
MSP430x5xx Family

User's Guide

Literature Number: SLAU208E

June 2008–Revised November 2009

2 SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Contents

Preface .. 19

1 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) 21
1.1 System Control Module (SYS) Introduction .. 22
1.2 System Reset and Initialization .. 22

1.2.1 Device Initial Conditions After System Reset ... 24
1.3 Interrupts .. 24

1.3.1 (Non)Maskable Interrupts (NMIs) ... 25
1.3.2 SNMI Timing .. 26
1.3.3 Maskable Interrupts .. 27
1.3.4 Interrupt Processing .. 27
1.3.5 Interrupt Nesting .. 28
1.3.6 Interrupt Vectors .. 28
1.3.7 SYS Interrupt Vector Generators ... 29

1.4 Operating Modes .. 30
1.4.1 Entering and Exiting Low-Power Modes LPM0 Through LPM4 .. 33
1.4.2 Entering and Exiting Low-Power Modes LPMx.5 ... 33
1.4.3 Extended Time in Low-Power Modes .. 34

1.5 Principles for Low-Power Applications .. 35
1.6 Connection of Unused Pins .. 35
1.7 Reset pin (RST /NMI) Configuration ... 35
1.8 Configuring JTAG pins .. 36
1.9 Boot Code .. 36
1.10 Bootstrap Loader (BSL) .. 36
1.11 Memory Map – Uses and Abilities .. 37

1.11.1 Vacant Memory Space ... 37
1.11.2 JTAG Lock Mechanism via the Electronic Fuse ... 37

1.12 JTAG Mailbox (JMB) System .. 38
1.12.1 JMB Configuration ... 38
1.12.2 JMBOUT0 and JMBOUT1 Outgoing Mailbox .. 38
1.12.3 JMBIN0 and JMBIN1 Incoming Mailbox .. 38
1.12.4 JMB NMI Usage ... 38

1.13 Device Descriptor Table .. 39
1.13.1 Identifying Device Type ... 40
1.13.2 TLV Descriptors ... 41
1.13.3 Peripheral discovery descriptor .. 41
1.13.4 Calibration Values ... 44

1.14 Special Function Registers (SFRs) ... 47
1.15 SYS Configuration Registers ... 51

2 Power Management Module and Supply Voltage Supervisor ... 59
2.1 Power Management Module (PMM) Introduction ... 60
2.2 PMM Operation .. 62

2.2.1 VCORE and the Regulator ... 62
2.2.2 Supply Voltage Supervisor and Monitor ... 62
2.2.3 Supply Voltage Supervisor and Monitor - Power-Up .. 67
2.2.4 Increasing VCORE to Support Higher MCLK Frequencies ... 68

3SLAU208E–June 2008–Revised November 2009 Contents
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com

2.2.5 Decreasing VCORE for Power Optimization ... 69
2.2.6 LPM3.5, LPM4.5 .. 69
2.2.7 Brownout Reset (BOR), Software BOR, Software POR ... 69
2.2.8 SVS/SVM Performance Modes (Normal or Full-Performance) ... 70
2.2.9 PMM Interrupts ... 71
2.2.10 Port I/O Control .. 71
2.2.11 Supply Voltage Monitor Output (SVMOUT, Optional) .. 71

2.3 PMM Registers .. 72

3 Unified Clock System (UCS) .. 79
3.1 Unified Clock System (UCS) Introduction .. 80
3.2 UCS Operation ... 82

3.2.1 UCS Module Features for Low-Power Applications .. 82
3.2.2 Internal Very-Low-Power Low-Frequency Oscillator (VLO) ... 82
3.2.3 Internal Trimmed Low-Frequency Reference Oscillator (REFO) ... 83
3.2.4 XT1 Oscillator ... 83
3.2.5 XT2 Oscillator ... 84
3.2.6 Digitally-Controlled Oscillator (DCO) ... 85
3.2.7 Frequency Locked Loop (FLL) .. 85
3.2.8 DCO Modulator ... 86
3.2.9 Disabling FLL Hardware and Modulator ... 87
3.2.10 FLL Operation From Low-Power Modes ... 87
3.2.11 Operation From Low-Power Modes, Requested by Peripheral Modules 87
3.2.12 UCS Module Fail-Safe Operation ... 88
3.2.13 Synchronization of Clock Signals ... 91

3.3 Module Oscillator (MODOSC) ... 92
3.3.1 MODOSC Operation ... 92

3.4 UCS Module Registers ... 93

4 CPUX .. 103
4.1 MSP430X CPU (CPUX) Introduction .. 104
4.2 Interrupts .. 106
4.3 CPU Registers .. 107

4.3.1 Program Counter (PC) ... 107
4.3.2 Stack Pointer (SP) .. 107
4.3.3 Status Register (SR) .. 109
4.3.4 Constant Generator Registers (CG1 and CG2) ... 110
4.3.5 General-Purpose Registers (R4 –R15) .. 111

4.4 Addressing Modes ... 113
4.4.1 Register Mode ... 114
4.4.2 Indexed Mode ... 115
4.4.3 Symbolic Mode .. 119
4.4.4 Absolute Mode .. 124
4.4.5 Indirect Register Mode ... 126
4.4.6 Indirect Autoincrement Mode .. 127
4.4.7 Immediate Mode .. 128

4.5 MSP430 and MSP430X Instructions .. 131
4.5.1 MSP430 Instructions .. 131
4.5.2 MSP430X Extended Instructions .. 136

4.6 Instruction Set Description .. 148
4.6.1 Extended Instruction Binary Descriptions .. 149
4.6.2 MSP430 Instructions .. 151
4.6.3 Extended Instructions .. 202
4.6.4 Address Instructions .. 243

5 Flash Memory Controller .. 259

4 Contents SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com

5.1 Flash Memory Introduction ... 260
5.2 Flash Memory Segmentation ... 261

5.2.1 Segment A ... 262
5.3 Flash Memory Operation .. 263

5.3.1 Erasing Flash Memory ... 263
5.3.2 Writing Flash Memory .. 267
5.3.3 Flash Memory Access During Write or Erase ... 274
5.3.4 Checking Flash memory ... 275
5.3.5 Configuring and Accessing the Flash Memory Controller ... 275
5.3.6 Flash Memory Controller Interrupts ... 275
5.3.7 Programming Flash Memory Devices .. 275

5.4 Flash Memory Registers .. 277

6 RAM Controller .. 281
6.1 Ram Controller (RAMCTL) Introduction ... 282
6.2 RAMCTL Operation .. 282
6.3 RAMCTL Module Registers ... 283

7 DMA Controller .. 285
7.1 Direct Memory Access (DMA) Introduction ... 286
7.2 DMA Operation ... 288

7.2.1 DMA Addressing Modes ... 288
7.2.2 DMA Transfer Modes ... 288
7.2.3 Initiating DMA Transfers ... 294
7.2.4 Halting Executing Instructions for DMA Transfers .. 294
7.2.5 Stopping DMA Transfers ... 295
7.2.6 DMA Channel Priorities .. 295
7.2.7 DMA Transfer Cycle Time ... 296
7.2.8 Using DMA With System Interrupts ... 296
7.2.9 DMA Controller Interrupts .. 296
7.2.10 Using the USCI_B I2C Module With the DMA Controller ... 298
7.2.11 Using ADC12 With the DMA Controller ... 298
7.2.12 Using DAC12 With the DMA Controller ... 298

7.3 DMA Registers ... 299
7.3.1 DMA Control 0 Register (DMACTL0) ... 301
7.3.2 DMA Control 1 Register (DMACTL1) ... 301
7.3.3 DMA Control 2 Register (DMACTL2) ... 302
7.3.4 DMA Control 3 Register (DMACTL3) ... 302
7.3.5 DMA Control 4 Register (DMACTL4) ... 303
7.3.6 DMA Channel x Control Register (DMAxCTL) .. 304
7.3.7 DMA Source Address Register (DMAxSA) .. 306
7.3.8 DMA Destination Address Register (DMAxDA) ... 306
7.3.9 DMA Size Address Register (DMAxSZ) ... 307
7.3.10 DMA Interrupt Vector Register (DMAIV) .. 307

8 Digital I/O .. 309
8.1 Digital I/O Introduction ... 310
8.2 Digital I/O Operation ... 311

8.2.1 Input Registers PxIN .. 311
8.2.2 Output Registers PxOUT ... 311
8.2.3 Direction Registers PxDIR ... 311
8.2.4 Pullup/Pulldown Resistor Enable Registers PxREN .. 311
8.2.5 Output Drive Strength Registers PxDS .. 312
8.2.6 Function Select Registers PxSEL ... 312
8.2.7 P1 and P2 Interrupts, Port Interrupts ... 312

5SLAU208E–June 2008–Revised November 2009 Contents
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com

8.2.8 Configuring Unused Port Pins ... 314
8.3 I/O Configuration and LPMx.5 Low-Power Modes ... 314

8.3.1 LPMx.5 Wakeup via I/O .. 316
8.4 Digital I/O Registers ... 317

9 Port Mapping Controller ... 327
9.1 Port Mapping Controller Introduction .. 328
9.2 Port Mapping Controller Operation .. 328

9.2.1 Access .. 328
9.2.2 Mapping .. 328
9.2.3 Software Example ... 331

9.3 Port Mapping Controller Registers ... 333

10 CRC Module .. 335
10.1 Cyclic Redundancy Check (CRC) Module Introduction ... 336
10.2 CRC Checksum Generation .. 337

10.2.1 CRC Implementation .. 337
10.2.2 Assembler Examples .. 338

10.3 CRC Module Registers .. 340

11 Watchdog Timer (WDT_A) ... 343
11.1 WDT_A Introduction ... 344
11.2 WDT_A Operation ... 346

11.2.1 Watchdog Timer Counter (WDTCNT) ... 346
11.2.2 Watchdog Mode .. 346
11.2.3 Interval Timer Mode ... 346
11.2.4 Watchdog Timer Interrupts ... 346
11.2.5 Clock Fail-Safe Feature ... 347
11.2.6 Operation in Low-Power Modes ... 347
11.2.7 Software Examples .. 347

11.3 WDT_A Registers .. 348

12 Timer_A .. 349
12.1 Timer_A Introduction .. 350
12.2 Timer_A Operation ... 351

12.2.1 16-Bit Timer Counter .. 351
12.2.2 Starting the Timer .. 352
12.2.3 Timer Mode Control ... 352
12.2.4 Capture/Compare Blocks ... 356
12.2.5 Output Unit .. 358
12.2.6 Timer_A Interrupts ... 362

12.3 Timer_A Registers ... 364

13 Timer_B .. 369
13.1 Timer_B Introduction .. 370

13.1.1 Similarities and Differences From Timer_A .. 370
13.2 Timer_B Operation ... 372

13.2.1 16-Bit Timer Counter .. 372
13.2.2 Starting the Timer .. 372
13.2.3 Timer Mode Control ... 372
13.2.4 Capture/Compare Blocks ... 376
13.2.5 Output Unit .. 379
13.2.6 Timer_B Interrupts ... 383

13.3 Timer_B Registers ... 385

14 Real-Time Clock (RTC_A) .. 391
14.1 RTC_A Introduction .. 392
14.2 RTC_A Operation .. 394

6 Contents SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com

14.2.1 Counter Mode .. 394
14.2.2 Calendar Mode ... 394
14.2.3 Real-Time Clock Interrupts ... 396
14.2.4 Real-Time Clock Calibration .. 398

14.3 Real-Time Clock Registers ... 399

15 32-Bit Hardware Multiplier (MPY32) .. 411
15.1 32-Bit Hardware Multiplier (MPY32) Introduction .. 412
15.2 MPY32 Operation .. 414

15.2.1 Operand Registers ... 415
15.2.2 Result Registers .. 417
15.2.3 Software Examples .. 418
15.2.4 Fractional Numbers .. 418
15.2.5 Putting It All Together ... 423
15.2.6 Indirect Addressing of Result Registers ... 425
15.2.7 Using Interrupts .. 425
15.2.8 Using DMA .. 426

15.3 MPY32 Registers .. 427

16 REF .. 431
16.1 REF Introduction ... 431
16.2 Principle of Operation ... 433

16.2.1 Low-Power Operation ... 433
16.2.2 REFCTL ... 433
16.2.3 Reference System Requests ... 434

16.3 REF Registers .. 437

17 ADC12_A .. 439
17.1 ADC12_A Introduction ... 440
17.2 ADC12_A Operation ... 442

17.2.1 12-Bit ADC Core ... 442
17.2.2 ADC12_A Inputs and Multiplexer .. 442
17.2.3 Voltage Reference Generator .. 443
17.2.4 Auto Power Down .. 443
17.2.5 Sample and Conversion Timing .. 444
17.2.6 Conversion Memory ... 446
17.2.7 ADC12_A Conversion Modes .. 446
17.2.8 Using the Integrated Temperature Sensor ... 452
17.2.9 ADC12_A Grounding and Noise Considerations .. 453
17.2.10 ADC12_A Interrupts .. 454

17.3 ADC12_A Registers ... 456

18 Comp_B .. 465
18.1 Comp_B Introduction .. 466
18.2 Comp_B Operation .. 467

18.2.1 Comparator ... 467
18.2.2 Analog Input Switches ... 467
18.2.3 Port Logic ... 467
18.2.4 Input Short Switch ... 468
18.2.5 Output Filter .. 468
18.2.6 Reference Voltage Generator .. 469
18.2.7 Comp_B, Port Disable Register CBPD ... 470
18.2.8 Comp_B Interrupts ... 470
18.2.9 Comp_B Used to Measure Resistive Elements .. 470

18.3 Comp_B Registers ... 472

19 Universal Serial Communication Interface – UART Mode .. 477

7SLAU208E–June 2008–Revised November 2009 Contents
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com

19.1 Universal Serial Communication Interface (USCI) Overview ... 478
19.2 USCI Introduction – UART Mode .. 479
19.3 USCI Operation – UART Mode .. 481

19.3.1 USCI Initialization and Reset ... 481
19.3.2 Character Format .. 481
19.3.3 Asynchronous Communication Format ... 481
19.3.4 Automatic Baud-Rate Detection ... 484
19.3.5 IrDA Encoding and Decoding .. 485
19.3.6 Automatic Error Detection .. 486
19.3.7 USCI Receive Enable ... 487
19.3.8 USCI Transmit Enable .. 487
19.3.9 UART Baud-Rate Generation .. 488
19.3.10 Setting a Baud Rate .. 490
19.3.11 Transmit Bit Timing ... 490
19.3.12 Receive Bit Timing ... 491
19.3.13 Typical Baud Rates and Errors ... 492
19.3.14 Using the USCI Module in UART Mode With Low-Power Modes 495
19.3.15 USCI Interrupts ... 495

19.4 USCI Registers – UART Mode ... 497

20 Universal Serial Communication Interface – SPI Mode ... 505
20.1 Universal Serial Communication Interface (USCI) Overview ... 506
20.2 USCI Introduction – SPI Mode ... 507
20.3 USCI Operation – SPI Mode ... 509

20.3.1 USCI Initialization and Reset ... 509
20.3.2 Character Format .. 509
20.3.3 Master Mode .. 510
20.3.4 Slave Mode ... 511
20.3.5 SPI Enable .. 511
20.3.6 Serial Clock Control ... 512
20.3.7 Using the SPI Mode With Low-Power Modes .. 512
20.3.8 SPI Interrupts ... 513

20.4 USCI Registers – SPI Mode .. 514

21 Universal Serial Communication Interface – I2C Mode .. 519
21.1 Universal Serial Communication Interface (USCI) Overview ... 520
21.2 USCI Introduction – I2C Mode .. 521
21.3 USCI Operation – I2C Mode .. 522

21.3.1 USCI Initialization and Reset ... 523
21.3.2 I2C Serial Data .. 523
21.3.3 I2C Addressing Modes ... 525
21.3.4 I2C Module Operating Modes ... 526
21.3.5 I2C Clock Generation and Synchronization ... 537
21.3.6 Using the USCI Module in I2C Mode With Low-Power Modes ... 538
21.3.7 USCI Interrupts in I2C Mode .. 538

21.4 USCI Registers– I2C Mode ... 541

22 USB Module .. 549
22.1 USB Introduction ... 550
22.2 USB Operation ... 552

22.2.1 USB Transceiver (PHY) ... 552
22.2.2 USB Power System .. 553
22.2.3 USB Phase-Locked Loop (PLL) .. 555
22.2.4 USB Controller Engine .. 558
22.2.5 USB Vector Interrupts ... 561
22.2.6 Power Consumption ... 562

8 Contents SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com

22.2.7 Suspend and Resume ... 562
22.3 USB Transfers .. 563

22.3.1 Control Transfers .. 563
22.3.2 Interrupt Transfers ... 566
22.3.3 Bulk Transfers .. 567

22.4 Registers .. 569
22.4.1 USB Configuration Registers ... 569
22.4.2 USB Control Registers .. 575
22.4.3 USB Buffer Registers and Memory .. 582

23 Embedded Emulation Module (EEM) .. 589
23.1 Embedded Emulation Module (EEM) Introduction ... 590
23.2 EEM Building Blocks .. 592

23.2.1 Triggers ... 592
23.2.2 Trigger Sequencer ... 592
23.2.3 State Storage (Internal Trace Buffer) .. 592
23.2.4 Cycle Counter .. 592
23.2.5 Clock Control ... 593

23.3 EEM Configurations ... 593

9SLAU208E–June 2008–Revised November 2009 Contents
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com

List of Figures

1-1. BOR/POR/PUC Reset Circuit.. 23

1-2. Interrupt Priority.. 24

1-3. NMIs With Reentrance Protection... 26

1-4. Interrupt Processing... 27

1-5. Return From Interrupt ... 28

1-6. Operation Modes .. 31

1-7. Devices Descriptor Table... 40

2-1. System Frequency and Supply/Core Voltages - See Device Specific Datasheet 60

2-2. PMM Block Diagram .. 61

2-3. High-Side and Low-Side Voltage Failure and Resulting PMM Actions... 64

2-4. High-Side SVS and SVM ... 65

2-5. Low-Side SVS and SVM.. 66

2-6. PMM Action at Device Power-Up ... 67

2-7. Changing VCORE and SVML and SVSL Levels... 68

3-1. UCS Block Diagram .. 81

3-2. Modulator Patterns .. 87

3-3. Module Request Clock System .. 88

3-4. Oscillator Fault Logic.. 91

3-5. Switch MCLK from DCOCLK to XT1CLK .. 91

4-1. MSP430X CPU Block Diagram .. 105

4-2. PC Storage on the Stack for Interrupts ... 106

4-3. Program Counter... 107

4-4. PC Storage on the Stack for CALLA .. 107

4-5. Stack Pointer ... 108

4-6. Stack Usage .. 108

4-7. PUSHX.A Format on the Stack .. 108

4-8. PUSH SP, POP SP Sequence ... 108

4-9. SR Bits .. 109

4-10. Register-Byte/Byte-Register Operation ... 111

4-11. Register-Word Operation ... 112

4-12. Word-Register Operation ... 112

4-13. Register – Address-Word Operation .. 113

4-14. Address-Word – Register Operation .. 113

4-15. Indexed Mode in Lower 64 KB ... 115

4-16. Indexed Mode in Upper Memory... 117

4-17. Overflow and Underflow for Indexed Mode... 117

4-18. Example for Indexed Mode ... 118

4-19. Symbolic Mode Running in Lower 64 KB ... 120

4-20. Symbolic Mode Running in Upper Memory .. 122

4-21. Overflow and Underflow for Symbolic Mode ... 122

4-22. MSP430 Double-Operand Instruction Format.. 131

4-23. MSP430 Single-Operand Instructions ... 132

4-24. Format of Conditional Jump Instructions.. 133

4-25. Extension Word for Register Modes... 136

4-26. Extension Word for Non-Register Modes... 137

4-27. Example for Extended Register/Register Instruction .. 138

4-28. Example for Extended Immediate/Indexed Instruction.. 138

10 List of Figures SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com

4-29. Extended Format I Instruction Formats ... 140

4-30. 20-Bit Addresses in Memory ... 140

4-31. Extended Format II Instruction Format.. 141

4-32. PUSHM/POPM Instruction Format .. 142

4-33. RRCM, RRAM, RRUM, and RLAM Instruction Format ... 142

4-34. BRA Instruction Format ... 142

4-35. CALLA Instruction Format .. 142

4-36. Decrement Overlap .. 167

4-37. Stack After a RET Instruction .. 186

4-38. Destination Operand—Arithmetic Shift Left .. 188

4-39. Destination Operand—Carry Left Shift .. 189

4-40. Rotate Right Arithmetically RRA.B and RRA.W ... 190

4-41. Rotate Right Through Carry RRC.B and RRC.W.. 191

4-42. Swap Bytes in Memory.. 198

4-43. Swap Bytes in a Register ... 198

4-44. Rotate Left Arithmetically—RLAM[.W] and RLAM.A .. 225

4-45. Destination Operand-Arithmetic Shift Left .. 226

4-46. Destination Operand-Carry Left Shift.. 227

4-47. Rotate Right Arithmetically RRAM[.W] and RRAM.A ... 228

4-48. Rotate Right Arithmetically RRAX(.B,.A) – Register Mode ... 230

4-49. Rotate Right Arithmetically RRAX(.B,.A) – Non-Register Mode ... 230

4-50. Rotate Right Through Carry RRCM[.W] and RRCM.A.. 231

4-51. Rotate Right Through Carry RRCX(.B,.A) – Register Mode ... 233

4-52. Rotate Right Through Carry RRCX(.B,.A) – Non-Register Mode ... 233

4-53. Rotate Right Unsigned RRUM[.W] and RRUM.A.. 234

4-54. Rotate Right Unsigned RRUX(.B,.A) – Register Mode ... 235

4-55. Swap Bytes SWPBX.A Register Mode.. 239

4-56. Swap Bytes SWPBX.A In Memory .. 240

4-57. Swap Bytes SWPBX[.W] Register Mode ... 240

4-58. Swap Bytes SWPBX[.W] In Memory .. 240

4-59. Sign Extend SXTX.A .. 241

4-60. Sign Extend SXTX[.W] .. 241

5-1. Flash Memory Module Block Diagram .. 260

5-2. 256-KB Flash Memory Segments Example .. 261

5-3. Erase Cycle Timing .. 264

5-4. Erase Cycle From Flash .. 265

5-5. Erase Cycle From RAM ... 266

5-6. Byte/Word/Long-Word Write Timing... 267

5-7. Initiating a Byte/Word Write From Flash .. 268

5-8. Initiating a Byte/Word Write From RAM... 269

5-9. Initiating Long-Word Write From Flash.. 270

5-10. Initiating Long-Word Write from RAM ... 271

5-11. Block-Write Cycle Timing ... 272

5-12. Block Write Flow ... 273

5-13. User-Developed Programming Solution .. 276

7-1. DMA Controller Block Diagram... 287

7-2. DMA Addressing Modes .. 288

7-3. DMA Single Transfer State Diagram .. 290

7-4. DMA Block Transfer State Diagram ... 291

11SLAU208E–June 2008–Revised November 2009 List of Figures
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com

7-5. DMA Burst-Block Transfer State Diagram .. 293

8-1. LPMx.5 Entry/Exit Flow ... 315

10-1. LFSR Implementation of CRC-CCITT Standard, Bit 0 is the MSB of the Result 336

10-2. Implementation of CRC-CCITT using the CRCDI and CRCINIRES registers 338

11-1. Watchdog Timer Block Diagram ... 345

12-1. Timer_A Block Diagram ... 351

12-2. Up Mode .. 353

12-3. Up Mode Flag Setting ... 353

12-4. Continuous Mode .. 353

12-5. Continuous Mode Flag Setting ... 354

12-6. Continuous Mode Time Intervals .. 354

12-7. Up/Down Mode ... 355

12-8. Up/Down Mode Flag Setting.. 355

12-9. Output Unit in Up/Down Mode ... 356

12-10. Capture Signal (SCS = 1)... 357

12-11. Capture Cycle .. 357

12-12. Output Example – Timer in Up Mode ... 359

12-13. Output Example – Timer in Continuous Mode ... 360

12-14. Output Example – Timer in Up/Down Mode.. 361

12-15. Capture/Compare TAxCCR0 Interrupt Flag .. 362

13-1. Timer_B Block Diagram ... 371

13-2. Up Mode .. 373

13-3. Up Mode Flag Setting ... 373

13-4. Continuous Mode .. 374

13-5. Continuous Mode Flag Setting ... 374

13-6. Continuous Mode Time Intervals .. 375

13-7. Up/Down Mode ... 375

13-8. Up/Down Mode Flag Setting.. 375

13-9. Output Unit in Up/Down Mode ... 376

13-10. Capture Signal (SCS = 1)... 377

13-11. Capture Cycle .. 377

13-12. Output Example – Timer in Up Mode ... 380

13-13. Output Example – Timer in Continuous Mode ... 381

13-14. Output Example – Timer in Up/Down Mode.. 382

13-15. Capture/Compare TBxCCR0 Interrupt Flag .. 383

14-1. RTC_A... 393

15-1. MPY32 Block Diagram .. 413

15-2. Q15 Format Representation .. 419

15-3. Q14 Format Representation .. 419

15-4. Saturation Flow Chart ... 421

15-5. Multiplication Flow Chart .. 423

16-1. REF Block Diagram.. 432

17-1. ADC12_A Block Diagram ... 441

17-2. Analog Multiplexer ... 442

17-3. Extended Sample Mode... 444

17-4. Pulse Sample Mode ... 445

17-5. Analog Input Equivalent Circuit .. 445

17-6. Single-Channel Single-Conversion Mode... 447

17-7. Sequence-of-Channels Mode .. 448

12 List of Figures SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com

17-8. Repeat-Single-Channel Mode .. 449

17-9. Repeat-Sequence-of-Channels Mode... 450

17-10. Typical Temperature Sensor Transfer Function ... 452

17-11. ADC12_A Grounding and Noise Considerations .. 453

18-1. Comp_B Block Diagram... 466

18-2. Comp_B Sample-And-Hold ... 468

18-3. RC-Filter Response at the Output of the Comparator... 469

18-4. Reference Generator Block Diagram.. 469

18-5. Transfer Characteristic and Power Dissipation in a CMOS Inverter/Buffer 470

18-6. Temperature Measurement System ... 470

18-7. Timing for Temperature Measurement Systems... 471

19-1. USCI_Ax Block Diagram – UART Mode (UCSYNC = 0) ... 480

19-2. Character Format .. 481

19-3. Idle-Line Format.. 482

19-4. Address-Bit Multiprocessor Format.. 483

19-5. Auto Baud-Rate Detection – Break/Synch Sequence... 484

19-6. Auto Baud-Rate Detection – Synch Field... 484

19-7. UART vs IrDA Data Format... 485

19-8. Glitch Suppression, USCI Receive Not Started.. 487

19-9. Glitch Suppression, USCI Activated ... 487

19-10. BITCLK Baud-Rate Timing With UCOS16 = 0 ... 488

19-11. Receive Error ... 491

20-1. USCI Block Diagram – SPI Mode.. 508

20-2. USCI Master and External Slave .. 510

20-3. USCI Slave and External Master .. 511

20-4. USCI SPI Timing With UCMSB = 1 ... 512

21-1. USCI Block Diagram – I2C Mode .. 522

21-2. I2C Bus Connection Diagram ... 523

21-3. I2C Module Data Transfer ... 524

21-4. Bit Transfer on I2C Bus .. 524

21-5. I2C Module 7-Bit Addressing Format .. 525

21-6. I2C Module 10-Bit Addressing Format... 525

21-7. I2C Module Addressing Format With Repeated START Condition .. 525

21-8. I2C Time-Line Legend ... 526

21-9. I2C Slave Transmitter Mode .. 527

21-10. I2C Slave Receiver Mode ... 529

21-11. I2C Slave 10-Bit Addressing Mode... 530

21-12. I2C Master Transmitter Mode ... 532

21-13. I2C Master Receiver Mode .. 534

21-14. I2C Master 10-Bit Addressing Mode ... 535

21-15. Arbitration Procedure Between Two Master Transmitters .. 536

21-16. Synchronization of Two I2C Clock Generators During Arbitration ... 537

22-1. USB Block Diagram.. 551

22-2. USB Power System.. 553

22-3. USB Power Up/Down Profile ... 554

22-4. Powering Entire MSP430 From VBUS .. 555

22-5. USB-PLL Analog Block Diagram... 556

22-6. Data Buffers and Descriptors... 558

22-7. USB Timer and Time Stamp Generation ... 560

13SLAU208E–June 2008–Revised November 2009 List of Figures
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com

23-1. Large Implementation of EEM.. 591

14 List of Figures SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com

List of Tables

1-1. Interrupt Sources, Flags, and Vectors .. 28

1-2. Connection of Unused Pins .. 35

1-3. Tag Values ... 41

1-4. Peripheral Discovery Descriptor ... 41

1-5. Values for Memory Entry ... 42

1-6. Values for Peripheral Entry... 43

1-7. Peripheral IDs ... 43

1-8. Sample Peripheral Discovery Descriptor ... 44

1-9. SFR Base Address .. 47

1-10. Special Function Registers... 47

1-11. SYS Base Address .. 51

1-12. SYS Configuration Registers... 51

2-1. SVS/SVM Thresholds... 62

2-2. Recommended SVSL Settings ... 63

2-3. Recommended SVSH Settings ... 63

2-4. SVSL Performance Control Modes .. 70

2-5. SVML Performance Control Modes.. 70

2-6. SVSH Performance Control Modes .. 70

2-7. SVMH Performance Control Modes ... 71

2-8. PMM Registers .. 72

3-1. Unified Clock System Registers ... 93

4-1. SR Bit Description ... 109

4-2. Values of Constant Generators CG1, CG2... 110

4-3. Source/Destination Addressing .. 113

4-4. MSP430 Double-Operand Instructions.. 132

4-5. MSP430 Single-Operand Instructions ... 132

4-6. Conditional Jump Instructions .. 133

4-7. Emulated Instructions ... 133

4-8. Interrupt, Return, and Reset Cycles and Length... 134

4-9. MSP430 Format II Instruction Cycles and Length ... 134

4-10. MSP430 Format I Instructions Cycles and Length .. 135

4-11. Description of the Extension Word Bits for Register Mode... 136

4-12. Description of Extension Word Bits for Non-Register Modes .. 137

4-13. Extended Double-Operand Instructions... 139

4-14. Extended Single-Operand Instructions.. 141

4-15. Extended Emulated Instructions ... 143

4-16. Address Instructions, Operate on 20-Bit Register Data... 144

4-17. MSP430X Format II Instruction Cycles and Length ... 145

4-18. MSP430X Format I Instruction Cycles and Length .. 146

4-19. Address Instruction Cycles and Length ... 147

4-20. Instruction Map of MSP430X ... 148

5-1. Erase Modes.. 263

5-2. Write Modes .. 267

5-3. Flash Access While Flash is Dusy (BUSY = 1) .. 274

5-4. Flash Controller Registers .. 277

6-1. RAMCTL Module Register .. 283

7-1. DMA Transfer Modes.. 289

15SLAU208E–June 2008–Revised November 2009 List of Tables
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com

7-2. DMA Trigger Operation ... 295

7-3. Maximum Single-Transfer DMA Cycle Time ... 296

7-4. DMA Registers ... 299

8-1. I/O Configuration ... 311

8-2. Digital I/O Registers ... 317

9-1. Examples for Port Mapping Mnemonics and Functions .. 329

9-2. Port Mapping Control Registers.. 333

9-3. Port Mapping Registers for Port Px – Byte Access ... 333

9-4. Port Mapping Registers for Port Px – Word Access .. 333

10-1. CRC Module Registers.. 340

11-1. Watchdog Timer Registers ... 348

12-1. Timer Modes.. 352

12-2. Output Modes .. 358

12-3. Timer_A Registers ... 364

13-1. Timer Modes.. 373

13-2. TBxCLn Load Events .. 378

13-3. Compare Latch Operating Modes ... 378

13-4. Output Modes .. 379

13-5. Timer_B Registers ... 385

14-1. Real-Time Clock Registers ... 399

15-1. Result Availability (MPYFRAC = 0, MPYSAT = 0) .. 414

15-2. OP1 Registers .. 416

15-3. OP2 Registers .. 416

15-4. SUMEXT and MPYC Contents... 417

15-5. Result Availability in Fractional Mode (MPYFRAC = 1, MPYSAT = 0) ... 420

15-6. Result Availability in Saturation Mode (MPYSAT = 1) .. 420

15-7. MPY32 Registers .. 427

15-8. Alternative Registers... 429

16-1. REF Control of Reference System (REFMSTR = 1) (Default) ... 434

16-2. Table 2. ADC Control of Reference System (REFMSTR = 0) ... 434

16-3. REF Registers .. 437

17-1. ADC12_A Conversion Result Formats .. 446

17-2. Conversion Mode Summary .. 446

17-3. ADC12_A Registers ... 456

18-1. Comp_B Registers... 472

19-1. Receive Error Conditions ... 486

19-2. BITCLK Modulation Pattern .. 488

19-3. BITCLK16 Modulation Pattern ... 489

19-4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0 .. 492

19-5. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1 .. 494

19-6. USCI_Ax Registers .. 497

20-1. UCxSTE Operation .. 509

20-2. USCI_Ax Registers .. 514

20-3. USCI_Bx Registers .. 514

21-1. I2C State Change Interrupt Flags .. 539

21-2. USCI_Bx Registers .. 541

22-1. USB-PLL Pre-Scale Divider .. 556

22-2. Register Settings to Generate 48 MHz Using Common Crystals.. 556

22-3. USB Buffer Memory Map ... 559

16 List of Tables SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com

22-4. USB Interrupt Vector Generation .. 561

22-5. USB Configuration Registers ... 569

22-6. USB Control Registers .. 575

22-7. USB Buffer Memory ... 582

22-8. USB Buffer Descriptor Registers... 582

23-1. 5xx EEM Configurations .. 593

17SLAU208E–June 2008–Revised November 2009 List of Tables
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

18 List of Tables SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Preface
SLAU208E–June 2008–Revised November 2009

Read This First

About This Manual

This manual describes the modules and peripherals of the MSP430x5xx family of devices. Each
description presents the module or peripheral in a general sense. Not all features and functions of all
modules or peripherals may be present on all devices. In addition, modules or peripherals may differ in
their exact implementation between device families, or may not be fully implemented on an individual
device or device family.

Pin functions, internal signal connections, and operational parameters differ from device to device. The
user should consult the device-specific data sheet for these details.

Related Documentation From Texas Instruments

For related documentation see the web site http://www.ti.com/msp430.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can
radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable
protection against radio frequency interference. Operation of this equipment in other environments may
cause interference with radio communications, in which case the user at his own expense will be required
to take whatever measures may be required to correct this interference.

Notational Conventions

Program examples, are shown in a special typeface.

Glossary

ACLK Auxiliary Clock

ADC Analog-to-Digital Converter

BOR Brown-Out Reset; see System Resets, Interrupts, and Operating Modes

BSL Bootstrap Loader; see www.ti.com/msp430 for application reports

CPU Central Processing Unit See RISC 16-Bit CPU

DAC Digital-to-Analog Converter

DCO Digitally Controlled Oscillator; see FLL+ Module

dst Destination; see RISC 16-Bit CPU

FLL Frequency Locked Loop; see FLL+ Module

GIE Modes General Interrupt Enable; see System Resets Interrupts and Operating

INT(N/2) Integer portion of N/2

I/O Input/Output; see Digital I/O

ISR Interrupt Service Routine

LSB Least-Significant Bit

LSD Least-Significant Digit

19SLAU208E–June 2008–Revised November 2009 Read This First
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com

LPM Low-Power Mode; see System Resets Interrupts and Operating Modes; also named PM for Power Mode

MAB Memory Address Bus

MCLK Master Clock

MDB Memory Data Bus

MSB Most-Significant Bit

MSD Most-Significant Digit

NMI (Non)-Maskable Interrupt; see System Resets Interrupts and Operating Modes; also split to UNMI and SNMI

PC Program Counter; see RISC 16-Bit CPU

PM Power Mode See; system Resets Interrupts and Operating Modes

POR Power-On Reset; see System Resets Interrupts and Operating Modes

PUC Power-Up Clear; see System Resets Interrupts and Operating Modes

RAM Random Access Memory

SCG System Clock Generator; see System Resets Interrupts and Operating Modes

SFR Special Function Register; see System Resets, Interrupts, and Operating Modes

SMCLK Sub-System Master Clock

SNMI System NMI; see System Resets, Interrupts, and Operating Modes

SP Stack Pointer; see RISC 16-Bit CPU

SR Status Register; see RISC 16-Bit CPU

src Source; see RISC 16-Bit CPU

TOS Top of stack; see RISC 16-Bit CPU

UNMI User NMI; see System Resets, Interrupts, and Operating Modes

WDT Watchdog Timer; see Watchdog Timer

z16 16 bit address space

Register Bit Conventions

Each register is shown with a key indicating the accessibility of the each individual bit, and the initial
condition:

Register Bit Accessibility and Initial Condition

Key Bit Accessibility

rw Read/write

r Read only

r0 Read as 0

r1 Read as 1

w Write only

w0 Write as 0

w1 Write as 1

(w) No register bit implemented; writing a 1 results in a pulse. The register bit is always read as 0.

h0 Cleared by hardware

h1 Set by hardware

-0,-1 Condition after PUC

-(0),-(1) Condition after POR

-[0],-[1] Condition after BOR

-{0},-{1} Condition after Brownout

20 Read This First SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 1
SLAU208E–June 2008–Revised November 2009

System Resets, Interrupts, and Operating Modes, System
Control Module (SYS)

The system control module (SYS) is available on all devices. The following list shows the basic feature set
of SYS.

• Brownout reset/power on reset (BOR/POR) handling
• Power up clear (PUC) handling
• (Non)maskable interrupt (SNMI/UNMI) event source selection and management
• Address decoding
• Providing an user data-exchange mechanism via the JTAG mailbox (JMB)
• Bootstrap loader (BSL) entry mechanism
• Configuration management (device descriptors)
• Providing interrupt vector generators for reset and NMIs

Topic ... Page

1.1 System Control Module (SYS) Introduction .. 22
1.2 System Reset and Initialization ... 22
1.3 Interrupts ... 24
1.4 Operating Modes ... 30
1.5 Principles for Low-Power Applications .. 35
1.6 Connection of Unused Pins .. 35
1.7 Reset pin (RST /NMI) Configuration .. 35
1.8 Configuring JTAG pins .. 36
1.9 Boot Code .. 36
1.10 Bootstrap Loader (BSL) ... 36
1.11 Memory Map – Uses and Abilities .. 37
1.12 JTAG Mailbox (JMB) System .. 38
1.13 Device Descriptor Table ... 39
1.14 Special Function Registers (SFRs) .. 47
1.15 SYS Configuration Registers .. 51

21SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

System Control Module (SYS) Introduction www.ti.com

1.1 System Control Module (SYS) Introduction

SYS is responsible for the interaction between various modules throughout the system. The functions that
SYS provides for are not inherent to the modules themselves. Address decoding, bus arbitration, interrupt
event consolidation, and reset generation are some examples of the many functions that SYS provides.

1.2 System Reset and Initialization

The system reset circuitry is shown in Figure 1-1 and sources a brownout reset (BOR), a power on reset
(POR), and a power up clear (PUC). Different events trigger these reset signals and different initial
conditions exist depending on which signal was generated.

A BOR is a device reset. A BOR is only generated by the following events:
• Powering up the device
• A low signal on RST/NMI pin when configured in the reset mode
• A wakeup event from LPMx.5 (LPM3.5 or LPM4.5) modes
• A software BOR event

A POR is always generated when a BOR is generated, but a BOR is not generated by a POR. The
following events trigger a POR:
• A BOR signal
• A SVSH and/or SVSM low condition when enabled (see the PMM chapter for details)
• A SVSL and/or SVSL low condition when enabled (see the PMM chapter for details)
• A software POR event

A PUC is always generated when a POR is generated, but a POR is not generated by a PUC. The
following events trigger a PUC:
• A POR signal
• Watchdog timer expiration when watchdog mode only (see the WDT_A chapter for details)
• Watchdog timer security key violation (see the WDT_A chapter for details)
• A Flash memory security key violation (see the Flash Memory Controller chapter for details)
• Power Management Module security key violation (see the PMM chapter for details)
• Fetch from peripheral area

NOTE: The number and type of resets available may vary from device to device. See the
device-specific data sheet for all reset sources available.

22 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

BOR shadow

brownout circuit

PMMRSTIFG

RST/NMI

SYSNMI

s

s

PMMBORIFG

PMMSWBOR event

s

Delay BOR

SVSHIFG

PMMPORIFG

PMMSWPOR event

s

from SVSH

s

SVSHPE

SVMHVLRIFG

from SVMH

s

SVMHVLRPE

SVSLIFG

from SVSL

s

SVSLPE

SVMHLVLRIFG

from SVML

s

SVMLVLRPE

Delay POR

WDTIFG

Watchdog Timer

s

EN

from port

wakeup logic

s

PUC Logic

Module

PUCs

…
.

MCLK

notRST

Delay

clr

clr

clr

www.ti.com System Reset and Initialization

Figure 1-1. BOR/POR/PUC Reset Circuit

23SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

BOR/POR/PUC
circuit

Interrupt
daisy chain
and vectors

CPU

PUC

INT

NMI

RST/NMI

KEYV

.
.

.

MAB - 6LSBs

Module_A_int

Module_B_int

Module_C_int

Module_D_int

high priority

low priority

GIE
System NMI

User NMI

.
.

.
.

.

POR

BOR

Interrupts www.ti.com

1.2.1 Device Initial Conditions After System Reset

After a BOR, the initial device conditions are:
• The RST/NMI pin is configured in the reset mode. See Section 1.7 on configuring the RST/NMI pin.
• I/O pins are switched to input mode as described in the Digital I/O chapter.
• Other peripheral modules and registers are initialized as described in their respective chapters in this

manual.
• Status register (SR) is reset.
• The watchdog timer powers up active in watchdog mode.
• Program counter (PC) is loaded with the boot code address and boot code execution begins at that

address. See Section 1.9 for more information regarding the boot code. Upon completion of the boot
code, the PC is loaded with the address contained at the SYSRSTIV reset location (0FFFEh).

After a system reset, user software must initialize the device for the application requirements. The
following must occur:
• Initialize the stack pointer (SP), typically to the top of RAM.
• Initialize the watchdog to the requirements of the application.
• Configure peripheral modules to the requirements of the application.

1.3 Interrupts

The interrupt priorities are fixed and defined by the arrangement of the modules in the connection chain as
shown in Figure 1-2. Interrupt priorities determine what interrupt is taken when more than one interrupt is
pending simultaneously.

There are three types of interrupts:

• System reset
• (Non)maskable
• Maskable

Figure 1-2. Interrupt Priority

NOTE: The types of Interrupt sources available and their respective priorities can change from
device to device. Please see the device specific data sheet for all interrupt sources and their
priorities.

24 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Interrupts

1.3.1 (Non)Maskable Interrupts (NMIs)

In general, NMIs are not masked by the general interrupt enable (GIE) bit. The family supports two levels
of NMIs — system NMI (SNMI) and user NMI (UNMI). The NMI sources are enabled by individual interrupt
enable bits. When an NMI interrupt is accepted, other NMIs of that level are automatically disabled to
prevent nesting of consecutive NMIs of the same level. Program execution begins at the address stored in
the NMI vector as shown in Table 1-1. To allow software backward compatibility to users of earlier
MSP430 families, the software may, but does not need to, reenable NMI sources. The block diagram for
NMI sources is shown in Figure 1-3.

A UNMI interrupt can be generated by following sources:

• An edge on the RST/NMI pin when configured in NMI mode
• An oscillator fault occurs
• An access violation to the flash memory

A SNMI interrupt can be generated by following sources:

• Power Management Module (PMM) SVML/SVMH supply voltage fault
• PMM high/low side delay expiration
• Vacant memory access
• JTAG mailbox (JMB) event

NOTE: The number and types of NMI sources may vary from device to device. See the
device-specific data sheet for all NMI sources available.

25SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ACCV ACCVIFG

ACCVIE

NMI NMIIFG

NMIIE

...IFG

...IE

OSC Fault OFIFG

OFIE

User NMI

S

R

…
.

.
User NMI

_IRQA

SVML SVMLIFG

SVMLIE

SVMH SVMHIFG

SVMHIE

...IFG

...IE

JMB event SYSJMBIFG

SYSJMBIE

S

R

PUC

RETI

…
.

.

System NMI

_IRQA

System NMI

PUC

RETI

Del. FF

Interrupts www.ti.com

1.3.2 SNMI Timing

Consecutive SNMIs that occur at a higher rate than they can be handled (interrupt storm) allow the main
program to execute one instruction after the SNMI handler is finished with a RETI instruction, before the
SNMI handler is executed again. Consecutive SNMIs are not interrupted by UNMIs in this case. This
avoids a blocking behavior on high SNMI rates.

Figure 1-3. NMIs With Reentrance Protection

26 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Before

Interrupt

After

Interrupt

SP TOS

SP TOS

Item1

Item2

Item1

Item2

PC

SR

www.ti.com Interrupts

1.3.3 Maskable Interrupts

Maskable interrupts are caused by peripherals with interrupt capability. Each maskable interrupt source
can be disabled individually by an interrupt enable bit, or all maskable interrupts can be disabled by the
general interrupt enable (GIE) bit in the status register (SR).

Each individual peripheral interrupt is discussed in its respective module chapter in this manual.

1.3.4 Interrupt Processing

When an interrupt is requested from a peripheral and the peripheral interrupt enable bit and GIE bit are
set, the interrupt service routine is requested. Only the individual enable bit must be set for
(non)-maskable interrupts (NMI) to be requested.

1.3.4.1 Interrupt Acceptance

The interrupt latency is six cycles, starting with the acceptance of an interrupt request, and lasting until the
start of execution of the first instruction of the interrupt service routine, as shown in Figure 1-4. The
interrupt logic executes the following:

1. Any currently executing instruction is completed.
2. The PC, which points to the next instruction, is pushed onto the stack.
3. The SR is pushed onto the stack.
4. The interrupt with the highest priority is selected if multiple interrupts occurred during the last

instruction and are pending for service.
5. The interrupt request flag resets automatically on single-source flags. Multiple source flags remain set

for servicing by software.
6. The SR is cleared. This terminates any low-power mode. Because the GIE bit is cleared, further

interrupts are disabled.
7. The content of the interrupt vector is loaded into the PC; the program continues with the interrupt

service routine at that address.

Figure 1-4. Interrupt Processing

27SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Item1

Item2

SP TOS

Item1

Item2SP TOS

PC

SR

Before After

PC

SR

Return From Interrupt

Interrupts www.ti.com

1.3.4.2 Return From Interrupt

The interrupt handling routine terminates with the instruction:
RETI //return from an interrupt service routine

The return from the interrupt takes five cycles to execute the following actions and is illustrated in
Figure 1-5.

1. The SR with all previous settings pops from the stack. All previous settings of GIE, CPUOFF, etc. are
now in effect, regardless of the settings used during the interrupt service routine.

2. The PC pops from the stack and begins execution at the point where it was interrupted.

Figure 1-5. Return From Interrupt

1.3.5 Interrupt Nesting

Interrupt nesting is enabled if the GIE bit is set inside an interrupt service routine. When interrupt nesting
is enabled, any interrupt occurring during an interrupt service routine interrupts the routine, regardless of
the interrupt priorities.

1.3.6 Interrupt Vectors

The interrupt vectors are located in the address range 0FFFFh to 0FF80h, for a maximum of 64 interrupt
sources. A vector is programmed by the user and points to the start location of the corresponding interrupt
service routine. Table 1-1 is an example of the interrupt vectors available. See the device-specific data
sheet for the complete interrupt vector list.

Table 1-1. Interrupt Sources, Flags, and Vectors

SystemInterrupt Source Interrupt Flag Word Address PriorityInterrupt

Reset:
power up, external reset WDTIFG Reset 0FFFEh Highest

watchdog, KEYV
flash password

System NMI: (Non)maskable 0FFFCh …
PMM

User NMI:
NMI, oscillator fault, NMIIFG (Non)maskable 0FFFAh …

flash memory access OFIFG (Non)maskable
violation ACCVIFG (Non)maskable

Device specific 0FFF8h …

...

Watchdog timer WDTIFG Maskable

...

Device specific … …

Reserved Maskable … Lowest

28 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Interrupts

Some interrupt enable bits, and interrupt flags, as well as, control bits for the RST/NMI pin are located in
the special function registers (SFR). The SFR are located in the peripheral address range and are byte
and word accessible. See the device-specific data sheet for the SFR configuration.

1.3.6.1 Alternate Interrupt Vectors

It is possible to use the RAM as an alternate location for the interrupt vector locations. Setting the
SYSRIVECT bit in SYSCTL causes the interrupt vectors to be remapped to the top of RAM. Once set, any
interrupt will vector to the alternate locations now residing in RAM. Because SYSRIVECT is automatically
cleared on a BOR, it is critical that the reset vector at location 0FFFEh still be available and handled
properly in firmware.

1.3.7 SYS Interrupt Vector Generators

SYS collects all system NMI (SNMI) sources, user NMI (UNMI) sources, and BOR/POR/PUC (reset)
sources of all the other modules. They are combined into three interrupt vectors. The interrupt vector
registers SYSRSTIV, SYSSNIV, SYSUNIV are used to determine which flags requested an interrupt or a
reset. The interrupt with the highest priority of a group, when enabled, generates a number in the
corresponding SYSRSTIV, SYSSNIV, SYSUNIV register. This number can be directly added to the
program counter, causing a branch to the appropriate portion of the interrupt service routine. Disabled
interrupts do not affect the SYSRSTIV, SYSSNIV, SYSUNIV values. Reading SYSRSTIV, SYSSNIV,
SYSUNIV register automatically resets the highest pending interrupt flag of that register. If another
interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. Writing to
the SYSRSTIV, SYSSNIV, SYSUNIV register automatically resets all pending interrupt flags of the group.

1.3.7.1 SYSSNIV Software Example

The following software example shows the recommended use of SYSSNIV. The SYSSNIV value is added
to the PC to automatically jump to the appropriate routine. For SYSRSTIV and SYSUNIV, a similar
software approach can be used. The following is an example for a generic device. Vectors can change in
priority for a given device. The device specific data sheet should be referenced for the vector locations. All
vectors should be coded symbolically to allow for easy portability of code.

SNI_ISR: ADD &SYSSNIV,PC ; Add offset to jump table
RETI ; Vector 0: No interrupt
JMP SVML_ISR ; Vector 2: SVMLIFG
JMP SVMH_ISR ; Vector 4: SVMHIFG
JMP DLYL_ISR ; Vector 6: SVSMLDLYIFG
JMP DLYH_ISR ; Vector 8: SVSMHDLYIFG
JMP VMA_ISR ; Vector 10: VMAIFG
JMP JMBI_ISR ; Vector 12: JMBINIFG

JMBO_ISR: ; Vector 14: JMBOUTIFG
... ; Task_E starts here
RETI ; Return

SVML_ISR: ; Vector 2
... ; Task_2 starts here
RETI ; Return

SVMH_ISR: ; Vector 4
... ; Task_4 starts here
RETI ; Return

DELL_ISR: ; Vector 6
... ; Task_6 starts here
RETI ; Return

DELH_ISR: ; Vector 8
... ; Task_8 starts here
RETI ; Return

VMA_ISR: ; Vector A
... ; Task_A starts here

RETI ; Return
JMBI_ISR: ; Vector C

29SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Operating Modes www.ti.com

... ; Task_C starts here
RETI ; Return

1.3.7.2 SYSBERRIV Bus Error Interrupt Vector Generator

Some devices, for example those that contain the USB module, include an additional system interrupt
vector generator, SYSBERRIV. In general, any type of system related bus error or timeout error is
associated with a user NMI event. Upon this event, the SYSUNIV will contain an offset value
corresponding to a bus error event (BUSIFG). This offset can be added to the PC to automatically jump to
the appropriate NMI routine. Similarly, SYSBERRIV will also contain an offset value corresponding to
which specific event caused the bus error event. The offset value in SYSBERRIV can be added inside the
NMI routine to automatically jump to the appropriate routine. In this way, the SYSBERRIV can be thought
of as an extension to the user NMI vectors.

1.4 Operating Modes

The MSP430 family is designed for ultralow-power applications and uses different operating modes shown
in Figure 1-6.

The operating modes take into account three different needs:

• Ultralow power
• Speed and data throughput
• Minimization of individual peripheral current consumption

The low-power modes LPM0 through LPM4 are configured with the CPUOFF, OSCOFF, SCG0, and
SCG1 bits in the SR. The advantage of including the CPUOFF, OSCOFF, SCG0, and SCG1 mode-control
bits in the SR is that the present operating mode is saved onto the stack during an interrupt service
routine. Program flow returns to the previous operating mode if the saved SR value is not altered during
the interrupt service routine. Program flow can be returned to a different operating mode by manipulating
the saved SR value on the stack inside of the interrupt service routine. When setting any of the
mode-control bits, the selected operating mode takes effect immediately. Peripherals operating with any
disabled clock are disabled until the clock becomes active. Peripherals may also be disabled with their
individual control register settings. All I/O port pins and RAM/registers are unchanged. Wakeup from LPM0
through LPM4 is possible through all enabled interrupts.

When LPMx.5 (LPM3.5 or LPM4.5) is entered, the voltage regulator of the Power Management Module
(PMM) is disabled. All RAM and register contents are lost, as well as I/O configuration. Wakeup from
LPM4.5 is possible via a power sequence, a RST event, or from specific I/O. Wakeup from LPM3.5 is
possible via a power sequence, a RST event, RTC event, or from specific I/O.

NOTE: LPM3.5 and LPM4.5 low power modes are not available on all devices. Please refer to the
device specific data sheet to see which LPMx.5 power modes are available.

30 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

BOR

POR

PUC

Security
violation

DoBOR
event

WDT Active
Time expired, Overflow

WDT Active
Security Key Violation

FLL unlock fault

Flash key violation

RST/NMI
(Reset wakeup)

Port wakeup

Peripheral area fetch

SVSH fault

SVSL fault

DoPOR event

Load calibration data

Active Mode: CPU is Active
Various Modules are active

LPM0:
CPU/MCLK = off

FLL = on
ACLK = on
V = onCORE

LPM1:
CPU/MCLK = off

FLL = off
ACLK = on

= onVCORE

LPM2:
CPU/MCLK = off

FLL = off
ACLK = on

= onVCORE

LPM3:
CPU/MCLK = off

FLL = off
ACLK = on

= onVCORE

LPM4:
CPU/MCLK = off

FLL = off
ACLK = off

= onVCORE

LPMx.5:
= off

(all modules off
optional RTC)

VCORE

CPUOFF=1
OSCOFF=0

SCG0=0
SCG1=0

CPUOFF=1
OSCOFF=0

SCG0=1
SCG1=0 CPUOFF=1

OSCOFF=0
SCG0=0
SCG1=1

CPUOFF=1
OSCOFF=0

SCG0=1
SCG1=1

CPUOFF=1
OSCOFF=1

SCG0=1
SCG1=1

PMMREGOFF = 1

PMM key violation

†

†

†
†

†

to LPMx.5

SVMH OVP-fault

SVML OVP-fault

From active mode

Events

Operating modes/Reset phases

Arbitrary transitions

† Any enabled interrupt and NMI performs this transition
‡ An enabled reset always restarts the device

RST/NMI
(Reset event)

‡

Brownout
fault

RTC wakeup

www.ti.com Operating Modes

Figure 1-6. Operation Modes

31SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Operating Modes www.ti.com

SCG1 SCG0 OSCOFF CPUOFF Mode CPU and Clocks Status

0 0 0 0 Active CPU, MCLK are active.

ACLK is active. SMCLK optionally active (SMCLKOFF = 0).

0 0 0 1 LPM0 CPU, MCLK are disabled.

ACLK is active. SMCLK optionally active (SMCLKOFF = 0).

DCO is enabled if sources ACLK, MCLK, or SMCLK (SMCLKOFF = 0).

FLL is enabled if DCO is enabled.

0 1 0 1 LPM1 CPU, MCLK are disabled.

ACLK is active. SMCLK optionally active (SMCLKOFF = 0).

DCO is enabled if sources ACLK or SMCLK (SMCLKOFF = 0).

FLL is disabled.

1 0 0 1 LPM2 CPU, MCLK are disabled.

ACLK is active. SMCLK is disabled.

DCO is enabled if sources ACLK.

FLL is disabled.

1 1 0 1 LPM3 CPU, MCLK are disabled.

ACLK is active. SMCLK is disabled.

DCO is enabled if sources ACLK.

FLL is disabled.

1 1 1 1 LPM4 CPU and all clocks are disabled.

1 1 1 1 LPM3.5 (When PMMREGOFF = 1, regulator is disabled. No memory retention. In
1) (1) this mode, RTC operation is possible when configured properly. Please

refer to the RTC module for further details.

1 1 1 1 LPM4.5 (When PMMREGOFF = 1, regulator is disabled. No memory retention. In
1) (1) this mode, all clock sources are disabled i.e. no RTC operation is possible.

(1) LPM3.5 and LPM4.5 modes are not available on all devices. Please refer to the device specific data sheet for availability.

32 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Operating Modes

1.4.1 Entering and Exiting Low-Power Modes LPM0 Through LPM4

An enabled interrupt event wakes the device from low-power operating modes LPM0 through LPM4. The
program flow for exiting LPM0 through LPM4 is:

• Enter interrupt service routine

– The PC and SR are stored on the stack.
– The CPUOFF, SCG1, and OSCOFF bits are automatically reset.

• Options for returning from the interrupt service routine

– The original SR is popped from the stack, restoring the previous operating mode.
– The SR bits stored on the stack can be modified within the interrupt service routine returning to a

different operating mode when the RETI instruction is executed.

; Enter LPM0 Example
BIS #GIE+CPUOFF,SR ; Enter LPM0

; ... ; Program stops here
;
; Exit LPM0 Interrupt Service Routine

BIC #CPUOFF,0(SP) ; Exit LPM0 on RETI
RETI

; Enter LPM3 Example
BIS #GIE+CPUOFF+SCG1+SCG0,SR ; Enter LPM3

; ... ; Program stops here
;
; Exit LPM3 Interrupt Service Routine

BIC #CPUOFF+SCG1+SCG0,0(SP) ; Exit LPM3 on RETI
RETI

; Enter LPM4 Example
BIS #GIE+CPUOFF+OSCOFF+SCG1+SCG0,SR ; Enter LPM4

; ... ; Program stops here
;
; Exit LPM4 Interrupt Service Routine

BIC #CPUOFF+OSCOFF+SCG1+SCG0,0(SP) ; Exit LPM4 on RETI
RETI

1.4.2 Entering and Exiting Low-Power Modes LPMx.5

LPMx.5 entry and exit is handled differently than the other low power modes. LPMx.5, when used
properly, gives the lowest power consumption available on a device. To achieve this, entry to LPMx.5
disables the LDO of the PMM module, removing the supply voltage from the core of the device. Since the
supply voltage is removed from the core, all register contents, as well as, SRAM contents are lost. Exit
from LPMx.5 causes a BOR event, which forces a complete reset of the system. Therefore, it is the
application's responsibility to properly reconfigure the device upon exit from LPMx.5.

The wakeup time from LPMx.5 is significantly longer than the wakeup time from the other power modes
(please see the device specific data sheet). This is primarily due to the facts that after exit from LPMx.5,
time is required for the core voltage supply to be regenerated, as well as, boot code execution to complete
before the application code can begin. Therefore, the usage of LPMx.5 is restricted to very low duty cycle
events.

There are two LPMx.5 power modes, LPM3.5 and LPM4.5. Not all of these are available on all devices.
Please refer to the device specific data sheet to see which LPMx.5 power modes are available. LPM4.5
allows for the lowest power consumption available. No clock sources are active during LPM4.5. LPM3.5 is
similar to LPM4.5, but has the additional capability of having a RTC mode available. In addition to the
wakeup events possible in LPM4.5, RTC wakeup events are also possible in LPM3.5.

33SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Operating Modes www.ti.com

The program flow for entering LPMx.5 is:

• Configure I/O appropriately. See the Digital I/O chapter for complete details on configuring I/O for
LPMx.5.

– Set all ports to general purpose I/O. Configure each port to ensure no floating inputs based on the
application requirements.

– If wakeup from I/O is desired, configure input ports with interrupt capability appropriately.
• If LPM3.5, is available, and desired, enable RTC operation. In addition, configure any RTC interrupts, if

desired for LPM3.5 wakeup event. See the RTC chapter for complete details.
• Enter LPMx.5. The following code example shows how to enter LPMx.5 mode. See the Power

Management Module and Supply Voltage Supervisor chapter for further details.
; Enter LPM5 Example

MOV.B #PMMPW, &PMMCTL0_H ; Open PMM registers for write
BIS #PMMREGOFF, &PMMCTL0 ;
BIS #GIE+CPUOFF+OSCOFF+SCG1+SCG0,SR ;Enter LPM5 when PMMREGOFF is set.

Exit from LPMx.5 is possible with a RST event, a power on cycle, or via specific I/O. Any exit from LPMx.5
will cause a BOR. Program execution will continue at the location stored in the system reset vector
location 0FFFEh after execution of the boot code. The PMMLPM5IFG bit inside the PMM module will be
set indicating that the device was in LPMx.5 prior to the wakeup event. Additionally, SYSRSTIV = 08h
which can be used to generate an efficient reset handler routine. During LPMx.5, all I/O pin conditions are
automatically locked to the current state. Upon exit from LPMx.5, the I/O pin conditions remain locked until
the application unlocks them. See the Digital I/O chapter for complete details. If LPM3.5 was in effect,
RTC operation will continue uninterrupted upon wakeup.The program flow for exiting LPMx.5 is:

• Enter system reset service routine

– Reconfigure system as required for the application.
– Reconfigure I/O as required for the application.

1.4.3 Extended Time in Low-Power Modes

The temperature coefficient of the DCO should be considered when the DCO is disabled for extended
low-power mode periods. If the temperature changes significantly, the DCO frequency at wakeup may be
significantly different from when the low-power mode was entered and may be out of the specified
operating range. To avoid this, the DCO can be set to it lowest value before entering the low-power mode
for extended periods of time where temperature can change.
; Enter LPM4 Example with lowest DCO Setting

BIC #SCG0, SR ; Disable FLL
MOV #0100h, &UCSCTL0 ; Set DCO tap to first tap, clear

modulation.
BIC #DCORSEL2+DCORSEL1+DCORSEL0,&UCSCTL1 ; Lowest DCORSEL
BIS #GIE+CPUOFF+OSCOFF+SCG1+SCG0,SR ; Enter LPM4

; ... ; Program stops
;

; Interrupt Service Routine
BIC #CPUOFF+OSCOFF+SCG1+SCG0,0(SR) ; Exit LPM4 on RETI
RETI

34 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Principles for Low-Power Applications

1.5 Principles for Low-Power Applications

Often, the most important factor for reducing power consumption is using the device clock system to
maximize the time in LPM3 or LPM4 modes whenever possible.

• Use interrupts to wake the processor and control program flow.
• Peripherals should be switched on only when needed.
• Use low-power integrated peripheral modules in place of software driven functions. For example,

Timer_A and Timer_B can automatically generate PWM and capture external timing with no CPU
resources.

• Calculated branching and fast table look-ups should be used in place of flag polling and long software
calculations.

• Avoid frequent subroutine and function calls due to overhead.
• For longer software routines, single-cycle CPU registers should be used.

If the application has low duty cycle, slow response time events, maximizing time in LPMx.5 can further
reduce power consumption significantly.

1.6 Connection of Unused Pins

The correct termination of all unused pins is listed in Table 1-2.

Table 1-2. Connection of Unused Pins

Pin Potential Comment

AVCC DVCC

AVSS DVSS

Px.0 to Px.7 Open Switched to port function, output direction (PxDIR.n = 1)

47-kΩ pullup or internal pullup selected with 10-nF (2.2 nF (1))RST/NMI DVCC or VCC pulldown (1)

TDO/TDI/TMS/TCK Open

TEST Open
(1) The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in

Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like FET interfaces or GANG programmers.

1.7 Reset pin (RST /NMI) Configuration

The reset pin can be configured as a reset function (default) or as an NMI function via the Special
Function Register (SFR), SFRRPCR. Setting SYSNMI causes the RST/NMI pin to be configured as an
external NMI source. The external NMI is edge sensitive and its edge is selectable by SYSNMIIES.
Setting the NMIIE enables the interrupt of the external NMI. Upon an external NMI event, the NMIIFG will
be set.

The RST/NMI pin can have either a pull-up or pull-down present or not. SYSRSTUP selects either pull-up
or pull-down and SYSRSTRE will cause the pull-up or pull-down to be enabled or not. If the RST/NMI pin
is unused, it is required to have either the internal pull-up selected and enabled or an external resistor
connected to the RST/NMI pin as shown in Table 1-2

NOTE: All devices except the 543x (non-A devices) have the internal pull-up enabled. In this case,
no external pull-up resistor is required.

35SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Configuring JTAG pins www.ti.com

1.8 Configuring JTAG pins

The JTAG pins are shared with general purpose I/O pins. There are several ways that the JTAG pins can
be selected for four wire JTAG mode via software. Normally, upon a BOR, SYSJTAGPIN is cleared. With
SYSJTAGPIN cleared, the JTAG are configured as general purpse I/O. Please refer to the Digital I/O
chapter for details on controlling the JTAG pins as general purpose I/O. If SYSJTAG = 1, the JTAG pins
are configured to four wire JTAG mode and will remain in this mode until another BOR condition occurs.
Therefore, SYSJTAGPIN is a write only once function. Clearing it by software is not possible, and the
device will not change from four wire JTAG mode to general purpose I/O.

1.9 Boot Code

The boot code is always executed after a BOR. The boot code loads factory stored calibration values of
the oscillator and reference voltages. In addition, it checks for a BSL entry sequence, as well as, checks
for the presence of a user defined boot strap loader (BSL).

1.10 Bootstrap Loader (BSL)

The BSL is software that is executed after start-up when a certain BSL entry condition is applied. The BSL
enables the user to communicate with the embedded memory in the microcontroller during the prototyping
phase, final production, and in service. All memory mapped resources, the programmable memory (flash
memory), the data memory (RAM), and the peripherals, can be modified by the BSL as required. The user
can define his own BSL code for flash-based devices and protect it against erasure and unintentional or
unauthorized access.

A basic BSL program is provided by TI. This supports the commonly used UART protocol with RS232
interfacing, allowing flexible use of both hardware and software. To use the BSL, a specific BSL entry
sequence must be applied to specific device pins. The correct entry sequence will cause SYSBSLIND to
be set. An added sequence of commands initiates the desired function. A boot-loading session can be
exited by continuing operation at a defined user program address or by applying the standared reset
sequence. Access to the device memory via the BSL is protected against misuse by a user-defined
password. For more details, see the MSP430 Memory Programming User’s Guide (SLAU265) at
www.ti.com/msp430.

The amount of BSL memory that is available is device specific. The BSL memory size is organized into
segments and can be set using the SYSBSLSIZE bits. Please refer to the device specific data sheet for
the number and size of the segments available. It is possible to assign a small amount of RAM to the
allocated BSL memory. Setting SYSBSLR allocates the lowest 16 bytes of RAM for the BSL. When the
BSL memory is protected, access to these RAM locations is only possible from within the protected BSL
memory segments.

It may be desirable in some BSL applications to only allow changing of the Power Management Module
settings from the protected BSL segments. This is possible with the SYSPMMPE bit. Normally, this bit is
cleared and allows access of the PMM control registers from any memory location. Setting SYSPMMPE,
allows access to the PMM control registers only from the protected BSL memory. Once set, SYSPMMPE
can only be cleared by a BOR event.

36 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SLAU265
http://www.ti.com/msp430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Memory Map – Uses and Abilities

1.11 Memory Map – Uses and Abilities

This memory map represents the MSP430F5438 device. Though the address ranges differs from device
to device, overall behavior remains the same.

Can generate NMI on read/write/fetch

Generates PUC on fetch access

Protectable for read/write accesses

Always able to access PMM registers from (1); Mass erase by user possible

Mass erase by user possible

Bank erase by user possible

Segment erase by user possible

Address Range Name and Usage Properties

00000h-00FFFh Peripherals with gaps

00000h-000FFh Reserved for system extension

00100h-00FEFh Peripherals x

00FF0h-00FF3h Descriptor type (2) x

00FF4h-00FF7h Start address of descriptor structure x

01000h-011FFh BSL 0 x x

01200h-013FFh BSL 1 x x

01400h-015FFh BSL 2 x x

01600h-017FFh BSL 3 x x x

017FCh-017FFh BSL Signature Location

01800h-0187Fh Info D x

01880h-018FFh Info C x

01900h-0197Fh Info B x

01980h-019FFh Info A x

01A00h-01A7Fh Device Descriptor Table x

01C00h-05BFFh RAM 16 KB

05B80-05BFFh Alternate Interrupt Vectors

05C00h-0FFFFh Program x x (1) x

0FF80h-0FFFFh Interrupt Vectors

10000h-45BFFh Program x x x

45C00h-FFFFFh Vacant x (3)

(1) Access rights are separately programmable for SYS and PMM.
(2) Fixed ID for all MSP430 devices. See Section 1.13.1 for further details.
(3) On vacant memory space, the value 03FFFh is driven on the data bus.

1.11.1 Vacant Memory Space

Vacant memory is non-existent memory space. Accesses to vacant memory space generate a system
(non)maskable interrupt (SNMI) when enabled (VMAIE = 1). Reads from vacant memory results in the
value 3FFFh. In the case of a fetch, this is taken as JMP $. Fetch accesses from vacant peripheral space
result in a PUC. After the boot code is executed, it behaves like vacant memory space and also causes an
NMI on access.

1.11.2 JTAG Lock Mechanism via the Electronic Fuse

A device can be protected from unauthorized access by disabling the JTAG and SBW interface. This is
achieved by programming the electronic fuse. Programming the electronic fuse, completely disables the
debug and access capabilities associated with the JTAG and SpyBiWire interface and is not reversible.
The JTAG is locked by programming a certain signature into the devices’ flash memory at dedicated
addresses. The JTAG security lock key resides at the end of the bootstrap loader (BSL) memory at
addresses 17FCh through 17FFh. Anything other than 0h or FFFFFFFFh programmed to these addresses
locks the JTAG interface irreversibly.

All of the 5xx MSP430 devices come with a preprogrammed BSL (TI-BSL) code which by default protects

37SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

JTAG Mailbox (JMB) System www.ti.com

itself from unintended erase and write access. This is done by setting SYSBSLPE in the SYSBSLC
register. Since the JTAG security lock key resides in the BSL memory address range, appropriate action
must be taken to unprotect the BSL memory area before programming the protection key. For more
details on the electronic fuse see the MSP430 Memory Programming User’s Guide (SLAU265) at
www.ti.com/msp430.

Some JTAG commands are still possible after the device is secured, including the BYPASS command
(see IEEE1149-2001 Standard) and the JMB_EXCHANGE command which allows access to the JTAG
Mailbox System (see Table 7-2 for details).

1.12 JTAG Mailbox (JMB) System

The SYS module provides the capability to exchange user data via the regular JTAG test/debug interface.
The idea behind the JMB is to have a direct interface to the CPU during debugging, programming, and
test that is identical for all ‘430 devices of this family and uses only few or no user application resources.
The JTAG interface was chosen because it is available on all ‘430 devices and is a dedicated resource for
debugging, programming and test.

Applications of the JMB are:

• Providing entry password for device lock/unlock protection
• Run-time data exchange (RTDX)

1.12.1 JMB Configuration

The JMB supports two transfer modes - 16-bit and 32-bit. Setting JMBMODE enables 32-bit transfer
mode. Clearing JMBMODE enables 16-bit transfer mode.

1.12.2 JMBOUT0 and JMBOUT1 Outgoing Mailbox

Two 16-bit registers are available for outgoing messages to the JTAG port. JMBOUT0 is only used when
using 16-bit transfer mode (JMBMODE = 0). JMBOUT1 is used in addition to JMBOUT0 when using 32-bit
transfer mode (JMBMODE = 1). When the application wishes to send a message to the JTAG port, it
writes data to JMBOUT0 for 16-bit mode, or JMBOUT0 and JMBOUT1 for 32-bit mode.

JMBOUT0FG and JMBOUT1FG are read only flags that indicate the status of JMBOUT0 and JMBOUT1,
respectively. When JMBOUT0FG is set, JMBOUT0 has been read by the JTAG port and is ready to
receive new data. When JMBOUT0FG is reset, the JMBOUT0 is not ready to receive new data.
JMBOUT1FG behaves similarly.

1.12.3 JMBIN0 and JMBIN1 Incoming Mailbox

Two 16-bit registers are available for incoming messages from the JTAG port. JMBIN0 is only used when
using 16-bit transfer mode (JMBMODE = 0). JMBIN1 is used in addition to JMBIN0 when using 32-bit
transfer mode (JMBMODE = 1). When the JTAG port wishes to send a message to the application, it
writes data to JMBIN0 for 16-bit mode, or JMBIN0 and JMBIN1 for 32-bit mode.

JMBIN0FG and JMBIN1FG are flags that indicate the status of JMBIN0 and JMBIN1, respectively. When
JMBIN0FG is set, JMBIN0 has data that is available for reading. When JMBIN0FG is reset, no new data is
available in JMBIN0. JMBIN1FG behaves similarly.

JMBIN0FG and JMBIN1FG can be configured to clear automatically by clearing JMBCLR0OFF and
JMBCLR1OFF, respectively. Otherwise, these flags must be cleared by software.

1.12.4 JMB NMI Usage

The JMB handshake mechanism can be configured to use interrupts to avoid unnecessary polling if
desired. In 16-bit mode, JMBOUTIFG is set when JMBOUT0 has been read by the JTAG port and is
ready to receive data. In 32-bit mode, JMBOUTIFG is set when both JMBOUT0 and JMBOUT1 has been

38 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SLAU265
http://www.ti.com/msp430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Device Descriptor Table

read by the JTAG port and are ready to receive data. If JMBOUTIE is set, these events cause a system
NMI. In 16-bit mode, JMBOUTIFG is cleared automatically when data is written to JMBOUT0. In 32-bit
mode, JMBOUTIFG Is cleared automatically when data is written to both JMBOUT0 and JMBOUT1. In
addition, the JMBOUTIFG can be cleared when reading SYSSNIV. Clearing JMBOUTIE disables the NMI
interrupt.

In 16-bit mode, JMBINIFG is set when JMBIN0 is available for reading. In 32-bit mode, JMBINIFG is set
when both JMBIN0 and JMBIN1 are available for reading. If JMBOUTIE is set, these events cause a
system NMI. In 16-bit mode, JMBINIFG is cleared automatically when JMBIN0 is read. In 32-bit mode,
JMBINIFG Is cleared automatically when both JMBIN0 and JMBIN1 are read. In addition, the JMBINIFG
can be cleared when reading SYSSNIV. Clearing JMBINIE disables the NMI interrupt.

1.13 Device Descriptor Table

Each device provides a data structure in memory that allows an unambiguous identification of the device,
as well as, a more detailed description of the available modules on a given device. SYS provides this
information and can be used by device-adaptive SW tools and libraries to clearly identify a particular
device and all modules and capabilities contained within it. The validity of the device descriptor can be
verified by cyclic redundancy check (CRC).Figure 1-7 shows the logical order and structure of the device
descriptor table. The complete device descriptor table and its contents can be found in the device specific
data sheet.

39SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Info_length

CRC_length

CRC_value

DeviceID

Firmware revision

Hardware revision

Tag 1

Len 1

Value field 1

Tag N

Len N

Value field N

Information block

Device ID and Revision
Information

First TLV entry
(optional)

Additional TLV entries
(optional)

Final TLV entry
(optional)

Descriptor start address

Device Descriptor Table www.ti.com

Figure 1-7. Devices Descriptor Table

1.13.1 Identifying Device Type

The value read at address location 00FF0h identifies the family branch of the device. All values starting
with 80h indicate a hierarchical structure consisting of the information block and a TLV tag-length-value
(TLV) structure containing the various descriptors. Any other value than 80h read at address location
00FF0h indicates the device is of an older family and contains a flat descriptor beginning at location
0FF0h. The information block, shown in Figure 1-7 contains the the device ID, die revisions, firmware
revisions, and other manufacturer and tool related information. The descriptors contains information about
the available peripherals, their subtypes and addresses and provides the information required to build
adaptive HW drivers for operating systems.

The length of the descriptors represented by Info_length is computed as follows:
Length = 2Info_length in 32-bit words

For example, if Info_length = 5, then the length of the descriptors equals 128 bytes.

40 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Device Descriptor Table

1.13.2 TLV Descriptors

The TLV descriptors follow the information block. Because the information block is always a fixed length,
the start location of the TLV descriptors is fixed for a given device family. For the MSP430x5xx family, this
location is 01A08h. See the device-specific data sheet for the complete TLV structure and what
descriptors are available.

The TLV descriptors are unique to their respective TLV block and are always follwed by the descriptor
desciptor block length in

Each TLV descriptor contains a tag field which identifies the descriptor type. Table 1-3 shows the currently
supported tags.

Table 1-3. Tag Values

Short Name Value Description

LDTAG 01h Legacy descriptor (1xx, 2xx, 4xx families)

PDTAG 02h Peripheral discovery descriptor

Reserved 03h Future usage

Reserved 04h Future usage

BLANK 05h Blank descriptor

Reserved 06h Future usage

ADCCAL 11h ADC calibration

REFCAL 12h REF calibration

Reserved 13h - FDh Future usage

TAGEXT FEh Tag extender

Each tag field is unique to its respective descriptor and is always follwed by a length field. The length field
is one byte if the tag value is 01h through 0FDh and represents the length of the descriptor in bytes. If the
tag value equals 0FEh (TAGEXT), the next byte extends the tag values, and the following two bytes
represent the length of the descriptor in bytes. In this way, a user can search through the TLV descriptor
table for a particular tag value, using a routine similar to below written in pseudo code:

// Identifiy the descriptor ID (d_ID_value) for the TLV descriptor of interest:
descriptor_address = TLV_START address;

while (value at descriptor_address != d_ID_value && descriptor_address != TLV_TAGEND &&
descriptor_address < TLV_END)
{
// Point to next descriptor
descriptor_address = descriptor_address + (length of the current TLV block) + 2;

}

if (value at descriptor_address == d_ID_value) {
// Appropriate TLV decriptor has been found!
Return length of descriptor & descriptor_address as the location of the TLV descriptor

} else {
// No TLV descriptor found with a matching d_ID_value
Return a failing condition

}

1.13.3 Peripheral discovery descriptor

This descriptor type can describe concatenated or distributed memory or peripheral mappings, as well as,
the number of interrupt vectors and their order. The peripheral discovery discriptor has tag value 02h
(PDTAG). Table 1-4 shows the structure of the peripheral discovery descriptor.

Table 1-4. Peripheral Discovery Descriptor

Element Size (bytes) Comments

memory entry 1 2 Optional

memory entry 2 2 Optional

41SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Device Descriptor Table www.ti.com

Table 1-4. Peripheral Discovery Descriptor (continued)

Element Size (bytes) Comments

... 2 Optional

delimiter (00h) 1 Mandatory

peripheral count 1 Mandatory

peripheral entry 1 2 Optional

peripheral entry 2 2 Optional

... 2 Optional

Interrupt priority N-3 1 Optional

Interrupt priority N-4 1 Optional

... 1 Optional

delimiter (00h) 1 Mandatory

The structures for a memory entry and peripheral entry are shown below. A memory entry consists of two
bytes (one word). Table 1-5 shows the individual bit fields of a memory entry word and their respective
meanings. Similarly, a peripheral entry consists of two bytes (one word). Table 1-6 shows the individual bit
fields of a peripheral entry word and their respective meanings.

Table 1-5. Values for Memory Entry

Bit fields

[15:13] [12:9] [8] [7] [6:0]

Memory type Size More Unit Size Address value

000: None 0000: 0 B 0: End Entry 0: 0200h 0000000

001: RAM 0001: 128 B 1: More Entries 0: 010000h 0000001

010: EEPROM 0010: 256 B 0000010

011: Reserved 0011: 512 B 0000011

100: FLASH 0100: 1 KB 0000100

101: ROM 0101: 2KB 0000101

110: MemType 0110: 4 KB 0000110appended

111: Undefined 0111: 8 KB 0000111

1000: 16 KB 0001000

1001: 32 KB 0001001

1010: 64 KB 0001010

1011: 128 KB 0001011

1100: 256 KB 0001100

1101: 512 KB ...

1110: Size ...appended

1111: Undefined 1111111

42 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Device Descriptor Table

Table 1-6. Values for Peripheral Entry

Bit fields

[15:8] [7] [6:0]

Peripheral ID (PID) (1) UnitSize AdrVal

Any PID 0: 010h 0000000

Any PID 1: 0800h 0000001

Any PID 0000010

Any PID 0000011

Any PID 0000100

Any PID 0000101

Any PID ...

Any PID ...

Any PID 1111111
(1) The Peripheral IDs are listed in Table 1-7. This is not a complete list, but shown as an example.

Table 1-7. Peripheral IDs (1)

Peripheral or Module PID

No Module 00h

WDT 01h

SFR 02h

UCS 03h

SYS 04h

PMM 05h

Flash Controller 08h

CRC16 09h

Port 1, 2 51h

Port 3, 4 52h

Port 5, 6 53h

Port 7, 8 54h

Port 9, 10 55h

Port J 5Fh

Timer A0 81h

Timer A1 82h

Special info appended FEh

Undefined module FFh
(1) This table is not a complete list of all peripheral IDs available on a device, but is shown here for

illustrative purposes only.

43SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Device Descriptor Table www.ti.com

Table 1-8 shows a simple example for a peripheral discovery descriptor of a hypothetical device:

Table 1-8. Sample Peripheral Discovery Descriptor

Hex Binary Entry type Description

030h, 0Eh 001_1000_ 0_0_0001110 memory RAM 16 KB; Start address = 01C00h (0Eh * 0200h) (1)

09Bh, 02Eh 100_1011_0_0_0101110 memory FLASH 128 KB Start address = 05C00h (2Eh * 0200h)

00h 0000_0000_0000_0000 delimiter No more memory entries

0Fh 0000_1111 peripheral count Peripheral count = 15

02h, 10h 00000010_0_0010000 peripheral SFR at address = 0100h (10h * 10h)

01h, 01h 00000001_0_0000001 peripheral WDT at address = 0110h (0100h + 10h)

05h, 01h 00000101_0_0000001 peripheral PMM at address = 0120h (0110h + 10h)

03h, 01h 00000011_0_0000001 peripheral UCS at address = 0130h (0120h + 10h)

08h, 01h 00001000_0_0000001 peripheral FLCTL at address = 0140h (0130h + 10h)

09h, 01h 00001001_0_0000001 peripheral CRC16 at address = 0150h (0140h + 10h)

04h, 01h 00000100_0_0000001 peripheral SYS at address = 0160h (0150h + 10h)

51h, 0Ah 01010001_0_0001010 peripheral Port 1, 2 at address = 0200h (0160h + 10h * 10h)

52h, 02h 01010010_0_0000010 peripheral Port 3, 4 at address = 0220h (0200h + 02h * 10h)

53h, 02h 01010011_0_0000010 peripheral Port 5, 6 at address = 0240h (0220h + 02h * 10h)

54h, 02h 01010100_0_0000010 peripheral Port 7, 8 at address = 0260h (0240h + 02h * 10h)

55h, 02h 01010101_0_0000010 peripheral Port 9, 10 at address = 0280h (0260h + 02h * 10h)

5Fh, 0Ah 01011111_0_0001010 peripheral Port J at address = 0320h (0280h + 0Ah * 10h)

81h, 02h 10000001_0_0000010 peripheral Timer A0 at address = 0340h (0320h + 02h * 10h)

82h, 04h 10000010_0_0000100 peripheral Timer A1 at address = 0380h (0340h + 04h * 10h)

– No appended entries

SYSRSTIV @0FFFEh (implied)

SYSSNIV @0FFFC (implied)

SYSUNIV @ 0FFFA (implied)

81h 1000_0001 interrupt TA0 CCR0 @ 0FFF8

81h 1000_0001 interrupt TA0 CCR1, CCR1, TA0IFG@ 0FFF6

51h 0101_0001 interrupt Port 1 @ 0FFF4

82h 1000_0010 interrupt TA1CCR0 @ 0FFF2

51h 0101_0001 interrupt Port 2 @ 0FFF0

81h 1000_0010 interrupt TA1 CCR1, CCR1, TA1IFG@ 0FFEE

00h 0000_0000 delimiter No more interrupt entries
(1) In this example, the memory type is RAM (bits[15:13] = 001), the size is 16KB (bits[12:9] = 1000), and the starting address is

01C00h. The starting address is computed by taking the size field indicated by bit[7] (in this case 0200h) and multiplying it by
the address value (bits[6:0] = 0001110. In this case, we have 0200h * 00Eh = 01C00h.

NOTE: The interrupt ordering has some implied rules:

• For timers, CCR0 interrupt has higher priority over all other CCRn interrupts.

• For communication ports, RX has higher priority over TX

• For port pairs, Port 1 has higher priority over Port 2, Port 3 has higher priority over Port
4, etc.

1.13.4 Calibration Values

The TLV structure contains calibraton values that can be used to improve the measurement capability of
various functions. The calibration values available on a given device are shown in the TLV structure of the
device-specific data sheet.

44 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

15
2

5.1
_15__ ´=

+

V

V
FACTORVREFADCCAL

REF

15
2

0.2
_20__ ´=

+

V

V
FACTORVREFADCCAL

REF

15
2

5.2
_25__ ´=

+

V

V
FACTORVREFADCCAL

REF

152

1
15)()(´´= FACTORVREFADCCALrawADCcorrectedADC

152

1
20)()(´´= FACTORVREFADCCALrawADCcorrectedADC

152

1
25)()(´´= FACTORVREFADCCALrawADCcorrectedADC

OFFSETADCCALrawADCcorrectedoffsetADC __)()_(+=

15
2

1
___ ´=

GAIN
FACTORGAINADCCAL

152

1
___)()_(´´= FACTORGAINADCCALrawADCcorrectedgainADC

www.ti.com Device Descriptor Table

1.13.4.1 REF Calibration

The calibration data for the REF module consists of three words, one word for each reference voltage
available (1.5, 2.0, and 2.5 V). The reference voltages are measured at room temperature. The measured
values are normalized by 1.5/2.0/2.5V before being stored into the TLV structure, as shown below:

(2)

In this way, a conversion result is corrected by multiplying it with the CAL_15VREF_FACTOR (or
CAL_20VREF_FACTOR, CAL_25VREF_FACTOR) and dividing the result by 215as shown below for each
of the respective reference voltages:

(3)

In the following example, the integrated 1.5V reference voltage is used during a conversion.
• Conversion result: 0x0100 = 256 decimal
• Reference voltage calibration factor (CAL_15VREF_FACTOR) : 0x7BBB

The following steps show how the ADC conversion result can be corrected:
• Multiply the conversion result by 2 (this step simplifies the final division): 0x0100 x 0x0002 = 0x0200
• Multiply the result by CAL_15VREF_FACTOR: 0x200 x 0x7FEE = 0x00F7_7600
• Divide the result by 216: 0x00F7_7600 / 0x0001_0000 = 0x0000_00F7 = 247 decimal

1.13.4.2 ADC Offset and Gain Calibration

The offset of the ADC is determined and stored as a twos-complement number in the TLV structure. The
offset error correction is done by adding the CAL_ADC_OFFSET to the conversion result.

(4)

The gain of the ADC12 is calculated by the following equation:

(5)

The conversion result is gain corrected by multiplying it with the CAL_ADC_GAIN_FACTOR and dividing
the result by 215:

(6)

If both gain and offset are corrected, the gain correction is done first:

45SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

152

1
___)()_(´´= FACTORGAINADCCALrawADCcorrectedgainADC

OFFSETADCCALcorrectedgainADCfinalADC __)_()(+=

SENSORSENSORSENSE VTempTCV +´=

() 30
3015__8515__

3085
3015__)(+÷÷

ø

ö
çç
è

æ

-
-

´-=
TADCCALTADCCAL

TADCCALrawADCTemp

() 30
3020__8520__

3085
3020__)(+÷÷

ø

ö
çç
è

æ

-
-

´-=
TADCCALTADCCAL

TADCCALrawADCTemp

() 30
3025__8525__

3085
3025__)(+÷÷

ø

ö
çç
è

æ

-
-

´-=
TADCCALTADCCAL

TADCCALrawADCTemp

Device Descriptor Table www.ti.com

(7)

1.13.4.3 Temperature Sensor Calibration

The temperature sensor is calibrated using the internal voltage references. Each reference voltage
(1.5/2.0/2.5V) contains a measured value for two temperatures, 30 °C±3 °C and 85 °C ±3 °C and are
stored in the TLV structure. The characteristic equation of the temperature sensor voltage, in mV is:

(8)

The temperature coefficient, TCSENSORin mV/°C, represents the slope of the equation. VSENSOR, in mV,
represents the y-intercept of the equation. Temp, in °C, is the temperature of interest.

The temperature (Temp, °C) can be computed as follows for each of the reference voltages used in the
ADC measurement:

(9)

46 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Special Function Registers (SFRs)

1.14 Special Function Registers (SFRs)

The SFRs are listed in Table 1-10. The base address for the SFRs is listed in Table 1-9. Many of the bits
inside the SFRs are described in other chapters throughout the Users Guide. These bits will be marked
with a note and a reference. Please refer to the specific chapter of the respective module for details.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 1-9. SFR Base Address

Module Base Address

SFR 00100h

Table 1-10. Special Function Registers

RegisterRegister Short Form Register Type Address Offset Initial StateAccess

SFRIE1 Read/write Word 00h 0000h

Interrupt Enable SFRIE1_L (IE1) Read/write Byte 00h 00h

SFRIE1_H (IE2) Read/write Byte 01h 00h

SFRIFG1 Read/write Word 02h 0082h

Interrupt Flag SFRIFG1_L (IFG1) Read/write Byte 02h 82h

SFRIFG1_H (IFG2) Read/write Byte 03h 00h

SFRRPCR Read/write Word 04h 0000h

Reset Pin Control SFRRPCR_L Read/write Byte 04h 00h

SFRRPCR_H Read/write Byte 05h 00h

47SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Special Function Registers (SFRs) www.ti.com

Interrupt Enable Register (SFRIE1)

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

JMBOUTIE JMBINIE ACCVIE (1) NMIIE VMAIE Reserved OFIE (2) WDTIE (3)

rw-0 rw-0 rw-0 rw-0 rw-0 r0 rw-0 rw-0

Reserved Bits 15-8 Reserved. Reads back 0.

JMBOUTIE Bit 7 JTAG mailbox output interrupt enable flag

0 Interrupts disabled

1 Interrupts enabled

JMBINIE Bit 6 JTAG mailbox input interrupt enable flag

0 Interrupts disabled

1 Interrupts enabled

ACCVIE Bit 5 Flash controller access violation interrupt enable flag

0 Interrupts disabled

1 Interrupts enabled

NMIIE Bit 4 NMI pin interrupt enable flag

0 Interrupts disabled

1 Interrupts enabled

VMAIE Bit 3 Vacant memory access interrupt enable flag

0 Interrupts disabled

1 Interrupts enabled

Reserved Bit 2 Reserved. Reads back 0.

OFIE Bit 1 Oscillator fault interrupt enable flag

0 Interrupts disabled

1 Interrupts enabled

WDTIE Bit 0 Watchdog timer interrupt enable. This bit enables the WDTIFG interrupt for interval timer mode. It is not
necessary to set this bit for watchdog mode. Because other bits in ~IE1 may be used for other modules,
it is recommended to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B
instruction

0 Interrupts disabled

1 Interrupts enabled

(1) Refer to the Flash Memory Controller chapter for details.
(2) Refer to the Unified Clock System chapter for details.
(3) Refer to the Watchdog Timer chapter for details.

48 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Special Function Registers (SFRs)

Interrupt Flag Register (SFRIFG1)

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

JMBOUTIFG JMBINIFG Reserved NMIIFG VMAIFG Reserved OFIFG (1) WDTIFG (2)

rw-(1) rw-(0) r0 rw-0 rw-0 r0 rw-(1) rw-0

Reserved Bits 15–8 Reserved. Reads back 0.

JMBOUTIFG Bit 7 JTAG mailbox output interrupt flag

0 No interrupt pending. When in 16-bit mode (JMBMODE = 0), this bit is cleared automatically
when JMBO0 has been written by the CPU. When in 32-bit mode (JMBMODE = 1), this bit is
cleared automatically when both JMBO0 and JMBO1 have been written by the CPU. This bit is
also cleared when the associated vector in SYSUNIV has been read.

1 Interrupt pending, JMBO registers are ready for new messages. In 16-bit mode (JMBMODE = 0),
JMBO0 has been received by JTAG. In 32-bit mode (JMBMODE = 1) , JMBO0 and JMBO1 have
been received by JTAG.

JMBINIFG Bit 6 JTAG mailbox input interrupt flag

0 No interrupt pending. When in 16-bit mode (JMBMODE = 0), this bit is cleared automatically
when JMBI0 is read by the CPU. When in 32-bit mode (JMBMODE = 1), this bit is cleared
automatically when both JMBI0 and JMBI1 have been read by the CPU. This bit is also cleared
when the associated vector in SYSUNIV has been read

1 Interrupt pending, a message is waiting in the JMBIN registers. In 16-bit mode (JMBMODE = 0)
when JMBI0 has been written by JTAG. In 32-bit mode (JMBMODE = 1) when JMBI0 and JMBI1
have been written by JTAG.

Reserved Bit 5 Reserved. Reads back 0.

NMIIFG Bit 4 NMI pin interrupt flag

0 No interrupt pending

1 Interrupt pending

VMAIFG Bit 3 Vacant memory access interrupt flag

0 No interrupt pending

1 Interrupt pending

Reserved Bit 2 Reserved. Reads back 0.

OFIFG Bit 1 Oscillator fault interrupt flag

0 No interrupt pending

1 Interrupt pending

WDTIFG Bit 0 Watchdog timer interrupt flag. In watchdog mode, WDTIFG remains set until reset by software. In
interval mode, WDTIFG is reset automatically by servicing the interrupt, or can be reset by software.
Because other bits in ~IFG1 may be used for other modules, it is recommended to clear WDTIFG by
using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.

0 No interrupt pending

1 Interrupt pending

(1) Refer to the Unified Clock System chapter for details.
(2) Refer to the Watchdog Timer chapter for details.

49SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Special Function Registers (SFRs) www.ti.com

Reset Pin Control Register (SFRRPCR)

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved SYSRSTRE (1) SYSRSTUP (1) SYSNMIIES SYSNMI

r0 r0 r0 r0 rw-1 rw-1 rw-0 rw-0

Reserved Bits 15-5 Reserved. Reads back 0.

SYSRSTRE (1) Bit 3 Reset pin resistor enable

0 Pullup/pulldown resistor at the RST/NMI pin is disabled.

1 Pullup/pulldown resistor at the RST/NMI pin is enabled.

SYSRSTUP (1) Bit 2 Reset resistor pin pullup/pulldown

0 Pulldown is selected.

1 Pullup is selected.

SYSNMIIES Bit 1 NMI edge select. This bit selects the interrupt edge for the NMI when SYSNMI = 1. Modifying this bit
can trigger an NMI. Modify this bit when SYSNMI = 0 to avoid triggering an accidental NMI.

0 NMI on rising edge

1 NMI on falling edge

SYSNMI Bit 0 NMI select. This bit selects the function for the RST/NMI pin.

0 Reset function

1 NMI function

(1) All devices except the MSP430F5438 (non-A) default to pullup enabled on the reset pin.
(1) All devices except the MSP430F5438 (non-A) default to pullup enabled on the reset pin.

50 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com SYS Configuration Registers

1.15 SYS Configuration Registers

The SYS configuration registers are listed in Table 1-11 and the base address is listed in Table 1-11. A
detailed description of each register and its bits is also provided. Each register starts at a word boundary.
Both, word or byte data can be written to the SYS configuration registers.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 1-11. SYS Base Address

Module Base address

SYS 00180h

Table 1-12. SYS Configuration Registers

RegisterRegister Short Form Register Type Address Offset Initial StateAccess

System Control SYSCTL Read/write Word 00h 0000h

SYSCTL_L Read/write Byte 00h 00h

SYSCTL_H Read/write Byte 01h 00h

Bootstrap Loader Configuration SYSBSLC Read/write Word 02h 0003h

SYSBSLC_L Read/write Byte 02h 03h

SYSBSLC_H Read/write Byte 03h 00h

JTAG Mailbox Control SYSJMBC Read/write Word 06h 0000h

SYSJMBC_L Read/write Byte 06h 00h

SYSJMBC_H Read/write Byte 07h 00h

JTAG Mailbox Input 0 SYSJMBI0 Read/write Word 08h 0000h

SYSJMBI0_L Read/write Byte 08h 00h

SYSJMBI0_H Read/write Byte 09h 00h

JTAG Mailbox Input 1 SYSJMBI1 Read/write Word 0Ah 0000h

SYSJMBI1_L Read/write Byte 0Ah 00h

SYSJMBI1_H Read/write Byte 0Bh 00h

JTAG Mailbox Output 0 SYSJMBO0 Read/write Word 0Ch 0000h

SYSJMBO0_L Read/write Byte 0Ch 00h

SYSJMBO0_H Read/write Byte 0Dh 00h

JTAG Mailbox Output 1 SYSJMBO1 Read/write Word 0Eh 0000h

SYSJMBO1_L Read/write Byte 0Eh 00h

SYSJMBO1_H Read/write Byte 0Fh 00h

Bus Error Vector Generator SYSBERRIV Read Word 18h 0000h

User NMI Vector Generator SYSUNIV Read Word 1Ah 0000h

System NMI Vector Generator SYSSNIV Read Word 1Ch 0000h

Reset Vector Generator SYSRSTIV Read Word 1Eh 0002h

51SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

SYS Configuration Registers www.ti.com

SYS Control Register (SYSCTL)

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved Reserved SYSJTAGPIN SYSBSLIND Reserved SYSPMMPE Reserved SYSRIVECT

r0 r0 rw-[0] r-0 r0 rw-[0] r0 rw-[0]

Reserved Bits 15-8 Reserved. Reads back 0.

