Bellagio OpenMAX component writers' guide Page 1 of 13

Bellagio OpenMAX
Component

writer’s guide

by
Giulio Urlini

Ver. 0.1

28 July 2006

Bellagio OpenMAX component writers' guide Page 2 of 13

REVISION HISTORY

VERSION DATE AUTHORS COMMENTS

0.1 28" July 2006 G. Urlini First draft

OpenMAX is a registered trademark of the Khronos Group. All references to
OpenMAX components in this whitepaper are referenced from the publicly
available OpenMAX IL specification on the Khronos web-site at:

http://khronos.org/openmax

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics.
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces
all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life
support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
Nomadik is a trademark of STMicroelectronics
All other names are the property of their respective owners

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel -
Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

Bellagio OpenMAX component writers' guide Page 3 of 13

Introduction

This guide aims at explaining how OpenMAX components can be built based
on the Bellagio opensource distribution available at
http://sourceforge.net/projects/omxil.

The text is based on Bellagio 0.2, but it is anticipated that some details may
change in the future with new project releases.

OpenMAX components are written in C but an object-oriented approach has
been used to avoid code duplication, so that common OpenMAX functions are
implemented in a so-called “base component” and can be overridden by
derived components.

This guide is divided in two main parts. In the first chapter the base
components are presented, with the description of the main functionalities and
the relations between base and first-derived components (sink, source and
filter). The typical final component is also presented.

In the second part a real example is presented, based on the volume control
component that is included in the Bellagio distribution.

1. OpenMAX hierarchy

The Bellagio OpenMAX component hierarchy can be described as in the
following class diagram:

cd Class Model /

omx_base_component

base_sink_component base_filter_component base_source_component

omx_volumecontrol_component

Bellagio OpenMAX component writers' guide Page 4 of 13

OpenMAX Bellagio data structures

Each component in the Bellagio implementation is described as a set of
parameters and methods contained in a structure named stComponentType.
This structure contains the functions pointers to be filled by each component
that can be executed by the core. This structure contains also the OpenMAX
standard structure used to describe the component, named
OMX_COMPONENTTYPE.

Inside the OMX_COMPONENTTYPE structure it is present a pointer to a
private structure. This pointer is used by the Bellagio components to store
private information needed by the component and this structure is extended
for derived components, so that specific fields can be added. In the following
diagram the relations between structures are shown.

cd Bellagio structures hierarchy/

stComponentType

OMX_COMPONENTTYPE

base_component_PrivateType base_component_PortType

base_filter_component_PrivateType

i

omx_volume_component_PrivateType omx_volume_component_PortType

In this diagram is presented only the hierarchy of a two ports component, from
the base component through the filter to the final component (in this example
a volume control component).

Override mechanism

The structures presented in the preceding paragraph contain several function
pointers, which refer to specific set of functionalities.

The stComponentType contains the functionalities that the core must use
directly, the constructor, destructor and the message handler. All these

Bellagio OpenMAX component writers' guide Page 5 of 13

functions are used by the Bellagio core and are implementation specific, not
OpenMAX defined.

The base_component_PrivateType contains a set of function pointers that
contain functionalities to be used only inside the component.

Finally the OpenMAX standard structure contains a set of pointers to the
standard OpenMAX functions.

The override mechanism consists in replacing a function pointed by a
member of this structure with a different (derived) function. This mechanism is
more flexible than a direct override, because the derived function can execute
specific code AND call the parent function, if needed. In any case all the calls
to these functions are made through function pointers.

OpenMAX base component

The base component implements four sets of functionalities, based

respectively on:

- the allocation and default value assignment of the base
st Conponent Type structure

- The functions pointed by the st Conponent Type structure. These
functions are grouped here because they are the functions used directly
by the core. They are the constructor, the destructor and the message
handler entry points.

- The function pointed by the base private structure, that are initialization
functions, buffer allocation and de-allocation in case of tunneling, state
transition core function.

- The OpenMAX standard functions.

A complete list of these functions, divided by groups, with a short description,

is presented here.

Main structure allocation

The function that allocates the main structure, the st Conponent Type
structure, is base_conponent Creat eConponent Struct. This function
MUST be called by the final component in the register template mandatory
function.

Main structure function pointers

These functions are called directly by the core. They are:

* base _conponent Constructor: the constructor fills the
stComponent structure with default values. It does not fill any field that
belongs to derived classes.

