
Python Programming for the Absolute Beginner

by Michael Dawson ISBN:1592000738

Premier Press © 2003

With this text, you will acquire the skills that you need for more practical Python programming
applications, and learn how these skills can be put to use in real-world scenarios.

Table of Contents

Python Programming for the Absolute Beginner

Introduction

Chapter 1 - Getting Started: The Game over Program

Chapter 2 - Types, Variables, and Simple I/O: The Useless Trivia Program

Chapter 3 - Branching, while Loops, and Program Planning: The Guess My Number Game

Chapter 4 - for Loops, Strings, and Tuples: The Word Jumble Game

Chapter 5 - Lists and Dictionaries: The Hangman Game

Chapter 6 - Functions: The Tic-Tac-Toe Game

Chapter 7 - Files and Exceptions: The Trivia Challenge Game

Chapter 8 - Software Objects: The Critter Caretaker Program

Chapter 9 - Object-Oriented Programming: The Blackjack Game

Chapter 10 - GUI Development: The Mad Lib Program

Chapter 11 - Graphics: The Pizza Panic Game

Chapter 12 - Sound, Animation, and Program Development: The Astrocrash Game

Appendix A - LiveWires Reference

Index

List of Figures

List of Tables

List of Sidebars

 CD Content

Back Cover

If you are new to programming with Python and are looking for a solid introduction, this is the book for you.
Developed by computer science instructors, books in the for the absolute beginner series teach the principles of
programming through simple game creation. You will acquire the skills that you need for more practical Python
programming applications and you will learn how these skills can be put to use in real-world scenarios. Best of all, by
the time you finish this book you will be able to apply the basic principles you’ve learned to the next programming
language you tackle.

With the instructions in this book, you’ll learn to:

Build, slice, and index strings

Read from, and write to, text files

Create and manipulate sprites

Tackle object-oriented programming

Create a GUI

Work with sound and music and create animation

About the Author

Michael Dawson is a writer who has worked as both a programme. He has written for several television shows,
including a sitcom and an animated series. Michael earned his bachelor's degree in Computer Science from the
University of Southern Californai.

Python Programming for the Absolute Beginner
MICHAEL DAWSON

Copyright © 2003 by Premier Press, a division of Course Technology.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system
without written permission from Premier Press, except for the inclusion of brief quotations in a review.

The Premier Press logo and related trade dress are trademarks of Premier Press and may not be used without
written permission.

All trademarks are the property of their respective owners.

Important: Premier Press cannot provide software support. Please contact the appropriate software
manufacturer 's technical support line or Web site for assistance.

Premier Press and the author have attempted through-out this book to distinguish proprietary trademarks from
descriptive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources believed to be reliable.
However, because of the possibility of human or mechanical error by our sources, Premier Press, or others,
the Publisher does not guarantee the accuracy, adequacy, or completeness of any information and is not
responsible for any errors or omissions or the results obtained from use of such information. Readers should
be particularly aware of the fact that the Internet is an ever-changing entity. Some facts may have changed
since this book went to press.
ISBN: 1-59200-073-8

Library of Congress Catalog Card Number: 2003104024

Printed in the United States of America

03 04 05 06 07 BH 10 9 8 7 6 5 4 3 2 1

Premier Press, a division of Course Technology
25 Thomson Place
Boston, MA 02210

SVP, Retail and Strategic Market Group: Andy Shafran

Publisher: Stacy L. Hiquet

Senior Marketing Manager: Sarah O 'Donnell

Marketing Manager: Heather Hurley

Manager of Editorial Services: Heather Talbot

Acquisitions Editor: Todd Jensen

Associate Marketing Manager: Kristin Eisenzopf

Technical Reviewer: Greg Perry

Retail Market Coordinator: Sarah Dubois

Copy Editor: William McManus

Interior Layout: Argosy Publishing

Cover Design: Mike Tanamachi

CD-ROM Producer: Keith Davenport

Indexer: Sharon Shock

Proofreader: Darla Bruno

To my parents, who have read everything I've ever written

Acknowledgments

Writing a book is like giving birth—and I have the stretch marks of the brain to prove it. So, I want to thank all
the people who helped me bring my little bundle of joy into this world.

Thanks to Todd Jensen for being such a terrific editor. I appreciated your patience, encouragement, and
understanding.

Thanks to Edalin Michael for leading the team at Argosy Publishing. I appreciated all of your
efforts—especially as we got down to the wire.

Thanks to Bill McManus for his copyediting. I always appreciated your suggestions and your eagle eye.

Thanks to Greg Perry for his technical editing (and for your non-technical suggestions too).

Thanks to Andy Harris for setting such a fine example with this book series. I hope I lived up to the standards.

I also want to thank Pete Shinners, author of Pygame, and all the folks who contributed to LiveWires. Because
of all of you, writing multimedia programs (especially games!) is now within reach of a new Python
programmer.

Last, and certainly not least, I want to thank Matt for his audio expertise, Chris for his musical expertise, and
Dave for wearing a chef's hat.

About the Author

Michael Dawson is a writer who has worked as both a programmer and a computer game designer. He has
written for several different television shows, including a sitcom and an animated series. Michael earned his
bachelor's degree in Computer Science from the University of Southern California. This is his first book.

Introduction

Staring back at me on the screen was an image I recognized: a face—my face. Grainy and pixilated, it was still
me. I watched with detached curiosity as my expression twisted and contorted beyond human limits until
finally, an alien embryo burst from my skull. A voice behind me said, "You wanna see it again?"

No, this wasn't some horrible dream, it was my job. I worked at a company producing and designing computer
games. I also got to "star" in our first release, an adventure game where the player clicks me around the
screen. And if the player fails to solve the game in time . . . well, I think you know how that turns out. I've also
worked as a programmer for a major Internet services company, traveling to sites around the country. And
while those two lines of work may seem quite different, the basic skills necessary to succeed in each started to
take shape while I wrote simple games on my home computer as a kid.

The goal of this book is to teach you the Python programming language, learning to program the same way I
did: by creating simple games. There's something more exciting about learning to program by writing software
that's fun. And even though the examples are entertaining, you'll still see some serious programming. I cover
all of the fundamental topics you'd expect from an introductory text and then some. In addition, I point out
concepts and techniques that you can apply to more mainstream projects.

If you're new to programming, you've made the right choice. Python is the perfect beginners' language. It has
a clear and simple syntax that will get you writing useful programs in short order. Python even has an
interpreted mode, which offers immediate feedback, allowing you to test out new ideas almost instantly.

If you've done some programming before, you've still made the right choice. Python has all the power and
flexibility you'd expect from a modern, object-oriented programming language. But even with all of its power,
you may be surprised how quickly you can build programs. In fact, ideas translate so quickly to the computer,
Python has been called "programming at the speed of thought."

Like any good book, this one starts at the beginning. The first thing I cover is installing Python under Windows.
Then, I move through concepts, one step at a time, by writing small programs to demonstrate each step. By
the end of the book, I'll have covered such fancy-sounding topics as data structures, file handling, exceptions,
object-oriented design, and GUI and multimedia programming. I also hope to show you how to design as well
as program. You'll learn how to organize your work, break problems down into manageable chunks, and refine
your code.

You'll be challenged at times, but never overwhelmed. Most of all, you'll have fun while learning. And in the
process, you'll create some small, but cool computer games.

Throughout the book, I'll throw in a few other tidbits, notably the following:

HINT These are good ideas that experienced programmers like to pass on.

TRAP There are a few areas where it's easy to make a mistake. I'll point them out to you as we go.

TRICK These will suggest techniques and shortcuts that will make your life as a programmer easier.

IN THE REAL WORLD

As you examine the games in this book, I'll show you how the concepts are used for purposes beyond
game development.

Challenges

At the end of each chapter, I'll suggest some programs that you can write with the skills you've learned so far.
This should help you start writing your own programs.

Chapter 1: Getting Started: The Game over Program

 Download CD Content

Overview

Programming basically is getting your computer to do stuff. This is not the most technical definition, but it's a
pretty accurate one. By learning Python, you'll be able to create a program, whether it's a simple game, a
small utility, or a business product with a full-featured graphical user interface (GUI). It'll be all yours,
something you made, and it will do just what you told it to. Programming is part science, part art, and one
great adventure. This chapter starts you on your Python programming journey. In it, you'll learn

What Python is and what's so great about it

How to install Python on your computer

How to print text to the screen

What comments are and how to use them

How to use Python's integrated development environment (IDLE) to write, edit, run, and save your
programs

Chapter 1: Getting Started: The Game over Program

 Download CD Content

Overview

Programming basically is getting your computer to do stuff. This is not the most technical definition, but it's a
pretty accurate one. By learning Python, you'll be able to create a program, whether it's a simple game, a
small utility, or a business product with a full-featured graphical user interface (GUI). It'll be all yours,
something you made, and it will do just what you told it to. Programming is part science, part art, and one
great adventure. This chapter starts you on your Python programming journey. In it, you'll learn

What Python is and what's so great about it

How to install Python on your computer

How to print text to the screen

What comments are and how to use them

How to use Python's integrated development environment (IDLE) to write, edit, run, and save your
programs

Examining the Game Over Program

The chapter project, Game Over, displays the two most infamous words in computer gaming: "Game Over".
Figure 1.1 shows the program in action.

Figure 1.1: The all-too familiar words from a computer game.

Figure 1.1 shows what's called a console window, a window that can display only text. Though not as nice as
windows with a Graphical User Interface (GUI), console applications are easier to write and a good place for
the beginning programmer to start.

The Game Over program is pretty simple; in fact, it's about the simplest Python program you can write. That is
the reason it is presented in this chapter. By completing such a modest program, you cover all the setup work
required to start programming in Python, such as installing the language on your system. You also work
through the entire process of writing, saving, and running a program. Once you finish all of this groundwork,
you'll be ready to tackle larger programs with some real meat to them.

IN THE REAL WORLD

The Game Over program is really just a variation of the traditional Hello World program, which displays
the words "Hello World" on the screen. The Hello World program is often the first program a beginning
programmer writes in order to dip his or her toe in a new language. It's such a common first program that
Hello World is an understood term in the programming world.

Introducing Python

Python is a powerful yet easy to use programming language developed by Guido van Rossum, first released
over a decade ago in 1991. With Python, you can quickly write a small project. But Python also scales up
nicely and can be used for mission-critical, commercial applications.

HINT If you check out any Python documentation, you may notice an alarming number of references to
spam, eggs, and the number 42. These references all pay homage to Monty Python, the English
comedy troupe that inspired Python's name. Even though Guido van Rossum named Python after
the group, the official mascot of the language has become a cute, little, green snake. (Which is
really for the best, since it would be pretty hard to fit six British comedians' faces on a program icon
anyway.)

There are a lot of programming languages out there. What's so great about Python? Let me tell you.

Python Is Easy to Use

The major goal of any programming language is to bridge the gap between the programmer's brain and the
computer. Most of the popular languages you've probably heard of, like C, C++, C#, and Java, are considered
high-level languages, which means that they're closer to human language than machine language. And they
are. But Python, with its clear and simple rules, is even closer to English than any of these. Creating Python
programming is so straightforward that it's been called "programming at the speed of thought."

Python's ease of use translates into productivity for professional programmers. Python programs are shorter
and take less time to create than programs in many other popular languages. In fact, Python programs are
typically 3 to 5 times shorter than equivalent Java programs, and often 5 to 10 times shorter than equivalent
C++ programs. There's even some evidence to suggest that a single Python programmer can finish in two
months what takes two C++ programmers more than a year to complete.

Python Is Powerful

Python has all the power you'd expect from a modern programming language. By the end of this book, you'll
be able to write programs that employ a GUI, process files, and incorporate multimedia elements like graphics,
sound, and animation.

Python is powerful enough to attract hundreds of thousands of programmers from around the world as well as
companies such as Google, Hewlett-Packard, IBM, Industrial Light + Magic, Microsoft, NASA, Red Hat,
Verizon, Xerox, and Yahoo!. Python is also used as a tool by professional game programmers. Activision,
Electronic Arts, and Infogrames all publish games that incorporate Python.

Python Is Object-Oriented

If you know anything about programming, you've probably heard the term object-oriented programming, or
OOP for short. It's certainly a hot topic, and OOP are three letters every programmer wants on their resume.
OOP is basically a shift in the way programmers think about solving problems with computers. It embodies an
intuitive way of representing information and actions in a program. It's not the only way to write programs, but
for most large projects, it's the way to go.

Languages like C#, Java, and Python are all object-oriented. But Python does them one better. In C# and
Java, OOP is not optional. This makes short programs unnecessarily complex, and it requires a bunch of

explanation before a new programmer can do anything significant. Python takes a different approach. In
Python, using OOP techniques is optional. You have all of OOP's power at your disposal, but you can use it
when you need it. Got a short program that doesn't really require OOP? No problem. Got a large project with a
team of programmers that demands OOP? That'll work too. Python gives you power and flexibility.

Python Is a "Glue" Language

Python can be integrated with other languages such as C, C++, and Java. This means that a programmer can
take advantage of work already done in another language while using Python. It also means that he or she
can leverage the strengths of other languages, such as the extra speed that C or C++ can offer, while still
enjoying the ease of development that's a hallmark of Python programming.

Python Runs Everywhere

Python runs on everything from a Palm to a Cray. And if you don't happen to have a supercomputer in the
den, you can still run Python on Windows, DOS, Macintosh®, or Linux machines. And that's just the top of the
list. Python can run on practically every operating system in existence.

Python programs are platform independent, which means that regardless of the operating system you use to
create your program, it'll run on any other computer with Python. So if you write a game on your PC, you can
e-mail a copy to your friend who runs Linux or to your aunt who has a Mac, and the program will work (as long
as your friend and Aunt have Python on their computers).

Python Has a Strong Community

A lot of people use Python, and the community is growing all the time. In fact, the traffic at the
comp.lang.python newsgroup, where all kinds of people come together to discuss Python, doubles almost

every two years.

Now, most programming languages have a dedicated newsgroup. But Python also has something called the
Python Tutor mailing list, a more informal way for beginning programmers to ask those first questions. The list
is at http://mail.python.org/mailman/listinfo/tutor. Although the list is called Tutor, anyone,

whether novice or expert, can answer questions.

There are other Python communities focused on different areas, but the common element they share is that
they tend to be friendly and open. That only makes sense since the language itself is so approachable for
beginners.

Python Is Free and Open Source

Python is free. You can install it on your computer and never pay a penny. But Python's license lets you do
much more than that. You can copy or modify Python. You can even resell Python if you want (but don't quit
your day job just yet). Embracing open-source ideals like this is part of what makes Python so popular and
successful.

http://mail.python.org/mailman/listinfo/tutor

Setting Up Python on Windows

Before you can jump in and write your first Python program, you need to get the language on your computer.
But don't worry, because everything required to install Python on Windows 95/98/Me/XP/2000 is on the CD-
ROM that is included with this book.

Installing Python on Windows

Okay, go grab the CD-ROM and follow these steps:

Insert the CD-ROM into your computer. The CD-ROM comes with a bunch of goodies, but first and
foremost, it has Python on it.

1.

Run the Python Windows Installer. You can find the Python Windows installer, Python-2.2.3.exe,
on the CD-ROM, under the Software section. Click on the Install Python 2.2.3 from this
CD-ROM link to copy the file to your computer. Then, go ahead and run it. It's a standard installer and

works like any other program installation you've done before. Figure 1.2 shows it in action.

Figure 1.2: Your computer is soon to be home to Python.

2.

Accept the default configuration. Once you're done, you have Python on your computer. Specifically,
you have version 2.2.3 in the C:\Python22 folder.

3.

HINT If you're the kind of person who always has to have the latest and greatest, you can visit the official
Python Web site and download the most recent release. Go to http://www.python.org. Under

Special Topics, click the link of the latest release that doesn't say "alpha" next to it. That'll take you
to the download section for that release. Download the Windows installer. Then follow the
preceding installation directions.

http://www.python.org

Setting Up Python on Other Operating Systems

Python runs on literally dozens of other operating systems. If you're running something other than Windows,
you'll need to visit the official Python Web site at http://www.python.org, shown in Figure 1.3.

Figure 1.3: Visit Python's home page to download the latest version of Python and read loads of
information about the language.

HINT If Linux is your operating system, you may already have Python on your computer. To check, try
running python from the command prompt. If that doesn't work, then you'll have to install Python

like everybody else.

Under Special Topics, click the link of the latest Python release that doesn't say "alpha" next to it. That'll take
you to the download section for that release. Follow the links for your particular operating system.

HINT If you own a Mac, then even after visiting Python's official home, you owe it to yourself to check out
Jack's MacPython page at http://www.cwi.nl/~jack/macpython.html. Jack Jansen, the

guy who runs this page, maintains Python for the Mac and has a lot of excellent information on how
to install Python under the different versions of Mac OS.

http://www.python.org
http://www.cwi.nl/~jack/macpython.html

Introducing the Python IDLE

Python comes with a GUI-integrated development environment called IDLE. A development environment is a
set of tools that makes writing programs easier. You can think of it as a word processor for your programs. But
it's even more than a place to write, save, and edit your work. IDLE provides two modes in which to work: an
interactive mode and a script mode.

HINT MacPython has its own integrated development environment called IDE. It works a little differently
than IDLE, but allows you to do the same basic things.

Programming in Interactive Mode

Finally, it's time to get your hands dirty with some actual Python programming. The quickest way is to start
Python in interactive mode. In this mode, you can tell Python what to do and it'll do it immediately.

Writing Your First Program

To begin your interactive session, from the Start menu, choose Programs, Python 2.2, IDLE (Python GUI).
You should see something very similar to Figure 1.4 on your screen.

Figure 1.4: Python in an interactive session, awaiting your command.

TRAP If you have an trouble running IDLE, you may need to modify your Windows System Path—a list of
the directories where your computer looks to find program files. You'll want to add the following to
the end of your current Path: ;c:\Python22;c:\Program Files\Tcl;c:\Program
Files\Tcl\bin. The process of modifying your Path is different for each version of Windows, so

check your Windows Help documentation for Environment Variable (since the Path is one of your
Environment Variables).

This window, also called the Python Shell, may look a little different from the screen shot in Figure 1.4. At the
command prompt (>>>), type: print "Game Over". The interpreter responds by displaying

Game Over

on the screen. Ta da! You've written your first Python program! You're a real programmer (with a little more to
learn, but that goes for all of us).

Using the print Statement

Take a look again at the line you entered, print "Game Over". Notice how straight-forward it is. Without

knowing anything about programming, you could have probably guessed what it does. That's Python in a
nutshell. It's concise and clear. You'll appreciate this even more as you learn how to do more complex things.

The print statement displays whatever text you type between the pair of quotes. You can also use it by itself

to print a blank line.

Learning the Jargon

Okay, time to learn some jargon. Now that you're a programmer, you have to throw around those fancy terms
that only programmers understand. The line you entered in the interpreter is considered a statement. In
English, a statement is a complete thought. In Python, a statement is a complete instruction. It does
something. So, print "Game Over" is a statement.

The statement you entered is made up of two parts. The first part, print, is a command. It's like a verb. It

tells the computer to take an action. In this case, it tells the computer to display text on the screen. Python is
case-sensitive and commands are in lowercase. So, print "Game Over" will work, but Print "Game
Over" and PRINT "Game Over" won't.

The second part of the statement, "Game Over", is an expression. It doesn't do something. It is something.

A good way to think about it is that an expression has a value, like the letters in the phrase "Game Over", or
even the number 17. An expression can also evalute to some value. For example, 2 + 5 is an expression that
evalutes to 7.

In this particular case, you can be even more specific by saying that "Game Over" is a string expression.

This just means that it's a series of characters, like the ones on your keyboard. "String" may seem like an odd
name—"text" or "words" might be more clear—but the name comes from the idea that text is a string or a
series of characters. (Not only do you know jargon, but you have some trivia under your belt now too.)

Now that you're a programmer, you can tell someone that you wrote some Python code. Code means
programming statements. You can use it as a verb, too; you can say that you were up all night eating Doritos,
drinking Jolt Cola, and coding like crazy.

Generating an Error

Computer's take everything literally. If you misspell a command by even just one letter, the computer will have
absolutely no idea what you mean. For example, at the interactive prompt I typed primt "Game Over". The

interpret responded with

SyntaxError: invalid syntax

Translated to English, the interpreter is saying "Huh?!" It doesn't understand primt. As a human being, you

can ignore my typo and know what I meant. Computers are not so forgiving. This error in my statement, called
a bug in a program, gets me an error message and nothing else printed on the screen. Specifically, this is a
syntax error, meaning the computer doesn't recognize something. Syntax errors are usually just caused by a
typo and are an easy fix.

Understanding Color Coding

You probably noticed that words on the screen are printed in different colors. This color coding helps you
quickly understand what you've typed by visually categorizing it. And there is a method to this coloring
madness. Special words, like print, are displayed in orange. Strings, like "Game Over", are in green. And

the output of your statements—what the interpreter prints as a result of what you type—is in blue. As your
write larger programs, this color scheme will come in really handy. It will help you take in your code in one
glance.

Programming in Script Mode

Using the interactive mode gives you immediate feedback. This is great because you can see the results of a
statement right away. But it's not designed to create programs you can save and run later. Luckily, Python's
IDLE also offers a script mode, in which you can write, edit, load, and save your programs. It's like a word
processor for your code. In fact, you can perform such familiar tasks as find and replace, and cut and paste.

Writing Your First Program (Again)

You can open a script mode window from the interactive window you've been using. Select the File menu, then
New Window. A new window will appear that looks just like the one in Figure 1.5.

Figure 1.5: Your blank canvas awaits. Python is ready for you to write a program in script mode.

Now type print "Game Over" and press Enter. Nothing happens! That's because you're in script mode.

What you're doing is writing a list of statements for the computer to execute later. Once you save your
program, you can run it.

Saving and Running Your Program

To save your program, select File, Save As. I gave my copy the name game_over.py. To make it easy to

get to later, I saved it on my desktop.

To run my Game Over program, I simply select Edit, Run Script. ("Script," by the way, is just another name for
a program.) Then, the interactive window becomes my active window and displays the results of my program.
Take a look at my desktop in Figure 1.6.

Figure 1.6: The results of running the Game Over program through IDLE.

You'll notice that the interactive window contains the old text from before. It still has the statement I entered
while in interactive mode, print "Game Over", and the results, the message Game Over. Below all of
that, you'll see the results of running the program from script mode: the message Game Over.

TRAP To run your program from IDLE like I just did, you need to first save your program. If you don't,
IDLE will give you a Not Saved dialog box.

TRICK Interactive mode is great for trying out a small idea quickly. Script mode is perfect for writing
programs you can run later. Using both modes together is a great way to code.

Even though I need only script mode to write a program, I always keep an interactive window
open while I code. As I write my programs in script mode, I jump over to the interactive window to
try out an idea or to be sure I have the usage of a command just right.

The script window is where I craft my final product. The interactive window is like a scratch pad
where I can think and experiment. Using them together helps me to write better programs more
quickly.

Back to the Game Over Program

So far, you've run a version of the Game Over program through IDLE. While you're in the process of writing a
program, running it through IDLE is a fine way to go. But I'm sure you want your finished products to work like
any other program on your computer. You want a user to simply double-click your program's icon to launch
your program.

If you were to try to run the version of the Game Over program I've shown so far in this way, you'd see a
window appear and, just as quickly, disappear. You'd probably think that nothing happened. But something
would have happened. It just would have happened too fast for you to notice. The program would run, Game
Over would be displayed, and the program would end, all in a split second. What the program needs is a way

to keep its console window open.

This updated version of Game Over, the final chapter project, keeps the program window open so the user
can see the message. After displaying Game Over, the program also displays the message Press the
enter key to exit. Once a user presses the Enter key, the program exits, and the console window

disappears.

I'll walk you through the code one section at a time. But I recommend that you load the program from the CD-
ROM and take a look at it. Better yet, type in the program yourself and run it.

Using Comments

The following are the first three lines of the program:

Game Over
Demonstrates the print command
Michael Dawson - 12/26/02

These lines aren't statements for the computer to execute. In fact, the computer totally ignores them. These
notes, called comments, are for the humans. Comments explain programming code in English (or any other
language for that matter). Comments are invaluable to other programmers and help them to understand your
code. But comments are also helpful to you. They remind you of how you accomplished something that may
not be clear at first glance.

You create a comment with the number sign symbol, #. Anything after this symbol (except in a string) on the

rest of the line is a comment. Comments are ignored by the computer. Notice that comments are colored red
in IDLE to make them stand out.

It's a good idea to start all of your programs with a few comments, like I did here. It's helpful to list the title of
the program, its purpose, the programmer, and the date the program was written.

You may be thinking: "Why have comments at all? I wrote the program, so I know what it does." That may be
true a month after you write your code, but experienced programmers know that after a few months away from
a program, your original intentions may not be as clear. If you want to modify an old program, a few well-
placed comments may make your life much easier.

IN THE REAL WORLD

Comments are even more helpful to another programmer who needs to modify a program you wrote. This

kind of situation comes up a lot in the world of professional programming. In fact, it's estimated that 80
percent of a programmer's time and effort go toward maintaining code that already exists. It's not
uncommon for a programmer to be charged with the task of modifying a program written by someone
else—and there's a chance that the original programmer won't be around to answer any questions. So,
good comments are critical.

Using Blank Lines

Technically, the next line in the program is blank. The computer generally ignores blank lines; these, too, are
just for the humans reading the code. Blank lines can make programs easier to read. Usually, I keep lines of
related code together and separate sections with a blank line. In this program, I separated the comments from
the print statement with a blank line.

Printing the String

The next line in the program should seem familiar to you:

print "Game Over"

It's your old friend, the print statement. This line, just as it does in interactive mode, prints Game Over.

Waiting for the User

The last line of the program:

raw_input("\n\nPress the enter key to exit.")

displays the prompt, Press the enter key to exit. and waits for the user to press the Enter key.

Once the user presses the key, the program ends. This is a nice trick to keep a console window open until the
user is done with an application.

Normally, this is about the time I'd explain just what is going on in this line. But I'm going to keep you in
suspense. Sorry. You'll have to wait until the next chapter to fully appreciate this one line.

Summary

You covered a lot of ground in this chapter. You learned a bit about Python and its strengths. You installed the
language on your computer and gave it a little test drive. You learned to use Python's interactive mode to
instantly execute a programming statement. You saw how to use the script mode to write, edit, save, and run
longer programs. You learned how to print text to the screen and how to wait for the user before closing a
program's console window. You laid all the ground-work necessary for your adventure in Python programming.

Challenges
Create a syntax error of your very own by entering your favorite ice cream flavor in interactive mode.
Then, make up for your misdeed and enter a statement that prints the name of your favorite ice cream.

1.

Write and save a program that prints out your name and waits for the user to press the Enter key
before the program ends. Then, run the program by double-clicking its icon.

2.

Write a program that prints your favorite quote. It should give credit to the person who said it, on the
next line (hint: use two different print statements).

3.

Chapter 2: Types, Variables, and Simple I/O: The

Useless Trivia Program

 Download CD Content

Overview

Now that you've been introduced to the basics of saving and executing a program, it's time to dig in and create
some more. In this chapter, you'll learn about different ways computers can categorize and store data and,
more importantly, how to use this data in your programs. You'll even see how to get information from the user
so that your programs become interactive. Specifically, you'll learn how to do the following:

Use triple-quoted strings and escape sequences to gain more control over text

Make your programs do math

Store data in the computer's memory

Use variables to access and manipulate that data

Get input from users to create interactive programs

Introducing the Useless Trivia Program

Combining the skills presented in this chapter, you'll create the Useless Trivia program shown in Figure 2.1.

Figure 2.1: Whoa! Steve might think about a diet before he visits the sun.

The program takes three pieces of personal information from the user: name, age, and weight. From these
mundane items, the program is able to produce some amusing but trivial facts about the person, such as how
old the person is in dog years and how much the person would weigh on the moon.

Though this may seem like a simple program (and it is), you'll find that the program is more interesting when
you run it because you've had input. You'll care more about the results because they're personally tailored to
you. This holds true for all programs, from games to business applications.

Using Quotes with Strings

You saw an example of a string, "Game Over", in the previous chapter. But strings can become much longer

and more complex. You may want to give a user several paragraphs of instructions. Or you might want to
format your text in a very specific manner. Using quotes can help you to create strings to accomplish all of
this.

Introducing the Game Over 2.0 Program

Game Over 2.0 improves upon its predecessor program, Game Over, by displaying a more impressive version
of the same message, which tells a player that his or her computer game has come to an end. Using single
and double quotes, the result is more visually appealing. Check out Figure 2.2 to see a sample run.

Figure 2.2: Now I get it, the game is over.

The code for the program shows that it's pretty simple to present text using quotes in different ways:

Game Over - Version 2
Demonstrates the use of quotes in strings
Michael Dawson - 1/9/03

print "Program 'Game Over' 2.0"

print \
"""

"""

raw_input("\n\nPress the enter key to exit.")

Using Quotes Inside Strings

You've seen how to create simple strings by surrounding text with quotes. You can use either a pair of single
(' ') or double quotes (" ") to create string values. The computer doesn't care. So, 'Game Over' is
exactly the same string as "Game Over". But take a look at the first appearance of a string in the program:

print "Program 'Game Over' 2.0"

This statement uses both kinds of quotes. Check out the sample run in Figure 2.2 again. Only the single
quotes show up, because they are part of the string, just like, for example, the letter G. But the double quotes
are not part of the string. The double quotes are like bookends, telling the computer where the string begins
and ends. So, if you use a pair of double quotes to "bookend" your string, you can use as many single quotes
inside the string as you want. And, if you surround your string with a pair of single quotes, you can use as
many double quotes inside the string as you like.

Once you've used one kind of quote as bookends for your string, you can't use that type of quote inside your
string. This make sense, because once the computer sees the second appearance of the quote that began
the string, it thinks the string is over. For example, "With the words, 'Houston, we have a
problem.', Jim Lovell became one of our most famous astronauts." is a valid string. But,
"With the words, "Houston, we have a problem.", Jim Lovell became one of our most famous astronauts."

isn't valid, because once the computer sees the second double quote, it thinks the string is over. So, the
computer sees the string "With the words," followed by the word, Houston. And since the computer has

no idea what Houston is, you get a nasty syntax error.

Continuing a Statement on the Next Line

The next line of code, print \, looks awfully lonely. And it should. It's not a complete statement. Generally,

you write one statement per line. But you don't have to. You can stretch a single statement across multiple
lines. All you have to do is use the line-continuation character, \ (which is just a backslash). Put it anywhere

you'd normally use a space (but not inside a string) to continue your statement on the next line. The computer
will act as if it sees one long line of code.

HINT The computer doesn't care how long a programming line is, but people do. If a line of your code
feels too long, or would be more clear as several lines, use the line-continuation character to split it
up.

Creating Triple-Quoted Strings

Certainly the coolest part of the program is where it prints out "Game Over" in a big block of text. The following
string is responsible:

"""

"""

This is what's called a triple-quoted string. It's a string enclosed by a pair of three quotes in a row. Like before,
it doesn't matter which kind of quotes you use, as long as you bookend with the same type.

As you can see, triple-quoted strings can span multiple lines. They print on the screen exactly the way you
type them. If you ever need to print more than a few lines of text, triple-quoted strings are the way to go.

IN THE REAL WORLD

If you like the letters made from multiple characters in Game Over 2.0, then you'll really like ASCII Art.
ASCII Art is basically pictures made from just the characters on your keyboard. ASCII, by the way, stands
for the American Standard Code for Information Interchange. It's a code that represents 128 standard
characters.

Through ASCII art, you can make simple messages (like I did) or create elaborate pictures (which I can't),
all with just the characters on your keyboard. You'd be amazed at some of the things true ASCII artists
can do. For some great examples of this art form, check out http://www.chris.com/ascii/.

By the way, this kind of art isn't new, and it didn't start with the computer. The first recorded typewriter art
dates back to 1898.

Using Escape Sequences with Strings

Escape sequences allow you to put special characters into your strings. These give you greater control and
flexibility over the text you display. The escape sequences you'll work with are made up of two characters: a
backslash followed by another character. This may all sound a little mysterious, but once you see a few
sequences in action, you'll realize just how easy they are to use.

Introducing the Fancy Credits Program

Besides telling a player that the game is over, a program often displays credits, a list of all the people who
worked so hard to make it a reality. Fancy Credits uses escape sequences to achieve some effects it just
couldn't without them. Figure 2.3 shows the results.

Figure 2.3: Please, contain your applause.

The code looks a bit cryptic at first glance:

Fancy Credits
Demonstrates escape sequences
Michael Dawson 1/11/03

sound the system bell
print "\a"

print "\t\t\tFancy Credits"

print "\t\t\t \\ \\ \\ \\ \\ \\ \\"
print "\t\t\t\tby"
print "\t\t\tMichael Dawson"
print "\t\t\t \\ \\ \\ \\ \\ \\ \\"
print "\nSpecial thanks goes out to:"
print "My hair stylist, Henry \'The Great\', who never says \"can\'t\"."

raw_input("\n\nPress the enter key to exit.")

But you'll soon understand it all.

Sounding the System Bell

Upon running this program, you'll notice something different right away. It makes noise! The very first
statement in the program,

print "\a"

sounds the system bell of your computer. It does this through the escape sequence, \a, which represents the

system bell character. Every time you print it, the bell rings. You can print a string with just this sequence, as I
have, or you can put it inside a longer string. You can even use the sequence several times to ring the bell
more than once.

Moving Forward a Tab Stop

Sometimes you'll want to set some text off from the left margin where it normally prints. In a word processor,
you could use the Tab key. With strings, you can use the escape sequence for a tab, \t. That's exactly what

I did in the following line:

print "\t\t\tFancy Credits"

I used the tab escape sequence, \t, three times in a row. So, when the program prints the string, it prints
three tabs and then Fancy Credits. This makes Fancy Credits, look nearly centered in the console

window. Tab sequences are good for setting off text, as in this program, but they're also perfect for arranging
text into columns.

Printing a Backslash

If you've thought ahead, you may be wondering how you can print a backslash if the computer always
interprets a backslash as the beginning of an escape sequence. Well, the solution is pretty simple: just use
two backslashes in a row. Each of the following two lines prints three tabs, as a result of the three \t

sequences:

print "\t\t\t \\ \\ \\ \\ \\ \\ \\"

print "\t\t\t \\ \\ \\ \\ \\ \\ \\"

Then, each prints exactly eight backslashes, separated by spaces. Go ahead and count. You'll find exactly
eight pairs of backslashes, separated by spaces.

Inserting a Newline

The most useful sequence at your disposal is the newline sequence. It's represented by \n. By using this

sequence, you can insert a newline character into your strings for a blank line where you need it. Newlines are
often used right at the beginning of a string to separate it from the text last printed. That's what I did in the line:

print "\nSpecial thanks goes out to:"

The computer sees the \n sequence, prints a blank line, then prints Special thanks goes out to:.

This single statement is equivalent to the following two statements:

print
print "Special thanks goes out to:"

Inserting a Quote

Inserting a quote into a string, even the type of quote you use to bookend it, is simple. Just use the sequence
\' for a single quote and \" for a double quote. They mean "put a quote here", and won't be mistaken by the

computer as a marker for the end of your string. This is what I used to get both kinds of quotes in one line of
text:

print "My hair stylist, Henry \'The Great\', who never says \"can\'t\"."

The pair of double quotes at both ends are the bookends, defining the string. To make the string easier to
understand, look at it in parts:

\'The Great\' prints as 'The Great'

Each \' sequence is printed as a single quote

\"can\'t\" prints as "can't"

Both \" sequences print as double quotes

The lone \' sequence prints as a single quote

As you can see, escape sequences aren't so bad once you've seen them in action. And they can come in
quite handy. Table 2.1 summarizes some useful ones.

Table 2.1: SELECTED ESCAPE SEQUENCES

Sequence Description

\\ Backslash. Prints one backslash.

\' Single quote. Prints a single quote.

\" Double quote. Prints a double quote.

\a Bell. Sounds the system bell.

\b Backspace. Moves cursor back one space.

\n Newline. Moves cursor to beginning of next line.

\t Horizontal tab. Moves cursor forward one tab stop.

TRAP A few escape sequences only work as advertised if you run your program directly from the
operating system and not through IDLE. The escape sequences \a and \b are good examples.
Let's say I have a program that simply prints the escape sequence \a. If I run it through IDLE, I get

a little square box printed on my screen—not what I wanted. But if I run that same program directly
from Windows, by double-clicking the program file icon, my computer's system bell rings just as I
intended.

Concatenating and Repeating Strings

You've seen how you can insert special characters into a string, but there are things you can do with entire
strings themselves. You can combine two separate strings into a larger one. And you can even repeat a single
string as many times as you want.

Introducing the Silly Strings Program

The Silly Strings program prints several strings to the screen. The results are shown in Figure 2.4.

Figure 2.4: The strings on the screen appear differently than in the program code.

Though you've already seen strings printed, the way these strings were created is brand-new to you. Take a
look at the code:

Silly Strings
Demonstrates string concatenation and repetition
Michael Dawson - 1/11/03

print "You can concatenate two " + "strings with the '+' operator."

print "\nThis string " + "may not " + "seem terr" + "ibly impressive. " \
 + "But what " + "you don't know," + " is that " + "it's one real" \
 + "l" + "y" + " long string, created from the concatenation " \
 + "of " + "thirty-two " + "different strings, broken across " \
 + "nine lines." + " Now are you" + " impressed?\n\n" + "See, " \
 + "even newlines can be embedded into a single string, making" \
 + " it look " + "as " + "if " + "it" + "'s " + "got " + "to " \
 + "be" + " multiple strings." + " Okay, now this " + "one " \
 + "long" + " string " + "is over!"

print \
"""
If you really like a string, you can repeat it. For example, who doesn't
like pie? That's right, nobody. But if you really like it, you should
say it like you mean it:""",

print "Pie" * 10

print "\nNow that's good eating."

raw_input("\n\nPress the enter key to exit.")

Concatenating Strings

Concatenating strings means joining them together, to create a whole new string. A simple example is in the
first print statement:

print "You can concatenate two " + "strings with the '+' operator."

The + operator joins the two strings, "You can concatenate two " and "strings with the '+'
operator.", together to form a new, larger string. It's pretty intuitive. It's like adding the strings together

using the same symbol you've always used for adding numbers.

TRAP When you join two strings, their exact values are fused together, with no space or separator
character inserted between them. So, if you were to join the two strings "cup" and "cake", you'd
end up with "cupcake" and not "cup cake". In most cases, you'll want to insert a space

between strings you join, so don't forget to put one in.

The next print statement shows that you can concatenate 'till your heart's content:

print "\nThis string " + "may not " + "seem terr" + "ibly impressive. " \
 + "But what " + "you don't know," + " is that " + "it's one real" \
 + "l" + "y" + " long string, created from the concatenation " \
 + "of " + "thirty-two " + "different strings, broken across " \
 + "nine lines." + " Now are you" + " impressed?\n\n" + "See, " \
 + "even newlines can be embedded into a single string, making" \
 + " it look " + "as " + "if " + "it" + "'s " + "got " + "to " \
 + "be" + " multiple strings." + " Okay, now this " + "one " \
 + "long" + " string " + "is over!"

The computer prints one long string that was created by the concatenation of 32 individual strings. One thing
you may notice is that the string doesn't correctly wrap in the console window. So be careful when you create
super-long strings.

Suppressing a Newline

You've seen how you can add extra newlines with the \n escape sequence. But you can also suppress a
newline so that the text of two consecutive print statements appears on the same line. All you have to do is
add a comma to the end of a print statement, like so:

print \
"""
If you really like a string, you can repeat it. For example, who doesn't
like pie? That's right, nobody. But if you really like it, you should
say it like you mean it:""",

By adding the comma at the end of this triple-quoted string, the next text printed will appear on the same line
as say it like you mean it:.

Repeating Strings

The next new idea presented in the program is illustrated in the following line:

print "Pie" * 10

This line creates a new string, "Pie Pie Pie Pie Pie Pie Pie Pie Pie Pie", and prints it out.
That's the string "Pie" repeated 10 times, by the way.

Like the concatenation operator, the repetition operator, *, is pretty intuitive. It's the same symbol used for

multiplying numbers on a computer, so repeating a string with it makes sense. It's like you're multiplying the
string. You can repeat a string as many times as you want. To repeat a string, just put the string and number
of repetitions together with the repetition operator, *.

Working with Numbers

So far, you've been using strings to represent text. That's just one type of value. Computers let you represent
information in other ways, too. One of the most basic but most important ways is as numbers. Numbers are
used in almost every program. Whether you're writing a space shooter game or home finance package, you
need to represent numbers some way. You've got high scores or checking account balances to work with,
after all. Fortunately, Python has several different types of numbers to fit all of your game or application
programming needs.

Introducing the Word Problems Program

This next program uses those dreaded word problems. You know, the kind that always seems to involve two
trains leaving different cities at the same time headed in opposite directions. . . bringing back nightmares of
junior high algebra as they're about to collide. Well, fear not. You won't have to solve a single word problem, or
even do any math at all. I promise. The computer will do all the work. All you have to do is press the Enter key.
The Word Problems program is just an amusing (hopefully) way to explore working with numbers. Check out
Figure 2.5 to see a sample run.

Figure 2.5: With Python, you can add, subtract, multiply, divide, and keep track of a pregnant hippo's
weight.

The following is the source code for the program:

Word Problems
Demonstrates numbers and math
Michael Dawson 1/12/03

print \
"""
If a pregnant hippo, weighing 2,000 pounds, gives birth to a 100 pound calf,
but then eats 50 pounds of food, how much does she weigh?"""
raw_input("Press the enter key to find out.")
print "2000 - 100 + 50 = ",
print 2000 - 100 + 50

print \
"""
If an adventurer returns from a successful quest and buys each of
6 companions 3 bottles of ale, how many bottles does the adventurer buy?"""
raw_input("Press the enter key to find out.")
print "6 * 3 = ",
print 6 * 3

print \
"""
If a kid has 24 pieces of Halloween candy and eats 6 pieces a day,
how many days will the stash last?"""
raw_input("Press the enter key to find out.")
print "24 / 6 = ",
print 24 / 6

print \
"""
If a group of 4 pirates finds a chest full of 107 gold coins, and
they divide the booty evenly, how many coins will be left over?"""
raw_input("Press the enter key to find out.")
print "107 % 4 = ",
print 107 % 4

print \
"""
If a restaurant check comes to 19 dollars with tip, and you and
your friends split it evenly 4 ways, how much do you each throw in?"""
raw_input("Press the enter key to find out.")
print "19 / 4 = ",
print 19 / 4
print "WRONG!"
raw_input("Press the enter key for the right answer.")
print 19.0 / 4

raw_input("\n\nPress the enter key to exit.")

Understanding Numeric Types

The program Word Problems uses numbers. That's obvious. But what may not be obvious is that it uses two
different types of numbers. Python allows programmers to use several different types of numbers. The two
types used in this program, and probably the most common, are integers and floating-point numbers (or
floats). Integers are whole numbers—numbers with no fractional part. Or, another way to think about them is
that they can be written without a decimal point. The numbers 1, 27, -100, and 0 are all examples of integers.
Floats are numbers with a decimal point, like 2.376, -99.1, and 1.0.

You might be thinking, "Numbers are numbers. What's the big deal?" But integers and floats can act a little
differently under special circumstances, as you'll see.

Using Mathematical Operators

With mathematical operators, you can turn your computer into an expensive calculator. The operators should
look pretty familiar. For example, the following line

print 2000 - 100 + 50

subtracts 100 from 2000 and then adds 50 before printing the result of 1950. Technically, it evaluates the
expression 2000 – 100 + 50, which evaluates to 1950. An expression is just a sequence of values, joined

by operators, that can be simplified to another value.

The line

print 6 * 3

multiplies 6 by 3 and prints the result of 18.

The line

print 24 / 6

divides 24 by 6 and prints the result of 4.

Pretty standard stuff. But check out the next calculation:

print 107 % 4

Okay, using % as a mathematical operator is probably new to you. Used here, the symbol % stands for
modulus, which is just a fancy way of saying, "give me the remainder." So 107 % 4 evaluates to the
remainder of 107 / 4, which is 3.

The next calculation might also make you scratch your head. The following line produces a result of 4:

print 19 / 4

But if each person puts 4 dollars in, that's a total of only 16, not 19. And that leaves the waitress short 3
bucks. What happened? Well, when Python performs integer division (where all the numbers involved are
integers), the result is always an integer. So, any fractional part is ignored. If you want floating-point division,
or what some people call true division, then at least one of your numbers must be a floating-point number. The
following line results in true division:

print 19.0 / 4

This line prints the expected 4.75. Now you've done true division and made your waitress happy.

IN THE REAL WORLD

Python is an evolving language. There's a highly open process for discussing potential changes and
improvements. In fact, there's a list of every proposed enhancement at

http://www.python.org/peps/. One change that is definitely on its way is the end of integer
division. Starting in Python 3.0, all division will be true division. So, beginning in that release, 3 / 4 will
be .75 and not 0.

Table 2.2 summarizes mathematical operators for integers, while Table 2.3 summarizes mathematical
operators for floating-point numbers. Take a close look at the results of the division operator in each table.

Table 2.2: MATHEMATICAL OPERATORS WITH INTEGERS

Operator Description Example Evaluates To

* Multiplication 7 * 3 21

/ Division 7 / 3 2

% Modulus 7 % 3 1

+ Addition 7 + 3 10

- Subtraction 7 - 3 4

Table 2.3: MATHEMATICAL OPERATORS WITH FLOATING-POINT NUMBERS

Operator Description Example Evaluates To

* Multiplication 7.0 * 3.0 21.0

/ Division 7.0 / 3.0 2.3333333333333335

% Modulus 7.0 % 3.0 1.0

+ Addition 7.0 + 3.0 10.0

- Subtraction 7.0 - 3.0 4.0

TRAP Notice the division entry in Table 2.3. It says that 7.0 divided by 3.0 is 2.3333333333333335.

While this is pretty accurate, it's not exact. Computers tend to round floating-point numbers. The
results are fine for most purposes. But you should be aware of this when using floats.

http://www.python.org/peps/

Understanding Variables

Through variables, you can store and manipulate information, a fundamental aspect of programming. Python
lets you create variables to organize and access this information.

Introducing the Greeter Program

Check out Figure 2.6 to see the results of the Greeter program.

Figure 2.6: A shout-out to all the Larry's of the world.

From just a screen shot, the program looks like something you could have already written. But within the code
lurks the whole, new, powerful concept of variables. Take a look:

Greeter
Demonstrates the use of a variable
Michael Dawson 1/13/03

name = "Larry"

print name

print "Hi, " + name

raw_input("\n\nPress the enter key to exit.")

Creating Variables

A variable provides a way to label and access information. Instead of having to know exactly where in the
computer's memory some information is stored, you use a variable to get at it. It's kind of like calling your
friend on his cell phone. You don't have to know where in the city your friend is to reach him. You just press a
button and you get him. But before you use a variable, you have to create it, as in the following line:

name = "Larry"

This line is called an assignment statement. It creates a variable called name and assigns it the value
"Larry". In general, assignment statements assign a value to a variable. If the variable doesn't exist, like in

the case of name, it's created, then assigned the value.

Using Variables

Once a variable has been created, it refers to some value. The convenience and power of variables is that
they can be used just like their values. So the line

print name

prints the string "Larry" just like the statement print "Larry" does. And the line

print "Hi, " + name

concatenates the values "Hi," and "Larry" to create a new string, "Hi, Larry.", and prints it out. The
results are the same as the results of print "Hi," + "Larry".

Naming Variables

Like the proud parent of your program, you pick the names of your variables. For this program, I chose to call
my variable name, but I could just as easily have used person, guy, or alpha7345690876, and the

program would have run exactly the same. There are only a few rules that you have to follow to create legal
variable names. Create an illegal one and Python will let you know about it with an error. The following are the
two most important rules:

A variable name can contain only numbers, letters, and underscores.1.

A variable name can't start with a number.2.

In addition to the rules for creating legal variable names, the following are some guidelines that more
experienced programmers follow for creating good variable names—because, once you've programmed for a
while, you know the chasm of difference that exists between a legal variable name and a good one. (I'll give
you one guideline right now: Don't ever name a variable alpha7345690876.)

Choose desccriptiv names. Variable names should be clear enough so that another programmer could
look at the name and have a good idea what it represents. So, for example, use score instead of s. (One

exception to this rule involves variables used for a brief period. Often, programmers give those variables
short names, like x. But that's fine, because by using x, the programmer clearly conveys the variable

represents a quick holding place.)

Be consistent. There are different schools of thought about how to write multiword variable names. Is it
high_score or highScore? I use the underscore style. But it's not important which method you use, as

long as you're consistent.

Follow the traditions off the language. Some naming conventions are just traditions. For example, in
most languages (Python included) variable names start with a lowercase letter. Another tradition is to
avoid using an underscore as the first character of your variable names. Names that begin with an
underscore have special meaning in Python.

Keep the length in check. This may seem to go against the first guideline: Choose descriptive names.
Isn't checking_account_balance a great variable name? Maybe not. Long variable names can lead

to problems. They can make statements hard to read. Plus, the longer the variable name, the greater the
chance of a typo. As a guideline, try to keep your variable names under 15 characters.

TRICK Self-documenting code is written in such a way that it's easy to understand what is happening in
the program independent of any comments. Choosing good variable names is an excellent step
toward this kind of code.

Getting User Input

After appreciating all that program Greeter has to offer, you may still be thinking, "So what?" Yes, you could
write a program that does exactly what Greeter does without going to the trouble of creating any fancy
variables. But to do fundamentally important things, including getting, storing, and manipulating user input, you
need variables. Check out the next program, which uses input to give a personalized greeting.

Introducing the Personal Greeter Program

The Personal Greeter program adds a single, but very cool, element to the Greeter program: user input.
Instead of working with a predefined value, the computer lets the user enter his or her name and then uses it
to say Hi. Figure 2.7 shows off the program.

Figure 2.7: Now, name is assigned a string based on whatever the user enters, including "Rupert".

Getting user input isn't very hard. As a result, the code doesn't look much different:

Personal Greeter
Demonstrates getting user input
Michael Dawson 1/13/03

name = raw_input("Hi. What's your name? ")

print name

print "Hi, " + name

raw_input("\n\nPress the enter key to exit.")

Using the raw_input() Function

The only line that's changed is the assignment statement:

name = raw_input("Hi. What's your name? ")

The left side of the statement is exactly the same as in the Greeter program. name is created and a value is

assigned to it, just like before. But this time, the value isn't a string I supply. It's the string value of whatever

the user enters.

On the right side of the assignment statement is a call to the function raw_input(). A function is like a mini-
program that goes off and does some specific task. The task of raw_input() is to get some text from the

user. Sometimes you give a function values to use. You put these values, called arguments, between the
parentheses. In this case, the one argument passed to raw_input() is the string "Hi. What's your
name? ". As you can see from Figure 2.7, raw_input() uses the string to prompt the user. raw_input()
waits for the user to enter something. Once the user presses the Enter key, raw_input() returns whatever
the user typed, as a string. That's the string that name gets.

If you're still not totally clear on how this works, think of it this way: using raw_input() is like ordering a
pizza. The raw_input() function is like a pizza parlor. You make a call to a pizza parlor to place your order,
and you make a call to the raw_input() function to kick it into gear. When you call the pizza parlor, you
provide information, like "pepperoni". When you call the raw_input() function, you pass it the argument,
"Hi. What's your name?". After you finish your call to the pizza parlor, the employees get a pepperoni
pizza to your door. And after you make your call to raw_input(), the function returns whatever string the

user entered.

The rest of the Personal Greeter program works just like the Greeter program. It makes no difference to the
computer how name gets its value. So the line

print name

prints the value of name. While the line

print "Hi, " + name

concatenates the "Hi," and the value of name, and prints this new string out. At this point, you know enough

to understand the last line in all of these console programs. The goal of the last line is to wait for the user to
press the Enter key:

raw_input("\n\nPress the enter key to exit.")

It does exactly that through the raw_input() function. Since I don't care what the user enters, so long as he
or she presses the Enter key, I don't assign the return value of raw_input() to a variable like before. It may

seem weird to get a value and do nothing with it, but it's my option. If I don't assign the return value to a
variable, the computer just ignores it. So once the user presses the Enter key, the program ends and the
console window closes.

Using String Methods

Python has a rich set of tools for working with strings. One type of these tools is string methods. String
methods allow you to create new strings from old ones. You can do everything from the simple, such as create
a string that's just an all-capital-letters version of the original, to the complex, such as create a new string
that's the result of a series of intricate letter substitutions.

Introducing the Quotation Manipulation Program

According to Mark Twain, "The art of prophecy is very difficult, especially with respect to the future." No one
can accurately foretell the future, but it's still amusing to read predictions that pundits have made about
technology. A good one is, "I think there is a world market for maybe five computers." This was made by then
IBM chairman, Thomas Watson, in 1943. The Quotation Manipulation program that I wrote prints this quote
several ways using string methods. (Fortunately, I was able to write this program because I happen to own
computer #3.) Take a look at the sample run in Figure 2.8.

Figure 2.8: This slightly low guess is printed several ways with the help of string methods.

The following is the code for the program:

Quotation Manipulation
Demonstrates string methods
Michael Dawson 1/11/03

quote from IBM Chairman, Thomas Watson, in 1943
quote = "I think there is a world market for maybe five computers."
print "Original quote:"
print quote

print "\nIn uppercase:"
print quote.upper()

print "\nIn lowercase:"
print quote.lower()

print "\nAs a title:"
print quote.title()

print "\nWith a minor replacement:"
print quote.replace("five", "millions of")

print "\nOriginal quote is still:"
print quote

raw_input("\n\nPress the enter key to exit.")

Creating New Strings with String Methods

Though there's a new concept at work here, the code is still pretty understandable. Take a look at the line:

print quote.upper()

You can probably guess what it does: print a version of quote in all uppercase letters.

The line does this through the use of a string method, upper(). A string method is like an ability a string has.
So, quote has the ability to create a new string, a capitalized version of itself, through its upper() method.

When it does this, it returns this new string, and the line becomes equivalent to the following line:

print "I THINK THERE IS A WORLD MARKET FOR MAYBE FIVE COMPUTERS."

Now, the line of code is never like this, but you can think of it in this way to help you understand how the
method works.

You've probably noticed the parentheses in this method call. It should remind you of functions, which you just
learned about in this chapter. Methods are similar to functions. The main difference is that a built-in function,
like raw_input(), can be called on its own. But a string method has to be called through a particular string.

It makes no sense to just type the following:

print upper()

You kick off a method, or invokeit, by adding a dot, followed by the name of the method, followed by a pair of
parentheses, after a string value. The parentheses aren't just for show. Just as with functions, you can pass
arguments inside them. upper() doesn't take any arguments, but you'll see an example of a string method
that does with replace().

The line

print quote.lower()

invokes the lower() method of quote to create an all-lowercase-letters version, which it returns. Then, that

new, lowercase string is printed.

The line

print quote.title()

prints a version of quote that's like a title. The title() method returns a string where the first letter of each

word is capitalized and the rest of the string is in lowercase.

The line

print quote.replace("five", "millions of")

prints a new string, where every occurrence of "five" in quote are replaced with "millions of".

The method replace() needs at least two pieces of information: the old text to be replaced, and the new

text that replaces it. You separate the two arguments with a comma. You can add an optional third argument,
an integer, that tells the method the maximum number of times to make the replacement.

Finally, the program prints quote again, with

print "\nOriginal quote is still:"
print quote

You can see from Figure 2.8 that quote hasn't changed. Remember, string methods create a new string.

They don't affect the original one. Table 2.4 summarizes the string methods you've just seen, along with a few
others.

Table 2.4: USEFUL STRING METHODS

Method Description

upper() Returns the uppercase version of the string.

lower() Returns the lowercase version of the string.

swapcase() Returns a new string where the case of each letter is switched.
Uppercase becomes lowercase and lowercase becomes uppercase.

capitalize() Returns a new string where the first letter is capitalized and the rest are
lowercase.

title() Returns a new string where the first letter of each word is capitalized and
all others are lowercase.

strip() Returns a string where all the white space (tabs, spaces, and newlines)
at the beginning and end is removed.

replace(old, new

[,max])

Returns a new string where occurrences of the string old are replaced

with the string new. The optional max limits the number of replacements.

Using the Right Types

You've used three different types so far: strings, integers, and floating-point numbers. It's important to know
not only which data types are available to you, but how to work with them. If you don't, you might end up with
programs that produce unintended results.

Introducing the Trust Fund Buddy-Bad Program

The idea for the next program was to create a tool for those souls who play all day, living off a generous trust
fund. The program is supposed to calculate a grand total for monthly expenditures based on user input. This
grand total is meant to help those living beyond any reasonable means stay within budget so they don't ever
have to think about getting a real job. But, as you may have guessed from the program's title, Trust Fund
Buddy-Bad doesn't work as the programmer intended. Figure 2.9 shows a sample run.

Figure 2.9: The monthly total should be high, but not that high. Something is wrong.

Alright, the program obviously isn't working correctly. It has a bug. But not a bug that causes it to crash, like
the syntax error you saw last chapter. When a program produces unintended results but doesn't crash, it has
a logical error. Based on what you already know, you might be able to figure out what's happening by looking
at the code. Here's the listing:

Trust Fund Buddy - Bad
Demonstrates a logical error
Michael Dawson - 1/14/03

print \
"""

 Trust Fund Buddy

Totals your monthly spending so that your trust fund doesn't run out
(and you're forced to get a real job).

Please enter the requested, monthly costs. Since you're rich, ignore pennies
and use only dollar amounts.

"""

car = raw_input("Lamborghini Tune-Ups: ")

rent = raw_input("Manhattan Apartment: ")
jet = raw_input("Private Jet Rental: ")
gifts = raw_input("Gifts: ")
food = raw_input("Dining Out: ")
staff = raw_input("Staff (butlers, chef, driver, assistant): ")
guru = raw_input("Personal Guru and Coach: ")
games = raw_input("Computer Games: ")
total = car + rent + jet + gifts + food + staff + guru + games

print "\nGrand Total: " + total

raw_input("\n\nPress the enter key to exit.")

It's okay if you don't see the problem right now. I'll give you one more hint, though. Take a look at the output in
Figure 2.9 again. Examine the huge number that the program prints as the grand total. Then look at all the
numbers the user entered. Notice any connection? Okay, whether you do or don't, read on.

Tracking Down Logical Errors

Logical errors can be the toughest bugs to fix. Since the program doesn't crash, you don't get the benefit of an
error message to offer a clue. You have to observe the behavior of the program and investigate the code.

In this case, the program's output tells the story. The huge number is clearly not the sum of all the numbers
the user entered. But, by looking at the numbers, you can see that the grand total printed is a concatenation of
all the numbers. How did that happen? Well, if you remember, the raw_input() function returns a string. So

each "number" the user enters is treated like a string. Which means that each variable in the program has a
string value associated with it. So, the line

total = car + rent + jet + gifts + food + staff + guru + games

is not adding numbers. It's concatenating strings!

IN THE REAL WORLD

The + symbol works with pairs of strings as well as pairs of integers. Using the same operator for values

of different types is called operator overloading. Now, "overloading" may sound like a bad thing, but
actually it's a good thing. Doesn't it make sense that strings are joined using the plus sign? You
immediately understand what it means. Implemented well, operator overloading can make for clearer and
more elegant code.

Now that you know the problem, how do you fix it? Somehow those string values need to be converted to
numbers. Then the program will work as intended. If only there was some way to do this. Well, as you may
have guessed, there is.

Converting Values

The solution to the Trust Fund Buddy-Bad program is to convert the string values returned by raw_input()

to numeric ones. Since the program works with whole dollar amounts, it makes sense to convert each string to
an integer before working with it.

Introducing the Trust Fund Buddy-Good Program

The Trust Fund Buddy-Good program fixes the logical bug in Trust Fund Buddy-Bad. Take a look at the output
of the new program in Figure 2.10.

Figure 2.10: Ah, 61,300 dollars a month is much more reasonable.

Now the program arrives at the correct total. Here's the code:

Trust Fund Buddy - Good
Demonstrates type conversion
Michael Dawson - 1/14/03

print \
"""

 Trust Fund Buddy

Totals your monthly spending so that your trust fund doesn't run out
(and you're forced to get a real job).

Please enter the requested, monthly costs. Since you're rich, ignore pennies
and use only dollar amounts.

"""

car = raw_input("Lamborghini Tune-Ups: ")
car = int(car)
rent = int(raw_input("Manhattan Apartment: "))
jet = int(raw_input("Private Jet Rental: "))
gifts = int(raw_input("Gifts: "))
food = int(raw_input("Dining Out: "))
staff = int(raw_input("Staff (butlers, chef, driver, assistant): "))
guru = int(raw_input("Personal Guru and Coach: "))

games = int(raw_input("Computer Games: "))

total = car + rent + jet + gifts + food + staff + guru + games

print "\nGrand Total: ", total

raw_input("\n\nPress the enter key to exit.")

Converting Strings to Integers

There are several functions that convert between types. The function to convert a value to an integer is
demonstrated in the following lines:

car = raw_input("Lamborghini Tune-Ups: ")
car = int(car)

The first line is just like before. It gets input from the user as a string and assigns that value to car. The
second line does the conversion. The function int() takes the string referenced by car and converts it to an
integer. Then, car gets this new integer value.

The next seven lines get and convert the remaining expenditure categories:

rent = int(raw_input("Manhattan Apartment: "))
jet = int(raw_input("Private Jet Rental: "))
gifts = int(raw_input("Gifts: "))
food = int(raw_input("Dining Out: "))
staff = int(raw_input("Staff (butlers, chef, driver, assistant): "))
guru = int(raw_input("Personal Guru and Coach: "))
games = int(raw_input("Computer Games: "))

Notice that the assignments are done in just one line now. That's because the two function calls,
raw_input() and int(), are nested. Nesting function calls means putting one inside the other. This is

perfectly fine as long as the return values of the inner function can be used by the outer function. Here, the
return value of raw_input() is a string, and a string is a perfectly acceptable type for int() to convert.

In the assignment statement for rent, raw_input() goes out and asks the user how much the rent was.
The user enters some text, and that is returned as a string. Then, the program calls the function int() with
that string. int() returns the integer the string represented. Then, that integer is assigned to rent. The other

six assignment statements work the same way.

There are other functions that convert values to a specific type. Table 2.5 lists several.

Table 2.5: SELECTED TYPE CONVERSION FUNCTIONS

Function Description Example Returns

float(x) Returns a floating-point value by converting x float("10.0") 10.0

int(x) Returns an integer value by converting x int("10") 10

Using Augmented Assignment Operators

Function Description Example Returns

str(x) Returns a string value by converting x str(10) '10'

Using Augmented Assignment Operators

Augmented assignment operatorsis a mouthful. But the concept is simple. Let's say you want to know the
yearly amount the user spends on food. To calculate and assign the yearly amount, you could use the line

food = food * 52

This line multiplies the value of food by 52 and then assigns the result back to food. You could accomplish

the same thing with this following line:

food *= 52

*= is an augmented assignment operator. It also multiplies the value of food by 52 and then assigns the
result back to food, but it's shorter than the first version. Since assigning a new value to a variable based on

its original value is something that happens a lot in programming, these operators provide a nice shortcut to a
common task. There are other augmented assignment operators. Table 2.6 summarizes some useful ones.

Table 2.6: USEFUL AUGMENT ASSIGNMENT OPERATORS

Operator To Example Is Equivalent

*= x *= 5 x = x * 5

/= x /= 5 x = x / 2

%= x %= 5 x = x % 5

+= x += 5 x = x + 5

-= x -= 5 x = x - 5

Printing Strings and Numbers Together

The next line of code

print "\nGrand Total: ", total

is only slightly different than the corresponding line in the Trust Fund Buddy-Bad program:

print "\nGrand Total: " + total

But the difference is an important one. In the Trust Fund Buddy-Bad program, the string "\nGrand Total:
" and the value of total are joined together by string concatenation through the + operator. That's great

str(x) Returns a string value by converting x str(10) '10'

Using Augmented Assignment Operators

Augmented assignment operatorsis a mouthful. But the concept is simple. Let's say you want to know the
yearly amount the user spends on food. To calculate and assign the yearly amount, you could use the line

food = food * 52

This line multiplies the value of food by 52 and then assigns the result back to food. You could accomplish

the same thing with this following line:

food *= 52

*= is an augmented assignment operator. It also multiplies the value of food by 52 and then assigns the
result back to food, but it's shorter than the first version. Since assigning a new value to a variable based on

its original value is something that happens a lot in programming, these operators provide a nice shortcut to a
common task. There are other augmented assignment operators. Table 2.6 summarizes some useful ones.

Table 2.6: USEFUL AUGMENT ASSIGNMENT OPERATORS

Operator To Example Is Equivalent

*= x *= 5 x = x * 5

/= x /= 5 x = x / 2

%= x %= 5 x = x % 5

+= x += 5 x = x + 5

-= x -= 5 x = x - 5

Printing Strings and Numbers Together

The next line of code

print "\nGrand Total: ", total

is only slightly different than the corresponding line in the Trust Fund Buddy-Bad program:

print "\nGrand Total: " + total

But the difference is an important one. In the Trust Fund Buddy-Bad program, the string "\nGrand Total:
" and the value of total are joined together by string concatenation through the + operator. That's great

because both are strings. However, in the Trust Fund Buddy-Good program, the value of total is an integer.

So string concatenation won't work. Instead, the values are listed, separated by a comma. In general, you can
list values separated by commas in a print statement to have them all print out together.

Back to the Useless Trivia Program

You now know everything you need to know to program the project Useless Trivia from the beginning of the
chapter. I'll present the program a little differently than the others. Instead of listing the code out in its entirety, I'll go
over the program one section at a time.

Creating the Initial Comments

Although comments don't have any effect while the program runs, they are an important part of every project. As
always, I list the program's purpose, my name, and the date I wrote the code:

Useless Trivia
#
Gets personal information from the user and then
prints true, but useless facts about him or her
#
Michael Dawson - 12/4/02

TRICK

Experienced programmers also use the initial comments area to describe any modifications they make to code over
time. This provides a great history of the program right up front. This practice is especially helpful when several
programmers have their hands on the same code.

Getting the User Input

Using the raw_input() function, the program gets the user's name, age, and weight:

name = raw_input("Hi. What's your name? ")

age = raw_input("And how old are you? ")
age = int(age)

weight = raw_input("Okay, last question. How many pounds do you weigh? ")
weight = int(weight)

Remember, raw_input() always returns a string. Since age and weight will be treated as numbers, they must

be converted. I broke up this process into two lines for each variable. First, I assigned the string from
raw_input() to a variable. Then, I converted that string to an integer and assigned it to the variable again. I could

have done both the assignments in one line, but I felt it's clearer this way.

Printing Lowercase and Uppercase Versions of name

The following lines print a version of name in uppercase and a version in lowercase with the help of string methods:

print "\nIf poet ee cummings were to email you, he'd address you as", name.lower()

ee_mad = name.upper()
print "But if ee were mad, he'd call you", ee_mad

In the uppercase version, I assigned the value to the variable ee_mad before printing. As you can see from the

lowercase version before it, it's not necessary to use a variable. But I think it makes it clearer.

ee cummings, by the way, was an experimental American poet who didn't use uppercase letters. So, if he were alive
and e-mailing you, he'd probably use all lowercase letters in your name. But if he were mad, he'd probably make an
exception and "shout" via e-mail by addressing you in uppercase.

Calculating dog_years

The user's age in dog years is calculated and printed out:

dog_years = age / 7
print _\nDid you know that you're just", dog_years, "in dog years?"

It's a common belief that seven human years is equal to one dog year. So, in the first line, I divide age by 7 and
assign that value to dog_years . Since 7 and age are both integers, diving them results in an integer. That works

out great since dog years are always expressed as integers.

The next line combines two strings and dog_years into larger string and displays it.

Calculating seconds

The user's age, in seconds, is calculated and printed in the two following lines:

seconds = age * 365 * 24 * 60 * 60
print "But you're also over", seconds, "seconds old."

Since there are 365 days in a year, 24 hours in a day, 60 minutes in an hour, and 60 seconds in a minute, age is
multiplied by the product of 365 * 24 * 60 * 60 . This value is assigned to seconds . The next line combines
two strings and seconds into a larger string and displays it.

Printing name Five Times

The program displays the user's name five times in a row using string repetition:

called = name * 5
print "\nIf a small child were trying to get your attention, " \
 "your name would become:"
print called

The variable called is assigned the value of name , repeated five times. Then, a message is printed followed by
called .

