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Real-Time GPS Precise Point Positioning-Based
Precipitable Water Vapor Estimation for

Rainfall Monitoring and Forecasting
Junbo Shi, Chaoqian Xu, Jiming Guo, and Yang Gao

Abstract—GPS-based precipitable water vapor (PWV) estima-
tion has been proven as a cost-effective approach for numerical
weather prediction. Most previous efforts focus on the perfor-
mance evaluation of post-processed GPS-derived PWV estimates
using International GNSS Service (IGS) satellite products with at
least 3–9-h latency. However, the suggested timeliness for meteo-
rological nowcasting is 5–30 min. Therefore, the latency has lim-
ited the GPS-based PWV estimation in real-time meteorological
nowcasting. The limitation has been overcome since April 2013
when IGS released real-time GPS orbit and clock products. This
becomes the focus of this paper, which investigates real-time GPS
precise point positioning (PPP)-based PWV estimation and its
potential for rainfall monitoring and forecasting. This paper first
evaluates the accuracy of IGS CLK90 real-time orbit and clock
products. Root-mean-square (RMS) errors of < 5 cm and ∼0.6 ns
are revealed for real-time orbit and clock products, respectively,
during July 4–10, 2013. Second, the real-time GPS PPP-derived
PWV values obtained at IGS station WUHN are compared with
the post-processed counterparts. The RMS difference of 2.4 mm
has been identified with a correlation coefficient of 0.99. Third, two
case studies, including a severe rainfall event and a series of mod-
erate rainfall events, have been presented. The agreement between
the real-time GPS PPP-derived PWV and ground rainfall records
indicates the feasibility of real-time GPS PPP-derived PWV for
rainfall monitoring. Moreover, the significantly reduced latency
demonstrates a promising perspective of real-time GPS PPP-based
PWV estimation as an enhancement to existing forecasting systems
for rainfall forecasting.

Index Terms—Precipitable water vapor (PWV), rainfall moni-
toring and forecasting, real-time orbit and clock correction, real-
time precise point positioning (PPP).

I. INTRODUCTION

S INCE the introduction of global positioning system (GPS)
meteorology in 1990s [1]–[4], GPS has been recognized as
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a cost-effective approach to determine precipitable water vapor
(PWV) contents. Along with other meteorological sensors, GPS
is able to provide PWV estimates with 1–3-mm root-mean-
square (RMS) accuracy with respect to traditional atmosphere
sensing techniques such as the radiosonde and the microwave
radiometer (MWR) [5]–[10]. With the rapid deployment of
GPS monitoring stations in local, regional, and global scales
in recent years, ground-based GPS meteorology can offer much
improved spatial and temporal resolutions for local or regional
water vapor variations than the traditional techniques based on
MWR and radiosonde observations.

Most GPS-based PWV systems to date rely on double-
difference processing of GPS observations, e.g., Liou and
Huang [11], Liou et al. [12], de Haan et al. [13], and
Wang et al. [14]. There are some limitations for double-
difference methods, such as they require the distance between
GPS stations not less than 500 km and an absolute PWV value
at one station in order to obtain the absolute PWV values at the
other stations [3]. GPS PWV systems based on the processing
of GPS undifferenced observations, known as precise point
positioning (PPP), have been widely used in recent years since
they can estimate absolute PWV with a single receiver [15].
Shoji [16] and Sato et al. [17] estimated PWV values based
on the PPP technique using local and national GPS networks.
Chiang et al. [18] and Choy et al. [19] utilized the GPS
PPP-based PWV estimation approach to monitor typhoons and
storms.

Although GPS PPP has the ability to provide high-precision
PWV estimates, how to reduce the latency of GPS PPP-based
PWV estimation remains a challenge. Several local and re-
gional GPS networks have been employed to conduct near real-
time PWV estimation using the International Global Navigation
Satellite System (GNSS) Service (IGS) ultrarapid (IGU) orbit
and clock products [16], [20]–[23]. However, the predicted IGU
products suffer a latency of 3–9 h [24], which prevents the GPS
PPP-based PWV estimation from real-time weather monitoring
and nowcasting applications. To overcome the latency issue,
IGS initiated the real-time pilot project with the infrastructure
of real-time GNSS data streams on a global basis in 2007. After
six years of experimental tests, IGS officially announced the
real-time service (RTS) on April 1, 2013, which provides GPS
real-time orbit and clock corrections to support real-time PPP
at a global scale [25].

