6

- LINEAR CIRCUIT
- APPLICATIONS

In this chapter we discuss some of the most frequently encountered linear
circuit applications of operational amplifiers. These include differential
DC amplifiers, bridge amplifiers, analog integrators, differentiators, line-
driving amplifiers, ac-coupled feedback amplifiers, current-to-voltage
converters, reference voltage sources, voltage regulators, current ampli-
fiers, and charge amplifiers. The details of these applications are given
in the sections which follow. Inverting, noninverting, and summing
amplifiers are discussed in the basic theory of Appendix A.

6.1 Differential DC Amplifiers

The amplifiers to be discussed in this section are most descriptively known
as differential DC amplifiers, denoting the fact that they amplify the
difference between two signals and that the inputs are direct-coupled.
Other common terms used for this basic type of amplifier are transducer
amplifier, bridge amplifier, data amplifier, instrumentation amplifier,
difference amplifier, and error amplifier. Such amplifiers are easily
realized through the use of one or more operational amplifiers with linear
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202 APPLICATION

feedback. The idealized characteristics of these amplifiers are infinite
input impedance, zero output impedance, no de offsets or drift, zero
amplifier noise, a constant gain factor with no gain error, and complete
rejection of signals common to both inputs (infinite common-mode
rejection). Inputs are typically from transducers which convert a phy-
sical parameter and its variations to electrical signals. Examples of such
transducers are thermocouples, strain-gage bridges, etc. Several types
of such differential DC amplifiers, of varying complexity and performance
characteristics, are discussed in the following paragraphs.

6.1.1 Differential DC amplifiers using one operational amplifier?s’
The circuit of Fig. 6.1a has the virtue of simplicity, using only one opera-
tional amplifier and four matched resistors. The presence of a common-
mode voltage e.. and a differential voltage e; — e, are characteristic of
most transducers. The common-mode voltage may represent a dc level,
asin a bridge, or may be noise pickup. If an ideal operational amplifier is
assumed, the following equations apply:

R,
ea = (ecm + e2) R3 + R4
€m T €1 — € € — €
R, " R,

Combining these gives the resulting equation for output voltage,

Rqu + R4R1 bl R2R3 - R2R4 R2 R4 1 + Rz/Rl

Ri(R; + Ry) e Rel + R4/R3

If R2/R1 = R4/Rj;, the above equation reduces to e, = (R2/Ry)(e2 — ey).
The resistor ratios R./R; and R4/R; must be carefully matched in order
to ensure the rejection of common-mode signals. The value of these
resistor ratios sets the gain for differential signals. These equations
illustrate the performance of the circuit when one is dealing with zero
source impedances and nonzero common-mode signals. For zero source
impedance the gain is determined solely by the feedback resistors and, if
these resistors are matched in pairs as indicated, common-mode signals
are rejected completely. Actually, of course, the operational amplifier
has been assumed ideal in having infinite input impedance, infinite gain,
and infinite common-mode rejection. If these factors are given real
values and their effects evaluated, it will be found that the finite input
impedance of the operational amplifier and its inherent finite common-
mode rejection will place limits on the overall common-mode rejection of
the closed-loop differential amplifier. The finite open-loop gain will
limit the gain accuracy of the overall circuit.

€ = €cm



" Linear Circuit Applications 203

Figure 6.1b illustrates a model for unbalanced source impedances and
* their interactions with the finite resistances of the amplifier feedback
network. An analysis similar to that for the circuit of Fig. 6.1a yields

o — e R.(Rs, — Rs,)
° “" (R1+ Rs)(Rs + Rs, + Ry)
" R, [1 + (R1 + Rs,) /R, o — 91]
R, + Rs, [1 + (Rs + Rs,)/Ry

Note that, if the source impedances are nonzero but equal, the only effect
is a gain error due to the source loading. However, if the source imped-
ances are also unequal, the common-mode rejection is degraded. Input
bias currents (Is1, Is2) and input voltage offset (Vos) of the operational
amplifier will cause de offset errors at the output of the differential
amplifier circuit. Bias current (Ig.) from the noninverting side of the
operational amplifier flows through the parallel combination of R, and R;
to create a dc error voltage at the noninverting input terminal. This de
voltage effectively adds to the offset voltage of the operational amplifier
and is amplified by the factor (R: + Ri)/R:. Bias current (Is;) from
the inverting input of the operational amplifier flows principally through
resistor R. and causes an output offset adding to the other two compo-
nents to give the total dc offset error of
R. + R, R:R: R: + Ry
Eos = Vos R + I R +R R Is:R,

Tracking between the two bias currents reduces the bias-current-induced
error term by as much as a factor of 10. The principal limitations of this
circuit are its low input impedance and the difficulty of varying the gain.
The input impedance, of course, is determined by the feedback and input
resistors. If these resistors are made large in order to increase the input
impedance the dc errors due to bias currents will be proportionately
increased, thus placing an upper limit on the feasible values of input
impedance. The gain of the differential amplifier can be changed only by
varying the ratios of the feedback resistors. Because of the necessity of
maintaining the equality of the resistive ratios, it is quite difficult to
continuously vary the gain. Gain steps can be achieved if the common-
mode rejection is carefully adjusted at each gain setting. The differential
amplifier circuit of Fig. 6.2 is a similar type of circuit with the added
feature of a gain vernier which allows the gain to be continuously varied
without affecting the common-mode rejection of the circuit. The output
voltage is

1\ R
eo=2(1+i)ﬁ—j(ez—el)



204 APPLICATION

EQUIVALENT
COMMON MODE (a) ZERO SOURCE IMPEDANCE
VOLTAGE Rs R, R,

o®

(b) UNBALANCED SOURCE IMPEDANCES

Fig. 6.1 Simple differential amplifier.

Note, however, that this circuit requires four matched resistors of value
R, and two matched resistors of value R;. The gain is an inverse function
of the setting of the vernier potentiometer and as such is highly nonlinear.
The potentiometer can, however, provide approximate linearity over
limited ranges. The circuit still suffers from the limitations of low input
impedance. The dec offset errors are much the same as'those for the cir-
cuit of Fig. 6.1. :

R, Rs R, _

Fig. 6.2 Simple adjustable-gain differential amplifier.
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¢ 6.1.2 Differential DC amplifiers using more than one operational
1 ~amplifier>”  The circuit of Fig. 6.3 provides another low impedance
alternative to those of Figs. 6.1 and 6.2. The two amplifiers required
operate in the inverting mode and need not have a noninverting capa-
bility. Thus they can be chopper-stabilized amplifiers for low drift,
or they may be FET input types which may have rather poor linearity
when used noninverting. The output voltage is

€ = IRi: (ez - el)
The gain can be easily varied, in steps or continuously, by changing the
value of R,;, without affecting the common-mode rejection properties.
Good common-mode rejection requires four closely matched resistors of
value R;. Note that the dec offset error is approximately four times that
of a single amplifier, if it is assumed that the offset errors add, as given by
the expression

R R
E, = (1 + 21?2) Vos2 + 2E:V031

1
= (1 + 4 Ii&) Vos (worst case)
R,

Since the common-mode rejection of the operational amplifiers is not a
factor, the common-mode rejection of the closed-loop amplifier can be
trimmed to quite high values simply by allowing a small amount of
adjustability of one of the R; resistors. The common-mode voltage
capability of the circuit is limited only by the output voltage capability
of the unity-gain inverter. This capability can be increased by making
the gain of amplifier A; less than unity. The gain of amplifier A; must
then be increased accordingly, however, which increases the output offset

Rz

VA

Fig. 6.3 Differential DC am-
plifier using inverting opera-
tional amplifiers.
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error. Another differential DC amplifier circuit using two operational
amplifiers is shown in Fig. 6.4. This circuit provides the high input
impedance lacking in the circuits discussed up to now. For this circuit

R R: R
eo=(1+—‘)(ez—e,) , ==
R;

Again, equality of the two resistor ratios is required in order for the circuit
to reject common-mode signals. The operational amplifiers, since they
operate in the noninverting mode, must have good common-mode prop-
erties. The input impedance at each terminal of the differential amplifier
is simply the common-mode input impedance of the operational amplifiers.
This can be quite large (10 MQ and up), depending on the type of opera-
tional amplifier used. For fixed gains, or gain steps, the circuit is quite
useful, but it is not feasible for continuously variable gain. Also, since
the input voltage of the upper amplifier must be less than R;/(R; + R»)
times the output saturation voltage, the common-mode voltage range
is very limited at low values of overall gain. This is not considered a
serious limitation since such amplifiers are usually used at gains of 10
or greater. The differential DC amplifier circuit of Fig. 6.5 overcomes
most of the weaknesses of the circuits discussed up to this point. Analysis
of the circuit yields the following equations:

i

R R
e3 = (l+ﬁ)ex—ﬁ—jez+em

R; R;
€4 = (1 + Rl)ez hod Rlel\'*'ecm

€ = €4 — €3

O+

i)

3

Fig. 6.4 High input impedance
differential amplifier.
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Fig. 6.5 High input impedance
adjustable-gain differential am-
plifier.

¢ If R, = R;, the output voltage is
2R
e = (1 + —f{f) (e2 — ey)

i The two input amplifiers constitute a differential buffer amplifier with a -
gain of 1 4+ 2R./R; for differential signals, and unity gain for common-
mode signals. The noninverting configuration of these input amplifiers
ensures high input impedance at both inputs. The gain is easily varied
by a single resistor R;. The effects of mismatch in resistors R, and R,
i is simply to create a gain error without affecting the common-mode
" ‘rejection of the circuit. The resistors R, of the output amplifier must
be accurately matched, or trimmed, to ensure the rejection of common-
mode signals at this point. This final amplifier acts simply as a differ-
. ential-input to single-ended-output converter. Feedback impedances in
both stages can be relatively low in value to minimize the effects of bias
current, since these feedback elements do not affect the input impedance
of the differential amplifier. Usually, all the gain of this differential
amplifier is in the input stage, thus ensuring that only the offset voltages
of these two operational amplifiers are significant in determining the
output offset. Since the output voltage offset is proportional to the
difference of the voltage offsets of these two amplifiers, it is desirable to
use amplifiers whose voltage offsets tend to track with temperature. Such
techniques are the basis for some low-drift differential amplifier modules.
The bias currents of these input amplifiers will flow through the impedance
of the source and will thus generate additional offset voltage which will
appear at the output of the differential amplifier amplified by the differ-
ential gain factor. The use of amplifiers with FET input stages will
greatly reduce this effect.

e TTS T e s e RN
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6.2 Bridge Amplifiers?

Probably the most common use for a differential DC amplifier is in
amplifying the output signal from a transducer bridge, such as a strain
gage. The most straightforward way of doing this is with one of the high
impedance amplifiers discussed in the preceding section. Such a strain-
gage bridge, with one active bridge arm, is shown in Fig. 6.6. The
following equations describe its operation:

R
= ViR + R
v
61—5'
Vs
T = T ¥ a2
where
;_ R
‘R
KV &
eo=K(e2—el)=—T——~l+8/2

)
€ = —KVZ y féK1

The output signal is a linear function of the variation of the active ele-
ment only for small percentage changes in the element. If larger changes
are to be measured, the exact equation must be used and a conversion or
linearization performed at some point in the data-gathering process.

It is sometimes desirable to use an amplifier less complex than the fully
developed differential instrumentation amplifier for amplifying the out-
put signal from a bridge. There are several such circuits which use only
a single operational amplifier, such as the one shown in Fig. 6.7. This

\

Fig. 6.6 Bridge amplifier.
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circuit forces the differential output voltage of the bridge to be zero since
opposite sides are connected directly to the inputs of an operational
amplifier with feedback. Thus the amplifier is used to measure the
current flowing into the bridge under short-circuit conditions. The
resulting output voltage is

_Re 8 v
T R1+8(248)/1+ 8 + R/Re

If § €1 and Rr > R, this equation reduces to the approximate form

3 Ry
©«~V3R

€o

Note that here again the equation for the output voltage of the bridge
amplifier is a nonlinear function of the variation of the active bridge ele-
ment, but for small deviations the nonlinearity is negligible. For the
L simplified, approximate form of the equation, it has also been assumed
} that the values of resistance in the bridge are much smaller than the
. resistors Ry. The bridge resistance appears in the gain equation, thus
i requiring that the values of the bridge elements be insensitive to temper-
i ature in order that the gain of the amplifier be stable with temperature.
| If the assumption that Rr is much greater than the nominal bridge
. resistance applies, there is no loading effect.

. The dc offset voltage generated at the output of the bridge amplifier as
E a result of the input offset voltage and bias currents of the operational
j amplifier is given by

Eos = Vos ?‘EEP:_—R"i‘ (Is: — Is1)Rr

{ where Ip; and I, are input bias currents. The main advantage of this
g circuit is its simplicity. It does require an amplifier which has reasonably
. good common-mode rejection.

R (1+8)

1

Fig. 6.7 Bridge current am-
plifier.



210 APPLICATION

Fig. 6.8 Half-bridge current
amplifier.

Where the rejection of common-mode noise signals is not a problem, the
half-bridge measuring circuit of Fig. 6.8 is sometimes used. Here also the
output of the bridge is connected directly to the input terminal of the
operational amplifier, as is the feedback through Rr. Since the other
input of the operational amplifier is held at ground potential, the output
of the half-bridge is held at zero voltage, and the amplifier responds to
the short-circuit output current

. Re &
0=—R = e —_—
¢ i R1+5o
If 5§ < 1
Ry
L~ VL5
e R

Because the amplifier operates single-ended, the amplifier used can be
chopper-stabilized for lowest possible drift and dc offset errors. Also,
the maximum voltage supplied to the bridge, or half-bridge, is not
limited by common-mode voltage limitations of the operational amplifier,
as it is in those circuits which use the noninverting input of the operational
amplifier. Thus it is possible to increase the sensitivity of the bridge by
increasing the supply voltage within the limitations of the bridge ele-
ments and the ability of the amplifier to supply the current flowing
through the feedback resistor.

The major drawback of the half-bridge circuit is its inability to reject
noise pickup, as is normally accomplished by the differential type of
bridge amplifier. Consequently, the noise and ripple of the half-bridge
supply must be very low, and all wiring must be kept short and well
shielded. As in the previous bridge amplifier, the gain is a function of
the bridge elements. This can be a serious drawback if the bridge ele-
ments are sensitive to environmental factors other than the one that it is
desired to measure. The output dc offset voltage of the half-bridge
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R{1+3)

Fig. 6.9 Inverting bridge am-
plifier.

é.mpliﬁer is given by the expression

2R
Eos = Vos (1 + ?F) — IniRr

where Ip; is the input bias current.

Figure 6.9 illustrates another bridge amplifier using a single operational
amplifier in the inverting mode. Thus it is once again possible to use a
single-ended chopper-stabilized amplifier with its attendant low drift.
b The amplifier output voltage is

_ Re) &
.=V (1 + Rl) 10+ 92

L which, for 3 < 1, reduces to

Rr\ é
e°~V<I+R1)Z

Another advantage of this circuit, not shared by the preceding two, is that
~ the gain is not dependent upon the absolute value of the bridge resistors.
- The output voltage is proportional to the open-circuit coltage of the bridge
- since the input to the amplifier draws negligible signal current. The
inverting input of the operational amplifier is maintained at virtual
ground by the high open-loop gain. Since the gain is a function of Ry
-and R, it can be varied easily with either resistor. A small-valued
potentiometer can be added in series with either resistor for calibration
- purposes. This type of bridge amplifier can be very accurate and is

recommended when it is necessary tc detect very small bridge signals.

The primary disadvantage is that a floating bridge supply is required.
~ Since it uses a single-ended amplifier it does not have the common-mode
rejection capabilities of the true differential amplifier. However, careful
shielding and filtering to remove noise can help to eliminate this problem.
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Ry Re (1 +3)

Fig. 6.10 Wide-deviation bridge
amplifier.

The output voltage offset as a function of input offset voltage and bias
currents is similar to that of the inverting amplifier circuit. That is,

Rr + Ry
R,

where Ip, is the amplifier input bias current.

The final bridge amplifier circuit to be discussed is that given in Fig.
6.10 where the output voltage is directly proportional to the transducer
deviation even for large fractional changes in the active element:

oRr
R; + Rr

This particular circuit should be used whenever the deviation of the active
element is large enough so that the linear approximations made in the
previous bridge equations are no longer valid. Examples are semicon-
ductor strain gages that have high gage factors, thermistors, etc. The
bridge elements must be so matched that the two input resistors are equal
and the active element is equal to the value of Ry when the bridge is at
null. Calibration is somewhat difficult since it requires the trimming of
two values of resistance to maintain null while varying sensitivity.

EOS = (VOS - IBIR) - IBIRF

€ = —V

o
e, -

€
I’ Fig. 6.11 Analog integrator.
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4 6.3 Analog Integrators!.5:8

The analog integrator is extremely useful in computing, signal processing,

* and signal generating applications. It uses an operational amplifier in
' the inverting configuration, as shown in Fig. 6.11. The equations of
~ operation are derived by assuming an ideal operational amplifier of gain A.
. These are

el—ez_i
= -

1 r¢. 1 rt
eg—e.,=6/;1dt=R—C/0 (ex — ep) dt
= _ %
€ = A

If A— o, thene;— 0ande, = —(1/RC)fe; dt. As in the inverting
] amplifier, the summing point is held at a virtual greund by the high gain
~of the amplifier and its feedback network. Since no current flows into
“the input terminal of the operational amplifier, all the input current
. i = e1/R, is forced to flow into the feedback capacitor, causing a charge
, voltage to appear across this element. Because one end of the capacitor
is tied to the virtual ground point, the output voltage of the amplifier
- equals the capacitor charging voltage. The overall integrator circuit has
the low output impedance normally associated with a feedback amplifier.

The dc offset and bias current of the analog integrator are taken into
account in the more realistic model of Fig. 6.12. Because these dc errors
' exist, the output of the integrator now consists of two components: the
-~ integrated signal term and an error term .

1 1 1
e.,=—E6 eldt-l-R—C-/Vosdt'i-afIBdt-l-Vos

~ The error term itself is made up of a component due to the input offset

c
d(
+ A\

I
Fig. 6.12 Effect of offset voltage ey ®
and bias current in an integrator

circuit. - T
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voltage and another due to the input bias current. The integral of the
de offset voltage results in a ramp voltage, a linearly increasing term
whose polarity is determined by the polarity of the input offset voltage.
In addition to this ramp voltage error, the input offset voltage creates
an output offset voltage equal to it in value. The bias current flows
almost entirely through the feedback capacitor, charging it in ramp
fashion, similar to the ramp voltage due to input offset voltage. These
two ramp voltage errors will continue to increase until the amplifier
reaches its saturation voltage or some limit set by external circuitry.
These error components usually set the upper limit on feasible length
of integration time. The error component due to bias current can be
minimized by increasing the capacitance of the feedback element. This
can be done only by decreasing the value of the input resistor, if a specific
value of the RC time constant is to be achieved. A lower limit usually
exists on R, because of current limitations and loading of the input
signal source.