Calculating moon_weight and sun_weight

The next four lines calculate and display the user's weight on the moon and sun:

moon_weight = weight / 6.0
print "\nDid you know that on the moon you would weigh only", moon_weight, "pounds?"

sun_weight = weight * 27.1
print "But on the sun, you'd weigh", sun_weight, "(but, ah... not for long)."

Since the moon has one-sixth the gravitational pull of the earth, moon_weight is assigned the value of weight
divided by 6.0 . I use a floating-point number so that the result is a more accurate floating-point number instead of

an integer.

Since the gravitational force on the sun is about 27.1 times stronger than it is here on earth, I multiply weight by
27.1 and assign the result to sun_weight . Again, since 27.1 is a floating-point number, sun_weight will be a

float too.

The next two lines print out messages telling the user about his or her new weights.

Waiting for the User

The last statement waits for the user to press the Enter key:

raw_input("\n\nPress the enter key to exit.")

Summary

In this chapter, you saw how to create strings with single, double, and triple quotes. You learned how to
include special characters in them with escape sequences. You saw how to join and repeat strings. You
learned about two different numeric types, integers and floating-point numbers, and how to work with them.
You also now know how to convert values between strings and numbers. You learned about variables and
saw how to use them to store and retrieve information. Finally, you learned how to get user input to make your
programs interactive.

Challenges
Create a list of legal and illegal variable names. Describe why each is either legal or illegal. Next, create
a list of "good" and "bad" legal variable names. Describe why each is either a good or bad choice for a
variable name.

1.

Write a program that allows a user to enter his or her two favorite foods. The program should then print
out the name of a new food by joining the original food names together.

2.

Write a Tipper program where the user enters a restaurant bill total. The program should then display
two amounts: a 15 percent tip and a 20 percent tip.

3.

Write a Car Salesman program where the user enters the base price of a car. The program should add
on a bunch of extra fees such as tax, license, dealer prep, and destination charge. Make tax and
license a percent of the base price. The other fees should be set values. Display the actual price of the
car once all the extras are applied.

4.

Chapter 3: Branching, while Loops, and Program

Planning: The Guess My Number Game

 Download CD Content

Overview

So far, the programs you've written have had a simple, sequential flow: each statement is executed once, in
order, every time. If you were limited to just this type of programming, it would be very difficult, if not
impossible, to write complex applications. But in this chapter, you learn how to selectively execute certain
portions of your code and repeat parts of your program. Specifically, you learn to do the following:

Generate random numbers using randrange()

Use if structures to execute code based on a condition

Use if-else structures to make a choice based on a condition

Use if-else-elif structures to make a choice based on several conditions

Use while loops to repeat parts of your program

Plan your programs using pseudocode

Introducing the Guess My Number Game

The program you'll create in this chapter is the classic number guessing game. For those who missed out on
this game in their childhood, the game goes like this: the computer chooses a random number between 1 and
100 and the player tries to guess it in as few attempts as possible. Each time the player enters a guess, the
computer tells the player whether the guess is too high, too low, or right on the money. Once the player
guesses the number, the game is over. Figure 3.1 shows Guess My Number in action.

Figure 3.1: Got it in only three guesses! Try to beat that.

Generating Random Numbers

As much as users want consistent, predictable results from programs, sometimes what makes the programs
exciting is their unpredictability: the sudden change in a computer opponent's strategy, or an alien creature
bursting out from an arbitrary door. Random numbers can supply this element of chance or surprise, and
Python provides an easy way to generate those random numbers.

TRAP Python generates random numbers based on a formula, so they are not truly random. This kind of
random generation is called pseudorandom and is good enough for most applications (just don't try
to start an online casino with it). If you really need truly random numbers, visit
http://www.fourmilab.ch/hotbits/. The site generates random numbers based on the

natural and unpredictable process of radioactive decay.

Introducing the Craps Roller Program

Craps Roller replicates the dice roll of the fast-paced, casino game of craps. But you don't have to know
anything about craps to appreciate the program. Craps Roller just simulates the roll of two, six-sided dice. It
displays the value of each and their total. To determine the dice values, the program uses a function that
generates random numbers. Figure 3.2 shows the program in action.

Figure 3.2: Ack! I got a total of 7 on my first roll, which means I lose.

Here's the code:

Craps Roller
Demonstrates random number generation
Michael Dawson - 12/29/02

import random

generate random numbers 1 - 6
die1 = random.randrange(6) + 1
die2 = random.randrange(6) + 1

total = die1 + die2

print "You rolled a", die1, "and a", die2, "for a total of", total

raw_input("\n\nPress the enter key to exit.")

http://www.fourmilab.ch/hotbits/

Using the import Statement

The first line of code in the program introduces the import statement. The statement allows you to import, or
load, modules, in this case the random module in:

import random

Modules are files that contain code meant to be used in other programs. These modules usually group
together a collection of programming related to one area. The random module contains functions related to

generating random numbers and producing random results.

If you think of your program as a construction project, then modules are like special toolkits that you can pull
out from the garage when you need them. But instead of going to the shelf and grabbing a powered, circular
saw, here, I imported the random module.

Once you import a module, you can use its code. Then, it just becomes a matter of accessing it.

Accessing randrange()

The random module contains a function, randrange(), which produces a random integer. The Craps Roller
program accesses randrange() through the following function call:

random.randrange(6)

You'll notice the program doesn't directly call randrange(). Instead, it's called with random.randrange(),
because the program accesses randrange() through its module, random. In general, you can call a

function from an imported module by giving the module name, followed by a period, followed by the function
call itself. This method of access is called dot notation. Dot notation is like the possessive in English. In
English, "Mike's Ferrari" means that it's the Ferrari that belongs to Mike. Using dot notation,
random.randrange() means the function randrange() that belongs to the module random. Dot notation

can be used to access different elements of imported modules.

Now that you know how to access randrange(), you need to know how to use it.

Using randrange()

There are several ways to call randrange(), but the simplest is to use a single, positive, integer argument.

Called this way, the function returns a random integer from, and including, 0, up to, but not including, that
number. So the call random.randrange(6) produces either a 0, 1, 2, 3, 4, or 5. Alright, where's the 6?
Well, randrange() is picking a random number from a group of six numbers—and the list of numbers starts

with 0. You may think this is odd, but you'll find that most computer languages start counting at 0 instead of 1.
So, I just added 1 to the result to get the right values for a die:

die1 = random.randrange(6) + 1

Now, die1 gets either a 1, 2, 3, 4, 5, or 6.

TRAP It's a common mistake to think that the single argument you provide randrange() could be
returned as a result. It can't. Remember, randrange() starts counting at 0, so you'll get back a

random number between (and including) 0 and up to one less than the number you provide.

Using the if Structure

Branching is a fundamental part of computer programming. It basically means making a decision to take one
path or another. Through the if structure, your programs can branch to a section of code or just skip it, all

based on how you've set things up.

Introducing the Password Program

The Password program uses the if structure to simulate the login procedure of a highly secure computer

server. The program grants the user access if he or she enters the right password. Figures 3.3 and 3.4 show a
few sample runs.

Figure 3.3: Ha, you'll never crack the code.

Figure 3.4: Guess I should have picked a better password than "secret".

Here is the program code for Password:

Password
Demonstrates the if structure
Michael Dawson - 12/29/02

print "Welcome to System Security Inc."
print "— where security is our middle name\n"

password = raw_input("Enter your password: ")

if password == "secret":
 print "Access Granted"

raw_input("\n\nPress the enter key to exit.")

IN THE REAL WORLD

While the program Password does a good job of demonstrating the if structure, it's not a good example

of how to implement computer security. In fact, anyone could simply examine the source code and
discover the "secret" password.

To create a password validation system, a programmer would most likely use some form of cryptography.
Cryptography, an ancient idea that dates back thousands of years, is used to encode information so that
only the intended recipients can understand it. Cryptography is an entire field unto itself and some
computer scientists devote their careers to it.

Examining the if Structure

The key to program Password is the if structure:

if password == "secret":
 print "Access Granted"

The if structure is pretty straightforward. You can probably figure out what's happening just by reading the
code. If password is equal to "secret", then "Access Granted" is printed and the program continues to the
next statement. But, if it isn't equal to "secret", the program does not print the message and continues
directly to the next statement following the if structure.

Creating Conditions

All if structures have a condition. A condition is just an expression that is either true or false. You're already

familiar with conditions. They're pretty common in daily life. In fact, almost any statement you make could be
viewed as a condition. For example, the statement "It's 100 degrees outside." could be treated as a condition.
It's either true or false.

In the Password program, the condition used in the if structure is password == "secret". It means that
password is equal to "secret". This condition evaluates to either true or false, depending on the value of
password. If the value of password is equal to "secret", then the condition is true. Otherwise, the

condition is false.

Understanding Comparison Operators

Conditions are often created by comparing values. You can compare values using comparison operators.
You've already seen one comparison operator by way of the Password program. It's the equal-to comparison
operator, written as ==.

TRAP The equal-to comparison operator is two equal signs in a row. Using just one equal sign in a
condition will result in a syntax error, because one equal sign represents the assignment operator.
So, password = "secret" is an assignment statement. It assigns a value. And password ==
"secret" is a condition. It evaluates to either true or false. Even though the assignment operator

and the equal-to operator look similar, they are two different things.

In addition to equal-to, there are other comparison operators. Table 3.1 summarizes some useful ones.

Table 3.1: COMPARISON OPERATORS

Operator Meaning Sample Condition Evaluates To

== equal to 5 == 5 True

!= not equal to 8 != 5 True

> greater than 3 > 10 False

< less than 5 < 8 True

>= greater than or equal to 5 >= 10 False

<= less than or equal to 5 <= 5 True

Using comparison operators, you can compare any values. If you compare strings, you get results based on
alphabetical order. For example, "apple" < "orange" is true because "apple" is alphabetically less than
"orange" (it comes before it in the dictionary).

Python allows you to compare any values you like, regardless of their type. But just because you can doesn't
mean you should. When using comparison operators, it's best to "compare apples to apples and oranges to
oranges" and only compare values of the same type, because even though you can create the condition
"orange" < 2, it doesn't really make much sense. (If you're curious, "orange" < 2 is false.)

Using Indentation to Create Blocks

You may have noticed that the second line of the if structure, print "AccessGranted", is indented. By

indenting the line, it becomes a block. A block is one or more consecutive lines indented by the same amount.
Indenting sets lines off not only visually, but logically too. Together, they form a single unit.

Blocks can be used, among other ways, as the last part of an if structure. They're the statement or group of

statements that gets executed if the condition is true. In the Password program, the block is the single
statement print "Access Granted".

Since blocks can be as many statements as you like, you could add a special welcome for users who enter the
proper password by changing the block in the if structure like so:

if password == "secret":
 print "Access Granted"
 print "Welcome! You must be someone very important."

Now, users who correctly enter the secret password will see the Access Granted followed by Welcome!
You must be someone very important. And if a user enters something besides secret, the user

won't see either of the messages.

Indenting to create blocks is not optional. It's the only way to define a block. This is one of Python's more
unique features. And believe it or not, it's one of it's most controversial.

If you've programmed in another language before, odds are, indenting was optional. You could have written
every line of code flush left, if you wanted. But required indentation has its benefits. It makes for more
consistent and readable code. After a short time, it'll become second nature.

If you haven't programmed before, don't worry about it. By indenting your code, you'll pick up a good
programming habit without even realizing it.

HINT There's passionate debate within the Python community about whether to use tabs or spaces (and
if spaces, the number to use) for indentation. This is really a question of personal style. But there
are two guidelines worth following. First, be consistent. If you indent blocks with two spaces, then
always use two spaces. Second, don't mix spaces and tabs. Even though you can line up blocks
using a combination of both, this can lead to big headaches later. Common indentation styles
include one tab, or two spaces, or (the style the creator of Python uses) four spaces. The choice is
yours.

Building Your Own if Structure

You've seen a full example of an if structure, but I want to leave the topic by summarizing how to build your
own. You can construct an if structure by using if, followed by a condition, followed by a colon, followed by

a block of one or more statements. If the condition evaluates to true, then the statements that make up the
block are executed. If the condition evaluates to false, then the program moves on to the next statement after
the if structure.

Using the if-else Structure

Sometimes you'll want your program to "make a choice" based on a condition: do one thing if the condition is
true, do something else if it's false. The if-else structure gives you that power.

Introducing the Granted or Denied Program

The program Password did a good job welcoming a user who entered the correct password, but it didn't do
anything if the wrong password was entered. Program Granted or Denied solves this problem by using the
if-else structure. Figures 3.5 and 3.6 show off the new and improved version.

Figure 3.5: The correct password grants the user access, just like before.

Figure 3.6: Now, an incorrect password generates the stinging "Denied" message.

Here is the code for Granted or Denied:

Granted or Denied
Demonstrates the if-else structure
Michael Dawson - 12/29/02

print "Welcome to System Security Inc."
print "— where security is our middle name\n"

password = raw_input("Enter your password: ")

if password == "secret":
 print "Access Granted"
else:
 print "Access Denied"

raw_input("\n\nPress the enter key to exit.")

Examining the else Statement

I only made one change from the Password program. I added an else clause to create an if-else

structure:

if password == "secret":
 print "Access Granted"
else:
 print "Access Denied"

If the value of password is equal to "secret", the program prints Access Granted, just like before. But
now, thanks to the else statement, the program prints Access Denied otherwise.

In an if-else structure, you're guaranteed that exactly one of the code blocks will execute. If the condition is

true, then the block immediately following the condition is executed. If the condition is false, then the block
immediately after the else is executed.

You can create an else clause immediately following the if block with else, followed by a colon, followed by
a block of statements. The else statement must be in the same block as its corresponding if. That is, the
else and if must be indented the same amount; otherwise, your program will generate a nasty error.

Using the if-elif-else Structure

Choosing from among several possibilities is the job of the if-elif-else structure. It's the most powerful

and flexible of all the conditional structures. It can be used in multiple ways, but comes in quite handy when
you have one variable that you want to compare to a bunch of different values.

Introducing the Mood Computer Program

In the mid-1970s (yes, last century), there was a wildly successful, fad product called the Mood Ring. The ring
revealed the wearer's mood through a color-changing gem. Well, the Mood Computer program takes the
technology to the next level by looking into the psyche of the user and displaying his or her mood. Figure 3.7
reveals my mood while writing this very chapter.

Figure 3.7: Looks like I was in a great mood while writing the Mood Computer program.

Okay, the program doesn't really plum the emotional depths of the user through electrodermal impulses
transmitted via the keyboard. Instead, Mood Computer generates a random number to choose one of three
faces to print through an if-elif-else structure. By the way, the Mood Ring didn't really reveal the

wearer's emotions either. It was just an LCD that changed colors based on body temperature.

The program code for Mood Computer:

Mood Computer
Demonstrates the if-elif-else structure
Michael Dawson - 12/29/02

import random

print "I sense your energy. Your true emotions are coming across my screen."
print "You are..."

mood = random.randrange(3)

if mood == 0:
 # happy
 print \
 """

 | |
 | O O |

 | < |
 | |
 | . . |
 | `...` |

 """
elif mood == 1:
 # neutral
 print \
 """

 | |
 | O O |
 | < |
 | |
 | ------- |
 | |

 """
elif mood == 2:
 # sad
 print \
 """

 | |
 | O O |
 | < |
 | |
 | .'. |
 | ' ' |

 """
else:
 print "Illegal mood value! (You must be in a really bad mood)."

print "...today."

raw_input("\n\nPress the enter key to exit.")

Examining the if-elif-else Structure

An if-elif-else structure can contain a whole list of conditions for a program to evaluate. In Mood

Computer, the lines containing the different conditions are

if mood == 0:

elif mood == 1:

elif mood == 2:

Notice that you write the first condition using an if clause, but then list the remaining conditions using elif
(short for "else if") clauses. elif clauses are constructed just like if clauses. And you can have as many

elif clauses as you like.

HINT Although the if-elif-else structure is flexible enough to test a list of unrelated conditions, it's

almost always used to test related ones.

By isolating the conditions, you can see the purpose of the structure: to test mood against three different
values. The program first checks to see if mood is equal to 0. If it is, then the happy face is printed. If not, the
program moves to the next condition and checks if mood is equal to 1. If it is, the neutral face is printed. If not,
the program checks if mood is equal to 2. If so, the sad face is printed.

TRAP An important feature of the if-elif-else structure is that once a condition evaluates to true, the

computer executes its corresponding block and exits the structure. This means that at most, only
one block executes, even if several conditions are true. In Mood Computer, that's no big deal.
mood can only be equal to a single number, so only one of the conditions can be true. But it's

important to be aware of this behavior because it's possible to create structures where more than
one condition can be true at the same time. In that case, only the block associated with the first
true condition executes.

If none of the preceding conditions for mood turn out to be true, then the final else clause's block runs and
Illegal mood value! (You must be in a really bad mood). appears on the screen. This
should never happen, since mood will always be either 0, 1, or 2. But I put the clause in there just in case. I
didn't have to, though, since the final else clause is optional.

HINT Even though it's not necessary to use the final else clause, it's a good idea. It works as a catchall

for when none of the conditions are true. Even if you think one of your conditions will always be
true, you can still use it to catch the "impossible" case, like I did.

You've seen three similar, but progressively more powerful branching structures. For a concise review, check
out Table 3.2.

Table 3.2: B RANCHING STRUCTURES SUMMARY

Structure Description

if <condition>:
 <block>

if structure. If <condition> is true, <block> is executed; otherwise it's skipped.

if <condition>:
 <block 1>
else:
 <block 2>

if-else structure. If <condition> is true, <block1> is executed; otherwise

<block2> is executed.

if <condition 1>:
 <block 1>
elif <condition 2>:
 <block 2>
 .
 .

if-elif-else structure. The block of the first true condition is executed. If no

condition is true, the optional else clause's block, <block N+1>, is executed.

Structure Description .
 .
.elif <condition N>:
 <block N>
else:
 <block N+1>

 .
 .
.elif <condition N>:
 <block N>
else:
 <block N+1>

Creating while Loops

Loops are all around us. Even your shampoo bottle has looping instructions on it: "While your hair is not clean:
Rinse. Lather. Repeat." This may seem like a simple idea—while some condition is true, repeat
something—but it's a powerful tool in programming. It would come in quite handy, for example, in making a
quiz show game. You might want to tell your program: while there are questions left, keep playing the game.
Or, in a banking application, you might want to tell your program: while the user hasn't entered a valid account
number, keep asking the user for an account number. The while loop lets you do exactly this.

Introducing the Three-Year-Old Simulator Program

In today's fast-paced world, many people don't get to spend the time they'd like with the children in their lives.
A busy lawyer might be stuck at the office and not see her small son. A salesman might be on the road and
not see his little niece. Well, the Three-Year-Old Simulator solves that problem by reproducing a conversation
with a three-year-old child. The key to mimicking a three-year-old, it turns out, is the while loop. Figure 3.8

shows a sample run.

Figure 3.8: If you've ever been in charge of a three-year-old, this should bring back warm memories.

As you can see, the program keeps asking Why? until the answer, Because., is entered. The code for the

program is short:

Three-Year-Old Simulator
Demonstrates the while loop
Michael Dawson - 1/3/03

print "\tWelcome to the 'Three-Year-Old Simulator'\n"
print "This program simulates a conversation with a three-year-old child."
print "Try to stop the madness.\n"

response = ""
while response != "Because.":
 response = raw_input("Why?\n")

print "Oh. Okay."

raw_input("\n\nPress the enter key to exit.")

Examining the while Structure

The loop from the Three-Year-Old Simulator program is just two lines:

while response != "Because.":
 response = raw_input("Why? ")

If the format of the while loop looks familiar, there's a good reason. It bears a striking resemblance to its
cousin, the if structure. The only difference is that if is replaced by while. And the similarities aren't just

skin-deep. In both structures, if the condition is true, the block (sometimes call the loop body in a loop) is
executed. But in the while structure, the computer tests the condition and executes the block over and over,

until the condition is false. That's why it's called a loop.

So, the block

 response = raw_input("Why? ")

will continue to execute until the user enters Because.. At that point, response !="Because." is false
and the loop mercifully ends. Then, the program executes the next statement, print "Oh. Okay.".

Initializing the Sentry Variable

Often, while loops are controlled by a sentry variable, a variable used in the condition and compared to some

other value or values. Like a human sentry, you can think of your sentry variable as a guard, helping form a
barrier around the while loop's block. In the Three-Year-Old Simulator program, the sentry variable is
response. It's used in the condition and is compared to the string "Because." before the block is executed

each time.

It's important to initialize your sentry variable. Most of the time, sentry variables are initialized right before the
loop itself. That's what I did:

response = ""
while response != "Because.":
 response = raw_input("Why? ")

TRAP If the sentry variable doesn't have a value when the condition is evaluated, your program will
generate an error.

It's usually a good idea to initialize your sentry variables to some type of empty value. I assign "", the empty
string, to response. While I could assign the string "aardvark", and the program would work just the same,

it would make the code needlessly confusing.

Checking the Sentry Variable

Make sure that it's possible for the while condition to evaluate to true at some point; otherwise, the block will

never run. Take, for example, one minor change to the loop you've been working with:

response = "Because."
while response != "Because.":
 response = raw_input("Why? ")

Since response is equal to "Because." right before the loop, the block will never run. The program will act

like the loop isn't even there.

Updating the Sentry Variable

Once you've established your condition, initialized your sentry variable, and are sure that under some
conditions the loop block will execute, you have yourself a working loop. Next, make sure the loop will end.

If you write a loop that never stops, you've created an infinite loop. Welcome to the club. At one time or
another, all programmers have accidentally created an infinite loop and watched their program get stuck doing
something over and over. Or they see their programs just plain freeze up.

Here's a simple example of an infinite loop:

counter = 0
while counter <= 10
 print counter

What the programmer probably meant was for the loop to print the numbers from 0 to 10. Unfortunately, what
this program does is print 0, forever. The programmer forgot to change counter, the sentry variable inside

the block. So remember, the values in the condition must change inside the loop block. If they never change,
the loop won't end, and you have yourself an infinite loop.

Avoiding Infinite Loops

One type of infinite loop is where the sentry variable is never updated, like you just saw. But there are more
insidious forms of the never-ending loop. Check out the next program. It does change the value of the sentry
variable in the loop body. But something is wrong, because the loop never ends. See if you can spot the
trouble before I explain what's going on.

Introducing the Losing Battle Program

The Losing Battle program describes the last, valiant fight of a hero overwhelmed by an army of trolls, a
scenario you might find in a role-playing game. The program narrates the battle action. It describes the
struggle, blow-by-blow, as the hero defeats a troll, but then takes more damage. In the end, the program
always ends with the death of the hero. Or does it? Here's the code:

Losing Battle
Demonstrates the dreaded infinite loop
Michael Dawson - 1/2/03

print "Your lone hero is surrounded by a massive army of trolls."
print "Their decaying green bodies stretch out, melting into the horizon."
print "Your hero unsheathes his sword and begins the last fight of his life.\n"

health = 10
trolls = 0
damage = 3

while health != 0:
 trolls += 1
 health = health - damage

 print "Your hero swings and defeats an evil troll, " \
 "but takes", damage, "damage points.\n"
print "Your hero fought valiantly and defeated", trolls, "trolls."
print "But alas, your hero is no more."

raw_input("\n\nPress the enter key to exit.")

Figure 3.9 shows a run of the program. This resulted in an infinite loop and I had to stop the process by
pressing Ctrl+C, or it would have continued.

Figure 3.9: It seems you have an immortal hero. The only way to end the program was to stop the
process.

So, what's going on?

Tracing the Program

Well, it looks like the program has a logical error. A good way to track down this kind of error is to trace your
program's execution. Tracing means you simulate the running of your program and do exactly what it would
do, following every command and keeping track of the values assigned to variables. This way, you can step
through the program, understand exactly what is happening at each point, and discover the circumstances
that conspire to produce the bug in your code.

The most basic way to trace a program is with old-fashioned pencil and paper. I created columns, one for each
variable and condition. So to start, my page looks like this:

health trolls damage health != 0

Right after the condition of the while structure is evaluated, my page looks like this:

health trolls damage health != 0

10 0 3 true

Since the condition is true, the loop executes for the first time. After one full time through and back up to
evaluate the condition again, my trace looks like this:

health trolls damage health != 0

10 0 3 true

7 1 3 true

After a few more times through the loop, my trace looks like:

health trolls damage health != 0

10 0 3 true

7 1 3 true

4 2 3 true

1 3 3 true

-2 4 3 true

I stopped the trace because it seemed like I was in an infinite loop. Since the value of health is negative
(and not equal to 0) in the last three lines of the trace, the condition is still true. The problem is, health will
never become 0. It will just grow in the negative direction each time the loop executes. As a result, the

condition will never become false, and the loop will never end.

health trolls damage health != 0 -2 4 3 true

-5 5 3 true

-7 6 3 true

I stopped the trace because it seemed like I was in an infinite loop. Since the value of health is negative
(and not equal to 0) in the last three lines of the trace, the condition is still true. The problem is, health will
never become 0. It will just grow in the negative direction each time the loop executes. As a result, the

condition will never become false, and the loop will never end.

Creating Conditions That Can Become False

In addition to making sure values in a while loop's condition change, you should be sure that the condition

can eventually evaluate to false; otherwise, you still have an infinite loop on your hands. In the case of the
Losing Battle program, the fix is easy. The line with the condition just needs to become

while health > 0:

Now, if health becomes 0 or negative, the condition evaluates to false and the loop ends. To be sure, you

can trace the program using this new condition:

health trolls damage health > 0

10 0 3 true

7 1 3 true

4 2 3 true

1 3 3 true

-2 4 3 false

And the program ends as it should. Figure 3.10 shows how the debugged program runs.

Figure 3.10: Now, the program runs correctly, avoiding an infinite loop. Your hero's fate, however, is not
as bright.

-2 4 3 true

-5 5 3 true

-7 6 3 true

I stopped the trace because it seemed like I was in an infinite loop. Since the value of health is negative
(and not equal to 0) in the last three lines of the trace, the condition is still true. The problem is, health will
never become 0. It will just grow in the negative direction each time the loop executes. As a result, the

condition will never become false, and the loop will never end.

Creating Conditions That Can Become False

In addition to making sure values in a while loop's condition change, you should be sure that the condition

can eventually evaluate to false; otherwise, you still have an infinite loop on your hands. In the case of the
Losing Battle program, the fix is easy. The line with the condition just needs to become

while health > 0:

Now, if health becomes 0 or negative, the condition evaluates to false and the loop ends. To be sure, you

can trace the program using this new condition:

health trolls damage health > 0

10 0 3 true

7 1 3 true

4 2 3 true

1 3 3 true

-2 4 3 false

And the program ends as it should. Figure 3.10 shows how the debugged program runs.

Figure 3.10: Now, the program runs correctly, avoiding an infinite loop. Your hero's fate, however, is not
as bright.

Treating Values as Conditions

If I asked you to evaluate 35 + 2 you'd come back quickly with 37. But if I asked you to evaluate 37 as either
true or false, you'd probably come back with, "Huh?" But the idea of looking at any value as either true or false
is valid in Python. Any value, of any type, can be treated this way. So, 2749, 8.6, "banana", 0, and "" can

each be interpreted as true or false. This may seem bizarre, but it's easy. The rules that establish true and
false are simple. More importantly, interpreting values this way can make for more elegant conditions.

Introducing the Maitre D' Program

If you haven't been snubbed at a fancy, French restaurant lately, then I have just the program for you. Maitre
D' welcomes you to the fine eatery and then asks you how much money you slip your host. If you give zero
dollars, then you are rightly ignored. If you give some other amount, then your table is waiting. Figures 3.11
and 3.12 show off the program.

Figure 3.11: When you don't tip the maitre d', there are no tables to be found.

Figure 3.12: This time, my money has helped cure the maitre d' of his amnesia.

From watching the program run, you might not be impressed. This seems like something you could have
already done. The difference is, there is no comparison operator used in this program. Instead, a value (the
amount of money) is treated as a condition. Take a look at the code to see how it works:

Maitre D'
Demonstrates treating a value as a condition
Michael Dawson - 1/3/03

print "Welcome to the Chateau D' Food"
print "It seems we are quite full this evening.\n"

money = int(raw_input("How many dollars do you slip the Maitre D'? "))

if money:
 print "Ah, I am reminded of a table. Right this way."
else:
 print "Please, sit. It may be a while."

raw_input("\n\nPress the enter key to exit.")

Interpreting Any Value as True or False

The new concept is demonstrated in the line:

if money:

Notice that money is not compared to any other value. money is the condition. When it comes to evaluating
numbers, 0 is false and everything else is true. So, the above line is equivalent to

if money != 0:

The first version is simpler, more elegant, and more intuitive. It reads more naturally and could be translated to
"if there is money".

The rules for what makes a value true or false are simple. The basic principal is this: any empty or zero value
is false, everything else is true. So, 0 evaluates to false, but any other number evaluates to true. The empty
string, "", is false, while any other string is true. As you can see, most every value is true. It's only the empty

or zero value that's false. You'll find that testing for an empty value is a common thing to do, so this way of
treating values can come up a lot in programs.

One last thing to note here is that if you enter a negative dollar amount, the maitre d' will still seat you.
Remember, for numbers, only 0 is false. So, all negative numbers are true, just like positive ones.

Creating Intentional Infinite Loops

Coming soon after a section called "Avoiding Infinite Loops," you might be more than a bit surprised to see a
section about creating infinite loops. Aren't infinite loops always a mistake? Well, if a loop were truly infinite,
that is, it could never end, then yes, it would be a logical error. But what I call intentional infinite loops are
infinite loops with an exit condition built into the loop body. The best way to understand an intentional infinite
loop is to see an example.

Introducing the Finicky Counter Program

The Finicky Counter program counts from 1 to 10 using an intentional infinite loop. It's finicky because it
doesn't like the number 5 and skips it. Figure 3.13 shows a run of the program.

Figure 3.13: The number 5 is skipped with a continue statement and the loop ends through a break

statement.

Here's the code to the program:

Finicky Counter
Demonstrates the break and continue statements
Michael Dawson - 1/3/03

count = 0
while True:
 count += 1
 # end loop if count is greater than 10
 if count > 10:
 break
 # skip 5
 if count == 5:
 continue
 print count

raw_input("\n\nPress the enter key to exit.")

Understanding True and False

You know that any value can be interpreted as true or false, but Python also has a direct way to represent

these values. True represents true. False (drumroll) represents false. You can use True and False like any

other value. You can use them in a condition or even assign them to a variable. I'll show you what I mean
through an interactive session.

>>> if True:
 print "I'm true!"

I'm true!

Because True is true, the if block executes and prints the string "I'm true!"

>>> game_over = True
>>> if game_over:
 print "Sorry, your game is over."

Sorry, your game is over.

Because game_over is equal to True, the if block executes and prints the string "Sorry, your game
is over."

>>> if False:
 print "I'm true!"
else:
 print "I'm false!"

I'm false!

Because False is not true, the if block is skipped and the else block runs, printing the string "I'm false!"

TRAP True and False didn't exist in Python before version 2.2. In earlier versions of Python, it was
common to use 1 to represent true and 0 to represent false.

Using the break Statement to Exit a Loop

I set up the loop with:

while True:

This technically means that the loop will continue forever, unless there is an exit condition in the loop body.
Luckily, I put one in:

 # end loop if count greater than 10
 if count > 10:
 break

Since count is increased by 1 each time the loop body begins, it will eventually reach 11. When it does, the
break statement, which means "break out of the loop", is executed and the loop ends.

Using the continue Statement to Jump Back to the Top of a Loop

Just before count is printed, I included the lines:

 # skip 5
 if count == 5:
 continue

The continue statement means "jump back to the top of the loop." At the top of the loop, the while
condition is tested and the loop is entered again if it's true. So when count is equal to 5, the program does
not get to the print count statement.

Instead it goes right back to the top of the loop and 5 is skipped and never printed.

Understanding When to Use break and continue

You can use break and continue in any loop you create. They aren't just restricted for use in intentional
infinite loops. But they should be used sparingly. Both break and continue make it harder for someone

(including you!) to see the flow of a loop and understand under what conditions it ends. Plus, you don't actually
need break and continue. Any loop you can write using them can be written without them.

In Python, there are times when an intentional infinite loop can be clearer than a traditional loop. In those few
cases, where it's really clunky to write the loop with a regular condition, some programmers use intentional
infinite loops. But again, I say avoid them when possible.

Using Compound Conditions

So far, you've only seen comparisons where exactly two values are involved. These are called simple
conditions. This is probably the most common way to create a condition. But you may find yourself wishing for
more power. Luckily, you can combine simple conditions together with logical operators. Combined, these
simple conditions become compound conditions. Using compound conditions, your programs can make
decisions based on how multiple groups of values compare.

Introducing the Exclusive Network Program

Exclusive clubs are no fun, unless you're a member. So, I created the Exclusive Network program. It simulates
an elite computer network where only a select few are members. The membership consists of me and several
top game designers in the world today (not bad company).

Like real-world computer systems, each person has to enter a username and a password. A member has to
enter both his or her username and password, or the member won't be able to log in. With a successful login,
the member is personally greeted. Also like real-world systems, everyone has a security level.

Because I'm not a total elitist, guests are allowed to log in. Guests have the lowest security level, though.

Figures 3.14 through 3.16 show off the program.

Figure 3.14: If you're not a member or a guest, you can't get in.

Figure 3.15: A guest can log in, but their security level is set quite low.

Figure 3.16: Looks like one of the guys logged in today.

Here's the code:

Exclusive Network
Demonstrates logical operators conditions
Michael Dawson - 1/3/03

print "\tExclusive Computer Network"
print "\t\tMembers only!\n"

security = 0
username = ""
while not username:
 username = raw_input("Username: ")

password = ""
while not password:
 password = raw_input("Password: ")

if username == "M.Dawson" and password == "secret":
 print "Hi, Mike."
 security = 5
elif username == "S.Meier" and password == "civilization":
 print "Hey, Sid."
 security = 3
elif username == "S.Miyamoto" and password == "mariobros":
 print "What's up, Shigeru?"
 security = 3
elif username == "W.Wright" and password == "thesims":
 print "How goes it, Will?"
 security = 3
elif username == "guest" or password == "guest":
 print "Welcome, guest."
 security = 1
else:
 print "Login failed. You're not so exclusive.\n"

raw_input("\n\nPress the enter key to exit.")

IN THE REAL WORLD

If you really want to implement a private network, you wouldn't write usernames and passwords directly
into your code. You'd probably use some type of database management system (DBMS). Database
management systems allow you to organize, access, and update related information. These systems are
powerful and could handle thousands or even millions of pairs of usernames and passwords, quickly and
securely.

Understanding the not Logical Operator

I wanted to make sure that the user enters something for the username and password. Just pressing the Enter
key, which results in the empty string, won't do. I wanted a loop that continues to ask for a username until the
user enters something. This is the loop I came up with for getting the username:

username = ""
while not username:
 username = raw_input("Username: ")

In the while condition, I used the logical not operator. It works a lot like the word "not." In English, putting

the word "not" in front of something creates a new phrase that means the opposite of the old one. In Python,
putting not in front of a condition creates a new condition that evaluates to the opposite of the old one.

That means not username is true when username is false. And not username is false when username
is true. Here's another way to understand how not works:

username not username

true false

false true

Since username is initialized to the empty string in the program, it starts out as false. That makes not
username true and the loop runs the first time. Then, the program gets a value for username from the user.
If the user just presses Enter, username is the empty string, just as before. And just as before, not
username is true and the loop keeps running. So, as long as the user just hits Enter, the loop keeps running,

and the user keeps getting prompted for a username.

But when the user finally enters something, username becomes a new string, something other than the empty
string. That makes username evaluate to true and not username evaluate to false. As a result, the loop

ends, just like I wanted.

The program does the same thing for the variable password.

Understanding the and Logical Operator

If a member wants to log in to this exclusive network, the member has to enter a username and password that
are recognized together. If, for example, Sid Meier wants to log in, he has to enter S.Meier for his username
and civilization for his password. If Sid doesn't enter both, just that way, he can't log in. S.Meier and
mariobros won't work. Neither will M.Dawson and civilization. The combination civilization and
S.Meier fails too. The program checks that Sid enters S.Meier for his username and civilization for

his password with the following code:

elif username == "S.Meier" and password == "civilization":

The line contains a single compound condition made up of two simple conditions. The simple conditions are
username == "S.Meier" along with password == "civilization". These are just like conditions
you've already seen, but they've been joined together by the and logical operator to form a larger, compound
condition, username == "S.Meier" and password == "civilization". This compound condition,

though longer than you're used to, is still just a condition, which means that it can be either true or false.

So, when is username == "S.Meier" and password == "civilization" true, and when is it false?
Well, just like in English, "and" means both. So, the condition is true only if both username == "S.Meier"
and password == "civilization" are true; otherwise it's false. Here's another way to see how this

works:

username ==
"S.Meier"

password ==
"civilization"

username == "S.Meier" and password
== "civilization"

true true true

true false false

false true false

false false false

HINT Put and between two conditions when you want to create a new condition that is true only if both

original conditions are true.

So, when Sid enters S.Meier for his username and civilization for his password, the compound

condition is true. Sid is then greeted and assigned a security level.

The program, of course, works for others besides Sid Meier. Through an if-elif-else structure, the
program checks four different username and password pairs. If a user enters a recognized pair, the member

is personally greeted and assigned a security value.

If a member or guest doesn't properly log in, the computer prints a "failed login" message and tells the person
that he or she is not so exclusive.

Understanding the or Logical Operator

Guests are allowed in the network, too, but with a limited security level. To make it easy for a guest to try the
network, all he or she has to do is enter guest for either the username or password. The following lines of

code log in a guest:

elif username == "guest" or password == "guest":
 print "Welcome, guest."
 security = 1

The elif condition, username == "guest" or password == "guest", looks a lot like the other

conditions, the ones used for the members. But there's a major difference. The guest condition is created by
using the logical or operator.

A compound condition created with an or is true as long as at least one of the simpler conditions is true.

Again, the operator works just like in English. "Or" means either, so if either condition is true, the compound

condition is true. In this particular case, if username == "guest" is true or if password == "guest" is
true, or even if both are true, then username == "guest" or password == "guest" is true; otherwise,
it's false. Here's another way to look at how or works:

username == "guest" password == "guest" username == "guest" or password == "guest"

true true true

true false true

false true true

false false false

Planning Your Programs

So far, all the programs you've seen have been pretty simple. The idea of planning any of them formally on
paper probably seems like overkill. It's not. Planning your programs, even the small ones, will almost always
result in time (and often frustration) saved.

Programming is a lot like construction. So, imagine a contractor building a house for you without a blueprint.
Yikes! You're liable to end up with a house that has 12 bathrooms, no windows, and a front door on the
second floor. Plus, it will cost you 10 times the estimated price.

Programming is the same way. Without a plan, you'll likely struggle through the process, wasting time. You
might even end up with a program that doesn't quite work.

Program planning is so important that there's an entire field of software engineering dedicated to it. But even a
beginning programmer can benefit from a few simple planning tools and techniques.

Creating Algorithms with Pseudocode

An algorithm is a set of clear, easy-to-follow instructions for accomplishing some task. An algorithm is like a
blueprint for your program. It's something you planned out, before programming, to guide you along as you
code.

An algorithm isn't just a goal—it's a concrete list of steps to be followed in order. So, for example, "Be a
millionaire" is not really an algorithm. It's more like a goal. But a worthy one. So I wrote the Make a Million
Dollars algorithm. Here it is:

if you can think of a new and useful product
 then that's your product
otherwise
 repackage an existing product as your product
make an infomercial about your product
show the infomercial on TV
charge $100 per unit of your product
sell 10,000 units of your product

There you go. It's a clear series of finite steps that can be followed to achieve the goal.

Algorithms are generally written in something called pseudocode, and mine is no exception. Pseudocode falls
somewhere between English and a programming language. Anyone who understands English can understand
my algorithm. But at the same time, my algorithm should feel vaguely like a program. The first four lines
resemble an if-else structure, and that's intentional.

Applying Stepwise Refinement to Your Algorithms

Like any outline or plan, your algorithm might not be finished after one draft. Often, algorithms need multiple
passes before they can be implemented in code. Stepwise refinement is one process used to rewrite
algorithms so that they're ready for implementation. Stepwise refinement is pretty simple. Basically, it means
"make it more detailed." By taking each step in an algorithm and breaking it down into a series of simpler
steps, the algorithm becomes closer to programming code. In stepwise refinement, you keep breaking down

each step until you feel that the entire algorithm could be fairly easily translated into a program. As an
example, take a step from the Make a Million Dollars algorithm:

create an infomercial about your product

This might seem like too vague a task. How do you create an infomercial? Using stepwise refinement, the
single step can be broken down into several others. So, it becomes the following:

write a script for an infomercial about your product
rent a TV studio for a day
hire a production crew
hire an enthusiastic audience
film the infomercial

If you feel that these five steps are clear and achievable, then that part of the algorithm has been thoroughly
refined. If you're still unclear about a step, refine it some more. Continue with this process and you will have a
complete algorithm and a million dollars.

Returning to the Guess My Number Game

The Guess My Number game combines many of the concepts you learned in this chapter. But, more
importantly, it represents the first full game that you can use to show off to your friends, family, and members
of the opposite sex.

Planning the Program

To plan the game, I wrote some pseudocode first:

pick a random number
while the player hasn't guessed the number
 let the player guess
congratulate the player

This isn't a bad first pass, but it's missing some important elements. First, the program needs to tell the player
if the guess is too high, or too low. Second, the program should keep track of how many guesses the player
has made and then tell the player this number at the end of the game.

HINT It's okay if your first program plan isn't complete. Start planning with the major ideas first, then fill in
the gaps until it feels done.

Okay, here's a refinement of my algorithm:

welcome the player to the game and explain it
pick a random number between 1 and 100
ask the player for a guess
set the number of guesses to 1
 while the player's guess does not equal the number
 if the guess is greater than the number
 tell the player to guess lower
 otherwise
 tell the player to guess higher
 get a new guess from the player
 increase the number of guesses by 1
congratulate the player on guessing the number
let the player know how many guesses it took

Now I feel ready to write the program. Take a look over the next few sections and see how directly
pseudocode can be translated into Python.

Creating the Initial Comment Block

Like all good programs, this one begins with a block of comments, describing the program's purpose and
identifying the author:

Guess My Number
#
The computer picks a random number between 1 and 100
The player tries to guess it and the computer lets
the player know if the guess is too high, too low
or right on the money
#
Michael Dawson - 1/8/03

Importing the random Module

To be fun, the program needs to generate a random number. So, I imported the random module:

import random

Explaining the Game

The game is simple, but a little explanation wouldn't hurt:

print "\tWelcome to 'Guess My Number'!"
print "\nI'm thinking of a number between 1 and 100."
print "Try to guess it in as few attempts as possible.\n"

Setting the Initial Values

Next, I set all the variables to their initial values:

set the initial values
the_number = random.randrange(100) + 1
guess = int(raw_input("Take a guess: "))
tries = 1

the_number represents the number the player has to guess. I assign it a random integer from 1 to 100 with a
call to random.randrange(). Next, raw_input() gets the player's first guess. int() converts the guess
to an integer. I assign this number to guess. I assign tries, which represents the number of guesses so far,
the value 1.

Creating a Guessing Loop

This is the core of the program. The loop executes as long as the player hasn't correctly guessed the
computer's number. During the loop, the player's guess is compared to the computer's number. If the guess is
higher than the number, Lower. . . is printed; otherwise, Higher. . . is printed. The player enters the

next guess, and the number of guesses counter is incremented.

guessing loop
while (guess != the_number):

 if (guess > the_number):
 print "Lower..."
 else:
 print "Higher..."

 guess = int(raw_input("Take a guess: "))
 tries += 1

Congratulating the Player

When the player guesses the number, guess is equal to the_number, which means that the loop condition,
guess != the_number, is false and the loop ends. At that point, the player needs to be congratulated:

print "You guessed it! The number was", the_number
print "And it only took you", tries, "tries!\n"

The computer tells the player what the secret number was and how many tries it took the player to guess it.

Waiting for the Player to Quit

As always, the last line waits patiently for the player to press the Enter key:

raw_input("\n\nPress the enter key to exit.")

Summary

In this chapter, you saw how to change the flow of your program. You learned that the key to changing the flow
is the computer's ability to evaluate conditions. You saw how to create simple and compound conditions. You
learned about the if, if-else, and if-elif-else structures, which allow programs to make a decision.
You met the while structure, useful for repeating code sections. You learned about the importance of

program planning. You saw how to plan a program by creating an algorithm in pseudocode. You also learned
how to generate random numbers to add some excitement to your programs.

Challenges
Write a program that simulates a fortune cookie. The program should display one of five unique
fortunes, at random, each time it's run.

1.

Write a program that flips a coin 100 times and then tells you the number of heads and tails.2.

Modify the Guess My Number game so that the player has a limited number of guesses. If the player
fails to guess in time, the program should display an appropriately chastising message.

3.

Here's a bigger challenge. Write the pseudocode for a program where the player and the computer
trade places in the number guessing game. That is, the player picks a random number between 1 and
100 that the computer has to guess. Before you start, think about how you guess. If all goes well, try
coding the game.

4.

Chapter 4: for Loops, Strings, and Tuples: The Word

Jumble Game

 Download CD Content

Overview

You've seen how variables are a great way to access information, but as your programs grow in size and
complexity, so can the number of your variables. Keeping track of all of them can become a lot of work.
Therefore, in this chapter, you'll learn about the idea of sequences and meet a new type, called the tuple,
which let's you organize and manipulate information in ordered groups. You'll also see how a type you've
already encountered, the string, is really a sequence too. You'll also learn about a new kind of loop that's built
just for working with sequences. Specifically, you'll learn how to do the following:

Construct for loops to move through a sequence

Use the range() function to create a sequence of numbers

Treat strings as sequences

Use tuples to harness the power of sequences

Use sequence functions and operators

Index and slice sequences

Introducing the Word Jumble Game

The Word Jumble game, featured in Figure 4.1, utilizes many of the new ideas you'll learn in this chapter.

Figure 4.1: The Word Jumble game. This jumble looks "difficult."

This game re-creates the typical word jumble you might find in the Sunday paper (you know, that thing people
used to get their news from before the Internet). The computer picks a random word from a group and then
creates a jumbled version of it, where the letters are in random order. The player has to guess the original
word to win the game.

Using for Loops

In the last chapter, you saw one kind of loop, the while loop, which repeats part of your code based on a
condition. As long as the condition is true, some code repeats. The for loop also repeats code, but not based
on a condition. Instead, the for loop repeats part of a program based on a sequence, an ordered list of

things. If you've ever written a list of, say, your top 10 favorite movies, then you've created a sequence.

A for loop repeats its loop body for each element of the sequence, in order. When it reaches the end of the
sequence, the loop ends. As an example, consider your movie list sequence again. A for loop could go
through this sequence of movie titles, one at a time, and print each one. But the best way to understand a for

loop is to see one in action.

Introducing the Loopy String Program

This program takes a word from the user and prints its letters, in order, on separate lines. Take a look at a
sample run in Figure 4.2.

Figure 4.2: A for loop goes through a word the user enters, one character at a time.

This simple program provides a good example of a for loop. Here's the code:

Loopy String
Demonstrates the for loop with a string
Michael Dawson - 1/26/03

word = raw_input("Enter a word: ")

print "\nHere's each letter in your word:"
for letter in word:
 print letter

raw_input("\n\nPress the enter key to exit.")

Understanding for Loops

The new idea in this program is the for loop, which is just the following two short lines:

for letter in word:
 print letter

Even before you know anything about for loops, the code is pretty clear. But I'll explain exactly how it works.
Any string, like the one I entered, "Loop", is really a sequence. All sequences are made up of elements. For
strings, each element is one character. In this case, the first element is the character "L", the second is "o",
and so on. Since a for loop goes through a sequence one element at a time, this loop goes through the
letters in "Loop" one at a time. To begin, letter gets the first character in word, which is "L". Next, the
loop body, which is just the print statement, displays L. Then, letter gets the next character in word,
which is "o". The computer displays o, and the loop continues until each character in the string "Loop" is

displayed.

IN THE REAL WORLD

Most modern languages offer a form of the for loop. However, these loops tend to be more restrictive.

The loops generally only allow a counter variable, which must be assigned a number. Then, the counter
changes by the same amount, each time the loop executes. The ability to loop directly through a
sequence makes the Python for loop more flexible than this other, more traditional type of loop.

Creating a for Loop

To create a for loop, you can follow the example in the program. Start with for, followed by a variable for
each element, followed by in, followed by the sequence you want to loop through, followed by a colon, and

finally, the loop body. That's all there is to it.

Counting with a for Loop

When you write a program, you'll often find that you need to count. And for loops are usually the best way to
go. In combination with the for loop, you can use Python's range() function to count in all kinds of ways.

Introducing the Counter Program

The Counter program is nothing fancy, but it shows you how to use the range() function to generate lists of
numbers. Paired with a for loop, you can use the list to count forwards or backwards, or even to skip

numbers if you like. Take a look at Figure 4.3 to see the results of the program.

Figure 4.3: The range() function and for loop allow you to count forwards, by fives, and backwards.

Here's the code for the program:

Counter
Demonstrates the range() function
Michael Dawson - 1/26/03

print "Counting:"
for i in range(10):
 print i,

print "\n\nCounting by fives:"
for i in range(0, 50, 5):
 print i,

print "\n\nCounting backwards:"
for i in range(10, 0, -1):
 print i,

raw_input("\n\nPress the enter key to exit.\n")

IN THE REAL WORLD

It's traditional to name generic counter and loop variables i, j, or k. Normally, you want to create
descriptive, clear variable names. Believe it or not, i, j, and k are clear to experienced programmers,

who know when reading your code that you just need a quick, counter variable.

Counting Forwards

The first loop in the program counts forwards:

for i in range(10):
 print i,

This for loop works just like the for loop you saw in the Loopy String program—it loops through a sequence.

It just may be hard to tell what the sequence is. The sequence the loop moves through is created by the
range() function. It creates a sequence of numbers. Give range() a positive integer and it will create a

sequence starting with 0, up to, but not including, the number you gave it. Take a look at part of an interactive
session I ran with IDLE:

>>> range(5)
[0, 1, 2, 3, 4]
>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

TRICK Even experienced programmers sometimes forget the way a function or a command works. But
instead of guessing, they open an interactive window and experiment. When they get the results
they want, they jump back to script mode and use what they learned to continue coding.

Another way to look at this loop is to substitute the results of the range() function into the code when you

read it. So, when you look at the code, you can imagine that it reads:

for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
 print i,

and that the range() function call is replaced with the sequence of numbers it creates. In fact, this loop is a

valid one. You can create a list of values by enclosing them in brackets, separated by commas. But don't go
off creating a bunch of lists just yet. You'll learn all about lists in the Chapter 5, "Lists and Dictionaries: The
Hangman Game," I promise.

Counting by Fives

The next loop counts by fives:

for i in range(0, 50, 5):
 print i,

It does this with a call to range() that creates a list of numbers that are multiples of 5. To create a sequence
of numbers with range(), you can give it the start point, the end point, and the number by which to count.

Here, the sequence starts at 0, and goes up by 5 each time, to, but not including, 50. I used interactive mode
again so that you can see the exact sequence range(0, 50, 5) produces:

>>> range(0, 50, 5)
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

Notice though that the sequence ends at 45. Remember, 50 is the end point, so it's not included. If you wanted
to include 50, your end point would have to be greater than 50. So, range(0, 51, 5) would do the trick.

Counting Backwards

The last loop in the program counts backwards:

for i in range(10, 0, -1):
 print i,

It does this because the last number in the range() call is -1. This tells the function to go from the start point

to the end point by adding -1 each time. This is the same as saying "subtract 1." Again, the end point isn't
included, so the loop counts from 10 down to 1 and does not include 0.

TRICK There's no law that says you have to use the loop variable inside a for loop. You might find that

you want to repeat some action a specific number of times. To do this, create a for loop and just
ignore the loop variable. For example, let's say I just wanted to print "Hi!" 10 times. The

following two lines are all I would need:

for i in range(10):
 print "Hi!"

Using Sequence Operators and Functions with Strings

As you just learned, strings are one type of sequence, made up of individual characters. Python offers some
useful functions and operators that work with any kind of sequence, including strings. These operators and
functions can tell you basic but important things about a sequence, such as how long it is or whether a certain
element is in it.

Introducing the Message Analyzer Program

This next program analyzes any message that you enter. It tells you how long the message is and whether or
not it contains the most common letter in the English language (the letter "e"). The program accomplishes this
with a new sequence function and sequence operator. Figure 4.4 shows off the program.

Figure 4.4: This program uses the len() function and the in operator to produce some information

about your message.

Here's the code for the program:

Message Analyzer
Demonstrates the len() function and the in operator
Michael Dawson - 1/26/03

message = raw_input("Enter a message: ")

print "\nThe length of your message is:", len(message)

print "\nThe most common letter in the English language, 'e',",
if "e" in message:
 print "is in your message."
else:
 print "is not in your message."

raw_input("\n\nPress the enter key to exit.")

Using the len() Function

After the program imports the random module and gets the user's message, it prints the message length with

print "\nThe length of your message is:", len(message)

You can give any sequence you want to len() and it will tell you that sequence's length. A sequence's length
is the number of elements it has. Since message has 10 characters in it (you count every character, including

the space and exclamation point), it has a length of 10, just like the computer told you.

Using the in Operator

The letter "e" is the most common letter in English. The program uses the following lines to test whether "e" is
in the message the user entered:

print "\nThe most common letter in the English language, 'e',",
if "e" in message:
 print "is in your message."
else:
 print "is not in your message."

The condition in the if statement is "e" in message. If message contains the character "e", it's true. If
message doesn't contain "e", it's false. In the sample run, the value of message is "Game Over!", which
does contain the character "e". So, the condition "e" in message evaluated to true and the computer
printed "is in your message." If the condition had been false (for example, if message had been equal
to "Python Programming"), then the computer would have displayed is not in your message. If an

element is in a sequence, it's said to be a member of the sequence.

You can use in anywhere in your own programs to check if an element is a member of sequence. Just put the
element you want to check for, followed by in, followed by the sequence. This creates a condition. If the

element is a member, the condition is true; otherwise it's false.

TRAP The in operator can only check for a single element in a sequence. In the case of strings, that
means it can only check for a single character. So, if "e" in message is a valid use of in, but
if "Over" in message is not. Using in to test if more than one letter is in a string will get you

an nice, juicy error.

Indexing Strings

By using a for loop, you're able to go through a string, one character at a time, in order. This is known as

sequential access, which means you have to go through a sequence one element at a time, starting from the
beginning. Sequential access is like going through a stack of heavy boxes that you can only lift one at a time.
To get to the bottom box in a stack of five, you'd have to lift the top box, then the next box, followed by the
next box, then one more to finally get to the last box. Wouldn't it be nice to just grab the last box without
messing with any of the others? This kind of direct access is called random access. Random access allows
you to get to any element in a sequence directly. Fortunately, there's a way to randomly access elements of a
sequence. It's called indexing. Through indexing, you specify a position (or index) number in a sequence and
get the element at that position. In the box example, you could get the bottom box directly, by asking for box
number five.

Introducing the Random Access Program

The Random Access program uses sequence indexing to directly access random characters in a string. The
program picks a random position from the string "index", and prints the letter and the position number. The

program does this 10 times to give a good sampling of random positions. Figure 4.5 shows the program in
action.

Figure 4.5: You can directly access any character in a string through indexing.

The following is the code for the program:

Random Access
Demonstrates string indexing
Michael Dawson - 1/27/03

import random

word = "index"
print "The word is: ", word, "\n"

high = len(word)
low = -len(word)
for i in range(10):
 position = random.randrange(low, high)
 print "word[", position, "]\t", word[position]

raw_input("\n\nPress the enter key to exit.")

Working with Positive Position Numbers

In this program, one of the first things I do is assign a string value to a variable:

word = "index"

Nothing new here. But by doing this, I create a sequence (like every time I create a string) where each
character has a numbered position. The first letter, "i," is at position 0. (Remember, computers usually start
counting from 0.) The second letter, "n," is at position 1. The third letter, "d," is at position 2, and so on.

Accessing an individual character of a string is easy. To access the letter in position 0 from the variable word,
you'd just type word[0]. For any other position, you'd just substitute that number. To help cement the idea,

take a look at part of an interactive session I had:

>>> word = "index"
>>> print word[0]
i
>>> print word[1]
n
>>> print word[2]
d
>>> print word[3]
e
>>> print word[4]
x

TRAP Since there are five letters in the string "index", you might think that the last letter, "x," would be

at position 5. But you'd be wrong. There is no position 5 in this string, because the computer begins
counting at 0. Valid positive positions are 0, 1, 2, 3, and 4. Any attempt to access a position 5 will
cause an error. Take a look at an interactive session for proof:

>>> word = "index"
>>> print word[5]
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in ?
 print word[5]
IndexError: string index out of range

Somewhat rudely, the computer is saying there is no position 5. So remember, the last element in a
sequence is at the position number of its length minus one.

Working with Negative Position Numbers

Except for the idea that the first letter of a string is at position 0 and not 1, working with positive position

numbers seems pretty natural. But there's also a way to access elements of a sequence through negative
position numbers. With positive position numbers, your point of reference is the beginning of the sequence.
For strings, this means that the first letter is where you start counting. But with negative position numbers, you
start counting from the end. For strings, that means you start counting from the last letter and work backwards.

The best way to understand how negative position numbers work is to see an example. Take a look at another
interactive session I had, again, using the string "index":

>>> word = "index"
>>> print word[-1]
'x'
>>> print word[-2]
'e'
>>> print word[-3]
'd'
>>> print word[-4]
'n'
>>> print word[-5]
'i'

You can see from this session that word[-1] accesses the last letter of "index", the "x." When using

negative position numbers, -1 means the last element, the index -2 means the second to the last element, the
index -3 means the third to the last element, and so on. Sometimes it makes more sense for your reference
point to be the end of a sequence. For those times, you can use negative position numbers.

Figure 4.6 provides a nice way to see the string "index" broken up by position numbers, both positive and

negative.

Figure 4.6: You can access any letter of "index" with a positive or negative position number.

Accessing a Random String Element

It's time to get back to the Random Access program. To access a random letter from the "index", I need to
generate random numbers. So, the first thing I did in the program was import the random module:

import random

Next, I wanted a way to pick any valid position number in word, negative or positive. I wanted my program to

be able to generate a random number between -5 and 4, inclusive, because those are all the possible position
values of word. Luckily, the random.randrange() function can take two end points and produce a random

number from between them. So, I created two end points:

high = len(word)
low = -len(word)

high gets the value 5, because "index" has five characters in it. The variable low gets the negative value
of the length of the word (that's what putting a minus sign in front of a number does). So low gets the value of

-5. This represents the range from which I want to grab a random number.

Actually, I want to generate a random number between, and including, -5 up to, but not including, 5. And that's
exactly the way the random.randrange() function works. If you pass it two arguments, it will produce a

random number from and including the low end point, up to, but not including, the high end point. So in my
sample run, the line:

 position = random.randrange(low, high)

produces either -5, -4, -3, -2, -1, 0, 1, 2, 3, or 4. This is exactly what I want, since these are all the possible
valid position numbers for the string "index".

Finally, I created a for loop that executes 10 times. In the loop body, the program picks a random position

value and prints that position value and corresponding letter:

for i in range(10):
 position = random.randrange(low, high)
 print "word[", position, "]\t", word[position]

Understanding String Immutability

Sequences fall into one of two categories: mutable or immutable. (Again, more fancy computer jargon.)
Mutable means changeable. So, a sequence that's a mutable sequence is one that can change. Immutable
means unchangeable. So, a sequence that's immutable is one that can't change. Strings are immutable
sequences, which means that they can't change. So, for example, the string "Game Over!" will always be
the string "Game Over!". You can't change it. In fact, you can't change any string you create. Now, you

might think, from your experience with strings, that I'm totally wrong on this. You might even run an interactive
session to prove that you can change a string, maybe something resembling this:

>>> name = "Chris"
>>> print name
Chris
>>> name = "Jackson"
>>> print name
Jackson

You might offer this as proof that you can change a string. After all, you changed the string "Chris" to
"Jackson". But, you didn't change any strings in this session. You just created two different strings. First,
you created a string "Chris" and assigned it to the variable name. Then, you created another string,
"Jackson", and assigned it to name. Now, both "Chris" and "Jackson" are great names, but they're different

names and always will be, just as they are different strings and always will be. Take a look at Figure 4.7 for a
visual representation of what happened in the interactive session.

Figure 4.7: First, name gets the string "Chris", then it gets a different string, "Jackson". But no string

values ever change.

Another way to think about this is to imagine that strings are written in ink on pieces of paper. You can throw
out a piece of paper with a string on it and replace it with another piece of paper with a new string on it, but
you can't change the words once they've been written.

You might think this is much ado about nothing. So what if a string is immutable? But string immutability does
have consequences. Since you can't change a string, you can't assign a new character to a string through
indexing. Here's an interactive session to show you what I mean:

>>> word = "game"
>>> word[0] = "l"
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in ?
 word[0] = "l"

TypeError: object doesn't support item assignment

In this session, I wanted to change the string "game" to the string "lame" (obviously, I didn't much like the
game I was referring to). All I needed to do was change the letter "g" to an "l." So I just assigned "l" to the
first position in the string, word[0]. But as you can see, this resulted in a big, fat error. The interpreter even

tells me that strings don't support item assignment (you can't assign a new value to a character in a string).

But, just because you can't alter a string doesn't mean you can't create new strings from existing ones.

Building a New String

You've already seen how you can concatenate two strings with the + operator. Sometimes, you may want to

build a new string, one character at a time. Since strings are immutable, what you'll really be doing is creating
a new string every time you use the concatenation operator.

Introducing the No Vowels Program

This next program, No Vowels, takes a message from the user and prints it, minus any vowels. Figure 4.8
shows the program in action.

Figure 4.8: Using a for loop, new strings are created. The program skips the concatenation operation for

any vowels.

The program creates a new string of the original message, without the vowels. Really what it does is create a
series of new strings. Here's the code:

No Vowels
Demonstrates creating new strings with a for loop
Michael Dawson - 1/27/03

message = raw_input("Enter a message: ")
new_message = ""
VOWELS = "aeiou"

print
for letter in message:
 if letter.lower() not in VOWELS:
 new_message += letter
 print "A new string has been created:", new_message

print "\nYour message without vowels is:", new_message

raw_input("\n\nPress the enter key to exit.")

Creating Constants

After the program gets the message from the user and creates an empty new message, it creates a string:

VOWELS = "aeiou"

This variable, VOWELS, is assigned a string of all the vowels. You probably notice that the variable name is in

all caps, contrary to what you have learned: that, traditionally, variable names are in lowercase. Well, I haven't
veered from tradition here. In fact, there's a special meaning associated with variable names in all caps.
They're called constants and refer to a value that is not meant to change (their value is constant).

Constants are valuable to programmers in two ways. First, they make programs clearer. In this program, I can
use the variable name VOWELS anywhere I need the sequence of vowels, instead of the string "aeiou".

Using the variable name instead of the string is clearer. When you see the variable name, you understand
what it means, but you might be confused by seeing the odd-looking string itself. Second, constants save
retyping (and possibly errors from mistyping). Constants are especially useful if you have a long value, like a
very long number or string. Use a constant in programs where you have the same, unchanging value used in
multiple places.

TRAP You have to be careful when you create constants by making an all-caps variable name. Even
though you're saying to yourself and other programmers that this variable will always refer to the
same value, there's nothing in Python that will stop you from changing it in your program. This
naming practice is simply a convention. So, once you create a variable with a name in all caps,
make sure to treat it as unchangeable.

IN THE REAL WORLD

In some programming languages, constants are exactly that. They can't be changed once they're defined.
That's the safest way to create and use constants. In Python, though, there isn't a simple way to create
true constants of your own.

Creating New Strings from Existing Ones

The real work of the program happens in the loop. The program creates a new message, without any vowels,
as the loop runs. Each time through, the computer checks the next letter in the original message. If it's not a
vowel, it adds this letter to the new message it's creating. If it is a vowel, the program moves on to the next
letter. You know that a program can't literally add a character to a string, so, more precisely, when the program
comes across a character that's not a vowel, it concatenates the new message it has so far with this
character. The code that accomplishes this is:

for letter in message:
 if letter.lower() not in VOWELS:
 new_message += letter
 print "A new string has been created:", new_message

There are two new ideas in the loop, so let me go over both of them. First, Python is picky when dealing with
strings and characters. "A" is not the same as "a". Since VOWELS is assigned a string that contains only
lowercase letters, I needed to make sure that I checked only lowercase letters when using the in operator.
That's why I used letter.lower().

TRICK Often, when you compare two strings, you don't care about the case matching, only the letters. If
you ask a player if he or she wants to continue a game, the string "Yes" is as good as the string
"yes". Well, in these instances, just make sure to convert both strings to the same case (upper-

or lowercase, it doesn't matter) before you compare them.

Here's an example. Let's say I want to compare two strings, name and winner, to see if they are

equal, and I don't care about matching the case. I could create the condition:

name.lower() == winner.lower()

This condition is true whenever name and winner each have the same sequence of characters,
regardless of case. So, "Larry" and "larry" is a match. "LARRY" and "larry" is too. Even
"LaRrY" and "lArRy" works.

Second, you also might notice that I used the augmented assignment operator, +=, in the program for string

concatenation. You saw the augmented assignment operators with numbers, but they also work with strings.
So, this line:

 new_message += letter

is exactly the same as

 new_message = new_message + letter

Slicing Strings

Indexing is a useful technique, but you aren't restricted to copying just one element at a time from a sequence.
You can make copies of continuous sections of elements (called slices). You can copy (or slice) one element
(just like indexing) or part of a sequence (like, say, the middle three elements). You can even create a slice
that is a copy of the entire sequence. So, for strings, that means you can grab anything ranging from a single
character, to a group of consecutive characters, to the entire string.

Introducing the Pizza Slicer Program

The Pizza Slicer program lets you slice the string "pizza" any way you want. It's a great, interactive way to

help you understand slicing. All you do is enter the starting and ending positions of the slice, and the program
displays the results. Figure 4.9 shows off the program.

Figure 4.9: Fresh, hot slices of "pizza", made just the way you asked. The program also offers a "cheat

sheet" so you can visualize how a slice will be created.

Here's the code:

Pizza Slicer
Demonstrates string slicing
Michael Dawson - 1/27/03

word = "pizza"

print \
"""
 Slicing 'Cheat Sheet'
0 1 2 3 4 5
+—--+—--+—--+—--+-—-+
| p | i | z | z | a |
+—-+—-+—-+—-+—-+
-5 -4 -3 -2 -1

"""

print "Enter the beginning and ending index for your slice of 'pizza'."
print "Press the enter key at 'Begin' to exit."

begin = None
while begin != "":
 begin = (raw_input("\nBegin: "))

 if begin:
 begin = int(begin)

 end = int(raw_input("End: "))

 print "word[", begin, ":", end, "]\t\t",
 print word[begin:end]

raw_input("\n\nPress the enter key to exit.")

Introducing None

Before you get to the code about slicing, take a look at this line which introduces a new idea:

begin = None

The line assigns a special value, called None, to begin. None is Python's way of representing nothing. None

makes a good placeholder for a value. It also evaluates to false when treated as a condition. I used it here
because I wanted to initialize begin for use in the while loop condition.

Understanding Slicing

Creating a slice is similar to indexing. But instead of using a single position number, you supply a starting
position and ending position. Every element between the two points becomes part of the slice. Figure 4.10
shows a way to look at slicing end point numbers for the string "pizza". Notice that it's a slightly different

numbering system than the index numbering in Figure 4.6.

Figure 4.10: An example of slicing end point numbers for the string "pizza". You can use any

combination of positive and negative end points for your slice.

To specify the end points of a slice, include both in brackets, separated by a colon. Here's a quick interactive
session to show you what I mean:

>>> word = "pizza"
>>> print word[0:5]
pizza
>>> print word[1:3]
iz
>>> print word[-4:-2]
iz
>>> print word[-4:3]
iz

word[0:5] returns the entire string because all its characters are between those two end points. word[1:3]
returns the string "iz" because those two characters are between the end points. Just like with indexing, you
can use negative numbers. word[-4:-2] also produces the string "iz" because those characters are

between the two negative positions. You can also mix and match positive and negative end points. This works
just like creating any other slice; the elements between the two position numbers will be in the slice. So,
word[-4:3] also produces the string "iz", because they are the two characters between those two end

points.

TRAP If you create an "impossible" slice, where the starting point is bigger than the ending point, like
word[2:1], you won't cause an error. Instead, Python will quietly return an empty sequence. For

strings, that means you'll get the empty string. So be careful, because this is probably not the kind
of result you're after.

