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Abstract—In an increasingly competitive marketplace system
complexity continues to grow, but time-to-market and lifecycle are
reducing. The purpose of fault diagnosis is the isolation of faults on
defective systems, a task requiring a high skill set. This has driven
the need for automated diagnostic tools. Over the last two decades,
automated diagnosis has been an active research area, but the in-
dustrial acceptance of these techniques, particularly in cost-sen-
sitive areas, has not been high. This paper reviews this research,
primarily covering rule-based, model-based, and case-based ap-
proaches and applications. Future research directions are finally
examined, with a concentration on issues, which may lead to a
greater acceptance of automated diagnosis.

Index Terms—Artificial intelligence, case-based reasoning, fault
diagnosis, fuzzy logic, machine learning, model-based reasoning,
neural networks, rule-based reasoning.

I. INTRODUCTION

W ITH increasing system complexity, shorter product life-
cycles, lower production costs, and changing technolo-

gies, the need for intelligent tools for all stages of product life-
cycle is becoming increasingly important.

In [71], a system is defined as “any aggregation of related
elements that together form an entity of sufficient complexity
for which it is impractical to treat all of the elements at the
lowest level of detail.” Examples are automobiles, computers, or
electronic circuit boards built using very large scale integrated
(VLSI) components.

Fault diagnosis isolates the source(s) of a system malfunction,
by collecting and analyzing information on system status using
measurements, tests, and other information sources (e.g., ob-
served symptoms). Often, it is performed by a human diagnos-
tician, and it is an important function at all stages of the product
lifecycle, but particularly during manufacture and field mainte-
nance.

Over the last three decades, automating fault diagnosis using
artificial intelligence (AI) techniques has been a major research
topic. There has been much progress, but industrial acceptance,
particularly in cost sensitive areas, has not been high.
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In addition, with the emerging use of reconfigurable systems,
in-line testing [58] and intelligent diagnostics can assist in the
self-maintenance of complex systems [69].

The purpose of this paper is to review system diagnosis re-
search using AI approaches, and to examine its application, par-
ticularly in the area of electronic system diagnosis.

II. M OTIVATION

Fault diagnosis using intelligent techniques has been an ac-
tive research area for the last two to three decades. However, its
industrial acceptance has been low. Why? This paper forms the
review section of the authors’ investigation into this question.
Additional work is on-going which will identify acceptance is-
sues, and possible solutions to increased acceptance and deploy-
ment.

Furthermore, no single reference could be located, which
covered a broad selection of approaches to intelligent diagnosis,
so it was felt that this paper could fill this void.

III. D IAGNOSTIC PROCESS

The purpose of fault diagnosis is to isolate the cause (com-
ponent or subassembly) of a system malfunction in a timely
manner.

The sequence followed to perform diagnosis can generally be
summarized as follows.

1) Fault Information Generation: Information must be
gathered about the nature of fault. This is achieved
by fusing information from various sources including:
observed symptoms, taking measurements, and running
diagnostic tests.

2) Fault Hypotheses Generation: The information gathered
is then used to localize the fault to a subset of components
or subassemblies which are consistent with the available
fault information.

3) Fault Hypothesis Discrimination: If more than one fault
candidate is proposed it may be necessary to perform fur-
ther tests or employ historical data (e.g., probabilities), to
discriminate further. If further discrimination is not pos-
sible, experience or trial and error may be called on to
determine the most appropriate repair.

Essentially the diagnostic process can be defined as fault iso-
lation using information collected from system observations and
tests.
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IV. TRADITIONAL APPROACHES

A. Rule-Based Systems

1) Approach: Rule-based diagnostic systems represent the
experience of skilled diagnosticians in the form of rules which
generally take the form “IF symptom(s) THEN fault(s).” Rep-
resenting the knowledge for a particular problem domain, may
require hundreds, or even thousands of rules. Rule-based in-
ference involves taking information about the problem domain,
and invoking rules which match this information. This gener-
ates new data which is added to the problem information. This
process is repeated iteratively until a solution to the problem is
found [50], [62]. Most intelligent diagnostic programs imple-
mented in the 1970s and early 1980s were of this form.

2) Applications: A survey of a selection of applications in
electronic engineering is described in [63]. Included are appli-
cations in the diagnosis of telephone networks, disk drives, tele-
phone switching equipment, and avionics control systems.

Even more recently, rule-based systems are continuing to be
used. An Expert System for PC Repair and Maintenance (ES-
PCRM) [47] describes a system for diagnosing PC systems to
the replaceable module level. In [64], a program for diagnosing
electronic forge press faults is reported. In [2], a complex expert
system employing multiple specialized rulebases for diagnosing
complex PC boards is described. Finally, in [21], a diagnostic
tool for server computers boards which uses a rulebase to ana-
lyze a dump of the processor’s internal memory is reported.

3) Issues: The primary advantage of this approach is its in-
tuitive simplicity.

Its disadvantages are the following.

a) The difficulty of acquiring the knowledge to build the rule-
base—known as the knowledge acquisition bottleneck.

b) Its ability to deal with novel faults.
c) System dependence, that is, a new rulebase will have to be

generated for each new system type.

B. Fault (Decision) Trees

1) Approach: Historically, this has been the most commonly
used method for documenting fault diagnosis procedures. A
fault tree uses symptom(s) or test results as its starting point,
followed by a branching decision tree, consisting of actions,
decisions, and finally repair recommendations. Fig. 1 shows a
simple example.

2) Applications: To assist in the navigation of large di-
agnostic networks, [1] describes a hypermedia system for
a point-and-click traversal of fault trees and other types of
diagnostic information.

To simplify the generation of fault trees for complex systems,
intelligent techniques have been applied to automatically gen-
erate them. In [23], automatic fault tree generation is performed
by using a circuit description, fault simulation to produce the
electrical effects caused by failures, quantification and classi-
fication of these effects to produce a test matrix, and finally
production of the test tree by recursively searching and evalu-
ating the test matrix. In [57], fault trees are generated using cases
extracted from a case-based reasoning system. In [36], process
models, fault simulation, and machine learning techniques are
applied to generate fault trees.

Fig. 1. Simple fault tree.