The effects of bias current can be reduced by inserting a resistance R
between the noninverting input of the amplifier and ground. This
equalizes the resistances at the two inputs and changes the effects of
bias current to that of offset (difference) current. Thus, in the equation
for output voltage, Is, the bias current, should be replaced by Ios, the
offset current, if the compensating resistor is used. The error ramp due
to voltage offset is fixed by the chosen value of RC time constant.

In order to realize the performance possibilities of an operational
amplifier as an integrator, a feedback capacitor must be selected with a
dielectric leakage current which is less than the bias current of the ampli-
fier. Polystyrene and Teflon are usually the best choices for the ulti-
mate in long-term integrating accuracy. If shorter integration times
are required, the requirements on capacitor quality can accordingly be
relaxed. Mylar capacitors may then prove satisfactory, or silver-mica
types, if small values of capacitance, corresponding to high-speed integra-
tion, are to be used.

The choice of the type of amplifier is also governed by the length of
computing time and the desired accuracy. Chopper-stabilized amplifiers
are usually used for long-term integrators because of their superior long-
term dec stability. FET amplifiers are used for medium-length integra-
tion because of their low bias current. Amplifiers with bipolar transistor
input stages may be used in very short-term integration such as in signal
generation (sweep generation, triangle waves, ete.).

If the finite gain and bandwidth are taken into account, their effects on
the integrator response function may be evaluated. The open-loop
frequency -response of the amplifier is approximated by a single pole
located at 1/7,, and a low-frequency gain of A..
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Fllg. 6.13 Bode plots; amplifier, integrator.

The resulting integrator response function is

=) ~ "2
E: 7 T (ra/Ass + 1)(A.RCs + 1)

if A, > 1 and ALRC > r,. This function has two poles on the real axis,

as opposed to the ideal integrator function which has a single pole at the
origin. In Fig. 6.13 the frequency response of this approximate integrator

- is compared with the response of an ideal integrator, along with an open-
. loop frequency response of the operational amplifier. Note that the

response of the real integrator departs from the ideal response only at
the extremes of frequency. At low frequencies the departure is due to
the finite gain of the operational amplifier. At high frequencies, it is
due to the finite amplifier bandwidth.

The transient response of the integrator is studied in Fig. 6.14 by
calculating the response to a step function. The response of an ideal
integrator to a step function —E/s would be a linear ramp voltage
increasing to infinity. The step response of the practical integrator is a
close approximation of this ramp throughout most of the signal range:

e—t/AcRC e—tlro
"1 - r,/ARC t A.RC/7, — 1)

In order to compare the ideal and real responses, it is necessary to examine
the responses for very small and very large time. For small values of

e(t) = AE (1
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eo(') //

f INTEGRATOR———f7/
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7/ FOR SMALL VALUES OF TIME
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Vb /ACTUAL INTEGRATOR

RESPONSE
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FOR LARGE VALUES OF TIME

STEP RESPONSE
Fig. 6.14 Step response of integrator.

time the response is approximately
, t To et
o(t) = E|=— _—
e (t) (R tret RC/TO)
For large values of time the response is approximately
eo(t) = AE(1 — e—t/AcRC)

For small values of time the principal error effect is caused by the finite
bandwidth, which causes a time lag error in the actual response. For
large values of time the output signal would approach an exponential with
time constant A,RC and final value A,E. For aceurate computation, the
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—0 +
eo

' integration should be terminated at a time much less tthn ARC and an
output amplitude much less than A E.

Figure 6.15 illustrates the switching techniques used to initiate and
terminate the period of the integration. This integrator circuit has three
modes. The first of these is RESET, in which the initial conditions are
established by placing an initial charge on the capacitor. This is done
by closing switch S, to allow the output voltage to rise to the negative
of Vic. If switch S; is then opened and S; is closed, the circuit begins
integration of the input signal e, beginning at the value —Vic. This
. is the second or INTEGRATE mode. If both switches are held open,
the output voltage will hold its latest value and will not respond to input
or initial condition voltages. During this HOLD mode, the only dis-
charge of the capacitor is due to the bias current of the amplifier and
dielectric leakage in the capacitor. Since electronic switch modules are
commonly used for the mode control function in place of the simple
switches shown, any leakage current flowing from these switches must
be added to amplifier bias current in calculating the decay of the capacitor
voltage during HOLD, or during the INTEGRATE mode.

Although the analog integrator is a linear device, its maximum rate of
change of output signal can lead to slew rate distortion for signals of
relatively high frequency and large amplitude. The inherent slew rate
limit of the operational amplifier places one of these limitations on the
operation. However, another limitation, usually much more restrictive,
is that placed on the rate of change of capacitor voltage by the output
current limits of the amplifier. The expression for this is

(@) @)= 6
dt max B dt max B C

Iiim = output current limit

Fig. 6.5 Three-mode inte-
grator.

where

The time required for the amplifier to RESET to initial conditions is
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—O +
€o

=  Fig. 616 Current amplifying
switch used for integrator reset.

limited by the RC time constant of the RESET network and also by the
slew rate achievable in the closed-loop circuit. If a reset switch which
has a large current gain factor is used, the reset time can be considerably
reduced. The use of such a switch is illustrated in Fig. 6.16, where the
circuit is shown in the RESET state. Analysis of the circuit yields the
equation for the output voltage,

e = —ei(l — e Kt/RC)

This is again the equation of an exponentially increasing voltage. Here,
however, the time constant is R:C/K, reduced by a factor equal to the
current gain of the switch. The RESET time can potentially be reduced
by the factor K, if the operational amplifier and switched current ampli-
fier do not reach their current limits, thus limiting the slew rate. Maxi-
mum current is required at t = 0, the initiation of the RESET mode.

6.4‘ Differentiators? 3.6

By interchanging the resistor and capacitor of an integrator circuit we
obtain the inverse function, differentiation. However, as will be shown,
the differentiator circuit (Fig. 6.17a) has some troublesome properties.
If the usual single-pole open-loop gain function is assumed for the
amplifier the transfer function of the differentiator circuit may be reduced
to

€ —RCs

er 1+ (1/A))(ro + RC)s + (RCro/Ay)s?

This transfer function has the form

—H,s
1 + (a/wn)s + $2/wn?

H(s) =
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Fig. 6.17 Differentiator using an operational amplifier. (a) Differentiator
circuit; (b) Bode plots.

where
A,
wy? =
RCr,
and
. 2
a (damping factor) = \/-(—t%l- ‘—&l—o «1

Thus the damping factor « is very small, indicating a lightly damped
circuit response and complex poles near the jw axis. Such a response
would also be indicated by the 12 dB per octave rate of closure of the
Bode plots (Fig. 6.17b). Thus the differentiator circuit as shown has a
tendency toward instability. If the amplifier open-loop gain has an
attenuation rate of greater than 6 dB per octave over a portion of its
Bode plot, the circuit may well oscillate. Another problem with this
differentiator circuit is its high gain at high frequencies. This allows the
high-frequency components of amplifier noise to be amplified even though
the signal may not have high-frequency components. Thus the high-
frequency output noise may obscure the differentiated signal.

The modified differentiator circuit of Fig. 6.18a is usually preferred as
a means of eliminating the problems of the simpler circuit. Two addi-
tional real poles are introduced by use of R; and Cr. This creates a very
stable system and reduces the high-frequency noise. The poles are placed
sufficiently high in frequency to prevent significant phase-shift error in
the signal frequency range. The modified frequency response is shown
in Fig. 6.18b.

6.5 Line-driving Amplifiers

One of the primary areas of application for the operational amplifier is
that of buffering between a signal source and the desired load. Usually
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Fig. 6.18 Modified differentiator with improved noise and stability. (a)
Modified differentiator; (b) Modified response.

the signal source is very limited in power, has relatively high internal
impedance, and is low level. The load is relatively low in impedance
(possibly capacitive) and requires high-level signals. Thus the amplifier
must provide impedance buffering, signal scaling, and power gain. Need-
less to say, it must be stable under the desired conditions of loading and
feedback and must have sufficient gain and bandwidth to ensure accurate
response to input signals. A typical example of such an application is the
line-driving amplifier.

When data signals must be transmitted over long signal lines from a
remote measuring station, the line-driving amplifier is usually required.
Figure 6.19 illustrates a simulated load of this type. The capacitance is
that of a shielded cable and may be as little as a few picofarads or as much
as several microfarads. If the output impedance of the amplifier is con-
sidered, the equation for effective open-loop gain, A’(s), becomes

R, 1

A'G) = A®) L R T R.Ow

LINE & LOAD

Fig. 6.9 Line-driving am-
plifier.
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.where
IS S 1
1/Rr + 1/Ry * " 1/Rr + 1/RL + 1/R,
where A(s) is the unloaded open-loop gain, and R, is the dynamic output

impedance of the operational amplifier. If A(s) is approximated by a
single-pole transfer function

R,

A,
A .
® =1 /e
then the effective (loaded) open-loop gain becomes
R A, 1

A'(s) =

R, + Ro1 4+ 8/wo 1 4+ RqCrs

A Bode plot of this transfer function, for s = jw, is shown in Fig. 6.20,
along with a plot of the unloaded open-loop gain. Note that the effect of
the resistive loading is to reduce the open-loop gain, lowering the entire
curve. Thus resistive loading alone reduces the unity-gain bandwidth
and will consequently reduce closed-loop bandwidth by the same factor.
This bandwidth reduction factor is extremely important for fast line
drivers since the very low impedance of the line can severely degrade the
bandwidth unless the operational amplifier has very low output imped-
ance. The capacitive component of load impedance introduces another
pole in the gain function at s = — 1/RqCr. This causes an additional
“break” in the frequency response and a rolloff of —12 dB per octave
above the frequency w = 1/RqCr. If the closed-loop gain curve inter-
sects this section of the effective open-loop gain curve, the amplifier will
be marginally stable with unacceptable transient response.

There are a number of techniques for dealing with the problems of
loading. The most satisfactory of these is to choose an amplifier with
very low open-loop output impedance or to create one by adding a power
booster stage to an available operational amplifier. This will reduce the

OPEN LOOP
GAIN
(dB)

——

)
1
1
/1 <
RqCy
Fig. 6.20 Effect of loading on
open-loop gain. -12 dB/0CT

FREQUENCY (RAD/SEC)

N

/
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gain and bandwidth loading factors caused by the load resistance and will
increase the frequency at which the additional pole occurs. The higher
in frequency this pole occurs, the more stable the closed-loop response will
be. The power output stage also supplies the current necessary to meet

the condition
. deo)
1L max = CL(dt max

As an example, the amplifier must be capable of supplying 63 mA to the
capacitive load if Cr, = 10,000 pF and the output voltage is a 10-V sine
wave at 100 kHz.

6.6 AC-coupled Feedback Amplifiers?*

Although the operational amplifier is designed to amplify de signals, it has
a rather broad frequency response and is consequently quite useful for
strictly ac signals. The feedback network can be tailored for exactly the
desired passband. One of the simplest ac amplifiers is that shown in Fig.
6.21a, where the closed-loop gain is given by

E, _ Ry s
E1 B R1 S + l/RlCl

The de gain is zero, and the high-frequency gain approaches —Ryr/R,;.
The lower cutoff frequency is ,

1

c

= 27|'RICI

+
Ey(s)

(a) INVERTING CIRCUIT (b) NONINVERTING CIRCUIT
Fig. 6.21 Ac-coupled feedback amplifiers.
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The dc output offset voltage Eos is equal to the de input offset voltage,
plus the de offset voltage generated by the input bias current flowing
through Rp.

Eos = Vos X 1.0 4 IRy

A noninverting ac amplifier is shown in Fig. 6.21b. The response is
given by

E, . 8 R: + Rp)Cas + 1

5® 5T 1/RC.  RCws+1

Both of the circuits of Fig. 6.21 have relatively low input impedance above
the cutoff frequency, determined by the resistors denoted R; in both cases.

The circuit of Fig. 6.22 is an ac amplifier whose input impedance is
“bootstrapped” to a high value. Resistor R, provides a decoupling for
de input signals. However, for high-freque\ncy signals the voltage across
R, becomes very small. Consequently, very little current flows through
R, and the effective input impedance is very high.

The analysis of the circuit is greatly simplified if it is assumed that
e; = ¢4 (A— x). Then we may write the equations

€ — € € — €3

X, R;
€, — €2 _ ey — €3
Rr X,
€2 — €3 €2 — €3 €3
R. + X, R,
where
1 1
X = X, =
1=1c, ond 2= joCs

If these equations are solved for e;, the input impedance may be calculated
from
X
- <
lin e; — €

Fig. 6.22 Bootstrapped ac am-
plifier.
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which yields
R:R,

X,
As the frequency increases, X; and X, approach zero and the input

Zin=X:+Ra+Ri +

© R, R,

( vWA AAA

_(ch,s (_: E)
“\I+RC,S/\2 Y

v

il

C| ERZ

(a) SIMPLE ONE-AMPLIFIER CIRCUIT

o :l

[, 2R,\ [ ReC3$S .
e (1 59) (Ries) (e

R R,

(b) HIGH INPUT IMPEDANCE CIRCUIT

Fig. 6.23 Differential ac amplifiers. (a) Simple one-amplifier circuit; (b) high
input impedance circuit.
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impedance becomes very large. As frequency increases still further,
the open-loop gain decreases and the condition e; = e, is no longer
enforced. The input impedance then decreases.

Differential ac amplifiers are also easily realized through the use of
operational amplifiers. Two examples are shown in Fig. 6.23. That
of Fig. 6.23a introduces simple d¢ decoupling into the familiar differential
DC amplifier circuit. The circuit of Fig. 6.23b provides high input
impedance while decoupling d¢ signals in the second stage. The dc
offset voltages of the first-stage amplifiers are removed by the capacitive
coupling. The dc offset voltage of the second-stage amplifier is multi-
plied by the dc gain, 1.0.

6.7 Voltage-fo-Current Converters?7?

In applications such as coil driving and transmission of signals over long
lines, it is sometimes desirable to convert a voltage to an output current.
With operational amplifiers this is quite easily done. Several realizations
of the voltage-to-current converter (VIC) will be examined in this section.

The simplest VICs are those for floating loads. The circuits of Fig.
6.24a and b are the prime examples of this type. The circuit of Fig.
6.24a is a simple inverting circuit. The input current is given by

. €1
1 = —
R,

since R, is terminated at the virtual ground of the summing junction.
This same current flows through the feedback load impedance Zy, in the
feedback loop. The current i, is independent of the value of Z;. Both
the signal source and the operational amplifier must be capable of supply-
ing the desired amount of load current. The circuit of Fig. 6.24b

R

' (a) INVERTING AMPLIFIER TYPE (b) NONINVERTING AMPLIFIER TYPE

Fig. 6.24 Voltage-to-current converters, floating load.
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Fig. 6.25 Current amplifying
circuit.

operates in the noninverting mode and, hence, presents a high impedance
to the driving source. The current is again given by the equation

1] = Rl
and, again, i, is the load current. Very little current, however, is required
from the signal source, because of the high input impedance of the non-
inverting amplifier.

Another VIC for a floating load is shown in F ig. 6.25. Here, most of
the current is provided by the amplifier and only a small portion by the
signal source. Analysis of the cireuit yields the following equation for
load current:

The resistor R; provides a convenient means for scaling the current. The
resistor Ry can be made relatively large to minimize the loading of the
signal source. The amplifier must be capable of providing all the current
to the load and must also be capable of output voltage equal to

€omax = iL max(ZL + Rs)

For loads which are grounded on one side, there are also circuits which
give voltage-to-current conversion. The single amplifier circuit of Fig.
6.26 acts as a current source controlled by ey,

s €1

IL—_R_,z
if

R, R

R, R,

If these ratios of resistances are matched, the circuit will function as a
true source of current with very high internal impedance. A mismatch
of the ratios will be seen as a decreased internal impedance of the current
source. Fluctuations in effective load impedance will then cause fluctua-
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Fig. 6.26 VIC, grounded
load.

tions of the output current. The operational amplifier for the circuit
of Fig. 6.26 must have an output voltage range\sufﬁcient to provide the
maximum load voltage plus the voltage drop across Rs. Normally,
R; and R; will be chosen to draw small currents, and Rr and R; will be
made small to minimize voltage drops.

The circuit of Fig. 6.27 utilizes two inverting amplifiers to drive a
current into a grounded load. This current is given by the expression

e R5RF/R4R1
" Ry + Zi[l + Rs/Rs — (Rs/Ry)(Re/Rn)]

If resistors are selected so that

I, =

‘Rs _ RRr
1+ R, - R4R,

then
€ RsRF

ly, = —

" Rs R«R,

In particular, if
R1 = RF = R4 = Rs
then
. e
1, = R3
and
R: = Ry — R;

If R, is large, very little current is drawn from the signal source and very
little flows through the feedback elements. Then the output voltage is
given by

€omax = IL max(ZL + Ra)

Note that, in the circuits of Figs. 6.26 and 6.27, when the load is open-
circuited the positive feedback is equal to the negative feedback. This is
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R,
vV
.
| ' Rs
R, |
+
e
_‘ _—°+
i e =i 7

= i_\ aLl 2. _1._

Fig. 6.27 Two-amplifier VIC, grounded load.

equivalent to an open-loop condition. The stabilizing capacitors shown
by dotted lines are therefore desirable to prevent excessive noise and possi-
ble oscillations. Figure 6.28 illustrates a modified form of the two-
amplifier VIC which provides the additional feature of very high input
impedance. The expression for output current as a function of input
voltage is

i = el(Rs/R4)(1 + RF:/Rz + Ra/Rz)

YT R+ Z.(1 + R;3/R: — Rs;Rr/R2Ry)

If we again select resistors such that

R: RsRr
1 3 _ WOE
+ R. RoR.
and
RF = R4 = Rs
RZ
vW

J
+ .
e, = 'Ll ZL

Fig. 6.28 Buffered VIC, grounded load.
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then
_ 261RF
™= R.R,
and
R: = Rr — R;

6.8 Reference Voltage Sources
and Regulators?%7

Because of its high input impedance and easily adjustable gain, the
operational amplifier may be used as a reference voltage source with very
low output impedance and substantial output current capability. Two
circuits for use with standard cells are shown in Fig. 6.29. In both
instances the output voltage is given by

Ry
E, = Vger (1 + Rx)

The circuit of Fig. 6.29a can be used with single-ended amplifiers (such
as chopper-stabilized types), as well as those with differential input. The
circuit of Fig. 6.29b is used if the reference source or cell must be grounded
on one side. The only current drawn from the cell is the input bias
current of the amplifier plus a term given by

_ E, _ Vrer(l + Rr/Ry)
AR; AR;

where R; is the differential input impedance of the operational amplifier.
This component of current is negligible in comparison with bias current
for most amplifiers. The reference voltage cell is, for all practical pur-
poses, isolated from any load being driven. The effective output

I;

(a) SINGLE-ENDED CIRCUIT (b) NONINVERTING CIRCUIT

2 Fig. 6.29 Reference voltage sources.
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impedance Rour is given by

R,
ROUT = E
where
g=—21
R, + Ry
and

R, = open-loop output impedance

The load regulation is therefore given by

. R,
Regulation 9, = ABR, X 100
where Ry, is the minimum load impedance.