SYSJTAGPIN Bit 5 Dedicated JTAG pins enable. Setting this bit disables the shared functionality of the JTAG pins and
permanently enables the JTAG function. This bit can only be set once. Once it is set it remains set
until a BOR occurs.

0 Shared JTAG pins (JTAG mode selectable via SBW sequence)

1 Dedicated JTAG pins (explicit 4-wire JTAG mode selection)

SYSBSLIND Bit 4 BSL entry indication. This bit indicates a BSL entry sequence detected on the Spy-Bi-Wire pins.

0 No BSL entry sequence detected

1 BSL entry sequence detected

Reserved Bit 3 Reserved. Reads back 0.

SYSPMMPE Bit 2 PMM access protect. This controls the accessibility of the PMM control registers. Once set to 1, it
only can be cleared by a BOR.

0 Access from anywhere in memory

1 Access only from the protected BSL segments

Reserved Bit 1 Reserved. Reads back 0.

SYSRIVECT Bit 0 RAM-based interrupt vectors

0 Interrupt vectors generated with end address TOP of lower 64k flash FFFFh

1 Interrupt vectors generated with end address TOP of RAM

Bootstrap Loader Configuration Register (SYSBSLC)

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

SYSBSLPE SYSBSLOFF Reserved Reserved Reserved Reserved Reserved Reserved

rw-[1] rw-[0] r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved SYSBSLR SYSBSLSIZE

r0 r0 r0 r0 r0 rw-[0] rw-[1] rw-[1]

SYSBSLPE Bits 15-7 Bootstrap loader memory protection enable for the size covered in SYSBSLSIZE. Devices come with TI
BSL preprogrammed and protected. Therefore this bit defaults to 1.

0 Area not protected. Read, program, and erase of BSL memory is possible.

1 Area protected

SYSBSLOFF Bits 14-6 Bootstrap loader memory disable for the size covered in SYSBSLSIZE

0 BSL memory is addressed when this area is read.

1 BSL memory behaves like vacant memory. Reads will cause 3FFFh to be read. Fetches will
cause JMP $ to be executed.

Reserved Bits 13-3 Reserved. Reads back 0.

SYSBSLR Bit 2 RAM assigned to BSL

0 No RAM assigned to BSL area

1 Lowest 16 bytes of RAM assigned to BSL

SYSBSLSIZE Bits 1-0 Bootstrap loader size. Defines the space and size of flash memory that is reserved for the BSL.

00 Size: BSL segment 3.

01 Size: BSL segments 2 and 3.

10 Size: BSL segements 1, 2, and 3.

11 Size: BSL segments 1, 2, 3, and 4.

52 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com SYS Configuration Registers

JTAG Mailbox Control Register (SYSJMBC)

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

JMBCLR1OFF JMBCLR0OFF Reserved JMBM0DE JMBOUT1FG JMBOUT0FG JMBIN1FG JMBIN0FG

rw-(0) rw-(0) r0 rw-0 r-(1) r-(1) rw-(0) rw-(0)

Reserved Bits 15-8 Reserved. Reads back 0.

JMBCLR1OFF Bit 7 Incoming JTAG Mailbox 1 flag auto-clear disable

0 JMBIN1FG cleared on read of JMB1IN register

1 JMBIN1FG cleared by SW

JMBCLR0OFF Bit 6 Incoming JTAG Mailbox 0 flag auto-clear disable

0 JMBIN0FG cleared on read of JMB0IN register

1 JMBIN0FG cleared by SW

Reserved Bit 5 Reserved. Reads back 0.

JMBMODE Bit 4 This bit defined the operation mode of JMB for JMBI0/1 and JMBO0/1. Before switching this bit, pad
and flush out any partial content to avoid data drops.

0 16-bit transfers using JMBO0 and JMBI0 only

1 32-bit transfers using JMBO0/1 and JMBI0/1

JMBOUT1FG Bit 3 Outgoing JTAG Mailbox 1 flag. This bit is cleared automatically when a message is written to the
upper byte of JMBO1 or as word access (by the CPU, DMA,…) and is set after the message was
read via JTAG.

0 JMBO1 is not ready to receive new data.

1 JMBO1 is ready to receive new data.

JMBOUT0FG Bit 2 Outgoing JTAG Mailbox 0 flag. This bit is cleared automatically when a message is written to the
upper byte of JMBO0 or as word access (by the CPU, DMA,…) and is set after the message was
read via JTAG.

0 JMBO0 is not ready to receive new data.

1 JMBO0 is ready to receive new data.

JMBIN1FG Bit 1 Incoming JTAG Mailbox 1 flag. This bit is set when a new message (provided via JTAG) is available
in JMBI1. This flag is cleared automatically on read of JMBI1 when JMBCLR1OFF = 0 (auto clear
mode). On JMBCLR1OFF = 1, JMBIN1FG needs to be cleared by SW.

0 JMBI1 has no new data.

1 JMBI1 has new data available.

JMBIN0FG Bit 0 Incoming JTAG Mailbox 0 flag. This bit is set when a new message (provided via JTAG) is available
in JMBI0. This flag is cleared automatically on read of JMBI0 when JMBCLR0OFF = 0 (auto clear
mode). On JMBCLR0OFF = 1, JMBIN0FG needs to be cleared by SW.

0 JMBI1 has no new data.

1 JMBI1 has new data available.

JTAG Mailbox Input 0 Register (SYSJMBI0)
JTAG Mailbox Input 1 Register (SYSJMBI1)

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

MSGHI

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0

7 6 5 4 3 2 1 0

MSGL0

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0

MSGHI Bits 15-8 JTAG mailbox incoming message high byte

MSGLO Bits 7-0 JTAG mailbox incoming message low byte

53SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

SYS Configuration Registers www.ti.com

JTAG Mailbox Output 0 Register (SYSJMBO0)
JTAG Mailbox Output 1 Register (SYSJMBO1)

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

MSGHI

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

MSGL0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

MSGHI Bits 15-8 JTAG mailbox outgoing message high byte

MSGLO Bits 7-0 JTAG mailbox outgoing message low byte

User NMI Vector Register (SYSUNIV)

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 SYSUNVEC 0

r0 r0 r0 r-0 r-0 r-0 r-0 r0

SYSUNIV Bits 15-0 User NMI vector. Generates a value that can be used as address offset for fast interrupt service
routine handling. Writing to this register clears all pending user NMI flags.

Value Interrupt Type

0000h No interrupt pending

0002h NMIIFG interrupt pending (highest priority)

0004h OFIFG interrupt pending

0006h ACCVIFG interrupt pending

0008h Reserved for future extensions

NOTE: Additional events for more complex devices will be appended to this table; sources that are
removed will reduce the length of this table. The vectors are expected to be accessed
symbolic only with the corresponding include file of the device in use.

54 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com SYS Configuration Registers

System NMI Vector Register (SYSSNIV)

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 SYSSNVEC 0

r0 r0 r0 r-0 r-0 r-0 r-0 r0

SYSSNIV Bits 15-0 System NMI vector. Generates a value that can be used as address offset for fast interrupt service
routine handling. Writing to this register clears all pending system NMI flags.

Value Interrupt Type

0000h No interrupt pending

0002h SVMLIFG interrupt pending (highest priority)

0004h SVMHIFG interrupt pending

0006h SVSMLDLYIFG interrupt pending

0008h SVSMHDLYIFG interrupt pending

000Ah VMAIFG interrupt pending

000Ch JMBINIFG interrupt pending

000Eh JMBOUTIFG interrupt pending

0010h SVMLVLRIFG interrupt pending

0012h SVMHVLRIFG interrupt pending

0014h Reserved for future extensions

NOTE: Additional events for more complex devices will be appended to this table; sources that are
removed will reduce the length of this table. The vectors are expected to be accessed
symbolic only with the corresponding include file of the used device.

55SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

SYS Configuration Registers www.ti.com

Reset Interrupt Vector Register (SYSRSTIV)

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 SYSRSTVEC 0

r0 r0 r-0 r-0 r-0 r-0 r-0 r0

SYSRSTIV Bits 15-0 Reset interrupt vector. Generates a value that can be used as address offset for fast interrupt
service routine handling to identify the last cause of a reset (BOR, POR, PUC) . Writing to this
register clears all pending reset source flags.

Value Interrupt Type

0000h No interrupt pending

0002h Brownout (BOR) (highest priority)

0004h RST/NMI (BOR)

0006h PMMSWBOR (BOR)

0008h Wakeup from LPMx.5 (BOR)

000Ah Security violation (BOR)

000Ch SVSL (POR)

000Eh SVSH (POR)

0010h SVML_OVP (POR)

0012h SVMH_OVP (POR)

0014h PMMSWPOR (POR)

0016h WDT time out (PUC)

0018h WDT key violation (PUC)

001Ah KEYV flash key violation (PUC)

001Ch PLL unlock (PUC)

001Eh PERF peripheral/configuration area fetch (PUC)

0020h PMM key violation (PUC)

0022h- Reserved for future extensions
003Eh

NOTE: Additional events for more complex devices will be appended to this table; sources that are
removed will reduce the length of this table. The vectors are expected to be accessed
symbolic only with the corresponding include file of the used device.

56 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com SYS Configuration Registers

System Bus Error Interrupt Vector Register (SYSBERRIV)

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 SYSBERRIV 0

r0 r0 r0 r-0 r-0 r-0 r-0 r0

SYSBERRIV Bits 15-0 System bus error interrupt vector. Generates a value that can be used as an address offset for fast
interrupt service routine handling. Writing to this register clears all pending flags.

Value Interrupt Type

0000h No interrupt pending

0002h USB module timed out. Wait state time out of 8 clock cycles. 16 clock cycles only on
the 'F552x, 'F551x devices.

0004h Reserved for future extensions

0006h Reserved for future extensions

0008h Reserved for future extensions

NOTE: Additional events for more complex devices will be appended to this table; sources that are
removed will reduce the length of this table. The vectors are expected to be accessed
symbolic only with the corresponding include file of the used device.

57SLAU208E–June 2008–Revised November 2009 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

58 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 2
SLAU208E–June 2008–Revised November 2009

Power Management Module and Supply Voltage
Supervisor

This chapter describes the operation of the Power Management Module (PMM) and
Supply Voltage Supervisor (SVS).

Topic ... Page

2.1 Power Management Module (PMM) Introduction ... 60
2.2 PMM Operation ... 62
2.3 PMM Registers .. 72

59SLAU208E–June 2008–Revised November 2009 Power Management Module and Supply Voltage Supervisor
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

2.01.8

f0

0

S
y
s
te

m
 F

re
q
u
e
n
c
y
 -

 M
H

z

Supply Voltage - V

The numbers within the fields denote the supported PMMCOREVx settings.

2.2 2.4 3.6

0, 1, 2, 30, 1, 20, 10

1, 2, 31, 21

2, 3

3

2

f1

f2

f3

Power Management Module (PMM) Introduction www.ti.com

2.1 Power Management Module (PMM) Introduction

PMM features include:

• Wide supply voltage (DVCC) range: 1.8 V to 3.6 V
• Generation of voltage for the device core (VCORE) with up to four programmable levels
• Supply voltage supervisor (SVS) for DVCC and VCORE with programmable threshold levels
• Supply voltage monitor (SVM) for DVCC and VCORE with programmable threshold levels
• Brownout reset (BOR)
• Software accessible power-fail indicators
• I/O protection during power-fail condition
• Software selectable supervisor or monitor state output (optional)

The PMM manages all functions related to the power supply and its supervision for the device. Its primary
functions are first to generate a supply voltage for the core logic, and second, provide several
mechanisms for the supervision and monitoring of both the voltage applied to the device (DVCC) and the
voltage generated for the core (VCORE).

The PMM uses an integrated low-dropout voltage regulator (LDO) to produce a secondary core voltage
(VCORE) from the primary one applied to the device (DVCC). In general, VCORE supplies the CPU, memories
(flash/RAM), and the digital modules, while DVCC supplies the I/Os and all analog modules (including the
oscillators). The VCORE output is maintained using a dedicated voltage reference. VCORE is programmable
up to four steps, to provide only as much power as is needed for the speed that has been selected for the
CPU. This enhances power efficiency of the system. The input or primary side of the regulator is referred
to in this chapter as its high side. The output or secondary side is referred to in this chapter as its low side.

The required minimum voltage for the core depends on the selected MCLK rate. Figure 2-1 shows the
relationship between the system frequency for a given core voltage setting, as well as the minimum
required voltage applied to the device. Figure 2-1 only serves as an example, and the device-specific data
sheet should be referenced to determine which core voltage levels are supported and what level of system
frequency performance is possible.

Figure 2-1. System Frequency and Supply/Core Voltages - See Device Specific Datasheet

The PMM module provides a means for DVCC and VCORE to be supervised and monitored. Both of these
functions detect when a voltage falls under a specific threshold. In general, the difference is that

60 Power Management Module and Supply Voltage Supervisor SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

SVS

SVM
H

H

Regulator

SVS

SVM
L

L

DVCC

Reference

VCORE

OR

To reset logic

NORPorts ON

BOR

Control bits PMMCOREV

To reset logic

www.ti.com Power Management Module (PMM) Introduction

supervision results in a power-on reset (POR) event, while monitoring results in the generation of an
interrupt flag that software may then handle. As such, DVCC is supervised and monitored by the high-side
supervisor (SVSH) and high-side monitor (SVMH), respectively. VCORE is supervised and monitored by the
low-side supervisor (SVSL) and low-side monitor (SVML), respectively. Thus, there are four separate
supervision/monitoring modules that can be active at any given time. The thresholds enforced by these
modules are derived from the same voltage reference used by the regulator to generate VCORE.

In addition to the SVSH / SVMH / SVSL / SVML modules, VCORE is further monitored by the brownout reset
(BOR) circuit. As DVCC ramps up from 0 V at power up, the BOR keeps the device in reset until VCORE is at
a sufficient level for operation at the default MCLK rate and for the SVSH/SVSL mechanisms to be
activated. During operation, the BOR also generates a reset if VCORE falls below a preset threshold. BOR
can be used to provide an even lower-power means of monitoring the supply rail if the flexibility of the
SVSL is not required.

The block diagram of the PMM is shown in Figure 2-2.

Figure 2-2. PMM Block Diagram

61SLAU208E–June 2008–Revised November 2009 Power Management Module and Supply Voltage Supervisor
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

PMM Operation www.ti.com

2.2 PMM Operation

2.2.1 VCORE and the Regulator

DVCC can be powered from a wide input voltage range, but the core logic of the device must be kept at a
voltage lower than what this range allows. For this reason, a regulator has been integrated into the PMM.
The regulator derives the necessary core voltage (VCORE) from DVCC.

Higher MCLK speeds require higher levels of VCORE. Higher levels of VCORE consume more power, and so
the core voltage has been made programmable in up to four steps to allow it to provide only as much
power as is required for a given MCLK setting. The level is controlled by the PMMCOREV bits. Note that
the default setting, the lowest value of PMMCOREV, enables operation of MCLK over a very wide
frequency range. As such, no PMM changes are required for many applications. See the device-specific
data sheet for performance characteristics and core step levels supported.

Before increasing MCLK to a higher speed, it is necessary for software to ensure that the VCORE level is
sufficiently high for the chosen frequency. Failure to do so may force the CPU to attempt operation without
sufficient power, which can cause unpredictable results. See Section 2.2.4 for more information on the
appropriate procedure to raise VCORE for higher MCLK frequencies.

The regulator supports two different load settings to optimize power. The high-current mode is required
when:

• The CPU is in active, LPM0, or LPM1 modes
• A clock source greater than 32 kHz is used to drive any module
• An interrupt is executed
• JTAG is active

Otherwise, the low-current mode is used. The hardware controls the load settings automatically, according
to the criteria above.

2.2.2 Supply Voltage Supervisor and Monitor

The high-side supervisor and monitor (SVSH and SVMH) and the low-side supervisor and monitor (SVSL

and SVML) oversee DVCC and VCORE, respectively. By default, all these modules are active, but each can
be disabled using the corresponding enable bit (SVSHE/SVMHE/SVSLE/SVMLE), resulting in some power
savings.

2.2.2.1 SVS/SVM Thresholds

The voltage thresholds enforced by the SVS/SVM modules are selectable. Table 2-1 shows the SVS/SVM
threshold registers, the voltage threshold they control, and the number of threshold options.

Table 2-1. SVS/SVM Thresholds

Register Description Threshold Available Steps

SVSHRVL SVSH reset voltage level SVSH_IT- 4

SVSMHRRL SVSH/SVMH reset release voltage level SVSH_IT+, SVMH 8

SVSLRVL SVSL reset voltage level SVSL_IT- 4

SVSMLRRL SVSL/SVML reset release voltage level SVSL_IT+, SVML 4

Recommended SVSL Settings

For each of the core voltages, there are two supply voltage supervisor levels available. The SVSLRVL bits
define the voltage level of VCORE below which the reset is activated. The SVSMLRRL bits define the
voltage level of VCORE at which the reset is released. Although various settings can be chosen, there is
one set of SVSLRVL and SVSMLRRL settings that is well suited for each core voltage selected by
PMMCOREV. The most commonly used and recommended settings are shown in Table 2-2.

62 Power Management Module and Supply Voltage Supervisor SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com PMM Operation

Table 2-2. Recommended SVSL Settings

SVSMLRRL[2:0]SVSLRVL[1:0]PMMCOREV[1:0] DVCC, (Volts) Sets SVSL_IT+ and SVMLSets SVSL_IT- level levels

00 ≥ 1.8 00 000

01 ≥ 2.0 01 001

10 ≥ 2.2 10 010

11 ≥ 2.4 11 011

Recommended SVSH Settings

For the high side supply, there are two supply voltage supervisor levels available. The SVSMHRRL bits
define the voltage level of DVCC at which the reset is released. The SVSHVRL register defines the
voltage level of DVCC below which the reset is turned on. These settings should be selected according to
the minimum voltages required for device operation in a given application, as well as system power supply
characteristics. See the device-specific data sheet for threshold values corresponding to the settings
shown here. Although various settings, the most common are based on the maximum frequency required,
which will in turn, determine the minimum DVCC level supervised. The most commonly used and
recommended settings are shown in TBD .

Table 2-3. Recommended SVSH Settings

fSYS max DVCC SVSHRVL[1:0] SVSMHRRL[2:0] PMMCOREV[1:0]in MHz in V

8 >1.8 00 000 00

12 >2.0 01 001 01

20 >2.2 10 010 10

25 >2.4 11 011 11

The behavior of the SVS/SVM according to these thresholds is best portrayed graphically. Figure 2-3
shows how the supervisors and monitors respond to various supply failure conditions.

As Figure 2-3 shows, there is hysteresis built into the supervision thresholds, such that the thresholds in
force depend on whether the voltage rail is going up or down. There is no hysteresis in the monitoring
thresholds.

63SLAU208E–June 2008–Revised November 2009 Power Management Module and Supply Voltage Supervisor
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

DVCC

Voltage

VCORE

SVM ,SVSL _IT+L

SVSL_IT-

SVM ,SVSH H_IT+

SVSH_IT-

Time

Set SVMHIFG

Set SVSHIFG

POR

Set SVMLIFG

Set SVSLIFG

Set SVMHVLRIFG

Set SVMLVLRIFG

PMM Operation www.ti.com

Figure 2-3. High-Side and Low-Side Voltage Failure and Resulting PMM Actions

64 Power Management Module and Supply Voltage Supervisor SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

SVSHFP
SVSH

SVSHRVL
SVSHPE

Set POR

Set SVSHIFG

Delay

LPM or SVSMHCTL
change

SVSHE

SVMH

SVSMHRRL

SVMHFP

SVMHE

SVMHOVPE

SVMHVLRPE

Set POR

SVMHVLRIFG

SVMHVLRIE
SVM Reached InterruptH

SVMHIE

SVMHIFG

SVSMHDLYIE

SVSMHDLYIFG

IFG

Set

IFG

Set

IFG

Set

High Side Delay Interrupt

SVSHMD

High power mode

1

0

ONON

ON

SVSMHEVM

SVM InterruptH

www.ti.com PMM Operation

2.2.2.2 High Side Supervisor/Monitor (SVSH/SVMH)

The SVSH and SVMH modules are enabled by default. They can be disabled by clearing the SVSHE and
SVMHE bits, respectively. Their block diagrams are shown in Figure 2-4.

Figure 2-4. High-Side SVS and SVM

If DVCC falls below the SVSH level, SVSHIFG (SVSH interrupt flag) is set. If DVCC remains below the SVSH

level and software attempts to clear SVSHIFG, it is immediately set again by hardware. If the SVSHPE
(SVSH POR enable) bit is set when SVSHIFG gets set, a POR is generated.

If DVCC falls below the SVMH level, SVMHIFG (SVMH interrupt flag) is set. If DVCC remains below the SVMH

level and software attempts to clear SVMHIFG, it is immediately set again by hardware. If the SVMHIE
(SVMH interrupt enable) bit is set when SVMHIFG gets set, an interrupt is generated. If a POR is desired
when SVMHIFG is set, the SVMH can be configured to do so by setting the SVMHVLRPE (SVMH voltage
level reached POR enable) bit while SVMHOVPE bit is cleared.

If DVCC rises above the SVMH level, the SVMHVLRIFG (SVMH voltage level reached) interrupt flag is set. If
SVMHVLRIE (SVMH voltage level reached interrupt enable) is set when this occurs, an interrupt is also
generated.

The SVMH module can also be used for overvoltage detection. This is accomplished by setting the
SVMHOVPE (SVMH overvoltage POR enable) bit, in addition to setting SVMHVLRPE. Under these
conditions, if DVCC exceeds safe device operation, a POR is generated.

65SLAU208E–June 2008–Revised November 2009 Power Management Module and Supply Voltage Supervisor
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

SVSLFP
SVSL

SVSLRVL
SVSLPE

Set POR

Set SVSLIFG

Delay

LPM or SVSMLCTL
change

SVSLE

SVML

SVSMLRRL

SVMLFP

SVMLE

SVMLOVPE

SVMLVLRPE

Set POR

SVMLVLRIFG

SVMLVLRIE
SVM Reached InterruptL

SVMLIE

SVMLIFG

SVSMLDLYIE

SVSMLDLYIFG

IFG

Set

IFG

Set

IFG

Set

Low Side Delay Interrupt

SVSLMD

High power mode

1

0

ONON

ON

SVSMLEVM

SVM InterruptL

PMM Operation www.ti.com

The SVSH/SVMH modules have configurable performance modes for power-saving operation. (See
Section 2.2.8 for more information.) If these SVSH/SVMH power modes are modified, or if a voltage level is
modified, a delay element masks the interrupts and POR sources until the SVSH/SVMH circuits have
settled. When SVSMHDLYST (delay status) reads zero, the delay has expired. In addition, the
SVSMHDLYIFG (SVSH/SVMH delay expired) interrupt flag is set. If the SVSMHDLYIE (SVSH /SVMH delay
expired interrupt enable) is set when this occurs, an interrupt is also generated.

In case of power-fail conditions, setting SVSHMD will cause the SVSH interrupt flag to be set in LPM2,
LPM3, and LPM4. If SVSHMD is not set, the SVSH interrupt flag will not be set in LPM2, LPM3, and
LPM4. In addition, all SVSH and SVMH events can be masked by setting SVSMHEVM. For most
applications, SVSMHEVM should be cleared.

All the interrupt flags of SVSH /SVMH remain set until cleared by a BOR or by software.

2.2.2.3 Low-Side Supervisor/Monitor (SVSL/SVML)

The SVSL and SVML modules are enabled by default. They can be disabled by clearing SVSLE and
SVMLE bits, respectively. Their block diagrams are shown in Figure 2-5.

Figure 2-5. Low-Side SVS and SVM

If VCORE falls below the SVSL level, SVSLIFG (SVSL interrupt flag) is set. If VCORE remains below the SVSL

level and software attempts to clear SVSLIFG, it is immediately set again by hardware. If the SVSLPE
(SVSL POR enable) bit is set when SVSLIFG gets set, a POR is generated.

66 Power Management Module and Supply Voltage Supervisor SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

DVCC

Voltage

VCORE

SVSH_IT+

SVSL_IT+

Time
POR

Reset from SVSH

Reset from SVSL

www.ti.com PMM Operation

If VCORE falls below the SVML level, SVMLIFG (SVML interrupt flag) is set. If VCORE remains below the SVML

level and software attempts to clear SVMLIFG, it is immediately set again by hardware. If the SVMLIE
(SVML interrupt enable) bit is set when SVMLIFG gets set, an interrupt is generated. If a POR is desired
when SVMLIFG is set, the SVML can be configured to do so by setting the SVMLVLRPE (SVML voltage
level reached POR enable) bit while SVMLOVPE bit is cleared.

If VCORE rises above the SVML level, the SVMLVLRIFG (SVML voltage level reached) interrupt flag is set. If
SVMLVLRIE (SVML voltage level reached interrupt enable) is set when this occurs, an interrupt is also
generated.

The SVML module can also be used for overvoltage detection. This is accomplished by setting the
SVMLOVPE (SVML overvoltage POR enable) bit, in addition to setting SVMLVLRPE. Under these
conditions, if VCORE exceeds safe device operation, a POR is generated.

The SVSL/SVML modules have configurable performance modes for power-saving operation. (See
Section 2.2.8 for more information.) If these SVSL/SVML power modes are modified, or if a voltage level is
modified, a delay element masks the interrupts and POR sources until the SVSL/SVML circuits have
settled. When SVSMLDLYST (delay status) reads zero, the delay has expired. In addition, the
SVSMLDLYIFG (SVSL/SVML delay expired) interrupt flag is set. If the SVSMLDLYIE (SVSL /SVML delay
expired interrupt enable) is set when this occurs, an interrupt is also generated.

In case of power-fail conditions, setting SVSLMD will cause the SVSL interrupt flag to be set in LPM2,
LPM3, and LPM4. If SVSLMD is not set, the SVSL interrupt flag will not be set in LPM2, LPM3, and LPM4.
In addition, all SVSL and SVML events can be masked by setting SVSMLEVM. For most applications,
SVSMLEVM should be cleared.

All the interrupt flags of SVSL /SVML remain set until cleared by a BOR or by software.

2.2.3 Supply Voltage Supervisor and Monitor - Power-Up

When the device is powering up, the SVSH and SVSL functions are enabled by default. Initially, DVCC is
low, and therefore the PMM holds the device in POR reset. Once both the SVSH and SVSL levels are met,
the reset is released. Figure 2-6 shows this process.

Figure 2-6. PMM Action at Device Power-Up

After this point, both voltage domains are supervised and monitored while the respective modules are
enabled.

67SLAU208E–June 2008–Revised November 2009 Power Management Module and Supply Voltage Supervisor
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Voltage

VCORE

Time

SVML

SVSL

1

2

3
4 5

6

PMM Operation www.ti.com

2.2.4 Increasing VCORE to Support Higher MCLK Frequencies

With a reset, VCORE and all the PMM thresholds, default to their lowest possible levels. These default
settings allow a wide range of MCLK operation, and in many applications no change to these levels is
required. However, if the application requires the performance provided by higher MCLK frequencies,
software should ensure that VCORE has been raised to a sufficient voltage level before changing MCLK,
since failing to supply sufficient voltage to the CPU could produce unpredictable results. For a given
device, minimum VCORE levels required for maximum MCLK frequencies have been established (See the
device data sheet for specific values).

After setting PMMCOREV to increase VCORE, there is a time delay until the new voltage has been
established. Software must not raise MCLK until the necessary core voltage has settled. SVML can be
used to verify that VCORE has met the required minimum value, prior to increasing MCLK. Figure 2-7 shows
this procedure graphically.

Figure 2-7. Changing VCORE and SVML and SVSL Levels

It is critical that the VCORE level be increased by only one level at a time. The following steps 1 through 4
show the procedure to increase VCORE by one level. This sequence is repeated to change the VCORE level
until the targeted level is obtained:

1. Program the SVMH and SVSH to the next level to ensure DVCC is high enough for the next VCORE level.
Program the SVML to the next level and wait for (SVSMLDLYIFG) to be set.

2. Program PMMCOREV to the next VCORE level.
3. Wait for the voltage level reached (SVMLVLRIFG) flag.
4. Program the SVSL to the next level.

As a reference, the following is a C code example for increasing VCORE. The sample libraries provide
routines for increasing and decreasing the VCORE and should be utilized whenever possible.
; C Code example for increasing core voltage.
; Note: Change core voltage one level at a time.

void SetVCoreUp (unsigned int level)
{
// Open PMM registers for write access
PMMCTL0_H = 0xA5;
// Set SVS/SVM high side new level
SVSMHCTL = SVSHE + SVSHRVL0 * level + SVMHE + SVSMHRRL0 * level;
// Set SVM low side to new level
SVSMLCTL = SVSLE + SVMLE + SVSMLRRL0 * level;
// Wait till SVM is settled
while ((PMMIFG & SVSMLDLYIFG) == 0);
// Clear already set flags
PMMIFG &= ~(SVMLVLRIFG + SVMLIFG);
// Set VCore to new level
PMMCTL0_L = PMMCOREV0 * level;
// Wait till new level reached
if ((PMMIFG & SVMLIFG))
while ((PMMIFG & SVMLVLRIFG) == 0);

68 Power Management Module and Supply Voltage Supervisor SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com PMM Operation

// Set SVS/SVM low side to new level
SVSMLCTL = SVSLE + SVSLRVL0 * level + SVMLE + SVSMLRRL0 * level;
// Lock PMM registers for write access
PMMCTL0_H = 0x00;

}

2.2.5 Decreasing VCORE for Power Optimization

The risk posed by increasing MCLK frequency does not exist when decreasing MCLK from the current
VCORE or higher settings, because higher VCORE levels can still support MCLK frequencies below the ones
for which they were intended. However, significant power efficiency gains can be made by operating VCORE

at the lowest value required for a given MCLK frequency. It is critical that the VCORE level be decreased by
only one level at a time. The following steps show the procedure to decrease VCORE by one level. This
sequence is repeated to change the VCORE level until the targeted level is obtained:

Steps 1 through 3 show the procedure to decrease VCORE:

1. Program the SVML to the new level and wait for (SVSMLDLYIFG) to be set.
2. Program PMMCOREV to the new VCORE level.
3. Wait for the voltage level reached (SVMLVLRIFG) interrupt.

It is critical when lowering the VCORE setting that the maximum MCLK frequency for the new VCORE setting is
not violated (see the device-specific data sheet).

2.2.6 LPM3.5, LPM4.5

LPM3.5 and LMP4.5 are additional low-power modes in which the regulator of the PMM is completely
disabled, providing additional power savings. Not all devices support all LPMx.5 modes, so refer to the
device specific datasheet. Because there is no power supplied to VCORE during LPMx.5, the CPU and all
digital modules including RAM are unpowered. This essentially disables the entire device and, as a result,
the contents of the registers and RAM are lost. Any essential values should be stored to flash prior to
entering LPMx.5. PMMREGOFF bit is used to disable the regulator. See the SYS module for complete
descriptions and proper usages of LMPx.5.

SInce the regulator of the PMM is disabled upon entering LPMx.5, all I/O register configurations are lost.
Because the I/O register configurations are lost, the configuration of I/O pins must be handled differently to
ensure that all pins in the application behave in a controlled manner upon entering and exiting LPMx.5.
Properly setting the I/O pins is critical to achieving the lowest possible power consumption in LPMx.5, as
well as preventing any possible uncontrolled input or output I/O state in the application. The application
has complete control of the I/O pin conditions preventing the possibility of unwanted spurious activity upon
entry and exit from LPMx.5. The I/O pin state is held and locked based on the settings prior to LPMx.5
entry. Upon entry into LPMx.5, LOCKLPM5 residing in PM5CTL0 of the PMM module, is set automatically.
Please note that only the pin condition is retained. All other port configuration register settings are lost.
Please refer to the Digital I/O module for further details.

2.2.7 Brownout Reset (BOR), Software BOR, Software POR

The primary function of the brownout reset (BOR) circuit occurs when the device is powering up. It is
functional very early in the power-up ramp, generating a POR that initializes the system. It also functions
when no SVS is enabled and a brownout condition occurs. It sustains this reset until the input power is
sufficient for the logic, for proper reset of the system.

In an application, it may be desired to cause a BOR via software. Setting PMMSWBOR will cause a
software driven BOR. PMMBORIFG will be set accordingly. Please note that a BOR also initiates a POR
and PUC. PMMBORIFG can be cleared by software or by reading SYSRSTIV. Similarly, it is possible to
cause a POR via software by setting PMMSWPOR. PMMPORIFG will be set accordingly. A POR will also
initiate a PUC. PMMPORIFG can be cleared by software or by reading SYSRSTIV. Both PMMSWBOR
and PMMSWPOR are self clearing. Please refer to the SYS module for complete descriptions of BOR,
POR, and PUC resets.

69SLAU208E–June 2008–Revised November 2009 Power Management Module and Supply Voltage Supervisor
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

PMM Operation www.ti.com

2.2.8 SVS/SVM Performance Modes (Normal or Full-Performance)

The supervisors/monitors can function in one of two power modes: normal and full performance. The
difference is a tradeoff in response time versus the power consumed; full-performance mode has a faster
response time but consumes considerably more power than normal mode. Full-performance mode might
be considered in applications in which the decoupling of the external power supply cannot adequately
prevent fast spikes on DVCC from occurring, or when the application has a particular intolerance to failure.
In such cases, full-performance mode provides an additional layer of protection.

There are two ways to control the performance mode: manual and automatic. In manual mode, the
normal/full-performance selection is the same for every operational mode except LPMx.5 (the SVS/SVM
are always disabled in LPMx.5). In this case, the normal/full-performance selection is made with the
SVSHFP/SVMHFP/SVSLFP/SVMLFP bits, for their respective modules.

In automatic mode, hardware changes the normal/full-performance selection depending on the operational
mode in effect. In automatic mode, the SVSHFP/SVMHFP/SVSLFP/SVMLFP select one of two automatic
control schemes.

The selection of automatic or manual mode is by setting the SVSMHACE/SVSMLACE bits, which apply to
the high-side and low-side, respectively. Table 2-4 and Table 2-5 show the selection of performance
modes for SVSL and SVML. As shown, the wakeup of the device from low power modes is also effected by
the settings of the SVSL and SVML performance modes. Table 2-6 and Table 2-7 show the selection of
pefromance modes for SVSH and SVMH. The wakeup from low modes is not effected by the settings of the
SVSH and SVMH performance modes.

All wakeups from LPMx.5 (LPM3.5 or LPM4.5), are defined by the datasheet parametric, tWAKE-UP-LPM5,
regardless of the performance modes for SVSL or SVML since these are disabled in LPMx.5.

Table 2-4. SVSL Performance Control Modes

Manual mode Automatic mode
SVSMLACE = 0 SVSMLACE = 1AM, LPM0, LPM1 Wakeup timeSVSLE SVSLMD SVSLFP SVSL state LPM2, LPM3, LPM4LPM2, LPM3, LPM4 LPM2, LPM3, LPM4

SVSL state SVSL state

0 x x Off Off Off tWAKE-UP-FAST

1 0 0 Normal Off Off tWAKE-UP-SLOW

1 0 1 Full performance Off Off tWAKE-UP-FAST

1 1 0 Normal Normal Off tWAKE-UP-SLOW

1 1 1 Full performance Full performance Normal tWAKE-UP-FAST

Table 2-5. SVML Performance Control Modes

Manual mode Automatic mode
SVSMLACE = 0 SVSMLACE = 1AM, LPM0, LPM1 Wakeup timeSVMLE SVMLFP SVSL state LPM2, LPM3, LPM4LPM2, LPM3, LPM4 LPM2, LPM3, LPM4

SVSL state SVSL state

0 x Off Off Off tWAKE-UP-FAST

1 0 Normal Normal Off tWAKE-UP-SLOW

1 1 Full performance Full performance Normal tWAKE-UP-FAST

Table 2-6. SVSH Performance Control Modes

Manual mode Automatic mode
SVSMHACE = 0 SVSMHACE = 1AM, LPM0, LPM1SVSHE SVSHMD SVSHFP SVSH state LPM2, LPM3, LPM4 LPM2, LPM3, LPM4

SVSH state SVSH state

0 x x Off Off Off

1 0 0 Normal Off Off

1 0 1 Full performance Off Off

1 1 0 Normal Normal Off

1 1 1 Full performance Full performance Normal

70 Power Management Module and Supply Voltage Supervisor SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com PMM Operation

Table 2-7. SVMH Performance Control Modes

Manual mode Automatic mode
SVSMHACE = 0 SVSMHACE = 1AM, LPM0, LPM1SVMHE SVMHFP SVSH state LPM2, LPM3, LPM4 LPM2, LPM3, LPM4

SVSH state SVSH state

0 x Off Off Off

1 0 Normal Normal Off

1 1 Full performance Full performance Normal

2.2.9 PMM Interrupts

Interrupt flags generated by the PMM are routed to the system NMI interrupt vector generator register,
SYSSNIV. When the PMM causes a reset, a value is generated in the system reset interrupt vector
generator register, SYSRSTIV, corresponding to the source of the reset. These registers are defined
within the SYS module. More information on the relationship between the PMM and SYS modules is
available in the SYS chapter.

2.2.10 Port I/O Control

The PMM provides a means of ensuring that I/O pins cannot behave in uncontrolled fashion during an
undervoltage event. During these times, outputs are disabled, both normal drive and the weak
pullup/pulldown function. If the CPU is functioning normally, and then an undervoltage event occurs, any
pin configured as an input has its PxIN register value locked in at the point the event occurs, until voltage
is restored. During the undervoltage event, external voltage changes on the pin are not registered
internally. This helps prevent erratic behavior from occurring.

2.2.11 Supply Voltage Monitor Output (SVMOUT, Optional)

The state of SVMLIFG, SVMLVLRIFG, SVMHIFG, and SVMLVLRIFG can be monitored on the external
SVMOUT pin. Each of these interrupt flags can be enabled (SVMLOE, SVMLVLROE, SVMHOE,
SVMLVLROE) to generate an output signal. The polarity of the output is selected by the SVMOUTPOL bit.
If SVMOUTPOL is set, the output is set to 1 if an enabled interrupt flag is set.

71SLAU208E–June 2008–Revised November 2009 Power Management Module and Supply Voltage Supervisor
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

PMM Registers www.ti.com

2.3 PMM Registers

The PMM registers are listed in Table 2-8. The base address of the PMM module can be found in the
device-specific data sheet. The address offset of each PMM register is given in Table 2-8. The password,
PMMPW, defined in the PMMCTL0 register controls access to all PMM, SVS, and SVM registers. Once
the correct password is written, the write access is enabled. The write access is disabled by writing a
wrong password in byte mode to the PMMCTL0 upper byte. Word accesses to PMMCTL0 with a wrong
password triggers a PUC. A write access to a register other than PMMCTL0 while write access is not
enabled causes a PUC.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 2-8. PMM Registers

Register Register AddressRegister Short Form Initial StateType Access Offset

PMM control register 0 PMMCTL0 Read/write Word 00h 9600h

PMMCTL0_L Read/write Byte 00h 00h

PMMCTL0_H Read/write Byte 01h 96h

PMM control register 1 PMMCTL1 Read/write Word 02h 0000h

PMMCTL1_L Read/write Byte 02h 00h

PMMCTL1_H Read/write Byte 03h 00h

SVS and SVM high side control register SVSMHCTL Read/write Word 04h 4400h

SVSMHCTL_L Read/write Byte 04h 00h

SVSMHCTL_H Read/write Byte 05h 44h

SVS and SVM low side control register SVSMLCTL Read/write Word 06h 4400h

SVSMLCTL_L Read/write Byte 06h 00h

SVSMLCTL_H Read/write Byte 07h 44h

SVSIN and SVMOUT control register (optional) SVSMIO Read/write Word 08h 0020h

SVSMIO_L Read/write Byte 08h 20h

SVSMIO_H Read/write Byte 09h 00h

PMM interrupt flag register PMMIFG Read/write Word 0Ah 0000h

PMMIFG_L Read/write Byte 0Ah 00h

PMMIFG_H Read/write Byte 0Bh 00h

PMM interrupt enable register PMMRIE Read/write Word 0Eh 0000h

PMMRIE_L Read/write Byte 0Eh 00h

PMMRIE_H Read/write Byte 0Fh 00h

Power mode 5 control register 0 PM5CTL0 Read/write Word 10h 0000h

PM5CTL0_L Read/write Byte 10h 00h

PM5CTL0_H Read/write Byte 11h 00h

72 Power Management Module and Supply Voltage Supervisor SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com PMM Registers

Power Management Module Control Register 0 (PMMCTL0)

15 14 13 12 11 10 9 8

PMMPW, Read as 96h, Must be written as A5h

rw-1 rw-0 rw-0 rw-1 rw-0 rw-1 rw-1 rw-0

7 6 5 4 3 2 1 0

Reserved Reserved PMMREGOFF PMMSWPOR PMMSWBOR PMMCOREV

rw-0 r-0 r-0 rw-0 rw-0 rw-0 rw-[0] rw-[0]

PMMPW Bits 15-8 PMM password. Always read as 096h. Must be written with 0A5h or a PUC is generated.

Reserved Bit 7 Reserved. Must always be written with 0.

Reserved Bits 6-5 Reserved. Always read 0.

PMMREGOFF Bit 4 Regulator off (see SYS chapter for further details)

PMMSWPOR Bit 3 Software power-on reset. Setting this bit to 1 triggers a POR. This bit is self clearing.

PMMSWBOR Bit 2 Software brownout reset. Setting this bit to 1 triggers a BOR. This bit is self clearing.

PMMCOREV Bits 1-0 Core voltage (see the device-specific data sheet for supported levels and corresponding voltages)

00 VCORE level 0

01 VCORE level 1

10 VCORE level 2

11 VCORE level 3

Power Management Module Control Register 1 (PMMCTL1)

15 14 13 12 11 10 9 8

Reserved

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved

r-0 r-0 rw-[0] rw-[0] r-0 r-0 rw-0 rw-0

Reserved Bits 15-6 Reserved. Always read 0.

Reserved Bits 5-4 Reserved. Must always be written with 0.

Reserved Bits 3-2 Reserved. Always read 0.

Reserved Bit 1 Reserved. Must always be written with 0.

Reserved Bit 0 Reserved. Must always be written with 0.

73SLAU208E–June 2008–Revised November 2009 Power Management Module and Supply Voltage Supervisor
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

PMM Registers www.ti.com

Supply Voltage Supervisor and Monitor High-Side Control Register (SVSMHCTL)

15 14 13 12 11 10 9 8

SVMHFP SVMHE Reserved SVMHOVPE SVSHFP SVSHE SVSHRVL

rw-[0] rw-1 r-0 rw-[0] rw-[0] rw-1 rw-[0] rw-[0]

7 6 5 4 3 2 1 0

SVSMHACE SVSMHEVM Reserved SVSHMD SVSMHDLYST SVSMHRRL

rw-[0] rw-0 r-0 rw-0 r-0 rw-[0] rw-[0] rw-[0]

SVMHFP Bit 15 SVM high-side full-performance mode. If this bit is set, the SVMH operates in full-performance mode.

0 Normal mode. See the device-specific data sheet for response times.

1 Full-performance mode. See the device-specific data sheet for response times.

SVMHE Bit 14 SVM high-side enable. If this bit is set, the SVMH is enabled.

Reserved Bit 13 Reserved. Always read 0.

SVMHOVPE Bit 12 SVM high-side overvoltage enable. If this bit is set, the SVMH overvoltage detection is enabled. If
SVMHVLRPE is also set, a POR occurs on an overvoltage condition.

SVSHFP Bit 11 SVS high-side full-performance mode. If this bit is set, the SVSH operates in full-performance mode.

0 Normal mode. See the device-specific data sheet for response times.

1 Full-performance mode. See the device-specific data sheet for response times.

SVSHE Bit 10 SVS high-side enable. If this bit is set, the SVSH is enabled.

SVSHRVL Bits 9-8 SVS high-side reset voltage level. If DVCC falls short of the SVSH voltage level selected by SVSHRVL, a
reset is triggered (if SVSHPE = 1). The voltage levels are defined in the device-specific data sheet.

SVSMHACE Bit 7 SVS and SVM high-side automatic control enable. If this bit is set, the low-power mode of the SVSH and
SVMH circuits is under hardware control.

SVSMHEVM Bit 6 SVS and SVM high-side event mask. If this bit is set, the SVSH and SVMH events are masked.

0 No events are masked.

1 All events are masked.

Reserved Bit 5 Reserved. Always read 0.

SVSHMD Bit 4 SVS high-side mode. If this bit is set, the SVSH interrupt flag is set in LPM2, LPM3, and LPM4 in case of
power-fail conditions. If this bit is not set, the SVSH interrupt is not set in LPM2, LPM3, and LPM4.

SVSMHDLYST Bit 3 SVS and SVM high-side delay status. If this bit is set, the SVSH and SVMH events are masked for some
delay time. The delay time depends on the power mode of the SVSH and SVMH. If SVMHFP = 1 and
SVSHFP = 1 i.e. full-performance mode the delay is shorter. See the device-specific data sheet for
details. The bit is cleared by hardware if the delay has expired.

SVSMHRRL Bits 2-0 SVS and SVM high-side reset release voltage level. These bits define the reset release voltage level of
the SVSH. It is also used for the SVMH to define the voltage reached level. The voltage levels are defined
in the device-specific data sheet.

74 Power Management Module and Supply Voltage Supervisor SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com PMM Registers

Supply Voltage Supervisor and Monitor Low-Side Control Register (SVSMLCTL)

15 14 13 12 11 10 9 8

SVMLFP SVMLE Reserved SVMLOVPE SVSLFP SVSLE SVSLRVL

rw-[0] rw-1 r-0 rw-[0] rw-[0] rw-1 rw-[0] rw-[0]

7 6 5 4 3 2 1 0

SVSMLACE SVSMLEVM Reserved SVSLMD SVSMLDLYST SVSMLRRL

rw-[0] rw-0 r-0 rw-0 r-0 rw-[0] rw-[0] rw-[0]

SVMLFP Bit 15 SVM low-side full-performance mode. If this bit is set, the SVML operates in full-performance mode.

0 Normal mode. See the device-specific data sheet for response times.

1 Full-performance mode. See the device-specific data sheet for response times.

SVMLE Bit 14 SVM low-side enable. If this bit is set, the SVML is enabled.

Reserved Bit 13 Reserved. Always read 0.

SVMLOVPE Bit 12 SVM low-side overvoltage enable. If this bit is set, the SVML overvoltage detection is enabled.

SVSLFP Bit 11 SVS low-side full-performance mode. If this bit is set, the SVSL operates in full-performance mode.

0 Normal mode. See the device-specific data sheet for response times.

1 Full-performance mode. See the device-specific data sheet for response times.

SVSLE Bit 10 SVS low-side enable. If this bit is set, the SVSL is enabled.

SVSLRVL Bits 9-8 SVS low-side reset voltage level. If DVCC falls short of the SVSL voltage level selected by SVSHRVL, a
reset is triggered (if SVSLPE = 1). The voltage levels are defined in the device-specific data sheet.

SVSMLACE Bit 7 SVS and SVM low-side automatic control enable. If this bit is set, the low-power mode of the SVSL and
SVML circuits is under hardware control.

SVSMLEVM Bit 6 SVS and SVM low-side event mask. If this bit is set, the SVSL and SVML events are masked.

0 No events are masked.

1 All events are masked.

Reserved Bit 5 Reserved. Always read 0.

SVSLMD Bit 4 SVS low-side mode. If this bit is set, the SVSL interrupt flag is set in LPM2, LPM3 and LPM4 in case of
power-fail conditions. If this bit is not set, the SVSL interrupt is not set in LPM2, LPM3, and LPM4.

SVSMLDLYST Bit 3 SVS and SVM low-side delay status. If this bit is set, the SVSL and SVML events are masked for some
delay time. The delay time depends on the power mode of the SVSL and SVML. If SVMLFP = 1 and
SVSLFP = 1 i.e. full-performance mode, it is shorter. The bit is cleared by hardware if the delay has
expired.

SVSMLRRL Bits 2-0 SVS and SVM low-side reset release voltage level. These bits define the reset release voltage level of
the SVSL. It is also used for the SVML to define the voltage reached level. The voltage levels are defined
in the device-specific data sheet.

SVSIN and SVMOUT Control Register (SVSMIO)

15 14 13 12 11 10 9 8

Reserved SVMLVLROE SVMHOE Reserved

r-0 r-0 r-0 rw-[0] rw-[0] r-0 r-0 r-0

7 6 5 4 3 2 1 0

Reserved SVMOUTPOL SVMLVLROE SVMLOE Reserved

r-0 r-0 rw-[1] rw-[0] rw-[0] r-0 r-0 r-0

Reserved Bits 15-13 Reserved. Always read 0.

SVMLVLROE Bit 12 SVM high-side voltage level reached output enable. If this bit is set, the SVMLVLRIFG bit is output to the
device SVMOUT pin. The device-specific port logic has to be configured accordingly.

SVMHOE Bit 11 SVM high-side output enable. If this bit is set, the SVMHIFG bit is output to the device SVMOUT pin. The
device-specific port logic has to be configured accordingly.

Reserved Bits 10-6 Reserved. Always read 0.

SVMOUTPOL Bit 5 SVMOUT pin polarity. If this bit is set, SVMOUT is active high. An error condition is signaled by a 1 at
SVMOUT. If SVMOUTPOL is cleared, the error condition is signaled by a 0 at the SVMOUT pin.

SVMLVLROE Bit 4 SVM low-side voltage level reached output enable. If this bit is set, the SVMLVLRIFG bit is output to the
device SVMOUT pin. The device-specific port logic has to be configured accordingly.

SVMLOE Bit 3 SVM low-side output enable. If this bit is set, the SVMLIFG bit is output to the device SVMOUT pin. The
device-specific port logic has to be configured accordingly.

Reserved Bits 2-0 Reserved. Always read 0.

75SLAU208E–June 2008–Revised November 2009 Power Management Module and Supply Voltage Supervisor
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

PMM Registers www.ti.com

Power Management Module Interrupt Flag Register (PMMIFG)

15 14 13 12 11 10 9 8

PMMLPM5IFG Reserved SVSLIFG1 SVSHIFG1 Reserved PMMPORIFG PMMRSTIFG PMMBORIFG

rw-[0] r-0 rw-[0] rw-[0] r-0 rw-[0] rw-[0] rw-[0]

7 6 5 4 3 2 1 0

SVSMHDLYIFReserved SVMHVLRIFG1 SVMHIFG Reserved SVMLVLRIFG1 SVMLIFG SVSMLDLYIFGG

r-0 rw-[0] rw-[0] rw-0 r-0 rw-[0] rw-[0] rw-0
1 After power up, the reset value depends on the power sequence.

PMMLPM5IFG Bit 15 LPMx.5 flag. This bit is set if the system was in LPMx.5 before. The bit is cleared by software or by
reading the reset vector word. A power failure on the DVCC domain clears the bit.

0 No interrupt pending

1 Interrupt pending

Reserved Bit 14 Reserved. Always read 0.

SVSLIFG Bit 13 SVS low-side interrupt flag. The bit is cleared by software or by reading the reset vector word.

0 No interrupt pending

1 Interrupt pending

SVSHIFG Bit 12 SVS high-side interrupt flag. The bit is cleared by software or by reading the reset vector word.

0 No interrupt pending

1 Interrupt pending

Reserved Bit 11 Reserved. Always read 0.

PMMPORIFG Bit 10 PMM software power-on reset interrupt flag. This interrupt flag is set if a software POR is triggered. The
bit is cleared by software or by reading the reset vector word, SYSRSTIV.

0 No interrupt pending

1 Interrupt pending

PMMRSTIFG Bit 9 PMM reset pin interrupt flag. This interrupt flag is set if the RST/NMI pin is the reset source. The bit is
cleared by software or by reading the reset vector word.

0 No interrupt pending

1 Interrupt pending

PMMBORIFG Bit 8 PMM software brownout reset interrupt flag. This interrupt flag is set if a software BOR (PMMSWBOR) is
triggered. The bit is cleared by software or by reading the reset vector word, SYSRSTIV.

0 No interrupt pending

1 Interrupt pending

Reserved Bit 7 Reserved. Always read 0.

SVMHVLRIFG Bit 6 SVM high-side voltage level reached interrupt flag. The bit is cleared by software or by reading the reset
vector (SVSHPE = 1) word or by reading the interrupt vector (SVSHPE = 0) word.

0 No interrupt pending

1 Interrupt pending

SVMHIFG Bit 5 SVM high-side interrupt flag. The bit is cleared by software.

0 No interrupt pending

1 Interrupt pending

SVSMHDLYIFG Bit 4 SVS and SVM high-side delay expired interrupt flag. This interrupt flag is set if the delay element
expired. The bit is cleared by software or by reading the interrupt vector word.

0 No interrupt pending

1 Interrupt pending

Reserved Bit 3 Reserved. Always read 0.

SVMLVLRIFG Bit 2 SVM low-side voltage level reached interrupt flag. The bit is cleared by software or by reading the reset
vector (SVSLPE = 1) word or by reading the interrupt vector (SVSLPE = 0) word.

0 No interrupt pending

1 Interrupt pending

76 Power Management Module and Supply Voltage Supervisor SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com PMM Registers

(continued)

SVMLIFG Bit 1 SVM low-side interrupt flag. The bit is cleared by software.

0 No interrupt pending

1 Interrupt pending

SVSMLDLYIFG Bit 0 SVS and SVM low-side delay expired interrupt flag. This interrupt flag is set if the delay element expired.
The bit is cleared by software or by reading the interrupt vector word.

0 No interrupt pending

1 Interrupt pending

Power Management Module Reset and Interrupt Enable Register (PMMRIE)

15 14 13 12 11 10 9 8

Reserved SVMHVLRPE SVSHPE Reserved SVMLVLRPE SVSLPE

r-0 r-0 rw-[0] rw-[0] r-0 r-0 rw-[0] rw-[0]

7 6 5 4 3 2 1 0

Reserved SVMHVLRIE SVMHIE SVSMHDLYIE Reserved SVMLVLRIE SVMLIE SVSMLDLYIE

r-0 rw-0 rw-0 rw-0 r-0 rw-0 rw-0 rw-0

Reserved Bits 15-14 Reserved. Always read 0.

SVMHVLRPE Bit 13 SVM high-side voltage level reached power-on reset enable. If this bit is set, exceeding the SVMH

voltage level triggers a POR.

SVSHPE Bit 12 SVS high-side power-on reset enable. If this bit is set, falling below the SVSH voltage level triggers a
POR.

Reserved Bits 11-10 Reserved. Always read 0.

SVMLVLRPE Bit 9 SVM low-side voltage level reached power-on reset enable. If this bit is set, exceeding the SVML voltage
level triggers a POR.

SVSLPE Bit 8 SVS low-side power-on reset enable. If this bit is set, falling below the SVSL voltage level triggers a
POR.

Reserved Bit 7 Reserved. Always read 0.

SVMHVLRIE Bit 6 SVM high-side reset voltage level interrupt enable

SVMHIE Bit 5 SVM high-side interrupt enable. This bit is cleared by software or if the interrupt vector word is read.

SVSMHDLYIE Bit 4 SVS and SVM high-side delay expired interrupt enable

Reserved Bit 3 Reserved. Always read 0.

SVMLVLRIE Bit 2 SVM low-side reset voltage level interrupt enable

SVMLIE Bit 1 SVM low-side interrupt enable. This bit is cleared by software or if the interrupt vector word is read.

SVSMLDLYIE Bit 0 SVS and SVM low-side delay expired interrupt enable

Power Mode 5 Control Register 0 (PM5CTL0)

15 14 13 12 11 10 9 8

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved LOCKLPM5

r0 r0 r0 r0 r0 r0 r0 rw-[0]

Reserved Bits 15-1 Reserved. Always read as zero.

LOCKLPM5 Bit 0 Lock I/O pin configuration upon entry/exit to/from LPMx.5. Once power is applied to the device, this bit,
once set, can only be cleared by the user or via another power cycle.

0 I/O pin configuration is not locked and defaults to its reset condition.

1 I/O pin configuration remains locked. Pin state is held during LPMx.5 entry and exit.

77SLAU208E–June 2008–Revised November 2009 Power Management Module and Supply Voltage Supervisor
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

78 Power Management Module and Supply Voltage Supervisor SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 3
SLAU208E–June 2008–Revised November 2009

Unified Clock System (UCS)

The Unified Clock System (UCS) module provides the various clocks for a device. This chapter describes
the operation of the UCS module, which is implemented in all devices.

Topic ... Page

3.1 Unified Clock System (UCS) Introduction ... 80
3.2 UCS Operation .. 82
3.3 Module Oscillator (MODOSC) .. 92
3.4 UCS Module Registers ... 93

79SLAU208E–June 2008–Revised November 2009 Unified Clock System (UCS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Unified Clock System (UCS) Introduction www.ti.com

3.1 Unified Clock System (UCS) Introduction

The UCS module supports low system cost and ultralow power consumption. Using three internal clock
signals, the user can select the best balance of performance and low power consumption. The UCS
module can be configured to operate without any external components, with one or two external crystals,
or with resonators, under full software control.

The UCS module includes up to five clock sources:

• XT1CLK: Low-frequency/high-frequency oscillator that can be used either with low-frequency 32768 Hz
watch crystals, standard crystals, resonators, or external clock sources in the 4 MHz to 32 MHz range.
XT1CLK can be used as a clock reference into the FLL. Some devices only support the low frequency
oscillator for XT1CLK. See the device-specific data sheet for supported functions.

• VLOCLK: Internal very low power, low frequency oscillator with 10 kHz typical frequency
• REFOCLK: Internal, trimmed, low-frequency oscillator with 32768 Hz typical frequency, with the ability

to be used as a clock reference into the FLL
• DCOCLK: Internal digitally-controlled oscillator (DCO) that can be stabilized by the FLL
• XT2CLK: Optional high-frequency oscillator that can be used with standard crystals, resonators, or

external clock sources in the 4 MHz to 32 MHz range. XT1CLK can be used as a clock reference into
the FLL.

Three clock signals are available from the UCS module:

• ACLK: Auxiliary clock. The ACLK is software selectable as XT1CLK, REFOCLK, VLOCLK, DCOCLK,
DCOCLKDIV, and when available, XT2CLK. DCOCLKDIV is the DCOCLK frequency divided by 1, 2, 4,
8, 16, or 32 within the FLL block. ACLK can be divided by 1, 2, 4, 8, 16, or 32. ACLK/n is ACLK
divided by 1, 2, 4, 8, 16, or 32 and is available externally at a pin. ACLK is software selectable by
individual peripheral modules.

• MCLK: Master clock. MCLK is software selectable as XT1CLK, REFOCLK, VLOCLK, DCOCLK,
DCOCLKDIV, and when available, XT2CLK. DCOCLKDIV is the DCOCLK frequency divided by 1, 2, 4,
8, 16, or 32 within the FLL block. MCLK can be divided by 1, 2, 4, 8, 16, or 32. MCLK is used by the
CPU and system.

• SMCLK: Subsystem master clock. SMCLK is software selectable as XT1CLK, REFOCLK, VLOCLK,
DCOCLK, DCOCLKDIV, and when available, XT2CLK. DCOCLKDIV is the DCOCLK frequency divided
by 1, 2, 4, 8, 16, or 32 within the FLL block. SMCLK can be divided by 1, 2, 4, 8, 16, or 32. SMCLK is
software selectable by individual peripheral modules.

The block diagram of the UCS module is shown in Figure 3-1.

80 Unified Clock System (UCS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

XT20FF

XT2IN

XT2OUT XT2 Oscillator

2
XT2DRIVE

0

1

XT2BYPASSXT2 (Optional)

XT2 Fault
Detection

XIN

XOUT

XCAP

XT1

LF HF

0 V

0 V

XTS

VLOCLK

XT1CLK

2 2

XT1DRIVE

REFOCLK

OSC

XT2CLK

0

1

XT1BYPASS

REFO

VLO

10-bit
Frequency
Integrator

DCO
+

Modulator

DC
Generator

DCORSELSCG1

off

SCG0

off

PUC

Reset

FLLD

10

+

−Divider
/(N+1)

Prescaler

3

DCO,
MOD

FLLREFDIV

3

FLLN
10

3

DISMOD

FLL

Divider

/1/2/4/8/12/16

MODOSC

MODOSC_REQEN

MODOSC_REQ

MODCLK

Unconditonal MODOSC
requests.

EN

XT1 Fault
Detection

3

000

001

010

011

100

101

110

111

SELREF

FLLREFCLK

DCOCLK

DCOCLKDIV

ACLK Enable Logic

OSCOFF

ACLK_REQEN

ACLK_REQ

3

000

001

010

011

100

101

110

111

SELA

3

ACLK/n

ACLK

3

Divider

DIVPA

1

0

3

Divider

DIVA

EN

MCLK Enable Logic

CPUOFF

3

MCLK_REQEN

MCLK_REQ

3

000

001

010

011

100

101

110

111

SELM

MCLK

1

0

3

Divider

DIVM

SMCLK Enable Logic

SMCLKOFF

3

SMCLK_REQEN

SMCLK_REQ

3

000

001

010

011

100

101

110

111

SELS

SMCLK

1

0

3

Divider

DIVS

/1/2/4/8/16/32

/1/2/4/8/16/32

/1/2/4/8/16/32

/1/2/4/8/16/32

/1/2/4/8/16/32

EN

EN

www.ti.com Unified Clock System (UCS) Introduction

Figure 3-1. UCS Block Diagram

81SLAU208E–June 2008–Revised November 2009 Unified Clock System (UCS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

UCS Operation www.ti.com

3.2 UCS Operation

After a PUC, the UCS module default configuration is:

• XT1 in LF mode is selected as the oscillator source for XT1CLK. XT1CLK is selected for ACLK.
• DCOCLKDIV is selected for MCLK.
• DCOCLKDIV is selected for SMCLK.
• FLL operation is enabled and XT1CLK is selected as the FLL reference clock, FLLREFCLK.
• XIN and XOUT pins are set to general-purpose I/Os and XT1 remains disabled until the I/O ports are

configured for XT1 operation.
• When available, XT2IN and XT2OUT pins are set to general-purpose I/Os and XT2 is disabled.

As previously stated, FLL operation with XT1 is selected by default, but XT1 is disabled. The crystal pins
(XIN, XOUT) are shared with general-purpose I/Os. To enable XT1, the PSEL bits associated with the
crystal pins must be set. When a 32,768 Hz crystal is used for XT1CLK, the fault control logic immediately
causes ACLK to be sourced by the REFOCLK, because XT1 is not stable immediately (see
Section 3.2.12). Once crystal startup is obtained and settled, the FLL stabilizes MCLK and SMCLK to
1.048576 MHz and fDCO = 2.097152 MHz.

Status register control bits (SCG0, SCG1, OSCOFF, and CPUOFF) configure the MSP430 operating
modes and enable or disable portions of the UCS module (see System Resets, Interrupts, and Operating
Modes chapter). Registers UCSCTL0 through UCSCTL8, configure the UCS module.

The UCS module can be configured or reconfigured by software at any time during program execution.

3.2.1 UCS Module Features for Low-Power Applications

Conflicting requirements typically exist in battery-powered applications:

• Low clock frequency for energy conservation and time keeping
• High clock frequency for fast response times and fast burst processing capabilities
• Clock stability over operating temperature and supply voltage
• Low-cost applications with less-constrained clock accuracy requirements

The UCS module addresses these conflicting requirements by allowing the user to select from the three
available clock signals: ACLK, MCLK, and SMCLK.

All three available clock signals can be sourced via any of the available clock sources (XT1CLK, VLOCLK,
REFOCLK, DCOCLK, DCOCLKDIV, or XT2CLK), giving complete flexibility in the system clock
configuration. A flexible clock distribution and divider system is provided to fine tune the individual clock
requirements.

3.2.2 Internal Very-Low-Power Low-Frequency Oscillator (VLO)

The internal VLO provides a typical frequency of 10 kHz (see device-specific data sheet for parameters)
without requiring a crystal. The VLO provides for a low-cost ultralow-power clock source for applications
that do not require an accurate time base.

The VLO is enabled when it is used to source ACLK, MCLK, or SMCLK (SELA = {1} or SELM = {1} or
SELS = {1}).

82 Unified Clock System (UCS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com UCS Operation

3.2.3 Internal Trimmed Low-Frequency Reference Oscillator (REFO)

The internal trimmed low-frequency REFO can be used for cost-sensitive applications where a crystal is
not required or desired. REFO is internally trimmed to 32.768 kHz typical and provides for a stable
reference frequency that can be used as FLLREFCLK. REFO, combined with the FLL, provides for a
flexible range of system clock settings without the need for a crystal. REFO consumes no power when not
being used.

REFO is enabled under any of the following conditions:
• REFO is a source for ACLK (SELA = {2}) and in active mode (AM) through LPM3 (OSCOFF = 0)
• REFO is a source for MCLK (SELM = {2}) and in active mode (AM) (CPUOFF = 0)
• REFO is a source for SMCLK (SELS = {2}) and in active mode (AM) through LPM1 (SMCLKOFF = 0)
• REFO is a source for FLLREFCLK (SELREF = {2}) and the DCO is a source for ACLK (SELA = {3,4})

and in active mode (AM) through LPM3 (OSCOFF = 0)
• REFO is a source for FLLREFCLK (SELREF = {2}) and the DCO is a source for MCLK (SELM = {3,4})

and in active mode (AM) (CPUOFF = 0)
• REFO is a source for FLLREFCLK (SELREF = {2}) and the DCO is a source for SMCLK

(SELS = {3,4}) and in active mode (AM) through LPM1 (SMCLKOFF = 0)

NOTE: REFO Enable for MSP430F543x, MSP430F541x devices

REFO is enabled under any of the following conditions:

• REFO is a source for ACLK (SELA = {2}), MCLK (SELM = {2}), or SMCLK (SELS = {2})
and in active mode (AM) through LPM3 (OSCOFF = 0)

• REFO is a source for FLLREFCLK (SELREF = {2}) and the DCO is a source for ACLK,
MCLK, or SMCLK (SELA = {3,4}), MCLK (SELM = {3,4}), or SMCLK (SELS = {3,4}) and
in active mode (AM) through LPM3 (OSCOFF = 0)

3.2.4 XT1 Oscillator

The XT1 oscillator supports ultralow-current consumption using a 32,768 Hz watch crystal in
low-frequency (LF) mode (XTS = 0) . A watch crystal connects to XIN and XOUT without any other
external components. The software-selectable XCAP bits configure the internally provided load
capacitance for the XT1 crystal in LF mode. This capacitance can be selected as 2 pF, 6 pF, 9 pF, or
12 pF (typical). Additional external capacitors can be added if necessary.

On some devices, the XT1 oscillator also supports high-speed crystals or resonators when in
high-frequency (HF) mode (XTS = 1). The high-speed crystal or resonator connects to XIN and XOUT and
requires external capacitors on both terminals. These capacitors should be sized according to the crystal
or resonator specifications.

The drive settings of XT1 in LF mode can be increased with the XT1DRIVE bits. At power up, the XT1
starts with the highest drive settings for fast, reliable startup. If needed, user software can reduce the drive
strength to further reduce power. In HF mode, different crystal or resonator ranges are supported by
choosing the proper XT1DRIVE settings .

XT1 may be used with an external clock signal on the XIN pin in either LF or HF mode by setting
XT1BYPASS. When used with an external signal, the external frequency must meet the data sheet
parameters for the chosen mode. XT1 is powered down when used in bypass mode.

The XT1 pins are shared with general-purpose I/O ports. At power up, the default operation is XT1, LF
mode of operation . However, XT1 remains disabled until the ports shared with XT1 are configured for
XT1 operation. The configuration of the shared I/O is determined by the PSEL bit associated with XIN and
the XT1BYPASS bit. Setting the PSEL bit causes the XIN and XOUT ports to be configured for XT1
operation. If XT1BYPASS is also set, XT1 is configured for bypass mode of operation, and the oscillator
associated with XT1 is powered down. In bypass mode of operation, XIN can accept an external clock
input signal and XOUT is configured as a general-purpose I/O. The PSEL bit associated with XOUT is a
don't care.

83SLAU208E–June 2008–Revised November 2009 Unified Clock System (UCS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

UCS Operation www.ti.com

If the PSEL bit associated with XIN is cleared, both XIN and XOUT ports are configured as
general-purpose I/Os, and XT1 is disabled.

XT1 is enabled under any of the following conditions:
• XT1 is a source for ACLK (SELA = {0}) and in active mode (AM) through LPM3 (OSCOFF = 0)
• XT1 is a source for MCLK (SELM = {0}) and in active mode (AM) (CPUOFF = 0)
• XT1 is a source for SMCLK (SELS = {0}) and in active mode (AM) through LPM1 (SMCLKOFF = 0)
• XT1 is a source for FLLREFCLK (SELREF = {0}) and the DCO is a source for ACLK (SELA = {3,4})

and in active mode (AM) through LPM3 (OSCOFF = 0)
• XT1 is a source for FLLREFCLK (SELREF = {0}) and the DCO is a source for MCLK (SELM = {3,4})

and in active mode (AM) (CPUOFF = 0)
• XT1 is a source for FLLREFCLK (SELREF = {0}) and the DCO is a source for SMCLK (SELS = {3,4})

and in active mode (AM) through LPM1 (SMCLKOFF = 0)
• XT1OFF = 0. XT1 enabled in active mode (AM) through LPM4.

NOTE: XT1 Enable for MSP430F543x, MSP430F541x devices

XT1 is enabled under any of the following conditions:

• XT1 is a source for ACLK, MCLK, or SMCLK (SELA = {0}), MCLK (SELM = {0}), or
SMCLK (SELS = {0}) and in active mode (AM) through LPM3 (OSCOFF = 0)

• XT1 is a source for FLLREFCLK (SELREF = {0}) and the DCO is a source for ACLK,
MCLK, or SMCLK (SELA = {3,4}), MCLK (SELM = {3,4}), or SMCLK (SELS = {3,4}) and
in active mode (AM) through LPM3 (OSCOFF = 0)

• XT1OFF = 0. XT1 enabled in active mode (AM) through LPM4.

3.2.5 XT2 Oscillator

Some devices have a second crystal oscillator, XT2. XT2 sources XT2CLK, and its characteristics are
identical to XT1 in HF mode. The XT2DRIVE bits select the frequency range of operation of XT2.

XT2 may be used with external clock signals on the XT2IN pin by setting XT2BYPASS. When used with
an external signal, the external frequency must meet the data-sheet parameters for XT2. XT2 is powered
down when used in bypass mode.

The XT2 pins are shared with general-purpose I/O ports. At power up, the default operation is XT2.
However, XT2 remains disabled until the ports shared with XT2 are configured for XT2 operation. The
configuration of the shared I/O is determined by the PSEL bit associated with XT2IN and the XT2BYPASS
bit. Setting the PSEL bit causes the XT2IN and XT2OUT ports to be configured for XT2 operation. If
XT2BYPASS is also set, XT2 is configured for bypass mode of operation, and the oscillator associated
with XT2 is powered down. In bypass mode of operation, XT2IN can accept an external clock input signal
and XT2OUT is configured as a general-purpose I/O. The PSEL bit associated with XT2OUT is a don't
care.

If the PSEL bit associated with XT2IN is cleared, both XT2IN and XT2OUT ports are configured as
general-purpose I/Os, and XT2 is disabled.

XT2 is enabled under any of the following conditions:
• XT2 is a source for ACLK (SELA = {5,6,7}) and in active mode (AM) through LPM3 (OSCOFF = 0)
• XT2 is a source for MCLK (SELM = {5,6,7}) and in active mode (AM) (CPUOFF = 0)
• XT2 is a source for SMCLK (SELS = {5,6,7}) and in active mode (AM) through LPM1 (SMCLKOFF = 0)
• XT2 is a source for FLLREFCLK (SELREF = {5,6}) and the DCO is a source for ACLK (SELA = {3,4})

and in active mode (AM) through LPM3 (OSCOFF = 0)
• XT2 is a source for FLLREFCLK (SELREF = {5,6}) and the DCO is a source for MCLK (SELM = {3,4})

and in active mode (AM) (CPUOFF = 0)
• XT2 is a source for FLLREFCLK (SELREF = {5,6}) and the DCO is a source for SMCLK (SELS = {3,4})

and in active mode (AM) through LPM1 (SMCLKOFF = 0)
• XT2OFF = 0. XT2 enabled in active mode (AM) through LPM4.

84 Unified Clock System (UCS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com UCS Operation

NOTE: XT2 Enable for MSP430F543x, MSP430F541x devices

XT2 is enabled under any of the following conditions:

• XT2 is a source for ACLK, MCLK, or SMCLK (SELA = {5,6,7}), MCLK (SELM = {5,6,7}),
or SMCLK (SELS = {5,6,7}) and in active mode (AM) through LPM3 (OSCOFF = 0)

• XT2 is a source for FLLREFCLK (SELREF = {5,6,7}) and the DCO is a source for ACLK,
MCLK, or SMCLK (SELA = {3,4}), MCLK (SELM = {3,4}), or SMCLK (SELS = {3,4}) and
in active mode (AM) through LPM3 (OSCOFF = 0)

• XT2OFF = 0. XT1 enabled in active mode (AM) through LPM4.

3.2.6 Digitally-Controlled Oscillator (DCO)

The DCO is an integrated digitally controlled oscillator. The DCO frequency can be adjusted by software
using the DCORSEL, DCO, and MOD bits. The DCO frequency can be optionally stabilized by the FLL to
a multiple frequency of FLLREFCLK/n. The FLL can accept different reference sources selectable via the
SELREF bits. Reference sources include XT1CLK, REFOCLK, or XT2CLK (if available) . The value of n is
defined by the FLLREFDIV bits (n = 1, 2, 4, 8, 12, or 16). The default is n = 1. There may be scenarios,
where FLL operation is not required or desired, therefore no FLLREFCLK is necessary. This can be
accomplished by setting SELREF = {7}.

NOTE: For the 'F543x and 'F541x non-A versions only: Setting SELREF = {7} sets XT2CLK as
the FLL reference clock.

The FLLD bits configure the FLL prescaler divider value D to 1, 2, 4, 8, 16, or 32. By default, D = 2, and
MCLK and SMCLK are sourced from DCOCLKDIV, providing a clock frequency DCOCLK/2.

The divider (N + 1) and the divider value D define the DCOCLK and DCOCLKDIV frequencies, where
N > 0. Writing N = 0 causes the divider to be set to 2.

fDCOCLK = D × (N + 1) × (fFLLREFCLK ÷ n)
fDCOCLKDIV = (N + 1) × (fFLLREFCLK ÷ n)

3.2.6.1 Adjusting DCO Frequency

By default, FLL operation is enabled. FLL operation can be disabled by setting SCG0 or SCG1. Once
disabled, the DCO continues to operate at the current settings defined in UCSCTL0 and UCSCTL1. The
DCO frequency can be adjusted manually if desired. Otherwise, the DCO frequency is stabilized by the
FLL operation.

After a PUC, DCORSEL = {2} and DCO = {0}. MCLK and SMCLK are sourced from DCOCLKDIV.
Because the CPU executes code from MCLK, which is sourced from the fast-starting DCO, code
execution begins from PUC in less than 5 μs.

The frequency of DCOCLK is set by the following functions:

• The three DCORSEL bits select one of eight nominal frequency ranges for the DCO. These ranges are
defined for an individual device in the device-specific data sheet.

• The five DCO bits divide the DCO range selected by the DCORSEL bits into 32 frequency steps,
separated by approximately 8%.

• The five MOD bits switch between the frequency selected by the DCO bits and the next-higher
frequency set by {DCO + 1}. When DCO = {31}, the MOD bits have no effect, because the DCO is
already at the highest setting for the selected DCORSEL range.

3.2.7 Frequency Locked Loop (FLL)

The FLL continuously counts up or down a frequency integrator. The output of the frequency integrator
that drives the DCO can be read in UCSCTL0, UCSCTL1 (bits MOD and DCO). The count is adjusted +1
with the frequency fFLLREFCLK/n (n = 1, 2, 4, 8, 12, or 16) or –1 with the frequency fDCOCLK/[D × (N+1)].

85SLAU208E–June 2008–Revised November 2009 Unified Clock System (UCS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MODx

Lower DCO Tap Frequency fDCO

31

24

16

15

5

4

3

2

1

0

Upper DCO Tap Frequency fDCO+1

UCS Operation www.ti.com

NOTE: Reading MOD and DCO bits

The integrator is updated via the DCOCLK, which may differ in frequency of operation of
MCLK. It is possible that immediate reads of a previously written value are not visible to the
user since the update to the integrator has not occurred. This is normal. Once the integrator
is updated at the next successive DCOCLK, the correct value can be read.

In addition, since the MCLK can be asynchronous to the integrator updates, reading the
values may be cause a corrupted value to be read under this condition. In this case, a
majority vote method should be performed.

Five of the integrator bits (UCSCTL0 bits 12 to 8) set the DCO frequency tap. Thirty-two taps are
implemented for the DCO, and each is approximately 8% higher than the previous. The modulator mixes
two adjacent DCO frequencies to produce fractional taps.

For a given DCO bias range setting, time must be allowed for the DCO to settle on the proper tap for
normal operation. (n × 32) fFLLREFCLK cycles are required between taps requiring a worst case of
(n × 32 × 32) fFLLREFCLK cycles for the DCO to settle. The value n is defined by the FLLREFDIV bits (n = 1,
2, 4, 8, 12, or 16).

3.2.8 DCO Modulator

The modulator mixes two DCO frequencies, fDCO and fDCO+1 to produce an intermediate effective
frequency between fDCO and fDCO+1 and spread the clock energy, reducing electromagnetic interference
(EMI). The modulator mixes fDCO and fDCO+1 for 32 DCOCLK clock cycles and is configured with the MOD
bits. When MOD = {0}, the modulator is off.

The modulator mixing formula is:
t = (32 – MOD) × tDCO + MOD × tDCO+1

Figure 3-2 shows the modulator operation.

When FLL operation is enabled, the modulator settings and DCO are controlled by the FLL hardware. If
FLL operation is not desired, the modulator settings and DCO control can be configured with software.

Figure 3-2. Modulator Patterns

86 Unified Clock System (UCS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com UCS Operation

3.2.9 Disabling FLL Hardware and Modulator

The FLL is disabled when the status register bits SCG0 or SCG1 are set. When the FLL is disabled, the
DCO runs at the previously selected tap and DCOCLK is not automatically stabilized.

The DCO modulator is disabled when DISMOD is set. When the DCO modulator is disabled, the DCOCLK
is adjusted to the DCO tap selected by the DCO bits.

NOTE: DCO operation without FLL

When the FLL operation is disabled, the DCO continues to operate at the current settings.
Because it is not stabilized by the FLL, temperature and voltage variations influence the
frequency of operation. See the device-specific data sheet for voltage and temperature
coefficients to ensure reliable operation.

3.2.10 FLL Operation From Low-Power Modes

An interrupt service request clears SCG1, CPUOFF, and OSCOFF if set, but does not clear SCG0. This
means that for FLL operation from within an interrupt service routine entered from LPM1, 2, 3, or 4, the
FLL remains disabled and the DCO operates at the previous setting as defined in UCSCTL0 and
UCSCTL1. SCG0 can be cleared by user software if FLL operation is required.

3.2.11 Operation From Low-Power Modes, Requested by Peripheral Modules

A peripheral module requests its clock sources automatically from the UCS module if required for its
proper operation, regardless of the current mode of operation, as shown in Figure 3-3.

A peripheral module asserts one of three possible clock request signals based on its control bits:
ACLK_REQ, MCLK_REQ, or SMCLK_REQ. These request signals are based on the configuration and
clock selection of the respective module. For example, if a timer selects ACLK as its clock source and the
timer is enabled, the timer generates an ACLK_REQ signal to the UCS system. The UCS, in turn, enables
ACLK regardless of the LPM settings.

Any clock request from a peripheral module causes its respective clock off signal to be overridden, but
does not change the setting of clock off control bit. For example, a peripheral module may require ACLK
that is currently disabled by the OSCOFF bit (OSCOFF = 1). The module can request ACLK by generating
an ACLK_REQ. This causes the OSCOFF bit to have no effect, thereby allowing ACLK to be available to
the requesting peripheral module. The OSCOFF bit remains at its current setting (OSCOFF = 1).

If the requested source is not active, the software NMI handler must take care of the required actions. For
the previous example, if ACLK was sourced by XT1 and XT1 was not enabled, an oscillator fault condition
will occur and the software must handle the event. The watchdog, due to its security requirement, actively
selects the VLOCLK source if the originally selected clock source is not available.

Due to the clock request feature, care must be taken in the application when entering low power modes to
save power. Although the device enters the selected low-power mode, a clock request causes more
current consumption than the specified values in the data sheet.

87SLAU208E–June 2008–Revised November 2009 Unified Clock System (UCS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ACLK_REQ

MCLK_REQ

SMCLK_REQ

Watch Dog Timer Module

UCS

Module n-1 Module n

WDTACLKON WDTSMCLKON

ACLK_REQ
MCLK_REQ

SMCLK_REQ

ACLK_REQ
MCLK_REQ

SMCLK_REQ

ACLK

MCLK

SMCLK

Direct clock request
in Watchdog mode

Module n-2

ACLK_REQ
MCLK_REQ

SMCLK_REQ

0

0

0

0

UCS Operation www.ti.com

Figure 3-3. Module Request Clock System

3.2.12 UCS Module Fail-Safe Operation

The UCS module incorporates an oscillator-fault fail-safe feature. This feature detects an oscillator fault for
XT1, DCO, and XT2 as shown in Figure 3-4. The available fault conditions are:

• Low-frequency oscillator fault (XT1LFOFFG) for XT1 in LF mode
• High-frequency oscillator fault (XT1HFOFFG) for XT1 in HF mode
• High-frequency oscillator fault (XT2OFFG) for XT2
• DCO fault flag (DCOFFG) for the DCO

The crystal oscillator fault bits XT1LFOFFG, XT1HFOFFG, and XT2OFFG are set if the corresponding
crystal oscillator is turned on and not operating properly. Once set, the fault bits remain set until reset in
software, regardless if the fault condition no longer exists. If the user clears the fault bits and the fault
condition still exists, the fault bits are automatically set, otherwise they remain cleared.

When using XT1 operation in LF mode as the reference source into the FLL (SELREF = {0}), a crystal
fault automatically causes the FLL reference source, FLLREFCLK, to be sourced by the REFO.
XT1LFOFFG is set. When using XT1 operation in HF mode as the reference source into the FLL, a crystal
fault causes no FLLREFCLK signal to be generated and the FLL continues to count down to zero in an
attempt to lock FLLREFCLK and DCOCLK/[D × (N + 1)]. The DCO tap moves to the lowest position (DCO
are cleared) and the DCOFFG is set. DCOFFG is also set if the N-multiplier value is set too high for the
selected DCO frequency range, resulting in the DCO tap moving to the highest position (UCSCTL0.12 to
UCSCTL0.8 are set). The DCOFFG remains set until cleared by the user. If the user clears the DCOFFG
and the fault condition remains, it is automatically set, otherwise it remains cleared. XT1HFOFFG is set.

When using XT2 as the reference source into the FLL, a crystal fault causes no FLLREFCLK signal to be
generated, and the FLL continues to count down to zero in an attempt to lock FLLREFCLK and
DCOCLK/[D × (N + 1)]. The DCO tap moves to the lowest position (DCO are cleared) and the DCOFFG is
set. DCOFFG is also set if the N-multiplier value is set too high for the selected DCO frequency range,
resulting in the DCO tap moving to the highest position (UCSCTL0.12 to UCSCTL0.8 are set). The
DCOFFG remains set until cleared by the user. If the user clears the DCOFFG and the fault condition
remains, it is automatically set, otherwise it remains cleared. XT2OFFG is set.

88 Unified Clock System (UCS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com UCS Operation

The OFIFG oscillator-fault interrupt flag is set and latched at POR or when any oscillator fault
(XT1LFOFFG, XT1HFOFFG, XT2OFFG, or DCOFFG) is detected. When OFIFG is set and OFIE is set,
the OFIFG requests an NMI. When the interrupt is granted, the OFIE is not reset automatically as it is in
previous MSP430 families. It is no longer required to reset the OFIE. NMI entry/exit circuitry removes this
requirement. The OFIFG flag must be cleared by software. The source of the fault can be identified by
checking the individual fault bits.

If a fault is detected for the oscillator sourcing MCLK, MCLK is automatically switched to the DCO for its
clock source (DCOCLKDIV) for all clock sources except XT1 LF mode. If MCLK is sourced from XT1 in LF
mode, an oscillator fault causes MCLK to be automatically switched to the REFO for its clock source
(REFOCLK). This does not change the SELM bit settings. This condition must be handled by user
software.

If a fault is detected for the oscillator sourcing SMCLK, SMCLK is automatically switched to the DCO for
its clock source (DCOCLKDIV) for all clock sources except XT1 LF mode. If SMCLK is sourced from XT1
in LF mode, an oscillator fault causes SMCLK to be automatically switched to the REFO for its clock
source (REFOCLK). This does not change the SELS bit settings. This condition must be handled by user
software.

If a fault is detected for the oscillator sourcing ACLK, ACLK is automatically switched to the DCO for its
clock source (DCOCLKDIV) for all clock sources except XT1 LF mode. If ACLK is sourced from XT1 in LF
mode, an oscillator fault causes ACLK to be automatically switched to the REFO for its clock source
(REFOCLK). This does not change the SELA bit settings. This condition must be handled by user
software.

NOTE: DCO active during oscillator fault

DCOCLKDIV is active even at the lowest DCO tap. The clock signal is available for the CPU
to execute code and service an NMI during an oscillator fault.

89SLAU208E–June 2008–Revised November 2009 Unified Clock System (UCS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

S

R

Q
S

R

Q

S
Q

XT 1LFOFFG

Q

S

R
PUC

NMI _IRQA

OFIFG

OFIE

NMIRS

XT 1_LFOF

S

R

Q
S

R

Q

XT 1HFOFFG

S

R

Q
S

R

Q

XT 2OFFG

S

R

Q
S

R

Q

DCOFFG

XT 1_HFOF

XT 2_OF

DCO _OF

POR

DCO _Fault

XT 1_LF_OscFault

XT 1_HF _OscFault

XT 2_OscFault

OscFault_Clr

OscFault_Set

Q

R

R

R

R

R

UCS Operation www.ti.com

Figure 3-4. Oscillator Fault Logic

90 Unified Clock System (UCS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

DCOCLK

ACLK

MCLK

ACLKDCOCLK

Select

ACLK

Wait for

ACLK

www.ti.com UCS Operation

NOTE: Fault conditions

DCO_Fault: DCOFFG is set if DCO bits in UCSCTL0 register value equals {0} or {31}.

XT1_LF_OscFault: This signal is set after the XT1 (LF mode) oscillator has stopped
operation and cleared after operation resumes. The fault condition causes XT1LFOFFG to
be set and remain set. If the user clears XT1LFOFFG and the fault condition still exists,
XT1LFOFFG remains set.

XT1_HF_OscFault: This signal is set after the XT1 (HF mode) oscillator has stopped
operation and cleared after operation resumes. The fault condition causes XT1HFOFFG to
be set and remain set. If the user clears XT1HFOFFG and the fault condition still exists,
XT1HFOFFG remains set.

XT2_OscFault: This signal is set after the XT2 oscillator has stopped operation and cleared
after operation resumes. The fault condition causes XT2OFFG to be set and remain set. If
the user clears XT2OFFG and the fault condition still exists, XT2OFFG remains set.

NOTE: Fault logic

Please note that as long as a fault condition still exists, the OFIFG remains set. The
application must take special care when clearing the OFIFG signal. If no fault condition
remains when the OFIFG signal is cleared, the clock logic switches back to the original user
settings prior to the fault condition.

NOTE: Fault logic counters

Each crystal oscillator circuit has hardware counters. These counters are reset each time a
fault condition occurs on its respective oscillator, causing the fault flag to be set. The
counters will begin to count after the fault condition is removed. Once the maximum count is
reached, the fault flag is removed.

In XT1 LF mode, the maximum count is 8192. In XT1 HF mode (and XT2 when available),
the maximum count is 1024. In bypass modes, regardless of LF or HF settings, the
maximum count is 8192.

3.2.13 Synchronization of Clock Signals

When switching MCLK or SMCLK from one clock source to the another, the switch is synchronized to
avoid critical race conditions as shown in Figure 3-5:

• The current clock cycle continues until the next rising edge.
• The clock remains high until the next rising edge of the new clock.
• The new clock source is selected and continues with a full high period.

Figure 3-5. Switch MCLK from DCOCLK to XT1CLK

91SLAU208E–June 2008–Revised November 2009 Unified Clock System (UCS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Module Oscillator (MODOSC) www.ti.com

3.3 Module Oscillator (MODOSC)

The UCS module also supports an internal oscillator, MODOSC, that is used by the flash memory
controller module and, optionally, by other modules in the system. The MODOSC sources MODCLK.

3.3.1 MODOSC Operation

To conserve power, MODOSC is powered down when not needed and enabled only when required. When
the MODOSC source is required, the respective module requests it. MODOSC is enabled based on
unconditional and conditional requests. Setting MODOSCREQEN enables conditional requests.
Unconditional requests are always enabled. It is not necessary to set MODOSCREQEN for modules that
utilize unconditional requests; e.g., flash controller, ADC12_A.

The flash memory controller only requires MODCLK when performing write or erase operations. When
performing such operations, the flash memory controller issues an unconditional request for the MODOSC
source. Upon doing so, the MODOSC source is enabled, if not already enabled from other modules'
previous requests.

The ADC12_A may optionally use MODOSC as a clock source for its conversion clock. The user chooses
the ADC12OSC as the conversion clock source. During a conversion, the ADC12_A module issues an
unconditional request for the ADC12OSC clock source. Upon doing so, the MODOSC source is enabled, if
not already enabled from other modules' previous requests.

92 Unified Clock System (UCS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com UCS Module Registers

3.4 UCS Module Registers

The UCS module registers are listed in Table 3-1. The base address can be found in the device-specific
data sheet. The address offset is listed in Table 3-1.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 3-1. Unified Clock System Registers

Register Register AddressRegister Short Form Initial StateType Access Offset

Unified Clock System Control 0 UCSCTL0 Read/write Word 00h 0000h

UCSCTL0_L Read/write Byte 00h 00h

UCSCTL0_H Read/write Byte 01h 00h

Unified Clock System Control 1 UCSCTL1 Read/write Word 02h 0020h

UCSCTL1_L Read/write Byte 02h 20h

UCSCTL1_H Read/write Byte 03h 00h

Unified Clock System Control 2 UCSCTL2 Read/write Word 04h 101Fh

UCSCTL2_L Read/write Byte 04h 1Fh

UCSCTL2_H Read/write Byte 05h 10h

Unified Clock System Control 3 UCSCTL3 Read/write Word 06h 0000h

UCSCTL3_L Read/write Byte 06h 00h

UCSCTL3_H Read/write Byte 07h 00h

Unified Clock System Control 4 UCSCTL4 Read/write Word 08h 0044h

UCSCTL4_L Read/write Byte 08h 44h

UCSCTL4_H Read/write Byte 09h 00h

Unified Clock System Control 5 UCSCTL5 Read/write Word 0Ah 0000h

UCSCTL5_L Read/write Byte 0Ah 00h

UCSCTL5_H Read/write Byte 0Bh 00h

Unified Clock System Control 6 UCSCTL6 Read/write Word 0Ch C1CDh

UCSCTL6_L Read/write Byte 0Ch CDh

UCSCTL6_H Read/write Byte 0Dh C1h

Unified Clock System Control 7 UCSCTL7 Read/write Word 0Eh 0703h

UCSCTL7_L Read/write Byte 0Eh 03h

UCSCTL7_H Read/write Byte 0Fh 07h

Unified Clock System Control 8 UCSCTL8 Read/write Word 10h 0707h

UCSCTL8_L Read/write Byte 10h 07h

UCSCTL8_H Read/write Byte 11h 07h

93SLAU208E–June 2008–Revised November 2009 Unified Clock System (UCS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

UCS Module Registers www.ti.com

Unified Clock System Control 0 Register (UCSCTL0)

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved DCO

r0 r0 r0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

MOD Reserved

rw-0 rw-0 rw-0 rw-0 rw-0 r0 r0 r0

Reserved Bits 15-13 Reserved. Reads back as 0.

DCO Bits 12-8 DCO tap selection. These bits select the DCO tap and are modified automatically during FLL operation.

MOD Bits 7-3 Modulation bit counter. These bits select the modulation pattern. All MOD bits are modified automatically
during FLL operation. The DCO register value is incremented when the modulation bit counter rolls over
from 31 to 0. If the modulation bit counter decrements from 0 to the maximum count, the DCO register
value is also decremented.

Reserved Bits 2-0 Reserved. Reads back as 0.

Unified Clock System Control 1 Register (UCSCTL1)

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved DCORSEL Reserved Reserved DISMOD

r0 rw-0 rw-1 rw-0 r0 r0 rw-0 rw-0

Reserved Bits 15-8 Reserved. Reads back as 0.

Reserved Bit 7 Reserved. Reads back as 0.

DCORSEL Bits 6-4 DCO frequency range select. These bits select the DCO frequency range of operation.

Reserved Bits 3-2 Reserved. Reads back as 0.

Reserved Bit 1 Reserved. Reads back as 0.

DISMOD Bit 0 Modulation. This bit enables/disables the modulation.

0 Modulation enabled

1 Modulation disabled

94 Unified Clock System (UCS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com UCS Module Registers

Unified Clock System Control 2 Register (UCSCTL2)

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved FLLD Reserved FLLN

r0 rw-0 rw-0 rw-1 r0 r0 rw-0 rw-0

7 6 5 4 3 2 1 0

FLLN

rw-0 rw-0 rw-0 rw-1 rw-1 rw-1 rw-1 rw-1

Reserved Bit 15 Reserved. Reads back as 0.

FLLD Bits 14-12 FLL loop divider. These bits divide fDCOCLK in the FLL feedback loop. This results in an additional multiplier
for the multiplier bits. See also multiplier bits.

000 fDCOCLK/1

001 fDCOCLK/2

010 fDCOCLK/4

011 fDCOCLK/8

100 fDCOCLK/16

101 fDCOCLK/32

110 Reserved for future use. Defaults to fDCOCLK/32.

111 Reserved for future use. Defaults to fDCOCLK/32.

Reserved Bits 11-10 Reserved. Reads back as 0.

FLLN Bits 9-0 Multiplier bits. These bits set the multiplier value N of the DCO. N must be greater than 0. Writing zero to
FLLN causes N to be set to 1.

95SLAU208E–June 2008–Revised November 2009 Unified Clock System (UCS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

UCS Module Registers www.ti.com

Unified Clock System Control 3 Register (UCSCTL3)

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved SELREF Reserved FLLREFDIV

r0 rw-0 rw-0 rw-0 r0 rw-0 rw-0 rw-0

Reserved Bits 15-8 Reserved. Reads back as 0.

Reserved Bit 7 Reserved. Reads back as 0.

SELREF Bits 6-4 FLL reference select. These bits select the FLL reference clock source.

000 XT1CLK

001 Reserved for future use. Defaults to XT1CLK.

010 REFOCLK

011 Reserved for future use. Defaults to REFOCLK.

100 Reserved for future use. Defaults to REFOCLK.

101 XT2CLK when available, otherwise REFOCLK.

110 Reserved for future use. XT2CLK when available, otherwise REFOCLK.

111 No selection. For the 'F543x and 'F541x non-A versions only, this defaults to XT2CLK. Reserved for
future use. XT2CLK when available, otherwise REFOCLK.

Reserved Bit 3 Reserved. Reads back as 0.

FLLREFDIV Bits 2-0 FLL reference divider. These bits define the divide factor for fFLLREFCLK. The divided frequency is used as the
FLL reference frequency.

000 fFLLREFCLK/1

001 fFLLREFCLK/2

010 fFLLREFCLK/4

011 fFLLREFCLK/8

100 fFLLREFCLK/12

101 fFLLREFCLK/16

110 Reserved for future use. Defaults to fFLLREFCLK/16.

111 Reserved for future use. Defaults to fFLLREFCLK/16.

96 Unified Clock System (UCS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com UCS Module Registers

Unified Clock System Control 4 Register (UCSCTL4)

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved SELA

r0 r0 r0 r0 r0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

Reserved SELS Reserved SELM

r0 rw-1 rw-0 rw-0 r0 rw-1 rw-0 rw-0

Reserved Bits 15-11 Reserved. Reads back as 0.

SELA Bits 10-8 Selects the ACLK source

000 XT1CLK

001 VLOCLK

010 REFOCLK

011 DCOCLK

100 DCOCLKDIV

101 XT2CLK when available, otherwise DCOCLKDIV

110 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.

111 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.

Reserved Bit 7 Reserved. Reads back as 0.

SELS Bits 6-4 Selects the SMCLK source

000 XT1CLK

001 VLOCLK

010 REFOCLK

011 DCOCLK

100 DCOCLKDIV

101 XT2CLK when available, otherwise DCOCLKDIV

110 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.

111 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.

Reserved Bit 3 Reserved. Reads back as 0.

SELM Bits 2-0 Selects the MCLK source

000 XT1CLK

001 VLOCLK

010 REFOCLK

011 DCOCLK

100 DCOCLKDIV

101 XT2CLK when available, otherwise DCOCLKDIV

110 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.

111 Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV.

97SLAU208E–June 2008–Revised November 2009 Unified Clock System (UCS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

UCS Module Registers www.ti.com

Unified Clock System Control 5 Register (UCSCTL5)

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved DIVPA Reserved DIVA

r0 rw-0 rw-0 rw-0 r0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

Reserved DIVS Reserved DIVM

r0 rw-0 rw-0 rw-0 r0 rw-0 rw-0 rw-0

Reserved Bit 15 Reserved. Reads back as 0.

DIVPA Bits 14-12 ACLK source divider available at external pin. Divides the frequency of ACLK and presents it to an external pin.

000 fACLK/1

001 fACLK/2

010 fACLK/4

011 fACLK/8

100 fACLK/16

101 fACLK/32

110 Reserved for future use. Defaults to fACLK/32.

111 Reserved for future use. Defaults to fACLK/32.

Reserved Bit 11 Reserved. Reads back as 0.