Also, fault trees have been used in various real-world intelli-
gent applications including [23] which presents a system for di-
agnosing automotive electronic control systems and [66] which
describes an expert system for color TV diagnosis.

3) Issues: The primary advantage of fault trees is simplicity
and ease of use. In fact, little training is needed to use these di-
agnostic aids. However, for more complex systems, a full fault
tree can be very large. In addition, a fault tree is system depen-
dent and even small engineering changes can mean significant
updates. Lastly, a fault tree offers no indication of the knowl-
edge used to generate the answer.

V. MODEL-BASED APPROACHES

Over the last 15 years, models have superseded rule-based
techniques, as one of the premier research directions for intel-
ligent systems diagnosis. A model is an approximate represen-
tation of the actual system being diagnosed. Model-based diag-
nosis involves using the model to predict faults using observa-
tions and information from the real device or system.

Models are often used in a hierarchical fashion, that is ini-
tial diagnosis is performed to a subunit level using a high level
model and then a more detailed model of the subunit is used to
diagnose to the next level and so on.

Various types of approaches have been used including fault
models, structural models, behavioral models, and diagnostic
inference models. The following sections discuss these various
approaches, and their associated inference mechanisms.
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Fig. 2. Simple fault model for a digital circuit.

A. Fault Models (or Fault Dictionaries)

1) Approach: This type of model anticipates the types of
faults that may occur and only models these. Each of the selected
fault types is inserted into each component, and using simula-
tion, the behavior of the overall system is monitored. Each simu-
lation produces a description of how the overall system operates
when a particular part is defective in a specific way. This pro-
vides a list of fault/symptom pairs, which is used to produce a
fault dictionary, which can indicate which component is defec-
tive when a particular overall symptom is present.

2) Applications: This method has primarily been applied to
the diagnosis of digital circuits, where it has been used for the
detection of stuck at “one” and “zero” faults, bridging (shorts)
faults, and delay (timing) faults [80]. For example, to test a
simple digital combinational circuit a series of binary test vec-
tors is used. Using the fault simulator the behavior of each test
pattern is noted for each fault type. Fig. 2 illustrates an example
of a fault dictionary (x indicates that this test pattern fails if the
corresponding fault is present). The defective component is the
gate which behaves according to the fault dictionary or model
for each test pattern.

3) Issues: For combinational digital circuits, fault models
can diagnose modeled faults accurately, however, they are un-
able to deal with unanticipated (i.e., unsimulated) faults. How-
ever, the set of simulated faults may be adequate for most di-
agnostic purposes and, therefore, may provide a more than ad-
equate solution for many applications.

Fault models are less successful when used with sequential
circuits. To diagnose such circuits a test sequence rather than
a single vector is required, and if the state of the circuit is lost
during test because of a fault, it may not be possible to complete
the sequence and, therefore, the diagnosis [80], [81]. Splitting
the circuit into more manageable chunks, known as encapsula-
tion, has been proposed as a possible solution [81].

Finally, for large circuits, the quantity of test vectors required
can be large leading to impractical test times. Data compression
approaches have been applied to this problem [80], [82].

B. Causal Models

1) Approach: A causal model is a directed graph where the
nodes represent the variables of the modeled system and the
links represent the relationships or associations between the
variables. For example, in a diagnostic model, the variables
often represent the symptoms and the faults, and the links
represent the symptom–fault associations. The strength of each
link is often defined using a numerical weight or probability.
Therefore, the faults hypotheses formed are ranked or elimi-
nated using Bayesian techniques [59], [60]. Bayesian networks
are a variation on this approach [37].

Fig. 3. Simple circuit model.

2) Applications: In [83], a Bayesian network is applied to
the diagnosis of an integrated circuit tester. The knowledge of
a domain expert regarding the probability of different tester
failure modes is represented as a Bayesian network.

According to [84], rule-based systems are more prevalent
than model-based approaches in industry because it is perceived
that model-based systems are more difficult to build. To over-
come this, a tool for converting a simple block diagram of a
system to a causal model is presented.

3) Issues: Expert knowledge of the application area is
needed to construct a causal model, so the “knowledge acquisi-
tion bottleneck” is its primary shortcoming.

The primary advantage is the ability to represent complex
structured knowledge about physical or abstract concepts
more easily than rules thus leading to greater computational
efficiency. In addition, causal models are based on the firm
mathematical theory of probability.

C. Models Based on Structure and Behavior

1) Approach: One of the primary research directions over
the last 15 years has been the use of models based on structure
and behavior. A dual representation of both structure and be-
havior is used. The structure representation lists all the compo-
nents and their interconnections within the modeled system. The
behavior representation describes the correct behavior pattern
for each component. Behavior models can use various levels of
abstraction including: mathematical, qualitative, or functional
[10], [18]. Both representations are often created using logical
formulae such as first order predicate calculus.

If the operation of the model does not agree with observations
from the real system during a particular mode of operation, then
a discrepancy has occurred and a diagnosis must be performed
to find the defective component(s). Fig. 3 shows an example of
a simple arithmetic circuit. If the inputs A through E are stimu-
lated as shown, the outputs should measure as shown. Failure to
measure these values indicates a discrepancy between the model
and the real system.
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Unlike fault models, this type of model is a correct model.
That is, it models a working device, and theoretically, it can
diagnose any fault type, not just the modeled ones.

Many of the basic techniques were proposed during the 1980s
and involve the diagnosis of simple combinational digital cir-
cuits. The same basic principles apply to other device types. The
process generally consists of three steps.

1) Hypothesis Generation: Generate a list of components
(suspects) that might be responsible for the observed dis-
crepancy.

2) Hypothesis Testing: Test each suspect to see if it can ac-
count for all the observations. A number of methods have
been proposed for exonerating and reducing the list of
suspects created during hypothesis generation. These in-
clude: constraint suspension [19], assumption-based truth
maintenance [39], and fault model simulation [43].

3) Hypothesis Discrimination: If more than one suspect re-
mains after the previous step, this action collects more
information to aid in further discrimination. Additional
information to discriminate can be collected using one of
the following methods.

