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1. Reliability Mathematics 

This chapter presents a brief review of statistical principles, terminology and 

probability distributions used in the area of reliability. The objective of this chapter is 

to introduce concepts from probability and statistics that will be utilized in later 

chapters of this reference.  

1.1. A Brief Introduction to Probability Theory and Statistics 

1.1.1. Basic Definitions 

Before considering the methodology for estimating system reliability, some basic 

concepts from probability theory must be reviewed. The terms that follow are 

important in creating and analyzing reliability block diagrams. 

1. Experiment (E): An experiment is any well-defined action that may result in a 

number of outcomes. For example, the rolling of dice can be considered an 

experiment. 

2. Outcome (O): An outcome is defined as any possible result of an experiment. 

3. Sample space (S): The sample space is defined as the set of all possible 

outcomes of an experiment. 

4. Event: An event is a collection of outcomes. 

5. Union of two events A and B (A B): The union of two events A and B is the 

set of outcomes that belong to A or B or both. 

6. Intersection of two events A and B (A B): The intersection of two events A 

and B is the set of outcomes that belong to both A and B. 

7. Complement of event A ( ): A complement of an event A contains all 

outcomes of the sample space, S, that do not belong to A. 

8. Null event ( ): A null event is an empty set and it has no outcomes. 

9. Probability: Probability is a numerical measure of the likelihood of an event 

relative to a set of alternative events. For example, there is a 50% probability 

of observing heads relative to observing tails when flipping a coin (assuming 

a fair or unbiased coin). 
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1.1.2. Probability Properties, Theorems and Axioms 

The probability of an event A is expressed as P(A), and has the following properties: 

  

In other words, when an event is certain to occur, it has a probability equal to 

1; when it is impossible to occur, it has a probability equal to 0. 

The probability of the union of two events A and B is: 

  

Similarly, the probability of the union of three events, A, B and C is given by: 

  

1.1.2.1. Mutually Exclusive Events 

Two events A and B are said to be mutually exclusive if it is impossible for them to 

occur simultaneously. In such cases, the expression for the union of these two events 

reduces to the following, since the probability of the intersection of these events is 

defined as zero. 

1.1.2.2. Conditional Probability 

The conditional probability of two events A and B is defined as the probability of 

one of the events occurring knowing that the other event has already occurred. The 

expression below denotes the probability of A occurring given that B has already 

occurred. 

  

1.1.2.3. Independent Events 

If knowing B gives no information about A, then the events are said to be 

independent and the conditional probability expression reduces to: 
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From the definition of conditional probability, we can  write: 

  

Since events A and B are independent, the expression reduces to: 

  

  

1.1.3. Random Variable 

In general, most problems in reliability engineering deal with quantitative measures, 

such as the time-to-failure of a product, or qualitative measures, such as whether a 

product is defective or non-defective. We can then use a random variable X to denote 

these possible measures. In the case of times-to-failure, our random variable X is the 

time-to-failure of the product and can take on an infinite number of possible values 

in a range from 0 to infinity (since we do not know the exact time a priori). Our 

product can be found failed at any time after time 0 (e.g. at 12 hours or at 100 hours 

and so forth), thus X can take on any value in this range. In this case, our random 

variable X is said to be a continuous random variable. In this reference, we will deal 

almost exclusively with continuous random variables. In judging a product to be 

defective or non-defective, only two outcomes are possible. That is, X is a random 

variable that can take on one of only two values (let's say defective = 0 and non-

defective = 1). In this case, the variable is said to be a discrete random variable. 

1.2. The Probability and Cumulative Density (Distribution) 
Functions 

The probability density function (pdf) and cumulative distribution function (cdf) are 

two of the most important statistical functions in reliability and are very closely 

related. When these functions are known, almost any other reliability measure of 

interest can be derived or obtained.  

1.2.1. Designations 

From probability and statistics, given a continuous random variable X we denote: 
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• The probability density (distribution) function, pdf, as f(x). 

• The cumulative distribution function, cdf, as F(x). 

The pdf and cdf give a complete description of the probability distribution of a 

random variable.  

1.2.2. Definition 

If X is a continuous random variable, then the probability density function, pdf, of X is a 

function, f(x), such that for two numbers, a and b with a <=b: 

  

That is, the probability that X takes on a value in the interval [a, b] is the area 

under the density function from a to b as shown in Figure below. The pdf represents 

the relative frequency of failure times as a function of time. 

 

The cumulative distribution function, cdf, is a function, F(x), of a random 

variable X, and is defined for a number x by: 

  

That is, for a number x, F(x) is the probability that the observed value of X will 

be at most x. The cdf represents the cumulative values of the pdf. That is, the value of 

a point on the curve of the cdf represents the area under the curve to the left of that 

point on the pdf. In reliability, the cdf is used to measure the probability that the item 
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in question will fail before the associated time value, t, and is also called unreliability. 

Note that depending on the distribution function, denoted by f(x), the limits will vary 

based on the region over which the distribution is defined. 

1.2.3. Mathematical Relationship Between the pdf and cdf 

The mathematical relationship between the pdf and cdf is given by: 

 and  

The total area under the pdf is always equal to 1, or mathematically: 

  

1.2.4. Mean Life (MTTF) 

The mean life function, which provides a measure of the average time of operation to 

failure, is given by: 

  

This is the expected or average time-to-failure and is denoted as the MTTF 

(Mean Time To Failure). (Note: Many practitioners and authors mistakenly refer to 

this metric as the MTBF, Mean Time Between Failures. The two metrics are identical 

if the failure rate of the component or system is constant. However, if the failure rate 

is not constant then the mean time to failure and the mean time between failures are 

not the same! Furthermore, MTBF only becomes meaningful when dealing with 

repairable systems. 

NOTE: The MTTF, even though an index of reliability performance, does not give any 

information on the failure distribution of the product in question when dealing with most lifetime 

distributions. Because vastly different distributions can have identical means, it is unwise to use the 

MTTF as the sole measure of the reliability of a product. 

1.2.5. Median Life 

Median life, is the value of the random variable that has exactly one-half of the area 

under the pdf to its left and one-half to its right. It represents the centroid of the 
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distribution. The median is obtained by solving the following equation: (For 

individual data, the median is the midpoint value.) 

  

1.2.6. Modal Life 

The modal life (or mode), is the value of T that satisfies: 

  

For a continuous distribution, the mode is that value of t that corresponds to 

the maximum probability density (the value at which the pdf has its maximum value, 

or the peak of the curve). 

1.3. Statistical Distributions used in Reliability Analysis  

The following distributions are considered to be the most valuable tools for reliability analysis:  

• Exponential  

• Binomial (Discrete) This distribution is very useful for Quality Assurance 

and Reliability modeling. It is applied in situations where the two events are 

complementary, such as good or bad, success or failure, working or not 

working, etc. Restricted to finite sample size. This distribution is very useful 

in reliability studies for computing the probability of success when the 

system employs partial redundancy. It has many applications in Reliability 

& Maintainability analysis for estimating the number of spares and logistic 

support based on the probability of failures. It cannot be directly applied to 

calculate event probabilities in the time domain, as the total number of 

occurring and non-occurring events is usually unknown. If the precise 

detail of failures and successes is not easily available for the given time, 

the application of Binomial Distribution becomes difficult. 

• Poisson (Discrete) It is a special case of the Binomial Distribution when p 

is very small and n very large, the limiting form of this distribution is called 

the Poisson distribution. The Poisson is an extension of the binomial 

distribution in which the number of samples is infinite. For this distribution 

all you need to know is the value of r, the expected number of failures and 
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you can find all the probabilities of various occurrences without knowing the 

number of trial or sample size. The probability of no failures in time t is given 

by the first term, exp (-λt) of the above series, which is the Reliability by 

definition. The second term λt. e-λt is the probability of exactly one failure, 

and so on. This means that from knowing the failure rate, λ the reliability or 

unreliability of an item can be determined for any length of time. This is one 

of the most remarkable properties of Poisson distribution, which overcomes 

the difficulties of calculating event probabilities in the time domain as seen in 

the case of a Binomial. The events following Poisson distribution occur at a 

constant average rate and the number of events occurring in any interval of 

time is independent of the number of events occurring in any time interval. 

Often used to describe situations in which the probability of an event is small 

and the number of opportunities for the event is large. Good for the 

inspection sampling plans. It can also be used in certain cases of redundant 

configurations of complex systems for calculating the partial unreliabilities. It 

is most commonly used for calculating the number of spare items for 

operation and logistic support of a system Poisson distribution is a very 

useful tool for modelling the demand and spare capacity of telephone lines at 

the Distribution Points (DP). The following figure depicts a pattern of spares 

lines and demand for a typical set of DPs associated with a Telephone 

Exchange. 

• Normal  

• Log-normal  

• Weibull  

• Chi-square This distribution is quite often used in Hypothesis testing for 

data analysis. It is also used to determine the confidence intervals for the 

MTTF or MTBF The Chi-Square distribution is a good tool for counting the 

number of failures in a given interval. 

• Beta Beta functions are used in reliability for the development of ranking 

distributions when used in the context of life testing. 

• Gamma This distribution is applied in reliability analysis where a given 

number of partial failures must occur before an item fails completely, for 
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instance, in redundancy analysis It is also used to describe an increasing or 

decreasing hazard function The gamma distribution can also be applied to 

model the time to the nth failure of a system if the underlying failure 

distribution is Exponential. 

• Erlang This distribution is commonly used in the Renewal Theory for 

determining the ample supply of spares for repairable systems and to 

schedule the workload of repairmen. 

• Extreme Value This distribution is used in Reliability analysis of mechanical 

devices, for example, failures caused by corrosion. It is used for fitting the 

limiting distribution for the maximum number of samples collected from a 

process. This distribution applies when extremes rather than means are 

collected from samples from an unknown or complex underlying 

distribution. 

• The Classical Bathtub Distribution The most useful function is the 

Hazard Function for the classical bathtub, which can be expressed as: h(t) 

= βη (ηt)β-1 exp(ηt)β for t ≥ 0, β (Shape Parameter)>0, and η(Scale 

Parameter) >0. The classical Bathtub distribution is used to represent a 

trimodal failure distribution of items, which follow decreasing, increasing 

or constant hazard rates 

1.3.1. Exponential Distribution 

This is the most important distribution in Reliability Theory. When an item is subject 

to failures, which occur randomly, the probability that the item will not fail within a 

given interval of time is a simple exponential function of that time interval. This 

statement is subject to the following conditions:  

• that the item has survived to the beginning of the time interval  

• the age of the item is such that it does not reach the end of its life within that 

interval. The exponential failure density function is expressed as f(t) = λ exp 

(-λt), t >=0 where λ is the failure rate. The Reliability Function for the 

exponential distribution is given by R(t) = exp (-λt), t >=0 And the Hazard 

Function is deduced simply as h(t) = λ. The following diagram depicts the 
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shapes of f(t), R(t) and h(t) for an item with a failure rate of 0.001 units of 

time. 

 

Some of the fundamental properties of exponential distribution:  

1. The single parameter, λ completely determines the reliability of an item  

2. This distribution is independent of the age on an item  

3. A population of items following an exponential failure distribution suffers its 

greatest failures, nearly 63%, in the period less than its MTBF, provided the 

failed items are not replaced  

4. The total area under the exponential density curve is unity  

5. The exponential distribution is additive. This implies that the sum of a 

number of exponentially distributed variables is also exponentially distributed  

6. The mean Life for a repairable item following exponential distribution is 

given by the expression Mean Life = 1/λ = MTBF  

Some typical applications of exponential distribution in Reliability Practice  

The exponential distribution is a very useful model for reliability analysis of items, 

which exhibit a constant failure rate during their operation life.  

• The total failure rate of a number of statistically independent items connected 

in series is simply the sum of the constant failure rates of individual items. 

This principle is applied to estimate the MTBF of a product (without 

redundancy) by simply adding the individual component failure rates and 

inverting the total failure rate. Hence, the technique is called Reliability 

Prediction by Parts Count.  

• This distribution is almost exclusively used for predicting the reliability of 

electronic products for which the infant mortality failures have been screened 
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out and the wear out failures are prevented by timely replacement of failed 

items/components  

• The exponential distribution model is ideal for testing a product, which 

behaves exponentially, due to the fact that a single parameter λ can determine 

the reliability uniquely and completely. All that is required is to determine the 

value of λ by conducting a test or a field trial. Other distributions require 

more than one parameter to be determined. 

• The expression MTBF = 1 / λ is only true for the exponential distribution, 

and generally holds true for the useful life of an item where random failures 

dominate, as shown in the Bathtub curve in Figure below. 

 

1.3.2. The Normal Distribution  

The Normal or Gaussian distribution is the best-known two-parameter distribution. 

It was first discovered by De Moivre in 1733, but somehow it has been attributed to 

Gauss and hence the Gaussian Distribution. This distribution is very often a good fit 

in many situations, particularly, when a parameter, which is a random variable is the 

sum of many other random variables, then the parameter will exhibit a normal 

distribution in most of the cases. For example, the variations in the values of 

electronic parts due to manufacturing are considered to be normally distributed about 

a mean value of the parameter (size or weight, etc.) being measured. The fundamental 

basis of this is the Central Limit Theorem, which states that the sum of a large 

number of independently distributed random variables each with a finite mean and 

standard deviation is normally distributed. There are several applications of this 

distribution in Quality, Reliability and Maintainability analysis. The normal failure 

density function used for describing wear-out failures is given by 



Reliability Mathematics 
 

 

11

  

Where, T = is the age of the item, and µ = mean wear-out life and σ , the S.D 

of the item lifetimes from the mean µ. It is important to remember that this 

distribution depends upon the age of the item. When the item age equals the mean 

wear-out life i.e., when T = µ then the above expression reduces to  

  

This gives the probability of failure at the mean wear-out life of the item. The 

reliability function R(T) is given by 

  

The Hazard Function, h (T) = f(T)/R(T), which is a monotonically increasing 

function of T. The normal failure distribution, reliability and hazard functions for a 

for a Mean of 3 and Standard Deviation of 0.5 are shown in the following figures.  
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Some fundamental properties of Normal Distribution  

• It is a continuous distribution  

• The mean, median and mode of a perfectly normal distribution are all equal  

• A perfectly normal distribution has zero coefficient of Skewness and the 

coefficient of Kurtosis is 3. 

• A population of items conforming to a perfectly normal distribution is 

symmetrically dispersed about the mean  

• Since the two tails of a normal distribution are symmetrical, a given spread 

includes equal values in each tail  

• A normal distribution can be evaluated from the standardized normal 

distribution by using the transformation, z = (x - µ)/ σ  

• The normal distribution represents a limiting case of the Binomial and the 

Poisson distributions; hence it can be used to provide a good approximation 

for these distributions when the number of items in a sample is large  

• The normal distribution depends on the age of an item  

Particular Applications of the Normal Distribution  

• One of the main applications of this distribution is in reliability analysis of 

items, which exhibit wearout failures, for instance, mechanical and 

electromechanical devices  

• The other principal application deals with the analysis of manufactured 

products and their ability to meet specified requirements  
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• It is quite frequently used in quality control procedures and analyzing the 

strength of materials and components  

• The normal distribution represents the wearout phenomena quite well. It can 

be seen that about half the failures occur before the start of Mean Life and 

the other half occur later. In the case of a normal distribution the failures 

cluster around the mean life. This implies that the failure free operation can 

often be achieved up to the age of an item relatively close to the mean life of 

the item, according to how widely the curve is spread  

• The reliability of an item is given by R (MTBF) = 0.5 for a Normal 

distribution, which is symmetrical about its mean.  

• This distribution is vital importance for the maintenance engineer to carry 

our wearout studies for the establishment of a preventive maintenance 

strategy for long-life equipment. It is also applied for assuring that the 

wearout phenomena cannot affect a one-shot device during its critical 

mission.  

1.3.3. The Log-Normal Distribution  

The Log-Normal distribution is the distribution of a random variable whose natural 

logarithm is normally distributed; in other words, when working with the Log-

Normal distribution just change the values of the random variable, for instance, time 

't' to log(t) as normally distributed. The pdf of a Log-Normal distribution is described 

by the expression  

 f(x) = (1/σx√π). exp (-{ln(x-µ)
2
/2σ

2
}) for x > 0 and 

 f(x) = 0 for x <0; where µ = Mean and σ = Standard Deviation of ln(x).  

This distribution has the cdf given by the following integral  

 F(x) = 0∫
x 

(1/σx√π). exp (-{ln(x-µ)
2
/2σ

2
}) dx for x > 0  

and the Reliability Function is given by the integral  

 R(t) = t∫
∞ 

(1/σx√π). exp (-{ln(x-µ)
2
/2σ

2
}) dx  

The Hazard Function is then deduced by: h(t) = f(t)/R(t)  
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The cdf, pdf, Reliability and Hazard Functions for a Log-Normal distribution 

of times to failure 't' with a Mean of 0.5 and Standard Deviation of 1 are shown in 

Figure below: 

 

Fundamental Properties of the Log-Normal Distribution  

• This is a continuous distribution  

• This distribution is more versatile than the Normal as it has a range of 

shapes. In the case of Normal distribution, the lower limit will have to be -∞, 

but this doesn't make sense in practice. The difficulty is that the area under 

the Normal distribution curve becomes 'unity' only if the curve is extended to 

infinity in both directions. This is not possible for time dependent events 

where a new item enters the service at time zero. This difficulty is overcome 

by the fundamental property of the Log-Normal distribution as it has the 

advantage of having the value f(x) =0 for x = 0.  

• For scale parameter, the median, m >0 and the mean, µ>0 the following 

relationship is quite useful m = exp (µ) and µ = log (m)  

• The graph of the function log[f(x)] against log(x) depicting a straight line is a 

test for a perfect fit of Log-Normal distribution.  

• When µ >> σ , the Log-Normal distribution approximates to the Normal.  

Particular Applications of the Log-Normal Distribution  

• This distribution is applied in the situations where the hazard rate function 

increases to a maximum value and then decreases with time.  
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• It is most frequently used to describe the behavior of mechanical and 

electromechanical devices and to determine the start of wearout phenomena 

and to calculate the wearout failure rate.  

• This distribution like the Normal distribution depends on the age of an item. 

This is the basis on its main application in maintainability analysis.  

• A population of items behaving Log-normally, when put on a test trial where 

the failed items are not replaced, suffers its greatest failures around the mean-

life.  

1.3.4. The Weibull Distribution  

The Weibull distribution is the complex of the distributions most frequently used in 

reliability analysis. It is a more general three-parameter distribution and other 

distributions, such as, Exponential, Normal, Log-normal, Gamma and Rayleigh 

distributions are special cases of this distribution. The Weibull failure density 

function is associated with the times to failure of items and it is uniquely defined by 

three parameters. By adjusting the Weibull distribution parameters, it can be made to 

model a wider range of applications. The general form of density function for a 

three-parameter Weibull distribution is given by:  

 

 

Where, β is called the Shape Parameter, η is the scale parameter, which is also called 

the Characteristic Life at which about 63% of the population of items would have 

failed. The third parameter γ is called a Location Parameter or minimum life. The 

Reliability Function for this distribution for t>= γ is given by the expression,  

 
 

 

This distribution is very flexible and using different values of the three 

parameters it can depict various shapes of the above functions. As an example, the 

shapes of the failure Density Function, Reliability Function, Cumulative Density 
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Function and Hazard Function have been for the following values of the three 

parameters, β = 4, η = 1 and γ = 0.  

 
 

 

The most commonly used density function for a Weibull distribution is given 

by the following simplified expression where the term (η-γ) is considered as a scale 

parameter, which is always positive: 

 

 

In most of the practical applications the failures are assumed to start at time 

zero, which implies that the location parameter, γ =0. And substituting 0 for γ can 

further simplify the above expressions.  
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The Exponential distribution is a particular case of the Weibull with β = 1, γ = 

0. In this case,  

f(t) = (1/η) exp -(t/η) and R(t) = exp -(t/η), where (1/η) corresponds to 

the constant failure rate λ. If the value of β = 3.2 and γ = 0, the Weibull 

distribution approximates closely to the Normal distribution where η corresponds to 

the mean life and β to the standard deviation. Figures depict the shapes of R(t) for 

the above two cases.  

 
 

 

Some fundamental properties of Weibull Distribution  

• It is a continuous distribution  

• This distribution is associated with times to failure of items and it 

supplements the Exponential and the Normal distributions.  

• While the Exponential is described by a single parameter and the Normal 

described by two parameters, three parameters are required to uniquely 

describe the Weibull.  
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• A three-parameter Weibull distribution can be reduced to a two-parameter 

distribution by assuming that the location parameter γ is always zeroed.  

• It is a more general three-parameter distribution and other distributions, such 

as Exponential, Normal, Log-normal, Gamma and Rayleigh distributions are 

special cases of this distribution. 

• Depending upon the value of the shape parameter, the Weibull distribution 

shows the following properties: 

 
• The Weibull probability graph paper is particularly useful as an exploratory 

technique in understanding life test or field data from a product.  

 Particular Applications of the Weibull Distribution 

• This distribution holds an important place among the distributions of lifetime 

due to the fact that a small difference in the distributions of lifetime of 

components can describe the lifetime of a product. For, example, if each of 

the components has a normal distribution of lifetime but the parameters of 

these distributions vary somewhat from component to component, then for a 

sufficiently large number of components, the Weibull is the best distribution 

to apply.  

• The infant-mortality and wearout failure mechanisms are best described by 

this distribution. The values of the three parameters of the Weibull 

distribution can be determined from test data or field data using Maximum 

Likelihood Estimation (MLE) technique. The estimated values of these 

parameters can indicate a number of things about the product's life cycle-If β 

< 1 then h(t) will decrease with time ,t (Represents Early life) If β = 1 

then h(t) will be constant with time ,t (Represents Useful life) If β > 1 

then h(t) will increase with time ,t (Represents Wear-out)  

• The estimated value of the location parameter ( γ ) indicates the following 

situations: A value of less than zero indicates failure in storage. These failures 

end up as Dead On Arrival (DOA) when a batch of items is delivered. A 
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positive value of the location parameter suggests that there is some period of 

time, which is failure free. This could be considered as a failure free warranty 

period.  

• It is clear from the above discussion that the Weibull distribution can be 

applied to model a variety of situations by the right choice of the parameter 

values. The Weibull is particularly useful in reliability work due to its 

flexibility to model a wide range of lifetime distributions of different items. 

 





 

 

2. Burn In 

2.1. Introduction 

Reliability engineers have long recognized an inherent characteristic in many types of 

equipment to exhibit a decreasing failure rate during their early operating life. 

Intuitively, a reliability high early failure rate that decreases with time until it 

eventually levels off can be explained by the inherent variability of any production 

process.  

The ‘substandard’ portion of the production of identical parts can be expected 

to fail early, and they do so quickly. The failures of these substandard parts are 

labeled “early life failures.” Experience shows that semiconductors, prone to fail 

early, will usually fail within the first 1,000 operating hours under use conditions. 

After that the failure stabilizes, perhaps for as long as 25 years, before beginning to 

increase again as the components go into wear out. These failures, termed “infant 

mortalities,” can be as high as 10% in a new, unproven technology and as low as 

0.01% in a proven technology.  

Burn-in test assures that substandard components, which do not meet their 

failure rate, mean life or reliability goal, are identified by subjecting them to high 

temperature, and at times in conjunction with other high stresses such as voltage, 

wattage, vibration, etc. this temperature and the additional stresses are higher than 

use condition stresses, and usually near their rated capacity or higher, but preferably 

not in excess of 20% above their capacity. 

2.1.1. Burn-In Definitions  

In MIL-STD-883, Method 1015.3, “Burn-in Test,” burn-in is defined as follows: 

Burn-in is a test performed for the purpose of screening or eliminating marginal devices, those 

with inherent defects or defects resulting from manufacturing aberrations which cause time and stress 

dependent failures.  
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Kuo and Kuo define the burn-in in as follows: 

Burn-in is a stress operation that combines the appropriate electrical conditions with 

appropriate thermal conditions to accelerate the aging of a component or device. In other words, burn-

in is a process which operates electronic components or systems under electrical and thermal conditions 

to demonstrate the real life of the components or systems in a compressed time.  

2.1.2. The Differences between Burn-In and Environmental Stress 
Screening (ESS) 

There have been a lot of confusions both in the industry and in the literature about 

the terms “Burn-in” and “ESS.” “Burn-in” and “ESS” have been used 

interchangeably by many people. In fact, they are two very relevant but different 

concepts.  

Burn-in is a generally lengthy process of powering a product at a specified constant 

temperature.  

ESS evolved from burin-in techniques but is a considerably advanced process. 

Generally, ESS is an accelerated process of stressing a product in continuous cycles 

between predetermined environmental extremes, primarily temperature cycling plus 

random vibration.   

The misconception is due to the wrong assumption that historical “burn-in” 

procedures conducted on electronic equipment, currently in the inventory, are as cost 

effective as the ESS temperature cycling and random vibration screens. illustrates the 

differences between burin-in and ESS procedures. It may be seen that burn-in can be 

regarded as a special case of ESS where the temperature change rate for thermal 

cycling is zero and vibration is sinusoidal if ever used. 

2.2. Burn-In Methods and Their Effectiveness  

2.2.1. Static Burn-In              

The simplest type of burn-in is static, or steady-state, burn-in. Static burn-in 

maintains a steady-state bias on each device under high temperature for a number of 

hours to accelerate the migration of impurities to the surface so that a potential 

failure will occur. A static system is cheaper and simpler, and is useful with 

contamination-related failure mechanisms. It is, however, less effective than dynamic 



Burn In 
 

 

23

burn-in for large scale integration (LSI) and very large scale integration (VLSI) 

devices. 

Table 2.1: Comparison of burn-in test and ESS procedure 
Criteria Burn-in ESS 

Temperature Operating or accelerated Cycled from high to low operating 

Vibration Usually constant, but 
sometimes cycled Random, normally 20-2,000 Hz 

Temperature rate of 
change  5°C per minute minimum 

Length of time Normally 168 hours or less 
10 or 5 minutes perpendicular to each axis 
of orientation for vibration, and 10 to 20 
cycles for temperature cycling. 

2.2.2. Dynamic Burn-in 

Dynamic burn-in uses power source voltage, clock signals, and address signals to 

ensure all internal nodes are reached during temperature stressing. It is more effective 

at detecting early failures in complex device. It is also more expensive and requires 

more dedicated burn-in boards. It should be noted that a dynamic burn-in system can 

also be used for static burn-in, but not the other way around.  

2.2.3. Test During Burn-In 

A subset of dynamic burn-in is Test Burn-In (TDBI). TDBI adds functional testing 

and, possibly, monitoring of component outputs to show how they are responding to 

specific input stimuli. TDBI is the most comprehensive burn-in technique, especially 

when coupled with scan-based technology. It has been used primarily for dynamic 

random access memories (DRAMs) but is applicable for all large memories due to 

their long electrical test times. Normally, the electrical testing is performed after 

burn-in to detect failures. TDBI is not appropriate for EPROM’S (erasable 

programmable ROM’s), microprocessors and other VLSI circuits.  

A typical TDBI is performed in the following manner: 

1. The devices are operated at an elevated temperature (125°C) and voltage (7 to 

7.5 V) for an extended period of time, while all devices-under-test (DUT’s) 

are subjected to function testing using a complex test pattern  

2. The DUT’s are operated for a short duration at a lower temperature (70°C) 

and voltage (5.5V) during which parametric testing is performed.  

3. Repeat Steps 1 and 2 for 4 to 8 hours or longer.  
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2.2.4. High-Voltage Stress Tests 

High-voltage stress tests are categorized as burn-in screens because of their device-

aging-acceleration features due to the application of voltage, time and temperature. 

For these tests, the distribution of the voltage stress throughout the IC is 

accomplished by carefully designed dynamic and functional operation. IC memory 

suppliers have used high-voltage stress tests in lieu of dynamic burn-in as a means to 

uncover oxide defects in MOS IC’s. Some suppliers use high-voltage stress tests in 

conjunction with either dynamic burn-in or TDBI. 

A typical high-voltage stress test involves cycling through all addresses (for a 

memory) using selected memory data patterns for 2 seconds, both high and low 

(logically speaking), with 7.5 V forcing function being applied (for a 5-V rated part, 

for example).  

Note that for VLSI devices which have a unique set of characteristics 

significantly different from small-scale integrated (SSI), medium-scale integrated 

(MSI) and large-scale integrated (LSI) devices, burn-in needs to be refined since both 

stress coverage and test coverage are required to develop an effective burn-in method 

for these devices.  

Burn-in methods are generally classified into the following categories: 

1. Elevated temperature plus power-the cheapest but the least effective method. 

2. Elevated temperature plus power with all inputs reverse biased, or the so-

called High Temperature Reverse Bias (HTRB) - a method with moderate 

cost and reasonable effectiveness for most devices. 

3. Elevated temperature, power, dynamic excitation of inputs, and full loading 

of all outputs-an effective and expensive method. 

4. Optimum biasing combined with temperature in the range of 200 to 300°C, 

or the so-called High-Temperature Operating Test (HTOT)- an expensive 

and difficult-to-carry-out method which is not applicable to plastic devices 

due to the high temperature involved. 

No matter how the burn-in methods are classified, one thing is certain. Each 

failure mechanism has a specific activation energy that dominates the effectiveness of 
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each burn-in method. Burning-in components, by applying high voltage to their pins, 

accelerates the time-to-failure of oxide defects (weak oxide, pin holes, uneven layer 

growth, etc.) typically found in MOS devices. High temperature also accelerates these 

and other defects, such as ionic contamination and silicon defects. Table 2.2 is a 

summary of failure mechanisms accelerated by various popular burn-in methods 

based on the activation energies for these failure mechanisms. Table 2.3 is a summary 

of the effectiveness for these burn-in methods versus the major technology 

categories.  

 

Table 2.2: Failure mechanisms accelerated by various burn-in methods 
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Table 2.3: Effectiveness of various Burn-In methods vs. technology categories 

 

2.3. Burn-In Documents  

Several military documents define burn-in standards which have been used 

throughout the industry. Among these, MIL-STD-781, issued in 1967, has been used 

to demonstrate the reliability of production electronic equipment. This standard has 

needed substantial improvements in the area of burn-in application as pointed out by 

many researchers. Consequently, a revised version of MIL-STD-785 lists burn-in as 

one of the eight (8) major tasks comprising a reliability improvements. In addition, 

MIL-STD-883 and MIL-HDBD-217 have become a focal point in system concepts 

for ensuring a successful reliability demonstration test. Industry generally accepts 

MIL-STD-883 as the basis for most burn-in conditioning done by manufacturers of 

industrial electronic equipment. However, there are some criticisms concerning its 

ineffectiveness, expensiveness and possible damages to the equipment [8]. Also, there 

is little adequate theory to permit the calculation of the optimum burn-in time.   

2.4. Burn-In Test Conditions Specified By MIL-STD-883C   

In MIL-STD-883C, the following six basic test conditions are specified for the burn-

in test: 
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1. Test Condition A- Steady Sate, Reverse Bias 

This test condition is illustrate in Figure 2.1 and is suitable for use on all types 

of circuits, both linear and digital. In this test, as many junctions as possible 

will be reverse biased to the specified voltage.  

2. Test Condition B – Steady State, Forward Bias  

This test condition is also illustrated in Figure 2.1 and can be used on all 

digital type circuits and some linear types. In this test, as many junctions as 

possible will be forward biased to the specified voltage.  

3. Test Condition C – Steady State, Power and Reverse Bias 

This test condition is also illustrated Figure 2.1 in and can be used on all 

digital type circuits and some linear types where the inputs can be reverse 

biased and the output can be biased for maximum power dissipation or vice 

versa. 

 
Figure 2.1: Steady state burn-in test for test condition A, B, and C 

 
Figure 2.2: Typical parallel, series excitation for test condition D 
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4. Test Condition D – Parallel or Series Excitation  

This test condition is typically illustrated in Figure 2.2 and is suitably used on 

all circuit types. Parallel or series excitation, or any combination thereof, is 

permissible. However, all circuits must be driven with an appropriate signal 

to simulate, as closely as possible, circuit application and all circuits should 

have the maximum load applied. The excitation frequency should not be less 

than 60 Hz.  

5. Test Condition E – Ring Oscillator  

This test condition is illustrated in Figure 2.3, with the output of the last 

circuit normally connected to the input of the first circuit. The series will be 

free running at a frequency established by the propagation delay of each 

circuit and associated wiring, and the frequency shall not be less than 60 Hz. 

In the case of circuits which cause phase inversion, an odd number of circuits 

shall be used. Each circuit in the ring shall be loaded to its rated maximum 

capacity.  

 BIAS 
 VOLTAGE  
 
 
 IN 
 
 
 
 
 
 

Figure 2.3: Ring oscillator for Test Condition E 

6. Test Condition F – Temperature – Accelerated Test  

Under this test condition, microcircuits are subjected to bias(es) at an 

ambient test temperature, typically from 151°C to 300°C, which considerably 

exceeds their maximum rated junction temperature. It is generally found that 

microcircuits will not operate properly at these elevate temperatures in their 

applicable procurement documents. Therefore, special attention should be 

given to the choice of bias circuits and conditions to assure that important 

circuit areas of the circuit. To properly select the accelerated test conditions, 

it is recommended that an adequate sample of devices be exposed to the 

    1    2   N 

TO INPUT 
OF NO. 3 

OUTPUT 
OF N- 1 
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intended high temperature while measuring voltage(s) and current(s) at each 

device terminal to assure that the applied electrical stresses do not induce 

damaging overstresses. Note that Test Condition F should not be applied to 

Class S devices.  

Table 2.5 can be used to establish the alternate time and temperature values. 

This table is based on the following two regression equations for Class B and 

Class S [9; 10], respectively: 

For Class B: 

 *
5,106.8 ,4 273.154.303 10 T

bT e− += ×  (2.1) 

where 
bT = burn-in time is hours, and 

T ∗ = burn-in temperature, °C. 

For Class S: 

 
5,106.8 ,4 273.156.454 10 T

bT e ∗− += ×   (2.2) 

where 
bT = burn-in time in hours, and 

T ∗ = burn-in temperature, °C. 

Any time-temperature combination which is contained in Table 2.5 for the 

appropriate class may be used for the applicable test condition. The test conditions, 

duration and temperature, selected prior to test should be recorded and shall govern 

for the entire test.  

2.5. Test Temperature  

Unless otherwise specified, the ambient burn-in test temperature shall be 125°C 

minimum for conditions A through E (except for hybrids, see Table 2.5). At the 

supplier’s option, the test temperature for Conditions A through E may be increases 

and the test temperature for Conditions A through E may be increased and the test 

time reduced according to Table 2.5. Since case and junction temperature will, under 

normal circumstances, be significantly higher than ambient temperature, the circuit 

employed should be so structured that the maximum rated junction temperature for 

test or operation shall not exceed 200°C for Class B or 175°C for Class S. 
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The specified test temperature is the minimum actual ambient temperature to 

which all devices in the working area of the chamber shall be exposed. This should 

be assured by making whatever adjustments are necessary in the chamber profile, 

loading, location of control or monitoring instruments, and the flow of air or other 

suitable gas or liquid chamber medium. 

Table 2.4: Recommended burn-in times and temperatures for various test conditions 

Minimum burn-in time, hr 
Minimum 

temperature 
,T ∗  °C Class S Class B 

 
Test 

Conditions 

Minimum 
reburn-in 
time, hr 

100 - 352 Hybrids only 24 
105 - 300 Hybrids only 24 
110 - 260 Hybrids only 24 
115 - 220 Hybrids only 24 
120 - 190 Hybrids only 24 
125 240 160 A – E 24 
130 208 138 A – E 21 
135 180 120 A – E 18 
140 160 105 A – E 16 
145 140 92 A – E 14 
150 120 80 A – E 12 
175 - 48 F 12 
200 - 28 F 12 
225 - 16 F 12 
250 - 12 F 12 

2.6. Reliability after Burn-In 

A factory test designed to catch systems with marginal components before they get 

out the door; the theory is that burn-in will protect customers by outwaiting the 

steepest part of the bathtub curve 

Conditional reliability is useful in describing the reliability of a component or 

system following a burn-in period T0 or after a warranty period T0. We define 

conditional reliability as the reliability of a system given that it has operated for  time 

T0.: 

 R(t │ T0) = Pr{T> T0 + t │T > T0 } 

 = 
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EXAMPLE 2.1 

Let, 

 λ (t) = 
5.0

10001000
5.0 −

⎟
⎠
⎞

⎜
⎝
⎛ t   Where, t is in years 

Which is a DFR. Then for reliability of 0.90 

 R(t) = exp - 90.0
1000

2/1

=⎟
⎠
⎞

⎜
⎝
⎛ t  

And the design life is bound from 

 t = 1000(-ln 0.90)2 = 11.1 yr 

If we let T0 = 0.5, a six month burn- in period, then 

 R (t │ T0) = ( )
)5.0(
5.0

R
tR +  

 = 
( )[ ]
( )[ ]

90.0
1000/5.0exp
1000/5.0exp

5.0

5.0

=
+−
+−

t
t , and 

 t = 1000 yrIn 8.155.0
1000
0.5  0.90 

25.0

=−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+−  

This is an increase of over 4 years in the design life as a result of six- month 

burn-in period. This improvement in reliability from burn-in period T0 will only be 

realized for a DFR as illustrated in the following example as  shown in Appendix 2C. 

 Let λ (t) = tλ , an IFR for λ >0. Then 

 R(t) = e-(1/2)
2rλ

 (2.5) 

 R(t │ T0) = 2
0

2
0

)2/1(

)T(t(1/2)-   e
Te λ

λ

−

+

 

Which can be simplified to: 

 R(t │ T0) = 
2

0 )2/1( rtT ee λλ −−  (2.6) 

Since exp (- )0tTλ for 0>λ is a decreasing function of T0 increases. 

For the reliability function given in Example 2.6, the conditional reliability is: 
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 R (t │ T0) = 
( )
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Tta
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−
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=
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+
 (2.7) 

2.6.1. Residual MTTF 

Since R (t │ T0) is a reliability function, a residual MTTF may be obtained from 

 MTTF(T0) = ')'(
)R(T

1dt' 
)R(T
)R(t' T0)dt  ¦(t  R

00
00

0 dttRTT
ααα ∫=∫=∫  (2.8) 

Where t’ = t + T0. For those units having survived to time T0, Eq. (2.8) 

determines their mean remaining lifetime. For components having an IFR (DFR), 

one would expect the MTTF(T0) to be a decreasing (increasing) function of T0, as 

shown in the following examples. 

The reliability function R(t) = (b-t)/b for 0 ≤ t ≤ b and zero elsewhere has an 

IFR. Its residual MTTF is given by 

MTTF(T0) = 
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The reliability function  

 R(t) = 
( )2
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 = t ≥0 

Where a > 0 is a parameter (constant) of the distribution, has the hazard rate fuction 
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Which is decreasing. The MTTF is  
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This has the interesting property that the residual mean increases by the 

amount of the current age. If T0 = 0, the unconditional mean, MTTF = a, is 

obtained. 

2.7. A Physics of Failure Approach to IC Burn-In 

Screening is a process that detects defects in a sub-population of devices that may 

exhibit early failure characteristics unlike the main population. Such defects occur 

due to multiple variabilities detected either through non-stress screens or by stress 
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screens, including burn-in. This section examines the problems with existing burn-in 

methods and presents a physics of –failure approach to burn- in. 

2.7.1. Burn-In Philosophy 

Burn -in has been used as a screen that subjects devices to extended operation at high 

temperatures to precipitate early failures and eliminate the infant mortality region. 

Traditionally, burn-in has been based on the bathtub curve failure pattern. The 

bathtub curve is used to determine the screening magnitude and level. However, 

these failure patterns have become outdated and as, a result, their relevance has 

diminished. 

The goal to burn-in is to prevent failures from occurring in the field. Burn-in is 

typically a requirement imposed by the customer to demonstrate higher product 

reliability; manufacturers have different burn-in procedures for the same class 

components for military and commercial customers. 

The typical burn-in procedure consists of placing parts in a thermal chamber 

for a specific amount of time under electrical bias. During and/ or after thermal 

environmental exposure, functional tests are conducted. Parts that fail the screen are 

discarded; parts that survive can be used. 

2.7.2. Problem with Present Approach to Burn-In 

A review of the burn-in practices used by some leading IC manufacturing reveals that 

even though burn-in has been regarded as a method for eliminating marginal devices 

with defects from manufacturing aberrations, the specifics of burn-in vary (Table 

2.5). Most companies have their own burn-in specifications for commercial products; 

MIL-STD –833 is used to satisfy burn-in requirements for military products. Other 

companies use only MIL-STD- 833, but the selection of Method 1051 burn-in 

procedures for quality assurance also seems to be arbitrary. The emphasis is on 

empirical analysis, without any pointers to cost-effective application or subsequent 

manufacturing or assembly process modifications. 

Burn-in present is a generic procedure consisting of a combination of time, 

steady-state temperature, and electrical stress. Burn-in procedures are often 

conducted without any prior identification of the nature of the defects to be 

precipitated, the failure mechanism active in the device, or their sensitivity to steady-
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state temperature stress or without any quantitative evidence of the improvement 

achieved by the process. 

By looking at the data from various companies burn-in has shown that it is 

ineffective for precipitating many failures. Data collected from various procedures 

sources shows that the majority of failures precipitated by burn-in are not valid. Valid 

failures include such things as mechanical damage, broken bond and broken package 

pins. Non-valid failures include such things as handling damage, for example, 

electrostatic discharge. It has been shown that burn-in detects less than 0.5% of 

failures of which less than 0.002% were valid(my burn-in article). Therefore, the 

failures burn-in precipitates are unlikely to occur in the field which defeats the 

purpose of burn-in 

Burn –in may not precipitate many failures because it is performed under the 

widespread trust that the failure mechanism are steady-state temperature, temperature 

change, the rate of temperature change, or temperature gradients induce failures. An 

example that indicates that the failure are not steady – state dependent is presented. 

TriQuant Semiconductor found while testing their GaAs ICs that burn-in was 

ineffective in actuating any failure mechanisms. The reason were traced to dive 

architecture and failure mechanism that had no dependence on steady-state 

temperature. 

Another reason could be because burn-in is conducted without prior 

knowledge of what failure mechanism is to be precipitated. The use of burn-in 

without attention to the dominant failure mechanism and the nature of their 

temperature dependencies is a misapplication of reliability concepts. Such use of 

burn-in may cause failure avoidance efforts, without yielding anticipated overall 

results, or expensive system implementations whose costs and complexities exceed 

the anticipated benefits in reliability. 

Since burn-in does not precipitate many failures, some believe that it is more 

effective if it is applied for longer duration’s. However, Motorola concluded, after 

numerous tests, that after 160 hours, the effectiveness of burn-in decreases 

significantly with the close to zero failures in the succeeding 1000 hours.. Other 

problems result due to burn-in which include. 

• Palladium damage 
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• Increase in leakage currents 

• Damage induced by additional handling 

Burn-in has the potential to damage palladium lead finishes which can cause 

solderability problems. What happens is the finish on the leads disappears leaving a 

surface that cannot be soldered upon. It has also been shown that plastic parts 

degrade more severely than their ceramic counterparts after exposure to various 

radiations dosage levels(my article). The leakage current increases to the point where 

the performance is altered to an undesirable state. The reason for this is due to the 

presence of various materials present in the encapsulant which is not present in 

ceramic parts. During the burn-in process, parts are inserted and withdrawn from 

sockets, temperature chambers which makes them susceptible to additional handling 

damage. Handling damages that lead to failures include mechanical damage (e.g. bent 

leads), electrostatic discharge (ESD), and electrical overstress(EOS) failures. Many 

studies have been performed verifying the fact that burn-in is the source of EOS/ 

ESD damage. 
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Table 2.5: Burn-in time and temperatures 

Source Min. Temp. 
Ta (°C) 

Time (hours) Test 
condition 

Comments 

Mil-STD-833 
Method 1015 

100,105, 
110,115, 
120 

Class:B 325,300, 
260,220,190 

Hybrids 
only 

Either of the combinations of the 
cited temperature and time is used 
for burn-in of hybrids 

 125 Class S: 240 
Class B:160 

A-E 

 130 Class S: 208 
Class B:138 

A-E 

 135 Class S: 180 
Class B:120 

A-E 

 140 Class S: 160 
Class B:105 

A-E 

 145 Class S: 140 
Class B:92 

A-E 

 150 Class S:120 
Class B:80 

A-E 

 175 Class B:48 A-E 
 200 Class B:28 A-E 

Any of the specified combinations 
of temperature and time can be 
used for burn-in according to 
Method 1051 of MIL-STD-833. 
The various conditions of burn-in 
are defined by the electrical stress, 
steady state temperature (ranging 
from 100° C to 250° C) and time 
period (12 to 352 hours) Conditions 
include: 
• Test condition A: steady state 

temperature, reverse bias 
• Test condition B: steady state 

temperature, forward bias 
• Test condition C: steady state 

temperature, power and 
reverse bias 

• Test condition D: parallel 
excitation 

• Test condition E: ring 
excitation 

• Test condition F: temperature 
accelerated test 
[MIL-STD-883C, 1983: last 
revision incorporated 1990] 

 
 
Source 

Min. 
Temp. 
Ta (°C) 

Time (hours) Test condition Comments 

Mil-STD-833 
Method 1015(cont) 

225 Class:B 16 A-E  

 250 
 
 

Class:B 12 A-E  

INTEL 
Corporation 
 
Intel Spec. 
MIL-STD-833 
Method 1051 

 
 
 
125°C 
 
125°C 

 
 
 
Memory products:48 
hours 
Military products: 160 
hours 

 
 
 
 
Method 1051 
Condition C or 
D 

 
 
 
 
Dynamic burn-in 
[Intel 1989, Intel 
1990] 
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Advanced Micro 
Devices Inc. 

   

MIL-STD-833 
Method 1051 

125°C Military products: 240 
hours 

Method 1051 
Condition C or 
D 

 
 
 
[Advance Micro 
Devices 1990] 

 
Source 
 

Min. 
Temp. 
Ta (°C) 

Time (hours) Test condition Comments 

LSI Logic 
Corporation 
 
MIL-STD-833 
Method 1051 

 
 
 
125°C 
 
 

 
 
 
48 hours 
 

 
 
Static or DC 
burn-in; dynamic 
burn-in 
 
 
 

 
 
The results of production 
burn-in are measured as a 
percentage fallout rate or 
PDA (Percent Defective 
Allowable). The PDA 
calculation is simply the 
reject rate, the number of 
failures divided by the total 
number of devices in the 
lot, and the result 
compared against target 
PDA [LSI Logic 1990]  

 
Source 

 
Min. Temp. 

Ta (°C) 
Time (hours) Test 

condition 
Comments 

Texas 
Instruments Inc 

 
 

 
 

 
 

MIL-STD-833 
Method 1051 

125°C MOS memory and LSI 
 

 

MIL-STD-833 
Method 1051 

 JAN S, monitored line, SEQ: 240 
hours 

 

Power burn-in  
MIL-STD-750 
Method 1039 

25°C  Optocoupler screening: JAN, 
JANTX, JANTXV, 
4N22,4N23,4N24JAN,4N22A,4N
23A,4N24A:168 hours 

V∝ = 20 Vdc 
V∝ = 10±5 Vdc 
PT= 275±25 mW 
IF = 40 mA 

The results of 
production burn-in 
are measured as a 
percentage fallout 
rate or PDA 
(Percent Defective 
Allowable). The 
PDA calculation is 
simply the reject 
rate, the number of 
failures divided by 
the total number of 
devices in the lot, 
and the result 
compared against 
target PDA [LSI 
Logic 1990] 

Components inserted into and extracted from sockets, temperature chambers, 

and pre-and post-test procedures can suffer additional handling damage in the form 

of bent leads and electrostatic discharge.  

Historically, ionic contamination has been the dominant mechanism 

precipitated by burn-in. Sodium, potassium, or ions in the oxide of silicon MOS 

devices under bias and temperature lead to junction leakage and threshold voltage 

shifts that cause failure. Cool –down under bias and retest within 96hrs of burn-in 
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produces a relaxation of bias-induced charge separation. GaAs MESFET- based ICs 

have no oxide between the gate metalilization and the surface of the channel – the 

interface is a Schotkky diode. Similarly, the MESFET device unipolar, majority-

carrier conducting, and reliant on the semi-insulating bulk material to achieve device 

isolation. There are no junctions and no leakage to consider. 

In an effort to improve reliability, microelectronic manufactures have often 

subjected devices to increasingly longer periods of burn-in. However, Motorola 

noted that most of the failures precipitated by burn-in occur in the first 160 device 

hours, with few or no failures over the next 1,000 hours. This is controlled by the 

fact that the long-term projected failure rate, based on the number of failures over 

1,000 hours, is the same order of magnitude as the actual measured failure rate over 

1,000 hours. 

2.7.3. A Physics- Of – Failure Approach to Burn –In 

2.7.3.1. Understanding Steady –State Temperature Effects 

The use of burn-in without attention to the dominant failure mechanisms and the 

nature of their temperature dependencies is a misapplication of reliability concepts. 

Such use of burn-in may cause failure avoidance efforts, without yielding anticipated 

overall results, or expensive system implementations whose costs and complexities 

exceed the anticipated benefits in reliability. While burn-in case be used for certain 

types of failures that can be accelerated by steady-state temperature effects, more 

insight into the failure mechanism can yield better solutions in terms of design and 

processes. 

Microelectronic design and corrective action are often misdirected because of 

the confusion between quality and performance. Quality is a measure of the ability of 

a device to fulfill its intended function. Device performance, defined by electrical 

parameters such as threshold voltage, leakage currents, and propagation delay, is 

dependent on steady-state temperature, the device does not meet requirements. This 

may serve as an indicator for a design change, or for the unsuitability of the 

technology for high-temperature operation. Burn-in, where performance is checked 

after the temperature is lowered, will not uncover this type of problem. 
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2.7.3.2. Setting up the Burn-in Profile 

A physics-of-failure approach to burn-in considers the potential material defects, 

design inconsistencies, and manufacturing variabilites for each process that could 

cause defects in the product. The burn-in methodology is an iterative process 

consisting of the following major steps. 

• Identify failure mechanisms, failure sites and failure stresses. 

Development of a burn-in program encompasses identifying potential failure 

mechanisms, failure sites, and failure stresses, active in a device technology. The 

burn-in process must be tailored to specific failure mechanism (s) at specific potential 

failure site(s) in order to be effective. The failure mechanism(s) and failure sites(s) 

depend on the materials and product processing technologies. Burn–in conditions are 

therefore specific to the manufacturing technology and hardware. The manufacturing 

sequence should be studied and possible defects, introduced due to the processing 

variabilites at each manufacturing stage, should be identified. The dominant failure 

stresses accelerating the failure mechanisms can be identified based on knowledge of 

the damage mechanics. The burn-in stress sequence will encompass those stresses 

that serve as dominant accelerators of the failure mechanisms. 

• Identify the combination of stresses to activate the identified failure mechanism cost 
effectively. 

Typically, there may be a number of failure mechanisms dominant in a device 

technology; each may have a dominant dependence on a different stress. Thus in 

order to activate all the failure mechanisms the dominant stresses need to be applied 

simultaneously and cost-effectively. To quantitatively determine the magnitude of 

stresses necessary to activate the failure mechanisms and arrive at the desired cost-

effective combination of stresses, models must be developed for each failure 

mechanism, as a function of stresses, device geometry, material, and magnitude of 

defects and design inconsistencies. The quantitative models, however can aid only in 

relating the magnitude of a particular type of stress to manufacturing flaws and 

design inconsistencies, based on physics of failure concepts. The real case is more 

complex, involving interactions of stresses causing failure earlier than predicted by 

superposition of different stresses acting separately. There may be more than one 

failure mechanisms in a device technology. Each of the mechanisms will have its own 

dependence on steady state temperature, temperature cycle, temperature gradient, 
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and time dependent temperature change. An ideal case will be when an optimized 

combination of the relevant stresses is used to activate the failure mechanisms in a 

cost effective manner. The desired combination of stress is a function of the physics 

of the failure mechanism, and response of package material and configuration. The 

approach to arriving at the desired stress level consists of subjecting the components 

to discrete stress levels of steady state temperature, temperature cycle, temperature 

gradient, time dependent temperature change, and voltage. The selection of the 

temperature stress level should be based on the knowledge of designed for 

temperature of the device, the temperature of the device during operational life and 

the thresholds for various failure mechanisms. Conducting steps stress and HAST 

test for various magnitudes of each type of stress applied separately will give failure 

results in term of number of cycles to failure, failure mechanisms activated, and 

failure sites. From the test the stress levels required for activation of failure 

mechanisms will be identified.  

• Conduct burn-in and evaluate effectiveness. 

Burn-in should be assessed based on root cause failure analysis of the failed 

components, revealing the failure mechanisms, failure modes and failure sites. 

Inappropriate burn-in stresses will either damage good components by activating 

mechanisms not otherwise noticed in operational life, or allow defective parts to go 

through. To make sure the stress level and duration is right, the amount of damage 

(or the life consumed) for products without defects(“good” products) must be 

evaluated. If necessary, the stress levels modified if necessary. 

Product reliability (due to the design improvements) must be used as the index 

for subsequent burn-in decisions. Physics of failure approach is used to determine 

the effective acceleration of device dominant failure mechanisms and is given by: Aeff 

= (ATAvAx……).  Acceleration factors for dominant failure mechanisms are used to 

determine burn-in time (tbi) and temperature (Tbi). The effective burn-in time is given 

by : teff = ATAvAx……)tbi.   

•  Decision regarding in-process monitors and burn-in modifications 

The above steps should be repeated until all products have the required 

expected life, with an optimized return on investment. The burn-in process should be 

augmented (supplemented or complemented) with in-line process controls to attain 



Burn In 
 

 

41

the desired quality and reliability. The physics of failure models along with the burn-

in results will determine the optimal manufacturing stress levels and process 

parameters for minimal defects level. The in-line process controls will ensure that the 

process parameters are maintained at their optimal values to minimize the occurrence 

of defects. 

Economic analysis should indicate whether the burn-in should be continued or 

modified. A cost-effective burn-in program addresses all the relevant failure 

mechanisms by employing a minimum set of devices. Burn –in is recommended for 

all products which are in the development stage and do not have a mature 

manufacturing process. Burn-in at this stage not only improves the quality and 

reliability of the products but also assists in determining product and process 

(manufacturing, assembly, testing) corrective actions. Products with a standardized 

design and a relatively mature process need burn-in only if the field failure returns 

indicate infant mortality. A cost analysis and return on investment is conducted to 

calculate the economics of the burn-in program. Analysis of cost and return of 

investment based on the customer satisfaction and the hidden factory costs(the costs 

associated with the factory inputs which do not add value to the product, like 

product inspection, testing, rework, etc.) determine the profits to an organization. 

