
Application Report
SPRA646 - March 2000

1

DSP/BIOS II Technical Overview
David Dart Software Development Systems

ABSTRACT

DSP/BIOS II is a kernel that provides run-time services which developers use to build DSP ap-
plications and manage application resources. DSP/BIOS II effectively extends the DSP instruc-
tion set with real-time, run-time kernel services that form the underlying architecture, or infra-
structure, of real-time DSP applications.

The DSP/BIOS II kernel tightly integrates with the Code Composer Studio Integrated Develop-
ers Environment (IDE) to provide the ability to:

• select and configure the foundation modules and kernel objects required by the application
with the DSP/BIOS Configuration Tool;

• provide DSP/BIOS II kernel object viewing with the Code Composer Studio (CCStudio)
plug-in utility; and,

• support the real-time analysis features in DSP/BIOS II with host-side tooling.

Contents

1 DSP/BIOS II in the Application Development Cycle 3.

2 A Real-Time DSP Environment 3.
2.1 Developing DSP/BIOS II Applications 4.

2.1.1 DSP/BIOS II Configuration Tool 6.
2.1.2 DSP/BIOS II Kernel Object Viewing Support in CCStudio 7.

2.2 DSP/BIOS II Kernel 7.
2.2.2 DSP/BIOS II Real-Time Analysis (RTA) 13.
2.2.3 Real-Time Data Exchange (RTDX) 15.
2.2.4 Hardware Abstraction 16.

3 Sample Application 21.

4 System Performance 23.

2 DSP/BIOS II Technical Overview

List of Figures

Figure 1. CCStudio IDE Enhanced with DSP/BIOS II 4.
Figure 2. Building DSP/BIOS II-based DSP Applications 5.
Figure 3. DSP/BIOS II Configuration Tool 6.
Figure 4. Code Composer Studio Debugger 7.
Figure 5. DSP/BIOS II Execution Threads 9.
Figure 6. DSP/BIOS II Prioritized Thread Execution Model 11.
Figure 7. All DSP/BIOS Execution Threads Prioritized 12.
Figure 8. DSP/BIOS II Real-Time Capture and Analysis 14.
Figure 9. DSP/BIOS II Hardware Abstraction Services 16.
Figure 10. Data Pipes in DSP/BIOS II 18.
Figure 11. Data Stream in DSP/BIOS II 20.
Figure 12. Stacking Device Drivers 21.
Figure 13. Audio Filter 22.

SPRA646

3 DSP/BIOS II Technical Overview

1 DSP/BIOS II in the Application Development Cycle

Where does DSP/BIOS II intersect the application development process? DSP/BIOS II provides
value from application design through deployment. DSP/BIOS II also provides the stable
foundation upon which developers build and deploy their applications.

Application design cycles begin in the concept phase where developers propose and evaluate
possible solutions to product requirements. Prototypes are typically developed and evaluated
using a TMS320 EVM or DSK long before the target platform is available. At this phase, it is
critical to build these prototypes quickly to ascertain and resolve technical uncertainties. To
facilitate rapid application development, designers can leverage the DSP/BIOS II kernel and
target hardware abstraction services to quickly build and test logical models of their applications.

Developers use the DSP/BIOS II Configuration Tool in CCStudio to select and configure the
runtime support elements needed for their application from the scalable DSP/BIOS II kernel.
Using these elements, designers develop and validate the logic of their application by building
an application framework that represents the execution threads, I/O, and their interactions.
Developers can also create a logical map of the target system memory to simplify the migration
to the target platform(s) when it becomes available.

Since the DSP/BIOS II kernel contains components that implement a variety of execution thread
models and device-independent I/O, designers can develop applications ranging from simple
single-channel signal processing systems to very sophisticated multirate and multichannel
systems. The Kernel Object View and Real-Time Analysis (RTA) features in DSP/BIOS II and
CCStudio enable designers to quickly validate their application execution logic — long before
they attach the algorithms that process the data. The DSP/BIOS II kernel objects created by the
Configuration Tool contain internal instrumentation for real-time analysis. By using the real-time
analysis utilities, designers can quickly measure the overhead associated with the application
framework built using the DSP/BIOS II components. Once the designers validate the
application’s logic, they can add the algorithms. The RTA components in DSP/BIOS II also
provide visibility into the run-time operation of the algorithms.

Developers can instrument their own algorithms with custom test vectors that support error
detection and notification, data stimulation, and real-time data capture. Coupled with the
Real-Time Data Exchange (RTDX) features, developers can also tune their algorithms by
updating parameters and monitoring the result while the application is running on the DSP in
real time.

During the final integration, errors or “glitches” often occur as a result of real-time interaction.
These are hard to find since they typically are non-periodic or occur at a very low frequency.
However, the RTA features built into the DSP/BIOS II kernel, coupled with any custom test
vectors designed-in by the developer, provide unique visibility into the events that lead up to, or
follow, the error. This visibility can greatly assist developers in isolating and fixing the difficult
integration problems.

2 A Real-Time DSP Environment

The application development environment for today’s mainstream TMS320 DSPs revolves
around two principal categories of software tools, both integral to CCStudio:

– a program generation suite featuring a C compiler, assembler, and linker for the target
DSP architecture; and

SPRA646

4 DSP/BIOS II Technical Overview

– a program debug facility for executing application software on a target DSP platform,
linked to and controlled by the host via JTAG emulation hardware.