— Additional Measurements: Determining the best
measurement sequence is the key issue and various
approaches have been investigated including the use
of failure probabilities [39] and the half-split method
[43].

— Additional Tests: Determining the next test, which will
provide the best information for maximum discrimina-
tion, is the key issue [68].

2) Applications: Hypothesis testing (HT) was one of the
seminal works in structural/behavioral models for diagnostic
applications [19]. Its application area was combinational digital
circuits. To describe structure it used a subset of DECmmp
Parallel Language, a VLSI design language. The representa-
tions used were hierarchical and both physical and functional
descriptions were employed. Constraints were used to describe
behavior, and both simulation and inference rules were used
to describe the relationships between component inputs and
outputs. Diagnosis was performed using candidate generation
and constraint suspension.

In [28], HT is extended to deal with time variant digital cir-
cuits. Its behavioral representations are extended to deal with
(value, time) pairs so that the behavior of a circuit can be de-
scribed over a series of time periods. However, it concluded that
unless complete state visibility (i.e., measurements being made
at the end of different time periods) is available, diagnosis gener-
ation is inherently under-constrained and indiscriminate. Single
stepping the circuit, so that observations could be taken at dif-
ferent time points, was proposed as a possible solution.

In [39], the general diagnostic engine (GDE) is introduced.
GDE addressed the issue of multiple faults and became the basis
for much later research in the area [39]. It introduced the use
of ATMS [38] for diagnosis. Using constraint propagation and
ATMS, it identifies minimal diagnoses, but considered all super-
sets of each minimal set a possible diagnosis; if a particular min-
imal diagnosis is exonerated all its supersets are also exonerated.
To further discriminate amongst candidate diagnoses, it uses ad-

ditional circuit measurements. To make an optimum set of mea-
surements, it uses one-step look-ahead based on minimum en-
tropy to predict the best probing sequence. Failure probabili-
ties of individual components are needed to guide this process.
Often such failure probabilities can be difficult to obtain, so an
extension to GDE [41], proposes the use of crude probability es-
timates to guide diagnosis. It does this by assuming all compo-
nents fail with equal probability and with extremely small prob-
ability. Lastly, some extensions to GDE exploit fault modes or
models to provide additional diagnostic discrimination [40].

In [29], extended diagnostic engine (XDE) extends the GDE
program described above, to deal with more complex circuits,
including sequential ones. It uses a structural language called
BASIL to provide both a physical and a functional represen-
tation of a circuit. For example, the functional representation
would describe an arithmetic circuit in terms of adders and mul-
tipliers, whereas the physical description would describe the
actual components used to build the circuit. The relationship
between both descriptions is defined. To describe behavior, a
temporal constraint propagation language called TINT is used.
TINT defines rules at multiple levels of temporal abstraction to
describe the operation of the circuit primarily at the functional
level. Probability estimates are used to rank alternative diag-
noses and to choose the next best measurement. These estimates
are defined relative to a components complexity. To further re-
fine diagnoses, fault models are employed to further adjust prob-
ability estimates. XDE has been tested on complex boards in-
cluding microprocessor-based circuits.

In [15] and [17] DEDALE, an approach for analog circuit
fault diagnosis, is described. DEDALE is an ATMS-like
system. Components behavior is described using qualitative
models based on relative orders of magnitude. Some compo-
nents, such as transistors, can have a number of correct modes
of operation. Diagnosis is performed in a hierarchal fashion,
starting at the device level, which is diagnosed in a functional
manner, and working down to the component level, block
by block. To perform inference within a defective block, the
measurement at each node and its attached components are
checked for consistency with a correct model for the observed
measurements. An inconsistency in the behavior indicates
that one of the components attached to that node is defective.
Intersection with other inconsistent nodes can further isolate
the defective component.

CATS is a domain independent diagnosis engine based on the
GDE framework, but with extensions to process values which
are imprecise and change with time. DIANA is an implemen-
tation of CATS for diagnosing analog circuits [16], [17]. To
allow for measurement imprecision, quantities are represented
in CATS/DIANA using ranges or numeric intervals. Continuous
signals are represented by using arrays of numeric intervals, ac-
companied by a triplet defining sample start instant, sampling
increment, and number of samples. In order to repeat measure-
ments the sample start instant must be synchronized in some
way (e.g., clock signal). The imprecision of component param-
eters is also represented using numeric intervals. Component
models are qualitative approximations, not suitable for accu-
rate simulations, but adequate for troubleshooting purposes. The
diagnostic engine CATS receives as input constraints from the
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models and measurements. Then using an ATMS-like inference
mechanism it produces diagnostic candidates as outputs.

In [13], a generic model-based diagnostic system for a par-
ticular area of technical diagnosis is presented (switch-mode
power supplies). A structural model based on frames, and a be-
havioral model based on heuristic rules which represent fault
behavior in modules or components is used.

3) Issues: Models based on structure and behavior would
appear to represent an ideal solution for many diagnostic prob-
lems. Theoretically, because of the use of correct models, all
faults can be diagnosed; CAD data can be used to automati-
cally generate suitable models. However, in practice, there are a
number of significant limitations.

1) It is computationally intensive for complex problems
[24]. Focusing on the most probable failures first [42]
and the inclusion of fault models have been used to
improve efficiency [40].

2) Representing the behavior of complex components, such
as a Pentium microprocessor, is still a major research
issue [20].

3) Complete and consistent models are hard to develop. Es-
sentially, a model is only an approximate representation
of a real world system. For example, a circuit bridging
fault will not be represented in the structural model [20],
[24].

4) Information relating to the ways the system can fail is
often not present. This can lead to the isolation nonsen-
sical faults [85].

5) Unless CAD generation is possible models can be time
consuming to develop and maintain.

D. Diagnostic Inference Model

1) Approach: The diagnostic inference model [71], [72],
performs diagnosis by representing the problem to be solved
via the flow of diagnostic information. Previously known as the
information flow model, the name change reflects the models
focus on information provided by diagnostics and inferences
that can be drawn from this information.