Burn in economics are critical in convincing management about the benefits that 

accrue from burn-in and provide a benchmark for making improvements in the next 

burn-in “cycle”. 

 





 

 

3. Reliability Evaluation Using Databooks 

This chapter presents two papers which discuss the problems associated with 

reliability evaluation using MIL-HDBK-217 or any data book. Second paper presents 

a new methodology of system reliability evaluation called as CRAM (Consolidated 

Reliability Assessment Method). 

3.1. MIL-HDBK-217 vs. HALT/HASS 

For the last three decades, MIL-HDBK-217 has been widely used to predict product 

reliability. Today, however, highly accelerated life testing (HALT) and highly 

accelerated stress screening (HASS) are being recognized as effective tools to 

intensify product reliability.2 The military standard and HALT/HASS cover different 

areas in the reliability world. Is there any correlation between them? 

Manufacturers usually make reliability predictions based on failure models 

described in MIL-HDBK-217, Bellcore TR-332, or some other model before the 

product is manufactured or marketed.3,4 But when a product is delivered to 

customers and then field failure reports begin to arrive, the preliminary reliability 

prediction sometimes is not validated by real-world failure reports. 

Some manufacturers have said the prediction model could be widely inaccurate 

when compared with the performance in the field. What makes the discrepancy 

between the reliability prediction and the field failure report? 

3.1.1. The Purpose of MIL-HDBK-217 

This military standard is used to estimate the inherent reliability of electronic 

equipment and systems, based on component failure data. It consists of two basic 

prediction methods: 

• Parts-Count Analysis: Requires relatively little information about the system 

and primarily uses the number of parts in each category with consideration of 

part quality and environments encountered. Generally, the method is applied 

in the early design phase, where the detailed circuit design is unknown, to 

obtain a preliminary estimate of system reliability.  
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• Part-Stress Prediction: Uses complex models composed of detailed stress-

analysis information as well as environment, quality applications, maximum 

ratings, complexity, temperature, construction, and a number of other 

application-related factors. This method tends to be used near the end of the 

design cycle, after the actual circuit design has been defined.  

The general failure mod-el in MIL-HDBK-217 and Bellcore TR-332 is of the form: 

  
Where, λb = the base failure rate, described by the Arrhenius equation 

πQπΕπΑ,… = factors related to component quality, environment, and 

application stress 

The Arrhenius equation illustrates the relationship between failure rate and 

temperature for components. It derives from the observed dependence of chemical 

reaction, gaseous diffusion, and migration rates on temperature changes: 

  
where: λb = process rate (component failure rate) 

E = activation energy for the process 

κ = Boltzmann’s constant 

T = absolute temperature 

K = a constant 

Detailed models are provided for each part type, such as microcircuits, 

transistors, resistors, and connectors. 

3.1.2. The Merit of HALT/HASS 

HALT is performed during design to find the weak reliability links in the product. 

The applied stresses to the product are well beyond normal shipping, storage, and 

application conditions. HALT consists of: 

• Applying environmental stress in steps until the product fails.  

• Making a temporary change to fix the failure.  

• Stepping stress further until the product fails again, then fix it.  
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• Repeating the stress-fail-fix process.  

• Finding fundamental operational and destruct limits of the product.  

HASS is performed in the production stage to confirm that all reliability 

improvements made in HALT are maintained. It ensures that no defects are 

introduced due to variations in the manufacturing process and vendor parts. It 

contains the following: 

• Precipitation screen for latent defects to be turned into patent defects.  

• Detection screen to find patent defects.  

• Failure analysis.  

• Corrective actions.  

The precipitation and detection screen limits of HASS are based on HALT 

results. Usually, the precipitation-screen limits are located between operational limits 

and destruct limits and the detection screen limits between spec limits and 

operational limits, as shown in Figure 3.1. 

 

 

 

 

 

 

Figure 3.1: Hass Limits Selected From HALT Data 

HALT/HASS has been proven to find latent defects that would very likely 

precipitate in end-use applications, causing product failures in the field. As a result, 

the HALT/HASS process can effectively intensify product reliability. 
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3.1.3. Why MIL-HDBK-217 Turns Out Inaccurate Predictions 

The prediction techniques described in MIL-HDBK-217 for estimating system 

reliability are based on the Arrhenius equation, an exponentially temperature-

dependent expression. But many failure modes in the real world do not follow the 

equation. 

For instance, mechanical vibration and shock, humidity, power on/off cycling, 

ESD, and dielectric breakdown—all independent of temperature—are common 

causes of failure. Even some temperature-related stresses, such as temperature 

cycling and thermal shock, would cause failures that do not follow the Arrhenius 

equation. 

More importantly, the reliability of components in many electronic systems is 

improving. Consequently, component failure no longer constitutes a major reason for 

system failure. But, the MIL-HDBK-217 model still tells us how to predict system 

reliability based on part failure data. 

 

Figure 3.2 illustrates the nominal percentage of failures attributable to each of 

eight predominant failure causes, based on data collected by the Reliability Analysis 

Center.6 The definitions of the eight failure causes in Figure 3.2 are as follows: 

•   Parts—22%: Part failing to perform its intended function. 

•  Design—9%: Inadequate design. 

•  Manufacturing—15%: Anomalies in the manufacturing process. 

•  System Management—4%: Failure to interpret system requirements. 

Manufacturing
Defect 
15 %

Part Defect 
      22 % 

Software
9 %

Induces  
20 % 

No Defect  
12 % 

Wearout 
9 %

System 
Management 

4 %  

Design 
9 %

Figure 3.2: Failure Cause Distribution Data
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• Wear-Out—9%: Wear-out-related failure mechanisms. 

• No Defect—20%: Perceived failure that cannot be reproduced upon further 

testing. These failures may or may not be actual failures; however, they are 

removals and count toward the logistic failure rate. 

• Induced—12%: An externally applied stress. 

• Software—9%: Failure to perform its intended function due to a software 

fault. 

To illustrate the disparity, consider the following: A circuit board containing 

338 components with six component types is used in a mobile radio system.4 The 

failure rate of the MIL-HDBK-217 prediction is 1.934 failures per million hours, as 

shown in Table 3.1. The field behavior of the board, however, shows 19 failures in a 

total operating time of 4,444,696 hours, resulting in a field failure rate of 4.274 

failures per million hours. The deviation 4.274 - 1.934 = 2.34 failures per million 

hours was not covered by the MIL-HDBK-217 prediction. 

Table 3.1: Contribution to Failure Rate of Each Component in MIL-HDBK-217 Prediction 

Component Ceramic 
Capacitor Diode Bipolar 

IC Resistor Bipolar  
Transistor 

Tantalum 
Capacitor 

Failure 
Rate 

Calculated 
Failures 0.004 0.009 0.05 0.052 1.225 0.594 1.934 

Actually, many field failures are caused by unpredictable factors, often the main 

reasons for reliability problems in today’s electronic systems. But those unpredictable 

reasons can be successfully precipitated, detected, and eliminated during a 

HALT/HASS process. 

3.1.4. Conclusion 

Before making a reliability prediction, be certain of one of the two following items: 

1. The failure modes described in the prediction model account for the vast 

majority of system failures. If not, go to b.  

2. Prediction is made after reducing unpredictable defects by performing 

HALT/HASS.  
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3.2. A New System-Reliability Assessment Methodology  

3.2.1. Abstract 

This paper outlines the structure for a new electronic system reliability assessment 

methodology. The term “system” is used because the methodology accounts for all 

predominant causes of system failure. This approach goes beyond traditional 

approaches such as MIL-HDBK-217 or Belcore. These prediction practices focus on 

the inherent capabilities and limitations of device technologies. The new 

Consolidated Reliability Assessment Model (CRAM) extends the reliability modeling 

to include special cause failure drivers such as those due to “design defects.” System 

level failure drivers, such as “requirements deficiencies” are also measured as to their 

effect on reliability. Our studies show these added modeling factors most significant 

failure drivers today.  

The new model adopts a broader scope to predicting reliability it factors in all 

available reliability data as it becomes available on the program. It thus integrates test 

and analysis data, which provides a better prediction foundation and a means of 

estimating variances from different reliability measures.  

There is much information available in the design and development of modern 

electronic systems that can potentially be beneficial in providing data and information 

useful for quantifying system reliability. Example of such information includes 

analysis performed early in the design phases (reliability prediction, FMEA, thermal 

analysis, etc.), process information (design, component selection, manufacturing) and 

test data (reliability qualification, demonstration, life test, performance testing, etc.). 

The CRAM captures and integrates the best information from all sources to produce 

a consolidated reliability estimate of the product. Particular goals of this model are to: 

• Estimate system failure rate and its variance  

• Explicitly recognize and account for special (assignable) cause problems 

• Model reliability from the user (or total system level) perspective 

• Provide and intuitive reliability model structure  

• Promote cross-organizational commitment to Reliability, Availability and 

Maintainability (RAM) 
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• Quantitatively grade developers’ efforts to affect improved reliability  

• Maintain continuing organizational focus on RAM throughout the 

development cycle 

• Integrate all RAM data that is available at the point in time when the estimate 

is performed (analogous to the statistical process called imeta-analysis) 

• Provide flexibility for the user to customize the reliability model with 

historical data  

• Impact (positively) the product development process and the resulting 

developed product  

3.2.2. Background 

3.2.2.1. Need for the Model 

Recent advances in government and industry have set the pace for development of 

new reliability assessment methods. In 1994, Military Specifications and Standards 

Reform (MSSR) was initiated. MSSR decreed the adoption of performance based 

specifications as a means of acquiring and modifying weapon systems. It also 

overhauled the military standardization process. MSSR led to the creation of the “105 

Heartburn Specifications & Standards & List” a list of standardization documents 

that required priority action because they were identified as barriers to commercial 

processes, as well as major cost drivers in defense acquisitions. The list included only 

one handbook, MIL-HDBK-217, “Reliability Prediction of Electronic Equipment.” 

Over the years, several vocal critics of MIL-HDBK-217 have complained about its 

utility as an effective method for assessing reliability. While the faultfinders claim that 

MIL-HDBK-217 is inaccurate and costly, to date no viable replacement methods are 

available in the public domain. As the DoD Lead Standardization Activity for 

reliability and maintainability (R&M), Rome Laboratory (RL) was responsible for 

implementing the R&M segment of MSSR. With this, RL initiated a project to 

develop a new reliability assessment technique to supplement MIL-HDBK-217, and 

to overcome some of its perceived problems.  

Utilizing standardization reform funding, RL awarded a contract to a team 

composed of personnel from IIT Research Institute (IITRI) and Performance 

Technology. The objective of the contract, the results to date which are summarized 
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in this paper, was to develop new and innovative reliability assessment methods. The 

contract called for the development of models flexible enough to suit the needs of 

system reliability analysis regardless of their preferred (or required) initial prediction 

methods. The intent was to use the final product to supplement or possibly replace. 

MIL-HDBK-217. The contract was broken down into three phases. Phase I 

identified and analyzed all existing initial reliability assessment methodologies 

including empirical methods and physics-of-failure based models, generic system and 

component level models, similar system data model, and test data models. The 

purpose and effectiveness of the various methods were studied. Phase II derived 

methodologies for improving the accuracy of reliability predictions and assessments 

with information obtained from the design, manufacturing, part selection test, and 

software development processes. Phase III involved development and automation of 

the new reliability assessment model. 

3.2.2.2. Uses for Reliability Predictions 

In an effort to identify the manner in which reliability predictions are used by 

reliability practitioners, a survey was issued, for which approximately sixty non-DoD 

companies responded. From this data, the predominant purpose for performing 

reliability assessment, in order of frequency are: 

1. Determining  feasibility in achieving a reliability goal or requirement  

2. Aiding in achieving a reliable design (i.e., derating component selection, 

environmental precautions, input to FMEAs/Fault Trees) 

3. Predicting warranty costs and maintenance support requirements  

3.2.2.3. Methodologies Used In Performing Predictions 

Survey respondents were also asked to identify the methodologies they use when 

predictions are performed. MIL-HDBK- 217 was determined to be the most 

universally applied failure rate prediction methodology. Several companies have 

adapted it by adding detailed manufactureris data or test data when it is available. 

Those who have evolutionary products have been able to successfully tailor their 

predictions based upon field experience with predecessor products. This adaptation 

has often been accomplished by making suitable modification to the quality pi factor. 

Most respondents have stated that they would like a methodology that is more 
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reflective of state-of-the-art technology. Some indicate that the constant failure rate is 

not truly representative. Respondents also indicated that they would also like one that 

addresses the special cause or process concerns, and a tool that proactively aids in the 

development of a reliable design.  

The CRAM model, like all models, is a mathematical representation of a 

physical situation. The degree to which a model is successful depends on its technical 

merit and on its acceptance be reliability engineering practitioners. The technical 

validity of the model depends on many factors including the assumptions made in 

model development and the data on which the model is based (and its associated 

limitations). The success of the model, in terms of acceptance, depends on the degree 

to which the model is intuitive, and the sensitivity of the model to parameters that 

are of interest to the model user. 

While some in the reliability profession believe that reliability modeling should 

focus on the development of models that attempt to deterministically model failure 

causes, it is well established that system reliability failure causes are not driven by 

deterministic processes, but rather they are stochastic processes and must be treated 

as such in a successful model. This does not simply that known failure causes should 

not be studied such that design and processing changes can be implemented to 

preclude their occurrence. Striving for this is always good reliability engineering 

practice. However, or the purposes of quantifying he expected field reliability of a 

system, a deterministic approach is not practical. For example, there are many more 

factors that influence reliability than can be accounted for in a model. It is because of 

this that there is a similarity between reliability prediction and chaotic processes. This 

likeness stems from the fact that the reliability is entirely dependent upon initial 

conditions (e.g., manufacturing variation) and use variables (i.e., field application). 

Both the initial conditions and the application variables are often unknowable. For 

example, the likelihood of a specific system containing a defect is often unknown, 

depending on the defect type, because the propensity for defects is a function of 

many variables and deterministically modeling them all is clearly impossible. 

Additionally, the specific stresses to which the system will be exposed during its 

lifetime cannot be ascertained and quantified with any significant degree of 

confidence. 
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As a result, a successful model will realistically estimate system reliability as a 

function of the known entities with quantifiable confidence in the estimate. The 

CRAM model strives to generally describe the reliability behavior of systems by 

estimating the effects of known failure drivers on system reliability, and by doing so 

in a fashion intuitive to reliability engineers.  

3.2.3. The Basis for a New Model 

3.2.3.1. Uncertainty in Traditional Approach Estimates   
A goal of the CRAM model is to model predominant system reliability drivers. The 

premise of traditional methods, such as MIL-HDBK- 217, is that the failure rate is 

primarily determined by the technology and application stress of the component 

comprising the system. This was a good premise when components exhibited higher 

failure rates and systems were not as complex as they are today. Increased system 

complexity and component quality have resulted in a shift of system failure causes 

away from components to more system level factors including system requirements, 

interface and software problems. A significant number of failures also stem from 

non-component causes such as defects in design and manufacturing. Hisorically, 

these factors have not been explicitly addressed in prediction methods. The approach 

used to develop the CRAM model was to; 1) Quantify the uncertainty in predictions 

using the “component based” traditional approaches and 2) Explicitly model the 

factors contributing to that uncertainty. Table 3.2 presents the multipliers of the 

failure rate point estimate as a function of confidence level. This data was obtained 

by analyzing data on system for which both predicted and observed data was 

available. For example, using traditional approaches, one could be 90 % certain that 

the true failure rate was less than 7.575 times the predicted value.  

Table 3.2: Uncertainty Level Multiplier   

Percentile  Multiplier  
.1 .132 
.2 .265 
.3 .437 
.4 .670 
.5        1 
.6 1.492 
.7 2.290 
.8 3.780 
.9 7.575 



Reliability Evaluation Using Databooks 
 

 

54 

3.2.3.2. System Failure Causes  

Predominant causes of system failure were identified and their relative probability of 

occurrence baselined for modern electronic systems. A summary of the data used to 

accomplish this was collected from a survey and is illustrated in Figure 3.2. Each 

cause can be further broken down into their constituent causes. For example, parts 

can be further apportioned amongst part defect, induced and wear-out.  

The above pi chart values represent the average percentages attributable to 

each failure cause. Also analyzed was the variance around these percentages. Figure 

3.3 illustrates the 30th, and 70th percentiles for each of the four categories 

comprising the intrinsic failure rate. These Pi factors are unit less failure rate 

multipliers as a function of the grade (in percentile) of each cause. For example, the 

Pi factor corresponding to a 30th percentile grade is approximately 1.1, whereas he 

factor corresponding to the 50th percentile is approximately 0.45 

It is these distributions around the mean percentage values that form the range 

within which the failure rate estimate is scaled, and the failure rate estimate for each 

failure cause is determined. The conclusion that can be made based on these 

observations is that parts, while still a significant reliability factor, do not contribute 

to system reliability to the extent implied by traditional estimation. 
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Figure 3.3: Pi Factor for the 30th, 50th and 70th Percentile Grade
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3.2.3.3. Model Description  

The achievement of system reliability relies on the following elements: 

1) Obtaining valid system requirements and managing interface dependencies  

2) Good quality parts must be chosen  

3) The parts must be designed into a system in a robust manner to insure that 
they can meet performance requirements over the systems design life 

4) Design must be validated through analysis and test  

5) The system must be manufactured without inducing damage or adding 
defects 

6) A management philosophy that supports the achievement of the above three 
elements  

The adequacy of a company in achieving the above four factors will dictate the 

degree to which a reliable end-item is achieved. Therefore, a methodology that 

quantifies system reliability must account for the degree to which a company 

implements the processes required to mitigate the probability of failure due to the 

above categories. The basis of the methodology developed in this study is that the 

adequacy of this implementation can be graded and a percentile rating can be 

obtained. This percentile corresponds to the percentage of all companies (in a given 

industry) that have processes in place (for each failure cause) that are worse than the 

company being rated.  

The predictive modeling takes place in several successive stages. First, an initial 

reliability prediction is performed to derive a “seed” failure rate estimate. This can be 

accomplished using any viable technique. Then, the Development Grading Process 

Model is used. This model essentially grades the development effort with its likely 

affect on the mitigation of special cause problems. The process grading factors are 

first judged in the program planning stages. The actual factors are then updated 

according to real practice. These updates are done in accordance with the timing for 

updating the reliability predictions. Next, the initial prediction is combined with the 

Process Grades to form the best pre-build failure rate estimate. The flow of the 

model developed in this study is given in Figure 3.4. 

Combining the initial prediction with process grades consists of adjusting the 

failure rate in accordance with the level to which processes have been implemented 
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that mitigate the risk of failures associated with each failure cause. In similar 

assessment for software is undertaken; and the failure rates for hardware and 

software are added. The CRAM (Consolidated Reliability Assessment Methodology) 

block in Figure 3.4 refers to the methodology of mathematically combining the initial 

assessment, process grades, operational profile and software assessments. 

The mathematical model form for this inherent failure rate is: 

 ( )P IA P D M S SW Wλ λ λ λ= ∏ + ∏ + ∏ + ∏ + +  (3.1) 

The logistics failure rate accounts for factors attributable to the induced and no 

defect found categories, and is: 

 ( )P IA P D M S I N SW Wλ λ λ λ= ∏ + ∏ + ∏ + ∏ + ∏ + ∏ + +  (3.2) 
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Figure 3.4: Reliability Assessment Modeling Approach
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Where: 

Pλ =   Prediction system failure rate  

IAλ =  Initial multiplier, function of parts process grade  

P∏ =  Part multiplier, function of parts process grade 

D∏ = Design multiplier, function of design process grade 

M∏ = Manufacturing multiplier function of manufacturing process grade  

S∏ =  System management multiplier function of management process grade 

I∏ =  Induced multiplier, function of design precautions taken to mitigate 

induced failures  

N∏ =  No Defect Found (NDF) multiplier, function of NDF process grade  

SW∏ =  Software failure rate  

W∏ =  Failure rate associated with wearout failure modes  

At this point in the System Assessment Methodology, the best “pre-build” 

estimate of failure rate is obtained. The next step is to combine this “pre-build” 

estimate with any empirical data that is available. Once this occurs, the best system 

failure rate estimate is obtained.  

The basic premises on which the model presented in this paper is based are as 

follows: 

1. Much of the variability in actual reliability relative to the predicted reliability 

based on traditional methods is a result of variations in the processes that are 

used to design and build the system. 

2. The causes of system failure stem from mutually exclusive primary categories. 

These categories are Parts, Design, Manufacturing, System Management, and 

Software, induced, and No defect found.  

3. The traditional approaches to system reliability prediction (i.e., those that 

predict reliability as a function only of the component comprising the system) 

implicitly include failure rates attributable to non-component failure causes, 

such as design deficiencies, manufacturing errors, etc. This model explicitly 

measures these effects.   
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4. The traditional approaches to system reliability prediction, with modification 

based upon the user’s particular field experience, can estimate a reasonably 

accurate system failure rate.  

Figure 3.3 is a more detailed flow diagram representing the assessment model.  

The following sections provide more detail on the various elements of the 

methodology. 

3.2.3.4. Initial Assessment  

The methodology starts with an initial reliability assessment. This assessment is 

intended to be the baseline reliability estimate for the system being analyzed. It will 

be enhanced as process grading factors and empirical data are incorporated in the 

assessment. There are several options for this assessment. First, if an analysis has 

already been performed on the system, then it should be used for this purpose. If one 

has not been performed, estimates can be made using generic system level prediction 

techniques.  

3.2.3.5. Process Grading  

An objective of the CRAM model is to explicitly account for the factors contributing 

to the variability in traditional reliability prediction approaches. This accomplished by 

grading the process for each of the failure cause categories. The resulting grade for 

each cause corresponds to the level to which an organization has taken the action 

necessary to mitigate the occurrence of failures of the cause.  

The sum of the ∏  factors within the parenthesis in Equation 2 is equal to 

unity for the average grade. For example, the nominal percentage of failures due to 

parts is 32 %. Therefore, the P∏  is equal to .32 if an average process grade (50th 

percentile) is obtained. Likewise, it will increase if “less than average” processes are in 

place and decrease if better than average processes are in place.  

Space does not permit presentation of the process grading factors for all failure 

causes, but for illustration purposes, a summary of each major category of grading 

factor is presented in Table 3.3. 
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Each of the categories in Table 3.3 are further broken down into its constituent 

elements. For example, the specific elements comprising the engineering skill 

category of design are given below.  

• Is the development program organized as “cross functional development 

teams” (CFDT) involving: design, manufacturing, test, procurement, etc.? 

• % of team members having relevant process experience, i.e., they have 

previously developed a product under the current development process  

• % of engineering team that are degreed 

• % of engineering team having advanced technical degrees 

• % of engineering team having advanced technical degrees  

• of engineering team members, in the past year, having patents, papers, 

professional registration, or held professional society offices  

• % of engineering team members who have taken engineering courses in the 

past year    

• Are resource people identified, for program technology support, in key 

technology and specialty areas such as ada design, opto-electronics, servo 

control, ASIC design, etc. To provide program guidance and support as 

needed? 

• Are resources people identified, for program tools support, to provide 

guidance and assistance with CAD, simulation, etc.? 

• % of design engineering people with cross training experience in 

manufacturing or field operations  

3.2.3.6. Adding Software Failure Rate 

Software can be the dominant failure contributor in some complex systems (Ref. 4). 

Due to its importance as a reliability driver, a separate additive failure rate model has 

been developed. System test is the development point where reliability growth testing 

of software beings, at which point the total system is finally integrated and simulated 

in the intended application. Failures occur, and the underlying faults found are 

isolated and removed. The MTBF of the software improves as the faults are fixed. 
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This is where software reliability is traditionally measured (Ref. 7). The model 

developed here allows one to predict reliability of the software before code is written. 

The only inputs required are the estimated extent of code and the process maturity 

level under which it was developed. 

 
Figure 3.5: Assessment Model Flow 
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Table 3.3: Process Grading Categories 

Design  • Engineering Skill 
• Technology Maturity  
• Design Margin and Optimization  
• Design for Manufacturability 
• Development Process  
• Development Process Metrics  
• Development Documentation  
• System Complexity  
• Product Testing  
• Engineering Design Automation Tools   

Manufacturing  • Design for Manufacturability  
• Personnel Characteristics  
• Data and Analysis  
• Manufacturing Leadership  
• Manufacturing Process  
• Testability  
• Technology  
• Solder Joint Spacing  

Parts Management • Part Selection Criteria 
• Parts Suppliers Criteria 
• Custom Part Support  
•  Critical Parts Support   

System  
Management  
Considerations 

• Requirements Management  
• Requirements Extensibility  
• Product Vision  
• Requirements Traceability and Verification  
• Interface Management  
• Operation Management  
• Change Management  
•  Risk Management  

Could Not  
Duplicate or  
No Defect Found  

• Design Considerations  
• Analysis and Process Considerations  

 
 

In this methodology, the latent fault density (design measure) is mapped to a 

probable field Mean Time Between Failure (MTBF), which is a user measure. This 

modeling is developed from a largely empirical basis. It establishes a basis to perform 

early predictions of software reliability. Two software development parameters are 

typically available in the planning stages. These development parameters form the 

front end of this model: 

(1) The Estimated Code Size. This estimate is generally expressed in thousands 
of lines of (executable) source code or KSLOC. Commentary code is 
excluded from the code sizing.  

(2) The Quality Level Of The Development Process. This is most commonly 
measured in terms of the Software Engineering Institute (SEI) process 
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capability level measure. SEI rates software providersi process capability from 
a beginning Level of 1 to the highest Level of 5. 

These ratings correspond to Initial process capability (Level 1) up to optimizing 

process capability (Level 5). There are two other measures used to rank the 

development process. One is the ISO 9000 quality certification. It is a two-level 

measure. Either a company is ISO 9000 certified or it is not certified. The other is he 

development process rating measures of the air traffic system, the RTCA safety 

levels. The development correlation to fault density notion is further extended here 

to include the ISO 9000 ratings and the air traffic safety ratings. The latter are under 

Requirements and Technical Concepts for Aviationi (1992) RTCA safety levels (A, B, 

C, D, and E in decreasing levels of stringency). The predictive capability of all of 

these measures can be improved by adjusting the projected fault density by relevant 

experience data that the development organization has on the fielded code of its 

predecessor products.  

The assertion in this model is that the software process capability is a good 

predictor of the latent fault content shipped with the code. The better the process, 

the better the process capability ratings and the better the code developed under that 

process.     

3.2.3.7. Adding Failure Rate Due to Wearout Modes 

If a physics of failure analysis is performed, its value is that it quantifies the reliability 

of specific wearout related failure mechanisms. It does not however, quantify the 

reliability of components or assemblies as a function of manufacturing defects, 

design inadequacies or induced failures. The assessment methodology accounts for 

this by adding a failure rate associated with wearout failure mechanisms. This failure 

rate is quantified based on the physics of failure analysis.   

3.2.3.8. Logistic Failure Rate Contributions  

The logistics failure rate refers to the replacement are in the field application of a 

system. Equation 1 addresses the prediction of inherent reliability of a system. Of 

equal importance to some reliability practitioners is the prediction of a system 

maintenance rate. This is addressed by Equation 2. Whether an analyst should be 

predicting the inherent failure rate of a system or its maintenance rate depends upon 

his or her particular goals and how the prediction is to be used.  
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It is desirable to explicitly model the factors affecting both failure rate and 

maintenance rate. The maintenance failure rate, or logistics failure rate, includes the 

inherent failure rate plus induced failures (I), and No Defect Found (NDF) failure 

contributions. The logistics failures are a super set of failure rate. The induced and 

No Defect Found category processes are graded in a similar manner as the Part, 

Manufacturing, Design and System Management categories.  

3.2.3.9. Adding Empirical Data   

The user of this model is encouraged to collect as much empirical data as possible, 

and use it in the assessment. This is done by mathematically combining the 

assessment made (base on the initial assessment and the process grades) with 

empirical data. This step will combine the best ipre-buildi failure rate estimate 

obtained from the initial assessment (with process grading) with the metrics obtained 

from the empirical data. Bayesian techniques are used for this purpose. This 

technique accounts for the quantity of data by weighting large amounts of data more 

heavily than small quantities.    

The manner in which this is accomplished is to apply the following equation:  

 1

1

o n

o n

a a a
b b b

λ + +
=

+ +
K

K
 

Where: 
                     λ =  The best estimate of the predicted failure rate  

                    oa =  The equivalent number of failures of the prior distribution 

corresponding to the reliability prediction (after process grading 

has been accounted for) 

                    ob = The equivalent number of hours associated with the reliability 

prediction (after process grading) 

1 through na a =  The number of failures experienced in the empirical data. There may 

be n  different types of data available  

   1 through nb b =  The equivalent number of cumulative operating hours (in millions) 

experienced in the empirical data. These values must be converted 
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to equivalent hours by accounting for the accelerating effects 

between the test and use conditions.  

3.2.4. Future Plans 

A logical next step is to transition the new technique to potential users. In the near 

future, a useable version of the new CRAM model will be available in several 

mediums. A computerized version is near completion and will be available from 

Rome Laboratory. The next revision of MIL-HDBK-217 may include the model as 

an appendix. The Institute of Electrical and Electronics Engineers (IEEE) is 

considering the development of a new standard, guide, or recommended practice 

based on the CRAM. The American Society for Quality Controls Reliability Division 

plans to continue publishing updates on the new model in the Reliability Review 

Journal. The Reliability Analysis Center (RAC) also has plans to include CRAM in an 

upcoming RAC document. The RAC also plans to develop component prediction 

models that can be sued to perform more accurate initial assessments than those 

models currently available.  

An important aspect of technique development which is often overlooked is 

the process of peer review. Now that Version I of the CRAM model is complete, the 

developers are seeking feedback and suggestions for improvement. If you have any 

comments or recommendations, please write to Rome Laboratory/ERSR, Attn.: Joe 

Caroli, 525 Brooks Rd, Rome NY 13441-4505, email: carolij@rl.af.mil. 
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4. Reliability Design Improvement Methods 

4.1. Introduction 

Reliability improvement can be attempted by many different methods. Among 

several methods of reliability improvement, design improvement is the most 

important. This is because the inherent system reliability is basically dependant on its 

design. Other methods such as maintenance, environmental control, etc. can only 

marginally improve systems reliability whereas; design improves substantially the 

systems reliability. Infact, most of the present days systems are designed for a 

predefined target reliability. This can be attempted either at the component level or at 

the system level. Wherever possible, component level design reliability improvement 

is preferred. However, there are technical, economic, and manufacturing limitations 

while attempting component level improvements. Therefore, design improvements at 

systems level are also necessary in many cases. This section discusses some of the 

design improvement techniques generally attempted by reliability engineers. Methods 

such as derating, redundancy, and stress reduction are discussed in details, and a 

method for reliability growth testing is discussed at the end of the section. 

4.2. Derating  

Reliability now a days has become part and parcel of the Electronic subsystems. One 

of the techniques of achieving enhanced reliability is Derating. Derating (Electrical 

Stress Analysis) is the reduction in electrical & thermal stresses applied to a part in 

order to decrease the part failure rate, which enhance the equipment reliability. 

Derating can be defined as follows: Operating the part at stresses value less than its 

rated value.  

4.2.1. Importance of Derating 

1. Derating is most effective tool for the designer to decrease the failure rates of 

part. Derating can help to compensate for many of the variables inherent in 

any design. 

2. All electronic parts produced in an assembly line are not identical. Subtle 

differences & variations exist from one part to next. Proper part derating will 
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help to compensate for these part-to-part variations and minimize their 

impact up on the equipment reliability.  

3. Electronic parts with identical manufacturer’s part numbers may be 

purchased from a different suppliers. While these items are electrically 

interchanged there may be significant difference in design, material & 

manufacturing process. Derating will help to compensate for these 

differences. 

4. The designer will try to anticipate the various electrical and environmental 

extremes to which the equipment may be subjected. If he fails to anticipate 

properly the impact of all of these variations, derating can provide an 

additional margin of safety.  

5. It is also apparent that parts and their associated critical parameters are not 

completely stable over their entire life. Proper derating will help to assure that 

the circuit itself will continue to function properly in-spite of these part 

parameter changes.  

4.2.2. Effect of Derating On Part Stress Reliability Prediction 

During the useful life of an electronic part its reliability is a function of both the 

electrical & the thermal stresses to which the part is subjected. Increase in thermal 

stresses directly increases the junction temperature, which will increase failure rate 

according to the mathematical model of failure rate calculation. Also increasing the 

electrical stresses, results increase in failure rate. Both the stresses increase 

simultaneously failure rate & finally decreases the reliability.  

Some parts are temperature sensitive so sometime failure occurs due to 

temperature. In such type of components, reduction in temperature by improvement 

in thermal design will result in reduced number of failures.  

4.2.3. Method of Derating 

All part’s derating is done with reference to the absolute maximum ratings. The 

manufacturer in the specification or data sheet defines these ratings. Usually a part 

has several different absolute maximum ratings, such as voltage, current, power etc. 

Each of these absolute maximum ratings are unique, and must be applied individually 

and not in combination with any other absolute maximum rating. The absolute 
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maximum ratings state a maximum operating and/or storage temperature (junction 

or hotspot temperature) and various electrical values based upon DC power 

conditions measured in free air at 25 deg. C. 

Derating must be cost effective. It should not be conservative to the point 

where the cost rises excessively. e.g. where lower than necessary part stresses are 

applied.  

Derating can be accomplished either by reducing the stresses on the part or by 

increasing the strength of the part i.e. by selecting a part having greater strength. 

Actual derating procedures vary with different types of parts and their applications. 

Stress parameter for which the part should be derated will be different for different 

part categories. Details regarding the stress parameter along with the allowed stress 

factor for different types of parts are given in the subsequent sections. 

Different type of component derated by different parameters such as Resistors 

are derated by power, by the ratio of the operating power to rated power & 

Capacitors are derated by reducing the applied voltage to the value lower than that 

for which the part is rated. Semiconductor is derated by limiting their power 

dissipation hence their junction temperature below the rated level. 

4.3. Redundancy  

Redundancy is another important method for system reliability improvement. This is 

a technique in which more number of components than actually required for 

operation is connected in parallel. There are many types of redundancies, viz. active, 

stand-by, k-out-of-n good system, etc. These techniques are discussed below: 

4.3.1. Active Parallel Redundancy 

This is the most commonly used redundancy by designers. This is also known as hot 

redundancy. Here, instead of using one component to do a function, we use 2, 3, or 

more number of components in parallel to do the same function. In this way, the 

components actively share the load among themselves effectively reducing the failure 

rate of each component. Therefore, the system failure rate reduces and reliability 

improves. As we increase the number of redundant components, we get diminishing 

returns after adding each additional component. That means, reliability improvement 
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by adding the first redundant component is more than that achieved by adding the 

second redundant component and so on.  

4.3.2. Standby Redundancy 

This is similar to the active parallel redundancy but each additional component used 

in parallel is connected through a switching (automatic or human operated) 

mechanism. That means, at any given system operational moment, only one 

component will be operating and other components are used only when the present 

active operational component fails. Therefore, each component takes full-connected 

load when it is in the operational mode, and takes zero loads when under standby 

mode. It should be kept in mind that reliability of switches used in standby 

redundancy affects the system reliability to a great extends. Therefore, reliability of 

switches must be very high. 

4.3.3. K-out-of-M Redundancy 

This is a type of redundancy in which a system is designed with M number of 

components. Out of these, it is essential that at least K of them be always in 

operational mode for achieving system success. (M-K) components are generally in 

standby mode. Whenever any active component fails, one of these standby 

components will become active and ensure system success. 

It must be noted that the weight, cost, and volume of the system increases as a 

result of applying redundancy in engineering designs. Appropriate trade-offs are 

essential to optimize or maximize the effectiveness of applying redundancies in 

system design. Design engineers and managers must also keep in mind the following 

when attempting to adopt redundancy as a design tool for reliability improvement. 

1) Redundancy is the easiest method of improving reliability 

2) Any level of system reliability can be achieved 

3) Volume, weight, cost increases in direct properties to the number of 

redundancies used 

4) In some cases redundancy can be used only in higher levels of system 
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5) This should be used as a technique of reliability improvement when all 

other methods fail or are unacceptable due to technical or managerial 

reasons 

6) Benefit/cost of redundancy is found to be best when we add the first 

redundancy. B/C ratio decreases for higher redundancies 

4.4. Stress Reduction 

Stress reduction is another design method for reliability improvement. Failure rate of 

component increases many times when the working environment or stress becomes 

more and more severe. This is basically because the material properties change with 

operating environment and as a result, the strength reduces. This leads to higher 

failure rates. For example for every 100C rise in temperature, failure rate of most 

electronic components becomes double. Humid and salty environment results in 

faster rates of corrosion and oxidation. Severe vibration, acceleration and shocks 

cause breakage, loose contacts, unbalance and change of control settings.  

Let us now examine the reliability improvement concepts using the famous 

stress-strength concepts. As discussed in another section, both stress and strength 

follow some distribution. The interference area of stress-strength distributions 

represents the unreliability zone. That means reducing the interference area is a 

feasible method for reliability improvement. The interference area can be reduced by 

applying following techniques: 

1. By increasing the gap between mean stress and mean strength 

2. By reducing the variance of the stress-strength distributions 

3. By a combination of 1 and 2  

The first approach is basically similar to using a factor of safety or using the 

principle of derating. The second approach is either by controlling the variations in 

environment and applied load or by controlling the variations in strength by process 

control approach. This also illustrates that a better quality control mechanism will 

improve the product reliability. The third approach is by combining all the other 

approaches. Here appropriate trade-offs must be done for best results. Following 

figure illustrates all these concepts. 
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4.4.1.1. Reliability Growth Testing  

Prediction of reliability during the design and development stages is done using 

RGT. Here:  

 
 

Figure 4.2: Reliability Growth 

The design and manufacturing process is thus improved step by step. Value of 

MTBF indicates whether the design is improved or not at each stage. These 

prototype test data can be used for estimating MTBF or other reliability parameters 

for the final design. Duane originated this technique.  

4.4.2. Duane Model 

J.T. Duane developed this model in 1964. This model assumes that the failure 

times follow exponential density function (constant failure rate). He found that a plot 

of the cumulative number of failures per test time versus the logarithm of test time 

during growth testing approximately linear.  

Prototype I Prototype II Prototype III Tested 
for MTBF 

Improved

Tested
for MTBF

Further Improved 

 Tested
for MTBF

Figure 4.1: Stress-strength interference
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Let 
 T: total operation (test) time accumulated on all prototypes.  
 n(T): number of failures from the beginning of testing through time T.  

After each failure occurs, systematic failure analysis is carried out and the 

system is modified after rectification. Life testing is again carried out on the 

improved product. If we plot ( ) TTn  vs T on log-log paper, we get a straight line, 

for all types (electrical, mechanical, electronic, etc.) of equipments. From these 

empirical relationships, known as Duane plots, we can estimate MTBF of the system  
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Figure 4.3: Duane Plots (on log-log paper) for Different Systems 

Since Duane plots are straight lines,  

 ( )( ) TbTTn lnln α−=  

Solving for ( )Tn , we get  

 ( ) α−= 1KTTn , 

Where, 

 beK =  

 Instantaneous FR, ( ) ( ) ααλ −−== KT
dT
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 Instantaneous MTBF, ( ) ( )
α

α
µ T

K
T

−
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Since α  is a positive number ( )5.0≈  this equation illustrates the growth of the 

MTBF, and reliability with accumulated test time.  
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4.5. Cumulative MTBF 
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4.5.1. Alternate Duane Plot 
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Figure 4.4: Alternative Plot 

Plot ( )Tlog  vs ( )MTBFlog . We get a straight-line →α slope of this line.  

 Instantaneous MTBF, ( ) ( )TT cµ
α

µ
−

=
1

1   (the upper line).  

Thus instantaneous MTBF can be directly obtained. Hence this plot is more useful.  

4.5.2. Limitations 

1. When failures may no longer be attributed to removable design defects, the 

growth of reliability may no longer be significant.  

2. Refining the design to reduce random failures, or wear failures may become 

very expensive and thus unacceptable.  

3. Reliability of mans produced items may be lower than that of tested 

prototypes.  

4. Reliability of item in field service may be lower than those tested in 

laboratories. 

 To deal with these problems, we must concentrate on production quality 

control and realistically anticipate field condition.  
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EXAMPLE 5.1 

A first prototype for a novel laser powered damage slicer is built. Failures occur at 

the following numbers of minutes: 1.1, 3.9, 8.2, 17.8, 79.7, 113.1, 208.4 and 239.1. 

After each failure the design is refined to avert further failures from the same 

mechanism. Determine the reliability growth coefficient α  for the slicer.  

Spreadsheet 
 

Sl.No. A B C D 
 N T ln(T) ln(n/T)
1 1 1.1 0.0953 -0.0953
2 2 3.9 1.3610 -0.6678
3 3 8.2 2.1041 -1.0055
4 4 17.8 2.8792 -1.4929
5 5 79.7 4.3783 -2.7688
6 6 113.1 4.7283 -2.9365
7 7 208.4 5.3395 -3.3935
8 8 239.1 5.4769 -3.3974

A least square fit made of column D versus column C. We obtain  

 ( ) 654.09:2,9:2 −== CCDDslopeα  

 654.0=α  (from equation ( )( ) L=TTnln ) 

The straight line fit is quite good since the coefficient of determination is close 

to one; ( ) 988.09:2,9:22 == CCDDRSQr .  

 





 

 

5. Cost Analysis 

5.1. Life Cycle Cost Analysis 

One of the major considerations in establishing system reliability is life – cycle costs. 

Life-cycle costing is the process of determining all relevant costs from conceptual 

development through production, utilization, and phase-out. It is the total cost of 

ownership. Our interest in discussing life- cycle is to ensure that those costs affected 

by our choice of design variables, especially reliability (and later maintainability), are 

properly accounted for. There are many different ways to establish life-cycle costs 

categories; a typical cost element structure is shown in Table 5.1. 

Table 5.1: Cost Categories 

Acquisition cost Operations and support costs Phase -out 
Research and development Operations Salvage value 
Management Facilities Disposal costs 
Engineering Operators  
Design and prototyping Consumables (energy and fuel)  
Engineering design Unavailable time or downtime  
Fabrication  Support  
Testing and evaluation Repair resources  
Production Supply resources:  
Manufacturing   Repairables  
Plant facilities and overhead   Expendables  
Marketing and distribution   Tools, test, and support equipment  
 Failure costs  
 Training  
 Technical data  

In performing design trade-offs, total life-cycle costs of each alternative design 

should be estimated and compared. At the highest level, a life cycle cost model may 

take on the following form: 

Life-cycle cost = acquisition costs + operation costs + failure cost 

 + support costs – net salvage value 

 
Where, Net salvage value = salvage value- disposal cost 

Since the system will normally be operated over an extended period of time 

corresponding to its design life or economic life, the time value of money must be 

taken into account. The economic life is the number of years beyond which it is no 

longer economical to operate or maintain the system and replacement or 

discontinuance is justified on a cost basis. To discount monetary values over time all 
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revenues and costs can be expressed in present –day equivalent dollars. Therefore the 

following adjustments must be made. P is the present value and i is the real or 

effective, discount rate. If we assume a constant annual inflation rate of  f  and an 

annual return on investment rate of e, then i  ≈ e – f for small values of  f and e. 

Let PF (i, d) = 1/(1+ i)d where F is a future amount at the end of year d, and PA 

(i, d) = [(1+i)d – 1]/ (1+i)d], where A is an equal annual amount observed over d 

years. The term PA  (i, d) is an annuity factor, which converts equal annual payments 

over d years to a single present –day equivalent amount. Writing Eq more explicitly, 

 Life cycle cost = Cu N + [Fo + PA (i, td ) Co N ] + 

 [ ] [ ]SNtiPNCtiPFN
MTTF

t
CtiP dFsdASfdA ),(),(),( 0 −++⎥⎦

⎤
⎢⎣
⎡

 

Where,  

Cu  = unit acquisition cost 

            N  = number of identical units to be procured 

            Fo  = fixed cost of operating 

            Co = annual operating cost per unit 

            Fs  = fixed support cost 

            Cs = annual support cost per unit 

            Cf  = cost per failure 

            to   = operating hours per year unit 

            td   = design life (in years) 

            S   = unit salvage value (a negative value is interpreted as a disposal cost) 

The expression t0/ MTTF in Eq is the expected number of failures per year 

assuming replacement or “repair to as good as new” condition of the failed unit (a 

renewal process which is discussed in the next chapter). The cost per failure Cf may 

be a repair cost, replacement cost, or a warranty cost. The unit acquisitions cost 

includes the design development and production costs allocated over the total 

number produced. As the reliability goal increases, these costs will increase because 

of additional reliability growth testing, improved manufacturing quality control, more 

expensive parts and material, increased use of redundancy, and additional resources 

committed to reliability improvement. 
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Assuming that only the unit acquisition cost and failure cost are sensitive to the 

design reliability, we may wish to compare the following expected present equivalent 

unit cost for each alternative: 

 Cu + (P/A, i,  td )Cf MTTF
t0 . 

5.1.1. The Economics of Reliability and Maintainability and System 
Design 

The reliability and maintainability program must pay for itself. How much reliability 

and maintainability should be designed into a product depends to a large degree on 

the cost (or profits) to be realized from the operational use of the product. In cost 

trade-off models were presented in order to relate R&M parameters to product life-

cycle costs. The revenue and life-cycle cost model presented here is more 

comprehensive than the earlier models. Nevertheless, it is only an example of the 

many forms that such models may take. Our focus not surprisingly, is on those costs 

affected by the system reliability and maintainability. 

 

Figure 5.1 shows the total cost curve as the sum of the acquisition cost curve 

and the cost-of failures curve. Acquisition cost includes the cost of implementing and 

operating a reliability program in addition to the overall development and production 
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Figure 5.1:  The total cost versus reliability curve 
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cost associated with the product. Acquisition cost consists of direct material and 

labor costs as well as indirect costs such as taxes, insurance, energy, production 

facilities and equipment, and overhead costs such as administrative, marketing, and 

product development costs. It is the product development that generally involves the 

engineering staff. Acquisition costs are increasing functions of reliability, not only 

because more organizational resources must be committed to achieve a higher 

reliability, but also because the material and production costs of the product must 

increase as well. This may be a result of more costly parts selection, added 

redundancy, stricter tolerances, excess strength, and increased quality control and 

inspection sampling during manufacture. The cost of failures may include warranty 

costs, liability costs, replacement or repair costs, the cost of the infrastructure 

necessary to support operational failures, and the loss of future profit (market share) 

as a result of loss of customer goodwill. These costs obviously decrease as reliability 

improves. The sum of the acquisition costs curve and the costs-of failures curve, 

shown in Figure 5.1, represents the desired reliability level. If the minimum –cost 

point exceeds critical reliability, for example, to meet a safety or contractual 

requirement, then it is desired level of reliability. Otherwise, the minimum reliability 

becomes the desired level. If a safety or liability cost associated with injury or loss of 

life can be quantified, it also can be included as a failure cost. Often, however, we are 

unable or unwilling to assign a cost to an injury or death, and we must be content to 

establish a lower bound on safety-related reliability parameters. 

A similar cost curve exists as a function of the maintainability of a repairable 

product. However, it is more useful to consider the economics of a repairable system 

in terms of availability, a shown in Figure 5.2. With reliability fixed, as maintainability 

improves and restoration time decreases, system (operational) availability will 

increase. Therefore there will be less downtime and the costs, consisting of labor, 

facilities, equipment, and spares, and any loss of revenue associated with the 

operation of the system. Those acquisition and support costs that increase as the 

maintainability increases include the infrastructure necessary to implement the 

maintainability program; design and development costs associated with increased 

fault isolation, modularization, accessibility interchangeability and other design 

methods; higher salaries for increased maintenance skills levels; maintenance training; 

added repair capability; and increased availability of spare parts. To the extent that it 
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increases availability, the cost of a preventive maintenance program would be 

included in the category of increasing costs. 

 

5.1.2. Life-Cycle Cost Model 

A generalization of the life-cycle cost given by Eq that takes the above cost elements 

into account is based on the following assumptions: 

1. Failures resulting a renewal process (unit replacement or repair to as good as 

new condition) 

2. All units are identical and are acquired at the same time (t = 0). 

3. Annual operating requirements are constant. 

4. The system is in a steady state (equilibrium). 

5. There is no preventive maintenance. 

6. No failures occur in standby, and perfect switching occurs with negligible 

down-time. 

Mathematically, the life-cycle cost, LCC, can be expressed as 
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Figure 5.2: The total cost versus availability curve 
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 LCC (m,s,k, MTBF, MTTR, si, ki) = Cu(MTBF, MTTR)(m+s) + F0 

 + AsysPA(r,td)C0m 

 + PA(r,td) )(0 LMTTRCmA
MTBF

t
fsys +  

 +Frepk+ PA(r,td)Crepk 

 + [ ]∑ + irepdAii kCtrPsC ),(  

 - PF(r,td)Sa(m+s) (5.1) 

where, 
Cu(MTB, MTTR) = unit acquisition cost 

MTBF = the MTBF of the system failure distribution in operating hours 

MTTR = repair or replacement time in hours 

m = programmed number of operating units 

s  = number of spare units (standby redundancy) 

k  = number of repair channels 

si   = number of spares of component I 

ki   = number of repair channels for component I 

Asys= effective system availability (average percentage of the m units 

operating) 

F0       = fixed cost of operating 

C0       = annual operating cost per unit 

Frep     = initial acquisition cost per repair channel 

Crep,  = annual (support) cost per repair channel 

Cf       = fixed cost per failure 

Ci       =  unit cost of component I 

Crep,i   = annual cost per repair channel for component I 

L       = labor rate ($ per hour) 

t0      = number of operating hours per year per unit. 

td      = design life (in years) 

Sa    = unit salvage value (a negative value is a disposal cost) 

r     = discount rate 

PF(r, td)     = 1/(1+r)td is a present-value factor of a future amount at time td 

years at a discount rate of r. 

PF(r, td)     = [(1+r)td –1]/[r91+r)td]is a present-value factor of an annuity over 

td years at a discount rate of r. 

 



Cost Analysis 
 

 

83

 

The above cost model treats m, s, k, si, ki, MTBF, and MTTR as design 

variables for repair –cycle system shown in Figure 5.3. The component mean time 

between failures (MTBFi) and the component mean repair time. (MTTRi) can be 

obtained from a reliability and maintainability allocation based on the computed 

values of the system MTBF and MTTR. Through the use of this model, trade-offs 

among these decision variables can be made. The unit acquisition cost, Cu, is assumed 

to be a function of the inherent reliability (MTBF) and maintainability (MTTR). This 

cost relationship is not written explicitly since it is very problem-specific and may 

take on many different functional forms. For example, if repair is accomplished by a 

fixed number of repair (labor) resources, k, the labor cost per failure, L, may be zero. 

On the other hand, if only replacement cost, Cf, is incurred when a failure occurs, 

there may be no repair channels necessary, or k = 0. For those components that are 

not repairable, ki = 0, and an annual spares replenishment costs is incurred for those 

units that are discarded. 

The effective system availability, Asys, is a function of m, s, k, si, ki, MTBF, and 

MTTR and is based on the concept of an operational availability That is, Asys = Lo/m 

where Lo is the expected number of units operating. If the failure times or repair 

times are not exponential, computer simulation can be used to find the steady-state 
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Figure 5.3: Repair Cycle System
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system availability as a function of number operating (m), number of standby spares 

(s), repair capability (k), number of component spares (si), and the inherent unit 

MTBF and MTTR. 

In some applications it may be more desirable to compare alternative designs 

with regard to expected life-cycle profits rather than costs. Since profit = revenue –

cost, 

 E[profit] = PA=(r,td)AsysRm-LCC (5.2) 

Where R = revenue generated per operating unit per year. Although it is 

desirable to minimize Eq. (3.1) or maximize Eq (3.2), this can be difficult since m, s, 

k and si must be integers and the relationships are nonlinear. In most cases it is not 

possible to express Asys in a simple closed form. On the other hand, given values for 

the design variables and the cost and revenue coefficients, the numerical evaluation 

of either equation should be straightforward. 

5.2. Warranty Cost Analysis 

Warranties are an important ingredient to competitive success. Effective warranty 

planning can ensure success, but lack of attention to cost analyses can spell disaster. 

This article is intended to introduce the basics of warranties and to identify sources 

for more information.  

A warranty is the seller’s assurance to the buyer that a product or service is as 

represented. An express warranty is one where the terms are explicitly stated in writing 

and an implied warranty is one where the seller automatically is responsible for the 

fitness of the product or service for use according to the Uniform Commercial Code.  

Generally, three types of warranties are common for consumer goods: (1) the 

ordinary free replacement type, (2) the unlimited free replacement type, and (3) the pro-rata 

type. As the names imply, under the first two types, the seller provides a free 

replacement with the distinction between the two being that with type (1) the 

warranty on the replacement is for the remaining length of the original warranty 

while with type (2) it’s for the same length as the original warranty. With the pro-rata 

type, the cost of the replacement depends on the age of the item at the time of 

replacement. Because the free replacement types seem to be most advantageous to 

the customer and the pro-rata most advantageous to the seller, a mixed policy type is 
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often used as a compromise. With this type, there’s an initial period of free 

replacement, followed by a period of pro-rata policy.  

Warranty planning includes a number of decisions starting with whether the 

product is repairable or non-repairable. The determining factor in deciding which 

applies to the product of interest usually depends on the ratio of the repair cost to 

the acquisition price. Once this decision is made, the type of warranty, the length of 

the warranty, and the funds required to cover the costs have to be determined. Often, 

the warranties offered by competitors in a particular product market weigh heavily on 

these decisions. At this point you may be wondering why warranties are a topic for 

the "Reliability Ques" series. It really shouldn’t be a surprise because the single most 

important parameter in estimating the warranty cost is the rate at which the product 

is expected to fail. Usually, an initial estimate of the reliability based on predictions or 

similar products’ experience is used to project costs, with a later switch to the analysis 

of actual warranty claims from an internal tracking or Failure Reporting and 

Corrective Action (FRACAS) type system.  

Simple Warranty Example: Let's assume that a manufacturer of GPS devices 

plans to offer a 6-month warranty on the devices that cost Rs.100 each to produce. 

The expectation is to sell 10,000 devices and an internal test program indicates that 

the Mean-Time-To-Failure (MTTF) is 5 years after a stress-screening period. How 

much should the production cost be increased to cover the warranty cost? 

