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Abstract— In the petroleum industry, stacking, one of the
principal steps of conventional seismic signal processing, plays
an important role in enhancing events and cancelling random
and coherent noises by utilizing the predesigned redundancy
in the seismic data. This paper demonstrates that by applying
an alternative technique, Factor Analysis, to the same dataset,
better subsurface image of the earth can be obtained. Contrary
to stacking, it takes into consideration the scaling of the
latent signal and makes explicit use of the second order statis-
tics, obtaining higher Signal-to-Noise Ratio. Moreover, Factor
Analysis is compared with Principal Component Analysis and
Independent Component Analysis, which can both be realized
by neural networks, in processing the synthetic Marmousi
dataset.

I. INTRODUCTION TO SEISMIC SIGNAL PROCESSING

Formed millions of years ago from plants and animals
that died and decomposed beneath soil and rock, fossil fuels,
namely, coal and petroleum, due to their low cost availability,
will remain the most important energy resource for at least
another few decades. Ongoing petroleum research continues
to focus on science and technology needs for increased
petroleum exploration and production. The petroleum indus-
try relies heavily on subsurface imaging techniques for the
location of these hydrocarbons.

Due to their target-oriented capability, generally good
imaging results, and computational efficiency, seismic re-
flection profiling becomes the principal method by which
the petroleum industry explores for hydrocarbon-trapping
structures. It works by processing echoes of seismic waves
from boundaries between different earth subsurfaces that
characterize different acoustic impedances. Depending upon
the geometry of surface observation points and source loca-
tions, the survey is called 2D or 3D seismic survey. Figure 1
shows a typical 2D seismic survey, during which, a cable
with attached receivers at regular intervals is dragged by
a boat. The source moves along the predesigned seismic
lines and generates seismic waves at regular intervals such
that points in the subsurfaces are sampled several times by
the receivers, producing a series of seismic traces. These
seismic traces are saved on magnetic tape or hard disks in
the recording boat for future processing.

There is a well-established sequence for standard seis-
mic data processing. Deconvolution, stacking, and migration
are the three principle processes, among which common-
midpoint stacking is the most robust of all. Utilizing redun-
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Fig. 1. A typical 2D seismic survey

dancy in CMP recording, stacking can significantly suppress
uncorrelated noise, thereby increasing the Signal-to-Noise
Ratio (SNR). It also can attenuate a large part of the coherent
noise in the data, such as guided waves and multiples.

II. FACTOR ANALYSIS FRAMEWORK

Being a branch of multivariate analysis, Factor Analysis
(FA) is concerned with the internal relationships of a set of
variates [1]. It offers a conceptual framework within which
many disparate methods can be unified and a base from
which new methods can be developed.

A. General FA model

In Factor Analysis the basic model is

x = As + n (1)

where

x = (x1, x2, ..., xp)
T : test scores,

s = (s1, s2, ..., sr)
T : r < p common factor scores,
A : factor loadings,

n = (n1, n2, ..., np)
T : order p unique factor scores.

The following assumptions are usually made for the factor
model [2]:

(1) rank (A) = r < p.
(2) E (x|s) = As.
(3) E

(
xxT

)
= Σ, E

(
ssT

)
= Ω and

Ψ = E
(
nnT

)
=




σ2
1 0

σ2
2

. . .
0 σ2

p


 .

That is, the errors are assumed to be uncorrelated. The
common factors however are generally correlated, and
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Ω, the covariance matrix of the factors, is therefore not
necessarily diagonal.

(4) E
(
snT

)
= 0 so that the errors and common factors

are uncorrelated.
From the above assumptions, we have,

E
(
xxT

)
= E

[
(As + n) (As + n)T

]

= E
(
AssT AT + AsnT + nsT AT + nnT

)

= AΩAT + E
(
nnT

)

= Γ + Ψ (2)

where Γ = AΩAT and Ψ = E
(
nnT

)
are the true and error

covariance matrices, respectively.
In addition, if postmultiplying Equation (1) by sT , taking

the expectation, and using assumptions (3) and (4), we have

E
(
xsT

)
= E

(
AssT + nsT

)

= AE
(
ssT

)
+ E

(
nsT

)

= AΩ.

