain
of the current amplifier,  increased bandwidth and less distortion.  In addition, the
feedback leads to:

i.  a large reduction in input impedance and
ii. a large increase in output impedance.

5.4 RESULTS OF ANALYSIS OF THE CIRCUIT WITH FEEDBACK
 
The closed-loop gain of the circuit in Fig. 5.3 is obtained to be :
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where A is the gain of the forward path.  The value of A is obtained to be:

The value of A is not usually very much less than G, the gain of the current
amplifier.

The input resistance of the circuit with feedback is obtained to be:

From equation (4.3), it can be seen that Rx is much smaller than Ri.
The output resistance of the circuit with feedback is found to be equal to:

It can be seen from equation (4.4) that Ry » Ro.

5.5 DERIVATIONS



43

5.5.1 Obtaining an expression for the gain of the forward path

As shown in equation (4.2),  the gain A of the forward path is obtained subject to
the condition that If = 0.  It means that the dependent current source $Io is replaced
by an open-circuit.  The circuit that results is shown in Fig. 4.4. From Fig. 4.4, we
get that

5.5.2  Input Resistance with Feedback

An expression for input resistance Rx with feedback is shown in equation (5.2).
That the input resistance Rx gets reduced means that the input conductance
increases.   This input conductance, 1/Rx  can be expressed as follows.  Let 1/Rif
be the input conductance of the circuit used for obtaining A.  From Fig. 5.4,

Then

Now an expression for the input resistance of the circuit in Fig. 5.3 is shown
below.  By definition, 

where Vs is the voltage across the current source Is .  Note that Ix is not the same
as Is. From Fig. 4.3,
 

Therefore,
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Usually, the output resistance of a dependent current source, Ro here, is large. We
can state that Ro >> R2 and that Ro >> RL.  In addition, R3 >> Ri /(1+G$).  Hence

Equation (5.9) can be expressed using A instead of G, where A is the forward
current gain of the network ignoring the effects of feedback.    From equation
(5.2), we get that

From equations (5.9) and (5.11), we get that

5.5.3 Output Resistance with Feedback

A current amplifier has a large output resistance and due to feedback, the closed-
loop circuit will have a much larger output resistance. The resistance of the circuit
as seen from the load terminals is the output resistance.  The expression for the
output resistance in equation (5.4) can easily be remembered this way.  Let Rof be
the resistance of the path for flow of current Io  in the circuit drawn for obtaining
current gain of the forward path.  In Fig. 4.3, if Is be a steady value,  GIe is a
dependent current source and to circuit external to it, it appears to have a
resistance of Ro,  its output resistance.  If Rof be the resistance of the path for Io,
then from Fig. 5.3, 
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Usually the output resistance is defined with the input source removed. To get a
circuit that can be used for evaluating the output resistance,  replace  the load
resistor RL by a voltage source and the input current source is replaced by an open
circuit. That is,  the output impedance  is  evaluated  with  Is = 0.  From Fig. 5.5,

Since Ro » R2 and (1/Ri) »(1/R3 + 1/Rs), we can state that
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Equation (4.15) can be expressed in terms of A instead of G.  From equation (4.2),
we get that

From equations (4.15) and (4.17), we get that

It is seen that the effect of feedback is to change the input and  output resistance
of current amplifier such that they tend to reach their ideal value.

An expression for closed-loop current gain can be obtained now.

5.5.4 Closed-Loop Gain

Closed-loop gain T is defined as

We can derive an expression for T from Fig. 5.3.  From Fig. 5.3,

and
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From equations (5.2), (5.18), (5.19)  and (5.20), we get that

5.6 SUMMARY

Given a circuit which has shunt-series topology, we first obtain the gain of its
forward path, called A.  Then we can get expressions for its input resistance,
output resistance and closed-loop gain.
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6. SOME EXAMPLES

An operational amplifier is a versatile device, because its properties are close to
the ideal values.    This lesson outlines some applications of operational amplifiers.

6.1 INTEGRATOR

6.1.1 Circuit Operation

The circuit of an integrator is shown in Fig.6.1.  The  switch across capacitor is
opened up at t= 0. Then vC(0) = 0 V. With the opamp being treated as ideal, we get
the current through R as

Also,     v t
C

i dt v
R C

v dtC C S( ) . ( ) .= + =∫ ∫
1 0 1
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since vC(0) = 0 V. From Fig. 10.1, we get that  vo(t) = - vC(t).  Figure 10.2 sketches
the input-output relationship of  an  ideal opamp. In terms of Laplace transforms,