 W=6 months 

 C0= RS. 100 (without warranty cost) 

 MTTF= 60 months 

 N= 10,000 units 

The expected number of failures is: 

 ,  

So that the number of failures over the interval dt is  

  
The cost of failures is  
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So that the warranty reserve cost is  

  

Where CW is the cost of including the warranty cost, so  

  

Therefore, the added warranty reserve fund per unit, per dollar cost CW, is:  

  

But, the production cost plus warranty cost, 

   or  

  or  

 or 

   

Therefore, the total warranty fund required would be: 

  
 



 

 

6. Accelerated Life Testing Data Analysis 

6.1. Introduction 

Accelerated life testing consists of tests designed to quantify the life characteristics of 

a product, component or system under normal use conditions by testing the units at 

higher stress levels in order to accelerate the occurrence of failures. Performed 

correctly, these tests can provide valuable information about a product’s performance 

under use conditions that can empower a manufacturer to bring its products to 

market more quickly and economically than would be possible using standard life 

testing methods. 

Accelerated life tests are component life tests with components operated at 

high stresses and failure data observed. While high stress testing can be performed 

for the sole purpose of seeing where and how failures occur and using that 

information to improve component designs or make better component selections, we 

will focus in this section on accelerated life testing for the following two purposes:   

1. To study how failure is accelerated by stress and fit an acceleration model to 

data from multiple stress levels 

2. To obtain enough failure data at high stress to accurately project (extrapolate) 

what the CDF at use will be.  

Test planning and operation for a (multiple) stress cell life test experiment 

consists of the following:   

• Pick several combinations of the relevant stresses (the stresses that accelerate 

the failure mechanism under investigation). Each combination is a "stress cell". 

Note that you are planning for only one mechanism of failure at a time. 

Failures on test due to any other mechanism will be considered censored run 

times.  

• Make sure stress levels used are not too high - to the point where new failure 

mechanisms that would never occur at use stress are introduced. Picking a 

maximum allowable stress level requires experience and/or good engineering 

judgment.  
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• Put random samples of components in each stress cell and run the 

components in each cell for fixed (but possibly different) lengths of time.  

• Gather the failure data from each cell and use the data to fit an acceleration 

model and a life distribution model and use these models to project reliability 

at use stress conditions.  

In typical life data analysis, the practitioner analyzes life data of a product's 

sample operating under normal conditions in order to quantify the life characteristics 

of the product and make predictions about all of the products in the population. For 

a variety of reasons, manufacturers may wish to obtain reliability results for their 

products more quickly than they can with data obtained under normal operating 

conditions. Instead, they may use quantitative accelerated life tests to capture life data 

for the product under accelerated stress conditions, which cause the products to fail 

more quickly. Quantitative accelerated life tests (QALT) are designed to quantify the 

life of the product and produce the data required for accelerated life data analysis. 

This analysis method uses life data obtained under accelerated conditions to 

extrapolate an estimated probability density function (pdf) for the product under 

normal use conditions.  

QALT tests can employ usage rate acceleration or overstress acceleration to 

speed up the time-to-failure for the products under test. With usage rate acceleration, 

which is appropriate for products that do not operate continuously under normal 

conditions, the analyst operates the products under test at a greater rate than normal 

to simulate longer periods of operation under normal conditions. Data from this type 

of test can be analyzed with standard life data analysis techniques. With overstress 

acceleration, one or more environmental factors that cause the product to fail under 

normal conditions (like temperature, voltage, humidity, etc.) are increased in order to 

stimulate the product to fail more quickly. Data from this type of test require special 

accelerated life data analysis techniques, which include a mathematical model to 

"translate" the overstress probability density functions to normal use conditions. The 

analysis techniques for data from quantitative overstress accelerated life tests are 

discussed.  
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6.2. Data and Data Types 

The analysis of accelerated tests relies extensively on data. Specifically, analysis relies 

on life and stress data or times-to-failure data at a specific stress level. The accuracy 

of any prediction is directly proportional to the quality of and accuracy of the 

supplied data. Good data, along with the appropriate distribution and life-stress 

model, usually results in good predictions. Bad or insufficient data will always result 

in bad predictions.  

For the purposes of this reference, we will separate data into two types based 

on the failure or success of the product. Failure data will be referred to as complete 

data and success data will be referred to as suspended (or right censored) data. In 

other words, we know that a product failed after a certain time (complete data) or we 

know that it operated successfully up to a certain time (suspended or right censored 

data). Each type is explained next.  

6.2.1. Complete Data 

Most non-life data, as well as some life data, are what we refer to as complete data. 

Complete data means that the value of each sample unit is observed (or known). For 

example, if we had to compute the average test score for a sample of 10 students, 

complete data would consist of the known score for each student. For products, 

known times-to-failure (along with the stress level), comprise what is usually referred 

to as complete data. For example, if we tested five units and they all failed, we would 

then have complete information as to the time-to-failure for each unit in the sample. 

 
Figure 6.1: Complete Data 

6.2.2. Censored Data 

It is also possible that some of the units have not yet failed when the life data are 

analyzed. This type of data is commonly called right censored data, or suspended 
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data. Assume that we tested five units and three failed. In this scenario, our data set is 

composed of the times-to-failure of the three units that failed (complete data) and the 

running time of the other two units that have not failed at the time the data are 

analyzed (suspended data). This is the most common censoring scheme and it is used 

extensively in the analysis of field data. 

  

 
Figure 6.2: Censored Data 

6.2.2.1. Censored Type I Data 

During the T hours of test we observe r failures (where r can be any number from 0 

to n). The (exact) failure times are t1, t2, ..., tr and there are (n - r) units that survived 

the entire T-hour test without failing. Note that T is fixed in advance and r is 

random, since we don't know how many failures will occur until the test is run. Note 

also that we assume the exact times of failure are recorded when there are failures.   

This type of censoring is also called "right censored" data since the times of 

failure to the right (i.e., larger than T) are missing. Another (much less common) way 

to test is to decide in advance that you want to see exactly r failure times and then 

test until they occur. For example, you might put 100 units on test and decide you 

want to see at least half of them fail. Then r = 50, but T is unknown until the 50th 

fail occurs. This is called Censored Type II data.  

6.2.2.2. Censored Type II Data  

We observe t1, t2, ..., tr, where r is specified in advance. The test ends at time T = tr, 

and (n-r) units have survived. Again we assume it is possible to observe the exact time 

of failure for failed units.  

Type II censoring has the significant advantage that you know in advance how 

many failure times your test will yield - this helps enormously when planning 
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adequate tests. However, an open-ended random test time is generally impractical 

from a management point of view and this type of testing is rarely seen.  

Sometimes exact times of failure are not known; only an interval of time in 

which the failure occurred is recorded. This kind of data is called Readout or 

Interval data and the situation is shown in the figure below:  

 

6.2.2.3. Multi-censored Data 

In the most general case, every unit observed yields exactly one of the following three 

types of information:  

• a run-time if the unit did not fail while under observation  

• an exact failure time  

• an interval of time during which the unit failed.  

6.3. Stress Types and Stress Levels 

In an effective quantitative accelerated life test, the analyst chooses one or more 

stress types that cause the product to fail under normal use conditions. Stress types 

can include temperature, voltage, humidity, vibration or any other stress that directly 

affects the life of the product. He/she then applies the stress(es) at various increased 

levels and measures the times-to-failure for the products under accelerated test 

conditions. For example, if a product normally operates at 290K and high 

temperatures cause the product to fail more quickly, then the accelerated life test for 

the product may involve testing the product at 310K, 320K and 330K in order to 

stimulate the units under test to fail more quickly. In this example, the stress type is 

temperature and the accelerated stress levels are 310K, 320K and 330K. The use 

stress level is 290K. Using the life data obtained at each accelerated stress level, the 

analyst can use standard life data analysis techniques to estimate the parameters for 

the life distribution (e.g. Weibull, exponential or lognormal) that best fits the data at 

each stress level. This results in an overstress probability density function (pdf) for 
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each accelerated stress level. Another mathematical model, the life-stress relationship, 

is then required to estimate the probability density function (pdf) at the normal use 

stress level based on the characteristics of the pdfs at each accelerated stress level. 

The application of the stress (under test conditions and/or during normal use) 

can be constant (time-independent) or time-dependent. When the stress is constant, 

the stress level applied to a sample of units does not vary with time. Each unit is 

tested under the same accelerated temperature for the duration of the test. For 

example, ten units are tested at 310K for 100 hours, ten different units are tested at 

320K for 100 hours and ten different units are tested at 330K for 100 hours.  

When the stress is time-dependent, the stress applied to a sample of units varies 

with time. Time-dependent stresses can be applied in a variety of ways. For example, 

if temperature is the stress type, each unit may be tested at 310K for 10 hours then 

increased to 320K for 10 hours then increased to 330K for 10 hours over the 

duration of the test. Alternatively, the units may be placed in a test chamber where 

the temperature starts at 310K and increases by five degrees every ten minutes until 

the chamber reaches 330K. Some common types of time-dependent stress profiles 

include step-stress, ramp-stress and various profiles in which the application of the 

stress is a continuous function of time. Figure 1 and Figure 2 display two examples of 

the many time-dependent stress profiles that can be used in an accelerated life test 

design.  

6.4. Life-Stress relationships 

Statisticians, mathematicians and engineers have developed life-stress relationship 

models that allow the analyst to extrapolate a use level probability density function 

(pdf) from life data obtained at increased stress levels. These models describe the path 

of a life characteristic of the distribution from one stress level to another. The life 

characteristic can be any life measure, such as the mean or median, expressed as a 

function of stress. For example, for the Weibull distribution, the scale parameter, 

(eta), is considered to be stress-dependent and the life-stress model for data that fits 

the Weibull distribution is assigned to eta. 

You must choose a life-stress relationship that fits the type of data being 

analyzed. Available life-stress relationships include the Arrhenius, Eyring, and inverse 
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power law models. These models are designed to analyze data with one stress type 

(e.g. temperature, humidity, or voltage). The temperature-humidity and temperature-

nonthermal relationships are combination models that allow you to analyze data with 

two stress types (e.g. temperature and voltage or temperature and humidity). The 

general log-linear and proportional hazards models can be used to analyze data where 

up to eight stress types need to be considered. Finally, the cumulative damage (or 

cumulative exposure) model has been developed to analyze data where the 

application of the stress (either at the accelerated stress levels or at the use stress 

level) varies with time 

 

6.5. Analyzing Data from Accelerated Life Tests 

Using the life data obtained at each accelerated stress level, standard life data analysis 

techniques can be used to estimate the parameters for the life distribution (e.g. 

Weibull, exponential or lognormal) that best fits the data at each stress level. This 

results in an overstress probability density function (pdf) for each accelerated stress 

level. Another mathematical model, the life-stress relationship, is then required to 

estimate the probability density function (pdf) at the normal use stress level based on 

the characteristics of the pdfs at each accelerated stress level. The plot in Figure 6.3 

demonstrates the relationship between life and stress for a particular product. 
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Figure 6.3: The relationship between life and stress. 

6.6. How do you fit an acceleration model? 

Once a life distribution and a life-stress relationship have been selected, the 

parameters (i.e. the variables that govern the characteristics of the pdf) need to be 

determined. Several parameter estimation methods, including probability plotting, 

least squares and maximum likelihood, are available.  

As with estimating life distribution model parameters, there are two general 

approaches for estimating acceleration model parameters:   

• Graphical estimation  (or computer procedures based on a  graphical 

approach)  

• Maximum Likelihood Estimation  (an analytic approach based on writing the 

likelihood of all the data across all the cells, incorporating the acceleration 

model)  

Another promising method of fitting acceleration models is sometimes possible 

when studying failure mechanisms characterized by a stress-induced gradual 

degradation process that causes the eventual failure. This approach fits models based 

on degradation data and has the advantage of not actually needing failures. This 
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overcomes censoring limitations by providing measurement data at consecutive time 

intervals for every unit in every stress cell. 

6.6.1. Graphical Method 

Graphical analysis is the simplest method for obtaining results in both life data and 

accelerated life testing analyses. Although they have limitations in general graphical 

methods are easily implemented and easy to interpret.  

The graphical method for estimating the parameters of accelerated life data 

involves generating two types of plots. First, the life data at each individual stress 

level are plotted on a probability paper appropriate to the assumed life distribution 

(i.e. Weibull, exponential, or lognormal). The parameters of the distribution at each 

stress level are then estimated from the plot. Once these parameters have been 

estimated at each stress level, the second plot is created on a paper that linearizes the 

assumed life-stress relationship (i.e. Arrhenius, inverse power law, etc.). The 

parameters of the life-stress relationship are then estimated from the second plot. 

The life distribution and life-stress relationship are then combined to provide a single 

model that describes the accelerated life data 

6.6.1.1. Life Distribution Parameters at Each Stress Level 

The first step in the graphical analysis of accelerated data is to calculate the 

parameters of the assumed life distribution at each stress level. Because life data are 

collected at each test stress level in accelerated life tests, the assumed life distribution 

is fitted to data at each individual stress level. The parameters of the distribution at 

each stress level are then estimated using the probability plotting method described 

next. 

6.6.1.2. Life Distribution Probability Plotting 

The easiest parameter estimation method (to use by hand) for complex distributions, 

such as the Weibull distribution, is the method of probability plotting. Probability 

plotting involves a physical plot of the data on specially constructed probability 

plotting paper. This method is easily implemented by hand as long as one can obtain 

the appropriate probability plotting paper. 
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Probability plotting looks at the cdf (cumulative density function) of the 

distribution and attempts to linearize it by employing a specially constructed paper. 

For example, in the case of the 2-parameter Weibull distribution, the cdf and 

unreliability Q(T) can be shown to be,  

 

This function can then be linearized (i.e. put into the common form of y = a + bx) as 

follows,  

   

Then setting, 

  

and, the equation can be rewritten as,  

  

 Which, is now a linear equation with a slope of and an intercept of ln( ) .  

The next task is to construct a paper with the appropriate x- and y- axes. The x-

axis is easy since it is simply logarithmic. The y-axis, however, must represent,  

   

Where, Q(T) is the unreliability. Such papers have been created by different vendors 

and are called Weibull probability plotting papers. 

To illustrate, consider the following probability plot on a Weibull Probability 

Paper  
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Figure 6.4: Weibull Probability Paper   

This paper is constructed based on the y and x transformation mentioned 

previously where the y-axis represents unreliability and the x-axis represents time. 

Both of these values must be known for each point (or time-to-failure) we want to 

plot.  

Then, given the y and x value for each point, the points can easily be placed on 

the plot. Once the points are placed on the plot, the best possible straight line is 

drawn through these points. Once the line is drawn, the slope of the line can be 

obtained (most probability papers include a slope indicator to facilitate this) and thus 

the parameter , which is the value of the slope, can be obtained.  

To determine the scale parameter, (also called the characteristic life by some 

authors), a little more work is required. Note that from before, 

  

 so at T =   

  

Thus if we entered the y axis at Q(T) = 63.2%, the corresponding value of T 

will be equal to . Using this simple, but rather time-consuming methodology, then, 
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the parameters of the Weibull distribution can be determined. For data obtained 

from accelerated tests, this procedure is repeated for each stress level.  

6.6.1.3. Determining the X and Y Position of the Plot Points 

The points plotted on the probability plot represent our data, or more specifically in 

life data analysis, times-to-failure data. So if we tested four units that failed at 10, 20, 

30 and 40 hours at a given stress level, we would use these times as our x values or 

time values. Determining the appropriate y plotting position, or the unreliability, is a 

little more complex. To determine the y plotting positions, we must first determine a 

value called the median rank for each failure. 

6.6.1.4. Median Ranks 

Median ranks are used to obtain an estimate of the unreliability, for each 

failure. It represents the value that the true probability of failure, , should have 

at the failure out of a sample of N units, at a 50% confidence level. This is an 

estimate of the value based on the binomial distribution. The rank can be found for 

any percentage point, P, greater than zero and less than one, by solving the 

cumulative binomial distribution for Z (rank for the failure). 

  (6.1)  

Where, N is the sample size and j the order number.  

The median rank is obtained by solving the following equation for  

   

For example if N = 4 and we have four failures at that particular stress level, 

we would solve the median rank equation, Eqn. (A), four times; once for each failure 

with j = 1, 2, 3 and 4, for the value of Z. This result can then be used as the 

unreliability for each failure, or the y plotting position. Solution of equation (6.1) 

requires numerical methods. 
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A more straightforward and easier method of estimating median ranks is to 

apply two transformations to Eqn. (6.1), first to the beta distribution and then to the 

F distribution, resulting in ,  

  

 denotes the F distribution at the 0.50 point, with m and n degrees of 

freedom, for the failure out of N units. A quick and less accurate approximation 

of the median ranks is also given by,  

  

6.6.1.5. Some Shortfalls of Manual Probability Plotting 

Besides the most obvious shortfall of probability plotting, the amount of effort 

required, manual probability plotting is not always consistent in the results. Two 

people plotting a straight line through a set of points will not always draw this line 

the same way and they will therefore come up with slightly different results. In 

addition, when dealing with accelerated test data a probability plot must be 

constructed for each stress level. This implies that sufficient failures must be 

observed at each stress level, which is not always possible. 

6.6.1.6. Life-Stress Relationship Plotting 

Once the parameters of the life distribution have been obtained using probability 

plotting methods, a second plot is created in which life is plotted versus stress. To do 

this, a life characteristic must be chosen to be plotted. The life characteristic can be 

any percentile, such as B(x) life, the scale parameter, mean life, etc. The plotting 

paper used is a special type of paper that linearizes the life-stress relationship. For 

example, a log-log paper linearizes the inverse power law relationship, and a log-

reciprocal paper linearizes the Arrhenius relationship. The parameters of the model 

are then estimated by solving for the slope and the intercept of the line. This 

methodology is illustrated in Example 1. 

EXAMPLE 1 

Consider the following times-to-failure data at three different stress levels. 
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Estimate the parameters for a Weibull assumed life distribution and for the 

inverse power law life-stress relationship. 

 SOLUTION 

First the parameters of the Weibull distribution need to be determined. The data is 

individually analyzed (for each stress level) using the probability plotting method, or 

software such as ReliaSoft's Weibull++, with the following results: 

  

Where, 

 , are the parameters of the 393 psi data. 

 , are the parameters of the 408 psi data. 

 , are the parameters of the 423 psi data. 

 
Figure 6.5: Probability Plot 
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Since the shape parameter, is not common for the three stress levels, the average 

value is estimated.  

  

Averaging the betas is one of many simple approaches available. One can also 

use a weighted average, since the uncertainty on beta is greater for smaller sample 

sizes. In most practical applications the value of will vary (even though it is 

assumed constant) due to sampling error, etc. The variability in the value of is a 

source of error when performing analysis by averaging the betas. MLE analysis, which 

uses a common , is not susceptible to this error. MLE analysis is the method of 

parameter estimation used in ALTA and it is explained in the next section. 

Redraw each line with a = 4 and estimate the new eta’s as follows. 

 
Figure 6.6: Probability Plot 

  = 6650 

 = 5745 

 = 4774. 

The IPL relationship is given by:  
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Where, L represents a quantifiable life measure (  in the Weibull case), V represents 

the stress level, K is one of the parameters and n is another model parameter. The 

relationship is linearized by taking the logarithm of both sides, which yields,  

  

Where, L = , (-lnK) is the intercept, and (-n) is the slope of the line. The values of 

obtained previously are now plotted on a log-linear scale yielding the following plot, 

 
Figure 6.7: Life versus Stress 

The slope of the line is the parameter, which is obtained from the plot: 

  

 Thus,   

  

 Solving the inverse power law equation with respect to K yields, 

   

 Substituting V = 403, the corresponding L (from the plot), L = 6,00 and the 

previously estimated n, 
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6.6.1.7. How to fit an Arrhenius Model with Graphical Estimation  

Graphical methods work best (and are easiest to describe) for a simple one-stress 

model like the widely used Arrhenius model: 

  

with T denoting temperature measured in degrees Kelvin (273.16 + degrees 

Celsius) and k is Boltzmann's constant (8.617 x 10-5 in eV/°K).   

When applying an acceleration model to a distribution of failure times, we 

interpret the deterministic model equation to apply at any distribution percentile we 

want. This is equivalent to setting the life distribution scale parameter equal to the 

model equation (T50 for the lognormal,  for the Weibull and the MTBF or 1/  for 

the exponential). For the lognormal, for example, we have  

        

So, if we run several stress cells and compute T50's for each cell, a plot of the 

natural log of these T50's versus the corresponding 1/kT values should be roughly 

linear with a slope of H and an intercept of ln A. In practice, a computer fit of a 

line through these points is typically used to obtain the Arrhenius model estimates. 

There are even commercial Arrhenius graph papers that have a temperature scale in 

1/kT units and a T50 scale in log units, but it is easy enough to make the 

transformations and then use linear or log-linear papers.  

That T is in Kelvin in the above equations. For temperature in Celsius, use the 

following for 1/kT: 11605/(TCELSIUS + 273.16)   

An example will illustrate the procedure.   

Graphical Estimation: An Arrhenius Model Example 

Component life tests were run at 3 temperatures: 85°C, 105°C and 125°C. The 

lowest temperature cell was populated with 100 components; the 105° cell had 50 
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components and the highest stress cell had 25 components. All tests were run until 

either all the units in the cell had failed or 1000 hours was reached. Acceleration was 

assumed to follow an Arrhenius model and the life distribution model for the failure 

mode was believed to be lognormal. The normal operating temperature for the 

components is 25°C and it is desired to project the use CDF at 100,000 hours.  

TEST RESULTS: 

Cell 1 (85°C): 5 failures at 401, 428, 695, 725 and 738 hours. 95 units were censored 

at 1000 hours running time.   

Cell 2 (105°C): 35 failures at 171, 187, 189, 266, 275, 285, 301, 302, 305, 316, 

317, 324, 349, 350, 386, 405, 480, 493, 530, 534, 536, 567, 589, 598, 599, 614, 620, 

650, 668, 685, 718, 795, 854, 917, and 926 hours. 15 units were censored at 1000 

hours running time.   

Cell 3 (125°C): 24 failures at 24, 42, 92, 93, 141, 142, 143, 159, 181, 188, 194, 

199, 207, 213, 243, 256, 259, 290, 294, 305, 392, 454, 502 and 696. 1 unit was 

censored at 1000 hours running time.   

Failure analysis confirmed that all failures were due to the same failure 

mechanism (if any failures due to another mechanism had occurred, they would have 

been considered censored run times in the Arrhenius analysis).   

Steps to Fitting the Distribution Model and the Arrhenius Model 

1. Do graphical plots for each cell and estimate T50's and sigma's. 

2. Put all the plots on the same sheet of graph paper and check whether the 

lines are roughly parallel (a necessary consequence of true acceleration).  

3. If satisfied from the plots that both the lognormal model and the constant 

sigma from cell to cell are consistent with the data, plot the cell ln T50's versus 

the 11605/(TCELSIUS + 273.16) cell values, check for linearity and fit a 

straight line through the points. Since the points have different degrees of 

precision, because different numbers of failures went into their calculation, it 

is recommended that the number of failures in each cell be used as weights in 

a regression program, when fitting a line through the points.  
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4. Use the slope of the line as the H estimate and calculate the Arrhenius A 

constant from the intercept using A = eintercept .  

5. Estimate the common sigma across all the cells by the weighted average of 

the individual cell sigma estimates. Use the number of failures in a cell 

divided by the total number of failures in all cells as that cells weight. This 

will allow cells with more failures to play a bigger role in the estimation 

process. 

6.6.1.8. Comments on the Graphical Method 

Although the graphical method is simple, it is quite laborious. Furthermore, many 

issues surrounding its use require careful consideration. Some of these issues are 

presented next:  

• What happens when no failures are observed at one or more stress level? In 

this case, plotting methods cannot be employed. Discarding the data would 

be a mistake since every piece of life data information is important. (In other 

words, no failures at one stress level combined with observed failures at other 

stress level(s) are an indication of the dependency of life on stress. This 

information cannot be discarded.) 

• In the step at which the life-stress relationship is linearized and plotted to 

obtain its parameters, you must be able to linearize the function, which is not 

always possible. 

• In real accelerated tests the data sets are small. Separating them and 

individually plotting them and then subsequently replotting the results, 

increases the underlying error. 

• During initial parameter estimation, the parameter that is assumed constant 

will more than likely vary. What value do you use? 

• Confidence intervals on all of the results cannot be ascertained using 

graphical methods. 

6.6.2. MLE (Maximum Likelihood) Parameter Estimation 

The idea behind maximum likelihood parameter estimation is to determine the 

parameters that maximize the probability (likelihood) of the sample data. From a 
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statistical point of view, the method of maximum likelihood is considered to be more 

robust (with some exceptions) and yields estimators with good statistical properties. 

In other words, MLE methods are versatile and apply to most models and to 

different types of data. In addition, they provide efficient methods for quantifying 

uncertainty through confidence bounds. Although the methodology for maximum 

likelihood estimation is simple, the implementation is mathematically intense. Using 

today's computer power, however, mathematical complexity is not a big obstacle. 

The MLE methodology is presented next.  

6.6.2.1. Background Theory 

This section presents the theory that underlies maximum likelihood estimation for 

complete data. If x is a continuous random variable with pdf, 

   

Where, are k unknown constant parameters which need to be 

estimated, conduct an experiment and obtain N independent observations, 

. Then the likelihood function is given by the following product,  

   

 The logarithmic likelihood function is given by:  

   

 The maximum likelihood estimators (MLE) of are obtained by 

maximizing L or . 

 By maximizing , which is much easier to work with than L, the maximum 

likelihood estimators (MLE) of are the simultaneous solutions of k 

equations such that, 

   

 Even though it is common practice to plot the MLE solutions using median 

ranks (points are plotted according to median ranks and the line according to the 
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MLE solutions), this is not completely accurate. As it can be seen from the equations 

above, the MLE method is independent of any kind of ranks or plotting methods. 

For this reason, many times the MLE solution appears not to track the data on the 

probability plot. This is perfectly acceptable since the two methods are independent 

of each other and in no way suggests that the solution is wrong. 

6.6.2.2. Illustrating the MLE Method Using the Exponential Distribution 

• To estimate , for a sample of n units (all tested to failure), first obtain the 

likelihood function,  

  
•  Take the natural log of both sides, 

   

• Obtain , and set it equal to zero,  

    

• Solve for or,  

   

Notes on lambda 

• Note that the value of is an estimate because if we obtain another sample 

from the same population and re-estimate , the new value would differ from 

the one previously calculated. 

• In plain language, is an estimate of the true value of . 

• How close is the value of our estimate to the true value? To answer this 

question, one must first determine the distribution of the parameter, in this 
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case . This methodology introduces a new term, confidence level, which 

allows us to specify a range for our estimate with a certain confidence level. 

• The treatment of confidence intervals is integral to reliability engineering and 

to all of statistics. 

6.6.2.3. Illustrating the MLE Method Using the Normal Distribution 

To obtain the MLE estimates for the mean, and standard deviation, for the 

normal distribution, start with the pdf of the normal distribution which is given by:  

   

If are known times-to-failure (and with no suspensions), then the 

likelihood function is given by:  

  

 Then, 

   

Then taking the partial derivatives of with respect to each one of the 

parameters and setting it equal to zero yields,  

   (B) 

 and, 

   (C) 

 Solving Eqns. (B) and (C) simultaneously yields,  

   

 And, 
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These solutions are only valid for data with no suspensions, i.e. all units are 

tested to failure. In cases in which suspensions are present, the methodology changes 

and the problem becomes much more complicated. 

6.6.2.4. Estimator 

As mentioned above, the parameters obtained from maximizing the likelihood 

function are estimators of the true value. It is clear that the sample size determines 

the accuracy of an estimator. If the sample size equals the whole population, then the 

estimator is the true value. Estimators have properties such as unbiasedness, 

sufficiency, consistency and efficiency. Numerous books and papers deal with these 

properties and this coverage is beyond the scope of this reference. However, we 

would like to briefly address unbiasedness and consistency.  

6.6.2.5. Unbiased Estimator 

An estimator is said to be unbiased if and only if the estimator = d(

) satisfies the condition E[ ] = for all . Note that E[X] denotes the expected 

value of X and is defined by (for continuous distributions),  

   

This implies that the true value is not consistently underestimated nor 

overestimated by an unbiased estimator.  

6.6.3. Conclusions 

Two methods for estimating the parameters of accelerated life testing models were 

presented. First, the graphical method was illustrated using a probability plotting 

method for obtaining the parameters of the life distribution. The parameters of the 

life-stress relationship were then estimated graphically by linearizing the model. 

However, not all life-stress relationships can be linearized. In addition, estimating the 
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parameters of each individual distribution leads to an accumulation of uncertainties, 

depending on the number of failures and suspensions observed at each stress level. 

Furthermore, the slopes (shape parameters) of each individual distribution are rarely 

equal (common). Using the graphical method, one must estimate a common shape 

parameter (usually the average) and repeat the analysis. By doing so, further 

uncertainties are introduced on the estimates and these are uncertainties that cannot 

be quantified. On the other hand, treating both the life distribution and the life-stress 

relationship as one model, the parameters of that model can be estimated using the 

complete likelihood function. Doing so, a common shape parameter is estimated for 

the model, thus eliminating the uncertainties of averaging the individual shape 

parameters. All uncertainties are accounted for in the form of confidence bounds, 

which are quantifiable because they are obtained based on the overall model. 

6.7. Calculated Results and Plots 

Once you have calculated the parameters to fit a life distribution and a life-stress 

relationship to a particular data set, you can obtain the same plots and calculated 

results that are available from standard life data analysis. Some additional results, 

related to the effects of stress on product life, are also available. In addition, for the 

failure rate, reliability/unreliability and pdf plots, the information can be displayed for 

a given stress level in a two-dimensional plot or for a range of stress levels in a three-

dimensional plot (e.g. failure rate vs. time vs. stress). Some frequently used metrics 

include: 

• Reliability Given Time: The probability that a product will operate 

successfully at a particular point in time under normal use conditions. For 

example, there is an 88% chance that the product will operate successfully 

after 3 years of operation at a given stress level.  

• Probability of Failure Given Time: The probability that a product will be 

failed at a particular point in time under normal use conditions. Probability of 

failure is also known as "unreliability" and it is the reciprocal of the reliability. 

For example, there is a 12% chance that the product will be failed after 3 

years of operation at a given stress level (and an 88% chance that it will 

operate successfully).   
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• Mean Life: The average time that the products in the population are 

expected to operate at a given stress level before failure. This metric is often 

referred to as mean time to failure (MTTF) or mean time before failure 

(MTBF).   

• Failure Rate: The number of failures per unit time that can be expected to 

occur for the product at a given stress level.  

• Probability Plot: A plot of the probability of failure over time. This can 

display either the probability at the use stress level or, for comparison 

purposes, the probability at each test stress level. (Note that probability plots are 

based on the linearization of a specific distribution. Consequently, the form of a probability 

plot for one distribution will be different than the form for another. For example, an 

exponential distribution probability plot has different axes than that of a normal 

distribution probability plot.)  

• Reliability vs. Time Plot: A plot of the reliability over time at a given stress 

level. A similar plot, unreliability vs. time, is also available.  

• pdf Plot: A plot of the probability density function (pdf) at a given stress 

level.   

• Failure Rate vs. Time Plot: A plot of the failure rate over time at a given 

stress level. This can display the instantaneous failure rate at a given stress 

level in a two-dimensional plot or the failure rate vs. time vs. stress in a three-

dimensional plot.  

• Life vs. Stress Plot: A plot of the product life vs. stress. A variety of life 

characteristics, like B(10) life or eta, can be displayed on the plot. This plot 

demonstrates the effect of a particular stress on the life of the product.  

• Standard Deviation vs. Stress Plot: A plot of the standard deviation vs. 

stress, which provides information about the spread of the data at each stress 

level.  

• Acceleration Factor vs. Stress Plot: A plot of the acceleration factor vs. 

stress.  
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6.7.1. Examples of Reporting for Parametric Data Analysis 

Following are some examples of the information that can be generated using 

parametric data analysis. While this is by no means complete, it serves as a starting 

point for the information that can be obtained with the proper collection of data and 

parametric analysis. 

6.7.1.1. Probability Plot 

Probability plotting was originally a method of graphically estimating distribution 

parameter values. With the use of computers that can precisely calculate parametric 

values, the probability plot now serves as a graphical method of assessing the 

goodness of fit of the data to a chosen distribution. Probability plots have nonlinear 

scales that will essentially linearize the distribution function, and allow for assessment 

of whether the data set is a good fit for that particular distribution based on how 

close the data points come to following the straight line. The y-axis usually shows the 

unreliability or probability of failure, while the x-axis shows the time or ages of the 

units. Specific characteristics of the probability plot will change based on the type of 

distribution. 

 

 
    Figure 6.8: Probability Plot 

6.7.1.2. Reliability Function 

The reliability function gives the continuous probability of a successful mission 

versus the time of the mission. This is similar to the probability plot in that it shows 



 Accelerated Life Testing Data Analysis 
 

 

113

the performance of the product versus the time. However, it does not have nonlinear 

scales on the axes and the y-axis gives the reliability instead of the unreliability. 

 
 

Figure 6.9: Reliability versus Time 

6.7.1.3. Probability Density Function 

The probability density function (pdf) represents the relative frequency of failures 

with respect to time. It basically gives a description of how the entire population 

from which the data is drawn is spread out over time or usage. The probability 

density function is most commonly associated with the "bell curve," which is the 

shape of the pdf of the normal or Gaussian distribution. 

 
Figure 6.10: Probability Density Function 
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6.7.1.4. Failure Rate Function 

The failure rate function indicates how the number of failures per unit time of the 

product changes with time. This provides a measure of the instantaneous probability 

of product failure changes as usage time is accumulated. The failure rate plot is 

associated with the "bathtub curve," which is an amalgamation of different failure 

rate curves to illustrate the different ways in which products exhibit failure 

characteristics over the course of their lifetimes. 

 

 
Figure 6.11: Failure Rate vs Time 

6.7.1.5. Life vs. Stress Plot 
 

 
Figure 6.12: Life vs. Stress Plot 
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The Life vs. Stress plot is a product of accelerated life testing or reliability testing that 

is performed at different stress levels. This indicates how the life performance of the 

product changes at different stress levels. The gray shaded areas are actually pdf plots 

for the product at different stress levels. Note that it is difficult to make a complete 

graphical comparison of the pdf plots due to the logarithmic scale of the y-axis. 

6.7.1.6. Reliability Growth 

Reliability growth is an important component of a reliability engineering program. It 

essentially models the change in a product's reliability over time and allows for 

projections on the change in reliability in the future based on past performance. It is 

useful in tracking performance during development and aids in the allocation of 

resources. There are a number of different reliability growth models available that are 

suitable to a variety of data types. The above chart is a graphical representation of the 

logistic reliability growth model. 

 
Figure 6.13: Reliability Growth 

6.8. Confidence Bounds 

Because life data analysis results are estimates based on the observed lifetimes of a 

product's sample, there is uncertainty in the results due to the limited sample sizes. 

Confidence bounds (also called confidence intervals) are used to quantify this 

uncertainty due to sampling error by expressing the confidence that a specific interval 
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contains the quantity of interest. Whether or not a specific interval contains the 

quantity of interest is unknown. 

Confidence bounds can be expressed as two-sided or one-sided. Two-sided 

bounds are used to indicate that the quantity of interest is contained within the 

bounds with a specific confidence. One-sided bounds are used to indicate that the 

quantity of interest is above the lower bound or below the upper bound with a 

specific confidence. Depending on the application, one-sided or two-sided bounds 

are used. For example, the analyst would use a one-sided lower bound on reliability, a 

one-sided upper bound for percent failing under warranty and two-sided bounds on 

the parameters of the distribution. (Note that one-sided and two-sided bounds are related. For 

example, the 90% lower two-sided bound is the 95% lower one-sided bound and the 90% upper 

two-sided bounds is the 95% upper one-sided bound.) 

6.8.1. One-Sided and Two-Sided Confidence Bounds 

Confidence bounds (or intervals) are generally described as one-sided or two-sided. 

6.8.1.1. Two-Sided Bounds 
 

 

When we use two-sided confidence bounds (or intervals) we are looking at where 

most of the population is likely to lie. For example, when using 90% two-sided 

confidence bounds, we are saying that 90% lies between X and Y, with 5% less than 

X and 5% greater than Y.  

6.8.1.2. One-Sided Bounds 

When using one-sided intervals, we are looking at the percentage of units that are 

greater or less (upper and lower) than a certain point X. 
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For example, 95% one-sided confidence bounds would indicate that 95% of 

the population is greater than X (if 95% is a lower confidence bound) or that 95% is 

less than X (if 95% is an upper confidence bound). 

  

 

In ALTA, (from Reliasoft) we use upper to mean the higher limit and lower to 

mean the lower limit, regardless of their position, but based on the value of the 

results. So for example, when returning the confidence bounds on the reliability, we 

would term the lower value of reliability as the lower limit and the higher value of 

reliability as the higher limit. When returning the confidence bounds on probability 

of failure, we will again term the lower numeric value for the probability of failure as 

the lower limit and the higher value as the higher limit. 

6.8.1.3. Electronic Devices Example 

Twelve electronic devices were put into a continuous accelerated test. The 

accelerated stresses were temperature and voltage, with use level conditions of 328K 

and 2V respectively. The data obtained is shown in the table below: 
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Do the following: 

1. Using the T-NT Weibull model analyze the data in ALTA and determine the 

MTTF and B(10) life for these devices at use level. Determine the upper and 

lower 90% 2-sided confidence intervals on the results. 

2. Examine the effects of each stress on life. 

3. Figures 6.14 and 6.15 below examine the effects of each stress on life, while 

Figure 6.15 examines the effects of the combined stresses on the reliability. 

Specifically, Figure 6.14 below shows the life vs. voltage plot with 

temperature held constant at 328K. 

  

 
Figure 6.14: The effects of voltage on life, with temperature held constant. 
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Following figure shows the life vs. temperature plot with voltage held constant at 

2V.  

 
Figure 6.15: The effects of temperature on life, with voltage held constant. 

ELECTRONIC COMPONENTS EXAMPLE 

An electronic component was redesigned and was tested to failure at three different 

temperatures. Six units were tested at each stress level. At the 406K stress level 

however, a unit was removed from the test due to a test equipment failure, which led 

to a failure of the component. A warranty time of one year is to be given, with an 

expected return of 10% of the population. The times-to-failure and test temperatures 

are given next: 

 

The operating temperature is 356K. Using the Arrhenius-Weibull model, determine 

the following:  

1. Should the first failure at 406K be included in the analysis? 

2. Determine the warranty time for 90% reliability. 



 Accelerated Life Testing Data Analysis 

 

120 

3. Determine the 90% lower confidence limit on the warranty time. 

4. Is the warranty requirement met? If not, what steps should be taken? 

5. Repeat the analysis with the unrelated failure included. Is there any 

difference? 

6. If the unrelated failure occurred at 500 hr, should it be included in the 

analysis? 

SOLUTION 

 1.    Since the failure occurred at the very beginning of the test and for an 

unrelated reason, it can be omitted from the analysis. If it is included it 

should be treated as a suspension and not as a failure. 

2.    The first failure at 406K was neglected and the data were analyzed using 

ALTA. The following parameters were obtained:   

= 2.9658, 
B = 10679.57, 
C = 2.39662  

The use level probability plot (at 356K) can then be obtained. The 

warranty time for a reliability of 90% (or an unreliability of 10%) can be 

estimated from this plot as shown next. 

 

This estimate can also be obtained from the Arrhenius plot (a life vs. 

stress plot). The 10th percentile (time for a reliability of 90%) is plotted 
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versus stress. This type of plot is useful because a time for a given 

reliability can be determined for different stress levels. 

  

 A more accurate way to determine the warranty time would be to use 

ALTA's Quick Calculation Pad (QCP). By selecting the Warranty (Time) 

Information option from the Basic Calculations tab in the QCP and 

entering 356 for the temperature and 90 for the required reliability, a 

warranty time of 11,977.793 hr can be determined, as shown next: 

 
  

3.    The warranty time for a 90% reliability was estimated to be 

approximately 12,000 hr. This is above the 1 year (8,760 hr) requirement. 

However, this is an estimate at the 50% confidence level. In other words, 

50% of the time life will be greater than 12,000 hr and 50% of the time 

life will be less. A known confidence level is therefore crucial before any 

decisions are made. Using ALTA, confidence bounds can be plotted on 

both Probability and Arrhenius plots. In the following use level 

probability plot, the 90% Lower Confidence Level (LCL) is plotted. Note 

that percentile bounds are type 1 confidence bounds in ALTA. 
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An estimated 4,300 hr warranty time at a 90% lower confidence level was 

obtained from the use level probability plot. This means that 90% of the 

time, life will be greater than this value. In other words, a life of 4,300 hr 

is a bounding value for the warranty. 

The Arrhenius plot with the 90% lower confidence level is shown next. 

  

                           

Using the QCP and specifying a 90% lower confidence level, a warranty time of 4436.5 

hr is estimated, as shown next. 
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4.    The warranty time for this component is estimated to be 4,436.5 hr at a 

90% lower confidence bound. This is much less than the 1 year warranty 

time required (almost 6 months). Thus the desired warranty is not met. In 

this case, the following four options are available: 

• redesign 
• reduce the confidence level 
• change the warranty policy 
• test additional units at stress levels closer to the use level  

5.    Including the unrelated failure of 0.3 hr at 406 K (by treating it as a 

suspension at that time), the following results are obtained:   

 = 2.9658, 

 B = 10679.57 

 C = 2.39662   

These results are identical to the ones with the unrelated failure excluded. 

A small difference can be seen only if more significant digits are 

considered. The warranty time with the 90% lower 1-sided confidence 

bound was estimated to be:   

 T = 11.977.729 hr, 

 = 4436.46 hr.  



 Accelerated Life Testing Data Analysis 

 

124 

Again, the difference is negligible. This is due to the very early time at 

which this unrelated failure occurred.  

6.    The analysis is repeated treating the unrelated failure at 500 hr as a 

suspension, with the following results:  

= 3.0227, 
B = 10959.52, 

C = 1.23808   

In this case, the results are very different. The warranty time with the 

90% lower 1-sided confidence bound is estimated to be:  

 T = 13780.208 hr, 

 = 5303.67 hr.  

It can be seen that in this case, it would be a mistake to neglect the 

unrelated failure. By neglecting this failure, we would actually 

underestimate the warranty time. The important observation in this 

example is that every piece of life information is crucial. In other words, 

unrelated failures also provide information about the life of the product. 

An unrelated failure occurring at 500 hr indicates that the product has 

survived for that period of time under the particular stress level, thus 

neglecting it would be a mistake. On the other hand it would also be a 

mistake to treat this data point as a failure, since the failure was caused by 

a test equipment failure.  
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7. Highly Accelerated Testing 

7.1. Introduction 

Highly Accelerated Life Tests (HALT) and Highly Accelerated Stress Screens (HASS) 

are briefly introduced and discussed in what follows. These techniques have been 

successfully used by many organizations for three decades. Most of these users do 

not publish their results because of the pronounced financial and technical 

advantages of the techniques over the classical methods, which are not even in the 

same league in terms of speed and cost. It is important to note that the methods are 

still rapidly evolving. 

The HALT and HASS methods are designed to improve the reliability of the 

products, not to determine what the reliability is. The approach is therefore proactive 

as compared with a Reliability Demonstration (Rel-Demo) or Mean time between 

failures (MTBF) tests that do not improve the product at all but simply (attempt to) 

measure what the reliability is. This is a major difference between the classical and the 

HALT approaches. 

7.2. Why Things Fail? 

A product will fail when the applied load exceeds the strength of the product. The 

load can be voltage, current, force, temperature or other variable. Consider applied 

load and strength plotted together as in Figure 7.1. 

 
Figure 7.1: Load and strength 

Whenever the applied load exceeds the strength, failure will occur. The load 

may be a one time load or it may be applied a number of times. In the first case, 

overload failure will occur and in the second case fatigue failure will occur. A fatigue 
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could be drawn for either case and would look similar to that shown. The 

crosshatched area represents the products which will fail. 

As time passes, the product could become weaker for any one of many reasons. 

Figure 7.2 is concerned with aging. Alternatively, one could depict fatigue damage by 

having the strength curve move to the left as depicted in Figure 7.2. Again, when the 

applied load exceeds the strength, failure will occur. Either way, the overlap of the 

curves will increase, meaning that more products will fail. This moving of the curve 

can also be simulated by moving the applied load curve to the right as depicted in 

Figure 7.3. Note that one would have the same failures as when the strength 

degraded. It is this last approach that is taken in HALT, wherein the loads are 

increased until failure occurs, identifying a weakness. It is seen that one would obtain 

the same failures in either case according to the illustration. This simplistic example is 

quite valid and one could go through detailed calculations to demonstrate the fact. It 

will be left as a simple illustration here.  

 
Figure 7.2: Load and increasing strength 

 
Figure 7.3: Strength and increasing load 

7.2.1. The Bathtub Curve 

The pattern of failures that occurs in the field can be approximated in three ways. 

When there are defects in the product, so-called “infant mortalities”, or failure of 

weak items, items, will occur. Another type of failure is due to externally induced 

failures where load exceeds strength. Finally, wearout will occur even if an item is not 

defective. When one superimposes all three types of failure, a curve called the 

bathtub curve occurs. One such curve is shown in Figure 7.5. The bathtub curve is 

grossly affected by HALT and HASS techniques: 
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              Hazard  
                rate  
 
 
 
 
 
 
 
 
 
 Infant mortality          Useful life             Wearout  

Figure 7.4: The bathtub curve 

 

1. Production screening (HASS), will reduce the early segment of the curve by 

eliminating early life failures due to manufacturing flaws. 

2. Ruggedization (HALT) of the product will lower the mid-portion of the 

curve which is due to externally induced failures.  

3. HALT will extend the wearout segment far to the right.    

7.3. The Purposes of HALT and HASS  

The general purposes of applying accelerated stress conditions in the design phases is 

to find and improve upon design and process weaknesses in the least amount of time 

and correct the source of the weaknesses before production beings. It is generally 

true that robust products will exhibit much higher reliability than non-robust ones 

and so the ruggedization process of HALT in which large margins are obtained will 

generate products of high potential reliability. In order to achieve the potential, 

defect-free hardware must be manufactured or, at least, the defects must be found 

and fixed before shipment. In HASS, accelerated stresses are applied in production in 

order to shorten the time to failure of the defective units and therefore shorten the 

corrective action time and the number of units built with the same flaw. Each 

weakness found in HALT or in HASS represents an opportunity for improvement. 

The application of accelerated stressing techniques to force rapid design maturity 

(HALT) results in pay-backs that far exceed these from production stressing (HASS). 

Nonetheless, production HASS is cost effective in its own right until quality is such 

Time 

Externally 
induced  
failures 

Wearout 
failures of 
good items Total hazard

rate ‘bathtub’ 

Failure of 
weak items 
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that a sample HASS or Highly Accelerated Stress Audit (HASA) can be put into 

place. The use of HASA demands excellent process control since most units will be 

shipped without the benefit of HASS being performed on them, and only those units 

in the selected sample will be screened for defects.  

The stresses used in HALT and HASS include, but are not restricted to, all-axis 

simultaneous vibration, high-rate broad-range temperature cycling, power cycling, 

voltage and frequency variation, humidity, and any other stress that may expose 

design or process problems. No attempt is made to simulate the field environment. 

One only seeks to find design and process flaws by any means possible. The stresses 

used generally far exceed the field environments in order to gain time compression; 

that is, shorten the time required to find any problems areas. When a weakness is 

discovered, only the failure mode and mechanism is of importance, the relation of 

the stress used to the field environment is of no consequence at all. Figure 7.5 

illustrates this point. In this figure, λ is the instantaneous failure rate for a given 

failure mode. The two curves illustrating a thermally induced failure rate and a 

vibration-induced failure rate are located so that the field stresses at which failure 

occurs and the HALT stresses at which failure occurs are lined up vertically. It is then 

seen that a failure mode that would most often be exposed by temperature will be 

more likely to be exposed by vibration in the HALT environment. 

                                     
     Field                                                 Halt 
 
               Hazard 
                 rate  
 
 
 
 
 
 

 

Figure 7.5: Instantaneous failure rates in the field and in HALT 

It is very common to expose weaknesses in HALT with a different stress than 

the one that would make the weakness show up in the field. It is for this reason that 

one should focus on the failure mode mechanism instead of the margin for the 

particular stress in use.  
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“Mechanism” here means the conditions that caused the failure, such as 

melting, exceeding the stable load or exceeding the ultimate strength. The 

corresponding failure mode could be separation of a conductor, elastic buckling and 

tensile failure, respectively. Considering the margin instead of the failure mode is a 

major mistake which is made by most engineers used to conventional test techniques. 

In HALT and HASS, one uses extreme stresses for a very brief period of time in 

order to obtain time compression in the failures. In doing so, one may obtain the 

same failures as would occur in the field environments, but with a different stress. 

For example, a water sprinkler manufacturer had a weakness which was exposed by 

the diurnal thermal cycle in the field. HALT exposed the same weakness with all-axis 

vibration after extensive thermal cycling failed to expose the weakness. After the 

weakness was addressed, the field failures were eliminated, which proves that the 

weakness exposed by all-axis vibration was a valid discovery. For another example, 

consider a reduction in the cross-sectional area of a conductor. This reduction would 

create a mechanical stress concentration and an electrical current density 

concentration. This flaw might be exposed by  temperature cycling or vibration in 

HALT or HASS and might be exposed by electromigration in the field environment. 

Either way, the reduction in area introduces a weakness that can be eliminated.  

In addition to stresses, other parameters are used to look for weaknesses. These 

include the diameter of a gear, the pH of a fluid running through the product, 

contaminants in the fluid running through a blood analyzer, the thickness of a tape 

media, the viscosity of a lubricant, the size of a tube or pipe, the lateral load on a 

bearing and an almost endless additional number of factors. What is sought is any 

information that could lead to an opportunity for improvement by decreasing the 

sensitivity of the product to any conditions which could lead to improper 

performance or to catastrophic failure. Anything that could provide information for 

an improvement in the margin is appropriate in HALT.  

In the HALT phase of product development, which should be in the early 

design phase, the product is improved in every way practicable bearing in mind that 

most of what are discovered in HALT as weaknesses will almost surely become field 

failures if not improved. This has been demonstrated thousands of times by users of 

HALT. Of course, one must always use reason in determining whether or not to 

improve the product when an opportunity is found and this is done by examining the 
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failure mode and mechanism. Just because a weakness was found “out of 

specification” is no reason to reject the finding as an opportunity for improvement. 

There are numerous cases where weaknesses found “out of specification” were not 

addressed until field failures of the exact same type occurred. If you find it in HALT, 

it is probably relevant. In various papers from Hewlett-Packard over the years, it has 

been found that most of the weaknesses found in HALT and not addressed resulted 

in costs to the company in the neighborhood of US$10,000,000 per failure mode to 

address later, when failure costs were included. It cannot be emphasized too much 

that it is imperative to focus on the failure mode and mechanism and not the 

conditions used to make the weakness apparent. Focusing on the margin will usually 

lead one to allow a detected weakness to remain, resulting in many field failures of 

that type before a fix can be implemented. Learn from others’ mistakes and do not 

focus on the stress level used, but on the failure mode and mechanism.  

HALT and HASS are not restricted to electronic boxes, but apply to many 

other technologies as well. Some of the technologies are listed at the end of the 

chapter and include such diverse products as shock absorbers, airframes, auto bodies, 

exhaust systems and power steering hoses to name just a few. Note that HALT 

addresses design and process weaknesses, whereas classical ESS only addresses 

production weaknesses. HASS may expose design weaknesses if any remain or are 

introduced after production start.  

7.4. Equipments Required  

The application of the highly accelerated stress techniques is very much enhanced by, 

if not impossible without, the use of environmental equipment of the latest design 

such as all-axis exciters and combined very high-rate thermal chambers (60 °C/min 

or more product rate). All-axis means three translations and three rotations.  

A single-axis, single-frequency shaker will only excite modes in the particular 

direction of the vibration and only those nearby in frequency. A swept sine will 

sequentially excite all modes in the one direction being excited. A single-axis random 

shaker will simultaneously excite all modes in one direction. A six-axis system will 

simultaneously excite all modes within the bandwidth of the shaker in all directions. 

If all modes in all directions are not excited simultaneously, then many defects can be 
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missed. Obviously, the all-axis shakers are superior for HALT and HASS activities 

since one is interested in finding as much as possible as fast as possible.  

In the very early days of Design Ruggedization (the precursor to HALT), a 

device had been severely ruggedized using a single-axis random shaker system. Then, 

in production, a very early all-axis system was used and three design weaknesses 

which had not been found on the single-axis system were exposed almost 

immediately. That experience showed the differences in the effectiveness of the 

various systems. Since then, the system of choice has been an all-axis broad-band 

shaker.  

Other types of stresses or other parameters may be used in HALT. In these 

cases, other types of stressing equipment may be required. If one wanted to 

investigate the capability of a gearbox, one could use contaminated oil, out-of-

specification gear sizes and a means for loading the gearbox in torsion either statically 

or dynamically. If one wanted to investigate various end piece crimping designs on 

power steering hoses, one could use temperature, vibration and oil pressure 

simultaneously. This has been done and worked extremely well, exposing poor 

designs in just a few minutes. In order to investigate an airframe for robustness in 

pressurization, the hull could be filled with water and rapid pressure cycling done. 

This is show it is done at several aircraft manufacturers. Water is used as the 

pressurized medium since it is nearly incompressible and so when a fracture occurs, 

pressure drops quickly, preventing an explosive-type failure, such as would occur if 

air were to be used. A life test simulating thousands of cycles can be run in just a few 

days using this approach.  

Not that, in HALT and HASS, one tries to do fatigue damage as fast as 

possible, and the more rapidly it is done, the sooner it can stop and the less 

equipment is needed to do the job. It is not unusual to reduce equipment is needed 

to do the job. It is not unusual to reduce equipment costs by orders of magnitude by 

using the correct stresses and accelerated techniques. This comment applies to all 

environmental stimulation and not just to vibration. An example discussed later in 

this book (Chapter 7) shows a decrease in cost from US$22 million to US$50,000 on 

thermal chambers alone (not counting power requirement, associated vibration 

equipment, monitoring equipment and personnel) by simply increasing the rate of 
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change of temperature from 5 °C/min to 40 °C/min (when rate-sensitive flaws are 

present)! The basic data for this comparison is given in [11]. Another example shows 

that increasing the RMS vibration level by a factor of 1.4 times would decrease the 

vibration system cost from US$100 million to only US$100,000 for the same 

throughout of product. With these examples, it becomes clear that HALT and HASS 

techniques, when combined with modern screening equipment designed specifically 

to do HALT and HASS, provide quantum leaps in cost effectiveness. 

