


Contents i

Embedded Systems Design



ii Contents

By the same author

VMEbus: a practical companion

Newnes UNIX™ Pocket Book

Microprocessor architectures: RISC, CISC and DSP

Effective PC networking

PowerPC: a practical companion

The PowerPC Programming Pocket Book

The PC and MAC handbook

The Newnes Windows NT Pocket Book

Multimedia Communications

Essential Linux

Migrating to Windows NT

All books published by Butterworth-Heinemann

About the author:

Through his work with Motorola Semiconductors, the author has been
involved in the design and development of microprocessor-based systems since 1982.
These designs have  included VMEbus systems,  microcontrollers, IBM PCs, Apple
Macintoshes, and both CISC- and RISC-based multiprocessor systems, while using
operating systems as varied as MS-DOS, UNIX, Macintosh OS and real-time kernels.

An avid user of computer systems, he has had over 60 articles and papers published
in the electronics press, as well as several books.



Embedded Systems Design
Second edition

Steve Heath

OXFORD AMSTERDAM  BOSTON LONDON NEW YORK
PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO



iv Contents

Newnes
An imprint of Elsevier Science
Linacre House, Jordan Hill, Oxford OX2 8DP
200 Wheeler Road, Burlington MA 01803

First published 1997
Reprinted 2000, 2001
Second edition 2003

Copyright ©  2003, Steve Heath. All rights reserved

The right of Steve Heath to be identified as the author of this work
has been asserted in accordance with the Copyright, Designs and

Patents Act 1988

No part of this publication may be reproduced in any material form (including
photocopying or storing in any medium by electronic means and whether or not
transiently or incidentally to some other use of this publication) without the
written permission of the copyright holder except in accordance with the
provisions of the Copyright, Designs and Patents Act 1988 or under the terms
of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham
Court Road, London, England W1T 4LP.  Applications for the copyright
holder’s written permission to reproduce any part of this publication should be
addressed to the publisher

TRADEMARKS/REGISTERED TRADEMARKS
Computer hardware and software brand names mentioned in this book are
protected by their respective trademarks and are acknowledged

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication Data
A catalogue record for this book is available from the Library of Congress

ISBN 0 7506 5546 1

Typeset by  Steve Heath



Contents v

Contents

Preface xvii

Acknowledgements xix

1 What is an embedded system? 1
Replacement for discrete logic-based circuits 2
Provide functional upgrades 3
Provide easy maintenance upgrades 3
Improves mechanical performance 3
Protection of intellectual property 4
Replacement for analogue circuits 4

Inside the embedded system 8
Processor 8
Memory 8
Peripherals 9
Software 10
Algorithms 10
Microcontroller 11
Expanded microcontroller 13
Microprocessor based 14
Board based 14

2 Embedded processors 15
8 bit accumulator processors 16

Register models 16
8 bit data restrictions 17
Addressing memory 18
System integrity 19

Example 8 bit architectures 19
Z80 19
Z80 programming model 21
MC6800 22

Microcontrollers 23
MC68HC05 23
MC68HC11 23
Architecture 25

Data processors 25
Complex instructions, microcode and nanocode 25

INTEL 80286 28
Architecture 28
Interrupt facilities 29
Instruction set 30
80287 floating point support 30
Feature comparison 30



vi Contents

INTEL 80386DX 30
Architecture 30
Interrupt facilities 32
Instruction set 32
80387 floating point coprocessor 33
Feature comparison 33

INTEL 80486 34
Instruction set 35

Intel 486SX and overdrive processors 35
Intel Pentium 36

Multiple branch prediction 38
Data flow analysis 38
Speculative execution 38
The MMX instructions 39
The Pentium II 40

Motorola MC68000 40
The MC68000 hardware 41

Address bus 41
Data bus 41
Function codes 42
Interrupts 43
Error recovery and control signals 44

Motorola MC68020 44
The programmer’s model 46
Bus interfaces 49

Motorola MC68030 50
The MC68040 51

The programming model 53

Integrated processors 54
RISC processors 57

The 80/20 rule 57
The initial RISC research 58

The Berkeley RISC model 59
Sun SPARC RISC processor 60

Architecture 60
Interrupts 60
Instruction set 61

The Stanford RISC model 62
The MPC603 block diagram 63

The ARM register set 65
Exceptions 66
The Thumb instructions 67

Digital signal processors 68
DSP basic architecture 69

Choosing a processor 72



Contents vii

3 Memory systems 73
Memory technologies 74

DRAM technology 76
Video RAM 77

SRAM 77
Pseudo-static RAM 78
Battery backed-up SRAM 78

EPROM and OTP 78
Flash 79
EPROM 79

Memory organisation 79
By 1 organisation 80
By 4  organisation 81
By 8 and by 9 organisations 81
By 16 and greater organisations 81

Parity 81
Parity initialisation 82

Error detecting and correcting memory 82
Access times 83
Packages 83

Dual in line package 84
Zig–zag package 84
SIMM and DIMM 84
SIP 85

DRAM interfaces 85
The basic DRAM interface 85
Page mode operation 86
Page interleaving 86
Burst mode operation 87
EDO memory 87

DRAM refresh techniques 88
Distributed versus burst refresh 88
Software refresh 89
RAS only refresh 89
CAS before RAS (CBR) refresh 89
Hidden refresh 89
Memory management 90
Disadvantages of memory management 92
Segmentation and paging 93
Memory protection units 97
Cache memory 99
Cache size and organisation 100

Optimising line length and cache size 104
Logical versus physical caches 105
Unified versus Harvard caches 106
Cache coherency 106



viii Contents

Case 1: write through 108
Case 2: write back 109
Case 3: no caching of write cycles 110
Case 4: write buffer 110
Bus snooping 111
The MESI protocol 116
The MEI protocol 117

Burst interfaces 118
Meeting the interface needs 119

Big and little endian 121
Dual port and shared memory 122
Bank switching 123
Memory overlays 124
Shadowing 124
Example interfaces 125

MC68000 asynchronous bus 125
M6800 synchronous bus 127
The MC68040 burst interface 128

4 Basic peripherals 131
Parallel ports 131

Multi-function I/O ports 132
Pull-up resistors 133

Timer/counters 133
Types 134

8253 timer modes 134
Interrupt on terminal count 134
Programmable one-shot 134
Rate generator 136
Square wave rate generator 136
Software triggered strobe 136
Hardware triggered strobe 137
Generating interrupts 137

MC68230 modes 137
Timer processors 138
Real-time clocks 139

Simulating a real-time clock in software 140

Serial ports 140
Serial peripheral interface 142
I2C bus 143

Read and write access 145
Addressing peripherals 146
Sending an address index 147
Timing 148



Contents ix

Multi-master support 149

M-Bus (Motorola) 150
What is an RS232 serial port? 151
Asynchronous flow control 154

Modem cables 155
Null modem cables 155
XON-XOFF flow control 158

UART implementations 158
8250/16450/16550 158
The interface signals 159
The Motorola MC68681 162

DMA controllers 163
A generic DMA controller 164

Operation 164

DMA controller models 166
Single address model 166
Dual address model 167
1D model 168
2D model 168
3D model 169

Channels and control blocks 169
Sharing bus bandwidth 171
DMA implementations 173

Intel 8237 173
Motorola MC68300 series 173
Using another CPU with firmware 174

5 Interfacing to the analogue world 175
Analogue to digital conversion techniques 175

Quantisation errors 176

Sample rates and size 176
Irregular sampling errors 177
Nyquist’s theorem 179

Codecs 179
Linear 179
A-law and µ-law 179
PCM 180
DPCM 180
ADPCM 181

Power control 181
Matching the drive 181
Using H bridges 183
Driving LEDs 184
Interfacing to relays 184
Interfacing to DC motors 185
Software only 186
Using a single timer 187
Using multiple timers 188



x Contents

6 Interrupts and exceptions 189
What is an interrupt? 189

The spaghetti method 190
Using interrupts 191

Interrupt sources 192
Internal interrupts 192
External interrupts 192
Exceptions 192
Software interrupts 193
Non-maskable interrupts 193

Recognising an interrupt 194
Edge triggered 194
Level triggered 194
Maintaining the interrupt 194
Internal queuing 194

The interrupt mechanism 195
Stack-based processors 195

MC68000 interrupts 196
RISC exceptions 198

Synchronous precise 199
Synchronous imprecise 199
Asynchronous precise 199
Asynchronous imprecise 200
Recognising RISC exceptions 200
Enabling RISC exceptions 202
Returning from RISC exceptions 202
The vector table 202
Identifying the cause 203

Fast interrupts 203
Interrupt controllers 205
Instruction restart and continuation 205
Interrupt Latency 206
Do’s and Don’ts 209

Always expect the unexpected interrupt 209
Don't expect too much from an interrupt 209
Use handshaking 210
Control resource sharing 210
Beware false interrupts 211
Controlling interrupt levels 211
Controlling stacks 211

7 Real-time operating systems 212
What are operating systems? 212
Operating system internals 214
Multitasking operating systems 215

Context switching, task tables, and kernels 215
Time slice 223



Contents xi

Pre-emption 224
Co-operative multitasking 224

Scheduler algorithms 225
Rate monotonic 225
Deadline monotonic scheduling 227
Priority guidelines 227

Priority inversion 227
Disabling interrupts 227
Message queues 228
Waiting for a resource 229
VMEbus interrupt messages 229
Fairness systems 231

Tasks, threads and processes 231
Exceptions 232
Memory model 233

Memory allocation 233
Memory characteristics 234
Example memory maps 235

Memory management address translation 239
Bank switching 242
Segmentation 243
Virtual memory 243
Chossoing an operating system 244
Assembler versus high level language 245
ROMable code 245
Scheduling algorithms 245
Pre-emptive scheduling 246
Modular approach 246
Re-entrant code 247
Cross-development platforms 247
Integrated networking 247
Multiprocessor support 247

Commercial operating systems 248
pSOS+ 248
pSOS+ kernel 248
pSOS+m multiprocessor kernel 249
pREPC+ runtime support 249
pHILE+ file system 250
pNA+ network manager 250
pROBE+ system level debugger 250
XRAY+ source level debugger 250
OS-9 250
VXWorks 251
VRTX-32 251
IFX 252
TNX 252
RTL 252
RTscope 252
MPV 252
LynxOS-Posix conformance 252
Windows NT 254



xii Contents

Windows NT characteristics 255
Process priorities 256
Interrupt priorities 257

Resource protection 258
Protecting memory 258
Protecting hardware 258
Coping with crashes 259
Multi-threaded software 259
Addressing space 260
Virtual memory 261
The internal architecture 261
Virtual memory manager 262
User and kernel modes 262
Local procedure call (LPC) 263
The kernel 263
File system 263
Network support 264
I/O support 264
HAL approach 264

Linux 265
Origins and beginnings 265
Inside Linux 268
The Linux file system 269
The physical file system 270
Building the file system 271
The file system 272

Disk partitioning 274
The /proc file system 277
Data Caching 277
Multi-tasking systems 278
Multi-user systems 278
Linux software structure 279
Processes and standard I/O 280
Executing commands 281
Physical I/O 282
Memory management 283
Linux limitations 283
eLinux 284

8 Writing software for embedded systems 288
The compilation process 288

Compiling code 289
The pre-processor 290
Compilation 293
as assembler 295
Linking and loading 296
Symbols, references and relocation 296
ld linker/loader 297

Native versus cross-compilers 298
Run-time libraries 298

Processor dependent 298
I/O dependent 299



Contents xiii

System calls 299
Exit routines 299

Writing a library 300
Creating a library 300
Device drivers 306
Debugger supplied I/O routines 306
Run-time libraries 307

Using alternative libraries 307
Linking additional libraries 307
Linking replacement libraries 307

Using a standard library 307
Porting kernels 308

Board support 308
Rebuilding kernels for new configurations 309
configAll.h 310
config.h 310
usrConfig.c 310
pSOSystem+ 312

C extensions for embedded systems 313
#pragma interrupt func2 313
#pragma pure_function func2 314
#pragma no_side_effects func2 314
#pragma no_return func2 314
#pragma mem_port int2 314
asm and _ _asm 314

Downloading 316
Serial lines 316
EPROM and FLASH 317
Parallel ports 317
From disk 317
Ethernet 318
Across a common bus 318

9 Emulation and debugging techniques 321
Debugging techniques 321

High level language simulation 321
Low level simulation 322
Onboard debugger 323
Task level debugging 325
Symbolic debug 325
Emulation 327
Optimisation problems 328
Xray 332

The role of the development system 335
Floating point and memory management functions 335

Emulation techniques 336
JTAG 337
OnCE 337
BDM 338



xiv Contents

10 Buffering and other data structures 339
What is a buffer? 339

Latency 341
Timing tolerance 341
Memory size 342
Code complexity 342

Linear buffers 342
Directional buffers 344

Single buffer implementation 344

Double buffering 346
Buffer exchange 348
Linked lists 349
FIFOs 350
Circular buffers 351
Buffer underrun and overrun 352
Allocating buffer memory 353

malloc() 353

Memory leakage 354
Stack frame errors 354
Failure to return memory to the memory pool 355
Housekeeping errors 355
Wrong memory specification 356

11 Memory and performance trade-offs 357
The effect of memory wait states 357
Scenario 1 — Single cycle processor with
large external memory 358
Scenario 2 — Reducing the cost of memory access 360

Using registers 360
Using caches 361
Preloading caches 362
Using on-chip memory 363
Using DMA 363

Making the right decisions 363

12 Software examples 365
Benchmark example 365
Creating software state machines 368

Priority levels 372
Explicit locks 373
Interrupt service routines 373
Setting priorities 375



Contents xv

Task A highest priority 375
Task C highest priority 376
Using explicit locks 376
Round-robin 376
Using an ISR routine 377

13 Design examples 379
Burglar alarm system 379

Design goals 379
Development strategy 380
Software development 380
Cross-compilation and code generation 383
Porting to the final target system 385
Generation of test modules 385
Target hardware testing 385
Future techniques 385
Relevance to more complex designs 386
The need for emulation 386

Digital echo unit 387
Creating echo and reverb 387
Design requirements 390
Designing the codecs 391
Designing the memory structures 391
The software design 392
Multiple delays 394
Digital or analogue adding 395
Microprocessor selection 396
The overall system design 396

14 Real-time without a RTOS 398
Choosing the software environment 398
Deriving real time performance from a non-real time system 400

Choosing the hardware 401

Scheduling the data sampling 402
Sampling the data 405
Controlling from an external switch 406

Driving an external LED display 408
Testing 408

Problems 410
Saving to hard disk 410
Data size restrictions and the use of a RAM disk 410
Timer calculations and the compiler 411
Data corruption and the need for buffer flushing. 411

Program listing 413

Index 422



xvi Contents



Contents xvii

Preface

The term embedded systems design covers a very wide
range of microprocessor designs and does not simply start and
end with a simple microcontroller. It can be a PC running software
other than Windows and word processing software. It can be a
sophisticated multiprocessor design using the fastest processors
on the market today.

The common thread to embedded systems design is an
understanding of the interaction that the various components
within the system have with each other. It is important to under-
stand how the hardware works and the restraints that using a
certain peripheral may have on the rest of the system. It is essential
to know how to develop the software for such systems and the
effect that different hardware designs can have on the software
and vice versa. It is this system design knowledge that has been
captured in this book as a series of tutorials on the various aspects
of embedded systems design.

Chapter 1 defines what is meant by the term and in essence
defines the scope of the rest of the book. The second chapter
provides a set of tutorials on processor architectures explaining
the different philosophies that were used in their design and
creation. It covers many of the common processor architectures
ranging from 8 bit microcontrollers through CISC and RISC
processors and finally ending with digital signal processors and
includes information on the ARM processor family.

The third chapter discusses different memory types and
their uses.  This has been expanded in this edition to cover caches
in more detail and the challenges associated with them for embed-
ded design. The next chapter goes through basic peripherals such
as parallel and serial ports along with timers and DMA control-
lers. This theme is continued in the following chapter which
covers analogue to digital conversion and basic power control.

Interrupts are covered in great detail in the sixth chapter
because they are so essential to any embedded design. The differ-
ent types that are available and their associated software routines
are described with several examples of how to use them and,
perhaps more importantly, how not to use them.

The theme of software is continued in the next two chapters
which cover real-time operating systems and software develop-
ment. Again, these have a tremendous effect on embedded de-
signs but whose design implications are often not well understood
or explained. Chapter 9 discusses debugging and emulation tech-
niques.



xviii Contentsxviii Preface

The remaining five chapters are dedicated to design exam-
ples covering buffer and data structures, memory and processor
performance trade-offs and techniques, software design examples
including using a real-time operating system to create state ma-
chines and finally a couple of design examples. In this edition, an
example real-time system design is described that uses a non-real-
time system to create an embedded system. The C source code is
provided so that it can be run and experimented with on a PC
running MS-DOS.

Steve Heath
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What is an embedded system? 1

1 What is an embedded
system?

Whenever the word microprocessor is mentioned, it con-
jures up a picture of a desktop or laptop PC running an application
such as a word processor or a spreadsheet. While this is a popular
application for microprocessors, it is not the only one and the fact
is most people use them indirectly in common objects and appli-
ances without realising it. Without the microprocessor, these
products would not be as sophisticated or cheap as they are today.

The embedding of microprocessors into equipment and
consumer appliances started before the appearance of the PC and
consumes the majority of microprocessors that are made today. In
this way, embedded microprocessors are more deeply ingrained
into everyday life than any other electronic circuit that is made. A
large car may have over 50 microprocessors controlling functions
such as the engine through engine management systems, brakes
with electronic anti-lock brakes, transmission with traction con-
trol and electronically controlled gearboxes, safety with airbag
systems, electric windows, air-conditioning and so on. With a
well-equipped car, nearly every aspect has some form of elec-
tronic control associated with it and thus a need for a microproc-
essor within an embedded system.

A washing machine may have a microcontroller that con-
tains the different washing programs, provides the power control
for the various motors and pumps and even controls the display
that tells you how the wash cycles are proceeding.

Mobile phones contain more processing power than a desk-
top processor of a few years ago. Many toys contain microproces-
sors and there are even kitchen appliances such as bread machines
that use microprocessor-based control systems. The word control
is very apt for embedded systems because in virtually every
embedded system application, the goal is to control an aspect of a
physical system such as temperature, motion, and so on using a
variety of inputs. With the recent advent of the digital age replac-
ing many of the analogue technologies in the consumer world, the
dominance of the embedded system is ever greater. Each digital
consumer device such as a digital camera, DVD or MP3 player all
depend on an embedded system to realise the system. As a result,
the skills behind embedded systems design are as diverse as the
systems that have been built although they share a common
heritage.



2 Embedded systems design

What is an embedded system?
There are many definitions for this but the best way to

define it is to describe it in terms of what it is not and with examples
of how it is used.

An embedded system is a microprocessor-based system
that is built to control a function or range of functions and is not
designed to be programmed by the end user in the same way that
a PC is. Yes, a user can make choices concerning functionality but
cannot change the functionality of the system by adding/replac-
ing software. With a PC, this is exactly what a user can do: one
minute the PC is a word processor and the next it’s a games
machine simply by changing the software. An embedded system
is designed to perform one particular task albeit with choices and
different options. The last point is important because it differenti-
ates itself from the world of the PC where the end user does
reprogram it whenever a different software package is bought and
run. However, PCs have provided an easily accessible source of
hardware and software for embedded systems and it should be no
surprise that they form the basis of many embedded systems. To
reflect this, a very detailed design example is included at the end
of this book that uses a PC in this way to build a sophisticated data
logging system for a race car.

If this need to control the physical world is so great, what is
so special about embedded systems that has led to the widespread
use of microprocessors? There are several major reasons and these
have increased over the years as the technology has progressed
and developed.

Replacement for discrete logic-based circuits
The microprocessor came about almost by accident as a

programmable replacement for calculator chips in the 1970s. Up to
this point, most control systems using digital logic were imple-
mented using individual logic integrated circuits to create the
design and as more functionality became available, the number of
chips was reduced.

This was the original reason for a replacement for digital
systems constructed from logic circuits. The microprocessor was
originally developed to replace a mass of logic that was used to
create the first electronic calculators in the early 1970s. For exam-
ple, the early calculators were made from discrete logic chips and
many hundreds were needed just to create a simple four function
calculator. As the integrated circuit developed, the individual
logic functions were integrated to create higher level functions.
Instead of creating an adder from individual logic gates, a com-
plete adder could be bought in one package. It was not long before
complete calculators were integrated onto a single chip. This
enabled them to be built at a very low cost compared to the original
machines but any changes or improvements required that a new
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chip be developed. The answer was to build a chip that had some
form of programmable capability within it. Why not build a chip
that took data in, processed it and sent it out again? In this way,
instead of creating new functions by analysing the gate level logic
and modifying it — a very time-consuming process — new
products could be created by changing the program code that
processed the information. Thus the microprocessor was born.

Provide functional upgrades
In the same way that the need to develop new calculator

chips faster and with less cost prompted the development of the
first microprocessors, the need to add or remove functionality
from embedded system designs is even more important. With
much of the system’s functionality encapsulated in the software
that runs in the system, it is possible to change and upgrade
systems by changing the software while keeping the hardware the
same. This reduces the cost of production even lower because
many different systems can share the same hardware base.

In some cases, this process is not possible or worthwhile but
allows the manufacturer to develop new products far quicker and
faster. Examples of this include timers and control panels for
domestic appliances such as VCRs and televisions.

In other cases, the system can be upgraded to improve
functionality. This is frequently done with machine tools, tel-
ephone switchboards and so on. The key here is that the ability to
add functionality now no longer depends on changing the hard-
ware but can be done by simply changing the software. If the
system is connected to a communications link such as a telephone
or PC network, then the upgrade can be done remotely without
having to physically send out an engineer or technician.

Provide easy maintenance upgrades
The same mechanism that allows new functionality to be

added through reprogramming is also beneficial in allowing bugs
to be solved through changing software. Again it can reduce the
need for expensive repairs and modifications to the hardware.

Improves mechanical performance
For any electromechanical system, the ability to offer a finer

degree of control is important. It can prevent excessive mechanical
wear, better control and diagnostics and, in some cases, actually
compensate for mechanical wear and tear. A good example of this
is the engine management system. Here, an embedded microproc-
essor controls the fuel mixture and ignition for the engine and will
alter the parameters and timing depending on inputs from the
engine such as temperature, the accelerator position and so on. In
this way, the engine is controlled far more efficiently and can be
configured for different environments like power, torque, fuel
efficiency and so on. As the engine components wear, it can even



4 Embedded systems design

adjust the parameters to compensate accordingly or if they are
dramatically out of spec, flag up the error to the driver or indicate
that servicing is needed.

This level of control is demonstrated by the market in
‘chipped’ engine management units where third party companies
modify the software within the control unit to provide more
power or torque. The differences can range from 10% to nearly
50% for some turbo charged engines! All this from simply chang-
ing a few bytes. Needless to say, this practice may invalidate any
guarantee from the manufacturer and may unduly stress and limit
the engine’s mechanical life. In some cases, it may even infringe
the original manufacturer’s intellectual property rights.

Protection of intellectual property
To retain a competitive edge, it is important to keep the

design knowledge within the company and prevent others from
understanding exactly what makes a product function. This knowl-
edge, often referred to as IPR (intellectual property rights), be-
comes all important as markets become more competitive. With a
design that is completely hardware based and built from off-the-
shelf components, it can be difficult to protect the IPR that was
used in its design. All that is needed to do is to take the product,
identify the chips and how they are connected by tracing the tracks
on the circuit board. Some companies actually grind the part
numbers off the integrated circuits to make it harder to reverse
engineer in this way.

With an embedded system, the hardware can be identified
but the software that really supplies the system’s functionality can
be hidden and more difficult to analyse. With self-contained
microcontrollers, all that is visible is a plastic package with a few
connections to the outside world. The software is already burnt
into the on-chip memory and is effectively impossible to access. As
a result, the IPR is much more secure and protected.

Replacement for analogue circuits
The movement away from the analogue domain towards

digital processing has gathered pace recently with the advent of
high performance and low cost processing.

To understand the advantages behind digital signal process-
ing, consider a simple analogue filter. The analogue implementa-
tion is extremely simple compared to its digital equivalent. The
analogue filter works by varying the gain of the operational
amplifier which is determined by the relationship between ri and
rf.

In a system with no frequency component, the capacitor ci
plays no part as its impedance is far greater than that of rf. As the
frequency component increases, the capacitor impedance de-
creases until it is about equal with rf where the effect will be to
reduce the gain of the system. As a result, the amplifier acts as a
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low pass filter where high frequencies will be filtered out. The
equation shows the relationship where jω is the frequency compo-
nent. These filters are easy to design and are cheap to build. By
making the CR (capacitor-resistor) network more complex, differ-
ent filters can be designed.
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r f
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Digital signal processing (DSP)

The digital equivalent is more complex requiring several
electronic stages to convert the data, process it and reconstitute the
data. The equation appears to be more involved, comprising of a
summation of a range of calculations using sample data multi-
plied by a constant term. These constants take the place of the CR
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components in the analogue system and will define the filter’s
transfer function. With digital designs, it is the tables of coeffi-
cients that are dynamically modified to create the different filter
characteristics.

Given the complexity of digital processing, why then use it?
The advantages are many. Digital processing does not suffer from
component ageing, drift or any adjustments which can plague an
analogue design. They have high noise immunity and power
supply rejection and due to the embedded processor can easily
provide self-test features. The ability to dynamically modify the
coefficients and therefore the filter characteristics allows complex
filters and other functions to be easily implemented. However, the
processing power needed to complete the ‘multiply–accumulate’
processing of the data does pose some interesting processing
requirements.

N instruction
routine

x(n) x(n+1)

Ts=1/F

A/D
conversion

Data sampling
at frequency Fs

D/A
conversion

Time to execute
one instruction

FsTs

1kHz

10 kHz

100 kHz

1MHz

1 ms

100 µs

10 µs

1 µs

1kHz

10 kHz

100 kHz

1MHz

1 ms

100 µs

10 µs

1 µs

No. of instructions
between two

samples

1000

100

10

1

10000

1000

100

10

1 µs

x(n)

100 µs

y(n)

DSP processing requirements

The diagram shows the problem. An analogue signal is
sampled at a frequency fs and is converted by the A/D converter.
This frequency will be first determined by the speed of this
conversion. At every period, ts, there will be a new sample to
process using N instructions. The table shows the relationship
between sampling speed, the number of instructions and the
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instruction execution time. It shows that the faster the sampling
frequency, the more processing power is needed. To achieve the 1
MHz frequency, a 10 MIPS processor is needed whose instruction
set is powerful enough to complete the processing in under 10
instructions. This analysis does not take into account A/D conver-
sion delays. For DSP algorithms, the sampling speed is usually
twice the frequency of the highest frequency signal being proc-
essed: in this case the 1 MHz sample rate would be adequate for
signals up to 500 kHz.

One major difference between analogue and digital filters is
the accuracy and resolution that they offer. Analogue signals may
have definite limits in their range, but have infinite values be-
tween that range. Digital signal processors are forced to represent
these infinite variations within a finite number of steps deter-
mined by the number of bits in the word. With an 8 bit word, the
increases are in steps of 1/256 of the range. With a 16 bit word, such
steps are in 1/65536 and so on. Depicted graphically as shown, a
16 bit word would enable a low pass filter with a roll-off of about
90 dB. A 24 bit word would allow about 120 dB roll-off to be
achieved.

dB

0dB

Frequency

16 bit 

24 bit

Word size and cutoff frequencies

DSP can be performed by ordinary microprocessors, al-
though their more general-purpose nature often limits perform-
ance and the frequency response. However, with responses of
only a few hundred Hertz, even simple microcontrollers can
perform such tasks. As silicon technology improved, special build-
ing blocks appeared allowing digital signal processors to be
developed, but their implementation was often geared to a hard-
ware approach rather than designing a specific processor architec-
ture for the job. It is now common for processors to claim DSP
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support through enhanced multiply–accumulate operations or
through special accelerators. It is clear though, that as general
purpose processing increases in capability, what was once the sole
province of a DSP can now be achieved by a general purpose
processor.

Inside the embedded system
Processor

The main criteria for the processor is: can it provide the
processing power needed to perform the tasks within the system?
This seems obvious but it frequently occurs that the tasks are either
underestimated in terms of their size and/or complexity or that
creeping elegance expands the specification to beyond the proces-
sor’s capability.

In many cases, these types of problems are compounded by
the performance measurement used to judge the processor. Bench-
marks may not be representative of the type of work that the
system is doing. They may execute completely out of cache memory
and thus give an artificially high performance level which the final
system cannot meet because its software does not fit in the cache.
The software overheads for high level languages, operating sys-
tems and interrupts may be higher than expected. These are all
issues that can turn a paper design into failed reality.

While processor performance is essential and forms the first
gating criterion, there are others such as cost — this should be
system cost and not just the cost of the processor in isolation,
power consumption, software tools and component availability
and so on. These topics are discussed in more detail in Chapter 2.

Memory
Memory is an important part of any embedded system

design and is heavily influenced by the software design, and in
turn may dictate how the software is designed, written and
developed. These topics will be addressed in more detail later on
in this book. As a way of introduction, memory essentially per-
forms two functions within an embedded system:

• It provides storage for the software that it will run
At a minimum, this will take the form of some non-volatile
memory that retains its contents when power is removed.
This can be on-chip read only memory (ROM) or external
EPROM. The software that it contains might be the com-
plete program or an initialisation routine that obtains the
full software from another source within or outside of the
system. This initialisation routine is often referred to as a
bootstrap program or routine. PC boards that have embed-
ded processors will often start up using software stored in
an onboard EPROM and then wait for the full software to be
downloaded from the PC across the PC expansion bus.
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• It provides storage for data such as program variables and
intermediate results, status information and any other data
that might be created throughout the operation
Software needs some memory to store variables and to
manage software structures such as stacks. The amount of
memory that is needed for variables is frequently less than
that needed for the actual program. With RAM being more
expensive than ROM and non-volatile, many embedded
systems and in particular, microcontrollers, have small
amounts of RAM compared to the ROM that is available for
the program. As a result, the software that is written for
such systems often has to be written to minimise RAM
usage so that it will fit within the memory resources placed
upon the design. This will often mean the use of compilers
that produce ROMable code that does not rely on being
resident in RAM to execute. This is discussed in more detail
in Chapter 3.

Peripherals

An embedded system has to communicate with the outside
world and this is done by peripherals. Input peripherals are
usually associated with sensors that measure the external environ-
ment and thus effectively control the output operations that the
embedded system performs. In this way, an embedded system can
be modelled on a three-stage pipeline where data and information
input into the first stage of the pipeline, the second stage processes
it before the third stage outputs data.

If this model is then applied to a motor controller, the inputs
would be the motor’s actual speed and power consumption, and
the speed required by the operator. The outputs would be a pulse
width modulated waveform that controls the power to the motor
and hence the speed and an output to a control panel showing the
current speed. The middle stage would be the software that
processed the inputs and adjusts the outputs to achieve the re-
quired engine speed. The main types of peripherals that are used
include:

• Binary outputs
These are simple external pins whose logic state can be
controlled by the processor to either be a logic zero (off) or
a logic one (on). They can be used individually or grouped
together to create parallel ports where a group of bits can be
input or output simultaneously.

• Serial outputs
These are interfaces that send or receive data using one or
two pins in a serial mode. They are less complex to connect
but are more complicated to program. A parallel port looks
very similar to a memory location and is easier to visualise
and thus use. A serial port has to have data loaded into a
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register and then a start command issued. The data may
also be augmented with additional information as required
by the protocol.

• Analogue values
While processors operate in the digital domain, the natural
world does not and tends to orientate to analogue values.
As a result, interfaces between the system and the external
environment need to be converted from analogue to digital
and vice versa.

• Displays
Displays are becoming important and can vary from simple
LEDs and seven segment displays to small alpha-numeric
LCD panels.

• Time derived outputs
Timers and counters are probably the most commonly used
functions within an embedded system.

Software
The software components within an embedded system

often encompasses the technology that adds value to the system
and defines what it does and how well it does it. The software can
consist of several different components:
• Initialisation and configuration
• Operating system or run-time environment
• The applications software itself
• Error handling
• Debug and maintenance support.

Algorithms
Algorithms are the key constituents of the software that

makes an embedded system behave in the way that it does. They
can range from mathematical processing through to models of the
external environment which are used to interpret information
from external sensors and thus generate control signals. With the
digital technology in use today such as MP3 and DVD players, the
algorithms that digitally encode the analogue data are defined by
standards bodies.

While this standardisation could mean that the importance
of selecting an algorithm is far less than it might be thought, the
reality is far different. The focus on getting the right implementa-
tion is important since, for example, it may allow the same func-
tion to be executed on cheaper hardware. As most embedded
systems are designed to be commercially successful, this selection
process is very important. Defining and implementing the correct
algorithm is a critical operation and is described through several
examples in this book.
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Examples
This section will go through some example embedded

systems and briefly outline the type of functionality that each
offers.

Microcontroller
Microcontrollers can be considered as self-contained sys-

tems with a processor, memory and peripherals so that in many
cases all that is needed to use them within an embedded system is
to add software. The processors are usually based on 8 bit stack-
based architectures such as the MC6800 family. There are 4 bit
versions available such as the National COP series which further
reduce the processing power and reduce cost even further. These
are limited in their functionality but their low cost has meant that
they are used in many obscure applications. Microcontrollers are
usually available in several forms:

• Devices for prototyping or low volume production runs
These devices use non-volatile memory to allow the soft-
ware to be downloaded and returned in the device. UV
erasable EPROM used to be the favourite but EEPROM is
also gaining favour. Some microcontrollers used a special
package with a piggyback socket on top of the package to
allow an external EPROM to be plugged in for prototyping.
This memory technology replaces the ROM on the chip
allowing software to be downloaded and debugged. The
device can be reprogrammed as needed until the software
reaches its final release version.
The use of non-volatile memory also makes these devices
suitable for low volume production runs or where the
software may need customisation and thus preventing
moving to a ROMed version.
These devices are sometimes referred to as umbrella de-
vices with a single device capable of providing prototyping
support for a range of other controllers in the family.

• Devices for low to medium volume production runs
In the mid-1980s, a derivative of the prototype device
appeared on the market called the one time programmable
or OTP. These devices use EPROM instead of the ROM but
instead of using the ceramic package with a window to
allow the device to be erased, it was packaged in a cheaper
plastic pack and thus was only capable of programming a
single time — hence the name. These devices are cheaper
than the prototype versions but still have the programming
disadvantage. However, their lower cost has made them a
suitable alternative to producing a ROM device. For low to
medium production quantities, they are cost effective and
offer the ability to customise software as necessary.



12 Embedded systems design

4144 bytes 
EPROM

176 bytes
RAM

240 bytes Boot 
ROM

HC05 processor 
core

Clock

Watch
dog Baud rate

generator

16 bit timer

P
o

rt
 A

P
o

rt
 B

P
o

rt
 C

P
o

rt
 D

SC
I

SP
I

Internal bus

Example microcontroller (Motorola MC68HC705C4A)

• Devices for high volume production runs
For high volumes, microcontrollers can be built already
programmed with software in the ROM. To do this a
customer supplies the software to the manufacturer who
then creates the masks necessary to create the ROM in the
device. This process is normally done on partly processed
silicon wafers to reduce the turnaround time. The advan-
tage for the customer is that the costs are much lower than
using prototyping or OTP parts and there is no program-
ming time or overhead involved. The downside is that there
is usually a minimum order based on the number of chips
that a wafer batch can produce and an upfront mask charge.
The other major point is that once in ROM, the software
cannot be changed and therefore customisation or bug
fixing would have to wait until the next order or involve
scrapping all the devices that have been made. It is possible
to offer some customisation by including different software
modules and selecting the required ones on the basis of a
value read into the device from an external port but this
does consume memory which can increase the costs. Some
controllers can provide some RAM that can be used to patch
the ROM without the need for a new mask set.
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Expanded microcontroller
The choice of memory sizes and partitioning is usually a

major consideration. Some applications require more memory or
peripherals than are available on a standard part. Most
microcontroller families have parts that support external expan-
sion and have an external memory and/or I/O bus which can
allow the designer to put almost any configuration together. This
is often done by using a parallel port as the interface instead of
general-purpose I/O. Many of the higher performance
microcontrollers are adopting this approach.
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In the example shown on the previous page, the
microcontroller has an expanded mode that allows the parallel
ports A and B to be used as byte wide interfaces to external RAM
and ROM. In this type of configuration, some microcontrollers
disable access to the internal memory while others still allow it.

Microprocessor based
Microprocessor-based embedded systems originally took

existing general-purpose processors such as the MC6800 and 8080
devices and constructed systems around them using external
peripherals and memory. The use of processors in the PC market
continued to provide a series of faster and faster processors such
as the MC68020, MC68030 and MC68040 devices from Motorola
and the 80286, 80386, 80486 and Pentium devices from Intel. These
CISC architectures have been complemented with RISC proces-
sors such as the PowerPC, MIPS and others. These systems offer
more performance than is usually available from a traditional
microcontroller.

However, this is beginning to change. There has been the
development of integrated microprocessors where the processor
is combined with peripherals such as parallel and serial ports,
DMA controllers and interface logic to create devices that are more
suitable for embedded systems by reducing the hardware design
task and costs. As a result, there has been almost a parallel
development of these integrated processors along with the desk-
top processors. Typically, the integrated processor will use a
processor generation that is one behind the current generation.
The reason is dependent on silicon technology and cost. By using
the previous generation which is smaller, it frees up silicon area on
the die to add the peripherals and so on.

Board based
So far, the types of embedded systems that we have consid-

ered have assumed that the hardware needs to be designed, built
and debugged. An alternative is to use hardware that has already
been built and tested such as board-based systems as provided by
PCs and through international board standards such as VMEbus.
The main advantage is the reduced work load and the availability
of ported software that can simply be utilised with very little
effort. The disadvantages are higher cost and in some cases
restrictions in the functionality that is available.
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2 Embedded processors

The development of processors for embedded system de-
sign has essentially followed the development of microprocessors
as a whole. The processor development has provided the process-
ing heart for architecture which combined with the right software
and hardware peripherals has become an embedded design. With
the advent of better fabrication technology supporting higher
transistor counts and lower power dissipation, the processor core
has been integrated with peripherals and memory to provide
standalone microcontrollers or integrated processors that only
need the addition of external memory to provide a complete
hardware system suitable for embedded design. The scope of this
chapter is to explain the strengths and weaknesses of various
architectures to provide a good understanding of the trade-offs
involved in choosing and exploiting a processor family.

There are essentially four basic architecture types which are
usually defined as 8 bit accumulator, 16/32 bit complex instruc-
tion set computers (CISC), reduced instruction set computer (RISC)
architectures and digital signal processors (DSP). Their develop-
ment or to be more accurate, their availability to embedded system
designers is chronological and tends to follow the same type of
pattern as shown in the graph.
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However, it should be remembered that in parallel with this
life cycle, processor architectures are being moved into
microcontroller and integrated processor devices so that the end
of life really refers to the discontinuance of the architecture as a
separate CPU plus external memory and peripherals product. The
MC6800 processor is no longer used in discrete designs but there
are over 200 MC6801/6805 and 68HC11 derivatives that essen-
tially use the same basic architecture and instruction set.
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8 bit accumulator processors
This category of processor first appeared in the mid-1970s

as the first microprocessors. Devices such as the 8080 from Intel
and the MC6800 from Motorola started the microprocessor revo-
lution. They provided about 1 MIP of performance and were at
their introduction the fastest processors available.

Register models
The programmer has a very simple register model for this

type of processor. The model for the Motorola MC6800 8 bit
processor is shown as an example but it is very representative of
the many processors that appeared (and subsequently vanished).
It has two 8 bit accumulators used for storing data and performing
arithmetic operations. The program counter is 16 bits in size and
two further 16 bit registers are provided for stack manipulations
and address indexing.

7 015

Accumulator A

Accumulator B

Index register X

Program counter

Stack pointer

Condition code 

The MC6800 programmer's model

On first inspection, the model seems quite primitive and not
capable of providing the basis of a computer system. There do not
seem to be enough registers to hold data, let alone manipulate it!
Comparing this with the register laden RISC architectures that
feature today, this is a valid conclusion. What is often forgotten is
that many of the instructions, such as logical operations, can
operate on direct memory using the index register to act as pointer.
This removes the need to bring data into the processor at the
expense of extra memory cycles and the need for additional or
wider registers. The main area within memory that is used for data
storage is known as the stack. It is normally accessed using a
special register that indexes into the area called the stack pointer.
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This is used to provide local data storage for programs and to store
information for the processor such as return addresses for subrou-
tine jumps and interrupts.

The stack pointer provides additional storage for the pro-
grammer: it is used to store data like return addresses for subrou-
tine calls and provides additional variable storage using a PUSH/
POP mechanism. Data is PUSHed onto the stack to store it, and
POPed off to retrieve it. Providing the programmer can track
where the data resides in these stack frames, it offers a good
replacement for the missing registers.

8 bit data restrictions
An 8 bit data value can provide an unsigned resolution of

only 256 bits, which makes it unsuitable for applications where a
higher resolution is needed. In these cases, such as financial,
arithmetic, high precision servo control systems, the obvious
solution is to increase the data size to 16 bits. This would give a
resolution of 65536 — an obvious improvement. This may be
acceptable for a control system but is still not good enough for a
data processing program, where a 32 bit data value may have to be
defined to provide sufficient integer range. While there is no
difficulty with storing 8, 16, 32 or even 64 bits in external memory,
even though this requires multiple bus accesses, it does prevent
the direct manipulation of data through the instruction set.

However, due to the register model, data larger than 8 bits
cannot use the standard arithmetic instructions applicable to 8 bit
data stored in the accumulator. This means that even a simple 16
bit addition or multiplication has to be carried out as a series of
instructions using the 8 bit model. This reduces the overall effi-
ciency of the architecture.

The code example is a routine for performing a simple 16 bit
multiplication. It takes two unsigned 16 bit numbers and produces
a 16 bit product. If the product is larger than 16 bits, only the least
significant 16 bits are retained. The first eight or so instructions
simply create a temporary storage area on the stack for the
multiplicand, multiplier, return address and loop counter. Com-
pared to internal register storage, storing data in stack frames is
not as efficient due the increased external memory access.

Accessing external data consumes machine cycles which
could be used to process data. Without suitable registers and the
16 bit wide accumulator, all this information must be stored
externally on the stack. The algorithm used simply performs a
succession of arithmetic shifts on each half of the multiplicand
stored in the A and B accumulators. Once this is complete, the 16
bit result is split between the two accumulators and the temporary
storage cleared off the stack. The operation takes at least 29
instructions to perform with the actual execution time totally
dependant on the values being multiplied together. For compari-
son, most 16/32 bit processors such as the MC68000 and 80x86
families can perform the same operation with a single instruction!
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MULT16 LDX #5 CLEAR WORKING REGISTERS
CLR A

LP1 STA A U-1,X
DEX
BNE LP1
LDX #16 INITIAL SHIFT COUNTER

LP2 LDA A Y+1 GET Y(LSBIT)
AND A #1
TAB SAVE Y(LSBIT) IN ACCB
EOR A FF CHECK TO SEE IF YOU ADD
BEQ SHIFT OR SUBTRACT
TST B
BEQ ADD
LDA A U+1
LDA B U
SUB A XX+1
SBC B XX
STA A U+1
STA B U
BRA SHIFT NOW GOTO SHIFT ROUTINE

ADD LDA A U+1
LDA B U
ADD A XX+1
ADC B XX
STA A U+1
STA B U

SHIFT CLR FF SHIFT ROUTINE
ROR Y
ROR Y+1
ROL FF
ASR U
ROR U+1
ROR U+2
ROR U+3
DEX
BNE LP2
RTS FINISH SUBROUTINE
END

M6800 code for a 16 bit by 16 bit multiply

Addressing memory
When the first 8 bit microprocessors appeared during the

middle to late 1970s, memory was expensive and only available in
very small sizes: 256 bytes up to 1 kilobyte. Applications were
small, partly due to their implementation in assembler rather than
a high level language, and therefore the addressing range of 64
kilobytes offered by the 16 bit address seemed extraordinarily
large. It was unlikely to be exceeded. As the use of these early
microprocessors became more widespread, applications started
to grow in size and the use of operating systems like CP/M and
high level languages increased memory requirements until the
address range started to limit applications. Various techniques
like bank switching and program overlays were developed to
help.



Embedded processors 19

System integrity
Another disadvantage with this type of architecture is its

unpredictability in handling error conditions. A bug in a software
application could corrupt the whole system, causing a system to
either crash, hang up or, even worse, perform some unforeseen
operations. The reasons are quite simple: there is no partitioning
between data and programs within the architecture. An applica-
tion can update a data structure using a corrupt index pointer
which overwrites a part of its program.
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System corruption via an invalid
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Data are simply bytes of information which can be inter-
preted as instruction codes. The processor calls a subroutine
within this area, starts to execute the data as code and suddenly the
whole system starts performing erratically! On some machines,
certain undocumented code sequences could put the processor in
a test mode and start cycling through the address ranges etc. These
attributes restricted their use to non-critical applications.

Example 8 bit architectures

Z80
The Z80 microprocessor is an 8 bit CPU with a 16 bit address

bus capable of direct access to 64k of memory space. It was
designed by Zilog and rapidly gained a lot of interest. The Z80 was
based on the Intel 8080 but has an extended instruction set and
many hardware improvements. It can run 8080 code if needed by
its support of the 8080 instruction set. The instruction set is
essential based around an 8 bit op code giving a maximum of 256
instructions. The 158 instructions that are specified — the others
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are reserved — include 78 instructions from the 8080. The instruc-
tion set supports the use of extension bytes to encode additional
information. In terms of processing power, it offered about 1 MIP
at 4 MHz clock speed with a minimum instruction time of 1 µs and
a maximum instruction time of 5.75 µs.

Pin Signal Pin Signal
1 A11 21 RD
2 A12 22 WR
3 A13 23 BUSAK
4 A14 24 WAIT
5 A15 25 BUSRQ
6 CLOCK 26 RESET
7 D4 27 M1
8 D3 28 RFSH
9 D5 29 GND
10 D6 30 A0
11 Vcc 31 A1
12 D2 32 A2
13 D7 33 A3
14 D0 34 A4
15 D1 35 A5
16 INT 36 A6
17 NMI 37 A7
18 HALT 38 A8
19 MREQ 39 A9
20 IORQ 40 A10

The Z80 signals

Signal Description
A0 - A15 Address bus output tri-state
D0 - D7 Data bus bidirectional tri-state
CLOCK CPU clock input
RFSH Dynamic memory refresh output
HALT CPU halt status output
RESET Reset input
INT Interrupt request input (active low)
NMI Non-maskable interrupt input (active low)
BUSRQ Bus request input (active low)
BUSAK Bus acknowledge output (active low)
WAIT Wait request input (active low)
RD, WR Read and write signals
IORQ I/O operation status output
MREQ Memory refresh output
M1 Output pulse on instruction fetch cycle
Vcc +5 volts
GND 0 volts

The Z80 pinout descriptions

The programming model includes an accumulator and six
8 bit registers that can be paired together to create three 16 bit
registers. In addition to the general registers, a stack pointer,
program counter, and two index (memory pointers) registers are
provided. It uses external RAM for its stack. While not as powerful
today as a PowerPC or Pentium, it was in its time a very powerful
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processor and was used in many of the early home computers such
as the Amstrad CPC series. It was also used in many embedded
designs partly because of its improved performance and also for
its built-in refresh circuitry for DRAMs. This circuitry greatly
simplified the external glue logic that was needed with DRAMs.

The Z80 was originally packaged in a 40 pin DIP package
and ran at 2.5 and 4 MHz. Since then other packages and speeds
have become available including low power CMOS versions —
the original was made in NMOS and dissipated about 1 watt. Zilog
now use the processor as a core within its range of Z800
microcontrollers with various configurations of on-chip RAM and
EPROM.

Z80 programming model
The Z80 programming model essential consists of a set of 8

bit registers which can be paired together to create 16 bit versions
for use as data storage or address pointers. There are two register
sets within the model: the main and alternate. Only one set can be
used at any one time and the switch and data transfer is performed
by the EXX instruction. The registers in the alternate set are
designated by a ´ suffix.
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Program counter 
PCIndex register IX

Index register IY
Stack pointer SP
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The Z80 programming model

The model has an 8 bit accumulator A and a flags register
known as F. This contains the status information such as carry,
zero, sign and overflow. This register is also known as PSW
(program status word) in some documentation. Registers B, C, D,
E, H and L are 8 bit general-purpose registers that can be paired to
create 16 registers known as BC, DE and HL. The remaining
registers are the program counter PC, two index registers IX and
IY and a stack pointer SP. All these four registers are 16 bits in size
and can access the whole 64 kbytes of external memory that the
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Z80 can access. There are two additional registers IV and MR
which are the interrupt vector and the memory refresh registers.
The IV register is used in the interrupt handling mode 2 to point
to the required software routine to process the interrupt. In mode
1, the interrupt vector is supplied via the external data bus. The
memory refresh register is used to control the on-chip DRAM
refresh circuitry.

Unlike the MC6800, the Z80 does not use memory mapped
I/O and instead uses the idea of ports, just like the 8080. The lower
8 bits of the address bus are used along with the IORQ signal to
access any external peripherals. The IORQ signal is used to differ-
entiate the access from a normal memory cycle. These I/O accesses
are similar from a hardware perspective to a memory cycle but
only occur when an I/O port instruction (IN, OUT) is executed. In
some respects, this is similar to the RISC idea of load and store
instructions to bring information into the processor, process it and
then write out the data. This system gives 255 ports and is usually
sufficient for most embedded designs.

MC6800
The MC6800 was introduced in the mid-1970s by Motorola

and is as an architecture the basis of several hundred derivative
processors and microcontrollers such as the MC6809, MC6801,
MC68HC05, MC68HC11, MC68HC08 families.

The processor architecture is 8 bits and uses a 64 kbyte
memory map. Its programming model uses two 8 bit accumula-
tors and a single 16 bit index register. Later derivatives such as the
MC68HC11 added an additional index register and allowed the
two accumulators to be treated as a single 16 bit accumulator to
provide additional support for 16 bit arithmetic.
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Accumulator A

Accumulator B

Index register X

Program counter

Stack pointer

Condition code 

The MC6800 programmer‘s model

Its external bus was synchronous with separate address
and data ports and the device operated at either 1, 1.5 or 2 MHz.
The instruction set was essentially based around an 8 bit instruc-
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tion with extensions for immediate values, address offsets and so
on. It supported both non-maskable and software interrupts.

These type of processors have largely been replaced today
by the microcontroller versions which have the same or advanced
processor architectures and instruction sets but have the added
advantage of glueless interfaces to memory and peripherals incor-
porated onto the chip itself. Discrete processors are still used but
these tend to be the higher performance devices such as the
MC68000 and 80x86 processors. But even with these faster and
higher performance devices, the same trend of moving to inte-
grated microcontroller type of devices is being followed as even
higher performance processors such as RISC devices become
available.

Microcontrollers
The previous section has described the 8 bit processors.

While most of the original devices are no longer available, their
architectures live on in the form of microcontrollers. These devices
do not need much processing power — although this is now
undergoing a radical change as will be explained later — but
instead have become a complete integrated computer system by
integrating the processor, memory and peripherals onto a single
chip.

MC68HC05
The MC68HC05 is microcontroller family from Motorola

that uses an 8 bit accumulator-based architecture as its processor
core. This is very similar to that of the MC6800 except that it only
has a single accumulator.

It uses memory mapping to access any on-chip peripherals
and has a 13 bit program counter and effectively a 6 bit stack
pointer. These reduced size registers — with many other 8 bit
processors such as the Z80/8080 or MC6800, they are 16 bits is size
— are used to reduce the complexity of the design. The
microcontroller uses on-chip memory and therefore it does not
make sense to define registers that can address memory that
doesn’t exist on the chip. The MC68HC05 family is designed for
low cost applications where superfluous hardware is removed to
reduce the die size, its power consumption and cost. As a result,
the stack pointer points to the start of the on-chip RAM and can
only use 64 bytes, and the program counter is reduced to 13 bits.

MC68HC11
The MC68HC11 is a powerful 8 bit data, 16 bit address

microcontroller from Motorola that was on its introduction one of
the most powerful and flexible microcontrollers available. It was
originally designed in conjunction with General Motors for use
within engine management systems. As a result, its initial versions
had built-in EEPROM/OTPROM, RAM, digital I/O, timers,
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8 channel 8 bit A/D converter, PWM generator, and synchronous
and asynchronous communications channels (RS232 and SPI). Its
current consumption is low with a typical value of less than 10 mA.

 Architecture
The basic processor architecture is similar to that of the 6800

and has two 8 bit accumulators referred to as registers A and B.
They can be concatenated to provide a 16 bit double accumulator
called register D. In addition, there are two 16 bit index registers
X and Y to provide indexing to anywhere within its 64 kbyte
memory map.

 Through its 16 bit accumulator, the instruction set can
support several 16 bit commands such as add, subtract, shift and
16 by 16 division. Multiplies are limited to 8 bit values.

7 015

Accumulator A

Accumulator B

Index register X

Program counter

Stack pointer

Condition code 

Accumulator D

MC68HC11 programming model

Data processors
Processors like the 8080 and the MC6800 provided the

computing power for many early desktop computers and their
successors have continued to power the desktop PC. As a result,
it should not be surprising that they have also provided the
processing power for more powerful systems where a
microcontroller cannot provide either the processing power or the
correct number or type of peripherals. They have also provided
the processor cores for more integrated chips which form the next
category of embedded systems.

Complex instructions, microcode and nanocode
With the initial development of the microprocessor concen-

trated on the 8 bit model, it was becoming clear that larger data
sizes, address space and more complex instructions were needed.
The larger data size was needed to help support higher precision
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arithmetic. The increased address space was needed to support
bigger blocks of memory for larger programs. The complex in-
struction was needed to help reduce the amount of memory
required to store the program by increasing the instruction effi-
ciency: the more complex the instruction, the less needed for a
particular function and therefore the less memory that the system
needed. It should be remembered that it was not until recently that
memory has become so cheap.

 The instruction format consists of an op code followed by
a source effective address and a destination effective address. To
provide sufficient coding bits, the op code is 16 bits in size with
further 16 bit operand extensions for offsets and absolute ad-
dresses. Internally, the instruction does not operate directly on the
internal resources, but is decoded to a sequence of microcode
instructions, which in turn calls a sequence of nanocode com-
mands which controls the sequencers and arithmetic logic units
(ALU). This is analogous to the many macro subroutines used by
assembler programmers to provide higher level ‘pseudo’ instruc-
tions. On the MC68000, microcoding and nanocoding allow in-
structions to share common lower level routines, thus reducing
the hardware needed and allowing full testing and emulation
prior to fabrication. Neither the microcode nor the nanocode
sequences are available to the programmer.

These sequences, together with the sophisticated address
calculations necessary for some modes, often take more clock
cycles than are consumed in fetching instructions and their asso-
ciated operands from external memory. This multi-level decoding
automatically lends itself to a pipelined approach which also
allows a prefetch mechanism to be employed.

Pipelining works by splitting the instruction fetch, decode
and execution into independent stages: as an instruction goes
through each stage, the next instruction follows it without waiting
for it to completely finish. If the instruction fetch is included within
the pipeline, the next instruction can be read from memory, while
the preceding instruction is still being executed as shown.

The only disadvantage with pipelining concerns pipeline
stalls. These are caused when any stage within the pipeline cannot
complete its allotted task at the same time as its peers. This can
occur when wait states are inserted into external memory accesses,
instructions use iterative techniques or there is a change in pro-
gram flow.

With iterative delays, commonly used in multiply and
divide instructions and complex address calculations, the only
possible solutions are to provide additional hardware support,
add more stages to the pipeline, or simply suffer the delays on the
grounds that the performance is still better than anything else!
Additional hardware support may or may not be within a design-
er‘s real estate budget (real estate refers to the silicon die area, and
directly to the number of transistors available). Adding stages also
consumes real estate and increases pipeline stall delays when
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branching. This concern becomes less of an issue with the current
very small gate sizes that are available but the problem of pipeline
stalls and delays is still a major issue. It is true to say that pipeline
lengths have increased to gain higher speeds by reducing the
amount of work done in each stage. However, this has been
coupled with an expansion in the hardware needed to overcome
some of the disadvantages. These trade-offs are as relevant today
as they were five or ten years ago.
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The main culprits are program branching and similar op-
erations. The problem is caused by the decision whether to take the
branch or not being reached late in the pipeline, i.e. after the next
instruction has been prefetched. If the branch is not taken, this
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instruction is valid and execution can carry on. If the branch is
taken, the instruction is not valid and the whole pipeline must be
flushed and reloaded. This causes additional memory cycles
before the processor can continue. The delay is dependent on the
number of stages, hence the potential difficulty in increasing the
number of stages to reduce iterative delays. This interrelation of
engineering trade-offs is a common theme within microprocessor
architectures. Similar problems can occur for any change of flow:
they are not limited to just branch instructions and can occur with
interrupts, jumps, software interrupts etc. With the large usage of
these types of instructions, it is essential to minimise these delays.
The longer the pipeline, the greater the potential delay.

The next question was over how to migrate from the exist-
ing 8 bit architectures. Two approaches were used: Intel chose the
compatibility route and simply extended the 8080 programming
model, while Motorola chose to develop a different architecture
altogether which would carry it into the 32 bit processor world.

INTEL 80286
The Intel 80286 was the successor to the 8086 and 8088

processors and offered a larger addressing space while still pre-
serving compatibility with its predecessors. Its initial success was
in the PC market where it was the processor engine behind the IBM
PC AT and all the derivative clones.

Architecture
The 80286 has two modes of operation known as real mode

and protected mode: real mode describes its emulation of the
8086/8088 processor including limiting its external address bus to
20 bits to mimic the 8086/8088 1 Mbyte address space. In its real
mode, the 80286 adds some additional registers to allow access to
its larger 16 Mbyte external address space, while still preserving
its compatibility with the 8086 and 8088 processors.

Accumulator AX
Base register BX

Counter register CX

Data register DX

Source index Sl

Destination index Dl

Stack pointer SP

Base pointer BP

Code segment CS

Data segment DS

Stack segment SS

Extra segment ES

Instruction pointer IP

Status flags FL

15 0

Intel 80286 processor register set



Embedded processors 29

The register set comprises four general-purpose 16 bit
registers (AX, BX, CX and DX) and four segment address registers
(CS, DS, SS and ES) and a 16 bit program counter. The general-
purpose registers — AX, BX, CX, and DX — can be accessed as two
8 bit registers by changing the X suffix to either H or L. In this way,
each half of register AX can be accessed as AH or AL and so on for
the other three registers.

These registers form a set that is the same as that of an 8086.
However, when the processor is switched into its protected mode,
the register set is expanded and includes two index registers (DI
and SI) and a base pointer register. These additions allow the 80286
to support a simple virtual memory scheme.

Within the IBM PC environment, the 8086 and 8088 proces-
sors can access beyond the 1 Mbyte address space by using paging
and special hardware to simulate the missing address lines. This
additional memory is known as expanded memory. This non-
linear memory mapping can pose problems when used in an
embedded space where a large linear memory structure is needed,
but these restrictions can be overcome as will be shown in later
design examples.

Interrupt facilities
The 80286 can handle 256 different exceptions and the

vectors for these are held in a vector table. The vector table’s
construction is different depending on the processor’s operating
mode. In the real mode, each vector consists of two 16 bit words
that contain the interrupt pointer and code segment address so
that the associated interrupt routine can be located and executed.
In the protected mode of operation each entry is 8 bytes long.

Vector Function
0 Divide error
1 Debug exception
2 Non-masked interrupt NMI
3 One byte interrupt INT
4 Interrupt on overflow INTO
S Array bounds check BOUND
6 Invalid opcode
7 Device not available
8 Double fault
9 Coprocessor segment overrun
10 Invalid TSS
11 Segment not present
12 Stack fault
13 General protection fault
14 Page fault
15 Reserved
16 Coprocessor error
17-32 Reserved
33-255 INT n trap instructions

The interrupt vectors and their allocation
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Instruction set
The instruction set for the 80286 follows the same pattern as

that for the Intel 8086 and programs written for the 8086 are
compatible with the 80286 processor.

80287 floating point support
The 80286 can also be used with the 80287 floating point

coprocessor to provide acceleration for floating point calculations.
If the device is not present, it is possible to emulate the floating
point operations in software, but at a far lower performance.

Feature comparison
Feature 8086 8088 80286
Address bus 20 bit 20 bit 24 bit
Data bus 16 bit 8 bit 16 bit
FPU present No No No
Memory management No No Yes
Cache on-chip No No No
Branch acceleration No No No
TLB support No No No
Superscalar No No No
Frequency (MHz) 5,8,10 5,8,10 6,8,10,12
Average cycles/Inst. 12 12 4.9
Frequency of FPU =CPU =CPU 2/3 CPU
Frequency 3X 3X 2X
Address range 1 Mbytes 1 Mbytes 16 Mbytes
Frequency scalability No No No
Voltage 5 v 5 v 5 v

Intel 8086, 8088 and 80286 processors

INTEL 80386DX
The 80386 processor was introduced in 1987 as the first 32

bit member of the family. It has 32 bit registers and both 32 bit data
and address buses. It is software compatible with the previous
generations through the preservation of the older register set
within the 80386’s newer extended register model and through a
special 8086 emulation mode where the 80386 behaves like a very
fast 8086. The processor has an on-chip paging memory manage-
ment unit which can be used to support multitasking and demand
paging virtual memory schemes if required.

Architecture
The 80386 has eight general-purpose 32 bit registers EAX,

EBX, ECX, EDX, ESI, EDI, EBP and ESP. These general-purpose
registers are used for storing either data or addresses. To ensure
compatibility with the earlier 8086 processor, the lower half of
each register can be accessed as a 16-bit register (AX, BX, CX, DX,
SI, DI, BP and SP). The AX, BX, CX and DX registers can be also
accessed as 8 bit registers by changing the X suffix for either H or
L thus creating the 8088 registers AH, AL, BH, BL and so on.
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To generate a 32 bit physical address, six segment registers
(CS, SS, DS, ES, FS, GS) are used with addresses from the general
registers or instruction pointer. The code segment (CS) is used
with the instruction pointer to create the addresses used for
instruction fetches and any stack access uses the SS register. The
remaining segment registers are used for data addresses.

Each segment register has an associated descriptor register
which is used to program and control the on-chip memory man-
agement unit. These descriptor registers — controlled by the
operating system and not normally accessible to the application
programmer — hold the base address, segment limit and various
attribute bits that describe the segment‘s properties.

The 80386 can run in three different modes: the real mode,
where the size of each segment is limited to 64 kbytes, just like the
8088 and 8086; a protected mode, where the largest segment size
is increased to 4 Gbytes; and a special version of the protected
mode that creates multiple virtual 8086 processor environments.

The 32 bit flag register contains the normal carry zero,
auxiliary carry, parity, sign and overflow flags. The resume flag is
used with the trap 1 flag during debug operations to stop and start
the processor. The remaining flags are used for system control to
select virtual mode, nested task operation and input/output
privilege level.
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Intel 80386 register set

For external input and output, a separate peripheral ad-
dress facility is available similar to that found on the 8086. As an
alternative, memory mapping is also supported (like the M68000
family) where the peripheral is located within the main memory
map.
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Interrupt facilities
The 80386 has two external interrupt signals which can be

used to allow external devices to interrupt the processor. The
INTR input generates a maskable interrupt while the NMI gener-
ates a non-maskable interrupt and naturally has the higher prior-
ity of the two.

During an interrupt cycle, the processor carries out two
interrupt acknowledge bus cycles and reads an 8 bit vector number
on D0–D7 during the second cycle. This vector number is then
used to locate, within the vector table, the address of the corre-
sponding interrupt service routine. The NMI interrupt is auto-
matically assigned the vector number of 2.

Software interrupts can be generated by executing the INT
n instruction where n is the vector number for the interrupt. The
vector table consists of 4 byte entries for each vector and starts at
memory location 0 when the processor is running in the real mode.
In the protected mode, each vector is 8 bytes long. The vector table
is very similar to that of the 80286.

Vector Function
0 Divide error
1 Debug exception
2 Non-masked interrupt NMI
3 One byte interrupt INT
4 Interrupt on overflow INTO
S Array bounds check BOUND
6 Invalid opcode
7 Device not available
8 Double fault
9 Coprocessor segment overrun
10 Invalid TSS
11 Segment not present
12 Stack fault
13 General protection fault
14 Page fault
15 Reserved
16 Coprocessor error
17-32 Reserved
33-255 INT n trap instructions

Instruction set
The 80386 instruction set is essentially a superset of the 8086

instruction set. The format follows the dyadic approach and uses
two operands as sources with one of them also duplicating as a
destination. Arithmetic and other similar operations thus follow
the A+B=B type of format (like the M68000). When the processor
is operating in the real mode — like an 8086 processor — its
instruction set, data types and register model is essentially re-
stricted to a that of the 8086. In its protected mode, the full 80386
instruction set, data types and register model becomes available.
Supported data types include bits, bit fields, bytes, words (16 bits),



Embedded processors 33

long words (32 bits) and quad words (64 bits). Data can be signed
or unsigned binary, packed or unpacked BCD, character bytes and
strings. In addition, there is a further group of instructions that can
be used when the CPU is running in protected mode only. They
provide access to the memory management and control registers.
Typically, they are not available to the user programmer and are
left to the operating system to use.

LSL Load segment limit
LTR Load task register
SGDT Store global descriptor table
SIDT Store interrupt descriptor table
STR Store task register
SLDT Store local descriptor table
SMSW Store machine status word
VERR Verify segment for reading
VERW Verify segment for writing

Addressing modes provided are:
Register direct (Register contains operand)
Immediate (Instruction contains data)
Displacement (8/16 bits)
Base address (Uses BX or BP register)
Index (Uses DI or SI register)

 80387 floating point coprocessor
The 80386 can also be used with the 80387 floating point

coprocessor to provide acceleration for floating point calculations.
If the device is not present, it is possible to emulate the floating
point operations in software, but at a far lower performance.

Feature comparison
There is a derivative of the 80386DX called the 80386SX

which provides a lower cost device while retaining the same
architecture. To reduce the cost, it uses an external 16 bit data bus
and a 24 bit memory bus. The SX device is not pin compatible with
the DX device. These slight differences can cause quite different
levels of performance which can mean the difference between
performing a function of not.

In addition, Intel have produced an 80386SL device for
portable PCs which incorporates a power control module that
provides support for efficient power conservation.

Although Intel designed the 80386 series, the processor has
been successfully cloned by other manufacturers (both technically
and legally) such as AMD, SGS Thomson, and Cyrix. Their ver-
sions are available at far higher clock speeds than the Intel origi-
nals and many PCs are now using them. These are now available
with all the peripherals needed to create a PC AT clone integrated
on the chip and these are extensively used to create embedded
systems based on the PC architecture.
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Feature i386SX          i386DX i386SL
Address bus 24 bit            32 bit 24 bit
Data bus 16 bit            32 bit 16 bit
FPU present No                 No No
Memory management Yes                Yes Yes
Cache on-chip No                 No Control
Branch acceleration No                 No No
TLB support No                 No No
Superscalar No                 No No
Frequency (MHz) 16,20,25,33   16,20,25,33 16,20,25
Average cycles/Inst. 4.9                 4.9 <4.9
Frequency of FPU =CPU            =CPU =CPU
Address range 16 Mbytes     4 Gbytes 16 Mbytes
Frequency scalability No                 No No
Transistors 275000          275000 855000
Voltage 5 v                 5 v 3 v or 5 v
System management No                 No Yes

Intel i386 feature comparison

INTEL 80486
The Intel 80486 processor is essentially an enhanced 80386.

It has a similar instruction set and register model but to dismiss it
as simply a go-faster 80386 would be ignoring the other features
that it uses to improve performance.
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The 80486 internal architecture

Like the MC68040, it is a CISC processor that can execute
instructions in a single cycle. This is done by pipelining the
instruction flow so that address calculations and so on are per-
formed as the instruction proceeds down the line. Although the
pipeline may take several cycles, an instruction can potentially be
started and completed on every clock edge, thus achieving the
single cycle performance.

To provide instruction and data to the pipeline, the 80486
has an internal unified cache to contain both data and instructions.
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This removes the dependency of the processor on faster external
memory to maintain sufficient data flow to allow the processor to
continue executing instead of stalling. The 80486 also integrates a
80387 compatible fast floating point unit and thus does not need
an external coprocessor.

Instruction set
The instruction set is essentially the same as the 80386 but

there are some additional instructions available when running in
protected mode to control the memory management and floating
point units.

Intel 486SX and overdrive processors
The 80486 is available in several different versions which

offer different facilities. The 486SX is like the 80386SX, a stripped
down version of the full DX processor with the floating point unit
removed but with the normal 32 bit external data and address
buses. The DX2 versions are the clock doubled versions which run
the internal processor at twice the external bus speed. This allows
a 50 MHz DX2 processor to work in a 25 MHz board design, and
opens the way to retrospective upgrades — known as the over-
drive philosophy — where a user simply replaces a 25 MHz 486SX
with a DX to get floating point support or a DX2 to get the FPU and
theoretically twice the performance. Such upgrades need to be
carefully considered: removing devices that do not have a zero
insertion force socket can be tricky at best and wreck the board at
worst. Similarly, the additional heat and power dissipation has
also to be taken into consideration. While some early PC designs
had difficulties in these areas, the overdrive option has now
become a standard PC option.

The DX2 typically gives about 1.6 to 1.8 performance im-
provement depending on the operations that are being carried
out. Internal processing gains the most from the DX2 approach
while memory-intensive operations are frequently limited by the
external board design. Intel have also released a DX4 version
which offers internal CPU speeds of 75 and 100 MHz.

For embedded system designers, these overdrive chips can
be a gift from heaven in that they allow the hardware performance
of a system to be upgraded by simply swapping the processor. As
the speed clocking is an internal operation, the external hardware
timing can remain as is without affecting the design. It should be
stated that getting the performance budget right in the first place
is always preferable, but having the option of getting more per-
formance without changing the complete hardware is always
useful as a backup plan. It should be remembered that this
solution will only address CPU performance issues and not prob-
lems caused by external memory access delays or I/O speed
problems. This approach can be used with many other processors
where a pin compatible but faster CPU is available.
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Feature i486DX2-40 i486DX2-50 i486DX2-66
Address bus 32 bit 32 bit 32 bit
Data bus 32 bit 32 bit 32 bit
FPU present Yes Yes Yes
Memory management Yes Yes Yes
Cache on-chip 8K unified 8K unified 8K unified
Branch acceleration No No No
TLB support No No No
Superscalar No No No
Frequency (MHz) 40 50 66
Average cycles/Inst. 1.03 1.03 1.03
Frequency of FPU =CPU =CPU =CPU
Upgradable Yes Yes Yes
Address range 4 Gbytes 4 Gbytes 4 Gbytes
Frequency scalability No No No
Transistors 1.2 million 1.2 million 1.2 million
Voltage 5 and 3 5 and 3 5

Feature i486SX i486DX i486DX-50
Address bus 32 bit 32 bit 32 bit
Data bus 32 bit 32 bit 32 bit
FPU present No Yes Yes
Memory management Yes Yes Yes
Cache on-chip 8K unified 8K unified 8K unified
Branch acceleration No No No
TLB support No No No
Superscalar No No No
Frequency (MHz) 16,20,25,33 25,33 50
Average cycles/Inst. 1.03 1.03 1.03
Frequency of FPU N/A =CPU =CPU
Upgradable Yes Yes No
Address range 4 Gbytes 4 Gbytes 4 Gbytes
Frequency scalability No No No
Transistors 1.2 million 1.2 million 1.2 million
Voltage 5 and 3 5 and 3 5
System management No No No

Intel i486 feature comparison

Intel Pentium
The Pentium is essentially an enhanced 80486 from a pro-

gramming model. It uses virtually the same programming model
and instruction set — although there are some new additions.

The most noticeable enhancement is its ability to operate as
a superscalar processor and execute two instructions per clock. To
do this it has incorporated many new features that were not
present on the 80486.

As the internal architecture diagram shows, the device has
two five-stage pipelines that allow the joint execution of two
integer instructions provided that they are simple enough not to
use microcode or have data dependencies. This restriction is not
that great a problem as many compilers have now started to
concentrate on the simpler instructions within CISN instruction
sets to improve their performance.
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To maintain the throughput, the unified cache that ap-
peared on the 80486 has been dropped in favour of two separate
8 kbyte caches: one for data and one for code. These caches are fed
by an external 64 bit wide burst mode type data bus. The caches
also now support write-back MESI policies instead of the less
efficient write-through design.

Branches are accelerated using a branch target cache and
work in conjunction with the code cache and prefetch buffers. The
instruction set now supports an 8 byte compare and exchange
instruction and a special processor identification instruction. The
cache coherency support also has some new instructions to allow
programmer’s control of the MESI coherency policy.
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The Intel Pentium internal architecture

The Pentium has an additional control register and system
management mode register that first appeared on the 80386SL
which provides intelligent power control.

Feature Pentium
Address bus 32 bit
Data bus 64 bit
FPU present Yes
Memory management Yes
Cache on-chip Two 8 kbyte caches (data and code)
Branch acceleration Yes — branch target cache
Cache coherency MESI protocol
TLB support Yes
Superscalar Yes (2)
Frequency (MHz) 60, 66, 75, 100
Average cycle/Inst. 0.5
Frequency of FPU =CPU
Address range 4 Gbytes
Frequency scalability No
Transistors 3.21 million
Voltage 5 and 3
System management Yes

Intel Pentium feature comparison
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Pentium Pro
The Pentium Pro processor is the name for Intel's successor

to the Pentium and was previously referred to as the P6 processor.
The processor was Intel’s answer to the RISC threat posed by the
DEC Alpha and Motorola PowerPC chips. It embraces many
techniques that are used to achieve superscalar performance that
have appeared previously on RISC processors such as the MPC604
PowerPC chip. It was unique in that the device actually consisted
of two separate die within a single ceramic pin grid array: one die
is the processor with its level one cache on-chip and the second die
is the level 2 cache which is needed to maintain the instruction and
data throughput needed to maintain the level of performance. It
was originally introduced at 133 MHz and gained some accept-
ance within high-end PC/workstation applications. Both caches
support the full MESI cache coherency protocol.

It achieves superscalar operation by being able to execute
up to five instructions concurrently although this is a peak figure
and a more realistic one to two instructions per clock is a more
accurate average figure. This is done through a technique called
dynamic execution using multiple branch prediction, dataflow
analysis and speculative execution.

Multiple branch prediction
This is where the processor predicts where a branch instruc-

tion is likely to change the program flow and continues execution
based on this assumption, until proven or more accurately, until
correctly evaluated. This removes any delay providing the branch
prediction was correct and speeds up branch execution.

Data flow analysis
This is an out of order execution and involves analysing the

code and determining if there are any data dependencies. If there
are, this will stall the superscalar execution until these are re-
solved. For example, the processor cannot execute two consecu-
tive integer instructions if the second instruction depends on the
result of its predecessor. By internally reordering the instructions,
such delays can be removed and thus faster execution can be
restored. This can cause problems with embedded systems in that
the reordering means that the CPU will not necessarily execute the
code in programme order but in a logical functional sequence. To
do this, the processor needs to understand any restrictions that
may affect its reordering. This information is frequently provided
by splitting the memory map into areas, with each area having its
own attributes. These functions are described in Chapter 3.

Speculative execution
Speculative execution is where instructions are executed

speculatively, usually following predicted branch paths in the
code until the true and correct path can be determined. If the
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processor has speculated correctly, then performance has been
gained. If not, the speculative results are discarded and the proc-
essor continues down the correct path. If more correct speculation
is achieved than incorrect, the processor performance increases.

It is fair to say that the processor has not been as successful
as the Pentium. This is because faster Pentium designs, especially
those from Cyrix, outperformed it and were considerably cheaper.
The final problem it had was that it was not optimised for 16 bit
software such as MS-DOS and Windows 3.x applications and
required 32 bit software to really achieve its performance. The
delay in the market in getting 32 bit software — Windows 95 was
almost 18 months late and this stalled the market considerably —
did not help its cause, and the part is now overshadowed by the
faster Pentium parts and the Pentium II.

The MMX instructions
The MMX instructions or multimedia extensions as they

have also been referred to were introduced to the Pentium proces-
sor to provide better support for multimedia software running on
a PC using the Intel architecture. Despite some over-exaggerated
claims of 400% improvement, the additional instructions do pro-
vide additional support for programmers to improve their code.
About 50 instructions have been added that use the SIMD (single
instruction, multiple data) concept to process several pieces of
data with a single instruction, instead of the normal single piece of
data.

To do this, the eight floating point registers can be used to
support MMX instructions or floating point. These registers are 80
bits wide and in their MMX mode, only 64 bits are used. This is
enough to store a new data type known as the packed operand.
This supports eight packed bytes, four packed 16 bit words, two
packed 32 bit double words, or a single 64 bit quad word. This is
extremely useful for data manipulation where pixels can be packed
into the floating point register and manipulated simultaneously.

The beauty of this technique is that the basic architecture
and register set does not change. The floating point registers will
be saved on a context switch anyway, irrespective of whether they
are storing MMX packed data or traditional floating point values.
This is where one of the problems lies. A program can really only
use floating point or MMX instructions. It cannot mix them
without clearing the registers or saving the contents. This is
because the floating point and MMX instructions share the same
registers.

This has led to problems with some software and the
discovery of some bugs in the silicon (run a multimedia applica-
tion and then watch Excel get all the financial calculations wrong).
There are fixes available and this problem has been resolved.
However, the success of MMX does seem to be dependent on
factors other than the technology and the MMX suffix has become
a requirement. If a PC doesn’t have MMX, it is no good for
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multimedia. For embedded system, this statement is not valid and
its use is not as obligatory as it might seem.

What is interesting is that MMX processors also have other
improvements to help the general processor performance and so
it can be a little difficult to see how much MMX can actually help.
The second point is that many RISC processors, especially the
PowerPC as used in the Apple Macintosh, can beat an MMX
processor running the same multimedia application. The reason is
simple. Many of the instructions and data manipulation that MMX
brings, these processors have had as standard. They may not have
packed data, but they don’t have to remember if they used a
floating point instruction recently and should now save the regis-
ters before using an MMX instruction. What seems to be an elegant
solution does have some drawbacks.

The Pentium II
The Pentium II was the next generation Intel processor and

uses a module based technology and a PCB connector to provide
the connection to a Intel designed motherboard. It no longer uses
a chip package and is only available as a module. Essentially, a
redesigned and improved Pentium Pro core with larger caches, it
was the fastest Intel processor available until the Pentium III
appeared. It is clear that Intel is focusing on the PC market with its
80x86 architecture and this does raise the question the suitability
of these processors to be used in embedded systems. With the
subsequent Pentium III and Pentium IV processors requiring
specialised motherboard support, their suitability for embedded
designs is limited to completely built boards and hardwares. The
other problem with these types of architectures is that the inte-
grated caches and other techniques they use to get the processing
speed mean that the processor becomes more statistical in nature
and it becomes difficult to predict how long it will take to do a task.
This is another topic we will come back to in later chapters.

Motorola MC68000
The MC68000 was a complete design from scratch with the

emphasis on providing an architecture that looked forward with-
out the restrictions of remaining compatible with past designs.
Unlike the Intel approach of taking an 8 bit architecture and
developing it further and further, Motorola's approach was to
design a 16/32 bit processor whose architecture was more for-
ward looking.

The only support for the old MC6800 family was a hard-
ware interface to allow the new processor to use the existing
M6800 peripherals while new M68000 parts were being designed.

Its design took many of the then current mini and main-
frame computer architectural concepts and developed them using
VLSI silicon technology. The programmer’s register model shows
how dramatic the change was. Gone are the dedicated 8 and 16 bit
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registers to be replaced by two groups of eight data registers and
eight address registers. All these registers and the program coun-
ter are 32 bits wide.
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DATA 
REGISTERS

PROGRAM 
COUNTER

CONDITION 
CODES

The MC68000 USER programmer’s model

The MC68000 hardware

Address bus
The address bus (signals A1 – A23) is non-multiplexed and

24 bits wide, giving a single linear addressing space of 16 Mbytes.
A0 is not brought out directly but is internally decoded to generate
upper and lower data strobes. This allows the processor to access
either or both the upper and lower bytes that comprise the 16 bit
data bus.

Data bus
The data bus, D0 – D15, is also non-multiplexed and pro-

vides a 16 bit wide data path to external memory and peripherals.
The processor can use data in either byte, word (16 bit) or long
word (32 bit) values. Both word and long word data is stored on
the appropriate boundary, while bytes can be stored anywhere.
The diagram shows how these data quantities are stored. All
addresses specify the byte at the start of the quantity.

 If an instruction needs 32 bits of data to be accessed in
external memory, this is performed as two successive 16 bit
accesses automatically. Instructions and operands are always 16
bits in size and accessed on word boundaries. Attempts to access
instructions, operands, words or long words on odd byte bounda-
ries cause an internal ‘address’ error.
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Function codes
The function codes, FC0–FC2, provide extra information

describing what type of bus cycle is occurring. These codes and
their meanings are shown in the table below. They appear at the
same time as the address bus data and indicate program/data and
supervisor/user accesses. In addition, when all three signals are
asserted, the present cycle is an interrupt acknowledgement,
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where an interrupt vector is passed to the processor. Many design-
ers use these codes to provide hardware partitioning.

Interrupts
Seven interrupt levels are supported and are encoded on to

three interrupt pins IP0–IP2. With all three signals high, no exter-
nal interrupt is requested. With all three asserted, a non-maskable
level 7 interrupt is generated. Levels 1–6, generated by other
combinations, can be internally masked by writing to the appro-
priate bits within the status register.

The interrupt cycle is started by a peripheral generating an
interrupt. This is usually encoded using a 148 priority encoder.
The appropriate code sequence is generated and drives the inter-
rupt pins. The processor samples the levels and requires the levels
to remain constant to be recognised. It is recommended that the
interrupt level remains asserted until its interrupt acknowledge-
ment cycle commences to ensure recognition. Once the processor
has recognised the interrupt, it waits until the current instruction
has been completed and starts an interrupt acknowledgement
cycle. This starts an external bus cycle with all three function codes
driven high to indicate an interrupt acknowledgement cycle.

Function code

FC0

0

0

0

0

1

1

1

1

FC1

0

0

1

1

0

0

1

1
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0
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0

1

0

1

0

1
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User program
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Reserved

Supervisor data

Supervisor program

CPU space/interrupt ack

Reference class

The MC68000 function codes and their meanings

The interrupt level being acknowledged is placed on ad-
dress bus bits A1–A3 to allow external circuitry to identify which
level is being acknowledged. This is essential when one or more
interrupt requests are pending. The system now has a choice over
which way it will respond:

• If the peripheral can generate an 8 bit vector number, this is
placed on the lower byte of the address bus and DTACK*
asserted. The vector number is read and the cycle com-
pleted. This vector number then selects the address and
subsequent software handler from the vector table.

• If the peripheral cannot generate a vector, it can assert VPA*
and the processor will terminate the cycle using the M6800
interface. It will select the specific interrupt vector allocated
to the specific interrupt level. This method is called auto-
vectoring.
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To prevent an interrupt request generating multiple ac-
knowledgements, the internal interrupt mask is raised to the
interrupt level, effectively masking any further requests. Only if a
higher level interrupt occurs will the processor nest its interrupt
service routines. The interrupt service routine must clear the
interrupt source and thus remove the request before returning to
normal execution. If another interrupt is pending from a different
source, it will be recognised and cause another acknowledgement
to occur.

Error recovery and control signals
There are three signals associated with error control and

recovery. The bus error BERR*, HALT* and RESET* signals can
provide information or be used as inputs to start recovery proce-
dures in case of system problems.

The BERR* signal is the counterpart of DTACK*. It is used
during a bus cycle to indicate an error condition that may arise
through parity errors or accessing non-existent memory. If BERR*
is asserted on its own, the processor halts normal processing and
goes to a special bus error software handler. If HALT* is asserted
at the same time, it is possible to rerun the bus cycle. BERR* is
removed followed by HALT* one clock later, after which the
previous cycle is rerun automatically. This is useful to screen out
transient errors. Many designs use external hardware to force a
rerun automatically but will cause a full bus error if an error occurs
during the rerun.

Without such a signal, the only recourse is to complete the
transfer, generate an immediate non-maskable interrupt and let a
software handler attempt to sort out the mess! Often the only way
out is to reset the system or shut it down. This makes the system
extremely intolerant of signal noise and other such transient
errors.

The RESET* and HALT* signals are driven low at power-up
to force the MC68000 into its power-up sequence. The operation
takes about 100 ms, after which the signals are negated and the
processor accesses the RESET vector at location 0 in memory to
fetch its stack pointer and program counter from the two long
words stored there.