Similar circuits for use with zener diodes are shown in F ig. 6.30a and b.
The loading conditions on the zener diodes are constant and the load
regulation is the same as derived for the circuits of Fig. 6.29. Regulation
with respect to the input voltage V, depends upon the dynamic resistance
of the reference zener diode Z,. The circuit of Fig. 6.29¢ further reduces
this regulation due to input voltage by providing the output reference
voltage as the source for the zener diode current. The dc voltage V, now
functions only as a “startup” voltage through the network of R,, R,
and Dl.

6.9 Voltage Regulators

Any one of the voltage references described in the preceding section may
be considered a voltage regulator, with extremely tight regulation charac-
teristics. Where higher output currents are required, a power booster can
be added, inside the feedback loop. However, in speaking of voltage
regulators, it is more usual to consider operation from a single source of
unregulated de voltage, rather than the dual supplies tacitly assumed in
the reference voltage circuits. Figure 6.31 shows such a regulator. The
amplifier, which normally operates on dual power supplies of opposite
polarity, is biased for operation on a single unregulated power supply.
The negative supply terminal is grounded and the noninverting input is
biased at the zener voltage. The zener diode Z, operates at constant load
current, since the output current is provided by the transistor Qi If the
amplifier has a minimum (balanced) supply rating of + V., then V, must
be larger than 2V,. Similarly, if +Vyx is the maximum (balanced)
supply rating, V, must not exceed 2Vy. The amplifier will saturate as
the output voltage approaches either supply voltage. This determines
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A%
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g'——F \
o~ R r4

(a) INVERTING i

) *’Vs Ry Re
- Rg -
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1
:

+ + Rp+R,
+ Eg= + R v,
- 1
Vz Z, T
— (b) NONINVERTING —
—O )
+
Re+R
FT vy
R

Eo +

(c) NONINVERTING WITH REGULATED ZENER DRIVE

Fig. 6.30 Zener reference sources.
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. Fig. 6,31 Voltage regulator.

+

the limit on output; the common-mode voltage range sets the lower limit
on zener voltage.

Although the amplifier may have an internal current limit, the resistor
R, is required to protect against short circuit in this type of regulator.
This is because a short circuit to ground is equivalent to a short circuit to
negative supply. This causes a power dissipation equal to twice that of a
short circuit to ground when operating on balanced dual supplies. Thus
the internal protection may not be sufficient. The value of R, should be
chosen to limit the amplifier short-circuit current to approximately one-
half the internal current limit value when the output is at positive satura-
tion voltage. The resistor R, provides current limiting to protect Q..

The load regulation of this type of regulator can exceed 0.01 percent,
since the effective output impedance is very low. The line regulation is
increased beyond that of the zener by using the ocutput voltage as exoita-
tion for the zener.

6.10 Current Amplifiers

Current amplifiers, or current-to-voltage converters, are realized very
simply by using operational amplifiers. An ideal current source has
infinite output impedance and output current which is independent of
load. Photocells and photomultiplier tubes are basically current sources
with output impedance which is finite but very large. For small load
impedances, the output impedance may be considered infinite.

The current-to-voltage converter of Fig. 6.32 presents almost zero load
impedance to ground because the inverting input appears as a virtual
ground. The input current, however, flows through the feedback resistor,
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Ce
e
: |
1 Re H
‘ _—
Is
. —O0
Fig. 6.32 Current amplifier R +
(current-to-voltage converter). s e, = ~ig R

generating an output voltage
€0 = _isRF

The actual input impedance of the current-to-voltage converter, Zi,,
taking into account the finite gain A and differential (open-loop) input
impedance Zigq, is
_ Zid — RF

14 (Zw/Re)(1+A) 1+A
The lower limit on measurement of current input is determined by the bias
current of the inverting input. For greatest resolution, FET or varactor
bridge amplifiers are usually used.

The gain of the amplifier for dc¢ offset voltage and noise voltage is
given by

Zin

RF+R5~
R.

Thus errors due to these parameters are very small. However, current
noise can be a factor because of the very large impedances. Since most
such measuring circuits are used for very low-frequency signals, it is
usual to parallel Ry with a capacitor Cr to reduce the high-frequency
current noise. Output impedance of the current-to-voltage converter is
very low because of the nearly 100 percent feedback.

1.0 since Ry > Ry~

6.11 Charge Amplifiers

Some transducers, such as capacitance microphones and some types of
accelerometers, operate on the principle of conversion of the measurement
variable into an equivalent charge. The equivalent circuit of such a
transducer may be represented by a battery and capacitor in series, as
shown in Fig. 6.33a. As the capacitance varies, the charge also changes
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(a) CHARGE AMPLIFIER CIRCUIT (b) FREQUENCY RESPONSE
Fig. 6.33 Charge amplifier operation.

according to the equation

When the transducer is connected to the inverting input of an operational
amplifier as in Fig. 6.333, this charge flows into the feedback capacitor
Cr. The resultant change in charge on Cr generates an output voltage,

E
€ = AC] CF
Since the operational amplifier requires a dc path from each input to
common (for bias current flow) it is necessary to insert the resistor Ry.
In the absence of this resistor, the capacitors will build up a de charge
until the output voltage reaches saturation. This resistor limits the lower
cutoff frequency of the charge amplifier. For stabilization purposes, and
sometimes for protection of the amplifier input stage, it is also desirable to
insert the series resistor R;. This resistor limits the upper response
frequency as shown in Fig. 6.33b.
The gain, or sensitivity of the charge amplifier, in its passband is
given by
[ E

AC, Cr

and can be varied only by changes in Cr. It is usually desirable to use a
small value of Cr consistent with the desired frequency response and a
reasonable value of Rr. FET amplifiers are usually the first choice for
charge amplification, because of their high input impedance, low bias
current, and wide bandwidth. )

Another common form of charge amplifier is shown in Fig. 6.34.
Here the amplifier operates as a noninverting buffer with gain. Charge




. Linear Circuit Applications 235

- ———— 1 R, Re
I ¢, | VA
e L
[ | -
AC | -
: ‘ | + b_'T?_RF‘Ri e
’ 0" 2
| v 16 o "
L 1
| —€ €2 Rg e
| -T l - Cz
| I
| = | — —
| - | B -
£
—————— 'l ez--AC,’C;

Fig. 6.3 Alternative charge amplifier circuit.

flows into, and out of, the capacitor C, as the capacitance of the trans-
ducer varies. Once again these capacitance variations are converted into
voltage variations at the amplifier output. An amplifier with FET input
stage is usually also required in this circuit to minimize the bias and
noise currents. The resistor Rg provides the de¢ path for this bias current
and limits the low-frequency response of the circuit.

REFERENCES

1. G. A. Korn, and T. M. Korn, Electronic Analog and Hybrid Computers, McGraw-
Hill Book Company, New York, 1964.

2. Applications Manual for Operational Amplifiers, Philbrick/Nexus Research,
Dedham, Mass., 1965.

3. N. D. Diamantides, Improved Electronic Differentiator, Electronics, July 27, 1962.

4. G. A. Korn, Exact Design Equations for Operational Amplifiers with Four-
terminal Computing Networks, IRE Trans. Electron. Computers, February, 1962.

5. T. Miura, et al., On Computing Errors of an Integrator, Proc. 2nd AICA Conf.,
Strasbourg, France, 1958, Presses Académiques Européennes, Brussels.

6. Handbook of Operational Amplifier Applications, Burr-Brown Research Corpora-
tion, Tucson, Ariz., 1961. (Out of print.)

7. Handbook and Catalog of Operational Amplifiers, Burr-Brown Research Corpora-
tion, Tucson, Ariz., 1969. (Out of print.)

8. G. Tobey, Analog Integration, Instrum. Conirol Syst., January, 1969.



7

OPERATIONAL AMPLIFIERS
IN NONLINEAR
CIRCUITS

Some of the more interesting applications of operational amplifiers require
the use of nonlinear feedback networks. By the use of such networks the
amplifier with feedback can be made to approximate transfer curves,
linearize transducers, limit the amplitude of signals, perform mathematical
operations, and do a variety of other tasks. Basic to most of these
nonlinear feedback networks is the use of the voltage-to-current char-
acteristics of semiconductor junctions: diodes, zener diodes, and transis-
tors. In some applications, the large-signal switching properties of such
elements are used, whereas in others the nonlinearity of the junction
itself is utilized. In this chapter we present a discussion of such circuits
and their applications. Since the operation of diode limiter networks
is basic to a great many of the circuits considered in this chapter, the
first section is devoted to a brief discussion of the operation of these
simple circuits. The remainder of the chapter treats feedback limiters,

- diode function generators, logarithmic amplifiers, and analog multipliers.
Each of the sections concludes with a brief discussion of the primary
areas of application for each functional circuit.

236
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7.1 Diode Limiter Networks

In this section we present a discussion of idealized series and shunt
limiter networks. The operation of these may be best understood by
first considering some basic models for limiters.

7.1.1 Basic limiter models®*® The idealized model for the limiting
element consists of an ideal diode in series with a floating bias source, as
shown in Fig. 7.1a. When the signal voltage equals the bias voltage,
the ideal diode conducts, with the amount of current dependent upon the
resistance of the circuit containing the limiter. A series limiter is shown
in Fig. 7.1b along with its transfer curve. For input voltage less than
Vs the diode D is nonconducting and output voltage is zero. When
e; exceeds Vg, the output voltage follows the input. The shunt limiter
of Fig. 7.1¢ provides an alternative means of obtaining an abrupt transi-
tion in the slope of the transfer curve. For output voltage e, less than
Vs the diode is nonconducting, and the circuit acts as a simple resistive
divider. As input voltage is increased, however, the output eventually
reaches the value Vp, and the diode begins to conduct, thus preventing
further increases in e,.

Both the series limiter and the shunt limiter find useful application as
a part of the feedback network of an operational amplifier. Figure 7.2
illustrates a simple inverting amplifier circuit in which a diode and series
bias source are used to provide a limit on the output voltage of an
operational amplifier. For output voltage less than Vp, the output
is a simple linear function of the input voltage with gain equal to the
ratio —Rr/R;. When the output reaches Vg the diode conducts, pre-
venting further increase in e,. If the input voltage increases still
further, the additional input current passes through the limiting elements,
generating no additional voltage at the output. The summing point
remains at a virtual ground. Actually, of course, all practical limiting
circuits will have some internal impedance, usually nonlinear, which
modifies the ideal behavior described here. Also, floating bias sources
are rather impractical in most cases and must be approximated by other
means. These more practical limiters are discussed in the following
sections.

7.1.2 Series limiters A practical and very close approximation to the
ideal series limiter discussed above is achieved through the use of a
silicon diode and a zener diode as shown in Fig. 7.3a. When the input
voltage exceeds the sum of the zener voltage and the forward voltage of
the silicon diode, the combination conducts. The output voltage then
approximately follows the input. Because the two diodes have finite
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€o

(b) SERIES LIMITER

Fig. 7.1 Limiter concepts: (a)
ideal limiting element; (b) series
limiter; (¢) shunt limiter.

{c) SHUNT LIMITER

ON resistances, the output does not follow the input exactly but is
attenuated slightly by this series resistance. A double series limiter can
be formed as shown in Fig. 7.3b by paralleling two such combinations of
diodes in opposite polarities.

An even simpler method of obtaining a double series limiter is to use
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(a) FEEDBACK LIMITER ON (b) TRANSFER FUNCTION

INVERTING AMPLIFIER

Fig. 7.2 Operation of a feedback limiter. (a) Feedback limiter on an inverting
amplifier; (b) transfer function.
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{c) BACK -TO- BACK ZENER LIMITER

Fig. 7.3 Series limiters using zener diodes: (a) series zemer limiter; (b)
double-ended series zener limiter; (c¢) back-to-back zener limiter.
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back-to-back zeners, as shown in Fig. 7.3c. Here the function of the
silicon diodes is served by the zener diodes in their forward-conducting
region. This circuit suffers from the high junction capacitance of the
zeners and may present feedthrough problems at high frequency. The
method of Fig. 7.3b is somewhat superior in this respect, especially if low-
capacitance silicon diodes are used for D; and D,. The transition
between the ON and OFF states will actually not be a sharp one, as shown
in the figure, but will have a degree of rounding determined by the diode
and zener characteristics and by the value of the load resistor Ry. This
resistor could equally well be the summing resistor of an operational
amplifier network. In this case, it would be terminated in a virtual
ground instead of true ground.

Another type of series limiter is shown in Fig. 7.4. Here the biasing is
accomplished through the use of an external reference voltage and a shunt
resistor. The diode begins conducting when the junction voltage e;
exceeds the forward voltage drop of the diode. The breakpoint voltage
V3 is given by the expression Vg = V(1 + R;/R2) + Va(R:/R.) and can
easily be varied by adjustment of R,. Such limiters are useful in the
piecewise approximation of functions, a topic to be discussed later in the
- chapter.

7.1.3 Shunt limiters A simple means of realizing a shunt limiter is
shown in Fig. 7.5a where, again, the combined silicon diode and zener
diode are used as the actual limiting elements. The circuits of Fig. 7.5b
and ¢ are actually the duals of the double series limiting elements of Fig.
7.3. The circuit of Fig. 7.5b achieves lower shunt capacitance than that
of 7.5¢ and is therefore preferable for high-frequency applications.

As another approach to shunt limiting, the resistive divider shunt
limiter of Fig. 7.6a is quite useful where it is necessary to accurately
adjust the breakpoint voltage Vs. When the output voltage e, equals
the reference voltage Vg, plus the diode forward voltage, the diode con-
duets and prevents further increase in e,. The actual value of input
voltage at which tlie breakpoint occurs is determined by the ratio of R,

L
SLOPE = ————

R D1 R, + rf+RL
1 ei

o—AW | o %

: V- %

- Rz Ry

i | r, = DIODE Ve ¢

—v FORWARD
= R = = RESISTANCE

Fig. 7.4 Externally biased series limiter.
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Fig. 7.5 Practical shunt limiters: (a) zener shunt limiter; (b) double zener shunt
limiter; (c) back-to-back zeners in a shunt limiter.

and Ry and by the value of Vg.
Re + R,
Ry -

An additional, negative breakpoint can easily be achieved, as in Fig. 7.6b,
‘by adding another diode and reference source.
- Another practical limiter circuit is the bridge limiter circuit of Fig. 7.7.
This is actually a form of shunt limiter which provides a double limit and
- partial compensation of the temperature-sensitive characteristics of the
-diodes. The breakpoints, of course, still exhibit rounding because of the
gradual turnoff of the diodes. The breakpoint voltages, or limits, are
{easily varied through the bias resistors R, and R., or by varying +V.
and — V..

Ve = Vg

7.2 Feedback Limiters!.2 4

-In the preceding section we discussed the operation of several series and
shunt limiting. networks. In this section we will illustrate some circuits
. which use networks of this type to obtain feedback limiting. Three dif-
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Fig. 7.6 Externally biased shunt limiters: (a) simple externally biased
shunt limiter; (b) double shunt limiter with external biasing.

ferent approaches will be considered. They are resistive ratio methods,
zener diode feedback limiters, and precision limiters.

7.2.1 Resistive ratio methods In the feedback limiter, series or shunt
limiting networks provide an abrupt change in the feedback ratio, and
hence the closed-loop gain, of the operational amplifier. The resistive
divider feedback circuit of Fig. 7.8a makes use of a simple series limiting

——SLOPE=1.0

Fig. 7.7 Diode bridge limiter.
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circuit. The diode begins conduction when the voltage e; exceeds the
forward voltage V. The output voltage is then limited at the value

R, R,
V. = R2VR + (l + Rz)Vf
The gain before limiting is — Rr/R, and, after the limit occurs, is —R¢R3/
(Rr + R3)R:1. The slope, or gain, in the limit region can be made to
approach zero if Ry < R,. Since such small values of R; may be imprac-
tical, the circuit of Fig. 7.8b may be used to obtain.slope =0. This is
done by adding a transistor to the circuit. This transistor then provides
the necessary current to the summing junction while drawing only
relatively small base current through R;. Total current into the sum-
ming point remains zero both before and after limiting occurs. The
diode to ground protects the transistor from reverse breakdown of the
base emitter junction. The limit voltage in this case is given by the

SLOPE = - R.R,
(Re + RS)Ri
Re
LOPE = -=E
SLO R,
€
_____ A
1
L}
i
e.
_(ﬁ)vl_
Re

(a) SIMPLE FEEDBACK LIMITER

e.
+V, R i ) R

c Re B SLOPE = - —
dé‘ Rz2 ~ Vg B Ry
’ R
- 3 SLOPE = -Re.
A °o "
Re
O— A 4w,
+ R, 0 1
e, e I
- e 1
~ R, €
-—Ly
_?_ € i R -

(b) FEEDBACK LIMITER WITH TRANSISTOR

Fig. 7.8 Resistive divider feedback limiters: (a) simple feedback limiter;
(b) feedback limiter with a transistor.
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expression
R3 RI
Vo =—YV 14—
L Rz R + ( + Rz) VBE

The circuits of Fig. 7.8 are quite useful because of the ease with which the
limiting level can be varied. If a “soft’” limit is sufficient, the circuit of
Fig. 7.8aisused. If “hard” limiting is necessary, the transistor limiter of
Fig. 7.8b is preferable. Both circuits suffer from the temperature sen-
sitivity of the diode and transistor forward voltage drops, Vi and Vgg.
Also, they cannot limit at voltages smaller than Vi or Vgg. The capac-
itance of these limiters is rather low; consequently they perform well in
high-frequency applications.

71.2.2 Zener diode feedback limiters Two circuits which may be

categorized as zener diode feedback limiters are shown in Fig. 7.9.

r, = ZENER RESISTANCE
-V, +|—V' + r; = DIODE FORWARD RESISTANCE

q SLOPE =~ (r, +r,)
/ eg R
-~ ——[(Vz +V¢)
W SLOPE = - Rr
R Re L =-_1
AAA N R
¥ Lo
€ e,

e
b .
I 1 L e

(a) BACK TO BACK ZENER FEEDBACK LIMITER

-V + Vit SLOPE = = (r, + ry)
R
______ (Vz+V¢)
vV
R, Ry | —SLOPE = -Rr
O— W - Ri
. —Q 3
i + + i
j_ :

(b) LOW CAPACITANCE ZENER FEEDBACK LIMITER

Fig. 7.9 Zener diode feedback limiters: (a) back-to-back zener feedback limiter;
(b) low capacitance zener feedback limiter.



g
;
!

l
|
|

i
4

.

‘; Operational Amplifiers in Nonlinear Circuits 245

ZENER RESISTANCE
DIODE RESISTANCE

SLOPE = = (rp +1, )
Ry

Re

LEAKAGE NS
CURRENTS Rs |
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Fig. 7.10 Zener diode bridge feedback limiter.