Some typical results of HALT and HASS applied to product design and 

manufacturing are described below. Some of these are from early successes and have 

been published in some form, usually technical presentations at a company. Later 

examples using the alter technology in terms of technique and equipment have largely 

not been published. The later results are, of course, much better, but the early results 

will make the point well enough, since they represent a lower bound on the expected 

successes today when far better techniques are equipment are available.   

7.5. Some General Comments on HALT and HASS 

The successful use of HALT or HASS requires several actions to be completed. In 

sequence these are: precipitation, detection, failure analysis, corrective action, 

verification of corrective action and then entry into a database. All of the first five 

must be done in order for the method to function at all. Adding the sixth results in 

long-term improvement of the future products.  

1. Precipitation means to change a defect which is latent or undetectable to one 

that is patent or detectable. A poor solder joint is such an example. When 

latent, it is probably not detectable electrically unless it is extremely poor. The 

process of precipitation will transpose the flaw to one that is detectable; that 

is, cracked. This cracked joint may be detectable under certain conditions, 

such as modulated excitation. The stresses used for the transformation may 

be vibration combined with thermal cycling and perhaps electrical overstress. 

Precipitation is usually accomplished in HALT or in a precipitation screen. 

2. Detection means to determine that a fault exists. After precipitation by 

whatever means, it may become patent that is, detectable. Just because it is 

patent does not mean that it will actually be detected since it must first be put 

into a detectable state, perhaps using modulated excitation, and then it must 
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actually be detected. Assuming that we actually put the fault into a detectable 

state and that the built-in test or external test setup can detect the fault, we 

can then proceed to the most difficult step, which is failure analysis.  

3. Failure analysis means to determine why the failure occurred. In the case of the 

solder joint, we need to determine why the joint failed. If doing HALT, the 

failed joint could be due to a design flaw; that is, an extreme stress at the joint 

due to vibration or maybe due to a poor match of thermal expansion 

coefficients. When doing HASS, the design is assumed to be satisfactory 

(which may not be true if changes have occurred) and, in that case, the solder 

joint was probably defective. In what manner it was defective and why it was 

defective. In what manner it was defective and why it was defective need to 

be determined in sufficient detail to perform the next step, which is 

corrective action. 

4. Corrective action means to change the design or processes as appropriate so that 

the failure will not occur in the future. This step is absolutely essential if 

success is to be accomplished. In fact, corrective action is the main purpose 

of performing HALT or HASS. 

5. Verification of corrective action needs to be accomplished by testing to determine 

that the product is really fixed and that the flaw which caused the problem is 

no longer present. The fix could be ineffective or there could be other 

problems causing the anomaly which are not yet fixed. Additionally, another 

fault could be induced by operations on the product and this necessitates a 

repeat of the conditions that promoted the fault to be evident. Note that a 

test under zero stress conditions will usually not expose the fault. One 

method of testing a fix during the HALT stage is to perform HALT again 

and determine that the product is at least as robust as it was before and it 

should be somewhat better. If one is in the HASS stage, then performing 

HASS again on the product is in order. If the flaw is correctly fixed, then the 

same failure should not occur again.  

It is essential to have at least the first five steps completed in order to 

be successful in improving the reliability of a product. If any one of the first 

five steps is not completed correctly, then no improvement will occur and the 

general trend in reliability will be toward a continuously lower level.  
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6. The last step is to put the lesson learned into a database from which one can 

extract valuable knowledge whenever a similar event occurs again. Companies 

which practice correct HALT and utilize a well-kept database soon become 

very adept at designing and building very robust products with the 

commensurate high reliability. These companies usually are also very 

accomplished at HASS and so can progress to HASA, the audit version of 

HASS. 

A comparison of the HALT and HASS approach and the classical approach is 

presented in Table 7.1. Note that HALT and HASS are proactive, i.e. seek to 

improve the product’s reliability, and much of the classical approaches are intended 

to measure the product’s reliability, not to improve it. 

Table 7.1: Comparison of HALT and Classical Approaches 

Stage Design Pre-production Production 
Test 
type 

Quality HALT Life test HASS 
development 

Safety of 
HASS 

Rel-
Demo HASS HASS 

Purpose 
Satisfy 
Customer 
Reqmts 

Maximize 
margins, 
minimize 
sample 

Demo 
life 

Select screens 
and equip 

Prove Ok 
to ship 

Measure 
reliability

Improve 
reliability 

Minimize cost, 
maximize 
effectiveness 

Desired 
outcome 

Customer 
acceptance 

Improve 
margins 

MTBF 
and 
spares 
reqd 

Minimize cost, 
maximize HASS 
reliability 

Life left 
after Pass 

Root cause 
corrective 
action 

Minimize cost, 
maximize 
effectiveness 

Method 
Simulate field 
environment 
sequentially 

Step 
stress to 
failure 

Simulate 
Field 

Maximize time 
compression 

Multiple 
repeats 
without 
wearout 

Simulate 
field 

Accelerated 
stimulation 

Repeat HASS, 
Modify profits 

Duration 
Stress 
field 
level 

Weeks Field 
Days 
Exceeds 
field 

Weeks 
Field 

Days Exceeds 
field 

Days 
Exceeds 
field 

Months 
Field 

Minutes 
Exceeds 

Weeks Exceeds 
field 



 

 

8. Accelerated Life Testing Concepts and Models 

Product reliability contributes much to quality and competitiveness. Many 

manufacturers yearly spend millions of dollars on product reliability. Much 

management and engineering effort goes into evaluating reliability, assessing new 

designs and design and manufacturing changes, identifying causes of failure, and 

comparing designs, vendors, materials, manufacturing methods, and the like. Major 

decisions are based on life test data, often from a few units. Moreover, many 

products last so long that life testing at design conditions is impractical. Many 

products can be life tested at high stress conditions to yield failures quickly. Analyses 

of data from such an accelerated test yield needed information on product life at 

design conditions (low stress). 

Many of today’s applications demand that the products must be capable of 

operating under extremes of environmental stress and for thousands of hours 

without failure. For such demanding situations, the traditional tests are no longer 

sufficient to identify design weaknesses or validate life predictions. 

Accelerating testing is an approach for obtaining more information from a 

given test and time that would be impossible under normal circumstances. We do 

this by using a test environment that is more severe than that is experienced in 

normal use conditions with a rider to avoid introducing failure modes that would not 

be encountered in normal use. 

What is Accelerated Life Testing? 

Traditional life data analysis involves analyzing times-to-failure data (of a product, 

system or component) obtained under normal operating conditions in order to 

quantify the life characteristics of the product, system or component. In many 

situations, and for many reasons, such life data (or times-to-failure data) is very 

difficult, if not impossible, to obtain. The reasons for this difficulty can include the 

long life times of today's products, the small time period between design and release 

and the challenge of testing products that are used continuously under normal 

conditions. Given this difficulty, and the need to observe failures of products to 

better understand their failure modes and their life characteristics, reliability 
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practitioners have attempted to devise methods to force these products to fail more 

quickly than they would under normal use conditions. In other words, they have 

attempted to accelerate their failures. Over the years, the term accelerated life testing has 

been used to describe all such practices. 

Accelerated testing: Briefly stated, accelerated testing consists of variety of 

test methods for shortening the life of products or hastening the degradation of their 

performance. The aim of such testing is to quickly obtain data which, properly 

modeled and analyzed, yield desired information on product life or performance 

under normal use. Obviously, such testing saves much time and money. 

8.1. Test Purpose 

Accelerated life tests and performance degradation test serve various purposes. 

Common purposes include: 

1. Identify design failures. Eliminate or reduce them through redundancy, better 

design, components, etc.  

2. Comparisons. Choose among designs, components, suppliers, rated operating 

conditions, test procedures, etc.   

3. Identify manufacturing defects. Eliminate them through better 

manufacturing, components, burn-in, etc. Estimate the reliability 

improvement from eliminating or reducing certain failure modes.  

4. Evaluate other variables. Assess how much design, manufacturing, materials, 

operating, and other variables affect reliability. Optimize reliability with 

respect to them. Decide which need to be controlled. Measure reliability. 

Assess whether to release a design to manufacturing or product to a 

customer. Estimate warranty and service costs, failure rates, mean time to 

failure (MTTF), degradation rates, etc. Satisfy a customer requirement for 

such measurement. Use as marketing information.  

5. Demonstrate reliability. Show that product reliability surpasses customer 

specifications.   

6. Operating conditions. Develop relationships between reliability (or 

degradation) and operating conditions. Choose design operating conditions. 
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7. Service policy. Decide when to inspect, service, or replace and how many 

spares and replacements to manufacture and stock. Units may be taken out of 

service and tested under accelerated conditions when an unexpected problem 

shows up in service 

The applications of ALT and benefits drawn have no bounds. Look at the areas 

where this technology has been successfully applied: 

8.1.1. On Materials 

Metal: Accelerated testing is used with metals, including test coupons and actual 

parts, as well as composites, welds, brazements, bonds, and other joints. Performance 

includes fatigue life, creep, creep-rupture, crack initiation and propagation, wear, 

corrosion, oxidation, and rusting. Accelerating stresses include mechanical stress, 

temperature, specimen geometry and surface finish. Chemical acceleration factors 

include humidity, salt, corrosives, and acids. 

Plastics: Accelerated testing is used with many plastics including building materials, 

insulation (electrical and thermal), mechanical components, and coatings. Materials 

include polymers, polyvinyl chloride (PVC), urethane foams, and polyesters. 

Performance includes fatigue life, wear, mechanical properties, and color fastness. 

Accelerating stresses include mechanical load (including vibration and shock), 

temperature (including cycling and shock), and weathering (ultraviolet radiation and 

humidity). 

Dielectrics and insulations: Accelerated testing is used with many dielectrics and 

electrical insulations including solids (polyethylene, epoxy), liquids (transformer oil), 

gases, and composites (oil-paper, epoxy-mica). Products include capacitors, cables, 

transformers, motors, generators, and other electrical apparatus. Performance 

includes time to failure and other properties (breakdown voltage, elongation, ultimate 

mechanical strength). Accelerating stresses include temperature, voltage stress, 

thermal and electrical cycling and shock, vibration, mechanical stress, radiation and 

moisture.  

Ceramics: Applications are concerned with fatigue life, wear, and degradation of 

mechanical and electrical properties.  
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Adhesives: Accelerated testing is used with adhesive and bonding materials such as 

epoxies. Performance includes life and strength. Accelerating stresses include 

mechanical stress, cycling rate, mode of loading, humidity, and temperature.  

Rubber and elastics: Accelerated testing is used with rubbers and elastic materials 

(e.g., polymers). Products include tires and industrial belts. Performance includes 

fatigue life and wear. Accelerating stresses include mechanical load, temperature, 

pavement texture, and weathering (solar radiation, humidity, and ozone). 

Food and drugs: Accelerated testing is used with foods (e.g., browning of white 

wines), drugs, pharmaceuticals, and many other chemicals. Performance is usually 

shelf (or storage) life, usually in terms of amount of an active ingredient that 

degrades. Performance variables include taste, pH, moisture loss or gain, microbial 

growth, color, and specific chemical reactions. Accelerating variable include 

temperature, humidity, chemicals, pH, oxygen, and solar radiation.   

Lubricants: Accelerated testing is used with solid (graphite, molybdenum disulphide, 

and teflon), oil, grease, and other lubricants. Performance includes oxidation, 

evaporation, and contamination. Accelerating stresses include speed, temperature, 

and contaminants (water, copper, steel, and dirt). 

Protective coatings and paints: Accelerated testing is used for weathering of paints 

(liquid and powder), polymers, antioxidants, anodized aluminum, and electroplating. 

Performance includes color, gloss, and physical integrity (e.g., wear, cracking, and 

blistering). Accelerating stresses include weathering variables-temperature, humidity, 

solar radiation (wavelength and intensity) – and mechanical load.     

Concrete and cement: Accelerated testing is used with concrete and cement to 

predict performance-the strength after 28 days of curing. The accelerating stress is 

high temperature applied for a few hours.  

Building materials: Accelerated testing is used with wood, particle board, plastics, 

composites, glass, and other building materials. Performance includes abrasion 

résistance, color fastness, strength, and other mechanical properties. Accelerating 

stresses include load and weathering (solar radiation temperature, humidity).  
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Nuclear rector materials: Accelerated testing is used with nuclear rector materials, 

for example, fuel rod cladding. Performance includes strength, creep and creep-

rupture. Accelerating stresses include temperature, mechanical stress, contaminants, 

and nuclear radiation (type, energy, and flux). 

8.1.2. On Products 

Semiconductors and microelectronics. Accelerated testing is used for many types 

of semiconductor devices including transistors such as gallium arsenide field emission 

transistors (GaAs FETs), insulated gate field emission transistors (IGFETs), Gunn 

and light emitting diodes (LEDs), MOS and CMOS devices, random access 

memories (RAMs), and their bonds, connections, and plastic encapsulants. They are 

tested singly and in assemblies such as circuit boards, integrated circuits (LSI and 

VLSI), and microcircuits. Performance is life and certain operating characteristics. 

Accelerating variables include temperature (constant, cycled, and shock), current, 

voltage (bias), power, vibration and mechanical shock, humidity, pressure, and 

nuclear radiation.     

Capacitors. Accelerated testing is used with most types of capacitors, including 

electrolytic, polypropylene, thin film, and tantalum capacitors. Performance is usually 

life. Accelerating variables include temperature, voltage, and vibration. 

Resistors. Accelerated testing is used with thin and thick film, metal oxide, pyrolytic, 

and carbon film resistors. Performance is life. Accelerating variables include 

temperature, current, voltage, power vibration, electrochemical attack (humidity), and 

nuclear radiation.  

Other electronics. Accelerated testing is used with other electronic components 

such as optoelectronics (opto couplers and photo conductive cells), lasers, liquid 

crystal displays, and electric bonds and connections.    

Electrical contacts. Accelerated testing is used for electrical contacts in switches, 

circuit breakers, and relays. Performance includes corrosion and life. Metal fatigue, 

rupture, and welding are common failure mechanisms. Accelerating stresses include 

high cycling rate, temperature, contaminants (humidity), and current.  
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Cells and batteries. Accelerated testing is used with rechargeable, non-rechargeable, 

and solar cells. Performance includes life, self discharge, current, and depth of 

discharge. Accelerating variables include temperature, current density, and rate of 

charge and discharge.    

Lamps. Accelerated testing is used with incandescent (filament), fluorescent 

(including ballasts), mercury vapor, and flash lamps. Performance includes life, 

efficiency, and light output. Accelerating variables include voltage, temperature, 

vibration, and mechanical and electrical shock.   

Electrical devices. Accelerated testing is used with various electrical devices 

including motors, heating elements, and thermoelectric converters.  

Bearings. Accelerated testing is used with roller, ball, and sliding (oil film) bearings. 

Performance includes life and wear (weight loss). Materials include steels and silicon 

nitride for rolling bearings and porous (sintered) metals, bronzes, babbitt, aluminum 

alloys, and plastics for sliding bearings. Accelerated stresses include overspeed, 

mechanical load, and contaminants.  

Mechanical components. Accelerated testing is used with mechanical components 

and assemblies such as automobile parts, hydraulic components, tools, and gears. 

Performance includes life and wear. Accelerating stresses include mechanical load, 

vibration, temperature and other environmental factors, and combinations of such 

stresses. 

In the above application areas, the accelerating factors used, either singly or in 

combinations, which include: 

• More frequent power cycling 

• Higher vibration levels 

• High humidity 

• More severe thermal cycling 

• Higher temperatures 

• Mechanical load 
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Accelerating testing is a powerful tool that can be effectively used in two very 

different ways, viz., in a qualitative or in a quantitative manner. Therefore, the 

Accelerated testing can be divided into two broad areas, viz.,  

• Qualitative Accelerated Testing-problem/weakness identification and correction 

Where the concern is directed towards identifying failures and failure modes 

without attempting to make any predictions as to the product's life under 

normal use conditions. In qualitative accelerated testing, the engineer is 

mostly interested in identifying failures and failure modes without attempting 

to make any predictions as to the product’s life under normal use conditions. 

Qualitative tests are performed on small samples with the specimens 

subjected to a single severe level of stress, to a number of stresses or to a 

time-varying stress (i.e. stress cycling, cold to hot, etc.). If the specimen 

survives, it passes the test. Otherwise, appropriate actions will be taken to 

improve the product's design in order to eliminate the cause(s) of failure. 

Qualitative tests are used primarily to reveal probable failure modes. However, if not 

designed properly, they may cause the product to fail due to modes that would have never 

been encountered in real life. A good qualitative test is one that quickly reveals 

those failure modes that will occur during the life of the product under 

normal use conditions. In general, qualitative tests are not designed to yield 

life data that can be used in subsequent quantitative accelerated life data 

analysis as described in this reference. In general, qualitative tests do not 

quantify the life (or reliability) characteristics of the product under normal use 

conditions, however, they provide valuable information as to the types and 

level of stresses one may wish to employ during a subsequent quantitative 

test. Obviously, these test can not provide the answer to the question-What 

will be the reliability of the product under normal use conditions? 

• Quantitative Accelerated Life Testing-Life estimation.  

The engineer is concerned towards predicting the life of the product (or more 

specifically, life characteristics such as MTTF, B10 life, etc.) at normal use 

conditions, from data obtained in an accelerated life test. It consists of tests 

designed to quantify the life characteristics of the product, component or 

system under normal use conditions and thereby provide reliability 



Accelerated Life Testing Concepts and Models 

 

144 

information. Reliability information can include the determination of the 

probability of failure of the product under use conditions, mean life under 

use conditions and projected returns and warranty costs. It can also be used 

to assist in the performance of risk assessments, design comparisons, etc. 

In accelerated testing the quantitative knowledge builds upon the qualitative 

knowledge. In fact, the accelerated testing in a quantitative manner requires a 

physics-of-failure approach, i.e., a comprehensive understanding and application of 

specific failure mechanism involved and the relevant stress(es). Table 8.1 compares 

the two main categories of ALT. 

Some accelerating techniques are appropriate only for part level whereas others 

could be used for higher levels of assembly. Very few techniques could be applicable 

to both part and assembly, where the underlying assumptions and modeling may be 

valid at the part level may be totally invalid tests performed at higher level of 

assembly or vise versa.  

Table 8.1: Types of ALT 

Test Purpose and approach Comment 
Qualitative Uses accelerated environmental stresses to precipitate 

latent defects or design weaknesses into actual failures 
to identify design part or manufacturing process 
problems, which could cause subsequent failures in the 
field. 

Requires a thorough understanding 
or at least a workable knowledge of 
the basic failure mechanism. 
Estimation of item life may or may 
not be of a concern. 

Quantitative Uses model relating the reliability (or life) measured 
under high stress conditions to that which is expected 
under normal operation. 

Requires: 
An understanding of the 
anticipated failure(s) mechanism 
A knowledge of the magnitude of 
the acceleration of this failure 
mechanism as a function of 
accelerating stress 

Unfortunately, there is no single magic analytical model that can accurately 

estimate the life of complex assemblies or system. Each life analytical model 

describes physical change mechanisms associated with specific material 

characteristics. 

8.2. Types of Acceleration and Stress Loading 

Two methods of acceleration, viz., usage rate acceleration and overstress acceleration, have 

been devised to obtain times-to-failure data at an accelerated pace. For products that 

do not operate continuously, one can accelerate the time it takes to induce failures by 

continuously testing these products. This is called usage rate acceleration. For 
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products for which usage rate acceleration is impractical, one can apply stress(es) at 

levels which exceed the levels that a product will encounter under normal use 

conditions and use the times-to-failure data obtained in this manner to extrapolate to 

use conditions. This is called overstress acceleration 

High Usage Rate: A simple way to accelerate the life of many products is to run the 

product more-at a higher usage rate. The following are two common ways of doing 

such compressed time testing.  

Faster: One way to accelerate is to run the product faster. For example, in many life 

tests, rolling bearings run at about three times their normal speed. High usage rate 

may also be used in combination with overstress testing. For example, such bearings 

are also tested under higher than normal mechanical load. Another example of high 

usage rate involves a voltage endurance test of an electrical insulation. The AC 

voltage in the test was cycled at 412 Hz instead of the normal 60 Hz, and test was 

shorted by a factor of 412/60 = 6.87. 

Reduced off time: Many products are off much of the time in actual use. Such 

products can be accelerated by running them a greater fraction of the time. For 

example, in most homes, a major appliance (say, washer or dryer) runs an hour or 

two a day; on test it runs 24 hours a day. In use, a refrigerator compressor runs about 

15 hours a day; on test it runs 24. A small appliance (say, toaster or coffee maker) 

runs a few cycles a day; on test it cycles many times a day.  

Purpose. The purpose such testing is to estimate the product life distribution at 

normal usage rates. It is assumed that the number of cycles, revolutions, hours, etc., 

to failure on test is the same that would be observed at the normal usage rate. For 

example, it is assumed that a bearing that runs 6.2 million revolutions to failure at 

high rpm would run 6.2 million revolutions at normal rpm. The data are treated as a 

sample from actual use. Then standard life data analyses provide estimates of the 

percentage failing on warranty, the median life, etc. They also provide comparisons 

of designs, manufacturing methods, materials, vendors, etc. 

The assumption. It is not automatically true that the number of cycles to failure at 

high and normal usage rates is the same. Usually the test must be run with special 

care to assure that product operation and stress remain normal in all regards except 
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usage rate. For example, high rate usage usually raises the temperature of the product. 

That usually results in fewer cycles to failure. It may event produce failure modes not 

seen at normal temperature and usage rate. Thus many such tests involve cooling the 

product to keep the temperature at a normal level. In contrast, products sensitive to 

thermal cycling may last longer if run continuously without thermal cycling. For this 

reason, toasters on test are force cooled by a fan between cycles. 

The limitation of usage rate acceleration arises when products, such as 

computer servers and peripherals, maintain a very high or even continuous usage. In 

such cases, usage acceleration, even though desirable, is not a feasible alternative. In 

these cases the practitioner must stimulate, usually through the application of 

stress(es), the product to fail. This method of accelerated life testing is called 

overstress acceleration and is described next. 

8.2.1. Overstress Testing  

Overstress testing consists of running a product at higher than normal levels of some 

accelerated stress(es) to shorten product life or to degrade product performance 

faster. Typical accelerating stresses are temperature, voltage, mechanical load, thermal 

cycling, humidity, and vibration or combination of these stresses.  Overstress testing 

is the most common form of accelerated testing. 

8.2.1.1. About Degradation Mechanisms 

Fatigue. Materials eventually fail by fatigue if subjected to repeated mechanical 

loading and unloading, including vibration. Well studied are the fatigue of metals, 

plastics, glass, ceramics, and other structural and mechanical materials (see references 

on these). Fatigue is a major failure mechanism of mechanical parts including 

bearings and electrical contacts. The usual accelerating stress is load. Other stresses 

are temperature and chemicals (water, hydrogen, oxygen, etc.) 

Creep. Creep, the slow plastic deformation of materials under constant mechanical 

load, may interfere with product function or cause rupture or fracture. Accelerating 

variables are typically temperature and mechanical load, load cycling, and chemical 

contaminants (for example, water, hydrogen, and fluorine).  
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Cracking. Metals, plastics, glass, ceramics, and other materials crack. People study 

crack initiation and growth. Accelerating stresses include mechanical stress, 

temperature, and chemicals (humidity, hydrogen, alkalis, and acids).  

Wear. In applications, many materials are subjected to friction that removes the 

material. For example, rubber tires lose tread, house paints wash off, gears, bearings, 

and machine tools wear away. Accelerating stresses include speed, load (magnitude 

and type), temperature, lubrication, and chemicals (humidity).  

Corrosion/oxidation. Most metals and many foods, pharmaceuticals, etc., 

deteriorate by chemically reacting with oxygen (oxidation and rusting), fluorine, 

chlorine, sulphur, acids, alkalis, salt, hydrogen peroxide, and water. Accelerating 

stresses include concentration of the chemical, activators, temperature, voltage, and 

mechanical load (stress-corrosion).  

Weathering. This concerns the effects of weather on materials in outdoor 

applications. Such materials include metals, protective coatings (paint, electroplating, 

and anodizing), plastics, and rubbers. Accelerating stresses include solar radiation 

(wavelength and intensity) and chemicals (humidity, salt, sulphur, and ozone). The 

degradation generally involves corrosion, oxidation (rust), tarnishing, or other 

chemical reaction. 

8.2.1.2. Stresses and Stress Levels 

Accelerated life test stresses and stress levels should be chosen so that they accelerate 

the failure modes under consideration but do not introduce failure modes that would 

never occur under use conditions. Normally, these stress levels will fall outside the 

product specification limits but inside the design limits as illustrated in the figure 

below: 
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This choice of stresses and stress levels and the process of setting up the 

experiment is of the utmost importance. The design engineer(s) and material 

scientist(s) are consulted to determine what stimuli (stress) is appropriate as well as to 

identify the appropriate limits (or stress levels). If these stresses or limits are 

unknown, multiple tests with small sample sizes can be performed in order to 

ascertain the appropriate stress(es) and stress levels. Proper use of Design of 

Experiments (DOE) methodology is also crucial at this step. In addition to proper 

stress selection, the application of the stresses must be accomplished in some logical, 

controlled and quantifiable fashion. Accurate data on the stresses applied as well as 

the observed behavior of the test specimens must be maintained. It is clear that as 

the stress used in an accelerated test becomes higher the required test duration 

decreases. However, as the stress level moves farther away from the use conditions, 

the uncertainty in the extrapolation increases. Confidence intervals provide a measure 

of the uncertainty in extrapolation. 

8.2.1.3. Stress Loading 

The stress loading in an accelerated test can be applied various ways. They include 

constant, cyclic, step, progressive, and random stress loading.  

Constant stress. The most common stress loading is constant stress. Each specimen 

is run at a constant stress level. Figure depicts a constant stress test with three stress 

levels. There the history of a specimen is depicted as moving along a horizontal line 

until it fails at a time shown by an× . An unfailed specimen has its age shown by an 

arrow. At the highest level, all four specimens ran to failure. At the middle level, four 

ran to failure, and one was unfailed. At the lowest level, four ran to failure, and four 

were unfailed. In use, most products run at constant stress. Then a constant stress 

test mimics actual use. Moreover, such testing is simple and has advantages. First, in 

most tests, it is easier to maintain a constant stress level. Second, accelerated test 

models for constant stress are better developed and empirically verified for some 

materials and products. Third, data analyses for reliability estimation are well 

developed and computerized.  

Step stress. In step-stress loading, a specimen is subjected to successively higher 

levels of stress. A specimen is first subjected to a specified constant stress for a 

specified length of time. If it does not fail, it is subjected to a higher stress level for a 
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specified time. The stress on a specimen is thus increased step until it fails. Usually all 

specimens go through the same specified pattern of stress levels and test times. 

Sometimes different patterns are applied to different specimens. Figure depicts two 

such patterns. Such data may be censored. Pattern 1 has six failures and three 

runouts.  

 
Figure 8.1: Constant stress test (× failure, O→ run out). 

 

 
 Figure 8.2: Step-stress test (× failure, O→ runout). 

Advantages. The main advantage of a step-stress test is that is quickly yields 

failures. The increasing stress levels ensure this. Statisticians are happy to have 

failures, because they yield estimates of the model and of the product life. Engineers 

are happier when there are no failures, which suggest (perhaps incorrectly) that the 

product is reliable. Quick failures do not guarantee more accurate estimates. A 

constant stress test with a few specimen failures usually yields greater accuracy than a 

shorter step-stress test where all specimens fail. Roughly speaking, the total time on 

test (summed over all specimens) determines accuracy-not the number of failures.  

Disadvantages. There is a major disadvantage of step-stress tests for reliability 

estimation. Most products run at constant stress-not step stress. Thus the model 

must properly take into account the cumulative effect of exposure at successive 

stresses. Moreover, the model must also provide an estimate of life under constant 

stress. Such a model is more complex than one for a constant stress test. Thus, 

constant stress tests are generally recommended over step-stress tests for reliability 

estimation. Another disadvantage of a step-stress test is that failure modes occurring 

at high stress levels (in later steps) may differ from those at use conditions.  

Progressive stress. In progressive stress loading, a specimen undergoes a 

continuously increasing level of stress. Different groups of specimens may undergo 
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different progressive stress patterns. Figure 8.3 depicts such a test with three 

patterns-each a linearly increasing stress. As shown in Figure, under a low rate of rise 

of stress, specimens tend to live longer and to fail at lower stress. Such life data may 

be censored. In metal fatigue, such a test with a linearly increasing mechanical load is 

called a Prot test.  

Disadvantages. Progressive stress tests have the same disadvantages as step-stress 

levels. Moreover, it may be difficult to control the progressive stress accurately 

enough. Thus constant stress tests are generally recommended over progressive 

stress tests for reliability estimation. 

 

Figure 8.3: Progressive stress test (× failure, O→ runout). 

Cyclic stress. In use, some products repeatedly undergo a cyclic stress loading. For 

example, insulation under ac voltage sees a sinusoidal stress. Also, for example, many 

metal components repeatedly undergo a mechanical stress cycle. A cyclic stress test 

for such a product repeatedly loads a specimen with the same stress pattern at high 

stress levels. Figure depicts a cyclic stress test. For many products, a cycle is 

sinusoidal. For others, the duty (or test) cycle repeats but is not sinusoidal. The 

(usually high) number of cycles to failure is the specimen life. Such life data may be 

censored.  

 
Figure 8.4: Cyclic-stress loading. 
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Examples 

Insulation. For insulation tests, the stress level is the amplitude of the ac voltage 

sinusoid, which alternates from positive to negative voltage. So a single number 

characterizes the level. For purpose of modeling and data analysis, such cyclic stress 

is regarded as a constant, where the vertical axis shows the voltage amplitude.  

Metals. In metal fatigue tests, usually a specimen undergoes (nearly) sinusoidal 

loading. But the sinusoid need not have a mean stress of zero. Figure 8.4 shows such 

a sinusoid with a positive mean. Tensile stress is positive, and compressive stress is 

negative in the figure. Thus, according to the figure, the specimen is under tension 

for most of a cycle and under compression for a small part of a cycle. Such sinusoidal 

loading is characterized by two numbers, say, the stress range and the mean stress. 

Frequency often has negligible effect. Thus, fatigue life can be regarded as a function 

of these two “constant” stress variables. In place of the stress range, metallurgists use 

the A-ratio; it is the stress amplitude (half the range) divided by the mean stress. For 

example, suppose a specimen is cycled from 0 psi to 80,000 psi compression and 

back to 0 psi. The mean stress is 40,000 psi, and the A-ratio is 0.5(80,000-0)/40,000 

= 1. The A-ratio for ac voltage cycling of insulation is infinity, since the mean voltage 

is zero.  

Random stress. Some products in use undergo randomly changing levels of stress, 

as depicted in Figure 8.5. For example, bridge members and air-plane structural 

components undergo wind buffeting. Also, environmental stress screening uses 

random vibration. Then an accelerated test typically employs random stresses with 

the same distribution as actual random stresses but at higher levels. Like cyclic stress 

tests, random stress models employ some characteristics of the stress distribution as 

stress variables (say, the mean, standard deviation, correlation function, and power 

spectral density). Then such a test is regarded as a constant stress test; this, of course, 

is simplistic but useful. The test can then be depicted as in Figure 8.6 where the 

horizontal line shows the mean stress. Moreover, specimen life is modeled with a 

constant stress model, and the data are analyzed accordingly. Such life data may be 

censored.  
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Figure 8.5: Random stress loading 

8.3. Types of Accelerated Test Data 

Accelerated test data can be divided into two types. Namely, the product 

characteristic of interest is 1) life or 2) some other measure of performance, such as 

tensile strength or ductility.  

Performance data: One may be interested in how product performance degrades 

with age. In such performance testing, specimens are aged under high stress, and 

their performance measured at different ages. Such performance data are analyzed by 

fitting a degradation model to the data to estimate the relationship between 

performance, age, and stress.  

Life data: The proper analysis of life data depends on the type of data. The 

following paragraphs describe the common types of life data from a single test or 

design condition.  

Complete data: Complete data consist of the exact life (failure age) of each sample 

unit. Figure 8.6 A depicts a complete sample from a single test condition. There the 

length of a line corresponds to the length of life of a test unit. Much life data are 

incomplete. That is, the exact failure times of some units are unknown, and there is 

only partial information on their failure times. Examples are given below. 

Censored: Often when life data are analyzed, some units are unfailed, and their 

failure times are known only to be beyond their present running times. Such data are 

said to be censored on the right. In the literature, such data or tests are called 

truncated. Unfailed units are called run-outs, survivors, removals, and suspensions. 

Such censored data arise when some units are (1) removed from test or service 

before they fail, (2) still running at the time of the data analysis, or (3) removed from 

test or service because they failed from an extraneous cause such as test equipment 

failure. Similarly, a failure time known only to be before a certain time is said to be 

censored on the left. If all unfailed units have common running time and all failure 
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times are earlier, the data are said to be singly censored on the right. Singly 

censored data arise when units are started together at a test condition and the data are 

analyzed before all units fail. Such data are singly time censored if the censoring 

time is fixed; then the number of failures in that fixed time is random. Figure 8.6 B 

depicts such a sample. There the line for an unfailed unit shows how long it ran 

without failure and the arrow pointing to the right indicates that the unit’s failure 

time is later. Time censored data are also called Type I censored. Data are singly 

failure censored if the test is stopped when a specified number of failures occur. 

The time to that fixed number of failures is random. Figure 8.6 C depicts such a 

sample. Time censoring is more common in practice. Failure censoring is more 

common in the theoretical literature, as it is mathematically more tractable. 

Multiply censored. Much data censored on the right have differing running times 

intermixed with the failure times. Such data are called multiply censored (also 

progressively, hyper-, and arbitrarily censored). Figure 8.6 D depicts such a sample. 

Multiply censored data arise when units go on test at different times. Thus they have 

different running times when the data are recorded. Such data may be time censored 

(running times differ from failure times, as shown in Figure 8.6 D) or failure 

censored (running times equal failure times, as shown in Figure 8.6 E). 

Competing modes: A mix of competing failure modes occurs when sample units 

fail from different causes. Figure 8.6 F depicts such a sample, where A, B, and C 

denote different failure modes. Data on a particular failure mode consist of the 

failure times of units failing by that mode. Such data for a mode are multiply 

censored.  

Quantal-response: Sometimes one knows only whether the failure time of a unit is 

before or after a certain time. Each observation is either censored on the right or else 

on the left. Such life data arise if each unit is inspected once to see if it has already 

filed or not. Such inspection data are called quantal-response data, also called 

sensitivity, probit, binary, and all-or-nothing response data. Figure 8.6 G depicts such 

a sample. There the arrow for each unit shows whether the unit failed before its 

inspection or will fail later.  

Interval: When each unit is inspected for failure more than once, one knows only 

that a unit failed in an interval between inspections. So-called interval, grouped, or 
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read-out data are depicted in Figure 8.6 H. There a solid line shows the interval 

where a unit failed, and a dotted line shows an inspection interval where a unit failed, 

and a dotted line shows an inspection interval where it did not fail. Such data can also 

contain right and left censored observations.  

Purpose: Analyses of such censored and intervals data have much the same purpose 

as analyses of complete data, for example, estimation of model parameters and the 

product life distribution and prediction of future observations. 

To understand the process involved with extrapolating from overstress test 

data to use level conditions, let's look closely at a simple accelerated life test. For 

simplicity we will assume that the product was tested under a single stress at a single 

constant stress level. We will further assume that times-to-failure data have been 

obtained at this stress level. The times-to-failure at this stress level can then be easily 

analyzed using an underlying life distribution. A pdf of the times-to-failure of the 

product can be obtained at that single stress level using traditional approaches. This 

pdf, the overstress pdf, can likewise be used to make predictions and estimates of life 

measures of interest at that particular stress level. The objective in an accelerated life 

test, however, is not to obtain predictions and estimates at the particular elevated 

stress level at which the units were tested, but to obtain these measures at another 

stress level, the use stress level. 
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To accomplish this objective, we must devise a method to traverse the path 

from the overstress pdf to extrapolate a use level pdf. 

A typical behavior of the pdf at the high stress (or overstress level) and the pdf at 

the use stress level is shown below: 
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.  

To further simplify the scenario, let's assume that the pdf  for the product at any 

stress level can be described by a single point as shown. In the figure, we need to 

determine a way to project (or map) this single point from the high stress to the use 

stress. 

 

 
            

Obviously, there are infinite ways to map a particular point from the high stress 

level to the use stress level. We will assume that there is some model (or a function) 

that maps our point from the high stress level to the use stress level. This model or 

function can be described mathematically and can be as simple as the equation for a 

line (A simple models or relationships). 
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Even when a model is assumed (i.e. linear, exponential, etc.), the mapping 

possibilities are still infinite since they depend on the parameters of the chosen model 

or relationship. For example, a simple linear model would generate different 

mappings for each slope value because we can draw an infinite number of lines 

through a point. If we tested specimens of our product at two different stress levels, 

we could begin to fit the model to the data. Obviously, the more points we have, the 

better off we are in correctly mapping this particular point or fitting the model to our 

data. 

 

8.4. Analysis Method 

With our current understanding of the principles behind accelerated life testing 

analysis, we will continue with a discussion of the steps involved in performing an 

analysis on life data that has been collected from accelerated life tests like 

Quantitative Accelerated Life.  

Select a Life Distribution 

The first step in performing an accelerated life data analysis is to choose an 

appropriate life distribution. Although it is rarely appropriate, the exponential 

distribution, because of its simplicity, has in the past been widely used as the 
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underlying life distribution. The Weibull and lognormal distributions, which require 

more involved calculations, are more appropriate for most uses.  

Select a Life-Stress Relationship 

After you have selected an underlying life distribution appropriate to the data, the 

second step is to select (or create) a model that describes a characteristic point or a 

life characteristic of the distribution from one stress level to another. 

 

The life characteristic can be any life measure such as the mean, median, R(x), 

F(x), etc. This life characteristic is expressed as a function of stress. Depending on 

the assumed underlying life distribution, different life characteristic are considered. 

Typical life characteristics for some distributions are shown in the table below. 

 

8.4.1. Life-Stress Models 

There are three types of models for relating the failure data at accelerated conditions 

to reliability measures at normal (or design) stress conditions. The underlying 

assumption in relating the failure data when using any of the models is that the 

components (or products) operating under the normal conditions experience the 

same failure mechanism as those occurring at the accelerated stress conditions. For 

example, if the macroscopic examination of the fracture surface of the failed 

components indicates that fatigue cracking initiated at a corrosion pit is the cause of 

the failure at normal operating conditions, then the accelerated test should be 

designed so that the failure mechanism is identical to that of the normal conditions. 

Models can be classified as statistics-based models (parametric and 

nonparametric), physics-statistics-based models, and physics-experimental-based 
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models. In all of these models, we assume that the stress levels applied at the 

accelerated conditions are within a range of true acceleration-that is, if the failure-

time distribution at a high stress level is known and time-scale transformation to the 

normal conditions is also known, we can mathematically derive the failure-time 

distributions at normal operating conditions (or any other stress level). For practical 

purposes, we assume that the time-scale transformation (also referred to the 

acceleration factor, )1>FA  is constant, which implies that we have a true linear 

acceleration. Let the subscripts sand0  refer to the operating conditions and stress 

conditions, respectively. Thus,  

• The relationship between the time to failure at operating conditions and 

stress conditions is  

 .sFo tAt ×=  (8.1) 

• The cumulative distribution functions are related as  
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• The failure rates are given by  
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Statistics-based models are generally used when the exact relationship between 

the applied stresses (temperature, humidity, voltage) and the failure time of the 

component (or product) is difficult to determine based on physics or chemistry 

principles. In this case, components are tested at different accelerated stress levels 

K,, 21 ss . The failure times at each stress level are then used to determine the most 
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appropriate failure-time probability distribution along with its parameters. As stated 

earlier, the failure times at different stress levels are linearly related to each other. 

Moreover, the failure times stress level 1s  is expected to be the same at different 

stress levels K,, 32 ss  as well as at the normal operating conditions. The shape 

parameters of the distributions are the same for all stress levels (including normal 

conditions), but the scale parameters may be different.  

8.4.2. Statistics Based Models 

8.4.2.1. Exponential Distribution Acceleration Model 

This is the case where the time to failure at an accelerated stress s  is exponentially 

distributed with parameter sλ . The hazard rate at the stress is constant. The CDF at 

stress s  is: 
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Following Eq. (8.2), the CDF at the normal operating conditions is  
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Similarly, 
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The failure rate at stress level s  can be estimate for both non-censored and censored 

failure data as follows: 
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where it  is the time of the ith failure, +
it is the ith censoring time, n is the total number 

of units under test as stress rs  and, is the number of failed units at the accelerated 

stress s . 

Typical accelerated-testing plans allocate equal units to the test stresses. 

However, units tested at stress levels close to the design or operating conditions may 
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not experience enough failures that the can be effectively used in the acceleration 

models. Therefore, it is preferred to allocate more test units to the low-stress 

conditions than to the high-stress conditions so as to obtain an equal expected 

number of failures at each condition.  

8.4.2.2. Weibull Distribution Acceleration Model 

Consider the true linear acceleration case. The relationships between the failure-time 

distributions at the accelerated and normal conditions can be derived using Eqs. (8.2) 

and (8.3). Thus 
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The underlying failure-time distributions at both the accelerated stress and operating 

conditions have the same shape parameters-that is, . and, sFoos A θθγγ ==  If the 

shape parameters at different stress levels are significantly different, then either the 

assumption of true linear acceleration is invalid or the Weibull distribution is 

inappropriate to use for analysis of such data. 

Let 1≥== γγγ os  >. Then the probability density function at normal operating 

conditions is  
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The MTTF at normal operating conditions is  
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The hazard rate at the normal conditions is  
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8.4.3. Physics Statistics Based Models 

The physics-statistics-based models utilize the effect of the applied stresses on the 

failure rate of the units under test. For example, the failure rate of many integrated 

circuits is accelerated by temperature and the model that relates the failure rate with 

temperature should reflect the physical and chemical properties of the units. 

Moreover, since several units are usually tested at the same stress level and all times 

of failure are random events, the failure-rate expression should also reflect the 

underlying failure-time distribution. Thus, physics-statistics-based models are needed 

to describe the failure-rate relationships.  

8.4.3.1. The Arrhenius Model 

Elevated temperature is the most commonly used environmental stress for 

accelerated life testing of microelectronic devices. The effect of temperature on the 

device is generally modeled using the Arrhenius reaction rate equation given by 

 ( )/ ,aE kT
er A −=   (8.12) 

where, 

the speed of reaction,
an unknown nonthermal constant, 
the activation enery (eV); energy that a molecule must have before 

        it can taken part in the reaction,
the Boltzmann Constant (8.62

a

r
A
E

k

=
=
=

= 53 10 / ),  and
the temperature in Kelvin.

eV K
T

−×
=

 

Activation energy ( )aE  is a factor that determines the slope of the reaction rate 

curve with temperature-that is, it describes the acceleration effect that temperature 

has on the rate of a reaction and is expressed in electronic volts (eV). For most 

applications, aE  is treated as a slope of a curve rather than a specific energy level. A 

low value of aE  indicates a small slope or a reaction that has a small dependence on 

temperature. On the other hand, a large value of aE  indicates a high degree of 

temperature dependence. 

Assuming that device life is proportional to the inverse reaction rate of the 

process, then Eq. (8.12) can be rewritten as  
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( )/ .aE kTL Ae+=  

The lives of the units at normal operating temperature oL  and accelerated 

temperature sL  are related by: 

( )

( )

/

/

a o

a s

E kT
o

E kT
s

L e
L e

=  

or  

 1 1exp .a
o s

o s

EL L
k T T

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
  (8.13)  

When the mean life oL at normal operating conditions is calculated and the underlying 

life distribution is exponential, then the failure rate a normal operating temperature is  

1 ,o
oL

λ =  

and the thermal acceleration factor is  

o
T

s

LA
L

=  

or  

 1 1exp .a
T

o s

EA
k T T

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
  (8.14) 

8.4.3.2. The Eyring Model 

The Eyring model is similar to the Arrhenius model. Therefore, it is commonly used 

for modeling failure data when the accelerated stress is temperature. It is more 

general than the Arrhenius model since it can model data from temperature 

acceleration testing as well as data from other single stress testing such as electric 

field. The Eyring model for temperature acceleration is  

 1 exp ,L
T T

β α⎡ ⎤= −⎢ ⎥⎣ ⎦
 (8.15) 

Where, andα β  are constants determined from the accelerated test data, L  is the 

mean life, and T  is the temperature in Kelvin. As shown in Eq. (8.15), the underlying 

failure time distribution is exponential. Thus the hazard rate and1/ .Lλ The 
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relationship between lives at the accelerated conditions and the normal operating 

conditions is obtained as follows. The mean life at accelerated stress conditions is   

 1 exp .s
s s

L
T T

β α
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

 (8.16) 

The mean life at normal operating conditions is 

 1 exp .o
o o

L
T T

β α
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

 (8.17) 

Dividing Eq. (8.16) by Eq. (8.17), we obtain  

 1 1exp .s
o s

o o s

TL L
T T T

β
⎡ ⎤⎛ ⎞ ⎛ ⎞

= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

 (8.18) 

The acceleration factor is  

.o
F

s

LA
L

=  

Equation (8.18) is identical to the result of the Arrhenius model given in Eq. 

(8.13) with the exception that the ratio ( )/s oT T of the nonexponential curve in Eq. 

(8.18) is set to equal 1. In this case, β  reduces to be the ratio between andaE k  

(Boltzmann’s constant). 

The constant and α β  can be obtained through the maximum likelihood 

method, by solving the following two equations for l  samples tested at different 

stress levels and ir  failures ( )1, 2, ,i l= K  are observed at stress level iV . The 

equations are the resultants of taking the derivatives of the likelihood function with 

respect to and α β , respectively and equating them to zero. 

 ( ) ( )1

1 1

ˆ/ exp 0
l l

i i i i i
i i

R R V V Vλ α β −

= =

⎡ ⎤ ⎡ ⎤− − − =⎣ ⎦⎣ ⎦∑ ∑   (8.19)  

 ( )( )( ) ( )1 1

1

ˆ/ exp 0,
l

i i i i i
i

R V V V V Vλ α β− −

=

⎡ ⎤− − − =⎣ ⎦∑  (8.20) 

Where, 
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ˆ the estimated hazard rate at stress ,
if the location of the parameter is known, 

1 if the location of the parameter is unknown,

i i

i
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⎧
= ⎨ −⎩
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R
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=
∑
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stress variable. If temperature, then  is in Kelvin.V V=  

8.4.3.3. The Inverse Power Rule Model 

The energy power rule model is derived based on the Kinetic theory and activation 

energy. The underlying life distribution of this model is Weibull. The mean time to 

failure (life) decreases as the thn power of the applied stress (usually voltage). The 

inverse power law is expressed as:  

 0,s n
s

CL C
V

= >  (8.21) 

Where, sL is the mean life at the accelerated stress and  and   sV C n are constants. 

The mean life at normal operating conditions is  

 o n
o

CL
V ⋅=  (8.22) 

Thus,  

 
ˆ

.
n

s
o

o

VL L
V

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (8.23) 

ˆ

.
n

s
o

o

VL L
V

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
amended Eq.(8.21) without changing its basic characteristic to  

 ,
/

i n

i

CL
V V

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

�
 (8.24) 

where iL  is the mean life at stress level and iV V
�

 is the weighted geometric mean of 

the ,
iV s  and is expressed as  
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∑= ∏
�

 (8.25) 

where i iR γ= (number of failures at stress iV ) or 1i iR γ= −  depending on whether 

or not the shape parameter of the failure time distribution is known. The likelihood 

function of and C n  is  

( ) ( ) 11

1

ˆˆ exp ,

i

i

Rn n
k R

i i i i i
i i

i

R V R L VR L
C CV V

−
−
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∏ � �
 

where ˆ
iL  is the estimated mean life at stress iV . The maximum likelihood estimators 

of ˆ ˆandC n  are obtained by solving the following two equations: 
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 (8.26) 
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  (8.27) 

The asymptotic variance of ˆˆ andn C  
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  (8.28) 
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∑  (8.29) 

8.4.3.4. Combination Model 

This model is similar to the Eyring multiple stress model when temperature and 

another stress such as voltage are used in the accelerated life test. The essence of the 

model is that the Arrhenius reaction model and the inverse power rule model are 

combined to form this combination model. It is valid when the shape parameter of 

the Weibull distribution is equal to one in the inverse power rule model. The model is 

given by  
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 1 1exp / ,
n
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s s o s

L V E k
L V T T

− ⎡ ⎤⎛ ⎞ ⎛ ⎞
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Where:  

 the life at normal operating conditions,
 the life at accelerated stress conditions,
 the normal operating volt, 
 the accelerating stress volt,
 the accelerated stress temperature, and  

o

s

o

s

s

L
L
V
V
T
T

=
=
=

=
=

 the normal operating temperature.o =

 

8.4.4. Physics Experimental Based Models 

The time to failure of many devices and components can be estimated based on the 

physics of the failure mechanism by either the development of theoretical basis for 

the failure mechanisms or the conduct of experiments using different levels of the 

parameters that affect the time to failure. There are many failure mechanisms 

resulting from the application of different stresses at different levels. For example, 

the time of failure (TTF) of packaged silicon integrated circuits due to the 

electromigration phenomenon is affected by the current density through the circuit 

and by the temperature of the circuit. Similarly, the time to failure of some 

components may be affected by relative humidity only.  

The following sections present the most widely used models for predicting the 

time to failure as a function of the parameters that result in device or component 

failures.  

8.4.4.1. Electromigration Model 

Electromigration is the transport of microcircuit current conductor metal atoms due 

to electron wind effects. If, in an aluminum conductor, the electron current density is 

sufficiently high, an electron wind effect is created. Since the size and mass of an 

electron are small compared to the atom, the momentum imparted to an aluminum 

atom by an electron collision is small . If enough electrons collide with an aluminum 

atom, then the aluminum atom will move gradually causing a depletion at the 

negative end of the conductor. This will result in voids or hillocks along the 

conductor, depending on the local microstructure, causing a catastrophic failure. The 

median time to failure (MTF) in the presence of electromigration is given equation: 
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 / ,aE kTnMTF AJ e−=    (8.31) 

where ,A n  are constants, J is the current density, k  is Boltzmann’s constant,T is the 

absolute temperature, and aE  is the activation energy (0.6 eV for aluminum and 0.9 

eV for gold). The electromigration exponent n  ranges from 1 to 6. 

In order to determine the lives of components at normal operating conditions, 

we perform accelerated life testing on samples of these components by subjecting 

them to different stresses. In the case of electromigration, the stresses are the electric 

current and the temperature. From three or more stress conditions, the 

electromigration parameters such as and aE n   can be obtained. 

For a fixed current, we can estimate the median life at the operating temperature as  

 
( )
( )

50

50

1 1exp ,o a

s o s

t T E
t T k T T

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (8.32) 

where ( )50 it T  is the median life at ( )or .iT i o s=  

Similarly, we can fix the temperature and vary the current density. Thus,  

 ( )
( )

50

50

n
o o

s s

t J J
t J J

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

8.4.4.2. Humidity Dependence Failures 

Corrosion in a plastic integrated circuit may deteriorate the leads outside out side the 

encapsulated circuit or the metallization interconnect inside the circuit. The basic 

ingredients needed for corrosion are moisture (humidity) and ions for the formation 

of an electrolyte, and metal for electrodes and an electric field. If any of these is 

missing, corrosion will not take place. 

The general humidity model is  

 ( ) ( )
50 50or ,RHt A RH t Aeβ β− −= =  

Where, 50t  is the median life of the device, and A β  are constants, and RH  is the 

relative humidity. However, conducting an accelerated test for only humidity requires 

years before meaningful results are obtained. Therefore, temperature and humidity 
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are usually combined for life testing, which is referred to as highly accelerated stress 

testing (HAST). The most common form of HAST is the 85/85 test where devices 

are tested at a relative humidity of 85 percent and a temperature of 85°C. Voltage 

stress is usually added to this stress in order to reduce the duration of the test further. 

The time to failure of a device operating under temperature, relative humidity, and 

voltage conditions is expressed as 

 ,
aE

kT RHt ve e
β

=  (8.33) 

Where: 

 the time to failure,
 the applied voltage, 
 the activation energy,
 Boltzmann's constant,
 the absolute temperature,
 a constant, and
the relative humidity.
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=
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=

 

Let the subscripts  and s o  represent the accelerated stress conditions and the normal 

operating conditions, respectively. The acceleration factor is obtained as  

 

1 1 1 1

.
a

o s o s

E
k T T RH RHo o

F
s s

t vA e e
t v

β
⎡ ⎤ ⎡ ⎤

− − −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦= =  (8.34) 

Changes in the microelectronics require that the manufacturers consider faster 

methodologies to detect failures causes by corrosion. Some manufacturers use 

pressure cookers to induce corrosion failures in a few days of days of test time. 

Studies showed that pressurized humidity test environments forced moisture into the 

plastic encapsulant much more rapidly than other types of humidity test methods.  

8.4.4.3. Temperature-Humidity Relationship  

When performing accelerated life testing analysis, a life distribution and a life-stress 

relationship are required. The temperature-humidity (T-H) relationship, a variation of 

the Eyring relationship, has been proposed for predicting the life at use conditions 

when temperature and humidity are the accelerated stresses in a test. This 

combination model is given by: 
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  (8.35) 

where: 

• is one of the three parameters to be determined,  

• b is the second of the three parameters to be determined (also known as the 

activation energy for humidity),  

• A is a constant and the third of the three parameters to be determined,  

• U is the relative humidity (decimal or percentage),  

• V is temperature (in absolute units).  

The T-H relationship can be linearised and plotted on a life vs. stress plot. The 

relationship is linearised by taking the natural logarithm of both sides in Eqn. (8.35):  

  (8.36) 

Since life is now a function of two stresses, a life vs. stress plot can only be 

obtained by keeping one of the two stresses constant and varying the other one. 

Doing so will yield a straight line as described by Eqn. (8.36), where the term for the 

stress, which is kept at a fixed value, becomes another constant (in addition to the 

ln(A) constant).  