Motorola MC68020
The MC68020 was launched in April 1984 as the ‘32 bit

performance standard’ and in those days its performance was
simply staggering — 8 million instructions per second peak with
2–3 million sustained when running at 16 MHz clock speed. It was
a true 32 bit processor with 32 bit wide external data and address
buses as shown. It supported all the features and functions of the
MC68000 and MC68010, and it executed M68000 USER binary
code without modification (but faster!).
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• Virtual memory and instruction continuation were sup-
ported. This is explained in Chapter 7 on interrupts.

• The bus and control signals were similar to that of its
M68000 predecessors, offering an asynchronous memory
interface but with a three–cycle operation (instead of four)
and dynamic bus sizing which allowed the processor to talk
to 8, 16 and 32 bit processors.

• Additional coprocessors could be added to provide such
facilities as floating point arithmetic and memory manage-
ment, which used this bus to provide a sophisticated com-
munications interface.

• The instruction set was enhanced with more data types,
addressing modes and instructions.

• Bit field data and its manipulation was supported, along
with packed and unpacked BCD (binary coded decimal)
formats. An instruction cache and a barrel shifter to per-
form high speed shift operations were incorporated on-
chip to provide support for these functions.

MC68020

OTHER
CONTROL 
SIGNALS

DATA 
BUS (32)

MEMORY CONTROL
LOGIC

CO-
PROCESSORS

PERIPHERALS

ADDRESS 
BUS (32)

BUS
CONTROL

A simple MC68020 system

The actual pipeline used within the design is quite sophis-
ticated. It is a four–stage pipe with stage A consisting of an
instruction router which accepts data from either the external bus
controller or the internal cache. As the instruction is processed
down the pipeline, the intermediate data can either cause micro
and nanocode sequences to be generated to control the execution
unit or, in the case of simpler instructions, the data itself can be
passed directly into the execution unit with the subsequent speed
improvements.
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The programmer’s model
The programmer’s USER model is exactly the same as for

the MC68000, MC68010 and MC68008. It has the same eight data
and eight address 32 bit register organisation. The SUPERVISOR
mode is a superset of its predecessors. It has all the registers found
in its predecessors plus another three. Two registers are associated
with controlling the instruction cache, while the third provides the
master stack pointer.

The supervisor uses either its master stack pointer or inter-
rupt stack pointer, depending on the exception cause and the
status of the M bit in the status register. If this bit is clear, all stack
operations default to the A7´ stack pointer. If it is set, interrupt
stack frames are stored using the interrupt stack pointer while
other operations use the master pointer. This effectively allows the
system to maintain two separate stacks. While primarily for
operating system support, this extra register can be used for high
reliability designs.
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016:1531
A7'

A7''

VBR

CAAR
CACR

SR

SFC
DFC

MC68000/008

MC68010

MC68020

INTERRUPT  STACK  POINTER
STATUS  REGISTER

VECTOR  BASE  REGISTER

SOURCE  FUNCTION  CODE

DESTINATION  FUNCTION  CODE

MASTER  STACK  POINTER

CACHE  ADDRESS  REGISTER

CACHE  CONTROL  REGISTER

 The M68020 SUPERVISOR programming model



Embedded processors 47

The MC68020 instruction set is a superset of the MC68000/
MC68010 sets. The main difference is the inclusion of floating
point and coprocessor instructions, together with a set to manipu-
late bit field data. The instructions to perform a trap on condition
operation, a compare and swap operation and a ‘call-return from
module’ structure were also included. Other differences were the
addition of 32 bit displacements for the LINK and Bcc (branch on
condition) instructions, full 32 bit arithmetic with 32 or 64 bit
results as appropriate and extended bounds checking for the CHK
(check) and CMP (compare) instructions.

The bit field instructions were included to provide addi-
tional support for applications where data does not conveniently
fall into a byte organisation. Telecommunications and graphics
both manipulate data in odd sizes — serial data can often be 5, 6
or 7 bits in size and graphics pixels (i.e. each individual dot that
makes a picture on a display) vary in size, depending on how
many colours, grey scales or attributes are being depicted.

Dn
An
(An)+
-(An)
d(An)
d(An,Rx)
d(PC)
d(PC,Rx)
#xxxxxxxx
$xxxx
$xxxxxxxx

(bd,An,Xn.SIZE*SCALE)

([bd,An,Xn.SIZE*SCALE],od)
([bd,An],Xn.SIZE*SCALE,od)

([bd,PC,Xn.SIZE*SCALE],od)
([bd,PC],Xn.SIZE*SCALE,od)

Data Register Direct
Address Register Direct
Address Reg. Indirect w/ Post-Increment
Address Reg. Indirect w/ Pre-Decrement
Displaced Address Register Indirect
Indexed, Displaced Address Reg. 
Program Counter Relative
Indexed Program Counter Relative
Immediate
Absolute Short
Absolute Long

Register Indirect
Memory Indirect
  Pre-Indexed
  Post-Indexed
Program Counter Memory Indirect
  Pre-Indexed
  Post-Indexed

MC68000/008/010

MC68020/MC68030

The MC68020 addressing modes

The addressing modes were extended from the basic M68000
modes, with memory indirection and scaling. Memory indirec-
tion allowed the contents of a memory location to be used within
an effective address calculation rather than its absolute address.
The scaling was a simple multiplier value 1, 2, 4 or 8 in magnitude,
which multiplied (scaled) an index register. This allowed large
data elements within data structures to be easily accessed without
having to perform the scaling calculations prior to the access.
These new modes were so complex that even the differentiation
between data and address registers was greatly reduced: with the
MC68020, it is possible to use data registers as additional address
registers. In practice, there are over 50 variations available to the
programmer to apply to the 16 registers.
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The new CAS and CAS2 ‘compare and swap’ instructions
provided an elegant solution to linked list updating within a
multiprocessor system. A linked list is a series of data lists linked
together by storing the address of the next list in the chain in the
preceding chain. To add or delete a list simply involves modifying
these addresses.

Address bus

Function codes

Data bus

IPL0-IPL2

MC68020
microprocessor
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RMC
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SIZ1
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The MC68020 device pinout

In a multiprocessor system, this modification procedure
must occur uninterrupted to prevent corruption. The CAS and
CAS2 instruction meets this specification. The current pointer to
the next list is read and stored in Dn. The new value is calculated
and stored in Dm. The CAS instruction is then executed. The
current pointer value is read and compared with Dn. If they are the
same, no other updating by another processor has happened and
Dm is written out to update the list. If they do not match, the value
is copied into Dn, ready for a repeat run. This sequence is per-
formed using an indivisible read-modify-write cycle. The condi-
tion codes are updated during each stage. The CAS2 instruction
performs a similar function but with two sets of values. This
instruction is also performed as a series of indivisible cycles but
with different addresses appearing during the execution.
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Bus interfaces
Many of the signals shown in the pin out diagram are the

same as those of the MC68000 — the function codes FC0–2,
interrupt pins IPL0–2 and the bus request pins, RESET*, HALT*
and BERR* perform the same functions.

With the disappearance of the M6800 style interface, sepa-
rate signals are used to indicate an auto-vectored interrupt. The
AVEC* signal is used for this function and can be permanently
asserted if only auto-vectored interrupts are required. The IPEND
signal indicates when an interrupt has been internally recognised
and awaits an acknowledgement cycle. RMC* indicates an indi-
visible read-modify-write cycle instead of simply leaving AS*
asserted between the bus cycles. The address strobe is always
released at the end of a cycle. ECS* and OCS* provide an early
warning of an impending bus cycle, and indicate when valid
address information is present on the bus prior to validation by the
address strobe.
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The M68000 upper and lower data strobes have been re-
placed by A0 and the two size pins, SIZE0 and SIZE1. These
indicate the amount of data left to transfer on the current bus cycle
and, when used with address bits A0 and A1, can provide decode
information so that the correct bytes within the 4 byte wide data
bus can be enabled. The old DTACK* signal has been replaced by
two new ones, DSACK0* and DSACK1*. They provide the old
DTACK* function of indicating a successful bus cycle and are used
in the dynamic bus sizing. The bus interface is asynchronous and
similar to the M68000 cycle but with a shorter three–cycle se-
quence, as shown.

A0-A31
FC0-FC2

SIZE0/1

ECS/OCS
AS
DS

R/W
DSACK0/1

D0-D31

S0 S1 S2 S3 S4 S5 S6 S7

MC68020 bus cycle timings

Motorola MC68030
The MC68030 appeared some 2–3 years after the MC68020

and used the advantage of increased silicon real estate to integrate
more functions on to a MC68020-based design. The differences
between the MC68020 and the MC68030 are not radical — the
newer design can be referred to as evolutionary rather than a
quantum leap. The device is fully MC68020 compatible with its
full instruction set, addressing modes and 32 bit wide register set.
The initial clock frequency was designed to 20 MHz, some 4 MHz
faster than the MC68020, and this has yielded commercially
available parts running at 50 MHz. The transistor count has
increased to about 300000 but with smaller geometries; die size
and heat dissipation are similar.

Memory management has now been brought on-chip with
the MC68030 using a subset of the MC68851 PMMU with a smaller
22 entry on-chip address translation cache. The 256 byte instruc-
tion cache of the MC68020 is still present and has been augmented
with a 256 byte data cache.

 Both these caches are logical and are organised differently
from the 64 × 4 MC68020 scheme. A 16 × 16 organisation has been
adopted to allow a new synchronous bus to burst fill cache lines.
The cache lookup and address translations occur in parallel to
improve performance.
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The processor supports both the coprocessor interface and
the MC68020 asynchronous bus with its dynamic bus sizing and
misalignment support. However, it has an alternative synchro-
nous bus interface which supports a two–clock access with op-
tional single-cycle bursting. The bus interface choice can be made
dynamically by external hardware.

The MC68040
The MC68040 incorporates separate integer and floating

point units giving sustained performances of 20 integer MIPS and
3.5 double precision Linpack MFLOPS respectively, dual 4 kbyte
instruction and data caches, dual memory management units and
an extremely sophisticated bus interface unit. The block diagram
shows how the processor is partitioned into several separate
functional units which can all execute concurrently. It features a
full Harvard architecture internally and is remarkably similar at
the block level, to the PowerPC RISC processor.

The design is revolutionary rather than evolutionary: it
takes the ideas of overlapping instruction execution and pipelining
to a new level for CISC processors. The floating point and integer
execution units work in parallel with the on-chip caches and
memory management to increase the overlapping so that many
instructions are executed in a single cycle, and thus give it its
performance.

The pinout reveals a large number of new signals. One
major difference about the MC68040 is its high drive capability.
The processor can be configured on reset to drive either 55 or 5 mA
per bus or control pin. This removes the need for external buffers,
reducing chip count and the associated propagation delays, which
often inflict a high speed design. The 32 bit address and 32 bit data
buses are similar to its predecessors although the signals can be
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optionally tied together to form a single 32 bit multiplexed data/
address bus.
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The MC68040 block diagram

The User Programmable Attributes (UPA0 and UPA1) are
driven according to 2 bits within each page descriptor used by the
onboard memory management units. They are primarily used to
enable the MC68040 Bus Snooping protocols, but can also be used
to give additional address bits, software control for external
caches and other such functions. The two size pins, SIZ0 and SIZ1,
no longer indicate the number of remaining bytes left to be
transferred as they did on the MC68020 and MC68030, but are
used to generate byte enables for memory ports. They now indi-
cate the size of the current transfer. Dynamic bus sizing is sup-
ported via external hardware if required. Misaligned accesses are
supported by splitting the transfer into a series of aligned accesses
of differing sizes. The transfer type signals, TT1 and TT2, indicate
the type of transfer that is taking place and the Transfer Modifier
pins TM0-2 provide further information. These five pins effec-
tively replace the three function code pins. The TLN0-1 pins
indicate the current long word number within a burst fill access.

The synchronous bus is controlled by the Master and Slave
transfer control signals: Transfer Start (TS*) indicates a valid
address on the bus while the Transfer in Progress (TIP*) signal is
asserted during all external bus cycles and can be used to power
up/down external memory to conserve power in portable appli-
cations. These two Master signals are complemented by the slave
signals: Transfer Acknowledge (TA*) successfully terminates the
bus cycle, while Transfer Error Acknowledge (TEA*) terminates
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the cycle and the burst fill as a result of an error. If both these
signals are asserted on the first access of the burst, the cycle is
terminated and immediately rerun. On the second, third and
fourth accesses, a retry attempt is not allowed and the processor
simply assumes that an error has occurred and will terminate the
burst as normal.
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The MC68040 pinout

The processor can be configured to use a different signal,
Data Latch Enable DLE to latch read data instead of the rising edge
of the BCLK clock. The internal caches and memory management
units can be disabled via the CDIS* and MDIS* pins respectively.

The programming model

To the programmer the programming model of the MC68040
is the same as its predecessors such as the MC68030. It has the same
eight data and eight address registers, the vector same base
register (VBR), the alternate function code registers although
some codes are reserved, the same dual Supervisor stack pointer
and the two cache control registers although only two bits are now
used to enable or disable either of the two on-chip caches. Inter-
nally the implementation is different. Its instruction execution
unit consists of a six–stage pipeline which sequentially fetches an
instruction, decodes it, calculates the effective address, fetches an
address operand, executes the instruction and finally writes back
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the results. To prevent pipeline stalling, an internal Harvard
architecture is used to allow simultaneous instruction and oper-
and fetches. It has been optimised for many instructions and
addressing modes so that single-cycle execution can be achieved.
The early pipeline stages are effectively duplicated to allow both
paths of a branch instruction to be processed until the path
decision is taken. This removes pipeline stalls and the subsequent
performance degradation. While integer instructions are being
executed, the floating point unit is free to execute floating point
instructions.
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The MC68040 programming model

Integrated processors
With the ability of semiconductor manufacturers to be able

to integrate several million transistors onto a single piece of
silicon, it should come as no surprise that there are now processors
available which take the idea of integration offered by a
microcontroller, but use a high performance processor instead.
The Intel 80186 started this process by combining DMA channels
with an 8086 architecture. The most successful family so far has
been the MC683xx family from Motorola. There are now several
members of the family currently available.

 They combine an M68000 or MC68020 (CPU32) family
processor and its asynchronous memory interface, with all the
standard interface logic of chip selects, wait state generators, bus
and watchdog timers into a system interface module and use a
second RISC type processor to handle specific I/O functions. This
approach means that all the additional peripherals and logic
needed to construct an MC68000- based system has gone. In many
cases, the hardware design is almost at the ‘join up the dots’ level
where the dots are the processor and memory pins.
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This approach has been adopted by others and many differ-
ent processor cores, such as SPARC and MIPs, are now available
in similar integrated processors. PowerPC versions of the MC68360
are now in production where the MC68000-based CPU32 core is
replaced with a 50 MHz PowerPC processor. For embedded
systems, this is definitely the way of the future.
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The MC68302 Integrated Multiprotocol Processor

The MC68302 uses a 16 MHz MC68000 processor core with
power down modes and either an 8 or 16 bit external bus. The
system interface block contains 1152 bytes of dual port RAM, 28
pins of parallel I/O, an interrupt controller and a DMA device, as
well as the standard glue logic. The communications processor is
a RISC machine that controls three multiprotocol channels, each
with their own pair of DMA channels. The channels support
BISYNC, DDCMP, V.110, HDLC synchronous modes and stand-
ard UART functions. This processor takes buffer structures from
either the internal or external RAM and takes care of the day-to-
day activities of the serial channels. It programs the DMA channel
to transfer the data, performs the character and address compari-
sons and cyclic redundancy check (CRC) generation and check-
ing. The processor has sufficient power to cope with a combined
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data rate of 2 Mbits per second across the three channels. Assum-
ing an 8 bit character and a single interrupt to poll all three
channels, the processor is handling the equivalent of an interrupt
every 12 microseconds. In addition, it is performing all the data
framing etc. While this is going on, the on-chip M68000 is free to
perform other functions, like the higher layers of X.25 or other OSI
protocols as shown.
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The MC68332 is similar to the MC68302, except that it has a
CPU32 processor (MC68020-based) running at 16 MHz and a
timer processor unit instead of a communications processor. This
has 16 channels which are controlled by a RISC-like processor to
perform virtually any timing function. The timing resolution is
down to 250 nanoseconds with an external clock source or 500
nanoseconds with an internal one. The timer processor can per-
form the common timer algorithms on any of the 16 channels
without placing any overhead on the CPU32.

A queued serial channel and 2 kbits of power down static
RAM are also on-chip and for many applications, all that is
required to complete a working system is an external program
EPROM and a clock.

This is a trend that many other architectures are following
especially with RISC processors. Apart from the high performance
range of the processor market or where complete flexibility is
needed, most processors today come with at least some basic
peripherals such as serial and parallel ports and a simple or
glueless interface to memory. In many cases, they dramatically
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reduce the amount of hardware design needed to add external
memory and thus complete a simple design. This type of processor
is gaining popularity with designers.
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RISC processors
Until 1986, the expected answer to the question ‘which

processor offers the most performance’ would be the MC68020,
the MC68030 or even the 386! Without exception, CISC processors
such as these, had established the highest perceived perform-
ances. There were more esoteric processors, like the transputer,
which offered large MIPS figures from parallel arrays but these
were often considered only suitable for niche markets and appli-
cations. However, around this time, an interest in an alternative
approach to microprocessor design started, which seemed to offer
more processing power from a simpler design using less transis-
tors. Performance increases of over five times the then current
CISC machines were suggested. These machines, such as the Sun
SPARC architecture and the MIPS R2000 processor, were the first
of a modern generation of processors based on a reduced instruc-
tion set, generically called reduced instruction set processors
(RISC).

The 80/20 rule
Analysis of the instruction mix generated by CISC compil-

ers is extremely revealing. Such studies for CISC mainframes and
mini computers shows that about 80% of the instructions gener-
ated and executed used only 20% of an instruction set. It was an
obvious conclusion that if this 20% of instructions were speeded
up, the performance benefits would be far greater. Further analy-
sis shows that these instructions tend to perform the simpler
operations and use only the simpler addressing modes. Essen-
tially, all the effort invested in processor design to provide com-
plex instructions and thereby reduce the compiler workload was
being wasted. Instead of using them, their operation was synthe-
sised from sequences of simpler instructions.
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This has another implication. If only the simpler instruc-
tions are required, the processor hardware required to implement
them could be reduced in complexity. It therefore follows that it
should be possible to design a more performant processor with
fewer transistors and less cost. With a simpler instruction set, it
should be possible for a processor to execute its instructions in a
single clock cycle and synthesise complex operations from se-
quences of instructions. If the number of instructions in a se-
quence, and therefore the number of clocks to execute the resultant
operation, was less than the cycle count of its CISC counterpart,
higher performance could be achieved. With many CISC proces-
sors taking 10 or more clocks per instruction on average, there was
plenty of scope for improvement.

The initial RISC research
The computer giant IBM is usually acknowledged as the

first company to define a RISC architecture in the 1970s. This
research was further developed by the Universities of Berkeley
and Stanford to give the basic architectural models. RISC can be
described as a philosophy with three basic tenets:

1. All instructions will be executed in a single cycle
This is a necessary part of the performance equation. Its
implementation calls for several features — the instruction
op code must be of a fixed width which is equal to or smaller
than the size of the external data bus, additional operands
cannot be supported and the instruction decode must be
simple and orthogonal to prevent delays. If the op code is
larger than the data width or additional operands must be
fetched, multiple memory cycles are needed, increasing the
execution time.

2. Memory will only be accessed via load and store instruc-
tions
This naturally follows from the above. If an instruction
manipulates memory directly, multiple cycles must be
performed to execute it. The instruction must be fetched
and memory manipulated. With a RISC processor, the
memory resident data is loaded into a register, the register
manipulated and, finally, its contents written out to main
memory. This sequence takes a minimum of three instruc-
tions. With register-based manipulation, large numbers of
general-purpose registers are needed to maintain perform-
ance.

3. All execution units will be hardwired with no microcoding
Microcoding requires multiple cycles to load sequencers etc
and therefore cannot be easily used to implement single-
cycle execution units.
Two generic RISC architectures form the basis of nearly all

the current commercial processors. The main differences between
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them concern register sets and usage. They both have a Harvard
external bus architecture consisting of separate buses for instruc-
tions and data. This allows data accesses to be performed in
parallel with instruction fetches and removes any instruction/
data conflict. If these two streams compete for a single bus, any
data fetches stall the instruction flow and prevent the processor
from achieving its single cycle objective. Executing an instruction
on every clock requires an instruction on every clock.

The Berkeley RISC model
The RISC 1 computer implemented in the late 1970s used a

very large register set of 138 × 32 bit registers. These were arranged
in eight overlapping windows of 24 registers each. Each window
was split so that six registers could be used for parameter passing
during subroutine calls. A pointer was simply changed to select
the group of six registers. To perform a basic call or return simply
needed a change of pointer. The large number of registers is
needed to minimise the number of fetches to the outside world.
With this simple window technique, procedure calls can be per-
formed extremely quickly. This can be very beneficial for real-time
applications where fast responses are necessary.

However, it is not without its disadvantages. If the proce-
dure calls require more than six variables, one register must be
used to point to an array stored in external memory. This data
must be loaded prior to any processing and the register windowing
loses much of its performance. If all the overlapping windows are
used, the system resolves the situation by tracking the window
usage so either a window or the complete register set can be saved
out to external memory.
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This overhead may negate any advantages that windowing
gave in the first place. In real-time applications, the overhead of
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saving 138 registers to memory greatly increases the context
switch and hence the response time. A good example of this
approach is the Sun SPARC processor.

Sun SPARC RISC processor
The SPARC (scalable processor architecture) processor is a

32 bit RISC architecture developed by Sun Microsystems for their
workstations but manufactured by a number of manufacturers
such as LSI, Cypress, Fujitsu, Philips and Texas Instruments.

The basic architecture follows the Berkeley model and uses
register windowing to improve context switching and parameter
passing. The initial designs were based on a discrete solution with
separate floating point units, memory management facilities and
cache memory, but later designs have integrated these versions.
The latest versions also support superscalar operation.

Architecture
The SPARC system is based on the Berkeley RISC architec-

ture. A large 32 bit wide register bank containing 120 registers is
divided into a set of seven register windows and a set of eight
registers which are globally available. Each window set contain-
ing 24 registers is split into three sections to provide eight input,
eight local and eight output registers. The registers in the output
section provide the information to the eight input registers in the
next window. If a new window is selected during a context switch
or as a procedural call, data can be passed with no overhead by
placing it in the output registers of the first window. This data is
then available for the procedure or next context in its input
registers. In this way, the windows are linked together to form a
chain where the input registers for one window have the contents
of the output registers of the previous window.

To return information back to the original or calling soft-
ware, the data is put into the input registers and the return
executed. This moves the current window pointer back to the
previous window and the returned information is now available
in that window’s output registers. This method is the reverse of
that used to initially pass the information in the first place.

The programmer and CPU can track and control which
windows are used and what to do when all windows are full,
through fields in the status register.

The architecture is also interesting in that it is one of the few
RISC processors that uses logical addressed caches instead of
physically addressed caches.

Interrupts
The SPARC processor supports 15 external interrupts which

are generated using the four interrupt lines, IRL0 – IRL3. Level 15
is assigned as a non-maskable interrupt and the other 14 can be
masked if required.
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An external interrupt will generate an internal trap where
the current and the next instructions are saved, the pipeline
flushed and the processor switched into supervisor mode. The
trap vector table which is located in the trap base register is then
used to supply the address of the service routine. When the routine
has completed, the REIT instruction is executed which restores the
processor status and allows it to continue.
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The SPARC register model

Instruction set
The instruction set comprises of 64 instructions. All access

to memory is via load and store instructions as would be expected
with a RISC architecture. All other instructions operate on the
register set including the currently selected window. The instruc-
tion set is also interesting in that it has a multiply step command
instead of the more normal multiply command. The multiply step
command allows a multiply to be synthesised.
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The Stanford RISC model
This model uses a smaller number of registers (typically 32)

and relies on software techniques to allocate register usage during
procedural calls. Instruction execution order is optimised by its
compilers to provide the most efficient way of performing the
software task. This allows pipelined execution units to be used
within the processor design which, in turn, allow more powerful
instructions to be used.
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However, RISC is not the magic panacea for all perform-
ance problems within computer design. Its performance is ex-
tremely dependent on very good compiler technology to provide
the correct optimisations and keep track of all the registers. Many
of the early M68000 family compilers could not track all the 16 data
and address registers and therefore would only use two or three.
Some compilers even reduced register usage to one register and



Embedded processors 63

effectively based everything on stacks and queues. Secondly, the
greater number of instructions it needed increased code size
dramatically at a time when memory was both expensive and low
in density. Without the compiler technology and cheap memory,
a RISC system was not very practical and the ideas were effec-
tively put back on the shelf.

The MPC601 was the first PowerPC processor available. It
has three execution units: a branch unit to resolve branch instruc-
tions, an integer unit and a floating point unit.

The floating point unit supports IEEE format. The processor
is superscalar. It can dispatch up to two instructions and process
three every clock cycle. Running at 66 MHz, this gives a peak
performance of 132 million instructions per second.

The branch unit supports both branch folding and specula-
tive execution where the processor speculates which way the
program flow will go when a branch instruction is encountered
and starts executing down that route while the branch instruction
is resolved.

The general-purpose register file consists of 32 separate
registers, each 32 bits wide. The floating point register file also
contains 32 registers, each 64 bits wide, to support double preci-
sion floating point. The external physical memory map is a 32 bit
address linear organisation and is 4 Gbytes in size.

The MPC601’s memory subsystem consists of a unified
memory management unit and on-chip cache which communi-
cates to external memory via a 32 bit address bus and a 64 bit data
bus. At its peak, this bus can fetch two instructions per clock or 64
bits of data. It also supports split transactions, where the address
bus can be used independently and simultaneously with the data
bus to improve its utilisation. Bus snooping is also provided to
ensure cache coherency with external memory.

The cache is 32 kbytes and supports both data and instruc-
tion accesses. It is accessed in parallel with any memory manage-
ment translation. To speed up the translation process, the memory
management unit keeps translation information in one of three
translation lookaside buffers.

The MPC603 block diagram
The MPC603 was the second PowerPC processor to appear.

Like the MPC601, it has the three execution units: a branch unit to
resolve branch instructions, an integer unit and a floating point
unit.

The floating point unit supports IEEE format. However,
two additional execution units have been added to provide dedi-
cated support for system registers and to move data between the
register files and the two on-chip caches. The processor is
superscalar and can dispatch up to three instructions and process
five every clock cycle.
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The branch unit supports both branch folding and specula-
tive execution. It augments this with register renaming, which
allows speculative execution to continue further than allowed on
the MPC601 and thus increase the processing advantages of the
processor.
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The general-purpose register file consists of 32 separate
registers, each 32 bits wide. The floating point register file contains
32 registers, each 64 bits wide to support double precision floating
point. The external physical memory map is a 32 bit address linear
organisation and is 4 Gbytes in size.
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The MPC603’s memory subsystem consists of a separate
memory management unit and on-chip cache for data and instruc-
tions which communicates to external memory via a 32 bit address
bus and a 64 or 32 bit data bus. This bus can, at its peak, fetch two
instructions per clock or 64 bits of data. Each cache is 8 kbytes in
size, giving a combined on-chip cache size of 16 kbytes. The bus
also supports split transactions, where the address bus can be used
independently and simultaneously with the data bus to improve
its utilisation. Bus snooping is also provided to ensure cache
coherency with external memory.

As with the MPC601, the MPC603 speeds up the address
translation process, by keeping translation information in one of
four translation lookaside buffers, each of which is divided into
two pairs, one for data accesses and the other for instruction
fetches. It is different from the MPC601 in that translation tablewalks
are performed by the software and not automatically by the
processor.

The device also includes power management facilities and
is eminently suitable for low power applications.

The ARM RISC architecture
It is probably fair to say that the ARM RISC architecture is

really what RISC is all about. Small simple processors that provide
adequate performance for their intended marketplace. For ARM,
this was not the area of blinding performance but in the then
embryonic mobile and handheld world where power consump-
tion is as important as anything else. ARM also brought in the
concept of the fabless semiconductor company where they licence
their designs to others to build. As a result, if you want an ARM
processor then you need to go to one of the 50+ licenced manufac-
turers. As a result, ARM processor architectures power the bulk of
the digital mobile phones and organisers available today.

The ARM register set
The architecture uses standard RISC architecture techniques

(load-store architecture, simple addressing modes based on regis-
ter contents and instruction information only, fixed length in-
structions etc.,) and has a large 32 register file which is banked to
provide a programming model of 16 registers with additional
registers from the 32 used when the processor handles exceptions.
This is called register banking where some of the spare registers
are allocated as replacements for a selected set of the first 16
registers. This means that there is little need to save the registers
during a context switch. This mechanism is very similar to register
windowing in reality.

Two registers have special usage: register 14 is used as a link
register and holds the address of the next instruction after a branch
and link instruction. This permits the software flow to return
using this link address after a subroutine has been executed. While
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it can be used as a general purpose register, care has to be taken
that its contents are not destroyed so that when a return is
executed, the program returns to the wrong address or even one
that has no associated memory! Register 15 is used as the program
counter. The ARM architecture uses a fixed 4 byte instruction
word and supports the aligned instruction organisation only. This
means that each instruction must start on a word boundary and
also means that the lowest two bits in the program counter are
always set to zero. In effect, this reduces the register to only 30 bits
is size. Looking at the PC can be a little strange as it points not to
the currently executing instruction but to two instructions after
that. Useful to remember when debugging code.

While registers 14 and 15 are already allocated to special
use, the remaining 14 registers may also be used for special
functions. These definitions are not forced in hardware as is the
case with the previous two examples, but are often enforced in
software either through the use of a programming convention or
by a compiler. Register 13 is frequently used as a stack pointer by
convention but other registers could be used to fulfil this function
or to provide additional stack pointers.

Exceptions

Exception processing with the ARM architecture is a little
more complicated in that it supports several different exception
processing modes and while it could be argued that these are
nothing more than a user mode and several variants of a supervi-
sor mode (like many other RISC architectures), they are suffi-
ciently different to warrant their separate status.

The processor normally operates in the user mode where it
will execute the bulk of any code. This gives access to the 16
register program file as previously described. To get into an
exception mode from a user mode, there are only five methods to
do so. The common methods such as an interrupt, a software
interrupt, memory abort and the execution of an undefined in-
struction are all there. However a fifth is supported which is
designed to reduce the latency time taken to process a fast inter-
rupt. In all cases, the processor uses the register banking to
preserve context before switching modes. Registers 13 and 14 are
both automatically banked to preserve their contents so that they
do not need to be saved. Once in the exception handler, register 14
is used to hold the return address ready for when the handler
completes and returns and register 13 provides a unique stack
pointer for the handler to use. Each exception will cause the
current instruction to complete and then the execution flow will
change to the address stored in the associated location in the vector
table. This technique is similar to that used with both CISC and
RISC processors.

If the handler needs to use any of the other registers, they
must be saved before use and then restored before returning. To
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speed this process up, there is a fifth mode called the fast interrupt
mode where registers 8 to 12 are also banked and these can be used
by the handler without the overhead of saving and restoring. This
is known as the fast interrupt mode.
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The exception modes do not stop there. There is also a sixth
mode known as the system mode which is effectively an enhanced
user mode in that it uses the user mode registers but is provided
with privileged access to memory and any coprocessors that
might be present.

The Thumb instructions
The ARM processor architecture typically uses 32 bit wide

instructions. Now bearing in mind it is targeted at portable appli-
cations where power consumption is critical, the combination of
RISC architectures coupled with 32 bit wide instructions leads to
a characteristic known as code expansion. RISC works by simpli-
fying operations into several simple instructions. Each instruction
is 32 bits in size and a typical sequence may take three instructions.
This means that 12 bytes of program storage are needed to store
the instructions. Compare this to a CISC architecture that could do
the same work with one instruction with 6 bytes. This means that
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the RISC solution requires twice as much program storage which
means twice the memory cost and power consumption (this is a bit
of a simplification but the increase is very significant). And yes,
this argument is very similar to that put forward when the first
microprocessors appeared where memory was very expensive
and it was advantageous to uses as little of it as possible — hence
the CISC architectures.

ARM's solution to this was to add a new set of instructions
to the instructions set called the Thumb instructions. These are
reduced in functionality but are only 16 bits in size and therefore
take less space. As the processor always brings in data in 32 bit
words, two Thumb instructions are brought in and executed in
turn. Thumb instructions are always executed in a special Thumb
mode which is controlled by a Thumb bit in the status register.
This requires some software support so that the compilers can
insure that the Thumb instruction sequences are only executed by
the CPU when it is in its Thumb mode, but the benefit is a greatly
reduced code size, approaching that offered by CISC processors.

Digital signal processors
Signal processors started out as special processors that were

designed for implementing digital signal processing (DSP) algo-
rithms. A good example of a DSP function is the finite impulse
response (FIR) filter. This involves setting up two tables, one
containing sampled data and the other filter coefficients that
determine the filter response. The program then performs a series
of repeated multiply and accumulates using values from the
tables. The bandwidth of such filters depends on the speed of these
simple operations. With a general-purpose architecture like the
M68000 family the code structure would involve setting up two
tables in external memory, with an address register allocated to
each one to act as a pointer. The beginning and the end of the code
would consist of the loop initialisation and control, leaving the
multiply–accumulate operations for the central part. The M68000
instruction set does offer some facilities for efficient code: the
incremental addressing allows pointers to progress down the
tables automatically, and the decrement and branch instruction
provides a good way of implementing the loop structures. How-
ever, the disadvantages are many: the multiply takes >40 clocks,
the single bus is used for all the instruction fetches and table
searches, thus consuming time and bandwidth. In addition the
loop control timings vary depending on whether the branch is
taken or not. This can make bandwidth predictions difficult to
calculate. This results in very low bandwidths and is therefore of
limited use within digital signal processing. This does not mean
that an MC68000 cannot perform such functions: it can, providing
performance is not of an issue.

RISC architectures like the PowerPC family can offer some
immediate improvements. The capability to perform single cycle
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arithmetic is an obvious advantage. The Harvard architecture
reduces the execution time further by allowing simultaneous data
and instruction fetches. The PowerPC can, by virtue of its high
performance, achieve performances suitable for many DSP appli-
cations. The system cost is high involving a multiple chip solution
with very fast memory etc. In applications that need high speed
general processing as well, it can also be a suitable solution. The
ARM 9E processor with its DSP enhanced instructions (essentially
speeded up multiply instructions) can also provide DSP levels of
performance without the need of a DSP.

Another approach is to build a dedicated processor to
perform certain algorithms. By using discrete building blocks,
such as hardware multipliers, counters etc., a total hardware
solution can be designed to perform such functions. Modulo
counters can be used to form the loop structures and so on. The
disadvantages are cost and a loss of flexibility. Such hardware
solutions are difficult to alter or program. What is obviously
required is a processor whose architecture is enhanced specifically
for DSP applications.

DSP basic architecture
As an example of a powerful DSP processor, consider the

Motorola DSP56000. It is used in many digital audio applications
where it acts as a multi-band graphics equaliser or as a noise
reduction system.

The processor is split into 10 functional blocks. It is a 24 bit
data word processor to give increased resolution. The device has
an enhanced Harvard architecture with three separate external
buses: one for program and X and Y memories for data. The
communication between these and the outside world is controlled
by two external bus switches, one for data and the other for
addresses. Internally, these two switches are functionally repro-
duced by the internal data bus switch and the address arithmetic
unit (AAU). The AAU contains 24 address registers in three banks
of 8. These are used to reference data so that it can be easily fetched
to maintain the data flow into the data ALU.

The program address generator, decode controller and
interrupt controller organise the instruction flow through the
processor. There are six 24 bit registers for controlling loop counts,
operating mode, stack manipulation and condition codes. The
program counter is 24 bit although the upper 8 bits are only used
for sign extension.

The main workhorse is the data ALU, which contains two
56 bit accumulators A and B which each consist of three smaller
registers A0, A1, A2, B0, B1 and B2. The 56 bit value is stored with
the most significant 24 bit word in A1 or B1, the least significant 24
bit word in A0 or B0 and the 8 bit extension word is stored in A2
or B2. The processor uses a 24 bit word which can provide a
dynamic range of some 140 dB, while intermediate 56 bit results
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can extend this to 330 dB. In practice, the extension byte is used for
over- and underflow. In addition there are four 24 bit registers X1,
X0, Y1 and Y0. These can also be paired to form two 48 bit registers
X and Y.

These registers can read or write data from their respective
data buses and are the data sources for the multiply–accumulate
(MAC) operation. When the MAC instruction is executed, two 24
bit values from X0, X1, Y1 or Y0 are multiplied together, and then
added or subtracted from either accumulator A or B. This takes
place in a single machine cycle of 75 ns at 27 MHz. While this is
executing, two parallel data moves can take place to update the X
and Y registers with the next values. In reality, four separate
operations are taking place concurrently.

The data ALU also contains two data shifters for bit ma-
nipulation and to provide dynamic scaling of fixed point data
without modifying the original program code by simply program-
ming the scaling mode bits. The limiters are used to reduce any
arithmetic errors due to overflow, for example. If overflow occurs,
i.e. the resultant value requires more bits to describe it than are
available, then it is more accurate to write the maximum valid
number than the overflowed value. This maximum or limited
value is substituted by the data limiter in such cases, and sets a flag
in the condition code register to indicate what has happened.
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The external signals are split into various groups. There are
three ports A, B and C and seven special bus control signals, two
interrupt pins, reset, power and ground and, finally, clock signals.
The device is very similar in design to an 8 bit microcontroller unit
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(MCU), and it can be set into several different memory configura-
tions.

The three independent memory spaces, X data, Y data and
program are configured by the MB, MA and DE bits in the
operating mode register. The MB and MA bits are set according to
the status of the MB and MA pins during the processor´s reset
sequence. These pins are subsequently used for external inter-
rupts. Within the program space, the MA and MB bits determine
where the program memory is and where the reset starting ad-
dress is located. The DE bit either effectively enables or disables
internal data ROMs which contain a set of µ and A Law expansion
tables in the X data ROM and a four quadrant sine wave table in
the Y data ROM. The on-chip peripherals are mapped into the X
data space between $FFC0 and $FFFF. Each of the three spaces is
64 kbytes in size.
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These memory spaces communicate to the outside world
via a shared 16 bit address bus and a 24 bit data bus. Two
additional signals, PS* and X/Y* identify which type of access is
taking place. The DSP56000 can be programmed to insert a fixed
number of wait states on external accesses for each memory space
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and I/O. Alternatively, an asynchronous handshake can be adopted
by using the bus strobe and wait pins (BS* and WT*).

Using a DSP as a microcontroller is becoming another
common trend. The processor has memory and peripherals which
makes it look like a microcontroller — albeit one with a very fast
processing capability and slightly different programming tech-
niques. This, coupled with the increasing need for some form of
DSP function such as filtering in many embedded systems, has
meant that DSP controllers are a feasible choice for embedded
designs.

Choosing a processor
So far in this chapter, the main processor types used in

embedded systems along with various examples have been dis-
cussed. There are very many types available ranging in cost,
processing power and levels of integration. The question then
arises concerning how do you select a processor for an embedded
system?

The two graphs show the major trends with processors. The
first plots system cost against performance. It shows that for the
highest performance discrete processors are needed and these
have the highest system cost. For the lowest cost, microcontrollers
are the best option but they do not offer the level of performance
that integrated or discrete processors offer. Many use the 8 bit
accumulator processor architecture which has now been around
for over 20 years. In between the two are the integrated processors
which offer medium performance with medium system cost.

The second graph shows the trend towards system integra-
tion against performance. Microcontrollers are the most inte-
grated, but as stated previously, they do not offer the best perform-
ance. However, the ability to pack a whole system including
memory, peripherals and processor into a single package is attrac-
tive, provided there is enough performance to perform the work
required.

The problem comes with the overlap areas where it be-
comes hard to work out which way to move. This is where other
factors come into play.

Does it have enough performance?
A simple question to pose but a difficult one to answer. The

problem is in defining the type of performance that is needed. It
may be the ability to perform integer or floating point arithmetic
operations or the ability to move data from one location to another.
Another option may be the interrupt response time to allow data
to be collected or processed.

The problem is that unless the end system is understood it
is difficult to know exactly how much performance is needed. Add
to this the uncertainty in the software programming overhead, i.e.
the performance loss in using a high level language compared to
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a low level assembler, and it is easy to see why the answer is not
straightforward.
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In practice, most paper designs assume that about 20–40%
of the processor performance will be lost to overheads in terms of
MIPs and processing. Interrupt latencies can be calculated to give
more accurate figures but as will be explained in Chapter 7, this
has its own set of problems and issues to consider.

This topic of selecting and configuring a processor is dis-
cussed in many of the design notes and tutorials at the end of this
book.
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3 Memory systems
Within any embedded system, memory is an important

part of the design, and faced with the vast variety of memory that
is available today, choosing and selecting the right type for the
right application is of paramount importance. Today's designs use
more than just different types of memory and will include both
memory management and memory protection units to partition
and isolate the memory system. Memory caches are used to keep
local copies of data and code so that it is accessed faster and does
not delay the processor. As a result, the memory subsystem has
become extremely complex. Designs only seen on mainframes
and supercomputers are now appearing on the humble embedded
processor. This chapter goes through the different types that are
available and discusses the issues associated with them that
influence the design.

Memory technologies
 Within any embedded system design that uses external

memory, it is almost a sure bet that the system will contain a
mixture of non-volatile memory such as EPROM (erasable pro-
grammable read only memory) to store the system software and
DRAM (dynamic random access memory) for use as data and
additional program storage. With very fast systems, SRAM (static
random access memory) is often used as a replacement for DRAM
because of its faster speed or within cache memory subsystems to
help improve the system speed offered by DRAM.
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The main signals used with memory chips fall into several
groups:

• Address bus
The address bus is used to select the particular location
within the memory chip. The signals may be multiplexed as
in the case with DRAM or non-multiplexed as with SRAM.

• Data bus
This bus provides the data to and from the chip. In some
cases, the memory chip will use separate pins for incoming
and outgoing data, but in others a single set of pins is used
with the data direction controlled by the status of chip select
signals, the read/write pin and output enable pins.

• Chip selects
These can be considered as additional address pins that are
used to select a specific chip within an array of memory
devices. The address signals that are used for the chip
selects are normally the higher order pins. In the example
shown, the address decode logic has enabled the chip select
for the second RAM chip — as shown by the black arrow —
and it is therefore the only chip driving the data bus and
supplying the data. As a result, each RAM chip is located in
its own space within the memory map although it shares the
same address bus signals with all the other RAM chips in
the array.
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• Control signals including read/write signals
Depending on the functionality provided by the memory
device, there are often additional control signals. Random
access memory will have a read/write signal to indicate the
type of access. This is missing from read only devices such
as EPROM. For devices that have multiplexed address
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buses, as in the case with DRAM, there are control signals
associated with this type of operation.
There are now several different types of semiconductor

memory available which use different storage methods and have
different interfaces.

DRAM technology
DRAM is the predominantly used memory technology for

PCs and embedded systems where large amounts of low cost
memory are needed. With most memory technologies, the cost per
bit is dependent on two factors: the number of transistors that are
used to store each bit of data and the type of package that is used.
DRAM achieves its higher density and lower cost because it only
uses a single transistor cell to store each bit of data. The data
storage element is actually a small capacitor whose voltage repre-
sents a binary zero or one which is buffered by the transistor. In
comparison, a SRAM cell contains at least four or five transistors
to store a single bit of data and does not use a capacitor as the active
storage element. Instead, the transistors are arranged to form a
flip-flop logic gate which can be flipped from one binary state to
the other to store a binary bit.

 

Substrate

Data bit

Address
enabled

1

1

Write cycle

CapacitorCMOS gate

Substrate

Data bit

Address
enabled

1

1

Read cycle

Capacitor
CMOS gate

DRAM cell read and write cycles

DRAM technology does have its drawbacks with the major
one being its need to be refreshed on a regular basis. The term
‘dynamic’ refers to the memory’s constant need for its data to be
refreshed. The reason for this is that each bit of data is stored using
a capacitor, which gradually loses its charge. Unless it is fre-
quently topped up (or refreshed), the data disappears.

This may appear to be a stupid type of memory — but the
advantage it offers is simple — it takes only one transistor to store
a bit of data whereas static memory takes four or five. The memory
chip’s capacity is dependent on the number of transistors that can
be fabricated on the silicon and so DRAM offers about four times
the storage capacity of SRAM (static RAM). The refresh overhead
takes about 3–4% of the theoretical maximum processing available
and is a small price to pay for the larger storage capacity. The
refresh is performed automatically either by a hardware controller
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or through the use of software. These techniques will be described
in more detail later on in this chapter.
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CAS*  

A0-A9

Dout

Row
address

Column
address

Read
data

Write*

Basic DRAM interface

The basic DRAM interface takes the processor generated
address, places half of the address (the high order bits) onto the
memory address bus to form the row address and asserts the RAS*
signal. This partial address is latched internally by the DRAM. The
remaining half (the low order bits), forming the column address,
are then driven onto the bus and the CAS* signal asserted. After
the access time has expired, the data appears on the Dout pin and
is latched by the processor. The RAS* and CAS* signals are then
negated. This cycle is repeated for every access. The majority of
DRAM specifications define minimum pulse widths for the RAS*
and CAS* and these often form the major part in defining the
memory access time. When access times are quoted, they usually
refer to the time from the assertion of the RAS* signal to the
appearance of the data. There are several variations on this type of
interface, such as page mode and EDO. These will be explained
later on in this chapter

Video RAM
A derivative of DRAM is the VRAM (video RAM), which is

essentially a DRAM with the ability for the processor to update its
contents at the same time as the video hardware uses the data to
create the display. This is typically done by adding a large shift
register to a normal DRAM. This register can be loaded with a row
or larger amounts of data which can then be serially clocked out to
the video display. This operation is in parallel with normal read/
write operations using a standard address/data interface.

SRAM
SRAM does not need to be refreshed and will retain data

indefinitely — as long as it is powered up. In addition it can be
designed to support low power operation and is often used in
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preference to DRAM for this reason. Although the SRAM cell
contains more transistors, the cell only uses power when it is being
switched. If the cell is not accessed then the quiescent current is
extremely low. DRAM on the other hand has to be refreshed by
external bus accesses and these consume a lot of power. As a result,
the DRAM memory will have a far higher quiescent current than
that of SRAM.

The SRAM memory interface is far simpler than that of
DRAM and consists of a non-multiplexed address bus and data
bus. There is normally a chip select pin which is driven from other
address pins to select a particular SRAM when they are used in
banks to provide a larger amount of storage.

Typical uses for SRAM include building cache memories
for very fast processors, being used as main memory in portable
equipment where its lower power consumption is important and
as expansion memory for microcontrollers.

Pseudo-static RAM
Pseudo-static RAM is a memory chip that uses DRAM cells

to provide a higher memory density but has the refresh control
built into the chip and therefore acts like a static RAM. It has been
used in portable PCs as an alternative to SRAM because of its low
cost. It is not as common as it used to be due to the drop in cost of
SRAM and the lower power modes that current synchronous
DRAM technology offers.

Battery backed-up SRAM
The low power consumption of SRAM makes it suitable for

conversion into non-volatile memories, i.e. memory that does not
lose its data when the main power is removed by adding a small
battery to provide power at all times. With the low quiescent
current often being less than the battery’s own leakage current, the
SRAM can be treated as a non-volatile RAM for the duration of the
battery’s life. The CMOS (complementary metal oxide semicon-
ductor) memory used by the MAC and IBM PC, which contains
the configuration data, is SRAM. It is battery backed-up to ensure
it is powered up while the computer is switched off.

Some microcontrollers with on-chip SRAM support the
connection of an external battery to backup the SRAM contents
when the main power is removed.

EPROM and OTP
EPROM is used to store information such as programs and

data that must be retained when the system is switched off. It is
used within PCs to store the Toolbox and BIOS routines and power
on software in the MAC and IBM PC that is executed when the
computer is switched on. These devices are read only and cannot
be written to, although they can be erased by ultraviolet (UV) light
and have a transparent window in their case for this purpose. This
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window is usually covered with a label to prevent accidental
erasure, although it takes 15–30 minutes of intense exposure to do
so.

There is a different packaged version of EPROM called OTP
(one time programmable) which is an EPROM device packaged in
a low cost plastic package. It can be programmed once only
because there is no window to allow UV light to erase the EPROM
inside. These are becoming very popular for small production
runs.

Flash
Flash memory is a non-volatile memory which is electri-

cally erasable and offers access times and densities similar to that
of DRAM. It uses a single transistor as a storage cell and by placing
a higher enough charge to punch through an oxide layer, the
transistor cell can be programmed. This type of write operation
can take several milliseconds compared to sub 100 ns for DRAM
or faster for SRAM. Reads are of the order of 70–100 ns.

FLASH has been positioned and is gaining ground as a
replacement for EPROMs but it has not succeeded in replacing
hard disk drives as a general-purpose form of mass storage. This
is due to the strides in disk drive technology and the relatively
slow write access time and the wearout mechanism which limits
the number of writes that can be performed. Having said this, it is
frequently used in embedded systems that may need remote
software updating. A good example of this is with modems where
the embedded software is stored in FLASH and can be upgraded
by downloading the new version via the Internet or bulletin board
using the modem itself. Once downloaded, the new version can be
transferred from the PC to the modem via the serial link.

EEPROM
Electrically erasable programmable read only memory is

another non-volatile memory technology that is erased by apply-
ing a suitable electrical voltage to the device. These types of
memory do not have a window to allow UV light in to erase them
and thus offer the benefits of plastic packaging, i.e. low cost with
the ability to erase and reprogram many times.

The erase/write cycle is slow and can typically only be
performed on large blocks of memory instead of at the bit or byte
level. The erase voltage is often generated internally by a charge
pump but can be supplied externally. The write cycles do have a
wearout mechanism and therefore the memory may only be
guaranteed for a few hundred thousand erase/write cycles and
this, coupled with the slow access time, means that they are not a
direct replacement for DRAM.

Memory organisation
A memory’s organisation refers to how the data is arranged

within the memory chips and within the array of chips that is used
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to form the system memory. An individual memory’s storage is
measured in bits but can be organised in several different ways. A
1 Mbit memory can be available as a 1 Mbit × 1 device, where there
is only a single data line and eight are needed in parallel to store
one byte of data. Alternatives are the 256 kbits × 4, where there are
four data lines and only two are needed to store a byte, and 128 kbit
× 8, which has 8 data lines. The importance of these different
organisations becomes apparent when upgrading memory and
determining how many chips are needed.

The minimum number of chips that can be used is deter-
mined by the width of the data path from the processor and the
number of data lines the memory chip has. For an MC68000
processor with a 16 bit wide data path, 16 × 1 devices, 4 × 4 or 2 ×
8 devices would be needed. For a 32 bit processor, like the
MC68020, MC68030, MC68040, 80386DX or 80486, this figure
doubles. What is interesting is that the wider the individual
memory chip’s data storage, the smaller the number of chips that
is required to upgrade. This does not mean that, for a given
amount of memory, less × 4 and × 8 chips are needed when
compared with × 1 devices, but that each minimum upgrade can
be smaller, use fewer chips and be less expensive. With a 32 bit
processor and using 1 Mbit × 1 devices, the minimum upgrade
would need 32 chips and add 32 Mbytes. With a × 4 device, the
minimum upgrade would only need 8 chips and add 8 Mbytes.

This is becoming a major problem as memories become
denser and the smaller size chips are discontinued. This poses
problems to designers that need to design some level of upgrade
capability to cater for the possible — some would say inevitable —
need for more memory to store the software. With the smallest
DRAM chip that is still in production being a 16 Mbit device and
the likelihood that this will be replaced by 64 and 128 Mbit devices
in the not so distant future, the need for one additional byte could
result in the addition of 8 or 16 Mbytes or memory. More impor-
tantly, if a × 1 organisation is used, then this means that an
additional 8 chips are needed. By using a wider organisation, the
number of chips is reduced. This is becoming a major issue and is
placing a lot of pressure on designers to keep the memory budget
under control. The cost of going over is becoming more and more
expensive. With cheap memory, this could be argued as not being
an issue but there is still the space and additional cost. Even a few
cents multiplied by large production volumes can lead to large
increases.

By 1 organisation
Today, single-bit memories are not as useful as they used to

be and their use is in decline compared to wider data path devices.
Their use is restricted to applications that need non-standard
width memory arrays that these type of machines use, e.g. 12 bit,
17 bit etc. They are still used to provide a parity bit and can be
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found on SIMM memory modules but as systems move away from
implementing parity memory — many PC motherboards no
longer do so — the need for such devices will decline.

By 4 organisation
This configuration has effectively replaced the × 1 memory

in microprocessor applications because of its reduced address bus
loading and complexity — only 8 chips are needed to build a 32 bit
wide data path instead of 32 and only two are needed for an 8 bit
wide bus.

By 8 and by 9 organisations
Wider memories such as the × 8 and × 9 are beginning to

replace the × 4 parts in many applications. Apart from higher
integration, there are further reductions in address bus capaci-
tance to build a 32 or 64 bit wide memory array. The reduction in
bus loading can improve the overall access time by greatly reduc-
ing the address setup and stabilisation time, thus allowing more
time within the memory cycle to access the data from the memo-
ries. This improvement can either reduce costs by using slower
and cheaper memory, or allow a system to run faster given a
specific memory part. The × 9 variant provides a ninth bit for
parity protection. For microcontrollers, these parts allow memory
to be increased in smaller increments.

By 16 and greater organisations
Wider memories with support for 16 bits or wider memory

are already appearing but it is likely that they will integrate more
of the interface logic so that the time consumed by latches and
buffers during the memory access will be removed, thus allowing
slower parts to be used in wait state-free designs.

Parity
The term parity has been mentioned in the previous para-

graphs along with statements that certainly within the PC indus-
try it is no longer mandatory and the trend is moving away from
its implementations. Parity protection is an additional bit of
memory which is used to detect single-bit errors with a block of
memory. Typically, one parity bit is used per byte of data. The bit
is set to a one or a zero depending on the number of bits that are
set to one within the data byte. If this number is odd, the parity bit
is set to a one and if the number is even, it is set to zero. This can
be reversed to provide two parity schemes known as odd and even
parity.

If a bit is changed within the word through an error or fault,
then the parity bit will no longer be correct and a comparison of the
parity bit and the calculated parity value from the newly read data
will disagree. This can then be used to flag a signal back to the
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processor, such as an error. Note that parity does not allow the
error to be corrected nor does it protect from all multiple bit
failures such as two set or cleared bits failing together. In addition
it requires a parity controller to calculate the value of the parity bit
on write cycles and calculate and compare on read cycles. This
additional work can slow down memory access and thus the
processor performance.

1 1 1 1 1 1 1 1 1

1 1 1 0 0 1 1 1 1

Eight ones = Even = set parity

Six ones = Even = set parity

FAULT

1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1

Eight ones = Even = set parity

Seven ones = Odd = clear parity

FAULT

Parity error

Parity correct
No error!

One bit error detection

Two bit error detection

Parity detection for one and two bit errors

However, for critical embedded systems it is important to
know if there has been a memory fault and parity protection may
be a requirement.

Parity initialisation
If parity is used, then it may be necessary for software

routines to write to each memory location to clear and/or set up
the parity hardware. If this is not done, then it is possible to
generate false parity errors.

Error detecting and correcting memory
With systems that need very high reliability, it is possible

through increasing the number of additional bits per byte and by
using special coding techniques to increase the protection offered
by parity protection. There are two types of memory design that
do this:
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• Error detecting memory
With this type of memory, additional bits are added to the
data word to provide protection from multiple bit failures.
Depending on the number of bits that are used and the
coding techniques that use the additional bits, protection
can be provided for a larger number of error conditions. The
disadvantages are the additional memory bits needed along
with the complex controllers required to create and com-
pare the codes.

• Error detecting and correction
This takes the previous protection one step further and uses
the codes not only to detect the error but correct it as well.
This means that the system will carry on despite the error
whereas the previous scheme would require the system to
be shut down as it could not rely on the data. EDC systems,
as they are known, are expensive but offer the best protec-
tion against memory errors.

Access times
As well as different sizes and organisations, memory chips

have different access times. The access time is the maximum time
taken by the chip to read or write data and it is important to match
the access time to the design. (It usually forms part of the part
number: MCM51000AP10 would be a 100 ns access time memory
and MCM51000AP80 would be an 80 ns version.) If the chip is too
slow, the data that the processor sees will be invalid and corrupt,
resulting in software problems and crashes. Some designs allow
memories of different speed to be used by inserting wait states
between the processor and memory so that sufficient time is given
to allow the correct data to be obtained. These often require jumper
settings to be changed or special setup software to be run, and
depend on the manufacture and design of the board.

If a processor clock speed is increased, the maximum
memory access time must be reduced — so changing to a faster
processor may require these settings to be modified. This is
becoming less of a problem with the advent of decoupled proces-
sors where the CPU speed can be set as a ratio of the bus speed and
by changing an initialisation routine, a faster CPU can be used
with the same external bus as a slower one. This is similar to the
overdrive processors that clock the internal CPU either 22 or 4
times faster. They are using the same trick except that there is no
additional software change needed.

Packages
The major option with memories is packaging. Some come

encapsulated in plastic, some in a ceramic shell and so on. There
are many different types of package options available and, obvi-
ously, the package must match the sockets on the board. Of the
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many different types, four are commonly used: the dual in line
package, zig–zag package, SIMM and SIP. The most common
package encountered with the MAC is the SIMM, although all the
others are used, especially with third party products.

Dual in line package
This package style, as its name implies, consists of two lines

of legs either side of a plastic or ceramic body. It is the most
commonly used package for the BIOS EPROMs, DRAM and
SRAM. It is available in a variety of sizes with 24, 26 and 28 pin
packages used for EPROMs and SRAMs and 18 and 20 pin
packages for 1 Mbit × 1 and 256 kbit × 4 DRAMs. However, it has
virtually been replaced by the use of SIMM modules and is now
only used for DRAM on the original MAC 128K and 512K models
and for DRAM and for EPROM on models up to the
MAC IIx.

Zig–zag package
This is a plastic package used primarily for DRAM. Instead

of coming out of the sides of the package, the leads protrude from
the pattern and are arranged in a zig-zag — hence the name. This
type of package can be more difficult to obtain, compared with the
dual in line devices, and can therefore be a little more expensive.
This format is often used on third party boards.

SIMM and DIMM
SIMM is not strictly a package but a subassembly. It is a

small board with finger connection on the bottom and sufficient
memory chips on board to make up the required configuration,
such as 256 Kbit × 8 or × 9, 1 Mbit × 8 or × 9, 4 Mbit, and so on. SIMMs
have rapidly gained favour and many new designs use these
boards instead of individual memory chips. They require special
sockets, which can be a little fragile and need to be handled
correctly. There are currently two types used for PCs: the older 30
pin SIMM which uses an 8 or 9 bit (8 bits plus a parity bit) data bus
and a more recent 72 pin SIMM which has a 32 or 36 bit wide data
bus. The 36 bit version is 32 bits data plus four parity bits. Apple
has used both types and a third which has 64 pins but like the IBM
PC world standardised on the 72 pin variety which suited the 32
bit processors at the time. With the advent of wider bus CPUs, yet
another variation appeared called the DIMM. This typically has
168 bits but looks like a larger version of the SIMM. With the wider
buses came an increase in memory speeds and a change in the
supply voltages. One method of getting faster speeds and reduced
power consumption is to reduce the supply voltage. Instead of the
signal levels going from 0 to 5 volts, today's CPUs and correspond-
ing memories use a 3.3 volt supply (or even lower). As a result,
DIMMs are now described by the speed, memory type and voltage
supply e.g. 3.3 volt 133 MHz SDRAM DIMM.
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 30 and 72 pin SIMMs

The older 30 pin SIMMs are normally used in pairs for a 16
bit processor bus (80386SX, MC68000) and in fours for 32 bit buses
(80386DX, 80486, MC68030, MC68040) while the 72 pin SIMMs are
normally added singly although some higher performance boards
need a pair of 72 pin SIMMs to support bank switching.

SIP
This is the same idea as SIMM, except that the finger

connections are replaced by a single row of pins. SIP has been
overtaken by SIMM in terms of popularity and is now rarely seen.

DRAM interfaces

The basic DRAM interface
The basic DRAM interface takes the processor generated

address, places the high order bits onto the memory address bus
to form the row address and asserts the RAS* signal. This partial
address is latched internally by the DRAM. The remaining low
order bits, forming the column address, are then driven onto the
bus and the CAS* signal asserted. After the access time has
expired, the data appears on the Dout pin and is latched by the
processor. The RAS* and CAS* signals are then negated. This cycle
is repeated for every access. The majority of DRAM specifications
define minimum pulse widths for the RAS* and CAS* and these
often form the major part in defining the memory access time. To
remain compatible with the PC–AT standard, memory refresh is
performed every 15 microseconds.

This direct access method limits wait state-free operation to
the lower processor speeds. DRAM with 100 ns access time would
only allow a 12.5 MHz processor to run with zero wait states. To
achieve 20 MHz operation needs 40 ns DRAM, which is unavail-
able today, or fast static RAM which is at a price. Fortunately, the
embedded system designer has more tricks up his sleeve to
improve DRAM performance for systems, with or without cache.
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Page mode operation
One way of reducing the effective access time is to remove

the RAS* pulse width every time the DRAM was accessed. It needs
to be pulsed on the first access, but subsequent accesses to the same
page (i.e. with the same row address) would not require it and so
are accessed faster. This is how the ‘page mode’ versions of most
256 kb, 1 Mb and 4 Mb memory work. In page mode, the row
address is supplied as normal but the RAS* signal is left asserted.
This selects an internal page of memory within the DRAM where
any bit of data can be accessed by placing the column address and
asserting CAS*. With 256 kb size memory, this gives a page of 1
kbyte (512 column bits per DRAM row with 16 DRAMs in the
array). A 2 kbyte page is available from 1 Mb DRAM and a 4 kbyte
page with 4 Mb DRAM.

 This allows fast processors to work with slower memory
and yet achieve almost wait state-free operation. The first access is
slower and causes wait states but subsequent accesses within the
selected page are quicker with no wait states.

However, there is one restriction. The maximum time that
the RAS* signal can be asserted during page mode operation is
often specified at about 10 microseconds. In non-PC designs, the
refresh interval is frequently adjusted to match this time, so a
refresh cycle will always occur and prevents a specification viola-
tion. With the PC standard of 15 microseconds, this is not possible.
Many chip sets neatly resolve the situation by using an internal
counter which times out page mode access after 10 microseconds.

Page interleaving
Using a page mode design only provides greater perform-

ance when the memory cycles exhibit some form of locality, i.e.
stay within the page boundary. Every access outside the boundary
causes a page miss and two or three wait states. The secret, as with
caches, is to increase the hits and reduce the misses. Fortunately,
most accesses are sequential or localised, as in program subrou-
tines and some data structures. However, if a program is fre-
quently accessing data, the memory activity often follows a code–
data–code–data access pattern. If the code areas and data areas are
in different pages, any benefit that page mode could offer is lost.
Each access changes the page selection, incurring wait states. The
solution is to increase the number of pages available. If the
memory is divided into several banks, each bank can offer a
selected page, increasing the number of pages and, ultimately, the
number of hits and performance. Again, extensive hardware
support is needed and is frequently provided by the PC chip set.

Page interleaving is usually implemented as a one, two or
four way system, depending on how much memory is installed.
With a four way system, there are four memory banks, each with
their own RAS* and CAS* lines. With 4 Mbyte DRAM, this would
offer 16 Mbytes of system RAM. The four way system allows four
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pages to be selected within page mode at any one time. Page 0 is
in bank 1, page 1 in bank 2, and so on, with the sequence restarting
after four banks.

With interleaving and Fast Page Mode devices, inexpensive
85 ns DRAM can be used with a 16 MHz processor to achieve a 0.4
wait state system. With no page mode interleaving, this system
would insert two wait states on every access. With the promise of
faster DRAM, future systems will be able to offer 33–50 MHz with
very good performance — without the need for cache memory and
its associated costs and complexity.

Burst mode operation
Some versions of the DRAM chip, such as page mode, static

column or nibble mode devices, do not need to have the RAS/CAS
cycle repeated and can provide data much faster if only the new
column address is given. This has allowed the use of a burst fill
memory interface, where the processor fetches more data than it
needs and keeps the extra data in an internal cache ready for future
use. The main advantage of this system is in reducing the need for
fast static RAMs to realise the processor’s performance. With 60 ns
page mode DRAM, a 4-1-1-1 (four clocks for the first access, single
cycle for the remaining burst) memory system can easily be built.
Each 128 bits of data fetched in such a way takes only seven clock
cycles, compared with five in the fastest possible system. If burst-
ing was not supported, the same access would take 16 clocks. This
translates to a very effective price performance — a 4-1-1-1 DRAM
system gives about 90% of the performance of a more expensive 2-
1-1-1 static RAM design. This interface is used on the higher
performance processors where it is used in conjunction with on-
chip caches. The burst fill is used to load a complete line of data
within the cache.

 This allows fast processors to work with slower memory
and yet achieve almost wait state-free operation. The first access is
slower and causes wait states but subsequent accesses within the
selected page are quicker with no wait states.

EDO memory
EDO stands for extended data out memory and is a form of

fast page mode RAM that has a quicker cycling process and thus
faster page mode access. This removes wait states and thus im-
proves the overall performance of the system. The improvement
is achieved by fine tuning the CAS* operation.

With fast page mode when the RAS* signal is still asserted,
each time the CAS* signal goes high the data outputs stop assert-
ing the data bus and go into a high impedance mode. This is used
to simplify the design by using this transistion to meet the timing
requirements. It is common with this type of design to perma-
nently ground the output enable pin. The problem is that this
requires the CAS* signal to be asserted until the data from the
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DRAM is latched by the processor or bus master. This means that
the next access cannot be started until this has been completed,
causing delays.

EDO memory does not cause the outputs to go to high
impedance and it will continue to drive data even if the CAS*
signal is removed. By doing this, the CAS* precharge can be
started for the next access while the data from the previous access
is being latched. This saves valuable nanoseconds and can mean
the removal of a wait state. With very high performance proces-
sors, this is a big advantage and EDO type DRAM is becoming the
de facto standard for PCs and workstations or any other application
that needs high performance memory.

DRAM refresh techniques
DRAM needs to be periodically refreshed and to do this

there are several methods that can be used. The basic technique
involves accessing the DRAM using a special refresh cycle. During
these refresh cycles, no other access is permitted. The whole chip
must be refreshed within a certain time period or its data will be
lost. This time period is known as the refresh time. The number of
accesses needed to complete the refresh is known as the number
of cycles and this number divided into the refresh time gives the
refresh rate. There are two refresh rates in common use: standard,
which is 15.6 µs and extended, which is 125 µs. Each refresh cycle
is approximately twice the length of a normal access — a 70 ns
DRAM typically has a refresh cycle time of 130 ns — and this times
the number of cycles gives the total amount of time lost in the
refresh time to refresh. This figure is typically 3–4% of the refresh
time. During this period, the memory is not accessible and thus
any processor will have to wait for its data. This raises some
interesting potential timing problems.

Distributed versus burst refresh
With a real-time embedded system, the time lost to refresh

must be accounted for. However, its effect is dependent on the
method chosen to perform all the refresh cycles within the refresh
time. A 4 M by 1 DRAM requires 1024 refresh cycles. Are these
cycles executed in a burst all at once or should they be distributed
across the whole time? Bursting means that the worst case delay
is 1024 times larger than that of a single refresh cycle that would
be encountered in a distributed system. This delay is of the order
of 0.2 ms, a not inconsiderable time for many embedded systems!
The distributed worst case delay due to refresh is about 170 ns.

Most systems use the distributed method and depending
on the size of time critical code, calculate the number of refresh
cycles that are likely to be encountered and use that to estimate the
delay caused by refresh cycles. It should be remembered that in
both cases, the time and access overhead for refresh is the same.
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Software refresh
It is possible to use software to perform the refresh by using

a special routine to periodically circle through the memory and
thus cause its refresh. Typically a timer is programmed to generate
an interrupt. The interrupt handler would then perform the re-
fresh. The problem with this arrangement is that any delay in
performing the refresh potentially places the whole memory and
its contents at risk. If the processor is stopped or single stepped, its
interrupts disabled or similar, the refresh is halted and the memory
contents lost. The disadvantage in this is that it makes debugging
such a system extremely difficult. Many of the debugging tech-
niques cannot be used because they stop the refresh. If the proces-
sor crashes, the refresh is stopped and the contents are lost.

There have been some neat applications where software
refresh is used. The Apple II personal computer used a special
memory configuration so that every time the DRAM blocks that
were used for video memory were accessed to update the screen,
they effectively refreshed the DRAM.

RAS only refresh
With this method, the row address is placed on the address

bus, RAS* is asserted but CAS* is held off. This generates the
recycle address. The address generation is normally done by an
external hardware controller, although many early controllers
required some software assistance. The addressing order is not
important but what is essential is that all the rows are refreshed
within the refresh time.

CAS before RAS (CBR) refresh
This is a later refresh technique that is now commonly used.

It has lower power consumption because it does not use the
address bus and the buffers can be switched off. It works by using
an internal address counter stored on the memory chip itself
which is periodically incremented. Each incrementation starts a
refresh cycle internally. The mechanism works as its name sug-
gests by asserting CAS* before RAS*. Each time that RAS* is
asserted, a refresh cycle is performed and the internal counter
incremented.

Hidden refresh
This is a technique where a refresh cycle is added to the end

of a normal read cycle. The term hidden refers to the fact that the
refresh cycle is hidden in a normal read and not to any hiding of
the refresh timing. It does not matter which technique you use,
refresh will still cost time and performance! What happens is that
the RAS* signal goes high and is then asserted low. This happens
at the end of the read cycle when the CAS* signal is still asserted.
This is a similar situation to the CBR method. Like it, this toggling
of the RAS* signal at the end of the read cycle starts a CBR refresh
cycle internally.
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Memory management
Memory management used to be the preserve of worksta-

tions and PCs where it is used to help control and manage the
resources within the system. It inevitably caused memory access
delays and extra cost and because of this, was rarely used in
embedded systems. Another reason was that many of the real-
time operating systems did not support it and without the soft-
ware support, there seemed little need to have it within the
system. While some form of memory management can be done in
software, memory management is usually implemented with
additional hardware called a MMU (memory management unit)
to meet at least one of four system requirements:

1. The need to extend the current addressing range.

The often perceived need for memory management is usu-
ally the result of prior experience or background, and centres on
extending the current linear addressing range. The Intel 80x86
architecture is based around a 64 kbyte linear addressing segment
which, while providing 8 bit compatibility, does require memory
management to provide the higher order address bits necessary to
extend the processor´s address space. Software must track ac-
cesses that go beyond this segment, and change the address
accordingly. The M68000 family has at least a 16 Mbyte addressing
range and does not have this restriction. The PowerPC family has
an even larger 4 Gbyte range. The DSP56000 has a 128 kword (1
word = 24 bits) address space, which is sufficient for most present
day applications, however, the intermittent delays that occur in
servicing an MMU can easily destroy the accuracy of the algo-
rithms. For this reason, the linear addressing range may increase,
but it is unlikely that paged or segmented addressing will appear
in DSP applications.

2. To remove the need to write relocatable or position-
independent software.

Many systems have multitasking operating systems where
the software environment consists of modular blocks of code
running under the control of an operating system. There are three
ways of allocating memory to these blocks. The first simply
distributes blocks in a pre-defined way, i.e. task A is given the
memory block from $A0000 to $A8000, task B is given from $C0000
to $ D8000, etc. With these addresses, the programmer can write
the code to use this memory. This is fine, providing the distribu-
tion does not change and there is sufficient design discipline to
adhere to the plan. However, it does make all the code hardware
and position dependent. If another system has a slightly different
memory configuration, the code will not run correctly.

To overcome this problem, software can be written in such
a way that it is either relocatable or position independent. These
two terms are often interchanged but there is a difference: both can
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execute anywhere in the memory map, but relocatable code must
maintain the same address offsets between its data and code
segments. The main technique is to avoid the use of absolute
addressing modes, replacing them with relative addressing modes.

If this support is missing or the compiler technology cannot
use it, memory management must be used to translate the logical
program addresses and map them into physical memory. This
effectively realigns the memory so that the processor and software
think that the memory is organized specially for them, but in
reality is totally different.

3. To partition the system to protect it from other tasks,
users, etc.
To provide stability within a multitasking or multiuser

system, it is advisable to partition the memory so that errors
within one task do not corrupt others. On a more general level,
operating system resources may need separating from applica-
tions. The M68000 processor family can provide this partitioning
through the use of the function codes or by the combination of the
user/supervisor signals and Harvard architecture. This partition-
ing is very coarse, but is often all that is necessary in many cases.
For finer grain protection, memory management can be used to
add extra description bits to an address to declare its status. If a
task attempts to access memory that has not been allocated to it, or
its status does not match (e.g. writing to a read only declared
memory location), the MMU can detect it and raise an error to the
supervisor level. This aspect is becoming more important and has
even sprurred manufacturers to define stripped down MMUs to
provide this type of protection.

4. To allow programs to access more memory than is physi-
cally present in the system.

With the large linear addressing offered by today´s 32 bit
microprocessors, it is relatively easy to create large software
applications which consume vast quantities of memory. While it
may be feasible to install 64 Mbytes of RAM in a workstation, the
costs are expensive compared with a 64 Mbyte winchester disk. As
the memory needs go up, this differential increases. A solution is
to use the disk storage as the main storage medium, divide the
stored program into small blocks and keep only the blocks in the
processor system memory that are needed.

 As the program executes, the MMU can track how the
program uses the blocks, and swap them to and from the disk as
needed. If a block is not present in memory, this causes a page fault
and forces some exception processing which performs the swap-
ping operation. In this way, the system appears to have large
amounts of system RAM when, in reality, it does not. This virtual
memory technique is frequently used in workstations and in the
UNIX operating system.
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Using virtual memory to support large applications

Disadvantages of memory management
Given that memory management is necessary and benefi-

cial, what are the trade-offs? The most obvious is the delay it
inserts into the memory access cycle. Before a translation can take
place, the logical address from the processor must appear. The
translation usually involves some form of table look up, where the
contents of a segment register or the higher order address bits are
used to locate a descriptor within a memory block. This descriptor
provides the physical address bits and any partitioning informa-
tion such as read only etc. These signals are combined with the
original lower order address bits to form the physical memory
address. This look up takes time, which must be inserted into the
memory cycle, and usually causes at least one wait state. This
slows the processor and system performance down.
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In addition, there can be considerable overheads in manag-
ing all the look up tables and checking access rights etc. These
overheads appear on loading a task, during any memory alloca-
tion and when any virtual memory system needs to swap memory
blocks out to disk. The required software support is usually
performed by an operating system. In the latter case, if the system
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memory is very small compared with the virtual memory size and
application, the memory management driver will consume a lot of
processing and time in simply moving data to and from the disk.
In extreme cases, this overhead starts to dominate the system
which is working hard but achieving very little. The addition of
more memory relieves the need to swap and returns more of the
system throughput to executing the application.

Segmentation and paging
There are two methods of splitting the system memory into

smaller blocks for memory management. The size of these blocks
is quite critical within the design. Each block requires a translation
descriptor and therefore the size of the block is important. If the
granularity is too small (i.e. the blocks are 1–2 kbytes), the number
of descriptors needed for a 4 Gbyte system is extremely large. If the
blocks are too big, the number of descriptors reduces but granular-
ity increases. If a program just needs a few bytes, a complete block
will have to be allocated to it and this wastes the unused memory.
Between these two extremes lies the ideal trade-off.

A segmented memory management scheme has a small
number of descriptors but solves the granularity problem by
allowing the segments to be of a variable size in a block of
contiguous memory. Each segment descriptor is fairly complex
and the hardware has to be able to cope with different address
translation widths. The memory usage is greatly improved, al-
though the task of assigning memory segments in the most effi-
cient way is difficult.

This problem occurs when a system has been operating for
some time and the segment distribution is now right across the
memory map. The free memory has been fragmented into small
chunks albeit in large numbers. In such cases, the total system
memory may be more than sufficient to allocate another segment,
but the memory is non-contiguous and therefore not available.
There is nothing more frustrating, when using such systems, as the
combination of ‘2 Mbytes RAM free’ and ‘Insufficient memory to
load’ messages when trying to execute a simple utility. In such
cases, the current tasks must be stopped, saved and restarted to
repack them and free up the memory. This problem can also be
found with file storage systems which need contiguous disk
sectors and tracks.

A paged memory system splits memory needs into multi-
ple, same sized blocks called pages. These are usually 1–2 kbytes
in size, which allows them to take easy advantage of fragmented
memory. However, each page needs a descriptor, which greatly
increases the size of the look up tables. With a 4 Gbyte logical
address space and 1 kbyte page size, the number of descriptors
needed is over 4 million. Each descriptor would be 32 bits (22 bits
translation address, 10 bits for protection and status) in size and
the corresponding table would occupy 16 Mbytes! This is a little



94 Embedded systems design

impractical, to say the least. To decrease the amount of storage
needed for the page tables, multi-level tree structures are used.
Such mechanisms have been implemented in the MC68851 paged
memory management unit (PMMU), the MC68030 processor,
PowerPC and ARM 920 processors, to name but a few.
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Using trees for descriptor tables

Trees work by dividing the logical address into fields and
using each of the fields to successively reference into tables until
the translation address is located. This is then concatenated with
the lower order page address bits to complete a full physical
address. The root pointer forms the start of the tree and there may
be separate pointers for user and supervisor use.

The root pointer points to separate pointer tables, which in
turn point to other tables and so on, until the descriptor is finally
reached. Each pointer table contains the address of the next
location. Most systems differ in the number of levels and the page
sizes that can be implemented. Bits can often be set to terminate the
table walk when large memory areas do not need to be uniquely
defined at a lower or page level. The less levels, the more efficient
the table walking.

The next diagram shows the three-level tree used by the
MC88200 CMMU. The logical 32 bit address is extended by a user/
supervisor bit which is used to select one of two possible segment
table bases from the user and supervisor area registers. The
segment number is derived from bits 31 to 22 and is concatenated
with a 20 bit value from the segment table base and a binary ‘00’
to create a 32 bit address for the page number table. The page table
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base is derived similarly until the complete translation is obtained.
The remaining 12 bits of the descriptors are used to define the
page, segment or area status in terms of access and more recently,
cache coherency mechanisms. If the attempted access does not
match with these bits (e.g. write to a write protected page), an error
will be sent back to the processor.
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MC88200 memory management descriptors

The next two diagrams show a practical implementation
using a two-level tree from an MC68851 PMMU. This is probably
the most sophisticated of any of the MMU schemes to have
appeared in the last 20 years. It could be argued that it was over-
engineered as subsequent MMUs have effectively all been subsets
of its features. One being the number of table levels it supported.
However as an example, it is a good one to use as its basic
principles are used even today.
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The table walking mechanism compresses the amount of
information needed to store the translation information. Consider
a task that occupies a 1 Mbyte logical address map consisting of a
code, data and stack memory blocks. Not all the memory is used
or allocated and so the page tables need to identify which of the 2
kbyte pages are not valid and the address translation values for the
others. With a single-level table, this would need 512 descriptors,
assuming a 2 kbyte page size. Each descriptor would need to be
available in practice. Each 2 kbyte block has its own descriptor in
the table and this explains why a single level table will have 512
entries. Even if a page is not used, it has to have an entry to indicate
this. The problem with a single level table is the number of
descriptors that are needed. They can be reduced by increasing the
page size — a 4 kbyte page will have the number of required
descriptors — but this makes memory allocation extravagant. If a
data structure needs 5 bytes then a whole page has to be allocated
to it. If it is just a few bytes bigger than a page, a second page is
needed. If a system has a lot of small data structures and limited
memory then small pages are probably the best choice to get the
best memory use. If the structures are large or memory in not a
problem then larger page sizes are more efficient from the memory
management side of the design.

Stack (2k) - 1 Page

Heap (4k) - 2 Pages

Code (66k) -
33 pages

Invalid

Example task

logical address

map
1M

256k

0

Invalid until

dynamically

allocated

The required memory map

With the two-level scheme shown, only the pages needed
are mapped. All other accesses cause an exception to allocate extra
pages as necessary. This type of scheme is often called demand
paged memory management. It has the advantage of immediately
removing the need for descriptors for invalid or unused pages
which reduces the amount of data needed to store the descriptors.



Memory systems 97

This means that with the two-level table mechanism shown
in the diagram, only 44 entries are needed, occupying only 208
bytes, with additional pages increasing this by 4 bytes. The exam-
ple shows a relatively simple two-level table but up to five levels
are often used. This leads to a fairly complex and time consuming
table walk to perform the address translation.

To improve performance, a cache or buffer is used to
contain the most recently used translations, so that table walks
only occur if the entry is not in the address translation cache (ATC)
or translation look-aside buffer (TLB). This makes a lot of sense —
due to the location of code and data, there will be frequent accesses
to the same page and by caching the descriptor, the penalty of a
table walk is only paid on the first access. However, there are still
some further trade-offs to consider.
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Memory protection units
There has been a trend in recent processor designs to

include a tripped down memory management unit that allows the
memory to be partitioned and protected without any address
translation. This removes the time consuming address translation
mechanism which reduces the memory access time and the amount
of hardware needed when compared with a full MMU implemen-
tation. In addition with system on a chip designs, this can reduce
the chip size, cost and power consumption although it is fair to say
that the size of these units are small compared to that of the whole
chip and especially any on-chip memory. It is also possible to use
the MMU as a memory protection unit by disabling the address
translation or by arranging for the translation to be non-existent
i.e. the physical and logical addresses are the same.



98 Embedded systems design

The basic idea behind a memory protection unit is to police
the memory subsystem so that only approved memory accesses
can take place. If a memory access is made to a protected area by
software that does not have the correct access rights, an error
signal is generated which can be used to start supervisor level
software to decide what to do.

The ARM architecture memory protection unit

The ARM architecture memory protection unit performs
this function. It can divide the memory range into eight separate
regions. Each region can be as small as 4 kbytes up to 4 Gbyte and
its starting address must be on a region boundary. If region is set
to 4 Kbytes then it can start on an address like 0x45431000 but an
8 kbyte region cannot. Its nearest valid address would be
0x45430000 or 0x45432000. Each region has an associated cacheable
bit, a bufferable bit and access permission bits. These control
whether the data stored in the region is cacheable (C bit), can be
buffered in the processor's write buffer (B bit) and the type of
access permitted (AP bits). These are in fact very similar to the
permission bits used in the corresponding ARM MMU architec-
ture and are stored in control registers. The regions are numbered
and this defines a priority level for resolving which permission
bits take precedence if regions overlap. For example region 2 may
not permit data caching while region 6 does. If region 6 overlaps
region 2, then the memory accesses in the overlapped area will be
cached. This provides an additional level of control.

The sequence for a memory access using the protection unit
is shown in the diagram and is as follows:
• The CPU issues an address which is compared to the

addresses that define the regions.
• If the address is not in any of these regions, the memory

access is aborted.
• If the address is inside of one or more of the regions then the

highest number region will supply the permission bits and
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these will be evaluated. If the access permission bits do not
match, the access is aborted. If they do match, the sequence
will continue. The C and B bits are then used to control the
behaviour of the cache and write buffer as appropriate and
eventually the memory access will complete successfully,
depending on how the C and B bits are set.
In practice, MMUs and memory protection units are be-

coming quite common in embedded systems. Their use can pro-
vide a greater level of security by trapping invalid memory
accesses before they corrupt other data structures. This means that
an erroneous task can be detected without bringing down the rest
of the system. With a multitasking system, this means that a task
may crash but the rest of the system will not. It can also be used to
bring down a system gracefully as well.

Cache memory
With the faster processors available today, the wait states

incurred in external memory accesses start to dramatically reduce
performance. To recover this, many designs implement a cache
memory to buffer the processor from such delays. Once predomi-
nantly used with high end systems, they are now appearing both
on chip and as external designs.

Cache memory systems work because of the cyclical struc-
tures within software. Most software structures are loops where
pieces of code are repeatedly executed, albeit with different data.
Cache memory systems store these loops so that after the loop has
been fetched from main memory, it can be obtained from the cache
for subsequent executions. The accesses from cache are faster than
from main memory and thus increase the system’s throughput.

There are several criteria associated with cache design
which affect its performance. The most obvious is cache size — the
larger the cache, the more entries are stored and the higher the hit
rate. For the 80x86 processor architecture, the best price perform-
ance is obtained with a 64 kbyte cache. Beyond this size, the cost
of getting extra performance is extremely high.