Most real-time PPP efforts so far are made with respect
to positioning applications [26]–[31]. Limited work has been
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reported on the use of real-time PPP for troposphere parameter
estimation, particularly for weather forecasting applications.
Liu and Li reported a PWV accuracy value of 2.2 mm using
the predicted IGU orbits and the real-time clocks calculated by
Wuhan University [32]. Pacione and Soehne compared zenith
total delay (ZTD) estimates using IGS combined and individual
orbit and clock corrections, respectively, and the ZTD consis-
tency was identified [33]. Li et al. adopted the Helmholtz Cen-
tre Potsdam GeoForschungsZentrum’s (GFZ) real-time orbit
and clock corrections to conduct ambiguity-resolved PPP water
vapor estimation with an accuracy value of 1.0–2.0 mm [34].
However, no efforts have been made to study the correlation be-
tween real-time GPS PPP-derived PWV values and the rainfall
event. This becomes the focus of this paper, which investigates
the potential of real-time GPS PPP-based PWV estimation
using real-time orbit and clock products for rainfall monitoring.
This paper will be organized as follows. Section II describes
the mathematics for the real-time GPS PPP-based PWV es-
timation. Section III first carries out the accuracy assessment
of the IGS CLK90 real-time orbit and clock products and
then assesses the performance of real-time GPS PPP-derived
PWV time series against the post-processed PWV time series.
Two case studies, including a severe rainfall event in 2013
and a series of moderate rainfall events in 2014, are presented
afterward. Finally, conclusions and future works are provided in
Section IV.

II. PWV RETRIEVAL

The troposphere delay effect on GPS signals can be divided
into a hydrostatic part and a wet part by

ZTD = ZHD + ZWD (1)

where ZTD is the zenith total delay, ZHD is the zenith hydro-
static delay, and ZWD is the zenith wet delay.

The ZHD can be calculated as a function of the surface
pressure P0, the geodetic latitude φ, and the geodetic height
H by the Saastamoinen model as [35]

ZHD =
(0.0022768± 0.0000005)P0

1− 0.00266 cos(2φ)− 0.00000028H
. (2)

With the precise pressure data P0 at the user location, the ZHD
can be precisely calculated with up to 0.2-mm accuracy [36].
The necessary meteorological instruments, however, are not
always installed at the user location. Thus, the global pressure
and temperature (GPT) model is recommended to calculate the
ZHD [37], [38].

On the contrary, there is no simple way to precisely model the
ZWD. The usual approach is to estimate the ZWD in the PPP
function model together with other parameters. In this paper,
we use the PPP model developed by the University of Calgary

(UofC), which consists of three ionosphere-free observation
combinations [39]
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where i = 1, 2; Pi is the raw code measurement; Li is the
raw phase measurement; f1 = 154f0 and f2 = −154f0 with
f0 = 10.23 MHZ; ρ is the geometric distance as a function of
the receiver and satellite coordinates; c is the speed of light in
vacuum; dtr is the common receiver clock; dts is the common
satellite clock; mf is the elevation-dependent mapping function
of the ZWD; λi is the wavelength of carrier phase on frequency
Li; Ni is the phase ambiguity on frequency Li; and ε contains
residual errors, including multipath and noises.

PWV is related to ZWD via a conversion factor by

PWV =Π ∗ ZWD (6)

Π =
106

ρwRv

[(
k3

Tm

)
+ k′2

] (7)

where Π is the conversion factor; ρw is the density constant of
liquid water; Rv is the gas constant for water vapor; k′2 and
k3 are the atmospheric refractivity constants [2]; and Tm is the
weighted mean temperature of the atmosphere.
Tm can be calculated using an integral formula with vapor

pressure and temperature profile information along the zenith
direction over the stations, which can be expressed as

Tm =

∫
(e/T ) dz∫
(e/T 2) dz

(8)

where e is the vapor pressure, T is the absolute temperature,
and dz is the integral path.

III. EXPERIMENT AND DISCUSSION

A. Real-Time Satellite Orbit and Clock Corrections

Currently, the IGS RTS provides combined orbit and clock
corrections estimated in both single-epoch and Kalman filter
approaches [40]. Moreover, several participating IGS agencies
are also disseminating their own orbit and clock corrections for
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various applications. For example, GFZ has been hosting a real-
time PPP project with local reference network augmentation
[41]; CNES has been developing a real-time zero-difference
PPP integer ambiguity resolution demonstrator [29]. Therefore,
real-time PPP users can choose the proper correction stream
to match their specific application. This paper adopts the IGS
CLK90 real-time correction stream from CNES because of
its potential to support real-time PPP with integer ambiguity
resolution.