* base_component_Destructor: the destructor function de-allocates
everything allocated in the base component.

 base_conponent MessageHandl er: this function is the message
handler for each component. It reads any request from the user
through the SendConmmand OpenMAX API, and handles it. This
function does not need any override, basically, but if some special
message handling is needed, the developer can implement a derived
message handler function, and call this base function after its special

Bellagio OpenMAX component writers' guide Page 6 of 13

handling. In the components included in the Bellagio distribution, no
special message handling is implemented

Base component private structure function pointers

The following functions are used by the base component to init and de-init, to
change the state of the component and to allocate and de-allocate the buffers
in case of tunneling.

* base conponent Init: is wusually overridden by the final
component. The final function should call this base function at the
beginning of its execution, and after this call it implements the custom
initialization related to the specific component.

 base_conponent Dei nit: this function is the base disposal function.
It is overridden by the final component implementation, as the Init
function. The final function executes its specific code, and at the end it
should call the base Deinit function.

* base_conponent DoSt at eSet: this function handles the state
transition requested by the user. It does not need any override, except
for special handling possibly needed by the final component. In the
components included in the Bellagio distribution, no override of this
function is provided.

 base _conponent Al |l ocat eTunnel Buf fers: This function
provides the allocation of needed buffers for the port that is tunneled. It
does not need any override, except for special handling possibly
needed by the final component. In the components included in the
Bellagio distribution, no override of this function is provided.

 base_conponent FreeTunnel Buf f ers: This function provides the
de-allocation of buffers for the port that is tunneled. It does not need
any override, except for special handling possibly needed by the final
component. In the components included in the Bellagio distribution, no
override of this function is provided.

OpenMAX standard functions

The OpenMAX standard functions implemented in the base components are
the following. The full description of these functions is out of the scope of this
document. It is only documented when these functions are used as they are,
and when they need an override by the derived components.
 base_conponent _Get Conponent Ver si on: no override needed.

* base_conponent _Get Par anet er : this function is overridden by the
final component for each parameter specific to the component. For the
basic parameters this function is called.

* base_conponent _Set Par anet er : this function is overridden by the
final component for each parameter specific to the component. For the
basic parameters this function is called.

 base_conponent Get Confi g: this function is overridden by the final
component for each configure value specific to the component. For the
basic configure values this function is called.

Bellagio OpenMAX component writers' guide Page 7 of 13

base conponent Set Confi g: this function is overridden by the final
component for each configure value specific to the component. For the
basic configure values this function is called.

base conponent Get Ext ensi onl ndex: no override needed.

base conponent Get St at e: no override needed.

base conponent UseBuffer: no override needed, for standard
ways to allocate memory.

base conponent Al | ocat eBuffer: no override needed, for
standard ways to allocate memory.

base conponent FreeBuffer: no override needed, for standard
ways to allocate memory.

base conponent Set Cal | backs: no override needed.

base conponent SendConmand: no override needed.

base conponent Conponent Del ni t : no override needed.

base conponent Enpt yThi sBuf f er : no override needed.

base conponent Fi || Thi sBuf f er: no override needed.

base conponent Conponent Tunnel Request : no override
needed.

The derived classes

There are three first level derived classes: the filter component, the sink
component and the source component. In the future the mixer and splitter
components will be added.
For Filter, sink and source:

Filter component
Common overrides:

base filter_conponent Constructor: the base constructor is
overridden, in order to fill all the port parameters, specific for sink,
source and filter, and to add the function pointer for the central buffer
handling functionality (Buffer Mgnt Function) and the port flush
functionality(Fl ushPor t)

The new functionalities added are:

base filter_conponent BufferMnt Functi on: this function is
executed in a separate thread, and is responsible for receiving the
buffers from a queue, filled by the Enpt yThi sBuf f er function, and
put the filtered data in the output buffers that are in another queue filled
by the Fill Thi sBuffer function. The main filter functionality is
executed by the Buf fer Mgnt Cal | back that is implemented in the
final filter class.

base filter_conponent FlushPort: this function allows the
flushing of buffers for input and output port in case of port disabled, or
component switched from idle to loaded state. This function can work
only with the default buffer management function.

Bellagio OpenMAX component writers' guide Page 8 of 13

Source and sink components

The same functions presented for the filter are implemented in the sink and
source base components. The only difference is related to the number of
ports. For instance the Buffer Mynt Cal | back prototype in case of sink
component has only an input buffer parameter, and the source component
function has only the output buffer parameter.

