

Android Native
Development Kit
Cookbook

A step-by-step tutorial with more than 60 concise recipes
on Android NDK development skills

Feipeng Liu

BIRMINGHAM - MUMBAI

Android Native Development Kit Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2013

Production Reference: 1140313

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-150-5

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

Credits

Author
Feipeng Liu

Reviewers
Roger Belk

Frank Grützmacher

Sylvain Ratabouil

Acquisition Editor
Martin Bell

Commissioning Editor
Shreerang Deshpande

Lead Technical Editor
Mayur Hule

Technical Editors
Lubna Shaikh

Worrell Lewis

Project Coordinator
Leena Purkait

Proofreader
Aaron Nash

Indexer
Monica Ajmera Mehta

Graphics
Aditi Gajjar

Valentina D'silva

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Feipeng Liu is a technology enthusiast who is focused on multimedia systems and
applications. He started mobile applications development in 2008 on Windows Mobile.
Since Feb 2010, he has been developing apps for Android with NDK. His Android apps have
been used by many users. One of his apps, video converter Android, has reached one
million downloads within 10 months. Feipeng received his B.ENG in Electrical and Electronic
Engineering degree from Nanyang Technological University, and Master of Computing degree
in the Department of Computer Science from National University of Singapore.

I would like to thank Shreerang Deshpande for offering me the opportunity
to author this book and for helping me throughout the writing, and Leena
Purkait for keeping track of its progress and coordination, Mayur Hule,
Lubna Shaikh, and Worrell Lewis for editing the book drafts! I would like to
express my gratitude to other Packt Publishing staff who helped with the
book! My grateful thanks are also extended to Roger, Frank and Sylvain,
who offered great suggestions during the review.

I also would like to thank Assoc. Prof. Wei Tsang Ooi in National University of
Singapore, the supervisor of my master project. A lot of stuff in this book is
based on the things I learnt during the project.

Last but not least, I would like to thank my parents Zhulan Shen and Yi Liu,
and Ms. Yang Xiaoqing for the support and understanding during the writing
of the book.

About the Reviewers

Roger Belk is a 45-year-old self-taught Android developer with 20 + apps in Google’s
Play Store under the developer name BigTexApps. He started out using Google’s & MIT’s
App Inventor and then after two years of learning to use AI, he taught himself to use Java to
build Android apps. He has reviewed two other books, Google App Inventor, Ralph Roberts,
Packt Publishing (ISBN 978-1-84969-212-0) and Android 3.0 Animation, Alex Shaw, Packt
Publishing (ISBN 978-1-84951-528-3).

Frank Grützmacher spent some years in the research of distributed electronic design
tools and worked for several German blue chip companies such as Deutsche Post and AEG.
He was involved in Android platform extensions for a mobile manufacturer. Therefore, on
one hand he knows how to build large enterprise apps and on the other hand how to make
Android system apps.

He is currently working for the IT daughter of the largest German Telco company.

In the past, he has reviewed Corba- and Java-related books for American and
German publishers.

Sylvain Ratabouil is a confirmed IT consultant experienced with C++ and Java
technologies. He worked in the space industry and got involved in aeronautic projects
at Valtech, where he is now taking part in the digital revolution.

As a technology lover, he is passionate about mobile technologies and cannot live or sleep
anymore without his Android smart phone.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Hello NDK 7

Introduction 7
Setting up an Android NDK development environment in Windows 8
Setting up an Android NDK development environment in Ubuntu Linux 16
Setting up an Android NDK development environment in Mac OS 19
Updating Android NDK 20
Writing a Hello NDK program 22

Chapter 2: Java Native Interface 27
Introduction 28
Loading native libraries and registering native methods 29
Passing parameters and receiving returns in primitive types 34
Manipulating strings in JNI 39
Managing references in JNI 43
Manipulating classes in JNI 50
Manipulating objects in JNI 53
Manipulating arrays in JNI 57
Accessing Java static and instance fields in the native code 62
Calling static and instance methods from the native code 67
Caching jfieldID, jmethodID, and referencing data to improve performance 73
Checking errors and handling exceptions in JNI 76
Integrating assembly code in JNI 80

Chapter 3: Build and Debug NDK Applications 83
Introduction 83
Building an Android NDK application at the command line 84
Building an Android NDK application in Eclipse 94
Building an Android NDK application for different ABIs 97
Building Android NDK applications for different CPU features 102

ii

Table of Contents

Debugging an Android NDK application with logging messages 106
Debugging an Android NDK application with CheckJNI 110
Debugging an Android NDK application with NDK GDB 113
Debugging an Android NDK application with CGDB 116
Debugging an Android NDK application in Eclipse 119

Chapter 4: Android NDK OpenGL ES API 123
Introduction 123
Drawing 2D Graphics and applying transforms with the OpenGL ES 1.x API 127
Drawing 3D graphics and lighting up the scene with the OpenGL ES 1.x API 133
Mapping texture to 3D objects with the OpenGL ES 1.x API 140
Drawing 3D graphics with the OpenGL ES 2.0 API 145
Displaying graphics with EGL 152

Chapter 5: Android Native Application API 159
Introduction 159
Creating a native activity with the native_activity.h interface 161
Creating a native activity with the Android native app glue 166
Managing native windows at Android NDK 174
Detecting and handling input events at Android NDK 178
Accessing sensors at Android NDK 181
Managing assets at Android NDK 186

Chapter 6: Android NDK Multithreading 191
Introduction 191
Creating and terminating native threads at Android NDK 192
Synchronizing native threads with mutex at Android NDK 195
Synchronizing native threads with conditional variables at Android NDK 200
Synchronizing native threads with reader/writer locks at Android NDK 206
Synchronizing native threads with semaphore at Android NDK 212
Scheduling native threads at Android NDK 217
Managing data for native threads at Android NDK 228

Chapter 7: Other Android NDK API 233
Introduction 233
Programming with the jnigraphics library in Android NDK 234
Programming with the dynamic linker library in Android NDK 238
Programming with the zlib compression library in Android NDK 241
Programming audio with the OpenSL ES audio library in Android NDK 247
Programming with the OpenMAX AL multimedia library in Android NDK 259

iii

Table of Contents

Chapter 8: Porting and Using the Existing Libraries with Android NDK 265
Introduction 265
Porting a library as a shared library module with the Android NDK
build system 266
Porting a library as a static library module with the Android NDK
build system 271
Porting a library with its existing build system using the
Android NDK toolchain 275
Using a library as a prebuilt library 280
Using a library in multiple projects with import-module 282
Porting a library that requires RTTI, exception, and STL support 285

Chapter 9: Porting an Existing Application to Android with NDK 293
Introduction 293
Porting a command-line executable to Android with an NDK build system 294
Porting a command-line executable to Android with an NDK
standalone compiler 298
Adding GUI to a ported Android app 305
Using background threads at porting 310

Index 319

iv

Table of Contents

Preface
Since its first release in 2008, Android has become the largest mobile platform in the world.
The total number of apps in Google Play is expected to reach 1,000,000 in mid 2013. Most
of the Android apps are written in Java with Android Software Development Kit (SDK). Many
developers only write Android code in Java even though they are experienced with C/C++,
without realizing what a powerful tool they are giving up.

Android Native Development Kit (NDK) was released in 2009 to help developers write and
port native code. It offers a set of cross-compiling tools and a few libraries. Programming in
NDK offers two main advantages. Firstly, you can optimize your apps in native code and boost
performance. Secondly, you can reuse a large number of existing C/C++ code. Android Native
Development Kit is a practical guide to help you write Android native code with NDK. We will
start with the basics such as Java Native Interface (JNI), and build and debug a native app
(chapter 1 to 3). We will then explore various libraries provided by NDK, including OpenGL ES,
Native Application API, OpenSL ES, OpenMAX AL, and so on (Chapters 4 to 7). After that,
we will discuss porting existing applications and libraries to Android with NDK (Chapters 8
and 9). Finally, we will demonstrate how to write multimedia apps and games with NDK
(Bonus chapters 1 and 2).

What this book covers
Chapter 1, Hello NDK, covers how to set up an Android NDK development environment in
Windows, Linux, and MacOS. We will write a "Hello NDK" application at the end of the chapter.

Chapter 2, Java Native Interface, describes the usage of JNI in detail. We will call native
methods from the Java code and vice versa.

Chapter 3, Build and Debug NDK Applications, demonstrates building native code from a
command line and Eclipse IDE. We will also look at debugging native code with gdb, cgdb,
eclipse, and so on.

Chapter 4, Android NDK OpenGL ES API, illustrates OpenGL ES 1.x and 2.0 APIs. We will cover
2D drawing, 3D graphics, texture mapping, EGL, and so on.

Preface

2

Chapter 5, Android Native Application API, discusses Android native application APIs, including
managing native windows, accessing sensors, handling input events, managing assets, and
so on. We will see how to write a pure native app in this chapter.

Chapter 6, Android NDK Multithreading, depicts Android multithreading API. We will cover
creating and terminating native threads, various thread synchronization techniques
(mutex, conditional variables, semaphore, and reader/writer lock), thread scheduling,
and thread data management.

Chapter 7, Other Android NDK API, discusses a few more Android libraries, including
jnigraphics, the dynamic linker library, the zlib compression library, the OpenSL
ES library, and the OpenMAX AL library.

Chapter 8, Porting and Using Existing Libraries with Android NDK, describes various
techniques of porting and using existing C/C++ libraries with NDK. We will port the boost
library at the end of the chapter.

Chapter 9, Porting Existing Applications to Android with NDK, provides a step-by-step guide
for porting an existing application to Android with NDK. We use an open source image resizing
program as an example.

Bonus Chapter 1, Developing Multimedia Applications with NDK, demonstrates how to write
multimedia applications with the ffmpeg library. We will port the ffmpeg library and use the
library APIs to write a frame grabber application.

Bonus Chapter 2, Developing Games with NDK, discusses writing games with NDK. We will
port the Wolfenstein 3D game to show how to set up game display, add game control, and
enable audio effects for a game.

You can download the bonus chapters from http://www.packtpub.com/sites/default/
files/downloads/Developing_Multimedia_Applications_with_NDK.pdf and
http://www.packtpub.com/sites/default/files/downloads/Developing_
Games_with_NDK.pdf.

What you need for this book
A computer with Windows, Ubuntu Linux, or MacOS installed is necessary (Linux or MacOS is
preferable). Although we can run Android apps with an emulator, it is slow and inefficient for
Android development. Therefore, it is recommended to have an Android device.

The book assumes a basic understanding of C and C++ programming languages. You should
also be familiar with Java and Android SDK.

Note that the sample code of this book is based on Android ndk r8 unless otherwise stated,
since it is the latest version of NDK at the time of writing. By the time the book is published,
there should be newer versions. The code should also run on any newer versions. Therefore
we can install NDK r8 or later.

Preface

3

Who this book is for
The book is written for anyone who is interested in writing native code for Android. The
chapters are arranged from basic to intermediate to advanced, and they are relatively
independent. Readers who are new to NDK are recommended to read from the beginning to
the end, while readers who are familiar with NDK can pick up any specific chapters or even
specific recipes.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Windows NDK comes with a new ndk-build.cmd
build script."

A block of code is set as follows:

#include <string.h>
#include <jni.h>

jstring
Java_cookbook_chapter1_HelloNDKActivity_naGetHelloNDKStr(JNIEnv* pEnv,
jobject pObj)
{
 return (*pEnv)->NewStringUTF(pEnv, "Hello NDK!");
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := framegrabber
LOCAL_SRC_FILES := framegrabber.c
#LOCAL_CFLAGS := -DANDROID_BUILD
LOCAL_LDLIBS := -llog -ljnigraphics -lz
LOCAL_STATIC_LIBRARIES := libavformat_static libavcodec_static
libswscale_static libavutil_static
include $(BUILD_SHARED_LIBRARY)
$(call import-module,ffmpeg-1.0.1/android/armv5te)

Any command-line input or output is written as follows:

$sudo update-java-alternatives -s <java name>

Preface

4

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Go to Control Panel | System
and Security | System | Advanced system settings."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Hello NDK

In this chapter, we will cover the following recipes:

 f Setting up an Android NDK development environment in Windows

 f Setting up an Android NDK development environment in Ubuntu Linux

 f Setting up an Android NDK development environment in Mac OS

 f Updating Android NDK

 f Writing a Hello NDK program

Introduction
Android NDK is a toolset that allows developers to implement a part of or an entire Android
application in a native language, such as C, C++, and assembly. Before we start our journey
to NDK, it is important to understand the advantages of NDK.

First of all, NDK may improve application performance. This is usually true for many
processor-bound applications. Many multimedia applications and video games use
native code for processor-intensive tasks.

The performance improvements can come from three sources. Firstly, the native code is
compiled to a binary code and run directly on OS, while Java code is translated into Java
byte-code and interpreted by Dalvik Virtual Machine (VM). At Android 2.2 or higher,
a Just-In-Time (JIT) compiler is added to Dalvik VM to analyze and optimize the Java
byte-code while the program is running (for example, JIT can compile a part of the
byte-code to binary code before its execution). But in many cases, native code still
runs faster than Java code.

Hello NDK

8

Java code is run by Dalvik VM on Android. Dalvik VM is specially designed
for systems with constrained hardware resources (memory space, processor
speed, and so on).

The second source for performance improvements at NDK is that native code allows
developers to make use of some processor features that are not accessible at Android SDK,
such as NEON, a Single Instruction Multiple Data (SIMD) technology, allowing multiple
data elements to be processed in parallel. One particular coding task example is the color
conversion for a video frame or a photo. Suppose we are to convert a photo of 1920x1280
pixels from the RGB color space to the YCbCr color space. The naive approach is to apply a
conversion formula to every pixel (that is, over two million pixels). With NEON, we can process
multiple pixels at one time to reduce the processing time.

The third aspect is that we can optimize the critical code at an assembly level, which is a
common practice in desktop software development.

The advantages of using native code do not come free. Calling JNI
methods introduces extra work for the Dalvik VM and since the code is
compiled, no runtime optimization can be applied. In fact, developing in
NDK doesn't guarantee a performance improvement and can actually
harm performance at times. Therefore, we only stated that it may
improve the app's performance.

The second advantage of NDK is that it allows the porting of existing C and C++ code to
Android. This does not only speed up the development significantly, but also allows us to
share code between Android and non-Android projects.

Before we decide to use NDK for an Android app, it is good to know that NDK will not
benefit most Android apps. It is not recommended to work in NDK simply because one
prefers programming in C or C++ over Java. NDK cannot access lots of APIs available in
the Android SDK directly, and developing in NDK will always introduce extra complexity
into your application.

With the understanding of the pros and cons of NDK, we can start our journey to Android NDK.
This chapter will cover how to set up Android NDK development in Windows, Ubuntu Linux, and
Mac OS. For developers who have set up an Android NDK development environment before, a
recipe with detailed steps of how to update an NDK development environment is provided.
At the end of the chapter, we will write a Hello NDK program with the environment setup.

Setting up an Android NDK development
environment in Windows

In this recipe, we will explore how to set up an Android NDK development environment
in Windows.

Chapter 1

9

Getting ready
Check the Windows edition and system type. An Android development environment can be set
up on Windows XP 32-bit, Windows Vista 32- or 64-bit, and Windows 7 32- or 64-bit.

Android development requires Java JDK 6 or above to be installed. Follow these steps to
install and configure Java JDK:

1. Go to the Oracle Java JDK web page at http://www.oracle.com/technetwork/
java/javase/downloads/index.html, and choose JDK6 or above for your
platform to download.

2. Double-click on the downloaded executable, and click through the installation wizard
to finish the installation.

3. Go to Control Panel | System and Security | System | Advanced system settings.
A System Properties window will pop up.

4. Click on the Environment Variables button in the Advanced tab; another
Environment Variables window will pop up.

5. Under System variables, click on New to add a variable with the name as
JAVA_HOME and value as the path of the JDK installation root directory.
This is shown as follows:

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Hello NDK

10

6. Under System variables, scroll to find the PATH (or Path) environment variable.
Insert %JAVA_HOME%\bin; at the beginning of the value. If no PATH or Path
variable exists, create a new variable with the value set to %JAVA_HOME%\bin.
Click on OK all the way through to dismiss all windows.

7. To verify whether JDK is installed and configured correctly, start a new command-line
console, and enter javac -version. If JDK is configured correctly, you will get the
Java version in the output.

Cygwin is a Linux-like environment for Windows to run software available on Linux. Android
NDK development requires Cygwin 1.7 or higher installed to execute some Linux programs;
for example, the GNU make.

Since NDK r7, the Windows NDK comes with a new ndk-build.cmd build script, which uses
NDK's prebuilt binaries for GNU make, awk, and other tools. Therefore Cygwin is not required
for building NDK programs with ndk-build.cmd. However, it is recommended that you
still install Cygwin, because ndk-build.cmd is an experimental feature and Cygwin is still
needed by the debugging script ndk-gdb.

Follow these steps to install Cygwin:

1. Go to http://cygwin.com/install.html to download setup.exe for Cygwin.
Double-click on it after the download is complete in order to start the installation.

2. Click on Next, then select Install from Internet. Keep clicking on Next until you see
the Available Download Sites list. Select the site that is close to your location, then
click on Next:

http://cygwin.com/install.html
http://cygwin.com/install.html

Chapter 1

11

3. Look for GNU make under Devel, ensure it is version 3.81 or later, and gawk under
Base. Alternatively, you can search for make and gawk using the Search box. Make
sure both GNU make and gawk are selected to install, then click on Next. The
installation can take a while to finish:

Eclipse is a powerful software Integrated Development Environment (IDE) with an
extensible plugin system. It is the recommended IDE to develop Android apps. Go to
http://www.eclipse.org/downloads/, and download the Eclipse Classic or
Eclipse IDE for Java developers. Extract the compressed file and it will be ready
for use. Note that Android development requires Eclipse 3.6.2 (Helios) or greater.

The Android developer website provides an Android Developer Tools bundle
at http://developer.android.com/sdk/index.html. It includes
the Eclipse IDE with the ADT plugin, and the Android SDK. We can download
this bundle and skip the SDK installation described in steps 1 to 10 of the
following How to do it... section.

http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

Hello NDK

12

How to do it…
The following steps show you how to set up an Android NDK development environment in
Windows. We will first set up an SDK development environment. Steps 1 to 10 can be skipped
if SDK is already set up.

1. Start Eclipse. Select Help | Install New Software, and a window titled Install will
pop up.

2. Click on the Add… button at the top-right will corner, and another window titled
Add Repository will pop up.

3. In the Add Repository window, enter ADT for Name and
https://dl-ssl.google.com/android/eclipse/ for Location.
Then click on OK.

4. It may take a few seconds for Eclipse to load the software items from the ADT
website. After loading, select Developer Tools and NDK Plugins, then click on
Next to proceed:

5. In the next window, a list of tools to be installed will be shown. Simply click on Next.
Read and accept all the license agreements, then click on Finish.

6. After installation finishes, restart Eclipse as prompted.

7. Download Android SDK from
http://developer.android.com/sdk/index.html.

8. Double-click on the installer to start the installation. Follow the wizard to finish
the installation.

9. In Eclipse, select Window | Preferences to open the Preferences window. Select
Android from the left panel, then click on Browse to locate the Android SDK root
directory. Click on Apply, and then OK.

https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

Chapter 1

13

10. Start Android SDK Manager at the Android SDK installation root directory. Select
Android SDK Tools, Android SDK Platform-tools, at least one Android platform (the
latest is preferred), System Image, SDK Samples, and Android Support. Then click
on Install. in the next window, read and accept all the license agreements, then click
on Install:

11. Go to http://developer.android.com/tools/sdk/ndk/index.html to
download the latest version of Android NDK. Unzip the downloaded file.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Hello NDK

14

12. Open Cygwin.bat under the cygwin root directory. It contains the following
content by default:
@echo off
C:
chdir C:\cygwin\bin
bash --login -i

13. Add the following content after @echo off before C:
set IS_UNIX=
set JAVA_HOME=<JDK path>
set PATH=<SDK path>\tools;<NDK path>
set ANDROID_NDK_ROOT=/cygdrive/<NDK path>

As an example, the file content on my machine is as follows; note that Progra~1 is
the short name for the Program Files folder:
set IS_UNIX=
set JAVA_HOME=c:/Progra~1/Java/jdk1.7.0_05
set PATH=C:/Users/Administrator/AppData/Local/Android/android-sdk/
tools;C:/Users/Administrator/Downloads/android-ndk-r8-windows/
android-ndk-r8
set ANDROID_NDK_ROOT=/cygdrive/c/Users/Administrator/Downloads/
android-ndk-r8-windows/android-ndk-r8

14. Start Cygwin by double-clicking on cygwin.bat, then go to the samples/hello-jni
directory in NDK. Type the command ndk-build. If the build is successful, it proves
that the NDK environment is set up correctly:

15. In Eclipse, select Window | Preferences to open the Preferences window. Click on
Android from the left panel, and select NDK from the drop-down list. Click on Browse
to locate the Android NDK root directory. Click on OK to dismiss the pop-up window.
This enables us to build and debug Android NDK applications with the Eclipse
NDK plugin:

Chapter 1

15

How it works…
In this recipe, we first set up an Android SDK development environment and then the NDK
development environment.

Android NDK does not require installation. We downloaded NDK, and configured the path to
make it more convenient to use.

Cygwin is not required for Android SDK development, but is essential for NDK development
because NDK uses some Linux tools that depend on Cygwin.

NDK plugin in ADT: NDK plugin for Eclipse is available in Android Development Tools (ADT),
which allows us to build and debug Android NDK applications easily.

The NDK plugin is only available for ADT 20.0.0 or later, which was
released on June 2012. You may want to update your Eclipse ADT in
order to use the NDK plugin.

There's more…
We installed Eclipse IDE as a part of our development environment. Eclipse is the
recommended IDE for developing Android applications, and it comes with lots of useful
tools and utilities to help our development. However, it is not a compulsory component
of the development environment.

Hello NDK

16

Setting up an Android NDK development
environment in Ubuntu Linux

This recipe depicts how to set up an Android NDK development environment in Ubuntu Linux.

Getting ready
Check your Ubuntu version and make sure it is version 8.04 or later.

GNU C Library (glibc) 2.7 or above is required. It is usually installed with Linux by default.
Two simple methods can check the version of glibc:

1. Start a terminal, and enter ldd --version. This will print the version of ldd
and glibc:

2. We can execute the library as an application. Start a terminal, locate the library
location, and then enter the following command:
<glibc library location>/<glibc library>.

The following output will be displayed:

3. We need to enable 32-bit application execution if we are using a 64-bit machine.
Start a terminal, and enter the following command:
sudo apt-get install ia32-libs

Chapter 1

17

4. Install JDK 6 or above. At a terminal, enter the command sudo apt-get install
openjdk-6-jdk, or alternatively we can enter sudo apt-get install sun-
java6-jdk. After installation, we need to add the JDK path to the PATH
environment variable by adding the following lines to ~/.bashrc:
export JDK_PATH=/usr/local/jdk1.7.0/bin
export PATH=$PATH:$JDK_PATH

We will use Eclipse as our IDE. Please refer to the Setting up an Android NDK development
environment in Windows recipe for instructions.

How to do it…
The following steps indicate the procedure of setting up an Android NDK development
environment on Ubuntu Linux:

1. Follow steps 1 to 6 of the Setting up an Android NDK development environment in
Windows recipe to install the ADT plugin for Eclipse.

2. Download Android SDK from http://developer.android.com/sdk/index.
html, then extract the downloaded package.

3. Append the following lines to ~/.bashrc:
export ANDROID_SDK=<path to Android SDK directory>
export PATH=$PATH:$ ANDROID_SDK/tools:$ANDROID_SDK/platform-tools

4. Follow steps 9 and 10 of the Setting up an Android NDK development environment
in Windows recipe to configure the SDK path at Eclipse, and download
additional packages.

5. Download the latest version of Android NDK from http://developer.android.
com/tools/sdk/ndk/index.html, then extract the downloaded file.

6. Change the lines that you appended to ~/.bashrc in step 3:
export ANDROID_SDK=<path to Android SDK directory>
export ANDROID_NDK=<path to Android NDK directory>
export PATH=$PATH:$ANDROID_SDK/tools:$ANDROID_SDK/platform-
tools:$ANDROID_NDK

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html

Hello NDK

18

7. Start a new terminal, then go to the samples/hello-jni directory in NDK.
Type the command ndk-build. If the build is successful, it proves that the
NDK environment is set up correctly:

How it works…
We first set up Android SDK and then Android NDK. Ensure that the path is set properly,
so that the tools can be accessed without referring to the SDK and NDK directories.

The .bashrc file is a startup file read by the bash shell when you start a new terminal.
The export commands appended the Android SDK and NDK directory locations to the
environment variable PATH. Therefore, every time a new bash shell starts, PATH is set
properly for SDK and NDK tools.

There's more…
The following are a few more tips on setting up an NDK development environment:

 f Configure Path at Startup File: We append to the SDK and NDK paths to the PATH
environment variable at ~/.bashrc file. This assumes that our Linux system uses
the bash shell. However, if your system uses another shell, the startup file used
may be different. The startup files used by some commonly used shells are listed
as follows:

 � For C shell (csh), the startup file to use is ~/.cshrc.

 � For ksh, the startup file to use can be obtained using the command
echo $ENV.

 � For sh, the startup file to use is ~/.profile. The user needs to log out of
the current session and log in again for it to take effect.

 f Switch JDK: In Android development, we can either use Oracle Java JDK or OpenJDK.
In case we run into issues with any one of the JDKs, we can switch to another Java
JDK, if we have installed both of them.

 � To check which JDK the system is currently using, use the following command:
 $update-java-alternatives -l

 � To switch between two JDKs, use the following command:

 $sudo update-java-alternatives -s <java name>

Chapter 1

19

The following is an example for switching to Oracle JDK 1.6.0:

$sudo update-java-alternatives -s java-1.6.0-sun

Setting up an Android NDK development
environment in Mac OS

This recipe describes how to set up an Android NDK development environment in Mac OS.

Getting ready
Android development requires Mac OS X 10.5.8 or higher, and it works on the x86 architecture
only. Ensure that your machine meets these requirements before getting started.

Register an Apple developer account, then go to https://developer.apple.com/xcode/
to download Xcode, which contains a lot of developer tools, including the make utility required
for Android NDK development. After the download is complete, run the installation package and
make sure that the UNIX Development option is selected for installation.

As usual, Java JDK 6 or above is required. Mac OS X usually ships with a full JDK. We can
verify that your machine has the required version by using the following command:

$javac -version

How to do it…
Setting up an Android NDK development environment on Mac OS X is similar to setting it up
on Ubuntu Linux. The following steps explain how we can do this:

1. Follow steps 1 to 6 of the Setting up an Android NDK development environment in
Windows recipe to install the ADT plugin for Eclipse.

2. Download Android SDK from http://developer.android.com/sdk/index.
html, then extract the downloaded package.

3. Append the following lines to ~/.profile. If the file doesn't exist, create a new one.
Save the changes and log out of the current session:
export ANDROID_SDK=<path to Android SDK directory>
export PATH=$PATH:$ ANDROID_SDK/tools:$ANDROID_SDK/platform-tools

4. In Eclipse, select Eclipse | Preferences to open the Preferences window. Select
Android from the left panel, then click on Browse to locate the Android SDK root
directory. Click on Apply, and then OK.

https://developer.apple.com/xcode/
http://developer.android.com/sdk/index.html

Hello NDK

20

5. In a terminal, start the Android SDK Manager at the tools directory by typing the
command android. Select Android SDK Tools, Android SDK Platform-tools, at least
one Android platform (the latest one is preferred), System Image, SDK Samples, and
Android Support. Then click on Install. In the next window, read and accept all the
license agreements, then click on Install.

6. Download the latest version of Android NDK from http://developer.android.
com/tools/sdk/ndk/index.html, and then extract the downloaded file.

7. Change the lines that you appended to ~/.profile in step 3:
export ANDROID_SDK=<path to Android SDK directory>
export ANDROID_NDK=<path to Android NDK directory>
export PATH=$PATH:$ANDROID_SDK/tools:$ANDROID_SDK/platform-
tools:$ANDROID_NDK

8. Start a new terminal, then go to the samples/hello-jni directory in NDK.
Type the command ndk-build. If the build is successful, it proves that the
NDK environment is set up correctly.

How it works…
The steps to set up an Android NDK development environment on Mac OS X are similar to
Ubuntu Linux, since both of them are Unix-like operating systems. We first installed Android
SDK, then Android NDK.

Updating Android NDK
When there is a new release of NDK, we may want to update NDK in order to take advantage
of the new features or bug fixes with the new release. This recipe talks about how to update
Android NDK in Windows, Ubuntu Linux, and Mac OS.

Getting ready
Please read the previous recipes in this chapter, depending on the platform of your choice.

How to do it…
In Windows, follow these instructions to update Android NDK:

1. Go to http://developer.android.com/tools/sdk/ndk/index.html to
download the latest version of Android NDK. Unzip the downloaded file.

http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html

Chapter 1

21

2. Open Cygwin.bat under the cygwin root directory. The content should be similar to
the following code snippet, if you have previously configured NDK on the system:
@echo off
set IS_UNIX=
set JAVA_HOME=<JDK path>
set PATH=<SDK path>\tools;<NDK path>
set ANDROID_NDK_ROOT=/cygdrive/<NDK path>
C:
chdir C:\cygwin\bin
bash --login -i

3. Update <NDK path> from the old NDK path to the newly downloaded and
decompressed location.

In Ubuntu Linux, follow these instructions to update Android NDK:

1. Download the latest version of Android NDK from http://developer.android.
com/tools/sdk/ndk/index.html, then extract the downloaded file.

2. If we have followed the Setting up an Android NDK development environment in
Ubuntu Linux recipe, the following content should appear at the end of ~/.bashrc:
export ANDROID_SDK=<path to Android SDK directory>
export ANDROID_NDK=<path to Android NDK directory>
export PATH=$PATH:$ANDROID_SDK/tools:$ANDROID_SDK/platform-
tools:$ANDROID_NDK

3. Update the ANDROID_NDK path to the newly downloaded and extracted Android
NDK folder.

In Mac OS, the steps are almost identical to Ubuntu Linux, except that we need to append the
path to ~/.profile instead of ~/.bashrc.

How it works…
NDK installation is completed by simply downloading and extracting the NDK file, and
configuring the path properly. Therefore, updating NDK is as simple as updating the
configured path to the new NDK folder.

There's more…
Sometimes, updating NDK requires updating SDK first. Since this book focuses on Android
NDK, explaining how to update SDK is beyond the scope of this book. You can refer to the
Android developer website at http://developer.android.com/sdk/index.html,
for details on how to do it.

http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/sdk/index.html

Hello NDK

22

At times, we may feel the need to use an old version of NDK to build certain applications
because of compatibility issues. Therefore, it may be useful to keep multiple versions of
Android NDK and switch between them by changing the path or simply using the full path
to refer to a specific version of NDK.

Writing a Hello NDK program
With the environment set up, let's start writing the code in NDK. This recipe walks through a
Hello NDK program.

Getting ready
The NDK development environment needs to be set up properly before starting to write the
Hello NDK program. Please refer to previous recipes in this chapter, depending upon the
platform of your choice.

How to do it…
Follow these steps to write, compile, and run the Hello NDK program:

1. Start Eclipse, and select File | New | Android Project. Enter HelloNDK as the value
for Project Name. Select Create new project in workspace. Then click on Next:

2. In the next window, select an Android version that you want to target. Usually,
the latest version is recommended. Then click on Next.

Chapter 1

23

3. In the next window, specify your package name as cookbook.chapter1. Select the
Create Activity box, and specify the name as HelloNDKActivity. Set the value for
Minimum SDK as 5 (Android 2.0). Click on Finish:

4. In the Eclipse package explorer, right-click on the HelloNDK project, and select
New | Folder. Enter the name jni in the pop-up window, then click on Finish:

Hello NDK

24

5. Right-click on the newly-created jni folder under the HelloNDK project. Select
New | File, enter hello.c as the value for File name, then click on Finish. Type
the following code in the hello.c file:
#include <string.h>
#include <jni.h>

jstring
Java_cookbook_chapter1_HelloNDKActivity_naGetHelloNDKStr(JNIEnv*
pEnv, jobject pObj)
{
 return (*pEnv)->NewStringUTF(pEnv, "Hello NDK!");
}

6. Right-click on the jni folder. Select New | File, enter Android.mk as the value for
File name, then click on Finish. Type the following code in the Android.mk file:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := hello
LOCAL_SRC_FILES := hello.c
include $(BUILD_SHARED_LIBRARY)

7. Start a terminal, go to the jni folder, and type ndk-build to build the hello.c
program as a native library.

8. Edit the HelloNDKActivity.java file. The file should contain the following content:
public class HelloNDKActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 tv.setTextSize(30);
 tv.setText(naGetHelloNDKStr());
 this.setContentView(tv);
 }
 public native String naGetHelloNDKStr();
 static {
 System.loadLibrary("hello");
 }
}

Chapter 1

25

9. Right-click on the HelloNDK project in Eclipse. Select Run As | Android Application.
Your Android phone or emulator will be displayed with something similar to the
following screenshot:

How it works…
This recipe demonstrated how to write a Hello NDK program on Android.

 f Native code: The Hello NDK program consists of both the native C code and Java
code. The native function naGetHelloNDKStr returns the Hello NDK string to the
caller, as indicated in both the native code function definition and Java code method
declaration. The native function name must follow a specific pattern for a package
name, class name, and method name. The package and class name must agree
with the package and class name of the Java class from which the native method is
called, while the method name must be the same as the method name declared in
that Java class.

This helps the Dalvik VM to locate the native function at runtime. Failing to follow the
rule will result in UnsatisfiedLinkError at runtime.

The native function has two parameters, which are standard for all native functions.
Additional parameters can be defined based on needs. The first parameter is a
pointer to JNIEnv, which is the gateway to access various JNI functions. The meaning
of the second parameter depends on whether the native method is a static or an
instance method. If it's a static method, the second parameter is a reference to the
class where the method is defined. If it's an instance method, the second parameter
is a reference to the object on which the native method is invoked. We will discuss JNI
in detail in Chapter 2, Java Native Interface.

 f Compilation of the native code: The Android NDK build system frees developers
from writing makefile. The build system accepts an Android.mk file, which simply
describes the sources. It will parse the file to generate makefile and do all the
heavy lifting for us.

We will cover details of how to write the Android.mk file or even write our
own makefile in Chapter 3, Build and Debug NDK Applications.

Once we compile the native code, a folder named libs will be created
under our project and a libhello.so library will be generated under
the armeabi subdirectory.

Hello NDK

26

 f Java code: Three steps are followed to call the native method:

1. Load the native library: This is done by calling System.
loadLibrary("hello"). Note that instead of libhello, we should use
hello. The Dalvik VM will fail to locate the library if libhello is specified.

2. Declare the method: We declare the method with a native keyword to
indicate that it is a native method.

3. Invoke the method: We call the method just like any normal Java method.

There's more…
The name of a native method is lengthy and writing it manually is error-prone. Fortunately,
the javah program from JDK can help us generate the header file, which includes the
method name. The following steps should be followed to use javah:

1. Write the Java code, including the native method definition.

2. Compile the Java code and make sure the class file appears under the
bin/classes/ folder of our project.

3. Start a terminal and go to the jni folder, and enter the following command:
$ javah -classpath ../bin/classes –o <output file name> <java
package name>.<java class anme>

In our HelloNDK example, the command should be as follows:
$ javah -classpath ../bin/classes –o hello.h cookbook.chapter1.
HelloNDKActivity

This will generate a file named hello.h with its function definition as follows:

JNIEXPORT jstring JNICALL Java_cookbook_chapter1_HelloNDKActivity_
naGetHelloNDKStr
 (JNIEnv *, jobject);

2
Java Native Interface

In this chapter, we will cover the following recipes:

 f Loading native libraries and registering native methods

 f Passing parameters and receiving returns in primitive types

 f Manipulating strings in JNI

 f Managing references in JNI

 f Manipulating classes in JNI

 f Manipulating objects in JNI

 f Manipulating arrays in JNI

 f Accessing Java static and instance fields in native code

 f Calling static and instance methods from native code

 f Caching jfieldID, jmethodID, and reference data to improve performance

 f Checking errors and handling exceptions in JNI

 f Integrating assembly code in JNI

Java Native Interface

28

Introduction
Programming with Android NDK is essentially writing code in both Java and native
languages such as C, C++, and assembly. Java code runs on Dalvik Virtual Machine (VM),
while native code is compiled to binaries running directly on the operating system. Java
Native Interface (JNI) acts like the bridge that brings both worlds together. This relationship
between Java code, Dalvik VM, native code, and the Android system can be illustrated using
the following diagram:

The arrow in the diagram indicates which party initiates the interaction. Both Dalvik VM
and Native Code run on top of Android system (Android is a Linux-based OS). They require
the system to provide the execution environment. JNI is part of Dalvik VM, which allows
Native Code to access fields and invoke methods at Java Code. JNI also allows Java Code to
invoke native methods implemented in Native Code. Therefore, JNI facilitates the two-way
communication between Native Code and Java Code.

If you are familiar with Java programming and C, or C++, or assembly programming, then
learning programming with Android NDK is mostly learning JNI. JNI comes with both primitive
and reference data types. These data types have their corresponding mapping data types
in Java. Manipulating the primitive types can usually be done directly, since a data type is
normally equivalent to a native C/C++ data type. However, reference data manipulation
often requires the help of the predefined JNI functions.

In this chapter, we'll first cover various data types in JNI and demonstrate how to
invoke native methods from Java. We then describe accessing the Java fields and calling
Java methods from the native code. Finally, we will discuss how to cache data to achieve
better performance, how to handle errors and exceptions, and how to use assembly in native
method implementation.

Every recipe in this chapter comes with a sample Android project that illustrates the topic and
related JNI functions. Because of the space constraint, we cannot list all the source code in
the book. The code is a very important part of this chapter and it is strongly recommended
that you download the source code and refer to it when going through the recipes.

Chapter 2

29

JNI is a complex topic, and we tried to cover the most essential parts of it
in the context of Android NDK programming. However, a single chapter is
not enough to provide all the details. Readers may want to refer to Java
JNI Specification at http://docs.oracle.com/javase/6/docs/
technotes/guides/jni/ or the Java Native Interface: Programmer's
Guide and Specification book at http://java.sun.com/docs/
books/jni/. For Android-specific information, you can refer to JNI Tips at
https://developer.android.com/guide/practices/jni.html.

Loading native libraries and registering
native methods

Native code is usually compiled into a shared library and loaded before the native methods
can be called. This recipe covers how to load native libraries and register native methods.

Getting ready
Please read the recipes in Chapter 1, Hello NDK, to set up the Android NDK development
environment if you haven't done so already.

How to do it…
The following steps will show you how to build an Android application that demonstrates
loading native libraries and registering native methods:

1. Start Eclipse, select File | New | Android Project. Enter the value for Project Name
as NativeMethodsRegister. Select Create new project in workspace. Then, click
on Next.

2. In the next window, select the latest version of Android SDK, then click on Next to go
to the next window.

3. Specify the package name as cookbook.chapter2. Select the Create Activity
checkbox, and specify the name as NativeMethodsRegisterActivity.
Set the value for Minimum SDK as 5 (Android 2.0). Then, click on Finish.

4. In Eclipse Package Explorer, right-click on the NativeMethodsRegister
project, then select New | Folder. Enter the name jni in the pop-up window,
then click on Finish.

5. Right-click on the newly created jni folder under the NativeMethodsRegister
project, then select New | File. Enter nativetest.c as the value for File name,
then click on Finish.

http://docs.oracle.com/javase/6/docs/technotes/guides/jni/
http://docs.oracle.com/javase/6/docs/technotes/guides/jni/
http://java.sun.com/docs/books/jni/
http://java.sun.com/docs/books/jni/
https://developer.android.com/guide/practices/jni.html
https://developer.android.com/guide/practices/jni.html

Java Native Interface

30

6. Add the following code to nativetest.c:
#include <android/log.h>
#include <stdio.h>

jint NativeAddition(JNIEnv *pEnv, jobject pObj, jint pa, jint pb)
{
 return pa+pb;
}

jint NativeMultiplication(JNIEnv *pEnv, jobject pObj, jint pa,
jint pb) {
 return pa*pb;
}

JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM* pVm, void* reserved)
{
 JNIEnv* env;
 if ((*pVm)->GetEnv(pVm, (void **)&env, JNI_VERSION_1_6)) {
 return -1;
 }
 JNINativeMethod nm[2];
 nm[0].name = "NativeAddition";
 nm[0].signature = "(II)I";
 nm[0].fnPtr = NativeAddition;
 nm[1].name = "NativeMultiplication";
 nm[1].signature = "(II)I";
 nm[1].fnPtr = NativeMultiplication;
 jclass cls = (*env)->FindClass(env, "cookbook/chapter2/
NativeMethodRegisterActivity");
 // Register methods with env->RegisterNatives.
 (*env)->RegisterNatives(env, cls, nm, 2);
 return JNI_VERSION_1_6;
}

7. Add the following code to load the native shared library and define native methods to
NativeMethodRegisterActivity.java:
public class NativeMethodRegisterActivity extends Activity {
 … …
 private void callNativeMethods() {
 int a = 10, b = 100;
 int c = NativeAddition(a, b);
 tv.setText(a + "+" + b + "=" + c);
 c = NativeMultiplication(a, b);
 tv.append("\n" + a + "x" + b + "=" + c);

Chapter 2

31

 }
 private native int NativeAddition(int a, int b);
 private native int NativeMultiplication(int a, int b);
 static {
 //use either of the two methods below
//System.loadLibrary("NativeRegister");
 System.load("/data/data/cookbook.chapter2/lib/
libNativeRegister.so");
 }
}

8. Change TextView in the res/layout/activity_native_method_register.
xml file as follows:
<TextView
 android:id="@+id/display_res"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:padding="@dimen/padding_medium"
 android:text="@string/hello_world"
 tools:context=".NativeMethodRegisterActivity" />

9. Create a file named Android.mk under the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := NativeRegister
LOCAL_SRC_FILES := nativetest.c
LOCAL_LDLIBS := -llog
include $(BUILD_SHARED_LIBRARY)

10. Start a terminal, go to the jni folder under our project, and type ndk-build to build
the native library.

11. Run the project on an Android device or emulator. You should see something similar
to the following screenshot:

Java Native Interface

32

How it works…
This recipe describes how to load a native library and register native methods:

 f Loading Native Library: The java.lang.System class provides two methods to
load native libraries, namely loadLibrary and load. loadLibrary accepts a
library name without the prefix and file extension. For example, if we want to load
the Android native library compiled as libNativeRegister.so in our sample
project, we use System.loadLibrary("NativeRegister"). The System.
load method is different. It requires the full path of the native library. In our sample
project, we can use System.load("/data/data/cookbook.chapter2/lib/
libNativeRegister.so") to load the native library. The System.load method
can be handy when we want to switch between different versions of a native library,
since it allows us to specify the full library path.

We demonstrated the usage of both the methods in the static initializer of the
NativeMethodRegisterActivity.java class. Note that only one method
should be enabled when we build and run the sample application.

 f JNIEnv Interface Pointer: Every native method defined in native code at JNI
must accept two input parameters, the first one being a pointer to JNIEnv.
The JNIEnv interface pointer is pointing to thread-local data, which in turn
points to a JNI function table shared by all threads. This can be illustrated
using the following diagram:

Chapter 2

33

The JNIEnv interface pointer is the gateway to access all pre-defined JNI functions,
including the functions that enable the native code to process Java objects, access
Java fields, invoke Java methods, and so on. The RegisterNatives native function
we're going to discuss next is also one of them.

The JNIEnv interface pointer points to thread-local data, so it
cannot be shared between threads. In addition, JNIEnv is only
accessible by a Java thread. A native thread must call the JNI
function AttachCurrentThread to attach itself to the VM, to
obtain the JNIEnv interface pointer. We will see an example of
this in the Manipulating classes in JNI recipe in this chapter.

 f Registering Native Methods: JNI can automatically discover the native method
implementation if its function name follows a specific naming convention as
mentioned in Chapter 1, Hello NDK. This is not the only way. In our sample project,
we explicitly called the RegisterNatives JNI function to register the native
methods. The RegisterNatives function has the following prototype:

jint RegisterNatives(JNIEnv *env, jclass clazz, const
JNINativeMethod *methods, jint nMethods);

The clazz argument is a reference to the class in which the native method is to
be registered. The methods argument is an array of the JNINativeMethod data
structure. JNINativeMethod is defined as follows:
typedef struct {
 char *name;
 char *signature;
 void *fnPtr;
} JNINativeMethod;

name indicates the native method name, signature is the descriptor of the
method's input argument data type and return value data type, and fnPtr is the
function pointer pointing to the native method. The last argument, nMethods of
RegisterNatives, indicates the number of methods to register. The function
returns zero to indicate success, and a negative value otherwise.

RegisterNatives is handy to register a native method implementation for
different classes. In addition, it can simplify the native method name to avoid
careless mistakes.

Java Native Interface

34

The typical way of using RegisterNatives is in the JNI_OnLoad method as shown
in the following template. JNI_OnLoad is called when the native library is loaded,
so we can guarantee that the native methods are registered before they're invoked:

JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM* pVm, void* reserved)
{
 JNIEnv* env;
 if ((*pVm)->GetEnv(pVm, (void **)&env, JNI_VERSION_1_6)) {
 return -1;
 }

 // Get jclass with env->FindClass.
 // Register methods with env->RegisterNatives.

 return JNI_VERSION_1_6;
}

We demonstrated the usage of the preceding template in the JNI_OnLoad method of our
sample code, where we registered two native methods to add and multiply two input integers
respectively. The execution result shown earlier proves that the Java code can invoke the two
registered native methods successfully.

Note that this example uses some JNI features that we're going to cover in later recipes,
including the FindClass function and field descriptors. It is alright if don't fully understand
the code at this stage. You can always go back to it after learning more about those topics.

Passing parameters and receiving returns in
primitive types

Java code can pass parameters to native methods and receive the processing results
returned. This recipe walks through how to pass parameters and receive returns in
primitive types.

Getting ready
You should have built at least one Android application with native code before reading
this recipe. If you haven't done so, please read the Writing a Hello NDK program recipe
in Chapter 1, Hello NDK first.

Chapter 2

35

How to do it…
The following steps create a sample Android application with native methods receiving input
parameters from the Java code and returning the processing result back:

1. Create a project named PassingPrimitive. Set the package name as
cookbook.chapter2. Create an activity named PassingPrimitiveActivity.
Under this project, create a folder named jni. Please refer to the Loading native
libraries and registering native methods recipe in this chapter if you want more
detailed instructions.

2. Add a file named primitive.c under the jni folder and implement the native
methods. In our sample project, we implemented one native method for each of the
eight primitive data types. Following is the code for jboolean, jint, and jdouble.
Please refer to the downloaded code for the complete list of methods:
#include <jni.h>
#include <android/log.h>

JNIEXPORT jboolean JNICALL Java_cookbook_chapter2_
PassingPrimitiveActivity_passBooleanReturnBoolean(JNIEnv *pEnv,
jobject pObj, jboolean pBooleanP){
 __android_log_print(ANDROID_LOG_INFO, "native", "%d in %d
bytes", pBooleanP, sizeof(jboolean));
 return (!pBooleanP);
}

JNIEXPORT jint JNICALL Java_cookbook_chapter2_
PassingPrimitiveActivity_passIntReturnInt(JNIEnv *pEnv, jobject
pObj, jint pIntP) {
 __android_log_print(ANDROID_LOG_INFO, "native", "%d in %d
bytes", pIntP, sizeof(jint));
 return pIntP + 1;
}

JNIEXPORT jdouble JNICALL Java_cookbook_chapter2_
PassingPrimitiveActivity_passDoubleReturnDouble(JNIEnv *pEnv,
jobject pObj, jdouble pDoubleP) {
 __android_log_print(ANDROID_LOG_INFO, "native", "%f in %d
bytes", pDoubleP, sizeof(jdouble));
 return pDoubleP + 0.5;
}

Java Native Interface

36

3. In the PassingPrimitiveActivity.java Java code, we add code to load the
native library, declare the native methods, and call the native methods. Following is
that part of the code. The "…" indicates the part that is not shown. Please refer to the
source file downloaded from the website for the complete code:
@Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_passing_primitive);
 StringBuilder strBuilder = new StringBuilder();
 strBuilder.append("boolean: ").append(passBooleanReturnBoo
lean(false)).append(System.getProperty("line.separator"))

 .append("double: ").append(passDoubleReturnDoub
le(11.11)).append(System.getProperty("line.separator"));
 TextView tv = (TextView) findViewById(R.id.display_res);
 tv.setText(strBuilder.toString());
 }
 private native boolean passBooleanReturnBoolean(boolean p);
 private native byte passByteReturnByte(byte p);
 private native char passCharReturnChar(char p);
 private native short passShortReturnShort(short p);

 static {
 System.loadLibrary("PassingPrimitive");
 }

4. Modify the res/layout/activity_passing_primitive.xml file according to
step 8 of the Loading native libraries and registering native methods recipe of this
chapter or the downloaded project code.

5. Create a file named Android.mk under the jni folder, and add the following
content to it:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := PassingPrimitive
LOCAL_SRC_FILES := primitive.c
LOCAL_LDLIBS := -llog
include $(BUILD_SHARED_LIBRARY)

Chapter 2

37

6. Start a terminal, go to the jni folder, and type ndk-build to build the native library
PassingPrimitive.

7. In Eclipse, select Window | Show View | LogCat to show the logcat console.
Alternatively, start a terminal and enter the following command in your terminal
to show logcat output on it:
$adb logcat -v time

8. Run the project on an Android device or emulator. You should see something similar
to the following screenshot:

The logcat output is as follows:

Java Native Interface

38

How it works…
The code illustrates how to pass parameters and receive returns in primitive types from the
native method. We created one method for each primitive type. In the native code, we printed
the received value to logcat, modified the value, and returned it back.

 f JNI primitive type and Java primitive type mapping: The primitive types in JNI and
Java have the following mapping:

Java Type JNI Type Number of bytes Sign

boolean jboolean 1 unsigned

byte jbyte 1 signed

char jchar 2 unsigned

short jshort 2 signed

int jint 4 signed

long jlong 8 signed

float jfloat 4 -

double jdouble 8 -

Note that both Java char and JNI jchar are two bytes, while the C/C++ char type
is only one byte long. In fact, C/C++ char are interchangeable with jbyte instead of
jchar in JNI programming.

 f Android log library: We output the received values to the Android logging system at a
native method, by using the following code:
__android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__);

ANDROID_LOG_INFO is an enum value defined in android/log.h, which indicates
that we're using the info-level logging. LOG_TAG can be any strings, and __VA_
ARGS__ is replaced by the parameters passed to the API, in a format similar to the
printf method in C.

We must include the android/log.h header in the native code to use the log
functions:
#include <android/log.h>

Besides this, we'll need to include the NDK log library in the Android.mk file in order
to use the API:

LOCAL_LDLIBS := -llog

We will cover more details about Android logging API in Chapter 3, Build and Debug NDK
Applications, while utilizing logging API for debugging purposes.

Chapter 2

39

Manipulating strings in JNI
Strings are somewhat complicated in JNI, mainly because Java strings and C strings are
internally different. This recipe will cover the most commonly used JNI string features.

Getting ready
Understanding the basics of encoding is essential to comprehend the differences between
Java string and C string. We'll give a brief introduction to Unicode.

According to the Unicode Consortium, the Unicode Standard is defined as follows:

The Unicode Standard is a character coding system designed to support the
worldwide interchange, processing, and display of the written texts of the diverse
languages and technical disciplines of the modern world. In addition, it supports
classical and historical texts of many written languages.

Unicode assigns a unique number for each character it defines, called code point. There are
mainly two categories of encoding methods that support the entire Unicode character set,
or a subset of it.

The first one is the Unicode Transformation Format (UTF), which encodes a Unicode code
point into a variable number of code values. UTF-8, UTF-16, UTF-32, and a few others belong
to this category. The numbers 8, 16, and 32 refer to the number of bits in one code value. The
second category is the Universal Character Set (UCS) encodings, which encodes a Unicode
code point into a single code value. UCS2 and UCS4 belong to this category. The numbers 2
and 4 refer to the number of bytes in one code value.

Unicode defines more characters than what two bytes can possibly represent.
Therefore, UCS2 can only represent a subset of Unicode characters. Because
Unicode defines fewer characters than what four bytes can represent, multiple
code values of UTF-32 are never needed. Therefore, UTF-32 and UCS4 are
functionally identical.

Java programming language uses UTF-16 to represent strings. If a character cannot fit in a
16-bit code value, a pair of code values named surrogate pair is used. C strings are simply
an array of bytes terminated by a null character. The actual encoding/decoding is pretty much
left to the developer and the underlying system. A modified version of UTF-8 is used by JNI
to represent strings, including class, field, and method names in the native code. There are
two differences between the modified UTF-8 and standard UTF-8. Firstly, the null character
is encoded using two bytes. Secondly, only one-byte, two-byte, and three-byte formats of
Standard UTF-8 are supported by JNI, while longer formats cannot be recognized properly.
JNI uses its own format to represent Unicode that cannot fit into three bytes.

Java Native Interface

40

How to do it
The following steps show you how to create a sample Android project that illustrates string
manipulation at JNI:

1. Create a project named StringManipulation. Set the package name as
cookbook.chapter2. Create an activity named StringManipulationActivity.
Under the project, create a folder named jni. Refer to the Loading native
libraries and registering native methods recipe in this chapter if you want
more detailed instructions.

2. Create a file named stringtest.c under the jni folder, then implement the
passStringReturnString method as follows:
JNIEXPORT jstring JNICALL Java_cookbook_chapter2_
StringManipulationActivity_passStringReturnString(JNIEnv *pEnv,
jobject pObj, jstring pStringP){

 __android_log_print(ANDROID_LOG_INFO, "native", "print
jstring: %s", pStringP);
 const jbyte *str;
 jboolean *isCopy;
 str = (*pEnv)->GetStringUTFChars(pEnv, pStringP, isCopy);
 __android_log_print(ANDROID_LOG_INFO, "native", "print UTF-8
string: %s, %d", str, isCopy);

 jsize length = (*pEnv)->GetStringUTFLength(pEnv, pStringP);
 __android_log_print(ANDROID_LOG_INFO, "native", "UTF-8 string
length (number of bytes): %d == %d", length, strlen(str));
 __android_log_print(ANDROID_LOG_INFO, "native", "UTF-8 string
ends with: %d %d", str[length], str[length+1]);
 (*pEnv)->ReleaseStringUTFChars(pEnv, pStringP, str);

 char nativeStr[100];
 (*pEnv)->GetStringUTFRegion(pEnv, pStringP, 0, length,
nativeStr);
 __android_log_print(ANDROID_LOG_INFO, "native", "jstring
converted to UTF-8 string and copied to native buffer: %s",
nativeStr);

 const char* newStr = "hello 安卓";
 jstring ret = (*pEnv)->NewStringUTF(pEnv, newStr);
 jsize newStrLen = (*pEnv)->GetStringUTFLength(pEnv, ret);
 __android_log_print(ANDROID_LOG_INFO, "native", "UTF-8 string
with Chinese characters: %s, string length (number of bytes)
%d=%d", newStr, newStrLen, strlen(newStr));
 return ret;
}

Chapter 2

41

3. In the StringManipulationActivity.java Java code, add the code to load
a native library, declare a native method, and invoke a native method. Refer to
downloaded code for the source code details.

4. Modify the res/layout/activity_passing_primitive.xml file according to
step 8 of the Loading native libraries and registering native methods recipe in this
chapter or the downloaded project code.

5. Create a file called Android.mk under the jni folder. Refer to step 9 of the
Loading native libraries and registering native methods recipe in this chapter
or the downloaded code for details.

6. Start a terminal, go to the jni folder, and type ndk-build to build the native library.

7. Run the project on an Android device or emulator. We should see something similar
to the following screenshot:

The following should be seen at the logcat output:

How it works…
This recipe discusses string manipulation at JNI.

 f Character encoding: Android uses UTF-8 as its default charset, which is shown in
our program by executing the Charset.defaultCharset().name() method. This
means that the default encoding in the native code is UTF-8. As mentioned before,
Java uses the UTF-16 charset. This infers that an encoding conversion is needed
when we pass a string from Java to the native code and vice versa. Failing to do so
will cause unwanted results. In our example, we tried printing jstring directly in
the native code, but the result was some unrecognizable characters.

Fortunately, JNI comes with a few pre-defined functions that do the conversion.

Java Native Interface

42

 f Java string to native string: When a native method is called with an input parameter
of string type, the string received needs to be converted to the native string first. Two
JNI functions can be used for different cases.

The first function is GetStringUTFChars, which has the following prototype:
const jbyte * GetStringUTFChars(JNIEnv *env, jstring string,
jboolean *isCopy);

This function converts the Java string into an array of UTF-8 characters. If a new
copy of the Java string content is made, isCopy is set to true when the function
returns; otherwise isCopy is set to false and the returned pointer points to the same
characters as the original Java string.

It is not predictable whether the VM will return a new copy
of the Java string. Therefore, we must be careful when
converting a large string, as the possible memory allocation
and copy may affect the performance and even cause
"out of memory" issues. Also note that if isCopy is set to
false, we cannot modify the returned UTF-8 native string,
because it will modify the Java string content and break the
immutability property of the Java string.

Once we've finished all the operations with the converted native string, we should
call ReleaseStringUTFChars to inform the VM that we don't need to access the
UTF-8 native string anymore. The function has the following prototype, with the second
parameter being the Java string and the third parameter being the UTF-8 native string:
void ReleaseStringUTFChars(JNIEnv *env, jstring string, const char
*utf);

The second function for conversion is GetStringUTFRegion, with the
following prototype:
void GetStringUTFRegion(JNIEnv *env, jstring str, jsize start,
jsize len, char *buf);

The start and len parameters indicate the start position of the Java UTF-16 string
and number of UTF-16 characters for conversion. The buf argument points to the
location to store the converted native UTF-8 char array.

Let's compare the two methods. The first method may or may not require allocation
of new memory for the converted UTF-8 string depending on whether VM decides to
make a new copy or not, whereas the second method made use of a pre-allocated
buffer to store the converted content. In addition, the second method allows us to
specify the position and length of the conversion source. Therefore, the following
rules can be followed:

 � To modify the converted UTF-8 native string, the JNI method
GetStringUTFRegion should be used

Chapter 2

43

 � If we only need a substring of the original Java string, and the substring is
not large, the GetStringUTFRegion should be used

 � If we're dealing with a large string, and we're not going to modify the
converted UTF-8 native string, GetStringUTFChars should be used

In our example, we used a fixed length buffer when calling
the GetStringUTFRegion function. We should make
sure it is enough to hold the string, otherwise we should
use the dynamic allocated array.

 f String length: The JNI function GetStringUTFLength can be used to get the string
length of a UTF-8 jstring. Note that it returns the number of bytes and not the
number of UTF-8 characters, as shown in our example.

 f Native string to Java string: We also need to return string data from the native
code to Java code at times. The returned string should be UTF-16 encoded. The JNI
function NewStringUTF constructs a jstring from a UTF-8 native string. It has the
following prototype:
jstring NewStringUTF(JNIEnv *env, const char *bytes);

 f Conversion failure: GetStringUTFChars and NewStringUTF require allocation of
memory space to store the converted string. If you run out of memory, these methods
will throw an OutOfMemoryError exception and return NULL. We'll cover more
about exception handling in the Checking errors and handling exceptions in
JNI recipe.

There's more…
More about character encoding in JNI: JNI character encoding is much more complicated
than what we covered here. Besides UTF-8, it also supports UTF-16 conversion functions. It
is also possible to call Java string methods in the native code to encode/decode characters
in other formats. Since Android uses UTF-8 as its platform charset, we only cover how to deal
with conversions between Java UTF-16 and UTF-8 native string here.

Managing references in JNI
JNI exposes strings, classes, instance objects, and arrays as reference types. The previous
recipe introduces the string type. This recipe will cover reference management and the
subsequent three recipes will discuss class, object, and arrays respectively.

Java Native Interface

44

How to do it…
The following steps create a sample Android project that illustrates reference management
in JNI:

1. Create a project named ManagingReference. Set the package name as
cookbook.chapter2. Create an activity named ManagingReferenceActivity.
Under the project, create a folder named jni. Refer to the Loading native
libraries and registering native methods recipe in this chapter, if you want
more detailed instructions.