6.1.2 Effect of input bias current

Given an opamp with npn transistors at the input  stage, there  would  be some
input current into both the  inverting and  non-inverting terminals.  This current
is known as the  input bias  current. The effect of this current can be explained
with the  help  of circuit in Fig. 6.3. Let the current flowing into the inverting
terminal be i- . This current  flows through capacitor and the output of opamp
would reach its highest  positive  value  some time after switching on the circuit.
In order  to  reduce the effect of bias current,  a resistor can be connected across
C.
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For the circuit in Fig. 6.4, the transfer function is given by

At frequencies below the corner frequency given by (1/R2C), we can approximate
the  transfer function as:

At frequencies above the corner frequency, the transfer  function is:

The Bode plot of the  transfer function for this  circuit  is shown in Fig. 6.5. An
opamp with FETs at its input stage can behave differently and this discussion may
not be relevant to BIFET opamps.
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It is to be noted that the value of resistor across C is to be much greater than R1.
Then the circuit starts operating as an integrator from a relatively low frequency.
 The integrator circuit is a basic building block and has many applications, such
as in filters and waveshaping circuits..   It  can also be used as an integral
controller in a closed loop system.    It  was one of the principal blocks in the
analogue computer.  Now that we have studied what an integrator is,  the next step
is to find out how a  differentiator can be built and analysed.  Unlike an integrator,
the use of differentiator is not common.

6.2 DIFFERENTIATOR

A circuit that works well as a differentiator under ideal conditions is shown in Fig.
6.6a.  For this circuit, the  transfer function is:

This circuit is not suitable for practical use because gain of the circuit increases
with frequency.  A noise signal contains high frequencies mostly.  Hence  noise-to-
signal  ratio in its output is too high.  This drawback is remedied by the addition
of  a resistor  in series  with  the  capacitor  as  shown  in Fig. 6.6b.    Frequency
response  of  this circuit is shown in Fig. 6.6c.  For the circuit in Fig. 6.6b,the
transfer function is:
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At frequencies below (1/R2C), the circuit behaves as a  differentiator. Above this
frequency,this circuit has a fixed gain.  It is to be noted that R1 >> R2.

6.3 OPAMP CIRCUITS USING DIODES AND ZENERS

6.3.1 Precision Diode

Figure 6.7 shows the circuit of a    precision diode.  When Vs is positive,

It is seen that Vo is less than Vs by (V2/Ao) only, where Ao is the open loop gain of
opamp. If only a diode be used, the output will be less by a diode drop which is
approximately 0.7 V, but here the output is only 1 or 2 mV less than Vs.   When
Vs is negative, the diode is reverse-biased, and the output is at zero volts.

6.3.2 Full-wave Rectifier Circuit

Figure 6.8 shows a full-wave rectifier circuit using  opamps. This circuit is known
as a precision rectifier circuit.  From Fig. 6.8, it is seen that

When Vs is positive, the inverting input terminal of  first opamp tends to be



53

positive and its output becomes negative. Then Vx = - Vs  and V1 = - Vx - 0.7,
assuming that the voltage drop across diode D1 in conduction is 0.7 V with D2
remaining reverse-biased.  Under these conditions, Vo = Vs.

Let Vs be negative. The inverting input terminal of first opamp tends to be
negative and its output becomes positive. Then V1 = 0.7 V, the diode drop and Vx
= 0 V. Now D2 conducts and D1 is reverse-biased.  Under these conditions, Vo = -
Vs. Hence we have that Vo = |Vs |.     If diodes D1 and D2 are reverse-connected, Vo
= - |Vs |.

6.4 WORKED EXAMPLES

WE 6.4.1 Indicate how each circuit in Fig. 6.9 works.

Solution:

Circuit (a) :  Current amplifier or current-controlled current source.

Circuit (b) :   Transconductance amplifier / voltage-controlled current source
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Circuit (c) :Transresistance amplifier / current-controlled voltage source

_________________________________________________________________

WE 6.4.2:  Figure 6.10 shows an application for difference amplifier. Resistor Rf
can be a transducer the  quiescent value of  which is R2. The transducer here could
be a strain gauge, the resistance of which changes about R2 as it is bent or twisted.
 It can be a thermistor  or a magnetic  field-dependent  resistor. Find the output of
circuit in Fig. 6.10 when Rf = R2 + *R.
Solution:
From Fig. 6.10,
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______________________________________________________________

WE 6.4.3 Get an expression for output of circuit in Fig. 6.11.

Solution:   From Fig. 6.11,

Eliminating Va, we get that
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______________________________________________________________

WE 6.4.4:  Find the CMRR of the circuit in Fig. 6.12.

Solution:  For the circuit in Fig. 6.12,

We can express the output as:

By comparing the coefficients of V1 and V2, we get that

Adm = 1/1.01 and Acm = 0.02/1.01. Then CMRR = Adm/Acm = 50.