DIVA Bits 10-8 ACLK source divider. Divides the frequency of the ACLK clock source.

000 fACLK/1

001 fACLK/2

010 fACLK/4

011 fACLK/8

100 fACLK/16

101 fACLK/32

110 Reserved for future use. Defaults to fACLK/32.

111 Reserved for future use. Defaults to fACLK/32.

Reserved Bit 7 Reserved. Reads back as 0.

DIVS Bits 6-4 SMCLK source divider

000 fSMCLK/1

001 fSMCLK/2

010 fSMCLK/4

011 fSMCLK/8

100 fSMCLK/16

101 fSMCLK/32

110 Reserved for future use. Defaults to fSMCLK/32.

111 Reserved for future use. Defaults to fSMCLK/32.

Reserved Bit 3 Reserved. Reads back as 0.

DIVM Bits 2-0 MCLK source divider

000 fMCLK/1

001 fMCLK/2

010 fMCLK/4

011 fMCLK/8

100 fMCLK/16

101 fMCLK/32

110 Reserved for future use. Defaults to fMCLK/32.

111 Reserved for future use. Defaults to fMCLK/32.

98 Unified Clock System (UCS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com UCS Module Registers

Unified Clock System Control 6 Register (UCSCTL6)

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

XT2DRIVE Reserved XT2BYPASS Reserved XT2OFF

rw-1 rw-1 r0 rw-0 r0 r0 r0 rw-1

7 6 5 4 3 2 1 0

XT1DRIVE XTS XT1BYPASS XCAP SMCLKOFF XT1OFF

rw-1 rw-1 rw-0 rw-0 rw-1 rw-1 rw-0 rw-1

XT2DRIVE Bits The XT2 oscillator current can be adjusted to its drive needs. Initially, it starts with the highest supply current
15-14 for reliable and quick startup. If needed, user software can reduce the drive strength.

00 Lowest current consumption. XT2 oscillator operating range is 4 MHz to 8 MHz.

01 Increased drive strength XT2 oscillator. XT2 oscillator operating range is 8 MHz to 16 MHz.

10 Increased drive capability XT2 oscillator. XT2 oscillator operating range is 16 MHz to 24 MHz.

11 Maximum drive capability and maximum current consumption for both XT2 oscillator. XT2 oscillator
operating range is 24 MHz to 32 MHz.

Reserved Bit 13 Reserved. Reads back as 0.

XT2BYPASS Bit 12 XT2 bypass select

0 XT2 sourced internally

1 XT2 sourced externally from pin

Reserved Bits 11-9 Reserved. Reads back as 0.

XT2OFF Bit 8 Turns off the XT2 oscillator

0 XT2 is on if XT2 is selected via the port selection and XT2 is not in bypass mode of operation.

1 XT2 is off if it is not used as a source for ACLK, MCLK, or SMCLK or is not used as a reference source
required for FLL operation.

XT1DRIVE Bits 7-6 The XT1 oscillator current can be adjusted to its drive needs. Initially, it starts with the highest supply current
for reliable and quick startup. If needed, user software can reduce the drive strength.

00 Lowest current consumption for XT1 LF mode. XT1 oscillator operating range in HF mode is 4 MHz to
8 MHz.

01 Increased drive strength for XT1 LF mode. XT1 oscillator operating range in HF mode is 8 MHz to
16 MHz.

10 Increased drive capability for XT1 LF mode. XT1 oscillator operating range in HF mode is 16 MHz to
24 MHz.

11 Maximum drive capability and maximum current consumption for XT1 LF mode. XT1 oscillator operating
range in HF mode is 24 MHz to 32 MHz.

XTS Bit 5 XT1 mode select

0 Low-frequency mode. XCAP bits define the capacitance at the XIN and XOUT pins.

1 High-frequency mode. XCAP bits are not used.

XT1BYPASS Bit 4 XT1 bypass select

0 XT1 sourced internally

1 XT1 sourced externally from pin

XCAP Bits 3-2 Oscillator capacitor selection. These bits select the capacitors applied to the LF crystal or resonator in the LF
mode (XTS = 0). The effective capacitance (seen by the crystal) is Ceff (CXIN + 2 pF)/2. It is assumed that
CXIN = CXOUT and that a parasitic capacitance of 2 pF is added by the package and the printed circuit board. For
details about the typical internal and the effective capacitors, refer to the device-specific data sheet.

SMCLKOFF Bit 1 SMCLK off. This bit turns off the SMCLK.

0 SMCLK on

1 SMCLK off

XT1OFF Bit 0 XT1 off. This bit turns off the XT1.

0 XT1 is on if XT1 is selected via the port selection and XT1 is not in bypass mode of operation.

1 XT1 is off if it is not used as a source for ACLK, MCLK, or SMCLK or is not used as a reference source
required for FLL operation.

99SLAU208E–June 2008–Revised November 2009 Unified Clock System (UCS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

UCS Module Registers www.ti.com

Unified Clock System Control 7 Register (UCSCTL7)

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved

r0 r0 rw-0 rw-(0) rw-(1) rw-(1) r-1 r-1

7 6 5 4 3 2 1 0

Reserved Reserved XT2OFFG XT1HFOFFG XT1LFOFFG DCOFFG

r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(1) rw-(1)

Reserved Bits 15-14 Reserved. Reads back as 0.

Reserved Bit 13 Reserved. This bit must always be written with 0.

Reserved Bit 12 Reserved. This bit must always be written with 0.

Reserved Bits 11-10 Reserved. The states of these bits should be ignored.

Reserved Bits 9-8 Reserved. The states of these bits should be ignored.

Reserved Bits 7-5 Reserved. Reads back as 0.

Reserved Bit 4 Reserved. The state of this bit should be ignored.

XT2OFFG Bit 3 XT2 oscillator fault flag. If this bit is set, the OFIFG flag is also set. XT2OFFG is set if a XT2 fault
condition exists. XT2OFFG can be cleared via software. If the XT2 fault condition still remains,
XT2OFFG is set.

0 No fault condition occurred after the last reset.

1 XT2 fault. An XT2 fault occurred after the last reset.

XT1HFOFFG Bit 2 XT1 oscillator fault flag (HF mode). If this bit is set, the OFIFG flag is also set. XT1HFOFFG is set if a
XT1 fault condition exists. XT1HFOFFG can be cleared via software. If the XT1 fault condition still
remains, XT1HFOFFG is set.

0 No fault condition occurred after the last reset.

1 XT1 fault. An XT1 fault occurred after the last reset.

XT1LFOFFG Bit 1 XT1 oscillator fault flag (LF mode). If this bit is set, the OFIFG flag is also set. XT1LFOFFG is set if a
XT1 fault condition exists. XT1LFOFFG can be cleared via software. If the XT1 fault condition still
remains, XT1LFOFFG is set.

0 No fault condition occurred after the last reset.

1 XT1 fault (LF mode). A XT1 fault occurred after the last reset.

DCOFFG Bit 0 DCO fault flag. If this bit is set, the OFIFG flag is also set. The DCOFFG bit is set if DCO = {0} or
DCO = {31}. DCOOFFG can be cleared via software. If the DCO fault condition still remains, DCOOFFG
is set.

0 No fault condition occurred after the last reset.

1 DCO fault. A DCO fault occurred after the last reset.

100 Unified Clock System (UCS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com UCS Module Registers

Unified Clock System Control 8 Register (UCSCTL8)

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Reserved Reserved

r0 r0 r0 r0 r0 rw-(1) rw-(1) rw-(1)

7 6 5 4 3 2 1 0

MODOSCReserved Reserved SMCLKREQEN MCLKREQEN ACLKREQENREQEN

r0 r0 r0 rw-(0) rw-(0) rw-(1) rw-(1) rw-(1)

Reserved Bits 15-11 Reserved. Reads back as 0.

Reserved Bits 10-8 Reserved. Must always be written as 1.

Reserved Bits 7-5 Reserved. Reads back as 0.

Reserved Bit 4 Reserved. Must always be written as 0.

MODOSCREQEN Bit 3 MODOSC clock request enable. Setting this enables conditional module requests for MODOSC.

0 MODOSC conditional requests are disabled.

1 MODOSC conditional requests are enabled.

SMCLKREQEN Bit 2 SMCLK clock request enable. Setting this enables conditional module requests for SMCLK

0 SMCLK conditional requests are disabled.

1 SMCLK conditional requests are enabled.

MCLKREQEN Bit 1 MCLK clock request enable. Setting this enables conditional module requests for MCLK

0 MCLK conditional requests are disabled.

1 MCLK conditional requests are enabled.

ACLKREQEN Bit 0 ACLK clock request enable. Setting this enables conditional module requests for ACLK

0 ACLK conditional requests are disabled.

1 ACLK conditional requests are enabled.

101SLAU208E–June 2008–Revised November 2009 Unified Clock System (UCS)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

102 Unified Clock System (UCS) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 4
SLAU208E–June 2008–Revised November 2009

CPUX

This chapter describes the extended MSP430X 16-bit RISC CPU (CPUX) with 1-MB memory access, its
addressing modes, and instruction set.

NOTE: The MSP430X CPU implemented on MSP430F5xx devices has, in some cases, slightly
different cycle counts from the MSP430X CPU implemented on the 2xx and 4xx families.

Topic ... Page

4.1 MSP430X CPU (CPUX) Introduction ... 104
4.2 Interrupts .. 106
4.3 CPU Registers ... 107
4.4 Addressing Modes ... 113
4.5 MSP430 and MSP430X Instructions ... 131
4.6 Instruction Set Description ... 148

103SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MSP430X CPU (CPUX) Introduction www.ti.com

4.1 MSP430X CPU (CPUX) Introduction

The MSP430X CPU incorporates features specifically designed for modern programming techniques, such
as calculated branching, table processing, and the use of high-level languages such as C. The MSP430X
CPU can address a 1-MB address range without paging. The MSP430X CPU is completely backwards
compatible with the MSP430 CPU.

The MSP430X CPU features include:

• RISC architecture
• Orthogonal architecture
• Full register access including program counter (PC), status register (SR), and stack pointer (SP)
• Single-cycle register operations
• Large register file reduces fetches to memory.
• 20-bit address bus allows direct access and branching throughout the entire memory range without

paging.
• 16-bit data bus allows direct manipulation of word-wide arguments.
• Constant generator provides the six most often used immediate values and reduces code size.
• Direct memory-to-memory transfers without intermediate register holding
• Byte, word, and 20-bit address-word addressing

The block diagram of the MSP430X CPU is shown in Figure 4-1.

104 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

R6

R5

R4

R3/CG2 Constant Generator

R7

R8

R9

R10

R11

R12

R13

R14

R15

0

0

R0/PC Program Counter

19

R1/SP Pointer Stack

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

Memory Address Bus - MABMDB - Memor y Data Bus

16
20

16/20-bit ALU

srcdstZero, Z
Carry, C

Overflow,V

Negative,N

MCLK

016 15

R2/SR Status Register

www.ti.com MSP430X CPU (CPUX) Introduction

Figure 4-1. MSP430X CPU Block Diagram

105SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Item n-1

PC.19:16

PC.15:0

SP
old

SP SR.11:0

Interrupts www.ti.com

4.2 Interrupts

The MSP430X has the following interrupt structure:

• Vectored interrupts with no polling necessary
• Interrupt vectors are located downward from address 0FFFEh.

The interrupt vectors contain 16-bit addresses that point into the lower 64-KB memory. This means all
interrupt handlers must start in the lower 64-KB memory.

During an interrupt, the program counter (PC) and the status register (SR) are pushed onto the stack as
shown in Figure 4-2. The MSP430X architecture stores the complete 20-bit PC value efficiently by
appending the PC bits 19:16 to the stored SR value automatically on the stack. When the RETI instruction
is executed, the full 20-bit PC is restored making return from interrupt to any address in the memory range
possible.

Figure 4-2. PC Storage on the Stack for Interrupts

106 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

0Program Counter Bits 19 to 1

19 15 1 016

Item n

PC.19:16

PC.15:0

SP
old

SP

www.ti.com CPU Registers

4.3 CPU Registers

The CPU incorporates 16 registers (R0 through R15). Registers R0, R1, R2, and R3 have dedicated
functions. Registers R4 through R15 are working registers for general use.

4.3.1 Program Counter (PC)

The 20-bit PC (PC/R0) points to the next instruction to be executed. Each instruction uses an even
number of bytes (2, 4, 6, or 8 bytes), and the PC is incremented accordingly. Instruction accesses are
performed on word boundaries, and the PC is aligned to even addresses. Figure 4-3 shows the PC.

Figure 4-3. Program Counter

The PC can be addressed with all instructions and addressing modes. A few examples:
MOV.W #LABEL,PC ; Branch to address LABEL (lower 64 KB)

MOVA #LABEL,PC ; Branch to address LABEL (1MB memory)

MOV.W LABEL,PC ; Branch to address in word LABEL
; (lower 64 KB)

MOV.W @R14,PC ; Branch indirect to address in
; R14 (lower 64 KB)

ADDA #4,PC ; Skip two words (1 MB memory)

The BR and CALL instructions reset the upper four PC bits to 0. Only addresses in the lower 64-KB
address range can be reached with the BR or CALL instruction. When branching or calling, addresses
beyond the lower 64-KB range can only be reached using the BRA or CALLA instructions. Also, any
instruction to directly modify the PC does so according to the used addressing mode. For example,
MOV.W #value,PC clears the upper four bits of the PC, because it is a .W instruction.

The PC is automatically stored on the stack with CALL (or CALLA) instructions and during an interrupt
service routine. Figure 4-4 shows the storage of the PC with the return address after a CALLA instruction.
A CALL instruction stores only bits 15:0 of the PC.

Figure 4-4. PC Storage on the Stack for CALLA

The RETA instruction restores bits 19:0 of the PC and adds 4 to the stack pointer (SP). The RET
instruction restores bits 15:0 to the PC and adds 2 to the SP.

4.3.2 Stack Pointer (SP)

The 20-bit SP (SP/R1) is used by the CPU to store the return addresses of subroutine calls and interrupts.
It uses a predecrement, postincrement scheme. In addition, the SP can be used by software with all
instructions and addressing modes. Figure 4-5 shows the SP. The SP is initialized into RAM by the user,
and is always aligned to even addresses.

107SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

0Stack Pointer Bits 19 to 1

19 1 0

MOV.W 2(SP),R6 ; Copy Item I2 to R6

MOV.W R7,0(SP) ; Overwrite TOS with R7

PUSH #0123h ; Put 0123h on stack

POP R8 ; R8 = 0123h

I3

I1

I2

I3

0xxxh

0xxxh - 2

0xxxh - 4

0xxxh - 6

0xxxh - 8

I1

I2

SP

0123h SP

I1

I2

I3 SP

PUSH #0123h POP R8Address

Item n-1

Item.19:16

Item.15:0

SP
old

SP

SP1

SPold

SP1

PUSH SP

The stack pointer is changed after
a PUSH SP instruction.

SP1SP2

POP SP

The stack pointer is not changed after a POP SP
instruction.The POP SP instruction places SP1 into the
stack pointer SP (SP2 = SP1)

CPU Registers www.ti.com

Figure 4-6 shows the stack usage. Figure 4-7 shows the stack usage when 20-bit address words are
pushed.

Figure 4-5. Stack Pointer

Figure 4-6. Stack Usage

Figure 4-7. PUSHX.A Format on the Stack

The special cases of using the SP as an argument to the PUSH and POP instructions are described and
shown in Figure 4-8.

Figure 4-8. PUSH SP, POP SP Sequence

108 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

SCG0 GIE Z C

rw-0

15 0

Reserved N
CPU

OFF

OSC

OFF
SCG1V

8 79

www.ti.com CPU Registers

4.3.3 Status Register (SR)

The 16-bit SR (SR/R2), used as a source or destination register, can only be used in register mode
addressed with word instructions. The remaining combinations of addressing modes are used to support
the constant generator. Figure 4-9 shows the SR bits. Do not write 20-bit values to the SR. Unpredictable
operation can result.

Figure 4-9. SR Bits

Table 4-1 describes the SR bits.

Table 4-1. SR Bit Description

Bit Description

Reserved Reserved

V Overflow. This bit is set when the result of an arithmetic operation overflows the signed-variable range.

Set when:ADD(.B), ADDX(.B,.A), ADDC(.B), ADDCX(.B.A),
positive + positive = negativeADDA
negative + negative = positive
otherwise reset

Set when:SUB(.B), SUBX(.B,.A), SUBC(.B),SUBCX(.B,.A),
positive – negative = negativeSUBA, CMP(.B), CMPX(.B,.A), CMPA
negative – positive = positive
otherwise reset

SCG1 System clock generator 1. This bit, when set, turns off the DCO dc generator if DCOCLK is not used for MCLK or
SMCLK.

SCG0 System clock generator 0. This bit, when set, turns off the FLL+ loop control.

OSCOFF Oscillator off. This bit, when set, turns off the LFXT1 crystal oscillator when LFXT1CLK is not used for MCLK or
SMCLK.

CPUOFF CPU off. This bit, when set, turns off the CPU.

GIE General interrupt enable. This bit, when set, enables maskable interrupts. When reset, all maskable interrupts are
disabled.

N Negative. This bit is set when the result of an operation is negative and cleared when the result is positive.

Z Zero. This bit is set when the result of an operation is 0 and cleared when the result is not 0.

C Carry. This bit is set when the result of an operation produced a carry and cleared when no carry occurred.

NOTE: Bit manipulations of the SR should be done via the following instructions: MOV, BIS, and
BIC.

109SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

CPU Registers www.ti.com

4.3.4 Constant Generator Registers (CG1 and CG2)

Six commonly-used constants are generated with the constant generator registers R2 (CG1) and R3
(CG2), without requiring an additional 16-bit word of program code. The constants are selected with the
source register addressing modes (As), as described in Table 4-2.

Table 4-2. Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 00 – Register mode

R2 01 (0) Absolute address mode

R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 FFh, FFFFh, FFFFFh –1, word processing

The constant generator advantages are:

• No special instructions required
• No additional code word for the six constants
• No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six constants is used as an
immediate source operand. Registers R2 and R3, used in the constant mode, cannot be addressed
explicitly; they act as source-only registers.

4.3.4.1 Constant Generator – Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the constant generator allows
the MSP430 assembler to support 24 additional emulated instructions. For example, the single-operand
instruction:

CLR dst

is emulated by the double-operand instruction with the same length:
MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As = 00.
INC dst

is replaced by:
ADD 0(R3),dst

110 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Unused

High Byte Low Byte

Register-Byte Operation

High Byte Low Byte

Byte-Register Operation

Register

Memory Register

Memory

Operation

Memory

Operation

0 Register

Unused
Un-

used

0

19 16 15 0

19 16 15 0

8 7

8 7

Un-
used

High Byte Low Byte

Register-Word Operation

Register

Memory

Operation

Memory

Un-
used

19 16 15 08 7

www.ti.com CPU Registers

4.3.5 General-Purpose Registers (R4 –R15)

The 12 CPU registers (R4 to R15) contain 8-bit, 16-bit, or 20-bit values. Any byte-write to a CPU register
clears bits 19:8. Any word-write to a register clears bits 19:16. The only exception is the SXT instruction.
The SXT instruction extends the sign through the complete 20-bit register.

The following figures show the handling of byte, word, and address-word data. Note the reset of the
leading most significant bits (MSBs) if a register is the destination of a byte or word instruction.

Figure 4-10 shows byte handling (8-bit data, .B suffix). The handling is shown for a source register and a
destination memory byte and for a source memory byte and a destination register.

Figure 4-10. Register-Byte/Byte-Register Operation

Figure 4-11 and Figure 4-12 show 16-bit word handling (.W suffix). The handling is shown for a source
register and a destination memory word and for a source memory word and a destination register.

Figure 4-11. Register-Word Operation

111SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

High Byte Low Byte

Word-Register Operation

Register

Memory

Operation

0 Register

Un-

used

19 16 15 08 7

High Byte Low Byte

Register - Ad dress-Word Operation

Register

Memory

Operation

Memory

Unused

0

Memory +2

Memory +2

19 16 15 08 7

CPU Registers www.ti.com

Figure 4-12. Word-Register Operation

Figure 4-13 and Figure 4-14 show 20-bit address-word handling (.A suffix). The handling is shown for a
source register and a destination memory address-word and for a source memory address-word and a
destination register.

Figure 4-13. Register – Address-Word Operation

112 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

High Byte Low Byte

Address-Word - Register Operation

Register

Memory

Operation

Register

UnusedMemory +2

19 16 15 08 7

www.ti.com Addressing Modes

Figure 4-14. Address-Word – Register Operation

4.4 Addressing Modes

Seven addressing modes for the source operand and four addressing modes for the destination operand
use 16-bit or 20-bit addresses (see Table 4-3). The MSP430 and MSP430X instructions are usable
throughout the entire 1-MB memory range.

Table 4-3. Source/Destination Addressing

As/Ad Addressing Mode Syntax Description

00/0 Register Rn Register contents are operand.

01/1 Indexed X(Rn) (Rn + X) points to the operand. X is stored in the next word, or stored in combination of
the preceding extension word and the next word.

01/1 Symbolic ADDR (PC + X) points to the operand. X is stored in the next word, or stored in combination of
the preceding extension word and the next word. Indexed mode X(PC) is used.

01/1 Absolute &ADDR The word following the instruction contains the absolute address. X is stored in the next
word, or stored in combination of the preceding extension word and the next word.
Indexed mode X(SR) is used.

10/– Indirect Register @Rn Rn is used as a pointer to the operand.

11/– Indirect @Rn+ Rn is used as a pointer to the operand. Rn is incremented afterwards by 1 for .B
Autoincrement instructions. by 2 for .W instructions, and by 4 for .A instructions.

11/– Immediate #N N is stored in the next word, or stored in combination of the preceding extension word
and the next word. Indirect autoincrement mode @PC+ is used.

The seven addressing modes are explained in detail in the following sections. Most of the examples show
the same addressing mode for the source and destination, but any valid combination of source and
destination addressing modes is possible in an instruction.

NOTE: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation, EDE, TONI, TOM, and LEO are used as generic labels.
They are only labels and have no special meaning.

113SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

xxxxh

Address

Space

D506h PC

21036h

21034h

AA550h

11111h

R5

R6

Register
Before:

xxxxh

Address

Space

D506h

PC21036h

21034h

AA550h

0B551h

R5

R6

Register
After:

A550h.or.1111h = B551h

xxxxh

Address

Space

D546h

PC

21036h

21034h

AA550h

11111h

R5

R6

Register
Before:

Address

Space

PC AA550h

BB551h

R5

R6

Register
After:

AA550h.or.11111h = BB551h

1800h21032h

xxxxh

D546h

21036h

21034h

1800h21032h

Addressing Modes www.ti.com

4.4.1 Register Mode

Operation: The operand is the 8-, 16-, or 20-bit content of the used CPU register.
Length: One, two, or three words
Comment: Valid for source and destination
Byte operation: Byte operation reads only the eight least significant bits (LSBs) of the source

register Rsrc and writes the result to the eight LSBs of the destination register Rdst.
The bits Rdst.19:8 are cleared. The register Rsrc is not modified.

Word operation: Word operation reads the 16 LSBs of the source register Rsrc and writes the result
to the 16 LSBs of the destination register Rdst. The bits Rdst.19:16 are cleared.
The register Rsrc is not modified.

Address-word Address-word operation reads the 20 bits of the source register Rsrc and writes the
operation: result to the 20 bits of the destination register Rdst. The register Rsrc is not

modified
SXT exception: The SXT instruction is the only exception for register operation. The sign of the low

byte in bit 7 is extended to the bits Rdst.19:8.
Example: BIS.W R5,R6 ;

This instruction logically ORs the 16-bit data contained in R5 with the 16-bit
contents of R6. R6.19:16 is cleared.

Example: BISX.A R5,R6 ;

This instruction logically ORs the 20-bit data contained in R5 with the 20-bit
contents of R6.
The extension word contains the A/L bit for 20-bit data. The instruction word uses
byte mode with bits A/L:B/W = 01. The result of the instruction is:

114 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

16-bit signed index

CPU Register Rn

16-bit signed add

0 Memory address

FFFFF

00000

L
o

w
e
r

6
4
K

B

0FFFF

10000

Rn.19:0

Lower 64 KB

Rn.19:16 = 0

16-bit byte index

0

19 16 15 0

S

www.ti.com Addressing Modes

4.4.2 Indexed Mode

The Indexed mode calculates the address of the operand by adding the signed index to a CPU register.
The Indexed mode has three addressing possibilities:

• Indexed mode in lower 64-KB memory
• MSP430 instruction with Indexed mode addressing memory above the lower 64-KB memory
• MSP430X instruction with Indexed mode

4.4.2.1 Indexed Mode in Lower 64-KB Memory

If the CPU register Rn points to an address in the lower 64 KB of the memory range, the calculated
memory address bits 19:16 are cleared after the addition of the CPU register Rn and the signed 16-bit
index. This means the calculated memory address is always located in the lower 64 KB and does not
overflow or underflow out of the lower 64-KB memory space. The RAM and the peripheral registers can be
accessed this way and existing MSP430 software is usable without modifications as shown in Figure 4-15.

Figure 4-15. Indexed Mode in Lower 64 KB

Length: Two or three words
Operation: The signed 16-bit index is located in the next word after the instruction and is added to

the CPU register Rn. The resulting bits 19:16 are cleared giving a truncated 16-bit
memory address, which points to an operand address in the range 00000h to 0FFFFh.
The operand is the content of the addressed memory location.

Comment: Valid for source and destination. The assembler calculates the register index and inserts
it.

Example: ADD.B 1000h(R5),0F000h(R6);

This instruction adds the 8-bit data contained in source byte 1000h(R5) and the
destination byte 0F000h(R6) and places the result into the destination byte. Source and
destination bytes are both located in the lower 64 KB due to the cleared bits 19:16 of
registers R5 and R6.

Source: The byte pointed to by R5 + 1000h results in address 0479Ch + 1000h = 0579Ch after
truncation to a 16-bit address.

Destination: The byte pointed to by R6 + F000h results in address 01778h + F000h = 00778h after
truncation to a 16-bit address.

115SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

xxxxh

Address

Space

F000h

1000h

PC

1103Ah

11038h

11036h

0479Ch

01778h

R5

R6

01778h

+F000h

00778h

Register
Before:

Address

Space

Register
After:

55D6h11034h

xxxxh

F000h

1000h

PC1103Ah

11038h

11036h

0479Ch

01778h

R5

R6

55D6h11034h

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h

+45h

77h

src

dst

Sum

0479Ch

+1000h

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

16-bit signed index
(sign extended to 20 bits)

CPU Register Rn

20-bit signed add

Memory address

FFFFF

00000

L
o

w
e
r

6
4
 K

B

0FFFF

10000

Upper Memory

Rn.19:16 > 0

16-bit byte index

1 ... 15

19 16 15 0

S

Rn ± 32 KB

S

Rn.19:0

Addressing Modes www.ti.com

4.4.2.2 MSP430 Instruction With Indexed Mode in Upper Memory

If the CPU register Rn points to an address above the lower 64-KB memory, the Rn bits 19:16 are used
for the address calculation of the operand. The operand may be located in memory in the range Rn ±32
KB, because the index, X, is a signed 16-bit value. In this case, the address of the operand can overflow
or underflow into the lower 64-KB memory space (see Figure 4-16 and Figure 4-17).

Figure 4-16. Indexed Mode in Upper Memory

116 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

FFFFF

0000C

L
o

w
e
r

6
4
 K

B

0,FFFF

10000

Rn.19:0

Rn.19:0

Rn.19:0

±
3
2
 K

B

Rn.19:0

±
3
2
 K

B

www.ti.com Addressing Modes

Figure 4-17. Overflow and Underflow for Indexed Mode

Length: Two or three words
Operation: The sign-extended 16-bit index in the next word after the instruction is added to the

20 bits of the CPU register Rn. This delivers a 20-bit address, which points to an
address in the range 0 to FFFFFh. The operand is the content of the addressed
memory location.

Comment: Valid for source and destination. The assembler calculates the register index and
inserts it.

Example: ADD.W 8346h(R5),2100h(R6) ;

This instruction adds the 16-bit data contained in the source and the destination
addresses and places the 16-bit result into the destination. Source and destination
operand can be located in the entire address range.

Source: The word pointed to by R5 + 8346h. The negative index 8346h is sign extended,
which results in address 23456h + F8346h = 1B79Ch.

Destination: The word pointed to by R6 + 2100h results in address 15678h + 2100h = 17778h.

117SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

xxxxh

Address

Space

2100h

8346h

PC

1103Ah

11038h

11036h

23456h

15678h

R5

R6

15678h

+02100h

17778h

Register
Before:

Address

Space

Register
After:

5596h11034h

xxxxh

2100h

8346h

PC1103Ah

11038h

11036h

23456h

15678h

R5

R6

5596h11034h

xxxxh

2345h

1777Ah

17778h

xxxxh

7777h

1777Ah

17778h

05432h

+02345h

07777h

src

dst

Sum

23456h

+F8346h

1B79Ch

xxxxh

5432h

1B79Eh

1B79Ch

xxxxh

5432h

1B79Eh

1B79Ch

Addressing Modes www.ti.com

Figure 4-18. Example for Indexed Mode

4.4.2.3 MSP430X Instruction With Indexed Mode

When using an MSP430X instruction with Indexed mode, the operand can be located anywhere in the
range of Rn + 19 bits.

Length: Three or four words
Operation: The operand address is the sum of the 20-bit CPU register content and the 20-bit

index. The 4 MSBs of the index are contained in the extension word; the 16 LSBs
are contained in the word following the instruction. The CPU register is not modified

Comment: Valid for source and destination. The assembler calculates the register index and
inserts it.

Example: ADDX.A 12346h(R5),32100h(R6) ;

This instruction adds the 20-bit data contained in the source and the destination
addresses and places the result into the destination.

Source: Two words pointed to by R5 + 12346h which results in address 23456h + 12346h =
3579Ch.

Destination: Two words pointed to by R6 + 32100h which results in address 45678h + 32100h =
77778h.

118 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

2100h

Address

Space

2346h

55D6h

PC

21038h

21036h

21034h

23456h

45678h

R5

R6

45678h

+32100h

77778h

Register
Before:

Address

Space

Register
After:

PC 23456h

45678h

R5

R6

0001h

2345h

7777Ah

77778h

0007h

7777h

7777Ah

77778h

65432h

+12345h

77777h

src

dst

Sum

0006h

5432h

3579Eh

3579Ch

0006h

5432h

3579Eh

3579Ch

1883h21032h

xxxxh2103Ah

2100h

2346h

55D6h

21038h

21036h

21034h

1883h21032h

xxxxh2103Ah

23456h

+12346h

3579Ch

www.ti.com Addressing Modes

The extension word contains the MSBs of the source index and of the destination index and the A/L bit for
20-bit data. The instruction word uses byte mode due to the 20-bit data length with bits A/L:B/W = 01.

4.4.3 Symbolic Mode

The Symbolic mode calculates the address of the operand by adding the signed index to the PC. The
Symbolic mode has three addressing possibilities:

• Symbolic mode in lower 64-KB memory
• MSP430 instruction with Symbolic mode addressing memory above the lower 64-KB memory.
• MSP430X instruction with Symbolic mode

4.4.3.1 Symbolic Mode in Lower 64 KB

If the PC points to an address in the lower 64 KB of the memory range, the calculated memory address
bits 19:16 are cleared after the addition of the PC and the signed 16-bit index. This means the calculated
memory address is always located in the lower 64 KB and does not overflow or underflow out of the lower
64-KB memory space. The RAM and the peripheral registers can be accessed this way and existing
MSP430 software is usable without modifications as shown in Figure 4-19.

119SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

16-bit signed

PC index

Program

counter PC

16-bit signed add

0 Memory address

FFFFF

00000
L

o
w

e
r

6
4
 K

B

0FFFF

10000

PC.19:0

Lower 64 KB

PC.19:16 = 0

16-bit byte index

0

19 16 15 0

S

Addressing Modes www.ti.com

Figure 4-19. Symbolic Mode Running in Lower 64 KB

Operation: The signed 16-bit index in the next word after the instruction is added temporarily to
the PC. The resulting bits 19:16 are cleared giving a truncated 16-bit memory
address, which points to an operand address in the range 00000h to 0FFFFh. The
operand is the content of the addressed memory location.

Length: Two or three words
Comment: Valid for source and destination. The assembler calculates the PC index and

inserts it.
Example: ADD.B EDE,TONI ;

This instruction adds the 8-bit data contained in source byte EDE and destination
byte TONI and places the result into the destination byte TONI. Bytes EDE and
TONI and the program are located in the lower 64 KB.

Source: Byte EDE located at address 0579Ch, pointed to by PC + 4766h, where the PC
index 4766h is the result of 0579Ch – 01036h = 04766h. Address 01036h is the
location of the index for this example.

Destination: Byte TONI located at address 00778h, pointed to by PC + F740h, is the truncated
16-bit result of 00778h – 1038h = FF740h. Address 01038h is the location of the
index for this example.

120 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

xxxxh

Address

Space

F740h

4766h

PC

0103Ah

01038h

01036h

01038h

+0F740h

00778h

Before:
Address

Space

After:

05D0h01034h

xxxxh

F740h

4766h

PC0103Ah

01038h

01036h

50D0h01034h

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h

+45h

77h

src

dst

Sum

01036h

+04766h

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

16-bit signed PC index
(sign extended to 20 bits)

Program

counter PC

20-bit signed add

Memory address

FFFFF

00000

L
o

w
e
r

6
4
 K

B

0FFFF

10000

PC.19:0

Upper Memory

PC.19:16 > 0

16-bit byte index

1 ... 15

19 16 15 0

S

PC ±32 KB

S

www.ti.com Addressing Modes

4.4.3.2 MSP430 Instruction With Symbolic Mode in Upper Memory

If the PC points to an address above the lower 64-KB memory, the PC bits 19:16 are used for the address
calculation of the operand. The operand may be located in memory in the range PC ± 32 KB, because the
index, X, is a signed 16-bit value. In this case, the address of the operand can overflow or underflow into
the lower 64-KB memory space as shown in Figure 4-20 and Figure 4-21.

Figure 4-20. Symbolic Mode Running in Upper Memory

121SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

FFFFF

0000C

L
o

w
e
r
 6

4
 K

B

0FFFF

10000

PC.19:0

PC.19:0

PC.19:0

±
3
2
 K

B

PC.19:0

±
3
2
 K

B

Addressing Modes www.ti.com

Figure 4-21. Overflow and Underflow for Symbolic Mode

Length: Two or three words
Operation: The sign-extended 16-bit index in the next word after the instruction is added to the

20 bits of the PC. This delivers a 20-bit address, which points to an address in the
range 0 to FFFFFh. The operand is the content of the addressed memory location.

Comment: Valid for source and destination. The assembler calculates the PC index and
inserts it

Example: ADD.W EDE,&TONI ;

This instruction adds the 16-bit data contained in source word EDE and destination
word TONI and places the 16-bit result into the destination word TONI. For this
example, the instruction is located at address 2F034h.

Source: Word EDE at address 3379Ch, pointed to by PC + 4766h, which is the 16-bit result
of 3379Ch – 2F036h = 04766h. Address 2F036h is the location of the index for this
example.

Destination: Word TONI located at address 00778h pointed to by the absolute address 00778h

122 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

xxxxh

Address

Space

0778h

4766h

PC

2F03Ah

2F038h

2F036h

2F036h

+04766h

3379Ch

Before:
Address

Space

After:

5092h2F034h

xxxxh

0778h

4766h

PC2F03Ah

2F038h

2F036h

5092h2F034h

xxxxh

5432h

3379Eh

3379Ch

xxxxh

5432h

3379Eh

3379Ch

5432h

+2345h

7777h

src

dst

Sum

xxxxh

2345h

0077Ah

00778h

xxxxh

7777h

0077Ah

00778h

www.ti.com Addressing Modes

4.4.3.3 MSP430X Instruction With Symbolic Mode

When using an MSP430X instruction with Symbolic mode, the operand can be located anywhere in the
range of PC + 19 bits.

Length: Three or four words
Operation: The operand address is the sum of the 20-bit PC and the 20-bit index. The 4 MSBs

of the index are contained in the extension word; the 16 LSBs are contained in the
word following the instruction.

Comment: Valid for source and destination. The assembler calculates the register index and
inserts it.

Example: ADDX.B EDE,TONI ;

This instruction adds the 8-bit data contained in source byte EDE and destination
byte TONI and places the result into the destination byte TONI.

Source: Byte EDE located at address 3579Ch, pointed to by PC + 14766h, is the 20-bit
result of 3579Ch – 21036h = 14766h. Address 21036h is the address of the index
in this example.

Destination: Byte TONI located at address 77778h, pointed to by PC + 56740h, is the 20-bit
result of 77778h – 21038h = 56740h. Address 21038h is the address of the index in
this example.

123SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

6740h

Address Space

4766h

50D0h

PC

21038h

21036h

21034h

21038h

+56740h

77778h

Before: Address SpaceAfter:

PC

xxxxh

xx45h

7777Ah

77778h

xxxxh

xx77h

7777Ah

77778h

32h

+45h

77h

src

dst

Sum

xxxxh

xx32h

3579Eh

3579Ch

xxxxh

xx32h

3579Eh

3579Ch

18C5h21032h

xxxxh2103Ah

6740h

4766h

50D0h

21038h

21036h

21034h

18C5h21032h

xxxxh2103Ah

21036h

+14766h

3579Ch

Addressing Modes www.ti.com

4.4.4 Absolute Mode

The Absolute mode uses the contents of the word following the instruction as the address of the operand.
The Absolute mode has two addressing possibilities:

• Absolute mode in lower 64-KB memory
• MSP430X instruction with Absolute mode

4.4.4.1 Absolute Mode in Lower 64 KB

If an MSP430 instruction is used with Absolute addressing mode, the absolute address is a 16-bit value
and, therefore, points to an address in the lower 64 KB of the memory range. The address is calculated as
an index from 0 and is stored in the word following the instruction The RAM and the peripheral registers
can be accessed this way and existing MSP430 software is usable without modifications.

Length: Two or three words
Operation: The operand is the content of the addressed memory location.
Comment: Valid for source and destination. The assembler calculates the index from 0 and

inserts it.
Example: ADD.W &EDE,&TONI ;

This instruction adds the 16-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Word at address EDE
Destination: Word at address TONI

124 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

xxxxh

Address Space

7778h

579Ch

PC

2103Ah

21038h

21036h

Before: Address SpaceAfter:

5292h21034h

xxxxh

7778h

579Ch

PC2103Ah

21038h

21036h

5292h21034h

xxxxh

2345h

0777Ah

07778h

xxxxh

7777h

0777Ah

07778h

5432h

+2345h

7777h

src

dst

Sum

xxxxh

5432h

0579Eh

0579Ch

xxxxh

5432h

0579Eh

0579Ch

www.ti.com Addressing Modes

4.4.4.2 MSP430X Instruction With Absolute Mode

If an MSP430X instruction is used with Absolute addressing mode, the absolute address is a 20-bit value
and, therefore, points to any address in the memory range. The address value is calculated as an index
from 0. The 4 MSBs of the index are contained in the extension word, and the 16 LSBs are contained in
the word following the instruction.

Length: Three or four words
Operation: The operand is the content of the addressed memory location.
Comment: Valid for source and destination. The assembler calculates the index from 0 and

inserts it.
Example: ADDX.A &EDE,&TONI ;

This instruction adds the 20-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Two words beginning with address EDE
Destination: Two words beginning with address TONI

125SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

7778h

Address

Space

579Ch

52D2h

PC

21038h

21036h

21034h

Before:
Address

Space

After:

PC

0001h

2345h

7777Ah

77778h

0007h

7777h

7777Ah

77778h

65432h

+12345h

77777h

src

dst

Sum

0006h

5432h

3579Eh

3579Ch

0006h

5432h

3579Eh

3579Ch

1987h21032h

xxxxh2103Ah

7778h

579Ch

52D2h

21038h

21036h

21034h

1987h21032h

xxxxh2103Ah

Addressing Modes www.ti.com

4.4.5 Indirect Register Mode

The Indirect Register mode uses the contents of the CPU register Rsrc as the source operand. The
Indirect Register mode always uses a 20-bit address.

Length: One, two, or three words
Operation: The operand is the content the addressed memory location. The source register

Rsrc is not modified.
Comment: Valid only for the source operand. The substitute for the destination operand is

0(Rdst).
Example: ADDX.W @R5,2100h(R6)

This instruction adds the two 16-bit operands contained in the source and the
destination addresses and places the result into the destination.

Source: Word pointed to by R5. R5 contains address 3579Ch for this example.
Destination: Word pointed to by R6 + 2100h, which results in address 45678h + 2100h = 7778h

126 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

xxxxh

Address

Space

2100h

55A6h PC

21038h

21036h

21034h

3579Ch

45678h

R5

R6

45678h

+02100h

47778h

Register
Before:

Address

Space

Register
After:

xxxxh

2100h

55A6h

PC21038h

21036h

21034h

3579Ch

45678h

R5

R6

xxxxh

2345h

4777Ah

47778h

xxxxh

7777h

4777Ah

47778h

5432h

+2345h

7777h

src

dst

Sum

xxxxh

5432h

3579Eh

3579Ch

xxxxh

5432h

3579Eh

3579ChR5 R5

www.ti.com Addressing Modes

4.4.6 Indirect Autoincrement Mode

The Indirect Autoincrement mode uses the contents of the CPU register Rsrc as the source operand. Rsrc
is then automatically incremented by 1 for byte instructions, by 2 for word instructions, and by 4 for
address-word instructions immediately after accessing the source operand. If the same register is used for
source and destination, it contains the incremented address for the destination access. Indirect
Autoincrement mode always uses 20-bit addresses.

Length: One, two, or three words
Operation: The operand is the content of the addressed memory location.
Comment: Valid only for the source operand
Example: ADD.B @R5+,0(R6)

This instruction adds the 8-bit data contained in the source and the destination
addresses and places the result into the destination.

Source: Byte pointed to by R5. R5 contains address 3579Ch for this example.
Destination: Byte pointed to by R6 + 0h, which results in address 0778h for this example

127SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

xxxxh

Address

Space

0000h

55F6h PC

21038h

21036h

21034h

3579Ch

00778h

R5

R6

00778h

+0000h

00778h

Register
Before:

Address

Space

Register
After:

xxxxh

0000h

55F6h

PC21038h

21036h

21034h

3579Dh

00778h

R5

R6

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h

+45h

77h

src

dst

Sum

xxh

32h

3579Dh

3579Ch

xxh

xx32h

3579Dh

3579ChR5

R5

Addressing Modes www.ti.com

4.4.7 Immediate Mode

The Immediate mode allows accessing constants as operands by including the constant in the memory
location following the instruction. The PC is used with the Indirect Autoincrement mode. The PC points to
the immediate value contained in the next word. After the fetching of the immediate operand, the PC is
incremented by 2 for byte, word, or address-word instructions. The Immediate mode has two addressing
possibilities:

• 8-bit or 16-bit constants with MSP430 instructions
• 20-bit constants with MSP430X instruction

4.4.7.1 MSP430 Instructions With Immediate Mode

If an MSP430 instruction is used with Immediate addressing mode, the constant is an 8- or 16-bit value
and is stored in the word following the instruction.

Length: Two or three words. One word less if a constant of the constant generator can be
used for the immediate operand.

Operation: The 16-bit immediate source operand is used together with the 16-bit destination
operand.

Comment: Valid only for the source operand
Example: ADD #3456h,&TONI

This instruction adds the 16-bit immediate operand 3456h to the data in the
destination address TONI.

Source: 16-bit immediate value 3456h
Destination: Word at address TONI

128 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

xxxxh

Address

Space

0778h

3456h

PC

2103Ah

21038h

21036h

Before:
Address

Space

After:

50B2h21034h

xxxxh

0778h

3456h

PC2103Ah

21038h

21036h

50B2h21034h

xxxxh

2345h

0077Ah

00778h

xxxxh

579Bh

0077Ah

00778h

3456h

+2345h

579Bh

src

dst

Sum

www.ti.com Addressing Modes

4.4.7.2 MSP430X Instructions With Immediate Mode

If an MSP430X instruction is used with Immediate addressing mode, the constant is a 20-bit value. The 4
MSBs of the constant are stored in the extension word, and the 16 LSBs of the constant are stored in the
word following the instruction.

Length: Three or four words. One word less if a constant of the constant generator can be
used for the immediate operand.

Operation: The 20-bit immediate source operand is used together with the 20-bit destination
operand.

Comment: Valid only for the source operand
Example: ADDX.A #23456h,&TONI ;

This instruction adds the 20-bit immediate operand 23456h to the data in the
destination address TONI.

Source: 20-bit immediate value 23456h
Destination: Two words beginning with address TONI

129SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

7778h

Address

Space

3456h

50F2h

PC

21038h

21036h

21034h

Before:
Address

Space

After:

PC

0001h

2345h

7777Ah

77778h

0003h

579Bh

7777Ah

77778h

23456h

+12345h

3579Bh

src

dst

Sum

1907h21032h

xxxxh2103Ah

7778h

3456h

50F2h

21038h

21036h

21034h

1907h21032h

xxxxh2103Ah

Addressing Modes www.ti.com

130 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

15 12 11 8 7 6 5 4 0

Op-code Rsrc Ad B/W As Rdst

Source or Destination 15:0

Destination 15:0

www.ti.com MSP430 and MSP430X Instructions

4.5 MSP430 and MSP430X Instructions

MSP430 instructions are the 27 implemented instructions of the MSP430 CPU. These instructions are
used throughout the 1-MB memory range unless their 16-bit capability is exceeded. The MSP430X
instructions are used when the addressing of the operands, or the data length exceeds the 16-bit
capability of the MSP430 instructions.

There are three possibilities when choosing between an MSP430 and MSP430X instruction:

• To use only the MSP430 instructions – The only exceptions are the CALLA and the RETA instruction.
This can be done if a few, simple rules are met:

– Placement of all constants, variables, arrays, tables, and data in the lower 64 KB. This allows the
use of MSP430 instructions with 16-bit addressing for all data accesses. No pointers with 20-bit
addresses are needed.

– Placement of subroutine constants immediately after the subroutine code. This allows the use of
the symbolic addressing mode with its 16-bit index to reach addresses within the range of
PC + 32 KB.

• To use only MSP430X instructions – The disadvantages of this method are the reduced speed due to
the additional CPU cycles and the increased program space due to the necessary extension word for
any double operand instruction.

• Use the best fitting instruction where needed.

The following sections list and describe the MSP430 and MSP430X instructions.

4.5.1 MSP430 Instructions

The MSP430 instructions can be used, regardless if the program resides in the lower 64 KB or beyond it.
The only exceptions are the instructions CALL and RET, which are limited to the lower 64-KB address
range. CALLA and RETA instructions have been added to the MSP430X CPU to handle subroutines in the
entire address range with no code size overhead.

4.5.1.1 MSP430 Double-Operand (Format I) Instructions

Figure 4-22 shows the format of the MSP430 double-operand instructions. Source and destination words
are appended for the Indexed, Symbolic, Absolute, and Immediate modes. Table 4-4 lists the 12 MSP430
double-operand instructions.

Figure 4-22. MSP430 Double-Operand Instruction Format

131SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

15 7 6 5 4 0

Op-code B/W Ad Rdst

Destination 15:0

MSP430 and MSP430X Instructions www.ti.com

Table 4-4. MSP430 Double-Operand Instructions

Status Bits (1)
S-Reg,Mnemonic OperationD-Reg V N Z C

src,dst src → dst – – – –MOV(.B)

src,dst src + dst → dst * * * *ADD(.B)

src,dst src + dst + C → dst * * * *ADDC(.B)

src,dst dst + .not.src + 1 → dst * * * *SUB(.B)

src,dst dst + .not.src + C → dst * * * *SUBC(.B)

src,dst dst - src * * * *CMP(.B)

src,dst src + dst + C → dst (decimally) * * * *DADD(.B)

src,dst src .and. dst 0 * * ZBIT(.B)

src,dst .not.src .and. dst → dst – – – –BIC(.B)

src,dst src .or. dst → dst – – – –BIS(.B)

src,dst src .xor. dst → dst * * * ZXOR(.B)

src,dst src .and. dst → dst 0 * * ZAND(.B)
(1) * = Status bit is affected.

– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

4.5.1.2 MSP430 Single-Operand (Format II) Instructions

Figure 4-23 shows the format for MSP430 single-operand instructions, except RETI. The destination word
is appended for the Indexed, Symbolic, Absolute, and Immediate modes. Table 4-5 lists the seven
single-operand instructions.

Figure 4-23. MSP430 Single-Operand Instructions

Table 4-5. MSP430 Single-Operand Instructions

Status Bits (1)
S-Reg,Mnemonic OperationD-Reg V N Z C

dst C → MSB →.......LSB → C * * * *RRC(.B)

dst MSB → MSB →....LSB → C 0 * * *RRA(.B)

src SP - 2 → SP, src → SP – – – –PUSH(.B)

dst bit 15...bit 8 ↔ bit 7...bit 0 – – – –SWPB

dst Call subroutine in lower 64 KB – – – –CALL

TOS → SR, SP + 2 → SP * * * *RETI

TOS → PC,SP + 2 → SP

Register mode: bit 7 → bit 8...bit 19dst 0 * * ZSXT
Other modes: bit 7 → bit 8...bit 15

(1) * = Status bit is affected.
– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

132 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

15

Op-Code

13 12 10 9 8 0

Condition S 10-Bit Signed PC Offset

www.ti.com MSP430 and MSP430X Instructions

4.5.1.3 Jump Instructions

Figure 4-24 shows the format for MSP430 and MSP430X jump instructions. The signed 10-bit word offset
of the jump instruction is multiplied by two, sign-extended to a 20-bit address, and added to the 20-bit PC.
This allows jumps in a range of –511 to +512 words relative to the PC in the full 20-bit address space.
Jumps do not affect the status bits. Table 4-6 lists and describes the eight jump instructions.

Figure 4-24. Format of Conditional Jump Instructions

Table 4-6. Conditional Jump Instructions

Mnemonic S-Reg, D-Reg Operation

Label Jump to label if zero bit is setJEQ/JZ

Label Jump to label if zero bit is resetJNE/JNZ

Label Jump to label if carry bit is setJC

Label Jump to label if carry bit is resetJNC

Label Jump to label if negative bit is setJN

Label Jump to label if (N .XOR. V) = 0JGE

Label Jump to label if (N .XOR. V) = 1JL

Label Jump to label unconditionallyJMP

4.5.1.4 Emulated Instructions

In addition to the MSP430 and MSP430X instructions, emulated instructions are instructions that make
code easier to write and read, but do not have op-codes themselves. Instead, they are replaced
automatically by the assembler with a core instruction. There is no code or performance penalty for using
emulated instructions. The emulated instructions are listed in Table 4-7.

Table 4-7. Emulated Instructions

Status Bits (1)

Instruction Explanation Emulation
V N Z C

Add Carry to dst * * * *ADC(.B) dst ADDC(.B) #0,dst

Branch indirectly dst – – – –BR dst MOV dst,PC

Clear dst – – – –CLR(.B) dst MOV(.B) #0,dst

Clear Carry bit – – – 0CLRC BIC #1,SR

Clear Negative bit – 0 – –CLRN BIC #4,SR

Clear Zero bit – – 0 –CLRZ BIC #2,SR

Add Carry to dst decimally * * * *DADC(.B) dst DADD(.B) #0,dst

Decrement dst by 1 * * * *DEC(.B) dst SUB(.B) #1,dst

Decrement dst by 2 * * * *DECD(.B) dst SUB(.B) #2,dst

Disable interrupt – – – –DINT BIC #8,SR

Enable interrupt – – – –EINT BIS #8,SR

Increment dst by 1 * * * *INC(.B) dst ADD(.B) #1,dst

Increment dst by 2 * * * *INCD(.B) dst ADD(.B) #2,dst

(1) * = Status bit is affected.
– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

133SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MSP430 and MSP430X Instructions www.ti.com

Table 4-7. Emulated Instructions (continued)

Status Bits (1)

Instruction Explanation Emulation
V N Z C

Invert dst * * * *INV(.B) dst XOR(.B) #–1,dst

No operation – – – –NOP MOV R3,R3

Pop operand from stack – – – –POP dst MOV @SP+,dst

Return from subroutine – – – –RET MOV @SP+,PC

Shift left dst arithmetically * * * *RLA(.B) dst ADD(.B) dst,dst

Shift left dst logically through Carry * * * *RLC(.B) dst ADDC(.B) dst,dst

Subtract Carry from dst * * * *SBC(.B) dst SUBC(.B) #0,dst

Set Carry bit – – – 1SETC BIS #1,SR

Set Negative bit – 1 – –SETN BIS #4,SR

Set Zero bit – – 1 –SETZ BIS #2,SR

Test dst (compare with 0) 0 * * 1TST(.B) dst CMP(.B) #0,dst

4.5.1.5 MSP430 Instruction Execution

The number of CPU clock cycles required for an instruction depends on the instruction format and the
addressing modes used – not the instruction itself. The number of clock cycles refers to MCLK.

Instruction Cycles and Length for Interrupt, Reset, and Subroutines

Table 4-8 lists the length and the CPU cycles for reset, interrupts, and subroutines.

Table 4-8. Interrupt, Return, and Reset Cycles and Length

Execution Time Length of InstructionAction (MCLK Cycles) (Words)

Return from interrupt RETI 5 1

Return from subroutine RET 4 1

Interrupt request service (cycles needed before first 6 –instruction)

WDT reset 4 –

Reset (RST/NMI) 4 –

Format II (Single-Operand) Instruction Cycles and Lengths

Table 4-9 lists the length and the CPU cycles for all addressing modes of the MSP430 single-operand
instructions.

Table 4-9. MSP430 Format II Instruction Cycles and Length

No. of Cycles
Length ofAddressing Mode ExampleRRA, RRC InstructionPUSH CALLSWPB, SXT

Rn 1 3 4 1 SWPB R5

@Rn 3 3 4 1 RRC @R9

@Rn+ 3 3 4 1 SWPB @R10+

#N N/A 3 4 2 CALL #LABEL

X(Rn) 4 4 5 2 CALL 2(R7)

EDE 4 4 5 2 PUSH EDE

&EDE 4 4 6 2 SXT &EDE

134 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com MSP430 and MSP430X Instructions

Jump Instructions Cycles and Lengths

All jump instructions require one code word and take two CPU cycles to execute, regardless of whether
the jump is taken or not.

Format I (Double-Operand) Instruction Cycles and Lengths

Table 4-10 lists the length and CPU cycles for all addressing modes of the MSP430 Format I instructions.

Table 4-10. MSP430 Format I Instructions Cycles and Length

Addressing Mode Length ofNo. of Cycles ExampleInstructionSource Destination

Rn Rm 1 1 MOV R5,R8

PC 3 1 BR R9

x(Rm) 4 (1) 2 ADD R5,4(R6)

EDE 4 (1) 2 XOR R8,EDE

&EDE 4 (1) 2 MOV R5,&EDE

@Rn Rm 2 1 AND @R4,R5

PC 4 1 BR @R8

x(Rm) 5 (1) 2 XOR @R5,8(R6)

EDE 5 (1) 2 MOV @R5,EDE

&EDE 5 (1) 2 XOR @R5,&EDE

@Rn+ Rm 2 1 ADD @R5+,R6

PC 4 1 BR @R9+

x(Rm) 5 (1) 2 XOR @R5,8(R6)

EDE 5 (1) 2 MOV @R9+,EDE

&EDE 5 (1) 2 MOV @R9+,&EDE

#N Rm 2 2 MOV #20,R9

PC 3 2 BR #2AEh

x(Rm) 5 (1) 3 MOV #0300h,0(SP)

EDE 5 (1) 3 ADD #33,EDE

&EDE 5 (1) 3 ADD #33,&EDE

x(Rn) Rm 3 2 MOV 2(R5),R7

PC 5 2 BR 2(R6)

TONI 6 (1) 3 MOV 4(R7),TONI

x(Rm) 6 (1) 3 ADD 4(R4),6(R9)

&TONI 6 (1) 3 MOV 2(R4),&TONI

EDE Rm 3 2 AND EDE,R6

PC 5 2 BR EDE

TONI 6 (1) 3 CMP EDE,TONI

x(Rm) 6 (1) 3 MOV EDE,0(SP)

&TONI 6 (1) 3 MOV EDE,&TONI

(1) MOV, BIT, and CMP instructions execute in one fewer cycle.

135SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

15 12 11 10 9 8 7 6 5 4 3 0

0001 1 00 ZC # A/L 0 0 (n-1)/Rn

MSP430 and MSP430X Instructions www.ti.com

Table 4-10. MSP430 Format I Instructions Cycles and Length (continued)

Addressing Mode Length ofNo. of Cycles ExampleInstructionSource Destination

&EDE Rm 3 2 MOV &EDE,R8

PC 5 2 BR &EDE

TONI 6 (1) 3 MOV &EDE,TONI

x(Rm) 6 (1) 3 MOV &EDE,0(SP)

&TONI 6 (1) 3 MOV &EDE,&TONI

4.5.2 MSP430X Extended Instructions

The extended MSP430X instructions give the MSP430X CPU full access to its 20-bit address space. Most
MSP430X instructions require an additional word of op-code called the extension word. Some extended
instructions do not require an additional word and are noted in the instruction description. All addresses,
indexes, and immediate numbers have 20-bit values when preceded by the extension word.

There are two types of extension words:

• Register/register mode for Format I instructions and register mode for Format II instructions
• Extension word for all other address mode combinations

4.5.2.1 Register Mode Extension Word

The register mode extension word is shown in Figure 4-25 and described in Table 4-11. An example is
shown in Figure 4-27.

Figure 4-25. Extension Word for Register Modes

Table 4-11. Description of the Extension Word Bits for Register Mode

Bit Description

15:11 Extension word op-code. Op-codes 1800h to 1FFFh are extension words.

10:9 Reserved

ZC Zero carry

0 The executed instruction uses the status of the carry bit C.

1 The executed instruction uses the carry bit as 0. The carry bit is defined by the result of the final operation after
instruction execution.

Repetition

0 The number of instruction repetitions is set by extension word bits 3:0.

1 The number of 6instructions repetitions is defined by the value of the four LSBs of Rn. See description for bits
3:0.

A/L Data length extension. Together with the B/W bits of the following MSP430 instruction, the AL bit defines the used data
length of the instruction.

A/L B/W Comment

0 0 Reserved

0 1 20-bit address word

1 0 16-bit word

1 1 8-bit byte

5:4 Reserved

136 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

15 12 11 10 7 6 5 4 3 0

0 0 0 1 1 Source bits 19:16 A/L 0 0 Destination bits 19:16

www.ti.com MSP430 and MSP430X Instructions

Table 4-11. Description of the Extension Word Bits for Register Mode (continued)

Bit Description

3:0 Repetition count

= 0 These four bits set the repetition count n. These bits contain n – 1.

= 1 These four bits define the CPU register whose bits 3:0 set the number of repetitions. Rn.3:0 contain n – 1.

4.5.2.2 Non-Register Mode Extension Word

The extension word for non-register modes is shown in Figure 4-26 and described in Table 4-12. An
example is shown in Figure 4-28.

Figure 4-26. Extension Word for Non-Register Modes

Table 4-12. Description of Extension Word Bits for Non-Register Modes

Bit Description

15:11 Extension word op-code. Op-codes 1800h to 1FFFh are extension words.

Source Bits The four MSBs of the 20-bit source. Depending on the source addressing mode, these four MSBs may belong to an
19:16 immediate operand, an index or to an absolute address.

A/L Data length extension. Together with the B/W bits of the following MSP430 instruction, the AL bit defines the used
data length of the instruction.

A/L B/W Comment

0 0 Reserved

0 1 20-bit address word

1 0 16-bit word

1 1 8-bit byte

5:4 Reserved

Destination The four MSBs of the 20-bit destination. Depending on the destination addressing mode, these four MSBs may
Bits 19:16 belong to an index or to an absolute address.

NOTE: B/W and A/L bit settings for SWPBX and SXTX

A/L B/W
0 0 SWPBX.A, SXTX.A
0 1 N/A
1 0 SWPB.W, SXTX.W
1 1 N/A

137SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 00 ZC # A/L Rsvd (n-1)/Rn

Op-code Rsrc Ad B/W As Rdst

XORX.A R9,R8

0 0 0 1 1 0 0 0 0 0 0

14(XOR) 9 0 1 0 8(R8)

XORX instruction Source R9

0: Use Carry

1: Repetition count
in bits 3:0

01:Address word

Destination
register mode

Source
register mode

Destination R8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 Source 19:16 A/L Rsvd Destination 19:16

Op-code Rsrc Ad B/W As Rdst

XORX.A #12345h, 45678h(R15)

0 0 0 1 1 1 0 0 4

14 (XOR) 0 (PC) 1 1 3 15 (R15)

18xx extension word 12345h

@PC+

X(Rn)

Source 15:0

Destination 15:0

Immediate operand LSBs: 2345h

Index destination LSBs: 5678h

01: Address
word

MSP430 and MSP430X Instructions www.ti.com

Figure 4-27. Example for Extended Register/Register Instruction

Figure 4-28. Example for Extended Immediate/Indexed Instruction

4.5.2.3 Extended Double-Operand (Format I) Instructions

All 12 double-operand instructions have extended versions as listed in Table 4-13.

138 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 0 1 1 0 A/L n-1/Rn

Op-code B/W dst

0 ZC # 0 0

src 0 0 0

0 0 0 1 1 A/L

Op-code B/W dst

src.15:0

src.19:16 0 0

src Ad As

0 0 0 1 1 A/L

Op-code B/W dst

dst.15:0

0 0

src Ad

0 0 0 1 1 A/L dst.19:16

Op-code B/W dst

src.15:0

0 0

src Ad

0 0 0 0

dst.19:160 0 0 0

As

src.19:16

As

dst.15:0

www.ti.com MSP430 and MSP430X Instructions

Table 4-13. Extended Double-Operand Instructions

Status Bits (1)

Mnemonic Operands Operation
V N Z C

src,dst src → dst – – – –MOVX(.B,.A)

src,dst src + dst → dst * * * *ADDX(.B,.A)

src,dst src + dst + C → dst * * * *ADDCX(.B,.A)

src,dst dst + .not.src + 1 → dst * * * *SUBX(.B,.A)

src,dst dst + .not.src + C → dst * * * *SUBCX(.B,.A)

src,dst dst – src * * * *CMPX(.B,.A)

src,dst src + dst + C → dst (decimal) * * * *DADDX(.B,.A)

src,dst src .and. dst 0 * * ZBITX(.B,.A)

src,dst .not.src .and. dst → dst – – – –BICX(.B,.A)

src,dst src .or. dst → dst – – – –BISX(.B,.A)

src,dst src .xor. dst → dst * * * ZXORX(.B,.A)

src,dst src .and. dst → dst 0 * * ZANDX(.B,.A)
(1) * = Status bit is affected.

– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

The four possible addressing combinations for the extension word for Format I instructions are shown in
Figure 4-29.

Figure 4-29. Extended Format I Instruction Formats

139SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 19:16

Operand LSBs 15:0

0...

Address

Address+2

MSP430 and MSP430X Instructions www.ti.com

If the 20-bit address of a source or destination operand is located in memory, not in a CPU register, then
two words are used for this operand as shown in Figure 4-30.

Figure 4-30. 20-Bit Addresses in Memory

140 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 0 1 1 0 A/L n-1/Rn

Op-code B/W dst

0 ZC # 0 0

0 0 0 1 1 A/L

Op-code B/W dst

0 0

0 0 0 1 1 A/L

Op-code B/W dst

dst.15:0

0 0

0 0 0 0

dst.19:160 0 0 0

0 0 0 0

0 0

1 x

x 1

www.ti.com MSP430 and MSP430X Instructions

4.5.2.4 Extended Single-Operand (Format II) Instructions

Extended MSP430X Format II instructions are listed in Table 4-14.

Table 4-14. Extended Single-Operand Instructions

Status Bits (1)

Mnemonic Operands Operation
n V N Z C

dst Call indirect to subroutine (20-bit address) – – – –CALLA

#n,Rdst Pop n 20-bit registers from stack 1 to 16 * * * *POPM.A

#n,Rdst Pop n 16-bit registers from stack 1 to 16 * * * *POPM.W

#n,Rsrc Push n 20-bit registers to stack 1 to 16 * * * *PUSHM.A

#n,Rsrc Push n 16-bit registers to stack 1 to 16 * * * *PUSHM.W

src Push 8/16/20-bit source to stack * * * *PUSHX(.B,.A)

#n,Rdst Rotate right Rdst n bits through carry (16-/20-bit register) 1 to 4 * * * *RRCM(.A)

#n,Rdst Rotate right Rdst n bits unsigned (16-/20-bit register) 1 to 4 0 * * ZRRUM(.A)

#n,Rdst Rotate right Rdst n bits arithmetically (16-/20-bit register) 1 to 4 * * * *RRAM(.A)

#n,Rdst Rotate left Rdst n bits arithmetically (16-/20-bit register) 1 to 4 * * * *RLAM(.A)

dst Rotate right dst through carry (8-/16-/20-bit data) 1 * * * ZRRCX(.B,.A)

Rdst Rotate right dst unsigned (8-/16-/20-bit) 1 0 * * ZRRUX(.B,.A)

dst Rotate right dst arithmetically 1RRAX(.B,.A)

dst Exchange low byte with high byte 1SWPBX(.A)

Rdst Bit7 → bit8 ... bit19 1SXTX(.A)

dst Bit7 → bit8 ... MSB 1SXTX(.A)
(1) * = Status bit is affected.

– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

The three possible addressing mode combinations for Format II instructions are shown in Figure 4-31.

Figure 4-31. Extended Format II Instruction Format

141SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

15 8 7 4 3 0

Op-code n-1 Rdst - n+1

15 12 11 10 9 4 3 0

C n-1 Op-code Rdst

15 12 11 8 7 4 3 0

C Rsrc Op-code 0(PC)

C #imm/abs19:16 Op-code 0(PC)

C Rsrc Op-code 0(PC)

#imm15:0 / &abs15:0

index15:0

15 4 3 0

Op-code Rdst

Op-code Rdst

Op-code #imm/ix/abs19:16

index15:0

#imm15:0 / index15:0 / &abs15:0

MSP430 and MSP430X Instructions www.ti.com

Extended Format II Instruction Format Exceptions

Exceptions for the Format II instruction formats are shown in Figure 4-32 through Figure 4-35.

Figure 4-32. PUSHM/POPM Instruction Format

Figure 4-33. RRCM, RRAM, RRUM, and RLAM Instruction Format

Figure 4-34. BRA Instruction Format

Figure 4-35. CALLA Instruction Format

142 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com MSP430 and MSP430X Instructions

4.5.2.5 Extended Emulated Instructions

The extended instructions together with the constant generator form the extended emulated instructions.
Table 4-15 lists the emulated instructions.

Table 4-15. Extended Emulated Instructions

Instruction Explanation Emulation

Add carry to dstADCX(.B,.A) dst ADDCX(.B,.A) #0,dst

Branch indirect dstBRA dst MOVA dst,PC

Return from subroutineRETA MOVA @SP+,PC

Clear RdstCLRA Rdst MOV #0,Rdst

Clear dstCLRX(.B,.A) dst MOVX(.B,.A) #0,dst

Add carry to dst decimallyDADCX(.B,.A) dst DADDX(.B,.A) #0,dst

Decrement dst by 1DECX(.B,.A) dst SUBX(.B,.A) #1,dst

Decrement Rdst by 2DECDA Rdst SUBA #2,Rdst

Decrement dst by 2DECDX(.B,.A) dst SUBX(.B,.A) #2,dst

Increment dst by 1INCX(.B,.A) dst ADDX(.B,.A) #1,dst

Increment Rdst by 2INCDA Rdst ADDA #2,Rdst

Increment dst by 2INCDX(.B,.A) dst ADDX(.B,.A) #2,dst

Invert dstINVX(.B,.A) dst XORX(.B,.A) #-1,dst

Shift left dst arithmeticallyRLAX(.B,.A) dst ADDX(.B,.A) dst,dst

Shift left dst logically through carryRLCX(.B,.A) dst ADDCX(.B,.A) dst,dst

Subtract carry from dstSBCX(.B,.A) dst SUBCX(.B,.A) #0,dst

Test Rdst (compare with 0)TSTA Rdst CMPA #0,Rdst

Test dst (compare with 0)TSTX(.B,.A) dst CMPX(.B,.A) #0,dst

Pop to dstPOPX dst MOVX(.B, .A) @SP+,dst

143SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MSP430 and MSP430X Instructions www.ti.com

4.5.2.6 MSP430X Address Instructions

MSP430X address instructions are instructions that support 20-bit operands but have restricted
addressing modes. The addressing modes are restricted to the Register mode and the Immediate mode,
except for the MOVA instruction as listed in Table 4-16. Restricting the addressing modes removes the
need for the additional extension-word op-code improving code density and execution time. Address
instructions should be used any time an MSP430X instruction is needed with the corresponding restricted
addressing mode.

Table 4-16. Address Instructions, Operate on 20-Bit Register Data

Status Bits (1)

Mnemonic Operands Operation
V N Z C

Add source to destination register * * * *ADDA Rsrc,Rdst

#imm20,Rdst

Move source to destination – – – –MOVA Rsrc,Rdst

#imm20,Rdst

z16(Rsrc),Rdst

EDE,Rdst

&abs20,Rdst

@Rsrc,Rdst

@Rsrc+,Rdst

Rsrc,z16(Rdst)

Rsrc,&abs20

Compare source to destination register * * * *CMPA Rsrc,Rdst

#imm20,Rdst

Subtract source from destination register * * * *SUBA Rsrc,Rdst

#imm20,Rdst
(1) * = Status bit is affected.

– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

144 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com MSP430 and MSP430X Instructions

4.5.2.7 MSP430X Instruction Execution

The number of CPU clock cycles required for an MSP430X instruction depends on the instruction format
and the addressing modes used, not the instruction itself. The number of clock cycles refers to MCLK.

MSP430X Format II (Single-Operand) Instruction Cycles and Lengths

Table 4-17 lists the length and the CPU cycles for all addressing modes of the MSP430X extended
single-operand instructions.

Table 4-17. MSP430X Format II Instruction Cycles and Length

Execution Cycles/Length of Instruction (Words)
Instruction

Rn @Rn @Rn+ #N X(Rn) EDE &EDE

RRAM n/1 – – – – – –

RRCM n/1 – – – – – –

RRUM n/1 – – – – – –

RLAM n/1 – – – – – –

PUSHM 2+n/1 – – – – – –

PUSHM.A 2+2n/1 – – – – – –

POPM 2+n/1 – – – – – –

POPM.A 2+2n/1 – – – – – –

CALLA 5/1 6/1 6/1 5/2 5 (1)/2 7/2 7/2

RRAX(.B) 1+n/2 4/2 4/2 – 5/3 5/3 5/3

RRAX.A 1+n/2 6/2 6/2 – 7/3 7/3 7/3

RRCX(.B) 1+n/2 4/2 4/2 – 5/3 5/3 5/3

RRCX.A 1+n/2 6/2 6/2 – 7/3 7/3 7/3

PUSHX(.B) 4/2 4/2 4/2 4/3 5 (1)/3 5/3 5/3

PUSHX.A 5/2 6/2 6/2 5/3 7 (1)/3 7/3 7/3

POPX(.B) 3/2 – – – 5/3 5/3 5/3

POPX.A 4/2 – – – 7/3 7/3 7/3
(1) Add one cycle when Rn = SP

145SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MSP430 and MSP430X Instructions www.ti.com

MSP430X Format I (Double-Operand) Instruction Cycles and Lengths

Table 4-18 lists the length and CPU cycles for all addressing modes of the MSP430X extended Format I
instructions.

Table 4-18. MSP430X Format I Instruction Cycles and Length

Length ofAddressing Mode No. of Cycles Instruction Examples
Source Destination .B/.W .A .B/.W/.A

Rn Rm (1) 2 2 2 BITX.B R5,R8

PC 4 4 2 ADDX R9,PC

x(Rm) 5 (2) 7 (3) 3 ANDX.A R5,4(R6)

EDE 5 (2) 7 (3) 3 XORX R8,EDE

&EDE 5 (2) 7 (3) 3 BITX.W R5,&EDE

@Rn Rm 3 4 2 BITX @R5,R8

PC 5 6 2 ADDX @R9,PC

x(Rm) 6 (2) 9 (3) 3 ANDX.A @R5,4(R6)

EDE 6 (2) 9 (3) 3 XORX @R8,EDE

&EDE 6 (2) 9 (3) 3 BITX.B @R5,&EDE

@Rn+ Rm 3 4 2 BITX @R5+,R8

PC 5 6 2 ADDX.A @R9+,PC

x(Rm) 6 (2) 9 (3) 3 ANDX @R5+,4(R6)

EDE 6 (2) 9 (3) 3 XORX.B @R8+,EDE

&EDE 6 (2) 9 (3) 3 BITX @R5+,&EDE

#N Rm 3 3 3 BITX #20,R8

PC (4) 4 4 3 ADDX.A #FE000h,PC

x(Rm) 6 (2) 8 (3) 4 ANDX #1234,4(R6)

EDE 6 (2) 8 (3) 4 XORX #A5A5h,EDE

&EDE 6 (2) 8 (3) 4 BITX.B #12,&EDE

x(Rn) Rm 4 5 3 BITX 2(R5),R8

PC (4) 6 7 3 SUBX.A 2(R6),PC

TONI 7 (2) 10 (3) 4 ANDX 4(R7),4(R6)

x(Rm) 7 (2) 10 (3) 4 XORX.B 2(R6),EDE

&TONI 7 (2) 10 (3) 4 BITX 8(SP),&EDE

EDE Rm 4 5 3 BITX.B EDE,R8

PC (4) 6 7 3 ADDX.A EDE,PC

TONI 7 (2) 10 (3) 4 ANDX EDE,4(R6)

x(Rm) 7 (2) 10 (3) 4 ANDX EDE,TONI

&TONI 7 (2) 10 (3) 4 BITX EDE,&TONI

&EDE Rm 4 5 3 BITX &EDE,R8

PC (4) 6 7 3 ADDX.A &EDE,PC

TONI 7 (2) 10 (3) 4 ANDX.B &EDE,4(R6)

x(Rm) 7 (2) 10 (3) 4 XORX &EDE,TONI

&TONI 7 (2) 10 (3) 4 BITX &EDE,&TONI

(1) Repeat instructions require n + 1 cycles, where n is the number of times the instruction is executed.
(2) Reduce the cycle count by one for MOV, BIT, and CMP instructions.
(3) Reduce the cycle count by two for MOV, BIT, and CMP instructions.
(4) Reduce the cycle count by one for MOV, ADD, and SUB instructions.

146 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com MSP430 and MSP430X Instructions

MSP430X Address Instruction Cycles and Lengths

Table 4-19 lists the length and the CPU cycles for all addressing modes of the MSP430X address
instructions.

Table 4-19. Address Instruction Cycles and Length

Execution Time Length of InstructionAddressing Mode (MCLK Cycles) (Words)
ExampleCMPA CMPAMOVASource Destination ADDA MOVA ADDABRA SUBA SUBA

Rn Rn 1 1 1 1 CMPA R5,R8

PC 3 3 1 1 SUBA R9,PC

x(Rm) 4 – 2 – MOVA R5,4(R6)

EDE 4 – 2 – MOVA R8,EDE

&EDE 4 – 2 – MOVA R5,&EDE

@Rn Rm 3 – 1 – MOVA @R5,R8

PC 5 – 1 – MOVA @R9,PC

@Rn+ Rm 3 – 1 – MOVA @R5+,R8

PC 5 – 1 – MOVA @R9+,PC

#N Rm 2 3 2 2 CMPA #20,R8

PC 3 3 2 2 SUBA #FE000h,PC

x(Rn) Rm 4 – 2 – MOVA 2(R5),R8

PC 6 – 2 – MOVA 2(R6),PC

EDE Rm 4 – 2 – MOVA EDE,R8

PC 6 – 2 – MOVA EDE,PC

&EDE Rm 4 – 2 – MOVA &EDE,R8

PC 6 – 2 – MOVA &EDE,PC

147SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

4.6 Instruction Set Description

Table 4-20 shows all available instructions:

Table 4-20. Instruction Map of MSP430X

000 040 080 0C0 100 140 180 1C0 200 240 280 2C0 300 340 380 3C0

0xxx MOVA, CMPA, ADDA, SUBA, RRCM, RRAM, RLAM, RRUM

RRC. SWP RRA. PUS PUS CALL10xx RRC RRA SXT CALL RETIB B B H H.B A

14xx PUSHM.A, POPM.A, PUSHM.W, POPM.W

18xx
Extension word for Format I and Format II instructions

1Cxx

20xx JNE/JNZ

24xx JEQ/JZ

28xx JNC

2Cxx JC

30xx JN

34xx JGE

38xx JL

3Cxx JMP

4xxx MOV, MOV.B

5xxx ADD, ADD.B

6xxx ADDC, ADDC.B

7xxx SUBC, SUBC.B

8xxx SUB, SUB.B

9xxx CMP, CMP.B

Axxx DADD, DADD.B

Bxxx BIT, BIT.B

Cxxx BIC, BIC.B

Dxxx BIS, BIS.B

Exxx XOR, XOR.B

Fxxx AND, AND.B

148 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

4.6.1 Extended Instruction Binary Descriptions

Detailed MSP430X instruction binary descriptions are shown in the following tables.

Instruction Instructionsrc or data.19:16 dstGroup IdentifierInstruction
15 12 11 8 7 4 3 0

MOVA 0 0 0 0 src 0 0 0 0 dst MOVA @Rsrc,Rdst

0 0 0 0 src 0 0 0 1 dst MOVA @Rsrc+,Rdst

0 0 0 0 &abs.19:16 0 0 1 0 dst MOVA &abs20,Rdst

&abs.15:0

0 0 0 0 src 0 0 1 1 dst MOVA x(Rsrc),Rdst

x.15:0 ±15-bit index x

0 0 0 0 src 0 1 1 0 &abs.19:16 MOVA Rsrc,&abs20

&abs.15:0

0 0 0 0 src 0 1 1 1 dst MOVA Rsrc,X(Rdst)

x.15:0 ±15-bit index x

0 0 0 0 imm.19:16 1 0 0 0 dst MOVA #imm20,Rdst

imm.15:0

CMPA 0 0 0 0 imm.19:16 1 0 0 1 dst CMPA #imm20,Rdst

imm.15:0

ADDA 0 0 0 0 imm.19:16 1 0 1 0 dst ADDA #imm20,Rdst

imm.15:0

SUBA 0 0 0 0 imm.19:16 1 0 1 1 dst SUBA #imm20,Rdst

imm.15:0

MOVA 0 0 0 0 src 1 1 0 0 dst MOVA Rsrc,Rdst

CMPA 0 0 0 0 src 1 1 0 1 dst CMPA Rsrc,Rdst

ADDA 0 0 0 0 src 1 1 1 0 dst ADDA Rsrc,Rdst

SUBA 0 0 0 0 src 1 1 1 1 dst SUBA Rsrc,Rdst

Instruction InstructionBit Loc. Inst. ID dstGroup IdentifierInstruction
15 12 11 10 9 8 7 4 3 0

RRCM.A 0 0 0 0 n – 1 0 0 0 1 0 0 dst RRCM.A #n,Rdst

RRAM.A 0 0 0 0 n – 1 0 1 0 1 0 0 dst RRAM.A #n,Rdst

RLAM.A 0 0 0 0 n – 1 1 0 0 1 0 0 dst RLAM.A #n,Rdst

RRUM.A 0 0 0 0 n – 1 1 1 0 1 0 0 dst RRUM.A #n,Rdst

RRCM.W 0 0 0 0 n – 1 0 0 0 1 0 1 dst RRCM.W #n,Rdst

RRAM.W 0 0 0 0 n – 1 0 1 0 1 0 1 dst RRAM.W #n,Rdst

RLAM.W 0 0 0 0 n – 1 1 0 0 1 0 1 dst RLAM.W #n,Rdst

RRUM.W 0 0 0 0 n – 1 1 1 0 1 0 1 dst RRUM.W #n,Rdst

149SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

Instruction Identifier dst
Instruction

15 12 11 8 7 6 5 4 3 0

RETI 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0

CALLA 0 0 0 1 0 0 1 1 0 1 0 0 dst CALLA Rdst

0 0 0 1 0 0 1 1 0 1 0 1 dst CALLA x(Rdst)

x.15:0

0 0 0 1 0 0 1 1 0 1 1 0 dst CALLA @Rdst

0 0 0 1 0 0 1 1 0 1 1 1 dst CALLA @Rdst+

0 0 0 1 0 0 1 1 1 0 0 0 &abs.19:16 CALLA &abs20

&abs.15:0

0 0 0 1 0 0 1 1 1 0 0 1 x.19:16 CALLA EDE

x.15:0 CALLA x(PC)

0 0 0 1 0 0 1 1 1 0 1 1 imm.19:16 CALLA #imm20

imm.15:0

Reserved 0 0 0 1 0 0 1 1 1 0 1 0 x x x x

Reserved 0 0 0 1 0 0 1 1 1 1 x x x x x x

PUSHM.A 0 0 0 1 0 1 0 0 n – 1 dst PUSHM.A #n,Rdst

PUSHM.W 0 0 0 1 0 1 0 1 n – 1 dst PUSHM.W #n,Rdst

POPM.A 0 0 0 1 0 1 1 0 n – 1 dst – n + 1 POPM.A #n,Rdst

POPM.W 0 0 0 1 0 1 1 1 n – 1 dst – n + 1 POPM.W #n,Rdst

150 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

4.6.2 MSP430 Instructions

The MSP430 instructions are listed and described on the following pages.

* ADC[.W] Add carry to destination
* ADC.B Add carry to destination
Syntax ADC dst or ADC.W dst

ADC.B dst

Operation dst + C → dst
Emulation ADDC #0,dst

ADDC.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents of the
destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if dst was incremented from 0FFFFh to 0000, reset otherwise

Set if dst was incremented from 0FFh to 00, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to by R12.

ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

Example The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by R12.

ADD.B @R13,0(R12) ; Add LSDs
ADC.B 1(R12) ; Add carry to MSD

151SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

ADD[.W] Add source word to destination word
ADD.B Add source byte to destination byte
Syntax ADD src,dst or ADD.W src,dst

ADD.B src,dst

Operation src + dst → dst
Description The source operand is added to the destination operand. The previous content of the

destination is lost.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Ten is added to the 16-bit counter CNTR located in lower 64 K.

ADD.W #10,&CNTR ; Add 10 to 16-bit counter

Example A table word pointed to by R5 (20-bit address in R5) is added to R6. The jump to label
TONI is performed on a carry.

ADD.W @R5,R6 ; Add table word to R6. R6.19:16 = 0
JC TONI ; Jump if carry
... ; No carry

Example A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is
performed if no carry occurs. The table pointer is auto-incremented by 1. R6.19:8 = 0

ADD.B @R5+,R6 ; Add byte to R6. R5 + 1. R6: 000xxh
JNC TONI ; Jump if no carry
... ; Carry occurred

152 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

ADDC[.W] Add source word and carry to destination word
ADDC.B Add source byte and carry to destination byte
Syntax ADDC src,dst or ADDC.W src,dst

ADDC.B src,dst

Operation src + dst + C → dst
Description The source operand and the carry bit C are added to the destination operand. The

previous content of the destination is lost.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Constant value 15 and the carry of the previous instruction are added to the 16-bit

counter CNTR located in lower 64 K.

ADDC.W #15,&CNTR ; Add 15 + C to 16-bit CNTR

Example A table word pointed to by R5 (20-bit address) and the carry C are added to R6. The
jump to label TONI is performed on a carry. R6.19:16 = 0

ADDC.W @R5,R6 ; Add table word + C to R6
JC TONI ; Jump if carry
... ; No carry

Example A table byte pointed to by R5 (20-bit address) and the carry bit C are added to R6. The
jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented
by 1. R6.19:8 = 0

ADDC.B @R5+,R6 ; Add table byte + C to R6. R5 + 1
JNC TONI ; Jump if no carry
... ; Carry occurred

153SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

AND[.W] Logical AND of source word with destination word
AND.B Logical AND of source byte with destination byte
Syntax AND src,dst or AND.W src,dst

AND.B src,dst

Operation src .and. dst → dst
Description The source operand and the destination operand are logically ANDed. The result is

placed into the destination. The source operand is not affected.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits set in R5 (16-bit data) are used as a mask (AA55h) for the word TOM located in

the lower 64 K. If the result is zero, a branch is taken to label TONI. R5.19:16 = 0

MOV #AA55h,R5 ; Load 16-bit mask to R5
AND R5,&TOM ; TOM .and. R5 -> TOM
JZ TONI ; Jump if result 0
... ; Result > 0

or shorter:

AND #AA55h,&TOM ; TOM .and. AA55h -> TOM
JZ TONI ; Jump if result 0

Example A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R5 is
incremented by 1 after the fetching of the byte. R6.19:8 = 0

AND.B @R5+,R6 ; AND table byte with R6. R5 + 1

154 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

BIC[.W] Clear bits set in source word in destination word
BIC.B Clear bits set in source byte in destination byte
Syntax BIC src,dst or BIC.W src,dst

BIC.B src,dst

Operation (.not. src) .and. dst → dst
Description The inverted source operand and the destination operand are logically ANDed. The

result is placed into the destination. The source operand is not affected.
Status Bits N: Not affected

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits 15:14 of R5 (16-bit data) are cleared. R5.19:16 = 0

BIC #0C000h,R5 ; Clear R5.19:14 bits

Example A table word pointed to by R5 (20-bit address) is used to clear bits in R7. R7.19:16 = 0

BIC.W @R5,R7 ; Clear bits in R7 set in @R5

Example A table byte pointed to by R5 (20-bit address) is used to clear bits in Port1.

BIC.B @R5,&P1OUT ; Clear I/O port P1 bits set in @R5

155SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

BIS[.W] Set bits set in source word in destination word
BIS.B Set bits set in source byte in destination byte
Syntax BIS src,dst or BIS.W src,dst

BIS.B src,dst

Operation src .or. dst → dst
Description The source operand and the destination operand are logically ORed. The result is placed

into the destination. The source operand is not affected.
Status Bits N: Not affected

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Bits 15 and 13 of R5 (16-bit data) are set to one. R5.19:16 = 0

BIS #A000h,R5 ; Set R5 bits

Example A table word pointed to by R5 (20-bit address) is used to set bits in R7. R7.19:16 = 0

BIS.W @R5,R7 ; Set bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to set bits in Port1. R5 is
incremented by 1 afterwards.

BIS.B @R5+,&P1OUT ; Set I/O port P1 bits. R5 + 1

156 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

BIT[.W] Test bits set in source word in destination word
BIT.B Test bits set in source byte in destination byte
Syntax BIT src,dst or BIT.W src,dst

BIT.B src,dst

Operation src .and. dst
Description The source operand and the destination operand are logically ANDed. The result affects

only the status bits in SR.
Register mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not cleared!

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Test if one (or both) of bits 15 and 14 of R5 (16-bit data) is set. Jump to label TONI if this

is the case. R5.19:16 are not affected.

BIT #C000h,R5 ; Test R5.15:14 bits
JNZ TONI ; At least one bit is set in R5
... ; Both bits are reset

Example A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to label
TONI if at least one bit is set. R7.19:16 are not affected.

BIT.W @R5,R7 ; Test bits in R7
JC TONI ; At least one bit is set
... ; Both are reset

Example A table byte pointed to by R5 (20-bit address) is used to test bits in output Port1. Jump
to label TONI if no bit is set. The next table byte is addressed.

BIT.B @R5+,&P1OUT ; Test I/O port P1 bits. R5 + 1
JNC TONI ; No corresponding bit is set
... ; At least one bit is set

157SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* BR, Branch to destination in lower 64K address space
BRANCH
Syntax BR dst

Operation dst → PC
Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the lower 64K address
space. All source addressing modes can be used. The branch instruction is a word
instruction.

Status Bits Status bits are not affected.
Example Examples for all addressing modes are given.

BR #EXEC ; Branch to label EXEC or direct branch (e.g. #0A4h)
; Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5

BR @R5 ; Branch to the address contained in the word
; pointed to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time-S/W flow uses R5 pointer-it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

158 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

CALL Call a subroutine in lower 64 K
Syntax CALL dst

Operation dst → PC 16-bit dst is evaluated and stored

SP – 2 → SP

PC → @SP updated PC with return address to TOS

tmp → PC saved 16-bit dst to PC
Description A subroutine call is made from an address in the lower 64 K to a subroutine address in

the lower 64 K. All seven source addressing modes can be used. The call instruction is a
word instruction. The return is made with the RET instruction.

Status Bits Status bits are not affected.
PC.19:16 cleared (address in lower 64 K)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC (lower 64 K) or call directly to address.

CALL #EXEC ; Start address EXEC
CALL #0AA04h ; Start address 0AA04h

Symbolic Mode: Call a subroutine at the 16-bit address contained in address EXEC.
EXEC is located at the address (PC + X) where X is within PC + 32 K.

CALL EXEC ; Start address at @EXEC. z16(PC)

Absolute Mode: Call a subroutine at the 16-bit address contained in absolute address
EXEC in the lower 64 K.

CALL &EXEC ; Start address at @EXEC

Register mode: Call a subroutine at the 16-bit address contained in register R5.15:0.

CALL R5 ; Start address at R5

Indirect Mode: Call a subroutine at the 16-bit address contained in the word pointed to by
register R5 (20-bit address).

CALL @R5 ; Start address at @R5

159SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* CLR[.W] Clear destination
* CLR.B Clear destination
Syntax CLR dst or CLR.W dst

CLR.B dst

Operation 0 → dst
Emulation MOV #0,dst

MOV.B #0,dst

Description The destination operand is cleared.
Status Bits Status bits are not affected.
Example RAM word TONI is cleared.

CLR TONI ; 0 -> TONI

Example Register R5 is cleared.

CLR R5

Example RAM byte TONI is cleared.

CLR.B TONI ; 0 -> TONI

160 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

* CLRC Clear carry bit
Syntax CLRC

Operation 0 → C
Emulation BIC #1,SR

Description The carry bit (C) is cleared. The clear carry instruction is a word instruction.
Status Bits N: Not affected

Z: Not affected
C: Cleared
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter pointed to by

R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

161SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* CLRN Clear negative bit
Syntax CLRN

Operation 0 → N

or

(.NOT.src .AND. dst → dst)
Emulation BIC #4,SR

Description The constant 04h is inverted (0FFFBh) and is logically ANDed with the destination
operand. The result is placed into the destination. The clear negative bit instruction is a
word instruction.

Status Bits N: Reset to 0
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The negative bit in the SR is cleared. This avoids special treatment with negative

numbers of the subroutine called.

CLRN
CALL SUBR
......
......

SUBR JN SUBRET ; If input is negative: do nothing and return
......
......
......

SUBRET RET

162 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

* CLRZ Clear zero bit
Syntax CLRZ

Operation 0 → Z

or

(.NOT.src .AND. dst → dst)
Emulation BIC #2,SR

Description The constant 02h is inverted (0FFFDh) and logically ANDed with the destination
operand. The result is placed into the destination. The clear zero bit instruction is a word
instruction.

Status Bits N: Not affected
Z: Reset to 0
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The zero bit in the SR is cleared.

CLRZ

Indirect, Auto-Increment mode: Call a subroutine at the 16-bit address contained in the
word pointed to by register R5 (20-bit address) and increment the 16-bit address in R5
afterwards by 2. The next time the software uses R5 as a pointer, it can alter the
program execution due to access to the next word address in the table pointed to by R5.

CALL @R5+ ; Start address at @R5. R5 + 2

Indexed mode: Call a subroutine at the 16-bit address contained in the 20-bit address
pointed to by register (R5 + X), e.g., a table with addresses starting at X. The address is
within the lower 64 KB. X is within +32 KB.

CALL X(R5) ; Start address at @(R5+X). z16(R5)

163SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

CMP[.W] Compare source word and destination word
CMP.B Compare source byte and destination byte
Syntax CMP src,dst or CMP.W src,dst

CMP.B src,dst

Operation (.not.src) + 1 + dst

or

dst – src
Emulation BIC #2,SR

Description The source operand is subtracted from the destination operand. This is made by adding
the 1s complement of the source + 1 to the destination. The result affects only the status
bits in SR.
Register mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not cleared.

Status Bits N: Set if result is negative (src > dst), reset if positive (src = dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Compare word EDE with a 16-bit constant 1800h. Jump to label TONI if EDE equals the

constant. The address of EDE is within PC + 32 K.

CMP #01800h,EDE ; Compare word EDE with 1800h
JEQ TONI ; EDE contains 1800h
... ; Not equal

Example A table word pointed to by (R5 + 10) is compared with R7. Jump to label TONI if R7
contains a lower, signed 16-bit number. R7.19:16 is not cleared. The address of the
source operand is a 20-bit address in full memory range.

CMP.W 10(R5),R7 ; Compare two signed numbers
JL TONI ; R7 < 10(R5)
... ; R7 >= 10(R5)

Example A table byte pointed to by R5 (20-bit address) is compared to the value in output Port1.
Jump to label TONI if values are equal. The next table byte is addressed.

CMP.B @R5+,&P1OUT ; Compare P1 bits with table. R5 + 1
JEQ TONI ; Equal contents
... ; Not equal

164 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

* DADC[.W] Add carry decimally to destination
* DADC.B Add carry decimally to destination
Syntax DADC dst or DADC.W dst

DADC.B dst

Operation dst + C → dst (decimally)
Emulation DADD #0,dst DADD.B #0,dst

Description The carry bit (C) is added decimally to the destination.
Status Bits N: Set if MSB is 1

Z: Set if dst is 0, reset otherwise
C: Set if destination increments from 9999 to 0000, reset otherwise

Set if destination increments from 99 to 00, reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The four-digit decimal number contained in R5 is added to an eight-digit decimal number

pointed to by R8.

CLRC ; Reset carry
; next instruction's start condition is defined

DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

Example The two-digit decimal number contained in R5 is added to a four-digit decimal number
pointed to by R8.

CLRC ; Reset carry
; next instruction's start condition is defined

DADD.B R5,0(R8) ; Add LSDs + C
DADC 1(R8) ; Add carry to MSDs

165SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* DADD[.W] Add source word and carry decimally to destination word
* DADD.B Add source byte and carry decimally to destination byte
Syntax DADD src,dst or DADD.W src,dst

DADD.B src,dst

Operation src + dst + C → dst (decimally)
Description The source operand and the destination operand are treated as two (.B) or four (.W)

binary coded decimals (BCD) with positive signs. The source operand and the carry bit C
are added decimally to the destination operand. The source operand is not affected. The
previous content of the destination is lost. The result is not defined for non-BCD
numbers.

Status Bits N: Set if MSB of result is 1 (word > 7999h, byte > 79h), reset if MSB is 0
Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (word > 9999h, byte > 99h), reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Decimal 10 is added to the 16-bit BCD counter DECCNTR.

DADD #10h,&DECCNTR ; Add 10 to 4-digit BCD counter

Example The eight-digit BCD number contained in 16-bit RAM addresses BCD and BCD+2 is
added decimally to an eight-digit BCD number contained in R4 and R5 (BCD+2 and R5
contain the MSDs). The carry C is added, and cleared.

CLRC ; Clear carry
DADD.W &BCD,R4 ; Add LSDs. R4.19:16 = 0
DADD.W &BCD+2,R5 ; Add MSDs with carry. R5.19:16 = 0
JC OVERFLOW ; Result >9999,9999: go to error routine
... ; Result ok

Example The two-digit BCD number contained in word BCD (16-bit address) is added decimally to
a two-digit BCD number contained in R4. The carry C is added, also. R4.19:8 = 0CLRC ;
Clear carryDADD.B &BCD,R4 ; Add BCD to R4 decimally. R4: 0,00ddh

CLRC ; Clear carry
DADD.B &BCD,R4 ; Add BCD to R4 decimally.

R4: 0,00ddh

166 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

EDE

EDE+254

TONI

TONI+254

www.ti.com Instruction Set Description

* DEC[.W] Decrement destination
* DEC.B Decrement destination
Syntax DEC dst or DEC.W dst

DEC.B dst

Operation dst – 1 → dst
Emulation SUB #1,dst

SUB.B #1,dst

Description The destination operand is decremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R10 is decremented by 1.

DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to
; memory location starting with TONI. Tables should not overlap: start of
; destination address TONI must not be within the range EDE to EDE+0FEh

MOV #EDE,R6
MOV #510,R10

L$1 MOV @R6+,TONI-EDE-1(R6)
DEC R10
JNZ L$1

Do not transfer tables using the routine above with the overlap shown in Figure 4-36.

Figure 4-36. Decrement Overlap

167SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* DECD[.W] Double-decrement destination
* DECD.B Double-decrement destination
Syntax DECD dst or DECD.W dst

DECD.B dst

Operation dst – 2 → dst
Emulation SUB #2,dst

SUB.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Set if initial value of destination was 08001 or 08000h, otherwise reset
Set if initial value of destination was 081 or 080h, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 bytes from memory location starting with EDE to
; memory location starting with TONI.
; Tables should not overlap: start of destination address TONI must not
; be within the range EDE to EDE+0FEh

MOV #EDE,R6
MOV #255,R10

L$1 MOV.B @R6+,TONI-EDE-2(R6)
DECD R10
JNZ L$1

Example Memory at location LEO is decremented by two.

DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two

DECD.B STATUS

168 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

* DINT Disable (general) interrupts
Syntax DINT

Operation 0 → GIE
or
(0FFF7h .AND. SR → SR / .NOT.src .AND. dst → dst)

Emulation BIC #8,SR

Description All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the SR. The result is placed into
the SR.

Status Bits Status bits are not affected.
Mode Bits GIE is reset. OSCOFF and CPUOFF are not affected.
Example The general interrupt enable (GIE) bit in the SR is cleared to allow a nondisrupted move

of a 32-bit counter. This ensures that the counter is not modified during the move by any
interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP
MOV COUNTHI,R5 ; Copy counter
MOV COUNTLO,R6
EINT ; All interrupt events using the GIE bit are enabled

NOTE: Disable interrupt

If any code sequence needs to be protected from interruption, DINT should be executed at
least one instruction before the beginning of the uninterruptible sequence, or it should be
followed by a NOP instruction.

169SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* EINT Enable (general) interrupts
Syntax EINT

Operation 1 → GIE
or
(0008h .OR. SR → SR / .src .OR. dst → dst)

Emulation BIS #8,SR

Description All interrupts are enabled.
The constant #08h and the SR are logically ORed. The result is placed into the SR.

Status Bits Status bits are not affected.
Mode Bits GIE is set. OSCOFF and CPUOFF are not affected.
Example The general interrupt enable (GIE) bit in the SR is set.

PUSH.B &P1IN
BIC.B @SP,&P1IFG ; Reset only accepted flags
EINT ; Preset port 1 interrupt flags stored on stack

; other interrupts are allowed
BIT #Mask,@SP
JEQ MaskOK ; Flags are present identically to mask: jump
......

MaskOK BIC #Mask,@SP
......
INCD SP ; Housekeeping: inverse to PUSH instruction

; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

NOTE: Enable interrupt

The instruction following the enable interrupt instruction (EINT) is always executed, even if
an interrupt service request is pending when the interrupts are enabled.

170 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

* INC[.W] Increment destination
* INC.B Increment destination
Syntax INC dst or INC.W dst

INC.B dst

Operation dst + 1 → dst
Emulation ADD #1,dst

Description The destination operand is incremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The status byte, STATUS, of a process is incremented. When it is equal to 11, a branch

to OVFL is taken.

INC.B STATUS
CMP.B #11,STATUS
JEQ OVFL

171SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* INCD[.W] Double-increment destination
* INCD.B Double-increment destination
Syntax INCD dst or INCD.W dst

INCD.B dst

Operation dst + 2 → dst
Emulation ADD #2,dst

Description The destination operand is incremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFEh, reset otherwise
Set if dst contained 0FEh, reset otherwise

C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise
Set if dst contained 0FEh or 0FFh, reset otherwise

V: Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The item on the top of the stack (TOS) is removed without using a register.

.......
PUSH R5 ; R5 is the result of a calculation, which is stored

; in the system stack
INCD SP ; Remove TOS by double-increment from stack

; Do not use INCD.B, SP is a word-aligned register
RET

Example The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

172 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

* INV[.W] Invert destination
* INV.B Invert destination
Syntax INV dst or INV.W dst

INV.B dst

Operation .not.dst → dst
Emulation XOR #0FFFFh,dst

XOR.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Content of R5 is negated (2s complement).

MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5 is now negated, R5 = 0FF52h

Example Content of memory byte LEO is negated.

MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated, MEM(LEO) = 052h

173SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

JC Jump if carry
JHS Jump if higher or same (unsigned)
Syntax JC label

JHS label

Operation If C = 1: PC + (2 × Offset) → PC
If C = 0: execute the following instruction

Description The carry bit C in the SR is tested. If it is set, the signed 10-bit word offset contained in
the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This
means a jump in the range –511 to +512 words relative to the PC in the full memory
range. If C is reset, the instruction after the jump is executed.
JC is used for the test of the carry bit C.
JHS is used for the comparison of unsigned numbers.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The state of the port 1 pin P1IN.1 bit defines the program flow.

BIT.B #2,&P1IN ; Port 1, bit 1 set? Bit -> C
JC Label1 ; Yes, proceed at Label1
... ; No, continue

Example If R5 ≥ R6 (unsigned), the program continues at Label2.

CMP R6,R 5 ; Is R5 >= R6? Info to C
JHS Label2 ; Yes, C = 1
... ; No, R5 < R6. Continue

Example If R5 ≥ 12345h (unsigned operands), the program continues at Label2.

CMPA #12345h,R5 ; Is R5 >= 12345h? Info to C
JHS Label2 ; Yes, 12344h < R5 <= F,FFFFh. C = 1
... ; No, R5 < 12345h. Continue

174 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

JEQ Jump if equal
JZ Jump if zero
Syntax JEQ label

JZ label

Operation If Z = 1: PC + (2 × Offset) → PC
If Z = 0: execute following instruction

Description The zero bit Z in the SR is tested. If it is set, the signed 10-bit word offset contained in
the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This
means a jump in the range –511 to +512 words relative to the PC in the full memory
range. If Z is reset, the instruction after the jump is executed.
JZ is used for the test of the zero bit Z.
JEQ is used for the comparison of operands.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The state of the P2IN.0 bit defines the program flow.

BIT.B #1,&P2IN ; Port 2, bit 0 reset?
JZ Label1 ; Yes, proceed at Label1
... ; No, set, continue

Example If R5 = 15000h (20-bit data), the program continues at Label2.

CMPA #15000h,R5 ; Is R5 = 15000h? Info to SR
JEQ Label2 ; Yes, R5 = 15000h. Z = 1
... ; No, R5 not equal 15000h. Continue

Example R7 (20-bit counter) is incremented. If its content is zero, the program continues at
Label4.

ADDA #1,R7 ; Increment R7
JZ Label4 ; Zero reached: Go to Label4
... ; R7 not equal 0. Continue here.

175SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

JGE Jump if greater or equal (signed)
Syntax JGE label

Operation If (N .xor. V) = 0: PC + (2 × Offset) → PC
If (N .xor. V) = 1: execute following instruction

Description The negative bit N and the overflow bit V in the SR are tested. If both bits are set or both
are reset, the signed 10-bit word offset contained in the instruction is multiplied by two,
sign extended, and added to the 20-bit PC. This means a jump in the range -511 to +512
words relative to the PC in full Memory range. If only one bit is set, the instruction after
the jump is executed.
JGE is used for the comparison of signed operands: also for incorrect results due to
overflow, the decision made by the JGE instruction is correct.
Note that JGE emulates the nonimplemented JP (jump if positive) instruction if used after
the instructions AND, BIT, RRA, SXTX, and TST. These instructions clear the V bit.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example If byte EDE (lower 64 K) contains positive data, go to Label1. Software can run in the full

memory range.

TST.B &EDE ; Is EDE positive? V <- 0
JGE Label1 ; Yes, JGE emulates JP
... ; No, 80h <= EDE <= FFh

Example If the content of R6 is greater than or equal to the memory pointed to by R7, the program
continues a Label5. Signed data. Data and program in full memory range.

CMP @R7,R6 ; Is R6 >= @R7?
JGE Label5 ; Yes, go to Label5
... ; No, continue here

Example If R5 ≥ 12345h (signed operands), the program continues at Label2. Program in full
memory range.

CMPA #12345h,R5 ; Is R5 >= 12345h?
JGE Label2 ; Yes, 12344h < R5 <= 7FFFFh
... ; No, 80000h <= R5 < 12345h

176 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

JL Jump if less (signed)
Syntax JL label

Operation If (N .xor. V) = 1: PC + (2 × Offset) → PC
If (N .xor. V) = 0: execute following instruction

Description The negative bit N and the overflow bit V in the SR are tested. If only one is set, the
signed 10-bit word offset contained in the instruction is multiplied by two, sign extended,
and added to the 20-bit PC. This means a jump in the range –511 to +512 words relative
to the PC in full memory range. If both bits N and V are set or both are reset, the
instruction after the jump is executed.
JL is used for the comparison of signed operands: also for incorrect results due to
overflow, the decision made by the JL instruction is correct.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example If byte EDE contains a smaller, signed operand than byte TONI, continue at Label1. The

address EDE is within PC ± 32 K.

CMP.B &TONI,EDE ; Is EDE < TONI
JL Label1 ; Yes
... ; No, TONI <= EDE

Example If the signed content of R6 is less than the memory pointed to by R7 (20-bit address), the
program continues at Label5. Data and program in full memory range.

CMP @R7,R6 ; Is R6 < @R7?
JL Label5 ; Yes, go to Label5
... ; No, continue here

Example If R5 < 12345h (signed operands), the program continues at Label2. Data and program
in full memory range.

CMPA #12345h,R5 ; Is R5 < 12345h?
JL Label2 ; Yes, 80000h =< R5 < 12345h
... ; No, 12344h < R5 <= 7FFFFh

177SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

JMP Jump unconditionally
Syntax JMP label

Operation PC + (2 × Offset) → PC
Description The signed 10-bit word offset contained in the instruction is multiplied by two, sign

extended, and added to the 20-bit PC. This means an unconditional jump in the range
–511 to +512 words relative to the PC in the full memory. The JMP instruction may be
used as a BR or BRA instruction within its limited range relative to the PC.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The byte STATUS is set to 10. Then a jump to label MAINLOOP is made. Data in lower

64 K, program in full memory range.

MOV.B #10,&STATUS ; Set STATUS to 10
JMP MAINLOOP ; Go to main loop

Example The interrupt vector TAIV of Timer_A3 is read and used for the program flow. Program in
full memory range, but interrupt handlers always starts in lower 64 K.

ADD &TAIV,PC ; Add Timer_A interrupt vector to PC
RETI ; No Timer_A interrupt pending
JMP IHCCR1 ; Timer block 1 caused interrupt
JMP IHCCR2 ; Timer block 2 caused interrupt
RETI ; No legal interrupt, return

178 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

JN Jump if negative
Syntax JN label

Operation If N = 1: PC + (2 × Offset) → PC
If N = 0: execute following instruction

Description The negative bit N in the SR is tested. If it is set, the signed 10-bit word offset contained
in the instruction is multiplied by two, sign extended, and added to the 20-bit program
PC. This means a jump in the range -511 to +512 words relative to the PC in the full
memory range. If N is reset, the instruction after the jump is executed.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The byte COUNT is tested. If it is negative, program execution continues at Label0. Data

in lower 64 K, program in full memory range.

TST.B &COUNT ; Is byte COUNT negative?
JN Label0 ; Yes, proceed at Label0
... ; COUNT >= 0

Example R6 is subtracted from R5. If the result is negative, program continues at Label2. Program
in full memory range.

SUB R6,R5 ; R5 - R6 -> R5
JN Label2 ; R5 is negative: R6 > R5 (N = 1)
... ; R5 >= 0. Continue here.

Example R7 (20-bit counter) is decremented. If its content is below zero, the program continues at
Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7
JN Label4 ; R7 < 0: Go to Label4
... ; R7 >= 0. Continue here.

179SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

JNC Jump if no carry
JLO Jump if lower (unsigned)
Syntax JNC label

JLO label

Operation If C = 0: PC + (2 × Offset) → PC
If C = 1: execute following instruction

Description The carry bit C in the SR is tested. If it is reset, the signed 10-bit word offset contained in
the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This
means a jump in the range –511 to +512 words relative to the PC in the full memory
range. If C is set, the instruction after the jump is executed.
JNC is used for the test of the carry bit C.
JLO is used for the comparison of unsigned numbers.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example If byte EDE < 15, the program continues at Label2. Unsigned data. Data in lower 64 K,

program in full memory range.

CMP.B #15,&EDE ; Is EDE < 15? Info to C
JLO Label2 ; Yes, EDE < 15. C = 0
... ; No, EDE >= 15. Continue

Example The word TONI is added to R5. If no carry occurs, continue at Label0. The address of
TONI is within PC ± 32 K.

ADD TONI,R5 ; TONI + R5 -> R5. Carry -> C
JNC Label0 ; No carry
... ; Carry = 1: continue here

180 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

JNZ Jump if not zero
JNE Jump if not equal
Syntax JNZ label

JNE label

Operation If Z = 0: PC + (2 × Offset) → PC
If Z = 1: execute following instruction

Description The zero bit Z in the SR is tested. If it is reset, the signed 10-bit word offset contained in
the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This
means a jump in the range –511 to +512 words relative to the PC in the full memory
range. If Z is set, the instruction after the jump is executed.
JNZ is used for the test of the zero bit Z.
JNE is used for the comparison of operands.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The byte STATUS is tested. If it is not zero, the program continues at Label3. The

address of STATUS is within PC ± 32 K.

TST.B STATUS ; Is STATUS = 0?
JNZ Label3 ; No, proceed at Label3
... ; Yes, continue here

Example If word EDE ≠ 1500, the program continues at Label2. Data in lower 64 K, program in full
memory range.

CMP #1500,&EDE ; Is EDE = 1500? Info to SR
JNE Label2 ; No, EDE not equal 1500.
... ; Yes, R5 = 1500. Continue

Example R7 (20-bit counter) is decremented. If its content is not zero, the program continues at
Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7
JNZ Label4 ; Zero not reached: Go to Label4
... ; Yes, R7 = 0. Continue here.

181SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

MOV[.W] Move source word to destination word
MOV.B Move source byte to destination byte
Syntax MOV src,dst or MOV.W src,dst

MOV.B src,dst

Operation src → dst
Description The source operand is copied to the destination. The source operand is not affected.
Status Bits N: Not affected

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Move a 16-bit constant 1800h to absolute address-word EDE (lower 64 K)

MOV #01800h,&EDE ; Move 1800h to EDE

Example The contents of table EDE (word data, 16-bit addresses) are copied to table TOM. The
length of the tables is 030h words. Both tables reside in the lower 64 K.

MOV #EDE,R10 ; Prepare pointer (16-bit address)
Loop MOV @R10+,TOM-EDE-2(R10) ; R10 points to both tables.

; R10+2
CMP #EDE+60h,R10 ; End of table reached?
JLO Loop ; Not yet
... ; Copy completed

Example The contents of table EDE (byte data, 16-bit addresses) are copied to table TOM. The
length of the tables is 020h bytes. Both tables may reside in full memory range, but must
be within R10 ± 32 K.

MOVA #EDE,R10 ; Prepare pointer (20-bit)
MOV #20h,R9 ; Prepare counter

Loop MOV.B @R10+,TOM-EDE-1(R10) ; R10 points to both tables.
; R10+1

DEC R9 ; Decrement counter
JNZ Loop ; Not yet done
... ; Copy completed

182 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

* NOP No operation
Syntax NOP

Operation None
Emulation MOV #0, R3

Description No operation is performed. The instruction may be used for the elimination of instructions
during the software check or for defined waiting times.

Status Bits Status bits are not affected.

183SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* POP[.W] Pop word from stack to destination
* POP.B Pop byte from stack to destination
Syntax POP dst

POP.B dst

Operation @SP → temp
SP + 2 → SP
temp → dst

Emulation MOV @SP+,dst or MOV.W @SP+,dst

MOV.B @SP+,dst

Description The stack location pointed to by the SP (TOS) is moved to the destination. The SP is
incremented by two afterwards.

Status Bits Status bits are not affected.
Example The contents of R7 and the SR are restored from the stack.

POP R7 ; Restore R7
POP SR ; Restore status register

Example The contents of RAM byte LEO is restored from the stack.

POP.B LEO ; The low byte of the stack is moved to LEO.

Example The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,
; the high byte of R7 is 00h

Example The contents of the memory pointed to by R7 and the SR are restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 = 203h
; Mem(R7) = low byte of system stack
: Example: R7 = 20Ah
; Mem(R7) = low byte of system stack

POP SR ; Last word on stack moved to the SR

NOTE: System stack pointer

The system SP is always incremented by two, independent of the byte suffix.

184 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

PUSH[.W] Save a word on the stack
PUSH.B Save a byte on the stack
Syntax PUSH dst or PUSH.W dst

PUSH.B dst

Operation SP – 2 → SP
dst → @SP

Description The 20-bit SP SP is decremented by two. The operand is then copied to the RAM word
addressed by the SP. A pushed byte is stored in the low byte; the high byte is not
affected.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Save the two 16-bit registers R9 and R10 on the stack

PUSH R9 ; Save R9 and R10 XXXXh
PUSH R10 ; YYYYh

Example Save the two bytes EDE and TONI on the stack. The addresses EDE and TONI are
within PC ± 32 K.

PUSH.B EDE ; Save EDE xxXXh
PUSH.B TONI ; Save TONI xxYYh

185SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Item n

PC
Return

Item n

Stack before RET

instruction

Stack after RET

instruction

SP

SP

Instruction Set Description www.ti.com

RET Return from subroutine
Syntax RET

Operation @SP →PC.15:0 Saved PC to PC.15:0. PC.19:16 ← 0
SP + 2 → SP

Description The 16-bit return address (lower 64 K), pushed onto the stack by a CALL instruction is
restored to the PC. The program continues at the address following the subroutine call.
The four MSBs of the PC.19:16 are cleared.

Status Bits Status bits are not affected.
PC.19:16: Cleared

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Call a subroutine SUBR in the lower 64 K and return to the address in the lower 64 K

after the CALL.

CALL #SUBR ; Call subroutine starting at SUBR
... ; Return by RET to here

SUBR PUSH R14 ; Save R14 (16 bit data)
... ; Subroutine code
POP R14 ; Restore R14
RET ; Return to lower 64 K

Figure 4-37. Stack After a RET Instruction

186 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

RETI Return from interrupt
Syntax RETI

Operation @SP → SR.15:0 Restore saved SR with PC.19:16
SP + 2 → SP
@SP → PC.15:0 Restore saved PC.15:0
SP + 2 → SP Housekeeping

Description The SR is restored to the value at the beginning of the interrupt service routine. This
includes the four MSBs of the PC.19:16. The SP is incremented by two afterward.
The 20-bit PC is restored from PC.19:16 (from same stack location as the status bits)
and PC.15:0. The 20-bit PC is restored to the value at the beginning of the interrupt
service routine. The program continues at the address following the last executed
instruction when the interrupt was granted. The SP is incremented by two afterward.

Status Bits N: Restored from stack
C: Restored from stack
Z: Restored from stack
V: Restored from stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from stack.
Example Interrupt handler in the lower 64 K. A 20-bit return address is stored on the stack.

INTRPT PUSHM.A #2,R14 ; Save R14 and R13 (20-bit data)
... ; Interrupt handler code
POPM.A #2,R14 ; Restore R13 and R14 (20-bit data)
RETI ; Return to 20-bit address in full memory range

187SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

15 0

7 0

C

Byte

Word

0

Instruction Set Description www.ti.com

* RLA[.W] Rotate left arithmetically
* RLA.B Rotate left arithmetically
Syntax RLA dst or RLA.W dst

RLA.B dst

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← 0
Emulation ADD dst,dst ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 4-38. The MSB is
shifted into the carry bit (C) and the LSB is filled with 0. The RLA instruction acts as a
signed multiplication by 2.
An overflow occurs if dst ≥ 04000h and dst < 0C000h before operation is performed; the
result has changed sign.

Figure 4-38. Destination Operand—Arithmetic Shift Left

An overflow occurs if dst ≥ 040h and dst < 0C0h before the operation is performed; the
result has changed sign.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs; the initial value is 04000h ≤ dst < 0C000h,

reset otherwise
Set if an arithmetic overflow occurs; the initial value is 040h ≤ dst < 0C0h, reset
otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R7 is multiplied by 2.

RLA R7 ; Shift left R7 (x 2)

Example The low byte of R7 is multiplied by 4.

RLA.B R7 ; Shift left low byte of R7 (x 2)
RLA.B R7 ; Shift left low byte of R7 (x 4)

NOTE: RLA substitution

The assembler does not recognize the instructions:

RLA @R5+ RLA.B @R5+ RLA(.B) @R5

They must be substituted by:

ADD @R5+,-2(R5) ADD.B @R5+,-1(R5) ADD(.B) @R5

188 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

15 0

7 0

C

Byte

Word

www.ti.com Instruction Set Description

* RLC[.W] Rotate left through carry
* RLC.B Rotate left through carry
Syntax RLC dst or RLC.W dst

RLC.B dst

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← C
Emulation ADDC dst,dst

Description The destination operand is shifted left one position as shown in Figure 4-39. The carry bit
(C) is shifted into the LSB, and the MSB is shifted into the carry bit (C).

Figure 4-39. Destination Operand—Carry Left Shift
Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs; the initial value is 04000h ≤ dst < 0C000h,

reset otherwise
Set if an arithmetic overflow occurs; the initial value is 040h ≤ dst < 0C0h, reset
otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R5 is shifted left one position.

RLC R5 ; (R5 x 2) + C -> R5

Example The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information -> Carry
RLC R5 ; Carry=P0in.1 -> LSB of R5

Example The MEM(LEO) content is shifted left one position.

RLC.B LEO ; Mem(LEO) x 2 + C -> Mem(LEO)

NOTE: RLA substitution

The assembler does not recognize the instructions:

RLC @R5+ RLC.B @R5+ RLC(.B) @R5

They must be substituted by:

ADDC @R5+,-2(R5) ADDC.B @R5+,-1(R5) ADDC(.B) @R5

189SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

C

19 0

MSB0 0 0 0 0 0 0

715

0 0 0 0 0 LSB

C

19 0

MSB0 0 0 0

15

LSB

Instruction Set Description www.ti.com

RRA[.W] Rotate right arithmetically destination word
RRA.B Rotate right arithmetically destination byte
Syntax RRA.B dst or RRA.W dst

Operation MSB → MSB → MSB–1 → ... LSB+1 → LSB → C
Description The destination operand is shifted right arithmetically by one bit position as shown in

Figure 4-40. The MSB retains its value (sign). RRA operates equal to a signed division
by 2. The MSB is retained and shifted into the MSB–1. The LSB+1 is shifted into the
LSB. The previous LSB is shifted into the carry bit C.

Status Bits N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 16-bit number in R5 is shifted arithmetically right one position.

RRA R5 ; R5/2 -> R5

Example The signed RAM byte EDE is shifted arithmetically right one position.

RRA.B EDE ; EDE/2 -> EDE

Figure 4-40. Rotate Right Arithmetically RRA.B and RRA.W

190 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

C

19 0

MSB0 0 0 0 0 0 0

715

0 0 0 0 0 LSB

C

19 0

MSB0 0 0 0

15

LSB

www.ti.com Instruction Set Description

RRC[.W] Rotate right through carry destination word
RRC.B Rotate right through carry destination byte
Syntax RRC dst or RRC.W dst

RRC.B dst

Operation C → MSB → MSB–1 → ... LSB+1 → LSB → C
Description The destination operand is shifted right by one bit position as shown in Figure 4-41. The

carry bit C is shifted into the MSB and the LSB is shifted into the carry bit C.
Status Bits N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM word EDE is shifted right one bit position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC EDE ; EDE = EDE >> 1 + 8000h

Figure 4-41. Rotate Right Through Carry RRC.B and RRC.W

191SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* SBC[.W] Subtract borrow (.NOT. carry) from destination
* SBC.B Subtract borrow (.NOT. carry) from destination
Syntax SBC dst or SBC.W dst

SBC.B dst

Operation dst + 0FFFFh + C → dst
dst + 0FFh + C → dst

Emulation SUBC #0,dst

SUBC.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise

Set to 1 if no borrow, reset if borrow
V: Set if an arithmetic overflow occurs, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter pointed to by

R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by
R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

NOTE: Borrow implementation

The borrow is treated as a .NOT. carry:

Borrow Carry Bit
Yes 0
No 1

192 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

* SETC Set carry bit
Syntax SETC

Operation 1 → C
Emulation BIS #1,SR

Description The carry bit (C) is set.
Status Bits N: Not affected

Z: Not affected
C: Set
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Emulation of the decimal subtraction:

Subtract R5 from R6 decimally.
Assume that R5 = 03987h and R6 = 04137h.

DSUB ADD #06666h,R5 ; Move content R5 from 0-9 to 6-0Fh
; R5 = 03987h + 06666h = 09FEDh

INV R5 ; Invert this (result back to 0-9)
; R5 = .NOT. R5 = 06012h

SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h - R5 - 1)
; R6 = R6 + R5 + 1
; R6 = 0150h

193SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* SETN Set negative bit
Syntax SETN

Operation 1 → N
Emulation BIS #4,SR

Description The negative bit (N) is set.
Status Bits N: Set

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

194 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

* SETZ Set zero bit
Syntax SETZ

Operation 1 → N
Emulation BIS #2,SR

Description The zero bit (Z) is set.
Status Bits N: Not affected

Z: Set
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

195SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

SUB[.W] Subtract source word from destination word
SUB.B Subtract source byte from destination byte
Syntax SUB src,dst or SUB.W src,dst

SUB.B src,dst

Operation (.not.src) + 1 + dst → dst or dst – src → dst
Description The source operand is subtracted from the destination operand. This is made by adding

the 1s complement of the source + 1 to the destination. The source operand is not
affected, the result is written to the destination operand.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 16-bit constant 7654h is subtracted from RAM word EDE.

SUB #7654h,&EDE ; Subtract 7654h from EDE

Example A table word pointed to by R5 (20-bit address) is subtracted from R7. Afterwards, if R7
contains zero, jump to label TONI. R5 is then auto-incremented by 2. R7.19:16 = 0.

SUB @R5+,R7 ; Subtract table number from R7. R5 + 2
JZ TONI ; R7 = @R5 (before subtraction)
... ; R7 <> @R5 (before subtraction)

Example Byte CNT is subtracted from byte R12 points to. The address of CNT is within PC ± 32K.
The address R12 points to is in full memory range.

SUB.B CNT,0(R12) ; Subtract CNT from @R12

196 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

SUBC[.W] Subtract source word with carry from destination word
SUBC.B Subtract source byte with carry from destination byte
Syntax SUBC src,dst or SUBC.W src,dst

SUBC.B src,dst

Operation (.not.src) + C + dst → dst or dst – (src – 1) + C → dst
Description The source operand is subtracted from the destination operand. This is done by adding

the 1s complement of the source + carry to the destination. The source operand is not
affected, the result is written to the destination operand. Used for 32, 48, and 64-bit
operands.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 16-bit constant 7654h is subtracted from R5 with the carry from the previous

instruction. R5.19:16 = 0

SUBC.W #7654h,R5 ; Subtract 7654h + C from R5

Example A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from a 48-bit
counter in RAM, pointed to by R7. R5 points to the next 48-bit number afterwards. The
address R7 points to is in full memory range.

SUB @R5+,0(R7) ; Subtract LSBs. R5 + 2
SUBC @R5+,2(R7) ; Subtract MIDs with C. R5 + 2
SUBC @R5+,4(R7) ; Subtract MSBs with C. R5 + 2

Example Byte CNT is subtracted from the byte, R12 points to. The carry of the previous instruction
is used. The address of CNT is in lower 64 K.

SUBC.B &CNT,0(R12) ; Subtract byte CNT from @R12

197SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPB

After SWPB

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPB

After SWPB

0

x

0...

19

19

16

16

Instruction Set Description www.ti.com

SWPB Swap bytes
Syntax SWPB dst

Operation dst.15:8 ↔ dst.7:0
Description The high and the low byte of the operand are exchanged. PC.19:16 bits are cleared in

register mode.
Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Exchange the bytes of RAM word EDE (lower 64 K)

MOV #1234h,&EDE ; 1234h -> EDE
SWPB &EDE ; 3412h -> EDE

Figure 4-42. Swap Bytes in Memory

Figure 4-43. Swap Bytes in a Register

198 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

SXT Extend sign
Syntax SXT dst

Operation dst.7 → dst.15:8, dst.7 → dst.19:8 (register mode)
Description Register mode: the sign of the low byte of the operand is extended into the bits

Rdst.19:8.
Rdst.7 = 0: Rdst.19:8 = 000h afterwards
Rdst.7 = 1: Rdst.19:8 = FFFh afterwards

Other modes: the sign of the low byte of the operand is extended into the high byte.
dst.7 = 0: high byte = 00h afterwards
dst.7 = 1: high byte = FFh afterwards

Status Bits N: Set if result is negative, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 8-bit data in EDE (lower 64 K) is sign extended and added to the 16-bit

signed data in R7.

MOV.B &EDE,R5 ; EDE -> R5. 00XXh
SXT R5 ; Sign extend low byte to R5.19:8
ADD R5,R7 ; Add signed 16-bit values

Example The signed 8-bit data in EDE (PC +32 K) is sign extended and added to the 20-bit data
in R7.

MOV.B EDE,R5 ; EDE -> R5. 00XXh
SXT R5 ; Sign extend low byte to R5.19:8
ADDA R5,R7 ; Add signed 20-bit values

199SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* TST[.W] Test destination
* TST.B Test destination
Syntax TST dst or TST.W dst

TST.B dst

Operation dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMP #0,dst
CMP.B #0,dst

Description The destination operand is compared with zero. The status bits are set according to the
result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero, continue at

R7POS.

TST R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

Example The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive but not
zero, continue at R7POS.

TST.B R7 ; Test low byte of R7
JN R7NEG ; Low byte of R7 is negative
JZ R7ZERO ; Low byte of R7 is zero

R7POS ; Low byte of R7 is positive but not zero
R7NEG ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

200 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

XOR[.W] Exclusive OR source word with destination word
XOR.B Exclusive OR source byte with destination byte
Syntax XOR src,dst or XOR.W src,dst

XOR.B src,dst

Operation src .xor. dst → dst
Description The source and destination operands are exclusively ORed. The result is placed into the

destination. The source operand is not affected. The previous content of the destination
is lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not. Z)
V: Set if both operands are negative before execution, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Toggle bits in word CNTR (16-bit data) with information (bit = 1) in address-word TONI.

Both operands are located in lower 64 K.

XOR &TONI,&CNTR ; Toggle bits in CNTR

Example A table word pointed to by R5 (20-bit address) is used to toggle bits in R6. R6.19:16 = 0.

XOR @R5,R6 ; Toggle bits in R6

Example Reset to zero those bits in the low byte of R7 that are different from the bits in byte EDE.
R7.19:8 = 0. The address of EDE is within PC ± 32 K.

XOR.B EDE,R7 ; Set different bits to 1 in R7.
INV.B R7 ; Invert low byte of R7, high byte is 0h

201SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

4.6.3 Extended Instructions

The extended MSP430X instructions give the MSP430X CPU full access to its 20-bit address space.
MSP430X instructions require an additional word of op-code called the extension word. All addresses,
indexes, and immediate numbers have 20-bit values when preceded by the extension word. The
MSP430X extended instructions are listed and described in the following pages.

202 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

* ADCX.A Add carry to destination address-word
* ADCX.[W] Add carry to destination word
* ADCX.B Add carry to destination byte
Syntax ADCX.A dst

ADCX dst or ADCX.W dst

ADCX.B dst

Operation dst + C → dst
Emulation ADDCX.A #0,dst

ADDCX #0,dst

ADDCX.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents of the
destination are lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 40-bit counter, pointed to by R12 and R13, is incremented.

INCX.A @R12 ; Increment lower 20 bits
ADCX.A @R13 ; Add carry to upper 20 bits

203SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

ADDX.A Add source address-word to destination address-word
ADDX.[W] Add source word to destination word
ADDX.B Add source byte to destination byte
Syntax ADDX.A src,dst

ADDX src,dst or ADDX.W src,dst

ADDX.B src,dst

Operation src + dst → dst
Description The source operand is added to the destination operand. The previous contents of the

destination are lost. Both operands can be located in the full address space.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Ten is added to the 20-bit pointer CNTR located in two words CNTR (LSBs) and

CNTR+2 (MSBs).

ADDX.A #10,CNTR ; Add 10 to 20-bit pointer

Example A table word (16-bit) pointed to by R5 (20-bit address) is added to R6. The jump to label
TONI is performed on a carry.

ADDX.W @R5,R6 ; Add table word to R6
JC TONI ; Jump if carry
... ; No carry

Example A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is
performed if no carry occurs. The table pointer is auto-incremented by 1.

ADDX.B @R5+,R6 ; Add table byte to R6. R5 + 1. R6: 000xxh
JNC TONI ; Jump if no carry
... ; Carry occurred

Note: Use ADDA for the following two cases for better code density and execution.

ADDX.A Rsrc,Rdst
ADDX.A #imm20,Rdst

204 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

ADDCX.A Add source address-word and carry to destination address-word
ADDCX.[W] Add source word and carry to destination word
ADDCX.B Add source byte and carry to destination byte
Syntax ADDCX.A src,dst

ADDCX src,dst or ADDCX.W src,dst

ADDCX.B src,dst

Operation src + dst + C → dst
Description The source operand and the carry bit C are added to the destination operand. The

previous contents of the destination are lost. Both operands may be located in the full
address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Constant 15 and the carry of the previous instruction are added to the 20-bit counter

CNTR located in two words.

ADDCX.A #15,&CNTR ; Add 15 + C to 20-bit CNTR

Example A table word pointed to by R5 (20-bit address) and the carry C are added to R6. The
jump to label TONI is performed on a carry.

ADDCX.W @R5,R6 ; Add table word + C to R6
JC TONI ; Jump if carry
... ; No carry

Example A table byte pointed to by R5 (20-bit address) and the carry bit C are added to R6. The
jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented
by 1.

ADDCX.B @R5+,R6 ; Add table byte + C to R6. R5 + 1
JNC TONI ; Jump if no carry
... ; Carry occurred

205SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

ANDX.A Logical AND of source address-word with destination address-word
ANDX.[W] Logical AND of source word with destination word
ANDX.B Logical AND of source byte with destination byte
Syntax ANDX.A src,dst

ANDX src,dst or ANDX.W src,dst

ANDX.B src,dst

Operation src .and. dst → dst
Description The source operand and the destination operand are logically ANDed. The result is

placed into the destination. The source operand is not affected. Both operands may be
located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits set in R5 (20-bit data) are used as a mask (AAA55h) for the address-word TOM

located in two words. If the result is zero, a branch is taken to label TONI.

MOVA #AAA55h,R5 ; Load 20-bit mask to R5
ANDX.A R5,TOM ; TOM .and. R5 -> TOM
JZ TONI ; Jump if result 0
... ; Result > 0

or shorter:

ANDX.A #AAA55h,TOM ; TOM .and. AAA55h -> TOM
JZ TONI ; Jump if result 0

Example A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R6.19:8 = 0.
The table pointer is auto-incremented by 1.

ANDX.B @R5+,R6 ; AND table byte with R6. R5 + 1

206 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

BICX.A Clear bits set in source address-word in destination address-word
BICX.[W] Clear bits set in source word in destination word
BICX.B Clear bits set in source byte in destination byte
Syntax BICX.A src,dst

BICX src,dst or BICX.W src,dst

BICX.B src,dst

Operation (.not. src) .and. dst → dst
Description The inverted source operand and the destination operand are logically ANDed. The

result is placed into the destination. The source operand is not affected. Both operands
may be located in the full address space.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits 19:15 of R5 (20-bit data) are cleared.

BICX.A #0F8000h,R5 ; Clear R5.19:15 bits

Example A table word pointed to by R5 (20-bit address) is used to clear bits in R7. R7.19:16 = 0.

BICX.W @R5,R7 ; Clear bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to clear bits in output Port1.

BICX.B @R5,&P1OUT ; Clear I/O port P1 bits

207SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

BISX.A Set bits set in source address-word in destination address-word
BISX.[W] Set bits set in source word in destination word
BISX.B Set bits set in source byte in destination byte
Syntax BISX.A src,dst

BISX src,dst or BISX.W src,dst

BISX.B src,dst

Operation src .or. dst → dst
Description The source operand and the destination operand are logically ORed. The result is placed

into the destination. The source operand is not affected. Both operands may be located
in the full address space.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Bits 16 and 15 of R5 (20-bit data) are set to one.

BISX.A #018000h,R5 ; Set R5.16:15 bits

Example A table word pointed to by R5 (20-bit address) is used to set bits in R7.

BISX.W @R5,R7 ; Set bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to set bits in output Port1.

BISX.B @R5,&P1OUT ; Set I/O port P1 bits

208 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

BITX.A Test bits set in source address-word in destination address-word
BITX.[W] Test bits set in source word in destination word
BITX.B Test bits set in source byte in destination byte
Syntax BITX.A src,dst

BITX src,dst or BITX.W src,dst

BITX.B src,dst

Operation src .and. dst → dst
Description The source operand and the destination operand are logically ANDed. The result affects

only the status bits. Both operands may be located in the full address space.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Test if bit 16 or 15 of R5 (20-bit data) is set. Jump to label TONI if so.

BITX.A #018000h,R5 ; Test R5.16:15 bits
JNZ TONI ; At least one bit is set
... ; Both are reset

Example A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to label
TONI if at least one bit is set.

BITX.W @R5,R7 ; Test bits in R7: C = .not.Z
JC TONI ; At least one is set
... ; Both are reset

Example A table byte pointed to by R5 (20-bit address) is used to test bits in input Port1. Jump to
label TONI if no bit is set. The next table byte is addressed.

BITX.B @R5+,&P1IN ; Test input P1 bits. R5 + 1
JNC TONI ; No corresponding input bit is set
... ; At least one bit is set

209SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* CLRX.A Clear destination address-word
* CLRX.[W] Clear destination word
* CLRX.B Clear destination byte
Syntax CLRX.A dst

CLRX dst or CLRX.W dst

CLRX.B dst

Operation 0 → dst
Emulation MOVX.A #0,dst

MOVX #0,dst

MOVX.B #0,dst

Description The destination operand is cleared.
Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is cleared.

CLRX.A TONI ; 0 -> TONI

210 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

CMPX.A Compare source address-word and destination address-word
CMPX.[W] Compare source word and destination word
CMPX.B Compare source byte and destination byte
Syntax CMPX.A src,dst

CMPX src,dst or CMPX.W src,dst

CMPX.B src,dst

Operation (.not. src) + 1 + dst or dst – src
Description The source operand is subtracted from the destination operand by adding the 1s

complement of the source + 1 to the destination. The result affects only the status bits.
Both operands may be located in the full address space.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Compare EDE with a 20-bit constant 18000h. Jump to label TONI if EDE equals the

constant.

CMPX.A #018000h,EDE ; Compare EDE with 18000h
JEQ TONI ; EDE contains 18000h
... ; Not equal

Example A table word pointed to by R5 (20-bit address) is compared with R7. Jump to label TONI
if R7 contains a lower, signed, 16-bit number.

CMPX.W @R5,R7 ; Compare two signed numbers
JL TONI ; R7 < @R5
... ; R7 >= @R5

Example A table byte pointed to by R5 (20-bit address) is compared to the input in I/O Port1.
Jump to label TONI if the values are equal. The next table byte is addressed.

CMPX.B @R5+,&P1IN ; Compare P1 bits with table. R5 + 1
JEQ TONI ; Equal contents
... ; Not equal

Note: Use CMPA for the following two cases for better density and execution.

CMPA Rsrc,Rdst
CMPA #imm20,Rdst

211SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* DADCX.A Add carry decimally to destination address-word
* DADCX.[W] Add carry decimally to destination word
* DADCX.B Add carry decimally to destination byte
Syntax DADCX.A dst

DADCX dst or DADCX.W dst

DADCX.B dst

Operation dst + C → dst (decimally)
Emulation DADDX.A #0,dst

DADDX #0,dst

DADDX.B #0,dst

Description The carry bit (C) is added decimally to the destination.
Status Bits N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h, byte > 79h), reset

if MSB is 0
Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (address-word > 99999h, word > 9999h, byte >

99h), reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 40-bit counter, pointed to by R12 and R13, is incremented decimally.

DADDX.A #1,0(R12) ; Increment lower 20 bits
DADCX.A 0(R13) ; Add carry to upper 20 bits

212 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

DADDX.A Add source address-word and carry decimally to destination address-word
DADDX.[W] Add source word and carry decimally to destination word
DADDX.B Add source byte and carry decimally to destination byte
Syntax DADDX.A src,dst

DADDX src,dst or DADDX.W src,dst

DADDX.B src,dst

Operation src + dst + C → dst (decimally)
Description The source operand and the destination operand are treated as two (.B), four (.W), or

five (.A) binary coded decimals (BCD) with positive signs. The source operand and the
carry bit C are added decimally to the destination operand. The source operand is not
affected. The previous contents of the destination are lost. The result is not defined for
non-BCD numbers. Both operands may be located in the full address space.

Status Bits N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h, byte > 79h), reset
if MSB is 0.

Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (address-word > 99999h, word > 9999h, byte >

99h), reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Decimal 10 is added to the 20-bit BCD counter DECCNTR located in two words.

DADDX.A #10h,&DECCNTR ; Add 10 to 20-bit BCD counter

Example The eight-digit BCD number contained in 20-bit addresses BCD and BCD+2 is added
decimally to an eight-digit BCD number contained in R4 and R5 (BCD+2 and R5 contain
the MSDs).

CLRC ; Clear carry
DADDX.W BCD,R4 ; Add LSDs
DADDX.W BCD+2,R5 ; Add MSDs with carry
JC OVERFLOW ; Result >99999999: go to error routine
... ; Result ok

Example The two-digit BCD number contained in 20-bit address BCD is added decimally to a
two-digit BCD number contained in R4.

CLRC ; Clear carry
DADDX.B BCD,R4 ; Add BCD to R4 decimally.

; R4: 000ddh

213SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* DECX.A Decrement destination address-word
* DECX.[W] Decrement destination word
* DECX.B Decrement destination byte
Syntax DECX.A dst

DECX dst or DECX.W dst

DECX.B dst

Operation dst – 1 → dst
Emulation SUBX.A #1,dst

SUBX #1,dst

SUBX.B #1,dst

Description The destination operand is decremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is decremented by one.

DECX.A TONI ; Decrement TONI

214 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

* DECDX.A Double-decrement destination address-word
* DECDX.[W] Double-decrement destination word
* DECDX.B Double-decrement destination byte
Syntax DECDX.A dst

DECDX dst or DECDX.W dst

DECDX.B dst

Operation dst – 2 → dst
Emulation SUBX.A #2,dst

SUBX #2,dst

SUBX.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is decremented by two.

DECDX.A TONI ; Decrement TONI

215SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* INCX.A Increment destination address-word
* INCX.[W] Increment destination word
* INCX.B Increment destination byte
Syntax INCX.A dst

INCX dst or INCX.W dst

INCX.B dst

Operation dst + 1 → dst
Emulation ADDX.A #1,dst

ADDX #1,dst

ADDX.B #1,dst

Description The destination operand is incremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFFh, reset otherwise
Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if dst contained 0FFFFFh, reset otherwise
Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-wordTONI is incremented by one.

INCX.A TONI ; Increment TONI (20-bits)

216 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

* INCDX.A Double-increment destination address-word
* INCDX.[W] Double-increment destination word
* INCDX.B Double-increment destination byte
Syntax INCDX.A dst

INCDX dst or INCDX.W dst

INCDX.B dst

Operation dst + 2 → dst
Emulation ADDX.A #2,dst

ADDX #2,dst

ADDX.B #2,dst

Description The destination operand is incremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFEh, reset otherwise
Set if dst contained 0FFFEh, reset otherwise
Set if dst contained 0FEh, reset otherwise

C: Set if dst contained 0FFFFEh or 0FFFFFh, reset otherwise
Set if dst contained 0FFFEh or 0FFFFh, reset otherwise
Set if dst contained 0FEh or 0FFh, reset otherwise

V: Set if dst contained 07FFFEh or 07FFFFh, reset otherwise
Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM byte LEO is incremented by two; PC points to upper memory.

INCDX.B LEO ; Increment LEO by two

217SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* INVX.A Invert destination
* INVX.[W] Invert destination
* INVX.B Invert destination
Syntax INVX.A dst

INVX dst or INVX.W dst

INVX.B dst

Operation .NOT.dst → dst
Emulation XORX.A #0FFFFFh,dst

XORX #0FFFFh,dst

XORX.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFFh, reset otherwise
Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example 20-bit content of R5 is negated (2s complement).

INVX.A R5 ; Invert R5
INCX.A R5 ; R5 is now negated

Example Content of memory byte LEO is negated. PC is pointing to upper memory.

INVX.B LEO ; Invert LEO
INCX.B LEO ; MEM(LEO) is negated

218 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

MOVX.A Move source address-word to destination address-word
MOVX.[W] Move source word to destination word
MOVX.B Move source byte to destination byte
Syntax MOVX.A src,dst

MOVX src,dst or MOVX.W src,dst

MOVX.B src,dst

Operation src → dst
Description The source operand is copied to the destination. The source operand is not affected.

Both operands may be located in the full address space.
Status Bits N: Not affected

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Move a 20-bit constant 18000h to absolute address-word EDE

MOVX.A #018000h,&EDE ; Move 18000h to EDE

Example The contents of table EDE (word data, 20-bit addresses) are copied to table TOM. The
length of the table is 030h words.

MOVA #EDE,R10 ; Prepare pointer (20-bit address)
Loop MOVX.W @R10+,TOM-EDE-2(R10) ; R10 points to both tables.

; R10+2
CMPA #EDE+60h,R10 ; End of table reached?
JLO Loop ; Not yet
... ; Copy completed

Example The contents of table EDE (byte data, 20-bit addresses) are copied to table TOM. The
length of the table is 020h bytes.

MOVA #EDE,R10 ; Prepare pointer (20-bit)
MOV #20h,R9 ; Prepare counter

Loop MOVX.W @R10+,TOM-EDE-2(R10) ; R10 points to both tables.
; R10+1

DEC R9 ; Decrement counter
JNZ Loop ; Not yet done
... ; Copy completed

Ten of the 28 possible addressing combinations of the MOVX.A instruction can use the
MOVA instruction. This saves two bytes and code cycles. Examples for the addressing
combinations are:

MOVX.A Rsrc,Rdst MOVA Rsrc,Rdst ; Reg/Reg
MOVX.A #imm20,Rdst MOVA #imm20,Rdst ; Immediate/Reg
MOVX.A &abs20,Rdst MOVA &abs20,Rdst ; Absolute/Reg
MOVX.A @Rsrc,Rdst MOVA @Rsrc,Rdst ; Indirect/Reg
MOVX.A @Rsrc+,Rdst MOVA @Rsrc+,Rdst ; Indirect,Auto/Reg
MOVX.A Rsrc,&abs20 MOVA Rsrc,&abs20 ; Reg/Absolute

The next four replacements are possible only if 16-bit indexes are sufficient for the
addressing:

219SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

MOVX.A z20(Rsrc),Rdst MOVA z16(Rsrc),Rdst ; Indexed/Reg
MOVX.A Rsrc,z20(Rdst) MOVA Rsrc,z16(Rdst) ; Reg/Indexed
MOVX.A symb20,Rdst MOVA symb16,Rdst ; Symbolic/Reg
MOVX.A Rsrc,symb20 MOVA Rsrc,symb16 ; Reg/Symbolic

220 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

POPM.A Restore n CPU registers (20-bit data) from the stack
POPM.[W] Restore n CPU registers (16-bit data) from the stack
Syntax POPM.A #n,Rdst 1 ≤ n ≤ 16

POPM.W #n,Rdst or POPM #n,Rdst 1 ≤ n ≤ 16
Operation POPM.A: Restore the register values from stack to the specified CPU registers. The SP

is incremented by four for each register restored from stack. The 20-bit values from
stack (two words per register) are restored to the registers.
POPM.W: Restore the 16-bit register values from stack to the specified CPU registers.
The SP is incremented by two for each register restored from stack. The 16-bit values
from stack (one word per register) are restored to the CPU registers.
Note : This instruction does not use the extension word.

Description POPM.A: The CPU registers pushed on the stack are moved to the extended CPU
registers, starting with the CPU register (Rdst – n + 1). The SP is incremented by (n ×
4) after the operation.
POPM.W: The 16-bit registers pushed on the stack are moved back to the CPU
registers, starting with CPU register (Rdst – n + 1). The SP is incremented by (n × 2)
after the instruction. The MSBs (Rdst.19:16) of the restored CPU registers are cleared.

Status Bits Status bits are not affected, except SR is included in the operation.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Restore the 20-bit registers R9, R10, R11, R12, R13 from the stack

POPM.A #5,R13 ; Restore R9, R10, R11, R12, R13

Example Restore the 16-bit registers R9, R10, R11, R12, R13 from the stack.

POPM.W #5,R13 ; Restore R9, R10, R11, R12, R13

221SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

PUSHM.A Save n CPU registers (20-bit data) on the stack
PUSHM.[W] Save n CPU registers (16-bit words) on the stack
Syntax PUSHM.A #n,Rdst 1 ≤ n ≤ 16

PUSHM.W #n,Rdst or PUSHM #n,Rdst 1 ≤ n ≤ 16
Operation PUSHM.A: Save the 20-bit CPU register values on the stack. The SP is decremented

by four for each register stored on the stack. The MSBs are stored first (higher
address).
PUSHM.W: Save the 16-bit CPU register values on the stack. The SP is decremented
by two for each register stored on the stack.

Description PUSHM.A: The n CPU registers, starting with Rdst backwards, are stored on the stack.
The SP is decremented by (n × 4) after the operation. The data (Rn.19:0) of the pushed
CPU registers is not affected.
PUSHM.W: The n registers, starting with Rdst backwards, are stored on the stack. The
SP is decremented by (n × 2) after the operation. The data (Rn.19:0) of the pushed
CPU registers is not affected.
Note : This instruction does not use the extension word.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Save the five 20-bit registers R9, R10, R11, R12, R13 on the stack

PUSHM.A #5,R13 ; Save R13, R12, R11, R10, R9

Example Save the five 16-bit registers R9, R10, R11, R12, R13 on the stack

PUSHM.W #5,R13 ; Save R13, R12, R11, R10, R9

222 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

* POPX.A Restore single address-word from the stack
* POPX.[W] Restore single word from the stack
* POPX.B Restore single byte from the stack
Syntax POPX.A dst

POPX dst or POPX.W dst

POPX.B dst

Operation Restore the 8-/16-/20-bit value from the stack to the destination. 20-bit addresses are
possible. The SP is incremented by two (byte and word operands) and by four
(address-word operand).

Emulation MOVX(.B,.A) @SP+,dst

Description The item on TOS is written to the destination operand. Register mode, Indexed mode,
Symbolic mode, and Absolute mode are possible. The SP is incremented by two or
four.
Note: the SP is incremented by two also for byte operations.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Write the 16-bit value on TOS to the 20-bit address &EDE

POPX.W &EDE ; Write word to address EDE

Example Write the 20-bit value on TOS to R9

POPX.A R9 ; Write address-word to R9

223SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

PUSHX.A Save single address-word to the stack
PUSHX.[W] Save single word to the stack
PUSHX.B Save single byte to the stack
Syntax PUSHX.A src

PUSHX src or PUSHX.W src

PUSHX.B src

Operation Save the 8-/16-/20-bit value of the source operand on the TOS. 20-bit addresses are
possible. The SP is decremented by two (byte and word operands) or by four
(address-word operand) before the write operation.

Description The SP is decremented by two (byte and word operands) or by four (address-word
operand). Then the source operand is written to the TOS. All seven addressing modes
are possible for the source operand.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Save the byte at the 20-bit address &EDE on the stack

PUSHX.B &EDE ; Save byte at address EDE

Example Save the 20-bit value in R9 on the stack.

PUSHX.A R9 ; Save address-word in R9

224 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

16

0

0

www.ti.com Instruction Set Description

RLAM.A Rotate left arithmetically the 20-bit CPU register content
RLAM.[W] Rotate left arithmetically the 16-bit CPU register content
Syntax RLAM.A #n,Rdst 1 ≤ n ≤ 4

RLAM.W #n,Rdst or RLAM #n,Rdst 1 ≤ n ≤ 4
Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← 0
Description The destination operand is shifted arithmetically left one, two, three, or four positions as

shown in Figure 4-44. RLAM works as a multiplication (signed and unsigned) with 2, 4,
8, or 16. The word instruction RLAM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the MSB (n = 1), MSB-1 (n = 2), MSB-2 (n = 3), MSB-3 (n = 4)
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit operand in R5 is shifted left by three positions. It operates equal to an

arithmetic multiplication by 8.

RLAM.A #3,R5 ; R5 = R5 x 8

Figure 4-44. Rotate Left Arithmetically—RLAM[.W] and RLAM.A

225SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MSB 0

C 0

Instruction Set Description www.ti.com

* RLAX.A Rotate left arithmetically address-word
* RLAX.[W] Rotate left arithmetically word
* RLAX.B Rotate left arithmetically byte
Syntax RLAX.A dst

RLAX dst or RLAX.W dst

RLAX.B dst

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← 0
Emulation ADDX.A dst,dst

ADDX dst,dst

ADDX.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 4-45. The MSB
is shifted into the carry bit (C) and the LSB is filled with 0. The RLAX instruction acts as
a signed multiplication by 2.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs: the initial value is 040000h ≤ dst < 0C0000h;

reset otherwise
Set if an arithmetic overflow occurs: the initial value is 04000h ≤ dst < 0C000h;
reset otherwise
Set if an arithmetic overflow occurs: the initial value is 040h ≤ dst < 0C0h; reset
otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R7 is multiplied by 2

RLAX.A R7 ; Shift left R7 (20-bit)

Figure 4-45. Destination Operand-Arithmetic Shift Left

226 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MSB 0

C

www.ti.com Instruction Set Description

* RLCX.A Rotate left through carry address-word
* RLCX.[W] Rotate left through carry word
* RLCX.B Rotate left through carry byte
Syntax RLCX.A dst

RLCX dst or RLCX.W dst

RLCX.B dst

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← C
Emulation ADDCX.A dst,dst

ADDCX dst,dst

ADDCX.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 4-46. The carry
bit (C) is shifted into the LSB and the MSB is shifted into the carry bit (C).

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs: the initial value is 040000h ≤ dst < 0C0000h;

reset otherwise
Set if an arithmetic overflow occurs: the initial value is 04000h ≤ dst < 0C000h;
reset otherwise
Set if an arithmetic overflow occurs: the initial value is 040h ≤ dst < 0C0h; reset
otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is shifted left one position.

RLCX.A R5 ; (R5 x 2) + C -> R5

Example The RAM byte LEO is shifted left one position. PC is pointing to upper memory.

RLCX.B LEO ; RAM(LEO) x 2 + C -> RAM(LEO)

Figure 4-46. Destination Operand-Carry Left Shift

227SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

16

Instruction Set Description www.ti.com

RRAM.A Rotate right arithmetically the 20-bit CPU register content
RRAM.[W] Rotate right arithmetically the 16-bit CPU register content
Syntax RRAM.A #n,Rdst 1 ≤ n ≤ 4

RRAM.W #n,Rdst or RRAM #n,Rdst 1 ≤ n ≤ 4
Operation MSB → MSB → MSB–1 ... LSB+1 → LSB → C
Description The destination operand is shifted right arithmetically by one, two, three, or four bit

positions as shown in Figure 4-47. The MSB retains its value (sign). RRAM operates
equal to a signed division by 2/4/8/16. The MSB is retained and shifted into MSB-1. The
LSB+1 is shifted into the LSB, and the LSB is shifted into the carry bit C. The word
instruction RRAM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 20-bit number in R5 is shifted arithmetically right two positions.

RRAM.A #2,R5 ; R5/4 -> R5

Example The signed 20-bit value in R15 is multiplied by 0.75. (0.5 + 0.25) × R15.

PUSHM.A #1,R15 ; Save extended R15 on stack
RRAM.A #1,R15 ; R15 y 0.5 -> R15
ADDX.A @SP+,R15 ; R15 y 0.5 + R15 = 1.5 y R15 -> R15
RRAM.A #1,R15 ; (1.5 y R15) y 0.5 = 0.75 y R15 -> R15

Figure 4-47. Rotate Right Arithmetically RRAM[.W] and RRAM.A

228 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

RRAX.A Rotate right arithmetically the 20-bit operand
RRAX.[W] Rotate right arithmetically the 16-bit operand
RRAX.B Rotate right arithmetically the 8-bit operand
Syntax RRAX.A Rdst

RRAX.W Rdst

RRAX Rdst

RRAX.B Rdst

RRAX.A dst

RRAX dst or RRAX.W dst

RRAX.B dst

Operation MSB → MSB → MSB–1 ... LSB+1 → LSB → C
Description Register mode for the destination: the destination operand is shifted right by one bit

position as shown in Figure 4-48. The MSB retains its value (sign). The word instruction
RRAX.W clears the bits Rdst.19:16, the byte instruction RRAX.B clears the bits
Rdst.19:8. The MSB retains its value (sign), the LSB is shifted into the carry bit. RRAX
here operates equal to a signed division by 2.
All other modes for the destination: the destination operand is shifted right arithmetically
by one bit position as shown in Figure 4-49. The MSB retains its value (sign), the LSB
is shifted into the carry bit. RRAX here operates equal to a signed division by 2. All
addressing modes, with the exception of the Immediate mode, are possible in the full
memory.

Status Bits N: Set if result is negative, reset if positive
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 20-bit number in R5 is shifted arithmetically right four positions.

RPT #4
RRAX.A R5 ; R5/16 -> R5

Example The signed 8-bit value in EDE is multiplied by 0.5.

229SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

819

0 0

19 16

0000

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

31 20

0 0

Instruction Set Description www.ti.com

RRAX.B &EDE ; EDE/2 -> EDE

Figure 4-48. Rotate Right Arithmetically RRAX(.B,.A) – Register Mode

Figure 4-49. Rotate Right Arithmetically RRAX(.B,.A) – Non-Register Mode

230 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

C

19 0

MSB0

15

LSB

C

19 0

MSB LSB

16

www.ti.com Instruction Set Description

RRCM.A Rotate right through carry the 20-bit CPU register content
RRCM.[W] Rotate right through carry the 16-bit CPU register content
Syntax RRCM.A #n,Rdst 1 ≤ n ≤ 4

RRCM.W #n,Rdst or RRCM #n,Rdst 1 ≤ n ≤ 4
Operation C → MSB → MSB–1 ... LSB+1 → LSB → C
Description The destination operand is shifted right by one, two, three, or four bit positions as

shown in Figure 4-50. The carry bit C is shifted into the MSB, the LSB is shifted into the
carry bit. The word instruction RRCM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The address-word in R5 is shifted right by three positions. The MSB–2 is loaded with 1.

SETC ; Prepare carry for MSB-2
RRCM.A #3,R5 ; R5 = R5 » 3 + 20000h

Example The word in R6 is shifted right by two positions. The MSB is loaded with the LSB. The
MSB–1 is loaded with the contents of the carry flag.

RRCM.W #2,R6 ; R6 = R6 » 2. R6.19:16 = 0

Figure 4-50. Rotate Right Through Carry RRCM[.W] and RRCM.A

231SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

RRCX.A Rotate right through carry the 20-bit operand
RRCX.[W] Rotate right through carry the 16-bit operand
RRCX.B Rotate right through carry the 8-bit operand
Syntax RRCX.A Rdst

RRCX.W Rdst

RRCX Rdst

RRCX.B Rdst

RRCX.A dst

RRCX dst or RRCX.W dst

RRCX.B dst

Operation C → MSB → MSB–1 ... LSB+1 → LSB → C
Description Register mode for the destination: the destination operand is shifted right by one bit

position as shown in Figure 4-51. The word instruction RRCX.W clears the bits
Rdst.19:16, the byte instruction RRCX.B clears the bits Rdst.19:8. The carry bit C is
shifted into the MSB, the LSB is shifted into the carry bit.
All other modes for the destination: the destination operand is shifted right by one bit
position as shown in Figure 4-52. The carry bit C is shifted into the MSB, the LSB is
shifted into the carry bit. All addressing modes, with the exception of the Immediate
mode, are possible in the full memory.

Status Bits N: Set if result is negative
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit operand at address EDE is shifted right by one position. The MSB is loaded

with 1.

SETC ; Prepare carry for MSB
RRCX.A EDE ; EDE = EDE » 1 + 80000h

Example The word in R6 is shifted right by 12 positions.

232 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

C

19 0

MSB0 - 0

7

LSB

C

19 0

MSB LSB

8

C

15 0

MSB LSB

19 16

0 0 0 0

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

31 20

0 0

www.ti.com Instruction Set Description

RPT #12
RRCX.W R6 ; R6 = R6 » 12. R6.19:16 = 0

Figure 4-51. Rotate Right Through Carry RRCX(.B,.A) – Register Mode

Figure 4-52. Rotate Right Through Carry RRCX(.B,.A) – Non-Register Mode

233SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

0

0

16

Instruction Set Description www.ti.com

RRUM.A Rotate right through carry the 20-bit CPU register content
RRUM.[W] Rotate right through carry the 16-bit CPU register content
Syntax RRUM.A #n,Rdst 1 ≤ n ≤ 4

RRUM.W #n,Rdst or RRUM #n,Rdst 1 ≤ n ≤ 4
Operation 0 → MSB → MSB–1 ... LSB+1 → LSB → C
Description The destination operand is shifted right by one, two, three, or four bit positions as

shown in Figure 4-53. Zero is shifted into the MSB, the LSB is shifted into the carry bit.
RRUM works like an unsigned division by 2, 4, 8, or 16. The word instruction RRUM.W
clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The unsigned address-word in R5 is divided by 16.

RRUM.A #4,R5 ; R5 = R5 » 4. R5/16

Example The word in R6 is shifted right by one bit. The MSB R6.15 is loaded with 0.

RRUM.W #1,R6 ; R6 = R6/2. R6.19:15 = 0

Figure 4-53. Rotate Right Unsigned RRUM[.W] and RRUM.A

234 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

C

19 0

MSB0 - 0

7

LSB

C

19 0

MSB LSB

8

C

15 0

MSB LSB

19 16

0 0 0 0

0

0

0

www.ti.com Instruction Set Description

RRUX.A Shift right unsigned the 20-bit CPU register content
RRUX.[W] Shift right unsigned the 16-bit CPU register content
RRUX.B Shift right unsigned the 8-bit CPU register content
Syntax RRUX.A Rdst

RRUX.W Rdst

RRUX Rdst

RRUX.B Rdst

Operation C=0 → MSB → MSB–1 ... LSB+1 → LSB → C
Description RRUX is valid for register mode only: the destination operand is shifted right by one bit

position as shown in Figure 4-54. The word instruction RRUX.W clears the bits
Rdst.19:16. The byte instruction RRUX.B clears the bits Rdst.19:8. Zero is shifted into
the MSB, the LSB is shifted into the carry bit.

Status Bits N: Set if result is negative
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The word in R6 is shifted right by 12 positions.

RPT #12
RRUX.W R6 ; R6 = R6 » 12. R6.19:16 = 0

Figure 4-54. Rotate Right Unsigned RRUX(.B,.A) – Register Mode

235SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* SBCX.A Subtract borrow (.NOT. carry) from destination address-word
* SBCX.[W] Subtract borrow (.NOT. carry) from destination word
* SBCX.B Subtract borrow (.NOT. carry) from destination byte
Syntax SBCX.A dst

SBCX dst or SBCX.W dst

SBCX.B dst

Operation dst + 0FFFFFh + C → dst
dst + 0FFFFh + C → dst
dst + 0FFh + C → dst

Emulation SBCX.A #0,dst

SBCX #0,dst

SBCX.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise

Set to 1 if no borrow, reset if borrow
V: Set if an arithmetic overflow occurs, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by

R12.

SUBX.B @R13,0(R12) ; Subtract LSDs
SBCX.B 1(R12) ; Subtract carry from MSD

NOTE: Borrow implementation

The borrow is treated as a .NOT. carry:

Borrow Carry Bit
Yes 0
No 1

236 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

SUBX.A Subtract source address-word from destination address-word
SUBX.[W] Subtract source word from destination word
SUBX.B Subtract source byte from destination byte
Syntax SUBX.A src,dst

SUBX src,dst or SUBX.W src,dst

SUBX.B src,dst

Operation (.not. src) + 1 + dst → dst or dst – src → dst
Description The source operand is subtracted from the destination operand. This is done by adding

the 1s complement of the source + 1 to the destination. The source operand is not
affected. The result is written to the destination operand. Both operands may be located
in the full address space.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 20-bit constant 87654h is subtracted from EDE (LSBs) and EDE+2 (MSBs).

SUBX.A #87654h,EDE ; Subtract 87654h from EDE+2|EDE

Example A table word pointed to by R5 (20-bit address) is subtracted from R7. Jump to label
TONI if R7 contains zero after the instruction. R5 is auto-incremented by two. R7.19:16 =
0.

SUBX.W @R5+,R7 ; Subtract table number from R7. R5 + 2
JZ TONI ; R7 = @R5 (before subtraction)
... ; R7 <> @R5 (before subtraction)

Example Byte CNT is subtracted from the byte R12 points to in the full address space. Address of
CNT is within PC ± 512 K.

SUBX.B CNT,0(R12) ; Subtract CNT from @R12

Note: Use SUBA for the following two cases for better density and execution.

SUBX.A Rsrc,Rdst
SUBX.A #imm20,Rdst

237SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

SUBCX.A Subtract source address-word with carry from destination address-word
SUBCX.[W] Subtract source word with carry from destination word
SUBCX.B Subtract source byte with carry from destination byte
Syntax SUBCX.A src,dst

SUBCX src,dst or SUBCX.W src,dst

SUBCX.B src,dst

Operation (.not. src) + C + dst → dst or dst – (src – 1) + C → dst
Description The source operand is subtracted from the destination operand. This is made by adding

the 1s complement of the source + carry to the destination. The source operand is not
affected, the result is written to the destination operand. Both operands may be located
in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 20-bit constant 87654h is subtracted from R5 with the carry from the previous

instruction.

SUBCX.A #87654h,R5 ; Subtract 87654h + C from R5

Example A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from a 48-bit
counter in RAM, pointed to by R7. R5 auto-increments to point to the next 48-bit number.

SUBX.W @R5+,0(R7) ; Subtract LSBs. R5 + 2
SUBCX.W @R5+,2(R7) ; Subtract MIDs with C. R5 + 2
SUBCX.W @R5+,4(R7) ; Subtract MSBs with C. R5 + 2

Example Byte CNT is subtracted from the byte R12 points to. The carry of the previous instruction
is used. 20-bit addresses.

SUBCX.B &CNT,0(R12) ; Subtract byte CNT from @R12

238 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX.A

After SWPBX.A

X

X

19

19

16

16

15 8 7 0

Low ByteHigh Byte

Before SWPBX.A

After SWPBX.A

X

19 1631 20

X

15 8 7 0

High ByteLow Byte0

19 1631 20

X

www.ti.com Instruction Set Description

SWPBX.A Swap bytes of lower word
SWPBX.[W] Swap bytes of word
Syntax SWPBX.A dst

SWPBX dst or SWPBX.W dst

Operation dst.15:8 ↔ dst.7:0
Description Register mode: Rn.15:8 are swapped with Rn.7:0. When the .A extension is used,

Rn.19:16 are unchanged. When the .W extension is used, Rn.19:16 are cleared.
Other modes: When the .A extension is used, bits 31:20 of the destination address are
cleared, bits 19:16 are left unchanged, and bits 15:8 are swapped with bits 7:0. When
the .W extension is used, bits 15:8 are swapped with bits 7:0 of the addressed word.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Exchange the bytes of RAM address-word EDE

MOVX.A #23456h,&EDE ; 23456h -> EDE
SWPBX.A EDE ; 25634h -> EDE

Example Exchange the bytes of R5

MOVA #23456h,R5 ; 23456h -> R5
SWPBX.W R5 ; 05634h -> R5

Figure 4-55. Swap Bytes SWPBX.A Register Mode

Figure 4-56. Swap Bytes SWPBX.A In Memory

239SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX

After SWPBX

X

0

19

19

16

16

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX

After SWPBX

Instruction Set Description www.ti.com

Figure 4-57. Swap Bytes SWPBX[.W] Register Mode

Figure 4-58. Swap Bytes SWPBX[.W] In Memory

240 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

15 8 7 6 019 162031

0 0...... S

19 16

15 8 7 6 019 16

S

19 16

SXTX.A Rdst

SXTX.A dst

15 8 7 6 0

S

15 8 7 6 019 16

S

19 16

SXTX[.W] Rdst

SXTX[.W] dst

www.ti.com Instruction Set Description

SXTX.A Extend sign of lower byte to address-word
SXTX.[W] Extend sign of lower byte to word
Syntax SXTX.A dst

SXTX dst or SXTX.W dst

Operation dst.7 → dst.15:8, Rdst.7 → Rdst.19:8 (Register mode)
Description Register mode: The sign of the low byte of the operand (Rdst.7) is extended into the bits

Rdst.19:8.
Other modes: SXTX.A: the sign of the low byte of the operand (dst.7) is extended into
dst.19:8. The bits dst.31:20 are cleared.
SXTX[.W]: the sign of the low byte of the operand (dst.7) is extended into dst.15:8.

Status Bits N: Set if result is negative, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 8-bit data in EDE.7:0 is sign extended to 20 bits: EDE.19:8. Bits 31:20

located in EDE+2 are cleared.

SXTX.A &EDE ; Sign extended EDE -> EDE+2/EDE

Figure 4-59. Sign Extend SXTX.A

Figure 4-60. Sign Extend SXTX[.W]

241SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* TSTX.A Test destination address-word
* TSTX.[W] Test destination word
* TSTX.B Test destination byte
Syntax TSTX.A dst

TSTX dst or TSTX.W dst

TSTX.B dst

Operation dst + 0FFFFFh + 1
dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMPX.A #0,dst

CMPX #0,dst

CMPX.B #0,dst

Description The destination operand is compared with zero. The status bits are set according to the
result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM byte LEO is tested; PC is pointing to upper memory. If it is negative, continue at

LEONEG; if it is positive but not zero, continue at LEOPOS.

TSTX.B LEO ; Test LEO
JN LEONEG ; LEO is negative
JZ LEOZERO ; LEO is zero

LEOPOS ; LEO is positive but not zero
LEONEG ; LEO is negative
LEOZERO ; LEO is zero

242 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

XORX.A Exclusive OR source address-word with destination address-word
XORX.[W] Exclusive OR source word with destination word
XORX.B Exclusive OR source byte with destination byte
Syntax XORX.A src,dst

XORX src,dst or XORX.W src,dst

XORX.B src,dst

Operation src .xor. dst → dst
Description The source and destination operands are exclusively ORed. The result is placed into

the destination. The source operand is not affected. The previous contents of the
destination are lost. Both operands may be located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (carry = .not. Zero)
V: Set if both operands are negative (before execution), reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Toggle bits in address-word CNTR (20-bit data) with information in address-word TONI

(20-bit address)

XORX.A TONI,&CNTR ; Toggle bits in CNTR

Example A table word pointed to by R5 (20-bit address) is used to toggle bits in R6.

XORX.W @R5,R6 ; Toggle bits in R6. R6.19:16 = 0

Example Reset to zero those bits in the low byte of R7 that are different from the bits in byte EDE
(20-bit address)

XORX.B EDE,R7 ; Set different bits to 1 in R7
INV.B R7 ; Invert low byte of R7. R7.19:8 = 0.

4.6.4 Address Instructions

MSP430X address instructions are instructions that support 20-bit operands but have restricted
addressing modes. The addressing modes are restricted to the Register mode and the Immediate mode,
except for the MOVA instruction. Restricting the addressing modes removes the need for the additional
extension-word op-code improving code density and execution time. The MSP430X address instructions
are listed and described in the following pages.

243SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

ADDA Add 20-bit source to a 20-bit destination register
Syntax ADDA Rsrc,Rdst

ADDA #imm20,Rdst

Operation src + Rdst → Rdst
Description The 20-bit source operand is added to the 20-bit destination CPU register. The previous

contents of the destination are lost. The source operand is not affected.
Status Bits N: Set if result is negative (Rdst.19 = 1), reset if positive (Rdst.19 = 0)

Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the 20-bit result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R5 is increased by 0A4320h. The jump to TONI is performed if a carry occurs.

ADDA #0A4320h,R5 ; Add A4320h to 20-bit R5
JC TONI ; Jump on carry
... ; No carry occurred

244 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

* BRA Branch to destination
Syntax BRA dst

Operation dst → PC
Emulation MOVA dst,PC

Description An unconditional branch is taken to a 20-bit address anywhere in the full address
space. All seven source addressing modes can be used. The branch instruction is an
address-word instruction. If the destination address is contained in a memory location
X, it is contained in two ascending words: X (LSBs) and (X + 2) (MSBs).

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Examples for all addressing modes are given.

Immediate mode: Branch to label EDE located anywhere in the 20-bit address space or
branch directly to address.

BRA #EDE ; MOVA #imm20,PC
BRA #01AA04h

Symbolic mode: Branch to the 20-bit address contained in addresses EXEC (LSBs) and
EXEC+2 (MSBs). EXEC is located at the address (PC + X) where X is within +32 K.
Indirect addressing.

BRA EXEC ; MOVA z16(PC),PC

Note: If the 16-bit index is not sufficient, a 20-bit index may be used with the following
instruction.

MOVX.A EXEC,PC ; 1M byte range with 20-bit index

Absolute mode: Branch to the 20-bit address contained in absolute addresses EXEC
(LSBs) and EXEC+2 (MSBs). Indirect addressing.

BRA &EXEC ; MOVA &abs20,PC

Register mode: Branch to the 20-bit address contained in register R5. Indirect R5.

BRA R5 ; MOVA R5,PC

Indirect mode: Branch to the 20-bit address contained in the word pointed to by register
R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect R5.

BRA @R5 ; MOVA @R5,PC

Indirect, Auto-Increment mode: Branch to the 20-bit address contained in the words
pointed to by register R5 and increment the address in R5 afterwards by 4. The next
time the S/W flow uses R5 as a pointer, it can alter the program execution due to
access to the next address in the table pointed to by R5. Indirect, indirect R5.

BRA @R5+ ; MOVA @R5+,PC. R5 + 4

245SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

Indexed mode: Branch to the 20-bit address contained in the address pointed to by
register (R5 + X) (e.g., a table with addresses starting at X). (R5 + X) points to the
LSBs, (R5 + X + 2) points to the MSBs of the address. X is within R5 + 32 K. Indirect,
indirect (R5 + X).

BRA X(R5) ; MOVA z16(R5),PC

Note: If the 16-bit index is not sufficient, a 20-bit index X may be used with the following
instruction:

MOVX.A X(R5),PC ; 1M byte range with 20-bit index

246 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

CALLA Call a subroutine
Syntax CALLA dst

Operation dst → tmp 20-bit dst is evaluated and stored
SP – 2 → SP
PC.19:16 → @SP updated PC with return address to TOS (MSBs)
SP – 2 → SP
PC.15:0 → @SP updated PC to TOS (LSBs)
tmp → PC saved 20-bit dst to PC

Description A subroutine call is made to a 20-bit address anywhere in the full address space. All
seven source addressing modes can be used. The call instruction is an address-word
instruction. If the destination address is contained in a memory location X, it is
contained in two ascending words, X (LSBs) and (X + 2) (MSBs). Two words on the
stack are needed for the return address. The return is made with the instruction RETA.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Examples for all addressing modes are given.

Immediate mode: Call a subroutine at label EXEC or call directly an address.

CALLA #EXEC ; Start address EXEC
CALLA #01AA04h ; Start address 01AA04h

Symbolic mode: Call a subroutine at the 20-bit address contained in addresses EXEC
(LSBs) and EXEC+2 (MSBs). EXEC is located at the address (PC + X) where X is
within +32 K. Indirect addressing.

CALLA EXEC ; Start address at @EXEC. z16(PC)

Absolute mode: Call a subroutine at the 20-bit address contained in absolute addresses
EXEC (LSBs) and EXEC+2 (MSBs). Indirect addressing.

CALLA &EXEC ; Start address at @EXEC

Register mode: Call a subroutine at the 20-bit address contained in register R5. Indirect
R5.

CALLA R5 ; Start address at @R5

Indirect mode: Call a subroutine at the 20-bit address contained in the word pointed to
by register R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect R5.

CALLA @R5 ; Start address at @R5

Indirect, Auto-Increment mode: Call a subroutine at the 20-bit address contained in the
words pointed to by register R5 and increment the 20-bit address in R5 afterwards by 4.
The next time the S/W flow uses R5 as a pointer, it can alter the program execution due
to access to the next word address in the table pointed to by R5. Indirect, indirect R5.

CALLA @R5+ ; Start address at @R5. R5 + 4

247SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

Indexed mode: Call a subroutine at the 20-bit address contained in the address pointed
to by register (R5 + X); e.g., a table with addresses starting at X. (R5 + X) points to the
LSBs, (R5 + X + 2) points to the MSBs of the word address. X is within R5 + 32 K.
Indirect, indirect (R5 + X).

CALLA X(R5) ; Start address at @(R5+X). z16(R5)

248 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

* CLRA Clear 20-bit destination register
Syntax CLRA Rdst

Operation 0 → Rdst
Emulation MOVA #0,Rdst

Description The destination register is cleared.
Status Bits Status bits are not affected.
Example The 20-bit value in R10 is cleared.

CLRA R10 ; 0 -> R10

249SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

CMPA Compare the 20-bit source with a 20-bit destination register
Syntax CMPA Rsrc,Rdst

CMPA #imm20,Rdst

Operation (.not. src) + 1 + Rdst or Rdst – src
Description The 20-bit source operand is subtracted from the 20-bit destination CPU register. This

is made by adding the 1s complement of the source + 1 to the destination register. The
result affects only the status bits.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source
operand from a negative destination operand delivers a positive result, reset
otherwise (no overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 20-bit immediate operand and R6 are compared. If they are equal, the program

continues at label EQUAL.

CMPA #12345h,R6 ; Compare R6 with 12345h
JEQ EQUAL ; R5 = 12345h
... ; Not equal

Example The 20-bit values in R5 and R6 are compared. If R5 is greater than (signed) or equal to
R6, the program continues at label GRE.

CMPA R6,R5 ; Compare R6 with R5 (R5 - R6)
JGE GRE ; R5 >= R6
... ; R5 < R6

250 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

* DECDA Double-decrement 20-bit destination register
Syntax DECDA Rdst

Operation Rdst – 2 → Rdst
Emulation SUBA #2,Rdst

Description The destination register is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if Rdst contained 2, reset otherwise
C: Reset if Rdst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is decremented by 2.

DECDA R5 ; Decrement R5 by two

251SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* INCDA Double-increment 20-bit destination register
Syntax INCDA Rdst

Operation Rdst + 2 → Rdst
Emulation ADDA #2,Rdst

Description The destination register is incremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if Rdst contained 0FFFFEh, reset otherwise
Set if Rdst contained 0FFFEh, reset otherwise
Set if Rdst contained 0FEh, reset otherwise

C: Set if Rdst contained 0FFFFEh or 0FFFFFh, reset otherwise
Set if Rdst contained 0FFFEh or 0FFFFh, reset otherwise
Set if Rdst contained 0FEh or 0FFh, reset otherwise

V: Set if Rdst contained 07FFFEh or 07FFFFh, reset otherwise
Set if Rdst contained 07FFEh or 07FFFh, reset otherwise
Set if Rdst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is incremented by two.

INCDA R5 ; Increment R5 by two

252 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

MOVA Move the 20-bit source to the 20-bit destination
Syntax MOVA Rsrc,Rdst

MOVA #imm20,Rdst

MOVA z16(Rsrc),Rdst

MOVA EDE,Rdst

MOVA &abs20,Rdst

MOVA @Rsrc,Rdst

MOVA @Rsrc+,Rdst

MOVA Rsrc,z16(Rdst)

MOVA Rsrc,&abs20

Operation src → Rdst
Rsrc → dst

Description The 20-bit source operand is moved to the 20-bit destination. The source operand is not
affected. The previous content of the destination is lost.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Copy 20-bit value in R9 to R8

MOVA R9,R8 ; R9 -> R8

Write 20-bit immediate value 12345h to R12

MOVA #12345h,R12 ; 12345h -> R12

Copy 20-bit value addressed by (R9 + 100h) to R8. Source operand in addresses (R9 +
100h) LSBs and (R9 + 102h) MSBs.

MOVA 100h(R9),R8 ; Index: + 32 K. 2 words transferred

Move 20-bit value in 20-bit absolute addresses EDE (LSBs) and EDE+2 (MSBs) to R12

MOVA &EDE,R12 ; &EDE -> R12. 2 words transferred

Move 20-bit value in 20-bit addresses EDE (LSBs) and EDE+2 (MSBs) to R12. PC
index ± 32 K.

MOVA EDE,R12 ; EDE -> R12. 2 words transferred

Copy 20-bit value R9 points to (20 bit address) to R8. Source operand in addresses
@R9 LSBs and @(R9 + 2) MSBs.

MOVA @R9,R8 ; @R9 -> R8. 2 words transferred

Copy 20-bit value R9 points to (20 bit address) to R8. R9 is incremented by four
afterwards. Source operand in addresses @R9 LSBs and @(R9 + 2) MSBs.

MOVA @R9+,R8 ; @R9 -> R8. R9 + 4. 2 words transferred.

253SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

Copy 20-bit value in R8 to destination addressed by (R9 + 100h). Destination operand
in addresses @(R9 + 100h) LSBs and @(R9 + 102h) MSBs.

MOVA R8,100h(R9) ; Index: +- 32 K. 2 words transferred

Move 20-bit value in R13 to 20-bit absolute addresses EDE (LSBs) and EDE+2 (MSBs)

MOVA R13,&EDE ; R13 -> EDE. 2 words transferred

Move 20-bit value in R13 to 20-bit addresses EDE (LSBs) and EDE+2 (MSBs). PC
index ± 32 K.

MOVA R13,EDE ; R13 -> EDE. 2 words transferred

254 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

* RETA Return from subroutine
Syntax RETA

Operation @SP → PC.15:0 LSBs (15:0) of saved PC to PC.15:0
SP + 2 → SP
@SP → PC.19:16 MSBs (19:16) of saved PC to PC.19:16
SP + 2 → SP

Emulation MOVA @SP+,PC

Description The 20-bit return address information, pushed onto the stack by a CALLA instruction, is
restored to the PC. The program continues at the address following the subroutine call.
The SR bits SR.11:0 are not affected. This allows the transfer of information with these
bits.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Call a subroutine SUBR from anywhere in the 20-bit address space and return to the

address after the CALLA

CALLA #SUBR ; Call subroutine starting at SUBR
... ; Return by RETA to here

SUBR PUSHM.A #2,R14 ; Save R14 and R13 (20 bit data)
... ; Subroutine code
POPM.A #2,R14 ; Restore R13 and R14 (20 bit data)
RETA ; Return (to full address space)

255SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Instruction Set Description www.ti.com

* TSTA Test 20-bit destination register
Syntax TSTA Rdst

Operation dst + 0FFFFFh + 1
dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMPA #0,Rdst

Description The destination register is compared with zero. The status bits are set according to the
result. The destination register is not affected.

Status Bits N: Set if destination register is negative, reset if positive
Z: Set if destination register contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R7 is tested. If it is negative, continue at R7NEG; if it is positive but

not zero, continue at R7POS.

TSTA R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

256 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Instruction Set Description

SUBA Subtract 20-bit source from 20-bit destination register
Syntax SUBA Rsrc,Rdst

SUBA #imm20,Rdst

Operation (.not.src) + 1 + Rdst → Rdst or Rdst – src → Rdst
Description The 20-bit source operand is subtracted from the 20-bit destination register. This is

made by adding the 1s complement of the source + 1 to the destination. The result is
written to the destination register, the source is not affected.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB (Rdst.19), reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source
operand from a negative destination operand delivers a positive result, reset
otherwise (no overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is subtracted from R6. If a carry occurs, the program continues at

label TONI.

SUBA R5,R6 ; R6 - R5 -> R6
JC TONI ; Carry occurred
... ; No carry

257SLAU208E–June 2008–Revised November 2009 CPUX
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

258 CPUX SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 5
SLAU208E–June 2008–Revised November 2009

Flash Memory Controller

This chapter describes the operation of the flash memory controller.

Topic ... Page

5.1 Flash Memory Introduction ... 260
5.2 Flash Memory Segmentation ... 261
5.3 Flash Memory Operation .. 263
5.4 Flash Memory Registers ... 277

259SLAU208E–June 2008–Revised November 2009 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MAB MDB

Control Registers Address/Data Latch

Timing
Generator

Programming
Voltage

Generator

Flash
Memory

Array

Flash Memory Introduction www.ti.com

5.1 Flash Memory Introduction

The flash memory is byte, word, and long-word addressable and programmable. The flash memory
module has an integrated controller that controls programming and erase operations. The module contains
three registers, a timing generator, and a voltage generator to supply program and erase voltages. The
cumulative high-voltage time must not be exceeded, and each 32-bit word can be written not more than
four times (in byte, word, or long word write modes) before another erase cycle (see device-specific data
sheet for details).

The flash memory features include:

• Internal programming voltage generation
• Byte, word (2 bytes), and long (4 bytes) programmable
• Ultralow-power operation
• Segment erase, bank erase (device specific), and mass erase
• Marginal 0 and marginal 1 read modes
• Each bank (device specific) can be erased individually while program execution can proceed in a

different flash bank.

NOTE: Bank operations are not supported on all devices. See the device-specific data sheet for
banks supported and their respective sizes.

The block diagram of the flash memory and controller is shown in Figure 5-1.

Figure 5-1. Flash Memory Module Block Diagram

260 Flash Memory Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

64-kbyte
Flash Memory

Bank C

64-kbyte
Flash Memory

Bank D

64-kbyte
Flash Memory

Bank A

64-kbyte
Flash Memory

Bank B

512-byte
BSL Memory A

128-byte Information
Memory Segment B

128-byte Information
Memory Segment A

512-byte
BSL Memory B

128-byte Information
Memory Segment D

128-byte Information
Memory Segment C

512-byte
BSL Memory C

512-byte
BSL Memory D

Segment 0

Segment 0

Segment 0

Segment 1

Segment 2

Segment 125

Segment 126

Segment 127

Segment X

www.ti.com Flash Memory Segmentation

5.2 Flash Memory Segmentation

The flash main memory is partitioned into 512-byte segments. Single bits, bytes, or words can be written
to flash memory, but a segment is the smallest size of the flash memory that can be erased.

The flash memory is partitioned into main and information memory sections. There is no difference in the
operation of the main and information memory sections. Code and data can be located in either section.
The difference between the sections is the segment size.

There are four information memory segments, A through D. Each information memory segment contains
128 bytes and can be erased individually.

The bootstrap loader (BSL) memory consists of four segments, A through D. Each BSL memory segment
contains 512 bytes and can be erased individually.

The main memory segment size is 512 byte. See the device-specific data sheet for the start and end
addresses of each bank, when available, and for the complete memory map of a device.

Figure 5-2 shows the flash segmentation using an example of 256-KB flash that has four banks of 64 KB
(segments A through D) and information memory.

Figure 5-2. 256-KB Flash Memory Segments Example

261SLAU208E–June 2008–Revised November 2009 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Flash Memory Segmentation www.ti.com

5.2.1 Segment A

Segment A of the information memory is locked separately from all other segments with the LOCKA bit. If
LOCKA = 1, segment A cannot be written or erased, and all information memory is protected from being
segment erased. If LOCKA = 0, segment A can be erased and written like any other flash memory
segment.

The state of the LOCKA bit is toggled when a 1 is written to it. Writing a 0 to LOCKA has no effect. This
allows existing flash programming routines to be used unchanged.
; Unlock Info Memory

BIC #FWKEY+LOCKINFO, &FCTL4 ; Clear LOCKINFO
; Unlock SegmentA

BIT #LOCKA,&FCTL3 ; Test LOCKA
JZ SEGA_UNLOCKED ; Already unlocked?
MOV #FWKEY+LOCKA,&FCTL3 ; No, unlock SegmentA

SEGA_UNLOCKED ; Yes, continue
; SegmentA is unlocked

; Lock SegmentA
BIT #LOCKA,&FCTL3 ; Test LOCKA
JNZ SEGA_LOCKED ; Already locked?
MOV #FWKEY+LOCKA,&FCTL3 ; No, lock SegmentA

SEGA_LOCKED ; Yes, continue
; SegmentA is locked
; Lock Info Memory

BIS #FWKEY+LOCKINFO,&FCTL4 ; Set LOCKINFO

262 Flash Memory Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Flash Memory Operation

5.3 Flash Memory Operation

The default mode of the flash memory is read mode. In read mode, the flash memory is not being erased
or written, the flash timing generator and voltage generator are off, and the memory operates identically to
ROM.

Read and fetch while erase – The flash memory allows execution of a program from flash while a
different flash bank is erased. Data reads are also possible from any flash bank not being erased.

NOTE: Read and fetch while erase

The read and fetch while erase feature is available in flash memory configurations where
more than one flash bank is available. If there is one flash bank available, holding the
complete flash program memory, the read from the program memory and information
memory and BSL memory during the erase is not provided.

Flash memory is in-system programmable (ISP) without the need for additional external voltage. The CPU
can program the flash memory. The flash memory write/erase modes are selected by the BLKWRT, WRT,
MERAS, and ERASE bits and are:

• Byte/word/long-word (32-bit) write
• Block write
• Segment erase
• Bank erase (only main memory)
• Mass erase (all main memory banks)
• Read during bank erase (except for the one currently read from)

Reading or writing to flash memory while it is busy programming or erasing (page, mass, or bank) from
the same bank is prohibited. Any flash erase or programming can be initiated from within flash memory or
RAM.

5.3.1 Erasing Flash Memory

The logical value of an erased flash memory bit is 1. Each bit can be programmed from 1 to 0 individually,
but to reprogram from 0 to 1 requires an erase cycle. The smallest amount of flash that can be erased is
one segment. There are three erase modes selected by the ERASE and MERAS bits listed in Table 5-1.

Table 5-1. Erase Modes

MERAS ERASE Erase Mode

0 1 Segment erase

1 0 Bank erase (of one bank) selected by the dummy write address (1)

1 1 Mass erase (all memory banks, information memory A to D and BSL segments A to D are not erased)
(1) Bank operations are not supported on all devices. See the device-specific data sheet for support of bank operations.

263SLAU208E–June 2008–Revised November 2009 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

BUSY

Erase Operation Active

Erase Time, Current Consumption is Increased

Generate
Programming Voltage

Remove
Programming Voltage

t = 23...32 msmass_erase, segment_erase, bank_erase

Flash Memory Operation www.ti.com

5.3.1.1 Erase Cycle

An erase cycle is initiated by a dummy write to the address range of the segment to be erased. The
dummy write starts the erase operation. Figure 5-3 shows the erase cycle timing. The BUSY bit is set
immediately after the dummy write and remains set throughout the erase cycle. BUSY, MERAS, and
ERASE are automatically cleared when the cycle completes. The mass erase cycle timing is not
dependent on the amount of flash memory present on a device. Erase cycle times are equivalent for all
devices.

Figure 5-3. Erase Cycle Timing

5.3.1.2 Erasing Main Memory

The main memory consists of one or more banks. Each bank can be erased individually (bank erase). All
main memory banks can be erased in the mass erase mode.

5.3.1.3 Erasing Information Memory or Flash Segments

The information memory A to D and the BSL segments A to D can be erased in segment erase mode.
They are not erased during a bank erase or a mass erase.

264 Flash Memory Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Yes
BUSY = 1

Disable watchdog

Setup flash controller and
erase mode

Dummy write

Set LOCK = 1, (Set LOCKINFO = 1)
reenable watchdog

www.ti.com Flash Memory Operation

5.3.1.4 Initiating Erase From Flash

An erase cycle can be initiated from within flash memory. Code can be executed from flash or RAM during
a bank erase. The executed code cannot be located in a bank to be erased.

During a segment erase, the CPU is held until the erase cycle completes. After the erase cycle ends, the
CPU resumes code execution with the instruction following the dummy write.

When initiating an erase cycle from within flash memory, it is possible to erase the code needed for
execution after the erase operation. If this occurs, CPU execution is unpredictable after the erase cycle.

The flow to initiate an erase from flash is shown in Figure 5-4.

Figure 5-4. Erase Cycle From Flash

; Segment Erase from flash.
; Assumes Program Memory. Information memory or BSL
; requires LOCKINFO to be cleared as well.
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
L1 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+ERASE,&FCTL1 ; Enable segment erase
CLR &0FC10h ; Dummy write

L2 BIT #BUSY,&FCTL3 ; Test BUSY
JNZ L2 ; Loop while busy
MOV #FWKEY+LOCK,&FCTL3 ; Done, set LOCK
... ; Re-enable WDT?

265SLAU208E–June 2008–Revised November 2009 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Yes
BUSY = 1

Yes
BUSY = 1

Disable watchdog

Setup flash controller and
erase mode

Dummy write

Set LOCK = 1, (Set LOCKINFO = 1)
Reenable watchdog

Flash Memory Operation www.ti.com

5.3.1.5 Initiating Erase From RAM

An erase cycle can be initiated from RAM. In this case, the CPU is not held and continues to execute
code from RAM. The mass erase (all main memory banks) operation is initiated while executing from
RAM. The BUSY bit is used to determine the end of the erase cycle. If the flash is busy completing a bank
erase, flash addresses of a different bank can be used to read data or to fetch instructions. While the flash
is BUSY, starting an erase cycle or a programming cycle causes an access violation, ACCIFG is set to 1,
and the result of the erase operation is unpredictable.

The flow to initiate an erase from flash from RAM is shown in Figure 5-5.

Figure 5-5. Erase Cycle From RAM

; segment Erase from RAM.
; Assumes Program Memory. Information memory or BSL
; requires LOCKINFO to be cleared as well.
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
L1 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+ERASE,&FCTL1 ; Enable page erase
CLR &0FC10h ; Dummy write

L2 BIT #BUSY,&FCTL3 ; Test BUSY
JNZ L2 ; Loop while busy
MOV #FWKEY+LOCK,&FCTL3 ; Done, set LOCK
... ; Re-enable WDT?

266 Flash Memory Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

BUSY

Programming Operation Active

Programming Time, V Current Consumption is IncreasedCC

t = 64 ... 85 µsWord_Write

Generate
Programming Voltage

Remove
Programming Voltage

www.ti.com Flash Memory Operation

5.3.2 Writing Flash Memory

The write modes, selected by the WRT and BLKWRT bits, are listed in Table 5-2.

Table 5-2. Write Modes

BLKWRT WRT Write Mode

0 1 Byte/word write

1 0 Long-word write

1 1 Long-word block write

The write modes use a sequence of individual write instructions. Using the long-word write mode is
approximately twice as fast as the byte/word mode. Using the long-word block write mode is
approximately four times faster than byte/word mode, because the voltage generator remains on for the
complete block write, and long-words are written in parallel. Any instruction that modifies a destination can
be used to modify a flash location in either byte/word write mode, long-word write mode, or block
long-word write mode.

The BUSY bit is set while the write operation is active and cleared when the operation completes. If the
write operation is initiated from RAM, the CPU must not access flash while BUSY is set to 1. Otherwise,
an access violation occurs, ACCVIFG is set, and the flash write is unpredictable.

5.3.2.1 Byte/Word Write

A byte/word write operation can be initiated from within flash memory or from RAM. When initiating from
within flash memory, the CPU is held while the write completes. After the write completes, the CPU
resumes code execution with the instruction following the write access. The byte/word write timing is
shown in Figure 5-6.

Figure 5-6. Byte/Word/Long-Word Write Timing

When a byte/word write is executed from RAM, the CPU continues to execute code from RAM. The BUSY
bit must be zero before the CPU accesses flash again, otherwise an access violation occurs, ACCVIFG is
set, and the write result is unpredictable.

In byte/word write mode, the internally-generated programming voltage is applied to the complete
128-byte block. The cumulative programming time, tCPT, must not be exceeded for any block. Each byte or
word write adds to the cumulative program time of a segment. If the maximum cumulative program time is
reached or exceeded, the segment must be erased. Further programming or using the data returns
unpredictable results (see the device-specific data sheet for specifications).

267SLAU208E–June 2008–Revised November 2009 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Setup flash controller
and set WRT = 1

Disable watchdog

Set WRT = 0, LOCK = 1,
reenable watchdog

Write byte or word

Flash Memory Operation www.ti.com

5.3.2.2 Initiating Byte/Word Write From Flash

The flow to initiate a byte/word write from flash is shown in Figure 5-7.

Figure 5-7. Initiating a Byte/Word Write From Flash

; Byte/word write from flash.
; Assumes 0x0FF1E is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+WRT,&FCTL1 ; Enable write
MOV #0123h,&0FF1Eh ; 0123h -> 0x0FF1E
MOV #FWKEY,&FCTL1 ; Done. Clear WRT
MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK
... ; Re-enable WDT?

268 Flash Memory Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Yes
BUSY = 1

Yes
BUSY = 1

Disable watchdog

Setup flash controller
and set WRT = 1

Write byte or word

Set WRT = 0, LOCK = 1,
Reenable watchdog

www.ti.com Flash Memory Operation

5.3.2.3 Initiating Byte/Word Write From RAM

The flow to initiate a byte/word write from RAM is shown in Figure 5-8.

Figure 5-8. Initiating a Byte/Word Write From RAM

; Byte/word write from RAM.
; Assumes 0x0FF1E is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
L1 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+WRT,&FCTL1 ; Enable write
MOV #0123h,&0FF1Eh ; 0123h -> 0x0FF1E

L2 BIT #BUSY,&FCTL3 ; Test BUSY
JNZ L2 ; Loop while busy
MOV #FWKEY,&FCTL1 ; Clear WRT
MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK
... ; Re-enable WDT?

269SLAU208E–June 2008–Revised November 2009 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Setup flash controller
and set BLKWRT = 1

Disable watchdog

Set BLKWRT = 0, LOCK = 1,
Reenable watchdog

Write 4 bytes or 2 words

Flash Memory Operation www.ti.com

5.3.2.4 Long-Word Write

A long-word write operation can be initiated from within flash memory or from RAM. The BUSY bit is set to
1 after 32 bits are written to the flash controller and the programming cycle starts. When initiating from
within flash memory, the CPU is held while the write completes. After the write completes, the CPU
resumes code execution with the instruction following the write access. The long-word write timing is
shown in Figure 5-6.

A long-word consists of four consecutive bytes aligned to at 32-bit address (only the lower two address
bits are different). The bytes can be written in any order or any combination of bytes and words. If a byte
or word is written more than once, the last data written to the four bytes are stored into the flash memory.

If a write to a flash address outside of the 32-bit address happens before all four bytes are available, the
data written so far is discarded, and the latest byte/word written defines the new 32-bit aligned address.

When 32 bits are available, the write cycle is executed. When executing from RAM, the CPU continues to
execute code. The BUSY bit must be zero before the CPU accesses flash again, otherwise an access
violation occurs, ACCVIFG is set, and the write result is unpredictable.

In long-word write mode, the internally-generated programming voltage is applied to a complete 128-byte
block. The cumulative programming time, tCPT, must not be exceeded for any block. Each byte or word
write adds to the cumulative program time of a segment. If the maximum cumulative program time is
reached or exceeded, the segment must be erased. Further programming or using the data returns
unpredictable results.

With each byte or word write, the amount of time the block is subjected to the programming voltage
accumulates. If the cumulative programming time is reached or exceeded, the block must be erased
before further programming or use (see the device-specific data sheet for specifications).

5.3.2.5 Initiating Long-Word Write From Flash

The flow to initiate a long-word write from flash is shown in Figure 5-9.