These tools are comparable in capability to their microcontroller counterparts and are essential
to any software development environment. However, they fail to directly address a critical
dimension of embedded systems in general and signal processing applications in particular —
the dimension of real time.

DSP/BIOS II and CCStudio work together to extend the mainstream DSP development
environment with an equally essential set of real-time software capabilities. Figure 1 depicts the
junctures at which DSP/BIOS II and its attendant host utilities dovetail with CCStudio IDE.

Figure 1. CCStudio IDE Enhanced with DSP/BIOS II

2.1 Developing DSP/BIOS II Applications

DSP/BIOS II is a scalable set of run-time services that provide the essential foundation upon
which developers build their applications. DSP/BIOS II provides these run-time services in the
form of a scalable run-time library, also referred to as the DSP/BIOS II kernel. Included in this
library of services is:

• a small, preemptive scheduler for real-time program threads with optional multitasking
support;

• hardware abstraction of on-chip timers and hardware interrupts;

• device-independent I/O modules for managing real-time data streams; and,

• a series of functions that perform real-time capture of information generated by the DSP
application program during its course of execution.

Figure 2 illustrates the components involved in building DSP/BIOS II-based DSP applications.

SPRA646

5 DSP/BIOS II Technical Overview

Figure 2. Building DSP/BIOS II-based DSP Applications

The target application invokes DSP/BIOS II run-time services by embedding corresponding API
calls within its program source code.

DSP/BIOS II is essentially a library of functions callable from C (or assembly) programs.
Developers prepare their source files, which include both DSP/BIOS II header files and API
calls, in CCStudio. Programs then build (compile/assemble) in the usual fashion.

Developers use the DSP/BIOS II configuration tool to select which DSP/BIOS II modules they
will use in their application; they may declare and configure objects from these modules as well.
This pre-creates DSP/BIOS II objects to save memory and pre-validates the configuration
parameters. The configuration tool generates four output files:

• program cfg.s xx DSP/BIOS II Assembly source file. This file is linked with the
application.

• program cfg.hxx DSP/BIOS II Assembly header file. This header file is included by the
programcfg.s62 file.

• program cfg.cmd Linker command file. Used when linking the executable file. This file
defines DSP/BIOS-specific link options and object names and generic data sections for DSP
programs (e.g., .text, .bss, .data, etc.).

• program .cdb Stores configuration settings. This file is created by the Configuration
Tool and used by both the Configuration Tool and the DSP/BIOS plug-ins.

For the C programmer, special header files included during program compilation define the
DSP/BIOS II APIs within the context of the language. Alternative versions of many of the APIs
support direct use of DSP/BIOS II services from assembly language programs using an
optimized set of macros.

SPRA646

6 DSP/BIOS II Technical Overview

After compilation or assembly, the standard TMS320 linker binds the selected DSP/BIOS II
services with the application into an executable program image (see Figure 2). The selected
modules bind with the target application program, and may be located anywhere within the
memory space of the target DSP platform, either in RAM or in ROM. The Configuration Tool
provides the interface to locate the memory sections.

2.1.1 DSP/BIOS II Configuration Tool

The DSP/BIOS II Configuration Tool tightly integrates with CCStudio. This tool enables
developers to select and deselect kernel modules, and control a wide range of configurable
parameters accessed by the DSP/BIOS II kernel at run-time as shown in Figure 3. A file of data
tables generated by the tool ultimately becomes an input to the program linker.

The DSP/BIOS II Configuration Tool (see Figure 3) serves as a special-purpose visual editor for
creating and assigning attributes to individual run-time kernel objects (threads, streams, etc.)
used by the target application program in conjunction with DSP/BIOS II API calls. The
Configuration Tool provides developers the ability to statically declare and configure DSP/BIOS
II kernel objects during program development rather than during program execution. Declaring
these kernel objects through the Configuration Tool produces static objects which exist for the
duration of the program. DSP/BIOS II also allows dynamic creation and deletion for many of the
kernel objects during program execution. However, dynamically created objects require
additional code to support the dynamic operations. Statically declared objects minimize memory
footprint since they do not include the additional create code.

Figure 3. DSP/BIOS II Configuration Tool

SPRA646

7 DSP/BIOS II Technical Overview

Another important benefit of static configuration is the potential for static program analysis by the
DSP/BIOS II Configuration Tool. In addition to minimizing the target memory footprint, the
DSP/BIOS II Configuration Tool provides the means for early detection of semantic errors
through the validation of object attributes, prior to program execution. When the configuration
tool is aware of all target program objects prior to execution, it can accurately compute and
report such information as the total amount of data memory and stack storage required by the
program.

2.1.1.1 Achieving Scalability

Since DSP/BIOS II is organized as a set of modules, and packaged as a run-time library,
developers can select and link with their application only those modules they want to use.
DSP/BIOS II is scalable, since the developer scales the amount of DSP/BIOS II to use and
include.

2.1.2 DSP/BIOS II Kernel Object Viewing Support in CCStudio

Another element introduced within the DSP/BIOS II environment depicted earlier, is the
integrated support within the CCStudio debugger (Figure 4). This support allows developers to
view the current configuration, state, and status of DSP/BIOS II objects running in the target
system. This hosted tool allows developers to view both static and dynamic DSP/BIOS II kernel
objects in the target application, referenced by the user-defined name and location.