For the special case of Ω = I , the covariance between the
observation and the latent variables simplifies to E

(
xsT

)
=

A.
When x is multivariate Gaussian, the second moments of

Equation (2) will contain all the information concerning the
factor model. The factor model Equation (1) will be linear,
and given the factors s, the variables x are conditionally
independent. Let s ∼ N (0, I), the conditional distribution
of x is

x|s ∼ N (As, Ψ) (3)

with conditional independence following from the diago-
nality of Ψ. The common factors s therefore reproduce
all covariances (or correlations) between the variables, but
account for only a portion of the variance.

B. FA algorithms

Many methods have been developed for estimating the
model parameters. Unweighted Least Squares (ULS) [3]
algorithm is based on minimizing the sum of squared dif-
ferences between observed and estimated correlation matri-
ces, not counting the diagonal. Generalized least squares
(GLS) [3] algorithm is adjusting ULS by weighting the
correlations inversely according to their uniqueness. Another
method, Maximum Likelihood (ML) algorithm [4], uses a
linear combination of variables to form factors, where the
parameter estimates are those most likely to have resulted in
the observed correlation matrix. More details on Maximum
Likelihood algorithm can be found in Appendix B.

Those methods are all second-order methods which find
the representation using only the information contained in
the covariance matrix of the test scores. In most cases, the
mean is also used in the initial centering. The reason for
the popularity of the second-order methods is that they are
computationally simple, often requiring only classical matrix
manipulations.

In contrast to second-order methods, most higher-order
methods try to find a meaningful representation. Higher-
order methods use information on the distribution of x that
is not contained in the covariance matrix. The distribution
of x must not be assumed to be Gaussian, because all the
information of Gaussian variables is contained in the first
two order statistics from which all the high statistics can
be generated. However, for more general families of density
functions, the representation problem has more degrees of
freedom, and much more sophisticated techniques may be
constructed for non-Gaussian random variables.

C. Within the framework

Principal component analysis (PCA), Independent Compo-
nent Analysis (ICA) and Independent Factor Analysis (IFA)
can be considered within the Factor Analysis framework.

1) Principal component analysis: Principal component
analysis (PCA) also known as the Hotelling transform or
the Karhunen-Loève transform. It is widely used in signal
processing, statistics, and neural computing to find the most
important directions in the data in the mean-square sense.
It is the solution of the FA problem with minimum mean
square error and an orthogonal weight matrix.

The basic idea of PCA is to find the r ≤ p linearly
transformed components that explain the maximum amount
of variance possible, which, accordingly, may then, be used
to reduce the dimensionality of the original data for further
analysis. However, all components are needed to reproduce
accurately the correlation coefficients within x.

The primary task in PCA is to reduce the dimension of
the data. In fact, it can be proven that the representation
given by PCA is an optimal linear dimension reduction
technique in the mean-square sense [5][6]. The kind of
reduction in dimension has important benefits [7]. First, the
computational complexity of the further processing stages
is reduced. Second, noise may be reduced, as the data not
contained in the components may be mostly due to noise.
Third, projecting into a subspace of low dimension is useful
for visualizing the data.

2) Independent Component Analysis: The Independent
Component Analysis (ICA) originates from the multi-input
and multi-output (MIMO) channel equalization and several
algorithms are derived from a neural networks viewpoint [8].
Its two most important applications are Blind Source Separa-
tion (BSS) and feature extraction. The mixing model of ICA
is similar to that of the FA, but in the basic case without the
noise term. Such an A is searched for that the components
s = A−1x would be as independent as possible. The concept
of ICA may be seen as an extension of PCA, which can
only impose independence up to the second order and,
therefore, defines directions that are orthogonal. In practice,
the independence can be maximized e.g. by maximizing non-
Gaussianity of the components or minimizing mutual infor-
mation [9]. In some extensions the number of independent
components can exceed the number of dimensions of the
observations making the basis overcomplete [9] [10]. ICA
can also be viewed as a generative model when the one
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dimensional distributions for the components are modelled
with for example mixtures of Gaussians (MoG).