Figure 5-9. Initiating Long-Word Write From Flash

; Long-word write from flash.
; Assumes 0x0FF1C and 0x0FF1E is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+BLKWRT,&FCTL1 ; Enable 2-word write
MOV #0123h,&0FF1Ch ; 0123h -> 0x0FF1C
MOV #45676h,&0FF1Eh ; 04567h -> 0x0FF1E
MOV #FWKEY,&FCTL1 ; Done. Clear BLKWRT
MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK
... ; Re-enable WDT?

270 Flash Memory Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Yes
BUSY = 1

Yes
BUSY = 1

Disable watchdog

Setup flash controller
and set BLKWRT = 1

Write 4 bytes or 2 words

Set BLKWRT=0, LOCK = 1,
Reenable watchdog

www.ti.com Flash Memory Operation

5.3.2.6 Initiating Long-Word Write From RAM

The flow to initiate a long-word write from RAM is shown in Figure 5-10.

Figure 5-10. Initiating Long-Word Write from RAM

; Two 16-bit word writes from RAM.
; Assumes 0x0FF1C and 0x0FF1E is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
L1 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+BLKWRT,&FCTL1 ; Enable write
MOV #0123h,&0FF1Ch ; 0123h -> 0x0FF1C
MOV #4567h,&0FF1Eh ; 4567h -> 0x0FF1E

L2 BIT #BUSY,&FCTL3 ; Test BUSY
JNZ L2 ; Loop while busy
MOV #FWKEY,&FCTL1 ; Clear WRT
MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK
... ; Re-enable WDT?

271SLAU208E–June 2008–Revised November 2009 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

BUSY

WAIT

t = 49 ... 65 µsBlock,0

Write to Flash; e.g., #0123h, &Flash

MOV #4567h, &Flash1

MOV

BLKWRT bit

T = 37 ... 49 µsBlock,1–126 T = 37 ... 49 µsBlock,127 t = 18 ... 24 µsEnd

Generate
Programming Voltage

Programming Operation Active Remove
Programming Voltage

Cumulative Programming Time t 10 ms, V Current Consumption is IncreasedCPT CC£

Flash Memory Operation www.ti.com

5.3.2.7 Block Write

The block write can be used to accelerate the flash write process when many sequential bytes or words
need to be programmed. The flash programming voltage remains on for the duration of writing the
128-byte row. The cumulative programming time, tCPT, must not be exceeded for any row during a block
write.

A block write cannot be initiated from within flash memory. The block write must be initiated from RAM.
The BUSY bit remains set throughout the duration of the block write. The WAIT bit must be checked
between writing four bytes, or two words, to the block. When WAIT is set, then four bytes, or two 16-bit
words, of the block can be written. When writing successive blocks, the BLKWRT bit must be cleared after
the current block is completed. BLKWRT can be set initiating the next block write after the required flash
recovery time given by tEND. BUSY is cleared following each block write completion, indicating the next
block can be written. Figure 5-11 shows the block write timing.

Figure 5-11. Block-Write Cycle Timing

272 Flash Memory Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Yes
BUSY = 1

Disable watchdog

Setup flash controller

Set BLKWRT = WRT = 1

Write 4 bytes or 2 words

No
Block Border?

Yes
WAIT = 0?

Yes
BUSY = 1

Set BLKWRT=0

Yes Another
Block?

Set WRT = 0, LOCK = 1,
Reenable WDT

www.ti.com Flash Memory Operation

5.3.2.8 Block Write Flow and Example

A block write flow is shown in Figure 5-12 and the following code example.

Figure 5-12. Block Write Flow

273SLAU208E–June 2008–Revised November 2009 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Flash Memory Operation www.ti.com

; Write one block starting at 0F000h.
; Must be executed from RAM, Assumes Flash is already erased.
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #32,R5 ; Use as write counter
MOV #0F000h,R6 ; Write pointer
MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT

L1 BIT #BUSY,&FCTL3 ; Test BUSY
JNZ L1 ; Loop while busy
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+BLKWRT+WRT,&FCTL1 ; Enable block write

L2 MOV Write_Value1,0(R6) ; Write 1st location
MOV Write_Value2,2(R6) ; Write 2nd word

L3 BIT #WAIT,&FCTL3 ; Test WAIT
JZ L3 ; Loop while WAIT=0
INCD R6 ; Point to next words
INCD R6 ; Point to next words
DEC R5 ; Decrement write counter
JNZ L2 ; End of block?
MOV #FWKEY,&FCTL1 ; Clear WRT, BLKWRT

L4 BIT #BUSY,&FCTL3 ; Test BUSY
JNZ L4 ; Loop while busy
MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK
... ; Re-enable WDT if needed

5.3.3 Flash Memory Access During Write or Erase

When a write or an erase operation is initiated from RAM while BUSY = 1, the CPU may not write to any
flash location. Otherwise, an access violation occurs, ACCVIFG is set, and the result is unpredictable.

When a write operation is initiated from within flash memory, the CPU continues code execution with the
next instruction fetch after the write cycle completed (BUSY = 0).

The op-code 3FFFh is the JMP PC instruction. This causes the CPU to loop until the flash operation is
finished. When the operation is finished and BUSY = 0, the flash controller allows the CPU to fetch the
op-code and program execution resumes.

The flash access conditions while BUSY = 1 are listed in Table 5-3.

Table 5-3. Flash Access While Flash is Dusy (BUSY = 1)

Flash Operation Flash Access WAIT Result

Read 0 From the erased bank: ACCVIFG = 0. 03FFFh is the value read.
From any other flash location: ACCVIFG = 0. Valid read.

Write 0 ACCVIFG = 1. Write is ignored.Bank erase
Instruction fetch 0 From the erased bank: ACCVIFG = 0. CPU fetches 03FFFh. This is the

JMP PC instruction.
From any other flash location: ACCVIFG = 0. Valid instruction fetch.

Read 0 ACCVIFG = 0: 03FFFh is the value read.

Segment erase Write 0 ACCVIFG = 1: Write is ignored.

Instruction fetch 0 ACCVIFG = 0: CPU fetches 03FFFh. This is the JMP PC instruction.

Read 0 ACCVIFG = 0: 03FFFh is the value read.
Word/byte write or Write 0 ACCVIFG = 1: Write is ignored.long-word write

Instruction fetch 0 ACCVIFG = 0: CPU fetches 03FFFh. This is the JMP PC instruction.

Any 0 ACCVIFG = 1: LOCK = 1, block write is exited.

Read 1 ACCVIFG = 0: 03FFFh is the value read.
Block write

Write 1 ACCVIFG = 0: Valid write

Instruction fetch 1 ACCVIFG = 1: LOCK = 1, block write is exited

274 Flash Memory Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Flash Memory Operation

Interrupts are automatically disabled during any flash operation.

The watchdog timer (in watchdog mode) should be disabled before a flash erase cycle. A reset aborts the
erase and the result is unpredictable. After the erase cycle has completed, the watchdog may be
reenabled.

5.3.4 Checking Flash memory

The result of a programming cycle of the flash memory can be checked by calculating and storing a
checksum (CRC) of parts and/or the complete flash memory content. The CRC module can be used for
this purpose (see the device-specific data sheet). During the runtime of the system, the known checksums
can be recalculated and compared with the expected values stored in the flash memory. The program
checking the flash memory content is executed in RAM. To get an early indication of weak memory cells,
reading the flash can be done in combination with the device-specific marginal read modes. The marginal
read modes are controlled by the FCTL4.MRG0 and FCTL4.MRG1 register bits if available (device
specific).

5.3.5 Configuring and Accessing the Flash Memory Controller

The FCTLx registers are 16-bit password-protected read/write registers. Any read or write access must
use word instructions, and write accesses must include the write password 0A5h in the upper byte. Any
write to any FCTLx register with a value other than 0A5h in the upper byte is a security key violation, sets
the KEYV flag, and triggers a PUC system reset. Any read of any FCTLx registers reads 096h in the
upper byte.

Any write to FCTL1 during an erase or byte/word/double-word write operation is an access violation and
sets ACCVIFG. Writing to FCTL1 is allowed in block write mode when WAIT = 1, but writing to FCTL1 in
block write mode when WAIT = 0 is an access violation and sets ACCVIFG.

Any write to FCTL2 (this register is currently not implemented) when BUSY = 1 is an access violation.

Any FCTLx register may be read when BUSY = 1. A read does not cause an access violation.

5.3.6 Flash Memory Controller Interrupts

The flash controller has two interrupt sources, KEYV and ACCVIFG. ACCVIFG is set when an access
violation occurs. When the ACCVIE bit is reenabled after a flash write or erase, a set ACCVIFG flag
generates an interrupt request. The ACCVIE bit resides in the the Special Function Register, SFRIE1 (see
the System Resets, Interrupts, and Operating Modes, System Control Module (SYS) chapter for details).
ACCVIFG sources the NMI interrupt vector, so it is not necessary for GIE to be set for ACCVIFG to
request an interrupt. ACCVIFG may also be checked by software to determine if an access violation
occurred. ACCVIFG must be reset by software.

The key violation flag, KEYV, is set when any of the flash control registers are written with an incorrect
password. When this occurs, a PUC is generated immediately, resetting the device.

5.3.7 Programming Flash Memory Devices

There are three options for programming a flash device. All options support in-system programming.

• Program via JTAG
• Program via the BSL
• Program via a custom solution

5.3.7.1 Programming Flash Memory Via JTAG

Devices can be programmed via the JTAG port. The JTAG interface requires four signals (five signals on
20- and 28-pin devices), ground, and optionally VCC and RST/NMI.

The JTAG port is protected with a fuse. Blowing the fuse completely disables the JTAG port and is not
reversible. Further access to the device via JTAG is not possible For more details see the application
report Programming a Flash-Based MSP430 Using the JTAG Interface at www.ti.com/msp430.

275SLAU208E–June 2008–Revised November 2009 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.ti.com/msp430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Host

Flash memory

UAR

Px.x,

etc.

T

SPI,

,

CPU executes

user software

Commands, data, etc.

Read/write flash memory

MSP430

Flash Memory Operation www.ti.com

5.3.7.2 Programming Flash Memory Via Bootstrap Loader (BSL)

Every flash device contains a BSL. The BSL enables users to read or program the flash memory or RAM
using a UART serial interface. Access to the flash memory via the BSL is protected by a 256-bit
user-defined password. For more details, see the application report Features of the MSP430 Bootstrap
Loader at www.ti.com/msp430.

5.3.7.3 Programming Flash Memory Via Custom Solution

The ability of the MSP430 CPU to write to its own flash memory allows for in-system and external custom
programming solutions as shown in Figure 5-13. The user can choose to provide data through any means
available (UART, SPI, etc.). User-developed software can receive the data and program the flash memory.
Since this type of solution is developed by the user, it can be completely customized to fit the application
needs for programming, erasing, or updating the flash memory.

Figure 5-13. User-Developed Programming Solution

276 Flash Memory Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.ti.com/msp430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Flash Memory Registers

5.4 Flash Memory Registers

The flash memory registers are listed in Table 5-4. The base address can be found in the device-specific
data sheet. The address offset is given in Table 5-4.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 5-4. Flash Controller Registers

Register Register AddressRegister Short Form Initial StateType Access Offset

Flash Memory Control 1 FCTL1 Read/write Word 00h 9600h

FCTL1_L Read/Write Byte 00h 00h

FCTL1_H Read/Write Byte 01h 96h

Flash Memory Control 3 FCTL3 Read/write Word 04h 9658h

FCTL3_L Read/Write Byte 04h 58h

FCTL3_H Read/Write Byte 05h 96h

Flash Memory Control 4 FCTL4 Read/write Word 06h 9600h

FCTL4_L Read/Write Byte 06h 00h

FCTL4_H Read/Write Byte 07h 96h

277SLAU208E–June 2008–Revised November 2009 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Flash Memory Registers www.ti.com

Flash Memory Control 1 Register (FCTL1)

15 14 13 12 11 10 9 8

FRKEY, Read as 096h
FWKEY, Must be written as 0A5h

7 6 5 4 3 2 1 0

BLKWRT WRT SWRT Reserved Reserved MERAS ERASE Reserved

rw-0 rw-0 rw-0 r-0 r-0 rw-0 rw-0 r-0

FRKEY/FWKEY Bits 15–8 FCTL password. Always read as 096h. Must be written as 0A5h or a PUC is generated.

BLKWRT Bit 7 See following table

WRT Bit 6 See following table

BLKWRT WRT Write Mode

0 1 Byte/word write

1 0 Long-word write

1 1 Long-word block write

SWRT Bit 5 Smart write. If this bit is set, the program time is shortened. The programming quality has to be
checked by marginal read modes.

Reserved Bits 4-3 Reserved. Must be written to 0. Always read 0.

MERAS Bit 2 Mass erase and erase. These bits are used together to select the erase mode. MERAS and
ERASE are automatically reset when a flash erase operation has completed.ERASE Bit 1

MERAS ERASE Erase Cycle

0 0 No erase

0 1 Segment erase

1 0 Bank erase (of one bank)

1 1 Mass erase (Erase all flash memory banks)

Reserved Bit 0 Reserved. Always read 0.

278 Flash Memory Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Flash Memory Registers

Flash Memory Control 3 Register (FCTL3)

15 14 13 12 11 10 9 8

FWKEY, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0

Reserved LOCKA Reserved LOCK WAIT ACCVIFG KEYV BUSY

r-0 rw-1 rw-0 rw-1 r-1 rw-0 rw-(0) rw-0

FWKEY Bits 15–8 FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC is generated.

Reserved Bit 7 Reserved. Always read 0.

LOCKA Bit 6 Segment A lock. Write a 1 to this bit to change its state. Writing 0 has no effect.

0 Segment A, B, C, D are unlocked. and are erased during a mass erase.

1 Segment A of the information memory is write protected. Segment B, C, and D are
protected from all erase.

Reserved Bit 5 Reserved. Must be written with 0.

LOCK Bit 4 Lock. This bit unlocks the flash memory for writing or erasing. The LOCK bit can be set any time
during a byte/word write or erase operation, and the operation completes normally. In the block write
mode, if the LOCK bit is set while BLKWRT = WAIT = 1, BLKWRT and WAIT are reset and the mode
ends normally.

0 Unlocked

1 Locked

WAIT Bit 3 Wait. Indicates the flash memory is being written to.

0 Flash memory is not ready for the next byte/word write.

1 Flash memory is ready for the next byte/word write.

ACCVIFG Bit 2 Access violation interrupt flag

0 No interrupt pending

1 Interrupt pending

KEYV Bit 1 Flash security key violation. This bit indicates an incorrect FCTLx password was written to any flash
control register and generates a PUC when set. KEYV must be reset with software.

0 FCTLx password was written correctly.

1 FCTLx password was written incorrectly.

BUSY Bit 0 Busy. This bit indicates if the flash is currently busy erasing or programming.

0 Not busy

1 Busy

279SLAU208E–June 2008–Revised November 2009 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Flash Memory Registers www.ti.com

Flash Memory Control 4 Register (FCTL4)

15 14 13 12 11 10 9 8

FWKEY, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0

LOCKINFO Reserved MRG1 MRG0 Reserved VPE

rw-0 r-0 rw-0 rw-0 r-0 r-0 r-0 rw-0

FWKEY Bits 15–8 FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC is generated.

LOCKINFO Bit 7 Lock information memory. If set, the information memory cannot be erased in segment erase mode
and cannot be written to.

Reserved Bit 6 Reserved. Always read as 0.

MRG1 Bit 5 Marginal read 1 mode. This bit enables the marginal 1 read mode. The marginal read 1 bit is valid for
reads from the flash memory only. During a fetch cycle, the marginal mode is turned off
automatically. If both MRG1 and MRG0 are set, MRG1 is active and MRG0 is ignored.

0 Marginal 1 read mode is disabled.

1 Marginal 1 read mode is enabled.

MRG0 Bit 4 Marginal read 0 mode. This bit enables the marginal 0 read mode. The marginal read 1 bit is valid for
reads from the flash memory only. During a fetch cycle, the marginal mode is turned off
automatically. If both MRG1 and MRG0 are set, MRG1 is active and MRG0 is ignored.

0 Marginal 0 read mode is disabled.

1 Marginal 0 read mode is enabled.

Reserved Bits 3–1 Reserved. Always read as 0.

VPE Bit 0 Voltage changed during program error. This bit is set by hardware and can only be cleared by
software. If DVCC changed significantly during programming, this bit is set to indicate an invalid
result. The ACCVIFG bit is set if VPE is set.

Interrupt Enable 1 Register (SFRIE1, SFRIE1_L, SFRIE1_H)

15 14 13 12 11 10 9 8

OTHER

7 6 5 4 3 2 1 0

ACCVIE

rw-0

Bits 15–6, 4–0 These bits may be used by other modules (see the device-specific data sheet and SYS chapter for
details).

ACCVIE Bit 5 Flash memory access violation interrupt enable. This bit enables the ACCVIFG interrupt. Because other
bits in SFRIE1 may be used for other modules, it is recommended to set or clear this bit using BIS.B or
BIC.B instructions, rather than MOV.B or CLR.B instructions. See the System Resets, Interrupts, and
Operating Modes, System Control Module (SYS) chapter for more details.

0 Interrupt not enabled

1 Interrupt enabled

280 Flash Memory Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 6
SLAU208E–June 2008–Revised November 2009

RAM Controller

The RAM controller (RAMCTL) allows control of the operation of the RAM.

Topic ... Page

6.1 Ram Controller (RAMCTL) Introduction .. 282
6.2 RAMCTL Operation .. 282
6.3 RAMCTL Module Registers ... 283

281SLAU208E–June 2008–Revised November 2009 RAM Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Ram Controller (RAMCTL) Introduction www.ti.com

6.1 Ram Controller (RAMCTL) Introduction

The RAMCTL provides access to the different power modes of the RAM. The RAMCTL allows the ability
to reduce the leakage current while the CPU is off. The RAM can also be switched off. In retention mode,
the RAM content is saved while the RAM content is lost in off mode. The RAM is partitioned in sectors,
typically of 4KB (sector) size. See the device-specific data sheet for actual block allocation and size. Each
sector is controlled by the RAM controller RAM Sector Off control bit (RCRSyOFF) of the RAMCTL
Control 0 register (RCCTL0). The RCCTL0 register is password protected. Only if the correct password is
written during a word write, the RCCTL0 register content can be modified. Byte write accesses or write
accesses with a wrong password are ignored.

6.2 RAMCTL Operation

Active mode
In active mode, the RAM can be read and written at any time. If a RAM address of a sector must hold
data, the whole sector cannot be switched off.

Low-power modes
In all low-power modes, the CPU is switched off. As soon as the CPU is switched off, the RAM enters
retention mode to reduce the leakage current.

RAM off mode
Each sector can be turned off independently of each other by setting the respective RCRSyOFF bit to
1. Reading from a switched off RAM sector returns 0 as data. All data previously stored into a switched
off RAM sector is lost and cannot be read, even if the sector is turned on again.

Stack pointer
The program stack is located in RAM. Sectors holding the stack must not be turned off if an interrupt
has to be executed, or a low-power mode is entered.

USB buffer memory
On devices with USB, the USB buffer memory is located in RAM. Sector 7 is used for this purpose.
RCRS7OFF can be set to switch off this memory if it is not required for USB operation or is not being
utilized in normal operation.

282 RAM Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com RAMCTL Module Registers

6.3 RAMCTL Module Registers

The RAMCTL module register is listed in Table 6-1. The base address can be found in the device-specific
data sheet. The address offset is given in Table 6-1.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 6-1. RAMCTL Module Register

Register Register AddressRegister Short Form Initial StateType Access Offset

RAM Controller Control 0 RCCTL0 Read/write Word 00h 6900h

RCCTL0_L Read/write Byte 00h 00h

RCCTL0_H Read/write Byte 01h 69h

283SLAU208E–June 2008–Revised November 2009 RAM Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

RAMCTL Module Registers www.ti.com

RAM Controller Control 0 Register (RCCTL0)

15 14 13 12 11 10 9 8

RCKEY
Always reads as 69h

Must be written as 5Ah

rw-0 rw-1 rw-1 rw-0 rw-1 rw-0 rw-0 rw-1

7 6 5 4 3 2 1 0

RCRS7OFF Reserved RCRS3OFF RCRS2OFF RCRS1OFF RCRS0OFF

rw-0 r-0 r-0 r-0 rw-0 rw-0 rw-0 rw-0

RCKEY Bits 15-8 RAM controller key. Always read as 69h. Must be written as 5Ah, otherwise the RAMCTL write is
ignored.

RCRS7OFF Bit 7 RAM controller RAM sector 7 off. Setting the bit to 1 turns off the RAM sector 7. All data of the RAM
sector 7 is lost. On devices with USB, this sector is also used as USB buffer memory. See the
device-specific data sheet to find the address range and size of each RAM sector.

Reserved Bits 6-4 Reserved. Always read as 0.

RCRSyOFF Bits 3-0 RAM controller RAM sector y off. Setting the bit to 1 turns off the RAM sector y. All data of the RAM
sector y is lost. See the device-specific data sheet to find the address range and size of each RAM
sector.

284 RAM Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 7
SLAU208E–June 2008–Revised November 2009

DMA Controller

The direct memory access (DMA) controller module transfers data from one address to another, without
CPU intervention. This chapter describes the operation of the DMA controller.

Topic ... Page

7.1 Direct Memory Access (DMA) Introduction ... 286
7.2 DMA Operation .. 288
7.3 DMA Registers .. 299

285SLAU208E–June 2008–Revised November 2009 DMA Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Direct Memory Access (DMA) Introduction www.ti.com

7.1 Direct Memory Access (DMA) Introduction

The DMA controller transfers data from one address to another, without CPU intervention, across the
entire address range. For example, the DMA controller can move data from the ADC conversion memory
to RAM.

Devices that contain a DMA controller may have up to eight DMA channels available. Therefore,
depending on the number of DMA channels available, some features described in this chapter are not
applicable to all devices. See the device-specific data sheet for number of channels supported.

Using the DMA controller can increase the throughput of peripheral modules. It can also reduce system
power consumption by allowing the CPU to remain in a low-power mode, without having to awaken to
move data to or from a peripheral.

DMA controller features include:

• Up to eight independent transfer channels
• Configurable DMA channel priorities
• Requires only two MCLK clock cycles per transfer
• Byte or word and mixed byte/word transfer capability
• Block sizes up to 65535 bytes or words
• Configurable transfer trigger selections
• Selectable-edge or level-triggered transfer
• Four addressing modes
• Single, block, or burst-block transfer modes

The DMA controller block diagram is shown in Figure 7-1.

286 DMA Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ENNMI

DMA Channel n

DMASRSBYTE

DMAnSZ

DMAnDA

DMAnSA

DMADSTBYTE

DMASRCINCR

DMADSTINCR

2

2

3

DMADT

DMAEN

DMA Channel1

DMASRSBYTE

DMA1SZ

DMA1DA

DMA1SA

DMADSTBYTE

DMASRCINCR

DMADSTINCR

2

2

3

DMADT

DMAEN

DMA Channel 0

DMASRSBYTE

DMA0SZ

DMA0DA

DMA0SA

DMADSTBYTE

DMASRCINCR

DMADSTINCR

2

2

3

DMADT

DMAEN

Address
Space

NMI Interrupt Request

JTAG Active

Halt

Halt CPU

ROUNDROBIN

DMARMWDIS

DMAnTSEL

DMA0TRIG31

DMA0TRIG0

DMA0TSEL

5

DMA0TRIG1

00000

00001

11111

DMA1TRIG31

DMA1TRIG0

DMA1TSEL

5

DMA1TRIG1

00000

00001

11111

DMAnTRIG31

DMAnTRIG0

5

DMAnTRIG1

00000

00001

11111

to USB
if available

to USB
if available

D
M

A
P

ri
o

ri
ty

a
n

d
C

o
n

tr
o

l

to USB
if available

www.ti.com Direct Memory Access (DMA) Introduction

Figure 7-1. DMA Controller Block Diagram

287SLAU208E–June 2008–Revised November 2009 DMA Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Address SpaceAddress Space

DMA

Controller
Address Space Address Space

Fixed Address To Block Of AddressesFixed Address To Fixed Address

Block Of Addresses To Fixed Address Block Of Addresses To Block Of Addresses

DMA

Controller

DMA

Controller

DMA

Controller

DMA Operation www.ti.com

7.2 DMA Operation

The DMA controller is configured with user software. The setup and operation of the DMA is discussed in
the following sections.

7.2.1 DMA Addressing Modes

The DMA controller has four addressing modes. The addressing mode for each DMA channel is
independently configurable. For example, channel 0 may transfer between two fixed addresses, while
channel 1 transfers between two blocks of addresses. The addressing modes are shown in Figure 7-2.
The addressing modes are:

• Fixed address to fixed address
• Fixed address to block of addresses
• Block of addresses to fixed address
• Block of addresses to block of addresses

The addressing modes are configured with the DMASRCINCR and DMADSTINCR control bits. The
DMASRCINCR bits select if the source address is incremented, decremented, or unchanged after each
transfer. The DMADSTINCR bits select if the destination address is incremented, decremented, or
unchanged after each transfer.

Transfers may be byte to byte, word to word, byte to word, or word to byte. When transferring word to
byte, only the lower byte of the source-word transfers. When transferring byte to word, the upper byte of
the destination-word is cleared when the transfer occurs.

Figure 7-2. DMA Addressing Modes

7.2.2 DMA Transfer Modes

The DMA controller has six transfer modes selected by the DMADT bits as listed in Table 7-1. Each
channel is individually configurable for its transfer mode. For example, channel 0 may be configured in
single transfer mode, while channel 1 is configured for burst-block transfer mode, and channel 2 operates
in repeated block mode. The transfer mode is configured independently from the addressing mode. Any
addressing mode can be used with any transfer mode.

Two types of data can be transferred selectable by the DMAxCTL DSTBYTE and SRCBYTE fields. The
source and/or destination location can be either byte or word data. It is also possible to transfer byte to
byte, word to word, or any combination.

288 DMA Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com DMA Operation

Table 7-1. DMA Transfer Modes

DMADT Transfer Mode Description

000 Single transfer Each transfer requires a trigger. DMAEN is automatically cleared when DMAxSZ
transfers have been made.

001 Block transfer A complete block is transferred with one trigger. DMAEN is automatically cleared at
the end of the block transfer.

010, 011 Burst-block transfer CPU activity is interleaved with a block transfer. DMAEN is automatically cleared at
the end of the burst-block transfer.

100 Repeated single transfer Each transfer requires a trigger. DMAEN remains enabled.

101 Repeated block transfer A complete block is transferred with one trigger. DMAEN remains enabled.

110, 111 Repeated burst-block CPU activity is interleaved with a block transfer. DMAEN remains enabled.transfer

7.2.2.1 Single Transfer

In single transfer mode, each byte/word transfer requires a separate trigger. The single transfer state
diagram is shown in Figure 7-3.

The DMAxSZ register is used to define the number of transfers to be made. The DMADSTINCR and
DMASRCINCR bits select if the destination address and the source address are incremented or
decremented after each transfer. If DMAxSZ = 0, no transfers occur.

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary
values of DMAxSA and DMAxDA are incremented or decremented after each transfer. The DMAxSZ
register is decremented after each transfer. When the DMAxSZ register decrements to zero, it is reloaded
from its temporary register and the corresponding DMAIFG flag is set. When DMADT = {0}, the DMAEN
bit is cleared automatically when DMAxSZ decrements to zero and must be set again for another transfer
to occur.

In repeated single transfer mode, the DMA controller remains enabled with DMAEN = 1, and a transfer
occurs every time a trigger occurs.

289SLAU208E–June 2008–Revised November 2009 DMA Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Reset

Wait forTrigger

Idle

Hold CPU,
Transfer one word/byte

[+Trigger AND DMALEVEL = 0]
OR

[Trigger = 1 AND DMALEVEL = 1]

DMAABORT=0

DMAABORT = 1

2 x MCLK

DMAEN = 0

Decrement DMAxSZ
Modify T_SourceAdd

Modify T_DestAdd

[ENNMI = 1

AND NMI event]

OR

[DMALEVEL = 1

AND Trigger = 0]

[DMADT = {0}

AND DMAxSZ = 0]

OR DMAEN = 0

DMAxSZ T_Size

DMAxSA T_SourceAdd

DMAxDA T_DestAdd

→

→

→

DMAREQ = 0

DMAxSZ > 0
AND DMAEN = 1

DMAEN = 0
DMAEN = 1

T_Size DMAxSZ

DMAxSA T_SourceAdd

DMAxDA T_DestAdd

→

→

→

DMADT = {4}

AND DMAxSZ = 0

AND DMAEN = 1

DMAEN = 0
DMAREQ = 0

T_Size → DMAxSZ

DMA Operation www.ti.com

Figure 7-3. DMA Single Transfer State Diagram

7.2.2.2 Block Transfer

In block transfer mode, a transfer of a complete block of data occurs after one trigger. When DMADT = {1}
,the DMAEN bit is cleared after the completion of the block transfer and must be set again before another
block transfer can be triggered. After a block transfer has been triggered, further trigger signals occurring
during the block transfer are ignored. The block transfer state diagram is shown in Figure 7-4.

The DMAxSZ register is used to define the size of the block, and the DMADSTINCR and DMASRCINCR
bits select if the destination address and the source address are incremented or decremented after each
transfer of the block. If DMAxSZ = 0, no transfers occur.

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary
values of DMAxSA and DMAxDA are incremented or decremented after each transfer in the block. The
DMAxSZ register is decremented after each transfer of the block and shows the number of transfers
remaining in the block. When the DMAxSZ register decrements to zero, it is reloaded from its temporary
register and the corresponding DMAIFG flag is set.

290 DMA Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Reset

Wait forTrigger

Idle

Hold CPU,
Transfer one word/byte

[+TriggerAND DMALEVEL= 0]

OR

[Trigger=1AND DMALEVEL=1]

DMAABORT = 0

Decrement DMAxSZ
Modify T_SourceAdd

Modify T_DestAdd

DMAxSZ > 0

[ENNMI = 1

AND NMI event]

OR

[DMALEVEL = 1

AND Trigger = 0]

[DMADT = {1}

AND DMAxSZ = 0]

OR

DMAEN = 0

DMAxSZ T_Size

DMAxSA T_SourceAdd

DMAxDA T_DestAdd

→

→

→

DMAREQ = 0

T_Size DMAxSZ

DMAxSA T_SourceAdd

DMAxDA T_DestAdd

→

→

→

DMADT = {5}
AND DMAxSZ = 0
AND DMAEN = 1

DMAEN = 0
DMAEN = 1

DMAEN = 0
DMAREQ = 0

T_Size DMAxSZ→

DMAABORT = 1

2 × MCLK

DMAEN = 0

www.ti.com DMA Operation

During a block transfer, the CPU is halted until the complete block has been transferred. The block
transfer takes 2 × MCLK × DMAxSZ clock cycles to complete. CPU execution resumes with its previous
state after the block transfer is complete.

In repeated block transfer mode, the DMAEN bit remains set after completion of the block transfer. The
next trigger after the completion of a repeated block transfer triggers another block transfer.

Figure 7-4. DMA Block Transfer State Diagram

7.2.2.3 Burst-Block Transfer

In burst-block mode, transfers are block transfers with CPU activity interleaved. The CPU executes
two MCLK cycles after every four byte/word transfers of the block, resulting in 20% CPU execution
capacity. After the burst-block, CPU execution resumes at 100% capacity and the DMAEN bit is cleared.
DMAEN must be set again before another burst-block transfer can be triggered. After a burst-block
transfer has been triggered, further trigger signals occurring during the burst-block transfer are ignored.
The burst-block transfer state diagram is shown in Figure 7-5.

The DMAxSZ register is used to define the size of the block, and the DMADSTINCR and DMASRCINCR
bits select if the destination address and the source address are incremented or decremented after each
transfer of the block. If DMAxSZ = 0, no transfers occur.

291SLAU208E–June 2008–Revised November 2009 DMA Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

DMA Operation www.ti.com

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary
values of DMAxSA and DMAxDA are incremented or decremented after each transfer in the block. The
DMAxSZ register is decremented after each transfer of the block and shows the number of transfers
remaining in the block. When the DMAxSZ register decrements to zero, it is reloaded from its temporary
register and the corresponding DMAIFG flag is set.

In repeated burst-block mode, the DMAEN bit remains set after completion of the burst-block transfer and
no further trigger signals are required to initiate another burst-block transfer. Another burst-block transfer
begins immediately after completion of a burst-block transfer. In this case, the transfers must be stopped
by clearing the DMAEN bit, or by an (non)maskable interrupt (NMI) when ENNMI is set. In repeated
burst-block mode the CPU executes at 20% capacity continuously until the repeated burst-block transfer is
stopped.

292 DMA Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

2 × MCLK

Reset

Wait for Trigger

Idle

Hold CPU,

Transfer one word/byte

Burst State
(release CPU for 2 × MCLK)

[+Trigger AND DMALEVEL = 0]
OR

[Trigger=1 AND DMALEVEL=1]

DMAABORT=0

DMAABORT = 1

2 × MCLK

DMAEN = 0

Decrement DMAxSZ
Modify T_SourceAdd

Modify T_DestAdd

[DMADT = {6, 7}

AND DMAxSZ = 0]

[ENNMI = 1
AND NMI event]

OR
[DMALEVEL = 1

AND
Trigger = 0]

[DMADT = {2, 3}
AND DMAxSZ = 0]

OR
DMAEN = 0

DMAxSZ T_Size

DMAxSA T_SourceAdd

DMAxDA T_DestAdd

→

→

→

T_Size

DMAxSA T_SourceAdd

DMAxDA T_DestAdd

→

→

→

DMAxSZ

DMAEN = 0
DMAEN = 1

DMAxSZ > 0
DMAxSZ > 0 AND

a multiple of 4 words/bytes
were transferred

DMAxSZ > 0

DMAEN = 0
DMAREQ = 0

T_Size DMAxSZ→

www.ti.com DMA Operation

Figure 7-5. DMA Burst-Block Transfer State Diagram

293SLAU208E–June 2008–Revised November 2009 DMA Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

DMA Operation www.ti.com

7.2.3 Initiating DMA Transfers

Each DMA channel is independently configured for its trigger source with the DMAxTSEL. The
DMAxTSEL bits should be modified only when the DMACTLx DMAEN bit is 0. Otherwise, unpredictable
DMA triggers may occur.Table 7-2 describes the trigger operation for each type of module. See the
device-specific data sheet for the list of triggers available, along with their respective DMAxTSEL values.

When selecting the trigger, the trigger must not have already occurred, or the transfer does not take place.

NOTE: DMA trigger selection and USB

On devices that contain a USB module, the triggers selection from DMA channels 0, 1, or 2
can be used for the USB time stamp event selection (see the USB module description for
further details).

7.2.3.1 Edge-Sensitive Triggers

When DMALEVEL = 0, edge-sensitive triggers are used, and the rising edge of the trigger signal initiates
the transfer. In single-transfer mode, each transfer requires its own trigger. When using block or
burst-block modes, only one trigger is required to initiate the block or burst-block transfer.

7.2.3.2 Level-Sensitive Triggers

When DMALEVEL = 1, level-sensitive triggers are used. For proper operation, level-sensitive triggers can
only be used when external trigger DMAE0 is selected as the trigger. DMA transfers are triggered as long
as the trigger signal is high and the DMAEN bit remains set.

The trigger signal must remain high for a block or burst-block transfer to complete. If the trigger signal
goes low during a block or burst-block transfer, the DMA controller is held in its current state until the
trigger goes back high or until the DMA registers are modified by software. If the DMA registers are not
modified by software, when the trigger signal goes high again, the transfer resumes from where it was
when the trigger signal went low.

When DMALEVEL = 1, transfer modes selected when DMADT = {0, 1, 2, 3} are recommended because
the DMAEN bit is automatically reset after the configured transfer.

7.2.4 Halting Executing Instructions for DMA Transfers

The DMARMWDIS bit controls when the CPU is halted for DMA transfers. When DMARMWDIS = 0, the
CPU is halted immediately and the transfer begins when a trigger is received. In this case, it is possible
that CPU read-modify-write operations can be interrupted by a DMA transfer. When DMARMWDIS = 1,
the CPU finishes the currently executing read-modify-write operation before the DMA controller halts the
CPU and the transfer begins (see Table 7-2).

294 DMA Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com DMA Operation

Table 7-2. DMA Trigger Operation

Module Operation

DMA A transfer is triggered when the DMAREQ bit is set. The DMAREQ bit is automatically reset when the transfer
starts.
A transfer is triggered when the DMAxIFG flag is set. DMA0IFG triggers channel 1, DMA1IFG triggers channel 2,
and DMA2IFG triggers channel 0. None of the DMAxIFG flags are automatically reset when the transfer starts.
A transfer is triggered by the external trigger DMAE0.

Timer_A A transfer is triggered when the TAxCCR0 CCIFG flag is set. The TAxCCR0 CCIFG flag is automatically reset
when the transfer starts. If the TAxCCR0 CCIE bit is set, the TAxCCR0 CCIFG flag dies not trigger a transfer.
A transfer is triggered when the TAxCCR2 CCIFG flag is set. The TAxCCR2 CCIFG flag is automatically reset
when the transfer starts. If the TAxCCR2 CCIE bit is set, the TAxCCR2 CCIFG flag does not trigger a transfer.

Timer_B A transfer is triggered when the TBxCCR0 CCIFG flag is set. The TBxCCR0 CCIFG flag is automatically reset
when the transfer starts. If the TBxCCR0 CCIE bit is set, the TBxCCR0 CCIFG flag does not trigger a transfer.
A transfer is triggered when the TBxCCR2 CCIFG flag is set. The TBxCCR2 CCIFG flag is automatically reset
when the transfer starts. If the TBxCCR2 CCIE bit is set, the TBxCCR2 CCIFG flag does not trigger a transfer.

USCI_Ax A transfer is triggered when USCI_Ax receives new data. UCAxRXIFG is automatically reset when the transfer
starts. If UCAxRXIE is set, the UCAxRXIFG does not trigger a transfer.
A transfer is triggered when USCI_Ax is ready to transmit new data. UCAxTXIFG is automatically reset when the
transfer starts. If UCAxTXIE is set, the UCAxTXIFG does not trigger a transfer.

USCI_Bx A transfer is triggered when USCI_Bx receives new data. UCBxRXIFG is automatically reset when the transfer
starts. If UCBxRXIE is set, the UCBxRXIFG does not trigger a transfer.
A transfer is triggered when USCI_Bx is ready to transmit new data. UCBxTXIFG is automatically reset when the
transfer starts. If UCBxTXIE is set, the UCBxTXIFG does not trigger a transfer.

DAC12_A A transfer is triggered when the DAC12_xCTL0 DAC12IFG flag is set. The DAC12_xCTL0 DAC12IFG flag is
automatically cleared when the transfer starts. If the DAC12_xCTL0 DAC12IE bit is set, the DAC12_xCTL0
DAC12IFG flag does not trigger a transfer.

ADC12_A A transfer is triggered by an ADC12IFG flag. When single-channel conversions are performed, the
corresponding ADC12IFG is the trigger. When sequences are used, the ADC12IFG for the last conversion in the
sequence is the trigger. A transfer is triggered when the conversion is completed and the ADC12IFG is set.
Setting the ADC12IFG with software does not trigger a transfer. All ADC12IFG flags are automatically reset
when the associated ADC12MEMx register is accessed by the DMA controller.

MPY A transfer is triggered when the hardware multiplier is ready for a new operand.

Reserved No transfer is triggered.

7.2.5 Stopping DMA Transfers

There are two ways to stop DMA transfers in progress:

• A single, block, or burst-block transfer may be stopped with an NMI, if the ENNMI bit is set in register
DMACTL1.

• A burst-block transfer may be stopped by clearing the DMAEN bit.

7.2.6 DMA Channel Priorities

The default DMA channel priorities are DMA0 through DMA7. If two or three triggers happen
simultaneously or are pending, the channel with the highest priority completes its transfer (single, block, or
burst-block transfer) first, then the second priority channel, then the third priority channel. Transfers in
progress are not halted if a higher-priority channel is triggered. The higher-priority channel waits until the
transfer in progress completes before starting.

The DMA channel priorities are configurable with the ROUNDROBIN bit. When the ROUNDROBIN bit is
set, the channel that completes a transfer becomes the lowest priority. The order of the priority of the
channels always stays the same, DMA0-DMA1-DMA2, for example, for three channels. When the
ROUNDROBIN bit is cleared, the channel priority returns to the default priority.

DMA Priority Transfer Occurs New DMA Priority

DMA0-DMA1-DMA2 DMA1 DMA2-DMA0-DMA1

DMA2-DMA0-DMA1 DMA2 DMA0-DMA1-DMA2

DMA0-DMA1-DMA2 DMA0 DMA1-DMA2-DMA0

295SLAU208E–June 2008–Revised November 2009 DMA Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

DMA Operation www.ti.com

7.2.7 DMA Transfer Cycle Time

The DMA controller requires one or two MCLK clock cycles to synchronize before each single transfer or
complete block or burst-block transfer. Each byte/word transfer requires two MCLK cycles after
synchronization, and one cycle of wait time after the transfer. Because the DMA controller uses MCLK, the
DMA cycle time is dependent on the MSP430 operating mode and clock system setup.

If the MCLK source is active but the CPU is off, the DMA controller uses the MCLK source for each
transfer, without reenabling the CPU. If the MCLK source is off, the DMA controller temporarily restarts
MCLK, sourced with DCOCLK, for the single transfer or complete block or burst-block transfer. The CPU
remains off and after the transfer completes, MCLK is turned off. The maximum DMA cycle time for all
operating modes is shown in Table 7-3.

Table 7-3. Maximum Single-Transfer DMA Cycle Time

CPU Operating Mode Clock Source Maximum DMA Cycle Time

Active mode MCLK = DCOCLK 4 MCLK cycles

Active mode MCLK = LFXT1CLK 4 MCLK cycles

Low-power mode LPM0/1 MCLK = DCOCLK 5 MCLK cycles

Low-power mode LPM3/4 MCLK = DCOCLK 5 MCLK cycles + 5 μs (1)

Low-power mode LPM0/1 MCLK = LFXT1CLK 5 MCLK cycles

Low-power mode LPM3 MCLK = LFXT1CLK 5 MCLK cycles

Low-power mode LPM4 MCLK = LFXT1CLK 5 MCLK cycles + 5 μs (1)

(1) The additional 5 μs are needed to start the DCOCLK. It is the t(LPMx) parameter in the data sheet.

7.2.8 Using DMA With System Interrupts

DMA transfers are not interruptible by system interrupts. System interrupts remain pending until the
completion of the transfer. NMIs can interrupt the DMA controller if the ENNMI bit is set.

System interrupt service routines are interrupted by DMA transfers. If an interrupt service routine or other
routine must execute with no interruptions, the DMA controller should be disabled prior to executing the
routine.

7.2.9 DMA Controller Interrupts

Each DMA channel has its own DMAIFG flag. Each DMAIFG flag is set in any mode when the
corresponding DMAxSZ register counts to zero. If the corresponding DMAIE and GIE bits are set, an
interrupt request is generated.

All DMAIFG flags are prioritized, with DMA0IFG being the highest, and combined to source a single
interrupt vector. The highest-priority enabled interrupt generates a number in the DMAIV register. This
number can be evaluated or added to the program counter (PC) to automatically enter the appropriate
software routine. Disabled DMA interrupts do not affect the DMAIV value.

Any access, read or write, of the DMAIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, assume that DMA0 has the highest priority. If the DMA0IFG and DMA2IFG flags are set
when the interrupt service routine accesses the DMAIV register, DMA0IFG is reset automatically. After the
RETI instruction of the interrupt service routine is executed, the DMA2IFG generates another interrupt.

7.2.9.1 DMAIV Software Example

The following software example shows the recommended use of DMAIV and the handling overhead for an
eight channel DMA controller. The DMAIV value is added to the PC to automatically jump to the
appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself.

296 DMA Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com DMA Operation

;Interrupt handler for DMAxIFG Cycles

DMA_HND ... ; Interrupt latency 6
ADD &DMAIV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP DMA0_HND ; Vector 2: DMA channel 0 2
JMP DMA1_HND ; Vector 4: DMA channel 1 2
JMP DMA2_HND ; Vector 6: DMA channel 2 2
JMP DMA3_HND ; Vector 8: DMA channel 3 2
JMP DMA4_HND ; Vector 10: DMA channel 4 2
JMP DMA5_HND ; Vector 12: DMA channel 5 2
JMP DMA6_HND ; Vector 14: DMA channel 6 2
JMP DMA7_HND ; Vector 16: DMA channel 7 2

DMA7_HND ; Vector 16: DMA channel 7
... ; Task starts here
RETI ; Back to main program 5

DMA6_HND ; Vector 14: DMA channel 6
... ; Task starts here
RETI ; Back to main program 5

DMA5_HND ; Vector 12: DMA channel 5
... ; Task starts here
RETI ; Back to main program 5

DMA4_HND ; Vector 10: DMA channel 4
... ; Task starts here
RETI ; Back to main program 5

DMA3_HND ; Vector 8: DMA channel 3
... ; Task starts here
RETI ; Back to main program 5

DMA2_HND ; Vector 6: DMA channel 2
... ; Task starts here
RETI ; Back to main program 5

DMA1_HND ; Vector 4: DMA channel 1
... ; Task starts here
RETI ; Back to main program 5

DMA0_HND ; Vector 2: DMA channel 0
... ; Task starts here
RETI ; Back to main program 5

297SLAU208E–June 2008–Revised November 2009 DMA Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

DMA Operation www.ti.com

7.2.10 Using the USCI_B I2C Module With the DMA Controller

The USCI_B I2C module provides two trigger sources for the DMA controller. The USCI_B I2C module can
trigger a transfer when new I2C data is received and the when the transmit data is needed.

7.2.11 Using ADC12 With the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move data from any ADC12MEMx
register to another location. DMA transfers are done without CPU intervention and independently of any
low-power modes. The DMA controller increases throughput of the ADC12 module, and enhances
low-power applications allowing the CPU to remain off while data transfers occur.

DMA transfers can be triggered from any ADC12IFG flag. When CONSEQx = {0,2}, the ADC12IFG flag for
the ADC12MEMx used for the conversion can trigger a DMA transfer. When CONSEQx = {1,3}, the
ADC12IFG flag for the last ADC12MEMx in the sequence can trigger a DMA transfer. Any ADC12IFG flag
is automatically cleared when the DMA controller accesses the corresponding ADC12MEMx.

7.2.12 Using DAC12 With the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move data to the DAC12_xDAT
register. DMA transfers are done without CPU intervention and independently of any low-power modes.
The DMA controller increases throughput to the DAC12 module, and enhances low-power applications
allowing the CPU to remain off while data transfers occur.

Applications requiring periodic waveform generation can benefit from using the DMA controller with the
DAC12. For example, an application that produces a sinusoidal waveform may store the sinusoid values
in a table. The DMA controller can continuously and automatically transfer the values to the DAC12 at
specific intervals creating the sinusoid with zero CPU execution. The DAC12_xCTL DAC12IFG flag is
automatically cleared when the DMA controller accesses the DAC12_xDAT register.

298 DMA Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com DMA Registers

7.3 DMA Registers

The DMA module registers are listed in Table 7-4. The base addresses can be found in the device-specific
data sheet. Each channel starts at its respective base address. The address offsets are listed in Table 7-4.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 7-4. DMA Registers

Register AddressRegister Short Form Register Type Initial StateAccess Offset

DMA Control 0 DMACTL0 Read/write Word 00h 0000h

DMACTL0_L Read/write Byte 00h 00h

DMACTL0_H Read/write Byte 01h 00h

DMA Control 1 DMACTL1 Read/write Word 02h 0000h

DMACTL1_L Read/write Byte 02h 00h

DMACTL1_H Read/write Byte 03h 00h

DMA Control 2 DMACTL2 Read/write Word 04h 0000h

DMACTL2_L Read/write Byte 04h 00h

DMACTL2_H Read/write Byte 05h 00h

DMA Control 3 DMACTL3 Read/write Word 06h 0000h

DMACTL3_L Read/write Byte 06h 00h

DMACTL3_H Read/write Byte 07h 00h

DMA Control 4 DMACTL4 Read/write Word 08h 0000h

DMACTL4_L Read/write Byte 08h 00h

DMACTL4_H Read/write Byte 09h 00h

DMA Interrupt Vector DMAIV Read only Word 0Eh 0000h

DMAIV_L Read only Byte 0Eh 00h

DMAIV_H Read only Byte 0Fh 00h

DMA Channel 0 Control DMA0CTL Read/write Word 00h 0000h

DMA0CTL_L Read/write Byte 00h 00h

DMA0CTL_H Read/write Byte 01h 00h

DMA Channel 0 Source Address DMA0SA Read/write 02h undefined

DMA Channel 0 Destination Address DMA0DA Read/write 06h undefined

DMA Channel 0 Transfer Size DMA0SZ Read/write Word 0Ah undefined

DMA0SZ_L Read/write Byte 0Ah undefined

DMA0SZ_H Read/write Byte 0Bh undefined

DMA Channel 1 Control DMA1CTL Read/write Word 00h 0000h

DMA1CTL_L Read/write Byte 00h 00h

DMA1CTL_H Read/write Byte 01h 00h

DMA Channel 1 Source Address DMA1SA Read/write 02h undefined

DMA Channel 1 Destination Address DMA1DA Read/write 06h undefined

DMA Channel 1 Transfer Size DMA1SZ Read/write Word 0Ah undefined

DMA1SZ_L Read/write Byte 0Ah undefined

DMA1SZ_H Read/write Byte 0Bh undefined

DMA Channel 2 Control DMA2CTL Read/write Word 00h 0000h

DMA2CTL_L Read/write Byte 00h 00h

DMA2CTL_H Read/write Byte 01h 00h

DMA Channel 2 Source Address DMA2SA Read/write 02h undefined

DMA Channel 2 Destination Address DMA2DA Read/write 06h undefined

299SLAU208E–June 2008–Revised November 2009 DMA Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

DMA Registers www.ti.com

Table 7-4. DMA Registers (continued)

Register AddressRegister Short Form Register Type Initial StateAccess Offset

DMA Channel 2 Transfer Size DMA2SZ Read/write Word 0Ah undefined

DMA2SZ_L Read/write Byte 0Ah undefined

DMA2SZ_H Read/write Byte 0Bh undefined

DMA Channel 3 Control DMA3CTL Read/write Word 00h 0000h

DMA3CTL_L Read/write Byte 00h 00h

DMA3CTL_H Read/write Byte 01h 00h

DMA Channel 3 Source Address DMA3SA Read/write 02h undefined

DMA Channel 3 Destination Address DMA3DA Read/write 06h undefined

DMA Channel 3 Transfer Size DMA3SZ Read/write Word 0Ah undefined

DMA3SZ_L Read/write Byte 0Ah undefined

DMA3SZ_H Read/write Byte 0Bh undefined

DMA Channel 4 Control DMA4CTL Read/write Word 00h 0000h

DMA4CTL_L Read/write Byte 00h 00h

DMA4CTL_H Read/write Byte 01h 00h

DMA Channel 4 Source Address DMA4SA Read/write 02h undefined

DMA Channel 4 Destination Address DMA4DA Read/write 06h undefined

DMA Channel 4 Transfer Size DMA4SZ Read/write Word 0Ah undefined

DMA4SZ_L Read/write Byte 0Ah undefined

DMA4SZ_H Read/write Byte 0Bh undefined

DMA Channel 5 Control DMA5CTL Read/write Word 00h 0000h

DMA5CTL_L Read/write Byte 00h 00h

DMA5CTL_H Read/write Byte 01h 00h

DMA Channel 5 Source Address DMA5SA Read/write 02h undefined

DMA Channel 5 Destination Address DMA5DA Read/write 06h undefined

DMA Channel 5 Transfer Size DMA5SZ Read/write Word 0Ah undefined

DMA5SZ_L Read/write Byte 0Ah undefined

DMA5SZ_H Read/write Byte 0Bh undefined

DMA Channel 6 Control DMA6CTL Read/write Word 00h 0000h

DMA6CTL_L Read/write Byte 00h 00h

DMA6CTL_H Read/write Byte 01h 00h

DMA Channel 6 Source Address DMA6SA Read/write 02h undefined

DMA Channel 6 Destination Address DMA6DA Read/write 06h undefined

DMA Channel 6 Transfer Size DMA6SZ Read/write Word 0Ah undefined

DMA6SZ_L Read/write Byte 0Ah undefined

DMA6SZ_H Read/write Byte 0Bh undefined

DMA Channel 7 Control DMA7CTL Read/write Word 00h 0000h

DMA7CTL_L Read/write Byte 00h 00h

DMA7CTL_H Read/write Byte 01h 00h

DMA Channel 7 Source Address DMA7SA Read/write 02h undefined

DMA Channel 7 Destination Address DMA7DA Read/write 06h undefined

DMA Channel 7 Transfer Size DMA7SZ Read/write Word 0Ah undefined

DMA7SZ_L Read/write Byte 0Ah undefined

DMA7SZ_H Read/write Byte 0Bh undefined

300 DMA Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com DMA Registers

7.3.1 DMA Control 0 Register (DMACTL0)

15 14 13 12 11 10 9 8

Reserved DMA1TSEL

r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

Reserved DMA0TSEL

r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Reserved Bits 15-13 Reserved. Read only. Always read as 0.

DMA1TSEL Bits 12-8 DMA trigger select. These bits select the DMA transfer trigger. See the device-specific data sheet for
number of channels and trigger assignment.

00000 DMA1TRIG0

00001 DMA1TRIG1

00010 DMA1TRIG2

⋮
11110 DMA1TRIG30

11111 DMA1TRIG31

Reserved Bits 7-5 Reserved. Read only. Always read as 0.

DMA0TSEL Bits 4-0 Same as DMA1TSEL

7.3.2 DMA Control 1 Register (DMACTL1)

15 14 13 12 11 10 9 8

Reserved DMA3TSEL

r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

Reserved DMA2TSEL

r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Reserved Bits 15-13 Reserved. Read only. Always read as 0.

DMA3TSEL Bits 12-8 DMA trigger select. These bits select the DMA transfer trigger. See the device-specific data sheet for
number of channels and trigger assignment.

00000 DMA3TRIG0

00001 DMA3TRIG1

00010 DMA3TRIG2

⋮
11110 DMA3TRIG30

11111 DMA3TRIG31

Reserved Bits 7-5 Reserved. Read only. Always read as 0.

DMA2TSEL Bits 4-0 Same as DMA3TSEL

301SLAU208E–June 2008–Revised November 2009 DMA Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

DMA Registers www.ti.com

7.3.3 DMA Control 2 Register (DMACTL2)

15 14 13 12 11 10 9 8

Reserved DMA5TSEL

r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

Reserved DMA4TSEL

r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Reserved Bits 15-13 Reserved. Read only. Always read as 0.

DMA5TSEL Bits 12-8 DMA trigger select. These bits select the DMA transfer trigger. See the device-specific data sheet for
number of channels and trigger assignment.

00000 DMA5TRIG0

00001 DMA5TRIG1

00010 DMA5TRIG2

⋮
11110 DMA5TRIG30

11111 DMA5TRIG31

Reserved Bits 7-5 Reserved. Read only. Always read as 0.

DMA4TSEL Bits 4-0 Same as DMA5TSEL

7.3.4 DMA Control 3 Register (DMACTL3)

15 14 13 12 11 10 9 8

Reserved DMA7TSEL

r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

Reserved DMA6TSEL

r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Reserved Bits 15-13 Reserved. Read only. Always read as 0.

DMA7TSEL Bits 12-8 DMA trigger select. These bits select the DMA transfer trigger. See the device-specific data sheet for
number of channels and trigger assignment.

00000 DMA7TRIG0

00001 DMA7TRIG1

00010 DMA7TRIG2

⋮
11110 DMA7TRIG30

11111 DMA7TRIG31

Reserved Bits 7-5 Reserved. Read only. Always read as 0.

DMA6TSEL Bits 4-0 Same as DMA7TSEL

302 DMA Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com DMA Registers

7.3.5 DMA Control 4 Register (DMACTL4)

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 0 DMARMWDIS ROUND ENNMI
ROBIN

r0 r0 r0 r0 r0 rw-(0) rw-(0) rw-(0)

Reserved Bits 15-3 Reserved. Read only. Always read as 0.

DMARMWDIS Bit 2 Read-modify-write disable. When set, this bit inhibits any DMA transfers from occurring during CPU
read-modify-write operations.

0 DMA transfers can occur during read-modify-write CPU operations.

1 DMA transfers inhibited during read-modify-write CPU operations

ROUNDROBIN Bit 1 Round robin. This bit enables the round-robin DMA channel priorities.

0 DMA channel priority is DMA0-DMA1-DMA2 - -DMA7.

1 DMA channel priority changes with each transfer.

ENNMI Bit 0 Enable NMI. This bit enables the interruption of a DMA transfer by an NMI. When an NMI interrupts a
DMA transfer, the current transfer is completed normally, further transfers are stopped and DMAABORT
is set.

0 NMI does not interrupt DMA transfer.

1 NMI interrupts a DMA transfer.

303SLAU208E–June 2008–Revised November 2009 DMA Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

DMA Registers www.ti.com

7.3.6 DMA Channel x Control Register (DMAxCTL)

15 14 13 12 11 10 9 8

Reserved DMADT DMADSTINCR DMASRCINCR

r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

DMA DMA DMALEVEL DMAEN DMAIFG DMAIE DMAABORT DMAREQ
DSTBYTE SRCBYTE

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Reserved Bit 15 Reserved. Read only. Always read as 0.

DMADT Bits 14-12 DMA transfer mode

000 Single transfer

001 Block transfer

010 Burst-block transfer

011 Burst-block transfer

100 Repeated single transfer

101 Repeated block transfer

110 Repeated burst-block transfer

111 Repeated burst-block transfer

DMADSTINCR Bits 11-10 DMA destination increment. This bit selects automatic incrementing or decrementing of the destination
address after each byte or word transfer. When DMADSTBYTE = 1, the destination address
increments/decrements by one. When DMADSTBYTE = 0, the destination address
increments/decrements by two. The DMAxDA is copied into a temporary register and the temporary
register is incremented or decremented. DMAxDA is not incremented or decremented.

00 Destination address is unchanged.

01 Destination address is unchanged.

10 Destination address is decremented.

11 Destination address is incremented.

DMASRCINCR Bits 9-8 DMA source increment. This bit selects automatic incrementing or decrementing of the source address
for each byte or word transfer. When DMASRCBYTE = 1, the source address increments/decrements by
one. When DMASRCBYTE = 0, the source address increments/decrements by two. The DMAxSA is
copied into a temporary register and the temporary register is incremented or decremented. DMAxSA is
not incremented or decremented.

00 Source address is unchanged.

01 Source address is unchanged.

10 Source address is decremented.

11 Source address is incremented.

DMADSTBYTE Bit 7 DMA destination byte. This bit selects the destination as a byte or word.

0 Word

1 Byte

DMASRCBYTE Bit 6 DMA source byte. This bit selects the source as a byte or word.

0 Word

1 Byte

DMALEVEL Bit 5 DMA level. This bit selects between edge-sensitive and level-sensitive triggers.

0 Edge sensitive (rising edge)

1 Level sensitive (high level)

DMAEN Bit 4 DMA enable

0 Disabled

1 Enabled

304 DMA Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com DMA Registers

DMAIFG Bit 3 DMA interrupt flag

0 No interrupt pending

1 Interrupt pending

DMAIE Bit 2 DMA interrupt enable

0 Disabled

1 Enabled

DMAABORT Bit 1 DMA abort. This bit indicates if a DMA transfer was interrupt by an NMI.

0 DMA transfer not interrupted

1 DMA transfer interrupted by NMI

DMAREQ Bit 0 DMA request. Software-controlled DMA start. DMAREQ is reset automatically.

0 No DMA start

1 Start DMA

305SLAU208E–June 2008–Revised November 2009 DMA Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

DMA Registers www.ti.com

7.3.7 DMA Source Address Register (DMAxSA)

31 30 29 28 27 26 25 24

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

23 22 21 20 19 18 17 16

Reserved DMAxSA

r0 r0 r0 r0 rw rw rw rw

15 14 13 12 11 10 9 8

DMAxSA

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

DMAxSA

rw rw rw rw rw rw rw rw

Reserved Bits 31-20 Reserved. Read only. Always read as 0.

DMAxSA Bits 15-0 DMA source address. The source address register points to the DMA source address for single
transfers or the first source address for block transfers. The source address register remains unchanged
during block and burst-block transfers. There are two words for the DMAxSA register. Bits 31–20 are
reserved and always read as zero. Reading or writing bits 19-16 requires the use of extended
instructions. When writing to DMAxSA with word instructions, bits 19–16 are cleared.

7.3.8 DMA Destination Address Register (DMAxDA)

31 30 29 28 27 26 25 24

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

23 22 21 20 19 18 17 16

Reserved DMAxDA

r0 r0 r0 r0 rw rw rw rw

15 14 13 12 11 10 9 8

DMAxDA

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

DMAxDA

rw rw rw rw rw rw rw rw

Reserved Bits 31-20 Reserved. Read only. Always read as 0.

DMAxDA Bits 15-0 DMA destination address. The destination address register points to the DMA destination address for
single transfers or the first destination address for block transfers. The destination address register
remains unchanged during block and burst-block transfers. There are two words for the DMAxDA
register. Bits 31–20 are reserved and always read as zero. Reading or writing bits 19–16 requires the
use of extended instructions. When writing to DMAxDA with word instructions, bits 19–16 are cleared.

306 DMA Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com DMA Registers

7.3.9 DMA Size Address Register (DMAxSZ)

15 14 13 12 11 10 9 8

DMAxSZ

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

DMAxSZ

rw rw rw rw rw rw rw rw

DMAxSZ Bits 15-0 DMA size. The DMA size register defines the number of byte/word data per block transfer. DMAxSZ
register decrements with each word or byte transfer. When DMAxSZ decrements to 0, it is immediately
and automatically reloaded with its previously initialized value.

00000h Transfer is disabled.

00001h One byte or word is transferred.

00002h Two bytes or words are transferred.

⋮
0FFFFh 65535 bytes or words are transferred.

7.3.10 DMA Interrupt Vector Register (DMAIV)

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 DMAIV 0

r0 r0 r-(0) r-(0) r-(0) r-(0) r-(0) r0

DMAIV Bits 15-0 DMA interrupt vector value

DMAIV InterruptInterrupt Source Interrupt FlagContents Priority

00h No interrupt pending

02h DMA channel 0 DMA0IFG Highest

04h DMA channel 1 DMA1IFG

06h DMA channel 2 DMA2IFG

08h DMA channel 3 DMA3IFG

0Ah DMA channel 4 DMA4IFG

0Ch DMA channel 5 DMA5IFG

0Eh DMA channel 6 DMA6IFG

10h DMA channel 7 DMA7IFG Lowest

307SLAU208E–June 2008–Revised November 2009 DMA Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

308 DMA Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 8
SLAU208E–June 2008–Revised November 2009

Digital I/O

This chapter describes the operation of the digital I/O ports in all devices.

Topic ... Page

8.1 Digital I/O Introduction ... 310
8.2 Digital I/O Operation ... 311
8.3 I/O Configuration and LPMx.5 Low-Power Modes .. 314
8.4 Digital I/O Registers ... 317

309SLAU208E–June 2008–Revised November 2009 Digital I/O
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Digital I/O Introduction www.ti.com

8.1 Digital I/O Introduction

The digital I/O features include:

• Independently programmable individual I/Os
• Any combination of input or output
• Individually configurable P1 and P2 interrupts. Some devices may include additional port interrupts.
• Independent input and output data registers
• Individually configurable pullup or pulldown resistors

Devices within the family may have up to twelve digital I/O ports implemented (P1 to P11 and PJ). Most
ports contain eight I/O lines; however, some ports may contain less (see the device-specific data sheet for
ports available). Each I/O line is individually configurable for input or output direction, and each can be
individually read or written. Each I/O line is individually configurable for pullup or pulldown resistors, as
well as, configurable drive strength, full or reduced. PJ contains only four I/O lines.

Ports P1 and P2 always have interrupt capability. Each interrupt for the P1 and P2 I/O lines can be
individually enabled and configured to provide an interrupt on a rising or falling edge of an input signal. All
P1 I/O lines source a single interrupt vector P1IV, and all P2 I/O lines source a different, single interrupt
vector P2IV. On some devices, additional ports with interrupt capability may be available (see the
device-specific data sheet for details) and contain their own respective interrupt vectors.

Individual ports can be accessed as byte-wide ports or can be combined into word-wide ports and
accessed via word formats. Port pairs P1/P2, P3/P4, P5/P6, P7/P8, etc., are associated with the names
PA, PB, PC, PD, etc., respectively. All port registers are handled in this manner with this naming
convention except for the interrupt vector registers, P1IV and P2IV; i.e. PAIV does not exist.

When writing to port PA with word operations, all 16 bits are written to the port. When writing to the lower
byte of the PA port using byte operations, the upper byte remains unchanged. Similarly, writing to the
upper byte of the PA port using byte instructions leaves the lower byte unchanged. When writing to a port
that contains less than the maximum number of bits possible, the unused bits are a "don't care". Ports PB,
PC, PD, PE, and PF behave similarly.

Reading of the PA port using word operations causes all 16 bits to be transferred to the destination.
Reading the lower or upper byte of the PA port (P1 or P2) and storing to memory using byte operations
causes only the lower or upper byte to be transferred to the destination, respectively. Reading of the PA
port and storing to a general-purpose register using byte operations causes the byte transferred to be
written to the least significant byte of the register. The upper significant byte of the destination register is
cleared automatically. Ports PB, PC, PD, PE, and PF behave similarly. When reading from ports that
contain less than the maximum bits possible, unused bits are read as zeros (similarly for port PJ).

310 Digital I/O SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Digital I/O Operation

8.2 Digital I/O Operation

The digital I/O are configured with user software. The setup and operation of the digital I/O are discussed
in the following sections.

8.2.1 Input Registers PxIN

Each bit in each PxIN register reflects the value of the input signal at the corresponding I/O pin when the
pin is configured as I/O function. These registers are read only.

• Bit = 0: Input is low
• Bit = 1: Input is high

NOTE: Writing to read-only registers PxIN

Writing to these read-only registers results in increased current consumption while the write
attempt is active.

8.2.2 Output Registers PxOUT

Each bit in each PxOUT register is the value to be output on the corresponding I/O pin when the pin is
configured as I/O function, output direction.

• Bit = 0: Output is low
• Bit = 1: Output is high

If the pin is configured as I/O function, input direction and the pullup/pulldown resistor are enabled; the
corresponding bit in the PxOUT register selects pullup or pulldown.

• Bit = 0: Pin is pulled down
• Bit = 1: Pin is pulled up

8.2.3 Direction Registers PxDIR

Each bit in each PxDIR register selects the direction of the corresponding I/O pin, regardless of the
selected function for the pin. PxDIR bits for I/O pins that are selected for other functions must be set as
required by the other function.

• Bit = 0: Port pin is switched to input direction
• Bit = 1: Port pin is switched to output direction

8.2.4 Pullup/Pulldown Resistor Enable Registers PxREN

Each bit in each PxREN register enables or disables the pullup/pulldown resistor of the corresponding I/O
pin. The corresponding bit in the PxOUT register selects if the pin contains a pullup or pulldown.

• Bit = 0: Pullup/pulldown resistor disabled
• Bit = 1: Pullup/pulldown resistor enabled

Table 8-1 summarizes the usage of PxDIR, PxREN, and PxOUT for proper I/O configuration.

Table 8-1. I/O Configuration

PxDIR PxREN PxOUT I/O Configuration

0 0 x Input

0 1 0 Input with pulldown resistor

0 1 1 Input with pullup resistor

1 x x Output

311SLAU208E–June 2008–Revised November 2009 Digital I/O
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Digital I/O Operation www.ti.com

8.2.5 Output Drive Strength Registers PxDS

Each bit in each PxDS register selects either full drive or reduced drive strength. Default is reduced drive
strength.

• Bit = 0: Reduced drive strength
• Bit = 1: Full drive strength

NOTE: Drive strength and EMI

All outputs default to reduced drive strength to reduce EMI. Using full drive strength can
result in increased EMI.

8.2.6 Function Select Registers PxSEL

Port pins are often multiplexed with other peripheral module functions. See the device-specific data sheet
to determine pin functions. Each PxSEL bit is used to select the pin function – I/O port or peripheral
module function.

• Bit = 0: I/O Function is selected for the pin
• Bit = 1: Peripheral module function is selected for the pin

Setting PxSEL = 1 does not automatically set the pin direction. Other peripheral module functions may
require the PxDIR bits to be configured according to the direction needed for the module function. See the
pin schematics in the device-specific data sheet.

NOTE: P1 and P2 interrupts are disabled when PxSEL = 1

When any PxSEL bit is set, the corresponding pin’s interrupt function is disabled. Therefore,
signals on these pins does not generate P1 or P2 interrupts, regardless of the state of the
corresponding P1IE or P2IE bit.

When a port pin is selected as an input to a peripheral, the input signal to the peripheral is a latched
representation of the signal at the device pin. While its corresponding PxSEL = 1, the internal input signal
follows the signal at the pin. However, if its PxSEL = 0, the input to the peripheral maintains the value of
the input signal at the device pin before its corresponding PxSEL bit was reset.

8.2.7 P1 and P2 Interrupts, Port Interrupts

Each pin in ports P1 and P2 have interrupt capability, configured with the PxIFG, PxIE, and PxIES
registers. All P1 interrupt flags are prioritized, with P1IFG.0 being the highest, and combined to source a
single interrupt vector. The highest priority enabled interrupt generates a number in the P1IV register. This
number can be evaluated or added to the program counter to automatically enter the appropriate software
routine. Disabled P1 interrupts do not affect the P1IV value. The same functionality exists for P2. The PxIV
registers are word access only. Some devices may contain additional port interrupts besides P1 and P2.
Please see the device specific data sheet to determine which port interrupts are available.

Each PxIFG bit is the interrupt flag for its corresponding I/O pin and is set when the selected input signal
edge occurs at the pin. All PxIFG interrupt flags request an interrupt when their corresponding PxIE bit
and the GIE bit are set. Software can also set each PxIFG flag, providing a way to generate a
software-initiated interrupt.

• Bit = 0: No interrupt is pending
• Bit = 1: An interrupt is pending

Only transitions, not static levels, cause interrupts. If any PxIFG flag becomes set during a Px interrupt
service routine, or is set after the RETI instruction of a Px interrupt service routine is executed, the set
PxIFG flag generates another interrupt. This ensures that each transition is acknowledged.

312 Digital I/O SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Digital I/O Operation

NOTE: PxIFG flags when changing PxOUT, PxDIR, or PxREN

Writing to P1OUT, P1DIR, P1REN, P2OUT, P2DIR, or P2REN can result in setting the
corresponding P1IFG or P2IFG flags.

Any access (read or write) of the P1IV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, assume that P1IFG.0 has the highest priority. If the P1IFG.0 and P1IFG.2 flags are set when
the interrupt service routine accesses the P1IV register, P1IFG.0 is reset automatically. After the RETI
instruction of the interrupt service routine is executed, the P1IFG.2 generates another interrupt.

Port P2 interrupts behave similarly, and source a separate single interrupt vector and utilize the P2IV
register.

8.2.7.1 P1IV, P2IV Software Example

The following software example shows the recommended use of P1IV and the handling overhead. The
P1IV value is added to the PC to automatically jump to the appropriate routine. The P2IV is similar.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself.
;Interrupt handler for P1 Cycles
P1_HND ... ; Interrupt latency 6

ADD &P1IV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP P1_0_HND ; Vector 2: Port 1 bit 0 2
JMP P1_1_HND ; Vector 4: Port 1 bit 1 2
JMP P1_2_HND ; Vector 6: Port 1 bit 2 2
JMP P1_3_HND ; Vector 8: Port 1 bit 3 2
JMP P1_4_HND ; Vector 10: Port 1 bit 4 2
JMP P1_5_HND ; Vector 12: Port 1 bit 5 2
JMP P1_6_HND ; Vector 14: Port 1 bit 6 2
JMP P1_7_HND ; Vector 16: Port 1 bit 7 2

P1_7_HND ; Vector 16: Port 1 bit 7
... ; Task starts here
RETI ; Back to main program 5

P1_6_HND ; Vector 14: Port 1 bit 6
... ; Task starts here
RETI ; Back to main program 5

P1_5_HND ; Vector 12: Port 1 bit 5
... ; Task starts here
RETI ; Back to main program 5

P1_4_HND ; Vector 10: Port 1 bit 4
... ; Task starts here
RETI ; Back to main program 5

P1_3_HND ; Vector 8: Port 1 bit 3
... ; Task starts here
RETI ; Back to main program 5

P1_2_HND ; Vector 6: Port 1 bit 2
... ; Task starts here
RETI ; Back to main program 5

P1_1_HND ; Vector 4: Port 1 bit 1
... ; Task starts here
RETI ; Back to main program 5

P1_0_HND ; Vector 2: Port 1 bit 0
... ; Task starts here
RETI ; Back to main program 5

313SLAU208E–June 2008–Revised November 2009 Digital I/O
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

I/O Configuration and LPMx.5 Low-Power Modes www.ti.com

8.2.7.2 Interrupt Edge Select Registers P1IES, P2IES

Each PxIES bit selects the interrupt edge for the corresponding I/O pin.

• Bit = 0: Respective PxIFG flag is set with a low-to-high transition
• Bit = 1: Respective PxIFG flag is set with a high-to-low transition

NOTE: Writing to PxIES

Writing to P1IES or P2IES for each corresponding I/O can result in setting the corresponding
interrupt flags.

PxIES PxIN PxIFG
0 → 1 0 May be set
0 → 1 1 Unchanged
1 → 0 0 Unchanged
1 → 0 1 May be set

8.2.7.3 Interrupt Enable P1IE, P2IE

Each PxIE bit enables the associated PxIFG interrupt flag.

• Bit = 0: The interrupt is disabled
• Bit = 1: The interrupt is enabled

8.2.8 Configuring Unused Port Pins

Unused I/O pins should be configured as I/O function, output direction, and left unconnected on the PC
board, to prevent a floating input and reduce power consumption. The value of the PxOUT bit is don't
care, because the pin is unconnected. Alternatively, the integrated pullup/pulldown resistor can be enabled
by setting the PxREN bit of the unused pin to prevent the floating input. See the System Resets,
Interrupts, and Operating Modes, System Control Module (SYS)) chapter for termination of unused pins.

NOTE: Configuring port J and shared JTAG pins:

Application should ensure that port PJ is configured properly to prevent a floating input.
Because port PJ is shared with the JTAG function, floating inputs may not be noticed when
in an emulation environment. Port J is initialized to high-impedance inputs by default.

8.3 I/O Configuration and LPMx.5 Low-Power Modes

NOTE: The LPMx.5 low power modes may not be available on all devices. The LPM4.5 power
mode allows for lowest power consumption and no clocks are available. The LPM3.5 power
mode allows for RTC mode operation at the lowest power consumption available. Please
refer to the SYS chapter for details, as well as, the device specific datasheet for LPMx.5 low
power modes that are available. With respect to the digital I/O, this section is applicable for
both LPM3.5 and LPM4.5.

The voltage regulator of the Power Management Module (PMM) is disabled upon entering LPMx.5
(LPM3.5 or LPM4.5), which causes all I/O register configurations to be lost. Because the I/O register
configurations are lost, the configuration of I/O pins must be handled differently to ensure that all pins in
the application behave in a controlled manner upon entering and exiting LPMx.5. Properly setting the I/O

314 Digital I/O SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Active Mode (AM)

User Configures I/O:

All I/O set to general purpose I/O – inputs pull up/down, high

impedance, output low/high.

Optionally, configures input interrupt pins appropriately for
wakeup.

.

LPMx.5 Entry Sequence:

BIS #PMMKEY + REGOFF, &PMMCTL0

BIS #LPM4, SR

LPMx.5

BOR entry sequence.

Regulator startup sequence.

All peripherial registers set to their default conditions.

Boot code sequence executed.

I/O pin state remains locked.

I/O can be safely reconfigured by user.

LPMx.5 wake-up event

Regulator disabled.

.

LOCKLPM5

Automatically set by hardware

www.ti.com I/O Configuration and LPMx.5 Low-Power Modes

pins is critical to achieving the lowest possible power consumption in LPMx.5, as well as preventing any
possible uncontrolled input or output I/O state in the application. The application has complete control of
the I/O pin conditions preventing the possibility of unwanted spurious activity upon entry and exit from
LPMx.5. The basic flow for entering and exiting LPMx.5 with respect to the I/O operation is shown in
Figure 8-1

Figure 8-1. LPMx.5 Entry/Exit Flow

Prior to entering LPMx.5, all I/O pins must be configured as general-purpose I/O via the PxSEL registers
and set appropriately based on the application needs. Each I/O can be set to input high impedance, input
with pulldown, input with pullup, output high (low or high drive strength), or output low (low or high drive
strength). It is critical that no inputs are left floating in the application, otherwise excess current is drawn in
LPMx.5. Configuring the I/O in this manner ensures that each pin is in a safe condition prior to entering
LPMx.5. The I/O pin state is held and locked based on the settings prior to LPMx.5 entry. Upon entry into
LPMx.5, LOCKLPM5 residing in PM5CTL0 of the PMM module, is set automatically. Please note that only
the pin condition is retained. All other port configuration register settings such as PxDIR, PxREN, PxOUT,
and PxDS are lost.

315SLAU208E–June 2008–Revised November 2009 Digital I/O
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

I/O Configuration and LPMx.5 Low-Power Modes www.ti.com

Upon exit from LPMx.5, the I/O pins remain locked and LOCKLPM5 remains set. Exiting LPMx.5 causes a
BOR event, causing all I/O registers to be set to their default conditions. However, because LOCKLPM5
remains set, the state of the pins remains as it was prior to LPMx.5. Keeping the I/O pins locked ensures
that all pin conditions remain stable upon entering the active mode regardless of the default I/O register
settings. Once in active mode, the application can reconfigure the I/O as needed. After the application
reconfigures the I/O, clearing LOCKLPM5 causes the I/O pin conditions to be released. Any changes to
the port configuration registers while LOCKLPM5 is set, have no effect on the I/O pins.

8.3.1 LPMx.5 Wakeup via I/O

To wake the device from LPMx.5, a general-purpose I/O port must contain an input port with interrupt
capability. Not all devices include wakeup from LPMx.5 via I/O, and not all inputs with interrupt capability
offer wakeup from LPMx5. See the device-specific data sheet for availability. To configure a port to wake
up the device, it should be configured properly prior to entering LPMx.5. Each port should be configured
as general-purpose input. Pulldown or pullups can be applied if required. Setting the PxIES bit of the
corresponding register determines the edge transition that wakes the device. Lastly, the PxIE for the port
must be enabled. After entering LPMx.5, the proper input transition on the configured pins causes the
device to exit LPMx.5 and enter active mode.

During LPMx.5 operation, the appropriate input transition will be detected on a corresponding I/O that is
enabled via PxIE and PxIES settings. Upon exit from LPMx.5, the corresponding PxIFG flags will be set
indicating the input event. These flags can be used directly, or the corresponding PxIV register, to
determine which port may have caused the LPMx.5 wakeup.

NOTE: It is possible that multiple events occurred on various ports. In these cases, multiple PxIFG
flags will be set and it cannot be determined which port has caused the I/O wakeup.

316 Digital I/O SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Digital I/O Registers

8.4 Digital I/O Registers

The digital I/O registers are listed in Table 8-2. The base addresses can be found in the device-specific
data sheet. Each port grouping begins at its base address. The address offsets are given in Table 8-2.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 8-2. Digital I/O Registers

Register AddressPort Register Short Form Register Type Initial StateAccess Offset

Port 1 Interrupt Vector P1IV Read only Word 0Eh 0000h

P1IV_L Read only Byte 0Eh 00h

P1IV_H Read only Byte 0Fh 00h

Port 2 Interrupt Vector P2IV Read only Word 1Eh 0000h

P2IV_L Read only Byte 1Eh 00h

P2IV_H Read only Byte 1Fh 00h

Port 1 Input P1IN or Read only Byte 00h
PAIN_L

Output P1OUT or Read/write Byte 02h undefined
PAOUT_L

Direction P1DIR or Read/write Byte 04h 00h
PADIR_L

Resistor Enable P1REN or Read/write Byte 06h 00h
PAREN_L

Drive Strength P1DS or Read/write Byte 08h 00h
PADS_L

Port Select P1SEL or Read/write Byte 0Ah 00h
PASEL_L

Interrupt Edge Select P1IES or Read/write Byte 18h undefined
PAIES_L

Interrupt Enable P1IE or Read/write Byte 1Ah 00h
PAIE_L

Interrupt Flag P1IFG or Read/write Byte 1Ch 00h
PAIFG_L

Port 2 Input P2IN or Read only Byte 01h
PAIN_H

Output P2OUT or Read/write Byte 03h undefined
PAOUT_H

Direction P2DIR or Read/write Byte 05h 00h
PADIR_H

Resistor Enable P2REN or Read/write Byte 07h 00h
PAREN_H

Drive Strength P2DS or Read/write Byte 09h 00h
PADS_H

Port Select P2SEL or Read/write Byte 0Bh 00h
PASEL_H

Interrupt Edge Select P2IES or Read/write Byte 19h undefined
PAIES_H

Interrupt Enable P2IE or Read/write Byte 1Bh 00h
PAIE_H

Interrupt Flag P2IFG or Read/write Byte 1Dh 00h
PAIFG_H

317SLAU208E–June 2008–Revised November 2009 Digital I/O
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Digital I/O Registers www.ti.com

Table 8-2. Digital I/O Registers (continued)

Register AddressPort Register Short Form Register Type Initial StateAccess Offset

Port 3 Input P3IN or Read only Byte 00h
PBIN_L

Output P3OUT or Read/write Byte 02h undefined
PBOUT_L

Direction P3DIR or Read/write Byte 04h 00h
PBDIR_L

Resistor Enable P3REN or Read/write Byte 06h 00h
PBREN_L

Drive Strength P3DS or Read/write Byte 08h 00h
PBDS_L

Port Select P3SEL or Read/write Byte 0Ah 00h
PBSEL_L

Port 4 Input P4IN or Read only Byte 01h
PBIN_H

Output P4OUT or Read/write Byte 03h undefined
PBOUT_H

Direction P4DIR or Read/write Byte 05h 00h
PBDIR_H

Resistor Enable P4REN or Read/write Byte 07h 00h
PBREN_H

Drive Strength P4DS or Read/write Byte 09h 00h
PBDS_H

Port Select P4SEL or Read/write Byte 0Bh 00h
PBSEL_H

Port 5 Input P5IN or Read only Byte 00h
PCIN_L

Output P5OUT or Read/write Byte 02h undefined
PCOUT_L

Direction P5DIR or Read/write Byte 04h 00h
PCDIR_L

Resistor Enable P5REN or Read/write Byte 06h 00h
PCREN_L

Drive Strength P5DS or Read/write Byte 08h 00h
PCDS_L

Port Select P5SEL or Read/write Byte 0Ah 00h
PCSEL_L

Port 6 Input P6IN or Read only Byte 01h
PCIN_H

Output P6OUT or Read/write Byte 03h undefined
PCOUT_H

Direction P6DIR or Read/write Byte 05h 00h
PCDIR_H

Resistor Enable P6REN or Read/write Byte 07h 00h
PCREN_H

Drive Strength P6DS or Read/write Byte 09h 00h
PCDS_H

Port Select P6SEL or Read/write Byte 0Bh 00h
PCSEL_H

318 Digital I/O SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Digital I/O Registers

Table 8-2. Digital I/O Registers (continued)

Register AddressPort Register Short Form Register Type Initial StateAccess Offset

Port 7 Input P7IN or Read only Byte 00h
PDIN_L

Output P7OUT or Read/write Byte 02h undefined
PDOUT_L

Direction P7DIR or Read/write Byte 04h 00h
PDDIR_L

Resistor Enable P7REN or Read/write Byte 06h 00h
PDREN_L

Drive Strength P7DS or Read/write Byte 08h 00h
PDDS_L

Port Select P7SEL or Read/write Byte 0Ah 00h
PDSEL_L

Port 8 Input P8IN or Read only Byte 01h
PDIN_H

Output P8OUT or Read/write Byte 03h undefined
PDOUT_H

Direction P8DIR or Read/write Byte 05h 00h
PDDIR_H

Resistor Enable P8REN or Read/write Byte 07h 00h
PDREN_H

Drive Strength P8DS or Read/write Byte 09h 00h
PDDS_H

Port Select P8SEL or Read/write Byte 0Bh 00h
PDSEL_H

Port 9 Input P9IN or Read only Byte 00h
PEIN_L

Output P9OUT or Read/write Byte 02h undefined
PEOUT_L

Direction P9DIR or Read/write Byte 04h 00h
PEDIR_L

Resistor Enable P9REN or Read/write Byte 06h 00h
PEREN_L

Drive Strength P9DS or Read/write Byte 08h 00h
PEDS_L

Port Select P9SEL or Read/write Byte 0Ah 00h
PESEL_L

Port 10 Input P10IN or Read only Byte 01h
PEIN_H

Output P10OUT or Read/write Byte 03h undefined
PEOUT_H

Direction P10DIR or Read/write Byte 05h 00h
PEDIR_H

Resistor Enable P10REN or Read/write Byte 07h 00h
PEREN_H

Drive Strength P10DS or Read/write Byte 09h 00h
PEDS_H

Port Select P10SEL or Read/write Byte 0Bh 00h
PESEL_H

319SLAU208E–June 2008–Revised November 2009 Digital I/O
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Digital I/O Registers www.ti.com

Table 8-2. Digital I/O Registers (continued)

Register AddressPort Register Short Form Register Type Initial StateAccess Offset

Port 11 Input P11IN or Read only Byte 00h
PFIN_L

Output P11OUT or Read/write Byte 02h undefined
PFOUT_L

Direction P11DIR or Read/write Byte 04h 00h
PFDIR_L

Resistor Enable P11REN or Read/write Byte 06h 00h
PFREN_L

Drive Strength P11DS or Read/write Byte 08h 00h
PFDS_L

Port Select P11SEL or Read/write Byte 0Ah 00h
PFSEL_L

Port A Input PAIN Read only Word 00h

PAIN_L Read only Byte 00h

PAIN_H Read only Byte 01h

Output PAOUT Read/write Word 02h undefined

PAOUT_L Read/write Byte 02h undefined

PAOUT_H Read/write Byte 03h undefined

Direction PADIR Read/write Word 04h 0000h

PADIR_L Read/write Byte 04h 00h

PADIR_H Read/write Byte 05h 00h

Resistor Enable PAREN Read/write Word 06h 0000h

PAREN_L Read/write Byte 06h 00h

PAREN_H Read/write Byte 07h 00h

Drive Strength PADS Read/write Word 08h 0000h

PADS_L Read/write Byte 08h 00h

PADS_H Read/write Byte 09h 00h

Port Select PASEL Read/write Word 0Ah 0000h

PASEL_L Read/write Byte 0Ah 00h

PASEL_H Read/write Byte 0Bh 00h

Interrupt Edge Select PAIES Read/write Word 18h undefined

PAIES_L Read/write Byte 18h undefined

PAIES_H Read/write Byte 19h undefined

Interrupt Enable PAIE Read/write Word 1Ah 0000h

PAIE_L Read/write Byte 1Ah 00h

PAIE_H Read/write Byte 1Bh 00h

Interrupt Flag PAIFG Read/write Word 1Ch 0000h

PAIFG_L Read/write Byte 1Ch 00h

PAIFG_H Read/write Byte 1Dh 00h

320 Digital I/O SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Digital I/O Registers

Table 8-2. Digital I/O Registers (continued)

Register AddressPort Register Short Form Register Type Initial StateAccess Offset

Port B Input PBIN Read only Word 00h

PBIN_L Read only Byte 00h

PBIN_H Read only Byte 01h

Output PBOUT Read/write Word 02h undefined

PBOUT_L Read/write Byte 02h undefined

PBOUT_H Read/write Byte 03h undefined

Direction PBDIR Read/write Word 04h 0000h

PBDIR_L Read/write Byte 04h 00h

PBDIR_H Read/write Byte 05h 00h

Resistor Enable PBREN Read/write Word 06h 0000h

PBREN_L Read/write Byte 06h 00h

PBREN_H Read/write Byte 07h 00h

Drive Strength PBDS Read/write Word 08h 0000h

PBDS_L Read/write Byte 08h 00h

PBDS_H Read/write Byte 09h 00h

Port Select PBSEL Read/write Word 0Ah 0000h

PBSEL_L Read/write Byte 0Ah 00h

PBSEL_H Read/write Byte 0Bh 00h

Port C Input PCIN Read only Word 00h

PCIN_L Read only Byte 00h

PCIN_H Read only Byte 01h

Output PCOUT Read/write Word 02h undefined

PCOUT_L Read/write Byte 02h undefined

PCOUT_H Read/write Byte 03h undefined

Direction PCDIR Read/write Word 04h 0000h

PCDIR_L Read/write Byte 04h 00h

PCDIR_H Read/write Byte 05h 00h

Resistor Enable PCREN Read/write Word 06h 0000h

PCREN_L Read/write Byte 06h 00h

PCREN_H Read/write Byte 07h 00h

Drive Strength PCDS Read/write Word 08h 0000h

PCDS_L Read/write Byte 08h 00h

PCDS_H Read/write Byte 09h 00h

Port Select PCSEL Read/write Word 0Ah 0000h

PCSEL_L Read/write Byte 0Ah 00h

PCSEL_H Read/write Byte 0Bh 00h

321SLAU208E–June 2008–Revised November 2009 Digital I/O
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Digital I/O Registers www.ti.com

Table 8-2. Digital I/O Registers (continued)

Register AddressPort Register Short Form Register Type Initial StateAccess Offset

Port D Input PDIN Read only Word 00h

PDIN_L Read only Byte 00h

PDIN_H Read only Byte 01h

Output PDOUT Read/write Word 02h undefined

PDOUT_L Read/write Byte 02h undefined

PDOUT_H Read/write Byte 03h undefined

Direction PDDIR Read/write Word 04h 0000h

PDDIR_L Read/write Byte 04h 00h

PDDIR_H Read/write Byte 05h 00h

Resistor Enable PDREN Read/write Word 06h 0000h

PDREN_L Read/write Byte 06h 00h

PDREN_H Read/write Byte 07h 00h

Drive Strength PDDS Read/write Word 08h 0000h

PDDS_L Read/write Byte 08h 00h

PDDS_H Read/write Byte 09h 00h

Port Select PDSEL Read/write Word 0Ah 0000h

PDSEL_L Read/write Byte 0Ah 00h

PDSEL_H Read/write Byte 0Bh 00h

Port E Input PEIN Read only Word 00h

PEIN_L Read only Byte 00h

PEIN_H Read only Byte 01h

Output PEOUT Read/write Word 02h undefined

PEOUT_L Read/write Byte 02h undefined

PEOUT_H Read/write Byte 03h undefined

Direction PEDIR Read/write Word 04h 0000h

PEDIR_L Read/write Byte 04h 00h

PEDIR_H Read/write Byte 05h 00h

Resistor Enable PEREN Read/write Word 06h 0000h

PEREN_L Read/write Byte 06h 00h

PEREN_H Read/write Byte 07h 00h

Drive Strength PEDS Read/write Word 08h 0000h

PEDS_L Read/write Byte 08h 00h

PEDS_H Read/write Byte 09h 00h

Port Select PESEL Read/write Word 0Ah 0000h

PESEL_L Read/write Byte 0Ah 00h

PESEL_H Read/write Byte 0Bh 00h

322 Digital I/O SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Digital I/O Registers

Table 8-2. Digital I/O Registers (continued)

Register AddressPort Register Short Form Register Type Initial StateAccess Offset

Port F Input PFIN Read only Word 00h

PFIN_L Read only Byte 00h

PFIN_H Read only Byte 01h

Output PFOUT Read/write Word 02h undefined

PFOUT_L Read/write Byte 02h undefined

PFOUT_H Read/write Byte 03h undefined

Direction PFDIR Read/write Word 04h 0000h

PFDIR_L Read/write Byte 04h 00h

PFDIR_H Read/write Byte 05h 00h

Resistor Enable PFREN Read/write Word 06h 0000h

PFREN_L Read/write Byte 06h 00h

PFREN_H Read/write Byte 07h 00h

Drive Strength PFDS Read/write Word 08h 0000h

PFDS_L Read/write Byte 08h 00h

PFDS_H Read/write Byte 09h 00h

Port Select PFSEL Read/write Word 0Ah 0000h

PFSEL_L Read/write Byte 0Ah 00h

PFSEL_H Read/write Byte 0Bh 00h

Port J Input PJIN Read only Word 00h

PJIN_L Read only Byte 00h

PJIN_H Read only Byte 01h

Output PJOUT Read/write Word 02h undefined

PJOUT_L Read/write Byte 02h undefined

PJOUT_H Read/write Byte 03h undefined

Direction PJDIR Read/write Word 04h 0000h

PJDIR_L Read/write Byte 04h 00h

PJDIR_H Read/write Byte 05h 00h

Resistor Enable PJREN Read/write Word 06h 0000h

PJREN_L Read/write Byte 06h 00h

PJREN_H Read/write Byte 07h 00h

Drive Strength PJDS Read/write Word 08h 0000h

PJDS_L Read/write Byte 08h 00h

PJDS_H Read/write Byte 09h 00h

323SLAU208E–June 2008–Revised November 2009 Digital I/O
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Digital I/O Registers www.ti.com

Port 1 Interrupt Vector Register (P1IV)

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 P1IV 0

r0 r0 r0 r-0 r-0 r-0 r-0 r0

P1IV Bits 15-0 Port 1 interrupt vector value

InterruptP1IV Contents Interrupt Source Interrupt Flag Priority

00h No interrupt pending

02h Port 1.0 interrupt P1IFG.0 Highest

04h Port 1.1 interrupt P1IFG.1

06h Port 1.2 interrupt P1IFG.2

08h Port 1.3 interrupt P1IFG.3

0Ah Port 1.4 interrupt P1IFG.4

0Ch Port 1.5 interrupt P1IFG.5

0Eh Port 1.6 interrupt P1IFG.6

10h Port 1.7 interrupt P1IFG.7 Lowest

Port 2 Interrupt Vector Register (P2IV)

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 P2IV 0

r0 r0 r0 r-0 r-0 r-0 r-0 r0

P2IV Bits 15-0 Port 2 interrupt vector value

InterruptP2IV Contents Interrupt Source Interrupt Flag Priority

00h No interrupt pending

02h Port 2.0 interrupt P2IFG.0 Highest

04h Port 2.1 interrupt P2IFG.1

06h Port 2.2 interrupt P2IFG.2

08h Port 2.3 interrupt P2IFG.3

0Ah Port 2.4 interrupt P2IFG.4

0Ch Port 2.5 interrupt P2IFG.5

0Eh Port 2.6 interrupt P2IFG.6

10h Port 2.7 interrupt P2IFG.7 Lowest

Port 1 Interrupt Edge Select Register (P1IES)

7 6 5 4 3 2 1 0

P1IES

rw rw rw rw rw rw rw rw

P1IES Bits 7-0 Port 1 interrupt edge select

0 P1IFG flag is set with a low-to-high transition.

1 P1IFG flag is set with a high-to-low transition.

324 Digital I/O SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Digital I/O Registers

Port 1 Interrupt Enable Register (P1IE)

7 6 5 4 3 2 1 0

P1IE

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

P1IE Bits 7-0 Port 1 interrupt enable

0 Corresponding port interrupt disabled

1 Corresponding port interrupt enabled

Port 1 Interrupt Flag Register (P1IFG)

7 6 5 4 3 2 1 0

P1IFG

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

P1IFG Bits 7-0 Port 1 interrupt flag

0 No interrupt is pending.

1 Interrupt is pending.

Port 2 Interrupt Edge Select Register (P2IES)

7 6 5 4 3 2 1 0

P2IES

rw rw rw rw rw rw rw rw

P2IES Bits 7-0 Port 2 interrupt edge select

0 P2IFG flag is set with a low-to-high transition.

1 P2IFG flag is set with a high-to-low transition.

Port 2 Interrupt Enable Register (P2IE)

7 6 5 4 3 2 1 0

P2IE

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

P2IE Bits 7-0 Port 2 interrupt enable

0 Corresponding port interrupt disabled

1 Corresponding port interrupt enabled

Port 2 Interrupt Flag Register (P2IFG)

7 6 5 4 3 2 1 0

P2IFG

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

P2IFG Bits 7-0 Port 2 interrupt flag

0 No interrupt is pending.

1 Interrupt is pending.

Port x Input Register (PxIN)

7 6 5 4 3 2 1 0

PxIN

r r r r r r r r

PxIN Bits 7-0 Port x input. Read only.

325SLAU208E–June 2008–Revised November 2009 Digital I/O
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Digital I/O Registers www.ti.com

Port x Output Register (PxOUT)

7 6 5 4 3 2 1 0

PxOUT

rw rw rw rw rw rw rw rw

PxOUT Bits 7-0 Port x output
When I/O configured to output mode:

0 Output is low.

1 Output is high.

When I/O configured to input mode and pullups/pulldowns enabled:

0 pulldown selected

1 pullup selected

Port x Direction Register (PxDIR)

7 6 5 4 3 2 1 0

PxDIR

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

PxDIR Bits 7-0 Port x direction

0 Port configured as input

1 Port configured as output

Port x Drive Strength Register (PxDS)

7 6 5 4 3 2 1 0

PxDS

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

PxDS Bits 7-0 Port x drive strength

0 Reduced output drive strength

1 Full output drive strength

326 Digital I/O SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 9
SLAU208E–June 2008–Revised November 2009

Port Mapping Controller

The port mapping controller allows a flexible mapping of digital functions to port pins. This chapter
describes the port mapping controller.

Topic ... Page

9.1 Port Mapping Controller Introduction ... 328
9.2 Port Mapping Controller Operation .. 328
9.3 Port Mapping Controller Registers ... 333

327SLAU208E–June 2008–Revised November 2009 Port Mapping Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Port Mapping Controller Introduction www.ti.com

9.1 Port Mapping Controller Introduction

The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port pins.