Figure 4. Code Composer Studio Debugger

The DSP/BIOS II kernel-aware extensions complement the familiar program debugger with a
series of hosted utilities that work hand-in-hand with the target-resident DSP/BIOS II kernel to
enable program analysis. These tools are especially useful in debugging the program logic and
control flow. Developers who build their applications using the DSP/BIOS II run-time services,
are able to view the multitasking threads and other kernel objects at the same level of
abstraction in which they are programming.

2.2 DSP/BIOS II Kernel

The DSP/BIOS II kernel implements run-time services that the target application program
invokes through DSP/BIOS II APIs (see Table 1).

SPRA646

8 DSP/BIOS II Technical Overview

Individual DSP/BIOS II modules in general will manage one or more instances of a related class
of objects, sometimes referred to as kernel objects, and will rely upon global parameter values to
control their overall behavior.

Developers can statically declare and configure many of these objects using the DSP/BIOS II
Configuration Tool. Developers may also declare and configure many of these objects
dynamically within their programs.

Table 1. DSP/BIOS II Modules by Function

Object Creations Language Support

Feature Module STATIC DYNAMIC
C

routines
ASM

routines

Real Time Analysis and Data Capture

Event Logging LOG Message Log Manager X X X

Statistics Accumulation STS Statistics Accumulator Manager X X X

Trace Control TRC Trace Manager X X X

File Streaming HST Host I/O Manager X X X

Real Time Data Exchange RTDX Target to Host Communication Manager X
X X

Hardware Abstraction

On–Chip Timer CLK System Clock Manager X X X

Hardware Interrutps HWI Hardware Interrupt Manager X X

Static Memory Management MEM * Memory Segment Manager X

Dynamic Memory Management MEM ** Memory Segment Manager X X

Device – Independent I/O

Data Pipes PIP Data Pipe Manager X
X X

Data Streams SIO Stream I/O Manager X X X

Execution Thread Management

Software Interrupts SWI Software Interrupt Manager X X X X

Periodic Functions PRD Periodic Function Manager X X X

Tasks TSK Multitasking Manager X X X

Idle Loop IDL Idle Function and Processing Loop Manager X X X

Inter – Thread Communnication and Synchronization

Semaphores SEM Semaphore Manager X X X

Resource Locks LCK Resource Lock Manager X X X

Mailboxes MBX Mailbox Manager X X X

Queues QUE Queue Manager X X X

Other Services

Atomic Functions (optimized and
non–premptive)

ATM
Atomic Functions written in Assembly

Language
N/A N/A X

Error handling and program
termination

SYS System Services Manager N/A N/A X

 * Using the Configuration Tool , memory segments are defined and named.

** Once named, this module provides allocation and freeing services.

SPRA646

9 DSP/BIOS II Technical Overview

2.2.1 Structuring Applications with DSP/BIOS II Execution Threads

When applications are organized as independent paths of execution, developers can place
structure and order into them (see Figure 5). DSP/BIOS II execution threads are independent
paths of execution that execute an independent stream of DSP instructions. An execution
thread is a single point of control that may contain an ISR, subroutine, or a function call. For
example, a hardware interrupt is a thread, and it performs the ISR when triggered.

By organizing DSP applications around execution threads, developers can structure their
applications, apply appropriate priorities to each thread, and ensure their applications meet
critical real-time deadlines.

Multithreaded applications can run on single processor systems by allowing higher-priority
threads to preempt lower-priority threads. DSP/BIOS II provides 30 levels of priority, divided
over four distinct classes of execution threads (see Figure 5). DSP/BIOS II also provides
services to support the synchronization of, and communication between, execution threads.
Multirate processing maps well onto multithreaded systems.

Each thread class has different execution, preemption and suspension characteristics (see
Figure 6). Since all threads are fully preemptive, developers can integrate existing algorithms in
DSP/BIOS II-based applications easily without having to change the algorithm source code.
This is especially important in accommodating algorithms that must execute at differing rates. In
addition, preemptive threading provides a simple way to guarantee that hard real-time threads
get the CPU when required. Adding a new thread will not disrupt the correctness of the system.
An important point to know is that the number of threads in the system has no bearing on the
length of time it takes between a hardware interrupt and the thread it makes ready.

Figure 5. DSP/BIOS II Execution Threads

SPRA646

10 DSP/BIOS II Technical Overview

With the exception of the background idle processing thread, each thread type supports multiple
levels of priority. DSP/BIOS II provides choices; it allows developers to use the optimum
thread-types for their application and not bend their application to fit a certain model. Since
there is no right solution for all applications, DSP/BIOS II developers have the flexibility to mix
and match the objects in the run-time library that are best suited for the application. Moreover,
since DSP/BIOS II is completely scalable, only those modules that have been selected link with
the application, minimizing precious resource requirements.

2.2.1.1 Hardware Interrupts

In DSP/BIOS II, the HWI module manages a finite class of objects that correspond to individual
hardware interrupts and are recognized by the underlying DSP platform. The HWI module
provides run-time support to enable interrupt service routines that are associated with these
objects to schedule execution of DSP/BIOS II software interrupts or synchronous tasks. The
HWI module also provides run-time services to enable and disable executing hardware
interrupts.