Either of these limiters works satisfactorily at low frequency. The
circuit of Fig. 7.9b provides lower capacitance than that of 7.9a and
therefore is better at high frequency. The limits are set by the zener
voltage and forward voltage drop of the diode. For good limiting action,
the ON value of resistance of the diodes must be negligible in comparison
with Rr and the OFF resistance must be much larger than Ry. Zener
diodes selected for such limiters should have a sharp ‘“knee” to avoid
distortion of the transfer curve as the output voltage approaches its limit.
Another zener diode feedback limiter is the bridge circuit shown in Fig.
7.10. This is a double-ended version of the zener limiter of Fig. 7.9b
with the addition of external biasing to obtain sharper transition between
the ON and OFF regions of the limiter. - The small leakage currents
through the silicon diodes in the OFF state will tend to cancel at the sum-
ming junction. In applying the circuits shown in Figs. 7.9 and 7.10, it
should be noted that zener diode limiters are useful mainly for protection
against overvoltage and not as a means of obtaining precisely known
limits for signal processing or computation purposes.

7.2.3 Precision limiters As discussed in earlier sections, the actual
limiting elements (diodes, zener diodes, and transistors) have finite
resistance and nonlinear temperature-sensitive switching characteristics.
These characteristics contribute to a “rounding” of the breakpoint area
of the limiter characteristics as illustrated in Fig. 7.11. Ideally, the
breakpoint would be sharp and well defined, plus being insensitive to
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temperature. Circuits which achieve such characteristics are referred
to as precision limiters. In the precision limiter of Fig. 7.12, the high
open-loop gain of the operational amplifier is used to reduce the effect
of the diode nonlinearity and temperature sensitivity. The operation of
the circuit can be analyzed by the usual {>chniques except that the
relationship of current and voltage in the diodes must be taken into
account. This relationship is given by

KT
vi = f‘.q_ [In (ir — L) ~ In L} = f(iy)

For silicon diodes this voltage has a maximum value of approximately
0.6 V for full-conduction. For e; > 0 (e; < 0) the current i; will be
zero because e; = 0 and D, is back-biased. Essentially all input current

-'L SLOPE =—g£

‘9 !
2|— + L € SLOPE [¢] leo/
- - ‘ r

(a) PRECISION LIMITER CIiRCUIT (b) PRECISION LIMITER
TRANSFER CURVE
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3

©

Fig. 7.12 Precision limiter operation. (a) Precision limiter circuit; (b) precision
limiter transfer curve.
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i; flows through Ry, ‘generating an output voltage

. Ry
€= —Rps = ——er» e <0
Fl1 Rl i

If the finite amplifier gain and diode nonlinearity are taken into account,
the expression becomes

- (—Rr/Ry)e;
1 — (1/AB)1 + £(iz) /eo)

€o

where
_ R41 ¢
R: + Rr

Note that the effect of the diode forward voltage f(is) is reduced by the
loop gain AP of the closed-loop circuit. Thus, the ‘“rounding’ of the
turn-on region virtually disappears.

For e; < 0, diode D; no longer conducts and all the input current
" i; flows through D,. Theoretically, the output voltage is then exactly
. equal to zero. The expression for e, considering finite gain and the
- diode nonlinearity, is

8

fh) Ru ’
A Rr+ R,

.. This is an extremely small voltage, probably less than the de offset voltage
of the amplifier. Thus the precision limiter provides a good approxi-
mation of ideal diode behavior, reducing the diode nonlinearity, tempera-
. ture sensitivity, and forward voltage drop by a factor equal to the
" loop gain of the amplifier. A simpler analysis of the precision limiter
- can be made where the diode is represented by the linear model of a
| resistance, a bias source, and an ideal diode. Using this analysis, it
b is seen that the effects of diode resistance and internal bias voltage are
reduced by the same factor, AB.

Nonzero precision limits can also be achieved, using the circuit shown
t in Fig. 7.13. Here, a diode bridge limiter gives both positive and nega-
i tive limits. Because the diode bridge is inside the feedback loop, the
I nonlinearity, temperature sensitivity, and forward resistance of the
t bridge are all reduced by the loop-gain factor. Thus the limits are
t sharp and relatively independent of diode parameters.

e; >0

o ~ —

7.2.4 Applications of limiters The simple series and shunt limiters
i described earlier in this section are used extensively in diode function
| generators which are discussed in later sections of this chapter. The
b limiter applications to be discussed here are principally those for feed-
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Fig. 7.13 Precision bridge limiter.
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back limiters. As mentioned earlier, one of the primary reasons for using
a feedback limiter is to prevent overload of the amplifier output stage.
In many amplifiers, particularly chopper-stabilized types, a considerable
time is required to recover from saturation of the output stage. The
feedback limiter, by preventing such saturation, ensures fast recovery
when the output voltage reaches the preselected limit. In circuits where
input bias current is to be kept to a minimum, the bias current, decoupling
technique shown in Fig. 7.14 may be necessary. Here the resistor Rp
shunts the bias current to ground since the diodes D; and D, are operating
with zero voltage drop and zero current when the limiter is OFF. When
the circuit is limiting, of course, the diodes conduct the feedback current.

Another of the basic applications for a feedback limiter is in comparator
circuits. The limiter determines the ON and OFF voltage levels for the
comparator output (see Chapter 9 for more details of comparators).
As another application, limiters are often used with operational ampli-
fiers for signal generation. Usually such use is in cohjunction with a
comparator for generation of square waves. Triangle and ramp wave-

LEAKAGE CURRENT DECOUPLING

o Fig. 7.14 Use of a leakage cur-
rent decoupling circuit.
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Fig. 7.15 Precision rectification.

conversion.

(b) PRECISION A C TO DC CONVERSION

(a) Absolute-value ‘circuit; (b) precision ac to de
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Fig. 7.16 Precision gate circuit.

forms can also be generated if an integrator follows the limiter or com-
parator (see Chapter 10 for more detail on signal generation).

Some limiters have breakpoints determined by an external reference
voltage. Thus these levels can be easily changed by making the reference
a variable or programmed voltage. This feature also makes possible the
use of limiters for modulation of pulses and square waves (see Chapter 11).

The precision rectifier circuit discussed in Sec. 7.2.3 is useful in a variety
of applications. As an example, the absolute-value circuit of Fig. 7.15a
performs the function of precision full-wave rectification. With the
addition of a low-pass filter as shown in Fig. 7.15b, the circuit achieves
precision ac to dc¢ conversion. Another interesting use of the precision
rectifier circuit is shown in Fig. 7.16. Here the circuit functions as

Fig. 7.17 Precision deadspace circuit.



251

e, = MAX (e,,e;)
e,;, e, MAY BE

POSITIVE OR
NEGATIVE
SLOPE=1
e,

+
e &
_ H -
T €y e,

Fig. 7.18 Precision maximum selector.

a precision gate for positive signals. The negative gating signal Vg
drives the limiter into its OFF region. If Vg is larger than the largest
expected signal level, no signal can pass through the precision gate.
Other uses of the precision rectifier principle are shown in Fig. 7.17
(precision deadspace circuit), and Fig. 7.18 (precision maximum selector).

7.3 Diode Function Generators! 5810

The approximation of nonlinear functions is achieved with operational
amplifiers by use of appropriate nonlinear feedback networks. The most
general way of generating such functions is through the use of piecewise
linear approximation, as shown in Fig. 7.19. The accuracy of such an
approximation is determined by the number of line segments used. The
complete piecewise curve is obtained by the summation of individual line
segments whose ‘‘breakpoint” voltages and slopes are determined sepa-
rately for each segment. Figure 7.20 illustrates how such segments may

DESIRED FUNCTION

€
PIECEWISE
APPROXIMATION
€
FUNCTION
Fig. 7.19 Piecewise approxi- eoi- GENERATOR —g
mation of a nonlinear function.
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(b) SUMMATION OF LINE SEGMENTS

Fig. 7.20 Generation of piecewise approximation: (a) simple line segment;
(b) summation of line segments.

be generated with simple limiter circuits and summed by the operational
amplifier. The amplifier summing junction is a summation point for the
currents from the breakpoint networks and the resistor Ry provides the
scaling function. A more practical means of obtaining the desired line
segments is through the use of series and shunt limiters as shown in Fig.
7.21. Note that each of the diode breakpoint circuits of Fig. 7.21 can be
represented as a nonlinear transconductance. By using such networks as
feedback elements, as shown in Fig. 7.22b, we obtain the inverse function.

As discussed earlier, the forward conduction characteristics of the silicon
diode are somewhat temperature-sensitive and can cause changes in the
breakpoints of the curve. This effect can be compensated partially by
the methods shown in Fig. 7.23. In both cases the forward voltage drop
of the breakpoint diode is compensated by a similar voltage drop in series
with the biasing source. In the shunt limiter, the base-to-emitter voltage
drop offsets much of the temperature sensitivity of the diode forward
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Fig. 7.21 Practical diode function generator circuits: (a) shunt limiter method;
(b) series limiter method.

voltage. In the series limiter, a second diode acts as a temperature-com-
pensating element for the breakpoint diode.

A more flexible approach to the approximation of nonlinear functions is
illustrated in Fig. 7.24. The figure shows a variable diode function
generator (VDFG) wherein both the locations of the breakpoints and the
slopes of the line segments are individually adjustable. Note that the
slopes can be positive, negative, or zero. The breakpoints can easily be
made variable or can be temperature-compensated as in Fig. 7.23. This
particular version of the VDFG is of the shunt type. A series-type
VDFG is shown in Fig. 7.24b. As still another approach, the precision
limiter, with its ability to simulate ideal diodes, can be used to generate
line segments whose breakpoints are precisely known and which are
temperature-insensitive. A simple version of such a function generator is
shown in Fig. 7.25. Each breakpoint requires an operational amplifier,
which made this approach prohibitive in cost before the advent of the
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Fig. 7.22 Use of nonlinear transconductance to obtain an inverse function.
(a) Use of nonlinear transconductance; (b) inverse function.

integrated-circuit operational amplifier. The principal drift factor in this
circuit is not the diode junction but is actually the input voltage drift of
the operational amplifiers, which are at least two orders of magnitude
better than an uncompensated diode. The breakpoints are sharp, rather
than rounded—a fact which may be a disadvantage of this technique.
The technique is easily adapted to arbitrary function generation where
both the breakpoints and the slopes are adjustable.

7.3.1 Applications of diode function generators One of the more
obvious uses of the function generators which have been deseribed above
is in the linearization of response curves. Primary examples are the
linearizing of thermocouples, thermistors, and pressure transducers. The
nonlinearity of the transducer is balanced by a compensating nonlinearity
of the function generator, thus achieving a composite function which is
linear. The general procedure is illustrated in Fig. 7.26. As another
approach the diode function generator can be used for waveform genera-
tion when its input voltage is a linear sweep such as a triangle wave.
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Fig. 7.23 Compensation of breakpoint temperature drift. (a)
Temperature-compensated breakpoint shunt limiter; (b) tempera-
ture-compensated breakpoint series limiter.
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Fig. 7.24 Variable diode function generators: (a) shunt limiter diode function
generator; (b) series limiter diode function generator.
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Fig. 7.26 Linearization of a transducer using a function generator. (a) Transducer
and function generator; (b) composite transfer curve.

Either arbitrary functions, as shown in Fig. 7.27a, or common functions,
such as the sine wave shown in Fig. 7.27b, can be generated. This
method is especially attractive for the generation of very low-frequency
waveforms. Other well-known functions such as the square and square
root of an input voltage can be accurately approximated by the diode
breakpoint method. Such function generators are extremely time-con-
suming to design for good accuracy, because of the large number of break-
points and the interaction of all adjustments. However, these devices
are available commercially and can be used for a variety of functions.
Some examples are shown in Fig. 7.28. Other interesting areas for the
application of function generator techniques are the simulation of physical
effects in computation, the realization of nonlinear sensitivities for control
systems, and the compression of signals having wide dynamic range.
These applications are illustrated in Fig. 7.29.

7.4 Logarithmic Amplifiers215

In the preceding sections of this chapter we have discussed the use of non-
linear feedback networks to provide limiting and function generation.
The diode function generators (DFG) which were discussed used the
large-signal switching properties of the diode. In this section we shall
present a treatment of logarithmic amplifiers. Such amplifiers use the
nonlinear volt-ampere relationship of the p-n junction itself. This
relationship is given by
if = Io(ew/nVT —_ 1)
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Fig. 7.27 Use of diode function generators for waveform generation. (a) Generation
of arbitrary waveshapes; (b) sine-wave generation.
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Fig. 7.29 Applications of a diode function generator (DFG). (a) Use of a DFG in an
analog simulation; (b) use of a DFG in a control system; (c) use of a DFG for signal
compression.
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where I, = reverse saturation current
I = 2 for small currents in silicon devices

VT=1—{Tz volts; T in °K

q 11,000
If we restrict the operating region of v so that evt/1Vr > 1, the logarithmic
relationship may be expressed as

. Vi
1 =Inl, + —
nig nl, + Vo

or
vi =qVr (Ini; — InI,)

Ignoring temperature effeets for the moment, 7, V1, and I, may be con-
sidered as constants. If the diode is connected in the feedback path of an
operational amplifier, as shown in Fig. 7.30, the output voltage of the
amplifier is a logarithmic function of the input voltage. The derivation
of the logarithmic relation proceeds as follows:

. €; . .
1, = E 1If = 11
€i
Ve = ‘r]VT (ln R_,l — In Io)

S
€ = —Vy = —"’IVT (lIIR—‘ — In Io)

1

In considering the temperature compensation of such an amplifier, it
should be noted that there are actually two separate temperature effects
to be compensated: a temperature-sensitive scale factor, nVy, and a
temperature-sensitive offset term, yVryInI,. The saturation current
term can be removed or reduced by the use of a current source and a
second, matched diode, D,, as shown in Fig. 7.31. The current source
forces a constant current Ig through D,, which in turn generates the volt-
age Vi. If the two diodes are perfectly matched, the V¢ and I, terms for
the two diodes will be equal and the In I, term will be absent from es.

V
+"I—
R —
1 i
O~ N\ — !
+ —=
e, iy 1 —0

i = i Fig. 7.30 Simple logarithmic
= - amplifier.
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Fig. 7.31 Temperature-compensated logarithmic amplifier.

Thus we may write

es = ey + Vi = —nVr (m % —InI, —InIg + In L,)
: 1

€;
Rilgr

The only remaining temperature sensitivity in e; is that of the scale factor
term. This can be compensated in the output amplifier by making its
gain temperature-sensitive and compensating for the Vr factor. This
is most easily done by using a temperature-sensitive resistor Rr in the
feedback network as shown in Fig. 7.31. The output voltage is then
given by

€3 = —TIVT In

_ _Ret+Ri+Re
° R: + Ry

The gain of the output amplifier determines the constant K,, and the
values of Ig and R, determine the constant K.. Together, they determine
the range of input voltage which will drive the output amplifier through
its rated range.

The dynamic range of a logarithmic amplifier of the type described in
this section is limited by several independent factors. The diode itself
follows the logarithmic relationship between v and i; rather closely over
as much as 6 decades of it. However, iy contains not only the input
signal current i, but also the input bias current and the noise current
of the operational amplifier, plus currents generated by the input offset
voltage and input noise voltage applied across R;. If the maximum
current allowed to flow through the diode (for accurate logging) is 1 mA,
then R, must be 10 kQ, if the maximum input voltage is to be 10 V. If
we assume an amplifier which has an input bias current of 10 nA and

€i
ﬂVT In R

= K, In (ng;)

r
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an input offset voltage of 1.0 mV, the dynamic range of input signal for
percent accuracy is 100 mV to 10 V—a range of 40 dB. The limitation
is provided by the offset voltage. In order to achieve a dynamic range
of 80 dB at 1 percent accuracy we must have a total error current of less
than 1 nA. An amplifier with FET input will have a bias current of
the order of a few picoamperes. However the input offset voltage must
then be less than 10-° A X 104Q = 10 xV. This is a very difficult figure
to maintain, particularly over a long period of time and over a range of
temperatures. The noise voltage of the amplifier e,, also generates an
error current, i, = e,/R;, which must be considered as a part of the total
error if transient signals with a broad frequency spectrum are being
measured. These problems are not as formidable if the signal source is
a high impedance source of current, as shown in Fig. 7.32. In such a
case the input signal current flows through the feedback diode, generating
a voltage proportional to the logarithm of the input current. Since the
source resistance is extremely large, the effective voltage gain of the
circuit is small, and the voltage offset and noise of the amplifier are
not so critical as error sources. The principal sources of error are bias
current and noise current, which can be made very small if an FET opera-
tional amplifier is used. Note that in the log amplifiers discussed the
input signal must be unipolar. It may, however, be negative or positive,
depending on the orientation of the diodes.

Another variation of the logarithmic amplifier is the log-ratio circuit
shown in Fig. 7.33. Here there are two input signals (eje;) which
are converted to temperature-sensitive logarithmic voltages (eses) by
the diodes D; and D, and amplifiers A; and A;. The relations are

es = —qVo (ln i:i —1In L,)
1

es = —nVr (m% —In L,)

1

Amplifier A; acts as a difference amplifier with gain. By subtracting es
from e,, the temperature-sensitive offset terms nVr In I, tend to cancel

TEMPERATURE
COMPENSATION

Dy

O

+

%o

i Fig. 7.32 Logarithmic current-
to-voltage converter.
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Fig. 7.33 Log-ratio amplifier.
each other. The output voltage is

RF €ex
Rz T]VT In es
The temperature-sensitive gain term nVr can be canceled from the
expression for e, if R¢/R, is made to have a compensating temperature
sensitivity.

The antilog function also can be obtained by using a diode with an
operational amplifier as shown in Fig. 7.34. The following relationships
apply,

F
€ = — (64 — ;) =
2

o0 = 0 — 1
"R+ R,
R,
=ej—— — gVr(nI; — InI,
€3 eR1+R2 7Vr(ln I nL,)
but, also,
B e = —nVT(In iz — lIl Io)
Therefore
R1 I!
SR TR, VT
€ = +i2RF
R1 €o
—e;j ——— = 9Vl
“Ri+ R, " Rl

-1 R1 ]
o = Rplsl —e —————————
Go = Hru Al [ * Ry + Ro)Vr
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Once again the temperature-sensitive offset terms, nVr In I,, ¢ancel if the
diodes are well matched. The temperature sensitivity of the propor-
tionality factor Ri/(R;: + R:)nVr can be eliminated if the resistive
divider (R1,Rz) can be made to have a compensating sensitivity. The
current generator I; and feedback resistor R, are adjusted for proper
scaling. The dynamic range of the antilog amplifier is determined by
the noise, voltage offset, and bias current of both amplifiers. This
means that for wide dynamic range, such as 80 dB, both amplifiers must
have voltage offset and noise less than about 10 uV. This is extremely
difficult to achieve with normal operational amplifier designs.

7.4.1 Applications of log amplifiers The log and antilog amplifiers
described above can be used in combination for the generation of arbitrary
functions by raising the input to a power, as shown in Fig. 7.35. The
exponent « is obtained by simply multiplying In e; by a constant through
a coefficient network. The voltage e, is proportional to In e;; thus

e = aK;ln Kye;
The output voltage is proportional to the antilog of e,:

€, = K; In—! K482 = I{seK‘a’
€o K;;(ngi)"Kth

The value of the coefficient can be greater or less than 1.0, if a scaling
amplifier is used, thus allowing a variety of functions. For special situa-
tions where the function is to remain fixed, the scaling of the log and
antilog amplifiers can include the coefficient a.