2. Create a file named referencetest.c under the jni folder, then
implement the localReference, globalReference, weakReference,
and referenceAssignmentAndNew methods. This is shown in the following
code snippet:
JNIEXPORT void JNICALL Java_cookbook_chapter2_
ManagingReferenceActivity_localReference(JNIEnv *pEnv, jobject
pObj, jstring pStringP, jboolean pDelete){
 jstring stStr;
 int i;
 for (i = 0; i < 10000; ++i) {
 stStr = (*pEnv)->NewLocalRef(pEnv, pStringP);
 if (pDelete) {
 (*pEnv)->DeleteLocalRef(pEnv, stStr);
 }
 }
}

JNIEXPORT void JNICALL Java_cookbook_chapter2_
ManagingReferenceActivity_globalReference(JNIEnv *pEnv, jobject
pObj, jstring pStringP, jboolean pDelete){
 static jstring stStr;
 const jbyte *str;
 jboolean *isCopy;
 if (NULL == stStr) {
 stStr = (*pEnv)->NewGlobalRef(pEnv, pStringP);
 }
 str = (*pEnv)->GetStringUTFChars(pEnv, stStr, isCopy);
 if (pDelete) {
 (*pEnv)->DeleteGlobalRef(pEnv, stStr);
 stStr = NULL;
 }
}

JNIEXPORT void JNICALL Java_cookbook_chapter2_
ManagingReferenceActivity_weakReference(JNIEnv *pEnv, jobject
pObj, jstring pStringP, jboolean pDelete){

Chapter 2

45

 static jstring stStr;
 const jbyte *str;
 jboolean *isCopy;
 if (NULL == stStr) {
 stStr = (*pEnv)->NewWeakGlobalRef(pEnv, pStringP);
 }
 str = (*pEnv)->GetStringUTFChars(pEnv, stStr, isCopy);
 if (pDelete) {
 (*pEnv)->DeleteWeakGlobalRef(pEnv, stStr);
 stStr = NULL;
 }
}

3. Modify the ManagingReferenceActivity.java file by adding code to load the
native library, then declare and invoke the native methods.

4. Modify the res/layout/activity_managing_reference.xml file according to
step 8 of the Loading native libraries and registering native methods recipe in this
chapter, or the downloaded project code.

5. Create a file named Android.mk under the jni folder. Refer to step 9 of the
Loading native libraries and registering native methods recipe of this chapter,
or the downloaded code for details.

6. Start a terminal, go to the jni folder, and type ndk-build to build the native library.

7. Run the project on an Android device or emulator and monitor the logcat output with
either eclipse or the adb logcat -v time command in your terminal. We'll show
the sample results for each native method when while going through the details in
the following section.

How it works…
This recipe covers reference management in JNI:

 f JNI reference: JNI exposes strings, classes, instance objects, and arrays
as references. The basic idea of a reference can be illustrated using the
following diagram:

Java Native Interface

46

The reference adds one more level of indirection to an object (an object can be a
class, an instance object, a string, or an array) access. An object is pointed by an
object pointer, and a reference is used to locate the object pointer. Although this
indirection introduces an overhead for object manipulation, it allows VM to conceal
the object pointer from developers. The VM can therefore move the underlying object
at runtime memory management and update the object pointer value accordingly,
without affecting the reference.

Note that the garbage collector at VM moves the objects around to achieve cheap
memory allocation, bulk de-allocation, reduce heap fragmentation, improve locality,
and so on.

A reference does not have to be a pointer. The details of
how a reference is used to locate the object pointer are
hidden from the developers.

 f Local reference versus global reference versus weak reference: Three different
types of references can be created to refer to the same data, namely local reference,
global reference, and weak reference. Unless we explicitly create a global or weak
reference, JNI operates using a local reference. The following table summarizes the
differences between the three different types of references:

Creation Lifespan Visibility Garbage
collector (GC)
behavior for
referenced
object

Free

Local
reference

Default or
NewLocalRef

One
invocation
of the
native
method.
Invalid
after native
method
returns.

Within the
thread
that
created it.

GC won't
garbage
collect the
referenced
object.

Automatically freed or call
DeleteLocalRef

Global
reference

NewGlobalRef Valid until
freed
explicitly.

Across
multiple
threads.

GC won't
garbage
collect the
referenced
object.

DeleteGlobalRef

Weak
reference

NewGlobalWeakRef Valid until
freed
explicitly.

Across
multiple
threads.

GC can
garbage
collect the
referenced
object.

DeleteWeakGlobalRef

Chapter 2

47

We will now take a look at the reference types one by one while referring to the sample
source code:

 f Local reference: The native method localReference shows the two basic JNI
functions, namely NewLocalRef and DeleteLocalRef. The first function creates
a local reference, while the second frees it. Note that normally we don't have to
free a local reference explicitly, as it will be automatically freed after the native
method returns. However, there are two exceptions. First, if we're creating lots of
local references within a native method invocation, we can cause overflow. This
is illustrated in our sample method when we pass false to the pDelete input
parameter. The following screenshot represents an example of such a scenario:

The first execution deletes the local reference right after using it, so it's finished
fine, while the second doesn't delete the local reference and eventually causes
the ReferenceTable overflow.

Secondly, when we implement a utility function that is called by other native
functions, we should not leak any references other than the return value. Otherwise,
if the utility function is invoked by a native method many times, it will also cause an
overflow issue.

Prior to Android 4.0, the local references were implemented
using direct pointers to objects. Furthermore, those direct
pointers were never invalidated even after DeleteLocalRef
was called. Therefore, programmers can use local references
as direct pointers, even after the reference is claimed to be
deleted. A lot of JNI code not coded correctly worked due to this
design. However, local references have been changed to use an
indirection mechanism from Android 4.0 onwards. Hence, the
buggy code using local references as direct pointers are going to
break in Android 4.0 onwards. It is strongly recommended that
you always follow JNI specifications.

Java Native Interface

48

 f Global reference: The native method, globalReference, demonstrates a typical
usage of a global reference. The global reference is retained when passing false to
the pDelete input parameter, since it is a static variable. Next time the method is
called, the static global reference will still reference to the same object. Therefore,
we don't need to call NewGlobalRef again. This technique can save us from
carrying out the same operation at every invocation of global reference.

We invoke globalReference three times in the Java code, as follows:
globalReference("hello global ref", false);
globalReference("hello global ref 2", true);
globalReference("hello global ref 3", true);

The results should look similar to the following:

The string passed along with the first method call is retained, and therefore the first
two invocations display the same string. After we delete the global reference at the
end of the second call, the third call displays the string passed along with it.

Note that although DeleteGlobalRef frees the global reference, it doesn't set it to
NULL. We have explicitly set the global reference to NULL after the deletion.

 f Weak reference: Weak reference is similar to global reference, except that it doesn't
prevent the Garbage Collector (GC) from garbage collecting the underlying object
referenced by it. Weak reference is not used as often as local and global reference.
A typical use case is when we are referencing to lots of non-critical objects, and we
don't want to prevent the GC from garbage collecting some of those objects when
the GC thinks it's necessary.

The support for weak references in Android is version
dependent. Prior to Android 2.2, weak references were
not implemented at all. Prior to Android 4.0, it can only
be passed to NewLocalRef, NewGlobalRef, and
DeleteWeakGlobalRef. From Android 4.0 onwards,
Android has full support for weak references.

 f Assignment versus New<ReferenceType>Ref: In the referencetest.c
source code, we implemented the native ReferenceAssignmentAndNew
method. This method illustrates the difference between assignment and
allocating a new reference.

Chapter 2

49

We passed the input jstring pStringP to the JNI function NewGlobalRef twice, to
create two global references (globalRefNew and globalRefNew2), and assigned
one of the global references to a variable globalRefAssignment. We then tested
if they were all referencing to the same object.

Since jobject and jstring are actually pointers to void data type, we can print
out their values as integers. Lastly, we invoked DeleteGlobalRef three times.
The following is a screenshot of the Android logcat output:

The first three lines indicate that the input jstring pStringP, two global
references globalRefNew and globalRefNew2, and the assigned jstring
globalRefAssignment all reference to the same object. Lines five to eight of
the output show the same value, which means all the references themselves are
equivalent. Lastly, the first two calls of DeleteGlobalRef succeed, while the last
one fails.

The New<ReferenceType>Ref JNI function actually locates the underlying
object and then adds a reference to the object. It allows multiple references added
for the same object. Note that although our sample execution shows the values
of references created by New<ReferenceType>Ref are the same, it is not
guaranteed. It is possible that two object pointers pointing to the same object
and references referencing to the same object are associated with the two
different pointers.

It is recommended that you never rely on the value of a reference; you should use
JNI functions instead. One example of this is to use IsSameObject and never use
"==" to test if two references point to the same underlying object unless we test
against NULL.

The number of Delete<ReferenceType>Ref calls must match the number of
New<ReferenceType>Ref invocations. Fewer calls will potentially cause a memory
leak, while having more calls will fail, as shown in the preceding result.

The assignment operation doesn't go through the VM, therefore it won't cause the VM
to add a new reference.

Note that although we used a global reference for illustration, the principles also
apply to local and weak references.

Java Native Interface

50

There's more…
There's another method to manage the local references with JNI functions
PushLocalFrame and PopLocalFrame. Interested readers can refer to
the JNI specification for more information.

After attaching a native thread with AttachCurrentThread, the code running in the thread
would not free the local references until the thread is detached. The local reference should be
freed explicitly. In general, it is a good practice that we free local reference explicitly, as long
as we don't need it any more.

Manipulating classes in JNI
The previous recipe discusses that Android JNI supports three different kinds of references.
The references are used to access the reference data types, including string, class, instance
object, and array. This recipe focuses on class manipulations in Android JNI.

Getting ready
The Managing References in NDK recipe should be read first before going through this recipe.

How to do it…
The following steps describe how to build a sample Android application that illustrates class
manipulation in JNI:

1. Create a project named ClassManipulation. Set the package name as
cookbook.chapter2. Create an activity named ClassManipulationActivity.
Under the project, create a folder named jni. Refer to the Loading native
libraries and registering native methods recipe of this chapter if you want
more detailed instructions.

2. Create a file named classtest.c under the jni folder, then implement
the findClassDemo, findClassDemo2, GetSuperclassDemo, and
IsAssignableFromDemo methods. We can refer to the downloaded
ClassManipulation project source code.

3. Modify ClassManipulationActivity.java by adding code to load the native
library, declare native methods, and invoke native methods.

4. Create a Dummy class and a DummySubClass subclass that extends the Dummy
class. Create a DummyInterface interface and a DummySubInterface
subinterface, which extends the DummyInterface.

Chapter 2

51

5. Modify the layout XML file, add the Android.mk build file, and build the native
library. Refer to steps 8 to 10 of the the Loading native libraries and registering
native methods recipe of this chapter for details.

6. We're now ready to run the project. We'll present the output while discussing each
native method in the following section.

How it works…
This recipe demonstrates the manipulation of classes in JNI. We highlight a few points
as follows:

 f Class descriptor: A class descriptor refers to the name of a class or an interface.
It can be derived by replacing the "." character in Java with "/" in JNI programming.
For example, the descriptor for class java.lang.String is java/lang/String.

 f FindClass and class loader: The JNI function FindClass has the following
prototype:
jclass FindClass(JNIEnv *env, const char *name);

It accepts a JNIEnv pointer and a class descriptor, and then locates a class loader
to load the corresponding class. It returns a local reference to an initialized class,
or NULL in case of failure. FindClass uses the class loader associated with the
topmost method of the call stack. If it cannot find one, it will use the "system" class
loader. One typical example is that after we create a thread and attach it to the VM,
the topmost method of the call stack will be as follows:
dalvik.system.NativeStart.run(Native method)

This method is not part of our application code. Therefore the "system" class loader
is used.

A thread can be created at Java (called the managed thread
or Java thread) or native code (called the native thread or
non-VM thread). The native thread can be attached to a VM
by calling the JNI function AttachCurrentThread. Once
attached, the native thread works just like a Java thread,
running inside a native method. It remains attached until the
JNI function DetachCurrentThread is called.

Java Native Interface

52

In our ClassManipulation project, we illustrated FindClass with
findClassDemo and findClassDemo2 native methods. The findClassDemo
method runs in a VM created thread. The FindClass call will locate the class loader
properly. The findClassDemo2 method creates a non-VM thread and attaches the
thread to VM. It illustrates the case we described in the preceding section. The logcat
output for calling the two native methods is as follows:

As shown in the output, the non-VM thread loads the String class successfully
but not the Dummy class defined by us. The way to work around this issue is to
cache a reference to the Dummy class in the JNI_OnLoad method. We'll provide a
detailed example in the Caching jfieldID, jmethodID, and referencing data to improve
performance recipe.

 f GetSuperclass: The JNI function GetSuperclass has the following prototype:
jclass GetSuperclass(JNIEnv *env, jclass clazz);

It helps us to find the superclass of a given class. If clazz is java.lang.Object,
this function returns NULL; if it's an interface, it returns a local reference to java.
lang.Object; if it's any other class, it returns a local reference to its superclass.

In our ClassManipulation project, we illustrated GetSuperclass with
the GetSuperclassDemo native method. We created a Dummy class and a
DummyInterface interface in Java code, where DummySubClass extends Dummy,
and DummySubInterface extends DummyInterface. In the native method, we
then invoked GetSuperclass to java.lang.Object, DummySubClass,
and DummySubInterface respectively. The following is a screenshot of the
logcat output:

Chapter 2

53

As shown in the screenshot, GetSuperclass can find the superclass of
DummySubClass successfully. In this native method, we used a utility function
nativeGetClassName, where we called the toString method. We'll cover more
about how to make such method calls in the Calling instance and static methods in
JNI recipe.

 f IsAssignableFrom: The JNI function IsAssignableFrom has the
following prototype:
jboolean IsAssignableFrom(JNIEnv *env, jclass cls1, jclass cls2);

This function returns JNI_TRUE if cls1 can be safely casted to cls2, and
JNI_FALSE otherwise. We demonstrated its usage with the native method
IsAssignableFromDemo. We obtained a local reference to DummySubClass,
and called GetSuperclass to get a local reference to Dummy. Then, we called
IsAssignableFrom to test if we can cast DummySubClass to Dummy and vice
versa. The following is a screenshot of the logcat output:

As expected, the subclass can be safely cast to its superclass, but not the
other way round.

The JNI function DefineClass is not supported on Android.
This is because the function requires the raw class data as
input, and the Dalvik VM on Android doesn't use the Java
bytecode or class files.

Manipulating objects in JNI
The previous recipe shows how we can manipulate classes in Android JNI. This recipe
describes how to manipulate instance objects in Android NDK programming.

Getting ready
The following recipes should be read first before going through this recipe:

 f Managing references in JNI

 f Manipulating classes in JNI

Java Native Interface

54

How to do it…
Now we'll create an Android project with native methods demonstrating the usage of JNI
functions related to instance objects. Perform the following steps:

1. Create a project named ObjectManipulation. Set the package name as
cookbook.chapter2. Create an activity named ObjectManipulationActivity.
Under the project, create a folder named jni. Please refer to the Loading native
libraries and registering native methods recipe in this chapter, if you want more
detailed instructions.

2. Create a file named objecttest.c under the jni folder, then implement the
AllocObjectDemo, NewObjectDemo, NewObjectADemo, NewObjectVDemo,
GetObjectClassDemo, and IsInstanceOfDemo methods. You can refer to the
downloaded ObjectManipulation project source code.

3. Modify ObjectManipulationActivity.java by adding code to load the native
library, declare the native methods, and invoke them.

4. Create a Dummy class, and a DummySub class which extends Dummy.
Create a Contact class with two fields name and age, a constructor,
and a getContactStr method.

5. Modify the layout XML file, add the Android.mk build file, and build the native
library. Refer to steps 8 to 10 of the Loading native libraries and registering native
methods recipe of this chapter for more details.

6. We're now ready to run the project. We'll present the output while discussing each
native method in the following section.

How it works…
This recipe presents various methods for manipulating objects in JNI:

 f Create instance objects in the native code: Four JNI functions can be used to
create instance objects of a Java class in the native code, namely AllocObject,
NewObject, NewObjectA, and NewObjectV. The AllocObject function creates
an uninitialized object, while the other three methods take a constructor as an input
parameter to create the object. The prototypes for the four functions are as follows:
jobject AllocObject(JNIEnv *env, jclass clazz);

jobject NewObject(JNIEnv *env, jclass clazz,jmethodID methodID,
...);

jobject NewObjectA(JNIEnv *env, jclass clazz,jmethodID methodID,
jvalue *args);

Chapter 2

55

jobject NewObjectV(JNIEnv *env, jclass clazz,jmethodID methodID,
va_list args);

The clazz argument is a reference to the Java class of which we want to create
an instance object. It cannot be an array class, which has its own set of JNI
functions. methodID is the constructor method ID, which can be obtained
using the GetMethodID JNI function.

For NewObject, a variable number of arguments can be passed after methodID,
and the function will pass them to the constructor to create the instance object.
NewObjectA accepts an array of type jvalue, and passses it to the constructor.
jvalue is a union type and is defined as follows:
typedef union jvalue {
 jboolean z;
 jbyte b;
 jchar c;
 jshort s;
 jint i;
 jlong j;
 jfloat f;
 jdouble d;
 jobject l;
} jvalue;

NewObjectV passes an argument stored in va_list to the constructor. va_list,
along with va_start, va_end, and va_arg enable us to access a variable number
of input arguments for a function. The details are beyond the scope of this book.
However, you can get a basic idea of how it works from the sample code provided.

In the Java code, we called all four native methods, each of which uses a different
JNI function to create an instance object of the Contact class defined by us. We will
then display the values of the name and age fields of all four Contact objects. The
following is a screenshot of a sample run:

As shown, the instance object created by AllocObject is not initialized and
therefore all fields contain the default value assigned by Java, while the other
three methods create objects with the initial value passed by us.

Java Native Interface

56

 f GetObjectClass: This JNI function has the following prototype:
jclass GetObjectClass(JNIEnv *env, jobject obj);

It returns a local reference to the class of the instance object obj. The obj argument
must not be NULL, otherwise it will cause the VM to crash.

In our GetObjectClassDemo native method implementation, we obtained a
reference to the Contact class and then called AllocObject to create an
uninitialized object instance. In the Java code, we display the fields of the created
object instance as follows:

As expected, the field values for the uninitialized instance Contact object are the
default values assigned by Java.

 f IsInstanceOf: This JNI function call has the following prototype:
jboolean IsInstanceOf(JNIEnv *env, jobject obj, jclass clazz);

It determines if the instance object obj is an instance of class clazz. We illustrated
the usage of this function in the IsInstanceOfDemo native method. The method
creates a local reference to the Dummy class and a local reference to the DummySub
class, which is a sub class of Dummy. It then creates two objects, one for each class.
The code then calls IsInstanceOf with each of the object references against each
of the class references, making four checks in total. We send the output to logcat.
A sample execution of this method gives the following result :

As the result shows, the Dummy instance object is an instance of the Dummy class
but not DummySub class, while the DummySub instance object is an instance of the
Dummy class and the DummySub class.

Chapter 2

57

Manipulating arrays in JNI
JNI exposes strings, classes, instance objects, and arrays as reference types. This recipe will
discuss arrays in JNI.

Getting ready
You should make sure you've read the following recipes before going through this recipe:

 f Managing references in JNI

 f Manipulating classes in JNI

How to do it…
In this section, we will create a sample Android project that demonstrates how to manipulate
arrays in JNI.

1. Create a project named ArrayManipulation. Set the package name as
cookbook.chapter2. Create an activity named ArrayManipulationActivity.
Under the project, create a folder named jni. Refer to the Loading native libraries
and registering native methods recipe of this chapter for more detailed instructions.

2. Create a file named arraytest.c under the jni folder, then
implement the GetArrayLengthDemo, NewObjectArrayDemo,
NewIntArrayDemo, GetSetObjectArrayDemo,
GetReleaseIntArrayDemo, GetSetIntArrayRegionDemo, and
GetReleasePrimitiveArrayCriticalDemo native methods.

3. Modify ArrayManipulationActivity.java by adding code to load the native
library, declare the native methods, and invoke them.

4. Create a Dummy class with a single integer field named value.

5. Modify the layout XML file, add the Android.mk build file, and build the native
library. Refer to steps 8 to 10 of the Loading native libraries and registering native
methods recipe of this chapter for more details.

6. We're now ready to run the project. We'll present the output while discussing each
native method in the following section.

Java Native Interface

58

How it works…
Arrays are represented by jarray or its subtypes such as jobjectArray and
jbooleanArray. Similar to jstring, they cannot be accessed directly by native
code like C arrays do. JNI provides various functions for accessing arrays:

 f Create new arrays: JNI provides NewObjectArray and New<Type>Array
functions to create arrays for objects and primitive types. Their function
prototypes are as follows:
jarray NewObjectArray(JNIEnv *env, jsize length, jclass
elementType, jobject initialElement);
<ArrayType> New<Type>Array(JNIEnv *env, jsize length);

We demonstrate the usage of NewObjectArray in the native method
NewObjectArrayDemo, where we create 10 instances of the Dummy class.
The length parameter of the function indicates the number of objects to create,
elementType is a reference to the class, and initialElement is the initialization
value that is going to be set for all the created object instances in the array. In the
Java code, we implemented the callNewObjectArrayDemo method, which
calls the NewObjectArrayDemo native method to create an array of 10 Dummy
objects, all with the value field set to 5. The execution result should look similar
to the following screenshot:

As expected, the value field of all the objects created by NewObjectArray is 5.

The usage of New<Type>Array is shown in the native method NewIntArrayDemo,
where we create an array of 10 integers using the JNI function NewIntArray,
and then assign a value to each of the integers. All eight primitive types
(jboolean, jbyte, jchar, jshort, jint, jlong, jfloat, and jdouble)
of JNI have a corresponding New<Type>Array function to create an array of
its type. Note that NewIntArrayDemo calls the GetIntArrayElements and
ReleaseIntArrayElements JNI functions, which we'll discuss later in this
recipe. In the Java code, we implemented a callNewIntArrayDemo method
to call NewIntArrayDemo and display the integer array elements on the screen.
The execution of callNewIntArrayDemo gives the following result:

Chapter 2

59

As shown in the screenshot, the integer arrays are assigned with values from 0 to 9.

 f GetArrayLength: This native function has the following prototype:
jsize GetArrayLength(JNIEnv *env, jarray array);

It accepts a reference to jarray and returns its length. We demonstrated its usage
in the native method GetArrayLengthDemo. In the Java code, we implemented
the callGetArrayLengthDemo method, which creates three arrays, including a
double array, a Dummy object array, and a two-dimensional array of integers. The
method calls the GetArrayLengthDemo native method to find the lengths for the
three arrays. We output the array length to logcat in the native method. The sample
execution output should look similar to the following screesnhot:

 f Access object arrays: JNI provides two functions to access object arrays,
namely GetObjectArrayElement and SetObjectArrayElement. As its name
suggests, the first one retrieves a reference to an object element of an array, while
the second one sets the element of an object array. The two functions have the
following prototype:
jobject GetObjectArrayElement(JNIEnv *env,jobjectArray array,
jsize index);
void SetObjectArrayElement(JNIEnv *env, jobjectArray array, jsize
index, jobject value);

In the two functions, the argument array refers to the object array and index is
the position of the element. While the get function returns a reference to the object
element, the set function sets the element according to the value argument.

We illustrate the usage of the two functions in native method
GetSetObjectArrayDemo. The method accepts an object array and an object. It
replaces the object at index one with the object received and then returns the original
object at index one. In the Java code, we call the callGetSetObjectArrayDemo
method to pass an array of three Dummy objects with values of 0, 1, 2, and another
Dummy object of value 100 to the native method. The execution result should look
similar to the following screenshot:

Java Native Interface

60

As shown, the object at index 1 is replaced by the object with value 100, and the
original object of value 1 is returned.

 f Access arrays of primitive types: JNI provides three sets of functions to access
arrays of primitive types. We demonstrate them separately using three different
native methods, all using jintarray as an example. Arrays of other primitive
types are similar to integers.

Firstly, if we want to create a separate copy of jintarray in a native buffer, or only
access a small portion of a large array, GetIntArrayRegion/SetIntArrayRegion
functions are the proper choices. These two functions have the following prototype:
void GetIntArrayRegion(JNIEnv *env, jintArray array, jsize start,
jsize len, jint* buf);
void SetIntArrayRegion(JNIEnv *env, jintArray array, jsize start,
jsize len, jint* buf);

The two functions accept the same set of input parameters. The argument array
refers to the jintArray we operate on, start is the start element position,
len indicates the number of elements to get or set, and buf is the native integer
buffer. We show the usage of these two functions in a native method called
GetSetIntArrayRegionDemo. The method accepts an input jintArray,
copies three elements from index 1 to 3 of the array to a native buffer, multiplies
their values by 2 at the native buffer, and copies the value back to index 0 to 2.

In the Java code, we implement the callGetSetIntArrayRegionDemo
method to initialize an integer array, pass the array to a native method
GetSetIntArrayRegionDemo, and display the before and after values of
all the elements. You should see an output similar to the following screenshot:

The initial values for the five elements were 0, 1, 2, 3, and 4. We copied three
elements from index one (1, 2, 3) to the native buffer buf. We then multiplied the
values at the native buffer by 2, which made the first three elements at the native
buffer 2, 4, and 6. We copied these three values from the native buffer back to
the integer array, starting at index 0. The final values for the three elements were
therefore 2, 4, and 6, and the last two elements remained unchanged as 3 and 4.

Chapter 2

61

Secondly, if we want to access a large array, then GetIntArrayElements
and ReleaseIntArrayElements are the JNI functions for us. They have the
following prototype:
jint *GetIntArrayElements(JNIEnv *env, jintArray array, jboolean
*isCopy);
void ReleaseIntArrayElements(JNIEnv *env, jintArray array, jint
*elems, jint mode);

GetIntArrayElements returns a pointer to the array elements, or NULL in case
of a failure. The array input parameter refers to the array we want to access, and
isCopy is set to true if a new copy is created after the function call finishes. The
returned pointer is valid until ReleaseIntArrayElements is called.

ReleaseIntArrayElements informs the VM that we don't need access to the array
elements any more. The input parameter array refers to the array we operate on,
elems is the pointer returned by GetIntArrayElements, and mode indicates the
release mode. When isCopy at GetIntArrayElements is set to JNI_TRUE, the
changes we make through the returned pointer will be reflected on the jintArray,
since we're operating on the same copy. When isCopy is set to JNI_FALSE,
the mode parameter determines how the data release is done. Depending upon
whether we want to copy values from the native buffer back to the original array,
and whether we want to free the elems native buffer, the mode parameters can
be 0, JNI_COMMIT, or JNI_ABORT, as follows:

 Copy values back

Free native buffer

Yes No

Yes 0 JNI_ABORT

No JNI_COMMIT -

Java Native Interface

62

We illustrate the two JNI functions with the native method
GetReleaseIntArrayDemo. The method accepts an input integer array, obtains
a native pointer through GetIntArrayElements, multiplies each element by 2,
and finally commits the changes back by ReleaseIntArrayElements with mode
set to 0. In the Java code, we implement the callGetReleaseIntArrayDemo
method to initialize the input array and invoke the GetReleaseIntArrayDemo
native method. The following is a screenshot of the phone display after executing
the callGetReleaseIntArrayDemo method:

As expected, all integer elements in the original array are multiplied by 2.

The third set of JNI functions are GetPrimitiveArrayCritical and
ReleasePrimitiveArrayCritical. The usage of these two functions is similar
to that of Get<Type>ArrayElements and Release<Type>ArrayElements,
except for one important difference—the code block between the Get and
Release methods is a critical region. No other JNI functions or function calls
causing the current thread to wait for another thread in the same VM shall
be made. These two methods essentially increase the possibility of obtaining
an uncopied version of the original primitive array, and therefore improve the
performance. We demonstrate the usage of these functions in a native method
GetReleasePrimitiveArrayCriticalDemo along with the Java method
callGetReleasePrimitiveArrayCriticalDemo. The implementations are
similar to the second set of functions calls, and the display result is the same.

Accessing Java static and instance fields in
the native code

We have demonstrated how to pass parameters of different types to native methods and
return data back to Java. This is not the only way of sharing data between the native code and
Java code. This recipe covers another method—accessing Java fields from the native code.

Chapter 2

63

Getting ready
We're going to cover how to access Java fields of different types, including primitive types,
strings, instance objects, and arrays. The following recipes should be read first before reading
this recipe:

 f Passing parameters and receiving returns in primitive types

 f Manipulating strings in JNI

 f Manipulating classes in JNI

 f Manipulating objects in JNI

 f Manipulating arrays in JNI

Readers are also expected to be familiar with Java reflection API.

How to do it…
Follow these steps to create a sample Android project that demonstrates how to access Java
static and instance fields from the native code:

1. Create a project named AccessingFields. Set the package name as cookbook.
chapter2. Create an activity named AccessingFieldsActivity. Under the
project, create a folder named jni. Refer to the Loading native libraries and
registering native methods recipe of this chapter for more detailed instructions.

2. Create a file named accessfield.c under the jni folder, then implement
the AccessStaticFieldDemo, AccessInstanceFieldDemo, and
FieldReflectionDemo native methods.

3. Modify AccessingFieldsActivity.java by adding code to load the native
library, declare native methods, and invoke them. In addition, add four instance
fields and four static fields.

4. Create a Dummy class with an integer instance field named value and an integer
static field named value2.

5. Modify the layout XML file, add the Android.mk build file, and build the native
library. Refer to steps 8 to 10 of the Loading native libraries and registering native
methods recipe of this chapter for more details.

6. We're now ready to run the project. We'll present the output while discussing each
native method, in the following section.

Java Native Interface

64

How it works…
This recipe discusses the access of fields (both static and instance fields) in Java from
native code:

 f jfieldID data type: jfieldID is a regular C pointer pointing to a data structure
with details hidden from developers. We should not confuse it with jobject or
its subtypes. jobject is a reference type corresponding to Object in Java, while
jfieldID doesn't have such a corresponding type in Java. However, JNI provides
functions to convert the java.lang.reflect.Field instance to jfieldID and
vice versa.

 f Field descriptor: It refers to the modified UTF-8 string used to represent the field
data type. The following table summarizes the Java field types and its corresponding
field descriptors:

Java field type Field descriptor

boolean Z

byte B

char C

short S

int I

long J

float F

double D

String Ljava/lang/String;

Object Ljava/lang/Object;

int[] [I

Dummy[] [Lcookbook/chapter2/Dummy;

Dummy[][] [[Lcookbook/chapter2/Dummy;

As shown in the table, each of the eight primitive types has a single character string
as its field descriptor. For objects, the field descriptor starts with "L", followed by
the class descriptor (refer to the Manipulating classes in JNI recipe for detailed
information) and ends with ";". For arrays, the field descriptor starts with "[",
followed by the descriptor for the element type.

Chapter 2

65

 f Accessing static fields: JNI provides three functions to access static fields of a Java
class. They have the following prototypes:
jfieldID GetStaticFieldID(JNIEnv *env, jclass clazz, const char
*name, const char *sig);
<NativeType> GetStatic<Type>Field(JNIEnv *env,jclass clazz,
jfieldID fieldID);
void SetStatic<Type>Field(JNIEnv *env, jclass clazz, jfieldID
fieldID,<NativeType> value);

To access a static field, the first step is to obtain the field ID, which is done by the first
function listed here. In the method prototype, the clazz argument refers to the Java
class at which the static field is defined, name indicates the field name, and sig is
the field descriptor.

Once we have the method ID, we can either get or set the field value by calling
function two or three. In the function prototype, <Type> can refer to any of the eight
Java primitive types or Object, and fieldID is jfieldID returned by calling the
first method. For set functions, value is the new value that we want to assign to
the field.

The usage of the preceding three JNI functions are demonstrated in the native
method AccessStaticFieldDemo, where we set and get values for an integer field,
a string field, an array field, and a Dummy object field. These four fields are defined
in the Java class AccessingFieldsActivity. In native code, we output the get
values to Android logcat, while in the Java code we display the value set by the native
code to the phone screen. The following screenshot shows the logcat output:

The phone display will look similar to the following screenshot:

Java Native Interface

66

As shown, the values we set at the Java code for the fields can be obtained by the
native code; and the values set by the native method are reflected in the Java code.

 f Accessing instance field: Accessing instance fields is similar to accessing static
fields. JNI also provides the following three functions for us:
jfieldID GetFieldID(JNIEnv *env, jclass clazz, const char *name,
const char *sig);
<NativeType> Get<Type>Field(JNIEnv *env,jobject obj, jfieldID
fieldID);
void Set<Type>Field(JNIEnv *env, jobject obj, jfieldID fieldID,
<NativeType> value);

Again, we need to obtain the field ID first, before we can get and set the values for the
field. Instead of passing the class reference to the get and set functions, we should
pass the object reference.

The usage is shown in native method AccessInstanceFieldDemo. Again, we
print the values of get in the native code to the logcat and display the modified field
values on the phone screen. The following screenshot shows the logcat output:

The phone display will look similar to the following screenshot:

A similar interpretation to accessing static fields can be made on the results.

Chapter 2

67

 f Reflection support for field: JNI provides two functions to support the interoperation
with the Java Reflection API for Field. They have the following prototypes:
jfieldID FromReflectedField(JNIEnv *env, jobject field);
jobject ToReflectedField(JNIEnv *env, jclass cls, jfieldID
fieldID, jboolean isStatic);

The first function converts java.lang.reflect.Field to jfieldID, and then we
can use the set and get JNI functions described previously. The argument field is an
instance of java.lang.reflect.Field.

The second function does the reverse. It accepts a class reference, a jfieldID,
and a jboolean variable indicating whether it is a static or an instance field. The
function returns a reference to an object of java.lang.reflect.Field.

The usage of these two functions is demonstrated in the native method
FieldReflectionDemo. We used the Field instance passed from the caller to
access the field value, and then returned a Field instance for another field. In the
Java method callFieldReflectionDemo, we pass the Field instance to the
native code and use the returned Field instance to obtain the field value. The
native code outputs the field value to logcat as follows:

The Java code displays the value for another field on the phone screen as follows:

Calling static and instance methods from
the native code

The previous recipe covers how to access Java fields in NDK. Besides fields, a Java class also
has methods. This recipe focuses on calling static and instance methods from JNI.

Getting ready
The code examples require a basic understanding of the JNI primitive types, strings, classes,
and instance objects. It is better to make sure you have read the following recipes before
going through this recipe:

 f Passing parameters and receiving returns in primitive types

 f Manipulating strings in JNI

Java Native Interface

68

 f Manipulating classes in JNI

 f Manipulating objects in JNI

 f Accessing Java static and instance fields in native code

Readers are also expected to be familiar with Java reflection API.

How to do it…
The following steps can be followed to create a sample Android project that illustrates how to
call static and instance methods from the native code:

1. Create a project named CallingMethods. Set the package name as cookbook.
chapter2. Create an activity named CallingMethodsActivity. Under the
project, create a folder named jni. Refer to the Loading native libraries and
registering native methods recipe of this chapter for more detailed instructions.

2. Create a file named callmethod.c under the jni folder, then implement the
native methods AccessStaticMethodDemo, AccessInstanceMethodDemo,
and MethodReflectionDemo.

3. Modify CallingMethodsActivity.java by adding code to load the native library,
declare the native methods, and invoke them.

4. Create a Dummy class with an integer instance field named value and an integer
static field named value2. In addition, create a DummySub class that extends
Dummy with an additional String field called name.

5. Modify the layout XML file, add the Android.mk build file, and build the native
library. Refer to steps 8 to 10 of the Loading native libraries and registering native
methods recipe of this chapter for more details.

6. We're now ready to run the project. We'll present the output while discussing each
native method in the following section.

How it works…
This recipe illustrates how to call the Java static and instance methods from the native code:

 f jmethodID data type: Similar to jfieldID, jmethodID is a regular C pointer
pointing to a data structure with details hidden from the developers. JNI provides
functions to convert the java.lang.reflect.Method instance to jmethodID
and vice versa.

Chapter 2

69

 f Method descriptor: This is a modified UTF-8 string used to represent the input (input
arguments) data types and output (return type) data type of the method. Method
descriptors are formed by grouping all field descriptors of its input arguments inside a
"()", and appending the field descriptor of the return type. If the return type is void,
we should use "V". If there's no input arguments, we should simply use "()", followed
by the field descriptor of the return type. For constructors, "V" should be used to
represent the return type. The following table lists a few Java methods and their
corresponding method descriptors:

Java method Method descriptor

Dummy(int pValue) (I)V

String getName() ()Ljava/lang/String;

void setName(String pName) (Ljava/lang/String;)V

lont f(byte[] bytes, Dummy
dummy)

([BLcookbook/chapter2/Dummy;)J

 f Calling static methods: JNI provides four sets of functions for native code to call Java
methods. Their prototypes are as follows:
jmethodID GetStaticMethodID(JNIEnv *env, jclass clazz, const char
*name, const char *sig);

<NativeType> CallStatic<Type>Method(JNIEnv *env, jclass clazz,
jmethodID methodID, ...);

<NativeType> CallStatic<Type>MethodA(JNIEnv *env, jclass clazz,
jmethodID methodID, jvalue *args);

<NativeType> CallStatic<Type>MethodV(JNIEnv *env, jclass
clazz,jmethodID methodID, va_list args);

The first function gets the method ID. It accepts a reference clazz to the Java
class, a method name in a modified UTF-8 string format, and a method descriptor
sig. The other three sets of functions are used to call the static methods. <Type>
can be any of the eight primitive types, Void, or Object. It indicates the return
type of the method invoked. The methodID argument is the jmethodID returned
by the GetStaticMethodID function. The arguments to the Java method
are passed one by one in CallStatic<Type>Method, or put into an array of
jvalue as CallStatic<Type>MethodA, or put into the va_list structure as
CallStatic<Type>MethodV.

Java Native Interface

70

We illustrate the usage of all the four sets of JNI functions in a native method
AccessStaticMethodDemo. This method gets the method IDs for the
getValue2 and setValue2 static methods of the Dummy class, and invokes
these two methods using three different ways to pass the arguments to the
called Java method. In CallingMethodsActivity.java, we implement
callAccessStaticMethodDemo, which initializes the value2 static field to 100,
invokes the native method AccessStaticMethodDemo, and prints the final value2
value on phone screen. The following screenshot shows the logcat output:

The output of screen looks similar to the following screenshot:

As shown, the native method firstly got value2 as 100, and it then used three
different JNI functions to call the set method to modify the value. Finally, the
phone display indicated that the final modified value is reflected in Java code.

 f Calling instance methods: Calling instance methods from the native code is similar to
calling static methods. JNI also provides four sets of functions as follows:
jmethodID GetMethodID(JNIEnv *env, jclass clazz, const char *name,
const char *sig);

<NativeType> Call<Type>Method(JNIEnv *env, jobject obj, jmethodID
methodID, ...);

<NativeType> Call<Type>MethodA(JNIEnv *env,jobject obj, jmethodID
methodID, jvalue *args);

<NativeType> Call<Type>MethodV(JNIEnv *env, jobject obj, jmethodID
methodID, va_list args);

Chapter 2

71

The usage of these four sets of functions is similar to that of the JNI functions for
calling static methods, except that we need to pass a reference to the instance object
instead of the class. In addition, JNI provides another three sets of functions for
calling instance methods, as follows:
<NativeType> CallNonvirtual<Type>Method(JNIEnv *env, jobject obj,
jclass clazz, jmethodID methodID, ...);

<NativeType> CallNonvirtual<Type>MethodA(JNIEnv *env, jobject obj,
jclass clazz, jmethodID methodID, jvalue *args);

<NativeType> CallNonvirtual<Type>MethodV(JNIEnv *env, jobject obj,
jclass clazz, jmethodID methodID, va_list args);

These three sets of methods accept an extra argument clazz as compared to the
three sets of functions earlier. The clazz argument can be a reference to the class
that obj is instantiated from, or a superclass of obj. A typical use case is to call
GetMethodID on a class to obtain a jmethodID. We have a reference to an object
of the class's subclass, and then we can use the preceding functions to call the Java
method associated by jmethodID with the object reference.

The usage of all the seven sets of functions is illustrated in a native method
AccessInstanceMethodDemo. We used the first four sets of functions
to call getName and setName methods of the DummySub class with an
object of it. We then used CallNonvirtual<Type>Method to call the
getValue and setValue methods, which are defined in the Dummy
superclass. In CallingMethodsActivity.java, we implemented
the callAccessInstanceMethodDemo method to invoke the
AccessInstanceMethodDemo native method. The following
screenshot shows the logcat output:

As the results show, the getName, setName, getValue, and setValue methods
are executed successfully.

Java Native Interface

72

 f Reflection support for method: Similar to fields, JNI also provides the following two
functions to support reflection:
jmethodID FromReflectedMethod(JNIEnv *env, jobject method);

jobject ToReflectedMethod(JNIEnv *env, jclass cls, jmethodID
methodID, jboolean isStatic);

The first function accepts a reference to the java.lang.reflect.Method
instance, and returns its corresponding jmethodID. The returned jmethodID value
can then be used to call the associated Java method. The second function does
the reverse. It accepts a reference to the Java class, jmethodID, and jboolean
indicating whether it's a static method or not, and returns a reference to java.
lang.reflect.Method. The return value can be used in the Java code to access
the corresponding method.

We illustrate these two JNI functions in native method MethodReflectionDemo.
In CallingMethodsActivity.java, we implement the
callMethodReflectionDemo method to pass the java.lang.reflect.Method
object of getValue to the native code, get the returned setValue java.lang.
reflect.Method object, and invoke the setValue method with the
returned object.

The native method outputs the return value of getValue method to logcat
as follows:

The Java code displays the getValue method return values before and after
invoking setValue on the phone screen as follows:

As expected, the native code can access the getValue method with the Method
object passed from the Java code, and the Java code can call the setValue method
with the Method object returned from the native method.

Chapter 2

73

Caching jfieldID, jmethodID, and referencing
data to improve performance

This recipe covers caching in Android JNI, which can improve the performance of our
native code.

Getting ready
You should make sure you've read the following recipes before going through this recipe:

 f Accessing Java static and instance fields in native code

 f Calling static and instance methods from native code

How to do it…
The following steps detail how to build a sample Android application that demonstrates
caching in JNI:

1. Create a project named Caching. Set the package name as cookbook.chapter2.
Create an activity named CachingActivity. Under the project, create a folder
named jni. Refer to the Loading native libraries and registering native methods
recipe of this chapter for more detailed instructions.

2. Create a file named cachingtest.c under the jni folder, then implement the
InitIDs, CachingFieldMethodIDDemo1, CachingFieldMethodIDDemo2,
and CachingReferencesDemo methods.

3. Modify the CachingActivity.java file by adding code to load the native library,
then declare and invoke the native methods.

4. Modify the layout XML file, add the Android.mk build file, and build the native
library. Refer to steps 8 to 10 of the Loading native libraries and registering native
methods recipe of this chapter for details.

5. Run the project on an Android device or emulator and monitor the logcat output with
either eclipse or the adb logcat -v time command in your terminal.

6. At the onCreate method of CachingActivity.java, enable the
callCachingFieldMethodIDDemo1 method and disable the other demo
methods. Start the Android application, and you should be able to see the
following at logcat:

Java Native Interface

74

7. Enable callCachingFieldMethodIDDemo2 at CachingActivity.java while
disabling the other demo methods and InitIDs method (at the static initializer).
Start the Android application, and you should be able to see the following at logcat:

8. Enable callCachingReferencesDemo at CachingActivity.java while
commenting out other demo methods. Start the Android application, and you
should be able to see the following at logcat:

How it works…
This recipe discusses the usage of caching at JNI:

 f Caching field and method IDs: Field and method IDs are internal pointers. They're
required to access a Java field or making native to Java method calls. Obtaining
the field or method ID requires calling pre-defined JNI functions, which do symbolic
lookups according to the name and descriptor. The lookup process typically requires
several string comparisons and is relatively expensive.

Once the field or method ID is obtained, accessing the field or making native to Java
calls is relatively quick. Therefore, a good practice is to perform lookup only once and
cache the field or method ID.

Chapter 2

75

There are two approaches to cache field and method IDs. The first approach caches
at the class initializer. In Java, we can have something similar to the following:
private native static void InitIDs();
static {
 System.loadLibrary(<native lib>);
 InitIDs();
}

The static initializer is guaranteed to be executed before any of the class's methods.
Therefore, we can ensure that the IDs required by the native method are valid when
they're invoked. The usage of this approach is demonstrated in the InitIDs and
CachingFieldMethodIDDemo1 native methods and CachingActivity.java.

The second approach caches the IDs at the point of usage. We store the field or
method ID in a static variable, so that the ID is valid the next time the native method
is invoked. The usage of this approach is demonstrated in the native methods
CachingFieldMethodIDDemo2 and CachingActivity.java.

On comparison of these two approaches, the first one is preferred. Firstly, the first
it doesn't require a validity check for the IDs before using them, because the static
initializer is always called first and the IDs are therefore always valid before the native
methods are called. Secondly, if the class is unloaded, the cached IDs will be invalid.
If the second approach is used, we'll need to ensure the class is not unloaded and
loaded again. If the first approach is used, the static initializer is called automatically
when the class is loaded again, so we never have to worry about the class being
unloaded and loaded again.

 f Caching references: JNI exposes classes, instance objects, strings, and arrays as
references. We covered how to manage references in the Managing references at JNI
recipe. Sometimes, caching references can also improve performance. Unlike field
and method IDs, which are direct pointers, references are implemented using an
indirect mechanism that is hidden from developers. Therefore, we need to rely
on JNI functions to cache them.

In order to cache reference data, we need to make it a global reference or weak
global reference. A global reference guarantees that the reference will be valid until
it is explicitly deleted. While weak global reference allows the underlying object to be
garbage collected. Therefore, we'll need to do a validity check before using it.

The native method CachingReferencesDemo demonstrates how to cache a string
reference. Note that while DeleteGlobalRef makes the global reference invalid, it
doesn't assign NULL to the reference. We'll need to do this manually.

Java Native Interface

76

Checking errors and handling exceptions
in JNI

JNI functions can fail because of system constraint (for example, lack of memory) or invalid
arguments (for example, passing a native UTF-8 string when the function is expecting a
UTF-16 string). This recipe discusses how to handle errors and exceptions in JNI programming.

Getting ready
The following recipes should be read first before proceeding with this recipe:

 f Manipulating strings in JNI

 f Managing references in JNI

 f Accessing Java static and instance fields in native code

 f Calling static and instance methods from native code

How to do it…
Follow these steps to create a sample Android project that illustrates errors and exception
handling in JNI:

1. Create a project named ExceptionHandling. Set the package name as
cookbook.chapter2. Create an activity named ExceptionHandlingActivity.
Under the project, create a folder named jni. Refer to the Loading native libraries
and registering native methods recipe of this chapter for more detailed instructions.

2. Create a file named exceptiontest.c under the jni folder, then implement the
ExceptionDemo and FatalErrorDemo methods.

3. Modify the ExceptionHandlingActivity.java file by adding code to load the
native library, then declare and invoke the native methods.

4. Modify the layout XML file, add the Android.mk build file, and build the native
library. Refer to steps 8 to 10 of the the Loading native libraries and registering
native methods recipe of this chapter for more details.

5. We're now ready to run the project. We'll present the output while discussing each
native method, in the following section.

Chapter 2

77

How it works…
This recipe discusses error checking and exception handling at JNI:

 f Check for errors and exceptions: Many JNI functions return a special value to
indicate failure. For example, the FindClass function returns NULL to indicate it
failed to load the class. Many other functions do not use the return value to signal
failure; instead an exception is thrown.

Besides JNI functions, the Java code invoked by native code can
also throw exceptions. We should make sure we check for such
cases in order to write robust native code.

For the first group of functions, we can simply check the return value to see if an
error occurs. For the second group of functions, JNI defines two functions to check
for exceptions, as follows:
jboolean ExceptionCheck(JNIEnv *env);
jthrowable ExceptionOccurred(JNIEnv *env);

The first function returns JNI_TRUE to indicate that an exception occurs, and
JNI_FALSE otherwise. The second function returns a local reference to the
exception. When the second function is used, an additional JNI function can
be called to examine the details of the exception:
void ExceptionDescribe(JNIEnv *env);

The function prints the exception and a back trace of the stack to the logcat.

In the native method ExceptionDemo, we used both approaches to check
for occurrence of exceptions and ExceptionDescribe to print out the
exception details.

 f Handle errors and exceptions: Exceptions at JNI are different from Java exceptions.
At Java, when an error occurs, an exception object is created and handed to the
runtime. The runtime then searches the call stack for an exception handler that can
handle the exception. The search starts at the method where the exception occurred
and proceeds in the reverse order in which the methods are called. When such a
code block is found, the runtime handles the control to the exception handler. The
normal control flow is therefore interrupted. In contrast, JNI exception doesn't change
the control flow, and we'll need to explicitly check for exception and handle it properly.

There are generally two ways to handle an exception. The first approach is to free the
resources allocated at JNI and return. This will leave the responsibility of handling the
exception to the caller of the native method.

Java Native Interface

78

The second practice is to clear the exception and continue executing. This is done
through the following JNI function call:
void ExceptionClear(JNIEnv *env);

In the native method ExceptionDemo, we used the second approach to clear
java.lang.NullPointerException, and the first approach to return
java.lang.RuntimeException to the caller, which is the Java method
callExceptionDemo at ExceptionHandlingActivity.java.

When an exception is pending, not all the JNI functions can be called safely.
The following functions are allowed when there are pending exceptions:

 � DeleteGlobalRef

 � DeleteLocalRef

 � DeleteWeakGlobalRef

 � ExceptionCheck

 � ExceptionClear

 � ExceptionDescribe

 � ExceptionOccurred

 � MonitorExit

 � PopLocalFrame

 � PushLocalFrame

 � Release<PrimitiveType>ArrayElements

 � ReleasePrimitiveArrayCritical

 � ReleaseStringChars

 � ReleaseStringCritical

 � ReleaseStringUTFChars

They're basically exception check and handle functions, or functions that clear
resources allocated at native code.

Calling JNI functions other than the functions listed
here can lead to unexpected results when an exception
is pending. We should handle the pending exception
properly and then proceed.

 f Throw exceptions in the native code: JNI provides two functions to throw an
exception from native code. They have the following prototypes:
jint Throw(JNIEnv *env, jthrowable obj);
jint ThrowNew(JNIEnv *env, jclass clazz, const char *message);

Chapter 2

79

The first function accepts a reference to a jthrowable object and throws the
exception, while the second function accepts a reference to an exception class.
It will create an exception object of the clazz class with the message argument
and throw it.

In the ExceptionDemo native method, we used the ThrowNew function to throw
java.lang.NullPointerException and a Throw function to throw java.
lang.RuntimeException.

The following logcat output indicates how the exceptions are checked, cleared,
and thrown:

The last exception is not cleared at the native method. In the Java code, we catch the
exception and display the message on the phone screen:

Java Native Interface

80

 f Fatal error: A special type of error is the fatal error, which is not recoverable.
JNI defines a function FatalError, as follows, to raise a fatal error:

void FatalError(JNIEnv *env, const char *msg);

This function accepts a message and prints it to logcat. After that, the VM instance
for the application is terminated. We demonstrated the usage of this function in the
native method FatalErrorDemo and Java method callFatalErrorDemo.
The following output is captured at logcat:

Note that the code after the FatalError function is never executed, in neither the
native nor Java code, because FatalError never returns, and the VM instance
is terminated. On my Android device, this does not lead the Android application to
crash, but causes the application to freeze instead.

There's more...
C++ exception is currently not supported on Android JNI programming. In other words, the
native C++ exceptions do not propagate to Java world through JNI. Therefore, we should
handle C++ exceptions within C++ code. Alternatively, we can write a C wrapper to throw an
exception or return an error code to Java.

Integrating assembly code in JNI
Android NDK allows you to write assembly code at JNI programming. Assembly code is
sometimes used to optimize the critical portion of code to achieve the best performance. This
recipe does not intend to discuss how to program in assembly. It describes how to integrate
assembly code in JNI programming instead.

Getting ready
Read the Passing parameters and receiving returns in primitive types recipe before
you continue.

Chapter 2

81

How to do it…
The following steps create a sample Android project that integrates the assembly code:

1. Create a project named AssemblyInJNI. Set the package name as cookbook.
chapter2. Create an activity named AssemblyInJNIActivity. Under the
project, create a folder named jni. Refer to the Loading native libraries and
registering native methods recipe of this chapter for more detailed instructions.

2. Create a file named assemblyinjni.c under the jni folder, then implement the
InlineAssemblyAddDemo method.

3. Create a file named tmp.c under the jni folder, and implement the native method
AssemblyMultiplyDemo. Compile the tmp.c code to an assembly source file
named AssemblyMultiplyDemo.s, using the following command:
$ $ANDROID_NDK/toolchains/arm-linux-androideabi-4.4.3/
prebuilt/linux-x86/bin/arm-linux-androideabi-gcc -S tmp.c
-o AssemblyMultiplyDemo.s --sysroot=$ANDROID_NDK/platforms/
android-14/arch-arm/

4. Modify the AssemblyInJNIActivity.java file by adding code to load the native
library, then declare and invoke the native methods.

5. Modify the layout XML file, add the Android.mk build file, and build the native
library. Refer to steps 8 to 10 of the Loading native libraries and registering native
methods recipe of this chapter for details.

6. At AssemblyInJNIActivity.java, enable the callInlineAssemblyAddDemo
native method and disable the callAssemblyMultiplyDemo method. Run the
project on an Android device or emulator. The phone display should look similar
to the following screenshot:

7. At AssemblyInJNIActivity.java, enable the callAssemblyMultiplyDemo
native method and disable the callInlineAssemblyAddDemo method. Run the
project on an Android device or emulator. The phone display should look similar to
the following screenshot:

Java Native Interface

82

How it works…
This recipe demonstrates the usage of the assembly code to implement a native method:

 f Inline assembly at C code: We can write inline assembly code for Android NDK
development. This is illustrated in native method InlineAssemblyAddDemo.

 f Generating a separate assembly code: One approach to write assembly code is to
write the code in C or C++, and use a compiler to compile the code into assembly
code. Then, we optimize based on the auto-generated assembly code. Since this
recipe is not about writing code in an assembly language, we use the Android NDK
cross compiler to generate a native method AssemblyMultiplyDemo and call it
from the Java method callAssemblyMultiplyDemo.

We first write the native method AssemblyMultiplyDemo in
AssemblyMultiplyDemo.c, then cross compile the code using the compiler with
Android NDK, using the following:
$ $ANDROID_NDK/toolchains/arm-linux-androideabi-4.4.3/prebuilt/
linux-x86/bin/arm-linux-androideabi-gcc -S <c_file_name>.c -o
<output_file_name>.s --sysroot=$ANDROID_NDK/platforms/android-
<level>/arch-<arch>/

In the preceding command, $ANDROID_NDK is an environment variable pointing to
the location of Android NDK. If you have followed the recipes in Chapter 1, Hello NDK,
then this should have been configured correctly. Otherwise, you can replace it with
the full path to your Android NDK location (for example, in my computer, the path is
/home/roman10/Desktop/android/android-ndk-r8). <level> indicates the
targeted Android version. In our case, we used 14. <arch> indicates the architecture;
we used arm. If we build an application for other architectures such as x86, then
this should be x86. The -S option tells the cross compiler to compile the <c_file_
name>.c file into an assembly code, but don't assemble or link it. The -o option tells
the compiler to output the assembly code to a file <output_file_name>.s. If no
such option appears, the compiler outputs to a file named <c_file_name>.s.

 f Compile the assembly code: Compiling assembly code is just like compiling C/C++
source code. As shown in the Android.mk file, we simply list the assembly file as a
source file as follows:

LOCAL_SRC_FILES := AssemblyMultiplyDemo.s assemblyinjni.c

3
Build and Debug NDK

Applications

In this chapter we will cover the following recipes:

 f Building an Android NDK application at the command line

 f Building an Android NDK application in Eclipse

 f Building an Android NDK application for different ABIs

 f Building an Android NDK applications for different CPU features

 f Debugging an Android NDK application with logging messages

 f Debugging an Android NDK application with CheckJNI

 f Debugging an Android NDK application with NDK GDB

 f Debugging an Android NDK application with CGDB

 f Debugging an Android NDK application in Eclipse

Introduction
We covered the environment set up in Chapter 1, Hello NDK, and JNI programming in
Chapter 2, Java Native Interface. To build Android NDK applications, we'll also need to
use the build and debug tools for Android NDK.

Android NDK comes with the ndk-build script to facilitate the easy build of any Android NDK
application. This script hides the complications of invoking cross compilers, cross linkers, and
so on, from developers. We'll start by introducing the usage of the ndk-build command.

A recent release of the Android Development Tools (ADT) plugin has enabled the building of
Android NDK applications from Eclipse. We'll demonstrate how to use it.

Build and Debug NDK Applications

84

We'll explore building NDK applications for different Application Binary Interfaces (ABIs)
and making use of optional CPU features. This is essential to achieve best performance on
different Android devices.

Besides build, we will also introduce various debugging tools and techniques for Android NDK
applications. Starting with the simple but powerful logging technique, we'll show how to debug
NDK applications from both the command line and the Eclipse IDE. The CheckJNI mode will
also be introduced, which can help us capture JNI bugs.

Building an Android NDK application at the
command line

Though Eclipse is the recommended IDE for Android development, sometimes we want to
build an Android application in the command line so that the process can be automated easily
and become part of a continuous integration process. This recipe focuses on how to build an
Android DNK application at the command line.

Getting ready
Apache Ant is a tool mainly used for building Java applications. It accepts an XML file to
describe the build, deploy and test processes, manage the processes, and to automatically
keep a track of the dependencies.

We are going to use Apache Ant to build and deploy our sample project. If you don't have it
installed yet, you can follow these commands to install it:

 f If you're on Ubuntu Linux, use the following command:
$ sudo apt-get install ant1.8

 f If you're using a Mac, use the following command:
$ sudo port install apache-ant

 f If you're using Windows, you can download the winant installer from
http://code.google.com/p/winant/downloads/list, and install it.

Readers are supposed to have the NDK development environment set up and read the Writing
a Hello NDK program recipe in Chapter 1, Hello NDK, before going through this one.

http://code.google.com/p/winant/downloads/list
http://code.google.com/p/winant/downloads/list

Chapter 3

85

How to do it…
The following steps create and build a sample HelloNDK application:

1. Create the project. Start a command-line console and enter the following command:
$ android create project \

--target android-15 \

--name HelloNDK \

--path ~/Desktop/book-code/chapter3/HelloNDK \

--activity HelloNDKActivity \

--package cookbook.chapter3

The android tool can be found under the tools/ directory
of the Android SDK folder. If you have followed Chapter 1, Hello
NDK, to set up the SDK and NDK development with PATH
configured properly, you can execute the android command
directly from the command line. Otherwise, you will need to
enter the relative or full path to the android program. This
also applies to other SDK and NDK tools used in the book.

The following is a screenshot of the command output:

Build and Debug NDK Applications

86

2. Go to the HelloNDK project folder and create a folder named jni by using the
following command:
$ cd ~/Desktop/book-code/chapter3/HelloNDK

$ mkdir jni

3. Create a file named hello.c under the jni folder, and add the following content
to it:
#include <string.h>
#include <jni.h>

jstring Java_cookbook_chapter3_HelloNDKActivity_
naGetHelloNDKStr(JNIEnv* pEnv, jobject pObj)
{
 return (*pEnv)->NewStringUTF(pEnv, "Hello NDK!");
}

4. Create a file named Android.mk under the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := hello
LOCAL_SRC_FILES := hello.c
include $(BUILD_SHARED_LIBRARY)

5. Build the native library using the following command:
$ ndk-build

6. Modify the HelloNDKActivity.java file to the following content:
package cookbook.chapter3;
import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;
public class HelloNDKActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 tv.setTextSize(30);
 tv.setText(naGetHelloNDKStr());
 this.setContentView(tv);
 }
 public native String naGetHelloNDKStr();
 static {
 System.loadLibrary("hello");
 }
}

Chapter 3

87

7. Update the project. We have added a native library, so we need to update the project
with the following command. Note that this command is only needed once unless we
change the project settings, while the previous ndk-build command needs to be
executed every time we update the native code:
$ android update project --target android-15 --name HelloNDK \

--path ~/Desktop/book-code/chapter3/HelloNDK

The following is a screenshot of the command output:

8. Go to the project root folder, and build our project in the debug mode using the
following command:
$ ant debug

In the following screenshot, we show the last few lines of the output, which indicates
a successful build is:

The output apk will be produced at bin/HelloNDK-debug.apk.