Through the DSP/BIOS II Configuration Tool, the HWI Manager is used to map the interrupt
service routine to the hardware interrupt, locate the interrupt service tables anywhere in memory,
and locate the HWI dispatcher. In DSP/BIOS II applications, developers are able to program
ISRs in assembly language, or a mix of assembly and C.

A major benefit to using the HWI manager is device abstraction. The HWI module allows
developers to use logical services to configure, manage and make use of hardware interrupts.
When the application requires migrating to another device, the developer only needs to reassign
the logical map to the new physical device.

2.2.1.2 Software Interrupts

As the name implies, this execution model is similar to the hardware ISR, except software
interrupts are not associated to the physical DSP device; rather, they are instantiated in
software. Like hardware ISR, software interrupts also execute in a run-to-completion mode, and
they share the property of preemption. DSP/BIOS II software interrupts are priority-based, and
support 14 levels of priority. The SWI module manages DSP/BIOS II software interrupts.

Software interrupts can only be preempted by a higher-priority software interrupt or a hardware
interrupt. It is quite possible that an application will have multiple software interrupts sharing the
same priority level. In this case, software interrupts of the same priority execute on first-come
(posted), first-served basis. Figure 6 illustrates prioritized thread execution.

While external events trigger hardware interrupts, programs trigger software interrupts by calling
SWI functions. Individual software interrupts are triggered for execution through the DSP/BIOS
II API calls. These calls can be embedded in virtually any execution thread within the target.

On today’s TMS320 devices, the DSP/BIOS II overhead is less than 1 microsecond for each
interrupt routine that calls SWI_post() , suggesting minuscule impact within applications whose
processing cycles fall under the 1 kHz threshold. Actual overhead is easily measured using the
DSP/BIOS II RTA services and tools within CCStudio IDE.

SPRA646

11 DSP/BIOS II Technical Overview

Blocked!Blocked!

idleidle

INT 1INT 1INT 1

SWI 1SWI 1SWI 1

TSK 2TSK 2TSK 2

TSK 1TSK 1TSK 1

Figure 6. DSP/BIOS II Prioritized Thread Execution Model

With low overhead per context switch, DSP/BIOS II software interrupt objects also become an
ideal mechanism for structuring programs that employ multiple algorithms executing at different
rates (e.g., a telecommunication application where voice coding, tone detection, and echo
cancellation typically process a common 8 kHz input stream using frames of differing duration
that might range from 1-20 ms (milliseconds)). Through a technique called rate monotonic
scheduling, binding algorithms with shorter deadlines to higher priority software interrupts
ensures orderly interleaving of otherwise independent real-time threads that each contend for
their respective allotment of processor cycles. Rate monotonic scheduling is possible since
software-interrupt handlers will preempt one another on a strict priority basis.

2.2.1.3 Periodic Functions

DSP/BIOS II offers a special type of software interrupt, triggered by a periodic clock, that is used
to schedule periodic functions or activities that must occur at periodic rates.

The PRD module in DSP/BIOS II manages these functions. DSP/BIOS II provides a system
clock, a 32-bit counter that advances every time PRD_tick () is called. The timer interrupt can
drive this system clock by calling PRD_tick (), however, other periodic events, such as data
clocks, can also call PRD_tick (). The PRD manager allows developers to schedule the PRD
software interrupt thread to execute functions at different rates. Developers can create an
arbitrary number of PRD objects, each specifying a different period. However, since all PRD
objects are driven from the same system clock, the rates are all integer multiples of the system
clock or PRD_tick ()s. PRD objects encapsulate a function, two arguments, and a period
specifying the time between successive invocations. Since some applications need to have a
function execute only once after a time delay, DSP/BIOS II periodic functions support a
single-cycle or one-shot mode. PRD objects execute from a software interrupt, so they share
the same stack as software interrupts.

SPRA646

12 DSP/BIOS II Technical Overview

2.2.1.4 Synchronized Tasks

Unlike the hardware and software interrupt model previously described, synchronized tasks in
DSP/BIOS II (see Figure 7) are capable of suspension as well as preemption. Tasks will run to
completion unless preempted or suspended. Synchronized tasks run at a lower priority than
software interrupts, but above the idle background thread. DSP/BIOS tasks are priority-based,
supporting 15 levels of priority, plus a suspended state. Tasks will be preempted by both
hardware and software interrupts (SWI threads), and higher-priority tasks. In DSP/BIOS II, the
TSK module manages and schedules synchronized tasks.

Figure 7. All DSP/BIOS II Execution Threads Prioritized

When a task is suspended, further thread execution suspends (blocks), waiting for a resource to
become available, or an event to occur. Tasks can block themselves or any other task by:

• explicitly yielding (TSK_yield()),

• sleeping for some period of time (TSK_sleep()), or,

• waiting for a resource to become available or an event to occur that is synchronized by a
semaphore (such as SEM_pend(), or MBX_pend()).

In contrast, both hardware and software interrupts cannot yield, sleep, or block — they always
run to completion unless preempted.

DSP/BIOS II provides familiar kernel elements that form the basis of traditional concurrent
processing. In traditional concurrent system designs, multithreaded applications structure
around elements like tasks, semaphores, mailboxes, and message queues. Developers familiar
with the programming models of VxWorks, PSOS, and Nucleus will find the components in
DSP/BIOS II to be very similar.