The problem with ICA is that it has the ambiguities
of scaling and permutation, i.e., the indetermination of the
variances and order of the independent components.

3) Independent Factor Analysis: Independent Factor
Analysis (IFA) aims to describe p generally correlated ob-
served variables x in terms of r < p independent latent
variables s and an additive noise term n. The proposed
algorithm [11] derives from the Maximum Likelihood (ML)
and more specifically from the Expectation-Maximization
(EM) algorithm.

IFA model differs from the classic FA model in that the
properties of the latent variables it involves are different. The
noise variables n are assumed to be normally distributed,
not necessarily uncorrelated. The latent variables in s are
assumed to be mutually independent but not necessarily
normally distributed; their densities are indeed modeled as
mixtures of Gaussians. The independence assumption allows
to model the density of each si in the latent space separately.

There are some problems with the EM-MoG algorithm.
First, approximating source densities with MoGs is not so
straightforward because the number of Gaussians has to be
decided and the parameters have to be adjusted. Second, EM-
MoG is computationally demanding where the complexity
of computation grows exponentially with the number of
sources [11]. Given a small number of sources the EM
algorithm is exact and all the required calculations can be
done analytically, whereas, it becomes intractable as the
number of sources in the model increases.

III. SIMULATION

Now we suggest an alternative way of obtaining the sub-
surface image by using Factor Analysis instead of stacking,
based on the redundancy concept that all the traces in one
CMP gather, after preprocessing, correspond to the same
signal embedded in different random noises. Factor Analysis
is able to extract one unique common factor from the traces
with maximum correlation among them. It fits well with the
goal of stacking.

To illustrate the idea, x(t) are generated using the follow-
ing equation:

x(t) = As(t) + n(t)
= A cos(2πt) + n(t).

where s(t) is the sinusoidal signal, n(t) are 10 independent
noise terms with Gaussian distribution. The matrix of factor
loadings A is also generated randomly. Figure 2 shows the
results of stacking and Factor Analysis. The top plot is one
of the 10 observations x(t). The middle plot is the result of
stacking and the bottom plot is the result of Factor Analysis
using Maximum Likelihood algorithm. Comparing the two
plots suggests that Factor Analysis outperforms stacking in
improving the SNR of the component extracted.

There are two reasons that Factor Analysis works better
than stacking. There are two reasons for this. First, Factor

Observable variable

Result of stacking

Result of Factor Analysis

Fig. 2. Comparison of stacking and Factor Analysis

Analysis model considers scaling factor A while stacking
assumes no scaling as shown below in Equation (4) and (5).

Factor Analysis: x = As + n (4)
Stacking: x = s + n. (5)

When the scaling information is lost, simple summation does
not necessarily increase SNR. For example, if one scaling
factor is 1 and the other is -1, summation will simply cancel
out the signal component completely, leaving only the noise
component. Second, Factor Analysis makes use of the second
order statistics explicitly (See Appendix B) as the criterion
to extract the signal while stacking does not. Therefore, SNR
will improve more in the case of Factor Analysis than in the
case in stacking.

IV. MAIN RESULTS

A. Factor Analysis vs. stacking

The dataset used here is the Marmousi dataset, which is
a 2-D synthetic dataset generated at the Institut Françis du
Pétrole [12] [13]. The geometry and velocity model were
created to produce a complex seismic data which requires
advanced processing techniques to obtain a correct earth
image.