9. Create an emulator using the following command:
$ android --verbose create avd --name android_4_0_3 \

--target android-15 --sdcard 32M

Build and Debug NDK Applications

88

The following is a screenshot of the command output:

10. Start the emulator, using the following command:
$ emulator -wipe-data -avd android_4_0_3

Alternatively, we can start the Android Virtual Device Manager window by using the
command "android avd", and then choosing an emulator to launch, as follows:

Chapter 3

89

11. Install the app on the emulator. We first check the device serial number by using the
following command:
$ adb devices

The following is a screenshot of the command output:

12. We then install the debug.apk file to the emulator by using the following command:
$ adb -s emulator-5554 install bin/HelloNDK-debug.apk

If only a single device is connected to the computer, there is no need
to specify the device serial number. In the preceding commands , we
can remove "-s emulator-5554".

13. Start the HelloNDK app on the emulator using the command in the following format:
$ adb shell am start -n com.package.name/com.package.name.
ActivityName

In our example, we use the following ommand:

$ adb -s emulator-5554 shell am start -n cookbook.chapter3/
cookbook.chapter3.HelloNDKActivity

Build and Debug NDK Applications

90

14. Run the app on a device.

Suppose the device serial number is HT21HTD09025, then we can use the following
command to install the app on an Android device.
$ adb -s HT21HTD09025 install bin/HelloNDK-debug.apk

In our example, we use the following command to start the app:
$ adb -s HT21HTD09025 shell am start -n cookbook.chapter3/
cookbook.chapter3.HelloNDKActivity

15. Create a release package.

Once we confirm that our application can run successfully, we may want to create a
release package for uploading to the Android market. You can perform the following
steps to achieve this:

1. Create a keystore. An Android app must be signed using a key from a keystore.
A keystore is a collection of private keys. We can use the following command to
create a keystore with a private key:
$ keytool -genkey -v -keystore release_key.keystore \

-alias androidkey \

-keyalg RSA -keysize 2048 -validity 10000 \

-dname "CN=MyCompany, OU=MyAndroidDev, O=MyOrg, L=Singapore,
S=Singapore, C=65" \

-storepass testkspw -keypass testkpw

The following is a screenshot of the command output:

As shown, a keystore with password as testkwpw is created, and a RSA key pair with
password as testkpw is added to the keystore.

2. Type the command "ant release" to build an apk for the app. The output can be
found in the bin folder as HelloNDK-release-unsigned.apk.

Chapter 3

91

3. Sign the apk by using the following command:
$ jarsigner -verbose -keystore <keystore name> -storepass <store
password> -keypass <key password> -signedjar <name of the signed
output> <unsigned input file name> <alias>

For our sample application, the command and output are as follows:

4. Zip-align the apk file. The zipalign tool aligns the data inside an apk file
for performance optimization. The following command can be used to align
a signed apk:

$ zipalign -v 4 <app apk file name> <aligned apk file name>

For our sample application, the command and output are as follows:

Build and Debug NDK Applications

92

How it works…
This recipe discusses how to build an Android NDK application from the command line.

Android NDK provides a build system with the following goals:

 f Simplicity: It handles most of the heavy lifting stuff for developers, and we only
need to write brief build files (Android.mk and Application.mk) to describe
the sources need to be compiled.

 f Compatibility: More build tools, platforms, and so on, may be added to NDK in future
releases, but no changes are required for the build files.

Android NDK comes with a set of cross toolchains, including cross-compilers, cross-linkers,
cross-assemblers, and so on. These tools can be found under toolchains folder of the NDK
root directory. They can be used to generate binaries on different Android platforms (ARM,
x86, or MIPS) on Linux, Mac OS, or Windows. Although it is possible to use the toolchains
directly to build native code for Android, it is not recommended unless we're porting a project
with its own build scripts. In this case, we may only need to change the original compiler to the
NDK cross compiler to build it for Android.

In most cases, we'll describe the sources in Android.mk and specify the ABIs on
Application.mk. Android NDK's ndk-build script will internally invoke the cross toolchain
to build the native code for us. The following is a list of commonly used ndk-build options:

 f ndk-build: It is used to build binaries.

 f ndk-build clean: It cleans the generated binaries.

 f ndk-build V=1: This builds binaries and displays the build commands. It is handy
when we want to find out how things are built or checked for build bugs.

 f ndk-build -B: This command forces a rebuild.

 f ndk-build NDK_DEBUG=1: It generates debuggable build.

 f ndk-build NDK_DEBUG=0: It generates a release build.

Chapter 3

93

There's more...
This recipe uses a lot of command-line tools in the Android SDK. This allows us to present
complete instructions of how to create, build, and deploy an Android NDK project. However, we
won't provide the details about these tools in this book since this book is dedicated to Android
NDK. You may read more about those tools at http://developer.android.com/tools/
help/index.html.

Taking screenshots from the command line
Taking a screenshot from command line can be handy to record the display results for
an automated test. However, Android does not provide a command-line tool to take a
screenshot currently.

A Java program found at \development\tools\screenshot\src\com\android\
screenshot\ of the Android source code can be used to take screenshot. The code uses a
similar method as the Eclipse DDMS plugin to take a screenshot, but from the command line.
We incorporated the preceding code into an Eclipse Java project named screenshot, which
can be downloaded from the website.

One can import the project and export an executable JAR file to use the tool. Suppose the
exported JAR file is named screenshot.jar, then the following sample command uses
it to take a screenshot from an emulator:

http://developer.android.com/tools/help/index.html
http://developer.android.com/tools/help/index.html

Build and Debug NDK Applications

94

Building an Android NDK application in
Eclipse

The previous recipe discusses how to build an Android NDK application in the command line.
This recipe demonstrates how to do it in the Eclipse IDE.

Getting ready
Add NDK Preferences. Start Eclipse, then click on Window | Preferences. In the Preferences
window, select NDK under Android. Click on Browse and select the NDK root folder. Click
on OK.

How to do it…
The following steps create an NDK project using Eclipse:

1. Create an Android application named HelloNDKEclipse. Set the package name
as cookbook.chapter3. Create an activity named HelloNDKEclipseActivity.
Please refer to the Loading native libraries and registering native methods recipe of
Chapter 2, Java Native Interface, if you want more detailed instructions.

2. Right-click on the project HelloNDKEclipse, select Android Tools | Add Native
Support. A window similar to the following screenshot will appear. Click on Finish
to dismiss it:

Chapter 3

95

This will add a jni folder with two files (HelloNDKEclipse.cpp and Android.mk)
inside, and switch Eclipse to C/C++ perspective.

3. Add the following content to HelloNDKEclipse.cpp:
#include <jni.h>

jstring getString(JNIEnv* env) {
 return env->NewStringUTF("Hello NDK");
}

extern "C" {
 JNIEXPORT jstring JNICALL Java_cookbook_chapter3_
HelloNDKEclipseActivity_getString(JNIEnv* env, jobject o){
 return getString(env);
 }
}

4. Change the content of HelloNDKEclipseActivity.java to below.
package cookbook.chapter3;

import android.os.Bundle;
import android.app.Activity;
import android.widget.TextView;

public class HelloNDKEclipseActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {

Build and Debug NDK Applications

96

 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 tv.setTextSize(30);
 tv.setText(getString());
 this.setContentView(tv);
 }
 public native String getString();
 static {
 System.loadLibrary("HelloNDKEclipse");
 }
}

5. Right-click on HelloNDKEclipse project, and select Build Project. This will build
the native library for us.

6. Right-click on the project, go to Run As, and select Android Application. The phone
screen will display something similar to the following screenshot:

How it works...
This recipe discusses building the Android NDK application at Eclipse.

We have been using C in all previous recipes. Starting from this recipe, we'll be writing our
code in C++.

By default, Android provides minimal C++ support. There's no Run-time Type Information
(RTTI) and C++ exceptions support, and even the C++ standard library support, is partial.
The following is a list of the C++ headers supported by Android NDK by default:

cassert, cctype, cerrno, cfloat, climits, cmath, csetjmp, csignal,
cstddef, cstdint, cstdio, cstdlib, cstring, ctime, cwchar, new, stl_
pair.h, typeinfo, utility

It is possible to add more C++ support by using different C++ libraries. NDK comes with the
gabi++, stlport, and gnustl C++ libraries, besides the system default one.

In our sample code, we used an external "C" to wrap the C++ method. This is to avoid
C++ mangling of the JNI function names. C++ name mangling could change the function
names to include type information about parameters, whether the function is virtual or not,
and so on. While this enables C++ to link overloaded functions, it breaks the JNI function
discovery mechanism.

Chapter 3

97

We can also use the explicit function registration method covered in the Loading native
libraries and registering native methods recipe of Chapter 2, Java Native Interface, to get
rid of the wrapping.

Building an Android NDK application for
different ABIs

Native code is compiled into binaries. Therefore, one set of binaries can only run on a specific
architecture. Android NDK comes with techniques and tools to allow developers to compile the
same source code for multiple architectures easily.

Getting ready
An Application Binary Interface (ABI) defines how the Android application's machine
code is supposed to interact with the system at runtime, including the CPU instruction set,
endianness, alignment of memory, and so on. An ABI basically defines a type of architecture.

The following table briefly summarizes the four ABIs supported by Android:

ABI name Support Not support Optional
armeabi f ARMv5TE instruction

set

 f Thumb (also known
as Thumb-1)
instructions

Hardware-assisted
floating point
computation

armeabi-v7a f Whatever is
supported in
armeabi

 f VFP hardware FPU
instructions

 f Thumb-2 instruction
set

 f VFPv3-D16 is used.

 f Advanced SIMD (also
known as NEON)

 f VFPv3-D32
 f ThumbEE

x86 f Instruction set
commonly known as
"x86" or "IA-32".

 f MMX, SSE, SSE2,
and SSE3 instruction
set extensions

 f MOVBE instruction
 f SSSE3 "supplemental

SSE3" extension
 f Any variant of "SSE4"

mips f MIPS32r1 instruction
set

 f Hard-Float
 f O32

 f DSP
application
specific
extension

 f MIPS16
 f micromips

Build and Debug NDK Applications

98

armeabi and armeabi-v7a are the two most commonly used ABIs for Android devices. ABI
armeabi-v7a is compatible with armeabi, which means applications compiled for armeabi can
run on armeabi-v7a too. But the reverse is not true, since armeabi-v7a includes additional
features. In the following section, we briefly introduce some technical terms referred to
frequently in armeabi and armeabi-v7a:

 f Thumb: This instruction set consists of 16-bit instructions, which is a subset of
the 32-bit instruction set of the standard ARM. Some instructions in the 32-bit
instruction set are not available for Thumb, but can be simulated with several Thumb
instructions. The narrower 16-bit instruction set can offer memory advantages.

Thumb-2 extends Thumb-1 by adding some 32-bit instructions, which results in a
variable-length instruction set. Thumb-2 aims to attain code density like to Thumb-1
and performance similar to standard ARM instruction set on a 32-bit memory.

Android NDK generates the thumb code by default, unless LOCAL_ARM_MODE is
defined in the Android.mk file.

 f Vector Floating Point (VFP): It is an extension to the ARM processor, which provides
low cost floating point computation.

 f VFPv3-D16 and VFPv3-D32: VFPv3-D16 refers to 16 dedicated 64-bit floating point
registers. Similarly, VFPv3-D32 means there are 32 64-bit floating point registers.
These registers speed up floating point computation.

 f NEON: NEON is the nickname for the ARM Advanced Single Instruction Multiple
Data (SIMD) instruction set extension. It requires VFPv3-D32, which means 32
hardware FPU 64-bit registers will be used. It provides a set of scalar/vector
instructions and registers, which are comparable to MMX/SSE/SDNow! in the x86
world. It is not supported by all Android devices, but many new devices have NEON
support. NEON can accelerate media and signal processing applications significantly
by executing up to 16 operations simultaneously.

One can refer to ARM documentation website at http://infocenter.arm.com/help/
index.jsp for more detailed information. We don't discuss x86 and mips ABI here, because
few Android devices run on these architecture.

Read the Building Android NDK Application at Eclipse recipe before going through this one.

How to do it...
The following steps build an Android project for different ABIs:

1. Create an Android application named HelloNDKMultipleABI. Set
the package name as cookbook.chapter3. Create an activity named
HelloNDKMultipleABIActivity.

http://infocenter.arm.com/help/index.jsp

Chapter 3

99

2. Right-click on the HelloNDKMultipleABI project, select Android Tools | Add
Native Support. A window appears, click on Finish to dismiss it. This will add a jni
folder with two files (HelloNDKMultipleABI.cpp and Android.mk) inside, and
switch Eclipse to the C/C++ perspective.

3. Add the following content to the HelloNDKMultipleABI.cpp file:
#include <jni.h>

jstring getString(JNIEnv* env) {
 return env->NewStringUTF("Hello NDK");
}

extern "C" {
 JNIEXPORT jstring JNICALL Java_cookbook_chapter3_
HelloNDKMultipleABIActivity_getString(JNIEnv* env, jobject o){
 return getString(env);
 }
}

4. Change the HelloNDKMultipleABIActivity.java file to the following content:
package cookbook.chapter3;

import android.os.Bundle;
import android.app.Activity;
import android.widget.TextView;

public class HelloNDKMultipleABIActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 tv.setTextSize(30);
 tv.setText(getString());
 this.setContentView(tv);
 }
 public native String getString();
 static {
 System.loadLibrary("HelloNDKMultipleABI");
 }
}

Build and Debug NDK Applications

100

5. Add a new file named Application.mk under the project's jni folder with the
following content:
APP_ABI := armeabi armeabi-v7a

6. Right-click on the HelloNDKMultipleABIActivity project, and select Build
Project. This will build the native library for us.

7. Create two emulators, with ABI set to armeabi and armeabi-v7a respectively.
The following screenshot depicts how an emulator is created with the armeabi ABI:

8. Run the sample Android application on the two emulators. The same result is shown
on both of them:

Chapter 3

101

9. Change the content of Application.mk to the following code snippet and run
the sample application on the two emulators. The application will still work on
both the emulators:
#APP_ABI := armeabi armeabi-v7a
APP_ABI := armeabi

10. Change the content of Application.mk as follows:
#APP_ABI := armeabi armeabi-v7a
#APP_ABI := armeabi
APP_ABI := armeabi-v7a

11. Run the sample application on the two emulators. The application works on the
armeabi-v7a emulator, but crashes on armeabi emulator, as shown in the
following screenshot:

How it works…
An Android device can define one or two ABIs. For typical x86-, MIPS-, ARMv5-, and
ARMv6-based devices, there's only a primary ABI. Based on the platform, it can be x86, mips,
or armeabi. For a typical ARMv7-based device, the primary ABI is usually armeabi-v7a, and
it also has a secondary ABI as armeabi. This enables binaries compiled for either armeabi or
armeabi-v7a to run on ARMv7 devices. In our example, we demonstrated that the app can
work on both armeabi and armeabi-v7a emulators when built against only armeabi.

At installation, the Android package manager searches for native libraries built for the primary
ABI and copies them to the application's data directory. If not found, it then searches the
native libraries built for the secondary ABI. This ensures that only the proper native libraries
are installed.

In our example, when we compile the binary against armeabi-v7a only, the native library won't
get installed on the armeabi emulator, subsequently the native library cannot be loaded, and
a crash will be shown.

Build and Debug NDK Applications

102

Building Android NDK applications for
different CPU features

Many projects use native code to improve performance. One advantage of developing in
NDK over SDK is that we can build different packages for different CPUs, which is the topic
of this recipe.

Getting ready
Please read the Building Android NDK application for different ABIs recipe before going
through this one.

How to do it…
The following steps build Android NDK applications for different CPU features.

1. At Eclipse, click on File | New | Other. Select Android Project from Existing Code
under Android as shown in the following screenshot. Then click on Next:

2. Browse to the samples/hello-neon folder of the Android NDK folder. Then click
on Finish.

3. Start a terminal, then go to the samples/hello-neon/jni folder. Type the
command "ndk-build" to build the binaries.

Chapter 3

103

4. Run the Android project on different devices and emulators. Based on your device/
emulator ABI and availability of the NEON feature, you should be able to see the
results as follows:

 � For Android device with armeabi ABI, the result is as follows:

 � For Android device with armeabi-v7a ABI and NEON, the result is as follows:

How it works…
Android devices are roughly divided by ABIs. However, different devices with the same ABI
can have different CPU extensions and features. These extensions and features are optional
and therefore we don't know whether a user's device has them until runtime. Detecting and
making use of these features can sometimes improve app performance significantly on
certain devices.

Android NDK contains a library named cpufeatures, which can be used to detect the CPU
family and optional features at runtime. As illustrated in the sample code, the following steps
indicate how to use this library:

1. Add it in the static library list in Android.mk as follows:
LOCAL_STATIC_LIBRARIES := cpufeatures

2. At the end of the Android.mk file, import the cpufeatures module:
$(call import-module,cpufeatures)

3. In the code, include the header file <cpu-features.h>.

4. Call detection functions; Currently cpufeatures provides only three functions:

5. Get the CPU family. The function prototype is as follows:
AndroidCpuFamily android_getCpuFamily();

Build and Debug NDK Applications

104

It returns an enum. The supported CPU families are listed in the section to follow.
ANDROID_CPU_FAMILY_MIPS
ANDROID_CPU_FAMILY_MIPS
ANDROID_CPU_FAMILY_ARM

6. Get the optional CPU features. Each CPU feature is represented by a bit flag and the
bit is set to 1 if the feature is available. The function prototype is as follows:

uint64_t android_getCpuFeatures();

For the ARM CPU family, the supported CPU feature detections are as follows:

 f ANDROID_CPU_ARM_FEATURE_ARMv7: It means that the ARMv7-a instruction is
supported.

 f ANDROID_CPU_ARM_FEATURE_VFPv3: It means that the VFPv3 hardware FPU
instruction set extension is supported. Note that this refers to VFPv3-D16, which
provides 16 hardware FP registers.

 f ANDROID_CPU_ARM_FEATURE_NEON: It means that he ARM Advanced SIMD
(also known as NEON) vector instruction set extension is supported. Note that
such CPUs also support VFPv3-D32, which provides 32 hardware FP registers.

For the x86 CPU family, the supported CPU feature detections are as follows:

 f ANDROID_CPU_X86_FEATURE_SSSE3: It means that the SSSE3 instruction
extension set is supported.

 f ANDROID_CPU_X86_FEATURE_POPCNT: It means that the POPCNT instruction is
supported.

 f ANDROID_CPU_X86_FEATURE_MOVBE: It means that the MOVBE instruction
is supported.

We can do a "&" operation to detect if a feature is available or not, as follows:

uint64_t features = android_getCpuFeatures();
if ((features & ANDROID_CPU_ARM_FEATURE_NEON) == 0) {
 //NEON is not available
} else {
 //NEON is available
}

Get the number of CPU cores on the device:

int android_getCpuCount(void);

Chapter 3

105

Since NDK r8c, more CPU feature detections are available. Please refer to
sources/android/cpufeatures/cpu-features.c for more details.

There's more…
There are a few more noteworthy points about CPU features on Android.

More about CPU feature detection
The cpufeatures library can only detect a limited set of CPU features. It is possible to
implement our own CPU detection mechanisms. By looking at the NDK source code at
/sources/android/cpufeatures/, one can find that the cpufeatures library
essentially looks at the /proc/cpuinfo file. We can read this file and parse the
content in our application. The following is a screenshot of the file content:

Please refer to the Android project cpuinfo, available in the book's website for how to do
this programmatically.

Different approaches of building for different CPU features
There are a few approaches to building native code for different CPU features:

 f Single library, different binaries at build time: This is demonstrated in the sample
project. The helloneon-intrinsics.c file is only compiled for armeabi-v7a ABI.

 f Single library, different execution paths at runtime: This is also shown in the
sample project. The code detects whether the NEON feature is available or not at
runtime and executes different code blocks.

Build and Debug NDK Applications

106

 f Different libraries, load appropriate library at runtime: Sometimes, we may want to
compile the source code into different libraries and differentiate them by names. For
example, we may have libmylib-neon.so and libmylib-vfpv3.so . We detect
the CPU feature at runtime and load the appropriate library.

 f Different packages, load appropriate library at runtime: If the library is big, it is
desirable to deploy different binaries for different CPUs as separate packages. This
is done by many video players available on Google Play (for example, MX Player).

Debugging an Android NDK application with
logging messages

Android logging system provides a method for collecting logs from various applications into
a series of circular buffers. The logcat command is used to view the logs. Log message is
the simplest method of debugging a program, yet one of the most powerful ones. This recipe
focuses on message logging in NDK.

How to do it…
The following steps create our sample Android project:

1. Create an Android application named NDKLoggingDemo. Set the package name
as cookbook.chapter3. Create an activity named NDKLoggingDemoActivity.
Please refer to the Loading native libraries and registering native methods recipe of
Chapter 2, Java Native Interface, if you want more detailed instructions.

2. Right-click on the project NDKLoggingDemo, select Android Tools | Add Native
Support. A window appears, click on Finish to dismiss it.

3. Add a new file named mylog.h under the jni folder, and add the following content
to it:
#ifndef COOKBOOK_LOG_H
#define COOKBOOK_LOG_H

#include <android/log.h>

#define LOG_LEVEL 9
#define LOG_TAG "NDKLoggingDemo"

#define LOGU(level, ...) if (level <= LOG_LEVEL) {__android_log_
print(ANDROID_LOG_UNKNOWN, LOG_TAG, __VA_ARGS__);}
#define LOGD(level, ...) if (level <= LOG_LEVEL) {__android_log_
print(ANDROID_LOG_DEFAULT, LOG_TAG, __VA_ARGS__);}
#define LOGV(level, ...) if (level <= LOG_LEVEL) {__android_log_
print(ANDROID_LOG_VERBOSE, LOG_TAG, __VA_ARGS__);}

Chapter 3

107

#define LOGDE(level, ...) if (level <= LOG_LEVEL) {__android_log_
print(ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__);}
#define LOGI(level, ...) if (level <= LOG_LEVEL) {__android_log_
print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__);}
#define LOGW(level, ...) if (level <= LOG_LEVEL) {__android_log_
print(ANDROID_LOG_WARN, LOG_TAG, __VA_ARGS__);}
#define LOGE(level, ...) if (level <= LOG_LEVEL) {__android_log_
print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__);}
#define LOGF(level, ...) if (level <= LOG_LEVEL) {__android_log_
print(ANDROID_LOG_FATAL, LOG_TAG, __VA_ARGS__);}
#define LOGS(level, ...) if (level <= LOG_LEVEL) {__android_log_
print(ANDROID_LOG_SILENT, LOG_TAG, __VA_ARGS__);}

#endif

4. Add the following content to NDKLoggingDemo.cpp:
#include <jni.h>
#include "mylog.h"

void outputLogs() {
 LOGU(9, "unknown log message");
 LOGD(8, "default log message");
 LOGV(7, "verbose log message");
 LOGDE(6, "debug log message");
 LOGI(5, "information log message");
 LOGW(4, "warning log message");
 LOGE(3, "error log message");
 LOGF(2, "fatal error log message");
 LOGS(1, "silent log message");
}

extern "C" {
 JNIEXPORT void JNICALL Java_cookbook_chapter3_
NDKLoggingDemoActivity_LoggingDemo(JNIEnv* env, jobject o){
 outputLogs();
 }
}

5. Change the content of NDKLoggingDemoActivity.java to the following:
package cookbook.chapter3;

import android.os.Bundle;
import android.app.Activity;

public class NDKLoggingDemoActivity extends Activity {

Build and Debug NDK Applications

108

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 LoggingDemo();
 }
 public native void LoggingDemo();
 static {
 System.loadLibrary("NDKLoggingDemo");
 }
}

6. Change the Android.mk file to include the Android log library as follows:
LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := NDKLoggingDemo
LOCAL_SRC_FILES := NDKLoggingDemo.cpp
LOCAL_LDLIBS := -llog
include $(BUILD_SHARED_LIBRARY)

7. Right-click on the NDKLoggingDemo project, and select Build Project.

8. Start the monitor logcat output by entering the following command. Then, start the
sample Android app on an Android device:
$ adb logcat -c

$ adb logcat NDKLoggingDemo:I *:S -v time

The following is a screenshot of the logcat output:

9. Start another command line terminal, and enter the following command in it:
$ adb logcat NDKLoggingDemo:V *:S -v time

Chapter 3

109

This will result into the following output:

10. Change the line in mylog.h from #define LOG_LEVEL 9 to #define LOG_
LEVEL 4. Rebuild the application, then restart the application.

11. The outputs of the two terminals we started earlier are the same.

How it works...
This recipe shows how to use Android log messages. Each log message in Android consists of
the following three parts:

 f Priority: It is usually used to filter log messages. In our project, we can control the log
by changing the following code:
#define LOG_LEVEL 4

Alternatively, we can selectively display the log output using logcat.

 f Log tag: It is usually used to identify the log source.

 f Log message: It provides the detailed log message.

Sending log messages on Android consumes CPU resources and
frequent log messages can affect the application performance. In
addition, the logs are stored in a circular buffer. Too many logs will
overwrite some earlier logs, which may not be desirable. Due to
these facts, it is recommended we only log errors and exceptions at
the release build.

logcat is the command-line tool to view Android logs. It allows one to filter logs according to
the log tag and priority. It is also capable of dispalying logs in different formats.

Build and Debug NDK Applications

110

For example, we used the following logcat command in step 8 of the preceding How to do
it... section.

adb logcat NDKLoggingDemo:I *:S -v time

The command filters out logs except those with the NDKLoggingDemo tag and priority I
(information) or higher. The filter is given in a tag:priority format. NDKLoggingDemo:I
indicates logs with a NDKLoggingDemo tag and priority information or higher will be
displayed. *:S sets the priority level for all other tags as "silent".

More details about logcat filtering and format can be found at http://developer.
android.com/tools/help/logcat.html and http://developer.android.com/
tools/debugging/debugging-log.html#outputFormat.

Debugging an Android NDK application with
CheckJNI

JNI does little error checking for better performance. As a result, errors usually lead to a
crash. A mode called CheckJNI is offered by Android. In this mode, a set of JNI functions with
extended checks are called instead of the normal JNI functions. This recipe discusses how to
enable the CheckJNI mode to debug Android NDK applications.

How to do it...
The following steps create a sample Android project and enable the CheckJNI mode:

1. Create an Android application named CheckJNIDemo. Set the package name as
cookbook.chapter3. Create an activity named CheckJNIDemoActivity. Please
refer to the Loading native libraries and registering native methods recipe of Chapter
2, Java Native Interface, if you want more detailed instructions.

2. Right-click on the project CheckJNIDemo, select Android Tools | Add Native
Support. A window appears; click on Finish to dismiss it.

3. Add the following content to CheckJNIDemo.cpp.

4. Change CheckJNIDemoActivity.java to the following:
package cookbook.chapter3;
import android.os.Bundle;
import android.app.Activity;

public class CheckJNIDemoActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_check_jnidemo);

http://developer.android.com/tools/help/logcat.html
http://developer.android.com/tools/help/logcat.html

Chapter 3

111

 CheckJNIDemo();
 }
 public native int[] CheckJNIDemo();
 static {
 System.loadLibrary("CheckJNIDemo");
 }
}

5. Right-click on CheckJNIDemo project, and select Build Project.

6. Start the monitor logcat output by entering "adb logcat -v time" on a
command-line console. Then, start the sample Android app on an Android device.
The application will crash, and the logcat output will be displayed as follows:

7. Enable CheckJNI.

 � When the emulator is being used by you, the CheckJNI is on by default.

 � If you're using a rooted device, the following sequence of commands can be
used to restart the runtime with CheckJNI enabled. The commands stop the
running Android instance, change the system properties to enable CheckJNI,
and then restart Android.
$ adb shell stop

$ adb shell setprop dalvik.vm.checkjni true
$ adb shell start

 � If you have a regular device, you can use the following command:

$ adb shell setprop debug.checkjni 1

Build and Debug NDK Applications

112

8. Run the Android application again. The logcat output will be displayed as follows:

How it works...
The CheckJNI mode uses a set of JNI functions, which have more error checking than the
default one. This makes it easier to find JNI programming bugs. The CheckJNI mode currently
checks the following errors:

 f Negative-sized array: It attempts to allocate an array of negative size.

 f Bad reference: It passes a bad reference jarray/jclass/jobject/jstring to a
JNI function. Passing NULL to JNI function expecting a non-NULL argument.

 f Class names: It passes the class names of invalid style to the JNI function. Valid
class names are separate by "/" as in "java/lang/String".

 f Critical calls: It calls a JNI function between a "critical" get function and its
corresponding release.

 f Exceptions: It calls a JNI function when there's a pending exception.

 f jfieldIDs: It invalidates jfieldIDs or assigns jfieldIDs from one type to another.

 f jmethodIDs: It's similar to jfieldIDs.

Chapter 3

113

 f References: It uses DeleteGlobalRef/DeleteLocalRef on references of
wrong types.

 f Release mode: It passes a release mode other than 0, JNI_ABORT, and
JNI_COMMIT to a release call.

 f Type safety: It returns an incompatible type from a native method.

 f UTF-8: It passes invalid modified UTF-8 string to JNI functions.

More error checking may be added to CheckJNI as Android evolves. Currently, the following
checks are not supported:

 f Misuse of local references

Debugging an Android NDK application with
NDK GDB

Android NDK introduces a shell script named ndk-gdb to help one to launch a debugging
session to debug the native code.

Getting ready
The project must meet the following requirements in order to debug it with ndk-gdb:

 f The application is built with the ndk-build command.

 f AndroidManifest.xml has the android:debuggable attribute of the
<application> element set to true. This indicates that the application is
debuggable even when it is running on a device in the user mode.

 f The application should be running on Android 2.2 or higher.

Please read the Building Android NDK Application at Eclipse recipe before going through
this one.

How to do it...
The following steps create a sample Android project and debug it using NDK GDB.

1. Create an Android application named HelloNDKGDB. Set the package name as
cookbook.chapter3. Create an activity named HelloNDKGDBActivity.
Please refer to the Loading native libraries and registering native methods recipe
of Chapter 2, Java Native Interface, if you want more detailed instructions.

2. Right-click on the project HelloNDKGDB, select Android Tools | Add Native Support.
A window appears; click on Finish to dismiss it.

Build and Debug NDK Applications

114

3. Add the following code to HelloNDKGDB.cpp:
#include <jni.h>
#include <unistd.h>

int multiply(int i, int j) {
 int x = i * j;
 return x;
}

extern "C" {
 JNIEXPORT jint JNICALL Java_cookbook_chapter3_
HelloNDKGDBActivity_multiply(JNIEnv* env, jobject o, jint pi, jint
pj){
 int i = 1, j = 0;
 while (i) {
 j=(++j)/100;

 }
 return multiply(pi, pj);
 }
}

4. Change the content of HelloNDKGDBActivity.java to the following:
package cookbook.chapter3;

import android.os.Bundle;
import android.widget.TextView;
import android.app.Activity;

public class HelloNDKGDBActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 tv.setTextSize(30);
 tv.setText("10 x 20 = " + multiply(10, 20));
 this.setContentView(tv);
 }
 public native int multiply(int a, int b);
 static {
 System.loadLibrary("HelloNDKGDB");
 }
}

Chapter 3

115

5. Make sure that the debuggable attribute in AndroidManifest.xml is set to
true. The following code snippet is a part of the application element extracted from
AndroidManifest.xml of our sample project:
<application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme"
 android:debuggable="true"
 >

6. Build the native library with the command "ndk-build NDK_DEBUG=1".
Alternatively, we can configure the build command at Eclipse under C/C++ Build
of the project Properties. This is demonstrated in the Debugging Android NDK
application at Eclipse recipe .

7. Run the application on an Android device. Then, start a terminal and enter the
following command:
$ ndk-gdb

8. Once the debugger is attached to the remote process, we can issue GDB commands
to start debugging the app. This is shown as follows:

Build and Debug NDK Applications

116

How it works...
Along with Android NDK comes a shell script named as ndk-gdb to launch a native
debugging session with the native code. In order to use ndk-gdb, we must build the native
code in the debug mode. This will produce a gdbserver binary and a gdb.setup file along
with the native library. At installation, gdbserver will be installed and ndk-gdb will start
gdbserver on the Android device.

By default, ndk-gdb searches for a running application and attaches gdbserver to it.
There also are options to launch the application automatically before starting the debugging.
Because the application starts first before gdbserver is attached to it, some code will be
executed before debugging. If we want to debug the code that is executed at the application
start up, we can insert a while(true) block. After the debugging session starts, we
change the flag value to escape from the while(true)block. This is demonstrated in
our sample project.

Once the debug session starts, we can use gdb commands to debug our code.

Debugging an Android NDK application with
CGDB

CGDB is a terminal-based lightweight interface to the GNU debugger gdb. It provides a split
screen view, which displays the source code along with the debug information. This recipe
discusses how to debug Android application with cgdb.

Getting ready
The following instructions install cgdb on different operating systems:

 f If you're using Ubuntu, you can use the following command to install cgdb:
$ sudo apt-get install cgdb

Alternatively, you can download the source code from
http://cgdb.github.com/, and perform the following
instructions to install cgdb:
$./configure --prefix=/usr/local

$ make

$ sudo make install

Note that cgdb requires libreadline and ncurses development libraries.

 f If you're using Windows, a Windows binary is available at
http://cgdb.sourceforge.net/download.php.

http://cgdb.github.com/
http://cgdb.sourceforge.net/download.php

Chapter 3

117

 f If you're using MacOS, you can use the MacPorts installation command as follows:

$ sudo port install cgdb

Please read the Debugging Android NDK Application with NDK GDB recipe before going
through this one.

How to do it...
The following steps enable cgdb for Android NDK application debugging:

1. Make a copy of the ndk-gdb script under the Android NDK root directory. This can
be done with the following command:
$ cp $ANDROID_NDK/ndk-gdb $ANDROID_NDK/ndk-cgdb

Here, $ANDROID_NDK refers to the Android NDK root directory.

2. Change the following line in the ndk-cgdb script from:
GDBCLIENT=${TOOLCHAIN_PREFIX}gdb

To the following:

GDBCLIENT="cgdb -d ${TOOLCHAIN_PREFIX}gdb --"

3. We'll use the project created in the Debugging Android NDK application with NDK
GDB recipe. If you don't have the project open in your Eclipse IDE, click on File |
Import. Select Existing Projects into Workspace under General, then click on Next.
In the import window, check Select root directory, and browse to the HelloNDKGDB
project. Click on Finish to import the project:

Build and Debug NDK Applications

118

4. Run the application on an Android device. Then, start a termina, and enter the
following command:
ndk-cgdb

The following is a screenshot of the cgdb interface:

5. We can issue gdb commands. Note that the upper-half of the window will mark the
current execution line with an arrow and all the breakpoints with red.

How it works...
As shown in the preceding screenshot, cgdb provides a more intuitive interface for debugging
the native code in Android. We can view the source code as we enter gdb commands. This
recipe demonstrates the basic setup of cgdb for debugging the native code. The details of
how to use cgdb can be found at its documentation available at http://cgdb.github.
com/docs/cgdb.html.

http://cgdb.github.com/docs/cgdb.html

Chapter 3

119

Debugging an Android NDK application in
Eclipse

Debugging at terminals with GDB or CGDB is cumbersome for developers who are used to
the graphical development tools. With Android Development Tools (ADT) 20.0.0 or above,
debugging NDK application in Eclipse is fairly easy.

Getting ready
Make sure you have ADT 20.0.0 or above installed. If not, please refer to recipes in Chapter 1,
Hello NDK, that explain how to set your environment up.

Make sure you have configured the NDK path in Eclipse. In addition, you are expected to have
built and run at least one Android NDK application before reading this recipe. If not, please go
through the Building Android NDK Application at Eclipse recipe.

How to do it...
The following steps create a sample Android project and debug it using Eclipse:

1. We'll use the project created in the Building Android NDK application at Eclipse
recipe. If you don't have the project open in your Eclipse IDE, click on File | Import.
Select Existing Projects into Workspace under General, then click on Next. In the
import window, check Select root directory, and browse to the HelloNDKEclipse
project. Click on Finish to import the project:

Build and Debug NDK Applications

120

2. Right-click on the HelloNDKEclipse project, and select Properties. In the
Properties window, select C/C++ Build. Uncheck Use default build command,
and change the Build command to ndk-build NDK_DEBUG=1.

3. Click on OK to dismiss the window:

4. Add the following code before the native method is called at
HelloNDKEclipseActivity.java.

Set two breakpoints in HelloNDKEclipse.cpp:

5. Right-click on your project and then select Debug As | Android Native Application.
We'll see if the breakpoints are hit.

Chapter 3

121

How it works...
Because there is a delay of a few seconds between the application start and the debugging
session start, the source code where the breakpoint is set may have already been executed
before debugging. In this case, the breakpoint is never hit. We demonstrated using a
while(true) loop to overcome this issue in the Debugging Android NDK application
with NDK GDB recipe. We show another approach here, which sends code to sleep for
several seconds at application start. This gives the debugger enough time to start. Once the
debugging starts, we can use the normal Eclipse debugging interface to debug our code.

There's more...
There're a few more debuggers available for debugging Android NDK applications.

Data Display Debugger (DDD) is a graphical front end for GDB. It is possible to set up DDD
to debug Android applications. Detailed instructions for the same can be found at http://
omappedia.org/wiki/Android_Debugging#Debugging_with_GDB_and_DDD.

NVIDIA Debug Manager is an Eclipse plugin that assists in debugging Android NDK
applications on devices based on NVIDIA's Tegra platform. More information about this
tool can be found at https://developer.nvidia.com/nvidia-debug-manager-
android-ndk.

http://omappedia.org/wiki/Android_Debugging#Debugging_with_GDB_and_DDD
https://developer.nvidia.com/nvidia-debug-manager-android-ndk
https://developer.nvidia.com/nvidia-debug-manager-android-ndk

4
Android NDK

OpenGL ES API

In this chapter we will cover the following recipes:

 f Drawing 2D Graphics and applying transforms with OpenGL ES 1.x API

 f Drawing 3D graphics and lighting up the scene with the OpenGL ES 1.x API

 f Mapping texture to 3D objects with the OpenGL ES 1.x API

 f Drawing 3D graphics with the OpenGL ES 2.0 API

 f Displaying graphics with EGL

Introduction
Open Graphics Library (OpenGL) is a cross-platform industry standard API for producing
2D and 3D graphics. It specifies a language-independent software interface for graphics
hardware or software graphics engines. OpenGL ES is a flavor of OpenGL for embedded
devices. It consists of a subset of OpenGL specifications and some additional extensions
that are specific to OpenGL ES .

OpenGL ES does not require dedicated graphics hardware to work. Different devices can come
with graphics hardware with different processing capabilities. The workload of the OpenGL
ES calls is divided between the CPU and graphics hardware. It is possible to support OpenGL
ES entirely from the CPU. However, graphics hardware can improve performance at different
levels, based on its processing capabilities.

Android NDK OpenGL ES API

124

Before we dive into Android NDK OpenGL ES, a little introduction of the Graphics Rendering
Pipeline (GRP) in the OpenGL context is necessary. GRP refers to a series of processing
stages, which the graphics hardware takes to produce graphics. It accepts objects description
in terms of vertices of primitives (primitives refer to simple geometric shapes such as point,
line, and triangle) and output color values for the pixels on the display. It can be roughly
divided into the following four main stages:

1. Vertex processing: It accepts the graphics model description, processes and
transforms the individual vertices to project then onto the screen, and combines
their information for further processing of primitives.

2. Rasterization: It converts primitives into fragments. A fragment contains the data
that is necessary to generate a pixel's data in the frame buffer. Note that only
the pixels affected by one or more primitives will have a fragment. A fragment
contains information, such as raster position, depth, interpolated color,
and texture coordinates.

3. Fragment processing: It processes each fragment. A series of operations are applied
to each fragment, including alpha test, texture mapping, and so on.

4. Output merging: It combines all fragments to produce the color values (including
alpha) for the 2D display.

In the modern computer graphics hardware, vertex processing and fragment processing
are programmable. We can write programs to perform custom transform and processing of
vertices and fragments. In contrast, rasterization and output merging are configurable, but
not programmable.

Each of the preceding stages can consist of one or more steps. OpenGL ES 1.x and OpenGL
ES 2.0 provide different GRPs. Specifically, OpenGL ES 1.x provides a fixed function pipeline,
where we input primitive and texture data, set up lighting, and OpenGL ES will handle the rest.
In contrast, OpenGL ES 2.0 provides a programmable pipeline, which allows us to write vertex
and fragment shaders in OpenGL ES Shading Language (GLSL) to handle the specifics.

Chapter 4

125

The following diagram indicaties the fixed function pipeline of OpenGL ES 1.x:

Vertex Processing

Points/Lines/Triangles

Vertex
Buffer

Objects

Rasterizer

OpenGL
ES 1.x

Apl

Primitive
Processing

Transform
& Lighting

Primitive
Assembly

Vertices

Fragment Processing

Frame
Buffer

Output Merging

Depth
Stencil

Color
Buffer
Blend

Dither

Texture
Environment

Color
Sum

Fog Alpha
Test

The following is another diagram that illustrates the programmable pipeline of OpenGL ES 2.0:

Vertex Processing

Points/Lines/Triangles

Vertex
Buffer

Objects

Rasterizer

OpenGL
ES 1.x

Apl

Primitive
Processing

Vertex
shader

Primitive
Assembly

Vertices

Frame
Buffer

Output Merging

Depth
Stencil

Color
Buffer
Blend

Dither

Fragment
shader

As shown in the preceding diagram, the fixed pipeline in OpenGL ES 1.x has been replaced by
the programmable shaders in OpenGL ES 2.0.

Android NDK OpenGL ES API

126

With this introduction of computer graphics, we're now ready to start our journey to Android
NDK OpenGL ES programming. Android NDK provides both OpenGL ES 1.x (version 1.0
and version 1.1) and OpenGL ES 2.0 libraries, which differ significantly. The following table
summarizes the factors to consider when considering the OpenGL ES version to use in our
Android applications:

OpenGL 1.x OpenGL 2.0

Performance Fast 2D and 3D graphics. Depending upon the Android device, but in
general it provides faster 2D and 3D graphics.

Device
compatibility

Almost all Android
devices.

Majority of Android devices, and increasing.

Coding
convenience

Fixed pipeline with
convenient functions.
Easy to use for simple 3D
applications.

No built-in basic functions and more effort may
be required for simple 3-D applications.

Graphics
control

Fixed pipeline. Difficult
or impossible to create
some effects (for example,
cartoon shading).

Programmable pipeline. More direct control
of the graphics processing pipeline to create
certain effects.

OpenGL ES 1.0 is supported on all Android devices because Android
comes with a 1.0-capable software graphics engine, which can be used
on devices without corresponding graphics hardware. OpenGL ES 1.1
and OpenGL ES 2.0 are supported only on devices with corresponding
Graphics Processing Unit (GPU).

This chapter will cover both the OpenGL 1.x and OpenGL ES 2.0 APIs in Android NDK. We
first demonstrated how to draw 2D and 3D graphics using the OpenGL 1.x API. Transforms,
lighting, and texture mapping are also covered. We then introduce the OpenGL 2.0 API in
NDK. Lastly, we describe how to display graphics with EGL. This chapter introduces a few
basics of computer graphics and principles of OpenGL. Readers who are already familiar
with OpenGL ES can skip those parts and focus on how to invoke the OpenGL ES API from
Android NDK.

We will provide a sample Android application for every recipe covered in this chapter. Due
to space constraints, we cannot show all the source code in the book. Readers are strongly
recommended to download the code and refer to to it when going through this chapter.

Chapter 4

127

Drawing 2D Graphics and applying
transforms with the OpenGL ES 1.x API

This recipe covers 2D drawing in OpenGL ES 1.x by example. In order to draw 2D objects, we'll
also describe the OpenGL rendering display through GLSurfaceView, adding colors to them,
and transformation.

Getting ready
Readers are recommended to read the introduction of this chapter, which is essential to
understand some of the content in this recipe.

How to do it...
The following steps create our sample Android NDK project:

1. Create an Android application named TwoDG1. Set the package name as
cookbook.chapter4.gl1x. Please refer to the Loading native libraries and
registering native methods recipe in Chapter 2, Java Native Interface, if you want
more detailed instructions.

2. Right-click on the TwoDG1 project in Eclipse, select Android Tools | Add Native
Support.

3. Add the following three Java files under the cookbook.chapter4.gl1x package:

 � MyActivity.java: It creates the activity of this project:
import android.opengl.GLSurfaceView;
……
public class MyActivity extends Activity {
 private GLSurfaceView mGLView;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mGLView = new MySurfaceView(this);
 setContentView(mGLView);
 }
}

Android NDK OpenGL ES API

128

 � MySurfaceView.java: It extends GLSurfaceView, which provides a
dedicated surface for displaying OpenGL rendering:
public class MySurfaceView extends GLSurfaceView {
 private MyRenderer mRenderer;
 public MySurfaceView(Context context) {
 super(context);
 mRenderer = new MyRenderer();
 this.setRenderer(mRenderer);
 this.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
 }
}

 � MyRenderer.java: It implements Renderer and calls the native methods:

public class MyRenderer implements GLSurfaceView.Renderer{
 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 naInitGL1x();
 }
 @Override
 public void onDrawFrame(GL10 gl) {
 naDrawGraphics();
 }
 @Override
 public void onSurfaceChanged(GL10 gl, int width, int
height) {
 naSurfaceChanged(width, height);
 }

}

4. Add the TwoDG1.cpp, Triangle.cpp, Square.cpp, Triangle.h, and Square.h
files under the jni folder. Please refer to the downloaded project for the complete
content. Here, we only list some important parts of the code:

TwoDG1.cpp: It consists of the code to set up the OpenGL ES 1.x environment and
perform the transforms:
void naInitGL1x(JNIEnv* env, jclass clazz) {
 glDisable(GL_DITHER);
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST);
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f); glShadeModel(GL_
SMOOTH); }

void naSurfaceChanged(JNIEnv* env, jclass clazz, int width, int
height) {
 glViewport(0, 0, width, height);

Chapter 4

129

 float ratio = (float) width / (float)height;
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrthof(-ratio, ratio, -1, 1, 0, 1); }

void naDrawGraphics(JNIEnv* env, jclass clazz) {
 glClear(GL_COLOR_BUFFER_BIT);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(0.3f, 0.0f, 0.0f); //move to the right
 glScalef(0.2f, 0.2f, 0.2f); // Scale down
 mTriangle.draw();
 glLoadIdentity();
 glTranslatef(-0.3f, 0.0f, 0.0f); //move to the left
 glScalef(0.2f, 0.2f, 0.2f); // Scale down
glRotatef(45.0, 0.0, 0.0, 1.0); //rotate
 mSquare.draw();
}

Triangle.cpp: It draws a 2D triangle:
void Triangle::draw() {
 glEnableClientState(GL_VERTEX_ARRAY);
 glVertexPointer(3, GL_FLOAT, 0, vertices);
 glColor4f(0.5f, 0.5f, 0.5f, 0.5f); //set the current color
 glDrawArrays(GL_TRIANGLES, 0, 9/3);
 glDisableClientState(GL_VERTEX_ARRAY);
}

Square.cpp: It draws a 2D square:
void Square::draw() {
 glEnableClientState(GL_VERTEX_ARRAY);
 glEnableClientState(GL_COLOR_ARRAY);
 glVertexPointer(3, GL_FLOAT, 0, vertices);
 glColorPointer(4, GL_FLOAT, 0, colors);
 glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_BYTE, indices);
 glDisableClientState(GL_VERTEX_ARRAY);
 glDisableClientState(GL_COLOR_ARRAY);
}

5. Add the Android.mk file under the jni folder with following content :
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := TwoDG1
LOCAL_SRC_FILES := Triangle.cpp Square.cpp TwoDG1.cpp
LOCAL_LDLIBS := -lGLESv1_CM -llog
include $(BUILD_SHARED_LIBRARY)

Android NDK OpenGL ES API

130

6. Build the Android NDK application and run it on an Android device. The following is a
screenshot of the display:

How it works...
This recipe demonstrates basic 2D drawing with OpenGL ES.

OpenGL ES rendering display through GLSurfaceView
GLSurfaceView and GLSurfaceView.Renderer are the two foundational classes
provided by Android SDK to display OpenGL ES graphics.

GLSurfaceView accepts a user defined Renderer object that does the actual rendering.
It is often extended to handle touch events, which is illustrated in the next recipe. It supports
both on-demand and continuous rendering. In our sample code, we simply set the Renderer
object and configure the rendering mode to on-demand.

GLSurfaceView.Renderer is the interface for renderer. Three methods need to be
implemented with it:

 f onSurfaceCreated: It's called once when setting up the OpenGL ES environment.

 f onSurfaceChanged: It's called if the geometry of the view changes; most common
examples are device screen orientation changes.

 f onDrawFrame: It's called at each redraw of the view.

In our sample project, MyRenderer.java is a simple wrapper, while the actual work is done
in native C++ code.

Drawing objects at OpenGL ES
Two methods are commonly used to draw objects in OpenGL ES, including glDrawArrays
and glDrawElements. We demonstrate the usage of these two methods in Triangle.cpp
and Square.cpp respectively. Note that both the methods require GL_VERTEX_ARRAY to
be enabled.

Chapter 4

131

The first argument is the mode of drawing, which indicates the primitive to use. In our sample
code, we used GL_TRIANGLES, which means we're actually drawing two triangles to form the
square. Other valid values in Android NDK OpenGL ES include GL_POINTS, GL_LINES, GL_
LINE_LOOP, GL_LINE_STRIP, GL_TRIANGLE_STRIP, and GL_TRIANGLE_FAN.

Colors at OpenGL ES
We also demonstrate two methods to add colors to the objects. In Triangle.cpp, we set the
current color by the glColor4f API call. In Square.cpp, we enable GL_COLOR_ARRAY, and
define an array of color by using glColorPointer. The array of colors will be used by the
glDrawElements (it's also OK to use glDrawArrays) API call.

OpenGL ES transformation
The following diagram illustrates different transformation stages in OpenGL ES 1.0:

object
coordinates

[x y z w]

clip
coordinates

normalized
device

coordinates

Perspective
Division

Viewport
Transform

eye
coordinates

ModelView
Transform

Projection
Transform

Vertex
Data

Vertex Processing Rasterization

eye
coordinates

As illustrated in the diagram, vertex data are transformed before rasterization. The transforms
are analogous to taking a photograph with a camera:

 f ModelView transform: Arrange the scene and place the camera

 f Projection transform: Choose a camera lens and adjust zoom factor

 f Viewpoint transform: Determine how large the final photograph is

ModelView transform actually refers to two different transforms, namely Model Transform
and View Transform. Model Transform refers to the process of converting all objects from its
object space (also known as local space or model space) to a world space, which is shared
among all objects. This transform is done through a series of scaling (glScalef), rotation
(glRotatef) and translation (glTranslatef).

 f glScalef: It stretches, shrinks, or reflects an object. The x-, y- and z-axis values
are multiplied by the corresponding x, y, and z scaling factor. In our sample code,
we called glScalef(0.2f, 0.2f, 0.2f) to scale down both the triangle and
the square, so that they can fit into the screen.

Android NDK OpenGL ES API

132

 f glRotatef: It rotates an object in a counter clockwise manner in the direction from
the origin through specified point (x, y, z). The rotation angle is measured in degrees.
In our sample code, we called glRotatef(45.0, 0.0, 0.0, 1.0) to rotate the
square about the z-axis by 45 degrees.

 f glTranslatef: It moves an object by the given values along each axis. In our
sample code, we called glTranslatef(0.3f, 0.0f, 0.0f) to move the triangle
to the right and glTranslatef(-0.3f, 0.0f, 0.0f) to move the square to the
left, so that they won't overlap.

Model transform arranges the objects in a scene, while View transform changes the position
of the viewing camera. To produce a specific image, we can either move the objects or change
our camera position. Therefore, OpenGL ES internally performs the two transforms using a
single matrix – the +GL_MODELVIEW matrix.

OpenGL ES defines that the camera is default at the origin (0, 0, 0) of
eye coordinates space and aims into the negative z-axis. It is possible to
change the position by GLU.gluLookAt at the Android SDK. However,
the corresponding API is not available at Android NDK.

Projection transform determines what can be seen (analogous to choosing camera lens
and zoom factor) and how vertex data are projected onto the screen. OpenGL ES supports
two modes of projection, namely perspective projection (glFrustum) and orthographic
projection (glOrtho). Perspective projection makes objects that are farther away smaller,
which matches with a normal camera. On the other hand, Orthographic projection is
analogous to the telescope, which maps objects directly without affecting their size. OpenGL
ES manipulates the transform through the GL_PROJECTION matrix. After a project transform,
objects which are outside of the clipping volume are clipped out and not drawn in the final
scene. In our sample project, we called glOrthof(-ratio, ratio, -1, 1, 0, 10) to
specify the viewing volume, where ratio refers to the width to height ratio of the screen.

After projection transform, perspective division is done by dividing the clip coordinates by the
transformed w value of the input vertex. The values the for x-, y-, and z-axes will be normalized
to the range between -1.0 to 1.0.

The final stage of the OpenGL ES transform pipeline is the viewport transform, which maps
the normalized device coordinates to window coordinates (in pixels, with the origin at the
upper-left corner). Note that a viewpoint also includes a z component, which is needed for
situations, such as ordering of two overlapping OpenGL scenes, and can be set with the
glDepthRange API call. Applications usually need to set viewport when the display size
changes through the glViewport API call. In our example, we set the viewport as the entire
screen by calling glViewport(0, 0, width, height). This setting, together with the
glOrthof call, will keep the objects in proportion after projection transform, as shown in the
following diagram:

Chapter 4

133

2/w
W*height/2

width

height

(2*width/height)/w

As shown in the diagram, the clipping volume is set to (-width/height, width/height, -1, 1, 0,
1). At perspective division, the vertex is divided by w. At viewpoint transform, both the x and y
coordinates ranges are scaled up by w*height/2. Therefore, the objects will be in proportion
as shown in the How to do it... section of this recipe. The left-had side of the following
screenshot shows the output, if we set clipping volume by calling glOrthof(-1, 1, -1,
1, 0, 1), and the right one indicates what the graphics look like if viewport is set by calling
glViewport(0, 0, width/2, height/5):

Drawing 3D graphics and lighting up the
scene with the OpenGL ES 1.x API

This recipe covers how to draw 3D objects, handle touch events, and lighten up the objects in
OpenGL ES.

Getting ready
Readers are recommended to read the introduction and the Drawing 2D Graphics and Apply
Transforms with OpenGL ES 1.x API recipies below before going through this one.

Android NDK OpenGL ES API

134

How to do it...
The following steps show how to develop our sample Android project:

1. Create an Android application named CubeG1. Set the package name as cookbook.
chapter4.gl1x. Please refer to the Loading native libraries and registering native
methods recipe in Chapter 2, Java Native Interface, if you want more detailed
instructions.

2. Right-click on the project CubeG1, select Android Tools | Add Native Support.

3. Add three Java files, namely MyActivity.java, MySurfaceView, and
MyRenderer.java, under the cookbook.chapter4.gl1x package.
MyActivity.java is the same as used in the previous recipe.

MySurfaceView.java extends GLSurfaceView with the code to handle touch
events:
public class MySurfaceView extends GLSurfaceView {
 private MyRenderer mRenderer;
 private float mPreviousX;
 private float mPreviousY;
 private final float TOUCH_SCALE_FACTOR = 180.0f / 320;
 public MySurfaceView(Context context) {
 super(context);
 mRenderer = new MyRenderer();
 this.setRenderer(mRenderer);
 //control whether continuously drawing or on-demand
 this.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
 }

 public boolean onTouchEvent(final MotionEvent event) {
 float x = event.getX();
 float y = event.getY();
 switch (event.getAction()) {
 case MotionEvent.ACTION_MOVE:
 float dx = x - mPreviousX;
 float dy = y - mPreviousY;
 mRenderer.mAngleX += dx * TOUCH_SCALE_FACTOR;
 mRenderer.mAngleY += dy * TOUCH_SCALE_FACTOR;
 requestRender();
 }
 mPreviousX = x;
 mPreviousY = y;
 return true;
 }
}

Chapter 4

135

MyRenderer.java implements a render to invoke the native methods to render
the graphics:
public class MyRenderer implements GLSurfaceView.Renderer{
 public float mAngleX;
 public float mAngleY;
 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 naInitGL1x();
 }
 @Override
 public void onDrawFrame(GL10 gl) {
 naDrawGraphics(mAngleX, mAngleY);
 }
 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 naSurfaceChanged(width, height);
 }
}

4. Add the CubeG1.cpp, Cube.cpp, and Cube.h files under the jni folder. Please
refer to downloaded project for the complete content. Let's list out the code for the
naInitGL1x, naSurfaceChanged, and naDrawGraphics native methods in
CubeG1.cpp, and draw and lighting methods in Cube.cpp:

CubeG1.cpp sets up the OpenGL ES environment and lighting:
void naInitGL1x(JNIEnv* env, jclass clazz) {
 glDisable(GL_DITHER);
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f); glEnable(GL_CULL_FACE);
 glClearDepthf(1.0f);
 glEnable(GL_DEPTH_TEST);
 glDepthFunc(GL_LEQUAL); //type of depth test
 glShadeModel(GL_SMOOTH);
 glLightModelx(GL_LIGHT_MODEL_TWO_SIDE, 0);
 float globalAmbientLight[4] = {0.5, 0.5, 0.5, 1.0};
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, globalAmbientLight);
 GLfloat lightOneDiffuseLight[4] = {1.0, 1.0, 1.0, 1.0};
 GLfloat lightOneSpecularLight[4] = {1.0, 1.0, 1.0, 1.0};
 glLightfv(GL_LIGHT0, GL_DIFFUSE, lightOneDiffuseLight);
 glLightfv(GL_LIGHT0, GL_SPECULAR, lightOneSpecularLight);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
}
void naSurfaceChanged(JNIEnv* env, jclass clazz, int width, int
height) {

Android NDK OpenGL ES API

136

 glViewport(0, 0, width, height);
 float ratio = (float) width / height;
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrthof(-ratio, ratio, -1, 1, -10, 10);
}
void naDrawGraphics(JNIEnv* env, jclass clazz, float pAngleX,
float pAngleY) {
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glRotatef(pAngleX, 0, 1, 0); //rotate around y-axis
 glRotatef(pAngleY, 1, 0, 0); //rotate around x-axis
 glScalef(0.3f, 0.3f, 0.3f); // Scale down
mCube.lighting();
 mCube.draw();
 float lightOnePosition[4] = {0.0, 0.0, 1.0, 0.0};
 glLightfv(GL_LIGHT0, GL_POSITION, lightOnePosition);
}

Cube.cpp draws a 3D cube and lightens it up:

void Cube::draw() {
 glEnableClientState(GL_VERTEX_ARRAY);
 glVertexPointer(3, GL_FLOAT, 0, vertices);
 glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_BYTE, indices);
 glDisableClientState(GL_VERTEX_ARRAY);
}
void Cube::lighting() {
 GLfloat cubeOneAmbientFraction[4] = {0.0, 0.5, 0.5, 1.0};
 GLfloat cubeOneDiffuseFraction[4] = {0.8, 0.0, 0.0, 1.0};
 GLfloat cubeSpecularFraction[4] = {0.0, 0.0, 0.0, 1.0};
 GLfloat cubeEmissionFraction[4] = {0.0, 0.0, 0.0, 1.0};
 glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT,
cubeOneAmbientFraction);
 glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE,
cubeOneDiffuseFraction);
 glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR,
cubeSpecularFraction);
 glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION,
cubeEmissionFraction);
 glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 60.0);
}

Chapter 4

137

5. Add the Android.mk file under the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := CubeG1
LOCAL_SRC_FILES := Cube.cpp CubeG1.cpp
LOCAL_LDLIBS := -lGLESv1_CM -llog
include $(BUILD_SHARED_LIBRARY)

6. Build the Android NDK application and run it on an Android device. The app will
display a cube, which we can touch to rotate:

How it works...
This recipe discusses how to use the OpenGL ES 1.x API to draw 3D graphics. Note that we
will need to load the OpenGL ES library GLESv1_CM in the Andorid.mk file, and include the
header file GLES/gl.h in the native source code.

 f Drawing 3D objects in OpenGL ES: Drawing 3D objects is similar to drawing 2D
objects. In the Cube::draw method, we first set up the vertex buffer and then
called glDrawElements to draw the six faces of the cube. We used GL_TRIANGLES
as a primitive. Since each face contains two triangles, there are 12 triangles and
36 vertices.

 f Touch event handling: In MySurfaceView.java, we override the onTouchEvent
method to detect the figure movement on screen and change the rotation angle
attributes of MyRenderer. We call the requestRender method to request the
renderer to redraw the graphics.