8.4.4.4. Fatigue Failures 

When repetitive cycles of stresses are applied to material, fatigue failures usually 

occur at a much lower stress than the ultimate strength of the material due to the 

accumulation of damage. Fatigue loading causes the material to experience cycles of 

tension and compressions, which result in crack initiations at the points of 

discontinuity, defects in material, or notches or scratches where stress concentration 

is high. The crack length grows as the repetitive cycles of stresses continue until the 

stress on the remaining cross-section area exceeds the ultimate strength of the 

material. At this moment, sudden facture occurs, causing instantaneous failure of the 

component or member carrying the applied stresses. It is important to recognize that 

the applied stresses are not only caused by applying physical load or force but also by 

temperature or voltage cycling. For example, creep fatigue, or the thermal expansion 

strains caused by thermal cycling, is the dominate failure mechanism causing breaks 

in surface mount technology (SMT)-solder attachments of printed circuits. Each 
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thermal cycle produces a specific net strain energy density in the solder that 

corresponds to a certain amount of fatigue damage. The long-term reliability depends 

on the cyclically accumulated fatigue damage in the solder, which eventually results in 

fracture . The reliability of components or devices subject to fatigue failure is often 

expressed in number of stress cycles corresponding to a given cumulative failure 

probability. A typical model for fatigue failure of a solder attachment is given by , 

 ( ) ( )
( )

11

ln 1 0.011 2% ,
2 ln 0.5

c

f
D e

xhN x
F L T

βε
α

−

⎡ ⎤−⎡ ⎤
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  (8.37) 

Where: 
( )%  number of cycles (fatigue life) that correspond to  percent failures,

 the solder ductility,
 an experimental factor (Engelmaier, 1993),
 dimensions of the solder attachment, 
 a fact

f

D

N x x

F
h and L

ε

α

=

=
=
=

∆ = or of the differences in the thermal expansion coefficient of
                     component and substrate (that produces the stress),

 the effective thermal cycling range,
 a constant that relates

eT
c

∆ =

=  the average temperature of the solder joint
                     and the time for stress relaxation and creep per cycle, and 

 4 for the leadless surface mounted attachment.β =

 

8.4.5. Degradation Models 

Most reliability data obtained from accelerated life testing are time-to-failure 

measurements obtained from testing samples of units at different stresses. However, 

there are many situations where the actual failure of the units, especially at stress 

levels close to the normal operating condition, may not fail catastrophically but 

degrade within the allotted test time. For example, a component may start a test with 

an acceptable resistance value reading, but during the test the resistance reading 

“drifts”. As the test time progresses the resistance eventually reaches an unacceptable 

level that causes the unit to fail. In such cases, measurements of the degradation of 

the characteristics of interest are frequently taken during the test. The degradation 

data are then analyzed and used to predict the time of failure at normal conditions. It 

is obvious that there is no general degradation model that can be used for all devices 

or parameters for a specific device. For example, the degradation in the resistance of 

a device requires a model different from the one that measures degradation in the 

output current of the same device.  
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8.4.5.1. Resistor Degradation Model 

The thin film integrated circuit resistor degradation mechanism can be described by: 

 ( )
0

,
mR t t

R τ
∆ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (8.38) 

Where, 

( )
0

 the change in resistance at time ,
 the initial resistance, 
 time,
 the time required to cause 100 percent change in resistance, and 
 a constant.

R t t
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m
τ

∆ =

=
=
=
=

 

The temperature dependence is embedded in τ  as  

 0 ,
aE

kTeτ τ=  (8.39) 

Where, 0τ  is a constant. 

Substituting Eq. (8.39) into Eq. (8.38) and taking the logarithm, we obtain  

 ( ) ( ) ( )0
0

ln ln ln aR t Em t
R kT

τ
∆⎛ ⎞ ⎡ ⎤= −⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠

 

or  

 ( ) ( ) ( )
0

0

1ln ln ln .aR t Et
m R kT

τ
∆⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

 (8.40) 

Once the constant 0and m τ  are determined we can use Eq. (8.38) to calculate the 

change in resistance at any time. The above equation can also be used to predict the 

life of a device subject to electromigration failures. Recall that the time to failure due 

to electromigration is given by Eq. (8.31). Taking the natural logarithm of Eq. (8.31) 

results in  

 ( ) ( ) ( )ln ln ln .aEMTF A n J
kT

= − +   (8.41) 

Note that Eqs. (8.40) and (8.41) are identical.  

The constant  0and m τ  can be obtained using the standard multiple regression. 

Table 8.2 summarizes some of most frequently used models, their relevant 

parameters and applications. 

 



 

 

Table 8.2: Frequently Used Acceleration Models, Their Parameters and Applications 

Model Description/Parameters Model Equation Application Examples 

Arrhenius 
Acceleration Model 

Life as function of 
temperature or chemical 
change 

)exp(0 KT
E

AL a= , where,  

L = life 
A0 = scale factor determined by experiment 
e    = base of natural algorithm 
Ea = Activation Energy (Unique for each mechanism) 
K = Boltzmann’s constant  = 8.62 X 10-5 eV/K 
T  = Temperature in 0K 

Electrical Insulations and dielectrics, 
solid stste and semiconductors, 
intermettalic diffusion, Battery, 
lubricants 7 grease, plastics, 
Incandescent Lamp filaments 

Inverse Power Law Life as function of any 
given stress 

Life at normal stress/Life at accelerated stress = (accelerated stress/normal 
stress)N 
Where, N = Acceleration Factor 

Electrical Insulation and Dielectrics 
(Voltage Endurance), Ball & Roller 
Bearings, Incandescent Lamp 
Filament, Flash lamps 

Miner’s Rule Cumulative Linear fatigue 
Damage as a function of 
Flexing 

CD = 1
1

≤∑
=

k

i i

Si

N
C

, where 

CD = Cumulative Damage 
Csi = Number of Cycles applied @ stress Si 
Ni = Number of cycles to failure under stress Si (Determined from S-N 
Diagram for that specific material) 
k = number of loads applied 

Metal fatigue (valid only up to the 
yield strength of the material. 

Coffin-Mansion Fatigue Life of metals 
(Ductile materials) due to 
thermal cycling and/or 
thermal shock 

Life = 
( )BT

A
∆

, where 

Life = cycle to fail 
A, B = scale factor determined by experiment 
∆T = Temperature Change 

Solder joints and other connectors. 

Peck’s Life as a combined 
function of temperature 
and humidity 

( ) [ ]kTRHA 79.07.2
0 exp−=τ , where 

τ = Median life (Time-to-failure) 
A0 = Scale factor determined by experiment. 
RH = Relative humidity. 

Epoxy Packaging 



Accelerated Life Testing Concepts and Models 

 

174

Table 8.2: Frequently Used Acceleration Models, Their Parameters and Applications 

Model Description/Parameters Model Equation Application Examples 

Peck’s Power Law Time-to Failure as a 
function of relative 
humidity, voltage and 
temperature 

)exp(*)(**0 kT
E

VfRHATF aN−= , where 

TF = time to failure 
A0 = scale factor determined by experiment 
RH = Relative Humidity 
N = ∼2.7 
Ea = -0.7-0.8 eV( appropriate for Aluminum Corrosion when chlorides are 
present. 
f(V) = an unknown function of applied voltage. 
 

Corrosion 

Eyring/Black/Kenny Life as a function of 
Temperature and Voltage 
(or Current density) 

)exp(
kT
B

T
A

=τ , where 

τ = Median life (Time-to-failure) 
A, B = scale factor determined by experiment. 

Capacitors, Electro migration in 
aluminum Conductors 

Eyring Time to failure as a 
function of current, 
electric fields and 
temperature 

( ) )exp(
KT
E

IBTF aN
sub

−= , where 

TF = time to failure 
B = scale factor determined by experiment. 
Isub = peak substrate current during stressing 
N = 2 to 4 
Ea = -0.1 eV to –0.2 eV (Note that apparent activation energy is negative) 

Hot carrier junction, surface 
inversion, mechanical stress 

Therm0- Mechanical 
Stress 

Time to failure as a 
function of change in 
temperature 

)exp()( 00 T
E

TTBTF an−−= , where 

B0 = Scale factor determined by the experiment. 
T0 = stress free temperature for metal (approximate metal deposition 
temperature for aluminum) 
n = 2-3 
Ea = 0.5-0.6eV for grain boundary diffusion, ∼1 eV for intra-grain diffusion 

Stress generated by differing thermal 
expansion rates. 



 

 

9. Repairable System Analysis 

9.1. Availability and Maintainability Measures 

A repairable system (RS) is a system, which after failure, can be restored to a 

functioning condition by some maintenance action other than replacement of the 

entire system. Note that replacing the entire system may be an option, but it is not 

the only option. Maintenance actions performed on a RS can be categorized in two 

ways. First, a maintenance action may be corrective (CM) or preventive (PM). CM 

actions are performed in response to system failures, whereas PM actions are 

intended to delay or prevent system failures. Note that PM actions may or may not 

be cheaper and/or faster than CM actions. Second, a maintenance action (CM or 

PM) may be a repair or a replacement. In our discussions, we assume that a RS is 

always in one of two states: functioning (up) or down. Note that a system may be 

down for CM or down for PM. The performance of a RS can be measured in several 

ways. We consider three categories of RS performance measures: (1) number of 

failures, (2) availability measures, (3) cost measures.  

Availability and Reliability represent important performance parameters of a 

system, with respect to its ability to fulfill the required mission during a given 

functioning period. From this point of view, two main types of systems can be 

defined: 

• Systems which must satisfy a specified mission within an assigned period of 

time: in this case reliability is the appropriate performance indicator of their 

ability to achieve the desired objective without failures; 

• Systems maintained: in this case availability quantifies in a suitable way the 

system ability to fulfill the assigned mission at any specific moment of its life 

time. Basic maintenance procedures can be distinguished in: a. Off-schedule 

(corrective): this amounts to the replacement or repair of failed units; b. 

Preventive: this amounts to performing regular inspections, and possibly 

repair, following a given maintenance plan; c. Conditioned: it amounts to 

performing a repair action upon detection of degradation. 
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9.1.1. Contributions to unavailability 

The main contributions to the unavailability of a system generally come from: 

1. Unrevealed failure, i.e. when a stand-by component fails unnoticed. The 

system goes on without noticing the component failure until a test on the 

component is made or the component is demanded to function. 

2. Testing/preventive maintenance, i.e. when a component is removed from the 

system because it has to be tested or must undergo preventive maintenance. 

3. Repair, i.e. when a component is unavailable because under repair. 

Let N(t) denote the number of RS failures in the first t time units of system 

operation. Because of the stochastic (random) nature of RS behavior, N(t) is random 

variable. Thus, we may focus our attention on the expected value, variance and 

probability distribution of N(t). 

9.2. Availability 

Availability can be loosely defined as the proportion of time that a RS is in a 

functioning condition. However, there are four specific measures of availability 

found in the RS literature. All these measures are based on the RS status function: 

  

 

The first of these availability measures is Instantaneous availability or point 

availability, A(t) defined as the  probability that a system (or component) will be 

operational (up and running) at any random time, t. 
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The item functioned properly from 0 to t with probability R(t) or it functioned 

properly since the last repair at time u, 0 < u < t, with probability: 

  

Then the point availability is the summation of these two probabilities, or: 

  
 

With m(u) being the renewal density function of the system, i.e., rate of change 

of the expected number of failures with respect to time. 

By far the most commonly used availability measure, limiting availability is 

often easy to obtain. However, there are some cases in which limiting availability 

does not exist. The third availability measure is average availability, Aavg(T) is the 

proportion of time during a mission or time period that the system is available for 

use. It represents the mean value of the instantaneous availability function over the 

period (0, T] and is given by: 

  

Average availability corresponds to the average proportion of  “uptime” over the 

first T time units of system operation. Since it is based on A(t), average availability is 

typically difficult to obtain and rarely used in practice. However, because it captures 

availability behavior over a finite period of time, it is a valuable measure of RS 

performance. The other availability measure is limiting average availability, Aavg. 

  

When it exists, limiting average availability is almost always equivalent to 

limiting availability. To our knowledge, limiting average availability is never used in 

practice.  

Steady State Availability, the steady state availability of the system is the limit of 

the instantaneous availability function as time approaches infinity or: 
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(Note: For practical considerations, the instantaneous availability function will 

start approaching the steady state availability value after a time period of 

approximately four times the average time-to-failure.) 

Inherent Availability is the steady state availability when considering only the 

corrective downtime of the system. 

  OR  

Achieved Availability, is very similar to inherent availability with the exception 

that preventive maintenance (PM) downtimes are also included. Specifically, it is the 

steady state availability when considering corrective and preventive downtime of the 

system. It can be computed by looking at the mean time between maintenance 

actions, MTBM and the mean maintenance downtime, 

  

Operational Availability is a measure of the average availability over a period of 

time and it includes all experienced sources of downtime, such as administrative 

downtime, logistic downtime, etc. Operational availability is the ratio of the system 

uptime and total time. Mathematically, it is given by: 

  

Where the operating cycle is the overall time period of operation being 

investigated and uptime is the total time the system was functioning during the 

operating cycle.  

(Note: The operational availability is a function of time, t, or operating cycle.) When 

there is no specified logistic downtime or preventive maintenance, it returns the 

Mean Availability of the system. The operational availability is the availability that the 

customer actually experiences. It is essentially a posterior availability based on actual 

events that happened to the system. The previous availability definitions are a priori 

estimations based on models of the system failure and downtime distributions. In 

many cases, operational availability cannot be controlled by the manufacturer due to 
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variation in location, resources and other factors that are the sole province of the end 

user of the product. 

Cost functions are often used to evaluate the performance of a RS. The form 

of this function depends on the reliability and maintainability characteristics of the 

RS of interest. However, these functions typically include a subset of the following 

cost parameters. 

cf  cost of a failure 

cd  cost per time unit of “downtime” 

cr  cost (per time unit) of Corrective Maintenance 

cp  cost (per time unit) of Preventive Maintenance 

ca  cost of RS replacement 

9.3. RS Models and Availability 

9.3.1. Renewal models 

The first class of RS models that we address is based on concepts and results from 

renewal theory. For a repairable system, the time of operation is not continuous. In 

other words, its life cycle can be described by a sequence of up and down states. The 

system operates until it fails, then it is repaired and returned to its original operating 

state. It will fail again after some random time of operation, get repaired again, and 

this process of failure and repair will repeat. This is called a renewal process and is 

defined as a sequence of independent and non-negative random variables. In this 

case, the random variables are the times-to-failure and the times-to-repair/restore. 

Each time a unit fails and is restored to working order, a renewal is said to have 

occurred. This type of renewal process is known as an alternating renewal process 

because the state of the component alternates between a functioning state and a 

repair state. A system's renewal process is determined by the renewal processes of its 

components. 

9.3.1.1. System Structure and Assumptions 

We first consider a RS that is modeled as a single component or a “black box”. For 

this RS, the duration of an interval of function is a random variable. Upon failure, 

CM is performed and restores the RS to a “good as new” condition. The durations of 

successive CM intervals are assumed to be independent and identically distributed 
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random variables. No PM is performed. Note that the “good as new” assumption is 

the key assumption and often the subject of criticism of the corresponding models 

(except when CM corresponds to RS replacement). Let Ti denote the duration of the 

ith interval of RS function. Because of the “good as new” assumption, {T1, T2, … } is 

a sequence of iid random variables. Let Di denote the duration of the ith CM action. 

Recall that {D1, D2, … } are assumed to be iid random variables. Therefore, each 

cycle (function, CM) has identical probabilistic behavior, and the completion of a CM 

action is a renewal point for the stochastic process {X(t), t ≥ 0}. 

9.3.1.2. General Results 

Regardless of the probability distributions governing Ti and Di, the limiting availability 

is easy to obtain: 

  

Suppose Ti is a Weibull random variable having shape parameter β = 2 and 

scale parameter η = 1000 hours. Then 

  

  

Suppose Di is a normal random variable having a mean (MTTR) of 25 hours. Thus, 

   

For this example, availability and average availability values can be estimated 

using simulation. 

9.3.1.3. Special Case 

Suppose Ti is an exponential random variable having failure rate λ, and Di is an 

exponential random variable having repair rate µ. Then 
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For example, suppose λ = 0.001 failures per hour (MTTF = 1000 hours) and µ = 

0.025 repairs per hour (MTTR = 40 hours). In this case, 

  

A plot of A(t) and a plot of Aavg(T) can be found in Figure below: 

 
 

9.3.1.4. System Availability 

Suppose a RS is comprised of independent components and we model failure/CM at 

the component level. In such cases, we can use component (limiting) availabilities to 

compute (sub)system (limiting) availability just as we do with 

component/(sub)system reliability. (Sub)system average availability functions must  

be obtained by integrating the (sub)system availability function. For a simple 

example, consider a 3-component system that can be described using the reliability 

block diagram found in Figure below 
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Let λj denote the failure rate of component j, let µ j denote the repair rate of 

component j, let Aj(t) denote the availability function for component j, and let Aj 

denote the limiting availability of component j. Then, 

  

Let A23(t) denote the availability function for the subsystem comprised of 

components 2 and 3, and let A23 denote the corresponding limiting availability. Then 

  

Let A(t) denote the availability function for the RS, and let A denote the 

corresponding limiting availability. Then, 

  

Component, subsystem and system average availability functions must be 

obtained by integrating the corresponding availability function. 

9.3.2. Minimal Repair Models 

The second class of RS models that we address is based on the concept of minimal 

repair. It is frequently the case that repair consists of replacing or restoring a parts or 

components leaving the approximately the same state(age) as it was in just prior to 

failure. This implies that time between failure may not longer be independent and 

identically distributed. 

9.3.2.1. System Structure and Assumptions 

Again, we consider a RS that is modeled as a single component or a “black box”. For 

this RS, the duration of an interval of function is a random variable. Upon failure, 

instantaneous CM is performed (no PM is performed). CM restores the RS to a “bad 

as old” condition, i.e. the RS functions after repair but its equivalent age is the same 

as it was at the time of failure. For this reason, such CM is referred to as minimal 
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repair. As with the “good as new” assumption, the realism of the “bad as old” 

assumption is often questioned.  

9.3.2.2. General Results 

Let T denote the duration of the first interval of RS function. Let f(t) denote the pdf 

of T, let F(t) denote the cdf of T, and let z(t) denote the hazard function of T. If T is 

an exponential random variable having constant failure rate λ, then {N(t), t ≥ 0} is a 

Poisson process having rate λ. In this case, minimal repair is equivalent to renewal. 

Otherwise, {N(t), t ≥ 0} is a non-homogeneous Poisson process (NHPP) having 

intensity function z(t) or m(t). 

Poisson Process 

If {N(t), t ≥ 0}, number of failure in (0,t] is a Poisson process having rate λ, then N(t) 

is a Poisson random variable with mean λt, and 

  

Furthermore, N(t+s) − N(s), the number of failures in the interval (s,t+s], is 

also a Poisson random variable having mean λt . The implication of this result is that 

the number of failures in a given interval depends only on the length of the interval. 

Note that this is not true for an NHPP. 

NHPP 

If {N(t), t ≥ 0} is a non-homogeneous Poisson process having intensity function z(t), 

then N(t) is a Poisson random variable having mean Z(t), where Z(t) is the cumulative 

intensity function.. 

  

Furthermore, N(t+s) − N(s) is a Poisson random variable having mean Z(t+s) − Z(s) 
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For example, suppose T is a Weibull random variable having shape parameter β and 

scale parameter η. Then 

  

If β > 1 ( β < 1), then the intensity function increases (decreases) and failures tend to 

occur more (less) frequently over time. Suppose β = 1.75 and η = 1500 hours. Then, 

  

9.3.3. CTMC Models 

The final class of RS models that we address is based on continuous-time Markov 
chains. 

9.3.3.1. Single Machine Problems 

Consider a single repairable machine. Let Ti denote the duration of the ith interval of 

machine function, and assume {T1, T2, …} is a sequence of iid exponential random 

variables having failure rate λ. Upon failure, the machine is repaired. Let Di denote 

the duration of the ith machine repair, and assume {D1, D2, …} is a sequence of iid 

exponential random variables having repair rate µ.. No PM is performed on the 
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machine. Recall that X(t) denotes the state of the machine at time t. Under these 

assumptions, {X(t), t ≥ 0} transitions among two states, and the time between 

transitions is exponentially distributed. Thus, {X(t), t ≥ 0} is a CTMC having the rate 

diagram shown in Figure below. 

  

We can easily analyze the “steady-state” behavior of the CTMC. Let ρj denote 

the long-run probability that the CTMC is in state j. We use balance equations to 

identify these probabilities. Each state of the CTMC has a balance equation that 

corresponds to the identity “rate in” = “rate out”. For the rate diagram in Figure, the 

balance equations are: 

  

These balance equations are equivalent, so we need an additional equation to solve 

for ρ0 and ρ1 . We use the fact that the steady-state probabilities must sum to one. 

  

We then use the two equations to solve for the two unknowns. 

  

9.3.3.2. Multiple Machine Problems 

Suppose the repairable “system” of interest actually consists of m identical machines 

that correspond to the assumptions of the previous section. To model this situation 

using a CTMC, we must first modify our definition of the system state X(t). Let X(t) 

now represent the number of machines functioning at time t. However, {X(t), t ≥ 0} 

is still a CTMC because the number of states is discrete and transition times are 
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exponentially distributed. A partial rate diagram for the case in which m = 3 is 

constructed in Figure below. 

 
 

Note that the repair rates on the diagram depend on s, the number of 

maintenance technicians in the system. Note that we assume each repair requires 

exactly one technician. Suppose m = 3, s = 2, λ = 1 failure per day, and µ = 5 repairs 

per day. The completed rate diagram for the resulting CTMC is given in next Figure. 

Note that the transition rate from state 3 to state 2 is 3. This is because 3 machines 

are functioning; each has a failure rate of 1, so the total failure rate is that the 

transition rate from state 1 to state 2 is 10. This is because 2 machines are failed; this 

implies that both technicians are repairing at a rate of 5, so the total repair rate is 10. 

The Balance equations: 

  

Whose solution is: 
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Note that we can use the steady-state probabilities to obtain both machine and 

technician utilization. For example, the average number of machines functioning is 

  

and the average number of busy technicians is 

  

At this point, a reasonable question is: How many technicians should be 

assigned to maintain these machines, i.e. should s = 1, 2 or 3? To answer this 

question, first we modify the CTMC for the cases in which s = 1 and s = 3. Then, we 

compute the steady-state probabilities and utilization measures for each case. Then, 

we can use an economic model to determine the optimal value of s. Let cs denote the 

cost per day of employing a technician, let cd denote the cost per day of machine 

downtime, and let C denote the cost per day of system operation. Then, expected 

cost: 

  

An interesting variation of the multiple machine problem is the case in which 

the machines are not identical. For example, suppose a system contains two machines 

of different types that are repaired upon failure (no PM), and suppose two equally 

trained technicians maintain these machines. Let λi denote the failure rate for 

machine i, and let µ i denote the repair rate for machine i. Modeling this problem 

using a CTMC requires a more complex definition of the system state. 

  

The corresponding rate diagram is provided in figure below. For example, 

suppose λ1 = 1, µ1 = 8, λ2 = 2 and µ 2 =10. Construction and solution of the 

balance equations yields ρ1,1 = 0.7407, ρ1,0 = 0.1481, ρ0,1 = 0.0926 and ρ0,0 = 

0.0185. The  steady-state probabilities can then be used to compute machine 

availability 
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9.4. Maintainability 

The performance of any maintenance task is related to the associated costs both in 

terms of the cost of the maintenance resources and cost of the consequences of not 

having the system available for operation. Therefore, maintenance departments are 

one of the major cost centres, costing industries billions of rupees each year and as 

such they have become a critical factor in the profitability equation of many 

organization. Thus as maintenance actions are becoming increasingly costly, 

maintainability engineering is gaining recognition day by day. For instance, in the 

journal Aviation Week and Space Technology, January 1996, it was reported that by 

the year 2000, US Air Force would begin looking at upgrades of a heavy air lifter 

aircraft C-5A. The comment was that although the structure of the aircraft is considered to be 

good, ‘the reliability and maintainability leave a lot to be considered.’ It is inevitable that in 

future too considerations and comments like this will significantly increase and that 

the impact of these considerations on the final selection of system will be far greater. 

Although it is extremely important for the operators/users to know the 

functionality, durability and reliability characteristics of the system at the beginning of 

its operational life, it is equally, or even more important for them to have information 

regarding issues like: 



 Repairable System Analysis 
 

 

189

• Which maintenance task should be performed? 

• When should the maintenance task be performed? 

• Difficulty level of the maintenance task. 

• Safety-level of the maintenance task. 

• How many people are required to perform the maintenance task? Their skill-

levels and expertise? 

• How much is the restoration going to cost? 

• How long the system is going to failure? 

• What is the equipment requirement? 

In most of the cases, the answers to these questions provided by the 

designer/manufacturer are very basic and limited. For instance, in case of a motor 

vehicles the answers cover no more than the list of maintenance activities which 

should be performed during regular service every 5000/10000 Km or so. All the 

above questions remain unanswered and the users are left to find the answers by 

themselves. The reason for this is the fact that up to now the main purpose and 

concern of designers has been the achievement of functionality, whereas the ease of 

maintaining functionality by the users has been almost ignored. Traditionally, it was the problem of 

the maintenance personnel, not the designers. 

However, the situation is changing gradually, thanks to aerospace and military 

customers who recognized the importance of information of these types and who 

made it a characteristic equally desirable as performance, reliability, availability and 

similar. 

As no scientific disciplines were available to help designers and producers to 

provide answer to the above questions, the need arose to form a new discipline. 

Maintainability theory was created- a scientific discipline, which studies complexity, factors and 

resources related to the tasks needed to performed by the user in order to maintain the functionality of 

the product, and works out method for their quantification, assessment, prediction and improvement. 

It is rapidly growing in importance because of its considerable contribution towards 

the reduction of maintenance cost of a system during its utilization. 
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Maintainability as a characteristic of man-made system MIL-STD-721C (1966), 

defines the maintainability as a characteristic of design and installation, which is 

expressed as the probability that an item will be retained in or restored to specified 

condition within a given period of elapsed time, when maintenance is performed in 

accordance with prescribed procedures and resources.  

9.4.1. Maintainability Impact on Availability 

The majority of users state that they need the equipment availability as badly as they 

need safety. There are several ways designers can control that. One is to build 

items/systems that are extremely reliable and consequently, costly. Second, is to 

provide a system that, when it fails, it is easy to restore. However, if everything is 

made highly reliable and everything is easy to repair, the producer has got a very 

efficient system, which no one can afford to buy. Consequently, the question is how 

much a utility of system is needed and how much one is prepared to pay for it? 

Consequently, maintainability is one of the factors in achieving a high level of 

operational availability, which in turn increases users’ satisfaction.  

9.4.2. Maintainability Measures 

Duration of maintenance tasks can only be described in probabilistic terms and are 

fully defined by the RV DMT (duration of maintenance task) and its probability 

distribution, m(t). The most frequently used maintainability characteristics are: 

1. Probability of task completion. 

2. Mean duration of maintenance task. 

3. Percentage duration of maintenance task. 

4. Variability of duration of maintenance task. 

5. Success of task completion 

A brief definition and description of these characteristics are as follow: 

9.4.2.1. Probability of Task Completion(PTC) 

It represents the probability that the maintenance task considered will be successfully 

completed by a stated time, Tst.  
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9.4.2.2. Mean Duration of Maintenance Task (MDMT) 

It is denoted as E(MDMT), and represents the expectation of the RV DMT, which 

can be used for calculation of the characteristic of maintenance task, i.e., 
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Which represent the area below the function, which is complementary of 

maintainability function. 

9.4.2.3. Percentage Duration of Maintenance Task(DMTp) 

It represents the duration of maintenance task by which a given percentage of 

maintenance tasks considered will be successfully completed, i.e., 
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The most frequently used measure of DMT90 is the time, which presents the 

restoration time by which 90% of maintenance trials will be completed, i.e., 

 ∫ ==≤=→=
t
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0
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It is worth noticing that in military-oriented literature and defense contracts, the 

numerical value of DMT95 to as maximum repair time and is denoted as Mmax, thus 

Mmax = DMT95.  

9.4.2.4. Variability of Duration of Maintenance Task (CV(DMT)) 

In certain cases it is difficult, when using only the knowledge of a standard deviation 

to decide whether the dispersion is particularly large or small, because this will 

depend on the mean value. In these, situation coefficient of variation (CV) is defined 

as: 

MDMT
MDMTSDDMTCV )()( = is very useful because it provides better information 

regarding the dispersion, also known as the variability of the RV, in general 

terminology. 
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9.4.2.5. Success of Task Completion (STC) 

It represents the probability that the trial, which has not been completed at time t1 

will be finished by the time, t2 (example of conditional probability, i.e., the task could 

be completed by t2, given that it was not completed at t1).     
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 with M(0)=0. 

This measure of maintenance provides very useful information for the planners 

and managers. 

The maintenance measures defined so far relate to the duration of maintenance 

task expressed through the probability distribution of the elapsed maintenance times. 

Besides the elapsed time, one must also consider the demand for resources required 

for the task execution, in particular the number of personnel involved. In some 

instances, the elapsed time can be reduced by employing additional personnel. 

However, this may turn out to be an expensive trade-off, particularly when high skill 

levels are required. One of the most frequently used maintainability measure is 

MMPD. 

9.4.2.6. Maintenance Personnel Demand per Maintenance Task (MMPD) 

It is quantified and represented by the following expression: 

 
MDMT
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where, MPSDi for the maintenance personnel demand for the successful 

completion of ith maintenance activity, MDMAi is the mean duration of the ith 

maintenance activity, and nma represents the total number of activities, which make 

up the task under consideration. 

Example: 

For the maintenance task, whose duration time could be modeled by the Weibull 

distribution with parameters, characteristic life = 29 minutes and shape parameter = 

2.9, 
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1. The probability that the task analyzed would be completed within 20 minutes 

= 0.29. 

2. The duration time up to which 20 % and 90 % of task will be completed, will 

be 17.29 minutes and 42.33 minutes, respectively 

3. The mean duration of maintenance task, MDMT = 25.87 minutes 

4. The probability that the maintenance task, which has not been completed 

during the first 29 minutes will be completed within the following 10 minutes 

= 74.5% 

Example: 

The maintenance task under consideration consists of four different maintenance 

activities: 

Activity Mean Duration (min) Number of Personnel 
1 30 1 
2 120 3 
3 45 1 
4 5 2 

 

The maintenance personnel demand = 2.225 (Just over 2) 

The above maintainability measures described are related to the single maintenance 

task. However, there are large number of items the maintenance of which requires 

two or more different nature of maintenance tasks such as: 

• Corrective  in nature in response to different failure modes in whish it can fail 

• Preventive, where the maintenance tasks are performed in order to reduce the 

probability of occurrence of the failure due to a specific failure mechanisms 

(corrosion, fatigue, wear, thermal deformation etc…) 

• Conditional nature, where the tasks are performed in order to assess the 

condition of the item in order to determine the further course of action. 

Therefore, an item exposed to several different maintenance tasks, it is 

necessary to determine the maintainability measures in such a way that all task tasks 

are somehow taken into consideration during the stated operational length. 
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9.4.3. Item Based Statistics 

9.4.3.1. Mean Time in Maintenance (MTIM) 

The mean time in maintenance during a stated operational length, Lst is calculated as: 
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, where nte, number of different 

maintenance tasks expected to be performed on the items (Output of FMEA), 

MNMTi(Lst), mean number of tasks expected to be performed during the stated 

length of period. Thus, 
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The most frequently used maintainability statistics of merit for an item are: 

9.4.3.2. Mean Time to Restore (MTTR) 

It represents the mean duration of the maintenance task required to restore the 

functionality, when two or more different tasks could be demanded. 

)(
)(

)(
st

st
st LMNMT

LMTIM
LMTTR = (Equation remains the same for corrective, preventive 

or conditional except a suffix can be placed as in for MTIM equations) 

9.4.3.3. Maintenance Hours per Operational Unit (MHOU) 

st

st
st L

LMTIM
LMHOU

)(
)( = , where operational unit could be hours, kilometers, 

landings, cycles, week etc… 

9.4.4. System Based Statistics 

It is determined according to the number of consisting items as well as the number 

of maintenance tasks associated with each of them. 
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, where nmi, number of maintenance-significant items 

within the system, MTIM is the mean time in maintenance of the ith item 

In short, the statistics or measures used in general or on item can easily be 

extended to the system levels. 

9.4.5. Other Areas of Maintainability Engineering 

• Maintainability Allocation 

• Prediction of Maintainability Measures 

• Maintainability Management 

• Maintainability Demonstration Tests 

9.5. Maintenance and Optimization 

Maintenance- what is it? 

• Actions associated with equipment when it breaks. 

• Work of keeping something in proper conditions; upkeep. 

 Definition : Maintenance is the actions taken to prevent a device or component 

failing or to repair normal equipment degradation experienced with the operation of 

the device to keep it in proper conditions.  

In other words we try to keep non-failed device to their operating conditions 

with respect to reliability and safety and if they have failed, we try to restore them to 

the operating state preferably without interrupting the system operation. 

Objectives of a good maintenance programme could be- 

1. to provide the freedom free breakdown during operation. 

2. to maintain equipment in satisfactory condition for its safe, sound and proper 

operation. 

3. to maintain equipment at its maximum operating frequency and efficiency. 
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4. keep the equipment downtime to its minimum from any breakdown or 

shutdown. 

in order to minimize the maintenance cost to its minimum 

To achieve the objectives of a maintenance programme, one has to adopt 

certain optimal or efficient maintenance strategy, which are concerned with directing 

the resources where the strategy adopted may be influenced by- 

• Production requirement  

• System conditions & age 

• Internal / external resources 

• Safety considerations  

• Other statutory regulations. 

Maintenance Classification: 

1. Reactive maintenance 

2. Proactive maintenance 

 Preventive maintenance 

 Predictive maintenance 

 RCM (Reliability Centered Maintenance) 

9.5.1. Reactive Maintenance  

• Operate the system until it breaks- scrap it, buy new one. 

• Operate the system until it breaks- repair it. 

• Operate the system until it breaks and then shell it before it breaks down or 

overhaul / repair becomes too costly. 

Advantages:  

1. No associate maintenance cost . 

2. No manpower requirement. 

3. No labour cost. 
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Disadvantages:   

1. Shortening the life of the component. 

2. Frequent replacement of the component. 

3. Damage of the secondary equipment from equipment failure. 

4. The repair or labour cost expected to high because the failure may require an 

extensive repair. 

5. Increase cost due to unplanted  downtime equipment. 

Proactive maintenance:  In this category we carry out regular maintenance such as 

inspection, repair, or replacement lubricating adjustment, alignment, cleaning etc 

which are plant careful in conjunction with protection requirement to prevent failure 

of the equipment during its normal operations. 

Preventive Maintenance : These are the actions performed on a time or machine run 

based scheduled that detect preclude or mitigate the degradation of the system / 

component with the aim of sustaining its useful life through controlling degradation 

to an expectable level.   

Advantages:  

1. Increased component life. 

2. Decreased process / equipment failure. 

3. Saving in energy. 

4. Estimated 12-18% in cost saving over Reactive Maintenance. 

 Disadvantages:   

1. Catastrophic failure cannot be avoided. 

2. Since it is time based, potential for incidental damage to component in 

conducting unneeded maintenance. 

3. Labour intensive. 

9.5.2. Predictive Maintenance 

It is done based on quantifying material or equipment conditions that can detect the 

onset of degradation mechanism. Thereby allowing casual stresses to be eliminated or 
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controlled prior to any significance detoriation in the component or equipment in 

physically state. 

 Advantages:  

1. Increased component operation life and availability. 

2. Decreased component or equipment downtime. 

3. Decreased cost of parts and labour. 

4. Improved workers moral. 

5. Better quality product. 

6. Saving in energy. 

7. Estimated that 8-12% saving over Preventive Maintenance programme. 

 Disadvantages:  

1. Investment on diagnostic equipment. 

2. Personnel training. 

3. Management does not readily see its saving potential. 

In order to keep the equipment under healthy and operable conditions, an 

organization has to take many decisions such as: 

• Replacement Decisions 

• Inspection Decisions 

• Overhaul and Repair Decisions. 

• Organizational Structure Decisions (What Facilities, i.e., manpower and 

equipment Or How these facilities to be used taking into account the possible 

use of subcontractors etc…) 

• Reliability Decisions. 

In this context, we would describe some basic models. 

9.5.3. Replacement Decision 

Assumptions:  

1. State of the system should be known ( working or failed ) 
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2. Total cost of replacement is high after the fail. 

3. Replacement action returns the system as good as new. 

4. The failure rate of the system is IFR. 

 Some Replacement Polices:  

1. Optimal replacement times for equipment whose operating cost increases 

with its use. 

Objective: Make a balance between the money spent on replacements and 

savings obtained by reducing the operating cost. 

2. Optimal replacement policy for equipment whose operating cost increases 

with use: finite time horizon. 

Objective: Determine an optimal replacement policy (i.e. sequence of 

decisions) which tells us, when equipment reaches a particular age, whether 

or not it should be replaced or continue to be operated to minimize the total 

cost of operation and replacement over a fixed future period of time. 

3. Optimal replacement policy for two machines one of which acts as a standby, 

when the operating cost of a machine increases with use.  

4. Optimal interval between preventive replacements of equipment subject to 

breakdown. 

Objective:  The replacement policy is one where preventive replacements 

occur at fixed intervals of time, and failure replacements occur as and when 

necessary, and we want to determine the optimal interval between the 

preventive replacements to minimize the total expected cost of replacing the 

equipment per unit time. 

Cycle 1

PR

0 tp

operation

Cycle 2

FR

0 t

operation

Cycle 1

PR

0 tp

operation
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The total expected cost per unit time, for preventive replacement at 

time tp =C (tp) = [ total  expected cost in interval (0,tp ) ] /[Length of interval ] 

Total expected cost = cost of preventive replacement in interval (0,tp )    

+  expected cost of failure replacement. = Cp +Cf.H(tp) 

Cp = cost of PR,   Cf =cost of FR 

Where H(tp) =  expected number of failures in interval ( 0,tp] 

C(tp) = [Cp +Cf.H(tp) ] / tp 

5. Optimal preventive replacement age of equipment subject to breakdown. 

Objective: To determine the optimal replacement age of the equipment to 

minimize the total expected replacement cost per unit time,  

There are two type of operation- 

Total expected replacement cost per unit time =C(tp) = [ Total 

expected replacement cost per cycle ] / [ expected cycle length ]   

Total expected replacement cost per cycle = cost of a preventive 

cycle × probability of preventive cycle + cost of a failure cycle × probability 

of failure cycle = Cp. R(tp) + Cf .[1- R(tp) ] 

Expected cycle length =  length of a preventive cycle × probability of 

preventive cycle +  expected length of a failure cycle × probability of failure 

cycle = tp.R(tp) + M(tp). [1- R(tp) ] 

Where 
p

p

p

t tf ( t )dtM( t )
1 R( t )α−

=
−∫  = expected length of a failure cycle 

p . p f p
p

p p p p

C R( t ) C .[1 R( t )]C( t )
t .R( t ) M( t ).[1 R( t )]

+ −
=

+ −
 

p . p f p
p

p

p p

p

t

C R( t ) C .[1 R( t )]C( t )
tf ( t )dtt .R( t )

1 R( t )α−

+ −
=

+
−∫

 

6. Optimal preventive replacement age of equipment subject to breakdown, 

taking account of the times required to effect to failure and preventive 

replacements. 
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Objective: The problem is identical of the previous problem except that, 

instead of assuming that the failure and failure replacement are made 

instantaneously, account is taken of the time required to make these 

replacements. 

 
Tp = Time required to PR 

Tf = Time required to FR 

Total expected replacement cost per unit time =C(tp) = [ Total 

expected replacement cost per cycle ] / [ expected cycle length ]   

tp 
One cycle

FRs
PR

0 

Cycle 2

FR

0 

t

operation
Tf 

Cycle 1

PR

0 

tp

operation
Tp 
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Total expected replacement cost per cycle = cost of a preventive 

cycle × probability of preventive cycle + cost of a failure cycle × probability 

of failure cycle = Cp. R(tp) + Cf .[1- R(tp) ] 

Expected cycle length =  length of a preventive cycle × probability of 

preventive cycle +  expected length of a failure cycle × probability of failure 

cycle = ( tp+ Tp).R(tp) +[ M(tp) + Tf ].[1- R(tp)] 

p p f p
p

p p p p f p

C .R( t ) C .[1 R( t )]C( t )
( t T ).R( t ) [ M( t ) T ].[1 R( t )]

+ −
=

+ + + −
 

7. Optimal preventive replacement interval or age of equipment subject to 

breakdown:  minimization of downtime. 

Objective:- Optimal  PR interval or Age of equipment subject to breakdown: 

Minimization of downtime(age is not considered)  

The total down time per unit time, for PR at time p pt D( t )=   

pD( t ) =  (Expected down time due to failure + down time due to PR) 

/(Cycle Length) 
Down time due to failure = Number of Failure in the interval(0, pt )  × 

Time required to make a FR = p fH( t ) T×  

p f p
p

p p

H( t ) T TD( t )
t T

=

× +
+

 

8. Optimal   preventive replacement interval or age of equipment subject to 

breakdown:  minimization of downtime, taking account of the times required 

to effect to failure and preventive replacements. 

FR PR

Tf Tp 

One cycle
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 Objective: To determine the objective length at which PRs should occur 

such that total down time per unit time is minimized.(Age is considered) 

The total down time per unit for PRs once the equipment becomes of 

age pt =  pD( t ) =  (Total Expected down time per cycle)/(Excepted Cycle 

Length) 

Total expected down time/cycle= Down time due to preventive cycle 

× Probability of preventive cycle  + down time due to FR × probability of 

failure cycle = Tp.R(tp) + Tf.[1-R(tp)] 

Expected cycle length = (tp+Tp).R(tp)+[M(tp)+Tf].[1-R(tp] (same as in 

model 6) 

p p f p

p p p p f p

T .R( t ) T .[1 R( t )]D( t )
( t T ).R( t ) [ M( t ) T ].[1 R( t )]

+ −
=

+ + + −
 

9.5.4. Inspection Decisions (Inspection Models) 

9.5.4.1. Optimal inspection frequency: Maximization of profit. 

Objective:  

Determine an inspection policy, which will give us a balance between the number of 

inspections and the resulting output such that the profit per unit time from the 

equipment is maximized over a long period.   

Profit per unit time=P(n) = Value of output per uninterrupted unit of time – output 

lost due to repairs per unit time -  output lost due to inspections 

per unit time – cost of repairs per unit time – cost of 

inspections per unit time.  

Cycle 1 

PR

0 tp 

operation

Cycle 2

FR

0 t

Operation
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Output lost due to repairs per unit time = Value of output per uninterrupted unit of 

time× number of repairs per unit time × Mean time to repair = 

V.λ(n)/µ    

Output lost due to inspections per unit time = Value of output per uninterrupted 

unit of time× number of inspections per unit time × Mean time 

to inspection = V.n/µ  

Cost of repairs per unit time = Cost of repairs per uninterrupted unit of time× 

number of repairs per unit time × Mean time to repair = 

R.[λ(n)/µ] 

Cost of inspections per unit time = Cost of inspections per uninterrupted unit of 

time× number of inspections per unit time × Mean time to 

inspection =I. (n/i) 

 
V . ( n ) N .n R. ( n ) I .nP( n ) V

i i
λ λ
µ µ

= − − − −  

Where, 

λ = mean arrival rate of failures 

µ = mean repair rate 

n = number of inspections per unit time 

i = inspection times   

V = profit value per uninterrupted unit of time 

I = the average cost of inspection per uninterrupted unit of  

R = the average cost of repair per uninterrupted unit of time 

9.5.4.2. Optimal inspection frequency: Minimization of downtime. 

Objective: 

The problem is similar of the previous model but we have to choose ‘n’ to  minimize 

total downtime per unit time.  
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Total down time per unit time = D(n) = Downtime incurred due to repair per unit 

time + Downtime incurred due to inspection per unit time 

= λ(n)/µ +n/i 

 
( n ) nD( n )

i
λ

µ
= +  

9.5.4.3. Optimal inspection interval to maximize the availability of 
equipment used in emergency conditions 

Objective:  

To determine the interval ‘ti’ between inspections to maximize availability per unit 

time.       

There are two possible cycles of operation – 

 

Availability per unit time = A(ti) = ( Expected availability per cycle ) /  Expected 

cycle length   

Expected cycle length = i i i i i i i( t T ).R( t ) ( t T T ).[1 R( t )]+ + + + −  

Expected availability per cycle = 

i

i i

i

t

t . f ( t )dt
t .R( t ) .

1 R( t )
α−+

−

∫
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 = 
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10. Software Reliability Concepts 

10.1. Terminologies 

Dependable Systems: Systems that must be dependable. Dependable Systems are 

systems which have critical non-functional requirements for reliability, safety or 

security. 

Software Reliability:  Probability that the program performs successfully, 

according to specifications for a given time period.  

   Rsy = Rs *  Rh * Ro 

   Rsy  = System Reliability 

   Rs =  Software Reliability 

   Rh = Hardware Reliability 

   Ro = Operator Reliability 

This assumes Hardware, Software and Operator errors to be mutually 

exclusive. 

Failure is a departure of system behavior in execution from user requirements; it 

is a user-oriented concept. A software failure must occur during execution of a 

program. Potential failures found by programmers as the result of design inspections, 

code reading and other methods do not count as a failure.  

Fault is the defect that potentially causes the failure when executed; it is a 

developer-oriented concept. A software fault is a defect in code. It is caused by an 

error, which is an incorrect or missing action by a person or persons.  

Errors are human mistakes that get into the software.  

Defects are improper program conditions that generally result in an error.  

Failure Intensity is an alternative way of expressing reliability. Reliability is the 

probability that a system will operate without failure for a specified number of natural 

units or a specified time known as mission time. Failure intensity is defined as failures 
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per unit time. Time is generally execution time or it can be natural units. This term is 

used in software reliability engineering because of its simplicity and intuitive appeal.  

Failure severity class is a set of failures that have the same per-failure impact on 

users. Severity classes are assigned to failures primarily for use with failure 

frequencies to prioritize failures for resolution. Common classification criteria include 

human life, cost and system capability impacts. Each of these criteria can include 

many sub criteria, some of which may be important for a particular application. For 

example, cost impact may include extra operational cost, repair and recovery cost, 

and loss of present or potential business. System capability may include such sub 

criteria as loss of critical data, recoverability and downtime. For systems’ where 

availability is important, failures that result in greater downtime will often be placed 

in a higher failure severity class.  

Problems are user-encountered difficulties. They may result from failures or 

misuse.  

Performance specification is a written requirement, figure and figure of merit, or 

parameter, which qualitatively or quantitatively define system performance.  

Implied-specification is an unwritten requirement that is understood by the 

majority of the project team to be essentially equivalent to a written requirement.  

Verification is an attempt to find errors by executing a program in a test or 

simulated environment.  

Validation is an attempt to find errors by executing a program in a given real 

environment.  

Certification is an authoritative endorsement of the correctness of a program.  

10.2. Overview of Software Reliability 

The IEEE defines reliability as "The ability of a system or component to perform its 

required functions under stated conditions for a specified period of time." To most 

project and software development managers, reliability is equated to correctness, that 

is, they look to testing and the number of "bugs" found and fixed. While finding and 

fixing bugs discovered in testing is necessary to assure reliability, a better way is to 
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develop a robust, high quality product through all of the stages of the software 

lifecycle. That is, the reliability of the delivered code is related to the quality of all of 

the processes and products of software development; the requirements 

documentation, the code, test plans, and testing.  

Software reliability is comprised of three activities:  

i. Error prevention.  

ii. Fault detection and removal. 

iii. Measurements to maximize reliability, specifically measures that support the 
first two activities.  

10.2.1. Errors, Faults and Failures 

The terms- errors, faults and failures are often used interchangeable, but do have 

different meanings. In software, an error is usually a programmer action or omission 

that results in a fault. A fault is a software defect that causes a failure, and a failure is 

the unacceptable departure of a program operation from program requirements. 

When measuring reliability, we are usually measuring only defects found and defects 

fixed. If the objective is to fully measure reliability we need to address prevention as 

well as investigate the development starting in the requirements phase – what the 

programs are developed to. 

It is important to recognize that there is a difference between hardware failure 

rate and software failure rate. For hardware, as shown in Figure 10.1, when the 

component is first manufactured, the initial number of faults is high but then 

decreases as the faulty components are identified and removed or the components 

stabilize. The component then enters the useful life phase, where few, if any faults 

are found. As the component physically wears out, the fault rate starts to increase. 

 
Figure 10.1: Failure Rates 
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Software however, has a different fault or error identification rate. For 

software, the error rate is at the highest level at integration and test. As it is tested, 

errors are identified and removed. This removal continues at a slower rate during its 

operational use; the number of errors continually decreasing, assuming no new errors 

are introduced. Software does not have moving parts and does not physically wear 

out as hardware, but is does outlive its usefulness and becomes obsolete. 

To increase the reliability by preventing software errors, the focus must be on 

comprehensive requirements and a comprehensive testing plan, ensuring all 

requirements are tested. Focus also must be on the maintainability of the software 

since there will be a "useful life" phase where sustaining engineering will be needed. 

Therefore, to prevent software errors, we must:  

i. Start with the requirements, ensuring the product developed is the one specified, 
that all requirements clearly and accurately specify the final product functionality.  

ii. Ensure the code can easily support sustaining engineering without infusing 
additional errors.  

iii. A comprehensive test program that verifies all functionality stated in the 
requirements is included.  

10.2.2. Software failure mechanisms 

Software failures may be due to errors, ambiguities, oversights or misinterpretation of 

the specification that the software is supposed to satisfy, carelessness or 

incompetence in writing code, inadequate testing, incorrect or unexpected usage of 

the software or other unforeseen problems.  While it is tempting to draw an analogy 

between Software Reliability and Hardware Reliability, software and hardware have 

basic differences that make them different in failure mechanisms. Hardware faults are 

mostly physical faults, while software faults are design faults, which are harder to 

visualize, classify, detect, and correct. Design faults are closely related to fuzzy human 

factors and the design process, which we don't have a solid understanding. In 

hardware, design faults may also exist, but physical faults usually dominate. In 

software, we can hardly find a strict corresponding counterpart for "manufacturing" 

as hardware manufacturing process, if the simple action of uploading software 

modules into place does not count. Therefore, the quality of software will not change 

once it is uploaded into the storage and start running. Trying to achieve higher 

reliability by simply duplicating the same software modules will not work, because 
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design faults cannot be masked off by voting.  A partial list of the distinct 

characteristics of software compared to hardware is listed below: 

i. Failure cause: Software defects are mainly design defects.  

ii. Wear-out: Software does not have energy related wear-out phase. Errors can occur 
without warning.  

iii. Repairable system concept: Periodic restarts can help fix software problems.  

iv. Time dependency and life cycle: Software reliability is not a function of 
operational time.  

v. Environmental factors: Do not affect Software reliability, except it might affect 
program inputs.  

vi. Reliability prediction: Software reliability cannot be predicted from any physical 
basis, since it depends completely on human factors in design.  

vii. Redundancy: Cannot improve Software reliability if identical software components 
are used.  

viii. Interfaces: Software interfaces are purely conceptual other than visual.  

ix. Failure rate motivators: Usually not predictable from analyses of separate 
statements. 

10.3. Software Reliability Metrics 
Metric Explanation Example systems 

POFOD 

(Probability of 
Failure on 
Demand) 

Measure of likelihood that the system will fail 
when a service request is made. 

POFOD = 0.001 means 1 out of 1000 service 
requests may result in failure. 

Safety-Critical and non- stop 
systems such as Hardware 
Control Systems. 

ROCOF 

(Rate of Failure 
Occurrence) 

Measure of frequency of occurrence with which 
unexpected behavior is likely to occur. 

If ROCOF=2/100 means 2 failures in 100 
operational time units. 

This measure indicates failure intensity. 

Operating Systems, 
Transaction Processing 
Systems 

MTTF 

(Mean Time to 
Failure) 

Measure of the time between observed system 
failures. For example, an MTTF of 500 means 
that 1 failure can be expected every 500 time 
units. It is reciprocal of ROCOF. 

Systems with long 
transactions, such as CAD, 
where MTTF >Transaction 
time. 

AVAIL 

(Availability) 

 

How likely the system is to be available for use. 
0.998 means in every 1000 time units, the 
system is likely to be available for 998 of these. 

Continuously running 
systems such as telephone 
switching systems. 
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10.1. Measurements to assess Reliability  
(a)  The no. Of system failures given a number of system inputs. This is used to 

measure POFOD. 

(b)  The time (or no. of transactions) between system failures. This is used to 
measure ROCOF and MTTF. 

(c)  The elapsed repair or restart time when a system failure occurs. Given that the 
system must be continuously available; this is used to measure Availability. 

10.2. Complimentary strategies to achieve Reliability  
(a)  Fault Avoidance: The design and implementation process should be 

organized with the objective of producing fault-free systems. 

(b)  Fault Tolerance: This strategy assumes that residual faults remain in the 
system. Facilities are provided in the software to allow operation to continue 
when these faults cause system failures. 

(c)  Fault Detection: Faults are detected before the software is put into operation. 
The software validation process uses static and dynamic methods to discover 
any faults, which remain in a system after implementation. 

10.2.1. Fault Avoidance  

Fault Avoidance and development of fault-free software relies on: - 

(a) The availability of a precise (preferably formal) system specification which is 
an unambiguous description of what must be implemented. 

(b)  Organizational quality philosophy where-in programmers should be 
expected to write bug-free programs. 

(c)  Use of strongly typed programming language so that possible errors are 
detected by the language compiler. 

(d)  Restrictions on the use of programming constructs, such as pointers, which 
are inherently error-prone. 

10.2.2. Fault Tolerance  

A fault-tolerant system can continue in operation after some system failures have 

occurred. Fault tolerance is needed in situations where system failure would cause 

some catastrophic accident or where a loss of system operation would cause large 

economic losses. For example, the computers in an aircraft must continue in 

operation until the aircraft has landed, the computers in an air traffic control system 

must be continuously available. It can never be conclusively demonstrated that a 
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system is completely fault-free. Fault-tolerance facilities are required if the system is 

to be resilient to failure. There are four aspects to fault tolerance: - 

(a)  Failure Detection: The system must detect that a particular state 
combination has resulted or will result in a system failure. 

(b)  Damage Assessment: The parts of the system state, which have been 
affected by the failure, must be detected. 

(c)  Fault Recovery: The system must restore its state to a known safe state. 
This may be achieved by correcting the damaged state (Forward Error 
recovery) or by restoring the system to a known safe state (Backward Error 
recovery). Forward error recovery is more complex. 

(d)  Fault Repair: This involves modifying the system so that the fault does not 
recur. In many cases, software failures are transient and result due to 
peculiar combination of system inputs. No repair may be necessary as 
normal processing can resume immediately after fault recovery. 

10.3. Error Categories 

10.3.1. Design errors 

This design phase of software development involves the intellectuality, creativity and 

intuitively of the designer. So that design phase has many errors, since are developed 

by human beings. Few of the approaches, which are described below, can be avoided 

or can be considered to avoid errors. 