Comment: This problem can be re-phrased as follows:  A difference amplifier is
constructed  with four resistors of  same nominal value. If these resistors have a
tolerance of 1%, find out the worst-case CMRR of this circuit.
__________________________________________________________________
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EXAMPLE 6.4.5:

Obtain the transfer function of the circuit shown below.

SOLUTION:

From the circuit in Fig. 6.13, we get that

   

  

       

We know V1 in terms of Vo.  Then I2 can be expressed in terms of Vo.   We can
express I1 and I4 in terms of Vo.  We then get
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For example, let

Y
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Y
R

Y
R
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1

3
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= = = = − =, , ,

Then
  

With the components as specified, the network functions as second-order low-pass
filter.   The above equation can be presented as follows.
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Then

 

  

 

For the circuit in Fig. 6.15, the transfer function is obtained as:
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The above transfer function represents a second-order high-pass filter.  Let

    

Then

A Matlab program is used to obtain the response.  The program is presented
below.

% Second-order High Pass Filter
clear;
Ao=10;
df=0.6;
for n=1:175;
af(n)=(1.05^n)/100;
num(n)=Ao*(af(n)*af(n));
den1(n)=1-(af(n)*af(n));
den2(n)=2*df*af(n);
mag(n)=num(n)/(den1(n)+j*den2(n));
phase(n)=180/pi*angle(mag(n));

end;
subplot(2,1,1)
loglog(af,abs(mag))
ylabel('Magnitude')
grid on;
subplot(2,1,2)
semilogx(af,phase)
ylabel('Phase angle')
xlabel('normalized angular frequency')
grid on;

The response obtained have been presented next.
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__________________________________________________________________

EXAMPLE 6.4.6:

The opamp used for the non- inverting amplifier has an open-loop gain with a
single pole.  It is defined as:
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Obtain the transfer function for the inverting amplifier and sketch its frequency
response.

SOLUTION:

The gain for the non-inverting amplifier has been obtained as:

Now the above expression becomes:
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The frequency response of the non-inverting amplifier is sketched in Fig. 6.17.

_________________________________________________________________
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7ACTIVE FILTERS

The commonly used types of filter responses are : 
Butterworth and
Chebyshev.

The Butterworth Filter response is characterized by a flat frequency upto the
critical frequency, followed by a smooth roll-off of 20 db per decade per pole.  The
phase shift, however, varies nonlinearly with frequency.  This means that different
frequency components will experience different time delays as they pass through
the filter.  This will cause distortion and ringing on square and pulse waves.  For
pulse waves it is better to use Bessel filter response,  which has a linear variation
of phase with frequency .  Bessel filters have a somewhat slower initial roll-off
than Butterworth filters and consequently poorer for linear applications such as
audio circuits.  The Chebyshev filter response has a faster initial roll-off than a
Butterworth filter, allowing the design of a much sharper cutoff filter with the
same number of poles.  The price of this faster roll-off is increased nonlinear phase
shift and ripples in the amplitude response of the filter passband.

The filter function H(s) can be expressed as:

  H s A s
B s

( ) ( )
( )

( . )= 71

7.1 BUTTERWORTH POLYNOMIALS

The first-order normalized Butterworth polynomial for the denominator B(s) can
be expressed to be:

B s s( ) ( )= +1

The corresponding normalized transfer function is:

The above transfer function can be realized by the circuit shown in Fig. 7.1
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For the circuit in Fig. 7.1, the transfer function is  H s
sRC

( ) ( . )=
+

1
1

7 3

In order to obtain the normalized transfer function, we can let R = 1 Ω and C = 1
F.  To design a first-order low-pass filter with a cut-off frequency at 1 kHz, 

RC Let R k Then C nF=
×

= =1
2 1000

10 50
π π

. .Ω

The normalized Butterworth polynomial B(s) is .   The( )s s2 2 1+ +

corresponding transfer function is:

H s
s s

( ) ( . )=
+

1
2 1

7 4
2

The 2-pole filter circuit is shown in Fig. 7.2.
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H s
s R C C sRC

( ) ( . )=
+ +
1

1
7 52 2

1 2 2

For the circuit in Fig. 7.2, the transfer function is:

To obtain the normalized transfer function, let

R C F and C Fn n n= = =1 2 1
21 2Ω,

The suffix n indicates that these are normalized values.

To design a unity-gain low pass filter with a cut-off frequency at 1000 Hz, the
components can be selected as follows.   For design, two scale factors have to
be defined.  Let frequency scaling constant be Kf.