Android NDK OpenGL ES API

138

 f Lighting and material in OpenGL ES: There are classes of lighting models, namely
local illumination and global illumination. Local illumination only considers direct
lighting, and therefore lighting calculation can be performed on individual objects.
In contrast to this, global illumination takes indirect lighting reflected from other
objects and the environment, and therefore is more computation-expensive.
Local illumination is used in OpenGL ES 1.x, while the global illumination can be
programmed using the OpenGL Shading Language (GLSL) in OpenGL ES 2.0. Here,
we discuss lighting in OpenGL ES 1.x only.

Three parties are involved in OpenGL ES when lighting is considered, including camera
position, light sources, and the material of the objects. Camera position is always at a default
position (0, 0, 0) and aims into the negative z-axis, as discussed in the previous recipe.
Light sources can provide separate ambient, diffuse, and specular lights. Materials can reflect
different amounts of ambient, diffuse, and specular lights. In addition, materials may also
emit light. Each of the light consists of RGB components:

 f Ambient light: It approximates the constant amount of light present everywhere in
the scene.

 f Diffuse light: It approximates the light from distant directional light source
(for example, sunlight). When the reflected light strikes a surface, it is scattered
equally in all directions.

 f Specular light: It approximates the lights reflected by a smooth surface. Its intensity
depends on the angle between the viewer and the direction of the ray reflected from
the surface.

 f Emission light: Some materials can emit lights.

Note that RGB values in light sources indicate the intensity of the color component, while they
refer to the reflected proportions of those colors in the material. To understand how both the
light sources and material can affect the viewer perception of the object, think of a white light
that strikes on a surface, which only reflects blue component of the light, then the surface will
appear as blue for the viewer. If the light is pure red, the surface will be black for the viewer.

The following steps can be performed to set up simple lighting in OpenGL ES:

1. Set the lighting model parameters. This is done through glLightModelfv. Android
NDK OpenGL ES supports two parameters, including GL_LIGHT_MODEL_AMBIENT
and GL_LIGHT_MODEL_TWO_SIDE. The first one allows us to specify the global
ambient light, and the second one allows us to specify whether we want to calculate
lighting at the back of the surface.

2. Enable, configure, and place one or more light sources. This is done through
the glLightfv method. We can configure ambient, diffuse, and specular light
separately. The light source position is also configured through glLightfv with
GL_POSITION. In CubeG1.cpp, we used the following code:

float lightOnePosition[4] = {0.0, 0.0, 1.0, 0.0};
glLightfv(GL_LIGHT0, GL_POSITION, lightOnePosition);

Chapter 4

139

The fourth value of the position indicates whether the light source is positional or
directional. When the value is set to 0, the light is directional, which simulates a
light source that is far away (sunlight). The light rays are parallel when hitting the
surface, and the (x, y, z) values of the position refer to the direction of the light. If the
fourth value is set to 1, the light is positional, which is similar to a light bulb. The (x,
y, z) values refer to the position of the light source and the light rays hit the surface
from different angles. Note that the light source emits light at equal intensities to all
directions. The two kinds of lighting sources are illustrated in the following image:

Directional Light
Source

Positional Light
Source

Besides positional and directional light sources, there's also spotlight:

1. We shall enable lighting and the light sources also by calling
glEnable(GL_LIGHTING);

and

glEnable(GL_LIGHTx);

2. Define the normal vectors for each vertex of all objects. The orientation of the object
relative to the light sources is determined by these normals. In our code, we rely on
OpenGL ES's default normals.

3. Define the material. This is done by the glMaterialf or glMaterialfv method.
In our sample code, we specify the red component of the diffuse light to be 0.8,
while keeping the green and blue components 0. Therefore, the final cube appears
to be red.

Android NDK OpenGL ES API

140

Mapping texture to 3D objects with the
OpenGL ES 1.x API

Texture mapping is a technique that overlays an image onto an object's surface to create a
more realistic scene. This recipe covers how to add texture in OpenGL ES 1.x.

Getting ready
Readers are recommended to read the Drawing 3D graphics and lighting up the scene with
OpenGL ES 1.x API recipe before going through this one.

How to do it...
The following steps create an Android project that demonstrates mapping texture to 3D objects:

1. Create an Android application named DiceG1. Set the package name as cookbook.
chapter4.gl1x. Please refer to the Loading native libraries and registering
native methods recipe in Chapter 2, Java Native Interface, if you want more
detailed instructions.

2. Right-click on the project CubeG1, select Android Tools | Add Native Support.

3. Add three Java files, namely MyActivity.java, MySurfaceView.java,
and MyRenderer.java under the cookbook.chapter4.diceg1 package.
MyActivity.java and MySurfaceView.java are similar to the previous recipe.

4. MyRenderer.java is listed as follows:
public class MyRenderer implements GLSurfaceView.Renderer{
 public float mAngleX;
 public float mAngleY;
 private Context mContext;
 public MyRenderer(Context pContext) {
 super();
 mContext = pContext;
 }
 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 //call native methods to load the textures
 LoadTexture(R.drawable.dice41, mContext, 0);
 LoadTexture(R.drawable.dice42, mContext, 1);
 LoadTexture(R.drawable.dice43, mContext, 2);
 LoadTexture(R.drawable.dice44, mContext, 3);
 LoadTexture(R.drawable.dice45, mContext, 4);
 LoadTexture(R.drawable.dice46, mContext, 5);
 naInitGL1x();
 }

Chapter 4

141

… …
 private void LoadTexture(int resId, Context context, int texIdx)
{
 //Get the texture from the Android resource directory
 InputStream is = context.getResources().
openRawResource(resId);
 Bitmap bitmap = null;
 try {
 BitmapFactory.Options options = new BitmapFactory.Options();
 options.inPreferredConfig = Bitmap.Config.ARGB_8888;
 bitmap = BitmapFactory.decodeStream(is, null, options);
 naLoadTexture(bitmap, bitmap.getWidth(), bitmap.getHeight(),
texIdx);
 } finally {
 try {
 is.close();
 is = null;
 } catch (IOException e) {
 }
 }
 if (null != bitmap) {
 bitmap.recycle();
 }
 }
}

5. Add the DiceG1.cpp, Cube.cpp, Cube.h, and mylog.h files under the jni folder.
Please refer to the downloaded project for the complete content. Here, we list out the
code the fornaLoadTexture and naInitGL1x native methods in DiceG1.cpp,
and the draw method in Cube.cpp:
void naLoadTexture(JNIEnv* env, jclass clazz, jobject pBitmap, int
pWidth, int pHeight, int pId) {
 int lRet;
 AndroidBitmapInfo lInfo;
 void* l_Bitmap;
 GLint format;
 GLenum type;
 if ((lRet = AndroidBitmap_getInfo(env, pBitmap, &lInfo)) < 0) {
 return;
 }
 if (lInfo.format == ANDROID_BITMAP_FORMAT_RGB_565) {
 format = GL_RGB;
 type = GL_UNSIGNED_SHORT_5_6_5;
 } else if (lInfo.format == ANDROID_BITMAP_FORMAT_RGBA_8888) {
 format = GL_RGBA;

Android NDK OpenGL ES API

142

 type = GL_UNSIGNED_BYTE;
 } else {
 return;
 }
 if ((lRet = AndroidBitmap_lockPixels(env, pBitmap, &l_Bitmap)) <
0) {
 return;
 }
 glGenTextures(1, &texIds[pId]);
 glBindTexture(GL_TEXTURE_2D, texIds[pId]);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_
NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_
NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 glTexImage2D(GL_TEXTURE_2D, 0, format, pWidth, pHeight, 0,
format, type, l_Bitmap);
 AndroidBitmap_unlockPixels(env, pBitmap);
}
void naInitGL1x(JNIEnv* env, jclass clazz) {
 glDisable(GL_DITHER);
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 glEnable(GL_CULL_FACE);
 glClearDepthf(1.0f);
 glEnable(GL_DEPTH_TEST);
 glDepthFunc(GL_LEQUAL);
 glShadeModel(GL_SMOOTH);
 mCube.setTexCoords(texIds);
 glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
 glEnable(GL_TEXTURE_2D);
}
Cube.cpp: drawing the cube and mapping texture
void Cube::draw() {
 glEnableClientState(GL_VERTEX_ARRAY);
 glEnableClientState(GL_TEXTURE_COORD_ARRAY); // Enable texture-
coords-array
 glFrontFace(GL_CW);

 glBindTexture(GL_TEXTURE_2D, texIds[0]);
 glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
 glVertexPointer(3, GL_FLOAT, 0, vertices);
 glDrawElements(GL_TRIANGLES, 18, GL_UNSIGNED_BYTE, indices);

….
 glDisableClientState(GL_VERTEX_ARRAY);
 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}

Chapter 4

143

6. Add the Android.mk file under the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := DiceG1
LOCAL_SRC_FILES := Cube.cpp DiceG1.cpp
LOCAL_LDLIBS := -lGLESv1_CM -llog -ljnigraphics
include $(BUILD_SHARED_LIBRARY)

7. Build the Android NDK application and run it on an Android device. The app will
display a cube textured as a dice:

How it works...
This recipe adds a texture to the 3D cube to make it look like a dice.

 f Texture coordinates: A texture is typically a 2D image. Texture coordinates (s, t)
are usually normalized to [0.0, 1.0] as shown in the following diagram. Texture
image is mapped to [0, 1] in both the s and t axes:

(0,1)

(0,0) (1,0)

t

s

Android NDK OpenGL ES API

144

 f Loading textures: The first step of mapping texture in OpenGL ES is to load them.
In our example, we used Android SDK to read image files from drawable resources
and pass the bitmaps to native code. The native method naLoadTexture locks the
bitmap image and performs the following OpenGL operations.

 � Create the glGenTexture texture: This generates texture IDs.

 � Bind texture: glBindTexture. This tells OpenGL which texture id we're
working with.

 � Set the texture filtering: glTexParameter with GL_TEXTURE_MIN_
FILTER or GL_TEXTURE_MAG_FILTER (this is discussed later).

 � Set the texture wrapping: glTexParameter with GL_TEXTURE_WRAP_S or
GL_TEXTURE_WRAP_T (this is discussed later).

 � Load the images data to OpenGL: (glTexImage2D) we need to specify
image data, width, height, color format, and so on.

 f Texture wrapping: texture is mapped to [0, 1] in both the s and t axes. However,
we can specify the texture coordinates beyond the range. Wrapping will be applied
once that happens. Typical settings for texture wrapping are as follows:

 � GL_CLAMP: Clamp the texture coordinates to [0.0, 1.0].

 � GL_REPEAT: Repeat the texture. This creates a repeating pattern.

 f Texture filtering: It is common that the texture image has a different resolution than
the object. If the texture is smaller, magnification is performed; if the texture is larger,
minification is performed. The following two methods are used generally:

 � GL_NEAREST: Use the texture element that is nearest to the center of the
pixel being textured.

 � GL_LINEAR: Apply interpolation to calculate the color values based on the
four texture elements closest to the pixel being textured.

 f Set the texture environment: Before we map textures to objects, we can call
glTexEnvf to control how texture values are interpreted when a fragment is
textured. We can configure GL_TEXTURE_ENV_COLOR and GL_TEXTURE_ENV_
MODE. In our sample project, we used the GL_REPLACE for GL_TEXTURE_ENV_MODE,
which simply replaces the cube fragments with texture values.

 f Mapping the texture: We draw each face of the 3D cube and map the texture
by glDrawElement. GL_TEXTURE_COORD_ARRAY must be enabled by calling
glEnableClientState. Before drawing each interface, we bind to the
corresponding texture by calling glBindTexture.

Chapter 4

145

There's more...
In our native code, we used the Android native bitmap API to receive texture bitmap object
from Java code. More details of this API will be covered in Chapter 7, Other Android NDK API.

Drawing 3D graphics with the OpenGL ES
2.0 API

The previous recipes describe OpenGL ES 1.x on the Android NDK. This recipe covers how to
use OpenGL ES 2.0 in Android NDK.

Getting ready
Readers are recommended to read the introduction of this chapter before going through this
recipe. A lot of graphic basics are covered in the following recipes; it is suggested that we go
through them first:

 f Drawing 2D graphics and applying transforms with OpenGL ES 1.x API

 f Drawing 3D graphics and lighting up the scene with OpenGL ES 1.x API

How to do it...
The following steps create an Android project that renders a 3D cube with OpenGL ES 2.0 API
in Android NDK:

1. Create an Android application named CubeG2. Set the package name as
cookbook.chapter4.cubeg2. Please refer to the Loading native libraries and
registering native methods recipe of Chapter 2, Java Native Interface, if you want
more detailed instructions.

2. Right-click on the project CubeG2, select Android Tools | Add Native Support.

3. Add three Java files, namely MyActivity.java, MyRenderer.java, and
MySurfaceView.java. We only list a part of MyRenderer.java here, since the
other two files—MyActivity.java and MySurfaceView.java—are similar to the
files in the previous recipe:
@Override
public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 String vertexShaderStr = LoadShaderStr(mContext, R.raw.
vshader);
 String fragmentShaderStr = LoadShaderStr(mContext, R.raw.
fshader);
 naInitGL20(vertexShaderStr, fragmentShaderStr);
}

Android NDK OpenGL ES API

146

@Override
public void onDrawFrame(GL10 gl) {
 naDrawGraphics(mAngleX, mAngleY);
}
@Override
public void onSurfaceChanged(GL10 gl, int width, int height) {
 naSurfaceChanged(width, height);
}

4. Add the Cube.cpp, matrix.cpp, CubeG2.cpp, Cube.h, matrix.h, and mylog.h
files under the jni folder. The content of the files are summarized as follows:

 � Cube.cpp and Cube.h: They define a Cube object and method to draw a
3D cube.

 � matrix.cpp and matrix.h: These matrix operations, including creating
translation, scale and rotation matrices, and matrix multiplication.

 � CubeG2.cpp: They create and load shaders. They also create, link,
and use programs and apply transformations to the 3D cube.

 � mylog.h: They define macros for Android NDK logging.

Here, we list a part of Cube.cpp and CubeG2.cpp.

Cube.cpp:
…
void Cube::draw(GLuint pvPositionHandle) {
 glVertexAttribPointer(pvPositionHandle, 3, GL_FLOAT, GL_FALSE,
0, vertices);
 glEnableVertexAttribArray(pvPositionHandle);
 glDrawArrays(GL_TRIANGLES, 0, 36);
}
...

CubeG2.cpp: It includes the loadShader, createProgram, naInitGL20, and
naDrawGraphics methods, which are explained as follows:

 � loadShader: This method creates a shader, attaches a source, and
compiles the shader:
GLuint loadShader(GLenum shaderType, const char* pSource) {
 GLuint shader = glCreateShader(shaderType);
 if (shader) {
 glShaderSource(shader, 1, &pSource, NULL);
 glCompileShader(shader);
 GLint compiled = 0;
 glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled);
 if (!compiled) {

Chapter 4

147

 GLint infoLen = 0;
 glGetShaderiv(shader, GL_INFO_LOG_LENGTH,
&infoLen);
 if (infoLen) {
 char* buf = (char*) malloc(infoLen);
 if (buf) {
 glGetShaderInfoLog(shader, infoLen, NULL,
buf);
 free(buf);
 }
 glDeleteShader(shader);
 shader = 0;
 }
 }
 }
 return shader;
}

 � createProgram: This method creates a program object, attaches shaders,
and links the program:
GLuint createProgram(const char* pVertexSource, const char*
pFragmentSource) {
 GLuint vertexShader = loadShader(GL_VERTEX_SHADER,
pVertexSource);
 GLuint pixelShader = loadShader(GL_FRAGMENT_SHADER,
pFragmentSource);
 GLuint program = glCreateProgram();
 if (program) {
 glAttachShader(program, vertexShader);
 glAttachShader(program, pixelShader);
 glLinkProgram(program);
 }
 return program;
}

 � naInitGL20: This method sets up the OpenGL ES 2.0 environment, gets the
shader source string, and gets the shader attribute and uniform positions:
void naInitGL20(JNIEnv* env, jclass clazz, jstring
vertexShaderStr, jstring fragmentShaderStr) {
 glDisable(GL_DITHER);
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClearDepthf(1.0f);
 glEnable(GL_DEPTH_TEST);
 glDepthFunc(GL_LEQUAL);
 const char *vertexStr, *fragmentStr;
 vertexStr = env->GetStringUTFChars(vertexShaderStr, NULL);
 fragmentStr = env->GetStringUTFChars(fragmentShaderStr,
NULL);

Android NDK OpenGL ES API

148

 setupShaders(vertexStr, fragmentStr);
 env->ReleaseStringUTFChars(vertexShaderStr, vertexStr);
 env->ReleaseStringUTFChars(fragmentShaderStr,
fragmentStr);
 gvPositionHandle = glGetAttribLocation(gProgram,
"vPosition");
 gmvP = glGetUniformLocation(gProgram, "mvp");

}

 � naDrawGraphics: This method applies model transforms (rotate, scale,
and translate) and the projection transform:
void naDrawGraphics(JNIEnv* env, jclass clazz, float
pAngleX, float pAngleY) {
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glClearColor(0.0, 0.0, 0.0, 1.0f);
 glUseProgram(gProgram);
// GL1x: glRotatef(pAngleX, 0, 1, 0); //rotate around
y-axis
// GL1x: glRotatef(pAngleY, 1, 0, 0); //rotate around
x-axis
 //rotate
 rotate_matrix(pAngleX, 0.0, 1.0, 0.0, aRotate);
 rotate_matrix(pAngleY, 1.0, 0.0, 0.0, aModelView);
 multiply_matrix(aRotate, aModelView, aModelView);
// GL1x: glScalef(0.3f, 0.3f, 0.3f); // Scale down
 scale_matrix(0.5, 0.5, 0.5, aScale);
 multiply_matrix(aScale, aModelView, aModelView);
// GL1x: glTranslate(0.0f, 0.0f, -3.5f);
 translate_matrix(0.0f, 0.0f, -3.5f, aTranslate);
 multiply_matrix(aTranslate, aModelView, aModelView);
// gluPerspective(45, aspect, 0.1, 100);
 perspective_matrix(45.0, (float)gWidth/(float)gHeight,
0.1, 100.0, aPerspective);
 multiply_matrix(aPerspective, aModelView, aMVP);
 glUniformMatrix4fv(gmvP, 1, GL_FALSE, aMVP);
 mCube.draw(gvPositionHandle);
}

5. Create a folder named raw under the res folder, and add the following two files to it:

 � vshader: This is the vertex shader source:
attribute vec4 vPosition;
uniform mat4 mvp;
void main()
{
 gl_Position = mvp * vPosition;
}

Chapter 4

149

 � fshader: This is the fragment shader source:

void main()
{
 gl_FragColor = vec4(0.0,0.5,0.0,1.0);
}

6. Add the Android.mk file under the jni folder as follows. Note that we must link to
OpenGL ES 2.0 by LOCAL_LDLIBS := -lGLESv2:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := CubeG2
LOCAL_SRC_FILES := matrix.cpp Cube.cpp CubeG2.cpp
LOCAL_LDLIBS := -lGLESv2 -llog
include $(BUILD_SHARED_LIBRARY)

7. Add the following line before <application>...</application> in the
AndroidManifest.xml file, which indicates that the Android application
uses the OpenGL ES 2.0 feature:
<uses-feature android:glEsVersion="0x00020000"
android:required="true" />

8. Build the Android NDK application and run it on an Android device. The app will
display a cube and we can touch to rotate the cube:

How it works...
The sample project renders a 3D cube using OpenGL ES 2.0. OpenGL ES 2.0 provides a
programmable pipeline, where a vertex shader and fragment shader can be supplied to
control how the vertex and fragment are processed:

 f Vertex shader: It's executed for every vertex. Transforms, lighting, texture mapping,
and so on are usually performed using it.

Android NDK OpenGL ES API

150

 f Fragment shader: It's executed for every fragment produced by the rasterizer. A
typical processing is to adding colors to every fragment.

Shaders are programmed using OpenGL Shading Language, which is discussed next.

OpenGL Shading Language (GLSL)
Here, we briefly introduce GLSL.

 f Data types: They are of four main types, including bool, int, float, and sampler.
There are also vector types for the first three types—bvec2, bvec3, bvec4 refer
to 2D, 3D, and 4D boolean vectors. ivec2, ivec3, and ivec4 represent integer
vectors. vec2, vec3, and vec4 refer to floating point vectors. Samplers are used for
texture sampling and have to be uniform.

 f Attributes, uniforms, and varyings: A shader includes three types of inputs and
outputs, including uniforms, attributes, and varyings. All three types have to be global:

 � Uniform: It is of read-only type and doesn't need to be changed during
rendering. For example, light position.

 � Attribute: It is of read-only type and is only available as an input to the vertex
shader. It changes for every vertex. For example, vertex position.

 � Varying: It is used to pass data from the vertex shader to the fragment
shader. It is readable and writable in the vertex shader, but only readable
in the fragment shader.

 f Built-in types: GLSL has various built-in attributes, uniforms, and varyings for
shaders. We highlight a few of them as follows:

 � gl_Vertex: It is an attribute—a 4D vector representing the vertex position.

 � gl_Color: It is an attribute—a 4D vector representing the vertex color.

 � gl_ModelViewMatrix: It is an uniform—the 4x4 model view matrix.

 � gl_ModelViewProjectionMatrix: It is a uniform. The 4x4 model view
projection matrix.

 � gl_Position: It is only available as vertex shader output. It's a 4D vector
representing the final processed vertex position.

 � gl_FragColor: It is only available as fragment shader output. It's a 4D
vector representing the final color to be written to the frame buffer.

Chapter 4

151

How to use shader:
In our sample project, the vertex shader program simply multiplies every cube vertex with the
model-view-projection matrix, and the fragment shader sets green color to every fragment.
The following steps should be followed to use the shader source code:

1. Create Shaders: The following OpenGL ES 2.0 methods are called:

 � glCreateShader: It creates a GL_VERTEX_SHADER or GL_FRAGMENT_
SHADER shader. A non-zero value is returned by it, by which the shader can
be referenced.

 � glShaderSource: It puts the source code in a shader object. The source
code stored previously will be completely replaced.

 � glCompileShader: It compiles the source code of the shader object.

2. Create a program and attach the shaders: The following methods are called:

 � glCreateProgram: It creates an empty program object to which shaders
can be attached. Program objects essentially provide a mechanism to link
everything needed to be executed together.

 � glAttachShader: It attaches a shader to a program object.

 � glLinkProgram: It links a program object. If any GL_VERTEX_SHADER
objects are attached to the program object, they will be used to create an
executable running on the vertex processor. If any GL_FRAGMENT_SHADER
shaders are attached, they will be used to create an executable running on
the fragment processor.

3. Use the program: We use the following calls to pass data to shaders and perform
OpenGL operations:

 � glUseProgram: A program object as part of current rendering state
is installed

 � glGetAttribLocation: It returns an attribute variable's location

 � glVertexAttribPointer: It specifies the location and data format of the
array of generic vertex attributes to use at rendering

 � glEnableVertexAttribArray: It enables a vertex attribute array

 � glGetUniformLocation: It returns a uniform variable's location

 � glUniform: It specifies the value of a uniform variable

 � glDrawArrays: It renders primitives from the array data.

Android NDK OpenGL ES API

152

There's more...
The sample project performs model-view transform and projection transform through matrix
operations. The details of these transforms are tedious and not within the scope of this book,
therefore we won't cover them here. However, detailed comments are provided along with the
code. Interested readers could also easily find online resources about these operations.

Displaying graphics with EGL
Besides the GLSurfaceView display mechanism we described in the previous recipe, it is
also possible to display OpenGL graphics using EGL.

Getting ready
Readers are recommended to read the Drawing 3D Graphics and Lighting up the Scene with
OpenGL ES 1.x API recipe before going through this one.

How to do it...
The following steps describe how to create an Android project that demonstrates the usage
of EGL:

1. Create an Android application named EGLDemo. Set the package name as
cookbook.chapter4.egl. Please refer to the Loading native libraries and
registering native methods recipe in Chapter 2, Java Native Interface, if you want
more detailed instructions.

2. Right-click on the project EGLDemo, select Android Tools | Add Native Support.

3. Add two Java files, namely EGLDemoActivity.java and MySurfaceView.java.
EGLDemoActivity.java sets ContentView as an instance of MySurfaceView,
and starts and stops rendering at the Android activity callback functions:
… …
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
myView = new MySurfaceView(this);
this.setContentView(myView);
}
protected void onResume() {
super.onResume();
myView.startRenderer();
}
… …

Chapter 4

153

protected void onStop() {
super.onStop();
myView.destroyRender();
}
… …

4. MySurfaceView.java performs role similar to GLSurfaceView. It interacts with
the the native renderer to manage the display surface and handle touch events:
public class MySurfaceView extends SurfaceView implements
SurfaceHolder.Callback {
… …
public MySurfaceView(Context context) {
super(context);
this.getHolder().addCallback(this);
}
… …
public boolean onTouchEvent(final MotionEvent event) {
float x = event.getX();
float y = event.getY();
switch (event.getAction()) {
case MotionEvent.ACTION_MOVE:
 float dx = x - mPreviousX;
 float dy = y - mPreviousY;
 mAngleX += dx * TOUCH_SCALE_FACTOR;
 mAngleY += dy * TOUCH_SCALE_FACTOR;
 naRequestRenderer(mAngleX, mAngleY);
}
mPreviousX = x;
mPreviousY = y;
return true;
}
@Override
public void surfaceChanged(SurfaceHolder holder, int format, int
width,int height) {
naSurfaceChanged(holder.getSurface());
}
@Override
public void surfaceCreated(SurfaceHolder holder) {}
@Override
public void surfaceDestroyed(SurfaceHolder holder) {
naSurfaceDestroyed();
}
}

Android NDK OpenGL ES API

154

5. The following code should be added to the jni folder:

 � Cube.cpp and Cube.h: Use the OpenGL 1.x API to draw a 3D cube.

 � OldRenderMethods.cpp and OldRenderMethods.h: Initialize OpenGL
1.x, perform transforms, draw graphics, and so on. This is similar to the
corresponding methods in the Drawing 3D Graphics in OpenGL 1.x recipe.

 � Renderer.cpp and Renderer.h: Simulate android.opengl.
GLSurfaceView.Renderer. It sets up the EGL context, manages the
display, and so on.

 � renderAFrame: It sets the event type, and then signals the rendering
thread to handle the event:

void Renderer::renderAFrame(float pAngleX, float pAngleY) {
pthread_mutex_lock(&mMutex);
mAngleX = pAngleX; mAngleY = pAngleY;
mRendererEvent = RTE_DRAW_FRAME;
pthread_mutex_unlock(&mMutex);
pthread_cond_signal(&mCondVar);
}

 � renderThreadRun: It runs in a separate thread to handle various events,
including surface change, draw a frame, and so on:
void Renderer::renderThreadRun() {
 bool ifRendering = true;
 while (ifRendering) {
 pthread_mutex_lock(&mMutex);
 pthread_cond_wait(&mCondVar, &mMutex);
 switch (mRendererEvent) {
 … …
 case RTE_DRAW_FRAME:
 mRendererEvent = RTE_NONE;
 pthread_mutex_unlock(&mMutex);
 if (EGL_NO_DISPLAY!=mDisplay) {
 naDrawGraphics(mAngleX, mAngleY);
 eglSwapBuffers(mDisplay, mSurface);
 }
 }
 break;
 ……
 }
}
}

Chapter 4

155

 � initDisplay: It sets up the EGL context:
bool Renderer::initDisplay() {
const EGLint attribs[] = {
 EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
 EGL_BLUE_SIZE, 8,
 EGL_GREEN_SIZE, 8,
 EGL_RED_SIZE, 8,
 EGL_NONE};
EGLint width, height, format;
EGLint numConfigs;
EGLConfig config;
EGLSurface surface;
EGLContext context;
EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
eglInitialize(display, 0, 0);
eglChooseConfig(display, attribs, &config, 1, &numConfigs);
eglGetConfigAttrib(display, config, EGL_NATIVE_VISUAL_ID,
&format);
ANativeWindow_setBuffersGeometry(mWindow, 0, 0, format);
surface = eglCreateWindowSurface(display, config, mWindow,
NULL);
context = eglCreateContext(display, config, NULL, NULL);
if (eglMakeCurrent(display, surface, surface, context) ==
EGL_FALSE) {
 return -1;
}
eglQuerySurface(display, surface, EGL_WIDTH, &width);
eglQuerySurface(display, surface, EGL_HEIGHT, &height);
 … ...
}

 � EGLDemo.cpp: It registers the native methods and wraps the native code.
The following two methods are used:

naSurfaceChanged: It gets the native window associated with a Java
Surface object and initializes EGL and OpenGL:
void naSurfaceChanged(JNIEnv* env, jclass clazz, jobject
pSurface) {
gWindow = ANativeWindow_fromSurface(env, pSurface);
gRenderer->initEGLAndOpenGL1x(gWindow);
}

Android NDK OpenGL ES API

156

naRequestRenderer: It renders a frame, which is called by the touch
event handler in MySurfaceView:

void naRequestRenderer(JNIEnv* env, jclass clazz, float
pAngleX, float pAngleY) {
gRenderer->renderAFrame(pAngleX, pAngleY);
}

6. Add the Android.mk file under the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := EGLDemo
LOCAL_SRC_FILES := Cube.cpp OldRenderMethods.cpp Renderer.cpp
EGLDemo.cpp
LOCAL_LDLIBS := -llog -landroid -lEGL -lGLESv1_CM
include $(BUILD_SHARED_LIBRARY)

7. Build the Android NDK application and run it on an Android device. The app will
display a cube, which we can touch to rotate it:

How it works...
EGL is an interface between OpenGL ES and the underlying native window system.
According to Khronos EGL web page (http://www.khronos.org/egl), graphics context
management, surface binding, and rendering synchronization for rendering with other
Khronos 2D and 3D APIs, including OpenGL ES are handled by it.

Chapter 4

157

EGL is a cross-platform API widely used in embedded systems, including
Android and iPhone (the EGL implementation from Apple is called EAGL).
Many desktop platforms also support EGL. Different implementations may
not be 100 percent compatible, but the porting effort will usually not be
substantial for the EGL code.

The following steps describe how to set up and manipulate EGL and its integration
with OpenGL:

1. Get and initialize the display connection: EGL needs to know where the content
should be displayed, therefore we will need to get a display connection and initialize
it. This is done using the following two methods:

 � eglGetDisplay: It obtains the EGL display connection for the native
display. If the input argument is EGL_DEFAULT_DISPLAY, a default display
connection is returned.

 � eglInitialize: It initializes an EGL display connection obtained by
eglGetDisplay.

2. Configure EGL: This is done through eglChooseConfig.

eglChooseConfig returns a list of EGL frame buffer configurations that match the
requirements specified by the attrib_list argument. The attribute is an array
with pairs of attributes and corresponding desired values, and it is terminated by
EGL_NONE. In our code, we simply specify EGL_SURFACE_TYPE as EGL_WINDOW_
BIT, and color components sizes as 8 bit.

3. Create a render surface where the display content will be placed: This is done
through eglCreateWindowSurface.

eglCreateWindowSurface, given the EGL display connection, the EGL frame
buffer configuration and native window returns a new EGL window surface.

In our code, we start from SurfaceView and pass its associated android.view.
Surface value to the native code. In the native code, we obtain its native window,
and finally create the EGL window surface for OpenGL drawing.

4. Create the EGL rendering context and make it the current: This is done by
eglCreateContext and eglMakeCurrent.

 � eglCreateContext: It creates a new EGL rendering context, which is used
to render into the EGL draw surface.

 � eglMakeCurrent: It attaches an EGL context to the EGL draw and read
surfaces. In our code, the created window surface is used as both the read
and draw surface.

Android NDK OpenGL ES API

158

5. OpenGL drawing: This is covered in previous recipes.

6. Swap the EGL surface internal buffers to display the content: This is done by the
eglSwapBuffers call.

eglSwapBuffers posts the EGL surface color buffer to a native window. This
effectively displays the drawing content on the screen.

EGL internally maintains two buffers. The content of the front buffer is displayed,
while the drawing can be done on the back buffer. At the time we decided to display
the new drawing, we swap the two buffers.

7. At time we want to stop rendering. Release the EGL context, destroy the EGL surface,
and terminate the EGL display connection:

 � eglMakeCurrent with EGL_NO_SURFACE and EGL_NO_CONTEXT releases
the current context

 � eglDestroySurface destroys an EGL surface

 � eglTerminate terminates the EGL display connection

Window management
Our code uses the Android native window management API calls to obtain a native window
and configure it. The following methods are called:

 f ANativeWindow_fromSurface: It returns a native window associated
with the Java surface object. The returned reference should be passed to
ANativeWindow_release to ensure there's no leaking.

 f ANativeWindow_setBuffersGeometry: It sets the size and format of window
buffers. In our code, we specified width and height as 0, in which case the window's
base value will be used.

Note that we'll need to link to the Android library in the Android.mk file (LOCAL_LDLIBS
:= -landroid), because it is a part of the Android native application API, which we will
cover more in the next chapter.

There's more...
The renderer runs an event loop in a separate thread. We used the POSIX thread (pthreads)
calls to create a native thread, synchronize it with the main thread, and so on. We'll cover
pthread in detail in Chapter 6, Android NDK Multithreading.

5
Android Native

Application API

In this chapter we will cover the following recipes:

 f Creating a native activity with the native_activity.h interface

 f Creating a native activity with the Android native app glue

 f Managing native windows at Android NDK

 f Detecting and handling input events at Android NDK

 f Accessing sensors at Android NDK

 f Managing assets at Android NDK

Introduction
Thanks to the Android native application APIs, it is possible to write an Android application
with pure native code since Android API level 9 (Android 2.3, Gingerbread). That is, not a
single line of Java code is needed. The Android native APIs are defined in several header
files under the <NDK root>/platforms/android-<API level>/arch-arm/usr/
include/android/ folder. Based on the features provided by the functions defined in
these header files, they can be grouped as follows:

 f Activity lifecycle management:
 � native_activity.h

 � looper.h

Android Native Application API

160

 f Windows management:
 � rect.h

 � window.h

 � native_window.h

 � native_window_jni.h

 f Input (including key and motion events) and sensor events:
 � input.h

 � keycodes.h

 � sensor.h

 f Assets, configuration, and storage management:

 � configuration.h

 � asset_manager.h

 � asset_manager_jni.h

 � storage_manager.h

 � obb.h

In addition, Android NDK also provides a static library named native app glue to help
create and manage native activities. The source code of this library can be found under
the sources/android/native_app_glue/ directory.

In this chapter, we will first introduce the creation of a native activity with the simple
callback model provided by native_acitivity.h, and the more complicated but flexible
two-threaded model enabled by the native app glue library. We will then discuss window
management at Android NDK, where we will draw something on the screen from the native
code. Input events handling and sensor accessing are introduced next. Lastly, we will
introduce asset management, which manages the files under the assets folder of our
project. Note that the APIs covered in this chapter can be used to get rid of the Java code
completely, but we don't have to do so. The Managing assets at Android NDK recipe provides
an example of using the asset management API in a mixed-code Android project.

Before we start, it is important to keep in mind that although no Java code is needed in a
native activity, the Android application still runs on Dalvik VM, and a lot of Android platform
features are accessed through JNI. The Android native application API just hides the Java
world for us.

Chapter 5

161

Creating a native activity with the
native_activity.h interface

The Android native application API allows us to create a native activity, which makes writing
Android apps in pure native code possible. This recipe introduces how to write a simple
Android application with pure C/C++ code.

Getting ready
Readers are expected to have basic understanding of how to invoke JNI functions. Chapter 2,
Java Native Interface, covers JNI in detail and readers are recommended to read the chapter
or at least the following recipes before going through the current one:

 f Manipulating strings in Android NDK

 f Calling instance and static methods in NDK

How to do it…
The following steps to create a simple Android NDK application without a single line of
Java code:

1. Create an Android application named NativeActivityOne. Set the package name
as cookbook.chapter5.nativeactivityone. Please refer to the Loading native
libraries and registering native methods recipe of Chapter 2, Java Native Interface,
if you want more detailed instructions.

2. Right-click on the NativeActivityOne project, select Android Tools | Add Native
Support.

3. Change the AndroidManifest.xml file as follows:
<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="cookbook.chapter5.nativeactivityone"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="9"/>
 <application android:label="@string/app_name"
 android:icon="@drawable/ic_launcher"
 android:hasCode="true">
 <activity android:name="android.app.NativeActivity"
 android:label="@string/app_name"
 android:configChanges="orientation|keyboardHidden">
 <meta-data android:name="android.app.lib_name"
 android:value="NativeActivityOne" />

Android Native Application API

162

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.
LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

We should ensure that the following are set correctly in the preceding file:

 � The activity name must be set to android.app.NativeActivity.

 � The value of the android.app.lib_name metadata must be set to the
native module name without the lib prefix and .so suffix.

 � android:hasCode needs to be set to true, which indicates that
the application contains code. Note that the documentation in <NDK
root>/docs/NATIVE-ACTIVITY.HTML gives an example of the
AndroidManifest.xml file with android:hasCode set to false,
which will not allow the application to start.

4. Add two files named NativeActivityOne.cpp and mylog.h under the jni
folder. The ANativeActivity_onCreate method should be implemented in
NativeActivityOne.cpp. The following is an example of the implementation:
void ANativeActivity_onCreate(ANativeActivity* activity,
 void* savedState, size_t savedStateSize) {
 printInfo(activity);
 activity->callbacks->onStart = onStart;
 activity->callbacks->onResume = onResume;
 activity->callbacks->onSaveInstanceState = onSaveInstanceState;
 activity->callbacks->onPause = onPause;
 activity->callbacks->onStop = onStop;
 activity->callbacks->onDestroy = onDestroy;
 activity->callbacks->onWindowFocusChanged =
onWindowFocusChanged;
 activity->callbacks->onNativeWindowCreated =
onNativeWindowCreated;
 activity->callbacks->onNativeWindowResized =
onNativeWindowResized;
 activity->callbacks->onNativeWindowRedrawNeeded =
onNativeWindowRedrawNeeded;
 activity->callbacks->onNativeWindowDestroyed =
onNativeWindowDestroyed;
 activity->callbacks->onInputQueueCreated = onInputQueueCreated;
 activity->callbacks->onInputQueueDestroyed =
onInputQueueDestroyed;

Chapter 5

163

 activity->callbacks->onContentRectChanged =
onContentRectChanged;
 activity->callbacks->onConfigurationChanged =
onConfigurationChanged;
 activity->callbacks->onLowMemory = onLowMemory;
 activity->instance = NULL;
}

5. Add the Android.mk file under the jni folder:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := NativeActivityOne
LOCAL_SRC_FILES := NativeActivityOne.cpp
LOCAL_LDLIBS := -landroid -llog
include $(BUILD_SHARED_LIBRARY)

6. Build the Android application and run it on an emulator or a device. Start a terminal
and display the logcat output using the following:
$ adb logcat -v time NativeActivityOne:I *:S

Alternatively, you can use the logcat view at Eclipse to see the logcat output.

When the application starts, you should be able to see the following logcat output:

As shown in the screenshot, a few Android activity lifecycle callback functions are
executed. We can manipulate the phone to cause other callbacks being executed.
For example, long pressing the home button and then pressing the back button will
cause the onWindowFocusChanged callback to be executed.

How it works…
In our example, we created a simple, "pure" native application to output logs when the Android
framework calls into the callback functions defined by us. The "pure" native application is not
really pure native. Although we did not write a single line of Java code, the Android framework
still runs some Java code on Dalvik VM.

Android Native Application API

164

Android framework provides an android.app.NativeActivity.java class to help us
create a "native" activity. In a typical Java activity, we extend android.app.Activity and
overwrite the activity lifecycle methods. NativeActivity is also a subclass of android.
app.Activity and does similar things. At the start of a native activity, NativeActivity.
java will call ANativeActivity_onCreate, which is declared in native_activity.h
and implemented by us. In the ANativeActivity_onCreate method, we can register
our callback methods to handle activity lifecycle events and user inputs. At runtime,
NativeActivity will invoke these native callback methods when the corresponding
events occurred.

In a word, NativeActivity is a wrapper that hides the managed Android Java world for our
native code, and exposes the native interfaces defined in native_activity.h.

The ANativeActivity data structure: Every callback method in the native code accepts an
instance of the ANativeActivity structure. Android NDK defines the ANativeActivity
data structure in native_acitivity.h as follows:

typedef struct ANativeActivity {
 struct ANativeActivityCallbacks* callbacks;
 JavaVM* vm;
 JNIEnv* env;
 jobject clazz;
 const char* internalDataPath;
 const char* externalDataPath;
 int32_t sdkVersion;
 void* instance;
 AAssetManager* assetManager;
} ANativeActivity;

The various attributes of the preceding code are explained as follows:

 f callbacks: It is a data structure that defines all the callbacks that the Android
framework will invoke with the main UI thread.

 f vm: It is the application process' global Java VM handle. It is used in some
JNI functions.

 f env: It is a JNIEnv interface pointer. JNIEnv is used through local storage data
(refer to the Manipulating strings in Android NDK recipe in Chapter 2, Java Native
Interface, for more details), so this field is only accessible through the main UI thread.

 f clazz: It is a reference to the android.app.NativeActivity object created by
the Android framework. It can be used to access fields and methods in the android.
app.NativeActivity Java class. In our code, we accessed the toString method
of android.app.NativeActivity.

 f internalDataPath: It is the internal data directory path for the application.

 f externalDataPath: It is the external data directory path for the application.

Chapter 5

165

internalDataPath and externalDataPath are NULL
at Android 2.3.x. This is a known bug and has been fixed since
Android 3.0. If we are targeting devices lower than Android 3.0,
then we need to find other ways to get the internal and external
data directories.

 f sdkVersion: It is the Android platform's SDK version code. Note that this refers to
the version of the device/emulator that runs the app, not the SDK version used in
our development.

 f instance: It is not used by the framework. We can use it to store user-defined data
and pass it around.

 f assetManager: It is the a pointer to the app's instance of the asset manager. We
will need it to access assets data. We will discuss it in more detail in the Managing
assets at Android NDK recipe of this chapter.

There's more…
The native_activity.h interface provides a simple single thread callback mechanism,
which allows us to write an activity without Java code. However, this single thread approach
infers that we must quickly return from our native callback methods. Otherwise, the
application will become unresponsive to user actions (for example, when we touch the
screen or press the Menu button, the app does not respond because the GUI thread is
busy executing the callback function).

A way to solve this issue is to use multiple threads. For example, many games take a few
seconds to load. We will need to offload the loading to a background thread, so that the UI
can display the loading progress and be responsive to user inputs. Android NDK comes with
a static library named android_native_app_glue to help us in handling such cases. The
details of this library are covered in the Creating a native activity with the Android native app
glue recipe.

A similar problem exists at Java activity. For example, if we write a Java activity
that searches the entire device for pictures at onCreate, the application will
become unresponsive. We can use AsyncTask to search and load pictures
in the background, and let the main UI thread display a progress bar and
respond to user inputs.

Android Native Application API

166

Creating a native activity with the Android
native app glue

The previous recipe described how the interface defined in native_activity.h allows
us to create native activity. However, all the callbacks defined are invoked with the main UI
thread, which means we cannot do heavy processing in the callbacks.

Android SDK provides AsyncTask, Handler, Runnable, Thread, and so on, to help
us handle things in the background and communicate with the main UI thread. Android
NDK provides a static library named android_native_app_glue to help us execute
callback functions and handle user inputs in a separate thread. This recipe will discuss
the android_native_app_glue library in detail.

Getting ready
The android_native_app_glue library is built on top of the native_activity.h
interface. Therefore, readers are recommended to read the Creating a native activity
with the native_activity.h interface recipe before going through this one.

How to do it…
The following steps create a simple Android NDK application based on the
android_native_app_glue library:

1. Create an Android application named NativeActivityTwo. Set the package name
as cookbook.chapter5.nativeactivitytwo. Please refer to the Loading native
libraries and registering native methods recipe of Chapter 2, Java Native Interface,
if you want more detailed instructions.

2. Right-click on the NativeActivityTwo project, select Android Tools | Add Native
Support.

3. Change the AndroidManifest.xml file as follows:
<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="cookbook.chapter5.nativeactivitytwo"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="9"/>
 <application android:label="@string/app_name"
 android:icon="@drawable/ic_launcher"
 android:hasCode="true">
 <activity android:name="android.app.NativeActivity"
 android:label="@string/app_name"

Chapter 5

167

 android:configChanges="orientation|keyboardHidden">
 <meta-data android:name="android.app.lib_name"
 android:value="NativeActivityTwo" />
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.
LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

4. Add two files named NativeActivityTwo.cpp and mylog.h under the jni folder.
NativeActivityTwo.cpp is shown as follows:
#include <jni.h>
#include <android_native_app_glue.h>
#include "mylog.h"
void handle_activity_lifecycle_events(struct android_app* app,
int32_t cmd) {
 LOGI(2, "%d: dummy data %d", cmd, *((int*)(app->userData)));
}
void android_main(struct android_app* app) {
 app_dummy(); // Make sure glue isn't stripped.
 int dummyData = 111;
 app->userData = &dummyData;
 app->onAppCmd = handle_activity_lifecycle_events;
 while (1) {
 int ident, events;
 struct android_poll_source* source;
if ((ident=ALooper_pollAll(-1, NULL, &events, (void**)&source)) >=
0) {
 source->process(app, source);
 }
 }
}

5. Add the Android.mk file under the jni folder:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := NativeActivityTwo
LOCAL_SRC_FILES := NativeActivityTwo.cpp
LOCAL_LDLIBS := -llog -landroid
LOCAL_STATIC_LIBRARIES := android_native_app_glue
include $(BUILD_SHARED_LIBRARY)
$(call import-module,android/native_app_glue)

Android Native Application API

168

6. Build the Android application and run it on an emulator or device. Start a terminal
and display the logcat output by using the following command:

adb logcat -v time NativeActivityTwo:I *:S

When the application starts, you should be able to see the following logcat output
and the device screen will shows a black screen:

On pressing the back button, the following output will be shown:

How it works…
This recipe demonstrates how the android_native_app_glue library is used to create a
native activity.

The following steps should be followed to use the android_native_app_glue library:

 f Implement a function named android_main. This function should implement
an event loop, which will poll for events continuously. This method will run in the
background thread created by the library.

 f Two event queues are attached to the background thread by default, including the
activity lifecycle event queue and the input event queue. When polling events using
the looper created by the library, you can identify where the event is coming from, by
checking the returned identifier (either LOOPER_ID_MAIN or LOOPER_ID_INPUT). It
is also possible to attach additional event queues to the background thread.

 f When an event is returned, the data pointer will point to an android_poll_source
data structure. We can call the process function of this structure. The process is a
function pointer, which points to android_app->onAppCmd for activity lifecycle
events, and android_app->onInputEvent for input events. We can provide
our own processing functions and direct the corresponding function pointers to
these functions.

Chapter 5

169

In our example, we implement a simple function named handle_activity_lifecycle_
events and point the android_app->onAppCmd function pointer to it. This function simply
prints the cmd value and the user data passed along with the android_app data structure.
cmd is defined in android_native_app_glue.h as an enum. For example, when the
app starts, the cmd values are 10, 11, 0, 1, and 6, which correspond to APP_CMD_START,
APP_CMD_RESUME, APP_CMD_INPUT_CHANGED, APP_CMD_INIT_WINDOW, and APP_CMD_
GAINED_FOCUS respectively.

android_native_app_glue Library Internals: The source code of the android_native_
app_glue library can be found under the sources/android/native_app_glue folder
of Android NDK. It only consists of two files, namely android_native_app_glue.c and
android_native_app_glue.h. Let's first describe the flow of the code and then discuss
some important aspects in detail.

Since the source code for native_app_glue is provided, we can
modify it if necessary, although in most cases it won't be necessary.

android_native_app_glue is built on top of the native_activity.h interface. As
shown in the following code (extracted from sources/android/native_app_glue/
android_native_app_glue.c). It implements the ANativeActivity_onCreate
function, where it registers the callback functions and calls the android_app_create
function. Note that the returned android_app instance is pointed by the instance
field of the native activity, which can be passed to various callback functions:

void ANativeActivity_onCreate(ANativeActivity* activity,
 void* savedState, size_t savedStateSize) {
 LOGV("Creating: %p\n", activity);
 activity->callbacks->onDestroy = onDestroy;
 activity->callbacks->onStart = onStart;
 activity->callbacks->onResume = onResume;
 … …
 activity->callbacks->onNativeWindowCreated =
onNativeWindowCreated;
 activity->callbacks->onNativeWindowDestroyed =
onNativeWindowDestroyed;
 activity->callbacks->onInputQueueCreated = onInputQueueCreated;
 activity->callbacks->onInputQueueDestroyed =
onInputQueueDestroyed;
 activity->instance = android_app_create(activity, savedState,
savedStateSize);
}

Android Native Application API

170

The android_app_create function (shown in the following code snippet) initializes an
instance of the android_app data structure, which is defined in android_native_app_
glue.h. This function creates a unidirectional pipe for inter-thread communication. After
that, it spawns a new thread (let's call it background thread thereafter) to run the android_
app_entry function with the initialized android_app data as the input argument. The main
thread will wait for the background thread to start and then return:

static struct android_app* android_app_create(ANativeActivity*
activity, void* savedState, size_t savedStateSize) {
 struct android_app* android_app = (struct android_app*)
malloc(sizeof(struct android_app));
 memset(android_app, 0, sizeof(struct android_app));
 android_app->activity = activity;

 pthread_mutex_init(&android_app->mutex, NULL);
 pthread_cond_init(&android_app->cond, NULL);
 ……
 int msgpipe[2];
 if (pipe(msgpipe)) {
 LOGE("could not create pipe: %s", strerror(errno));
 return NULL;
 }
 android_app->msgread = msgpipe[0];
 android_app->msgwrite = msgpipe[1];

 pthread_attr_t attr;
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 pthread_create(&android_app->thread, &attr, android_app_entry,
android_app);
 // Wait for thread to start.
 pthread_mutex_lock(&android_app->mutex);
 while (!android_app->running) {
 pthread_cond_wait(&android_app->cond, &android_app->mutex);
 }
 pthread_mutex_unlock(&android_app->mutex);
 return android_app;
}

Chapter 5

171

The background thread starts with the android_app_entry function (as shown in the
following code snippet), where a looper is created. Two event queues will be attached to the
looper. The activity lifecycle events queue is attached to the android_app_entry function.
When the activity's input queue is created, the input queue is attached (to the android_
app_pre_exec_cmd function of android_native_app_glue.c). After attaching the
activity lifecycle event queue, the background thread signals the main thread it is already
running. It then calls a function named android_main with the android_app data.
android_main is the function we need to implement, as shown in our sample code.
It must run in a loop until the activity exits:

static void* android_app_entry(void* param) {
 struct android_app* android_app = (struct android_app*)param;
 … …
 //Attach life cycle event queue with identifier LOOPER_ID_MAIN
 android_app->cmdPollSource.id = LOOPER_ID_MAIN;
 android_app->cmdPollSource.app = android_app;
 android_app->cmdPollSource.process = process_cmd;
 android_app->inputPollSource.id = LOOPER_ID_INPUT;
 android_app->inputPollSource.app = android_app;
 android_app->inputPollSource.process = process_input;
 ALooper* looper = ALooper_prepare(ALOOPER_PREPARE_ALLOW_NON_
CALLBACKS);
 ALooper_addFd(looper, android_app->msgread, LOOPER_ID_MAIN,
ALOOPER_EVENT_INPUT, NULL, &android_app->cmdPollSource);
 android_app->looper = looper;

 pthread_mutex_lock(&android_app->mutex);
 android_app->running = 1;
 pthread_cond_broadcast(&android_app->cond);
 pthread_mutex_unlock(&android_app->mutex);
 android_main(android_app);
 android_app_destroy(android_app);
 return NULL;
}

Android Native Application API

172

The following diagram indicates how the main and background thread work together to create
the multi-threaded native activity:

We use the activity lifecycle event queue as an example. The main thread invokes the callback
functions, which simply writes to the write end of the pipe, while true loop implemented in the
android_main function will poll for events. Once an event is detected, the function calls the
event handler, which reads the exact command from the read end of the pipe and handles it.
The android_native_app_glue library implements all the main thread stuff and part of
the background thread stuff for us. We only need to supply the polling loop and the event
handler as illustrated in our sample code.

Pipe: The main thread creates a unidirectional pipe in the android_app_create function by
calling the pipe method. This method accepts an array of two integers. After the function is
returned, the first integer will be set as the file descriptor referring to the read end of the pipe,
while the second integer will be set as the file descriptor referring to the write end of the pipe.

A pipe is usually used for Inter-process Communication (IPC), but here it is used for
communication between the main UI thread and the background thread created at android_
app_entry. When an activity lifecycle event occurs, the main thread will execute the
corresponding callback function registered at ANativeActivity_onCreate. The callback
function simply writes a command to the write end of the pipe and then waits for a signal from
the background thread. The background thread is supposed to poll for events continuously
and once it detects a lifecycle event, it will read the exact event from the read end of the pipe,
signal the main thread to unblock and handle the events. Because the signal is sent right
after receiving the command and before actual processing of the events, the main thread can
return from the callback function quickly without worrying about the possible long processing
of the events.

Chapter 5

173

Different operating systems have different implementations for the pipe. The pipe
implemented by Android system is "half-duplex", where communication is unidirectional. That
is, one file descriptor can only write, and the other file descriptor can only read. Pipes in some
operating system is "full-duplex", where the two file descriptors can both read and write.

Looper is an event tracking facility, which allows us to attach one or more event queues for
an event loop of a thread. Each event queue has an associated file descriptor. An event is
data available on a file descriptor. In order to use a looper, we need to include the android/
looper.h header file.

The library attaches two event queues for the event loop to be created by us in the
background thread, including the activity lifecycle event queue and the input event
queue. The following steps should be performed in order to use a looper:

1. Create or obtain a looper associated with the current thread: This is done by the
ALooper_prepare function:
ALooper* ALooper_prepare(int opts);

This function prepares a looper associated with the calling thread and returns it. If
the looper doesn't exist, it creates one, associates it with the thread, and returns it.

2. Attach an event queue: This is done by ALooper_addFd. The function has the
following prototype:
int ALooper_addFd(ALooper* looper, int fd, int ident, int events,
ALooper_callbackFunc callback, void* data);

The function can be used in two ways. Firstly, if callback is set to NULL, the ident
set will be returned by ALooper_pollOnce and ALooper_pollAll. Secondly, if
callback is non-NULL, then the callback function will be executed and ident is
ignored. The android_native_app_glue library uses the first approach to attach
a new event queue to the looper. The input argument fd indicates the file descriptor
associated with the event queue. ident is the identifier for the events from the
event queue, which can be used to classify the event. The identifier must be bigger
than zero when callback is set to NULL. callback is set to NULL in the library
source code, and data points to the private data that will be returned along with the
identifier at polling.

In the library, this function is called to attach the activity lifecycle event queue to the
background thread. The input event queue is attached using the input queue specific
function AInputQueue_attachLooper, which we will discuss in the Detecting and
handling input events at NDK recipe.

Android Native Application API

174

3. Poll for events: This can be done by either one of the following two functions:
int ALooper_pollOnce(int timeoutMillis, int* outFd, int*
outEvents, void** outData);
int ALooper_pollAll(int timeoutMillis, int* outFd, int* outEvents,
void** outData);

These two methods are equivalent when callback is set to NULL in
ALooper_addFd. They have the same input arguments. timeoutMillis
specifies the timeout for polling. If it is set to zero, then the functions return
immediately; if it is set to negative, they will wait indefinitely until an event occurs.
The functions return the identifier (greater than zero) when an event occurs from any
input queues attached to the looper. In this case, outFd, outEvents, and outData
will be set to the file descriptor, poll events, and data associated with the event.
Otherwise, they will be set to NULL.

4. Detach event queues: This is done by the following function:

int ALooper_removeFd(ALooper* looper, int fd);

It accepts the looper and file descriptor associated with the event queue, and
detaches the queue from the looper.

Managing native windows at Android NDK
The previous recipes in this chapter provided simple examples with the logcat output only.
This recipe will discuss how to manage the native window at Android NDK.

Getting ready
Readers are recommended to read the following recipes before going through this one:

 f Creating a native activity with the native_activity.h interface

 f Creating a native activity with the Android native app glue

Also recall that native window management has been introduced briefly in the Displaying
graphics with EGL recipe in Chapter 4, Android NDK OpenGL ES API.

How to do it…
The following steps create the sample application:

1. Create an Android application named NativeWindowManagement. Set the package
name as cookbook.chapter5.nativewindowmanagement. Please refer to the
Loading native libraries and registering native methods recipe of Chapter 2, Java
Native Interface, if you want more detailed instructions.

Chapter 5

175

2. Right-click on the NativeWindowManagement project, select Android Tools | Add
Native Support.

3. Update AndroidManifest.xml. Please refer to previous recipe or the downloaded
code for details. Note that the metadata android.app.lib_name must have its
value as NativeWindowManagement.

4. Add two files named NativeWindowManagement.cpp and mylog.h under the jni
folder. NativeWindowManagement.cpp is modified based on previous recipe. The
following code snippet shows the updated part:
void drawSomething(struct android_app* app) {
 ANativeWindow_Buffer lWindowBuffer;
 ANativeWindow* lWindow = app->window;
 ANativeWindow_setBuffersGeometry(lWindow, 0, 0, WINDOW_FORMAT_
RGBA_8888);
 if (ANativeWindow_lock(lWindow, &lWindowBuffer, NULL) < 0) {
 return;
 }
 memset(lWindowBuffer.bits, 0, lWindowBuffer.
stride*lWindowBuffer.height*sizeof(uint32_t));
 int sqh = 150, sqw = 100;
 int wst = lWindowBuffer.stride/2 - sqw/2;
 int wed = wst + sqw;
 int hst = lWindowBuffer.height/2 - sqh/2;
 int hed = hst + sqh;
 for (int i = hst; i < hed; ++i) {
 for (int j = wst; j < wed; ++j) {
 ((char*)(lWindowBuffer.bits))[(i*lWindowBuffer.stride +
j)*sizeof(uint32_t)] = (char)255; //R
 ((char*)(lWindowBuffer.bits))[(i*lWindowBuffer.stride +
j)*sizeof(uint32_t) + 1] = (char)0; //G
 ((char*)(lWindowBuffer.bits))[(i*lWindowBuffer.stride +
j)*sizeof(uint32_t) + 2] = (char)0; //B
 ((char*)(lWindowBuffer.bits))[(i*lWindowBuffer.stride +
j)*sizeof(uint32_t) + 3] = (char)255; //A
 }
 }
 ANativeWindow_unlockAndPost(lWindow);
}

void handle_activity_lifecycle_events(struct android_app* app,
int32_t cmd) {
 LOGI(2, "%d: dummy data %d", cmd, *((int*)(app->userData)));
 switch (cmd) {
 case APP_CMD_INIT_WINDOW:
 drawSomething(app);
 break;
 }
}

Android Native Application API

176

5. Add the Android.mk file under the jni folder, which is similar to
the one used in the previous recipe. You just need to replace the
module name as NativeWindowManagement and the source file
as NativeWindowManagement.cpp.

6. Build the Android application and run it on an emulator or device. Start a terminal
and display the logcat output by using the following command:

$ adb logcat -v time NativeWindowManagement:I *:S

When the application starts, we will see the following logcat:

The device screen will display a red rectangle at the center of the screen, as follows:

Chapter 5

177

How it works…
The NDK interface for native window management is defined in the window.h, rect.h,
native_window_jni.h, and native_window.h header files. The first two simply define
some constants and data structures. native_window_jni.h defines a single function
named ANativeWindow_fromSurface, which helps us to obtain a native window from
a Java surface object. We have illustrated this function in the Displaying graphics with EGL
recipe in Chapter 4, Android NDK OpenGL ES API. Here, we focus on the functions provided in
native_window.h.