The model consists of two basic elements: tests and con-
clusions. Tests consist of any source of diagnostic information
including, observable symptoms, logistics history, and results
from diagnostic tests. Conclusions typically represent faults or
units to replace. The dependency relationship between tests and
conclusions is represented using a directed graph. In addition to
tests and conclusions, there are three other possible elements in a
diagnostic inference model: testable input, untestable input, and
No-Fault. An input represents information entering the system
which may affect the health of the system. A testable input can
be examined for validity, an untestable input cannot. A No-Fault
is a special conclusion indicating that the test set found no fault.

Fig. 4 shows an example of a diagnostic inference model.
Test sequencing is optimized using algorithms based on max-

imum test information gain. Diagnostic inference combines in-
formation from multiple tests using several logical and statis-
tical inference techniques, including a modified form of Demp-
ster–Shafer (D–S) evidential reasoning [50] which incorporates
a special conclusion, the unanticipated result. The unanticipated

Fig. 4. Information flow model example.

result compensates for disappearing uncertainty in the face of
conflict.

As with all model-based techniques conflicting diagnoses
may be derived. Conflicts are caused by: test error, multiple
faults, or incomplete or inaccurate models. The D–S method
and certainty factors are both used as methods for reasoning
with these uncertainties [72].

2) Applications: Various successful uses of the diagnostic
inference model are summarized in [86]. In [87], its application
to radar system maintenance is outlined, and in [88] its applica-
tion to the diagnosis of power supplies is described.

In [61], an approach similar to the diagnostic inference model
is proposed and deployed for the troubleshooting of complex
PC boards to component level. Models of the tests, rather than
structure or behavior are used. The test models are specified in
terms of how the tests act on the device under test (e.g., does the
test access memory, output to port), and each test is mapped to
specific components. This is combined with information on the
degree to which each component is exercised, to give a relative
weighting to each diagnosis using Bayesian-like probabilistic
formula. The system now forms part of the Hewlett-Packard
Fault Detective product.

3) Issues: Diagnostic inference models are at their most ef-
fective if considered and implemented at the design phase of
the product lifecycle. Unfortunately with many systems, design
for diagnosis is still not an important consideration, so an in-
adequate supply of structured diagnostic information makes ac-
curate diagnosis difficult using this approach. However, if an
adequate model can be built using available diagnostic infor-
mation diagnosis can be both accurate and computationally ef-
ficient [86].

VI. M ACHINE LEARNING APPROACHES

The approaches discussed in the previous sections, once
implemented, will have a fixed level of performance. It is not
possible to improve performance, by using the experiences
of past successes and failures. Machine learning approaches
exploit knowledge of previous successful or failed diagnoses
to continually improve system performance or use available
domain data to automatically generate knowledge.

A. Case-Based Reasoning

1) Approach: Case-based reasoning (CBR) involves storing
experiences of past solutions known as cases, retrieving a suit-
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able case to use in a new problem situation, adapting and reusing
the retrieved case to suit the new problem, revising the adapted
case based on it’s level of success or failure, and eventually re-
taining any useful learned experiences in the case memory [45],
[46].

A CBR solution generally consists of the following steps.

• Knowledge or Case Representation.
• Case Retrieval.
• Case Reuse.
• Case Revision.
• Case Retainment (or learning).

Case representation, often called case memory, consists of de-
ciding what to store in a case, selecting an appropriate structure
for representing the case contents, and deciding on a suitable
case indexing scheme to enable efficient retrieval.

Case retrieval consists of the following steps.

1) Identify features which sum up the current problem or
case.

2) Use the features to find similar cases in the case memory.
These are ranked in order of similarity.

3) Perform final matching by analyzing in more detail the
cases selected in step 2) against the current case. Select
the most similar case.

Case reuse consists of finding the differences between the
past and the current case, and then adapting the past case in
some way to match the current case. Common forms of adap-
tation include substitution (substituting new values for old) and
transformation (using heuristics).

Case revision involves evaluating the case solution from the
reuse phase, and if necessary repairing any parts of the solution
which are contributing to an inadequate solution. Evaluating in-
volves applying the solution in a real situation, and measuring
in some way its level of success. Errors in the solution are then
detected and repaired using domain specific knowledge.

Finally, case retainment (or learning) adds useful informa-
tion learned during the current problem solving task to the case
memory. This may not only be successful new cases, but also
failed cases (“don’t do that again!”). Retainment can be an ad-
justment to an existing case(s) and its indeces or the addition of
an entirely new case.

2) Applications: In [73], each case is represented using an
ID number, frequency, symptoms, and actions. On retrieval it
uses a possibility metric to rank cases; this is based on similarity
and frequency. The problem of generating casebases for new
products is discussed, and the solution of using two casebases,
a generic casebase, and a product-type casebase is proposed.
The generic casebase stores domain diagnostic rules based on
symptom-defect causalities. The product-type casebase is gen-
erated from the generic casebase by specializing its cases and
updating the frequencies.

In [14], an incremental case-based electronic fault diagnosis
system is presented. A minimal case description can be used
to perform initial case retrieval. The retrieved set is examined to
determine tests which the operator is asked to perform and these
results are used to discriminate between cases.

In [5], a circuit diagnosis support system for electronic
assembly operations is described. Real-time diagnosis is re-
quired, so CBR is chosen over model-based diagnosis (MBD),
as the computational overhead of MBD is considered to be too
high. Initial case retrieval is performed, and additional tests are
optimally selected, using dynamic programming techniques
or heuristics, to refine the diagnosis. The case-base is updated
after each diagnosis to reflect previously unknown faults. After
five weeks of on-line use the system could diagnose 95% of
defects.

3) Issues: The effectiveness of CBR depends on the avail-
ability of suitable case data, generated from historical data or
simulation, and the selection of effective indexing, retrieval, and
adaptation methods.

B. Explanation-Based Learning

1) Approach: Explanation-based learning (EBL) uses do-
main knowledge, and a single training example, to learn a new
concept [50]. For example, in diagnosis, a system model and an
example of misdiagnosis can be used to derive an explanation
of an appropriate diagnosis.

2) Applications: In [67], a diagnostic EBL system is de-
scribed which improves diagnostic inference models following
learning. It operates as follows. After a misdiagnosis, further
testing is performed until a correct diagnosis is made; this ad-
ditional knowledge is then used to modify the model so that the
correct diagnosis is consistent with the testing.