The port mapping controller features are:

• Configuration protected by password.
• Default mapping provided for each port pin (device-dependent, the device pinout in the device-specific

data sheet).
• Mapping can be reconfigured during runtime.
• Each output signal can be mapped to several output pins.

9.2 Port Mapping Controller Operation

The port mapping is configured with user software. The setup is discussed in the following sections.

9.2.1 Access

To enable write access to any of the port mapping controller registers, the correct password must be
written into the PMAPPWD register. The PMAPPWD register always reads 096A5h. Writing the password
02D52h grants write access to all port mapping controller registers. Read access is always possible.

If an invalid password is written while write access is granted, any further write accesses are prevented. It
is recommended that the application complete mapping configuration by writing an invalid password.

There is a timeout counter implemented that is incremented with each (assembler) instruction, and when it
counts to 32, the write access is locked again. Any access to the port mapping controller registers resets
the counter. Interrupts should be disabled during the configuration process or the application should take
precautions that the execution of an interrupt service routine does not accidentally cause a permanent
lock of the port mapping registers; e.g., by using the reconfiguration capability (see Section 9.2.2).

The access status is reflected in the PMAPLOCK bit.

By default, the port mapping controller allows only one configuration after PUC. A second attempt to
enable write access by writing the correct password is ignored, and the registers remain locked. A PUC is
required to disable the permanent lock again. If it is necessary to reconfigure the mapping during runtime,
the PMAPRECFG bit must be set during the first write access timeslot. If PMAPRECFG is cleared during
later configuration sessions, no more configuration sessions are possible.

9.2.2 Mapping

For each port pin, Px.y, on ports providing the mapping functionality, a mapping register, PxMAPy, is
available. Setting this register to a certain value maps a module's input and output signals to the
respective port pin Px.y. The port pin itself is switched from a general purpose I/O to the selected
peripheral/secondary function by setting the corresponding PxSEL.y bit to 1. If the input or the output
function of the module is used, it is typically defined by the setting the PxDIR.y bit. If PxDIR.y = 0, the pin
is an input, if PxDIR.y = 1, the pin is an output. There are also peripherals (e.g., the USCI module) that
control the direction or even other functions of the pin (e.g., open drain), and these options are
documented in the mapping table.

With the port mapping functionality the output of a module can be mapped to multiple pins. Also the input
of a module can receive inputs from multiple pins. When mapping multiple inputs onto one function care
needs to be taken because the input signals are logically ORed together without appling any priority - a
logic one on any of the inputs will result in a logic one at the module. If the PxSEL.y bit is 0 the
corresponding input signal is a logic zero.

The mapping is device-dependent; see the device-specific data sheet for available functions and specific
values. The use of mapping-mnemonics to abstract the underlying PxMAPy values is recommended to
allow simple portability between different devices. Table 9-1 shows some examples for mapping
mnemonics of some common peripherals.

328 Port Mapping Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Port Mapping Controller Operation

All mappable port pins provide the function PM_ANALOG (0FFh). Setting the port mapping register
PxMAPy to PM_ANALOG together with PxSEL.y = 1 disables the output driver and the input
Schmitt-trigger, to prevent parasitic cross currents when applying analog signals.

Table 9-1. Examples for Port Mapping Mnemonics and Functions

Input Pin Function Output Pin FunctionPxMAPy Mnemonic With PxSEL.y = 1 and PxDIR.y = 0 With PxSEL.y = 1 and PxDIR.y = 1

PM_NONE None DVSS

PM_ACLK None ACLK

PM_MCLK None MCLK

PM_SMCLK None SMCLK

PM_TA0CLK Timer_A0 clock input DVSS

PM_TA0CCR0A Timer_A0 CCR0 capture input CCI0A TA0 CCR0 compare output Out0

PM_TA0CCR1A Timer_A0 CCR1 capture input CCI1A TA0 CCR1 compare output Out1

PM_TA0CCR2A Timer_A0 CCR2 capture input CCI2A TA0 CCR2 compare output Out2

PM_TA0CCR3A Timer_A0 CCR3 capture input CCI3A TA0 CCR3 compare output Out3

PM_TA0CCR4A Timer_A0 CCR4 capture input CCI4A TA0 CCR4 compare output Out4

PM_TA1CLK Timer_A1 clock input DVSS

PM_TA1CCR0A Timer_A1 CCR0 capture input CCI0A TA1 CCR0 compare output Out0

PM_TA1CCR1A Timer_A1 CCR1 capture input CCI1A TA1 CCR1 compare output Out1

PM_TA1CCR2A Timer_A1 CCR2 capture input CCI2A TA1 CCR2 compare output Out2

PM_TBCLK Timer_B clock input DVSS

PM_TBOUTH Timer_B outputs high impedance DVSS

PM_TBCCR0A Timer_B CCR0 capture input CCI0A TB CCR0 compare output Out0
[direction controlled by Timer_B (TBOUTH)]

PM_TBCCR1A Timer_B CCR1 capture input CCI1A TB CCR1 compare output Out1
[direction controlled by Timer_B (TBOUTH)]

PM_TBCCR2A Timer_B CCR2 capture input CCI2A TB CCR2 compare output Out2
[direction controlled by Timer_B (TBOUTH)]

PM_TBCCR3A Timer_B CCR3 capture input CCI3A TB CCR3 compare output Out3
[direction controlled by Timer_B (TBOUTH)]

PM_TBCCR4A Timer_B CCR4 capture input CCI4A TB CCR4 compare output Out4
[direction controlled by Timer_B (TBOUTH)]

PM_TBCCR5A Timer_B CCR5 capture input CCI3A TB CCR5 compare output Out5
[direction controlled by Timer_B (TBOUTH)]

PM_TBCCR6A Timer_B CCR6 capture input CCI4A TB CCR6 compare output Out6
[direction controlled by Timer_B (TBOUTH)]

PM_UCA0RXD USCI_A0 UART RXD (direction controlled by USCI - input)

PM_UCA0SOMI USCI_A0 SPI slave out master in (direction controlled by USCI)

PM_UCA0TXD USCI_A0 UART TXD (direction controlled by USCI - output)

PM_UCA0SIMO USCI_A0 SPI slave in master out (direction controlled by USCI)

PM_UCA0CLK USCI_A0 clock input/output (direction controlled by USCI)

PM_UCA0STE USCI_A0 SPI slave transmit enable (direction controlled by USCI)

PM_UCB0SOMI USCI_B0 SPI slave out master in (direction controlled by USCI)

PM_UCB0SCL USCI_B0 I2C clock (open drain and direction controlled by USCI

PM_UCB0SIMO USCI_B0 SPI slave in master out (direction controlled by USCI)

PM_UCB0SDA USCI_B0 I2C data (open drain and direction controlled by USCI)

PM_UCB0CLK USCI_B0 clock input/output (direction controlled by USCI)

PM_UCB0STE USCI_B0 SPI slave transmit enable (direction controlled by USCI)

PM_ANALOG Disables the output driver and the input Schmitt-trigger to prevent parasitic cross currents when applying
analog signals

329SLAU208E–June 2008–Revised November 2009 Port Mapping Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Port Mapping Controller Operation www.ti.com

330 Port Mapping Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Port Mapping Controller Operation

9.2.3 Software Example

The following is an example of how to configure the port mapping in software.
#include "..." // Device-specific Header file

#define NUM_MAPPED_PORTS 3

unsigned char * PxMAPy = (unsigned char *)0x01C8;

const unsigned char port_mapping[NUM_MAPPED_PORTS*8] = {
// Port P1:

PM_TA0CCR0A,
PM_TA0CCR1A,
PM_TA0CCR2A,
PM_TA0CCR3A,
PM_TA0CCR4A,
PM_TA1CCR0A,
PM_TA1CCR1A,
PM_TA1CCR2A,

// Port P2:
PM_UCA0RXD,
PM_UCA0TXD,
PM_NONE,
PM_NONE,
PM_UCB0SOMI,
PM_UCA0SIMO,
PM_UCB0CLK,
PM_UCB0STE,

// Port P3:
PM_NONE,
PM_NONE,
PM_NONE,
PM_NONE,
PM_NONE,
PM_NONE,
PM_NONE,
PM_NONE};

void configure_ports()
{

int i;

// Disable all interrupts
__disable_interrupt();

// Get write-access to port mapping registers:
PMAPPWD = 0x02D52;

#ifdef PORT_MAP_RECFG
// Allow reconfiguration during runtime:
PMAPCTL = PMAPRECFG;

#endif

// Configure Port Mapping:
for (i= 0; i<NUM_MAPPED_PORTS*8; i++)
{

PxMAPy[i]= port_mapping[i];
}

331SLAU208E–June 2008–Revised November 2009 Port Mapping Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Port Mapping Controller Operation www.ti.com

// Disable write-access to port mapping registers:
PMAPPWD = 0;

#ifdef PORT_MAP_EINT
// Re-enable all interrupts
__enable_interrupt();

#endif

} // configure_ports()

332 Port Mapping Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Port Mapping Controller Registers

9.3 Port Mapping Controller Registers

The control register for the port mapping controller are listed in Table 9-2. The mapping registers are listed
in Table 9-3. The mapping registers can also be accessed as words, as shown in Table 9-4.

Table 9-2. Port Mapping Control Registers

AddressRegister Short Form Register Type Initial StateOffset

Port mapping password register PMAPPWD Read/write 000h Reset with PUC

Port mapping control register PMAPCTL Read/write 002h Reset with PUC

Table 9-3. Port Mapping Registers for Port Px – Byte Access

AddressRegister Short Form Register Type Initial StateOffset

Port Px.0 mapping register PxMAP0 Read/write 000h Device dependent

Port Px.1 mapping register PxMAP1 Read/write 001h Device dependent

Port Px.2 mapping register PxMAP2 Read/write 002h Device dependent

Port Px.3 mapping register PxMAP3 Read/write 003h Device dependent

Port Px.4 mapping register PxMAP4 Read/write 004h Device dependent

Port Px.5 mapping register PxMAP5 Read/write 005h Device dependent

Port Px.6 mapping register PxMAP6 Read/write 006h Device dependent

Port Px.7 mapping register PxMAP7 Read/write 007h Device dependent

Table 9-4. Port Mapping Registers for Port Px – Word Access

AddressRegister Short Form Register Type Initial StateOffset

Port Px.0/Port Px.1 mapping register PxMAP01 Read/write 000h Device dependent

Port Px.2/Port Px.3 mapping register PxMAP23 Read/write 002h Device dependent

Port Px.4/Port Px.5 mapping register PxMAP45 Read/write 004h Device dependent

Port Px.6/Port Px.7 mapping register PxMAP67 Read/write 006h Device dependent

333SLAU208E–June 2008–Revised November 2009 Port Mapping Controller
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Port Mapping Controller Registers www.ti.com

PMAPPWD, Port Mapping Controller Password Register

15 14 13 12 11 10 9 8

PMAPPWDx, read as 096A5h, must be written as 02D52h

7 6 5 4 3 2 1 0

PMAPPWDx, read as 096A5h, must be written as 02D52h

PMAPPWDx Bits 15-0 Port mapping password

Always reads 096A5h. Must be written 02D52h for write access to the port mapping registers.

PMAPCTL, Port Mapping Controller Control Register

15 14 13 12 11 10 9 8

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved PMAPRECFG PMAPLOCKED

r0 r0 r0 r0 r0 r0 rw-0 r-1

Reserved Bits 15-2 Reserved

PMAPRECFG Bit 1 Port mapping reconfiguration control bit

0 Configuration allowed only once

1 Allow reconfiguration of port mapping

PMAPLOCKED Bit 0 Port mapping lock bit. Read only

0 Access to mapping registers is granted

1 Access to mapping registers is locked

PxMAPy, Port Px.y Mapping Register

7 6 5 4 3 2 1 0

PMAPx

rw-0 (1) rw-0 (1) rw-0 (1) rw-0 (1) rw-0 (1) rw-0 (1) rw-0 (1) rw-0 (1)

PMAPx Bits 7-0 Selects secondary port function. Settings are device-dependent; see the device-specific data
sheet.

(1) If not all bits are required to decode all provided functions, the unused bits are r0.

334 Port Mapping Controller SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 10
SLAU208E–June 2008–Revised November 2009

CRC Module

The cyclic redundancy check (CRC) module provides a signature for a given data sequence. This chapter
describes the operation and use of the CRC module.

NOTE: The CRC module on the MSP430F543x and MSP430F541x non-A versions does not
support the bit-wise reverse feature described in this module description. Registers
CRCDIRB and CRCRESR, along with their respective functionality, are not available.

Topic ... Page

10.1 Cyclic Redundancy Check (CRC) Module Introduction ... 336
10.2 CRC Checksum Generation .. 337
10.3 CRC Module Registers ... 340

335SLAU208E–June 2008–Revised November 2009 CRC Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Data In

Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D

Bit

15

Bit

12

Bit

11

Bit

10

Bit

6

Bit

5

Bit

4

Bit

3

Bit

1

Bit

0

Shift Clock

Cyclic Redundancy Check (CRC) Module Introduction www.ti.com

10.1 Cyclic Redundancy Check (CRC) Module Introduction

The CRC module produces a signature for a given sequence of data values. The signature is generated
through a feedback path from data bits 0, 4, 11, and 15 (see Figure 10-1). The CRC signature is based on
the polynomial given in the CRC-CCITT-BR polynomial (see Equation 10) .

f(x) = x16 + x12 + x5 +1 (10)

Figure 10-1. LFSR Implementation of CRC-CCITT Standard, Bit 0 is the MSB of the Result

Identical input data sequences result in identical signatures when the CRC is initialized with a fixed seed
value, whereas different sequences of input data, in general, result in different signatures.

336 CRC Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com CRC Checksum Generation

10.2 CRC Checksum Generation

The CRC generator is first initialized by writing a 16-bit word (seed) to the CRC Initialization and Result
(CRCINIRES) register. Any data that should be included into the CRC calculation must be written to the
CRC Data Input (CRCDI or CRCDIRB) register in the same order that the original CRC signature was
calculated. The actual signature can be read from the CRCINIRES register to compare the computed
checksum with the expected checksum.

Signature generation describes a method on how the result of a signature operation can be calculated.
The calculated signature, which is computed by an external tool, is called checksum in the following text.
The checksum is stored in the product's memory and is used to check the correctness of the CRC
operation result.

10.2.1 CRC Implementation

To allow parallel processing of the CRC, the linear feedback shift register (LFSR) functionality is
implemented with an XOR tree. This implementation shows the identical behavior as the LFSR approach
after 8 bits of data are shifted in when the LSB is 'shifted' in first. The generation of a signature calculation
has to be started by writing a seed to the CRCINIRES register to initialize the register. Software or
hardware (e.g., DMA) can transfer data to the CRCDI or CRCDIRB register (e.g., from memory). The
value in CRCDI or CRCDIRB is then included into the signature, and the result is available in the
signature result registers at the next read access (CRCINIRES and CRCRESR). The signature can be
generated using word or byte data.

If a word data is processed, the lower byte at the even address is used at the first clock (MCLK) cycle.
During the second clock cycle, the higher byte is processed. Thus, it takes two clock cycles to process
word data, while it takes only one clock (MCLK) cycle to process byte data.

Data bytes written to CRCDIRB in word mode or the data byte in byte mode are bit-wise reversed before
the CRC engine adds them to the signature. The bits among each byte are reversed. Data bytes written to
CRCDI in word mode or the data byte in byte mode are not bit reversed before use by the CRC engine.

337SLAU208E–June 2008–Revised November 2009 CRC Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

CRC Data In Register CRCDI

Data In

8-bit or 16-bit

Byte MUX

8

CRC Initialization and Result Register

CRCINIRES

8

8 16

Write to CRCINIRES
16

CRC Checksum Generation www.ti.com

If the Check Sum itself (with reversed bit order) is included into the CRC operation (as data written to
CRCDI or CRCDIRB), the result in the CRCINIRES and CRCRESR registers must be zero.

Figure 10-2. Implementation of CRC-CCITT using the CRCDI and CRCINIRES registers

10.2.2 Assembler Examples

10.2.2.1 General Assembler Example

This example demonstrates the operation of the on-chip CRC:
...
PUSH R4 ; Save registers
PUSH R5
MOV #StartAddress,R4 ; StartAddress < EndAddress
MOV #EndAddress,R5
MOV &INIT, &CRCINIRES ; INIT to CRCINIRES

L1 MOV @R4+,&CRCDI ; Item to Data In register
CMP R5,R4 ; End address reached?
JLO L1 ; No
MOV &Check_Sum,&CRCDI ; Yes, Include checksum
TST &CRCINIRES ; Result = 0?
JNZ CRC_ERROR ; No, CRCRES <> 0: error
... ; Yes, CRCRES=0:

; information ok.
POP R5 ; Restore registers
POP R4

338 CRC Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com CRC Checksum Generation

10.2.2.2 Reference Data Sequence

The details of the implemented CRC algorithm is shown by the following data sequences using word or
byte accesses and the CRC data-in as well as the CRC data-in reverse byte registers:

...
mov #0FFFFh,&CRCINIRES ; initialize CRC
mov.b #00031h,&CRCDI_L ; "1"
mov.b #00032h,&CRCDI_L ; "2"
mov.b #00033h,&CRCDI_L ; "3"
mov.b #00034h,&CRCDI_L ; "4"
mov.b #00035h,&CRCDI_L ; "5"
mov.b #00036h,&CRCDI_L ; "6"
mov.b #00037h,&CRCDI_L ; "7"
mov.b #00038h,&CRCDI_L ; "8"
mov.b #00039h,&CRCDI_L ; "9"

cmp #089F6h,&CRCINIRES ; compare result
; CRCRESR contains 06F91h

jeq &Success ; no error
br &Error ; to error handler

mov #0FFFFh,&CRCINIRES ; initialize CRC
mov.w #03231h,&CRCDI ; "1" & "2"
mov.w #03433h,&CRCDI ; "3" & "4"
mov.w #03635h,&CRCDI ; "5" & "6"
mov.w #03837h,&CRCDI ; "7" & "8"
mov.b #039h, &CRCDI_L ; "9"

cmp #089F6h,&CRCINIRES ; compare result
; CRCRESR contains 06F91h

jeq &Success ; no error
br &Error ; to error handler

...
mov #0FFFFh,&CRCINIRES ; initialize CRC
mov.b #00031h,&CRCDIRB_L ; "1"
mov.b #00032h,&CRCDIRB_L ; "2"
mov.b #00033h,&CRCDIRB_L ; "3"
mov.b #00034h,&CRCDIRB_L ; "4"
mov.b #00035h,&CRCDIRB_L ; "5"
mov.b #00036h,&CRCDIRB_L ; "6"
mov.b #00037h,&CRCDIRB_L ; "7"
mov.b #00038h,&CRCDIRB_L ; "8"
mov.b #00039h,&CRCDIRB_L ; "9"

cmp #029B1h,&CRCINIRES ; compare result
; CRCRESR contains 08D94h

jeq &Success ; no error
br &Error ; to error handler

...
mov #0FFFFh,&CRCINIRES ; initialize CRC
mov.w #03231h,&CRCDIRB ; "1" & "2"
mov.w #03433h,&CRCDIRB ; "3" & "4"
mov.w #03635h,&CRCDIRB ; "5" & "6"
mov.w #03837h,&CRCDIRB ; "7" & "8"
mov.b #039h, &CRCDIRB_L ; "9"

cmp #029B1h,&CRCINIRES ; compare result
; CRCRESR contains 08D94h

jeq &Success ; no error
br &Error ; to error handler

339SLAU208E–June 2008–Revised November 2009 CRC Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

CRC Module Registers www.ti.com

10.3 CRC Module Registers

The CRC module registers are listed in Table 10-1. The base address can be found in the device-specific
data sheet. The address offset is given in Table 10-1.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 10-1. CRC Module Registers

Register Register AddressRegister Short Form Initial StateType Access Offset

CRC Data In CRCDI Read/write Word 0000h 0000h

CRCDI_L Read/write Byte 0000h 00h

CRCDI_H Read/write Byte 0001h 00h

CRC Data In Reverse Byte (1) CRCDIRB Read/write Word 0002h 0000h

CRCDIRB_L Read/write Byte 0002h 00h

CRCDIRB_H Read/write Byte 0003h 00h

CRC Initialization and Result CRCINIRES Read/write Word 0004h FFFFh

CRCINIRES_L Read/write Byte 0004h FFh

CRCINIRES_H Read/write Byte 0005h FFh

CRC Result Reverse (1) CRCRESR Read only Word 0006h FFFFh

CRCRESR_L Read/write Byte 0006h FFh

CRCRESR_H Read/write Byte 0007h FFh
(1) Not available on MSP430F543x and MSP430F541x non-A versions.

CRC Data In Register (CRCDI)

15 14 13 12 11 10 9 8

CRCDI

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

CRCDI

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

CRCDI Bits 15-0 CRC data in. Data written to the CRCDI register is included to the present signature in the CRCINIRES
register according to the CRC-CCITT standard.

CRC Data In Reverse Register (CRCDIRB)

15 14 13 12 11 10 9 8

CRCDIRB

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

CRCDIRB

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

CRCDIRB Bits 15-0 CRC data in reverse byte. Data written to the CRCDIRB register is included to the present signature in
the CRCINIRES and CRCRESR registers according to the CRC-CCITT standard. Reading the register
returns the register CRCDI content.

340 CRC Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com CRC Module Registers

CRC Initialization and Result Register (CRCINIRES)

15 14 13 12 11 10 9 8

CRCINIRES

rw-1 rw-1 rw-1 rw-1 rw-1 rw-1 rw-1 rw-1

7 6 5 4 3 2 1 0

CRCINIRES

rw-1 rw-1 rw-1 rw-1 rw-1 rw-1 rw-1 rw-1

CRCINIRES Bits 15-0 CRC initialization and result. This register holds the current CRC result (according to the CRC-CCITT
standard). Writing to this register initializes the CRC calculation with the value written to it. The value
just written can be read from CRCINIRES register.

CRC Reverse Result Register (CRCRESR)

15 14 13 12 11 10 9 8

CRCRESR

r-1 r-1 r-1 r-1 r-1 r-1 r-1 r-1

7 6 5 4 3 2 1 0

CRCRES R

r-1 r-1 r-1 r-1 r-1 r-1 r-1 r-1

CRCRESR Bits 15-0 CRC reverse result. This register holds the current CRC result (according to the CRC-CCITT standard).
The order of bits is reverse (e.g., CRCINIRES[15] = CRCRESR[0]) to the order of bits in the
CRCINIRES register (see example code).

341SLAU208E–June 2008–Revised November 2009 CRC Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

342 CRC Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 11
SLAU208E–June 2008–Revised November 2009

Watchdog Timer (WDT_A)

The watchdog timer is a 32-bit timer that can be used as a watchdog or as an interval timer. This chapter
describes the watchdog timer. The enhanced watchdog timer, WDT_A, is implemented in all devices.

Topic ... Page

11.1 WDT_A Introduction ... 344
11.2 WDT_A Operation .. 346
11.3 WDT_A Registers .. 348

343SLAU208E–June 2008–Revised November 2009 Watchdog Timer (WDT_A)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

WDT_A Introduction www.ti.com

11.1 WDT_A Introduction

The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart
after a software problem occurs. If the selected time interval expires, a system reset is generated. If the
watchdog function is not needed in an application, the module can be configured as an interval timer and
can generate interrupts at selected time intervals.

Features of the watchdog timer module include:

• Eight software-selectable time intervals
• Watchdog mode
• Interval mode
• Password-protected access to Watchdog Timer Control (WDTCTL) register
• Selectable clock source
• Can be stopped to conserve power
• Clock fail-safe feature

The watchdog timer block diagram is shown in Figure 11-1.

NOTE: Watchdog timer powers up active.

After a PUC, the WDT_A module is automatically configured in the watchdog mode with an
initial ~32-ms reset interval using the SMCLK. The user must setup or halt the WDT_A prior
to the expiration of the initial reset interval.

344 Watchdog Timer (WDT_A) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

WDTQn

Q6 16-bit

Counter

CLK

01

00

PUC

SMCLK

ACLK

Clear

Password

Compare

0

0

0

0

1

1

1

1

WDTCNTCL

WDTTMSEL

WDTSSEL0

WDTSSEL1

WDTIS1

WDTIS2

WDTIS0

WDTHOLD

EQU

EQU

Write Enable

Low Byte
R / W

MDB

LSB

MSB

WDTCTL

(Asyn)

Int.

Flag

Pulse

Generator

VLOCLK

Clock

Request
Logic

X_CLK request

SMCLK request

ACLK request

VLOCLK request

10

11

Q9

Q13

Q15

Q19

Q23

Q27

Q31

X_CLK

11

10

01

00

11

10

01

00

0

1

16-bit

Counter

CLK

32Bit WDT extension

www.ti.com WDT_A Introduction

Figure 11-1. Watchdog Timer Block Diagram

345SLAU208E–June 2008–Revised November 2009 Watchdog Timer (WDT_A)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

WDT_A Operation www.ti.com

11.2 WDT_A Operation

The watchdog timer module can be configured as either a watchdog or interval timer with the WDTCTL
register. WDTCTL is a 16-bit password-protected read/write register. Any read or write access must use
word instructions and write accesses must include the write password 05Ah in the upper byte. Any write to
WDTCTL with any value other than 05Ah in the upper byte is a security key violation and triggers a PUC
system reset, regardless of timer mode. Any read of WDTCTL reads 069h in the upper byte. Byte reads
on WDTCTL high or low part result in the value of the low byte. Writing byte wide to upper or lower parts
of WDTCTL results in a PUC.

11.2.1 Watchdog Timer Counter (WDTCNT)

The WDTCNT is a 32-bit up counter that is not directly accessible by software. The WDTCNT is controlled
and its time intervals are selected through the Watchdog Timer Control (WDTCTL) register. The WDTCNT
can be sourced from SMCLK, ACLK, VLOCLK, and X_CLK on some devices. The clock source is
selected with the WDTSSEL bits. The timer interval is selected with the WDTIS bits.

11.2.2 Watchdog Mode

After a PUC condition, the WDT module is configured in the watchdog mode with an initial ~32-ms reset
interval using the SMCLK. The user must setup, halt, or clear the watchdog timer prior to the expiration of
the initial reset interval or another PUC is generated. When the watchdog timer is configured to operate in
watchdog mode, either writing to WDTCTL with an incorrect password, or expiration of the selected time
interval triggers a PUC. A PUC resets the watchdog timer to its default condition.

11.2.3 Interval Timer Mode

Setting the WDTTMSEL bit to 1 selects the interval timer mode. This mode can be used to provide
periodic interrupts. In interval timer mode, the WDTIFG flag is set at the expiration of the selected time
interval. A PUC is not generated in interval timer mode at expiration of the selected timer interval, and the
WDTIFG enable bit WDTIE remains unchanged

When the WDTIE bit and the GIE bit are set, the WDTIFG flag requests an interrupt. The WDTIFG
interrupt flag is automatically reset when its interrupt request is serviced, or may be reset by software. The
interrupt vector address in interval timer mode is different from that in watchdog mode.

NOTE: Modifying the watchdog timer

The watchdog timer interval should be changed together with WDTCNTCL = 1 in a single
instruction to avoid an unexpected immediate PUC or interrupt. The watchdog timer should
be halted before changing the clock source to avoid a possible incorrect interval.

11.2.4 Watchdog Timer Interrupts

The watchdog timer uses two bits in the SFRs for interrupt control:

• WDT interrupt flag, WDTIFG, located in SFRIFG1.0
• WDT interrupt enable, WDTIE, located in SFRIE1.0

When using the watchdog timer in the watchdog mode, the WDTIFG flag sources a reset vector interrupt.
The WDTIFG can be used by the reset interrupt service routine to determine if the watchdog caused the
device to reset. If the flag is set, the watchdog timer initiated the reset condition, either by timing out or by
a security key violation. If WDTIFG is cleared, the reset was caused by a different source.

When using the watchdog timer in interval timer mode, the WDTIFG flag is set after the selected time
interval and requests a watchdog timer interval timer interrupt if the WDTIE and the GIE bits are set. The
interval timer interrupt vector is different from the reset vector used in watchdog mode. In interval timer
mode, the WDTIFG flag is reset automatically when the interrupt is serviced, or can be reset with
software.

346 Watchdog Timer (WDT_A) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com WDT_A Operation

11.2.5 Clock Fail-Safe Feature

The WDT_A provides a fail-safe clocking feature, ensuring the clock to the WDT_A cannot be disabled
while in watchdog mode. This means the low-power modes may be affected by the choice for the WDT_A
clock.

If SMCLK or ACLK fails as the WDT_A clock source, VLOCLK is automatically selected as the WDT_A
clock source.

When the WDT_A module is used in interval timer mode, there is no fail-safe feature within WDT_A for
the clock source.

11.2.6 Operation in Low-Power Modes

The devices have several low-power modes. Different clock signals are available in different low-power
modes. The requirements of the application and the type of clocking that is used determine how the
WDT_A should be configured. For example, the WDT_A should not be configured in watchdog mode with
a clock source that is originally sourced from DCO, XT1 in high-frequency mode, or XT2 via SMCLK or
ACLK if the user wants to use low-power mode 3. In this case, SMCLK or ACLK would remain enabled,
increasing the current consumption of LPM3. When the watchdog timer is not required, the WDTHOLD bit
can be used to hold the WDTCNT, reducing power consumption.

11.2.7 Software Examples

Any write operation to WDTCTL must be a word operation with 05Ah (WDTPW) in the upper byte:
; Periodically clear an active watchdog
MOV #WDTPW+WDTIS2+WDTIS1+WDTCNTCL,&WDTCTL
;
; Change watchdog timer interval
MOV #WDTPW+WDTCNTCL+SSEL,&WDTCTL
;
; Stop the watchdog
MOV #WDTPW+WDTHOLD,&WDTCTL
;
; Change WDT to interval timer mode, clock/8192 interval
MOV #WDTPW+WDTCNTCL+WDTTMSEL+WDTIS2+WDTIS0,&WDTCTL

347SLAU208E–June 2008–Revised November 2009 Watchdog Timer (WDT_A)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

WDT_A Registers www.ti.com

11.3 WDT_A Registers

The watchdog timer module registers are listed in Table 11-1. The base register or the watchdog timer
module registers and special function registers (SFRs) can be found in device-specific data sheets. The
address offset is given in Table 11-1.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 11-1. Watchdog Timer Registers

RegisterRegister Short Form Register Type Address Offset Initial StateAccess

Watchdog Timer Control WDTCTL Read/write Word 0Ch 6904h

WDTCTL_L Read/write Byte 0Ch 04h

WDTCTL_H Read/write Byte 0Dh 69h

Watchdog Timer Control Register (WDTCTL)

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Read as 069h
WDTPW, must be written as 05Ah

7 6 5 4 3 2 1 0

WDTHOLD WDTSSEL WDTTMSEL WDTCNTCL WDTIS

rw-0 rw-0 rw-0 rw-0 r0(w) rw-1 rw-0 rw-0

WDTPW Bits 15-8 Watchdog timer password. Always read as 069h. Must be written as 05Ah, or a PUC is generated.

WDTHOLD Bit 7 Watchdog timer hold. This bit stops the watchdog timer. Setting WDTHOLD = 1 when the WDT is not in use
conserves power.

0 Watchdog timer is not stopped.

1 Watchdog timer is stopped.

WDTSSEL Bits 6-5 Watchdog timer clock source select

00 SMCLK

01 ACLK

10 VLOCLK

11 X_CLK , same as VLOCLK if not defined differently in data sheet

WDTTMSEL Bit 4 Watchdog timer mode select

0 Watchdog mode

1 Interval timer mode

WDTCNTCL Bit 3 Watchdog timer counter clear. Setting WDTCNTCL = 1 clears the count value to 0000h. WDTCNTCL is
automatically reset.

0 No action

1 WDTCNT = 0000h

WDTIS Bits 2-0 Watchdog timer interval select. These bits select the watchdog timer interval to set the WDTIFG flag and/or
generate a PUC.

000 Watchdog clock source /2G (18:12:16 at 32 kHz)

001 Watchdog clock source /128M (01:08:16 at 32 kHz

010 Watchdog clock source /8192k (00:04:16 at 32 kHz)

011 Watchdog clock source /512k (00:00:16 at 32 kHz)

100 Watchdog clock source /32k (1 s at 32 kHz)

101 Watchdog clock source /8192 (250 ms at 32 kHz)

110 Watchdog clock source /512 (15,6 ms at 32 kHz)

111 Watchdog clock source /64 (1.95 ms at 32 kHz)

348 Watchdog Timer (WDT_A) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 12
SLAU208E–June 2008–Revised November 2009

Timer_A

Timer_A is a 16-bit timer/counter with multiple capture/compare registers. There can be multiple Timer_A
modules on a given device (see the device-specific data sheet). This chapter describes the operation and
use of the Timer_A module.

Topic ... Page

12.1 Timer_A Introduction ... 350
12.2 Timer_A Operation ... 351
12.3 Timer_A Registers ... 364

349SLAU208E–June 2008–Revised November 2009 Timer_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Timer_A Introduction www.ti.com

12.1 Timer_A Introduction

Timer_A is a 16-bit timer/counter with up to seven capture/compare registers. Timer_A can support
multiple capture/compares, PWM outputs, and interval timing. Timer_A also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.

Timer_A features include:

• Asynchronous 16-bit timer/counter with four operating modes
• Selectable and configurable clock source
• Up to seven configurable capture/compare registers
• Configurable outputs with pulse width modulation (PWM) capability
• Asynchronous input and output latching
• Interrupt vector register for fast decoding of all Timer_A interrupts

The block diagram of Timer_A is shown in Figure 12-1.

NOTE: Use of the word count

Count is used throughout this chapter. It means the counter must be in the process of
counting for the action to take place. If a particular value is directly written to the counter, an
associated action does not take place.

NOTE: Nomenclature

There may be multiple instantiations of Timer_A on a given device. The prefix TAx is used,
where x is a greater than equal to zero indicating the Timer_A instantiation. For devices with
one instantiation, x = 0. The suffix n, where n = 0 to 6, represents the specific
capture/compare registers associated with the Timer_A instantiation.

350 Timer_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

CCR6

Compararator 6
CCI

15 0

CCIS

OUTMOD

Capture

Mode

CM

Sync

SCS

COVlogic

Output

Unit4 D Set Q
EQU0

OUT

OUT6 Signal

Reset

GND

VCC

CCI6A

CCI6B

EQU6

Divider

/1/2/4/8

Count

Mode

T16-bit imer

TAxR

RC

Set TAxCTL
TAIFG

15 0

TASSEL MCID

00

01

10

11

Clear

Timer Clock

EQU0

Timer Clock

Timer Clock

TAxCCR6

SCCI Y
A

EN

CCR1

POR

TACLR

CCR0

Timer Block

00

01

10

11

Set TAxCCR6

CCIFG

CAP

1

0

1

0

CCR2

CCR3

ACLK

SMCLK

TAxCLK

IDEX

Divider

/1.../8

CCR4

CCR5

2 2 3 2

2 2

3

www.ti.com Timer_A Operation

Figure 12-1. Timer_A Block Diagram

12.2 Timer_A Operation

The Timer_A module is configured with user software. The setup and operation of Timer_A are discussed
in the following sections.

12.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TAxR, increments or decrements (depending on mode of operation) with
each rising edge of the clock signal. TAxR can be read or written with software. Additionally, the timer can
generate an interrupt when it overflows.

351SLAU208E–June 2008–Revised November 2009 Timer_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Timer_A Operation www.ti.com

TAxR may be cleared by setting the TACLR bit. Setting TACLR also clears the clock divider and count
direction for up/down mode.

NOTE: Modifying Timer_A registers

It is recommended to stop the timer before modifying its operation (with exception of the
interrupt enable, interrupt flag, and TACLR) to avoid errant operating conditions.

When the timer clock is asynchronous to the CPU clock, any read from TAxR should occur
while the timer is not operating or the results may be unpredictable. Alternatively, the timer
may be read multiple times while operating, and a majority vote taken in software to
determine the correct reading. Any write to TAxR takes effect immediately.

12.2.1.1 Clock Source Select and Divider

The timer clock can be sourced from ACLK, SMCLK, or externally via TAxCLK. The clock source is
selected with the TASSEL bits. The selected clock source may be passed directly to the timer or divided
by 2, 4, or 8, using the ID bits. The selected clock source can be further divided by 2, 3, 4, 5, 6, 7, or 8
using the IDEX bits. The timer clock dividers are reset when TACLR is set.

NOTE: Timer_A dividers

Setting the TACLR bit clears the contents of TAxR and the clock dividers. The clock dividers
are implemented as down counters. Therefore, when the TACLR bit is cleared, the timer
clock immediately begins clocking at the first rising edge of the Timer_A clock source
selected with the TASSEL bits and continues clocking at the divider settings set by the ID
and IDEX bits.

12.2.2 Starting the Timer

The timer may be started or restarted in the following ways:

• The timer counts when MC > { 0 } and the clock source is active.
• When the timer mode is either up or up/down, the timer may be stopped by writing 0 to TAxCCR0. The

timer may then be restarted by writing a nonzero value to TAxCCR0. In this scenario, the timer starts
incrementing in the up direction from zero.

12.2.3 Timer Mode Control

The timer has four modes of operation: stop, up, continuous, and up/down (see Table 12-1). The
operating mode is selected with the MC bits.

Table 12-1. Timer Modes

MCx Mode Description

00 Stop The timer is halted.

01 Up The timer repeatedly counts from zero to the value of TAxCCR0

10 Continuous The timer repeatedly counts from zero to 0FFFFh.

11 Up/down The timer repeatedly counts from zero up to the value of TAxCCR0 and back down to zero.

12.2.3.1 Up Mode

The up mode is used if the timer period must be different from 0FFFFh counts. The timer repeatedly
counts up to the value of compare register TAxCCR0, which defines the period (see Figure 12-2). The
number of timer counts in the period is TAxCCR0 + 1. When the timer value equals TAxCCR0, the timer
restarts counting from zero. If up mode is selected when the timer value is greater than TAxCCR0, the
timer immediately restarts counting from zero.

352 Timer_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

TAxCCR0

CCR0-1 CCR0 0h

Timer Clock

Timer

Set TAxCTL TAIFG

Set TAxCCR0 CCIFG

1h CCR0-1 CCR0 0h

0h

0FFFFh

www.ti.com Timer_A Operation

Figure 12-2. Up Mode

The TAxCCR0 CCIFG interrupt flag is set when the timer counts to the TAxCCR0 value. The TAIFG
interrupt flag is set when the timer counts from TAxCCR0 to zero. Figure 12-3 shows the flag set cycle.

Figure 12-3. Up Mode Flag Setting

Changing Period Register TAxCCR0

When changing TAxCCR0 while the timer is running, if the new period is greater than or equal to the old
period or greater than the current count value, the timer counts up to the new period. If the new period is
less than the current count value, the timer rolls to zero. However, one additional count may occur before
the counter rolls to zero.

12.2.3.2 Continuous Mode

In the continuous mode, the timer repeatedly counts up to 0FFFFh and restarts from zero as shown in
Figure 12-4. The capture/compare register TAxCCR0 works the same way as the other capture/compare
registers.

Figure 12-4. Continuous Mode

The TAIFG interrupt flag is set when the timer counts from 0FFFFh to zero. Figure 12-5 shows the flag set
cycle.

353SLAU208E–June 2008–Revised November 2009 Timer_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

FFFEh FFFFh 0h

Timer Clock

Timer

Set TAxCTL TAIFG

1h FFFEh FFFFh 0h

0FFFFh

TAxCCR0a

TAxCCR0b TAxCCR0c
TAxCCR0d

t
1

t
0

t
0

TAxCCR1a

TAxCCR1b TAxCCR1c

TAxCCR1d

t
1

t
1

t
0

Timer_A Operation www.ti.com

Figure 12-5. Continuous Mode Flag Setting

12.2.3.3 Use of Continuous Mode

The continuous mode can be used to generate independent time intervals and output frequencies. Each
time an interval is completed, an interrupt is generated. The next time interval is added to the TAxCCRn
register in the interrupt service routine. Figure 12-6 shows two separate time intervals, t0 and t1, being
added to the capture/compare registers. In this usage, the time interval is controlled by hardware, not
software, without impact from interrupt latency. Up to n (where n = 0 to 6), independent time intervals or
output frequencies can be generated using capture/compare registers.

Figure 12-6. Continuous Mode Time Intervals

Time intervals can be produced with other modes as well, where TAxCCR0 is used as the period register.
Their handling is more complex since the sum of the old TAxCCRn data and the new period can be higher
than the TAxCCR0 value. When the previous TAxCCRn value plus tx is greater than the TAxCCR0 data,
the TAxCCR0 value must be subtracted to obtain the correct time interval.

12.2.3.4 Up/Down Mode

The up/down mode is used if the timer period must be different from 0FFFFh counts, and if symmetrical
pulse generation is needed. The timer repeatedly counts up to the value of compare register TAxCCR0
and back down to zero (see Figure 12-7). The period is twice the value in TAxCCR0.

354 Timer_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

0h

TAxCCR0

0FFFFh

CCR0-1 CCR0 CCR0-1

Timer Clock

Timer

Set TAxCTL TAIFG

Set TAxCCR0 CCIFG

CCR0-2 1h 0h

Up/Down

www.ti.com Timer_A Operation

Figure 12-7. Up/Down Mode

The count direction is latched. This allows the timer to be stopped and then restarted in the same direction
it was counting before it was stopped. If this is not desired, the TACLR bit must be set to clear the
direction. The TACLR bit also clears the TAxR value and the timer clock divider.

In up/down mode, the TAxCCR0 CCIFG interrupt flag and the TAIFG interrupt flag are set only once
during a period, separated by one-half the timer period. The TAxCCR0 CCIFG interrupt flag is set when
the timer counts from TAxCCR0-1 to TAxCCR0, and TAIFG is set when the timer completes counting
down from 0001h to 0000h. Figure 12-8 shows the flag set cycle.

Figure 12-8. Up/Down Mode Flag Setting

Changing Period Register TAxCCR0

When changing TAxCCR0 while the timer is running and counting in the down direction, the timer
continues its descent until it reaches zero. The new period takes affect after the counter counts down to
zero.

When the timer is counting in the up direction, and the new period is greater than or equal to the old
period or greater than the current count value, the timer counts up to the new period before counting
down. When the timer is counting in the up direction and the new period is less than the current count
value, the timer begins counting down. However, one additional count may occur before the counter
begins counting down.

12.2.3.5 Use of Up/Down Mode

The up/down mode supports applications that require dead times between output signals (see section
Timer_A Output Unit). For example, to avoid overload conditions, two outputs driving an H-bridge must
never be in a high state simultaneously. In the example shown in Figure 12-9, the tdead is:

tdead = ttimer × (TAxCCR1 – TAxCCR2)

Where:
tdead = Time during which both outputs need to be inactive
ttimer = Cycle time of the timer clock
TAxCCRn = Content of capture/compare register n

355SLAU208E–June 2008–Revised November 2009 Timer_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

0h

0FFFFh

TAIFG

Output Mode 2: Toggle/Reset

Output Mode 6: Toggle/Set

TAxCCR0

TAxCCR1

EQU1
TAIFG Interrupt EventsEQU1

EQU0

EQU1 EQU1

EQU0

TAxCCR2

EQU2 EQU2EQU2 EQU2

Dead Time

Set TAxCCRn CCIFG

Capture

CCI

Timer

Timer Clock

n–2 n–1 n n+1 n+2 n+3 n+4

Timer_A Operation www.ti.com

The TAxCCRn registers are not buffered. They update immediately when written to. Therefore, any
required dead time is not maintained automatically.

Figure 12-9. Output Unit in Up/Down Mode

12.2.4 Capture/Compare Blocks

Up to seven identical capture/compare blocks, TAxCCRn (where n = 0 to 7), are present in Timer_A. Any
of the blocks may be used to capture the timer data or to generate time intervals.

12.2.4.1 Capture Mode

The capture mode is selected when CAP = 1. Capture mode is used to record time events. It can be used
for speed computations or time measurements. The capture inputs CCIxA and CCIxB are connected to
external pins or internal signals and are selected with the CCIS bits. The CM bits select the capture edge
of the input signal as rising, falling, or both. A capture occurs on the selected edge of the input signal. If a
capture occurs:

• The timer value is copied into the TAxCCRn register.
• The interrupt flag CCIFG is set.

The input signal level can be read at any time via the CCI bit. Devices may have different signals
connected to CCIxA and CCIxB. See the device-specific data sheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race condition. Setting the SCS
bit synchronizes the capture with the next timer clock. Setting the SCS bit to synchronize the capture
signal with the timer clock is recommended (see Figure 12-10).

Figure 12-10. Capture Signal (SCS = 1)

356 Timer_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Second
Capture

COV = 1
Taken

Capture
Taken

No
Capture
Taken

Read
Taken

Capture

Clear Bit COV
in Register TAxCCTLn

Idle

Idle

Capture

Capture Read and No Capture

Capture

Capture ReadCapture

www.ti.com Timer_A Operation

NOTE: Changing Capture Inputs

Changing capture inputs while in capture mode may cause unintended capture events. To
avoid this scenario, capture inputs should only be changed when capture mode is disabled
(CM = {0} or CAP = 0).

Overflow logic is provided in each capture/compare register to indicate if a second capture was performed
before the value from the first capture was read. Bit COV is set when this occurs as shown in
Figure 12-11. COV must be reset with software.

Figure 12-11. Capture Cycle

Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on both edges. Software then
sets CCIS1 = 1 and toggles bit CCIS0 to switch the capture signal between VCC and GND, initiating a
capture each time CCIS0 changes state:

MOV #CAP+SCS+CCIS1+CM_3,&TA0CCTL1 ; Setup TA0CCTL1, synch. capture mode
; Event trigger on both edges of capture input.

XOR #CCIS0,&TA0CCTL1 ; TA0CCR1 = TA0R

NOTE: Capture Initiated by Software

In general, changing capture inputs while in capture mode may cause unintended capture
events. For this scenario, switching the capture input between VCC and GND, disabling the
capture mode is not required.

357SLAU208E–June 2008–Revised November 2009 Timer_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Timer_A Operation www.ti.com

12.2.4.2 Compare Mode

The compare mode is selected when CAP = 0. The compare mode is used to generate PWM output
signals or interrupts at specific time intervals. When TAxR counts to the value in a TAxCCRn, where n
represents the specific capture/compare register.

• Interrupt flag CCIFG is set.
• Internal signal EQUn = 1.
• EQUn affects the output according to the output mode.
• The input signal CCI is latched into SCCI.

12.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used to generate output signals,
such as PWM signals. Each output unit has eight operating modes that generate signals based on the
EQU0 and EQUn signals.

12.2.5.1 Output Modes

The output modes are defined by the OUTMOD bits and are described in Table 12-2. The OUTn signal is
changed with the rising edge of the timer clock for all modes except mode 0. Output modes 2, 3, 6, and 7
are not useful for output unit 0 because EQUn = EQU0.

Table 12-2. Output Modes

OUTMODx Mode Description

000 Output The output signal OUTn is defined by the OUT bit. The OUTn signal updates immediately
when OUT is updated.

001 Set The output is set when the timer counts to the TAxCCRn value. It remains set until a reset
of the timer, or until another output mode is selected and affects the output.

010 Toggle/Reset The output is toggled when the timer counts to the TAxCCRn value. It is reset when the
timer counts to the TAxCCR0 value.

011 Set/Reset The output is set when the timer counts to the TAxCCRn value. It is reset when the timer
counts to the TAxCCR0 value.

100 Toggle The output is toggled when the timer counts to the TAxCCRn value. The output period is
double the timer period.

101 Reset The output is reset when the timer counts to the TAxCCRn value. It remains reset until
another output mode is selected and affects the output.

110 Toggle/Set The output is toggled when the timer counts to the TAxCCRn value. It is set when the timer
counts to the TAxCCR0 value.

111 Reset/Set The output is reset when the timer counts to the TAxCCRn value. It is set when the timer
counts to the TAxCCR0 value.

Output Example—Timer in Up Mode

The OUTn signal is changed when the timer counts up to the TAxCCRn value and rolls from TAxCCR0 to
zero, depending on the output mode. An example is shown in Figure 12-12 using TAxCCR0 and
TAxCCR1.

358 Timer_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

0h

0FFFFh

EQU0
TAIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TAxCCR0

TAxCCR1

EQU1 EQU0
TAIFG

EQU1 EQU0
TAIFG

Interrupt Events

www.ti.com Timer_A Operation

Figure 12-12. Output Example – Timer in Up Mode

359SLAU208E–June 2008–Revised November 2009 Timer_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

0h

0FFFFh

TAIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: oggle/SetT

Output Mode 7: Reset/Set

TAxCCR0

TAxCCR1

EQU1 TAIFG EQU1 EQU0 Interrupt EventsEQU0

Timer_A Operation www.ti.com

Output Example – Timer in Continuous Mode

The OUTn signal is changed when the timer reaches the TAxCCRn and TAxCCR0 values, depending on
the output mode. An example is shown in Figure 12-13 using TAxCCR0 and TAxCCR1.

Figure 12-13. Output Example – Timer in Continuous Mode

Output Example – Timer in Up/Down Mode

The OUTn signal changes when the timer equals TAxCCRn in either count direction and when the timer
equals TAxCCR0, depending on the output mode. An example is shown in Figure 12-14 using TAxCCR0
and TAxCCR2.

360 Timer_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

0h

0FFFFh

TAIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TAxCCR0

TAxCCR2

EQU2

TAIFG
Interrupt Events

EQU2

EQU0

EQU2 EQU2

EQU0

www.ti.com Timer_A Operation

Figure 12-14. Output Example – Timer in Up/Down Mode

NOTE: Switching between output modes

When switching between output modes, one of the OUTMOD bits should remain set during
the transition, unless switching to mode 0. Otherwise, output glitching can occur, because a
NOR gate decodes output mode 0. A safe method for switching between output modes is to
use output mode 7 as a transition state:

BIS #OUTMOD_7,&TA0CCTL1 ; Set output mode=7
BIC #OUTMOD,&TA0CCTL1 ; Clear unwanted bits

361SLAU208E–June 2008–Revised November 2009 Timer_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

D
Set

Q
IRQ, Interrupt Service Requested

Reset
Timer Clock

POR

CAP
EQU0

Capture

IRACC, Interrupt Request Accepted

CCIE

Timer_A Operation www.ti.com

12.2.6 Timer_A Interrupts

Two interrupt vectors are associated with the 16-bit Timer_A module:

• TAxCCR0 interrupt vector for TAxCCR0 CCIFG
• TAxIV interrupt vector for all other CCIFG flags and TAIFG

In capture mode, any CCIFG flag is set when a timer value is captured in the associated TAxCCRn
register. In compare mode, any CCIFG flag is set if TAxR counts to the associated TAxCCRn value.
Software may also set or clear any CCIFG flag. All CCIFG flags request an interrupt when their
corresponding CCIE bit and the GIE bit are set.

12.2.6.1 TAxCCR0 Interrupt

The TAxCCR0 CCIFG flag has the highest Timer_A interrupt priority and has a dedicated interrupt vector
as shown in Figure 12-15. The TAxCCR0 CCIFG flag is automatically reset when the TAxCCR0 interrupt
request is serviced.

Figure 12-15. Capture/Compare TAxCCR0 Interrupt Flag

12.2.6.2 TAxIV, Interrupt Vector Generator

The TAxCCRy CCIFG flags and TAIFG flags are prioritized and combined to source a single interrupt
vector. The interrupt vector register TAxIV is used to determine which flag requested an interrupt.

The highest-priority enabled interrupt generates a number in the TAxIV register (see register description).
This number can be evaluated or added to the program counter to automatically enter the appropriate
software routine. Disabled Timer_A interrupts do not affect the TAxIV value.

Any access, read or write, of the TAxIV register automatically resets the highest-pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, if the TAxCCR1 and TAxCCR2 CCIFG flags are set when the interrupt service routine
accesses the TAxIV register, TAxCCR1 CCIFG is reset automatically. After the RETI instruction of the
interrupt service routine is executed, the TAxCCR2 CCIFG flag generates another interrupt.

362 Timer_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Timer_A Operation

TAxIV Software Example

The following software example shows the recommended use of TAxIV and the handling overhead. The
TAxIV value is added to the PC to automatically jump to the appropriate routine. The example assumes a
single instantiation of the largest timer configuration available.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself. The latencies are:

• Capture/compare block TA0CCR0: 11 cycles
• Capture/compare blocks TA0CCR1, TA0CCR2, TA0CCR3, TA0CCR4, TA0CCR5, TA0CCR6:

16 cycles
• Timer overflow TA0IFG: 14 cycles
; Interrupt handler for TA0CCR0 CCIFG. Cycles
CCIFG_0_HND
; ... ; Start of handler Interrupt latency 6

RETI 5

; Interrupt handler for TA0IFG, TA0CCR1 through TA0CCR6 CCIFG.

TA0_HND ... ; Interrupt latency 6
ADD &TA0IV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP CCIFG_1_HND ; Vector 2: TA0CCR1 2
JMP CCIFG_2_HND ; Vector 4: TA0CCR2 2
JMP CCIFG_3_HND ; Vector 6: TA0CCR3 2
JMP CCIFG_4_HND ; Vector 8: TA0CCR4 2
JMP CCIFG_5_HND ; Vector 10: TA0CCR5 2
JMP CCIFG_6_HND ; Vector 12: TA0CCR6 2

TA0IFG_HND ; Vector 14: TA0IFG Flag
... ; Task starts here
RETI 5

CCIFG_6_HND ; Vector 12: TA0CCR6
... ; Task starts here
RETI ; Back to main program 5

CCIFG_5_HND ; Vector 10: TA0CCR5
... ; Task starts here
RETI ; Back to main program 5

CCIFG_4_HND ; Vector 8: TA0CCR4
... ; Task starts here
RETI ; Back to main program 5

CCIFG_3_HND ; Vector 6: TA0CCR3
... ; Task starts here
RETI ; Back to main program 5

CCIFG_2_HND ; Vector 4: TA0CCR2
... ; Task starts here
RETI ; Back to main program 5

CCIFG_1_HND ; Vector 2: TA0CCR1
... ; Task starts here
RETI ; Back to main program 5

363SLAU208E–June 2008–Revised November 2009 Timer_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Timer_A Registers www.ti.com

12.3 Timer_A Registers

Timer_A registers are listed in Table 12-3 for the largest configuration available. The base address can be
found in the device-specific data sheet. The address offsets are listed in Table 12-3.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 12-3. Timer_A Registers

Register Register AddressRegister Short Form Initial StateType Access Offset

Timer_A Control TAxCTL Read/write Word 00h 0000h

TAxCTL_L Read/write Byte 00h 00h

TAxCTL_H Read/write Byte 01h 00h

Timer_A Capture/Compare Control 0 TAxCCTL0 Read/write Word 02h 0000h

TAxCCTL0_L Read/write Byte 02h 00h

TAxCCTL0_H Read/write Byte 03h 00h

Timer_A Capture/Compare Control 1 TAxCCTL1 Read/write Word 04h 0000h

TAxCCTL1_L Read/write Byte 04h 00h

TAxCCTL1_H Read/write Byte 05h 00h

Timer_A Capture/Compare Control 2 TAxCCTL2 Read/write Word 06h 0000h

TAxCCTL2_L Read/write Byte 06h 00h

TAxCCTL2_H Read/write Byte 07h 00h

Timer_A Capture/Compare Control 3 TAxCCTL3 Read/write Word 08h 0000h

TAxCCTL3_L Read/write Byte 08h 00h

TAxCCTL3_H Read/write Byte 09h 00h

Timer_A Capture/Compare Control 4 TAxCCTL4 Read/write Word 0Ah 0000h

TAxCCTL4_L Read/write Byte 0Ah 00h

TAxCCTL4_H Read/write Byte 0Bh 00h

Timer_A Capture/Compare Control 5 TAxCCTL5 Read/write Word 0Ch 0000h

TAxCCTL5_L Read/write Byte 0Ch 00h

TAxCCTL5_H Read/write Byte 0Dh 00h

Timer_A Capture/Compare Control 6 TAxCCTL6 Read/write Word 0Eh 0000h

TAxCCTL6_L Read/write Byte 0Eh 00h

TAxCCTL6_H Read/write Byte 0Fh 00h

Timer_A Counter TAxR Read/write Word 10h 0000h

TAxR_L Read/write Byte 10h 00h

TAxR_H Read/write Byte 11h 00h

Timer_A Capture/Compare 0 TAxCCR0 Read/write Word 12h 0000h

TAxCCR0_L Read/write Byte 12h 00h

TAxCCR0_H Read/write Byte 13h 00h

Timer_A Capture/Compare 1 TAxCCR1 Read/write Word 14h 0000h

TAxCCR1_L Read/write Byte 14h 00h

TAxCCR1_H Read/write Byte 15h 00h

Timer_A Capture/Compare 2 TAxCCR2 Read/write Word 16h 0000h

TAxCCR2_L Read/write Byte 16h 00h

TAxCCR2_H Read/write Byte 17h 00h

364 Timer_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Timer_A Registers

Table 12-3. Timer_A Registers (continued)

Register Register AddressRegister Short Form Initial StateType Access Offset

Timer_A Capture/Compare 3 TAxCCR3 Read/write Word 18h 0000h

TAxCCR3_L Read/write Byte 18h 00h

TAxCCR3_H Read/write Byte 19h 00h

Timer_A Capture/Compare 4 TAxCCR4 Read/write Word 1Ah 0000h

TAxCCR4_L Read/write Byte 1Ah 00h

TAxCCR4_H Read/write Byte 1Bh 00h

Timer_A Capture/Compare 5 TAxCCR5 Read/write Word 1Ch 0000h

TAxCCR5_L Read/write Byte 1Ch 00h

TAxCCR5_H Read/write Byte 1Dh 00h

Timer_A Capture/Compare 6 TAxCCR6 Read/write Word 1Eh 0000h

TAxCCR6_L Read/write Byte 1Eh 00h

TAxCCR6_H Read/write Byte 1Fh 00h

Timer_A Interrupt Vector TAxIV Read only Word 2Eh 0000h

TAxIV_L Read only Byte 2Eh 00h

TAxIV_H Read only Byte 2Fh 00h

Timer_A Expansion 0 TAxEX0 Read/write Word 20h 0000h

TAxEX0_L Read/write Byte 20h 00h

TAxEX0_H Read/write Byte 21h 00h

365SLAU208E–June 2008–Revised November 2009 Timer_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Timer_A Registers www.ti.com

Timer_A Control Register (TAxCTL)

15 14 13 12 11 10 9 8

Unused TASSEL

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

ID MC Unused TACLR TAIE TAIFG

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) w-(0) rw-(0) rw-(0)

Unused Bits 15-10 Unused

TASSEL Bits 9-8 Timer_A clock source select

00 TAxCLK

01 ACLK

10 SMCLK

11 Inverted TAxCLK

ID Bits 7-6 Input divider. These bits along with the IDEX bits select the divider for the input clock.

00 /1

01 /2

10 /4

11 /8

MC Bits 5-4 Mode control. Setting MCx = 00h when Timer_A is not in use conserves power.

00 Stop mode: Timer is halted

01 Up mode: Timer counts up to TAxCCR0

10 Continuous mode: Timer counts up to 0FFFFh

11 Up/down mode: Timer counts up to TAxCCR0 then down to 0000h

Unused Bit 3 Unused

TACLR Bit 2 Timer_A clear. Setting this bit resets TAxR, the timer clock divider, and the count direction. The TACLR
bit is automatically reset and is always read as zero.

TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.

0 Interrupt disabled

1 Interrupt enabled

TAIFG Bit 0 Timer_A interrupt flag

0 No interrupt pending

1 Interrupt pending

Timer_A Counter Register (TAxR)

15 14 13 12 11 10 9 8

TAxR

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

TAxR

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

TAxR Bits 15-0 Timer_A register. The TAxR register is the count of Timer_A.

366 Timer_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Timer_A Registers

Capture/Compare Control Register (TAxCCTLn)

15 14 13 12 11 10 9 8

CM CCIS SCS SCCI Unused CAP

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r-(0) r-(0) rw-(0)

7 6 5 4 3 2 1 0

OUTMOD CCIE CCI OUT COV CCIFG

rw-(0) rw-(0) rw-(0) rw-(0) r rw-(0) rw-(0) rw-(0)

CM Bits 15-14 Capture mode

00 No capture

01 Capture on rising edge

10 Capture on falling edge

11 Capture on both rising and falling edges

CCIS Bits 13-12 Capture/compare input select. These bits select the TAxCCRn input signal. See the device-specific data
sheet for specific signal connections.

00 CCIxA

01 CCIxB

10 GND

11 VCC

SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input signal with the timer clock.

0 Asynchronous capture

1 Synchronous capture

SCCI Bit 10 Synchronized capture/compare input. The selected CCI input signal is latched with the EQUx signal and
can be read via this bit.

Unused Bit 9 Unused. Read only. Always read as 0.

CAP Bit 8 Capture mode

0 Compare mode

1 Capture mode

OUTMOD Bits 7-5 Output mode. Modes 2, 3, 6, and 7 are not useful for TAxCCR0 because EQUx = EQU0.

000 OUT bit value

001 Set

010 Toggle/reset

011 Set/reset

100 Toggle

101 Reset

110 Toggle/set

111 Reset/set

CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG
flag.

0 Interrupt disabled

1 Interrupt enabled

CCI Bit 3 Capture/compare input. The selected input signal can be read by this bit.

OUT Bit 2 Output. For output mode 0, this bit directly controls the state of the output.

0 Output low

1 Output high

COV Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software.

0 No capture overflow occurred

1 Capture overflow occurred

367SLAU208E–June 2008–Revised November 2009 Timer_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Timer_A Registers www.ti.com

(continued)

CCIFG Bit 0 Capture/compare interrupt flag

0 No interrupt pending

1 Interrupt pending

Timer_A Interrupt Vector Register (TAxIV)

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 TAIV 0

r0 r0 r0 r0 r-(0) r-(0) r-(0) r0

TAIV Bits 15-0 Timer_A interrupt vector value

TAIV Contents Interrupt Source Interrupt Flag Interrupt Priority

00h No interrupt pending

02h Capture/compare 1 TAxCCR1 CCIFG Highest

04h Capture/compare 2 TAxCCR2 CCIFG

06h Capture/compare 3 TAxCCR3 CCIFG

08h Capture/compare 4 TAxCCR4 CCIFG

0Ah Capture/compare 5 TAxCCR5 CCIFG

0Ch Capture/compare 6 TAxCCR6 CCIFG

0Eh Timer overflow TAxCTL TAIFG Lowest

Timer_A Expansion 0 Register (TAxEX0)

15 14 13 12 11 10 9 8

Unused Unused Unused Unused Unused Unused Unused Unused

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Unused Unused Unused Unused Unused IDEX

r0 r0 r0 r0 r0 rw-(0) rw-(0) rw-(0)

Unused Bits 15-3 Unused. Read only. Always read as 0.

IDEX Bits 2-0 Input divider expansion. These bits along with the ID bits select the divider for the input clock.

000 /1

001 /2

010 /3

011 /4

100 /5

101 /6

110 /7

111 /8

368 Timer_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 13
SLAU208E–June 2008–Revised November 2009

Timer_B

Timer_B is a 16-bit timer/counter with multiple capture/compare registers. There can be multiple Timer_B
modules on a given device (see the device-specific data sheet). This chapter describes the operation and
use of the Timer_B module.

Topic ... Page

13.1 Timer_B Introduction ... 370
13.2 Timer_B Operation ... 372
13.3 Timer_B Registers ... 385

369SLAU208E–June 2008–Revised November 2009 Timer_B
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Timer_B Introduction www.ti.com

13.1 Timer_B Introduction

Timer_B is a 16-bit timer/counter with up to seven capture/compare registers. Timer_B can support
multiple capture/compares, PWM outputs, and interval timing. Timer_B also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.

Timer_B features include :

• Asynchronous 16-bit timer/counter with four operating modes and four selectable lengths
• Selectable and configurable clock source
• Up to seven configurable capture/compare registers
• Configurable outputs with PWM capability
• Double-buffered compare latches with synchronized loading
• Interrupt vector register for fast decoding of all Timer_B interrupts

The block diagram of Timer_B is shown in Figure 13-1.

NOTE: Use of the word count

Count is used throughout this chapter. It means the counter must be in the process of
counting for the action to take place. If a particular value is directly written to the counter, an
associated action does not take place.

NOTE: Nomenclature

There may be multiple instantiations of Timer_B on a given device. The prefix TBx is used,
where x is a greater than equal to zero indicating the Timer_B instantiation. For devices with
one instantiation, x = 0. The suffix n, where n = 0 to 6, represents the specific
capture/compare registers associated with the Timer_B instantiation.

13.1.1 Similarities and Differences From Timer_A

Timer_B is identical to Timer_A with the following exceptions:

• The length of Timer_B is programmable to be 8, 10, 12, or 16 bits.
• Timer_B TBxCCRn registers are double-buffered and can be grouped.
• All Timer_B outputs can be put into a high-impedance state.
• The SCCI bit function is not implemented in Timer_B.

370 Timer_B SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

CCR6

Comparator 6

CCI

15 0

OUTMOD

Capture

Mode

CM

Sync

COVlogic

Output

Unit6 D Set Q
EQU0

OUT

OUT6 Signal

Reset

POR

EQU6

Count

Mode

16-bit Timer

TBxR

Set TBxCTL
TBIFG

15 0

MC

Clear

TBCLR

CCR0

EQU0

Timer Clock

Timer Clock

VCC

TBxR=0

UP/DOWN
EQU0

CLLD

CNTL

Load

CCR1

CCR2

CCR3

CCR4

CCR5

Timer Block

TBxCCR6

RC

10 12 168

TBCLGRP

CCR5

CCR4

CCR1

Group

Load Logic

Group

Load Logic

TBSSEL

00

01

10

11

GND

VCC

CCI6A

CCI6B

00

01

10

11

CCIS

00

01

10

11

00

01

10

11
CAP

1

0

SCS

1

0

Set TBxCCR6
CCIFG

Compare Latch TBxCL6

ACLK

SMCLK

TBxCLK

Timer Clock

Divider

/1/2/4/8

ID IDEX

Divider

/1.../8

2 2 3

2

2

2

2 2

2

2

www.ti.com Timer_B Introduction

Figure 13-1. Timer_B Block Diagram

371SLAU208E–June 2008–Revised November 2009 Timer_B
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Timer_B Operation www.ti.com

13.2 Timer_B Operation

The Timer_B module is configured with user software. The setup and operation of Timer_B is discussed in
the following sections.

13.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TBxR, increments or decrements (depending on mode of operation) with
each rising edge of the clock signal. TBxR can be read or written with software. Additionally, the timer can
generate an interrupt when it overflows.

TBxR may be cleared by setting the TBCLR bit. Setting TBCLR also clears the clock divider and count
direction for up/down mode.

NOTE: Modifying Timer_B registers

It is recommended to stop the timer before modifying its operation (with exception of the
interrupt enable, interrupt flag, and TBCLR) to avoid errant operating conditions.

When the timer clock is asynchronous to the CPU clock, any read from TBxR should occur
while the timer is not operating or the results may be unpredictable. Alternatively, the timer
may be read multiple times while operating, and a majority vote taken in software to
determine the correct reading. Any write to TBxR takes effect immediately.

13.2.1.1 TBxR Length

Timer_B is configurable to operate as an 8-, 10-, 12-, or 16-bit timer with the CNTL bits. The maximum
count value, TBxR(max), for the selectable lengths is 0FFh, 03FFh, 0FFFh, and 0FFFFh, respectively. Data
written to the TBxR register in 8-, 10-, and 12-bit mode is right justified with leading zeros.

13.2.1.2 Clock Source Select and Divider

The timer clock can be sourced from ACLK, SMCLK, or externally via TBxCLK. The clock source is
selected with the TBSSEL bits. The selected clock source may be passed directly to the timer or divided
by 2,4, or 8, using the ID bits. The selected clock source can be further divided by 2, 3, 4, 5, 6, 7, or 8
using the IDEX bits. The timer clock dividers are reset when TBCLR is set.

NOTE: Timer_B dividers

Setting the TBCLR bit clears the contents of TBxR and the clock dividers. The clock dividers
are implemented as down counters. Therefore, when the TBCLR bit is cleared, the timer
clock immediately begins clocking at the first rising edge of the Timer_B clock source
selected with the TBSSEL bits and continues clocking at the divider settings set by the ID
and IDEX bits.

13.2.2 Starting the Timer

The timer may be started or restarted in the following ways:

• The timer counts when MC > { 0 } and the clock source is active.
• When the timer mode is either up or up/down, the timer may be stopped by loading 0 to TBxCL0. The

timer may then be restarted by loading a nonzero value to TBxCL0. In this scenario, the timer starts
incrementing in the up direction from zero.

13.2.3 Timer Mode Control

The timer has four modes of operation: stop, up, continuous, and up/down (see Table 13-1). The
operating mode is selected with the MC bits.

372 Timer_B SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

0h

TBxR(max)

TBxCL0

TBCL0-1 TBCL0 0h

Timer Clock

Timer

Set TBxCTL TBIFG

Set TBxCCR0 CCIFG

1h TBCL0-1 TBCL0 0h

www.ti.com Timer_B Operation

Table 13-1. Timer Modes

MC Mode Description

00 Stop The timer is halted.

01 Up The timer repeatedly counts from zero to the value of compare register TBxCL0.

10 Continuous The timer repeatedly counts from zero to the value selected by the CNTL bits.

11 Up/down The timer repeatedly counts from zero up to the value of TBxCL0 and then back down to zero.

13.2.3.1 Up Mode

The up mode is used if the timer period must be different from TBxR(max) counts. The timer repeatedly
counts up to the value of compare latch TBxCL0, which defines the period (see Figure 13-2). The number
of timer counts in the period is TBxCL0 + 1. When the timer value equals TBxCL0, the timer restarts
counting from zero. If up mode is selected when the timer value is greater than TBxCL0, the timer
immediately restarts counting from zero.

Figure 13-2. Up Mode

The TBxCCR0 CCIFG interrupt flag is set when the timer counts to the TBxCL0 value. The TBIFG
interrupt flag is set when the timer counts from TBxCL0 to zero. Figure 13-3 shows the flag set cycle.

Figure 13-3. Up Mode Flag Setting

Changing Period Register TBxCL0

When changing TBxCL0 while the timer is running and when the TBxCL0 load mode is immediate, if the
new period is greater than or equal to the old period or greater than the current count value, the timer
counts up to the new period. If the new period is less than the current count value, the timer rolls to zero.
However, one additional count may occur before the counter rolls to zero.

373SLAU208E–June 2008–Revised November 2009 Timer_B
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

0h

TBxR(max)

TBR – 1(max) TBR(max) 0h

Timer Clock

Timer

Set TBxCTL TBIFG

1h 0hTBR – 1(max) TBR(max)

0h

EQU0 Interrupt

TBxCL0a

TBxCL0b TBxCL0c
TBxCL0d

t1

t0 t0

TBxCL1a

TBxCL1b TBxCL1c

TBxCL1d

t1 t1

t0

EQU1 Interrupt

TBxR(max)

Timer_B Operation www.ti.com

13.2.3.2 Continuous Mode

In continuous mode, the timer repeatedly counts up to TBxR(max) and restarts from zero (see Figure 13-4).
The compare latch TBxCL0 works the same way as the other capture/compare registers.

Figure 13-4. Continuous Mode

The TBIFG interrupt flag is set when the timer counts from TBxR(max) to zero. Figure 13-5 shows the flag
set cycle.

Figure 13-5. Continuous Mode Flag Setting

13.2.3.3 Use of Continuous Mode

The continuous mode can be used to generate independent time intervals and output frequencies. Each
time an interval is completed, an interrupt is generated. The next time interval is added to the TBxCLn
latch in the interrupt service routine. Figure 13-6 shows two separate time intervals, t0 and t1, being added
to the capture/compare registers. The time interval is controlled by hardware, not software, without impact
from interrupt latency. Up to n (where n = 0 to 7), independent time intervals or output frequencies can be
generated using capture/compare registers.

Figure 13-6. Continuous Mode Time Intervals

374 Timer_B SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

0h

TBxCL0

TBCL0-1 TBCL0 TBCL0-1

Timer Clock

Timer

Set TBxCTL TBIFG

Set TBxCCR0 CCIFG

TBCL0-2 1h 0h 1h

Up/Down

www.ti.com Timer_B Operation

Time intervals can be produced with other modes as well, where TBxCL0 is used as the period register.
Their handling is more complex, since the sum of the old TBxCLn data and the new period can be higher
than the TBxCL0 value. When the sum of the previous TBxCLn value plus tx is greater than the TBxCL0
data, the old TBxCL0 value must be subtracted to obtain the correct time interval.

13.2.3.4 Up/Down Mode

The up/down mode is used if the timer period must be different from TBxR(max) counts and, if symmetrical,
pulse generation is needed. The timer repeatedly counts up to the value of compare latch TBxCL0, and
back down to zero (see Figure 13-7). The period is twice the value in TBxCL0.

NOTE: TBxCL0 > TBxR(max)

If TBxCL0 > TBxR(max), the counter operates as if it were configured for continuous mode. It
does not count down from TBxR(max) to zero.

Figure 13-7. Up/Down Mode

The count direction is latched. This allows the timer to be stopped and then restarted in the same direction
it was counting before it was stopped. If this is not desired, the TBCLR bit must be used to clear the
direction. The TBCLR bit also clears the TBxR value and the timer clock divider.

In up/down mode, the TBxCCR0 CCIFG interrupt flag and the TBIFG interrupt flag are set only once
during the period, separated by one-half the timer period. The TBxCCR0 CCIFG interrupt flag is set when
the timer counts from TBxCL0-1 to TBxCL0, and TBIFG is set when the timer completes counting down
from 0001h to 0000h. Figure 13-8 shows the flag set cycle.

Figure 13-8. Up/Down Mode Flag Setting

Changing the Value of Period Register TBxCL0

When changing TBxCL0 while the timer is running and counting in the down direction, and when the
TBxCL0 load mode is immediate, the timer continues its descent until it reaches zero. The new period
takes effect after the counter counts down to zero.

375SLAU208E–June 2008–Revised November 2009 Timer_B
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

TBIFG

0h

TBR(max)

Output Mode 2: Toggle/Reset

Output Mode 6: Toggle/Set

TBxCL0

TBxCL1

EQU1
TBIFG Interrupt EventsEQU1

EQU0

EQU1 EQU1

EQU0

TBxCL3

EQU3 EQU3EQU3 EQU3

Dead Time

Timer_B Operation www.ti.com

If the timer is counting in the up direction when the new period is latched into TBxCL0, and the new period
is greater than or equal to the old period or greater than the current count value, the timer counts up to the
new period before counting down. When the timer is counting in the up direction, and the new period is
less than the current count value when TBxCL0 is loaded, the timer begins counting down. However, one
additional count may occur before the counter begins counting down.

13.2.3.5 Use of Up/Down Mode

The up/down mode supports applications that require dead times between output signals (see section
Timer_B Output Unit). For example, to avoid overload conditions, two outputs driving an H-bridge must
never be in a high state simultaneously. In the example shown in Figure 13-9, the tdead is:

tdead = ttimer × (TBxCL1 – TBxCL3)

Where:
tdead = Time during which both outputs need to be inactive
ttimer = Cycle time of the timer clock
TBxCLn = Content of compare latch n

The ability to simultaneously load grouped compare latches ensures the dead times.

Figure 13-9. Output Unit in Up/Down Mode

13.2.4 Capture/Compare Blocks

Up to seven identical capture/compare blocks, TBxCCRn (where n = 0 to 6), are present in Timer_B. Any
of the blocks may be used to capture the timer data or to generate time intervals.

13.2.4.1 Capture Mode

The capture mode is selected when CAP = 1. Capture mode is used to record time events. It can be used
for speed computations or time measurements. The capture inputs CCIxA and CCIxB are connected to
external pins or internal signals and are selected with the CCIS bits. The CM bits select the capture edge
of the input signal as rising, falling, or both. A capture occurs on the selected edge of the input signal. If a
capture is performed:

• The timer value is copied into the TBxCCRn register.
• The interrupt flag CCIFG is set.

The input signal level can be read at any time via the CCI bit. MSP430x5xx family devices may have
different signals connected to CCIxA and CCIxB. See the device-specific data sheet for the connections of
these signals.

376 Timer_B SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

n–2 n 1–

Timer Clock

Timer n+1 n+3 n+4

CCI

Capture

n+2n

Second
Capture
Taken

COV = 1

Capture
akenT

No

T
Capture

aken

Read
Taken

Capture

Clear Bit COV
in Register TBxCCTLn

Idle

Idle

Capture

Capture Read and No Capture

Capture

Capture ReadCapture

www.ti.com Timer_B Operation

The capture signal can be asynchronous to the timer clock and cause a race condition. Setting the SCS
bit synchronizes the capture with the next timer clock. Setting the SCS bit to synchronize the capture
signal with the timer clock is recommended (see Figure 13-10).

Figure 13-10. Capture Signal (SCS = 1)

NOTE: Changing Capture Inputs

Changing capture inputs while in capture mode may cause unintended capture events. To
avoid this scenario, capture inputs should only be changed when capture mode is disabled
(CM = {0} or CAP = 0).

Overflow logic is provided in each capture/compare register to indicate if a second capture was performed
before the value from the first capture was read. Bit COV is set when this occurs (see Figure 13-11). COV
must be reset with software.

Figure 13-11. Capture Cycle

Capture Initiated by Software

Captures can be initiated by software. The CM bits can be set for capture on both edges. Software then
sets bit CCIS1 = 1 and toggles bit CCIS0 to switch the capture signal between VCC and GND, initiating a
capture each time CCIS0 changes state:

MOV #CAP+SCS+CCIS1+CM_3,&TB0CCTL1 ; Setup TB0CCTL1
XOR #CCIS0,&TB0CCTL1 ; TB0CCR1 = TB0R

377SLAU208E–June 2008–Revised November 2009 Timer_B
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Timer_B Operation www.ti.com

NOTE: Capture Initiated by Software

In general, changing capture inputs while in capture mode may cause unintended capture
events. For this scenario, switching the capture input between VCC and GND, disabling the
capture mode is not required.

13.2.4.2 Compare Mode

The compare mode is selected when CAP = 0. Compare mode is used to generate PWM output signals or
interrupts at specific time intervals. When TBxR counts to the value in a TBxCLn, where n represents the
specific capture/compare latch:

• Interrupt flag CCIFG is set.
• Internal signal EQUn = 1.
• EQUn affects the output according to the output mode.

Compare Latch TBxCLn

The TBxCCRn compare latch, TBxCLn, holds the data for the comparison to the timer value in compare
mode. TBxCLn is buffered by TBxCCRn. The buffered compare latch gives the user control over when a
compare period updates. The user cannot directly access TBxCLn. Compare data is written to each
TBxCCRn and automatically transferred to TxBCLn. The timing of the transfer from TBxCCRn to TBxCLn
is user selectable, with the CLLD bits as described in Table 13-2.

Table 13-2. TBxCLn Load Events

CLLD Description

00 New data is transferred from TBxCCRn to TBxCLn immediately when TBxCCRn is written to.

01 New data is transferred from TBxCCRn to TBxCLn when TBxR counts to 0.

10 New data is transferred from TBxCCRn to TBxCLn when TBxR counts to 0 for up and continuous modes. New data
is transferred to from TBxCCRn to TBxCLn when TBxR counts to the old TBxCL0 value or to 0 for up/down mode.

11 New data is transferred from TBxCCRn to TBxCLn when TBxR counts to the old TBxCLn value.

Grouping Compare Latches

Multiple compare latches may be grouped together for simultaneous updates with the TBCLGRPx bits.
When using groups, the CLLD bits of the lowest numbered TBxCCRn in the group determine the load
event for each compare latch of the group, except when TBCLGRP = 3 (see Table 13-3). The CLLD bits
of the controlling TBxCCRn must not be set to zero. When the CLLD bits of the controlling TBxCCRn are
set to zero, all compare latches update immediately when their corresponding TBxCCRn is written; no
compare latches are grouped.

Two conditions must exist for the compare latches to be loaded when grouped. First, all TBxCCRn
registers of the group must be updated, even when new TBxCCRn data = old TBxCCRn data. Second,
the load event must occur.

Table 13-3. Compare Latch Operating Modes

TBCLGRPx Grouping Update Control

00 None Individual

01 TBxCL1+TBxCL2TBxCL3+TBxCL4+TBxCL5+TBxCL6 TBxCCR1 TBxCCR3 TBxCCR5

10 TBxCL1+TBxCL2+TBxCL3TBxCL4+TBxCL5+TBxCL6 TBxCCR1 TBxCCR4

11 TBxCL0+TBxCL1+TBxCL2+TBxCL3+TBxCL4+TBxCL5+TBxCL6 TBxCCR1

378 Timer_B SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Timer_B Operation

13.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used to generate output signals,
such as PWM signals. Each output unit has eight operating modes that generate signals based on the
EQU0 and EQUn signals. The TBOUTH pin function can be used to put all Timer_B outputs into a
high-impedance state. When the TBOUTH pin function is selected for the pin (corresponding PSEL bit is
set, and port configured as input) and when the pin is pulled high, all Timer_B outputs are in a
high-impedance state.

13.2.5.1 Output Modes

The output modes are defined by the OUTMOD bits and are described in Table 13-4. The OUTn signal is
changed with the rising edge of the timer clock for all modes except mode 0. Output modes 2, 3, 6, and 7
are not useful for output unit 0 because EQUn = EQU0.

Table 13-4. Output Modes

OUTMOD Mode Description

000 Output The output signal OUTn is defined by the OUT bit. The OUTn signal updates immediately
when OUT is updated.

001 Set The output is set when the timer counts to the TBxCLn value. It remains set until a reset of
the timer, or until another output mode is selected and affects the output.

010 Toggle/Reset The output is toggled when the timer counts to the TBxCLn value. It is reset when the timer
counts to the TBxCL0 value.

011 Set/Reset The output is set when the timer counts to the TBxCLn value. It is reset when the timer
counts to the TBxCL0 value.

100 Toggle The output is toggled when the timer counts to the TBxCLn value. The output period is
double the timer period.

101 Reset The output is reset when the timer counts to the TBxCLn value. It remains reset until
another output mode is selected and affects the output.

110 Toggle/Set The output is toggled when the timer counts to the TBxCLn value. It is set when the timer
counts to the TBxCL0 value.

111 Reset/Set The output is reset when the timer counts to the TBxCLn value. It is set when the timer
counts to the TBxCL0 value.

379SLAU208E–June 2008–Revised November 2009 Timer_B
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

0h

TBxR(max)

EQU0
TBIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TBxCL0

TBxCL1

EQU1 EQU0
TBIFG

EQU1 EQU0
TBIFG

Interrupt Events

Timer_B Operation www.ti.com

Output Example – Timer in Up Mode

The OUTn signal is changed when the timer counts up to the TBxCLn value, and rolls from TBxCL0 to
zero, depending on the output mode. An example is shown in Figure 13-12 using TBxCL0 and TBxCL1.

Figure 13-12. Output Example – Timer in Up Mode

380 Timer_B SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

0h

TBxR(max)

TBIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TBxCL0

TBxCL1

EQU1 TBIFG EQU1 EQU0 Interrupt EventsEQU0

www.ti.com Timer_B Operation

Output Example – Timer in Continuous Mode

The OUTn signal is changed when the timer reaches the TBxCLn and TBxCL0 values, depending on the
output mode. An example is shown in Figure 13-13 using TBxCL0 and TBxCL1.

Figure 13-13. Output Example – Timer in Continuous Mode

Output Example – Timer in Up/Down Mode

The OUTn signal changes when the timer equals TBxCLn in either count direction and when the timer
equals TBxCL0, depending on the output mode. An example is shown in Figure 13-14 using TBxCL0 and
TBxCL3.

381SLAU208E–June 2008–Revised November 2009 Timer_B
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

TBIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

EQU3

TBIFG
Interrupt Events

EQU3

EQU0

EQU3 EQU3

EQU0

0h

TBxR(max)

TBxCL0

TBxCL3

Timer_B Operation www.ti.com

Figure 13-14. Output Example – Timer in Up/Down Mode

NOTE: Switching between output modes

When switching between output modes, one of the OUTMOD bits should remain set during
the transition, unless switching to mode 0. Otherwise, output glitching can occur because a
NOR gate decodes output mode 0. A safe method for switching between output modes is to
use output mode 7 as a transition state:

BIS #OUTMOD_7,&TBCCTLx ; Set output mode=7
BIC #OUTMOD,&TBCCTLx ; Clear unwanted bits

382 Timer_B SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

D
Set

Q
IRQ, Interrupt Service Requested

Reset
Timer Clock

POR

CAP
EQU0

Capture

IRACC, Interrupt Request Accepted

CCIE

www.ti.com Timer_B Operation

13.2.6 Timer_B Interrupts

Two interrupt vectors are associated with the 16-bit Timer_B module:

• TBxCCR0 interrupt vector for TBxCCR0 CCIFG
• TBIV interrupt vector for all other CCIFG flags and TBIFG

In capture mode, any CCIFG flag is set when a timer value is captured in the associated TBxCCRn
register. In compare mode, any CCIFG flag is set when TBxR counts to the associated TBxCLn value.
Software may also set or clear any CCIFG flag. All CCIFG flags request an interrupt when their
corresponding CCIE bit and the GIE bit are set.

13.2.6.1 TBxCCR0 Interrupt Vector

The TBxCCR0 CCIFG flag has the highest Timer_B interrupt priority and has a dedicated interrupt vector
(see Figure 13-15). The TBxCCR0 CCIFG flag is automatically reset when the TBxCCR0 interrupt request
is serviced.

Figure 13-15. Capture/Compare TBxCCR0 Interrupt Flag

13.2.6.2 TBxIV, Interrupt Vector Generator

The TBIFG flag and TBxCCRn CCIFG flags (excluding TBxCCR0 CCIFG) are prioritized and combined to
source a single interrupt vector. The interrupt vector register TBxIV is used to determine which flag
requested an interrupt.

The highest-priority enabled interrupt (excluding TBxCCR0 CCIFG) generates a number in the TBxIV
register (see register description). This number can be evaluated or added to the program counter to
automatically enter the appropriate software routine. Disabled Timer_B interrupts do not affect the TBxIV
value.

Any access, read or write, of the TBxIV register automatically resets the highest-pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, if the TBxCCR1 and TBxCCR2 CCIFG flags are set when the interrupt service routine
accesses the TBxIV register, TBxCCR1 CCIFG is reset automatically. After the RETI instruction of the
interrupt service routine is executed, the TBxCCR2 CCIFG flag generates another interrupt.

13.2.6.3 TBxIV, Interrupt Handler Examples

The following software example shows the recommended use of TBxIV and the handling overhead. The
TBxIV value is added to the PC to automatically jump to the appropriate routine. The example assumes a
single instantiation of the largest timer configuration available.

The numbers at the right margin show the necessary CPU clock cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself. The latencies are:

• Capture/compare block CCR0: 11 cycles
• Capture/compare blocks CCR1 to CCR6: 16 cycles
• Timer overflow TBIFG: 14 cycles

383SLAU208E–June 2008–Revised November 2009 Timer_B
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Timer_B Operation www.ti.com

The following software example shows the recommended use of TBxIV for Timer_B3.
; Interrupt handler for TB0CCR0 CCIFG. Cycles
CCIFG_0_HND
; ... ; Start of handler Interrupt latency 6

RETI 5

; Interrupt handler for TB0IFG, TB0CCR1 through TB0CCR6 CCIFG.

TB0_HND ... ; Interrupt latency 6
ADD &TB0IV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP CCIFG_1_HND ; Vector 2: TB0CCR1 2
JMP CCIFG_2_HND ; Vector 4: TB0CCR2 2
JMP CCIFG_3_HND ; Vector 6: TB0CCR3 2
JMP CCIFG_4_HND ; Vector 8: TB0CCR4 2
JMP CCIFG_5_HND ; Vector 10: TB0CCR5 2
JMP CCIFG_6_HND ; Vector 12: TB0CCR6 2

TB0IFG_HND ; Vector 14: TB0IFG Flag
... ; Task starts here
RETI 5

CCIFG_6_HND ; Vector 12: TB0CCR6
... ; Task starts here
RETI ; Back to main program 5

CCIFG_5_HND ; Vector 10: TB0CCR5
... ; Task starts here
RETI ; Back to main program 5

CCIFG_4_HND ; Vector 8: TB0CCR4
... ; Task starts here
RETI ; Back to main program 5

CCIFG_3_HND ; Vector 6: TB0CCR3
... ; Task starts here
RETI ; Back to main program 5

CCIFG_2_HND ; Vector 4: TB0CCR2
... ; Task starts here
RETI ; Back to main program 5

CCIFG_1_HND ; Vector 2: TB0CCR1
... ; Task starts here
RETI ; Back to main program 5

384 Timer_B SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Timer_B Registers

13.3 Timer_B Registers

The Timer_B registers are listed in Table 13-5. The base address can be found in the device-specific data
sheet. The address offset is listed in Table 13-5.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 13-5. Timer_B Registers

Register Register AddressRegister Short Form Initial StateType Access Offset

Timer_B Control TBxCTL Read/write Word 00h 0000h

TBxCTL_L Read/write Byte 00h 00h

TBxCTL_H Read/write Byte 01h 00h

Timer_B Capture/Compare Control 0 TBxCCTL0 Read/write Word 02h 0000h

TBxCCTL0_L Read/write Byte 02h 00h

TBxCCTL0_H Read/write Byte 03h 00h

Timer_B Capture/Compare Control 1 TBxCCTL1 Read/write Word 04h 0000h

TBxCCTL1_L Read/write Byte 04h 00h

TBxCCTL1_H Read/write Byte 05h 00h

Timer_B Capture/Compare Control 2 TBxCCTL2 Read/write Word 06h 0000h

TBxCCTL2_L Read/write Byte 06h 00h

TBxCCTL2_H Read/write Byte 07h 00h

Timer_B Capture/Compare Control 3 TBxCCTL3 Read/write Word 08h 0000h

TBxCCTL3_L Read/write Byte 08h 00h

TBxCCTL3_H Read/write Byte 09h 00h

Timer_B Capture/Compare Control 4 TBxCCTL4 Read/write Word 0Ah 0000h

TBxCCTL4_L Read/write Byte 0Ah 00h

TBxCCTL4_H Read/write Byte 0Bh 00h

Timer_B Capture/Compare Control 5 TBxCCTL5 Read/write Word 0Ch 0000h

TBxCCTL5_L Read/write Byte 0Ch 00h

TBxCCTL5_H Read/write Byte 0Dh 00h

Timer_B Capture/Compare Control 6 TBxCCTL6 Read/write Word 0Eh 0000h

TBxCCTL6_L Read/write Byte 0Eh 00h

TBxCCTL6_H Read/write Byte 0Fh 00h

Timer_B Counter TBxR Read/write Word 10h 0000h

TBxR_L Read/write Byte 10h 00h

TBxR_H Read/write Byte 11h 00h

Timer_B Capture/Compare 0 TBxCCR0 Read/write Word 12h 0000h

TBxCCR0_L Read/write Byte 12h 00h

TBxCCR0_H Read/write Byte 13h 00h

Timer_B Capture/Compare 1 TBxCCR1 Read/write Word 14h 0000h

TBxCCR1_L Read/write Byte 14h 00h

TBxCCR1_H Read/write Byte 15h 00h

Timer_B Capture/Compare 2 TBxCCR2 Read/write Word 16h 0000h

TBxCCR2_L Read/write Byte 16h 00h

TBxCCR2_H Read/write Byte 17h 00h

385SLAU208E–June 2008–Revised November 2009 Timer_B
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Timer_B Registers www.ti.com

Table 13-5. Timer_B Registers (continued)

Register Register AddressRegister Short Form Initial StateType Access Offset

Timer_B Capture/Compare 3 TBxCCR3 Read/write Word 18h 0000h

TBxCCR3_L Read/write Byte 18h 00h

TBxCCR3_H Read/write Byte 19h 00h

Timer_B Capture/Compare 4 TBxCCR4 Read/write Word 1Ah 0000h

TBxCCR4_L Read/write Byte 1Ah 00h

TBxCCR4_H Read/write Byte 1Bh 00h

Timer_B Capture/Compare 5 TBxCCR5 Read/write Word 1Ch 0000h

TBxCCR5_L Read/write Byte 1Ch 00h

TBxCCR5_H Read/write Byte 1Dh 00h

Timer_B Capture/Compare 6 TBxCCR6 Read/write Word 1Eh 0000h

TBxCCR6_L Read/write Byte 1Eh 00h

TBxCCR6_H Read/write Byte 1Fh 00h

Timer_B Interrupt Vector TBxIV Read only Word 2Eh 0000h

TBxIV_L Read only Byte 2Eh 00h

TBxIV_H Read only Byte 2Fh 00h

Timer_B Expansion 0 TBxEX0 Read/write Word 20h 0000h

TBxEX0_L Read/write Byte 20h 00h

TBxEX0_H Read/write Byte 21h 00h

386 Timer_B SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Timer_B Registers

Timer_B Control Register (TBxCTL)

15 14 13 12 11 10 9 8

Unused TBCLGRPx CNTL Unused TBSSEL

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

ID MC Unused TBCLR TBIE TBIFG

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) w-(0) rw-(0) rw-(0)

Unused Bit 15 Unused

TBCLGRP Bits 14-13 TBxCLn group

00 Each TBxCLn latch loads independently.

01 TBxCL1+TBxCL2 (TBxCCR1 CLLD bits control the update)
TBxCL3+TBxCL4 (TBxCCR3 CLLD bits control the update)
TBxCL5+TBxCL6 (TBxCCR5 CLLD bits control the update)
TBxCL0 independent

10 TBxCL1+TBxCL2+TBxCL3 (TBxCCR1 CLLD bits control the update)
TBxCL4+TBxCL5+TBxCL6 (TBxCCR4 CLLD bits control the update)
TBxCL0 independent

11 TBxCL0+TBxCL1+TBxCL2+TBxCL3+TBxCL4+TBxCL5+TBxCL6 (TBxCCR1 CLLD bits control the
update)

CNTL Bits 12-11 Counter length

00 16-bit, TBxR(max) = 0FFFFh

01 12-bit, TBxR(max) = 0FFFh

10 10-bit, TBxR(max) = 03FFh

11 8-bit, TBxR(max) = 0FFh

Unused Bit 10 Unused

TBSSEL Bits 9-8 Timer_B clock source select

00 TBxCLK

01 ACLK

10 SMCLK

11 Inverted TBxCLK

ID Bits 7-6 Input divider. These bits, along with the IDEX bits, select the divider for the input clock.

00 /1

01 /2

10 /4

11 /8

MC Bits 5-4 Mode control. Setting MC = 00h when Timer_B is not in use conserves power.

00 Stop mode: Timer is halted

01 Up mode: Timer counts up to TBxCL0

10 Continuous mode: Timer counts up to the value set by CNTL

11 Up/down mode: Timer counts up to TBxCL0 and down to 0000h

Unused Bit 3 Unused

TBCLR Bit 2 Timer_B clear. Setting this bit resets TBxR, the timer clock divider, and the count direction. The TBCLR bit
is automatically reset and is always read as zero.

TBIE Bit 1 Timer_B interrupt enable. This bit enables the TBIFG interrupt request.

0 Interrupt disabled

1 Interrupt enabled

TBIFG Bit 0 Timer_B interrupt flag

0 No interrupt pending

1 Interrupt pending

387SLAU208E–June 2008–Revised November 2009 Timer_B
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Timer_B Registers www.ti.com

Timer_B Counter Register (TBxR)

15 14 13 12 11 10 9 8

TBxR

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

TBxR

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

TBxR Bits 15-0 Timer_B register. The TBxR register is the count of Timer_B.

388 Timer_B SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Timer_B Registers

Capture/Compare Control Register (TBxCCTLn)

15 14 13 12 11 10 9 8

CM CCIS SCS CLLD CAP

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

OUTMOD CCIE CCI OUT COV CCIFG

rw-(0) rw-(0) rw-(0) rw-(0) r rw-(0) rw-(0) rw-(0)

CM Bits 15-14 Capture mode

00 No capture

01 Capture on rising edge

10 Capture on falling edge

11 Capture on both rising and falling edges

CCIS Bits 13-12 Capture/compare input select. These bits select the TBxCCRn input signal. See the device-specific data
sheet for specific signal connections.

00 CCIxA

01 CCIxB

10 GND

11 VCC

SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input signal with the timer clock.

0 Asynchronous capture

1 Synchronous capture

CLLD Bits 10-9 Compare latch load. These bits select the compare latch load event.

00 TBxCLn loads on write to TBxCCRn

01 TBxCLn loads when TBxR counts to 0

10 TBxCLn loads when TBxR counts to 0 (up or continuous mode)
TBxCLn loads when TBxR counts to TBxCL0 or to 0 (up/down mode)

11 TBxCLn loads when TBxR counts to TBxCLn

CAP Bit 8 Capture mode

0 Compare mode

1 Capture mode

OUTMOD Bits 7-5 Output mode. Modes 2, 3, 6, and 7 are not useful for TBxCL0 because EQUn = EQU0.

000 OUT bit value

001 Set

010 Toggle/reset

011 Set/reset

100 Toggle

101 Reset

110 Toggle/set

111 Reset/set

CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag.

0 Interrupt disabled

1 Interrupt enabled

CCI Bit 3 Capture/compare input. The selected input signal can be read by this bit.

OUT Bit 2 Output. For output mode 0, this bit directly controls the state of the output.

0 Output low

1 Output high

COV Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software.

0 No capture overflow occurred

1 Capture overflow occurred

CCIFG Bit 0 Capture/compare interrupt flag

0 No interrupt pending

1 Interrupt pending

389SLAU208E–June 2008–Revised November 2009 Timer_B
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Timer_B Registers www.ti.com

Timer_B Interrupt Vector Register (TBxIV)

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 TBIV 0

r0 r0 r0 r0 r-(0) r-(0) r-(0) r0

TBIV Bits 15-0 Timer_B interrupt vector value

TBIV InterruptInterrupt Source Interrupt FlagContents Priority

00h No interrupt pending

02h Capture/compare 1 TBxCCR1 CCIFG Highest

04h Capture/compare 2 TBxCCR2 CCIFG

06h Capture/compare 3 TBxCCR3 CCIFG

08h Capture/compare 4 TBxCCR4 CCIFG

0Ah Capture/compare 5 TBxCCR5 CCIFG

0Ch Capture/compare 6 TBxCCR6 CCIFG

0Eh Timer overflow TBxCTL TBIFG Lowest

Timer_B Expansion Register 0 (TBxEX0)

15 14 13 12 11 10 9 8

Unused Unused Unused Unused Unused Unused Unused Unused

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Unused Unused Unused Unused Unused IDEX

r0 r0 r0 r0 r0 rw-(0) rw-(0) rw-(0)

Unused Bits 15-3 Unused. Read only. Always read as 0.