Final class (from filter) volume control

The final component must implement three more functions in order to work
with the default components hierarchy. The new functions are:

 onx_vol unme_conponent regi ster _tenpl ate: this function
allows the component in the Bellagio framework to be loaded by the
core. This mechanism is specific for this implementation, but in any
case the library loading mechanism is not covered by the OpenMAX
spec, and is let free to each implementation.

 onx_vol unme_conponent Domai nCheck: this function is used to
check the domain for tunneling of two components. Since the tunneling
functions are implemented in the base classes, the final component
must check if its domain is compatible with the one given by the
function parameter, and return an error if there is some domain
incompatibility.

 onx_vol unme_conponent BufferMgnt Cal | back: this function is
the central filtering functionality. It receives a buffer in input and
produced a buffer in output. This function can be used only with the
default buffer management function. It implements a specific filtering
mechanism, used by the ffmpeg library for instance. If a different
mechanism is needed, the basic buffer management function, this
function and the flush functions must be overridden.

Overrides

The final component must override the following functions, in order to be
OpenMAX compliant, and usable inside the Bellagio hierarchy framework.

The needed function to comply with the hierarchy is:

onk_vol unme_conponent _Const ruct or : this function must fill the function
pointers for any needed standard function, like the set/get parameter config
specific functions, any other override not specified in this guide but needed by
the final component. Finally it must fill any specific filed related to this
component. For instance the volume control component must specify a gain
value that is used as default value by the component, and changed
dynamically by the SetConfig specific function.

The functions to override for the OpenMAX compliance are:
omx_volume_component_GetConfig

omx_volume_component_SetConfig

omx_volume_component_GetParameter
omx_volume_component_SetParameter

In these functions the OpenMAX parameters specific to the final component
must be added.

Bellagio OpenMAX component writers' guide Page 9 of 13

2. Use case: volume control example

In this chapter is presented an example of final component construction based
on Bellagio hierarchy. The final component realized is the volume control
component.

The following steps are necessary for insert the files in the current Bellagio
make framework.

Step 1: create a new directory in the src/ conponent s directory of Bellagio
distribution.

Step 2: create in the new directory three files, vol unecontrol. c,
vol unecontrol . h and Makefil e. am

Step 3: add to the configure.in file, in the root directory, the line
src/ conponent/ vol unecont r ol / Makef i | e between the other makefile
lines in the bottom part of the file.

Step 4: add in the src/conponents/ Makefile.am file the line
SUBDI RS+=vol unecont r ol

The content of the new files is described in the following paragraphs.

Makefile.am
The Makef i | e. amfile should be written as follows:

omxvol controldir = $(Iibdir)/onxil conponents
onxvol control _LTLI BRARI ES=I i bonxvol control .l a

I'i bonxvol control | a SOURCES = onx_vol unme_conponent. c
noi nst _HEADERS = onx_vol une_conponent. h

| NCLUDES = -1../../../include/ o Y | -1/ -
|../../base/

With this makefile the volume control component will be compiled in a
separate library. This library will be put in a subdirectory of the installation
directory named omxcoponents. This is the default behavior for components
compilation, and also for the dynamic allocation done with the omxregister
command.

volumecontrol.c

This file should include the volumecontrol.h file and the omxcore.h file.
The functions to be implemented are presented here in detail.

omx_volume_component_register_template

this function is called at the beginning, when the library is loaded. It happens
for example when an application that links the library is launched. In the
Bellagio distribution the library is not linked by the application, but loaded
dynamically when the application needs it, through the core loading

mechanism.
void __attribute__ ((constructor))
onx_vol ume_conponent _regi ster_tenplate() {

Bellagio OpenMAX component writers' guide Page 10 of 13

the base component structure, handled by the core, is the following. Is
allocated by a base function, the component create struct functions. See the

base component section for details.
st Conponent Type *conponent;
conponent = base_conponent _Cr eat eConponent Struct () ;

When the stComponent structure has been allocate and filled with the default
values, the specific fields are filled. The first one is the standard OpenMAX

name:
conmponent - >nane = " OMX. vol une. conponent " ;

The other mandatory functions are the specific contructor (explained later in

this section), and the set/get config parameters functions.
conponent - >const ruct or = onx_vol unme_conponent _Const r uct or

conponent - >onx_conponent . Set Confi g = onx_vol unme_conponent _Set Confi g;
conponent - >onx_conponent . Get Confi g = onx_vol ume_conponent _CGet Confi g;
component - >onx_conponent . Set Par aneter =

onx_vol ume_conponent _Set Par anet er ;

conmponent - >onx_conponent . Get Par aneter =

onx_vol ume_conponent _Cet Par anet er ;

The final component MUST fill also the field that contains the number of ports.

conponent - >nports = 2;
the final step is to call the register function of the core, that adds this
component to the possible open max components available. This list is

provided by the core through the standard OpenMAX API calls.
regi ster _tenpl at e(conponent) ;

}

omx_volume_component_DomainCheck

This function is called by the base setup tunnel functionality, in order to check
if two components are compatible in relation to the domain. In this function a

parameter that represents the remote port is passed to this function.
OVX_ERRORTYPE onx_vol une_conponent _Domai nCheck(
OVX_PARAM PORTDEFI NI TI ONTYPE pDef) {

The implementation of this function is left to the developer. It must return an
error if for some reason the developer thinks that the compatibility between
the current port to be tunneled and the remote port parameter is not reached.
A possible implementation is the following.