3) Issues: EBL success depends on the availability of
adequate domain knowledge. Therefore, for complex domains
where extensive knowledge is needed to formulate new con-
cepts, the approach may prove to be intractable.

C. Learning Knowledge From Data

1) Approach: Another approach is the extraction of
knowledge bases from existing databases or casebases. This
overcomes the knowledge acquisition bottleneck and automat-
ically generates an intelligent diagnostic system from existing
resources. Obviously, it is only useful if prior data is available,
so for new systems it is of little or no use.

2) Applications: In [76], knowledge base generation from
General Motor’s diagnostic database is described. This database
contains 300 000 cases of vehicle symptoms and repair infor-
mation. An extended form of the decision tree induction algo-
rithm ID3 [50] is used to extract general diagnostic rules from
the database. ID3 uses database examples to generate decision
trees, which are then used to classify the examples into suitable
diagnostic rules. The extensions deal with the presence of in-
conclusive data sets, that is, when the set of examples used is
not enough to specify a single conclusive outcome.

3) Issues: Using existing information to automatically gen-
erate a knowledge-based system can greatly speed development
time and greatly reduces the knowledge acquisition bottleneck.
However, it is only suitable where large databases of domain
information are available. Therefore, it is inappropriate for new
systems where actual data is not yet available.
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VII. OTHER APPROACHES

A. Fuzzy Logic

1) Approach: Fuzzy logic provides mechanisms to repre-
sent and manipulate linguistic concepts such as the following.

— The water is very hot.
— The signal on the oscilloscope is a bit noisy.

It deals with approximates rather than exact measurements and
is based on fuzzy set theory [12], [77], [78], [79].

In traditional sets, membership is either true [1] or false [0],
and there is no concept of partial membership. In fuzzy sets,
partial membership is allowed, so membership is represented by
a value between 0 (definitely not a member) and 1 (definitely a
member). In fuzzy set theory, a series of operators is defined, for
manipulating sets. Many of these are analogous to those used in
conventional sets, such as, union (OR), intersection (AND), and
complement (NOT). Fuzzy reasoning consists of manipulating
a series of unconditional and conditional fuzzy propositions or
rules using fuzzy rules of inference.

With its concept of partial set membership, fuzzy logic pro-
vides a good alternative for reasoning with uncertain and inac-
curate data.

2) Applications: Most of the research work relating to fuzzy
logic and diagnosis has occurred in the area of dynamic indus-
trial processes. In this domain, fuzzy logic has been applied pri-
marily to the following tasks [26], [32], [65].

a) Fault Detection: Industrial processes are characterized
by dynamic continuous variables (symptoms). Such
variables are prone to measurement errors, noise, and
operating conditions. Therefore, reliable measurement
thresholds are difficult to define. Fuzzy logic provides
a good solution to this problem, by representing signal
values using overlapping linguistic variables.

b) Fault Diagnosis: Fault diagnosis in dynamic processes is
always approximate, as measured signal values are only
known to a certain degree of accuracy. A fuzzy inference
system based on fuzzy IF–THEN rules can provide a so-
lution to this problem, and is proposed and reported by
many researchers.

Applications, which apply fuzzy logic to the diagnosis of
electronic systems are also reported. FLAMES is a program for
troubleshooting analog circuits [53], [54]. It is a GDE-like pro-
gram employing ATMS. However, continuous signals and com-
ponent parameters are represented using fuzzy values, and fuzzy
values can be propagated across the circuit model. In [8], a sim-
ilar system using possibility theory (a form of fuzzy logic) [22],
to improve the accuracy of diagnosis of analog circuits is re-
ported. In [69], a practical application, which uses fuzzy qual-
itative values for sensor measurements, in the development of
self-maintenance photocopiers, is presented.

3) Issues: Because of it, use of linguistic variables’ fuzzy
logic provides a very human-like and intuitive way of repre-
senting and reasoning with incomplete and inaccurate infor-
mation. It is typically combined with other approaches such as
rules, models or cases, and provides a good alternative for rea-
soning under uncertainty.

B. Artificial Neural Networks

1) Approach: The human brain is constructed of billions of
interconnected cells or miniprocessors called neurons. Artificial
neural networks (ANN) are inspired by the brain’s neural cir-
cuitry and use the approach for complex problem solving [33].

ANNs can be considered as weighted directed graphs, the
neurons being the nodes, and the connections between the nodes
being weighted links. Groups of nodes are arranged in layers.
There are two basic network architectures, and many variations
of each type.

— Feed-Forward: No feedback between layers. Previous
inputs are not remembered; only the current input is
operated upon. Examples are multilayer perceptrons
and radial basis function nets.

— Recurrent: Feedback between layers. These networks
remember prior inputs so they can be taught to per-
form a sequence of steps or to construct associative
memory. Examples are artificial resonance theory
(ART) models, Hopfield nets, Kohonen SOM, and
competitive nets.

Before operation, ANNs must be trained using training ex-
amples. Using the examples, the network weights and threshold
functions are adjusted using a suitable learning algorithm. There
are two categories of learning.

— Supervised Learning: For each training example a cor-
rect output is provided. Weights are then adjusted until
the actual output is as close as possible to the correct
output. Back propagation is an example of a supervised
learning algorithm.

— Unsupervised Learning: In this case a correct output is
not provided for each training example. The training
examples are used to explore the underlying structure
of data. The associative memory learning algorithm for
Hopfield Nets is an example.

2) Applications: In [56], an application of ANNs in the di-
agnosis of simple combinational digital circuits is described. A
multilayer feedforward network is trained using back-propaga-
tion and is designed to detect single faults in a one bit full adder.
The inputs consist of circuit inputs and outputs, and internal test
points. The outputs represent the defective component and fault
type (none, stuck-open, stuck-closed). It operated well on single
faults. The authors checked its ability to generalize by testing it
with multiple faults; it did not generalize well.

In [35], a multilayer perceptron trained using back-propaga-
tion is used for diagnosing digital circuits. The input layers ac-
cept the pass/fail status of a test vector set and the output layer
equals single faults. Trained with a fault dictionary for single
faults it showed 100% success for single fault diagnosis and
75% success with two faults.