The set associativity is another criterion. It describes the
number of cache entries that could possibly contain the required
data. With a direct map cache, there is only a single possibility,
with a two way system, there are two possibilities, and so on.
Direct mapped caches can get involved in a bus thrashing situa-
tion, where two memory locations are separated by a multiple of
the cache size. Here, every time word A is accessed, word B is
discarded from the cache. Every time word B is accessed, word A
is lost, and so on. The cache starts thrashing and overall perform-
ance is degraded. With a two way design, there are two possibili-
ties and this prevents bus thrashing. The cache line refers to the
number of consecutive bytes that are associated with each cache
entry. Due to the sequential nature of instruction flow, if a cache
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hit occurs at the beginning of the line, it is highly probable that the
rest of the line will be accessed as well. It is therefore prudent to
burst fill cache lines whenever a miss forces a main memory
access. The differences between set associativity and line length
are not as clear as cache size. It is difficult to say what the best
values are for a particular system. Cache performances are ex-
tremely system and software dependent and, in practice, system
performance increases of 20–30% are typical.

Cache size and organization
There are several criteria associated with cache design

which affect its performance. The most obvious is cache size — the
larger the cache, the more entries that are stored and the higher the
hit rate. However, as the cache size increases, the return gets
smaller and smaller. In practice, the cache costs and complexity
place an economic limit on most designs. As the size of programs
increase, larger caches are needed to maintain the same hit rate
and hence the ‘ideal cache size is always twice that available’
comment. In reality, it is the combination of size, organization and
cost that really determines the size and its efficiency.

Consider a basic cache operation. The processor generates
an address which is fed into the cache memory system. The cache
stores its data in an array with an address tag. Each tag is com-
pared in turn with the incoming address. If they do not match, the
next tag is compared. If they do match, a cache hit occurs, the
corresponding data within the array is passed on the data bus to
the processor and no further comparisons are made. If no match is
found (a cache miss), the data is fetched from external memory
and a new entry is created in the array. This is simple to imple-
ment, needing only a memory array and a single comparator and
counter. Unfortunately, the efficiency is not very good due to the
serial interrogation of the tags.

DATA TO
CPU

V DATA TAG (32 BITS)

HIT

VALID ENTRY

ACCESS ADDRESS
031

COMPARATOR

COMPARATOR

A fully associative cache design
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A better solution is to have a comparator for each entry, so
all entries can be tested simultaneously. This is the organization
used in a fully associative cache. In the example, a valid bit is
added to each entry in the cache array, so that invalid or unused
entries can be easily identified. The system is very efficient from a
software perspective — any entry can be used to store data from
any address. A software loop using only 20 bytes (10 off 16 bit
instructions) but scattered over a 1,024 byte range would run as
efficiently as another loop of the same size but occupying consecu-
tive locations.

The disadvantage of this approach is the amount of hard-
ware needed to perform the comparisons. This increases in pro-
portion to the cache size and therefore limits these fully associative
caches to about 10 entries. The fully associative cache locates its
data by effectively asking �n questions where n is the number of
entries within it. An alternative organization is to assume certain
facts derived from the data address so that only one location can
possibly have the data and only one comparator is needed, irre-
spective of the cache size. This is the idea behind the direct map
cache.

TAG DATA V

HIT

BLOCKINDEXTAG

MUX

DATA 
TO CPU

031

COMPARE

Memory address

Direct mapped cache

The address is presented as normal but part of it is used to
index into the tag array. The corresponding tag is compared and,
if there is a match, the data is supplied. If there is a cache miss, the
data is fetched from external memory as normal and the cache
updated as necessary. The example shows how the lower address
bits can be used to locate a byte, word or long word within the
memory block stored within the array. This organization is simple
from the hardware design perspective but can be inefficient from
a software viewpoint.
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The index mechanism effectively splits external memory
space into a series of consecutive memory pages, with each page
the same size as the cache. Each page is mapped to resemble the
cache and therefore each location in the external memory page can
only correspond with its own location in the cache. Data that is
offset by the cache size thus occupies the same location within the
cache, albeit with different tag values. This can cause bus thrash-
ing. Consider a case where words A and B are offset by the cache
size. Here, every time word A is accessed, word B is discarded
from the cache. Every time word B is accessed, word A is lost. The
cache starts thrashing and the overall performance is degraded.
The MC68020 is a typical direct mapped cache.

A way to solve this is to split the cache so there are two or
four possible entries available for use. This increases the compara-
tor count but provides alternative locations and prevents bus
thrashing. Such designs are described as ‘n way set associative’,
where n is the number of possible locations. Values of 2, 4, 8 are
quite typical of such designs.

BLOCKINDEXTAG

Data to
CPU

031
Memory address

TAG DATA V

HIT

TAG DATA V

HIT

Set 0 Set n

MUX

COMPARECOMPARE

A set associative cache design

Many RISC-based caches are organized as a four way set
associative cache where a particular address will have four possi-
ble locations in the cache memory. This has advantages for the
software environment in that context switching code with the
same address will not necessarily overwrite each other and keep
destroying the contents of the cache memories.

The advantage of a set associative cache is its ability to
prevent thrashing at the expense of extra hardware. However, all
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the caches so far described can be improved by further reorganiz-
ing so that each tag is associated with a line of long words which
can be burst filled using a page memory interface.

…
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1 of 16
select

Index Long-word
Select

Access address

The MC68030 direct mapped burst fill cache

The logic behind this idea is based on the sequential nature
of instruction execution and data access. Instruction fetches and
execution simply involve accesses to sequential memory locations
until a program flow change happens due to the execution of a
branch or jump instruction. Data accesses often follow this pattern
during stack and data structure manipulation.

It follows that if a cache is organized with, say, four long
words within each tag line, a hit in the first long word would
usually result in hits in the rest of the line, unless a flow change
took place. If a cache miss was experienced, it would be beneficial
to bring in the whole line, providing this could be achieved in less
time than to bring in the four long words individually. This is
exactly what happens in a page mode interface. By combining
these, a more efficient cache can be designed which even benefits
in line code. This is exactly how the MC68030 cache works.

Address bits 2 and 3 select which long word is required
from the four stored in the 16 byte wide line. The remaining higher
address bits and function codes are the tag which can differentiate
between supervisor or user accesses etc. If there is a cache miss, the
processor uses its synchronous bus with burst fill to load up the
complete line.

W/O Burst W/ Burst
Instruction Cache 46% 82%
Data Cache - Reads 60% 72%
Data Cache - R & W 40% 48%

Estimated hit rates for the MC68030 caches
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With a complete line updated in the cache, the next three
instructions result in a hit, providing there is no preceding flow
change. These benefit from being cached, even though it is their
first execution. This is a great improvement over previous designs,
where the software had to loop before any benefit could be gained.
The table above shows the estimated improvements that can be
obtained.

The effect is similar to increasing the cache size. The largest
effect being with instruction fetches which show the greatest
degree of locality. Data reads are second, but with less impact due
to isolated byte and word accesses. Data read and write operations
are further reduced, caused by the cache’s write-through policy.
This forces all read-modify-write and write operations to main
memory. In some designs, data accesses are not sequential, in
which case, system performance actually degrades when the data
cache is enabled — burst filling the next three long words is simply
a waste of time, bus bandwidth and performance. The solution is
simple — switch off the cache! This design is used in most high
performance cache designs.

Optimising line length and cache size
This performance degradation is symptomatic of external

bus thrashing due to the cache line length and/or burst fill length
being wrong and leading to system inefficiencies. It is therefore
important to get these values correct. If the burst fill length is
greater than the number of sequential instructions executed be-
fore a flow change, data is fetched which will not be used. This
consumes valuable external bus bandwidth. If the burst length is
greater than the line length, multiple cache lines have to be
updated, which might destroy a cache entry for another piece of
code that will be executed later. This destroys the efficiency of the
cache mechanism and increases the cache flushing, again consum-
ing external bus bandwidth. Both of these contribute to the noto-
rious ‘bus thrashing’ syndrome where the processor spends vast
amounts of time fetching data that it never uses. Some cache
schemes allow line lengths of 1, 4, 8, 16 or 32 to be selected,
however, most systems use a line and burst fill length of 4. Where
there are large blocks of data to be moved, higher values can
improve performance within these moves, but this must be offset
by any affect on other activities.

Cache size is another variable which can affect perform-
ance. Unfortunately, it always seems to be the case that the ideal
cache is twice the size of that currently available! The biggest
difficulty is that cache size and efficiency are totally software
dependant — a configuration that works for one application is not
necessarily the optimum for another.

The table shows some efficiency figures quoted by Intel in
their 80386 Hardware Reference Manual and from this data, it is
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apparent that there is no clear cut advantage of one configuration
over another. It is very easy to get into religious wars of cache
organisation where one faction will argue that their particular
organisation is right and that everything else is wrong. In practice,
it is incredibly difficult to make such claims without measuring
and benchmarking a real system. In addition, the advantages can
be small compared to other performance techniques such as
software optimisation. In the end, the bigger the cache the better,
irrespective of its set-associativity or not is probably the best
maxim to remember.

Size
(k)

1
8

16
32
32
32
64
64
64
64
64
128
128
128

Associativity

direct
direct
direct
direct
2-way
direct
direct
2-way
4-way
direct
2-way
direct
2-way
direct

Line size
(bytes)

4
4
4
4
4
8
4
4
4
8
8
4
4
8 

Hit rate
(%)

41
73
81
86
87
91
88
89
89
92
93
89
89
93

Performance
ratio versus 

DRAM

0.91
1.25
1.35
1.38
1.39
1.41
1.39
1.40
1.40
1.42
1.42
1.39
1.40
1.42

(source: 80386 Hardware Reference Manual)

Cache performance

Logical versus physical caches
Cache memory can be located either side of a memory

management unit and use either physical or logical addresses as
its tag data. In terms of performance, the location of the cache can
dramatically affect system performance. With a logical cache, the
tag information refers to the logical addresses currently in use by
the executing task. If the task is switched out during a context
switch, the cache tags are no longer valid and the cache, together
with its often hard-won data must be flushed and cleared. The
processor must now go to main memory to fetch the first instruc-
tions and wait until the second iteration before any benefit is
obtained from the cache. However, cache accesses do not need to
go through the MMU and do not suffer from any associated delay.

Physical caches use physical addresses, do not need flush-
ing on a context switch and therefore data is preserved within the
cache. The disadvantage is that all accesses must go through the
memory management unit, thus incurring delays. Particular care
must also be exercised when pages are swapped to and from disk.
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If the processor does not invalidate any associated cache entries,
the cache contents will be different from the main memory con-
tents by virtue of the new page that has been swapped in.

Of the two systems, physical caches are more efficient,
providing the cache coherency problem is solved and MMU
delays are kept to a minimum. RISC architectures like the PowerPC
solve the MMU delay issue by coupling the MMU with the cache
system. An MMU translation is performed in conjunction with the
cache look up so that the translation delay overlaps the memory
access and is reduced to zero. This system combines the speed
advantages of a logical cache with the data efficiency of a physical
cache.

Most internal caches are now designed to use the physical
address (notable exceptions are some implementations of the
SPARC architecture which use logical internal caches).

Unified versus Harvard caches
There is another aspect of cache design that causes great

debate among designers and this concerns whether the cache is
unified or separate. A unified cache, as used on the Intel 80486DX
processors and the Motorola MPC601 PowerPC chip, uses the
same cache mechanism to store both data and instructions. The
separate or Harvard cache architecture has separate caches for
data and instructions. The argument for the unified cache is that
its single set of tags and comparators reduces the amount of silicon
needed to implement it and thus for a given die area, a larger cache
can be provided compared to separate caches. The argument
against is that a unified cache usually has only a single port and
therefore simultaneous access to both instructions and data will
result in one or the other being delayed while the first access is
completed. This delay can halt or slow down the processor’s
ability to execute instructions.

Conversely, the Harvard approach uses more silicon area
for the second set of tags and comparators but does allow simul-
taneous access. In reality, the overall merits of each approach
depend on several factors, and depending where the cross-over
points lie, the factors will be in favour of one or other. If software
needs to exploit superscalar operation then the Harvard architec-
ture is less likely to impede superscalar execution. If the applica-
tion has large data and code structures, then a larger unified cache
may be better. As with most cache organisation decisions, the only
clear way to make a decision is to evaluate using the end applica-
tion and the test software.

Cache coherency
The biggest challenge with cache design is how to solve the

problem of data coherency, while remaining hardware and soft-
ware compatible. The issue arises when data is cached which can
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then be modified by more than one source. An everyday analogy
is that of a businessman with two diaries — one kept by his
secretary in the office and the other kept by him. If he is out of the
office and makes an appointment, the diary in the office is no
longer valid and his secretary can double book him assuming,
incorrectly, that the office diary is correct.

This problem is normally only associated with data but can
occur with instructions within an embedded application. The stale
data arises when a copy is held both in cache and in main memory.
If either copy is modified, the other becomes stale and system
coherency is destroyed. Any changes made by the processor can
be forced through to the main memory by a ‘write-through’ policy,
where all writes automatically update cache and main memory.
This is simple to implement but does couple the processor unnec-
essarily to the slow memory. More sophisticated techniques, like
‘copy-back’ and ‘modified write-back’ can give more performance
(typically 15%, although this is system and software dependent)
but require bus snooping support to detect accesses to the main
memory when the valid data is in the cache.

The ‘write-through’ mechanism solves the problem from
the processor perspective but does not solve it from the other
direction. DMA (Direct Memory Access) can modify memory
directly without any processor intervention. Consider a task swap-
ping system. Task A is in physical memory and is cached. A swap
occurs and task A is swapped out to disk and replaced by task B
at the same location. The cached data is now stale. A software
solution to this involves flushing the cache when the page fault
happens so the previous contents are removed. This can destroy
useful cached data and needs operating system support, which
can make it non–compatible. The only hardware solution is to
force any access to the main memory via the cache, so that the
cache can update any modifications.

This provides a transparent solution — but it does force the
processor to compete with the DMA channels and restricts cach-
ing to the main memory only, with a resultant impact on perform-
ance.

While many system designs use cache memory to buffer the
fast processor from the slower system memory, it should be
remembered that access to system memory is needed on the first
execution of an instruction or software loop and whenever a cache
miss occurs. If this access is too slow, these overheads greatly
diminish the efficiency of the cache and, ultimately, the proces-
sor’s performance. In addition, switching on caches can cause
software that works perfectly to crash and, in many configura-
tions, the caches remain switched off to allow older software to
execute correctly.
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Other problems can occur when data that is not intended to
be cached is cached by the system. Shared memory or I/O ports
are two areas that come immediately to mind. Shared memory
relies on the single memory structure to contain the recent data. If
this is cached then any updates may not be made to the shared
memory. Any other CPU or DMA that accesses the shared memory
will not get the latest data and the stale data may cause the system
to crash. The same problem can happen with I/O ports. If accesses
are cached then reading an I/O port to get status information will
return with the cached data which may not be consistent with the
data at the I/O port. It is important to be able to control which
memory regions are cached and which are not. It should be no
surprise that MMUs and memory protection units are used to
perform this function and allow the control of the caches to be
performed automatically based on memory addresses and associ-
ated access bits.

A lot is made of cache implementations — but unless the
main system memory is fast and software reliable, system and
software performance will degrade. Caches help to regain per-
formance lost through system memory wait states but they are
never 100% efficient. A system with no wait states always pro-
vides the best performance. Add to that the need for control and
the selection of the right cache coherency policy for the system and
designing for any system that has caches requires a detailed
understanding of what is going on to get the best out of the system.

Case 1: write-through
In this case, all data writes go through to main memory and

update the system as well as the cache. This is simple to implement
but couples the processor unnecessarily to slow memory. If data
is modified several times before another master needs it, the write-
through policy consumes external bus bandwidth supplying data
that is not needed. This is not terribly efficient. In its favour, the
scheme is very simple to implement, providing there is only a
single cache within the system.



Memory systems 109

Main
memory

Processor DMA
controller

I/O
bus

Cache 
memory

A coherent cache architecture

If there are more than two caches, the stale data problem
reappears in another guise. Consider such a system where two
processors with caches have a copy of a global variable. Neither
processor accesses main memory when reading the variable, as
the data is supplied by the respective caches. Processor A now
modifies the variable — its cache is updated, along with the
system memory. Unfortunately, processor B´s cache is left with
the old stale data, creating a coherency problem. A similar prob-
lem can occur within paging systems.

It also does not address the problem with I/O devices either
although the problem will occur when the I/O port is read for a
second and subsequent times as the cache will supply the data on
these accesses instead of the I/O port itself.

 DMA (direct memory access) can modify memory directly
without any processor intervention. Consider a UNIX paging
system. Page A is in physical memory and is cached. A page fault
occurs and page A is swapped out to disk and replaced by page B
at the same location. The cached data is now stale. A software
solution to this involves flushing the cache when the page fault
happens so the previous contents are removed. This can destroy
useful cached data and needs operating system support, which
can make it non-compatible. The only hardware solution is to
force any access to the main memory via the cache, so that the
cache can update any modifications. This provides a transparent
solution, but it does force the processor to compete with the DMA
channels, and restricts caching to the main memory only, with the
subsequent reduced performance.

Case 2: write-back
In this case, the cache is updated first but the main memory

is not updated until later. This is probably the most efficient
method of caching, giving 15–20% improvement over a straight
write-through cache. This scheme needs a bus snooping mecha-
nism for coherency and this will be described later.
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The usual cache implementation involves adding dirty bits
to the tag to indicate which cache lines or partial lines hold
modified data that has not been written out to the main memory.
This dirty data must be written out if there is any possibility that
the information will be lost. If a cache line is to be replaced as a
result of a cache miss and the line contains dirty data, the dirty data
must be written out before the new cache line can be accepted. This
increases the impact of a cache miss on the system. There can be
further complications if memory management page faults occur.
However, these aspects must be put into perspective — yes, there
will be some system impact if lines must be written out, but this
will have less impact on a wider scale. It can double the time to
access a cache line, but it has probably saved more performance by
removing multiple accesses through to the main memory. The
trick is to get the balance in your favour.

Case 3: no caching of write cycles
In this method, the data is written through but the cache is

not updated. If the previous data had been cached, that entry is
marked invalid and is not used. This forces the processor to access
the data from the main memory. In isolation, this scheme does
seem to be extremely wasteful, however, it often forms the back-
bone of a bus snooping mechanism.

Case 4: write buffer
This is a variation on the write-through policy. Writes are

written out via a buffer to the main memory. This enables the
processor to update the ‘main memory’ very quickly, allowing it
to carry on processing data supplied by the cache. While this is
going on, the buffer transfers the data to the main memory. The
main advantage is the removal of memory delays during the
writes. The system still suffers from coherency problems caused
through multiple caches.

Another term associated with these techniques is write
allocation. A write-allocate cache allocates entries in the cache for
any data that is written out. The idea behind this is simple — if data
is being transferred to external memory, why not cache it, so that
when it is accessed again, it is already waiting in the cache. This is
a good idea if the cache is large but it does run the risk of
overwriting other entries that may be more useful. This problem
is particularly relevant if the processor performs block transfers or
memory initialisation. Its main use is within bus snooping mecha-
nisms where a first write-allocate policy can be used to tell other
caches that their data is now invalid. The most important need
with these methods and ideas is bus snooping.
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Bus snooping
With bus snooping, a memory cache monitors the external

bus for any access to data within the main memory that it already
has. If the cache data is more recent, the cache can either supply it
direct or force the other master off the bus, update main memory
and start a retry, thus allowing the original master access to valid
data. As an alternative to forcing a retry, the cache containing the
valid data can act as memory and supply the data directly. As
previously discussed, bus snooping is essential for any multimaster
system to ensure cache coherency.

MC88100s

MC88200s

5

Main
memory

BA

Shared
unmodified

Invalid
SNOOPED

5

5

Processor A
read

M88000 cache coherency - i

Shared
unmodified

5

MC88100s

MC88200s

Main
memory

BA

SNOOPED

5

55

Processor B 
read

Shared
unmodified

M88000 cache coherency - ii



112 Embedded systems design

The bus snooping mechanism used by the MC88100/
MC88200 uses a combination of write policies, cache tag status and
bus monitoring to ensure coherency. Nine diagrams show a
typical sequence. In the first figure on the previous page, processor
A reads data from the main memory and this data is cached. The
main memory is declared global and is shared by processors A and
B. Both these caches have bus snooping enabled for this global
memory. This causes the cached data to be tagged as shared
unmodified; i.e. another master may need it and the data is
identical to that of main memory. A´s access is snooped by
processor B, which does nothing as its cache entry is invalid. It
should be noted that snooping does not require any direct proces-
sor of software intervention and is entirely automatic.

Processor B accesses the main memory, as shown in the next
diagram and updates its cache as well. This is snooped by A but the
current tag of shared unmodified is still correct and nothing is
done.

Invalid

Main
memory

MC88100s

MC88200s

BA

4

45

SNOOPED

45

Exclusive
unmodified

Processor A
write

M88000 cache coherency - iii

Processor A then modifies its data as shown in diagram (iii)
and by virtue of a first write-allocate policy, writes through to the
main memory. It changes the tag to exclusive unmodified; i.e. the
data is cached exclusively by A and is coherent with main memory.
Processor B snoops the access and immediately invalidates its old
copy within its cache.

When processor B needs the data, it is accessed from the
main memory and written into the cache as shared unmodified
data. This is snooped by A, which changes its data to the same
status. Both processors now know that the data they have is
coherent with the main memory and is shared.
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Processor A now modifies the data which is written out to
the main memory and snooped by B which marks its cache entry
as invalid. Again, this is a first write-allocate policy in effect.

Processor A modifies the data again but, by virtue of the
copyback selection, the data is not written out to the main memory.
Its cache entry is now tagged as exclusive modified; i.e. this may
be the only valid copy within the system.
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Processor B tries to get the data and starts an external
memory access, as shown. Processor A snoops this access, recog-
nises that it has the valid copy and so asserts a retry response to
processor B, which comes off the bus and allows processor A to
update the main memory and change its cache tag status to shared
unmodified.
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Once completed, processor B is allowed back onto the bus
to complete its original access, this time with the main memory
containing the correct data.

This sequence is relatively simple, compared with those
encountered in real life where page faults, cache flushing, etc.,
further complicate the state diagrams. The control logic for the
CMMU is far more complex than that of the MC88100 processor
itself and this demonstrates the complexity involved in ensuring
cache coherency within multiprocessor systems.

The problem of maintaining cache coherency has led to the
development of two standard mechanisms — MESI and MEI. The



116 Embedded systems design

MC88100 sequence that has just been discussed is similar to that of
the MESI protocol. The MC68040 cache coherency scheme is
similar to that of the MEI protocol.

The MESI protocol
The MESI protocol is a formal mechanism for controlling

cache coherency using snooping techniques. Its acronym stands
for modified, exclusive, shared, invalid and refers to the states that
cached data can take. Transition between the states is controlled
by memory accesses and bus snooping activity. This information
appears on special signal pins during bus transactions.

The MESI diagram is generic and shows the general opera-
tion of the protocol. There are four states that describe the cache
contents and its coherence with system memory:

Invalid The target address is not cached.

Shared The target address is in the cache and also in at
least one other. It is coherent with system memory.

Exclusive The target address is in the cache but the data is
coherent with system memory.

Modified The target address is in the cache, but the contents
has been modified and is not coherent with sys-
tem memory. No other cache in the system has
this data.

Modified Exclusive

INVALID* Shared

WH

SHR

SHW

RH

RMS

=   Dirty line copyback  
     (snoop push)
=   Line invalidate

=  Read-with-Intent-to-Modify

=  Cache sector fill

RH

WH

Bus Transactions

RH

Read hit
Read Miss, Shared
Read Miss, Exclusive
Write Hit
Write Miss
Snoop Hit on a Read
Snoop Hit on a Write or 
Read-with-Intent-to-Modify

RH =
RMS =
RME =
 WH =
WM =
SHR =

SHW =

* On a cache miss, the old line is invalidated and copied back if modified

WH

SHR

SHW

RME

SHR

MESI cache coherency protocol
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The movement from one state is governed by memory
actions, cache hits and misses and snooping activity. For example,
if a processor needs to write data to a memory address that has a
write-back policy and cache coherency enabled as part of its page
descriptors — controlled by the WIM bits — and causes a cache
miss, the processor will move from an invalid state to a modified
state by performing a ‘read with intent to modify’ bus cycle.

The MESI protocol is widely used in multiprocessor de-
signs, for example, in the Futurebus+ interconnection bus. The
MPC601 uses this protocol.

The MEI protocol
The MEI protocol — modified, exclusive, invalid — does

not implement the shared state and so does not support the MESI
shared state where multiple processors can cache shared data.

INV

EM EU

INV  - Invalid
EM   - Exclusive Modified
EU   - Exclusive Unmodified
ITM  - Intent-to-modify

snoop hit 
cachable read or 

any write (with 
copyback)

write miss 
(line fill 

with ITM)

read miss 
(line fill 

with ITM)

write hit (no broadcast)

snoop hit (cache inhibited 
read) (with copyback)

write 
hit 
read 
hit

snoop hit 
(cache inhibited 

read) read hit

snoop hit 
cachable 

read or any 
write

MPC603 MEI
coherency diagram

The MPC603 uses this simplified form of protocol to sup-
port other intelligent bus masters such as DMA controllers. It is not
as good as the MESI bus for true multiprocessor support. On the
other hand, it is less complex and easier to implement. The three
states are defined as follows:
Invalid The target address is not cached.
Exclusive unmodified The target address is in the cache but the

data is coherent with system memory.
Exclusive modified The target address is in the cache, but

the contents have been modified and
are not coherent with system memory.
No other cache in the system has this
data.

Note that the cache coherency implementation is processor
specific and may change. The two mechanisms described here are
the two most commonly used methods for processors and are
likely to form the basis of future designs.
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Two final points: these schemes require information to be
passed by the external buses to allow other bus masters to identify
the transitions. This requires the hardware design to implement
them. If this is not done, these schemes will not work and the
software environment may require extensive change and the
imposition of constraints. Cache coherency may need to be re-
stricted to cache inhibited or write-through. DMA accesses could
only be made to cache inhibited memory regions. The supervisor
must take responsibility for these decisions and implementations
to ensure correct operation. In other words, do not assume that
cache coherency software for one hardware design will work on
another. It will, if the bus interface design is the same. It will not
if they are different.

Finally, cache coherency also means identifying the areas of
memory which are not to be cached.

Burst interfaces
The adoption of burst interfaces by virtually all of today’s

high performance processors has led to the development of special
memory interfaces which include special address generation and
data latches to help the designer. Burst interfaces take advantage
of page and nibble mode memories which supply data on the first
access in the normal time, but can supply subsequent data far
quicker.

The burst interface, which is used on processors from
Motorola, Intel, AMD, MIPs and many other manufacturers gains
its performance by fetching data from the memory in bursts from
a line of sequential locations. It makes use of a burst fill technique
where the processor will access typically four words in succession,
enabling a complete cache line to be fetched or written out to
memory. The improved speed is obtained by taking advantage of
page mode or static column memory. These type of memories
offer faster access times — single cycle in many cases — after the
initial access is made.

First
Address

First
Data

Second
Data

Third
Data

Fourth
Data

2 clocks 1 clock 1 clock 1 clock

`

A burst fill interface

The advantage is a reduction in clock cycles needed to fetch
the same amount of data. To fetch four words with a three clock
memory cycle takes 12 clocks. Fetching the same amount of data
using a 2-1-1-1 burst (two clocks for the first access, single cycles
for the remainder) takes only five clocks. This type of interface
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gives a good fit with the page mode DRAM where the first access
is used to set up the page access and the remainder of the burst
accesses addresses within the page, thus taking advantage of the
faster access.

Burst fill offers advantages of faster and more efficient
memory accesses, but there are some fundamental changes in its
operation when compared with single access buses. This is par-
ticularly so with SRAM when it is used as part of a cache:

• The address is only supplied for the first access in a burst
and not for the remaining accesses. External logic is re-
quired to generate the additional addresses for the memory
interface.

• The timing for each data access in the burst sequence is
unequal: typical clock timings are 2-1-1-1 where two clocks
are taken for the first access, but subsequent accesses are
single cycle.

• The subsequent single cycle accesses compress address
generation, set-up and hold and data access into a single
cycle, which can cause complications generating write pulses
to write data into the SRAM, for example.
These characteristics lead to conflicting criteria within the

interface: during a read cycle, the address generation logic needs
to change the address to meet set-up and hold times for the next
access, while the current cycle requires the address to remain
constant during its read access. With a write cycle, the need to
change the address for the next cycle conflicts with the write pulse
and constant address required for a successful write.

Meeting the interface needs
For a designer implementing such a system there are four

methods of improving the SRAM interface and specification to
meet the timing criteria:
• Use faster memory.
• Use synchronous memory with on-chip latches to reduce

gate delays.
• Choose parts with short write pulse requirements and data

set-up times.
• Integrate address logic on-chip to remove the delays and

give more time.
While faster and faster memories are becoming available,

they are more expensive, and memory speeds are now becoming
limited by on- and off-chip buffer delays rather than the cell access
times. The latter three methods depend on semiconductor manu-
facturers recognising the designer’s difficulties and providing
static RAMs which interface better with today’s high performance
processors.



120 Embedded systems design

This approach is beneficially for many high speed proces-
sors, but it is not a complete solution for the burst interfaces. They
still need external logic to generate the cyclical addresses from the
presented address at the beginning of the burst memory access.
This increases the design complexity and forces the use of faster
memories than is normally necessary simply to cope with the
propagation delays. The obvious step is to add this logic to the
latches and registers of a synchronous memory to create a protocol
specific memory that supports certain bus protocols. The first two
members of Motorola’s protocol specific products are the
MCM62940 and MCM62486 32k × 9 fast static RAMs. They are, as
their part numbering suggests, designed to support the MC68040
and the Intel 80486 bus burst protocols. These parts offer access
times of 15 and 20 ns.

The first access may take two processor clocks but remain-
ing accesses can be made in a single cycle. There are some restric-
tions to this: the subsequent accesses must be in the same memory
page and the processor must have somewhere to store the extra
data that can be collected. The obvious solution is to use this burst
interface to fill a cache line. The addresses will be in the same page
and by storing the extra data in a cache allows a processor to use
it at a later date without consuming additional bus bandwidth.
The main problem faced by designers with these interfaces is the
generation of the new addresses. In most designs the processor
will only issue the first address and will hold this constant during
the extra accesses. It is up to the interface logic to take this address
and increment it with every access. With processors like the
MC68030, this function is a straight incremental count. With the
MC68040, a wrap-around burst is used where the required data is
fetched first and the rest of the line fetched, wrapping around to
the line beginning if necessary. Although more efficient for the
processor, the wrap-around logic is more complicated.

 

1 2 3 4

3 4 1 2

First access

First access

A linear line fill

A wrap-around line fill
Linear and wrap-around line fills

The solution is to add this logic along with latches and
registers to a memory to create a specific part that supports certain
bus protocols. The first two members of Motorola’s protocol
specific products are the MCM62940 and MCM62486 32k × 9 fast
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static RAMs. They are, as their part numbering suggests, designed
to support the MC68040 and the Intel 80486 bus burst protocols.
These parts offer access times of 15 and 20 ns.

The MCM62940 has an on-chip burst counter that exactly
matches the MC68040 wrap-around burst sequence. The address
and other control data can be stored either by using the asynchro-
nous or synchronous signals from the MC68040 depending on the
design and its needs. A late write abort is supported which is
useful in cache designs where cache writes can be aborted later in
the cycle than normally expected, thus giving more time to decide
whether the access should result in a cache hit or be delayed while
stale data is copied back to the main system memory.

The MCM62486 has an on-chip burst counter that exactly
matches the Intel 80486 burst sequence, again removing external
logic and time delays and allowing the memory to respond to the
processor without the need for the wait state normally inserted at
the cycle start. In addition, it can switch from read to write mode
while maintaining the address and count if a cache read miss
occurs, allowing cache updating without restarting the whole
cycle.

Big and little endian
There are two methods of organising data within memory

depending on where the most significant bit is located. The Intel
80x86 and Motorola 680x0 and PowerPC processors use different
organisations and this can cause problems.

The PowerPC architecture uses primarily a big endian byte
order, i.e. an address points to the most significant byte of a value
in memory. This can cause problems with other processors that
use the alternative little endian organisation, where an address
points to the least significant byte.

The PowerPC architecture solves this problem by provid-
ing a mode switch which causes all data memory references to be
performed in a little-endian fashion. This is done by swapping
address bit lines instead of using data multiplexers. As a result, the
byte swapping is not quite what may be expected and varies
depending on the size of the data. It is important to remember that
swapping the address bits only reorders the bytes and not the
individual bits within the bytes. The bit order remains constant.

The diagram shows the different storage formats for big
and little endian double words, words, half words and bytes. The
most significant byte in each pair is shaded to highlight its posi-
tion. Note that there is no difference when storing individual
bytes.

An alternative solution for processors that do not imple-
ment the mode swapping is to use the load and store instructions
that byte reverse the data as it moves from the processor to the
memory and vice versa.
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A B C D

ABD C

Big endian $ABCD

Little endian $ABCD

A B — —

——B A

Big endian $AB

Little endian $AB

01 02 03 04

ABD C

A B C D

010204 03

Big endian $ABCD01020304

Little endian $ABCD01020304

A B C D

Big endian $A, $B, $C, $D

Little endian $A, $B, $C, $D
A B C D

00 07

00 07

00 03

00 03

00 03

00 03

00 03

00 03

Big versus little endian memory organisation

Dual port and shared memory
Dual port and shared memory are two types of memory

that offer similar facilities, i.e. the ability of two processors to
access the same memory and thus share data and/or programs. It
is often used as a communication mechanism between processors.
The difference between them concerns how they cope with two
simultaneous accesses.

With dual port memory, such bus contention is resolved
within the additional circuitry that is contained with the memory
chip or interface circuitry. This usually consists of buffers that are
used as temporary storage for one processor while the other
accesses the memory. Both the memory accesses are completed as
if there were only a single access.

 The buffered information is transferred when the memory
is available. If both accesses are writes to the same memory
address, the first one to access the memory is normally given
priority but this should not be assumed. Many systems consider
this a programming error and use semaphores in conjunction with
special test and set instructions to prevent this happening.
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Shared memory resolves the bus contention by holding one
of the processors off by inserting wait states into its memory
access. This results in lost performance because the held off
processor cannot do anything and has to wait for the other to
complete. As a result, both processors lose performance because
they are effectively sharing the same bus.

Shared memory is easier to design and is often used when
large memory blocks are needed. Dual port memory is normally
implemented with special hardware and is limited to relatively
small memory blocks of a few kbytes.

Bank switching
Bank switching simply involves having several banks of

memory with the same address locations. At any one time, only
one bank of memory is enabled and accessible by the microproc-
essor. Bank selection is made by driving the required bank select
line. These lines come from either an external parallel port or latch
whose register(s) appear as a bank switching control register
within the processors’s normal address map.

In the example, the binary value 1000 has been loaded into
the bank selection register. This asserts the select line for bank ‘a’
which is subsequently accessed by the processor. Special VLSI
(very large scale integration) parts were even developed which
provided large number of banks and additional control facilities:
the Motorola MC6883 SAM is an example used in the Dragon
MC6809-based home computer from the early 1980s.

1000

Bank select
register

Bank select
lines

Processor
memory

map

Memory banks
FFFF

0000

A000

D000

Selected
bank

a
b

c
d

Bank switching
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Memory overlays

Program overlays are similar to bank switching except that
some form of mass storage is used to contain the different over-
lays. If a particular subroutine is not available, the software stores
part of its memory as a file on disk and loads a new program
section from disk into its place. Several hundred kilobytes of
program, divided into smaller sections, can be made to overlay a
single block of memory.

FFFF

0000

C000

A000

Application program
 resident section:

application program
overlay loaded from 

disk

DISK
 STORAGE

OVERLAY
FILES

Program overlays, making a large program fit into
the 64 kilobyte memory

This whole approach requires careful design so that the
system integrity is ensured. Data passing between the overlays
can be a particular problem which requires careful design. Typi-
cally, data is passed and stored either on the processor stack or in
reserved memory which is locked in and does not play any part in
the overlay process, i.e. it is resident all the time.

Shadowing
This is a technique that is probably best known from its

implementation with the BIOS ROMs used in a PC. The idea
behind shadowing is to copy the contents of the slow ROM into
faster RAM and execute the code from the RAM. As a result the
time taken to execute the code is greatly reduced. The shadowing
refers to the fact that the RAM contains a copy of the original ROM
contents.

This mechanism can be implemented either with hardware
assist or entirely in software. The basic principles behind the
shadowing mechanism are as follows:
• Typically the ROM contains the start up code as well as the

system software. When the CPU is reset it will start execut-
ing this start-up code. As part of the initialisation, the
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contents of the ROM is copied into the RAM area where it
can be executed. This part is common to both implementa-
tions.

• With a hardware assisted implementation, the address
decode logic is used to switch the address decode to select
the RAM instead of the ROM. As a result, any access to the
ROM will be automatically switched to the RAM and will
execute faster and without any change in the software as the
addressing has not changed. This also provides an option to
execute the code out of ROM or RAM and this can be used
to isolate problems when executing out of RAM. If there are
software-based timing routines in the ROM code, then this
will execute faster when they are executed out of RAM and
can cause problems. Virtually all IBM PCs implement their
shadowing for the BIOS ROMs using this technique. It is
also possible to use a MMU to perform the address transla-
tion if needed.

• In the pure software-based system, the software that is
copied is now in a different memory location and providing
the software was compiled and linked to execute in this
location, there is no need to use any memory address
translation. The code can simply be executed. In this case,
the ROM is simply used to contain the code and in practice,
running the software from this location is not intended. It is
possible with position independent code and by changing
the entry points into the code to execute it from the ROM but
this requires some careful software design and manage-
ment to ensure that this can be done. These techniques are
covered in Chapter 7.

Example interfaces

MC68000 asynchronous bus
The MC68000 bus is fundamentally different to the buses

used on the MC6800 and MC6809 processors. Their buses were
synchronous in nature and assumed that both memory and pe-
ripherals could respond within a cycle of the bus. The biggest
drawback with this arrangement concerned system upgrading
and compatibility. If one component was uprated, the rest of the
system needed uprating as well. It was for this reason that all
M6800 parts had a system rating built into their part number. If a
design specified an MC6809B, then it needed 2 MHz parts and
subsequently, could not use an ‘A’ version which ran at 1 MHz. If
a design based around the 1 MHz processor and peripherals was
upgraded to 2 MHz, all the parts would need replacing. If a
peripheral was not available at the higher speed, the system could
not be upgraded. With the increasing processor and memory
speeds, this restriction was unacceptable.
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The MC68000 bus is truly asynchronous: it reads and writes
data in response to inputs from memory or peripherals which may
appear at any stage within the bus cycle. Provided certain signals
meet certain set-up times and minimum pulse widths, the proces-
sor can talk to anything. As the bus is truly asynchronous it will
wait indefinitely if no reply is received. This can cause similar
symptoms to a hung processor; however, most system designs use
a watchdog timer and the processor bus error signal to resolve this
problem.

A typical bus cycle starts with the address, function codes
and the read/write line appearing on the bus. Officially, this data
is not valid until the address strobe signal AS* appears but many
designs start decoding prior to its appearance and use the AS* to
validate the output. The upper and lower data strobes, together
with the address strobe signal (both shown as DS*), are asserted to
indicate which bytes are being accessed on the bus. If the upper
strobe is asserted, the upper byte is selected. If the lower strobe is
asserted, the lower byte is chosen. If both are asserted together, a
word is being accessed.

Once complete, the processor waits until a response ap-
pears from the memory or peripheral being accessed. If the rest of
the system can respond without wait states (i.e. the decoding and
access times will be ready on time) a DTACK* (Data Transfer
ACKnowledge) signal is returned. This occurs slightly before
clock edge S4. The data is driven onto the bus, latched and the
address and data strobes removed to acknowledge the receipt of
the DTACK* signal by the processor. The system responds by
removing DTACK* and the cycle is complete. If the DTACK*
signal is delayed for any reason, the processor will simply insert
wait states into the cycle. This allows extra time for slow memory
or peripherals to prepare data.

A0-A31
AS
DS

FC0-FC2
R/W

D0-D15
DTACK

S0 S1 S2 S3 S4 S5 S6 S7

An MC68000 asynchronous bus cycle

The advantages that this offers are many fold. First, the
processor can use a mixture of peripherals with different access
speeds without any particular concern. A simple logic circuit can



Memory systems 127

generate DTACK* signals with the appropriate delays as shown.
If any part of the system is upgraded, it is a simple matter to adjust
the DTACK* generation accordingly. Many M68000 boards pro-
vide jumper fields for this purpose and a single board and design
can support processors running at 8, 10, 12 or 16 MHz. Secondly,
this type of interface is very easy to interface to other buses and
peripherals. Additional time can be provided to allow signal
translation and conversion.

M6800 synchronous bus
Support for the M6800 synchronous bus initially offered

early M68000 system designers access to the M6800 peripherals
and allowed them to build designs as soon as the processor was
available. With today’s range of peripherals with specific M68000
interfaces, this interface is less used. However, the M6800 parts are
now extremely inexpensive and are often used in cost-sensitive
applications.

The additional signals involved are the E clock, valid memory
address (VMA*) and valid peripheral address (VPA*). The cycle
starts in a similar way to the M68000 asynchronous interface
except that DTACK* is not returned. The address decoding gener-
ates a peripheral chip select which asserts VPA*. This tells the
M68000 that a synchronous cycle is being performed.

The address decoding monitors the E clock signal, which is
derived from the main system clock, but is divided down by 10
with a 6:4 mark/space ratio. It is not referenced from any other
signal and is free running. At the appropriate time (i.e. when E
goes low) VMA* is asserted. The peripheral waits for E to go high
and transfers the data. When E goes low, the processor negates
VMA* and the address and data strobes to end the cycle.

For systems running at 10 MHz or lower, standard 1 MHz
M6800 parts can be used. For higher speeds, 1.5 or 2 MHz versions
must be employed. However, higher speed parts running at a
lower clock frequency will not perform the peripheral functions at
full performance.

MAIN RAMA23/A22

AS

DTACK

2-to-4
LINE

DECODER

MC68000

CACHE

EPROM

QA

QB

QC

QD

ENABLE

CMOS RAM

CLK

 Example DTACK* generation
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The MC68040 burst interface
Earlier in this chapter, some of the problems faced by a

designer using SRAM with a burst interface were discussed. The
MC68040 burst interface shows how these conflicts arise and their
solution. It operates on a 2-1-1-1 basis, where two clock periods are
allocated for the first access, and the remaining accesses are
performed each in a single cycle. The first function the interface
must perform is to generate the toggled A2 and A3 addresses from
the first address put out by the MC68040. This involves creating a
modulo 4 counter where the addresses will increment and wrap
around. The MC68040 uses the burst access to fetch four long
words for the internal cache line. It will start anywhere in the line
so that the first data that is accessed can be passed to the processor
while the rest of the data is fetched in parallel. This improves
performance by fetching the immediate data first, but it does
complicate the address generation logic — a standard 2 bit counter
is not applicable. A typical circuit is shown.

BCLK

TS*

R/W*

D0-31
(write)
TA*

DA2
TS*
A2

BCLK* S

R Q

DA3
TS*
A3

BCLK*

DA2

S

R Q

Modulo 4 counter (based on a design by John Hansen, Motorola Austin)
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Given the generated addresses, the hardest task for the
interface is to create the write pulse needed to write data to the
FSRAMs. The first hurdle is to ensure that the write pulse com-
mences after the addresses have been generated. The easiest way
of doing this is to use the two phases of the BCLK* to divide the
timing into two halves. During the first part, the address is latched
by the rising edge of BCLK*.

DR*/W
BCLK*

DA2
DA3 A0

A1

W*

F298

AS1000A
MCM6209

Latching the address and gating W*

BCLK

BCLK*

Address

Write pulse

Data 

a

b

c d

e f

g

h

i
j

Timing Description 
a Clock skew between BCLK and its inverted signal

BCLK*.
b Delay between BCLK* and valid address — deter-

mined by latch delay.
c Gate delay in generating Write pulse from rising

BCLK* edge.
d Gate delay in terminating Write pulse from falling

BCLK* edge.
e Time from rising edge of BCLK to valid data from

MC68040.
f Data set-up time for write referenced from = i+j-

e+a.
g Write pulse width = j-c+d.
h Valid address, i.e. memory access time.
i,j Cycle times for BCLK and BCLK*.

Write pulse timings
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Latching DA2 and DA3 holds the address valid while
allowing the modulo 4 counter to propagate the next value through.
The falling edge of BCLK* is then used to gate the read/write
signal to create a write pulse. The write pulse is removed before
the next address is latched. This guarantees that the write pulse
will be generated after the address has become valid. This circuit
neatly solves the competing criteria of bringing the write pulse
high before the address can be changed and the need to change the
address as early as possible

The table shows the timing and the values for the write
pulse, tWLWH, write data set-up time, tDVWH and the overall
access time tAVAV. For both 25 and 33 MHz speeds, the access time
is always greater than 20 ns and therefore 20 ns FSRAM would be
sufficient. The difficulty comes in meeting the write pulse and data
set-up times. At 25 MHz, the maximum write pulse is 17 ns and the
data set-up is 9 ns. Many 20 ns FSRAMs specify the minimum
write pulse width with the same value as the overall access time.
As a result 20 ns access time parts would not meet this specifica-
tion. The data set-up is also longer and it is likely that 15 ns or faster
parts would have to be used. At 33 MHz, the problem is worse.
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4 Basic peripherals
This chapter describes the basic peripherals that most

microcontrollers provide. It covers parallel ports which are the
simplest I/O devices, timer counters for generating and measur-
ing time- and count-based events, serial interfaces and DMA
controllers.

Parallel ports
Parallel ports provide the ability to input or output binary

data with a single bit allocated to each pin within the port. They are
called parallel ports because the initial chips that provided this
support grouped several pins together to create a controllable data
port similar to that used for data and address buses. It transfers
multiple bits of information simultaneously, hence the name
parallel port. Although the name implies that the pins are grouped
together, the individual bits and pins within the port can usually
be used independently of each other.

These ports are used to provide parallel interfaces such as
the Centronics printer interface, output signals to LEDs and alpha-
numeric displays and so on. As inputs, they can be used with
switches and keyboards to support control panels.

I O I O I O I O

1 0 0 1 1 1 1 1

Data direction

Pin data

Buffer disabled

Buffer enabled

A simple parallel I/O port

The basic operation is shown in the diagram which depicts
an 8 pin port. The port is controlled by two registers: a data
direction register which defines whether each pin is an output or
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an input and a data register which is used to set an output value
by writing to it and to obtain an input value by reading from it. The
actual implementation typically uses a couple of buffers which are
enabled depending on the setting of the corresponding bit in the
data direction register.

This simple model is the basis of many early parallel inter-
face chips such as the Intel 8255 and the Motorola 6821 devices.
The model has progressed with the incorporation of a third
register or an individual control bit that provides a third option of
making the pin become high impedance and thus neither an input
or output. This can be implemented by switching off both buffers
and putting their connections to the pin in a high impedance state.
Output ports that can do this are often referred to as tri-state
because they can either be logic high, logic low or high impedance.
In practice, this is implemented on-chip as a single buffer with
several control signals from the appropriate bits within the control
registers. This ability has led to the development of general-
purpose ports which can have additional functionality to that of a
simple binary input/output pin.

Multi-function I/O ports
With many parallel I/O devices that are available today,

either as part of the on-chip peripheral set or as an external device,
the pins are described as general-purpose and can be shared with
other peripherals. For example, a pin may be used as part of a serial
port as a control signal.

I O I O I O I O

1 0 0 1 1 1 1 1

Data direction

Pin data

Buffer disabled

Buffer enabled

0 0 1 0 1 0 1 0 Port function

1 0 1 0 1 0 1 0 Port enabled

From other 
function

A general-purpose parallel I/O port
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 It may be used as a chip select for the memory design or
simply as an I/O pin. The function that the pin performs is set up
internally through the use of a function register which internally
configures how the external pin is connected internally. If this is
not set up correctly, then despite the correct programming of the
other registers, the pin will not function as expected.

Note: This shared use does pose a problem for designers in
that many manufacturer data sheets will specify the total number
of I/O pins that are available. In practice, this is often reduced
because pins need to be assigned as chip selects and to other
essential functions. As a result, the number that is available for use
as I/O pins is greatly reduced.

Pull-up resistors
It is important to check if a parallel I/O port or pin expects

an external pull-up resistor. Some devices incorporate it internally
and therefore do not need it. If it is needed and not supplied, it can
cause incorrect data on reading the port and prevent the port from
turning off an external device.

Timer/counters
Digital timer/counters are used throughout embedded

designs to provide a series of time or count related events within
the system with the minimum of processor and software over-
head. Most embedded systems have a time component within
them such as timing references for control sequences, to provide
system ticks for operating systems and even the generation of
waveforms for serial port baud rate generation and audible tones.

They are available in several different types but are essen-
tially based around a simple structure as shown.

0000000 0000000

Interrupts Input signals

Output signals

Clock input

Pre-scalar or
clock divider

Divided clock
Counter

I/O 
control

Generic timer/counter

The central timing is derived from a clock input. This clock
may be internal to the timer/counter or be external and thus
connected via a separate pin. The clock may be divided using a
simple divider which can provide limited division normally based
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on a power of two or through a pre-scalar which effectively scales
down or divides the clock by the value that is written into the pre-
scalar register. The divided clock is then passed to a counter which
is normally configured in a count-down operation, i.e. it is loaded
with a preset value which is clocked down towards zero. When a
zero count is reached, this causes an event to occur such as an
interrupt of an external line changing state. The final block is
loosely described as an I/O control block but can be more sophis-
ticated than that. It generates interrupts and can control the
counter based on external signals which can gate the count-down
and provide additional control. This expands the functionality
that the timer can provide as will be explained later.

Types
Timer/counters are normally defined in terms of the coun-

ter size that they can provide. They typically come in 8, 16 and 24
bit variants. The bit size determines two fundamental properties:

• The pre-scalar value and hence the frequency of the slowest
clock that can be generated from a given clock input.

• The counter size determines the maximum value of the
counter-derived period and when used with an external
clock, the maximum resolution or measurement of a time-
based event.

These two properties often determine the suitability of a
device for an application.

8253 timer modes
A good example of a simple timer is the Intel 8253 which is

used in the IBM PC. The device has three timer/counters which
provide a periodic ‘tick’ for the system clock, a regular interrupt
every 15 µs to perform a dynamic memory refresh cycle and,
finally, a source of square waveforms for use as audio tones with
the built-in speaker. Each timer/counter supports six modes
which cover most of the simple applications for timer/counters.

Interrupt on terminal count
This is known as mode 0 for the 8253 and is probably the

simplest of its operations to understand. An initial value is loaded
into the counter register and this then immediately starts to count
down at the frequency determined by the clock input. When the
counter reaches zero, an interrupt is generated.

Programmable one-shot
With mode 1, it is possible to create a single pulse with a

programmable duration. The pulse length is first loaded into the
counter. Nothing further happens until the external gate signal is
pulled high. This rising edge starts the counter to count down
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towards zero and the counter output signal goes high to start the
external pulse. When the counter reaches zero, the counter output
goes low thus ending the pulse.

3426524

3426523

0000001

0000000

Load initial value 
(3426524)

Interrupt generated 
when counter 
reaches zero

Count 
down  

by 1 on 
every 
clock 
cycle

Interrupt on terminal count operation

3426524

3426523

0000001

0000000

Load initial value 
(3426524)

Count 
down  

by 1 on 
every 
clock 
cycle

Gate signal in to 
start count

Output goes high

Output goes low

Length = counter value x 
clock period

Clock

Gate

Output

Programmable one-shot timer counter mode

The pulse duration is determined by the initial value loaded
into the counter times the clock period. While this is a common
timer/counter mode, many devices such as the 8253 incorporate
a reset. If the gate signal is pulled low and then high again to create
a new rising edge while the counter is counting down, the current
count value is ignored and replaced by the initial value and the
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count continued. This means that the output pulse length will be
extended by the time between the two gate rising edges.

This mode can be used to provide pulse width modulation
for power control where the gate is connected to a zero crossing or
similar detector or clock source to create a periodic signal.

Rate generator
This is a simple divide by N mode where N is defined by the

initial value loaded into the counter. The output from the counter
consists of a single low with the time period of a single clock
followed by a high period controlled by the counter which starts
to count down. When the counter reaches zero, the output is
pulled low, the counter reloaded with the initial value and the
process repeated. This is mode 3 with the 8253.

0000004

0000003

0000001

0000000

Load initial value 
(0000004)

Count 
down  

by 1 on 
every 
clock 
cycle

Output goes low

Clock

Output

0000002

Output goes high

Rate generation (divide by N)

Square wave rate generator
Mode 4 is similar to mode 3 except that the waveform is a

square wave with a 50:50 mark/space ratio. This is achieved by
extending the low period and by reducing the high period to half
the clock cycles specified by the initial counter value.

Software triggered strobe
When mode 4 is enabled, the counter will start to count as

soon as it is loaded with its initial value. When it reaches zero, the
output is pulsed low for a single clock period and then goes high
again. If the counter is reloaded by software before it reaches zero,
the output does not go low. This can be used as a software-based
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watchdog timer where the output is connected to a non-maskable
interrupt line or a system reset.

0000004

0000003

0000001

0000000

Load initial value 
(0000004)

Count 
down  
by 1on 
every 
clock 
cycle

Output goes low

Clock

Output

0000002
Output goes high

Square wave generation

Hardware triggered strobe
Mode 5 is similar to mode 4 except that the retriggering is

done by the external gate pin acting as a trigger signal.

Generating interrupts
The 8253 has no specific interrupt pins and therefore the

timer OUT pin is often used to generate an external interrupt
signal. With the IBM PC, this is done by connecting the OUT signal
from timer/counter 0 to the IRQ 0 signal and setting the timer/
counter to run in mode 3 to generate a square wave. The input
clock is 1.19318 MHz and by using a full 16 bit count value, is
divided by 65536 to provide a 18.3 Hz timer tick. This is counted
by the software to provide a time of day reference and to provide
a system tick.

MC68230 modes
The Motorola MC68230 is a good example of a more pow-

erful timer architecture that can provide a far higher resolution
than the Intel 8253. The timer is based around a 24 bit architecture
which is split into three 8 bit components. The reason for this is that
the device uses an 8 bit bus to communicate with the host proces-
sor such as a MC68000 CPU. This means that the counter cannot be
loaded directly from the processor in a single bus cycle. As a result,
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three preload registers have been added to the basic architecture
previously described. These are preloaded using three separate
accesses prior to writing to the Z control bit in the control register.
This transfers the contents of the preload register to the counter as
a single operation.

5 bit pre-scalar

34 26 52

34 26 52

High Mid Low

24 bit counter

24 bit 
preload
register

24 bit 
counter

Zero comparison and control

Clock

Tin Tout Tiack

System clock

Preload controlExternal 
clock

The MC68230 timer/counter architecture

Instead of writing to the counter to either reset it or initialise
it, the host processor uses a combination of preload registers and
the Z bit to control the timer. The timer can be made to preload
when it reaches zero or, as an option, simply carry on counting.
This gives a bit more flexibility in that timing can be performed
after the zero count as well as before it.

This architecture also has a 5 bit pre-scalar which is used to
divide the incoming clock which can be sourced from the system
clock or externally via the Tin signal. The pre-scalar can be loaded
with any 5 bit value to divide the clock before it drives the counter.

Timer processors
An alternative to using a timer/counter is the development

of timer computers where a processor is used exclusively to
manage and implement complex timing functions over multiple
timer channels. The MC68332 is a good example of such a proces-
sor. It has a CPU32 processor (MC68020 based) running at 16 MHz
and a timer processor unit instead of a communications processor.
This has 16 channels which are controlled by a RISC-like processor
to perform virtually any timing function. The timing resolution is
down to 250 nanoseconds with an external clock source or 500
nanoseconds with an internal one. The timer processor can per-
form the common timer algorithms on any of the 16 channels
without placing any overhead on the CPU32.

A queued serial channel and 2 kbits of power-down static
RAM are also on-chip and for many applications all that is re-
quired to complete a working system is an external program
EPROM and a clock. The timer processor has several high level
functions which can easily be accessed by the main processor by
programming a parameter block. For example, the missing tooth
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calculation for generating ignition timing can be easily performed
through a combination of the timer processor and the CPU32 core.
A set of parameters is calculated by the CPU32 and loaded into a
parameter block which commands the timer processor to perform
the algorithm. Again, no interrupt routines or periodic peripheral
bit manipulation is needed by the CPU32.

Queued

SPI-SCI

standby

RAM

Time
processor

unit

TPU

Chip

selects
and

timing

External
bus

interface

System
protect

Clock

Test(MC68020 subset)

2 kbytes

CPU32
Core processor

Intermodule bus

The MC68332 block diagram

REF TIME CHANNEL_CONTROL

MAX_MISSING NUM_OF_TEETH

ROLLOVER_COUNT

PERIOD_LOW_WORD

RATIO TCR2_MAX_VALUE

BANK_SIGNAL/MISSING_COUNT

PERIOD_HIGH_WORD

$00

$01

$02

$03

$04

$05

TCR2_VALUEERROR

updated by CPU32 host

The parameter block for a period measurement with missing transition detection

Real-time clocks
There is a special category of timer known as a real-time

clock whose function is to provide an independent time keeper
that can provide time measurements in terms of the current time
and date as opposed to a counter value. The most popular device
is probably the MC146818 and its derivatives and clones that were
used in the first IBM PC. These devices are normally driven off a
32 kHz watch crystal and are battery backed-up to maintain the
data and time. The battery back-up was done externally with a
battery or large capacitor but has also been incorporated into the
chip in the case of the versions supplied by Dallas Semiconductor.
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These devices can also provide a system tick signal for use by the
operating system.

Simulating a real-time clock in software
These can be simulated in software by programming a

timer to generate a periodic event and simply using this as a
reference and counting the ticks. The clock functions are then
created as part of the software. When enough ticks have been
received it updates the seconds counter and so on. There are two
problems with this: the first concerns the need to reset the clock
when the system is turned off and the second concerns the accu-
racy which can be quite bad. This approach does save on a special
clock chip and is used on VCRs, ovens and many other appliances.
This also explains why they need resetting when there has been a
power cut!

Serial ports
Serial ports are a pin efficient method of communicating

between other devices within an embedded system. With
microcontrollers which do not have an external extension bus,
they can provide the only method of adding additional function-
ality.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
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Transmitter Receiver

n+1

n

n+2

n+3

n+4

n+5

n+6

n+7

n+8

Interrupt:
transmitter empty

Interrupt:
receiver full

Basic serial port operation

The simplest serial ports are essentially a pair of shift
registers that are connected together with one input (receiver)
connected to the output of the other to create a transmitter. They
are clocked together by a common clock and thus data is transmit-
ted from one register to the other. The time taken is dependent on
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the clock frequency and the number of bits that are transferred.
The shift registers are normally 8 bits wide. When the transmitter
is emptied, it can be made to generate a local interrupt which can
indicate to the processor that the byte has been transferred and/
or that the next byte should be loaded into the register. The
receiver can also generate an interrupt when the complete byte is
received to indicate that it is ready for reading.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Rx register

Rx data

Tx data

Clock

FIFO buffer

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Rx register

Rx data

Tx data

Clock

Processor

Peripheral

FIFO 
buffer

FIFO buffer

0 1 2 3 4 5 6 7Tx register

FIFO buffer

0 1 2 3 4 5 6 7Tx register

Serial interface with FIFO buffering

 Most serial ports use a FIFO as a buffer so that data is not
lost. This can happen if data is transmitted before the preceding
byte has been read. With the FIFO buffer, the received byte is
transferred to it when the byte is received. This frees up the shift
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register to receive more bits without losing the data. The FIFO
buffer is read to receive the data hence the acronym’s derivation
— first in, first out. The reverse can be done for the transmitter so
that data can be sent to the transmitter before the previous value
has been sent.

The size of the FIFO buffer is important in reducing proces-
sor overhead and increasing the serial port’s throughput as will be
explained in more detail later on. The diagram shows a generic
implementation of a serial interface between a processor and
peripheral. It uses a single clock signal which is used to clock the
shift registers in each transmitter and receiver. The shift registers
each have a small FIFO for buffering. The clock signal is shown as
being bidirectional: in practice it can be supplied by one of the
devices or by the device that is transmitting. Obviously care has to
be taken to prevent the clock from being generated by both sides
and this mistake is either prevented by software protocol or
through the specification of the interface.

Serial peripheral interface
This bus is often referred to as the SPI and is frequently used

on Motorola processors such as the MC68HC05 and MC68HC11
microcontrollers to provide a simple serial interface. It uses the
basic interface as described in the previous section with a shift
register in the master and slave devices driven by a common clock.
It allows full-duplex synchronous communication between the
MCU and other slave devices such as peripherals and other
processors.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

SPDR — master MCU SPDR — slave MCU

SS

MOSI

MOSO

SCK

SPI internal architecture

Data is written to the SPDR register in the master device and
clocked out into the slave device SPDR using the common clock
signal SCK. When 8 bits have been transferred, an interrupt is
locally generated so that the data can be read before the next byte
is clocked through. The SS or slave select signal is used to select
which slave is to receive the data. In the first example, shown with
only one slave, this is permanently asserted by grounding the
signal. With multiple slaves, spare parallel I/O pins are used to
select the slave prior to data transmission. The diagram below
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shows such a configuration. If pin 1 on the master MCU is driven
low, slave 1 is selected and so on. The unselected slaves tri-state the
SPI connections and do not receive the clocked data and take no
part in the transfer.

MOSI

MOSO

SCK

Master 
MCU

Slave 1 Slave 2 Slave 3

1       2      3

ss ss ss

Supporting multiple slave devices

It should not be assumed that an implementation buffers
data. As soon as the master writes the data into the SPDR it is
transmitted as there is no buffering. As soon as the byte has been
clocked out, an interrupt is generated indicating that the byte has
been transferred. In addition, the SPIF flag in the status register
(SPSR) is set. This flag must be cleared by the ISR before transmit-
ting the next byte.

The slave device does have some buffering and the data is
transferred to the SPDR when a complete byte is transferred.
Again, an interrupt is generated when a byte is received. It is
essential that the interrupt that is generated by the full shift
register is serviced quickly to transfer the data before the next byte
is transmitted and transferred to the SPDR. This means that there
is an eight clock time period for the slave to receive the interrupt
and transfer the data. This effectively determines the maximum
data rate.

I2C bus
The inter-IC, or I2C bus as it is more readily known, was

developed by Philips originally for use within television sets in the
mid-1980s. It is probably the most known simple serial interface
currently used. It combines both hardware and software protocols
to provide a bus interface that can talk to many peripheral devices
and can even support multiple bus masters. The serial bus itself
only uses two pins for its implementation.

The bus consists of two lines called SDA and SCL. Both bus
masters and slave peripheral devices simply attach to these two
lines as shown in the diagram. For small numbers of devices and
where the distance between them is small, this connection can be
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direct. For larger numbers of devices and/or where the track
length is large, Philips can provide a special buffer chip (P82B715)
to increase the current drive. The number of devices is effectively
determined by the line length, clock frequency and load capaci-
tance which must not exceed 400 pF although derating this to 200
pF is recommended. With low frequencies, connections of several
metres can be achieved without resorting to special drivers or
buffers.

+ 5 volts

SCL

SDA

BUS 
master
(CPU)

Slave
peripheral 1

Slave
peripheral 2

SCL

SDA

SCL

SDA

I 2C electrical connections

The drivers for the signals are bidirectional and require
pull-up resistors. When driven they connect the line to ground to
create a low state. When the drive is removed, the output will be
pulled up to a high voltage to create a high signal. Without the
pull-up resistor, the line would float and can cause indeterminate
values and thus cause errors.

The SCL pin provides the reference clock for the transfer of
data but it is not a free running clock as used by many other serial
ports. Instead it is clocked by a combination of the master and
slave device and thus the line provides not only the clock but also
a hardware handshake line.

The SDA pin ensures the serial data is clocked out using the
SCL line status. Data is assumed to be stable on the SDA line if SCL
is high and therefore any changes occur when the SCL is low. The
sequence and logic changes define the three messages used.

Message 1st event 2nd event
START SDA H\L SCL H\L
STOP SCL L\H SDA L\H
ACK SDA H\L SCL H\L

The table shows the hardware signalling that is used for the
three signals, START, STOP and ACKNOWLEDGE. The START
and ACKNOWLEDGE signals are similar but there is a slight
difference in that the START signal is performed entirely by the
master whereas the ACKNOWLEDGE signal is a handshake
between the slave and master.



Basic peripherals 145

Data is transferred in packets with a packet containing one
or more bytes. Within each byte, the most significant bit is trans-
mitted first. A packet, or telegram as it is sometimes referred to, is
defined as the data transmitted between START and STOP signals
sent from the master. Within the packet transmission, the slave
will acknowledge each byte by using the ACKNOWLEDGE sig-
nal. The basic protocol is shown in the diagram.

ACK
1 1 0 1 0 0 1 0

START

Wait 
for 

ACK

SCL

SDA

Write byte transfer with ACKNOWLEDGE

The ‘wait for ACK’ stage looks like another data bit except
that it is located as the ninth bit. With all data being transmitted as
bytes, this extra one bit is interpreted by the peripheral as an
indication that the slave should acknowledge the byte transfer.
This is done by the slave pulling the SDA line low after the master
has released the data and clock line. The ACK signal is physically
the same as the START signal and is ignored by the other periph-
erals because the data packet has not been terminated by the STOP
command. When the ACKNOWLEDGE command is issued, it
indicates that the transfer has been completed. The next byte of
data can start transmission by pulling the SCL signal down low.

Read and write access
While the previous paragraphs described the general

method of transferring data, there are some specific differences for
read and write accesses. The main differences are concerned with
who controls which line during the handshake.
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Write byte transfer with ACKNOWLEDGE
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Read byte transfer with ACKNOWLEDGE
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During a write access the sequence is as follows:
• After the START and 8 bits have been transmitted, the

master releases the data line followed by the clock line. At
this point it is waiting for an acknowledgement.

• The addressed slave will pull the data line down to indicate
the ACKNOWLEDGE signal.

• The master will drive the clock signal low and in return, the
slave will release the data line, ready for the first bit of the
next byte to be transferred or to send a STOP signal.
During a read access the sequence is as follows:

• After the 8 bits have been transmitted by the slave, the slave
releases the data line.

• The master will now drive the data line low.
• The master will then drive the clock line high and low to

create a clock pulse.
• The master will then release the data line ready for the first

bit of the next byte or a STOP signal.
It is also possible to terminate a transfer using a STOP

instead of waiting for an ACKNOWLEDGE. This is sometimes
needed by some peripherals which do not issue an ACKNOWL-
EDGE on the last transfer. The STOP signal can even be used in
mid transmission of the byte if necessary.

1 1 0 1 0 0 1 0
START STOP

SCL

SDA

A Write byte transfer with STOP

Addressing peripherals
As mentioned before, the bus will support multiple slave

devices. This immediately raises the question of how the protocol
selects a peripheral. All the devices are connected onto the two
signals and therefore can see all the transactions that occur. The
slave selection is performed by using the first byte within the data
packet as an address byte. The protocol works as shown in the
diagram. The master puts out the START signal and this tells all
the connected slave devices to start accepting the data. The ad-
dress byte is sent out and each slave device compares the address
with its own value. If there is a match, then it will send the
ACKNOWLEDGE signal. If there is no match, then there has been
a programming error. In this case, there will be no ACKNOWL-
EDGE signal returned and effectively the SDA signal will remain
high.
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START

Address

ACK

Data byte 1 Data byte n

STOPSCL/SDA 
signals

Data bytes

A complete data packet including addressing and signalling

The address value is used to select the device and to indicate
the type of operation that the master requests: read if the eighth bit
is set to one or write if set to zero. This means that the address byte
allows 128 devices with read/write capability to be connected.
The address value for a device is either pre-programmed, i.e.
assigned to that device number, or can be programmed through
the use of external pins. Care must be made to ensure that no two
devices have the same address.

In practice, the number of available addresses is less be-
cause some are reserved and others are used as special commands.
To provide more addressing, an extended address has been devel-
oped that uses two bytes: the first byte uses a special code (five
ones) to distinguish it from a single byte address. In this way both
single byte and double byte address slaves can be used on the same
bus.

START

Address 1

ACK

Address 2 Data byte 1

SCL/SDA 
signals

Data bytes

ACK

1 1 1 1 1 A9 A8 RW A7 A6 A5 A4 A3 A2 A1 A0

Sending a 2 byte address

Sending an address index
So far the transfers that have been described have assumed

that the peripheral only has one register or memory location. This
is rarely the case and thus several addressing schemes have been
developed to address individual locations within the peripheral
itself.

For peripherals with a small number of locations, a simple
technique is simply to incorporate an auto-incrementing counter
within the peripheral so that each access selects the next register.
As the diagram shows, the contents of register 4 can be accessed by
performing four successive transfers after the initial address has
been sent.
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Address Register 1
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Combined format

This is fine for small numbers of registers but with memory
devices such as EEPROM this is not an efficient method of opera-
tion. An alternative method uses an index value which is written
to the chip, prior to accessing the data. This is known as the
combined format and uses two data transfers. The first transfer is
a write with the index value that is to be used to select the location
for the next access. To access memory byte 237, the data byte after
the address would contain 237. The next transfer would then send
the data in the case of a write or request the contents in the case of
a read. Some devices also support auto-incrementing and thus the
second transfer can access multiple sequential locations starting at
the previously transmitted index value.

Timing
One of the more confusing points about the bus is the timing

or lack of it. The clock is not very specific about its timings and does
not need a specified frequency or even mark to space ratios. It can
even be stopped and restarted at a later point in time if needed. The
START, STOP and ACKNOWLEDGE signals have a minimum
delay time between the clock and data edges and pulse widths but
apart from this, everything is very free and easy.

This is great in one respect but can cause problems in an
other. Typically the problem is concerned with waiting for the
ACKNOWLEDGE signal before proceeding. If this signal is not
returned then the bus will be locked up until the master terminates
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the transfers with a STOP signal. It is important therefore not to
miss the transition. Unfortunately, the time taken for a slave to
respond is dependent on the peripheral and with devices like
EEPROM, especially during a write cycle, this time can be ex-
tremely long.

As a result, the master should use a timer/counter to
determine when sufficient time has been given to detect the
ACKNOWLEDGE before issuing a STOP.

This can be done in several ways: polling can be used with
a counter to determine the timeout value. The polling loop is
completed when either the ACKNOWLEDGE is detected to give
a success or if the polling count is exceeded. An alternative method
is to use a timer to tell the master when to check for the acknowl-
edgement. There are refinements that can be added where the
timeout values are changed depending on the peripheral that is
being accessed. A very sophisticated system can use a combina-
tion of timer and polling to check for the signal n times with an
interval determined by the timer. Whichever method is chosen, it
is important that at least one is implemented to ensure that the bus
is not locked up.

Multi-master support
The bus supports the use of multiple masters but does not

have any in-built mechanism for controlling access. Instead, it
uses a technique called collision detect to determine if two masters
start to use the bus at the same time. A master waits until the bus
is clear, i.e. there is no current transfer, and then issues a START
signal. If another master has done the same then the signals that
appear on the line will be corrupted. If a master wants a line to be
high and the other wants to drive it low, then the line will go low.
With the bidirectional ports that are used, each master can monitor
the line and confirm that it is in the expected state. If it is not, then
a collision has occurred and the master should discontinue trans-
mission and allow the other master to continue.

It is important that timeouts for acknowledgement are
incorporated to ensure that the bus cannot be locked up. In
addition, care must be taken with combined format accesses to
prevent a second master from resetting the index on the periph-
eral. If master A sets the index into an EEPROM peripheral to 53
and before it starts the next START-address-data transfer, a sec-
ond master gets the bus and sets the index to its value of 97, the first
master will access incorrect data. The problem can be even worse
as the diagram shows. When master B overwrites the index value
prior to master A’s second access, it causes data corruption for
both parties. Master A will access location 97 and due to auto-
incrementing, master B will access location 98 — neither of which
is correct! The bus does not provide a method of solving this
dilemma and the only real solutions are not to share the peripheral
between the devices or use a semaphore to protect access. The
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protection of resources is a perennial problem with embedded
systems and will be covered in more detail later on.

Address Write 53

Address Data 

First access

Second access

Address Write 97

Address Data 

First access

Second access

MASTER A

MASTER B

Correct multi-master operation

Address Write 53

Address Data 

First access

Second access

Address Write 97

Address Data 

First access

Second access

MASTER A

MASTER B

MASTER A

MASTER B

Incorrect multi-master operation

M-Bus (Motorola)
M-Bus is an ideal interface for EEPROMs, LCD controllers,

A/D converters and other components that could benefit from
fast serial transfers. This two-wire bidirectional serial bus allows
a master and a slave to rapidly exchange data. It allows for fast
communication with no address translation. It is very similar in
operation to I2C and thus M-Bus devices can be used with these
type of serial ports. The maximum transfer rate is 100 kb/s.

What is an RS232 serial port?
Up until now, the serial interfaces that have been described

have used a clock signal as a reference and therefore the data
transfers are synchronous to that clock. For the small distances
between chips, this is fine and the TTL or CMOS logic voltages are
sufficient to ensure operation over the small connection distances.
However, this is not the case if the serial data is being transmitted
over many metres. The low voltage logic levels can be affected by
the cable capacitance and thus a logic one at the transmitter may
be seen as an indeterminate voltage at the receiver end. Clock
edges can become skewed and out of sync with the data causing
the wrong data to be accepted. As a result, a slightly different serial
port is used for connecting over longer distances, generically
referred to an RS232.
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For most people, the mention of RS232 immediately brings
up the image and experiences of connecting peripherals to the
ubiquitous IBM PC. The IBM PC typically has one or two serial
ports, COM1 and COM2, which are used to transfer data between
the PC and printers, modems and even other computers. The term
‘serial’ comes from the fact that only one data line is used to
transmit and receive data and thus the information must be sent
and received a bit at a time. Instead of transmitting the 8 bits that
make up a byte using eight data lines at once, one data line is used
to send 8 bits, one at a time. In practice, several lines are used to
provide separate lines for data transmit and receive, and to pro-
vide a control line for hardware handshaking. One important
difference is that the data is transmitted asynchronously i.e. there
is no separate reference clock. Instead the data itself provides its
own reference clock in terms of its format.

The serial interface can be divided into two areas. The first
is the physical interface, commonly referred to as RS232 or EIA232,
which is used to transfer data between the terminal and the
computer. The electrical interface uses a combination of +5, +12
and –12 volts for the electrical interface. This used to require the
provision of additional power connections but there are now
available interface chips that take a 5 volt supply (MC1489) and
generate internally the other voltages that are needed to meet the
interface specification. Typically, a logic one is signalled by a +3 to
+15 volts level and a logic zero by –3 to –15 volts. Many systems use
+12 and –12 volts.

Note: The term RS232 strictly specifies the physical inter-
face and not the serial protocol. Partly because RS232
is easier to say than universal asynchronous commu-
nication using an RS232 interface, the term has be-
come a general reference to almost any asynchro-
nous serial communication.

The second area controls the flow of information between
the terminal and computer so that neither is swamped with data
it cannot handle. Again, failure to get this right can cause data
corruption and other problems.

When a user presses a key, quite a lengthy procedure is
carried out before the character is transmitted. The pressed key
generates a specific code which represents the letter or other
character. This is converted to a bit pattern for transmission down
the serial line via the serial port on the computer system. The
converted bit pattern may contain a number of start bits, a number
of bits (5, 6, 7 or 8) representing the data, a parity bit for error
checking and a number of stop bits. These are all sent down the
serial line by a UART (universal asynchronous receiver transmit-
ter) in the terminal at a predetermined speed or baud rate.

The start bits are used to indicate that the data being
transmitted is the start of a character. The stop bits indicate that
character has ended and thus define the data sequence that con-
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tains the data. The parity bit can either be disabled, i.e. set to zero
or configured to support odd or even parity. The bit is set to
indicate that the total number of bits that have been sent is either
an odd or even number. This allows the receiving UART to detect
a single bit error during transmission or reception. The bit
sequencing and resultant waveform is asynchronous in that there
is not a reference clock transmitted. The data is detected by using
a local clock reference, i.e. from the baud rate generator and the
start/stop bit edges. This is why it is so important not only to
configure the data settings but to set the correct baud rate settings
so that the individual bits are correctly interpreted. As a result,
both the processor and the peripheral it is communicating with
must use the same baud rate and the same combination of start,
stop, data and parity bits to ensure correct communication. If
different combinations are used, data will be wrongly interpreted.

0, 1 or 2 start bits

5, 6, 7 or  8 data bits

Odd, even or no parity bit 

0, 1 or 2 stop bits

Serial bit stream

Serial bit streams

If the terminal UART is configured in half duplex mode, it
echoes the transmitted character so it can be seen on the screen.
Once the data is received at the other end, it is read in by another
UART and, if this UART is set up to echo the character, it sends it
back to the terminal. (If both UARTs are set up to echo, multiple
characters are transmitted!) The character is then passed to the
application software or operating system for further processing.

If the other peripheral or processor is remote, the serial line
may include a modem link where the terminal is connected to a
modem and a telephone line, and a second modem is linked to the
computer at the other end. The modem is frequently controlled by
the serial line, so if the terminal is switched off, the modem
effectively hangs up and disconnects the telephone line. Modems
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can also echo characters and it is possible to get four characters on
the terminal screen in response to a single key stroke.

Stop1 2 3 4 5 6 7 8 StopStart

Start bit: logical zero or space

Stop bit: logical one or mark

Idle no tranmitted data:
 logical one or mark

Data bits

Asynchronous data format

The actual data format for the sequence is shown in the
diagram. When no data is transmitted, the TXD signal is set to a
logical one. When data is transmitted, a start bit is sent by setting
the line to a logical zero. Data is then sent by setting the data to a
zero or one accordingly and finally the stop bits are sent by forcing
the line to a logical one. The stop bits essentially look the same as
the idle bits when no data is being transmitted. The timing is
defined by the baud rate that both the receiver and transmitter are
using. The baud rate used to be supplied by an external timer/
counter called a baud rate generator that generates a clock signal
at the right frequency. This function is now performed on-chip
with modern controller chips and usually can work with the
system clock or with a simple watch crystal instead of one with a
specific frequency.

Note: If the settings are slightly incorrect, i.e. the number of
stop and data bits is wrong, then it is possible for the
data to appear to be received correctly. For example,
if data is transmitted at 7 data bits with 2 stop bits and
received as 8 data bits with 1 stop bit, the receiver
would get the 7 data bits and set the eighth data bit to
a one. If this character was then displayed on the
screen, it could appear in the correct format due to
the fact that many character sets ignore the eighth bit.
In this case, the software and system would appear to
work. If the data was used in some other protocol
where the eighth bit was either used or assumed to be
set to zero, the program and system would fail!

Asynchronous flow control
Flow control is necessary to prevent either the terminal or

the computer from sending more data than the other can cope
with. If too much is sent, it either results in missing characters or
in a data overrun error message. The first flow control method is
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hardware handshaking, where hardware in the UART detects a
potential overrun and asserts a handshake line to tell the other
UART to stop transmitting. When the receiving device can take
more data, the handshake line is released. The problem with this
is that there are several options and, unless the lines are correctly
connected, the handshaking does not work correctly and data loss
is possible. The second method uses software to send flow control
characters XON and XOFF. XOFF stops a data transfer and XON
restarts it. Unfortunately, there are many different ways of using
these lines and, as a result, this so-called standard has many
different implementations. There are alternative methods of ad-
dressing this problem by adding buffers to store data when it
cannot be accepted.

The two most common connectors are the 25 pin D type and
the 9 pin D type. These are often referred to as DB-25 and DB-9
respectively. Their pin assignments are as follows:

DB-25 Signal DB-9
1 Chassis ground Not used
2 Transmit data — TXD 3
3 Receive data — RXD 2
4 Request to send — RTS 7
5 Clear to send — CTS 8
6 Data set ready — DSR 6
7 Signal ground — GND 5
8 Data carrier detect — DCD 1
20 Data terminal ready — DTR 4
22 Ring indicator — RI or RING 9

There are many different methods of connecting these pins
and this has caused many problems especially for those faced with
the task of implementing the software for a UART in such a
configuration. To implement hardware handshaking, individual
I/O pins are used to act as inputs or outputs for the required
signals. The functionality of the various signals is as follows:
TXD Transmit data. This transmits data and would normally be

connected to the RXD signal on the other side of the connec-
tion.

RXD Receive data. This transmits data and would normally be
connected to the TXD signal on the other side of the connec-
tion. In this way, there is a cross-over connection.

RTS Request to send. This is used in conjunction with CTS to
indicate that this side is ready to send and needs confirma-
tion that the other side is ready.

CTS Clear to send. This is the corresponding signal to RTS and
is sent by the other side on receipt of the RTS to indicate that
it is ready to receive data.

DSR Data set ready. This is used in conjunction with DTR to
indicate that each side is powered on and ready.
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DCD Data carrier detect. This is normally used to determine
which side is in control of the hardware handshake proto-
col.

DTR Data terminal ready. This is used in conjunction with DSR
to indicate that each side is powered on and ready.

RI Ring indicator.This is asserted when a connected modem
has detected an incoming call.
Much of the functionality of these signals has been deter-

mined by the need to connect to modems initially to allow remote
communication across telephone lines. While modem links are
still important, many serial lines are used in modemless links to
peripherals such as printers. In these cases, the interchange of
signals which the modem performs must be simulated within the
cabling and this is done using a null modem cable. The differences
are best shown by looking at some example serial port cables.

Modem cables
These are known as modem or straight through cables

because the connections are simply one to one with no crossing
over or other more complex wiring. They are used to link PCs with
modems, printers, plotters and other peripherals. However, do
not use them when linking a PC to another PC or computer — they
won’t work! For those links, a null modem cable is needed.

Null modem cables
Null modem cables are used to link PCs together. They

work by switching over the transmit and receive signals and the
handshaking connections so that each PC ‘sees’ a modem at the
other end. There are many configurations depending on the
number of wires that are needed within the cable.

TXD 2

RTS 4

CTS 5

RXD 3

DTR 20

DSR 6

DCD 8

GND 7

GND 1

2 TXD

4 RTS

5 CTS

3 RXD

20 DTR

6 DSR

8 DCD

7 GND

1 GND

DB-25
connector

DB-25
connector

RING 22 22 RING

An IBM PS/2 and PC XT to modem cable
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TXD 3

RTS 7

CTS 8

RXD 2

DTR 4

DSR 6

DCD 1

GND 5

2 TXD

4 RTS

5 CTS

3 RXD

20 DTR

6 DSR

8 DCD

7 GND

DB-9
connector

DB-25
connector

RING 9 22 RING

An IBM PC AT to modem cable

TXD 2

RTS 4

CTS 5

RXD 3

DTR 20

DSR 6

DCD 8

GND 7

GND 1

2 TXD

4 RTS

5 CTS

3 RXD

20 DTR

6 DSR

8 DCD

7 GND

1 GND

DB-25
connector

DB-25
connector

An IBM DB-25 to DB-25 standard null modem cable

TXD 3

RTS 7

CTS 8

RXD 2

DTR 4

DSR 6

DCD 1

GND 5

2 TXD

4 RTS

5 CTS

3 RXD

20 DTR

6 DSR

8 DCD

7 GND

DB-9
connector

DB-25
connector

An IBM PC AT to IBM PC XT or PS/2 null modem cable
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TXD 3

RTS 7

CTS 8

RXD 2

DTR 4

DSR 6

DCD 1

GND 5

3 TXD

7 RTS

8 CTS

2 RXD

6 DSR

4 DTR

1 DCD

5 GND

DB-9
connector

DB-9
connector

An IBM PC AT to PC AT null modem cable

DB-25
connector

DB-25
connector

TXD 2

RTS 4

CTS 5

RXD 3

DTR 20

DSR 6
DCD 8

GND 7

2 TXD
4 RTS

5 CTS

3 RXD

20 DTR

6 DSR
8 DCD

7 GND

An IBM six core DB-25 to DB-25 null modem cable

DB-9
connector

DB-25
connector

TXD 3

RTS 7

CTS 8

RXD 2

DTR 4

DSR 6
DCD 1

GND 5

2 TXD
4 RTS

5 CTS

3 RXD

20 DTR

6 DSR
8 DCD

7 GND

An IBM six core DB-9 to DB-25 null modem cable
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XON-XOFF flow control
Connecting these wires together and using the correct pins

is not a trivial job and two alternative approaches have been
developed. The first is the development of more intelligent UARTs
that handle the flow control directly with little or no intervention
from the processor. The second is to dispense with hardware
handshaking completely and simply use software handshaking
where characters are sent to control the flow of characters between
the two systems. This latter approach is used by Apple Macintosh,
UNIX and many other systems because of its reduced complexity
in terms of the hardware interface and wiring.

With the XON-XOFF protocol, an XOFF character (control-
S or ASCII code 13) is sent to the other side to tell it to stop sending
any more data. The halted side will wait until it receives an XON
character (control-Q or ASCII code 11) before recommencing the
data transmission. This technique does assume that each side can
receive the XOFF character and that transmission can be stopped
before overflowing the other side’s buffer.