Perform the following steps to draw a square on the phone screen:

1. Set the window buffer format and size:This is done by the ANativeWindow_
setBuffersGeometry function:
int32_t ANativeWindow_setBuffersGeometry(ANativeWindow* window,
int32_t width, int32_t height, int32_t format);

This function updates the native window buffer associated with the native window
referred by the window input argument. The window size and format are changed
according to the rest of the input arguments. Three formats are defined in
native_window.h, including WINDOW_FORMAT_RGBA_8888, WINDOW_FORMAT_
RGBX_8888, and WINDOW_FORMAT_RGB_565. If the size or the format is set to 0,
then the native window's base value will be used.

2. Lock the window's next drawing surface: This is done by the ANativeWindow_
lock function:
int32_t ANativeWindow_lock(ANativeWindow* window, ANativeWindow_
Buffer* outBuffer, ARect* inOutDirtyBounds);

After this call is returned, the input argument outBuffer will refer to the window
buffer for drawing.

3. Clear the buffer: This is optional. Sometimes we may just want to overwrite a part of
the window buffer. In our example, we called memset to set all the data to 0.

4. Draw something to the buffer: In our example, we first calculate the start and
end width and height of the rectangle, and then set the red and alpha bytes of the
rectangle area as 255. This will show us a red rectangle.

5. Unlock the window's drawing surface and post the new buffer to display: This is
done with the ANativeWindow_unlockAndPost function:

int32_t ANativeWindow_unlockAndPost(ANativeWindow* window);

Android Native Application API

178

Detecting and handling input events at
Android NDK

Input events are essential for user interaction in Android apps. This recipe discusses how to
detect and handle input events in Android NDK.

Getting ready
We will further develop the example in last recipe. Please read the Managing native windows
at Android NDK recipe before going through this one.

How to do it…
The following steps create a sample application, which detects and handles input events at
the native code:

1. Create an Android application named NativeInputs. Set the package name as
cookbook.chapter5.nativeinputs. Please refer to the Loading native libraries
and registering native methods recipe of Chapter 2, Java Native Interface, if you want
more detailed instructions.

2. Right-click on the NativeInputs project, select Android Tools | Add Native Support.

3. Update AndroidManifest.xml. Please refer to previous recipe or the downloaded
code for details. Note that the metadata android.app.lib_name must have a
value as NativeInputs.

4. Add two files named NativeInputs.cpp and mylog.h under the jni folder.
NativeInputs.cpp is modified based on the previous recipe. Let us see a part of
its code here:

 � handle_input_events: This is the event handler method for input
events. Note that when a motion event with move action (AINPUT_EVENT_
TYPE_MOTION) is detected, we update app->userData and set app-
>redrawNeeded to 1:
int mPreviousX = -1;
int32_t handle_input_events(struct android_app* app,
AInputEvent* event) {
 int etype = AInputEvent_getType(event);
 switch (etype) {
 case AINPUT_EVENT_TYPE_KEY:
… ...
 break;
 case AINPUT_EVENT_TYPE_MOTION:
 int32_t action, posX, pointer_index;

Chapter 5

179

 action = AMotionEvent_getAction(event);
 pointer_index = (action&AMOTION_EVENT_ACTION_POINTER_
INDEX_MASK) >> AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
 posX = AMotionEvent_getX(event, pointer_index);
 if (action == AMOTION_EVENT_ACTION_MOVE) {
 int xMove = posX - mPreviousX;
 USERDATA* userData = (USERDATA*)app->userData;
 userData->xMove = xMove;
 app->redrawNeeded = 1;
 }
 mPreviousX = posX;
 break;
 }
}

 � android_main: We update the while true loop. When app-
>redrawNeeded is set, we redraw the rectangle:

void android_main(struct android_app* app) {
… ...
while (1) {
 int ident, events;
 struct android_poll_source* source;
 if ((ident=ALooper_pollOnce(app->redrawNeeded?0:-1,
NULL, &events, (void**)&source)) >= 0) {
 if (NULL!=source) {
 source->process(app, source);
 }
 if (app->redrawNeeded) {
 drawSomething(app);
 }
 }
}
}

5. Add the Android.mk file under the jni folder, which is similar to previous recipe.
We just need to replace the module name as NativeInputs and the source file as
NativeInputs.cpp.

Android Native Application API

180

6. Build the Android application and run it on an emulator or device. We can move a
figure across the screen to see the rectangle moving horizontally:

How it works…
This recipe discusses input events handling with the android_native_app_glue library at
Android NDK.

Input event queue in android_native_app_glue: android_native_app_glue attaches the
input event queue for us by default.

1. When the input queue is created for an activity, the onInputQueueCreated
callback is called on the main thread, which writes APP_CMD_INPUT_CHANGED to
the write end of the pipe we described in previous recipe. The background thread will
receive the command and call AInputQueue_attachLooper the function to attach
the input queue to the background thread looper.

2. When an input event occurs, it will be handled by process_input (the function
pointer source->process in the while true loop we called points to process_
input if the event is an input event). Inside process_input, AInputQueue_
getEvent is firstly called to retrieve the event. Then, AInputQueue_
preDispatchEvent is called to send the key for pre-dispatching. This could possibly
result in it being consumed by the current Input Method Editor (IME) before the
app. Followed by this is the android_app->onInputEvent, which is a function
pointer-pointing to an event handler provided by us. If no event handler is provided
by us, it's set to NULL. After that, AInputQueue_finishEvent is called to indicate
that event handling is over.

3. Lastly, when the input queue is destroyed, the onInputQueueDestroyed callback
is called on the main thread, which also writes APP_CMD_INPUT_CHANGED.
The background thread will read the command and call a function named
AInputQueue_detachLooper to detach the input queue from the thread looper.

Chapter 5

181

Event handler: In the handle_input_events function, we first called AInputEvent_
getType to get the input event type. The android/input.h header file defines two input
event types, namely AINPUT_EVENT_TYPE_KEY and AINPUT_EVENT_TYPE_MOTION. The
first event type indicates that the input event is a key event, while the second one indicates
that it is a motion event.

We called AKeyEvent_getAction, AKeyEvent_getFlags, and AKeyEvent_
getKeyCode to get the action, flags, and key code of a key event and printed a string to
describe it. On the other hand, we called AMotionEvent_getAction and AMotionEvent_
getX to get the action and the x position of a motion event. Note that the AMotionEvent_
getX function requires the second input argument as the pointer index. The pointer index is
obtained by using the following code:

pointer_index = (action&AMOTION_EVENT_ACTION_POINTER_INDEX_MASK) >>
AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;

There are a lot more input event functions, which can be found at andoid/input.h.

Accessing sensors at Android NDK
Many Android devices have built-in sensors to detect and measure motion, orientation, and
other environmental conditions. It is possible to access sensors in Android NDK. This recipe
will discuss how to do it in detail.

Getting ready
The example provided in this recipe is based on the sample code in the previous two recipes.
Readers are recommended to read them first:

 f Managing native windows at Android NDK

 f Detecting and handling input events at Android NDK

How to do it…
The following steps develop the sample Android application, which demonstrates how to
access sensors from Android NDK:

1. Create an Android application named nativesensors. Set the package name as
cookbook.chapter5.nativesensors. Please refer to the Loading native libraries
and registering native methods recipe of Chapter 2, Java Native Interface, if you want
more detailed instructions.

2. Right-click on the nativesensors project, select Android Tools | Add Native
Support.

Android Native Application API

182

3. Update AndroidManifest.xml. Please refer to previous recipe or the downloaded
code for details. Note that the metadata android.app.lib_name must have a
value as nativesensors.

4. Add two files named nativesensors.cpp and mylog.h under the jni folder.
Let's show a part of the code in nativesensors.cpp.

 � handle_activity_lifecycle_events: This function handles activity
lifecycle events. We enable the sensor when the activity is in focus and
disable it when the activity loses its focus. This saves the battery life by
avoiding reading sensors when our activity is not in focus:
void handle_activity_lifecycle_events(struct android_app*
app, int32_t cmd) {
 USERDATA* userData;
 switch (cmd) {
…...
 case APP_CMD_SAVE_STATE:
 // save current state
 userData = (USERDATA*)(app->userData);
 app->savedState = malloc(sizeof(SAVED_USERDATA));
 ((SAVED_USERDATA)app->savedState) = userData-
>drawingData;
 app->savedStateSize = sizeof(SAVED_USERDATA);
 break;
 case APP_CMD_GAINED_FOCUS:
 userData = (USERDATA*)(app->userData);
 if (NULL != userData->accelerometerSensor) {
 ASensorEventQueue_enableSensor(userData-
>sensorEventQueue,
 userData->accelerometerSensor);
 ASensorEventQueue_setEventRate(userData-
>sensorEventQueue,
 userData->accelerometerSensor, (1000L/60)*1000);
 }
 break;
 case APP_CMD_LOST_FOCUS:
 USERDATA userData = *(USERDATA*) app->userData;
 if (NULL!=userData.accelerometerSensor) {
ASensorEventQueue_disableSensor(userData.sensorEventQueue,
userData.accelerometerSensor);
 }
 break;
 }
}

Chapter 5

183

 � android_main: We continuously poll for events and handle the sensor
events identified by the LOOPER_ID_USER identifier:
void android_main(struct android_app* app) {
… ...
while (0==app->destroyRequested) {
 int ident, events;
 struct android_poll_source* source;
 if ((ident=ALooper_pollOnce(-1, NULL, &events,
(void**)&source)) >= 0) {
 if (LOOPER_ID_USER == ident) {
 ASensorEvent event;
 while (ASensorEventQueue_getEvents(userData.
sensorEventQueue,
 &event, 1) > 0) {
 int64_t currentTime = get_time();
 … ...
 if ((currentTime - lastTime) > TIME_THRESHOLD) {
 long diff = currentTime - lastTime;
 float speedX = (event.acceleration.x - lastX)/
diff*10000;
 float speedY = (event.acceleration.y - lastY)/
diff*10000;
 float speedZ = (event.acceleration.z - lastZ)/
diff*10000;
 float speed = fabs(speedX + speedY + speedZ);
…...
 }
 }
 }
 }
}

ASensorManager_destroyEventQueue(userData.sensorManager, userData.
sensorEventQueue);
}

5. Add the Android.mk file under the jni folder, which is similar to the one used in the
previous recipe. We just need to replace the module name as nativesensors and
the source file as nativesensors.cpp.

Android Native Application API

184

6. Build the Android application and run it on an emulator or device. We can shake the
device to see the rectangle moving horizontally:

How it works…
In our example, we used the accelerometer sensor to detect phone shaking. Then, based on
the phone shaking speed, we move the red rectangle to one side of the phone screen. Once
the rectangle reaches an edge of the phone screen, it starts to move to the other edge.

The example code provides a simple algorithm to determine whether a shake has happened
or not. More complex and accurate algorithms exist and can be implemented. We can also
adjust the SHAKE_TIMEOUT and SHAKE_COUNT_THRESHOLD constants to fine tune
the algorithm.

The important part of the example is how to access sensors. Let's summarize the steps:

1. Get a reference to the sensor manager: This is done by using the following function:
ASensorManager* ASensorManager_getInstance();

2. Get the default sensor of a given type: We can also get a list of all available sensors.
This is done by using the following two functions respectively:
ASensor const* ASensorManager_getDefaultSensor(ASensorManager*
manager, int type);
int ASensorManager_getSensorList(ASensorManager* manager,
ASensorList* list);

The available types are defined in android/sensor.h. In our example, we print all
sensor names and types but only use ASENSOR_TYPE_ACCELEROMETER.

3. Create a new sensor queue and attach it to the looper of the thread: This is done
by using the ASensorManager_createEventQueue function as follows:
ASensorEventQueue* ASensorManager_createEventQueue(ASensorMana
ger* manager, ALooper* looper, int ident, ALooper_callbackFunc
callback, void* data);

Chapter 5

185

The usage of this function is similar to the usagw of the ALooper_addFd function
in the Creating a native activity with the Android native app glue recipe and
AInputQueue_attachLooper in the Detecting and handling input events at
Android NDK recipe. In our example, we set the ident as LOOPER_ID_USER. Note
that we may also define a new looper ID by changing the code of android_native_
app_glue.h and setting it here.

4. Enable and configure the sensor:
int ASensorEventQueue_enableSensor(ASensorEventQueue* queue,
ASensor const* sensor);
int ASensorEventQueue_setEventRate(ASensorEventQueue* queue,
ASensor const* sensor, int32_t usec);

The first function enables the sensor referred by the sensor input argument. The
second function sets the delivery rate of the events, in microseconds, for the sensor
referred by the sensor input argument. In our example, we called these two functions
when the activity gained focus.

5. Poll for events and get the available events from the queue: The polling is done by
calling ALooper_pollOnce, as shown in the previous recipe. If the event identifier
returned is LOOPER_ID_USER, we know that it is a sensor event and we can use the
following function to get it:
ssize_t ASensorEventQueue_getEvents(ASensorEventQueue* queue,
ASensorEvent* events, size_t count);

count indicates the maximum number of available events we want to get. In our
example, we set it to 1. It is also possible to define an array of ASensorEvent and
get multiple events at one time.

6. Handle sensor events: The sensor event is represented by the ASensorEvent data
structure, which can be found at android/sensor.h (the exact path to the file is
<Android NDK root dir>/platforms/android-<version>/arch-arm/
usr/include/android/sensor.h). In our example, we accessed the acceleration
readings at the x, y, and z axes, and used the readings to determine if a phone shake
has happened.

7. Disable the sensor: After you are done accessing the sensors, you can disable it with
the following function:
int ASensorEventQueue_disableSensor(ASensorEventQueue* queue,
ASensor const* sensor);

8. Destroy the sensor event queue and free all resources associated with it:

int ASensorManager_destroyEventQueue(ASensorManager* manager,
ASensorEventQueue* queue);

Android Native Application API

186

Managing assets at Android NDK
Assets provide a way for Android apps to include various types of files, including text, image,
audio, video, and so on. This recipe discusses how to load asset files from Android NDK.

Getting ready
We will modify the example we developed in the Mapping texture in OpenGL ES 1.x recipe in
Chapter 4, Android NDK OpenGL ES API. Readers are suggested to read through the recipe or
take a look at the code first.

How to do it…
The following steps describe how the sample application is developed:

1. Create an Android application named NativeAssets. Set the package name as
cookbook.chapter5.nativeassets. Please refer to the Loading native libraries
and registering native methods recipe of Chapter 2, Java Native Interface, if you want
more detailed instructions.

2. Right-click on the NativeAssets project, select Android Tools | Add Native Support.

3. Add three Java files, namely MyActivity.java, MySurfaceView.java, and
MyRenderer.java under the cookbook.chapter5.nativeassets package.
The first two files are identical to the corresponding files in the Mapping texture in
OpenGL ES 1.x recipe in Chapter 4, Android NDK OpenGL ES API. The last file is
slightly changed, where the naLoadTexture native method signature is updated
as follows:
private static native void naLoadTexture(AssetManager
pAssetManager);

In the onSurfaceCreated method, we called the native method by passing a Java
AssetManager instance:

naLoadTexture(mContext.getAssets());

4. Create two folders under the jni folder, namely dice and libpng-1.5.12. In
the libpng-1.5.12 folder, we place the source files of libpng, which can be
downloaded from http://sourceforge.net/projects/libpng/files/.

http://sourceforge.net/projects/libpng/files/
http://sourceforge.net/projects/libpng/files/

Chapter 5

187

In the dice folder, we add the Cube.cpp, Cube.h, mylog.h, and DiceG1.cpp
files. The first three files are the same as the example in the Mapping texture in
OpenGL ES 1.x recipe in Chapter 4, Android NDK OpenGL ES API. The DiceG1.
cpp file is updated by adding procedures to read .png assets files from the assets
folder. Let's show a part of the updated code:

 � readPng: It is the callback function used at png_set_read_fn. It reads
the data from the asset file:
void readPng(png_structp pPngPtr, png_bytep pBuf, png_size_t
pCount) {
 AAsset* assetF = (AAsset*)png_get_io_ptr(pPngPtr);
 AAsset_read(assetF, pBuf, pCount);
}

 � naLoadTexture: It reads all the .png files under the assets top-level
directory and loads the data to OpenGL for texture mapping:

void naLoadTexture(JNIEnv* env, jclass clazz, jobject
pAssetManager) {
 AAssetManager* assetManager = AAssetManager_fromJava(env,
pAssetManager);
 AAssetDir* texDir = AAssetManager_openDir(assetManager,
"");
 const char* texFn;
 int pId = 0;
 while (NULL != (texFn = AAssetDir_
getNextFileName(texDir))) {
 AAsset* assetF = AAssetManager_open(assetManager, texFn,
AASSET_MODE_UNKNOWN);
 //read the png header
 png_byte header[8];
 png_byte *imageData;
 …...
 if (8 != AAsset_read(assetF, header, 8)) {
 goto FEND;
 }
 …...
 //init png reading by setting a read callback
 png_set_read_fn(pngPtr, assetF, readPng);
 …...
 // Loads image data into OpenGL.
 glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0,
format, type, imageData);

Android Native Application API

188

FEND:
 AAsset_close(assetF);
 pId++;
 }

 AAssetDir_close(texDir);
}

5. Add an Android.mk file under jni, jni/dice, and jni/libpng-1.5.12
respectively. The Android.mk file under the jni top-level folder is as follows. This
simply instructs the Android build system to include the Android.mk files under
each sub-directory under the jni folder:
LOCAL_PATH := $(call my-dir)
include $(call all-subdir-makefiles)

The Android.mk file under the jni/libpng-1.5.12 folder is as follows. This
compiles libpng as a local static library:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_CFLAGS :=
LOCAL_MODULE := libpng
LOCAL_SRC_FILES :=\
 png.c \
 pngerror.c \
 pngget.c \
 pngmem.c \
 pngpread.c \
 pngread.c \
 pngrio.c \
 pngrtran.c \
 pngrutil.c \
 pngset.c \
 pngtrans.c \
 pngwio.c \
 pngwrite.c \
 pngwtran.c \
 pngwutil.c
LOCAL_LDLIBS := -lz
include $(BUILD_STATIC_LIBRARY)

The Android.mk file under the jni/dice folder is as follows:

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := DiceG1NativeAssets
LOCAL_C_INCLUDES := $(LOCAL_PATH)/../libpng-1.5.12/

Chapter 5

189

LOCAL_STATIC_LIBRARIES := libpng
LOCAL_SRC_FILES := Cube.cpp DiceG1.cpp
LOCAL_LDLIBS := -lGLESv1_CM -llog -landroid -lz
include $(BUILD_SHARED_LIBRARY)

6. Build the Android NDK application and run it on an Android device. The app will
display a cube textured as a dice; this is the same as what we have seen in
Chapter 4, Android NDK OpenGL ES API.

How it works…
In the example, we load the .png files from the assets folder and used them as OpenGL
textures. You can use the following steps to read assets:

1. Get a native AAssetManager object from the Java AssetManager object:
This is done by the AAssetManager_fromJava function, which is defined in
asset_manager_jni.h.

2. Open an asset directory: This is done by AAssetManager_openDir.
AAssetDir* AAssetManager_openDir(AAssetManager* mgr, const char*
dirName);

To open the top-level directory "assets", we set dirName to "". For the subdirectories,
we will need to supply the directory name.

3. Get an asset file name:
const char* AAssetDir_getNextFileName(AAssetDir* assetDir);

Iterate over the files under the asset directory referred by the input argument
assetDir. If all files have been returned or there are no files, NULL is returned.

4. Open an asset file: This is done by using AAssetManager_open:
AAsset* AAssetManager_open(AAssetManager* mgr, const char*
filename, int mode);

Android Native Application API

190

The filename should be set to the asset file name, where mode can be one of
the following:

 � AASSET_MODE_UNKNOWN: Not known how the data is to be accessed

 � AASSET_MODE_RANDOM: Read chunks, and seek forward and backward

 � AASSET_MODE_STREAMING: Read sequentially, with an occasional
forward seek

 � AASSET_MODE_BUFFER: Attempt to load contents into memory, for fast
small reads

5. Read the asset file: This is done by using AAsset_read.
int AAsset_read(AAsset* asset, void* buf, size_t count);

The input argument buf refers to the location where the data is placed after reading,
and count indicates the number of bytes we want to read. The actual number of
bytes read is returned and may differ from count.

6. Close the asset file: This is done by using the AAsset_close function.

7. Close the asset directory: This is done by using the AAssetDir_close function.

There's more…
In this example, we built libpng as a local static library. This is necessary to read the .png
files, because Android NDK does not provide APIs to access .png files. We will discuss how
to develop Android NDK applications with existing libraries in Chapter 8, Porting and Using
the Existing.

6
Android NDK

Multithreading

In this chapter we will cover:

 f Creating and terminating native threads at Android NDK

 f Synchronizing native threads with mutex at Android NDK

 f Synchronizing native threads with conditional variables at Android NDK

 f Synchronizing native threads with reader/writer locks at Android NDK

 f Synchronizing native threads with semaphore at Android NDK

 f Scheduling native threads at Android NDK

 f Managing data for native threads at Android NDK

Introduction
Most non-trivial Android apps use more than one thread, therefore multithreaded
programming is essential to Android development. At Android NDK, POSIX Threads
(pthreads) is bundled in Android's Bionic C library to support multithreading. This chapter
mainly discusses the API functions defined in the pthread.h and semaphore.h header
files, which can be found under the platforms/android-<API level>/arch-arm/usr/
include/ folder of Android NDK.

We will first introduce thread creation and termination. Synchronization is important in
all multithreaded applications, therefore we discuss four commonly used synchronization
techniques at Android NDK with four recipes, including mutex, conditional variables, reader/
writer locks, and semaphore. We then illustrate thread scheduling and finally describe how to
manage data for threads.

Android NDK Multithreading

192

Being a practical book, we will not cover the theories behind multithreaded programming.
Readers are expected to understand the basics of multithreading, including concurrency,
mutual exclusion, deadlock, and so on.

In addition, pthreads programming is a complicated topic and there are books written solely
for pthreads programming. This chapter will only focus on the essentials at the context of
Android NDK programming. Interested readers can refer to the book Pthreads Programming:
A POSIX Standard for Better Multiprocessing, by Bradford Nicols, Dick Buttlar, and Jacqueline
Proulx Farrell for more information.

Creating and terminating native threads at
Android NDK

This recipe discusses how to create and terminate native threads at Android NDK.

Getting ready…
Readers are expected to know how to create an Android NDK project. We can refer to the
Writing a Hello NDK program recipe in Chapter 1, Hello NDK, for detailed instructions.

How to do it...
The following steps describe how to create a simple Android application with multiple
native threads:

1. Create an Android application named NativeThreadsCreation. Set the package
name as cookbook.chapter6.nativethreadscreation. Refer to the Loading
native libraries and registering native methods recipe in Chapter 2, Java Native
Interface for more detailed instructions.

2. Right-click on the project NativeThreadsCreation, select Android Tools |
Add Native Support.

3. Add a Java file named MainActivity.java under package cookbook.
chapter6.nativethreadscreation. This Java file simply loads the native library
NativeThreadsCreation and calls the native jni_start_threads method.

4. Add mylog.h and NativeThreadsCreation.cpp files under the jni folder.
The mylog.h file contains the Android native logcat utility functions, while the
NativeThreadsCreation.cpp file contains the native code to start multiple
threads. A part of the code is shown next.

Chapter 6

193

The jni_start_threads function starts two threads and waits for the two threads
to terminate:
void jni_start_threads() {
 pthread_t th1, th2;
 int threadNum1 = 1, threadNum2 = 2;
 int ret;
 ret = pthread_create(&th1, NULL, run_by_thread,
(void*)&threadNum1);
 ret = pthread_create(&th2, NULL, run_by_thread,
(void*)&threadNum2);
 void *status;
 ret = pthread_join(th1, &status);
 int* st = (int*)status;
 LOGI(1, "thread 1 end %d %d", ret, *st);
 ret = pthread_join(th2, &status);
 st = (int*)status;
 LOGI(1, "thread 2 end %d %d", ret, *st);
}

The run_by_thread function is executed to the native threads:

int retStatus;
void *run_by_thread(void *arg) {
 int cnt = 3, i;
 int* threadNum = (int*)arg;
 for (i = 0; i < cnt; ++i) {
 sleep(1);
 LOGI(1, "thread %d: %d", *threadNum, i);
 }
 if (1 == *threadNum) {
 retStatus = 100;
 return (void*)&retStatus;
 } else if (2 == *threadNum) {
 retStatus = 200;
 pthread_exit((void*)&retStatus);
 }
}

5. Add an Android.mk file in the jni folder with the following code:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := NativeThreadsCreation
LOCAL_SRC_FILES := NativeThreadsCreation.cpp
LOCAL_LDLIBS := -llog
include $(BUILD_SHARED_LIBRARY)

Android NDK Multithreading

194

6. Build and run the Android project, and use the following command to monitor the
logcat output:

$ adb logcat -v time NativeThreadsCreation:I *:S

The following is a screenshot of the logcat output:

How it works...
This recipe shows how to create and terminate threads at Android NDK.

Build with pthreads
Traditionally, pthread is implemented as an external library and must be linked by providing a
linker flag -lpthread. Android's Bionic C library has its own pthread implementation bundled
in. Therefore, we do not use -lpthread in the Android.mk file in our project.

Thread creation
As demonstrated in our code, a thread can be created with the pthread_create function,
which has the following prototype:

int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void
*(*start_routine)(void*), void *arg);

This function creates and starts a new thread with attributes specified by the attr input
argument. If attr is set to NULL, default attributes are used. The start_routine argument
points to the function to be executed by the newly created thread with arg as the input
argument to the function. When the function returns, the thread input argument will point to
a location where the thread ID is stored and the return value will be zero to indicate success,
or other values to indicate error.

In our sample code, we created two threads to execute the run_by_thread function.
We pass a pointer to an integer as input argument to the run_by_thread function.

Chapter 6

195

Thread termination
The thread is terminated after it returns from the start_routine function or we explicitly
call pthread_exit. The pthread_exit function has the following prototype:

void pthread_exit(void *value_ptr);

This function terminates the calling thread and returns the value pointed by value_ptr to
any successful join with the calling thread. This is also demonstrated in our sample code.
We called pthread_join on both threads we created. The pthread_join function has the
following prototype:

int pthread_join(pthread_t thread, void **value_ptr);

The function suspends the execution of the calling thread until the thread specified by the
first input argument terminates. When the function returns successfully, the second argument
can be used to retrieve the exit status of the terminated thread as demonstrated in our
sample code.

In addition, the logcat screenshot that we have seen previously shows that calling return
from a thread is equivalent to calling pthread_exit. Therefore, we can get the exit status
when either method is called.

pthread_cancel is not supported by Android Bionic C library pthread.
Therefore, if we are porting code which uses pthread_cancel, we will
need to refactor the code to get rid of it.

Synchronizing native threads with mutex at
Android NDK

This recipe discusses how to use pthread mutex at Android NDK.

How to do it...
The following steps help to create an Android project that demonstrates the usage of
pthread mutex:

1. Create an Android application named NativeThreadsMutex. Set the package
name as cookbook.chapter6.nativethreadsmutex. Refer to the Loading
native libraries and registering native methods recipe in Chapter 2, Java Native
Interface for more detailed instructions.

2. Right-click on the project NativeThreadsMutex, select Android Tools | Add Native
Support.

Android NDK Multithreading

196

3. Add a Java file named MainActivity.java under the cookbook.chapter6.
nativethreadsmutex package. This Java file simply loads the native
NativeThreadsMutex library and calls the native jni_start_threads method.

4. Add two files named mylog.h and NativeThreadsMutex.cpp in the jni folder.
NativeThreadsMutex.cpp contains the code to start two threads. The two
threads will update a shared counter. A part of the code is shown as follows:

The run_by_thread1 function is executed by the first native thread:
int cnt = 0;
int THR = 10;
void *run_by_thread1(void *arg) {
 int* threadNum = (int*)arg;
 while (cnt < THR) {
 pthread_mutex_lock(&mux1);
 while (pthread_mutex_trylock(&mux2)) {
 pthread_mutex_unlock(&mux1); //avoid deadlock
 usleep(50000); //if failed to get mux2, release mux1 first
 pthread_mutex_lock(&mux1);
 }
 ++cnt;
 LOGI(1, "thread %d: cnt = %d", *threadNum, cnt);
 pthread_mutex_unlock(&mux1);
 pthread_mutex_unlock(&mux2);
 sleep(1);
 }
}

The run_by_thread2 function is executed by the second native thread:

void *run_by_thread2(void *arg) {
 int* threadNum = (int*)arg;
 while (cnt < THR) {
 pthread_mutex_lock(&mux2);
 while (pthread_mutex_trylock(&mux1)) {
 pthread_mutex_unlock(&mux2); //avoid deadlock
 usleep(50000); //if failed to get mux2, release mux1 first
 pthread_mutex_lock(&mux2);
 }
 ++cnt;
 LOGI(1, "thread %d: cnt = %d", *threadNum, cnt);
 pthread_mutex_unlock(&mux2);
 pthread_mutex_unlock(&mux1);
 sleep(1);
 }
}

Chapter 6

197

5. Add an Android.mk file in the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := NativeThreadsMutex
LOCAL_SRC_FILES := NativeThreadsMutex.cpp
LOCAL_LDLIBS := -llog
include $(BUILD_SHARED_LIBRARY)

6. Build and run the Android project, and use the following command to monitor the
logcat output.
$ adb logcat -v time NativeThreadsMutex:I *:S

The logcat output is shown as follows:

7. We also implemented a native method jni_start_threads_dead in
NativeThreadsMutex.cpp, which can probably cause a deadlock (we may need to
run the code a few times to produce the deadlock situation). If we call jni_start_
threads_dead in MainActivity.java, the two threads will start and then block
as shown in the following logcat output:

As indicated in this screenshot, the two threads cannot proceed after started.

Android NDK Multithreading

198

How it works...
The sample project demonstrates how to use mutex to synchronize native threads. We
describe the details as follows:

Initialize and destroy mutex
A mutex can be initialized with the pthread_mutex_init function, which has the
following prototype:

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_
mutexattr_t *attr);

The input argument mutex is a pointer to the mutex to be initialized and attr indicates the
attributes of mutex. If attr is set to NULL, the default attributes will be used. The function
will return a zero if the mutex is initialized successfully and a non-zero value otherwise.

A macro PTHREAD_MUTEX_INITIALIZER is also defined in
pthread.h to initialize a mutex with default attributes.

When we are done with the mutex, we can destroy it with the pthread_mutex_destroy
function, which has the following prototype:

int pthread_mutex_destroy(pthread_mutex_t *mutex);

The input argument is a pointer pointing to the mutex to be destroyed.

In our sample project, we created two mutexes mux1 and mux2 to synchronize the access of a
shared counter cnt by the two threads. After the two threads exit, we destroyed the mutexes.

Using the mutex
The following four functions are available to lock and unlock a mutex:

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned
msecs);

In all the four functions, the input argument refers to the mutex object in use. A zero return
value indicates the mutex is locked or unlocked successfully. The last function allows us to
specify a wait timeout in milliseconds. If it cannot acquire the mutex after the timeout, it will
return EBUSY to indicate failure.

Chapter 6

199

The pthread_mutex_timedlock function is defined in some pthread
implementations to allow us to specify a timeout value. However, this function
is not available in the Android Bionic C library.

We demonstrated the usage of the functions previously in our example. In function run_
by_thread1, we first lock mux1 by pthread_mutex_lock, and then mux2 by pthread_
mutex_trylock. If mux2 cannot be locked, we unlock mux1, sleep for 50 milliseconds, and
try again. If mux2 can be locked, we update the shared counter cnt, log its current value,
and then release the two mutexes. Another function run_by_thread2 is similar to run_by_
thread1, except that it locks mux2 first, and then mux1. The two functions are executed by
two threads. This can be illustrated by the following diagram:

As shown in the preceding diagram, thread 1 needs to obtain mux1, then mux2 in order to
update cnt, while thread 2 needs to acquire mux2, then mux1 to update cnt. In case thread
1 locked mux1 and thread 2 locked mux2, neither threads can proceed. This corresponds to
the situation where pthread_mutex_trylock returns a nonzero value. If this happens, one
thread will give up its mutex so the other thread can proceed to update the shared counter
cnt and release the two mutexes. Note that we can replace the pthread_mutex_trylock
with pthread_mutex_lock_timeout_np in our code. Readers are encouraged to try it
out themselves.

We also implemented a native method jni_start_threads_dead which will probably
cause a deadlock. The thread setup is similar to the previous case, but we use pthread_
mutex_lock instead of pthread_mutex_trylock, and the threads do not give up the
mutexes they have already locked. This can be illustrated as shown in the following diagram:

thread 1

thread 2

mux1

mux2

cnt

Android NDK Multithreading

200

Thread 1 tries to lock mux1 and then mux2, while thread 2 tries to lock mux2 and then mux1.
In case where thread 1 has locked mux1 and thread 2 has locked mux2, none of the threads
can proceed. Because they won't give up the mutexes they've obtained, the two threads will be
blocked forever. This is referred to as a deadlock.

There's more...
Recall that second input argument for function pthread_mutex_init is a pointer
to pthread_mutexattr_t. A few functions are defined in pthread.h to initialize,
manipulate, and destroy mutex attributes, including:

 f pthread_mutexattr_init

 f pthread_mutexattr_destroy

 f pthread_mutexattr_gettype

 f pthread_mutexattr_settype

 f pthread_mutexattr_setpshared

 f pthread_mutexattr_getpshared

Interested readers can look into the pthread.h header file for more information.

Synchronizing native threads with
conditional variables at Android NDK

The previous recipe discusses how to synchronize threads with mutex. This recipe describes
how to use conditional variables.

How to do it...
The following steps will help us create an Android project that demonstrates the usage of
pthread conditional variables:

1. Create an Android application named NativeThreadsCondVar. Set the package
name as cookbook.chapter6.nativethreadscondvar. Refer to the Loading
native libraries and registering native methods recipe in Chapter 2, Java Native
Interface for more detailed instructions.

2. Right-click on the project NativeThreadsCondVar, select Android Tools | Add Native
Support.

3. Add a Java file named MainActivity.java under the package cookbook.
chapter6.nativethreadscondvar. This Java file simply loads the native library
NativeThreadsCondVar and calls the native jni_start_threads method.

Chapter 6

201

4. Add two files named mylog.h and NativeThreadsCondVar.cpp under the jni
folder. NativeThreadsCondVar.cpp contains the code to start two threads. The
two threads will update a shared counter. A part of the code is shown as follows:

The jni_start_threads function initializes the mutex, conditional variable and
creates two threads:
pthread_mutex_t mux;
pthread_cond_t cond;
void jni_start_threads() {
 pthread_t th1, th2;
 int threadNum1 = 1, threadNum2 = 2;
 int ret;
 pthread_mutex_init(&mux, NULL);
 pthread_cond_init(&cond, NULL);
 ret = pthread_create(&th1, NULL, run_by_thread1,
void*)&threadNum1);
 LOGI(1, "thread 1 started");
 ret = pthread_create(&th2, NULL, run_by_thread2,
void*)&threadNum2);
 LOGI(1, "thread 2 started");
 ret = pthread_join(th1, NULL);
 LOGI(1, "thread 1 end %d", ret);
 ret = pthread_join(th2, NULL);
 LOGI(1, "thread 2 end %d", ret);
 pthread_mutex_destroy(&mux);
 pthread_cond_destroy(&cond);
}

The run_by_thread1 function is executed by the first native thread:
int cnt = 0;
int THR = 10, THR2 = 5;
void *run_by_thread1(void *arg) {
 int* threadNum = (int*)arg;
 pthread_mutex_lock(&mux);
 while (cnt != THR2) {
 LOGI(1, "thread %d: about to wait", *threadNum);
 pthread_cond_wait(&cond, &mux);
 }
 ++cnt;
 LOGI(1, "thread %d: cnt = %d", *threadNum, cnt);
 pthread_mutex_unlock(&mux);
}

Android NDK Multithreading

202

The run_by_thread2 function is executed by the second native thread:

void *run_by_thread2(void *arg) {
 int* threadNum = (int*)arg;
 while (cnt < THR) {
 pthread_mutex_lock(&mux);
 if (cnt == THR2) {
 pthread_cond_signal(&cond);
 } else {
 ++cnt;
 LOGI(1, "thread %d: cnt = %d", *threadNum, cnt);
 }
 pthread_mutex_unlock(&mux);
 sleep(1);
 }
}

5. Add an Android.mk file under the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := NativeThreadsCondVar
LOCAL_SRC_FILES := NativeThreadsCondVar.cpp
LOCAL_LDLIBS := -llog
include $(BUILD_SHARED_LIBRARY)

6. Build and run the Android project, and use the following command to monitor the
logcat output:

$ adb logcat -v time NativeThreadsCondVar:I *:S

The logcat output is shown as follows:

Chapter 6

203

How it works...
While mutexes control access of shared data among threads, conditional variables allow
threads to synchronize based on the actual value of data. The typical use case is one thread
waits for a condition to be satisfied. Without a conditional variable, the thread needs to check
for the condition continuously (often known as polling). Conditional variables allow us to
handle the situation without the resource consuming polling.

Initialize and destroy conditional variables
The pthread_cond_init function is used to initialize a conditional variable. It has the
following prototype:

int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t
*attr);

The function initializes the conditional variable pointed by the cond input argument with
attributes referred by attr argument. If attr is set to NULL, the default attributes are used.

Similar to mutex, a macro PTHREAD_COND_INITIALIZER is defined in pthread.h to
initialize a conditional variable with default attributes.

After we are done with the conditional variable, we can destroy it by calling pthread_cond_
destroy, which has the following prototype:

int pthread_cond_destroy(pthread_cond_t *cond);

In our sample code, we called these two functions to initialize and destroy a conditional
variable named cond.

Using the conditional variable:
The following three functions are commonly used to manipulate a conditional variable:

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_signal(pthread_cond_t *cond);

All the three functions accept a pointer to the conditional variable in use. The first function
also takes a pointer to the associated mutex as the second argument. Note that a conditional
variable must be used with an associated mutex.

The first function should be called after the associated mutex is locked; otherwise the function
behavior is undefined. It causes the calling thread to block on the conditional variable. In
addition, the associated mutex is unlocked automatically and atomically so that another
thread can use it.

Android NDK Multithreading

204

The second and third functions are used to unblock the threads that were previously blocked
on a conditional variable. pthread_cond_broadcast will unblock all threads that are
blocked on the conditional variable pointed by cond, while pthread_cond_signal will
unblock at least one of the threads blocked on cond. The two functions have no effect if no
threads are blocked on the conditional variable specified by cond. In case there are multiple
threads to unblock, the order is dependent on the scheduling policy, which we will discuss in
the Scheduling native threads at Android NDK recipe later in this chapter.

The usage of these functions is demonstrated in our sample code. In the run_by_thread1
function, thread one will lock the associated mutex, and then wait on the conditional variable
cond. This will cause thread one to release the mutex mux. In function run_by_thread2,
thread two will obtain mux and increase the shared counter cnt.

When cnt is increased to five, thread two calls pthread_cond_signal to unblock thread
one and release mux. Thread one will lock mux automatically and atomically (note that no
pthread_mutex_lock call is needed upon wake up), and then increase cnt from five to
six, and finally exit. Thread two will continue to increase the cnt value to 10 and exit. This
explains the preceding screenshot.

We put the pthread_cond_wait(&cond, &mux) function inside
a while loop to handle spurious wakeup. Spurious wakeup refers to the
case where a thread is woken up even though no thread signaled the
condition. It is recommended that we always check the condition when
pthread_cond_wait is returned. You can refer to http://pubs.
opengroup.org/onlinepubs/7908799/xsh/pthread_cond_
wait.html for more information.

There's more...
The sample project demonstrates how conditional variables are used for native threads
synchronization. We will go through the details in the following section.

Conditional variable attributes functions
In our sample code, we created the conditional variable with default attributes by specifying
the second argument to pthread_cond_init as NULL. pthread.h defines a few functions
to initialize and manipulate conditional variable attributes. These functions include pthread_
condattr_init, pthread_condattr_getpshared, pthread_condattr_setpshared,
and pthread_condattr_destroy. We will not discuss these functions because they
are not used often. Interested readers can refer to the pthread.h header file available at
platforms/android-<API level>/arch-arm/usr/include/ for more information.

Chapter 6

205

Timed conditional variable functions
pthread.h also defines a few functions that allow us to specify a timeout value for waiting on
a conditional variable. They are listed as follows:

int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *
mutex, const struct timespec *abstime);
int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond, pthread_
mutex_t *mutex, const struct timespec *abstime);
int pthread_cond_timedwait_relative_np(pthread_cond_t *cond, pthread_
mutex_t *mutex, const struct timespec *reltime);
int pthread_cond_timeout_np(pthread_cond_t *cond, pthread_mutex_t *
mutex, unsigned msecs);

The first two functions pthread_cond_timedwait and pthread_cond_timedwait_
monotonic_np allow us to specify an absolute time value. When the system time equals
or exceeds the specified time, a timeout error is returned. The difference between the two
functions is that the first function uses the wall clock while the second function uses the
CLOCK_MONOTONIC clock. The system wall clock can jump forwards or backwards (for
example, the wall clock of a machine configured to use Network Time Protocol may change
upon clock synchronization), while the CLOCK_MONOTONIC clock is the absolute time elapsed
since some fixed point in the past and it cannot be changed abruptly.

Android pthread.h also defines a function pthread_
cond_timedwait_monotonic, which is deprecated. It is
functionally equivalent to pthread_cond_timedwait_
monotonic_np. We should always use pthread_cond_
timedwait_monotonic_np instead.

The last two functions pthread_cond_timedwait_relative_np and pthread_cond_
timeout_np allow us to specify a relative timeout value with respect to the current time. The
difference is that the timeout value is specified as timespec structure in one function and as
number of milliseconds in the other.

Several methods covered in this recipe end with np, which stands for
"nonportable". This means these functions may not be implemented in
other pthread libraries. If we are designing our program to also work on
platforms other than Android, we should avoid using these functions.

Android NDK Multithreading

206

Synchronizing native threads with reader/
writer locks at Android NDK

The previous two recipes cover thread synchronization with mutex and conditional variables.
This recipe discusses reader/writer locks in Android NDK.

Getting ready...
Readers are recommended to read the previous two recipes, Synchronizing native threads
with mutex at Android NDK and Synchronizing native threads with conditional variables at
Android NDK, before going through this one.

How to do it...
The following steps will help you create an Android project that demonstrates the usage of the
pthread reader/writer lock:

1. Create an Android application named NativeThreadsRWLock. Set the package
name as cookbook.chapter6.nativethreadsrwlock. Refer to the Loading
native libraries and registering native methods recipe in Chapter 2, Java Native
Interface for more detailed instructions.

2. Right-click on the project NativeThreadsRWLock, select Android Tools | Add Native
Support.

3. Add a Java file named MainActivity.java under package cookbook.
chapter6.nativethreadsrwlock. This Java file simply loads the native library
NativeThreadsRWLock and calls the native method jni_start_threads.

4. Add two files named mylog.h and NativeThreadsRWLock.cpp under the jni
folder. A part of the code in NativeThreadsRWLock.cpp is shown as follows:

jni_start_threads starts pNumOfReader reader threads and pNumOfWriter
writer threads:
void jni_start_threads(JNIEnv *pEnv, jobject pObj, int
pNumOfReader, int pNumOfWriter) {
 pthread_t *ths;
 int i, ret;
 int *thNum;
 ths = (pthread_t*)malloc(sizeof(pthread_t)*(pNumOfReader+pNumOfW
riter));
 thNum = (int*)malloc(sizeof(int)*(pNumOfReader+pNumOfWriter));
 pthread_rwlock_init(&rwlock, NULL);
 for (i = 0; i < pNumOfReader + pNumOfWriter; ++i) {
 thNum[i] = i;

Chapter 6

207

 if (i < pNumOfReader) {
 ret = pthread_create(&ths[i], NULL, run_by_read_thread,
(void*)&(thNum[i]));
 } else {
 ret = pthread_create(&ths[i], NULL, run_by_write_thread,
(void*)&(thNum[i]));
 }
 }
 for (i = 0; i < pNumOfReader+pNumOfWriter; ++i) {
 ret = pthread_join(ths[i], NULL);
 }
 pthread_rwlock_destroy(&rwlock);
 free(thNum);
 free(ths);
}

The run_by_read_thread function is executed by the reader threads:
void *run_by_read_thread(void *arg) {
 int* threadNum = (int*)arg;
 int ifRun = 1;
 int accessTimes = 0;
 int ifPrint = 1;
 while (ifRun) {
 if (!pthread_rwlock_rdlock(&rwlock)) {
 if (100000*numOfWriter == sharedCnt) {
 ifRun = 0;
 }
 if (0 <= sharedCnt && ifPrint) {
 LOGI(1, "reader thread %d sharedCnt value before
processing %d\n", *threadNum, sharedCnt);
 int j, k;//some dummy processing
 for (j = 0; j < 100000; ++j) {
 k = j*2;
 k = sqrt(k);
 }
 ifPrint = 0;
 LOGI(1, "reader thread %d sharedCnt value after processing
%d %d\n", *threadNum, sharedCnt, k);
 }
 if ((++accessTimes) == INT_MAX/5) {
 accessTimes = 0;
 LOGI(1, "reader thread %d still running: %d\n",
*threadNum, sharedCnt);
 }
 pthread_rwlock_unlock(&rwlock);

Android NDK Multithreading

208

 }
 }
 LOGI(1, "reader thread %d return %d\n", *threadNum, sharedCnt);
 return NULL;
}

The run_by_write_thread function is executed by the writer threads:

void *run_by_write_thread(void *arg) {
 int cnt = 100000, i, j, k;
 int* threadNum = (int*)arg;
 for (i = 0; i < cnt; ++i) {
 if (!pthread_rwlock_wrlock(&rwlock)) {
 int lastShCnt = sharedCnt;
 for (j = 0; j < 10; ++j) { //some dummy processing
 k = j*2;
 k = sqrt(k);
 }
 sharedCnt = lastShCnt + 1;
 pthread_rwlock_unlock(&rwlock);
 }
 }
 LOGI(1, "writer thread %d return %d %d\n", *threadNum,
sharedCnt, k);
 return NULL;
}

5. Add an Android.mk file under the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := NativeThreadsRWLock
LOCAL_SRC_FILES := NativeThreadsRWLock.cpp
LOCAL_LDLIBS := -llog
include $(BUILD_SHARED_LIBRARY)

6. Build and run the Android project, and use the following command to monitor the
logcat output:

$ adb logcat -v time NativeThreadsRWLock:I *:S

Chapter 6

209

The logcat output is shown as follows:

How it works...
The reader/writer lock is internally implemented with a mutex and a conditional variable. It
has the following rules:

 f If a thread tries to acquire a read lock for a resource, it can succeed as long as no
other threads hold a write lock for the resource.

 f If a thread tries to acquire a write lock for a resource, it can succeed only when no
other threads hold a write or read lock for the resource.

 f The reader/writer lock guarantees only one thread can modify (need to get the write
lock) the resource, while permitting multiple threads to read the resource (need to
get the read lock). It also makes sure no reads happen when the resource is being
changed. In the following sections we describe the reader/writer lock functions
provided by Android pthread.h.

Initialize and destroy a reader/writer lock
The following two functions are defined to initialize and destroy a reader/writer lock:

int pthread_rwlock_init(pthread_rwlock_t *rwlock, const pthread_
rwlockattr_t *attr);
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

pthread_rwlock_init initializes a reader/writer lock pointed by the rwlock argument
with the attributes referred by argument attr. If attr is set to NULL, the default attributes
are used. pthread_rwlock_destroy accepts a pointer to a reader/writer lock and
destroys it.

Android NDK Multithreading

210

There is also a macro PTHREAD_RWLOCK_INITIALIZER defined to
initialize a reader/writer lock. The default attributes are used in this case.

Using a reader/writer lock
The following two functions are defined to acquire a read and a write lock respectively:

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

Both functions accept a pointer to the reader/writer lock and return a zero to indicate
success. If the lock cannot be acquired, the calling thread will be blocked until the block is
available or till an error occurs.

The following function is defined to unlock either read lock or write lock:

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

In our sample code, we demonstrated the usage of these functions. In run_by_read_
thread function, the read threads need to acquire the read lock in order to access the value
of the shared resource sharedCnt. In the run_by_write_thread function, the write
threads need to acquire the write lock before updating the shared resource sharedCnt.

If we remove the code which locks and unlocks the read and write lock, build the application,
and rerun it, the output is as shown in the following screenshot:

Chapter 6

211

As shown in the output, the shared resource sharedCnt is updated to a value less
than the final value when reader/writer lock is enabled. The reason is illustrated in the
following diagram:

shared counter
N=>N+1

N
N

Writer thread
1

Writer thread
1

N+1

N+1

In this diagram, two writers get the same value (N) of the shared counter, and both update
the value from N to N+1. When they write the value back to the shared counter, the shared
counter is updated from N to N+1 although it is updated twice by two writers. This illustrates
why we need write lock. Also note at reader threads, two reads of the sharedCnt (one
before processing and one after processing) give us two different values because the writers
have updated the value. This may not be desirable sometimes and that is why a read lock is
necessary at times.

There's more...
There are a few more read/write lock functions defined in pthread.h.

Timed read/write lock and trylock
Android pthread.h defines the following two functions to allow the calling thread to specify a
timeout value when trying to acquire the read or write lock:

int pthread_rwlock_timedrdlock(pthread_rwlock_t *rwlock, const struct
timespec *abs_timeout);
int pthread_rwlock_timedwrlock(pthread_rwlock_t *rwlock, const struct
timespec *abs_timeout);

In addition, the following two functions are available for the calling thread to acquire read or
write lock without blocking itself. If the lock is not available, the functions will return a nonzero
value instead of blocking:

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

Android NDK Multithreading

212

Reader/writer lock attribute functions
Android pthread.h defines a set of functions to initialize and manipulate a reader/writer
lock attribute, which can be passed to pthread_rwlock_init as the second argument.
These functions include pthread_rwlockattr_init, pthread_rwlockattr_destroy,
pthread_rwlockattr_setpshared, and pthread_rwlockattr_getpshared. They are
not used often in Android NDK development and therefore not discussed here.

Synchronizing native threads with
semaphore at Android NDK

We have covered mutex, conditional variables, and reader/writer lock in the previous
three recipes. This is the last recipe on threads synchronization at Android NDK, and we
will discuss semaphores.

Getting ready...
Readers are expected to read through the previous three recipes, Synchronizing native
threads with mutex at Android NDK, Synchronizing native threads with conditional variables
at Android NDK, and Synchronizing native threads with reader/writer locks at Android NDK,
before this one.

How to do it...
The following steps will help you create an Android project that demonstrates the usage of
pthread reader/writer lock:

1. Create an Android application named NativeThreadsSemaphore. Set the package
name as cookbook.chapter6.nativethreadssemaphore. Refer to the Loading
native libraries and registering native methods recipe in Chapter 2, Java Native
Interface for more detailed instructions.

2. Right-click on the project NativeThreadsSemaphore, select Android Tools | Add
Native Support.

3. Add a Java file named MainActivity.java under package cookbook.
chapter6.nativethreadssemaphore. This Java file simply loads
the native library NativeThreadsSemaphore and calls the native
jni_start_threads method.

4. Add two files named mylog.h and NativeThreadsSemaphore.cpp under the jni
folder. A part of the code in NativeThreadsSemaphore.cpp is shown as follows:

Chapter 6

213

jni_start_threads creates pNumOfConsumer number of consumer threads,
pNumOfProducer number of producer threads, and numOfSlots number of slots:
void jni_start_threads(JNIEnv *pEnv, jobject pObj, int
pNumOfConsumer, int pNumOfProducer, int numOfSlots) {
 pthread_t *ths;
 int i, ret;
 int *thNum;
 pthread_mutex_init(&mux, NULL);
 sem_init(&emptySem, 0, numOfSlots);
 sem_init(&fullSem, 0, 0);
 ths = (pthread_t*)malloc(sizeof(pthread_t)*(pNumOfConsumer+pNumO
fProducer));
 thNum = (int*)malloc(sizeof(int)*(pNumOfConsumer+pNumOfProduc
er));
 for (i = 0; i < pNumOfConsumer + pNumOfProducer; ++i) {
 thNum[i] = i;
 if (i < pNumOfConsumer) {
 ret = pthread_create(&ths[i], NULL,
un_by_consumer_thread, (void*)&(thNum[i]));
 } else {
 ret = pthread_create(&ths[i], NULL, run_by_producer_thread,
(void*)&(thNum[i]));
 }
 }
 for (i = 0; i < pNumOfConsumer+pNumOfProducer; ++i) {
 ret = pthread_join(ths[i], NULL);
 }
 sem_destroy(&emptySem);
 sem_destroy(&fullSem);
 pthread_mutex_destroy(&mux);
 free(thNum);
 free(ths);
}

run_by_consumer_thread is the function executed by the consumer thread:
void *run_by_consumer_thread(void *arg) {
 int* threadNum = (int*)arg;
 int i;
 for (i = 0; i < 4; ++i) {
 sem_wait(&fullSem);
 pthread_mutex_lock(&mux);
 --numOfItems;

Android NDK Multithreading

214

 pthread_mutex_unlock(&mux);
 sem_post(&emptySem);
 }
 return NULL;
}

run_by_producer_thread is the function executed by producer thread:

void *run_by_producer_thread(void *arg) {
 int* threadNum = (int*)arg;
 int i;
 for (i = 0; i < 4; ++i) {
 sem_wait(&emptySem);
 pthread_mutex_lock(&mux);
 ++numOfItems;
 pthread_mutex_unlock(&mux);
 sem_post(&fullSem);
 }
 return NULL;
}

5. Add an Android.mk file under the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := NativeThreadsSemaphore
LOCAL_SRC_FILES := NativeThreadsSemaphore.cpp
LOCAL_LDLIBS := -llog
include $(BUILD_SHARED_LIBRARY)

6. Build and run the Android project, and use the following command to monitor the
logcat output:

$ adb logcat -v time NativeThreadsSemaphore:I *:S

Chapter 6

215

The logcat output is shown in the following screenshot:

How it works...
Semaphores are essentially integer counters. Two primary operations are supported by
a semaphore:

 f Wait: It attempts to decrement the semaphore value. If wait is called on a semaphore
of value zero, the calling thread is blocked until post is called somewhere else to
increment semaphore value.

 f Post: It attempts to increment the semaphore value.

The semaphore related functions are defined in semaphore.h rather than pthread.h. Next,
we describe a few key functions.

Interprocess mutex, conditional variable, and semaphore are not supported
on Android. Android uses Intent, Binder, and so on for interprocess
communication and synchronization.

Android NDK Multithreading

216

Initialize and destroy a semaphore
The following three functions are defined to initialize or destroy a semaphore:

extern int sem_init(sem_t *sem, int pshared, unsigned int value);
extern int sem_init(sem_t *, int, unsigned int value);
extern int sem_destroy(sem_t *);

The first two functions are used to initialize a semaphore. They both initialize the semaphore
pointed by the input argument sem with the value indicated by the argument value. The
first function also accepts an argument pshared, which should be set to zero for thread
synchronization. If it is set to nonzero, the semaphore can be shared between processes,
which is not supported on Android and therefore not discussed.

Using a semaphore
The following functions are defined to use a semaphore.

extern int sem_trywait(sem_t *);
extern int sem_wait(sem_t *);
extern int sem_post(sem_t *);
extern int sem_getvalue(sem_t *, int *);

The first two functions are used to wait on a semaphore. If the semaphore value is not zero,
then the value is decreased by one. If the value is zero, the first function will return a nonzero
value to indicate failure, while the second function will block the calling thread. The third
function is used to increase the semaphore value by one, and the last function is used to
query the value of the semaphore. Note that the value is returned through the second input
argument rather than the return value.

Android semaphore.h also defines a function named sem_timedwait to
allow us to specify a timeout value while waiting on a semaphore.

In our sample project, we used two semaphores emptySem and fullSem, and a mutex mux.
The app will create a few producer threads and consumer threads. The emptySem semaphore
is used to indicate the number of slots available to store the items produced by the producer
thread, while fullSem refers to the number of items for the consumer thread to consume.
The mutex mux is used to ensure no two threads can access the shared counter numOfItems
at one time.

The producer thread will need to wait on the emptySem semaphore. When it is unblocked,
the producer has obtained an empty slot. It will lock mux and then update the shared count
numOfItems, which means a new item has been produced. Therefore, it will call the post
function on fullSem to increment its value.

Chapter 6

217

On the other hand, the consumer thread will wait on fullSem. When it is unblocked,
the consumer has consumed an item. It will lock mux and then update the shared count
numOfItems. A new empty slot is available because of the item consumed, so the consumer
thread will call post on emptySem to increment its value.

Mutex mux can also be replaced by a binary semaphore. The possible values
of a binary semaphore are restricted to zero and one.

Scheduling native threads at Android NDK
This recipe discusses how to schedule native threads at Android NDK.

Getting ready...
Readers are suggested to read the Manipulating classes in JNI and Calling static and instance
methods from native code recipes in Chapter 2, Java Native Interface, and Creating and
terminating native threads at Android NDK recipe in this chapter.

How to do it...
The following steps will help us create an Android project that demonstrates threads
scheduling at Android NDK:

1. Create an Android application named NativeThreadsSchedule. Set the package
name as cookbook.chapter6.nativethreadsschedule. Refer to the Loading
native libraries and registering native methods recipe in Chapter 2, Java Native
Interface for more detailed instructions.

2. Right-click on the project NativeThreadsSchedule, select Android Tools | Add Native
Support.

3. Add a Java file named MainActivity.java under package cookbook.
chapter6.nativethreadsschedule. This Java file simply loads the native library
NativeThreadsSchedule and calls the native methods.