SPRA646

13 DSP/BIOS II Technical Overview

2.2.1.5 Background Idle Processing

The Background Idle thread executes at the lowest priority in a DSP/BIOS II application. This
thread runs continuously in the absence of any higher priority threads that need to run, such as
interrupts or tasks.

Sometimes when organizing an application around independent threads of execution, one
thread may be an operation that should only run when nothing else needs to run — in the
background. This can be useful for polling non-real-time I/O devices or communications ports
that are incapable of generating interrupts, monitoring system status or other operations that
developers do not want to impact their real-time application. In fact, the communication between
the RTA CCStudio plug-ins and the target application run in this background loop to ensure the
host link does not interfere with the real-time application.

The IDL manager in the DSP/BIOS II Configuration Tool allows developers to insert functions to
execute in the idle loop. The idle loop calls each function in the order listed, one at a time, and
allows each function to run to completion. This process repeats cyclically.

Developers who wish to implement power-minimization operations can leverage the DSP/BIOS
II kernel and background idle loop. The kernel allows the developer to simultaneously ensure
system responsiveness to the highest-priority threads, and to idle the processor when there is
nothing to do. The DSP/BIOS II kernel knows that it can idle the processor when it is in the idle
loop. Developers can leverage this and inactivate the processor, or perform other
power-minimization schemes.

2.2.2 DSP/BIOS II Real-Time Analysis (RTA)

The DSP/BIOS II Real-Time Analysis (RTA) features, shown in Figure 8, provide developers and
integrators unique visibility into their application by allowing them to probe, trace, and monitor a
DSP application during its course of execution. These utilities, in fact, piggyback upon the same
physical JTAG connection already employed by the debugger, and utilize this connection as a
low-speed (albeit real-time) communication link between the target and host.

SPRA646

14 DSP/BIOS II Technical Overview

Figure 8. DSP/BIOS II Real-Time Capture and Analysis

DSP/BIOS II RTA requires the presence of the DSP/BIOS II kernel within the target system. In
addition to providing run-time services to the application, DSP/BIOS II kernel provides support
for real-time communication with the host through the physical link. By simply structuring an
application around the DSP/BIOS II APIs and statically created objects that furnish basic
multitasking and I/O support, developers automatically instrument the target for capturing and
uploading the real-time information that drives the visual analysis tools inside CCStudio IDE.
Supplementary APIs and objects allow explicit information capture under target program control
as well. From the perspective of its hosted utilities, DSP/BIOS II affords several broad
capabilities for real-time program analysis:

• Message Event Logs – capable of displaying time-ordered sequences of events written to
kernel log objects by independent real-time threads, tracing the program’s overall flow of
control. The target program logs events explicitly through DSP/BIOS API calls or implicitly
by the underlying kernel when threads become ready, dispatched, and terminated.

• Statistics Accumulators – capable of displaying summary statistics amassed in kernel
accumulator objects, reflecting dynamic program elements ranging from simple counters and
time-varying data values, to elapsed processing intervals of independent threads. The target
program accumulates statistics explicitly through DSP/BIOS API calls or implicitly by the
kernel when scheduling threads for execution or performing I/O operations.

• Host Data Channels – capable of binding kernel I/O objects to host files providing the target
program with standard data streams for deterministic testing of algorithms. Other real-time
target data streams managed with kernel I/O objects can be tapped and captured on-the-fly
to host files for subsequent analysis.

• Host Command Server – capable of controlling the real-time trace and statistics
accumulation in target programs. In effect, this allows developers to control the degree of
visibility into the real-time program execution.

SPRA646

15 DSP/BIOS II Technical Overview

When used in tandem with the CCStudio standard debugger during software development, the
DSP/BIOS II real-time analysis tools provide critical visibility into target program behavior at
exactly those intervals where the debugger offers little or no insight — during program
execution. Even after the debugger halts the program and assumes control of the target,
information already captured through DSP/BIOS II can provide invaluable insights into the
sequence of events that led up to the current point of execution.

Later in the software development cycle, regular debuggers become ineffective for attacking
more subtle problems arising from time-dependent interaction of program components. The
DSP/BIOS II real-time analysis tools subsume an expanded role as the software counterpart of
the hardware logic analyzer.

This dimension of DSP/BIOS II becomes even more pronounced after software development
concludes. The embedded DSP/BIOS II kernel and its companion host analysis tools combine
to form the necessary foundation for a new generation of manufacturing test and field diagnostic
tools. These tools will be capable of interacting with application programs in operative
production systems through the existing JTAG infrastructure.

The overhead cost of using DSP/BIOS II is minimal, therefore instrumentation can be left in to
enable field diagnostics, so that developers can capture and analyze the actual data that caused
the failures.

2.2.3 Real-Time Data Exchange (RTDX)

Real-time data exchange (RTDX) allows system developers to transfer data between a host
computer and DSP devices without interfering with the target application. This bi-directional
communication path provides for data collection by the host as well as host interaction with the
running DSP application. The data collected from the target may be analyzed and visualized on
the host. Application parameters may be adjusted using host tools, without stopping the
application. RTDX also enables host systems to provide data stimulation to the DSP application
and algorithms.