As for the precise satellite orbits, coordinate vector r and
velocity vector ṙ should be first calculated based on the broad-
cast ephemeris. The real-time orbit corrections encoded as the
Radio Technical Commission for Maritime Services space-state
representative (SSR) messages [42] are then applied by

rSSR = r − [eradial ealong ecross]δO (9)

where rSSR is the corrected coordinate vector; eradial = ṙ/|ṙ|;
ealong = (r × ṙ)/|r × ṙ|; ecross = eradial × ealong; and δO is
the SSR orbit correction vector in radial, along-track, and cross-
track components.

As for the precise satellite clock error, the real-time clock
correction equation is

dtsSSR = dts + δC/c (10)

where dtsSSR is the corrected satellite clock error; δC = C0 +
C1(t− t0) + C2(t− t0)

2 is the clock correction; t is the broad-
cast clock time; t0 is the reference time obtained from SSR
clock correction messages; and C0, C1, and C2 are three clock
correction coefficients in the SSR clock correction messages.

The accuracy assessment of IGS CLK90 real-time orbit and
clock products is conducted based on one-week consecutive
corrections from July 4 to 10, 2013. IGS final orbit and clock
products with nominal accuracy values of 2.5 cm and 0.075 ns,
respectively, are selected as the reference. The orbit accuracy
for each satellite is calculated as the RMS error of the dif-
ferences between the real-time satellite coordinates and the
reference coordinates. As to the clock accuracy, one reference
satellite should be selected to make a single difference with the
other satellites in order to remove the clock datum inconsis-
tency between the real-time and final clock products. In this
paper, the GPS satellite with pseudorandom noise (PRN) #1 is
chosen as the reference satellite. The satellite clock accuracy is
calculated as the RMS error of the differences between the real-
time single-differenced clock errors and the reference clock
errors.

Figs. 1 and 2 depict the accuracy values of the IGS
CLK90 real-time orbits and clocks with respect to the IGS
final products from July 4 to 10, 2013. A 3-D accuracy
value of 4.82 cm is obtained for the real-time satellite or-
bits with accuracy values of 2.87/2.88/2.59 cm in XY Z
directions, respectively. On the other hand, an overall accu-
racy value of 0.6 ns for the real-time satellite clock errors
indicates that the IGS CLK90 real-time clock product can
provide much better corrections than the IGS-predicted ultra-
rapid clock product with a nominal accuracy value of ∼3 ns
(http://igscb.jpl.nasa.gov/components/prods.html).

Fig. 1. Accuracy values of IGS CLK90 real-time orbit product with respect to
IGS final orbit product from July 4 to 10, 2013.

Fig. 2. Accuracy of IGS CLK90 real-time clock product with respect to IGS
final clock product from July 4 to 10, 2013.

B. Comparison Between the Real-Time and Post-Processed
GPS PPP-Derived PWV Time Series

In this section, the real-time GPS PPP-derived PWV time
series are analyzed with respect to the PPP-derived PWV time
series using the IGS final products. One-week GPS obser-
vations of IGS station WUHN collected at a sampling rate
of 30 s from July 4 to 10, 2013, are processed. The PPP
software package used is P3 developed by the UofC [43]. The
elevation angle mask is set as 10

◦
. The absolute phase center

correction model is utilized to correct the antenna phase center
offset and variation [44]. The pressure and temperature data are
computed by the GPT model, and the ZHD is calculated using
the Saastamoinen model. The troposphere mapping function
is the global mapping function [45]. The ZWD is estimated
in a random walk pattern with an initial standard deviation of
10−2 m and a spectral density of 10−6 m2/s. The factor for
converting ZWD to PWV is calculated based on (7) with the
mean weight temperature determined in [46].
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Fig. 3. Scatter plots of GPS PPP PWV series using real-time and final orbit
and clock products. Number of elements (NUM), average value of PWV
differences (AVG), RMS error of PWV differences, and correlation coefficient
(COR) are included in the red-colored text.