K w ff c c= = =2 2000π π

Divide the capacitor values by this scaling constant.  The capacitor and the
resistor values still do not lie in the acceptable range for an opamp circuit.  Let
us define another constant, known as the impedance scaling constant, Km.  Let

Km = 10000.

Then each of the resistors has the value of 10 kΩ.  Also

C C
K K

nF

C C
K K

nF

n

m f

n

m f

1
1

2
2

22 5

1125

= =

= =

. ,

. .

Choose the nearest commercially available values.

The Butterworth polynomial for a 3-pole filter is:

B(s) = (s + 1) (s2 + s + 1) =s3 + 2s2 + 2s + 1.

The corresponding transfer function is:
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( ) ( )H s
s T T T T s T T s

( ) ( . )=
+ + + + +

1
2 2 3 1

7 63
1 3 2 3

2
3 2

R C F C F C F= = = =1 18812 73848 10 7381 2 3Ω, . , . , . .µ µ µ

H s
s s s

( ) ( . )=
+ + +

1
2 2 1

7 53 2

The 3-pole filter circuit is shown in Fig. 7.3.
   

The transfer function for the circuit in Fig. 3 is:

where

T RC T RC T RC1 1 2 2 3 3= = =, , .

To normalize, let

R C F C F C F= = = =1 3546 1392 0 2024 7 71 2 3Ω, . , . , . . ( . )

Example: Design a unity-gain Butterworth filter with a critical frequency of
3000 Hz and a roll-off of 60 db per decade.

Solution:

The frequency scaling constant is: K f rad sf C= = × =2 2 3000 18 849 6π π , . /
After applying the frequency scaling constant, we get that

To make C1 be equal to 10 nF, the amplitude scale factor is 18,812.  With this
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R k C nF C nF C pF= = = =18 10 3926 5601 2 3Ω, , . , .

( ) ( )H s
s s s s

( )
. . .

( . )=
+ + + +

1
0 765 1 1848 1

7 8
2 2

scale factor,

_______________________________________________________________

4-th order Butterworth polynomial

B(s) = (s2 + 0.765s + 1).(s2 + 1.848s + 1)

The corresponding normalized transfer function is:

  

The circuit for 4-pole filter is presented below in Fig. 7.4
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( ) ( )H s
s T T sT s T T sT

( )
.

( . )=
+ + + +

1
1 1

7 9
2

1 2 2
2

3 4 4

T RC T RC T RC T RC1 1 2 2 3 3 4 4= = = =, , , .

R C F C F C F C F= = = = =1 1082 0 9241 2 614 0 3825 7101 2 3 4Ω, . , . , . , . ( . )

The transfer function for the above circuit is:

     

where

The transfer function can be normalized if:

Example 

Design a unity-gain low-pass Butterworth filter with a critical frequency of 15
kHz.  The attenuation should at least 300 at 20,000 kHz.

  
   

Solution:

In Fig. 7.5, let

fc = critical frequency,  fd = decade frequency, 10 ×fc,

fy = another frequency.
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R C F C F C F C F= = = = =1 1082 0 9241 2 614 0 38251 2 3 4Ω, . , . , . , .

K f rad sf C= = × =2 2 15000 94 247 8π π , . /

R C F C F C F C F= = = = =1 11 480 9 805 27 725 4 05851 2 3 4Ω, , , , , , , ,µ µ µ µ

R k C nF C nF C nF C nF= = = = =1148 10 8 541 2415 35351 2 3 4. , , . , . , .Ω

Let

a = attenuation at frequency,   fd 

b = attenuation at frequency, fy

Then 

a
b

f f
f f

d c

y c

= −
−

For the given problem, b = 300, fc = 15 kHz,   fd = 150 kHz, fy = 20 kHz.  
Then

a = 8100

In terms of dB, attenutation in dB per decade = 20 log (8100) = 78.17 dB.  It
means that a roll-off of at elast 80 dB decade is required.  A 4-pole active filer
will suffice.  For a 4-pole filter, we have that

  

We have that

      

Then we get that

Let the amplitude scale factor be 11480.  Then

Choose the nearest values.
_______________________________________________________________
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CHEBYSHEV FILTERS

For a Chebyshev Filter

( )H jw
H

C w
w

where C w
w

is

C w
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n w
w
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C w
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n w
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The normalized polynomials for low pass filter are defined as follows.

( )
( )( )

s
s s

s s s

s s s s

+

+ +

+ + +

+ + + +

1
1425 1516

0 626 0 845 0 356

0 351 1064 0 845 0 356

2

2

2 2

. .

( . ) . .

. . . .

CONCLUSION

High-pass filters, band-pass filters and notch filters can also be realized using
the well-known filter configurations.  
_______________________________________________________________
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