Another of the primary uses of the logarithmic amplifier is the com-
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Fig. 7.35 Raising variables to a power with log techniques.

pression/expansion of signals having wide dynamic range. Consider as
an example the logarithmic amplifier with characteristic

e = —10loge;

where —10 V < e, < +10 V. A plot of this characteristic is shown in
Fig. 7.36. The input signal range is from +100 mV to 410 V, which
corresponds to an output range of —10 < e, < +10 V. Input signals
in the range 4+0.1 V < e; £ +10. are expanded to an output range of
0V <e £ +10V. Input signalsin the range +1.0V <e; < +10V
correspond to an output range of —10V < e, < 0V. Thus each decade
of input range is represented by equal increments of output voltage.
This makes somewhat easier the reading and recording of input data
having a wide dynamic range. An ac compression amplifier with a
psuedo-logarithmic response can be achieved with the circuit of Fig. 7.37a.
= The diodes D, and D, generate the logarithmic response for positive and
" negative output voltages, respectively. The resistor Rr is required
because of the discontinuity in the log curve at zero. This feedback
resistor modifies the curve near zero as shown in Fig. 7.37b. The transfer
curve of this compression amplifier will vary with temperature and
cannot be effectively temperature-compensated in the output scaling
amplifier. Thus it is useful only under temperature-controlled conditions
or for very ‘‘rough’’ signal compression.

X3
+10 }--
t
]
)
)
'
]
]
i 1.0 10
°T—o T B
. (LOG
€=~ 10 LOG e, ! SCALE)
Fig. 7.36 Two-decade log am- i
plifier gain curve. JITY, Y SO
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Fig. 7.37 Aclog compression technique. (a) Ac compression amplifier; (b) psuedo-
logarithmic, ac compression characteristics.

7.5 Analag Multiplication
and Division!- 111417

In the preceding sections of this chapter we have discussed operational
amplifier nonlinear circuits which provide limiting, function generation,
and logarithmic amplification. Another frequently encountered non-
linear application of operational amplifiers is for accurate multiplication
and division of analog signals. The six most common solid-state methods
are logarithmic, quarter-square, triangle averaging, time division, variable
transconductance, and current ratioing. There are other techniques
for multiplying, but these six are the most suitable for all-solid-state
instrumentation. Together, they span a wide spectfum of accuracy,
speed, and cost.

7.5.1 Logarithmic multiplier = The first multiplier to be discussed is the
logarithmic type shown in Fig. 7.38a. The log and antilog amplifier
techniques discussed in the preceding section are used in this circuit. It
is only necessary to take the log of each input, sum these inputs, and then
take the antilog of the sum. The result is the product of the two inputs.
In terms of the variables shown in Fig. 7.38a,

e3 = K;(Ine; + Inex) = K;Inese,
and

€3
€ = Kz In—! I? = nglez

1

Division can be accomplished by subtracting the logarithms of the two
inputs and then taking the antilog. This can most easily be accom-
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Fig. 7.38 Multiplication and division by log techniques. (a) Logarithmic multiplier;
(b) logarithmic divider.

plished with the log-ratio circuit of Fig. 7.38b. Here,

(31
€3 = K1 In —
€2
€3
€, = K2 In-1 —
K,
€1
€ = K2 -
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e e, +e;Vy + e Vg+V, Ve

ONE
QUADRANT
MULTIPLIER

Fig. 739 Two- and four-quadrant multiplication obtained from a single-
quadrant multiplier.

The logarithmic technique of multiplication and division is, of course,
useful only for unipolar inputs, or one-quadrant operation, as it is some-
times described. Actually, however, any single-quadrant multiplier can
be converted to two- or four-quadrant operation by the technique shown
in Fig. 7.39. It is only necessary to subtract from the output all
unwanted terms in e; and e,, and the constant term. The addition of
V. and Vg to the input variables ensures that the inputs to the multiplier
remain unipolar.

The logarithmic approach, unfortunately, suffers from rather strong
temperature sensitivity. This can be compensated to a certain extent by
methods previously discussed. However it is difficult to achieve better
than 1 percent overall accuracy even for a moderate temperature range.
Because of its basic simplicity, however, the logarithmic method may be
attractive where accuracies of 1 to 5 percent are satisfactory and where
careful temperature compensation is not required.

1.5.2 Quarter-square multiplier ~ The quarter-square multiplier makes

use of the equation

X+Y) - (X-Y) (X*—X?)+ (Y- Y?) +2XY + 2XY
4 - 4

= XY

to obtain the product. The squared terms are usually obtained through
the use of special diode function generators, using the piecewise linear
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Fig. 7.40 Quarter-square multiplier.

techniques outlined earlier in this chapter. Squaring modules with 10
breakpoints can approximate the function

iuc = I(el2

to within +0.1 percent of full scale. The term i, is the output short-
circuit current to ground, or virtual ground. The circuit of Fig. 7.40
illustrates one means of obtaining multiplication through the quarter-
square relationship. This method of multiplication is useful over a wide
frequency range, which is its most attractive feature. Its principal dis-
advantages are the complexity and cost and the fact that the maximum
error voltage, although small as a percentage of full scale, may exist at low
input levels. This statement is illustrated by the typical error curve of
Fig. 7.41. The “ripple’ in the error curve arises from the piecewise
linear approximation used in the squaring modules. Additional errors
are introduced by de offset shift as a function of temperature.

7.5.3 Triangle-averaging multiplier The method of multiplication
known as triangle averaging is illustrated in Fig. 7.42. The voltage e; is

e, ERROR
% OF F.S.
N *emax
TIACATCA F—f_n F__E__- es
Fig. 741 Typical error curve of e, = +10V ~ e MAX
a quarter-square multiplier.
ep = 1O SINwr
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(a) TRIANGLE AVERAGING MULTIPLIER
t —=-
€4
) /\ /\ /\
—lege, )= 7/TTTF - - - - - =
Vo t—
-

{b) MULTIPLIER WAVE FORMS

Fig. 7.42 Illustration of the triangle-averaging multiplier: (a) triangle-averaging
multiplier; (b) multiplier waveforms.

the half-wave rectified sum of the triangle wave and e; — e;.  Only the
positive part of the waveform is retained, and this is time-averaged by a
low-pass filter. The resulting average value is

1/1 e — €

és='2'('2‘+'—2‘70——)(vo+61—ez)



Operational Amplifiers in Nonlinear Circuits 273
Similarly

a=—3Gt v,

1 (1 &t ez) (Vo +e1+e2)

The sum of the two voltages is

€1€2

Vo

& + 8 = —ey —

If the e, term is removed in a summing amplifier, the resulting voltage is
the desired product. The frequency response of such multipliers is
necessarily quite restricted because of the low-pass averaging filter at the
output. This filter must effectively eliminate the carrier frequency and
must therefore have a cutoff frequency well below the fundamental of the
triangle wave. Increasing the frequency of the triangle wave to improve
the overall frequency response leads to problems of capacitive coupling of
carrier frequencies to the output as well as linearity problems in the tri-
angle waveform. The linearity of the triangle wave and the sharpness of
the peaks of the waveform are the principal limitations on the accuracy
of this method of multiplication. (See Chapter 10 for triangle-wave
generators.)

7.5.4 Time-division multiplier  Another carrier technique of multi-
plication is the so-called time-division multiplier illustrated in Fig. 7.43.
It is necessary to generate a square wave whose average value depends
upon both of the input signals. In this method of multiplication a tri-
angle wave is once again used. However, instead of clipping and averag-
ing as in the triangle-averaging multiplier, the triangle wave is used to
control an electronic switch. The triangle wave is summed with one of
the input signals, e;, and the sum is applied to a zero-biased comparator.
The resulting asymmetric square wave has a duty cycle determined by the
magnitude and polarity of e.. That is,

eZ+Vu
T, = 2V, T
V.,—eg
T, = V. T

This square wave in turn controls the electronic switch. Amplifier A,
transmits +e; when the switch is at ON, and —e; when the switch is at
OFF. Since the duty cycle of e, is proportional to e; and the magnitude
is *e;, the resulting average value is proportional to the product. When
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Fig. 7.43 Illustration of the time-division multiplier. (a) Time-division multiplier;
(b) time-division multiplier waveforms.
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this waveform is averaged by a low-pass filter, the result is equal to the
product, which a scaling factor.

e2+Vo Vo_eZ
1 — €

o = 84 = €
G = & 2v, 2v,
e — €1€2

o = Vo

The time-division multiplier suffers from much the same problems as the
triangle-averaging type. Accuracy depends strongly upon the linearity,
symmetry, and ‘‘sharpness’’ of the triangle wave. The resistors used in
the feedback networks of A; and A, must be precisely matched, taking
into account the series resistance of the switch. Offset voltage of the
comparator will appear as an error term added to e;. The switching
time for e, to change from +e; to —e, is a critical error factor and must be
-small compared with the period T. This places a stringent limit on the
upper frequency of the carrier and thus on the frequency response of

+Ve
R
Re R¢ F
Ry
VvV -
+ AE -
AAYA + 0= o1
Ri K1
¥ +
€ Vbes
- ) R,
= SEE CHAP. 6 ol

N

|

i

Fig. 7.4 Variable transconductance multiplier.

_Vc
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the multiplier. There are numerous variations of the triangle-averaging
and time-division multiplier circuits. However, the examples given
illustrate the techniques and some of the design limitations.

7.5.5 Variable transconductance multiplier Perhaps the simplest
multiplication technique is the variable transconductance method illus-
trated in Fig. 7.44. This method depends upon the current through the
matched pair of transistors being proportional to one of the input signals,
e;. Assuming that the transistors are a perfectly matched pair, the
differential collector current (and consequently the differential collector
voltage) is proportional to the product of e; and e.. The result is derived
as follows:

quel
kT
AL, q

AV kT

I, = Ise

qvbel

Io = 11+Iz = 2Ise kT

AL

éﬁ I, AVper

Al, = 2kT ——1, AVpe2

€

AIl -_ AI2 = '2—1%,1_, Io (Avbel - AVbe?)

AE

i €28
2kT
R €1€2

e = R — R —— kT aee; = K,
The differential input operational amplifier provides proper scaling and
conversion to a single-ended output. Because of the extreme ternperature
sensitivity of this method of multiplication, it is of limited usefulness.
Both the scale factor and the dc level will tend to drift, the latter because
of unavoidable mismatch between the multiplying transistors. The
linearity is also rather poor and ac feedthrough is appreciable. The ac
feedthrough is measured by grounding one of the inputs and applying a
sine wave to the other input. The output should be zero but actually
contains a component of the input sine wave. This is particularly true
when e, is grounded and the ac signal is applied at e;. The variable
transconductance method is important chiefly because of its relation to
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the current-rationing method to be described next. This method, the
basic principles of which were first described by Gilbert,!? is a vast
improvement over the variable transconductance method although it
uses the same basic relationships of the semiconductor junction.

7.5.6 Current ratioing multiplier  One realization of the current ratioing
multiplier is shown in Fig. 7.45a. The heart of this multiplier is the gain
cell shown in Fig. 7.45b. This device ensures that the currents is, i,
in the collectors of transistors Qs Qs remain in a constant ratio equal to
the ratio of the external currents I; and I3, The currents I;, I, and Ig
are generated by constant current sources. The currents and voltages
of the gain cell are related by the equations

I_’ = K‘edel

Iz = KpetVer

Ia = Kae““"'"

14 = K4e°“""°‘
where

a=—

kT

If the transistors and diodes are matched to make o’s equal and K’s
equal, then

E = eﬂ(le—Vd:)
Is

and
B = @®(Vbei—Vbes)
I

The loop equation can be written

Va1 + Vees = Vioes + Vao
or
Vair — Va2 = Vies — Vies

and, if this is substituted into the expression for I,/I;, the result is

I, I

I, L

In the multiplier circuit of Fig. 7.45a, the gain cell concept is used to
enforce the conditions
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Fig. 7.45 Current ratioing multiplier.

(p) GAIN CELL

(a) Multiplier circuit; (b) gain cell.
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. Other necessary relations are

Li=IL+1, Li=Li+1Is

L =1+ 1 Lio=1s+ I,

Il+12=IA I7+IS=IB
ex = R(Il —Iz) ey = R(Is—I1)

Combining the above equations and using a considerable amount of
simple algebra, the relationship for AE is obtained:

(zev/R)(tex/R) o

AE = Ry(Iy — I;0) = I
B

1

- With constant Iz and proper scaling the output voltage is

_ (ex, — ex,)(ey, — ev,)
° 10

. Accurate multiplication requires that the transistors used be dynamically
 matched, a requirement that makes monolithic construction attractive
. for this type of multiplier. However, it has been found possible to
. achieve 1 percent accuracy of multiplication through the use of carefully
. matched discrete transistors.

The current ratioing multiplier has several desirable features which
give it the potential for widespread use. These are:

1.

S oW

Good linearity

Wide bandwidth
Differential input
Stability with temperature
Low ac feedthrough

Low cost

7.5.7 Analog dividers  Any of the multipliers discussed in the preceding
. pages can be used as analog dividers by using the feedback circuits of Fig.

e
2
eo-—10e—1

(a) POSITIVE DENOMINATOR VOLTAGE (b) NEGATIVE DENOMINATOR VOLTAGE

Fig. 7.46 Analog division techniques. (a) Positive denominator voltage; (b) negative
. denominator voltage.
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7.46a and b. Note that only two-quadrant operation is possible because
the voltage e, must be of opposite polarity to e;. For e; < 0, the mul-
tiplier must provide polarity reversal whereas for e; > 0 the multiplier
must generate -+ eie,/10 = —e, to ensure stable operation (negative
feedback). The principal limitation of such feedback dividers is the large
error term as e; — 0. This error term severely limits the dynamic range
of the divider, especially where the error of the multiplier may have its
largest value when the input signals are small (such as in the quarter-
square multiplier). The best multipliers for use in feedback division are
those whose error curve passes smoothly through the origin (such as the
triangle-averaging and current-ratioing types).

7.5.8 Squarers and square rooters One of the most obvious applica-
tions of an analog multiplier is for computing the square of a signal
voltage. Such calculations are quite common in power measurement,
rms level measurement, and in computations of vector magnitude.
Figure 7.47 illustrates such an application. The square-root funection is
obtained by using the multiplier as the feedback element, such as in the
case of the divider circuit. The operational amplifier enforces the
conditions

er 1 el el
102R 102R 10R
612 622
2 — 21 22
T T

e = Vei? 4+ e?

X 2
€
Y 10
e RAS 2
10 e
-9
IO— XY Y
2R R 10
X
X eg
v Xy \JO 2R
& O o vVW—s -
€o

Fig. 7.47 Multipliers used in vector magnitude computation.
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ACTIVE FILTERS

The operational amplifier, especially the integrated-circuit operational
amplifier, proves to be an extremely useful active device in the realization
of active RC networks. Operational amplifiers have high input imped-
ance, low output impedance, large open-loop gain, and low cost. These
qualities are used to advantage in the circuits to be discussed in this chap-
ter. Enough has been discussed about operational amplifiers in the first
chapters of this book so that we will not dwell on their properties here.

We will begin our discussion of active filters in Sec. 8.1 by making
statements about active filters in general. Then in Sec. 8.2 we will dis-
cuss transfer functions and their parameters. Useful formulas are pre-
sented to help evaluate the effects of tolerances and temperature coeffi-
cients of resistors and capacitors. In Sec. 8.3 we will then describe
several realizations and provide design equations and sensitivity equa-
tions. The basic sensitivity relations are derived and discussed in
Appendix C. After we have become familiar with the circuit realiza-
tions, we will discuss tuning (Sec. 8.4), how operational amplifier charac-
teristics affect filter performance (Sec. 8.5), and, briefly, the character-
istics of resistors and capacitors (Sec. 8.6). The chapter concludes with
a set of filter design and tuning tables (Sec. 8.7).
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8.1 Active Filter Characteristics

The active element, in this case the operational amplifier, in active
networks is necessary to permit the realization of complex left hand plane
poles using only resistors and capacitors for the passive elements. The
operational amplifier permits the use of reasonable-valued resistors and
capacitors even at frequencies as low as 107 Hz. An added bonus is the
isolation afforded by the low output impedances of individual stages so
that network stages can be designed and tuned independently with min-
imal interaction. Other active elements, the negative immittance con-
verter and the gyrator, can be implemented with operational amplifiers
but for practical reasons are not widely used.

Active filters have some characteristics of their own that make them
sufficiently different from passive filters that one who uses them must be
aware of these differences. For example, active filters usually have
single-ended inputs and outputs and thus do not “float” with respect to
the system power supply or common as a passive RLC network can.
Amplifiers used for active elements have a limited input and output
voltage range (+ 10 V for most operational amplifier circuits) and an out-
put current capability of a few milliamperes.

The outputs of active filters built with operational amplifiers have a dc
voltage offset which drifts with ambient temperature changes. The
voltage offset might range from a few microvolts up to several hundred
millivolts. Drifts may range from 1 to 100 xV/°C or even more from a
multiple-pole low-pass filter built up of many pole-pair stages. The
inputs of active filters may have a bias current; this would be true for
low-pass and band-reject filters and may be true for bandpass and high-
pass filters, depending upon the particular circuit realization. The bias
current may range from a few picoamperes for field-effect transistor
operational amplifiers to a few microamperes for bipolar transistor and
integrated-circuit amplifiers.

Active filters can provide excellent isolation capabxhtles that is, a high
input impedance ranging from a few kilohms to several thousand meg-
ohms if input buffer amplifiers are used, and a low output impedance
ranging from a few hundred ohms down to less than 1 €. Unity-gain
bandwidths as high as 100 MHz are available in operational amplifiers
and permit filter designs in the vicinity of 1 Mec. Slewing rate, which is
related to full-power response, is the limiting factor for large-signal
characteristics. Frequencies as low as 103 Hz are possible, but filters at
these frequencies can become rather bulky because of capacitor sizes.
Active filters can have voltage gain, as much as 40 dB in low-frequency
low-Q filters.
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The primary advantage of active filters is their small size and weight
for low-frequency applications and their ruggedness.

All types of responses are possible: the old standards, Butterworth,
Chebyshev, and Bessel (Thompson), single-tuned and stagger-tuned
bandpass as well as other responses that meet special needs.

The range of Q’s possible for active filters extends up to Q’s of a few
hundred. However, high-Q networks capable of maintaining stability
of their characteristics, in the face of element changes with time, tempera-
ture, voltage, and frequency, require more expensive (and usually larger
size) resistors and capacitors and generally more operational amplifiers
than low-Q (less than 10) filters. These facts will become apparent as
individual circuits are discussed.

8.2 Pole Pairs, Network Functions,
and Parameters

The circuits to be described realize a single-pole or a single complex
pole pair. More complicated filters are then built up from these indi-
vidual building blocks. This approach permits ease of design and tuning
of a complex filter, an important practical matter, by reducing interac-
tions between elements. This approach also permits 4 single systematic
approach to answering the question: What happens to the response of a
filter if the network element values are not accurate and if they drift
with time and temperature?