4. Add five files named mylog.h, NativeThreadsSchedule.h,
NativeThreadsSchedule.cpp, SetPriority.cpp, and
JNIProcessSetThreadPriority.cpp under the jni folder. A part of the code in
the last three files is shown as follows:

 � The NativeThreadsSchedule.cpp file contains the source code to
demonstrate the threads scheduling functions defined in pthread.h

Android NDK Multithreading

218

jni_thread_scope demonstrates how to set the native thread contention
scope:
void jni_thread_scope() {
 pthread_attr_t attr;
 int ret;
 pid_t fpId = fork();
 if (0 == fpId) {
 pthread_attr_init(&attr);
 int ret = pthread_attr_setscope(&attr, PTHREAD_SCOPE_
PROCESS);
 pthread_t thFive[5];
 int threadNums[5];
 int i;
 for (i = 0; i < 5; ++i) {
 threadNums[i] = i; ret = pthread_
create(&thFive[i], &attr, run_by_thread,
(void*)&(threadNums[i]));
 }
 for (i = 0; i < 5; ++i) {
 ret = pthread_join(thFive[i], NULL);
 }
 } else {
 pthread_attr_init(&attr);
 int ret = pthread_attr_setscope(&attr, PTHREAD_SCOPE_
SYSTEM);
 pthread_t th1;
 int threadNum1 = 0;
 ret = pthread_create(&th1, &attr, run_by_thread,
(void*)&threadNum1);
 ret = pthread_join(th1, NULL);
 }
 //code executed by both processes
 pthread_attr_destroy(&attr);
}

jni_thread_fifo demonstrates how to set the native thread scheduling
policy and priority:
void jni_thread_fifo() {
 pthread_attr_t attr;
 int ret;
 pid_t fpId = fork();
 struct sched_param prio;
 if (0 == fpId) {
 //the child process

Chapter 6

219

 pthread_attr_init(&attr);
 pthread_t thFive[5];
 int threadNums[5];
 int i;
 for (i = 0; i < 5; ++i) {
 if (i == 4) {
 prio.sched_priority = 10;
 } else {
 prio.sched_priority = 1;
 }
 ret = pthread_attr_setschedpolicy(&attr, SCHED_FIFO);
 ret = pthread_attr_setschedparam(&attr, &prio);
 threadNums[i] = i;
 ret = pthread_create(&thFive[i], &attr, run_by_thread,
(void*)&(threadNums[i]));
 pthread_attr_t lattr;
 struct sched_param lprio;
 int lpolicy;
 pthread_getattr_np(thFive[i], &lattr);
 pthread_attr_getschedpolicy(&lattr, &lpolicy);
 pthread_attr_getschedparam(&lattr, &lprio);
 pthread_attr_destroy(&lattr);
 }
 for (i = 0; i < 5; ++i) {
 ret = pthread_join(thFive[i], NULL);
 }
 } else {
 //the parent process
 pthread_attr_init(&attr);
 prio.sched_priority = 10;
 ret = pthread_attr_setschedpolicy(&attr, SCHED_FIFO);
 ret = pthread_attr_setschedparam(&attr, &prio);
 pthread_t th1;
 int threadNum1 = 0;
 ret = pthread_create(&th1, &attr, run_by_thread,
(void*)&threadNum1);
 pthread_attr_t lattr;
 struct sched_param lprio;
 int lpolicy;
 pthread_getattr_np(th1, &lattr);
 pthread_attr_getschedpolicy(&lattr, &lpolicy);
 pthread_attr_getschedparam(&lattr, &lprio);
 pthread_attr_destroy(&lattr);
 ret = pthread_join(th1, NULL);

Android NDK Multithreading

220

 }
 //code executed by both processes
 pthread_attr_destroy(&attr);
}

run_by_thread is the actual function to be executed by each native
thread:

void *run_by_thread(void *arg) {
 int cnt = 18000000, i;
 int* threadNum = (int*)arg;
 for (i = 1; i < cnt; ++i) {
 if (0 == i%6000000) {
 LOGI(1, "process %d thread %d: %d", getpid(),
*threadNum, i);
 }
 }
 LOGI(1, "process %d thread %d return", getpid(),
*threadNum);
}

 � The SetPriority.cpp file contains the source code to configure thread
nice value through setpriority

The jni_thread_set_priority method creates and joins five
native methods:
void jni_thread_set_priority() {
 int ret;
 pthread_t thFive[5];
 int threadNums[5];
 int i;
 for (i = 0; i < 5; ++i) {
 threadNums[i] = i;
 ret = pthread_create(&thFive[i], NULL, run_by_thread2,
(void*)&(threadNums[i]));
 }
 for (i = 0; i < 5; ++i) {
 ret = pthread_join(thFive[i], NULL);
 }
}

The run_by_thread2 function is executed by each native thread:

void *run_by_thread2(void *arg) {
 int cnt = 18000000, i;
 int* threadNum = (int*)arg;
 switch (*threadNum) {

Chapter 6

221

 case 0:
 setpriority(PRIO_PROCESS, 0, 21);
 break;
 case 1:
 setpriority(PRIO_PROCESS, 0, 10);
 break;
 case 2:
 setpriority(PRIO_PROCESS, 0, 0);
 break;
 case 3:
 setpriority(PRIO_PROCESS, 0, -10);
 break;
 case 4:
 setpriority(PRIO_PROCESS, 0, -21);
 break;
 default:
 break;
 }
 for (i = 1; i < cnt; ++i) {
 if (0 == i%6000000) {
 int prio = getpriority(PRIO_PROCESS, 0);
 LOGI(1, "thread %d (prio = %d): %d", *threadNum, prio,
i);
 }
 }
 int prio = getpriority(PRIO_PROCESS, 0);
 LOGI(1, "thread %d (prio = %d): %d return", *threadNum,
prio, i);
}

 � The JNIProcessSetThreadPriority.cpp file contains the source
code to configure thread nice value through the android.os.Process.
setThreadPriority Java method

The jni_process_setThreadPriority method creates and joins five
native threads:
void jni_process_setThreadPriority() {
 int ret;
 pthread_t thFive[5];
 int threadNums[5];
 int i;
 for (i = 0; i < 5; ++i) {
 threadNums[i] = i;
 ret = pthread_create(&thFive[i], NULL, run_by_thread3,
(void*)&(threadNums[i]));

http://developer.android.com/reference/android/os/Process.html#setThreadPriority(int)

Android NDK Multithreading

222

 if(ret) {
 LOGE(1, "cannot create the thread %d: %d", i, ret);
 }
 LOGI(1, "thread %d started", i);
 }
 for (i = 0; i < 5; ++i) {
 ret = pthread_join(thFive[i], NULL);
 LOGI(1, "join returned for thread %d", i);
 }
}

The run_by_thread3 function is executed by each native thread. The
thread nice value is set here:

void *run_by_thread3(void *arg) {
 int cnt = 18000000, i;
 int* threadNum = (int*)arg;
 JNIEnv *env;
 jmethodID setThreadPriorityMID;
 cachedJvm->AttachCurrentThread(&env, NULL);
 jclass procClass = env->FindClass("android/os/Process");
 setThreadPriorityMID = env->GetStaticMethodID(procClass,
"setThreadPriority", "(I)V");
 switch (*threadNum) {
 case 0:
 env->CallStaticVoidMethod(procClass,
setThreadPriorityMID, 21);
 break;
 case 1:
 env->CallStaticVoidMethod(procClass,
setThreadPriorityMID, 10);
 break;
 case 2:
 env->CallStaticVoidMethod(procClass,
setThreadPriorityMID, 0);
 break;
 case 3:
 env->CallStaticVoidMethod(procClass,
setThreadPriorityMID, -10);
 break;
 case 4:
 env->CallStaticVoidMethod(procClass,
setThreadPriorityMID, -21);
 break;
 default:
 break;

 }
 //we can also use getThreadPriority(int tid) through JNI
interface

Chapter 6

223

 for (i = 1; i < cnt; ++i) {
 if (0 == i%6000000) {
 int prio = getpriority(PRIO_PROCESS, 0);
 LOGI(1, "thread %d (prio = %d): %d", *threadNum, prio,
i);
 }
 }
 int prio = getpriority(PRIO_PROCESS, 0);
 LOGI(1, "thread %d (prio = %d): %d return", *threadNum,
prio, i);
 cachedJvm->DetachCurrentThread();
}

5. Add an Android.mk file under the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := NativeThreadsSchedule
LOCAL_SRC_FILES := NativeThreadsSchedule.cpp
LOCAL_LDLIBS := -llog
include $(BUILD_SHARED_LIBRARY)

6. In MainActivity.java, disable all native methods except jni_thread_scope.
Build the project and run it. Start a terminal and enter the following command to
monitor the logcat output:
$ adb logcat -v time NativeThreadsSchedule:I *:S

The following screenshot shows the output:

Android NDK Multithreading

224

7. In MainActivity.java, disable all native methods except jni_thread_fifo.
Build the project and run it. The logcat output is shown in the following screenshot:

8. In MainActivity.java, disable all native methods except jni_thread_set_
priority. Build the project and run it. The logcat output is shown in the
following screenshot:

Chapter 6

225

9. In MainActivity.java, disable all native methods except jni_process_
setThreadPriority. Build the project and run it. The logcat output is shown
in the following screenshot:

How it works...
We can schedule native threads by setting the scheduling contention scope, thread priority,
and scheduling policy:

 f Scheduling contention scope: It determines the threads that a thread must compete
against when the scheduler schedules threads

 f Thread priority: It determines which thread is more likely to be selected by the
scheduler when a CPU is available

 f Scheduling policy: It determines how the scheduler schedules threads with the
same priority

One way to adjust these settings is through the thread attribute. The following functions are
defined in pthread.h to initialize and destroy an instance of pthread_attr_t:

int pthread_attr_init(pthread_attr_t * attr);
int pthread_attr_destroy(pthread_attr_t * attr);

In these two functions, the input argument is a pointer to a pthread_attr_t object. We will
now describe contention scope, thread priority, and scheduling policy in detail.

Android NDK Multithreading

226

Scheduling contention scope
Two scopes are defined in a typical pthread implementation, namely PTHREAD_SCOPE_
SYSTEM and PTHREAD_SCOPE_PROCESS. A system scope thread competes for the CPU
with all other threads system-wide. On the other hand, a process scope thread is scheduled
against other threads in the same process.

Android Bionic pthread.h defines the following two functions to set and get the
thread scope:

int pthread_attr_setscope(pthread_attr_t *attr, int scope);
int pthread_attr_getscope(pthread_attr_t const *attr);

The two functions accept a pointer to a pthread attribute object as the input argument. The
set function also includes a second argument to let us pass the scope constant. These two
functions return a zero to indicate success and a nonzero value to signal failure.

It turns out pthread_attr_setscope with PTHREAD_SCOPE_PROCESS as second input
argument is not supported by Android. In other words, Android native threads always have
system scope. As shown in jni_thread_scope at NativeThreadsSchedule.cpp, calling
pthread_attr_setscope with PTHREAD_SCOPE_PROCESS will return a nonzero value.

We demonstrated the usage of the two functions previously in the native method jni_
thread_scope. We created two processes in the method. The child process runs five
threads, and the parent process only runs a single thread. Because they are all system scope
threads, the threads are scheduled to get roughly same amount of CPU time slices regardless
of the process they belong to, and therefore they finish at roughly the same time as shown in
the first logcat screenshot in step 6 of the How to do it... section of this recipe.

We called fork to create a process in our code. This is for demonstration
purpose. It is strongly discouraged to create a native process with fork
on Android because the native process won't be managed by the Android
framework and a misbehaving native process can consume lots of CPU cycles
and cause security vulnerabilities.

Scheduling policy and thread priority
Each thread has an associated scheduling policy and priority. A thread with higher priority is
more likely to be selected by the scheduler when a CPU is available. In case multiple threads
have the same priority, the scheduling policy will determine how to schedule them. The
policies defined in Android pthread.h include SCHED_OTHER, SCHED_FIFO, and
SCHED_RR.

Chapter 6

227

The valid range of priority values is associated with the scheduling policy.
SCHED_FIFO: In the First In First Out (FIFO) policy, a thread gets the CPU
until it exits or blocks. If blocked, it is placed at the end of the queue for its
priority and the front thread in the queue will be given to the CPU. The priority
range allowed under this policy is 1 to 99.
SCHED_RR: The Round Robin (RR) policy is similar to FIFO except that each
thread is only allowed to run for a certain amount of time, known as quantum.
When a thread finishes its quantum, it is interrupted and placed at the end of
the queue for its priority. The priority range allowed under this policy is also 1
to 99.
SCHED_OTHER: This is the default scheduling policy. It also allows a thread
to run only a limited amount of times, but the algorithm can be different
and more complicated than SCHED_RR. All threads under this policy have a
priority of 0.

People who are experienced with pthreads programming may be familiar with the pthreads
policy and priority functions including:

 f pthread_attr_setschedpolicy

 f pthread_attr_getschedpolicy

 f pthread_attr_setschedparam

 f pthread_attr_getschedparam

These functions do not work on Android, as expected, although they are defined in the Android
pthread.h header. Therefore, we will not discuss the details here.

In our sample project, we implemented a native method jni_thread_fifo, which attempts
to set the scheduling policy as SCHED_FIFO and the thread priority. As shown in the second
logcat screenshot, the threads are not affected by these settings.

In summary, all Android threads are system scope threads with 0 priority, and scheduling
policy SCHED_OTHER.

Scheduling using nice value/level
Nice value/level is another factor that can affect the scheduler. It is also often referred
to as priority, but here we will use nice value to differentiate it with the thread priority we
discussed earlier.

Android NDK Multithreading

228

We use the following two approaches to adjust the nice value:

 f Calling setpriority: This is demonstrated in SetPriority.cpp. We created five
threads with different nice values, and the third logcat screenshot in step 8 of the
How to do it section indicates the thread with lower nice values return first.

 f Calling android.os.Process.setThreadPriority: This is illustrated in
JNIProcessSetThreadPriority.cpp. As shown in the fourth logcat
screenshot at step 9 of the How to do it section, we got similar result as calling
setpriority. In fact, setThreadPriority calls setpriority internally.

Managing data for native threads at Android
NDK

There are several options when we want to preserve thread-wide data across functions,
including global variables, argument passing, and thread-specific data key. This recipe
discusses all the three options with a focus on thread-specific data key.

Getting ready...
Readers are recommended to read the Creating and terminating native threads at Android
NDK recipe and the Synchronizing native threads with mutex at Android NDK recipe in this
chapter before this one.

How to do it...
The following steps will help us create an Android project that demonstrates data
management at Android NDK:

1. Create an Android application named NativeThreadsData. Set the package name
as cookbook.chapter6.nativethreadsdata. Please refer to the Loading native
libraries and registering native methods recipe in Chapter 2, Java Native Interface if
you want more detailed instructions.

2. Right-click on the project NativeThreadsData, select Android Tools | Add Native
Support.

3. Add a Java file named MainActivity.java under package cookbook.
chapter6.nativethreadsdata. This Java file simply loads the native library
NativeThreadsData and calls the native methods.

4. Add mylog.h and NativeThreadsData.cpp files under the jni folder.
The mylog.h contains the Android native logcat utility functions, while the
NativeThreadsData.cpp file contains the native code to start multiple
threads. A part of the code is shown as follows:

Chapter 6

229

jni_start_threads starts n number of threads, where n is specified by the
variable pNumOfThreads:
void jni_start_threads(JNIEnv *pEnv, jobject pObj, int
pNumOfThreads) {
 pthread_t *ths;
 int i, ret;
 int *thNum;
 ths = (pthread_t*)malloc(sizeof(pthread_t)*pNumOfThreads);
 thNum = (int*)malloc(sizeof(int)*pNumOfThreads);
 pthread_mutex_init(&mux, NULL);
 pthread_key_create(&muxCntKey, free_muxCnt);
 for (i = 0; i < pNumOfThreads; ++i) {
 thNum[i] = i;
 ret = pthread_create(&ths[i], NULL, run_by_thread,
(void*)&(thNum[i]));
 }
 for (i = 0; i < pNumOfThreads; ++i) {
 ret = pthread_join(ths[i], NULL);
 }
 pthread_key_delete(muxCntKey);
 pthread_mutex_destroy(&mux);
 free(thNum);
 free(ths);
}

The thread_step_1 function is executed by threads. It gets the data associated
with the thread-specific key and uses it to count the number of times the mutex
is locked:
void thread_step_1() {
 struct timeval st, cu;
 long stt, cut;
 int *muxCntData = (int*)pthread_getspecific(muxCntKey);
 gettimeofday(&st, NULL);
 stt = st.tv_sec*1000 + st.tv_usec/1000;
 do {
 pthread_mutex_lock(&mux);
 (*muxCntData)++;
 pthread_mutex_unlock(&mux);
 gettimeofday(&st, NULL);
 cut = st.tv_sec*1000 + st.tv_usec/1000;
 } while (cut - stt < 10000);
}

Android NDK Multithreading

230

The thread_step_2 function is executed by threads. It gets the data associated
with the thread-specific key and prints it out:
void thread_step_2(int thNum) {
 int *muxCntData = (int*)pthread_getspecific(muxCntKey);
 LOGI(1, "thread %d: mux usage count: %d\n", thNum, *muxCntData);
}

The run_by_thread function is executed by threads:

void *run_by_thread(void *arg) {
 int* threadNum = (int*)arg;
 int *muxCntData = (int*)malloc(sizeof(int));
 *muxCntData = 0;
 pthread_setspecific(muxCntKey, (void*)muxCntData);
 thread_step_1();
 thread_step_2(*threadNum);
 return NULL;
}

5. Add an Android.mk file under the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := NativeThreadsData
LOCAL_SRC_FILES := NativeThreadsData.cpp
LOCAL_LDLIBS := -llog
include $(BUILD_SHARED_LIBRARY)

6. Build and run the Android project, and use the following command to monitor the
logcat output:

$ adb logcat -v time NativeThreadsData:I *:S

The logcat output is shown in the following screenshot:

Chapter 6

231

How it works...
In our sample project, we demonstrated passing data using global variables, argument, and
thread-specific data key:

 f The mutex mux is declared as a global variable, and each thread can access it.

 f Each thread is assigned a thread number as input argument. In the function
run_by_thread, each thread passes the accepted thread number to another
function thread_step_2.

 f We defined a thread-specific key muxCntKey. Each thread can associate its own
value with the key. In our code, we used this key to store the number of times a
thread locks the mutex mux.

Next we'll discuss the thread-specific data key in detail.

Creation and deletion of thread-specific data key
The following two functions are defined in pthread.h to create and delete a thread-specific
data key respectively:

int pthread_key_create(pthread_key_t *key, void (*destructor_function)
(void *));
int pthread_key_delete (pthread_key_t key);

pthread_key_create accepts a pointer to the pthread_key_t structure and a function
pointer to a destruction function to be associated with each key value. The destruction
function is optional and can be set to NULL. In our example, we called pthread_key_
create to create the key named muxCntKey.

The pthread_key_create function returns zero to indicate success and some other values
for failure. If successful, the first input argument key will be pointing to the newly created
key, and the value NULL is associated with the new key in all active threads. If a new thread
is created after the key creation, the value NULL is also associated with the key for the
new thread.

When a thread exits, the associated value of the key is set to NULL, and then the destruction
function associated with the key is called with the key's previously associated value as the
sole input argument. In our sample code, we defined a destruction function free_muxCnt to
free the memory of data associated with the key muxCntKey.

pthread_key_delete is relatively simple. It accepts a key created by pthread_key_
create and deletes it. It returns zero for success and a nonzero value for failure.

Android NDK Multithreading

232

Set and get thread-specific data
Android pthread.h defines the following two functions for thread-specific data management:

int pthread_setspecific(pthread_key_t key, const void *value);
void *pthread_getspecific(pthread_key_t key);

The pthread_setspecific function accepts a previously created data key and a pointer
to data to be associated with the key. It returns a zero to indicate success and nonzero
otherwise. Different threads can call this function to bind different values to the same key.

pthread_getspecific accepts a previously created data and key and returns a pointer to
the data associated with the key in the calling thread.

In the run_by_thread function of our sample code, we associate an integer variable
initialized to zero to the muxCntKey key. In function thread_step_1, we get the integer
variable associated with the key and use it to count the number of times mux is locked. In
function thread_step_2, we again obtain the integer variable associated with muxCntKey
and print its value.

7
Other Android NDK API

In this chapter we will cover:

 f Programming with the jnigraphics library in Android NDK

 f Programming with the dynamic linker library in Android NDK

 f Programming with the zlib compression library in Android NDK

 f Programming audio with the OpenSL ES audio library in Android NDK

 f Programming with the OpenMAX AL multimedia library in Android NDK

Introduction
In the previous three chapters, we have covered Android NDK OpenGL ES API (Chapter 4,
Android NDK OpenGL ES API), Native Application API (Chapter 5, Android Native Application
API), and Multithreading API (Chapter 6, Android NDK Multithreading). This is the last
chapter on Android NDK API illustration, and we will cover a few more libraries, including the
jnigraphics library, dynamic linker library, zlib compression library, OpenSL ES Audio
library, and OpenMAX AL multimedia library.

We first introduce two small libraries, jnigraphics and dynamic linker, which only have a
few API functions and are easy to use. We then describe zlib compression library, which
can be used to compress and decompress data in .zlib and .gzip formats. The OpenSL
ES audio library and OpenMAX AL multimedia library are two relatively new APIs available on
newer versions of Android. The API functions in these two libraries are not frozen yet and still
evolving. Because the source compatibility is not a goal of the library development on Android,
as stated in the NDK OpenSL ES and OpenMAX AL documentation, future versions of these
two libraries may require us to update our code.

Also, note that OpenSL ES and OpenMAX AL are fairly complex libraries with lots of API
functions. We can only introduce the basic usage of these two libraries with simple
examples. Interested readers should refer to the library documentation for more details.

Other Android NDK API

234

Programming with the jnigraphics library in
Android NDK

The jnigraphics library provides a C-based interface for native code to access the pixel
buffers of Java bitmap objects, which is available as a stable native API on Android 2.2 system
images and higher. This recipe discusses how to use the jnigraphics library.

Getting ready…
Readers are expected to know how to create an Android NDK project. We can refer to the
Writing a Hello NDK program recipe of Chapter 1, Hello NDK for detailed instructions.

How to do it...
The following steps describe how to create a simple Android application which demonstrates
the usage of the jnigraphics library:

1. Create an Android application named JNIGraphics. Set the package name as
cookbook.chapter7.JNIGraphics. Refer to the Loading native libraries and
registering native methods recipe of Chapter 2, Java Native Interface for more
detailed instructions.

2. Right-click on the project JNIGraphics, select Android Tools | Add Native Support.

3. Add two Java files named MainActivity.java and RenderView.java in the
cookbook.chapter7.JNIGraphics package. The RenderView.java loads
the JNIGraphics native library, calls the native naDemoJniGraphics method to
process a bitmap, and finally display the bitmap. The MainActivity.java files
creates a bitmap, passes it to the RenderView class, and sets the RenderView
class as its content view.

4. Add mylog.h and JNIGraphics.cpp files under the jni folder. The mylog.h
contains the Android native logcat utility functions, while the JNIGraphics.cpp
file contains the native code to process the bitmap with the jnigraphics library
functions. A part of the code in the JNIGraphics.cpp file is shown as follows:
void naDemoJniGraphics(JNIEnv* pEnv, jclass clazz, jobject
pBitmap) {
 int lRet, i, j;
 AndroidBitmapInfo lInfo;
 void* lBitmap;
 //1. retrieve information about the bitmap

Chapter 7

235

 if ((lRet = AndroidBitmap_getInfo(pEnv, pBitmap, &lInfo)) < 0) {
 return;
 }
 if (lInfo.format != ANDROID_BITMAP_FORMAT_RGBA_8888) {
 return;
 }
 //2. lock the pixel buffer and retrieve a pointer to it
 if ((lRet = AndroidBitmap_lockPixels(pEnv, pBitmap, &lBitmap)) <
0) {
 LOGE(1, "AndroidBitmap_lockPixels() failed! error = %d",
lRet);
 }
 //3. manipulate the pixel buffer
 unsigned char *pixelBuf = (unsigned char*)lBitmap;
 for (i = 0; i < lInfo.height; ++i) {
 for (j = 0; j < lInfo.width; ++j) {
 unsigned char *pixelP = pixelBuf + i*lInfo.stride + j*4;
 *pixelP = (unsigned char)0x00; //remove R component
// *(pixelP+1) = (unsigned char)0x00; //remove G component
// *(pixelP+2) = (unsigned char)0x00; //remove B component
// LOGI(1, "%d:%d:%d:%d", *pixelP, *(pixelP+1), *(pixelP+2),
*(pixelP+3));
 }
 }
 //4. unlock the bitmap
 AndroidBitmap_unlockPixels(pEnv, pBitmap);
}

5. Add an Android.mk file in the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := JNIGraphics
LOCAL_SRC_FILES := JNIGraphics.cpp
LOCAL_LDLIBS := -llog -ljnigraphics
include $(BUILD_SHARED_LIBRARY)

Other Android NDK API

236

6. Build and run the Android project. We can enable code to remove different
components from the bitmap. The following screenshots show the original
picture and the ones with red, green, and blue component removed respectively:

How it works...
In our sample project, we modified the bitmap passed to the native naDemoJniGraphics
function by setting one of its RGB components to zero.

The jnigraphics library is only available for Android API level 8
(Android 2.2, Froyo) and higher.

The following steps should be followed to use the jnigraphics library:

1. Include the <android/bitmap.h> header in the source code where we use the
jnigraphics API.

2. Link to the jnigraphics library by including the following line in the
Android.mk file.
LOCAL_LDLIBS += -ljnigraphics

3. In the source code, call AndroidBitmap_getInfo to retrieve the information
about a bitmap object. The AndroidBitmap_getInfo function has the
following prototype:
int AndroidBitmap_getInfo(JNIEnv* env, jobject jbitmap,
AndroidBitmapInfo* info);

The function accepts a pointer to the JNIEnv structure, a reference to the bitmap
object, and a pointer to the AndroidBitmapInfo structure. If the call is successful,
the data structure pointed by info will be filled.

Chapter 7

237

The AndroidBitmapInfo is defined as follows:
typedef struct {
uint32_t width;
 uint32_t height;
uint32_t stride;
int32_t format;
uint32_t flags;
} AndroidBitmapInfo;

width and height indicate the pixel width and height of the bitmap. stride refers
to the number of bytes to skip between rows of the pixel buffer. The number must
be no less than the width in bytes. In most cases, stride is the same as width.
However, sometimes pixel buffer contains paddings so stride can be bigger than
bitmap width.

The format is the color format, which can be ANDROID_BITMAP_FORMAT_
RGBA_8888, ANDROID_BITMAP_FORMAT_RGB_565, ANDROID_BITMAP_FORMAT_
RGBA_4444, ANDROID_BITMAP_FORMAT_A_8, or ANDROID_BITMAP_FORMAT_
NONE as defined in the bitmap.h header file.

In our example, we used ANDROID_BITMAP_FORMAT_RGBA_8888 as the bitmap
format. Therefore, every pixel takes 4 bytes.

4. Lock the pixel address by calling the AndroidBitmap_lockPixels function:
int AndroidBitmap_lockPixels(JNIEnv* env, jobject jbitmap, void**
addrPtr);

If the call succeeds, the *addrPtr pointer will point to the pixels of the bitmap.
Once the pixel address is locked, the memory for the pixels will not move until the
pixel address is unlocked.

5. Manipulate the pixel buffer in the native code.

6. Unlock the pixel address by calling AndroidBitmap_unlockPixels:

int AndroidBitmap_unlockPixels(JNIEnv* env, jobject jbitmap);

Note that this function must be called if the AndroidBitmap_lockPixels
function succeeds.

The jnigraphics functions return ANDROID_BITMAP_RESUT_
SUCCESS, which has a value of 0, upon success. They return a
negative value upon failure.

Other Android NDK API

238

There's more…
Recall that we used the jnigraphics library to load textures in the Mapping texture to 3D
objects with OpenGL ES 1.x API recipe in Chapter 4, Android NDK OpenGL ES API. We can
revisit the recipe for another example of how we use the jnigraphics library.

Programming with the dynamic linker library
in Android NDK

Dynamic loading is a technique to load a library into memory at runtime, and execute
functions or access variables defined in the library. It allows the app to start without
these libraries.

We have seen dynamic loading in almost every recipe of this book. When we call the
System.loadLibrary or System.load function to load the native libraries, we are
using dynamic loading.

Android NDK has provided the dynamic linker library to support dynamic loading in NDK, since
Android 1.5. This recipe discusses the dynamic linker library functions.

Getting ready...
Readers are expected to know how to create an Android NDK project. You can refer to the
Writing a Hello NDK program recipe of Chapter 1, Hello NDK for detailed instructions.

How to do it...
The following steps describe how to create an Android application using the dynamic linking
library to load the math library and compute the square root of 2.

1. Create an Android application named DynamicLinker. Set the package name
as cookbook.chapter7.dynamiclinker. Refer to the Loading native libraries
and registering native methods recipe of Chapter 2, Java Native Interface for more
detailed instructions.

2. Right-click on the DynamicLinker project, select Android Tools | Add Native
Support.

3. Add a Java file named MainActivity.java under the cookbook.chapter7.
dynamiclinker package. This Java file simply loads the native DynamicLinker
library and calls the native naDLDemo method.

Chapter 7

239

4. Add the mylog.h and DynamicLinker.cpp files under the jni folder. A part of the
code in the OpenSLESDemo.cpp file is shown in the following code.

naDLDemo loads the libm.so library, obtains the address of the sqrt function and
calls the function with input argument 2.0:

void naDLDemo(JNIEnv* pEnv, jclass clazz) {
 void *handle;
 double (*sqrt)(double);
 const char *error;
 handle = dlopen("libm.so", RTLD_LAZY);
 if (!handle) {
 LOGI(1, "%s\n", dlerror());
 return;
 }
 dlerror(); /* Clear any existing error */
 *(void **) (&sqrt) = dlsym(handle, "sqrt");
 if ((error = dlerror()) != NULL) {
 LOGI(1, "%s\n", error);
 return;
 }
 LOGI(1, "%f\n", (*sqrt)(2.0));
}

5. Add an Android.mk file under the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := DynamicLinker
LOCAL_SRC_FILES := DynamicLinker.cpp
LOCAL_LDLIBS := -llog -ldl
include $(BUILD_SHARED_LIBRARY)

6. Build and run the Android project, and use the following command to monitor the
logcat output:

$ adb logcat -v time DynamicLinker:I *:S

A screenshot of the logcat output is shown as follows:

Other Android NDK API

240

How it works...
In order to build with dynamic loading library libdl.so, we must add the following line to the
Android.mk file:

LOCAL_LDLIBS := -ldl

The following functions are defined in the dlfcn.h header file by the Android dynamic
linking library:

void* dlopen(const char* filename, int flag);
int dlclose(void* handle);
const char* dlerror(void);
void* dlsym(void* handle, const char* symbol);
int dladdr(const void* addr, Dl_info *info);

The dlopen function loads the library dynamically. The first argument indicates the library
name, while the second argument refers to the loading mode, which describes how dlopen
resolves the undefined symbols. When an object file (for example, shared library, executable
file, and so on) is loaded, it may contain references to symbols whose addresses are not
known until another object file is loaded (such symbols are referred to as undefined symbols).
These references need to be resolved before they can be used to access the symbols. The
following two modes determine when the resolving happens:

 f RTLD_NOW: When the object file is loaded, the undefined symbols are resolved. This
means the resolving occurs before the dlopen function returns. This may be a waste
if resolving is performed but the references are never accessed.

 f RTLD_LAZY: The resolving can be performed after the dlopen function returns, that
is, the undefined symbols are resolved when the code is executed.

The following two modes determine the visibility of the symbols in the loaded object. They can
be ORed with the previously mentioned two modes:

 f RTLD_LOCAL: The symbols will not be available for another object

 f RTLD_GLOBAL: The symbols will be available for subsequently loaded objects

The dlopen function returns a handle upon success. The handle should be used for the
subsequent calls to dlsym and dlclose.

The dlclose function simply decrements the reference count of the loaded library handle.
If the reference count is reduced to zero, the library will be unloaded.

The dlerror function returns a string to describe the most recent error occurred while
calling dlopen, dlsym, or dlclose since the last call to dlerror. It returns NULL if no
such error occurred.

Chapter 7

241

The dlsym function returns the memory address of a given symbol of the loaded dynamic
library referred by the input argument handle. The returned address can be used to access
the symbol.

The dladdr function takes an address and tries to return more information about the
address and library through the info argument of the DI_info type. The DI_info
data structure is defined as shown in the following code snippet:

typedef struct {
 const char *dli_fname;
 void *dli_fbase;
 const char *dli_sname;
 void *dli_saddr;
} Dl_info;

dli_fname indicates the path of the shared object referred by the input argument addr.
The dli_fbase is the address where the shared object is loaded. dli_sname indicates the
name of the nearest symbol with address lower than addr, and dli_saddr is the address of
symbol named by dli_sname.

In our example, we demonstrated the usage of the first four functions. We load the math
library by dlopen, obtain the address of the sqrt function by dlsym, check the error by
dlerror, and close the library by dlclose.

For more details on the dynamic loading library, refer to http://tldp.org/HOWTO/
Program-Library-HOWTO/dl-libraries.html and http://linux.die.net/
man/3/dlopen.

Programming with the zlib compression
library in Android NDK
zlib is a widely-used, lossless data compression library, which is available for Android 1.5
system images or higher. This recipe discusses the basic usage of the zlib functions.

Getting ready...
Readers are expected to know how to create an Android NDK project. We can refer to the
Writing a Hello NDK program recipe of Chapter 1, Hello NDK for detailed instructions.

Other Android NDK API

242

How to do it...
The following steps describe how to create a simple Android application which demonstrates
the usage of zlib library:

1. Create an Android application named ZlibDemo. Set the package name as
cookbook.chapter7.zlibdemo. Refer to the Loading native libraries and
registering native methods recipe of Chapter 2, Java Native Interface for more
detailed instructions.

2. Right-click on the project ZlibDemo, select Android Tools | Add Native Support.

3. Add a Java file named MainActivity.java in the cookbook.chapter7.
zlibdemo package. The MainActivity.java file loads the ZlibDemo native
library, and calls the native methods.

4. Add mylog.h, ZlibDemo.cpp, and GzFileDemo.cpp files under the jni folder.
The mylog.h header file contains the Android native logcat utility functions, while
ZlibDemo.cpp and GzFileDemo.cpp files contain code for compression and
decompression. A part of the code in ZlibDemo.cpp and GzFileDemo.cpp is
shown in the following code.

ZlibDemo.cpp contains the native code to compress and decompress data in
memory.

compressUtil compresses and decompress data in memory.
void compressUtil(unsigned long originalDataLen) {
 int rv;
 int compressBufBound = compressBound(originalDataLen);
 compressedBuf = (unsigned char*) malloc(sizeof(unsigned
char)*compressBufBound);
 unsigned long compressedDataLen = compressBufBound;
 rv = compress2(compressedBuf, &compressedDataLen, dataBuf,
originalDataLen, 6);
 if (Z_OK != rv) {
 LOGE(1, "compression error");
 free(compressedBuf);
 return;
 }
 unsigned long decompressedDataLen = S_BUF_SIZE;
 rv = uncompress(decompressedBuf, &decompressedDataLen,
compressedBuf, compressedDataLen);
 if (Z_OK != rv) {
 LOGE(1, "decompression error");
 free(compressedBuf);
 return;
 }

Chapter 7

243

 if (0 == memcmp(dataBuf, decompressedBuf, originalDataLen)) {
 LOGI(1, "decompressed data same as original data");
 } //free resource
 free(compressedBuf);
}

5. naCompressAndDecompress generates data for compression and calls the
compressUtil function to compress and decompress the generated data:
void naCompressAndDecompress(JNIEnv* pEnv, jclass clazz) {
 unsigned long originalDataLen = getOriginalDataLen();
 LOGI(1, "---------data with repeated bytes---------")
 generateOriginalData(originalDataLen);
 compressUtil(originalDataLen);
 LOGI(1, "---------data with random bytes---------")
 generateOriginalDataRandom(originalDataLen);
 compressUtil(originalDataLen);
}

GzFileDemo.cpp contains the native code to compress and decompress the data
in file.

writeToFile writes a string to a gzip file. Compression is applied at writing:
int writeToFile() {
 gzFile file;
 file = gzopen("/sdcard/test.gz", "w6");
 if (NULL == file) {
 LOGE(1, "cannot open file to write");
 return 0;
 }
 const char* dataStr = "hello, Android NDK!";
 int bytesWritten = gzwrite(file, dataStr, strlen(dataStr));
 gzclose(file);
 return bytesWritten;
}

readFromFile reads data from the gzip file. Decompression is applied at reading:

void readFromFile(int pBytesToRead) {
 gzFile file;
 file = gzopen("/sdcard/test.gz", "r6");
 if (NULL == file) {
 LOGE(1, "cannot open file to read");
 return;
 }

Other Android NDK API

244

 char readStr[100];
 int bytesRead = gzread(file, readStr, pBytesToRead);
 gzclose(file);
 LOGI(1, "%d: %s", bytesRead, readStr);
}

6. Add an Android.mk file under the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := ZlibDemo
LOCAL_SRC_FILES := ZlibDemo.cpp GzFileDemo.cpp
LOCAL_LDLIBS := -llog -lz
include $(BUILD_SHARED_LIBRARY)

7. Enable the naCompressAndDecompress function and disable the naGzFileDemo
function, build and run the application. We can monitor the logcat output with the
following command:

$ adb logcat -v time ZlibDemo:I *:S

The logcat output screenshot is shown as follows:

Enable the naGzFileDemo function and disable the naCompressAndDecompress
function, build and run the application. The logcat output is shown in the
following screenshot:

How it works...
The zlib library provides compression and decompression functions for both in-memory
data and files. We demonstrated both use cases. In the ZlibDemo.cpp file, we created two
data buffers, one with repeated bytes, and the other with random bytes. We compress and
decompress the data with the following steps:

Chapter 7

245

1. Compute the upper bound on the compressed size. This is done by the
following function:
uLong compressBound(uLong sourceLen);

The function returns the maximum size of the compressed data after calling the
compress or compress2 function on sourceLen bytes of source data.

2. Allocate the memory for storing the compressed data.

3. Compress the data. This is done by the following function:
int compress2(Bytef *dest, uLongf *destLen, const Bytef *source,
uLong sourceLen, int level);

This function accepts five input arguments. source and sourceLen refer to the
source data buffer and source data length. dest and destLen indicate the data
buffer for storing the compressed data and size of this buffer. The value of destLen
must be at least the value returned by compressBound when the function is called.
When the function is returned, destLen is set to the actual size of the compressed
data. The last input argument level can be a value between 0 and 9, where 1 gives
best speed and 9 gives best compression. In our example, we set the value as 6 to
compromise between speed and compression.

We can also use the compress function to compress the data,
which does not have the level input argument. Instead, it
assumes a default level, which is equivalent to 6.

4. Decompress the data. This is done by using the uncompress function:
int uncompress(Bytef *dest, uLongf *destLen, const Bytef
*source, uLong sourceLen);

The input arguments have the same meaning as the compress2 function.

5. Compare the decompressed data with the original data. This is just a simple check.

By default, these functions use the zlib format for the compressed data.

This library also supports reading and writing files in the gzip format. This is
demonstrated in GzFileDemo.cpp. The usage of these functions is similar to the
stdio functions for file reading and writing.

Other Android NDK API

246

The steps we followed to write compressed data to a gzip file and then read the
uncompressed data from it are shown as follows:

1. Open a gzip file for writing. This is done by the following function:
gzFile gzopen(const char *path, const char *mode);

The function accepts a filename and open mode, and returns a gzFile object
on success. The mode is similar to the fopen function, but with an optional
compression level. In our example, we called the gzopen with w6 to specify the
compression level as 6.

2. Write data to a gzip file. This is done by the following function:
int gzwrite(gzFile file, voidpc buf, unsigned len);

This function writes uncompressed data into the compressed file. The input argument
file refers to the compressed file, buf refers to the uncompressed data buffer, and
len indicates the number of bytes to write. The function returns the actual number of
uncompressed data written.

3. Close the gzip file. This is done by the following function:
int ZEXPORT gzclose(gzFile file);

Calling this function will flush all pending output and close the compressed file.

4. Open the file for reading. We passed r6 to the gzopen function.

5. Read data from the compressed file. This is done by the gzread function.

int gzread(gzFile file, voidp buf, unsigned len);

The function reads len number of bytes from file into buf. It returns the actual
number of bytes read.

The zlib library supports two compression formats, zlib and
gzip. zlib is designed to be compact and fast, so it is best
for use in memory and on communication channels. On the
other hand, gzip is designed for single file compression on a
filesystem, which has a larger header for maintaining the directory
information, and uses a slower check method than zlib.

In order to use the zlib library, we must include the zlib.h header file in our source code
and add the following line to Android.mk to link to the libz.so library:

LOCAL_LDLIBS := -lz

Chapter 7

247

There's more...
Recall in the Managing assets at Android NDK recipe in Chapter 5, Android Native Application
AP , we compiled the libpng library, which requires the zlib library.

We only covered a few functions provided by the zlib library. For more information, you can
refer to the zlib.h and zconf.h header files in the platforms/android-<version>/
arch-arm/usr/include/ folder. Detailed documentation for the zlib library can be found
at http://www.zlib.net/manual.html.

Programming audio with the OpenSL ES
audio library in Android NDK

OpenSL ES is an application level audio library in C. Android NDK native audio APIs are based
on the OpenSL ES 1.0.1 standard with Android specific extensions. The API is available for
Android 2.3 or higher and some features are only supported on Android 4.0 or higher. The API
functions in this libraries are not frozen yet and are still evolving. Future versions of this library
may require us to update our code. This recipe introduces OpenSL ES APIs in the context
of Android.

Getting ready...
Before we start coding with OpenSL ES, it is essential to understand some basics of the
library. OpenSL ES stands for Open Sound Library for embedded systems, which is a cross-
platform, royalty-free, C language application level API for developers to access audio
functionalities of embedded systems. The library specification defines features like audio
playback and recording, audio effects and controls, 2D and 3D audio, advanced MIDI, and
so on. Based on the features supported, OpenSL ES defines three profiles, including phone,
music, and game.

However, the Android native audio API does not conform to any of the three profiles, because
it does not implement all features from any of the profiles. In addition, Android implements
some features specific to Android, such as the Android buffer queue. For a detailed
description of what is supported on Android, we can refer to the OpenSL ES for Android
documentation available with Android NDK under the docs/opensles/ folder.

Other Android NDK API

248

Although OpenSL ES API is implemented in C, it adopts an object-oriented approach by
building the library based on objects and interfaces:

 f Object: An object is an abstraction of a set of resources and their states. Every object
has a type assigned at its creation, and the type determines the set of tasks the
object can perform. It is similar to the class concept in C++.

 f Interface: An interface is an abstraction of a set of features an object can provide.
These features are exposed to us as a set of methods and the type of each interface
determines the exact set of features exposed. In the code, the type of an interface is
identified by the interface ID.

It is important to note that an object does not have actual representation in code. We change
the object's states and access its features through interfaces. An object can have one or more
interface instances. However, no two instances of a single object can be the same type. In
addition, a given interface instance can only belong to one object. This relationship can be
illustrated as shown in the following diagram:

Interface 1 of
Interface Type A

Interface 2 of
Interface Type B

Interface 3 of
Interface Type C

Interface 4 of
Interface Type B

Interface 5 of
Interface Type D

Object 1 of
Object Type A

Object 2 of
Object Type B

As shown in the diagram, Object 1 and Object 2 have different types and therefore expose
different interfaces. Object 1 has three interface instances, all with different types. While
Object 2 has another two interface instances with different types. Note that Interface 2 of
Object 1 and Interface 4 of Object 2 have the same type, which means both Object 1 and
Object 2 support the features exposed through interfaces of Interface Type B.

How to do it...
The following steps describe how to create a simple Android application using the native audio
library to record and play audio:

1. Create an Android application named OpenSLESDemo. Set the package name
as cookbook.chapter7.opensles. Refer to the Loading native libraries and
registering native methods recipe of Chapter 2, Java Native Interface for more
detailed instructions.

2. Right-click on the project OpenSLESDemo, select Android Tools | Add Native Support.

Chapter 7

249

3. Add a Java file named MainActivity.java in the cookbook.chapter7.
opensles package. This Java file simply loads the native library OpenSLESDemo and
calls the native methods to record and play audio.

4. Add mylog.h, common.h, play.c, record.c, and OpenSLESDemo.cpp files in the
jni folder. A part of the code in the play.c, record.c, and OpenSLESDemo.cpp
files is shown in the following code snippet.

record.c contains the code to create an audio recorder object and record the audio.

createAudioRecorder creates and realizes an audio player object and obtains the
record and buffer queue interfaces:
jboolean createAudioRecorder() {
 SLresult result;
 SLDataLocator_IODevice loc_dev = {SL_DATALOCATOR_IODEVICE, SL_
IODEVICE_AUDIOINPUT, SL_DEFAULTDEVICEID_AUDIOINPUT, NULL};
 SLDataSource audioSrc = {&loc_dev, NULL};
 SLDataLocator_AndroidSimpleBufferQueue loc_bq = {SL_
DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE, 1};
 SLDataFormat_PCM format_pcm = {SL_DATAFORMAT_PCM, 1, SL_
SAMPLINGRATE_16,
 SL_PCMSAMPLEFORMAT_FIXED_16, SL_PCMSAMPLEFORMAT_FIXED_16,
 SL_SPEAKER_FRONT_CENTER, SL_BYTEORDER_LITTLEENDIAN};
 SLDataSink audioSnk = {&loc_bq, &format_pcm};
 const SLInterfaceID id[1] = {SL_IID_ANDROIDSIMPLEBUFFERQUEUE};
 const SLboolean req[1] = {SL_BOOLEAN_TRUE};
 result = (*engineEngine)->CreateAudioRecorder(engineEngine,
&recorderObject, &audioSrc,
 &audioSnk, 1, id, req);
 result = (*recorderObject)->Realize(recorderObject, SL_
BOOLEAN_FALSE);
 result = (*recorderObject)->GetInterface(recorderObject, SL_
IID_RECORD, &recorderRecord);
 result = (*recorderObject)->GetInterface(recorderObject, SL_
IID_ANDROIDSIMPLEBUFFERQUEUE, &recorderBufferQueue);
 result = (*recorderBufferQueue)->RegisterCallback(recorderBuffe
rQueue, bqRecorderCallback, NULL);
 return JNI_TRUE;
}

startRecording enqueues the buffer to store the recording audio and set the
audio object state as recording:
void startRecording() {
 SLresult result;
 recordF = fopen("/sdcard/test.pcm", "wb");

Other Android NDK API

250

 result = (*recorderRecord)->SetRecordState(recorderRecord, SL_
RECORDSTATE_STOPPED);
 result = (*recorderBufferQueue)->Clear(recorderBufferQueue);
 recordCnt = 0;
 result = (*recorderBufferQueue)->Enqueue(recorderBufferQueue,
recorderBuffer,
 RECORDER_FRAMES * sizeof(short));
 result = (*recorderRecord)->SetRecordState(recorderRecord, SL_
RECORDSTATE_RECORDING);
}

Every time the buffer queue is ready to accept a new data block, the
bqRecorderCallback callback method is invoked. This happens when a buffer is
filled with audio data:
void bqRecorderCallback(SLAndroidSimpleBufferQueueItf bq, void
*context) {
 int numOfRecords = fwrite(recorderBuffer, sizeof(short),
RECORDER_FRAMES, recordF);
 fflush(recordF);
 recordCnt++;
 SLresult result;
 if (recordCnt*5 < RECORD_TIME) {
 result = (*recorderBufferQueue)->Enqueue(recorderBufferQueue,
recorderBuffer,
 RECORDER_FRAMES * sizeof(short));
 } else {
 result = (*recorderRecord)->SetRecordState(recorderRecord, SL_
RECORDSTATE_STOPPED);
 if (SL_RESULT_SUCCESS == result) {
 fclose(recordF);
 }
 }
}

play.c contains the code to create an audio player object and play the audio.

createBufferQueueAudioPlayer creates and realizes an audio player object
which plays audio from the buffer queue:
void createBufferQueueAudioPlayer() {
 SLresult result;
 SLDataLocator_AndroidSimpleBufferQueue loc_bufq = {SL_
DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE, 1};
 SLDataFormat_PCM format_pcm = {SL_DATAFORMAT_PCM, 1, SL_
SAMPLINGRATE_16,
 SL_PCMSAMPLEFORMAT_FIXED_16, SL_PCMSAMPLEFORMAT_FIXED_16,
 SL_SPEAKER_FRONT_CENTER, SL_BYTEORDER_LITTLEENDIAN};

Chapter 7

251

 SLDataSource audioSrc = {&loc_bufq, &format_pcm};
 SLDataLocator_OutputMix loc_outmix = {SL_DATALOCATOR_OUTPUTMIX,
outputMixObject};
 SLDataSink audioSnk = {&loc_outmix, NULL};
 const SLInterfaceID ids[3] = {SL_IID_BUFFERQUEUE, SL_IID_
EFFECTSEND, SL_IID_VOLUME};
 const SLboolean req[3] = {SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE, SL_
BOOLEAN_TRUE};
 result = (*engineEngine)->CreateAudioPlayer(engineEngine,
&bqPlayerObject, &audioSrc, &audioSnk, 3, ids, req);
 result = (*bqPlayerObject)->Realize(bqPlayerObject, SL_BOOLEAN_
FALSE);
 result = (*bqPlayerObject)->GetInterface(bqPlayerObject, SL_
IID_PLAY, &bqPlayerPlay);
 result = (*bqPlayerObject)->GetInterface(bqPlayerObject, SL_
IID_BUFFERQUEUE,
 &bqPlayerBufferQueue);
 result = (*bqPlayerBufferQueue)->RegisterCallback(bqPlayerBuffe
rQueue, bqPlayerCallback, NULL);
 result = (*bqPlayerObject)->GetInterface(bqPlayerObject, SL_
IID_EFFECTSEND,
 &bqPlayerEffectSend);
 result = (*bqPlayerObject)->GetInterface(bqPlayerObject, SL_
IID_VOLUME, &bqPlayerVolume);
}

startPlaying fills the buffer with data from the test.cpm file and starts playing:
jboolean startPlaying() {
 SLresult result;
 recordF = fopen("/sdcard/test.pcm", "rb");
 noMoreData = 0;
 int numOfRecords = fread(recorderBuffer, sizeof(short),
RECORDER_FRAMES, recordF);
 if (RECORDER_FRAMES != numOfRecords) {
 if (numOfRecords <= 0) {
 return JNI_TRUE;
 }
 noMoreData = 1;
 }
result = (*bqPlayerBufferQueue)->Enqueue(bqPlayerBufferQueue,
recorderBuffer, RECORDER_FRAMES * sizeof(short));
 result = (*bqPlayerPlay)->SetPlayState(bqPlayerPlay, SL_
PLAYSTATE_PLAYING);
 return JNI_TRUE;
}

Other Android NDK API

252

bqPlayerCallback every time the buffer queue is ready to accept a new buffer,
this callback method is invoked. This happens when a buffer has finished playing:
void bqPlayerCallback(SLAndroidSimpleBufferQueueItf bq, void
*context) {
 if (!noMoreData) {
 SLresult result;
int numOfRecords = fread(recorderBuffer, sizeof(short), RECORDER_
FRAMES, recordF);
 if (RECORDER_FRAMES != numOfRecords) {
 if (numOfRecords <= 0) {
 noMoreData = 1;
 (*bqPlayerPlay)->SetPlayState(bqPlayerPlay, SL_PLAYSTATE_
STOPPED);
 fclose(recordF);
 return;
 }
 noMoreData = 1;
 }
 result = (*bqPlayerBufferQueue)->Enqueue(bqPlayerBufferQueue,
recorderBuffer, RECORDER_FRAMES * sizeof(short));
 } else {
 (*bqPlayerPlay)->SetPlayState(bqPlayerPlay, SL_PLAYSTATE_
STOPPED);
 fclose(recordF);
 }
}

OpenSLESDemo.cpp contains the code to create the OpenSL ES engine object, free
the objects, and register the native methods:

naCreateEngine creates the engine object and outputs the mix object.
void naCreateEngine(JNIEnv* env, jclass clazz) {
 SLresult result;
 result = slCreateEngine(&engineObject, 0, NULL, 0, NULL, NULL);
 result = (*engineObject)->Realize(engineObject, SL_BOOLEAN_
FALSE);
 result = (*engineObject)->GetInterface(engineObject, SL_IID_
ENGINE, &engineEngine);
 const SLInterfaceID ids[1] = {SL_IID_ENVIRONMENTALREVERB};
 const SLboolean req[1] = {SL_BOOLEAN_FALSE};
 result = (*engineEngine)->CreateOutputMix(engineEngine,
&outputMixObject, 1, ids, req);
 result = (*outputMixObject)->Realize(outputMixObject, SL_
BOOLEAN_FALSE);
 result = (*outputMixObject)->GetInterface(outputMixObject, SL_
IID_ENVIRONMENTALREVERB,

Chapter 7

253

 &outputMixEnvironmentalReverb);
 if (SL_RESULT_SUCCESS == result) {
 result = (*outputMixEnvironmentalReverb)->SetEnvironmental
ReverbProperties(
 outputMixEnvironmentalReverb, &reverbSettings);
 }
}

5. Add the following permissions to the AndroidManifest.xml file.
<uses-permission android:name="android.permission.RECORD_AUDIO"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_
STORAGE"/>
<uses-permission android:name="android.permission.MODIFY_AUDIO_
SETTINGS"></uses-permission>

6. Add an Android.mk file in the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := OpenSLESDemo
LOCAL_SRC_FILES := OpenSLESDemo.cpp record.c play.c
LOCAL_LDLIBS := -llog
LOCAL_LDLIBS += -lOpenSLES
include $(BUILD_SHARED_LIBRARY)

7. Build and run the Android project, and use the following command to monitor the
logcat output:
$ adb logcat -v time OpenSLESDemo:I *:S

8. The application GUI is shown in the following screenshot:

Other Android NDK API

254

 � We can start the audio recording by clicking on the Record button. The
recording will last for 15 seconds. The logcat output will be as shown
in the following screenshot:

 � Once the recording is finished. There will be a /sdcard/test.pcm file
created at the Android device. We can click on the Play button to play the
audio file. The logcat output will be as shown in the following screenshot:

How it works...
This sample project demonstrates how to use OpenSL ES Audio library. We will first explain
some key concepts and then describe how we used the recording and playback API.

Object creation
An object does not have an actual representation in code and the creation of an object is
done through interface. Every method which creates an object returns a SLObjectInf
interface, which can be used to perform the basic operations on the object and access other
interfaces of the object. The steps for object creation is described as follows:

1. Create an engine object. The engine object is the entry point of OpenSL ES API.
Creating an engine object is done with the global function slCreateEngine(),
which returns a SLObjectItf interface.

2. Realize the engine object. An object cannot be used until it is realized. We will discuss
this in detail in the following section.

3. Obtain the SLEngineItf interface of the engine object through the
GetInterface() method of the SLObjectItf interface.

4. Call the object creation method provided by the SLEngineItf interface. A
SLObjectItf interface of the newly created object is returned upon success.

5. Realize the newly created object.

Chapter 7

255

6. Manipulate the created objects or access other interfaces through the SLObjectItf
interface of the object.

7. After you are done with the object, call the Destroy() method of the SLObjectItf
interface to free the object and its resources.

In our sample project, we created and realized the engine object, and obtained the
SLEngineItf interface at the naCreateEngine function of OpenSLESDemo.cpp. We then
called the CreateAudioRecorder() method, exposed by the SLEngineItf interface, to
create an audio recorder object at createAudioRecorder function of record.c. In the
same function, we also realized the audio recorder object and accessed a few other interfaces
of the object through the SLObjectItf interface returned at object creation. After we are
finished with the recorder object, we called the Destroy() method to free the object and its
resources, as shown in the naShutdown function of OpenSLESDemo.cpp.

One more thing to take note of on object creation is the interface request. An object
creation method normally accepts three parameters related to interfaces, as shown in
the CreateAudioPlayer method of the SLEngineItf interface as shown in the
following code snippet:

SLresult (*CreateAudioPlayer) (
SLEngineItf self,
SLObjectItf * pPlayer,
SLDataSource *pAudioSrc,
SLDataSink *pAudioSnk,
SLuint32 numInterfaces,
const SLInterfaceID * pInterfaceIds,
const SLboolean * pInterfaceRequired
);

The last three input arguments are related to interfaces. The numInterfaces argument
indicates the number of interfaces we request to access. pInterfaceIds is an
array of the numInterfaces interface IDs, which indicates the interface types the
object should support. pInterfaceRequired is an array of SLboolean, specifying
whether the requested interface is optional or required. In our audio player example,
we called the CreateAudioPlayer method to request three types of interfaces
(SLAndroidSimpleBufferQueueItf, SLEffectSendItf, and SLVolumeItf indicated
by SL_IID_BUFFERQUEUE, SL_IID_EFFECTSEND, and SL_IID_VOLUME respectively).
Since all elements of the req array are true, all the interfaces are required. If the object
cannot provide any of the interfaces, the object creation will fail:

const SLInterfaceID ids[3] = {SL_IID_BUFFERQUEUE, SL_IID_EFFECTSEND,
SL_IID_VOLUME};
const SLboolean req[3] = {SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE, SL_
BOOLEAN_TRUE};
result = (*engineEngine)->CreateAudioPlayer(engineEngine,
&bqPlayerObject, &audioSrc, &audioSnk, 3, ids, req);

Other Android NDK API

256

Note that an object can have implicit and explicit interfaces. The implicit interfaces are
available for every object of the type. For example, the SLObjectItf interface is an implicit
interface for all objects of all types. It is not necessary to request the implicit interfaces in
the object creation method. However, if we want to access some explicit interfaces, we must
request them in the method.

For more information on interfaces refer to Section 3.1.6, The Relationship Between Objects
and Interfaces in the OpenSL ES 1.0.1 Specification document.

Changing states of objects
The object creation method creates an object and puts it in an unrealized state. At this state,
the resources of the object have not been allocated, therefore it is not usable.

We will need to call the Realize() method of the SLObjectItf interface of the object to
cause the object to transit to the realized state, where the resources are allocated and the
interfaces can be accessed.

Once we are done with the object, we call the Destroy() method to free the object and its
resources. This call internally transfers the object through the unrealized stage, where the
resources are freed. Therefore, the resources are freed first before the object itself.

In this recipe, we illustrate the recording and playback APIs with our sample project.

Use and build with OpenSL ES Audio library
In order to call the API functions, we must add the following lines to our code:

#include <SLES/OpenSLES.h>

If we are using Android-specific features as well, we should include another header:

#include <SLES/OpenSLES_Android.h>

In the Android.mk file, we must add the following line to link to the native OpenSL ES
Audio library:

LOCAL_LDLIBS += libOpenSLES

OpenSL ES audio recording
Because the MIME data format and the SLAudioEncoderItf interface are not available
for the audio recorder on Android, we can only record audio in the PCM format. Our example
demonstrates how to record audio in the PCM format and save the data into a file. This can be
illustrated using the following diagram:

Chapter 7

257

At the createAudioRecorder function of record.c, we create and realize an audio
recorder object. We set the audio input as data source, and an Android buffer queue as
data sink. Note that we registered the bqRecorderCallback function as the callback
function for buffer queue. Whenever the buffer queue is ready for a new buffer, the
bqRecorderCallback function will be called to save the buffer data to the test.cpm
file and enqueue the buffer again for recording new audio data. At the startRecording
function, we start the recording.

The callback functions in OpenSL ES are executed from internal non-
application threads. The threads are not managed by Dalvik VM and therefore
they cannot access JNI. These threads are critical to the integrity of the
OpenSL ES implementation, so the callback functions should not block or
perform any heavy-processing tasks.
In case we need to perform heavy tasks when the callback function is
triggered, we should post an event for another thread to process such tasks.
This also applies to the OpenMAX AL library that we are going to cover in next
recipe. More detailed information can be obtained from the NDK OpenSL ES
documentation at the docs/opensles/ folder.

Other Android NDK API

258

OpenSL ES audio playback
Android OpenSL ES library provides lots of features for audio playback. We can play encoded
audio files, including mp3, aac, and so on. Our example shows how to play the PCM audio.
This can be illustrated as shown in the following diagram:

We created and realized the engine object and the output mix object in the
naCreateEngine function in OpenSLESDemo.cpp. The audio player object is created in
the createBufferQueueAudioPlayer function of play.c with an Android buffer queue
as data source and the output mix object as data sink. The bqPlayerCallback function
is registered as the callback method through a SLAndroidSimpleBufferQueueItf
interface. Whenever the player finishes playing a buffer, the buffer queue is ready for new data
and the callback function bqPlayerCallback will be invoked. The method reads data from
the test.pcm file into the buffer and enqueues it.

In the startPlaying function, we read the initial data into the buffer and set the player
state to SL_PLAYSTATE_PLAYING.

There's more...
OpenSL ES is a complex library with a more than 500 page long specification. The
specification is a good reference when developing applications with OpenSL ES and it is
available with the Android NDK.

The Android NDK also comes with a native-audio example, which demonstrates usage of a lot
more OpenSL ES functions.

Chapter 7

259

Programming with the OpenMAX AL
multimedia library in Android NDK

OpenMAX AL is an application-level multimedia library in C. Android NDK multimedia APIs
are based on the OpenMAX AL 1.0.1 standard with Android-specific extensions. The API is
available for Android 4.0 or higher. We should note that the API is evolving and the Android
NDK team mentioned that the future version of OpenMAX AL API may require developers to
change their code.

Getting ready...
Before we start coding with the OpenMAX AL library, it is important to understand some basics
about the library. We will briefly describe the library in the following text.

OpenMAX AL refers to the Application Layer interface of the Open Media Acceleration
(OpenMAX) library. It is a royalty-free, cross-platform, C-language application level API for
developers to create multimedia applications. Its main features include media recording,
media playback, media controls (for example, brightness control), and effects. Compared
to OpenSL ES library, OpenMAX AL provides features for both video and audio, but it lacks
certain audio features like 3D audio and audio effects which OpenSL ES can provide. Some
applications may need to use both libraries.

OpenMAX AL defines two profiles, namely media playback and media player/recorder. Android
does not implement all features required by either profile, therefore the OpenMAX AL library
in Android does not conform either profile. In addition, Android implements some features
specific to Android.