(a) Inadequate simulation:  One of the techniques based on extendable 
computer simulator making it too shorter time than it takes to develop the 
complete design. 

(b).  Deficient design representation: Machine process able structured design 
languages are more suitable to understand and maintain. 

(c).  Unstructured ness: Structured ness refers to design philosophy requiring 
adherence to a set of rules of enforced standards which embody techniques 
as top-down design, program modularization or independence and so forth.  

(d).  Selection of un-standardized language: Standardization implies, among 
other requirements that rigid configuration controls be kept on compilers, 
support and documentation. An un-standardized language can be the source 
of coding errors. 
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10.3.2. Coding Errors 

(a) Topographical errors: Errors formed due to incorrectly writing down or 
copying a statement in the source language. 

(b) Data Structure defects: Program incompatible with the data structures 
specification. 

(c) Algorithmic approximation: Approximations may be insufficiently 
accurate over the required ranges of the variables. 

(d)  Misinterpretation of language constructions: Thinking certain program 
language to be correct, programmer uses it, but the compiler interprets 
them differently. 

(e) Missing Incorrect logic: Assuming that the specification to be correct, 
programmer makes an error by omitting a required test for a condition. 

(f) Undocumented Assumptions: Programmer makes an assumption in 
design interpretation which later results in two or more interpretations. 

10.3.3. Clerical Errors 

(a)  Manual error 

(b)  Mental error 

(c) Procedural error 

(d)  Other clerical errors 

10.3.4. Debugging errors 

(a) Inadequate use of Debugging Tools 

(b) Insufficient or inappropriate selection of test data 

(c) Misinterpretation of Debugging results 

(d)  Misinterpretation of Error source 

(e)  Negligence 

(f)  Other Debugging errors 

10.3.5. Testing errors 

(a) Inadequate test cases or test data 

(b)  Misinterpretation of test results 

(c)  Misinterpretation of program specification 

(d)  Negligence 

(e)  Other testing errors 
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10.4. Failure Classification  

(a)  Transient:  Occurs only with certain inputs. 

(b)  Permanent:  Occurs with all inputs. 

(c)  Recoverable:  System can recover without operator intervention. 

(d)  Unrecoverable: Operator intervention needed to recover from failure. 

(e)  Non-corrupting:  Failure does not corrupt systems. 

(f)  Corrupting:  Failure corrupts system state or data. 

10.5. Data Collection 

A proper collection and analysis of software failure data lies at the heart of a practical 

evaluation of the quality of software based systems. This section provides insight into 

the process of collection of software failure data. Measurements typically involve 

recording the times between successive failures of the software when it is executing 

in a simulated or operational environment. 

Measurements can be taken in terms of: 

• Execution Time - the actual processing time for the execution of the program 

• Calendar Time - the time in familiar terms of seconds, minutes, and hours. 

• Clock Time - the time a computer is running while executing the program.  

Other programs may be executing on the same machine at the same time. 

10.5.1. Data collection procedure 

Step1: Establish the objective 

This is the first step in planning to collect data is to determine the objectives of the 

data and what data items will be collected. Data collection does involve cost, so each 

item should be examined to see if the need is worth the cost. This should be done in 

the context of the planned application or the applications of the software reliability 

engineering. If the item is questionable, consider alternative such as approximating 

the item or collecting t at a lower frequency. Look for possibilities of collecting data 

items that can serve multiple purposes. If this careful examination is not performed, 
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the necessary burden in effort and cost on the project can result in the degradation of 

all data or even the abandonment of the effort. 

Step 2: Plan the data collection process 

It is recommended that all parties (designers, coders, testers, users, and key 

management) participate in the planning effort. The data collectors must be 

motivated if quality data is to collected. Present the goals of the data collection effort. 

Relate to it direct personal benefit. This will insure that all parties understand what is 

being done and the impact it will have on their respective organizations. 

It is suggested that a first draft data collection plan be presented as a starting 

point. The plan should include topics such as: 

• What data items will be gathered? 

• Who will gather the data? 

• How often will that data be reported? 

• Formats of data reporting (e.g. electronic spreadsheet, and paper forms) 

• How is the data to be stored and processed? 

• How will the collection process be monitored to ensure integrity of the data? 

Solicit identification of problems with the plan and desired improvements. 

Elicit the participation of the data collectors in the solution of any problems. It will 

provide them an opportunity to provide new ideas and insight into the development 

of process. Support will be gained by having the parties that will be affected as active 

participants. 

Recording procedures should be carefully considered to make them as simple 

as possible. Solicitation of data from project members can reduce effort and make 

collection more reliable. 

For the failure count methods, the data collection interval should be selected to 

correspond to the normal reporting interval of the project from which data are being 

collected (e. g. week, month) or an integral multiple thereof. This will facilitate 

obtaining data on the level of effort devoted to the software under test (person-hours 

and computer hours) which must be correlated with the reliability data. 
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Step 3: Apply tools 

Availability of tools identified in the collection process must be considered. If the 

tools are not commercially available then time needs to be planned for their 

development. Furthermore, the amount of automatic data collection must be 

considered. To minimize the impact on the project’s schedule, automated tools 

should be considered whenever possible. 

When decision are being made to automate the data collection process for 

either of the two types of data one needs to weigh certain factors. These include: 

• Availability of the tool. Can it be purchased or must be developed? 

• What is the cost involved in either the purchase of the tool or its 

development? 

• When will the tool be available? If it must be developed. Will its development 

schedule coincide with planned use? 

• What impact will the data collection process have on the development 

schedule? 

• Can the tool handle adjustments that may be needed? Can the adjustments be 

completed in a timely manner? 

• How much overhead (people and computer time) will be needed to keep the 

data collection process going? 

Once the tool has been developed and implemented, one needs to consider 

ways of ensuring the right data being gathered. Flexibility also should be designed 

into the tools, as the data collection requirements may change. Finally, one needs to a 

make some type of assessment of not only what the tool saved in time and resources 

but also what data collection process gained. Records could be kept of the number of 

faults detected after the release of the software. This could be compared with 

reliability estimates of similar projects that did not employ this methodology. 

Estimates of reduced maintenance and fault correction time could be made based on 

upon the estimated current failure rate. 

For the tool itself, one could estimate the amount of time and effort that would 

be expended if the data had been collected manually. These statistics could then yield 
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cost estimates which would be compared with the procurement and implementation 

costs of the automated tool. If the cost of the automated tool is significantly higher, 

one certainly would question the wisdom of developing the tool. However, even if 

the costs come out higher, consideration must be given to future use of the tool. 

Once the tool has been developed it may be easily adapted over many software 

development efforts and could yield significant savings. 

Step 4: Provide training. 

Once the tools and plans are in place, training of all concerned parties is important. 

The data collectors need to understand the purpose of the measurements and know 

explicitly what data are to be gathered. 

Step 5: Perform trial run. 

A trial run of the data plan should be made to resolve any problems or 

misconceptions about the plan. This can save vast amount of time and effort when 

the "real thing" occurs. 

Step 6: Implement the plan. 

Data must be collected and reviewed promptly. If this is not done, quality will suffer. 

Generate reports to show project members; they can often spot unlikely results and 

thus identify problems. Problems should be resolved quickly before the information 

required to resolve them disappears. 

Step 7: Monitor data collection. 

Monitor the process as it proceeds to insure the objectives are met and the program 

is meeting its established reliability goals. 

Step 8: Use the data. 

Don't wait to the end after the software has been released to the users to make your 

reliability assessments. Estimating software reliability at regular, frequent intervals will 

maximize visibility into the development effort, permitting managerial decisions to be 

made on a regular basis. 
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Step 9: Provide feedback. 

This should be done as early as possible during the data collection. It is especially 

important to do so at the end. Those who were involved want to hear what impact 

their efforts had. If no feedback is given, you'll find yourself facing the problem 

alluded to in the beginning of this section. Namely, the parties will resist further 

future efforts because they see no purpose. 

10.6. Failure Count Data vs. Execution Time Data 
It is generally accepted that execution (CPU) time is superior to calendar time for 
software reliability measurement and modeling. If execution time is not readily 
available, approximations such as clock time, weighted clock time, or units that are 
naturals to the applications, such as transactions, may be used. 

The following paragraphs address failure count and execution time data collection to 
support the recommended models identified.  

10.6.1. Failure-Count Data 

Since the recommended models employ the number of failures detected per unit of 

time, these data are usually readily available. Most organizations have some type of 

configuration management process in place. As part of this process, a procedure for 

reporting failures and approving changes to the software is in place. The software 

problem reporting mechanism may be either manual or automatic. In addition, the 

problem reports may be stored within a computer data base system or a manual filing 

system. The key is that the data can be easily extracted. 

Make sure that the problems are really software problems - some organizations 

use problem reporting for any type of anomaly and the time recorded on a problem 

report may not be the time at which the failure was experienced, it may be the time in 

which the port was filled out 

Another pitfall to avoid when using problem reporting data involves forming 

the time intervals. Remember, the purpose is to model the number of failures 

detected per unit of time within a specified environment. These units should 

therefore be consistent in duration, manpower, and testing intensity. 

Usually the information to check this is not available. All one has is data on the 

number of failures detected in one period or another. However, there may have been 
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twice as many testing personnel in one period than the other. The only way to find 

out this information is to seek it out. This may involve talking with the testers or 

even reviewing old time sheets covering the period of interest. Generally, the longer 

the period of time in which the fault counts are formed the more smoothing occurs. 

Variations within short intervals of time will be averaged out over the longer time 

units. 

Data may be gathered at any point within the development cycle beginning 

with the system test phase. Overall measurement objectives will help you determine 

the rate (failures reported per week, per month, or per quarter), at which data is 

collected. It is suggested that you start out using the number of failures reported over 

the shortest unit of time consistent with your objectives. If good fits are not 

achieved, then combine intervals to the next level. For example: days to weeks, or 

weeks to quarters. The smoothing effect mentioned in the previous paragraph may 

help in the modeling process. 

10.6.2. Execution Time Data 

This data may be collected directly or indirectly. Also, it is best to collect, when feasi-

ble, the actual execution time of a program rather than the amount of wall clock time 

or system active time expended. This is the actual amount of time spent by the 

processor in executing the instructions. Execution time gives a truer picture of the 

stress placed on the software. You could have large amounts of time expended on 

the clock but very little computations may have to be done during this period. This 

yields small execution times. This would tend to give overly optimistic views of the 

reliability of the software. Modeling using execution time data tends to give superior 

results than simple elapsed wall clock time or system active time. However, the data 

may be difficult to collect since a monitor of the actual operating system is involved. 

Another source for obtaining this data is to adjust the wall clock time by a factor that 

represents the average computer utilization per unit of wall clock time. 

If the time between failures (wall clock or execution time) is unavailable and 

only grouped data (number of failures occurring per unit of time) is available, the 

time-between-failures can still be obtained. One way is to randomly allocate the 

failures over the length of the time interval. Randomization will not cause errors in 

estimation for some of the models by more than 15 percent. A second way is the 
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easiest to implement. Simply allocate the failures uniformly over the interval length. 

For example, suppose the interval is three hours in duration and three failures 

occurred during this period. We could then treat the time-between-failures to be each 

one hour in length. 

Two additional considerations are: (1) adjusting the failure times to reflect an 

evolving program and (2) handling multiple versions of the software. In the first 

situation, the failure intensity may be underestimated in the early stages of the 

program's development yielding overly optimistic views of the reliability. For the 

second consideration, there are multiple versions of the code being executed at 

different locations.  

10.6.3. Transformations between the Two Types of Input 

Programs may have the capability to estimate model parameters from either failure-

count or time-between-failures data, as maximum likelihood estimation can be 

applied' to both. However, if a program accommodates only one type of data it is 

easy to transform to the other type. 

If the expected input is failure-count data, it may be obtained by transforming 

time-between-failures data to cumulative time data and then simply counting the 

cumulative times that occur within a specified time period. 

The expected input is time-between-failures data, convert the failure-count data 

by randomly selecting a number of cumulative failures times in the period equal to 

the count and then finding the time differences between them. 

10.7. Software Reliability Engineering 

Software Reliability is defined as the probability of failure-free software operation for 

a specified period of time in a specified environment. Software reliability is an 

attribute and key factor in software quality. It is also a system dependability concept. 

Software Reliability Engineering (SRE) is defined as the quantitative study of the 

operational behavior of software-based systems with respect to user requirements 

concerning reliability. SRE employs proven best practice to ensure that product 

reliability meets user needs, to speed products to market faster, reduce product cost, 

improve customer satisfaction and increase tester and developer productivity. 
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Essential Components of SRE: 

1. Establish reliability goals. 

2. Develop operational profile. 

3. Plan and execute tests. 

4. Use test results to drive decisions. 

These components are sequential but they are integrated within the software 

development process. 

10.7.1. What It Is and Why It Works 

Let’s look in a little more depth now at just what SRE is.  SRE is a practice for 

quantitatively planning and guiding software development and test, with emphasis on 

reliability and availability.  It is a practice that is backed with science and technology 

(Musa, Iannino, and Okumoto (1987)).  But we will describe how it works in 

business-oriented terms. 

SRE works by quantitatively characterizing and applying two things about the 

product: the expected relative use of its functions and its required major quality 

characteristics.  The major quality characteristics are reliability, availability, delivery 

date, and life-cycle cost.  In applying SRE, you can vary the relative emphasis you 

place on these factors. 

 

When you have characterized use, you can substantially increase development 

efficiency by focusing resources on functions in proportion to use and criticality. You 

also maximize test effectiveness by making test highly representative of use in the 

field.  Increased efficiency increases the effective resource pool available to add 

customer value, as shown in Figure 10.2.   

 
Increase in Effective 

Resources 

 
Original 

 Resources 

Figure 10.2: Increased resource pool resulting from increased development efficiency 
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When you have determined the precise balance of major quality characteristics 

that meets user needs, you can spend your increased resource pool to carefully match 

them.  You choose software reliability strategies to meet the objectives, based on data 

collected from previous projects.  You also track reliability in system test against its 

objective to adjust your test process and to determine when test may be terminated.  

The result is greater efficiency in converting resources to customer value, as shown in 

Figure 10.2. We have set delivery times and budgeted software costs for software-

based systems for some time.  It is only relatively recently that SRE, the technology 

for setting and tracking reliability and availability objectives for software, has 

developed (Musa, Iannino, and Okumoto 1987). 

10.7.2. A Proven, Standard, Widespread Best Practice 

Software reliability engineering is a proven, standard, widespread best practice.  As 

one example of the proven benefit of SRE, AT&T applied SRE to two different 

releases of a switching system, International Definity PBX. Customer-reported 

problems decreased by a factor of 10, the system test interval decreased by a factor of 

2, and total development time decreased 30%. No serious service outages occurred in 

2 years of deployment of thousands of systems in the field (Lyu 1996). 

 

SRE has been an AT&T Best Current Practice since May 1991 (Lyu 1996).  To 

become a Best Current Practice, a practice must have substantial application (usually 

at least 8 to 10 projects) and this application must show a strong, documented 

benefit-to-cost ratio.  For SRE, this ratio was 12 or higher for all projects.  The 
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Figure 10.3: Increased customer value resulting from increased resource pool and better 
match to major quality characteristics needed by users. 
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practice undergoes a probing review by two boards, at third and fourth levels of 

management.  More than 70 project managers or their representatives reviewed the 

SRE proposal.  There were more than 100 questions and issues requiring resolution, 

a process that took several months.  In 1991, SRE was one of five practices that were 

approved, out of 30 that were proposed. 

SRE is widely applicable.  From a technical viewpoint, you can apply SRE to 

any software-based product, starting at the beginning of any release cycle.  From an 

economic viewpoint, you can apply SRE to any software-based product also, except 

for very small components, perhaps those involving a total effort of less than 2 staff 

months.  However, if a small component such as this is used for several projects, 

then it probably will be feasible to use SRE.  If not, it still may be worthwhile to 

implement SRE in abbreviated form. 

 

SRE is independent of development technology and platform.  It requires no 

changes in architecture, design, or code, but it may suggest changes that would be 

useful. It can be deployed in one step or in stages. SRE is very customer-oriented: it 

involves frequent direct close interaction with customers.  This enhances a supplier’s 

image and improves customer satisfaction, greatly reducing the risk of angry 

customers.  Developers who have applied SRE have described it with adjectives such 

as “unique, powerful, thorough, methodical, and focused.”  It is highly correlated 

with attaining Levels 4 and 5 of the Software Engineering Institute Capability 

Maturity Model. 

Despite the word “software,” software reliability engineering deals with the 

entire product, although it focuses on the software part.  It takes a full-life-cycle, 

proactive view, as it is dependent on activities throughout the life cycle.  It involves 

system engineers, system architects, developers, users (or their representatives, such 

Project size (staff years) Percent of project cost
5 3
10 2
20 1.5
100 0.4
500 0.1

Table 10.1: Operating cost of SRE 
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as field support engineers and marketing personnel), and managers in a collaborative 

relationship. 

The cost of implementing SRE is small.  There is an investment cost of not 

more than 3 equivalent staff days per person in an organization, which includes a 2-

day course for everyone and planning with a much smaller number.  The operating 

cost over the project life cycle typically varies from 0.1 to 3 percent of total project 

cost, as shown in Table 10.1.  The largest cost component is the cost of developing 

the operational profile. 

The schedule impact of SRE is minimal.   Most SRE activities involve only a 

small effort that can parallel other software development work.  The only significant 

critical path activity is 2 days of training. 

SRE differs from other approaches by being primarily quantitative. In applying 

SRE, you add and integrate it with other good processes and practices; you do not 

replace them. With SRE you control the development process, it doesn’t control you. 

The development process is not externally imposed.  You use quantitative 

information to choose the most cost-effective software reliability strategies for your 

situation. 

Before we proceed further, let’s define some of the terms we will be using.  

Reliability is the probability that a system or a capability of a system functions 

without failure for a specified period in a specified environment.  The period may be 

specified in natural or time units. 

The concept of natural units is relatively new to reliability, and it appears to 

have originated in the software sphere.  A natural unit is a unit other than time that is 

related to the amount of processing performed by a software-based product, such as 

pages of output, transactions, telephone calls, jobs, semiconductor wafers, queries, or 

application program interface calls.  Availability is the average (over time) probability 

that a system or a capability of a system is currently functional in a specified 

environment.  If you are given an average down time per failure, availability implies a 

certain reliability. Failure intensity, used particularly in the field of software reliability 

engineering, is simply the number of failures per natural or time unit.  It is an 

alternative way of expressing reliability.  
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10.8. Software Reliability Measurements 

Measurements of reliability includes two types of activities 

i. Reliability estimation 

ii. Reliability prediction 

10.8.1. Software reliability estimation 

This activity determines current software reliability by applying statistical inference 

techniques to failure data obtained during system test or during system operation. 

This is a measure regarding the achieved reliability from the past until the current 

point.  

10.8.2. Software reliability prediction 

This activity determines future software reliability based upon available software 

metrics and measures. The quality of software, and in particular its reliability, can be 

measured in terms of metrics of failure intensity or mean time between failures 

(MTBF). Mean time between failures can be approximated by the inverse of the 

failure intensity. When there is no repair it may be possible to describe the reliability 

of the software-based system using constant failure intensity, λ, and an exponential 

relationship.  

 ( ) λτ−= etR  

where, 

 R(t)- Reliability of the system. 

 τ- Duration of the mission 

 λ- Failure rate 

 MTTF = ∫
∞

−

0

τλτ de  

           = 1/λ (Constant failure rate) 

10.9. Type of Tests in SRE  

There are two types of software reliability engineering test, reliability growth test and 

certification test. These types are not related to phases of test such as unit test, sub 

system test, system test or beta test, but rather to the objectives of the test. 
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10.9.1. Reliability growth test  

This test is used to estimate and track reliability. The main objective of reliability 

growth test is to find and remove faults. Reliability growth test is used for the system 

test phase of the software developed in own organization. Testers and development 

managers apply the reliability information to guide development and release.  To 

obtain good (with moderate ranges of uncertainty) estimates of failure intensity, one 

needs a minimum number of failures in sample, often 10 to 20. Reliability growth test 

includes feature, load and regression test. 

Feature test is a test in which operations are executed separately, with 

interactions and effects of the field environment minimized by reinitializing the 

system between the operations. The idea is to verify all features of the software. 

Regression test is the execution of some (usually randomly selected) or all 

feature tests after each system build that has a significant change. One should include 

all critical operations in the regression test suite. 

Load test involves executing operations simultaneously, at the same rates and 

with the same other environmental conditions as those that will occur in the field. 

Thus the same interactions and impact of environmental conditions will occur as can 

be expected in the field. Acceptance test and performance test are types of load test. 

Load test typically involves competition for system resources with the queuing and 

timing problems that can result. Also, there is frequently a degradation of data with 

time. The foregoing factors thus can uncover potential field failures resulting from 

interaction that would not be stimulated by feature and regression test. 

10.9.2. Certification test  

This test does not involve debugging. There is no attempt to resolve failures 

identified by determining the faults that are causing them and removing the faults. 

The system must be stable. No changes can be occurring, either due to new features 

or fault removal. With certification test one makes a binary decision to accept the 

software or reject the software and return to its supplier for rework. In certification 

test; one requires a much smaller sample of failures. Certification testing is dealt in 

chapter 7. In certification test only load test (not feature or regression test) is 

generally done. 
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10.10. Software Reliability Engineered Testing  

The advance in technology, the emergence of a wide variety of software applications, 

and the increase in the use of computer systems have led to an increase in demand 

for higher standards in software quality and reliability. At the same time, the software 

market competitiveness is increasing very rapidly, so software products will not 

succeed in the market unless they are produced with high quality standards.  Indeed, 

high quality in computer systems leads to increased productivity and permanently 

reduced costs by emphasizing fault prevention.  

Additionally, there is a diverse use of computer-based systems ranging from 

commercial applications and automobile controls to medical devices, aircrafts, space 

and nuclear reactor controls, and software failures or incorrect software requirements 

can have disastrous consequences ranging from the loss of financial assets and 

customer dissatisfaction to the harming or the loss of human lives.  Therefore, 

software engineering provides a ”tool kit" needed for successful construction of high 

quality software,  so that useful, reliable and safe software can be released on time 

within a budget.  Even though some systems are less market-driven than others it is 

important to balance reliability, time of delivery and cost, and one of the most 

effective ways of achieving that goals is through engineering of testing using 

quantitative planning and tracking. 

Software reliability engineered testing (SRET) is a technique introduced by 

Musa which combines quantitative reliability objectives and operational profiles, so 

developers can have a more realistic guide when performing testing.  In this way, it is 

possible to track the reliability that is actually being achieved thought the software life 

cycle. 

Software reliability is defined as “the probability of execution without failure 

for some specific interval, called “mission time”.  It is observed that this definition is 

closely related to the definition of hardware reliability with the difference that the 

failure mechanism may be different.  The reason for that compatibility is that in a 

system we have software and hardware components; therefore, software system can 

be referred to as a software-based system.  
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When applying SRET to software systems, it must be done over the whole 

software life cycle, with particular emphasis on the testing phase.  Also, if it is a 

legacy system, it must be applied to all the releases as well.  Usually, testers are the 

people most involved in the process, but better results can be obtained by involving 

system engineers, architects and uses as well. 

SRET consists of seven steps; the first two steps consist of decision-making 

and are the foundation for the subsequent five core steps.  Those steps are the 

following : (1) determine which associated systems require separate testing, (2) decide 

which type of SRET is need for each system to be tested, (3) define “necessary 

reliability”, (4) develop operational profiles, (5) prepare for testing, (6) execute tests, 

and (7) interpret failure data.  The five core steps and the life cycle phase in which 

each step typically occurs are shown in Figure 10.4. 

10.10.1. Definitions 

Before continuing with the description of the steps of SRET, we consider of 

importance to define the different types of testing referred further in the paper.  

When using SRET, we can consider two types of testing: development testing and 

certification testing.  In developing testing, faults are found and removed.  It includes 

feature, load and regression testing.  In feature testing, test runs are executed 

undependably of each other, while in load testing a large number of test cases are 

executed in the context of operation mode.  In regression testing, feature test runs 

Prepare for test

Develop Operational 
Profiles 

Define “necessary” 
Reliability 

                        Apply Failure Data 
Execute                       to guide 
Test Decisions 

         Requirements                        Design  
               and                                      and                                         Test 
       Architecture                         Implementation

Figure 10.4: Software Reliability Engineering process diagram 
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are repeated after each build to verify whether changes to the system have introduced 

faults that cause failure.  In certification testing, the software is either rejected or 

accepted and does not remove any faults. 

10.10.2. SRET Steps 

1. Determining which associated systems require separated testing: In this 
step, system variations as well as major components of unknown reliability may 
need to be tested in addition to the entire system.  In addition, small components 
that may need to be reused extensible and software system that interact strongly 
with the system may need to be tested in a way they are functioning together. 

2. Decide the type of SRET need for each system to be tested: Decide which 
type of testing the system or related system may need.  Development testing can 
only be applied to the system being implemented or at least coded in part. 

3. Define the “necessary” reliability: This step consists of the following steps: 

a) Determining operational modes:  An operational mode is defined as a 
distinct pattern of system use and/or environment that needs separate testing 
because it is likely to stimulate different failures, which can also be established 
to provide accelerated testing of rarely occurring but critical operations.   
Some of the factors that may yield operational modes are:  day of the week or 
time of the day, time of the year, traffic levels, user profile, user experience, 
system maturity, reduced system capability, and rarely critical events.  
However, the selection of operational profiles is based in engineering 
judgment, and a lot of attention has to be paid to the trade-offs of selecting a 
big or small amount of operational profiles, i.e., increase in the number of 
operational modes can provide better and more realistic testing, but it cal also 
increase cost and effort. 

b) Define failure in terms of severity classes: A failure is defined as the 
departure of a program’s behavior during execution form the user 
requirements and a fault is the defect in the program that triggers the failure 
when executed.  A severity class is a set of failures that affect users to the 
same degree.  It is usually related to the criticality of the operation that fails 
and the common classification criteria may include the degree of impact on 
cost, service and human life. 

c) Set failure intensity objectives for the developed software: This step 
consists of the following steps:  

i) Establish the system failure objectives, which can be derived from and 
analysis of specific user needs and the capabilities of competing systems; 
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ii) Determine and sum the failure intensities of the acquired software and 
hardware components; 

iii) Subtract the total acquired failure intensities from the system failure 
intensity objectives in clock hours; 

iv) Convert the results into failure intensity objectives for the developed 
software per unit of execution time. 

d) Engineer reliability strategies: There are three main reliability strategies: 
fault prevention, fault removal and fault tolerance.  Fault prevention is about trying 
to reduce faults by performing requirements and design reviews.  Fault 
removal tries to detect and eliminate faults from the system using code 
inspection and development testing.   Fault tolerance tries to minimize the 
number of failures in the system by detecting and accounting for deviations 
in the programs execution that may lead to failures. 

4. Develop operational profiles: There are two types of operational profiles: 
overall mode, which is used to select the test cases to prepare and operational 
model, which is used to select operations for execution when a specific 
operational mode is tested.  When developing operational profiles the following 
steps are used [8].  

a) Identify the initiators of operations: First, it is necessary to identify the 
expected customer types on the basis of information such as system business 
case and marketing data for related systems and for set of users that tend to 
use the system in the same way. 

b) List the operations each initiator produces:  The system requirements, 
and sources such as work flow diagrams; user manuals, prototypes and 
pervious versions of the system can be used to extract the list of operations.  

c) Determine the occurrence rate per clock hour of the operations:  This 
information can be obtained from already existing field data from previous 
versions or similar systems; otherwise it can be collected.  Also, if the 
operations are event driven, simulated environments can be created to 
determine the event frequency. 

d) Determine the occurrence probability:  In this step, divide the occurrence 
rated for each operation by the total operation occurrence rates. 

5. Prepare for testing: A run is defined as a specific instance of an operation and is 
characterized by that operation and a complete set of values of its input variables.  
An input variable is the one that exists external to the run, but influences it.  
Input variables can be direct or indirect.  Direct input variables control 
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processing in a known and designed way, while indirect input variables influence 
the processing, but in an unpredictable way.  Runs differ from test cases because 
in a test case only the direct input variables are provided, and it becomes a run 
when the indirect input variables are provides too.   When preparing for testing 
the following steps are applied: 

a) Specify test cases: The number of test cases has to be specified in a way that 
it is cost-effective.  When selecting the test cases the following steps are used: 

i) Select the operations depending on their occurrence probabilities.  It can 
be determined using the operational profile with proper modifications 
acceding to the critical operations.   

ii) Complete the selection of test cases by choosing the level for all direct 
input variables, which is the value or range of values on input variables 
for which failure behavior is expected to be the same because of 
processing similarities.  After, selecting all the levels for each direct input 
variable, randomly choose a lever for each direct input variable. 

b) Define test procedures: A test procedure is the specification of the set of 
runs and environment associated with an operational mode. 

c) Prepare automated tools:  For SRET, it is not a requirement to have 
automated tools, but failure-identifications tools usually make the process 
faster and more efficient. 

6. Execute tests: First, start with feature testing a follow with load testing.  Use 
regression testing after each build involves significant change.  This step, includes 
identifying failures, determining when they occurred and establishing the severity 
of their impact.  Also, it is important to determine the rime of failure occurrence 
or number of failures per time period in execution time. 
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7. Interpret failure data:  The failure data is interpreted at two different levels, 
depending on the type of testing being used in a system component. 

a) Development testing:  Finding trends using estimation and plotting the 
failure intensity over all the severity classes and across all the operational 
modes against calendar time is a typical activity in this step.  Comparing the 
overall failure intensity objective can aid in the identification of schedules or 
reliabilities that are at risk , so the proper corrective measures can be taken. 

b) Certification testing: Figure 10.5 shows the typical graphical representation 
for interpreting failure when performing certification testing.  To normalize 
the failure times, multiply it by the appropriate failure intensity objective.  
Reliability charts can be built for different levels of consumer risk and 
supplier risk. 

10.11. SRE   Process and Fone Follower Example 

Let’s now take a look at the SRE process.  There are six principal activities, as shown 

in Figure 10.6.  We show the software development process below and in parallel 

with the SRE process, so you can relate the activities of one to those of the other.  

Both processes follow spiral models, but we don’t show the feedback paths for 

simplicity.  In the field, we collect certain data and use it to improve the SRE process 

for succeeding releases. 

Figure 10.5: Failure Interpretation for Certification Testing 
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The List Associated Systems, Implement Operational Profiles, Define “Just 

Right” Reliability, and Prepare for Test activities all start during the Requirements 

and Architecture phases of the software development process.  They all extend to 

varying degrees into the Design and Implementation phase, as they can be affected 

by it.  The Execute Test and Guide Test activities coincide with the Test phase.  

We will illustrate the SRE process with Fone Follower, an example adapted 

from an actual project at AT&T.  We have changed the name and certain details to 

keep the explanation simple and protect proprietary data.  Subscribers to Fone 

Follower call and enter, as a function of time, the phone numbers to which they want 

to forward their calls.  Fone Follower forwards a subscriber’s incoming calls (voice or 

fax) from the network according to the program the subscriber entered.  Incomplete 

voice calls go to the subscriber’s pager (if the subscriber has one) and then, if 

unanswered, to voice mail.  If the subscriber does not have a pager, incomplete voice 

calls go directly to voice mail.   

10.11.1. Define the Product 

The first activity is to define the product. You must establish who the supplier is and 

who the customers and users are, which can be a nontrivial enterprise in these days 

Figure 10.6: The Core Application Steps of SRET and the Corresponding 
Development Life Cycle Phase
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of outsourcing and complex inter- and intra company relationships. Then you list all 

the systems associated with the product that for various reasons must be tested 

independently.  

10.11.2. Implement Operational Profiles 

This section deals with quantifying how software is used. To fully understand it, we 

need to first consider what operations and operational profiles are.  

An operation is a major system logical task, which returns control to the system 

when complete. Some illustrations from Fone Follower are Phone number entry, 

Process fax call, and Audit a section of the phone number data base.  An operational 

profile is a complete set of operations with their probabilities of occurrence. Table 

10.2 shows an illustration of an operational profile from Fone Follower. 

There are five principal steps in developing an operational profile: 

1. Identify the operation initiators 

2. List the operations invoked by each initiator 

3. Review the operations list to ensure that the operations have certain desirable 

characteristics and form a set that is complete with high probability 

4. Determine the occurrence rates 

5. Determine the occurrence probabilities by dividing the occurrence rates by 

the total occurrence rate 

There are three principal kinds of initiators: user types, external systems, and 

the system itself. You can determine user types by considering customer types. For 

Table 10.2: Fone Follower Operational Profile    
 

Operation 
Occurrence 
Probability 

 
Proc. voice call, no pager, ans. 0.21 
Proc. voice call, pager, ans. 0.19 
Proc. fax   call 0.17 
Proc. voice call, pager, ans. on page 0.13 
Proc. voice call, no pager, no ans. 0.10 
Proc. voice call, pager, no  ans. on page 0.10 
Enter forwardees 0.09 
Audit sect. - phone number data base 0.009 
Add subscriber 0.0005 
Delete subscriber 0.0005 
Recover from hardware failure 0.000001 
 
Total 1 
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Fone Follower, one of the user types is subscribers and the principal external system 

is the telephone network.  Among other operations,  subscribers  initiate Phone 

number entry and  the telephone network initiates  Process fax call.  Fone Follower 

itself initiates Audit a section of the phone number data base. 

When implementing SRE for the first time, some software practitioners are 

initially concerned about possible difficulties in determining occurrence rates.  

Experience indicates that this is usually not a difficult problem.  Software 

practitioners are often not aware of all the use data that exists, as it is typically in the 

business side of the house.  Occurrence rate data is often available or can be derived 

from a previous release or similar system.  New products are not usually approved 

for development unless a business case study has been made, and this must typically 

estimate occurrence rates for the use of various functions to demonstrate 

profitability.  One can collect data from the field, and if all else fails, one can usually 

make reasonable estimates of expected occurrence rates.  In any case, even if there 

are errors in estimating occurrence rates, the advantage of having an operational 

profile far outweighs not having one at all. 

Once you have developed the operational profile, you can employ it, along with 

criticality information, to: 

1. Review the functionality to be implemented for operations that are not likely 
to be worth their cost and remove them or handle them in other ways 
(Reduced Operation Software or ROS) 

2. Suggest operations where looking for opportunities for reuse will be most 
cost-effective 

3. Plan a more competitive release strategy using operational development.  
With operational development, development proceeds operation by 
operation, ordered by the operational profile.  This makes it possible to 
deliver the most used, most critical capabilities to customers earlier than 
scheduled because the less used, less critical capabilities are delivered later.  

4. Allocate development resources among operations for system engineering, 
architectural design, requirements reviews, and design to cut schedules and 
costs.  

5. Allocate development resources among modules for code, code reviews, and 
unit test to cut schedules and costs  
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6. Allocate new test cases of a release among the new operations of the base 
product and its variations 

7. Allocate test time  

10.11.3. Define “Just Right” Reliability 

To define the “just right” level of reliability for a product, you must first define what 

“failure” means for the product.  We will define a failure as any departure of system 

behavior in execution from user needs.  You have to interpret exactly what this 

means for your product.  The definition must be consistent over the life of the 

product, and you should clarify it with examples.  A failure is not the same thing as a 

fault; a fault is a defect in system implementation that causes the failure when 

executed.  Beware, as there are many situations where the two have been confused in 

the literature.   

The second step in defining the “just right” level of reliability is to choose a 

common measure for all failure intensities, either failures per some natural unit or 

failures per hour. 

Then you set the total system failure intensity objective (FIO) for each 

associated system.  To determine an objective, you should analyze the needs and 

expectations of users.  

For each system you are developing, you must compute a developed software 

FIO.  You do this by subtracting the total of the expected failure intensities of all 

hardware and acquired software components from the system FIOs.  You will use 

the developed software FIOs to track the reliability growth during system test of all 

the systems you are developing with the failure intensity to failure intensity objective 

(FI/FIO) ratios. 

You will also apply the developed software FIOs in choosing the mix of 

software reliability strategies that meet these and the schedule and product cost 

objectives with the lowest development cost. These include strategies that are simply 

selected or not (requirements reviews, design reviews, and code reviews) and 

strategies that are selected and controlled (amount of system test, amount of fault 

tolerance).  SRE provides guidelines and some quantitative information for the 
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determination of this mix.  However, projects can improve the process by collecting 

information that is particular to their environment. 

10.11.4. Prepare For Test 

The Prepare for Test activity uses the operational profiles you have developed to 

prepare test cases and test procedures.  You allocate test cases in accordance with the 

operational profile.  For example, for the Fone Follower base product there were 500 

test cases to allocate.  The Process fax call operation received 17 percent of them, or 

85. 

After you assign test cases to operations, you specify the test cases within the 

operations by selecting from all the possible intraoperation choices with equal 

probability.  The selections are usually among different sets of values of input 

variables associated with the operations, sets that cause different processing to occur.  

These sets are called equivalence classes.  For example, one of the input variables for the 

Process fax call operation was the Forwarded (number to which the call was 

forwarded) and one of the equivalence classes of this input variable was Local calling 

area.  You then select a specific value within the equivalence class so that you define 

a specific test case. 

The test procedure is the controller that invokes test cases during execution.  It 

uses the operational profile, modified to account for critical operations and for 

reused operations from previous releases. 

10.11.5. Execute Test 

In the Execute Test activity, you will first allocate test time among the associated 

systems and types of test (feature, load, and regression). 

Invoke feature tests first. Feature tests execute all the new test cases of a release 

independently of each other, with interactions and effects of the field environment 

minimized (sometimes by reinitializing the system).   Follow these by load tests, which 

execute test cases simultaneously, with full interactions and all the effects of the field 

environment. Here you invoke the test cases at random times, choosing operations 

randomly in accord with the operational profile.  Invoke a regression test after each 

build involving significant change. A regression test executes some or all feature tests; it 

is designed to reveal failures caused by faults introduced by program changes. 
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Identify failures, along with when they occur.  The “when” can be with respect 

to natural units or time.  This information will be used in Guide Test. 

10.11.6. Guide Test 

The last activity involves guiding the product’s system test phase and release.  For 

software that you develop, track reliability growth as you attempt to remove faults.  

Then we certify the super systems, which simply involves accepting or rejecting the 

software in question.  We also use certification test for any software that we expect 

customers will acceptance test. 

For certification test you first normalize failure data by multiplying by the 

failure intensity objective.  The unit “Mcalls” is millions of calls.  Plot each new 

failure as it occurs on a reliability demonstration chart as shown in Figure 10.7.  Note 

that the first two failures fall in the Continue region.  This means that there is not 

enough data to reach an accept or reject decision.  The third failure falls in the 

Accept region, which indicates that you can accept the software, subject to the levels 

of risk associated with the chart you are using.  If these levels of risk are 

unacceptable, you construct another chart with the levels you desire (Musa 2004) and 

re-plot the data. 

Figure 10.7: Reliability Demonstration Chart Applied to Fone Follower 
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To track reliability growth, input failure data that you collect in Execute Test to 

a reliability estimation program such as CASRE,  normalize the data by multiplying 

by the failure intensity objective in the same units.  Execute this program periodically 

and plot the FI/FIO ratio as shown in Figure 10.8 for Fone Follower.  If you 

observe a significant upward trend in this ratio, you should determine and correct the 

causes.  The most common causes are system evolution, which may indicate poor 

change control, and changes in test selection probability with time, which may 

indicate a poor test process. 

 

If you find you are close to your scheduled test completion date but have an 

FI/FIO ratio substantially greater than 0.5, you have three feasible options: defer 

some features or operations, rebalance your major quality characteristic objectives, or 

increase work hours for your organization.   When the FI/FIO ratio reaches 0.5, you 

should consider release as long as essential documentation is complete and you have 

resolved outstanding high severity failures (you have removed the faults causing 

them). 

Developers sometimes worry that systems with ultrareliable FIOs might require 

impractically long hours of test to certify the FIOs specified.  But there are many 

ameliorating circumstances that make the problem more tractable than that for ultra-

reliable hardware (Musa 2004).  First, in most cases only a few critical operations, not 

the entire system, must be ultra-reliable.  Second, software reliability relates to the 

execution time of the software, not the clock time for which the system is operating 

as does hardware.  Since the critical operations often occur only rarely, the execution 

time of the critical operations is frequently a small fraction of the clock time.  Thus 

Figure 10.8: Plot of FI/FIO Ratio for  Fone Follower
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the FIO for the entire system need not be ultra-reliable.  Finally, since processing 

capacity is cheap and rapidly becoming cheaper, it is quite feasible to test at a rate 

that is hundreds of times real time by using parallel processors.  Thus testing of ultra-

reliable software can be manageable. 

10.11.7. Collect Field Data 

The SRE process is not complete when you ship a product.  We collect certain field 

data to use in succeeding releases and in other products.  In many cases, we can 

collect the data easily and inexpensively by building recording and reporting routines 

into the product.  In this situation, we collect data from all field sites.  For data that 

requires manual collection, take a small random sample of field sites. 

We collect data on failure intensity and on customer satisfaction with the major 

quality characteristics and use this information in setting the failure intensity objective 

for the next release.  We also measure operational profiles in the field and use this 

information to correct the operational profiles we estimated. Finally, we collect 

information that will let us refine the process of choosing reliability strategies in 

future projects. 

10.12. Conclusion 

If you apply SRE in all the software-based products you develop, you will be 

controlling the process rather than it controlling you.  You will find that you can be 

confident of the reliability and availability of the products.  At the same time, you will 

deliver them in minimum time and cost for those levels of reliability and availability.  

You will have maximized your efficiency in satisfying your customers’ needs.  This is 

a vital skill to possess if you are to be competitive in today’s marketplace. 

 





 

 

11. Software Testing 

11.1. Introduction 

Software testing is any activity aimed at evaluating an attribute or capability of a 

program or system and determining that it meets its required results. Although 

crucial to software quality and widely deployed by programmers and testers, software 

testing still remains an art, due to limited understanding of the principles of software. 

The difficulty in software testing stems from the complexity of software: we cannot 

completely test a program with moderate complexity. Testing is more than just 

debugging. The purpose of testing can be quality assurance, verification and 

validation, or reliability estimation. Testing can be used as a generic metric as well. 

Correctness testing and reliability testing are two major areas of testing. Software 

testing is a trade-off between budget, time and quality.  

Software Testing is the process of executing a program or system with the 

intent of finding errors.  Or, it involves any activity aimed at evaluating an attribute 

or capability of a program or system and determining that it meets its required 

results. Software is not unlike other physical processes where inputs are received and 

outputs are produced. Where software differs is in the manner in which it fails. Most 

physical systems fail in a fixed (and reasonably small) set of ways. By contrast, 

software can fail in many bizarre ways. Detecting all of the different failure modes for 

software is generally infeasible. Unlike most physical systems, most of the defects in 

software are design errors, not manufacturing defects. Software does not suffer from 

corrosion, wear-and-tear -- generally it will not change until upgrades, or until 

obsolescence. So once the software is shipped, the design defects -- or bugs -- will be 

buried in and remain latent until activation. 

Software bugs will almost always exist in any software module with moderate 

size: not because programmers are careless or irresponsible, but because the 

complexity of software is generally intractable -- and humans have only limited ability 

to manage complexity. It is also true that for any complex systems, design defects can 

never be completely ruled out.  Discovering the design defects in software, is equally 

difficult, for the same reason of complexity. Because software and any digital systems 
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are not continuous, testing boundary values are not sufficient to guarantee 

correctness. All the possible values need to be tested and verified, but complete 

testing is infeasible. Exhaustively testing a simple program to add only two integer 

inputs of 32-bits (yielding 2^64 distinct test cases) would take hundreds of years, 

even if tests were performed at a rate of thousands per second. Obviously, for a 

realistic software module, the complexity can be far beyond the example mentioned 

here. If inputs from the real world are involved, the problem will get worse, because 

timing and unpredictable environmental effects and human interactions are all 

possible input parameters under consideration. 

A further complication has to do with the dynamic nature of programs. If a 

failure occurs during preliminary testing and the code is changed, the software may 

now work for a test case that it didn't work for previously. But its behavior on pre-

error test cases that it passed before can no longer be guaranteed. To account for this 

possibility, testing should be restarted. The expense of doing this is often prohibitive.  

Regardless of the limitations, testing is an integral part in software 

development. It is broadly deployed in every phase in the software development 

cycle. Typically, more than 50% percent of the development time is spent in testing. 

Testing is usually performed for the following purposes:  

• To improve quality 

As computers and software are used in critical applications, the outcome of a bug can 

be severe. Bugs can cause huge losses. Bugs in critical systems have caused airplane 

crashes, allowed space shuttle missions to go awry, halted trading on the stock 

market, and worse. Bugs can kill. Bugs can cause disasters. The so-called year 2000 

(Y2K) bug has given birth to a cottage industry of consultants and programming 

tools dedicated to making sure the modern world doesn't come to a screeching halt 

on the first day of the next century.  In a computerized embedded world, the quality 

and reliability of software is a matter of life and death.  

Quality means the conformance to the specified design requirement. Being 

correct, the minimum requirement of quality, means performing as required under 

specified circumstances. Debugging, a narrow view of software testing, is performed 

heavily to find out design defects by the programmer. The imperfection of human 
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nature makes it almost impossible to make a moderately complex program correct 

the first time. Finding the problems and get them fixed, is the purpose of debugging 

in programming phase.  

• For Verification & Validation (V&V)  

Just as topic indicated above, another important purpose of testing is verification and 

validation (V&V). Testing can serve as metrics. It is heavily used as a tool in the 

V&V process. Testers can make claims based on interpretations of the testing results, 

which either the product works under certain situations, or it does not work. We can 

also compare the quality among different products under the same specification, 

based on results from the same test.  

We cannot test quality directly, but we can test related factors to make quality 

visible. Quality has three sets of factors -- functionality, engineering, and adaptability. 

These three sets of factors can be thought of as dimensions in the software quality 

space. Each dimension may be broken down into its component factors and 

considerations at successively lower levels of detail. Table 11.1 illustrates some of the 

most frequently cited quality considerations. 

Table 11.1: Typical Software Quality Factors 

Functionality  
(exterior quality) 

Engineering  
(interior quality) 

Adaptability  
(future quality) 

Correctness Efficiency Flexibility 
Reliability Testability Reusability 
Usability Documentation Maintainability 
Integrity Structure  

Good testing provides measures for all relevant factors. The importance of any 

particular factor varies from application to application. Any system where human 

lives are at stake must place extreme emphasis on reliability and integrity. In the 

typical business system usability and maintainability are the key factors, while for a 

one-time scientific program neither may be significant. Our testing, to be fully 

effective, must be geared to measuring each relevant factor and thus forcing quality 

to become tangible and visible. Tests with the purpose of validating the product 

works are named clean tests, or positive tests. The drawbacks are that it can only 

validate that the software works for the specified test cases. A finite number of tests 

cannot validate that the software works for all situations. On the contrary, only one 
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failed test is sufficient enough to show that the software does not work. Dirty tests, 

or negative tests, refer to the tests aiming at breaking the software, or showing that it 

does not work. A piece of software must have sufficient exception handling 

capabilities to survive a significant level of dirty tests. A testable design is a design 

that can be easily validated, falsified and maintained. Because testing is a rigorous 

effort and requires significant time and cost, design for testability is also an important 

design rule for software development.  

• For reliability estimation  

Software reliability has important relations with many aspects of software, including 

the structure, and the amount of testing it has been subjected to. Based on an 

operational profile (an estimate of the relative frequency of use of various inputs to 

the program), testing can serve as a statistical sampling method to gain failure data 

for reliability estimation.  

Software testing is not mature. It still remains an art, because we still cannot 

make it a science. We are still using the same testing techniques invented 20-30 years 

ago, some of which are crafted methods or heuristics rather than good engineering 

methods. Software testing can be costly, but not testing software is even more 

expensive, especially in places that human lives are at stake. Solving the software-

testing problem is no easier than solving the Turing halting problem. We can never 

be sure that a piece of software is correct. We can never be sure that the 

specifications are correct. No verification system can verify every correct program. 

We can never be certain that a verification system is correct either.  

11.2. Key Concepts 

11.2.1. Correctness Testing 

• Black-box testing  

The black-box approach is a testing method in which test data are derived from the 

specified functional requirements without regard to the final program structure. It is 

also termed data-driven, input/output driven, or requirements-based testing. Because 

only the functionality of the software module is of concern, black-box testing also 

mainly refers to functional testing -- a testing method emphasized on executing the 
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functions and examination of their input and output data. The tester treats the 

software under test as a black box -- only the inputs, outputs and specification are 

visible, and the functionality is determined by observing the outputs to 

corresponding inputs. In testing, various inputs are exercised and the outputs are 

compared against specification to validate the correctness. All test cases are derived 

from the specification. No implementation details of the code are considered.  

It is obvious that the more we have covered in the input space, the more 

problems we will find and therefore we will be more confident about the quality of 

the software. Ideally we would be tempted to exhaustively test the input space. But as 

stated above, exhaustively testing the combinations of valid inputs will be impossible 

for most of the programs, let alone considering invalid inputs, timing, sequence, and 

resource variables. Combinatorial explosion is the major roadblock in functional 

testing. To make things worse, we can never be sure whether the specification is 

either correct or complete. Due to limitations of the language used in the 

specifications (usually natural language), ambiguity is often inevitable. Even if we use 

some type of formal or restricted language, we may still fail to write down all the 

possible cases in the specification. Sometimes, the specification itself becomes an 

intractable problem: it is not possible to specify precisely every situation that can be 

encountered using limited words. And people can seldom specify clearly what they 

want -- they usually can tell whether a prototype is, or is not, what they want after 

they have been finished. Specification problems contribute approximately 30 percent 

of all bugs in software.  

The research in black-box testing mainly focuses on how to maximize the 

effectiveness of testing with minimum cost, usually the number of test cases. It is not 

possible to exhaust the input space, but it is possible to exhaustively test a subset of 

the input space. Partitioning is one of the common techniques. If we have partitioned 

the input space and assume all the input values in a partition is equivalent, then we 

only need to test one representative value in each partition to sufficiently cover the 

whole input space. Domain testing partitions the input domain into regions, and 

consider the input values in each domain an equivalent class. Domains can be 

exhaustively tested and covered by selecting a representative value(s) in each domain. 

Boundary values are of special interest. Experience shows that test cases that explore 

boundary conditions have a higher payoff than test cases that do not. Boundary value 
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analysis requires one or more boundary values selected as representative test cases. 

The difficulties with domain testing are that incorrect domain definitions in the 

specification cannot be efficiently discovered.  

Good partitioning requires knowledge of the software structure. A good testing 

plan will not only contain black-box testing, but also white-box approaches, and 

combinations of the two.  

•  White-box testing  

Contrary to black box testing, software is viewed as a white-box, or glass-box in 

white-box testing, as the structure and flow of the software under test are visible to 

the tester. Testing plans are made according to the details of the software 

implementation, such as programming language, logic, and styles. Test cases are 

derived from the program structure. White-box testing is also called glass-box testing, 

logic-driven testing or design-based testing. 

There are many techniques available in white-box testing, because the problem 

of intractability is eased by specific knowledge and attention on the structure of the 

software under test. The intention of exhausting some aspect of the software is still 

strong in white-box testing, and some degree of exhaustion can be achieved, such as 

executing each line of code at least once (statement coverage), traverse every branch 

statements (branch coverage), or cover all the possible combinations of true and false 

condition predicates (Multiple condition coverage).  

Control-flow testing, loop testing, and data-flow testing, all maps the 

corresponding flow structure of the software into a directed graph. Test cases are 

carefully selected based on the criterion that all the nodes or paths are covered or 

traversed at least once. By doing so we may discover unnecessary "dead" code -- 

code that is of no use, or never get executed at all, which cannot be discovered by 

functional testing.  

In mutation testing, the original program code is perturbed and many mutated 

programs are created, each contains one fault. Each faulty version of the program is 

called a mutant. Test data are selected based on the effectiveness of failing the 

mutants. The more mutants a test case can kill, the better the test case is considered. 

The problem with mutation testing is that it is too computationally expensive to use. 
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The boundary between black-box approach and white-box approach is not clear-cut. 

Many testing strategies mentioned above, may not be safely classified into black-box 

testing or white-box testing. It is also true for transaction-flow testing, syntax testing, 

finite-state testing, and many other testing strategies not discussed in this text. One 

reason is that all the above techniques will need some knowledge of the specification 

of the software under test. Another reason is that the idea of specification itself is 

broad -- it may contain any requirement including the structure, programming 

language, and programming style as part of the specification content.  

We may be reluctant to consider random testing as a testing technique. The test 

case selection is simple and straightforward: they are randomly chosen. Study in 

indicates that random testing is more cost effective for many programs. Some very 

subtle errors can be discovered with low cost. And it is also not inferior in coverage 

than other carefully designed testing techniques. One can also obtain reliability 

estimate using random testing results based on operational profiles. Effectively 

combining random testing with other testing techniques may yield more powerful 

and cost-effective testing strategies.  

11.2.2. Performance testing 

Not all software systems have specifications on performance explicitly. But every 

system will have implicit performance requirements. The software should not take 

infinite time or infinite resource to execute. "Performance bugs" sometimes are used 

to refer to those design problems in software that cause the system performance to 

degrade.  

Performance has always been a great concern and a driving force of computer 

evolution. Performance evaluation of a software system usually includes: resource 

usage, throughput, stimulus-response time and queue lengths detailing the average or 

maximum number of tasks waiting to be serviced by selected resources. Typical 

resources that need to be considered include network bandwidth requirements, CPU 

cycles, disk space, disk access operations, and memory usage. The goal of 

performance testing can be performance bottleneck identification, performance 

comparison and evaluation, etc. The typical method of doing performance testing is 

using a benchmark -- a program, workload or trace designed to be representative of 

the typical system usage.  
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11.2.3. Reliability testing 

Software reliability refers to the probability of failure-free operation of a system. It is 

related to many aspects of software, including the testing process. Directly estimating 

software reliability by quantifying its related factors can be difficult. Testing is an 

effective sampling method to measure software reliability. Guided by the operational 

profile, software testing (usually black-box testing) can be used to obtain failure data, 

and an estimation model can be further used to analyze the data to estimate the 

present reliability and predict future reliability. Therefore, based on the estimation, 

the developers can decide whether to release the software, and the users can decide 

whether to adopt and use the software. Risk of using software can also be assessed 

based on reliability information advocates that the primary goal of testing should be 

to measure the dependability of tested software.  

There is agreement on the intuitive meaning of dependable software: it does 

not fail in unexpected or catastrophic ways. Robustness testing and stress testing are 

variances of reliability testing based on this simple criterion.  

The robustness of a software component is the degree to which it can function 

correctly in the presence of exceptional inputs or stressful environmental conditions. 