Simulation result in the above section suggests that Factor
Analysis be applied to the pre-stack seismic data. However,
in Factor Analysis, while the choice of the number of factor
scores is subjected to an upper bound (Refer to Appendix A
for more details), the actual choice is not straightforward and
subject to controversy [2]. Using the Latent Root criterion or
the Scree Test criterion will give us an upper bound of 4. In
this work, the number of factors is automatically determined
as 1 based on the CMP redundancy concept. Besides, in the
chi-squared test, the Right-tail significance level for the null
hypothesis of 1 single common factor is very low, which
means the test fails to reject the null hypothesis of 1 common
factors, suggesting that this model provides a satisfactory
explanation of the covariation in these data.
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Fig. 3. Comparison of stacking and FA result

In conventional stacking, because of the approximation
distortion, almost all the traces will have a segment set to
zero (muting). In order to fully utilize all the data points
available, we suggest applying Factor Analysis to the pre-
stack traces without muting. All those traces that have the
non-distorted segments is included in the Factor Analysis.
For example, all 48 traces in a CMP gather have the non-
distorted 2.3s to 3s segment. Factor analysis will be applied
to those 48 traces and the segment 2.3s to 3s will be extracted
from the result. While only half of the traces have the non-
distorted 1.35s to 1.4s segment, Factor Analysis will be
only applied to those 24 traces. Therefore, all the segments
are extracted from where the pre-stack traces have virtually
no approximation distortion. After putting all the segments
together in series, the result of Factor Analysis is obtained,
as shown on the right plot in Figure 3.

The stacking result is placed on the left for comparison
purpose. Compare the results of Factor Analysis and stack-
ing, we can see that events at around 1 second and 1.5
second are strengthened. Events from 2.2s to 3.0s are more
smoothly presented instead of the broken dash-like events in
the stacked result. Overall, the SNR of the image is improved.

It needs to be pointed out that the plots are after the
automatic amplitude adjustment which is to stress the vague
events so that both the vague events and strong events in the
image are shown with approximately the same amplitude.
The algorithm includes 3 easy steps:

(1) Compute Hilbert envelope of a trace.
(2) Convolve the envelope with a triangular smoother to

produce the smoothed envelop.
(3) Divide the trace by the smoothed envelope to produce

the amplitude-adjusted trace.

It is also noted that due to lack of data at small offset
after pre-stack processing, events before 0.2s are shown as
distorted and do not provide useful information.

Fig. 4. Results of PCA and ICA

B. Factor Analysis vs. PCA and ICA

The results of PCA and ICA are put side by side in
Figure 4. As we can see in both plots important events
are missing, the subsurface images are distorted. The reason
is that the criteria used in PCA and ICA to extract the
signals are improper to this particular scenario as discussed
in sections II-C.1 and II-C.2. In PCA, traces are transformed
linearly and orthogonally into an equal number of new
traces that have the property of being uncorrelated, where
the first component having the maximum variance instead
of covariance is used to produce the image. In ICA, the
algorithm tries to extract components that are as independent
to each other as possible, where the obtained components
suffer from the problems of scaling and permutation.

V. CONCLUSIONS

Stacking is one of the three most important and robust
processing steps in seismic signal processing. By utilizing
the redundancy of the CMP gathers, stacking can effectively
remove noise and increase the Signal-to-Noise Ratio. In
this paper we propose to use Factor Analysis to replace
stacking to obtain better subsurface images after applying
Factor Analysis algorithm to the synthetic Marmousi dataset.
Comparisons with PCA and ICA show that Factor Analysis
indeed have advantages over these two techniques in this
scenario.

It is noted that the conventional seismic processing steps
adopted here are very basic and for illustrative purposes
only. Better result may be obtained in velocity analysis and
stacking if careful examination and iterative procedures are
incorporated as is often the case in real situations.

APPENDIX

A. Upper bound of the number of common factors

In equation E(xxT ) = Σ = Γ+Ψ, if Ψ is unique, matrix
Σ−Ψ must be of rank r. This is the covariance matrix for
x where each diagonal element represents that part of the
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variance which is due to the r common factors instead of
the total variance of the corresponding variate. This is know
as communality of the variate.

When r = 1, A reduces to a column vector of p elements.
It is unique, apart from a possible change of sign of all its
elements.

With 1 < r < p common factors, it is not generally
possible to determine A and s uniquely, even in the case of
a normal distribution. Although every factor model specified
by Equation (3) leads to a multivariate normal, the converse
is not necessarily true when 1 < r < p. The difficulty is
known as the factor identification or factor rotation problem.