RTDX consists of both target and host components. A small RTDX software library runs on the
target DSP. The DSP application makes function calls to this library’s API in order to pass data
to or from it. This library makes use of a scan-based emulator to move data to or from the host
platform via a JTAG interface. Data transfer to the host occurs in real-time while the DSP
application is running.

On the host platform, an RTDX host library operates in conjunction with CCStudio. Data
visualization and analysis tools communicate with RTDX through COM APIs to obtain the target
data and/or to send data to the DSP application.

The host library supports two modes of receiving data from a target application: continuous and
noncontinuous. In continuous mode, the data is simply buffered by the RTDX host library and is
not written to a lot file. Continuous mode should be used when the developer wants to
continuously obtain and display the data from a DSP application, and doesn’t need to store the
data in a log file. In noncontinuous mode, data is written to a log file on the host. This mode
should be used when developers want to capture a finite amount of data and record it in a log
file.

SPRA646

16 DSP/BIOS II Technical Overview

2.2.4 Hardware Abstraction

DSP/BIOS II provides APIs to access and configure certain hardware components independent
of their physical implementation (abstraction). The hardware abstraction APIs simplify the
configuration of these devices by providing a simple, logical user interface independent of the
underlying device. By abstracting the device-dependent components like the on-chip timer
(through CLK), and the hardware interrupts (HWI), migrating from one device or across ISAs is
significantly simplified. Figure 9 illustrates the DSP/BIOS II hardware abstraction services.

DSP/BIOS II also supports memory management. Through the DSP/BIOS II Configuration Tool,
developers define and name the physical memory segments, creating a logical memory map.
DSP/BIOS II runtime APIs provide dynamic allocation and freeing of memory from within the
application by using this logical memory map with the MEM module.

The device-independent I/O APIs provide services to perform frame-based or block-based data
transfers, whether transferring data between the DSP and a peripheral or between multiple
execution threads. Peripherals typically include I/O devices like CODECs or host systems.
DSP/BIOS II supports both data pipes and data streams.

2.2.4.1 Real-Time Clock Services

The CLK module allows developers to configure the hardware-dependent components such as
the on-chip timer, to provide the time-base for all application timer or periodic functions. The
DSP/BIOS II Configuration Tool provides a simple, logical interface to set the on-chip timer to the
desired time-base, typically 1 microsecond. Access to the physical timer registers is available if
needed.

Figure 9. DSP/BIOS II Hardware Abstraction Services

SPRA646

17 DSP/BIOS II Technical Overview

The CLK module provides abstraction of the real-time clock with functions to access this clock at
two resolutions. This clock can be used to measure the passage of time in conjunction with
statistics accumulator objects, as well as to add timestamp messages to event logs. Both the
low-resolution and high-resolution times are stored as 32-bit values. The low–resolution clock
ticks at the timer interrupt rate and the clock’s value is equal to the number of timer interrupts
that have occurred. The high-resolution time is the number of times the timer counter register
has been incremented and is a direct function of the DSP clock. High resolution time is useful
for determining how long it takes the DSP to execute a series of instructions, using instruction
cycles as the unit of measurement.

The Clock Manager allows developers to create an arbitrary number of clock functions. Clock
functions are executed by the clock manager every time a timer interrupt occurs. These
functions may invoke any DSP/BIOS II operations allowable from within hardware ISRs.

2.2.4.2 Memory Management

DSP/BIOS II supports memory management for TMS320 platforms. The DSP/BIOS II memory
section manager allows developers to specify the memory segments required to locate the
various code and data sections of a DSP/BIOS II application. The MEM module also provides a
set of run-time functions used to allocate storage from one or more segments of memory.
Developers use the DSP/BIOS II Configuration Tool to specify the memory segments, resulting
in a logical memory map of the physical system. This allows developers to program at the
logical level using the logical memory map specified through the Configuration Tool. Abstracting
the physical memory map can simplify the process of of migrating the application to another
hardware platform or next-generation TMS320 device.

Software modules in DSP/BIOS II that allocate storage at runtime use the runtime MEM
functions. DSP/BIOS II modules use MEM to allocate storage in the segment selected for that
module with the Configuration Tool.

2.2.4.3 Device-Independent I/O

Fundamental to all DSP applications is the need to acquire data, process it, and output the
results. DSP applications typically process blocks of data simultaneously rather than a single
datum. So these applications will move continuous blocks of data in from a source, process it,
and output the results. Conceptually, this movement of data blocks forms a stream of data
flowing in one direction from source to sink. These streams allow I/O and processing to occur at
different rates due to the ability to manage multiple frames asynchronously. That is, while a
device is currently filling one buffer with data, the DSP is processing a previously loaded buffer.

SPRA646

18 DSP/BIOS II Technical Overview

Figure 10. Data Pipes in DSP/BIOS II

DSP/BIOS II provides services to move blocks or frames of data by two primary mechanisms:
data streams and pipes. DSP/BIOS II uses a buffer-passing mechanism that exchanges
address pointers, transfers the buffers without any copying, and minimizes the amount of actual
data being moved.

Data pipes are simple universal components that transfer frame-based data between a reader
and a writer thread. Data pipes are small and efficient, and are statically bound at design time to
optimize performance and minimize overhead.