IDEX Bits 2-0 Input divider expansion. These bits along with the ID bits select the divider for the input clock.

000 /1

001 /2

010 /3

011 /4

100 /5

101 /6

110 /7

111 /8

390 Timer_B SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 14
SLAU208E–June 2008–Revised November 2009

Real-Time Clock (RTC_A)

The Real-Time Clock (RTC_A) module provides clock counters with a calendar, a flexible programmable
alarm, and calibration. This chapter describes the RTC_A module.

Topic ... Page

14.1 RTC_A Introduction ... 392
14.2 RTC_A Operation ... 394
14.3 Real-Time Clock Registers .. 399

391SLAU208E–June 2008–Revised November 2009 Real-Time Clock (RTC_A)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

RTC_A Introduction www.ti.com

14.1 RTC_A Introduction

The RTC_A module provides a real-time clock and calendar function that can also be configured as a
general-purpose counter.

RTC_A features include:

• Configurable for real-time clock with calendar function or general-purpose counter
• Provides seconds, minutes, hours, day of week, day of month, month, and year in real-time clock with

calendar function
• Interrupt capability
• Selectable BCD or binary format in real-time clock mode
• Programmable alarms in real-time clock mode
• Calibration logic for time offset correction in real-time clock mode

The RTC_A block diagram is shown in Figure 14-1.

NOTE: Real-time clock initialization

Most RTC_A module registers have no initial condition. These registers must be configured
by user software before use.

392 Real-Time Clock (RTC_A) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

078... ...15
RTCNT4/
RTCDOW

16...2324...31

Calendar

RTCMONRTCYEARLRTCYEARH RTCDAY

RTCTEV

00
01
10
11

8-bit overflow/minute changed

RTCSSEL

00
01
10
11

2 RTCBCD

Alarm

RTCAHOURRTCADAYRTCADOW RTCAMIN

Set_RTCTEVIFG

Set_RTCAIFG

2

EN

EN

EN

RTCHOLD

RT1PS

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

RT1SSEL

00
01
10
11

3

2

RT1PSDIV

Set_RT1PSIFG

EN
3

RT1IP

RT1PSHOLD

RT0PS

RT0SSEL

3
RT0PSDIV

Set_RT0PSIFG

EN

110
101
100
011
010
001
000

3

RT0IP

SMCLK

ACLK

RT0PSHOLD

1
0

Keepout

Logic

Set_RTCRDYIFG

Calibration
Logic EN

5

RTCCALS RTCCAL RTCMODE1
1
1

0
1
1

1
0
1

0
0
1

1
1
0

0
1
0

1
0
0

0
0
0

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

111

1
1
1

0
1
1

1
0
1

0
0
1

1
1
0

0
1
0

1
0
0

0
0
0

16-bit overflow/hour changed

24-bit overflow/midnight

32-bit overflow/noon

RTCNT3/
RTCHOUR

RTCNT2/
RTCMIN

RTCNT1/
RTCSEC

110
101
100
011
010
001
000

111

www.ti.com RTC_A Introduction

Figure 14-1. RTC_A

393SLAU208E–June 2008–Revised November 2009 Real-Time Clock (RTC_A)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

RTC_A Operation www.ti.com

14.2 RTC_A Operation

The RTC_A module can be configured as a real-time clock with calendar function (calendar mode) or as a
32-bit general purpose counter (counter mode) with the RTCMODE bit.

14.2.1 Counter Mode

Counter mode is selected when RTCMODE is reset. In this mode, a 32-bit counter is provided that is
directly accessible by software. Switching from calendar mode to counter mode resets the count value
(RTCNT1, RTCNT2, RTCNT3, RTCNT4), as well as the prescale counters (RT0PS, RT1PS).

The clock to increment the counter can be sourced from ACLK, SMCLK, or prescaled versions of ACLK or
SMCLK. Prescaled versions of ACLK or SMCLK are sourced from the prescale dividers (RT0PS and
RT1PS). RT0PS and RT1PS output /2, /4, /8, 16, /32, /64, /128, and /256 versions of ACLK and SMCLK,
respectively. The output of RT0PS can be cascaded with RT1PS. The cascaded output can be used as a
clock source input to the 32-bit counter.

Four individual 8-bit counters are cascaded to provide the 32-bit counter. This provides 8-bit, 16-bit, 24-bit,
or 32-bit overflow intervals of the counter clock. The RTCTEV bits select the respective trigger event. An
RTCTEV event can trigger an interrupt by setting the RTCTEVIE bit. Each counter, RTCNT1 through
RTCNT4, is individually accessible and may be written to.

RT0PS and RT1PS can be configured as two 8-bit counters or cascaded into a single 16-bit counter.
RT0PS and RT1PS can be halted on an individual basis by setting their respective RT0PSHOLD and
RT1PSHOLD bits. When RT0PS is cascaded with RT1PS, setting RT0PSHOLD causes both RT0PS and
RT1PS to be halted. The 32-bit counter can be halted several ways depending on the configuration. If the
32-bit counter is sourced directly from ACLK or SMCLK, it can be halted by setting RTCHOLD. If it is
sourced from the output of RT1PS, it can be halted by setting RT1PSHOLD or RTCHOLD. Finally, if it is
sourced from the cascaded outputs of RT0PS and RT1PS, it can be halted by setting RT0PSHOLD,
RT1PSHOLD, or RTCHOLD.

NOTE: Accessing the RTCNT1, RTCNT2, RTCNT3, RTCNT4, RT0PS, RT1PS registers

When the counter clock is asynchronous to the CPU clock, any read from any RTCNT1,
RTCNT2, RTCNT3, RTCNT4, RT0PS, or RT1PS register should occur while the counter is
not operating. Otherwise, the results may be unpredictable. Alternatively, the counter may be
read multiple times while operating, and a majority vote taken in software to determine the
correct reading. Any write to these registers takes effect immediately.

14.2.2 Calendar Mode

Calendar mode is selected when RTCMODE is set. In calendar mode, the RTC_A module provides
seconds, minutes, hours, day of week, day of month, month, and year in selectable BCD or hexadecimal
format. The calendar includes a leap-year algorithm that considers all years evenly divisible by four as
leap years. This algorithm is accurate from the year 1901 through 2099.

14.2.2.1 Real-Time Clock and Prescale Dividers

The prescale dividers, RT0PS and RT1PS, are automatically configured to provide a 1-s clock interval for
the RTC_A. RT0PS is sourced from ACLK. ACLK must be set to 32768 Hz (nominal) for proper RTC_A
calendar operation. RT1PS is cascaded with the output ACLK/256 of RT0PS. The RTC_A is sourced with
the /128 output of RT1PS, thereby providing the required 1-s interval. Switching from counter to calendar
mode clears the seconds, minutes, hours, day-of-week, and year counts and sets day-of-month and
month counts to 1. In addition, RT0PS and RT1PS are cleared.

When RTCBCD = 1, BCD format is selected for the calendar registers. The format must be selected
before the time is set. Changing the state of RTCBCD clears the seconds, minutes, hours, day-of-week,
and year counts and sets day-of-month and month counts to 1. In addition, RT0PS and RT1PS are
cleared.

394 Real-Time Clock (RTC_A) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com RTC_A Operation

In calendar mode, the RT0SSEL, RT1SSEL, RT0PSDIV, RT1PSDIV, RT0PSHOLD, RT1PSHOLD, and
RTCSSEL bits are don't care. Setting RTCHOLD halts the real-time counters and prescale counters,
RT0PS and RT1PS.

14.2.2.2 Real-Time Clock Alarm Function

The RTC_A module provides for a flexible alarm system. There is a single user-programmable alarm that
can be programmed based on the settings contained in the alarm registers for minutes, hours, day of
week, and day of month. The user-programmable alarm function is only available in the calendar mode of
operation.

Each alarm register contains an alarm enable (AE) bit that can be used to enable the respective alarm
register. By setting AE bits of the various alarm registers, a variety of alarm events can be generated.

• Example 1: A user wishes to set an alarm every hour at 15 minutes past the hour; i.e., 00:15:00,
01:15:00, 02:15:00, etc. This is possible by setting RTCAMIN to 15. By setting the AE bit of the
RTCAMIN and clearing all other AE bits of the alarm registers, the alarm is enabled. When enabled,
the AF is set when the count transitions from 00:14:59 to 00:15:00, 01:14:59 to 01:15:00, 02:14:59 to
02:15:00, etc.

• Example 2: A user wishes to set an alarm every day at 04:00:00. This is possible by setting
RTCAHOUR to 4. By setting the AE bit of the RTCHOUR and clearing all other AE bits of the alarm
registers, the alarm is enabled. When enabled, the AF is set when the count transitions from 03:59:59
to 04:00:00.

• Example 3: A user wishes to set an alarm for 06:30:00. RTCAHOUR would be set to 6 and RTCAMIN
would be set to 30. By setting the AE bits of RTCAHOUR and RTCAMIN, the alarm is enabled. Once
enabled, the AF is set when the the time count transitions from 06:29:59 to 06:30:00. In this case, the
alarm event occurs every day at 06:30:00.

• Example 4: A user wishes to set an alarm every Tuesday at 06:30:00. RTCADOW would be set to 2,
RTCAHOUR would be set to 6 and RTCAMIN would be set to 30. By setting the AE bits of
RTCADOW, RTCAHOUR and RTCAMIN, the alarm is enabled. Once enabled, the AF is set when the
the time count transitions from 06:29:59 to 06:30:00 and the RTCDOW transitions from 1 to 2.

• Example 5: A user wishes to set an alarm the fifth day of each month at 06:30:00. RTCADAY would be
set to 5, RTCAHOUR would be set to 6 and RTCAMIN would be set to 30. By setting the AE bits of
RTCADAY, RTCAHOUR and RTCAMIN, the alarm is enabled. Once enabled, the AF is set when the
the time count transitions from 06:29:59 to 06:30:00 and the RTCDAY equals 5.

NOTE: Invalid alarm settings

Invalid alarm settings are not checked via hardware. It is the user's responsibility to ensure
that valid alarm settings are entered.

NOTE: Invalid time and date values

Writing of invalid date and/or time information or data values outside the legal ranges
specified in the RTCSEC, RTCMIN, RTCHOUR, RTCDAY, RTCDOW, RTCYEARH,
RTCYEARL, RTCAMIN, RTCAHOUR, RTCADAY, and RTCADOW registers can result in
unpredictable behavior.

NOTE: Setting the alarm

To prevent potential erroneous alarm conditions from occurring, the alarms should be
disabled by clearing the RTCAIE, RTCAIFG, and AE bits prior to writing new time values to
the RTC time registers.

395SLAU208E–June 2008–Revised November 2009 Real-Time Clock (RTC_A)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

RTC_A Operation www.ti.com

14.2.2.3 Reading or Writing Real-Time Clock Registers in Calendar Mode

Because the system clock may be asynchronous to the RTC_A clock source, special care must be taken
when accessing the real-time clock registers.

In calendar mode, the real-time clock registers are updated once per second. To prevent reading any
real-time clock register at the time of an update, which could result in an invalid time being read, a
keepout window is provided. The keepout window is centered approximately -128/32768 s around the
update transition. The read-only RTCRDY bit is reset during the keepout window period and set outside
the keepout the window period. Any read of the clock registers while RTCRDY is reset is considered to be
potentially invalid, and the time read should be ignored.

An easy way to safely read the real-time clock registers is to use the RTCRDYIFG interrupt flag. Setting
RTCRDYIE enables the RTCRDYIFG interrupt. Once enabled, an interrupt is generated based on the
rising edge of the RTCRDY bit, causing the RTCRDYIFG to be set. At this point, the application has
nearly a complete second to safely read any or all of the real-time clock registers. This synchronization
process prevents reading the time value during transition. The RTCRDYIFG flag is reset automatically
when the interrupt is serviced, or can be reset with software.

In counter mode, the RTCRDY bit remains reset. RTCRDYIE is a don't care and RTCRDYIFG remains
reset.

NOTE: Reading or writing real-time clock registers

When the counter clock is asynchronous to the CPU clock, any read from any RTCSEC,
RTCMIN, RTCHOUR, RTCDOW, RTCDAY, RTCMON, RTCYEARL, or RTCYEARH register
while the RTCRDY is reset may result in invalid data being read. To safely read the counting
registers, either polling of the RTCRDY bit or the synchronization procedure previously
described can be used. Alternatively, the counter register can be read multiple times while
operating, and a majority vote taken in software to determine the correct reading. Reading
the RT0PS and RT1PS can only be handled by reading the registers multiple times and a
majority vote taken in software to determine the correct reading or by halting the counters.

Any write to any counting register takes effect immediately. However, the clock is stopped
during the write. In addition, RT0PS and RT1PS registers are reset. This could result in
losing up to 1 s during a write. Writing of data outside the legal ranges or invalid time stamp
combinations results in unpredictable behavior.

14.2.3 Real-Time Clock Interrupts

The RTC_A module has five interrupt sources available, each with independent enables and flags.

14.2.3.1 Real-Time Clock Interrupts in Calendar Mode

In calendar mode, five sources for interrupts are available, namely RT0PSIFG, RT1PSIFG, RTCRDYIFG,
RTCTEVIFG, and RTCAIFG. These flags are prioritized and combined to source a single interrupt vector.
The interrupt vector register (RTCIV) is used to determine which flag requested an interrupt.

The highest-priority enabled interrupt generates a number in the RTCIV register (see register description).
This number can be evaluated or added to the program counter (PC) to automatically enter the
appropriate software routine. Disabled RTC interrupts do not affect the RTCIV value.

Any access, read or write, of the RTCIV register automatically resets the highest-pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
In addition, all flags can be cleared via software.

The user-programmable alarm event sources the real-time clock interrupt, RTCAIFG. Setting RTCAIE
enables the interrupt. In addition to the user-programmable alarm, the RTC_A module provides for an
interval alarm that sources real-time clock interrupt, RTCTEVIFG. The interval alarm can be selected to
cause an alarm event when RTCMIN changed or RTCHOUR changed, every day at midnight (00:00:00)
or every day at noon (12:00:00). The event is selectable with the RTCTEV bits. Setting the RTCTEVIE bit
enables the interrupt.

396 Real-Time Clock (RTC_A) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com RTC_A Operation

The RTCRDY bit sources the real-time clock interrupt, RTCRDYIFG, and is useful in synchronizing the
read of time registers with the system clock. Setting the RTCRDYIE bit enables the interrupt.

RT0PSIFG can be used to generate interrupt intervals selectable by the RT0IP bits. In calendar mode,
RT0PS is sourced with ACLK at 32768 Hz, so intervals of 16384 Hz, 8192 Hz, 4096 Hz, 2048 Hz,
1024 Hz, 512 Hz, 256 Hz, or 128 Hz are possible. Setting the RT0PSIE bit enables the interrupt.

RT1PSIFG can generate interrupt intervals selectable by the RT1IP bits. In calendar mode, RT1PS is
sourced with the output of RT0PS, which is 128 Hz (32768/256 Hz). Therefore, intervals of 64 Hz, 32 Hz,
16 Hz, 8 Hz, 4 Hz, 2 Hz, 1 Hz, or 0.5 Hz are possible. Setting the RT1PSIE bit enables the interrupt.

14.2.3.2 Real-Time Clock Interrupts in Counter Mode

In counter mode, three interrupt sources are available: RT0PSIFG, RT1PSIFG, and RTCTEVIFG.
RTCAIFG and RTCRDYIFG are cleared. RTCRDYIE and RTCAIE are don't care.

RT0PSIFG can be used to generate interrupt intervals selectable by the RT0IP bits. In counter mode,
RT0PS is sourced with ACLK or SMCLK, so divide ratios of /2, /4, /8, /16, /32, /64, /128, and /256 of the
respective clock source are possible. Setting the RT0PSIE bit enables the interrupt.

RT1PSIFG can be used to generate interrupt intervals selectable by the RT1IP bits. In counter mode,
RT1PS is sourced with ACLK, SMCLK, or the output of RT0PS, so divide ratios of /2, /4, /8, /16, /32, /64,
/128, and /256 of the respective clock source are possible. Setting the RT1PSIE bit enables the interrupt.

The RTC_A module provides for an interval timer that sources real-time clock interrupt, RTCTEVIFG. The
interval timer can be selected to cause an interrupt event when an 8-bit, 16-bit, 24-bit, or 32-bit overflow
occurs within the 32-bit counter. The event is selectable with the RTCTEV bits. Setting the RTCTEVIE bit
enables the interrupt.

RTCIV Software Example

The following software example shows the recommended use of RTCIV and the handling overhead. The
RTCIV value is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself.
; Interrupt handler for RTC interrupt flags.
RTC_HND ; Interrupt latency 6

ADD &RTCIV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP RTCRDYIFG_HND ; Vector 2: RTCRDYIFG 2
JMP RTCTEVIFG_HND ; Vector 4: RTCTEVIFG 2
JMP RTCAIFG ; Vector 6: RTCAIFG 5
JMP RT0PSIFG ; Vector 8: RT0PSIFG 5
JMP RT1PSIFG ; Vector A: RT1PSIFG 5
RETI ; Vector C: Reserved 5

RTCRDYIFG_HND ; Vector 2: RTCRDYIFG Flag
to ; Task starts here
RETI 5

RTCTEVIFG_HND ; Vector 4: RTCTEVIFG
to ; Task starts here
RETI ; Back to main program 5

RTCAIFG_HND ; Vector 6: RTCAIFG
to ; Task starts here

RT0PSIFG_HND ; Vector 8: RT0PSIFG
to ; Task starts here

RT1PSIFG_HND ; Vector A: RT1PSIFG
to ; Task starts here

397SLAU208E–June 2008–Revised November 2009 Real-Time Clock (RTC_A)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

RTC_A Operation www.ti.com

14.2.4 Real-Time Clock Calibration

The RTC_A module has calibration logic that allows for adjusting the crystal frequency in +4-ppm or
–2-ppm steps, allowing for higher time keeping accuracy from standard crystals.

The RTCCAL bits are used to adjust the frequency. When RTCCALS is set, each RTCCAL LSB causes a
+4-ppm adjustment. When RTCCALS is cleared, each RTCCAL LSB causes a –2-ppm adjustment.

To calibrate the frequency, the RTCCLK output signal is available at a pin. RTCCALF bits can be used to
select the frequency rate of the output signal. During calibration, RTCCLK can be measured. The result of
this measurement can be applied to the RTCCALS and RTCCAL bits to effectively reduce the initial offset
of the clock. For example, say RTCCLK is output at a frequency of 512 Hz. The measured RTCCLK is
511.9658 Hz. This frequency error is approximately 67 ppm too low. To increase the frequency by
67 ppm, RTCCALS would be set, and RTCCAL would be set to 17 (67/4).

In counter mode (RTCMODE = 0), the calibration logic is disabled.

NOTE: Calibration output frequency

The 512-Hz and 256-Hz output frequencies observed at the RTCCLK pin are not affected by
changes in the calibration settings. The 1-Hz output frequency is affected by changes in the
calibration settings.

398 Real-Time Clock (RTC_A) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Real-Time Clock Registers

14.3 Real-Time Clock Registers

The RTC_A module registers are listed in and Table 14-1. The base register for the RTC_A module
registers can be found in the device-specific data sheet. The address offsets are given in Table 14-1.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 14-1. Real-Time Clock Registers

Register Register Address InitialRegister Short Form Type Access Offset State

Real-Time Clock Control 0, 1 RTCCTL01 Read/write Word 00h 4000h

RTCCTL0 orReal-Time Clock Control 0 Read/write Byte 00h 00hRTCCTL01_L

RTCCTL1 orReal-Time Clock Control 1 Read/write Byte 01h 40hRTCCTL01_H

Real-Time Clock Control 2, 3 RTCCTL23 Read/write Word 02h 0000h

RTCCTL2 orReal-Time Clock Control 2 Read/write Byte 02h 00hRTCCTL23_L

RTCCTL3 orReal-Time Clock Control 3 Read/write Byte 03h 00hRTCCTL23_H

Real-Time Prescale Timer 0 Control RTCPS0CTL Read/write Word 08h 0100h

RTCPS0CTLL or Read/write Byte 08h 00hRTCPS0CTL_L

RTCPS0CTLH or Read/write Byte 09h 01hRTCPS0CTL_H

Real-Time Prescale Timer 1 Control RTCPS1CTL Read/write Word 0Ah 0100h

RTCPS1CTLL or Read/write Byte 0Ah 00hRTCPS1CTL_L

RTCPS0CTLH or Read/write Byte 0Bh 01hRTCPS0CTL_H

Real-Time Prescale Timer 0, 1 Counter RTCPS Read/write Word 0Ch undefined

RT0PS orReal-Time Prescale Timer 0 Counter Read/write Byte 0Ch undefinedRTCPS_L

RT1PS orReal-Time Prescale Timer 1 Counter Read/write Byte 0Dh undefinedRTCPS_H

Real Time Clock Interrupt Vector RTCIV Read Word 0Eh 0000h

RTCIV_L Read Byte 0Eh 00h

RTCIV_H Read Byte 0Fh 00h

Real-Time Clock Seconds, Minutes/ RTCTIM0 or Read/write Word 10h undefinedReal-Time Counter 1, 2 RTCNT12

Real-Time Clock Seconds/ RTCSEC /RTCNT1 or Read/write Byte 10h undefinedReal-Time Counter 1 RTCTIM0_L

Real-Time Clock Minutes/ RTCMIN/RTCNT2 or Read/write Byte 11h undefinedReal-Time Counter 2 RTCTIM0_H

Real-Time Clock Hour, Day of Week/ RTCTIM1 or Read/write Word 12h undefinedReal-Time Counter 3, 4 RTCNT34

Real-Time Clock Hour/ RTCHOUR/RTCNT3 or Read/write Byte 12h undefinedReal-Time Counter 3 RTCTIM1_L

Real-Time Clock Day of Week/ RTCDOWRTCNT4 or Read/write Byte 13h undefinedReal-Time Counter 4 RTCTIM1_H

399SLAU208E–June 2008–Revised November 2009 Real-Time Clock (RTC_A)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Real-Time Clock Registers www.ti.com

Table 14-1. Real-Time Clock Registers (continued)

Register Register Address InitialRegister Short Form Type Access Offset State

Real-Time Clock Date RTCDATE Read/write Word 14h undefined

RTCDAY orReal-Time Clock Day of Month Read/write Byte 14h undefinedRTCDATE_L

RTCMON orReal-Time Clock Month Read/write Byte 15h undefinedRTCDATE_H

Real-Time Clock Year RTCYEAR Read/write Word 16h undefined

RTCYEARL or Read/write Byte 16h undefinedRTCYEAR_L

RTCYEARH or Read/write Byte 17h undefinedRTCYEAR_H

Real-Time Clock Minutes, Hour Alarm RTCAMINHR Read/write Word 18h undefined

RTCAMIN orReal-Time Clock Minutes Alarm Read/write Byte 18h undefinedRTCAMINHR_L

RTCAHOUR orReal-Time Clock Hours Alarm Read/write Byte 19h undefinedRTCAMINHR_H

Real-Time Clock Day of Week, Day of Month Alarm RTCADOWDAY Read/write Word 1Ah undefined

RTCADOW orReal-Time Clock Day of Week Alarm Read/write Byte 1Ah undefinedRTCADOWDAY_L

RTCADAY orReal-Time Clock Day of Month Alarm Read/write Byte 1Bh undefinedRTCADOWDAY_H

400 Real-Time Clock (RTC_A) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Real-Time Clock Registers

Real-Time Clock Control 0 Register (RTCCTL0)

7 6 5 4 3 2 1 0

Reserved RTCTEVIE RTCAIE RTCRDYIE Reserved RTCTEVIFG RTCAIFG RTCRDYIFG

r0 rw-0 rw-0 rw-0 r0 rw-(0) rw-(0) rw-(0)

Reserved Bit 7 Reserved. Always read as 0.

RTCTEVIE Bit 6 Real-time clock time event interrupt enable

0 Interrupt not enabled

1 Interrupt enabled

RTCAIE Bit 5 Real-time clock alarm interrupt enable. This bit remains cleared when in counter mode (RTCMODE = 0).

0 Interrupt not enabled

1 Interrupt enabled

RTCRDYIE Bit 4 Real-time clock read ready interrupt enable

0 Interrupt not enabled

1 Interrupt enabled

Reserved Bit 3 Reserved. Always read as 0.

RTCTEVIFG Bit 2 Real-time clock time event flag

0 No time event occurred.

1 Time event occurred.

RTCAIFG Bit 1 Real-time clock alarm flag. This bit remains cleared when in counter mode (RTCMODE = 0).

0 No time event occurred.

1 Time event occurred.

RTCRDYIFG Bit 0 Real-time clock read ready flag

0 RTC cannot be read safely.

1 RTC can be read safely.

401SLAU208E–June 2008–Revised November 2009 Real-Time Clock (RTC_A)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Real-Time Clock Registers www.ti.com

RTCCTL1, Real-Time Clock Control Register 1

7 6 5 4 3 2 1 0

RTCBCD RTCHOLD RTCMODE RTCRDY RTCSSEL RTCTEV

rw-(0) rw-(1) rw-(0) r-(0) rw-(0) rw-(0) rw-(0) rw-(0)

RTCBCD Bit 7 Real-time clock BCD select. Selects BCD counting for real-time clock. Applies to calendar mode
(RTCMODE = 1) only; setting is ignored in counter mode. Changing this bit clears seconds, minutes,
hours, day of week, and year to 0 and sets day of month and month to 1. The real-time clock registers
must be set by software afterwards.

0 Binary/hexadecimal code selected

1 BCD Binary coded decimal (BCD) code selected

RTCHOLD Bit 6 Real-time clock hold

0 Real-time clock (32-bit counter or calendar mode) is operational.

1 In counter mode (RTCMODE = 0), only the 32-bit counter is stopped. In calendar mode
(RTCMODE = 1), the calendar is stopped as well as the prescale counters, RT0PS and RT1PS.
RT0PSHOLD and RT1PSHOLD are don't care.

RTCMODE Bit 5 Real-time clock mode

0 32-bit counter mode

1 Calendar mode. Switching between counter and calendar mode resets the real-time
clock/counter registers. Switching to calendar mode clears seconds, minutes, hours, day of
week, and year to 0 and sets day of month and month to 1. The real-time clock registers must
be set by software afterwards. RT0PS and RT1PS are also cleared.

RTCRDY Bit 4 Real-time clock ready

0 RTC time values in transition (calendar mode only)

1 RTC time values safe for reading (calendar mode only). This bit indicates when the real-time
clock time values are safe for reading (calendar mode only). In counter mode, RTCRDY signal
remains cleared.

RTCSSEL Bits 3-2 Real-time clock source select. Selects clock input source to the RTC/32-bit counter. In calendar mode,
these bits are don't care. The clock input is automatically set to the output of RT1PS.

00 ACLK

01 SMCLK

10 Output from RT1PS

11 Output from RT1PS

RTCTEV Bits 1-0 Real-time clock time event

RTC Mode RTCTEV Interrupt Interval

Counter mode (RTCMODE = 0) 00 8-bit overflow

01 16-bit overflow

10 24-bit overflow

11 32-bit overflow

Calendar mode (RTCMODE = 1) 00 Minute changed

01 Hour changed

10 Every day at midnight (00:00)

11 Every day at noon (12:00)

402 Real-Time Clock (RTC_A) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Real-Time Clock Registers

Real-Time Clock Control 2 Register (RTCCTL2)

7 6 5 4 3 2 1 0

RTCCALS Reserved RTCCAL

rw-(0) r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

RTCCALS Bit 7 Real-time clock calibration sign

0 Frequency adjusted down

1 Frequency adjusted up

Reserved Bit 6 Reserved. Always read as 0.

RTCCAL Bits 5-0 Real-time clock calibration. Each LSB represents approximately +4-ppm (RTCCALS = 1) or a –2-ppm
(RTCCALS = 0) adjustment in frequency.

Real-Time Clock Control 3 Register (RTCCTL3)

7 6 5 4 3 2 1 0

Reserved RTCCALF

r0 r0 r0 r0 r0 r0 rw-(0) rw-(0)

Reserved Bits 7-2 Reserved. Always read as 0.

RTCCALF Bits 1-0 Real-time clock calibration frequency. Selects frequency output to RTCCLK pin for calibration
measurement. The corresponding port must be configured for the peripheral module function. The
RTCCLK is not available in counter mode and remains low, and the RTCCALF bits are don't care.

00 No frequency output to RTCCLK pin

01 512 Hz

10 256 Hz

11 1 Hz

Real-Time Clock Counter 1 Register (RTCNT1) – Counter Mode

7 6 5 4 3 2 1 0

RTCNT1

rw rw rw rw rw rw rw rw

RTCNT1 Bits 7-0 The RTCNT1 register is the count of RTCNT1.

Real-Time Clock Counter 2 Register (RTCNT2) – Counter Mode

7 6 5 4 3 2 1 0

RTCNT2

rw rw rw rw rw rw rw rw

RTCNT2 Bits 7-0 The RTCNT2 register is the count of RTCNT2.

Real-Time Clock Counter 3 Register (RTCNT3) – Counter Mode

7 6 5 4 3 2 1 0

RTCNT3

rw rw rw rw rw rw rw rw

RTCNT3 Bits 7-0 The RTCNT3 register is the count of RTCNT3.

Real-Time Clock Counter 4 Register (RTCNT4) – Counter Mode

7 6 5 4 3 2 1 0

RTCNT4

rw rw rw rw rw rw rw rw

RTCNT4 Bits 7-0 The RTCNT4 register is the count of RTCNT4.

403SLAU208E–June 2008–Revised November 2009 Real-Time Clock (RTC_A)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Real-Time Clock Registers www.ti.com

Real-Time Clock Seconds Register (RTCSEC) – Calendar Mode With Hexadecimal Format

7 6 5 4 3 2 1 0

0 0 Seconds (0 to 59)

r-0 r-0 rw rw rw rw rw rw

Real-Time Clock Seconds Register (RTCSEC) – Calendar Mode With BCD Format

7 6 5 4 3 2 1 0

0 Seconds – high digit (0 to 5) Seconds – low digit (0 to 9)

r-0 rw rw rw rw rw rw rw

Real-Time Clock Minutes Register (RTCMIN) – Calendar Mode With Hexadecimal Format

7 6 5 4 3 2 1 0

0 0 Minutes (0 to 59)

r-0 r-0 rw rw rw rw rw rw

Real-Time Clock Minutes Register (RTCMIN) – Calendar Mode With BCD Format

7 6 5 4 3 2 1 0

0 Minutes – high digit (0 to 5) Minutes – low digit (0 to 9)

r-0 rw rw rw rw rw rw rw

Real-Time Clock Hours Register (RTCHOUR) – Calendar Mode With Hexadecimal Format

7 6 5 4 3 2 1 0

0 0 0 Hours (0 to 24)

r-0 r-0 r-0 rw rw rw rw rw

Real-Time Clock Hours Register (RTCHOUR) – Calendar Mode With BCD Format

7 6 5 4 3 2 1 0

0 0 Hours – high digit (0 to 2) Hours – low digit (0 to 9)

r-0 r-0 rw rw rw rw rw rw

Real-Time Clock Day of Week Register (RTCDOW) – Calendar Mode

7 6 5 4 3 2 1 0

0 0 0 0 0 Day of week (0 to 6)

r-0 r-0 r-0 r-0 r-0 rw rw rw

Real-Time Clock Day of Month Register (RTCDAY) – Calendar Mode With Hexadecimal Format

7 6 5 4 3 2 1 0

0 0 0 Day of month (1 to 28, 29, 30, 31)

r-0 r-0 r-0 rw rw rw rw rw

404 Real-Time Clock (RTC_A) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Real-Time Clock Registers

Real-Time Clock Day of Month Register (RTCDAY) – Calendar Mode With BCD Format

7 6 5 4 3 2 1 0

0 0 Day of month – high digit Day of month – low digit (0 to 9)
(0 to 3)

r-0 r-0 rw rw rw rw rw rw

Real-Time Clock Month Register (RTCMON) – Calendar Mode With Hexadecimal Format

7 6 5 4 3 2 1 0

0 0 0 0 Month (1 to 12)

r-0 r-0 r-0 r-0 rw rw rw rw

Real-Time Clock Month Register (RTCMON) – Calendar Mode With BCD Format

7 6 5 4 3 2 1 0

0 0 0 Month – high Month – low digit (0 to 9)
digit (0 to 3)

r-0 r-0 r-0 rw rw rw rw rw

Real-Time Clock Year Low-Byte Register (RTCYEARL) – Calendar Mode With Hexadecimal Format

7 6 5 4 3 2 1 0

Year – low byte of 0 to 4095

rw rw rw rw rw rw rw rw

Real-Time Clock Year Low-Byte Register (RTCYEARL) – Calendar Mode With BCD Format

7 6 5 4 3 2 1 0

Decade (0 to 9) Year – lowest digit (0 to 9)

rw rw rw rw rw rw rw rw

Real-Time Clock Year High-Byte Register (RTCYEARH) – Calendar Mode With Hexadecimal Format

7 6 5 4 3 2 1 0

0 0 0 0 Year – high byte of 0 to 4095

r-0 r-0 r-0 r-0 rw rw rw rw

Real-Time Clock Year High-Byte Register (RTCYEARH) – Calendar Mode With BCD Format

7 6 5 4 3 2 1 0

0 Century – high digit (0 to 4) Century – low digit (0 to 9)

r-0 rw rw rw rw rw rw rw

Real-Time Clock Minutes Alarm Register (RTCAMIN) – Calendar Mode With Hexadecimal Format

7 6 5 4 3 2 1 0

AE 0 Minutes (0 to 59)

rw-0 r-0 rw rw rw rw rw rw

405SLAU208E–June 2008–Revised November 2009 Real-Time Clock (RTC_A)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Real-Time Clock Registers www.ti.com

Real-Time Clock Minutes Alarm Register (RTCAMIN) – Calendar Mode With BCD Format

7 6 5 4 3 2 1 0

AE Minutes – high digit (0 to 5) Minutes – low digit (0 to 9)

rw-0 rw rw rw rw rw rw rw

Real-Time Clock Hours Alarm Register (RTCAHOUR) – Calendar Mode With Hexadecimal Format

7 6 5 4 3 2 1 0

AE 0 0 Hours (0 to 24)

rw-0 r-0 r-0 rw rw rw rw rw

Real-Time Clock Hours Alarm Register (RTCAHOUR) – Calendar Mode With BCD Format

7 6 5 4 3 2 1 0

AE 0 Hours – high digit (0 to 2) Hours – low digit (0 to 9)

rw-0 r-0 rw rw rw rw rw rw

Real-Time Clock Day of Week Alarm Register (RTCADOW) – Calendar Mode

7 6 5 4 3 2 1 0

AE 0 0 0 0 Day of week (0 to 6)

rw-0 r-0 r-0 r-0 r-0 rw rw rw

Real-Time Clock Day of Month Alarm Register (RTCADAY) – Calendar Mode With Hexadecimal Format

7 6 5 4 3 2 1 0

AE 0 0 Day of month (1 to 28, 29, 30, 31)

rw-0 r-0 r-0 rw rw rw rw rw

Real-Time Clock Day of Month Alarm Register (RTCADAY) – Calendar Mode With BCD Format

7 6 5 4 3 2 1 0

AE 0 Day of month – high digit Day of month – low digit (0 to 9)
(0 to 3)

rw-0 r-0 rw rw rw rw rw rw

406 Real-Time Clock (RTC_A) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Real-Time Clock Registers

Real-Time Clock Prescale Timer 0 Control Register (RTCPS0CTL)

15 14 13 12 11 10 9 8

Reserved RT0SSEL RT0PSDIV Reserved Reserved RT0PSHOLD

r0 rw-0 rw-0 rw-0 rw-0 r0 r0 rw-1

7 6 5 4 3 2 1 0

Reserved Reserved Reserved RT0IP RT0PSIE RT0PSIFG

r0 r0 r0 rw-0 rw-0 rw-0 rw-0 rw-(0)

Reserved Bit 15 Reserved. Always read as 0.

RT0SSEL Bit 14 Prescale timer 0 clock source select. Selects clock input source to the RT0PS counter. In real-time clock
calendar mode, these bits are don't care. RT0PS clock input is automatically set to ACLK. RT1PS clock
input is automatically set to the output of RT0PS.

0 ACLK

1 SMCLK

RT0PSDIV Bits 13-11 Prescale timer 0 clock divide. These bits control the divide ratio of the RT0PS counter. In real-time clock
calendar mode, these bits are don't care for RT0PS and RT1PS. RT0PS clock output is automatically set
to /256. RT1PS clock output is automatically set to /128.

000 /2

001 /4

010 /8

011 /16

100 /32

101 /64

110 /128

111 /256

Reserved Bits 10-9 Reserved. Always read as 0.

RT0PSHOLD Bit 8 Prescale timer 0 hold. In real-time clock calendar mode, this bit is don't care. RT0PS is stopped via the
RTCHOLD bit.

0 RT0PS is operational.

1 RT0PS is held.

Reserved Bits 7-5 Reserved. Always read as 0.

RT0IP Bits 4-2 Prescale timer 0 interrupt interval

000 /2

001 /4

010 /8

011 /16

100 /32

101 /64

110 /128

111 /256

RT0PSIE Bit 1 Prescale timer 0 interrupt enable

0 Interrupt not enabled

1 Interrupt enabled

RT0PSIFG Bit 0 Prescale timer 0 interrupt flag

0 No time event occurred.

1 Time event occurred.

407SLAU208E–June 2008–Revised November 2009 Real-Time Clock (RTC_A)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Real-Time Clock Registers www.ti.com

Real-Time Clock Prescale Timer 1 Control Register (RTCPS1CTL)

15 14 13 12 11 10 9 8

RT1SSEL RT1PSDIV Reserved Reserved RT1PSHOLD

rw-0 rw-0 rw-0 rw-0 rw-0 r0 r0 rw-1

7 6 5 4 3 2 1 0

Reserved Reserved Reserved RT1IP RT1PSIE RT1PSIFG

r0 r0 r0 rw-0 rw-0 rw-0 rw-0 rw-(0)

RT1SSEL Bits 15-14 Prescale timer 1 clock source select. Selects clock input source to the RT1PS counter. In real-time clock
calendar mode, these bits are do not care. RT1PS clock input is automatically set to the output of
RT0PS.

00 ACLK

01 SMCLK

10 Output from RT0PS

11 Output from RT0PS

RT1PSDIV Bits 13-11 Prescale timer 1 clock divide. These bits control the divide ratio of the RT0PS counter. In real-time clock
calendar mode, these bits are don't care for RT0PS and RT1PS. RT0PS clock output is automatically set
to /256. RT1PS clock output is automatically set to /128.

000 /2

001 /4

010 /8

011 /16

100 /32

101 /64

110 /128

111 /256

Reserved Bits 10-9 Reserved. Always read as 0.

RT1PSHOLD Bit 8 Prescale timer 1 hold. In real-time clock calendar mode, this bit is don't care. RT1PS is stopped via the
RTCHOLD bit.

0 RT1PS is operational.

1 RT1PS is held.

Reserved Bits 7-5 Reserved. Always read as 0.

RT1IP Bits 4-2 Prescale timer 1 interrupt interval

000 /2

001 /4

010 /8

011 /16

100 /32

101 /64

110 /128

111 /256

RT1PSIE Bit 1 Prescale timer 1 interrupt enable

0 Interrupt not enabled

1 Interrupt enabled

RT1PSIFG Bit 0 Prescale timer 1 interrupt flag

0 No time event occurred.

1 Time event occurred.

Real-Time Clock Prescale Timer 0 Counter Register (RT0PS)

7 6 5 4 3 2 1 0

RT0PS

rw rw rw rw rw rw rw rw

RT0PS Bits 7-0 Prescale timer 0 counter value

408 Real-Time Clock (RTC_A) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Real-Time Clock Registers

Real-Time Clock Prescale Timer 1 Counter Register (RT1PS)

7 6 5 4 3 2 1 0

RT1PS

rw rw rw rw rw rw rw rw

RT1PS Bits 7-0 Prescale timer 1 counter value

Real-Time Clock Interrupt Vector Register (RTCIV)

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 RTCIV 0

r0 r0 r0 r-(0) r-(0) r-(0) r-(0) r0

RTCIV Bits 15-0 Real-time clock interrupt vector value

RTCIV InterruptInterrupt Source Interrupt FlagContents Priority

00h No interrupt pending

02h RTC ready RTCRDYIFG Highest

04h RTC interval timer RTCTEVIFG

06h RTC user alarm RTCAIFG

08h RTC prescaler 0 RT0PSIFG

0Ah RTC prescaler 1 RT1PSIFG

0Ch Reserved

0Eh Reserved

10h Reserved Lowest

409SLAU208E–June 2008–Revised November 2009 Real-Time Clock (RTC_A)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

410 Real-Time Clock (RTC_A) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 15
SLAU208E–June 2008–Revised November 2009

32-Bit Hardware Multiplier (MPY32)

This chapter describes the 32-bit hardware multiplier (MPY32). The MPY32 module is implemented in all
devices.

Topic ... Page

15.1 32-Bit Hardware Multiplier (MPY32) Introduction ... 412
15.2 MPY32 Operation ... 414
15.3 MPY32 Registers ... 427

411SLAU208E–June 2008–Revised November 2009 32-Bit Hardware Multiplier (MPY32)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

32-Bit Hardware Multiplier (MPY32) Introduction www.ti.com

15.1 32-Bit Hardware Multiplier (MPY32) Introduction

The MPY32 is a peripheral and is not part of the CPU. This means its activities do not interfere with the
CPU activities. The multiplier registers are peripheral registers that are loaded and read with CPU
instructions.

The MPY32 supports:

• Unsigned multiply
• Signed multiply
• Unsigned multiply accumulate
• Signed multiply accumulate
• 8-bit, 16-bit, 24-bit, and 32-bit operands
• Saturation
• Fractional numbers
• 8-bit and 16-bit operation compatible with 16-bit hardware multiplier
• 8-bit and 24-bit multiplications without requiring a "sign extend" instruction

The MPY32 block diagram is shown in Figure 15-1.

412 32-Bit Hardware Multiplier (MPY32) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

OP1 (high word)

16×16 Multiplier

Accessible
Register

32-bit Adder

RES0/RESLO

OP2 (high word)

15

OP2 (low word)

16

OP2

OP2LOP2HMACS32L

MAC32L

MPYS32L

MPY32L

MACS32H

MAC32H

MPYS32H

MPY32H

MACS

MAC

MPYS

MPY

RES1/RESHIRES2RES3SUMEXT

31 0151631 0

32-bit Demultiplexer

32-bit Multiplexer

16-bit Multiplexer 16-bit Multiplexer

OP1_32
OP2_32

MPYMx

MPYSAT
MPYFRAC

MPYC

2
Control
Logic

OP1 (low word)

www.ti.com 32-Bit Hardware Multiplier (MPY32) Introduction

Figure 15-1. MPY32 Block Diagram

413SLAU208E–June 2008–Revised November 2009 32-Bit Hardware Multiplier (MPY32)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MPY32 Operation www.ti.com

15.2 MPY32 Operation

The MPY32 supports 8-bit, 16-bit, 24-bit, and 32-bit operands with unsigned multiply, signed multiply,
unsigned multiply-accumulate, and signed multiply-accumulate operations. The size of the operands are
defined by the address the operand is written to and if it is written as word or byte. The type of operation is
selected by the address the first operand is written to.

The hardware multiplier has two 32-bit operand registers – operand one (OP1) and operand two (OP2),
and a 64-bit result register accessible via registers RES0 to RES3. For compatibility with the 16×16
hardware multiplier, the result of a 8-bit or 16-bit operation is accessible via RESLO, RESHI, and
SUMEXT, as well. RESLO stores the low word of the 16×16-bit result, RESHI stores the high word of the
result, and SUMEXT stores information about the result.

The result of a 8-bit or 16-bit operation is ready in three MCLK cycles and can be read with the next
instruction after writing to OP2, except when using an indirect addressing mode to access the result.
When using indirect addressing for the result, a NOP is required before the result is ready.

The result of a 24-bit or 32-bit operation can be read with successive instructions after writing OP2 or
OP2H starting with RES0, except when using an indirect addressing mode to access the result. When
using indirect addressing for the result, a NOP is required before the result is ready.

Table 15-1 summarizes when each word of the 64-bit result is available for the various combinations of
operand sizes. With a 32-bit-wide second operand, OP2L and OP2H must be written. Depending on when
the two 16-bit parts are written, the result availability may vary; thus, the table shows two entries, one for
OP2L written and one for OP2H written. The worst case defines the actual result availability.

Table 15-1. Result Availability (MPYFRAC = 0, MPYSAT = 0)

Result Ready in MCLK CyclesOperation After(OP1 × OP2) RES0 RES1 RES2 RES3 MPYC Bit

8/16 × 8/16 3 3 4 4 3 OP2 written

24/32 × 8/16 3 5 6 7 7 OP2 written

8/16 × 24/32 3 5 6 7 7 OP2L written

N/A 3 4 4 4 OP2H written

24/32 × 24/32 3 8 10 11 11 OP2L written

N/A 3 5 6 6 OP2H written

414 32-Bit Hardware Multiplier (MPY32) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com MPY32 Operation

15.2.1 Operand Registers

Operand one (OP1) has 12 registers (see Table 15-2) used to load data into the multiplier and also select
the multiply mode. Writing the low word of the first operand to a given address selects the type of multiply
operation to be performed, but does not start any operation. When writing a second word to a high-word
register with suffix 32H, the multiplier assumes a 32-bit-wide OP1, otherwise, 16 bits are assumed. The
last address written prior to writing OP2 defines the width of the first operand. For example, if MPY32L is
written first followed by MPY32H, all 32 bits are used and the data width of OP1 is set to 32 bits. If
MPY32H is written first followed by MPY32L, the multiplication ignores MPY32H and assumes a
16-bit-wide OP1 using the data written into MPY32L.

Repeated multiply operations may be performed without reloading OP1 if the OP1 value is used for
successive operations. It is not necessary to rewrite the OP1 value to perform the operations.

415SLAU208E–June 2008–Revised November 2009 32-Bit Hardware Multiplier (MPY32)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MPY32 Operation www.ti.com

Table 15-2. OP1 Registers

OP1 Register Operation

MPY Unsigned multiply – operand bits 0 up to 15

MPYS Signed multiply – operand bits 0 up to 15

MAC Unsigned multiply accumulate –operand bits 0 up to 15

MACS Signed multiply accumulate – operand bits 0 up to 15

MPY32L Unsigned multiply – operand bits 0 up to 15

MPY32H Unsigned multiply – operand bits 16 up to 31

MPYS32L Signed multiply – operand bits 0 up to 15

MPYS32H Signed multiply – operand bits 16 up to 31

MAC32L Unsigned multiply accumulate – operand bits 0 up to 15

MAC32H Unsigned multiply accumulate – operand bits 16 up to 31

MACS32L Signed multiply accumulate – operand bits 0 up to 15

MACS32H Signed multiply accumulate – operand bits 16 up to 31

Writing the second operand to the OP2 initiates the multiply operation. Writing OP2 starts the selected
operation with a 16-bit-wide second operand together with the values stored in OP1. Writing OP2L starts
the selected operation with a 32-bit-wide second operand and the multiplier expects a the high word to be
written to OP2H. Writing to OP2H without a preceding write to OP2L is ignored.

Table 15-3. OP2 Registers

OP2 Register Operation

OP2 Start multiplication with 16-bit-wide OP2 – operand bits 0 up to 15

OP2L Start multiplication with 32-bit-wide OP2 – operand bits 0 up to 15

OP2H Continue multiplication with 32-bit-wide OP2 – operand bits 16 up to 31

For 8-bit or 24-bit operands, the operand registers can be accessed with byte instructions. Accessing the
multiplier with a byte instruction during a signed operation automatically causes a sign extension of the
byte within the multiplier module. For 24-bit operands, only the high word should be written as byte. If the
24-bit operands are sign-extended as defined by the register, that is used to write the low word to,
because this register defines if the operation is unsigned or signed.

The high-word of a 32-bit operand remains unchanged when changing the size of the operand to 16 bit,
either by modifying the operand size bits or by writing to the respective operand register. During the
execution of the 16-bit operation, the content of the high-word is ignored.

NOTE: Changing of first or second operand during multiplication

By default, changing OP1 or OP2 while the selected multiply operation is being calculated
renders any results invalid that are not ready at the time the new operand(s) are changed.
Writing OP2 or OP2L aborts any ongoing calculation and starts a new operation. Results that
are not ready at that time are also invalid for following MAC or MACS operations.

To avoid this behavior, the MPYDLYWRTEN bit can be set to 1. Then, all writes to any
MPY32 registers are delayed with MPYDLY32 = 0 until the 64-bit result is ready or with
MPYDLY32 = 1 until the 32-bit result is ready. For MAC and MACS operations, the complete
64-bit result should always be ready.

See Table 15-1 for how many CPU cycles are needed until a certain result register is ready
and valid for each of the different modes.

416 32-Bit Hardware Multiplier (MPY32) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com MPY32 Operation

15.2.2 Result Registers

The multiplication result is always 64 bits wide. It is accessible via registers RES0 to RES3. Used with a
signed operation, MPYS or MACS, the results are appropriately sign extended. If the result registers are
loaded with initial values before a MACS operation, the user software must take care that the written value
is properly sign extended to 64 bits.

NOTE: Changing of result registers during multiplication

The result registers must not be modified by the user software after writing the second
operand into OP2 or OP2L until the initiated operation is completed.

In addition to RES0 to RES3, for compatibility with the 16×16 hardware multiplier, the 32-bit result of a
8-bit or 16-bit operation is accessible via RESLO, RESHI, and SUMEXT. In this case, the result low
register RESLO holds the lower 16 bits of the calculation result and the result high register RESHI holds
the upper 16 bits. RES0 and RES1 are identical to RESLO and RESHI, respectively, in usage and access
of calculated results.

The sum extension register SUMEXT contents depend on the multiply operation and are listed in
Table 15-4. If all operands are 16 bits wide or less, the 32-bit result is used to determine sign and carry. If
one of the operands is larger than 16 bits, the 64-bit result is used.

The MPYC bit reflects the multiplier's carry as listed in Table 15-4 and, thus, can be used as 33rd or 65th
bit of the result, if fractional or saturation mode is not selected. With MAC or MACS operations, the MPYC
bit reflects the carry of the 32-bit or 64-bit accumulation and is not taken into account for successive MAC
and MACS operations as the 33rd or 65th bit.

Table 15-4. SUMEXT and MPYC Contents

Mode SUMEXT MPYC

MPY SUMEXT is always 0000h. MPYC is always 0.

MPYS SUMEXT contains the extended sign of the result. MPYC contains the sign of the result.

00000h Result was positive or zero 0 Result was positive or zero

0FFFFh Result was negative 1 Result was negative

MAC SUMEXT contains the carry of the result. MPYC contains the carry of the result.

0000h No carry for result 0 No carry for result

0001h Result has a carry 1 Result has a carry

MACS SUMEXT contains the extended sign of the result. MPYC contains the carry of the result.

00000h Result was positive or zero 0 No carry for result

0FFFFh Result was negative 1 Result has a carry

15.2.2.1 MACS Underflow and Overflow

The multiplier does not automatically detect underflow or overflow in MACS mode. For example, working
with 16-bit input data and 32-bit results (i.e., using only RESLO and RESHI), the available range for
positive numbers is 0 to 07FFF FFFFh and for negative numbers is 0FFFF FFFFh to 08000 0000h. An
underflow occurs when the sum of two negative numbers yields a result that is in the range for a positive
number. An overflow occurs when the sum of two positive numbers yields a result that is in the range for a
negative number.

The SUMEXT register contains the sign of the result in both cases described above, 0FFFFh for a 32-bit
overflow and 0000h for a 32-bit underflow. The MPYC bit in MPY32CTL0 can be used to detect the
overflow condition. If the carry is different from the sign reflected by the SUMEXT register, an overflow or
underflow occurred. User software must handle these conditions appropriately.

417SLAU208E–June 2008–Revised November 2009 32-Bit Hardware Multiplier (MPY32)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MPY32 Operation www.ti.com

15.2.3 Software Examples

Examples for all multiplier modes follow. All 8×8 modes use the absolute address for the registers,
because the assembler does not allow .B access to word registers when using the labels from the
standard definitions file.

There is no sign extension necessary in software. Accessing the multiplier with a byte instruction during a
signed operation automatically causes a sign extension of the byte within the multiplier module.
; 32x32 Unsigned Multiply

MOV #01234h,&MPY32L ; Load low word of 1st operand
MOV #01234h,&MPY32H ; Load high word of 1st operand
MOV #05678h,&OP2L ; Load low word of 2nd operand
MOV #05678h,&OP2H ; Load high word of 2nd operand

; ... ; Process results

; 16x16 Unsigned Multiply
MOV #01234h,&MPY ; Load 1st operand
MOV #05678h,&OP2 ; Load 2nd operand

; ... ; Process results

; 8x8 Unsigned Multiply. Absolute addressing.
MOV.B #012h,&MPY_B ; Load 1st operand
MOV.B #034h,&OP2_B ; Load 2nd operand

; ... ; Process results

; 32x32 Signed Multiply
MOV #01234h,&MPYS32L ; Load low word of 1st operand
MOV #01234h,&MPYS32H ; Load high word of 1st operand
MOV #05678h,&OP2L ; Load low word of 2nd operand
MOV #05678h,&OP2H ; Load high word of 2nd operand

; ... ; Process results

; 16x16 Signed Multiply
MOV #01234h,&MPYS ; Load 1st operand
MOV #05678h,&OP2 ; Load 2nd operand

; ... ; Process results

; 8x8 Signed Multiply. Absolute addressing.
MOV.B #012h,&MPYS_B ; Load 1st operand
MOV.B #034h,&OP2_B ; Load 2nd operand

; ... ; Process results

15.2.4 Fractional Numbers

The MPY32 provides support for fixed-point signal processing. In fixed-point signal processing, fractional
number are represented by using a fixed decimal point. To classify different ranges of decimal numbers, a
Q-format is used. Different Q-formats represent different locations of the decimal point. Figure 15-2 shows
the format of a signed Q15 number using 16 bits. Every bit after the decimal point has a resolution of 1/2,
the most significant bit (MSB) is used as the sign bit. The most negative number is 08000h and the
maximum positive number is 07FFFh. This gives a range from –1.0 to 0.999969482 1.0 for the signed
Q15 format with 16 bits.

418 32-Bit Hardware Multiplier (MPY32) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

S
1
2

1
4

1
8

1
16

...

Decimal number equivalent

Decimal point

Sign bit

15 bits

S
1

2

1

4

1

8

1

16
...x

14 bits

www.ti.com MPY32 Operation

Figure 15-2. Q15 Format Representation

The range can be increased by shifting the decimal point to the right as shown in Figure 15-3. The signed
Q14 format with 16 bits gives a range from –2.0 to 1.999938965 2.0.

Figure 15-3. Q14 Format Representation

The benefit of using 16-bit signed Q15 or 32-bit signed Q31 numbers with multiplication is that the product
of two number in the range from –1.0 to 1.0 is always in that same range.

15.2.4.1 Fractional Number Mode

Multiplying two fractional numbers using the default multiplication mode with MPYFRAC = 0 and
MPYSAT = 0 gives a result with two sign bits. For example, if two 16-bit Q15 numbers are multiplied, a
32-bit result in Q30 format is obtained. To convert the result into Q15 format manually, the first 15 trailing
bits and the extended sign bit must be removed. However, when the fractional mode of the multiplier is
used, the redundant sign bit is automatically removed, yielding a result in Q31 format for the multiplication
of two 16-bit Q15 numbers. Reading the result register RES1 gives the result as 16-bit Q15 number. The
32-bit Q31 result of a multiplication of two 32-bit Q31 numbers is accessed by reading registers RES2 and
RES3.

The fractional mode is enabled with MPYFRAC = 1 in register MPY32CTL0. The actual content of the
result register(s) is not modified when MPYFRAC = 1. When the result is accessed using software, the
value is left shifted one bit, resulting in the final Q formatted result. This allows user software to switch
between reading both the shifted (fractional) and the unshifted result. The fractional mode should only be
enabled when required and disabled after use.

In fractional mode, the SUMEXT register contains the sign extended bits 32 and 33 of the shifted result for
16×16-bit operations and bits 64 and 65 for 32×32-bit operations – not only bits 32 or 64, respectively.

The MPYC bit is not affected by the fractional mode. It always reads the carry of the nonfractional result.
; Example using
; Fractional 16x16 multiplication

BIS #MPYFRAC,&MPY32CTL0 ; Turn on fractional mode
MOV &FRACT1,&MPYS ; Load 1st operand as Q15
MOV &FRACT2,&OP2 ; Load 2nd operand as Q15
MOV &RES1,&PROD ; Save result as Q15
BIC #MPYFRAC,&MPY32CTL0 ; Back to normal mode

419SLAU208E–June 2008–Revised November 2009 32-Bit Hardware Multiplier (MPY32)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MPY32 Operation www.ti.com

Table 15-5. Result Availability in Fractional Mode (MPYFRAC = 1, MPYSAT = 0)

Result Ready in MCLK CyclesOperation After(OP1 × OP2) RES0 RES1 RES2 RES3 MPYC Bit

8/16 × 8/16 3 3 4 4 3 OP2 written

24/32 × 8/16 3 5 6 7 7 OP2 written

8/16 × 24/32 3 5 6 7 7 OP2L written

N/A 3 4 4 4 OP2H written

24/32 × 24/32 3 8 10 11 11 OP2L written

N/A 3 5 6 6 OP2H written

15.2.4.2 Saturation Mode

The multiplier prevents overflow and underflow of signed operations in saturation mode. The saturation
mode is enabled with MPYSAT = 1 in register MPY32CTL0. If an overflow occurs, the result is set to the
most-positive value available. If an underflow occurs, the result is set to the most-negative value available.
This is useful to reduce mathematical artifacts in control systems on overflow and underflow conditions.
The saturation mode should only be enabled when required and disabled after use.

The actual content of the result register(s) is not modified when MPYSAT = 1. When the result is
accessed using software, the value is automatically adjusted providing the most-positive or most-negative
result when an overflow or underflow has occurred. The adjusted result is also used for successive
multiply-and-accumulate operations. This allows user software to switch between reading the saturated
and the nonsaturated result.

With 16×16 operations, the saturation mode only applies to the least significant 32 bits, i.e., the result
registers RES0 and RES1. Using the saturation mode in MAC or MACS operations that mix 16×16
operations with 32×32, 16×32, or 32×16 operations leads to unpredictable results.

With 32×32, 16×32, and 32×16 operations, the saturated result can only be calculated when RES3 is
ready. In non-5xx devices, reading RES0 to RES2 prior to the complete result being ready delivers the
nonsaturated results independent of the MPYSAT bit setting.

Enabling the saturation mode does not affect the content of the SUMEXT register nor the content of the
MPYC bit.
; Example using
; Fractional 16x16 multiply accumulate with Saturation

; Turn on fractional and saturation mode:
BIS #MPYSAT+MPYFRAC,&MPY32CTL0
MOV &A1,&MPYS ; Load A1 for 1st term
MOV &K1,&OP2 ; Load K1 to get A1*K1
MOV &A2,&MACS ; Load A2 for 2nd term
MOV &K2,&OP2 ; Load K2 to get A2*K2
MOV &RES1,&PROD ; Save A1*K1+A2*K2 as result
BIC #MPYSAT+MPYFRAC,&MPY32CTL0 ; turn back to normal

Table 15-6. Result Availability in Saturation Mode (MPYSAT = 1)

Result Ready in MCLK CyclesOperation After(OP1 × OP2) RES0 RES1 RES2 RES3 MPYC Bit

8/16 × 8/16 3 3 N/A N/A 3 OP2 written

24/32 × 8/16 7 7 7 7 7 OP2 written

8/16 × 24/32 7 7 7 7 7 OP2L written

4 4 4 4 4 OP2H written

24/32 × 24/32 11 11 11 11 11 OP2L written

6 6 6 6 6 OP2H written

420 32-Bit Hardware Multiplier (MPY32) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

64-bit Saturation

Overflow:
RES3 unchanged
RES2 unchanged
RES1 = 07FFFh
RES0 = 0FFFFh

Yes

No

Underflow:
RES3 unchanged
RES2 unchanged
RES1 = 08000h
RES0 = 00000h

Yes

No

No

Yes

Overflow:
RES3 unchanged
RES2 unchanged
RES1 = 07FFFh
RES0 = 0FFFFh

Yes

No

Yes

No

32-bit Saturation
completed

Yes

No

Yes

No

No

Yes

Yes

No

Yes

No

Underflow:
RES3 unchanged
RES2 unchanged
RES1 = 08000h
RES0 = 00000h

Overflow:
RES3 = 07FFFh
RES2 = 0FFFFh
RES1 = 0FFFFh
RES0 = 0FFFFh

Underflow:
RES3 = 08000h
RES2 = 00000h
RES1 = 00000h
RES0 = 00000h

Overflow:
RES3 = 07FFFh
RES2 = 0FFFFh
RES1 = 0FFFFh
RES0 = 0FFFFh

Underflow:
RES3 = 08000h
RES2 = 00000h
RES1 = 00000h
RES0 = 00000h

64-bit Saturation
completed

32-bit Saturation

MPYC=0 and
unshifted RES3,

bit15=1

MPYC=1 and
unshifted RES3,

bit15=0

MPYFRAC=1

Unshifted RES3,
bit 15=0 and

bit 14=1

Unshifted RES3,
bit 15=1 and

bit 14=0

MPYC=0 and
unshifted RES1,

bit15=1

MPYC=1 and
unshifted RES1,

bit15=0

MPYFRAC=1

Unshifted RES1,
bit 15=0 and

bit 14=1

Unshifted RES1,
bit 15=1 and

bit 14=0

www.ti.com MPY32 Operation

Figure 15-4 shows the flow for 32-bit saturation used for 16×16 bit multiplications and the flow for 64-bit
saturation used in all other cases. Primarily, the saturated results depends on the carry bit MPYC and the
MSB of the result. Secondly, if the fractional mode is enabled, it depends also on the two MSBs of the
unshift result, i.e., the result that is read with fractional mode disabled.

Figure 15-4. Saturation Flow Chart

NOTE: Saturation in fractional mode

In case of multiplying –1.0 × –1.0 in fractional mode, the result of +1.0 is out of range, thus,
the saturated result gives the most positive result.

When using multiply-and-accumulate operations, the accumulated values are saturated as if
MPYFRAC = 0 – only during read accesses to the result registers the values are saturated
taking the fractional mode into account. This provides additional dynamic range during the
calculation and only the end result is then saturated if needed.

421SLAU208E–June 2008–Revised November 2009 32-Bit Hardware Multiplier (MPY32)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MPY32 Operation www.ti.com

The following example illustrates a special case showing the saturation function in fractional mode. It also
uses the 8-bit functionality of the MPY32 module.

; Turn on fractional and saturation mode,
; clear all other bits in MPY32CTL0:
MOV #MPYSAT+MPYFRAC,&MPY32CTL0
;Pre-load result registers to demonstrate overflow
MOV #0,&RES3 ;
MOV #0,&RES2 ;
MOV #07FFFh,&RES1 ;
MOV #0FA60h,&RES0 ;
MOV.B #050h,&MACS_B ; 8-bit signed MAC operation
MOV.B #012h,&OP2_B ; Start 16x16 bit operation
MOV &RES0,R6 ; R6 = 0FFFFh
MOV &RES1,R7 ; R7 = 07FFFh

The result is saturated because already the result not converted into a fractional number shows an
overflow. The multiplication of the two positive numbers 00050h and 00012h gives 005A0h. 005A0h added
to 07FFF FA60h results in 8000 059Fh, without MPYC being set. Because the MSB of the unmodified
result RES1 is 1 and MPYC = 0, the result is saturated according Figure 15-4.

NOTE: Validity of saturated result

The saturated result is only valid if the registers RES0 to RES3, the size of OP! and OP2,
and MPYC are not modified.

If the saturation mode is used with a preloaded result, user software must ensure that MPYC
in the MPY32CTL0 register is loaded with the sign bit of the written result, otherwise, the
saturation mode erroneously saturates the result.

422 32-Bit Hardware Multiplier (MPY32) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

New Multiplication
Started

16×16
?

MAC or MACS
?

MPYSAT=1
?

Clear Result:
RES1 = 00000h
RES0 = 00000h

Perform 16×16
MPY or MPYS

Operation

Yes No

YesNo

Yes

No

MPYFRAC=1

?

non-fractional
32-bit Saturation

Shift 64bit result.

Calculate SUMEXTbased on

MPYC and bit15 of

unshifted RES1.

MPYSAT=1

?

Yes

No

Yes

No

Multiplication
completed

MPYSAT=1
? Clear Result:

RES3 = 00000h

RES2 = 00000h

RES1 = 00000h

RES0 = 00000h

Yes No

Yes

No

MPYFRAC=1

?

non-fractional
64-bit Saturation

MPYSAT=1

?

Yes

No

Yes

No

Shift 64bit result.

Calculate SUMEXTbased on

MPYC and bit15 of

unshifted RES3.

Perform 16×16
MAC or MACS

Operation

Perform
MAC or MACS

Operation

Perform
MPY or MPYS

Operation

MAC or MACS
?

32-bit Saturation 64-bit Saturation

www.ti.com MPY32 Operation

15.2.5 Putting It All Together

Figure 15-5 shows the complete multiplication flow, depending on the various selectable modes for the
MPY32 module.

Figure 15-5. Multiplication Flow Chart

423SLAU208E–June 2008–Revised November 2009 32-Bit Hardware Multiplier (MPY32)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MPY32 Operation www.ti.com

Given the separation in processing of 16-bit operations (32-bit results) and 32-bit operations (64-bit
results) by the module, it is important to understand the implications when using MAC/MACS operations
and mixing 16-bit operands/results with 32-bit operands/results. User software must address these points
during usage when mixing these operations. The following code snippet illustrates the issue.
; Mixing 32x24 multiplication with 16x16 MACS operation

MOV #MPYSAT,&MPY32CTL0 ; Saturation mode
MOV #052C5h,&MPY32L ; Load low word of 1st operand
MOV #06153h,&MPY32H ; Load high word of 1st operand
MOV #001ABh,&OP2L ; Load low word of 2nd operand
MOV.B #023h,&OP2H_B ; Load high word of 2nd operand

;... 5 NOPs required
MOV &RES0,R6 ; R6 = 00E97h
MOV &RES1,R7 ; R7 = 0A6EAh
MOV &RES2,R8 ; R8 = 04F06h
MOV &RES3,R9 ; R9 = 0000Dh

; Note that MPYC = 0!
MOV #0CCC3h,&MACS ; Signed MAC operation
MOV #0FFB6h,&OP2 ; 16x16 bit operation
MOV &RESLO,R6 ; R6 = 0FFFFh
MOV &RESHI,R7 ; R7 = 07FFFh

The second operation gives a saturated result because the 32-bit value used for the 16×16-bit MACS
operation was already saturated when the operation was started; the carry bit MPYC was 0 from the
previous operation, but the MSB in result register RES1 is set. As one can see in the flow chart, the
content of the result registers are saturated for multiply-and-accumulate operations after starting a new
operation based on the previous results, but depending on the size of the result (32 bit or 64 bit) of the
newly initiated operation.

The saturation before the multiplication can cause issues if the MPYC bit is not properly set as the
following code example illustrates.

;Pre-load result registers to demonstrate overflow
MOV #0,&RES3 ;
MOV #0,&RES2 ;
MOV #0,&RES1 ;
MOV #0,&RES0 ;
; Saturation mode and set MPYC:
MOV #MPYSAT+MPYC,&MPY32CTL0
MOV.B #082h,&MACS_B ; 8-bit signed MAC operation
MOV.B #04Fh,&OP2_B ; Start 16x16 bit operation
MOV &RES0,R6 ; R6 = 00000h
MOV &RES1,R7 ; R7 = 08000h

Even though the result registers were loaded with all zeros, the final result is saturated. This is because
the MPYC bit was set causing the result used for the multiply-and-accumulate to be saturated to
08000 0000h. Adding a negative number to it would again cause an underflow, thus, the final result is also
saturated to 08000 0000h.

424 32-Bit Hardware Multiplier (MPY32) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com MPY32 Operation

15.2.6 Indirect Addressing of Result Registers

When using indirect or indirect autoincrement addressing mode to access the result registers and the
multiplier requires three cycles until result availability according to Table 15-1, at least one instruction is
needed between loading the second operand and accessing the result registers:
; Access multiplier 16x16 results with indirect addressing

MOV #RES0,R5 ; RES0 address in R5 for indirect
MOV &OPER1,&MPY ; Load 1st operand
MOV &OPER2,&OP2 ; Load 2nd operand
NOP ; Need one cycle
MOV @R5+,&xxx ; Move RES0
MOV @R5,&xxx ; Move RES1

In case of a 32×16 multiplication, there is also one instruction required between reading the first result
register RES0 and the second result register RES1:
; Access multiplier 32x16 results with indirect addressing

MOV #RES0,R5 ; RES0 address in R5 for indirect
MOV &OPER1L,&MPY32L ; Load low word of 1st operand
MOV &OPER1H,&MPY32H ; Load high word of 1st operand
MOV &OPER2,&OP2 ; Load 2nd operand (16 bits)
NOP ; Need one cycle
MOV @R5+,&xxx ; Move RES0
NOP ; Need one additional cycle
MOV @R5,&xxx ; Move RES1

; No additional cycles required!
MOV @R5,&xxx ; Move RES2

15.2.7 Using Interrupts

If an interrupt occurs after writing OP, but before writing OP2, and the multiplier is used in servicing that
interrupt, the original multiplier mode selection is lost and the results are unpredictable. To avoid this,
disable interrupts before using the MPY32, do not use the MPY32 in interrupt service routines, or use the
save and restore functionality of the MPY32.
; Disable interrupts before using the hardware multiplier

DINT ; Disable interrupts
NOP ; Required for DINT
MOV #xxh,&MPY ; Load 1st operand
MOV #xxh,&OP2 ; Load 2nd operand
EINT ; Interrupts may be enabled before

; processing results if result
; registers are stored and restored in
; interrupt service routines

425SLAU208E–June 2008–Revised November 2009 32-Bit Hardware Multiplier (MPY32)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MPY32 Operation www.ti.com

15.2.7.1 Save and Restore

If the multiplier is used in interrupt service routines, its state can be saved and restored using the
MPY32CTL0 register. The following code example shows how the complete multiplier status can be saved
and restored to allow interruptible multiplications together with the usage of the multiplier in interrupt
service routines. Because the state of the MPYSAT and MPYFRAC bits are unknown, they should be
cleared before the registers are saved as shown in the code example.
; Interrupt service routine using multiplier
MPY_USING_ISR

PUSH &MPY32CTL0 ; Save multiplier mode, etc.
BIC #MPYSAT+MPYFRAC,&MPY32CTL0

; Clear MPYSAT+MPYFRAC
PUSH &RES3 ; Save result 3
PUSH &RES2 ; Save result 2
PUSH &RES1 ; Save result 1
PUSH &RES0 ; Save result 0
PUSH &MPY32H ; Save operand 1, high word
PUSH &MPY32L ; Save operand 1, low word
PUSH &OP2H ; Save operand 2, high word
PUSH &OP2L ; Save operand 2, low word

;
... ; Main part of ISR

; Using standard MPY routines
;

POP &OP2L ; Restore operand 2, low word
POP &OP2H ; Restore operand 2, high word

; Starts dummy multiplication but
; result is overwritten by
; following restore operations:

POP &MPY32L ; Restore operand 1, low word
POP &MPY32H ; Restore operand 1, high word
POP &RES0 ; Restore result 0
POP &RES1 ; Restore result 1
POP &RES2 ; Restore result 2
POP &RES3 ; Restore result 3
POP &MPY32CTL0 ; Restore multiplier mode, etc.
reti ; End of interrupt service routine

15.2.8 Using DMA

In devices with a DMA controller, the multiplier can trigger a transfer when the complete result is available.
The DMA controller needs to start reading the result with MPY32RES0 successively up to MPY32RES3.
Not all registers need to be read. The trigger timing is such that the DMA controller starts reading
MPY32RES0 when its ready, and that the MPY32RES3 can be read exactly in the clock cycle when it is
available to allow fastest access via DMA. The signal into the DMA controller is 'Multiplier ready' (see the
DMA Controller chapter for details).

426 32-Bit Hardware Multiplier (MPY32) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com MPY32 Registers

15.3 MPY32 Registers

MPY32 registers are listed inTable 15-7. The base address can be found in the device-specific data sheet.
The address offsets are listed inTable 15-7.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 15-7. MPY32 Registers

Register Register Address InitialRegister Short Form Type Access Offset State

16-bit operand one – multiply MPY Read/write Word 00h Undefined

MPY_L Read/write Byte 00h Undefined

MPY_H Read/write Byte 01h Undefined

8-bit operand one – multiply MPY_B Read/write Byte 00h Undefined

16-bit operand one – signed multiply MPYS Read/write Word 02h Undefined

MPYS_L Read/write Byte 02h Undefined

MPYS_H Read/write Byte 03h Undefined

8-bit operand one – signed multiply MPYS_B Read/write Byte 02h Undefined

16-bit operand one – multiply accumulate MAC Read/write Word 04h Undefined

MAC_L Read/write Byte 04h Undefined

MAC_H Read/write Byte 05h Undefined

8-bit operand one – multiply accumulate MAC_B Read/write Byte 04h Undefined

16-bit operand one – signed multiply accumulate MACS Read/write Word 06h Undefined

MACS_L Read/write Byte 06h Undefined

MACS_H Read/write Byte 07h Undefined

8-bit operand one – signed multiply accumulate MACS_B Read/write Byte 06h Undefined

16-bit operand two OP2 Read/write Word 08h Undefined

OP2_L Read/write Byte 08h Undefined

OP2_H Read/write Byte 09h Undefined

8-bit operand two OP2_B Read/write Byte 08h Undefined

16x16-bit result low word RESLO Read/write Word 0Ah Undefined

RESLO_L Read/write Byte 0Ah Undefined

RESLO_H Read/write Byte 0Bh Undefined

16x16-bit result high word RESHI Read/write Word 0Ch Undefined

RESHI_L Read/write Byte 0Ch Undefined

RESHI_H Read/write Byte 0Dh Undefined

16x16-bit sum extension register SUMEXT Read Word 0Eh Undefined

SUMEXT_L Read Byte 0Eh Undefined

SUMEXT_H Read Byte 0Fh Undefined

32-bit operand 1 – multiply – low word MPY32L Read/write Word 10h Undefined

MPY32L_L Read/write Byte 10h Undefined

MPY32L_H Read/write Byte 11h Undefined

32-bit operand 1 – multiply – high word MPY32H Read/write Word 12h Undefined

MPY32H_L Read/write Byte 12h Undefined

MPY32H_H Read/write Byte 13h Undefined

24-bit operand 1 – multiply – high byte MPY32H_B Read/write Byte 12h Undefined

32-bit operand 1 – signed multiply – low word MPYS32L Read/write Word 14h Undefined

MPYS32L_L Read/write Byte 14h Undefined

MPYS32L_H Read/write Byte 15h Undefined

427SLAU208E–June 2008–Revised November 2009 32-Bit Hardware Multiplier (MPY32)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MPY32 Registers www.ti.com

Table 15-7. MPY32 Registers (continued)

Register Register Address InitialRegister Short Form Type Access Offset State

32-bit operand 1 – signed multiply – high word MPYS32H Read/write Word 16h Undefined

MPYS32H_L Read/write Byte 16h Undefined

MPYS32H_H Read/write Byte 17h Undefined

24-bit operand 1 – signed multiply – high byte MPYS32H_B Read/write Byte 16h Undefined

32-bit operand 1 – multiply accumulate – low word MAC32L Read/write Word 18h Undefined

MAC32L_L Read/write Byte 18h Undefined

MAC32L_H Read/write Byte 19h Undefined

32-bit operand 1 – multiply accumulate – high word MAC32H Read/write Word 1Ah Undefined

MAC32H_L Read/write Byte 1Ah Undefined

MAC32H_H Read/write Byte 1Bh Undefined

24-bit operand 1 – multiply accumulate – high byte MAC32H_B Read/write Byte 1Ah Undefined

32-bit operand 1 – signed multiply accumulate – low word MACS32L Read/write Word 1Ch Undefined

MACS32L_L Read/write Byte 1Ch Undefined

MACS32L_H Read/write Byte 1Dh Undefined

32-bit operand 1 – signed multiply accumulate – high word MACS32H Read/write Word 1Eh Undefined

MACS32H_L Read/write Byte 1Eh Undefined

MACS32H_H Read/write Byte 1Fh Undefined

24-bit operand 1 – signed multiply accumulate – high byte MACS32H_B Read/write Byte 1Eh Undefined

32-bit operand 2 – low word OP2L Read/write Word 20h Undefined

OP2L_L Read/write Byte 20h Undefined

OP2L_H Read/write Byte 21h Undefined

32-bit operand 2 – high word OP2H Read/write Word 22h Undefined

OP2H_L Read/write Byte 22h Undefined

OP2H_H Read/write Byte 23h Undefined

24-bit operand 2 – high byte OP2H_B Read/write Byte 22h Undefined

32x32-bit result 0 – least significant word RES0 Read/write Word 24h Undefined

RES0_L Read/write Byte 24h Undefined

RES0_H Read/write Byte 25h Undefined

32x32-bit result 1 RES1 Read/write Word 26h Undefined

RES1_L Read/write Byte 26h Undefined

RES1_H Read/write Byte 27h Undefined

32x32-bit result 2 RES2 Read/write Word 28h Undefined

RES2_L Read/write Byte 28h Undefined

RES2_H Read/write Byte 29h Undefined

32x32-bit result 3 – most significant word RES3 Read/write Word 2Ah Undefined

RES3_L Read/write Byte 2Ah Undefined

RES3_H Read/write Byte 2Bh Undefined

MPY32 control register 0 MPY32CTL0 Read/write Word 2Ch Undefined

MPY32CTL0_L Read/write Byte 2Ch Undefined

MPY32CTL0_H Read/write Byte 2Dh 00h

428 32-Bit Hardware Multiplier (MPY32) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com MPY32 Registers

The registers listed in Table 15-8 are treated equally.

Table 15-8. Alternative Registers

Register Alternative 1 Alternative 2

16-bit operand one – multiply MPY MPY32L

8-bit operand one – multiply MPY_B or MPY_L MPY32L_B or MPY32L_L

16-bit operand one – signed multiply MPYS MPYS32L

8-bit operand one – signed multiply MPYS_B or MPYS_L MPYS32L_B or MPYS32L_L

16-bit operand one – multiply accumulate MAC MAC32L

8-bit operand one – multiply accumulate MAC_B or MAC_L MAC32L_B or MAC32L_L

16-bit operand one – signed multiply accumulate MACS MACS32L

8-bit operand one – signed multiply accumulate MACS_B or MACS_L MACS32L_B or MACS32L_L

16x16-bit result low word RESLO RES0

16x16-bit result high word RESHI RES1

429SLAU208E–June 2008–Revised November 2009 32-Bit Hardware Multiplier (MPY32)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MPY32 Registers www.ti.com

32-Bit Hardware Multiplier Control 0 Register (MPY32CTL0)

15 14 13 12 11 10 9 8

MPYDLYReserved MPYDLY32 WRTEN

r-0 r-0 r-0 r-0 r-0 r-0 rw-0 rw-0

7 6 5 4 3 2 1 0

MPYOP2_32 MPYOP1_32 MPYMx MPYSAT MPYFRAC Reserved MPYC

rw rw rw rw rw-0 rw-0 rw-0 rw

Reserved Bits 15-10 Reserved

MPYDLY32 Bit 9 Delayed write mode

0 Writes are delayed until 64-bit result (RES0 to RES3) is available.

1 Writes are delayed until 32-bit result (RES0 to RES1) is available.

MPYDLYWRTEN Bit 8 Delayed write enable

All writes to any MPY32 register are delayed until the 64-bit (MPYDLY32 = 0) or 32-bit (MPYDLY32 = 1)
result is ready.

0 Writes are not delayed.

1 Writes are delayed.

MPYOP2_32 Bit 7 Multiplier bit width of operand 2

0 16 bits

1 32 bits

MPYOP1_32 Bit 6 Multiplier bit width of operand 1

0 16 bits

1 32 bits

MPYMx Bits 5-4 Multiplier mode

00 MPY – Multiply

01 MPYS – Signed multiply

10 MAC – Multiply accumulate

11 MACS – Signed multiply accumulate

MPYSAT Bit 3 Saturation mode

0 Saturation mode disabled

1 Saturation mode enabled

MPYFRAC Bit 2 Fractional mode

0 Fractional mode disabled

1 Fractional mode enabled

Reserved Bit 1 Reserved

MPYC Bit 0 Carry of the multiplier. It can be considered as 33rd or 65th bit of the result if fractional or saturation
mode is not selected, because the MPYC bit does not change when switching to saturation or fractional
mode.

It is used to restore the SUMEXT content in MAC mode.

0 No carry for result

1 Result has a carry

430 32-Bit Hardware Multiplier (MPY32) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 16
SLAU208E–June 2008–Revised November 2009

REF

The REF module is a general purpose reference system that is used to generate voltage references
required for other subsystems available on a given device such as digital-to-analog converters,
analog-to-digital converters, comparators, etc. This chapter describes the REF module.

16.1 REF Introduction

The reference module (REF) is responsible for generation of all critical reference voltages that can be
used by various analog peripherals in a given device. These include, but are not necessarily limited to, the
ADC12_A, DAC12_A, LCD_B, and COMP_B modules dependent upon the particular device. The heart of
the reference system is the bandgap from which all other references are derived by unity or non-inverting
gain stages. The REFGEN sub-system consists of the bandgap, the bandgap bias, and the non-inverting
buffer stage which generates the three primary voltage reference available in the system, namely 1.5 V,
2.0 V, and 2.5 V. In addition, when enabled, a buffered bandgap voltage is also available.

Features of the REF include:

• Centralized, factory trimmed bandgap with excellent PSRR, temperature coefficient, and accuracy
• 1.5-V, 2.0-V, or 2.5-V user selectable internal references
• Buffered bandgap voltage available to rest of system
• Power saving features
• Backward compatibility to existing reference system

The block diagram of the REF module is shown in Figure 16-1.

431SLAU208E–June 2008–Revised November 2009 REF
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

+

−

BANDGAP

1.5/2.0/2.5V

+

−

+

−

To external pad

To ADC12_A
capacitor array

ADC12REFOUT

ADC12REFON

COMP_B0

REFGEN

Variable Reference

ADC12_A

+

−

DAC12OG

DAC12_A
Channel 0

+

−

+

−

DAC12OG

DAC12_A
Channel 1

To DAC12

To DAC12

From REFGEN

From REFGEN

Switch
Mux

Bandgap Reference

Local
Buffer

COMP_B1
Local
Buffer

Vref/2

Vref/3

Vref

R
E

F
M

O
D

E
R

E
Q

BIAS

R
E

F
B

G
R

E
Q

R
E

F
G

E
N

R
E

Q

REF Introduction www.ti.com

Figure 16-1. REF Block Diagram

432 REF SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Principle of Operation

16.2 Principle of Operation

The REF module provides all the necessary voltage references to be used by various peripheral modules
throughout the system. These may include, but are not limited to, devices that contain an ADC12_A,
DAC12_A, LCD_B, or COMP_B.

The REFGEN subsystem contains a high-performance bandgap. This bandgap has very good accuracy
(factory trimmed), low temperature coefficient, and high PSRR while operating at low power. The bandgap
voltage is used to generate three voltages via a non-inverting amplifier stage, namely 1.5 V, 2.0 V, and
2.5 V. One voltage can be selected at a time. One output of the REFGEN subsystem is the variable
reference line. The variable reference line provides either 1.5 V, 2.0 V, or 2.5 V to the rest of the system.
A second output of the REFGEN subsystem provides a buffered bandgap reference line that can also be
used by modules throughout the system. Additionally, the REFGEN supports voltage references required
for the DAC12_A module, when available. Lastly, the REFGEN subsystem also includes the temperature
sensor circuitry since this is derived from the bandgap. The temperature sensor is used by an ADC to
measure a voltage proportional to temperature.

16.2.1 Low-Power Operation

The REF module is capable of supporting low-power applications such as LCD generation. Many of these
applications do not require a very accurate reference, compared to data conversion, yet power is of prime
concern. To support these kinds of applications, the bandgap is capable of being used in a sampled
mode. In sampled mode, the bandgap circuitry is clocked via the VLO at an appropriate duty cycle. This
reduces the average power of the bandgap circuitry significantly, at the cost of accuracy. When not in
sampled mode, the bandgap is in static mode. Its power is at its highest, but so is its accuracy.

Modules automatically can request static mode or sampled mode via their own individual request lines. In
this way, the particular module determines what mode is appropriate for its proper operation and
performance. Any one active module that requests static mode will cause all other modules to use static
mode, regardless if another module is requesting sampled mode. In other words, static mode always has
higher priority over sampled mode.

16.2.2 REFCTL

The REFCTL registers provide a way to control the reference system from one centralized set of registers.
By default, REFCTL is used as the primary control of the reference system. On legacy devices, the
ADC12_A provided the control bits necessary to configure the reference system, namely ADC12REFON,
ADC12REF2_5, ADC12TCOFF, ADC12REFOUT, ADC12SR, and ADC12REFBURST. The ADC12SR
and ADC12REFBURST bits are very specific to the ADC12 operation and therefore are not included in
REFCTL. All legacy control bits can still be used to configure the reference system allowing for backward
compatibility by clearing REFMSTR. In this case, the REFCTL register bits are a 'do not care'.

Setting the reference master bit (REFMSTR = 1), allows the reference system to be controlled via the
REFCTL register. This is the default setting. In this mode, the legacy control bits ADC12REFON,
ADC12REF2_5, ADC12TCOFF, and ADC12REFOUT are do not care. The ADC12SR and
ADC12REFBURST are still controlled via the ADC12_A since these are very specific to the ADC12_A
module. If REFMSTR set is cleared, all settings in the REFCTL are do not care and the reference system
is controlled completely by the legacy control bits inside the ADC12_A module. Table
Table 16-1summarizes the REFCTL bits and their effect on the REF module.

433SLAU208E–June 2008–Revised November 2009 REF
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Principle of Operation www.ti.com

Table 16-1. REF Control of Reference System (REFMSTR = 1) (Default)

REF Register Setting Function

Setting this bit enables the REFGEN subsystem which includes the bandgap, the
bandgap bias circuitry, and the 1.5-V/2.0-V/2.5-V buffer. Setting this bit will cause the

REFON REFGEN subsystem to remain enabled regardless if any module has requested it.
Clearing this bit will disable the REFGEN subsystem only when there are no pending
requests for REFGEN from all modules.

Selects 1.5 V, 2.0 V, or 2.5 V to be present on the variable reference line whenREFVSEL REFON = 1 or REFGEN is requested by any module.

Setting this bits enables the variable reference line voltage to be present external to theREFOUT device via a buffer (external reference buffer).

REFTCOFF Setting this bit disables the temperature sensor (when available) to conserve power.

Table 16-2 summarizes the ADC12_A control bits and their effect on the REF module. Please see the
ADC12_A module description for further details.

NOTE: Although the REF module supports using the ADC12_A bits as control for the reference
system, it is recommended that the usage of the new REFCTL register be used and older
code migrated to this methodology. This allows the logical partitioning of the reference
system to be separate from the ADC12_A system and forms a more natural partitioning for
future products.

Table 16-2. Table 2. ADC Control of Reference System (REFMSTR = 0)

ADC12_A Register Setting Function

Setting this bit enables the REFGEN subsystem which includes the bandgap, the
bandgap bias circuitry, and the 1.5-V/2.0-V/2.5-V buffer. Setting this bit will cause the

ADC12REFON REFGEN subsystem to remain enabled regardless if any module has requested it.
Clearing this bit will disable the REFGEN subsystem only when there are no pending
requests for REFGEN from all modules.

Setting this bits causes 2.5 V to be present on the variable reference line when
ADC12REF2_5 ADC12REFON = 1. Clearing this bit causes 1.5 V to be present on the variable

reference line when ADC12REFON = 1.

Setting this bits enables the variable reference line voltage to be present external to theADC12REFOUT device via a buffer (external reference buffer).

ADC12TCOFF Setting this bit disables the temperature sensor to conserve power.

As stated previously, the ADC12REFBURST does have an effect on the reference system and can be
controlled via the ADC12_A. This bit is in effect regardless if REFCTL or the ADC12_A is controlling the
reference system. Setting ADC12REFBURST = 1 enables burst mode when REFON = 1 and REFMSTR =
1 or when ADC12REFON = 1 and REFMSTR = 0. In burst mode, the internal buffer (ADC12REFOUT = 0)
or the external buffer (ADC12REFOUT = 1) is enabled only during a conversion and disabled
automatically to conserve power.

NOTE: The legacy ADC12_A bit ADC12REF2_5 only allows for selecting either 1.5 V or 2.5 V. To
select 2.0 V, the REFVSEL control bits must be used (REFMSTR = 1).

16.2.3 Reference System Requests

There are three basic reference system requests that are used by the reference system. Each module can
utilize these requests to obtain the proper response from the reference system. The three basic requests
are REFGENREQ, REFBGREQ, and REFMODEREQ. No interaction is required by the user code. The
modules select the proper requests automatically.

A reference request signal, REFGENREQ, is available as an input into the REFGEN subsystem. This
signal represents a logical OR of individual requests coming from the various modules in the system that

434 REF SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Principle of Operation

require a voltage reference to be available on the variable reference line. When a module requires a
voltage reference, it asserts its corresponding REGFENREQ signal. Once the REFGENREQ is asserted,
the REFGEN subsystem will be enabled. After the specified settling time, the variable reference line
voltage will be stable and ready for use. The REFVSEL settings determine which voltage will be generated
on the variable reference line.

In addition to the REFGENREQ, a second reference request signal, REFBGREQ is available. The
REFBGREQ signal represents a logical OR of requests coming from the various modules that require the
bandgap reference line. Once the REFBGREQ is asserted, the bandgap, along with its bias circuitry and
local buffer, will be enabled if it is not already enabled by a prior request.

The REFMODEREQ request signal is available that configures the bandgap and its bias circuitry to
operate in a sampled or static mode of operation. The REFMODEREQ signal basically represents a
logical AND of individual requests coming from the various analog modules. In reality, a REFMODEREQ
occurs only if a module's REFGENREQ or REFBGQ is also asserted, otherwise it is a do not care. When
REFMODEREQ = 1, the bandgap operates in sampled mode. When a module asserts its corresponding
REFMODEREQ signal, it is requesting that the bandgap operate in sampled mode. Since REMODEREQ
is a logical AND of all individual requests, any modules requesting static mode will cause the bandgap to
operate in static mode. The BGMODE bit can be used as an indicator of static or sampled mode of
operation.

16.2.3.1 REFBGACT, REFGENACT, REFGENBUSY

Any module that is using the variable reference line will cause REFGENACT to be set inside the REFCTL
register. This bit is read only and indicates to the user that the REFGEN is active or off. Similarly, the
REFBGACT is active any time one or more modules is actively utilizing the bandgap reference line and
indicates to the user that the REFBG is active or off.

The REFGENBUSY signal, when asserted, indicates that a module is using the reference and cannot
have any of it settings changed. For example, during an active ADC12_A conversion, the reference
voltage level should not be changed. REFGENBUSY is asserted when there is an active ADC12_A
conversion (ENC = 1) or when the DAC12_A is actively converting (DAC12AMPx > 1 and DAC12SREFx =
0). REFGENBUSY when asserted, write protects the REFCTL register. This prevents the reference from
being disabled or its level changed during any active conversion. Please note that there is no such
protection for the DAC12_A if the ADC12_A legacy control bits are used for the reference control. If the
user changes the ADC12_A settings and the DAC12_A is using the reference, the DAC12_A conversion
will be effected.

16.2.3.2 ADC12_A

For devices that contain an ADC12_A module, the ADC12_A module contains two local buffers. The
larger buffer can be used to drive the reference voltage, present on the variable reference line, external to
the device. This buffer has larger power consumption due to a selectable burst mode, as well as, its need
to drive larger DC loads that may be present outside the device. The large buffer is enabled continuously
when REFON = 1, REFOUT =1, and ADC12REFBURST = 0. When ADC12REFBURST = 1, the buffer is
enabled only during an ADC conversion, shutting down automatically upon completion of a conversion to
save power. In addition, when REFON = 1 and REFOUT = 1, the second smaller buffer is automatically
disabled. In this case, the output of the large buffer is connected to the capacitor array via an internal
analog switch. This ensures the same reference is used throughout the system. If REFON = 1 and
REFOUT = 0, the internal buffer is used for ADC conversion and the large buffer remains disabled. The
small internal buffer can operate in burst mode as well by setting ADC12REFBURST = 1

16.2.3.3 DAC12_A

Some devices may contain a DAC12_A module. The DAC12_A can use the 1.5 V, 2.0 V, or 2.5 V from
the variable reference line for its reference. The DAC12_A can request its reference directly by the
settings within the DAC12_A module itself. Basically, if the DAC is enabled and the internal reference is
selected, it will request it from the REF module. In addition, as before, setting REFON = 1 (REFMSTR = 1)
or ADC12REFON = 1 (REFMSTR = 0) can enable the variable reference line independent of the
DAC12_A control bits.

435SLAU208E–June 2008–Revised November 2009 REF
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Principle of Operation www.ti.com

The REGEN subsystem will provide divided versions of the variable reference line for usage in the
DAC12_A module. The DAC12_A module requires either /2 or /3 of the variable reference. The selection
of these depends on the control bits inside the DAC12_A module (DAC12IR, DAC12OG) and is handled
automatically by the REF module.

When the DAC12_A selects AVcc or VeREF+ as its reference, the DAC12_A has its own /2 and /3
resistor string available that scales the input reference appropriately based on the DAC12IR and
DAC12OG settings.

16.2.3.4 LCD_B

Devices that contain an LCD will utilize the LCD_B module. The LCD_B module requires a reference to
generate the proper LCD voltages. The bandgap reference line from the REFGEN sub-system is used for
this purpose. The LCD is enabled when LCDON = 1 of the LCD_B module. This causes a REFBGREQ
from the LCD module to be asserted. The buffered bandgap will be made available on the bandgap
reference line for usage inside the LCD_B module.

436 REF SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com REF Registers

16.3 REF Registers

The REF registers are listed in Table 16-3. The base address can be found in the device specific
datasheet. The address offset is listed in Table 16-3.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 16-3. REF Registers

AddressRegister Short Form Register Type Access Initial StateOffset

REFCTL0 REFCTL0 Read/write Word 00h 0080h

REFCTL0_L Read/write Byte 00h 80h

REFCTL0_H Read/write Byte 01h 00h

437SLAU208E–June 2008–Revised November 2009 REF
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

REF Registers www.ti.com

REFCTL0, REF Control Register 0

15 14 13 12 11 10 9 8

Reserved Reserved Reserved Reserved BGMODE REFGENBUSY REFBGACT REFGENACT

r0 r0 r0 r0 r-(0) r-(0) r-(0) r-(0)

7 6 5 4 3 2 1 0

REFMSTR Reserved REFVSEL REFTCOFF Reserved REFOUT REFON

rw-(1) r0 rw-(0) rw-(0) rw-(0) r0 rw-(0) rw-(0)

Modifiable only when REFGENBUSY = 0

Reserved Bits 15-12 Reserved. Always reads back 0.

BGMODE Bit 11 Bandgap mode. Read only.

0 Static mode.

1 Sampled mode.

REFGENBUSY Bit 10 Reference generator busy. Read only.

0 Reference generator not busy.

1 Reference generator busy.

REFBGACT Bit 9 Reference bandgap active. Read only.

0 Reference bandgap buffer not active.

1 Reference bandgap buffer active.

REFGENACT Bit 8 Reference generator active. Read only.

0 Reference generator not active.

1 Reference generator active.

REFMSTR Bit 7 REF master control

0 Reference system controlled by legacy control bits inside the ADC12_A module when available.

1 Reference system controlled by REFCTL register. Common settings inside the ADC12_A
module (if exists) are do not care.

Reserved Bit 6 Reserved. Always reads back 0.

REFVSEL Bits 5-4 Reference voltage level select

0 0 1.5 V available when reference requested or REFON = 1

0 1 2.0 V available when reference requested or REFON = 1

1 x 2.5 V available when reference requested or REFON = 1

REFTCOFF Bit 3 Temperature sensor disabled

0 Temperature sensor enabled.

1 Temperature sensor disabled to save power.

Reserved Bit 2 Reserved. Always reads back 0.

REFOUT Bit 1 Reference output buffer

0 Reference output not available externally.

1 Reference output available externally. If ADC12REFBURST = 0, or DAC12_A is enabled, output
is available continuously. If ADC12REFBURST = 1, output is available only during an ADC12_A
conversion.

REFON Bit 0 Reference enable

0 Disables reference if no other reference requests are pending.

1 Enables reference.

438 REF SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 17
SLAU208E–June 2008–Revised November 2009

ADC12_A

The ADC12_A module is a high-performance 12-bit analog-to-digital converter (ADC). This chapter
describes the operation of the ADC12_A module.

Topic ... Page

17.1 ADC12_A Introduction .. 440
17.2 ADC12_A Operation ... 442
17.3 ADC12_A Registers ... 456

439SLAU208E–June 2008–Revised November 2009 ADC12_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ADC12_A Introduction www.ti.com

17.1 ADC12_A Introduction

The ADC12_A module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit
SAR core, sample select control, reference generator (MSP430F54xx only – in other devices, separate
REF module), and a 16-word conversion-and-control buffer. The conversion-and-control buffer allows up
to 16 independent analog-to-digital converter (ADC) samples to be converted and stored without any CPU
intervention.