UART implementations

8250/16450/16550
Probably the most commonly known and used UART is the

8250 and its derivatives as used to provide serial ports COM1 and
COM2 on an IBM PC. The original design used an Intel 8250 which
has been largely replaced by the National Semiconductor 16450
and 16550 devices or by cloned devices within a super I/O chip
which combines all the PC’s I/O devices into a single piece of
silicon.

D0       1          40    VCC
D1       2          39    *RI
D2       3          38    *DCD
D3      4          37    *DSR
D4       5          36    *CTS
D5       6          35    MR
D6       7          34    *OUT1
D7       8          33    *DTR
RCLK   9          32    *RTS
SIN      10         31    *OUT2
SOUT     11         30    INTR
CS0     12         29    NC (-RXRDY)
CS1     13         28    A0
*CS2     14         27   A1
*BAUDOUT    15         26    A2
XIN      16         25    *ADS
 XOUT     17         24    CSOUT (-TXRDY)
*WR     18        23    DDIS
WR      19         22    RD
VSS      20        21   *RD

* indicates an active low signal

UART pinout



Basic peripherals 159

The original devices used voltage level shifters to provide
the + and –12 volt RS232 signalling voltage levels but this function
is sometimes included within the UART as well.

The pinout shows the hardware signals that are used and
these fall into two groups: those that are used to provide the UART
interface to the processor and those that are the UART signals.
Some of the signals are active low, i.e. when they are at a zero
voltage level, they represent a logical one. These signals are
indicated by an asterisk.

The interface signals
The UART interface signals are for the 8250 UART and its

derivatives are as follows:

*ADS This is the address strobe signal and is used to
latch the address and chip select signals during a
processor access. The latching takes place on the
positive edge of the and assumes that the other
signals are stable at this point. This signal can be
ignored by permanently asserting it. In this case,
the address and chip selects must be set up and
stable for the whole cycle with the processor and
peripheral clock signals providing the timing
references. The IBM PC uses the chip in this way.

*BAUDOUT This is the 16x clock signal from the transmitter
section of the UART. The clock frequency is the
main clock frequency divided by the values stored
in the baud generator divisor latches. It is normally
used — as in the IBM PC, for example — to route
the transmit clock back into the receive section by
connecting this pin to the RCLK pin. By doing
this, both the transmit and receive baud rates are
the same and use the same clock frequency. To
create an asynchronous system such as 1200/75
which is used for teletext links, an external
transmit clock is used to feed RCLK instead.

CS0,1 and 2 These signals are used to select the UART and are
derived from the rest of the processor’s address
signals. The lower 3 bits of the CPU address bus
are connected to the A0–A2 pins to select the
internal registers. The rest of the address bus is
decoded to generate a chip select signal. This can
be a single entity, in which case two of the chip
selects are tied to the appropriate logic level. If
the signal is low, then CS0 and CS1 would be tied
high. The provision of these three chip selects
provides a large amount of flexibility. The truth
table is shown below.
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CS0 CS1 CS2 Action
High High Low Selected
Low Low Low Dormant
Low Low High Dormant
Low Low Low Dormant
Low High High Dormant
Low High Low Dormant
High Low High Dormant
High Low Low Dormant

D0–D7 These signals form the 8 bit bus that is connected
between the peripheral and the processor. All
transfers between the UART and processor are
byte based.

DDIS This goes low whenever the CPU is reading data
from the UART. It can be used to control bus
arbitration logic.

INTR This pin is normally connected to an interrupt pin
on the processor or in the case of the IBM PC, the
interrupt controller. It is asserted when the UART
needs data to be transferred to or from the internal
buffers, or if an error condition has occurred such
as a data overrun. The ISR has to investigate the
UART’s status registers to determine the actual
service(s) requested by the peripheral.

MR This is the master reset pin and is used to reset the
device and restore the internal registers to their
power-on default values. This is normally
connected to the system/processor reset signal to
ensure that the UART is reset when the system is.

*OUT1 This is a general-purpose I/O pin whose state can
be set by programming bit 2 of the MCR to a ‘1’.

*OUT2 This is another general-purpose I/O pin whose
state can be set by programming bit 3 of the MCR
‘1’. In the IBM PC it is used to gate the interrupt
signal from the UART to the interrupt controller.
In this way, interrupts from the UART can be
externally disabled.

RCLK This is the input for the clock for the receiver
section of the chip. See *BAUDOUT on the
previous page for more details.

RD, *RD These are read strobes that are used to indicate the
type of access that the CPU needs to perform. If
RD is high or *RD is low, the CPU access is a read
cycle.
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SIN This is the serial data input pin for the receiver.

SOUT This is the serial data output pin for the transmitter.

*RXRDY,*TXRDY
These pins are used for additional DMA control
and can be used to initiate DMA transfers to and
from the read and write buffers. They are not used
within the IBM PC design where the CPU is
responsible for moving data to and from the
UART.

WR, *WR These are read strobes that are used to indicate the
type of access that the CPU needs to perform. If
WR is high or *WR is low, the CPU access is a write
cycle.

XIN, XOUT These pins are used to either connect an external
crystal or connect to an external clock. The
frequency is typically 8 MHz.

A0–2 These are the three address signals which are
used in conjunction with DLAB to select the
internal registers. They are normally connected to
the lower bits of the processor address bus. The
upper bits are normally decoded to create a set of
chip select signals to select the UART and locate it
at a specific address location.

DLAB A2 A1 A0 Register
0 0 0 0 READ: receive buffer

WRITE: transmitter holding
0 0 0 1 Interrupt enable
x 0 1 0 READ: Interrupt identification

WRITE: FIFO control *
x 0 1 1 Line control
x 1 0 0 Modem control
x 1 0 1 Line status
x 1 1 0 Modem status
x 1 1 1 Scratch
1 0 0 0 Divisor latch (LSB)
1 0 0 1 Divisor latch (MSB)

*undefined with the 16450.
Register descriptions

The main difference between the various devices concerns
the buffer size that they support and, in particular, the effect that
it has on the effective throughput of the UART.

The UART relies on the CPU to transfer data and therefore
the limit on the serial data throughput that can be sustained is
determined by the time it takes to interrupt the CPU and for the
appropriate interrupt service routine to identify the reason for the
interrupt — it may have been raised as a result of an error — and
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then transfer the data if the interrupt corresponds to a data ready
for transfer request. Finally, the processor returns from the inter-
rupt.

The time to perform this task is determined by the processor
type and memory speed. The time then defines the maximum rate
that data can be received. If the interrupt service routine takes
longer than the time to receive the next data, there is a large risk
that a data overrun will occur where data is received before the
previous byte is read by the processor. To address this issue, a
buffer is often used. With the later versions of the UART such as
the 16450 and 16550, the FIFO buffer size has been increased. The
largest buffer (16 bytes) is available on the 16550 and this device is
frequently used for high speed data communications.

The 16 byte buffer means that if the processor is late for the
first byte, any incoming data will simply be buffered and not cause
a data overrun. As a result, the interrupt service routine need only
be executed 1/16 of the times for a single buffer UART. This
dramatically reduces the CPU processing needed for high speed
data transfer.

There is a downside: the data now arrives in a packet with
up to 16 bytes and must be processed slightly differently. With a
byte at a time, the decoding of the data (i.e. is it a command or is
it data that a higher level protocol may impose?) is easy to decode.
With a packet of up to 16 bytes, the bytes have to be parsed to
separate them out. This means that the decoding software is
slightly more complex to handle both the parsing and the mecha-
nisms to store and track the incoming data packets. An example of
this in included in the chapter on buffers.

The Motorola MC68681
Within the Motorola product offering, the MC68681 has

become a fairly standard UART that has been used in many
MC680x0 designs. It has a quadruple buffered receiver and a
double buffered transmitter. The maximum transfer rates that can
be achieved are high: 9.8 Mbps with a 25 MHz clock with no clock
division (×1 mode) and 612 kbps with the same clock with a divide
by 16 setting (×16 mode). Each transmitter and receiver is inde-
pendently programmable using one of 19 fixed rates.

It has a sophisticated interrupt structure that supports
seven maskable interrupt conditions:
• Change of state on CTSx*

This is used to support hardware handshaking. If the CTS
signal changes, an interrupt can be generated to instruct the
processor to stop or start sending data. This fast response
coupled with the buffering ensures that data is not lost.

• Break condition (either channel)
The break condition is either used to request connection, i.e.
send a break from a terminal to start a remote login or is
symptomatic of a lost or dropped connection.
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• Ready receive/FIFO full (either channel)
As previously discussed, interrupts are ideal for the effi-
cient handling and control of receive buffers. This interrupt
indicates that there is data ready.

• Transmitter ready (either channel)
This is similar to the previous interrupt and is used to
indicate that the transmitter is ready to take data for trans-
mission.

DMA controllers
Direct memory access (DMA) controllers are frequently an

elegant hardware solution to a recurring software/system prob-
lem of providing an efficient method of transferring data from a
peripheral to memory.

In systems without DMA, the solution is to use the proces-
sor to either regularly poll the peripheral to see if it needs servicing
or to wait for an interrupt to do so. The problem with these two
methods is that they are not very efficient. Polling, by its very
nature, is going to check the status and find that no action is
required more times than it will find that servicing is needed. If
this is not the case, then data can be lost through data over- and
under-run. This means that it spends a lot of time in non-construc-
tive work. In many embedded systems, this is not a problem but
in low power systems, for example, this unnecessary work process-
ing and power consumption cannot be tolerated.

Interrupts are a far better solution. An interrupt is sent from
the peripheral to the processor to request servicing. In many cases,
all that is needed is to simply empty or load a buffer. This solution
starts becoming an issue as the servicing rate increases. With high
speed ports, the cost of interrupting the processor can be higher
than the couple of instructions that it executes to empty a buffer.
In these cases, the limiting factor for the data transfer is the time to
recognise, process and return from the interrupt. If the data needs
to be processed on a byte by byte basis in real-time, this may have
to be tolerated but with high speed transfers this is often not the
case as the data is treated in packets.

This is where the DMA controller comes into its own. It is a
device that can initiate and control bus accesses between I/O
devices and memory, and between two memory areas. With this
type of facility, the DMA controller acts as a hardware implemen-
tation of the low-level buffer filling or emptying interrupt routine.

There are essentially three types of DMA controller which
offer different levels of sophistication concerning memory ad-
dress generation. They are often classified in terms of their ad-
dressing capability into 1D, 2D and 3D types. A 1D controller
would only have a single address register, a 2D device two and a
3D device three or more.



164 Embedded systems design

A generic DMA controller
A generic controller consists of several components which

control the operation:
• Address generator

This is probably the most important part of a DMA control-
ler and typically consists of a base address register and an
auto-incrementing counter which increments the address
after every transfer. The generated addresses are used
within the actual bus transfers to access memory and/or
peripherals. When a predefined number of bytes have been
transferred, the base address is reloaded and the count
cleared to zero ready to repeat the operation.

• Address bus
This is where the address created by the address generator
is used to access a specific memory location or peripheral.

• Data bus
This is the data bus that is used to transfer data from the
DMA controller to the destination location. In some cases,
the data transfer may be made direct from the peripheral to
the memory with the DMA controller directly selecting the
peripheral.

• Bus requester
This is used to request the bus from the main CPU. In older
designs, the processor bus was not designed to support
multiple masters and there were no bus request signals. In
these cases, the processor clock was extended or delayed to
steal memory cycles from the processor for the DMA con-
troller to use.

• Local peripheral control
This allows the DMA controller to select the peripheral and
get it to accept or provide data directly or for a peripheral to
request a data transfer, depending on the DMA controller’s
design. This is necessary to support the single or implied
address mode which is explained in more detail later on.

• Interrupt signals
Most DMA controllers can interrupt the processor when the
data transfers are complete or if an error has occurred. This
prompts the processor to either reprogram the DMA control-
ler for a different transfer or acts as a signal that a new batch
of data has been transferred and is ready for processing.

Operation
Using a DMA controller is reasonably simple provided the

programming defines exactly the data transfer operations that the
processor expects. Most errors lie in correct programming and in
failing to understand how the device operates. The key phases of
its operation are:
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• Program the controller
Prior to using the DMA controller, it must be configured
with parameters that define the addressing such as base
address and byte count that will be used to transfer the data.
In addition, the device will be configured in terms of its
communication with the processor and peripheral. Proces-
sor communication will normally include defining the con-
ditions that will generate an interrupt. The peripheral com-
munication may include defining which request pin is used
by the peripheral and any arbitration mechanism that is
used to reconcile simultaneous requests for DMA from two
or more peripherals. The final part of this process is to
define how the controller will transfer blocks of data: all at
once or individually or some other combination.

Base address

Count

Bytes transferred

Status

Source address FF FF 01 04

00 00 23 00

00 00 00 10

00 00 00 00

OK

DMA controller registers

• Start a transfer
A DMA transfer is normally initiated in response to a
peripheral request to start a transfer. It usually assumes that
the controller has been correctly configured to support this
request. With a peripheral and processor, the processor will
normally request a service by asserting an interrupt pin
which is connected to the processor’s interrupt input(s).
With a DMA controller, this peripheral interrupt signal can
be used to directly initiate a transfer or if it is left attached
to the processor, the interrupt service routine can start the
DMA transfers by writing to the controller.

• Request the bus
The next stage is to request the bus from the processor. With
most modern processors supporting bus arbitration di-
rectly, the DMA controller issues a bus request signal to the
processor which will release the bus when convenient and
allow the DMA controller to proceed. Without this support,
the DMA controller has to cycle steal from the processor so
that it is held off the bus while the DMA controller uses it.
As will be described later on in this chapter, most DMA
controllers provide some flexibility concerning how they
use and compete with bus bandwidth with the processor
and other bus masters.
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• Issue the address
Assuming the controller has the bus, it will then issue the
bus to activate the target memory location. A variety of
interfaces are used — usually dependent on the number of
pins that are available and include both non-multiplexed
and multiplexed buses. In addition, the controller provides
other signals such as read/write and strobe signals that can
be used to work with the bus. DMA controllers tend to be
designed for a specific processor family bus but most recent
devices are also generic enough to be used with nearly any
bus.

• Transfer the data
The data is transferred either from a holding buffer within
the DMA controller or directly from a peripheral.

• Update address generator
Once the data transfer has been completed, the address
generator uses the completion to calculate the address for
the next transfer and update the byte/transfer counters.

• Update processor
Depending on how the DMA controller has been pro-
grammed it can notify the processor using interrupts of
events within the transfer process such as an address error
or the completion of a data or block transfer.

DMA controller models
There are various modes or models that DMA controllers

can support ranging from simple to complex addressing modes
and single and double data transfers.

Single address model
With the single address model, the DMA controller uses its

address bus to address the memory location that will participate
in the bus memory cycle. The controller uses a peripheral bus —
in some cases a single select and a read/write pin — to select the
peripheral device so its data bus becomes active. The select signal
from the processor often has to generate an address to access the
specific register within the peripheral such as the buffer register.
If the peripheral is prompting the transfer, the peripheral would
pull down a request line — typically its interrupt line is used for
this purpose.

In this way, data can be transferred between the memory
and peripheral as needed, without the data being transferred
through the DMA controller and thus taking two cycles. This
model is also known as the implicit address because the second
address is implied and not directly given, i.e. there is no source
address supplied.
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Peripheral

DMA 
controller

Memory

Data bus

Address
bus

Peripheral bus

Single address or implicit address mode

C/S A0  A1  A2

Peripheral select from 
DMA controller

Encoder

Peripheral

R/W

Read/Write 
from 

DMA controller

Activating the peripheral by the DMA controller

Peripheral

DMA 
controller

Data 
bus

Address
bus

DMA 
controller

Memory

Data 
bus

Address
bus

1st address transfer 2nd address transfer

Memory

Peripheral

Dual address transfer

Dual address model
The dual address mode uses two addresses and two ac-

cesses to transfer data between a peripheral or memory and
another memory location. This consumes two bus cycles and uses
a buffer within the DMA controller to temporarily hold data.
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1D model
The 1D model uses an address location and a counter to

define the sequence of addresses that are used during the DMA
cycles. This effectively defines a block of memory which is used for
the access. The disadvantage of this arrangement is that when the
block is transferred, the address and counter are usually reset
automatically and thus can potentially overwrite the previous
data. This can be prevented by using an interrupt from the DMA
controller to the processor when the counter has expired. This
allows the CPU the opportunity to change the address so that next
memory block to be used is different.

First memory location

Last memory location

Reset 
address

A circular buffer

This model left on its own can be used to implement a
circular buffer where the automatic reset is used to bring the
address back to the beginning. Circular buffering can be an
efficient technique in terms of both the size of buffering and timing
constraints.

2D model
While the 1D model is simple, there are times especially

with high speed data where the addressing mode is not powerful
enough even though it can be augmented through processor
intervention. A good example of this is with packet-based com-
munication protocols where the data is wrapped up with addi-
tional information in the form of headers. The packets typically
have a maximum or fixed data format and thus large amounts of
consecutive data have to be split and header and trailer informa-
tion either added or removed.

With the 2D model, an address stride can be specified which
is used to calculate an offset to the base address at the end of a
count. This allows DMA to occur in non-consecutive blocks of
memory. Instead of the base address being reset to the original
address, it has the stride added to it. In addition the count register
is normally split into two: one register to specify the count for the
block and a second register to specify the total number of blocks or
bytes to be transferred. Using these new features, it is easy to set
up a DMA controller to transfer data and split into blocks ready for
the insertion of header information. The diagram shows how this
can be done.
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Increment address by count

Increment 
address by stride

Base address

1. Use base address to start transfer.
    Increment until counter expires.

2. Reset counter and change base address using stride.

3. Use base address and increment until counter expires.

4. Reset counter and change base address using stride.
    
5. Repeat until total number of requested bytes transferred.
    (Total count = 11 x 4 = 44 bytes)

Increment 
address by stride

Increment 
address by stride

21

3 4

5

2D addressing structure

3D model
The third type of controller takes the idea of address strides

a step further by defining the ability to change the stride automati-
cally so that blocks of different sizes and strides can be created. It
is possible to simulate this with a 2D controller and software so
that the processor reprograms the device to simulate the auto-
matic change of stride.

Channels and control blocks
By now, it should be reasonably clear that DMA controllers

need to be pre-programmed with a block of parameters to allow
them to operate. The hardware interface that they use is common
to almost every different set of parameters — the only real differ-
ence is when a single or dual address mode is used with the need
to directly access a peripheral as well as the memory address bus.

It is also common for a peripheral to continually use a single
set of parameters. As a result, the processor has to continually re-
program the DMA controller prior to use if it is being shared
between several peripherals. Each peripheral would have to inter-
rupt the processor prior to use of the DMA to ensure that it was
programmed. Instead of removing the interrupt burden from the
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processor, the processor still has it — albeit it is now programming
the DMA controller and not moving data. Moving data could be
an even lighter load!

Peripheral 1

DMA 
controller

Processor

Peripheral 1

DMA 
controller

Processor

1. DMA controller 
transfers data from 
peripheral into memory 
using 2D addressing.

2. CPU processes data 
blocks and inserts 
header information into  
spaces left between 
blocks.

Peripheral 1

DMA 
controller

Processor

3. DMA transfers data 
packets to peripheral 2 
using 1D addressing.

Peripheral 2

Peripheral 2

Peripheral 2

Using 2D addressing to create space for headers

To overcome this the idea of channels of control blocks was
developed. Here the registers that contain the parameters are
duplicated with a set for each channel. Each peripheral is assigned
an external request line which when asserted will cause the DMA
controller to start a DMA transfer in accordance with the param-
eters that have been assigned with the request line. In this way, a
single DMA controller can be shared with multiple peripherals,
with each peripheral having its own channel. This is how the DMA
controller in the IBM PC works. It supports four channels (0 to 3).
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An extension to this idea of channels, or control blocks as
they are also known, is the idea of chaining. With chaining,
channels are linked together so that more complex patterns can be
created. The first channel controls the DMA transfers until it has
completed its allotted transfers and then control is passed to the
next control block that has been chained to it. This simple tech-
nique allows very complex addressing patterns to be created such
as described in the paragraphs on 3D models.

 

DMA control block #1

DMA control block #2
Using control blocks

There is one problem with the idea of channels and external
pins: what happens if multiple requests are received by the DMA
controller at the same time? To resolve this situation, arbitration is
used to prioritise multiple requests. This may be a strict priority
scheme where one channel has the highest priority or can be a
fairer system such as a round-robin where the priority is equally
distributed to give a fairer allocation of priority.

Sharing bus bandwidth
The DMA controller has to compete with the processor for

external bus bandwidth to transfer data and as such can affect the
processor’s performance directly. With processors that do not
have any cache or internal memory, such as the 80286 and the
MC68000, their bus utilisation is about 80–95% of the bandwidth
and therefore any delay in accessing external memory will result
in a decreased processor performance budget and potentially
longer interrupt latency — more about this in the chapter on
interrupts.
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For devices with caches and/or internal memory, their
external bus bandwidth requirements are a lot lower and thus the
DMA controller can use bus cycles without impeding the proces-
sor’s performance. This last statement depends on the chances of
the DMA controller using the bus at the same time as the proces-
sor. This in turn depends on the frequency and size of the DMA
transfers. To provide some form of flexibility for the designer so
that a suitable trade-off can be made, most DMA controllers
support different types of bus utilisation.

• Single transfer
Here the bus is returned back to the processor after every
transfer so that the longest delay it will suffer in getting
access to memory will be a bus cycle.

• Block transfer
Here the bus is returned back to the processor after the
complete block has been sent so that the longest delay the
processor will suffer will be the time of a bus cycle multi-
plied by the number of transfers to move the block. In effect,
the DMA controller has priority over the CPU in using the
bus.

• Demand transfer
In this case, the DMA controller will hold the bus for as long
as an external device requests it to do so. While the bus is
held, the DMA controller is at liberty to transfer data as and
when needed. In this respect, there may be gaps when the
bus is retained but no data is transferred.

Data transfer

BR

GB

RB

Bus request

Get bus

Release bus

BR GB RB Data transferBR GB RBCPU uses bus... Data transferBR GB RB

Data transferBR GB RBData transfer Data transfer Data transfer Data transfer

Data transferBR GB RBData transfer Data transfer DMA holds bus...

Single transfer mode

Block transfer mode

Demand transfer mode

DMA transfer modes



Basic peripherals 173

DMA implementations

Intel 8237
This device is used in the IBM PC and is therefore probably

the most used DMA controller in current use. Like most peripher-
als today, it has moved from being a separate entity to be part of
the PC chip set that has replaced the 100 or so devices in the
original design with a single chip.

It can support four main transfer modes including single
and block transfers, the demand mode and a special cascade mode
where additional 8237 DMA controllers can be cascaded to ex-
pand the four channels that a single device can support. It can
transfer data between a peripheral and memory and by combining
two channels together, perform memory to memory transfers
although this is not used or supported within the IBM PC environ-
ment. In addition, there is a special verify transfer mode which is
used within the PC to generate dummy addresses to refresh the
DRAM memory. This is done in conjunction with a 15 µs interrupt
derived from a timer channel on the PC motherboard.

To resolve simultaneous DMA requests, there is an internal
arbitration scheme which supports either a fixed or rotating
priority scheme.

Motorola MC68300 series
Whereas five or 10 years ago, DMA controllers were freely

available as separate devices, the increasing ability to integrate
functionality has led to their demise as separate entities and most
DMA controllers are either integrated onto the peripheral or as in
this case onto the processor chip. The MC68300 series combine an
MC68000/MC68020 type of processor with peripherals and DMA
controllers.

Module Configuration Register

Interrupt Register

Channel Control Register

Channel Status Reg. Function Code Reg.

Source Address Register (32 bits)

Destination Address Reg. (32 bits)

Byte Transfer Counter (32 bits)

MC683xx generic DMA controller
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It consists of a two channel fully programmable DMA
controller that can support high speed data transfer rates of 12.5
Mbytes/s in dual address transfer mode or 50 Mbytes/s in single
address mode at a 25 MHz clock rate. The dual address mode is
considerably slower because two cycles have to be performed as
previously described. By virtue of its integration onto the proces-
sor chip with the peripherals and internal memory, it can DMA
data between internal and external resources. Internal cycles can
be programmed to occupy 25, 50, 75, or 100% of the available
internal bus bandwidth while external cycles support burst and
single transfer mode.

The source and destination registers can be independently
programmed to remain constant or incremented as required.

Using another CPU with firmware
This is a technique that is sometimes used where a DMA

controller is not available or is simply not fast or sophisticated
enough. The DMA CPU requires its own local memory and
program so that it can run in isolation and not burden the main
memory bus. The DMA CPU is sent messages which instruct it on
how to perform its DMA operations. The one advantage that this
offers is that the CPU can be programmed with higher level
software which can be used to process the data as well as transfer
it. Many of the processors used in embedded systems fall into this
category of device.



Interfacing to the analogue world 175

5 Interfacing to the
analogue world

This chapter discusses the techniques used to interface to
the outside world which unfortunately is largely analogue in
nature. It discusses the process of analogue to digital conversion
and basic power control techniques to drive motors and other
similar devices from a microcontroller.

Analogue to digital conversion techniques
The basic principle behind analogue to digital conversion is

simple and straightforward: the analogue signal is sampled at a
regular interval and each sample is divided or quantised by a
given value to determine the number of given units of value that
approximate to the analogue value. This number is the digital
equivalent of the analogue signal.

Basic A to D conversion
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The combination graph shows the general principle. The
grey curve represents an analogue signal which, in this case, is a
sine wave. For each cycle of the sine wave, 13 digital samples are
taken which encode the digital representation of the signal.
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Quantisation errors
Careful examination of the combination chart reveals that

all is not well. Note the samples at time points 7 and 13. These
should be zero — however, the conversion process does not
convert them to zero but to a slightly higher value. The other
points show similar errors; this is the first type of error that the
conversion process can cause. These errors are known as
quantisation errors and are caused by the fact that the digital
representation is step based and consists of a selection from one of
a fixed number of values. The analogue signal has an infinite range
of values and the difference between the digital value the conver-
sion process has selected and the analogue value is the quantisation
error.

Size Resolution Storage (1s) Storage (60s) Storage (300s)
4 bit 0.0625000000 22050 1323000 6615000
6 bit 0.0156250000 33075 1984500 9922500
8 bit 0.0039062500 44100 2646000 13230000
10 bit 0.0009765625 55125 3307500 16537500
12 bit 0.0002441406 66150 3969000 19845000
16 bit 0.0000152588 88200 5292000 26460000
32 bit 0.0000000002 176400 10584000 52920000

Resolution assumes an analogue value range of 0 to 1
Storage requirements are in bytes and a 44.1 kHz sample rate

Digital bit size, resolution and storage

The size of the quantisation error is dependent on the
number of bits used to represent the analogue value. The table
shows the resolution that can be achieved for various digital sizes.
As the table depicts, the larger the digital representation, the finer
the analogue resolution and therefore the smaller the quantisation
error and resultant distortion. However, the table also shows the
increase which occurs with the amount of storage needed. It
assumes a sample rate of 44.1 kHz, which is the same rate as used
with an audio CD. To store five minutes of 16 bit audio would take
about 26 Mbytes of storage. For a stereo signal, it would be twice
this value.

Sample rates and size
So far, much of the discussion has been on the sample size.

Another important parameter is the sampling rate. The sampling
rate is the number of samples that are taken in a time period,
usually one second, and is normally measured in hertz, in the
same way that frequencies are measured. This determines several
aspects of the conversion process:

• It determines the speed of the conversion device itself. All
converters require a certain amount of time to perform the
conversion and this conversion time determines the maxi-
mum rate at which samples can be taken. Needless to say,
the fast converters tend to be the more expensive ones.



Interfacing to the analogue world 177

• The sample rate determines the maximum frequency that
can be converted. This is explained later in the section on
Nyquist’s theorem.

• Sampling must be performed on a regular basis with ex-
actly the same time period between samples. This is impor-
tant to remove conversion errors due to irregular sampling.

Irregular sampling errors
The line chart shows the effect of irregular sampling. It

effectively alters the amplitude or magnitude of the analogue
signal being measured. With reference to the curve in the chart, the
following errors can occur:

• If the sample is taken early, the value converted will be less
than it should be. Quantisation errors will then be added to
compound the error.

• If the sample is taken late, the value will be higher than
expected. If all or the majority of the samples are taken
early, the curve is reproduced with a similar general shape
but with a lower amplitude. One important fact is that the
sampled curve will not reflect the peak amplitudes that the
original curve will have.

• If there is a random timing error — often called jitter — then
the resulting curve is badly distorted, again as shown in the
chart.

Other sample rate errors can be introduced if there is a delay
in getting the samples. If the delay is constant, the correct charac-
teristics for the curve are obtained but out of phase. It is interesting
that there will always be a phase error due to the conversion time
taken by the converter. The conversion time will delay the digital
output and therefore introduces the phase error — but this is
usually very small and can typically be ignored.

The phase error shown assumes that all delays are consist-
ent. If this is not the case, different curves can be obtained as shown
in the next chart. Here the samples have been taken at random and
at slightly delayed intervals. Both return a similar curve to that of
the original value — but still with significant errors.

In summary, it is important that samples are taken on a
regular basis with consistent intervals between them. Failure to
observe these design conditions will introduce errors. For this
reason, many microprocessor-based implementations use a timer
and interrupt service routine mechanism to gather samples. The
timer is set-up to generate an interrupt to the processor at the
sampling rate frequency. Every time the interrupt occurs, the
interrupt service routine reads the last value for the converter and
instructs it to start a new conversion before returning to normal
execution. The instructions always take the same amount of time
and therefore sampling integrity is maintained.
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Sampling errors — amplitude errors
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Nyquist’s theorem
The sample rate also must be chosen carefully when consid-

ering the maximum frequency of the analogue signal being con-
verted. Nyquist’s theorem states that the minimum sampling rate
frequency should be twice the maximum frequency of the ana-
logue signal. A 4 kHz analogue signal would need to be sampled
at twice that frequency to convert it digitally. For example, a hi-fi
audio signal with a frequency range of 20 to 20 kHz would need a
minimum sampling rate of 40 kHz.

Higher frequency sampling introduces a frequency compo-
nent which is normally filtered out using an analogue filter.

Codecs
So far the discussion has been based on analogue to digital

(A to D) and digital to analogue (D to A) converters. These are the
names used for generic converters. Where both A to D and D to A
conversion is supported, they can also be called codecs. This name
is derived from coder-decoder and is usually coupled with the
algorithm that is used to perform the coding. Generic A to D
conversion is only one form of coding; many others are used
within the industry where the analogue signal is converted to the
digital domain and then encoded using a different technique.
Such codecs are often prefixed by the algorithm used for the
encoding.

Linear
A linear codec is one that is the same as the standard A to D

and D to A converters so far described, i.e. the relationship
between the analogue input signal and the digital representation
is linear. The quantisation step is the same throughout the range
and thus the increase in the analogue value necessary to increment
the digital value by one is the same, irrespective of the analogue or
digital values. Linear codecs are frequently used for digital audio.

A-law and µ-law
For telecommunications applications with a limited band-

width of 300 to 3100 Hz, logarithmic codecs are used to help
improve quality. These codecs, which provide an 8 bit sample at
8 kHz, are used in telephones and related equipment. Two types
are in common use: the a-law codec in the UK and the µ-law codec
in the US. By using a logarithmic curve for the quantisation, where
the analogue increase to increment the digital value varies de-
pending on the size of the analogue signal, more digital bits can be
allocated to the more important parts of the analogue signal and
thus improve their resolution. The less important areas are given
less bits and, despite having coarser resolution, the quality reduc-
tion is not really noticeable because of the small part they contrib-
ute to the signal. Conversion between a linear digital signal and a-
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law/µ-law or between an a-law and µ-law signal is easily per-
formed using a look-up table.

PCM
The linear codecs that have been so far described are also

known as PCM — pulse code modulation codecs. This comes from
the technique used to reconstitute the analogue signal by supply-
ing a series of pulses whose amplitude is determined by the digital
value. This term is frequently used within the telecommunications
industry.

There are alternative ways of encoding using PCM which
can reduce the amount of data needed or improve the resolution
and accuracy.

DPCM
Differential pulse coded modulation (DPCM) is similar to

PCM, except that the value encoded is the difference between the
current sample and the previous sample. This can improve the
accuracy and resolution by having a 16 bit digital dynamic range
without having to encode 16 bit samples. It works by increasing
the dynamic range and defining the differential dynamic range as
a partial value of it. By encoding the difference, the smaller digital
value is not exceeded but the overall value can be far greater. There
is one proviso: the change in the analogue value from one sample
to another must be less than the differential range and this deter-
mines the maximum slope of any waveform that is encoded. If the
range is exceeded, errors are introduced.
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The diagram shows how this encoding works. The ana-
logue value is sampled and the previous value subtracted. The
result is then encoded using the required sample size and allowing
for a plus and minus value. With an 8 bit sample size, 1 bit is used
as a sign bit and the remaining 7 bits are used to encode data. This
allows the previous value to be used as a reference, even if the next
value is smaller. The 8 bits are then stored or incorporated into a
bitstream as with a PCM conversion.

To decode the data, the reverse operation is performed. The
signed sample is added to the previous value, giving the correct
digital value for decoding. In both the decode and encode process,
values which are far larger than the 8 bit sample are stored. This
type of encoding is easily performed with a microprocessor with
8 bit data and a 16 bit or larger accumulator.

A to D and D to A converters do not have to cope with the
full resolution and can simply be 8 bit decoders. These can be used
provided analogue subtractors and adders are used in conjunction
with them. The subtractor is used to reduce the analogue input
value before inputting to the small A to D converter. The adder is
used to create the final analogue output from the previous ana-
logue value and the output from the D to A converter.

ADPCM
Adaptive differential pulse code modulation (ADPCM) is a

variation on the previous technique and frequently used in tel-
ecommunications. The difference is encoded as before but instead
of using all the bits to encode the difference, some bits are used to
encode the quantisation value that was used to encode the data.
This means that the resolution of the difference can be adjusted —
adapted — as needed and, by using non-linear quantisation
values, better resolution can be achieved and a larger dynamic
range supported.

Power control
Most embedded designs need to be able to switch power in

some way or another, if only to drive an LED or similar indicator.
This, on first appearances, appears to be quite simple to do but
there are some traps that can catch designers out. This section goes
through the basic principles and techniques.

Matching the drive
The first problem that faces any design is matching the logic

level voltages with that of a power transistor or similar device. It
is often forgotten or assumed that with logic devices, a logical high
is always 5 volts and that a logical low is zero. A logical high of 5
volts is more than enough to saturate a bipolar transistor and turn
it on. Similarly, 0 volts is enough to turn off such a transistor.

Unfortunately, the specifications for TTL compatible logic
levels are not the same as indicated by these assumptions. The
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voltage levels are define a logic low output as any voltage below
a maximum which is usually 0.4 volts and a logic high output as
a voltage above 2.4 volts assuming certain bus capacitance and
load currents and a supply voltage of 4.5 to 5.5 volts. These figures
are typical and can vary.

If the output high is used to drive a bipolar transistor, then
the 2.4 volt value is high enough to turn on the transistor. The only
concern is the current drive that the output can provide. This value
times the gain of the transistor determines the current load that the
transistor can provide. With an output low voltage of 0.4 volts, the
situation is less clear and is dependent on the biasing used on the
transistor. It is possible that instead of turning the transistor off
completely, it partially turns the device off and some current is still
provided.

With CMOS logic levels, similar problems can occur. Here
the logic high is typically two thirds of the supply voltage or
higher and a logic low is one third of the supply voltage or lower.
With a 5 volt supply, this works out at 3.35 volts and 1.65 volts for
the high and low states. In this case, the low voltage is above the
0.7 volts needed to turn on a transistor and thus the transistor is
likely to be switched on all the time irrespective of the logic state.
These voltage mismatches can also cause problems when combin-
ing CMOS and TTL devices using a single supply. With bipolar
transistors there are several techniques that can be used to help
avoid these problems:

• Use a high gain transistor
The higher the gain of the transistor, the lower the drive
needed from the output pin and the harder the logic level
will be. If the required current is high, then the voltage on
the output is more likely to reach its limits. With an output
high, it will fall to the minimum value. With an output low,
it will rise to the maximum value.
Darlington transistor pairs are often used because they
have a far higher gain compared to a single transistor.

• Use a buffer pack
Buffer packs are logic devices that have a high drive capa-
bility and can provide higher drive currents than normal
logic outputs. This increased drive capability can be used to
drive an indicator directly or can be further amplified.

• Use a field effect transistor (FET)
These transistors are voltage controlled and have a very
high effective gain and thus can be used to switch heavy
loads easily from a logic device. There are some problems,
however, in that the gate voltages are often proportions of
the supply voltages and these do not match with the logic
voltage levels that are available. As a result, the FET does
not switch correctly. This problem has been solved by the
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introduction of logic level switching FETs that will switch
using standard logic voltages. The advantage that these
offer is that they can simply have their gate directly con-
nected to the logic output. The power supply and load are
connected through the FET which acts as a switch.

Using H bridges
Using logic level FETs is a very simple and effective way of

providing DC power control. With the FET acting like a power
switch whose state reflects the logic level output from the digital
controller, it is possible to combine several switches to create H
bridges which allow a DC motor to be switched on and reversed
in direction. This is done by using two outputs and four FETs
acting as switches.
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The FETs are arranged in two pairs so that by switching one
on and the other off, one end of the motor can be connected to
ground (0 volts) or to the voltage supply Vcc. Each FET in the pair
is driven from a common input signal which is inverted on its way
to one of the FETs. This ensures that only one of the pairs switches
on in response to the input signal. With the two pairs, two input
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signals are needed. When these signals are the same, i.e. 00 or 11,
either the top or bottom pairs of FETS are switched on and no
voltage differential is applied across the motor, so nothing hap-
pens. This is shown in the first diagram where the switched-on
paths are shown in black and the switched-off paths are in grey.

If the input signals are different then a top and a bottom FET
is switched on and the voltage is applied across the motor and it
revolves. With a 01 signal it moves in one direction and with a 10
signal it moves in the reverse direction.

This type of bridge arrangement is frequently used for
controlling DC motors or any load where the voltage may need
reversing.

Driving LEDs
Light emitting diodes (LEDs) are often used as indicators in

digital systems and in many cases can simply be directly driven
from a logic output provided there is sufficient current and
voltage drive.

The voltage drive is necessary to get the LED to illuminate
in the first place. LEDs will only light up when their diode reverse
breakdown voltage is exceeded. This is usually about 2 to 2.2 volts
and less than the logic high voltage. The current drive determines
how bright the LED will appear and it is usual to have a current
limiting resistor in series with the LED to prevent it from drawing
too much current and overheating. For a logic device with a 5 volt
supply a 300 Ω resistor will limit the current to about 10 mA. The
problem comes if the logic output is only 2.4 or 2.5 volts and not the
expected 5 volts. This means that the resistor is sufficient to drop
enough voltage so that the LED does not light up. The solution is
to use a buffer so that there is sufficient current drive or alterna-
tively use a transistor to switch on the LED. There are special LED
driver circuits packs available that are designed to connect di-
rectly to an LED without the need for the current limiting resistor.
The resistor or current limiting circuit is included inside the
device.

Interfacing to relays
Another method of switching power is to use a mechanical

relay where the logic signal is used to energise the relay. The relay
contacts make or break accordingly and switch the current. The
advantage of a relay is that it can be used to switch either AC or DC
power and there is no electrical connections between the low
power relay coil connected to the digital circuits and the power
load that is being switched. As a result, they are frequently used
to switch high loads.

Relays do suffer from a couple of problems. The first is that
the relay can generate a back voltage across its terminals when the
energising current is switched off, i.e. when the logic output
switches from a high to a low. This back EMF as it is known can be
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a high voltage and cause damage to the logic circuits. A logic
output does not expect to see an input voltage differential of
several tens of volts! The solution is to put a diode across the relay
circuits so that in normal operation, the diode is reverse biased and
does nothing. When the back EMF is generated, the diode starts to
conduct and the voltage is shorted out and does no damage. This
problem is experienced with any coil, including those in DC
motors. It is advisable to fit a diode when driving these compo-
nents as well.

The other problem is that the switch contacts can get sticky
where they are damaged with the repeated current switching.
This can erode the contacts and cause bad contacts or in some cases
can cause local overheating so that the contacts weld themselves
together. The relay is now sticky in that the contacts will not
change when the coil is de-energised.

Interfacing to DC motors
So far with controlling DC motors, the emphasis has been

simple on-off type switching. It is possible with a digital system to
actually provide speed control using a technique called pulse
width modulation.

Motor on 
period

Motor on 
period

Motor on 
period

1 : 1 mark/space ratio
Medium motor speed

1 : 8 mark/space 
ratio

Slow motor speed

8 : 1 mark/space ratio
Fast motor speed

Using different PWM waveforms to control a DC motor speed

With a DC motor, there are two techniques for controlling
the motor speed: the first is to reduce the DC voltage to the motor.
The higher the voltage, the faster it will turn. At low voltages, the
control can be a bit hit and miss and the power control is ineffi-
cient. The alternative technique called pulse width modulation
(PWM) will control a motor speed not by reducing the voltage to
the motor but by reducing the time that the motor is switched on.

This is done by generating a square wave at a frequency of
several hundred hertz and changing the mark/space ratio of the
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wave form. With a large mark and a low space, the voltage is
applied to the motor for almost all of the cycle time, and thus the
motor will rotate very quickly. With a small mark and a large
space, the opposite is true. The diagram shows the waveforms for
medium, slow and fast motor control.

The only difference between this method of control and that
for a simple on-off switch is the timing of the pulses from the
digital output to switch the motor on and off. There are several
methods that can be used to generate these waveforms.

Software only
With a software-only system, the waveform timing is done

by creating some loops that provide the timing functions. The
program pseudo code shows a simple structure for this. The first
action is to switch the motor on and then to start counting through
a delay loop. The length of time to count through the delay loop
determines the motor-on period. When the count is finished, the
motor is switched off. The next stage is to count through a second
delay loop to determine the motor-off period.

repeat (forever)
{

switch on motor
delay loop1
switch off motor
delay loop2

}

This whole procedure is repeated for as long as the motor
needs to be driven. By changing the value of the two delays, the
mark/space ratio of the waveform can be altered. The total time
taken to execute the repeat loop gives the frequency of the wave-
form. This method is processor intensive in that the program has
to run while the motor is running. On first evaluation, it may seem
that while the motor is running, nothing else can be done. This is
not the case. Instead of simply using delay loops, other work can
be inserted in here whose duration now becomes part of the timing
for the PWM waveform. If the work is short, then the fine control
over the mark/space ratio is not lost because the contribution that
the work delay makes compared to the delay loop is small. If the
work is long, then the minimum motor-on time and thus motor
speed is determined by this period.

repeat (forever)
{

switch on motor
perform task a
delay loop1
switch off motor
delay loop2

}
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The timing diagrams for the software PWM implementation

The timing diagrams for the software loop PWM wave-
forms are shown in the diagrams above. In general, software only
timing loops are not efficient methods of generating PWM wave-
forms for motor control. The addition of a single timer greatly
improves the mechanism.

Using a single timer
By using a single timer, PWM waveforms can be created far

easier and free up the processor to do other things without
impacting the timing. There are several methods that can be used
to do this. The key principle is that the timer can be programmed
to create a periodic interrupt.

Method 1 — using the timer to define the on period
With this method, the timer is used to generate the on

period. The processor switches the motor on and then starts the
timer to count down. While the timer is doing this, the processor
is free to do what ever work is needed. The timer will eventually
time out and generate a processor interrupt. The processor serv-
ices the interrupt and switches the motor off. It then goes into a
delay loop still within the service routine until the time period
arrives to switch the motor on again. The processor switches the
motor on, resets the timer and starts it counting and continues
with its work by returning from the interrupt service routine.

Method — using the timer to define frequency period
With this method, the timer is used to generate a periodic

interrupt whose frequency is set by the timer period. When the
processor services the interrupt, it uses a software loop to deter-
mine the on period. The processor switches on the motor and uses
the software delay to calculate the on period. When the delay loop
is completed, it switches off the motor and can continue with other
work until the timer generates the next interrupt.
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Method 3 — using the timer to define both the on and off periods
With this method, the timer is used to generate both the on

and off periods. The processor switches the motor on, loads the
timer with the on-period value and then starts the timer to count
down. While the timer is doing this, the processor is free to do what
ever work is needed. The timer will eventually time out and
generate a processor interrupt, as before. The processor services
the interrupt and switches the motor off. It then loads the timer
with the value for the off period. The processor then starts the
timer counting and continues with its work by returning from the
interrupt service routine.

The timer now times out and generates an interrupt. The
processor services this by switching the motor on, loading the
timer with the one delay value and setting the timer counting
before returning from the interrupt.

As a result, the processor is only involved when interrupted
by the timer to switch the motor on or off and load the timer with
the appropriate delay value and start it counting. Of all these three
methods, this last method is the most processor efficient. With
methods 1 and 2, the processor is only free to do other work when
the mark/space ratio is such that there is time to do it. With a long
motor-off period, the processor performs the timing in software
and there is little time to do anything else. With a short motor-off
period, there is more processing time and far more work can be
done. The problem is that the work load that can be achieved is
dependent on the mark/space ratio of the PWM waveform and
engine speed. This can be a major restriction and this is why the
third method is most commonly used.

Using multiple timers
With two timers, it is possible to generate PWM waveforms

with virtually no software intervention. One timer is setup to
generate a periodic output at the frequency of the required PWM
waveform. This output is used to trigger a second timer which is
configured as a monostable. The second timer output is used to
provide the motor-on period. If these timers are set to automati-
cally reload, the first timer will continually trigger the second and
thus generate a PWM waveform. By changing the delay value in
the second timer, the PWM mark/space ratio can be altered as
needed.
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6 Interrupts and exceptions

Interrupts are probably the most important aspect of any
embedded system design and potentially can be responsible for
many problems when debugging a system. Although they are
simple in concept, there are many pitfalls that the unwary can fall
into. This chapter goes through the principles behind interrupts,
the different mechanisms that are used with various processor
architectures and provides a set of do’s and don’ts to help guide
the designer.

What is an interrupt?
We all experience interrupts at some point during our lives

and find that they either pose no problem at all or they can very
quickly cause stress and our performance decreases. For example,
take a car mechanic working in a garage who not only has to work
on the cars but also answer the phone. The normal work of
servicing a car continues throughout the day and the only other
task is answering the phone. Not a problem, you might think —
but each incoming phone call is an interrupt and requires the
mechanic to stop the current work, answer the call and then
resume the current work. The time it takes to answer the call
depends on what the current activity is. If the call requires the
machanic to simply put down a tool and pick up the phone, the
overhead is short. If the work is more involved, and the mechanic
needs to support a component's weight so it can be let go and then
need to clean up a little before picking up the phone, the overhead
can be large. It can be so long that the caller rings off and the phone
call is missed. The mechanic then has to restart the work. If the
mechanic receives a lot of phone calls, it is possible that more time
is spent in getting ready to answer the call and restarting the work
than is actually spent performing the work. In this case, the current
work will not be completed on time and the overall performance
will be greatly reduced.

With an embedded design, the mechanic is the processor
and the current work is the foreground or current task that it is
executing. The phone call is the interrupt and the time taken to
respond to it is the interrupt latency. If the system is not designed
correctly, coping with the interrupts can prevent the system from
completing its work or miss an interrupt. In either case, this
usually causes problems with the system and it will start to
misbehave. In the same way that humans get irrational and start
to go away from normal behaviour patterns when continually
interrupted while trying to complete some other task, embedded
systems can also start misbehaving! It is therefore essential to
understand how to use interrupts and perhaps when not to, so that
the embedded system can work correctly.
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The impact of interrupts and their processing does not stop
there either. It can also affect the overall design and structure of the
system, particularly of the software that will be running on it. In
a well designed embedded system, it is important to actively
design it with interrupts in mind and to define how they are going
to be used. The first step is to define what an interrupt is.

An interrupt is an event from either an internal or external
source where a processor will stop its current processing and
switch to a different instruction sequence in response to an event
that has occurred either internally or externally. The processor
may or may not return to its original processing. So what does this
offer the embedded system designer? The key advantage of the
interrupt is that it allows the designer to split software into two
types: background work where tasks are performed while waiting
for an interrupt and foreground work where tasks are performed
in response to interrupts. The interrupt mechanism is normally
transparent to the background software and it is not aware of the
existence of the foreground software. As a result, it allows soft-
ware and systems to be developed in a modular fashion without
having to create a spaghetti bolognese blob of software where all
the functions are thrown together. The best way of explaining this
is to consider several alternative methods of writing software for
a simple system.

The system consists of a processor that has to periodically
read in data from a port, process it and write it out. While waiting
for the data, it is designed to perform some form of statistical
analysis.

The spaghetti method
In this case, the code is written in a straight sequence where

occasionally the analysis software goes and polls the port to see if
there is data. If there is data present, this is processed before
returning to the analysis. To write such code, there is extensive use
of branching to effectively change the flow of execution from the
background analysis work to the foreground data transfer opera-
tions. The periodicity is controlled by two factors:

• The number of times the port is polled while executing the
analysis task. This is determined by the data transfer rate.

• The time taken between each polling operation to execute
the section of the background analysis software.

With a simple system, this is not too difficult to control but
as the complexity increases or the data rates go up requiring a
higher polling rate, this software structure rapidly starts to fall
about and become inefficient. The timing is software based and
therefore will change if any of the analysis code is changed or
extended. If additional analysis is done, then more polling checks
need to be inserted. As a result, the code often quickly becomes a
hard to understand mess.



Interrupts and exceptions 191

The situation can be improved through the use of subrou-
tines so that instead of reproducing the code to poll and service the
ports, subroutines are called and while this does improve the
structure and quality of the code, it does not remove the funda-
mental problem of a software timed design. There are several
difficulties with this type of approach:
• The system timing and synchronisation is completely soft-

ware dependent which means that it now assumes certain
processor speeds and instruction timing to provide a re-
quired level of performance.

• If the external data transfers are in bursts and they are
asynchronous, then the polling operations are usually inef-
ficient. A large number of checks will be needed to ensure
that data is not lost. This is the old polling vs. interrupt
argument reappearing.

• It can be very difficult to debug because there are multiple
element/entry points within the code that perform the
same operation. As a result, there are two asynchronous
operations going on in the system. The software execution
and asynchronous incoming data will mean that the routes
from the analysis software to the polling and data transfer
code will be used almost at random. The polling/data
transfer software that is used will depend on when the data
arrived and what the background software was doing. In
this way, it makes reproducing errors extremely difficult to
achieve and frequently can be responsible for intermittent
problems that are very difficult to solve because they are
difficult to reproduce.

• The software/system design is now time referenced as
opposed to being event driven. For the system to work,
there are time constraints imposed on it such as the fre-
quency of polling which cannot be broken. As a result, the
system can become very inefficient. To use an office anal-
ogy, it is not very efficient to have to send a nine page fax if
you have to be present to insert each page separately. You
either stay and do nothing while you wait for the right
moment to insert the next page or you have to check the
progress repeatedly so that you do not miss the next slot.

Using interrupts
An interrupt is, as its name suggests, a way of stopping the

current software thread that the processor is executing, changing
to a different software routine and executing it before restoring the
processor’s status to that prior to the interrupt so that it can
continue processing.

Interrupts can happen asynchronously to the operation and
can thus be used very efficiently with systems that are event as
opposed to time driven. However, they can be used to create time
driven systems without having to resort to software-based timers.
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To convert the previous example to one using interrupts, all
the polling and data port code is removed from the background
analysis software. The data transfer code is written as part of the
interrupt service routine (ISR) associated with the interrupt gen-
erated by the data port hardware. When the port receives a byte of
data, it generates an interrupt. This activates the ISR which proc-
esses the data before handing execution back to the background
task. The beauty of this type of operation is that the background
task can be written independently of the data port code and that
the whole timing of the system is now moved from being depend-
ent on the polling intervals to one of how quickly the data can be
accessed and processed.

Interrupt sources
There are many sources for interrupts varying from simply

asserting an external pin to error conditions within the processor
that require immediate attention.

Internal interrupts
Internal interrupts are those that are generated by on-chip

peripherals such as serial and parallel ports. With an external
peripheral, the device will normally assert an external pin which
is connected to an interrupt pin on the processor. With internal
peripherals, this connection is already made. Some integrated
processors allow some flexibility concerning these hardwired
connections and allow the priority level to be adjusted or even
masked out or disabled altogether.

External interrupts
External interrupts are the common method of connecting

external peripherals to the processor. They are usually provided
through external pins that are connected to peripherals and are
asserted by the peripheral. For example, a serial port may have a
pin that is asserted when there is data present within its buffers.
The pin could be connected to the processor interrupt pin so that
when the processor sees the data ready signal as an interrupt. The
corresponding interrupt service routine would then fetch the data
from the peripheral before restoring the previous processing.

Exceptions
Many processor architectures use the term exception as a

more generic term for an interrupt. While the basic definition is the
same (an event that changes the software flow to process the
event) an exception is extended to cover any event, including
internal and external interrupts, that causes the processor to
change to a service routine. Typically, exception processing is
normally coupled with a change in the processor’s mode. This will
be described in more detail for some example processors later in
this chapter.
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The range of exceptions can be large and varied. A MC68000
has a 256 entry vector table which describes about 90 exception
conditions with the rest reserved for future expansion. An 8 bit
micro may have only a few.

Software interrupts
The advantage of an interrupt is that it includes a mecha-

nism to change the program flow and in some processor
architectures, to change into a more protected state. This means
that an interrupt could be used to provide an interface to other
software such as an operating system. This is the function that is
provided by the software interrupt. It is typically an instruction or
set of instructions that allows a currently executing software
sequence to change flow and return using the more normal
interrupt mechanism. With devices like the Z80 this function is
provided by the SWI (software interrupt instruction). With the
MC68000 and PowerPC architectures, the TRAP instruction is
used.

To use software interrupts efficiently, additional data to
specify the type of request and/or data parameters has to be
passed to the specific ISR that will service the software interrupt.
This is normally done by using one or more of the processor’s
registers. The registers are accessible by the ISR and can be used to
pass status information back to the calling software.

It could be argued that there is no need to use software
interrupts because branching to different software routines can be
achieved by branches and jumps. The advantage that a software
interrupt offers is in providing a bridge and routine between
software running in the normal user mode and other software
running in a supervisor mode. The different modes allow the
resources such as memory and associated code and data to be
protected from each other. This means that if the user causes a
problem or makes an incorrect call, then the supervisor code and
data are not at risk and can therefore survive and thus have a
chance to restore the system or at least shut it down in an orderly
manner.

Non-maskable interrupts
A non-maskable interrupt (NMI) is as its name suggests an

external interrupt that cannot be masked out. It is by default at the
highest priority of any interrupt and will always be recognised
and processed. In terms of a strict definition, it is masked out when
the ISR starts to process the interrupt so that it is not repeatedly
recognised as a separate interrupt and therefore the non-maskable
part refers to the ability to mask the interrupt prior to its assertion.

The NMI is normally used as a last resort to generate an
interrupt to try and recover control. This can be presented as either
a reset button or connected to a fault detection circuit such as a
memory parity or watchdog timer. The 80x86 NMI as used on the
IBM PC is probably the most known implementation of this
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function. If the PC memory subsystem detects a parity error, the
parity circuitry asserts the NMI. The associated ISR does very little
except stop the processing and flash up a window on the PC saying
that a parity error has occurred and please restart the machine.

Recognising an interrupt
The start of the whole process is the recognition of an

interrupt. Internal interrupts are normally defined by the manu-
facturer and are already hardwired. External interrupts, however,
are not and can use a variety of mechanisms.

Edge triggered
With the edge triggered interrupt, it is the clock edge that is

used to generate the interrupt. The transition can either be from a
logical high to low or vice versa. With these systems, the recogni-
tion process is usually in two stages. The first stage is the external
transition that typically latches an interrupt signal. This signal is
then checked on an instruction boundary and, if set, starts the
interrupt process. At this point, the interrupt has been successfully
recognised and the source removed.

Level triggered
With a level triggered interrupt, the trigger is dependent on

the logic level. Typically, the interrupt pin is sampled on a regular
basis, e.g. after every instruction or on every clock edge. If it is set
to the appropriate logic level, the interrupt is recognised and acted
upon. Some processors require the level to be held for a minimum
number of clocks or for a certain pulse width so that extraneous
pulses that are shorter in duration than the minimum pulse width
are ignored.

Maintaining the interrupt
So far, the recognition of an interrupt has concentrated on

simply asserting the interrupt pin. This implies that provided the
minimum conditions have been met, the interrupt source can be
removed. Many microprocessor manufacturers recommend that
this is not done and that the interrupt should be maintained until
it has been explicitly serviced and the source told to remove it.

Internal queuing
This last point also raises a further potential complication.

If an interrupt is asserted so that it conforms with the recognition
conditions, removed and reasserted, the expectation would be
that the interrupt service routine would be executed twice to
service each interrupt. This assumes that there is an internal
counter within the processor that can count the number of inter-
rupts and thus effectively queue them. While this might be ex-
pected, this is not the case with most processors. The first interrupt
would be recognised and, until it is serviced, all other interrupts
generated using the pin are ignored. This is one reason why many
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processors insist on the maintain until serviced approach with
interrupts. Any subsequent interrupts that have the same level
will be maintained after the first one has been serviced and its
signal removed. When the exception processing is completed, the
remaining interrupts will be recognised and processed one by one
until they are all serviced.

The interrupt mechanism
Once an interrupt or exception has been recognised, then

the processor goes through an internal sequence to switch the
processing thread and activate the ISR or exception handler that
will service the interrupt or exception. The actual process and,
more importantly, the implied work that the service routine must
perform varies from processor architecture to architecture. The
general processing for an MC68000 or 80x86 which uses a stack
frame to hold essential data is different from a RISC processor that
uses special internal registers.

Before describing in detail some of the most used mecha-
nisms, let’s start with a generic explanation of what is involved.
The first part of the sequence is the recognition of the interrupt or
exception. This in itself does not necessarily immediately trigger
any processor reaction. If the interrupt is not an error condition or
the error condition is not connected with the currently executing
instruction, the interrupt will not be internally processed until the
currently executing instruction has completed. At this point,
known as an instruction boundary, the processor will start to
internally process the interrupt. If, on the other hand, the interrupt
is due to an error with the currently executing instruction, the
instruction will be aborted to reach the instruction boundary.

At the instruction boundary, the processor must now save
certain state information to allow it to continue its previous
execution path prior to the interrupt. This will typically include a
copy of the condition code register, the program counter and the
return address. This information may be extended to include
internal state information as well. The register set is not normally
included.

The next phase is to get the location of the ISR to service the
interrupt. This is normally kept in a vector table somewhere in
memory and the appropriate vector can be supplied by the periph-
eral or preassigned, or a combination of both approaches. Once the
vector has been identified, the processor starts to execute the code
within the ISR until it reaches a return from interrupt type of
instruction. At this point, the processor, reloads the status infor-
mation and processing continues the previous instruction stream.

Stack-based processors
With stack-based processors, such as the Intel 80x86,

Motorola M68000 family and most 8 bit microcontrollers based on
the original microprocessor architectures such as the 8080 and
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MC6800, the context information that the processor needs to
preserve is saved on the external stack.

When the interrupt occurs, the processor context informa-
tion such as the return address, copies of the internal status
registers and so on are stored out on the stack in a stack frame.
These stack frames can vary in size and content depending on the
source of the interrupt or exception.

2 clocks                   2–200 clocks                    12–200 clocks           3 clocks   

RECOGNISE

INTERRUPT

WAIT FOR CURRENT

INSTRUCTION TO

COMPLETE

STORE INTERNAL

INFORMATION ON

EXTERNAL STACK

GET

INTERRUPT

VECTOR

A typical processor interrupt sequence

When the interrupt processing is completed, the informa-
tion is extracted back from the stack and used to restore the
processing prior to the interrupt. It is possible to nest interrupts so
that several stack frames and interrupt routines must be executed
prior to the program flow being restored. The number of routines
that can be nested in this way depends on the storage space
available. With external stacks, this depends in turn on the amount
of available memory.

Other processors use an internal hardware stack to reduce
the external memory cycles necessary to store the stack frame.
These hardware stacks are limited in the number of interrupts or
exceptions that can be nested. It then falls to the software designer
to ensure that this limit is not exceeded. To show these different
interrupt techniques, let’s look at some processor examples.

MC68000 interrupts
The MC68000 interrupt and exception processing is based

on using an external stack to store the processor’s context informa-
tion. This is very common and similar methods are provided on
the 80x86 family and many of the small 8 bit microcontrollers.

Seven interrupt levels are supported and are encoded onto
three interrupt pins IP0–IP2. With all three signals high, no exter-
nal interrupt is requested. With all three asserted, a non-maskable
level 7 interrupt is generated. Levels 1–6, generated by other
combinations, can be internally masked by writing to the appro-
priate bits within the status register.

The interrupt cycle is started by a peripheral generating an
interrupt. This is usually encoded using a LS148 seven to three
priority encoder. This converts seven external pins into a 3 bit
binary code. The appropriate code sequence is generated and
drives the interrupt pins. The processor samples the levels and
requires the levels to remain constant to be recognised. It is
recommended that the interrupt level remains asserted until its
interrupt acknowledgement cycle commences to ensure recogni-
tion.
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An example MC68000 interrupt design
Once the processor has recognised the interrupt, it waits

until the current instruction has been completed and starts an
interrupt acknowledgement cycle. This starts an external bus
cycle with all three function code pins driven high to indicate an
interrupt acknowledgement cycle.

The interrupt level being acknowledged is placed on ad-
dress bus bits A1–A3 to allow external circuitry to identify which
level is being acknowledged. This is essential when one or more
interrupt requests are pending. The system now has a choice over
which way it will respond:

• If the peripheral can generate an 8 bit vector number, this is
placed on the lower byte of the address bus and DTACK*
asserted. The vector number is read and the cycle com-
pleted. This vector number then selects the address and
subsequent software handler from the vector table.

• If the peripheral cannot generate a vector, it can assert VPA*
and the processor will terminate the cycle using the M6800
interface. It will select the specific interrupt vector allocated
to the specific interrupt level. This method is called auto-
vectoring.
To prevent an interrupt request generating multiple ac-

knowledgements, the internal interrupt mask is raised to the
interrupt level, effectively masking any further requests. Only if a
higher level interrupt occurs will the processor nest its interrupt
service routines. The interrupt service routine must clear the
interrupt source and thus remove the request before returning to
normal execution. If another interrupt is pending from a different
source, it can be recognised and cause another acknowledgement
to occur.

A typical circuit is shown. Here, level 5 has been allocated
as a vectored interrupt and level 3 auto-vectored. The VPA* signal
is gated with the level 3 interrupt to allow level 3 to be used with
vectored or auto-vectored sources in future designs.



198 Embedded systems design

RISC exceptions
RISC architectures have a slightly different approach to

exception handling compared to that of CISC architectures. This
difference can catch designers out.

Taking the PowerPC architecture as an example, there are
many similarities: an exception is still defined as a transition from
the user state to the supervisor state in response to either an
external request or error, or some internal condition that requires
servicing. Generating an exception is the only way to move from
the user state to the supervisor state. Example exceptions include
external interrupts, page faults, memory protection violations and
bus errors. In many ways the exception handling is similar to that
used with CISC processors, in that the processor changes to the
supervisor state, vectors to an exception handler routine, which
investigates the exception and services it before returning control
to the original program. This general principle still holds but there
are fundamental differences which require careful consideration.

When an exception is recognised, the address of the instruc-
tion to be used by the original program when it restarts and the
machine state register (MSR) are stored in the supervisor registers,
SRR0 and SRR1. The processor moves into the supervisor state and
starts to execute the handler, which resides at the associated vector
location in the vector table. The handler can, by examining the
DSISR and FPSCR registers, determine the exact cause and rectify
the problem or carry out the required function. Once completed,
the rfi instruction is executed. This restores the MSR and the
instruction address from the SRR0 and SRR1 registers and the
interrupted program continues.

Exception

Supervisor 
privilege level

User privilege
level

Normal

rfi

Error handlers
Service providers

Errors, traps
and interrupts

Applications

The exception transition model

There are four general types of exception: asynchronous
precise or imprecise and synchronous precise and imprecise.
Asynchronous and synchronous refer to when the exception is
caused: a synchronous exception is one that is synchronised, i.e.
caused by the instruction flow. An asynchronous exception is one
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where an external event causes the exception; this can effectively
occur at any time and is not dependent on the instruction flow. A
precise exception is where the cause is precisely defined and is
usually recoverable. A memory page fault is a good example of
this. An imprecise exception is usually a catastrophic failure,
where the processor cannot continue processing or allow a par-
ticular program or task to continue. A system reset or memory
fault while accessing the vector table falls into this category.

Synchronous precise
All instruction caused exceptions are handled as synchro-

nous precise exceptions. When such an exception is encountered
during program execution, the address of either the faulting
instruction or the one after it is stored in SRR0. The processor will
have completed all the preceding instructions; however, this does
not guarantee that all memory accesses caused by these instruc-
tions are complete. The faulting instruction will be in an indeter-
minate state, i.e. it may have started and be partially or completely
completed. It is up to the exception handler to determine the
instruction type and its completion status using the information
bits in the DSISR and FPSCR registers.

Synchronous imprecise
This is generally not supported within the PowerPC archi-

tecture and is not present on the MPC601, MPC603 or MCP604
implementations. However, the PowerPC architecture does specify
the use of synchronous imprecise handling for certain floating
point exceptions and so this category may be implemented in
future processor designs.

Asynchronous precise
This exception type is used to handle external interrupts

and decrementer-caused exceptions. Both can occur at any time
within the instruction processing flow. All instructions being
processed before the exceptions are completed, although there is
no guarantee that all the memory accesses have completed. SRR0
stores the address of the instruction that would have been ex-
ecuted if no interrupt had occurred.

These exceptions can be masked by clearing the EE bit to
zero in the MSR. This forces the exceptions to be latched but not
acted on. This bit is automatically cleared to prevent this type of
interrupt causing an exception while other exceptions are being
processed.

The number of events that can be latched while the EE bit is
zero is not stated. This potentially means that interrupts or
decrementer exceptions could be missed. If the latch is already
full, any subsequent events are ignored. It is therefore recom-
mended that the exception handler performs some form of
handshaking to ensure that all interrupts are recognised.
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Asynchronous imprecise
Only two types of exception are associated with this: system

resets and machine checks. With a system reset all current process-
ing is stopped, all internal registers and memories are reset; the
processor executes the reset vector code and effectively restarts
processing. The machine check exception is only taken if the ME
bit of the MSR is set. If it is cleared, the processor enters the
checkstop state.

Recognising RISC exceptions
Recognising an exception in a superscalar processor, espe-

cially one where the instructions are executed out of program
order, can be a little tricky — to say the least. The PowerPC
architecture handles synchronous exceptions (i.e. those caused by
the instruction stream) in strict program order, even though
instructions further on in the program flow may have already
generated an exception. In such cases, the first exception is han-
dled as if the following instructions have never been executed and
the preceding ones have all completed.

There are occasions when several exceptions can occur at
the same time. Here, the exceptions are handled on a priority basis
using the priority scheme shown in the table below. There is
additional priority for synchronous precise exceptions because it
is possible for an instruction to generate more than one exception.
In these cases, the exceptions would be handled in their own
priority order as shown below.

Class Priority Description
Async imprecise 1 System reset

2 Machine check
Sync precise 3 Instruction dependent
Async precise 4 External interrupt

5 Decrementer interrupt
Exception class priority

If, for example, with the single-step trace mode enabled, an
integer instruction executed and encountered an alignment error,
this exception would be handled before the trace exception. These
synchronous precise priorities all have a higher priority than the
level 4 and 5 asynchronous precise exceptions, i.e. the external
interrupt and decrementer exceptions.

When an exception is recognised, the continuation instruc-
tion address is stored in SRR0 and the MSR is stored in SRR1. This
saves the machine context and provides the interrupted program
with the ability to continue. The continuation instruction may not
have started, or be partially or fully complete, depending on the
nature of the exception. The FPSCR and DSISR registers contain
further diagnostic information for the handler. When in this state,
external interrupts and decrementer exceptions are disabled. The
EE bit is cleared automatically to prevent such asynchronous
events from unexpectedly causing an exception while the handler
is coping with the current one.
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Instruction access

Privileged 
instructions

Precise mode 
FP exceptions

Integer 
instructions

TRAP System 
call

Align-
ment

Floating point
instructions

FP not 
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ment

Data 
access

I/O  control
I/F error

Run mode, e.g. Trace

Asynchronous
precise exceptions

Program exception

First

Last

Data 
access

Precise exceptions priority

It is important to note that the machine status or context
which is necessary to allow normal execution to continue is
automatically stored in SRR0 and SRR1 — which overwrites the
previous contents. As a result, if another exception occurs during
an exception handler execution, the result can be catastrophic: the
exception handler’s machine status information in SRR0 and SRR1
would be overwritten and lost. In addition, the status information
in FPSCR and DSISR is also overwritten. Without this information,
the handler cannot return to the original program. The new
exception handler takes control, processes its exception and, when
the rfi instruction is executed, control is passed back to the first
exception handler. At this point, this handler does not have its
own machine context information to enable it to return control to
the original program. As a result the system will, at best, have lost
track of that program; at worst, it will probably crash.

This is not the case with the stack-based exception handlers
used on CISC processors. With these architectures, the machine
status is stored on the stack and, provided there is sufficient stack
available, exceptions can safely be nested, with each exception
context safely and automatically stored on the stack.

It is for this reason that the EE bit is automatically cleared to
disable the external and decrementer interrupts. Their asynchro-
nous nature means that they could occur at any time and if this
happened at the beginning of an exception routine, that routine’s
ability to return control to the original program would be lost.
However, this does impose several constraints when program-
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ming exception handlers. For the maximum performance in the
exception handler, it cannot waste time by saving the machine
status information on a stack or elsewhere. In this case, exception
handlers should prevent any further exceptions by ensuring that
they:

• reside in memory and not be swapped out;
• have adequate stack and memory resources and not cause

page faults;
• do not enable external or decrementer interrupts;
• do not cause any memory bus errors.

For exception handlers that require maximum performance
but also need the best security and reliability, they should imme-
diately save the machine context, i.e. SRR registers FPSCR and
DSISR, preferably on a stack before continuing execution.

In both cases, if the handler has to use or modify any of the
user programming model, the registers must be saved prior to
modification and they must be restored prior to passing control
back. To minimise this process, the supervisor model has access to
four additional general-purpose registers which it can use inde-
pendently of the general-purpose register file in the user program-
ming model.

Enabling RISC exceptions
Some exceptions can be enabled and disabled by the super-

visor by programming bits in the MSR. The EE bit controls external
interrupts and decrementer exceptions. The FE0 and FE1 bits
control which floating point exceptions are taken. Machine check
exceptions are controlled via the ME bit.

Returning from RISC exceptions
As mentioned previously, the rfi instruction is used to

return from the exception handler to the original program. This
instruction synchronises the processor, restores the instruction
address and machine state register and the program restarts.

The vector table
Once an exception has been recognised, the program flow

changes to the associated exception handler contained in the
vector table.

The vector table is a 16 kbyte block (0 to $3FFF) that is split
into 256 byte divisions. Each division is allocated to a particular
exception or group of exceptions and contains the exception
handler routine associated with that exception. Unlike many other
architectures, the vector table does not contain pointers to the
routines but the actual instruction sequences themselves. If the
handler is too large to fit in the division, a branch must be used to
jump to its continuation elsewhere in memory.
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The table can be relocated by changing the EP bit in the
machine state register (MSR). If cleared, the table is located at
$0000000. If the bit is set to one (its state after reset) the vector table
is relocated to $FFF00000. Obviously, changing this bit before
moving the vector table can cause immense problems!

Reserved

System Reset

Machine Check

Data Access

Instruction Access

External Interrupt

Alignment

Program

Floating-Point Unavailiable

Decrementer

Reserved

Trace

System Call

0 0000

0 0100

0 0200

0 0300

0 0400

0 0500

0 0600

0 0700

0 0800

0 0900

0 0A00

0 0B00

0 0D00

0 0C00

Vector 
Offset
(hex)

Exception 

Power-on, Hard & Soft Resets

Eabled through MSR [ME]

Data Page Fault/Memory Protection

Instr. Page Fault/Memory Protection

INT

Instr. Traps, Errors, Illegal, Privileged 

Access crosses Segment or Page

MSR[FP]=0 & F.P. Instruction encountered

Decrementer Register passes through 0

‘sc’ instruction

Floating-Point Assist0 0E00 A floating-point exception 

Reserved

Single-step instruction trace

The basic PowerPC vector table

Identifying the cause
Most programmers will experience exception processing

when a program has crashed or a cryptic message is returned from
a system call. The exception handler can provide a lot of informa-
tion about what has gone wrong and the likely cause. In this
section, each exception vector is described and an indication of the
possible causes and remedies given.

The first level investigation is the selection of the appropri-
ate exception handler from the vector table. However, the excep-
tion handler must investigate further to find out the exact cause
before trying to survive the exception. This is done by checking the
information in the FPSCR, DSISR, DAR and MSR registers, which
contain different information for each particular vector.

Fast interrupts
There are other interrupt techniques which greatly simplify

the whole process but in doing so provide very fast servicing at the
expense of several restrictions. These so-called fast interrupts are
often used on DSP processors or microcontrollers where a small
software routine is executed without saving the processor context.
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This type of support is available on the DSP56000 signal
processors, for example. External interrupts normally generate a
fast interrupt routine exception. The external interrupt is synchro-
nised with the processor clock for two successive clocks, at which
point the processor fetches the two instructions from the appropri-
ate vector location and executes them.

?

EVENT t

t = resolution of 
timer

DSP5600

IRQA

PT PT PT

PT

PT

PT

PT

PT

EVENT INTERRUPT A 

(standard service routine)

         JSR   VEL

VEL compute period

         reset R1

         rti

SCI TIMER 

(2 instruction fast interrupt)

MOVE (R1)+

NOP

Using interrupts to time an event

Once completed, the program counter simply carries on as
if nothing has happened. The advantage is that there is no stack
frame building or any other such delays. The disadvantage con-
cerns the size of the routine that can be executed and the resources
allocated. When using such a technique, it is usual to allocate a
couple of address registers for the fast interrupt routine to use.
This allows coefficient tables to be built, almost in parallel with
normal execution.

The SCI timer is programmed to generate a two instruction
fast interrupt which simply auto-increments register R1. This acts
as a simple counter which times the period between events. The
event itself generates an IRQA interrupt, which forces a standard
service routine. The exception handler jumps to routine VEL
which processes the data (i.e. takes the value of R and uses it to
compute the period), resets R1 and returns from the interrupt.
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Interrupt controllers
In many embedded systems there are more external sources

for interrupts than interrupt pins on the processor. In this case, it
is necessary to use an interrupt controller to provide a larger
number of interrupt signals. An interrupt controller performs
several functions:
• It provides a large number of interrupt pins that can be

allocated to many external devices. Typically this is at least
eight and higher numbers can be supported by cascading
two or more controllers together. This is done on the IBM
PC AT where two 8 port controllers are cascaded to give 15
interrupt levels. One level is lost to provide the cascade link.

• It orders the interrupt pins in a priority level so that a high
level interrupt will inhibit a lower level interrupt.

• It may provide registers for each interrupt pin which con-
tain the vector number to be used during an acknowledge
cycle. This allows peripherals that do not have the ability to
provide a vector to do so.

• They can provide interrupt masking. This allows the sys-
tem software to decide when and if an interrupt is allowed
to be serviced. The controller, through the use of masking
bits within a controller, can prevent an interrupt request
from being passed through to the processor. In this way, the
system has a multi-level approach to screening interrupts.
It uses the screening provided by the processor to provide
coarse grain granularity while the interrupt controller pro-
vides a finer level.

Instruction restart and continuation
The method of continuing the normal execution after ex-

ception processing due to a mid-instruction fault, such as that
caused by a bus error or a page fault, can be done in one of two
ways. Instruction restart effectively backs up the machine to the
point in the instruction flow where the error occurred. The proc-
essor re-executes the instruction and carries on. The instruction
continuation stores all the internal data and allows the errant bus
cycle to be restarted, even if it is in the middle of an instruction.

The continuation mechanism is undoubtedly easier for
software to handle, yet pays the penalty of having extremely large
stack frames or the need to store large amounts of context informa-
tion to allow the processor to continue mid-instruction. The restart
mechanism is easier from a hardware perspective, yet can pose
increased software overheads. The handler has to determine how
far back to restart the machine and must ensure that resources are
in the correct state before commencing.

The term ‘restart’ is important and has some implications.
Unlike many CISC processors (for example, the MC68000, MC68020
and MC68030) the instruction does not continue; it is restarted



206 Embedded systems design

from the beginning. If the exception occurred in the middle of the
instruction, the restart repeats the initial action. For many instruc-
tions this may not be a problem — but it can lead to some
interesting situations concerning memory and I/O accesses.

If the instruction is accessing multiple memory locations
and fails after the second access, the first access will be repeated.
The store multiple type of instruction is a good example of this,
where the contents of several registers are written out to memory.
If the target address is an I/O peripheral, an unexpected repeat
access may confuse it.

While the majority of the M68000 and 80x86 families are of
the continuation type. The MC68040 and PowerPC families along
with most microcontrollers — especially those using RISC
architectures — are of the restart type. As processors increase in
speed and complexity, the penalty of large stack frames shifts the
balance in favour of the restart model.

Interrupt latency
One of the most important aspects of using interrupts is in

the latency. This is usually defined as the time taken by the
processor from recognition of the interrupt to the start of the ISR.
It consists of several stages and is dependent on both hardware
and software factors. Its importance is that it defines several
aspects of an embedded system with reference to its ability to
respond to real-time events. The stages involved in calculating a
latentcy are:

• The time taken to recognise the interrupt
Do not asssume that this is instantaneous as it will depend
on the processor design and its own interrupt recognition
mechanism. As previously mentioned, some processors
will repeatedly sample an interrupt signal to ensure that it
is a real one and not a false one.

• The time taken by the CPU to complete the current instruc-
tion
This will also vary depending on what the CPU is doing and
its complexity. For a simple CISC processor, this time will
vary as its instructions all take a different number of clocks
to complete. Usually the most time-consuming instructions
are those that perform multiplication or division or some
complex data manipulation such as bit field operations. For
RISC processors with single cycle execution, the time is
usually that to clear the execution pipeline and is 1 or 2
clocks. For complex processors that execute multiple in-
structions per clocks, this calculation can get quite difficult.
The other problem is identifying which instruction will be
executing when the interrupt is recognised. In practice, this
is impossible to do and the worst case execution time is
used. This can often be one or more orders of magnitude
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greater than a typical instruction. A 32 bit division could
take several hundred clocks while a simple add or subtract
could be 1 cycle. Some compilers will restrict the use of
multiple cycle instructions so that these worst case figures
can be improved by only using fast executing instructions.
As part of this, division and multiplication are often per-
formed by software routines using a sequence of faster add,
subtract and bit manipulation instructions. Of course, if the
code is being written in assembly, then this can be finely
tuned by examining the instruction mix.

• The time for the CPU to perform a context switch
This is the time taken by the processor to save its internal
context information such as its program counter, internal
data registers and anything else it needs. For CISC proces-
sors, this can involve creating blocks of data on the stack by
writing the information externally. For RISC processors this
may mean simply switching registers internally without
explicitly saving any information. Register windowing or
shadowing is normally used.

• The time taken to fetch the interrupt vector
This is normally the time to fetch a single value from
memory but even this time can be longer than you think! We
will come back to this topic.

• The time taken to start the interrupt service routine execu-
tion
Typically very short. However remember that because the
pipeline is cleared, the instruction will need to be clocked
through to execute it and this can take a few extra clocks,
even with a RISC architecture.
In practice, processor architectures will have different

precedures for all these stages depending on their design philosphy
and sophistication.

With a simple microcontroller, this calculation is simple:
take the longest execution time for any instruction, add to it the
number of memory accesses that the processor needs times the
number of clocks per access, add any other delays and you arrive
with a worst case interrupt latency. This becomes more difficult
when other factors are added such as memory management and
caches. While the basic calculations are the same, the number of
clocks involved in a memory access can vary dramatically — often
by an order of magnitude! To correctly calculate the value, the
interupt latency calculations also have to take into account the cost
of external memory access and this can sometimes be the over-
whelmingly dominant factor.

While all RISC systems should be designed with single
cycle memory access for optimum performance, the practicalities
are that memory cycles often incur wait states or bus delays.
Unfortunately for designers, RISC architectures cannot tolerate
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such delays — one wait state halves the performance, two reduces
performance to a third. This can have a dramatic effect on real-time
performance. All the advantages gained with the new architecture
may be lost.

The solution is to use caches to speed up the memory access
and remove delays. This is often used in conjunction with memory
management to help control the caches and ensure data coher-
ency, as well as any address translation. However, there are some
potential penalties for any system that uses caches and memory
management which must be considered.

CACHE MMU MAIN MEMORY

Cache miss,

replace dirty data

Page fault,

table walk

Store dirty data,

fetch line,

supply code

Fetch data

CPU

The impact of a cache miss
Consider the system in the diagram. The processor is using

a Harvard architecture with combined caches and memory man-
agement units to buffer it from the slower main memory. The
caches are operating in copyback mode to provide further speed
improvements. The processor receives an interrupt and immedi-
ately starts exception processing. Although the internal context is
preserved in shadow registers, the vector table, exception routines
and data exist in external memory.

In this example, the first data fetch causes a cache miss. All
the cache lines are full and contain some dirty data, therefore the
cache must update main memory with a cache line before fetching
the instruction. This involves an address translation, which causes
a page fault. The MMU now has to perform an external table walk
before the data can be stored. This has to complete before the cache
line can be written out which, in turn, must complete before the
first instruction of the exception routine can be executed. The
effect is staggering — the quick six cycle interrupt latency is totally
overshadowed by the 12 or so memory accesses that must be
completed simply to get the first instruction. This may be a worst
case scenario, but it has to be considered in any real-time design.
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This problem can be contained by declaring exception
routines and data as non-cachable, or through the use of a BATC
or transparent window to remove the page fault and table walk.
These techniques couple the CPU directly to external memory
which, if slow, can be extremely detrimental to performance.
Small areas of very fast memory can be reserved for exception
handling to solve this problem; locking routines in cache can also
be solutions, at the expense of performance in other system
functions. It should be of no surprise that many of today's RISC
controllers are using local memory (tightly coupled memory or
TCM) to store interrupt routines and thus allow the system
designer to address the latency problems of caches and memory
management. This is added to the processor and resides on-chip.
Access does not require any off-chip bus cycles and so it will not
slow down the processor whenever it is used. By locating the time
critical routines and data in this tightly coupled memory, it is
possible to not only reduce the latency and ISR execution time but
also make the execution more consistent in its timing.

Do’s and Don’ts
This last section describes the major problems that are

encountered with interrupt and exceptions, and, more impor-
tantly, how to avoid them.

Always expect the unexpected interrupt
Always include a generic handler for all unused/unex-

pected exceptions. This should record as much information about
the processor context such as the exception/vector table number,
the return address and so on. This allows unexpected exceptions
to be detected and recognised instead of causing the processor and
system to crash with little or no hope of finding what has hap-
pened.

Don't expect too much from an interrupt
Bear in mind that an interrupt is not for free and the simple

act of generating one and returning even if the interrupt service
routine does nothing, will consume performance. There will be a
point where the number of interrupts are so high that the system
spends more time with the overhead than actually processing or
doing something with the data. It is important to balance the cost
of an interrupt's overhead against the processing it will do. A good
way of thinking about this is using a truck to carry bricks from A
to B. If the truck carries one brick at a time, the time taken to load
the truck, push it and unload it will mean it will be slower than
simply picking up the brick and moving it. Loading the truck with
so many bricks so that it is difficult to push and takes a long time
is equally not good. The ideal is a balance where 10 or 20 bricks are
moved at once in the same time it would take to move one. Don't
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overload the system with too many interrupts or put too much into
the interrupt service routine.

Use handshaking
Just because an interrupt signal has been applied for the

correct number of clocks, do not assume that it has been recog-
nised. It might have been masked out or not seen for some other
reason. Nearly all processor designs use a handshaking mecha-
nism where the interrupt is maintained until it is explicitly ac-
knowledged and removed. This may be a hardware signal or a
constituent of the ISR itself where it will remove the interrupt
source by writing to a register in the peripheral.

Control resource sharing
If a resource such as a variable is used by the normal

software and within an interrupt routine, care must be taken to
prevent corruption.

For example, if you have a piece of C code that modifies a
variable a as shown in the example, the expected output would be
a=6 if the value of a was 3.

{
read(a);
a=2*a;
printf(“a=“, a);
}

If variable a was used in an interrupt routine then there is
a risk that the original code will fail, e.g. it would print out a=8, or
some other incorrect value. The explanation is that the interrupt
routine was executed in the middle of the original code. This
changed the value of a and therefore the wrong value was re-
turned.