Robustness testing differs with correctness testing in the sense that the functional 

correctness of the software is not of concern. It only watches for robustness 

problems such as machine crashes, process hangs or abnormal termination. The 

oracle is relatively simple therefore robustness testing can be made more portable 

and scalable than correctness testing. This research has drawn more and more 

interests recently, most of which uses commercial operating systems as their target, 

such as the work in Stress testing, or load testing, is often used to test the whole 

system rather than the software alone. In such tests the software or system are 

exercised with or beyond the specified limits. Typical stress includes resource 

exhaustion, bursts of activities, and sustained high loads.  

11.2.4. Security testing  

Software quality, reliability and security are tightly coupled. Flaws in software can be 

exploited by intruders to open security holes. With the development of the Internet, 

software security problems are becoming even more severe. Many critical software 

applications and services have integrated security measures against malicious attacks. 
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The purpose of security testing of these systems include identifying and removing 

software flaws that may potentially lead to security violations, and validating the 

effectiveness of security measures. Simulated security attacks can be performed to 

find vulnerabilities.  

11.3. Testing Automation 

Software testing can be very costly. Automation is a good way to cut down time and 

cost. Software testing tools and techniques usually suffer from a lack of generic 

applicability and scalability. The reason is straight-forward. In order to automate the 

process, we have to have some ways to generate oracles from the specification, and 

generate test cases to test the target software against the oracles to decide their 

correctness. Today we still don't have a full-scale system that has achieved this goal. 

In general, significant amount of human intervention is still needed in testing. The 

degree of automation remains at the automated test script level.  

The problem is lessened in reliability testing and performance testing. In 

robustness testing, the simple specification and oracle: doesn't crash, doesn't hang 

suffices. Similar simple metrics can also be used in stress testing.  

11.4. When to Stop Testing? 

Testing is potentially endless. We cannot test till all the defects are unearthed and 

removed -- it is simply impossible. At some point, we have to stop testing and ship 

the software. The question is when. Realistically, testing is a trade-off between 

budget, time and quality. It is driven by profit models. The pessimistic, and 

unfortunately most often used approach is to stop testing whenever some, or any of 

the allocated resources -- time, budget, or test cases -- are exhausted. The optimistic 

stopping rule is to stop testing when either reliability meets the requirement, or the 

benefit from continuing testing cannot justify the testing cost. This will usually 

require the use of reliability models to evaluate and predict reliability of the software 

under test. Each evaluation requires repeated running of the following cycle: failure 

data gathering -- modeling -- prediction. This method does not fit well for ultra-

dependable systems, however, because the real field failure data will take too long to 

accumulate.  
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11.5. Alternatives to Testing 

Software testing is more and more considered a problematic method toward better 

quality. Using testing to locate and correct software defects can be an endless 

process. Bugs cannot be completely ruled out. Just as the complexity barrier 

indicates: chances are testing and fixing problems may not necessarily improve the 

quality and reliability of the software. Sometimes fixing a problem may introduce 

much more severe problems into the system, happened after bug fixes, such as the 

telephone outage in California and eastern seaboard in 1991. The disaster happened 

after changing 3 lines of code in the signaling system. 

11.6. Verification/Validation/Certification 

In the development of an embedded system, it is important to be able to determine if 

the system meets specifications and if its outputs are correct. This is the process of 

verification and validation (V & V) and its planning must start early in the 

development life cycle. Both aspects are necessary as a system meeting its 

specifications does not necessary mean it is technically correct and vice versa. There 

are many different V & V techniques, which are applicable at different stages of the 

development life cycle. The results of V & V forms an important component in the 

safety case, which is a document used to support certification. Certification is usually 

pursued due to either legal reasons or economic advantages. The certification process 

also starts from the beginning of the life cycle and requires cooperation between the 

developer and regulatory agency from the very start. Thorough V & V does not 

prove that the system is safe or dependable, and there is always a limit to how much 

testing is enough testing. In addition, certification does not prove that a system is 

correct, so it does not eliminate the developer's legal and moral obligations. 

Therefore, extreme care should be taken in the development of embedded systems to 

make sure that the right amount of time is spent on V & V, and also that certification 

not be used to prove that a system is correct. 

Verification, validation, and certification are essential in the life cycle of any 

safety critical embedded system. The development of any system is not complete 

without rigorous testing and verification that the implementation is consistent with 

the specifications. Verification and validation (V & V) have become important, 

especially in software, as the complexity of software in systems has increased, and 
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planning for V & V is necessary from the beginning of the development life cycle. 

Over the past 20 to 30 years, software development has evolved from small tasks 

involving a few people to enormously large tasks involving a many people. Because 

of this change, verification and validation has similarly also undergone a change. 

Previously, verification and validation was an informal process performed by the 

software engineer himself. However, as the complexity of systems increased, it 

became obvious that continuing this type of testing would result in unreliable 

products.  It became necessary to look at V & V as a separate activity in the overall 

software development life cycle. The V & V of today is significantly different from 

the past as it is practiced over the entire software life cycle. It is also highly 

formalized and sometimes activities are performed by organizations independent of 

the software developer. [Andriole86] In addition, V & V is very closely linked with 

certification because it is a major component in support of certification.  

11.6.1. Verification Techniques  

There are many different verification techniques but they all basically fall into 2 major 

categories - dynamic testing and static testing.  

• Dynamic testing - Testing that involves the execution of a system or 

component. Basically, a number of test cases are chosen, where each test case 

consists of test data. These input test cases are used to determine output test 

results. Dynamic testing can be further divided into three categories - 

functional testing, structural testing, and random testing.  

• Functional testing - Testing that involves identifying and testing all the 

functions of the system as defined within the requirements. This form of 

testing is an example of black-box testing since it involves no knowledge of 

the implementation of the system.  

• Structural testing - Testing that has full knowledge of the implementation 

of the system and is an example of white-box testing. It uses the information 

from the internal structure of a system to devise tests to check the operation 

of individual components. Functional and structural testing both chooses test 

cases that investigate a particular characteristic of the system.  

• Random testing - Testing that freely chooses test cases among the set of all 

possible test cases. The use of randomly determined inputs can detect faults 
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that go undetected by other systematic testing techniques. Exhaustive testing, 

where the input test cases consists of every possible set of input values, is a 

form of random testing. Although exhaustive testing performed at every 

stage in the life cycle results in a complete verification of the system, it is 

realistically impossible to accomplish. [Andriole86]  

• Static testing - Testing that does not involve the operation of the system or 

component. Some of these techniques are performed manually while others 

are automated. Static testing can be further divided into 2 categories - 

techniques that analyze consistency and techniques that measure some 

program property.  

• Consistency techniques - Techniques that are used to insure program 

properties such as correct syntax, correct parameter matching between 

procedures, correct typing, and correct requirements and specifications 

translation.  

11.6.2. Validation Techniques  

There are also numerous validation techniques, including formal methods, fault 

injection, and dependability analysis. Validation usually takes place at the end of the 

development cycle, and looks at the complete system as opposed to verification, 

which focuses on smaller sub-systems.  

• Formal methods - Formal methods is not only a verification technique but 

also a validation technique. Formal methods means the use of mathematical 

and logical techniques to express, investigate, and analyze the specification, 

design, documentation, and behavior of both hardware and software.  

• Fault injection - Fault injection is the intentional activation of faults by 

either hardware or software means to observe the system operation under 

fault conditions.  

• Hardware fault injection - Can also be called physical fault injection 

because we are actually injecting faults into the physical hardware.  

• Software fault injection - Errors are injected into the memory of the 

computer by software techniques. Software fault injection is basically a 

simulation of hardware fault injection.  
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• Dependability analysis - Dependability analysis involves identifying hazards 

and then proposing methods that reduces the risk of the hazard occurring.  

• Hazard analysis - Involves using guidelines to identify hazards, their root 

causes, and possible countermeasures.  

• Risk analysis - Takes hazard analysis further by identifying the possible 

consequences of each hazard and their probability of occurring.  

Verification and validation is a very time consuming process as it consists of 

planning from the start, the development of test cases, the actual testing, and the 

analysis of the testing results. It is important that there are people specifically in 

charge of V & V that can work with the designers. Since exhaustive testing is not 

feasible for any complex system, an issue that occurs is how much testing is enough 

testing. Sure, the more testing the better but when do the cost and time of testing 

outweigh the advantages gained from testing. The amount of time and money spent 

on V & V will certainly vary from project to project. In many organizations, testing is 

done until either or both time and money runs out. Whether this method is effective 

or not, it is a technique used by many companies. 

11.7. Certification Process  

Verification and validation are part of the long certification process for any 

embedded system. There are different reasons why a product needs certification. 

Sometimes certification is required for legal reasons. For example, before an aircraft 

is allowed to fly, it must obtain a license. Being certified would also be important for 

commercial reasons like having a sales advantage. One of the main reasons for 

certification is to show competence in specific areas. Certification is usually carried 

out by government agencies or other organizations with a national standing.  

Certification can be applied to organizations or individuals, tools or methods, 

or systems or products. Certification of organizations aims at assuring that the 

organization achieves a certain level or proficiency and those they agree to certain 

standards or criteria’s. This however, is not applicable to all areas because while it is 

easy to measure the procedures of a company, it is much harder to measure the 

competence with which they are performed. So certification is usually applied to 

areas, such as quality assurance and testing, as opposed to design. Certification may 
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also apply to individuals where workers must be certified in order to be a certain 

profession. This usually applies to workers such as doctors, lawyers, accountants, and 

civil engineers. Tools or methods may also be certified.  In certification, there is 

always the issue of whether artifacts or methodology be certified. This becomes an 

issue in the certification of products containing software. Because software testing is 

so difficult, certification must be based on the process of development and on the 

demonstrated performance. This is a case where the methodology (development 

process) is certified instead of the artifact (software).  

Even though certification does not occur until the end of a system 

development cycle, the planning starts from the very beginning. Because certification 

is a complicated process between the developer and the regulatory agency, the 

certification liaison between the parties must be established early on in the process. 

Next, the developer should submit a verification plan for approval by the regulatory 

agency. After the submission, discussion takes place between the developer and 

regulatory agency to resolve areas of misunderstanding and disagreement. Changes to 

the methods used have to be approved by the regulatory body to insure that 

certification will not be affected. Throughout the entire development life cycle of the 

product, documentation must be continually submitted to show that the certification 

plan is satisfied. The regulating authority will also hold a series of reviews to discuss 

the submitted material. At the end, if the terms of the certification plan have been 

satisfied, then a certificate or license is issued.  

The safety case is an important document used to support certification. It 

contains a set of arguments supported by analytical and experimental evidence 

concerning the safety of a design. It is created early in the development cycle and is 

then expanded as issues important to safety come up. In the safety case, the 

regulatory authority will look to see that all potential hazards have been identified, 

and that appropriate steps have been taken to deal with them. In addition, the safety 

case must also demonstrate that appropriate development methods have been 

adopted and that they have been performed correctly. Items that should be included 

in the safety case includes, but are not limited to the following: specification of safety 

requirements, results of hazard and risk analysis, verification and validation strategy, 

and results of all verification and validation activities.  
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A potential problem with certification is that manufacturers use it to avoid its 

legal and moral obligations. An important aspect of certification is that it does not 

prove that the system is correct. Certification only proves that a system has met 

certain standards set by the certifying agency. The standards show that a product has 

met certain guidelines, but it does not mean that the system is correct. Any problem 

with the system is ultimately the responsibility of the designer and manufacturer, not 

the certification agency. 

11.8. Test Planning 

System testing is expensive. Careful planning is needed to get the most out of testing 

and to control testing costs. Test planning is concerned with setting out standards for 

the testing process rather than describing product tests. They allow technical staff to 

get an overall picture of the system tests and to place their own work in this context. 

Unit testing and module testing may be the responsibility of the programmers 

developing the component. Programmers make up their own test data and 

incrementally test the code as it is developed. This is an economically sensible 

approach as the programmer knows the component best and is most able to generate 

test data but it is a natural human trait for individuals to feel an affinity with objects 

they have constructed and programmers may feel that testing threatens their 

creations. If unit testing is left to the component developer, it should be re-tested by 

independent tester or should be subjected to some other monitoring procedure. 

Later stages of testing involve integration work from a number of programmers 

and must be planned in advance. An independent team of testers should undertake 

them. Module and sub-system should be planned as the design of the sub-system is 

formulated. Integration tests should be developed in conjunction with the system 

design whereas Acceptance tests should be designed with the program specifications. 

11.9. Statistical Testing 

In order to test program’s performance and reliability, tests are designed to reflect the 

frequency of actual user inputs. After running the tests, an estimate of the operational 

reliability of the system can be made. Program performance may be judged by 

measuring the execution of the statistical tests. 
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11.10. Defect Testing  

When defects have been found in a program, these must be discovered and removed. 

This is called debugging. Testing establishes the existence of defects. Debugging is 

concerned with locating and correcting these defects. Defect Testing is intended to 

find areas where the program does not conform to its specification. 

11.11. Stages in Testing Process 

Execution based software testing, especially for large systems are usually carried out 

at different levels. In most cases there will be 3-4 levels, or major phases of testing; 

unit test, integration test, system test and some type of acceptance test. At each level 

there are specific testing goals. For example, at unit test a single component is tested. 

A principal goal is to detect functional and structural defects in the unit. At the 

integration level several components are tested as a group and the tester investigates 

component interactions. At the system level the system as a whole is tested and a 

principle goal is to evaluate attributes such as reliability, usability and performance. 

Software developed for the mass market (i.e. shrink-wrapped software) often goes 

through a series of tests called alpha and beta tests. Alpha tests bring potential users 

to the developer’s site to use the software. Developers note any problems. Beta tests 

send the software out to potential users who use it under real-world conditions and 

report defects to the developing organization. 

11.11.1. Unit Testing 

Individual components are tested to ensure that they operate correctly. Each 

component is tested independently, without other system components. 

11.11.2. Module Testing 

A module is a collection of dependant components such as an object class, an 

abstract data type or some looser collection of procedures and functions. A module 

encapsulates related components so can be tested without other system modules. 

11.11.3. Sub-System Testing 

This phase involves testing collection of modules, which have been integrated into 

sub-systems. Sub-systems may be independently designed and implemented. The 

most common problems, which arise in large software systems, are sub-system 
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interface mismatches. The sub-system test process therefore should concentrate on 

detection of interface errors by rigorously exercising these interfaces. 

11.11.4. System Testing 

The subsystems are integrated to make up the entire system. The testing process is 

concerned with finding errors, which result from unanticipated interactions between 

subsystems and system components. It is also concerned with validating that the 

system meets its functional and non-functional requirements.  

11.11.5. Acceptance Testing 

This is the final stage in the testing process before the system is accepted for 

operational use. The system is tested with data supplied by the system procurer rather 

than simulated test data. Acceptance testing may reveal errors and omissions in the 

system requirements definition because the real data exercises the system in different 

ways from the test data. Acceptance testing may also reveal requirement problems 

where the system’s facilities do not really meet the user’s needs or the system’s 

performance is unacceptable. Acceptance testing is sometimes called ALPHA 

Testing. Alpha testing process continues until the system developer and the client 

agree that the delivered system is an acceptable implementation of system’s 

requirement. 

11.11.6. Beta Testing 

When a system is to be marketed as a software product the testing process used is 

called BETA testing. Beta testing involves delivering the system to number of 

potential customers who agree to use that system. They report problems to the 

system developers. This exposes the product to real use and detects errors, which 

may not have been anticipated by system builders. After the feedback the system is 

modified and either released for further Beta testing or for general sale. 

11.12. Comparative Review of Testing Strategies 

A testing strategy is a general approach to the testing process rather than a method of 

devising particular system or component tests. Different testing strategies may be 

adopted depending on the type of system to be tested and the development process 

used. 
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11.12.1. Top Down Testing 

Testing starts with the most abstract component and works downwards. Top Down 

Testing tests the high levels of a system before testing its detailed components. The 

program is represented as a single abstract component with sub-components 

represented by stubs. Stubs have the same interface as the component but a very 

limited functionality. Top Down Testing should be used with Top down program 

development so that a system component is tested as soon as it is coded. Coding and 

testing are a single activity with no separate component or module-testing phase  

Advantages:  If top down testing is used, unnoticed design errors may be detected at 

an early stage in the testing process. As these errors are usually structural errors, early 

detection means that they can be corrected without undue costs. Early error 

detection means that extensive re-design and re-implementation may be avoided. 

Working system is available at an early stage in the development. 

Disadvantages:  Strict top-down testing is difficult to implement because of the 

requirement that program stubs, simulating lower levels of the system, must be 

produced. These program stubs may either be implemented as a simplified version of 

the component required which returns some random value of the correct type or by 

manual simulation. If the component is a complex one, it may be impractical to 

produce a program stub which simulates it correctly. Test output may be difficult to 

observe. In many systems, the higher levels of that system do not generate output 

but, to test these levels, they must be forced to do so. The tester may create an 

artificial environment to generate the test results. Collection of objects is not usually 

integrated in a strictly hierarchical way so a strict top-down testing strategy is not 

appropriate for object-oriented systems. 

11.12.2. Bottom Up Testing  

In this approach testing starts with the fundamental components and works upwards. 

It involves testing the modules at the lower levels in the hierarchy, and then working 

up the hierarchy of modules until the final module is tested. When using bottom-up 

testing, test drivers must be written to exercise the lower level components. These 

test drivers simulate the components’ environment and are valuable components in 

their own right. 
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Advantages:  Disadvantages of top-down testing are the advantages of 

bottom-up testing. Bottom-up testing is appropriate for object-oriented systems in 

that individual objects may be tested using their own test drivers.  Bottom-up testing 

of critical, low-level system components is almost always necessary. 

Disadvantages:  If top-down development is combined with bottom-up 

testing, all parts of the system must be implemented before testing can begin. 

Architectural faults are unlikely to be discovered until much of the system has been 

tested. Correction of these faults might involve the rewriting and consequent re-

testing of lower level modules in the system. 

11.12.3. Thread Testing 

Thread Testing is used for systems’ with multiple processes where the processing of a 

transaction threads its way through these processes. Testing strategy devised for 

testing real time systems. It is an event- based approach where tests are based on 

events which trigger system actions.  

 

Figure 11.1: Thread Testing 

Thread testing is testing strategy, which may be used after processes, or objects 

have been individually tested and integrated into sub-systems. Thread testing involves 

identifying and executing each possible processing thread.  

Because of practical difficulty in complete thread testing, only the most 

commonly exercised threads can be identified and selected for testing. After each 

thread has been tested with a single event, the processing of multiple events of the 

same type should be tested without events of any other type. After the system’s 
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reaction to each class of event has been tested, it can then be tested for its reactions 

to more than one class of simultaneous event.  

Advantages:   Thread testing can be most beneficially used after processes or 

objects have been individually tested and integrated into sub-systems. 

Disadvantages:  In real-rime systems it may be very difficult to identify all the 

threads. Further, it may be impossible to execute each possible thread. 

11.12.4. Stress Testing  

It involves planning a series of tests where the load is steadily increased. Stress testing 

continues these tests beyond the maximum design load of the system until the system 

fails. Stress testing is particularly relevant to distributed systems based on a network 

of processors because these systems often exhibit severe degradation when they are 

heavily loaded as the network becomes swamped with data which the different 

processes must exchange.  

1. It tests the failure behavior of the system. Stress testing checks that 

overloading the system causes it to fail-soft rather than collapse under its 

load. 

2. It stresses the system and may cause defects to come to light which would 

not normally manifest themselves. 

Advantages:   Stress testing checks that overloading the system causes it to 

fail-soft rather than collapse under its load. It is important to see that system failure 

does not cause data corruption or unexpected loss of user services. Stress testing 

simulates unusual combinations of normal circumstances which lead the system to 

failure. 

Disadvantages:  It is generally felt that the defects simulated by stress test are 

unlikely to cause system failures in normal usage because such unusual combinations 

resulting in high stress may never occur in reality. 

11.12.5. Back-to-Back Testing  

Back to back testing is only possible in the following situations:- 

3. When a system prototype is available. 
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4. When reliable systems are developed using N-version programming. 

5. When different versions of a system have been developed for different type 

of computers. 

Steps in back-to-back testing 

6. Prepare a general-purpose set of test cases. 

7. Run one version of the program with these test cases and save the results in 

one or more files. 

8. Run another version of the program with the same test cases, saving the 

results to a different file. 

9. Automatically compare the files produced by the modified and unmodified 

program versions. 

 

Differences between the outputs suggest problems which should be investigated in 

more details.  

Advantages: It is a very easy method of comparing the results when two 

versions of a system or system prototype is available. 

Disadvantages: Back-to-back testing may not be always possible since it is not 

usually realistic to generate a completely new system only for testing. Further, if the 
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Figure 11.2: Back to back testing 
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file comparison shows the output files to be identical, it does not guarantee that they 

are valid since the implementers of both versions may have made the same mistake. 

11.13. Comparative Review of Defect Testing Approaches 

Defect  testing  demonstrates  the  presence  not  the  absence  of  program  faults.  

This contrasts with Validation testing which is intended to demonstrate that a system 

meets its specifications. 

It is practically impossible for defect testing to be exhaustive. Test cases in this 

case need to be chosen such that faults which disrupt the operation are detected 

before the defects which just have nuisance value. If a program is a revision of an 

existing system, it can be expected that existing features must be working well so new 

features can be tested first. Typical situation testing can be done prior to boundary 

value cases. 

11.13.1. Functional or Black-box testing  

In this approach the tests are derived from the program specification. The system is a 

black box whose behavior can only be determined by studying its inputs and the 

related outputs. 
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Figure 11.3: Black box testing 
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Black box testing relies on the specification of the system or component which 

is being tested to derive test cases. The key problem for the defect tester is to select 

inputs that have a high probability of being members of the set Ie. And in many cases 

the selection of these test cases is based on the previous experience of test engineers. 

Advantages:  As per the experiment conducted by Basili and Selby in 1987, it 

was demonstrated that Black box testing was more effective in discovering faults 

than structural testing. Further, it is easy to conduct Black box testing since the 

knowledge of program’s structure and implementation is not essential. 

Disadvantages:  It may not be always reasonable to surmise that if the test 

fails to detect defects when one member of a class is processed, no other members of 

the class would identify defects. Further, some equivalence partitions may not be 

identified or errors may be made in equivalence partition identification or the test 

data may be incorrectly prepared. These tests do not check for unexpected 

corruption of data outside the component. 

11.13.2. Structural or White-box testing 

In white box testing, tests are derived from the knowledge of program’s structure and 

implementation. It is also called Glass box testing. Analysis of code can be used to 

find how many test cases are needed to guarantee a given level of test coverage. 

Knowledge of algorithm used to implement some function can be used to identify 

further equivalence partitions. One method of white box testing is path testing. 

Path Testing is white-box testing strategy where objective is to exercise every 
independent execution path through the component. Starting point for path testing is 
a program flow graph.  
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Figure 11.5: Flow Graph: If-then-else      Figure 11.6: Flow Graph: While loop 

Advantages: Analysis of the code can be used to find how many test cases 

are needed to guarantee a given level of test coverage. Knowledge of the algorithm 

used to implement some function can be used to identify further equivalence 

partitions. 

Disadvantages:  Path testing used in this technique may not test all possible 

combinations of all paths through the program. For any components apart from very 

trivial ones without loops, this is an impossible objective. Further, the number of 

paths through a program is usually proportional to its size. As modules are integrated 

into systems, it becomes unfeasible to use structural testing techniques. Path testing 

techniques are therefore only really usable at the unit testing and module testing 

stages of the testing processes. 

11.13.3. Interface Testing  

Tests are derived from the program specification plus knowledge of its internal 

interfaces. This type of testing is particularly important for Object-oriented systems. 

The objective is to detect faults which may have been introduced into the system 

because of interface errors or invalid assumptions about interfaces. 

Different types of interfaces are: 

Parameter interfaces: Where data or sometimes function references are 

passed from one component to another. 
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Shared memory interfaces: Interfaces where a block of memory is shared 

between sub-systems. Data is placed in the memory by one subsystem and retrieved 

from there by other sub-systems. 

Procedural interfaces: Interfaces where one sub-system encapsulates a set of 

procedures which can be called by other sub-systems. Objects and abstract data types 

have this form of interface. 

Message passing interfaces: Interface where one sub-system requests a 

service from another sub-system by passing a message to it. 

Interface Errors: Interface errors are one of the most common forms of error 

in complex systems. These errors fall into three classes:  

Interface misuse: A calling component calls some other component and 

makes an error in the use of its interface.  

Interface misunderstanding: A calling component misunderstands the 

specification of the interface of the called components and embeds assumptions 

about the behavior of the called component. The called component does not behave 

as expected and this causes unexpected behavior in the calling component. 

Timing errors: These occur in real-time systems which use a shared memory 

or a message passing interface. The producer of data and consumer of data may 

operate at different speeds. Unless particular care is taken in the interface design, the 

consumer can access out-of-date information because the producer of the 

information has not updated the shared interface information. 

Guidelines for Interface testing 

• Examine the code and design a set of tests (extreme ends of their ranges). 

• Where pointers are passed across an interface, always test the interface with 

null pointer parameters. 

• Design tests which should cause the component to fail. 

• Use a stress testing strategy in message passing systems to reveal timing 

problems. 
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Design tests that vary the order in which several components are activated to 

reveal implicit assumptions made by the programmer about the order in which the 

shared data is produced and consumed. 

Advantages:  Interface testing is very useful in finding faults in large and 

complex systems since Interface errors are one of the most common forms of error 

in complex systems.   

Disadvantages:  Testing for interface defects is particularly difficult because 

interface faults may only manifest themselves under unusual conditions. Because of 

interactions between faults in different modules or objects, faults in one object may 

only be detected when some other object behaves in an unexpected way. Many 

interface errors may be detected by compiler of strongly typed language leaving very 

little need to do interface testing.  

11.14. Conclusions 
• Software testing is an art. Most of the testing methods and practices are not 

very different from 20 years ago. It is nowhere near maturity, although there 

are many tools and techniques available to use. Good testing also requires a 

tester's creativity, experience and intuition, together with proper techniques.  

• Testing is more than just debugging. Testing is not only used to locate defects 

and correct them. It is also used in validation, verification process, and 

reliability measurement.  

• Testing is expensive. Automation is a good way to cut down cost and time. 

Testing efficiency and effectiveness is the criteria for coverage-based testing 

techniques.  

• Complete testing is infeasible. Complexity is the root of the problem. At 

some point, software testing has to be stopped and product has to be 

shipped. The stopping time can be decided by the trade-off of time and 

budget. Or if the reliability estimate of the software product meets 

requirement. 

 



 

 

12. Field Data Analysis 

12.1. Introduction 

The role and functionality of software in modern computer-based systems is growing 

at a tremendous rate. At the same time, pressures are mounting on software 

developers to deliver software of better quality, and to actively monitor the field 

performance of their software. Current experience indicates that software failures are 

increasing in proportion to system failures as organizations create more complex 

systems, while the information about these failures is frequently less than complete, 

uniform or precise. For example, field data on large telephone switching systems 

indicate that software is responsible for 20% to 50% of complete system outages. 

Figure 12.1 illustrates the percentage of reported causes of total system outages (due 

to hardware, software, and other causes) for two large telecommunications systems. 

The values indicated are averaged over several releases. Although both systems have 

similar overall functionality, there are some remarkable differences that underlie 

important, and often observed, property of software field reliability data — their 

variability. 

 

Figure 12.1: Causes of complete system outages averaged over several releases  for two 
large telecommunication systems: System A  and System B. 
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When examining individual releases for System A, about 30%-60% of outages 

were attributed to hardware (some of which may have involved a combination of 

hardware and software problems), about 20%-25% were attributed to software, and 

procedural and other errors accounted for the remainder of the outages.  In the case 

of System B 3%-7% of outages were attributed to hardware, and between 15% and 

60% (depending on the maturity of the release) could be attributed to software. The 

figures reported for System A are closer to the distributions reported for operating 

systems. The variance between System A and B is due to, at least in part, the lack of a 

precise definition for software outage categories. It may also differ due to the 

functional implementation strategy of the two systems (for example, System A may 

implement more functionality in hardware). Whatever the reasons, it is not easy to 

compare the two systems and draw objective conclusions. 

Examples like the one above can be found in all application areas. Therefore, it 

is not surprising that there are industrial, national and international efforts to 

standardize software reliability data collection and analysis processes. For example, in 

the U.S., Bellcore is an organization that acts as a software quality "watchdog" from 

within the telecommunications community. Bellcore requires collection of outage 

data for all network switching elements, analysis of the data, and classification of the 

data by cause of failure.  

A proper collection and analysis of software failure data lies at the heart of a 

practical evaluation of the quality of software-based systems. Software-based systems 

differ from pure hardware systems in many ways. Software failures are not driven by 

the physical wear-out seen in hardware, and software repair processes and procedures 

are different than those for hardware. Furthermore, in practice, software is more 

change-prone than hardware. As a result, studies of software data have their own 

unique data collection and analysis requirements apart from hardware. 

These requirements become even more important when we consider analysis 

of software field data as opposed to test data. There is usually much less control over 

what is actually collected in the field, often analyses are based on the available 

historical data, and operational usage of the system usually cannot be stopped to 

await the analysis of the data. In addition, organizations are much more sensitive to 

disclosure of field data due to competitive pressures. 



Field Data Analysis 
 

 

271

It is possible for an organization to spend considerable resources on collecting 

software field failure data with minimal returns as there may be no clear 

understanding as to why particular data are collected or how the data are to be 

analyzed. This is one of the reasons why studies in software reliability must have 

clearly defined objectives, goals, and analysis methods so that efficient use may be 

made of the existing data, and that the cost of collecting required supplemental data 

is minimized. 

The goal of this chapter is to provide insight into the process of collection and 

analysis of software reliability field data through a discussion of the underlying 

principles and case study illustrations. A distinction is made between the data 

collected from the actual operational sites where software is used by its intended 

users during field tests or in day-to-day production, and the data collected during 

controlled system tests and experiments with operational software. The latter categories 

were discussed in the earlier chapters, and therefore are not considered in this 

chapter. 

12.2. Data Collection Principles 

Software reliability is often expressed in terms of probability of failure in a given 

time, or in terms of the failure intensity, which is the number of failures per unit 

time. Minimum data requirements for calculating one expression may be slightly 

different than the other. Furthermore, precision in the data collection mechanism 

may affect the variance in reliability parameter estimates or field predictions. The 

basic information required to perform reliability analyses includes the amount of time 

a software system is in operation and the exact times that failures occur. A less 

precise, but usable, alternative would be condensed data that only reports the total 

number of failures observed over a period of time. Also, additional data may be 

required if we wish to do more than analyze the reliability of the product. For 

example, if we desire to determine the availability of the product, we need both 

failure repair and failure severity information. 

12.2.1. Study Plans, Goals and Input Variables 

The data needed for collection and its subsequent analysis (yielding information) 

should be related to the goals of the study. In reliability field data analysis, some 

important goals are: 
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1. To assess the actual quality and reliability of a software product in its 

operational     environment (which in turn assists in determining compliance 

with requirements or regulations and with the planning of maintenance 

resources), 

2. To relate field failure behavior of software to its usage in the field, and to its 

development and maintenance processes, through models, 

3. To predict software behavior in the field, and control its field quality by 

controlling its development, testing and maintenance processes and methods.  

Currently, in industry the first goal has preeminence and is the logical first step 

when conducting field analysis. It also illustrates how. 

Although various organizations may have different goals, exact and detailed 

goals are needed to properly carry out a study, or any other software related task. The 

first step is to develop a study plan. The plan details the goals, the deliverable, the 

methods, the processes, the schedules, the available resources, etc. For example, we 

may wish to determine whether availability of a given software release improves over 

time. To answer this question, we need to collect, and later select, failure and repair 

data for all sites that run this particular software version over the time period of 

interest. This subset of data, called the study population, is defined by the study 

goals, methods and deliverables. Unless the scope of study goals is defined well in 

advance, so that the study input data variables are within that scope, the desired 

analyses may not be possible and incomplete or wrong information may be collected 

instead. The study plan is a living document that the study should follow. The plan 

should be regularly updated to account for any changes and for the feedback from 

the process itself and from the study. 

12.2.2. Failures, Faults, and Related Data 

Accurate field collection of this information and related data is essential to any 

serious software reliability engineering effort. In addition to the recording of the 

failures and the times of the corrective actions, there is other information that is 

helpful for a full. Table 12.1 provides an example of the data that can help a designer 

take corrective action, and also allow an analyst to properly segment and prepare data 

for system-level software reliability analysis. In the table, we distinguish between 
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general classifiers, such as date and time of failure, and software-specific classifiers, 

such as software version information and causal analysis information. 

 

Table 12.1: Examples of fields required for reliability analysis 

Software-Specific 
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The information in Table 12.1 would be drawn from a variety of sources: 

customers, field support personnel, problem screeners, designers, system engineers, 

and maintenance including patch applicators. However, it would be very difficult for 

a reliability analyst to gather this information individually for all failures. Instead, 

what is needed is a toolset that allows integration of information (whether preexisting 

or current) from many sources and a variety of forms (e.g., reports, files, or 

databases) so that an analyst can create a table such as Table 12.1. 

The decisions on what data to collect, how to collect the data (for example, 

automated vs. manual) and how to verify correctness of the collected information, 

are some of the most crucial decisions an organization makes in its software 

reliability engineering program. Therefore they should be given appropriate attention 

and visibility. 

Partnering with customers is essential. Without the customer's assistance it is very 

difficult to collect adequate field data for system analysis. The customers should 

know why the data is needed, how the data will be used, and how they will benefit 

from the analysis. Providing feedback to the customer regarding the information that 

is gleaned from customer field data is of great importance. It will enhance the quality 

of the data collected and provide customer focus that leads to quality improvement. 

12.2.3. Time 

In general, the more often that a product is used, the more likely that a failure will be 

experienced. A full implementation of software reliability engineering requires 

consideration of software usage through determination of operational profile(s), and 

analysis of observed problems in that context. For example, if a software subsystem 

(or module) is found to exhibit an excessive number of field problems, it should be 

established whether this is due to very frequent usage of a component that has an 

average residual fault density (perhaps expressed as number of faults per line of 

code), or due to an excessive residual fault density in a component that is being used 

at the rate typical for most other product components. Re-engineering of both 

subsystems may be required. However, the evaluation of the process that created 

each subsystem would be very different. For example, the first subsystem may have 

an issue in understanding the demanding requirements that are associated with highly 
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utilized components and not necessarily the implementation quality. The first 

subsystem may also need more extensive verification than the second. 

"Time" is the execution exposure that the software receives through usage. As 

experience indicates that the best measure of time is the actual central processing unit 

(CPU) execution-time ([Musa87]). However, CPU time may not be available, and it is 

often possible to reformulate the measurements, and reliability models, in terms of 

other exposure metrics: calendar-time, clock time, in-service time (usually a sum of 

clock times due to many software applications running simultaneously on various 

single or multiple CPU systems), logical time (such as number of executed test cases, 

or fraction of planned test cases executed), or structural coverage (such as branch 

achieved statement or branch coverage).  In service time usually implies that each 

system is treated as one unit whether it has one or several CPUs. Also, 100 months 

of in-service time may be associated with 50 months (clock time) of two systems or 1 

month (clock time) of 100 systems. In many cases, in service time like clock time will 

be proportional to system execution (CPU) time. For this chapter, the term “usage 

time” will refer to any of CPU, execution, clock, or in service time. 

12.2.4. Usage 

Ideally, one should have a record of everywhere the system is used, and some 

information on how it is used.  This type of information allows calculation of metrics 

such as the total number of systems in operation on a given date and total operation 

time accumulated over all licensed systems running a particular version of the 

software. 

Some operating systems support collection of usage data better than others. 

For example, processes can be created in UNIX that allow tracking of when the 

software is accessed, who accesses it, how frequently it is accessed, and how long the 

user accesses it. This allows collection of usage data at the CPU level. However, to do 

this in a thorough manner, exact knowledge of the users (through licenses and other 

means) is often necessary, as is access to the user's system. 

12.2.5. Data Granularity 

In collecting usage and other data it should be remembered that the useful precision 

of the estimate/prediction of reliability is always less than the precision of the data. 
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For example, predictions for how many failures will occur during a particular week 

will be of little use if the data is only collected monthly. Therefore, choosing the right 

granularity is very important. For example, time interval for data sampling or 

aggregation may be one second, one hour, one day, one week, one month, ten test 

cases, one structural branch, or some other value. The time granularity of the raw 

data determines the lower limits of meaningful micro modeling and analyses that can 

be performed. 

For a different illustration, consider prediction of the time-to-next failure, a 

standard metric in reliability analysis. With field data, predicting the time-to-next 

failure or even the next five failures is usually impractical. In many cases when field 

data is assimilated for analysis, groups of failures (say 5-10 in size) are commonly 

associated with the same time frame (say one calendar week). Predicting that the next 

failure will occur within the next ten usage weeks with a probability of 0.95 will not 

help the customer since ten usage weeks may correspond to three calendar days. 

Thus, by the time all the data has been collected and analyzed, the next failure has 

already occurred. Field usage is very different from the laboratory test environment 

where one can interrupt the testing and assess the reliability of the system before 

continuing with another round of tests. Field usage is continuous; therefore, analysis 

should be commensurate with practical data collection delays and should focus on 

longer-range forecasting and estimation since this can be adequately done even when 

the failure and/or usage data is "lumped" together. 

12.2.6. Data Maintenance and Validation 

In practice, a large amount of failure data may be entered manually by field support 

personnel from customer reports or interviews. Some software systems have internal 

or independent mechanisms that detect failures of various types, and record that data 

automatically for later retrieval and processing. Even if such an automated system is 

in place, some data may still need to be entered manually simply because the data 

entry program either cannot function during a failure state or cannot recognize all 

failure states. Furthermore, some automated systems often cannot distinguish 

between hardware and software failures, and thus manual identification is required. 

Nevertheless, for any system, information surrounding a failure needs to be recorded 

as accurately as possible and data entry and database systems should be designed in 

such a way that all of the pertinent information is available to a reliability analyst. 
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Automation of date and time entries, implementation of intra- and inter-data 

record error and consistency checking, and standardization of entries will ensure that 

the analyst will have the best data possible from which to draw information. The 

database that holds the field data must be updated and crosschecked as new data 

becomes available or as existing data is found to be inaccurate. The importance of 

consistency checking cannot be overstressed. Unfortunately, it is an area that most 

data collection systems overlook. The effects of data discrepancies can be very 

pronounced, especially in the early deployment life when the usage data is sparse. For 

example, even a relatively small mistake in accounting for the sites involved, or in 

associating failures with the appropriate software releases, can have considerable 

impact on the failure count and the computation of the failure intensity. 

12.2.7. Analysis Environments 

For the proper analysis, many pieces are required that must work well together. First, 

there must be processes and tools in place to collect the raw data. There must also be 

an appropriate storage mechanism for the data, which is usually a database. If the 

database does not allow for easy data scanning, manipulation, and processing, then 

some other system should be in place to allow cursory examination and filtering of 

inappropriate or corrupt data. Of course, corrupt data should be corrected if 

possible, or at least marked as such. After filtering, an environment for merging data 

from different sources should be in place, since the data needed for failure analysis 

often reside in different systems. Also, some data may need to be transformed. 

Finally, for modeling and estimation, an environment that supports statistical 

methods should be available as well as a good data graphing tool. Depending on how 

the data will be used in a given environment, various information feedback 

mechanisms may be needed for different job roles that utilize that information. 

Reliability analysts typically require access to thousands of records 

simultaneously, and they have interests in not only aggregating the data, but in 

examining what historical data is available. For example, an analyst may wish to know 

whether or not a database can produce an historical image of itself at some given 

previous point in time. This determines whether or not an organization could 

simulate historical events and data available at these events and thus enable a 

"prediction" from strictly old data. 



 Field Data Analysis 

 

278 

12.3. Data Analysis Principles 

In statistics, analysis of data is usually considered exploratory or confirmatory. 

Exploratory analysis includes techniques in which one is only beginning to 

conjecture associations and the objective is simply to explore the potential nature of 

the data.  Confirmatory techniques are typically used after some body of evidence 

has emerged to confirm or challenge the prevailing wisdom or current thought. The 

hypothesis test is a tool very frequently used in confirmatory analysis. Although 

hypothesis test results are published in exploratory analysis studies, the nature of the 

study usually violates assumptions that artificially inflate the statistical significance of 

the study, or the hypothesis is often a straw man that is easily "crumpled" by the 

weight of the data. 

There are several exploratory data analysis techniques that are particularly 

relevant in the analysis of software failure and fault data. They are plots and graphs, data 

modeling and associated diagnostics, data transformation, and data resistance. Each 

technique has its own special utility but can often be used in combination with each 

other. 

It is often assumed that the field software exhibits reliability growth. However, 

this assumption needs to be validated in each study. There are two primary reasons 

for the assumption of reliability growth. First, most software systems can be patched 

relatively easily. In fact, patching is one of the great advantages of software over 

hardware. Faults are corrected while the system is in operation, and the system 

subsequently experiences reliability growth. Second, users of the system may become 

“familiar” with the imminent-failure states through first-hand experience, or 

information from other users, or the vendor. This information tends to allow the 

user to avoid failure modes until a correction occurs. 

In the following sub-sections we will examine various elementary data analysis 

principles. We present the ideas using field data from a real large release of software 

from a major digital telecommunications company. The data set, called Dataset 1 and 

is given in the Appendix A. In most cases, we will be concerned with reliability 

growth models, although most of the techniques we discuss will apply to a variety of 

other models and analyses. 
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12.3.1. Plots and Graphs 

Plots and graphs are very powerful tools in exploratory analysis, particularly when 

coupled with color graphics. It is often the case that an analyst can determine very 

quickly the initial relationships and associations in a data set using scatter plots, line 

plots, stem-and-leaf plots, and schematic or box plots. In software reliability, one 

often sees plots of the main variables of interest. For example, for Dataset 1 the line 

plot in Figure 12.2 illustrates the relationship between the total number of sites using 

the software release related to Dataset 1 (version N) and calendar time. We see that 

the number of offices is initially low, but quickly "ramps" up to the point of 

saturation. After the next release becomes available, the number of offices having 

version N steadily declines as customers migrate to the new release N+1. This graph 

illustrates that the usage of version N is far from constant in calendar time, an 

important factor to consider when examining the reliability of this software since 

usage often will not be proportional to calendar time. 

 

Another frequently used graph in software reliability illustrates the relationship 

between cumulative software failures and usage time. For example, Bellcore as a 

mandatory graph stipulates this graph that U.S. telecommunications suppliers must 

provide in their Reliability and Quality Measurement System reports. Figure 12.3 is 

an example of this graph for system Dataset 1. Note that the data has been 

normalized to protect proprietary information. The main effect of normalization on 

the analysis is one of scaling. Therefore, the analysis of the non-normalized data 

would be essentially the same. 

Figure 12.2: Two potential functional relationships: MO Model and GO Model  
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Based on Figure 12.3, we may conjecture that some simple functional 

relationship may exist between cumulative failures and time. In fact, two potential 

functional relationships are shown in Figure 12.3 using models. If both models 

appear to "fit" or "describe" the data equally well then you have encountered the 

unfortunate limitations of perception with curved graphs. It is very difficult to 

distinguish one type of curve from another. The "fitted" curves are actually very 

different functions; one is a logarithmic function and the other is an exponential 

function. Therefore, the moral is do not use cumulative failure plots to determine 

functional relationships, or compare different functional relationships. Although 

either model may be useful for interpolation, it is extrapolation (or predictions) of 

behavior that is of primary interest to a reliability engineer. These two functions have 

vastly different extrapolations. Thus, graphs of the cumulative failures should in 

practice be limited to depicting the failures for a given release against a predicted 

curve, or in simultaneously comparing several releases in an overlay plot. 

 

Failure intensity is the rate of change in the expected cumulative failures. The 

number of failures per unit time can quantify it. Since the failure intensity changes 

over time, we are interested in the instantaneous failure intensity and how it changes 

with respect to time, or how it changes with accumulation of failures. Figure 12.4 is a 

scatter plot of the failure intensity of release Data Set 1 with a group size of 5 

Figure 12.3: Scatter plot of the failure intensity of Data-Set 1. Time is 
measured in in-service units. 
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(percent) 1 against the cumulative failure count (in this case normalized to the total 

number of recorded failures). 

 

Failure intensity should play an important role in any reliability analysis. Many of 

the graphs illustrated in this text (including Figure 12.4), and many graphical 

diagnostics, require calculation of the approximate failure intensity from empirical 

data. This calculation has many benefits: the empirical failure intensity can be 

measured and quantified, graphs of the failure intensity may indicate appropriate 

functions, and parameters for certain models may be successfully estimated from the 

empirical failure intensity using ordinary least squares (in addition to more complex 

estimation methods such as maximum likelihood). Inspection of Figure 12.4 reveals 

that the failure intensity appears to decrease (indicating reliability growth) in a non-

linear fashion, and that the variance in the failure intensity becomes smaller as it 

approaches zero. The obvious and uniform decreasing trend exhibited in Figure 12.4 

may not be as obvious in other situations. For example, immediately after initial 

deployment of a release (during the so called "transient" region where the usage load 

is low and small errors in the data can drastically affect all metrics, including failure 

intensity), or where the data has large variance, we would like to confirm that 

reliability growth actually occurs before we commit to a particular (global) reliability 

growth model. 

Figure 12.4: The “loading” or installation “ramping” effect (Dataset 1). 
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12.3.2. Data Modeling and Diagnostics 

Models are very important to engineers. Most useful models are predictive, and some 

models may be used to direct development and maintenance process management. 

We will assume, for convenience, that software failures occur in accordance within 

the general framework of the non-homogeneous Poisson process (NHPP). In 

principle, this assumption which underlies many of the models, should be confirmed 

before we attempt to fit these models to data. The test requires information on true 

inter-failure times, something that may be difficult to obtain for the field data. 

 

The NHPP framework is very flexible and is not limited by specific 

assumptions that were common with initial models (for example, the assumption of 

instantaneous perfect repair of faults or the total number of failures is constant but 

unknown). It also allows for the use of covariates in the mean-value function that 

may or may not be directly tied with usage time. Table 12.2 provides a review of 

some well-known Software Reliability Growth Models in mean value function, µ(τ), 

and failure intensity, λ(τ), that will be important to our discussion of diagnostics. 

12.4. Important Topics in Analysis of Field Data 

In the case of a multi-release system, at different calendar times different software 

releases are installed at a different number of sites. This means that the usage 

intensity of a particular software load varies over calendar time and accumulates 

usage according to the amount of time the sites using the release have been in 

Table 12.2: Review of some well-known software reliability growth models in 
µ(τ) and λ(τ) 
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service. Therefore, from both hardware and software viewpoints, in-service time is a 

more representative and relevant measure of usage than calendar time. However, in 

many cases, calendar time is a measure that better reflects the perception of users 

(such as the telecommunications companies) since calendar time availability and 

degradation of services are very important from the customers' point of view. Simply 

stated, the context may dictate whether one or both viewpoints (calendar time and 

in-service time) are appropriate for analysis. 

When discussing the quality of software in operational use, it is instructive to 

employ a classification based on the usage characteristics of the product and the 

nature and availability of the field data. As seen in previous chapters, it is well known 

that the software usage profile is a dominant factor that influences the reliability, and 

that the software execution time is a better time domain than calendar time since it 

automatically incorporates the workload to which the software is subjected. The 

influence of measuring usage on reliability modeling as an alternative to calendar time 

is demonstrated by the example in this section. However, in practice, we may have to 

make a statement about the quality of the software without having direct information 

about its usage, and without having available a large number of failure events. 

Therefore, in the following sections, we will discuss three classes of field reliability 

data analysis: calendar-time, usage-time and special event analysis. In the last section, 

we will discuss the related concept of availability. 

12.4.1. Calendar Time 

Calendar-time analysis arises in situations where failures are reported only in the 

calendar-time domain and precise information about the usage of the software may 

not be available. We see this type of constraint in wide-distribution software — 

software that is developed for the purpose of selling on the open market to many 

customers, or for non-profit distribution to anyone who wishes to install it. Its usage 

often builds to thousands, or even hundreds of thousands, of independent systems. 

However, direct monitoring of the usage rate of such software is not always feasible, 

or is not practiced. This is especially true of commercial wide-distribution software, 

shrink-wrapped or off-the-shelf software, and freeware. Examples of wide-

distribution commercial software are Microsoft Windows, WordPerfect, DEC's 

Ultrix, commercial PC and workstation compilers, and freeware such as the GNU 

family of software products 
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12.4.2. Usage Time 

It should not be surprising that the majority of the organizations that are prominent 

in the practice of software reliability engineering (SRE) deal with telecommunications 

and safety-critical applications. Other application areas include reservation systems, 

banking transaction systems, database engines, operating systems, medical 

instruments, etc. For many of these systems, reliability is one of the most important, 

if not the most important, attribute of the system. This implies the need for accurate 

and detailed information about the system usage. 

Usage-time analysis can be performed when more precise information about 

software usage is available. This is often true for software that is developed for the 

purpose of selling to a specialized market such as the examples given above. Its usage 

may build up to hundreds or thousands of independent systems, yet the users of the 

software are known and well documented, and direct monitoring of the usage rate of 

the software is feasible and is practiced. 

12.4.3. An Example 

The following example helps underscore the issues driving the above classification. 

Figure 12.5 shows the actual field data for a large-scale limited-distribution 

telecommunications product. We plot the concurrent changes in the number of 

installed systems of a particular software release (Dataset 1 given in Appendix A) 

over calendar time, the corresponding failure rate in terms of calendar time (failures 

per week), and failure rate per system in-service week. Note the dramatic difference 

between the failures per calendar week and the failures per system in-service week. 

From Figure 12.5, we see that the calendar-time failure rate is initially low 

(indicating apparent high reliability), then begins to climb (apparent reliability 

degradation), and finally reaches a peak just before the deployment reaches its peak. 

A naive analyst might mistakenly conclude that a disaster is in the making. In fact, the 

system is behaving as it should — the problem is an inherent deficiency in the failure 

rate metric. As the rate of deployment peaks, the reliability appears to improve 

dramatically, and the failure rate drops steadily thereafter. However, we see a 

different picture when we examine the failure rate in terms of failures per system in-

service week (that is, normalized with respect to the deployment function) or per 

usage load on the system. The normalized failure rate is initially high, but then 
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decreases dramatically in the first few weeks after the system has been deployed. As 

the deployment curve peaks, the reliability growth may slow but reliability continues 

to improve. Obviously, the model that describes the failure behavior of this system 

will depend very strongly on whether we have the actual system usage information or 

not. The number of failures per calendar week is a direct function of the true 

reliability of the system, and the deployment function of the system. Reliability 

growth may be difficult, if not impossible, to discern from the calendar based view. 

While failures per calendar week may be a natural, and important, metric to a 

customer service organization, it is usually far from suitable for making inferences 

about the reliability of the system [Musa87]. 

In other cases, the number of failures (in this case, failures which cause 

outages) may track the number of deployed systems closely indicating no real 

reliability growth even though the number of failures diminishes with calendar time. 

This is illustrated in Figure 12.6 using real data for a release of a large 

telecommunications system. A similar relationship was observed for many other 

versions of the same product. This suggests that in the situations when usage 

information may be inaccurate or unavailable, failure counts over a lengthier period 

of time may offer a valid and useful measure of software quality, especially if usage 

remains relatively unchanged from release to release. 

Figure 12.5: Influence of usage on failure 
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12.5. Calendar-Time Reliability Analysis 

The principal characteristics of wide-distribution software are that it is used by many 

users at many customer sites. This software lives in the world of multiple releases, 

and for this type of software, by definition, we often do not know who the users are 

or how they use it. Although we may know how many licenses there are, we may not 

know how much each copy is used. Software for single-user systems is purchased 

and installed, but sometimes rarely, if ever, used. Software for multi-user systems may 

have up to thousands of users. In fact, with site licensing, we often do not know how 

many copies of the software are being used. When dealing with wide-distribution 

commercial software we often have a large user base with each user experiencing 

his/her own level of reliability. Some users may run for months without a disruption, 

while others may only run for a few hours before running into a problem. It all 

depends on the user's software usage profile. Yet, despite the fact that reliability of a 

software system is important to customers of commercial software products, they 

generally do not keep good records on execution time and they seldom report on 

their reliability experience. What they do report to software development 

organizations is the occurrence of specific failures, with the expectation of getting the 

underlying defect(s) fixed so that the failures do not reoccur. This is possibly why 

many commercial software development organizations focus on the number of 

remaining defects rather than reliability, or mean time to failure, as the measure of 

software quality. Musa et al. discuss the advantages and disadvantages of the 

Figure 12.6: Calendar time-dependence of observed outages and of the 
number of installed systems for a large release of telecommunications 

software. 
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calendar-based analysis in great detail, and show that although a general Weibull-type 

failure intensity model can describe calendar time system behavior, the fit is often 

inferior to the one obtained using execution-time based intensity [Musa87]. But, they 

also point out that in practice managers and users may be more attached to the 

calendar-time domain since it is closer to the world in which they make decisions. 

12.6. Usage-Based Reliability Analysis 

As vendors and customers form closer alliances due to stringent reliability 

expectations, usage data will be more accessible. Currently, Bellcore requires that 

telecommunication vendors in the United States systematically record software usage 

and a variety of metrics that quantify the quality of software releases. In fact, it is 

likely that in the near future, industries such as medical software will be subject to 

similar requirements from some outside agency. In this section, we show how 

software reliability analysis can be conducted when sufficient usage information is 

available. We use recent examples from government and industry. We will see that 

although one model may suit a particular system very well (even over several 

releases), there is no model which is optimal across all systems. Different models are 

used with different systems due to the nature of the system, changes in the failure 

process, and the needs of the study of the system. This finding amplifies the need to 

conduct, for the system of interest, analysis and model selection and validation in a 

scientific and systematic way so that an adequate model and method is found. Model 

re-evaluation and validation should occur in intervals that will depend on the stability 

of software usage profiles and failure processes. 

12.7. Special Events 

Some classes of failures may be of special interest, and may be considered more 

important than others. Usually these are failures that are categorized as having life-

threatening, or extremely damaging consequences. The need to recognize early the 

potential of a software-based system for special event problems is obvious. How to 

achieve this is less clear. In general, it is necessary to link the symptoms observed 

during, say, software testing phases with the effects observed in the operational 

phase. In that context, the key is identification of these failure modes, and of the 

events that lead to these failures. Failures modes that are absolutely unacceptable 

should not be analyzed using only probabilistic methods since these methods are 
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inherently incapable of assuring the level of reliability that is required for such 

systems. Some other techniques, such as formal methods, should be used to 

complement the analyses. Ultra-high reliability systems pose special problems and 

require dependability assessment techniques beyond the scope of this chapter. A 

good discussion of these issues can be found in and.   