The main features provided by Android OpenMAX AL implementation is the ability to process
the MPEG-2 transport stream. We can demultiplex the stream, decode the video and audio,
and render them as audio output or to the phone screen. This library allows us to have
complete control over the media data before it is passed for presentation. For example, we
can call OpenGL ES functions to apply graphics effect on video data before rendering it.

For a detailed description of what is supported on Android, we can refer to the OpenMAX AL for
Android documentation available with the Android NDK under the docs/openmaxal/ folder.

The design of OpenMAX AL library is similar to OpenSL ES library. They both adopt an
object-oriented approach and the fundamental concepts including objects and interfaces
are the same. Readers should refer to the previous recipe for a detailed explanation on
these concepts.

Other Android NDK API

260

How to do it...
The following steps describe how to create a simple Android video playback application using
the OpenMAX AL functions:

1. Create an Android application named OpenMAXSLDemo. Set the package name
as cookbook.chapter7.openmaxsldemo. Refer to the Loading native libraries
and registering native methods recipe of Chapter 2, Java Native Interface for more
detailed instructions.

2. Right-click on the project OpenMAXSLDemo, select Android Tools | Add Native
Support.

3. Add a Java file named MainActivity.java in the package cookbook.chapter7.
openmaxsldemo. This Java file loads the native library OpenMAXSLDemo, sets the
view, and calls the native methods to play the video.

4. Add the mylog.h and OpenMAXSLDemo.c files in the jni folder. A part of the code
in OpenMAXSLDemo.c is showed in the following code snippet.

naCreateEngine creates and realizes the engine object and the output mix object.
void naCreateEngine(JNIEnv* env, jclass clazz) {
 XAresult res;
 res = xaCreateEngine(&engineObject, 0, NULL, 0, NULL, NULL);
 res = (*engineObject)->Realize(engineObject, XA_BOOLEAN_FALSE);
 res = (*engineObject)->GetInterface(engineObject, XA_IID_
ENGINE, &engineEngine);
 res = (*engineEngine)->CreateOutputMix(engineEngine,
&outputMixObject, 0, NULL, NULL);
 res = (*outputMixObject)->Realize(outputMixObject, XA_BOOLEAN_
FALSE);
}

naCreateStreamingMediaPlayer creates and realizes a media player object with
the data source and data sink. It obtains the buffer queue interface and registers the
AndroidBufferQueueCallback function as the callback function. The callback
function will be invoked after a buffer is processed:
jboolean naCreateStreamingMediaPlayer(JNIEnv* env, jclass clazz,
jstring filename) {
 XAresult res;
 const char *utf8FileName = (*env)->GetStringUTFChars(env,
filename, NULL);
 file = fopen(utf8FileName, "rb");
 XADataLocator_AndroidBufferQueue loc_abq = { XA_DATALOCATOR_
ANDROIDBUFFERQUEUE, NB_BUFFERS };
 XADataFormat_MIME format_mime = {XA_DATAFORMAT_MIME, XA_
ANDROID_MIME_MP2TS, XA_CONTAINERTYPE_MPEG_TS };
 XADataSource dataSrc = {&loc_abq, &format_mime};

Chapter 7

261

 XADataLocator_OutputMix loc_outmix = { XA_DATALOCATOR_
OUTPUTMIX, outputMixObject };
 XADataSink audioSnk = { &loc_outmix, NULL };
 XADataLocator_NativeDisplay loc_nd = {XA_DATALOCATOR_
NATIVEDISPLAY,
 (void*)theNativeWindow, NULL};
 XADataSink imageVideoSink = {&loc_nd, NULL};
 XAboolean required[NB_MAXAL_INTERFACES] = {XA_BOOLEAN_TRUE, XA_
BOOLEAN_TRUE};
 XAInterfaceID iidArray[NB_MAXAL_INTERFACES] = {XA_IID_PLAY, XA_
IID_ANDROIDBUFFERQUEUESOURCE};
 res = (*engineEngine)->CreateMediaPlayer(engineEngine,
&playerObj, &dataSrc, NULL, &audioSnk, &imageVideoSink, NULL,
NULL, NB_MAXAL_INTERFACES, iidArray, required);
 (*env)->ReleaseStringUTFChars(env, filename, utf8FileName);
 res = (*playerObj)->Realize(playerObj, XA_BOOLEAN_FALSE);
 res = (*playerObj)->GetInterface(playerObj, XA_IID_PLAY,
&playerPlayItf);
 res = (*playerObj)->GetInterface(playerObj, XA_IID_
ANDROIDBUFFERQUEUESOURCE, &playerBQItf);
 res = (*playerBQItf)->SetCallbackEventsMask(playerBQItf, XA_
ANDROIDBUFFERQUEUEEVENT_PROCESSED);
 res = (*playerBQItf)->RegisterCallback(playerBQItf,
AndroidBufferQueueCallback, NULL);
 if (!enqueueInitialBuffers(JNI_FALSE)) {
 return JNI_FALSE;
 }
 res = (*playerPlayItf)->SetPlayState(playerPlayItf, XA_
PLAYSTATE_PAUSED);
 res = (*playerPlayItf)->SetPlayState(playerPlayItf, XA_
PLAYSTATE_PLAYING);
 return JNI_TRUE;
}

AndroidBufferQueueCallback is the callback function registered to refill the
buffer with media data or handle commands:

XAresult AndroidBufferQueueCallback(XAAndroidBufferQueueI
tf caller, void *pCallbackContext, void *pBufferContext, void
*pBufferData, XAuint32 dataSize, XAuint32 dataUsed, const
XAAndroidBufferItem *pItems, XAuint32 itemsLength) {
 XAresult res;
 int ok;
 ok = pthread_mutex_lock(&mutex);
 if (discontinuity) {
 if (!reachedEof) {
 res = (*playerBQItf)->Clear(playerBQItf);

Other Android NDK API

262

 rewind(file);
 (void) enqueueInitialBuffers(JNI_TRUE);
 }
 discontinuity = JNI_FALSE;
 ok = pthread_cond_signal(&cond);
 goto exit;
 }
 if ((pBufferData == NULL) && (pBufferContext != NULL)) {
 const int processedCommand = *(int *)pBufferContext;
 if (kEosBufferCntxt == processedCommand) {
 goto exit;
 }
 }
 if (reachedEof) {
 goto exit;
 }
 size_t nbRead;
 size_t bytesRead;
 bytesRead = fread(pBufferData, 1, BUFFER_SIZE, file);
 if (bytesRead > 0) {
 if ((bytesRead % MPEG2_TS_PACKET_SIZE) != 0) {
 LOGI(2, "Dropping last packet because it is not
whole");
 }
 size_t packetsRead = bytesRead / MPEG2_TS_PACKET_SIZE;
 size_t bufferSize = packetsRead * MPEG2_TS_PACKET_SIZE;
 res = (*caller)->Enqueue(caller, NULL, pBufferData,
bufferSize, NULL, 0);
 } else {
 XAAndroidBufferItem msgEos[1];
 msgEos[0].itemKey = XA_ANDROID_ITEMKEY_EOS;
 msgEos[0].itemSize = 0;
 res = (*caller)->Enqueue(caller, (void *)&kEosBufferCntxt,
NULL, 0, msgEos, sizeof(XAuint32)*2);
 reachedEof = JNI_TRUE;
 }
exit:
 ok = pthread_mutex_unlock(&mutex);
 return XA_RESULT_SUCCESS;
}

Chapter 7

263

5. Add an Android.mk file in the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := OpenMAXSLDemo
LOCAL_SRC_FILES := OpenMAXSLDemo.c
LOCAL_LDLIBS := -llog
LOCAL_LDLIBS += -landroid
LOCAL_LDLIBS += -lOpenMAXAL
include $(BUILD_SHARED_LIBRARY)

6. We can use the NativeMedia.ts video file available in the samples/native-
media/ directory for testing. The following command can be used to put the video
file into the /sdcard/ directory of the testing Android device:
$ adb push NativeMedia.ts /sdcard/

7. Build and start the Android application. We can see the GUI as shown in the
following screenshot:

We can press Play to start playing the video.

How it works...
In this recipe, we used the OpenMAX AL library to implement a simple video player.

Use and build with the OpenMAX AL multimedia library:
In order to call the API functions, we must add the following line to our code:

#include <OMXAL/OpenMAXAL.h>

Other Android NDK API

264

If we are also using Android-specific features, we should include another header:

#include <OMXAL/OpenMAXAL_Android.h>

In the Android.mk file, we must add the following line to link to the OpenMAX AL
multimedia library:

LOCAL_LDLIBS += libOpenMAXAL

OpenMAX AL video playback
Our sample project that is a simplified version of the native media project comes with the
Android NDK. The following diagram illustrates how the application works:

In our code, we created and realized the engine and output mix objects at naCreateEngine
function. At the naCreateStreamingMediaPlayerfunction function, we created and
realized the media player object with the audio data sink set as output mix, video data sink
set as native display, and data source set as the Android buffer queue.

When a buffer is consumed, the callback function AndroidBufferQueueCallback is
invoked, where we refill the buffer with data from the NativeMedia.ts file and enqueue
it to the buffer queue.

There's more....
OpenMAX AL is a complex library. The specification is a good reference when developing
applications with OpenMAX AL and it is available with the Android NDK. The Android NDK
also comes with a native-media example, which is a good example of how to use the API.

8
Porting and Using the

Existing Libraries
with Android NDK

In this chapter, we will cover the following recipes:

 f Porting a library as a shared library module with the Android NDK build system

 f Porting a library as a static library module with the Android NDK build system

 f Porting a library with its existing build system using the Android NDK toolchain

 f Using a library as a prebuilt library

 f Using a library in multiple projects with import-module

 f Porting a library that requires RTTI, exception, and STL support

Introduction
There are many C/C++ libraries for the Desktop computing world. These libraries can save us
a huge amount of effort if we can reuse them on an Android platform. Android NDK makes
this possible. In this chapter, we will discuss how to port the existing libraries to Android
with NDK.

We will first introduce how to build libraries with the Android NDK build system. We can build a
library as a static library module or a shared library module. The differences between the two
will be discussed in this chapter.

We can also use the Android NDK toolchain as a standalone cross compiler, which is covered
next. We will then describe how to use the compiled libraries as prebuilt modules.

Porting and Using the Existing Libraries with Android NDK

266

We often use the same library in multiple Android projects. We can use the import-module
feature to link to the same library module to multiple projects while maintaining a single copy
of the library.

Many C++ libraries require STL, C++ exceptions, and Run-Time Type Information (RTTI)
supports, which are not available with the Android default C++ runtime library. We will
illustrate how to enable these supports by using the popular boost library as an example.

Porting a library as a shared library module
with the Android NDK build system

This recipe will discuss how to port an existing library as a shared library with the Android NDK
build system. We will use the open source libbmp library as an example.

Getting ready
Readers are recommended to read the Building an Android NDK application at the command
line recipe in Chapter 3, Build and Debug NDK Applications, before going through this one.

How to do it...
The following steps describe how to create our sample Android project that demonstrates
porting the libbmp library as a shared library:

1. Create an Android application named PortingShared with native support. Set the
package name as cookbook.chapter8.portingshared. Please refer to the
Loading native libraries and registering native methods recipe of Chapter 2, Java
Native Interface, if you want more detailed instructions.

2. Add a Java file MainActivity.java under the cookbook.chapter8.
portingshared package. This Java file simply loads the shared library .bmp and
PortingShared, and calls the native method naCreateABmp.

3. Download the libbmp library from http://code.google.com/p/libbmp/
downloads/list, and extract the archive file. Create a folder named libbmp under
the jni folder, and copy the src/bmpfile.c and src/bmpfile.h files from the
extracted folder to the libbmp folder.

4. Remove the following code from bmpfile.h if you are using NDK r8 and below:
#ifndef uint8_t
typedef unsigned char uint8_t;
#endif
#ifndef uint16_t
typedef unsigned short uint16_t;

http://code.google.com/p/libbmp/downloads/list
http://code.google.com/p/libbmp/downloads/list

Chapter 8

267

#endif
#ifndef uint32_t
typedef unsigned int uint32_t;
#endif

5. Then, add the following line of code:
#include <stdint.h>

The code changes for bmpfile.h are only necessary for Android
NDK r8 and below. Compiling the library will return an error
"error: redefinition of typedef 'uint8_t'". This is a
bug in the NDK build system as the uint8_t definition is enclosed
by the #ifndef preprocessor. It has been fixed since NDK r8b, and
we don't need to change the code if we're using r8b and above.

6. Create an Android.mk file under the libbmp folder to compile libbmp as a shared
library libbmp.so. The content of this Android.mk file is as follows:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := libbmp
LOCAL_SRC_FILES := bmpfile.c
include $(BUILD_SHARED_LIBRARY)

7. Create another folder named libbmptest under the jni folder. Add the mylog.h
and PortingShared.c files under it. PortingShared.c implements the native
method naCreateABmp, which uses functions defined in the libbmp library to
create a bitmap image and save it to /sdcard/test_shared.bmp. You will
need to change directory if the /sdcard directory is not available on your devices:
void naCreateABmp(JNIEnv* env, jclass clazz, jint width, jint
height, jint depth) {
 bmpfile_t *bmp;
 int i, j;
 rgb_pixel_t pixel = {128, 64, 0, 0};
 for (i = 10, j = 10; j < height; ++i, ++j) {
 bmp_set_pixel(bmp, i, j, pixel);
 pixel.red++;
 pixel.green++;
 pixel.blue++;
 bmp_set_pixel(bmp, i + 1, j, pixel);
 bmp_set_pixel(bmp, i, j + 1, pixel);
 }
 bmp_save(bmp, "/sdcard/test_shared.bmp");
 bmp_destroy(bmp);
}

Porting and Using the Existing Libraries with Android NDK

268

8. Create another Android.mk file under the libbmptest folder to compile the
PortingShared.c file as another shared library libPortingShared.so.
The content of this Android.mk file is as follows:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := PortingShared
LOCAL_C_INCLUDES := $(LOCAL_PATH)/../libbmp/
LOCAL_SRC_FILES := PortingShared.c
LOCAL_SHARED_LIBRARIES := libbmp
LOCAL_LDLIBS := -llog
include $(BUILD_SHARED_LIBRARY)

9. Create an Android.mk file under the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(call all-subdir-makefiles)

10. Add the WRITE_EXTERNAL_STORAGE permission to the AndroidManifest.xml
file as follows:
<uses-permission android:name="android.permission.WRITE_EXTERNAL_
STORAGE"/>

11. Build and run the Android project. A bitmap file test_shared.bmp should be
created at the sdcard folder of the Android device. We can use the following
command to get the file:

$ adb pull /sdcard/test_shared.bmp .

The following is a .bmp file:

Chapter 8

269

How it works...
The sample project demonstrates how to port the libbmp code as a shared library and use it
in the native code PortingShared.c.

Shared library: A shared library can be shared by multiple executables and libraries. The
Android native code is usually compiled as shared libraries and loaded by the Java code. In
fact, the Android build system only packages shared libraries into the application's apk file.
Therefore, we must provide at least one shared library to contain our native code.

We can still use static libraries to generate shared libraries, as we will
see in the Porting a library as static library module with Android NDK
build system recipe.

Our sample project builds two shared libraries, namely libbmp.so and
libPortingShared.so. We can find these libraries under the libs folder of the project.
libPortingShared.so depends on libbmp.so, since PortingShared.c calls functions
defined in the libbmp library.

In our Java file, we need to load libbmp.so before libPortingShared.so, as follows:

static {
 System.loadLibrary("bmp");
 System.loadLibrary("PortingShared");
}

Understand the Android.mk files: Android NDK provides an easy-to-use build system, which
frees us from writing makefiles. However, we still need to provide some basic inputs to the
system through Android.mk and Application.mk. We only discuss Android.mk in
this recipe.

The Android.mk file is a GNU makefile fragment that describes the sources to the Android
build system. The sources are grouped into modules. Each module is a static or shared
library. The Android NDK provides a few predefined variables and macros. Here, we will briefly
describe the ones used in this recipe. We will introduce more predefined variables and macros
in subsequent recipes and you can also refer to Android NDK docs/ANDROID-MK.html for
more information.

 f CLEAR_VARS: This variable points to a script, which undefines nearly all module
description variables except LOCAL_PATH. We must include it before every new
module, as follows:
include $(CLEAR_VARS)

Porting and Using the Existing Libraries with Android NDK

270

 f BUILD_SHARED_LIBRARY: This variable points to a build script, which determines
how to build a shared library from the sources listed, based on the module
description. We must have LOCAL_MODULE and LOCAL_SRC_FILES defined when
including this variable, as follows:
include $(BUILD_SHARED_LIBRARY)

Including it will generate a shared library lib$(LOCAL_MODULE).so.

 f my-dir: This must be evaluated by using $(call <macro>). The my-dir
macro returns the path of the last included makefile, which is usually the
directory containing the current Android.mk file. It is typically used to define
the LOCAL_PATH, as follows:
LOCAL_PATH := $(call my-dir)

 f all-subdir-makefiles: This macro returns a list of Android.mk files located in
all subdirectories of the current my-dir path. In our example, we used this macro in
the Android.mk file under the jni, as follows:
include $(call all-subdir-makefiles)

This will include the two Android.mk files under libbmp and libbmptest.

 f LOCAL_PATH: This is a module description variable, which is used to locate the path
to the sources. It is usually used with the my-dir macro, as follows:
LOCAL_PATH := $(call my-dir)

 f LOCAL_MODULE: This is a module description variable, which defines the name of our
module. Note that it must be unique among all module names and must not contain
any space.

 f LOCAL_SRC_FILES: This is a module description variable, which lists out the
sources used to build the module. Note that the sources should be relative to
LOCAL_PATH.

 f LOCAL_C_INCLUDES: This is an optional module description variable, which provides
a list of the paths that will be appended to the include search path at compilation.
The paths should be relative to the NDK root directory. In Android.mk, under the
libbmptest folder of our sample project, we used this variable as follows:
LOCAL_C_INCLUDES := $(LOCAL_PATH)/../libbmp/

 f LOCAL_SHARED_LIBRARIES: This is an optional module description variable,
which provides a list of the shared libraries the current module depends on. In
Android.mk, under the libbmptest folder of our sample project, we used this
variable to include the libbmp.so shared library:
LOCAL_SHARED_LIBRARIES := libbmp

Chapter 8

271

 f LOCAL_LDLIBS: This is an optional module description variable, which provides a
list of linker flags. It is useful to pass the system libraries with the -l prefix. In our
sample project, we used it to link the system log library:

LOCAL_LDLIBS := -llog

With the preceding description, it is now fairly easy to understand the three Android.
mk files used in our sample project. Android.mk under jni simply includes another two
Android.mk files. Android.mk under the libbmp folder compiles the libbmp sources
as a shared library libbmp.so, and Android.mk under the libbmptest folder compiles
PortingShared.c as the libPortingShared.so shared library, which depends upon the
libbmp.so library.

See also
It is possible to use a shared library in the native code, as we have demonstrated in the
Programming with dynamic linker library at Android NDK recipe in Chapter 6, Other
Android NDK API.

Porting a library as a static library module
with the Android NDK build system

The previous recipe discussed how to port a library as a shared library module with the
libbmp library as an example. In this recipe, we will demonstrate how to port the libbmp
library as a static library.

Getting ready
Readers are recommended to read the Building an Android NDK application at the command
line recipe in Chapter 3, Build and Debug NDK Applications, before going through this one.

How to do it...
The following steps describe how to create our sample Android project that demonstrates
porting the libbmp library as a static library:

1. Create an Android application named PortingStatic with native support. Set the
package name as cookbook.chapter8.portingstatic. Please refer to the
Loading native libraries and registering native methods recipe of Chapter 2, Java
Native Interface, if you want more detailed instructions.

2. Add a Java file MainActivity.java under the cookbook.chapter8.
portingstatic package. This Java file simply loads the shared library
PortingStatic, and calls the native method naCreateABmp.

Porting and Using the Existing Libraries with Android NDK

272

3. Follow step 3 of the Porting a library as shared library module with the Android NDK
build system recipe to download the libbmp library and make changes.

4. Create an Android.mk file under the libbmp folder to compile libbmp as a static
library libbmp.a. The content of this Android.mk file is as follows:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := libbmp
LOCAL_SRC_FILES := bmpfile.c
include $(BUILD_STATIC_LIBRARY)

5. Create another folder libbmptest under the jni folder. Add the mylog.h
and PortingStatic.c files to it. Note that the code for it is the same as the
naCreateABmp method in previous chapter except that the .bmp file name is
changed from test_shared.bmp to test_static.bmp.

6. Create another Android.mk file under the libbmptest folder to compile
the PortingStatic.c file as a shared library libPortingStatic.so.
The content of this Android.mk file is as follows:
LOCAL_PATH := $(call my-dir
include $(CLEAR_VARS)
LOCAL_MODULE := PortingStatic
LOCAL_C_INCLUDES := $(LOCAL_PATH)/../libbmp/
LOCAL_SRC_FILES := PortingStatic.c
LOCAL_STATIC_LIBRARIES := libbmp
LOCAL_LDLIBS := -llog
include $(BUILD_SHARED_LIBRARY)

7. Create an Android.mk file under the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(call all-subdir-makefiles)

8. Add the WRITE_EXTERNAL_STORAGE permission to the AndroidManifest.xml
file as follows:
<uses-permission android:name="android.permission.WRITE_EXTERNAL_
STORAGE"/>

9. Build and run the Android project. A bitmap file test_static.bmp should be
created at the sdcard folder of the Android device. We can use the following
command to get the file:

$ adb pull /sdcard/test_static.bmp .

This file is the same as the test_static.bmp file used in the previous recipe.

Chapter 8

273

How it works...
In the sample project, we build libbmp as a static library libbmp.a, which can be found
under obj/local/armeabi/ folder. We called the functions defined in libbmp in the
native code PortingStatic.c.

A static library is simply an archive of object files compiled from the source code. They are
built as files ending with ".a" suffix at Android NDK. A static library is copied into a targeted
executable or library at build time by a compiler or linker. At Android NDK, static libraries are
only used to build the shared libraries, because only shared libraries are packaged into the
apk file for deployment.

Our sample project builds a static library libbmp.a and a shared library
libPortingStatic.so. The libPortingStatic.so shared library is located under the
libs/armeabi folder, and will be copied to the application's apk file. The libbmp.a library
is used to build the libPortingStatic.so shared library. If you examine the symbols of
the libPortingStatic.so library with the Eclipse project explorer, you will find that
the symbols for the functions defined at libbmp are included. This is shown in the
following screesnhot:

The functions bmp_create, bmp_destroy, and so on, are defined in libbmp and are
included in the shared library libPortingStatic.so.

Porting and Using the Existing Libraries with Android NDK

274

In our Java code, we will need to load the shared library with the following code:

static {
 System.loadLibrary("PortingStatic");
}

Understand the Android.mk files: The previous recipe already describes most of the
predefined variables and macros used in the three Android.mk files in this recipe.
Therefore, we only cover the ones that we have not seen in the previous recipe:

 f BUILD_STATIC_LIBRARY: The variable points to a build script which will collect the
information about the module and determine how to build a static library from the
sources. The module built is usually listed in LOCAL_STATIC_LIBRARIES of another
module. This variable is normally included in Android.mk as follows:
include $(BUILD_STATIC_LIBRARY)

In our sample project, we include this variable in the Android.mk file, under
jni/libbmp folder.

 f LOCAL_STATIC_LIBRARIES: This is a module description variable, which provides
a list of static libraries the current module should be linked to. It only makes sense
in shared library modules.

In our project, we used this variable to link to the libbmp.a static library, as shown
in the Android.mk file under the jni/libbmptest/ folder.

LOCAL_STATIC_LIBRARIES := libbmp

 f LOCAL_WHOLE_STATIC_LIBRARIES: This is a variant of the LOCAL_STATIC_
LIBRARIES variable. It indicates that the static libraries listed should be linked as
whole archives. This will force all object files from the static libraries to be added to
the current shared library module.

Static versus shared: Now that you have seen how to port an existing library as either a static
or shared library, you may ask which one is better. The answer, as you might have expected,
depends on our needs.

When you port a big library and only use a small portion of the functions provided by the
library, then a static library is a good option. The Android NDK build system can resolve the
dependencies at build time and only copy the parts that are used in the final shared library.
This means a smaller library size and subsequently smaller apk file size.

Sometimes, we need to force the entire static library to be built into the final
shared library (for example, there are circular dependencies among several
static libraries). We can use the LOCAL_WHOLE_STATIC_LIBRARIES
variable at Android.mk or the "--whole-archive" linker flag.

Chapter 8

275

When you port a library, which will be used by several Android apps, then shared library is a
better choice. Suppose you want to build two Android apps, a video player and a video editor.
Both apps will need a third-party codec library, which you can port to Android with NDK. In
this case, you can port the library as a shared library in a separate apk file (for example, MX
Player puts the codecs library in separate apk files) and the two apps can load the same
library at runtime. This means that the users only need to download the library once to use
both the apps.

Another case in which you may need the shared library is that a library L is used in multiple
shared libraries. If L is a static library, each shared library will include a copy of its code and
cause problems because of code duplication (for example, duplicated global variables).

See also
We have actually ported a library as a static library with Android NDK build system before.
Recall how we ported libpng as a static library in the Managing assets at Android NDK
recipe in Chapter 5, Android Native Application API.

Porting a library with its existing build
system using the Android NDK toolchain

The previous two recipes discussed how to port a library with the Android NDK build system.
However, a lot of open source projects have their own build systems and sometimes it is
troublesome to list out all sources in the Android.mk file. Fortunately, the Android NDK
toolchain can also be used as a standalone cross compiler and we can use the cross compiler
in an open source project's existing build system. This recipe will discuss how to port a library
with its existing build system.

How to do it...
The following steps describe how to create our sample project, which demonstrates porting
the open source libbmp library with its existing build system:

1. Create an Android application named PortingWithBuildSystem with native support.
Set the package name as cookbook.chapter8.portingwithbuildsystem.
Please refer to the Loading native libraries and registering native methods recipe
of Chapter 2, Java Native Interface, if you want more detailed instructions.

2. Add a Java file MainActivity.java under the cookbook.chapter8.
portingwithbuildsystem package. This Java file simply loads the shared
library PortingWithBuildSystem, and calls the native method naCreateABmp.

Porting and Using the Existing Libraries with Android NDK

276

3. Download the libbmp library from http://code.google.com/p/libbmp/
downloads/list and extract the archive file to the jni folder. This will create a
folder libbmp-0.1.3 under the jni folder with the following content:

4. Follow step 3 of the Porting a library as shared library module with Android NDK build
system recipe to update src/bmpfile.h.

5. Add a bash shell script file build_android.sh under the libbmp-0.1.3 folder
with the following content:
#!/bin/bash
NDK=<path to Android ndk folder>/android-ndk-r8b
SYSROOT=$NDK/platforms/android-8/arch-arm/
CFLAGS="-mthumb"
LDFLAGS="-Wl,--fix-cortex-a8"
export CC="$NDK/toolchains/arm-linux-androideabi-4.4.3/prebuilt/
linux-x86/bin/arm-linux-androideabi-gcc --sysroot=$SYSROOT"
./configure \

http://code.google.com/p/libbmp/downloads/list
http://code.google.com/p/libbmp/downloads/list

Chapter 8

277

 --host=arm-linux-androideabi \
 --disable-shared \
 --prefix=$(pwd) \
 --exec-prefix=$(pwd)
make clean
make
make install

6. Add the execute permission to the build_android.sh file with the
following command:
$ sudo chmod +x build_android.sh

7. At a command line shell, go to the libbmp-0.1.3 directory, and enter the following
command to build the library:
$./build_android.sh

The build will fail with the following errors:

This is because the config.guess and config.sub scripts under the
libbmp-0.1.3 folder are out of date (the first line of these two files indicate that the
timestamp is 2009-08-19). We will need copies of the scripts with timestamps 2010-
05-20 or later. The config.guess script can be found at http://gcc.gnu.org/
svn/gcc/branches/cilkplus/config.guess and config.sub can be found at
http://gcc.gnu.org/svn/gcc/branches/cilkplus/config.sub.

8. Try executing the build_android.sh script again. This time it finishes
successfully. We should be able to find the libbmp.a static library under the jni/
libbmp-0.1.3/lib folder and bmpfile.h under the jni/libbmp-0.1.3/
include folder.

How it works...
Many of the existing open source libraries can be built with the shell command
"./configure; make; make install". In our sample project, we wrote a
build_android.sh script to execute the three steps with the Android NDK
cross compiler.

http://gcc.gnu.org/svn/gcc/branches/cilkplus/config.guess
http://gcc.gnu.org/svn/gcc/branches/cilkplus/config.guess
http://gcc.gnu.org/svn/gcc/branches/cilkplus/config.sub
http://gcc.gnu.org/svn/gcc/branches/cilkplus/config.sub

Porting and Using the Existing Libraries with Android NDK

278

The following are a list of things we should consider when porting a library with the Android
NDK cross compiler:

1. Select the appropriate toolchain: Based on the CPU architecture (ARM, x86 or
MIPS) of our targeted devices, you need to choose the corresponding toolchain. The
following toolchains are available under the toolchains folder of Android NDK r8d:

 � For ARM-based devices: arm-linux-androideabi-4.4.3, arm-linux-
androideabi-4.6, arm-linux-androideabi-4.7, and arm-linux-
androideabi-clang3.1

 � For MIPS-based devices: mipsel-linux-android-4.4.3, mipsel-
linux-android-4.6, mipsel-linux-android-4.7, and mipsel-
linux-android-clang3.1

 � For x86-based devices: x86-4.4.3, x86-4.6, x86-4.7, and
x86-clang3.1

 f Select the sysroot: Based on the Android native API level and CPU architecture we
want to target, you will need to choose the appropriate sysroot. The compiler will look
for headers and libraries under the sysroot directory at compilation.

The path to sysroot follows this format:
$NDK/platforms/android-<level>/arch-<arch>/

$NDK refers to the Android NDK root folder, <level> refers to the Android API level,
and <arch> indicates the CPU architecture. In your build_android.sh script,
SYSROOT is defined as follows:

SYSROOT=$NDK/platforms/android-8/arch-arm/

2. Specify the cross compiler: The library's existing build system usually has a way for
us to specify the cross compiler. It is usually through a configuration option or an
environment variable.

In libbmp, we can enter the "./configure --help" command to see how to set
the compiler. The compiler command is specified through the environment variable
CC, while the environment variables CFLAGS and LDFLAGS are used to specify the
compiler flags and linker flags. In your build_android.sh script, these three
environment variables are set as follows:

export CFLAGS="-mthumb"
export LDFLAGS="-Wl,--fix-cortex-a8"
export CC="$NDK/toolchains/arm-linux-androideabi-4.4.3/prebuilt/
linux-x86/bin/arm-linux-androideabi-gcc --sysroot=$SYSROOT"

Chapter 8

279

The "-mthumb" compiler flag indicates that you will use the
thumb instruction set rather than the ARM instruction set. The
"-wl, --fix-cortex-a8" linker flag is required to route
around a CPU bug in some Cortex-A8 implementations.

 f Specify the output locations for the header files and library binary: You will usually
want to place the library under jni/<library folder>/.

In the case of libbmp, the library binary is installed under the PREFIX/lib folder
and the header file is installed under the EPREFIX/include folder. Therefore, we
set PREFIX and EPREFIX to jni/libbmp-0.1.3 by passing the following options
to configure the script:

--prefix=$(pwd) \

--exec-prefix=$(pwd)

 f Make and install the library: You can simply execute "make; make install;" to
build and install the library.

There's more...
In your build_android.sh script, we have disabled shared library. If you remove the line
"--disable-shared \", the build will generate both the shared library (libbmp.so) and
the static library (libbmp.a) under the jni/libbmp-0.1.3/lib/ folder.

In your sample project, we used the NDK toolchain directly. This method has a serious
limitation that you won't be able to use any C++ STL function, and C++ exceptions and
RTTI are not supported. Android NDK actually allows you to create a customized toolchain
installation with the script $NDK/build/tools/make-standalone-toolchain.sh.
Suppose you're targeting Android API level 8; you can use the following command to install
the toolchain at the /tmp/my-android-toolchain folder.

$ANDROID_NDK/build/tools/make-standalone-toolchain.sh
--platform=android-8 --install-dir=/tmp/my-android-toolchain

You can then use this toolchain by using the following commands:

export PATH=/tmp/my-android-toolchain/bin:$PATH

export CC=arm-linux-androideabi-gcc

Porting and Using the Existing Libraries with Android NDK

280

Note that the installed toolchain will have a few libraries (libgnustl_shared.so,
libstdc++.a, and libsupc++.a) under the /tmp/my-android-toolchain/arm-
linux-androideabi/lib/ folder. You can link against these libraries to enable exceptions,
RTTI, and STL functions support. We will further discuss exception and STL support in the
Porting a library which requires RTTI recipe.

More information about using the Android toolchain as a standalone compiler can be found at
Android NDK in docs/STANDALONE-TOOLCHAIN.html.

Using a library as a prebuilt library
The previous recipe described how to build an existing library with its own build system. We
obtained a compiled static library libbmp.a of the open source libbmp library. This recipe
will discuss how to use a prebuilt library.

How to do it...
The following steps build an Android NDK application which uses prebuilt library. Note that the
sample project is based on what we have done in the previous recipe. If you have not gone
through previous recipe, you should do it now.

1. Open the PortingWithBuildSystem project that you created in previous
recipe. Add a Java file MainActivity.java under the cookbook.chapter8.
portingwithbuildsystem package. This Java file simply loads the shared library
PortingWithBuildSystem, and calls the native method naCreateABmp.

2. Add the mylog.h and PortingWithBuildSystem.c files under it.
PortingWithBuildSystem.c implements the native method naCreateABmp.

3. Create an Android.mk file under the jni folder to compile
PortingWithBuildSystem.c as a shared library
libPortingWithBuildSystem.so. The content of this Android.mk file is as
follows:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := libbmp-prebuilt
LOCAL_SRC_FILES := libbmp-0.1.3/lib/libbmp.a
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)/libbmp-0.1.3/include/
include $(PREBUILT_STATIC_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := PortingWithBuildSystem
LOCAL_SRC_FILES := PortingWithBuildSystem.c
LOCAL_STATIC_LIBRARIES := libbmp-prebuilt
LOCAL_LDLIBS := -llog
include $(BUILD_SHARED_LIBRARY)

Chapter 8

281

4. Add the WRITE_EXTERNAL_STORAGE permission to the AndroidManifest.xml
file as follows:
<uses-permission android:name="android.permission.WRITE_EXTERNAL_
STORAGE"/>

5. Build and run the Android project. A bitmap file test_bs_static.bmp should
be created at the sdcard folder of the Android device. We can use the following
command to get the file:
$ adb pull /sdcard/test_bs_static.bmp .

The file is the same as test_static.bmp shown in the Porting a library as shared
library module with Android NDK build system recipe of this chapter.

How it works...
There are two common use cases for prebuilt libraries:

 f You want to use a library from a third-party developer and only the library binary
is provided

 f You have already built a library and want to use the library without recompiling it

Your sample project belongs to the second case. Let's look at the things to consider when
using a prebuilt library in Android NDK:

1. Declare a prebuilt library module: In Android NDK, a build module can either be a
static or shared library. You have seen how a module is declared with source code.
It is similar when a module is based on a prebuilt library.

i. Declare the module name: This is done with the LOCAL_MODULE
module description variable. In your sample project, define the module
name with the following line:

 LOCAL_MODULE := libbmp-prebuilt

ii. List the source for the prebuilt library: You will provide the path of the
prebuilt library to the LOCAL_SRC_FILES variable. Note that the path
is relative to LOCAL_PATH. In your sample project, list the path to the
libbmp.a static library as follows:

 LOCAL_SRC_FILES := libbmp-0.1.3/lib/libbmp.a

iii. Export the library headers: This is done through the LOCAL_EXPORT_C_
INCLUDES module description variable. The variable ensures that any
modules that depend on the prebuilt library module will have the path
to the library headers appended to LOCAL_C_INCLUDES automatically.
Note that this step is optional, as we can also explicitly add the path to
library headers to any modules that depend on the prebuilt library module.
However, it is a better practice to export the headers instead of adding the
path on every module that depends on the prebuilt library module.

Porting and Using the Existing Libraries with Android NDK

282

In your sample project, export the library headers with the following line in
the Android.mk file:
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)/libbmp-0.1.3/
include/

iv. Export the compiler and/or linker flags: This can be done with LOCAL_
EXPORT_CFLAGS, LOCAL_EXPORT_CPPFLAGS, and LOCAL_EXPORT_
LDLIBS. This step is also optional and we won't use them in your sample
project. You can refer to docs/ANDROID-MK.html at Android NDK for
more detailed information about these module description variables.

v. Declare a build type: You will need to include PREBUILT_SHARED_
LIBRARY for the shared prebuilt library and PREBUILT_STATIC_
LIBRARY for the static prebuilt library. In your sample project, use the
following line to declare that you want to build a prebuilt static library
module:

 include $(PREBUILT_STATIC_LIBRARY)

2. Use the prebuilt library module: Once you have the prebuilt library module in
place, you can simply list the module name in the LOCAL_STATIC_LIBRARIES
or LOCAL_SHARED_LIBRARIES declaration of any module that depends on the
prebuilt library. This is shown in your sample project's Android.mk file:
LOCAL_STATIC_LIBRARIES := libbmp-prebuilt

3. Prebuilt library for debugging: It is recommended by Android NDK that you provide
the prebuilt library binaries that contain debug symbols, to facilitate debugging with
ndk-gdb. When you package the library into an apk file, a stripped version created
by Android NDK (at the project's libs/<abi>/ folder) will be used.

We don't discuss how to generate the debug version of a library
because it depends on how the library is built. Normally, the library
documentation will contain instructions of how to generate a debug
build. If you're building the library using GCC directly, then you can
refer to http://gcc.gnu.org/onlinedocs/gcc/Debugging-
Options.html for various options for debugging.

Using a library in multiple projects with
import-module

You may often need to use a library in multiple projects. You can put the library in each of
the project's jni folders and build them separately. However, it is troublesome to maintain
multiple copies of the same library. For example, when there is a new release of the library
and you want to update the library, you will have to update each copy of the library.

http://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html
http://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html

Chapter 8

283

Fortunately, Android NDK provides a feature to allow us maintain a library module outside
a NDK project's main source tree and import the module with simple commands in the
Android.mk file. Let's discuss how to import a module in this recipe.

How to do it...
The following steps describe how to declare and import a module outside of a project's
jni folder:

1. Create an Android application named ImportModule with native support. Set the
package name as cookbook.chapter8.importmodule. Please refer to the
Loading native libraries and registering native methods recipe of Chapter 2, Java
Native Interface for more detailed instructions.

2. Add a Java file MainActivity.java under the cookbook.chapter8.
importmodule package. This Java file simply loads the shared library
ImportModule, and calls the native method naCreateABmp.

3. Download the libbmp library from http://code.google.com/p/libbmp/
downloads/list and extract the archive file. Create a folder named modules
under the project and a folder libbmp-0.1.3 under the modules folder. Copy
the src/bmpfile.c and src/bmpfile.h files from the extracted folder to the
libbmp-0.1.3 folder.

4. Follow step 3 of the Porting a library as shared library module with Android NDK build
system recipe to update src/bmpfile.h.

5. Create an Android.mk file under the libbmp-0.1.3 folder to compile libbmp as a
static library libbmp.a. The content of this Android.mk file is as follows:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := libbmp
LOCAL_SRC_FILES := bmpfile.c
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)
include $(BUILD_STATIC_LIBRARY)

6. Add the mylog.h and ImportModule.c files to it. ImportModule.c implements
the native method naCreateABmp.

http://code.google.com/p/libbmp/downloads/list
http://code.google.com/p/libbmp/downloads/list

Porting and Using the Existing Libraries with Android NDK

284

7. Create an Android.mk file under the jni folder to compile ImportModule.c as
a shared library libImportModule.so. The content of this Android.mk file is
as follows:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := ImportModule
LOCAL_SRC_FILES := ImportModule.c
LOCAL_LDLIBS := -llog
LOCAL_STATIC_LIBRARIES := libbmp
include $(BUILD_SHARED_LIBRARY)
$(call import-add-path,$(LOCAL_PATH)/../modules)
$(call import-module,libbmp-0.1.3)

8. Add the WRITE_EXTERNAL_STORAGE permission to the AndroidManifest.xml
file as follows:
<uses-permission android:name="android.permission.WRITE_EXTERNAL_
STORAGE"/>

9. Build and run the Android project. A bitmap file test_bs_static.bmp should
be created at the sdcard folder of the Android device. You can use the following
command to get the file:

$ adb pull /sdcard/test_im.bmp .

The file is the same as test_static.bmp, as shown in the Porting a library as
shared library module with Android NDK build system recipe of this chapter.

How it works...
In your sample project, you created a module outside the jni folder of the project and then
imported the module for building the shared library libImportModule.so. The following
steps should be performed when you declare and import a module:

1. Declare the import module: There is nothing special in declaring an import module.
Since an import module is usually used by multiple NDK projects, it is a good practice
to export the header files (with LOCAL_EXPORT_C_INCLUDES), compiler flags
(LOCAL_EXPORT_CFLAGS or LOCAL_EXPORT_CPPFLAGS), and linker flags
(LOCAL_EXPORT_LDLIBS) when declaring the import module.

In our sample project, you declared an import static library module libbmp.

2. Decide the place to put the import module: The Android NDK build system
will search the paths defined in NDK_MODULE_PATH for the import modules.
By default, the sources folder of the Android NDK directory is appended to
NDK_MODULE_PATH. Therefore, you can simply place our import module folder
under the sources folder and the Android NDK build system will be able to find it.

Chapter 8

285

Alternatively, you can place the import module folder anywhere and append the path
to NDK_MODULE_PATH. In our sample project, place the import the libbmp module
in the modules folder.

3. Append the import path: This is not needed when placing the import module folder
under the sources directory of Android NDK. Otherwise, you will need to tell the
Android NDK build system where the import modules are, by appending the path to
NDK_MODULE_PATH. The import-add-path macro is provided by NDK to help you
to append the path.

In your sample project, you appended the modules folder to NDK_MODULE_PATH
with the following line at jni/Android.mk:

$(call import-add-path,$(LOCAL_PATH)/../modules)

4. Import the module: Android NDK provides a macro import-module to import a
module. This macro accepts a relative path to the import module's folder where the
Android.mk file of the import module is located. The Android NDK build system will
search for all the paths defined at NDK_MODULE_PATH for the import module.

In your sample project, you imported the module with the following line at the
jni/Android.mk file:
$(call import-module,libbmp-0.1.3)

The NDK build system will search for the libbmp-0.1.3/Android.mk file at all
NDK_MODULE_PATH directories for the import modules.

5. Use the module: Using an import module is just like using any other library module.
You will need to link to the library by listing it at LOCAL_STATIC_LIBRARIES for the
static library import module and LOCAL_SHARED_LIBRARIES for the shared library
import module.

For more information about how to import modules, you can refer to docs/IMPORT-MODULE.
html at Android NDK.

Porting a library that requires RTTI,
exception, and STL support

The Android platform provides a C++ runtime library at /system/lib/libstdc++.so. This
default runtime library does not provide C++ exception and RTTI. The support for a standard
C++ library is also limited. Fortunately, Android NDK provides alternatives to the default
C++ runtime library, which makes porting of a large number of existing libraries that require
exception, RTTI, and STL support, possible. This recipe discusses how to port a C++ library
that requires RTTI, exception, and STL support. You will widely use the boost library
as an example.

Porting and Using the Existing Libraries with Android NDK

286

How to do it...
The following steps describe how to build and use the boost library for Android NDK:

1. Install a customized Android toolchain with the following command:
$ANDROID_NDK/build/tools/make-standalone-toolchain.sh
--platform=android-9 --install-dir=/tmp/my-android-toolchain

This should install the toolchain at the /tmp/my-android-toolchain folder.

2. Create an Android application named PortingBoost with native support. Set the
package name as cookbook.chapter8.portingboost. Please refer to the
Loading native libraries and registering native methods recipe of Chapter 2, Java
Native Interface for more detailed instructions.

3. Add a Java file MainActivity.java under the cookbook.chapter8.
portingboost package. This Java file simply loads the shared library
PortingBoost, and calls the native method naExtractSubject.

4. Download the boost library from http://sourceforge.net/projects/boost/
files/boost/. In this recipe, you will build the boost library 1.51.0.
Extract the downloaded archive file to the jni folder. This will create a
folder named boost_1_51_0 under the jni folder as follows:

http://sourceforge.net/projects/boost/files/boost/

Chapter 8

287

5. In a command line shell, go to the boost_1_51_0 directory. Enter the
following command:
$./bootstrap.sh

6. Edit the user-config.jam file under the jni/boost_1_51_0/tools/build/
v2 folder. Append the following content to the end of the file. You can refer to
http://www.boost.org/boost-build2/doc/html/bbv2/overview/
configuration.html for more information about boost configuration:
NDK_TOOLCHAIN = /tmp/my-android-toolchain ;
using gcc : android4.6 :
 $(NDK_TOOLCHAIN)/bin/arm-linux-androideabi-g++ :
 <archiver>$(NDK_TOOLCHAIN)/bin/arm-linux-androideabi-ar
 <ranlib>$(NDK_TOOLCHAIN)/bin/arm-linux-androideabi-ranlib
 <compileflags>--sysroot=$(NDK_TOOLCHAIN)/sysroot
 <compileflags>-I$(NDK_TOOLCHAIN)/arm-linux-androideabi/include/
c++/4.6
 <compileflags>-I$(NDK_TOOLCHAIN)/arm-linux-androideabi/include/
c++/4.6/arm-linux-androideabi
 <compileflags>-DNDEBUG
 <compileflags>-D__GLIBC__
 <compileflags>-DBOOST_FILESYSTEM_VERSION=3
 <compileflags>-lstdc++
 <compileflags>-mthumb
 <compileflags>-fno-strict-aliasing
 <compileflags>-O2
 ;

7. Try building the boost library with the following command:
$./b2 --without-python --without-mpi toolset=gcc-android4.6
link=static runtime-link=static target-os=linux --stagedir=android
> log.txt &

This command will execute the boost build in the background. You can monitor the
build output by using the following command:

$ tail -f log.txt

The build will take some time to finish. It will fail to build some targets. We can
examine the errors in the log.txt file.

The first error is that the sys/statvfs.h file is not found. You can fix this by
updating the libs/filesystem/src/operations.cpp file. The updated
parts are highlighted as follows:
include <sys/types.h>
include <sys/stat.h>

Porting and Using the Existing Libraries with Android NDK

288

if !defined(__APPLE__) && !defined(__OpenBSD__) && !defined(__
ANDROID__)
include <sys/statvfs.h>
define BOOST_STATVFS statvfs
define BOOST_STATVFS_F_FRSIZE vfs.f_frsize
else
ifdef __OpenBSD__
include <sys/param.h>
elif defined(__ANDROID__)
include <sys/vfs.h>
endif
include <sys/mount.h>
define BOOST_STATVFS statfs
define BOOST_STATVFS_F_FRSIZE static_cast<boost::uintmax_
t>(vfs.f_bsize)
endif

The second error is that the bzlib.h file is not found. This is because bzip is
available on Android. You can disable bzip by adding the following line at the top of
jni/boost_1_51_0/tools/build/v2/user-config.jam:
modules.poke : NO_BZIP2 : 1 ;

The third error is that PAGE_SIZE is not declared in this scope. You can fix this by
adding the following line to boost_1_51_0/boost/thread/thread.hpp
and boost_1_51_0/boost/thread/pthread/thread_data.hpp:

#define PAGE_SIZE sysconf(_SC_PAGESIZE)

8. Try building the library again with the same command in step 5. This time the library
will build successfully.

9. Add the mylog.h and PortingBoost.cpp files under the jni folder. The
PortingBoost.cpp file contains the implementation for the native method
naExtractSubject. The function will match each line of the input string
pInputStr with a regular expression using the boost library's regex_match
method:
void naExtractSubject(JNIEnv* pEnv, jclass clazz, jstring
pInputStr) {
 std::string line;
 boost::regex pat("^Subject: (Re: |Aw:)*(.*)");
 const char *str;
 str = pEnv->GetStringUTFChars(pInputStr, NULL);
 std::stringstream stream;
 stream << str;
 while (1) {
 std::getline(stream, line);

Chapter 8

289

 LOGI(1, "%s", line.c_str());
 if (!stream.good()) {
 break;
 }
 boost::smatch matches;
 if (boost::regex_match(line, matches, pat)) {
 LOGI(1, "matched: %s", matches[0].str().c_str());
 } else {
 LOGI(1, "not matched");
 }
 }
}

10. Add an Android.mk file under the jni folder with the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := boost_regex
LOCAL_SRC_FILES := boost_1_51_0/android/lib/libboost_regex.a
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)/boost_1_51_0
include $(PREBUILT_STATIC_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := PortingBoost
LOCAL_SRC_FILES := PortingBoost.cpp
LOCAL_LDLIBS := -llog
LOCAL_STATIC_LIBRARIES := boost_regex
include $(BUILD_SHARED_LIBRARY)

11. Add an Application.mk file under the jni folder with the following content:
APP_STL := gnustl_static
APP_CPPFLAGS := -fexceptions

12. Build and run the project. You can monitor the logcat output with the
following command:

$ adb logcat -v time PortingBoost:I *:S

The following is a screenshot of the logcat output:

Porting and Using the Existing Libraries with Android NDK

290

How it works...
In your sample project, you first built the boost library using the Android toolchain as a
standalone compiler. You then used the regex library from boost as a prebuilt module.
Note that the boost library requires support for C++ exceptions and STL. Let's discuss
how to enable support for these features at Android NDK.

C++ runtime at Android NDK: By default, Android comes with a minimal C++ runtime library
at /system/lib/libstdc++.so. The library does not support most C++ standard library
functions, C++ exceptions, and RTTI. Fortunately, Android NDK comes with additional C++
runtime libraries that we can use. The following table summarizes the features provided by
different runtime libraries at NDK r8:

C++ standard library C++ exceptions C++ RTTI

system minimal No No

gabi++ minimal No (yes if NDK r8d or
later)

Yes

stlport yes No (yes if NDK r8d or
later)

Yes

gnustl yes yes Yes

The C++ exceptions have been added to gabi++ and stlport since
Android NDK r8d.

The system library refers to the default value that comes with the Android system. There
is only a minimal C++ standard library support, and no C++ exceptions and RTTI. The C++
headers supported include the following:

cassert, cctype, cerrno, cfloat, climits, cmath, csetjmp, csignal,
cstddef, cstdint, cstdio, cstdlib, cstring, ctime, cwchar, new, stl_
pair.h, typeinfo, utility

 f gabi++ is a runtime library, which supports RTTI in addition to the C++ functions
provided by the system default.

 f stlport provides a complete set of C++ standard library headers and RTTI.
However, C++ exception is not supported. In fact, Android NDK stlport is
based on gabi++.

Chapter 8

291

 f gnustl is the GNU standard C++ library. It comes with a complete set of C++
headers, and supports C++ exceptions and RTTI.

The shared library file gnustl is named as libgnustl_shared.so
instead of libstdc++.so in other platforms. This is because the name
libstdc++.so is used by the system default C++ runtime.

The Android NDK build system allows us to specify the C++ library runtime to link to the
Application.mk file. Based on the library type (shared or static) and which runtime
to use, we can define APP_STL as follows:

Static library Shared library

gabi++ gabi++_static gabi++_shared

stlport stlport_static stlport_shared

gnustl gnustl_static gnustl_shared

In your sample project, add the following line in Application.mk to use the gnustl
static library:

APP_STL := gnustl_static

You can only link a static C++ library into a single shared library. If a project
uses multiple shared libraries and all libraries link to a static C++ library,
each shared library will include a copy of the library's code in its binary. This
will cause some problems, because some global variables used by the C++
runtime library are duplicated.

The sources, headers, and binaries of these libraries can be found at the sources/cxx-stl
folder of Android NDK. You can also refer to docs/CPLUSPLUS-SUPPORT.html for
more information.

Porting and Using the Existing Libraries with Android NDK

292

Enable the C++ exception support: By default, all C++ sources are compiled with
-fno-exceptions. In order to enable C++ exceptions, you will need to choose a C++
library, which supports exceptions (gnustl_static or gnustl_shared), and do one
of the following:

 f At Android.mk, add exceptions to LOCAL_CPP_FEATURES as follows:
LOCAL_CPP_FEATURES += exceptions

 f At Android.mk, add -fexceptions to LOCAL_CPPFLAGS as follows:
LOCAL_CPPFLAGS += -fexceptions

 f At Application.mk, add the following line:

APP_CPPFLAGS += -fexceptions

Enable the C++ RTTI support: By default, C++ sources are compiled with -fno-rtti. In
order to enable the RTTI support, you will need to use a C++ library, which supports RTTI,
and do one of the following:

 f At Android.mk, add rtti to LOCAL_CPP_FEATURES as follows:
LOCAL_CPP_FEATURES += rtti

 f At Android.mk, add -frtti to LOCAL_CPPFLAGS as follows:
LOCAL_CPPFLAGS += -frtti

 f At Application.mk, add -frtti to APP_CPPFLAGS as follows:

APP_CPPFLAGS += -frtti

9
Porting an Existing

Application to Android
with NDK

In this chapter, we will cover the following recipes:

 f Porting a command-line executable to Android with an NDK build system

 f Porting a command-line executable to Android with an NDK standalone compiler

 f Adding GUI to a ported Android app

 f Using background threads at porting

Introduction
The previous chapter covered various techniques of porting a native library to Android with
NDK. This chapter discusses the porting of native applications.

We will first introduce how to build a native command-line application for Android with an
Android NDK build system and the standalone compiler provided by NDK. We will then add a
GUI for the ported application. Finally, we illustrate using a background thread to do the heavy
processing and sending the progress update message from the native code to the Java UI
thread for GUI updates.

Porting an Existing Application to Android with NDK

294

We will use the open source Fugenschnitzer program throughout this chapter. It is a
content-aware image resizing program based on the Seam Carving algorithm. The basic
idea of this algorithm is to change the size of an image by searching for and manipulating
the seams (a seam is a path of connected pixels from top to bottom, or left to right) from the
original image. The algorithm is able to resize an image while trying to keep the important
information. For readers who are interested in the program and the algorithm, refer to the
project's main page at http://fugenschnitzer.sourceforge.net/main_en.html for
more details. Otherwise, we can ignore the algorithm and focus on how the porting is done.

Porting a command-line executable to
Android with an NDK build system

This recipe discusses how to port a command-line executable to Android with an NDK build
system. We will use the open source Fugenschnitzer program (fusch) as an example.

Getting ready
You should read the Porting a library as a static library with an Android NDK build system
recipe in Chapter 8, Porting and Using Existing Libraries with Android NDK, before going
through this one.

How to do it...
The following steps describe how to port the fusch program to Android with an NDK
build system:

1. Create an Android application named PortingExecutable with native support. Set
the package name as cookbook.chapter9.portingexecutable. Refer to the
Loading native libraries and registering native methods recipe in Chapter 2, Java
Native Interface, if you want more detailed instructions.

2. Remove the existing content under the jni folder of the project.

3. Download the source code of the fusch library and command-line application
from http://fugenschnitzer.sourceforge.net/main_en.html.
Extract the archive files and put them into the jni/fusch and jni/fusch_lib
folders respectively.

4. Download libpng 1.2.50 from http://sourceforge.net/projects/
libpng/files/libpng12/1.2.50/ and extract the files to the jni/
libpng-1.2.50 folder. The latest version of libpng won't work because
the interface is different.

Chapter 9

295

5. Add an Android.mk file under the jni/libpng-1.2.50 folder to build libpng as
a static library module. The file has the following content:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_CFLAGS :=
LOCAL_MODULE := libpng
LOCAL_SRC_FILES :=\
 png.c \
 pngerror.c \
 pngget.c \
 pngmem.c \
 pngpread.c \
 pngread.c \
 pngrio.c \
 pngrtran.c \
 pngrutil.c \
 pngset.c \
 pngtrans.c \
 pngwio.c \
 pngwrite.c \
 pngwtran.c \
 pngwutil.c
LOCAL_LDLIBS := -lz
LOCAL_EXPORT_LDLIBS := -lz
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)
include $(BUILD_STATIC_LIBRARY)

6. Add an Android.mk file under the jni/fusch_lib folder to build libseamcarv
as a static library module. The file content is as follows:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := libseamcarv
LOCAL_SRC_FILES :=\
 sc_core.c \
 sc_carve.c \
 sc_color.c \
 sc_shift.c \
 sc_mgmnt.c \
 seamcarv.c
LOCAL_CFLAGS := -std=c99
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)
include $(BUILD_STATIC_LIBRARY)

Porting an Existing Application to Android with NDK

296

7. Add the third Android.mk file under the jni/fusch folder to build the
fusch executable, which uses the two static libraries built in the two folders
libpng-1.2.50 and fusch_lib.
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := fusch
LOCAL_SRC_FILES := fusch.c
LOCAL_CFLAGS := -std=c99
LOCAL_STATIC_LIBRARIES := libpng libseamcarv
include $(BUILD_EXECUTABLE)

8. Add the fourth Android.mk file under the jni folder to include the Android.mk
files under its subfolders.
LOCAL_PATH := $(call my-dir)
include $(call all-subdir-makefiles)

9. Build the application and you will see a binary file, fusch, under the libs/armeabi
folder. We can put this binary into a rooted Android device or an emulator with the
following command:
$ adb push fusch /data/data/

10. Note that we will not be able to copy and execute the binary on a non-rooted Android
device because we cannot get the permission to execute.

11. Start the first command line on the console. We can grant the execution permission
to the binary and execute it with the following command:
$ adb shell

cd /data/data

chmod 755 fusch

./fusch

This will print out the help message of the program.

12. Start the second command-line shell. Push the test PNG file cookbook_ch9_test.
png (available under the assets folder of the sample project's source code) to the
testing device or emulator with the following command:
$ adb push cookbook_ch9_test.png /data/data/

13. Get back to the first command-line shell and execute the fusch program again with
the following command:
./fusch cookbook_ch9_test.png 1.png h-200

Chapter 9

297

14. The program will take a while to resize the input image from 800 x 600 to 600 x 600.
Once it is finished, we can get the processed image with the following command at
the second command-line shell:
$ adb pull /data/data/1.png .

15. The following screenshot shows the original image on the left and the processed
image on the right:

How it works...
The sample project demonstrates how to port the fusch program as a command-line
executable to Android. We describe the sources to the Android NDK build system in the
Android.mk file and the NDK build system handles the rest.

The steps to port a command-line executable are as follows:

1. Figure out the library dependencies. In our sample program, fusch depends on
libseamcarv (in the fusch_lib folder) and libpng, and libpng subsequently
depends on zlib.

2. If a library is not available on the Android system, port it as a static library module.
This is the case for libseamcarv and libpng in our sample application. But as
zlib is available on Android, we simply need to link to it.

3. Port the executable as a separate module and link it to the library modules.

Porting an Existing Application to Android with NDK

298

Understanding the Android.mk files
We have covered most of the Android.mk variables and macros in Chapter 8, Porting and
Using Existing Libraries with Android NDK. We will introduce two more predefined variables
here. You can also refer to the Android NDK file docs/ANDROID-MK.html for information
on more macros and variables.

 f LOCAL_CFLAGS: A module description variable. This allows us to specify additional
compiler options or macro definitions for building C and C++ source files. Another
variable that serves a similar purpose is LOCAL_CPPFLAGS, but for C++ source files
only. In our sample project, we passed -std=c99 to the compiler when building
libseamcarv and fusch. This asks the compiler to accept ISO C99 C language
standard syntax. Failing to specify the flag will result in compilation errors at the
time of building.

It is also possible to specify the include paths with LOCAL_CFLAGS
+= I<include path>. However, it is recommended that we use
LOCAL_C_INCLUDES because the LOCAL_C_INCLUDES path will
also be used for ndk-gdb native debugging.

 f BUILD_EXECUTABLE: A GNU make variable. It points to a build script that collects all
information about the executable that we want to build and determines how to build
it. It is similar to BUILD_SHARED_LIBRARY and BUILD_STATIC_LIBRARY except
that it is for executables. It is used when building fusch in our sample project.

include $(BUILD_EXECUTABLE)

With this explanation and the knowledge we acquired in Chapter 8, Porting and Using Existing
Libraries with Android NDK, it is now fairly easy to understand the four Android.mk files
used in our sample application. We ported libpng and libseamcarv as two static library
modules. We export the dependent libraries (with LOCAL_EXPORT_LDLIBS) and header
files (with LOCAL_EXPORT_C_INCLUDES), so they are automatically included when using
the module. When porting libpng, we also link to the zlib library (with LOCAL_LDLIBS)
available on the Android system. Finally, we port the fusch program by referring to the two
library modules (with LOCAL_STATIC_LIBRARIES).