{
read(a);

Interrupt!
read(a);
Return;

a=2*a;
printf(“a=“, a);
}

Exceptions and interrupts can occur asynchronously and
therefore if the system shares any resource such as data, or access
to peripherals and so on, it is important that any access is handled
in such a way that an interrupt cannot corrupt the program flow.
This is normally done by masking interrupts before access and
unmasking them afterwards. The example code has been modi-
fied to include the mask_int and unmask_int calls. The problem is
that while the interrupts are masked out, the interrupt latency is
higher and therefore this is not a good idea for all applications.
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{
mask_int();
read(a);
a=2*a;
printf(“a=“, a);
unmask_int();
}

This problem is often the cause of obscure faults where the
system works fine for days and then crashes i.e. the fault only
occurs when certain events happen within certain time frames.
The best way to solve the problem in the first place is to redesign
the software so that the sharing is removed or uses a messaging
protocol that copies data to ensure that corruption cannot take
place.

Beware false interrupts
Ensure that all the hardware signals and exception routines

do not generate false interrupts. This can happen in software when
the interrupt mask or the interrupt handler executes the return
from interrupt instruction before the original interrupt source is
removed.

In hardware, this can be caused by pulsing the interrupt line
and assuming that the processor will only recognise the first pulse
and mask out the others. Noise and other factors can corrupt the
interrupt lines so that the interrupt is not recognised correctly.

Controlling interrupt levels
This was touched on earlier when controlling resources. It

is important to assign high priority events to high priority inter-
rupts. If this does not happen then priority inversion can occur
where the lower priority event is serviced while higher priority
events wait. This is quite a complex topic and is discussed in more
detail in the chapter on real-time operating systems.

Controlling stacks
It is important to prevent stacks from overflowing and

exceeding the storage space, whether it is external or internal
memory. Some software, in an effort to optimise performance, will
remove stack frames from the stack so that the return process can
go straight back to the initial program. This is common with nested
routines and can be a big time saver. However, it can also be a
major source of problems if the frames are not correctly removed
or if they are when information must be returned. Another com-
mon mistake is to assume that all exceptions have the same size
stack frames for all exceptions and all processor models within the
family. This is not always the case!
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7 Real-time operating
systems

What are operating systems?
Operating systems are software environments that provide

a buffer between the user and the low level interfaces to the
hardware within a system. They provide a constant interface and
a set of utilities to enable users to utilise the system quickly and
efficiently. They allow software to be moved from one system to
another and therefore can make application programs hardware
independent. Program debugging tools are usually included which
speed up the testing process. Many applications do not require
any operating system support at all and run direct on the hard-
ware.

VMEbus 
SYSTEM

Application

Operating system

System calls

Device drivers Device drivers

Discrete
components

CPU RAM

Hardware independence through the use of an operating system

Such software includes its own I/O routines, for example,
to drive serial and parallel ports. However, with the addition of
mass storage and the complexities of disk access and file struc-
tures, most applications immediately delegate these tasks to an
operating system.

The delegation decreases software development time by
providing system calls to enable application software access to
any of the I/O system facilities. These calls are typically made by
building a parameter block, loading a specified register with its
location and then executing a software interrupt instruction.
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Data                    Address

Parameter 
block in 
memory

1. Create parameter block. This has the
    data for the operating system to use.
2. Load pointer to block into A0.
3. Execute a TRAP instruction.
4. Wait for call to complete.
5. Check parameter block for status.

A0

Typical system call mechanism for the M680x0 processor family

The TRAP instruction is the MC68000 family equivalent of
the software interrupt and switches the processor into supervisor
mode to execute the required function. It effectively provides a
communication path between the application and the operating
system kernel. The kernel is the heart of the operating system
which controls the hardware and deals with interrupts, memory
usage, I/O systems etc. It locates a parameter block by using an
address pointer stored in a predetermined address register. It
takes the commands stored in a parameter block and executes
them. In doing so, it is the kernel that drives the hardware,
interpreting the commands passed to it through a parameter
block. After the command is completed, status information is
written back into the parameter block, and the kernel passes
control back to the application which continues running in USER
mode. The application will find the I/O function completed with
the data and status information written into the parameter block.
The application has had no direct access to the memory or hard-
ware whatsoever.

These parameter blocks are standard throughout the oper-
ating system and are not dependent on the actual hardware
performing the physical tasks. It does not matter if the system uses
an MC68901 multifunction peripheral or a 8530 serial communica-
tion controller to provide the serial ports: the operating system
driver software takes care of the dependencies. If the parameter
blocks are general enough in their definition, data can be supplied
from almost any source within the system, for example a COPY
utility could use the same blocks to get data from a serial port and
copy it to a parallel port, or for copying data from one file to
another. This idea of device independence and unified I/O allows
software to be reused rather than rewritten. Software can be easily
moved from one system to another. This is important for modular
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embedded designs, especially those that use an industry standard
bus such as VMEbus, where system hardware can easily be
upgraded and/or expanded.

Operating system internals
The first widely used operating system was CP/M, devel-

oped for the Intel 8080 microprocessor and 8" floppy disk systems.
It supported I/O calls by two jump tables — BDOS (basic disk
operating system) and BIOS (basic I/O system). It quickly became
a standard within the industry and a large amount of application
software became available for it. Many of the micro-based busi-
ness machines of the late 1970s and early 1980s were based on CP/
M. Its ideas even formed the basis of MS-DOS, chosen by IBM for
its personal computers.

CP/M is a good example of a single tasking operating
system. Only one task or application can be executed at any one
time and therefore it only supports one user at a time. When an
application is loaded, it provides the user-defined part of the total
‘CP/M’ program.
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C000

A000

Application program:
resident section

Application program:
overlay loaded from disk

Operating system

Disk 
storage

Overlay 
files

Program overlays

Any application program has to be complete and therefore
the available memory often becomes the limiting factor. Program
overlays are often used to solve this problem. Parts of the complete
program are stored separately on disk and retrieved and loaded
over an unused code area when needed. This allows applications
larger than the available memory to run, but it places the control
responsibility on the application. This is similar to virtual memory
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schemes where the operating system divides a task’s memory into
pages and swaps them between memory and mass storage. How-
ever, the operating system assumes complete control and such
schemes are totally transparent to the user.

With a single tasking operating system, it is not possible to
run multiple tasks simultaneously. Large applications have to be
run sequentially and cannot support concurrent operations. There
is no support for message passing or task control, which would
enable applications to be divided into separate entities. If a system
needs to take log data and store it on disk and, at the same time,
allow a user to process that data using an online database package,
a single tasking operating system would need everything to be
integrated. With a multitasking operating system, the data log-
ging task can run at the same time as the database. Data can be
passed between each element by a common file on disk, and
neither task need have any direct knowledge of the other. With a
single tasking system, it is likely that the database program would
have to be written from scratch. With the multitasking system, a
commercial program can be used, and the logging software inter-
faced to it. These restrictions forced many applications to interface
directly with the hardware and therefore lose the hardware inde-
pendence that the operating system offered. Such software would
need extensive modification to port it to another configuration.

Multitasking operating systems
For the majority of embedded systems, a single tasking

operating system is too restrictive. What is required is an operat-
ing system that can run multiple applications simultaneously and
provide intertask control and communication. The facilities once
only available to mini and mainframe computer users are now
required by 16/32 bit microprocessor users.

A multitasking operating system works by dividing the
processor’s time into discrete time slots. Each application or task
requires a certain number of time slots to complete its execution.
The operating system kernel decides which task can have the next
slot, so instead of a task executing continuously until completion,
its execution is interleaved with other tasks. This sharing of
processor time between tasks gives the illusion to each user that he
is the only one using the system.

Context switching, task tables, and kernels
Multitasking operating systems are based around a

multitasking kernel which controls the time slicing mechanisms.
A time slice is the time period each task has for execution before it
is stopped and replaced during a context switch. This is periodi-
cally triggered by a hardware interrupt from the system timer.
This interrupt may provide the system clock and several inter-
rupts may be executed and counted before a context switch is
performed.
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When a context switch is performed, the current task is
interrupted, the processor’s registers are saved in a special table
for that particular task and the task is placed back on the ‘ready’
list to await another time slice. Special tables, often called task
control blocks, store all the information the system requires about
the task, for example its memory usage, its priority level within the
system and its error handling. It is this context information that is
switched when one task is replaced by another.

Context Switches

Time
slice

Task A execution

Task B execution

Task C execution

Task D execution

Time

Time slice mechanism for multitasking operating systems

The ‘ready’ list contains all the tasks and their status and is
used by the scheduler to decide which task is allocated the next
time slice. The scheduling algorithm determines the sequence and
takes into account a task’s priority and present status. If a task is
waiting for an I/O call to complete, it will be held in limbo until the
call is complete.

Once a task is selected, the processor registers and status at
the time of its last context switch are loaded back into the processor
and the processor is started. The new task carries on as if nothing
had happened until the next context switch takes place. This is the
basic method behind all multitasking operating systems.

The diagram shows a simplified state diagram for a typical
real-time operating system which uses this time slice mechanism.
On each context switch, a task is selected by the kernel’s scheduler
from the ‘ready’ list and is put into the run state. It is then executed
until another context switch occurs. This is normally signalled by
a periodic interrupt from a timer. In such cases the task is simply
switched out and put back on the ‘ready’ list, awaiting its next slot.
Alternatively, the execution can be stopped by the task executing
certain kernel commands. It could suspend itself, where it remains
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present in the system but no further execution occurs. It could
become dormant, awaiting a start command from another task, or
even simply waiting for a server task within the operating system
to perform a special function for it. A typical example of a server
task is a driver performing special screen graphics functions. The
most common reason for a task to come out of the run state, is to
wait for a message or command, or delay itself for a certain time
period. The various wait directives allow tasks to synchronise and
control each other within the system. This state diagram is typical
of many real-time operating systems.

Context 
switch

Task A table

Task B table

1. On context switch, store CPU
    registers in task A’s table.

2. Consult the ready list to find
    out which task is executed next.

3. Load new task’s registers
    from its table.

4. Start executing task B.

System 
memory

System 
memory

Processor registers

Context switch mechanism

The kernel controls memory usage and prevents tasks from
corrupting each other. If required, it also controls memory sharing
between tasks, allowing them to share common program mod-
ules, such as high level language run-time libraries. A set of
memory tables is maintained, which is used to decide if a request
is accepted or rejected. This means that resources, such as physical
memory and peripheral devices, can be protected from users
without using hardware memory management provided the task
is disciplined enough to use the operating system and not access
the resources directly. This is essential to maintain the system’s
integrity.

Message passing and control can be implemented in such
systems by using the kernel to act as a message passer and
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controller between tasks. If task A wants to stop task B, then by
executing a call to the kernel, the status of task B can be changed
and its execution halted. Alternatively, task B can be delayed for
a set time period or forced to wait for a message.

With a typical real-time operating system, there are two
basic type of messages that the kernel will deal with:

• flags that can control but cannot carry any implicit informa-
tion — often called semaphores or events and

• messages which can carry information and control tasks —
often called messages or events.
The kernel maintains the tables required to store this infor-

mation and is responsible for ensuring that tasks are controlled
and receive the information. With the facility for tasks to commu-
nicate between each other, system call support for accessing I/O,
loading tasks from disk etc., can be achieved by running addi-
tional tasks, with a special system status. These system tasks
provide additional facilities and can be included as required.

Run

Server 
request 

pending

Suspend

Ready Dormant

Wait
Wait 
for 

event

Wait for 
command

Delay
Wait on 

semaphore

State diagram for a typical real-time kernel

To turn a real-time kernel into a full operating system with
file systems and so on, requires the addition of several such tasks
to perform I/O services, file handling and file management serv-
ices, task loading, user interface and driver software. What was
about a small <16 kbyte-sized kernel will often grow into a large
120 kbyte operating system. These extra facilities are built up as
layers surrounding the kernel. Application tasks then fit around
the outside. A typical onion structure is shown as an example. Due
to the modular construction, applications can generally access any
level directly if required. Therefore, application tasks that just



Real-time operating systems 219

require services provided by the kernel can be developed and
debugged under the full environment, and stripped down for
integration onto the target hardware.

HARD-

WARE

REAL TIME

KERNEL

PHYSICAL I/O

FILE MANAGEMENT

SESSION MANAGEMENT

USER 

TASKS

LOGICAL I/O

A typical operating system structure

In a typical system, all these service tasks and applications
are controlled, scheduled and executed by the kernel. If an appli-
cation wishes to write some data to a hard disk in the system, the
process starts with the application creating a parameter block and
asking the file manager to open the file. This system call is
normally executed by a TRAP instruction. The kernel then places
the task on its ‘waiting’ list until the file manager had finished and
passed the status information back to the application task. Once
this event has been received, it wakes up and is placed on the
‘ready’ list awaiting a time slot.

These actions are performed by the kernel. The next appli-
cation command requests the file handling services to assign an
identifier — often called a logical unit number (LUN) — to the file
prior to the actual access. This is needed later for the I/O services
call. Again, another parameter block is created and the file handler
is requested to assign the LUN. The calling task is placed on the
‘waiting’ list until this request is completed and the LUN returned
by the file handler. The LUN identifies a particular I/O resource
such as a serial port or a file without actually knowing its physical
characteristics. The device is therefore described as logical rather
than physical.
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With the LUN, the task can create another parameter block,
containing the data, and ask the I/O services to write the data to
the file. This may require the I/O services to make system calls of
its own. It may need to call the file services for more data or to pass
further information on. The data is then supplied to the device
driver which actually executes the instructions to physically write
the data to the disk. It is generally at this level that the logical
nature of the I/O request is translated into the physical character-
istics associated with the hardware. This translation should lie in
the domain of the device driver software. The user application is
unaware of these characteristics.

A complex system call can cause many calls between the
system tasks. A program loader that is requested by an application
task to load another task from memory needs to call the file
services and I/O services to obtain the file from disk, and the
kernel to allocate memory for the task to be physically loaded.

The technique of using standard names, files, and/or logi-
cal unit numbers to access system I/O makes the porting of
application software from one system to another very easy. Such
accesses are independent of the hardware the system is running
on, and allow applications to treat data received or sent in the same
way, irrespective of its source.

What is a real-time operating system?
Many multitasking operating systems available today are

also described as ‘real-time’. These operating systems provide
additional facilities allowing applications that would normally
interface directly with the microprocessor architecture to use
interrupts and drive peripherals to do so without the operating
system blocking such activities. Many multitasking operating
systems prevent the user from accessing such sensitive resources.
This overzealous caring can prevent many operating systems
from being used in applications such as industrial control.

A characteristic of a real-time operating system is its de-
fined response time to external stimuli. If a peripheral generates an
interrupt, a real-time system will acknowledge and start to service
it within a maximum defined time. Such response times vary from
system to system, but the maximum time specified is a worst case
figure, and will not be exceeded due to changes in factors such as
system workload.

Any system meeting this requirement can be described as
real-time, irrespective of the actual value, but typical industry
accepted figures for context switches and interrupt response times
are about 10 microseconds. This figure gets smaller as processors
become more powerful and run at higher speeds. With several
processors having the same context switch mechanism, the final
context switch time come down to its clock speed and the memory
access time.
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The consequences to industrial control of not having a real-
time characteristic can be disastrous. If a system is controlling an
automatic assembly line, and does not respond in time to a request
from a conveyor belt limit switch to stop the belt, the results are
easy to imagine. The response does not need to be instantaneous
— if the limit switch is set so that there are 3 seconds to stop the belt,
any system with a guaranteed worst case response of less than 3
seconds can meet this real-time requirement.

For an operating system to be real-time, its internal mecha-
nisms need to show real-time characteristics so that the internal
processes sequentially respond to external interrupts in guaran-
teed times.

When an interrupt is generated, the current task is inter-
rupted to allow the kernel to acknowledge the interrupt and
obtain the vector number that it needs to determine how to handle
it. A typical technique is to use the kernel’s interrupt handler to
update a linked list which contains information on all the tasks
that need to be notified of the interrupt.

If a task is attached to a vector used by the operating system,
the system actions its own requirements prior to any further
response by the task. The handler then sends an event message to
the tasks attached to the vector, which may change their status and
completely change the priorities of the task ready list. The scheduler
analyses the list, and dispatches the highest priority task to run. If
the interrupt and task priorities are high enough, this may be the
next time slice.

The diagram depicts such a mechanism: the interrupt han-
dler and linked list searches are performed by the kernel. The first
priority is to service the interrupt. This may be from a disk
controller indicating that it has completed a data transfer. Once the
kernel has satisfied its own needs, the handler will start a linked
list search. The list comprises blocks of data identifying tasks that
have their own service routines. Each block will contain a refer-
ence to the next block, hence the linked list terminology.
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 Each identified task is then sent a special message. This will
start the task’s service routine when it receives its next time slice.
The kernel interrupt handler will finally execute an RTE return
from the exception instruction which will restore the processor
state prior to the interrupt. In such arrangements the task service
routines execute in USER mode. The only SUPERVISOR operation
is that of the kernel and its own interrupt handler. As can be
imagined, this processing can increase the interrupt latency seen
by the task quite dramatically. A ten-fold increase is not uncom-
mon.

To be practical, a real-time operating system has to guaran-
tee maximum response times for its interrupt handler, event
passing mechanisms, scheduler algorithm and provide system
calls to allow tasks to attach and handle interrupts.

With the conveyor belt example above, a typical software
configuration would dedicate a task to controlling the conveyor
belt. This task would make several system calls on start-up to
access the parallel I/O peripheral that interfaces the system to
components such as the drive motors and limit switches and tells
the kernel that certain interrupt vectors are attached to the task
and are handled by its own interrupt handling routine.

Once the task has set everything up, it remains dormant
until an event is sent by other tasks to switch the belt on or off. If
a limit switch is triggered, it sets off an interrupt which forces the
kernel to handle it. The currently executing task stops, the kernel
handler searches the task interrupt attachment linked list, and
places the controller task on the ready list, with its own handler
ready to execute. At the appropriate time slice, the handler runs,
accesses the peripheral and switches off the belt. This result may
not be normal, and so the task also sends event messages to the
others, informing them that it has acted independently and may
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force other actions. Once this has been done, the task goes back to
its dormant state awaiting further commands.

Real-time operating systems have other advantages: to
prevent a system from power failure usually needs a guaranteed
response time so that the short time between the recognition of
and the actual power failure can be used to store vital data and
bring the system down in a controlled manner. Many operating
systems actually have a power fail module built into the kernel so
that no time is lost in executing the module code.

So far in this chapter, an overview of the basics behind a
real-time operating system have been explained. There are, how-
ever, several variants available for the key functions such as task
swapping and so on. The next few sections will delve deeper into
these topics.

Task swapping methods
The choice of scheduler algorithms can play an important

part in the design of an embedded system and can dramatically
affect the underlying design of the software. There are many
different types of scheduler algorithm that can be used, each with
either different characteristics or different approaches to solving
the same problem of how to assign priorities to schedule tasks so
that correct operation is assured.

Time slice
Time slicing has been previously mentioned in this chapter

under the topic of multitasking and can be used within an embed-
ded system where time critical operations are not essential. To be
more accurate about its definition, it describes the task switching
mechanism and not the algorithm behind it although its meaning
has become synonymous with both.

Time slicing works by making the task switching regular
periodic points in time. This means that any task that needs to run
next will have to wait until the current time slice is completed or
until the current task suspends its operation. This technique can
also be used as a scheduling method as will be explained later in
this chapter. The choice of which task to run next is determined by
the scheduling algorithm and thus is nothing to do with the time
slice mechanism itself. It just happens that many time slice-based
systems use a round-robin or other fairness scheduler to distribute
the time slices across all the tasks that need to run.

For real-time systems where speed is of the essence, the time
slice period plus the context switch time of the processor deter-
mines the context switch time of the system. With most time slice
periods in the order of milliseconds, it is the dominant factor in the
system response. While the time period can be reduced to improve
the system context switch time, it will increase the number of task
switches that will occur and this will reduce the efficiency of the
system. The larger the number of switches, the less time there is
available for processing.
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Pre-emption
The alternative to time slicing is to use pre-emption where

a currently running task can be stopped and switched out — pre-
empted — by a higher priority active task. The active qualifier is
important as the example of pre-emption later in this section will
show. The main difference is that the task switch does not need to
wait for the end of a time slice and therefore the system context
switch is now the same as the processor context switch.

As an example of how pre-emption works, consider a
system with two tasks A and B. A is a high priority task that acts
as an ISR to service a peripheral and is activated by a processor
interrupt from the peripheral. While it is not servicing the periph-
eral, the task remains dormant and stays in a suspended state.
Task B is a low priority task that performs system housekeeping.

When the interrupt is recognised by the processor, the
operating system will process it and activate task A. This task with
its higher priority compared to task B will cause task B to be pre-
empted and replaced by task A. Task A will continue processing
until it has completed and then suspend itself. At this point, task
B will context switch task A out because task A is no longer active.

This can be done with a time slice mechanism provided the
interrupt rate is less than the time slice rate. If it is higher, this can
also be fine provided there is sufficient buffering available to store
data without losing it while waiting for the next time slice point.
The problem comes when the interrupt rate is higher or if there are
multiple interrupts and associated tasks. In this case, multiple
tasks may compete for the same time slice point and the ability to
run even though the total processing time needed to run all of
them may be considerably less than the time provided within a
single time slot. This can be solved by artificially creating more
context switch points by getting each task to suspend after com-
pletion. This may offer only a partial solution because a higher
priority task may still have to wait on a lower priority task to
complete. With time slicing, the lower priority task cannot be pre-
empted and therefore the higher priority task must wait for the
end of the time slice or the lower priority task to complete. This is
a form of priority inversion which is explained in more detail later.

Most real-time operating systems support pre-emption in
preference to time slicing although some can support both meth-
odologies

Co-operative multitasking
This is the mechanism behind Windows 3.1 and while not

applicable to real-time operating systems for reasons which will
become apparent, it has been included for reference.

The idea of co-operative multitasking is that the tasks
themselves co-operate between themselves to provide the illusion
of multitasking. This is done by periodically allowing other tasks
or applications the opportunity to execute. This requires program-
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ming within the application and the system can be destroyed by a
single rogue program that hogs all the processing power. This
method may be acceptable for a desktop personal computer but it
is not reliable enough for most real-time embedded systems.

Scheduler algorithms
So far in this section, the main methods of swapping tasks

has been discussed. It is clear that pre-emption is the first choice for
embedded systems because of its better system response. The next
issue to address is how to assign the task priorities so that the
system works and this is the topic that is examined now.

Rate monotonic
Rate monotonic scheduling (RMS) is an approach that is

used to assign task priority for a pre-emptive system in such a way
that the correct execution can be guaranteed. It assumes that task
priorities are fixed for a given set of tasks and are not dynamically
changed during execution. It assumes that there are sufficient task
priority levels for the task set and that the task set models periodic
events only. This means that an interrupt that is generated by a
serial port peripheral is modelled as an event that occurs on a
periodic rate determined by the data rate, for example. Asynchro-
nous events such as a user pressing a key are handled differently
as will be explained later.

The key policy within RMS is that tasks with shorter execu-
tion periods are given the highest priority within the system. This
means that the faster executing tasks can pre-empt the slower
periodic tasks so that they can meet their deadlines. The advan-
tage this gives the system designer is that it is easier to theoretically
specify the system so that the tasks will meet their deadlines
without overloading the processor. This requires detailed knowl-
edge about each task and the time it takes to execute. This and its
periodicity can be used to calculate the processor loading.

To see how this policy works, consider the examples shown
in the diagram on the next page. In the diagrams, events that start
a task are shown as lines that cross the horizontal time line and
tasks are shown as rectangles whose length determines their
execution time. Example 1 shows a single periodic task where the
task t is executed with a periodicity of time t. The second example
adds a second task S where its periodicity is longer than that of task
t. The task priority shown is with task S having the highest
priority. In this case, the RMS policy has not been followed
because the longest task has been given a higher priority than the
shortest task. However, please note that in this case the system
works fine because of the timing of the tasks’ periods.

Example 3 shows what can go wrong if the timing is
changed and the periodicity for task S approaches that of task t.
When t3 occurs, task t is activated and starts to run. It does not
complete because S2 occurs and task S is swapped-in due to its
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higher priority. When tasks S completes, task t resumes but during
its execution, the event t4 occurs and thus task t has failed to meets
its task 3 deadline. This could result in missed or corrupted data,
for example. When task t completes, it is then reactivated to cope
with the t4 event.
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t t t
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t t t t
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Example 1:  Single periodic task

Example 2:  Two periodic tasks (S and t)

Example 3:  Two periodic tasks (S and t)
      S has highest priority

t4

Example 4:  Two periodic tasks (S and t)
      t has highest priority

Execution of
task t not 

completed

Using RMS policies

Example 4 shows the same scenario with the task priorities
reversed so that task t pre-empts task S. In this case, RMS policy
has been followed and the system works fine with both tasks
meeting their deadlines. This system is useful to understand and
does allow theoretical analysis before implementation to prevent
a design from having to manually assign task priorities to get it to
work using a trial and error approach. It is important to remember
within any calculations to take into account the context swapping
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time needed to pre-empt and resume tasks. The processor utilisa-
tion can also be calculated and thus give some idea of the perform-
ance needed or how much performance is spare. Typically, the
higher the utilisation (>80%), the more chance that the priority
assignment is wrong and that the system will fail. If the utilisation
is below this, the chances are that the system will run correctly.

This is one of the problems with theoretical analysis of such
systems in that the actual design may have to break some of the
assumptions on which the analysis is based. Most embedded
systems will have asynchronous events and tasks running. While
these can be modelled as a periodic task that polls for the asynchro-
nous event and are analysed as if they will run, other factors such
as cache memory hit ratios can invalidate the timing by lengthen-
ing the execution time of any analysis. Similarly, the act of syn-
chronising tasks by inter-task communication can also cause
difficulties within any analysis.

Deadline monotonic scheduling
Deadline monotonic scheduling (DMS) is another task pri-

ority policy that uses the nearest deadline as the criterion for
assigning task priority. Given a set of tasks, the one with the
nearest deadline is given the highest priority. This means that the
scheduling or designer must now know when these deadlines are
to take place. Tracking and, in fact, getting this information in the
first place can be difficult and this is often the reason behind why
deadline scheduling is often a second choice compared to RMS.

Priority guidelines
With a system that has a large number of tasks or one that

has a small number of priority levels, the general rule is to assign
tasks with a similar period to the same level. In most cases, this
does not effect the ability to schedule correctly. If a task has a large
context, i.e. it has more registers and data to be stored compared
to other tasks, it is worth raising its priority to reduce the context
switch overhead. This may prevent the system from scheduling
properly but can be a worthwhile experiment.

Priority inversion
It is also possible to get a condition called priority inversion

where a lower priority task can continue running despite there
being a higher priority task active and waiting to pre-empt.

This can occur if the higher priority task is in some way
blocked by the lower priority task through it having to wait until
a message or semaphore is processed. This can happen for several
reasons.

Disabling interrupts
While in the interrupt service routine, all other interrupts

are disabled until the routine has completed. This can cause a
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problem if another interrupt is received and held pending. What
happens is that the higher priority interrupt is held pending in
favour of the lower priority one — albeit that it occurred first. As
a result, priority inversion takes place until interrupts are re-
enabled at which point the higher priority interrupt will start its
exception processing, thus ending the priority inversion.

One metric of an operating system is the longest period of
time that all interrupts are disabled. This must then be added to
any other interrupt latency calculation to determine the actual
latency period.

Message queues
If a message is sent to the operating system to activate a task,

many systems will process the message and then reschedule
accordingly. In this way, the message queue order can now define
the task priority. For example, consider an ISR that sends an
unblocking message to two tasks, A and B, that are blocked
waiting for the message. The ISR sends the message for task A first
followed by task B. The ISR is part of the RTOS kernel and
therefore may be subject to several possible conditions:
• Condition 1

Although the message calls may be completed, their action
may be held pending by the RTOS so that any resulting pre-
emption is stopped from switching out the ISR.

• Condition 2
The ISR may only be allowed to execute a single RTOS call
and in doing so the operating system itself will clean up any
stack frames. The operating system will then send messages
to tasks notifying them of the interrupt and in this way
simulate the interrupt signal. This is normally done through
a list.
These conditions can cause priority inversion to take place.

With condition 1, the ISR messages are held pending and proc-
essed. The problem arises with the methodology used by the
operating system to process the pending messages. If it processes
all the messages, effectively unblocking both tasks before instigat-
ing the scheduler to decide the next task to run, all is well. Task B
will be scheduled ahead of task A because of its higher priority.
The downside is the delay in processing all the messages before
selecting the next task.

Most operating systems, however, only have a single call to
process and therefore in normal operation do not expect to handle
multiple messages. In this case, the messages are handled indi-
vidually so that after the first message is processed, task A would
be unblocked and allowed to execute. The message for task B
would either be ignored or processed as part of the housekeeping
at the next context switch. This is where priority inversion would
occur. The ISR has according to its code unblocked both tasks and
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thus would expect the higher priority task B to execute. In practice,
only task A is unblocked and is running, despite it being at a lower
priority. This scenario is a programming error but one that is easy
to make.

To get around this issue, some RTOS implementations
restrict an ISR to making either one or no system calls. With no
system calls, the operating system itself will treat the ISR event as
an internal message and will unblock any task that is waiting for
an ISR event. With a single system call, a task would take the
responsibility for controlling the message order to ensure that
priority inversion does not take place.

Waiting for a resource
If a resource is shared with a low priority task and it

does not release it, a higher priority task that needs it can be
blocked until it is released. A good example of this is where the
interrupt handler is distributed across a system and needs to
access a common bus to handle the interrupt. This can be the case
with a VMEbus system, for example.

VMEbus interrupt messages
VMEbus is an interconnection bus that was developed in

the early 1980s for use within industrial control and other real-
time applications. The bus is asynchronous and is very similar to
that of the MC68000. It comprises of a separate address, data,
interrupt and control buses.

If a VMEbus MASTER wishes to inform another that a
message is waiting or urgent action is required, a VMEbus inter-
rupt can be generated. The VMEbus supports seven interrupt
priority levels to allow prioritisation of a resource.

Any board can generate an interrupt by asserting one of the
levels. Interrupt handling can either be centralised, and handled
by one MASTER, or can be distributed among many. For multi-
processor applications, distributed handling allows rapid direct
communication to individual MASTERs by any board in the
system capable of generating an interrupt: the MASTER that has
been assigned to handle the interrupt requests the bus and starts
the interrupt acknowledgement cycle. Here, careful consideration
of the arbitration level chosen for the MASTER is required. The
interrupt response time depends on the time taken by the handler
to obtain the bus prior to the acknowledgement. This has to be
correctly assigned to achieve the required performance. If it has a
low priority, the overall response time may be more than that
obtained for a lower priority interrupt whose handler has a higher
arbitration level. The diagrams below show the relationship for
both priority and round robin arbitration schemes. Again, as with
the case with arbitration schemes, the round robin system has
been assumed on average to provide equal access for all the
priority levels.
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Priority inversion can occur if a lower priority interrupt
may be handled in preference to a higher priority one, simply
because of the arbitration levels. To obtain the best response, high
priority interrupts should only be assigned to high arbitration
level MASTERs. The same factors, such as local traffic on the
VMEbus and access time, increase the response time as the priority
level decreases.

VMEbus only allows a maximum of seven separate inter-
rupt levels and this limits the maximum number of interrupt
handlers to seven. For systems with larger numbers of MASTERs,
polling needs to be used for groups of MASTERs assigned to a
single interrupt level. Both centralised and distributed interrupt
handling schemes have their place within a multiprocessor sys-
tem. Distributed schemes allow interrupts to be used to pass high
priority messages to handlers, giving a fast response time which
might be critical for a real-time application. For simpler designs,
where there is a dominant controlling MASTER, one handler may
be sufficient.
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Fairness systems
There are times when the system requires different charac-

teristics from those originally provided or alternatively wants a
system response that is not priority based. This can be achieved by
using a fairness system where the bus access is distributed across
the requesting processors. There are various schemes that are
available such as round-robin where access is simply passed from
one processor to another. Other methods can use time sharing
where the bus is given to a processor on the understanding that it
must be relinquished within a maximum time frame.

These type of systems can affect the interrupt response
because bus access is often necessary to service an interrupt.

Tasks, threads and processes
This section of the chapter discusses the nomenclature

given to the software modules running within the RTOS environ-
ment. Typically, they have been referred to as tasks but other
names such as threads and processes are also used to refer to
entities within the RTOS. They are sometimes used instead as an
interchangeable replacement for the term task. In practice, they
refer to different aspects within the system.

So far in this chapter, a task has been used to describe an
entity of work within an operating system that has control over
resources. When a context switch is performed, it effectively
switches to another task which takes over. Strictly speaking the
context switch may include additional information that is relevant
to the task such as memory management information, which is
beyond the simple register swapping that is performed within the
processor. As a result, the term process is often used to encompass
more than a simple context switch and thus includes the addi-
tional information. The problem is that this is very similar to that
of a task switch or context switch that the definitions have become
blurred and almost interchangeable. A task or process has several
characteristics:
• It owns or controls resources, e.g. access to peripherals and

so on.
• It has threads of execution. These are paths through the

code contained within the task or process. Normally, there
is a single thread though but this may not always be the
case. Multiple threads can be supported if the task or
process can maintain separate data areas for each thread.
This also requires the code to be written in a re-entrant
manner.

• It requires additional information beyond the normal reg-
ister contents to maintain its integrity, e.g. memory man-
agement information, cache flushing and so on. When a
new process or task is swapped-in, not only are the proces-
sor registers changed but additional work must be done
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such as invalidating caches to ensure that the new process
or task does not access incorrect information.
A thread has different characteristics:

• It has no additional context information beyond that stored
in the processor register set.

• Its ownership of resources is inherited from its parent task
or process.
With a simple operating system, there is no difference

between the thread context switch and the process level switch. As
a result, these terms almost become interchangeable. With a multi-
user, multitasking operating system, this is not the case. The
process or task is the higher level with the thread(s) the lower level.

Some operating systems take this a stage further and define
a three level hierarchy: a process consists of a set of tasks with each
task having multiple threads. Be warned! These terms mean many
different things depending on who is using them.

Exceptions
With most embedded systems, access to the low level

exception handler is essential to allow custom routines to be
written to support the system. This can include interrupt routines
to control external peripherals, emulation routines to simulate
instructions or facilities that the processor does not support —
software floating point is a very good example of this — and other
exception types.

Some of these exceptions are needed by the RTOS to pro-
vide entry points into the kernel and to allow the timers and other
facilities to function. As a result, most RTOSs already provide the
basic functionality for servicing exceptions and provide access
points into this functionality to allow the designer to add custom
exception routines. This can be done in several ways:
• Patching the vector table

This is relatively straight forward if the vector is not used by
the RTOS. If it is, then patching will still work but the
inserted user exception routine must preserve the excep-
tion context and then jump to the existing handler instead
of using a return from exception type instruction to restore
normal processing. If it is sharing an exception with the
RTOS, there must be some form of checking so that the user
handler does not prevent the RTOS routine from working
correctly.

• Adding user routines to existing exception handlers
This is very similar to the previous technique in that the user
routine is added to any existing RTOS routine. The differ-
ence is that the mechanism is more formal and does not
require vector table patching or any particular checking by
the user exception handler.
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• Generating a pseudo exception that is handled by separate
user exception handler(s)
This is even more formal — and slower — and effectively
replaces the processor level exception routine with a RTOS
level version in which the user creates his own vector table
and exception routines. Typically, all this is performed
through special kernel calls which register a task as the
handler for a particular exception. On completion, the
handler uses a special return from the exception call into the
RTOS kernel to signify that it has completed.

Memory model
The memory model that the processor offers can and often

varies with the model defined by the operating system and is open
to the software designer to use. In other words, although the
processor may support a full 32 bit address range with full
memory mapped I/O and read/write access anywhere in the map
at a level of an individual word or map, the operating system’s
representation of the memory map may only be 28 bits, with I/O
access allocated on a 512 byte basis with read only access for the
first 4 Mbytes of RAM and so on.

This discrepancy can get even wider, the further down in
the levels that you go. For example, most processors that have
sophisticated cache memory support use the memory manage-
ment unit. This then requires fairly detailed information about the
individual memory blocks within a system. This information has
to be provided to the RTOS and is normally done using various
memory allocation techniques where information is provided
when the system software is compiled and during operation.

Memory allocation
Most real-time operating systems for processors where the

memory map can be configured, e.g. those that have large memory
addressing and use memory mapped I/O, get around this prob-
lem by using a special file that defines the memory map that the
system is expected to use and support. This will define which
memory addresses correspond to I/O areas, RAM, ROM and so
on. When a task is created, it will be given a certain amount of
memory to hold its code area and provide some initial data
storage. If it requires more memory, it will request it from the
RTOS using a special call such as malloc(). The RTOS will look at
the memory request and allocate memory by passing back a
pointer to the additional memory. The memory request will
normally define the memory characteristics such as read/write
access, size, and even its location and attributes such as physical
or logical addressing.

The main question that arises is why dynamically allocate
memory? Surely this can be done when the tasks are built and
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included with the operating system? The answer is not straightfor-
ward. In simple terms, it is a yes and for many simple embedded
systems, this is correct. For more complex systems, however, this
static allocation of memory is not efficient, in that memory may be
reserved or allocated to a task yet could only be used rarely within
the system’s operation. By dynamically allocating memory, the
total amount of memory that the system requires for a given
function can be reduced by reclaiming and reallocating memory
as and when needed by the system software. This will be ex-
plained in more detail later on.

Memory characteristics
The memory characteristics are important to understand

especially when different memory addresses correspond to differ-
ent physical memory. As a result, asking for a specific block of
memory may impact the system performance. For example, con-
sider an embedded processor that has both internal and external
memory. The internal memory is faster than the external memory
and therefore improves performance by not inserting wait states
during a memory access. If a task asks for memory expecting to be
allocated internal memory but instead receives a pointer to exter-
nal memory, the task performance will be degraded and poten-
tially the system can fail. This is not a programming error in the
true sense of the word because the request code and RTOS have
executed correctly. If the request was not specific enough, then the
receiving task should expect the worst case type of memory. If it
does not or needs specific memory, this should be specified during
the request. This is usually done by specifying a memory address
or type that the RTOS memory allocation code can check against
the memory map file that was used when the system was built.
• Read/write access

This is straightforward and defines the access permissions
that a task needs to access a memory block.

• Internal/external memory
This is normally concerned with speed and performance
issues. The different types of memory are normally defined
not by their speed but indirectly through the address loca-
tion. As a result, the programmer must define and use a
memory map so that the addresses of the required memory
block match up the required physical memory and thus its
speed. Some RTOSs actually provide simple support flags
such as internal/external but this is not common.

• Size
The minimum and maximum sizes are system dependent
and typically are influenced by the page size of any memory
management hardware that may be present. Some systems
can return with partial blocks, e.g. if the original request
was for 8 kbytes, the RTOS may only have 4 kbytes free and
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instead of returning an error, will return a pointer to the 4
kbytes block instead. This assumes that the requesting task
will check the returned size and not simply assume that
because there was no error, it has all the 8 kbytes it re-
quested! Check the RTOS details carefully.

• I/O
This has several implications when using processors that
execute instructions out of order to remove pipeline stalls
and thus gain performance. Executing instructions that
access I/O ports out of sequence can break the program
syntax and integrity. The program might output a byte and
then read a status register. If this is reversed, the correct
sequence has been destroyed and the software will prob-
ably crash. By declaring I/O addresses as I/O, the proces-
sor can be programmed to ensure the correct sequence
whenever these addresses are accessed.

• Cached or non-cachable
This is similar to the previous paragraph on I/O. I/O
addresses should not be cached to prevent data corruption.
Shared memory blocks need careful handling with caches
and in many cases unless there is some form of bus snoop-
ing to check that the contents of a cache is still valid, these
areas should also not be cached.

• Coherency policies
Data caches can have differing coherency policies such as
write-through, copy back and so on which are used to
ensure the data coherency within the system. Again, the
ability to specify or change these policies is useful.

Example memory maps
The first example is that commonly used within a simple

microcontroller where its address space is split into the different
memory types. The example shows three: I/O devices and periph-
erals, program RAM and ROM and data RAM. The last two types
have then been expanded to show how they could be allocated to
a simple embedded system. The program area contains the code
for four tasks, the RTOS code and the processor vector table. The
data RAM is split into five areas: one for each of the tasks and a fifth
area for the stack. In practice, these areas are often further divided
into internal and external memory, EPROM and EEPROM, SRAM
and even DRAM, depending on the processor architecture and
model. This example uses a fixed static memory map where the
memory requirements for the whole system are defined at com-
pile and build time. This means that tasks cannot get access to
additional memory by using some of the memory allocated to
another task. In addition, it should be remembered that although
the memory map shows nicely partitioned areas, it does not imply
nor should it be assumed that task A cannot access task C’s data
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area, for example. In these simple processors and memory maps,
all tasks have the ability to access any memory location and it is
only the correct design and programming that ensures that there
is no corruption. Hardware can be used to provide this level of
protection but it requires some form of memory management unit
to check that programs are conforming to their design and not
accessing memory that they should not. Memory management is
explained in some detail in the next section.
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The second example shows a similar system to the first
example except that it has been further partitioned into internal
and external memory. The internal memory runs faster than the
external memory and because it does not have any wait states, its
access time is faster and the processor performance does not
degrade. The slower external memory has two wait states and
with a single cycle processor would degrade performance by 66%
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— each instruction would take three clocks instead of one, for
example.
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Given this performance difference, it is important that the
memory resources are carefully allocated. In the example, task A
requires the best performance and the system needs fast task
switching. This means that both the task A code and data, along
with the RTOS and the system stack, are allocated to the internal
memory where it will get the best performance. All other task code
and data are stored externally because all the internal memory is
used.

The third example shows a dynamic allocation system
where tasks can request additional memory as and when they
need it. The first map shows the initial state with the basic memory
allocated to tasks and RTOS. This is similar to the previous
examples except that there is a large amount of memory entitled
to dynamic memory which is controlled by the RTOS and can be
allocated dynamically by it to other tasks on demand. The next two
diagrams show this in operation. The first request by task C starts
by sending a request to the RTOS for more memory. The RTOS
allocates a block to the task and returns a pointer to it. Task C can
use this to get access to this memory. This can be repeated if
needed and the next diagram shows task C repeating the request
and getting access to a second block. Blocks can also be relin-
quished and returned to the RTOS for allocation to other tasks at
some other date. This process is highly dynamic and thus can
provide a mechanism for minimising memory usage. Task C
could be allocated all the memory at certain times and as the
memory is used and no longer required, blocks can be reallocated
to different tasks.
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The problem with this is in calculating the minimum amount
of memory that the system will require. This can be difficult to
estimate and many designs start with a large amount of memory,
get the system running and then find out empirically the mini-
mum amount of required memory.

In this section, the use of memory management within an
embedded design has been alluded to in the case of protecting
memory for corruption. While this is an important use, it is a
secondary advantage compared to its ability to reuse memory
through address translation. Before returning to the idea of memory
protection, let’s consider how address translation works and
affects the memory map.

Memory management address translation
While the use of memory management usually implies the

use of an operating system to remove the time-consuming job of
defining and writing the driver software, it does not mean that
every operating system supports memory management.
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Many do not or are extremely limited in the type of memory
management facilities that they support. For operating systems
that do support it, the designer can access standard software that
controls the translation of logical addresses to different physical
addresses as shown in the diagram.

In this example, the processor thinks that it is accessing
memory at the bottom of its memory map, while in reality it is
being fetched from different locations in the main memory map.
The memory does not even need to be contiguous: the processor’s
single block or memory can be split into smaller blocks, each with
a different translation address.
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This address translation is extremely powerful and allows
the embedded system designer many options to provide greater
fault detection and/or security within the system or even cost
reduction through the use of virtual memory. The key point is that
memory management divides the processor memory map into
definable regions with different properties such as read and write
only access for one way data transfers and task or process specific
memory access.

If no memory management hardware is present, most
operating systems can replace their basic address translation
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facility with a software-based scheme, provided code is written to
be position independent and relocatable. The more sophisticated
techniques start to impose a large software overhead which in
many cases is hard to justify within a simple system. Address
translation is often necessary to execute programs in different
locations from that in which they were generated. This allows the
reuse of existing software modules and facilitates the easy transfer
of software from a prototype to a final system.
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The relocation techniques are based on additional software
built into the program loader or even into the operating system
itself. If the operating system program loader cannot allocate the
original memory, the program is relocated into the next available
block and the program allowed to execute. Relocatable code does
not have any immediate addressing values and makes extensive
use of program relative addressing. Data areas or software sub-
routines are not referenced explicitly but are located by relative
addressing modes using offsets:
• Explicit addressing

e.g. branch to subroutine at address $0F04FF.
• Relative addressing

e.g. branch to subroutine which is offset from here by $50
bytes.
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Provided the offsets are maintained, then the relative ad-
dressing will locate data and code wherever the blocks are located
in memory. Most modern compilers will use these techniques but
do not assume that all of them do.

There are alternative ways of manipulating addresses to
provide address translation, however.

Bank switching
When the first 8 bit processors became available with their

64 kbytes memory space, there were many comments concerning
whether there was a need for this amount of memory. When the
IBM PC appeared with its 640 kbyte memory map, the same
comments were made and here we are today using PCs that
probably have 32 Mbytes of RAM. The problem faced by many of
the early processor architectures with a small 64 kbyte memory
map is how the space can be expanded without having to change
the architecture and increase register sizes and so on.

One technique that is used is that of bank switching. With
this technique, additional bits are used to select different banks of
memory. Each bank is the full 64 kbytes in size and is used in the
normal way. By writing to the individual selection bits, an indi-
vidual bank can be selected and used. It could be argued that this
is no different from adding additional address bits. Using two
selection bits will support four 64 kbyte banks giving a total
memory space of 256 kbytes. This is the same amount of memory
that can be addressed by increasing the number of address bits
from 16 to 18. The difference, however, is that adding address bits
implies that the programming model and processor knows about
the wider address space and can use it. With bank switching, this
is not the case, and the control and manipulation of the banks is
under the control of the program that the processor is running. In
other words, the processor itself has no knowledge that bank
switching is taking place. It simply sees the normal 64 kbyte
address space.

This approach is frequently used with microcontrollers that
have either small external address spaces or alternatively limited
external address buses. The selection bits are created by dedicat-
ing bits from the microcontroller’s parallel I/O lines and using
these to select and switch the external memory banks. The bank
switching is controlled by writing to these bits within the I/O port.

This has some interesting repercussions for designs that use
a RTOS. The main problem is that the program must understand
when the system context is safe enough to allow a bank switch to
be made. This means that system entities such as data structures,
buffers and anything else that is stored in memory including
program software must fit into the boundaries created by the bank
switching.

This can be fairly simple but it can also be extremely
complex. If the bank switching is used to extend a database, for
example, the switching can be easy to control by inserting a check
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for a memory bank boundary. Records 1–100 could be in bank A,
with bank B holding records 101–200. By checking the record
number, the software can switch between the banks as needed.
Such an implementation could define a subroutine as the access
point to the data and within this routine the bank switching is
managed so that it is transparent to the rest of the software.

Using bank switching to support large stacks or data struc-
tures on the other hand is more difficult because the mechanisms
that use the data involve both automatic and software controlled
access. Interrupts can cause stacks to be incremented automati-
cally and there is no easy way of checking for an overflow and then
incorporating the bank switching and so on needed to use it.

In summary, bank switching is used and there are 8 bit
processors that have dedicated bits to support it but the software
issues to use it are immense. As a result, it is frequently left for the
system designer to figure out a way to use it within a design. As a
result, few, if any, RTOS environments support this memory
model.

Segmentation
Segmentation can be described as a form of bank switching

that the processor architecture does know about! It works by
providing a large external address bus but maintaining the smaller
address registers and pointers within the original 8 bit architec-
ture. To bridge the gap, the memory is segmented internally into
smaller blocks that match the internal addressing and additional
registers known as segment registers are used to hold the addi-
tional address data needed to complete the larger external ad-
dress.

Probably the most well-known implementation is the Intel
8086 architecture.

Virtual memory
With the large linear addressing offered by today’s 32 bit

microprocessors, it is relatively easy to create large software
applications which consume vast quantities of memory. While it
may be feasible to install 64 Mbytes of RAM in a workstation, the
costs are expensive compared with 64 Mbytes of a hard disk. As
the memory needs go up, this differential increases. A solution is
to use the disk storage as the main storage medium, divide the
stored program into small blocks and keep only the blocks in
processor system memory that are needed. This technique is
known as virtual memory and relies on the presence within the
system of a memory management unit.

 As the program executes, the MMU can track how the
program uses the blocks, and swap them to and from the disk as
needed. If a block is not present in memory, this causes a page fault
and forces some exception processing which performs the swap-
ping operation. In this way, the system appears to have large
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amounts of system RAM when, in reality, it does not. This virtual
memory technique is frequently used in workstations and in the
UNIX operating system. Its appeal in embedded systems is lim-
ited because of the potential delay in accessing memory that can
occur if a block is swapped out to disk.
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Choosing an operating system
Comparing an operating system from 10 years ago with one

offered today shows how operating system technology has devel-
oped over the past years. Although the basic functions provided
by the old and the newer operating systems — they all provide
multitasking, real-time responses and so on — are still present,
there have been some fundamental changes in the improvement
in the ease of use, performance and debugging facilities. Compar-
ing a present-day car with one from the 1920s is a good analogy.
The basic mechanics and principles have largely remained un-
changed — that is, the engine, gearbox, brakes, transmission —
but there has been a great improvement in the ease of driving,
comfort and facilities. This is similar to what has happened with
operating systems. The basic mechanisms of context switches,
task control blocks, linked lists and so on are the basic fundamen-
tals of any operating system or kernel.

As a result, it can be quite difficult to select an operating
system. To make such a choice, it is necessary to understand the
different ways that operating systems have developed over the
years and the advantages that this has brought. The rest of this
chapter discusses these changes and can help formulate the crite-
ria that can be used to make a decision.
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Assembler versus high level language
In the early 1980s, operating systems were developed in

response to minicomputer operating systems where the emphasis
was on providing the facilities and performance offered by mini-
computers. To achieve performance, they were often written in
assembler rather than in a high level language such as C or
PASCAL. The reason for this was simply one of performance:
compiler technology was not advanced enough to provide the
compact and fast code needed to run an operating system. For
example, many compilers from the early 1980s did not use all the
M68000 address and data registers and limited themselves to only
one or two. The result was code that was extremely inefficient
when compared with hand coded assembler which did use all the
processor’s registers.

The disadvantage is that assembler code is harder to write
and maintain compared to a high level language and is extremely
difficult to migrate to other architectures. In addition, the interface
between the operating system and a high level language was not
well developed and in some cases non-existent! Writing interface
libraries was considered part of the software task.

As both processor performance and compiler technology
improved, it became feasible to provide an operating system
written in a high level language such as C which provided a
seamless integration of the operating system interface and appli-
cation development language.

The choice of using assembler or a high level language with
some assembler compared to using an integrated operating sys-
tem and high level language is fairly obvious. What was accept-
able a few years ago is no longer the case and today’s successful
operating systems are highly integrated with their compiler tech-
nology.

ROMable code
With early operating systems, restrictions in the code devel-

opment often prevented operating systems and compilers from
generating code that could be blown into read only memory for an
embedded application. The reasons were often historic rather
than technical, although the argument that most applications
were too big to fit into the relatively small size of EPROM that was
available was certainly true for many years. Today, most users
declare this requirement as mandatory, and it is a standard offer-
ing from compilers and operating system vendors alike.

Scheduling algorithms
One area of constant debate is that of the scheduling algo-

rithms that are used to select which task is to execute next. There
are several different approaches which can be used. The first is to
switch tasks only at the end of a time slice. This allows a fairer
distribution of the processing power across a large number of
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tasks but at the expense of response time. Another is to take the
first approach but allow certain events to force switch a task even
if the current one has not used up all its allotted time slice. This
allows external interrupts to get a faster response. Another event
that can be used to interrupt the task is an operating system call.

Others have implemented priority systems where a task’s
priority and status within the ready list can be changed by itself,
the operating system or even by other tasks. Others have a fixed
priority system where the level is fixed when the task is created.
Some operating systems even allow different scheduling algo-
rithms to be implemented so that a designer can change them to
give a specific response.

Changing algorithms and so on are usually indicative of
trying to squeeze the last bit of performance from the system and
in such cases it may be better to use a faster processor, or even in
extreme cases actually accept that the operating system cannot
meet the required performance and use another.

Pre-emptive scheduling
One consistent requirement that has appeared is that of pre-

emptive scheduling. This refers to a particular scheduling algo-
rithm where the highest priority task will interrupt or pre-empt a
currently executing task irrespective of whether it has used its
allotted time slice, and will continue running until a higher level
task is ready to. This gives the best response to interrupts and
events but can be a little dangerous. If a task is given the highest
priority and does not lower its priority or pre-empt itself, then
other tasks will not get an opportunity to execute. Therefore the
ability to pre-empt is often restricted to special tasks with time
critical routines.

Modular approach
The idea of reusing code whenever possible is not a new one

but it can be difficult to implement. Obvious candidates with an
operating system are device drivers for I/O , and kernels for
different processors. The key is in defining a standard interface
which allows such modules to be reused without having to alter or
change the code. This means that memory maps must not be
hardwired, or assumptions made by the driver or operating
system. One of the problems with early versions of many operat-
ing systems was the fact that it was not until fairly late in their
development that a modular approach for device drivers was
available. As a result, the standard release included several driv-
ers for the same peripheral chip, depending on which VMEbus
board it was located.

Today, this approach is no longer acceptable and operating
systems are more modular in their approach and design. The
advantages for users are far more compact code, shorter develop-
ment times and the ability to reuse code. A special driver can be re-
used without modification. This coupled with the need to keep up
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with the number of boards that need standard ports has led to the
development of automated build systems that can take modular
drivers and create a new version extremely quickly.

Re-entrant code
This follows on from the previous topic but has one funda-

mental difference in that a re-entrant software module can be
shared be many tasks and also interrupted at any point and reused
without any problems. For example, consider module A which is
shared by two tasks B and C. If task B uses module A and exits from
it, the module will be left in a known state, ready for another task
to use it. If task C starts to use it and in the middle of its execution
is switched out in favour of task B, then the problem may appear.
If task B starts to use module A, it may experience problems
because A will be in an indeterminate state. Even if it does not,
other problems may still be lurking. If module A uses global
variables, then task B will cause them to be reset. When task C
returns to continue execution, its global data will have been
destroyed.

A re-entrant module can tolerate such interruptions with-
out experiencing these types of problems. The golden rule is for
the module to only access data associated with the task that is
using the module code. Variables are stored on stacks, in registers
or in memory areas specific to the task and not to the module. If
shared modules are not re-entrant, care must be taken to ensure
that a context switch does not occur during its execution. This may
mean disabling or locking out the scheduler or dispatcher.

Cross-development platforms
Today, most software development is done on cross-

development platforms such as Sun workstations, UNIX systems
and IBM PCs. This is in direct contrast to early systems which
required a dedicated software development system. The degree of
platform support and the availability of good development tools
which go beyond the standard of symbolic level debug have
become a major product selling point.

Integrated networking
This is another area which is becoming extremely impor-

tant. The ability to use a network such as TCP/IP on Ethernet to
control target boards, download code and obtain debugging
information is fast becoming a mandatory requirement. It is
rapidly replacing the more traditional method of using serial
RS232 links to achieve the same end.

Multiprocessor support
This is another area which has changed dramatically. Ten

years ago it was possible to use multiple processors provided the
developer designed and coded all the inter-processor communi-
cation. Now, many of today’s operating systems can provide
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optional modules that will do this automatically. However, mul-
tiprocessing techniques are often misunderstood and as this is
such a big topic for both hardware and software developers it is
treated in more depth later in this text.

Commercial operating systems

pSOS+

pSOS+ is the name of a popular multitasking real-time
operating system. Although the name refers to the kernel itself, it
is often used in a more generic way to refer to a series of develop-
ment tools and system components. The best way of looking at the
products is to use the overall structure as shown in the diagram.
The box on the left is concerned with the development environ-
ment while that on the right are the software components that are
used in the final target system. The two halves work together via
communication links such as serial lines, Ethernet and TCP/IP
protocol or even over the VMEbus itself.

Application

Design component

pREPC+

pSOS+

pHILE+

p
N
A
+

pROBE+ target 
debugger

Development tools

Compilation tools

Libraries

XRAY+ Source level cross 
debug/analyser

Host
(development system)

Target
(embedded system)

pSOS+ overall structure

pSOS+ kernel
The kernel supports a wide range of processor families like

the Motorola M68000 family, the Intel 80x86 range, and the M88000
and i960 RISC processors. It is small in size and typically takes
about 15–20 kbytes of RAM, although the final figure will depend
on the configuration and processor type.

It supports more than 50000 system objects such as tasks,
memory partitions, message queues and so on and will execute
time-critical routines consistently irrespective of the application
size. In other words, the time to service a message queue is the



Real-time operating systems 249

same irrespective of the size of the message. Note that this will
refer to the time taken to pass the message or perform the service
only and does not and cannot take into account the time taken by
the user to handle messages. In other words, the consistent timing
refers to the message delivery and not the actions taken as a result
of the message. Worst case figures for interrupt latency and
context switch for an MC68020 running at 25 MHz are 6 and 19 µs
respectively. Among its 55 service calls, it provides support for:

• Task management
• Message queues
• Event services
• Semaphore services
• Asynchronous services
• Storage allocation services
• Time management and timer services
• I/O supervisor services
• Interrupt management
• Error handling services

pSOS  multiprocessor kernel
pSOS+m is the multiprocessing version of the kernel. From

an application or task’s perspective, it is virtually the same as the
single processor version except that the kernel now has the ability
to send and receive system objects from other processors within
the system. The application or task does not know where other
tasks actually reside or the communication method used to link
them.

The communication mechanism works in this way. Each
processor runs its own copy of the kernel and has a kernel interface
to the media used for linking the processors, either a VMEbus
backplane or a network. When a task sends a message to a local
task, the local processor will handle it. If the message is for task
running on another node, the local operating system will look up
the recipient’s identity and location. The message is then routed
across the kernel interface across to the other processor and its
operating system where the message is finally delivered. Different
kernel interfaces are needed for different media.

pREPC+ runtime support
This is a compiler independent run-time environment for C

applications. It is compatible with the ANSI X3J11 technical com-
mittee’s proposal for C run-time functionality and provides 88
functions that can be called from C programs. Services supported
include formatted I/O, file I/O and string manipulation.

pREPC+ is not a standalone product because it uses pSOS+
or pSOS+m for device I/O and task functions and calls pHILE+ for
file and disk I/O. Its routines are re-entrant which allows multiple
tasks to use the same routine simultaneously.
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pHILE+ file system
This product provides file I/O and will support either the

MS-DOS file structure or its own proprietary formats. The MS-
DOS structure is useful for data interchange while the proprietary
format is designed to support the highest data throughput across
a wide range of devices. pHILE+ does not drive physical devices
directly but provides logical data via pSOS+ to a device driver task
that converts this information to physical data and drives the
storage device.

pNA+ network manager
This is a networking option that provides TCP/IP commu-

nication over a variety of media such as Ethernet and FDDI. It
conforms to the UNIX 4.3 BSD socket syntax and approach and is
compatible with other TCP/IP–based networking standards such
as ftp and NFS.

As a result, pNA+ is used to provide efficient downloading
and debugging communication between the target and a host
development system. Alternatively, it can be used to provide a
communication path between other systems that are also sitting
on the same network.

pROBE+ system level debugger
This is the system level debugger which provides the sys-

tem and low level debugging facilities. With this, system objects
can be inspected or even used to act as breakpoints if needed. It can
use either a serial port to communicate with the outside world or
if pNA+ is installed, use an TCP/IP link instead.

XRAY+ source level debugger
This is a complementary product to pROBE+ as it can use

the debugger information and combine it with the C source and
other symbolic information on the host to provide a complete
integrated debugging environment.

OS-9
OS-9 was originally developed by Microware and Motorola

as a real-time operating system for the Motorola MC6809 8 bit
processor and it appeared on many 6809-based systems such as
the Exorset 165 and the Dragon computer. It provided a true
hierarchical filing system and the ability to run multiple tasks. It
has since been ported to the M68000 family and the Intel 80x86
processor families. It is best described as a complete operating
system with its own user commands, interface and so on. Unlike
other products which have concentrated on the central kernel and
then built outwards but stopping at below the user and utility
level, OS-9 goes from a multi-user multitasking interface with a
range of utilities down to the low level kernel. Early on it sup-
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ported UNIX by using and supporting the same library interface
and similar system calls. So much so that one of its strengths was
the ability to take UNIX source code, recompile it and then run it.

One criticism has been its poor real-time response although
a new version has been released which used a smaller, compact
and faster kernel to provide better performance. The full facilities
are still provided by the addition of other kernel services around
the inner one. It provides more sophisticated support such as
multimedia extensions which other operating systems do not, and
because of this and its higher level of utilities and expansion has
achieved success in the marketplace.

VXWorks
VXWorks has taken another approach to the problem of

providing a real-time environment as well as standard software
tools and development support. Instead of creating its own or
reproducing a UNIX-like environment, it actually has integrated
with UNIX to provide its development and operational environ-
ment. Through VXWorks’ UNIX compatible networking facilities,
it can combine with UNIX to form a complete run-time solution as
well. The UNIX system is responsible for software development
and non-real-time debugging while the VXWorks kernel is used
for testing, debugging and executing the real-time applications,
either standalone or part of a network with UNIX.

How does this work? The UNIX system is used as the
development host and is used to edit, compile, link and administer
the building of real-time code. These modules can then be burned
into ROM or loaded from disk and executed standalone under the
VXWorks kernel. This is possible because VXWorks can under-
stand the UNIX object module format and has a UNIX compatible
software interface. By using the standard UNIX pipe and socket
mechanisms to exchange data between tasks and by using UNIX
signals for asynchronous events, there is no need for recompilation
or any other conversion routines. Instead, the programmer can use
the same interface for both UNIX and VXWorks software without
having to learn different libraries or programming commands. It
supports the POSIX 1003.4 real-time extensions and multiprocess-
ing support for up to 20 processors is offered via another option
called VxMP.

The real key to VXWorks is its ability to network with UNIX
to allow a hybrid system to be developed or even allow individual
modules or groups to be transferred to run in a VXWorks environ-
ment. The network can be over an Ethernet or even using shared
memory over a VMEbus, for example.

VRTX-32
VRTX-32 from Microtec Research has gained a reputation

for being an extremely compact but high performance real-time
kernel. Despite being compact — typically about 8 kbytes of code
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for an MC68020 system — it provides task management facilities,
inter-task communication, memory control and allocation, clock
and timer functions, basic character I/O and interrupt handling
facilities.

Under the name of VRTXvelocity, VRTX-32 systems can be
designed using cross-development platforms such as Sun
workstations and IBM PCs. The systems can be integrated with the
host, usually using an Ethernet, to provide an integrated approach
to system design.

IFX
Its associated product IFX (input/output file executive)

provides support for more complicated I/O subsystems such as
disks, terminals, and serial communications using structures such
as pipes, null devices, circular buffers and caches. The file system
is MS-DOS compatible although if this is not required, disks can be
treated as single partitions to speed up response.

TNX
This is the TCP/IP networking package that allows nodes

to communicate with hosts and other applications over the Ethernet.
The Ethernet device itself can either be resident on the processor
board or accessible across a VMEbus. It supports both stream and
datagram sockets.

RTL
This is the run-time library support for Microtec and Sun

compilers and provides the library interface to allow C programs
to call standard I/O functions and make VRTX-32 calls.

RTscope
This is the real-time multitasking debugger and system

monitor that is used to debug VRTX tasks and applications. It
operates on two levels: the board level debugger provides the
standard features such as memory and register display and modify,
software upload and download and so on. In the VRTX-32 system
monitor mode, tasks can be interrogated, stopped, suspended and
restarted.

MPV
The multiprocessor VRTX-32 extensions allow multiple

processors each running their own copy of VRTX to pass messages
and other task information from one processor to another and thus
create a multiprocessor system. The messages are based across the
VMEbus using shared memory although other links such as RS232
or Ethernet are possible.

LynxOS-POSIX conformance
POSIX (IEEE standard portable operating system interface

for computer environments) began in 1986 as an attempt to
provide an open standard for operating system support. The ideas
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behind it are to provide vendor independence, protection from
technical obsolescence, the availability of standard off-the-shelf
applications, the preservation of software investment and to pro-
vide connectivity between computers.

It is based on UNIX but has added a set of real-time
extensions as defined in the POSIX 1003.4 document. These cover
a more sophisticated semaphore system which uses the open() call
to create them. This call is more normally associated with opening
a file. The facilities include persistent semaphores which retain
their binary state after their last use, and the ability to force a task
to wait for a semaphore through a locking mechanism.

The extensions also provide a process or task locking mecha-
nism which prevents memory pages associated with the task or
process from being swapped out to memory, thus improving the
real-time response for critical routines. Shared memory is better
supported through the provision of the shmmap() call which will
allocate a sheared memory block. Both asynchronous and syn-
chronous I/O and inter-task message passing are supported along
with real-time file extensions to speed up file I/O. This uses
techniques such as preallocating file space before it is required.

At the time of writing LynxOS is the main real-time product
that supports these standards, although many others support
parts of the POSIX standard. Indeed, there is an increasing level of
support for this type of standardisation.

However, it is not a complete panacea and, while any
attempt for standardisation should be applauded, it does not solve
all the issues. Real-time operating systems and applications are
very different in their needs, design and approach, as can be seen
from the diversity of products that are available today. Can all of
these be met by a single standard? In addition, the main cost of
developing software is not in porting but in testing and document-
ing the product and this again is not addressed by the POSIX
standards. POSIX conformance means that software should be
portable across processors and platforms, but it does not guaran-
tee it. With many of today’s operating systems available in ver-
sions for the major processor families, is the POSIX portability any
better? Many of these questions are yet to be answered conclu-
sively by supporters or protagonists.

An alternative way of looking at this problem is: do you
assume that a ported real-time product will work because it is
POSIX compliant without testing it on the new target? In most
cases the answer will be no and that testing will be needed. What
POSIX conformance has given is a helping hand in the right
direction and this should not be belittled, neither should it be seen
as a miracle cure. In the end, the success of the POSIX standards
will depend on the market and users seeing benefit in its approach.
It is an approach that is gathering pace, and one that the real-time
market should be aware of. It is possible that it may succeed where
other attempts at a real-time interface standard have failed. An-
other possibility for POSIX conformance is Windows NT.
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Windows NT
Windows NT has been portrayed as many different things

during its short lifetime. When it first appeared, it was perceived
by many as the replacement for Windows 3.1, an alternative to
UNIX, and finally has settled down as an operating system for
workstations, servers and power users. This chameleon-like change
was not due to any real changes in the product but were caused by
a mixture of aspirations and misunderstandings.

Windows NT is rapidly replacing Windows 3.1 and Win-
dows 95 and parts of its technology have already found them-
selves incorporated into Windows 95 and Windows for
Workgroups. Whether the replacement is through a merging of
the operating system technologies or through a sharing of com-
mon technology, only time will tell. The important message is that
the Windows NT environment is becoming prevalent, especially
with Microsoft’s aim of a single set of programming interfaces that
will allow an application to run on any of its operating system
environments. Its greater stability and reliability is another fea-
ture that is behind its adoption by many business systems in
preference over Windows 95. All this is fine, but how does this fit
with an embedded system?

There are several reasons why Windows NT is being used
in real-time environments. It may not have the speed of a dedi-
cated RTOS but it has the important features and coupled with a
fast processor, reasonable performance.
• Portability

Most PC-based operating systems were written in low-
level assembler language instead of a high level language
such as C or C++. This decision was taken to provide
smaller programs sizes and the best possible performance.
The disadvantage is that the operating system and applica-
tions are now dependent on the hardware platform and it is
extremely difficult to move from one platform to another.
MS-DOS is writen in 8086 assembler which is incompatible
with the M68000 processors used in the Apple Macintosh.
For a software company like Microsoft, this has an addi-
tional threat of being dependent on a single processor
platform. If the platform changes — who remembers the
Z80 and 6502 processors which were the mainstays of the
early PCs — then its software technology becomes obsolete.
With an operating system that is written in a high level
language and is portable to other platforms, it allows
Microsoft and other application developers to be less hard-
ware dependent.

• True multitasking
While more performant operating systems such as UNIX
and VMS offer the ability to run multiple applications
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simultaneously, this facility is not really available from the
Windows and MS-DOS environments (a full explanation of
what they can do and the difference will be offered later in
this chapter). This is now becoming a very important aspect
for both users and developers alike so that the full perform-
ance of today’s processors can be utilised.

• Multi-threaded
Multi-threading refers to a way of creating software that
can be reused without having to have multiple copies of the
code or memory spaces. This leads to more efficient use of
both memory and code.

• Processor independent
Unlike Windows and MS-DOS which are completely linked
to the Intel 80x86 architecture, Windows NT through its
portability is processor independent and has been ported to
other processor architectures such as Motorola’s PowerPC,
DEC’s Alpha architecture and MIPS RISC processor sys-
tems.

• Multiprocessor support
Windows NT uses a special interface to the processor
hardware which makes it independent of the processor
architecture that it is running on. As a result, this not only
gives processor independence but also allows the operating
system to run on multiprocessor systems.

• Security and POSIX support
Windows NT offers several levels of security through its
use of a multi-part access token. This token is created and
verified when a user logs onto the system and contains IDs
for the user, the group he is assigned to, privileges and other
information. In addition, an audit trail is also provided to
allow an administrator to check who has used the system,
when they used it and what they did. While an overkill for
a single user, this is invaluable with a system that is either
used by many or connected to a network.
The POSIX standard defines a set of interfaces that allow
POSIX compliant applications to easily be ported between
POSIX compliant computer systems.
Both security and POSIX support are commercially essen-
tial to satisfy purchasing requirements from government
departments, both in the US and the rest of the world.

Windows NT characteristics
Windows NT is a pre-emptive multitasking environment

that will run multiple applications simultaneously and uses a
priority based mechanism to determine the running order. It is
capable of providing real-time support in that it has a priority
mechanism and fast response times for interrupts and so on, but
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it is less deterministic — there is a wider range of response times
— when compared to a real-time operating system such as pSOS
or OS-9 used in industrial applications. It can be suitable for many
real-time applications with less critical timing characteristics and
this is a big advantage over the Windows 3.1 and Windows 95
environments. It is interesting to note that this technology now
forms the backbone of all the Windows software environments.

Process priorities
Windows NT calls all applications, device drivers, software

tasks and so on processes and this nomenclature will be used from
now on. Each process can be assigned one of 32 priority levels
which determines its scheduling priority. The 32 levels are di-
vided into two groups called the real-time and dynamic classes.
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The real-time classes comprise priority levels 16 through to
31 and the dynamic classes use priority levels 15 to 0. Within these
two groups, certain priorities are defined as base classes and
processes are allocated a base process. Independent parts of a
process — these are called threads — can be assigned their own
priority levels which are derived from the base class priority and
can be ±2 levels different. In addition, a process cannot move from
a real-time class to a dynamic one.

The diagram shows how the base classes are organised. The
first point is that within a given dynamic base class, it is possible
for a lot of overlap. Although a process may have a lower base class
compared to another process, it may be at a higher priority than
the other one depending on the actual priority level that has been
assigned to it. The real-time class is a little simpler although again
there is some possibility for overlap.

User applications like word processors, spread sheets and
so on run in the dynamic class and their priority will change
depending on the application status. Bring an application from the
background to the foreground by expanding the shrunk icon or by
switching to that application will change its priority appropriately
so that it gets allocated a higher priority and therefore more
processing. Real-time processes include device drivers handling
the keyboard, cursor, file system and other similar activities.

Interrupt priorities
The concept of priorities is not solely restricted to the pre-

emption priority previously described. Those priorities come into
play when an event or series of events occur. The events them-
selves are also controlled by 32 priority levels defined by the
hardware abstraction layer (HAL).

Interrupt Description
31 Hardware error interrupt
30 Powerfail interrupt
29 Inter-processor interrupt
28 Clock interrupt
27-12 Standard IBM PC AT interrupt levels 0 to 15
11-4 Reserved (not generally used)
3 Software debugger
2-0 Software interrupts for device drivers etc.

Interrupt priorities
The interrupt priorities work in a similar way to those

found on a microprocessor: if an interrupt of a higher priority than
the current interrupt priority mask is generated, the current
processing will stop and be replaced by the associated routines for
the new higher priority level. In addition, the mask will be raised
to match that of the higher priority. When the higher priority
processing has been completed, the previous processing will be
restored and allowed to continue. The interrupt priority mask will
also be restored to its previous value.
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Within Windows NT, the interrupt processing is also sub-
ject to the multitasking priority levels. Depending on how these
are assigned to the interrupt priority levels, the processing of a
high priority interrupt may be delayed until a higher priority
process has completed. It makes sense therefore to have high
priority interrupts processed by processes with high priority
scheduling levels. Comparing the interrupts and the priority
levels shows that this maxim has been followed. Software inter-
rupts used to communicate between processes are allocated both
low interrupt and scheduling priorities. Time critical interrupts
such as the clock and inter-processor interrupts are handled as
real-time processes and are allocated the higher real-time sched-
uling priorities.

The combination of both priority schemes provides a fairly
complex and flexible method of structuring how external and
internal events and messages are handled.

Resource protection
If a system is going to run multiple applications simultane-

ously then it must be able to ensure that one application doesn’t
affect another. This is done through several layers of resource
protection. Resource protection within MS-DOS and Windows 3.1
is a rather hit and miss affair. There is nothing to stop an applica-
tion from directly accessing an I/O port or other physical device
and if it did so, it could potentially interfere with another applica-
tion that was already using it. Although the Windows 3.1 environ-
ment can provide some resource protection, it is of collaboration
level and not mandatory. It is without doubt a case of self-
regulation as opposed to obeying the rules of the system.

Protecting memory
The most important resource to protect is memory. Each

process is allocated its own memory which is protected from
interference by other processes through programming the memory
management unit. This part of the processor’s hardware tracks the
executing process and ensures that any access to memory that it
has not been allocated or given permission to use is stopped.

Protecting hardware
Hardware such as I/O devices are also protected by the

memory management unit and any direct access is prevented.
Such accesses have to be made through a device driver and in this
way the device driver can control who has access to a serial port
and so on. A mechanism called a spinlock is also used to control
access. A process can only access a device or port if the associated
spinlock is not set. If someone else is  using it, the process must wait
until they have finished.
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Coping with crashes
If a process crashes then it is important for the operating

system to maintain as much of the system as possible. This
requires that the operating system as well as other applications
must have its own memory and resources given to it. To ensure
this is the case, processes that are specific to user applications are
run in a user mode while operating system processes are executed
in a special kernel mode. These modes are kept separate from each
other and are protected. In addition, the operating system has to
have detailed knowledge of the resources used by the crashed
process so that it can clean up the process, remove it and thus free
up the resources that it used. In some special cases, such as power
failures where the operating system may have a limited amount of
time to shut down the system in a controlled manner or save as
much of the system data as it can, resources are dedicated specifi-
cally for this functionality. For example, the second highest inter-
rupt priority is allocated to signalling a power failure.

Windows NT is very resilient to system crashes and while
processes can crash, the system will continue. This is essentially
due to the use of user and kernel modes coupled with extensive
resource protection. Compared to Windows 3.1 and MS-DOS, this
resilience is a big advantage.

Multi-threaded software
There is a third difference with Windows NT that many

other operating systems do not provide in that it supports multi-
threaded processes. Processes can support several independent
processing paths or threads. A process may consist of several
independent sections and thus form several different threads in
that the context of the processing in one thread may be different
from that in another thread. In other words, the process has all the
resources defined that it will use and if the process can support
multi-threaded operations, the scheduler will see multiple threads
going through the process. A good analogy is a production line. If
the production line is single threaded, it can only produce a single
end product at a time. If it is multi-threaded, it separates the
production process into several independent parts and each part
can work on a different product. As soon as the first operation has
taken place, a second thread can be started. The threads do not
have to follow the same path and can vary their route through the
process.

The diagram shows a simple multi-threaded operation
with each thread being depicted by a different shading. As the first
thread progresses through, a second thread can be started. As that
progresses through, a third can commence and so on. The re-
sources required to process the multiple threads in this case are the
same as if only one thread was supported.

The advantage of multi-threaded operation is that the proc-
ess does not have to be duplicated every time it is used: a new
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thread can be started. The disadvantage is that the process pro-
gramming must ensure that there is no contention or conflict
between the various threads that it supports. All the threads that
exist in the process can access each other’s data structures and
even files. The operating system which normally polices the
environment is powerless in this case. Threads within Windows
NT derive their priority from that of the process although the level
can be adjusted within a limited range.

 

Multi-threaded (left) and single-threaded (right) operations

Addressing space
The addressing space within Windows NT is radically

different from that experienced within MS-DOS and Windows 3.1.
It provides a 4 Gbyte virtual address space for each process which
is linearly addressed using 32 bit address values. This is different
from the segmented memory map that MS-DOS and Windows
have to use. A segmented memory scheme uses 16 bit addresses to
provide address spaces of only 64 kbytes. If addresses beyond this
space have to be used, special support is needed to change the
segment address to point to a new segment. Gone are the different
types of memory such as extended and expanded.

This change towards a large 32 bit linear address space
improves the environment for software applications and increases
their performance and capabilities to handle large data structures.
The operating system library that the applications use is called
WIN32 to differentiate it from the WIN16 libraries that Windows
3.1 applications use. Applications that use the WIN32 library are
known as 32 bit or even native — this term is also used for
Windows NT applications that use the same instruction set as the
host processor and therefore do not need to emulate a different
architecture.

To provide support for legacy MS-DOS and Windows 3.1
applications, Windows NT has a 16 bit environment which simu-
lates the segmented architecture that these applications use.
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Virtual memory
The idea behind virtual memory is to provide more memory

than physically present within the system. To make up the short-
fall, a file or files are used to provide overflow storage for applica-
tions which are to big to fit in the system RAM at one time. Such
applications’ memory requirements are divided into pages and
unused pages are stored on disk.

When the processor wishes to access a page which is not
resident in memory, the memory management hardware asserts
a page fault, selects the least used page in memory and swaps it
with the wanted page stored on disk. Therefore, to reduce the
system overhead, fast mass storage and large amounts of RAM are
normally required.

Windows NT uses a swap file to provide a virtual memory
environment. The file is dynamic in size and varies with the
amount of memory that all the software including the operating
system, device driver, and applications require. The Windows 3.1
swap file is limited to about 30 Mbytes in size and this effectively
limits the amount of virtual memory that it can support.

The internal architecture
The internal architecture is shown in the diagram below

and depicts the components that run in the user and kernel modes.
Most of the operating system runs in the kernel mode with the
exception of the security and WIN32 subsystems.
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The environments are protected in that direct hardware
access is not allowed and that a single application will run in a
single environment. This means that some applications or combi-
nations may not work in the Windows NT environment. On the
other hand, running them in separate isolated environments does
prevent them from causing problems with other applications or
the operating system software.

Virtual memory manager
The virtual memory manager controls and supervises the

memory requirements of an operating system. It allocates to each
process a private linear address space of 4 Gbytes which is unique
and cannot be accessed by other processes. This is one reason why
legacy software such as Windows 3.1 applications run as if they
are the only application running.

With each process running in its own address space, the
virtual memory manager ensures that the data and code that the
process needs to run is located in pages of physical memory and
ensures that the correct address translation is performed so that
process addresses refer to the physical addresses where the infor-
mation resides. If the physical memory is all used up, the virtual
memory manager will move pages of data and code out to disk
and store it in a temporary file. With some physical memory freed
up, it can load from disk previously stored information and make
it available for a process to use. This operation is closely associated
with the scheduling process which is handled within the kernel.
For an efficient operating system, it is essential to minimise the
swapping out to disk — each disk swap impacts performance —
and the most efficient methods involve a close correlation with
process priority. Low priority processes are primary targets for
moving information out to disk while high priority processes are
often locked into memory so that they offer the highest perform-
ance and are never swapped out to disk. Processes can make
requests to the virtual memory manager to lock pages in memory
if needed.

User and kernel modes
Two modes are used to isolate the kernel and other compo-

nents of the operating system from any user applications and
processes that may be running. This separation dramatically
improves the resilience of the operating system. Each mode is
given its own addressing space and access to hardware is made
through the operating system kernel mode. To allow a user
process access, a device driver must be used to isolate and control
its access to ensure that no conflict is caused.

The kernel mode processes use the 16 higher real-time class
priority levels and thus operating system processes will take
preference over user applications.
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Local procedure call (LPC)
This is responsible for co-ordinating system calls from an

application and the WIN32 subsystem. Depending on the type of
call and to some extent its memory needs, it is possible for
applications to be routed directly to the local procedure call (LPC)
without going through the WIN32 subsystem.

The kernel
The kernel is responsible for ensuring the correct operation

of all the processes that are running within the system. It provides
the synchronisation and scheduling that the system needs. Syn-
chronisation support takes the form of allowing threads to wait
until a specific resource is available such as an object, semaphore,
an expired counter or other similar entity. While the thread is
waiting it is effectively dormant and other threads and processes
can be scheduled to execute.

The scheduling procedures use the 32 level priority scheme
previously described in this chapter and is used to schedule
threads rather than processes. With a process potentially support-
ing multiple threads, the scheduling operates on a thread basis
and not on a process basis as this gives a finer granularity and
control. Not scheduling a multi-threaded process would affect
several threads which may not be the required outcome. Schedul-
ing on a thread basis gives far more control.

Interrupts and other similar events also pass through the
kernel so that it can pre-empt the current thread and reschedule a
higher priority thread to process the interrupt.

File system
Windows NT supports three types of file system and these

different file systems can co-exist with each other although there
can be some restrictions if they are accessed by non-Windows NT
systems across a network, for example.
• FAT

File allocation table is the file system used by MS-DOS and
Windows 3.1 and uses file names with an 8 character name
and a 3 character extension. The VFAT system used by
Windows 95 and supports long file names is also supported
with Windows NT v4 in that it can read Windows 95 long
file names.

• HPFS
High performance file system is an alternative file system
used by OS/2 and supports file names with 254 characters
with virtually none of the character restrictions that the FAT
system imposes. It also uses a write caching to disk tech-
nique which stores data temporarily in RAM and writes it
to disk at a later stage. This frees up an application from
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waiting until the physical disk write has completed. The
physical disk write is performed when the processor is
either not heavily loaded or when the cache is full.

• NTFS
The NT filing system is Windows NT’s own filing system
which conforms to various security recommendation and
allows system administrators to restrict access to files and
directories within the filing system.
All three filing systems are supported — Windows NT will

even truncate and restore file names that are not MS-DOS compat-
ible — and are selected during installation.

Network support
As previously stated, Windows NT supports most major

networking protocols and through its multi-tasking capabilities
can support several simultaneously using one or more network
connections. The drivers that do the actual work are part of the
kernel and work closely with the file system and security modules.

I/O support
I/O drivers are also part of the kernel and these provide the

link between the user processes and threads and the hardware.
MS-DOS and Windows 3.1 drivers are not compatible with Win-
dows NT drivers and one major difference between Windows NT
and Windows 3.1 is that not all hardware devices are supported.
Typically modern devices and controllers can be used but it is wise
to check the existence of a driver before buying a piece of hardware
or moving from Windows 3.1 to Windows NT.

HAL approach
The hardware abstraction layer (HAL) is designed to pro-

vide portability across different processor-based platforms and
between single and multi-processor systems. In essence, it defines
a piece of virtual hardware that the kernel uses when it needs to
access hardware or processor resources. The HAL layer then takes
the virtual processor commands and requests and translates them
to the actual processor system that it is actually using. This may
mean a simple mapping where a Windows NT interrupt level
corresponds to a processor hardware interrupt but it can involve
a complete emulation of a different processor. Such is the case to
support MS-DOS and Windows 3.1 applications where an Intel
80x86 processor is emulated so that an Intel instruction set can be
run.

With the rest of Windows NT being written in C, a portable
high level language, the only additional work to the recompilation
and testing is to write a suitable HAL layer for the processor
platform that is being used.
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Linux
Linux started as a personal interest project by Linus Torvalds

at the University of Helsinki in Finland to produce an operating
system that looked and felt like UNIX. It was based on work that
he had done in porting Minix , an operating system that had been
shipped with a textbook that described its inner workings.

After much discussion via user groups on the Internet, the
first version of Linux saw the light of day on the 5 October, 1991.
While limited in its abilities — it could run the GNU bash shell and
gcc compiler but not much else — it prompted a lot of interest.
Inspired by Linus Torvalds’ efforts, a band of enthusiasts started
to create the range of software that Linux offers today. While this
was progressing, the kernel development continued until some 18
months later, when it reached version 1.0. Since then it has been
developed further with many ports for different processors and
platforms. Because of the large amount of software available for it,
it has become a very popular operating system and one that is
often thought off as a candidate for embedded systems.