However, special event failures to which one is willing to attach a probability of 

occurrence (say, above 10-7) may be analyzable through the concept of risk. This 

concept forms a bridge between the probabilistic reliability aspects and the critical 

and economic considerations of any system. A risk model identifies a set of software 

reliability engineering indicators or symptoms, and relates them to the expected 

behavior of the software in the field. 

An example of a special event that could be regarded through the probabilistic 

prism is an FCC-reportable failure. In part owing to a series of operational problems 

that have embarrassed switching industry in the past several years4, FCC has issued a 

notification to common carriers regarding service disruptions that exceed 30 minutes 

and affect more than 50,000 lines. Since March 1992 any outage of this type needs to 

be reported to FCC within 30 minutes of its occurrence. These FCC-reportable 

events are relatively rare, but such outages may have serious safety implications5. 

Since the information itself can command considerable public visibility and attention, 

such failures may have serious business implications as well. 

12.7.1. Rare Event Models 

The key issue is the probability of occurrence of rare events. Computation of the 

probability of rare software events is not a solved problem, and perhaps not even a 

fully solvable problem. However, whatever results are available must be presented 

not as a point estimate but as a range, or interval. For example [lower bound, upper 

bound]. Often 95% confidence interval is used. We present some very simple models 

which serve to highlight the issues involved, and indicate the difficulty of the 

problem. 

12.7.1.1. Constant Failure-Rate Model 

If some failure information is available, and it can be assumed that the failure rate, or 

failure intensity, is constant, then one deals with a Gamma (exponential) distribution 
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when the problem is such that the number of failures is fixed, but the total exposure 

time is a random variable, or the Poisson distribution when the number of failures is 

a random variable, but the total exposure time is fixed. In that case, standard 

statistical confidence bounds for these distributions can be used to evaluate the 

information. The simplest model is the one where we estimate the probability of the 

undesirable events based on the counts of these events: 

  

Where, fn  is the number of failure events, and n is the usage exposure expressed as 

the number of intervals in which we wish to estimate. 

12.7.1.2. Reliability Growth 

If the usage rate of the product is growing, but its quality remains approximately the 

same, or grows at a lower rate than the product usage, then although per site failure 

rate may be roughly constant (or may even be improving), the overall number of 

reported problems will grow. In that case, it is necessary to model the per site failure 

rate. For example, let function S(t) describe the number of sites that use a particular 

release of a product at some calendar-time t (see Figure 12.4 and Figure 12.5). This 

shape can often be described using a Poisson [Leve90], or perhaps Weibull-type 

envelope, such as 

  

Combined with historical information about the "usual" position of the 

envelope mode, and other model parameters, and the marketing information about a 

release, e.g., the total number of sites expected to run this release, it may be possible 

to predict the site profiles relatively early in the life-cycle of a release. Summation of 

over all active releases can then yield the overall load on the software release. If this 

function is then combined with the one describing the quality of the release, it may 

be possible to make early and accurate predictions of the outage rates. 
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12.8. Availability 

An important concept that is related to reliability is software availability. The 

importance stems from prevalent industry specifications related to reliability and 

availability. For example, one of Bellcore's primary requirements is for the availability 

of telecommunications a network element. Their target is about 3 minutes of 

downtime per year. Availability is simply the probability that the system will be 

available when demanded, and it depends on both the reliability and the reparability 

of the system. 

12.8.1. Measuring Availability 

12.8.1.1. Instantaneous Availability 

Instantaneous availability is the probability that the system will be available at any 

random time t during its. We estimate "instantaneous" availability in a period i as 

follows: 

  

Where, the in-service time is the total time in the period i during which all hosts 

of a particular type (e.g., DEC, SUN, processor A), at all sites, operated a particular 

software release (whether fully operational, partly degraded, or under repair), while 

uptime is the total time during period i at which the systems were not in the "100% 

down" state (or total system outage state). Correspondingly, the instantaneous 

unavailability estimate is (1 - ^A(i) ). Associated with this measure are 

"instantaneous" system failure, λ(i), and recovery rates, ρ(i), which are estimated as 

follows: 

  

  

Where, "in-service time" for period i is the sum of the downtime and uptime in that 

period. 
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12.8.1.2. Average Availability 

Since the raw data are often "noisy", the data are usually presented after some form 

of smoothing, or "data aging", has been applied. This gives rise to a family of 

"smoothed" availability metrics (there is, in fact, an analogous family of smoothed 

reliability metrics). Examples are one-sided moving average and symmetrical moving 

average, such as 11-point symmetrical moving average. An extreme form of 

smoothing is provided by the average, or uptime, availability. Uptime availability is 

the proportion of time in a specified interval [0,T] that the system is available for use  

We estimate uptime availability up to and including period i as follows: 

  

Total uptime and total in service time are cumulative sums starting with the first 

observation related to a particular release. Uptime includes degraded service. 

Associated with uptime availability are average system failure, ^λ c(i), and recovery 

rates, ^ρ c(i), which are estimated as follows: 

  

  

12.8.2. Failure and Recovery Rates 

Two measures which directly influence the availability of a system are its failure rate 

and its field repair rate (or software recovery rate). Figure 12.5 shows P2 failure and  

recovery rates for release R11. Apart from the censored13 "raw" data two other 

representations are shown. In one, the data are smoothed using an 11-point 

symmetrical moving average. In the other, we show cumulative average of the data. 
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In a system which improves with field usage we would expect a decreasing function 

for failure rate with in-service time (implying fault or problem reduction and 

reliability growth). Immediately after the product release date, there is considerable 

variation in the failure rate. Later the failure rate reduces and stabilizes. 

Failure rate is connected to both the operational usage profile and the process 

of problem resolution and correction. Recovery rate depends on the operational 

usage profile, the type of  problem encountered, and the field response to that 

problem (i.e., the duration of outages in this case). If the failures encountered during 

the operational phase of the release do not exhibit durations which would be 

preferentially longer or shorter at a point (or period) in the life-cycle, then we would 

expect the "instantaneous" recovery rate to be a level function with in-service time 

(with, perhaps, some oscillations in the early stages). 

12.8.3. Models 

The time varying nature of both the failure rate and, to a lesser extent, the repair rate 

indicates that a full availability model should be non-homogeneous. In addition, the 

distribution of outage causes, as well as the possibility of operation in degraded 

states, suggest that a detailed model should be a many-state model. Nonetheless, a 

very simple two-state model may provide a reasonable description of the system 

availability beyond the transient region. 

It can be shown that system availability A(t) and unavailability– A(t) = 1 - A(t), 

given some simplifying assumptions, is: 

  

It can also be shown that uptime availability can be formulated as, 

  

The system becomes independent of its starting state after operating for enough time 

for the transient part of the above equations to decay away. This steady-state 

availability of the system is A(∞) = limit{A(t = T → ∞)}, i.e., 

  



Field Data Analysis 
 

 

293

The two-state model discussed above represents a system which can be either fully 

operational or completely off-line and under repair. However, not all realistic systems 

follow this simple model. In fact, systems like the ones discussed in our case studies 

not only have failure rates and repair rates which vary with time, and can have 

different down states, but they can also function in more than one up state (i.e., the 

system may remain operational but with less than 100% functionality for some 

failures). Thus, a many-state non-homogeneous Markov model may be more 

appropriate for describing the details of these systems. 

12.8.4. Prediction 

In practice, a model would be used to predict future unavailability of a system. Of 

course, only the data up to the point from which the prediction is being made would 

be available. We will refer to this point at which the prediction is made as the data 

"cut-off point". The prediction of future unavailability will differ from the true value 

depending on how well the model describes the system. 

12.8.5. Summary 

There is no general model that characterizes all field software failure behaviors, but 

there are methods for determining which model is appropriate and for increased 

accuracy of the predictions. In many situations simpler models may be quite 

sufficient For example, the two most frequently used software reliability growth 

models with field data and usage-time failure intensity metrics appear to be the GO 

and the MO models. From a practical standpoint, reliability is only defined in a 

customer's environment; a system that is not used will not fail. Therefore, in addition 

to understanding faults (which are a function of a developer's error in interpretation, 

logic, or implementation), the customer's usage of the product is very important to 

understanding the current or future reliability of a system. If usage data is difficult to 

obtain (as is often the case), then other models can be used for predicting field failure 

rates based on calendar time as their time component. However, the type of model 

used and how it is employed can vary greatly with calendar-based models. There is 

less consistent empirical information about which calendar-time based models are 

appropriate than is the case with usage time models. In creating models and fitting 

data, we must remember that although a model may "look" good and "fit" data well, 

the important aspect of modeling is not how well it fits current data (interpolation) 
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but how well the future reliability (or extrapolation) is characterized. It is very critical 

that we use diagnostics (numeric or graphical) that are appropriate for this goal. 

Certain diagnostics used for traditional statistical models (mean-squared error and r-

squared) may or may not be optimal. Of more relevance are graphical and numeric 

diagnostics that show the trends and linearizations in the failure intensity curve. 

Distinguishing one curvilinear function from another (which is often done with 

cumulative failure curves) creates analysis fraught with peril simply due to our 

perceptual shortcomings. Therefore, we recommend examining diagnostic graphs 

that confirm linear relationships between (transformations of) the entities λ, µ, and t. 

We have described some of the requirements of field software reliability analysis. The 

methods required for implementation include a sound scientific basis in observation, 

recording, and analysis. Statistical methods are very useful in characterizing failure 

behavior of a system as well as potentially predicting the future failure behavior. To 

this end, practitioners use models for characterizations, and these models usually lead 

to a deeper understanding of the system reliability. Models also provide parameters 

that are the key indicators of the system. Understanding the parameters, how they 

behave, and to what they are related is a fundamental aspect of analyzing the 

reliability of a system. Thus, creating models based on field data provides a sound 

framework for our understanding of the complex nature of current products which 

are increasingly dependent on large amounts of software. This framework can then 

be related to the software development and delivery process so that potential 

improvements in the process can be implemented which will enhance the reliability 

of the system. 

Field reliability data is usually not as consistent in quality as lab test data. In 

testing, the time of the failure and the usage of the system is often recorded with 

great precision. This is usually not the case with field software reliability data. 

Moreover, failures are often recorded en masse or even grouped outright due to this 

lack of precision in usage data. Therefore, our models and methods should be robust 

with respect to the precision of the data. Certain diagnostics related to time-to-next 

failure may not be applicable to field data. Also, an environment to support this 

analysis is critical if the information is to be of use in guiding an organization in 

process improvement. This implies a database system that allows data examination at 

a high-level (accessing and understanding information from thousands of records 

simultaneously) in addition to the lower levels in which they are most commonly 
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used (examining in detail several variables for one record). Subsequent to data access, 

an environment using some of the tools that are available greatly expedites the 

analysis process. There are many software packages available today enabling 

sophisticated field reliability analysis that were non-existent or were inaccessible in 

the previous decade. In the long term, this leads to more sophisticated analyses, 

better diagnostic methods, and more useful results. 

In addition to reliability models, there are related concepts which we have 

examined. Rare event analysis is one area where classical models are either impractical 

or much more natural variation exists due to the nature of the problem. Some classes 

of failures may be of special interest, and may be considered more important than 

others. Usually these are failures that are categorized as having life-threatening, or 

extremely damaging consequences. In that context, the key is identification of these 

failure modes, and of the events that lead to these failures. Failures modes that are 

absolutely unacceptable should not be analyzed using only probabilistic methods 

since these methods are inherently incapable of assuring the level of reliability that is 

required for such systems. Some other techniques, such as formal methods, should 

be used to complement the analyses. However, the special event failures to which 

one is willing to attach probability of occurrence can be analyzed through the 

concept of risk, as well as through reliability models that have been explicitly and 

thoroughly validated in the environment and for the application to which they are 

being applied. 

Another concept that is related to software reliability is software availability. 

Availability models are functions of both software reliability and the field recovery 

rate of software-based systems. In practice, it may be reasonable to assume that, past 

the transient region, system recovery rate is constant, while the failure rate is a 

decreasing function of the in-service time or calendar time. This may allow use of 

very simple availability models for description and prediction of the empirical 

availability behavior of an operational system. However, a complete unavailability 

model for practical systems needs to incorporate time-dependent parameters, as well 

as more than one operational state and more than one failure state to account for 

software and other types of causes and different classes of failure duration. 

 





 

 

13. Standards and Handbooks 

 

13.1. Reliability Standards & Handbooks 

 

13.1.1. MIL-HDBK-H 108 Sampling Procedures and Tables for Life and 
Reliability Testing (Based on Exponential Distribution) 

This handbook provides procedures and tables based on the exponential distribution 

for life and reliability testing. It includes definitions required for the use of the life 

test sampling plans and procedures; general description of life test sampling plans; 

life tests terminated upon occurrence of preassigned number of failures; life tests 

terminated at preassigned time; and sequential life test sampling plans.  

 

13.1.2. MIL-HDBK-189 Reliability Growth Management 

This document is designed for both managers and analysts covering everything from 

simple fundamentals to detailed technical analysis. Included are concepts and 

principles of reliability growth, advantages of managing reliability growth, and 

guidelines and procedures used to manage reliability growth. It allows the 

development of a plan that will aid in developing a final system that meets 

requirements and lowers the life-cycle cost of the fielded system. The document 

includes sections on benefits, concepts, engineering analysis, and growth models.  

 

13.1.3. MIL-HDBK-217F Reliability Prediction of Electronic Equipment 

The purpose of this handbook is to establish and maintain consistent and uniform 

methods for estimating the inherent reliability of electronic equipment and systems. 

It provides a common basis for reliability predictions. This handbook includes two 

basic methods for reliability prediction of electronic equipment. The first method is 

the part stress analysis prediction technique, employing complex models using 

detailed stress analysis information as well as environment, quality applications, 

maximum ratings, complexity, temperature, construction, and a number of other 
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application-related factors. The second is a simple method called the parts count 

reliability prediction technique, using primarily the number of parts of each category 

with consideration of part quality, environments encountered, and maturity of the 

production process. The simple method is beneficial in early trade-off studies and 

situations where the detailed circuit design is unknown. The complex method 

requires detailed study and analysis which is available when the circuit design has 

been defined. Samples of each type of calculation are provided.  

 

13.1.4. MIL-HDBK-251 Reliability/Design Thermal Applications  

This document details approaches to thermal design; methods for the determination 

of thermal requirements; selection of cooling methods; natural methods of cooling; 

thermal design for forced air, liquid-cooled, vaporization, and special (heat pipes) 

cooling systems. Topics covered are the standard hardware program thermal design, 

installation requirements, thermal evaluation, improving existing designs, and thermal 

characteristics of parts. Stress analysis methods are emphasized and specific step by 

step thermal design procedures are given.  

 

13.1.5. MlL-HDBK-263A Electrostatic Discharge Control Handbook for 
Protection of Electrical and Electronic Parts, Assemblies and 
Equipment (Excluding Electrically Initiated Explosive Devices) 

This handbook provides guidance for developing, implementing and monitoring an 

ESD control program for electronic parts, assemblies and equipment in accordance 

with the requirements of MIL-STD-1686. This document includes definitions, causes 

and effects (including failure mechanisms), charge sources, list and category of 

electrostatic-sensitive devices by part type, testing, application information, 

considerations, and protective networks. The specific guidance provided is 

supplemented by technical data contained in the appendices. Table I provides a 

cross-reference listing of MIL-STD-1686 requirements, MIL-HDBK-263 guidance, 

and MIL-HDBK-263 supplementary technical data.  

 



Standards and Handbooks 
 

 

299

13.1.6. MIL-HDBK-338 Electronic Reliability Design Handbook 

This handbook provides procuring activities and contractors with an understanding 

of the concepts, principles, and methodologies covering all aspects of electronic 

systems reliability engineering and cost analysis as they relate to the design, 

acquisition, and deployment of equipment or systems. Currently a two-volume set, it 

discusses the entire subject, heavily emphasizing the reasons for the reliability 

discipline. It includes general information, referenced documents, definitions, 

reliability theory, component reliability design considerations, application guidelines, 

specification control during acquisition, logistic support, failure reporting and 

analysis, reliability and maintainability theory, reliability specification allocation and 

prediction, reliability engineering design guidelines, reliability data collection and 

analysis, demonstration and growth, software reliability, systems reliability 

engineering, production and deployment reliability and maintainability (R&M), and 

R&M management considerations.  

 

13.1.7. MIL-HDBK-344 Environmental Stress Screening of Electronic 
Equipment 

This handbook provides uniform procedures, methods and techniques for planning, 

monitoring and controlling the cost effectiveness of ESS programs for electronic 

equipment. It is intended to support the requirements of MIL-STD-785, Task 301, 

"Environmental Stress Screening" and/or MIL-STD-781 and Task 401, 

"Environmental Stress Screening".  

 

13.1.8. MIL-STD-690C Failure Rate Sampling Plans and Procedures 

This standard provides procedures for failure rate qualification, sampling plans for 

establishing and maintaining failure rate levels at selected confidence levels, and lot 

conformance inspection procedures associated with failure rate testing for the 

purpose of direct reference in appropriate military electronic parts established 

reliability (ER) specifications. Figures and tables throughout this standard are based 

on exponential distribution.  
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13.1.9. MIL-STD-721C Definition of Terms for Reliability and 
Maintainability 

This standard defines terms and definitions used most frequently in specifying 

Reliability and Maintainability (R & M). Provides a common definition for the 

Department of Defense and defense contractors.  

 

13.1.10. MIL-STD-756B Reliability Modeling and Prediction 

This standard establishes uniform procedures and ground rules for the generating 

mission reliability and basic reliability models and predictions for electronic, 

electrical, electromechanical, mechanical, and ordnance systems and equipments. 

Model complexity may range from a complete system to the simplest subdivision of a 

system. It details the methods for determining service use (life cycle), creation of the 

reliability block diagram, construction of the mathematical model for computing the 

item reliability. Some simple explanations on the applicability and suitability of the 

various prediction sources and methods are included.  

 

13.1.11. MIL-HDBK-781 Reliability Test Methods, Plans and 
Environments for Engineering Development, Qualification and 
Production 

This handbook provides test methods, test plans, and test environmental profiles 

which can be used in reliability testing during the development, qualification, and 

production of systems and equipment. This handbook is designed to be used with 

MIL-STD-781. The test methods, test plans, and environmental profile data are 

presented in a manner which facilitates their use with the tailorable tasks of MIL-

STD-781.  

 

13.1.12. MIL-STD-781D Reliability Design Qualification and Production 
Acceptance Tests: Exponential/ Distribution 

This document covers the requirements and provides details for reliability testing 

during the development, qualification, and production of systems and equipment 

with an exponential time-to-failure distribution. It establishes the tailorable 

requirements for reliability testing performed during integrated test programs 

specified in MIL-STD-785. Task descriptions for Reliability Development/ Growth 
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Testing (RD/GT), Reliability Qualification Testing (RQT), Production Reliability 

Acceptance Tests (PRAT), and Environmental Stress Screening (ESS) are defined. 

Test time is stated in multiples of the design Mean Time Between Failures (MTBF). 

Specifying any two of three parameters, i.e., lower test MTBF, upper test MTBF, or 

their ratio, given the desired decision risks, determines the test plan to be utilized. 

This standard is applicable to six broad categories of equipment, distinguished 

according to their field service applications.  

 

13.1.13. MlL-STD-785B Reliability Program for Systems and 
Equipment, Development and Production 

This document provides general requirements and specific tasks for reliability 

programs. It is used for reliability program planning and includes task descriptions 

for basic application requirements including sections on program surveillance and 

control, design and evaluation, development and production testing. An appendix for 

application guidance for implementation of reliability program requirements is also 

included. The subsections are in the form of purpose, task description, and details to 

be specified by the procuring activity. This is a program management document, not 

a typical detailed what-to-do standard document.  

 

13.1.14. MlL-STD-790E Reliability Assurance Program for Electronic 
Parts Specifications 

This document establishes the criteria for electronic and fiber optic parts product 

assurance programs which are to be met by manufacturers qualifying electronic parts 

to specification. Typical topics covered are document submission, organizational 

structure, test facilities, and failure analysis reports.  

 

13.1.15. MIL-STD-1543B Reliability Program Requirements for Space 
and Missile Systems 

This document establishes uniform reliability program requirements and tasks for use 

during design, development, fabrication, test, and operation of space and launch 

vehicles. Topics covered in this document are design for reliability; failure mode, 

effects, and criticality analysis (FMECA), reliability analysis; modeling and prediction; 

discrepancy and failure reporting; maximum preacceptance operation; effects of 
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testing, storage, shelf life; packaging, transportation, handling, and maintainability. It 

gives application guidance and an appendix for FMEA for space and launch vehicle 

systems.  

 

13.1.16. MIL-STD-1629A Procedures for Performing a Failure Mode, 
Effects, and Criticality Analysis 

This document shows how to perform a Failure Mode, Effects, and Criticality 

Analysis (FMECA). It establishes requirements and procedures for performing a 

FMECA to systematically evaluate and document, by item failure mode analysis, the 

potential impact of each functional or hardware failure on mission success, personnel 

and system safety, system performance, maintainability, and maintenance 

requirements. Each potential failure is ranked by the severity of its effect in order 

that appropriate corrective actions may be taken to eliminate or control the high risk 

items. It details the functional block diagram modeling method, defines severity 

classification and criticality numbers. It provides sample formats for a FMEA, 

criticality analysis, FMEA and criticality analysis maintainability information sheet, 

and damage mode and effects analysis sheet. The document also provides several 

examples.  

 

13.1.17. MIL-STD-1686B Electrostatic Discharge Control Program for 
Protection of Electrical and Electronic Parts, Assemblies and 
Equipment (Excluding Electrically Initiated Explosive Devices) 

The purpose of this standard is to establish the requirements for an ESD control 

program to minimize the effects of ESD on parts, assemblies, and equipment. This 

standard defines the requirements for an ESD control program for electrical and 

electronic parts, assemblies, and equipment, susceptible to damage from ESD. It 

covers identification, testing, classification, assembly and equipment design criteria 

protected work areas, handling procedures, training, marking of documentation and 

hardware, protective covering, packaging and marking, and installation for assemblies 

and equipment. Also included are quality assurance requirements, data requirements, 

audits and reviews. Refer to MIL-HDBK-263 for how-to information.  
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13.1.18. MIL-STD-2074 Failure Classification for Reliability Testing 

This document establishes criteria for classification of failures occurring during 

reliability testing. This classification into relevant or nonrelevant categories allows the 

proper generation of MTBF reports. This document applies to any reliability test, 

including, but not limited to, tests performed in accordance with MIL-STD-781.  

 

13.1.19. MIL-STD-2155 Failure Reporting, Analysis and Corrective 
Action System (FRACAS)  

This document establishes uniform requirements and criteria for a Failure Reporting, 

Analysis, and Corrective Action System (FRACAS) to implement the FRACAS 

requirement of MIL-STD-785.  

 

13.1.20. MIL-STD-2164 Environment Stress Screening Process for 
Electronic Equipment 

This document defines the requirements for ESS of electronic equipment, including 

environmental test conditions, duration of exposure, procedures, equipment 

operation, actions taken upon detection of defects, and test documentation. The 

document provides for a uniform ESS to be utilized for effectively disclosing 

manufacturing defects in electronic equipment.  

 

13.2. Maintainability Standards & Handbooks 

 

13.2.1. MIL-STD-470B Maintainability Program Requirements for Systems 
and Equipment 

This document includes application requirements, tailorable maintainability program 

tasks, and an appendix with an application matrix and guidance and rationale for task 

selection. The topics covered are program surveillance and control, design and 

analysis, modeling, allocations, predictions, failure mode and effects analysis, and 

maintainability design criteria. Each task item includes a purpose, task description, 

and details to be specified. Software maintainability is not covered by this document.  
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13.2.2. MIL-STD-471A Maintainability Verification/ Demonstration/ 
Evaluation 

This document provides procedures and test methods for verification, 

demonstration, and evaluation of qualitative and quantitative maintainability 

requirements. It also provides for qualitative assessment of various integrated logistic 

support factors related to and impacting the achievement of maintainability 

parameters and item downtime, e.g. technical manuals, personnel, tools and test 

equipment, maintenance concepts and provisioning.  

 

13.2.3. MIL-HDBK-472 Maintainability Prediction 

This document is to familiarize project managers and design engineers with 

maintainability prediction procedures. It provides the analytic foundation and 

application details of five prediction methods. Each procedure details applicability, 

point of application, basic parameters of measure, information required correlation, 

and cautionary notes. The highlights of each maintainability prediction procedure are 

presented in a clear and intelligible manner and include useful supplementary 

information applicable to specific procedures. Maintainability Prediction Procedures 

I and III are applicable solely to electronic systems and equipments. Procedures II 

and IV can be used for all systems and equipments. In applying Procedure II to non-

electronic equipments the appropriate task times must be estimated. Procedure V can 

be used to predict maintainability parameters of avionics, ground and shipboard 

electronics at the organizational, intermediate and depot levels of maintenance.  

 

13.2.4. DOD-HDBK-791 Maintainability Design Techniques 

This handbook supplies information on incorporating maintainability into Army 

materiel design. It defines maintainability and discusses its importance, quantitative 

measurement, and incorporation into the design process. Other subjects discussed in 

detail cover simplification, standardization and interchangeability, accessibility, 

modularization, identification and labeling, testability and diagnostic techniques, 

preventive maintenance, human factors, and environmental factors as they relate to 

maintainability.  
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13.2.5. MIL-STD-1591 On Aircraft, Fault Diagnosis, Subsystems, 
Analysis/Synthesis of 

This document establishes uniform criteria for conducting trade studies to determine 

the optimal design for an on-aircraft fault diagnosis/isolation system. This document 

is applicable where a selection can be made between such alternatives as central 

computer controlled on-board centrally polled built-in test equipment (BITE), 

decentralized BITE, detached Aerospace Ground Equipment (AGE), etc., or 

combinations of the preceding. The fault diagnosis/isolation systems of interest are 

those used to diagnose/isolate faults at the flight line (organizational) level of 

maintenance. This document also provides a cost model and a maintainability labor 

power model.  

 

13.2.6. MIL-STD-1843 Reliability-Centered Maintenance for Aircraft, 
Engines and Equipment 

This document, which is based on the Airline/Manufacturer Maintenance Program 

Planning Document MSG-3, outlines the procedures for developing preventive 

maintenance requirements through the use of Reliability-Centered Maintenance 

Analysis (RCMA) for Air Force aircraft and engine systems, aircraft and engine 

structures and equipment, including peculiar and common Support Equipment (SE) 

Communications and Electronics (C-E) equipment, vehicles, weapons and other 

similar equipment items.  

 

13.2.7. MIL-STD-2084 Maintainability of Avionic & Electronic Systems and 
Equipment 

This document covers the common maintainability design requirements to be used in 

military specifications for avionic and electronic systems and equipment.  

 

13.2.8. MIL-STD-2165A Testability Programs for Electronic Systems & 
Equipment 

This document is intended to prescribe a systematic approach for establishing and 

conducting a testability program. It describes a uniform approach to testability 

program planning, establishment of diagnostic concepts and testability (including 

BIT) requirements, testability and test design and assessment, and requirements for 
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conducting testability program reviews. Relevant tasks in this document are to be 

applied during the conceptual phase, demonstration and validation phases, full-scale 

development phase and production phase of the acquisition process.  

 

13.2.9. DOD-STD-1701 Hardware Diagnostic Test System Requirements  

This document establishes the general procedures, terms and conditions governing 

the preparation and completion of a hardware diagnostic test system.  

 

13.2.10. MIL-STD-2173 Reliability-Centered Maintenance 
Requirements for Naval Aircraft, Weapons Systems and Support 
Equipment  

This document is used to provide procedures for a Reliability-Centered Maintenance 

analysis for naval aircraft, weapons systems, and support equipment. This document 

is used during development of new systems and equipment, and by analysts and 

auditors within the Naval Air Systems Command for determining preventive 

maintenance requirements and developing age exploration requirements. The 

document can also be used to update the initial reliability-centered maintenance 

analysis and analyze newly discovered failure modes.  

 

13.2.11. MIL-STD-001591A Subsystem Analysis/Synthesis of 
Command, Control & Communication (C3) System Component 
Fault Diagnosis 

This document establishes uniform criteria for conducting trade studies to determine 

the optimal design for command, control and communication system and 

component fault diagnosis/isolation subsystems, These types of systems are referred 

to as Fault Identification & Test Subsystems (FITS). FITS include the hardware 

and/or software necessary for the detection and isolation of failures.  

 

13.3. Safety Standards & Handbooks 

 



Standards and Handbooks 
 

 

307

13.3.1. MIL-HDBK-274 Electrical Grounding for Aircraft Safety 

The purpose of this handbook is to provide aircraft maintenance personnel with the 

information required for electrical safety grounding of each type of operational 

aircraft in the U.S. Navy inventory. In addition, this handbook provides background 

information pertaining to the operational concerns for aircraft grounding, static 

electricity theory and how it affects aircraft, and techniques used for measurement of 

grounding points.  

 

13.3.2. MlL-HDBK-764 System Safety Engineering Design Guide For Army 
Materiel 

This handbook presents system safety considerations for use in designing army 

materiel. The areas covered include safety engineering concepts and objectives, 

system safety analysis, hazard analysis, software analysis, and general design 

application considerations.  

 

13.3.3. MIL-HDBK-828 Laser Range Safety 

The purpose of this handbook is to provide uniform guidance in evaluations for the 

safe use of military lasers and laser systems on DOD military reservations or military-

controlled areas worldwide. This handbook is intended to supplement each military 

service s normal procedures for laser ranges.  

 

13.3.4. MIL-STD-882C System Safety Program Requirements 

This document provides requirements for developing and implementing a System 

safety program to identify the hazards of a system and to impose design requirements 

and management controls to prevent mishaps by eliminating hazards or reducing 

risks. It applies to every activity of the system life cycle; e.g., research, technology 

development, design, test and evaluation, production, construction, 

checkout/calibration, operation, maintenance and support, modification and 

disposal. Twenty-two tasks are defined in the areas of program management and 

control and design and evaluation. Typical tasks are system safety program plan, 

preliminary hazard analysis, and software hazard analysis. An appendix is provided to 

give some rationale and methods for satisfying the requirements previously detailed.  
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13.3.5. MIL-STD-1247C Markings, Functions and Hazard Designations of 
Hose, Pipe, and Tube Lines for Aircraft Missiles, and Space 
Systems 

This document is intended for use in the establishment of material labeling 

requirements for identification, function, sub-function, pressures, hazards and 

direction of flow for pipes, hoses, and tube lines used in aircraft, missile, space 

systems, and support equipment. The use of colors, words and symbols to identify 

the functions of such items (to include approved abbreviations), and the dimensions 

of labeling items such as tags, tapes, and bands, are specifically prescribed. This 

document is designed to result in rapid servicing of functional systems to return them 

to full operation and are an integral part of the complete system.  

 

13.3.6. MIL-STD-1425A Safety Design Requirements for Military Lasers 
and Associated Support Equipment 

This document defines safety design requirements for military laser systems and 

associated support equipment. These requirements are the minimum requirements 

necessary to control the hazards caused directly by laser radiation. Associated system 

hazards, such as electrical shock, toxic chemicals, high pressure, etc., are controlled 

through the selection of appropriate requirements in other standards and 

specifications. A comprehensive system safety program in accordance with MIL-

STD-882 should be used to identify and control all hazards unique to the specific 

laser.  

 

13.3.7. MIL-STD-1576 Electroexplosive Subsystem Safety Requirements 
and Test Methods for Space Systems  

The purpose of this document is to insure the safety of personnel, launch site 

facilities, and space vehicles from the hazards resulting from electroexplosive 

subsystem inadvertent initiation. The requirements and test methods contained in 

this document are not intended to insure all electroexplosive subsystem performance 

requirements except in those cases where failure to perform would create a hazard to 

personnel, launch site facilities, and space vehicles. The electroexplosive subsystem is 

composed of all components from the power source to, and including, the 
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electroexplosive device; safe and arm devices, arm/disarm switches, relays and all 

electrical wiring used to monitor, control, arm and fire ordnance are specifically 

included. This Standard applies to all space vehicle systems (e.g., launch vehicles, 

upper stages, boosters, payloads, and related systems using electroexplosive devices.  

 

13.4. Safety Standards & Handbooks 

 

13.4.1. MIL-HDBK-274 Electrical Grounding for Aircraft Safety 

The purpose of this handbook is to provide aircraft maintenance personnel with the 

information required for electrical safety grounding of each type of operational 

aircraft in the U.S. Navy inventory. In addition, this handbook provides background 

information pertaining to the operational concerns for aircraft grounding, static 

electricity theory and how it affects aircraft, and techniques used for measurement of 

grounding points.  

 

13.4.2. MlL-HDBK-764 System Safety Engineering Design Guide For Army 
Materiel 

This handbook presents system safety considerations for use in designing army 

materiel. The areas covered include safety engineering concepts and objectives, 

system safety analysis, hazard analysis, software analysis, and general design 

application considerations.  

 

13.4.3. MIL-HDBK-828 Laser Range Safety 

The purpose of this handbook is to provide uniform guidance in evaluations for the 

safe use of military lasers and laser systems on DOD military reservations or military-

controlled areas worldwide. This handbook is intended to supplement each military 

service s normal procedures for laser ranges.  

 

13.4.4. MIL-STD-882C System Safety Program Requirements 

This document provides requirements for developing and implementing a System 

safety program to identify the hazards of a system and to impose design requirements 
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and management controls to prevent mishaps by eliminating hazards or reducing 

risks. It applies to every activity of the system life cycle; e.g., research, technology 

development, design, test and evaluation, production, construction, 

checkout/calibration, operation, maintenance and support, modification and 

disposal. Twenty-two tasks are defined in the areas of program management and 

control and design and evaluation. Typical tasks are system safety program plan, 

preliminary hazard analysis, and software hazard analysis. An appendix is provided to 

give some rationale and methods for satisfying the requirements previously detailed.  

 

13.4.5. MIL-STD-1247C Markings, Functions and Hazard Designations of 
Hose, Pipe, and Tube Lines for Aircraft Missiles, and Space 
Systems 

This document is intended for use in the establishment of material labeling 

requirements for identification, function, sub-function, pressures, hazards and 

direction of flow for pipes, hoses, and tube lines used in aircraft, missile, space 

systems, and support equipment. The use of colors, words and symbols to identify 

the functions of such items (to include approved abbreviations), and the dimensions 

of labeling items such as tags, tapes, and bands, are specifically prescribed. This 

document is designed to result in rapid servicing of functional systems to return them 

to full operation and are an integral part of the complete system.  

 

13.4.6. MIL-STD-1425A Safety Design Requirements for Military Lasers 
and Associated Support Equipment 

This document defines safety design requirements for military laser systems and 

associated support equipment. These requirements are the minimum requirements 

necessary to control the hazards caused directly by laser radiation. Associated system 

hazards, such as electrical shock, toxic chemicals, high pressure, etc., are controlled 

through the selection of appropriate requirements in other standards and 

specifications. A comprehensive system safety program in accordance with MIL-

STD-882 should be used to identify and control all hazards unique to the specific 

laser.  
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13.4.7. MIL-STD-1576 Electroexplosive Subsystem Safety Requirements 
and Test Methods for Space Systems  

The purpose of this document is to insure the safety of personnel, launch site 

facilities, and space vehicles from the hazards resulting from electroexplosive 

subsystem inadvertent initiation. The requirements and test methods contained in 

this document are not intended to insure all electroexplosive subsystem performance 

requirements except in those cases where failure to perform would create a hazard to 

personnel, launch site facilities, and space vehicles. The electroexplosive subsystem is 

composed of all components from the power source to, and including, the 

electroexplosive device; safe and arm devices, arm/disarm switches, relays and all 

electrical wiring used to monitor, control, arm and fire ordnance are specifically 

included. This Standard applies to all space vehicle systems (e.g., launch vehicles, 

upper stages, boosters, payloads, and related systems using electroexplosive devices.  

 

13.5. Other Relevant Military Documents 

 

13.5.1. MIL-STD-105E Sampling Procedures and Tables for Inspection by 
Attributes 

This document addresses the subjects of sampling plans; lot size; inspection levels; 

average quality levels (AQLs); classification of defects; multiple sampling; and 

normal, tightened, and reduced sampling. For equipments where the sequential 

method of testing, based on operating time, may not be appropriate, this document, 

based on the success ratio, can be used. It includes numerous tables showing accept-

reject levels and operating characteristic curves for sampling plans. The sampling 

plans described in this document are applicable to AQL's of .01 percent or higher 

and are therefore not suitable for applications where quality levels in the defective 

parts per million range can be realized.  

 

13.5.2. MIL-STD-337 Design To Cost 

This document prescribes the Design to Cost program objectives and requirements 

for design and development of systems, subsystems, equipments, and software. It 

provides general and specific requirements to ensure effective control of the design-
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related production and ownership costs. This is accomplished by a Design to Cost 

program which is planned, documented, implemented, and reviewed in consonance 

with related technical and management disciplines. Included are requirements for 

making Life Cycle Cost elements inherent in the critical functional areas of reliability, 

logistics, and optimization by using tradeoff studies, cost estimation and tracking in 

the life cycle management acquisition process; requirements for information sharing 

between government and industry of data and studies relative to the acquisition and 

ownership costs of the system; requirements for relating Design to Cost to the 

supportability considerations of the deployed system, to logistic support analyses, and 

to reliability and maintainability studies.  

 

13.5.3. MlL-STD-454N Standard General Requirements for Electronic 
Equipment 

This document covers the common requirements to be used in military specifications 

for electronic equipment. It establishes the technical baseline for design and 

construction of electronic equipment for the Department of Defense. It addresses 75 

requirements such as brazing, substitutability, reliability, resistors, and casting. It 

provides numerous references on the subjects addressed.  

This standard was superseded by MIL-STD-2036 several years ago.  

 

13.5.4. MIL-HDBK-728 NonDestructive Testing (NDT) 

The handbook is provided as a guide and describes general principles, procedures 

and safety items, of eddy current, liquid penetrate, magnetic particle, radiographic and 

ultrasonic testing. This handbook is not a training manual. Nor can it replace other 

written directives, procedures or specifications. However, it can serve as a ready 

reference to the important principles and facts relating to the employment of 

nondestructive testing, inspection and evaluation.  

 

13.5.5. MIL-HDBK-729 Corrosion and Corrosion Prevention Metals 

This handbook contains technical information and data pertaining to the corrosion 

and corrosion protection of metals and alloys. The factors influencing corrosion, 

forms of corrosive attack including stress-corrosion cracking and hydrogen-stress 
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cracking (hydrogen embrittlement), corrosion characteristics of metals, and general 

methods of protecting metals and alloys from corrosion, are covered in condensed 

form, along with information on corrosion testing. Emphasis is placed upon the type 

of corrosion encountered by military equipment.  

 

13.5.6. MIL-HDBK-772 Military Packaging Engineering 

This handbook covers fundamental principles and practices of military packaging 

engineering. It provides information concerning materials, the basic causes of 

deterioration, methods of preservation, and types of preservatives. Also included is 

information on natural and transportation environments, cost and human 

engineering factors, and other special military packaging considerations.  

 

13.5.7. MIL-HDBK-798 System Engineer's Design for Discard Handbook 

This handbook provides design guidance as well as general information on applicable 

concepts, techniques, and procedures for practical implementation of a design for 

discard program. The handbook explains what design for discard means; why design 

for discard should be implemented; what the design for discard effort should involve; 

how to implement design for discard in a project; the tradeoffs involved during 

design; the interfaces with other system disciplines; and the techniques used to 

evaluate the results of design for discard.  

 

13.5.8. MIL-STD-810E Environmental Test Methods and Engineering 
Guidelines 

The purpose of this document is to standardize the design and conduct of tests for 

assessing the ability of military equipment to withstand environmental stresses which 

it will encounter during its life cycle, and to insure that plans and test results are 

adequately documented. This document provides guidelines for conducting 

environmental engineering tasks and provides test methods for determining the 

effects of natural and induced environments on equipment used in military 

applications. Included in the numerous types of tests detailed are purpose, 

environmental effects, guidelines for determining test procedures and test conditions, 

references, apparatus, preparation for test, procedures, information to be recorded.  
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13.5.9. MIL-STD-883D Test Methods and Procedures for Microelectronics 

This document establishes uniform methods, controls, and procedures for designing, 

testing, identifying and certifying microelectronic devices suitable for use within 

military and aerospace electronic systems including basic environmental tests to 

determine resistance to deleterious effects of natural elements and conditions 

surrounding military and space operations; physical and electrical tests; design, 

package and material constraints; general marking requirements; workmanship and 

training procedures; and such other controls and constraints as have been deemed 

necessary to ensure a uniform level of quality and reliability suitable to the intended 

applications of those devices. Also covered are test procedures for failure analysis, 

limit testing, wafer lot acceptance, and destructive physical analysis.  

 

13.5.10. MIL-STD-965B Parts Control Program 

The purpose of this document is to establish the guidelines and requirements for 

implementation of a parts control program. This document describes two procedures 

covering the submission, review, and approval of program parts selection lists 

(PPSL). Typical topics covered are PPSL approval, meetings, parts control board, 

and Military Parts Control Advisory Group.  

 

13.5.11. MIL-STD-975M NASA Standard Electrical, Electronic, and 
Electro Mechanical (EEE) Parts List 

This purpose of this document is to provide equipment designers and manufacturers 

with electronic parts having quality levels considered to be most acceptable for flight 

and mission-essential ground support equipment. It provides a means of selecting, 

procuring, and applying Electrical, Electronic, and Electromechanical (EEE) Parts 

for use in flight and mission-essential ground support equipment. Three levels of 

quality are used in this standard. Grade 1 parts are very low risk, higher quality and 

reliability parts intended for critical applications. Grade 2 parts are low risk, high 

quality and reliability parts for use in applications not requiring Grade 1 parts. Grade 

3 parts are higher risk, good quality and reliability parts but are not recommended for 

applications requiring high product assurance levels.  
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13.5.12. MIL-STD-1369 Integrated Logistic Support Program 
Requirements 

This document establishes the requirements, procedures and formats to be used for 

the development and documentation of an Integrated Logistic Support Program. 

Integrated Logistic Support, including maintainability requirements, is the result of a 

planning process designed to aid in achieving maximum overall system effectiveness 

by taking advantage of the direct relationship which exists between hardware design 

characteristics and resultant logistic support requirements by considering both, 

concurrently throughout the design process, in a quantitative manner to provide a 

basis for weapons/weapon systems/equipment optimization through sound 

engineering trade-off. Documentation requirements will provide accurate records to 

assure continuation of an adequate logistics support base throughout the operational 

life cycle of a weapons system or equipment.  

 

13.5.13. MIL-STD-1388-1A Logistics Support Analysis 

This document details Logistic Support Analysis guidelines and requirements. Tasks 

detail the purpose, task description, task input, and task output. Typical tasks are 

program planning and control; development of early Logistic Support Analysis 

strategy; planning; program and design reviews; mission hardware, software, and 

support; system standardization; early fielding analysis; and supportability assessment.  

 

13.5.14. MIL-STD-1388-2B DOD Requirements for a Logistic Support 
Analysis Record 

This document describes the data element definitions, data field lengths, and formats 

for Logistic Support Analysis Record (LSAR) data. It identifies the LSAR reports that 

are generated from the LSAR data and identifies the LSAR relational tables and 

automated data processing specifications for transmittal and delivery of automated 

LSAR data.  
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13.5.15. MlL-STD-1556B Government/Industry Data Exchange 
Program (GIDEP) 

This document defines the requirements for participation in the GIDEP program, 

which includes the engineering, failure experience, reliability-maintainability, and 

metrology data interchanges. It is intended to be applied to prime contractors and 

major subcontractors (who are users of parts) for the government. The reliability-

maintainability data interchange contains failure rate and mode and replacement rate 

data on parts, components, assemblies, subsystems, and materials based on field 

performance information and reliability test of equipment, subsystems, and systems. 

This data interchange also contains reports on theories, methods, techniques, and 

procedures related to reliability and maintainability practices.  

 

13.5.16. MIL-STD-1568B Materials and Processes for Corrosion 
Prevention and Control in Aerospace Weapons Systems 

This document establishes the requirements for materials, processes and techniques, 

and identifies the tasks required to implement an effective corrosion prevention and 

control program during the conceptual, validation, development and production 

phases of aerospace system. The intent is to minimize life cycle cost due to corrosion 

and to obtain improved reliability.  

 

13.5.17. RAC NPRD Nonelectronic Parts Reliability Data, 1991 

This document provides failure rate and failure mode information for mechanical, 

electromechanical, electrical, pneumatic, hydraulic, and rotating parts. The 

assumption that the failures of nonelectronic parts follow the exponential 

distribution has been made because of the virtual absence of data containing 

individual times or cycles to failure. Generic failure rate tables include environment; 

application (military or commercial); failure rate; number of records; number failed; 

and operating hours. A 60 percent confidence interval is used.  
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13.6. Non-Military Documents 

 
AAMI HE  
Human Factors Engineering Guidelines and Preferred Practices for the 
Design of Medical Devices (Second Edition) 

 
ANSI R15.05-3  
Industrial Robots and Robot Systems - Reliability Acceptance Testing - 
Guidelines  

 
ANSI/AIAA G-035  
Human Performance Measurements  

 
ANSI/AIAA R-013  
Recommended Practice for Software Reliability  

 
ANSI/ASA S3.18  
Evaluation of Human Exposure to Whole- Body Vibration, Guide for (ASA 38) 
(R 1993)  

 
ANSI/ASHRAE 55 
Thermal Environmental Conditions for Human Occupancy 

 
ANSI/ESD S5.1 
REVISED - Human Body Model (HBM) Electrostatic Discharge Sensitivity 
Testing  

 
ANSI/HFES 100 
Human Factors Engineering of Visual Display Terminal Workstations 

 
ANSI/IEEE 1023 
Guide for the Application of Human Factors Engineering to Systems, 
Equipment, and Facilities of Nuclear Power Generating Stations 

 
ANSI/IEEE 500 Guide to the Collection and Presentation of Electrical, 
Electronic, Sensing Component, and Mechanical Equipment Reliability Data 
for Nuclear-Power Generating Stations (R 1991) 

 
ANSI/IEEE 577 
Standard Requirements for Reliability Analysis in the Design and Operation 
of Safety Systems for Nuclear Power Generating Stations (R 1992) 

 
ANSI/IEEE 762 
Standard Definitions for Use in Reporting Electric Generating Unit 
Reliability, Availability, and Productivity (R 1993) 
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ANSI/SAE AIR 4276 
Survey Results: Computerization of Reliability, Maintainability & 
Supportability (RM&S) in Design 

 
ANSI/SAE ARP 4032 
Human Engineering Considerations in the Application of Color to Electronic 
Aircraft Displays 

 
ANSI/SAE ARP 4107 
Aerospace Glossary for Human Factors Engineers 

 
ANSI/SAE J 833 
Human Physical Dimensions, Recommended Practice; May 1989 

 
ARINC 628 ITEM 12.0 
Reliability 

 
ASA S3.18 
Evaluation of Human Exposure to Whole Body Vibration, Guide for (ASA 38) 
(R 1993) 

 
ASA S3.34 
Guide for the Measurement and Evaluation of Human Exposure to Vibration 
Transmitted to the Hand (ASA 67) 

 
ASAE EP456 
Test and Reliability Guidelines (R 1991) 

 
ASHRAE 55 
Thermal Environmental Conditions for Human Occupancy 

 
BSI BS 5760: PART 0 
1986 Reliability of Constructed or Manufactured Products, Systems 
Equipment and Components Part 0: Introductory Guide to Reliability 

 
BSI BS 5760: PART 1 
1985 Reliability of Systems, Equipments and Components Part 1: Guide to 
Reliability and Maintainability Programme Management 

 
BSI BS 5760: PART 2  

 
1994 Reliability of Systems, Equipments and Components Part 2: Guide to the 
Assessment of Reliability (G) 

 
BSI BS 5760: PART 3 
1982 Reliability of Systems, Equipments and Components Part 3: Guide to 
Reliability Practices: Examples 

 
BSI BS 5760: PART 4 
1986 Reliability of Systems, Equipments and Components Part 4: Guide to 



Standards and Handbooks 
 

 

319

Specification Clauses Relating to the Achievement and Development of 
Reliability in New and Existing Items 

 
BSI BS 5760: PART 5 
1991 Reliability of Systems, Equipment and Components Part 5: Guide to 
Failure Modes, Effects and Criticality Analysis (FMEA and FMECA) (G) 

 
BSI BS 5760: PART 6 
1991 Reliability of Systems, Equipment and Components Part 6: Guide to 
Programs for Reliability Growth (IEC 1014: 1989) (G) 

 
BSI BS 5760: PART 7 
1991 Reliability of Systems, Equipment and Components Part 7: Guide to 
Fault Tree Analysis (G) (IEC 1025: 1990)  

 
BSI BS 5760: PART 9 
1992 Amd 1 Reliability of Systems, Equipment and Components Part 9: Guide 
to the Block Diagram Technique (AMD 8152) April 15, 1994 (IEC 1078: 1991) 
(G) 

 
BSI BS 5760: SEC 10 
1993 Reliability of Systems, Equipment and Components Part 10: Guide to 
Reliability Testing Section, General Requirements, Compliance Test 
Procedures for Steady- State Availability, Guide to Reliability Testing, 
Compliance Test Plans for Success Ratio (IEC 1025: 1979) 

 
BSI BS 5760: PART 11 
1994 Reliability of Systems, Equipment and Components Part 11: Collection of 
Reliability, Availability, Maintainability and Maintenance Support Data from 
the Field (IEC 300- 3-2: 1993) (G) 

 
BSI BS 5760: PART 12 
1993 Reliability of Systems, Equipment and Components Part 12: Guide to the 
Presentation of Reliability, Maintainability and Availability Predictions (IEC 
863: 1986) (G) 

 
BSI BS 5760: SEC 13.1 
1993 Reliability of Systems, Equipment and Components Part 13: Guide to 
Reliability Test Conditions for Consumer Equipment Section 13.1: Conditions 
Providing a Low Degree of Simulation for Indoor Portable Equipment (IEC 
605-3-1: 1986) (G) 

 
BSI BS 5760: SEC 13.2 
1993 Reliability of Systems, Equipment and Components Part 13: Guide to 
Reliability Test Conditions for Consumer Equipment Section 13.2: Conditions 
Providing a High Degree of Simulation for Equipment Use in Partially 
Weatherprotected Locations 

 
BSI BS 5760: SEC 13.3 
1993 Reliability of Systems, Equipment and Components Part 13: Guide to 
Reliability Test Conditions for Consumer Equipment Section 13.3: Conditions 
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Providing a Low Degree of Simulation for Equipment for Stationary Use in 
Partially Weatherprotected Locations (IEC 605-3- 3: 1992) (G) 

 
BSI BS 5760: SEC 13.4 
1993 Reliability of Systems, Equipment and Components Part 13: Reliability 
Test Conditions for Consumer Equip. Section 13.4:Conditions Providing a 
Low Degree of Simulation for Equipment for Portable and Non-Stationary 
Use (IEC 605-3-4: 1992) (G) 

 
BSI BS 5760: PART 14 
1993 Reliability of Systems, Equipment and Components Part 14: Guide to 
Formal Design Review (IEC 1160: 1992) (G) 

 
BSI BS EN 61078 
1994 Amd 1 Reliability of Systems, Equipment and Components Part 9: Guide 
to the Block Diagram Technique (AMD 8152) April 15, 1994 (IEC 1078: 1991) 
(G) 

 
BSI HANDBOOK NO.22 PART 2 
1992 Reliability and Maintainability (G) 

 
CAA CHAPTER B7-1 APP 08.83 
General Reliability 

 
CAA CHAPTER J2-1 APP#3 09.66 
System Reliability  

 
CAA CHAPTER K6-12 APP1 10.92 
Systems Reliability 

 
CECC CECC 00 801 ISSUE 1 Preliminary Guidance Document: Pi-Q Factors 
of CECC Approved Components for Use in Reliability Predictions (En, Fr, 
Ge) AMD 1 (En, Fr, Ge) 

 
CECC CECC 00 804 ISSUE 1 
Guidance Document: Interpretation of "EN 29000" - Reliability Aspects for 
Electronic Components (En, Fr, Ge) 

 
CENELEC EN 61078 
Analysis Techniques for Dependability - Reliability Block Diagram Method 
(IEC 1078 : 1991) 

 
CENELEC ETR 039 
Human Factors (HF); Human Factors Standards for Telecommunications 
Applications 

 
CENELEC ETR 051 
Human Factors (HF); Usability Checklist for Telephones Basic Requirements 
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CENELEC ETR 070 
Human Factors (HF); the Multiple Index Approach (MIA) for the Evaluation 
of Pictograms 

 
CENELEC ETR 095 
Human Factors (HF); Guide for Usability Evaluations of 
Telecommunications Systems and Services 

 
CENELEC ETR 096 
Human Factors (HF); Phone Based Interfaces (PBI) Human Factors 
Guidelines for the Design of Minimum Phone Based User Interface to 
Computer Services 

 
CENELEC ETR 113 
Human Factors (HF); Results of an Evaluation Study of Pictograms for Point-
to-Point Videotelephony 

 
CENELEC HD 485 
Analysis Techniques for System Reliability - Procedure for Failure Mode and 
Effects Analysis (FMEA) 

 
CENELEC HD 485 S1 
Analysis Techniques for System Reliability - Procedure for Failure Mode and 
Effects Analysis (FMEA) 

 
CEPT T/N 45-01 E 
Testing the Compliance of an Equipment with Its Reliability, Maintainability 
and Availability Specifications 

 
CEPT T/SF 40 E 
Human Factor Aspects of Visual Display Terminals for Telecommunication 
Services 

 
CNS B8006 
Glossary of Terms for Reliability (General) (Oct)(11381) 

 
CNS C5029 
General Rules for Reliability Assured Electronic Components (Jan)(4901) 

 
CNS C5155 
Data Processing Vocabulary (Part 14: Reliability, Maintenance and 
Availability) (Aug)(10242) 

 
CNS C6303 
Method of Test for Reliability of Household Audio Product (Oct)(12120) 

 
CNS C6304 Method of Test for Reliability of Video Product (Oct)(12121) 
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APPENDIX A - Field Data 

Dataset 1 

Field data from a larger release of a telecommunications switch software. Data is 

calendar-time, %Cum SW Failures is the percentage of the total number of software 

failure experienced in the calendar interval reported in the table, %Cum Usage 

Time is the percentage of the total in-service time accumulated over the calendar 

interval reported, and %Sites is the percentage of sites that have this version of the 

software release loaded on a given date. Note that the data has been normalized to 

protect proprietary information. 
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