In [74], the diagnosis of telephone exchange line cards
using ANNs at British Telecom is described. The authors had
already explored and implemented a model-based approach
to the same problem, but they wished to investigate the use of
an ANN trained with historical data to achieve the same task.
It was felt that an ANN solution could be implemented much
more rapidly if the historical data was available. A three-layer
feedforward network, with circuit measurements as the inputs,
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and component pass/fail as the outputs, was constructed and
trained using back-propagation. Comparing their experiences
with model-based approaches, the authors summed up as
follows. ANNs can be trained directly from data, are good
with common faults, and provide rapid diagnosis. MBD can
diagnose obscure faults, provides graphical support, and can
explain a diagnosis.

In [51], an application for the diagnosis of multiple faults
using multilayer perceptrons (MLP) is presented. The circuit is
a bipolar section of an analog IC. It is stimulated using a sine
wave and the magnitude of the Fourier harmonics in the spec-
trum of the circuit output is measured to verify and diagnose the
circuit. A signature representing the output measurement is the
input to the MLP, and the outputs represented the location and
resistances (types of faults corresponds to technological prob-
lems of dopage of the extrinsic zones or an open contact problem
before metallization) of the faults. The MLP was trained using
back-propagation, to detect single, dual, and triple faults using
data generated via simulation.

In [34], an ANN is designed which assists a technician in
circuit diagnosis (e.g., next best node to measure). A three-
layer network is used; inputs are either on or off, and repre-
sent symptom states, pins observed to be good, pins observed
to be bad, and a flag indicating whether the overall circuit is
good or bad; the outputs indicate the next best points to test. The
input-hidden layer use an unsupervised learning paradigm to
form self organizing feature maps containing knowledge about
fault symptoms represented in topographical order. Once the
feature maps are formed, the hidden-output layer is trained using
a supervised learning paradigm based on the delta rule, to indi-
cate the next best location to test.

As well as equipment diagnosis, ANNs have also been ap-
plied to the diagnosis of dynamic processes. In this area, ANNs
have been used to process the outputs of sensors and to perform
diagnoses by using symptom-fault networks [25], [26], [75].

In [71], an ANN is used to determine when enough evidence
has been gathered to draw a diagnostic conclusion. The ap-
proach used, is to terminate when a pattern of certainty values
indicate a conclusion can be drawn. A three-layer network with
three inputs and one output is used. The inputs represent highest
expected probability, second highest expected probability, and
the probability of an unanticipated result. The activation level
of the output determines whether or not to terminate. Training
was via back-propagation and used training data collected from
experts.

3) Issues: The power of ANNs is their ability to approx-
imate and recognize patterns. In diagnostic applications they
have shown great promise in areas where noise and error is
present. The diagnosis of analog circuits is an example. How-
ever, their scalability to large systems and circuits is question-
able, and they may best be used to assist other techniques in
dealing with error and noise.

VIII. H YBRID APPROACHES

Hybrid solutions combine techniques to produce improved
diagnostic solutions by capitalizing on the advantages of the
individual techniques.

A. Model-Based Reasoning and Case-Based Reasoning

A system which uses CBR to improve the MBD process is
described in [24]. Device models consist of a structural decom-
position of the device, with the device at the root of the tree,
modules at intermediate nodes, and the replaceable components
at the leaves. Each component and submodule has a failure pat-
tern associated with it stored in a database. This failure pat-
tern is a combination of sensor outputs. Diagnosis consists of
traversing the hierarchy based upon observations, and the output
is a ranked list of diagnoses. CBR is used to further refine the
MBD process. All past diagnostic scenarios are stored as cases,
which are indexed from the bottom of the device structural de-
composition. Both good and bad diagnoses are indexed. For bad
diagnoses, the correct failure is also referenced from the stored
case. Experimental results showed, that by incorporating CBR
at the end of the MBD process, significant improvements in the
number of correct diagnoses is achieved.

Another system which combines MBD and CBR is described
in [7]. Again the motivation is to improve diagnoses because of
the use of incomplete and inaccurate models. Models are repre-
sented using the following.

— A devices structural decomposition.
— A list of failure types for each component.
— A list of symptom types.
— The different tests that can be performed to narrow

down diagnoses.
— Relationships between failures, symptoms, and tests.

Weights can be assigned to these.

Cases consist of the following.

— Universal knowledge-base about equipment diag-
noses.

— Specific device knowledge about a device.
— Historical cases.

MBD and CBR are employed in two ways.

— Uses CBR to refine the list of diagnoses produced by
MBD.

— Uses recorded cases to improve the model.

This is done in a number of ways including the following.

— Updating the failure rate of device modules.
— Adjusting the weights that relate test results to mod-

ules.
— Discovering and updating a new fault mode.

In [70], a system is presented which extracts an information
flow model from a historical casebase which contains lists of
test outcomes and appropriate diagnoses.

B. Model-Based Reasoning (MBR) and Fuzzy Logic

A fuzzy extension to the diagnostic inference model is de-
scribed in [6]. It uses fuzzy logic, in its front end to deal with the
uncertainty of measurements, and internally to generate mem-
bership degrees for faults, predicted by the outcomes of multiple
tests. In [8], [53], and [54], and extensions to the model-based
ATMS architecture, employing fuzzy logic is described. Essen-
tially, fuzzy logic is used to improve the accuracy of component
modeling and measurements.
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C. Case-Based Reasoning (CBR), Artificial Neural Networks,
and Fuzzy Logic

In [48], a connectionist case-based diagnostic expert system
which learns incrementally, is reported. Designed for Singapore
Airlines to assist technicians in troubleshooting inertial naviga-
tion systems, it consists of two parts, a connectionist module,
and a flowchart module. The connectionist module is a three-
layer feedforward network taking symptoms as its inputs and
producing component faults as its outputs. It is trained using
historical cases. The flowchart module is invoked if the ANN
fails to produce a diagnosis. This consults the technician, and a
new case is constructed, which is inputted to the connectionist
module as a new case to perform incremental learning.