Creating Slices

Inside the loop of program Pizza Slicer, the program prints the syntax for creating a slice based on the
beginning and ending positions the user entered, through the following line:

 print "word[", begin, ":", end, "]\t\t",

Then, the program prints the actual slice using the variables begin and end:

 print word[begin:end]

Using Slicing Shorthand

Although you can get every possible slice by specifying two numbers, there are a few slicing shortcuts you can
use. You can omit the beginning point for the slice to start the slice at the beginning of the sequence. So,
given that word has been assigned "pizza", the slice word[:4] is exactly the same as word[0:4]. You
can omit the ending point so that the slice ends with the very last element. So, word[2:] is just shorthand for
word[2:5]. You can even omit both numbers to get a slice that is the entire sequence. So, word[:] is
shorthand for word[0:5].

Here's an interactive session to back up this proposition:

>>> word = "pizza"
>>> word[0:4]
'pizz'
>>> word[:4]
'pizz'
>>> word[2:5]
'zza'
>>> word[2:]
'zza'
>>> word[0:5]
'pizza'
>>> word[:]
'pizza'

TRICK If there's one bit of slicing shorthand you should remember, it's that [:] returns a complete copy

of a sequence. As you program, you'll find you may need to make a copy of a sequence, and this
is a quick and efficient way to do just that.

Creating Tuples

Tuples are a type of sequence, like strings. But unlike strings, which can only contain characters, tuples can
contain elements of any type. That means you can have a tuple that stores a bunch of high scores for a game,
or one that stores a group of employee names. But tuple elements don't have to all be of the same type. You
could create a tuple with both strings and numbers, if you wanted. And you don't have to stop at strings and
numbers. You can create a tuple that contains a sequence of graphic images, sound files, or even a group of
aliens (once you learn how to create these things, which you will in later chapters). Whatever you can assign
to a variable, you can group together and store as a sequence in a tuple.

Introducing the Hero's Inventory Program

Hero's Inventory maintains the inventory of a hero from a typical role-playing game. Like most role-playing
games ever created, the hero is from a small, insignificant village. His father was, of course, killed by an evil
warlord (What's a quest without a dead father?). And now that the hero has come of age, it's time for him to
seek his revenge.

In this program, the hero's inventory is represented by a tuple. The tuple contains strings, one for each item in
the hero's possession. The hero starts out with nothing, but then I give him a few items. Figure 4.11 shows the
humble beginnings of our hero's journey.

Figure 4.11: At first, the hero has no items in his inventory. Then, the program creates a new tuple with
string elements and our hero is stocked.

Here's the code for the program:

Hero's Inventory
Demonstrates tuple creation
Michael Dawson - 1/29/03

create an empty tuple
inventory = ()

treat the tuple as a condition
if not inventory:
 print "You are empty-handed."

raw_input("\nPress the enter key to continue.")

create a tuple with some items
inventory = ("sword",
 "armor",
 "shield",
 "healing potion")

print the tuple
print "\nThe tuple inventory is:\n", inventory

print each element in the tuple
print "\nYour items:"
for item in inventory:
 print item

raw_input("\n\nPress the enter key to exit.")

Creating an Empty Tuple

To create a tuple, you just surround a list of values, separated by commas, with parentheses. Even a pair of
lone parentheses is a valid (but empty) tuple. I created an empty tuple in the first part of the program to
represent that the hero has nothing:

inventory = ()

It's as simple as that. So in this line, the variable inventory gets an empty tuple.

Treating a Tuple as a Condition

When you learned about conditions, you saw that you could treat any value in Python as a condition. That
means you can treat a tuple as a condition, too. And that's what I did in the next lines:

if not inventory:
 print "You are empty-handed."

As a condition, an empty tuple is false. A tuple with at least one element is true. Since the tuple assigned to
inventory is empty, it's false. That means not inventory is true. So the computer prints the string, "You
are empty-handed.", just as it should.

Creating a Tuple with Elements

An unarmed hero is a boring hero. So next, I created a new tuple with string elements that represent useful
items for our hero. I assigned this new tuple to inventory with the following:

inventory = ("sword",
 "armor",
 "shield",

 "healing potion")

Each element in the tuple is separated by a comma. That makes the first element the string "sword", the
next "armor", the next "shield", and the last element "healing potion". So each string is a single

element in this tuple.

Also, notice that the tuple spans multiple lines. You can write a tuple in one line, or span it across multiple
lines like I did, as long as you end each line after a comma. This is one of the few cases where Python lets
you break up a statement across multiple lines.

TRICK Make your programs easier to read by creating tuples across multiple lines. You don't have to
write exactly one element per line, though. It might make sense to write several on a line. Just
end each line at one of the commas separating elements and you'll be fine.

Printing a Tuple

Though a tuple can contain many elements, you can print the entire tuple just like you would any single value.
That's what I did in the next line:

print "\nThe tuple inventory is:\n", inventory

The computer displays all of the elements, surrounded by parentheses.

Looping Through a Tuple's Elements

Finally, I wrote a for loop to march through the elements in inventory and print each one individually:

print "\nYour items:"
for item in inventory:
 print item

This loop prints each element (each string) in inventory on a separate line. This loop looks just like the

ones you've seen with strings. In fact, you can use this kind of loop to go through the elements of any
sequence.

Even though I created a tuple where all the elements are of the same type (strings in this case), tuples don't
have to be filled with values of the same type. A single tuple can just as easily contain strings, integers, and
floating-point numbers, for example.

TRAP Other programming languages offer structures similar to tuples. Some go by the name "arrays" or
"vectors." However, those other languages usually restrict the elements of these sequences to just
one type. So, for example, you couldn't mix strings and numbers together. Just be aware that these
other structures don't usually offer all the flexibility that Python sequences do.

Using Tuples

Since tuples are simply another kind of sequence, everything you learned about sequences from strings works
with tuples. You can get the length of a tuple, print each element with a for loop, and use the in operator to

test if an element is in a tuple. You can index, slice, and concatenate tuples, too.

Introducing the Hero's Inventory 2.0

Our hero's journey continues. In this program, his inventory is counted, tested, indexed, and sliced. Our hero
will also happen upon a chest with items in it (represented by another tuple). Through tuple concatenation, our
hero's inventory will be replaced with all of his current items plus the treasure he finds in the chest. Figure 4.12
shows a sample run of the program.

Figure 4.12: The hero's inventory is a tuple, which means it can be counted, indexed, sliced, and even
concatenated with another tuple.

Since this program is a little long, I'll go through the code one section at a time rather than show you the whole
thing at once. But check out the CD to see the program in its entirety.

Setting Up the Program

The first part of the program works just like it did in the previous program, Hero's Inventory. These lines create
a tuple and print out each element:

Hero's Inventory 2.0
Demonstrates tuples
Michael Dawson - 1/29/03

create a tuple with some items and display with a for loop
inventory = ("sword",
 "armor",
 "shield",
 "healing potion")
print "Your items:"
for item in inventory:
 print item

raw_input("\nPress the enter key to continue.")

Using the len() Function with Tuples

The len() function works with tuples just the way it does with strings. If you want to know the length of a

tuple, place it inside the parentheses. The function returns the number of elements in the tuple. Empty tuples,
or any empty sequences for that matter, have a length of 0. The following lines use the len() function with

the tuple:

get the length of a tuple
print "You have", len(inventory), "items in your possession."

raw_input("\nPress the enter key to continue.")

Since this tuple has four elements (the four strings: "sword", "armor", "shield", and "healing
potion"), the message You have 4 items in your possession. is displayed.

TRAP Notice that in the tuple inventory, the string "healing potion" is counted as a single

element, even though it's two words. A single string is always considered one element in a tuple,
no matter how many individual words are in it.

Using the in Operator with Tuples

Just like with strings, you can use the in operator with tuples to test for element membership. And, just like
before, the in operator is usually used to create a condition. That's how I used it here:

test for membership with in
if "healing potion" in inventory:
 print "You will live to fight another day."

The condition "healing potion" in inventory tests if the entire string "healing potion" is an
element in inventory. Since it is, the message You will live to fight another day. is displayed.

Indexing Tuples

Indexing tuples works like indexing strings. You specify a position number, in brackets, to access a particular
element. In the following lines, I let the user choose the index number and then the computer displays the
corresponding element:

display one item through an index
index = int(raw_input("\nEnter the index number for an item in inventory: "))
print "At index", index, "is", inventory[index]

Figure 4.13 shows this tuple with index numbers.

Figure 4.13: Each string is a single element in the tuple.

Slicing Tuples

Slicing works just like you saw with strings. You give a beginning and ending position. The result is a tuple
containing every element between those two positions.

Just as in the Pizza Slicer program from earlier in this chapter, I let the user pick the beginning and ending
position numbers. Then, like before, the program displays the slice:

display a slice
begin = int(raw_input("\nEnter the index number to begin a slice: "))
end = int(raw_input("Enter the index number to end the slice: "))
print "inventory[", begin, ":", end, "]\t\t",
print inventory[begin:end]

raw_input("\nPress the enter key to continue.")

Using this tuple as an example, Figure 4.14 provides a visual way to understand tuple slicing.

Figure 4.14: Slicing positions for tuples are defined between elements, just as they are for strings.

Understanding Tuple Immutability

Like strings, tuples are immutable. That means you can't change a tuple. Here's an interactive session to
prove my point:

>>> inventory = ("sword", "armor", "shield", "healing potion")
>>> print inventory
('sword', 'armor', 'shield', 'healing potion')

>>> inventory[0] = "battleax"
Traceback (most recent call last):
 File "<pyshell#3>", line 1, in ?
 inventory[0] = "battleax"
TypeError: object doesn't support item assignment

Although you can't change tuples, like strings, you can create new tuples from existing ones.

Concatenating Tuples

You can concatenate tuples the same way you concatenate strings. You simply join them together with +, the

concatenation operator:

concatenate two tuples
chest = ("gold", "gems")
print "You find a chest. It contains:"
print chest
print "You add the contents of the chest to your inventory."
inventory += chest
print "Your inventory is now:"
print inventory

raw_input("\n\nPress the enter key to exit.")

The first thing I did was create a new tuple, chest, with the two string elements "gold" and "gems". Next, I
printed chest to show its elements. After that, I used an augmented assignment operator to concatenate
inventory with chest and assign the result back to inventory. I did not modify the original tuple assigned
to inventory (since that's impossible, because tuples are immutable). Instead, the augmented assignment
operator created a brand-new tuple with the elements from inventory and chest and assigned that to
inventory.

Back to the Word Jumble Game

The Word Jumble game combines several new ideas you learned about in this chapter. You can easily modify
the program to contain your own list of words to guess.

Setting Up the Program

After my initial comments, I import the random module:

Word Jumble
#
The computer picks a random word and then "jumbles" it
The player has to guess the original word
#
Michael Dawson - 1/28/03

import random

Next, I used a tuple to create a sequence of words. Notice that the variable name WORD is in all caps, implying

that I'll treat it as a constant.

create a sequence of words to choose from
WORDS = ("python", "jumble", "easy", "difficult", "answer", "xylophone")

Next, I use a new function, random.choice(), to grab a random word from WORDS:

pick one word randomly from the sequence
word = random.choice(WORDS)

This function is new to you, but it's pretty simple. The computer looks at whatever sequence you give and
picks a random element.

Once the computer has chosen a random word, it assigns it to word. This is the word the player will have to
guess. Lastly, I assign word to correct, which I'll use later to see if the player makes a correct guess:

create a variable to use later to see if the guess is correct
correct = word

Planning the Jumble Creation Section

The next section of code uses the new concepts in the chapter and is the most interesting part of the program.
It's the section that actually creates the jumbled word from the original, randomly chosen word.

But, before I wrote any code, I planned out this part of the program in pseudocode (yes, I actually use all that
stuff I write about). Here's my first pass at the algorithm to create a jumbled word from the chosen word:

create an empty jumble word
while the chosen word has letters in it
 extract a random letter from the chosen word
 add the random letter to the jumble word

Conceptually, this is pretty good, but I have to watch my semantics. Because strings are immutable, I can't
actually "extract a random letter" from the string the user entered. But, I can create a new string that doesn't
contain the randomly chosen letter. And while I can't "add the random letter" to the jumble word string either, I
can create a new string by concatenating the current jumble word with the "extracted" letter.

Creating an Empty Jumble String

The very first part of the algorithm is easy:

create a jumbled version of the word
jumble =""

The program creates the empty string and assigns it to jumble, which will refer to the final, jumbled word.

Setting Up the Loop

The jumble creation process is controlled by a while loop. The loop condition is pretty simple, as you can

see:

while word:

I set the loop up this way so that it will continue until word is equal to the empty string. This is perfect,
because each time the loop executes, the computer creates a new version of word with one letter "extracted"
and assigns it back to word. Eventually, word will become the empty string and the jumbling will be done.

Generating a Random Position in word

The first line in the loop body generates a random position in word, based on its length:

 position = random.randrange(len(word))

So, the letter word[position] is the letter that is going to be "extracted" from word and "added to"
jumble.

Creating a New Version of jumble

The next line in the loop creates a new version of the string jumble. It becomes equal to its old self, plus the
letter word[position].

 jumble += word[position]

Creating a New Version of word

The next line in the loop,

 word = word[:position] + word[(position + 1):]

creates a new version of word minus the one letter at position position. Using slicing, the computer creates
two new strings from word. The first slice, word[:position], is every letter up to, but not including,
word[position]. The next slice, word[(position + 1):], is every letter after word[position].
These two string are joined together and assigned to word, which is now equal to its old self, minus the one
letter word[position].

Welcoming the Player

After the jumbled word has been created, the next section of the program welcomes the player to the game
and displays the jumbled word to be rearranged:

start the game
print \
"""
 Welcome to Word Jumble!

 Unscramble the letters to make a word.
(Press the enter key at the prompt to quit.)
"""
print "The jumble is:", jumble

Getting the Player's Guess

Next, the computer gets the player's guess. The computer keeps asking the player for a guess as long as the
player doesn't enter the correct word or presses the Enter key at the prompt:

guess = raw_input("\nYour guess: ")
guess = guess.lower()
while (guess != correct) and (guess != ""):
 print "Sorry, that's not it."
 guess = raw_input("Your guess: ")
 guess = guess.lower()

I made sure to convert guess to lowercase since the word the player is trying to guess is in lowercase.

Congratulating the Player

At this point in the program, the player has either correctly guessed the word or quit the game. If the player
has guessed the word, then the computer offers its hearty congratulations:

if guess == correct:
 print "That's it! You guessed it!\n"

Ending the Game

Finally, the program thanks the player for playing the game and ends:

print "Thanks for playing."

raw_input("\n\nPress the enter key to exit.")

Summary

In this chapter, you learned about the concept of sequences. You saw how to create a sequence of numbers
with the range() function. You saw how strings are really just sequences of characters. You learned about

tuples, which let you organize a sequence of any type. You saw how to go through the elements of a
sequence with a for loop. You learned how to get the length of a sequence and how to check if an element is

a member of a sequence. You saw how to copy pieces of a sequence through indexing and slicing. You
learned about immutability and some of the limitations it places on you. But you also saw how to create new
sequences from existing ones through concatenation, in spite of this immutability. Finally, you put everything
together to create a challenging word jumble game.

Challenges
Write a program that counts for the user. Let the user enter the starting number, the ending number,
and the amount by which to count.

1.

Create a program that gets a message from the user and then prints it out backwards.2.

Improve "Word Jumble" so that each word is paired with a hint. The player should be able to see the
hint if he or she is stuck. Add a scoring system that rewards players who solve a jumble without asking
for the hint.

3.

Create a game where the computer picks a random word and the player has to guess that word. The
computer tells the player how many letters are in the word. Then the player gets five chances to ask if a
letter is in the word. The computer can only respond with "yes" or "no". Then, the player must guess the
word.

4.

Chapter 5: Lists and Dictionaries: The Hangman Game

 Download CD Content

Overview

Tuples are a great way to work with sequences of any type, but their immutability can be limiting. Fortunately,
another sequence type, called lists, do everything that tuples can, plus more. That's because lists are mutable.
Elements can be added or removed from a list. You can even sort or reverse an entire list. You'll also be
introduced to another type, dictionaries. Whereas lists work with sequences of information, dictionaries work
with pairs of data. Dictionaries, like their real-life counterparts, let you look up one value with another.
Specifically in this chapter, you'll learn to do the following:

Create, index, and slice a list

Add and delete elements from a list

Use list methods to append, sort, and reverse a list

Use nested sequences to represent even more complex information

Use dictionaries to work with pairs of data

Add and delete dictionary items

Introducing the Hangman Game

The project for this chapter is the game of hangman. The computer picks a secret word and the player has to
try to guess it, one letter at a time. Each time the player makes an incorrect guess, the computer shows a new
image of a figure being hanged. If the player doesn't guess the word in time, the stick figure is a goner.
Figures 5.1 through 5.3 show off the game in all its glory.

Figure 5.1: The "Hangman" game in action. Hmm . . . I wonder what the word could be.

Figure 5.2: I won this game!

Figure 5.3: This game ended badly, especially for the little guy made of text.

Not only is this game fun, but by the end of the chapter, you'll know how to create your own version. You can
have a personalized group of secret words, and even update my marginally adequate artwork.

Using Lists

Lists are sequences, just like tuples, but lists are mutable. They can be modified. So, lists can do everything
tuples can, plus more. Lists work just like tuples, so everything you learned about tuples is applicable to lists,
which makes learning to use them a snap.

Introducing the Hero's Inventory 3.0 Program

This program is based on the Hero's Inventory 2.0 program, introduced in Chapter 4, section "Creating
Tuples." But instead of using tuples to store the hero's inventory, this program uses lists. The first part of
Hero's Inventory 3.0 creates the same results as version 2.0. In fact, the code is almost exactly the same. The
only difference is that it uses lists instead of tuples. Figure 5.4 shows off the results of the first part of the
program. The second part of the program takes advantage of the mutability of lists and does some brand-new
things with sequences. Figure 5.5 shows that part in action.

Figure 5.4: The hero's inventory is now represented by a list. The results look almost exactly the same as
when the inventory was represented by a tuple in Hero's Inventory 2.0.

Figure 5.5: Since the hero's inventory is represented by a list, items can be added, modified, and deleted.

Creating a List

The first line of the program creates a new list, assigns it to inventory, and prints each element. The last

line waits for the user before continuing. This works almost exactly like it did in Hero's Inventory 2.0. The only
difference is that I surrounded the elements with square brackets instead of parentheses, to create a list

instead of a tuple.

Hero's Inventory
Demonstrates lists
Michael Dawson - 1/29/03

create a list with some items and display with a for loop
inventory = ["sword", "armor", "shield", "healing potion"]
print "Your items:"
for item in inventory:
 print item

raw_input("\nPress the enter key to continue.")

Using the len() Function with Lists

The following code is exactly the same as the corresponding code in Hero's Inventory 2.0:

get the length of a list
print "You have", len(inventory), "items in your possession."

raw_input("\nPress the enter key to continue.")

Using the in Operator with Lists

Again, the code for this section is exactly the same as in the older version. The in operator works the same

with lists as it does with tuples.

test for membership with in
if "healing potion" in inventory:
 print "You will live to fight another day."

Indexing Lists

Once again, the code is exactly the same as it was with tuples. Indexing a list is the same as indexing a tuple:
just supply the position number of the element you're after in brackets.

display one item through an index
index = int(raw_input("\nEnter the index number for an item in inventory: "))
print "At index", index, "is", inventory[index]

Slicing Lists

Would you believe that slicing a list is exactly the same as slicing a tuple? Again, you just supply the two end
points, separated by a colon, in brackets:

display a slice
begin = int(raw_input("\nEnter the index number to begin a slice: "))
end = int(raw_input("Enter the index number to end the slice: "))
print "inventory[", begin, ":", end, "]\t\t",
print inventory[begin:end]

raw_input("\nPress the enter key to continue.")

Concatenating Lists

Concatenating lists works the same way concatenating tuples does. The only real difference here is that I
created a list (rather than a tuple) and assigned it to chest. This is a small but important difference, because

you can only concatenate sequences of the same type.

concatenate two lists
chest = ["gold", "gems"]
print "You find a chest which contains:"
print chest
print "You add the contents of the chest to your inventory."
inventory += chest
print "Your inventory is now:"
print inventory

raw_input("\nPress the enter key to continue.")

Understanding List Mutability

At this point, you may be getting a bit tired of reading the phrase "works exactly the same as it did with tuples."
So far, with the exception of using brackets instead of parentheses, lists seem no different than tuples. But
there is one huge difference between them. Lists are mutable. They can change. This makes lists the most
powerful and flexible sequence type at your disposal. Since lists are mutable, there are many things you can
do with them that you can't do with tuples.

Assigning a New List Element by Index

Because lists are mutable, you can assign an existing element a new value:

assign by index
print "You trade your sword for a crossbow."
inventory[0] = "crossbow"
print "Your inventory is now:"
print inventory

raw_input("\nPress the enter key to continue.")

The following line assigns the string "crossbow" to the element in inventory at position 0:

inventory[0] = "crossbow"

The new string replaces the previous value (which was "sword"). You can see the results when the print
statement displays the new version of inventory.

TRAP You can assign an existing list element a new value with indexing, but you can't create a new
element in this way. An attempt to assign a value to a nonexistent element will result in an error.

Assigning a New List Slice

In addition to assigning a new value to a single element, you can assign a new value to a slice. I assigned the
list ["orb of future telling"] to the slice inventory[4:6]:

assign by slice
print "You use your gold and gems to buy an orb of future telling."
inventory[4:6] = ["orb of future telling"]
print "Your inventory is now:"
print inventory

raw_input("\nPress the enter key to continue.")

This assignment statement replaces the two items inventory[4] and inventory[5] with the string "orb
of future telling". Because I assigned a list with one element to a slice with two elements, the length of

the list shrunk by one.

Deleting a List Element

You can delete an element from a list with the del command. Just designate the element after the del

command:

delete an element
print "In a great battle, your shield is destroyed."
del inventory[2]
print "Your inventory is now:"
print inventory

raw_input("\nPress the enter key to continue.")

After this code executes, the element that was at position number 2, the string "shield", is removed from
inventory. Deleting an element doesn't create a gap in a sequence. All the elements after the deleted one

"slide down" one position. So, in this case, there is still an element in position 2, it's just the element that was
at position 3.

Deleting a List Slice

You can also delete a slice from a list:

delete a slice
print "Your crossbow and armor are stolen by thieves."
del inventory[:2]
print "Your inventory is now:"
print inventory

raw_input("\n\nPress the enter key to exit.")

The following line removes the slice inventory[:2], which is ["crossbow", "armor"], from
inventory:

del inventory[:2]

Just as with deleting an element, the remaining elements form a new, continuous list, starting from position 0.

Using List Methods

Lists have methods that allow you to manipulate them. Through list methods, you can add an element, remove
an element based on its value, sort a list, and even reverse the order of a list.

Introducing the High Scores Program

The High Scores program uses list methods to create and maintain a list of the user's best scores for a
computer game. The program uses a simple, menu-driven interface. The user has a few choices. He or she
can add a new score, delete a score, sort the scores, or quit the program. Figure 5.6 shows the program in
action.

Figure 5.6: The user chooses from a menu to maintain the high scores list. Behind the scenes, list
methods do the bulk of the work.

Setting Up the Program

The setup code for the program is pretty simple. After the initial comments, I create two variables. scores is a
list that will contain the scores. I set it to an empty list to start out. choice represents the user's choice from
the menu. I initialized it to None.

High Scores
Demonstrates list methods
Michael Dawson - 1/30/03

scores = []
choice = None

Displaying the Menu

The while loop is the bulk of the program. It continues until the user enters 0. The rest of this code prints the

menu and gets the user's choice:

while choice != "0":

 print \
 """
 High Scores Keeper

 0 - Exit
 1 - Show Scores
 2 - Add a Score
 3 - Delete a Score
 4 - Sort Scores
 """

 choice = raw_input("Choice: ")
 print

Exiting the Program

I first check if the user wants to quit. If the user enters 0, the computer says "Good-bye.":

 # exit
 if choice == "0":
 print "Good-bye."

If the user enters 0, then the while loop's condition will be false the next time it's tested. The loop will end

and so will the program.

Displaying the Scores

If the user enters 1, then this elif block executes and the computer displays the scores:

 # list high-score table
 elif choice == "1":
 print "High Scores"
 for score in scores:
 print score

Adding a Score with the append() Function

If the user enters 2, the computer asks the user for a new score and assigns it to score. The last line
appends this new number to scores, which means it tacks it on to the end of the list. The list becomes one

element longer.

 # add a score
 elif choice == "2":

 score = int(raw_input("What score did you get?: "))
 scores.append(score)

Removing a Score with the remove() Function

When the user enters 3, the computer gets a score from the user to remove. If the score is in the list, the

computer removes the first occurrence of it. If the score isn't in the list, the user is informed.

 # delete a score
 elif choice == "3":
 score = int(raw_input("Delete which score?: "))
 if score in scores:
 scores.remove(score)
 else:
 print score, "isn't in the high scores list."

The computer first checks to see if the score is in the list. If so, the computer goes through the list, starting at
position 0, and searches for the score. When it finds the score, that element is deleted. If the score is in the
list more than once, only the first occurrence is removed. You can see how this is different from the del
command. The remove() function doesn't delete an element based on a position, but rather on a value. If the

score wasn't found in the list, the user is informed.

TRAP Watch out when you use the remove() method. If you try to remove a value that isn't in a list,

you'll generate an error.

Sorting the Scores with the sort() Function

The scores in the list are in the exact order the user entered them. Normally, you want a high score list to be
sorted with the highest scores at the top. To sort the scores, all the user has to do is enter 4:

 # sort scores
 elif choice == "4":
 scores.sort()

The sort() method sorts the elements in the list. This is great, except that with sort(), you end up with the

list in ascending order, where the smallest values are first. But what I want is the largest numbers first. I need
the reverse of this.

Reversing the Scores with the reverse() Function

Luckily, there's a reverse() method for lists. It just reverses the list order. This is exactly what I need so that
the highest scores will be at the beginning of the list. Before the elif block ends, I use the reverse()

method, like so:

 scores.reverse() # want the highest number first

Now, all the scores are in order, from largest to smallest. Perfect.

Dealing with an Invalid Choice

If the user enters a number that isn't a valid choice, the else clause catches it. The program lets the user

know that the choice isn't understood.

 # some unknown choice
 else:
 print "Sorry, but", choice, "isn't a valid choice."

Waiting for the User

After the user enters 0 to exit, the loop ends. As always, the program waits for the user:

raw_input("\n\nPress the enter key to exit.")

You've seen a bunch of useful list methods in action. To get a summary of these methods (plus a few more),
take a look at Table 5.1.

Table 5.1: SELECTED LIST METHODS

Method Description

append(value) Adds value to end of a list.

sort() Sorts the elements, smallest value first.

reverse() Reverses the order of a list.

count(value) Returns the number of occurrences of value.

index(value) Returns the first position number of where value occurs.

insert(i,

value)

Inserts value at position i.

pop([i]) Returns value at position i and removes value from the list. Providing the

position number i is optional. Without it, the last element in the list is removed

and returned.

remove(value) Removes the first occurrence of value from the list.

Understanding When to Use Tuples Instead of Lists

At this point, you may be thinking, "Why use tuples at all?" It's true that lists can do everything tuples can, plus
more. But don't be so quick to dismiss tuples. There is a place for them in your Python programming world.
There are a few occasions where tuples make more sense than lists.

Tuples are faster than lists. Because the computer knows they won't change, tuples can be stored in a
way that makes using them faster than using lists. For simple programs, this speed difference won't
matter, but in more complex applications, with very large sequences of information, it could.

Tuples' immutability makes them perfect for creating constants since they can't change. Using tuples can
add a level of safety and clarity to your code.

Sometimes tuples are required. In some cases, Python requires immutable values. Okay, you haven't
actually seen any of those cases yet, but there is a common situation you'll see when you learn about
dictionaries, later in this chapter. Dictionaries require immutable types, so tuples will be essential when
creating some kinds of dictionaries.

But, because lists are so flexible, you're probably best off using them over tuples in most cases.

Using Nested Sequences

Before, I said that lists or tuples can be sequences of anything. If that's true, then lists can contain other lists
or tuples, and tuples can contain other tuples or lists. Well, they can, and when they do, they're called nested
sequences. Nested sequences are sequences inside other sequences. Nested sequences are a great way to
organize more complex collections of information.

Although the term sounds like another cryptic piece of computer jargon, I bet you create and use nested
sequences all the time. Let me give you an example. Say you're making a holiday shopping list. You start by
making a list of names. Under each name, you list a few possible gifts. Well, you've just created a nested
sequence: you have a list of names and each name represents a list of gifts. That's all there is to it.

Introducing the High Scores 2.0 Program

The last program, High Scores, uses only scores. But most high score lists store a name along with a score.
That's what this new version does. It also has a few other improvements. It automatically sorts the scores and
even limits the list to just the top five. Figure 5.7 shows a sample run.

Figure 5.7: The new and improved version of High Scores stores a name with a score through nested
sequences.

Creating Nested Sequences

You create a nested list or tuple like always: type each element, followed by a comma. The difference with
nested sequences is that you include entire lists or tuples as elements. Here's an example:

>>> nested = ["first", ("second", "third"), ["fourth", "fifth", "sixth"]]
>>> print nested
['first', ('second', 'third'), ['fourth', 'fifth', 'sixth']]

So, although you see six strings here, nested has only three elements. The first element is the string

"first", the second element is the tuple ("second", "third"), and the third element is the list
["fourth", "fifth", "sixth"].

While you can create a list or tuple with any number of lists and tuples, useful nested sequences often have a
consistent pattern. Take a look at the next example:

>>> scores = [("Moe", 1000), ("Larry", 1500), ("Curly", 3000)]
>>> print scores
[('Moe', 1000), ('Larry', 1500), ('Curly', 3000)]

scores is a list with three elements. Each element is a tuple. Each tuple has exactly two elements, a string

and a number. This kind of uniform structure makes for the most useful nested sequences.

This sequence, by the way, represents a high score table with names and scores (like a real high score table
should!). In this particular instance, Moe got a score of 1,000; Larry got 1,500; and Curly got a high score of
3,000.

TRAP Although you can create nested sequences inside nested sequences many times over, as in the
following example, this usually isn't a good idea.

nested = ("deep", ("deeper", ("deepest", "still deepest")))

Things can get confusing fast. Even experienced programmers rarely use sequences more than a
level or two deep. For most programs you'll write, one level of nesting (like the scores list you just

saw) is really all you'll need.

Accessing Nested Elements

You access elements of a nested sequence just like any other sequence, through indexing:

>>> scores = [("Moe", 1000), ("Larry", 1500), ("Curly", 3000)]
>>> print scores[0]
('Moe', 1000)
>>> print scores[1]
('Larry', 1500)
>>> print scores[2]
('Curly', 3000)

Each element is a tuple, so that's exactly what you get when you access one. But what if you want to access
one of the elements of one of the tuples? One way is to assign the tuple to a variable and index it, as in:

>>> a_score = scores[2]
>>> print a_score
('Curly', 3000)
>>> print a_score[0]
Curly

But there's a direct way to access "Curly" right from scores:

>>> print scores[2][0]
Curly

By supplying two indices with scores[2][0], you're telling the computer to go get the element from scores
at position 2 (which is ("Curly", 3000)) and then, from that, to get the element at position 0 (which is
"Curly"). You can use this kind of multiple indexing with nested sequences to get directly to a nested

element.

Unpacking a Sequence

If you know how many elements are in a sequence, you can assign each to its own variable in a single line of
code:

>>> name, score = ("Shemp", 175)
>>> print name
Shemp
>>> print score
175

This is called unpacking and works with any sequence type. Just remember to use the same number of
variables as elements in the sequence, because otherwise you'll generate an error.

Setting Up the Program

Just as in the original High Scores program, I set up the variables and while loop. As before, if the user
enters 0, the computer prints "Good-bye.":

High Scores 2.0
Demonstrates nested sequences
Michael Dawson - 1/31/03

scores = []

choice = None
while choice != "0":

 print \
 """
 High Scores Keeper
 0 - Quit
 1 - List Scores
 2 - Add a Score
 """

 choice = raw_input("Choice: ")
 print

 # exit
 if choice == "0":
 print "Good-bye."

Displaying the Scores by Accessing Nested Tuples

If the user enters 1, the computer goes through each element in scores and unpacks the score and name
into the variables score and name. Then the computer prints them out.

 # display high-score table
 elif choice == "1":
 print "NAME\tSCORE"
 for entry in scores:
 score, name = entry
 print name, "\t", score

Adding a Score by Appending a Nested Tuple

If the user enters 2, the computer lets the user enter a new score and name. With these two values, the
computer creates a tuple, entry. I chose to store the score first in this tuple because I wanted the entries to

be sorted by score, then name. Next, the computer appends this new high score entry to the list. The
computer sorts the list and reverses it so that the highest scores are first. The final statement slices and
assigns the list so that only the top five scores are kept.

 # add a score
 elif choice == "2":
 name = raw_input("What is the player's name?: ")
 score = int(raw_input("What score did the player get?: "))
 entry = (score, name)
 scores.append(entry)
 scores.sort()
 scores.reverse() # want the highest number first
 scores = scores[:5] # keep only top 5 scores

Dealing with an Invalid Choice

If the user enters something other than 0, 1, or 2, the else clause catches it. The program lets the user know

that the choice wasn't understood.

 # some unknown choice
 else:
 print "Sorry, but", choice, "isn't a valid choice."

Waiting for the User

After the user enters 0 to exit, the loop ends and the program waits for the user:

raw_input("\n\nPress the enter key to exit.")

Understanding Shared References

In Chapter 2, you learned that a variable refers to a value. This means that, technically, a variable doesn't
store a copy of a value, but just refers to the place in your computer's memory where the value is stored. For
example, language = "Python" stores the string "Python" in your computer's memory somewhere and
then creates the variable language, which refers to that place in memory. Take a look at Figure 5.8 for a

visual representation.

Figure 5.8: The variable language refers to a place in memory where the string value "Python" is

stored.

To say the variable language stores the string "Python", like a piece of Tupperware stores a chicken leg, is

not accurate. In some programming languages, this might be a good analogy, but not in Python. A better way
to think about it is like this: A variable refers to a value the same way a person's name refers to a person. It
would be wrong (and silly) to say that a person's name "stores" the person. Using a person's name, you can
get to a person. Using a variable name, you can get to a value.

So what does all this mean? Well, for immutable values that you've been using, like numbers, strings, and
tuples, it doesn't mean much. But it does mean something for mutable values, like lists. When several
variables refer to the same mutable value, they share the same reference. They all refer to the one, single
copy of that value. And a change to the value through one of the variables results in a change for all the
variables, since there is only one, shared copy to begin with.

Here's an example to show how this works. Suppose that I'm throwing a hip, happening party with my friends
and dignitaries from around the world. (Hey, this is my book. I can make up any example I want.) Different
people at the party call me by different names, even though I'm only one person. Let's say that a friend calls
me "Mike," a dignitary calls me "Mr. Dawson," and my Pulitzer Prize winning, supermodel girlfriend, just back
from her literacy, fundraising world-tour (again, my book, my fictional girlfriend) calls me "Honey." So, all three
people refer to me with different names. This is the same way that three variables could all refer to the same
list. Here's the beginning of an interactive session to show you what I mean:

>>> mike = ["khakis", "dress shirt", "jacket"]
>>> mr_dawson = mike
>>> honey = mike
>>> print mike
['khakis', 'dress shirt', 'jacket']
>>> print mr_dawson
['khakis', 'dress shirt', 'jacket']
>>> print honey
['khakis', 'dress shirt', 'jacket']

So, all three variables, mike, mr_dawson, and honey, refer to the same, single list, representing me (or at

least what I'm wearing at this party). Figure 5.9 helps drive this idea home.

Figure 5.9: The variables mike, mr_dawson, and honey all refer to the same list.

This means that a change to the list using any of these three variables will change the list they all refer to.
Back at the party, let's say that my girlfriend gets my attention by calling "Honey." She asks me to change my
jacket for a red sweater she knitted (yes, she knits too). I, of course, do what she asks. In my interactive
session, this could be expressed as follows:

>>> honey[2] = "red sweater"
>>> print honey
['khakis', 'dress shirt', 'red sweater']

The results are what you would expect. The element in position number 2 of the list referred to by honey is no
longer "jacket", but is now "red sweater".

Now, at the party, if a friend were to get my attention by calling "Mike" or a dignitary were to call me over with
"Mr. Dawson," both would see me in my red sweater, even though neither had anything to do with me
changing my clothes. The same is true in Python. Even though I changed the value of the element in position
number 2 by using the variable honey, that change is reflected by any variable that refers to this list. So, to

continue my interactive session:

>>> print mike
['khakis', 'dress shirt', 'red sweater']
>>> print mr_dawson
['khakis', 'dress shirt', 'red sweater']

The element in position number 2 of the list referred to by mike and mr_dawson is "red sweater". It has

to be since there's only one list.

So, the moral of this story is: be aware of shared references when using mutable values. If you change the
value through one variable, it will be changed for all.

However, you can avoid this effect if you make a copy of a list, through slicing. For example:

>>> mike = ["khakis", "dress shirt", "jacket"]
>>> honey = mike[:]
>>> honey[2] = "red sweater"
>>> print honey
['khakis', 'dress shirt', 'red sweater']
>>> print mike
['khakis', 'dress shirt', 'jacket']

Here, honey is assigned a copy of mike. honey does not refer to the same list. Instead, it refers to a copy.
So, a change to honey has no effect on mike. It's like I've been cloned. Now, my girlfriend is dressing my

clone in a red sweater, while the original me is still in a jacket. Okay, this party is getting pretty weird with my
clone walking around in a red sweater that my fictional girlfriend knitted for me, so I think it's time to end this
bizarre yet useful analogy.

One last thing to remember is that sometimes you'll want this shared-reference effect, while other times you
won't. Now that you understand how it works, you can control it.

Using Dictionaries

By now you probably realize that programmers love to organize information. You saw that lists and tuples let you organize things
into sequences. Well, dictionaries let you organize information too, but in a different way. With a dictionary, you don't store
information in a sequence; instead, you store it in pairs. It's a lot like an actual dictionary where each entry is a pair: a word and its
definition. When you look up a word, you get its definition. Python dictionaries work the same way: you look up a key and get its
value .

Introducing the Geek Translator Program

The high-tech world has created many things that impact our lives, including a culture of its own. As the result of technology, new
words and concepts have been born. There's a brand-new kind of slang out there, and the Geek Translator is here to help you
understand the technophile in your life. The program creates a dictionary with geek terms and definitions. The program not only lets
the user look up a term, but also add a term, replace a definition, and delete a term. Figure 5.10 illustrates the program.

Figure 5.10: So "uninstalled" means fired. I was totally 404 on that.

Creating Dictionaries

The first thing I did in the program was create a dictionary of terms and definitions. The geek terms are on the left, and their
definitions are on the right.

Geek Translator
Demonstrates using dictionaries
Michael Dawson - 2/16/03

geek = {"404" : "Clueless. From the web error message 404, meaning page not found.",
 "Googling" : "Searching the Internet for background information on a person.",
 "Keyboard Plaque" : "The collection of debris found in computer keyboards.",
 "Link Rot" : "The process by which web page links become obsolete.",
 "Percussive Maintenance" : "The act of striking an electronic device to make it work.",
 "Uninstalled" : "Being fired. Especially popular during the dot-bomb era."}

This code creates a dictionary named geek . It consists of six pairs, called items . As an example, one of the items is "Keyboard
Plaque" : "The collection of debris found in computer keyboards." Each item is made up of a key and a

value. The keys are on the left side of the colons. The values are on the right. So, "Keyboard Plaque" is a key, and its value is
"The collection of debris found in computer keyboards." The key is literally the "key" to getting the value. That
means you could use the key "Keyboard Plaque" to get its value "The collection of debris found in computer
keyboards."

To create your own dictionary, follow the pattern I used. Type a key, followed by a colon, followed by the key's value. Use commas
to separate all of the key-value pairs, and surround the whole thing with curly brackets. Like tuples and lists, you can either type the
whole thing on one line or use separate lines after any of the commas.

Accessing Dictionary Values

The most common thing you'll do with a dictionary is use a key to get its value. There are a few different ways you can do this. I'll
show you an example of each in this section, using the interactive interpreter.

Using a Key to Retrieve a Value

The simplest way to retrieve a value from a dictionary is by directly accessing it with a key. To get a key's value, just put the key in
brackets, following the name of the dictionary. Here's an interactive session to show you what I mean (assume that I've already
defined the dictionary geek):

>>> geek["404"]
'clueless. From the web error message 404, meaning page not found.'
>>> geek["Link Rot"]
'the process by which web page links become obsolete.'

This looks similar to indexing a sequence, but there's an important difference. When you index a sequence, you use a position
number. When you look up a value in a dictionary, you use a key. This is the only direct way to retrieve a value from a dictionary. In
fact, dictionaries don't have position numbers at all.

One thing that sometimes trips up beginning programmers is that a value can't be used to get a key in a dictionary. That would be
like trying to use a definition to find a word in a real-life dictionary. Real-life dictionaries just aren't set up for that kind of thing, and
neither are Python dictionaries. So remember, it's give a key and get a value, only.
TRAP

If you try to get a value from a dictionary by directly accessing it with a key that doesn't exist, you'll generate an error:

>>> geek["Dancing Baloney"]
Traceback (most recent call last):
 File "<pyshell#3>", line 1, in ?
 geek["Dancing Baloney"]
KeyError: Dancing Baloney

Since "Dancing Baloney" isn't a key in the dictionary, this results in an error. ("Dancing Baloney," by the way, means animated

graphics and other visual effects that have no substantive value, often used by web designers to impress clients.)

Testing for a Key with the in Operator Before Retrieving a Value

Since using a nonexistent key can lead to an error, it's usually best not to directly access a dictionary without taking some
precautions. One thing you can do is check to see if a key exists before attempting to retrieve its value. You can check for the
existence of a key with the in operator:

>>> if "Dancing Baloney" in geek:
 print "I know what Dancing Baloney is."
 else:
 print "I have no idea what Dancing Baloney is."

I have no idea what Dancing Baloney is.

Because the dictionary doesn't contain "Dancing Baloney" as a key, the condition "Dancing Baloney" in geek is false.

So, the computer says it doesn't know what it is.

You use the in operator with dictionaries much the same way you've used it with lists and tuples. You type the value your checking
for, followed by in , followed by the dictionary. This creates a condition. The condition is true if the key is in the dictionary, otherwise
it's false. This is a handy thing to do before trying to get a value. But remember, in only checks for keys; it can't check for values

used this way.
TRAP

The in operator didn't work with dictionaries before Python 2.2. If you're using a version of Python before that, you can use the
dictionary method has_key() to test for a key in a dictionary. Check out Table 5.2 , later in the chapter, for a description of this

dictionary method and a few others.

has_key(key)

Returns true if key is in the dictionary as a key. Otherwise it returns false.

get(key , [default])

Returns the value of key . If key doesn't exist, then the optional default is returned. If key doesn't exist and default isn't

specified, then None is returned.

keys()

Returns a list of all the keys in a dictionary.

values()

Returns a list of all the values in a dictionary.

items()

Returns a list of all the items in a dictionary. Each item is a two-element tuple, where the first element is a key and the second
element is the key's value.

Table 5.2: SELECTED DICTIONARY METHODS

Method Description

Using the get() Method to Retrieve a Value

There's another way to retrieve a value from a dictionary. You can use the dictionary method get() . The method has a built-in

safety net for handling situations where you ask for a value of a key that doesn't exist. If the key doesn't exist, the method returns a
default value, which you can define. Take a look at another attempt:

>>> print geek.get("Dancing Baloney", "I have no idea.")
I have no idea.

By using the get() method here, I was guaranteed to get a value back. If this term was in the dictionary as a key, then I'd get its

definition. Since it wasn't, I got back the default value that I defined, the string "I have no idea."

To use the get() method, all you have to do is supply the key you're looking for followed by an optional default value. If the key is

in the dictionary, you get its value. If the key isn't in the dictionary, you get the default value. But here's the twist: if you don't supply a
default value (it's your option), then you get back None . Here's an example I created without providing a default value:

>>> print geek.get("Dancing Baloney")
None

Setting Up the Program

Time to get back to the code for the Geek Translator program. After I created the geek dictionary, I implemented the menu system
you've seen before, this time with five choices. Like before, if the user chooses 0 , the computer says good-bye.

choice = None
while choice != "0":

 print \
 """
 Geek Translator

 0 - Quit
 1 - Look Up a Geek Term
 2 - Add a Geek Term
 3 - Redefine a Geek Term
 4 - Delete a Geek Term
 """

 choice = raw_input("Choice: ")
 print

 # exit
 if choice == "0":
 print "Good-bye."

Getting a Value

If the user enters 1 , the next section asks for a term to look up. The computer checks to see if the term is in the dictionary. If it is,

the program accesses the dictionary, using the term as the key, gets its definition, and prints it out. If the term is not in the
dictionary, the computer informs the user.

 # get a definition
 elif choice == "1":
 term = raw_input("What term do you want me to translate?: ")
 if term in geek:
 definition = geek[term]
 print "\n", term, "means", definition
 else:
 print "\nSorry, I don't know", term

Adding a Key-Value Pair

Dictionaries are mutable, so you can modify them. If the user enters 2 , the next section adds a new term to the dictionary:

 # add a term-definition pair
 elif choice == "2":
 term = raw_input("What term do you want me to add?: ")
 if term not in geek:
 definition = raw_input("What's the definition?: ")
 geek[term] = definition
 print "\n", term, "has been added."
 else:
 print "\nThat term already exists! Try redefining it."

The computer asks the user for the new term to add. If the term is not already in the dictionary, the computer gets the definition and
adds the pair through the line:

 geek[term] = definition

This creates a new item in geek . The term is the key and the definition is its value. This is exactly how you assign a new item to a

dictionary. You use the dictionary, followed by the key, in square brackets, followed by the assignment operator, followed by the
key's value.

I wrote the program so that the computer refuses to add a term if it's already in the dictionary. This is a safety measure I created to
insure that the user doesn't accidentally overwrite an existing term. If the user really wants to redefine an existing term, he or she
should choose menu option 3.
TRICK

A dash of pessimism is a good thing, at least when you're programming. As you saw here, I assumed that the user might try to add
a new term without realizing it's already in the dictionary. If I hadn't checked for this, a user could overwrite a term without realizing
it. When you're writing your own programs, try to think of things that could go wrong, then try to make sure your program can deal
with them. So be a pessimist, just a little bit.

Replacing a Key-Value Pair

If the user enters 3 , then the next section replaces an existing key-value pair:

 # redefine an existing term
 elif choice == "3":
 term = raw_input("What term do you want me to redefine?: ")
 if term in geek:
 definition = raw_input("What's the new definition?: ")
 geek[term] = definition
 print "\n", term, "has been redefined."
 else:
 print "\nThat term doesn't exist! Try adding it."

To replace a key-value pair, I used the exact same line of code that I used for adding a new pair:

 geek[term] = definition

Python replaces the current value (the definition) with the new one.
TRAP

If you assign a value to a dictionary using a key that already exists, Python replaces the current value without complaint. So you
have to watch out, because you might overwrite the value of an existing key without realizing it.

Deleting a Key-Value Pair

If the user enters 4 , then this elif block runs:

 # delete a term-definition pair
 elif choice == "4":
 term = raw_input("What term do you want me to delete?: ")
 if term in geek:
 del geek[term]
 print "\nOkay, I deleted", term
 else:
 print "\nI can't do that!", term, "doesn't exist in the dictionary."

The program asks the user for the geek term to delete. Next, the program checks to see if the term is actually in the dictionary, with
the in operator. If it is, the item is deleted with

 del geek[term]

This deletes the item with the key term from the dictionary geek . You can delete any item in a dictionary this way. Just put del in

front of the dictionary followed by the key of the item you wish to delete in square brackets.

If the geek term doesn't exist in the first place, the else clause executes and the computer lets the user know.

TRAP

Trying to delete a dictionary item through a key that doesn't exist will give you an error. It's a smart move to be sure the key you're
using exists.

Wrapping Up the Program

The final else clause lets the user know that he or she entered an invalid choice:

 # some unknown choice
 else:
 print "\nSorry, but", choice, "isn't a valid choice."

raw_input("\n\nPress the enter key to exit.")

Understanding Dictionary Requirements

There are a few things you should keep in mind when creating dictionaries:

A dictionary can't contain multiple items with the same key. Think again about a real dictionary. It becomes pretty meaningless if
you can keep adding the same word with totally new definitions whenever you want.

A key has to be immutable. It can be a string, a number, or a tuple, which gives you lots of possibilities. A key has to be
immutable because, if it weren't, you could sneak into a dictionary later and change its keys, possibly ending up with two
identical keys. And you just learned you can't have that!

Values don't have to be unique. Also, values can be immutable. They can be anything you want.

There's even more you can do with dictionaries. Table 5.2 summarizes some useful methods that can help you get more out of this
new type.

Back to the Hangman Game

By putting together all you've learned so far, you can create the Hangman game presented at the beginning of
the chapter. This program is much longer than anything you've seen, but don't be intimidated by its size. The
code isn't much more complex than that of the other projects you've worked through. The biggest part of the
program is just my modest ASCII art, the eight versions of the stick figured being hanged. The real meat of the
program is not much more than a screenful of code.

Setting Up the Program

First things first. As always, I started with opening comments, explaining the program. Next, I imported the
random module. I'll need the module to pick a random word from a sequence.

Hangman Game
#
The classic game of Hangman. The computer picks a random word
and the player tries to guess it, one letter at a time. If the player
can't guess the word in time, the little stick figure gets hanged.
#
Michael Dawson

imports
import random

Creating Constants

Though there are several screenfuls of code in this next section, I only create three constants in all that
programming. First, I created the biggest tuple you've seen. It's really just a sequence of eight elements, but
each element is a triple-quoted string that spans 12 lines.

Each string is a representation of the gallows where the stick figure is being hanged. Each subsequent string
shows a more complete figure. Each time the player guesses incorrectly, the next string is displayed. By the
eighth entry, the image is complete and the figure is a goner. If this final string is displayed, the player has lost
and the game is over. I assigned this tuple to HANGMAN, a variable name in all caps, because I'll be using it as

a constant.

constants
HANGMAN = (
"""

 | |
 |
 |
 |
 |
 |

 |
 |

""",
"""

 | |
 | O
 |
 |
 |
 |
 |
 |

""",
"""

 | |
 | O
 | -+-
 |
 |
 |
 |
 |

""",
"""

 | |
 | O
 | /-+-
 |
 |
 |
 |
 |

""",
"""

 | |
 | O

 | /-+-/
 |
 |
 |
 |
 |

""",
"""

 | |
 | O
 | /-+/
 | |
 |
 |
 |
 |

""",
"""

 | |
 | O
 | /-+/
 | |
 | |
 | |
 | |
 |

""",
"""

 | |
 | O
 | /-+/
 | |
 | |
 | | |
 | | |
 |

""")

Next, I created a constant to represent the maximum number of wrong guesses a player can make before the
game is over:

MAX_WRONG = len(HANGMAN) - 1

The maximum number of wrong guesses is one less than the length of HANGMAN. This is because the first

image, of the empty gallows, is displayed even before the player makes a first guess. So although there are
eight images in HANGMAN, the player only gets seven wrong guesses before the game is over.

Finally, I created a tuple containing all of the possible words that the computer can pick from for the player to
guess. Feel free to modify the program and make up your own list.

WORDS = ("OVERUSED", "CLAM", "GUAM", "PUCK", "TAFFETA")

Initializing the Variables

Next, I initialized the variables. I used the random.choice() function to pick a random word from the list of
possible words. I assigned this secret word to the variable word.

initialize variables
word = random.choice(WORDS) # the word to be guessed

I created another string, so_far, to represent what the player has guessed so far in the game. The string

starts out as just a series of dashes, one for each letter in the word. When the player correctly guesses a
letter, the dashes in the positions of that letter are replaced with the letter itself.

so_far = "-" * len(word) # one dash for each letter in word to be guessed

I created wrong and assigned it the number 0. wrong keeps track of the number of wrong guesses the player

makes.

wrong = 0 # number of wrong guesses player has made

I created an empty list, used, to contain all the letters the player has guessed:

used = [] # letters already guessed

Creating the Main Loop

I created a loop that continues until either the player has guessed too many wrong letters or the player has
guessed all the letters in the word:

print "Welcome to Hangman. Good luck!"

while (wrong < MAX_WRONG) and (so_far != word):
 print HANGMAN[wrong]
 print "\nYou've used the following letters:\n", used
 print "\nSo far, the word is:\n", so_far

Notice that I put both conditions in parentheses. When using just one logical operator (like I did here), using
parentheses has no real effect. The computer doesn't care. But I think that the parentheses help separate the
conditions and make the program easier for humans to read, so I used them.

Next, I print the current stick figure, based on the number of wrong guesses the player has made. The more
wrong guesses the player has made, the closer the stick figure is to being done in. After that, I display the list
of letters that the player has used in this game. And then I show what the partially guessed word looks like so
far.

Getting the Player's Guess

I get the player's guess and convert it to uppercase so that it can be found in the secret word (which is in all
caps). After that, I make sure that the player hasn't already used this letter. If the player has already guessed
this letter, then I make the player enter a new character until the player enters one he or she hasn't used yet.
Once the player enters a valid guess, I convert the guess to uppercase and add it to the list of used letters.

 guess = raw_input("\n\nEnter your guess: ")
 guess = guess.upper()

 while (guess in used):
 print "You've already guessed the letter:", guess
 guess = raw_input("Enter your guess: ")
 guess = guess.upper()

 used.append(guess)

Checking the Guess

Next, I check to see if the guess is in the secret word. If it is, I let the player know. Then I go about creating a
new version of so_far to include this new letter in all the places where the letter is in the secret word.

 if (guess in word):

 print "\nYes!", guess, "is in the word!"

 # create a new so_far to include guess
 new = ""
 for i in range(len(word)):
 if guess == word[i]:
 new += guess

 else:
 new += so_far[i]
 so_far = new

If the player's guess isn't in the word, then I let the player know and increase the number of wrong guesses by
one.

 else:
 print "\nSorry,", guess, "isn't in the word."
 wrong += 1

Ending the Game

At this point, the game is over. If the number of wrong guesses has reached the maximum, the player has lost.
In that case, I print the final image of the stick figure. Otherwise, I congratulate the player. In either case, I let
the player know what the secret word was.

if (wrong == MAX_WRONG):
 print HANGMAN[wrong]
 print "\nYou've been hanged!"
else:
 print "\nYou guessed it!"

print "\nThe word was", word

raw_input("\n\nPress the enter key to exit.")

Summary

In this chapter, you learned all about lists and dictionaries, two new types. You learned that lists are mutable
sequences. You saw how to add, delete, sort, and even reverse those elements. But even with all that lists
offer, you learned that there are some cases where the less flexible tuple is actually the better (or required)
choice. You also learned about shared references that can occur with mutable types and saw how to avoid
them when necessary. You saw how to create and use nested sequences to work with even more interesting
information, like a high score list. You learned how to create and modify dictionaries that let you work with
pairs of data, too.

Challenges
Create a program that prints a list of words in random order. The program should print all the words and
not repeat any.

1.

Write a Character Creator program for a role-playing game. The player should be given a pool of 30
points to spend on four attributes: Strength, Health, Wisdom, and Dexterity. The player should be able
to spend points from the pool on any attribute and should also be able to take points from an attribute
and put them back into the pool.

2.

Write a Who's Your Daddy? program that lets the user enter the name of a male and produces the
name of his father. (You can use celebrities, fictional characters, or even historical figures for fun.)
Allow the user to add, replace, and delete son-father pairs. The program should also allow the user to
get a list of all sons, or fathers, or son-father pairs.

3.

Improve the Who's Your Daddy program by adding a choice that lets the user enter a name and get
back a grandfather. Your program should still only use one dictionary of son-father pairs. Make sure to
include several generations in your dictionary so that a match can be found.

4.

Chapter 6: Functions: The Tic-Tac-Toe Game

 Download CD Content

Overview

Every program you've written so far has been one large, continuous series of instructions. Once your
programs reach a certain size or level of complexity, it becomes hard to work with them this way. Fortunately,
there are ways to break up big programs into smaller, manageable chunks of code. In this chapter, you learn
one way of doing this by creating your own functions. Specifically in this chapter, you'll learn to do the
following:

Write your own functions

Accept values into your functions through parameters

Return information from your functions through return values

Work with global variables and constants

Create a computer opponent that plays a strategy game

Introducing the Tic-Tac-Toe Game

In this chapter project, you'll learn how to create a computer opponent using a dash of artificial intelligence
(AI). In the game, the player and computer square off in a high-stakes, human-machine showdown of Tic-Tac-
Toe. The computer plays a formidable, though not perfect, game, and comes with enough attitude to make
any match fun. Figures 6.1 through 6.3 illustrate the gameplay.

Figure 6.1: The computer is full of ... confidence.

Figure 6.2: I did not see that coming. Even with simple programming techniques, the computer makes
some pretty good moves.

Figure 6.3: I found the computer's weakness and won this time.

Creating Functions

You've already seen several built-in functions in action, including len() and range(). Well, if these aren't

enough for you, Python lets you create functions of your very own. Your functions work just like the ones that
come standard with the language. They go off and perform a task and then return control to your program.
Creating your own functions offers you many advantages. One of the biggest is that it allows you to break up
your code into manageable, bite-sized chunks. Programs that are one, long series of instructions with no
logical breaks are hard to write, understand, and maintain. Programs that are made up of functions can be
much easier to create and work with. Just like the functions you've already met, your new functions should do
one job well.

Introducing the Instructions Program

From the screen shots of the Tic-Tac-Toe game, you can probably tell that the computer opponent has a little
attitude. It comes across quite clearly in the instructions the computer gives before the game. You'll get a look
at the code that produces those instructions in this next program, Instructions. The code is a little different
than you might expect. That's because I created a function to display the instructions. I used that same
function here in Instructions. Take a look at Figure 6.4 to see a sample run of the program.

Figure 6.4: The instructions are displayed each time with just a single line of code— a call to a function I
created.

Here's the code:

Instructions
Demonstrates programmer-created functions
Michael Dawson - 2/21/03

def instructions():
 """ Display game instructions."""
 print \
 """

 Welcome to the greatest intellectual challenge of all time: Tic-Tac-Toe.
 This will be a showdown between your human brain and my silicon processor.

 You will make your move known by entering a number, 0 - 8. The number
 will correspond to the board position as illustrated:

 0 | 1 | 2

 3 | 4 | 5

 6 | 7 | 8

 Prepare yourself, human. The ultimate battle is about to begin. \n
 """

main
print "Here are the instructions to the Tic-Tac-Toe game:"
instructions()
print "Here they are again:"
instructions()
print "You probably understand the game by now."

raw_input("\n\nPress the enter key to exit.")

Defining a Function

I began the definition of my new function with a single line:

def instructions():

This line tells the computer that the block of code that follows is to be used together as the function
instructions(). I'm basically naming this block of statements. This means that whenever I call the function
instructions() in this program, the block of code runs.

This line and its block are a function definition. They define what the function does, but don't run the function.
When the computer sees the function definition, it makes a note that this function exists so it can use it later. It
won't actually run the function until it sees a function call for it, later in the program.

To define a function of your own, follow my example. Start with def, followed by your function name, followed

by a pair of parentheses, followed by a colon, and then your indented block of statements. To name a function,
follow the basic rules for naming variables. Also, try to use a name that conveys what the function produces or
does.

Documenting a Function

Functions have a special mechanism that allows you to document them with what's called a docstring (or
documentation string). I created the following docstring for instructions():

 """ Display game instructions."""

A docstring is typically a triple-quoted string and, if you use one, must be the first line in your function. For
simple functions, you can do what I did here: write a single sentence that describes what the function does.
Functions work just fine without docstrings, but using them is a good idea. It gets you in the habit of
commenting your code and makes you describe the function's one, well-defined job. Also, a function's
docstring can pop up as interactive documentation while you type your call to it in IDLE.

Calling a Programmer-Created Function

Calling a programmer-created function works just like calling a built-in function. Use the name of the function
followed by a set of parentheses. I called my new function several times, each time with the line:

instructions()

This tells the computer to go off and execute the function I defined earlier. So each time I call it, the computer
prints the instructions to the game.

Understanding Abstraction

By writing and calling functions, you practice what's known as abstraction. Abstraction lets you think about the
big picture without worrying about the details. So, in this program, I can just use the function
instructions() without worrying about the details of displaying the text. All I have to do is call the function

with one line of code, and it gets the job done.

You might be surprised where you find abstraction, but people use it all the time. For example, consider two
employees at a fast food place. If one tells the other that he just filled a #3, and "sized it," the other employee
knows that the first employee took a customer's order, went to the heat lamps, grabbed a burger, went over to
the deep fryer, filled their biggest cardboard container with French fries, went to the soda fountain, grabbed
their biggest cup, filled it with soda, gave it all to the customer, took the customer's money, and gave the
customer change. Not only would this version be a boring conversation, but it's unnecessary. Both employees
understand what it means to fill a #3 and "size it." They don't have to concern themselves with all the details
because they're using abstraction.

Using Parameters and Return Values

As you've seen with built-in functions, you can provide a function values and get values back from them. With
the len() function, for example, you provide a sequence, and the function returns its length. Your own

functions can also receive and return values. This allows your functions to communicate with the rest of your
program.

Introducing the Receive and Return Program

I created three functions in the program Receive and Return to show the various combinations of receiving
and returning values. One function receives a value. The next function returns a value. And the last function
both receives and returns a value. Take a look at Figure 6.5 to see exactly what happens as a result of the
program.

Figure 6.5: Each function uses a parameter, a return value, or both to communicate with the main part of
the program.

Here's the code:

Receive and Return
Demonstrates parameters and return values
Michael Dawson - 2/21/03

def display(message):
 print message

def give_me_five():
 five = 5
 return five

def ask_yes_no(question):
 """ Ask a yes or no question."""
 response = None
 while response not in ("y", "n"):
 response = raw_input(question).lower()
 return response
main
display("Here's a message for you.\n")

number = give_me_five()
print "Here's what I got from give_me_five():", number

answer = ask_yes_no("\nPlease enter 'y' or 'n': ")

print "Thanks for entering:", answer

raw_input("\n\nPress the enter key to exit.")

Receiving Information through Parameters

The first function I defined, display(), receives a value and prints it. It receives a value through its

parameter. Parameters are essentially variable names inside the parentheses of a function header:

def display(message):

Parameters catch the values sent to the function from a function call through its arguments. So here, when
display() is called, message is assigned the value provided through the argument "Here's a message for
you.\n" In the main part of the program, I call display() with

display("Here's a message for you.\n")

As a result, message gets the string "Here's a message for you.\n". Then, the function runs.
message, like any parameter, exists inside the function as a variable. So, the line

 print message

prints the string "Here's a message for you.\n".

Although display() has only one parameter, functions can have many. To define a function with multiple

parameters, list them out, separated by commas.

TRAP When you define a function with parameters, any call to that function must include a number of
argument values that can be received by all of the parameters. Otherwise, Python will complain by
generating an error.

Returning Information through Return Values

The next function I wrote, give_me_five(), returns a value. It returns a value through (believe it or not) the
return statement:

 return five

When this line runs, the function passes the value of five back to the part of the program that called it, and
then ends. A function always ends after it hits a return statement.

It's up to the part of the program that called a function to catch the values it returns and do something with
them. Here's the main part of the program, where I called the function:

number = give_me_five()
print "Here's what I got from give_me_five():", number

I set up a way to catch the return value of the function by assigning the result of the function call to number.
So, when the function finishes, number gets the value of 5, which is equal to 5. The next line prints number to

show that it got the return value okay.

You can pass more than one value back from a function. Just list all the values you want to return, separated
by commas.

TRAP Make sure to have enough variables to catch all the return values of a function. If you don't have
the right number when you try to assign them, you'll generate an error.

Understanding Encapsulation

You might not see the need for return values when using your own functions. Why not just use the variable
five back in the main part of the program? Because you can't. five doesn't exist outside of its function
give_me_five(). In fact, no variable you create in a function, including its parameters, can be directly

accessed outside its function. This is a good thing and is called encapsulation. Encapsulation helps keep
independent code truly separate by hiding or encapsulating the details. That's why you use parameters and
return values: to communicate just the information that needs to be exchanged. Plus, you don't have to keep
track of variables you create within a function in the rest of your program. As your programs get large, this is a
great benefit.

Encapsulation might sound a lot like abstraction. That's because they're closely related. Encapsulation is a
principal of abstraction. Abstraction saves you from worrying about the details. Encapsulation hides details
from you. As an example, consider a remote control for a TV with volume up and down buttons. When you use
a TV remote to change the volume, you're employing abstraction, because you don't need to know what
happens inside the TV for it to work. Now suppose the TV remote has 10 volume levels. You can get to them
all through the remote, but you can't directly access them. That is, you can't get a specific volume number
directly. You can only press the up volume and down volume buttons to eventually get to the level you want.
The actual volume number is encapsulated and not directly available to you.

HINT Don't worry if you don't totally get the subtle difference between abstraction and encapsulation right
now. They're intertwined concepts, so it can be a little tricky. Plus, you'll get to see them in action
again when you learn about software objects and object-oriented programming in later Chapters 8
and 9.

Receiving and Returning Values in the Same Function

The final function I wrote, ask_yes_no(), receives one value and returns another. It receives a question and
returns a response from the user, either the character "y" or "n". The function receives the question through

its parameter:

def ask_yes_no(question):

question gets the value of the argument passed to the function. In this case, it's the string, "\nPlease
enter 'y' or 'n': ". The next part of the function uses this string to prompt the user for a response:

 response = None
 while response not in ("y", "n"):
 response = raw_input(question).lower()

The while loop keeps asking the question until the user enters either y, Y, n, or N. The function always

converts the user's entry to lowercase.

Finally, when the user has entered a valid response, the function sends a string back to the part of the
program that called it with

 return response

and the function ends.

In the main part of the program, the return value is assigned to answer and printed:

answer = ask_yes_no("\nPlease enter 'y' or 'n': ")
print "Thanks for entering:", answer

Understanding Software Reuse

Another great thing about functions is that they can easily be reused in other programs. For example, since
asking the user a yes or no question is such a common thing to do, you could grab the ask_yes_no()

function and use it in another program without doing any extra coding. This type of thing is called software
reuse. So writing good functions not only saves you time and energy in your current project, but can also save
you effort in future ones!

IN THE REAL WORLD

It's always a waste of time to "reinvent the wheel," so software reuse, using existing software and other
project elements in new projects, is a technique that business has taken to heart. Software reuse can do
the following:

Increase company productivity. By reusing code and other elements that already exist, companies
can get their projects done with less effort.

Improve software quality. If a company already has a tested piece of code, then it can use the code
with the knowledge that it's bug-free.

Provide consistency across software products. By using the same user interface, for example,
companies can create new software that users feel comfortable with right out of the box.

Improve software performance. Once a company has a good way of doing something through
software, using it again not only saves the company the trouble of reinventing the wheel, but also
saves it from the possibility of reinventing a less efficient wheel.

One way to reuse functions you've written is to copy them into your new program. But there is a better way.
You can create your own modules and import your functions into a new program, just like you import
standard Python modules (such as random) and use their functions (such as randrange()). You'll learn

how to create your own modules and import reusable code you've written in Chapter 9 section "Creating
Modules."

Using Keyword Arguments and Default Parameter Values

Passing values through arguments to parameters allows you to give information to a function. But so far,
you've only seen the most basic way to do that. Python allows greater control and flexibility with the way you
pass information, through default parameter values and keyword arguments.

Introducing the Birthday Wishes Program

The program Birthday Wishes, a sample run of which is pictured in Figure 6.6, sends birthday greetings
through two very similar functions. The first function uses the type of parameters you saw in the last section,
called positional parameters. The second version of the function uses default parameter values. The best way
to appreciate the difference is to see examples of them in action.

Figure 6.6: Functions can be called in different ways with the flexibility of keyword arguments and default
parameter values.

Here's the code for Birthday Wishes:

Birthday Wishes
Demonstrates keyword arguments and default parameter values
Michael Dawson - 2/21/03

positional parameters
def birthday1(name, age):
 print "Happy birthday,", name, "!", "I hear you're", age, "today.\n"

parameters with default values
def birthday2(name = "Jackson", age = 1):
 print "Happy birthday,", name, "!", "I hear you're", age, "today.\n"
birthday1("Jackson", 1)
birthday1(1, "Jackson")
birthday1(name = "Jackson", age = 1)
birthday1(age = 1, name = "Jackson")

birthday2()
birthday2(name = "Katherine")
birthday2(age = 12)
birthday2(name = "Katherine", age = 12)

birthday2("Katherine", 12)

raw_input("\n\nPress the enter key to exit.")