Let H be any (r × r) orthogonal matrix, so that HHT =
HT H = I , then

x = AHHT s + n

= A?s? + n.

Thus, s and s? have the same statistical properties since

E (s?) = HT E (s)
cov (s?) = HT cov (s) H = HT H = I.

Suppose there exist 1 < r < p common factors such that Γ =
AΩAT and Ψ is Grammian and diagonal. The covariance

matrix Σ has C

(
p
2

)
+p = 1/2p (p + 1) distinct elements,

which equals the total number of normal equations to be
solved. However, the number of solutions is infinite, as can
be seen from the following derivation. Since Ω is Grammian,
its Cholesky decomposition exists. That is, there exists a non-
singular (r × r) matrix U , such that Ω = UT U and

Σ = AΩAT + Ψ
= AUT UAT + Ψ
=

(
AUT

) (
AUT

)T
+ Ψ

= A?A?T + Ψ. (A-1)

Apparently both factorizations Equation (2) and Equation
(A-1) result in the same residual error Ψ and therefore
must represent equally valid factor solutions. Also, we can
substitute A? = AB and Ω? = B−1Ω

(
BT

)−1
, which again

yields a factor model that is indistinguishable from Equation
(2). Therefore, no sample estimator can distinguish between
such an infinite number of transformations. Consequently, the
coefficients A equals to A? statistically and cannot be dis-
tinguished from it. Both the transformed and untransformed
coefficients, plus Ψ, generate Σ in exactly the same way and
cannot be differentiated by any estimation procedure without
the introduction of additional restrictions.

To solve the rotational indeterminacy of the factor model
restrictions on Ω are required, with Ω = I being the most
straightforward and common one. The number m of free
parameters implied by the equation

Σ = AAT + Ψ (A-2)

is then equal to the total number pr + p for unknown pa-
rameters in A and Ψ, minus the number of zeros restrictions

placed on the off-diagonal elements of Ω, which is equal to
1/2

(
r2 − r

)
with Ω being symmetric. We then have

m = (pr + p)− 1/2
(
r2 − r

)

= p (r + 1)− 1/2
(
r2 − r

)
(A-3)

where the columns of A are assumed to be orthogonal. The
number of degrees of freedom d is then given by the number
of equations implied by Equation (A-2), i.e., the number of
distinct elements in Σ minus the number of free parameters
m.

d = 1/2p (p + 1)− [
p (r + 1)− 1/2

(
r2 − r

)]

= 1/2
[
(p− r)2 − (p− r)

]
(A-4)

which for a nontrivial empirical solution must be strictly
positive, places an upper bound on the number of common
factor r which may be obtained in practice, a number which
is generally smaller than the number of variables p.

B. Maximum Likelihood algorithm

The Maximum Likelihood (ML) algorithm presented here
is proposed by Jöreskog [4]. The algorithm uses a iterative
procedure to compute a linear combination of variables
to form factors. Assume that the random vector x has a
multivariate normal distribution as defined in Equation (3).
The elements of A, Ω and Ψ are the parameters of the
model to be estimated from the data. Suppose that from a
random sample of N observations of x we find the matrix the
estimated covariance matrix Σ̃ whose elements are the usual
estimates of variances and covariances of the components of
x.

m̃x =
1
N

N∑

i=1

xi

Σ̃ =
1

N − 1

N∑

i=1

(x− m̃x) (x− m̃x)T

=
1

N − 1

(
N∑

i=1

xxT −Nm̃xm̃T
x

)
. (B-1)

The distribution of Σ̃ is the Wishart distribution [1]. The
log-likelihood function is given by

log L = −1
2

(N − 1)
[
log |Σ|+ tr

(
Σ̃Σ−1

)]
.