Porting a command-line executable to
Android with an NDK standalone compiler

The previous recipe covered how to port a command-line executable to Android with an NDK
build system. This recipe describes how to do it by using the Android NDK toolchain as a
standalone compiler.

Chapter 9

299

Getting ready
It is recommended that you read the Porting a library with its existing build system recipe in
Chapter 8, Porting and Using Existing Libraries with Android NDK, before continuing.

How to do it...
The following steps describe how to port the fusch program to Android by using the NDK
toolchain directly:

1. Create an Android application named PortingExecutableBuildSystem
with native support. Set the package name as cookbook.chapter9.
portingexecutablebuildsystem. Refer to the Loading native libraries and
registering native methods recipe of Chapter 2, Java Native Interface, if you want
more detailed instructions.

2. Remove the existing content under the jni folder of the project.

3. Download the source code of the fusch library and the command-line application
from http://fugenschnitzer.sourceforge.net/main_en.html. Extract
the archive files and put them into the jni/fusch and jni/fusch_lib
folders respectively.

4. Download libpng 1.2.50 from http://sourceforge.net/projects/
libpng/files/libpng12/1.2.50/ and extract the files to the jni/
libpng-1.2.50 folder. The latest version of libpng won't work because the
interface has changed. Replace the config.guess script under libpng-1.2.50
with the one at http://gcc.gnu.org/svn/gcc/branches/cilkplus/
config.guess and config.sub with the script at http://gcc.gnu.org/svn/
gcc/branches/cilkplus/config.sub.

5. Add a build_android.sh file under the jni/libpng-1.2.50 folder to build
libpng. The file has the following content:
#!/bin/bash
NDK=~/Desktop/android/android-ndk-r8b
SYSROOT=$NDK/platforms/android-8/arch-arm/
export CFLAGS="-fpic \
 -ffunction-sections \
 -funwind-tables \
 -D__ARM_ARCH_5__ -D__ARM_ARCH_5T__ \
 -D__ARM_ARCH_5E__ -D__ARM_ARCH_5TE__ \
 -Wno-psabi \
 -march=armv5te \
 -mtune=xscale \
 -msoft-float \
 -mthumb \

Porting an Existing Application to Android with NDK

300

 -Os \
 -DANDROID \
 -fomit-frame-pointer \
 -fno-strict-aliasing \
 -finline-limit=64"
export LDFLAGS="-lz"
export CC="$NDK/toolchains/arm-linux-androideabi-4.4.3/prebuilt/
linux-x86/bin/arm-linux-androideabi-gcc --sysroot=$SYSROOT"
./configure \
 --host=arm-linux-androideabi \
 --prefix=$(pwd) \
 --exec-prefix=$(pwd) \
 --enable-shared=false \
 --enable-static=true
make clean
make
make install

6. Add a build_android.sh file under the jni/fusch_lib folder to build the library
libseamcarv. The file content is as follows:
#!/bin/bash
NDK=~/Desktop/android/android-ndk-r8b
SYSROOT=$NDK/platforms/android-8/arch-arm/
export CFLAGS="-fpic \
 -ffunction-sections \
 -funwind-tables \
 -D__ARM_ARCH_5__ -D__ARM_ARCH_5T__ \
 -D__ARM_ARCH_5E__ -D__ARM_ARCH_5TE__ \
 -Wno-psabi \
 -march=armv5te \
 -mtune=xscale \
 -msoft-float \
 -mthumb \
 -Os \
 -fomit-frame-pointer \
 -fno-strict-aliasing \
 -finline-limit=64 \
 -std=c99 \
 -DANDROID "
export CC="$NDK/toolchains/arm-linux-androideabi-4.4.3/prebuilt/
linux-x86/bin/arm-linux-androideabi-gcc --sysroot=$SYSROOT"
AR="$NDK/toolchains/arm-linux-androideabi-4.4.3/prebuilt/
linux-x86/bin/arm-linux-androideabi-ar"

Chapter 9

301

SRC_FILES="\
 sc_core.c \
 sc_carve.c \
 sc_color.c \
 sc_shift.c \
 sc_mgmnt.c \
 seamcarv.c"
$CC $SRC_FILES $CFLAGS -c
$AR cr libseamcarv.a *.o

7. Add the third build_android.sh file under the jni/fusch folder to build the
fusch executable, which uses the two static libraries built at the two folders
libpng-1.2.50 and fusch_lib.
#!/bin/bash
NDK=~/Desktop/android/android-ndk-r8b
SYSROOT=$NDK/platforms/android-8/arch-arm
CUR_D=$(pwd)
export CFLAGS="-fpic \
 -ffunction-sections \
 -funwind-tables \
 -D__ARM_ARCH_5__ -D__ARM_ARCH_5T__ \
 -D__ARM_ARCH_5E__ -D__ARM_ARCH_5TE__ \
 -Wno-psabi \
 -march=armv5te \
 -mtune=xscale \
 -msoft-float \
 -mthumb \
 -Os \
 -fomit-frame-pointer \
 -fno-strict-aliasing \
 -finline-limit=64 \
 -std=c99 \
 -DANDROID \
 -I$CUR_D/../fusch_lib \
 -I$CUR_D/../libpng-1.2.50/include"
export LDFLAGS="-Wl,--no-undefined -Wl,-z,noexecstack -Wl,-z,relro
-Wl,-z,now -lz -lc -lm -lpng -lseamcarv -L$CUR_D/../fusch_lib
-L$CUR_D/../libpng-1.2.50/lib"
export CC="$NDK/toolchains/arm-linux-androideabi-4.4.3/prebuilt/
linux-x86/bin/arm-linux-androideabi-gcc --sysroot=$SYSROOT"
SRC_FILES="fusch.c"
$CC $SRC_FILES $CFLAGS $LDFLAGS -o fusch

Porting an Existing Application to Android with NDK

302

8. Build the two libraries libpng and libseamcarv and the fusch executable by
executing the build_android.sh script in the three subfolders libpng-1.2.50,
fusch_lib, and fusch. We shall find libpng.a under the libpng-1.2.50/lib
folder, libseamcarv.a under the fusch_lib folder, and the fusch executable
under the fusch folder.

9. We can put the binary file fusch to a rooted Android device or an emulator with the
following command:
$ cd <path to project folder>/PortingExecutableBuildSystem/jni/
fusch

$ adb push fusch /data/data/

10. Note that we will not be able to copy and execute the binary on a non-rooted Android
device because we cannot get the permission.

11. Start the first command-line shell. We can grant the execution permission to the
binary and execute it with the following command:
$ adb shell

cd /data/data

chmod 755 fusch

./fusch

12. This will print out the help message of the program.

13. Start the second command-line shell. Push the test PNG file cookbook_ch9_test.
png (available under the assets folder of the sample project's source code) to the
testing device or emulator with the following command:
$ adb push cookbook_ch9_test.png /data/data/

14. Get back to the first command-line shell and execute the fusch program again with
the following command:
./fusch cookbook_ch9_test.png 1.png v-200

15. The program will take a while to resize the input image from 800 x 600 to 800 x 400.
Once it is finished, we can get the processed image with the following command at
the second command-line shell:
$ adb pull /data/data/1.png .

Chapter 9

303

16. The following figure shows the original image on the left and the processed image on
the right:

How it works...
The sample project shows how to port a command-line executable to Android by using the
NDK toolchain as a standalone compiler.

The steps to port the executable are similar to those in the previous recipe where we used the
Android NDK build system. The key here is to pass proper options to the standalone compiler.

Porting libpng
libpng comes with its own build scripts. We can get a list of options to configure the building
process with the following command:

$./configure –help

The compiler command, compiler flags, and linker flags can be configured with the
environment variables CC, CFLAGS, and LDFLAGS respectively. In the build_android.sh
script under the libpng-1.2.50 folder, we set these variables to use the NDK compiler to
build for the ARM architecture. For a detailed explanation of how to port a library, we can refer
to the Porting a library with its existing build system using Android NDK toolchain recipe in
Chapter 8, Porting a Library with its Existing Build System.

We will now cover a few compilation options. Since the Android NDK toolchain is based on
GCC, we can refer to http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
for a detailed explanation of each option.

 f -fpic: It generates position-independent code suitable for building a shared library.

 f -ffunction-sections: This option asks the linker to perform optimizations to
improve the locality of reference in the code.

 f -funwind-tables: It generates static data for unwinding the call stack.

Porting an Existing Application to Android with NDK

304

 f -D__ARM_ARCH_5__, -D__ARM_ARCH_5T, -D__ARM_ARCH_5E__, -D__ARM_
ARCH_5TE, -DANDROID defines __ARM_ARCH_5__, __ARM_ARCH_5T, __ARM_
ARCH_5E__, __ARM_ARCH_5TE, and ANDROID as macro, with definition equal to 1.
For example, -DANDROID is equivalent to -D ANDROID=1.

 f -Wno-psabi: It suppresses the warning message about va_list and so on.
 f -march=armv5te: It specifies the target ARM architecture as ARMv5te.
 f -mtune=xscale: It tunes the performance of the code as it will be running on the

xscale processor. Note that xscale is a processor name.
 f -msoft-float: It uses software floating point functions.
 f -mthumb: It generates code using the Thumb instruction set.
 f -Os: It provides optimization for size.
 f -fomit-frame-pointer: It helps avoid saving frame pointers in registers

if possible.
 f -fno-strict-aliasing: No strict aliasing rules can be applied. This prevents

the compiler from unwanted optimizations.
 f -finline-limit=64: It sets the limit size of functions that can be inlined as 64

pseudo instructions.
 f -std=c99: It accepts c99 standard syntax.

When the build executes successfully, we can find the libpng.a static library
under the libpng-1.2.50/lib folder and the header files under the
libpng-1.2.50/include folder.

The Android NDK build system essentially figures out the proper compilation
options for us and invokes the cross compiler for us. Therefore, we can learn
the options to pass to the compiler from the NDK build system output. For
example, we can invoke the command ndk-build -B V=1 or ndk-build
-B -n in the previous recipe to see how the NDK build system handles the
building of libpng, libseamcarv, and fusch, and apply similar options in
this recipe.

Porting libseamcarv
libseamcarv comes with a Makefile but no configure file. We can either modify the Makefile
or write a build script from scratch. Since the library only contains a few files, we will write the
build script directly. There are two steps to be followed:

1. Compile all source files to object files. This is done by passing the "-c" option
at compilation.

2. Archive the object files into a static library. This step is done with the archiver
arm-linux-androideabi-ar from the NDK toolchain.

Chapter 9

305

As we have explained in Chapter 8, Porting and Using Existing Libraries with
Android NDK, a static library is simply an archive of object files, which can be
created by the archiver program.

Porting fusch
We need to link to the two libraries we built, namely libpng and libseamcarv. This is done
by passing the following options to the linker:

-lpng -lseamcarv -L$CUR_D/../fusch_lib -L$CUR_D/../libpng-1.2.50/lib

This "-L" option adds fusch_lib and libpng-1.2.50/lib to the library's search path and
"-l" tells the linker to link to the libpng and libseamcarv libraries. The build script will
output a binary file named fusch under the fusch folder.

The fusch program is fairly simple. Therefore, we can use either the Android NDK build
system or a standalone compiler to port it. If an application has more dependencies, it can
be difficult to describe everything in Android.mk files. Therefore, it is helpful that we can use
the NDK toolchain as a standalone compiler and make use of a library's existing build scripts.

Adding GUI to a ported Android app
The previous two recipes demonstrate how to port a command-line executable to Android.
Needless to say, the biggest disadvantage of such a method is that it cannot be executed on
a non-rooted Android device. This recipe discusses how to address the issue by adding a GUI
when porting an application to Android.

How to do it...
The following steps describe how to add a simple UI to the ported app:

1. Create an Android application named PortingExecutableAUI with native support.
Set the package name as cookbook.chapter9.portingexecutableaui. Refer
to the Loading native libraries and registering native methods recipe of Chapter 2,
Java Native Interface, if you want more detailed instructions.

2. Follow steps 2 to 8 of the Porting a command line executable to Android with NDK
build system recipe of this chapter.

Porting an Existing Application to Android with NDK

306

3. Add a mylog.h file under the jni/fusch folder. Add the following lines to the
jni/fusch/fusch.c file at the beginning of the main method, then remove the
original main method signature line. The naMain method accepts a command from
the Java code instead of the command-line shell. The arguments should be separated
by a space:
#ifdef ANDROID_BUILD
#include <jni.h>
#include "mylog.h"
int naMain(JNIEnv* env, jclass clazz, jstring pCmdStr);

jint JNI_OnLoad(JavaVM* pVm, void* reserved) {
 JNIEnv* env;
 if ((*pVm)->GetEnv(pVm, (void **)&env, JNI_VERSION_1_6) != JNI_
OK) {
 return -1;
 }
 JNINativeMethod nm[1];
 nm[0].name = "naMain";
 nm[0].signature = "(Ljava/lang/String;)I";
 nm[0].fnPtr = (void*)naMain;
 jclass cls = (*env)->FindClass(env, "cookbook/chapter9/
portingexecutableaui/MainActivity");
 // Register methods with env->RegisterNatives.
 (*env)->RegisterNatives(env, cls, nm, 1);
 return JNI_VERSION_1_6;
}

 int naMain(JNIEnv* env, jclass clazz, jstring pCmdStr) {
 int argc = 0;
 char** argv = (char**) malloc (sizeof(char*)*4);
 *argv = "fusch";
 char** targv = argv + 1;
 argc++;
 jboolean isCopy;
 char *cmdstr = (*env)->GetStringUTFChars(env, pCmdStr,
&isCopy);
 if (NULL == cmdstr) {
 LOGI(2, "get string failed");
 }
 LOGI(2, "naMain assign parse string %s", cmdstr);
 char* pch;

Chapter 9

307

 pch = strtok(cmdstr, " ");
 while (NULL != pch) {
 *targv = pch;
 argc++;
 targv++;
 pch = strtok(NULL, " ");
 }
 LOGI(1, "No. of arguments: %d", argc);
 LOGI(1, "%s %s %s %s", argv[0], argv[1], argv[2], argv[3]);
#else
 int main(int argc, char *argv[]) {
#endif

4. Add the following lines before the return statement of the main method to release
the native string:
#ifdef ANDROID_BUILD
 (*env)->ReleaseStringUTFChars(env, pCmdStr, cmdstr);
#endif

5. Update the Android.mk file under jni/fusch as follows. The updated part
is highlighted:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := fusch
LOCAL_SRC_FILES := fusch.c
LOCAL_CFLAGS := -std=c99 -DANDROID_BUILD
LOCAL_STATIC_LIBRARIES := libpng libseamcarv
LOCAL_LDLIBS := -llog
include $(BUILD_SHARED_LIBRARY)

6. Add the MainActivity.java file under the cookbook.chapter9.
portingexecutableaui package. The Java code sets up the GUI, loads the shared
library libfusch.so, and calls the native method naMain.

7. Add an activity_main.xml file under the res/layout folder to describe the GUI.

8. In the AndroidManifest.xml file, add the following line before
<application>...</application>:
<uses-permission android:name="android.permission.WRITE_EXTERNAL_
STORAGE"/>

Porting an Existing Application to Android with NDK

308

9. Build and run the Android app. You should be able to see a GUI similar to the
following screenshot:

10. We can press either the Width or Height button to process the default image.
Alternatively, we can load another .png image and process it. Once we click on either
Width or Height, the GUI will become unresponsive and we will have to wait for the
processing to finish. If the famous Application Not Responding (ANR) dialog box
pops out, simply click on Wait.

11. When the processing finishes, the processed image will load and its dimensions will
be displayed. The screenshot on the left shows the result for hitting the Width button,
while the right one indicates the result for Height processing. Note that the images
are scaled to fit into the display:

Chapter 9

309

How it works...
The example demonstrates how to add a GUI for the fusch program that we ported to
Android. The fusch source code is modified for the native code to interface with the GUI.

In general, the steps can be followed to add a GUI to a command-line executable ported
to Android.

1. Replace the main method with a native method. In our sample application, we
replaced main with naMain.

2. Parse the input argument of the native method for command options instead of
reading them from the command line. In our sample application, we parsed the third
input argument pCmdStr for fusch command options. This allows the command to
be constructed at the Java code and pass it easily to the native code .

3. Register the native method with the Java class.

4. In the Java code, the GUI can take various argument values specified by user,
construct the command, and pass it to the native method for processing.

Porting an Existing Application to Android with NDK

310

Note that in our modified native code, we didn't remove the original code. We used the C
preprocessor macro ANDROID_BUILD to control which part of the source code should be
included for building Android shared libraries. We pass -DANDROID_BUILD to the compiler
in the Android.mk file (under the fusch folder), in order to enable the code specific for
Android. This approach allows us to easily add support for Android, without breaking the
code for other platforms.

There are two serious limitations for the sample application in this recipe. Firstly, the main
UI thread handles the heavy image processing, which causes the application to become
unresponsive. Secondly, there is no progress update when the image processing is going on.
The GUI is updated only when the image processing is done. We will address these issues in
the next recipe.

Using background threads at porting
The previous recipe adds a GUI to the ported fusch program with two issues left
behind—unresponsiveness of the GUI and no progress update when processing is
going on. This recipe discusses how to use a background thread to handle the
processing and report the progress to the main UI thread.

Getting ready
The sample program in this recipe is based on the program we developed in previous recipes
of this chapter. You should go through them first. In addition, readers are recommended to
reading the following recipes in Chapter 2, Java Native Interface:

 f Calling static and instance methods from the native code

 f Caching jfieldID, jmethodID, and reference data to improve performance

How to do it...
The following steps describe how to use a background thread for heavy processing and report
progress update to the Java UI thread:

1. Copy the PortingExecutableAUI project that we developed in the previous recipe
to a folder named PortingExecutableAUIAsync. Open the project in the folder at
the Eclipse IDE.

2. Add the following code to MainActivity.java:

handler: An instance of the handler class handles the messages sent from
background threads. It will update the GUI with the content of the message.
public static final int MSG_TYPE_PROG = 1;
public static final int MSG_TYPE_SUCCESS = 2;
public static final int MSG_TYPE_FAILURE = 3;

Chapter 9

311

Handler handler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 switch(msg.what) {
 case MSG_TYPE_PROG:
 String updateMsg = (String)msg.obj;
 if (1 == msg.arg1) {
 String curText = text1.getText().toString();
 String newText = curText.substring(0, curText.
lastIndexOf("\n")) + "\n" + updateMsg;
 text1.setText(newText);
 } else if (2 == msg.arg1) {
 text1.append(updateMsg);
 } else {
 text1.append("\n" + updateMsg);
 }
 break;
 case MSG_TYPE_SUCCESS:
 Uri uri = Uri.fromFile(new File(outputImageDir +
outputImgFileName));
 img2.setImageURI(uri);
 text1.append("\nprocessing done!");
 text2.setText(getImageDimension(inputImagePath) + ";" +
 getImageDimension(outputImageDir + outputImgFileName));
 break;
 case MSG_TYPE_FAILURE:
 text1.append("\nerror processing the image");
 break;
 }
 }
};

ImageProcRunnable: A private class of MainActivity implements the
Runnable interface, which accepts the command string, calls the native method
naMain, and sends the result message to the handler at the Java UI thread. An
instance of this class will be invoked from a background thread:
private class ImageProcRunnable implements Runnable {
 String procCmd;
 public ImageProcRunnable(String cmd) {
 procCmd = cmd;
 }
 @Override
 public void run() {
 int res = naMain(procCmd, MainActivity.this);

Porting an Existing Application to Android with NDK

312

 if (0 == res) {
 //success, send message to handler
 Message msg = new Message();
 msg.what = MSG_TYPE_SUCCESS;
 handler.sendMessage(msg);
 } else {
 //failure, send message to handler
 Message msg = new Message();
 msg.what = MSG_TYPE_FAILURE;
 handler.sendMessage(msg);
 }
 }
}

updateProgress: This is a method to be called from native code through JNI.
It sends a message to the handler at the Java UI thread:
public void updateProgress(String pContent, int pInPlaceUpdate) {
 Message msg = new Message();
 msg.what = MSG_TYPE_PROG;
 msg.arg1 = pInPlaceUpdate;
 msg.obj = pContent;
 handler.sendMessage(msg);
}

3. Update the fusch.c source code.

4. We cache the JavaVM reference in the naMain method, and get a global reference
for the MainAcitvity object reference pMainActObj. The fusch program uses
more than one background thread. We will need these references to call Java
methods from those background threads:
#ifdef ANDROID_BUILD
int naMain(JNIEnv* env, jobject pObj, jstring pCmdStr, jobject
pMainActObj);
jint JNI_OnLoad(JavaVM* pVm, void* reserved) {
 JNIEnv* env;
 if ((*pVm)->GetEnv(pVm, (void **)&env, JNI_VERSION_1_6) != JNI_
OK) {
 return -1;
 }
 cachedJvm = pVm;
 JNINativeMethod nm[1];
 nm[0].name = "naMain";
 nm[0].signature = "(Ljava/lang/String;Lcookbook/chapter9/
portingexecutableaui/MainActivity;)I";
 nm[0].fnPtr = (void*)naMain;

Chapter 9

313

 jclass cls = (*env)->FindClass(env, "cookbook/chapter9/
portingexecutableaui/MainActivity");
 (*env)->RegisterNatives(env, cls, nm, 1);
 return JNI_VERSION_1_6;
}
int naMain(JNIEnv* env, jobject pObj, jstring pCmdStr, jobject
pMainActObj) {
 char progBuf[500];
 jmethodID updateProgMID, toStringMID;
 jstring progStr;
 jclass mainActivityClass = (*env)->GetObjectClass(env,
pMainActObj);
 cachedMainActObj = (*env)->NewGlobalRef(env, pMainActObj);
 updateProgMID = (*env)->GetMethodID(env, mainActivityClass,
"updateProgress", "(Ljava/lang/String;I)V");
 if (NULL == updateProgMID) {
 LOGE(1, "error finding method updateProgress");
 return EXIT_FAILURE;
 }
 int argc = 0;
 char** argv = (char**) malloc (sizeof(char*)*4);
 *argv = "fusch";
 char** targv = argv + 1;
 argc++;
 jboolean isCopy = JNI_TRUE;
 char *cmdstr = (*env)->GetStringUTFChars(env, pCmdStr,
&isCopy);
 if (NULL == cmdstr) {
 LOGI(2, "get string failed");
 return EXIT_FAILURE;
 }
 char* pch;
 pch = strtok(cmdstr, " ");
 while (NULL != pch) {
 *targv = pch;
 argc++;
 targv++;
 pch = strtok(NULL, " ");
 }
 LOGI(1, "No. of arguments: %d", argc);
 LOGI(1, "%s %s %s %s", argv[0], argv[1], argv[2], argv[3]);
#else
 int main(int argc, char *argv[]) {
#endif

Porting an Existing Application to Android with NDK

314

5. Add the following lines before the return statement of the main method to release
the native string and the cached JavaVM reference to avoid memory leaks:
#ifdef ANDROID_BUILD
 (*env)->ReleaseStringUTFChars(env, pCmdStr, cmdstr);
 (*env)->DeleteGlobalRef(env, cachedMainActObj);
 cachedMainActObj = NULL;
#endif

6. To update the GUI, we send out a message to the Java code. We need to update
the code used to produce output messages at various parts of the source file.
The following is an example of this:
#ifdef ANDROID_BUILD
 progStr = (*env)->NewStringUTF(env, MSG[I_NOTHINGTODO]);
 (*env)->CallVoidMethod(env, pMainActObj, updateProgMID, progStr,
0);
#else
 puts(MSG[I_NOTHINGTODO]);
#endif

7. The seam_progress and carve_progress functions are executed by native
threads started at naMain. We used the cached JavaVM reference cachedJvm
and MainActivity object reference cachedMainActObj to get jmethodID
of the updateProgress method defined at MainActivity.java:
#ifdef ANDROID_BUILD
 char progBuf[500];
 JNIEnv *env;
 jmethodID updateProgMID;
 (*cachedJvm)->AttachCurrentThread(cachedJvm, &env, NULL);
 jstring progStr;
 jclass mainActivityClass = (*env)->GetObjectClass(env,
cachedMainActObj);
 updateProgMID = (*env)->GetMethodID(env, mainActivityClass,
"updateProgress", "(Ljava/lang/String;I)V");
 if (NULL == updateProgMID) {
 LOGE(1, "error finding method updateProgress at seam_
progress");
 (*cachedJvm)->DetachCurrentThread(cachedJvm);
 pthread_exit((void*)NULL);
 }
#endif

Chapter 9

315

8. We can then call the updateProgress method from seam_progress and
carve_progress. This is shown in the code section extracted from the
carve_progress function, as follows:
#ifdef ANDROID_BUILD
 sprintf(progBuf, "%6d %6d %3d%%", max, pro, lrintf((float)(pro *
100) / max));
 progStr = (*env)->NewStringUTF(env, progBuf);
 (*env)->CallVoidMethod(env, cachedMainActObj, updateProgMID,
progStr, 1);
#else
 printf("%6d %3d%% ", pro, lrintf((float)(pro * 100) / max));
#endif

9. Build and run the Android app. You should be able to see a GUI similar to the
following screenshot:

Porting an Existing Application to Android with NDK

316

10. We can hit the Width or Height button to start the processing. The left and
middle screenshots show the processing in progress, while the right screenshot
shows the results:

How it works...
The preceding example shows how to use a background thread to handle heavy processing,
so that the GUI can remain responsive to user inputs. While the background thread is
processing the images, it also sends progress updates to the UI thread.

The details of the fusch program are actually a bit more complicated than the core
idea described, because it uses heavy concurrent processing. This is illustrated in the
following diagram:

Chapter 9

317

Once we click on either the Width or Height button in MainActivity.java, a new Java
thread (Background Thread 1) will be created with an instance of the ImageProcRunnable.
This thread will invoke the naMain native method.

Multiple native threads are created with the pthread_create function in the naMain
method. Two of them, indicated as Background Thread 2 and Background Thread 3,
will be running seam_progress and carve_progress respectively.

We send messages of the MSG_TYPE_PROG type to the handler bound to the UI thread in all
the three background threads. The handler will process the messages and update the GUI.

Sending messages from the native code
Sending messages to a handler in Java is straightforward; we simply call the handler.
sendMessage() method. But things can be a bit troublesome in the native code.

We defined an updateProgress method in MainActivity.java, which accepts a string
and an integer, constructs a message, and sends it to the handler. The native code invokes
this Java method through JNI in order to send messages. There are two situations:

 f Native code at Java thread: This is the case for Background Thread 1 in the
previous diagram. The thread is created at Java code, and it calls the naMain native
method. At naMain, we retrieve jmethodID for updateProgress, and call the
updateProgress method through the JNI function CallVoidMethod. You can
refer back to the Calling static and instance methods from native code recipe in
Chapter 2, Java Native Interface for more information.

 f Native code at native thread: This is what happens at Background Thread 2 and
Background Thread 3. These threads are created at naMain by the pthread_
create function. We must call AttachCurrentThread to attach the native
threads to a Java VM before we can make any JNI calls. Note that we used the
cached MainActivity object reference cachedMainActObj for calling the
updateProgress method. For more details about caching at JNI, we can refer to
the Caching jfieldID, jmethodID, and reference data to improve performance recipe in
Chapter 2, Java Native Interface.

The GUI we have created doesn't look all that good, but it is simple and enough to illustrate
how to use a background thread for heavy processing and to send out GUI update messages
from the native code.

Index
Symbols
2D graphics

drawing, with OpenGL ES 1.x API 127-129
3D graphics

drawing, with OpenGL ES 1.x API
133-137

drawing, with OpenGL ES 2.0 API 145-149
3D objects

drawing, in Open GL ES 137
texture mapping to, with OpenGL ES 1.x API

140-144
__ARM_ARCH_5__ 304
__ARM_ARCH_5E__ 304
__ARM_ARCH_5T 304
__ARM_ARCH_5TE 304
.bashrc file 18
-DANDROID 304
-D__ARM_ARCH_5__ 304
-D__ARM_ARCH_5E__ 304
-D__ARM_ARCH_5T 304
-D__ARM_ARCH_5TE 304
-ffunction-sections option 303
-finline-limit=64 option 304
-fno-strict-aliasing option 304
-fomit-frame-pointer 304
-fpic option 303
-funwind-tables option 303
-march=armv5te 304
-msoft-float 304
-mthumb 304
-mtune=xscale 304
-Os 304
-std=c99 option 304
-Wno-psabi option 304

A
ABIs

about 84, 97
Android NDK application, building 97-101

AccessInstanceFieldDemo 66
AccessInstanceMethodDemo native method

70, 71
ADT 15
ADT plugin 83
algorithm 294
all-subdir-makefiles variable 270
ambient light 138
ANativeActivity data structure 164
ANativeActivity_onCreate function 169
ANativeActivity_onCreate method 162, 164
ANativeWindow_fromSurface 158, 177
ANativeWindow_setBuffersGeometrye 158
Android

app ported, GUI adding to 305-310
command-line executable porting, with NDK

build system 294-298
command-line executable porting, with NDK

standalone compiler 298-303
android:hasCode 162
android_app_create function 169, 170
android_app_entry function 170
android.app.lib_name metadata 162
android_app->onAppCmd function 169
android_app_pre_exec_cmd function 171
AndroidBitmap_getInfo function 236
ANDROID_CPU_ARM_FEATURE_ARMv7 104
ANDROID_CPU_ARM_FEATURE_NEON 104
ANDROID_CPU_ARM_FEATURE_VFPv3 104
ANDROID_CPU_X86_FEATURE_MOVBE 104

320

ANDROID_CPU_X86_FEATURE_POPCNT 104
ANDROID_CPU_X86_FEATURE_SSSE3 104
Android Developer Tools bundle

URL 11
Android developer website

URL 21
Android Development Tools. See ADT
Android log library 38
Android log messages

log message part 109
log tag part 109
priority part 109

android_main 179
android_main function 171, 172, 183
Android.mk files

about 269, 298
all-subdir-makefiles variable 270
BUILD_SHARED_LIBRARY variable 270
BUILD_STATIC_LIBRARY variable 274
CLEAR_VARS variable 269
LOCAL_C_INCLUDES variable 270
LOCAL_LDLIBS variable 271
LOCAL_MODULE variable 270
LOCAL_PATH variable 270
LOCAL_SHARED_LIBRARIES variable 270
LOCAL_SRC_FILES variable 270
LOCAL_STATIC_LIBRARIES variable 274
LOCAL_WHOLE_STATIC_LIBRARIES variable

274
my-dir variable 270

android_native_app_glue library
about 166, 168, 169, 172
used, for creating native activity 166-174

android_native_app_glue Library Internals
169

Android NDK
about 7
advantages 8
assets, managing 186-190
audio, programming with OpenSL ES Audio

library 247-254
boost library, using 286-289
C++ runtime at 290
data, managing for native threads 228-231
development environment, setting up in Mac

OS 19, 20

development environment, setting up in
Ubuntu Linux 16-18

development environment, setting up in
Windows 9-15

dynamic linker library, programming with
238-241

input events, detecting 178-181
input events, handling 178-181
jnigraphics library, programming with

234-236
latest version downloading, URL for 17
native threads, creating 192-194
native threads, scheduling at 217-225
native threads, synchronizing with conditional

variables 200-203
native threads, synchronizing with mutex

195-197
native threads, synchronizing with reader/

writer lock 206-209
native threads, synchronizing with semaphore

212, 214
OpenMAX AL multimedia library, programming

with 259, 260, 263
sensors, accessing 181-185
updating 20
updating in Mac OS, steps for 21
updating in Ubuntu Linux, steps for 21
updating in Windows, steps for 20
zlib compression library, programming with

241-247
Android NDK application

building, at command line 84-93
building, for CPU features 102-105
building, for different ABIs 97-101
building, in Eclipse 93-96
debugging, in Eclipse 119-121
debugging, with CGDB 116-118
debugging, with CheckJNI 110-113
debugging, with logging messages 106-109
debugging, with NDK GDB 113-116

Android NDK development environment
Android Developer Tools bundle, URL 11
setting up, in Mac OS 19, 20
setting up, in Ubuntu Linux 16-18
setting up, in Windows 9-15
setting up, tips for 18

321

Android NDK toolchain
used, for porting library with existing build

system 275-280
android.os.Process.setThreadPriority

calling 228
android_poll_source data structure 168
Android SDK

URL, for downloading 12
android tool 85
Apache Ant tool 84
Apple developer account

URL 19
Application Binary Interface. See ABI
Application Binary Interfaces. See ABIs
Application Not Responding (ANR) 308
argument field 67
ARM CPU family, CPU feature detections

ANDROID_CPU_ARM_FEATURE_ARMv7 104
ANDROID_CPU_ARM_FEATURE_NEON 104
ANDROID_CPU_ARM_FEATURE_VFPv3 104

ARM documentation
website, URL 98

armeabi ABI 97
armeabi-v7a ABI 97
arrays

in JNI, manipulating 57-62
assembly code

compiling 82
in JNI, integrating 80-82

assetManager 165
assets

directory, closing 190
directory, opening 189
file, closing 190
file name, getting 189
file, opening 189
file, reading 190
managing, at Android NDK 186-190
reading, steps for 189, 190

assignment
versus New<ReferenceType>Ref 48, 49

AttachCurrentThread JNi function 33, 50, 51
attribute 150
audio

programming, with OpenSL ES Audio library
247-254

B
background thread

about 170
using, at porting 310-315

bad reference 112
bool 150
boolean Java field type 64
boolean, Java type 38
boost library

using, for Android NDK 286-289
bqPlayerCallback 252
bqRecorderCallback function 257
BUILD_EXECUTABLE, Android.mk file 298
BUILD_SHARED_LIBRARY variable 270
BUILD_STATIC_LIBRARY variable 274
built-in types, GLSL

gl_Color attribute 150
gl_FragColor attribute 150
gl_ModelViewMatrix attribute 150
gl_ModelViewProjectionMatrix attribute 150
gl_Position attribute 150
gl_Vertex attribute 150

byte Java field type 64
byte, Java type 38

C
caching references 75
callAccessInstanceMethodDemo method 71
callAssemblyMultiplyDemo method 81
callAssemblyMultiplyDemo native method 81
callbacks attribute 164
callFatalErrorDemo Java method 80
callGetArrayLengthDemo method 59
callGetReleaseIntArrayDemo method 62
callGetSetIntArrayRegionDemo method 60
callGetSetObjectArrayDemo method 59
callInlineAssemblyAddDemo method 81
callInlineAssemblyAddDemo native method

81
callMethodReflectionDemo method 72
callNewObjectArrayDemo method 58
carve_progress function 314, 315, 317
C++ exception

support, enabling 292

322

cgdb
about 117
Android NDK application, debugging with

116-118
installing, on different operating systems 116

char Java field type 64
char, Java type 38
Charset.defaultCharset().name() method 41
CheckJNI

Android NDK application, debugging with
110-113

errors, checking 112
CheckJNI, errors checking

bad reference 112
class names 112
critical calls 112
exceptions 112
jfieldIDs 112
jmethodIDs 112
negative-sized array 112
references 113
release mode 113
type safety 113
UTF-8 113

class descriptor 51
classes

in JNI, manipulating 50-52
ClassManipulation project 52
class names 112
clazz argument 33, 71, 164
CLEAR_VARS variable 269
code point 39
colors

at OpenGL ES 131
command line

Android NDK application, building 84-93
HelloNDK application, building 85, 86
HelloNDK application, creating 85, 86
native library, building 86
screenshot, taking 93

command-line executable
porting, steps for 297
porting, to Android with NDK build system

294-297
porting, to Android with NDK standalone com-

piler 298-303

compressUtil function 242, 243
conditional variables

attributes functions 204
destroying 203
initializing 203
native threads synchronizing with, at Android

NDK 200-202
timed conditional variable functions 205
using 203

config.guess script
URL 277

config.sub
URL 277

contention scope
scheduling 225, 226

conversion failure 43
CPU feature detections

ARM CPU family 104
x86 CPU family 104

CPU features
ANDROID_CPU_ARM_FEATURE_ARMv7 104
ANDROID_CPU_ARM_FEATURE_NEON 104
ANDROID_CPU_ARM_FEATURE_VFPv3 104
ANDROID_CPU_X86_FEATURE_MOVBE 104
ANDROID_CPU_X86_FEATURE_POPCNT 104
ANDROID_CPU_X86_FEATURE_SSSE3 104
Android NDK application, building 102, 103,

104, 105
building, approaches for 105, 106
detecting 105
detections 104

cpufeatures library 105
CreateAudioPlayer method 255
createAudioRecorder function 257
CreateAudioRecorder() method 255
createProgram method 147
critical calls 112
C++ RTTI support

support, enabling 292
C++ runtime

at Android NDK 290
Cube.cpp 146
CubeG2.cpp 146
Cube.h 146
Cygwin

about 10

323

installing, steps for 10
Cygwin.bat 13
cygwin root directory 13

D
Dalvik Virtual Machine. See Dalvik VM
Dalvik VM 8, 28
data

managing for native threads, at Android NDK
228-231

Data Display Debugger. See DDD
data types, GLSL

about 150
bool 150
float 150
int 150
sampler 150

DDD 121
debuggable attribute 115
DefineClass JNI function 53
DeleteGlobalRef 49
destLen 245
Destroy() method 255, 256
diffuse light 138
DI_info data structure 241
dladdr function 241
dlclose function 240
dlerror function 240
dli_fname 241
dlopen function 240
dlsym function 241
double Java field type 64
double, Java type 38
Dummy class 52
DummyInterface interface 50
Dummy(int pValue), Java method 69
Dummy[] Java field type 64
Dummy[][] Java field type 64
Dummy object array 59
DummySub class 54
dynamic linker library

programming with, in Android NDK 238-241
dynamic loading library

URL 241

E
EAGL 157
Eclipse

Android NDK application, building 93-96
Android NDK application, debugging 119-121

EGL
about 157
configuring 157
eglCreateContext 157
eglMakeCurrent 157
graphics, displaying with 152-158
rendering context, creating 157

eglCreateContext 157
EGLDemo.cpp

about 155
naRequestRenderer method 156
naSurfaceChanged method 155

eglMakeCurrent 157
elems native buffer 61
emission light 138
env attribute 164
Environment Variables button 9
errors

in JNI, checking 76-80
ExceptionDemo 77
ExceptionDemo native method 79
ExceptionDescribe 77
exceptions

about 112
in JNI, handling 76-80

externalDataPath 164

F
FatalError function 80
field descriptor 64, 74, 75
FindClass

and class loader 51, 52
FindClass call 52
findClassDemo2 method 52
findClassDemo method 52
FindClass function 34, 77
First In First Out (FIFO) 227
fixed function pipeline 125
float Java field type 64

324

float, Java type 38, 150
fnPtr 33
fragment

about 124
processing 124

fragment shader 150
Fugenschnitzer program (fusch)

about 294, 316
library source code downloading, URL for 294
porting 305
porting, to Android with NDK build system

294

G
gabi++ 290
Garbage Collector (GC) 48
gdb command 116, 118
GetArrayLengthDemo native method 59
GetArrayLength native function 59
getContactStr method 54
GetIntArrayElements 61
GetIntArrayRegion function 60
GetInterface() method 254
get JNI function 67
getName method 71
GetObjectArrayElement 59
GetObjectClassDemo native method 56
GetReleasePrimitiveArrayCriticalDemo native

method 57
GetSetObjectArrayDemo native method 59
GetStaticMethodID function 69
GetStringUTFChars function 42
GetStringUTFRegion function 42, 43
GetSuperclassDemo native method 52
GetSuperclass JNI function 52
getValue method 71, 72
glAttachShader method 151
gl_Color attribute 150
glCompileShader method 151
glCreateProgram method 151
glCreateShade method 151
glDepthRange 132
glDrawArrays method 151
glEnableVertexAttribArray method 151
gl_FragColor attribute 150

glGenTexture texture
creating 144

glGetAttribLocation method 151
glGetUniformLocation method 151
glLinkProgram method 151
GL_MODELVIEW matrix 132
gl_ModelViewMatrix attribute 150
gl_ModelViewProjectionMatrix attribute 150
global illumination 138
globalRefAssignment 49
global reference

about 46, 48, 75
versus local reference 46
versus weak reference 46

globalReference method 44
glOrthof 132
gl_Position attribute 150
glRotatef 132
glScalef 131
glShaderSource method 151
GLSL

about 124
attribute 150
built-in types 150
data types 150
uniform 150
varying 150

GLSurfaceView
used, for rendering OpenGL ES display 130

glTranslatef 132
glUniform method 151
glUseProgram method 151
glVertexAttribPointer method 151
gl_Vertex attribute 150
glViewport 132
GNU C Library (glibc) 2.7 16
gnustl 290, 291
GPU 126
graphics

displaying, with EGL 152-158
Graphics Processing Unit. See GPU
Graphics Rendering Pipeline. See GRP
GRP 124
GUI

adding, to ported Android App 305-310
gzip file 246
gzopen function 246

325

H
handle_activity_lifecycle_events function

182
handle_input_events 178
handler.sendMessage() method 317
HelloNDK app 89
Hello NDK program

Java code 26
native code 25
native code, compiling 25
writing, steps for 22-25

I
IDE

about 11
ImageProcRunnable class 311
import module

appending 285
declaring 284
library, using in multiple projects 282-285
placing 284
using 285

import-module feature 266
initDisplay 155
initialElement 58
InlineAssemblyAddDemo method 81
Input Method Editor (IME) 180, 181
instance 165
instance field

accessing 66
accessing, in native code 62-67

instance methods
calling 70
calling, from native code 67, 68

instance object
creating, in native code 54, 55

int 150
Integrated Development Environment. See

IDE
interface 248
internalDataPath 164
Inter-process Communication (IPC) 172
int Java field type 64
int[] Java field type 64
int, Java type 38

IsAssignableFromDemo method 50
IsAssignableFrom JNI function 53
IsInstanceOf JNi function 56

J
Java code 26, 28
javah

using, steps for 26
Java JNI Specification

URL 29
java.lang.System class 32
Java Native Interface. See JNI
Java primitive type mapping 38
Java program

location 93
Java static

accessing, in native code 62-67
Java string

to native string 43
Java thread 51
jboolean variable 67
jfieldID data type 64
jfieldIDs 112
jintarray 60
JIT 7
jmethodID data type 68
jmethodIDs 72, 112
JNI

about 28, 29
arrays, manipulating 57-62
assembly code, integrating 80-82
character encoding 43
classes, manipulating 50-53
errors, checking 76-80
exceptions, handling 76-80
objects, manipulating 54-56
Programmer’ s Guide and Specification

URL 29
reference management 45, 46
references, managing 43-45
strings, manipulating 39-43

JNI character encoding 43
JNIEnv Interface Pointer 32, 33
JNIEnv pointer 25, 51
jnigraphics function 237

326

jnigraphics library
about 234
programming with, in Android NDK 234-236
using, steps for 236, 237

JNINativeMethod data structure 33
JNI_OnLoad method 34, 52
JNI primitive type mapping 38
JNIProcessSetThreadPriority.cpp file 221
jni_start_threads function 193, 201
jni_start_threads method 196, 200
jni_thread_set_priority method 220
JNI Tips

URL 29
jobject 49
jstring 49
jthrowable object 79
Just-In-Time. See JIT

K
keystore 90
Khronos EGL web page

URL 156

L
length parameter 58
len parameter 42
libbmp library

URL, for downloading 266
libpng

porting 303
libpng 1.2.50

URL, for downloading 294, 299
libpng library 247
libPortingStatic.so shared library 273
library

porting, as shared library module 266-269
porting, as static library module 271-273
porting, for exception 285-290
porting, for RTTI 285-290
porting, for STL support 285-290
porting with existing build system, Android

NDK toolchain used 275-280
using, as prebuilt library 280-282
using in multiple projects, with import module

282-285

libseamcarv
porting 304

lighting 138
setting up, in OpenGL ES 138, 139

loadShader method 146
LOCAL_CFLAGS, Android.mk file 298
LOCAL_C_INCLUDES variable 270
local illumination 138
LOCAL_LDLIBS variable 271
LOCAL_MODULE variable 270
LOCAL_PATH variable 270
local reference

about 46, 47
versus global reference 46
versus weak reference 46

localReference method 44
LOCAL_SHARED_LIBRARIES variable 270
LOCAL_SRC_FILES variable 270
LOCAL_STATIC_LIBRARIES variable 274
LOCAL_WHOLE_STATIC_LIBRARIES variable

274
logcat

about 109
output 239

logcat utility function 192, 234
logging messages

Android NDK application, debugging with
106-109

long Java field type 64
long, Java type 38
lont f(byte[] bytes, Dummy dummy), Java

method 69
looper

about 173
creating, with current thread 173
event queue, attaching 173
obtaining, with current thread 173

M
Mac OS

Android NDK development environment,
setting up 19, 20

Android NDK, updating 21
MainActivity object 317
managed thread 51
matrix.cpp 146

327

matrix.h 146
matrix operations 152
messages

sending, from native code 317
sending, from Native Code 317

method descriptor 69
methodID argument 69, 74, 75
Method object 72
mips ABI 97
Model Transform. See ModelView transform
ModelView transform

about 131
glRotatef 132
glScalef 131
glTranslatef 132

mutex
destroying 198
initializing 198
native threads synchronizing with, at Android

NDK 195-197
using 198, 199

mutex mux 231
my-dir variable 270
mylog.h file 146, 192

N
naCompressAndDecompress function 244
naCreateABmp method 267
naCreateEngine function 264
naCreateStreamingMediaPlayer 260
naDemoJniGraphics method 234
naDrawGraphics method 148
naInitGL20 method 147
naLoadTexture 187
naRequestRenderer method 156
naShutdown function 255
naSurfaceChanged method 155
native activity

creating, with Android native app glue
166-174

creating, with native_activity.h interface
161-165

NativeActivity 164
native_activity.h interface

about 165, 169
used, for creating native activity 161-165

Native Code
about 28, 29
exceptions, throwing 78
instance fields, accessing 62-67
instance methods, calling 67-72
instance object, creating 54, 55
Java static, accessing 62-67
messages, sending from 317
static, calling 67-72

native code, Hello NDK program
about 25
compiling 25

native libraries
loading 29-32

NativeMethodRegisterActivity.java class 32
native methods

loading 29-31
registering 33

native string
to Java string 43

native threads
creating, at Android NDK 192-194
priority 225
scheduling, at Android NDK 217-224
scheduling, contention scope 225
scheduling policy 225
synchronizing with conditional variables, at

Android NDK 200-203
synchronizing with mutex, at Android NDK

195-197
synchronizing with reader/writer lock, at

Android NDK 206-209
synchronizing with semaphore, at Android

NDK 212, 214
native windows

managing, at Android NDK 174
ndk-build 92
ndk-build -B 92
ndk-build clean 92
ndk-build command 87
ndk-build NDK_DEBUG=0 92
ndk-build NDK_DEBUG=1 92
ndk-build options

ndk-build 92
ndk-build -B 92
ndk-build clean 92
ndk-build NDK_DEBUG=0 92

328

ndk-build NDK_DEBUG=1 92
ndk-build V=1 92

ndk-build script 83
NDK build system

command line executable, porting to Android
294-298

ndk-build V=1 92
NDK GDB

Android NDK application, debugging with
113-116

NDKLoggingDemo tag 110
NDK plugin

for Eclipse 15
NDK standalone compiler

command line executable, porting to Android
298-303

NDK toolchain 299
URL 303

negative-sized array 112
NEON 98
NewObjectArrayDemo native method 58
New<ReferenceType>Ref JNI function

versus assignment 48, 49
nice value/level

used, for scheduling 227
numInterfaces interface IDs 255
NVIDIA Debug Manager

about 121
URL 121

O
object

about 248
creating 254-256
drawing, at OpenGL ES 130
in JNI, manipulating 54, 56
states, changing 256

object Java field type 64
OldRenderMethods.cpp 154
OldRenderMethods.h 154
onWindowFocusChanged callback 163
OpenGL 123
OpenGL 1.x 126
OpenGL 2.0 126
OpenGL ES

3D objects, drawing 137

about 123
colors at 131
display rendering, GLSurfaceView used 130
lighting, setting up 138, 139
objects, drawing at 130

OpenGL ES 1.0
transformation, stages 131

OpenGL ES 1.x 124
fixed function pipeline 125

OpenGL ES 1.x API
2D Graphics, drawing with 127-129
3D graphics, drawing with 133-137
texture, mapping to 3D objefcts 140-144

OpenGL ES 2.0
about 124
programmable pipeline 125

OpenGL ES 2.0 API
used, for drawing 3D graphics 145-149

OpenGL ES Shading Language. See GLSL
Open Graphics Library. See OpenGL
Open Sound Library 247
OpenMAX AL multimedia library

about 233
building with 263
programming with, in Android NDK 259-263
using 263
video playback 264

Open Media Acceleration. See OpenMAX AL
multimedia library

OpenSL ES. See Open Sound Library 247
OpenSL ES API 248
OpenSL ES Audio library

about 233
audio, programming with 247-254
audio, recording 256
building 256
playback 258
recording 257
using 256

OpenSLESDemo.cpp 252
Oracle Java JDK web page

URL 9
Orthographic projection 132
output

merging 124

329

P
parameters

passing 34-37
PassingPrimitiveActivity.java Java code 36
passStringReturnString method 40
pDelete input parameter 47, 48
Perspective projection 132
policy

scheduling 226
polling 203
porting

background thread, using 310-315
POSIX Threads. See pthreads
prebuilt library

build type, declaring 282
compiler, exporting 282
declaring 281
for debugging 282
headers, exporting 281
library, using as 280-282
linker flags, exporting 282
module name, declaring 281
source, listing 281
using 282
using, considerations for 281, 282

primitives
about 124
fragment, processing 124
output, merging 124
rasterization 124
vertex processing 124

printf method 38
programmable pipeline 125
Projection transform 131, 132
pthread_cond_init function 203
pthread_cond_signal 204
pthread_cond_timedwait function 205
pthread_cond_timedwait_monotonic_np func-

tion 205
pthread_cond_timedwait_relative_np function

205
pthread_cond_timeout_np function 205
pthread_cond_wait 204
pthread_create function 194, 317
pthread_exit function 195
pthread_join function 195

pthread_key_create function 231
pthread_mutex_init function 200
PTHREAD_MUTEX_INITIALIZER macro 198
pthread_mutex_timedlock function 199
pthread_rwlock_destroy 209
pthreads

about 158
building, with 194

pthread_setspecific function 232

R
rasterization 124
reader/writer lock

attribute functions 212
destroying 209
initializing 209
native threads synchronizing with, at Android

NDK 206-209
timed 211
using 210, 211

readPng callback function 187
Realize() method 256
referenceAssignmentAndNew method 44
references

about 113
in JNI, manipulating 43-47
managing, in JNI 45, 46

ReferenceTable overflow 47
RegisterNatives 33
ReleaseIntArrayElements JNI function 58, 61
release mode 113
renderAFrame, event type 154
renderThreadRun, event type 154
RenderView class 234
return statement 307, 314
Round Robin (RR) policy 227
RTLD_LAZY mode 240
RTLD_NOW mode 240
RTTI 96, 266
run_by_read_thread function 207, 210
run_by_thread1 function 201
run_by_thread2 function 196, 202
run_by_thread function 193, 194, 232
run_by_write_thread function 208
Run-time Type Information. See RTTI

330

S
sampler 150
SCHED_FIFO 227
SCHED_OTHER 227
SCHED_RR 227
scheduling

nice value/level used 227
sdkVersion 165
seam 294
Seam Carving 294
seam_progress function 314, 317
semaphores

destroying 216
initializing 216
native threads synchronizing with, at Android

NDK 212, 214
operations 215
using 216, 217

sensors
accessing, at Android NDK 181-185
accessing, steps for 184
configuring 185
default sensor of given type, getting 184
disabling 185
ensbling 185
events, handling 185
queue, creating 184
reference, getting 184

SetIntArrayRegion function 60
setName method 71
SetObjectArrayElement 59
setpriority

calling 228
SetPriority.cpp file 220
setValue method 71, 72
shader

creating 151
using, steps for 151

shared library module
about 269
library, porting as 266-269
versus static 274, 275

short Java field type 64
short, Java type 38
SIMD 8, 98

Single Instruction Multiple Data. See SIMD
SLEngineItf interface 254
SLObjectItf interface 254, 256
specular light 138
start parameter 42
startPlaying 251
startRecording function 257
start_routine function 195
static

calling, from native code 67, 68
fields, accessing 65

static library module
about 273
library, porting as 271-274
versus shared 274, 275

static methods
calling 69

stdio function 245
stlport 290
String getName(), Java method 69
string Java field type 64
string length 43
strings

in JNI, manipulating 39-43
surrogate pair 39
synchronizing

at Android NDK 191
native threads, with conditional variables

200-203
native threads, with mutex 1950197
native threads, with reader/writer locks

206-209
native threads, with semaphore 212

sysroot directory 278
System.load method 32
System Properties window 9

T
texture

environment, setting 144
filtering 144
filtering, setting 144
mapping 144
mapping to 3D objects, with OpenGL ES 1.x

API3D 140-144

331

wrapping 144
wrapping, setting 144

texture coordinates 143
threads

creating 194
priority, scheduling 226, 227
pthreads, building with 194
terminating 195

thread-specific data key
creating 231

thread_step_2 function 230
ThrowNew function 79
toolchains 92
toString method 53
touch event handling 137
transformation, OpenGL ES 1.0

ModelView transform 131
Projection transform 131
stages 131
Viewpoint transform 131

trylock
timed 211

type safety 113

U
Ubuntu Linux

Android NDK development environment,
requisites for 16

Android NDK development environment,
setting up 16-18

Android NDK, updating 21
Unicode Standard

defining 39
Unicode Transformation Format (UTF) 39
uniform 150
Universal Character Set (UCS) encoding 39
UNIX Development option 19
updateProgress method 312, 315, 317
UTF-8 string 76
UTF-16 string 76

V
varying 150
Vector Floating Point (VFP) 98
vertex processing 124
vertex shader 149

VFPv3-D16 98
VFPv3-D32 98
Viewpoint transform 131
VM 7
vm attribute 164
void setName(String pName), Java method 69

W
weak reference

about 46, 48
versus global reference 46
versus local reference 46

weakReference method 44
winant installer

URL for installing 84
window management

about 158
ANativeWindow_fromSurface 158
ANativeWindow_setBuffersGeometrye 158

Windows
Android NDK development environment,

requisites for 9
Android NDK development environment,

setting up 9,-15
Android NDK, updating 20
Java JDK 6, requisite 9

WRITE_EXTERNAL_STORAGE permission 268

X
x86 ABI 97
x86 CPU family, CPU feature detections

ANDROID_CPU_X86_FEATURE_MOVBE 104
ANDROID_CPU_X86_FEATURE_POPCNT 104
ANDROID_CPU_X86_FEATURE_SSSE3 104

Z
zipalign tool 91
zlib compression library

programming with, in Android NDK 241-247
ZlibDemo.cpp file 244
zlib library 247

Thank you for buying
Android Native Development Kit
Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Android 4: New Features for
Application Development
ISBN: 978-1-84951-952-6 Paperback: 166 pages

Develop Android applications using the new features of
Android Ice Cream Sandwich

1. Learn new APIs in Android 4

2. Get familiar with the best practices in developing
Android applications

3. Step-by-step approach with clearly explained
sample codes

AndEngine for Android Game
Development Cookbook
ISBN: 978-1-84951-898-7 Paperback: 380 pages

Over 70 highly effective recipes with real-world
examples to get to grips with the powerful capabilities of
AndEngine and GLES 2

1. Step by step detailed instructions and information
on a number of AndEngine functions, including
illustrations and diagrams for added support
and results

2. Learn all about the various aspects of AndEngine
with prime and practical examples, useful for
bringing your ideas to life

3. Improve the performance of past and future
game projects with a collection of useful
optimization tips

Please check www.PacktPub.com for information on our titles

Java EE 5 Development with
NetBeans 6
ISBN: 978-1-847195-46-3 Paperback: 400 pages

Develop professional enterprise Java EE applications
quickly and easily with this popular IDE

1. Use features of the popular NetBeans IDE to
improve Java EE development

2. Careful instructions and screenshots lead you
through the options available

3. Covers the major Java EE APIs such as JSF, EJB 3
and JPA, and how to work with them in NetBeans

4. Covers the NetBeans Visual Web designer in detail

ICEfaces 1.8: Next Generation
Enterprise Web Development
ISBN: 978-1-847197-24-5 Paperback: 292 pages

Build Web 2.0 Applications using AJAX Push, JSF,
Facelets, Spring and JPA

1. Develop a full-blown Web application using
ICEfaces

2. Design and use self-developed components using
Facelets technology

3. Integrate AJAX into a JEE stack for Web 2.0
developers using JSF, Facelets, Spring, JPA

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Hello NDK
	Introduction
	Setting up an Android NDK development environment in Windows
	Setting up an Android NDK development environment in Ubuntu Linux
	Setting up an Android NDK development environment in Mac OS
	Updating Android NDK
	Writing a Hello NDK program

	Chapter 2: Java Native Interface
	Introduction
	Loading native libraries and registering native methods
	Passing parameters and receiving returns in primitive types
	Manipulating strings in JNI
	Managing references in JNI
	Manipulating classes in JNI
	Manipulating objects in JNI
	Manipulating arrays in JNI
	Accessing Java static and instance fields in the native code
	Calling static and instance methods from native code
	Caching jfieldID, jmethodID, and referencing data to improve performance
	Checking errors and handling exceptions
in JNI
	Integrating assembly code in JNI

	Chapter 3: Build and Debug NDK Applications
	Introduction
	Building an Android NDK application at the command line
	Building an Android NDK application in Eclipse
	Building an Android NDK application for different ABIs
	Building an Android NDK applications for different CPU features
	Debugging an Android NDK application with logging messages
	Debugging an Android NDK application with CheckJNI
	Debugging an Android NDK application with NDK GDB
	Debugging an Android NDK application with CGDB
	Debugging an Android NDK application in Eclipse

	Chapter 4: Android NDK OpenGL ES API
	Introduction
	Drawing 2D Graphics and applying transforms with OpenGL ES 1.x API
	Drawing 3D graphics and lighting up the scene with the OpenGL ES 1.x API
	Mapping texture to 3D objects with the OpenGL ES 1.x API
	Drawing 3D graphics with the OpenGL ES 2.0 API
	Displaying graphics with EGL

	Chapter 5: Android Native Application API
	Introduction
	Creating a native activity with the
native_activity.h interface
	Creating a native activity with the Android native app glue
	Managing native windows at Android NDK
	Detecting and handling input events at Android NDK
	Accessing sensors at Android NDK
	Managing assets at Android NDK

	Chapter 6: Android NDK Multithreading
	Introduction
	Creating and terminating native threads at Android NDK
	Synchronizing native threads with mutex at Android NDK
	Synchronizing native threads with conditional variables at Android NDK
	Synchronizing native threads with reader/writer locks at Android NDK
	Synchronizing native threads with semaphore at Android NDK
	Scheduling native threads at Android NDK
	Managing data for native threads at Android NDK

	Chapter 7: Other Android NDK API
	Introduction
	Programming with the jnigraphics library in Android NDK
	Programming with the dynamic linker library in Android NDK
	Programming with the zlib compression library in Android NDK
	Programming audio with the OpenSL ES audio library in Android NDK
	Programming with the OpenMAX AL multimedia library in Android NDK

	Chapter 8: Porting and Using the Existing Libraries with Android NDK
	Introduction
	Porting a library as a shared library module with the Android NDK build system
	Porting a library as a static library module with the Android NDK build system
	Porting a library with its existing build system using the Android NDK toolchain
	Using a library as a prebuilt library
	Using a library in multiple projects with import-module
	Porting a library that requires RTTI, exception, and STL support

	Chapter 9: Porting an Existing Application to Android with NDK
	Introduction
	Porting a command-line executable to Android with an NDK build system
	Porting a command-line executable to Android with an NDK standalone compiler
	Adding GUI to a ported Android app
	Using background threads at porting

	Index