However it is based on the interfaces and design of the
UNIX operating system which for various reasons is not consid-
ered suitable for embedded design. If this is the case, how is it that
Linux is now forging ahead in the embedded world. To answer
this question, it is important to understand how it came about and
was developed. That means starting with the inspiration behind
Linux, the UNIX operating system.

Origins and beginnings
UNIX was first described in an article published by Ken

Thompson and Dennis Ritchie of Bell Research Labs in 1974, but
its origins owe much to work carried out by a consortium formed
in the late 1960s, by Bell Telephones, General Electric and the
Massachusetts Institute of Technology, to develop MULTICS — a
MULTIplexed Information and Computing Service. Their goal
was to move away from the then traditional method of users
submitting work in as punched cards to be run in batches — and
receiving their results several hours (or days!) later. Each piece of
work (or job) would be run sequentially — and this combination
of lack of response and the punched card medium led to many
frustrations — as anyone who has used such machines can con-
firm. A single mistake during the laborious task of producing
punched cards could stop the job from running and the only help
available to identify the problem was often a ‘syntax error’ mes-
sage. Imagine how long it could take to debug a simple program
if it took the computer several hours to generate each such mes-
sage!

The idea behind MULTICS was to generate software which
would allow a large number of users simultaneous access to the
computer. These users would also be able to work interactively
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and on-line in a way similar to that experienced by a personal
computer user today. This was a fairly revolutionary concept.
Computers were very expensive and fragile machines that re-
quired specially trained staff to keep other users away from and
protect their machine. However, the project was not as successful
as had been hoped and Bell dropped out in 1969. The experienced
gained in the project was turned to other uses when Thompson
and Ritchie designed a computer filing system on the only ma-
chine available — a Digital Equipment PDP-7 mini computer.

While this was happening, work continued on the GE645
computer used in the MULTICS project. To improve performance
and save costs (processing time was very expensive), they wrote
a very simple operating system for the PDP-7 to enable it to run a
space travel game. This operating system, which was essentially
the first version of UNIX, included a new filing system and a few
utilities.

The PDP-7 processor was better than nothing — but the
new software really cried out for a better, faster machine. The
problem faced by Thompson and Ritchie was one still faced by
many today. It centred on how to persuade management to part
with the cash to buy a new computer, such as the newer Digital
Equipment Company’s PDP-11. Their technique was to interest
the Bell legal department in the UNIX system for text processing
and use this to justify the expenditure. The ploy was successful
and UNIX development moved along.

The next development was that of the C programming
language, which started out as an attempt to develop a FORTRAN
language compiler. Initially, a programming language called B
which was developed, which was then modified into C. The
development of C was crucial to the rapid movement of UNIX
from a niche within a research environment to the outside world.

UNIX was rewritten in C in 1972 — a major departure for an
operating system. To maximise the performance of the computers
then available, operating systems were usually written in a low
level assembly language that directly controlled the processor.
This had several effects. It meant that each computer had its own
operating system, which was unique, and this made application
programs hardware dependent. Although the applications may
have been written in a high level language (such as FORTRAN or
BASIC) which could run on many different machines, differences
in the hardware and operating systems would frequently prevent
these applications from being moved between systems. As a
result, many man hours were spent porting software from one
computer to another and work around this computer equivalent
of the Tower of Babel.

By rewriting UNIX in C, the painstaking work of porting
system software to other computers was greatly reduced and it
became feasible to contemplate a common operating system run-
ning on many different computers. The benefit of this to users was
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a common interface and way of working, and to software develop-
ers, an easy way to move applications from one machine to
another. In retrospect, this decision was extremely far sighted.

The success of the legal text processing system, coupled
with a concern within Bell about being tied to a number of
computer vendors with incompatible software and hardware,
resulted in the idea of using the in-house UNIX system as a
standard environment. The biggest advantage of this was that
only one set of applications needed to be written for use on many
different computers. As UNIX was now written in a high level
language, it was a lot more feasible to port it to different hardware
platforms. Instead of rewriting every application for each compu-
ter, only the UNIX operating system would need to be written for
each machine — a lot less work. This combination of factors was
too good an opportunity to miss. In September 1973, a UNIX
Development Support group was formed for the first UNIX
applications, which updated telephone directory information and
intercepted calls to changed numbers.

The next piece of serendipity in UNIX development was the
result of a piece of legislation passed in 1956. This prevented
AT&T, who had taken over Bell Telephone, from selling computer
products. However, the papers that Thompson and Ritchie had
published on UNIX had created a quite a demand for it in aca-
demic circles. UNIX was distributed to universities and research
institutions at virtually no cost on an ‘as is’ basis — with no
support. This was not a problem and, if anything, provided a
motivating challenge. By 1977, over 500 sites were running UNIX.

By making UNIX available to the academic world in this
way, AT&T had inadvertently discovered a superb way of mar-
keting the product. As low cost computers became available
through the advent of the mini computer (and, later, the micro-
processor), academics quickly ported UNIX and moved the rap-
idly expanding applications from one machine to another. Often,
an engineer’s first experience of computing was on UNIX systems
with applications only available on UNIX. This experience then
transferred into industry when the engineer completed training.
AT&T had thus developed a very large sales force promoting its
products — without having to pay them! A situation that many
marketing and sales groups in other companies would have given
their right arms for. Fortunately for AT&T, it had started to licence
and protect its intellectual property rights without restricting the
flow into the academic world. Again, this was either far sighted or
simply common sense, because they had to wait until 1984 and
more legislation changes before entering the computer market
and starting to reap the financial rewards from UNIX.

The disadvantage of this low key promotion was the ap-
pearance of a large number of enhanced variants of UNIX which
had improved appeal — at the expense of some compatibility. The
issue of compatibility at this point was less of an issue than today.
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UNIX was provided with no support and its devotees had to be
able to support it and its applications from day one. This self
sufficiency meant that it was relatively easy to overcome the slight
variations between UNIX implementations. After all, most of the
application software was written and maintained by the users
who thus had total control over its destiny. This is not the case for
commercial software, where hard economic factors make the
decision for or against porting an application between systems.

With the advent of microprocessors like the Motorola
MC68000 family, the Intel 8086 and the Zilog Z8000, and the ability
to produce mini computer performance and facilities with low
cost silicon, UNIX found itself a low cost hardware platform.
During the late 1970s and early 1980s, many UNIX systems ap-
peared using one of three UNIX variants.

XENIX was a UNIX clone produced by Microsoft in 1979
and ported to all three of the above processors. It faded into the
background with the advent of MS-DOS, albeit temporarily. Sev-
eral of the AT&T variants were combined into System III, which,
with the addition of several features, was later to become System
V. The third variant came from work carried at out at Berkeley
(University of California), which produced the BSD versions
destined to became a standard for the Digital Equipment Compa-
ny’s VAX computers and throughout the academic world.

Of the three versions, AT&T were the first to announce that
they would maintain upward compatibility and start the lengthy
process of defining standards for the development of future
versions. This development has culminated in AT&T System V
release 4, which has effectively brought the System V, XENIX and
BSD UNIX environments together.

What distinguishes UNIX from other operating systems is
its wealth of application software and its determination to keep
the user away from the physical system resources. There are many
compilers, editors, text processors, compiler construction aids and
communication packages supplied with the basic release. In addi-
tion, packages from complete CAD and system modelling to
integrated business office suites are available.

The problem with UNIX was that it was quite an expensive
operating system to buy. The hardware in many cases was specific
to a manufacturer and this restricted the use of UNIX. What was
needed was an alternative source of UNIX. With the advent of
Linux, this is exactly what happened.

Inside Linux
The key to understanding Linux as an operating system is

to understand UNIX and then to grasp how much the operating
system protects the user from the hardware it is running on. It is
very difficult to know exactly where the memory is in the system,
what a disk drive is called and other such information. Many
facets of the Linux environment are logical in nature, in that they
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can be seen and used by the user — but their actual location,
structure and functionality is hidden. If a user wants to run a 20
Mbyte program on a system, UNIX will use its virtual memory
capability to make the machine behave logically like one with
enough memory — even though the system may only have 4
Mbytes of RAM installed. The user can access data files without
knowing if they are stored on a floppy or a hard disk — or even on
another machine many miles away and connected via a network.
UNIX uses its facilities to present a logical picture to the user while
hiding the more physical aspects from view.

The Linux file system
Linux like UNIX has a hierarchical filing system which

contains all the data files, programs, commands and special files
that allow access to the physical computer system. The files are
usually grouped into directories and subdirectories. The file sys-
tem starts with a root directory and divides it into subdirectories.
At each level, there can be subdirectories that continue the file
system into further levels and files that contain data. A directory
can contain both directories and files. If no directories are present,
the file system will stop at that level for that path.

A file name describes its location in the hierarchy by the
path taken to locate it, starting at the top and working down. This
type of structure is frequently referred to as a tree structure which,
if turned upside down, resembles a tree by starting at a single root
directory — the trunk — and branching out.

root

bin etc dev term

fred david basic john steve

Directory

File

exec lib usr

The Linux file system

The full name, or path name, for the file steve located at the
bottom of the tree would be /etc/usr/steve. The / character at the
beginning is the symbol used for the starting point and is known
as root or the root directory. Subsequent use within the path name
indicates that the preceding file name is a directory and that the
path has followed down that route. The / character is in the
opposite direction to that used in MS-DOS systems: a tongue in
cheek way to remember which slash to use is that MS-DOS is
backward compared with Linux — and thus its slash character
points backward.
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The system revolves around its file structure and all physi-
cal resources are also accessed as files. Even commands exist as
files. The organisation is similar to that used within MS-DOS —
but the original idea came from UNIX, and not the other way
around. One important difference is that with MS-DOS, the top of
the structure is always referred to by the name of the hard disk or
storage medium. Accessing an MS-DOS root directory C:\ imme-
diately tells you that drive C holds the data. Similarly, A:\ and B:\
normally refer to floppy disks. With UNIX, such direct references
to hardware do not exist. A directory is simply present and rarely
gives any clues as to its physical location or nature. It may be a
floppy disk, a hard disk or a disk on another system that is
connected via a network.

All Linux files are typically one of four types, although it can
be extremely difficult to know which type they are without
referring to the system documentation. A regular file can contain
any kind of data and is not restricted in size. A special file repre-
sents a physical I/O device, such as a terminal. Directories are files
that hold lists of files rather than actual data and named pipes are
similar to regular files but restricted in size.

The physical file system
The physical file system consists of mass storage devices,

such as floppy and hard disks, which are allocated to parts of the
logical file system. The logical file system (previously described)
can be implemented on a system with two hard disks by allocating
the bin directory and the filing subsystem below it to hard disk no.
2 — while the rest of the file system is allocated to hard disk no. 1.
To store data on hard disk 2, files are created somewhere in the bin
directory. This is the logical way of accessing mass storage. How-
ever, all physical input and output can be accessed by sending data
to special files which are normally located in the /dev directory.
This organisation of files is shown.
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File
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Hard disk 1 Hard disk 2

The file system and physical storage
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This can create a great deal of confusion: one method of
sending data to a hard disk is by allocating it to part of the logical
file system and simply creating data files. The second method
involves sending the data directly to the special /dev file that
represents the physical disk drive — which itself exists in the
logical file system!

This conflict can be explained by an analogy using book-
cases. A library contains many bookcases where many books are
stored. The library represents the logical file system and the
bookcases the physical mass storage. Books represent the data
files. Data can be stored within the file system by putting books
into the bookcases. Books can be grouped by subject on shelves
within the bookcases — these represent directories and subdirec-
tories. When used normally, the bookcases are effectively trans-
parent and the books are located or stored depending on their
subject matter. However, there may be times when more storage
is needed or new subjects created and whole bookcases are moved
or cleared. In these cases, the books are referred to using the
bookcase as the reference — rather than subject matter.

The same can occur within Linux. Normally, access is via
the file system, but there are times when it is easier to access the
data as complete physical units rather than lots of files and
directories. Hard disk copying and the allocation of part of the
logical file system to a floppy disk are two examples of when
access via the special /dev file is used. Needless to say, accessing
hard disks directly without using the file system can be extremely
dangerous: the data is simply accessed by block numbers without
any reference to the type of data that it contains. It is all too easy
to destroy the file system and the information it contains. Another
important difference between the access methods is that direct
access can be performed at any time and with the mass storage in
any state. To access data via the logical file system, data structures
must be present to control the file structure. If these are not
present, logical access is impossible.

Building the file system
When a Linux system is powered up, its system software

boots the Linux kernel into existence. One of the first jobs per-
formed is the allocation of mass storage to the logical file system.
This process is called mounting and its reverse, the de-allocation
of mass storage, is called unmounting. The mount command
specifies the special file which represents the physical storage and
allocates it to a target directory. When mount is complete, the file
system on the physical storage media has been added to the logical
file system. If the disk does not have a filing system, i.e. the data
control structures previously mentioned do not exist, the disk
cannot be successfully mounted.

The mount and umount commands can be used to access
removable media, such as floppy disks, via the logical file system.
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The disk is mounted, the data accessed as needed and the disk
unmounted before physically removing it. All that is needed for
this access to take place is the name of the special device file and
the target directory. The target directory normally used is /mnt but
the special device file name varies from system to system. The
mount facility is not normally available to end users for reasons
that will become apparent later in this chapter.

The file system
Files are stored by allocating sufficient blocks of storage to

contain all the data they contain. The minimum amount of storage
that can be allocated is determined by the block size, which can
range from 512 bytes to 8 kbytes in more recent systems. The larger
block size reduces the amount of control data that is needed — but
can increase the storage wastage. A file with 1,025 bytes would
need two 1,024 byte blocks to contain it, leaving 1,023 bytes
allocated and therefore not accessible to store other files. End of
file markers indicate where the file actually ends within a block.
Blocks are controlled and allocated by a superblock, which con-
tains an inode allocated to each file, directory, subdirectory or
special file. The inode describes the file and where it is located.
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di_size

di_addr
•
•
•
•
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•

di_addr

di_atim
edi_mtime

di_ctime

File type, flags, access permission

Number of inode directory references

File owner user id

File owner group id

File size

13 address fields for data block allocation

Last time data was read

Last time data was modified

Last time inode was modified

The inode structure

Using the library and book analogy, the superblock repre-
sents the library catalogue which is used to determine the size and
location of each book. Each book has an entry — an inode — within
the catalogue.

The example inode below, which is taken from a Motorola
System V/68 computer, contains information describing the file
type, status flags and access permissions (read, write and execute)
for the three classifications of users that may need the file: the
owner who created the file originally, any member of the owner’s
group and, finally, anyone else. The owner and groups are iden-
tified by their identity numbers, which are included in the inode.
The total file size is followed by 13 address fields, which point to
the blocks that have been used to store the file data. The first ten
point directly to a block, while the other three point indirectly to
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other blocks to effectively increase the number of blocks that can
be allocated and ultimately the file size. This concept of direct and
indirect pointers is analogous to a library catalogue system: the
inode represents the reference card for each book or file. It would
have sufficient space to describe exactly where the book was
located, but if the entry referred to a collection, the original card
may not be able to describe all the books and overflow cards would
be needed. The inode uses indirect addresses to point to other data
structures and solve the overflow problem.

Inodes Data blocks 
on disk

Data file
in memory

Superblock

Inode 

reference
number

Block 
addresses

File
name

File access mechanism

Why go to these lengths when all that is needed is the
location of the starting block and storage of the data in consecutive
blocks? This method reduces the amount of data needed to locate
a complete file, irrespective of the number of blocks the file uses.
However, it does rely on the blocks being available in contiguous
groups, where the blocks are consecutively ordered. This does not
cause a problem when the operating system is first used, and all
the files are usually stored in sequence, but as files are created and
deleted, the free blocks become fragmented and intermingled
with existing files. Such a fragmented disk may have 20 Mbytes of
storage free, but would be unable to create files greater than the
largest contiguous number of blocks — which could be 10 or 20
times smaller. There is little more frustrating than being told there
is insufficient storage available when the same system reports that
there are many megabytes free. Linux is more efficient in using the
mass storage — at the expense of a more complicated directory
control structure. For most users, this complexity is hidden from
view and is not relevant to their use of the file system.

 So what actually happens when a user wants a file or
executes a command? In both cases, the mechanism is very similar.
The operating system takes the file or command name and looks
it up within the superblock to discover the inode reference number.
This is used to locate the inode itself and check the access permissions
before allowing the process to continue. If permission is granted,
the inode block addresses are used to locate the data blocks stored
on hard disk. These blocks are put into memory to reconstitute the
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file or command program. If the data file represents a command,
control is then passed to it, and the command executed.

The time taken to perform file access is inevitably depend-
ant on the speed of the hard disk and the time it takes to access each
individual block. If the blocks are consecutive or close to each
other, the total access time is much quicker than if they are
dispersed throughout the disk. Linux also uses mass storage as a
replacement for system memory by using memory management
techniques and its system response is therefore highly dependant
on hard disk performance. UNIX uses two techniques to help
improve performance: partitioning and data caching.

Disk partitioning
The concept of disk partitioning is simple: the closer the

blocks of data are to each other, the quicker they can be accessed.
The potential distance apart is dependant on the number of blocks
the disk can store, and thus its storage capacity. Given two hard
disks with the same access time, the drive with the largest storage
will give the slowest performance, on average. The principle is
similar to that encountered when shopping in a small or large
supermarket. It takes longer to walk around the larger shop than
the smaller one to fetch the same goods.

0   1   2   3    4    5   6   7 0    1           5    

File system                  Partition special file

Root
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User
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Example Linux partitioning

Linux has the option of partitioning large hard disks so the
system sees them as a set of smaller disks. This greatly reduces the
amount of searching required and considerably improves overall
access times. Each partition (or slice, as it sometimes called) is
created by allocating a consecutive number of blocks to it. The
partition is treated exactly as if it is a separate mass storage device
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and can be formatted, have a file system installed and mounted, if
required. The partitions can be arranged so they either overlap or
are totally separate. In both cases, an installed file system cannot
exceed the partition size (i.e. the number of blocks allocated to it)
and the lower boundaries of the file system and partition are the
same. With non-overlapped partitions, the file system cannot be
changed so it overlaps and destroys the data of an adjacent
partition. With an overlapped arrangement, this is possible. Chang-
ing partition dimensions requires, at best, the reinstallation of the
operating system or other software and, at worst, may need them
to be completely rebuilt. Fortunately, this only usually concerns
the system administrator who looks after the system. Users do not
need to worry about these potential problems.

The Motorola System V/68 implementation uses such tech-
niques as shown. The standard hard disk has 77,519 physical 512
byte blocks, which are allocated to 8 overlapping partitions. The
whole disk can be accessed using partition 7, the lower 192 blocks
of which are reserved for the boot software, which starts UNIX
when the system is powered on. Partition 0 has root, the main file
system, installed in blocks 192 to 13,991. Blocks 13,992 to 18,791 are
used as a swap area for the virtual memory implementation and
do not have a file system as such. Partition 1 is used to implement
a User file system as far as block 46,823. This could not have been
implemented using partitions 2, 3 or 4 without creating a gap —
and effectively losing storage space. A third file system, Source, is
implemented in partition 5 to use the remaining blocks for data
storage.

root

bin etc dev term

fred david basic john steve

Directory

File

exec lib usr

Hard disk 1 Hard disk 2

The file system and physical storage

Partitioning provides several other advantages. It allows
partitions to be used exclusively by Linux or another operating
system, such as MS-DOS, and it reduces the amount of data
backup needed to maintain a system’s integrity. Most Linux
implementations running on an IBM PC allocate partitions to
either MS-DOS or Linux and the sizes of these partitions are
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usually decided when the Linux software is first installed. Some
implementations use the same idea, but create large MS-DOS files,
which are used as UNIX partitions. In both cases, partitioning
effectively divides the single physical hard disk into several
smaller logical ones and allows the relatively easy transfer from
Linux to MS-DOS, and vice versa. The same principles are also
used if Linux is running on an Apple PowerMAC as well.

Most tape backup systems access hard disks directly and
not through the file system, so whole disks can be quickly backed
up onto tape. In practice, it is common for only parts of the file
system to require backing up, such as user files and data, and this
is more efficient if the backup process is restricted to these specific
parts of the file system. This is easily done using partitions which
are used by different parts of the file system. To back up specific
parts, the special /dev file for that partition is used. With the file
structure shown below, copying partition 2 to tape would back up
all the files and subdirectories in the /root/bin directory. Copying
partition 1 would copy everything excluding the /root/bin direc-
tory.

The Linux disk partitioning
The Linux operating system uses partitions to allow it to co-

exist with MS-DOS files and disks as used on IBM PCs. Any IBM
PC disk can be partitioned using the MS-DOS FDISK command to
create separate partitions. These partitions can then be assigned to
Linux and thus support both MS-DOS (and Windows) as well as
Linux. The partition naming follows a simple syntax as shown
below. In addition, Linux can also directly read and write to MS-
DOS disks.

This ability allows MS-DOS disks and thus files to co-exist
within a Linux system without the need for special utilities to
mount MS-DOS hard and floppy disks and then transfer files from
MS-DOS and Linux and vice versa.

Name Description
/dev/fd0 The first floppy disk drive (A:).
/dev/fd1 The second floppy disk drive (B:).
/dev/hda The whole first disk drive (IDE or BIOS compatible disk drive, e.g. ESDI,

ST506 and so on).
/dev/hda1 The first primary partition on the first drive.
/dev/hda2 The second primary partition on the first drive.
/dev/hda3 The third primary partition on the first drive.
/dev/hda4 The fourth primary partition on the first drive.
/dev/hdb The whole second disk drive.
/dev/hdb1 The first primary partition on the second drive.
/dev/hdb2 The second primary partition on the second drive.
/dev/hdb3 The third primary partition on the second drive.
/dev/hdb4 The fourth primary partition on the second drive.
/dev/hdc The whole third disk drive.
/dev/hdc1 The first primary partition on the third drive.
/dev/hdc2 The second primary partition on the third drive.
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/dev/hdc3 The third primary partition on the third drive.
/dev/hdc4 The fourth primary partition on the third drive.
/dev/hdd The whole fourth disk drive.
/dev/hdd1 The first primary partition on the fourth drive.
/dev/hdd2 The second primary partition on the fourth drive.
/dev/hdd3 The third primary partition on the fourth drive.
/dev/hdd4 The fourth primary partition on the fourth drive.
/dev/sda The whole first disk drive (LUN 0) on the first SCSI controller.
/dev/sda1 The first primary partition on the first drive.

The /proc file system
Linux has an additional special file system called /proc. This

is not a file system in the true sense of the term but a simple method
of getting information about the system using the normal tools
and utilities. As will be shown, this is not always the case and there
is at least one special utility commonly used with this file system.
It is useful in making sure that all the drivers and other system
components you expected to be installed are actually there. To
access the /proc file system, it must be built into the kernel. Most,
if not all, standard Linux kernels do this to provide debugging
information at the very least.

Data caching
One method of increasing the speed of disk access is to keep

copies of the most recently used data in memory so it can be
fetched without having to keep accessing the slower electro-
mechanical disk. The first time the data is needed, it is read from
disk and is copied into the cache memory. The next time this data
is required, it comes directly from cache memory — without using
the disk. This access can be up to 1,000 times faster — which greatly
improves system performance. The amount of improvement de-
pends on the amount of cache memory present and the quantity of
data needed from disk. If cache memory exceeds the required
amount of data, the maximum performance improvement is gained
— all the data is read once and can be completely stored in cache
memory. If the amount of data is larger than the amount of cache
memory, that the actual disk has been updated. The system
frequently caches the new data — so the only copy is in cache
memory. As this memory is volatile, if the machine is switched off
the data is lost. If this information also includes superblock and
inode changes, the file system will have been corrupted and, at
best, parts of it will have been destroyed. At worst, the whole file
system can be lost by switching the power off without executing
a power down sequence. Most times, an accidental loss of power
will not cause any real damage — but it is playing Russian roulette
with the system.

The user can force the system to update the disk by execut-
ing the sync command as required. This is a well recommended
practice.
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Multi-tasking systems
Most operating systems used on PCs today, such as MS-

DOS, can only execute one application at a time. This means that
only one user can use the computer at any time, with the further
limitation that only one application can run at a time. While a
spreadsheet is executing, the PC can only wait for commands and
data from the keyboard. This is a great waste of computer power
because the PC could be executing other programs or applications
or, alternately, allow other users to run their software on it. The
ability to support multiple users running multiple applications is
called multi-user multi-tasking. This is a feature of Linux — and
is one of the reasons for its rapid adoption. The multi-tasking
techniques are where standard Linux falls down in that they use
a time slice mechanism (as explained earlier in this chapter) and
this is not real-time. As a result, the initial use of Linux into the
embedded market has been restricted because of this and the
amount of resources such as memory that it needs to function. This
has prompted the development of embedded Linux (eLinux) that
will be explained later in this chapter.

Multi-user systems
Given a multi-tasking operating system, it is easy to create

a multi-user environment, where several users can share the same
computer. This is done by taking the special interface program
that provides the command line and prompts, and running mul-
tiple copies of it as separate processes. When a user logs into the
computer, a copy of the program is automatically started. In the
UNIX environment, this is called the shell, and there are several
different versions available. The advantages of multi-user sys-
tems are obvious — powerful computer systems can be shared
between several users, rather than each having a separate system.
With a shared system, it can also be easier to control access and
data, which may be important for large work groups.

With any multi-user system, it is important to prevent users
from corrupting eachothers work, or gaining access to sensitive
data. To facilitate this, Linux allocates each user a password
protected login name, which uniquely identifies him. Each user is
normally allocated his own directory within the file system and
can configure his part of the system as needed. Users can be
organised into groups and every file within the system is given
access permissions controlling which user or group can read,
write or execute it. When a file is accessed, the requesting user’s
identity (or ID) is checked against that of the file. If it matches, the
associated permissions are checked against the request. The file
may be defined as read only, in which case a request to modify it
would not be allowed — even if the request came from the user
who created it in the first place. If the user ID does not match, the
group IDs are checked. If these match, the group permissions are
used to judge the validity of the request. If neither IDs match, a
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third set of permissions, known as others, are checked as the final
part of this process.

These permissions can be changed as required by the sys-
tem administrator, who must set up the Linux system and control
how much or how little access each user has to the system and its
facilities. This special user (or superuser) has unlimited access by
being able to assume any user and/or group identity. This allows
an organised structure to be easily implemented and controlled.

Linux software structure
The software structure used within UNIX is very modular,

despite its long development history. It consists of several layers
starting with programming languages, command scripts and
applications, shells and utilities, which provide the interface soft-
ware or application the user sees. In most cases, the only difference
between the three types of software is their interaction and end
product, although the more naive user may not perceive this.

The most common software used is the shell, with its
commands and utilities. The shell is used to provide the basic login
facilities and system control. It also enables the user to select
application software, load it and then transfer control to it. Some
of its commands are built into the software but most exist as
applications, which are treated by the system in the same way as
a database or other specialised application.

Programming languages, such as C and Fortran, and their
related tools are also applications but are used to write new
software to run on the system.

Hardware

Binary call interface

UNIX kernel and
device drivers

System call interface

Shells, commands 
and utilities

Applications

Programming languages
and scripts

Example Linux software structure

As shown in the diagram, all these layers of software
interface with the rest of the operating system via the system call
interface. This provides a set of standard commands and services
for the software above it and enables their access to the hardware,
filing systems, terminals and processor. To read data from a file,
a set of system calls are carried out which locate the file, open it and
transfer the required data to the application needing it. To find out
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the time, another call is used, and so on. Having transferred the
data, system calls are used to call the UNIX kernel and special
software modules, known as device drivers, which actually per-
form the work required.

Up to this point, the software is essentially working in a
standard software environment, where the actual hardware con-
figuration (processor, memory, peripherals and so on) is still
hidden. The hardware dependant software which actually drives
the hardware is located at the binary call interface.

Of all the layers, the kernel is the heart of the operating
system and it is here that the multi-tasking and multi-user aspects
of Linux and memory control are implemented. Control is achieved
by allocating a finite amount of processor time to each process —
an application, a user shell, and so on.

When a process starts executing, it will either be stopped
involuntarily (when its CPU time has been consumed) or, if it is
waiting for another service to complete, such as a disk access. The
next process is loaded and its CPU time starts. The scheduler
decides which process executes next, depending on how much
CPU time a process needs, although the priority can be changed by
the user. It should be noted that often the major difference between
UNIX variants and/or implementations is the scheduling algo-
rithm used.

Processes and standard I/O

One problem facing multi-user operating systems is that of
access to I/O devices, such as printers and terminals. Probably the
easiest method for the operating system is to address all peripher-
als by unique names and force application software to directly
name them. The disadvantage of this for the application is that it
could be difficult to find out which peripheral each user is using,
especially if a user may login via a number of different terminals.
It would be far easier for the application to use some generic name
and let the operating system translate these logical names to
physical devices. This is the approach taken by Linux.

Processes have three standard files associated with them:
stdin, stdout and stderr. These are the default input, output and
error message files. Other files or devices can be reassigned to
these files to either receive or provide data for the active process.
A list of all files in the current directory can be displayed on the
terminal by typing ls<cr> because the terminal is automatically
assigned to be stdout. To send the same data to a file, ls >
filelist<cr> is entered instead. The extra > filelist redirects the
output of the ls command. In the first case, ls uses the normal
stdout file that is assigned to the terminal and the directory
information appears on the terminal screen. In the second exam-
ple, stdout is temporarily assigned to the file filelist. Nothing is
sent to the terminal screen — the data is stored within the file
instead.
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Data can be fed from one process directly into another using
a ‘pipe’. A process to display a file on the screen can be piped into
another process which converts all lower case characters to upper
case. It can then pipe its data output into another process, which
pages it automatically before displaying it. This command line can
be written as a data file or ‘shell script’, which provides the
commands to the user interface or shell. Shell scripts form a
programming language in their own right and allow complex
commands to be constructed from simple ones. If the user does not
like the particular way a process presents information, a shell
script can be written which executes the process, edits and reformats
the data and then presents it. There are two commonly used shell
interfaces: the standard Bourne shell and the ‘C’ shell. Many
application programs provide their own shell which hide the
Linux operating system completely from the user.

Executing commands
After a user has logged onto the system, Linux starts to run

the shell program by assigning stdin to the terminal keyboard and
stdout to the terminal display. It then prints a prompt and waits for
a command to be entered. The shell takes the command line and
deciphers it into a command with options, file names and so on. It
then looks in a few standard directories to find the right program
to execute or, if the full path name is used, goes the directory
specified and finds the file. If the file cannot be found, the shell
returns an error message.

Fork

Child
shell

Ready for
command

Waiting for

child to complete

Executing a command 
in the foreground

Execute
command

Complete
command

Foreground execution

The next stage appears to be a little strange. The shell forks
i.e. it creates a duplicate of itself, with all its attributes. The only
difference between this new child process and its parent is the
value returned from the operating system service that performs
the creation. The parent simply waits for the child process to
complete. The child starts to run the command and, on its comple-
tion, it uses the operating system exit call to tell the kernel of its
demise. It then dies. The parent is woken up, it issues another
prompt, and the mechanism repeats. Running programs in this
way is called executing in the foreground and while the child is
performing the required task, no other commands will be ex-
ecuted (although they will still be accepted from the keyboard!).
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An alternative way of proceeding is to execute the com-
mand in background. This is done by adding an ampersand to the
end of the command. The shell forks, as before, with each com-
mand as it is entered — but instead of waiting for the child to
complete, it prompts for the next command. The example below
shows three commands executing in background. As they com-
plete, their output appears on stdout. (To prevent this disrupting
a command running in foreground, it is usual to redirect stdout to
a file.) Each child is a process and is scheduled by the kernel, as
necessary.
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shell

Complete
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command

Execute
command
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Child
shell

Child
shell

Background execution

Physical I/O
There are two classes of physical I/O devices and their

names describe the method used to collect and send data to them.
All are accessed by reading and writing to special files, usually
located in the /dev directory, as previously explained. Block de-
vices transfer data in multiples of the system block size. This
method is frequently used for disks and tapes. The other method
is called character I/O and is used for devices such as terminals
and printers.

Block devices use memory buffers and pools to store data.
These buffers are searched first to see if the required data is
present, rather than going to the slow disk or tape to fetch it. This
gives some interesting user characteristics. The first is that fre-
quently used data is often fetched from memory buffers rather
than disk, making the system response apparently much better.
This effect is easily seen when an application is started a second
time. On its first execution, the system had to fetch it in from disk
but now the information is somewhere in memory and can be
accessed virtually instantaneously. The second characteristic is
the performance improvement often seen when the system RAM
is increased. With more system memory, more buffers are avail-
able and the system spends less time accessing the disk.
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It is possible to access some block devices directly, without
using memory buffers. These are called raw accesses and are used,
for example, when copying disks.

For devices such as terminals and printers, block transfers
do not make much sense and here character transfers are used.
Although they do not use memory buffers and pools in the same
way as block devices, the Linux kernel buffers requests for single
characters. This explains why commands must be terminated with
a carriage return — to tell the kernel that the command line is now
complete and can be sent to the shell.

Memory management
With many users running many different processes, there is

a great potential for problems concerning memory allocation and
the protection of users from accesses to memory and peripherals
that are currently being used by other users of the system. This is
especially true when software is being tested which may attempt
to access memory that does not exist or is already being used. To
solve this sort of problem, Linux depends on a memory manage-
ment unit (MMU) — hardware which divides all the memory and
peripherals into sections which are marked as read only, read or
write, operating system accesses only, and so on. If a program tries
to write to a read only section, an error occurs which the kernel can
handle. In addition, the MMU can translate the memory addresses
given by the processor to a different address in memory.

Linux limitations
Unfortunately, Linux is not the utopian operating system

for all applications. Its need for memory management, many
megabytes of RAM and large mass storage (>40 Mbytes) immedi-
ately limits the range of hardware platforms it can successfully run
on. Mass storage is not only used for holding file data. It also
provides, via its virtual operating system and memory manage-
ment scheme, overflow storage for applications which are to big to
fit in the system RAM all at once. Its use of a non-real-time
scheduler, which gives no guarantee as to when a task will
complete, further excludes UNIX from many applications.

Through its use of memory management to protect its
resources, the simple method of writing an application task which
drives a peripheral directly via its physical memory is rendered
almost impossible. Physical memory can be accessed via the slow
‘/dev/mem’ file technique or by incorporating a shared memory
driver, but these techniques are either very slow or restrictive.
There is no straightforward method of using or accessing the
system interrupts and this forces the user to adopt polling tech-
niques.

In addition, there can be considerable overheads in manag-
ing all the look up tables and checking access rights etc. These
overheads appear on loading a task, during any memory
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allocation and when any virtual memory system needs to swap
memory blocks out to disk. The required software support is
usually performed by an operating system. In the latter case, if
system memory is very small compared with the virtual memory
size and application, the memory management driver will con-
sume a lot of processing power and time in simply moving data to
and from the disk. In extreme cases, this overhead starts to
dominate the system — which is working hard but achieving very
little. The addition of more memory relieves the need to swap and
releases more of the processing power to execute the application.

Finally, the system makes extensive use of disk caching
techniques, which use RAM buffers to hold recent data in memory
for faster access. This helps to reduce the system performance
degradation, particularly when used with a combination of exter-
nal page swapping and slow mass storage. The system does not
write data immediately to disk but stores it in a buffer. If a power
failure occurs, the data may only be memory resident and is
therefore lost. As this can include directory structures from the
superblock, it can corrupt or destroy files, directories or even
entire systems! Such systems cannot be treated with the contempt
other, more resilient, operating systems can tolerate — Linux
systems have to be carefully started, shut down, administered and
backed up.

One of the more interesting things about the whole Linux
movement is that give the developers a problem and someone
somewhere will find a way round the problem and come up with
a new version. Given that Linux in its initial form is not ideal for
embedded systems, can an embedded real-time version be created
that would allow the wealth of Linux software to be executed and
reused? The answer has been yes.

eLinux
While UNIX is a wonderful operating system for worksta-

tions, desktops and servers, it suffers from several restrictions that
prevented it from being used in the embedded system environ-
ment. It was large in terms of memory requirements both as main
memory and virtual memory where hard disk storage is used to
extend the amount of memory the system thinks it has. It makes a
lot of assumptions about its environment that may not be true in
an embedded system. How many embedded systems do you see
with terminals and hard disks? These problems can be overcome
but the real issue is the characteristics shown by the kernel. Yes the
kernel is multi-tasking and yes it will support multiple users if
needed but it does not support real-time operation. As a result, the
embedded system community has largely excluded it from con-
sideration. There were also problems with access to code, licens-
ing, royalties that didn’t help its cause either.

Linux then appears and as it developed under the various
licences that required easy access to the source code, it started to



Real-time operating systems 285

do several things. Firstly, it attracted a large applications base who
ended up writing applications and drivers that were freely avail-
able. At this point several people started to play with the kernel
and its internals. Access was as simple as downloading the code
from a web site and the idea of a version to support embedded
designers started to come together.

The first thing that has to be remembered that while most
real-time applications are embedded systems, not all embedded
systems need real-time support. Taking this one step further,
many designs actually need the ability to complete critical opera-
tions within a certain time frame and need a “fast enough” system
and not necessarily a real-time one. This is important as the
processing power available to designers today is getting faster and
faster and this means that the need to chase every last bit of
processing power from the system is no longer needed and instead
a faster processor and memory can be used. In this case, the margin
between the time taken to complete the operation and when it
needs to be completed is so great that there is no longer any need
to have a real-time system. This has led to the introduction of non-
real-time operating systems with fast processors as a viable alter-
native for some embedded system designs. So the mantra of “it is
embedded and therefore must need a real-time operating system”
has been shattered. It is no longer such a universal truth and many
designs can use non-real-time operating systems for an embedded
design providing the software is designed to cope with the char-
acteristics that the system provides. Indeed the last chapter goes
through a design that does exactly that and uses MS-DOS with no
multitasking or real-time capabilities as a real-time data logger.

This change coupled with the growth and confidence in
Linux-based applications and systems has encouraged the use of
Linux in embedded design. This has meant that embedded Linux
has taken two development directions: the first concerns adapting
the operating system to fit in a constrained hardware system with
reduced amounts of memory and peripherals. This is based on
stripping out as much of the software that can be done while
maintaining the required functionality and this has dramatically
reduced the amount of memory that is needed to run the operating
system. Add to that support for RAM disks and other solid state
memory technology such as flash and an ability to boot up system
tasks without the need for a terminal connection and these basic
problems are addressed. However, the next issue is not so easy
and is concerned with modifying the Linux kernel to provide real-
time support.

The standard kernel is multi-tasking and uses a sophisti-
cated fairness scheme that will try and give a fair distribution and
sharing of the processing time to the different tasks and threads
that are running at the time. It is not pre-emptive in that a currently
running task or thread cannot be shut down and replaced as soon
as a higher priority task needs to run. So how can Linux be made
to run real-time? There are three main methods.
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1. Run the standard kernel on a fast enough hardware. This
can achieve some impressive figures for task switching (60
microseconds is not uncommon) but it should be remem-
bered that a fast task switch does not mean that there is not
some thread or task in the system that might block the
kernel and prevent the system from working. This ap-
proach requires making some risk assessments over the
potential for this to happen. It is fair to say that Linux
drivers and code tends to be consistently written following
the recommended practices and that this gives a high level
of confidence. However, in the same way that MS-DOS can
be used for real-time embedded systems by carefully de-
signing how the software is written and runs, the same can
be done for Linux without changing the kernel.
Care needs to be taken however to ensure that there are no
hidden problems and in particular tasks and drivers that
can hog the execution time and block operations. As drivers
are normally supplied in source code, they can be inspected
(and modified if necessary) to prevent this. This does re-
quire some level of expertise and understanding of how the
driver was written, which can be a daunting prospect at
first.

2. Replace the standard kernel with a real-time version. This
is a little strange in that one of the reasons why Linux is
popular is because of the stability of its kernel and the fact
that it is freely available. Yet this route advocates replacing
the kernel with a real-time version. Several proposals have
been made and have included the idea of using a standard
RTOS and wrapping it so that it looks like a normal Linux
kernel from a software perspective.

3. Enhance the standard kernel with pre-emptive scheduling.
In this case, the standard kernel is modified to allow block-
ing tasks to be pre-empted and removed from execution.

Now the joy of working with Linux is that there are many
keen developers ready to meet the challenge but this can lead to
many different implementations. It is fair to say that there are
several types of embedded Linux implementations available now
that use different techniques to provide embedded support.

One method that is used with the TLinux/ TAI releases is to
use a second kernel that has real-time characteristics and thus the
operating system becomes a hybrid with normal Linux software
running under the Linux kernel and real-time tasks running under
the second real-time kernel. Communication between the Linux
and RTOS worlds is performed using shared memory. This does
work but is not as elegant as some purists would like in that why
have the Linux kernel there in the first place and also it forces the
software developer to classify software into the two camps. It is a
suitable solution for very time critical applications where the
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Linux components are not critical and are restricted to housekeep-
ing and other activities.

The alternative to a second kernel is to make the kernel real-
time itself. It turns out that there is real-time support deep down
in the kernel e.g. the SCHED_FIFO and SCHED_ calls that support
up to 100 priority levels. The idea is that these priority levels are
serviced first and then if there are no such tasks that need execu-
tion then control can be passed to normal Linux tasks and threads
via the standard scheduler. This provides a priority scheme but
there are some restrictions. While the calls are present in the
interfaces, this does not mean that the implementations actually
support or enforce them. In addition, there is no pre-emption
which means that a lower priority task or thread can still prevent
a higher priority one from pre-empting and gaining control.
However, providing the implementation does support these
schemes, this can provide an improved real-time Linux environ-
ment. Couple it with fast hardware and good interrupt latencies
can be obtained.

So ideally, a pre-emptive version of the kernel is needed. It
turns out that the standard SMP (Symmetric Multi Processing)
version of Linux does just that and by modifying it slightly to
support a single processor, it can become a transparent priority-
based pre-emptive eLinux kernel. This is the approach that Monta
Vista has taken with its eLinux support.

In summary, the restrictions that prevented eLinux from
becoming a mainstream embedded RTOS have by and large been
removed and eLinux is poised to become a dominant player in the
RTOS market.
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8 Writing software for
embedded systems

There are several different ways of writing code for
embedded systems depending on the complexity of the system
and the amount of time and money that can be spent. For
example, developing software for ready-built hardware is
generally easier than for discrete designs. Not only are hard-
ware problems removed — or at least they should have been —
but there is more software support available to overcome the
obstacles of downloading and debugging code. Many ready-
built designs provide libraries and additional software sup-
port which can dramatically cut the development time.

The traditional method of writing code has centred on a
two pronged approach based on the use of microprocessor
emulation. The emulator would be used by the hardware
designer to help debug the board before allowing the software
engineer access to the prototype hardware. The software engi-
neer would develop his code on a PC, workstation or develop-
ment system, and then use the emulator as a window into the
system. With the emulator, it would be possible to download
code, and trace and debug it.

This approach can still be used but the ever increasing
cost of emulation and the restrictions it can place on hardware
design, such as timing and the physical location of the CPU and
its signals, coupled with the fact that ready-built boards are
proven designs, prompted the development of alternative
techniques which did not need emulation. Provided a way
could be found to download code and debug it on the target
board, the emulator could be dispensed with. The initial solu-
tion was the addition and development of the resident onboard
debugger. This has been developed into other areas and in-
cludes the development of C source and RTOS aware software
simulators that can simulate both software and hardware on a
powerful workstation. However, there is more to writing
software for microprocessor-based hardware than simply com-
piling code and downloading it. Debugging software is cov-
ered in the next chapter.

The compilation process
When using a high level language compiler with an IBM

PC or UNIX system, it is all too easy to forget all the stages that
are encountered when source code is compiled into an execut-
able file. Not only is a suitable compiler needed, but the
appropriate run-time libraries and linking loader to combine
all the modules are also required. The problem is that these
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may be well integrated for the native system, PC or work-
station, but this may not be the case for a VMEbus system,
where the hardware configuration may well be unique. Such
cross-compilation methods, where software for another proc-
essor or target is generated on a different machine, are attrac-
tive if a suitable PC or workstation is available, but can require
work to create the correct software environment. However, the
popularity of this method, as opposed to the more traditional
use of a dedicated development system, has increased dra-
matically. It is now common for operating systems to support
cross-compilation directly, rather than leaving the user to piece
it all together.

Compiling code
Like many compilers, such as PASCAL or C, the high

level language only generates a subset of its facilities and
commands from built-in routines and relies on libraries to
provide the full range of functions. These libraries use the
simple commands to create well-known functions, such as
printf and scanf from the C language, which print and
interpret data. As a result, even a simple high level language
program involves several stages and requires access to many
special files.

Pre-processor

Compiler

Assembler

Linker/

Loader

Source Code

Executable
File

Header 
Files

Assembler
Listings

Object
Files

Library
Files

 The compilation process
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 The first stage involves pre-processing the source, where
include files are added to it. These files define constants,
standard functions and so on. The output of the pre-processor
is fed into the compiler, where it produces an assembler file
using the native instruction codes for the processor. This file
may have references to other software files, called libraries.
The assembler file is next assembled and converted into an
object file.

#include <stdio.h>                           
#define TRUE    1           
#define FALSE   0             
main()     
{      
int i;                                                
printf("Start of the program\n");            
i = 5 * 2;                                            
printf("5 times 2 is ....  %d\n",i);
printf("TRUE is %d\n",TRUE);
printf("FALSE is %d\n",FALSE);    
}

Handled
by the 

pre-processor

Handled by
a library routine

Handled by 
the compiler

 Example C source program

This contains the hexadecimal coding for the instruc-
tions, except that memory addresses and file references are not
completed; these are resolved by the loader (sometimes known
as a linker) that finally creates an executable file. The loader
calculates all the memory addresses and takes software rou-
tines from library files to supply the standard functions called
by the program.

The pre-processor
The pre-processor, as its name suggests, processes the

source code before it goes through the compiler. It allows the
programmer to define constants, variable types and other
information. It also includes other files (include files) and
combines them into the program source. These tasks can be
conditionally performed, depending on the value of constants,
and so on. The pre-processor is programmed using one of five
basic commands which are inserted into the C source.
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#define
#define identifier string

This statement replaces all occurrences of identifier with
string. The normal convention is to put the identifier in capital
letters so it can easily be recognised as a pre-processor state-
ment. In this example it has been used to define the values of
TRUE and FALSE. The main advantage of this is usually the
ability to make C code more readable by defining names to be
certain values. Statements like if i == 1 can be replaced in the
code by i == TRUE which makes their meaning far easier to
understand. This technique is also used to define constants,
which also make the code easier to understand.

One important point to remember is that the substitu-
tion is literal, i.e. the identifier is replaced by the string, irre-
spective of whether the substitution makes sense. While this is
not usually a problem with constants, some programs use
#define to replace part or complete program lines. If the wrong
substitution or definition is made, the resulting program line
may cause errors which are not immediately apparent from
looking at the program lines. This can also cause problems with
different compiler syntax where the definition is valid and
accepted by one compiler but rejected by another. This prob-
lem can be solved by using the #define to define different
versions. This is usually done with using the #if def variation
of the #define statement.

It is possible to supply definitions from the C compiler
command line direct to the pre-processor, without having to
edit the file to change the definitions, and so on. This often
allows features for debugging to be switched on or off, as
required. Another use for this command is with macros.

#define MACRO() statement

#define MACRO() statement

It is possible to define a macro which is used to condense
code either for space reasons or to improve its legibility. The
format is #define, followed by the macro name and the argu-
ments, within brackets, that it will use in the statement. There
should be no space between the name and the brackets. The
statement follows the bracket. It is good practice to put each
argument within the statement in brackets, to ensure that no
problems are encountered with strange arguments.

#define SQ(a) ((a)*(a))
#define MAX(i,j) ((i) > ( j) ? (i) : (j))
...
...
x = SQ(56);
z = MAX(x,y);
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#include
#include “filename”
#include <filename>

This statement takes the contents of a file name and
includes it as part of the program code. This is frequently used
to define standard constants, variable types, and so on, which
may be used either directly in the program source or are
expected by any library routines that are used. The difference
between the two forms is in the file location. If the file name is
in quotation marks, the current directory is searched, followed
by the standard directory — usually /usr/include. If angle
brackets are used instead, only the standard directory is
searched.

Included files are usually called header files and can
themselves have further #include statements. The examples
show what happens if a header file is not included.

#ifdef
#ifdef identifier
code
#else
code
#endif

This statement conditionally includes code, depending
on whether the identifier has been previously defined using a
#define statement. This is extremely useful for conditionally
altering the program, depending on definitions. It is often used
to insert machine dependent software into programs. In the
example, the source was edited to comment out the CPU_68000
definition so that cache control information was included and
a congratulations message printed. If the CPU_68040 defini-
tion had been commented out and the CPU_68000 enabled, the
reverse would have happened — no cache control software is
generated and an update message is printed. Note that #ifndef
is true when the identifier does not exist and is the opposite of
#ifdef. The #else and its associated code routine can be removed
if not needed.

#define CPU_68040
/*define CPU_68000 */
#ifdef CPU_68040
/* insert code to switch on caches */
else
/* Do nothing !   */
#endif
#ifndef CPU_68040
printf(“Considered upgrading to an MC68040\n”);
#else
printf(“Congratulations !\n”);
#endif
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#if
#if expression
code
#else
code
#endif

This statement is similar to the previous #ifdef, except
that an expression is evaluated to determine whether code is
included. The expression can be any valid C expression but
should be restricted to constants only. Variables cannot be used
because the pre-processor does not know what values they
have. This is used to assign values for memory locations and
for other uses which require constants to be changed. The total
memory for a program can be defined as a constant and,
through a series of #if statements, other constants can be
defined, e.g. the size of data arrays, buffers and so on. This
allows the pre-processor to define resources based on a single
constant and using different algorithms — without the need to
edit all the constants.

Compilation
This is where the processed source code is turned into

assembler modules ready for the linker to combine them with
the run-time libraries. There are several ways this can be done.
The first may be to generate object files directly without going
through a separate assembler stage. The usual approach is to
create an assembler source listing which is then run through an
assembler to create an object file. During this process, it is
sometimes possible to switch on automatic code optimisers
which examine the code and modify it to produce higher
performance.

The standard C compiler for UNIX systems is called cc
and from its command line, C programs can be pre-processed,
compiled, assembled and linked to create an executable file. Its
basic options shown below have been used by most compiler
writers and therefore are common to most compilers, irrespec-
tive of the platform. This procedure can be stopped at any point
and options given to each stage, as needed. The options for the
compiler are:

-c Compiles as far as the linking stage and leaves the
object file (suffix .o). This is used to compile programs
to form part of a library.

-p Instructs the compiler to produce code which counts
the number of times each routine is called. This is the
profiling option which is used with the prof utility to
give statistics on how many subroutines are called.
This information is extremely useful for finding out
which parts of a program are consuming most of the
processing time.
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-f Links the object program with the floating point
software rather than using a hardware processor. This
option is largely historic as many processors now have
floating point co-processors. If the system does not,
this option performs the calculations in software — but
more slowly.

-g Generates symbolic debug information for debuggers
like sdb. Without this information, the debugger can
only work at assembler level and not print variable
values and so on. The symbolic information is passed
through the compilation process and is stored in the
executable file it produces.

-O Switch on the code optimiser to optimise the program
and improve its performance. An environment
variable OPTIM controls which of two levels is used. If
OPTIM=HL (high level), only the higher level code is
optimised. If OPTIM=BOTH, the high level and object
code optimisers are both invoked. If OPTIM is not set,
only the object code optimiser is used. This option
cannot be used with the -g flag.

-Wc,args Passes the arguments args to the compiler process
indicated by c, where c is one of p012al and stands for
pre-processor, compiler first pass, compiler second
pass, optimiser, assembler and linker, respectively.

-S Compiles the named C programs and generates an
assembler language output file only. This file is
suffixed .s. This is used to generate source listings and
allows the programmer to relate the assembler code
generated by the compiler back to the original C
source. The standard compiler does not insert the C
source into assembler output, it only adds line
references.

-E Only runs the pre-processor on the named C programs
and sends the result to the standard output.

-P Only runs the pre-processor on the named C programs
and puts the result in the corresponding files suffixed
.i.

-Dsymbol Defines a symbol to the pre-processor. This mechanism
is useful in defining a constant which is then evaluated
by the pre-processor, without having to edit the
original source.

-Usymbol Undefine symbol to the pre-processor. This is useful in
disabling pre-processor statements.

-ldir Provides an alternative directory for the pre-processor
to find #include files. If the file name is in quotes, the
pre-processor searches the current directory first,
followed by dir and finally the standard directories.

Here is an example C program and the assembler listing
it produced on an MC68010-based UNIX system. The assem-
bler code uses M68000 UNIX mnemonics.
$cat math.c
main()
{

int a,b,c;
a=2;
b=4;
c=b-a;
b=a-c;
exit();
}
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$cat math.s
file “math.c”

data 1
text
def main; val main; scl 2; type 044; endef
global main

main:
ln 1
def ~bf; val ~; scl 101; line 2; endef
link.l %fp,&F%1

#movm.l &M%1,(4,%sp)
#fmovm &FPM%1,(FPO%1,%sp)

def a; val -4+S%1; scl 1; type 04;
endef

def b; val -8+S%1; scl 1; type 04;
endef

def c; val -12+S%1; scl 1; type 04;
endef

ln 4
mov.l &2,((S%1-4).w,%fp)
ln 5
mov.l &4,((S%1-8).w,%fp)
ln 6
mov.l ((S%1-8).w,%fp),%d1

  sub.l   ((S%1-4).w,%fp),%d1
mov.l %d1,((S%1-12).w,%fp)
ln 7
mov.l ((S%1-4).w,%fp),%d1

  sub.l   ((S%1-12).w,%fp),%d1
mov.l %d1,((S%1-8).w,%fp)
ln 8
jsr exit

L%12:
def ~ef; val ~; scl 101; line 9; endef
ln 9

#fmovm (FPO%1,%sp),&FPM%1
#movm.l (4,%sp),&M%1

unlk %fp
rts
def main; val ~; scl -1; endef
set S%1,0
set T%1,0
set F%1,-16
set FPO%1,4
set FPM%1,0x0000
set M%1,0x0000
data 1

$

as assembler
After the compiler and pre-processor have finished their

passes and have generated an assembler source file, the assem-
bler is used to convert this to hexadecimal. The UNIX assem-
bler differs from many other assemblers in that it is not as
powerful and does not have a large range of built-in macros
and other facilities. It also frequently uses a different op code
syntax from that normally used or specified by a processor
manufacturer. For example, the Motorola MC68000 MOVE
instruction becomes mov for the UNIX assembler. In some
cases, even source and destination operand positions are
swapped and some instructions are not supported. The assem-
bler has several options:
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-o objfile Puts the assembler output into file objfile instead of
replacing the input file’s .s suffix with .o.

-n Turns off long/short address optimisation. The default
is to optimise and this causes the assembler to use
short addressing modes whenever possible. The use of
this option is very machine dependent.

-m Runs the m4 macro pre-processor on the source file.
-V Writes the assembler’s version number on standard

error output.

Linking and loading
On their own, object files cannot be executed as the

object file generated by the assembler contains the basic pro-
gram code but is not complete. The linker, or loader as it is also
called, takes the object file and searches library files to find the
routines it calls. It then calculates all the address references and
incorporates any symbolic information. Its final task is to create
a file which can be executed. This stage is often referred to as
linking or loading. The linker gives the final control to the
programmer concerning where sections are located in memory,
which routines are used (and from which libraries) and how
unresolved references are reconciled.

Symbols, references and relocation
When the compiler encounters a printf() or similar

statement in a program, it creates an external reference which
the linker interprets as a request for a routine from a library.
When the linker links the program to the library file, it looks for
all the external references and satisfies them by searching
either default or user defined libraries. If any of these refer-
ences cannot be found, an error message appears and the
process aborts. This also happens with symbols where data
types and variables have been used but not specified. As with
references, the use of undefined symbols is not detected until
the linker stage, when any unresolved or multiply defined
symbols cause an error message. This situation is similar to a
partially complete jigsaw, where there are pieces missing
which represent the object file produced by the assembler. The
linker supplies the missing pieces, fits them and makes sure
that the jigsaw is complete.

The linker does not stop there. It also calculates all the
addresses which the program needs to jump or branch to.
Again, until the linker stage, these addresses are not calculated
because the sizes of the library routines are not known and any
calculations performed prior to this stage would be incorrect.
What is done is to allocate enough storage space to allow the
addresses to be inserted. Although the linker normally locates
the program at $00000000 in memory, it can be instructed to
relocate either the whole or part of the code to a different
memory location. It also generates symbol tables and maps
which can be used for debugging.
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As can be seen, the linker stage is not only complicated
but can also be extremely complex. For most compilations, the
defaults used by the compiler are more than adequate.

ld linker/loader
As explained earlier, an object file generated by the

assembler contains the basic program code but is not complete
and cannot be executed. The command ld takes the object file
and searches library files to find the routines it calls. It calcu-
lates all the address references and incorporates any symbolic
information. Its final task is to create a COFF (common object
format file) file which can be executed. This stage is often
referred to as linking or loading and ld is often called the linker
or loader. ld gives the final control to the programmer concern-
ing where sections are located in memory, which routines are
used (and from which libraries) and how unresolved refer-
ences are reconciled. Normally, three sections are used — .text
for the actual code, and .data and .bss for data. Again, there are
several options:

-a Produces an absolute file and gives warnings for
undefined references. Relocation information is
stripped from the output object file unless the option is
given. This is the default if no option is specified.

-e epsym Sets the start address for the output file to epsym.
-f fill Sets the default fill pattern for holes within an output

section. This is space that has not been used within
blocks or between blocks of memory. The argument fill
is a 2 byte constant.

-lx Searches library libx.a, where x contains up to seven
characters. By default, libraries are located in /lib and
/usr/lib. The placement of this option is important
because the libraries are searched in the same order as
they are encountered on the command line. To ensure
that an object file can extract routines from a library,
the library must be searched after the file is given to
the linker. Common values for x are c, which searches
the standard C library and m, which accesses the maths
library.

-m Produces a map or listing of the input/output sections
on the standard output. This is useful when debug-
ging.

-o outfile Produces an output object file called outfile. The name
of default object file is a.out.

-r Retains relocation entries in the output object file.
Relocation entries must be saved if the output file is to
become an input file in a subsequent ld session.

-s Strips line number entries and symbol table informa-
tion from the output file — normally to save space.

-t Turns off the warning about multiply-defined symbols
that are not of the same size.

-usymname Enters symname as an undefined symbol in the symbol
table.

-x Does not preserve local symbols in the output symbol
table. This option reduces the output file size.
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-Ldir Changes the library search order so libx.a looks in dir
before /lib and /usr/lib. This option needs to be in front
of the -l option to work!

-N Puts the data section immediately after the text in the
output file.

-V Outputs a message detailing the version of ld used.
-VS num Uses num as a decimal version stamp to identify the

output file produced.

Native versus cross-compilers
With a native compiler, all the associated run-time li-

braries, default memory locations and loading software are
supplied, allowing the software engineer to concentrate on
writing software. It is possible to use a native compiler to write
software for a target board, provided it is running the same
processor. For example, it is possible to use an IBM PC compiler
to write code for an embedded 80386 design or an Apple MAC
compiler to create code for an M68000 target. The problem is
that all the support libraries and so on must be replaced and
this can be a considerable amount of work.

This is beginning to change and many compiler suppli-
ers have realised that it is advantageous to provide many
different libraries or the ability to support their development
through the provision of a library source. For example, the
MetroWorks compilers for the MC68000 and PowerPC for the
Apple MAC support cross-compilation for Windows, Win-
dows 95 and Windows NT environments as well as embedded
systems.

Run-time libraries
The first problem for any embedded design is that of

run-time libraries. These provide the full range of functions
that the high level language offers and can be split into several
different types, depending on the functionality that they offer
and the hardware that they use. The problem is that with no
such thing as an embedded design, they often require some
modification to get them to work.

Processor dependent
The bulk of a typical high level language library simply

requires the processor and memory to execute. Mathematical
functions, string manipulation, and so on, all use the processor
and do not need to communicate with terminals, disk control-
lers and other peripherals. As a result these libraries normally
require no modification. There are some exceptions concern-
ing floating point and instruction sets. Some processors, such
as the MC68020 and MC68030, can use an optional floating
point co-processor while others, such as the MC68000 and
MC68010, cannot. Further complications can arise between
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processor variants such as the MC68040 family where some
have on-chip floating point, while others do not. Running
floating point instructions without the hardware support can
generate unexpected processor exceptions and cause the sys-
tem to crash. Instruction sets can also vary, with the later
generations of M68000 processors adding new codes to their
predecessor’s instruction set. To overcome these differences,
compilers often have software switches which can be set to
select the appropriate run-time to match the processor configu-
ration.

I/O dependent
If a program does not need any I/O at all, it is very easy

to move from one machine to another. However, as soon as any
I/O is needed, this immediately defines the hardware that the
software needs to access. Using a printf statement calls the
printf routine from the appropriate library which, in turn,
either drives the hardware directly or calls the operating
system to perform the task of printing data to the screen. If the
target hardware is different from the native target, then the
printf routine will need to be rewritten to replace the native
version. Any attempt to use the native version will cause a
crash because either the hardware or the operating system is
different.

System calls
This is a similar problem to that of I/O dependent calls.

Typical routines are those which dynamically allocate memory,
task control commands, use semaphores, and so on. Again,
these need to be replaced with those supported by the target
system.

Exit routines
These are often neglected but are essential to any conver-

sion. With many executable files created by compilers, the
program is not simply downloaded into memory and the
program counter set to the start of the module. Some systems
attach a module header to the file which is then used by the
operating system to load the file correctly and to preload
registers with address pointers to stack and heap memory and
so on. Needless to say, these need to be changed or simulated
to allow the file to execute on the target. The start-up routine is
often not part of a library and is coded directly into the module.

Similar problems can exist with exit routines used to
terminate programs. These normally use an exit() call which
removes the program and frees up the memory. Again, these
need to be replaced. Fortunately, the routines are normally
located in the run-time library rather than being hard coded.
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Writing a library
For example, given that you have an M68000 compiler

running on an IBM PC and that the target is an MC68040
VMEbus system, how do you modify or replace the runtime
libraries? There are two generic solutions: the first is to change
the hardware design so that it looks like the hardware design
that is supported by the run-time libraries. This can be quite
simple and involve configuring the memory map so that
memory is located at the same addresses. If I/O is used, then
the peripherals must be the same — so too must their address
locations to allow the software to be used without modifica-
tion. The second technique is to modify the libraries so that
they work with the new hardware configuration. This will
involve changing the memory map, adding or changing driv-
ers for new or different peripherals and in some cases even
porting the software to a new processor or variant.

The techniques used depend on how the run-time librar-
ies have been supplied. In some cases, they are supplied as
assembler source modules and these can simply be modified.
The module will have three sections: an entry and exit section
to allow data to be passed to and from the routine and,
sandwiched between them, the actual code that performs the
requested command. It is this middle section that is modified.

Other compilers supply object libraries where the rou-
tines have already been assembled into object files. These can
be very difficult to patch or modify, and in such cases the best
approach is to create an alternative library.

Creating a library
The first step is to establish how the compiler passes data

to routines and how it expects information to be returned. This
information is normally available from the documentation or
can be established by generating an assembler listing during
the compilation process. In extreme cases, it may be necessary
to reverse engineer the procedure using a debugger. A break
point is set at the start of the routine and the code examined by
hand.

The next problem is concerned with how to tell the
compiler that the routine is external and needs to be specially
handled. If the routine is an addition and not a replacement for
a standard function, this is normally done by declaring the
routines to be external when they are defined. To complement
this, the routines must each have an external declaration to
allow the linker to correctly match the references.

With replacements for standard library functions, the
external declaration from within the program source is not
needed, but the one within the replacement library routine is.
The alternative library is accessed first to supply the new
version by setting the library search list used by the linker.
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To illustrate these procedures, consider the following
PASCAL example. The first piece of source code is written in
PASCAL and controls a semaphore in a typical real-time
operating system, which is used to synchronise other tasks.
The standard PASCAL did not have any run-time support for
operating system calls and therefore a library needed to be
created to supply these. The data passing mechanism is typical
of most high level languages, including C and FORTRAN, and
the trap mechanism, using directive numbers and parameter
blocks, is also common to most operating systems.

The PASCAL program declares the operating system
calls as external procedures by defining them as procedures
and marking them as FORWARD. This tells the compiler and
linker that they are external references that need to be resolved
at the linker stage. As part of the procedure declaration, the
data types that are passed to the procedure have also been
defined. This is essential to force the compiler to pass the data
to the routine — without it, the information will either not be
accepted or the routine will misinterpret the information. In
the example, four external procedures are declared: delay,
wtsem, sgsem and atsem. The procedure delay takes an
integer value while the others pass over a four character string
— described as a packed array of char. Their operation is as
follows:
delay delays the task by a number of milliseconds.
atsem creates and attaches the task to a semaphore.
wtsem causes the task to wait for a semaphore.
sgsem signals the semaphore.
program timer(input,output);

type
datatype = packed array[1..4] of char;

var
msecs:integer;
name :datatype;
i :integer;

procedure delay( msecs:integer); FORWARD;
procedure wtsem( var name:datatype); FORWARD;
procedure sgsem( var name:datatype); FORWARD;
procedure atsem( var name:datatype); FORWARD;

begin
name:= ‘1sec’;
atsem(name);
delay(10000);
sgsem(name);
for i := 1 to 10 do begin;

wtsem(name);
delay(10000);
sgsem(name);

end;
end.

PASCAL source for the program ‘TIMER’
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The program TIMER works in this way. When it starts,
it assigns the identity 1sec to the variable name. This is then
used to create a semaphore called 1sec using the atsem proce-
dure. The task now delays itself for 10000 milliseconds to allow
a second task to load itself, attach itself to the semaphore 1sec
and wait for its signal. The signal comes from the sgsem
procedure on the next line. The other task receives the signal,
TIMER goes into a loop where it waits for the 1sec semaphore,
delays itself for 10000 milliseconds and then signals with the
1sec semaphore. The other task complements this operation by
signalling and then waiting, using the 1sec semaphore.

The end result is that the program TIMER effectively
controls and synchronises the other task through the use of the
semaphore.

The run-time library routines for these procedures were
written in MC68000 assembler. Two of the routines have been
listed to illustrate how integers and arrays are passed across
the stack from a high level language — PASCAL in this case —
to the routine. In C, the assembler routines would be declared
as functions and the assembler modules added at link time.
Again, it should be remembered that this technique is common
to most compilers.

DELAY IDNT 1,0
* ++++++++++++++++++++++++++++++++++++++++++++++++++
* ++++++++++++++++++++++++++++++++++++++++++++++++++
* ++++ ++++
* ++++ Runtime procedure call for PASCAL ++++
* ++++ ++++
* ++++ Version 1.0 ++++
* ++++ ++++
* ++++ Steve Heath - Motorola Aylesbury ++++
* ++++ ++++
* ++++++++++++++++++++++++++++++++++++++++++++++++++
* ++++++++++++++++++++++++++++++++++++++++++++++++++
*
* PASCAL call structure:
*
* procedure delay(msecs:integer);FORWARD
*
* This routine calls the delay directive of the OS
* and delays the task for a number of ms.
* The number is passed directly on the stack
*

XDEF DELAY

SECTION 9

DELAY EQU *
MOVE.L (A7)+,A4 Save return address
MOVE.L (A7)+,A0 Load time delay into A0

MOVE.L A3,-(A7) Save A3 for PASCAL
MOVE.L A5,-(A7) Save A5 for PASCAL
MOVE.L A6,-(A7) Save A6 for PASCAL
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EXEC MOVE.L #21,D0 Load directive number 21
TRAP #1 Execute OS command
BNE ERROR Error handler if problem

POP MOVE.L (A7)+,A6 Restore saved values
MOVE.L (A7)+,A5 Restore saved values
MOVE.L (A7)+,A3 Restore saved values

JMP (A4) Jump back to PASCAL

ERROR MOVE.L #14,D0 Load abort directive no.
TRAP #1 Abort task

END

Assembler listing for the delay call

The code is divided into four parts: the first three corre-
spond with the entry, execution and exit stages previously
mentioned. A fourth part that handles any error conditions has
been added.

The routine is identified to the linker as the delay proce-
dure by the XDEF delay statement. The section 9 command
instructs the linker to insert this code in the program part of the
file. Note how there are no absolute addresses or address
references in the source. The actual values are calculated and
inserted by the linker during the linking stage.

The next few instructions transfer the data from PAS-
CAL to the assembler routine. The return address is taken from
the stack followed by the time delay. These values are stored in
registers A4 and A0, respectively. Note that the stack pointer
A7 is incremented after the last transfer to effectively remove
the passed parameters. These are not left on the stack. The next
three instructions save the address registers A3, A5 and A6
onto the stack so that they are preserved. This is necessary to
successfully return to PASCAL. If they are corrupted, then the
return to PASCAL will either not work or will cause the
program to crash at a later point. With some compilers, more
registers may need saving and it is a good idea to save all
registers if it is not clear which ones must be preserved. With
this example, only these three are essential.

The next part of the code loads the directive number into
the right register and executes the system call using the TRAP
#1 instruction. The directive needs the delay value in A0 and
this is loaded earlier from the stack.

If the system call fails, the condition code register is
returned with a non-zero setting. This is tested by the BNE
ERROR instruction. The error routine simply executes a termi-
nation or abort system call to halt the task execution.

The final part of the code restores the three address
registers and uses the return address in A4 to return to the
PASCAL program. If the procedure was expecting a returned
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value, this would be placed on the stack using the same
technique used to place the data on the stack. A common fault
is to use the wrong method or fail to clear the stack of old data.

The next example routine executes the atsem directive
which creates the semaphore. The assembler code is a little
more complex because the name is passed across the stack
using a pointer rather than the actual value and, secondly, a
special parameter block has to be built to support the system
call to the operating system.

ATSEM IDNT 1,0
* ++++++++++++++++++++++++++++++++++++++++++++++++++
* ++++++++++++++++++++++++++++++++++++++++++++++++++
* ++++ ++++
* ++++ Runtime procedure call for PASCAL ++++
* ++++ ++++
* ++++ Version 1.0 ++++
* ++++ ++++
* ++++ Steve Heath - Motorola Aylesbury ++++
* ++++ ++++
* ++++++++++++++++++++++++++++++++++++++++++++++++++
* ++++++++++++++++++++++++++++++++++++++++++++++++++
*
* PASCAL call structure:
*
* type
* datatype = packed array[1..4] of char
*
* procedure atsem(var name:datatype);FORWARD
*
* This routine calls the OS and creates a
* semaphore. Its name is passed across on the
* stack using an address pointer.
*

XDEF ATSEM

SECTION 9

DELAY EQU *
MOVE.L (A7)+,A4 Save return address
MOVE.L (A7)+,A0 Get pointer to the name
LEA PBL(PC),A1 Load the PBL address
MOVE.L (A0),(A1) Move the name into PBL
MOVE.L A3,-(A7) Save A3 for PASCAL
MOVE.L A5,-(A7) Save A5 for PASCAL
MOVE.L A6,-(A7) Save A6 for PASCAL

EXEC MOVE.L #21,D0 Load directive number 21
LEA PBL(PC),A0 Load the PBL address
TRAP #1 Execute OS command
BNE ERROR Error handler if problem

POP MOVE.L (A7)+,A6 Restore saved values
MOVE.L (A7)+,A5 Restore saved values
MOVE.L (A7)+,A3 Restore saved values

JMP (A4) Jump back to PASCAL
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ERROR MOVE.L #14,D0 Load abort directive no.
TRAP #1 Abort task

SECTION 15

PBL EQU *
DC.L ‘ ‘ Create space for

name
DC.L 0 Semaphore key
DC.B 0 Initial count
DC.B 1 Semaphore type

END
Assembler listing for the atsem call

The name is passed via a pointer on the stack. The
pointer is fetched and then used to point to the packed array
that contains the semaphore name. Normally, each byte is
taken in turn by using the pointer and moving it on to the next
location until it points to a null character, i.e. hexadecimal 00.
Instead of writing a loop to perform this task, a short cut was
taken by assuming that the name is always 4 bytes and by
transferring the four characters as a single 32 bit long word.

The address of the parameter block PBL is obtained
using the PC relative addressing mode. Again, the reason for
this is to allow the linker freedom to locate the parameter block
wherever it wants to, without the need to specify an absolute
address. The address is calculated and transferred to register
A1 using the load effective address instruction, LEA.

The parameter block is interesting because it has been
put into section 15 as opposed to the code which is located in
section 9. Both of these operations are carried out by the
appropriate SECTION command. The reason for this is to
ensure that the routines work in all target types, irrespective of
whether there is a memory management unit present or the
code is in ROM. With this compiler and linker, two sections are
used for any program: section 9 is used to hold the code while
section 15 is used for data. Without the section 15 command,
the linker would put the parameter block immediately after the
code routine somewhere in section 9. With a target with no
memory management, or with it disabled, this would not cause
a problem — provided the code was running in RAM. If the
memory management declares the program area as read only
— standard default for virtually all operating systems — or the
code is in ROM, the transfer of the semaphore name would fail
as the parameter block was located in read only memory. By
forcing it into section 15, the block is located correctly in RAM
and will work correctly, whatever the system configuration.

These routines are extremely simple and quick to create.
By using a template, it is easy to modify them to create new
procedure calls. More sophisticated versions could transfer all
the data to build the parameter block rather than just the name,
as in these examples. The procedure could even return a
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completion code back to the PASCAL program, if needed. In
addition, register usage in these examples is not very efficient
and again could be improved. However, the important point is
that the amount of sophistication is dependent on what the
software engineer requires.

Device drivers
This technique is not just restricted to creating run-time

libraries for operating systems and replacement I/O functions.
The same technique can even be used to drive peripherals or
access special registers. This method creates a pseudo device
driver which allows the high level language access to the lower
levels of the hardware, while not going to the extreme of hard
coding or in-lining assembler. If the application is moved to a
different target, the pseudo device driver is changed and the
application relinked with the new version.

Debugger supplied I/O routines
I/O routines which read and write data to serial ports or

even sectors to and from disk can be quite time consuming to
write. However, such routines already exist in the onboard
debugger which is either shipped with a ready built CPU board
or can be obtained for them.

* Output a character to console
*
* The character to be output is passed to
* this routine on the stack as byte 5 with
* reference to A7.
*
* A TRAP #14 call to the debugger does the actual work
* Tabs are handled separately

putch
 move.b 5(A7),D0 Get char from stack
 cmp #09,D0 Is it tab character?
 beq _tabput Yes,go to tab routine
 trap #14 Call debugger I/O
 dc.w 1 Output char in D0.B
 rts

An example putchar routine for C using debugger I/O

Many suppliers provide a list of basic I/O commands
which can be accessed by the appropriate trap calls. The
mechanism is very similar to that described in the previous
examples: parameter block addresses are loaded into registers,
the command number loaded into a data register and a trap
instruction executed. The same basic technique template can
be used to create replacement I/O libraries which use the
debugger rather than an operating system.
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Run-time libraries
The example assembler routines simply use the

predefined stack mechanisms to transfer data to and from
PASCAL. At no point does the routine actually know that the
data is coming from a high level language as opposed to an
assembler routine — let alone differentiate between C and
PASCAL. If a group of high level languages have common
transfer mechanisms, it should be possible to share libraries
and modules between them, without having to modify them or
know how they were generated. Unfortunately, this utopia has
not quite been realised, although some standards have been
put forward to implement it.

Using alternative libraries
Given that the new libraries have been written, how are

they built into the program? This is done by the linker. The
program and assembler routines are compiled and assembled
into object modules. The object modules are then linked to-
gether by the linker to create the final executable program. The
new libraries are incorporated using one of two techniques.
The actual details vary from linker to linker and will require
checking in the documentation.

Linking additional libraries
This is straightforward. The new libraries are simply

included on the command line with all the other modules or
added to the list of libraries to search.

Linking replacement libraries
The trick here is to use the search order so that the

replacement libraries are used first instead of the standard
ones. Some linkers allow you to state the search order on the
command line or through a command file. Others may need
several link passes, where the first pass disables the automatic
search and uses the replacement library and the second pass
uses the automatic search and standard library to resolve all
the other calls.

Using a standard library
The reason that porting software from one environment

to another is often complicated and time consuming is the
difference in run-time library support. If a common set of
system calls were available and only this set was used by the
compiler to interface to the operating system, it would be very
easy to move software across from one platform to another —
all that would be required would be a simple recompilation. In
addition, using a common library would take advantage of
common knowledge and experience.
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If these improvements are so good, why is this not a
more common approach? The problem is in defining the set of
library calls and interface requirements. While some standards
have appeared and are used, such as UNIX System V interface
definition (SVID), they cannot provide a complete set for all
operating system environments. Other problems can also exist
with the interpretation and operation of the library calls. A call
may only work with a 32 bit integer and not with an 8 or 16 bit
one. Others may rely on undocumented or vaguely specified
functions which may vary from one system to another, and so
on. Even after taking these considerations into account, the
ability to provide some standard library support is a big
advantage. With it, a real-time operating system can support
SVID calls and thus allow UNIX software to be transferred
through recompilation with a minimum of problems.

There have been several attempts to go beyond the SVID
type library definitions and provide a system library that truly
supports the real-time environment. Both the VMEexec and
ORKID specifications tried to implement a real-time library
that was kernel independent with the plan of allowing soft-
ware that used these definitions to be moved from one kernel
to another. Changing kernels would allow application soft-
ware to be reused with different operating system characteris-
tics, without the need to rewrite libraries and so on. The POSIX
real-time definitions are another example of this type of ap-
proach.

It can be very dangerous to pin too much hope on these
types of standards. The first problem is that they are source
code definitions and are therefore subject to misinterpretation
not only by the user, but also by the compiler, its run-time
libraries and the response from the computer system itself. All
of these can cause software to exhibit different behaviour. It
may work on one machine but not on another. As a result, the
use of a standard library does not in itself guarantee that
software will work after recompilation and that it will not
require major engineering effort to make it do so. What it does
do, however, is provide a better base to work from and such
work should be encouraged.

Porting kernels
So far, it has been assumed that the operating system or

real-time kernel is already running on the target board. While
this is sometimes true, it is not always the case. The operating
system may not be available for the target board or the hard-
ware may be a custom design.

Board support
One way to solve this problem is to buy the operating

system software already configured for a particular board.
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Many software suppliers have a list of supported platforms —
usually the most popular boards from the top suppliers —
where their software has been ported to and is available off the
shelf. For many projects, this is a very good way to proceed as
it removes one more variable from the development chain. Not
only do you have tested hardware, but you also have
preconfigured and tested software.

Rebuilding kernels for new configurations
What happens if you cannot use a standard package or

if you need to make some modifications? These changes can be
made by rebuilding the operating system or kernel. This is not
as difficult as it sounds and is more akin to a linking operation,
where the various modules that comprise the operating system
are linked together to form the final version.

Preprocessor

Compiler

Assembler

Linker/

Loader

New 
operating 

system

User
header 

files

Assembler
listings

Object
files

Standard 
library

files

User
library

files

Standard
header 

files

The configuration process

This was not always the case. Early versions of operating
systems offered these facilities but took several hours to com-
plete and involved the study of tens of pages of tables to set
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various switches to include the right modules. Those of you
who remember the SYSGEN command within VersaDOS will
understand the problem. It did not simply link together mod-
ules, it often created them by modifying source code files and
patching object files! A long and lengthy process and extremely
prone to errors.

This procedure has not gone away but has become
quicker and easier to manage. Through the use of reusable
modules and high level languages, operating systems are
modified and built using a process which is similar to compi-
lation. User created or modified modules are compiled and
then linked with the basic operating system to form the final
version. The various parameters and software switches are set
by various header files — similar to those used with C pro-
grams — and these control exactly what is built and where it is
located.

As an example of this process, consider how VXWorks
performs this task. VXWorks calls this process configuration
and it uses several files to control how the kernel is configured.
The process is very similar to the UNIX make command and
uses the normal compilation tools used to generate tasks.

The three configuration files are called configAll.h,
config.h and usrConfig.c. The first two files are header
files, which supply parameters to the modules specified in the
usrConfig.c file. Specifying these parameters without add-
ing the appropriate statement in the usrConfig.c file will
cause the build to fail.

configAll.h
This file contains all the fundamental options and pa-

rameters for kernel configurations, I/O and Networking File
System parameters, optional software modules and device
controllers or drivers. It also contains cache modes and ad-
dresses for I/O devices, interrupt vectors and levels.

config.h
This is where target specific parameters are stored, such

as interrupt vectors for the system clock and parity errors,
target specific I/O controller addresses, interrupt vectors and
levels, and information on any shared memory.

usrConfig.c
This contains a series of software include statements

which are used to omit or include the various software mod-
ules that the operating system may need. This file would select
which Ethernet driver to use or which serial port driver was
needed. These modules use parameters from the previous two
configuration files within the rebuilding process.
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Several standard make files are supplied which will
create bootable, standalone versions of the operating system,
as well as others that will embed tasks into the standalone
version. These are used by the compiler and linker to control
the building process. All the requisite files are stored in several
default library directories but special directories can also be
used by adding further options to the make file.

The diagrams show the basic principles involved. A
standard build process usually involves modification of the
normal files and a simple rebuild. New modules are extracted
from the library files or directories as required to build the new
version of the operating system.

Library
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The second diagram shows the basic principles behind
including user tasks into the operating system. User tasks are
usually included at the make or link level and are added to the
list of object files that form the operating system.

Note that this process is not the same as building an
embedded standalone version. Although the tasks have been
embedded, the initialisation code is still the standard one used
to start up the operating system only. The tasks may be present,
but the operating system is not aware of their existence. This
version is often used as an intermediate stage to allow the tasks
to be embedded but started under the control of a debugging
shell or task.

To create a full embedded version, the user must supply
some initialisation routines as well as the tasks themselves.
This may involve changing the operating system start point to
that of the user’s own routine rather than the default operating
system one. This user routine must also take care of any
variable initialisation, setting up of the vector table, starting
tasks in the correct order and allocating memory correctly.

Other options that may need to be included are the
addition of any symbol tables for debugging purposes, multi-
processor communication and networking support.

pSOSystem+
Rebuilding operating systems is not difficult, once a

basic understanding of how the process works and what needs
to be changed is reached. The biggest problem faced by the user
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and by software suppliers is the sheer number of different
parameters and drivers that are available today. With hun-
dreds of VMEbus processor boards and I/O modules avail-
able, it is becoming extremely difficult to keep up with new
product introductions. In an effort to reduce this problem,
more user friendly rebuilding systems, such as pSOSystem+,
are becoming available which provide a menu driven ap-
proach to the problem. The basic options are presented and the
user chooses from the menu. The program then automatically
generates the changes to the configuration file and builds the
new version automatically.

C extensions for embedded systems
Whenever writing in a high level language, there are

always times when there is a need to go down to assembler
level coding, either for speed reasons or because it is simpler to
do so. Accessing memory ports is another example of where
this is needed. C in itself does not necessarily support this.
Assembler routines can be written as library routines and
included at link time — a technique that has been explained
and used in this and later chapters. It is possible to define access
a specific memory mapped peripheral by defining a pointer
and then assigning the peripheral’s memory address to the
pointer. Vector tables can be created by an array of pointers to
functions. While these techniques work in many cases, they are
susceptible to failing.

Many compilers provide extensions to the compilers
that allow embedded system software designers facilities to
help them use low level code. These extensions are compiler
specific and may need changing or not be supported if a
different compiler is substituted. Many of these extensions are
supplied as additional #pragma definitions that supply addi-
tional information to the compiler on how to handle the rou-
tines. These routines may be in C or in assembler and the
number and variety will vary considerably. It is worth check-
ing out the compiler documentation to see what it does sup-
port.

#pragma interrupt func2
This declares the function func2 as an interrupt func-

tion and therefore will ensure that the compiler will save all
registers so that the function code does not need to do this. It
also instructs the compiler that the return mechanism is differ-
ent — with a PowerPC instruction a special assembler level
instruction has to be used to synchronise and restart the
processor.
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#pragma pure_function func2
This declares that the function func2 does not use or

modify any global or static data and that it is a pure function.
This can be used to identify assembler-based routines that
configure the processor without accessing any data. This could
be to change the cache control, disable or enable interrupts.

#pragma no_side_effects func2
This declares that the function func2 does not modify

any global or static data and that it has no side effects. This
could be used in preference to the pure_function option to
allow access to data to allow an interrupt mask to be changed
depending on a global value, for example.

#pragma no_return func2
This declares that the function func2 does not return

and therefore the normal preparation of retaining the subrou-
tine return address can be dispensed with. This is used when
an exit or abort function is used. Jumps can also be better
implemented using this as the stack will be correctly main-
tained and not filled with return addresses that will never be
used. This can cause stack overflows.