The scatter plot of the PPP-derived PWV time series using
real-time and final products is shown in Fig. 3. The PPP-derived
PWV time series are resampled at the interval of 1 h, thus
generating 168 PWV pairs during seven consecutive days. The
average value and the RMS error are calculated for the PWV
differences between the two PWV time series. The rule is
applied to exclude PWV pairs with the difference larger than
three-time RMS errors, which results in 160 PWV pairs for
comparison. With respect to the PPP-derived PWV time series
using IGS final products, the real-time PPP-derived PWV time
series show an average value of −1.5 mm and an RMS error
of 2.4 mm. On the other hand, the correlation coefficient of
0.99 is identified, which demonstrates that the real-time PPP-
derived PWV time series have good consistency with the post-
processed PPP-derived PWV series. Therefore, it is possible
to use the real-time GPS PPP-derived PWV series for rainfall
monitoring and forecasting.

C. Real-Time GPS PPP-Based PWV Estimation for Rainfall
Monitoring and Forecasting: Case Studies

A severe rainfall event occurred in Wuhan, China, from July 5
to 7, 2013, which was regarded as the biggest rainfall event
of this city in 2013. This rainfall event damaged 447.2 km2

agricultural areas, and the economic loss was reported up to
250 million Chinese yuan [47]. It is therefore of great value
to exploit the potential of real-time GPS PPP-based PWV
estimation for rainfall monitoring and forecasting. A network
consisting of 13 GPS stations around the city shown in Fig. 4
is employed in this paper. Five green rectangles represent
GPS stations colocated with ground rainfall record instruments.
The other nine stations without colocated rainfall records are
marked as red triangles. The ground rainfall records are used to
serve as the indicator of the rainfall forecasting by the real-time
GPS PPP-based PWV estimation.

Figs. 5–9 depict the real-time PPP-derived PWV time series
at the five GPS stations and the colocated ground rainfall
records. The PPP-derived PWV time series demonstrate five

Fig. 4. Network of 13 GPS stations. Five stations marked as green rectangles
are colocated with rainfall record instruments, whereas the other nine stations
without rainfall records are marked as red triangles.

Fig. 5. Real-time GPS PPP-derived PWV time series at WHHP and the
rainfall record at Huangpi during a heavy rainfall event in Wuhan from
July 4 to 10, 2013.

stages corresponding to the different rainfall processes. First,
the PPP-derived PWV time series fluctuate below 50 mm during
the morning of July 4, one day before the rainfall. Second, the
PPP-derived PWV estimates keep increasing from the noon of
July 4 to the afternoon of July 5 during which period, the PPP-
derived PWV values accumulate to ∼60 mm. Third, the PPP-
derived PWV series show an active variation pattern within
the scope of 60–90 mm until the noon of July 7, whereas the
rainfall amounts are observed by the ground record instruments.
Fourth, the PPP-derived PWV time series dramatically decrease
after the noon of July 7 while the rainfall stops. Fifth, the
PPP-derived PWV time series fluctuate below the level of
50 mm after the noon of July 8 while no rainfall is recorded.
Overall, the variations of the real-time GPS PPP-derived PWV
time series are pretty consistent with the ground rainfall
records.

Two facts should be noted for the comparison between the
real-time GPS PPP-derived PWV series and the ground rainfall
records. First, the threshold used in Figs. 5–9 is empirically set
as 50 mm. As indicated in [12], the average PWV amount varies
in different seasons; thus, it is improper to define a constant
threshold for rainfall forecasting throughout the year. Instead,
the threshold could be set as the average PWV amount of
the clear days in the same period of past years. Second, the
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Fig. 6. Real-time GPS PPP-derived PWV time series at WHCD and the
rainfall record at Caidian during a heavy rainfall event in Wuhan from
July 4 to 10, 2013.

Fig. 7. Real-time GPS PPP-derived PWV time series at WUHN and the
rainfall record at Jiedaokou during a heavy rainfall event in Wuhan from July 4
to 10, 2013.

Fig. 8. Real-time GPS PPP-derived PWV time series at WHHN and the
rainfall record at Hannan during a heavy rainfall event in Wuhan from July
4 to 10, 2013.

Fig. 9. Real-time GPS PPP-derived PWV time series at WH04 and the
rainfall record at Xinzhou during a heavy rainfall event in Wuhan from
July 4 to 10, 2013.

high PPP-derived PWV amount does not always indicate the
occurrence of rainfall events. All the PPP-derived PWV time
series in Figs. 5–9 show a high PWV level above 60 mm around

the midnight of July 8, but no rainfall amount is recorded during
this period. This phenomenon can be also detected around the
noon of July 9 at GPS station WHHP. In fact, the high PWV
level is only one of the prerequisites of a rainfall event. Some
external dynamic factors are also necessary to trigger a rainfall
event. If the condition of external dynamic factors were not
satisfied, the rainfall event might not happen even when the
PPP-derived PWV estimates are at a high level.