Data streams also provide a device-independent, asynchronous, frame-based transfer
mechanism for applications. Data streams may bind statically like data pipes, or they may bind
dynamically during program execution. Data streams also offer flexibility in the buffering
schemes to enable a broader range of application requirements. To achieve this flexibility, data
streams rely on one or more underlying device drivers. The device driver encapsulates the
device-dependent properties and methods. Device drivers can also perform other operations on
data passing through them via a mechanism known as stacking device drivers. This class of
device drivers offers the ability to pipeline processing operations such as data type conversions,
scaling or filtering in the data path.

2.2.4.4 Data Pipes

Data pipes provide a code-efficient, universal data transfer mechanism ideally suited to
communicate between the interrupt service routine and a deferred procedure such as a software
interrupt or task. Data pipes are unidirectional; they pass buffers of data, or frames, between
any two DSP/BIOS II execution threads. In DSP/BIOS II, data pipes are managed by the PIP
module.

SPRA646

19 DSP/BIOS II Technical Overview

Data pipes support two modes of data transfer synchronization: polling and callback functions.
Execution threads can poll the data pipe to synchronize data transfers; or for event-driven
applications, the data pipe can call a notify-function (callback function) to alert that a buffer has
become available. For example, a hardware ISR completes filling a buffer with incoming data
and calls PIP_put() to give the buffer back to the data pipe. The data pipe manager will notify
the thread attached at the other end of the pipe that there is a buffer available by calling the
notify-function assigned to that end of the data pipe.

Data pipes maintain their own private memory pool, partitioned into a fixed-number of
fixed-length buffers or frames. The data pipe exchanges these frames of data between a reader
and the data pipe; and between the data pipe and the writer. If the application needs to transfer
the buffer to another data pipe, the application will need to copy the data to the other data pipe.
Data pipes must be declared and bound statically during design time using the DSP/BIOS II
Configuration Tool.

2.2.4.5 Data Streams

Data streams support static declaration and binding; they also support run-time creation and
binding. Data streams offer applications greater flexibility and structure than data pipes.
Manipulations of the data streams include operations to open and close the streaming device,
start, stop, and flush the stream, and to provide control. Data streams offer flexibility in both the
buffering schemes and memory management. Buffers may or may not be private to the data
stream.

In DSP/BIOS II, the SIO module manages data streams at the application level. To the
application, all devices appear the same due to the device–independent abstraction inherent in
SIO. Complementing and interacting with SIO is the DEV module that manages the
device–dependent drivers. Figure 11 shows the transfer of data between the application and the
device through device-dependent and device-independent drivers.

SPRA646

20 DSP/BIOS II Technical Overview

Figure 11. Data Stream in DSP/BIOS II

2.2.4.6 SIO Device drivers

The underlying device driver can perform a variety of functions. DSP/BIOS II supports two
classes of device drivers: terminating and stacking.

Terminating drivers perform the classical I/O with peripherals such as CODECS. These
device drivers often contain interrupt service routines (ISRs) to interact with the peripheral,
however I/O by other means such as polling is equally permissible.

Stacking drivers are a special class of drivers that perform in-line, pipelined processing. A
typical use of stacking device drivers is to implement operations such as scaling or filtering. One
class of stacking device driver is a copying driver. These drivers can support variations in data
size, buffer size, and buffer lengths. These are useful for performing data format conversions
such as fixed-point to floating-point, or 14-bit audio to 16-bit data. If encapsulation and reuse of
these operations is beneficial, they become candidates for implementation as a stacking device
driver. Figure 12 illustrates how stacking device drivers are used to provide pipeline processing.

SPRA646

21 DSP/BIOS II Technical Overview

Figure 12. Stacking Device Drivers

3 Sample Application

The DSP/BIOS II Audio example, packaged with CCStudio, is shown in Figure 13. The Audio
example program contains four DSP/BIOS II execution threads. The first two consist of the
hardware interrupt for the serial port, and the audio I/O software interrupt thread, whose
execution periodicity depends on the buffer rates. The other two consist of the periodic function
software interrupt that will execute the periodic function and a hardware interrupt that services
the DSP/BIOS II real-time clock.

The audio I/O threads collect audio data from a CODEC, copies it to an output buffer, and sends
it back out to the CODEC. This example is not unlike many traditional embedded applications
that must collect input data, do some processing on it, then output the processed data. For
simplicity, the Audio example simply copies input buffers to output buffers. In this example, the
CODEC samples the audio input at16kHz (the hardware interrupt rate); the filtering operations
must occur every 4 ms; thus, the data pipe is configured to hold buffers that contain 4 ms of
audio data, or 64 data points at the 16kHz rate.

SPRA646

22 DSP/BIOS II Technical Overview

Figure 13. Audio Filter

The copy operation at the heart of this particular example executes once every 4 ms within the
context of a single DSP/BIOS II SWI object. The software interrupt is triggered when the next
full input, and empty output frames are ready for processing. This particular implementation
relies upon statically configured data pipe callbacks to the kernel function SWI_andn(). This
call clears individual bits in the software interrupt’s mailbox representing this pair of triggering
conditions (see the SWI mailbox in Figure 13) . Once dispatched, the SWI handler resets the
mailbox to its initial non-zero value before retrieving descriptors for the next set of frames, and
then invoking the algorithm itself.