The filter network functions that are of most interest are magnitude,
phase, and group delay. The network parameters that are important
are some characteristic frequency, Q, and passband gain. In this
section these functions and parameters will be briefly examined for
single-pole and complex-pole-pair networks for low-pass, high-pass, and
bandpass networks. These relations will all be useful in the next section
for deriving the sensitivity functions of these network realizations.

8.2.1 Low-pass network functions

Single Pole. The single-pole low-pass transfer function in the complex
frequency variables is :
Howo

S + wo

The magnitude of the transfer function for the response to sinusoidal
steady-state excitation is

H(s) =

2.2\
H(w)| = G(w) = (H—“’)

wZ + w02
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The phase is
o(w) = — arctan —
Wo
and the group delay is
d¢(w) cos? ¢
w) = ——/——— = ——
dw Wo
Complex Conjugate Pole Pair. The complex-conjugate-pole-pair low-
pass transfer function and the sinusoidal steady-state magnitude and
phase functions are

How,?
H(s) = ; + awos + wo?
‘ H,2w,! %
[H{o)| = Glw) = [w‘ + wiwo?(a? — 2) + wo‘]

¢(w) = — arctan [i <2w% + M)]

— arctan [1 (2 L _ V4 — a’)]
[+3 Wo

The relation for phase given above is expressed in a form suitable for
general computer use since, on many computers, the arctan function
can be determined only for the principal angle. Note that a? is usually
never greater than 4. If it is, the poles will no longer be complex. The
Q of a complex pole pair equals 1/a.

The group delay for a complex conjugate pole pair is

2sin?2¢ sin 2¢

awo 2w

7(w) =

8.2.2 High-pass network functions

Single Pole. The single-pole high-pass transfer function and the
sinusoidal steady-state magnitude, phase, and delay functions are

H.s
H =
(s) —
H,%0? ¥
Gw) = (w——z T w.ﬂ)
o(w) = T _ arctan —
2 Wo
_—
(@) = sin® ¢

Wo
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Complex Conjugate Pole Pair. The complex-conjugate-pole-pair high-
pass transfer function and the sinusoidal steady-state magnitude, phase,
and delay functions are

H,s?
His) = s? 4+ awosS + wo?
H, 204 1%
Gw) = [w‘ + wiwol(a? — 2) 4+ wo‘]

¢(w) = = — arctan [i (2“)i +1v4— az)]
— arctan [i (2 L _ M)]

Wo

2sin?2¢ sin 2¢
(w) = - -

Wo 2w

8.2.3 Bandpass network function The complex-conjugate-pole-pair
bandpass transfer function is

Hoaw,s
H = —_—
) 82 4+ awoS + wo?
where
1 Wo fo
= — d = =
* Q an Q N W2 T Wi fz—fl

and where f; and f; are the frequencies where the magnitude response

is —3 dB from H,, the passband gain which occurs at w, = 2xf,. The

sinusoidal steady-state transfer function may be written in the form
H,

1+ jQ(“’/wo - “’O/w)

Thus, the magnitude, phase, and delay functions are

H(jw) =

H,? el
6w = i3 o
H,2awow? ]
B [w‘ + w?wot(a? — 2) + wo‘]

o(w) = g — arctan (2Qw m) — arctan (2Q w% -V ;1—62_:—1)

Wo

() = 2Q cos? ¢ + sin 2¢

Wo 2w

8.2.4 Band-reject network function A band-reject filter can be realized
by performing the operation 1 — Hgp(s), where Hpp(s) is a bandpass
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transfer function (Fig. 8.1). If R’ = RH, (bandpass)
SZ + wo2 _I}E
s 4 awos + wo? R

Since this filter is very closely related to the bandpass filter, its properties
will not be discussed.

H(s) = —

8.3 Filter Realizations!?

In this section we shall present some realizations for active filters. The
operational amplifier filter circuits to be analyzed, and for which design
procedures and sensitivity equations are given, are the infinite-gain
multiple feedback, controlled source, infinite-gain state-variable feedback,
and negative immittance converter realizations. Another realization
sometimes used is the infinite-gain single-feedback type. This type
involves the use of bridged-T and twin-T networks as well as requiring
the cancellation of unwanted zeros and poles. Thus this type requires
many elements to realize a transfer function with complex poles and is
therefore uneconomical. Trimming and adjustment of bridged-T or
twin-T networks is difficult since the passive elements interact to a high
degree in such networks. For these reasons this circuit will not be dis-
cussed. Single real pole realizations will not be shown since these are
rather trivial and easy to design. In addition, single-operational-
amplifier single-pole circuits are rather uneconomical.

Design procedures given in this section are only suggested procedures.
Other choices are possible, and as one gains experience with these circuits,
it becomes desirable to design procedures for minimizing sensitivity in
certain network parameters or to ensure a convenient spread of element
values. In the design procedures given, the capacitors are always made
equal. In addition, one usually starts the design process by selecting the
capacitor value because there are fewer standard values of capacitors than
there are resistors. Resistors are less expensive than capacitors and are
more easily used in trimming schemes. In some cases the passband gain

R Re

&
(

+
O

BANDPASS
FILTER

Fig. 8.1 Band-reject filter. i
_L_ (INVERTING) —
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+ —O+

E Fig. 8.2 Infinite-gain multiple-

Ey
i io- feedback circuit.

H, is a free parameter. It is often convenient to let H, be a variable
which can be used as a parameter for determining optimum, or at least
small, sensitivities of certain parameters. An example of this is given in
the controlled-source circuit designs. Also, letting H, be a free parameter
simplifies complicated design equations.

8.3.1 Infinite-gain multiple-feedback circuits  Figure 8.2 illustrates the
infinite-gain multiple-feedback connection for a pair of complex conjugate
s-plane poles with zeros restricted to the origin or infinity. The amplifier
is used in its inverting configuration, with the 4 input grounded. Each
element Y; represents a single resistor or capacitor. The voltage transfer
function is

o) = mLLL
E, Ys(Y:s+ Y+ Ys + YY) + Y:Y,

+ (1/Aou)[(Yas + Ye) (Y1 + Yo + Y4) + Y;5Y5]
In the limiting case as Aoy approaches infinity we obtain

o) = ity
B, Ys(Yi+ Y.+ Y + Y) + Y,Y,

Examples that follow show how these five elements may be chosen so as
to realize low-pass, high-pass and bandpass network functions.

Low Pass. The infinite-gain multiple-feedback circuit for a low-pass
network function is shown in Fig. 8.3. The voltage transfer function is
E, ®) = —1/RR;C.Cs
E, s? 4+ (s/C2)(1/R1 + 1/Rs + 1/R4) + 1/R3R4C:Cs
Note that this circuit produces a signal inversion, as will all circuits

realized by this technique.
For this circuit, following the notation of the low-pass network function,
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1 ¥
@ = (R3R4CzC5)

\/Es( Rs \/}E \/RzR4)
PR b \/—+ = T
C:\VR, " VR, R,

¢ =m+ ¢rp

T =TLP
Note that the phase inversion has been incorporated into the phase
function. A tuning procedure for this circuit would be first to adjust w,
with R; at a frequency of 10w, as outlined in the section on tuning, Then
adjust a with R, at the « peaking frequency.

The sensitivities of the network parameters to circuit element changes
follow. Remember that the open-loop gain of the operational amplifier is
assumed to be infinite (at least very large), and so sensitivity functions
for open-loop gain changes are not considered.

Sge = Sp¥e = 8¢, = S¢o0 = — —;—
1
Snla - awoRlcg
1 1
Swt=3 awoR3Ce
1 1
B = 2 awR(Cs
SR.H" = —SR‘H" =1

Note that Sc,* and Sc,* are constant and opposite in sign and so are
Sg,He and Sg,Ho.

DESIGN PROCEDURE

Given: H,, a, w, = 2xf,

Choose: C; = C, a convenient value
Cs = KG

Fig. 8.3 Multiple-feedback low-
pass filter.
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a 4(H, + 1)]
2w,C [1 + \/1 Ka?

Calculate: Ry =

R
R1 = ﬁ:

1
Rq = wo2C?R K

For best results H, should be less than 10 for circuits with an « of about
0.1 (Q = 10) and can be as high as 100 for an « of about 1 (Q = 1) or
less. These extreme limits assume that the operational amplifier has
an open-loop gain of at least 80 dB at the frequency of interest. The
effects of finite open-loop gain for multiple feedback circuits will be
discussed later.

High Pass. A high-pass realization is illustrated in Fig. 8.4. The
voltage transfer function is

}E’ (s) = —(Cy/Cy)s?
E1 s? + S(l/Rs)(C1/0304 + }/Cg + 1/03) + 1/R2R50304
In terms of our high-pass network function
C,
H, = G.

1 ¥
@ = (RstCaC4>
_ /&( Cy Cs \E)
« R: x/cac4+ T NG,

¢ =7+ ¢ur

= THP

Tuning this high-pass filter will have to be done in the reverse order
to that of the low-pass filter. First, adjust « with R, or Rs at the
frequency where the o peak occurs (the w, frequency is not known

- 2 _& Fig. 84 Multiple-feedback
high-pass filter.
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because w, has not been set yet). Then adjust w, by adjusting R,
and R;s simultaneously by the same percentage: o will remain constant.
A trimming scheme involving C; would be simpler. The sensitivities
to element value changes are

1
Sp,e = Spe = 8¢ = 8¢ = — =
2

1

SR," = —-SR.“ = 5

Ll 1 (G
Sc' 9 awoR503 (03 + 1)
1

1 C
S a« = — .
T 2 awoRsCl (Ca + 1)

U e
Cr awoR5 0304
SclH" = —SC‘H" =

DESIGN PROCEDURE
Given: H,, a, w, = 2xf,
Choose: C = C; = C;, a convenient value

\

1
Calculate: Rs = —— (2H, + 1)
aw,C
o
R» = wC(2H, + 1)
C
C4 = i:

Again, restrictions on H, are the same as those for the low-pass case.
Note that this realization requires three capacitors, a feature which
might make it undesirable when compared with other circuits.

Bandpass 1. There are several configurations of the five elements
which may be used to realize a bandpass function. One of the more
practical configurations is the one shown in Iig. 8.5. The voltage transfer
function is

Eg (S) _ —S(I/R104)

E, s? + s(1/Rs)(1/Cs + 1/Cs) + (1/RsC5Ca)(1/R1 + 1/Ra)

In terms of our bandpass network function

1
(Ri/Rs)(1 4 C4/Cy)

H, =
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-l w)]
“ 7 | RsCsCi \R: ' R,

1 1 Cs C.
Q *7 \/Rs(l/Rl T 1/Ry) [ c. T \g]
¢ )

Tuning this filter appears rather formidable. In practice R; > R, and
so R, can be used to trim the Q. Then, to adjust the center frequency,
R. and R; can be simultaneously adjusted by the same percentage with
negligible effect on the Q.

The sensitivities of the network parameters with respect to the elements
are

1
SR;"O = SC'“D = SC“"u = — 5
S Wo — _—_]_'—.
s h 2wo2R1R50304
—1
S 0o —
B T 20e?RaRsCsCa
R, 1
§p@ = — -t =
BT 2R, + Ry 2
R. 1
§p@ = — 2 =
BT 2R, + Ry 2
1
Srl =3
Q 1
S Q@ = - -
Cs OJORsC;; 2
Q 1
8§cQ = — =
Ce woRSC4 2
;_—_To
E0

- Fig. 85 Multiple-feedback
bandpass filter.




Active Filters 293
DESIGN PROCEDURE
. 1
Given: H,, Q = = w, = 2rf,

a

Choose: C = C; = C,

Calculate: Q = !
a
R = H,,(i,c
R e
e

Again, restrictions on H, apply to guarantee that the design equations
give fairly accurate results.

Bandpass 2. Another multiple-feedback circuit uses an additional
active element to overcome some of the disadvantages of the single-
amplifier circuit, especially the bandpass realization for Q’s roughly
between 10 and 50. High Q’s realized with bandpass 1 have large spreads
of element values and high Q sensitivities to element value changes. The
multiple-feedback circuit with positive feedback is shown in Fig. 8.6.
The voltage transfer function is

IE, s(K/R104)

B, @ = & /RGO + Cu/Cs — KRo/Re) + (1/C:CeR)(1/Rs
+ 1/R: + 1/Re)

1
|| q" é"‘

Fig. 8.6 Multiple-feedback bandpass circuit with positive
feedback.
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Note that the output is taken at the second amplifier. The overall
signal transfer is noninverting. The circuit parameters are

1 1
B = R, /KRy (1 + C1/Cy) = 1/Rs

)
“ 7 [RC:Ci \R: ' R: ' R

1_=a=\/ 1 @(1+9_KR5>
Q Rs(1/R1 + 1/R: + 1/R¢) VC, C: R
¢

T

Since R, and R are lé,rger than Rs, R is used to trim the center frequency.
Note that in this circuit Q can be adjusted with K without influencing w,.
The sensitivity of the network parameters to element value changes are

SRIH“ = —1
H, R Cs
Ho — _ Ho — -~ -~
Se, Se. K Rs C;
H, R, Cs
Ho — SpHo = ——~ — (1 4 =2
Sk R K Rs( + cs>
R,
Ho — —H, —
Sk, R
S wo—s wn—s Wo — ._l
c,”® = D¢, = DRy ° = 2
S Wo — ;1_
BT 940R1IR5C3Cy
S Wo — .;1_
B T 940?RyRsC3Co
S wo — .___.:'_1___
B T 240tRsR6CaCl
-1
Q o — -
S, 2wo’R1R5C:Cy
-1
Q — — - @@
Sr, 2wo?RaRsC3Cy
so_ 1 1 3 1
Re 2 (1 + R¢/R; + Re/Rs)  (Re/KRs)(1 + Cy/Cs) — 1
1
so- 9 _1

! woRsca 2
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]

{

: Q ( KRs) 1
Q = — J—
SC‘ woR5C4 1 Rn 2
, Q ( 04) 1
S Q = 1 et — —
bR, woRs,C4 + Cs 2
—KQ
Q =
S8 = LR

SpK = —Sp,K =1

DESIGN PROCEDURE

Given: Q = 1/a, w, = 2xf,

H, must be a free parameter.

Choose: C =C3; = C,, R =Ry =Rs

K is chosen to reduce the spread of element values or to optimize
sensitivity. It might typically be between 1 and 10.

Q
1 : =
Calculate: R o.C
KQ
R¢e =R 5Q — 1

1 1 2 1
= — = —_ 1 —_—— _—
Ca R:. R (Q kT KQ)
FFor this procedure, H, = \/Q K.

This completes the section on infinite-gain multiple-feedback realiza-
tions. A few general comments are in order. An advantage of this
realization is that the output impedance is low; thus networks may be
cascaded with negligible interaction. A disadvantage is that it is not
possible to obtain high Q without resorting to large spreads of element
values and also incurring large Q sensitivities. The multiple-feedback
realization with positive feedback can overcome this and allow reasonable
sensitivities up to a Q of 50.

8.3.2 Controlled-source circuits A noninverting voltage-controlled
voltage source (VCVS) implemented with an operational amplifier is
illustrated in Fig. 8.7. The input impedance is very large, tens to
hundreds of thousands of megohms, depending upon the type of opera-
tional amplifier, and the output impedance is very low, usually less than
1 Q for K between 1 and 10. The voltage transfer function is

Ro

R X

E,
E(S)—l-’r
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O+
EO

ft Fig. 8.7 Noninverting opera-

= tional amplifier VCVS.

The sensitivities of K to the two resistors are

Sr.EX = 1
SpEX = —1
Figure 8.8 shows the controlled-source connection for a circuit which may
be used to realize voltage transfer functions with a single pair of complex
conjugate s-plane poles with zeros restricted to the origin or infinity.
The Y; are restricted to be single elements, R’s and C’s. These five ele-
ments may be chosen so as to realize low-pass, high-pass, and bandpass
network functions. Realizations are possible with K < 0; but, since this
operational amplifier circuit always has K greater than 4-1, these will not
be discussed. The voltage transfer function is
E. ® = KY,Y,
E; Ys(Yi+ Yo+ Y+ Y) + [Y: + Yao(1 — K) + Y3
Low Pass. A VCVS circuit for a low-pass network function is shown in
Fig. 8.9. The voltage transfer function is

K/RiR:C,Ce
s? + s[1/R:C1 + 1/R:C: + (1 — K)/R.C,] + 1/R1R:C,C,
The network parameters are
H,=K

1 1%
@™ (Rleclc)

E,
E, (s) =

transfer function.

n_.o+
Eo

~  Fig. 8.8 VCVS configuration

for a second-degree voltage
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Fig. 8.9 VCVS low-pass net-

work.

a =

dLp

= TLP

¢
r

Rng 14
(Rlcl) +

297

Cy

| L

I\

Ry Ry
Lo+
+

E, C, Eo-

1

R102 e (R,),Cl)M (I{ICI)M
il — K (=2
(chl) T \&.C, R:Cs

Controlled-source circuits are easier to tune than other circuit realizations.
In fact, they can be adjusted over wide ranges without interaction of the

network parameters.

w, is tuned by adjusting R, and R, by equal per-

centages: a will not be affected. Capacitance C, and C; can be adjusted

in the same way for the same result.

a is trimmed by adjusting K. The

sensitivities of the network parameters to element value changes are

SRl“’o =
SgHe =
SR,“ =
SR," =
8o, =
Sc," =

Sx* =

DESIGN PROCEDURE

Given: H,, a, w, = 2xf,

1
SR,“"’ = Scl”" = Sc’“ﬂ = — 5
1
1 1
2 aw.R1C1
1 1 1 1-K
2 awRs (a + C, )
1 1 1 1\
2wl (E * E)
1 1-K
2 awoR:Ce
—-K
awoR2C;

Choose: C; = C; = C, a convenient value

Calculate: K = H, > 2
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 a 4(H, — 2)
R, 2%C[l+ 1= ]

1
Wo 2C’Rz

R1=

If H, is large, say greater than 10, there will be large spreads in element
values and high sensitivities. An interesting design procedure is to
use K to vary the sensitivities of circuit parameters.

Capacitors are often the components which have the largest tempera-
ture coefficients. It is possible to set K such that the overall a sensi-
tivity is minimum, assuming that the capacitors drift equally. In
this case we set S¢,* = —S8¢,*

Choose C = C; = C, and let Ry = R, = R; then K = 3 — a and
R = 1/w,C.

High Pass. A VCVS circuit realization of a high-pass network func-
tion is shown in Fig. 8.10. The voltage transfer function is

Eo ( ) Ks?

=0 (s) =

E, s? + S[I/chx + 1/R.C; + (1 — K)/R,Cy] + 1/R1R2CICZ

The network parameters are

H.=K

1 ¥
“ = (Rleclcz)
RICI)” (Rng)’é (chz)”é <R202>"*
= — K
* (ch, \re) T \RC: R.C,
The same comments about frequency adjustment and tuning that we

mentioned in the low-pass case apply for the high-pass case also. The
network parameter sensitivities with respect to element value changes are
1

SRl“’o = SR""G = SCl“’o = SC’”" = — =

2

work.