GPS Continuously Operating Reference Station networks
established worldwide and the IGS RTS have provided the
infrastructure and necessary corrections for real-time GPS PPP,
which enables real-time GPS PPP-based PWV estimation at
global or regional scales. The analysis of the rainfall event in
July 2013 has demonstrated the consistency between the real-
time GPS PPP-derived PWV series and ground rainfall records.
Furthermore, the continuously station-based PPP-derived PWV
series can be also used to generate PWV maps to monitor
PWV variation in real-time. A series of real-time PPP-derived
PWV maps are depicted in Fig. 10 at the local time 00:00 during
the pre-rain, the raining, and the post-rain periods, respectively.
For better understanding, the animated PPP PWV maps at the
interval of 1 h are available upon readers’ request. Based on
the network of 13 GPS stations, the real-time GPS PPP-derived
PWV map can well reflect the PWV variation above the city
of Wuhan.

A second case study concerns a series of moderate rainfall
events at the same city during the period of April 15–21, 2014.
Unlike the continuous rainfalls within two days in the first case,
moderate rainfall events occurred every single day in the second
case. We use a threshold of 40 mm to illustrate the consistency
between real-time PPP-derived PWV series and ground rainfall
records shown in Figs. 11–15. The ascending and descending
patterns of real-time PPP-derived PWV series can be identified
before and after each rainfall event. Meanwhile, the PWV fluc-
tuation at a relatively stable level has been also detected during
the raining stage. Overall, the real-time GPS PPP-derived PWV
series match the ground rainfall records very well.

IV. CONCLUSION AND FUTURE WORK

This paper has investigated the performance of real-time
GPS PPP-based PWV estimation and its potential for rainfall
monitoring and forecasting with IGS CLK90 real-time orbit
and clock. As regard the period of July 4–10, 2013, the orbit
accuracy of < 5 cm and the clock accuracy of 0.6 ns have
been identified for the IGS CLK90 real-time products. The
corresponding real-time GPS PPP-derived PWV time series
show an RMS error of 2.4 mm and a bias of −1.5 mm with
respect to the post-processed GPS PPP-derived PWV time
series using the IGS final products. Furthermore, a correlation
coefficient of 0.99 is identified between the real-time and post-
processed PPP-derived PWV time series based on one-week
observations at IGS station WUHN.

The real-time GPS PPP-based PWV estimation has been
applied to analyze a severe rainfall event in July 2013 and
a series of moderate rainfall events in April 2014 at the city
of Wuhan in China. The consistency between the real-time
GPS PPP-derived PWV time series and the ground rainfall
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Fig. 10. Four real-time GPS PPP PWV maps at local time 00:00 in (top left, pre-rain) July 5, (top right, raining) July 6, (bottom left, raining) July 7, and (bottom
right, post-rain) July 8, 2013.

Fig. 11. Real-time GPS PPP-derived PWV time series at WHHP and the
rainfall record at Huangpi during a series of moderate rainfall events in Wuhan
from April 15 to 21, 2014.

Fig. 12. Real-time GPS PPP-derived PWV time series at WHCD and the
rainfall record at Caidian during a series of moderate rainfall events in Wuhan
from April 15 to 21, 2014.

records verifies the feasibility of real-time PPP for rainfall
monitoring and the potential for rainfall forecasting. Moreover,
the real-time PPP-derived PWV map could be also utilized to
better understand the temporal variations of water vapor content
during severe weather conditions.

Fig. 13. Real-time GPS PPP-derived PWV time series at WUHN and the
rainfall record at Jiedaokou during a series of moderate rainfall events in Wuhan
from April 15 to 21, 2014.

Fig. 14. Real-time GPS PPP-derived PWV time series at WHHN and the
rainfall record at Hannan during a series of moderate rainfall events in Wuhan
from April 15 to 21, 2014.

It should be noted that real-time GPS PPP cannot serve as a
standalone system to forecast the occurrence of rainfall events.
Some other dynamic factors that trigger the start of a rainfall
event are also necessary. By introducing the real-time GPS
PPP-derived PWV values into the existing assimilation and
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Fig. 15. Real-time GPS PPP-derived PWV time series at WH04 and the
rainfall record at Xinzhou during a series of moderate rainfall events in Wuhan
from April 15 to 21, 2014.

forecasting system, it is expected that the forecasting capabil-
ity would be improved, particularly for short-term rainstorm
warning.
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