Using Positional Parameters and Positional Arguments

If you just list out a series of variable names in a function's header, you create positional parameters:

def birthday1(name, age):

If you call a function with just a series of values, you create positional arguments:

birthday1("Jackson", 1)

Using positional parameters and positional arguments means that parameters get their values based solely on
the position of the values sent. The first parameter gets the first value sent, the second parameter gets the
second value sent, and so on.

With this particular function call, it means that name gets "Jackson" and age gets 1. This results in the
message: Happy Birthday, Jackson ! I hear you're 1 today. If you switch the positions of two

arguments, the parameters get different values. So with the call

birthday1(1, "Jackson")

name gets the first value, 1, and age gets the second value, "Jackson". As a result, you end up with a
message you probably didn't intend: Happy Birthday, 1 ! I hear you're Jackson today.

You've seen this way of creating and calling functions already. But there are other ways to create parameter
and argument lists in your programs.

Using Positional Parameters and Keyword Arguments

Positional parameters get values sent to them in order, unless you tell the function otherwise. You can tell the
function to assign certain values to specific parameters, regardless of order, if you use keyword arguments.
With keyword arguments, you use the actual parameter names from the function header to link a value to a
parameter. So, by calling the same function birthday1() with

birthday1(name = "Jackson", age = 1)

name gets "Jackson" and age gets 1 and the function displays the message Happy Birthday, Jackson
! I hear you're 1 today. This isn't terribly impressive. You could achieve the same results without

keyword arguments by just sending these values in this order. But the beauty of keyword arguments is that
their order doesn't matter; it's the keywords that link values to parameters. So the call

birthday1(age = 1, name = "Jackson")

also produces the message Happy Birthday, Jackson ! I hear you're 1 today. even though the

values are listed in opposite order.

Keyword arguments let you pass values in any order. But their biggest benefit is clarity. When you see a
function call using keyword arguments, you get a much better understanding of what the values represent.

TRAP You can combine keyword arguments and positional arguments in a single function call, but this
can get tricky. Once you use a keyword argument, all the remaining arguments in the call must be
keyword arguments, too. To keep things simple, try to use all keyword or all positional arguments in
your function calls.

Using Default Parameter Values

Finally, you have the option to assign default values to your parameters, values that get assigned to the
parameters if no value is passed to them. That's just what I did with the birthday2() function. I made

changes in the header only:

def birthday2(name = "Jackson", age = 1):

This means that if no value is supplied to name, it gets "Jackson". And if no value is supplied for age, it gets
1. So the call

birthday2()

doesn't generate an error; instead, the default values are assigned to the parameters, and the function
displays the message Happy Birthday, Jackson ! I hear you're 1 today.

TRAP Once you assign a default value to a parameter in the list, you have to assign default values to all
the parameters listed after it. So, this function header is perfectly fine:

def monkey_around(bananas = 100, barrel_of = "yes", uncle = "monkey's"):

But this isn't:

def monkey_around(bananas = 100, barrel_of, uncle):

The above header will generate an error.

So far, so good. But you can add a wrinkle here by overriding the default values of any or all the parameters.
With the call

birthday2(name = "Katherine")

the default value of name is overridden. name gets "Katherine", age still gets its default value of 1, and the
message Happy Birthday, Katherine ! I hear you're 1 today. is displayed.

With this function call:

birthday2(age = 12)

the default value of age is overridden. age gets the value of 12. name gets it's default value of "Jackson".
And the message Happy Birthday, Jackson ! I hear you're 12 today. is displayed.

With the call

birthday2(name = "Katherine", age = 12)

both default values are overridden. name gets "Katherine" and age gets 12. The message Happy
Birthday, Katherine ! I hear you're 12 today. is displayed.

And with the call

birthday2("Katherine", 12)

you get the exact same results as you did with the previous call. Both default values are overridden. name gets
"Katherine" and age gets 12. And the message Happy Birthday, Katherine ! I hear you're
12 today. is displayed.

TRICK Default parameter values are great if you have a function where almost every time it's called,
some parameter gets sent the same value. To save programmers using your function the trouble
of typing this value every time, you could use a default parameter value instead.

Using Global Variables and Constants

Through the magic of encapsulation, the functions you've seen are all totally sealed off and independent from
each other and the main part of your program. The only way to get information into them is through their
parameters, and the only way to get information out of them is from their return values. Well, that's not
completely true. There is another way that you can share information among parts of your program: through
global variables.

Understanding Namespaces

Namespaces (also called scopes) represent different areas of your program that are separate from each other.
For example, each function you define has its own namespace. That's why the functions you've seen can't
directly access each other's variables. A visual representation really helps to gel this idea, so take a look at
Figure 6.7.

Figure 6.7: This simple program has three different namespaces— one for each function, plus one for the
global namespace.

Figure 6.7 shows a program with three different namespaces. The first is defined by function func1(), the
second is defined by function func2(), and the third is the global namespace (which all programs

automatically have). In this program, you're in the global namespace when you're not inside any function. The
shaded area in the figure represents the global namespace. Any variable that you create in the global
namespace is called a global variable, while any variable you create inside a function is called a local variable
(it's local to that function).

Since variable1 is defined inside func1(), it's a local variable that lives only in the namespace of
func1(). variable1 can't be accessed from any other namespace. So, no command in func2() can get

at it, and no command in the global space can access or modify it either.

A good way to remember how this works is to think of namespaces as houses and encapsulation as tinted
windows, giving each house privacy. As a result, you can see anything inside a house if you're in it. But if
you're outside a house, you can't see what's inside. This is the way it works with functions. When you're in a
function, you have access to all of its variables. But when you're outside a function, like in the global
namespace, you can't see any of the variables inside a function.

If two variables have the same name inside two separate functions, they're totally different variables with no
connection to each other. For example, if I created a variable called variable2 inside function func1(), it
would be different and completely separate from the variable named variable2 in function func2().

Because of encapsulation, it would be like they exist in different worlds and have no effect on each other.

Global variables, however, create a little wrinkle in the idea of encapsulation, as you'll see.

Introducing the Global Reach Program

The Global Reach program shows how you can read and even change global variables from inside functions.
Figure 6.8 displays the program's results.

Figure 6.8: You can read, shadow, or even change the value of a global variable from inside a function.

Here's the code for the program:

Global Reach
Demonstrates global variables
Michael Dawson - 2/21/03

def read_global():
 print "From inside the local namespace of read_global(), value is:", value

def shadow_global():
 value = -10
 print "From inside the local namespace of shadow_global(), value is:", value

def change_global():
 global value
 value = -10
 print "From inside the local namespace of change_global(), value is:", value

main
value is a global variable because we're in the global namespace here
value = 10
print "In the global namespace, value has been set to:", value, "\n"

read_global()
print "Back in the global namespace, value is still:", value, "\n"

shadow_global()
print "Back in the global namespace, value is still:", value, "\n"

change_global()
print "Back in the global namespace, value has now changed to:", value

raw_input("\n\nPress the enter key to exit.")

Reading a Global Variable from Inside a Function

Although by now you're probably quite comfortable with the idea of encapsulation, I'm going to throw you a
little curve ball: you can read the value of a global variable from within any namespace in your program. But
fear not, this can still work with the concept of houses and tinted windows. Remember, tinted windows keep
the houses (or functions) private. But tinted windows also let you see out. So, you can always see outside of a
function to the global namespace and see the value of a global variable. That's what I did when I created the
function read_global(). It prints the global variable value without a problem.

While you can always read the value of a global variable in any function, you can't change it directly (at least
not without asking specifically for that kind of access). So, in read_global(), doing something like the

following would generate a nasty error:

 value += 1

Back to the houses and tinted glass idea, this means that you can see a global variable from within a function
through the tinted window, but you can't touch it because it's outside. So, although you can read the value of a
global variable from inside a function, you can't change its value without asking for special access to it.

Shadowing a Global Variable from Inside a Function

If you give a variable inside a function the same name as a global variable, you shadow the global variable.
That is, you hide it with your new variable. It might look like you can change the value of a global variable by
doing this, but you only change the local variable you've created. That's what I did in the function
shadow_global(). When I assigned -10 to value with

 value = -10

I didn't change the global version of value. Instead, I created a new, local version of value inside the
function and that got -10. You can see that this is what happened, because when the function finishes, the
main program prints out the global version of value with

print "Back in the global namespace, value is still:", value, "\n"

and it's still 10.

TRAP It's not a good idea to shadow a global variable inside a function. It can lead to confusion. You
might think you're using a global variable when you're really not. Be aware of any global variables in
your program and make sure not to use the name anywhere else in your code.

Changing a Global Variable from Inside a Function

To gain complete access to a global variable, use the keyword global like I did in the function
change_global():

 global value

At this point, the function has complete access to value. So when I changed it with

 value = -10

the global variable value got -10. When the program prints value again back in the main part of the code

with

print "Back in the global namespace, value has changed to:", value

-10 is printed. The global variable was changed from inside the function.

Understanding When to Use Global Variables and Constants

Just because you can, doesn't mean you should. This is a good programming motto. Sometimes things are
technically possible, but not good ideas. Using global variables is an example of this. In general, global
variables make programs confusing because it can be hard to keep track of their changing values. You should
limit your use of them as much as you can.

Global constants (global variables that you treat as constants), on the other hand, can make programs less
confusing. For example, say you're writing a business application that calculates someone's taxes. Like a
good programmer, you have written a variety of functions in your code, all of which use the somewhat cryptic
value .27 as the tax rate. Instead, you could create a global constant called TAX_RATE and set it to .27.
Then, in each function, you could replace the number .27 with TAX_RATE. This produces two benefits. It

makes your code clearer and it makes changes (like a new tax rate) no sweat.

Back to the Tic-Tac-Toe Game

The Tic-Tac-Toe game presented at the beginning of the chapter is your most ambitious chapter project yet. You
certainly have all the skills you need to create the game, but instead of jumping straight into the code, I'm going to go
through a planning section to help you get the bigger picture and understand how to create a larger program.

Planning the Tic-Tac-Toe Game

If you haven't figured this out by now, I'll bore you with it again: the most important part of programming is planning to
program. Without a roadmap, you'll never get to where you want to go (or it'll take you a lot longer as you travel the
scenic route).

Writing the Pseudocode

It's back to your favorite language that's not really a language: pseudocode. Since I'll be using functions for most of the
tasks in the program, I can afford to think about the program at a pretty abstract level. Each line of pseudocode should
feel like one function call. Then, later, I'll just have to write the functions that the plan implies. Here's the pseudocode:

display the game instructions
determine who goes first
create an empty tic-tac-toe board
display the board
while nobody's won and it's not a tie
 if it's the human's turn
 get the human's move
 update the board with the move
 otherwise
 calculate the computer's move
 update the board with the move
 display the board
 switch turns
congratulate the winner or declare a tie

Representing the Data

Alright, I have a good plan, but it is pretty abstract and talks about throwing around different elements that aren't really
defined in my mind yet. I see the idea of making a move as placing a piece on a game board. But how exactly am I
going to represent the game board? Or a piece? Or a move?

Since I'm going to print the game board on the screen, why not just represent a piece as one character, an "X" or an
"O" ? An empty piece could just be a space. The board itself should be a list since it's going to change as each player

makes a move. There are nine squares on a tic-tac-toe board, so the list should be nine elements long. Each square on
the board will correspond to a position in the list that represents the board. Figure 6.9 illustrates what I mean.

Figure 6.9: Each square number corresponds to a position in a list that represents the board.

So, each square or position on the board is represented by a number, 0–8. That means the list will be nine elements
long and have position numbers 0–8. Since each move indicates a square in which to put a piece, a move is also just a
number, 0–8.

The sides the player and computer play could also be represented by "X" and "O" , just like a game piece. And a
variable to represent the side of the current turn would be either an "X" or an "O" .

Creating a List of Functions

The pseudocode inspires the different functions I'll need. I created a list of them, thinking about what they would do,
what parameters they would have, and what values they would return. Table 6.1 shows the results of my efforts.

display_instruct()

Displays the game instructions.

def ask_yes_no(question)

Asks a yes or no question. Receives a question. Returns either a "y" or a "n" .

def ask_number(question , low , high)

Asks for a number within a range. Receives a question, a low number, and a high number. Returns a number in the
range from low to high .

pieces()

Determines who goes first. Returns the computer's piece and human's piece.

new_board ()

Creates a new, empty game board. Returns a board.

display_board(board)

Displays the board on the screen. Receives a board.

legal_moves(board)

Creates a list of legal moves. Receives a board. Returns a list of legal moves.

winner(board)

Determines the game winner. Receives a board. Returns a piece, "TIE" or None .

human _move(board , human)

Gets the human's move from the player. Receives a board and the human's piece. Returns the human's move.

computer _move(board , computer , human)

Calculates the computer's move. Receives a board, the computer piece, and the human piece. Returns the computer's
move.

next_turn (turn)

Switches turns based on the current turn. Receives a piece. Returns a piece.

congrat_winner(the_winner , computer, human)

Congratulates the winner or declares a tie. Receives the winning piece, the computer's piece, and the human's piece.

Table 6.1: TIC-TAC-TOE FUNCTIONS

Function Description

Setting Up the Program

The first thing I did in writing the program was set up some global constants. These are values that more than one
function will use. Creating them will make the functions clearer and any changes involving these values easier.

Tic-Tac-Toe
Plays the game of tic-tac-toe against a human opponent
Michael Dawson - 2/21/03

global constants
X = "X"
O = "O"
EMPTY = ""
TIE = "TIE"
NUM_SQUARES = 9

X is just shorthand for "X" , one of the two pieces in the game. O represents "O" , the other piece in the game. EMPTY
represents an empty square on the board. It's a space because when it's printed, it will look like an empty square. TIE
represents a tie game. And NUM_SQUARES is the number of squares on the tic-tac-toe board.

The display_instruct() Function

This function displays the game instructions. You've seen it before:

def display_instruct():
 """ Display game instructions."""
 print \
 """
 Welcome to the greatest intellectual challenge of all time: Tic-Tac-Toe.
 This will be a showdown between your human brain and my silicon processor.

 You will make your move known by entering a number, 0 - 8. The number
 will correspond to the board position as illustrated:

 0 | 1 | 2

 3 | 4 | 5

 6 | 7 | 8

 Prepare yourself, human. The ultimate battle is about to begin. \n

 """

The only thing I did was change the function name for the sake of consistency in the program.

The ask_yes_no() Function

This function asks a yes or no question. It receives a question and returns either a "y" or a "n" . You've seen this

function before too.

def ask_yes_no(question):
 """ Ask a yes or no question."""
 response = None
 while response not in ("y", "n"):
 response = raw_input(question).lower()
 return response

The ask_number() Function

This function asks for a number within a range. It receives a question, a low number, and a high number. It returns a
number within the range specified.

def ask_number(question, low, high):
 """ Ask for a number within a range."""
 response = None
 while response not in range(low, high):
 response = int(raw_input(question))
 return response

The pieces() Function

This function asks the player if he or she wants to go first and returns the computer's piece and human's piece, based
on that choice. As the great tradition of tic-tac-toe dictates, the X's go first.

def pieces():
 """ Determine if player or computer goes first."""
 go_first = ask_yes_no("Do you require the first move? (y/n): ")
 if go_first == "y":
 print "\nThen take the first move. You will need it."
 human = X
 computer = O
 else:
 print "\nYour bravery will be your undoing... I will go first."
 computer = X
 human = O
 return computer, human

Notice that this function calls another one of my functions, ask_yes_no() . This is perfectly fine. One function can call

another.

The new_board() Function

This function creates a new board (a list) with all nine elements set to EMPTY and returns it:

def new_board():
 """ Create new game board."""
 board = []
 for square in range(NUM_SQUARES):
 board.append(EMPTY)
 return board

The display_board() Function

This function displays the board passed to it. Since each element in the board is either a space, the character "X" , or
the character "O" , the function can print each one. A few other characters on my keyboard are used to draw a decent-

looking tic-tac-toe board.

def display_board(board):
 """ Display game board on screen."""
 print "\n\t", board[0], "|", board[1], "|", board[2]
 print "\t", "————-"
 print "\t", board[3], "|", board[4], "|", board[5]
 print "\t", "————-"
 print "\t", board[6], "|", board[7], "|", board[8], "\n"

The legal_moves() Function

This function receives a board and returns a list of legal moves. This function is used by other functions. It's used by the
human_move() function to make sure that the player chooses a valid move. It's also used by the computer_move()

function so that the computer can consider only valid moves in its decision making.

A legal move is represented by the number of an empty square. For example, if the center square were open, then 4
would be a legal move. If only the corner squares were open, the list of legal moves would be [0, 2, 6, 8] . (Take a

look at Figure 6.9 if you're unclear about this.)

So, this function just loops over the list representing the board. Each time it finds an empty square, it adds that square
number to the list of legal moves. Then it returns the list of legal moves.

def legal_moves(board):
 """ Create list of legal moves."""
 moves = []
 for square in range(NUM_SQUARES):
 if board[square] == EMPTY:
 moves.append(square)
 return moves

The winner() Function

This function receives a board and returns the winner. There are four possible values for a winner. The function will
return either X or O if one of the players has won. If every square is filled and no one has won, it returns TIE . Finally, if
no one has won and there is at least one empty square, the function returns None .

The very first thing I do in this function is define a constant called WAYS_TO_WIN , which represents all eight ways to get

three in a row. Each way to win is represented by a tuple. Each tuple is a sequence of the three board positions that
form a winning three in a row. Take the first tuple in the sequence, (0, 1, 2) . This represents the top row: board
positions 0 , 1 , and 2 . The next tuple (3, 4, 5) represents the middle row. And so on.

def winner(board):
 """ Determine the game winner."""
 WAYS_TO_WIN = ((0, 1, 2),
 (3, 4, 5),
 (6, 7, 8),
 (0, 3, 6),
 (1, 4, 7),
 (2, 5, 8),
 (0, 4, 8),
 (2, 4, 6))

Next, I use a for loop to go through each possible way a player can win, to see if either player has three in a row. The
if statement checks to see if the three squares in question all contain the same value and are not empty. If so, that
means that the row has either three X 's or O 's in it and somebody has won. The computer assigns one of the pieces in
this winning row to winner , returns winner , and ends.

 for row in WAYS_TO_WIN:
 if board[row[0]] == board[row[1]] == board[row[2]] != EMPTY:
 winner = board[row[0]]
 return winner

If neither player has won, then the function continues. Next, it checks to see if there are any empty squares left on the
board. If there aren't any, the game is a tie (because the function has already determined that there is no winner, back
in the for loop) and TIE is returned.

 if EMPTY not in board:
 return TIE

If the game isn't a tie, the function continues. Finally, if neither player has won and the game isn't a tie, there is no
winner yet. So, the function returns None .

 return None

The human_move() Function

This next function receives a board and the human's piece. It returns the square number where the player wants to
move.

First, the function gets a list of all the legal moves for this board. Then, it continues to ask the user for the square
number to which he or she wants to move until that response is in this list of legal moves. Once that happens, the
function returns the move.

def human_move(board, human):
 """ Get human move."""
 legal = legal_moves(board)
 move = None
 while move not in legal:
 move = ask_number("Where will you move? (0 - 8): ", 0, NUM_SQUARES)
 if move not in legal:
 print "\nThat square is already occupied, foolish human. Choose another.\n"
 print "Fine.."
 return move

The computer_move() Function

The computer_move() function receives the board, the computer's piece, and the human's piece. It returns the

computer's move.
TRICK

This is definitely the meatiest function in the program. Knowing it would be, I initially created a short, temporary function
that chooses a random but legal move. I wanted time to think about this function, but didn't want to slow the progress of
the entire project. So, I dropped in the temporary function and got the game up and running. Later, I came back and
plugged in a better function that actually picks moves for a reason.

I had this flexibility because of the modular design afforded by writing with functions. I knew that computer_move()

was a totally independent component and could be substituted later, without a problem. In fact, I could even drop a new
function in right now, one that chooses even better moves. (Sounds an awful lot like a challenge, now doesn't it?)

I have to be careful here because the board (a list) is mutable and I change it in this function as I search for the best
computer move. The problem with this is that any change I make to the board will be reflected in the part of the program
that called this function. This is the result of shared references, which you learned about in Chapter 5 section
"Understanding Shared References ." Basically, there's only one copy of the list, and any change I make here changes
that single copy. So, the very first thing I do is make my own, local copy to work with:

def computer_move(board, computer, human):
 """ Make computer move."""
 # make a copy to work with since function will be changing list
 board = board[:]

HINT

Any time you get a mutable value passed to a function, you have to be careful. If you know you're going to change the
value as you work with it, make a copy and use that instead.

TRAP

You might think that changing the board would be a good thing. You could change it so that it contains the new
computer move. This way, you don't need to send the board back as a return value.

Changing a mutable parameter directly like this is considered creating a side effect. Not all side effects are bad, but this
type is generally frowned upon (I'm frowning right now, just thinking about it). It's best to communicate with the rest of
your program through return values; that way, it's clear exactly what information you're giving back.

Okay, here's the basic strategy I came up with for the computer:

If there's a move that allows the computer to win this turn, the computer should choose that move.1.

If there's a move that allows the human to win next turn, the computer should choose that move.2.

Otherwise, the computer should choose the best empty square as its move. The best square is the center. The
next best squares are the corners. And the next best squares are the rest.

3.

So next in the code, I define a tuple to represent the best squares, in order:

 # the best positions to have, in order
 BEST_MOVES = (4, 0, 2, 6, 8, 1, 3, 5, 7)

 print "I shall take square number",

Next, I create a list of all the legal moves. In a loop, I try the computer's piece in each empty square number I got from
the legal moves list and check for a win. If the computer can win, then that's the move to make. If that's the case, the
function returns that move and ends. Otherwise, I undo the move I just tried and try the next one in the list.

 # if computer can win, take that move
 for move in legal_moves(board):
 board[move] = computer
 if winner(board) == computer:
 print move
 return move
 # done checking this move, undo it
 board[move] = EMPTY

If I get to this point in the function, it means the computer can't win on its next move. So, I check to see if the player can
win on his or her next move. The code loops through the list of the legal moves, putting the human's piece in each
empty square, checking for a win. If the human can win, then that's the move to take for a block. If this is the case, the
function returns the move and ends. Otherwise, I undo the move and try the next legal move in the list.

 # if human can win, block that move
 for move in legal_moves(board):
 board[move] = human
 if winner(board) == human:
 print move
 return move
 # done checking this move, undo it
 board[move] = EMPTY

If I get to this point in the function, then neither side can win on its next move. So, I look through the list of best moves
and take the first legal one. The computer loops through BEST_MOVES , and as soon as it finds one that's legal, it

returns that move.

 # since no one can win on next move, pick best open square
 for move in BEST_MOVES:
 if move in legal_moves(board):
 print move
 return move

IN THE REAL WORLD

The Tic-Tac-Toe program considers only the next possible move in the game. Programs that play serious games of
strategy, like chess, look far deeper into the consequences of individual moves, considering many levels of moves
and countermoves. And today's computers can examine a huge number of game positions. Specialized machines,
like IBM's chess-playing Deep Blue computer, which beat world champion Garry Kasparov, can examine far more.
Deep Blue is able to explore over 200,000,000 board positions per second. That sounds quite impressive, until you
realize that the total number of board positions in a complete search for chess is estimated to be over 100,000,
000,000,000,000,000,000,000,000,000,000,000,000,000,000,000, which means it would take Deep Blue more than
1,585,489,599,188,229 years to look at all those possible positions. (The universe, by the way, is estimated to be
only 15,000,000,000 years old.)

The next_turn() Function

This function receives the current turn and returns the next turn. A turn represents whose turn it is and is either X or O .

def next_turn(turn):
 """ Switch turns."""
 if turn == X:
 return O
 else:
 return X

The function is used to switch turns after one player has made a move.

The congrat_winner() Function

This function receives the winner of the game, the computer's piece, and the human's piece. This function is called only
when the game is over, so the_winner will be passed either X or O if one of the player's has won the game, or TIE if

the game ended in a tie.

def congrat_winner(the_winner, computer, human):
 """ Congratulate the winner."""
 if the_winner != TIE:
 print the_winner, "won!\n"
 else:

 print "It's a tie!\n"

 if the_winner == computer:
 print "As I predicted, human, I am triumphant once more. \n" \
 "Proof that computers are superior to humans in all regards."

 elif the_winner == human:
 print "No, no! It cannot be! Somehow you tricked me, human. \n" \
 "But never again! I, the computer, so swears it!"

 elif the_winner == TIE:
 print "You were most lucky, human, and somehow managed to tie me. \n" \
 "Celebrate today... for this is the best you will ever achieve."

The main() Function

I put the main part of the program into its own function, instead of leaving it at the global level. This encapsulates the
main code too. Unless you're writing a short, simple program, it's usually a good idea to encapsulate even the main part
of it. If you do put your main code into a function like this, you don't have to call it main() . There's no magic to the

name. But it's a pretty common practice, so it's a good idea to use it.

Okay, here's the code for the main part of the program. As you can see, it's almost exactly, line for line, the pseudocode
I wrote earlier:

def main():
 display_instruct()
 computer, human = pieces()
 turn = X
 board = new_board()
 display_board(board)

 while not winner(board):
 if turn == human:
 move = human_move(board, human)
 board[move] = human
 else:
 move = computer_move(board, computer, human)
 board[move] = computer
 display_board(board)
 turn = next_turn(turn)

 the_winner = winner(board)
 congrat_winner(the_winner, computer, human)

Starting the Program

The next line calls the main function (which in turn calls the other functions) from the global level:

start the program
main()
raw_input("\n\nPress the enter key to quit.")

Summary

In this chapter, you learned to write your own functions. You then saw how to accept and return values in your
functions. You learned about namespaces and saw how global variables can be accessed and changed from
within functions. You also learned to limit your use of global variables, but saw how to use global constants
when necessary. You even dabbled ever so slightly in some artificial intelligence concepts to create a
computer opponent in a game of strategy.

Challenges
Improve the function ask_number() so that the function can be called with a step value. Make the

default value of step 1.

1.

Modify the Guess My Number chapter project from Chapter 3 by reusing the function ask_number().2.

Modify the new version of Guess My Number you created in the last challenge so that the program's
code is in a function called main(). Don't forget to call main() so that you can play the game.

3.

Write a new computer_move() function for the Tic-Tac-Toe game to plug the hole in the computer's

strategy. See if you can create an opponent that is unbeatable!

4.

Chapter 7: Files and Exceptions: The Trivia Challenge

Game

 Download CD Content

Overview

Variables provide a great way to store and access information while a program runs, but often, you'll want to
save data so that you can retrieve it later. In this chapter, you'll learn to use files for this kind of permanent
storage. You'll also learn how to handle errors that your code may generate. Specifically, you'll learn to do the
following:

Read from text files

Write to text files

Read and write more complex data with files

Intercept and handle errors during a program's execution

Introducing the Trivia Challenge Game

The Trivia Challenge game tests a player's knowledge with a series of multiple-choice questions. The game
delivers the questions as a single "episode." The episode I created to show off the program is about the mafia
and is called "An Episode You Can't Refuse." All of the questions relate in some way to the mafia (although a
bit indirectly at times).

The cool thing about the game is that the questions for an episode are stored in a separate file, independent
of the game code. This way, it's easy to play different ones. Even better, this means that anyone with a text
editor (like Notepad on Windows machines) can create their own trivia episode about whatever topic they
choose—anything from anime to zoology. Figure 7.1 shows the game (and my episode) in action.

Figure 7.1: The player is always presented with four inviting choices. But only one is correct.

Reading from Text Files

With Python, it's easy to read strings from plain text files—files that are made up of only ASCII characters.
(Although there are different types of text files, when I use the term "text file," I mean a plain text file.) Text
files are a good choice for permanently storing simple information, for a number of reasons. First, text files are
cross-platform. A text file on a Windows machine is the same text file on a Mac and is the same text file under
Unix. Second, text files are easy to use. Most operating systems come with basic tools to view and edit them.

Introducing the Read It Program

The Read It program demonstrates several ways you can read strings from a text file. The program
demonstrates how to read anything from a single character to the entire file. It also shows several different
ways to read one line at a time (probably the most common way you'll access text files). The program reads a
simple text file I created on my system using a text editor. Here are the contents of the file:

Line 1
This is line 2
That makes this line 3

I saved the file with the name read_it.txt and put it in the same directory as the Read It program file

for easy access. Figure 7.2 illustrates the program.

Figure 7.2: The file is read using a few different techniques.

Here's the code for the program:

Read It
Demonstrates reading from a text file
Michael Dawson - 4/28/03
print "Opening and closing the file."

text_file = open("read_it.txt", "r")
text_file.close()

print "\nReading characters from the file."
text_file = open("read_it.txt", "r")
print text_file.read(1)
print text_file.read(5)
text_file.close()

print "\nReading the entire file at once."
text_file = open("read_it.txt", "r")
whole_thing = text_file.read()
print whole_thing
text_file.close()

print "\nReading characters from a line."
text_file = open("read_it.txt", "r")
print text_file.readline(1)
print text_file.readline(5)
text_file.close()

print "\nReading one line at a time."
text_file = open("read_it.txt", "r")
print text_file.readline()
print text_file.readline()
print text_file.readline()
text_file.close()

print "\nReading the entire file into a list."
text_file = open("read_it.txt", "r")
lines = text_file.readlines()
print lines
print len(lines)
for line in lines:
 print line
text_file.close()
print "\nLooping through the file, line by line."
text_file = open("read_it.txt", "r")
for line in text_file:
 print line
text_file.close()

raw_input("\n\nPress the enter key to exit.")

I'll show you exactly how the code works through an interactive session.

Opening and Closing a Text File

Before you can read from a text file, you need to open it. That's the first thing I do in the Read It program:

>>> text_file = open("read_it.txt", "r")

I use the open() function to open a text file and assign the results to text_file. In the function call, I

provide two string arguments: a file name and an access mode.

The file argument, "read_it.txt", is pretty straightforward. Since I don't include any path information,

Python looks in the current directory for the file. I can access a file in any directory by providing the proper
path information. For example, on my Windows machine I could provide an absolute path with the string

"C:\Documents and Settings\Owner\Desktop\ read_it.txt" to access the file
 read_it.txt located on my desktop. This will access the file regardless of the directory from which Read It

is run. Or, I could provide a relative path with the string "data\read_it.txt" to access the file
 read_it.txt located in the subdirectory data of the directory from which Read It is run. In either case, I'm

not limited to accessing files from the only directory where Read It is run.

Next, I provide "r" for the access mode, which tells Python that I want to open the file for reading. You can

open a file for reading, writing, or both. Table 7.1 describes valid access modes.

Table 7.1: SELECTED FILE ACCESS MODES

Mode Description

"r" Read from a file. If the file doesn't exist, Python will complain with an error.

"w" Write to a file. If the file exists, its contents are overwritten. If the file doesn't exist, it's
created.

"a" Append a file. If the file exists, new data is appended to it. If the file doesn't exist, it's
created.

"r+" Read from and write to a file. If the file doesn't exist, Python will complain with an error.

"w+" Write to and read from a file. If the file exists, its contents are overwritten. If the file doesn't
exist, it's created.

"a+" Append and read from a file. If the file exists, new data is appended to it. If the file doesn't
exist, it's created.

After opening the file, I access it through the variable text_file. There are many useful file methods that I
can invoke, but the simplest is close(), which closes the file. That's what I do next in the program:

>>> text_file.close()

Whenever you're done with a file, it's good programming practice to close it.

Reading Characters from a Text File

For a file to be of any use, you need to do something with its contents between opening and closing it. So
next, I open the file and read its contents with the read() file method. read() allows you to read a specified

number of characters from a file, which the method returns as a string. After opening the file again, I read and
print exactly one character from it:

>>> text_file = open("read_it.txt", "r")
>>> print text_file.read(1)

L

All I have to do is specify the number of characters between the parentheses. Next, I read and print the next
five characters:

>>> print text_file.read(5)
ine 1

Notice that I read the five characters following the "L". Python remembers where I last left off. It's like the
computer puts a bookmark in the file and each subsequent read() begins where the last ended. When you

read to the end of a file, subsequent reads return the empty string.

To start back at the beginning of a file, you can close and open it. That's just what I did next:

>>> text_file.close()
>>> text_file = open("read_it.txt", "r")

If you don't specify the number of characters to be read, Python returns the entire file as a string. Next, I read
the entire file, assign the returned string to a variable, and print the variable:

>>> whole_thing = text_file.read()
>>> print whole_thing
Line 1
This is line 2
That makes this line 3

If a file is small enough, reading the entire thing at once may make sense. Since I've read the entire file, any
subsequent reads will just return the empty string. So, I close the file again:

>>> text_file.close()

Reading Characters from a Line

Often, you'll want to work with one line of a text file at a time. The readline() method lets you read

characters from the current line. You just pass the number of characters you want read from the current line
and the method returns them as a string. If you don't pass a number, the method returns the entire line. Once
you read all of the characters of a line, the next line becomes the current line. After opening the file again, I
read the first character of the current line:

>>> text_file = open("read_it.txt", "r")
>>> print text_file.readline(1)
L

Then I read the next five characters of the current line:

>>> print text_file.readline(5)
ine 1
>>> text_file.close()

At this point, readline() may seem no different than read(), but readline() reads characters from the
current line only, while read() reads characters from the entire file. Because of this, readline() is usually

invoked to read one line of text at a time. In the next few lines of code, I read the file, one line at a time:

>>> text_file = open("read_it.txt", "r")
>>> print text_file.readline()
Line 1

>>> print text_file.readline()
This is line 2

>>> print text_file.readline()
That makes this line 3

>>> text_file.close()

Notice that a blank line appears after each line. That's because each line in the text file ends with a newline
character ("\n").

Reading All Lines into a List

Another way to work with individual lines of a text file is the readlines() method, which reads a text file into
a list, where each line of the file becomes a string element in the list. Next, I invoke the readlines()

method:

>>> text_file = open("read_it.txt", "r")
>>> lines = text_file.readlines()

lines now refers to a list with an element for each line in the text file:

>>> print lines
['Line 1\n', 'This is line 2\n', 'That makes this line 3\n']

lines is like any list. You can find the length of it and even loop through it:

>>> print len(lines)
3
>>> for line in lines:
 print line
Line 1

This is line 2

That makes this line 3

>>> text_file.close()

Looping through a Text File

Starting in Python 2.2, you can loop directly through the lines of a text file:

>>> text_file = open("read_it.txt", "r")
>>> for line in text_file:
 print line

Line 1

This is line 2

That makes this line 3

>>> text_file.close()

This technique is the most elegant solution if you want to move through all of the lines of a text file.

Writing to a Text File

For text files to be a viable form of storage, you need to be able to get information into them. With Python, it's
also a simple matter to write strings to text files. In fact, it's even easier than reading strings from text files,
because there are just two basic ways to write to text files.

Introducing the Write It Program

The Write It program creates a text file with the same contents of the read_it.txt file that I used in the

Read It program. Actually, the program creates and prints this new file twice, using a different file writing
method each time. Figure 7.3 shows the results of the program.

Figure 7.3: The same file is created twice, each time with a different file method.

Writing Strings to a Text File

Just as before, in order to use a file, I have to open it in the correct mode. So, the first thing I do in the
program is open a file in write mode:

Write It
Demonstrates writing to a text file
Michael Dawson - 4/28/03

print "Creating a text file with the write() method."
text_file = open("write_it.txt", "w")

The file write_it.txt springs into existence as an empty text file just waiting for the program to write to it. If
the file write_it.txt had already existed, it would have been replaced with a brand-new, empty file and all

of its original contents would have been erased.

Next, I use the write() file method, which writes a string to the file:

text_file.write("Line 1\n")
text_file.write("This is line 2\n")
text_file.write("That makes this line 3\n")

The write() method does not automatically insert a newline character at the end of a string it writes. You

have to put newlines in where you want them. If I had left the three newline characters out of the previous lines
of code, the program would write one, long string to the file.

Also, you don't have to end every string you write to a file with a newline character. To achieve the same end
result, I could just as easily have stuck all three of the previous strings together to form one long string, "Line
1\n This is line 2\n That makes this line 3\n", and written that string to the file with a single
write() method.

Finally, I close the file:

text_file.close()

Next, just to prove that the writing worked, I read and print the entire contents of the file:

print "\nReading the newly created file."
text_file = open("write_it.txt", "r")
print text_file.read()
text_file.close()

Writing a List of Strings to a Text File

Next, I create the same file, using the writelines() file method. Like its counter-part, readlines(),
writelines() works with a list of strings. But instead of reading a text file into a list, the method writes a list

of strings to a file.

The first thing I do is open the file for writing:

print "\nCreating a text file with the writelines() method."
text_file = open("write_it.txt", "w")

I open the same file, write_it.txt, which means I wipe out the existing file and start with a new, empty

one. Next, I create a list of strings to be written, in order, to the file:

lines = ["Line 1\n",
 "This is line 2\n",
 "That makes this line 3\n"]

Again, I inserted newline characters where I want them in the text file.

Next, I write the entire lists of strings to the file with the writelines() method:

text_file.writelines(lines)

Finally, I close the file:

text_file.close()

Lastly, I print out the contents of the file to show that the new file is exactly the same as the previous version:

print "\nReading the newly created file."
text_file = open("write_it.txt", "r")
print text_file.read()
text_file.close()

raw_input("\n\nPress the enter key to exit.")

You've seen a lot of file read and write methods. Take a look at Table 7.2 for a summary of them.

Table 7.2: SELECTED FILE METHODS

Method Description

read([size]) Reads size characters from a text file and returns them as a string. If

size is not specified, the method returns all of the characters from the

current position to the end of the file.

readline([size]) Reads size characters from the current line in a text file and returns

them as a string. If size is not specified, the method returns all of the

characters from the current position to the end of the line.

readlines() Reads all of the lines in a text file and returns them as elements in a list.

write(output) Writes the string output to a text file.

writelines(output) Writes the strings in the list output to a text file.

Storing Complex Data in Files

Text files are convenient because you can read and manipulate them with any text editor, but they're limited to
storing a series of characters. Sometimes you may want to store more complex information, like a list or a
dictionary, for example. You could try to convert the contents of these data structures to characters and save
them to a file, but Python offers a much better way. You can store more complex data in a file with a single line
of code. You can even store a simple database of values in a single file that acts like a dictionary.

Introducing the Pickle It Program

Pickling means to preserve—and that's just what it means in Python. You can pickle a complex piece of data,
like a list or dictionary, and save it in its entirety to a file. Best of all, your hands won't smell like vinegar when
you're done.

IN THE REAL WORLD

Other languages can convert complex data for storage in files too, but may not call the process pickling.
Instead, these languages may call the process serialization or marshaling.

The Pickle It program pickles, stores, and retrieves three lists of strings. First, the program stores and
retrieves the lists sequentially using a file, much like you've seen with characters in a text file. But then the
program stores and retrieves the same three lists so that any list can be randomly accessed. The results of
the program are shown in Figure 7.4.

Figure 7.4: Each list is written to and read from a file in its entirety.

Pickling Data and Writing It to a File

The first thing I do in the program is import two new modules:

Pickle It
Demonstrates pickling and shelving data
Michael Dawson 5/1/03

import cPickle, shelve

The cPickle module allows you to pickle and store more complex data in a file. The shelve module allows

you to store and randomly access pickled objects in a file.

HINT Python also has a pickle module, which works like the cPickle module. pickle is written in
Python while cPickle is written in C. Since cPickle can be much faster, it's better to use
cPickle over pickle in almost every case.

Pickling is pretty simple. Instead of writing characters to a text file, you can write a pickled object to a file.
Pickled objects are stored in files much like characters; you can store and retrieve them sequentially.

In the next section of code, I pickle and store the three lists variety, shape, and brand in the file
pickles1.dat using the cPickle.dump() function. The function requires two arguments: the data to

pickle and the file in which to store it.

print "Pickling lists."
variety = ["sweet", "hot", "dill"]
shape = ["whole", "spear", "chip"]
brand = ["Claussen", "Heinz", "Vlassic"]
pickle_file = open("pickles1.dat", "w")
cPickle.dump(variety, pickle_file)
cPickle.dump(shape, pickle_file)
cPickle.dump(brand, pickle_file)
pickle_file.close()

So, this code pickles the list referred to by variety and writes the whole thing as one object to the file
pickles1.dat. Next, the program pickles the list referred to by shape and writes the whole thing as one
object to the file. Then, the program pickles the list referred to by brand and writes the whole thing as one

object to the file. Finally, the program closes the file.

You can pickle a variety of objects, including:

Numbers

Strings

Tuples

Lists

Dictionaries

Reading Data from a File and Unpickling It

Next, I retrieve and unpickle the three lists with the cPickle.load() function. The function takes one

argument: the file from which to load the next pickled object.

print "\nUnpickling lists."
pickle_file = open("pickles1.dat", "r")
variety = cPickle.load(pickle_file)
shape = cPickle.load(pickle_file)
brand = cPickle.load(pickle_file)

The program reads the first pickled object in the file, unpickles it to produce the list ["sweet", "hot",
"dill"], and assigns the list to variety. Next, the program reads the next pickled object from the file,
unpickles it to produce the list ["whole", "spear", "chip"], and assigns the list to shape. Finally, the
program reads the last pickled object from the file, unpickles it to produce the list ["Claussen", "Heinz",
"Vlassic"], and assigns the list to brand.

Finally, I print the unpickled lists to prove that the process worked:

print variety, "\n", shape, "\n", brand
pickle_file.close()

Using a Shelf to Store Pickled Data

Next, I take the idea of pickling one step further by shelving the lists together in a single file. Using the
shelve module, I create a shelf that acts like a dictionary, which allows the lists to be accessed randomly.

First, I create a shelf, pickles:

print "\nShelving lists."
pickles = shelve.open("pickles2.dat")

The shelve.open() function works a lot like the file open() function. However, the shelve.open()

function works with a file that stores pickled objects and not characters. In this case, I assigned the resulting
shelf to pickles, which now acts like a dictionary whose contents are permanently stored in the file
pickles2.dat.

The shelve.open() function requires one argument: a file name. It also takes an optional access mode. If
you don't supply an access mode (like I didn't), it defaults to "c". Table 7.3 details access modes for the

function.

Table 7.3: shelve ACCESS MODES

Mode Description

"c" Open a file for reading or writing. If the file doesn't exist, it's created.

"n" Create a new file for reading or writing. If the file exists, its contents are overwritten.

"r" Read from a file. If the file doesn't exist, Python will complain with an error.

"w" Write to a file. If the file doesn't exist, Python will complain with an error.

Next, I add three lists to the shelf:

pickles["variety"] = ["sweet", "hot", "dill"]
pickles ["shape"] = ["whole", "spear", "chip"]
pickles["brand"] = ["Claussen", "Heinz", "Vlassic"]

pickles works like a dictionary. So, the key "variety" is paired with the value ["sweet", "hot",
"dill"]. The key "shape" is paired with the value ["whole", "spear", "chip"]. And the key
"brand" is paired with the value ["Claussen", "Heinz", "Vlassic"]. One important thing to note is

that a shelf key can only be a string.

Lastly, I invoke the shelf's sync() method:

pickles.sync() # make sure data is written

Python writes changes to a shelf file to a buffer and then periodically writes the buffer to the file. To make sure
the file reflects all the changes to a shelf, you can invoke a shelf's sync() method. A shelf file is also updated
when you close it with its close() method.

HINT While you could simulate a shelf by pickling a dictionary, the shelve module is more memory

efficient. So, if you need random access to pickled objects, create a shelf.

Using a Shelf to Retrieve Pickled Data

Since a shelf acts like a dictionary, you can retrieve pickled objects from it by supplying a key. Next, I loop
through all of the pickled objects in pickles, treating it like a dictionary:

print "\nRetrieving the lists from a shelved file:"
for key in pickles.keys():
 print key, "-", pickles[key]

I loop through a list of keys, which includes "variety", "shape" and "brand", printing the key and its

value. Finally, I close the file:

pickles.close()

raw_input("\n\nPress the enter key to exit.")

IN THE REAL WORLD

Pickling and unpickling are good ways to store and retrieve structured information, but more complex
information can require even more power and flexibility. Databases and XML are two popular methods for
storing and retrieving more complex data, and Python has modules that can interface with either. To learn
more, visit the Python language Web site at http://www.python.org.

http://www.python.org

Handling Exceptions

When Python runs into an error, it stops the current program and displays an error message. More precisely, it
raises an exception, indicating that, well, something exceptional has occurred. If nothing is done with the
exception, Python halts what it's doing and prints an error message detailing the exception.

Here's a simple example of Python raising an exception:

>>> num = float(raw_input("Enter a number: "))
Enter a number: Hi!
Traceback (most recent call last):
 File "<pyshell#0>", line 1, in ?
 num = float(raw_input("Enter a number: "))
ValueError: invalid literal for float(): Hi!

In this interactive session, Python tries to convert the string "Hi!" to a floating-point number. Since it can't,

Python raises an exception and prints the details.

Using Python's exception handling functionality, you can intercept and handle exceptions so that your program
doesn't end abruptly (even if a user enters "Hi!" when you ask for a number). At the very least, you can have

your program exit gracefully instead of crashing awkwardly.

Introducing the Handle It Program

The Handle It program opens itself up to errors from user input and then purposely generates a few errors of
its own. But instead of halting, the program runs to completion. That's because the program handles the
exceptions that are raised. Figure 7.5 shows the program in action.

Figure 7.5: Although the program can't convert "Hi!" to a number, it doesn't halt when exceptions are

raised.

Using a try Statement with an except Clause

The most basic way to handle (or trap) exceptions is to use the try statement with an except clause. By
using a try statement, you section off some code that could potentially raise an exception. Then, you write an
except clause with a block of statements that are executed only if an exception is raised.

The first thing I do in the Handle It program is ask the user for a number. I get a string from the user and then
attempt to convert the string to a floating-point number. I use try and except to handle any exceptions that

might be raised in the process.

Handle It
Demonstrates handling exceptions
Michael Dawson 5/3/03

try/except
try:
 num = float(raw_input("Enter a number: "))
except:
 print "Something went wrong!"

If the call to float() raises an exception (as a result of the user entering an unconvertible string, like "Hi!",
for example), the exception is caught and the user is informed that Something went wrong! If no
exception is raised, num gets the number the user entered and the program skips the except clause,

continuing with the rest of the code.

Specifying an Exception Type

Different kinds of errors result in different types of exceptions. For example, trying to convert the string "Hi!"
with float() results in a ValueError exception because the characters in the string are of the wrong value

(they're not digits). There are over two dozen exception types, but Table 7.4 lists a few of the most common
ones.

Table 7.4: SELECTED EXCEPTION TYPES

Exception Type Description

IOError Raised when an I/O operation fails, such as when an attempt is made to
open a nonexistent file in read mode.

IndexError Raised when a sequence is indexed with a number of a nonexistent
element.

KeyError Raised when a dictionary key is not found.

NameError Raised when a name (of a variable or function, for example) is not found.

SyntaxError Raised when a syntax error is encountered.

TypeError Raised when a built-in operation or function is applied to an object of
inappropriate type.

ValueError Raised when a built-in operation or function receives an argument that has
the right type but an inappropriate value.

ZeroDivisionError Raised when the second argument of a division or modulo operation is
zero.

The except clause lets you specify exactly which type of exceptions it will handle. You just list the specific
type of exceptions in parentheses after except.

I again ask the user for a number, but this time I specifically trap for a ValueError:

specifying exception type
try:
 num = float(raw_input("\nEnter a number: "))
except(ValueError):
 print "That was not a number!"

Now, the print statement will only execute if a ValueError is raised. As a result, I can be even more
specific and display the message That was not a number! However, if any other exception is raised
inside the try statement, the except clause will not catch it and the program will come to a halt.

It's good programming practice to specify exception types so that you handle each individual case. In fact, it's
dangerous to catch all exceptions the way I did in the first except clause of the program. Generally, you

should avoid that type of catchall.

HINT When should you trap for exceptions? Any point of external interaction with your program is a good
place to think about exceptions. It's a good idea to trap for exceptions when opening a file for
reading, even if you believe the file already exists. You can also trap for exceptions when you
attempt to convert data from an outside source, like the user.

TRICK So, let's say you know you want to trap for an exception, but you're not exactly sure what the
exception type is called. Well, here's a shortcut for finding out: just create the exception. For
example, if you know you want to trap for a division-by-zero exception, but can't remember exactly
what the exception type is called, jump into the interpreter and divide a number by zero:

>>> 1/0
Traceback (most recent call last):
 File "<pyshell#0>", line 1, in ?
 1/0
ZeroDivisionError: integer division or modulo by zero

From this interactive session, I can see that the exception is called ZeroDivisionError.

Fortunately, the interpreter isn't shy about telling you exactly which type of exception you raise.

Handling Multiple Exception Types

A single piece of code can result in different types of exceptions. Fortunately, you can trap for multiple
exception types. One way to trap for multiple exception types is to list them in a single except clause:

handle multiple exceptions
print
for value in (None, "Hi!"):
 try:
 print "Attempting to convert", value, "—>",
 print float(value)
 except(TypeError, ValueError):
 print "Something went wrong!"

This code tries to convert two different values to a floating-point number. Both fail, but each raises a different
exception type. float(None) raises a TypeError because the function can only convert strings and
numbers. float("Hi!") raises a ValueError because, while "Hi!" is a string, the characters in the string
are of the wrong value (they're not digits). As a result of the except clause, each type of exception is

handled.

Another way to catch multiple exceptions is with multiple except clauses. You can list as many as you'd like,
following a single try statement:

print
for value in (None, "Hi!"):
 try:
 print "Attempting to convert", value, "—>",
 print float(value)
 except(TypeError):
 print "I can only convert a string or a number!"
 except(ValueError):
 print "I can only convert a string of digits!"

Now, each exception type has its own block. So when value is None, a TypeError is raised and the string
"I can only convert a string or a number!" is printed. When value is "Hi!", a ValueError is
raised and the string "I can only convert a string of digits!" is printed.

Using multiple except clauses allows you to define unique reactions to different types of exceptions from the
same try block. In this case, I offer a more specific error message by trapping each exception type

individually.

Getting an Exception's Argument

When an exception occurs, it may have an associated value, the exception's argument. The argument is
usually an official message from Python describing the exception. You can receive the argument if you list a
variable before the colon in the except statement.

Here, I receive the exception's argument in variable e and print it out along with my regular error message:

get an exception's argument
try:
 num = float(raw_input("\nEnter a number: "))
except(ValueError), e:
 print "That was not a number! Or as Python would say:\n", e

Adding an else Clause

You can add a single else clause after all the except clauses in a try statement. The else block executes
only if no exception is raised in the try block.

try/except/else
try:
 num = float(raw_input("\nEnter a number: "))

except(ValueError):
 print "That was not a number!"
else:
 print "You entered the number", num

raw_input("\n\nPress the enter key to exit.")

In this code, num is printed in the else block only if the assignment statement in the try block doesn't raise
an exception. This is perfect because that means num will be printed only if the assignment statement was

successful and the variable exists.

Back to the Trivia Challenge Game

With the basics of files and exceptions under your belt, it's time to tackle the Trivia Challenge game presented at the beginning of
the chapter. One of the cool things about the program is that it reads a plain text file, so you can create your own trivia game

episodes with a text editor and a dash of creativity. As you'll see in the code, the text file the program reads, trivia.txt ,

needs to be in the same directory as the program file. To create your own episode full of questions, all you need to do is replace
this file with one containing your own work.

Understanding the Data File Layout

Before I go over actual code from the game, you should understand exactly how the trivia.txt file is structured. The very

first line in the file is the title of the episode. The rest of the file consists of blocks of seven lines for each question. You can have
as many blocks (and thus questions) as you like. Here's a generic representation of a block:

<category>
<question>
<answer 1>
<answer 2>
<answer 3>
<answer 4>
<correct answer>
<explanation>

And here's the beginning of the file I created for the game:

An Episode You Can't Refuse
On the Run With a Mammal
Let's say you turn state's evidence and need to "get on the lamb." If you wait /too long, what
will happen?
You'll end up on the sheep
You'll end up on the cow
You'll end up on the goat
You'll end up on the emu
1
A lamb is just a young sheep.
The Godfather Will Get Down With You Now
Let's say you have an audience with the Godfather of Soul. How would it be /smart to address
him?
Mr. Richard
Mr. Domino
Mr. Brown
Mr. Checker
3
James Brown is the Godfather of Soul.

To save space, I only show the first 15 lines of the file—two questions' worth. You can take a look at the complete file,
 trivia.txt , on the CD-ROM that's included with this book.

Remember, the very first line in the file, An Episode You Can't Refuse , is the episode title for this game. The next seven
lines are for the first question. And the next seven lines are for the second question. So, the line On the Run With a Mammal
is the category of the first question. The category is just a clever way to introduce the next question. The next line, Let's say
you turn state's evidence and need to "get on the lamb." If you wait /too long, what will
happen? , is the first question in the game. The next four lines, You'll end up on the sheep , You'll end up on the
cow , You'll end up on the goat , and You'll end up on the emu , are the four possible answers from which the
player will choose. The next line, 1 , is the number of the correct answer. So in this case, the correct answer to the question is the
first answer, You'll end up on the sheep . The next line, A lamb is just a young sheep. , explains why the correct

answer is correct. The rest of the questions follow the same pattern.

An important thing to note is that I included a forward slash (/) in two of the lines. I did this to represent a newline since Python

does not automatically wrap text when it prints it. When the program reads a line from the text file, it replaces all of the forward
slashes with the newline character. You'll see exactly how the program does this when I go over the code.

The open_file() Function

The first thing I do in the program is define the function open_file() , which receives a file name and mode (both strings) and
returns a corresponding file object. I use try and except to trap for an IOError exception for input-output errors, which would

occur if the file doesn't exist, for example.

If I trap an exception, that means there was a problem opening the trivia file. If this happens, there's no point in continuing the
program, so I print an appropriate message and call the sys.exit() function. This function raises an exception that results in
the termination of the program. You should only use sys.exit() as a last resort, when you must end a program. Notice that I
didn't have to import the sys module to call sys.exit() . That's because the sys module is always available.

Trivia Challenge
Trivia game that reads a plain text file
Michael Dawson - 5/3/03

def open_file(file_name, mode):
 """Open a file."""
 try:
 the_file = open(file_name, mode)
 except(IOError), e:
 print "Unable to open the file", file_name, "Ending program.\n", e
 raw_input("\n\nPress the enter key to exit.")
 sys.exit()
 else:
 return the_file

The next_line() Function

Next, I define the next_line() function, which receives a file object and returns the next line of text from it:

def next_line(the_file):
 """Return next line from the trivia file, formatted."""
 line = the_file.readline()

 line = line.replace("/", "\n")
 return line

However, I do one small bit of formatting to the line before I return it. I replace all forward slashes with newline characters. I do
this because Python does not automatically word wrap printed text. My procedure gives the creator of a trivia text file some
formatting control. He or she can indicate where newlines should go so that words don't get split across lines. Take a look at the
triva.txt file and the output of the Trivia Challenge game to see this in action. Try removing the forward slashes from the text

file and check out the results.

The next_block() Function

The next_block() function reads the next block of lines for one question. It takes a file object and returns four strings and a list

of strings. It returns a string for the category, question, correct answer, and explanation. It returns a list of four strings for the
possible answers to the question.

def next_block(the_file):
 """Return the next block of data from the trivia file."""
 category = next_line(the_file)

 question = next_line(the_file)

 answers = []
 for i in range(4):
 answers.append(next_line(the_file))

 correct = next_line(the_file)
 if correct:
 correct = correct[0]

 explanation = next_line(the_file)

 return category, question, answers, correct, explanation

If the end of the file is reached, reading a line returns the empty string. So, when the program comes to the end of
 trivia.txt , category gets the empty string. I check category in the main() function of the program. When it becomes the

empty string, the game is over.

The welcome() Function

The welcome() function welcomes the player to the game and announces the episode's title. The function gets the episode title

as a string and prints it along with a welcome message.

def welcome(title):
 """Welcome the player and get his/her name."""
 print "\t\tWelcome to Trivia Challenge!\n"
 print "\t\t", title, "\n"

Setting Up the Game

Next, I create the main() function, which houses the main game loop. In the first part of the function, I set up the game by

opening the trivia file, getting the title of the episode (the first line of the file), welcoming the player, and setting the player's score
to 0 .

def main():
 trivia_file = open_file("trivia.txt", "r")
 title = next_line(trivia_file)
 welcome(title)
 score = 0

Asking a Question

Next, I read the first block of lines for the first question into variables. Then, I start the while loop, which will continue to ask
questions as long as category is not the empty string. If category is the empty string, that means the end of the trivia file has

been reached and the loop won't be entered. I ask a question by printing the category of the question, the question itself, and the
four possible answers.

 # get first block
 category, question, answers, correct, explanation = next_block(trivia_file)
 while category:
 # ask a question
 print category
 print question
 for i in range(4):
 print "\t", i + 1, "-", answers[i]

Getting an Answer

Next, I get the player's answer:

 # get answer
 answer = raw_input("What's your answer?: ")

Checking an Answer

Then, I compare the player's answer to the correct answer. If they match, the player is congratulated and his or her score is
increased by one. If they don't match, the player is told he or she is wrong. In either case, I then display the explanation, which
describes why the correct answer is correct. Lastly, I display the player's current score.

 # check answer
 if answer == correct:
 print "\nRight!",
 score += 1
 else:
 print "\nWrong.",
 print explanation

 print "Score:", score, "\n\n"

Getting the Next Question

Then, I call the next_block() function and get the block of strings for the next question. If there are no more questions,
category will get the empty string and the loop won't continue.

 # get next block
 category, question, answers, correct, explanation = next_block(trivia_file)

Ending the Game

After the loop, I close the trivia file and display the player's score:

 trivia_file.close()

 print "That was the last question!"
 print "You're final score is:", score

Starting the main() Function

The last lines of code start main() and kick off the game:

main()
raw_input("\n\nPress the enter key to exit.")

Summary

In this chapter, you learned about files and exceptions. You learned how to read from text files. You saw how
to read a single character or an entire file at once. You learned several different ways to read one full line at a
time, probably the most common way to read a text file. You also learned how to write to text files—everything
from a single character to a list of strings. Next, you learned how to save more complex data to files through
pickling and how to manage a group of pickled objects in a single file using a shelf. Then, you saw how to
handle exceptions raised during the execution of a program. You saw how to trap for specific exceptions and
how to write code to work around them. Finally, you saw how to put files and exceptions together through the
construction of a trivia game program that allows anyone with a text editor to create their very own trivia
episodes.

Challenges
Improve the Trivia Challenge game so that each question has a unique point value associated with it.
The player's score should be the total of all the point values of the questions he or she answers
correctly.

1.

Improve the Trivia Challenge game so that it maintains a high-scores list in a file. The program should
record the player's name and score if the player makes the list. Store the high scores using a pickled
object.

2.

Change the way the high-scores functionality you created in the last challenge is implemented. This
time, use a plain text file to store the list.

3.

Create a trivia game episode that tests a player's knowledge of Python files and exceptions.4.

Chapter 8: Software Objects: The Critter Caretaker

Program

 Download CD Content

Overview

Object-oriented programming (OOP) is a different way of thinking about programming. It's a modern
methodology that's been embraced by the software industry and is used in the creation of the majority of new,
commercial software. The basic building block in OOP is the software object—often just called an object. In
this chapter, you'll take your first steps toward understanding OOP as you learn about objects. Specifically,
you'll learn to do the following:

Create classes to define objects

Write methods and create attributes for objects

Instantiate objects from classes

Restrict access to an object's attributes

Work with both new-style and old-style classes

Introducing the Critter Caretaker Program

The Critter Caretaker program charges the user with the care of his or her own virtual pet. The user names the
critter and is completely responsible for keeping it happy, which is no small task. The user must feed and play
with the critter to keep it in a good mood. The user can listen to the critter to learn how the critter is feeling,
which can range from happy to mad. Figures 8.1 through 8.3 show off the Critter program.

Figure 8.1: You get to name your very own critter.

Figure 8.2: If you fail to feed or entertain your critter, it will have a mood change for the worse.

Figure 8.3: But with the proper care, your critter will come back to its original, sunny mood.

Though you could create this program without software objects, I created the critter as an object. Ultimately,
this makes the program easier to work with and modify. Plus, it allows for painless scaling. Once you've

created one critter, it's no sweat to create and manage a dozen. Could a critter farm be far off? (Not if you
check the chapter challenges.)

Understanding Object-Oriented Basics

OOP has a reputation for being complicated, but I think it's actually simpler than some of the concepts you've
already learned. In fact, OOP allows you to represent things in your programs in a way that's more like the real
world.

What you often want to represent in your programs—anything from a checking account to an alien
spacecraft—are real-life objects. OOP lets you represent these real-life objects as software objects. Like real-
life objects, software objects combine characteristics (called attributes in OOP-speak) and behaviors (called
methods in OOP-speak). For example, if you were to create an alien spacecraft object, its attributes could
include its location and energy level, while its methods could include its ability to move or fire its weapons.

Objects are created (or instantiated in OOP-speak) from a definition called a class—programming code that
can define attributes and methods. Classes are like blue-prints. A class isn't an object, it's a design for one.
And just as a foreman can create many houses from the same blueprint, a programmer can create many
objects from the same class. As a result, each object (also called an instance) instantiated from the same
class will have a similar structure. So, if you have a checking account class, you could use it to create multiple
checking account objects. And those different objects would each have the same basic structure. Each might
have a balance attribute, for example.

But just as you can take two houses built from the same blueprint and decorate them differently, you can have
two objects of the same class and give each its own, unique set of attribute values. So, you could have one
checking account object with a balance attribute of 100 and another with a balance attribute of 1,000,000.

HINT Don't worry if all this OOP talk isn't crystal clear yet. I just wanted to give you an overview of what
objects are all about. Like all new programming concepts, reading about them isn't enough. But
after seeing some real Python code that defines classes and creates objects (and coding some on
your own), you'll soon "get" OOP.

Creating Classes, Methods, and Objects

To build an object, you first need a blueprint, or a class. Classes almost always include methods, things that
an object can do. You can create a class without any methods, but that wouldn't be much fun.

Introducing the Simple Critter Program

The Simple Critter program includes your first example of a class written in Python. In it, I define an extremely
simple type of critter that can only do one thing: say hi. While this kind of critter might be simple, at least it's
polite. The results of the program are pictured in Figure 8.4

Figure 8.4: When the program invokes the Critter object's talk() method, the critter greets the world.

The program is quite short. Here's the code in its entirety:

Simple Critter
Demonstrates a basic class and object
Michael Dawson - 3/23/03

class Critter(object):
 """A virtual pet"""
 def talk(self):
 print "Hi. I'm an instance of class Critter."

main
crit = Critter()
crit.talk()

raw_input("\n\nPress the enter key to exit.")

Defining a Class

The program starts with a class definition, the blueprint of my first critter. The first line of the definition is the
class header:

class Critter(object):

I used the keyword class followed by the class name I chose, Critter. You'll notice that my class name

begins with a capital letter. Python doesn't require this, but it's the standard convention, so you should begin
all your class names with a capital letter.

Next, I told Python to base my class on object, a fundamental, built-in type. You can base a new class on
object or any previously defined class, but that's a topic for Chapter 9, "Object-Oriented Programming: The
Blackjack Game." In this chapter, I base all of my classes on object.

TRAP If you're using a version of Python before 2.2, you can't base your classes on object. So, to get
the programs in this chapter to run, you'll need to remove (object) from the class headers. My

advice though is to use Python 2.2 or later, if at all possible. Toward the end of this chapter, I'll
explain exactly what's going on in the evolution of Python classes and objects.

The next line is a docstring, which documents the class. A good docstring describes the kind of objects a class
can be used to create. My docstring is pretty straightforward:

 """A virtual pet"""

Defining a Method

The last part of the class defines a method. It looks very much like a function:

 def talk(self):
 print "Hi. I'm an instance of class Critter."

In fact, you can think of methods as functions associated with an object. (You've already seen this with string
and list methods, for example.) The talk() method prints the string "Hi. I'm an instance of class
Critter."

You'll notice that talk() has one parameter, self (which it doesn't happen to use). Every method must have
a special first parameter, called self by convention, in its parameter list. It provides a way for a method to
refer to the object itself. For now, don't worry about self, you'll see it in action a little later in this chapter.

TRAP If you create an instance method without any parameters, you'll generate an error when you invoke
it. Remember, all instance methods must have a special first parameter, called self by

convention.

Instantiating an Object

After I wrote my class, instantiating a new object took just one line:

crit = Critter()

This line creates a brand-new object of the Critter class and assigns it to the variable crit. Notice the
parentheses after the class name Critter in the assignment statement. It's critical to use them if you want to

create a new object.

You can assign a newly instantiated object to a variable with any name. The name doesn't have to be based

on the class name. However, you should avoid using the same name in lowercase letters as the class name
because it could lead to confusion.

Invoking a Method

My new object has a method called talk(). The method is like any other method you've already seen. It's

basically a function that belongs to the object. I can invoke this method just like any other, using dot notation:

crit.talk()

The line invokes the talk() method of the Critter object assigned to crit. The method simply prints the
string "Hi. I'm an instance of class Critter."

Using Constructors

You've seen how you can create methods, like talk(), but there's a special method you can write, called a

constructor, that is automatically invoked right after a new object is created. A constructor method is extremely
useful. In fact, you'll almost always write one for each class you create. The constructor method is usually
used to set up the initial attribute values of an object, though I won't use it for that in this program.

Introducing the Constructor Critter Program

The Constructor Critter program defines a new Critter class that includes a simple constructor method. The

program also shows how easy it is to create multiple objects from the same class. Figure 8.5 shows a sample
run of the program.

Figure 8.5: Two separate critters are created. Each says hi.

Here's the Constructor Critter program code:

Constructor Critter
Demonstrates constructors
Michael Dawson - 3/23/03

class Critter(object):
 """A virtual pet"""
 def __init__(self):
 print "A new critter has been born!"

 def talk(self):
 print "\nHi. I'm an instance of class Critter."

main
crit1 = Critter()
crit2 = Critter()

crit1.talk()
crit2.talk()

raw_input("\n\nPress the enter key to exit.")

Creating a Constructor

The first new piece of code in the class definition is the constructor method (also called the initialization
method):

 def __init__(self, name):
 print "A new critter has been born!"

Normally, you make up your own method names, but here I used a specific one recognized by Python. By
naming the method __init__, I told Python that this is my constructor method. As a constructor method,
__init__() is automatically called by any newly created Critter object right after the object springs to life.
As you can see from the second line in the method, that means any newly created Critter object
automatically announces itself to the world by printing the string "A new critter has been born!".

HINT Python has a collection of built-in "special methods" whose names begin and end with two
underscores, like __init__, the constructor method.

Creating Multiple Objects

Once you've written a class, creating multiple objects is a snap. In the main part of the program, I create two:

main
crit1 = Critter()
crit2 = Critter()

As a result, two objects are created. Just after each is instantiated, it prints "A new critter has been
born!" through its constructor method.

Each object is its very own, full-fledged critter. To prove the point, I invoke their talk() methods:

crit1.talk()
crit2.talk()

Even though these two lines of code print the exact same string, each is the result of a different object.

Using Attributes

You can have an object's attributes automatically created and initialized just after it's instantiated through its
constructor method. This is a big convenience and something you'll do a lot.

Introducing the Attribute Critter Program

The Attribute Critter program creates a new type of object with an attribute, name. The Critter class has a
constructor method that creates and initializes name. The program uses the new attribute so that the critter

can offer a more personalized greeting. Figure 8.6 shows the program in action.

Figure 8.6: This time, each Critter object has an attribute name that it uses when it says hi.

The following is the code for the program:

Attribute Critter
Demonstrates creating and accessing object attributes
Michael Dawson - 3/23/03

class Critter(object):
 """A virtual pet"""
 def __init__(self, name):
 print "A new critter has been born!"
 self.name = name

 def __str__(self):
 rep = "Critter object\n"
 rep += "name: "+ self.name + "\n"
 return rep

 def talk(self):
 print "Hi. I'm", self.name, "\n"

main
crit1 = Critter("Poochie")
crit1.talk()

crit2 = Critter("Randolph")
crit2.talk()

print "Printing crit1:"
print crit1

print "Directly accessing crit1.name:"
print crit1.name

raw_input("\n\nPress the enter key to exit.")

Initializing Attributes

The constructor in this program prints the message "A new critter has been born!" just like the

constructor in the Constructor Critter program, but the next line of the method does something new. It creates
the attribute name for the new object and sets it to the value of the parameter name. So, in the main part of the

program, the line:

crit = Critter("Poochie")

results in the creation of a new Critter object with an attribute name set to "Poochie". Finally, the object is
assigned to crit.