#pragma mem_port int2
This declares that the variable int2 is a value of a

specific memory address and therefore should be treated ac-
cordingly. This is normally used with a definition that defines
where the address is.

asm and _ _asm
The asm and _ _asm directives — note that the number

of underlines varies from compiler to compiler — provide a
way to generate assembly code from a C program. Both usually
have similar functionality that allows assembler code to be
directly inserted in the middle of C without having to use the
external routine and linking technique. In most cases, the terms
are interchangeable, but beware since this is not always the
case. Care must also be taken with them as they break the main
standards and enforcing strict compatibility with the compiler
can cause them to either be flagged up as an error or simply
ignored.

There are two ways of using the asm/_ _asm directives.
The first is a simple way to pass a string to the assembler, an
asm string. The second is an advanced method to define an asm
macro that in-lines different assembly code sections, depend-
ing on the type of arguments given. The examples shown are
based on the Diab PowerPC compiler.
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asm strings
An asm string can be specified wherever a statement or

an external declaration is allowed. It must have exactly one
argument, which should be a string constant to be passed to the
assembly output. Some optimisations will be turned off when
an asm string statement is encountered.

int f() { /* returns value at $$address */
asm(“ addis r3,rO,$$address)@ha”);
asm(“ lwz r3,r3,$$address@1”);

This technique is very useful for executing small func-
tions such as enabling and disabling interrupts, flushing caches
and other processor level activities. With the code directly in-
lined into the assembler, it is very quick with little or no
overhead.

asm macros
An asm macro definition looks like a function definition

in that the body of the function is replaced with one or more
assembly code sequences. The compiler chooses one of these
sequences depending on which types of arguments are pro-
vided when using the asm macro, e.g.

asm int busy_wait(char *addr)
{ % reg addr; lab loop;

addi r4,rO,l
loop: # label is replaced by

compiler
lwarx r5,rO,addr # argument is forced to

register
cmpi crO,r5,0
bne loop
stwcx. r4,rO,addr
bae loop

}

extern char *sem
fn(char *addr) {

busy_wait(addr); /* wait for semaphore */
busy_wait(sem) ; /* wait for semaphore */

   }

The first part of the source defines the assembler routine
that waits for the semaphore or event to change. The second
part of the source calls this assembler function twice with the
event name as its parameter.

addi r4,rO,1
.L11: # label is replaced by compiler

lwarx r5,rO,r31 # argument is forced to
register

cmpi crO,r5,0
bne .L11
stwcx. r4,rO,r31
bne .L11
addis r3,rO,sem@ha
lwz r3,sem@1(r3)
addi r4,rO,1
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.L12: # label is replaced by compiler
lwarx 5,rO,r3 # argument is forced to

register
cmpl crO,r5,0
bne .L12
stwcx. r4,rO,r3
bne .L12

Downloading
Having modified libraries, linked modules together and

so on, the question arises of how to get the code down to the
target board. There are several methods available to do this.

Serial lines
Programs can be downloaded into a target board using

a serial comms port and usually an onboard debugger. The first
stage is to convert the executable program file into an ASCII
format which can easily be transmitted to the target. This is
done either by setting a switch on the linker to generate a
download format or by using a separate utility. Several formats
exist for the download format, depending on which processor
family is being used. For Motorola processors, this is called the
S-record format because each line commences with an S. The
format is very simple and comprises of an S identifier, which
describes the record type and addressing capability, followed
by the number of bytes in the record and the memory address
for the data. The last byte is a checksum for error checking.

S0080000612E6F757410
S223400600480EFFFFFFEC42AEFFF00CAE00002710FFF06C0000322D7C00000002FFFC2D27
S22340061F7C00000004FFF8222EFFF892AEFFFC2D41FFF4222EFFFC92AEFFF42D41FFF83A
S21E40063E52AEFFF06000FFC64EB9004006504E5E4E754E4B000000004E71E5
S9030000FC

An example S-record file

Host system, e.g. PCTarget board

Serial link

Downloading via a serial link
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The host is then connected to the target, invokes the
download command on the target debugger and sends the file.
The target debugger then converts the ASCII format back into
binary and loads at the correct location. Once complete, the
target debugger can be used to start the program.

This method is simple but slow. If large programs need
to be moved it can take all day — which is not only an efficiency
problem but also leads to the practice of patching rather than
updating source code. Faced with a three hour download, it is
extremely tempting to go in and patch a variable or routine,
rather than modify the program source, recompile and
download. In practice, this method is only really suitable for
small programs.

EPROM and FLASH
An alternative is to burn the program into EPROM, or

some other form of non-volatile memory such as FLASH or
battery backed-up SRAM, insert the memory chips into the
target and start running the code. This can be a lot quicker than
downloading via a serial line, provided the link between the
development system and the PROM programmer is not a serial
link itself!

There are several restrictions with this. The first is that
there may not be enough free sockets on the target to accept the
ROMs and second, modifications cannot be made to read only
memory which means that patching and setting breakpoints
will not function. If the compiler does not produce ROMable
code or, for some reason, data structures have been included in
the code areas, again the software may not run.

There are some solutions to this. The code in the ROMs
can be block transferred to RAM before execution. This can
either be done using a built-in block move command in the
onboard debugger or with a small 4 or 5 line program.

Parallel ports
This is similar to the serial line technique, except that

data is transferred in bytes rather than bits using a parallel
interface — often a reprogrammed Centronics printer port.
While a lot faster, it does require access to parallel ports which
tend to be less common than serial ones.

From disk
This is an extremely quick and convenient way of

downloading code. If the target is used to develop the code
then this is a very easy way of downloading. If the target
VMEbus board can be inserted into the development host, the
code can often be downloaded directly from disk into the target
memory. This technique is covered in more detail later on.
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Downloading from disk can even be used with cross-
compilation systems, provided the target can read floppy
disks. Many target operating systems are file compatible with
MS-DOS systems and use the IBM PC as their development
host. In such cases, files can be transferred from the PC to the
target using floppy disk(s).

Ethernet
For target systems that support networking, it is possi-

ble to download and even debug using the Ethernet and
TCP/IP as the communications link. This method is very
common with development hosts that use UNIX and is used
widely in the industry. It does require an Ethernet port though.
Typically, the target operating system will have a communica-
tions module which supports the TCP/IP protocols and allows
it to replace a serial line for software downloading. The advan-
tage is one of far greater transfer rates and ease of use, but it
does rely on having this support available within the operating
system. VXWorks, VMEexec, and pSOS+ can all cover these
types of facilities.

Across a common bus
An ideal way of downloading code would be to go

across a data bus such as PCI or VMEbus. This general method
has already been briefly explained using an extra memory
board to connect ROMs to the bus and transfer data, and the
idea of adding the target boards to the host to allow the host to
download directly into the target. Some operating systems can
already provide this mechanism for certain host configura-
tions. For those that do not, the methods are very simple,
provided certain precautions are taken.

The first of these concerns how the operating system
sees the target board. Unless restricted or told otherwise, the
operating system may automatically use the memory on the
target board for its own uses.

This may appear to be exactly what is required as the
host can simply download code into this memory. On the other
hand, the operating system may use the target memory for its
own software and free up memory elsewhere in the system.
Even if the memory is free, there is often no guarantee that the
operating system will not overwrite the target memory.

To get around this problem, it may be necessary to
physically limit the operating system so that it ignores the
target memory. This can cause problems with memory man-
agement units, which will not allow access to what the operat-
ing system thinks is non-existent memory. The solution is
either to disable the memory management, or to use an oper-
ating system call to get access to the physical memory to access
and reserve it.
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Target memory by the operating system

With real-time-based operating systems, I would rec-
ommend disabling the MMU, thus allowing the host to access
any physical memory location that the processor generates.
Without the MMU, the CPU can access any address that it is
instructed to, even if this address is outside those used by the
operating system. This is normally not good practice but in this
case the benefits justify its use. With UNIX, the best way is to
declare the target memory as a shared memory segment or to
access it via the device /dev/mem.

Host 
VMEbus 
memory

Target 
VMEbus 
memory

Application

Host CPU loads 
application

into host program 
space

Target CPU moves 
application from 
host space into 

target space

Using the target CPU to move an application to the right memory

There are occasions when even these solutions are not
feasible. However, it is still possible to download software
using a modification to the technique. The program is loaded
into the host memory by the host. The target then moves the
code across the VMEbus from the host memory space to its own
memory space. The one drawback with this is the problem of
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memory conflicts. The target VMEbus memory must not con-
flict with the host VMEbus memory, and so the host must load
the program into a different location to that intended. The
program will have been linked to the target address, which is
not recognised by the host. As a result, the host must load the
program at a different physical address to that intended. This
address translation function can be performed by an MMU
which can translate the logical addresses of the target memory
to physical addresses within the host memory space. It is
usually possible to obtain the physical address by calling the
operating system. This address is then used by the target to
transfer the data. The alternative to this is to write a utility to
simply load the program image into a specified memory loca-
tion in the host memory map. After this has been done, the
target CPU can transfer the program to its correct memory
location.

One word of warning. It is important that there are no
conflicting I/O addresses, interrupt levels, resets and so on
that can cause a conflict. For example, the reset button on the
target should only generate a local reset and not a VMEbus one,
so that the downloading system will not see it and immediately
start its reset procedure. Similarly, the processor boards should
not be set up to respond to the same interrupt level or memory
addresses.

This method of downloading is very quick and versatile
once it has been set up. Apart from its use in downloading code
during developments, the same techniques are also applicable
to downloading code in multiprocessor designs.
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9 Emulation and
debugging techniques

Debugging techniques
The fundamental aim of a debugging methodology is to

restrict the introduction of untested software or hardware to a
single item. This is good practice and of benefit to the design
and implementation of any system, even those that use emula-
tion early on in the design cycle.

It is to prevent this integration of two unknowns that
simulation programs to simulate and test software, hardware
or both can play a critical part in the development process.

High level language simulation
If software is written in a high level language, it is

possible to test large parts of it without the need for the
hardware at all. Software that does not need or use I/O or other
system dependent facilities can be run and tested on other
machines, such as a PC or a engineering workstation. The
advantage of this is that it allows a parallel development of the
hardware and software and added confidence, when the two
parts are integrated, that it will work.

Using this technique, it is possible to simulate I/O using
the keyboard as input or another task passing input data to the
rest of the modules. Another technique is to use a data table
which contains data sequences that are used to test the soft-
ware.

This method is not without its restrictions. The most
common mistake with this method is the use of non-standard
libraries which are not supported by the target system com-
piler or environment. If these libraries are used as part of the
code that will be transferred, as opposed to providing a user
interface or debugging facility, then the modifications needed
to port the code will devalue the benefit of the simulation.

The ideal is when the simulation system is using the
same library interface as the target. This can be achieved by
using the target system or operating system as the simulation
system or using the same set of system calls. Many operating
systems support or provide a UNIX compatible library which
allows UNIX software to be ported using a simple recompilation.
As a result, UNIX systems are often employed in this simula-
tion role. This is an advantage which the POSIX compliant
operating system Lynx offers.

This simulation allows logical testing of the software but
rarely offers quantitative information unless the simulation
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environment is very close to that of the target, in terms of
hardware and software environments.

Low level simulation
Using another system to simulate parts of the code is all

well and good, but what about low level code such as initiali-
sation routines? There are simulation tools available for these
routines as well. CPU simulators can simulate a processor,
memory system and, in some cases, some peripherals and
allow low level assembler code and small HLL programs to be
tested without the need for the actual hardware. These tools
tend to fall into two categories: the first simulate the program-
ming model and memory system and offer simple debugging
tools similar to those found with an onboard debugger. These
are inevitably slow, when compared to the real thing, and do
not provide timing information or permit different memory
configurations to be tested. However, they are very cheap and
easy to use and can provide a low cost test bed for individuals
within a large software team. There are even shareware simu-
lators for the most common processors such as the one from the
University of North Carolina which simulates an MC68000
processor.

Execution halted               

<D0> =00000000 <D4> =00000000 <A0> =00000000 <A4> =00000000
<D1> =00000000 <D5> =0000abcd <A1> =00000000 <A5> =00000000  
<D2> =00000000 <D6> =00000000 <A2> =00000000 <A6> =00000000  
<D3> =00000000 <D7> =00000000 <A3> =00000000 <A7> =00000000  
trace: on    sstep: on     cycles:    416    <A7'>= 00000f00 
         cn tr st rc       T S  INT   XNZVC  <PC> = 00000090
  port1  00 00 82 00  SR = 1010101111011111                
--------------------------------------------------
executing a ANDI         instruction at location   58  
executing a ANDI         instruction at location   5e  
executing a ANDI         instruction at location   62  
executing a ANDI_TO_CCR  instruction at location   68  
executing a ANDI_TO_SR   instruction at location   6c  
executing a OR           instruction at location   70  
executing a OR           instruction at location   72  
executing a OR           instruction at location   76  
executing a ORI          instruction at location   78  
executing a ORI          instruction at location   7e  
executing a ORI          instruction at location   82  
executing a ORI_TO_CCR   instruction at location   88  
executing a ORI_TO_SR    instruction at location   8c  
TRACE exception occurred at location   8c. 

Example display from the University of North Carolina 68k simulator

The second category extends the simulation to provide
timing information based on the number of clock cycles. Some
simulators can even provide information on cache perform-
ance, memory usage and so on, which is useful data for making
hardware decisions. Different performance memory systems
can be exercised using the simulator to provide performance
data. This type of information is virtually impossible to obtain
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without using such tools. These more powerful simulators
often require very powerful hosts with large amounts of
memory. SDS provide a suite of such tools that can simulate a
processor and memory and with some of the integrated proc-
essors that are available, even emulate onboard peripherals
such as LCD controllers and parallel ports.

Simulation tools are becoming more and more impor-
tant in providing early experience of and data about a system
before the hardware is available. They can be a little impractical
due to their performance limitations — one second of process-
ing with a 25 MHz RISC processor taking 2 hours of simulation
time was not uncommon a few years ago — but as workstation
performance improves, the simulation speed increases. With
instruction level simulators it is possible with a top of the range
workstation to get simulation speeds of 1 to 2 MHz.

Onboard debugger
The onboard debugger provides a very low level method

of debugging software. Usually supplied as a set of EPROMs
which are plugged into the board or as a set of software
routines that are combined with the applications code, they use
a serial connection to communicate with a PC or workstation.
They provide several functions: the first is to provide initialisa-
tion code for the processor and/or the board which will nor-
mally initialise the hardware and allow it to come up into a
known state. The second is to supply basic debugging facilities
and, in some cases, allow simple access to the board’s periph-
erals. Often included in these facilities is the ability to download
code using a serial port or from a floppy disk.

>TR 
                                                  

                                                    PC=000404 SR=2000 SS=00A00000 US=00000000       X=0 
 A0=00000000 A1=000004AA A2=00000000 A3=00000000 N=0 
 A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0 
 D0=00000001 D1=00000013 D2=00000000 D3=00000000 V=0 
 D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0 
 ---------->LEA      $000004AA,A1 

                     
                                                    >TR 

                                               
                                                    PC=00040A SR=2000 SS=00A00000 US=00000000       X=0 

 A0=00000000 A1=000004AA A2=00000000 A3=00000000 N=0 
 A4=00000000 A5=00000000 A6=00000000 A7=00A00000 Z=0 
 D0=00000001 D1=00000013 D2=00000000 D3=00000000 V=0 
 D4=00000000 D5=00000000 D6=00000000 D7=00000000 C=0 
 ---------->MOVEQ    #19,D1 

                           
                                                    > 
                                              

Example display from an onboard M68000 debugger

When the board is powered up, the processor fetches its
reset vector from the table stored in EPROM and then starts to
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initialise the board. The vector table is normally transferred
from EPROM into a RAM area to allow it to be modified, if
needed. This can be done through hardware, where the EPROM
memory address is temporarily altered to be at the correct
location for power-on, but is moved elsewhere after the vector
table has been copied. Typically, a counter is used to determine
a preset number of memory accesses, after which it is assumed
that the table has been transferred by the debugger and the
EPROM address can safely be changed.

The second method, which relies on processor support,
allows the vector table to be moved elsewhere in the memory
map. With the later M68000 processors, this can also be done by
changing the vector base register which is part of the supervi-
sor programming model.

The debugger usually operates at a very low level and
allows basic memory and processor register display and change,
setting RAM-based breakpoints and so on. This is normally
performed using hexadecimal notation, although some
debuggers can provide a simple disassembler function. To get
the best out of these systems, it is important that a symbol table
is generated when compiling or linking software, which will
provide a cross-reference between labels and symbol names
and their physical address in memory. In addition, an assem-
bler source listing which shows the assembler code generated
for each line of C or other high level language code is invalu-
able. Without this information it can be very difficult to use the
debugger easily. Having said that, it is quite frustrating having
to look up references in very large tables and this highlights
one of the restrictions with this type of debugger.

While considered very low level and somewhat limited
in their use, onboard debuggers are extremely useful in giving
confidence that the board is working correctly and working on
an embedded system where an emulator may be impractical.
However, this ability to access only at a low level can also place
severe limitations on what can be debugged.

The first problem concerns the initialisation routines
and in particular the processor’s vector table. Breakpoints use
either a special breakpoint instruction or an illegal instruction
to generate a processor exception when the instruction is
executed. Program control is then transferred to the debugger
which displays the breakpoint and associated information.
Similarly, the debugger may use other vectors to drive the
serial port that is connected to the terminal.

This vector table may be overwritten by the initialisation
routines of the operating system which can replace them with
its own set of vectors. The breakpoint can still be set but when
it is reached, the operating system will see it instead of the
debugger and not pass control back to it. The system will
normally crash because it is not expecting to see a breakpoint
or an illegal instruction!
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To get around this problem, the operating system may
need to be either patched so that its initialisation routine writes
the debugger vector into the appropriate location or this must
be done using the debugger itself. The operating system is
single stepped through its initialisation routine and the in-
struction that overwrites the vector simply skipped over, thus
preserving the debugger’s vector. Some operating systems can
be configured to preserve the debugger’s exception vectors,
which removes the need to use the debugger to preserve them.

A second issue is that of memory management where
there can be a problem with the address translation. Break-
points will still work but the addresses returned by the debugger
will be physical, while those generated by the symbol table will
normally be logical. As a result, it can be very difficult to
reconcile the physical address information with the logical
information.

The onboard debugger provides a simple but some-
times essential way of debugging VMEbus software. For small
amounts of code, it is quite capable of providing a method of
debugging which is effective, albeit not as efficient as a full
blown symbolic level debugger — or as complex or expensive.
It is often the only way of finding out about a system which has
hung or crashed.

Task level debugging
In many cases, the use of a low level debugger is not very

efficient compared with the type of control that may be needed.
A low level debugger is fine for setting a breakpoint at the start
of a routine but it cannot set them for particular task functions
and operations. It is possible to set a breakpoint at the start of
the routine that sends a message, but if only a particular
message is required, the low level approach will need manual
inspection of all messages to isolate the one that is needed — an
often daunting and impractical approach!

To solve this problem, most operating systems provide
a task level debugger which works at the operating system
level. Breakpoints can be set on system circumstances, such as
events, messages, interrupt routines and so on, as well as the
more normal memory address. In addition, the ability to filter
messages and events is often included. Data on the current
executing tasks is provided, such as memory usage, current
status and a snapshot of the registers.

Symbolic debug
The ability to use high level language instructions, func-

tions and variables instead of the more normal addresses and
their contents is known as symbolic debugging. Instead of
using an assembler listing to determine the address of the first
instruction of a C function and using this to set a breakpoint,
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the symbolic debugger allows the breakpoint to be set by
quoting a line reference or the function name. This interaction
is far more efficient than working at the assembler level,
although it does not necessarily mean losing the ability to go
down to this level if needed.

The reason for this is often due to the way that symbolic
debuggers work. In simple terms, they are intelligent front
ends for assembler level debuggers, where software performs
the automatic look-up and conversion between high level
language structures and their respective assembler level ad-
dresses and contents.
12 int prime,count,iter;
13
14 for (iter = 1;iter<=MAX_ITER;iter++)
15 {
16 count = 0;
17 for(i = 0; i<MAX_PRIME; i++)
18 flags[i] = 1;
19 for(i = 0; i<MAX_PRIME; i++)
20 if(flags[i])
21 {
22 prime = i + i + 3;
23 k = i + prime;
24 while (k < MAX_PRIME)
25 {
26 flags[k] = 0;
27 k += prime;
28 }
29 count++;

Source code listing with line references

000100AA 7C01 MOVEQ #$1,D6
000100AC 7800 MOVEQ #$0,D4
000100AE 7400 MOVEQ #$0,D2
000100B0 207C 0001 2148 MOVEA.L #$12148,A0 000100B6
11BC 0001 2000 MOVE.B #$1,($0,A0,D2.W)
000100BC 5282 ADDQ.L #$1,D2
000100BE 7011 MOVEQ #$11,D0
000100C0 B082 CMP.L D2,D0
000100C2 6EEC BGT.B $100B0
000100C4 7400 MOVEQ #$0,D2 000100C6 207C 0001 2148
MOVEA.L #$12148,A0 000100CC 4A30 2000 TST.B
($0,A0,D2.W) 000100D0 6732 BEQ.B $10104 000100D2
2A02 MOVE.L D2,D5 000100D4 DA82 ADD.L D2,D5 000100D6
5685 ADDQ.L #$3,D5

Assembler listing
›>> 12 int prime,count,iter;
›>> 13
›— 14 => for (iter = 1;<=iter<=MAX_ITER;iter++)
› 000100AA 7C01 MOVEQ #$1,D6
›>> 15 {
›>> 16 count = 0;
› 000100AC 7800 MOVEQ #$0,D4
›— 17 => for(i = 0;<= i<MAX_PRIME; i++)› > 000100AE
7400 MOVEQ #$0,D2
›>> 18 flags[i] = 1;
› 000100B0 207C 0001 2148 MOVEA.L #$12148,A0 {flags}
› 000100B6 11BC 0001 2000 MOVE.B #$1,($0,A0,D2.W)



Emulation and debugging techniques 327

›— 17 for(i = 0; i<MAX_PRIME; => i++)<=
› 000100BC 5282 ADDQ.L #$1,D2
›— 17 for(i = 0; => i<MAX_PRIME;<=i++)
› 000100BE 7011 MOVEQ #$11,D0
› 000100C0 B082 CMP.L D2,D0
› 000100C2 6EEC BGT.B $100B0

Assembler listing with symbolic information

The key to this is the creation of a symbol table which
provides the cross-referencing information that is needed. This
can either be included within the binary file format used for
object and absolute files or, in some cases, stored as a separate
file. The important thing to remember is that symbol tables are
often not automatically created and, without them, symbolic
debug is not possible.

When the file or files are loaded or activated by the
debugger, it searches for the symbolic information which is
used to display more meaningful information as shown in the
various listings. The symbolic information means that break-
points can be set on language statements as well as individual
addresses. Similarly, the code can be traced or stepped through
line by line or instruction by instruction.

This has several repercussions. The first is the number of
symbolic terms and the storage they require. Large tables can
dramatically increase file size and this can pose constraints on
linker operation when building an application or a new version
of an operating system. If the linker has insufficient space to
store the symbol tables while they are being corrected — they
are often held in RAM for faster searching and update — the
linker may crash with a symbol table overflow error. The
solution is to strip out the symbol tables from some of the
modules by recompiling them with symbolic debugging disa-
bled or by allocating more storage space to the linker.

The problems may not stop there. If the module is then
embedded into a target and symbolic debugging is required,
the appropriate symbol tables must be included in the build
and this takes up memory space. It is not uncommon for the
symbol tables to take up more space than the spare system
memory and prevent the system or task from being built or
running correctly. The solution is to add more memory or strip
out the symbol tables from some of the modules.

It is normal practice to remove all the symbol table
information from the final build to save space. If this is done, it
will also remove the ability to debug using the symbol informa-
tion. It is a good idea to have at least a hard copy of the symbol
table to help should any debugging be needed.

Emulation
Even using the described techniques, it cannot be stated

that there will never be a need for additional help. There will be
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times when instrumentation, such as emulation and logic
analysis, are necessary to resolve problems within a design
quickly. Timing and intermittent problems cannot be easily
solved without access to further information about the proces-
sor and other system signals. Even so, the recognition of a
potential problem source, such as a specific software module or
hardware, allows more productive use and a speedier resolu-
tion. The adoption of a methodical design approach and the
use of ready built boards as the final system, at best remove the
need for emulation and, at worst, reduce the amount of time
required to debug the system.

There are some problems with using emulation within a
board-based system or any rack mounted system. The first is
how to get the emulation or logic analysis probe onto the board
in the first place. Often the gap between the processor and
adjacent boards is too small to cope with the height of the
probe. It may be possible to move adjacent boards to other
slots, but this can be very difficult or impossible in densely
populated racks. The answer is to use an extender board to
move the target board out of the rack for easier access. Another
problem is the lack of a socketed processor chip which effec-
tively prevents the CPU from being removed and the emulator
probe from being plugged in. With the move towards surface
mount and high pin count packages, this problem is likely to
increase. If you are designing your own board, I would recom-
mend that sockets are used for the processor to allow an
emulator to be used. If possible, and the board space allows it,
use a zero insertion force socket. Even with low insertion force
sockets, the high pin count can make the insertion force quite
large. One option that can be used, but only if the hardware has
been designed to do so, is to leave the existing processor in situ
and tri-state all its external signals. The emulator is then
connected to the processor bus via another connector or socket
and takes over the processor board.

The second problem is the effect that large probes can
have on the design especially where high speed buses are used.
Large probes and the associated cabling create a lot of addi-
tional capacitance loading which can prevent an otherwise
sound electronic design from working. As a result, the system
speed very often must be downgraded to compensate. This
means that the emulator can only work with a slower than
originally specified design. If there is a timing problem that
only appears while the system is running at high speed, then
the emulator is next to useless in providing any help. We will
come back to emulation techniques at the end of this chapter.

Optimisation problems
The difficulties do not stop with hardware mechanical

problems. Software debugging can be confused or hampered
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by optimisation techniques used by the compiler to improve
the efficiency of the code. Usually set by options from the
command line, the optimisation routines examine the code and
change it to improve its efficiency, while retaining its logical
design and context. Many different techniques are used but
they fall into two main types: those that remove code and those
that add code or change it. A compiler may remove variables
or routines that are never used or do not return any function.
Small loops may be unrolled into straight line code to remove
branching delays at the expense of a slightly larger program.
Floating point routines may be replaced by inline floating
point instructions. The net result is code that is different from
the assembler listing produced by the compiler. In addition,
the generated symbol table may be radically different from that
expected from the source code.

These optimisation techniques can be ruthless; I have
known whole routines to be removed and in one case a com-
plete program was reduced to a single NOP instruction! The
program was a set of functions that performed benchmark
routines but did not use any global information or return any
values. The optimiser saw this and decided that as no data was
passed to it and it did not modify or return any global data, it
effectively did nothing and replaced it with a NOP. When
benchmarked, it gave a pretty impressive performance of zero
seconds to execute several million calculations.
/* sieve.c — Eratosthenes Sieve prime number
calculation */
/* scaled down with MAX_PRIME set to 17 instead of
8091 */

#define MAX_ITER 1
#define MAX_PRIME 17

char flags[MAX_PRIME];

main ()
{

register int i,k,l,m;
int prime,count,iter;

for (iter = 1;iter<=MAX_ITER;iter++)
{
count = 0;

/* redundant code added here */
for(l = 0; l < 200; l++ );
for(m = 128; l > 1; m— );

/* redundant code ends here */
for(i = 0; i<MAX_PRIME; i++)

flags[i] = 1;
for(i = 0; i<MAX_PRIME; i++)

if(flags[i])
{
prime = i + i + 3;
k = i + prime;
while (k < MAX_PRIME)

{
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flags[k] = 0;
k += prime;
}

count++;
printf(“ prime %d =

%d\n”, count, prime);
}

}
printf(“\n%d primes\n”,count);

}
Source listing for optimisation example

file "ctm1AAAa00360"

def aut1.,32
def arg1.,64
text
global _main

_main:
subu r31,r31,arg1.
st r1,r31,arg1.-4
st r19,r31,aut1.+0
st r20,r31,aut1.+4
st r21,r31,aut1.+8
st r22,r31,aut1.+12
st r23,r31,aut1.+16
st r24,r31,aut1.+20
st r25,r31,aut1.+24
or r19,r0,1
br @L25

@L26:
or r20,r0,r0
or r23,r0,r0
br @L6

@L7:
addu r23,r23,1

@L6:
cmp r13,r23,200
bb1 lt,r13,@L7
or r22,r0,128
br @L10

@L11:
subu r22,r22,1

@L10:
cmp r13,r23,1
bb1 gt,r13,@L11
or r25,r0,r0
br @L14

@L15:
or.u r13,r0,hi16(_flags)
or r13,r13,lo16(_flags)
or r12,r0,1
st.b r12,r13,r25
addu r25,r25,1

@L14:
cmp r13,r25,17
bb1 lt,r13,@L15
or r25,r0,r0
br @L23

@L24:
or.u r13,r0,hi16(_flags)
or r13,r13,lo16(_flags)
ld.b r13,r13,r25
bcnd eq0,r13,@L17
addu r13,r25,r25
addu r21,r13,3
addu r24,r25,r21
br @L19

@L20:
or.u r13,r0,hi16(_flags)
or r13,r13,lo16(_flags)
st.b r0,r13,r24
addu r24,r24,r21

@L19:
cmp r13,r24,17
bb1 lt,r13,@L20
addu r20,r20,1
or.u r2,r0,hi16(@L21)
or r2,r2,lo16(@L21)
or r3,r0,r20
or r4,r0,r21
bsr _printf

@L17:
addu r25,r25,1

@L23:
cmp r13,r25,17
bb1 lt,r13,@L24
addu r19,r19,1

@L25:
cmp r13,r19,1
bb1 le,r13,@L26
or.u r2,r0,hi16(@L27)
or r2,r2,lo16(@L27)
or r3,r0,r20
bsr _printf
ld r19,r31,aut1.+0
ld r20,r31,aut1.+4
ld r21,r31,aut1.+8
ld r22,r31,aut1.+12
ld r23,r31,aut1.+16
ld r24,r31,aut1.+20
ld r25,r31,aut1.+24
ld r1,r31,arg1.-4
addu r31,r31,arg1.
jmp r1

file "ctm1AAAa00355"

def aut1.,32
def arg1.,56
text
global _main

_main:
subu r31,r31,arg1.
st r1,r31,arg1.-4
st.d r20,r31,aut1.+0
st.d r22,r31,aut1.+8
st r25,r31,aut1.+16
or r20,r0,1

@L26:
or r21,r0,r0
or r25,r0,r0

@L7:
addu r25,r25,1
cmp r13,r25,200
bb1 lt,r13,@L7
br.n @L28
or r2,r0,128

@L11:
subu r2,r2,1

@L28:
cmp r13,r25,1
bb1 gt,r13,@L11
or r25,r0,r0
or.u r22,r0,hi16(_flags)
or r22,r22,lo16(_flags)

@L15:
or r13,r0,1
st.b r13,r22,r25
addu r25,r25,1
cmp r12,r25,17
bb1 lt,r12,@L15
or r25,r0,r0

@L24:
ld.b r12,r22,r25
bcnd eq0,r12,@L17
addu r12,r25,r25
addu r23,r12,3
addu r2,r25,r23
cmp r12,r2,17
bb1 ge,r12,@L18

@L20:
st.b r0,r22,r2
addu r2,r2,r23
cmp r13,r2,17
bb1 lt,r13,@L20

@L18:
addu r21,r21,1
or.u r2,r0,hi16(@L21)
or r2,r2,lo16(@L21)
or r3,r0,r21
bsr.n _printf
or r4,r0,r23

@L17:
addu r25,r25,1
cmp r13,r25,17
bb1 lt,r13,@L24
addu r20,r20,1
cmp r13,r20,1
bb1 le,r13,@L26
or.u r2,r0,hi16(@L27)
or r2,r2,lo16(@L27)
bsr.n _printf
or r3,r0,r21
ld.d r20,r31,aut1.+0
ld r1,r31,arg1.-4
ld.d r22,r31,aut1.+8
ld r25,r31,aut1.+16
jmp.n r1
addu r31,r31,arg1.

No optimisation                                                 Full optimisation

Assembler listings for optimised and non-optimised compilation
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To highlight how optimisation can dramatically change
the generated code structure, look at the C source listing for the
Eratosthenes Sieve program and the resulting M88000 assem-
bler listings that were generated by using the default non-
optimised setting and the full optimisation option. The imme-
diate difference is in the greatly reduced size of the code and
the use of the .n suffix with jump and branch instructions to
make use of the delay slot. This is a technique used on many
RISC processors to prevent a pipeline stall when changing the
program flow. If the instruction has a .n suffix, the instruction
immediately after it is effectively executed with the branch and
not after it, as it might appear from the listing!

In addition, the looping structures have been reorgan-
ised to make them more efficient, although the redundant code
loops could be encoded simply as a loop with a single branch.
If the optimiser is that good, why has it not done this? The
reason is that the compiler expects loops to be inserted for a
reason and usually some form of work is done within the loop
which may change the loop variables. Thus the compiler will
take the general case and use that rather than completely
remove it or rewrite it. If the loop had been present in a dead
code area — within a conditional statement where the condi-
tions would never be met — the compiler would remove the
structure completely.

The initialisation routine _main is different in that not
all the variables are initialised using a store instruction and
fetching their values from a stack. The optimised version uses
the faster ‘or’ instruction to set some of the variables to zero.

These and other changes highlight several problems
with optimisation. The obvious one is with debugging the
code. With the changes to the code, the assembler listing and
symbol tables do not match. Where the symbols have been
preserved, the code may have dramatically changed. Where
the routines have been removed, the symbols and references
may not be present. There are several solutions to this. The first
is to debug the code with optimisation switched off. This
preserves the symbol references but the code will not run at the
same speed as the optimised version, and this can lead to some
timing problems. A second solution is becoming available
from compiler and debugger suppliers, where the optimisation
techniques preserve as much of the symbolic information as
possible so that function addresses and so on are not lost.

The second issue is concerned with the effect optimisation
may have on memory mapped I/O. Unless the optimiser can
recognise that a function is dealing with memory mapped I/O,
it may not realise that the function is doing some work after all
and remove it — with disastrous results. This may require
declaring the I/O addresses as a global variable, returning a
value at the function’s completion or even passing the address
to the function itself, so that the optimiser can recognise its true
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role. A third complication can arise with optimisations such as
unrolling loops and software timing. It is not uncommon to use
instruction sequences to delay certain accesses or functions. A
peripheral may require a certain number of clock cycles to
respond to a command. This delay can be accomplished by
executing other instructions, such as a loop or a divide instruc-
tion. The optimiser may remove or unroll such loops and
replace the inefficient divide instruction with a logical shift.
While this does increase the performance, that is not what was
required and the delayed peripheral access may not be long
enough — again with disastrous results.

Such software timing should be discouraged not only
for this but also for portability reasons. The timing will assume
certain characteristics about the processor in terms of process-
ing speed and performance which may not be consistent with
other faster board designs or different processor versions.

Xray
It is not uncommon to use all the debugging techniques

that have been described so far at various stages of a develop-
ment. While this itself is not a problem, it has been difficult to
get a common set of tools that would allow the various tech-
niques to be used without having to change compilers or
libraries, learn different command sets, and so on. The ideal
would be a single set of compiler and debugger tools that
would work with a simulator, task level debugger, onboard
debugger and emulator. This is exactly the idea behind
Microtec’s Xray product.

Debugger 
information

Xray 
interface

Symbolic
information

EmulatorSimulator Onboard 
monitor/debugger

or task level 
debugger

Xray structure
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Xray screen shots

Xray consists of a consistent debugger system that can
interface with a simulator, emulator, onboard debugger or
operating system task level debugger. It provides a consistent
interface which greatly improves the overall productivity be-
cause there is no relearning required when moving from one
environment to another. It obtains its debugging information
from a variety of sources, depending on how the target is being
accessed. With the simulator, the information is accessed di-
rectly. With an emulator or target hardware, the link is via a



334 Embedded systems design

simple serial line, via the Ethernet or directly across a shared
memory interface. The data is then used in conjunction with
symbolic information to produce the data that the user can see
and control on the host machine.

The interface consists of a number of windows which
display the debugging information. The windows consist of
two types: those that provide core information, such as break-
points and the processor registers and status. The second type
are windows concerned with the different environments, such
as task level information. Windows can be chosen and dis-
played at the touch of a key.

The displays are also consistent over a range of hosts,
such as Sun workstations, IBM PCs and UNIX platforms.
Either a serial or network link is used to transfer information
from the target to the debugger. The one exception is that of the
simulator which runs totally on the host system.

So how are these tools used? Xray comes with a set of
compiler tools which allows software to be developed on a host
system. This system does not have to use the same processor as
the target. To execute the code, there is a variety of choices. The
simulator is ideal for debugging code at a very early stage,
before hardware is available, and allows software develop-
ment to proceed in parallel with hardware development. Once
the hardware is available, the Xray interface can be taken into
the target through the use of an emulator or a small onboard
debug monitor program. These debug monitors are supplied
as part of the Xray package for a particular processor. They can
be easily modified to reflect individual memory maps and
have drivers from a large range of serial communications
peripherals.

Application

Design component

pREPC+

pSOS+

pHILE+

p
N
A
+

pROBE+ target 
debugger

Development tools

Compilation tools

Libraries

Xray+ Source level cross 
debug/analyser

Host
(development system)

Target
(embedded system)

pSOS+ debugging
With Xray running in the target, the hardware and initial

software routines can be debugged. The power of Xray can be
further extended by having an Xray interface from the operat-
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ing system debugger. pSOS+ uses this method to provide its
debugging interface. This allows task level information to be
used to set breakpoints, and so on, while still preserving the
lower level facilities. This provides an extremely powerful and
flexible way of debugging a target system. Xray has become a
de facto standard for debugging tools within the real-time and
VMEbus market. This type of approach is also being adopted
by many other software suppliers.

The role of the development system
An alternative environment for developing software for

embedded systems is to use the final operating system as the
development environment either on the target system itself or
on a similar system. This used to be the traditional way of
developing software before the advent of cheap PCs and
workstations and integrated cross-compilation.

It still offers distinct advantages over the cross-compila-
tion system. Run-time library support is integrated because the
compilers are producing native code. Therefore the run-time
libraries that produce executable code on the development
system will run unmodified on the target system. The final
software can even be tested on the development system before
moving it to the target. In addition, the full range of functions
and tools can be used to debug the software during this testing
phase, which may not be available on the final target. For
example, if a target simply used the operating system kernel, it
would not have the file system and terminal drivers needed to
support an onscreen debugger or help download code quickly
from disk to memory. Yet a development system running the
full version of the operating system could offer this and other
features, such as downloading over a network. However, there
are some important points to remember.

Floating point and memory management functions
Floating point co-processors and memory management

units should be considered as part of the processor environ-
ment and need to be considered when creating code on the
target. For example, the development system may have a
floating point unit and memory management, while the target
does not. Code created on the development system may not
run on the target because of these differences. Executing float-
ing point instructions would cause a processor exception while
the location of code and data in the memory may not be
compatible.

This means that code created for the development sys-
tem may need recompiling and linking to ensure that the
correct run-time routines are used for the target and that they
are located correctly. This in turn may mean that the target
versions may not run on the development system because its
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resources do not match up. This raises the question of the
validity of using a development system in the first place. The
answer is that the source code and the bulk of the binary code
does not need modifying. Calling up a floating point emulation
library instead of using floating point instructions will not
affect any integer or I/O routines. Linking modules to a differ-
ent address changes the addresses, not the instructions and so
the two versions are still extremely similar. If the code works on
the development system, it is likely that it will work on the
target system.

While the cross-compilation system is probably the most
popular method used today to develop software for embedded
systems — due to the widespread availability of PCs and
workstations and the improving quality of software tools — it
is not the only way. Dedicated development systems can offer
faster and easier software creation because of the closer rela-
tionship between the development environment and the end
target.

Emulation techniques
In-circuit emulation (ICE) has been the traditional method

employed to emulate a processor inside an embedded design
so that software can be downloaded and debugged in situ in the
end application. For many processors this is still an appropri-
ate method for debugging embedded systems but the later
processors have started to dispense with the emulator as a tool
and replace it with alternative approaches.

The main problem is concerned with the physical issues
associated with replacing the processor with a probe and cable.
These issues have been touched on before but it is worth
revisiting them. The problems are:

• Physical limitation of the probe
With high pin count and high density packages that
many processors now use such as quad flat packs, ball
grid arrays and so on, the job of getting sockets that can
reliably provide good electrical contacts is becoming
harder. This is starting to restrict the ability of probe
manufacturers to provide headers that will fit these
sockets, assuming that the sockets are available in the
first place.
The ability to get several hundred individual signal
cables into the probe is also causing problems and this
has meant that for some processors, emulators are no
longer a practical proposition.

• Matching the electrical characteristics
This follows on from the previous point. The electrical
characteristics of the probe should match that of the
device the emulator is emulating. This includes the
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electrical characteristics of the pins. The difficulty is that
the probe and its associated wiring make this matching
very difficult indeed and in some cases, this imposes
speed limits on the emulation or forces the insertion of
wait states. Either way, the emulation is far from perfect
and this can cause restrictions in the use of emulation. In
some cases, where speed is of the essence, emulation can
prevent the system from working at the correct design
speed.

• Field servicing
This is an important but often neglected point. It is
extremely useful for a field engineer to have some form
of debug access to a system in the field to help with fault
identification and rectification. If this relies on an emu-
lator, this can pose problems of access and even power
supplies if the system is remote.
So, faced with these difficulties, many of the more recent

processors have adopted different strategies to provide emula-
tion support without having to resort to the traditional emula-
tor and its inherent problems.

The basic methodology is to add some debugging sup-
port to the processor that enables a processor to be single
stepped and breakpointed under remote control from a
workstation or host. This facility is made possible through the
provision of dedicated debug ports.

JTAG
JTAG ports were originally designed and standardised

to provide a way of taking over the pins of a device to allow
different bit patterns to be imposed on the pins allowing other
devices within the circuit to be tested. This is important to
implement boundary scan techniques without having to re-
move a processor. It allows access to all the hardware within
the system.

The system works by using a serial port and clocking
data into a large shift register inside the device. The outputs
from the shift register are then used to drive the pins under
control from the port.

OnCE
OnCE or on-chip emulation is a debug facility used on

Motorola’s DSP 56x0x family of DSP chips. It uses a special
serial port to access additional registers within the device that
provide control over the processor and access to its internal
registers. The advantage of this approach is that by bringing
out the OnCE port to an external connector, every system can
provide its own in circuit emulation facilities by hooking this
port to an interface port in a PC or workstation. The OnCE port
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allows code to be downloaded and single stepped, breakpoints
to be set and the display of the internal registers, even while
operating. In some cases, small trace buffers are available to
capture key events.

BDM
BDM or background debug mode is provided on Mo-

torola’s MC683xx series of processors as well as some of the
newer 8 bit microcontrollers such as the MC68HC12. It is
similar in concept to OnCE, in that it provides remote control
and access over the processor, but the way that it is done is
slightly different. The processor has additional circuitry added
which provides a special background debug mode where the
processor does not execute any code but is under the control of
the remote system connected to its BDM port. The BDM state
is entered by the assertion of a BDM signal or by executing a
special BDM instruction. Once the BDM mode has been en-
tered, low level microcode takes over the processor and allows
breakpoints to be set, registers to be accessed and single
stepping to take place and so on, under command from the
remote host.
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10 Buffering and other data
structures

This chapter covers the aspects of possibly the most used
data structure within embedded system software. The use and
understanding behind buffer structures is an important issue and
can greatly effect the design of software.

What is a buffer?
A buffer is as its name suggests an area of memory that is

used to store data, usually on a temporary basis prior to processing
it. It is used to compensate for timing problems between software
modules or subsystems that cannot always guarantee to process
every piece of data as it becomes available. It is also used as a
collection point for data so that all the relevant information can be
collected and organised before processing.

Low water 
mark

High water 
mark

Time to halt 
data flow

Time to start 
data flow

Data 
pointer

Empty space

Buffered data
A basic buffer structure

The diagram shows the basic construction of a buffer. It
consists of a block of memory and a pointer that is used to locate
the next piece of data to be accessed or removed from the buffer.
There are additional pointers which are used to control the buffer
and prevent data overrun and underrun. An overrun occurs when
the buffer cannot accept any more data. An underrun is caused
when it is asked for data and cannot provide it.
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Low water 
mark

High water 
mark

Data added 
above the 

pointer

Data 
pointer

Data removed 
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Adding and removing data

Data is removed by using the pointer to locate the next value
and moving the data from the buffer. The pointer is then moved to
the next location by incrementing its value by the number of bytes
or words that have been taken. One common programming mis-
take is to confuse words and bytes. A 32 bit processor may access
a 32 bit word and therefore it would be logical to think that the
pointer is incremented by one. The addressing scheme may use
bytes and therefore the correct increment is four. Adding data is
the opposite procedure. The details on exactly how these proce-
dures work determine the buffer type and its characteristics and
are explained later in this chapter.

Buffer size

Latency

Timing tolerance

Memory size

Code complexity

No buffering

Large
buffers

Buffering trade-offs

However, while buffering does undoubtedly offer benefits,
they are not all for free and their use can cause problems. The
diagram shows the common trade-offs that are normally encoun-
tered with buffering.
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Latency
If data is stored in a buffer, then there is normally a delay

before the first and subsequent data is received from the buffer.
This delay is known as the buffer latency and in some systems, it
can be a big advantage. In others, however, its effect is the
opposite.

For a real-time system, the buffer latency defines the earliest
that information can be processed and therefore any response to
that information will be delayed by the latency irrespective of how
fast or efficient the processing software and hardware is. If data is
buffered so that eight samples must be received before the first is
processed, the real-time response is now eight times the data rate
for a single sample plus the processing time. If the first sample was
a request to stop a machine or ignore the next set of data, the
processing that determines its meaning would occur after the
event it was associated with. In this case, the data that should have
been ignored is now in the buffer and has to be removed.

Latency can also be a big problem for data streams that rely
on real-time to retain their characteristics. For example, digital
audio requires a consistent and regular stream of data to ensure
accurate reproduction. Without this, the audio is distorted and can
become unintelligible in the case of speech. Buffering can help by
effectively having some samples in reserve so that the audio data
is always there for decoding or processing. This is fine except that
there is now an initial delay while the buffer fills up. This delay
means an interaction with the stream is difficult as anyone who
has had an international call over a satellite link with the large
amount of delay can vouch for. In addition some systems cannot
tolerate delay. Digital telephone handsets have to demonstrate a
very small delay in the audio processing path which limits the size
of any buffering for the digital audio data to less than four
samples. Any higher and the delay caused by buffer latency means
that the phone will fail its type approval.

Timing tolerance
Latency is not all bad, however, and used in the right

amounts can provide a system that is more tolerant and resilient
than one that is not. The issue is based around how time critical the
system is and perhaps more importantly how deterministic is it.

Consider a system where audio is digitally sampled, fil-
tered and stored. The sampling is performed on a regular basis
and the filtering takes less time than the interval between samples.
In this case, it is possible to build a system that does not need
buffering and will have a very low latency. As each sample is
received, it is processed and stored. The latency is the time to take
a single sample.

If the system has other activities and especially if those
involve asynchronous events such as the user pressing a button on
the panel, then the guarantee that all the processing can be
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completed between samples may no longer be true. If this dead-
line is not made, then a sample may be lost. One solution to this —
there are others such as using a priority system as supplied by a
real-time operating system — is to use a small buffer to temporar-
ily store the data so that it is not lost. By doing this the time
constraints on the processing software are reduced and are more
tolerant of other events. This is, however, at the expense of a
slightly increased latency.

Memory size
One of the concerns with buffers is the memory space that

they can take. With a large system this is not necessarily a problem
but with a microcontroller or a DSP with on-chip memory, this can
be an issue when only small amounts of RAM are available.

Code complexity
There is one other issue concerned with buffers and buffer-

ing technique and that is the complexity of the control structures
needed to manage them. There is a definite trade-off between the
control structure and the efficiency that the buffer can offer in
terms of memory utilisation. This is potentially more important in
the region of control and interfacing with interrupts and other
real-time events. For example, a buffer can be created with a
simple area of memory and a single pointer. This is how the
frequently used stack is created. The control associated with the
memory — or buffer which is what the memory really represents
— is a simple register acting as an address pointer. The additional
control that is needed to remember the stacking order and the
frame size and organisation is built into the frame itself and is
controlled by the microprocessor hardware. This additional level
of control must be replicated either in the buffer control software
or by the tasks that use the buffer. If a single task is associated with
a buffer, it is straightforward to allow the task to implement the
control. If several tasks use the same buffer, then the control has to
cope with multiple and, possibly, conflicting accesses and while
this can be done by the tasks, it is better to nominate a single entity
to control the buffer. However, the code complexity associated
with the buffer has now increased.

The code complexity is also dependent on how the buffer is
organised. It is common for multiple pointers to be used along
with other data such as the number of bytes stored and so on. The
next section in this chapter will explain the commonly used buffer
structures.

Linear buffers
The term linear buffer is a generic reference to many buffers

that are created with a single piece of linear contiguous memory
that is controlled by pointers whose address increments linearly.
The examples so far discussed are all of linear buffers.
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The main point about them is that they will lose data when
full and fail to provide data when empty. This is obvious but as
will be shown, the way in which this happens with linear buffers
compared to circular ones is different. With a linear buffer, it loses
incoming data when full so that the data it does contain becomes
older and older. This is the overrun condition. When it is empty,
it will provide old data, usually the last entry, and so the processor
will continue to process potentially incorrect data. This is the
underrun condition.

Low water 
mark

High water 
mark

Low water 
mark

High water 
mark

A slow system A fast system

Adjusting the water marks

Within a real-time system, these conditions are often but
not always considered error conditions. In some cases, the loss of
data is not critical but with any data processing that is based on
regular sampling, it will introduce errors. There are further com-
plications concerning how these conditions are prevented from
occurring. The solution is to use a technique where the pointers are
checked against certain values and the results used to trigger an
action such as fetching more data and so on. These values are
commonly referred to as high and low water marks, so named
because they are similar to the high and low water marks seen at
the coast that indicate the minimum and maximum levels that
tidal water will fall and rise.

The number of entries below the low water mark determine
how many entries the buffer still has and thus the amount of time
that is available to start filling the buffer before the buffer empties
and the underrun condition exists. The number of empty entries
in the buffer above the high water mark determines the length of
time that is available to stop the further filling of the buffer and
thus prevent data loss through overrun. By comparing the various
input and output pointers with these values, events can be gener-
ated to start or stop filling the buffer. This could simply take the
form of jumping to a subroutine, generating a software interrupt
or within the context of an operating system posting a message to
another task to fill the buffer.
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Directional buffers
If you sit down and start playing with buffers, it quickly

becomes apparent that there is more to buffer design than first
meets the eye. For example, the data must be kept in the same
order in which it was placed to preserve the chronological order.
This is especially important for signal data or data that is sampled
periodically. With an infinitely long buffer, this is not a problem.
The first data is placed at the top of the buffer and new data is
inserted underneath. The data in and out pointers then simply
move up and down as needed. The order is preserved because
there is always space under the existing data entries for more
information. Unfortunately, such buffers are rarely practical and
problems can occur when the end of the buffer is reached. The
previous paragraphs have described how water marks can be
used to trigger when these events are approaching and thus give
some time to resolve the situation.

The resolution is different depending on how the buffer is
used, i.e. is it being used for inserting data, extracting data or both.
The solutions are varied and will lead onto the idea of multiple
buffers and buffer exchange. The first case to consider is when a
buffer is used to extract and insert data at the same time.

Single buffer implementation
In this case the buffer is used by two software tasks or

routines to insert or extract information. The problem with water
marks is that they have data above or below them but the free
space that is used to fill the buffer does not lie in the correct location
to preserve the order.

Low water 
mark

Next data
pointer

If next_data_pointer = low_water
 then
  copy current samples to top of buffer
  set next_data_pointer to top of buffer
  fill rest of buffer with new samples

 endif

Single buffer implementation
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One solution to this problem is to copy the data to a new
location and then continue to back-fill the buffer. This is the
method shown in the next three diagrams.

Low water 
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Next data
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Start filling 
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Back-filling the buffer

It uses a single low water mark and a next data pointer. The
next data pointer is used to access the next entry that should be
extracted. Data is not inserted into the buffer until the next data
pointer hits the low water mark. When that happens, the data
below the low water mark is copied to the top of the buffer and the
next data pointer moved to the top of the buffer. A new pointer is
then created whose initial value is that of the first data entry below
the copied data. This is chronologically the correct location and
thus the buffer can be filled by using this new pointer. The original
data at the bottom of the buffer can be safely overwritten because
the data was copied to the top of the buffer. Data can still be
extracted by the next data pointer. When the temporary pointer
reaches the end of the buffer, it stops filling. The low water mark
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— or even a different one — can be used to send a message to warn
that filling must stop soon. By adding more pointers, it is possible
to not completely fill the area below the low water mark and then
use this to calculate the number of entries to move and thus the
next filling location.

This method has a problem in that there is a delay while the
data is copied. A more efficient alternative to copying the data, is
to copy the pointer. This approach works by still using the low
water mark, except that the remaining data is not copied. The
filling will start at the top of the buffer and the next data pointer
is moved to the top of the buffer when it hits the end. The
advantage that this offers is that the data is not copied and only a
pointer value is changed.

Both approaches allow simultaneous filling and extraction.
However, care must be taken to ensure that the filling does not
overwrite the remaining entries at the bottom of the buffer with
the pointer copying technique, and that extracting does not access
more data than has been filled. Additional pointer checking may
be needed to ensure this integrity in all circumstances and not
leave the integrity dependent on the dynamics of the system, i.e.
assuming that the filling/extracting times will not cause a prob-
lem.

Double buffering
The problem with single buffering is that there is a tremen-

dous overhead in managing the buffer in terms of maintaining
pointers, checking the pointers against water marks and so on. It
would be a lot easier to separate the filling from the extraction. It
removes many of the contention checks that are needed and
greatly simplifies the design. This is the idea behind double
buffering.

Instead of a single buffer, two buffers are used with one
allocated for filling and the second for extraction. The process
works by filling the first buffer and passing a pointer to it to the
extraction task or routine. This filled buffer is then simply used by
the software to extract the data. While this is going on, the second
buffer is filled so that when the first buffer is emptied, the second
buffer will be full with the next set of data. This is then passed to
the extraction software by passing the pointer. Many designs will
recycle the first buffer by filling it while the second buffer is
emptied. The process will add delay into the system which will
depend on the time taken to fill the first buffer.

Care must be taken with the system to ensure that the buffer
swap is performed correctly. In some cases, this can be done by
passing the buffer pointer in the time period between filling the
last entry and getting the next one. In others, water marks can be
used to start the process earlier so that the extraction task may be
passed to the second buffer pointer before it is completely filled.
This allows it the option of accessing data in the buffer if needed
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instead of having to wait for the buffer to complete filling. This is
useful when the extraction timing is not consistent and/or re-
quires different amounts of data. Instead of making the buffers the
size of the largest data structure, they can be smaller and the
double buffering used to ensure that data can be supplied. In other
words, the double buffering is used to give the appearance of the
presence of a far bigger buffer than is really there.
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Buffer exchange
Buffer exchange is a technique that is used to simplify the

control code and allow multiple tasks to process data simultane-
ously without having to have control structures to supervise
access. In many ways it is a variation of the double buffering
technique.

This type of mechanism is common to the SPOX operating
system used for DSP processors and in these types of embedded
systems it is relatively simple to implement.

The main idea of the system is the concept of exchanging
empty buffers for full ones. Such a system will have at least two
buffers although many more may be used. Instead of normally
using a read or write operation where the data to be used during
the transfer is passed as a parameter, a pointer is sent across that
points to a buffer. This buffer would contain the data to be
transferred in the case of a write or simply be an empty buffer in
the case of a read. The command is handled by a device driver
which returns another pointer that points to a second buffer. This
buffer would contain data with a read or be empty with a write. In
effect what happens is that a buffer is passed to the driver and
another received back in return. With a read, an empty buffer is
passed and a buffer full of data is returned. With a write, a full
buffer is passed and an empty one is received. It is important to
note that the buffers are different and that the driver does not take
the passed buffer, use it and then send it back. The advantages that
this process offers are:
• The data is not copied between the device driver and the

requesting task.
• Both the device driver and the requesting task have their

own separate buffer area and there is thus no need to have
semaphores to control any shared buffers or memory.

• The requesting task can use multiple buffers to assimilate
large amounts of data before processing.

• The device driver can be very simple to write.
• The level of inter-task communication to indicate when

buffers are full or ready for collection can be varied and thus
be designed to fit the end application or system.

There are some disadvantages however:

• There is a latency introduced dependent on the size of the
buffer in the worst case. Partial filling can be used to reduce
this if needed but requires some additional control to sig-
nify the end of valid data within a buffer.

• Many implementations assume a fixed buffer size which is
predetermined, usually during the software compilation
and build process. This has to be big enough for the largest
message but may therefore be very inefficient in terms of
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memory usage for small and simple data. Variable size
buffers are a solution to this but require more complex
control to handle the length of the valid data. The buffer size
must still be large enough for the biggest message and thus
the problem of buffer size granularity may come back
again.

• The buffers must be accessible by both the driver and
requesting tasks. This may seem to be very obvious but if
the device driver is running in supervisor mode and the
requesting task is in the user mode, the memory manage-
ment unit or address decode hardware may prevent the
correct access. This problem can also occur with segmented
architectures like the 8086 where the buffers are in different
segments.

Linked lists
Linked lists are a way of combining buffers in a regular and

methodical way using pointers to point to the next entry in the list.
The linking is maintained by adding an entry to a buffer which
contains the address to the next buffer or entry in the list. Typi-
cally, other information such as buffer size may be included as
well as allowing the list to support different size entries. Each
buffer will also include information for its control such as next
data pointers and water marks depending on their design or
construction.

With a single linked list, the first entry will use the pointer
entry to point to the location of the second entry and so on. The last
entry will have a special value which indicates that the entry is the
last one.

New entries are added by breaking the link, extracting the
link information and then inserting the new entry and remaking
the link. When appending the entry to the end, the new entry
pointer takes the value of the original last entry — the end of list
special value in this case. The original last entry will update its link
to point to the new entry and in this way the link is created.

The process for inserting in the middle of the list is shown
in the diagram and follows the basic principles.

Linked lists have some interesting properties. It is possible
to follow all the links down to a particular insertion point. Please
note that this can only be done from the first entry down without
storing additional information. With a single linked list like the
one shown, there is no information in each entry to show where the
link came from, only where it goes to. This can be overcome by
storing the link information as you traverse down the list but this
means that any search has to start at the top and work through,
which can be a tiresome process.

The double linked list solves this by using two links. The
original link is used to move down and the new link contains the
missing information to move back up. This provides a lot more
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flexibility and efficiency when searching down the list to deter-
mine an entry point. If a list is simply used to concatenate buffers
or structures together, then the single link list is more than ad-
equate. If the ability to search up and down the list to reorder and
sort the list or find different insertion points, then the double
linked list is a better choice to consider.
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FIFOs
FIFOs or first in, first out are a special form of buffer that

uses memory to form an orderly queue to hold information. Its
most important attribute is that the data can be extracted in the
same way as it was entered. These are used frequently within
serial comms chips to hold data temporarily while the processor
is busy and cannot immediately service the peripheral. Instead of
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losing data, it is placed in the FIFO and extracted later. Many of the
buffers described so far use a FIFO architecture.

Their implantation can be done either in software or more
commonly with special memory chips that automatically main-
tain the pointers that are needed to control and order the data.

Circular buffers
Circular buffers are a special type of buffer where the data

is circulated around a buffer. In this way they are similar to a single
buffer that moves the next data pointer to the start of the buffer to
access the next data. In this way the address pointer circulates
around the addresses. In that particular case, care was taken so
that no data was lost. It is possible to use such a buffer and lose data
to provide a different type of buffer structure. This is known as a
circular buffer where the input data is allowed to overwrite the last
data entries. This keeps the most recent data at the expense of
losing some of the older data. This is useful for capturing trace data
where a trace buffer may be used to hold the last n data samples
where n is the size of the buffer. By doing this, the buffer updating
can be frozen at any point and the last n samples can be captured
for examination. This technique is frequently used to create trace
and history buffers for test equipment and data loggers.
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This circular structure is also a very good match for coeffi-
cient tables used in digital signal processing where the algorithm
iterates around various tables performing arithmetic operations
to perform the algorithm.
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The only problem is that the next data pointer must be
checked to know when to reset it to the beginning of the buffer.
This provides some additional overhead. Many DSPs provide a
special modulo addressing mode that will automatically reset the
address for a particular buffer size. This buffer size is normally
restricted to a power of two.

Buffer underrun and overrun
The terms overrun and underrun have been described

throughout this chapter and have been portrayed as things to be
avoided when designing buffers and the system that supports
them. While this is generally true, it is not always the case and
there are times where they do not constitute an error but indicate
some other problem or state in the system.

When a buffer underruns, it indicates that there is no more
data in the buffer and that further processing should be stopped.
This may indicate an error if the system is designed so that it would
never run out of data. If it can happen in normal operation then the
data underrun signal indicates a state and not an error. In both
cases, a signal is needed to recognise this point. This can be done
by comparing the buffer pointer to the buffer memory range. If the
pointer value is outside of this range, it indicates that an underrun
or overrun has occurred and this can redirect flow to the appropri-
ate routine to decide what to do. Valid underrun conditions can
occur when incoming data is buffered and not continuously
supplied. A break in transmission or the completion of sending a
data packet are two common examples. If this break is expected,
then the receiving software can complete and go dormant. If the
break is due to some other problem, then the receiving software
may need to adopt a waiting action to see if other data comes into
the buffer and the data reception continues. To prevent the system
freezing up and not responding, the waiting action needs to be
carefully designed so that there is some kind of timeout to prevent
the waiting becoming permanent and locking up the system. This
is often the cause of a hung up system that appears to have
crashed. What in fact has happened is that it is waiting for data or
an event that will not happen.

Data overrun is more than likely caused by some kind of
error that results in data being lost because it cannot be accepted.
Again in some systems this may not be an error and the system can
be designed to carry on. Again pointer comparison can be used to
determine when an overrun has occurred. In some cases this may
trigger a request to allocate more memory to the buffer so that the
incoming data can be accommodated. It may simply result in the
data being discarded. Either way, the control software that sur-
rounds the buffer can quickly become quite complicated depend-
ing on what desired outcome and behaviour is required. In other
words, while buffers are simple to construct and use, designing
the control software for buffers that are tolerant and can cope with
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underrun and overrun conditions is more complex. If this is not
done then it can lead to many different problems.

If the pointers that are used to define and create buffers are
used with no range checking i.e. they are always used on the
assumption that the values are within the buffer range and are
correct, then there is always the risk that an error condition may
cause the pointers to go out of range. If a buffer underruns and the
buffer pointer now points to the next memory location outside of
the buffer and no checking is done, incorrect data will be supplied
and the pointer incremented to the next location. If these locations
are also data structures then no real problem will occur providing
the locations are read and not written to. As soon as new data
arrives for the buffer, it will be stored in the first available location
outside the buffer which will overwrite the contents and destroy
the data structure. This pointer corruption can quickly start cor-
rupting data structures which will eventually reveal themselves
as corrupt data and strange system behaviour such as crashes and
system hang ups. These types of problems are notoriously difficult
to solve as the resulting symptoms may have little to do with the
actual cause.

It is recommended that care is taken with buffer design to
ensure that both underrun and overrun are handled correctly
without causing these type of errors. A little bit of care and
attention can reap big dividends when the system is actually
tested.

Allocating buffer memory
Buffer memory can be allocated in one of two generic ways:

statically at build time by allocating memory through the linker
and dynamically during run time by calling an operating system
to allocate/program memory access.

Static allocation requires the memory needs to be defined
before building the application and allocating memory either
through special directives at the assembler level or through the
definition of global, static or local variables within the various
tasks within an application. This essentially declares variables
which in turn allocate storage space for the task to use. The amount
of storage that is allocated depends on the variable type and
definition. Strings and character arrays are commonly used.

malloc()
malloc() and its counterpart unmalloc() are system

calls that were originally used within UNIX environments to
dynamically allocate memory and return it. Their popularity has
meant that these calls are supported in many real-time operating
systems. The call works by passing parameters such as memory
size and type, starting address and access parameters for itself and
other tasks that need to access the buffer or memory that will be
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returned. This is a common programming error. In reply, the
calling task receives a pointer that points at the start of the memory
if the call was successful, or an error code if it was not. Very often,
the call is extended to support partial allocation where the system
will still return a pointer to the start of the memory along with an
error/status message stating that not all the memory is available
and that the x bytes were allocated. Some other systems would
class this partial allocation as an error and return an error message
indicating failure.

Memory that was allocated via malloc() calls can be
returned to the memory pool by using the unmalloc() call along
with the appropriate pointer. This allows the memory to be
recycled and used/allocated to other tasks. This recycling allows
memory to be conserved but at the expense of processing the
malloc() and unmalloc() calls. Some software finds this over-
head unacceptable and allocates memory statically at build time.
It should be noted that in many cases, the required memory may
require a different design strategy. For memory efficient designs,
requesting and recycling memory may be the best option. For
speed, where the recycling overhead cannot be tolerated, static
allocation may be the best policy.

Memory leakage
Memory leakage is a term that is used to describe a bug that

gradually uses all the memory within a system until such point
that a request to use or access memory that should succeed, fails.
The term leakage is analogous to a leaking bucket where the
contents gradually disappear. The contents within an embedded
system are memory. This is often seen as a symptom to buffer
problems where data is either read or written using locations
outside the buffer.

The common symptoms are stack frame errors caused by
the stack overflowing its allocated memory space and malloc() or
similar calls to get memory failing. There are several common
programming faults that cause this problem.

Stack frame errors
It is common within real-time systems, especially those

with nested exceptions, to use the exception handler to clean up
the stack before returning to the previous executing software
thread or to a generic handler. The exception context information
is typically stored on the stack either automatically or as part of the
initial exception routine. If the exception is caused by an error,
then there is probably little need to return execution to the point
where the error occurred. The stack, however, contains a frame
with all this return information and therefore the frames need to
be removed by adjusting the stack pointer accordingly. It is
normally this adjustment where the memory leakage occurs.
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• Adjusting the stack for the wrong size frame. If the adjust-
ment is too large, then other stack frames can be corrupted.
If it is too small, then at best some stack memory can be lost
and at worst the previous frame can be corrupted.

• Adjusting the stack pointer by the wrong value, e.g. using
the number of words in the frame instead of the number of
bytes.

• Setting the stack pointer to the wrong address so that it is on
an odd byte boundary, for example.

Failure to return memory to the memory pool
This is a common cause of bus and memory errors. It is

caused by tasks requesting memory and then not releasing it when
their need for it is over. It is good practice to ensure that when a
routine uses malloc() to request memory that it also uses unmalloc()
to return it and make it available for reuse. If a system has been
designed with this in mind, then there are two potential scenarios
that can occur that will result in a memory problem. The first is that
the memory is not returned and therefore subsequent malloc()
requests cannot be serviced when they should be. The second is
similar but may only occur in certain circumstances. Both are
nearly always caused by failure to return memory when it is
finished, but the error may not occur until far later in time. It may
be the same task asking for memory or another that causes the
problem to arise. As a result, it can be difficult to detect which task
did not return the memory and is responsible for the problem.

In some cases where the task may return the memory at
many different exit points within its code — this could be deemed
as bad programming practice and it would be better to use a single
exit sub-routine for example — it is often a programming omission
at one of these points that stops the memory recycling.

It is difficult to identify when and where memory is allo-
cated unless some form of record is obtained. With memory
management systems, this can be derived from the descriptor
tables and address translation cache entries and so on. These can
be difficult to retrieve and decode and so a simple transaction
record of all malloc() and unmalloc() calls along with a time stamp
can prove invaluable. This code can be enabled for debugging if
needed by passing a DEBUG flag to the pre-processor. Only if the
flag is true will it compile the code.

Housekeeping errors
• Access rights not given

This is where a buffer is shared between tasks and only one
has the right access permission. The pointer may be passed
correctly by using a mailbox or message but any access
would result in a protection fault or if mapped incorrectly
in accessing the wrong memory location.
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• Pointer corruption
It is very easy to get pointers mixed up and to use or update
the wrong one and thus corrupt the buffer.

• Timing problems with high and low water marks
Water marks are used to provide early warning and should
be adjusted to cope with worst case timings. If not, then
despite their presence, it is possible to get data overrun and
underrun errors.

Wrong memory specification
This can be a very difficult problem to track down as it is can

be very temporal in nature. It may only happen in certain situa-
tions which can be hard to reproduce. The problem is caused by a
programming error essentially where it is assumed that any type
of success message that malloc() or similar function returns actu-
ally means that all the memory requested is available. The soft-
ware then starts to use what it thinks it has been allocated only to
find that has not with disastrous results.

This situation can occur when porting software from one
system to another where the malloc() call is used but has
different behaviour and return messages. In one system it may
return an error if the complete memory specification can be met
while in another it will return the number of bytes that are
allocated which may be less than the total requested. In one
situation, an error message is returned and in another a partial
success is reported back. These are very different and can cause
immense problems.

Other errors can occur with non-linear addressing proces-
sors which may have restrictions on the pointer types and address-
ing range that is supported that is not there with a linear address-
ing architecture. This can be very common with 80x86 architec-
tures and can cause problems or require a large redesign of the
software.
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11 Memory and
performance trade-offs

This chapter describes the trade-offs made when designing
an embedded system to cope with the speed and performance of
the processor in doing its tasks. The problem faced by many
designers is that the overall design requires a certain performance
level in terms of processing or data throughput which on first
appearance is satisfied by a processor. However, when the system
is actually implemented, its performance is lacking due to the
performance degradation that the processor can suffer as a result
of its memory architecture, its I/O facilities and even the structure
and coding techniques used to create the software.

The effect of memory wait states
This is probably the most important factor to consider as it

can have the biggest impact on the performance of any system.
With most high performance CPUs such as RISC and DSP proces-
sors offering single cycle performance where one or more instruc-
tions are executed on every clock edge, it is important to remember
the conditions under which this is permitted:
• Instruction access is wait state free

To achieve this, the instructions are fetched either from
internal on-chip memory (usually wait state free but not
always), or from internal caches. The problem with caches
is that they only work with loops so that the first time
through the loop, there is a performance impact while the
instructions are fetched from external memory. Once the
instructions have been fetched, they are then available for
any further execution and it is here that the performance
starts to improve.

• Data access is wait state free
If an instruction manipulates data, then the time taken to
execute the instruction must include the time needed to
store the results of any data manipulation or access data
from memory or a peripheral I/O port. Again, if the proc-
essor has to wait — known as stalling — while data is stored
or read, then performance is lost. If an instruction modifies
some data and it takes five clocks to store the result, this
potentially can cause processing power to be lost. In many
cases, processor architectures make the assumption that
there is wait state free data access by either using local
memory, registers or cache memory to hold the informa-
tion.
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• There are no data dependencies outstanding
This leads on from the previous discussion and concerns
the ability of an instruction to immediately use the result
from a previous instruction. In many cases, this is only
permitted if there is a delay to allow the processor to
synchronise itself. As a result, the single cycle delay has the
same result as a single cycle wait state and thus the perform-
ance is degraded.
As a result of all these conditions, it should not be assumed

that a 80 MHz single cycle instruction processor such as a DSP- or
a RISC- based machine can provide 80 MIPs of processing power.
It can provided the conditions are correct and there are no wait
states, data dependencies and so on. If there are, then the perform-
ance must be degraded. This problem is not unrecognised and
many DSP and processor architectures utilise a lot of silicon in
providing clever mechanisms to reduce the performance impact.
However, the next question that must be answered is how do you
determine the performance degradation and how can you design
the code to use these features to minimise any delay?

Scenario 1 — Single cycle processor with large
external memory

In this example, there is a single cycle processor that has to
process a large external table by reading a value, processing it and
writing it back. While the processing level is small — essentially a
data fetch, three processing instructions and a data store — the
resulting execution time can be almost three times longer than
expected. The reason is stalling due to data latency. The first figure
shows how the problem can arise.

F P S F P

Delay Delay Delay

At 100 MHz clock:
Theoretical time for 5 instructions =    50 ns
Practical time for 5 instructions     =  130 ns

Stalling due to data latency

The instruction sequence consists of a data fetch followed
by three instructions that process the information before storing
the result. The data access goes to external memory where there
are access delays and therefore the first processing instruction
must wait until the data is available. In this case, the instruction
execution is stalled and thus the fetch instruction takes the equiva-
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lent of five cycles instead of the expected single cycle. Once the
data has been received, it can be processed and the processing
instructions will continue, one per clock. The final instruction
stores the end result and again this is where further delays can be
experienced. The store instruction experiences the same external
memory delays as the fetch instruction. However, its data is not
required by the next set of instructions and therefore the rest of the
instruction stream should be able to continue. This is not the case.
The next instruction is a fetch and has to compete with the external
bus interface which is still in use by the preceding store. As a result,
it must also wait until the transaction is completed.

The next processing instruction now cannot start until the
second fetch instruction is completed. These delays mean that the
total time taken at 100 MHz for the five instructions (1 fetch + 3
processing + 1 store) is not 50 ns but 130 ns — an increase of 2.6
times.

The solution to this involves reordering the code so that the
delays are minimised by overlapping operations. This assumes
that the processor can do this, i.e. the instructions are stored in a
separate memory space that can be accessed simultaneously with
data. If not, then this conflict can create further delays and proces-
sor stalls. The basic technique involves moving the processing
segment of the code away from the data access so that the delays
do not cause processing stalls because the data dependencies have
been removed. In other words, the data is already available before
the processing instructions need it.

Moving dependencies can be achieved by restructuring the
code so that the data fetch preceding the processing fetches the
data for the next processing sequence and not the one that imme-
diately follows it.

Store/Fetch
Delay

F1 P0 S0 F2 S1

Delay
Store/Fetch

Delay

P1

Delay

At 100 MHz clock:
Theoretical time for 5 instructions =    50 ns
Practical time for 5 instructions     =   100 ns

Removing stalling
The diagram above shows the general approach. The fetch

instruction is followed by the processing and storage instruction
for the preceding fetch. This involves using an extra register or
other local storage to hold the sample until it is needed but it
removes the data dependency. The processing instructions P0
onward that follow the fetch instruction F1 do not have any data
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dependency and thus can carry on processing. The storage in-
struction S0 has to wait one cycle until F0 has completed and
similarly the fetch instruction F2 must wait until S0 has finished.
These delays are still there because of the common resource that
the store and fetch instructions use, i.e. the external memory
interface. By reordering in this way, the five instruction sequence
is completed twice in every 20 clocks giving a 100 ns timing which
is a significant improvement.

This example also shows that the task in this case is I/O
bound in that the main delays are caused by waiting for data to be
fetched or stored. The processing load could almost be doubled
and further interleaved with the store operations without chang-
ing or delaying the data throughput of the system. What would
happen, however, is an increase in the processing load that the
system could handle.

The delays that have been seen are frequently exploited by
optimising routines within many modern compilers. These com-
pilers know from information about the target processor when
these types of delays can occur and how to reschedule instructions
to make use of them and regain some of the lost performance.

Scenario 2 — Reducing the cost of memory access
The preceding scenario shows the delays that can be caused

by accessing external memory. If the data is accessible from a local
register the delay and thus the performance loss is greatly reduced
and may be zero. If the data is in local on-chip memory or in an on-
chip cache, the delay may only be a single cycle. If it is external
DRAM, the delay may be nine or ten cycles. This demonstrates
that the location of data can have a dramatic effect on any access
delay and the resultant performance loss.

A good way of tackling this problem is to create a table with
the storage location, its storage capability and speed of access in
terms of clock cycles and develop techniques to move data be-
tween the various locations so that it is available when the proces-
sor needs it. For example, moving the data into registers compared
to direct manipulation externally in memory can reduce the
number of cycles needed, even when the saving and restoring of
the register contents to free up the storage is taken into account.

Using registers
Registers are the fastest access storage resource available to

the processor and are the smallest in size. As a result they are an
extremely scarce resource which has to be used and managed
carefully. The main problem is in deciding what information to
store and when. This dilemma comes from the fact that there is
frequently insufficient register space to store all the data all of the
time. As a result, registers are used to store temporary values
before updating main memory with a final result, to hold counter
values for loop constructions and so on and for key important
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values. There are several approaches to doing this and exploiting
their speed:
• Let the compiler do the work

Many compilers will take care of register management
automatically for you when it is told to use optimisation
techniques. For many applications that are written in a high
level language such as C, this is often a good choice.

• Load and store to provide faster local storage
In this case, variables stored in external memory or on a
stack are copied to an internal register, processed and then
the result is written back out. With RISC processors that do
not support direct memory manipulation, this is the only
method of manipulating data. With CISC processors, such
as the M68000 family, there is a choice. By writing code so
that data is brought in to be manipulated, instead of using
addressing modes that operate directly on external memory,
the impact of slow memory access can be minimised.

• Declaring register-based variables
By assigning a variable to a register during its initial decla-
ration, the physical access to the variable will be quicker.
This can be done explicitly or implicitly. Explicit declara-
tions use special attributes that the programmer uses in the
declaration, e.g. reg. An implicit declaration is where the
compiler will take a standard declaration such as global or
static and implicitly use this to allocate a register if possible.

• Context save and restore
If more variables are assigned to registers than there are
registers within the processor, the software may need to
perform a full save and restore of the register set before
using or accessing a register to ensure that these variables
are not corrupted. This is an accepted process when
multitasking so that the data of one task that resides in the
processor registers is not corrupted. This procedure may
need to be used at a far lower level in the software to prevent
inadvertent register-based data corruption.

Using caches
Data and instruction caches work on the principle that both

data and code are accessed more than once. The cache memory
will store the information as it is fetched from the main memory so
that any subsequent access is from the faster cache memory. This
assumption is important because straight line code without
branches, loops and so on will not benefit from a cache.

The size and organisation of the cache is important because
it determines the efficiency of the overall system. If the program
loops will fit into the cache memory, the fastest performance will
be realised and the whole of the external bus bandwidth will be
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available for data movement. If the data cache can hold all the data
structures, then the data access will be the fastest possible. In
practice, the overall performance gain is less than ideal because
inevitably access to the external memory will be needed either to
fetch the code and data the first time around, when the cache is not
big enough to contain all the instructions or data, or when the
external bus must be used to access an I/O port where data cannot
be cached. Interrupts and other asynchronous events will also
compete for the cache and can cause instructions and data that has
been cached prior to the event to be removed, thus forcing external
memory accesses when the original program flow is continued.

Preloading caches
One trick that can be used with caches is to preload them so

that a cache miss is never encountered. With normal operation, a
cache miss will force an external memory access and while this is
in progress, the processor is stalled waiting for the information —
data or instruction — to be returned. In many code sequences, this
is more likely to happen with data, where the first time that the
cache and external bus are used to access the data is when it is
needed. As described earlier with scenario 1, this delay occurs at
an important point in the sequence and the delay prevents the
processor from continuing.

By using the same technique as used in scenario 1, the data
cache can be preloaded with information for the next processing
iteration before the current one has completed. The PowerPC
architecture provides special instructions that allow this to be
performed. In this way, the slow data access is overlapped with
the processing and data access from the cache and does not cause
any processor stalls. In other words, it ensures that the cache
always continues to have the data that the instruction stream
needs to have.

By the very nature of this technique, it is one that is normally
performed by hand and not automatically available through the
optimisation techniques supplied with high level language com-
pilers.

It is very useful with large amounts of data that would not
fit into a register. However, if the time taken to fetch the data is
greater than the time taken to process the previous block, then the
processing will stall.

Caches also have one other interesting characteristic in that
they can make it very difficult to predict how long a particular
operation will take to execute. If everything is in the cache, the time
will be short. If not then it will be long. In practice, it will be
somewhere in between. The problem is that the actual time will
depend on the number of cache hits and misses which will depend
in turn on the software that has run before which will have
overwritten some of the entries. As a result, the actual timing
becomes more statistical in nature and in many cases the worst
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case timing has to be assumed, even though statistically the
routine will execute faster 99.999% of the time!

Using on-chip memory
Some microcontrollers and DSP chips have local memory

which can be used to store data or instructions and thus offers fast
local storage. Any access to it will be fast and thus data and code
structures will always gain some benefit if they are located here.
The problem is that to gain the best benefit, both the code and data
structures must fit in the on-chip memory so that no external
accesses are necessary. This may not be possible for some pro-
grams and therefore decisions have to be made on which parts of
the code and data structures are allocated this resource. With a
real-time operating system, local on-chip memory is often used to
gain the best context switching time. This memory requirement
now has to compete with algorithms that need on-chip storage to
meet the performance requirements by minimising any processor
stalls.

One good thing about using on-chip memory is that it
makes performance calculations easier as the memory accesses
will have a consistent access time.

Using DMA
Some microcontrollers and DSPs have on-chip DMA con-

trollers which can be used in conjunction with local memory to
create a sort of crude but efficient cache. In reality, it is more like
a buffering technique with an intelligent agent filling up and
controlling the buffers in parallel with the processing.

The basic technique defines the local memory into two or
more buffers, and programs the DMA controller to transfer data
from the external memory to the local on-chip memory buffer
while the data in the other buffer is processed. The overlapping of
the DMA data transfer and the processing means that the data
processing has local access to its data instead of having to wait for
far slower memory access.

The buffering technique can be made more sophisticated by
incorporating additional DMA transfers to move data out of the
local memory back to the external memory. This may require the
use of many more smaller buffers with different DMA character-
istics. Constants could be put into one buffer which are read in but
not read out. Variables can be stored in another where the informa-
tion is written out to external memory.

Making the right decisions
The main problems faced by designers with these tech-

niques is in knowing which one(s) should be used. The problem is
that they involve a high degree of knowledge about the processor
and the system characteristics. While a certain amount of informa-
tion can be obtained from a documentation-based analysis, the use
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of simulation tools to run through code sequences and provide
information concerning cache hits ratios, processor stalls and so
on is a vital part in obtaining the optimum solution. Because of
this, many cycle level processor simulation tools are becoming
available which help provide this level of information.
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12 Software examples

Benchmark example
The difficulty faced here appears to be a very simple one, yet

actually poses an interesting challenge. The goal was to provide a
simple method of testing system performance of different VMEbus
processor boards to enable a suitable board to be selected. The
problem was not how to measure the performance — there were
plenty of benchmark routines available — but how to use the same
compiler to create code that would run on several different sys-
tems with the minimum of modification. The idea was to generate
some code which could then be tested on several different VMEbus
target systems to obtain some relative performance figures. The
reason for using the compiler was that typical C routines could be
used to generate the test code.

The first decision made was to restrict the C compiler to
non-I/O functions so that a replacement I/O library was not
needed for each board. This still meant that arithmetic operations
and so on could be performed but that the ubiquitous printf
statements and disk access would not be supported. This decision
was more to do with time constraints than anything else. Again for
time reasons, it was decided to use the standard UNIX-based
M680x0 cc compiler running on a UNIX system. The idea was not
to test the compiler but to provide a vehicle for testing relative
performance. Again, for this reason, no optimisation was done.

A simple C program was written to provide a test vehicle as
shown. The exit() command was deliberately inserted to force
the compiler to explicitly use this function. UNIX systems nor-
mally do not need this call and will insert the code automatically.
This can cause difficulties when trying to examine the code to see
how the compiler produces the code and what is needed to be
modified.
main()
{
int a,b,c;

a=2;
b=4;
c=b-a;
b=a-c;
exit();
}

The example C program

The next stage was to look at the assembler output from the
compiler. The output is different from the more normal M68000
assembler printout for two reasons. UNIX-based assemblers use
different mnemonics compared to the standard M68000 ones and,
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secondly, the funny symbols are there to prompt the linker to fill
in the addresses at a later stage.