The domain is first checked. In the example the domain is audio, and if the

remote port is not an audio port, the compatibility is not satisfied.
i f(pDef.eDomai nl =OMX_Por t Dormai nAudi 0)
return OMX_Error Port sNot Conpati bl e;

The type of coding is checked. In this case no check is performed, since that
this volume control applies to uncompressed data. In other cases, such as an

mp3 decoder, a check for encoding format should be implemented.
el se i f(pDef.format.audi o. eEncodi ng == OVX_AUDI O_Codi nghax)
return OMX_ErrorPort sNot Conpati bl e;

The domain check is satisfied, and the return can be OMX_Er r or None.
return OVMX Error None;

}

omx_volume_component_BufferMgmtCallback

This function is called in the middle of the
base filter_conponent BufferMgnt Functi on function. In the case of

Bellagio OpenMAX component writers' guide Page 11 of 13

a sink component, the buffer management callback will be called in the
base_si nk_conponent _Buf f er Mgnt Funct i on function.

This function represents the central elaboration of the filter. The parameters
used are the stComponent that describes the component, the input buffer and
the output buffer. The implementation is left to the developer, but here a
useful example is presented. This case is simple because the size of the data
remains unchanged during the processing, since that this component is not an
encoder or decoder, but simply a filter.

voi d onx_vol umre_conponent _Buf f er Mgnt Cal | back(st Conponent Type*

st Conponent, OMX_BUFFERHEADERTYPE* i nput buffer, OW_BUFFERHEADERTYPE*
out put buffer) {

int i;
In the decoded stream that this component can handle, each sample is
contained in two buffers.
i nt sanpl eCount = inputbuffer->nFilledLen / 2;
onx_vol ume_conponent _Pri vat eType* onx_vol unme_conponent _Private =
st Conponent - >onx_conponent . pConponent Pri vat e;
For every sample in input, the value of the sample is modified with the gain
value of this component.
for (i = 0; i < sanpleCount; i++) {
((OMX_S16*) outputbuffer->pBuffer)[i] = (OW_S16)
(((QOWX_S16*) inputbuffer->pBuffer)[i] *
(omx_vol ume_conponent _Private->gain / 100.0f));
}
When the entire input buffer has been processed, the output size is assigned,
as the OpenMAX rule specifies, and the execution of the function can be
concluded.

out put buffer->nFi |l edLen = inputbuffer->nFilledLen
i nput buf f er->nFi | | edLen=0;

}
Any synchronization issue related to receive or send buffer is handled in the

Mgnt Funct i on of the parent component, in this example the base filter.

omx_volume_component_Constructor

This function overrides the same base function. Each level of this hierarchy
implements a constructor. Each constructor must call at the end the
constructor of the parent. The parameter stComponent has been instantiated
in the register function.

OVX_ERRORTYPE onx_vol une_conponent _Const r uct or (st Conponent Type*

st Conponent) {

OMX_ERRORTYPE err = OMX_Error None;

onx_vol ume_conponent _Pri vat eType* onx_vol ume_conponent _Private

onx_vol ume_conponent _Port Type *inPort, *out Port;

OMX_S32 i;

The constructor must allocate the component private structure, and check
eventually if the memory is available or not.

st Conponent - >onx_conponent . pConponent Private = call oc(1

si zeof (onmx_vol umre_conponent _Pri vat eType));

i f (st Conponent - >onmx_conponent . pConponent Pri vat e==NULL)

return OMX _Errorlnsuffici ent Resources;

onx_vol ume_conponent _Private = st Conponent -
>omx_conponent . pConponent Pri vat e;