So that you can understand exactly how this works, I'll reveal what the mysterious self parameter is all about.
As the first parameter in every method, self automatically receives a reference to the object invoking the
method. This means that, through self, a method can get at the object invoking it and access the object's

attributes or methods (or even create new attributes for the object).

HINT You can name the first parameter in a method header something other than self, but you

shouldn't. It's the "Pythonic" way to do things and other programmers will expect it.

So, back in the constructor method, the parameter self automatically receives a reference to the new
Critter object while the parameter name receives "Poochie". Then, the line:

 self.name = name

creates the attribute name for the object and sets it to the value of name, which is "Poochie".

Back in the main part of the program, the assignment statement assigns this new object to crit. This means
that crit refers to a new object with its own attribute called name set to "Poochie". So, a critter has been

created with its own name!

The line in the main program:

crit2 = Critter("Randolph")

kicks off the same basic chain of events. But this time, a new Critter object is created with its own attribute
name set to "Randolph". And the object is assigned to crit2.

Accessing Attributes

Attributes aren't any good unless you can use them, so I wrote a more personal talk() method that uses a
Critter object's name attribute. Now, when a critter says hi, it introduces itself with its name.

I got my first critter to say hi by invoking its talk() method with

crit1.talk()

The talk() method receives the automatically sent reference to the object into its self parameter:

 def talk(self):

Then, the print statement displays the text Hi. I'm Poochie by accessing the attribute name of the
object through self.name:

 print "Hi. I'm", self.name, "\n"

The same basic events occur when I then call the method for my second object:

crit2.talk()

But this time, the talk() method displays the text Hi. I'm Randolph since the name attribute of crit2
is equal to "Randolph".

By default, you can access and modify an object's attributes outside of its class. In the main part of the
program, I directly accessed the name attribute of crit1:

print crit1.name

The line prints the string "Poochie". In general, to access an attribute of an object outside the object's class,

you can use dot notation. Type the variable name, followed by a dot, followed by the attribute name.

Printing an Object

Normally, if I were to print an object, with the code print crit1, Python would come back with something

like the cryptic:

<__main__.Critter object at 0x00A0BA90>

This tells me that I've printed a Critter object in the main part of my program, but doesn't give me any

useful information about the object. However, there is a way to change this. By including the special method
__str__() in a class definition, you can create a string representation for your objects that will be displayed

whenever one is printed. Whatever string you return from the method will be the string that's printed for the
object.

The __str__() method I wrote returns a string that includes the value of the object's name attribute. So,

when the following line is executed:

print crit1

this, more useful, text appears:

Critter object
name: Poochie

TRICK Even if you never plan to print an object in your program, creating a __str__() method is still

not a bad idea. You may find that being able to see the values of an object's attributes helps you
understand how a program is working (or not working).

Using Class Attributes and Static Methods

Through attributes, different objects of the same class can each have their own, unique values. You could, for
example, have 10 different critters running around, each with its own name. But you may have some
information that relates not to individual objects, but the entire class. You might want to, say, keep track of the
total number of critters you've created. You could give each Critter object an attribute called total. But
then, whenever a new object is instantiated, you'd have to update every existing object's total attribute. This

would be a real pain. Fortunately, Python offers a way to create a single value that's associated with a class
itself, called a class attribute. If a class is like a blueprint, then a class attribute is like a Post-it note stuck to
the blueprint. There's only one copy of it, no matter how many things you make from the blueprint.

You might also find that you want a method that's associated with the class; for this, Python offers the static
method. Since static methods are associated with a class, they're often used to work with class attributes.

Introducing the Classy Critter Program

No, the Classy Critter program doesn't involve a critter that went to finishing school and scoffs at other critters
who don't know which fork to use. Instead, the program involves attributes and methods that belong to a class
rather than a specific object. The program defines a class attribute that keeps track of the total number of
Critter objects instantiated. The class also has a static method that displays this number. Figure 8.7 shows

the results of the program.

Figure 8.7: Critters are being born left and right! The program keeps track of all of them through a single,
class attribute, which it displays through a static method.

Here's the program listing for Classy Critter:

Classy Critter
Demonstrates class attributes and static methods
Michael Dawson - 3/24/03

class Critter(object):
 """A virtual pet"""
 total = 0

 def status():
 print "\nThe total number of critters is", Critter.total

 status = staticmethod(status)
 def __init__(self, name):
 print "A critter has been born!"
 self.name = name
 Critter.total += 1

#main
print "Accessing the class attribute Critter.total:",
print Critter.total

print "\nCreating critters."
crit1 = Critter("critter 1")
crit2 = Critter("critter 2")
crit3 = Critter("critter 3")

Critter.status()

print "\nAccessing the class attribute through an object:",
print crit1.total

raw_input("\n\nPress the enter key to exit.")

Creating a Class Attribute

The second line in my class definition:

 total = 0

creates a class attribute total and assigns 0 to it. Any assignment statement like this—a new variable

assigned a value outside of a method—creates a class attribute. The assignment statement is executed only
once, when Python first sees the class definition. This means that the class attribute exists even before a
single object is created. So, you can use a class attribute without any objects of the class in existence.

Accessing a Class Attribute

Accessing a class attribute is simple. I access the new class attribute in several different places in the
program. In the main part of the program, I print it with

print Critter.total

In the static method status(), I print the value of the Critter class attribute total with the line:

 print "\nThe total number of critters is", Critter.total

In the constructor method, I increment the value of this class attribute through the line:

 Critter.total += 1

As a result of this line, every time a new object is instantiated, the value of the attribute is incremented by 1.

In general, to access a class attribute, use dot notation. Type the class name, followed by a dot, followed by
the attribute name.

Finally, you can access a class attribute through an object of that class. That's just what I did in the main part
of the program with the following line:

print crit1.total

This line prints the value of the class attribute total (and not an attribute of the object itself). You can read
the value of a class attribute through any object that belongs to that class. So, I could have used print
crit2.total or print crit3.total and gotten the same results in this case.

TRAP Although you can use an object of a class to access a class attribute, you can't assign a new value
to a class attribute through an object. If you want to change the value of a class attribute, access it
through its class name.

Creating a Static Method

The first method in the class, status(), is a method I wrote to be static. Notice that it doesn't have self in

its parameter list. That's because, like all static methods, it's designed to be invoked through a class and not
an object. So, the method won't be passed a reference to an object and therefore won't need a parameter, like
self, to receive such a reference. Static methods can certainly list parameters, but I just didn't need any for

this one.

The method definition creates a method called status(), but to actually declare it static, I wrote one more

line of code:

 status = staticmethod(status)

I passed the staticmethod() function the name of the method I want to be static, status in this case. I
assigned the result to status. The name on the left side of the assignment operator is the name that the
final, static method will have. After this line executes, the class has a static method, status(), which
displays the total number of objects created by printing the class attribute total.

TRAP Static methods were introduced in Python 2.2. You can't use them in an earlier version of the
language. If you try, you'll get a nasty error message.

Invoking a Static Method

Invoking a static method is simple. With the first line of the main part of the program, I invoke the static
method:

Critter.status()

As you would guess, this displays 0 since no objects have been instantiated. But notice that I'm able to invoke

the method without a single object in existence. Since static methods are invoked through a class, no objects
of the class need to exist before you can invoke them.

Next, I create three objects. Then, I invoke status() again, which prints a message stating that three critters

exist. This works because, during the execution of the constructor method for each object, the class attribute
total is increased by 1.

Understanding Object Encapsulation

You first learned about the concept of encapsulation with functions in the "Understanding Encapsulation"
section of in Chapter 6. You saw that functions are encapsulated and hide the details of their inner workings
from the part of your program that calls it (called the client of the function). You learned that the client of a
well-defined function communicates with the function only through its parameters and return values. In
general, objects should be treated the same way. Clients should communicate with objects through method
parameters and return values. In general, client code should avoid directly altering the value of an object's
attribute.

As always, a concrete example helps. Say, for example, that you had a Checking_Account object with a
balance attribute. Let's say your program needs to handle withdrawals from accounts, where a withdrawal
decreases an object's balance attribute by some amount. To make a withdrawal, client code could simply
subtract a number from the value of balance. This direct access is easy for the client, but can cause
problems. The client code may subtract a number so that balance becomes negative, which might be
considered unacceptable (especially by the bank). It's much better to have a method called withdraw() that

allows a client to request a withdrawal by passing an amount to the method. Then, the object itself can handle
the request. If the amount is too large, the object can deal with it, possibly rejecting the transaction. The object
keeps itself safe by providing indirect access to its attributes through methods.

Using Private Attributes and Private Methods

By default, all of an object's attributes and methods are public, meaning that they can be directly accessed or
invoked by a client. To encourage encapsulation, you can define an attribute or method as private, meaning
that only other methods of the object itself can easily access or invoke them.

Introducing the Private Critter Program

The Private Critter program instantiates an object with both private and public attributes and methods. Figure
8.8 shows a sample run.

Figure 8.8: The object's private attribute and private method are indirectly accessed.

Creating Private Attributes

To limit the direct access of object attributes by clients, you can use private attributes. In the constructor
method, I create two attributes, one public and one private:

Private Critter
Demonstrates private variables and methods
Michael Dawson - 3/25/03

class Critter(object):
 """A virtual pet"""
 def __init__(self, name, mood):
 print "A new critter has been born!"
 self.name = name # public attribute
 self.__mood = mood # private attribute

The two underscore characters that begin the second attribute name tell Python that this is a private attribute.
To create a private attribute of your own, just begin the attribute name with two underscores.

Accessing Private Attributes

It's perfectly fine to access an object's private attribute inside the class definition of the object. (Remember,
private attributes are meant to discourage client code from directly accessing the attribute.) I access a private

attribute in the talk() method:

 def talk(self):
 print "\nI'm", self.name
 print "Right now I feel", self.__mood, "\n"

This method prints the value of the object's private attribute, which represents a critter's mood.

If I tried to access this attribute outside of the Critter class definition, I'd have trouble. Here's an interactive

session to show you what I mean:

>>> crit = Critter(name = "Poochie", mood = "happy")
A new critter has been born!
>>> print crit.mood
Traceback (most recent call last):
 File "<pyshell#2>", line 1, in ?
 print crit.mood
AttributeError: 'Critter' object has no attribute 'mood'

By raising an AttributeError exception, Python is saying that crit has no attribute mood. If you think you

can outsmart Python by adding the two leading underscores, you'd be wrong. That's just what I tried in the
next part of my interactive session:

>>> print crit.__mood
Traceback (most recent call last):
 File "<pyshell#3>", line 1, in ?
 print crit.__mood
AttributeError: 'Critter' object has no attribute '__mood'

This also raises an AttributeError exception. Python is again saying that the attribute doesn't exist. So

does this mean that the value of a private attribute is completely inaccessible outside of its class definition?
Well, no. Python hides the attribute through a special naming convention, though it's still technically possible
to access the attribute. That's what I did in the next part of my interactive session:

>>> print crit._Critter__mood
happy

This line prints the value of the elusive private attribute, which in this case is the string "happy".

Since it's possible to access private attributes, you may be thinking: What good are they? Well, defining an
attribute or method as private is not about completely preventing access. Rather, it's about preventing
inadvertent access. It says that a particular attribute or method is meant only for an object's internal use. So,
you should never try to directly access the private attributes or methods of an object from outside of its class
definition.

Creating Private Methods

You can create a private method in the same, simple way you create a private attribute: by adding two leading

underscores to its name. That's just what I do in the next method definition in the class:

 def __private_method(self):
 print "This is a private method."

This is a private method but can easily be accessed by any other method in the class. Like private attributes,
private methods are meant only to be accessed by an object's own methods.

Accessing Private Methods

Just as with private attributes, accessing an object's private methods within its class definition is simple. In the
public_method() method, I access the class' private method:

 def public_method(self):
 print "This is a public method."
 self.__private_method()

This method prints the string "This is a public method." and then invokes the object's private

method.

Like private attributes, private methods aren't meant to be directly accessed by clients. Back in my interactive
session, I try to access crit's private method:

>>> crit.private_method()
Traceback (most recent call last):
 File "<pyshell#6>", line 1, in ?
 crit.private_method()
AttributeError: 'Critter' object has no attribute 'private_method'

This attempt raises the familiar AttributeError exception. Python is saying that crit has no method with

this name. Python hides the method through the same, special naming convention. If I try again by adding the
two leading underscores to the method name, I run into the same error message:

>>> crit.__private_method()
Traceback (most recent call last):
 File "<pyshell#7>", line 1, in ?
 crit.__private_method()
AttributeError: 'Critter' object has no attribute '__private_method'

However, just as with private attributes, it is technically possible to access private methods from anywhere in a
program. Here's the final part of my interactive session as proof:

>>> crit._Critter__private_method()
This is a private method.

But, as you probably know by now, a client should never attempt to directly access an object's private
methods.

Respecting an Object's Privacy

In the main part of the program, I behave myself and don't go prodding into an object's private attributes or
methods. Instead, I create an object and invoke its two public methods:

main
crit = Critter(name = "Poochie", mood = "happy")
crit.talk()
crit.public_method()

raw_input("\n\nPress the enter key to exit.")

crit's talk() method announces to the world how the critter is feeling. crit's public_method() method
prints the string "This is a public method." and then invokes crit's private method, which prints the
string "This is a private method." Finally, the program ends.

Understanding When to Implement Privacy

So now that you know how to use privacy, should you make every attribute in every class private to protect
them from the evil, outside world? Well, no. Privacy is like a fine spice: used sparingly, it can greatly improve
what you're making. Make private any method you don't want a client to invoke. If it's critical that an attribute
never be directly accessed by a client, you can make it private. But keep this to a minimum, as creating private
attributes is rare in Python. The philosophy among programmers is to trust that clients will use an object's
methods and not directly alter its attributes.

HINT When you write a class:
Create methods so that clients won't need to directly access an object's attributes.

Use privacy sparingly and only for those few attributes and methods that are completely
internal to the operation of objects.

When you use an object:
Minimize the direct reading of an object's attributes.

Avoid directly altering an object's attributes.

Never directly access an object's private attributes or methods.

Understanding New-Style and Old-Style Classes

Earlier in this chapter, in "Defining a Class," you got a hint that something was afoot in the evolution of classes
and objects in the Python language. Beginning in Python 2.2, a new type of class was introduced, called new-
style classes. A new-style class is a class that is directly or indirectly based on the new, built-in object
introduced in Python 2.2. All of the classes you've seen in this chapter are based on object and are
therefore new-style classes. An old-style class is a class that is not based on object, directly or indirectly. If
you removed the (object) from any of the Critter class headers in this chapter, you'd have an old-style

class. To drive the point home, here's an example of a new-style class header:

class Critter(object):

This is the header of an old-style class:

class Critter:

Every program you've seen so far in this chapter will work equally well with either new-style or old-style
classes. However, new-style classes offer significant improvements over old-style classes. In fact, you'll see
one of those improvements at work in the next chapter program, the Property Critter.

HINT Create new-style classes instead of old-style classes whenever possible. New-style classes can do
everything old-style classes can, plus more. Besides, old style classes will cease to exist beginning
in Python 3.0.

Controlling Attribute Access

Sometimes, instead of denying access to an attribute, you may want only to limit access to it. For example,
you might have an attribute that you want client code to be able to read, but not change. Python provides a
few tools to accomplish this kind of thing, including properties. Properties allow you to manage exactly how an
attribute is accessed or changed.

Introducing the Property Critter

The Property Critter program allows client code to read a Critter object's attribute that refers to its name,

but imposes restrictions when client code attempts to change the attribute's value. If client code tries to assign
the attribute the empty string, the program complains and does not allow the change. Figure 8.9 shows the
results of the program.

Figure 8.9: A property controls access to the Critter object's attribute for its name.

Using Get Methods

One way to control access to an attribute is to create access methods—methods that allow indirect access to
attributes and often impose some sort of restriction on that access. One type of access method is a get
method, which gets the value of an attribute. By convention, a get method's name always starts with the word
"get." I wrote the simplest form of a get method for the private attribute __name, called get_name(). The

method simply returns the value of the private attribute, which represents a critter's name.

Property Critter
Demonstrates get and set methods and properties
Michael Dawson - 3/26/03

class Critter(object):
 """A virtual pet"""
 def __init__(self, name):
 print "A new critter has been born!"
 self.__name = name

 def get_name(self):
 return self.__name

Now, it's easy to get the value of the private attribute through the get method as you can see in this interactive
session:

>>> crit = Critter("Poochie")
>>> print crit.get_name()
Poochie

By creating a get method, you can provide read access to a private attribute.

Using Set Methods

Since I want to allow controlled changes to the name of a critter, I created another type of access method,
called a set method, which sets an attribute to a value. By convention, a set method's name always starts with
the word "set." This new method, set_name(), allows a value to be assigned to the private variable __name;

however, it imposes the restriction that the value cannot be the empty string.

 def set_name(self, new_name):
 if new_name == "":
 print "A critter's name can't be the empty string."
 else:
 self.__name = new_name
 print "Name change successful."

If I try to change the name of my critter to the empty string, set_name() won't let me:

>>> crit.set_name("")
A critter's name can't be the empty string.

However, the method will allow me to set the name to anything else:

>>> crit.set_name("Randolph")
Name change successful.
>>> print crit.get_name()
Randolph

Using Properties

Properties allow you to harness the power of access methods while hiding the implementation from the client.
A property essentially wraps access methods around the consistent and familiar dot notation.

TRAP Properties only work as intended with new-style classes. If you must work with old-style classes,
you can control attribute access with the special methods __getattr__() and __setattr__().

You can find out about these methods through the online Python documentation at
http://www.python.org/doc.

I use the property() function to create a property in the next line of the program:

http://www.python.org/doc

 name = property(get_name, set_name)

This code creates a property called name that allows indirect access to the private attribute __name through
the get_name() and set_name() methods. Notice that the arguments of the property() function are the

names of the methods, not calls to the methods, so they don't include parentheses.

To create a property, follow my example. Supply the property() function with get and set methods to allow

controlled access to a private attribute. (You can supply just a get method to create a read-only property.)
Finally, make sure to assign the resulting property to an attribute name which client code will use to access the
property.

By using the new name property, I can get the name of my critter through the familiar dot notation as you can

see in the beginning of this interactive session:

>>> print crit.name
Randolph

This line of code invokes the get_name() method. It has the same effect as the line print get_name(),

but it maintains the consistent dot notation format.

I can also set the name of my critter through dot notation:

>>> crit.name = "Sammy"
Name change successful.
>>> print crit.name
Sammy

This first line of code indirectly invokes the set_name() method. It has the same effect as the line
set_name("Sammy"), but it maintains the consistent dot notation format.

As before, if I try to make my critter's name the empty string, I can't:

>>> crit.name = ""
A critter's name can't be the empty string.

The rest of the Property Critter program uses the name property to indirectly access the private __name

attribute:

 def talk(self):
 print "\nHi, I'm", self.name

main
crit = Critter("Poochie")
crit.talk()
print "\nMy critter's name is:",
print crit.name
print "\nAttempting to change my critter's name."

crit.name = ""
print "\nAttempting to change my critter's name again."
crit.name = "Randolph"

crit.talk()

raw_input("\n\nPress the enter key to exit.")

As you can see, I access the name property in the talk() method of the Critter class the same way I

access it in the main part of the program, through dot notation. You access a property the same way, whether
you're in the class definition of the property or in some other part of the program.

Back to the Critter Caretaker Program

The final Critter Caretaker program combines parts of classes you've seen throughout this chapter. It also
includes the menu system you've worked with that allows the user to interact with his or her very own critter.

The Critter Class

The Critter class is the blueprint for the object that represents the user's critter. The class isn't complicated,

and most of it should look quite familiar, but it's a long a enough piece of code that attacking it in pieces
makes sense.

The Constructor Method

The constructor method of the class initializes the three public attributes of a Critter object: name, hunger,
and boredom. Notice that hunger and boredom both have default values of 0, allowing a critter to start off in

a very good mood.

Critter Caretaker
A virtual pet to care for
Michael Dawson - 3/28/03
class Critter(object):
 """A virtual pet"""
 def __init__(self, name, hunger = 0, boredom = 0):
 self.name = name
 self.hunger = hunger
 self.boredom = boredom

I take the more relaxed posture of a Python programmer with this method and leave the attributes at their
default public status. I plan to provide all the methods I suspect a client will need, which should encourage the
client to interact with a Critter object only through those methods.

The __pass_time() Method

The __pass_time() method is a private method that increases a critter's hunger and boredom levels. It's

invoked at the end of each method where the critter does something (eats, plays, or talks) to simulate the
passage of time. I made this method private because it should only be invoked by another method of the
class. I only see time passing for a critter when it does something (like eat, play, or talk).

 def __pass_time(self):
 self.hunger += 1
 self.boredom += 1

The mood Property

The mood property represents a critter's mood. The property is created from a single get method,
__get_mood(), making it a read-only attribute. __get_mood() adds the values of a Critter object's
hunger and boredom attributes. Based on the total, the method returns a string, either "happy", "okay",

"frustrated", or "mad".

The interesting thing about the mood property is that it doesn't simply provide access to a private attribute.
That's because the string that represents a critter's mood is not stored as part of the Critter object, it's
calculated on the fly by __get_mood(). The mood property just passes on the string returned by
__get_mood(). To client code, however, mood looks like any other read-only attribute of a Critter object

created with a property.

 def __get_mood(self):
 unhappiness = self.hunger + self.boredom
 if unhappiness < 5:
 mood = "happy"
 elif 5 <= unhappiness <= 10:
 mood = "okay"
 elif 11 <= unhappiness <= 15:
 mood = "frustrated"
 else:
 mood = "mad"
 return mood

 mood = property(__get_mood)

The talk() Method

The talk() method announces the critter's mood to the world by accessing the Critter object's mood
property. Then, the method invokes __pass_time().

 def talk(self):
 print "I'm", self.name, "and I feel", self.mood, "now.\n"
 self.__pass_time()

The eat() Method

The eat() method reduces the critter's hunger level by an amount passed to the parameter food. If no value
is passed, food gets the default value of 4. The critter's hunger level is kept in check and not allowed to go
below 0. Finally, the method invokes __pass_time().

 def eat(self, food = 4):
 print "Brruppp. Thank you."
 self.hunger -= food
 if self.hunger < 0:
 self.hunger = 0
 self.__pass_time()

The play() Method

The play() method reduces the critter's boredom level by an amount passed to the parameter fun. If no
value is passed, fun gets the default value of 4. The critter's boredom level is kept in check and not allowed
to go below 0. Finally, the method invokes __pass_time().

 def play(self, fun = 4):
 print "Wheee!"
 self.boredom -= fun
 if self.boredom < 0:
 self.boredom = 0
 self.__pass_time()

Creating the Critter

I put the main part of the program into its own function, main(). At the start of the program, I get the name of
the critter from the user. Next, I instantiate a new Critter object. Since I don't supply values for hunger or
boredom, the attributes start out at 0, and the critter begins life happy and content.

def main():
 crit_name = raw_input("What do you want to name your critter?: ")
 crit = Critter(crit_name)

Creating a Menu System

Next, I created the familiar menu system. If the user enters 0, the program ends. If the user enters 1, the
object's talk() method is invoked. If the user enters 2, the object's eat() method is invoked. If the user
enters 3, the object's play() method is invoked. If the user enters anything else, he or she is told the choice

is invalid.

 choice = None
 while choice != "0":
 print \
 """
 Critter Caretaker

 0 - Quit
 1 - Listen to your critter
 2 - Feed your critter
 3 - Play with your critter
 """

 choice = raw_input("Choice: ")
 print

 # exit
 if choice == "0":
 print "Good-bye."
 # listen to your critter
 elif choice == "1":
 crit.talk()

 # feed your critter
 elif choice == "2":

 crit.eat()

 # play with your critter
 elif choice == "3":
 crit.play()

 # some unknown choice
 else:
 print "\nSorry, but", choice, "isn't a valid choice."

Starting the Program

The next line of code calls the main() function and begins the program. The last line waits for the user before

ending.

main()
("\n\nPress the enter key to exit.")

Summary

This chapter introduced you to a different way of programming by using the software object. You learned that
software objects can combine functions and data (methods and attributes in OOP-speak) and in many ways
mimic real-world objects. You saw how to write classes, the blueprints of objects. You learned about a special
method called the constructor that is automatically invoked when a new object is instantiated. You saw how to
create and initialize object attributes through a constructor. You learned how to create class-wide elements
such as class attributes and static methods. Next, you learned about object encapsulation. You saw ways to
help ensure encapsulation, including the use of private attributes. But you learned that, more than anything,
good object design is the best way to help ensure encapsulation. Finally, you saw all of these ideas put to
work to create a demanding virtual pet that requires constant attention.

Challenges
Improve the Critter Caretaker program by allowing the user to specify how much food he or she feeds
the critter and how long he or she plays with the critter. Have these values affect how quickly the
critter's hunger and boredom levels drop.

1.

Write a program that simulates a television by creating it as an object. The user should be able to enter
a channel number and raise or lower the volume. Make sure that the channel number and volume level
stay within valid ranges.

2.

Create a "back door" in the Critter Caretaker program that shows the exact values of the object's
attributes. Accomplish this by printing the object when a secret selection, not listed in the menu, is
entered as the user's choice. (Hint: add the special method __str__() to the Critter class.)

3.

Create a Critter Farm program by instantiating several Critter objects and keeping track of them

through a list. Mimic the Critter Caretaker program, but instead of requiring the user to care for a single
critter, require them to care for an entire farm. Each menu choice should allow the user to perform
some action for all of the critters (feed all of the critters, play with all of the critters, or listen to all of the
critters). To make the program interesting, give each critter random starting hunger and boredom
levels.

4.

Chapter 9: Object-Oriented Programming: The

Blackjack Game

 Download CD Content

Overview

In the last chapter, you learned about the software object. Almost every program you saw involved a single
object. That's a great way to begin to understand how objects work, but the true power of OOP can only be
appreciated by seeing a group of objects work together. In this chapter, you'll learn to create multiple objects
and define relationships among them so that they can interact. Specifically, you'll learn to do the following:

Create objects of different classes in the same program

Allow objects to communicate with each other

Create more complex objects by combining simpler ones

Derive new classes from existing ones

Extend the definition of existing classes

Override method definitions of existing classes

Introducing the Blackjack Game

The final project for this chapter is a simplified version of the card game, black-jack. The game works like this:
Players are dealt cards with point values. Each player tries to reach a total of 21 without going over.
Numbered cards count as their face value. An ace counts as either 1 or 11 (whichever is best for the player)
and any jack, queen, or king counts as 10.

The computer is the dealer and competes against one to seven players. At the opening of the round, the
computer deals all participants (including itself) two cards. Players can see all of their cards, and the computer
even displays their total. However, one of the dealer's cards is hidden for the time being.

Next, each player gets a chance to take additional cards. Each player can take one card at a time for as long
as the player likes. But if the player's total goes over 21 (known as "busting"), the player loses. If all players
bust, the computer reveals its first card and the round is over. Otherwise, play continues. The computer must
take additional cards as long as its total is less than 17. If the computer busts, all players who have not
themselves busted, win. Otherwise, each remaining player's total is compared with the computer's. If the
player's total is greater, the player wins. If the player's total is less, the player loses. If the two totals are the
same, the player ties the computer (also known as "pushing"). Figure 9.1 shows off the game.

Figure 9.1: One player wins, the other is not so lucky.

Sending and Receiving Messages

In a way, an object-oriented program is like an ecosystem and objects are like organisms. To maintain a thriving ecosystem,
organisms must interact. The same is true in OOP. To have a useful program, objects must interact in well-defined ways. In
OOP-speak, objects interact by sending messages to each other. What they do on a practical level is invoke each other's
methods. That may sound a little impolite, but it's actually much more courteous than if an object were to access another
object's attributes directly.

Introducing the Alien Blaster Program

The Alien Blaster program simulates an action game where a player blasts an alien. In the program, a hero blasts an invader
and the invader dies (but not before giving a grand farewell speech). The program accomplishes this when one object sends
another a message. Figure 9.2 shows the results of the program.

Figure 9.2: The battle description is the result of objects exchanging a message.

Technically what happens is that the program instantiates a Player object, hero , and an Alien object, invader . When
hero 's blast() method is invoked with invader as its argument, hero invokes invader 's die() method. In English,

this means that when a player blasts an alien, the player sends a message to the alien telling it to die. Figure 9.3 provides a
visual representation of the message exchange.

Figure 9.3: hero , a Player object, sends invader , an Alien object, a message.

IN THE REAL WORLD

The diagram I created to show two objects exchanging a message is a pretty simple one. But with many objects and
many relationships among them, diagrams like this can become complex. In fact, there are a variety of formal methods

for mapping software projects. One of the most popular is the Unified Modeling Language (UML), a notational language
that is especially useful for visualizing object-oriented systems.

Here's the program listing for Alien Blaster:

Alien Blaster
Demonstrates object interaction
Michael Dawson - 4/10/03

class Player(object):
 """ A player in a shooter game. """
 def blast(self, enemy):
 print "The player blasts an enemy.\n"
 enemy.die()

class Alien(object):
 """ An alien in a shooter game. """
 def die(self):
 print "The alien gasps and says, 'Oh, this is it. This is the big one. \n" \
 "Yes, it's getting dark now. Tell my 1.6 million larvae that I loved them...
\n" \

 "Good-bye, cruel universe.'"

main
print "\t\tDeath of an Alien\n"

hero = Player()
invader = Alien()
hero.blast(invader)

raw_input("\n\nPress the enter key to exit.")

Sending a Message

Before you can have one object send another object a message, you need two objects! So, I create two in the main part of
the program through the following lines:

hero = Player()
invader = Alien()

The first line creates a Player object and assigns it to hero . The second line creates an Alien object and assigns it to
invader .

The next line of code invokes hero 's blast() method:

hero.blast(invader)

There's something new going on in this line. In the method call, I list invader as an argument. By examining the definition of
blast() , you can see that it accepts this value into its parameter enemy :

 def blast(self, enemy):

This just means that, in this method, the Alien object is called enemy . While this method executes, enemy refers to the
same object as invader does in the main part of the program.

After displaying a message, blast() invokes the Alien object's die() method through the following line:

 enemy.die()

The Player object is sending the Alien object a message, telling it to die.

Receiving a Message

The Alien object receives the message from the Player object in the form of its die() method being invoked. The die()

method is pretty simple. All it does is display a melodramatic good-bye, which appears as follows:

The alien gasps and says, 'Oh, this is it. This is the big one.
Yes, it's getting dark now. Tell my 1.6 million larvae that I loved them...
Good-bye, cruel universe.'

Combining Objects

In the real world, interesting objects are usually made up of other, independent objects. For example, a drag
racer can be seen as a single object that's composed of individual objects such as a body, tires, and an
engine. Other times, you may see an object as a collection of other objects. For example, a zoo can be seen
as a collection of animals. Well, you can mimic these kinds of relationships among objects in OOP. You could
write a Drag_Racer class that has an attribute engine which references an Engine object. Or, you could
write a Zoo class that has an attribute animals which is a list of different Animal objects. Combining objects

like this allows you to create more complex objects from simpler ones.

Introducing the Playing Cards Program

The Playing Cards program uses objects to represent individual playing cards that you might use in a game of
Blackjack or Go Fish (depending upon your tastes . . . and your tolerance for losing money). The program
goes on to represent a hand of cards through an object that is a collection of card objects. Figure 9.4 shows
the results of the program.

Figure 9.4: Each Hand object is a collection of Card objects.

Creating the Card Class

The first thing I do in the program is create a Card class for objects that represent playing cards. Here's the
code for the Card class:

Playing Cards
Demonstrates combining objects
Michael Dawson - 4/9/03

class Card(object):
 """ A playing card. """
 RANKS = ["A", "2", "3", "4", "5", "6", "7",
 "8", "9", "10", "J", "Q", "K"]
 SUITS = ["c", "d", "h", "s"]

 def __init__(self, rank, suit):
 self.rank = rank
 self.suit = suit

 def __str__(self):
 rep = self.rank + self.suit
 return rep

Each Card object has a rank attribute, which represents the rank of the card. The possible values are listed
in the class attribute RANKS. "A" represents an ace, "2" through "10" represent their corresponding numeric
values, "J" represents a jack, "Q" represents a queen, and "K" represents a king.

Each card also has a suit attribute, which represents the suit of the card. The possible values for this
attribute are listed in the class attribute SUITS. "c" represents clubs, "d" means diamonds, "h" stands for
hearts, and "s" represents spades. So, an object with the rank attribute of "A" and a suit attribute of "d"

represents the ace of diamonds.

The special method __str__() simply returns the concatenation of the rank and suit attributes so that an

object can be printed.

Creating the Hand Class

The next thing I do in the program is create a Hand class for objects, which is a collection of Card objects:

class Hand(object):
 """ A hand of playing cards. """
 def __init__(self):
 self.cards = []

 def __str__(self):
 if self.cards:
 rep = ""
 for card in self.cards:
 rep += str(card) + " "
 else:
 rep = "<empty>"
 return rep

 def clear(self):
 self.cards = []

 def add(self, card):
 self.cards.append(card)

 def give(self, card, other_hand):
 self.cards.remove(card)
 other_hand.add(card)

A new Hand object has an attribute cards that is intended to be a list of Card objects. So each single Hand

object has an attribute that is a list of possibly many other objects.

The special method __str__() returns a string that represents the entire hand. The method loops through
each Card object in the Hand object and concatenates the Card object's string representation. If the Hand
object has no Card objects, the string "<empty>" is returned.

The clear() method clears the list of cards by assigning an empty list to an object's cards attribute.

The add() method adds an object to the cards attribute.

The give() method removes an object from the Hand object and appends it to another Hand object by
invoking the other Hand object's add() method. Another way to say this is that the first Hand object sends the
second Hand object a message to add a Card object.

Using Card Objects

In the main part of the program, I create and print five Card objects:

main
card1 = Card(rank = "A", suit = "c")
print "Printing a Card object:"
print card1

card2 = Card(rank = "2", suit = "c")
card3 = Card(rank = "3", suit = "c")
card4 = Card(rank = "4", suit = "c")
card5 = Card(rank = "5", suit = "c")
print "\nPrinting the rest of the objects individually:"
print card2
print card3
print card4
print card5

The first Card object created has a rank attribute equal to "A" and a suit attribute of "c". When I print the
object, it's displayed on the screen as Ac. The remaining objects follow the same pattern.

Combining Card Objects Using a Hand Object

Next, I create a Hand object, assign it to my_hand, and print it:

my_hand = Hand()
print "\nPrinting my hand before I add any cards:"
print my_hand

Since the object's cards attribute is an empty list, printing the object displays the text <empty>.

Next, I add the five Card objects to my_hand and print it again:

my_hand.add(card1)
my_hand.add(card2)
my_hand.add(card3)
my_hand.add(card4)
my_hand.add(card5)
print "\nPrinting my hand after adding 5 cards:"
print my_hand

This time, the text Ac 2c 3c 4c 5c is displayed.

Then, I create another Hand object, your_hand. Using my_hand's give() method, I transfer the first two
cards from my_hand to your_hand. Then, I print both hands:

your_hand = Hand()
my_hand.give(card1, your_hand)
my_hand.give(card2, your_hand)
print "\nGave the first two cards from my hand to your hand."
print "Your hand:"
print your_hand
print "My hand:"
print my_hand

As you'd expect, your_hand is displayed as Ac 2c while my_hand appears as 3c 4c 5c.

Finally, I invoke my_hand's clear() method and print it one last time:

my_hand.clear()
print "\nMy hand after clearing it:"
print my_hand

raw_input("\n\nPress the enter key to exit.")

As it should, the text <empty> is displayed.

Using Inheritance to Create New Classes

One of the key elements of OOP is inheritance, which allows you to base a new class on an existing one. By
doing so, the new class automatically gets (or inherits) all of the methods and attributes of the existing
class—it's like getting all of the work that went into writing the existing class for free!

TRAP In Python, it's possible to create a new class that directly inherits from more than one class. This is
called multiple inheritance. But multiple inheritance is a thorny subject and can get confusing fast.
In fact, several of the most popular modern languages, such as C# and Java, have eliminated
multiple inheritance and opted for the simpler, yet still powerful, single inheritance—where an object
can inherit from only one class. As a beginning programmer, it's best to steer clear of multiple
inheritance since it can be more heartache than help.

Extending a Class through Inheritance

Inheritance is especially useful when you want to create a more specialized version of an existing class. As
you just learned, by inheriting from an existing class, a new class gets all of the methods and attributes of the
existing class. But you can also add methods and attributes to the new class to extend what objects of the
new class can do.

For example, imagine that your Drag_Racer defines a drag racer with methods stop() and go(). You could

create a new class for a specialized type of drag racer that can clean its windshield (you get a lot of squashed
bugs at 250 miles per hour) by basing it on the existing Drag_Racer class. Your new class would
automatically inherit stop() and go() from Drag_Racer. So, all you'd have to do is define one new method

for cleaning the windshield and the new class would be done.

Introducing the Playing Cards 2.0 Program

The Playing Cards 2.0 program is based on the Playing Cards program. The new version introduces the Deck
class to describe a deck of playing cards. However, unlike any other class you've seen, Deck is based on an
existing class, Hand. As a result, Deck automatically inherits all of Hand's methods. I create Deck this way

because a deck of cards is really like a specialized hand of cards. It's a hand, but with extra behaviors. A deck
can do anything that a hand can. It's a collection of cards. It can give a card to another hand, and so on. On
top of that, a deck can do a few things that a hand can't. A deck can be shuffled and it can deal cards to
multiple hands. The Playing Cards 2.0 program creates a deck that deals cards to two different hands. Figure
9.5 illustrates the results of the program.

Figure 9.5: The Deck object inherits all of the methods of the Hand class.

Creating a Base Class

I begin the new program like the old version. The first two classes, Card and Hand, are the same as before:

Playing Cards 2.0
Demonstrates inheritance - object extension

Michael Dawson 4/9/03

class Card(object):
 """ A playing card. """
 RANKS = ["A", "2", "3", "4", "5", "6", "7",
 "8", "9", "10", "J", "Q", "K"]
 SUITS = ["c", "d", "h", "s"]

 def __init__(self, rank, suit):
 self.rank = rank
 self.suit = suit

 def __str__(self):
 rep = self.rank + self.suit
 return rep
class Hand(object):
 """ A hand of playing cards. """
 def __init__(self):
 self.cards = []

 def __str__(self):
 if self.cards:
 rep = ""
 for card in self.cards:
 rep += str(card) + "\t"
 else:
 rep = "<empty>"
 return rep

 def clear(self):
 self.cards = []

 def add(self, card):
 self.cards.append(card)

 def give(self, card, other_hand):
 self.cards.remove(card)
 other_hand.add(card)

Inheriting from a Base Class

The next thing I do is create the Deck class. You can see from the class header that Deck is based on Hand:

class Deck(Hand):

Hand is called a base class because Deck is based on it. Deck is considered a derived class because it
derives part of its definition from Hand. As a result of this relationship, Deck inherits all of Hand's methods. So,
even if I didn't define a single new method in this class, Deck objects would still have all of the methods
defined in Hand:

__init__()

__str__()

clear()

add()

give()

If it helps, for this simple example, you can even imagine that you've copied and pasted all of Hand's methods
right into Deck because of inheritance.

Extending a Derived Class

You can extend a derived class by defining additional methods in it. That's what I do in the class definition of
Deck:

 """ A deck of playing cards. """
 def populate(self):
 for suit in Card.SUITS:
 for rank in Card.RANKS:
 self.add(Card(rank, suit))

 def shuffle(self):
 import random
 random.shuffle(self.cards)

 def deal(self, hands, per_hand = 1):
 for rounds in range(per_hand):
 for hand in hands:
 if self.cards:
 top_card = self.cards[0]
 self.give(top_card, hand)
 else:
 print "Can't continue deal. Out of cards!"

So, in addition to all of the methods that Deck inherits, it has the following new methods:

populate()

shuffle()

deal()

As far as client code is concerned, any Deck method is as valid as any other—whether it's inherited from
Hand or defined in Deck. And all of a Deck object's methods are invoked the same way, through dot notation.

Using the Derived Class

The first thing I do in the main part of the program is instantiate a new Deck object:

main
deck1 = Deck()

Looking at the class, you'll notice that I don't define a constructor method in Deck. But Deck inherits the Hand
constructor, so that method is automatically invoked with the newly created Deck object. As a result, the new
Deck object gets a cards attribute which is initialized to an empty list, just as any newly created Hand object
would get a similar cards attribute. Finally, the assignment statement assigns the new object to deck1.

Now armed with a new (but empty) deck, I print it:

print "\nNew deck:"
print deck1

I didn't define the special __str__() method in Deck either, but again, Deck inherits the method from Hand.
Since the deck is empty, the code displays the text <empty>. So far, a deck seems just like a hand. That's

because a deck is a specialized type of hand. Remember, a deck can do anything a hand can, plus more.

An empty deck is no fun, so I invoke the object's populate() method, which populates the deck with the

traditional 52 cards:

deck1.populate()

Now the deck has finally done something a hand can't. That's because the populate() method is a new
method that I define in the Deck class. The populate() method loops through all of the 52 possible
combinations of values of Card.SUITS and Card.RANKS (one for each card in a real deck). For each
combination, the method creates a new Card object that it adds to the deck.

Next, I print the deck:

print "\nPopulated deck:"
print deck1

This time, all 52 cards are displayed! But if you look closely, you'll see that they're in an obvious order. To
make things interesting, I shuffle the deck:

deck1.shuffle()

I define the shuffle() method in Deck. It imports the random module and then calls the
random.shuffle() function with the object's cards attribute. As you might guess, the
random.shuffle() method shuffles a list's elements into a random order. So, all of the elements of cards

get shuffled. Perfect.

Now, with the cards in random order, I display the deck again:

print "\nShuffled deck:"
print deck1

Next, I create two Hand objects and put them in a list that I assign to hands:

my_hand = Hand()
your_hand = Hand()
hands = [my_hand, your_hand]

Then, I deal each hand five cards:

deck1.deal(hands, per_hand = 5)

The deal() method is a new method I define in Deck. It takes two arguments: a list of hands and the number

of cards to deal each hand. The method gives a card from the deck to each hand. If the deck is out of cards,
the method prints the message "Can't continue deal. Out of cards!" The method repeats this
process for the number of cards to be dealt each hand. So, this line deals five cards from deck1 to each hand
(my_hand and your_hand).

To see the results of the deal, I print each hand and the deck once more:

print "\nDealt 5 cards to my hand and your hand."
print "My hand:"
print my_hand
print "Your hand:"
print your_hand
print "Deck:"
print deck1

By looking at the output, you can see that each hand has 5 cards and the deck now has only 42.

Finally, I put the deck back to its initial state by clearing it:

deck1.clear()
print "\nCleared the deck."

And then I print the deck one last time:

print "Deck:", deck1

Altering the Behavior of Inherited Methods

You've seen how you can extend a class by adding new methods to a derived class. But you can also redefine
how an inherited method of a base class works in a derived class. This is known as overriding the method.
When you override a base class method, you have two choices. You can create a method with completely
new functionality, or you can incorporate the functionality of the base class method that you're overriding.

As an example, take your Drag_Racer class again. Let's say that its stop() method simply applies the

racer's brakes. If you want to create a new drag racer class that can stop even more quickly (by releasing a
parachute behind the racer), you could derive a new, Parachute_Racer class from Drag_Racer and
override its stop() method. You could write the new stop() method so that it invokes the stop() method
of the original Drag_Racer class (which applies the racer's brakes) and then defines the action of the racer

releasing a parachute.

Introducing the Playing Cards 3.0 Program

The Playing Cards 3.0 program derives two new classes of playing cards from the Card class you've been

working with. The first new class defines cards that can't be printed. More precisely, when you print an object
of this class, the text <unprintable> is displayed. The next class defines cards that can be either face up or

face down. When you print an object of this class, there are two possible results. If the card is face up, it prints
out just like an object of the Card class. But if the card is face down, the text XX is displayed. Figure 9.6

shows a sample run of the program.

Figure 9.6: By overriding the inherited __str__() method, objects of different derived classes are

printed out differently.

Creating a Base Class

To derive a new class, you need to start with a base class. For this program, I use the same Card class

you've come to know and love:

Playing Cards 3.0
Demonstrates inheritance - overriding methods
Michael Dawson 4/16/03

class Card(object):
 """ A playing card. """

 RANKS = ["A", "2", "3", "4", "5", "6", "7",
 "8", "9", "10", "J", "Q", "K"]
 SUITS = ["c", "d", "h", "s"]

 def __init__(self, rank, suit):
 self.rank = rank
 self.suit = suit

 def __str__(self):
 rep = self.rank + self.suit
 return rep

Overriding Base Class Methods

Next, I derive a new class for unprintable cards based on Card. The class header looks pretty standard:

class Unprintable_Card(Card):

From this header, you know that Unprintable_Card inherits all of the methods of Card. But I can change

the behavior of an inherited method by defining it in a derived class. And that's just what I did in the remainder
of the method definition:

 """ A Card that won't reveal its rank or suit when printed. """
 def __str__(self):
 return "<unprintable>"

The Unprintable_Card class inherits the __str__() method from Card. But I also define a new
__str__() method in Unprintable_Card that overrides (or replaces) the inherited one. Any time you

create a method in a derived class with the same name as an inherited method, you override the inherited
method in the new class. So, when you print an Unprintable_Card object, the text <unprintable> is

displayed.

A derived class has no effect on a base class. A base class doesn't care if you derive a new class from it, or if
you override an inherited method in the new class. The base class still functions as it always has. This means
that when you print a Card object, it will appear as it always does.

Invoking Base Class Methods

Sometimes when you override the method of a base class, you want to incorporate the inherited method's
functionality. For example, I want to create a new type of playing card class based on Card. I want an object

of this new class to have an attribute that indicates whether or not the card is face up. This means I need to
override the inherited constructor method from Card with a new constructor that creates a face up attribute.
However, I also want my new constructor to create and set rank and suit attributes, just like the Card
constructor already does. Instead of retyping the code from the Card constructor, I could invoke it from inside
my new constructor. Then, it would take care of creating and initializing rank and suit attributes for an object

of my new class. Back in the constructor method of my new class, I could add the attribute that indicates
whether or not the card is face up. Well, that's exactly the approach I take in the Positionable_Card class:

class Positionable_Card(Card):
 """ A Card that can be face up or face down. """
 def __init__(self, rank, suit, face_up = True):
 super(Positionable_Card, self).__init__(rank, suit)
 self.is_face_up = face_up

The new function in the constructor, super(), lets you invoke the method of a base class (also called a
superclass). The line super(Positionable_Card, self).__init__(rank, suit) invokes the
__init__() method of Card (the superclass of Positionable_Card). The first argument in this function
call, Positionable_Card, says that I want to invoke a method of the superclass (or base class) of
Positionable_Card, which is Card. The next argument, self, passes a reference to the object so that
Card can get at the object to add the rank and suit attributes to it. The next part of the statement,
__init__(rank, suit), tells Python that I want to invoke the constructor method of Card and I want to
pass it the values of rank and suit.

TRAP The super() function was introduced in Python 2.2 and only works with new-style classes. If

you're using old-style classes, you can still invoke a base class method, you just have to explicitly
specify the name of the class. For example, if I want to explicitly invoke the constructor of the Card
class in Positionable_Card, I could use this line:

 Card.__init__(self, rank, suit)

But the super() function is much better in more complex situations, so use super() whenever

possible over this explicit way of calling a base class method.

The next method in Positionable_Card also overrides a method inherited from Card and invokes the

overridden method:

 def __str__(self):
 if self.is_face_up:
 rep = super(Positionable_Card, self).__str__()
 else:
 rep = "XX"
 return rep

This __str__() method first checks to see if an object's face_up attribute is True (which means that the
card is face up). If so, the string representation for the card is set to the string returned from Card's
__str__() method called with the Positionable_Card object. In other words, if the card is face up, the
card prints out like any object of the Card class. However, if the card is not face up, the string representation
returned is "XX".

The last method in the class doesn't override an inherited method. It simply extends the definition of this new
class:

 def flip(self):
 self.is_face_up = not self.is_face_up

The method flips a card over by toggling the value of an object's face_up attribute. If an object's face_up
attribute is True, then invoking the object's flip() method sets the attribute to False. If an object's

face_up attribute is False, then invoking the object's flip() method sets the attribute to True.

Using the Derived Classes

In the main part of the program, I create three objects: one from Card, another from Unprintable_Card,
and the last from Positionable_Card:

#main
card1 = Card("A", "c")
card2 = Unprintable_Card("A", "d")
card3 = Positionable_Card("A", "h")

Next, I print the Card object:

print "Printing a Card object:"
print card1

This works just like in previous programs, and the text Ac is displayed.

The next thing I do is print an Unprintable_Card object:

print "\nPrinting an Unprintable_Card object:"
print card2

Even though the object has a rank attribute set to "A" and a suit attribute set to "d", printing the object
displays the text <unprintable> because the Unprintable_Card class overrides its inherited
__str__() method with one that always returns the string "<unprintable>".

The next two lines print a Positionable_Card object:

print "\nPrinting a Positionable_Card object:"
print card3

Since the object's face_up attribute is True, the object's __str__() method invokes Card's __str__()
method and the text Ah is displayed.

Next, I invoke the Positionable_Card object's flip() method:

print "Flipping the Positionable_Card object."
card3.flip()

As a result, the object's face_up attribute is set to False.

The next two lines print the Positionable_Card object again:

print "Printing the Positionable_Card object:"
print card3

raw_input("\n\nPress the enter key to exit.")

This time the second line displays the text XX because the object's face_up attribute is False.

Understanding Polymorphism

Polymorphism is the quality of being able to treat different types of things in the same way. Polymorphism is
usually associated with OOP, but you've seen it in action before. The len() function is polymorphic because
it works with different types, such as strings, tuples, or lists. For example, the following calls to len() all

produce valid results even though each argument is of a different type:

>>> len("How long am I?")
14
>>> len((1, 2, 3, 4, 5))
5
>>> len(["a", "b", "c"])
3

Used in the context of OOP, polymorphism means that you can send the same message to objects of different
classes related by inheritance and achieve different results. For example, the Unprintable_Card is derived
from Card, but when you invoke the __str__() method of an Unprintable_Card object, you get a
different result than when you invoke the __str__() method of a Card object. This means that you can print
an object even if you don't know if it's an Unprintable_Card or a Card object. Regardless of the class of
the object, when printed, its __str__() method is invoked and a string representation of it is displayed.

Creating Modules

You first learned about modules in Chapter 3, in the section "Using the import Statement," where you met
the random module. But a powerful aspect of Python programming is that you can create, use, and even

share your own modules. Creating your own modules provides important benefits.

First, by creating your own modules, you can reuse code, which can save you time and effort. For example,
you could reuse the Card, Hand, and Deck classes you've seen so far to create many different types of card

games without having to reinvent basic card, deck, and hand functionality every time.

Second, by breaking up a program into logical modules, large programs become easier to manage. So far, the
programs you've been working with have been contained in one file. Since they've been pretty short, this is no
big deal. But imagine a program that's thousands (or even tens of thousands) of lines long. Working with a
program of this size, in one, massive file, would be a real nightmare (professional projects, by the way, can
easily get this large).

Third, by creating modules, you can share your genius. If you create a useful module, you can e-mail it to a
friend, who then can use it much like any built-in Python module.

Introducing the Simple Game Program

The Simple Game program, as the name suggests, is simple. The program first asks how many players wish
to participate and then proceeds to get each player's name. Finally, the program assigns a random score to
each player and displays the results. Not very thrilling, but the point of the program is not the game, but rather
how the game works. The program uses a brand-new module with functions and a class that I created. Figure
9.7 displays the results of the program.

Figure 9.7: Several functions and a class used in the program are from a programmer-created module.

Writing Modules

Normally, I'd show you the code for the next program, Simple Game, but in this section, I go over the module
I've written that Simple Game uses.

You create a module the same way you write any other Python program. When you create a module, though,
you should build a collection of related programming components, such as functions and classes, and store
them in a single file to be imported into a new program.

I created a basic module, called games, that contains two functions and a class that might be useful in

creating a game. Here's the code:

Games
Demonstrates module creation
Michael Dawson 4/10/03

class Player(object):
 """ A player for a game. """
 def __init__(self, name, score = 0):
 self.name = name
 self.score = score

 def __str__(self):
 rep = self.name + ":\t" + str(self.score)
 return rep

def ask_yes_no(question):
 """ Ask a yes or no question."""
 response = None
 while response not in ("y", "n"):
 response = raw_input(question).lower()
 return response

def ask_number(question, low, high):
 """ Ask for a number within a range."""
 response = None
 while response not in range(low, high):
 response = int(raw_input(question))
 return response

if __name__ == "__main__":
 print "You ran this module directly (and did not 'import' it)."
 raw_input("\n\nPress the enter key to exit.")

This module is named games because I saved the file with the name games.py. Programmer-created

modules are named (and imported) based on their file names.

The bulk of the module is straightforward. The Player class defines an object with two attributes, name and
score, which are set in the constructor method. There's only one other method, __str__(), which returns a

string representation so that objects can be printed.

You've seen the next two functions, ask_yes_no() and ask_number(), before in Chapter 6, in the "The
ask_yes_no() Function" and the "The ask_number() Function" sections.

The next part of the program introduces a new idea, related to modules. The condition of the if statement,
__name__ == "__main__", is true if the program is run directly. It's false if the file is imported as a module.

So, if the games.py file is run directly, a message is displayed telling the user that the file is meant to be

imported and not directly run.

Importing Modules

Now that you've seen the games module, I'll introduce the code of the Simple Game program. The following

are the first few lines:

Simple Game
Demonstrates importing modules
Michael Dawson 4/10/03

import games, random

You import a programmer-created module the same way you import a built-in module, with the import
statement. In fact, I import the games module along with the familiar random module in the same import

statement.

TRAP If a programmer-created module isn't in the same directory as the program that imports it, Python
won't be able to find the module. There are ways around this. It's even possible to install a
programmer-created module so that it's available system-wide, just like built-in modules, but this
requires a special installation procedure that's beyond the scope of this book. So for now, make
sure that any module you want to import is in the same directory as the programs that import it.

Using Imported Functions and Classes

I use the imported modules in the remainder of the Simple Game program. After welcoming the players and
setting up a simple loop, I ask how many players there will be in the game:

print "Welcome to the world's simplest game!\n"

again = None
while again != "n":
 players = []
 num = games.ask_number(question = "How many players? (2 - 5): ",
 low = 2, high = 5)

I get the number of players by calling the ask_number() function from the games module. Just as with other

imported modules, to call a function, I use dot notation, specifying first the module name, followed by the
function name.

Next, for each player, I get the player's name and generate a random score between 1 and 100 by calling the
randrange() function from the random module. Then, I create a player object using this name and score.
Since the Player class is defined in the games module, again I use dot notation and include the module

name before the class name. Then, I append this new player object to a list of players.

 for i in range(num):
 name = raw_input("Player name: ")
 score = random.randrange(100) + 1
 player = games.Player(name, score)
 players.append(player)

Next, I print each player in the game:

 print "\nHere are the game results:"
 for player in players:
 print player

Finally, I ask if the players want to play another game. I use the ask_yes_no() function from the games

module to obtain my answer:

 again = games.ask_yes_no("\nDo you want to play again? (y/n): ")

raw_input("\n\nPress the enter key to exit.")

Back to the Blackjack Game

At this point, you're an expert in using Python classes to create playing cards, hands, and decks. So now it's time to
build on that expertise and see how to combine these classes in a larger program to create a complete, casino-style,
card game (tacky green felt not included).

The Cards Module

To write the Blackjack game, I created a final cards module based on the Playing Cards programs. The Hand and
Deck classes are exactly the same as those in the Playing Cards 2.0 program. The new Card class represents the
same functionality as the Positionable_Card from the Playing Cards 3.0 program. Here's the code for this module,

stored in the file cards.py :

Cards Module
Basic classes for a game with playing cards
Michael Dawson 4/18/03

class Card(object):
 """ A playing card. """
 RANKS = ["A", "2", "3", "4", "5", "6", "7",
 "8", "9", "10", "J", "Q", "K"]
 SUITS = ["c", "d", "h", "s"]

 def __init__(self, rank, suit, face_up = True):
 self.rank = rank
 self.suit = suit
 self.is_face_up = face_up

 def __str__(self):
 if self.is_face_up:
 rep = self.rank + self.suit
 else:
 rep = "XX"
 return rep

 def flip(self):
 self.is_face_up = not self.is_face_up
class Hand(object):
 """ A hand of playing cards. """
 def __init__(self):
 self.cards = []

 def __str__(self):
 if self.cards:
 rep = ""
 for card in self.cards:
 rep += str(card) + "\t"
 else:

 rep = "<empty>"
 return rep

 def clear(self):
 self.cards = []

 def add(self, card):
 self.cards.append(card)

 def give(self, card, other_hand):
 self.cards.remove(card)
 other_hand.add(card)

class Deck(Hand):
 """ A deck of playing cards. """
 def populate(self):
 for suit in Card.SUITS:
 for rank in Card.RANKS:
 self.add(Card(rank, suit))

 def shuffle(self):
 import random
 random.shuffle(self.cards)

 def deal(self, hands, per_hand = 1):
 for rounds in range(per_hand):
 for hand in hands:
 if self.cards:
 top_card = self.cards[0]
 self.give(top_card, hand)
 else:
 print "Can't continue deal. Out of cards!"

if __name__ == "__main__":
 print "This is a module with classes for playing cards."
 raw_input("\n\nPress the enter key to exit.")

Designing the Classes

Before you start coding a project with multiple classes, it can help to map them out on paper. You might make a list
and include a brief description of each class. Table 9.1 shows my first pass at such a listing for the Blackjack game.

BJ_Card

cards.Card

A blackjack playing card. Define an attribute value to represent the point value of a card.

BJ_Deck

cards.Deck

A blackjack deck. A collection of BJ_Card objects.

BJ_Hand

cards.Hand

A blackjack hand. Define an attribute total to represent the point total of a hand. Define an attribute name to

represent the owner of the hand.

BJ_Player

BJ_Hand

A blackjack player.

BJ_Dealer

BJ_Hand

A blackjack dealer.

BJ_Game

object

A blackjack game. Define an attribute deck to reference a BJ_Deck object. Define an attribute dealer to reference a

BJ_Dealer object. Define an attribute players to reference a list of BJ_Player objects.

Table 9.1: BLACKJACK CLASSES

Class Base Class Description

You should try to include all of the classes you think you'll need, but don't worry about making your class descriptions
complete, because invariably they won't be (mine aren't). But making such a list should help you get a good overview
of the types of objects you'll be working with in your project.

In addition to describing your classes in words, you might want to draw a family tree of sorts to visualize how your
classes are related. That's what I did in Figure 9.8 .

Figure 9.8: Inheritance hierarchy of classes for the Blackjack game.

A class hierarchy diagram, like the one in Figure 9.8 , can give you a summary view of how you're using inheritance.

Writing Pseudocode for the Game Loop

The next thing I did in planning the game was write some pseudocode for the play of one round. I thought this would
help me see how objects will interact. Here's the pseudocode I came up with:

Deal each player and dealer initial 2 cards
For each player

 While the player asks for a hit and the player is not busted
 Deal the player an additional card
If there are no players still playing
 Show the dealer's 2 cards
Otherwise
 While the dealer must hit and the dealer is not busted
 Deal the dealer an additional card
 If the dealer is busted
 For each player who is still playing
 The player wins
 Otherwise
 For each player who is still playing
 If the player's total is greater than the dealer's total
 The player wins
 Otherwise, if the player's total is less than the dealer's total
 The player loses
 Otherwise
 The player pushes

Importing the cards and games Modules

Now that you've seen the planning, it's time to check out the code. In the first part of the Blackjack program, I import
the two modules cards and games :

Blackjack
From 1 to 7 players compete against a dealer
Michael Dawson 4/18/03

import cards, games

I created the games module, you'll remember, in the Simple Game program, earlier in this chapter.

The BJ_Card Class

The BJ_Card class extends the definition of what a card is by inheriting from cards.Card . In BJ_Card , I create a
new property, value , for the point value of a card:

class BJ_Card(cards.Card):
 """ A Blackjack Card. """
 ACE_VALUE = 1

 def get_value(self):
 if self.is_face_up:
 value = BJ_Card.RANKS.index(self.rank) + 1
 if value > 10:
 value = 10
 else:
 value = None
 return value

 value = property(get_value)

The get_value() method returns a number between 1 and 10, which represents the value of a blackjack card. The
first part of the calculation is computed through the expression BJ_Card.RANKS.index(self.rank) + 1 . This
expression takes the rank attribute of an object (say "6") and finds its corresponding index number in
BJ_Card.RANKS through the list method index() (for "6" this would be 5). Finally, 1 is added to the result since
the computer starts counting at 0 (this makes the value calculated from "6" the correct 6). However, since rank
attributes of "J" , "Q" , and "K" result in numbers larger than 10 , any value greater than 10 is set to 10 . If an
object's face_up attribute is False , this whole process is avoided and a value of None is returned. Finally, I use the
property() function with the get_value() method to create the property value .

The BJ_Deck Class

The BJ_Deck class is used to create a deck of blackjack cards. The class is almost exactly the same as its base
class, cards.Deck . The only difference is that I override cards.Deck 's populate() method so that a new
BJ_Deck object gets populated with BJ_Card objects:

class BJ_Deck(cards.Deck):
 """ A Blackjack Deck. """
 def populate(self):
 for suit in BJ_Card.SUITS:
 for rank in BJ_Card.RANKS:
 self.cards.append(BJ_Card(rank, suit))

The BJ_Hand Class

The BJ_Hand class, based on cards.Hand , is used for blackjack hands. I override the cards.Hand constructor and
add a name attribute to represent the name of the hand owner:

class BJ_Hand(cards.Hand):
 """ A Blackjack Hand. """
 def __init__(self, name):
 super(BJ_Hand, self).__init__()
 self.name = name

Next, I override the inherited __str__() method to display the total point value of the hand:

 def __str__(self):
 rep = self.name + ":\t" + super(BJ_Hand, self).__str__()
 if self.total:
 rep += "("+ str(self.total) + ")"
 return rep

I concatenate the object's name attribute with the string returned from the cards.Hand __str__() method for the
object. Then, if the object's total property isn't None , I concatenate the string representation of the value of total .

Finally, I return that string.

Next, I create a property called total , which represents the total point value of a blackjack hand. If a blackjack hand
has a face-down card in it, then its total property is None . Otherwise, total is calculated by adding the point

values of all the cards in the hand.

 def get_total(self):
 # if a card in the hand has value of None, then total is None
 for card in self.cards:
 if not card.value:
 return None
 # add up card values, treat each Ace as 1
 total = 0
 for card in self.cards:
 total += card.value

 # determine if hand contains an Ace
 contains_ace = False
 for card in self.cards:
 if card.value == BJ_Card.ACE_VALUE:
 contains_ace = True

 # if hand contains Ace and total is low enough, treat Ace as 11
 if contains_ace and total <= 11:
 # add only 10 since we've already added 1 for the Ace
 total += 10

 return total

 total = property(get_total)

The first part of this method checks to see if any card in the blackjack hand has a value attribute equal to None
(which would mean that the card is face down). If so, the method returns None . The next part of the method simply

sums the point values of all the cards in the hand. The next part determines if the hand contains an ace. If so, the last
part of the method determines if the card's point value should be 11 or 1. The last line of this section creates the
property total .

The last method in BJ_Hand is_busted() . It returns True if the object's total property is greater than 21 .
Otherwise, it returns False .

 def is_busted(self):
 return self.total > 21

Notice that in this method, I return the result of the condition self.total > 21 instead of assigning the result to a
variable and then returning that variable. You can create this kind of return statement with any condition (any

expression actually) and it often results in a more elegant method.

This kind of method, which returns either True or False , is pretty common. It's often used (like here) to represent a

condition of an object with two possibilities, such as "on" or "off," for example. This type of method almost always has
a name that starts with the word "is," as in is_on() .

The BJ_Player Class

The BJ_Player class, derived from BJ_Hand , is used for blackjack players:

class BJ_Player(BJ_Hand):
 """ A Blackjack Player. """
 def is_hitting(self):
 response = games.ask_yes_no("\n" + self.name + ", do you want a hit? (Y/N): ")
 return response == "y"

 def bust(self):
 print self.name, "busts."
 self.lose()

 def lose(self):
 print self.name, "loses."

 def win(self):
 print self.name, "wins."

 def push(self):
 print self.name, "pushes."

The first method, is_hitting() , returns True if the player wants another hit and returns False if the player
doesn't. The bust() method announces that a player busts and invokes the object's lose() method. The lose()
method announces that a player loses. The win() method announces that a player wins. And the push() method
announces that a player pushes. The bust() , lose() , win() , and push() methods are so simple that you may

wonder why they exist. I put them in the class because they form a great skeleton structure to handle the more
complex issues that arise when players are allowed to bet (which they will, when you complete one of the chapter
challenges at the end of the chapter).

The BJ_Dealer Class

The BJ_Dealer class, derived from BJ_Hand , is used for the game's blackjack dealer:

class BJ_Dealer(BJ_Hand):
 """ A Blackjack Dealer. """
 def is_hitting(self):
 return self.total < 17
 def bust(self):
 print self.name, "busts."

 def flip_first_card(self):
 first_card = self.cards[0]
 first_card.flip()

The first method, is_hitting() , represents whether or not the dealer is taking additional cards. Since a dealer
must hit on any hand totaling 17 or less, the method returns True if the object's total property is less than 17,
otherwise it returns False . The bust() method announces that the dealer busts. The flip_first_card()

method turns over the dealer's first card.

The BJ_Game Class

The BJ_Game class is used to create a single object that represents a blackjack game. The class contains the code
for the main game loop in its play() method. However, the mechanics of the game are complex enough that I create
a few elements outside the method, including an __additional_cards() method that takes care of dealing
additional cards to a player and a still_playing property that returns a list of all players still playing in the round.

The __init__() Method

The constructor receives a list of names and creates a player for each name. The method also creates a dealer and a
deck.

class BJ_Game(object):
 """ A Blackjack Game. """
 def __init__(self, names):
 self.players = []
 for name in names:
 player = BJ_Player(name)
 self.players.append(player)

 self.dealer = BJ_Dealer("Dealer")

 self.deck = BJ_Deck()
 self.deck.populate()
 self.deck.shuffle()

The still_playing Property

The still_playing property returns a list of all the players that are still playing (those that haven't busted this

round):

 def get_still_playing(self):
 remaining = []
 for player in self.players:
 if not player.is_busted():
 remaining.append(player)
 return remaining

 # list of players still playing (not busted) this round
 still_playing = property(get_still_playing)

The __additional_cards() Method

The __additional_cards() method deals additional cards to either a player or the dealer. The method receives
an object into its player parameter, which can be either a BJ_Player or BJ_Dealer object. The method continues
while the object's is_busted() method returns False and its is_hitting() method returns True . If the object's
is_busted() method returns True , then the object's bust() method is invoked.

 def __additional_cards(self, player):
 while not player.is_busted() and player.is_hitting():
 self.deck.deal([player])
 print player
 if player.is_busted():
 player.bust()

Polymorphism is at work here in two method calls. The player.is_hitting() method call works equally well
whether player refers to a BJ_Player object or a BJ_Dealer object. The __additional_cards() method
never has to know which type of object it's working with. The same is true in the line player.bust() . Since both
classes, BJ_Player and BJ_Dealer , each defines its own bust() method, the line creates the desired result in

either case.

The play() Method

The play() method is where the game loop is defined and bares a striking resemblance to the pseudocode I

introduced earlier:

 def play(self):
 # deal initial 2 cards to everyone
 self.deck.deal(self.players + [self.dealer], per_hand = 2)
 self.dealer.flip_first_card() # hide dealer's first card
 for player in self.players:
 print player
 print self.dealer

 # deal additional cards to players
 for player in self.players:
 self.__additional_cards(player)

 self.dealer.flip_first_card() # reveal dealer's first

 if not self.still_playing:
 # since all players have busted, just show the dealer's hand
 print self.dealer
 else:
 # deal additional cards to dealer
 print self.dealer
 self.__additional_cards(self.dealer)

 if self.dealer.is_busted():
 # everyone still playing wins
 for player in self.still_playing:
 player.win()
 else:
 # compare each player still playing to dealer
 for player in self.still_playing:
 if player.total > self.dealer.total:
 player.win()
 elif player.total < self.dealer.total:
 player.lose()

 else:
 player.push()
 # remove everyone's cards
 for player in self.players:
 player.clear()
 self.dealer.clear()

Each player and dealer is dealt the initial two cards. The dealer's first card is flipped to hide its value. Next, all of the
hands are displayed. Then, each player is given cards as long as the player requests additional cards and hasn't
busted. If all players have busted, the dealer's first card is flipped and the dealer's hand is printed. Otherwise, play
continues. The dealer gets cards as long as the dealer's hand total is less than 17. If the dealer busts, all remaining
players win. Otherwise, each remaining player's hand is compared with the dealer's. If the player's total is greater than
the dealer's, the player wins. If the player's total is less, the player loses. If the two totals are equal, the player pushes.