40 +
Eo
j’ Fig. 8.10 VCYVS high-pass net-
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g._l_1-K
B 7 9 RiCiawe
1 1/1 1 1
=5~ 1 (6 3
1 1 1-K 1
Scl _5_(1@001( Rl +R—2)
1 1
) SC' - 5 - awngRz
: gao_ —K
K —awoR101
SKH":I

DESIGN PROCEDURE

Given H,, o, w, = 27f,

Choose C; = C, = C

a+Va +8H, — 1)
44,,C

4 1
R =
' 0C Va? + 8(H, — 1)

Naturally, H, = K must be such that R, and R, are positive-valued
resistors. Again, a large H, will result in a large spread of element
values and high sensitivities. We can use the same scheme for making

Calculate: R; =

Sc,® = — Sc,* as in the low-pass case.
Choose C; =C; =C; let Ry,=R: =R. Then K=3 — a and
R = 1/w,C.

Bandpass 1. A VCVS realization for the bandpass network function
is shown in Fig. 8.11. The voltage transfer function is

& () _ Ks/R102
Els_surs[l Lt 1 l—K]
RaCz RIC2 R]Cl chl chz

FL(LL D
R;\R: R./ CiC:
The network parameters are

K
1 + Ry/Rs + C2/Ci(1 + Ry/R2) + (1 — K)(R1/Ra)

G DT
“ = |Rs\R: ' R/ CiCy

H, =
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- \/aﬁ%m—z)[\ﬁ( tgt R,K)

CEE)]

The sensitivities of the network parameters to element changes are

Ol

Sy = Sc,% = Sp, —%
Spe = —_I_SR% N S
T 20 RiCIRC: ™ 2w,™RsCiRaCs
S = I}ggg % =5 +—Pt1/R,) + w?ﬁl (o + 012)
S S Rt ak (ci * IE—K)
Seu? = _71 + aw?Cz (" TR R,K)
St =14 p
Sp,He = wiz (Cil +1 E,K)
S, = wolg.SCZ

@)
Ho — % [~ il
Sof = Lo \® TR,

Q (1 1 1—-K)
So,He = — = -1
Cs w002 R1+R3+ Rz

DESIGN PROCEDURE

The general design formulas obtained by solving the network parameter
equations for the circuit elements are very complicated. The following
design procedure, however, has been found to be useful. It gives a
fairly good spread of element values.

Given: Q, w, = 2xf,

H, will be a free parameter,

Choose: C = C, = C,, a convenient value
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Ry
+
E1
Fig. 8.11 VCVS bandpass net- -
work. i
Calculate: K = 5 — ﬁ
Q
R = V2
T wC
Then
5
H, = '% Q-1

High-Q circuits will have a large spread of element values and high
sensitivities. Q’s should be less than 10 for best results.

Four other bandpass circuits are realizable by using the VCVS with
K > 0. One is obtained by removing C, in the circuit of Fig. 8.11 and
connecting one terminal to the node formed by C; — R, — R, and the
other terminal to ground. Two others are generated by interchanging
the locations of the resistors and capacitors in the circuit of Fig. 8.11 and
the one mentioned above. These two are of less practical interest because
they require three capacitors and one of the capacitors is a series capacitor
at the input.

Bandpass 2. Still another bandpass realization is illustrated in Fig.
8.12. The voltage transfer function is

—

] R,

1
+o—¢\/\/\-|
E

Fig. 812 Alternative VCVS _—T'_ -

mi
)
+

bandpass network.
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K 1
E "1-K R
E, 1 1 1 1
“+%RwﬁHML+maa—KJ+Rmﬁ@2
u K
T 1 = K)Ri/Rz + Co/Cy) + 1
(RleCxC)
1 ’ ICI ’chz m
é o R.C; 1-— ( Rlcz)
o= ¢BP
T = TBP

The center frequency can be trimmed by xﬂarying R, and R,. If this
is done simultaneously so that their ratio remains constant, @ will not
change. Q can be trimmed with K. "Note that there is a restriction on
the minimum value K may have for stability. Because of this restriction,
the passband gain H, will be negative. The sensitivities of the network
parameters to element value changes are

N | =

Snlwo = SR’wo - Scluo — SC,”" [

SeHe = 1 + H, (Rl + gj)

Sp.e = — g = H, 15
ScBe = —S¢ B = H, 1 —I-( K 8:

St = (1—:}5@ w01?102

Sal = 5~ wg{l [Cil + m]
St = % B on?zCz

ot = :2_1 + awolthx

-1 1 1 1
Q — —— -
Se, 2 T 2woCs [ + R.:(1 — K)]
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DESIGN PROCEDURE

Given: Q, w, = 2xf,

H, is a free parameter,

Choose: C = C; = C,, a convenient value

1
Calculate: R; = R, =
w,C
_3Q-1
T 2Q -1

Then
Hol =3Q — 1

Q should be limited to about 10.

A few general comments about controlled-source realizations are in
order. The Q (or @) of a circuit may be adjusted independently of w,
by adjusting K: it is not independent of H,, however. Networks may
be cascaded without interaction occurring between them. The frequency
term w, can be adjusted independently of « for the low-pass and high-pass
cases, as discussed earlier. The characteristics of the network are sensi-
tive to K. The circuit becomes very Q-sensitive to element value
changes for high Q’s.

8.3.3 Infinite-gain state-variable circuits An infinite-gain state-
variable network configuration is illustrated in Fig. 8.13. This config-
uration makes use of operational amplifiers in the same way they would

+

++ +4

E

1

o

Fig. 8.13 State-variable infinite-gain network configuration.
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be used in an analog computer realization of transfer functions (i.e., using

integrators and summers). A second-order realization is shown in Fig.

8.14. Here the usual summing amplifier is replaced by a differentially

connected operational amplifier to ease the spread in element values.
The voltage transfer function has the form

E, ) = 8 + a8 + © * © + a,_;5" 4 a8t
El h bo + bls + R bn—lsn—l + bnsn

The design procedures used in this section are simplified procedures in
that C1 = Cz, R1 = Rz, and Rs = Rg. We set R1 = Rg and C1 = Cz
in order to scale adequately the output voltages of the operational ampli-
fiers. The condition Rs; = Rs further simplifies design calculations.
Note that bandpass, low-pass, and high-pass realizations occur simul-
taneously. One merely chooses the output at a different point. In
addition, one can sum the low-pass and high-pass outputs and form a pair
of jw axis zeros. The transfer functions are

1 1+ Re/Rs
B g = RiR:CiC: 1 + Rs/Ry
E, st + 1 1+R6/R5+& 1

S R101 1 + RA/Rs Rs R1R20102

~T™No

m +O
+
(o,

°
o
°
m
Fd
©

|||—o.
i}
-

Fig. 8.14 Second-degree state-variable network.
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o 1 4+ Re/Rs
% &) = 1 4+ R;:/R,
B, .., 1 LfRyR Ry I
R:C:1+ Ry/R:  Rs Ri1R:C,C,
s 1 1+ Re/Rs
Ep ) = R,C: 1 + Rs/Ry
E. .. 1 1+RJRs  Re 1
6 s g

R:Ci1 + Ry/R;  Rs RiR:C,C,

The state-variable realization in general provides less Q sensitivity to
element variation than a single-amplifier realization and for this reason
is sometimes used for high-Q bandpass applications (Q > 50). Of course
it requires three amplifiers, which is a disadvantage. For the low-Q
low-pass and high-pass applications, it is a rather expensive circuit to use.
Since some filter manufacturers use this circuit as a basic building block,

the low-pass and high-pass as well as the bandpass outputs are worth
some discussion.

Low Pass. The network parameters for the low-pass function are

1 + Rs/Rs
1+ Rs/Ry

_( Rs )"'
“e = \RsR:C:R:C;

1 4+ Re/Rs (Rs RzCz)}6

1+ R4y/R; ﬁ—o R.Cy
¢ = ¢rr
r

= TLP

H, =

a =

The sensitivities of the network parameters to element value changes are

1

SR‘uo = Sleo = SR,‘” = Sclwo = SC,‘“ _ — 5 = _SR'wo
Sa...Sa—l—_Sa__Sa

R, — OC;, — 2 - R, — C,
S“—-—l Re/Rs _ _ga

R = 7 2 T RiCiawo(l + Ry/Rs)

1
Spe = ————— = —8g*
R, 1 + Ra/R4 Ry
. —~1

SpHo = —SpHo = —

o e 1 + R4/Rs
Sp Be = — S e 1 R;/Rs

=E1+R3/R4
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DESIGN PROCEDURE

Given: a, w, = 2xf,

H, is a free parameter.

Choose: C = C; = C3, Rs = R¢ = R

1
Calculate: R; = R, =
woC

R4=(’g—1)R3
(+ 1

High Pass. The network parameters for the high-pass function are

1+ Re/Rs
1 + Rs/R,

— S R4 %
@ (RsRleclcz)
1+ Re/Rs (Ea chz)”
%7 1+ R«/R;s \R; R:C,
¢ = oup
T

= THP

Then
H=2—-—a

H, =

The sensitivities of the network parameters to element value changes are

1
Sg,e = Sg,* = Sp,*° = 8¢,* = 8¢, = — 5
1
SR.”" = §
1
SRla = scla = _5
1
SR’a = SC,a - 5
Sa___Sa_l__ RB/RS
BT PR T 9 RiCrawe(l + Re/Rs)
1
Sr = —Sp® = —————
R ™ 7 1+ Rs/Rs
-1
SpHo = —SpHo == ——
" *" 1 + R4/Rs
SgHe = =8t = LR/l

H, 1+ Rs/R,
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DESIGN PROCEDURE

Given: a, w, = 2xf,
" H, is a free parameter.
Again a simplified design procedure is described by setting Rs = Re.
Choose: C, = C, = C
RB = RG = Ra

Calculate: R; = Ry =

R4=(g—1)R3 a<2

a

Re ¥
“ (RsRlclecz)
_ 114 Ry/Rs (Rs RiCi\¥
~ a1+ Re/Rs (R_a chz)
¢ =7+ ¢spr

T = TBP

The sensitivities of the network parameters to element values change are

1
SR:“ = S»len = SRawn = Sclwa = chwo = - 5
1
SR.”O = 5
SpQ = S¢@ = +1
1 1 2
SrQ = ScQ = 1
2 2 2
1 Res/Rs
SpQ = 8pQ = - —
R R 7 27 RiCiau,(1 + Rs/Ra)
1
SpQ = —8§pQ = —
T ™ 7 14 Re/Rs
SpHe = —1 = —Sp/Me

DESIGN PROCEDURE

Given: H,, Q, wo = 2af, .

Again the simplified design procedure consists of setting R; = Re.
Choose: C, = C, = C R; = Rs = R
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1
= R =
Rl 2 (.)OC

R.= Rs(2Q — 1)

Note that all these filters can be tuned by varying R; and R, or C; and

C, simultaneously. The Q can be independently adjusted by Rs; the
gain will change, however.

8.3.4 Negative immittance converter circuits A realization for an
INIC!? (ideal current-inversion negative immittance converter) using a
differential input operational amplifier is shown in Fig. 8.15. The voltage
and current relationships are

E, = E,
R. 1
I = — I = -
1 R1 2 K I2
The sensitivity of K to element value changes is Sg ¥ = —SgX = 1.

One reason the INIC realization might be used is its low sensitivity
to element value changes as compared with other realizations. However,
the INIC realization does not have a low output impedance, and isolating
stages must be used if stages are to be cascaded. Since low-pass and
high-pass filters have low Q’s and, hence, low Q sensitivities for filters
up to about six poles, we will discuss only the bandpass realization. It

is probably not economical to use the INIC for low-pass and high-pass
filters.

Bandpass. The INIC realization for a bandpass filter is shown in
Fig. 8.16.

The voltage transfer function is
E, o) = —Ks/R.C,
E1 g2 + S(l/R101 + 1/R202 - I{/Rlcz) + 1/R101R202

m O
-+

0 Fig. 8.15 Operational amplifier
- realization of the INIC.
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. The network parameters are
1

H — K
® " C/Ci+ Ry/R: — K
Q=:- 1 e
a  4/RiCi/R:C: + VR:Cs/RiC1 — K VR,C1/R1Cs
1 ¥
@ = (Rlclecz)
¢ =7+ ¢pr

T TBP

The sensitivities of the H,, Q, w, network parameters to element value

changes are

SKHD =1 + Ho
—Ri/R,
Sy Ho = = _Q. H,
T C:/Ci + Ri/R; — K Sr,
C./Cy
S Ho = — Q. He
o = G/ + Ri/R K
Q (1 K) 1
Spe=— (= —-=)-=
BT WR\CI G 2
Q 1
S = - =
BT @RsC: 2
Q 1
S Q = _:
Ci woR1C1 2
Q (1 K) 1
S @ = R
C T wC:\R: Ry 2
Sk = QK
woR1Ce
1
SR“"" —_ SR_:’" —_ Sclwo = chwo —_ — 5
KR
s—v‘i‘/\/‘—r
E1
T R
= 1o
Fig. 8.16 INIC bandpass net- R, E°_
work. |<‘,z
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DESIGN PROCEDURE

Given: Q, w, = 2xf,
Choose: C;, = C, = C
Let R1 = Rz = R’
Then

[\V]
[y
O |
p—t

R’ =

Q

Wo

The value for R in the INIC is relatively arbitrary, but best results
are obtained if it is in the 10 to 30 k@ range.
Note that for this design procedure

1
Q: —_— =
Ske=20-1 Q=;—%
K
SgHo = 2 s =2Q —1=
« Q Ho=2Q-1=;—%
1
“ = R'C
1
SR’Q=SClQ=_.SR,Q=_SC’Q=Q—§

SCIHO = SR=H° = —SR1H° = —SC:H° = Q

As one can see from the schematic diagram, a load at E, will affect
the circuit transfer function. Thus INIC realizations cannot be
cascaded without isolating amplifiers between stages.

Note that, in general, if R; and R, are adjusted by the same per-
centage, the Q and gain remain constant while the center frequency
varies. The same holds true for equal percentage changes in C.

Note also that adjusting K gives a Q adjustment independent of the
center frequency; the gain will change, however.

8.4 Tuning Active Filter Stages

This section discusses a technique for tuning the complex-conjugate-
pole-pair stage. The single-pole stage is easy to tune and will not be
discussed here.

The magnitude response of a low-pass complex pole pair for several
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values of a is plotted in Fig. 8.17. Note that at 10w, all responses have
essentially the same magnitude with respect to the magnitude at direct
current. Thus we can tune w, independently of « at this frequency.
Also at seme low frequency, say 0.1w,, the magnitude of the responses is

essentially the same. The curves have a peak at wa = wo V1 — a?/2
for @ < 4/2: For a > /2 there is no peak. The frequency at which
the peak occurs will be called the alpha-peak frequency and will be
designated w,. This frequency will be used as a tuning frequency as
will be 10w, and 0.lw,. For those stages where a > +/2 the —3-dB
frequency will be used instead of w,. The particular resistors or
capacitors used for tuning or trimming a complex-pole-pair stage were
discussed previously for each of the different circuit realizations.

The procedure for tuning the low-pass pole-pair stage is first to measure
the response at 0.1w, and then to measure the response at 10w, and trim
the element or elements necessary to adjust w, to give the correct response
at that frequency. This may affect the response at 0.1w,, depending on
the circuit realization. Now measure the response at w, or the —3-dB
frequency, whichever is the case, and trim the a of the stage to give the
correct response. This may affect the w, adjustment. In some realiza-
tions a can be set independently of w,. The response at 0.1w, must be
measured again since the o adjustment may have affected it. The gain
H, should be fairly close to the calculated value if there are no parameter
effects such as those produced by capacitor leakage and dissipation factor,
stray wiring capacitance or amplifier open-loop gain and frequency
response limitations.

The tables at the end of this chapter (Sec. 8.7) give the w, or the —3-dB
frequencies and the magnitude of the peak in decibels with respect to the
gain at direct current.

A high-pass stage is tuned in the same manner except that the tuning
frequencies are the reciprocals of those for the low-pass stage.

Bandpass stage tuning is, conceptually at least, simpler but practically
may be more difficult because of interactions among elements. The Q is
perhaps a less critical performance parameter than the center frequency.
Thus it may be reasonable to adjust the center frequency only and let the
Q be what it turns out to be; it will probably be close to the desired value
anyway.

Those stages easiest to tune are those where the Q can be adjusted
independently from w,. Otherwise, one has to achieve the correct values
by an iterative process. The Q is adjusted at those frequencies which are
—3 dB down from the peak response at w,. Those frequencies are

' f,
f, = 2Q \/1 + 4Q



Active Filters 313

—f,
fi= 59 +3q V14

where Q = f,/bandwidth = f,/(f2 — f1) and fifs = f,%
For high Q’s (Q > 10) one can assume arithmetic symmetry of the
—3-dB frequencies about the center frequency. Then

BW
fr= =+
BW
fi=fom 5

where the bandwidth BW = {,/Q.

8.5 How Amplifier Performance Affects
Filter Performance

In this section we will examine how certain amplifier performance
characteristics affect filter performance. These performance character-
istics include de voltage offset, bias current, voltage and current noise,
and open-loop gain and are discussed in more detail in Part 1 and
Appendix A.

A de offset voltage and its drift at the output are often important in low-

1

Fig. 8.18 Model for analysis of the effects of offset voltage and bias
currents on a filter circuit.
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pass filter applications. As an example of this type of analysis, consider
the controlled-source low-pass realization shown in Fig. 8.9. At direct
current the circuit becomes that of Fig. 8.18. Bias currents and the
input offset voltage have been included. An additional resistor R. has
been included and can be used to equalize the current offset drift effects,
as will be explained. Analysis reveals

1
= R T 1/A) + Ru/A m2(R1 + Ro)(Ra + Ri)

- IBl[Rc(Rn + Rb) + Rle] - Vou(Ra + Rb)]}

o

Letting A > «
Eo = IBz(Rl + Rz)K - IBl(RcK + Rb) i Vo.K

where K = 1 + Ry/Q,, the ideal closed-loop gain of the controlled-source
amplifier of a controlled-source low-pass realization. R, is used for bias
current compensation. R, may be omitted if impedances are low or if
drift and offset are not critically important. Assuming the bias current
Is: and Ip; ate equal, R, should be

R
Rc=R1+Rz—Eb

The offset and drift problems associated with other realizations are carried
out in the same manner and will not be discussed here.

Output noise of active filter circuits is due to the internal voltage noise
and current noise of the operational amplifier. Effects of voltage and
current noise can be analyzed by using the noise models of the operational
amplifier (see Appendix A). The analysis will not be carried out here
since a separate chapter could easily be written on this subject. Rms
noise sources are usually assumed, and this is normally the specification
given in the data sheets. Low-noise amplifiers sometimes have peak-to-
peak noise specified. Current noise may cause a greater noise output
than voltage noise if the amplifier noise currents are flowing through large
resistances, as is often the case with active filter circuits. FET opera-
tional amplifiers have very low bias current and also have low current
noise. noise.