Bellagio OpenMAX component writers' guide Page 12 of 13

If the component needs specific port description structure, it must allocate it
here. In other cases, when the default structure is enough, the allocation can

be left to the base components.
i f (stConponent->nports && !onx_vol une_conponent _Private->ports) ({
onx_vol ume_conponent _Private->ports = cal | oc(st Conponent - >nports,
si zeof (base_conponent Port Type *));
if (!omx_vol une_conponent Private->ports) return
OMX_ErrorlnsufficientResources;
for (i=0; i < stConponent->nports; i++) {
onx_vol umre_conponent _Private->ports[i] = calloc(1,
si zeof (omx_vol ume_conponent _Port Type)) ;
if (!omx_vol ume_conponent _Private->ports[i]) return
OMX_ErrorlnsufficientResources;
}
}
The parent constructor can be called.
err = base_filter_conponent_Constructor (st Conponent);

This instruction should be replicated here after the parent constructor.
onx_vol ume_conponent _Private = st Conponent -
>omx_conponent . pConponent Pri vat e;

The volume control component should define the following parameters in
order to be openMAX compliant. The same list of parameter must be added in

the set/get parameter section.

onx_vol ume_conponent _Pri vat e- >port s[OWX_BASE_FI LTER | NPUTPORT_| NDEX] -
>sPort Param eDonmai n = OVX_Por t Donai nAudi o;

onx_vol ume_conponent _Pri vat e- >port s[OWX_BASE_FI LTER | NPUTPORT_| NDEX] -
>sPort Param f or mat . audi 0. cM METype = "raw';

onx_vol ume_conponent _Pri vat e- >port s[OWX_BASE_FI LTER | NPUTPORT_| NDEX] -
>sPort Param f or mat . audi 0. bFl agEr r or Conceal ment = OUWX_FALSE;

onx_vol ume_conponent _Pri vat e-

>port s[OUW_BASE_FI LTER_OUTPUTPORT _| NDEX] - >sPor t Par am eDonmai n =
OWX_Por t Domai nAudi o;

onx_vol ume_conponent _Pri vat e-

>port s[OUW_BASE_FI LTER_QUTPUTPORT_| NDEX] -

>sPort Param f or mat . audi 0. cM METype = "raw';

onx_vol ume_conponent _Pri vat e-

>port s[OUW_BASE_FI LTER_QUTPUTPORT_| NDEX] -

>sPort Param f or mat . audi 0. bFl agEr r or Conceal ment = OUWX_FALSE;

i nPort = (omx_vol une_conponent _Port Type *)

onx_vol ume_conponent _Pri vat e- >port s[OWX_BASE_FI LTER | NPUTPORT_| NDEX] ;
out Port = (onx_vol ume_conponent _Port Type *)

onx_vol ume_conponent _Pri vat e-

>ports[OMX_BASE_FI LTER_OUTPUTPORT_| NDEX] ;

set Header (& nPort - >sAudi oPar am

si zeof (OMX_AUDI O_PARAM PORTFORVATTYPE)) ;
i nPort - >sAudi oPar am nPort | ndex = O;

i nPort - >sAudi oPar am nl ndex = O0;

i nPort - >sAudi oPar am eEncodi ng = 0;

set Header (&out Port - >sAudi oPar am

si zeof (OMX_AUDI O_PARAM PORTFORVATTYPE)) ;

out Por t - >sAudi oPar am nPor t | ndex = 1;

out Por t - >sAudi oPar am nl ndex = O;

out Port - >sAudi oPar am eEncodi ng = 0;

The specific internal parameters for the final component should be filled here.

In this example the only needed value is the gain of the volume control.

Bellagio OpenMAX component writers' guide Page 13 of 13

onx_vol ume_conponent _Pri vat e->gai n = 100. Of ;
The critical function pointers must be assigned. These functions have been

already described above.

onx_vol ume_conponent _Pri vat e- >Buf f er Mgnt Cal | back =
onx_vol ume_conponent _Buf f er Mgt Cal | back;

onx_vol ume_conponent _Pri vat e- >Domai nCheck =
&omx_vol une_conponent _Domai nCheck;

No other constructing operations are needed at this point. The function can

return.
return err;

}

omx_volume_component_SetParameter and
omx_volume_component_GetParameter

These two functions must provide the support for the OpenMAX parameters
specifc of the final component. In the volume control example the parameters

supported by both these functions are:
OMX_| ndexPar amAudi ol ni t
OWX_| ndexPar amAudi oPor t For nat

The parameter that is supported only by the Get Par anet er function is:
OWX_| ndexPar amAudi oPcm

The other parameters are supported by the parent components.

omx_volume_component_SetConfig and
omx_volume_component_GetConfig

These functions support only the config value:

OVX_I ndexConf i gAudi oVol une

That is the gain of the volume control.

The other config values are supported by the parent components.