The main() Function

The main() function gets the names of all the players, puts them in a list, and creates a BJ_Game object, using the
list as an argument. Next, the function invokes the object's play() method and will continue to do so until the players

no longer want to play.

def main():
 print "\t\tWelcome to Blackjack!\n"

 names = []
 number = games.ask_number("How many players? (1 - 7): ", low = 1, high = 8)
 for i in range(number):
 name = raw_input("Enter player name: ")
 names.append(name)
 print

 game = BJ_Game(names)

 again = None
 while again != "n":
 game.play()
 again = games.ask_yes_no("\nDo you want to play again?: ")

main()
raw_input("\n\nPress the enter key to exit.")

Summary

This chapter introduced you to the world of OOP. You saw how to send messages between objects. You
learned how to combine objects together to form more complex objects. You were introduced to inheritance,
the process of creating new classes based on existing ones. You saw how to extend a derived class by adding
new methods. You also saw how to override inherited methods. You learned how to write and import your own
modules. You were shown an example of how to sketch out your classes before you begin a project. And
finally, you saw all of these concepts come together in the creation of a multiplayer, casino-style card game.

Challenges
Add some much-needed error checking to the Blackjack game. Before a new round begins, make sure
that the deck has enough cards. If not, repopulate and reshuffle it. Find other places where you could
add error checking and create the necessary safeguards.

1.

Write a one-card version of the game war, where each player gets a single card and the player with the
highest card wins.

2.

Improve the Blackjack project by allowing players to bet. Keep track of each player's bankroll and
remove any player who runs out of money.

3.

Create a simple adventure game, using objects, where a player can travel between various, connected
locations.

4.

Chapter 10: GUI Development: The Mad Lib Program

 Download CD Content

Overview

So far, all the programs you've seen have used plain old text to interact with the user. But there are more
sophisticated ways to present and accept information. A graphical user interface (GUI) provides a visual way
for a user to interact with the computer. The most popular home operating systems all employ a GUI, making
user interactions simpler and more consistent. In this chapter, you'll learn to create GUIs. Specifically, you'll
learn to do the following:

Work with a GUI toolkit

Create and fill frames

Create and use buttons

Create and use text entries and text boxes

Create and use check buttons

Create and use radio buttons

Introducing the Mad Lib Program

The chapter project, the Mad Lib program, asks for the user's help in creating a story. The user supplies the
name of a person, a plural noun, and a verb. The user can also choose from several adjectives and may
select one body part. The program takes all of this information and uses it to create a story. Figures 10.1
through 10.3 show off the program. As you can see, the Mad Lib program uses a GUI to interact with the user.

Figure 10.1: A nicely laid-out GUI awaits the user's creativity.

Figure 10.2: The user has entered all of the necessary information.

Figure 10.3: After clicking the Click for story button, the text box displays the literary masterpiece.

Examining a GUI

Before I describe how to program a GUI, I want to define all of the GUI elements you'll meet in this chapter.
Figure 10.4 shows off the Mad Lib program, though this time the various elements are labeled.

Figure 10.4: You'll learn to create all of these GUI elements.

To create a GUI with Python, you need to use a GUI toolkit. There are many to pick from, but I use the Tkinter
toolkit in this chapter. Tkinter is cross-platform and the most popular Python GUI toolkit around.

HINT If you're running an operating system other than Windows, you may need to download and install
additional software to use the Tkinter toolkit. To find out more, visit the Python Web site's Tkinter
page at http://www.python.org/topics/tkinter.

You create GUI elements by instantiating objects from classes of the Tkinter module, which is part of the
Tkinter toolkit. Table 10.1 describes each GUI element from Figure 10.4 and lists its corresponding Tkinter

class.

Table 10.1: SELECTED GUI ELEMENTS

Element Tkinter Class Description

Frame Frame Holds other GUI elements

Label Label Displays uneditable text or icons

Button Button Performs an action when the user activates it

Text entry Entry Accepts and displays one line of text

Text box Text Accepts and displays multiple lines of text

Check button Checkbutton Allows the user to select or not select an option

Radio button Radiobutton Allows, as a group, the user to select one option from several

HINT There's no need to memorize all of these Tkinter classes. I just want to give you an overview of

the classes that you learn about in this chapter.

http://www.python.org/topics/tkinter

Understanding Event-Driven Programming

GUI programs are traditionally event-driven, meaning they respond to actions regardless of the order in which
they occur. Event-driven programming is a somewhat different way of thinking about coding. But don't worry,
because if you've ever used a GUI before (like a Web browser), then you've already worked within an event-
driven system.

To better understand the event-driven way, think about the Mad Lib final project from this chapter. If you were
to write a similar program with your current Python skills, you'd probably ask the user a series of questions
with the raw_input() function. You might ask for the name of a person, followed by a plural noun, followed

by a verb, and so on. As a result, the user would have to provide each piece of information, in order. But, if
you were to write the program in an event-driven way, say with a GUI, the user could enter the information in
any order. Also, the timing of when the program actually generates the story would be up to the user as well.

When you write an event-driven program, you bind (associate) events (things that can happen involving the
program's objects) with event handlers (code that runs when the events occur). As a concrete example, think
about the Mad Lib chapter project again. When the user clicks the Click for story button (the event), the
program invokes a method that displays the story (the event handler). In order for this to happen, I have to
associate the button click with the story-telling method (I bind the two with each other).

By defining all of your objects, events, and event handlers, you establish how your program works. Then, you
kick off the program by entering an event loop, where the program waits for the events that you've described
to occur. When any of those events do occur, the program handles them, just as you've laid out.

Don't worry if this somewhat different way of thinking about programming isn't completely clear yet. After
seeing a few working examples, you'll understand how to devise event-driven programs of your own.

Using a Root Window

The foundation of your GUI program is its root window, upon which you add all other GUI elements. If you
think of your GUI as a tree, then the root window is, well, the root. Your tree can branch out in all directions,
but every part of it is, directly or indirectly, anchored by the root.

Introducing the Simple GUI Program

The Simple GUI program creates about the simplest GUI possible: a single window. Figure 10.5 shows the
results of the program.

Figure 10.5: The program creates only a lone window. Hey, you have to start somewhere.

TRAP Running a Tkinter program directly from IDLE will cause either your program or IDLE to lock up.
The problem stems from the fact that IDLE is written using the Tkinter toolkit too. The simplest
solution is to run your Tkinter program directly. In Windows, you can do this simply by double-
clicking your program's icon.

In addition to the window pictured in Figure 10.5, Simple GUI may generate another window (depending upon
your operating system): the familiar console window, pictured in Figure 10.6.

Figure 10.6: A GUI program can generate a console window too.

Although you may think that this console window is just an eyesore, marring your otherwise perfect GUI, don't
be so quick to dismiss it. The console window can provide valuable feedback if (and when) your Tkinter
program produces errors. Also, don't close the console window, because that will close your GUI program
along with it.

TRICK Once you get your GUI programming running perfectly, you may want to suppress its
accompanying console window. On a Windows machine, the easiest way to do this is to change
the extension of your program from py to pyw.

Importing the Tkinter Module

Finally, it's time to get your hands dirty with some code! The first thing I do in the Simple GUI program is
import the Tkinter module:

Simple GUI
Demonstrates creating a window
Michael Dawson - 6/5/03

from Tkinter import *

The previous code imports all of Tkinter directly into the program's global name-space. Normally, you want
to avoid doing something like this; however, a few modules, like Tkinter, are designed to be imported in this

way. You'll see just how this helps in the next line of code.

Creating a Root Window

To create a root window, I instantiate an object of the Tkinter class Tk:

create the root window
root = Tk()

Notice, though, that I didn't have to prefix the module name, Tkinter, to the class name, Tk. In fact, I can
now directly access any part of the Tkinter module, without having to use the module name. Since most
Tkinter programs involve many references to classes and constants in the module, this saves a lot of typing

and makes code easier to read.

TRAP You can have only one root window in a Tkinter program. If you create more than one, you're
bound to freeze up your program as both root windows fight for control.

Modifying a Root Window

Next, I modify the root window using a few of its methods:

modify the window
root.title("Simple GUI")
root.geometry("200x100")

The title() method sets the title of the root window. All you have to do is pass the title you want displayed
as a string. I set the title so that the text Simple GUI appears in the window's title bar.

The geometry() method sets the size of the root window. The method takes a string (and not integers) that
represents the window's width and height, separated by the "x" character. I set the window's width to 200 and

its height to 100.

Entering a Root Window's Event Loop

Finally, I start up the window's event loop by invoking root's mainloop() method:

kick off the window's event loop
root.mainloop()

As a result, the window stays open, waiting to handle events. Since I haven't defined any events, the window
doesn't do much. But it is a full-fledged window that you can resize, minimize, and close. Feel free to give it a
test drive.

Using Labels

GUI elements are called widgets (short for "window gadgets"). Probably the simplest widget is the Label

widget, which is uneditable text or icons (or both). A label widget labels part of a GUI. It's often used to label
other widgets. Unlike most other widgets, labels aren't interactive. A user can't click on a label (alright, a user
can, but the label won't do anything). Still, labels are important and you'll probably use at least one every time
you create a GUI.

Introducing the Labeler Program

The Labeler program creates a root window and adds a label to it. The label widget simply declares that it is a
label. Figure 10.7 illustrates the program.

Figure 10.7: A label can provide information about a GUI.

Setting Up the Program

First, I set up the Labeler program by importing Tkinter and creating a root window:

Labeler
Demonstrates a label
Michael Dawson - 6/5/03

from Tkinter import *

create the root window
root = Tk()
root.title("Labeler")
root.geometry("200x50")

Creating a Frame

A Frame is a widget that can hold other widgets (such as Label widgets). A frame is like the cork in a

corkboard; you use it as a base on which to place other things. So, I create a new frame:

create a frame in the window to hold other widgets
app = Frame(root)

Any time you create a new widget, you must pass its master (the thing that will contain the widget) to the
constructor of the new object. Here, I pass root to the Frame constructor. As a result, the new frame is

placed inside the root window.

Next, I invoke the grid() method of the new object:

app.grid()

grid() is a method that all widgets have. It's associated with a layout manager, which lets you arrange

widgets. To keep things simple, I save the discussion of layout managers for a bit later in this chapter.

Creating a Label

I create a Label widget by instantiating an object of the Label class:

create a label in the frame
lbl = Label(app, text = "I'm a label!")

By passing app to the Label object's constructor, I make the frame that app refers to the master of the
Label widget. As a result, the label is placed in the frame.

Widgets have options that you can set. Many of these options affect how the widget appears. By passing the
string "I'm a label!" to the text parameter, I set the widget's text option to that string. As a result, the
text I'm a label! appears when the label is displayed.

Next, I invoke the object's grid() method:

lbl.grid()

This ensures that the label will be visible.

Entering the Root Window's Event Loop

Last, but not least, I invoke the root window's event loop to start up the GUI:

kick off the window's event loop
root.mainloop()

Using Buttons

A Button widget can be activated by the user to perform some action. Since you already know how to create

labels, learning how to create buttons will be pretty easy.

Introducing the Lazy Buttons Program

In the Lazy Buttons program, I create several buttons that don't do anything when activated. This is sort of like
installing a new light fixture before wiring it. The fixture is put into place, but not yet functional. Figure 10.8
illustrates the program.

Figure 10.8: You can click these lazy buttons all you want; they won't do a thing.

Setting Up the Program

First, I set up the program by importing Tkinter and creating a root window and a frame:

Lazy Buttons
Demonstrates creating buttons
Michael Dawson - 6/5/03

from Tkinter import *

create a root window
root = Tk()
root.title("Lazy Buttons")
root.geometry("200x85")
create a frame in the window to hold other widgets
app = Frame(root)
app.grid()

Creating Buttons

You create a Button widget by instantiating an object of the Button class. That's what I did in the next lines:

create a button in the frame

bttn1 = Button(app, text = "I do nothing!")
bttn1.grid()

These lines create a new button with the text I do nothing! The button's master is the frame I created

earlier, which means that the button is placed in the frame.

The Tkinter module offers flexibility when it comes to creating, defining, and altering widgets. You can

create a widget and set all of its options in one line (like I've been doing), or you can create a widget and set or
alter its options later. I'll show you what I mean with the next button. First, I create a new button:

create a second button in the frame
bttn2 = Button(app)
bttn2.grid()

Notice though that the only value I pass to the object's constructor is app, the button's master. So, all I've

done is add a blank button to the frame. However, I can fix that. I can modify a widget after I create it, using
the object's configure() method:

bttn2.configure(text = "Me too!")

This line sets the text option of the button to the string "Me too!", which puts the text Me too! on the

button.

You can use a widget's configure() method for any widget option (and any type of widget). You can even

use the method to change an option that you've already set.

Next, I create a third button:

create a third button in the frame
bttn3 = Button(app)
bttn3.grid()

Then, I set the button's text option, using a different interface:

bttn3["text"] = "Same here!"

I access the button's text option through a dictionary-like interface. I set the text option to the string "Same
here!", which puts the text Same here! on the button. When you set the value of an option using this type

of dictionary-style access, the key for the option is the name of the option as a string.

Entering the Root Window's Event Loop

As always, I invoke the root window's event loop to start up the GUI:

kick off the window's event loop
root.mainloop()

Creating a GUI Using a Class

As you've learned in other chapters, organizing your code into classes can make your programming life a lot
easier. It's often beneficial to write larger GUI programs by defining your own classes. So next, I show you how
to write a GUI program by organizing the code with a class.

Introducing the Lazy Buttons 2 Program

The Lazy Buttons 2 program is simply the Lazy Buttons program rewritten using a class. The program appears
exactly the same to the user, but behind the scenes I've done some restructuring. Figure 10.9 shows the ever-
so familiar program in action.

Figure 10.9: It's déjà vu all over again. The program looks the same as its predecessor even though there
are significant changes under the hood.

Importing the Tkinter Module

Though there are significant structural changes to the program, importing the GUI module is still the same:

Lazy Buttons 2
Demonstrates using a class with Tkinter
Michael Dawson - 6/5/03

from Tkinter import *

Defining the Application Class

Next, I create a new class, Application, based on Frame:

class Application(Frame):
 """ A GUI application with three buttons. """

Instead of instantiating a Frame object, I'll end up instantiating an Application object to hold all of the
buttons. This works since an Application object is just a specialized type of Frame object.

Defining a Constructor Method

Next, I define Application's constructor:

 def __init__(self, master):
 """ Initialize the Frame. """
 Frame.__init__(self, master)
 self.grid()
 self.create_widgets()

Since an Application object is just a specialized kind of Frame object, I initialize it through Frame's
constructor. I pass along the Application object's master, so it gets properly set as the master. Finally, I
invoke the Application object's create_widgets() method, which I define next.

Defining a Method to Create the Widgets

I define a method that creates all three buttons, create_widgets():

 def create_widgets(self):
 """ Create three buttons that do nothing. """
 # create first button
 self.bttn1 = Button(self, text = "I do nothing!")
 self.bttn1.grid()

 # create second button
 self.bttn2 = Button(self)
 self.bttn2.grid()
 self.bttn2.configure(text = "Me too!")

 # create third button
 self.bttn3 = Button(self)
 self.bttn3.grid()
 self.bttn3["text"] = "Same here!"

The code looks pretty similar to the code that creates the buttons in the original Lazy Buttons program. An
important difference is that bttn1, bttn2, and bttn3 are attributes of the Application object. Another
important difference is that I use self as the master for the buttons so that the Application object is their

master.

Creating the Application Object

In the main section of code, I create a root window and give it a title and a proper size:

main
root = Tk()
root.title("Lazy Buttons 2")
root.geometry("200x85")

Then, I instantiate an Application object with the root window as its master:

app = Application(root)

This code creates a Application object with the root window as its master. The Application object's
constructor invokes the object's create_widgets() method. This method then creates the three buttons,
with the Application object as their master.

Finally, I invoke the root window's event loop to kick off the GUI and keep it running:

root.mainloop()

Binding Widgets and Event Handlers

So far, the GUI programs you've seen don't do a whole lot. That's because there's no code associated with the
activation of their widgets. Again, these widgets are like light fixtures that have been installed, but not
connected to electrical wiring. Well, now it's time to get the electricity flowing; or in the case of GUI
programming, it's time to write event handlers and bind them with events.

Introducing the Click Counter Program

The Click Counter program has a button that does something: it displays the number of times the user has
clicked it. Technically, the button's event handler takes care of updating the click count and changing the text
on the button. Figure 10.10 shows off the program.

Figure 10.10: The button's event handler updates the number of times the button is clicked.

Setting Up the Program

As my traditional first step, I import the GUI module:

Click Counter
Demonstrates binding an event with an event handler
Michael Dawson - 6/6/03

from Tkinter import *

Next, I start the Application class definition:

class Application(Frame):
 """ GUI application which counts button clicks. """
 def __init__(self, master):
 """ Initialize the frame. """
 Frame.__init__(self, master)
 self.grid()
 self.bttn_clicks = 0 # the number of button clicks
 self.create_widget()

You've seen most of this code before. The new line is self.bttn_clicks = 0, which creates an object

attribute to keep track of the number of times the user clicks the button.

Binding the Event Handler

In the create_widget() method, I create a single button:

 def create_widget(self):
 """ Create button which displays number of clicks. """
 self.bttn = Button(self)
 self.bttn["text"]= "Total Clicks: 0"
 self.bttn["command"] = self.update_count
 self.bttn.grid()

I set the Button widget's command option to the update_count() method. As a result, when the user clicks
the button, the method gets invoked. Technically, what I've done is bind an event (the clicking of Button
widget) to an event handler (the update_count() method).

In general, you set a widget's command option to bind the activation of the widget with an event handler.

Creating the Event Handler

Next, I write the update_count() method, which handles the event of the button being clicked:

 def update_count(self):
 """ Increase click count and display new total. """
 self.bttn_clicks += 1
 self.bttn["text"] = "Total Clicks: "+ str(self.bttn_clicks)

This method increments the total number of button clicks and then changes the text of the button to reflect the
new total. That's all it takes to get a button to do something useful (or almost useful).

Wrapping Up the Program

The main part of the code should be pretty familiar to you by now:

main
root = Tk()
root.title("Click Counter")
root.geometry("200x50")

app = Application(root)

root.mainloop()

I create a root window and set its title and dimensions. Then I instantiate a new Application object with the

root window as its master. Lastly, I start up the root window's event loop to bring the GUI to life on the screen.

Using Text and Entry Widgets and the Grid Layout Manager

In GUI programming, there will be times where you'll want a user to enter some text. Other times, you may want to display
text to the user. For both of these occasions, you can use text-based widgets. I introduce you to two kinds. The Entry
widget is good for one line of text, while the Text widget is great for multiline blocks of text. You can read the contents of

either of these widget types to get user input. You can also insert text into them to provide the user with feedback.

Once you start throwing a bunch of widgets into a frame, you need a way to organize them. So far, I've used the Grid
layout manager, but in only the most limited way. The Grid layout manager offers you a lot more control over the way

your GUI looks. The manager lets you place widgets at specific locations by treating a frame as a grid.

Introducing the Longevity Program

The Longevity program reveals the secret to living to the ripe old age of 100, if the user enters the secret password (the
highly secure "secret"). The user enters the password in the text entry and then clicks the Submit button. If the password
is correct, the program displays the key to longevity in the text box. Figures 10.11 and 10.12 show off the program.

Figure 10.11: If the user fails to enter the correct password, the program politely refuses to divulge its secret.

Figure 10.12: Given the correct password, the program shares its invaluable knowledge to long life.

Setting Up the Program

I set up the program just like the last few:

Longevity
Demonstrates text and entry widgets, and the Grid layout manager
Michael Dawson - 6/7/03

from Tkinter import *

class Application(Frame):
 """ GUI application which can reveal the secret of longevity. """
 def __init__(self, master):
 """ Initialize the frame. """
 Frame.__init__(self, master)
 self.grid()
 self.create_widgets()

I import the Tkinter module and start to define the Application class. In the constructor method, I initialize the new
Application object, make sure it will be visible, and invoke the object's create_widgets() method.

Placing a Widget with the Grid Layout Manager

Next, I start the create_widgets() method and create a label that provides instructions to the user:

 def create_widgets(self):
 """ Create button, text, and entry widgets. """
 # create instruction label
 self.inst_lbl = Label(self, text = "Enter password for the secret of longevity")

So far, nothing new. But in the next line, I use the Grid layout manager to be specific about the placement of this label:

 self.inst_lbl.grid(row = 0, column = 0, columnspan = 2, sticky = W)

A widget object's grid() method can take values for many different parameters, but I only use four of them: row ,
column , columnspan , and sticky .

The row and column parameters take integers and define where an object is placed within its master widget. In this

program, you can imagine the frame in the root window as a grid, divided into rows and columns. At each row and column
inter-section is a cell, where you can place a widget. Figure 10.13 illustrates the placement of nine Button widgets, in

nine different cells, using row and column numbers.

Figure 10.13: Each button is located in a unique cell, based on a row and a column number.

For my Label widget, I pass 0 to row and 0 to column , which puts the label in the upper-left corner of the frame.

If a widget is very wide (like the long instruction Label widget I have in this program), you may want to allow the widget
to span more than one cell so that your other widgets are correctly spaced. The columnspan parameter lets you span a
wid get over more than one column. I pass 2 to this parameter to allow the long label to span two columns. This means

that the label takes up two cells, the one at row 0, column 0, and the other at row 0, column 1. (You can also use the
rowspan parameter to allow a widget to span more than one row.)

Even after you've established which cell (or cells) a widget occupies, you have the flexibility to justify the widget within the
cell (or cells) by using the parameter sticky , which takes directions as values, including N , S , E , and W . A widget is
moved to the quadrant of the cell (or cells) that corresponds to the direction. Since I pass W to sticky for the Label

object, the label is forced to the west (left). Another way to say this is that the label is left-justified in its cells.

Next, I create a label that appears in the next row, left-justified:

 # create label for password
 self.pw_lbl = Label(self, text = "Password: ")
 self.pw_lbl.grid(row = 1, column = 0, sticky = W)

Creating an Entry Widget

Next, I create a new type of widget, an Entry widget:

 # create entry widget to accept password
 self.pw_ent = Entry(self)

This code creates a text entry where the user can enter a password.

I position the Entry widget so that it's in the cell next to the password label:

 self.pw_ent.grid(row = 1, column = 1, sticky = W)

Then, I create a button that lets the user submit his or her password:

 # create submit button

 self.submit_bttn = Button(self, text = "Submit", command = self.reveal)

I bind the activation of the button with the reveal() method, which reveals the longevity secret, if the user has entered

the correct password.

I place the button in the next row, all the way to the left:

 self.submit_bttn.grid(row = 2, column = 0, sticky = W)

Creating a Text Widget

Next, I create a new type of widget, a Text widget:

 # create text widget to display message
 self.secret_txt = Text(self, width = 35, height = 5, wrap = WORD)

I pass values to width and height to set the dimensions of the text box. Then I pass a value to the parameter wrap ,
which determines how text in the box is wrapped. Possible values for the parameter are WORD , CHAR , and NONE . WORD ,
the value I use for this Text widget, wraps entire words when you reach the right edge of the text box. CHAR wraps

characters, meaning that when you get to the right edge of the text box, the next characters simply appears on the
following line. NONE means no wrapping. As a result, you can only write text on the first line of the text box.

Next, I set the text box so that it's on the next row and spans two columns:

 self.secret_txt.grid(row = 3, column = 0, columnspan = 2, sticky = W)

Getting and Inserting Text with Text-Based Widgets

Next, I write the reveal() method, which tests to see if the user has entered the correct password. If so, the method

displays the secret to a long life. Otherwise, the user is told that the password is incorrect.

The first thing I do is get the text in the Entry widget by invoking its get() method:

 def reveal(self):
 """ Display message based on password. """
 contents = self.pw_ent.get()

The get() method returns the text in the widget. Both Entry and Text objects have a get() method.

I check to see if the text is equal to "secret" . If so, I set message to the string describing the secret to living to 100.
Otherwise, I set message to the string that tells the user that he or she entered the wrong password.

 if contents == "secret":
 message = "Here's the secret to living to 100: live to 99 "\
 "and then be VERY careful."
 else:

 message = "That's not the correct password, so I can't share "\
 "the secret with you."

Now that I've got the string that I want to show to the user, I need to insert it into the Text widget. First, I delete any text
already in the Text widget by invoking its delete() method:

 self.secret_txt.delete(0.0, END)

The delete() method can delete text from text-based widgets. The method can take a single index, or a beginning and

an ending point. You pass floating-point numbers to represent a row and column number pair where the digits to the left
of the decimal point is the row number and the digits to the right of the decimal point is the column number. For example,
in the previous line of code, I pass 0.0 as the starting point, meaning that the method should delete text starting at row

0, column 0 (the absolute beginning) of the text box.

Tkinter provides several constants to help out with this type of method, such as END , which means the end of the text.
So, this previous line of code deletes every-thing from the first position in the text box to the end. Both Text and Entry
widgets have a delete() method.

Next, I insert the string I want to display into the Text widget:

 self.secret_txt.insert(0.0, message)

The insert() method can insert a string into a text-based widget. The method takes an insertion position and a string.
In the previous line of code, I pass 0.0 as the insertion position, meaning the method should start inserting at row 0,
column 0. I pass message as the second value, so that the appropriate message shows up in the text box. Both Text
and Entry widgets have an insert() method.

Wrapping Up the Program

To wrap up the program, I create a root window and set its title and dimensions. Then I create a new Application

object with the root window as its master. Finally, I begin the application by starting the window's event loop.

main
root = Tk()
root.title("Longevity")
root.geometry("250x150")

app = Application(root)

root.mainloop()

Using Check Buttons

Check buttons allow a user to select any number of choices from a group. While this gives the user a lot of
flexibility, it actually gives the programmer greater control by limiting to a specific list what the user can
choose.

Introducing the Movie Chooser Program

The Movie Chooser program lets the user choose his or her favorite movie types from a list of three: comedy,
drama, and romance. Since the program uses check buttons, the user can select as many (or as few) as he or
she wants. The program displays the results of the user's selections in a text box. Figure 10.14 shows off the
program.

Figure 10.14: The results of the user's selections show up in the text box.

Setting Up the Program

I set up the Movie Chooser program by importing Tkinter and starting my Application class definition:

Movie Chooser
Demonstrates check buttons
Michael Dawson - 6/8/03

from Tkinter import *
class Application(Frame):
 """ GUI Application for favorite movie types. """
 def __init__(self, master):
 Frame.__init__(self, master)
 self.grid()
 self.create_widgets()

Allowing a Widget's Master to Be Its Only Reference

Next, I create a label that describes the program:

 def create_widgets(self):
 """ Create widgets for movie type choices. """
 # create description label
 Label(self,
 text = "Choose your favorite movie types"
).grid(row = 0, column = 0, sticky = W)

There's one important difference between this label and others I've created: I don't assign the resulting Label

object to a variable. Normally, this would be a big mistake, rendering the object useless because it wouldn't be
connected to the program in any way. But with Tkinter, a Label object is connected to the program, like all

GUI elements, by its master. What this means is that if I know I won't need to directly access a widget, then I
don't need to assign the object to a variable. The main benefit of this approach is shorter, cleaner code.

So far, I've been pretty conservative, always assigning each new widget to a variable. But in this case, I know
that I'm not going to need to access this label, so I don't assign the Label object to a variable. Instead, I let its

master maintain the only reference to it.

Next, I create another label in much the same way:

 # create instruction label
 Label(self,
 text = "Select all that apply:"
).grid(row = 1, column = 0, sticky = W)

This label provides instructions, telling the user that he or she can select as many movie types as apply.

Creating Check Buttons

Next, I create the check buttons, one for each movie type. I first tackle the Comedy check button.

Every check button needs a special object associated with it that automatically reflects the check button's
status. The special object must be an instance of the BooleanVar class from the Tkinter module. So,
before I create the Comedy check button, I instantiate a BooleanVar object and assign it to a new object
attribute, likes_comedy:

 # create Comedy check button
 self.likes_comedy = BooleanVar()

IN THE REAL WORLD

A Boolean variable is a special kind of variable that can be only true or false. Programmers often call such
a variable simply a "Boolean." The term is always capitalized because it's derived from the name of the
English mathematician George Boole.

Next, I create the check button itself:

 Checkbutton(self,
 text = "Comedy",
 variable = self.likes_comedy,
 command = self.update_text
).grid(row = 2, column = 0, sticky = W)

This code creates a new check button with the text Comedy. By passing self.likes_comedy to the
parameter variable, I associate the check button's status (selected or unchecked) with the likes_comedy
attribute. By passing self.update_text() to the parameter command, I bind the activation of the check
button with the update_text() method. This means that whenever the user selects or clears the check
button, the update_text() method is invoked. Finally, I place the check button on the next row, all the way

to the left.

Notice that I don't assign the resulting Checkbutton object to a variable. This is fine, because what I really
care about is the status of the button, which I can access from the likes_comedy attribute.

I create the next two check buttons in the same way:

 # create Drama check button
 self.likes_drama = BooleanVar()
 Checkbutton(self,
 text = "Drama",
 variable = self.likes_drama,
 command = self.update_text
).grid(row = 3, column = 0, sticky = W)

 # create Romance check button
 self.likes_romance = BooleanVar()
 Checkbutton(self,
 text = "Romance",
 variable = self.likes_romance,
 command = self.update_text
).grid(row = 4, column = 0, sticky = W)

So, whenever the user selects or clears the Drama or Romance check buttons, the update_text() method
is invoked. And even though I don't assign the resulting Checkbutton objects to any variables, I can always
see the status of the Drama check button through the likes_drama attribute, and I can always see the
status of the Romance check button through the likes_romance attribute.

Finally, I create the text box that I use to show the results of the user's selections:

 # create text field to display results
 self.results_txt = Text(self, width = 40, height = 5, wrap = WORD)
 self.results_txt.grid(row = 5, column = 0, columnspan = 3)

Getting the Status of a Check Button

Next, I write the update_text() method, which updates the text box to reflect the check buttons the user

has selected:

 def update_text(self):
 """ Update text widget and display user's favorite movie types. """
 likes = ""

 if self.likes_comedy.get():
 likes += "You like comedic movies.\n"

 if self.likes_drama.get():
 likes += "You like dramatic movies.\n"

 if self.likes_romance.get():
 likes += "You like romantic movies."
 self.results_txt.delete(0.0, END)
 self.results_txt.insert(0.0, likes)

You can't access the value of a BooleanVar object directly. Instead, you must invoke the object's get()
method. In the previous code, I use the get() method of the BooleanVar object referenced by
likes_comedy to get the object's value. If the value evaluates to true, that means the Comedy check button
is selected, and I add the string "You like comedic movies.\n" to the string I'm building to display in

the text box. I perform similar operations based on the status of the Drama and Romance check buttons.
Finally, I delete all of the text in the text box and then insert the new string, likes, which I just built.

Wrapping Up the Program

I finish the program with the familiar main section. I create a root window and a new Application object with

the root window as its master. Then, I start the window's event loop.

main
root = Tk()
root.title("Movie Chooser")
app = Application(root)
root.mainloop()

Using Radio Buttons

Radio buttons are a lot like check buttons, except that radio buttons only allow one button in a group to be
selected at once. This is great if you want the user to make a single selection from a group of choices. Since
radio buttons have so much in common with check buttons, learning to use them is pretty straight-forward.

Introducing the Movie Chooser 2 Program

The Movie Chooser 2 program is like the Movie Chooser program. The user is presented with three different
movie types from which to select. The difference is that the Movie Chooser 2 program uses radio buttons
instead of check buttons so the user can select only one movie type. This is perfect since the program asks
the user for his or her favorite type of movie. Figure 10.15 shows off the program.

Figure 10.15: The user can select only a single movie type.

Setting Up the Program

I start the program by importing the Tkinter module:

Movie Chooser 2
Demonstrates radio buttons
Michael Dawson - 6/9/03

from Tkinter import *

Next, I write the Application class. I define its constructor, which initializes a new Application object:

class Application(Frame):
 """ GUI Application for favorite movie type. """

 def __init__(self, master):
 """ Initialize Frame. """
 Frame.__init__(self, master)
 self.grid()
 self.create_widgets()

Then, I create labels that give the user instructions:

 def create_widgets(self):
 """ Create widgets for movie type choices. """
 # create description label
 Label(self,
 text = "Choose your favorite type of movie"
).grid(row = 0, column = 0, sticky = W)
 # create instruction label
 Label(self,
 text = "Select one:"
).grid(row = 1, column = 0, sticky = W)

Creating Radio Buttons

Since only one radio button in a group can be selected at one time, there's no need for each radio button to
have its own status variable, as required for check buttons. Instead, a group of radio buttons share one,
special object that reflects which of the radio buttons is selected. This object must be an instance of the
StringVar class from the Tkinter module, which allows a string to be stored and retrieved. So, before I
create the radio buttons themselves, I create a single String-Var object for all of the radio buttons to share
and then I assign it to the attribute favorite:

 # create variable for single, favorite type of movie
 self.favorite = StringVar()

Next, I create the Comedy radio button:

 # create Comedy radio button
 Radiobutton(self,
 text = "Comedy",
 variable = self.favorite,
 value = "comedy.",
 command = self.update_text
).grid(row = 2, column = 0, sticky = W)

A radio button's variable option defines the StringVar associated with the radio button, while a radio
button's value option defines the string to be stored by the StringVar when the radio button is selected.
So, by setting this radio button's variable option to self.favorite and its value option to "comedy.",
I'm saying that when the Comedy radio button is selected, the StringVar referenced by self.favorite
should store the string "comedy."

Next, I create the other two radio buttons:

 # create Drama radio button
 Radiobutton(self,
 text = "Drama",
 variable = self.favorite,
 value = "drama.",
 command = self.update_text
).grid(row = 3, column = 0, sticky = W)

 # create Romance radio button
 Radiobutton(self,
 text = "Romance",
 variable = self.favorite,
 value = "romance.",
 command = self.update_text
).grid(row = 4, column = 0, sticky = W)

By setting the Drama radio button's variable option to self.favorite and its value option to
"drama.", I'm saying that when the Drama radio button is selected, the StringVar referenced by
self.favorite should store the string "drama."

And by setting the Romance radio button's variable option to self.favorite and its value option to
"romance.", I'm saying that when the Romance radio button is selected, the StringVar referenced by
self.favorite should store the string "romance."

Next, I create the text box to display the results of the user's selection:

 # create text field to display result
 self.results_txt = Text(self, width = 40, height = 5, wrap = WORD)
 self.results_txt.grid(row = 5, column = 0, columnspan = 3)

Getting a Value from a Group of Radio Buttons

Getting a value from a group of radio buttons is as simple as invoking the get() method of the StringVar

object that they all share:

 def update_text(self):
 """ Update text area and display user's favorite movie type. """
 message = "Your favorite type of movie is "
 message += self.favorite.get()

When the Comedy radio button is selected, self.favorite.get() returns "comedy."; when the Drama
radio button is selected, self.favorite.get() returns "drama."; and when the Romance radio button is
selected, self.favorite.get() returns "romance."

Next, I delete any text that may be in the text box and insert the string I just created, which declares the user's
favorite movie type:

 self.results_txt.delete(0.0, END)

 self.results_txt.insert(0.0, message)

Wrapping Up the Program

I wrap up the program by creating a root window and a new Application object. Then, I begin the root

window's event loop to start up the GUI.

main
root = Tk()
root.title("Movie Chooser 2")
app = Application(root)
root.mainloop()

Back to the Mad Lib Program

Now that you've seen a nice variety of widgets used in isolation, it's time to combine them in one, larger GUI. I
don't introduce any new concepts in the Mad Lib program, so I don't comment too much on the code.

Importing the Tkinter Module

As you probably know by now, you have to import the Tkinter module before you can use it:

Mad Lib
Create a story based on user input
Michael Dawson 6/10/03

from Tkinter import *

The Application Class's Constructor Method

Like all other Application class constructors before it, this one initializes the newly created Application
object and invokes its create_widgets() method:

class Application(Frame):
 """ GUI application that creates a story based on user input. """
 def __init__(self, master):
 """ Initialize Frame. """
 Frame.__init__(self, master)
 self.grid()
 self.create_widgets()

The Application Class's create_widgets() Method

This class creates all of the widgets in the GUI. The only new thing I do is create all three radio buttons in a loop,
by moving through a list of strings for each radio button's text and value options:

 def create_widgets(self):
 """ Create widgets to get story information and to display story. """
 # create instruction label
 Label(self,
 text = "Enter information for a new story"
).grid(row = 0, column = 0, columnspan = 2, sticky = W)

 # create a label and text entry for the name of a person
 Label(self,
 text = "Person: "
).grid(row = 1, column = 0, sticky = W)

 self.person_ent = Entry(self)
 self.person_ent.grid(row = 1, column = 1, sticky = W)

 # create a label and text entry for a plural noun
 Label(self,
 text = "Plural Noun:"
).grid(row = 2, column = 0, sticky = W)
 self.noun_ent = Entry(self)
 self.noun_ent.grid(row = 2, column = 1, sticky = W)

 # create a label and text entry for a verb
 Label(self,
 text = "Verb:"
).grid(row = 3, column = 0, sticky = W)
 self.verb_ent = Entry(self)
 self.verb_ent.grid(row = 3, column = 1, sticky = W)

 # create a label for adjectives check buttons
 Label(self,
 text = "Adjective(s):"
).grid(row = 4, column = 0, sticky = W)
 # create itchy check button
 self.is_itchy = BooleanVar()
 Checkbutton(self,
 text = "itchy",
 variable = self.is_itchy
).grid(row = 4, column = 1, sticky = W)

 # create joyous check button
 self.is_joyous = BooleanVar()
 Checkbutton(self,
 text = "joyous",
 variable = self.is_joyous
).grid(row = 4, column = 2, sticky = W)

 # create electric check button
 self.is_electric = BooleanVar()
 Checkbutton(self,
 text = "electric",
 variable = self.is_electric
).grid(row = 4, column = 3, sticky = W)

 # create a label for body parts radio buttons
 Label(self,
 text = "Body Part:"
).grid(row = 5, column = 0, sticky = W)

 # create variable for single body part
 self.body_part = StringVar()

 # create body part radio buttons
 body_parts = ["bellybutton", "big toe", "medulla oblongata"]

 column = 1
 for part in body_parts:
 Radiobutton(self,
 text = part,
 variable = self.body_part,
 value = part
).grid(row = 5, column = column, sticky = W)
 column += 1
 # create a submit button
 Button(self,
 text = "Click for story",
 command = self.tell_story
).grid(row = 6, column = 0, sticky = W)

 self.story_txt = Text(self, width = 75, height = 10, wrap = WORD)
 self.story_txt.grid(row = 7, column = 0, columnspan = 4)

The Application Class's tell_story() Method

In this method, I get the values the user has entered and use them to create the one, long string for the story.
Then, I delete any text in the text box and insert the new string to show the user the story he or she created.

 def tell_story(self):
 """ Fill text box with new story based on user input. """
 # get values from the GUI
 person = self.person_ent.get()
 noun = self.noun_ent.get()
 verb = self.verb_ent.get()
 adjectives = ""
 if self.is_itchy.get():
 adjectives += "itchy, "
 if self.is_joyous.get():
 adjectives += "joyous, "
 if self.is_electric.get():
 adjectives += "electric, "
 body_part = self.body_part.get()

 # create the story
 story = "The famous explorer "
 story += person
 story += "had nearly given up a life-long quest to find The Lost City of "
 story += noun.title()
 story += "when one day, the "
 story += noun
 story += "found "
 story += person + ". "
 story += "A strong, "
 story += adjectives
 story += "peculiar feeling overwhelmed the explorer. "
 story += "After all this time, the quest was finally over. A tear came to "

 story += person + "'s "
 story += body_part + ". "
 story += "And then, the "
 story += noun
 story += "promptly devoured "
 story += person + ". "
 story += "The moral of the story? Be careful what you "
 story += verb
 story += "for."

 # display the story
 self.story_txt.delete(0.0, END)
 self.story_txt.insert(0.0, story)

The Main Part of the Program

You've seen this code more than a few times before. I create a root window and an Application instance.
Then, I start the whole GUI up by invoking root' s mainloop() method.

main
root = Tk()
root.title("Mad Lib")
app = Application(root)
root.mainloop()

Summary

In this chapter, you learned about creating GUIs. First, you learned about event-driven programming, a new
way to think about writing code. Then, you learned about a number of GUI widgets, including frames, buttons,
text entries, text boxes, check buttons, and radio buttons. You saw how to customize widgets. You also saw
how to organize them in a frame, using the Grid layout manager. You learned how to bind events to event

handlers, so that widgets do something when activated. Finally, you saw how to put together a fairly complex
GUI to create a fun Mad Lib program.

Challenges
Write your own version of the Mad Lib program using a different arrangement of widgets.1.

Write a version of the Guess My Number game, the Chapter 3 project, using a GUI.2.

Create a GUI program, Order Up!, that presents the user with a simple restaurant menu, which lists
items and prices. Let the user select different items and then show the user the total bill.

3.

Chapter 11: Graphics: The Pizza Panic Game

 Download CD Content

Overview

The majority of programs you've seen so far have focused on presenting text. But today, people expect rich,
visual content from their programs, regardless of the application. So in this chapter, you'll learn how to use
graphics with the help of a few multimedia modules designed for writing games in Python. Specifically, you'll
learn to do the following:

Create a graphics window

Display text in a graphics window

Create and manipulate sprites

Test for collisions between graphics objects

Handle mouse input

Control a computer opponent

Introducing the Pizza Panic Game

The project for this chapter, the Pizza Panic game, involves a crazy chef, a deep-dish pan, and a bunch of
flying pizzas. Here's the scenario: After being pushed over the edge by one-too-many finicky diners, the chef
at the local pizza parlor has taken to the rooftop and is madly flinging pizzas to their doom. Of course, the
pizzas must be saved. Using the mouse, the player controls a pan that he or she maneuvers to catch the
falling pizzas. The player's score increases with every pizza caught. But once a pie hits the ground, the game
is over. Figures 11.1 and 11.2 show the game in action.

Figure 11.1: The player must catch the falling pizzas.

Figure 11.2: Once a pizza gets by the player, the game is over.

Introducing the Pygame and LiveWires Packages

pygame and livewires are sets of modules (called packages) that give Python programmers access to

a wide range of multimedia classes. With these classes, you can create programs with graphics, sound
effects, music, and animation. You can even play back MPEG movies. The packages also allow input from a
variety of devices, including mice, keyboards, joysticks, and trackballs.

pygame is the secret weapon in your media arsenal. Written by Pete Shinners, the package allows you to

write impressive, multimedia programs in Python. But because the package is so powerful, it can be a bit
overwhelming for the new programmer.

 livewires was designed specifically to take advantage of the power of pygame, while reducing the

complexity for the programmer. Written by a group of educators in the United Kingdom, livewires is a
pygame wrapper (code that provides a simpler interface to other programming code). And even though I won't
directly access pygame, it will be there, working hard behind the scenes.

IN THE REAL WORLD

Software wrappers are an important tool in the world of professional programming and can dramatically
cut down on the amount of development time for a project. Wrappers exist for different programming
areas, including graphics, database management, and networking, to name just a few.

You need to install both pygame and livewires before you can run the programs presented in this

chapter. Fortunately, Windows versions of both are included on the CD-ROM that came with this book. Just
follow the installation instructions that accompany the packages.

Over the next two chapters, you'll gain a good understanding of the livewires package. In addition, its
documentation is included in Appendix A. If you want to learn more about pygame, visit its web site at
http://www.pygame.org.

TRAP Although you're welcome to visit the web site of the LiveWires organization at

http://www.livewires.org.uk, be aware that the livewires package used in this book

is a modified version of the package that LiveWires created.

http://www.pygame.org
http://www.livewires.org.uk

Creating a Graphics Window

Before you can display any graphics, you have to first create a graphics window. Once you've created the
window, you have your blank canvas on which to display text and images.

Introducing the New Graphics Window Program

Creating a graphics window with the livewires package is a snap. The New Graphics Window program

creates an empty graphics window in just a few lines of code. Figure 11.3 shows the results of the program.

Figure 11.3: My first graphics window. Not much, but it's mine.

Importing the games Module

The livewires package contains several important modules, including games, which contains a group of
key classes for game programming. You can import a specific module of a package by using the from
statement. To import a module, use from, followed by a package name, followed by import, followed by a

module name (or a list of module names separated by commas).

The first thing I do in the program is import the games module of the livewires package:

New Graphics Window
Demonstrates creating a graphics window
Michael Dawson 5/9/03

from livewires import games

As a result of this code, I can use games like any other module I import. To get an overview of what the
games module is all about, check out Table 11.1, which lists the most commonly used games classes.

Table 11.1: COMMONLY USED games MODULE CLASSES

Class Description of Class Object

Screen Provides a region on which graphics objects may exist, move, and interact.

Text A graphics object for text displayed on a Screen object.

Message A graphics object that is a special kind of Text object that disappears after a set period

of time.

Sprite A graphics object for images that can be displayed on a Screen object.

Defining Global Constants

Next, I define two global constants:

SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480

These represent the width and height of the new graphics window in pixels—a single point in a graphics area.

Creating a Screen Object

Next, I start a main section and create the graphics screen:

main
my_screen = games.Screen(SCREEN_WIDTH, SCREEN_HEIGHT)

This causes a graphics window, 640 pixels wide by 480 pixels high, to spring into existence and be displayed.
The new Screen object is assigned to my_screen.

When you create a Screen object, you may pass values of width and height; otherwise, their respective
default values of 640 and 480 are used. In this case, I could have written my_screen = games.screen()
and achieved exactly the same results. It's also important to note that you can have only one active Screen

object at a time. If you try to create a second, you'll raise an exception.

Though not an exhaustive list, Table 11.2 describes some of the most useful Screen methods.

Table 11.2: USEFUL Screen METHODS

Method Description

set_background(image) Sets the background of a Screen object to image object image.

mouse_pos() Returns the position of the mouse pointer on a Screen object.

mouse_visible(on) Sets the mouse pointer to visible or invisible. on can be True or
False.

Method Description

mainlooop([fps]) Starts a loop that draws all of the graphics objects associated with
the Screen object. Takes an optional argument, fps, the number of
frames per second to update the Screen object. The default value is
50.

all_objects() Returns a list of all objects associated with the Screen object.

clear() Destroys all objects associated with the Screen object.

quit() Stops mainloop() and destroys the Screen object and all objects

associated with it.

HINT All of these methods are important, but don't bother trying to memorize them. The table is just
meant to give you an overview of what you can do with a Screen object.

Invoking a Screen Object's mainloop() Method

The final line in the program is

my_screen.mainloop()

This kicks off the Screen object's event loop, which updates the graphics window, redrawing every graphics

object 50 times per second.

TRAP Just as with a program that use Tkinter to create a new window, you shouldn't run a
 livewires program from IDLE. Instead, run the program directly, by double-clicking the

program's icon in Windows, for example.

mainlooop([fps]) Starts a loop that draws all of the graphics objects associated with
the Screen object. Takes an optional argument, fps, the number of
frames per second to update the Screen object. The default value is
50.

all_objects() Returns a list of all objects associated with the Screen object.

clear() Destroys all objects associated with the Screen object.

quit() Stops mainloop() and destroys the Screen object and all objects

associated with it.

HINT All of these methods are important, but don't bother trying to memorize them. The table is just
meant to give you an overview of what you can do with a Screen object.

Invoking a Screen Object's mainloop() Method

The final line in the program is

my_screen.mainloop()

This kicks off the Screen object's event loop, which updates the graphics window, redrawing every graphics

object 50 times per second.

TRAP Just as with a program that use Tkinter to create a new window, you shouldn't run a
 livewires program from IDLE. Instead, run the program directly, by double-clicking the

program's icon in Windows, for example.

Setting a Background Image

A blank screen is all well and good, if your goal is to create the world's most boring program. Fortunately, the
Screen class has a method to set a background image.

Introducing the Background Image Program

The Background Image program is just a modification of the New Graphics Window program. I add only two
lines of code to create a graphics window with a background image. By taking advantage of Screen's

background-setting method the program produces the window shown in Figure 11.4.

Figure 11.4: By using the set_background() method, a background image can be applied to a
Screen object.

To create the Background Image program, I add two lines to the New Graphics Window program, just before
invoking mainloop().

Loading an Image

Before you can do anything with an image, like set it as the background of a graphics screen, you have to load
the image into memory to create an image object. I load an image by adding the following line after right after I
create the graphics screen:

wall_image = games.load_image("wall.jpg", transparent = False)

This calls the games load_image() function, loads the image stored in the file wall.jpg into memory,
and assigns the resulting image object to wall_image.

TRAP Make sure that any file you want your Python program to access is associated with the correct path
information, as you learned in Chapter 7, in the section "Opening and Closing a Text File." The
simplest file management solution, and the one I use here, is to store image files in the same folder
with the program that loads them. If you follow this method, you won't need to worry about path
information at all.

The load_image() function takes two arguments: a string for the file name of the image and True or False
for transparent. I'll go over exactly what transparent means a bit later in this chapter. For now, just
remember this rule: Always load a background image with transparent = False.

You'll notice that I load a JPEG image for the background in this program. However, you're not restricted to
JPEGs when using the load_image() function. It works just as well with many other image file types,

including: BMP, GIF, PNG, PCX, and TGA.

Setting the Background

In order to set an image object as the background of a Screen object, you need to invoke the Screen
object's set_background() method, so I add the following line right after I load the image:

my_screen.set_background(wall_image)

This sets the background of my_screen to the image object referenced by wall_image. You can use this
method with any Screen object and image object.

When the program encounters mainloop(), it keeps the graphics window open, with its new background

image, for all to see.

Understanding the Graphics Coordinate System

So far, I've created several graphics screens, each time with a width of 640 and a height of 480, but I haven't
said much about them beyond that. So I want to take a closer look at the screen and its coordinate system.

You can think of a graphics screen as a grid, 640 columns across by 480 rows down. Each intersection of a
column and a row is a location on the screen, a single point or pixel. When you talk about a specific point on
the screen, you give two coordinates, an x, which represents the column, and a y, which represents the row.
You start counting coordinates from the upper-left corner of the screen, so the upper-leftmost point is where
the x-coordinate is 0 and the y-coordinate is 0, which you write as the pair (0,0). As you move to the right, the
x values increase. As you move down the screen, the y values increase. That makes the point in the lower-
right corner (639,479). Figure 11.5 gives a visual representation of the graphics screen coordinate system.

Figure 11.5: You specify points on a graphics screen with x- and y-coordinate pairs.

You can place graphics objects, like the image of a pizza or the red-colored text "Game Over," on the screen
using the coordinate system. The center of a graphics object is placed at the specified coordinates. You'll see
exactly how this works in the next chapter program.

Displaying Text

Whether you need to show off the numbers for a sales presentation or the number of aliens obliterated, there
are times where you'll want to display text on a graphics screen. The games module contains a class that
allows you to do just that, aptly named Text.

Introducing the Big Score Program

Displaying text on a graphics window is just a matter of creating an object of the Text class. In the Big Score

program, I add some text to the graphics window to display a score in the upper-right corner of the screen, just
like in many classic arcade games. Figure 11.6 shows the results.

Figure 11.6: The impressively high score is displayed after a Text object is instantiated.

This Big Score program builds on the Background Image program. I add just one line of code and modify
another.

Importing the color Module

The livewires package contains another module, color, which has a set of constants that represent
different colors. These colors can be applied to certain graphics objects, including any Text or Message

object. For a complete list of predefined colors, see the livewires documentation in Appendix A.

To choose from a group of possible colors, I import the color module by modifying the import line like so:

from livewires import games, color

Now, both the color and games modules are loaded from the livewires package.

Creating a Text Object

A Text object represents text on a Screen object. A Text object has attributes for x- and y-coordinates, a

font size, a color, and some text too, of course.

In the Big Score program, I use a Text object to represent a game score. Just before I invoke the Screen
object's mainloop() method, I create a Text object through the following code:

games.Text(screen = my_screen, x = 500, y = 30,
 text = :Score: 1756521",
 size = 50, color = color.black)

The constructor method for a Text object requires the following values: a Screen object, x- and y-
coordinates, a string, a font size, and a color, as shown. I pass my_screen to screen since that's the active
graphics window. Next I pass 500 to x and 30 to y, placing the center of the object at the coordinates
(500,30). This puts the text in the upper-right corner of the graphics window. I pass the string "Score:
1756521" to text so that those characters will be displayed. Then I pass 50 to size so the font is nice and
big, to match the score. Finally, I pass color the constant color.black from the color module to make

the text, you guessed it, black.

You may have noticed that I don't assign the new Text object to a variable. That's okay since the the Screen
object, my_screen, is designed to keep track of all of the graphics objects (just as a root window in a
Tkinter program holds references to all of its widgets).

Once my_screen's mainloop() method is invoked, the graphics window is displayed along with the new
Text object.

Displaying a Message

There may be times when you'll want to display some text on the screen for only a brief period of time. You
may want to show a message saying "All records have been updated" or "Attack Wave Seven Complete!" The
games class Message is perfect for creating temporary messages just like these.

Introducing the You Won Program

The You Won program is a modified version of the Big Score program. In fact, I instantiate just one Message
object right before invoking the Screen object's main-loop() method to display the text "You won!" in big,

red letters. The message is displayed for about five seconds and then the program ends. Figure 11.7
illustrates the program.

Figure 11.7: Ah, the thrill of victory.

Creating a Message Object

Messages are created from the games class Message. A message is a special kind of Text object that

destroys itself after a set period of time. A message can also specify a method or a function to be executed
after the object destroys itself.

The constructor method for Message takes all of the values you saw with Text, but adds two more:
lifetime and after_death. lifetime takes an integer value that represents how long the message
should be displayed, measured in mainloop() cycles. after_death can be passed a method or function to
be executed after the Message object destroys itself. The default value for after_death is None, so a value

isn't required.

I create this Message object right before I invoke my_screen's mainloop() method with the following

code:

games.Message(screen = my_screen, x = SCREEN_WIDTH/2, y = SCREEN_HEIGHT/2,

 text = "You won!", size = 100, color = color.red,
 lifetime = 250, after_death = my_screen.quit)

This creates the message "You Won!" in big, red letters at the center of the screen for about five seconds,
after which the program ends.

This code instantiates a new Message object with a lifetime attribute set to 250. This means that the
object will live for about five seconds, because mainloop() runs at 50 frames per second. After the five
seconds, my_screen.quit() is called, since that's what I pass after_death. At that point, the Screen

object and all of its associated objects are destroyed and the program ends.

Understanding the Games_Object Class

The games module has a foundational class called Games_Object upon which all classes that represent
graphics objects are based. The classes Text, Message, and Sprite are all (directly or indirectly) derived
from Games_Object. This means that those three classes all inherit a long list of important methods for

manipulating graphics objects and extracting information about an object's location on a graphics screen.
Table 11.3 lists some useful Games_Object methods that all three classes inherit.

Table 11.3: USEFUL Games_Object METHODS

Method Description

get_pos() Returns the object's x-coordinate and y-coordinate.

get_xpos() Returns the object's x-coordinate.

get_ypos() Returns the object's y-coordinate.

get_left() Returns the x-coordinate of the object's left edge.

get_right() Returns the x-coordinate of the object's right edge.

get_top() Returns the y-coordinate of the object's top edge.

get_bottom() Returns the y-coordinate of the object's bottom edge.

get_velocity() Returns the object's x and y velocity components as a two-element
tuple.

move_to(x,y) Moves the object to the new coordinates (x,y).

set_left(x) Moves the object horizontally so that its left edge is at the new
coordinate x.

set_right(x) Moves the object horizontally so that its right edge is at the new
coordinate x.

set_top(y) Moves the object vertically so that its top edge is at the new
coordinate y.

set_bottom(y) Moves the object vertically so that its bottom edge is at the new
coordinate y.

set_velocity(dx, dy) Sets the object's x velocity to dx and its y velocity to dy.

overlapping_objects() Returns a list of objects that overlap the object.

destroy() Removes all of the associated Screen object's references to an

object.

HINT In the course of writing a game, you'll never directly instantiate an object of Games_Object. The

class is meant only as a base for other classes. This type of class is called an abstract class.

Again, there's no need to try to remember all of the methods described in Table 11.3. Just know they're
available through all Text, Message, and Sprite objects.

Displaying a Sprite

Background images and text can spruce up a plain graphics window. But even a stunning background is still
just a static image. A graphics screen with only a background image is like an empty stage. What you need
are some actors. Enter the sprite.

A sprite is a special, graphics object with a graphics image that can make programs really come alive. Sprites
are used in games, entertainment software, presentations, and all over the Web. In fact, you've already seen
examples of sprites in the Pizza Panic game. The crazy chef, pan, and pizzas are all sprites.

While it would be cool to see a bunch of sprites flying around and crashing into each other, I start with the first
step: displaying a single, nonmoving sprite.

IN THE REAL WORLD

Sprites aren't just for games. There are plenty of places in non-entertainment software where they're used
. . . or misused. In fact, you probably know the most infamous sprite in application software history, Clippy
the Office Assistant, the animated paperclip meant to give helpful suggestions in Microsoft Office.
However, many people found Clippy obtrusive and irritating. One major online publication even ran an
article entitled "Kill Clippy!" Well, Microsoft finally saw the light. Starting in Office XP, Clippy is no longer
installed by default. A user must request him (and if a user requests him, he or she deserves him). So,
while graphics can make a program more interesting, remember: Use your sprite powers for good instead
of evil.

Introducing the Pizza Sprite Program

In the Pizza Sprite program, I create a graphics window and set a background image. This time, I use the
background image from the Pizza Panic game. Then I create a new class based on Sprite and instantiate an

object of this new class using the image of a pizza. Figure 11.8 shows the results of the program.

Figure 11.8: The pizza image is not part of the background, but an independent object based on the

Sprite class.

Setting Up the Program

I start the program just as before, by importing the games module and setting global constants for the graphics

screen's height and width:

Pizza Sprite
Demonstrates creating a sprite
Michael Dawson 5/9/03

from livewires import games

SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480

Creating the Pizza Class

Next, I create a new class, Pizza, based on Sprite:

class Pizza(games.Sprite):
 """ A pizza sprite. """
 def __init__(self, screen, x, y, image):
 """ Initialize pizza object. """
 self.init_sprite(screen = screen, x = x, y = y, image = image)

The only thing I do in the constructor method is invoke the Pizza object's init_sprite() method to
initialize the sprite. You must invoke a sprite object's init_sprite() method every time you create one.
You must supply init_sprite() with the Screen object the sprite will be associated with, x- and y-

coordinates, and an image object for the graphics image of the sprite.

Setting Up the Screen

Next, I set up the graphics screen, just as before:

main
my_screen = games.Screen(SCREEN_WIDTH, SCREEN_HEIGHT)

wall_image = games.load_image("wall.jpg", transparent = False)
my_screen.set_background(wall_image)

First, I create a Screen object. Then I load the image of the brick wall and set it as the background.

Loading an Image for a Sprite

In order to create a sprite, you first need to load an image into memory to create an image object, like so:

pizza_image = games.load_image("pizza.bmp")

However, you'll notice one small difference from the way I load a background image. This time, when loading
an image for a sprite, I did not include a value for transparent. The default value is True, so the image is

loaded with transparency on.

When an image is loaded with transparency on, it's displayed on a graphics screen so that the background
image shows through its transparent parts. This is great for irregular sprites that aren't perfect rectangles and
sprites with "holes" in them, like, say, a Swiss cheese sprite. The parts of an image that are transparent are
defined by their color.

If an image is loaded with transparency on, then the color of the point at the upper-left corner of the image, its
(0,0) coordinate, is set as its transparent color. What this means is that all parts of the image that are this
transparent color will allow the background image of the screen to show through. Figure 11.9 shows a Swiss
cheese sprite on a solid, white background, ready to take advantage of transparency.

Figure 11.9: A cheesy sprite, drawn on a solid-color background to take advantage of transparency.

If I load this Swiss cheese image with transparency on, every part that is pure white (the color taken from the
pixel at the sprite's (0,0) coordinate) will be transparent when the sprite is displayed on a graphics window.
The background image will show through these transparent parts. Figure 11.10 shows how the image looks
when loaded with transparency on and off.

Figure 11.10: On the left, the image is loaded with transparency on. On the right, the same image is
loaded with transparency off.

As a general rule, you'll want to create your sprite image files on a solid color that is not used in any other part
of the image. This transparent color must of course appear at the upper-left corner of the image, its (0,0)
coordinate. Then, when the image is loaded with transparency on, it will allow the background to show through
in all the right places.

TRAP Make sure your sprite image doesn't also contain the color you're using for transparency.
Otherwise, those parts of the sprite will become transparent too, making your sprite look like it has
small holes or tears in it as the background image of the graphics window shows through.

Creating a Sprite

Next, I create a pizza sprite:

Pizza(screen = my_screen,
 x = SCREEN_WIDTH/2, y = SCREEN_HEIGHT/2,
 image = pizza_image)

A new instance of the Pizza class is created, with x- and y-coordinates that put the sprite right in the middle

of the screen. That's all it takes.

Wrapping Up

Finally, I end the program by invoking mainloop():

my_screen.mainloop()

In addition to keeping the graphics window open, mainloop() now draws the sprite onto the background.

TRICK You don't need to be an artist to create graphics for your games. As you see in this chapter, I
make up for my utter lack of artistic ability with a modern piece of technology: my digital camera. If
you have access to a digital camera, you can create some great images for your projects. In fact,
that's how I created all of the graphics for the Pizza Panic game. The brick wall is the back of a
friend's house. For the pizza, I ordered delivery one night. And the chef is my brave, brave friend
Dave.

While this is a great technique, an important thing to remember is that if you take a picture of a
person or object, you don't necessarily own the image. Obviously some things are trademarked or
copyrighted. But using a digital camera is a great way to capture generic images while infusing
your programs with a unique, photorealistic style.

Moving Sprites

Moving images are the essence of most games, and most forms of entertainment for that matter. With sprites,
going from stationary to moving is easy. Sprite objects have additional attributes and methods that allow

them to move around a graphics screen.

Introducing the Falling Pizza Program

According to the latest research, pizza doesn't float, it falls. So I wrote the Falling Pizza program. This new
program is a modification of the Pizza Sprite program. In this program, the pizza falls down the screen. All I
need to do is change a few lines of code to get the pizza to move. That's the power of sprites. Figure 11.11
illustrates the program.

Figure 11.11: The pizza falls down the screen in the direction of the arrow.

Modifying the Pizza Class

First, I modify the Pizza class from the Pizza Sprite program:

class Pizza(games.Sprite):
 """ A falling pizza. """
 def __init__(self, screen, x, y, image, dx, dy):
 """ Initialize pizza object. """
 self.init_sprite(screen = screen, x = x, y = y,
 image = image, dx = dx, dy = dy)

The class doesn't look all that different. When I invoke the init_sprite() method for a newly created
Pizza object, I pass optional values to the parameters dx and dy. Every object based on Games_Object
has dx and dy attributes that represent the object's velocity along the x and y axes respectively. ("d," by the
way, stands for "delta," which means a change.) So, dx is the change in the object's x attribute and dy is the

change in the object's y value each time the Screen object is updated by mainloop(). A positive value for
dx moves the object to the right, while a negative value moves it to the left. A positive value for dy moves the

object down, while a negative value moves it up.

Back in the Pizza Sprite program, I didn't pass any values to the init_sprite() method for the dx or dy.
Although the sprite in that program did have these dx and dy attributes, they were both assigned their default
value of 0 by the init_sprite() method.

Passing Values to dx and dy

Next, I modify the code that creates a new Pizza object in the main part of the program by providing
additional values for dx and dy to the constructor method:

Pizza(screen = my_screen, x = SCREEN_WIDTH/2, y = SCREEN_HEIGHT/2,
 image = pizza_image, dx = 0, dy =1)

I want the pizza to fall down the screen so I pass 1 to dy. Since I don't want any vertical movement, I pass 0
to dx. As a result, every time the graphics window is updated by mainloop(), the Pizza object's y value is
increased by 1, moving it down the screen. It's falling!

Dealing with Screen Boundaries

If you watch the Falling Pizza program run for any length of time, you may notice that once the pizza hits the
ground, it keeps going. In fact, it keeps falling, appearing to go below the graphics window and out of sight.

Whenever you set a sprite in motion, you need to create a mechanism to deal with the graphics window's
boundaries. That is, you need to tell your class what to do when one of its objects reaches the edge of the
screen. You have a few choices. A moving sprite could simply stop when it reaches the edge of the screen. It
could die in, say, a fiery explosion. It could bounce, like a giant rubber ball. It could even wrap around the
screen so that just as it disappears off one edge, it reappears on the opposite. What seems to make the most
sense for a falling pizza? Bouncing of course.

The Bouncing Pizza Program

When I say that a sprite "bounces" off the edges of the graphics window, I mean that when it reaches a screen
boundary, it should reverse the velocity component that was moving it toward that boundary. So, if the
bouncing pizza sprite reaches the top or bottom screen edge, it should reverse its dy attribute. When it
reaches the sides of the screen, it should reverse its dx. Figure 11.12 illustrates the Bouncing Pizza program.

Figure 11.12: Though you can't tell from the screen shot, the pizza bounces around, following the path of
the arrow.

To create the Bouncing Pizza program, I modify the Falling Pizza program by adding one method to the
Pizza class.

Writing the moved() Method

I need to add just a single method to the Pizza class to turn a falling pizza into a bouncing one. Every time
the graphics window is updated by a Screen object's mainloop() method, a Games_Object's moved()
method is automatically invoked. So, by creating a moved() method in Pizza, I get the perfect place to put

code to handle screen boundary checking.

 def moved(self):
 """ Reverse a velocity component if edge of screen reached. """
 dx, dy = self.get_velocity()
 if self.get_right() > SCREEN_WIDTH or self.get_left() < 0:
 self.set_velocity(-dx, dy)
 if self.get_bottom() > SCREEN_HEIGHT or self.get_top() < 0:
 self.set_velocity(dx, -dy)

First, I retrieve the current velocity of the Pizza object by invoking its get_velocity() method, which
returns the values of an object's dx and dy attributes. Next, I check to see if the sprite is about to go beyond

the screen limits in any direction. If so, I reverse the responsible velocity by invoking the object's
set_velocity() method, which takes two arguments and sets an object's dx and dy attributes.

If the x-coordinate of the sprite's right edge is greater than the screen width, then the pizza is about to go off
the right edge into oblivion. If the x-coordinate of the sprite's left edge is less than 0, then the pizza is headed
off the screen to the left. In either case, I simply reverse dx, the pizza's horizontal velocity.

If the y-coordinate of the sprite's bottom edge is greater than the screen height, then the pizza is about to fall
through the bottom of the screen. If the y-coordinate of the sprite's top edge is less than 0, then the pizza is
about to float through the top of the screen. In either case, I reverse dy, the pizza's vertical velocity.

Creating the Bouncing Pizza Object

I don't need to do anything else to the program for this bouncing behavior to work. But to make things more
interesting, I give the sprite some velocity in the x direction, so that it will bounce all over the screen. I pass dx
a value of 1 when I create the sprite, like so:

Pizza(screen = my_screen, x = SCREEN_WIDTH/2, y = SCREEN_HEIGHT/2,
 image = pizza_image, dx = 1, dy =1)

And that's it. I now have a bouncing pizza!

Handling Mouse Input

Although you've seen a lot of what the livewires package has to offer, you haven't seen the main

ingredient of interactivity: user input. One of the most common ways to get input from a user is through the

mouse. livewires offers a simple Screen method to do just that.

Introducing the Moving Pan Program

The Screen class has a method that makes reading the mouse position on the graphics screen a piece of

cake. With this method, I create the Moving Pan program that allows a user to drag a pan sprite across the
screen as he or she moves the mouse. The results of the program are displayed in Figure 11.13.

Figure 11.13: The pan sprite follows the mouse around the graphics screen.

Setting Up the Program

The following code should look familiar:

Moving Pan
Demonstrates mouse input
Michael Dawson 5/11/03

from livewires import games

SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480

As before, I import games and establish global constants for the screen's width and height.