In [49], a case-based diagnostic system using fuzzy neural
networks is described. The system is used to diagnose telecom-
munications systems. Fuzzy rules relating symptoms to faults
are encoded in the network architecture. The network is a
three- layer feedforward network. The input data is fed through
possibility measure nodes, then through fuzzy-AND neurons in
the hidden layer, and finally through fuzzy-OR neurons in the
output layer. It is trained using historical data from an existing
helpdesk.

D. Model-Based Reasoning and Genetic Algorithms

Genetic algorithms (GAs) [4], [31] employ the concepts of
genetic evolution (chromosomes, genes, crossover breeding,
and mutation), to perform search, learning, and optimization.
In [30], MBD is primarily used, but GAs are used to optimize
the best sequence of measurements.

IX. DIAGNOSTIC STANDARDS

The importance of artificial intelligence (AI) in test and
diagnosis is emphasized by the recent publication of a set
of IEEE standards [89] which address the use of AI systems
in test and diagnostic environments. Known as AI-ESTATE
(“Artificial Intelligence Exchange and Service Tie to All Test
Environments”), there are two component standards. IEEE
1232.1 provides a standard representation of test and diagnostic
data and knowledge and interfaces between reasoners and
other functional elements of a test environment. IEEE 1232.2
defines the communications mechanisms and services between
reasoners and other functional elements of a test environment.

The primary goal of AI-ESTATE is to provide a method-
ology for developing diagnostic systems that will be interoper-
able, have transportable software, and, therefore, move beyond
vendor and product specific solutions.

X. COMMENTARY

Three broad classes of knowledge have been applied to
diagnosis—heuristic, fundamental, and historical [5]. Heuristic
knowledge employs rules and/or procedures, which relate
symptoms to faults, often with associated certainty values or
probabilities. IF–THEN rules are an example. Fundamental
knowledge uses the underlying physics of the device to reason
from first principles. Model-based reasoning (MBR) is an
example. Historical knowledge employs data or experiences

recorded during previous diagnostic sessions to perform new
diagnoses. CBR is an example. Each with its pros and cons is
suited to different application domains, or hybrid solutions can
be constructed, exploiting the combined pros and cons of each
approach.

A. Rule-Based Approaches

As rule-based systems strive to encompass the knowledge of
a domain expert, in the form of rules (often hundreds or thou-
sands), development and maintenance can be complex and time
consuming. Particularly, for systems with short lifecycles (many
electronic systems), it may not be worth the development effort.
In addition, only faults anticipated during the design phase can
be diagnosed. Conversely, their intuitive simplicity makes rules
easy to understand and the inference sequence used for a partic-
ular problem can easily be traced. Additionally, the technique
is well proven, with many rule-based systems having been de-
ployed in real applications [2], [21], [63].

B. Model-Based Approaches

Models based on structure and behavior would seem to offer
the ideal solution for many diagnostic applications; theoreti-
cally the models can be generated from CAD, and all defects
including multiple faults can be diagnosed, without prior knowl-
edge of the defect. However, in practice, a number of major
shortcomings have become evident.

1) Full MBR becomes computationally intractable on prob-
lems with large numbers of components [42]. Various
solutions have been offered, including introducing fault
modes, and focusing on the most likely defects first [40],
[42].

2) Diagnosing complex devices with a large number of
simple components (e.g., gates), although requiring
much computing power, is feasible. However, finding
suitable behavioral representations for more complex
components (e.g., microprocessor) continues to be a
serious research challenge [20].

3) It is hard to develop a complete and consistent model,
which can consider all fault types. After all, a model is
only an approximation of a real-world device. For ex-
ample, how can a bridging fault be represented in a struc-
tural model? And the tradeoff between model complete-
ness and speed of diagnosis must be considered, that is, a
more complete model will deliver slower and more accu-
rate diagnoses, and vice versa [20]. Essentially, diagnosis
is only as good as the model.

4) Knowledge of fault types is often not included, and this
can lead to the diagnosis of nonsensical faults [85].

5) Development times can be long if CAD data cannot be
used.

The diagnostic inference model “models the information pro-
vided by a set of tests with respect to a set of desired conclu-
sions” [72]. Again results are only as good as the model, and
the model is only as good as the set of available tests. However,
the approach has been successfully applied to many real appli-
cations [86]–[88].
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A similar approach is taken in [61], where a system for di-
agnosing complex PC boards is described. Here, structure/be-
havior models are rejected as being too complex to develop, and
models of diagnostic tests and their associated components are
used instead. The system has been deployed and cost savings of
7 million French francs was made during year one.

In summary, models based on structure/behavior, which can
be applied in real situations are difficult to develop for com-
plex systems. Whereas, diagnostic inference models based on
the many successful real applications, would seem to be more
practical for complex real-world problems.

C. Case-Based Approaches

Case-based systems depend on past diagnostic experiences
to perform new diagnoses. In practice, CBR has proved to be
effective in real-world circuit diagnosis applications [5], [14].
Issues include the following.

1) The inability to diagnose until an adequate case-base be-
comes available. In [5], an application involving the diag-
nosis of consumer electronics products is described, and it
is reported that the system could diagnose 90% of defects
after six weeks of operation, however, the domain com-
plexity is not apparent. Additionally, less common faults
will be more difficult to diagnose due to their lack of pres-
ence in the initial casebase.

2) Compared to rule-based and model-based systems it is not
always apparent how conclusions are arrived at [14], as
the diagnosis is based on the overall fault pattern, rather
than a logical sequence of steps.

3) In [14], development times and performance were re-
ported to be better than an equivalent model-based solu-
tion previously reported in [13].

4) Development and maintenance is easier than for tradi-
tional solutions such as rules, as knowledge acquisition
is on-line and incremental [5].

5) Efficiency may be hindered by the indexing and retrieval
mechanisms used particularly as the case-base begins to
grow [24].

6) How domain specific are CBR solutions? A human tech-
nician can apply troubleshooting techniques learned on
one product to a different product, by extracting general
purpose rules or procedures from specific experiences.
Can this be applied to CBR? In [73], the casebase is di-
vided into generic and specific knowledge. However, the
generic casebase is defined by domain experts and is not
incremental.