The effects of open-loop gain characteristics of operational amplifiers on
the multiple-feedback bandpass circuit will now be discussed. Open-loop
gain effects can be severe in the multiple-feedback circuit and especially
for the bandpass realization because of the large amount of loop gain
required for ideal performance. The open-loop gain of the operational
amplifier is neither infinite nor constant for all frequencies. These prop-
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erties are discussed elsewhere (Appendix A) and will not be covered
here. It will be sufficient to say that for our purposes

Ao

A = T s/

where w, is the —3-dB corner frequency of the operational amplifier.
The exact equation for the infinite-gain multiple-feedback realization is

—Y1Y3
Ys(Yi+ Y.+ Y: + Y, 4+ YaY,
4+ A/A)[Y(Y1 + Yo+ Y3+ Yo) 4+ YiY. + Yi(Y: 4+ V)]

H'(s) =

If A— « we have

Hs) = -Y.Y;
Yﬁ(Yl + Y2 + Y3 + Y4) + Y3Y4
Then
H'(s) = H(s)

1+ [1/AEIL = HEA + Y2/Y1)]

Let us define 8(s) = 1/[1 — H(s)(1 + Y./Y,)] as the feedback ratio
(output terminal to the — input), so that A(s)B(s) is the loop gain of the
operational amplifier. Now we can rewrite H'(s) as

’ = - —1'
H'(s) = H(s) [ =17 A(S)B(S)]

Thus, the error due to finite loop gain is

—H(s)

E® = T am80

This equation is completely general for any infinite-gain multiple-feedback
realization. Note that the phase of E(s) s not the phase error of the filter
but is the phase of the error. A plat of magnitude error (|H(jw)| —
|H'(jw)|) and phase error [¢u(jw) — ¢5(jw)] for a 10-kHz bandpass filter
with a gain of 10 and a Q of 20, using an amplifier with a de gain of 100 dB
and a —3-dB corner frequency of 100 Hz (unity-gain bandwidth = 10
MHz), is shown in Fig. 8.19.

Differential input impedance of the operational amplifier also affects
filter performance particularly if network element impedances are large.
If we include this in the analysis, we insert an admittance Y, from the
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Fig. 8.19 Magnitude and phase error of a bandpass filter due to finite open-loop
gain.

minus input of the amplifier to common. In this case

1
PO = TTHEL + Ya/¥s o/ VY0 (Y Ya + Ve £ Yl

Both open-loop gain and differential input impedance change with tem-
perature and affect filter performance, especially at low temperatures,
since they are both smaller in magnitude. The solution, of course, is to
use an amplifier with more gain and higher differential input impedance or
reduce circuit element impedance levels.
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8.6 Circuit Elements

In this section the salient features of the resistors and capacitors most
popularly used as circuit elements will be discussed.

8.6.1 Resistors Three types of resistors most often used are carbon
composition, metal film, and wire-wound resistors. Carbon composition
resistors have a rather poor temperature coefficient of resistance (200 to
500 ppm/°C) and are used for ‘‘room temperature” applications or in
filters which may have rather loose performance tolerances with tempera-
ture, as in the low-Q stages of two- or three-pole high-pass or low-pass
filters. Composition resistors are useful for trimming and padding metal
film or wire-wound resistors where the relatively poor temperature
coefficient causes only a small percentage change in the overall value.
Carbon resistors are relatively inexpensive and are available in a wide
range of values.

Bandpass filters and the high-Q stages of a high-pass or low-pass
multiple-pole filter require metal film or even wire-wound resistors.
Two popular temperature coefficients for metal film resistors are
4100 ppm/°C (T0) and +50 ppm/°C (T2). Metal films can be pur-
chased with a positive- or negative-only temperature coefficient and also
with lower temperature coefficients (for example, +10 ppm/°C). The
metal film resistor is probably the most commonly used resistor for filter
applications and is available in a wide range of values. High-Q filters
and/or filters which require especially stable parameters with tempera-
ture changes may require wire-wound resistors with temperature coef-
ficients as low as a few parts per million per degrees centigrade. High-
frequency applications will require noninductive wound resistors.

Integrated-circuit technology offers alternatives to discrete resistors:
diffused resistors, thin and thick film.

Base-diffused, emitter-diffused, base pinch, and collector pinch resistors
are formed simultaneously with the diffusions for the transistors of the
circuit. Temperature coefficients and initial tolerances make this type
of resistor marginal for active filter applications unless the filter can be
designed so that its parameters depend primarily on resistance ratios.

Thin-film resistors are deposited on ceramic or glass substrates.
Materials such as SnO or a SiO-Cr cermet are deposited by silk-screen
methods. Others such as Nichrome, tantalum, or cermet may be deposited
by evaporation or sputtering. The electrical properties of these resistors
are considerably superior to those of diffused silicon resistors. An advan-
tage of thin film over diffused or thick-film resistors is their superior long-
term stability.
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Thick-film resistors consist of special resistive inks screened and fired
on ceramic substrates. Thick-film resistors are trimmable by means of
sand blasting or laser techniques. The table following gives typical
(untrimmed) parameters for several integrated circuit resistors.

Typical Parameters of Integrated-circuit Resistors

Temperature
Range, coefficient, | Tolerance, | Matching,
Type Q ppm/°C % %
Base-diffused................. 100-30 k 500-2000 +10 1
Emitter-diffused .............. 5-100 900-1500 +15 2
Basepinch................... 5 k-200 k 4000-7000 +50 5
Collector pinch. .............. 10k-500k | 4000-7000 +50 10
Thin film (Ta or Ni-Cr)........| 30-100k 0 + 400 + 2 0.5
Thick film.................... 1-10 M 0 + 500 +20 10

8.6.2 Capacitors Capacitors present the most severe problem to
active-filter designers. Capacitors which have superior characteristics
such as polystyrene, Teflon, NPO ceramic, or mica are expensive and
large in size. NPO ceramic is available in sizes up to about 0.05 uF for
catalog items. Good-quality polystyrene capacitors can be used for the
large values (10 xF) in critical applications but then are physically very
large. Mica capacitors are available in values up to 0.01 uF but are
larger than a Mylar or polycarbonate capacitor of the same value.
Physically small ceramic capacitors such as the ceramic disk capacitors
and others that have large dielectric constants (from 1,200 to 6,000) have
relatively poor characteristics. Capacitance changes with temperature,
frequency, voltage, and time amount to several percent. For high-Q
applications these changes can make a filter stage unstable or have severe
amplitude peaking or attenuation. Such filter stages are usually highly
Q-sensitive to element value changes.

The merit of a capacitor dielectric from the point of view of freedom
from losses is expressed in terms of the power factor of the capacitor.
The power factor is the sine of the angle by which the current flowing
into the capacitor fails to be 90° out of phase with the applied voltage.
The tangent of this angle is called the dissipation factor. The rectprocal
of the dissipation factor is termed the Q and is the ratio of the capacitor
reactance to the equivalent series resistance.

With ordinary dielectrics, phase angle is so small that the power
facter, the dissipation factor, and the reciprocal of the capacitor, Q,
are, for all practical purposes, equal to each other and to the phase angle
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expressed in radians. For high-quality capacitors these are practically
independent of capacitance, voltage, and frequency. Although the
power factor of a capacitor is determined largely by the type of dielectric
it is also affected by the environment in which it operates; it tends to
increase with temperature and is affected by humidity and by the absorp-
tion of moisture.

The effect of a capacitor with its power factor can be taken into account
by replacing the capacitor with an ideal capacitor associated with a
resistance. This resistance may be represented in series or in parallel.
For lower power factors (R, < 1/wC)R, is given by

power factor

Series resistance = R, =
2xfC
For the parallel resistance we have approximately

1
 2xfC(power factor)

Parallel resistance = R,

A list of dielectric materials and representative performance features are
given in Table 8.1.

Integrated-circuit capacitors are of three types; p-n junctions, MOS
structures, and thin-film types. These capacitors have small values,
and their values vary greatly with temperature.

The most suitable capacitor for integrated-circuit filters are those
utilized in hybrid construction and are NPO ceramic chips or, for low-
frequency work, tantalum capacitor chips.

TABLE 8.1 Typical Capacitor Parameters for Different Dielectrics

Temperature
Dielectric Power factor coefficient of
capacitance
Mylar.......... ... 8 X 107414 X 1074 +250 ppm/°C
0-70°C, larger at extremes
High-quality polystrene........ 1 X107+2 X 10~¢ —50 to —100 ppm/°C
' —60 to +60°C
High-quality mica............. 1 X 107%7 X 1074 0-70 ppm/°C
NPO ceramic................. 5 X 107420 X 10~¢ 0 + 30 ppm/°C
Polycarbonate................ 30 X 1074-50 X 10~* | Non-monotonic
Total +19
0-70°C, larger at extremes
Teflon....................... 0.5 X 107¢1.5 X 10~¢{ —250 ppm/°C
—60 to 150°C
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8.7 Filter Design and Tuning Tables

TABLE 8.2 Butterworth Network Parameters

Design Tuning
wa OF
Number —3 dB*
of poles Stage a - Wo frequency | 20 log G(wa)/G(0)
2 1 1.414214 1.000000 1.000*
3 1 a real pole 1.000000 1.000
2 1.000000 1.000000 0.707 1.25
4 1 1.847759 1.000000 0.719*
2 0.765367 1.000000 0.841 3.01
5 1 a real pole 1.000000 1.000*
2 1.618034 1.000000 0.859*
3 0.618034 1.000000 0.899 4.62
6 1 1.931852 1.000000 0.676*
2 1.414214 1.000000 1.000*
3 0.517638 1.000000 0.931 6.02
7 1 a real pole 1.000000 1.000*
2 1.801938 1.000000 0.745*
3 1.246980 1.000000 0.472 0.22
4 0.445042 1.000000 0.949 7.25
8 1 1.961571 1.000000 0.661*
2 1.662939 1.000000 0.829
3 1.111140 1.000000 0.617 0.69
4 0.390181 1.000000 0.961 8.34
9 1 a real pole 1.000000 1.000*
2 1.879385 1.000000 0.703*
3 1.532089 1.000000 0.917*
4 1.000000 1.000000 0.707 1.25
5 0.347296 1.000000 0.969 9.32
10 1 1.985377 1.000000 0.655*
2 1.782013 1.000000 0.756*
3 1.414214 1.000000 1.000*
4 0.907981 1.000000 0.767 1.84
5 0.312869 1.000000 0.975 10.20

* Butterworth filters are frequency-normalized to give —3-dB response at w = 1.0.
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TABLE 8.3 Bessel Network Parameters
Design Tuning
wq OF
Number -3 dB*
of poles Stage a wo frequency |20log G(wa)/G(0)
2 1 1.732051 1.732051 1.362*
3 1 a real pole 2.322185 2.322*
2 1.447080 2.541541 2.483*
4 1 1.915949 3.023265 2.067*
2 1.241406 3.389366 1.624 0.23
5 1 a real pole 3.646738 3.647*
2 1.774511 3.777893 2.874*
3 1.091134 4.261023 2.711 0.78
6 1 1.959563 4.336026 2.872*
2 1.636140 4.566490 3.867*
3 0.977217 5.149177 3.722 1.38
7 1 a real pole 4.971785 4.972*
2 1.878444 5.066204 3.562*
3 1.513268 5.379273 5.004*
4 0.887896 6.049527 4.709 1.99
8 1 1.976320 5.654832 3.701*
2 1.786963 5.825360 4.389*
3 1.406761 6.210417 0.637 0.00
4 0.815881 6.959311 5.680 2.56
9 1 a real pole 6.297005 6.297*
2 1.924161 6.370902 4.330*
3 1.696625 6.606651 5.339*
4 1.314727 7.056082 2.600 0.08
5 0.756481 7.876636 6.655 3.09
10 1 1.984470 6.976066 4.540*
2 1.860312 7.112217 5.069*
3 1.611657 7.405447 6.392*
4 1.234887 7.913585 3.857 0.25
5 0.706560 8.800155 7.623 3.60

* Bessel filters are frequency-normalized to unity delay 7(w) = 1sec at w = 0.
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TABLE 8.4 Chebyshev Network Parameters, Ripple = 0.5 dB, p-p

Design Tuning
wa OF
Number —3 dB*
of poles Stage a wo frequency |20 log G(we)/G(0)
2 1 1.157781 1.231342 0.707 0.50
3 1 a real pole 0.626456 0.626*
2 0.586101 1.068853 0.973 5.03
4 1 1.418218 0.597002 0.595*
2 0.340072 1.031270 1.001 9.50
5 1 areal pole | 0.362320 | 0.362*
2 0.849037 0.690483 0.552 2.28
3 0.220024 1.017735 1.005 13.20
6 1 1. 462760 0.396229 0.383*
2 0.552371 0.768121 0.707 5.50
3 0.153543 1.011446 1.005 16.30
7 1 a real pole 0.256170 0.256*
2 0.916126 0.503863 0.384 1.78
3 0.388267 0.822729 0.791 8.38
4 0.113099 1.008022 1.005 18.94
8 1 1.478033 0.296736 0.283*
2 0.620857 0.598874 0.538 4.58
3 0.288544 0.861007 0.843 10.89
4 0.086724 1.005948 1.004 21.25
9 1 a real pole 0.198405 0.198*
2 0.943041 0.395402 0.295 1.60
3 0.451865 0.672711 0.637 7.13
4 0.223313 0.888462 0.223 13.08
5 0.068590 1.004595 1.003 23.28
10 1 1.485045 0.237232 0.225*
2 0.651573 0.487765 0.433 4.21
3 0.345860 0.729251 0.707 9.35
4 0.178208 0.908680 0.901 15.02
5 0.055595 1.003661 1.003 25.10

* These filters are frequency-normalized so that the magnitude response at the pass-
band edge passes through the lower boundary of the ripple band at w = 1.
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TABLE 8.5 Chebyshev Network Parameters, Ripple =1 dB, p-p

Design ‘ Tuning
wWg OT
Number -3 dB*
of poles Stage a Wo frequency | 20 log G(wa)/G(0)
2 1 1.045456 1.050005 0.707 1.00
3 1 a real pole 0.494171 0.494*
2 0.495609 0.997098 0.934 6.37
4 1 1.274618 0.528581 0.229 0.16
2 0.280974 0.993230 0.973 11.1
5 1 a real pole 0.289493 0.289*
2 0.714903 0.655208 0.565 3.51
3 0.179971 0.994140 0.986 14.93
6 1 1.314287 0.353139 0.130 0.68
2 0.454955 0.746806 0.707 7.07
3 0.124942 0.995355 0.991 18.08
7 1 a real pole 0.205414 0.205*
2 0.771049 0.480052 0.402 2.96
3 0.316871 0.808366 0.789 10.09
4 0.091754 0.996333 0.994 20.76
8 1 1.327947 0.265068 0.091 0.06
2 0.511120 0.583832 0.544 6.12
3 0.234407 0.850613 0.839 12.66
4 0.070222 0.997066 0.312 2.75
9 1 a real pole 0.159330 0.159*
2 0.793624 0.377312 0.312 2.75
3 0.368610 0.662240 0.639 8.82
4 0.180942 0.880560 0.873 14.88
5 0.055467 0.997613 0.997 25.12
10 1 1.334229 0.212136 0.070 0.05
2 0.536341 0.476065 0.440 5.74
3 0.280859 0.721478 0.707 11.12
4 0.144161 0.902454 0.898 16.85
5 0.044918 0.998027 0.998 26.95

* These filters are frequency-normalized so that the magnitude response at the pass-
band edge passes through the lower boundary of the ripple band at w = 1.
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TABLE 8.6 Chebyshev Network Parameters, Ripple =2 dB, p-p

Design Tuning
Number wg OT
of poles Stage a wo —3dB* |20log G(wa)/G(0)
frequency
2 1 0.886015 0.907227 0.707 2.00
3 1 a real pole 0.368911 0.369*
2 0.391905 0.941326 0.904 8.31
4 1 1.075906 0.470711 0.305 0.85
2 0.217681 0.963678 0.952 13.30
5 1 a real pole 0.218308 0.218*
2 0.563351 0.627017 0.575 5.34
3 0.138269 0.975790 0.971 17.21
6 1 1.109145 0.316111 0.196 0.70
2 0.351585 0.730027 0.707 9.22
3 0.095588 0.982828 0.981 20.40
7 1 a real pole 0.155340 0.155*
2 0.607379 0.460853 0.416 4.75
3 0.243009 0.797114 0.785 12.35
4 0.070027 0.987226 0.986 23.10
8 1 1.120631 0.237699 0.145 0.65
2 0.394841 0.571925 0.549 8.24
3 0.179098 0.842486 0.836 14.97
4 0.053512 0.990141 0.989 25.43
9 1 a real pole 0.120630 0.120*
2 0.625114 0.362670 0.325 4.53
3 0.282589 0.654009 0.641 11.06
4 0.137959 0.874386 0.870 17.23
5 0.042225 0.992168 0.992 27.49
10 1 1.125921 0.190388 0.115 0.63
2 0.414283 0.466780 0.446 7.84
3 0.214523 0.715385 0.707 13.42
4 0.109773 0.897590 0.895 19.20
5 0.034169 0.993632 0.993 29.33

* These filters are frequency-normalized so that the magnitude response at the pass-
band edge passes through the lower boundary of the ripple band at w = 1.
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TABLE 8.7 Chebyshev Network Parameters, Ripple =3 dB, p-p

Design Tuning
Number wa OT
of poles Stage a wo —3dB* | 20log G(wa)/G(o0)
frequency
2 1 0.766464 0.841396 0.707 3.00
3 1 a real pole 0.298620 0.298*
2 0.325982 0.916064 0.891 9.85
4 1 0.928942 0.442696 0.334 1.70
2 0.179248 0.950309 0.943 14.97
5 1 a real pole 0.177530 0.178*
2 0.467826 0.614010 0.579 6.84
3 0.113407 0.967484 0.964 18.92
6 1 0.957543 0.298001 0.219 1.51
2 0.289173 0.722369 0.707 10.87
3 0.078247 0.977154 0.976 22.14
7 1 a real pole 0.126485 0.126*
2 0.504307 0.451944 0.422 6.23
3 0.199148 0.791997 0.784 14.06
4 0.057259 0.983099 0.982 24.85
8 1 0.967442 0.224263 0.164 1.45
2 0.324695 0.566473 0.551 9.89
3 0.146518 0.838794 0.834 16.71
4 0.043725 0.987002 0.987 27.19
9 1 a real pole 0.098275 0.098*
2 0.519014 0.355859 0.331 6.00
3 0.231548 0.650257 0.641 12.77
4 0.112754 0.871584 0.869 18.97
5 0.034486 0.989699 0.898 29.25
10 1 0.972004 0.179694 0.131 1.42
2 0.340668 0.462521 0.449 9.48
3 0.175474 0.712614 0.707 15.15
4 0.089664 0.895383 .0.894 20.96
5 0.027897 0.991638 0.991 31.09

* These filters are frequency-normalized so that the magnitude response at the pass-
band edge passes through the lower boundary of the ripple band at w = 1.
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