The appropriate assembler source for each line is shown
under the line numbers. The code for line 4 of the C source appears
in the section headed ln 4 and so on. Examining the code shows
that some space is created on the stack first using the link.l
instruction. Lines 4 and 5 load the values 2 and 4 into the variable
space on the stack. The next few instructions perform the subtrac-
tion before the jump to the exit subroutine.
file “math.c”

data 1
text
def main; val main; scl 2; type 044; endef
global main

main:
ln 1
def ~bf; val ~; scl 101; line 2; endef
link.l %fp,&F%1

#movm.l &M%1,(4,%sp)
#fmovm &FPM%1,(FPO%1,%sp)

def a; val -4+S%1; scl 1; type 04;
endef

def b; val -8+S%1; scl 1; type 04;
endef

def c; val -12+S%1; scl 1; type 04;
endef

ln 4
mov.l &2,((S%1-4).w,%fp)
ln 5
mov.l &4,((S%1-8).w,%fp)
ln 6
mov.l ((S%1-8).w,%fp),%d1
sub.l   ((S%1-4).w,%fp),%d1
mov.l %d1,((S%1-12).w,%fp)
ln 7
mov.l ((S%1-4).w,%fp),%d1
sub.l   ((S%1-12).w,%fp),%d1
mov.l %d1,((S%1-8).w,%fp)
ln 8
jsr exit

L%12:
def ~ef; val ~; scl 101; line 9; endef
ln 9

#fmovm (FPO%1,%sp),&FPM%1
#movm.l (4,%sp),&M%1

unlk %fp
rts
def main; val ~; scl -1; endef
set S%1,0
set T%1,0
set F%1,-16
set FPO%1,4
set FPM%1,0x0000
set M%1,0x0000
data 1

The resulting assembler source code
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This means that provided the main entry requirements are
to set-up the stack pointer to a valid memory area, the code located
at a valid memory address and the exit routine replaced with one
more suitable for the target, the code should execute correctly. The
first point can be solved during the code downloading. The other
two require the use of the linker and replacement run-time routine
for exit. All the target boards have an onboard debugger which
provides a set of I/O functions including a call to restart the
debugger. This would be an ideal way of terminating the program
as it would give a definite visual signal of the termination of the
software. So what was required was a routine that executed this
debugger call. The routine for a Flight MC68020 evaluation board
(EVM) is shown. This method is generic for M68000-based VMEbus
boards. The other routines were very similar and basically used a
different trap call number, e.g. TRAP #14 and TRAP #15 as
opposed to TRAP #11. The global statement defines the label exit
as an external reference so that the linker can recognise it. Note
also the slightly different syntax used by the UNIX assembler. The
byte storage command inserts zeros in the following long word to
indicate that this is a call to restart the debugger.

exit:
global exit

trap &11
byte 0,0,0,0

The exit() routine for the MC68020 EVM

This routine was then assembled into an object file and
linked with the C source module using the linker. By including the
new exit module on the command line with the C source module,
it was used instead of the standard UNIX version. If this version
was executed on the UNIX machine, it caused a core dump
because a TRAP #11 system call is not normal.

SECTIONS
{

GROUP 0x400600:
{

.text :{}

.data :{}

.bss :{}
}

}

The MC68020 EVM linker command file

The next issue was to relocate the code into the correct
memory location. With a UNIX system, there are three sections
that are used to store code and data, called .text, .data and .bss.
Normally these are located serially starting at the address
$00000000. UNIX with its memory management system will trans-
late this address to a different physical address so that the code can
execute correctly, instead of corrupting the M68000 vector table
which is physically located at this address. With the target boards,
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this was not possible and the software had to be linked to a valid
absolute address.

This was done by writing a small command file with
SECTIONS and GROUP commands to instruct the linker to locate
the software at a particular absolute address. The files for the
MC68020 EVM and for the VMEbus board are shown. This file is
included with the other modules on the command line.
SECTIONS
{

GROUP 0x10000:
{

.text :{}

.data :{}

.bss :{}
}

}

The VMEbus board linker command file

To download the files, the resulting executable files were
converted to S-records and downloaded via a serial port to the
respective target boards. Using the debugger, the stack pointer
was correctly set to a valid area and the program counter set to the
program starting address. This was obtained from the symbol
table generated during the linking process. The program was then
executed and on completion, returned neatly to the debugger
prompt, thus allowing time measurements to be made. With the
transfer technique established, all that was left was to replace the
simple C program with more meaningful code.

To move this code to different M68000-based VMEbus
processors is very simple and only the exit() routine with its
TRAP instruction needs to be rewritten. To move it to other
processors would require a change of compiler and a different
version of the exit() routine to be written. By adding some
additional code to pass and return parameters, the same basic
technique can be extended to access the onboard debugger I/O
routines to provide support for printf() statements and so on.
Typically, replacement putchar() and getchar() routines are
sufficient for terminal I/O.

Creating software state machines
With many real-time applications, a common approach

taken with software is first to determine how the system must
respond to an external stimulus and then to create a set of state
diagrams which correspond with these definitions. With a state
diagram, a task or module can only exist in one of the states and
can only make a transition to another state provided a suitable
event has occurred. While these diagrams are easy to create, the
software structure can be difficult.

One way of creating the equivalent of software state dia-
grams is to use a modular approach and message passing. Each
function or state within the system — this can be part of or a whole
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state diagram — is assigned to a task. The code for the task is
extremely simple in that it will do nothing and will wait for a
message to arrive. Upon receipt of the message, it will decode it
and use the data to change state. Once this has been completed, the
task will go back to waiting for further input. The processing can
involve other changes of state as well. Referring back to the
example, the incoming interrupt will force the task to come out of
its waiting state and read a particular register. Depending on the
contents of that register, one of two further states can be taken and
so on until the final action is to wait for another interrupt.
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This type of code can be written without using an operating
system, so what are the advantages? With a multitasking real-time
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operating system, other changes of state can happen in parallel. By
allocating a task to each hardware interrupt, multiple interrupts
can easily be handled in parallel. The programmer simply codes
each task to handle the appropriate interrupt and the operating
system takes care of running the multiple tasks. In addition, the
operating system can easily resolve which interrupt or operation
will get the highest priority. With complex systems, the priorities
may need to change dynamically. This is an easy task for an
operating system to handle and is easier to write compared to the
difficulty of writing straight line code and coping with the differ-
ent pathways through the software. The end result is easier code
development, construction and maintenance.

The only interface to the operating system is in providing
the message and scheduling system. Each task can use messages
or semaphores to trigger its operation and during its processing,
generate messages and toggle semaphores which will in turn
trigger other tasks. The scheduling and time sharing of the tasks
are also handled by the operating system.

In the example shown overleaf, there are six tasks with their
associated mailboxes or semaphore. These interface to the real-
time operating system which handles message passing and sema-
phore control. Interrupts are routed from the hardware via the
operating system, but the tasks can access registers, ports and
buffers directly.
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If the hardware generates an interrupt, the operating sys-
tem will service it and then send a message to the sixth task to
perform some action. In this case, it will read some registers. Once
read, the task can now pass the data on to another task for
processing. This is done via the operating system. The task sup-
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plies the data either directly or by using a memory pointer to it and
the address of the receiving mail box. The operating system then
places this message into the mail box and the receiving task is
woken up. In reality, it is placed on the operating system scheduler
ready list and allowed to execute.
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Handling a message from a task

Once woken up, the receiving task can then accept the
message and process it. The message is usually designed to
contain a code. This data may be an indication of a particular
function that the task is needed to perform. Using this value, it can
check to see if this function is valid given its current state and, if so,
execute it. If not, the task can return an error message back via the
operating system.

for_ever
{
Wait_for_ message();
Process message();
Discard_message();
}

Example task software loop

Coding this is relatively easy and can be done using a
simple skeleton program. The mechanism used to select the task’s
response is via two pointers. The first pointer reflects the current
state of the task and points to an array of functions. The second
pointer is derived from the message and used to index into the
array of functions to execute the appropriate code. If the message
is irrelevant, then the selected function may do nothing. Alterna-
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tively, it may process information, send a message to other tasks
or even change its own current state pointer to select a different
array of functions. This last action is synonymous to changing
state.
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Priority levels
So far in this example, the tasks have been assumed to have

equal priority and that there is no single task that is particularly
time critical and must be completed before a particular window
expires. In real applications, this is rarely the case and certain
routines or tasks are critical to meeting the system requirements.
There are two basic ways of ensuring this depending on the
facilities offered by the operating system. The first is to set the time
critical tasks and routines as the highest priority. This will nor-
mally ensure that they will complete in preference to others.
However, unless the operating system is pre-emptive and can halt
the current task execution and swap it for the time critical one, a
lower priority task can still continue execution until the end of its
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time slot. As a result, the time critical task may have to wait up to
a whole time slice period before it can start. In such worse cases,
this additional delay may be too long for the routine to complete
in response to the original demand or interrupt. If the triggers are
asynchronous, i.e. can happen at any time and are not particularly
tied to any one event, then the lack of pre-emption can cause a
wide range of timings. Unfortunately for real-time systems, it is
the worst case that has to be assumed and used in the design.

An alternative approach offered by some operating sys-
tems is the idea of an explicit lock where the task itself issues
directives to lock itself into permanent execution. It will continue
executing until it removes the lock. This is ideal for very time
critical routines where the process cannot be interrupted by a
physical interrupt or a higher priority task switch. The disadvan-
tage is that it can lead to longer responses by other tasks and in
some extreme cases system lock-ups when the task fails to remove
the explicit lock. This can be done either with the technique of
special interrupt service routines or through calls to the operating
system to explicitly lock execution and mask out any other inter-
rupts. Real-time operating systems usually offer at least one or
other of these techniques.

Explicit locks
With this technique, the time critical software will make a

system call prior to execution which will tell the operating system
to stop it from being swapped out. This can also include masking
out all maskable interrupts so that only the task itself or a non-
maskable interrupt can interrupt the proceedings. The problem
with this technique is that it greatly affects the performance of
other tasks within the system and if the lock is not removed can
cause the task to hog all of the processing time. In addition, it only
works once the time critical routine has been entered. If it has to
wait until another task has finished then the overall response time
will be much lower.

Interrupt service routines
Some operating systems, such as pSOS+, offer the facility of

direct interrupt service routines or ISRs where time critical code is
executed directly. This allows critical software to execute before
other priority tasks would switch out the routines as part of a
context switch. It is effectively operating at a very low level and
should not be confused with tasks that will activate or respond to
a message, semaphore or event. In these cases, the operating
system itself is working at the lower level and effectively supplies
its own ISR which in turn passes messages, events and semaphores
which activate other tasks.

The ISR can still call the operating system, but it will hold
any task switching and other activities until the ISR routine has
completed. This allows the ISR to complete without interruption.
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It is possible for the ISR to send a message to its associated
task to start performing other less time critical functions associ-
ated with the interrupt. If the task was responsible for reading data
from a port, the ISR would read the data from the port and clear the
interrupt and send a message to its task to process the data further.
After completing, the task would be activated and effectively
continue the processing started by the ISR. The only difference is
that the ISR is operating at the highest possible priority level while
the task can operate at whatever level the system demands.
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Setting priorities
Given all these different ways of synchronising and control-

ling tasks, how do you decide which ones to use and how to set
them up? There is no definitive answer to this as there are many
solutions to the same problem, depending on the detailed charac-
teristics that the system needs to exhibit. The best way to illustrate
this is to take an example system and examine how it can be
implemented.

The system shown in the diagram below consists of three
main tasks. Task A receives incoming asynchronous data and
passes this information onto task B which processes it. After
processing, task C takes the data and transmits it synchronously
as a packet. This operation by virtue of the processing and syn-
chronous nature cannot be interrupted. Any incoming data can
fortunately be ignored during this transmission.

Task A

Receives data
asynchronously

only when task B
is not transmitting

Task B

Processes received 
data and prepares 

data for transmission

Task C

Transmits data 
packets. This must 
be done without 
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Example system

Task A highest priority
In this implementation, task priorities are used with A

having the highest followed by C and finally B. The reasoning
behind this is that although task C is the most time critical, the
other tasks do not need to execute while it is running and therefore
can simply wait until C has completed the synchronous transmis-
sion. When this has finished C can wake them up and make itself



376 Embedded systems design

dormant until it is next required. Task A with its higher priority is
then able to pre-empt B when an interrupt occurs, signalling the
arrival of some incoming data.

However, this arrangement does require some careful con-
sideration. If task A was woken up while C was transmitting data,
task A would replace C by virtue of its higher priority. This would
cause problems with the synchronous transmission. Task A could
be woken up if it uses external interrupts to know when to receive
the asynchronous data. So the interrupt level used by task A must
be masked out or disabled prior to moving into a waiting mode
and allowing task C to transfer data. This also means that task A
should not be allocated a non-maskable interrupt.

Task C highest priority
An alternative organisation is to make task C the highest

priority. In this case, the higher priority level will prevent task A
from gaining any execution time and thus prevent any interrupt
from interfering with the synchronous operation. This will work
fine providing that task C is forced to be in a waiting mode until
it is needed to transmit data. Once it has completed the data
transfer, it would remove itself from the ready list and wait, thus
allowing the other tasks execution time for their own work.

Using explicit locks
Task C would also be a candidate for using explicit locks to

enable it to override any priority scheme and take as much
execution time as necessary to complete the data transmission.
The key to using explicit locks is to ensure that the lock is set by all
entry points and is released on all exit points. If this is not done, the
locks could be left on and thus lock out any other tasks and cause
the system to hang up or crash.

Round-robin
If a round-robin system was used, then the choice of execut-

ing task would be chosen by the tasks themselves and this would
allow task C to have as much time as it needed to transfer its data.
The problem comes with deciding how to allocate time between
the other two tasks. It could be possible for task A to receive blocks
of data and then pass them onto task B for processing. This gives
a serial processing line where data arrives with task A, is proc-
essed with task B and transmitted by task C. If the nature of the
data flow matches this scenario and there is sufficient time be-
tween the arrival of data packets at task A to allow task B to process
them, then there will be no problem. However, if the arriving data
is spread out, then task B’s execution may have to be interleaved
with task A and this may be difficult to schedule, and be per-
formed better by the operating system itself.



Software examples 377

Using an ISR routine
In the scenarios considered so far, it has been assumed that

task A does not overlap with task C and they are effectively
mutually exclusive. What happens if this is not the case? It really
depends on the data transfer rates of both tasks. If they are slow,
i.e. the need to send or receive a character is slower than the context
switching time, then the normal priority switching can be used
with one of the tasks allocated the highest priority. With its
synchronous communication, it is likely that it would be task C.

The mechanism would work as follows. Both tasks would
be allocated their own interrupt level with C allocated the higher
priority to match that of its higher task priority. This is important
otherwise it may not get an opportunity to respond to the interrupt
routine itself. Its higher level hardware interrupt may force the
processor to respond faster but this good work could be negated
if the operating system does not allocate a time slice because an
existing higher priority task was already running.
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If task A was servicing its own interrupt and a level C
interrupt was generated, task A would be pre-empted, task C
would start executing and on completion put itself back into
waiting mode and thus allow task A to complete. With a pre-
emptive system, the worst case latency for task C would be the
time taken by the processor to recognise the external task C
interrupt, the time taken by the operating system to service it and
finally the time taken to perform a context switch. The worst case
latency for task A is similar, but with the addition of the worst case
value for task C plus another context switch time. The total value
is the time taken by the processor to recognise the external task A
interrupt, the time taken by the operating system to service it and,
finally, the time taken to perform a context switch. The task C
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latency and context switch time must be added because the task A
sequence could be interrupted and replaced at any time by task C.
The extra context switch time must be included for when task C
completes and execution is switched back to task A.

Provided these times and the time needed to execute the
appropriate response to the interrupt fit between the time critical
windows, the system will respond correctly. If not then time must
be saved.

The diagram shows the mechanism that has been used so
far which relies on a message to be sent that will wake up a task.
It shows that this operation is at the end of a complex chain of
events and that using an ISR, a lot of time can be saved.

The interrupt routines of tasks A and C would be defined as
ISRs. These would not prevent context switches but will reduce
the decision-making overhead to an absolute minimum and is
therefore more effective.

If the time windows still cannot be met, the only solution is
to improve the performance of the processor or use a second
processor dedicated to one of the I/O tasks.
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13 Design examples

Burglar alarm system
This example describes the design and development of

an MC68008-based burglar alarm with particular reference to
the software and hardware debugging techniques that were
used. The design and debugging was performed without the
use of an emulator, the traditional development tool, and used
cross-compilers and evaluation boards instead. The design
process was carefully controlled to allow the gradual integra-
tion of the system with one unknown at a time. The decision
process behind the compiler choice, the higher level software
development and testing, software porting, hardware testing
and integration are fully explained.

Design goals
The system under design was an MC68008-based intel-

ligent burglar alarm which scanned and analysed sensor in-
puts to screen out transient and false alarms. The basic hard-
ware consisted of a processor, a 2k × 8 static RAM, a 32k × 8
EPROM and three octal latches (74LS373) to provide 16 sensor
and data inputs and 8 outputs.

MC68008

EPROMRAM

'138

Address BUS
DATA BUS

'373

'373

'373

Status LEDs
& Alarm O/P

Sensor 
Inputs

Entry/Exit
delay inputs

AS
DTACK

R/W

DATA

ADDRESS

OE

OE

OE

LE

LE

LE

The simplified target hardware
 A 74LS138 was used to generate chip selects and output

enables for the memory chips and latches from three higher
order address lines. Three lines were left for future expansion.
The sirens etc., were driven via 5 volt gate power MOSFETs.
The controlling software was written in C and controlled the
whole timing and response of the alarm system. Interrupts
were not used and the power on reset signal generated using a
CR network and a Schmidt gate.
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Development strategy
The normal approach would be to use an in-circuit

emulator to debug the software and target hardware, but it was
decided at an early stage to develop the system without using
an emulator except as a last resort. The reasoning was simple:
• The unit was a replacement for a current analogue

system, and the physical dimensions of the case effec-
tively prevented the insertion of an emulation probe. In
addition, the case location was very inaccessible.

• The hardware design was a minimum system which
relied on the MC68008 signals to generate the asynchro-
nous handshakes automatically, e.g. the address strobe
is immediately routed back to generate a DTACK signal.
This configuration reduces the component count but
any erroneous accesses are not recognised. While these
timings and techniques are easy to use with a processor,
the potential timing delays caused by an emulator could
cause problems which are exhibited when real silicon is
used.

• The software development was performed in parallel
with the hardware development and it was important
that the software was tested in as close an environment
as possible to a debugged target system early on in the
design. While emulators can provide a simple hardware
platform, they can have difficulties in coping with power-
up tests and other critical functions.

The strategy was finally based on several policies:
• At every stage, only one unknown would be introduced

to allow the fast and easy debugging of the system, e.g.
software modules were developed and tested on a known
working hardware platform, cross-compiled and tested
on an evaluation board etc.

• An evaluation board would be used to provide a work-
ing target system for the system software debugging.
One of the key strategies in this approach for the project
was to ensure the closeness of this environment to the
target system.

• Test modules would be written to test hardware func-
tionality of the target system, and these were tested on
the evaluation board.

• The system software would only be integrated on the
target board if the test modules executed correctly.

Software development
The first step in the development of the software was to

test the logic and basic software design using a workstation. A
UNIX workstation was initially used and this allowed the bulk
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of the software to be generated, debugged and functionally
tested within a known working hardware environment, thus
keeping with the single unknown strategy. This restricts any
new unknown software or hardware to a single component
and so makes debugging easier to perform.
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The main software flow diagram
 Sensor inputs were simulated using getchar() to

obtain values from a keyboard, and by using the multitasking
signalling available with a UNIX environment. As a result, the
keyboard could be used to input values with the hexadecimal
value representing the input port value. Outputs were simu-
lated using a similar technique using printf() to display the
information on the screen. Constants for software delays etc.,
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were defined using #define C pre-processor statements to
allow their easy modification. While the system could not test
the software in real-time, it does provide functional and logical
testing.
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The modified software flow diagram

While it is easy to use the getchar() routine to gener-
ate an integer value based on the ASCII value of the key that has
been pressed, there are some difficulties. The first problem that
was encountered was that the UNIX system uses buffered
input for the keyboard. This meant that the return key had to
be pressed to signal the UNIX machine to pass the data to the
program. This initially caused a problem in that it stopped the
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polling loop to wait for the keyboard every time it went round
the loop. As a result, the I/O simulation was not very good or
representative.

In the end, two solutions were tried to improve the
simulation. The simplest one was to use the waiting as an aid
to testing the software. By having to press the return key, the
execution of the polling loop could be brought under the user’s
control and by printing out the sample and sensor count
variables, it was possible to step through each loop individu-
ally. By effectively executing discrete polling loops and have
the option of simulating a sensor input by pressing a key before
pressing return, other factors like the threshold values and the
disabling of faulty sensors could be exercised.

The more complex solution was to use the UNIX
multitasking and signalling facilities to set-up a second task to
generate simple messages to simulate the keyboard input.
While this allowed different sensor patterns to be sent to
simulate various false triggering sequences without having the
chore of having to calculate the key sequences needed from the
keyboard, it did not offer much more than that offered by the
simple solution.

The actual machine used for this was an OPUS personal
mainframe based on a MC88100 RISC processor running at 25
MHz and executing UNIX System V/88. The reasons behind
this decision were many:

• It provided an extremely fast system, which dramati-
cally reduced the amount of time spent in compilation
and development.

• The ease of transferring software source to other sys-
tems for cross-compilation. The OPUS system can di-
rectly read and write MS-DOS files and switch from the
UNIX to PC environment at a keystroke.

• The use of a UNIX- based C compiler, along with other
utilities such as lint, was perceived to provide a more
standard C source than is offered by other compilers.

This was deemed important to prevent problems when
cross-compiling. Typical errors that have been encountered in
the past are: byte ordering, variable storage sizes, array and
variable initialisation assumed availability of special library
routines etc.

Cross-compilation and code generation
Three MC68000 compilation environments were avail-

able: the first was a UNIX C compiler running on a VMEbus
system, the second was a PC-based cross-compiler supplied
with the Motorola MC68020 evaluation board, while a third
option of another PC-based cross compiler was a possibility.
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The criteria for choosing the cross-compilation development
were:
• The ease of modifying run-time libraries to execute

standalone on the MC68020 evaluation board and, fi-
nally the target system.

• The quality of code produced.
The second option was chosen primarily for the ease

with which the run-time libraries could be modified. As stand-
ard, full run-time support was available for the evaluation
board, and these modules, including the all-important initiali-
sation routines, were supplied in assembler source and are
very easy to modify. Although the code quality was not as good
as the other options, it was adequate for the design and the
advantage of immediate support for the software testing on the
evaluation board more than compensated. This support fitted
in well with the concept of introducing only a single unknown.

If the software can be tested in as close an environment
as possible to the target, any difficulties should lie with the
hardware design. With this design, the only differences be-
tween the target system configuration and the evaluation
board is a different memory map. Therefore, by testing the
software on an evaluation board, one of the unknowns can be
removed when the software is integrated with the target sys-
tem. If the run-time libraries are already available, this further
reduces the unknowns to that of just the system software.

The C source was then transferred to a PC for cross-
compilation. The target system was a Flight MC68020 evalua-
tion board which provides a known working MC68xxx envi-
ronment and an on-board debugger. The code was cross-
compiled, downloaded via a serial link and tested again.

The testing was done in two stages: the first simply ran
the software that had been developed using the OPUS system
without modifying the code. This involved using the built-in
getchar() system calls and so on within the Flight board
debugger. It is at this point that any differences between the C
compilers would be found such as array initialisation, bit and
byte alignment etc. It is these differences that can prevent
software being ported from one system to another. These tests
provided further confidence in the software and its functional-
ity before further modification.

The second stage was to replace these calls by a pointer
to a memory location. This value would be changed through
the use of the onboard debugger. The evaluation board abort
button is pressed to stop the program execution and invoke the
debugger. The corresponding memory location is modified
and the program execution restarted. At this point, the soft-
ware is virtually running as expected on the target system. All
that remains to do is to take into account the target hardware
memory map and initialisation.
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Porting to the final target system
The next stage involved porting the software to the final

target configuration. These routines allocate the program and
stack memory, initialise pointers etc., and define the sensor and
display locations within the memory map. All diagnostic I/O
calls were removed. The cross-compiler used supplies a start-
up assembly file which performs these tasks. This file was
modified and the code recompiled all ready for testing.

Generation of test modules
Although the target hardware design was relatively

simple, it was thought prudent to generate some test modules
which would exercise the memory and indicate the success by
lighting simple status LEDs. Although much simpler than the
controlling software, these go-nogo tests were developed us-
ing the same approach: written and tested on the evaluation
board, changed to reflect the target configuration and then
blown into EPROM.

The aim of these tests was to prove that the hardware
functioned correctly: the critical operations that were tested
included power-up reset and initialisation, reading and writ-
ing to the I/O functions, and exercising the memory.

These routines were written in assembler and initially
tested using the Microtec Xray debugger and simulator before
downloading to the Flight board for final testing.

Target hardware testing
After checking the wiring, the test module EPROM was

installed and the target powered up. Either the system would
work or not. Fortunately, it did! With the hardware capable of
accessing memory, reading and writing to the I/O ports, the
next stage was to install the final software.

While the system software logically functioned, there
were some timing problems associated with the software tim-
ing loops which controlled the sample window, entry/exit
time delays and alarm duration. These errors were introduced
as a direct result of the software methodology chosen: the delay
values would obviously change depending on the hardware
environment, and while the values were defined using #define
pre-processor statements and were adjusted to reflect the
processing power available, they were inaccurate. To solve this
problem, some additional test modules were written, and by
using trial and error, the correct values were derived. The
system software was modified and installed.

Future techniques
The software loop problem could have been solved if an

MC68000 software simulator had been used to execute, test
and time the relevant software loops. This would have saved a
day’s work.
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If a hardware simulator had been available, it could have
tested the hardware design and provided additional confi-
dence that it was going to work.

Relevance to more complex designs
The example described is relatively simple but many of

the techniques used are extremely relevant to more complex
designs. The fundamental aim of a test and development
methodology, which restricts the introduction of untested
software or hardware to a single item, is a good practice and of
benefit to the design and implementation of any system, even
those that use emulation early on in the design cycle.

The use of evaluation boards or even standalone VME or
Multibus II boards can be of benefit for complex designs. The
amount of benefit is dependent of the closeness of the evalua-
tion board hardware to the target system. If this design had
needed to use two serial ports, timers and parallel I/O, it is
likely that an emulator would still not have been used pro-
vided a ready built board was available which used the same
peripheral devices as the target hardware. The low level soft-
ware drivers for the peripherals could be tested on the evalu-
ation board and these incorporated into the target test modules
for hardware testing.

There are times, however, when a design must be tested
and an emulator is simply not available. This scenario occurs
when designing with a processor at a very early stage of
product life. There is inevitably a delay between the appear-
ance of working silicon and instrumentation support. During
this period, similar techniques to those described are used and
a logic analyser used instead of an emulator to provide instru-
mentation support, in case of problems. If the processor is a
new generation within an existing family, previous members
can be used to provide an interim target for some software
testing. If the design involves a completely new processor,
similar techniques can be applied, except at some point un-
tested software must be run on untested hardware.

It is to prevent this integration of two unknowns that
simulation software to either simulate and test software, hard-
ware or both can play a critical part in the development
process.

The need for emulation
Even using the described techniques, it cannot be stated

that there will never be a need for additional help. There will be
times when instrumentation, such as emulation and logic
analysis, is necessary to resolve problems within a design
quickly. Timing and intermittent problems cannot be easily
solved without access to further information about the proces-
sor and other system signals. Even so, the recognition of a
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potential problem source such as a specific software module or
hardware allows a more constructive use and a speedier reso-
lution. The adoption of a methodical design approach and the
use of ready built boards as test vehicles may, at best, remove
the need for emulation and, at worst, reduce the amount of time
debugging the system.

Digital echo unit
This design example follows the construction of a digital

echo unit to provide echo and reverb effects.
With sound samples digitally recorded, it is possible to

use digital signal processing techniques to create far better and
more flexible effects units (or sound processors, as they are
more commonly called). Such units comprise a fast digital
signal processor with A to D and D to A converters and large
amounts of memory. An analogue signal is sent into the
processor, converted into the digital domain, processed using
software running on the processor to create filters, delay,
reverb and other effects before being converted back into an
analogue signal and being sent out.

They can be completely software based, which provides
a lot of flexibility, or they can be pre-programmed. They can
take in analogue or, in some cases, digital data, and feed it back
into other units or directly into an amplifier or audio mixing
desk, just like any other instrument.

Creating echo and reverb
Analogue echo and reverb units usually rely on an

electromechanical method of delaying an audio signal to create
reverberation or echo. The WEM Copycat used a tape loop and
a set of tape heads to record the signal onto tape and then read
it from the three or more tape heads to provide three delayed
copies of the signal.

The delay was a function of the tape speed and the
distance between the recording and read tape heads. This
provides a delay of up to 1 second. Spring line delays used a
transducer to send the audio signal mechanically down a taut
spring where the delayed signal would be picked up again by
another transducer.

Bucket brigade devices have also been used to create a
purely electronic delay. These devices take an analogue signal
and pass it from one cell to another using a clock. The technique
is similar to passing a bucket of water by hand down a line of
men. Like the line of men, where some water is inevitably lost,
the analogue signal degrades — but it is good enough to
achieve some good effects.

With a digitised analogue signal, creating delayed cop-
ies is easy. The samples can be stored in memory in a buffer and
later retrieved. The advantage this offers is that the delayed
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sample is an exact copy of the original sound and, unlike the
techniques previously described, has not degraded in quality
or had tape noise introduced. The number of delayed copies is
dependent on the number of buffers and hence the amount of
memory that is available. This ability, coupled with a signal
processor allows far more accurate and natural echoes and
reverb to be created.
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A digital echo/reverb unit
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The problem with many analogue echo and reverb units
is that they simplify the actual reverb and echo. In natural
conditions, such as a large concert hall, there are many delay
sources as the sound bounces around and this cannot be
reproduced with only two or three voices which are independ-
ently mixed together with a bit of feedback. The advantage of
the digital approach is that as many delays can be created as
required and the signal processor can combine and fade the
different sources as needed to reproduce the environment
required.

The block diagram shows how such a digital unit can be
constructed. The design uses three buffers to create three
separate delays. These buffers are initially set to zero and are
FIFOs — first in, first out — thus the first sample to be placed
at the top of each buffer appears at the bottom at different times
and is delayed by the number of samples that each buffer holds.
The smaller the buffer, the smaller the delay. The outputs of the
three buffers are all individually reduced in size according to
the depth required or the prominence that the delayed sound
has. A large value gives an echoing effect, similar to that of a
large room or hall. A small depth reduces it. The delayed
samples are combined by the adder with the original sample —
hence the necessity to clear the buffer initially to ensure that
random values, which add noise, do not get added before the
first sample appears — to create the final effect. A feedback
loop takes some of the output signal, as determined by the
feedback control, and combines it with the original sample as
it is stored in the buffers. This effectively controls the decay of
the delayed sounds and creates a more natural effect.

This type of circuit can become more sophisticated by
adapting the depth with time and having separate independ-
ent feedback loops and so on. This circuit can also be the basis
of other effects such as chorus, phasing and flanging where the
delayed signal is constantly delayed but varies. This can be
done by altering the timing of the sample storage into the
buffers.

Design requirements
The design requirements for the echo unit are as follows:

• It must provide storage for at least one second on all its
channels.

• It must provide control over the echo length and depth.
• It must take analogue signals in and provide analogue

signals out.
• The audio quality must be good with a 20 kHz band-

width.
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Designing the codecs
The first decision concerns the A to D and D to A codec

design. Many lower specification units use 8 bit A to D and D
to A units to digitise and convert the delayed analogue signal.
This signal does not need to be such good quality as the original
and using an 8 bit resolution converter saves on cost and
reduces the amount of memory needed to store the delayed
signal. Such systems normally add the delayed signal in the
analogue domain and this helps to cover any quality degrada-
tion.

With this design, the quality requirement precludes the
use of 8 bit converters and effectively dictates that a higher
quality codec is used. With the advent of the Compact Disc,
there are now plenty of high quality audio codecs available
with sample sizes of 12 or more bits. A top end device would
use 16 bit conversion and this would fit nicely with 16 bit
memory. This is also the sample size used with Compact Disc.

The next consideration is the conversion rate. To achieve
a bandwidth of 20 kHz, a conversion rate of 40 kHz is needed.
This has several knock-on effects: it determines the number of
samples needed to store one second of digital audio and hence
the amount of memory. It also defines the timing that the
system must adhere to remove any sampling errors. The proc-
essor must be able to receive the digitised audio, store it and
copy it as necessary, retrieve the output samples, combine
them and convert them to the analogue signals every 25 µs.

Designing the memory structures
In examining the codec design, some of the memory

requirements have already started to appear. The first require-
ment is the memory storage for the digital samples. For a single
channel of delay where only a single delayed audio signal is
combined with the original signal, the memory storage is the
sample size multiplied by the sample rate and the total storage
time taken. For a 16 bit sample and a 40 kHz rate, 80000 bytes
of storage needed. Rounding up, this is equivalent to just over
78 kbytes of storage (a kbyte of memory is 1024 bytes and not
1000).

This memory needs to be organised as a by 16 structure
which means that the final design will need 40 k by 16 words
of memory per second of audio. For a system with three
delayed audio sources, this is about 120 k words which works
out very nicely at two 128k by 8 RAM chips. The spare 8 kbytes
in each RAM chip can be used by the supervisor software that
will run on the control processor.

Now that the amount of memory is known, then the
memory type and access speed can be worked out. DRAM is
applicable in this case but requires refresh circuitry and be-
cause it is very high density may not be cost effective. If 16 Mb
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DRAM is used then with a by 16 organisation, a single chip
would provide 1 Mbyte of data storage which is far too much
for this application. The other potential problem is the effect of
refresh cycles which would potentially introduce sampling
errors. This means that static RAM is probably the best solu-
tion.

To meet the 25 µs cycle time which includes a minimum
of a data read and a data write, this means that the overall
access time must be significantly less than half of the cycle time,
i.e. less than 12.5 µs. This means that almost any memory is
capable of performing this function.

In addition, some form of non-volatile memory is needed
to contain the control software. This would normally be stored
in an EPROM. However, the EPROM access times are not good
and therefore may not be suitable for running the software
directly. If the control program is small enough, then it could
be transferred from the EPROM to the FSRAM and executed
from there.

The software design
The software design is relatively simple and treats the

process as a pipeline. While the A to D is converting the next
sample, the previous sample is taken and stored in memory
using a circular buffer to get the overall delay effect. The next
sample for D to A conversion and output is retrieved from the
buffer and sent to the converter. The circular buffer pointers are
then updated, including checking for the end of the buffer.

This sequence is repeated every 25 µs. While the proces-
sor is not performing this task, it can check and maintain the
user controls. As stated previously, circular buffers are used to
hold the digitised data. A buffer is used with two pointers: one
points to the next storage location for the incoming data and a
second pointer is used to locate the delayed data. The next two
diagrams show how this works. Each sample is stored consecu-
tively in memory and the two pointers are separated by a
constant value which is equivalent to the number of samples
delay that is required. In the example shown, this is 16 samples.
This difference is maintained so that when a new sample is
inserted, the corresponding old value is removed as well and
then both pointers are updated.

When either pointer reaches the end of the data block, its
value is changed to point to the next location. In the example
shown, the New_data pointer is reset to point at the first
location in the buffer which held the first sample. This sample
is no longer needed and its value can be overwritten. By
changing the difference between the two pointers, the time
delay can be changed. In practice, the pointers are simply
memory addresses and every time they are updated, they
should be checked and if necessary reset to the beginning of the
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table. This form of addressing is known as modulo addressing
and some DSP processors support it directly and therefore do
not need to check the address.

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

Old_data
pointer

New_data
pointer

Time delay

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

Old_data
pointer

New_data
pointer

Time delay

1
7

Using a circular buffer to store and retrieve data

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

Old_data
pointer

New_data
pointer

1
7

Old_data
pointer

New_data
pointer

Time delay
16 samples

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

Time delay
16 samples

Implementing modulo addressing



394 Embedded systems design

Read A to D 
converter to 

get new 
sample

Store value in 
circular buffer

Update 
new_data 

pointer

Retrieve data 
value of buffer 
using old_data 

pointer

Update 
old_data 
pointer

Write data to D
to A converter

Start next 
conversion

Wait for next A 
to D 

conversion to 
complete

The basic pipeline flow for the software

When using these structures, it is important to ensure
that all values are initially set to zero so that the delayed signal
is not random noise when the system first starts up. The
delayed signal will not be valid until the buffer has filled. In the
examples shown, this would be 16 samples. Until this point, the
delayed signal will be made from the random contents of the
buffer. By clearing these values to zero, silence is effectively
output and no noise is heard until the correct delayed signal.

Multiple delays
With a multiple source system, the basic software design

remains intact except that the converted data is copied into
several delay buffers and the outputs from these buffers are
combined before the end result is converted into the analogue
signal.

There are several ways of setting this up. The first is to
use multiple buffers and copy each new value into each buffer.
Each buffer then supplies its own delayed output which can be
combined to create the final effect. A more memory efficient
system is to use a single buffer but add additional old_data
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pointers with different time delays to create the different delay
length outputs.

The overhead in doing this is small. There is the mainte-
nance of the pointers to be done and the combination of the
delay values to create the final output for the D to A converter.
This can be quite complex depending on the level of sophisti-
cation needed.

Digital or analogue adding
There are some options depending on the processing

power available. With a real echo or reverb, the delayed signals
need to be gradually attenuated as the signals die away and
therefore, the delayed signal must be attenuated. This can be
done either digitally or in the analogue domain. With a single
source, the analogue implementation is easy. The delayed
signal is converted and an analogue mixer is used to attenuate
and combine the delayed signal with the original to create the
reverb or echo effect. An analogue feedback bath can also be
created.
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Using a single buffer with multiple pointers to create multiple delays
The multiple delayed source design can use this same

analogue method but requires a separate D to A converter for
each delayed signal. This can be quite expensive. Instead, the
processor can add the signals together, along with attenuation
factors to create a combined delay signal that can be sent to the
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D to A converter for combination with the original analogue
signal. It is therefore possible to perform all this, including the
combination with the original signal in the digital domain, and
then simply output the end value to the D to A converter. With
this version, the attenuation does not need to be constant and
can be virtually any type of curve.

The disadvantage is the computation that is needed. The
arithmetic that is required is saturation arithmetic which is a
little more than simply adding two values together. This is
needed to ensure that the combined value only provides a peak
value and not cause an overflow error. In addition, all the
calculations must be done within 25 µs to meet the sampling
rate criteria and this can be pushing the design a little with
many general-purpose processors.

Microprocessor selection
The choice of microprocessor is dependent on several

factors. It must have an address range of greater than 64 kbytes
and have a 16 bit data path. It must be capable of performing 16
bit arithmetic and thus this effectively rules out 8 bit micro-
processors and microcontrollers.

In terms of architecture, multiple address pointers that
auto-increment would make the circular buffer implementa-
tions very efficient and therefore some like a RISC processor or
a fast MC68000 would be suitable. Other architectures can
certainly do the job but their additional overhead may reduce
their ability to perform all the processing within the 25 µs
window that there is. One way of finding this out is to create
some test code and run it on a simulator or emulator, for
example, to find out how many clocks it does take to execute
these key routines.

A low cost DSP processor is also quite attractive in this
type of application, especially if it supports modulo address-
ing and saturation arithmetic.

The overall system design
The basic design for the system uses a hardware timer to

generate a periodic interrupt every 25 µs. The associated inter-
rupt service routine is where the data from the A to D converter
is read and stored, the next conversion started and the delayed
data taken from the buffer and combined. The pointers are
updated before returning from the service routine. In this way,
the sampling is done on a regular basis and is given a higher
priority than the background processing.

While the processor is not servicing the interrupt, it stays
in a forever loop, polling the user interface for parameters and
commands. The delay times are changed by manipulating the
pointers. It is possible to do this by changing the sampling rate
instead but the audio quality does not stay constant.
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The system initialises by clearing the RAM to zero and
using some of it to hold the program code which is copied from
EPROM. If a battery backed SRAM is used instead, then used
defined parameters and settings could be stored here as well
and retained when the system is switched off.
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14 Real-time without a RTOS

This chapter describes the design and development of a
real-time data logger that is used to collate information from
various data logging sources in a race car. It brings together many
of the topics discussed in previous chapters into a real world
project. The project’s goal was to design a real-time data logger. Its
function was to fetch data samples from the various systems in the
car and store them locally for display once the car has finished
competing. The car is fitted with several computer based control
systems, including a engine management unit (EMU) and traction
control system that would provide a snapshot of the current input
data (all four wheel speeds, engine revs and traction control
intervention) when prompted. The EMU communicates using a
serial port at 19.2 kbaud. The system comes with some basic data
logging software that would run on a PC laptop but this was not
very reliable at time stamping. The timing would depend on the
performance of the laptop that received the data which made
‘before and after’ comparisons very difficult to make. What was
needed was an embedded system that could periodically request
a data sample and then store it in a format that the standard
display software could use. Simple:  well, as with most designs, the
reality was slightly different.

Choosing the software environment
So where do you start with a project like this? Most design-

ers will often start by defining the hardware and then rely on the
software to either cope or fit with the hardware selection. This is
often adopted because of the so-called flexibility that software
offers. It’s only software, it be changed, rewritten, and so on. While
there is some truth in this, it should be understood that many
software components such as the operating system and compiler
cannot be modified and that it can be as fixed as hardware. In
practice, these decisions have to be taken in conjunction and the
design based on a system approach that takes into account both
hardware and software issues. However, you have to start some-
where and in this case, the software environment was given the
highest priority.

The first question to be answered was that of which operat-
ing system. In practice there were three candidates: a real-time
operating system of some kind, MS-DOS or Windows. The design
was definitely a real-time one with a deadline to meet to maintain
the correct sampling. It probably needed to provide access to the
hardware directly due to the slightly different use that the parallel
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ports in particular were going to be put to. It also needed to be
simple and stable. For most engineers, the immediate reaction
would be to use a real-time OS. The challenge here is that these are
expensive (compared to a copy of MS-DOS or Windows) and it
would be difficult to use the target system directly for the devel-
opment. MS-DOS was easily available and permitted easy access
to hardware and could be both the target and development
environment. Windows was ruled out because of its size, lack of
direct hardware access and its complexity. A data logger did not
need to display different backgrounds for a start. In addition,
Windows does impose a huge overhead on the hardware re-
sources which again was not attractive.

The decision was taken to use MS-DOS. The Borland C
compiler for MS-DOS can be downloaded from Borland’s website
free of charge and is a fast compact compiler. It might be old but
it is more than adequate for the job. This complemented the idea
of using the laptop target system for both the actual implementa-
tion as well as the final target. The compiler also provides exten-
sive library support for low-level direct access to hardware and
BIOS routines. These would provide a rich source of function with
which to control the data logging without the need for assembler
programs.

Does this decision mean that MS-DOS is a real-time operat-
ing system? Well it all depends. It is possible to design real-time
systems without the need for a real-time operating system, pro-
viding the system designer understands the constraints imposed
on the design when doing this. With MS-DOS, this invariably
means a single thread of execution with a single task running and
performing all the work. This may have procedure calls and so on
and be a structured modular program but there is only one thread
of execution running. If the design required multiple threads then
this can be difficult in MS-DOS as it does not support this function-
ality. This doesn’t mean it cannot be done but it requires the
‘multitasking’ to be embedded into the single task. In effect the
multitasking support is taken out of the operating system and
built into the program. This can quickly get very complex and
cumbersome to write and maintain and this is where the true
multitasking operating system can come to the fore. As soon as
this step is taken, there is usually an increased need for a real-time
operating system. Windows is multitasking but it is not real-time.
It can do real-time work providing the rest of the software running
in the system co-operates and shares processing time with the
other tasks and threads running in the system. If this co-operation
is not maintained, the system can appear to hang up because
another that is not co-operating and hogging the CPU blocks the
waiting task that needs to meet a deadline. The operating system
is powerless in this situation to do anything about this. With a real-
time operating system, the waiting task can pre-empt the hogging
task if it has a high enough priority.
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Given that MS-DOS was to be used, how were the real-time
aspects of the design to be implemented, such as the data sampling
scheduling and perhaps more importantly, how the system would
respond when no data was received? This would be the next set of
design decisions to be made.

Deriving real-time performance from a non-real-
time system

Before this can be tackled, the first step is to quantify the
real-time performance that is needed and from that determine the
level of processing power needed. Real-time means guaranteeing
that work will be completed within a certain time period. That
time period could be seconds or minutes but as long as the work
requested is completed within a given time period, the system is
a real-time one. The key time critical function is sampling the data.
The time frame for processing this is determined by the interval
between the samples which in turn depends on the sampling rate.
This in turn also determines the minimum processing needed to
perform these tasks.

The display software imposes several constraints: its maxi-
mum sampling rate is 30Hz and the data file should be less than
350 kbytes in size. Each sample contains 8 bytes and each second
generates 240 bytes of data. This means that a 350 kbytes file would
contain about 1493 seconds or over 24 minutes of data. This is more
than enough as the longest sessions that the car experiences are
about 15—24 minutes. It was decided to not limit the sampling
data and if longer periods were needed, the sampling rate would
be reduced or the resulting data file sub-sampled to reduce its size
at the expense of timing resolution. The serial data link is fixed at
19.2 kbaud. As a rough rule of thumb, dividing the baud rate by 10
gives the maximum number of bytes that can be transferred. This
works out at just under 2 kbytes per second. This is eight times the
required data rate for the 30 Hz sampling rate. This indicates that
the serial link is more than capable of supplying the required data
and perhaps more importantly, indicates the level or CPU per-
formance needed. A fast 386 or entry level 486 is quite capable of
transferring 2 kbytes of data per second over a serial link. Indeed
faster rates are often achieved with higher serial link speeds
during file transfer. Bearing in mind that all the data logger has to
do in real-time is receive some data and store it, then almost any
laptop with a higher speed 386 or entry level 486 should be capable
of meeting the processing load.

Another way of looking at the same problem is to consider
how many instructions the processor can execute between the
samples. A 30 MHz 386 with a data sampling rate of 30 Hz can
provide 1 MHz of CPU processing per sample. If it takes 10 clocks
per instruction (a very conservative figure), that means that 100,000
instructions can be executed between samples. This is several
orders of magnitude higher than the number of instructions



Real-time without a RTOS 401

actually needed to perform the task. Again, this is good informa-
tion to help back-up the conclusion that CPU performance was not
going to be an issue.

Choosing the hardware
The next task was to choose the hardware that was needed.

Always a difficult problem but this turned out to be quite simple.
Simple microcontrollers were ruled out because of their limited
functionality. They have small amounts of memory that would
restrict the amount of data that could be sampled and stored. This
constrained both the data sampling rate and the total time that the
sampling could take place. In addition, the data had to be trans-
ferred to the laptop for display and in addition, writing the display
and analysis software would have been a major undertaking.

The next hardware candidate was a single board computer.
These have more memory and often have disk drive support so
that the data could be transferred using a floppy disk. A serial port
could also be used. They have a downside in that they require
external power which is not something that is easy to provide
cleanly from a car system, let alone a competition car. Then there
was the level of software support. This needed to be a quick
development because it had to be in place for the start of the car’s
testing dates so that its information could be used to set up the car
prior to the start of the season.

The next candidate was a laptop PC itself. This seems to be
a bit extreme but has several advantages that make it very attrac-
tive:

• It has a built-in battery independent of the car’s power
supplies and systems.

• It can be used to immediately display the data as well as
storing it on disk or removable media like a PC memory
card.

• It can be used as the development equipment and thus
allow the software to be changed in the pit lane if needed.

• There is a wealth of software available.
• Low cost. This may sound strange but second-user laptops

are inexpensive and the project does not require the latest
all-singing all-dancing hardware. A fast 486 or entry-level
Pentium is more than capable of meeting the processing
needs.

• Allows migration to low cost PC-based single board com-
puter if needed.

The disadvantage is that they can be a little fragile and the
environment inside a competition car can be a little extreme with
a lot of physical shocks and jolts. However, this is similar to the
treatment that is handed out to a laptop used by a road warrior. My
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own experience is that laptops are pretty well indestructible
providing they are not dropped on to hard surfaces from great
height. By placing the unit in a padded jacket, it would probably
be fine. The only way to find out would be to try it! If there were
problems then a single board PC in an industrial case could be
used instead.

Scheduling the data sampling
For any data logging system the ability to sample data on a

regular basis with consistent time intervals between samples is
essential for any time-based system. The periodicity needs to be
consistent so that the time aspect of the data is not skewed. For
example if the logged data was wheel speed then this data is only
accurate when the time period between the samples is known. If
this is not known, or is subject to variation then the resulting
derived information such as distance travelled or acceleration will
also be inaccurate.

The easiest way of collating data is let the data collection
routines to free run and then calibrate the time interval afterwards
against a known time period. The periodicity of the sampling rate
is now determined by how long it takes to collect the data, which
in turn is determined by the ability of the source to send the data.
While this is simple to engineer, it is subject to several errors and
problems:

• The time period will vary from system to system depending
on the system’s processing and which serial port controller
is used.

• The time taken to execute the sample collection may vary
from sample to sample due to caching and other hard to
predict effects. This means that the periodicity will show
jitter which will affect the accuracy of any derived data.

• It is difficult for any data display software to display the
sampling rate without being supplied with some calibra-
tion data.
For a system that provides data about how a car accelerates

and behaves over time, these restrictions are not really acceptable.
They will give an approximate idea of what is going on but it is not
consistent. This also causes problems when data sequences are
compared with each other: is the difference due to actual variation
in the performance or due to variation in the timing?

Given these problems, then some form of time reference is
needed. The PC provides a real-time clock that can be accessed by
a system call. This returns the time in microseconds and this can
be used to provide a form of software timing loop. The loop reads
the system time, compares it the previous version and works out
how long has elapsed. If the elapsed time is less than the sampling
time interval, the loop is repeated. If it is equal, the program
control jumps out of the loop and collects the data. The current
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time is stored as the previous time and when the data collection is
completed, the timing loop is re-entered and the elapsed time
continually checked.

This sounds very promising at first. Although timing loops
are notorious for being inaccurate and inconsistent from machine
to machine due to the different time taken to execute the routines,
this software loop is simply measuring the elapsed time from a
hardware-based real-time clock. As a result, the loop should
synchronise to the hardware derived timing and be consistently
accurate from system to system. The data sampling processing
time is automatically included in the calculations and so this is a
perfect way of simply synchronising the data sampling.

While in general, these statements are true, in practice they
are a very simple approximation of what goes on in a PC. The first
problem is the assumption that the system time is accurate down
to microseconds. While the system call will return the time in
microseconds, you do not get microsecond accuracy. In other
words, the granularity of any change is far higher. While the
design might expect that the returned time would only vary by a
few microseconds if the call was consecutively called, in practice
the time resolution is typically in seconds. So if the test condition
in the software loop relies on being able to detect an exact differ-
ence of 100 microseconds, it may miss this as the returned system
time may not be exactly 100 microseconds. It might be 90 on the
first loop and 180 on the second and so on. None of these match the
required 100 microsecond interval and the loop becomes infinite
and the system will appear to hang.

This problem can be overcome by changing the condition to
be equal to or greater than 100 microseconds. With this, the first
time round will cause the loop to repeat since 90 is less than 100.
On the second time round, the returned difference of 180 will be
greater than 100, the exit condition will be met and the loop exited
and the data sample taken. The previous value will be updated to
180 and the loop repeated. The next value will be 270 which is less
than the 100 difference (180 +100 = 280) so the loop will repeat. The
next returned value will be 360 which exceeds the 100 microsec-
ond difference and cause the loop to be exited and the data sample
to be taken.

At this point note that when the data samples are taken, the
required time interval is 100 microseconds. The first sample is
taken at 180 microseconds followed by a second sample at 360
microseconds giving a sample interval of 180 microseconds. Com-
pare this with what was intended with the software timing. The
software timing was designed to generate a 100 microsecond
interval but in practice, it is generating ones with a 180 microsec-
ond interval. If the calculations are carried through what does
happen is that one of the intervals becomes very short so that over
a given time period, the possible error with the correct number of
samples and the respective intervals between them will reduce.
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However, this timing cannot be described as meeting the periodic-
ity requirements that the design should meet. This approach may
give the appearance of being synchronised but the results are far
from this.

So while the system time is not a good candidate because of
its poor resolution, there are other time-related functions that are
better alternatives. One of these are the oft neglected INT 21 calls
which allow a task to go to sleep for some time and then wake up
and continue execution or wait for a certain time period to expire.
The time resolution is far better than used by the system clock and
there is no need for a software loop. The process is simple: collect
the data sample and then make the INT 21 call to force the process
to wait or sleep for the required time period.

The value for the time period needs to be calculated for each
system. The sampling time is now part of the interval timing and
this will vary from system to system. This provides us with the first
problem with this technique in that the wait period will also vary
from system to system. The second issue is that the time to collect
the samples may also vary depending on the number of cache hits,
or when a DRAM refresh cycle occurs and so on. So again, what
appears to be a good solution suffers from the same type of
problem. The sampling rate will suffer from jitter and will require
calibration from system to system.

This system calibration problem is made worse when the
software is run on laptop PCs that incorporate power saving
modes to control power consumption. This will alter the clock
frequency and even power down parts of the circuitry. This results
in a variation in the time taken to collect the data samples. Any
variation from the value used to calculate the INT 21 wait or sleep
delay will cause variations in the sampling periodicity. These
differences are never recovered and so the data sampling will be
skewed in time.

It seems on this basis that using a PC as an embedded
system is a pretty hopeless task. However there is a solution.
Ideally what is required is an independent timing source that can
instruct the data sampling to take place on a regular basis. This can
be constructed by using one of the PCs hardware timers and its
associated interrupt mechanism. The timer is programmed to
generate a periodic interrupt. The interrupt starts an interrupt
service routine that collects the data and finishes. It then remains
dormant until the next interrupt is generated. The timer now
controls the data sample timing and this is now independent of the
software execution. Again, the standard PC design can be ex-
ploited as there is an 18.2 Hz tick generated to provide a stimulus
for the system clock. This again is not as straightforward as might
be thought. The system clock on a PC is maintained by software
counting these ticks even though a real-time clock is present. The
real-time clock is used to set up the system time when the PC is
booted and then is not used. This is why PCs that are left on for a
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long time will loose their time accuracy. The tick is not that
accurate and the system time will quickly gain or lose time
compared to the time maintained by the real-time clock. Each time
the PC is rebooted, the system time is reset to match the real-time
clock and the accumulated error removed.

There is an already defined interrupt routine for this in the
PC. By programming the timer to generate a different time period
tick and then intercepting the interrupt handler and passing
control to the data sampler software, accurate timing for the data
sampling can be achieved. This is the basic method used in the
design.

Sampling the data
The data is requested and received via a serial port that

connects the PC to the engine management unit (EMU) in the car.
The EMU collates the wheel speeds, current engine revs and other
information and outputs this as a series of bytes with each byte
representing the current value for the parameter. This value is
subsequently multiplied by a factor to derive the actual value that
is shown by the display software. These factors are provided
within the header of the file that contains the data. This topic will
be returned to later in this chapter.

When a sample is needed, a request character is sent and by
return, the data sample is sent back. The EMU does not use any
handshaking and will send the data sample as fast as the serial port
will allow it – essentially as fast as the baud rate will let it. This
poses yet another interesting challenge as the PC system must be
configured so that none of this data is lost or mixed up. If this
happens, the values can go out of sequence and because the
position signifies which parameter the byte represents, the data
can easily be corrupted. Again this is a topic that will be returned
to later on as this problem was to appear in field trials for a
different reason.

The first design decision is over whether to use an interrupt-
based approach or poll the serial port to get the data. The data
arrives in a regularly defined and constant packet size and so there
is no need to continually poll the port. Once the request has been
sent, the software need only poll or process an interrupt six times
to receive the six bytes of data. On initial inspection, there is little
to choose between the two approaches: the interrupt method
requires some low level code to intercept the associated interrupt
and redirect it to the new service routine. Polling relies on being
able to process each character fast enough that it is always ready
for the next character. For a fast processor this is not a problem but
for a slower one it could well be and this takes the design back to
being system dependent. The modern serial ports are designed to
run at very fast baud rates e.g. 115000 kbaud and to do this have
FIFO buffers built into them. These FIFOs can be exploited by a
polling design in that they take away some of the tight timing. The
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buffers enable the serial port to accept and store the incoming data
as fast as it is sent but do not rely on the polling software to run at
the same speed. Providing the polling software can empty the
FIFO so that it never overflows, there is no problem. By designing
the software so that the polling software always retrieves its six
bytes of data before issuing a new request, the system can ensure
that this overflow does not take place. With the large 8 to 16 byte
FIFOs being used today, they can actually buffer multiple samples
before a problem is encountered. With the polling software easier
to write and debug, this was the method chosen.

Controlling from an external switch
While the keyboard is fine for entering data and commands,

it can be a little tricky to use in a race car. For a start, the driver
wears flame proof gloves and this can make pressing a key a little
difficult. Add to that the fact that the PC must be securely mounted
inside the car and not placed on the passenger seat or driver’s lap
and it makes this option a little difficult. One solution would be to
set the logging running and leave it like that and then simply
ignore or filter out the initial data so that it doesn’t appear. This is
a simple approach and indeed was used as a temporary measure
but it is not ideal. One of the problems is how to define and apply
the filter. In practice, all the interesting events occurred after the
car left the start line. Looking for wheel movement, followed by a
traction control intervention signal could identify the start line. By
looking for these two signals, the start of the lap or run could be
identified and all data after this event kept. What is really needed
is to be able to have a simple switch to start and stop the data
logging.

With a desktop PC, this is not a problem as the joystick port
can provide this directly. IT uses four switches to indicate which
way the stick is moved and has additional switches for the firing
triggers. Unfortunately, laptops tend to be a little more conserva-
tive in their design and usually do not have a joystick port. They
do however have a parallel port and this can be used to read and
write data to the outside world.

Normally the port is configured to drive a printer and sends
bytes of data to the device using eight pins. Other pins are used to
implement a handshake protocol to control the data flow and to
provide additional status information. As a result, these pins can
provide both input and output functions.

With the joystick port, the procedure is simple: connect the
switch between ground and the allocated pin and then read the
respective bit to see whether it is high or low (switch closed to
ground). With the parallel port, it is assumed that there is some
hardware (typically in the printer) that will provide the right
signal levels. The usual method is to have a TTL level voltage
supply (5 volts) and apply this to the input pin to give a high or to
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ground (0 volts) to indicate a low. Not difficult except that you
need a separate voltage supply.

The trick used in this system was to allocate two pins to the
input. One pin is used as an output and is initialised by software
to be set high. This will provide a TTL high voltage on the output.
This is then connected to the input pin via a 10 kΩ resistor to limit
the current and protect the parallel port hardware. The switch is
then connected to the input pin and ground. When closed the pin
is grounded and a logic 0 will be read. When the switch is open, the
pin is pulled high to the same voltage as the output pin and a logic
1 will be read2. By reading the port and then looking at the value
of the bit associated with the input pin, the software can determine
whether the switch is open or closed. This can be used as a test
condition within control loops to define when the system should
perform certain functions e.g. start and stop logging and so on.

13

25

1101112

24 23 22 1617 14

Log stop/start 
(yellow and green)

End/OK 
(black and red)

Not used
(white and blue)

25 pin D type plug

Yellow/Green
Black/red

White/blue
Hex value FF BF DF 9F 7F 3F 5F 1F

The control switch leadwiring diagram and truth table. The switches are wired to the
25 pin D-type plug and this is plugged into the laptop PC parallel port. The switch
settings generate a hexadecimal value depending on their value.

There is no reason why this cannot be repeated to provide
several switch inputs. The limit is really the number of output and
input pins available. It is important to prevent damage to the port
hardware and that the current taken from the output pin is
minimised – hence the use of the resistor. This means that it is best
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to allocate a separate output pin to provide the logical high voltage
per input pin. It is possible with some PCs to use this signal to work
on several input pins but is dependent on which of the parallel
port silicon chips have been used and whether they have been
buffered. If high current ports are assumed, then the system will
be hardware dependent and may even damage PCs with low
current spec ports.

The implementation is not quite as simple due to some
specific modifications in the PC hardware design. While most pins
are configured to be active high i.e. when the associated bit in the
port is set to a logic 1, the pin voltage rises to a logic high, this is not
the case for all. Some of the pins are inverted to do the opposite for
both the input and output. This means that the values written to
the ports to set the output pins high, are not simply created by
setting the bits high. Each bit needs to be checked to see if it needs
to be inverted or not. You can work this out but I took the easy way
out and used a freeware parallel port utility (http://www.lvr.com/
parport.htm ) that used a nice GUI to program the output pins and
displayed their status on screen. This gave the correct binary bit
pattern which was then converted to hexadecimal to derive the
final value to program into the port.

Driving an external LED display
The parallel port output pins can drive a LED display to

provide a confirmation/status signal. While it is possible to con-
nect a LED with a current limiting resistor directly between the pin
and ground signal, the power limitations described in the previ-
ous paragraph again come into play. It should be assumed that the
pin can only provide about 4 mA. This is enough to light a LED but
the luminance is not high and it can be difficult to see if the LED
is on or not. This can be solved by using a high intensity LED but
their power consumption is typically about 20 mA and exceeds the
current safely available from the parallel port.

The solution is to use a buffer pack that can supply higher
current. These are cheap and easy to use but do require an
additional power supply to drive the buffer.

With the ability to drive status LEDs, the software can
perform other functions such as indicating the amount of traction
control intervention by using this sample to drive a number of
LEDs arranged in a bar graph. No intervention and no LEDs are lit.
Low level intervention and one LED is lit and so on. This function
is incorporated into the software but has not been implemented in
the final system.

Testing
Testing was done in two stages: in both stages, it would be

necessary to have the system connected to the data source to check
that it was being logged and stored correctly, both in workshop
and real life conditions. For the first stage, it is a little inconvenient
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to have a race car up and running generating data to test the
logging software. Instead, a simple data generator program was
written that behaved like the race car itself and generated dummy
test patterns which replicated the car’s behaviour. This meant that
by using a second PC, the data logging software could be plugged
in and tested. Virtually all the debugging was done this way.

This meant that the full functionality could be tested, in-
cluding the remote switches, without the car. This was fortuitous,
as the car was not always available due to it being worked on itself.
This meant that the weekend it took to develop the simulator
software more than paid for itself by allowing the development to
continue independently of the car’s availability. This approach
parallels many used in other developments, including more com-
plex ones where instruction set simulators and similar tools are
used to allow the software development to continue in advance of
true hardware availability.

1 2 3 4

6 7 8 9

5

1 2 3 4

6 7 8 9
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Laptop end (Male 9 pin D-type)

Data logger (Female 9 pin D-type)

The laptop-data logger RS232 link



410 Embedded systems design

With the PC-based testing completed, the system could be
installed and tested in the car itself. This was initially done in the
garage while stationary and then with a passenger using the
system while the car was driven. Once all this was completed, the
system and car were taken to a race track and the system used in
anger during the day’s testing. This final testing revealed several
problems with the system.

Problems

Saving to hard disk
The logged data is saved to disk so that it can be read back

at a later date. The data is sent to disk every time a sample set is
received. This is typically completed before the next sample is
required and does not interfere with the timing. This at least was
the original thought. In practice, this was the case for most of the
time as the data is buffered before it is sent out to disk. When the
buffer is emptied, the time taken to complete this is becomes quite
long, especially if the disk needs to be woken up and brought up
to speed. While this is happening, no samples are taken and the
integrity of the sampling rate is broken. Testing during develop-
ment did not show a problem but when the unit was used in real
life, a 2 to 3% timing error was seen. If the logs were kept small, the
timing was accurate. If they extended to several minutes, they lost
time. The problem turned out to be caused by two design prob-
lems: accuracy of the timer counter programming and the buffer
being flushed to the hard disk. The timer counter problem will be
covered later and was really caused by an underlying behaviour
in the compiler. The hard disk issue was a more fundamental
problem because it meant that the design could not store data logs
to disk without compromising the sampling rate integrity.

There is a simple solution to this. Why use a slow disk when
there is plenty of faster memory available? Use a large data array
to hold the data samples and then copy the data to disk when the
logging is stopped. This has the disadvantage of restricting the
length of time that the logging will work to the size of the data
array which will typically be far less than the storage and thus the
time offered by a hard disk. However with just a few Mbytes of
RAM offering the equivalent of many hours logging, this is not
necessarily a major obstacle and this solution was looked at.

Data size restrictions and the use of a RAM disk
The PC architecture started out as a segmented architecture

where the total memory map is split into 64 kbytes segments of
memory. Addressing data in these segments is straightforward
providing the size of the data does not go beyond 64 kbytes. If it
does the segment register needs to be programmed to place the
address into the next segment. While later PC processors adopted
larger linear address spaces, many of the compilers were slow to
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exploit this. This leads to a dilemma: the hardware supports it but
the C compiler does not. In this case, the Borland TurboC v2.0
compiler was restricted to data arrays of no larger than 64 kbytes.
It could have been possible to use several of these and then
implement some housekeeping code that controls when to switch
from a filled array to an empty one but initial attempts at that were
not successful either. This is a case of a need that looks simple on
face value but gets complex when all the potential conditions and
scenarios are considered. This led to a fairly major decision: either
change to a different or later version of the compiler that sup-
ported larger data structures or find some other memory-based
solution.

The decision to change a compiler is not to be taken lightly,
especially as the application code had been written and was
working well. It used the Borland specific functions to access the
timer hardware and set up the interrupt routines. Changing the
compiler would mean that this code would probably need to be
rewritten and tested and this process may introduce other bugs
and problems.

A search through the Borland developer archive provided
a solution. It came up with the suggestion to use the existing disk
storage method but create a RAM disk to store the file. When the
logging is complete the RAM disk file can be copied to the hard
disk. This copying operation is done outside of the logging and
thus the timing problem goes away. There is no change to the
fundamental code and as the PC was a laptop with its own battery
supply, no real risk of losing the data. One added benefit was that
the hard disk was not used and thus powered down during the
logging operation and so reduced the power consumption.

Timer calculations and the compiler
The software was designed to calculate the timer values

using the parameter passed to the timer set-up routine. All well
and good except that the routine was not accurate and the wrong
value would be programmed in. The reason was due to rounding
and conversion errors in the arithmetic. Although the basic code
looked fine and was syntactically correct, the compiler performed
several behind-the-scenes approximations that led to a significant
error. The problem is further compounded by the need for a final
hexadecimal value to be programmed into the timer register. In
the end, calculating the exact figure using the Microsoft Windows
NT calculator accessory, and then converting the final value to
hexadecimal solved this problem. This pre-calculated value is
used if the passed parameter matches the required value.

Data corruption and the need for buffer flushing
While the system worked as expected in the lab using the

test harness, occasional problems where noticed where the data
order unexpectedly changed. The engine RPM data would move
to a different location and appear as a wheel speed and the front
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wheel speeds would register as the rear wheel speeds and so on.
It was initially thought that this was to do with an error in the way
the data ordering was done. Indeed, a quick workaround was
made which changed the sample data ordering but while it
appeared to cure the problem, it too suffered from the wrong data
order at some point.

Further investigation indicated that this problem occurred
when the engine was switched off and re-started while logging or
if the logging was started and the engine then switched on. It was
also noticed that when the EMU was powered up, it sent out a
“welcome” message including the version number. It was this that
provided the clue.

The welcome message was stored in the serial port FIFO
and when a sample was requested, the real sample data would be
sent and added to the FIFO queue. The logger would read the first
six bytes from the queue that would be the first six characters of the
welcome message. This would then repeat. If the welcome mes-
sage had a length that was a multiple of six characters, then the
samples would be correctly picked up, albeit slightly delayed. The
periodicity would still be fine, it's just that sample 1 would be
received when sample 2 or 3 would have been. If the message was
not a multiple of six, then the remaining characters would form
part of the sample and the rest of the sample would be appended
to this. If there were three characters left, then the first three
characters of the sample would be appended to this and become
the last three characters. The last three characters of the data
sample are still in the FIFO and would become the first three of the
next sample and so on. This would give the impression that the
data order had changed but in reality, the samples were corrupted
with each logged sample consisting of the end of the previous
sample and the beginning of the next.

If the EMU was started before logging was enabled, the
characters were lost and the problem did not arise. If the engine
stalled during the logging or started during this period, the
welcome message would be sent, stored and thus corrupt the
sampling. The test chassis did not simulate this, and this was why
the problem did not appear in the lab. Another problem was also
identified and that was associated with turning the engine off. If
this happened while the data sample was being sent, it would not
complete the transfer and therefore there is a potential for the
system to stall or leave partial data in the queue that could corrupt
the data sampling.

Having identified the problem, the solution required sev-
eral fixes: the first was to clear the buffers prior to enabling the
logging so that any welcome message or other erroneous data was
removed. This approach was extended to occur whenever a sam-
ple is requested to ensure that a mid-logging engine restart did not
insert the “welcome” message data into the FIFO. During normal
operation, this check has very little overhead and basically adds a
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read to one of the serial port registers and tests a bit to the existing
instruction flow. If characters are detected these are easily re-
moved before operation but as this should only happen during an
engine shutdown and restart where timing accuracy is not abso-
lutely essential. Indeed, the data logger marks the data log to
indicate that an error has occurred. The sample data collection will
also time out if no data is received. This is detected and again the
sample aborted and a marker inserted to indicate that a timeout
has occurred.

Program listing
The rest of this chapter contains the logging program,

complete with comments that describe its operation. These com-
ments are easy to spot as they are in bold text.

#include        <stdio.h>
#include        <stdlib.h>
#include        <string.h>
#include        <dos.h>
#include     <dir.h>
#include        <alloc.h>
#include        <conio.h>
#include        <time.h>

#define TRUE    0x01
#define FALSE   0x00
#define DISPLAY  0x00
#define DATALOG  0x01
#define FILECOPY 0x02

/*
 *  VERSION numbers....
 */

#define MAJOR   6
#define MINOR   1

/*
 *  I/O addresses
 */

#define PORT1   0x3F8   /* COM1 port address */
#define PORT2   0x2F8   /* COM2 port address */
#define PORT3   0x3E8   /* COM3 port address */
#define PORT4   0x2E8   /* COM4 port address */

#define LPT1    0x378   /* LPT1 port address */
#define LPT2    0x268   /* LPT2 port address */

/*
 *  Now define the required BAUD rate
 *  38400=0x03   115200=0x01   57600=0x02   19200=0x06
 *  9600=0x0C     4800=0x18    2400=0x30
 */
#define BAUD    0x06    /* 19200 baud rate */
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/*
 *      Data logging utility
 *      Usage: TCLOG
 *
 *      Compile with PACC -R or “_getargs() wildcard expansion”
 *      if you want it to handle wildcards, e.g. CHK *.EXE
 */

/*
 *  This version reprograms the system TICK (18th sec) and daisy chains
 *  onto the 0x1c interrupt where it changes the status of the variable
 *  Waitflag instead of using the int 21 routine which seems to be a little
 *  BIOS unfriendly!
 *  When Waitflag changes, the sampling routine resets and runs again.
 *  In this way the sampling is synchronised to the interrupt rate e.g. 33 Hz
 */

void set_rate(int Hz); /* Programs the tick timer to support Hz sample rate */
void setup_int();                /* Sets up out vector 1C interrupt routine */
void restore();                      /* Restores the orig vector 1C routine */
void create_header();
void interrupt timer_tick(); /* Changes the value of waitflag from 0 to 128 */
void interrupt (far *old_1C_vect)();       /* Stores the old vector handler */
void tc_display(int tc);                /* Displays the TC level */

/*
 *  Let’s declare the global data...
 */

unsigned int    h,i,j,k;        /* loop counters */
unsigned int    byte_count;     /* Counts six bytes - goes 0 to 6 */
unsigned int    time_out;       /* flag to indicate time out problem */
unsigned int    get_com;        /* bioscom status */
unsigned char   byte;           /* bioscom parameter */
unsigned char lpt;   /* LPT data */

unsigned char   c[512];         /* character read from file */
unsigned char   fn[20];         /* string for target filename */
unsigned int    buf[7];         /* buffer for incoming data */
FILE *          infile;         /* input file handle */
FILE *          outfile;        /* output file handle */

unsigned char log[256];         /* Buffer for incoming serial data */

unsigned int waitflag;  /* stores the flag for timer tick status */

main()
{
/*
 *  The main loop may look a little cumbersome in that apart from setup and
 *  restore and the interrupt routine, it does not use any subroutines.
 *  The reason is that timing is quite tight on a slow machine and the
 *  potential overhead of passing large amounts of data can make a difference
 *  at high data rates.
 */

/*
 *  Let’s initialise the data
 */

        time_out = 0;
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        waitflag = 0;
        j =0; k =0;
/*
 *      Clear the two spare data channels. These are stored but not used
 *  currently. They can be filled in by reading external data such as
 *  throttle and brake position.
 */
        log[6] = 0; log[7] =0;

/*
 *  Set up the COM port for 19.200 kbaud, 8B, No P, 1 STOP, FIFO on
 */
        outportb(PORT1 + 1, 0x00);      /* Turn off COM port interrupts */

        outportb(PORT1 + 3, 0x80);      /* Set DLAB on         */
        outportb(PORT1 + 0, BAUD);      /* Set BAUD LO byte    */
        outportb(PORT1 + 1, 0x00);      /* Set BAUD HI byte    */
        outportb(PORT1 + 3, 0x03);      /* 8 bits, No P,1 STOP */
        outportb(PORT1 + 2, 0xC7);      /* Turn on FIFOS       */
        outportb(PORT1 + 4, 0x0B);      /* Set DTR,RTS,OUT2    */

/*
 * Set up the LPT control port to enable the switches...
   bits 3,1 and 0 are used to generate active high signals
   for the status port inputs.

Bit   7 6 5 4 3 2 1 0
Data  1 1 0 0 1 0 1 1    0xCB

 */

 outportb(LPT1 + 2, 0xCB); /* Set up the control port */

/*
 *  Set up the interval timer params.......
 *  This is setup to generate a .033 second timing rate.
 *  This is compatible with the data log software.
 *  ( c[07] = 0x3D;     Set up internal timing for 30 Hz)
 */

set_rate(30); /* 30 Hz for data logging */
setup_int();

printf(“Setup complete.  ch = %x\n”,check_port());

/*
 *  Print the intro so we know the version and what it does...
 */

        printf(“TCLOG version %d.%d  FIFOs enabled 19.2 kbps\n”,MAJOR,MINOR);
        printf(“This collates data from the traction control.\n”);

do  /* Start of main control loop */
 {
        /* Look at external controls */
        /* If logging set then go into log loop */
        /* If not go into display loop */

/* Currently we go into log loop */

if (inportb(LPT1+1) < 0x80)
            { /* we are not data logging just displaying the tc values */
              printf(“Going into display mode...\n”);
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/* Clear the serial port FIFO */
printf(“Clearing serial port FIFO: “);
while (inportb(PORT1 + 5) & 1)
{
log[10] = inportb(PORT1);
printf(“=X”);
}
printf(“   FIFO Clear\n”);

      printf(“ A MODE        FL FR RL RR RPM TC  Samples\n”);
      j = 0;
      while (inportb(LPT1+1) < 0x80 & bioskey(1) == 0)  /* Check the

switch value and the keyboard */
                {

 /* First send out the M to the data logger to get it */
 /* to send the next 6 bytes of data                  */
 outportb(PORT1,0x4D);
 /* Now lets get the data in  */
 byte_count = 0; /* clear the byte counter */
 do

{get_com = inportb(PORT1 + 5);
get_com = inportb(PORT1 + 5);
                        if (get_com & 1)

{
log[byte_count++] = inportb(PORT1);
}

                        } while (waitflag != 128 & byte_count != 6);
 /* Now we have six data samples, check if we timed out... */
 j++;
 if (byte_count == 6)

{ /* Display the traction control status */
tc_display(log[5]);
/* All done */

                        }
 else tc_display(0); /* RESET the TC status */
 /* all done so wait for timer to expire... */
 printf(“Display mode:  %x  %x  %x  %x  %x   %x   %d\r”,

             log[0],log[1],log[2],log[3],log[4],log[5],j);
 for(;waitflag != 128;);
 waitflag = 0; /* Now clear the wait flag to repeat */
 }  /* end of data display WHILE loop */
 fcloseall();
 /* restore(); */ /* now performed on program exit */
 printf(“\nEnd of data display routine\n”);

    } /* end of IF data display = TRUE loop */
        else
                {       /*
                         *  WE ARE DATA LOGGING!

 */
            /* Set up the data log file  */

create_header();
j =0;
time_out = 0;

/* Clear the serial port FIFO */
printf(“Clearing serial port FIFO: “);
while (inportb(PORT1 + 5) & 1)
{
log[10] = inportb(PORT1);
printf(“=X”);
}
printf(“   FIFO Clear\n”);
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/* Now synchronise with the clock */
printf(“Synchronising\n”);
printf(“A MODE Data logging starting \a\a\a\n”);
printf(“FL FR RL RR RPM TC  OK   FAIL\n”);
for(;waitflag != 128;);
waitflag = 0;

while(inportb(LPT1+1) > 0x80 & bioskey(1) == 0)
/* this would test the switch */
{
/* First send out the M to the data logger to get it */
/* to send the next 6 bytes of data                  */
outportb(PORT1,0x4D);
/* Now lets get the data in  */
byte_count = 0; /* clear the byte counter */
do
{ get_com = inportb(PORT1 + 5);

if (get_com & 1)
{ log[byte_count++] = inportb(PORT1);
}

} while (waitflag != 128 & byte_count != 6);
/* Now we have six data samples, check if we timed out... */
if (byte_count == 6)
    {  /* Success! */
    j++;
    /* Reorg the data correctly

                   This has been commented out as it was not needed
       when the real problem was found out. */
    /* Input order: 0 = FL, 1 = FR, 2=RPM,3=TC,4=RL, 5=RR  */
    /* Output order: FL, FR, RL, RR, RPM, TC */
    /* log[9] = log[2];*/  /* Copy RMP to [9] */
    /* log[8] = log[3];*/  /* Copy TC to [8] */
    /* log[2] = log[4];*/  /* Copy RL to [2] */
    /* log[3] = log[5];*/  /* Copy RR to [3] */
    /* log[4] = log[9];*/  /* Copy RPM to [4] */
    /* log[5] = log[8];*/  /* Copy TC to [5] */

    /* Store the data in the file */
    fwrite(log,1,8,outfile);
    /* Display the traction control status */
    tc_display(log[5]);

    /* Display the LPT port status */
    /* printf(“LPT=%x\n”,inportb(LPT1+1)); */

    }
else /* we timed out.. */
    {
    /* Mark the file so we know we timed out */
    strcpy(log,”********”);
    fwrite(log,1,8,outfile);
    time_out++;
    tc_display(0);
    }
printf(“%x %x %x %x %x  %x  %d %d\r”, log[0], log[1], log[2],

            log[3], log[4],log[5],j,time_out);
/* all done so wait for timer to expire... */
for(;waitflag != 128;);
waitflag = 0; /* Now clear the wait flag to repeat */
}  /* end of data logging WHILE loop */

fcloseall();
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printf(“\nTime out = %d”,time_out);
        printf(“ Transfers attempted: %d\n”,j);

} /* end of data log ELSE */

 } while ( (inportb(LPT1+1) & 0x20) == 0x00);
/*
 * We are quitting the program so restore and close...
*/
restore();
printf(“ Quitting TCLOG now...\n”);

} /* end of MAIN() */

/*
 *  This is where the sub-routines live that control the tick ...
 */

void set_rate(int Hz /* This is the sample rate we need */)
{
        int rate_hi, rate_lo;   /* low and high bytes to program the timer */
        int num;                                /* temp value  */

printf(“Changing the BIOS 1/18th tick rate to 1/%d\n”,Hz);
/*
 *  First calculate the values we need to program...
 *  If the rate is 18... re program to normal BIOS value to restore normality
 */

/*
 * The main clock is 14.31818 MHz divided by 12 to give 1.1931816 MHz
 * Divide by 65536 to give the 18.2 Hz tick.
 * To reprogram it, divide 1,193,181.6 by the Hz value.
 * For 30 Hz this is 39773 or 0x965C
 *
 */

if (Hz == 18) { rate_hi = 0xFF; rate_lo = 0xFF; }
else if (Hz == 30) {rate_hi = 0x96; rate_lo = 0x5C;}

        else    {
                        num=65536/(Hz/18.2);
                        rate_hi = num&0xFF00;
                        rate_hi = rate_hi/256;

rate_lo = num&0x00FF;
}

        outportb(0x43,0x36);    /*  Set up 8253 timer for Sq Wave */
outportb(0x40,rate_lo);  /* program divisor low byte */
outportb(0x40,rate_hi);  /* program divisor high byte */

/*
 *  The tick has now been set up for the required sampling frequency.
 */
} /* End of set_rate()  */

void interrupt timer_tick()
{
/*
 *  The timer has expired so change the value of waitflag and return..
 */

waitflag = 128;
} /* end of timer tick interrupt routine */
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void setup_int()
{
        disable();
        old_1C_vect=getvect(0x1C);
        setvect(0x1c,timer_tick);
        enable();
}       /* end of setup_int() */
void restore()
{
        disable();
        set_rate(18);
        setvect(0x1C,old_1C_vect);
        enable();
}       /* end of restore()  */

void create_header()
{
char file_name[28]; /* Stores the file name */
char temp_str[28]; /* Holds the file name */
struct ffblk f; /* File block structure */
int done;       /* Stores the result of the file find */
int count;       /* Stores the number of files to work out the

         next file name for storage                 */
/*
 *  This creates the enhanced Racelogic format file header from a
 *  header file called BLANKHDR.BIN
 */

/*
 *  First work out the next file name in the sequence
 */
 count = 0;
 done = findfirst(“data_*.dat”,&f,0);
 while(!done) {

count++;
printf(“Count: %d %s\n”,count,f.ff_name);
done = findnext(&f);
}
strcpy(file_name,”data_”);
itoa(count,temp_str,10);
strcat(file_name,temp_str);
strcat(file_name,”.dat”);

strcpy(fn,file_name);
                printf(“file name is %s\n”,fn);

if (!(outfile = fopen(fn,”wb”)))
                        {
                        printf(“Can’t open file %s.  Exitting.\n”,fn);
exit(1);
                        exit(1);
                        }
/*
 *  Let’s do the file copying now that we know that the
 *  input and output files are open...
 */

               if (!(infile = fopen(“BLANKHDR.BIN”, “r”)))
                        {
                        printf(“Can’t open BLANKHDR.BIN file for logging\n”);
                        exit(1);
                        }
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       fread(c, 260, 1, infile); /* Read the header */
/*
 *  Now update the information
 */
                   c[00]=8;     /* Set up the extra channel 06 to 07 */
                /*   3C = 125Hz, 3E = 7.5Hz, 3f = 202.89/256, 3D = 33Hz  */
                /*   NOTE: <3a,3B,2D, and >3F DON’T WORK! */
                   c[07] = 0x3D;        /* Set up internal timing for 33 Hz */
                /* Name the 1 s time stamp channel */

   c[156]=’T’; c[157]=’C’; c[158]=’6'; c[159]=’1';
   c[160]=’H’; c[161]=’z’; c[162]=’3'; c[163]=’0';

                /* Store the display factor for the channel */
                   c[164]= 0x00; c[165]= 0x00; c[166]= 0x4C; c[167]= 0x3E;

                /* Name the 20 second time stamp channel */
                   c[180]=’T’; c[181]=’i’; c[182]=’m’; c[183]=’e’;
                   c[184]=’ ‘; c[185]=’s’; c[186]=’e’; c[187]=’c’;
                /* Store the display factor for the channel */
                   c[188]= 0x00; c[189]= 0x00; c[190]= 0xA0; c[191]= 0x41;

/*
 *  Now let’s write the channel names.....
 */

                /* Name the first channel */
                   c[12]=’L’; c[13]=’e’; c[14]=’f’; c[15]=’t’;
                   c[16]=’ ‘; c[17]=’F’; c[18]=’r’; c[19]=’ ‘;
                /* Store the display factor */
                   c[20]= 0x00; c[21]= 0x00; c[22]= 0x26; c[23]= 0x3F;

                /* Name the second channel   */
                   c[36]=’R’;c[37]=’i’;c[38]=’g’;c[39]=’h’;
                   c[40]=’t’;c[41]=’ ‘;c[42]=’F’;c[43]=’r’;
                /* Store the display factor */
                   c[44]= 0x00;c[45]= 0x00;c[46]= 0x26;c[47]= 0x3F;

                /* Name the third channel */
                   c[60]=’L’;c[61]=’e’;c[62]=’f’;c[63]=’t’;
                   c[64]=’ ‘;c[65]=’B’;c[66]=’a’;c[67]=’k’;
                /* Store the display factor */
                   c[68]= 0x00;c[69]= 0x00;c[70]= 0x26;c[71]= 0x3F;

                /* Name the fouth channel */
                   c[84]=’R’;c[85]=’i’;c[86]=’g’;c[87]=’h’;
                   c[88]=’t’;c[89]=’ ‘;c[90]=’B’;c[91]=’k’;
                /* Store the display factor */
                   c[92]= 0x00;c[93]= 0x00;c[94]= 0x26;c[95]= 0x3F;

                /* Was 259, now 260 for 8th channel */
                   fwrite(c, 260, 1, outfile);  /* write the header */

                /* HEADER completed! */
}       /* end of create_header */

void tc_display(int tc)
{
/*
 * This displays the TC level either on the screen or
 * on an external LED array using the parallel port.
 * Replace with printf to write to the screen
 */
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if (tc == 0)      {outportb(LPT1,0x00);}
else if (tc == 1) {outportb(LPT1,0x01);}
else if (tc == 2) {outportb(LPT1,0x03);}
else if (tc == 3) {outportb(LPT1,0x07);}
else if (tc == 4) {outportb(LPT1,0x0f);}

}  /* end of tc_display() */
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