However, it is more convenient to minimize

F (A,Ω,Ψ) = log |Σ|+ tr
(
Σ̃Σ−1

)
− log

∣∣∣Σ̃
∣∣∣− p

instead of maximizing log L [4]. They are equivalent because
log L is a constant minus 1

2 (N − 1) times F . The function
F is regarded as a function of A and Ψ. Note that if H is
any nonsingular (k × k) matrix, then

F
(
AH−1, HΩHT ,Ψ

)
= F (A, Ω, Ψ)

which means that the parameters in A and Ω are not
independent of another, and in order to make the Maximum
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Likelihood estimates of A and Ω unique, k2 independent
restrictions must be imposed on A and Ω.

To find the minimum of F we shall first find the con-
ditional minimum for a given Ψ and then find the overall
minimum. The partial derivative of F with respect to A is

∂F

∂A
= 2Σ−1

(
Σ− Σ̃

)
Σ−1A.

See details in [4]. For a given Ψ the minimization of A is
to be found among the solution of

Σ−1
(
Σ− Σ̃

)
Σ−1A = 0.

Premultiplying with Σ gives
(
Σ− Σ̃

)
Σ−1A = 0.

Using the following expression for the inverse Σ−1 [1]

Σ−1 = Ψ−1 −Ψ−1A
(
I + AT Ψ−1A

)−1
AT Ψ−1. (B-2)

whose left side may be further simplified [4] so that
(
Σ− Σ̃

)
Ψ−1A

(
I + AT Ψ−1A

)−1
= 0.

Postmultplying by I + AT Ψ−1A gives
(
Σ− Σ̃

)
Ψ−1A = 0 (B-3)

which after substitution of Σ from Equation (A-2) and
rearrangement of terms gives

Σ̃Ψ−1A = A
(
I + AT Ψ−1A

)
.

Premultiplying by Ψ−1/2 finally gives
(
Ψ−1/2Σ̃Ψ−1/2

)(
Ψ−1/2A

)

=
(
Ψ−1/2A

) (
I + AT Ψ−1A

)
. (B-4)

From Equation (B-4), we can see that it is convenient to
take AT Ψ−1A to be diagonal, since F is unaffected by post-
multipication of A by an orthogonal matrix and AT Ψ−1A
can be reduced to diagonal form by orthogonal transfor-
mations [14]. In this case, Equation (B-4) is an standard
Eigen Decomposition form. The columns of Ψ−1/2A are
latent vectors of Ψ−1/2Σ̃Ψ−1/2, and the diagonal elements
of I + AT Ψ−1A are the corresponding latent roots. Let
λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃p be the latent roots of Ψ−1/2Σ̃Ψ−1/2

and let ẽ1, ẽ2, · · · , ẽk be a set of latent vectors corresponding
to the k largest roots. Let Λ̃k be the diagonal matrix with
λ̃1, λ̃2, · · · , λ̃k as diagonal elements and let Ẽk be the matrix
with ẽ1, ẽ2, · · · , ẽk as columns. Then

Ψ−1/2Ã = Ẽk

(
Λ̃k − I

)1/2

.

Premultiplying by Ψ1/2 gives the conditional Maximum
Likelihood estimate of A as

Ã = Ψ1/2Ẽk

(
Λ̃k − I

)1/2

. (B-5)

Up to now, we have considered the minimization of F with
respect to A for a given Ψ. Now let’s examine the partial
derivative of F with respect to Ψ [1],

∂F

∂Ψ
= diag

[
Σ−1

(
Σ− Σ̃

)]
Σ−1.

Substituting Σ̃−1 with Equation (B-2) and use Equation (B-
3) gives

∂F

∂Ψ
= diag

[
Ψ−1

(
Σ− Σ̃

)]
Ψ−1

which by Equation (2) becomes

∂F

∂Ψ
= diag

[
Ψ−1

(
ÃÃT + Ψ− Σ̃

)]
Ψ−1.

Minimzing it, we will get,

Ψ̃ = diag
(
Σ̃− ÃÃT

)
. (B-6)

By iterating Equation (B-5) and Equation (B-6), the Max-
imum Likelihood Estimation of Factor Analysis model of
Equation (1) can be obtained.
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