D. Fuzzy Logic and Neural Networks

Fuzzy logic has been used as an extension to other methods,
such as rules and models, to deal with uncertainty and incom-
pleteness. Neural networks have been applied to various diag-
nostic problems, but their ability to deal with complex domains
is questionable. In practice, both will probably form useful ad-
ditions to hybrid solutions for real-world applications domains.

E. Hybrid Approaches

A primary research direction has been the combined use of
MBR and CBR in diagnostic systems. Models are often incon-
sistent and incomplete resulting in inaccurate diagnoses. In ad-
dition, operators can input inaccurate information again leading
to inappropriate conclusions. Supplemented by cases, irrelevant
conclusions can easily be pruned from a candidate list of diag-
noses. In addition, the model can be updated and improved using
case data [7], [24].

MBR can be too slow for real-time applications so CBR may
be a better alternative [5]. However, to supplement the CBR ap-
proach off-line, models can be used to verify new cases created
by the adaptation process, or models can be used to initialize a
case-base for a new product. And, in [70], models are generated
from available case data.

Fuzzy logic has been combined with model-based reasoning,
particularly in the domain of analog circuit diagnosis. Circuit
measurements are represented using fuzzy values, and infer-
ences are propagated using fuzzy techniques [6], [8], [53], [54].

Finally, in [52] a proposed hybrid architecture employing
models, cases, and fuzzy inference, for diagnosing micropro-
cessor-based boards is described.

XI. FUTURE DIRECTIONS

As electronic systems increase in complexity, the need for
automated diagnostic tools has become more acute. This is ex-
acerbated by reduced time-to-market, and shorter product life-
cycles, leading to little development time being available for di-
agnostics. Although much research has been carried out in the
area, much remains to be done, particularly in the deployment of
useful tools, which save dollars, in real applications. Without a
return on investment, there will be no implementation and no de-
ployment. Some issues for future research are briefly discussed
in this section.

1) Most complex electronic systems are now micropro-
cessor or digital signal processor (DSP) driven. Most
research has concentrated on hardware-only systems
which consist of inputs, circuitry, and outputs. Pro-
cessor-based boards involve the tight integration of
hardware and software, and, therefore, present addi-
tional problems including the following.

— Software test programs are generally used to test the
hardware, but often these cannot be started if the board
is defective.

— The test programs often only provide a pass/fail result.
What is an alternative test architecture which includes
diagnosis without increasing the cost of test genera-
tion? On a manufacturing line, diagnosis is currently
performed off-line using expensive debug technicians
because diagnosis will often slow down the rate of pro-
duction and, therefore, increase costs.

2) As product lifecycles reduce, fast deployment is a key
issue [61]. For example, many PC systems have a life-
cycle of three months. Developing diagnostics models
is time-consuming unless CAD data can be used [27].
Using cases suffers from the initial lack of suitable cases
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and a three to six month lifecycle does not give enough
time to overcome this.

3) In [84], it is claimed that rule-based approaches are
prevalent in industry and that the deployment of
model-based approaches has been delayed by the per-
ception that model-based solutions require specialized
knowledge to enable implementation. To overcome
this, a tool, which converts simple block diagrams
of a system to a causal model is presented. Clearly,
tools which simplify the development of intelligent
diagnostic solutions are required and these tools must
cater to the needs of engineers who may have little
knowledge of AI.

4) Models based on structure and behavior have problems
when scaled up to large circuits [42]. Particularly, rep-
resenting devices with complex behaviors (e.g., Pen-
tium microprocessor) continues to be a problem [20].
A suitable ontology [11] or representation vocabulary is
needed for the electronic system domain and with spe-
cific representations for particular device types. For ex-
ample, in [13], a structure/behavior model-based solu-
tion with a representation vocabulary suited to the do-
main of switch-mode power supplies only, is deployed
successfully. In comparison, the more generic MBR so-
lutions have not been successfully applied to complex
real-world circuit diagnosis to our knowledge.

5) Structure/behavior models use a correctly functioning
model. What about defects which change the structure
of the model (e.g., bridging fault) thus making the model
incomplete [20]?

6) Hybrid solutions form a continuing area of investiga-
tion, particularly the combined use of models and cases.
Models suffer from the complexity versus completeness
issue. If too complex, diagnosis can become intractable.
If incomplete, diagnosis can be rapid but inaccurate.
Conversely, CBR only becomes accurate after a period
of deployment. Therefore, cases can be used to supple-
ment and improve the diagnosis of an incomplete model
and models can be used to initialize and verify cases.
However, what complexity of model supplemented by
cases, will provide fast and accurate diagnosis from ini-
tial deployment, where no cases are available, but yet
is simple enough to be developed within an acceptable
timeframe [7], [24]?

7) Most CBR solutions only collect cases, which are rel-
evant to a specific system type. A new product means
starting all over again. Is it possible to collect generic
cases or experiences? For example, a human technician
can carry experiences learned on old products to new
products. Can cases be stored in a more generalized
way?

8) Collecting diagnostic information using probing, forms
part of many past works on circuit diagnosis. However,
with modern circuit boards, probing is becoming less of
an option, as packaging densities increase. More infor-
mation will have to be collected via diagnostic tests [44].

9) Design for test (DFT) has become more prominent as
system test becomes more difficult. Can DFT strategies

incorporate diagnosis without compromising test cost
and quality?

10) Electronic systems diagnosis is an expensive activity re-
quiring high skill. As part of manufacturing, it is per-
formed off-line by debug technicians. Using automated
techniques, can it be performed as part of an on-line test
[5] or can it be performed off-line by operators [61]?

XII. SUMMARY

Increasing costs, shorter product lifecycles, and rapid
changes in technology are driving the need for automated
diagnosis. Although research has been active over the last two
decades, much remains to be done. Primarily, the developed
techniques must be scaled up to deal with current and future
technologies but with improved development times and costs.
Otherwise, acceptance will be difficult, particularly in cost
sensitive domains, such as PCs and consumer electronics. To
date, there have been some applications, but the general use of
intelligent diagnostic solutions for electronic system diagnosis
has yet to happen.
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