Creating the Pan Class

Next, I create Pan for the pan sprite:

class Pan(games.Sprite):
 """ A pan. Controlled by the mouse. """
 def __init__(self, screen, x, y, image):
 """ Initialize pan object. """
 self.init_sprite(screen = screen, x = x, y = y, image = image)

 def moved(self):
 """" Move pan to mouse position. """
 x, y = self.screen.mouse_pos()
 self.move_to(x,y)

Notice that I omit dx and dy when I invoke the object's init_sprite() method. Since the pan sprite won't
have any sort of velocity, I'll let the two attributes each get their default value of 0.

In the moved() method, I invoke the Screen object's mouse_pos() method. The method returns the x- and
y-coordinates of the mouse pointer on the graphics screen, which I assign to x and y. Then, I invoke the Pan
object's move_to() method with x and y as arguments, which moves the pan to the location of the mouse

pointer.

Writing the Main Program

The rest of the program is the familiar main section:

main
my_screen = games.Screen(SCREEN_WIDTH, SCREEN_HEIGHT)

wall_image = games.load_image("wall.jpg", transparent = False)
my_screen.set_background(wall_image)

pan_image = games.load_image("pan.bmp")
Pan(screen = my_screen,
 x = SCREEN_WIDTH/2, y = SCREEN_HEIGHT/2,
 image = pan_image)

my_screen.mouse_visible(False)

my_screen.mainloop()

Setting up the screen and loading the brick wall background is exactly as before. Next, I load a pan image and
create the Pan object. Then I invoke the Screen method mouse_visible() and set the mouse pointer to
invisible. As always, I kick everything off by invoking the Screen object's mainloop() method.

Detecting Collisions

In most games, when two things collide, there's a clear result. It can be as simple as a 2-D character running
into a boundary that won't let him pass, or as spectacular as a 3-D scene where an asteroid tears through the
hull of a massive mother ship. Either way, there's a need to detect when objects collide.

Introducing the Slippery Pizza Program

The Slippery Pizza program is an extension of the Moving Pan program. In the Slippery Pizza program, the
user controls a pan with the mouse, just like in the Moving Pan program. But this time, there's a pizza sprite on
the screen. The user can move the pan toward the pizza, but as soon as he or she reaches it, the slippery
pizza moves to a new, random screen location. Figures 11.14 and 11.15 show the program in action.

Figure 11.14: The player almost reaches the pizza.

Figure 11.15: The slippery pizza gets away again.

Setting Up the Program

The initial code is taken from the Moving Pan program, with one minor addition:

Slippery Pizza Program
Demonstrates testing for sprite collisions
Michael Dawson 5/12/03

import random
from livewires import games

SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480

The one new thing I do is import our old friend the random module. This allows me to generate a new, random

location for the pizza sprite after the collision.

Creating the Pan Class

I create a new Pan class by adding some code for the collision detection:

class Pan(games.Sprite):
 """ A pan. Controlled by the mouse. """
 def __init__(self, screen, x, y, image):
 self.init_sprite(screen = screen, x = x, y = y, image = image)
 def moved(self):
 """ Move to mouse position. """
 x, y = self.screen.mouse_pos()
 self.move_to(x,y)
 self.check_collide()

 def check_collide(self):
 """ Check for collision with pizza. """
 if self.overlapping_objects():
 pizza = self.overlapping_objects()[0]
 pizza.handle_collide()

In the last line of moved(), I invoke the Pan method check_collide(). The check_collide() method
invokes the Pan object's overlapping_objects() method, which returns a list of all of the objects that
overlap with it. If there are any objects in the list, the first element of the list (which will be the Pizza object,
since it's the only other object on the graphics screen) is assigned to pizza. Finally, the Pizza object's
handle_collide() method is invoked so the object can react to the collision.

Creating the Pizza Class

Next, I create a new Pizza class:

class Pizza(games.Sprite):
 """ A slippery pizza. """
 def __init__(self, screen, x, y, image):
 self.init_sprite(screen = screen, x = x, y = y, image = image)

 def handle_collide(self):
 """ Move to a random screen location. """
 x = random.randrange(SCREEN_WIDTH)
 y = random.randrange(SCREEN_HEIGHT)
 self.move_to(x,y)

The Pizza class constructor method is the same as in the Pizza Sprite program. However, I add the
handle_collide() method, which generates random screen coordinates, (x,y), and moves the Pizza
object to this new location. This method is invoked by the Pan object when it collides with the Pizza object.

Writing the Main Program

Here's the main section of the program:

main
my_screen = games.Screen(SCREEN_WIDTH, SCREEN_HEIGHT)

wall_image = games.load_image("wall.jpg", transparent = False)
my_screen.set_background(wall_image)

x = random.randrange(SCREEN_WIDTH)
y = random.randrange(SCREEN_HEIGHT)
pizza_image = games.load_image("pizza.bmp")
Pizza(screen = my_screen, x = x, y = y, image = pizza_image)

pan_image = games.load_image("pan.bmp")
Pan(screen = my_screen,
 x = SCREEN_WIDTH/2, y = SCREEN_HEIGHT/2,
 image = pan_image)

my_screen.mouse_visible(False)

my_screen.mainloop()

First, I initialize the Screen object and load a background, like always. Next, I create two objects, a Pizza
object and a Pan object. I generate a random set of screen coordinates for the Pizza object and place the
Pan object in the middle of the screen. Then, I set the mouse pointer to invisible. Finally, I kick everything off
with my_screen.mainloop().

Back to the Pizza Panic Game

Now that you've gotten a taste of what the livewires multimedia package can do, it's time to create the Pizza Panic

game introduced at the beginning of the chapter. Much of the program for the game can be taken directly from the example
programs. However, I'll also introduce a few new concepts as I put the game together.

Setting Up the Program

As in all of the programs in this chapter, I begin by importing the modules and setting some global constants:

Pizza Panic
Player must catch falling pizzas before they hit the ground
Michael Dawson 5/12/03

import random
from livewires import games, color

SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480
THE_SCREEN = games.Screen(SCREEN_WIDTH, SCREEN_HEIGHT)

To do any graphics work, I need to import games , while color gives me access to the set of predefined colors to use in
creating screen text. I import random so that the crazy chef seems more life-like when he makes his choices. Next, I create

global constants for the width and height of the graphics screen. Then I do something new. I create the graphics screen and
assign it to the global constant THE_SCREEN . I do this because I need the screen object in existence before I can load an

image object, which I do in several class definitions in this program, as you'll soon see.

The Pan Class

The Pan class is a blueprint for the pan sprite that the player controls through the mouse. However, the pan will only move

left and right. I'll go through the class, one section at a time.

Loading the Pan Image

I do something a little different in the beginning of this class; I load a sprite image and assign it to a class variable, image . I

do this because Pizza Panic has several classes, and loading an image in its corresponding class definition is clearer than
loading all of the images in the program's main() function.

class Pan(games.Sprite):
 """
 A pan controlled by player to catch falling pizzas.
 """
 image = games.load_image("pan.bmp")

The __init__() Method

Next, I write the constructor, which creates a new Pan object with the given coordinates. I define an attribute,
score_value , for the player's score, which I set to 0 . I also define another attribute, score_text , for a Text object that

displays the score on the graphics screen.

 def __init__ (self, screen, x, y):
 """ Initialize pan object. Create a Text object for player's score. """
 self.init_sprite(screen = screen, x = x, y = y, image = Pan.image)
 self.score_value = 0
 self.score_text = games.Text(screen = self.screen, x = 550, y = 20,
 text = "Score: 0", size = 25, color = color.black)

The moved() Method

This method moves the player's pan:

 def moved(self):
 """ Move pan to mouse x position. """
 x, y = self.screen.mouse_pos()
 self.move_to(x, self.get_ypos())
 if self.get_left() < 0:
 self.set_left(0)
 if self.get_right() > SCREEN_WIDTH:
 self.set_right(SCREEN_WIDTH)
 self.check_for_catch()

The method gets the coordinates of the mouse, then moves the player's pan to the mouse's x-coordinate and the pan's
current y-coordinate. By using the pan's current y-coordinate, the pan stays locked at the same height. As a result, the pan
can move left and right but not up and down.

Next, I use the object's get_left() method to check if the left edge of the pan is less than 0 , meaning that it's beyond the
left edge of the graphics window. If so, I set the left edge to 0 with the object's set_left() method. This way, the pan will

never be drawn beyond the left edge of the graphics window.

Then, I use the object's get_right() method to check if the right edge of the pan is greater than SCREEN_WIDTH ,
meaning that it is beyond the right edge of the graphics window. If so, I set the right edge to SCREEN_WIDTH with the
object's set_right() method. This way, the pan will never be drawn beyond the right edge of the graphics window.

Finally, I invoke the object's check_for_catch() method.

The check_for_catch() Method

This method checks if the player has caught one of the falling pizzas:

 def check_for_catch(self):
 """ Check if pan catches a pizza. """
 for pizza in self.overlapping_objects():
 self.handle_caught()
 pizza.handle_caught()

The method goes through the list of objects that overlap the player's pan. For each object that overlaps the Pan object, the
method invokes the Pan object's own handle_caught() method and then invokes the overlapping object's
handle_caught() method.

The handle_caught() Method

This method is called whenever the player's pan and a falling pizza collide:

 def handle_caught(self):
 """ Increase and display score. """
 self.score_value += 10
 self.score_text.set_text("Score: "+ str(self.score_value))

This method increases the Pan object's score_value attribute score by 10 each time a pizza is caught. In order to reflect
the change in the player's score on the graphics screen, the Text object for the score must be updated. So next, this
method invokes the set_text() method of the score_text attribute of the Pan object. set_text() assigns a new
string to the object's text attribute to reflect the player's new score.

The Pizza Class

This class is for the falling pizzas that the player must catch:

class Pizza(games.Sprite):
 """
 A pizza which falls to the ground.
 """
 image = games.load_image("pizza.bmp")
 START_Y = 90 # start any pizza at chef's chest-level
 speed = 1

I define three class variables: image for the pizza image, START_Y , a constant for all pizzas' starting y-coordinate, and
speed , a class variable for all pizzas' falling speed. START_Y is set to 90 so that any newly created pizza will appear at the
chef's chest level on the graphics screen. I set speed to 1 so that the pizzas fall at a fairly slow speed. I use all three class
variables in the Pizza constructor method, as you'll soon see.

I didn't make speed a constant because I thought I might want to change the speed at which the pizzas fall as the game

progresses in a future version of the program (or you might want to, if you accept the chapter challenges).

The __init__() Method

This method initializes a new Pizza object:

 def __init__(self, screen, x):
 """ Initialize a pizza object. """
 self.init_sprite(screen = screen, x = x, y = Pizza.START_Y,
 dx = 0, dy = Pizza.speed, image = Pizza.image)

When the constructor method of a newly created Pizza object is invoked, the object's init_sprite() method is invoked

to initialize the sprite.

The moved() Method

This method handles screen boundary checking:

 def moved(self):
 """ Check if a pizza's bottom edge has reached screen bottom. """
 if self.get_bottom() > SCREEN_HEIGHT:
 self.game_over()

All this method does is check if a pizza has reached the bottom of the screen. If it has, the method invokes the object's
game_over() method.

The handle_caught() Method

Remember, this method is invoked by the player's Pan object when the Pizza object collides with it:

 def handle_caught(self):
 """ Destroy self if caught. """
 self.destroy()

When a pizza collides with a pan, the pizza is considered "caught" and simply ceases to exist. So, the Pizza object invokes
its own destroy() method and the pizza literally disappears.

The game_over() Method

This method is invoked by moved() when a pizza reaches the bottom of the screen. The method ends the game.

 def game_over(self):
 """ End the game. """
 # destroy all game objects except the Text object (player's score)
 for game_object in self.screen.all_objects():
 if not isinstance(game_object, games.Text):
 game_object.destroy()

 # show 'Game Over' for 250 mainloop() cycles (at 50 fps that's 5 seconds)
 games.Message(screen = self.screen,
 x = SCREEN_WIDTH/2, y = SCREEN_HEIGHT/2,
 text = "Game Over", size = 90, color = color.red,
 lifetime = 250, after_death = self.screen.quit)

When this method is invoked, the player's pan, the crazy chef, and all of the pizzas disappear from the screen. Then, the
message "Game Over" is displayed in big, red letters. About five seconds later, the program ends.

The for loop moves through all of the objects on the screen and destroys each one, except the Text object, which
represents the player's score. The method checks if each object is a Text object with the isinstance() Python function,
which takes an object and a class as arguments. isinstance() is True if the object is an instance of the class, and is
False otherwise.

Next, the game_over() method creates a Message object that declares that the game is over. Since the lifetime
attribute is 250 and mainloop() is running at 50 cycles per second, the message stays on the screen for about five
seconds. At that point, the method specified in the after_death attribute of the Message object is invoked. The specified
method is the Screen object's quit() method, so the graphics window disappears and the program ends.

The Chef Class

The Chef class is used to create the crazy chef who throws the pizzas off the restaurant rooftop. The class has a
constructor method, a moved() method, and a drop_pizza() method, which, you guessed it, allows the chef to drop a

new pizza.

class Chef(games.Sprite):
 """
 A chef which moves left and right, dropping pizzas.
 """
 image = games.load_image("chef.bmp")
 Y = 55 # put the chef right on the top of the brick wall

I define two class variables. image is for the chef image and Y is for the starting y-coordinate of the Chef object. I set Y to
55 , which will put the image of the chef right at the rooftop.

The __init__() Method

This method creates a new chef:

 def __init__ (self, screen, x, speed, odds_change):
 """ Initialize the Chef object. """
 self.init_sprite(screen = screen, x = x, y = Chef.Y,
 dx = speed, dy = 0, image = Chef.image)
 self.odds_change = odds_change
 self.time_til_drop = 0

First, I invoke the newly created Chef object's init_sprite() method to initialize the sprite. I pass the class constant Y
for the y-coordinate. dx is passed speed , which determines the chef's horizontal velocity as he moves along the rooftop.

The method also creates two attributes, odds_change and time_til_drop . odds_change is an integer that represents
the odds that the chef will change his direction. For example, if odds_change is 250 , then there's a 1 in 250 chance that
every time the chef moves, he'll reverse direction. You'll see how this works in the moved() method of the class.

time_til_drop is an integer that represents the amount of time, in mainloop() cycles, until the next time the chef drops
his next pizza. I set it to 0 initially, meaning that when a Chef object springs to life, it should immediately drop a pizza. You'll
see how time_til_drop works in the drop_pizza() method.

Lastly, since I've used OOP to build Pizza Panic, it becomes a trivial task to have multiple chefs in the same game. With
one additional line of code to instantiate another Chef object, I can have two crazy, hat-wearing men tossing pizzas down at

the player's pan. Though I'll be using only one chef in this version of the game, this knowledge might come in handy (say,
for a chapter challenge).

The moved() Method

This method defines the rules for how the chef decides to slide back and forth along the rooftop:

 def moved(self):
 """ Determine if direction needs to be reversed. """
 if self.get_left() < 0 or self.get_right() > SCREEN_WIDTH:
 self.reverse()
 else:
 same_direction = random.randrange(self.odds_change)
 if not same_direction:
 self.reverse()
 self.drop_pizza()

A chef slides along the rooftop in one direction until he either reaches the edge of the screen or "decides," at random, to
switch directions. The beginning of this method checks to see if the chef has moved beyond the left or right edge of the
graphics window. If he has, then the reverse() method is invoked. Otherwise, the chef has a 1 in odds_change chance

of changing direction.

Regardless of whether or not the chef changes direction, the last thing the method does is invoke the Chef object's
drop_pizza() method.

The reverse() Method

This method is invoked by moved() and reverses the chef's direction:

 def reverse(self):
 """ Reverse direction. """
 dx, dy = self.get_velocity()
 self.set_velocity((-dx, dy))

This method is quite simple. It reverses the horizontal velocity of the chef, changing his direction.

The drop_pizza() Method

This method is invoked every time moved() is invoked, but that doesn't mean a new pizza is dropped each time:

 def drop_pizza(self):
 """ Decrease countdown or drop pizza and reset countdown. """
 if self.time_til_drop:
 self.time_til_drop -= 1
 else:
 # set so buffer will be 15 pixels, regardless of pizza speed
 self.time_til_drop = int(65 / Pizza.speed)
 Pizza(self.screen, self.get_xpos())

time_til_drop represents a countdown for our chef. If time_til_drop is not 0 , then 1 is subtracted from it.
Otherwise, time_til_drop is reset and a new Pizza object is created. The value of time_til_drop is determined by

the height of the pizza sprite image and the speed at which the pizzas are falling. Since the pizza image is 50 pixels high,
the formula provides a nice 15 pixel-sized gap between each pie, independent of the falling speed.

The main() Function

The main() function creates a graphics screen, creates graphics objects and then kicks off the Screen object's
mainloop() to run the show:

def main():
 my_screen = THE_SCREEN
 my_screen.mouse_visible(False)
 wall_image = games.load_image("wall.jpg", transparent = False)
 my_screen.set_background(wall_image)

 Chef(screen = my_screen, x = SCREEN_WIDTH/2, speed = 1, odds_change = 250)
 Pan(screen = my_screen, x = SCREEN_WIDTH/2, y = 435)

 my_screen.mainloop()

start program
main()

First, I assign the graphics screen to my_screen and set the mouse pointer to invisible. Then, I set the brick wall as the

background.

Next, I create a chef with a speed of 1 and a 1 in 250 chance of changing directions each move. Then, I create the player's
pan with a y-coordinate of 435, putting it at the bottom of the screen.

Finally, I invoke my_screen' s mainloop() and the game begins.

Summary

In this chapter, you saw how to use the livewires multimedia package to add graphics to your

programs. You learned how to create a new graphics window and how to set a background image for it. You
saw how to display text on a graphics window. You learned about the sprite, a special graphics object with an
image. Specifically, you saw how to place and move a sprite on a graphics screen. You also saw how to test
for collisions between graphics objects. You learned how to get input from the mouse. Finally, you saw how to
put everything together in a fast-paced, video game, complete with a computer-controlled opponent.

Challenges
Improve the Pizza Panic game by increasing its difficulty as the game progresses. Think of different
ways to accomplish this. You could increase the speed of the pizzas and the speed of the chef. You
could raise the player's pan to a higher position on the screen. You could even increase the number of
crazy chefs flinging pizzas.

1.

Create a simple, one-player game of pong, where a player controls a paddle, and the ball bounces off
three walls. If the ball gets by the player's paddle, the game is over.

2.

Write a game where the player controls a character that must avoid falling debris. The player controls
the character with the mouse, and objects fall from the sky.

3.

Chapter 12: Sound, Animation, and Program

Development: The Astrocrash Game

 Download CD Content

Overview

In this chapter, you'll expand your multimedia programming skills to include sound and animation. You'll also
see how to write a large program in stages. Specifically, you'll learn to do the following:

Read the keyboard

Play sound files

Play music files

Create animations

Develop a program by writing progressively more complete versions of it

Introducing the Astrocrash Game

The project for this chapter, the Astrocrash game, is my version of the classic arcade game Asteroids. In
Astrocrash, the player controls a ship in a moving field of deadly asteroids. The ship can rotate and thrust
forward—most importantly, though, it can fire missiles at the asteroids to destroy them. But the player has
some work cut out for him or her as large and medium-sized asteroids break apart into two smaller asteroids
when destroyed. And just when the player manages to obliterate all of the asteroids, a new, larger wave
appears. The player's score increases with every asteroid he or she destroys, but once the player's ship
collides with a floating space rock, the game is over. Figures 12.1 and 12.2 show the game in action.

Figure 12.1: The player controls a spaceship and blasts asteroids to increase his or her score. (Nebula
image is in the public domain. Credit— NASA, The Hubble Heritage Team - AURA/STScI)

Figure 12.2: If an asteroid hits the player's ship, the game is over.

Reading the Keyboard

You already know how to get keyboard input from the user as a string through the raw_input() function. But
reading the keyboard for individual keystrokes is another matter. Fortunately, there's a simple Screen method

that lets you do just this.

Introducing the Read Key Program

The Read Key program displays the ship on the nebula background. The user can move the ship around on
the background with a few, different keystrokes. When the user presses the W key, the ship moves up. When
the user presses the S key, the ship moves down. When the user presses the A key, the ship moves left.
When the user presses the D key, the ship moves right. The user can also press multiple keys simultaneously
for a combined effect. For example, when the user presses the W and D keys simultaneously, the ship moves
diagonally, up and to the right. The program is illustrated in Figure 12.3.

Figure 12.3: The ship moves around the screen based on key presses.

Setting Up the Program

As I do with all programs that use the livewires package, I start by importing the modules I need and

setting up some global constants for the screen dimensions:

Read Key
Demonstrates reading the keyboard
Michael Dawson 5/18/03

from livewires import games

SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480

Creating the Ship Class

Next, I write a class for the ship. I start with the constructor method, which accepts a screen, x-and y-
coordinates, and an image. I initialize the sprite with these values.

class Ship(games.Sprite):
 """ A moving ship. """
 def __init__(self, screen, x, y, image):
 """ Initialize ship sprite. """
 self.init_sprite(screen = screen, x = x, y = y, image = image)

Testing for Keystrokes

Next, I define a moved() method. First, I get the current position of the ship and assign the coordinates to x
and y. Next, I check for various keystrokes and change the values associated with x and y accordingly. If the
W key is pressed, I decrease the value of y by 1, moving the sprite up the screen by one pixel. If the S key is
pressed, I increase the value of y by 1, moving the sprite down the screen. If the A key is pressed, I decrease
the value of x by 1, moving the sprite left. If the D key is pressed, I increase the value of x by 1, moving the

sprite right.

 def moved(self):
 """ Move ship based on keys pressed. """
 x, y = self.get_pos()
 if self.screen.is_pressed(games.K_w):
 y -= 1
 if self.screen.is_pressed(games.K_s):
 y += 1
 if self.screen.is_pressed(games.K_a):
 x -=1
 if self.screen.is_pressed(games.K_d):
 x +=1
 self.move_to(x, y)

I use the Screen method is_pressed() to test for specific keystrokes. The method returns a value that can
be treated as a condition. If the key being tested for is pressed, then the value returned by is_pressed()
can be treated as True; if the key is not pressed, the value can be treated as False. I use the method in a

series of structures to test if any of the four keys—W, S, A, or D—is being pressed.

The games module has a set of constants that represent keys that you can use as an argument in
is_pressed(). In this method, I use the games.K_w constant for the W key; games.K_s for the S key;
games.K_a for the A key; and games.K_d for the D key. The naming of these constants is pretty intuitive.

Here's a quick way to figure out the name of most key constants:

All keyboard constants begin with games.K_.

For alphabetic keys, add the key letter, in lowercase, to the end of the constant. For example, the
constant for the A key is games.K_a.

For numeric keys, add the key number to the end of the constant. For example, the constant for the 1 key
is games.K_1.

For other keys, you can often add their name, in all capital letters, to the end of the constant name. For
example, the constant for the spacebar is games.K_SPACE.

For a complete list of keyboard constants, see the livewires documentation in Appendix A.

The is_pressed() method has a couple of nice features. First, it allows you to detect if a key is pressed

even if the user is pressing multiple keys. As a result, keystrokes can have a combined effect. For example, if
the user holds down the W and D keys simultaneously in the Read Key program, the ship moves both up and
to the right. Second, uppercase and lowercase keystrokes are interpreted as the same key. So in the Read
Key program, it doesn't matter if the user accidentally has Caps Lock on—if the user presses the W key, the
ship will still move up the screen.

Wrapping Up the Program

Finally, I write the familiar main part of the program. I create the screen, load the nebula background image,
create a ship sprite in the middle of the window, and kick everything off by invoking my_screen's
mainloop() method.

main
my_screen = games.Screen(SCREEN_WIDTH, SCREEN_HEIGHT)

nebula_image = games.load_image("nebula.jpg", transparent = False)
my_screen.set_background(nebula_image)

ship_image = games.load_image("ship.bmp")
Ship(screen = my_screen,
 x = SCREEN_WIDTH / 2, y = SCREEN_HEIGHT / 2,
 image = ship_image)

my_screen.mainloop()

Rotating a Sprite

In Chapter 11, you learned how to move graphics objects around the screen, but livewires lets you

rotate them as well. You can rotate any graphics objects, including sprites, through two rotation methods. One
method lets you rotate a graphics object by a certain number of degrees, while the other method lets you
rotate the graphics object to an exact orientation.

Introducing the Rotate Sprite Program

The Rotate Sprite program is an extension of the Read Key program. So, in addition to moving the ship, the
user can rotate it. If the user presses the Right Arrow key, the ship rotates clockwise. If the user presses the
Left Arrow key, the ship rotates counterclockwise. If the user presses the 1 key, the ship rotates to 0 degrees.
If the user presses the 2 key, the ship rotates to 90 degrees. If the user presses the 3 key, the ship rotates to
180 degrees. If the user presses the 4 key, the ship rotates to 270 degrees. Figure 12.4 shows off the
program.

Figure 12.4: The ship can rotate clockwise, rotate counterclockwise, or jump to a predetermined
orientation.

Rotating a Sprite by a Number of Degrees

By adding the following code to the end of Ship's moved() method, I allow the user to rotate the ship:

 # rotate the ship based on key presses
 if self.screen.is_pressed(games.K_RIGHT):
 self.rotate_by(1)
 if self.screen.is_pressed(games.K_LEFT):
 self.rotate_by(-1)

I first check if the Right Arrow key is pressed. If it is, I invoke the Ship object's rotate_by() method, which

rotates the sprite by the number of degrees passed to the method. In this case, I pass 1, so the sprite rotates
by 1 degree clockwise. Next, I check if the Left Arrow key is pressed. If it is, I rotate the sprite by -1 degree,

rotating the sprite 1 degree counterclockwise. You can rotate a sprite by any number of degrees you like.

Rotating a Sprite to a Specific Orientation

You can also rotate a sprite directly to a certain orientation by invoking the sprite's rotate_to() method. All

you have to do is pass a number of degrees, and the sprite will rotate to that orientation. I add the following
lines to illustrate the method:

 if self.screen.is_pressed(games.K_1):
 self.rotate_to(0)
 if self.screen.is_pressed(games.K_2):
 self.rotate_to(90)
 if self.screen.is_pressed(games.K_3):
 self.rotate_to(180)
 if self.screen.is_pressed(games.K_4):
 self.rotate_to(270)

So now, when the user presses the 1 key, the sprite rotates to 0 degrees (its starting orientation). When the
user presses the 2 key, the sprite rotates to 90 degrees. When the user presses the 3 key, the sprite rotates
to 180 degrees. And finally, when the user presses the 4 key, the sprite rotates to 270 degrees.

Creating an Animation

Moving and rotating sprites adds excitement to a game, but animation really makes a game come to life.
Fortunately, the games module contains a class for animations, aptly named Animation.

Introducing the Explosion Program

The Explosion program creates an animation of an explosion in the middle of a graphics screen. The
animation plays continuously so that you can get a good look at it. When you're done appreciating the cool
effect, you can end the program by closing the graphics window. Figure 12.5 shows a snapshot of the
program.

Figure 12.5: Although it's hard to tell from a still image, an explosion animates at the center of the
graphics window.

Examining the Explosion Images

An animation is a sequence of images (also called frames) displayed in succession. I created a sequence of
nine images that, when displayed in succession, resembles a fiery explosion. Figure 12.6 shows off all nine
images.

Figure 12.6: Shown in rapid succession, these nine frames of animation look like an explosion.

Setting Up the Program

As always, the initial code imports the games module and defines constants for the graphics screen's

dimensions:

Explosion
Demonstrates creating an animation
Michael Dawson 5/19/03

from livewires import games

SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480

In the main part of the program, I create a graphics screen with the following lines:

main
my_screen = games.Screen(SCREEN_WIDTH, SCREEN_HEIGHT)

nebula_image = games.load_image("nebula.jpg", transparent = 0)
my_screen.set_background(nebula_image)

Creating a List of Image Files

The constructor of the Animation class takes a list of image file names or a list of image objects for the

sequence of images to display. So next, I create a list of image file names, which correspond to the images
shown in Figure 12.6:

explosion_files = ["explosion1.bmp",
 "explosion2.bmp",

 "explosion3.bmp",
 "explosion4.bmp",
 "explosion5.bmp",
 "explosion6.bmp",
 "explosion7.bmp",
 "explosion8.bmp",
 "explosion9.bmp"]

Creating an Animation Object

Finally, I create an Animation object in the following lines:

games.Animation(screen = my_screen,
 x = SCREEN_WIDTH/2, y = SCREEN_HEIGHT/2,
 images = explosion_files,
 n_repeats = 0, repeat_interval = 5)

The Animation class is derived from Sprite, so it inherits all of Sprite's methods and attributes. To

create an animation, you must supply a screen and x-and y-coordinates as arguments to define where the
object will be located, just as you do for a new sprite. In the previous code, I supply coordinates so that the
animation is created at the center of the screen.

An animation requires images, so you must supply a list of image file names or a list of image objects for the
images to be displayed. I supply a list of image file names, explosion_files.

Next, I supply the n_repeats parameter with the value 0. n_repeats represents how many times the
animation (as a sequence of all of its images) is displayed. A value of 0 means that the animation will loop
forever. The default value of n_repeats is 0.

Then, I pass to the repeat_interval parameter the value 5. repeat_interval represents the delay

between successive animation images. A higher number means a longer delay between frames, resulting in a
slower animation. A lower number represents a shorter delay, producing a faster animation.

Finally, I kick off the program by invoking my_screen's mainloop() method:

my_screen.mainloop()

Working with Sound and Music

Sound and music add another sensory dimension to your programs. Loading, playing, looping, and stopping
sound and music are easy to do with the games module. And while people might argue about the difference
between sound and music, there's no such argument when it comes to the games module, where there's a

clear distinction between the two.

Introducing the Sound and Music Program

The Sound and Music program allows the user to play, loop, and stop the sound effect of a missile firing and
the theme music from the Astrocrash game. The user can even play both at the same time. Figure 12.7 shows
the program running (but unfortunately, doesn't make a sound).

Figure 12.7: The program lets the user play a sound and some music.

Working with Sounds

You can create a sound object for use in a program by loading a WAV file. The WAV format is great for sound
effects because it can be used to encode whatever you can record with a microphone.

Loading a Sound

First, I set up the program as always by importing games:

Sound and Music
Demonstrates playing sound and music files
Michael Dawson 5/18/03

from livewires import games

Then, I load a WAV file by using the games function load_sound(). The function takes a string for the name

of the sound file to be loaded. I load the file missile.wav and assign the resulting sound object to
missile.

load a sound file
missile = games.load_sound("missile.wav")

TRAP You can load only WAV files with the load_sound() function.

Next, I load the music file:

#load the music file
games.load_music("theme.mid")

I'll save the discussion of music until after I finish demonstrating sounds.

Playing a Sound

Next, I write the menu system that you've seen before in Chapter 5:

choice = None
while choice != "0":

 print \
 """
 Sound and Music

 0 - Quit
 1 - Play missile sound
 2 - Loop missile sound
 3 - Stop missile sound
 4 - Play theme music
 5 - Loop theme music
 6 - Stop theme music
 """

 choice = raw_input("Choice: ")
 print

 # exit
 if choice == "0":
 print "Good-bye."

If the user enters 0, the program says good-bye.

The following code handles the case where a user enters 1:

 # play missile sound
 elif choice == "1":
 missile.play()
 print "Playing missile sound."

To play the sound once, I invoke the sound object's play() method. When a sound plays, it takes up one of

the eight available sound channels. To play a sound, you need at least one open sound channel. Once all
eight sound channel are in use, invoking a sound object's play() method has no effect.

If a sound is already playing, you can invoke that sound object's play() method again. As a result, the sound

will start playing on another sound channel, if one is available.

Looping a Sound

You can loop a sound by passing to the object's play() method the number of additional times you want the
sound played. For example, if you pass 3 to play(), the corresponding sound will play four times (its initial
playing plus an additional three times). You can loop a sound forever by passing -1 to play().

The following code handles the case when a user enters 2:

 # loop missile sound
 elif choice == "2":
 loop = int(raw_input("Loop how many extra times? (-1 = forever): "))
 missile.play(loop)
 print "Looping missile sound."

In this section of code, I get the number of additional times the user wants to hear the missile sound and then I
pass that value to the sound object's play() method.

Stopping a Sound

You stop a sound object from playing by invoking its stop() method. This stops that particular sound on all of
the channels on which it's playing. If you invoke the stop() method of a sound object that's not currently

playing, Python is forgiving and won't complain with an error.

If the user enters 3, I stop the missile sound (if it's playing):

 # stop missile sound
 elif choice == "3":
 missile.stop()
 print "Stopping missile sound."

Working with Music

In livewires, music is handled somewhat differently than sound. First, there is only one music channel,

so only one file can be designated as the current music file at any given time. However, the music channel is
more flexible than the sound channels. The music channel accepts many different types of sound files,
including WAV, OGG, and MIDI. Finally, since there is only one music channel, you don't create and work with
an object like you do with sounds. Instead, you access the single music channel through a group of functions
from the games module.

Loading Music

You saw the code for loading the music file in the section "Loading a Sound." The code I used to load the

music file, games.load_music("theme.mid"), sets the current music to the MIDI file theme.mid.
You load a music file with the games.load_music() function by passing the file name as a string.

HINT MIDI files are often used for music (rather than WAV or OGG files) because of their small size and
their tendency to place lower system demands on the computer playing the music.

Playing Music

The following code handles the case where the user enters 4:

 # play theme music
 elif choice == "4":
 games.play_music()
 print "Playing theme music."

As a result, the computer plays the music file that I loaded, theme.mid. You can play the current music
file with games.play_music(). If you don't pass any values to the function, the music plays once.

Looping Music

You can loop the music by passing to games.play_music() the number of additional times you want the
music played. For example, if you pass 3 to games.play_music(), the music will play four times (its initial
playing plus an additional three times). You can loop a music file forever by passing -1 to the function.

The following code handles the case when a user enters 5:

 # loop theme music
 elif choice == "5":
 loop = int(raw_input("Loop how many extra times? (-1 = forever): "))
 games.play_music(loop)
 print "Looping theme music."

In this section of code, I get the number of additional times the user wants to hear the theme music and then I
pass that value to the games.play_music() function.

Stopping Music

If the user enters 6, the following code stops the music (if it's playing):

 # stop theme music
 elif choice == "6":
 games.stop_music()
 print "Stopping theme music."

You can stop the current music from playing by calling the games.stop_music() function, which is what I
do here. If you call the games.stop_music() function while there is no music playing, Python is forgiving

and won't complain with an error.

Wrapping Up the Program

Finally, I wrap up the program by handling an invalid choice and waiting for the user:

 # some unknown choice
 else:
 print "\nSorry, but", choice, "isn't a valid choice."

raw_input("\n\nPress the enter key to exit.")

Planning the Astrocrash Game

It's time to return to the chapter project: the Astrocrash game. I plan to write progressively more complete
versions of the game until it's done, but I still feel I need to list a few details of the program, including: the
game's major features, a few necessary classes, and the multimedia assets the game requires.

Game Features

Although my game is based on a classic video game that I know well (and learned about the hard way, one
quarter at a time), it's still a good idea that I write out a list of features:

The ship should rotate and thrust forward based on keystrokes from the player.

The ship should fire missiles based on a keystroke from the player.

Asteroids should float at different velocities on the screen. Smaller asteroids should generally have higher
velocities than larger ones.

The ship, any missiles, and any asteroids should "wrap around" the screen—if they move beyond a
screen boundary, they should appear at the opposite boundary.

If a missile hits another object on the screen, it should destroy the other object and itself in a nice, fiery
explosion.

If the ship hits any other object on the screen, it should destroy the other object and itself in a nice, fiery
explosion.

If the ship is destroyed, the game is over.

If a large asteroid is destroyed, two new, medium-sized asteroids should be produced. If a medium-sized
asteroid is destroyed, two new, small asteroids should be produced. If a small asteroid is destroyed, no
new asteroids should be produced.

Every time a player destroys an asteroid, his or her score should increase. Smaller asteroids should be
worth more points than larger ones.

The player's score should be displayed in the upper-right corner of the screen.

Once all of the asteroids have been destroyed, a new, larger wave of asteroids should be created.

I decide to leave out a few features of the original to keep the game simple.

Game Classes

Next, I make a list of the classes that I think I need:

Ship

Missile

Asteroid

Explosion

I know a few things about these classes already. Ship, Missile, and Asteroid will be derived from
games.Sprite, while Explosion will be derived from games.Animation.

Game Assets

Since the game includes sound, music, sprites, and animation, I know I need to create some multimedia files.
Here's the list I came up with:

An image file for the ship

An image file for the missiles

Three image files, one for each size of asteroid

A series of image files for an explosion

A sound file for the thrusting of the ship

A sound file for the firing of a missile

A sound file for the explosion of an object

A music file for the theme

Creating Asteroids

Since the game involves deadly asteroids, I thought I'd start with them. Although this seems like the best first
step to me, it may not to another programmer—and that's fine. You could certainly start with a different first
step, such as getting the player's ship on the screen. There's no one right first step. The important thing to do
is define and complete "bite-sized" programs that build on each other, working your way toward the completed
project.

The Astrocrash01 Program

The Astrocrash01 program creates a graphics window, sets the nebula back-ground, and spawns eight
randomly located asteroids. The velocity of each asteroid is also randomly calculated, but smaller asteroids
have the potential to move faster than larger ones. Figure 12.8 shows the program in action.

Figure 12.8: A field of moving asteroids is the foundation of the game.

Setting Up the Program

The program starts like most others:

Astrocrash01
Get asteroids moving on the screen
Michael Dawson 5/20/03

import random
from livewires import games

global constants
SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480
THE_SCREEN = games.Screen(SCREEN_WIDTH, SCREEN_HEIGHT)

The Asteroid Class

The Asteroid class is used for creating moving asteroids. The first thing I do in the class is load three

images—one for each size of asteroid—and assign them to class variables:

class Asteroid(games.Sprite):
 """ An asteroid which floats across the screen. """
 image_big = games.load_image("asteroid_big.bmp")
 image_med = games.load_image("asteroid_med.bmp")
 image_small = games.load_image("asteroid_small.bmp")

Next, I tackle the constructor method:

 def __init__(self, screen, x, y, size):
 """ Initialize asteroid sprite. """
 if size == 1:
 image = Asteroid.image_small
 elif size == 2:
 image = Asteroid.image_med
 elif size == 3:
 image = Asteroid.image_big
 else:
 print "Asteroid size must be 1, 2, or 3."
 sys.exit()

 # set velocity based on asteroid size
 dx = random.choice([2, -2]) * random.random() / size
 dy = random.choice([2, -2]) * random.random() / size

 self.init_sprite(screen = screen, x = x, y = y,
 dx = dx, dy = dy, image = image)
 self.size = size

The method's screen, x, and y parameter values determine where the new asteroid will start life. The value
of the parameter size represents the size of the asteroid and can be 1 for small, 2 for medium, or 3 for large.
Based on size, the appropriate image is used for the sprite. If size isn't passed either a 1, 2, or 3, the

program displays an error message and exits.

Next, the constructor generates random values for the new object's velocity components based partly on its
size attribute. Smaller asteroids have the potential to move faster than larger ones. Finally, the constructor
initializes the sprite and sets the object's size attribute.

The moved() method keeps an asteroid in play by wrapping it around the screen:

 def moved(self):
 """ Wrap the asteroid around screen. """
 if self.get_top() > SCREEN_HEIGHT:
 self.set_bottom(0)

 if self.get_bottom() < 0:
 self.set_top(SCREEN_HEIGHT)

 if self.get_left() > SCREEN_WIDTH:
 self.set_right(0)

 if self.get_right() < 0:
 self.set_left(SCREEN_WIDTH)

The Main Section

Finally, the main section of code sets the nebula background and creates eight randomly sized asteroids at
random screen locations:

main
my_screen = THE_SCREEN
nebula_image = games.load_image("nebula.jpg")
my_screen.set_background(nebula_image)

create 8 asteroids
for i in range(8):
 x = random.randrange(SCREEN_WIDTH)
 y = random.randrange(SCREEN_HEIGHT)
 size = random.randrange (1, 4)
 Asteroid(screen = my_screen, x = x, y = y, size = size)

my_screen.mainloop ()

Rotating the Ship

For my next task, I introduce the player's ship. My modest goal is to allow a user to rotate the ship with the
arrow keys. I plan to attack the other ship functions later.

The Astrocrash02 Program

The Astrocrash02 program extends Astrocrash01. In the new version, I create a ship at the center of the
screen that the user can rotate. If the user presses the Right Arrow key, the ship rotates clockwise. If the user
presses the Left Arrow key, the ship rotates counterclockwise. Figure 12.9 shows the program in action.

Figure 12.9: The player's ship is now part of the action.

The Ship Class

The main thing I have to do is write a Ship class for the player's ship:

class Ship(games.Sprite):
 """ The player's ship. """
 image = games.load_image("ship.bmp")
 ROTATION_STEP = 3

 def __init__(self, screen, x, y):
 """ Initialize ship sprite. """
 self.init_sprite(screen = screen, x = x, y = y, image = Ship.image)

 def moved(self):
 """ Rotate the ship based on key presses. """
 # rotate based on left and right arrow keys
 if self.screen.is_pressed(games.K_LEFT):
 self.rotate_by(-Ship.ROTATION_STEP)

 if self.screen.is_pressed(games.K_RIGHT):
 self.rotate_by(Ship.ROTATION_STEP)

This class is taken almost directly from the Rotate Sprite program. In fact, there are only two, small differences
worth noting. First, I load the image of the ship and assign the resulting image object to the class variable
image. Second, I use the class constant ROTATION_STEP for the number of degrees by which the ship

rotates when the user presses the Left or Right Arrow keys.

Instantiating a Ship Object

The last thing I do is instantiate a Ship object. I create a new ship in the middle of the screen in the main part

of the program:

create the ship
Ship(screen = my_screen, x = SCREEN_WIDTH / 2, y = SCREEN_HEIGHT / 2)

Moving the Ship

In the next version of the program, I get the ship moving. The player can press the Up Arrow key to engage
the ships engines. This applies thrust to the ship in the direction the ship is facing. Since there's no friction in
this simple game, the ship keeps moving based on all of the thrust the player applies to it.

The Astrocrash03 Program

When the player engages the ship's engines, the Astrocrash03 program changes the velocity of the ship
based on its angle (and produces an appropriate sound effect too). Figure 12.10 illustrates the program.

Figure 12.10: The ship can now move around the screen.

Importing the math Module

The first thing I do is import a new module at the top of the program:

import math

The math module contains a bunch of mathematical functions and constants. But don't let that scare you. I

use only a few in this program.

Adding Ship Class Variables

I create a class constant, VELOCITY_STEP, for altering the ship's velocity:

 VELOCITY_STEP = .03

A higher number would make the ship accelerate faster, a lower number would make the ship accelerate more

slowly.

I also add a new class variable, sound, for the thrusting sound of the ship:

 sound = games.load_sound("thrust.wav")

Updating Ship's moved() Method

Next, I add code to the end of Ship's moved() method to get the ship moving. I check to see if the player is

pressing the Up Arrow key. If so, I play the thrusting sound:

 # apply thrust based on up arrow key
 if self.screen.is_pressed(games.K_UP):
 Ship.sound.play()

Now, when the player presses the Up Arrow key, I need to alter the ship's velocity components (the Ship
object's dx and dy attributes) based on the angle of the ship. For example, if the ship's angle is 0 degrees (it's
facing straight up), then I need to decrease the object's dy attribute. Conversely, if the ship's angle is 90
degrees (it's facing to the right), then I need to increase the object's dx attribute. And if the ship is at 45
degrees (it's facing diagonally up and to the right), then I need to decrease the object's dy attribute and
increase it's dx attribute equally. Of course, every angle requires its own adjustments. So, how can I figure out

how much to change each velocity component based on the angle of the ship? Well, the answer is
trigonometry. Wait, don't slam this book shut and run as fast as your legs can carry you, screaming
incoherently. As promised, I use only two mathematical functions in a few lines of code to figure this out.

To start the process, I get the angle of the ship, converted to radians:

 # get velocity component changes based on ship's angle
 angle = self.get_angle() * math.pi / 180 # convert to radians

A radian is just a measure of rotation, like a degree. Python's math module expects angles in radians (while

 livewires works with degrees) so that's why I need to make the conversion. In the calculation, I use the
math module constant pi, which represents the number pi.

Now that I've got the ship's angle in radians, I can figure out how much to change each velocity component
using the math module's sin() and cos() functions, which calculate an angle's sine and cosine. The
following lines calculate how much the object's dx and dy attribute values should change based on the ship's
angle and VELOCITY_STEP:

 add_dx = Ship.VELOCITY_STEP * math.sin(angle)
 add_dy = -Ship.VELOCITY_STEP * math.cos(angle)

Next, I calculate the object's new dx and dy values using add_dx and add_dy:

 # add current velocity and velocity change to get new velocity
 dx, dy = self.get_velocity()
 new_dx = dx + add_dx

 new_dy = dy + add_dy

Then, I set the object's velocity with these new values:

 # set new velocity
 self.set_velocity(new_dx, new_dy)

All that's left to do is handle the screen boundaries. I use the same strategy as I did with the asteroids: the
ship should wrap around the screen. In fact, I copy and paste the code from Asteroid's moved() method to
the end of Ship's moved() method:

 # wrap the ship around screen
 if self.get_top() > SCREEN_HEIGHT:
 self.set_bottom(0)

 if self.get_bottom() < 0:
 self.set_top(SCREEN_HEIGHT)
 if self.get_left() > SCREEN_WIDTH:
 self.set_right(0)

 if self.get_right() < 0:
 self.set_left(SCREEN_WIDTH)

Although this works, copying and pasting large portions of code is usually a sign of poor design. I'll revisit this
code later and find a more elegant solution.

TRAP Repeated chunks of code bloat programs and make them harder to maintain. When you see
repeated code, it's often time for a new function or class. Think about how you might consolidate
the code into one place and call or invoke it from the parts of your program where the repeated
code currently lives.

Firing Missiles

Next, I enable the ship to fire missiles. When the player presses the spacebar, a missile fires from the ship's
cannon and flies off in the direction the ship faces. The missile should destroy anything it hits, but to keep things
simple, I save the fun of destruction for another version of the program.

The Astrocrash04 Program

The Astrocrash04 program allows the player to fire missiles by pressing the spacebar. But there's a problem. If
the player holds down the spacebar, a stream of missiles pours out of the ship, at a rate of about 50 per second.
I need to limit the missile fire rate, but I leave that issue for the next version of the game. Figure 12.11 shows off
the Astrocrash04 program, warts and all.

Figure 12.11: The missile fire rate is too high.

Updating Ship 's moved() Method

I update Ship 's moved() method by adding code so that a ship can fire missiles. If the player presses the

spacebar, I create a new missile:

 # fire missile if spacebar pressed
 if self.screen.is_pressed(games.K_SPACE):
 Missile(self.screen, self.get_xpos(), self.get_ypos(), self.get_angle())

Of course, in order to instantiate a new object from the line Missile(self.screen, self.get_xpos(),
self.get_ypos(), self.get_angle()) , I need to write a little something . . . like a Missile class.

The Missile Class

I write the Missile class for the missiles that the ship fires. I start by creating class variables and class

constants:

class Missile(games.Sprite):
 """ A missile launched by the player's ship. """
 image = games.load_image("missile.bmp")
 sound = games.load_sound("missile.wav")
 BUFFER = 40
 VELOCITY_FACTOR = 7
 LIFETIME = 40

image is for the image of a missile—a solid, red circle. sound is for the sound effect of a missile launching.
BUFFER represents the distance from the ship that a new missile is created (so that the missile isn't created on
top of the ship). VELOCITY_FACTOR affects how fast the missile travels. And LIFETIME represents how long

the missile exists before it disappears (so that a missile won't float around the screen forever).

I start the class constructor with the following lines:

 def __init__(self, screen, ship_x, ship_y, ship_angle):
 """ Initialize missile sprite. """

It may surprise you that the constructor for a missile requires values for the ship's x-and y-coordinates and the
ship's angle, which are accepted into the ship_x , ship_y , and ship_angle parameters. The method needs

these values so that it can determine two things: exactly where the missile first appears and the velocity
components of the missile. Where the missile is created depends upon where the ship is located. And how the
missile travels depends upon the angle of the ship.

Next, I play the missile-firing sound effect:

 Missile.sound.play()

Then, I perform some calculations to figure out the new missile's location:

 # convert to radians
 angle = ship_angle * math.pi / 180

 # calculate missile's starting position
 buffer_x = Missile.BUFFER * math.sin(angle)
 buffer_y = -Missile.BUFFER * math.cos(angle)
 x = ship_x + buffer_x
 y = ship_y + buffer_y

I get the angle of the ship, converted to radians. Then, I calculate the missile's starting x-and y-coordinates,
based on the angle of the ship and the Missile class constant BUFFER . The resulting x and y values place the

missile right in front of the ship's cannon.

Next, I calculate the missile's velocity components. I use the same type of calculations as I did in the Ship class:

 # calculate missile's velocity components
 dx = Missile.VELOCITY_FACTOR * math.sin(angle)
 dy = -Missile.VELOCITY_FACTOR * math.cos(angle)

Finally, I initialize the new sprite. I also make sure to give the Missile object a lifetime attribute so that the

object won't be around forever.

 # create the missile
 self.init_sprite(screen = screen, x = x, y = y,
 dx = dx, dy = dy, image = Missile.image)
 self.lifetime = Missile.LIFETIME

Then, I write a moved() method for the class. Here's the first part:

 def moved(self):
 """ Move the missile. """
 # if lifetime is up, destroy the missile
 self.lifetime -= 1
 if not self.lifetime:
 self.destroy()

This code just counts down the life of the missile. lifetime is decremented. When it reaches 0 , the Missile

object destroys itself.

In the second part of moved() , I include the familiar code to wrap the missile around the screen:

 # wrap the missile around screen
 if self.get_top() > SCREEN_HEIGHT:
 self.set_bottom(0)

 if self.get_bottom() < 0:
 self.set_top(SCREEN_HEIGHT)

 if self.get_left() > SCREEN_WIDTH:
 self.set_right(0)

 if self.get_right() < 0:
 self.set_left(SCREEN_WIDTH)

I see that the preceding code is repeated three different times my program. I'll definitely be consolidating it later.

Controlling the Missile Fire Rate

As you saw in the last program, the ship can fire about 50 missiles per second. Even for a player who wants to win,
this is a bit much. So, I go about putting a limit on the missile fire rate.

The Astrocrash05 Program

The Astrocrash05 program limits the missile fire rate by creating a countdown that forces a delay between missile
firings. Once the countdown ends, the player can fire another missile (but not until then). Figure 12.12 illustrates the
program.

Figure 12.12: Now the ship fires missiles at a more reasonable rate.

Adding a Ship Class Constant

My first step in forcing a delay between missile firings is to add a class constant to Ship :

 MISSILE_DELAY = 25

MISSILE_DELAY represents the total delay the player must wait between missile firings.

Updating Ship 's Constructor Method

I add a line to the Ship class constructor so that a newly created ship object gets a new attribute named
missile_wait :

 self.missile_wait = 0

I use missile_wait to count down the delay until the player can fire the next missile. When missile_wait is 0 ,
the player can fire a new missile at will. If missile_wait is greater than 0 , it means that the player has fired a

missile recently and I'm still counting down before he or she can fire another. After the player fires a missile, I reset
missile_wait to MISSILE_DELAY and the countdown begins again.

Updating Ship 's moved() Method

I add some code to Ship 's moved() method that decrements an object's missile_wait attribute (if it's not
already 0):

 # if waiting until the ship can fire next, decrease wait
 if self.missile_wait:
 self.missile_wait -= 1

Then I change the missile firing code from the last version of the game to the following lines:

 # fire missile if spacebar pressed and enough time has elapsed
 if self.screen.is_pressed(games.K_SPACE) and not self.missile_wait:
 Missile(self.screen, self.get_xpos(), self.get_ypos(), self.get_angle())
 self.missile_wait = Ship.MISSILE_DELAY

Now, when the player presses the spacebar, the countdown must be complete before the ship will fire a new
missile. And once a new missile is fired, I reset missile_wait to MISSILE_DELAY to begin the countdown again.

Handling Collisions

So far, the player can move the ship around the field of asteroids and even fire missiles, but none of the
objects interact. I change all of that in the next version of the game. When a missile collides with any other
object, it destroys that other object and itself. When the ship collides with any other object, it destroys the
other object and itself. Asteroids will be passive in this system, since I don't want overlapping asteroids to
destroy each other.

The Astrocrash06 Program

The Astrocrash06 program achieves all of this collision detection with the Sprite
overlapping_objects() method. Also, I have to handle the destruction of asteroids in a special way.

Remember that when a large asteroid is destroyed, two medium-sized asteroids are created. When a medium-
sized asteroid is destroyed, two small asteroids are created. When a small asteroid is destroyed, nothing is
created.

TRAP Because all of the asteroids are generated at random locations, it's possible for one to be created
on top of the player's ship, destroying the ship just as the program begins. I can live with this
inconvenience for now, but I'll have to solve this issue in the final game.

Figure 12.13 shows the program in action.

Figure 12.13: The ship's missiles now destroy asteroids. But be careful, as asteroids destroy the ship.

Updating Missile's moved() Method

I add the following code to the end of Missile's moved() method:

 # check if missile overlaps any other object
 for game_object in self.overlapping_objects():
 game_object.die()

 self.die()

If a missile overlaps any other object, the other object and the missile are both destroyed.

Adding Missile's die() Method

Missile, like any class in this version of the game, needs a die() method. The method is about as simple

as it gets:

 def die(self):
 """ Destroy the missile. """
 self.destroy()

When a Missile object's die() method is invoked, the object destroys itself.

Updating Ship's moved() Method

I add the following code to the end of the Ship's moved() method:

 # check if ship overlaps any other object
 for game_object in self.overlapping_objects():
 game_object.die()
 self.die()

If the ship overlaps any other object, the other object and the ship are both destroyed. Notice that this method
is exactly the same as Missile's moved() method. Again, when you see duplicate code, you should think

about how to consolidate it. In the next version of the game, I'll get rid of this and other redundant code.

Adding Ship's die() Method

This method is the same as Missile's die() method:

 def die(self):
 """ End the game. """
 self.destroy()

When a Ship object's die() method is invoked, the object destroys itself.

Adding Asteroid's die() Method

Asteroid's die() method is more involved:

 def die(self):
 """ Destroy asteroid. """
 # if asteroid isn't small, replace with two smaller asteroids
 new_size = self.size - 1
 if new_size:

 for i in range(2):
 Asteroid(screen = self.screen,
 x = self.get_xpos(), y = self.get_ypos(),
 size = new_size)
 self.destroy()

The wrinkle I add is that the method has the potential to create two new Asteroid objects. The method
calculates the value of new_size, the size of the potential new asteroids. If new_size is either 1 or 2, then

two new asteroids are created at the current asteroid's location. Whether or not new asteroids are created, the
current asteroid destroys itself and the method ends.

Adding Explosions

In the last version of the game, the player can destroy asteroids by firing missiles at them, but the destruction
feels a bit hollow. So next, I add explosions to the game.

The Astrocrash07 Program

In the Astrocrash07 program, I write a new class for animated explosions based on games.Animation. But I

also do some work behind the scenes, consolidating redundant code. Even though the player won't appreciate
these additional changes, they're important nonetheless. Figure 12.14 shows the new program in action.

Figure 12.14: All of the destruction in the game is now accompanied by fiery explosions.

The Wrapper Class

I start with the behind-the-scenes work. I create a new class, Wrapper, based on games.Sprite. Wrapper
has a moved() method that automatically wraps an object around the screen:

class Wrapper(games.Sprite):
 """ A sprite that wraps around the screen. """
 def moved(self):
 """ Wrap sprite around screen. """
 if self.get_top() > SCREEN_HEIGHT:
 self.set_bottom(0)

 if self.get_bottom() < 0:
 self.set_top(SCREEN_HEIGHT)

 if self.get_left() > SCREEN_WIDTH:
 self.set_right(0)

 if self.get_right() < 0:
 self.set_left(SCREEN_WIDTH)

You've seen this code several times already. It wraps a sprite around the screen. Now, if I base the other
classes in the game on Wrapper, its moved() method will keep instances of those other classes on the

screen—and the code only has to exist in one place!

I finish the class up with a die() method that destroys the object:

 def die(self):
 """ Destroy self. """
 self.destroy()

The Collider Class

I take on more redundant code. I notice that both Ship and Missile share the same collision handling
instructions. So, I create a new class, Collider, based on Wrapper, with a moved() method that handles

collisions:

class Collider(Wrapper):
 """ A Wrapper that can collide with any other Wrapper. """
 def moved(self):
 """ Destroy self and overlapping object if object is Wrapper. """
 Wrapper.moved(self)
 for game_object in self.overlapping_objects():
 if isinstance(game_object, Wrapper):
 game_object.die()
 self.die()

The first thing I do in Collider's moved() method is invoke Wrapper's moved() method to keep the object
on the screen. But notice that I invoke Wrapper's moved() method directly, with Wrapper.moved(self)

and not with the super() function. I do this because the livewires classes are old-style, so I can't user
super().

I also make an addition to the collision detection loop. For each overlapping object, I first check to see if the
overlapping object is a Wrapper object. I do this because some objects on the screen won't be Wrapper

objects and I want to ignore them, as far as collisions go. For example, the player's score shouldn't count
when it comes to collisions. If a missile hits the player's score, the missile should ignore the score (as opposed
to causing the score to explode and disappear!). And remember that all Collider objects are also Wrapper
objects, since Collider is based on Wrapper.

I next write a die() method for the class, since all Collider objects will do the same thing when they

die—create an explosion and destroy themselves:

 def die(self):
 """ Destroy self and leave explosion behind. """
 Explosion(self.screen, self.get_xpos(), self.get_ypos())
 self.destroy()

In this method, I create an Explosion object. Explosion is a new class whose objects are explosion

animations. You'll see the class in its full glory soon.

Updating the Asteroid Class

In updating the Asteroid class, I change its class header so that the class is based on Wrapper:

class Asteroid(Wrapper):

Asteroid now inherits moved() from Wrapper, so I cut Asteroid's own moved() method. The redundant

code is starting to disappear!

The only other thing I do in this class is change the last line of Asteroid's die() method. I replace the
current self.die() with the line

Wrapper.die(self)

Now, if I ever change Wrapper's die() method, Asteroid will automatically reap the benefits.

Updating the Ship Class

In updating the Ship class, I change its class header so that the class is based on Collider:

class Ship(Collider):

At the end of Ship's moved() method, I add the line

 Collider.moved(self)

I can now cut several more pieces of redundant code. Since Collider's moved() method handles
collisions, I cut the collision detection code from Ship's moved() method. Since Collider's moved()
method invokes Wrapper's moved() method, I cut the screen wrapping code from Ship's moved() method
too. I also cut Ship's die() method and let the class inherit Collider's version.

Updating the Missile Class

In updating the Missile class, I change its class header so that the class is based on Collider:

class Missile(Collider):

At the end of the Missile's moved() method, I add the line

 Collider.moved(self)

Just like with the Ship class, I can now cut redundant code from Missile. Since Collider's moved()
method handles collisions, I cut the collision detection code from Missile's moved() method. Since
Collider's moved() method invokes Wrapper's moved() method, I cut the screen wrapping code from
Missile's moved() method too. I also cut Missile's die() method and let the class inherit Collider's

version.

HINT To help you understand the code changes I describe, feel free to check out the complete code for
all versions of the Astrocrash game on the CD-ROM that came with this book.

The Explosion Class

Since I want to create animated explosions, I write an Explosion class based on games.Animation. I
define the class variable sound, for the sound effect of an explosion. Next, I define a class variable,
explosion_images, for a list of image objects of the nine frames of the explosion animation you saw in

Figure 12.6. I load the images from the nine files, explosion1.bmp through explosion9.bmp,

using a loop.

class Explosion(games.Animation):
 """ Explosion animation. """
 sound = games.load_sound("explosion.wav")
 images = []
 for i in range(1, 10):
 file_name = "explosion" + str(i) + ".bmp"
 image = games.load_image(file_name)
 images.append(image)

In the Explosion constructor, I accept values into the screen, x, and y parameters, which represent the
screen and coordinates for the explosion. I invoke the games.Animation constructor to create a new

animation, and then play the explosion sound effect.

 def __init__(self, screen, x, y):
 games.Animation.__init__(self, screen = screen, x = x, y = y,
 images = Explosion.images,
 n_repeats = 1, repeat_interval = 4)
 Explosion.sound.play()

When I invoke the games.Animation constructor, I pass screen, x, and y to their corresponding
parameters. I pass to images the list of image objects, Explosion.images. Next, I pass to n_repeats the
value of 1 so that the animation plays just once. Finally, I pass to repeat_interval the value of 4 so that

the speed of the animation looks right.

TRICK Remember, you can pass to the games.Animation constructor either a list of file names or a

list of image objects for the frames of animation.

Adding Levels, Scorekeeping, and Theme Music

The game needs just a few more things to feel complete. For my final pass, I add levels—meaning that when a player
destroys all of the asteroids on the screen, a new, more plentiful batch appears. I also add scorekeeping functionality
and tense theme music to round out the game experience.

The Astrocrash08 Program

In addition to levels, scorekeeping, and theme music, I add some code that may be less obvious to the player, but is
still important to complete the program. Figure 12.15 shows off my final version of the game.

Figure 12.15: The final touches let the game continue as long as the player's Astrocrash skills allow.

Adding an Asteroid Class Variable

I make a few changes in the Asteroid class, all related to adding levels to the game. In order to change levels, the

program needs to know when all of the asteroids on the current level are destroyed. So, I keep track of the total
number of asteroids with a new class variable, total , which I define at the beginning of the class:

 total = 0

Updating Asteroid 's Constructor Method

In the constructor, I add a line to increment Asteroid.total:

 Asteroid.total += 1

Updating Asteroid 's die() Method

I make a few additions to Asteroid 's die() method. First, I decrement Asteroid.total :

 Asteroid.total -= 1

Next, I invoke Game 's static method increase_score() , which increases the player's score based on the size of

the asteroid (smaller asteroids are worth more than larger ones):

 Game.increase_score(30 / self.size)

Game is a new class that contains a few class variables and static methods for game-wide information and

functionality. I explain this new class later in the chapter.

Toward the end of Asteroid 's die() method, I test Asteroid.total to see if all the asteroids have been
destroyed. If so, I invoke Game 's static method next_level() , which creates a new group of asteroids.

 # if all asteroids are gone, create next level
 if not Asteroid.total:
 Game.next_level(self.screen)

Adding a Ship Class Variable

I make several additions to the Ship class. I create a class constant, VELOCITY_MAX , which I use to limit the

maximum velocity of the player's ship:

 VELOCITY_MAX = 3

Updating Ship 's moved() Method

In Ship 's moved() method, I cap the individual velocity components of a Ship object, dx and dy , using the class
constant MAX_VELOCITY :

 # cap velocity in each direction
 if new_dx < -Ship.VELOCITY_MAX:
 new_dx = -Ship.VELOCITY_MAX
 if new_dx > Ship.VELOCITY_MAX:
 new_dx = Ship.VELOCITY_MAX
 if new_dy < -Ship.VELOCITY_MAX:
 new_dy = -Ship.VELOCITY_MAX
 if new_dy > Ship.VELOCITY_MAX:
 new_dy = Ship.VELOCITY_MAX

I cap the ship's speed to avoid several potential problems, including the ship running into its own missiles.

Adding Ship 's die() Method

When the player's ship is destroyed, the game is over. I add a die() method to Ship that invokes Collider 's
die() method and the new Ship game_over() method:

 def die(self):
 """ Destroy ship and end the game. """
 self.game_over()
 Collider.die(self)

Adding Ship 's game_over() Method

I add the new game_over() method, which displays the message "Game Over" in the middle of the screen in big,

red letters for about five seconds. After that, the game ends and the graphics screen closes.

 def game_over(self):
 """ End the game. """
 # show 'ame Over' for 250 mainloop cycles (at 50 fps that's 5 seconds)
 games.Message(screen = self.screen,
 x = SCREEN_WIDTH/2, y = SCREEN_HEIGHT/2,
 text = "Game Over", size = 90, color = color.red,
 lifetime = 250, after_death = self.screen.quit)

The Game Class

The Game class is a new class that handles certain game-wide functionality such as creating the player's ship,

creating the object for the player's score, increasing the player's score, and creating new levels of asteroids.

The first thing I do in the class is define two class variables:

class Game(object):
 """ The game itself. """
 level = 1
 sound = games.load_sound("level.wav")

level is the current game level. sound is for the sound effect that indicates the player has reached a new level.

Next, I write the static method create_ship() , which creates a Ship object on the screen passed to screen at
the coordinates passed to x and y :

 def create_ship(screen, x, y):
 Game.ship = Ship(screen = screen, x = x, y = y)

 create_ship = staticmethod(create_ship)

Next, I define the static method create_score() , which creates two Game class variables, score_value and
score_text . score_value represents the value of the player's score. score_text is a Text object that is

displayed on the graphics screen to show the player's score.

 def create_score(screen):
 Game.score_value = 0
 Game.score_text = games.Text(screen = screen, x = 550, y = 20,
 text = "Score: "+ str(Game.score_value),
 size = 25, color = color.white)

 create_score = staticmethod(create_score)

Hopefully, the player's score won't remain zero for too long. So, I define another static method, increase score()

, which updates the player's score:

 def increase_score(points):
 """ Increase a player's score. """
 Game.score_value += points
 Game.score_text.set_text("Score: "+ str(Game.score_value))

 increase_score = staticmethod(increase_score)

I add to Game.score_value the number of points passed to the method. Then, I update Game.score_text so

that the new score is displayed.

The last method I define in the class is the static method next_level() , which creates the next level full of
asteroids. To begin the method, I define a constant, BUFFER , which represents the amount of space I need to
preserve around the player's ship when I create new asteroids. By setting the constant to 200 , I'm saying that any

new asteroid must be created at least 200 pixels away from the player's ship. I do this so that a new asteroid isn't
created right on top of the player's ship.

 def next_level(screen):
 """ Create the next level. """
 # amount of space around ship to preserve when creating asteroids
 BUFFER = 200

Next, I play the sound for advancing to the next level. I don't play the sound for the first level, which is the start of the
game.

 # play new level sound (except at first level)
 if Game.level > 1:
 Game.sound.play()

Next, I create the asteroids for the new level. Each level starts with the number of asteroids equal to the level
number. So, the first level starts with only one asteroid, the second with two, and so on.

 # create new asteroids
 for i in range(Game.level):
 # pick random x and y at least BUFFER distance from ship's x and y
 while True:

 x = random.randrange(SCREEN_WIDTH)
 y = random.randrange(SCREEN_HEIGHT)
 x_dist = abs(Game.ship.get_xpos() - x)
 y_dist = abs(Game.ship.get_ypos() - y)
 if x_dist + y_dist > BUFFER:
 break

 # create the asteroid
 Asteroid(screen = screen, x = x, y = y, size = 3)

The real work of the method is to generate random x-and y-coordinates that put a new asteroid at least BUFFER
pixels from the player's ship. I create an intentional infinite loop with while True . In the loop, I generate random x-

and y-coordinates for the next asteroid. Then, I calculate the distance between the randomly generated x-coordinate
and the x-coordinate of the player's ship by using the built-in abs() method, which returns the absolute value of a

number. I do the same for the y-coordinate. Then I add the two distances together. If the result is greater than
BUFFER , I've found a safe location for a new asteroid and break out of the loop. Otherwise, the loop continues and I

try with another randomly generated point on the graphics screen. Once I generate a new point that's far enough
away from the ship, I create a large asteroid at that location.

Finally, I display the level number the player has reached and increment the game level:

 # display level number
 games.Message(screen = screen,
 x = SCREEN_WIDTH / 2, y = 50,
 text = "Level "+ str(Game.level),
 size = 40, color = color.yellow, lifetime = 150)

 Game.level += 1

 next_level = staticmethod(next_level)

The main() Function

I replace the main part of the program with a new function, main() . I begin the function by loading the nebula

background image onto the graphics screen:

main
def main():
 my_screen = THE_SCREEN
 nebula_image = games.load_image("nebula.jpg")
 my_screen.set_background(nebula_image)

Then, I load and loop the game's theme music:

 games.load_music("theme.mid")
 games.play_music(-1)

By passing -1 to games.play_music() , I ensure the theme will loop forever, giving the game an never-ending

soundtrack.