AudioFilter(inputPipe, outputPipe)

{ PIP_get(inputPipe); /* dequeue full frame */
PIP_alloc(outputPipe); /* dequeue empty frame */

copy algorithm ; /* read/write data frames */
PIP_free(inputPipe); /* recycle input frame */

PIP_put(outputPipe); /* enqueue output frame */

return; /* wait for next frame pair */

}

At the opposite ends of the input and output pipe from the audio filter lie a pair of interrupt
service routines. These routines manage the underlying hardware peripherals that ultimately
produce and consume the data streams processed by the algorithm. In spite of the differences
in how these routines are implemented, these interrupt threads invariably exchange full and

SPRA646

23 DSP/BIOS II Technical Overview

empty data frames with the SWI thread through analogous pairings of PIP operations. Since
PIP_free() and PIP_put() will implicitly invoke SWI_andn() , which in turn will post the
audio filter software interrupt when its mailbox converges to 0, this segment of the interrupt
routine must be appropriately bracketed with HWI_enter and HWI_exit macros to ensure the
DSP/BIOS II kernel gains control upon return and performs the necessary context switch.

inputInterrupt()
 {

service hardware ;
if (current frame is full) {

HWI_enter;
PIP_put(inputPipe); /* enqueue current full frame */
PIP_alloc(inputPipe); /* dequeue next empty frame */
HWI_exit; /* dispatch pending signals */

}
}
outputInterrupt()
 {

service hardware ;
if (current frame is empty) {

HWI_enter;
PIP_free(outputPipe); /* enqueue current empty frame */
PIP_get(outputPipe); /* dequeue next full frame */
HWI_exit; /* dispatch pending signals */

}
}

The second part of the audio example is an operation that executes periodically based upon a
real-time clock. This is not unlike many traditional embedded applications that must do some
processing at periodic rates. For simplicity in our example, the purpose of this operation is to
simulate a load on the DSP by executing NOP instructions. Introducing this load periodically
simulates the interaction of multiple threads executing on the system. The point of the example
is to demonstrate the effects of thread priorities on real–time systems. If the load function
performs enough NOPs and is assigned a higher priority than the Audio function, then the audio
signal will break–up when the load function preempts the audio function from meeting its
real-time deadlines. This will even occur if the total DSP load is far less than 100%.

Periodic functions execute at the rates that are integer multiples of the PRD_tick (), which is
typically synchronized to the data, but for our example, it is based upon the real-time clock. The
developer through the DSP/BIOS II Configuration Tool specifies the PRD tick binding and the
periodic function execution rates. When the specified number of PRD_tick ()s occurs,
DSP/BIOS II triggers the PRD thread. The PRD thread is a special software interrupt. In our
example, the PRD_tick () rate is 1 ms, and the PRD thread has one function specified to trigger
every 16 PRD_tick ()s or 16 ms.

4 System Performance
We can estimate the amount of DSP/BIOS II overhead in terms of CPU load in any application.
This is possible since all DSP/BIOS II operations are visible to the developer. That is, the
developer specifies which DSP/BIOS II components and function calls to include into the
application, either in the Configuration Tool, or explicitly in the code. The developer needs only
to compute the sum of the components and frequency of occurrence to determine the overhead
analytically. By using the RTA tools in CCStudio, developers may also directly measure the
overhead on their specific hardware platform.

SPRA646

24 DSP/BIOS II Technical Overview

To estimate the overhead in DSP/BIOS II applications, the developer must first identify all the
DSP/BIOS II components and API calls within the application. In our sample application audio
I/O example, the DSP/BIOS II components are:

• one HWI object mapped to the Audio CODEC,

• one SWI object to do the processing (copy) operation and,

• two Data Pipes; one for input, one for output.

The component overhead in instruction cycles may be taken from the DSP/BIOS II performance
data. To process a single buffer of audio data requires the total overhead of 1351 cycles on a
C6000 as listed in Table 2. The processing period is 4 ms, so the frequency of occurrence is
250 times per second. Therefore, the total number of cycles in one second, attributed to
DSP/BIOS II overhead running the audio thread on a C6000 DSP is 337,750 or 0.33775 MIPS.
On a 200 MHz C6000 DSP, this equates to 0.17% CPU load.

To calculate the amount of memory consumed by DSP/BIOS II, the developer again needs to
identify the DSP/BIOS II components and API calls in the program. By summing the
components, the developer can estimate the memory usage, both data and program. By using
the memory map from the application, the exact amount can be determined.

In a similar fashion, developers can analytically determine the overhead attributed to DSP/BIOS
II. However, since it is the nature of software to change over time, analytical calculation can be
tedious. The real-time analysis tool provided by DSP/BIOS II allow developers to measure the
overhead directly. Finally, since developers can chose the amount of DSP/BIOS II to use and
include in their applications, they have full control over the overhead.

Table 2. DSP/BIOS II Overhead in C6000 Cycles

Hardware
Input Pipe Output Pipe Interrupts

PIP_alloc 94 PIP_get 94 HWI_enter
PIP_put 91 PIIP_free 89 HWI_exit 284

185 183 1 time 284
(buffer full)

Audio Function Data Pipes
PIP_get 94 SWI_andn 114

PIIP_free 89 SWI_andn 217
PIP_alloc 94 331

PIP_put 91
368 Total: 1351

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 2000, Texas Instruments Incorporated