Then, I cut all of the code that created the asteroids and the player's ship. I replace it with code that invokes Game 's

static methods to create the player's ship, the player's score, and the first level of asteroids:

 Game.create_ship(screen = my_screen, x = SCREEN_WIDTH / 2, y = SCREEN_HEIGHT / 2)
 Game.create_score(screen = my_screen)
 Game.next_level(screen = my_screen)

Starting the Program

Last, but not least, I kick off the whole program by calling main() :

start program
main()

Summary

In this chapter, you extended your knowledge of multimedia programming to include sound, music, and
animation. You learned how to load, play, and stop both sound and music files. And you saw how to create
animations. You also learned a technique for creating large programs by writing increasingly more complete,
working versions of the final product. You saw how to tackle one new objective at a time, building your way to
the full program. Finally, you saw all of this new information and these new techniques put to use in the
creation of a fast-paced, action game with sound effects, animation, and its own musical score.

Challenges
Improve the Astrocrash game by creating a new kind of deadly space debris. Give this new type of
debris some quality that differentiates it from the asteroids. For example, maybe the debris requires two
missile strikes to be destroyed.

1.

Write a version of the Simon Says game where a player has to repeat an ever-growing, random
sequence of colors and sounds, using the keyboard.

2.

Write your own version of another classic video game such as Space Invaders or Pac-Man.3.

Create your own programming challenge, but most importantly, never stop challenging yourself to learn.4.

Appendix A: LiveWires Reference

This appendix includes almost everything you ever wanted to know about the livewires package but were afraid to ask. I do

leave out a few details for simplicity. If you want the ultimate "documentation," you can always check out the source code of the
modules themselves. On a Windows machine, you should find the modules in the C:\Python22\Lib\site-

packages\livewires folder. And remember, as I said in Chapter 11 , this book uses a modified version of livewires .

games Module Classes

games is a module of the livewires package that contains a group of classes for game programming: Screen ,
Games_Object , Text , Message , Sprite , and Animation .

The Screen Class

A Screen object provides a region on which graphics objects can exist. You create a new Screen object with

Screen([width][, height])

Table A.1 describes the attributes defined in Screen .

width

Width of the graphics screen. The default value is 640 .

height

Height of the graphics screen. The default value is 480 .

Table A.1: Screen ATTRIBUTES

Attribute Description

Table A.2 describes useful Screen methods.

init_screen ([width] [, height])

Initializes a Screen object. Automatically invoked in Screen 's constructor. You would only directly invoke this method if you

subclassed Screen , to initialize a new object.

set_background(image)

Sets the background of a Screen object to image object image .

mouse_pos()

Returns the x- and y-coordinates of the mouse pointer on a Screen object as a two-element tuple.

mouse_visible(on)

Sets the mouse pointer to visible or invisible. on can be True or False .

is_pressed(key)

Returns a value that can be treated as True or False based on whether the key key is being pressed. You can use one of the many

key constants for key that games provides.

objects_overlapping(box)

Returns a list of all the objects whose bounding boxes overlap the bounding box box . A bounding box is a rectangle, which

completely encloses an image. A bounding box is represented as a four-element tuple. The first and second elements are the x- and
y-coordinates of the box's upper-left corner. The third and fourth elements are the box's width and height.

mainlooop([fps])

Starts the loop that draws all of the graphics objects associated with the Screen object. fps is the number of frames per second to

update the Screen object. The default value is 50 .

tick()

Executes every mainloop() cycle. It does nothing by default. You might override this method if you subclass Screen .

all_objects()

Returns a list of all objects associated with the Screen object.

clear()

Destroys all objects associated with the Screen object.

quit()

Stops mainloop() and destroys the Screen object and all objects associated with it.

Table A.2: Screen METHODS

Method Description

The Games_Object Class

Games_Object is an abstract class for graphics objects, so you shouldn't directly create instances of it. Instead, you should create
instances of its subclasses: Text , Message , Sprite , and Animation . When you instantiate an object of one of these
subclasses, the subclass passes values (directly or indirectly) to the Games_Object constructor, which uses the values to set

attributes for the new object. Table A.3 describes how these values are used.

screen

Determines the Screen object for the Games_Object object.

x

Determines the object's x-coordinate.

y

Determines the object's y-coordinate.

image

Determines the object's image.

a

Determines the object's angle of rotation. The default value is 0 .

dx

Determines the object's velocity in the x direction. The default value is 0 .

dy

Determines the object's velocity in the y direction. The default value is 0 .

da

Determines the object's angular velocity. The default value is 0 .

interval

Determines the object's tick() interval. The default value is 1 .

Table A.3: Games_Object' S CONSTRUCTOR PARAMETERS

Parameter Description

Many of the attributes set by Games_Object 's constructor are not meant to be directly accessed. As a result, most Games_Object

methods facilitate getting and setting these values. Table A.4 lists many of these important methods.

get_pos()

Returns the object's x- and y-coordinates as a two-element tuple.

get_xpos()

Returns the object's x-coordinate.

get_ypos()

Returns the object's y-coordinate.

get_left()

Returns the x-coordinate of the object's left edge.

get_right()

Returns the x-coordinate of the object's right edge.

get_top()

Returns the y-coordinate of the object's top edge.

get_bottom()

Returns the y-coordinate of the object's bottom edge.

get_bbox()

Returns the object's bounding box as a four-element tuple.

get_velocity()

Returns the object's x velocity and y velocity as a two-element tuple.

get_angular_speed()

Returns the object's angular velocity.

get_angle()

Returns the object's current angle in degrees.

set_left(x)

Moves the object horizontally so that its left edge is at the new coordinate x .

set_right(x)

Moves the object horizontally so that its right edge is at the new coordinate x .

set_top(y)

Moves the object vertically so that its top edge is at the new coordinate y .

set_bottom(y)

Moves the object vertically so that its bottom edge is at the new coordinate y .

set_velocity(dx ,dy)

Sets the object's x velocity to dx and its y velocity to dy .

set_angular_speed(da)

Sets the object's angular velocity to da .

move_to(x ,y)

Moves the object to the new coordinates (x ,y).

move_by(dx ,dy)

Moves the object by dx pixels in the x direction and dy pixels in the y direction.

rotate_by(angle)

Rotates the object by angle degrees.

rotate_to(angle)

Rotates the object to the angle angle .

overlaps(other)

Returns a value that can be treated as True if the object overlaps other . Otherwise, it returns a value that can be treated as False .

overlapping_objects()

Returns a list of objects that overlap the object.

tick()

Executes every interval mainloop() cycles. It does nothing by default. You might override this method in subclasses of

Games_Object .

destroy()

Removes all of the associated Screen object's references to an object.

Table A.4: Games_Object METHODS

Method Description

The Text Class

The Text class is a subclass of Games_Object . A Text object represents text on a Screen object. You create a new Text

object with

Text(screen, x, y, text, size, color [, a] [, dx] [, dy][, da] [, interval])

Text defines additional attributes, which are listed in Table A5 .

text

Text to be placed on the screen.

size

Font size of the text.

color

Color of the text.

Table A.5: Text ATTRIBUTES

Attribute Description

The Text class uses text , size , and color to create an image object for the text that is displayed.

Text defines additional methods, which are described in Table A.6

init_text(screen, x, y,

text, size, color [, a]

[, dx] [, dy][, da]

[, interval])

Initializes a Text object. Automatically invoked in Text 's constructor. You would only directly invoke this method if you subclassed

Text , to initialize a new object.

set_text(text)

Sets the object's text attribute to the string text .

get_text()

Returns the object's text attribute.

Table A.6: Text METHODS

Method Description

The Message Class

The Message class is a subclass of Text . A Message object represents a message on the graphics screen that disappears after a
set period of time. A Message object can also specify an event to occur after it disappears. You create a new Message object with

Message(screen, x, y, text, size, color [, a] [, dx] [, dy][, da] [, lifetime], [, afterdeath])

Message defines additional attributes, which I list in Table A.7 .

lifetime

Amount of time, in mainloop() cycles, the object exists before it disappears. A value of 0 means the object will never disappear. The

default value is 0 .

afterdeath

Callable code to execute after the object disappears, such as a function or method. The default value is None .

Table A.7: Message ATTRIBUTES

Attribute Description

Message defines an important additional method, init_message(screen , x , y , text , size , color [, a] [,

dx] [, dy][, da] [, lifetime], [, afterdeath]) , which initializes a Message object. This method is
automatically invoked in Message 's constructor. You would only directly invoke this method if you subclassed Message , to initialize

a new object.

The Sprite Class

The Sprite class is a subclass of Games_Object , useful for creating an object with an image from a graphics file. You create a
new Sprite object with

Sprite(screen, x, y, image [, a] [, dx] [, dy][, da] [, interval])

Sprite doesn't define additional attributes, but it does define an important additional method, init_sprite (screen , x , y , image

[, a] [, dx] [, dy][, da] [, interval]), which initializes a Sprite object. This method is automatically invoked in Sprite 's constructor.
You directly invoke this method when you subclass Sprite , to initialize a new object.

The Animation Class

The Animation class is a subclass of Sprite . Animation objects are animations—a series of images shown in succession. You
create a new Animation object with

Animation(screen, x, y, images, [, a] [, dx] [, dy] [, da] [, n_repeats] [, repeat_interval])

Animation defines additional attributes, which are described in Table A.8

images

List of either image objects or file names as strings from which to create image objects.

n_repeats

Number of times the complete animation cycle should repeat. A value of 0 means repeat forever. The default value is 0 .

repeat_interval

Object's tick() interval. The default value is 1 .

Table A.8: Animation ATTRIBUTES

Attribute Description

Animation defines an important additional method, init_animation(screen , x , y , images , [, a] [, dx] [,

dy] [, da] [, n_repeats] [, repeat_interval]) , which initializes an Animation object. This method is
automatically invoked in Animation 's constructor. You directly invoke this method when you subclass Animation , to initialize a

new object.

games Module functions

The games module defines functions for working with images, sound, and music, which I list in Table A.9.

Table A.9: games FUNCTIONS

Function Description

load_image(file_name [,

transparent])

Returns an image object loaded from the file named in the
string file_name and sets transparency if transparent is
equal to a value that can be treated as True. The default

value of transparent is a value that can be treated as
True.

scale_image(image, x_scale

[, y_scale])

Returns a new image object scaled in the x direction by a
factor of x_scale and in the y direction by a factor of

y_scale. If no value is passed to y_scale, then the image

is scaled by a factor of x_scale in both directions. The

original image image is unchanged.

load_sound(file_name) Returns a sound object from a WAV file named in the string
file_name.

load_music(file_name) Loads music from the file named in the string file_name.

play_music([loop]) Plays the current music loop number of times in addition to
its initial playing. A value of -1 means loop forever. The

default value of loop is 0.

fade_out_music(millisec) Fades out the current music in millisec milliseconds.

stop_music() Stops the current music.

The sound object returned by load_sound() has several methods available to it, which are listed in Table

A.10.

Table A.10: SOUND OBJECT METHODS

Method Description

play([loop]) Plays the sound loop number of times in addition to its initial playing. A

value of -1 means loop forever. The default value of loop is 0.

fadeout(millisec) Fades out the sound in millisec milliseconds.

stop() Stops the sound on all channels.

games Module Constants

The games module defines a group of constants for keyboard keys, which I list in Table A.11.

Table A.11: games KEY CONSTANTS

Constant Key

K_BACKSPACE Backspace

K_TAB Tab

K_RETURN Return

K_PAUSE Pause

K_ESCAPE Escape

K_SPACE Spacebar

K_EXCLAIM Exclamation Point

K_QUOTEDBL Double Quote

K_HASH Hash Mark

K_DOLLAR Dollar Sign

K_AMPERSAND Ampersand

K_QUOTE Single Quote

K_LEFTPAREN Left Parenthesis

K_RIGHTPAREN Right Parenthesis

K_ASTERISK Asterisk

K_PLUS Plus Sign

K_COMMA Comma

K_MINUS Minus Sign

K_PERIOD Period

K_SLASH Forward Slash

K_0 0

K_1 1

K_2 2

K_3 3

K_4 4

K_5 5

K_6 6

Constant Key

K_7 7

K_8 8

K_9 9

K_COLON Colon

K_SEMICOLON Semicolon

K_LESS Less-than Sign

K_EQUALS Equals Sign

K_GREATER Greater-than Sign

K_QUESTION Question Mark

K_AT At Symbol

K_LEFTBRACKET Left Bracket

K_BACKSLASH Backslash

K_RIGHTBRACKET Right Bracket

K_CARET Caret

K_UNDERSCORE Underscore

K_a A

K_b B

K_c C

K_d D

K_e E

K_f F

K_g G

K_h H

K_i I

K_j J

K_k K

K_l L

K_m M

K_n N

K_o O

K_p P

K_q Q

K_7 7

K_8 8

K_9 9

K_COLON Colon

K_SEMICOLON Semicolon

K_LESS Less-than Sign

K_EQUALS Equals Sign

K_GREATER Greater-than Sign

K_QUESTION Question Mark

K_AT At Symbol

K_LEFTBRACKET Left Bracket

K_BACKSLASH Backslash

K_RIGHTBRACKET Right Bracket

K_CARET Caret

K_UNDERSCORE Underscore

K_a A

K_b B

K_c C

K_d D

K_e E

K_f F

K_g G

K_h H

K_i I

K_j J

K_k K

K_l L

K_m M

K_n N

K_o O

K_p P

K_q Q

Constant Key

K_r R

K_s S

K_t T

K_u U

K_v V

K_w W

K_x X

K_y Y

K_z Z

K_DELETE Delete

K_KP0 Keypad 0

K_KP1 Keypad 1

K_KP2 Keypad 2

K_KP3 Keypad 3

K_KP4 Keypad 4

K_KP5 Keypad 5

K_KP6 Keypad 6

K_KP7 Keypad 7

K_KP8 Keypad 8

K_KP9 Keypad 9

K_KP_PERIOD Keypad Period

K_KP_DIVIDE Keypad Divide

K_KP_MULTIPLY Keypad Multiply

K_KP_MINUS Keypad Minus

K_KP_PLUS Keypad Plus

K_KP_ENTER Keypad Enter

K_KP_EQUALS Keypad Equals

K_UP Up Arrow

K_DOWN Down Arrow

K_RIGHT Right Arrow

K_LEFT Left Arrow

K_INSERT Insert

K_r R

K_s S

K_t T

K_u U

K_v V

K_w W

K_x X

K_y Y

K_z Z

K_DELETE Delete

K_KP0 Keypad 0

K_KP1 Keypad 1

K_KP2 Keypad 2

K_KP3 Keypad 3

K_KP4 Keypad 4

K_KP5 Keypad 5

K_KP6 Keypad 6

K_KP7 Keypad 7

K_KP8 Keypad 8

K_KP9 Keypad 9

K_KP_PERIOD Keypad Period

K_KP_DIVIDE Keypad Divide

K_KP_MULTIPLY Keypad Multiply

K_KP_MINUS Keypad Minus

K_KP_PLUS Keypad Plus

K_KP_ENTER Keypad Enter

K_KP_EQUALS Keypad Equals

K_UP Up Arrow

K_DOWN Down Arrow

K_RIGHT Right Arrow

K_LEFT Left Arrow

K_INSERT Insert

Constant Key

K_HOME Home

K_END End

K_PAGEUP Page Up

K_PAGEDOWN Page Down

K_F1 F1

K_F2 F2

K_F3 F3

K_F4 F4

K_F5 F5

K_F6 F6

K_F7 F7

K_F8 F8

K_F9 F9

K_F10 F10

K_F11 F11

K_F12 F12

K_NUMLOCK Num Lock

K_CAPSLOCK Caps Lock

K_SCROLLOCK Scroll Lock

K_RSHIFT Right Shift

K_LSHIFT Left Shift

K_RCTRL Right Ctrl

K_LCTRL Left Ctrl

K_RALT Right Alt

K_LALT Left Alt

K_LSUPER Left Windows

K_RSUPER Right Windows

K_HELP Help

K_PRINT Print Screen

K_BREAK Break

K_HOME Home

K_END End

K_PAGEUP Page Up

K_PAGEDOWN Page Down

K_F1 F1

K_F2 F2

K_F3 F3

K_F4 F4

K_F5 F5

K_F6 F6

K_F7 F7

K_F8 F8

K_F9 F9

K_F10 F10

K_F11 F11

K_F12 F12

K_NUMLOCK Num Lock

K_CAPSLOCK Caps Lock

K_SCROLLOCK Scroll Lock

K_RSHIFT Right Shift

K_LSHIFT Left Shift

K_RCTRL Right Ctrl

K_LCTRL Left Ctrl

K_RALT Right Alt

K_LALT Left Alt

K_LSUPER Left Windows

K_RSUPER Right Windows

K_HELP Help

K_PRINT Print Screen

K_BREAK Break

color Module Constants

The color module provides some constants that you can use anywhere the games module wants a color.

The constants are

red

green

blue

black

white

dark_red

dark_green

dark_blue

dark_gray

gray

light_gray

yellow

brown

pink

purple

Index

Symbols
+ (addition) operator, 27, 31, 120

\ (backslash), 20, 23–24

/ (division) operator, 31

== (equal to) operator, 59

/ (forward slash), 220

> (greater than) operator, 59

< (less than) operator, 59

% (modulus) operator, 31

* (multiplication) operator, 31

!= (not equal to) operator, 59

(number sign symbol), 13

* (repetition) operator, 28

- (subtraction) operator, 31

Index

A
a file access mode, 202

a+ file access mode, 202

abs() method, 420

abstract classes, 350

abstraction, functions, 168

access
file access modes, 202
methods, 250
random, 100
sequential, 99
shelve access modes, 212

add() method, 267

addition (+) operator, 27, 31, 120

afterdeath attribute, Message class, 429

algorithms
defined, 84
pseudocode, 84
stepwise refinement, 84–85

Alien Blaster program example, 261–263

all_objects() method, 343, 425

alphabetic keystrokes, 381

and logical operator, 81–82

Animation class, 384–387, 429

append() function, 136, 138

Application class, 312–313

arguments
exception arguments, 218
keyword, 176
positional, 175–176

art, ASCII Art, 21

ASCII Art, 21

assignment operators, 46–47

assignment statement, 34

asteroids, Astrocrash game example, 394–397

Astrocrash game example, 378
asteroids, 394–397
collisions, handling, 407–410
explosions, 410–414

game assets, 394
game classes, 394
game features, 393
missiles, firing, 402–407
ship movement, 399–402
ship rotation, 397–399

Attribute Critter program example, 235–237

attributes
accessing, 238
afterdeath, Message class, 429
Attribute Critter program example, 235–237
class attributes, 239

accessing, 241–242
creating, 241

color, Text class, 428
defined, 229
height, Screen class, 424
images, Animation class, 430
initializing, 237–238
lifetime, Message class, 429
n_repeats, Animation class, 430
private, 248

accessing, 245–246
creating, 245
defined, 244

public, 244
repeat_interval, Animation class, 430
size, Text class, 428
text, Text class, 428
total, 239
width, Screen class, 424

augmented assignment operators, 46–47

Index

B
background images, 343–345

backslash (\), 20, 23–24

backspace (b), 25

bell character, 23

Big Score program example, 346–348

Birthday Wishes program example, 174–175

Blackjack program example
additional_cards() method, 295
BJ_Card class, 290
BJ_Dealer class, 293–294
BJ_Deck class, 290–291
BJ_Game class, 294
BJ_Hand class, 291–292
BJ_Player class, 293
bust() method, 295
cards module, 285–287, 289
classes, types of, 287
games module, 289
init() method, 294
instructions, 260
main() function, 297
play() method, 296–297
still_playing property, 295

blank lines, 14

blocks, 60–61

break statement, 77–78

BUFFER class, 403

buttons
check, 322–326
click count, 314–316
creating, 310
radio, 326–329

Index

C
c shelve access mode, 212

capitalize() method, 41

car value, 45–46

case-sensitivity
commands, 9
variables, 35

CHAR value, 320

characters, reading
from lines, 203–204
from text files, 202–203

check buttons, 322–326

check_collide() method, 365

class attributes, 239
accessing, 241–242
creating, 241

classes
abstract, 350
Animation, 384–387, 429
Application, 312–313
Astrocrash game example, 394
BUFFER, 403
creating GUI using, 311–314
defining, 231–232
derived, 271–274, 279
Game, 417–420
Games_Object, 350

constructor parameters, 426
methods, list of, 351, 426–427

imported, 284
Message, 342, 428–429
new-style, 249
old-style, 249
Screen, 342

attributes, 424
height, 424
methods, list of, 343, 425

Sprite, 342, 429
StringVar, 328
superclass, 277
Text, 342, 428
VELOCITY_MAX, 416

clause

else, 218
except, 214–215

clear() method, 266, 343, 425

Click Counter program example, 314–316

client functions, 243

close() function, 202, 212

closing text files, 201–202

code. See also programs
defined, 10
escape sequences, 22–23
logical errors, 42–43
quotes, with strings, 19
self-documenting, 35
string methods, 38–39
strings, Silly String programs, 26
triple-quoted strings, 21

collision detection, 363–366, 407–410

color attribute, Text class, 428

color coding, 10

color module, 347, 436

column parameter, grid() method, 318

columnspan parameter, grid() method, 318

combining objects, 264–268

commands. See also functions; methods
case-sensitivity, 9
del, 133–134
Edit menu, Run Script, 11
File menu

New Window, 11
Save As, 11

print, 9

comments
(number sign symbol), 13
color-coded, 13
defined, 13
initial, 48
overview, 13–14

comparison operators, 59–60

compound conditions, 78

concatenating
lists, 132
strings, 27
tuples, 120

conditions
compound, 78
defined, 59

false, 72–73
tuples as, 115
values as, 73–75

configure() method, 310

console windows, 2

constants
color module, 436
creating, 106–107, 156–159
defined, 107
global, 342
key, list of, 432–436

Constructor Critter program example, 233–234

constructors
creating, 234–235
defined, 233

continue statement, 77–78

coordinate systems, graphics, 345–346

count() function, 138

Counter program example, 94–95

counting
by fives, 96–97
forward, 96

cPickle.load() function, 211

Craps Roller program example, 55

create_score() method, 418

create_widgets() method, 312–313

Critter Caretaker program example
Constructor method, 253–254
Critter class, 253
eat() method, 255
main() function, 256
menu system, creating, 256–257
mood property, 254–255
overview, 228–229
_pass_time() method, 254
play() method, 255–256
talk() method, 255

cryptography, 58

Index

D
data, storing in files, 208–213

database management system (DBMS), 80

DBMS (database management system), 80

default parameter values, 174, 176–178

del command, 133–134

delete() method, 321

deleting
items from dictionaries, 153–154
list elements, 133–134
slices from lists, 134

derived classes, 271–274, 279

destroy() method, 351

dialog boxes, Not Saved, 12

dictionaries
considerations for, 154–155
creating, 148
Geek Translator program example, 147
key-value pair

adding, 152
deleting, 153–154
replacing, 153

keys
retrieving values using, 149
testing for, 150

methods for, 155
new terms, adding, 152
real-life, 149

die() method, 408–409, 417

display() function, 170

division (/) operator, 31

docstring (document string), 167–168

document string (docstring), 167–168

documenting functions, 167–168

Index

E
Edit menu commands, Run Script, 11

elements
nested, 141–142
tuples with, 115

else clause, 218

else statement, 62–63

encapsulation, 171–172, 243–244

end points, slices, 111

equal to (==) operator, 59

errors
logical, 42–43
syntax, 10

escape sequences, 22–23, 25

event-driven programming, 302–304

event handlers, 303, 314–316

except clause, 214–215

exception handling, 213–218

Exclusive Network program example, 78–80

explosion images, animation, 384–386, 410–414

expressions, 9–10

Index

F
fadeout() method, 431

fade_out_music() function, 431

false conditions, 72–73

false values, 74, 76–77

Fancy Credits program, 22

File menu commands
New Window, 11
Save As, 11

files
access modes, 202
methods, list of, 208
storing data in, 208–213
text files

looping through, 205
opening and closing, 201–202
plain text files, 198
Read It program example, 199–201
reading characters from, 202–203
writing to, 205–208

Finicky Counter program example, 75–76

flip() method, 278

float() function, 46

floating-point numbers, 30–31, 50

for loops, 92–94

forward slash (/), 220

frames, creating, 308

from statement, 341

functions. See also methods
abstraction, 168
append(), 136, 138
client of, 243
close(), 202, 212
count(), 138
cPickle.load(), 211
defining, 167
display(), 170
documenting, 167–168
encapsulation, 171–172
fade_out_music(), 431
float(), 46

function definition, 167
imported, 284
index(), 138
Instructions program example, 165–167
int(), 45–46, 87
len(), 98

lists, 131
tuples, 118

load_image(), 344–345, 431
load_music(), 431
load_sound(), 388–389, 431
main(), 222–224, 420–421
mainloop(), 306, 425
nesting, 45
next_block(), 221–222, 224
next_line(), 221
open(), 201, 211
open_file(), 220–221
play_music(), 431
pop(), 138
programmer-created, 168
property(), 251–252
random.choice(), 159
random.randrange(), 103
randrange(), 56–57, 284
range(), 94, 96–97
raw_input(), 36–37, 46, 48
read(), 202–204, 208
readline(), 203–204, 208
readlines(), 204–205, 207–208
receiving and returning values in, 171–172
remove(), 137–138
reverse(), 138, 373
scale_image(), 431
sequence operators as, 97
software reuse, 176
sort(), 137–138
staticmethod(), 243
stop_music(), 431
str(), 46, 239, 265–266, 280
sync(), 212
sys.exit(), 220
welcome(), 222
write(), 206–208
writelines(), 207–208

Index

G
Game class, 417–420

game examples. See programs

Game Over 2.0 program example, 18–19

Game Over program example, 2

game_over() method, 371, 417

Games_Object class, 350
constructor parameters, 426
methods, list of, 351, 426–427

get() method, 150–151, 250
dictionaries, 155
radio buttons, 329
text values, 320

get_angle() method, 427

get_angular_speed() method, 427

get_bbox() method, 426

get_bottom() method, 351, 426

get_left() method, 351, 368, 426

get_pos() method, 351, 426

get_right() method, 351, 368, 426

get_text() method, 428

get_top() method, 351, 426

get_value() method, 290

get_velocity() method, 351, 426

get_xpos() method, 351, 426

get_ypos() method, 351, 426

global constants, 342

Global Reach program example, 179–180

global variables, 181–182

Granted or Denied program example, 61–62

graphical user interface. See GUI

graphics
background images, 343–345
coordinate systems, 345–346
graphics window, creating, 340–343
messages, displaying, 348–350
pixels, 342
text, displaying, 346–348

greater than operator, 59

greater than or equal to operator, 59

Geek Translator program example, 147

Greeter program, 33, 36

grid() method, 308
column parameter, 318
columnspan parameter, 318
row parameter, 318
sticky parameter, 319

Guess My Number game example
congratulating players, 88
description of, 54
game exit, 88
game explanation, 87
guessing loop, creating, 87–88
initial comment block, creating, 86–87
initial values, setting, 87
program plan, 85–86
random numbers, 54–57, 87

GUI (graphical user interface), 307–308
buttons, 309–311

check, 322–326
click count, 314–316
creating, 310
radio, 326–329

collision detection, 363–366
creating, using classes, 311–314
event-driven programming, 302–304
event handlers, 314–316
mouse input, 360–363
overview, 301–302
root window, 304–306
screen boundaries, 358–360
sprites

creating, 356
init_sprite() method, 353
loading images from, 354–355
moving, 356–358
overview, 350–351
uses for, 352

text-based widgets, 316–321
Tkinter toolkit, 302

Index

H
Handle It program example, 214

handle_collide() method, 365

handling exceptions, 213–218

Hangman example, 128–129
constants, creating, 156–159
end of game, 161
player's guesses, 160
program setup, 155–156
variables, initializing, 159
wrong letters guessed, 160

has_key() method, 155

height attribute, Screen class, 424

height parameter, 320

Hero's Inventory program example, 113–114

high-level languages, 3

High Scores program example, 134–135

Index

I
IDLE (integrated development environment)

interactive mode, 8–10
Not Saved dialog box, 12
script mode, 11–12

if-elif-else statement, 63–66

if-else statement, 61–62

if statement, 57–59, 61

images
background, 343–345
load_image() function, 344–345
loading from sprites, 354–355

images attribute, Animation class, 430

immutable sequences, 104–105

immutable tuples, 120

import statement, random numbers, 55–56

imported classes, 284

imported functions, 284

importing modules, 283

in operator, 99
lists, 131
tuples with, 118

indentation, 60–61

index() function, 138

IndexError exception type, 215

indexing
lists, 131
tuples, 118–119

infinite loops, 69–71

inheritance, 268–269

init() method, 234–235, 294

initialization methods, 234

initializing attributes, 237–238

init_screen() method, 425

init_sprite() method, 353

init_text() method, 428

input, raw_input() function, 36–37, 48

installing Python, 6

instances, 229

instantiated objects, 229, 232

Instructions program example, 165–167

int() function, 45–46, 87

integers
converting strings to, 45–46
defined, 30
mathematical operators as, 31

interactive mode, IDLE, 8–10

invoking methods, 233

invoking static methods, 243

IOError exception type, 215

is_pressed() method
keystrokes, 381–382
Screen class, 425

items() method, 155

Index

K
key-value pair, dictionaries

adding, 152
deleting, 153–154
replacing, 153

keyboards
key constants, list of, 432–436
reading

alphabetic keys, 381
is_pressed() method, 381–382
keystrokes, testing for, 381–382
numeric keys, 381
Read Key program example, 379–382

KeyError exception type, 215

keys, dictionaries, 149

keys() method, 155

keystrokes, reading, 381–382

keyword arguments, positional parameters and, 176

Index

L
labels, 307–308

languages, high-level, 3

len() function, 98
lists with, 131
tuples, 118

less than operator, 59

less than or equal to operator, 59

levels, adding, 415–416

lifetime attribute, Message class, 429

line-continuation character, 20

lines
blank, 14
new, suppressing, 27–28
reading characters from, 203–204
reading into lists, 204–205

lists
append() function, 136
concatenating, 132
creating, 130
defined, 129
deleting slices from, 134
elements, deleting, 133–134
High Scores program example, 134–135
indexing, 131
len() function with, 131
methods for, 138
mutable, 132
new list slice, 133
in operator with, 131
reading lines into, 204–205
remove() function, 137
reverse() function, 138
shared references, 144–147
slicing, 131
sort() function, 137

livewires modules, 338–339

load_images() function, 344–345, 431

loading
music, 391
sound, 388–389

load_music() function, 431

load_sound() function, 388–389, 431

logical errors, 42–43

logical operators
and, 81–82
not, 81
or, 83

Longevity program example, 316–317

looping
music, 392
sound, 390

loops
infinite, 69–71
for loops, 92–94
Loopy String program example, 93
while, 67–69, 92

Loopy String program example, 93

Losing Battle program, 70–71

lower() method, 40–41

Index

M
Mad Lib program example, 300–301

create_widgets() method, 330–332
tell_story() method, 333–334
Tkinter module, 330

mailing lists, Python Tutor, 5

main() function, 222–224, 420–421

mainloop() function, 306, 343, 425

Maitre D' program example, 73–74

mathematical operators, 31–32

menus, displaying, 135–136

Message Analyzer program example, 98

Message class, 342, 428–429

messages
displaying, 348–350
receiving, 264
sending, 263

methods. See also functions
abs(), 420
access methods, 250
add(), 267
all_objects(), 343, 425
capitalize(), 41
check_collide(), 365
clear(), 266, 343, 425
configure(), 310
create_score(), 418
create_widgets(), 312–313
defined, 229
defining, 232
delete(), 321
destroy(), 351
for dictionaries, 155
die(), 408–409, 417
fadeout(), 431
flip(), 278
game_over(), 371, 417
get(), 150–151, 250

dictionaries, 155
radio buttons, 329
text values, 320

get_bbox(), 426
get_bottom(), 351, 426

get_left(), 351, 368, 426
get_pos(), 351, 426
get_right(), 351, 368, 426
get_text(), 428
get_top(), 351, 426
get_value(), 290
get_velocity(), 351, 426
get_xpos(), 351, 426
get_ypos(), 351, 426
grid(), 308

column parameter, 318
columnspan parameter, 318
row parameter, 318
sticky parameter, 319

handle_collide(), 365
has_key(), 155
init(), 234–235, 294
initialization, 234
init_screen(), 425
init_sprite(), 353
init_text(), 428
invoking, 233
ispressed(), 381, 425
items(), 155
keys(), 155
for lists, 138
lower(), 40–41
mainloop(), 343
mouse_pos(), 343, 425
mouse_visible(), 343, 363, 425
moved(), 359–360, 368
move_to(), 351
next_level(), 419
objects_overlapping(), 425
overlapping_objects(), 351, 365
overriding, 275–279
play(), 390, 431
populate(), 290
private

accessing, 247–248
creating, 246–247
defined, 244

public, 244
quit(), 343, 425
replace(), 40–41
reveal(), 319
rotate_by(), 383
set(), 251
set_background(), 343, 425
set_bottom(), 351
set_left(), 351, 368
set_right(), 351

set_text(), 428
set_top(), 351
set_velocity(), 351, 360
static methods, 240

creating, 242–243
invoking, 243

status(), 242–243
stop(), 390–391, 431
strip(), 41
swapcase(), 41
tick(), 425
title(), 40–41
update_count(), 315
update_text(), 324
upper(), 39, 41
values(), 155

missiles, Astrocrash game example, 402–405

modules
color, 347, 432–436
creating, 280–281
defined, 56
importing, 283

 livewires, 338–339
pygame, 338–339
random, 364
writing, 281–283

modulus (%) operator, 31

Mood Computer program example, 63–66

mouse input, 360–363

mouse_pos() method, 343, 425

mouse_visible() method, 343, 363, 425

moved() method, 359–360, 368

movement
Astrocrash game example, 399–402
sprites, 356–358

move_to() method, 351

Movie Chooser program example, 322–324

Moving Pan program example, 361–363

multiple inheritance, 269

multiplication (*) operator, 31

music. See also sound
loading, 391
looping, 392
playing, 391
stopping, 392

mutable lists, 132

mutable sequences, 104–105

Index

N
n shelve access mode, 212

namespaces, 178

naming variables, 34–35

negative position numbers, 102–103

nested sequences
accessing elements in, 141–142
creating, 140–141
defined, 139

nested tuples, 143–144

nesting functions, 45

new lines, suppressing, 27–28

new-style classes, 249

New Window command (File menu), 11

newline character (n), 24–25, 204

next_block() function, 221–222, 224

next_level() method, 419

next_line() function, 221

No Vowels program example, 105–106

NONE value, 110, 320

not equal to (!=) operator, 59

not logical operator, 81

Not Saved dialog box, 12

n_repeats attribute, Animation class, 430

number sign symbol (#), 13

numbers
floating-point, 30–31, 50
integers, 30–31
mathematical operators, 31–32
negative position, 102–103
positive position, 101
random generation, 103–104
true division, 31
Word Problems program, 28–30

numeric keystrokes, 381

Index

O
object-oriented programming (OOP)

attributes, 229
inheritance, 268–269
overview, 4, 229

objects
combining, 264–268
encapsulation, 243–244
instantiated, 229, 232
multiple, creating, 235
printing, 239

objects_overlapping() method, 425

old-style classes, 249

OOP (object-oriented programming)
attributes, 229
inheritance, 268–269
overview, 4, 229

open() function, 201, 211

open_file() function, 220–221

opening text files, 201–202

operator overloading, 43

operators
in, 99

lists, 131
tuples with, 118

addition (+), 27, 120
augmented assignment, 46–47
comparison, 59–60
logical, 81–83
mathematical, 31–32
repetition (*), 28

or logical operator, 83

overlapping_objects() method, 351, 365

overriding methods, 275–279

Index

P
packages, defined, 338

parameters
column, grid() method, 318
columnspan, grid() method, 318
default parameter values, 174, 176–178
height, 320
positional

defined, 174
keyword arguments and, 176
positional arguments and, 175–176

receiving information through, 170
row, grid() method, 318
sticky, grid() method, 319
width, 320
wrap, 320

Password program example, 57–59

passwords, reveal() method, 319

pickling, 209–213

pixels, 342

Pizza Panic program example, 338–339

Pizza Slicer program example, 109–110

planned programs, 83–84

platform independence, 5

play() method, 390, 431

playing
music, 391
sound, 389–390

Playing Cards program example, 264–268

play_music() function, 431

polymorphism, 280

pop() function, 138

populate() method, 290

positional parameters
defined, 174
keyword arguments and, 176
positional arguments and, 175–176

positive position numbers, 101

print command, 9

printing

objects, 239
tuples, 115–116

private attributes, 248
accessing, 245–246
creating, 245
defined, 244

Private Critter program example, 244

private methods, 248
accessing, 247–248
creating, 246–247
defined, 244

programmer-defined functions, 168

programming, event-driven, 302–304

programs. See also code, 19
Alien Blaster, 261–263
Astrocrash game, 378

asteroids, 394–397
collisions, handling, 407–410
explosions, 410–414
game assets, 394
game classes, 394
game features, 393
missiles, firing, 402–407
ship movement, 399–402
ship rotation, 397–399

Attribute Critter, 235–237
Background Image, 344–345
Big Score, 346–348
Birthday Wishes, 174–175
Blackjack

additional_cards() method, 295
BJ_Card class, 290
BJ_Dealer class, 293–294
BJ_Deck class, 290–291
BJ_Game class, 294
BJ_Hand class, 291–292
BJ_Player class, 293
bust() method, 295
cards module, 285–287
classes, types of, 287
games module, 289
init() method, 294
instructions, 260
main() function, 297
play() method, 296–297
still_playing property, 295

Click Counter, 314–316
Constructor Critter, 233–234
Counter program example, 94–95
Craps Roller program, 55

Critter Caretaker
Constructor method, 253–254
Critter class, 253
eat() method, 255
main() function, 256
menu system, creating, 256–257
mood property, 254–255
overview, 228–229
_pass_time() method, 254
play() method, 255–256
talk() method, 255

Exclusive Network, 78–80
Fancy Credits, 22
Finicky Counter, 75–76
Game Over, 2
Game Over 2.0, 18–19
Geek Translator, 147
Global Reach, 179–180
Granted or Denied, 61–62
Greeter program, 33, 36
Guess My Number game

congratulating players, 88
description of, 54
game exit, 88
game explanation, 87
guessing loop, creating, 87–88
initial comment block, creating, 86–87
initial values, setting, 87
program plan, 85–86
random numbers, 87

GUI program, 304–306
Handle It, 214
Hangman, 128–129

constants, creating, 156–159
end of game, 161
player's guesses, 160
program setup, 155–156
variables, initializing, 159
wrong letters guessed, 160

Hero's Inventory, 113–114
High Scores, 134–135
Instructions, 165–167
Labeler, 307–308
Lazy Buttons, 309–310
Longevity, 316–317
Loopy String, 93
Losing Battle, 70–71
Mad Lib, 300–301

create_widgets() method, 330–332
tell_story() method, 333–334
Tkinter module, 330

Maitre D', 73–74

Message Analyzer, 98
Mood Computer, 63–66
Movie Chooser, 322–324
Moving Pan, 361–363
No Vowels, 105–106
Password, 57–59
Pizza Panic, 338–339
Pizza Slicer, 109–110
planning, 83–84
Playing Cards, 264–268
Private Critter, 244
Quotation Manipulation, 38–39
Random Access, 100–101
Read It, 199–201
Read Key, 379–382
Receive and Return, 169–170
Rotate Sprite, 383
saving, 11
Silly Strings, 26
Simple Game, 281
Three-Year-Old Simulator, 67–68
Tic-Tac-Toe

ask_number() function, 187
ask_yes_no() function, 187
computer_move() function, 191–193
congrat_winner() function, 194
data representation, 184
display_board() function, 188
display_instruct() function, 186–187
functions, creating list of, 184
human_move() function, 190–191
legal_moves() function, 189
main() function, 194
new_board() function, 188
next_turn() function, 194
overview, 164
pieces() function, 187–188
program setup, 186
pseudocode, writing, 183
winner() function, 189–190

tracing, 71–72
Trivia Challenge

answers, checking and retrieving, 223–224
data file layout, 219–220
game ending, 224
game setup, 222–223
next_block() function, 221–222
next_line() function, 221
open_file() function, 220–221
overview, 198
questions, asking, 223

Useless Trivia, 18

Word Jumble game, 92
congratulations, 124
empty jumble string, 122
end of game, 124
loops, setting up, 122
player's guesses, 124
program setup, 121
welcoming players, 123

Word Problems, 28–30

properties, defined, 249

property() function, 251–252

pseudocode
algorithms, 84
Tic-Tac-Toe game example, 183

pseudorandom numbers, 54

public attributes, 244

public methods, 244

pygame modules, 338–339

Python
installing, 6
overview, 3–5
Tutor mailing list, 5
Web site, 6–7

Index

Q
quit() method, 343, 425

Quotation Manipulation program, 38–39

quotes
inserting, 24
inside strings, 20
with strings, 18–19
triple-quoted strings, 21

Index

R
r file access mode, 202

r+ file access mode, 202

r shelve access mode, 212

radio buttons, 326–329

random access, 100

Random Access program example, 100–101

random module, 364

random numbers, 56
generating, 103–104
Guess My Number game example, 87
import statement, 55–56
pseudorandom, 54
randrange() function, 56–57

random.choice() function, 159

random.randrange() function, 103

randrange() function, 56–57, 284

range() function, 94, 96–97

raw_input() function, 36–37, 46, 48

read() function, 202–204, 208

Read It program example, 199–201

Read Key program example, 379–382

reading
characters

from lines, 203–204
from text files, 202–203

lines into lists, 204–205

readline() function, 203–204, 208

readlines() function, 204–205, 207–208

Receive and Return program example, 169–170

receiving messages, 264

remove() function, 137–138

repeating strings, 28, 50

repeat_interval attribute, Animation class, 430

repetition (*) operator, 28

replace() method, 40–41

return statements, 171

reveal() method, 319

reverse() function, 138, 373

root window, GUI elements
creating, 306
editing, 306
event loops, entering, 306
overview, 304–305

Rotate Sprite program, 383

rotate_by() method, 383

rotating sprites, 382–384, 397–399

row parameter, grid() method, 318

Run Script command (Edit menu), 11

Index

S
Save As command (File menu), 11

saving programs, 11

scale_image() function, 431

scopes, 178

scorekeeping, 416, 418

screen boundaries, 358–360

Screen class, 342
attributes, 424
height attribute, 424
methods, list of, 343, 425

screen parameter, Games_Object class, 426

script mode, IDLE, 11–12

self-documenting code, 35

sending messages, 263

sentry variables, 68–69

sequences
defined, 92
immutable, 104–105
mutable, 104–105
nested

accessing elements in, 141–142
creating, 140–141
defined, 139

unpacking, 142

sequential access, 99

set() method, 251

set_background() method, 343, 425

set_bottom() method, 351

set_left() method, 351, 368

set_right() method, 351

set_text() method, 428

set_top() method, 351

set_velocity() method, 351, 360

shared references, 144–147

shelving, 211–213

Shinners, Pete, 339

shortcuts, to slices, 112

Silly Strings program, 26

Simple Game program example, 281

single inheritance, 269

size attribute, Text class, 428

slices
creating, 112
defined, 108
deleting from lists, 134
end points, 111
lists, 131, 133
Pizza Slicer program example, 109–110
shortcuts to, 112
tuples, 119

software reuse, 176

sort() function, 137–138

sound. See also music
loading, 388–389
looping, 390
methods for, 431
playing, 389–390
stopping, 390–391

Special Topics, Python Web site, 7

Sprite class, 342, 429

sprites
creating, 356
init_sprite() method, 353
loading images from, 354–355
moving, 356–358
overview, 350–351
rotating, 382–384
uses for, 352

statements
from, 341
assignment, 34
break, 77–78
continue, 77–78
continuing on next line, 20
defined, 9
else, 62–63
if, 57–59, 61
if-elif-else, 63–66
if-else, 61–62
import, 55–56
return, 171
try, 214–215

static methods, 240
creating, 242–243
invoking, 243

staticmethod() function, 243

status() method, 242–243

stepwise refinement, 84–85

sticky parameter, grid() method, 319

stop() method, sound, 390–391, 431

stop_music() function, 431

stopping
music, 392
sound, 390–391

storing data in files, 208–213

str() function, 46, 239, 265–266, 280

string expression, 10

string methods, 38–41

strings
concatenating, 27
converting to integers, 45–46
creating new from old, 107–108
escape sequences with, 22–23
immutable, 104–105
mutable, 104–105
quotes inside, 20
quotes with, 18–19
repeating, 28, 50
sequence operators as, 97
Silly Strings program, 26
triple-quoted, 21
writing to text files, 206–207

StringVar class, 328

strip() method, 41

subtraction (-) operator, 31

superclasses, 277

swapcase() method, 41

sync() function, 212

syntax errors, 10

SyntaxError exception type, 215

sys.exit() function, 220

system bell, 23

Index

T
tab character (t), 23, 25

text, displaying, 346–348

text attribute, Text class, 428

text-based widgets, 316–321

Text class, 342, 428

text files
access modes, 202
looping through, 205
opening and closing, 201–202
plain text files, 198
Read It program example, 199–201
reading characters from, 202–203
writing to, 205–208

Three-Year-Old Simulator program example, 67–68

Tic-Tac-Toe game example
ask_number() function, 187
ask_yes_no() function, 187
computer_move() function, 191–193
congrat_winner() function, 194
data representation, 184
display_board() function, 188
display_instruct() function, 186–187
functions, creating list of, 184
human_move() function, 190–191
legal_moves() function, 189
main() function, 194
new_board() function, 188
next_turn() function, 194
overview, 164
pieces() function, 187–188
program setup, 186
pseudocode, writing, 183
winner() function, 189–190

tick() method, 425

title() method, 40–41

Tkinter toolkit, 302

total attribute, 239

tracing programs, 71–72

transparent value, 354–355

Trivia Challenge game example

answers, checking and retrieving, 223–224
data file layout, 219–220
game ending, 224
game setup, 222–223
next_block() function, 221–222
next_line() function, 221
open_file() function, 220–221
overview, 198
questions, asking, 223

true values, 74, 76–77

try statement, 214–215

tuples
concatenating, 120
as conditions, 115
defined, 113
with elements, 115
empty, 114
immutable, 120
indexing, 118–119
len() function with, 118
nested, 143–144
in operator with, 118
printing, 115–116
slicing, 119
when to use, 139

TypeError exception type, 215

Index

U
UML (Unified Modeling Language), 262

unpacking sequences, 142

update_count() method, 315

update_text() method, 324

upper() method, 39, 41

Useless Trivia program, 18

Index

V
ValueError exception type, 215

values
CHAR, 320
as conditions, 73–75
default parameter, 174, 176–178
false, 74, 76–77
NONE, 320
transparent, 354–355
true, 74, 76–77
WORD, 320

values() method, 155

van Rossum, Guido, 3

variables
assigning string values to, 101
case-sensitivity, 35
creating, 34
global, 181–182
Greeter Program example, 33
naming, 34–35
sentry, 68–69

VELOCITY_MAX class, 416

Index

W
w file access mode, 202

w+ file access mode, 202

w shelve access mode, 212

Web site, Python, 6–7

welcome() function, 222

while loops, 67–69, 92

widgets (window gadgets), 307, 316–321

width attribute, Screen class, 424

width parameter, 320

window gadgets (widgets), 307, 316–321

Windows, installing Python on, 6

windows console, 2

Word Jumble game, 92
congratulations, 124
empty jumble string, 122
end of game, 124
loops, setting up, 122
player's guesses, 124
program setup, 121
welcoming players, 123

Word Problems program, 28–30

WORD value, 320

wrap parameter, 320

write() function, 206–208

writelines() function, 207–208

writing
modules, 281–283
to text files, 205–208

Index

X
x coordinate, graphics coordinate system, 345–346

Index

Y
y coordinate, graphics coordinate system, 345–346

Index

Z
ZeroDivisionError exception type, 215

List of Figures

Chapter 1: Getting Started: The Game over Program

Figure 1.1: The all-too familiar words from a computer game.

Figure 1.2: Your computer is soon to be home to Python.

Figure 1.3: Visit Python's home page to download the latest version of Python and read loads of
information about the language.

Figure 1.4: Python in an interactive session, awaiting your command.

Figure 1.5: Your blank canvas awaits. Python is ready for you to write a program in script mode.

Figure 1.6: The results of running the Game Over program through IDLE.

Chapter 2: Types, Variables, and Simple I/O: The Useless Trivia
Program

Figure 2.1: Whoa! Steve might think about a diet before he visits the sun.

Figure 2.2: Now I get it, the game is over.

Figure 2.3: Please, contain your applause.

Figure 2.4: The strings on the screen appear differently than in the program code.

Figure 2.5: With Python, you can add, subtract, multiply, divide, and keep track of a pregnant hippo's
weight.

Figure 2.6: A shout-out to all the Larry's of the world.

Figure 2.7: Now, name is assigned a string based on whatever the user enters, including "Rupert".

Figure 2.8: This slightly low guess is printed several ways with the help of string methods.

Figure 2.9: The monthly total should be high, but not that high. Something is wrong.

Figure 2.10: Ah, 61,300 dollars a month is much more reasonable.

Chapter 3: Branching, while Loops, and Program Planning: The

Guess My Number Game

Figure 3.1: Got it in only three guesses! Try to beat that.

Figure 3.2: Ack! I got a total of 7 on my first roll, which means I lose.

Figure 3.3: Ha, you'll never crack the code.

Figure 3.4: Guess I should have picked a better password than "secret".

Figure 3.5: The correct password grants the user access, just like before.

Figure 3.6: Now, an incorrect password generates the stinging "Denied" message.

Figure 3.7: Looks like I was in a great mood while writing the Mood Computer program.

Figure 3.8: If you've ever been in charge of a three-year-old, this should bring back warm memories.

Figure 3.9: It seems you have an immortal hero. The only way to end the program was to stop the
process.

Figure 3.10: Now, the program runs correctly, avoiding an infinite loop. Your hero's fate, however, is not as
bright.

Figure 3.11: When you don't tip the maitre d', there are no tables to be found.

Figure 3.12: This time, my money has helped cure the maitre d' of his amnesia.

Figure 3.13: The number 5 is skipped with a continue statement and the loop ends through a break

statement.

Figure 3.14: If you're not a member or a guest, you can't get in.

Figure 3.15: A guest can log in, but their security level is set quite low.

Figure 3.16: Looks like one of the guys logged in today.

Chapter 4: for Loops, Strings, and Tuples: The Word Jumble Game

Figure 4.1: The Word Jumble game. This jumble looks "difficult."

Figure 4.2: A for loop goes through a word the user enters, one character at a time.

Figure 4.3: The range() function and for loop allow you to count forwards, by fives, and backwards.

Figure 4.4: This program uses the len() function and the in operator to produce some information about

your message.

Figure 4.5: You can directly access any character in a string through indexing.

Figure 4.6: You can access any letter of "index" with a positive or negative position number.

Figure 4.7: First, name gets the string "Chris", then it gets a different string, "Jackson". But no string

values ever change.

Figure 4.8: Using a for loop, new strings are created. The program skips the concatenation operation for

any vowels.

Figure 4.9: Fresh, hot slices of "pizza", made just the way you asked. The program also offers a "cheat

sheet" so you can visualize how a slice will be created.

Figure 4.10: An example of slicing end point numbers for the string "pizza". You can use any

combination of positive and negative end points for your slice.

Figure 4.11: At first, the hero has no items in his inventory. Then, the program creates a new tuple with

string elements and our hero is stocked.

Figure 4.12: The hero's inventory is a tuple, which means it can be counted, indexed, sliced, and even
concatenated with another tuple.

Figure 4.13: Each string is a single element in the tuple.

Figure 4.14: Slicing positions for tuples are defined between elements, just as they are for strings.

Chapter 5: Lists and Dictionaries: The Hangman Game

Figure 5.1: The "Hangman" game in action. Hmm . . . I wonder what the word could be.

Figure 5.2: I won this game!

Figure 5.3: This game ended badly, especially for the little guy made of text.

Figure 5.4: The hero's inventory is now represented by a list. The results look almost exactly the same as
when the inventory was represented by a tuple in Hero's Inventory 2.0.

Figure 5.5: Since the hero's inventory is represented by a list, items can be added, modified, and deleted.

Figure 5.6: The user chooses from a menu to maintain the high scores list. Behind the scenes, list
methods do the bulk of the work.

Figure 5.7: The new and improved version of High Scores stores a name with a score through nested
sequences.

Figure 5.8: The variable language refers to a place in memory where the string value "Python" is

stored.

Figure 5.9: The variables mike, mr_dawson, and honey all refer to the same list.

Figure 5.10: So "uninstalled" means fired. I was totally 404 on that.

Chapter 6: Functions: The Tic-Tac-Toe Game

Figure 6.1: The computer is full of ... confidence.

Figure 6.2: I did not see that coming. Even with simple programming techniques, the computer makes
some pretty good moves.

Figure 6.3: I found the computer's weakness and won this time.

Figure 6.4: The instructions are displayed each time with just a single line of code— a call to a function I
created.

Figure 6.5: Each function uses a parameter, a return value, or both to communicate with the main part of
the program.

Figure 6.6: Functions can be called in different ways with the flexibility of keyword arguments and default
parameter values.

Figure 6.7: This simple program has three different namespaces— one for each function, plus one for the
global namespace.

Figure 6.8: You can read, shadow, or even change the value of a global variable from inside a function.

Figure 6.9: Each square number corresponds to a position in a list that represents the board.

Chapter 7: Files and Exceptions: The Trivia Challenge Game

Figure 7.1: The player is always presented with four inviting choices. But only one is correct.

Figure 7.2: The file is read using a few different techniques.

Figure 7.3: The same file is created twice, each time with a different file method.

Figure 7.4: Each list is written to and read from a file in its entirety.

Figure 7.5: Although the program can't convert "Hi!" to a number, it doesn't halt when exceptions are

raised.

Chapter 8: Software Objects: The Critter Caretaker Program

Figure 8.1: You get to name your very own critter.

Figure 8.2: If you fail to feed or entertain your critter, it will have a mood change for the worse.

Figure 8.3: But with the proper care, your critter will come back to its original, sunny mood.

Figure 8.4: When the program invokes the Critter object's talk() method, the critter greets the world.

Figure 8.5: Two separate critters are created. Each says hi.

Figure 8.6: This time, each Critter object has an attribute name that it uses when it says hi.

Figure 8.7: Critters are being born left and right! The program keeps track of all of them through a single,
class attribute, which it displays through a static method.

Figure 8.8: The object's private attribute and private method are indirectly accessed.

Figure 8.9: A property controls access to the Critter object's attribute for its name.

Chapter 9: Object-Oriented Programming: The Blackjack Game

Figure 9.1: One player wins, the other is not so lucky.

Figure 9.2: The battle description is the result of objects exchanging a message.

Figure 9.3: hero, a Player object, sends invader, an Alien object, a message.

Figure 9.4: Each Hand object is a collection of Card objects.

Figure 9.5: The Deck object inherits all of the methods of the Hand class.

Figure 9.6: By overriding the inherited __str__() method, objects of different derived classes are printed

out differently.

Figure 9.7: Several functions and a class used in the program are from a programmer-created module.

Figure 9.8: Inheritance hierarchy of classes for the Blackjack game.

Chapter 10: GUI Development: The Mad Lib Program

Figure 10.1: A nicely laid-out GUI awaits the user's creativity.

Figure 10.2: The user has entered all of the necessary information.

Figure 10.3: After clicking the Click for story button, the text box displays the literary masterpiece.

Figure 10.4: You'll learn to create all of these GUI elements.

Figure 10.5: The program creates only a lone window. Hey, you have to start somewhere.

Figure 10.6: A GUI program can generate a console window too.

Figure 10.7: A label can provide information about a GUI.

Figure 10.8: You can click these lazy buttons all you want; they won't do a thing.

Figure 10.9: It's déjà vu all over again. The program looks the same as its predecessor even though there
are significant changes under the hood.

Figure 10.10: The button's event handler updates the number of times the button is clicked.

Figure 10.11: If the user fails to enter the correct password, the program politely refuses to divulge its
secret.

Figure 10.12: Given the correct password, the program shares its invaluable knowledge to long life.

Figure 10.13: Each button is located in a unique cell, based on a row and a column number.

Figure 10.14: The results of the user's selections show up in the text box.

Figure 10.15: The user can select only a single movie type.

Chapter 11: Graphics: The Pizza Panic Game

Figure 11.1: The player must catch the falling pizzas.

Figure 11.2: Once a pizza gets by the player, the game is over.

Figure 11.3: My first graphics window. Not much, but it's mine.

Figure 11.4: By using the set_background() method, a background image can be applied to a Screen

object.

Figure 11.5: You specify points on a graphics screen with x- and y-coordinate pairs.

Figure 11.6: The impressively high score is displayed after a Text object is instantiated.

Figure 11.7: Ah, the thrill of victory.

Figure 11.8: The pizza image is not part of the background, but an independent object based on the
Sprite class.

Figure 11.9: A cheesy sprite, drawn on a solid-color background to take advantage of transparency.

Figure 11.10: On the left, the image is loaded with transparency on. On the right, the same image is
loaded with transparency off.

Figure 11.11: The pizza falls down the screen in the direction of the arrow.

Figure 11.12: Though you can't tell from the screen shot, the pizza bounces around, following the path of
the arrow.

Figure 11.13: The pan sprite follows the mouse around the graphics screen.

Figure 11.14: The player almost reaches the pizza.

Figure 11.15: The slippery pizza gets away again.

Chapter 12: Sound, Animation, and Program Development: The
Astrocrash Game

Figure 12.1: The player controls a spaceship and blasts asteroids to increase his or her score. (Nebula
image is in the public domain. Credit— NASA, The Hubble Heritage Team - AURA/STScI)

Figure 12.2: If an asteroid hits the player's ship, the game is over.

Figure 12.3: The ship moves around the screen based on key presses.

Figure 12.4: The ship can rotate clockwise, rotate counterclockwise, or jump to a predetermined
orientation.

Figure 12.5: Although it's hard to tell from a still image, an explosion animates at the center of the graphics
window.

Figure 12.6: Shown in rapid succession, these nine frames of animation look like an explosion.

Figure 12.7: The program lets the user play a sound and some music.

Figure 12.8: A field of moving asteroids is the foundation of the game.

Figure 12.9: The player's ship is now part of the action.

Figure 12.10: The ship can now move around the screen.

Figure 12.11: The missile fire rate is too high.

Figure 12.12: Now the ship fires missiles at a more reasonable rate.

Figure 12.13: The ship's missiles now destroy asteroids. But be careful, as asteroids destroy the ship.

Figure 12.14: All of the destruction in the game is now accompanied by fiery explosions.

Figure 12.15: The final touches let the game continue as long as the player's Astrocrash skills allow.

List of Tables

Chapter 2: Types, Variables, and Simple I/O: The Useless Trivia
Program

Table 2.1: SELECTED ESCAPE SEQUENCES

Table 2.2: MATHEMATICAL OPERATORS WITH INTEGERS

Table 2.3: MATHEMATICAL OPERATORS WITH FLOATING-POINT NUMBERS

Table 2.4: USEFUL STRING METHODS

Table 2.5: SELECTED TYPE CONVERSION FUNCTIONS

Table 2.6: USEFUL AUGMENT ASSIGNMENT OPERATORS

Chapter 3: Branching, while Loops, and Program Planning: The

Guess My Number Game

Table 3.1: COMPARISON OPERATORS

Table 3.2: B RANCHING STRUCTURES SUMMARY

Chapter 5: Lists and Dictionaries: The Hangman Game

Table 5.1: SELECTED LIST METHODS

Table 5.2: SELECTED DICTIONARY METHODS

Chapter 6: Functions: The Tic-Tac-Toe Game

Table 6.1: TIC-TAC-TOE FUNCTIONS

Chapter 7: Files and Exceptions: The Trivia Challenge Game

Table 7.1: SELECTED FILE ACCESS MODES

Table 7.2: SELECTED FILE METHODS

Table 7.3: shelve ACCESS MODES

Table 7.4: SELECTED EXCEPTION TYPES

Chapter 9: Object-Oriented Programming: The Blackjack Game

Table 9.1: BLACKJACK CLASSES

Chapter 10: GUI Development: The Mad Lib Program

Table 10.1: SELECTED GUI ELEMENTS

Chapter 11: Graphics: The Pizza Panic Game

Table 11.1: COMMONLY USED games MODULE CLASSES

Table 11.2: USEFUL Screen METHODS

Table 11.3: USEFUL Games_Object METHODS

Appendix A: LiveWires Reference

Table A.1: Screen ATTRIBUTES

Table A.2: Screen METHODS

Table A.3: Games_Object'S CONSTRUCTOR PARAMETERS

Table A.4: Games_Object METHODS

Table A.5: Text ATTRIBUTES

Table A.6: Text METHODS

Table A.7: Message ATTRIBUTES

Table A.8: Animation ATTRIBUTES

Table A.9: games FUNCTIONS

Table A.10: SOUND OBJECT METHODS

Table A.11: games KEY CONSTANTS

List of Sidebars

Introduction

IN THE REAL WORLD

Chapter 1: Getting Started: The Game over Program

IN THE REAL WORLD

IN THE REAL WORLD

Chapter 2: Types, Variables, and Simple I/O: The Useless Trivia
Program

IN THE REAL WORLD

IN THE REAL WORLD

IN THE REAL WORLD

Chapter 3: Branching, while Loops, and Program Planning: The

Guess My Number Game

IN THE REAL WORLD

IN THE REAL WORLD

Chapter 4: for Loops, Strings, and Tuples: The Word Jumble Game

IN THE REAL WORLD

IN THE REAL WORLD

IN THE REAL WORLD

Chapter 6: Functions: The Tic-Tac-Toe Game

IN THE REAL WORLD

IN THE REAL WORLD

Chapter 7: Files and Exceptions: The Trivia Challenge Game

IN THE REAL WORLD

IN THE REAL WORLD

Chapter 9: Object-Oriented Programming: The Blackjack Game

IN THE REAL WORLD

Chapter 10: GUI Development: The Mad Lib Program

IN THE REAL WORLD

Chapter 11: Graphics: The Pizza Panic Game

IN THE REAL WORLD

IN THE REAL WORLD

 CD Content

Following are select files from this book's Companion CD-ROM. These files are copyright protected by the
publisher, author, and/or other third parties. Unauthorized use, reproduction, or distribution is strictly
prohibited.

File Description Size

 All CD Content Python Programming for the Absolute Beginner 1,247,608

 Chapter 1: Getting Started: The Game over Program 423

 Chapter 2: Types, Variables, and Simple I/O: The Useless Trivia Program 5,563

 Chapter 3: Branching, while Loops, and Program Planning: The Guess My

Number Game
4,811

 Chapter 4: for Loops, Strings, and Tuples: The Word Jumble Game 4,457

 Chapter 5: Lists and Dictionaries: The Hangman Game 4,379

 Chapter 6: Functions: The Tic-Tac-Toe Game 4,314

 Chapter 7: Files and Exceptions: The Trivia Challenge Game 4,266

 Chapter 8: Software Objects: The Critter Caretaker Program 4,019

 Chapter 9: Object-Oriented Programming: The Blackjack Game 6,900

 Chapter 10: GUI Development: The Mad Lib Program 6,493

 Chapter 11: Graphics: The Pizza Panic Game 98,465

 Chapter 12: Sound, Animation, and Program Development: The Astrocrash Game 158,569

 Html
 831,559

 Livewires
 86,745

 Livewires-build
 17,482

	Table of Contents
	BackCover
	Python Programming for the Absolute Beginner
	Introduction
	Chapter 1: Getting Started: The Game over Program
	Examining the Game Over Program
	Introducing Python
	Setting Up Python on Windows
	Setting Up Python on Other Operating Systems
	Introducing the Python IDLE
	Back to the Game Over Program
	Summary
	Challenges

	Chapter 2: Types, Variables, and Simple I/O: The Useless Trivia Program
	Introducing the Useless Trivia Program
	Using Quotes with Strings
	Using Escape Sequences with Strings
	Concatenating and Repeating Strings
	Working with Numbers
	Understanding Variables
	Getting User Input
	Using String Methods
	Using the Right Types
	Converting Values
	Back to the Useless Trivia Program
	Summary
	Challenges

	Chapter 3: Branching, while Loops, and Program Planning: The Guess My Number Game
	Introducing the Guess My Number Game
	Generating Random Numbers
	Using the if Structure
	Using the if-else Structure
	Using the if-elif-else Structure
	Creating while Loops
	Avoiding Infinite Loops
	Treating Values as Conditions
	Creating Intentional Infinite Loops
	Using Compound Conditions
	Planning Your Programs
	Returning to the Guess My Number Game
	Summary
	Challenges

	Chapter 4: for Loops, Strings, and Tuples: The Word Jumble Game
	Introducing the Word Jumble Game
	Counting with a for Loop
	Using Sequence Operators and Functions with Strings
	Indexing Strings
	Understanding String Immutability
	Building a New String
	Slicing Strings
	Creating Tuples
	Using Tuples
	Back to the Word Jumble Game
	Summary
	Challenges

	Chapter 5: Lists and Dictionaries: The Hangman Game
	Introducing the Hangman Game
	Using Lists
	Using List Methods
	Understanding When to Use Tuples Instead of Lists
	Using Nested Sequences
	Understanding Shared References
	Using Dictionaries
	Back to the Hangman Game
	Summary
	Challenges

	Chapter 6: Functions: The Tic-Tac-Toe Game
	Introducing the Tic-Tac-Toe Game
	Creating Functions
	Using Parameters and Return Values
	Using Keyword Arguments and Default Parameter Values
	Using Global Variables and Constants
	Back to the Tic-Tac-Toe Game
	Summary
	Challenges

	Chapter 7: Files and Exceptions: The Trivia Challenge Game
	Introducing the Trivia Challenge Game
	Reading from Text Files
	Writing to a Text File
	Storing Complex Data in Files
	Handling Exceptions
	Back to the Trivia Challenge Game
	Summary
	Challenges

	Chapter 8: Software Objects: The Critter Caretaker Program
	Introducing the Critter Caretaker Program
	Understanding Object-Oriented Basics
	Creating Classes, Methods, and Objects
	Using Constructors
	Using Attributes
	Using Class Attributes and Static Methods
	Understanding Object Encapsulation
	Using Private Attributes and Private Methods
	Understanding New-Style and Old-Style Classes
	Controlling Attribute Access
	Back to the Critter Caretaker Program
	Summary
	Challenges

	Chapter 9: Object-Oriented Programming: The Blackjack Game
	Introducing the Blackjack Game
	Sending and Receiving Messages
	Combining Objects
	Using Inheritance to Create New Classes
	Extending a Class through Inheritance
	Altering the Behavior of Inherited Methods
	Understanding Polymorphism
	Creating Modules
	Back to the Blackjack Game
	Summary
	Challenges

	Chapter 10: GUI Development: The Mad Lib Program
	Introducing the Mad Lib Program
	Examining a GUI
	Understanding Event-Driven Programming
	Using a Root Window
	Using Labels
	Using Buttons
	Creating a GUI Using a Class
	Binding Widgets and Event Handlers
	Using Text and Entry Widgets and the Grid Layout Manager
	Using Check Buttons
	Using Radio Buttons
	Back to the Mad Lib Program
	Summary
	Challenges

	Chapter 11: Graphics: The Pizza Panic Game
	Introducing the Pizza Panic Game
	Introducing the Pygame and LiveWires Packages
	Creating a Graphics Window
	Setting a Background Image
	Understanding the Graphics Coordinate System
	Displaying Text
	Displaying a Message
	Understanding the Games_Object Class
	Displaying a Sprite
	Moving Sprites
	Dealing with Screen Boundaries
	Handling Mouse Input
	Detecting Collisions
	Back to the Pizza Panic Game
	Summary
	Challenges

	Chapter 12: Sound, Animation, and Program Development: The Astrocrash Game
	Introducing the Astrocrash Game
	Reading the Keyboard
	Rotating a Sprite
	Creating an Animation
	Working with Sound and Music
	Planning the Astrocrash Game
	Creating Asteroids
	Rotating the Ship
	Moving the Ship
	Firing Missiles
	Controlling the Missile Fire Rate
	Handling Collisions
	Adding Explosions
	Adding Levels, Scorekeeping, and Theme Music
	Summary
	Challenges

	Appendix A: LiveWires Reference
	games Module functions
	games Module Constants
	color Module Constants

	Index
	Index_A
	Index_B
	Index_C
	Index_D
	Index_E
	Index_F
	Index_G
	Index_H
	Index_I
	Index_K
	Index_L
	Index_M
	Index_N
	Index_O
	Index_P
	Index_Q
	Index_R
	Index_S
	Index_T
	Index_U
	Index_V
	Index_W
	Index_X
	Index_Y
	Index_Z

	List of Figures
	List of Tables
	List of Sidebars
	CD Content