ADC12_A features include:

• Greater than 200-ksps maximum conversion rate
• Monotonic 12-bit converter with no missing codes
• Sample-and-hold with programmable sampling periods controlled by software or timers.
• Conversion initiation by software or timers.
• Software-selectable on-chip reference voltage generation (MSP430F54xx: 1.5 V or 2.5 V, other

devices: 1.5 V, 2.0 V, or 2.5 V)
• Software-selectable internal or external reference
• Up to 12 individually configurable external input channels
• Conversion channels for internal temperature sensor, AVCC, and external references
• Independent channel-selectable reference sources for both positive and negative references
• Selectable conversion clock source
• Single-channel, repeat-single-channel, sequence, and repeat-sequence conversion modes
• ADC core and reference voltage can be powered down separately (MSP430F54xx only, other devices

see REF module specification for details)
• Interrupt vector register for fast decoding of 18 ADC interrupts
• 16 conversion-result storage registers

The block diagram of ADC12_A is shown in Figure 17-1. The reference generation is in MSP430F54xx
devices located in the ADC12_A module. In other devices, the reference generator is located in the
reference module (see the device-specific data sheet).

440 ADC12_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000

INCHx

4

Sample
and
Hold

S/H

12-bit ADC Core

VR- VR+

Convert

1 0SREF2

0

REFOUT

A0
A1
A2
A3
A4
A5
A6
A7

Ve +REF

V /V- eREF-REF

VREF+

11 10 01 00

AVCC

SREF1
SREF0

ADC12SR

REFBURST

ADC12ON

SAMPCON

Sample Timer
/4 ../1024

BUSY

0

1

ISSH

SHI

ADC12SHTx MSC

Divider
/1 .. /8

ADC12CLK

ADC12DIVx

Ref_x

on
1.5V or2.5 V
Reference

VCC

REF2_5V

1

00

01

10

11

ACLK

MCLK

SMCLK

ADC12OSC
(see Note A)

ADC12SSELx

Sync

REFON

INCHx = 0Ah

R

R

AVCC

AVSS

Ref_x

INCHx = 0Bh

-
16 x 8

Memory
Control

-

00

01

10

11

Timer sources
(see Note B)

SHSx

ADC12SC

ADC12MCTL0

ADC12MCTL15

-
16 x 12
Memory
Buffer

-

ADC12MEM0

ADC12MEM15

4

CSTARTADDx

CONSEQx

1

0

SHP
SHT0x

4
A12
A13
A14
A15

:1
:4

0

1

ADC12PDIV

AVSS

ENC

www.ti.com ADC12_A Introduction

A The MODOSC is part of the UCS. See the UCS chapter for more information.

B See the device-specific data sheet for timer sources available.

Figure 17-1. ADC12_A Block Diagram

441SLAU208E–June 2008–Revised November 2009 ADC12_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

N = 4095 ×
ADC

Vin – V
R–

V – V
R+ R–

ESD Protection

R ~ 100 W ADC12MCTLx.0–3

Input
Ax

ADC12_A Operation www.ti.com

17.2 ADC12_A Operation

The ADC12_A module is configured with user software. The setup and operation of the ADC12_A is
discussed in the following sections.

17.2.1 12-Bit ADC Core

The ADC core converts an analog input to its 12-bit digital representation and stores the result in
conversion memory. The core uses two programmable/selectable voltage levels (VR+ and VR-) to define the
upper and lower limits of the conversion. The digital output (NADC) is full scale (0FFFh) when the input
signal is equal to or higher than VR+, and zero when the input signal is equal to or lower than VR-. The
input channel and the reference voltage levels (VR+ and VR-) are defined in the conversion-control memory.
The conversion formula for the ADC result NADC is:

The ADC12_A core is configured by two control registers, ADC12CTL0 and ADC12CTL1. The core is
enabled with the ADC12ON bit. The ADC12_A can be turned off when not in use to save power. With few
exceptions, the ADC12_A control bits can only be modified when ADC12ENC = 0. ADC12ENC must be
set to 1 before any conversion can take place.

17.2.1.1 Conversion Clock Selection

The ADC12CLK is used both as the conversion clock and to generate the sampling period when the pulse
sampling mode is selected. The ADC12_A source clock is selected using the predivider controlled by the
ADC12PDIV bit and the divider using the ADC12SSELx bits. The input clock can be divided from 1–32
using both the ADC12DIVx bits and the ADC12PDIV bit. Possible ADC12CLK sources are SMCLK,
MCLK, ACLK, and the ADC12OSC.

The ADC12OSC in the block diagram refers to the MODOSC 5 MHz oscillator from the UCS (see the
UCS module for more information) which can vary with individual devices, supply voltage, and
temperature. See the device-specific data sheet for the ADC12OSC specification.

The user must ensure that the clock chosen for ADC12CLK remains active until the end of a conversion. If
the clock is removed during a conversion, the operation does not complete and any result is invalid.

17.2.2 ADC12_A Inputs and Multiplexer

The 12 external and 4 internal analog signals are selected as the channel for conversion by the analog
input multiplexer. The input multiplexer is a break-before-make type to reduce input-to-input noise injection
resulting from channel switching (see Figure 17-2). The input multiplexer is also a T-switch to minimize the
coupling between channels. Channels that are not selected are isolated from the A/D and the intermediate
node is connected to analog ground (AVSS), so that the stray capacitance is grounded to eliminate
crosstalk.

The ADC12_A uses the charge redistribution method. When the inputs are internally switched, the
switching action may cause transients on the input signal. These transients decay and settle before
causing errant conversion.

Figure 17-2. Analog Multiplexer

442 ADC12_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com ADC12_A Operation

17.2.2.1 Analog Port Selection

The ADC12_A inputs are multiplexed with digital port pins. When analog signals are applied to digital
gates, parasitic current can flow from VCC to GND. This parasitic current occurs if the input voltage is near
the transition level of the gate. Disabling the digital pat of the port pin eliminates the parasitic current flow
and, therefore, reduces overall current consumption. The PySELx bits provide the ability to disable the
port pin input and output buffers.
; Py.0 and Py.1 configured for analog input

BIS.B #3h,&PySEL ; Py.1 and Py.0 ADC12_A function

17.2.3 Voltage Reference Generator

The ADC12_A module of the MSP430F54xx contains a built-in voltage reference with two selectable
voltage levels, 1.5 V and 2.5 V. Either of these reference voltages may be used internally and externally
on pin VREF+.

The ADC12_A modules of other devices have a separate reference module that supplies three selectable
voltage levels, 1.5 V, 2.0 V, and 2.5 V to the ADC12_A. Either of these voltages may be used internally
and externally on pin VREF+.

Setting ADC12REFON = 1 enables the reference voltage of the ADC12_A module. When
ADC12REF2_5V = 1, the internal reference is 2.5 V; when ADC12REF2_5V = 0, the reference is 1.5 V .
The reference can be turned off to save power when not in use. Devices with the REF module can use the
control bits located in the ADC12_A module, or the control registers located in the REF module to control
the reference voltage supplied to the ADC. Per default, the register settings of the REF module define the
reference voltage settings. The control bit REFMSTR in the REF module is used to hand over control to
the ADC12_A reference control register settings. If the register bit REFMSTR is set to 1 (default), the REF
module registers control the reference settings. If REFMSTR is set to 0, the ADC12_A reference setting
define the reference voltage of the ADC12_A module.

External references may be supplied for VR+ and VR- through pins VREF+/VeREF+ and VREF-/VeREF- ,
respectively.

External storage capacitors are only required if REFOUT = 1 and the reference voltage is made available
at the pins.

17.2.3.1 Internal Reference Low-Power Features

The ADC12_A internal reference generator is designed for low-power applications. The reference
generator includes a band-gap voltage source and a separate buffer. The current consumption and
settling time of each is specified separately in the device-specific data sheet. When ADC12REFON = 1,
both are enabled, and if ADC12REFON = 0, both are disabled.

When ADC12REFON = 1 and REFBURST = 1 but no conversion is active, the buffer is automatically
disabled and automatically reenabled when needed. When the buffer is disabled, it consumes no current.
In this case, the band-gap voltage source remains enabled.

The REFBURST bit controls the operation of the reference buffer. When REFBURST = 1, the buffer is
automatically disabled when the ADC12_A is not actively converting, and automatically reenabled when
needed. When REFBURST = 0, the buffer is on continuously. This allows the reference voltage to be
present outside the device continuously if REFOUT = 1.

The internal reference buffer also has selectable speed versus power settings. When the maximum
conversion rate is below 50 ksps, setting ADC12SR = 1 reduces the current consumption of the buffer
approximately 50%.

17.2.4 Auto Power Down

The ADC12_A is designed for low-power applications. When the ADC12_A is not actively converting, the
core is automatically disabled and automatically reenabled when needed. The MODOSC is also
automatically enabled when needed and disabled when not needed.

443SLAU208E–June 2008–Revised November 2009 ADC12_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Start

Sampling

Stop

Sampling

Conversion

Complete

SAMPCON

SHI

tsample tconvert

tsync

13 × ADC12CLK

Start

Conversion

ADC12CLK

ADC12_A Operation www.ti.com

17.2.5 Sample and Conversion Timing

An analog-to-digital conversion is initiated with a rising edge of the sample input signal SHI. The source
for SHI is selected with the SHSx bits and includes the following:

• ADC12SC bit
• Up to three timer outputs (see to the device-specific data sheet for available timer sources).

The ADC12_A supports 8-bit, 10-bit, and 12-bit resolution modes selectable by the ADC12RES bits. The
analog-to-digital conversion requires 9, 11, and 13 ADC12CLK cycles, respectively. The polarity of the SHI
signal source can be inverted with the ADC12ISSH bit. The SAMPCON signal controls the sample period
and start of conversion. When SAMPCON is high, sampling is active. The high-to-low SAMPCON
transition starts the analog-to-digital conversion. Two different sample-timing methods are defined by
control bit ADC12SHP, extended sample mode, and pulse mode. See the device-specific data sheet for
available timers for SHI sources.

17.2.5.1 Extended Sample Mode

The extended sample mode is selected when ADC12SHP = 0. The SHI signal directly controls SAMPCON
and defines the length of the sample period tsample. When SAMPCON is high, sampling is active. The
high-to-low SAMPCON transition starts the conversion after synchronization with ADC12CLK (see
Figure 17-3).

Figure 17-3. Extended Sample Mode

17.2.5.2 Pulse Sample Mode

The pulse sample mode is selected when ADC12SHP = 1. The SHI signal is used to trigger the sampling
timer. The ADC12SHT0x and ADC12SHT1x bits in ADC12CTL0 control the interval of the sampling timer
that defines the SAMPCON sample period tsample. The sampling timer keeps SAMPCON high after
synchronization with AD12CLK for a programmed interval tsample. The total sampling time is tsample plus tsync

(see Figure 17-4).

The ADC12SHTx bits select the sampling time in 4× multiples of ADC12CLK. ADC12SHT0x selects the
sampling time for ADC12MCTL0 to ADC12MCTL7, and ADC12SHT1x selects the sampling time for
ADC12MCTL8 to ADC12MCTL15.

444 ADC12_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Start

Sampling

Stop

Sampling

Conversion

Complete

SAMPCON

SHI

tsample tconvert

tsync

13 × ADC12CLK

Start

Conversion

ADC12CLK

VS

RS VI
RI

VC

CI

V = Input voltage at pin Ax

V = External source voltage

R = External source resistance

R = Internal MUX-on input resistance

C = Input capacitance

V = Capacitance-charging voltage

I

S

S

I

I

C

MSP430

www.ti.com ADC12_A Operation

Figure 17-4. Pulse Sample Mode

17.2.5.3 Sample Timing Considerations

When SAMPCON = 0, all Ax inputs are high impedance. When SAMPCON = 1, the selected Ax input can
be modeled as an RC low-pass filter during the sampling time tsample (see Figure 17-5). An internal MUX-on
input resistance RI (maximum 1.8 kΩ) in series with capacitor CI (25 pF maximum) is seen by the source.
The capacitor CI voltage VC must be charged to within one-half LSB of the source voltage VS for an
accurate n-bit conversion, where n is the bits of resolution required.

Figure 17-5. Analog Input Equivalent Circuit

The resistance of the source RS and RI affect tsample. The following equation can be used to calculate the
minimum sampling time tsample for a n-bit conversion, where n equals the bits of resolution:

tsample > (RS + RI) × ln(2n+1) × CI + 800 ns

Substituting the values for RI and CI given above, the equation becomes:
tsample > (RS + 1.8 kΩ) × ln(2n+1) × 25 pF + 800 ns

For example, for 12-bit resolution, if RS is 10 kΩ, tsample must be greater than 3.46 μs.

445SLAU208E–June 2008–Revised November 2009 ADC12_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ADC12_A Operation www.ti.com

17.2.6 Conversion Memory

There are 16 ADC12MEMx conversion memory registers to store conversion results. Each ADC12MEMx
is configured with an associated ADC12MCTLx control register. The SREFx bits define the voltage
reference and the INCHx bits select the input channel. The ADC12EOS bit defines the end of sequence
when a sequential conversion mode is used. A sequence rolls over from ADC12MEM15 to ADC12MEM0
when the ADC12EOS bit in ADC12MCTL15 is not set.

The CSTARTADDx bits define the first ADC12MCTLx used for any conversion. If the conversion mode is
single-channel or repeat-single-channel, the CSTARTADDx points to the single ADC12MCTLx to be used.

If the conversion mode selected is either sequence-of-channels or repeat-sequence-of-channels,
CSTARTADDx points to the first ADC12MCTLx location to be used in a sequence. A pointer, not visible to
software, is incremented automatically to the next ADC12MCTLx in a sequence when each conversion
completes. The sequence continues until an ADC12EOS bit in ADC12MCTLx is processed; this is the last
control byte processed.

When conversion results are written to a selected ADC12MEMx, the corresponding flag in the ADC12IFGx
register is set.

There are two formats available to store the conversion result, ADC12MEMx. When ADC12DF = 0, the
conversion is right justified, unsigned. For 8-bit, 10-bit, and 12-bit resolutions, the upper 8, 6, and 4 bits of
ADC12MEMx are always zeros, respectively. When ADC12DF = 1, the conversion result is left justified,
two's complement. For 8-bit, 10-bit, and 12-bit resolutions, the lower 8, 6, and 4 bits of ADC12MEMx are
always zeros, respectively. This is summarized in Table 17-1.

Table 17-1. ADC12_A Conversion Result Formats

Analog Input ADC12DF ADC12RES Ideal Conversion Results ADC12MEMxVoltage

0 00 0 to 255 0000h - 00FFh

0 01 0 to 1023 0000h - 03FFh

0 10 0 to 4095 0000h - 0FFFh
–VREF to +VREF

1 00 -128 to 127 8000h - 7F00h

1 01 -512 to 511 8000h - 7FC0h

1 10 -2048 to 2047 8000h - 7FF0h

17.2.7 ADC12_A Conversion Modes

The ADC12_A has four operating modes selected by the CONSEQx bits as listed in Table 17-2. All state
diagrams assume a 12-bit resolution setting.

Table 17-2. Conversion Mode Summary

ADC12CONSEQx Mode Operation

00 Single-channel single-conversion A single channel is converted once.

01 Sequence-of-channels A sequence of channels is converted once.

10 Repeat-single-channel A single channel is converted repeatedly.

11 Repeat-sequence-of-channels A sequence of channels is converted repeatedly.

446 ADC12_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ADC12

off

x = CSTARTADDx

Wait for Enable

Wait for Trigger

Sample, Input

Channel Defined in

ADC12MCTLx

SAMPCON =

SAMPCON = 1

Convert

SAMPCON =

ADC12ENC = 0

ADC12ENC = 0

(see Note A)

12 × ADC12CLK

Conversion

Completed,

Result Stored Into

ADC12MEMx,

ADC12IFG.x is Set

1 × ADC12CLK

ADC12ON = 1

CONSEQx = 00

x = pointer to ADC12MCTLx

ADC12ENC ¹

ADC12ENC =

ADC12ENC =

ADC12ENC = 0

(see Note A)

SHSx = 0

and

ADC12ENC = 1 or

and

ADC12SC =

www.ti.com ADC12_A Operation

17.2.7.1 Single-Channel Single-Conversion Mode

A single channel is sampled and converted once. The ADC result is written to the ADC12MEMx defined
by the CSTARTADDx bits. Figure 17-6 shows the flow of the single-channel single-conversion mode.
When ADC12SC triggers a conversion, successive conversions can be triggered by the ADC12SC bit.
When any other trigger source is used, ADC12ENC must be toggled between each conversion.

A Conversion result is unpredictable.

Figure 17-6. Single-Channel Single-Conversion Mode

447SLAU208E–June 2008–Revised November 2009 ADC12_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ADC12

off

x = CSTARTADDx

Wait for Enable

ADC12ENC ¹

Wait for Trigger

Sample, Input

Channel Defined in

ADC12MCTLx

ADC12ENC =SHSx = 0

and

ADC12ENC = 1 or

and

ADC12SC =

SAMPCON =

SAMPCON = 1

Convert

SAMPCON =
12 × ADC12CLK

Conversion

Completed,

Result Stored Into

ADC12MEMx,

ADC12IFG.x is Set

1 × ADC12CLK

ADC12ON = 1

CONSEQx = 01

ADC12MSC = 1

and

ADC12SHP = 1

and

ADC12EOS.x = 0

ADC12EOS.x = 1

If x < 15 then x = x + 1

else x = 0

If x < 15 then x = x + 1

else x = 0

(ADC12MSC = 0

or

ADC12SHP = 0)

and

ADC12EOS.x = 0

x = pointer to ADC12MCTLx

ADC12ENC =

ADC12_A Operation www.ti.com

17.2.7.2 Sequence-of-Channels Mode

A sequence of channels is sampled and converted once. The ADC results are written to the conversion
memories starting with the ADCMEMx defined by the CSTARTADDx bits. The sequence stops after the
measurement of the channel with a set ADC12EOS bit. Figure 17-7 shows the sequence-of-channels
mode. When ADC12SC triggers a sequence, successive sequences can be triggered by the ADC12SC
bit. When any other trigger source is used, ADC12ENC must be toggled between each sequence.

Figure 17-7. Sequence-of-Channels Mode

448 ADC12_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ADC12

off

x = CSTARTADDx

Wait for Enable

ADC12ENC ¹

Wait for Trigger

Sample, Input

Channel Defined in

ADC12MCTLx

ADC12

ENC =

ADC12

ENC =SHSx = 0

and

ADC12ENC = 1 or

and

ADC12SC =

SAMPCON =

SAMPCON = 1

Convert

SAMPCON = 12 × ADC12CLK

Conversion

Completed,

Result Stored Into

ADC12MEMx,

ADC12IFG.x is Set

1 × ADC12CLK

ADC12ON = 1

CONSEQx = 10

ADC12MSC = 1

and

ADC12SHP = 1

and

ADC12ENC = 1

ADC12ENC = 0

(ADC12MSC = 0

or

ADC12SHP = 0)

and

ADC12ENC = 1

x = pointer to ADC12MCTLx

www.ti.com ADC12_A Operation

17.2.7.3 Repeat-Single-Channel Mode

A single channel is sampled and converted continuously. The ADC results are written to the ADC12MEMx
defined by the CSTARTADDx bits. It is necessary to read the result after the completed conversion
because only one ADC12MEMx memory is used and is overwritten by the next conversion. Figure 17-8
shows the repeat-single-channel mode.

Figure 17-8. Repeat-Single-Channel Mode

449SLAU208E–June 2008–Revised November 2009 ADC12_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ADC12

off

x = CSTARTADDx

Wait for Enable

ADC12ENC ¹

Wait for Trigger

Sample, Input

Channel Defined in

ADC12MCTLx

SHSx = 0

and

ADC12ENC = 1 or

and

ADC12SC =

SAMPCON =

SAMPCON = 1

SAMPCON =

12 × ADC12CLK

Conversion Completed,

Result Stored Into

ADC12MEMx,

ADC12IFG.x is Set

1 × ADC12CLK

ADC12ON = 1

CONSEQx = 11

ADC12MSC = 1 and ADC12SHP = 1

and (ADC12ENC = 1 or ADC12EOS.x = 0)

ADC12ENC = 0

and

ADC12EOS.x = 1

(ADC12MSC = 0

or

ADC12SHP = 0)

and

(ADC12ENC = 1

or

ADC12EOS.x = 0)

If ADC12EOS.x = 1 then

x =CSTARTADDx

else {if x < 15 then x = x + 1 else

x = 0}

If ADC12EOS.x = 1 then

x =CSTARTADDx

else {if x < 15 then x = x + 1 else

x = 0}

Convert

ADC12ENC =

ADC12ENC =

x = pointer to ADC12MCTLx

ADC12_A Operation www.ti.com

17.2.7.4 Repeat-Sequence-of-Channels Mode

A sequence of channels is sampled and converted repeatedly. The ADC results are written to the
conversion memories starting with the ADC12MEMx defined by the CSTARTADDx bits. The sequence
ends after the measurement of the channel with a set ADC12EOS bit and the next trigger signal restarts
the sequence. Figure 17-9 shows the repeat-sequence-of-channels mode.

Figure 17-9. Repeat-Sequence-of-Channels Mode

450 ADC12_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com ADC12_A Operation

17.2.7.5 Using the Multiple Sample and Convert (ADC12MSC) Bit

To configure the converter to perform successive conversions automatically and as quickly as possible, a
multiple sample and convert function is available. When ADC12MSC = 1, CONSEQx > 0, and the sample
timer is used, the first rising edge of the SHI signal triggers the first conversion. Successive conversions
are triggered automatically as soon as the prior conversion is completed. Additional rising edges on SHI
are ignored until the sequence is completed in the single-sequence mode, or until the ADC12ENC bit is
toggled in repeat-single-channel or repeated-sequence modes. The function of the ADC12ENC bit is
unchanged when using the ADC12MSC bit.

17.2.7.6 Stopping Conversions

Stopping ADC12_A activity depends on the mode of operation. The recommended ways to stop an active
conversion or conversion sequence are:

• Resetting ADC12ENC in single-channel single-conversion mode stops a conversion immediately and
the results are unpredictable. For correct results, poll the busy bit until reset before clearing
ADC12ENC.

• Resetting ADC12ENC during repeat-single-channel operation stops the converter at the end of the
current conversion.

• Resetting ADC12ENC during a sequence or repeat-sequence mode stops the converter at the end of
the sequence.

• Any conversion mode may be stopped immediately by setting the CONSEQx = 0 and resetting the
ADC12ENC bit. Conversion data are unreliable.

NOTE: No ADC12EOS bit set for sequence

If no ADC12EOS bit is set and a sequence mode is selected, resetting the ADC12ENC bit
does not stop the sequence. To stop the sequence, first select a single-channel mode and
then reset ADC12ENC.

451SLAU208E–June 2008–Revised November 2009 ADC12_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

0.550

0.600

0.650

0.700

0.750

0.800

0.850

0.900

−40 −20 0 20 40 60 80 100

Ambient Temperature – °C

T
y
p

ic
a
l
T
e
m

p
e
ra

tu
re

 S
e
n

s
o

r
V

o
lt

a
g

e
–

V

0.950

ADC12_A Operation www.ti.com

17.2.8 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, the user selects the analog input channel INCHx = 1010. Any
other configuration is done as if an external channel was selected, including reference selection,
conversion-memory selection, etc. The temperature sensor is in the ADC12_A in the MSP430F54xx
devices, while it is part of the REF module in other devices.

A typical temperature sensor transfer function is shown in Figure 17-10 . The transfer function shown
below is only an example. The device-specific data sheet contains the actual parameters for a given
device. When using the temperature sensor, the sample period must be greater than 30 μs. The
temperature sensor offset error can be large and may need to be calibrated for most applications.
Temperature calibration values are available for use in the TLV descriptors (please see the device-specific
data sheet for locations).

Selecting the temperature sensor automatically turns on the on-chip reference generator as a voltage
source for the temperature sensor. However, it does not enable the VREF+ output or affect the reference
selections for the conversion. The reference choices for converting the temperature sensor are the same
as with any other channel.

Figure 17-10. Typical Temperature Sensor Transfer Function

452 ADC12_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Digital
Power Supply
Decoupling

100 nF10 Fµ

Analog
Power Supply
Decoupling

Using an
External
Positive
Reference

Using an
External
Negative
Reference

DVCC

DVSS

AVCC

AVSS

V /VREF– eREF–

V /VREF+ eREF+

+

+

+

+

100 nF10 Fµ

100 nF10 Fµ

100 nF10 Fµ

www.ti.com ADC12_A Operation

17.2.9 ADC12_A Grounding and Noise Considerations

As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should
be followed to eliminate ground loops, unwanted parasitic effects, and noise.

Ground loops are formed when return current from the A/D flows through paths that are common with
other analog or digital circuitry. If care is not taken, this current can generate small, unwanted offset
voltages that can add to or subtract from the reference or input voltages of the ADC. The connections
shown in Figure 17-11 prevent this.

In addition to grounding, ripple and noise spikes on the power-supply lines due to digital switching or
switching power supplies can corrupt the conversion result. A noise-free design using separate analog and
digital ground planes with a single-point connection is recommend to achieve high accuracy.

Figure 17-11. ADC12_A Grounding and Noise Considerations

453SLAU208E–June 2008–Revised November 2009 ADC12_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ADC12_A Operation www.ti.com

17.2.10 ADC12_A Interrupts

The ADC12_A has 18 interrupt sources:

• ADC12IFG0-ADC12IFG15
• ADC12OV, ADC12MEMx overflow
• ADC12TOV, ADC12_A conversion time overflow

The ADC12IFGx bits are set when their corresponding ADC12MEMx memory register is loaded with a
conversion result. An interrupt request is generated if the corresponding ADC12IEx bit and the GIE bit are
set. The ADC12OV condition occurs when a conversion result is written to any ADC12MEMx before its
previous conversion result was read. The ADC12TOV condition is generated when another
sample-and-conversion is requested before the current conversion is completed. The DMA is triggered
after the conversion in single-channel conversion mode or after the completion of a sequence of channel
conversions in sequence-of-channels conversion mode.

17.2.10.1 ADC12IV, Interrupt Vector Generator

All ADC12_A interrupt sources are prioritized and combined to source a single interrupt vector. The
interrupt vector register ADC12IV is used to determine which enabled ADC12_A interrupt source
requested an interrupt.

The highest-priority enabled ADC12_A interrupt generates a number in the ADC12IV register (see register
description). This number can be evaluated or added to the program counter (PC) to automatically enter
the appropriate software routine. Disabled ADC12_A interrupts do not affect the ADC12IV value.

Any access, read or write, of the ADC12IV register automatically resets the ADC12OV condition or the
ADC12TOV condition, if either was the highest-pending interrupt. Neither interrupt condition has an
accessible interrupt flag. The ADC12IFGx flags are not reset by an ADC12IV access. ADC12IFGx bits are
reset automatically by accessing their associated ADC12MEMx register or may be reset with software.

If another interrupt is pending after servicing of an interrupt, another interrupt is generated. For example, if
the ADC12OV and ADC12IFG3 interrupts are pending when the interrupt service routine accesses the
ADC12IV register, the ADC12OV interrupt condition is reset automatically. After the RETI instruction of the
interrupt service routine is executed, the ADC12IFG3 generates another interrupt.

454 ADC12_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com ADC12_A Operation

17.2.10.2 ADC12_A Interrupt Handling Software Example

The following software example shows the recommended use of the ADC12IV and handling overhead.
The ADC12IV value is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself. The latencies are:

• ADC12IFG0–ADC12IFG14, ADC12TOV, and ADC12OV: 16 cycles
• ADC12IFG15: 14 cycles

The interrupt handler for ADC12IFG15 shows a way to check immediately if a higher-prioritized interrupt
occurred during the processing of ADC12IFG15. This saves nine cycles if another ADC12_A interrupt is
pending.
; Interrupt handler for ADC12.
INT_ADC12 ; Enter Interrupt Service Routine

ADD &ADC12IV,PC ; Add offset to PC
RETI ; Vector 0: No interrupt
JMP ADOV ; Vector 2: ADC overflow
JMP ADTOV ; Vector 4: ADC timing overflow
JMP ADM0 ; Vector 6: ADC12IFG0

... ; Vectors 8-32
JMP ADM14 ; Vector 34: ADC12IFG14

;
; Handler for ADC12IFG15 starts here. No JMP required.
;
ADM15 MOV &ADC12MEM15,xxx ; Move result, flag is reset

... ; Other instruction needed?
JMP INT_ADC12 ; Check other int pending

;
; ADC12IFG14-ADC12IFG1 handlers go here
;
ADM0 MOV &ADC12MEM0,xxx ; Move result, flag is reset

... ; Other instruction needed?
RETI ; Return
;
ADTOV ... ; Handle Conv. time overflow

RETI ; Return
;
ADOV ... ; Handle ADCMEMx overflow

RETI ; Return

455SLAU208E–June 2008–Revised November 2009 ADC12_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ADC12_A Registers www.ti.com

17.3 ADC12_A Registers

The ADC12_A registers are listed in Table 17-3. The base address of the ADC12_A can be found in the
device-specific data sheet. The address offset of each ADC12_A register is given in Table 17-3.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 17-3. ADC12_A Registers

Register Register AddressRegister Short Form Initial StateType Access Offset

ADC12_A Control 0 ADC12CTL0 Read/write Word 00h 0000h

ADC12CTL0_L Read/write Byte 00h 00h

ADC12CTL0_H Read/write Byte 01h 00h

ADC12_A Control 1 ADC12CTL1 Read/write Word 02h 0000h

ADC12CTL1_L Read/write Byte 02h 00h

ADC12CTL1_H Read/write Byte 03h 00h

ADC12_A Control 2 ADC12CTL2 Read/write Word 04h 0000h

ADC12CTL2_L Read/write Byte 04h 00h

ADC12CTL2_H Read/write Byte 05h 00h

ADC12_A Interrupt Flag ADC12IFG Read/write Word 0Ah 0000h

ADC12IFG_L Read/write Byte 0Ah 00h

ADC12IFG_H Read/write Byte 0Bh 00h

ADC12_A Interrupt Enable ADC12IE Read/write Word 0Ch 0000h

ADC12IE_L Read/write Byte 0Ch 00h

ADC12IE_H Read/write Byte 0Dh 00h

ADC12_A Interrupt Vector ADC12IV Read Word 0Eh 0000h

ADC12IV_L Read Byte 0Eh 00h

ADC12IV_H Read Byte 0Fh 00h

ADC12_A Memory 0 ADC12MEM0 Read/write Word 20h undefined

ADC12MEM0_L Read/write Byte 20h undefined

ADC12MEM0_H Read/write Byte 21h undefined

ADC12_A Memory 1 ADC12MEM1 Read/write Word 22h undefined

ADC12MEM1_L Read/write Byte 22h undefined

ADC12MEM1_H Read/write Byte 23h undefined

ADC12_A Memory 2 ADC12MEM2 Read/write Word 24h undefined

ADC12MEM2_L Read/write Byte 24h undefined

ADC12MEM2_H Read/write Byte 25h undefined

ADC12_A Memory 3 ADC12MEM3 Read/write Word 26h undefined

ADC12MEM3_L Read/write Byte 26h undefined

ADC12MEM3_H Read/write Byte 27h undefined

ADC12_A Memory 4 ADC12MEM4 Read/write Word 28h undefined

ADC12MEM4_L Read/write Byte 28h undefined

ADC12MEM4_H Read/write Byte 29h undefined

ADC12_A Memory 5 ADC12MEM5 Read/write Word 2Ah undefined

ADC12MEM5_L Read/write Byte 2Ah undefined

ADC12MEM5_H Read/write Byte 2Bh undefined

456 ADC12_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com ADC12_A Registers

Table 17-3. ADC12_A Registers (continued)

Register Register AddressRegister Short Form Initial StateType Access Offset

ADC12_A Memory 6 ADC12MEM6 Read/write Word 2Ch undefined

ADC12MEM6_L Read/write Byte 2Ch undefined

ADC12MEM6_H Read/write Byte 2Dh undefined

ADC12_A Memory 7 ADC12MEM7 Read/write Word 2Eh undefined

ADC12MEM7_L Read/write Byte 2Eh undefined

ADC12MEM7_H Read/write Byte 2Fh undefined

ADC12_A Memory 8 ADC12MEM8 Read/write Word 30h undefined

ADC12MEM8_L Read/write Byte 30h undefined

ADC12MEM8_H Read/write Byte 31h undefined

ADC12_A Memory 9 ADC12MEM9 Read/write Word 32h undefined

ADC12MEM9_L Read/write Byte 32h undefined

ADC12MEM9_H Read/write Byte 33h undefined

ADC12_A Memory 10 ADC12MEM10 Read/write Word 34h undefined

ADC12MEM10_L Read/write Byte 34h undefined

ADC12MEM10_H Read/write Byte 35h undefined

ADC12_A Memory 11 ADC12MEM11 Read/write Word 36h undefined

ADC12MEM11_L Read/write Byte 36h undefined

ADC12MEM11_H Read/write Byte 37h undefined

ADC12_A Memory 12 ADC12MEM12 Read/write Word 38h undefined

ADC12MEM12_L Read/write Byte 38h undefined

ADC12MEM12_H Read/write Byte 39h undefined

ADC12_A Memory 13 ADC12MEM13 Read/write Word 3Ah undefined

ADC12MEM13_L Read/write Byte 3Ah undefined

ADC12MEM13_H Read/write Byte 3Bh undefined

ADC12_A Memory 14 ADC12MEM14 Read/write Word 3Ch undefined

ADC12MEM14_L Read/write Byte 3Ch undefined

ADC12MEM14_H Read/write Byte 3Dh undefined

ADC12_A Memory 15 ADC12MEM15 Read/write Word 3Dh undefined

ADC12MEM15_L Read/write Byte 3Dh undefined

ADC12MEM15_H Read/write Byte 3Eh undefined

ADC12_A Memory Control 0 ADC12MCTL0 Read/write Byte 10h undefined

ADC12_A Memory Control 1 ADC12MCTL1 Read/write Byte 11h undefined

ADC12_A Memory Control 2 ADC12MCTL2 Read/write Byte 12h undefined

ADC12_A Memory Control 3 ADC12MCTL3 Read/write Byte 13h undefined

ADC12_A Memory Control 4 ADC12MCTL4 Read/write Byte 14h undefined

ADC12_A Memory Control 5 ADC12MCTL5 Read/write Byte 15h undefined

ADC12_A Memory Control 6 ADC12MCTL6 Read/write Byte 16h undefined

ADC12_A Memory Control 7 ADC12MCTL7 Read/write Byte 17h undefined

ADC12_A Memory Control 8 ADC12MCTL8 Read/write Byte 18h undefined

ADC12_A Memory Control 9 ADC12MCTL9 Read/write Byte 19h undefined

ADC12_A Memory Control 10 ADC12MCTL10 Read/write Byte 1Ah undefined

ADC12_A Memory Control 11 ADC12MCTL11 Read/write Byte 1Bh undefined

ADC12_A Memory Control 12 ADC12MCTL12 Read/write Byte 1Ch undefined

ADC12_A Memory Control 13 ADC12MCTL13 Read/write Byte 1Dh undefined

ADC12_A Memory Control 14 ADC12MCTL14 Read/write Byte 1Eh undefined

ADC12_A Memory Control 15 ADC12MCTL15 Read/write Byte 1Fh undefined

457SLAU208E–June 2008–Revised November 2009 ADC12_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ADC12_A Registers www.ti.com

ADC12_A Control Register 0 (ADC12CTL0)

15 14 13 12 11 10 9 8

ADC12SHT1x ADC12SHT0x

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

ADC12ADC12MSC ADC12 REFON ADC12ON ADC12OVIE ADC12TOVIE ADC12ENC ADC12SCREF2_5V

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Modifiable only when ADC12ENC = 0

ADC12SHT1x Bits 15-12 ADC12_A sample-and-hold time. These bits define the number of ADC12CLK cycles in the sampling
period for registers ADC12MEM8 to ADC12MEM15.

ADC12SHT0x Bits 11-8 ADC12_A sample-and-hold time. These bits define the number of ADC12CLK cycles in the sampling
period for registers ADC12MEM0 to ADC12MEM7.

ADC12SHTx ADC12CLK
Bits Cycles

0000 4

0001 8

0010 16

0011 32

0100 64

0101 96

0110 128

0111 192

1000 256

1001 384

1010 512

1011 768

1100 1024

1101 1024

1110 1024

1111 1024

ADC12MSC Bit 7 ADC12_A multiple sample and conversion. Valid only for sequence or repeated modes.

0 The sampling timer requires a rising edge of the SHI signal to trigger each sample-and-convert.

1 The first rising edge of the SHI signal triggers the sampling timer, but further
sample-and-conversions are performed automatically as soon as the prior conversion is
completed.

ADC12REF2_5V Bit 6 ADC12_A reference generator voltage. ADC12REFON must also be set.

0 1.5 V

1 2.5 V

ADC12REFON Bit 5 ADC12_A reference generator on. In devices with the REF module, this bit is only valid if the REFMSTR
bit of the REF module is set to 0. In the 'F54xx device, the REF module is not available.

0 Reference off

1 Reference on

ADC12ON Bit 4 ADC12_A on

0 ADC12_A off

1 ADC12_A on

458 ADC12_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com ADC12_A Registers

(continued)

ADC12OVIE Bit 3 ADC12MEMx overflow-interrupt enable. The GIE bit must also be set to enable the interrupt.

0 Overflow interrupt disabled

1 Overflow interrupt enabled

ADC12TOVIE Bit 2 ADC12_A conversion-time-overflow interrupt enable. The GIE bit must also be set to enable the
interrupt.

0 Conversion time overflow interrupt disabled

1 Conversion time overflow interrupt enabled

ADC12ENC Bit 1 ADC12_A enable conversion

0 ADC12_A disabled

1 ADC12_A enabled

ADC12SC Bit 0 ADC12_A start conversion. Software-controlled sample-and-conversion start. ADC12SC and
ADC12ENC may be set together with one instruction. ADC12SC is reset automatically.

0 No sample-and-conversion-start

1 Start sample-and-conversion

459SLAU208E–June 2008–Revised November 2009 ADC12_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ADC12_A Registers www.ti.com

ADC12_A Control Register 1 (ADC12CTL1)

15 14 13 12 11 10 9 8

ADC12CSTARTADDx ADC12SHSx ADC12SHP ADC12ISSH

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

ADC12DIVx ADC12SSELx ADC12CONSEQx ADC12BUSY

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r-(0)

Modifiable only when ADC12ENC = 0

ADC12CSTARTADDx Bits 15-12 ADC12_A conversion start address. These bits select which ADC12_A conversion-memory register
is used for a single conversion or for the first conversion in a sequence. The value of CSTARTADDx
is 0 to 0Fh, corresponding to ADC12MEM0 to ADC12MEM15.

ADC12SHSx Bits 11-10 ADC12_A sample-and-hold source select

00 ADC12SC bit

01 Timer source (see device-specific data sheet for exact timer and locations)

10 Timer source (see device-specific data sheet for exact timer and locations)

11 Timer source (see device-specific data sheet for exact timer and locations)

ADC12SHP Bit 9 ADC12_A sample-and-hold pulse-mode select. This bit selects the source of the sampling signal
(SAMPCON) to be either the output of the sampling timer or the sample-input signal directly.

0 SAMPCON signal is sourced from the sample-input signal.

1 SAMPCON signal is sourced from the sampling timer.

ADC12ISSH Bit 8 ADC12_A invert signal sample-and-hold

0 The sample-input signal is not inverted.

1 The sample-input signal is inverted.

ADC12DIVx Bits 7-5 ADC12_A clock divider

000 /1

001 /2

010 /3

011 /4

100 /5

101 /6

110 /7

111 /8

ADC12SSELx Bits 4-3 ADC12_A clock source select

00 ADC12OSC (MODOSC)

01 ACLK

10 MCLK

11 SMCLK

ADC12CONSEQx Bits 2-1 ADC12_A conversion sequence mode select

00 Single-channel, single-conversion

01 Sequence-of-channels

10 Repeat-single-channel

11 Repeat-sequence-of-channels

ADC12BUSY Bit 0 ADC12_A busy. This bit indicates an active sample or conversion operation.

0 No operation is active.

1 A sequence, sample, or conversion is active.

460 ADC12_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com ADC12_A Registers

ADC12_A Control Register 2 (ADC12CTL2)

15 14 13 12 11 10 9 8

Reserved ADC12PDIV

r-0 r-0 r-0 r-0 r-0 r-0 r-0 rw-0

7 6 5 4 3 2 1 0

ADC12 ADC12ADC12TCOFF Reserved ADC12RES ADC12DF ADC12SR REFOUT REFBURST

rw-(0) r-0 rw-(1) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Modifiable only when ADC12ENC = 0

Reserved Bits 15-9 Reserved. Read back as 0.

ADC12PDIV Bit 8 ADC12_A predivider. This bit predivides the selected ADC12_A clock source.

0 Predivide by 1

1 Predivide by 4

ADC12TCOFF Bit 7 ADC12_A temperature sensor off. If the bit is set, the temperature sensor turned off. This is used to save
power.

Reserved Bit 6 Reserved. Read back as 0.

ADC12RES Bits 5-4 ADC12_A resolution. This bit defines the conversion result resolution.

00 8 bit (9 clock cycle conversion time)

01 10 bit (11 clock cycle conversion time)

10 12 bit (13 clock cycle conversion time)

11 Reserved

ADC12DF Bit 3 ADC12_A data read-back format. Data is always stored in the binary unsigned format.

0 Binary unsigned. Theoretically the analog input voltage – VREF results in 0000h, the analog input
voltage + VREF results in 0FFFh.

1 Signed binary (2s complement), left aligned. Theoretically the analog input voltage – VREF results
in 8000h, the analog input voltage + VREF results in 7FF0h.

ADC12SR Bit 2 ADC12_A sampling rate. This bit selects the reference buffer drive capability for the maximum sampling
rate. Setting ADC12SR reduces the current consumption of the reference buffer.

0 Reference buffer supports up to ~200 ksps.

1 Reference buffer supports up to ~50 ksps.

ADC12REFOUT Bit 1 Reference output

0 Reference output off

1 Reference output on

ADC12REFBURST Bit 0 Reference burst. ADC12REFOUT must also be set.

0 Reference buffer on continuously

1 Reference buffer on only during sample-and-conversion

ADC12_A Conversion Memory Register (ADC12MEMx)

15 14 13 12 11 10 9 8

0 0 0 0 Conversion Results

r0 r0 r0 r0 rw rw rw rw

7 6 5 4 3 2 1 0

Conversion Results

rw rw rw rw rw rw rw rw

Conversion Bits 15-0 The 12-bit conversion results are right justified. Bit 11 is the MSB. Bits 15–12 are 0 in 12-bit mode, bits
Results 15–10 are 0 in 10-bit mode, and bits 15–8 are 0 in 8-bit mode. Writing to the conversion memory

registers corrupts the results. This data format is used if ADC12DF = 0.

461SLAU208E–June 2008–Revised November 2009 ADC12_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ADC12_A Registers www.ti.com

ADC12_A Conversion Memory Register (ADC12MEMx), 2s-Complement Format

15 14 13 12 11 10 9 8

Conversion Results

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

Conversion Results 0 0 0 0

rw rw rw rw r0 r0 r0 r0

Conversion Bits 15-0 The 12-bit conversion results are left justified, 2s-complement format. Bit 15 is the MSB. Bits 3–0 are 0 in
Results 12-bit mode, bits 5–0 are 0 in 10-bit mode, and bits 7–0 are 0 in 8-bit mode. This data format is used if

ADC12DF = 1. The data is stored in the right-justified format and is converted to the left-justified
2s-complement format during read back.

ADC12_A Conversion Memory Control Register (ADC12MCTLx)

7 6 5 4 3 2 1 0

ADC12EOS ADC12SREFx ADC12INCHx

rw rw rw rw rw rw rw rw

Modifiable only when ADC12ENC = 0

ADC12EOS Bit 7 End of sequence. Indicates the last conversion in a sequence.

0 Not end of sequence

1 End of sequence

ADC12SREFx Bits 6-4 Select reference

000 VR+ = AVCC and VR- = AVSS

001 VR+ = VREF+ and VR- = AVSS

010 VR+ = VeREF+ and VR- = AVSS

011 VR+ = VeREF+ and VR- = AVSS

100 VR+ = AVCC and VR- = VREF-/ VeREF-

101 VR+ = VREF+ and VR- = VREF-/ VeREF-

110 VR+ = VeREF+ and VR- = VREF-/ VeREF-

111 VR+ = VeREF+ and VR- = VREF-/ VeREF-

ADC12INCHx Bits 3-0 Input channel select

0000 A0

0001 A1

0010 A2

0011 A3

0100 A4

0101 A5

0110 A6

0111 A7

1000 VeREF+

1001 VREF-/VeREF-

1010 Temperature diode

1011 (AVCC – AVSS) / 2

1100 A12

1101 A13

1110 A14

1111 A15

462 ADC12_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com ADC12_A Registers

ADC12_A Interrupt Enable Register (ADC12IE)

15 14 13 12 11 10 9 8

ADC12IE15 ADC12IE14 ADC12IE13 ADC12IE12 ADC12IE11 ADC12IE10 ADC12IFG9 ADC12IE8

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

ADC12IE7 ADC12IE6 ADC12IE5 ADC12IE4 ADC12IE3 ADC12IE2 ADC12IE1 ADC12IE0

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

ADC12IEx Bits 15-0 Interrupt enable. These bits enable or disable the interrupt request for the ADC12IFGx bits.

0 Interrupt disabled

1 Interrupt enabled

ADC12_A Interrupt Flag Register (ADC12IFG)

15 14 13 12 11 10 9 8

ADC12IFG15 ADC12IFG14 ADC12IFG13 ADC12IFG12 ADC12IFG11 ADC12IFG10 ADC12IFG9 ADC12IFG8

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

ADC12IFG7 ADC12IFG6 ADC12IFG5 ADC12IFG4 ADC12IFG3 ADC12IFG2 ADC12IFG1 ADC12IFG0

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

ADC12IFGx Bits 15-0 ADC12MEMx interrupt flag. These bits are set when corresponding ADC12MEMx is loaded with a
conversion result. The ADC12IFGx bits are reset if the corresponding ADC12MEMx is accessed, or may
be reset with software.

0 No interrupt pending

1 Interrupt pending

463SLAU208E–June 2008–Revised November 2009 ADC12_A
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ADC12_A Registers www.ti.com

ADC12_A Interrupt Vector Register (ADC12IV)

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 ADC12IVx 0

r0 r0 r-(0) r-(0) r-(0) r-(0) r-(0) r0

ADC12IVx Bits 15-0 ADC12_A interrupt vector value

ADC12IV Interrupt Source Interrupt Flag Interrupt PriorityContents

000h No interrupt pending –

002h ADC12MEMx overflow – Highest

004h Conversion time overflow –

006h ADC12MEM0 interrupt flag ADC12IFG0

008h ADC12MEM1 interrupt flag ADC12IFG1

00Ah ADC12MEM2 interrupt flag ADC12IFG2

00Ch ADC12MEM3 interrupt flag ADC12IFG3

00Eh ADC12MEM4 interrupt flag ADC12IFG4

010h ADC12MEM5 interrupt flag ADC12IFG5

012h ADC12MEM6 interrupt flag ADC12IFG6

014h ADC12MEM7 interrupt flag ADC12IFG7

016h ADC12MEM8 interrupt flag ADC12IFG8

018h ADC12MEM9 interrupt flag ADC12IFG9

01Ah ADC12MEM10 interrupt flag ADC12IFG10

01Ch ADC12MEM11 interrupt flag ADC12IFG11

01Eh ADC12MEM12 interrupt flag ADC12IFG12

020h ADC12MEM13 interrupt flag ADC12IFG13

022h ADC12MEM14 interrupt flag ADC12IFG14

024h ADC12MEM15 interrupt flag ADC12IFG15 Lowest

464 ADC12_A SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 18
SLAU208E–June 2008–Revised November 2009

Comp_B

Comp_B is an analog voltage comparator. This chapter describes the Comp_B. Comp_B covers general
comparator functionality for up to 16 channels.

Topic ... Page

18.1 Comp_B Introduction ... 466
18.2 Comp_B Operation .. 467
18.3 Comp_B Registers ... 472

465SLAU208E–June 2008–Revised November 2009 Comp_B
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

CBEX

CBSHORT
+

-

CBON

0
1

CBOUT

CCI1B

Set CBIFG

CBF

CBRSEL

0
1

CBOUTPOL

from shared
reference

CBRSCBREF1 CBREF0

5

CB0
CB1
CB2
CB3

CB12
CB13
CB14
CB15

CBIPSEL

0000
0001

1110
1111

CB0
CB1
CB2
CB3

CB12
CB13
CB14
CB15

CBIMSEL

0000
0001

1110
1111

VCC

Reference Voltage
Generator

5 2

Comp_B Introduction www.ti.com

18.1 Comp_B Introduction

The Comp_B module supports precision slope analog-to-digital conversions, supply voltage supervision,
and monitoring of external analog signals.

Features of Comp_B include:

• Inverting and noninverting terminal input multiplexer
• Software-selectable RC filter for the comparator output
• Output provided to Timer_A capture input
• Software control of the port input buffer
• Interrupt capability
• Selectable reference voltage generator, voltage hysteresis generator
• Reference voltage input from shared reference
• Ultra-low-power comparator mode
• Interrupt driven measurement system – low-power operation support

The Comp_B block diagram is shown in Figure 18-1.

Figure 18-1. Comp_B Block Diagram

466 Comp_B SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Comp_B Operation

18.2 Comp_B Operation

The Comp_B module is configured by user software. The setup and operation of Comp_B is discussed in
the following sections.

18.2.1 Comparator

The comparator compares the analog voltages at the + and – input terminals. If the + terminal is more
positive than the – terminal, the comparator output CBOUT is high. The comparator can be switched on or
off using control bit CBON. The comparator should be switched off when not in use to reduce current
consumption. When the comparator is switched off, CBOUT is always low. The bias current of the
comparator is programmable.

18.2.2 Analog Input Switches

The analog input switches connect or disconnect the two comparator input terminals to associated port
pins using the CBIPSELx and CBIMSELx bits. The comparator terminal inputs can be controlled
individually. The CBIPSELx/CBIMSELx bits allow:

• Application of an external signal to the + and – terminals of the comparator
• Routing of an internal reference voltage to an associated output port pin
• Application of an external current source (e.g., resistor) to the + or – terminal of the comparator
• The mapping of both terminals of the internal multiplexer to the outside

Internally, the input switch is constructed as a T-switch to suppress distortion in the signal path.

NOTE: Comparator Input Connection

When the comparator is on, the input terminals should be connected to a signal, power, or
ground. Otherwise, floating levels may cause unexpected interrupts and increased current
consumption.

The CBEX bit controls the input multiplexer, permuting the input signals of the comparator's + and –
terminals. Additionally, when the comparator terminals are permuted, the output signal from the
comparator is inverted too. This allows the user to determine or compensate for the comparator input
offset voltage.

18.2.3 Port Logic

The Px.y pins associated with a comparator channel are enabled by the CBIPSELx or CBIMSELx bits to
disable its digital components while used as comparator input. Only one of the comparator input pins is
selected as input to the comparator by the input multiplexer at a time.

467SLAU208E–June 2008–Revised November 2009 Comp_B
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

0000

1100
1101
1110
1111

0000
0001
0010
0011

1100
1101
1110
1111

CxSHORT

Sampling capacitor, CS

Analog Inputs

Comp_B Operation www.ti.com

18.2.4 Input Short Switch

The CBSHORT bit shorts the Comp_B inputs. This can be used to build a simple sample-and-hold for the
comparator as shown in Figure 18-2.

Figure 18-2. Comp_B Sample-And-Hold

The required sampling time is proportional to the size of the sampling capacitor (CS), the resistance of the
input switches in series with the short switch (Ri), and the resistance of the external source (RS). The total
internal resistance (RI) is typically in the range of 1 kΩ. The sampling capacitor CS should be greater than
100 pF. The time constant, Tau, to charge the sampling capacitor CS can be calculated with the following
equation:

Tau = (RI + RS) × CS

Depending on the required accuracy, 3 to 10 Tau should be used as a sampling time. With 3 Tau the
sampling capacitor is charged to approximately 95% of the input signals voltage level, with 5 Tau it is
charged to more than 99%, and with 10 Tau the sampled voltage is sufficient for 12-bit accuracy.

18.2.5 Output Filter

The output of the comparator can be used with or without internal filtering. When control bit CBF is set, the
output is filtered with an on-chip RC filter. The delay of the filter can be adjusted in four different steps.

All comparator outputs are oscillating if the voltage difference across the input terminals is small. Internal
and external parasitic effects and cross coupling on and between signal lines, power supply lines, and
other parts of the system are responsible for this behavior as shown in Figure 18-3. The comparator
output oscillation reduces the accuracy and resolution of the comparison result. Selecting the output filter
can reduce errors associated with comparator oscillation.

468 Comp_B SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

+ Terminal

- Terminal Comparator Inputs

Comparator Output

Unfiltered at CBOUT

Comparator Output

Filtered at CBOUT

1

0

CBON

CBREF0

5

VCC

5

1

0 1

0

C
B

R
S

=
1

1

0110

00, 11

CBRSx
2

VREF

VREF1

VREF0

1.2 V from the

shared reference

CBREFLx

1 0
CBMRVS

CBMRVL

2

CBREF1

www.ti.com Comp_B Operation

Figure 18-3. RC-Filter Response at the Output of the Comparator

18.2.6 Reference Voltage Generator

The Comp_B reference block diagram is shown in Figure 18-4.

Figure 18-4. Reference Generator Block Diagram

The voltage reference generator is used to generate VREF, which can be applied to either comparator
input terminal. The CBREF1x (VREF1) and CBREF0x (VREF0) bits control the output of the voltage
generator. The CBRSEL bit selects the comparator terminal to which VREF is applied. If external signals
are applied to both comparator input terminals, the internal reference generator should be turned off to
reduce current consumption. The voltage reference generator can generate a fraction of the device's VCC

or of the voltage reference of the integrated precision voltage reference source. Vref1 is used while
CBOUT is 1 and Vref0 is used while CBOUT is 0. This allows the generation of a hysteresis without using
external components.

469SLAU208E–June 2008–Revised November 2009 Comp_B
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

V
CC

V
SS

I
CCV

O
V

I

0 V
CC

V
I

V
CC

I
CC

CBPD.x = 1

Rref

Rmeas

+

-

0.25 × VCC

CCI1B Capture
Input Of Timer_A

CB0

Px.x

Px.y

Comp_B Operation www.ti.com

18.2.7 Comp_B, Port Disable Register CBPD

The comparator input and output functions are multiplexed with the associated I/O port pins, which are
digital CMOS gates. When analog signals are applied to digital CMOS gates, parasitic current can flow
from VCC to GND. This parasitic current occurs if the input voltage is near the transition level of the gate.
Disabling the port pin buffer eliminates the parasitic current flow and therefore reduces overall current
consumption.

The CBPDx bits, when set, disable the corresponding Px.y input buffer as shown in Figure 18-5. When
current consumption is critical, any Px.y pin connected to analog signals should be disabled with their
associated CBPDx bits.

Selecting an input pin to the comparator multiplexer with the CBIPSEL or CBIMSEL bits automatically
disables the input buffer for that pin, regardless of the state of the associated CBPDx bit.

Figure 18-5. Transfer Characteristic and Power Dissipation in a CMOS Inverter/Buffer

18.2.8 Comp_B Interrupts

One interrupt flag and one interrupt vector is associated with the Comp_B.

The interrupt flag CBIFG is set on either the rising or falling edge of the comparator output, selected by
the CBIES bit. If both the CBIE and the GIE bits are set, then the CBIFG interrupt flag generates an
interrupt request.

18.2.9 Comp_B Used to Measure Resistive Elements

The Comp_B can be optimized to precisely measure resistive elements using single slope
analog-to-digital conversion. For example, temperature can be converted into digital data using a
thermistor, by comparing the thermistor's capacitor discharge time to that of a reference resistor as shown
in Figure 18-6. A reference resister Rref is compared to Rmeas.

Figure 18-6. Temperature Measurement System

470 Comp_B SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

VC

V or VCC REF0

VREF1

Phase I:

Charge

Phase II:

Discharge

Phase III:

Charge

tref

Phase IV

Discharge

tmeas

t

Rmeas

Rref

N
meas

N
ref

–R × C × ln
meas

V
ref1

V
CC

–R × C × ln
ref

V
ref1

V
CC

N
meas

N
ref

R
meas

R
ref

R = R ×
meas ref

N
meas

N
ref

=

=

www.ti.com Comp_B Operation

The resources used to calculate the temperature sensed by Rmeas are:

• Two digital I/O pins charge and discharge the capacitor.
• I/O is set to output high (VCC) to charge capacitor, reset to discharge.
• I/O is switched to high-impedance input with CBPDx set when not in use.
• One output charges and discharges the capacitor via Rref.
• One output discharges capacitor via Rmeas.
• The + terminal is connected to the positive terminal of the capacitor.
• The – terminal is connected to a reference level, for example 0.25 × VCC.
• The output filter should be used to minimize switching noise.
• CBOUT is used to gate Timer_A CCI1B, capturing capacitor discharge time.

More than one resistive element can be measured. Additional elements are connected to CB0 with
available I/O pins and switched to high impedance when not being measured.

The thermistor measurement is based on a ratiometric conversion principle. The ratio of two capacitor
discharge times is calculated as shown in Figure 18-7.

Figure 18-7. Timing for Temperature Measurement Systems

The VCC voltage and the capacitor value should remain constant during the conversion, but are not critical
since they cancel in the ratio:

471SLAU208E–June 2008–Revised November 2009 Comp_B
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Comp_B Registers www.ti.com

18.3 Comp_B Registers

The Comp_B registers are listed in Table 18-1. The base address of the Comp_B module can be found in
the device-specific data sheet.

Table 18-1. Comp_B Registers

AddressRegister Short Form Register Type Initial StateOffset

Comp_B control register 0 CBCTL0 Read/write 0x0000 Reset with PUC

Comp_B control register 1 CBCTL1 Read/write 0x0002 Reset with PUC

Comp_B control register 2 CBCTL2 Read/write 0x0004 Reset with PUC

Comp_B control register 3 CBCTL3 Read/write 0x0006 Reset with POR

Comp_B interrupt register CBINT Read/write 0x000C Reset with PUC

Comp_B interrupt vector word CBIV Read 0x000E Reset with PUC

472 Comp_B SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Comp_B Registers

Comp_B Control Register 0 (CBCTL0)

15 14 13 12 11 10 9 8

CBIMEN Reserved CBIMSEL

rw-0 r-0 r-0 r-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

CBIPEN Reserved CBIPSEL

rw-0 r-0 r-0 r-0 rw-0 rw-0 rw-0 rw-0

CBIMEN Bit 15 Channel input enable for the V– terminal of the comparator.

0 Selected analog input channel for V– terminal is disabled.

1 Selected analog input channel for V– terminal is enabled.

Reserved Bits 14-12 Reserved

CBIMSEL Bits 11-8 Channel input selected for the V– terminal of the comparator if CBIMEN is set to 1.

CBIPEN Bit 7 Channel input enable for the V+ terminal of the comparator.

0 Selected analog input channel for V+ terminal is disabled.

1 Selected analog input channel for V+ terminal is enabled.

Reserved Bits 6-4 Reserved

CBIPSEL Bits 3-0 Channel input selected for the V+ terminal of the comparator if CBIPEN is set to 1.

473SLAU208E–June 2008–Revised November 2009 Comp_B
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Comp_B Registers www.ti.com

Comp_B, Control Register 1 (CBCTL1)

15 14 13 12 11 10 9 8

Reserved CBMRVS CBMRVL CBON CBPWRMD

r-0 r-0 r-0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

CBFDLY CBEX CBSHORT CBIES CBF CBOUTPOL CBOUT

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-0

Reserved Bits 15-13 Reserved

CBMRVS Bit 12 This bit defines if the comparator output selects between VREF0 or VREF1 if CBRS = 00, 01, or 10.

0 Comparator output state selects between VREF0 or VREF1.

1 CBMRVL selects between VREF0 or VREF1.

CBMRVL Bit 11 This bit is valid of CBMRVS is set to 1.

0 VREF0 is selected if CBRS = 00, 01, or 10.

1 VREF1 is selected if CBRS = 00, 01, or 10.

CBON Bit 10 On. This bit turns the comparator on. When the comparator is turned off the Comp_B consumes no
power.

0 Off

1 On

CBPWRMD Bits 9-8 Power mode. Not all modes are supported in all products. See devices specific data sheet for
details.

00 High-speed mode (optional)

01 Normal mode (optional)

10 Ultra-low-power mode (optional)

11 Reserved

CBFDLY Bits 7-6 Filter delay. The filter delay can be selected in 4 steps. See the device-specific data sheet for
details.

00 Typical filter delay of 450 ns

01 Typical filter delay of 900 ns

10 Typical filter delay of 1800 ns

11 Typical filter delay of 3600 ns

CBEX Bit 5 Exchange. This bit permutes the comparator 0 inputs and inverts the comparator 0 output.

CBSHORT Bit 4 Input short. This bit shorts the + and – input terminals.

0 Inputs not shorted

1 Inputs shorted

CBIES Bit 3 Interrupt edge select for CBIIFG and CBIFG

0 Rising edge for CBIFG, falling edge for CBIIFG

1 Falling edge for CBIFG, rising edge for CBIIFG

CBF Bit 2 Output filter

0 Comp_B output is not filtered

1 Comp_B output is filtered

CBOUTPOL Bit 1 Output polarity. This bit defines the CBOUT polarity.

0 Noninverted

1 Inverted

CBOUT Bit 0 Output value. This bit reflects the value of the Comp_B output. Writing this bit has no effect on the
comparator output.

474 Comp_B SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Comp_B Registers

Comp_B, Control Register 2 (CBCTL2)

15 14 13 12 11 10 9 8

CBREFACC CBREFL CBREF1

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

CBRS CBRSEL CBREF0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

CBREFACC Bit 15 Reference accuracy. A reference voltage is requested only if CBREFL > 0.

0 Static mode

1 Clocked (low-power, low-accuracy) mode

CBREFL Bits 14-13 Reference voltage level

00 Reference amplifier is disabled. No reference voltage is requested.

01 1.5 V is selected as shared reference voltage input

10 2.0 V is selected as shared reference voltage input

11 2.5 V is selected as shared reference voltage input

CBREF1 Bits 12-8 Reference resistor tap 1. This register defines the tap of the resistor string while CBOUT = 1.

CBRS Bits 7-6 Reference source. This bit define if the reference voltage is derived from VCC or from the precise
shared reference.

00 No current is drawn by the reference curcuitry.

01 VCC applied to the resistor ladder

10 Shared reference voltage applied to the resistor ladder.

11 Shared reference voltage supplied to VCREF. Resistor ladder is off.

CBRSEL Bit 5 Reference select. This bit selects which terminal the VCCREF is applied to.
When CBEX = 0:

0 VREF is applied to the + terminal

1 VREF is applied to the – terminal

When CBEX = 1:

0 VREF is applied to the – terminal

1 VREF is applied to the + terminal

CBREF0 Bits 4-0 Reference resistor tap 0. This register defines the tap of the resistor string while CBOUT = 0.

Comp_B, Control Register 3 (CBCTL3)

15 14 13 12 11 10 9 8

CBPD15 CBPD14 CBPD13 CBPD12 CBPD11 CBPD10 CBPD9 CBPD8

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

CBPD7 CBPD6 CBPD5 CBPD4 CBPD3 CBPD2 CBPD1 CBPD0

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

CBPDx Bit 15-0 Port disable. These bits individually disable the input buffer for the pins of the port associated with
Comp_B. The bit CBPDx disabled the port of the comparator channel x.

0 The input buffer is enabled.

1 The input buffer is disabled.

475SLAU208E–June 2008–Revised November 2009 Comp_B
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Comp_B Registers www.ti.com

Comp_B, Interrupt Control Register (CBINT)

15 14 13 12 11 10 9 8

Reserved CBIIE CBIE

r-0 r-0 r-0 r-0 r-0 r-0 rw-0 rw-0

7 6 5 4 3 2 1 0

Reserved CBIIFG CBIFG

r-0 r-0 r-0 r-0 r-0 r-0 rw-0 rw-0

Reserved Bits 15-10 Reserved. Always read back 0.

CBIIE Bit 9 Comp_B output interrupt enable inverted polarity

0 Interrupt is disabled

1 Interrupt is enabled

CBIE Bit 8 Comp_B output interrupt enable

0 Interrupt is disabled

1 Interrupt is enabled

Reserved Bits 7-2 Reserved. Always read back 0.

CBIIFG Bit 1 Comp_B output inverted interrupt flag. The bit CBIES defines the transition of the output setting this
bit.

0 No interrupt pending

1 Output interrupt pending

CBIFG Bit 0 Comp_B output interrupt flag. The bit CBIES defines the transition of the output setting this bit.

0 No interrupt pending

1 Output interrupt pending

Comp_B, Interrupt Vector Word Register (CBIV)

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 0 CBIV 0

r0 r0 r0 r0 r0 r-(0) r-(0) r0

CBIV Bits 15-0 Comp_B interrupt vector word register. The interrupt vector register reflects only interrupt flags whose
interrupt enable bit are set. Reading the CBIV register clears the pending interrupt flag with the highest
priority.

CBIV InterruptInterrupt Source Interrupt FlagContents Priority

00h No interrupt pending – –

02h CBOUT interrupt CBIFG Highest

04h CBOUT interrupt inverted polarity CBIIFG Lowest

476 Comp_B SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 19
SLAU208E–June 2008–Revised November 2009

Universal Serial Communication Interface – UART Mode

The universal serial communication interface (USCI) supports multiple serial communication modes with
one hardware module. This chapter discusses the operation of the asynchronous UART mode.

Topic ... Page

19.1 Universal Serial Communication Interface (USCI) Overview 478
19.2 USCI Introduction – UART Mode .. 479
19.3 USCI Operation – UART Mode ... 481
19.4 USCI Registers – UART Mode ... 497

477SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – UART Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Universal Serial Communication Interface (USCI) Overview www.ti.com

19.1 Universal Serial Communication Interface (USCI) Overview

The USCI modules support multiple serial communication modes. Different USCI modules support
different modes. Each different USCI module is named with a different letter. For example, USCI_A is
different from USCI_B, etc. If more than one identical USCI module is implemented on one device, those
modules are named with incrementing numbers. For example, if one device has two USCI_A modules,
they are named USCI_A0 and USCI_A1. See the device-specific data sheet to determine which USCI
modules, if any, are implemented on which devices.

USCI_Ax modules support:

• UART mode
• Pulse shaping for IrDA communications
• Automatic baud-rate detection for LIN communications
• SPI mode

USCI_Bx modules support:

• I2C mode
• SPI mode

478 Universal Serial Communication Interface – UART Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Introduction – UART Mode

19.2 USCI Introduction – UART Mode

In asynchronous mode, the USCI_Ax modules connect the device to an external system via two external
pins, UCAxRXD and UCAxTXD. UART mode is selected when the UCSYNC bit is cleared.

UART mode features include:

• 7- or 8-bit data with odd, even, or non-parity
• Independent transmit and receive shift registers
• Separate transmit and receive buffer registers
• LSB-first or MSB-first data transmit and receive
• Built-in idle-line and address-bit communication protocols for multiprocessor systems
• Receiver start-edge detection for auto wake up from LPMx modes
• Programmable baud rate with modulation for fractional baud-rate support
• Status flags for error detection and suppression
• Status flags for address detection
• Independent interrupt capability for receive and transmit

479SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – UART Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Modulator

ACLK

SMCLK

SMCLK

00

01

10

11

UCSSELx

UCAxCLK

Prescaler/Divider

Receive Baudrate Generator

UC0BRx

16

UCBRFx

4

UCBRSx

3

UCOS16

UCRXERRError Flags

Set Flags

UCPE

UCFE

UCOE

UCABEN

Receive Shift Register

Receive Buffer UCAxRXBUF

Receive State Machine

1

0

UCIREN

UCPEN UCPAR UCMSB UC7BIT

UCDORMUCMODEx

2

UCSPB

Set UCBRK

Set UCADDR /UCIDLE

0

1

UCLISTEN

UCAxRXD

1

0

UCIRRXPL

IrDA Decoder

UCIRRXFE
UCIRRXFLx

6

Transmit Buffer UCAxTXBUF

Transmit State Machine

UCTXADDR

UCTXBRK

Transmit Shift Register

UCPEN UCPAR UCMSB UC7BIT UCIREN

UCIRTXPLx

6

0

1

IrDA Encoder
UCAxTXD

Transmit Clock

Receive Clock

BRCLK

UCMODEx

2

UCSPB

UCRXEIE

UCRXBRKIE

Set UCRXIFG

Set UCTXIFG

Set RXIFG

USCI Introduction – UART Mode www.ti.com

Figure 19-1 shows the USCI_Ax when configured for UART mode.

Figure 19-1. USCI_Ax Block Diagram – UART Mode (UCSYNC = 0)

480 Universal Serial Communication Interface – UART Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

[Parity Bit, UCPEN = 1]

[Address Bit, UCMODEx = 10]

Mark

Space
D0 D6 D7 AD PA SP SP

[Optional Bit, Condition]

[2nd Stop Bit, UCSPB = 1]

[8th Data Bit, UC7BIT = 0]

ST

www.ti.com USCI Operation – UART Mode

19.3 USCI Operation – UART Mode

In UART mode, the USCI transmits and receives characters at a bit rate asynchronous to another device.
Timing for each character is based on the selected baud rate of the USCI. The transmit and receive
functions use the same baud-rate frequency.

19.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the UCSWRST bit is
automatically set, keeping the USCI in a reset condition. When set, the UCSWRST bit resets the UCRXIE,
UCTXIE, UCRXIFG, UCRXERR, UCBRK, UCPE, UCOE, UCFE, UCSTOE, and UCBTOE bits, and sets
the UCTXIFG bit. Clearing UCSWRST releases the USCI for operation.

NOTE: Initializing or reconfiguring the USCI module

The recommended USCI initialization/reconfiguration process is:
1. Set UCSWRST (BIS.B #UCSWRST,&UCAxCTL1).

2. Initialize all USCI registers with UCSWRST = 1 (including UCAxCTL1).
3. Configure ports.
4. Clear UCSWRST via software (BIC.B #UCSWRST,&UCAxCTL1).

5. Enable interrupts (optional) via UCRXIE and/or UCTXIE.

19.3.2 Character Format

The UART character format (see Figure 19-2) consists of a start bit, seven or eight data bits, an
even/odd/no parity bit, an address bit (address-bit mode), and one or two stop bits. The UCMSB bit
controls the direction of the transfer and selects LSB or MSB first. LSB first is typically required for UART
communication.

Figure 19-2. Character Format

19.3.3 Asynchronous Communication Format

When two devices communicate asynchronously, no multiprocessor format is required for the protocol.
When three or more devices communicate, the USCI supports the idle-line and address-bit multiprocessor
communication formats.

19.3.3.1 Idle-Line Multiprocessor Format

When UCMODEx = 01, the idle-line multiprocessor format is selected. Blocks of data are separated by an
idle time on the transmit or receive lines (see Figure 19-3). An idle receive line is detected when ten or
more continuous ones (marks) are received after the one or two stop bits of a character. The baud-rate
generator is switched off after reception of an idle line until the next start edge is detected. When an idle
line is detected, the UCIDLE bit is set.

The first character received after an idle period is an address character. The UCIDLE bit is used as an
address tag for each block of characters. In idle-line multiprocessor format, this bit is set when a received
character is an address.

481SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – UART Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USCI Operation – UART Mode www.ti.com

Figure 19-3. Idle-Line Format

The UCDORM bit is used to control data reception in the idle-line multiprocessor format. When
UCDORM = 1, all non-address characters are assembled but not transferred into the UCAxRXBUF, and
interrupts are not generated. When an address character is received, the character is transferred into
UCAxRXBUF, UCRXIFG is set, and any applicable error flag is set when UCRXEIE = 1. When UCRXEIE
= 0 and an address character is received but has a framing error or parity error, the character is not
transferred into UCAxRXBUF and UCRXIFG is not set.

If an address is received, user software can validate the address and must reset UCDORM to continue
receiving data. If UCDORM remains set, only address characters are received. When UCDORM is cleared
during the reception of a character, the receive interrupt flag is set after the reception completed. The
UCDORM bit is not modified by the USCI hardware automatically.

For address transmission in idle-line multiprocessor format, a precise idle period can be generated by the
USCI to generate address character identifiers on UCAxTXD. The double-buffered UCTXADDR flag
indicates if the next character loaded into UCAxTXBUF is preceded by an idle line of 11 bits. UCTXADDR
is automatically cleared when the start bit is generated.

Transmitting an Idle Frame

The following procedure sends out an idle frame to indicate an address character followed by associated
data:

1. Set UCTXADDR, then write the address character to UCAxTXBUF. UCAxTXBUF must be ready for
new data (UCTXIFG = 1).
This generates an idle period of exactly 11 bits followed by the address character. UCTXADDR is reset
automatically when the address character is transferred from UCAxTXBUF into the shift register.

2. Write desired data characters to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG =
1).
The data written to UCAxTXBUF is transferred to the shift register and transmitted as soon as the shift
register is ready for new data.
The idle-line time must not be exceeded between address and data transmission or between data
transmissions. Otherwise, the transmitted data is misinterpreted as an address.

482 Universal Serial Communication Interface – UART Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ST Address SP ST Data SP ST Data SP

Blocks of

Characters

Idle Periods of No Significance

UCAxTXD/UCAxRXD

Expanded

UCAxTXD/UCAxRXD

First Character Within Block

Is an Address. AD Bit Is 1

AD Bit Is 0 for

Data Within Block. Idle Time Is of No Significance

UCAxTXD/UCAxRXD 1 0 0

www.ti.com USCI Operation – UART Mode

19.3.3.2 Address-Bit Multiprocessor Format

When UCMODEx = 10, the address-bit multiprocessor format is selected. Each processed character
contains an extra bit used as an address indicator (see Figure 19-4). The first character in a block of
characters carries a set address bit that indicates that the character is an address. The USCI UCADDR bit
is set when a received character has its address bit set and is transferred to UCAxRXBUF.

The UCDORM bit is used to control data reception in the address-bit multiprocessor format. When
UCDORM is set, data characters with address bit = 0 are assembled by the receiver but are not
transferred to UCAxRXBUF and no interrupts are generated. When a character containing a set address
bit is received, the character is transferred into UCAxRXBUF, UCRXIFG is set, and any applicable error
flag is set when UCRXEIE = 1. When UCRXEIE = 0 and a character containing a set address bit is
received but has a framing error or parity error, the character is not transferred into UCAxRXBUF and
UCRXIFG is not set.

If an address is received, user software can validate the address and must reset UCDORM to continue
receiving data. If UCDORM remains set, only address characters with address bit = 1 are received. The
UCDORM bit is not modified by the USCI hardware automatically.

When UCDORM = 0, all received characters set the receive interrupt flag UCRXIFG. If UCDORM is
cleared during the reception of a character, the receive interrupt flag is set after the reception is
completed.

For address transmission in address-bit multiprocessor mode, the address bit of a character is controlled
by the UCTXADDR bit. The value of the UCTXADDR bit is loaded into the address bit of the character
transferred from UCAxTXBUF to the transmit shift register. UCTXADDR is automatically cleared when the
start bit is generated.

Figure 19-4. Address-Bit Multiprocessor Format

Break Reception and Generation

When UCMODEx = 00, 01, or 10, the receiver detects a break when all data, parity, and stop bits are low,
regardless of the parity, address mode, or other character settings. When a break is detected, the UCBRK
bit is set. If the break interrupt enable bit (UCBRKIE) is set, the receive interrupt flag UCRXIFG is also set.
In this case, the value in UCAxRXBUF is 0h, because all data bits were zero.

To transmit a break, set the UCTXBRK bit, then write 0h to UCAxTXBUF. UCAxTXBUF must be ready for
new data (UCTXIFG = 1). This generates a break with all bits low. UCTXBRK is automatically cleared
when the start bit is generated.

483SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – UART Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Break Delimiter Synch

Synch

Start

Bit

Stop

Bit
0 1 2 3 4 5 6 7

8 Bit Times

USCI Operation – UART Mode www.ti.com

19.3.4 Automatic Baud-Rate Detection

When UCMODEx = 11, UART mode with automatic baud-rate detection is selected. For automatic
baud-rate detection, a data frame is preceded by a synchronization sequence that consists of a break and
a synch field. A break is detected when 11 or more continuous zeros (spaces) are received. If the length
of the break exceeds 21 bit times the break timeout error flag UCBTOE is set. The USCI can not transmit
data while receiving the break/sync field. The synch field follows the break as shown in Figure 19-5.

Figure 19-5. Auto Baud-Rate Detection – Break/Synch Sequence

For LIN conformance, the character format should be set to eight data bits, LSB first, no parity, and one
stop bit. No address bit is available.

The synch field consists of the data 055h inside a byte field (see Figure 19-6). The synchronization is
based on the time measurement between the first falling edge and the last falling edge of the pattern. The
transmit baud-rate generator is used for the measurement if automatic baud-rate detection is enabled by
setting UCABDEN. Otherwise, the pattern is received but not measured. The result of the measurement is
transferred into the baud-rate control registers (UCAxBR0, UCAxBR1, and UCAxMCTL). If the length of
the synch field exceeds the measurable time, the synch timeout error flag UCSTOE is set.

Figure 19-6. Auto Baud-Rate Detection – Synch Field

The UCDORM bit is used to control data reception in this mode. When UCDORM is set, all characters are
received but not transferred into the UCAxRXBUF, and interrupts are not generated. When a break/synch
field is detected, the UCBRK flag is set. The character following the break/synch field is transferred into
UCAxRXBUF and the UCRXIFG interrupt flag is set. Any applicable error flag is also set. If the UCBRKIE
bit is set, reception of the break/synch sets the UCRXIFG. The UCBRK bit is reset by user software or by
reading the receive buffer UCAxRXBUF.

When a break/synch field is received, user software must reset UCDORM to continue receiving data. If
UCDORM remains set, only the character after the next reception of a break/synch field is received. The
UCDORM bit is not modified by the USCI hardware automatically.

When UCDORM = 0, all received characters set the receive interrupt flag UCRXIFG. If UCDORM is
cleared during the reception of a character, the receive interrupt flag is set after the reception is complete.

The counter used to detect the baud rate is limited to 07FFFh (32767) counts. This means the minimum
baud rate detectable is 488 baud in oversampling mode and 30 baud in low-frequency mode.

The automatic baud-rate detection mode can be used in a full-duplex communication system with some
restrictions. The USCI can not transmit data while receiving the break/sync field and, if a 0h byte with
framing error is received, any data transmitted during this time gets corrupted. The latter case can be
discovered by checking the received data and the UCFE bit.

484 Universal Serial Communication Interface – UART Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

UART

Start

Bit Data Bits

Stop

Bit

IrDA

www.ti.com USCI Operation – UART Mode

19.3.4.1 Transmitting a Break/Synch Field

The following procedure transmits a break/synch field:

1. Set UCTXBRK with UMODEx = 11.
2. Write 055h to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1).

This generates a break field of 13 bits followed by a break delimiter and the synch character. The
length of the break delimiter is controlled with the UCDELIMx bits. UCTXBRK is reset automatically
when the synch character is transferred from UCAxTXBUF into the shift register.

3. Write desired data characters to UCAxTXBUF. UCAxTXBUF must be ready for new data
(UCTXIFG = 1).
The data written to UCAxTXBUF is transferred to the shift register and transmitted as soon as the shift
register is ready for new data.

19.3.5 IrDA Encoding and Decoding

When UCIREN is set, the IrDA encoder and decoder are enabled and provide hardware bit shaping for
IrDA communication.

19.3.5.1 IrDA Encoding

The encoder sends a pulse for every zero bit in the transmit bit stream coming from the UART (see
Figure 19-7). The pulse duration is defined by UCIRTXPLx bits specifying the number of one-half clock
periods of the clock selected by UCIRTXCLK.

Figure 19-7. UART vs IrDA Data Format

To set the pulse time of 3/16 bit period required by the IrDA standard, the BITCLK16 clock is selected with
UCIRTXCLK = 1 ,and the pulse length is set to six one-half clock cycles with UCIRTXPLx = 6 – 1 = 5.

When UCIRTXCLK = 0, the pulse length tPULSE is based on BRCLK and is calculated as:
UCIRTXPLx = tPULSE × 2 × fBRCLK – 1

When UCIRTXCLK = 0 ,the prescaler UCBRx must to be set to a value greater or equal to 5.

19.3.5.2 IrDA Decoding

The decoder detects high pulses when UCIRRXPL = 0. Otherwise, it detects low pulses. In addition to the
analog deglitch filter, an additional programmable digital filter stage can be enabled by setting UCIRRXFE.
When UCIRRXFE is set, only pulses longer than the programmed filter length are passed. Shorter pulses
are discarded. The equation to program the filter length UCIRRXFLx is:

UCIRRXFLx = (tPULSE − tWAKE) × 2 × fBRCLK – 4

Where:
tPULSE = Minimum receive pulse width
tWAKE = Wake time from any low-power mode. Zero when the device is in active mode.

485SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – UART Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USCI Operation – UART Mode www.ti.com

19.3.6 Automatic Error Detection

Glitch suppression prevents the USCI from being accidentally started. Any pulse on UCAxRXD shorter
than the deglitch time tt (approximately 150 ns) is ignored (see the device-specific data sheet for
parameters).

When a low period on UCAxRXD exceeds tt, a majority vote is taken for the start bit. If the majority vote
fails to detect a valid start bit, the USCI halts character reception and waits for the next low period on
UCAxRXD. The majority vote is also used for each bit in a character to prevent bit errors.

The USCI module automatically detects framing errors, parity errors, overrun errors, and break conditions
when receiving characters. The bits UCFE, UCPE, UCOE, and UCBRK are set when their respective
condition is detected. When the error flags UCFE, UCPE, or UCOE are set, UCRXERR is also set. The
error conditions are described in Table 19-1.

Table 19-1. Receive Error Conditions

Error Condition Error Flag Description

Framing error UCFE A framing error occurs when a low stop bit is detected. When two stop bits are used, both
stop bits are checked for framing error. When a framing error is detected, the UCFE bit is set.

Parity error UCPE A parity error is a mismatch between the number of 1s in a character and the value of the
parity bit. When an address bit is included in the character, it is included in the parity
calculation. When a parity error is detected, the UCPE bit is set.

Receive overrun UCOE An overrun error occurs when a character is loaded into UCAxRXBUF before the prior
character has been read. When an overrun occurs, the UCOE bit is set.

Break condition UCBRK When not using automatic baud-rate detection, a break is detected when all data, parity, and
stop bits are low. When a break condition is detected, the UCBRK bit is set. A break condition
can also set the interrupt flag UCRXIFG if the break interrupt enable UCBRKIE bit is set.

When UCRXEIE = 0 and a framing error or parity error is detected, no character is received into
UCAxRXBUF. When UCRXEIE = 1, characters are received into UCAxRXBUF and any applicable error
bit is set.

When any of the UCFE, UCPE, UCOE, UCBRK, or UCRXERR bit is set, the bit remains set until user
software resets it or UCAxRXBUF is read. UCOE must be reset by reading UCAxRXBUF. Otherwise, it
does not function properly. To detect overflows reliably the following flow is recommended. After a
character was received and UCAxRXIFG is set, first read UCAxSTAT to check the error flags including the
overflow flag UCOE. Read UCAxRXBUF next. This clears all error flags except UCOE, if UCAxRXBUF
was overwritten between the read access to UCAxSTAT and to UCAxRXBUF. Therefore, the UCOE flag
should be checked after reading UCAxRXBUF to detect this condition. Note that, in this case, the
UCRXERR flag is not set.

486 Universal Serial Communication Interface – UART Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

t
t

UCAxRXD

URXS

URXS

Majority Vote Taken

t
t

www.ti.com USCI Operation – UART Mode

19.3.7 USCI Receive Enable

The USCI module is enabled by clearing the UCSWRST bit and the receiver is ready and in an idle state.
The receive baud rate generator is in a ready state but is not clocked nor producing any clocks.

The falling edge of the start bit enables the baud rate generator and the UART state machine checks for a
valid start bit. If no valid start bit is detected the UART state machine returns to its idle state and the baud
rate generator is turned off again. If a valid start bit is detected, a character is received.

When the idle-line multiprocessor mode is selected with UCMODEx = 01 the UART state machine checks
for an idle line after receiving a character. If a start bit is detected another character is received. Otherwise
the UCIDLE flag is set after 10 ones are received and the UART state machine returns to its idle state and
the baud rate generator is turned off.

19.3.7.1 Receive Data Glitch Suppression

Glitch suppression prevents the USCI from being accidentally started. Any glitch on UCAxRXD shorter
than the deglitch time tt (approximately 150 ns) is ignored by the USCI, and further action is initiated as
shown in Figure 19-8 (see the device-specific data sheet for parameters).

Figure 19-8. Glitch Suppression, USCI Receive Not Started

When a glitch is longer than tt, or a valid start bit occurs on UCAxRXD, the USCI receive operation is
started and a majority vote is taken (see Figure 19-9). If the majority vote fails to detect a start bit, the
USCI halts character reception.

Figure 19-9. Glitch Suppression, USCI Activated

19.3.8 USCI Transmit Enable

The USCI module is enabled by clearing the UCSWRST bit and the transmitter is ready and in an idle
state. The transmit baud-rate generator is ready but is not clocked nor producing any clocks.

A transmission is initiated by writing data to UCAxTXBUF. When this occurs, the baud-rate generator is
enabled, and the data in UCAxTXBUF is moved to the transmit shift register on the next BITCLK after the
transmit shift register is empty. UCTXIFG is set when new data can be written into UCAxTXBUF.

Transmission continues as long as new data is available in UCAxTXBUF at the end of the previous byte
transmission. If new data is not in UCAxTXBUF when the previous byte has transmitted, the transmitter
returns to its idle state and the baud-rate generator is turned off.

487SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – UART Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

N/2

Bit Start

BRCLK

Counter

BITCLK

N/2-1 N/2-2
1 N/2 N/2-1 1 N/2 N/2-1N/2-2

0 N/2 N/2-11

INT(N/2) + m(= 0)

INT(N/2) + m(= 1)

1 0 N/2

Bit Period

NEVEN: INT(N/2)

NODD: INT(N/2) + R(= 1)

m: corresponding modulation bit

R: Remainder from N/2 division

Majority Vote: (m= 0)

(m= 1)

USCI Operation – UART Mode www.ti.com

19.3.9 UART Baud-Rate Generation

The USCI baud-rate generator is capable of producing standard baud rates from nonstandard source
frequencies. It provides two modes of operation selected by the UCOS16 bit. The baud-rate is generate
using the BRCLK that can be sourced by the external clock UCAxCLK, or the internal clocks ACLK or
SMCLK depending on the UCSSELx settings.

19.3.9.1 Low-Frequency Baud-Rate Generation

The low-frequency mode is selected when UCOS16 = 0. This mode allows generation of baud rates from
low frequency clock sources (e.g., 9600 baud from a 32768-Hz crystal). By using a lower input frequency,
the power consumption of the module is reduced. Using this mode with higher frequencies and higher
prescaler settings causes the majority votes to be taken in an increasingly smaller window and, thus,
decrease the benefit of the majority vote.

In low-frequency mode, the baud-rate generator uses one prescaler and one modulator to generate bit
clock timing. This combination supports fractional divisors for baud-rate generation. In this mode, the
maximum USCI baud rate is one-third the UART source clock frequency BRCLK.

Timing for each bit is shown in Figure 19-10. For each bit received, a majority vote is taken to determine
the bit value. These samples occur at the N/2 – 1/2, N/2, and N/2 + 1/2 BRCLK periods, where N is the
number of BRCLKs per BITCLK.

Figure 19-10. BITCLK Baud-Rate Timing With UCOS16 = 0

Modulation is based on the UCBRSx setting (see Table 19-2). A 1 in the table indicates that m = 1 and the
corresponding BITCLK period is one BRCLK period longer than a BITCLK period with m = 0. The
modulation wraps around after eight bits but restarts with each new start bit.

Table 19-2. BITCLK Modulation Pattern

Bit 0UCBRSx Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7(Start Bit)

0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

2 0 1 0 0 0 1 0 0

3 0 1 0 1 0 1 0 0

4 0 1 0 1 0 1 0 1

5 0 1 1 1 0 1 0 1

6 0 1 1 1 0 1 1 1

7 0 1 1 1 1 1 1 1

488 Universal Serial Communication Interface – UART Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Operation – UART Mode

19.3.9.2 Oversampling Baud-Rate Generation

The oversampling mode is selected when UCOS16 = 1. This mode supports sampling a UART bit stream
with higher input clock frequencies. This results in majority votes that are always 1/16 of a bit clock period
apart. This mode also easily supports IrDA pulses with a 3/16 bit time when the IrDA encoder and decoder
are enabled.

This mode uses one prescaler and one modulator to generate the BITCLK16 clock that is 16 times faster
than the BITCLK. An additional divider and modulator stage generates BITCLK from BITCLK16. This
combination supports fractional divisions of both BITCLK16 and BITCLK for baud-rate generation. In this
mode, the maximum USCI baud rate is 1/16 the UART source clock frequency BRCLK. When UCBRx is
set to 0 or 1, the first prescaler and modulator stage is bypassed and BRCLK is equal to BITCLK16 – in
this case, no modulation for the BITCLK16 is possible and, thus, the UCBRFx bits are ignored.

Modulation for BITCLK16 is based on the UCBRFx setting (see Table 19-3). A 1 in the table indicates that
the corresponding BITCLK16 period is one BRCLK period longer than the periods m = 0. The modulation
restarts with each new bit timing.

Modulation for BITCLK is based on the UCBRSx setting (see Table 19-2) as previously described.

Table 19-3. BITCLK16 Modulation Pattern

No. of BITCLK16 Clocks After Last Falling BITCLK Edge
UCBRFx

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

00h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

01h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

02h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

03h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

04h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1

05h 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1

06h 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1

07h 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1

08h 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1

09h 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1

0Ah 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

0Bh 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1

0Ch 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1

0Dh 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1

0Eh 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

0Fh 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

489SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – UART Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

T [i] =bit,TX

1
fBRCLK

(((16 + m [i]) × UCBRx + [j]UCBRSx UCBR xm FS
15

j = 0

mUCBR xF [j]
15

j = 0
S

USCI Operation – UART Mode www.ti.com

19.3.10 Setting a Baud Rate

For a given BRCLK clock source, the baud rate used determines the required division factor N:
N = fBRCLK/Baudrate

The division factor N is often a noninteger value, thus, at least one divider and one modulator stage is
used to meet the factor as closely as possible.

If N is equal or greater than 16, the oversampling baud-rate generation mode can be chosen by setting
UCOS16.

19.3.10.1 Low-Frequency Baud-Rate Mode Setting

In low-frequency mode, the integer portion of the divisor is realized by the prescaler:
UCBRx = INT(N)

and the fractional portion is realized by the modulator with the following nominal formula:
UCBRSx = round[(N – INT(N)) × 8]

Incrementing or decrementing the UCBRSx setting by one count may give a lower maximum bit error for
any given bit. To determine if this is the case, a detailed error calculation must be performed for each bit
for each UCBRSx setting.

19.3.10.2 Oversampling Baud-Rate Mode Setting

In the oversampling mode, the prescaler is set to:
UCBRx = INT(N/16)

and the first stage modulator is set to:
UCBRFx = round([(N/16) – INT(N/16)] × 16)

When greater accuracy is required, the UCBRSx modulator can also be implemented with values from 0
to 7. To find the setting that gives the lowest maximum bit error rate for any given bit, a detailed error
calculation must be performed for all settings of UCBRSx from 0 to 7 with the initial UCBRFx setting, and
with the UCBRFx setting incremented and decremented by one.

19.3.11 Transmit Bit Timing

The timing for each character is the sum of the individual bit timings. Using the modulation features of the
baud-rate generator reduces the cumulative bit error. The individual bit error can be calculated using the
following steps.

19.3.11.1 Low-Frequency Baud-Rate Mode Bit Timing

In low-frequency mode, calculate the length of bit i Tbit,TX[i] based on the UCBRx and UCBRSx settings:
Tbit,TX[i] = (1/fBRCLK)(UCBRx + mUCBRSx[i])

Where:
mUCBRSx[i] = Modulation of bit i from Table 19-2

19.3.11.2 Oversampling Baud-Rate Mode Bit Timing

In oversampling baud-rate mode, calculate the length of bit i Tbit,TX[i] based on the baud-rate generator
UCBRx, UCBRFx and UCBRSx settings:

Where:

= Sum of ones from the corresponding row in Table 19-3

490 Universal Serial Communication Interface – UART Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Tbit,TX[j]
i

j = 0
STbit,TX[i] =

1 2 3 4 5 6

0i

t0tideal

7 8

1 2

9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7

ST D0 D1

D0 D1ST

Synchronization Error ± 0.5x BRCLK

Majority Vote Taken Majority Vote Taken Majority Vote Taken

BRCLK

UCAxRXD

RXD synch.

tactual

Sample

RXD synch.

t0

t1

t1 t2

T [j] +bit,RX

i – 1

j = 0
S

1
fBRCLK

t [i] = t +bit,RX SYNC INT(½UCBRx) + m [i]UCBRSx((

www.ti.com USCI Operation – UART Mode

mUCBRSx[i] = Modulation of bit i from Table 19-2

This results in an end-of-bit time tbit,TX[i] equal to the sum of all previous and the current bit times:

To calculate bit error, this time is compared to the ideal bit time tbit,ideal,TX[i]:
tbit,ideal,TX[i] = (1/Baudrate)(i + 1)

This results in an error normalized to one ideal bit time (1/baudrate):
ErrorTX[i] = (tbit,TX[i] – tbit,ideal,TX[i]) × Baudrate × 100%

19.3.12 Receive Bit Timing

Receive timing error consists of two error sources. The first is the bit-to-bit timing error similar to the
transmit bit timing error. The second is the error between a start edge occurring and the start edge being
accepted by the USCI module. Figure 19-11 shows the asynchronous timing errors between data on the
UCAxRXD pin and the internal baud-rate clock. This results in an additional synchronization error. The
synchronization error tSYNC is between –0.5 BRCLKs and +0.5 RCLKs, independent of the selected
baud-rate generation mode.

Figure 19-11. Receive Error

The ideal sampling time tbit,ideal,RX[i] is in the middle of a bit period:
tbit,ideal,RX[i] = (1/Baudrate)(i + 0.5)

The real sampling time, tbit,RX[i], is equal to the sum of all previous bits according to the formulas shown in
the transmit timing section, plus one-half BITCLK for the current bit i, plus the synchronization error tSYNC.

This results in the following tbit,RX[i] for the low-frequency baud-rate mode:

Where:
Tbit,RX[i] = (1/fBRCLK)(UCBRx + mUCBRSx[i])
mUCBRSx[i] = Modulation of bit i from Table 19-2

491SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – UART Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

t [i] = t +bit,RX SYNC (8 + m [i]) × UCBRx +UCBRSx
T [j] +bit,RX

i – 1

j = 0
S

1
fBRCLK

((m [j]UCBRFx

7 + m [i]UCBRSx

j = 0
S

(16 + m [i]) × UCBRx +UCBRSx
T [i] =bit,RX

1
fBRCLK

((m [j]UCBRFx

15

j = 0
S

m [j]UCBRFx

7 + m [i]UCBRSx

j = 0
S

USCI Operation – UART Mode www.ti.com

For the oversampling baud-rate mode, the sampling time tbit,RX[i] of bit i is calculated by:

Where:

= Sum of ones from columns 0 to (7 + mUCBRSx[i]) from the corresponding row in
Table 19-3.
mUCBRSx[i] = Modulation of bit i from Table 19-2

This results in an error normalized to one ideal bit time (1/baudrate) according to the following formula:
ErrorRX[i] = (tbit,RX[i] – tbit,ideal,RX[i]) × Baudrate × 100%

19.3.13 Typical Baud Rates and Errors

Standard baud-rate data for UCBRx, UCBRSx, and UCBRFx are listed in Table 19-4 and Table 19-5 for a
32,768-Hz crystal sourcing ACLK and typical SMCLK frequencies. Please ensure that the selected
BRCLK frequency does not exceed the device specific maximum USCI input frequency (see the
device-specific data sheet).

The receive error is the accumulated time versus the ideal scanning time in the middle of each bit. The
worst-case error is given for the reception of an 8-bit character with parity and one stop bit including
synchronization error.

The transmit error is the accumulated timing error versus the ideal time of the bit period. The worst-case
error is given for the transmission of an 8-bit character with parity and stop bit.

Table 19-4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0

BRCLK Baud Rate Maximum TX Error Maximum RX ErrorFrequency UCBRx UCBRSx UCBRFx(baud) (%) (%)(Hz)

32,768 1200 27 2 0 -2.8 1.4 -5.9 2.0

32,768 2400 13 6 0 -4.8 6.0 -9.7 8.3

32,768 4800 6 7 0 -12.1 5.7 -13.4 19.0

32,768 9600 3 3 0 -21.1 15.2 -44.3 21.3

1,000,000 9600 104 1 0 -0.5 0.6 -0.9 1.2

1,000,000 19200 52 0 0 -1.8 0 -2.6 0.9

1,000,000 38400 26 0 0 -1.8 0 -3.6 1.8

1,000,000 57600 17 3 0 -2.1 4.8 -6.8 5.8

1,000,000 115200 8 6 0 -7.8 6.4 -9.7 16.1

1,048,576 9600 109 2 0 -0.2 0.7 -1.0 0.8

1,048,576 19200 54 5 0 -1.1 1.0 -1.5 2.5

1,048,576 38400 27 2 0 -2.8 1.4 -5.9 2.0

1,048,576 57600 18 1 0 -4.6 3.3 -6.8 6.6

1,048,576 115200 9 1 0 -1.1 10.7 -11.5 11.3

4,000,000 9600 416 6 0 -0.2 0.2 -0.2 0.4

4,000,000 19200 208 3 0 -0.2 0.5 -0.3 0.8

4,000,000 38400 104 1 0 -0.5 0.6 -0.9 1.2

4,000,000 57600 69 4 0 -0.6 0.8 -1.8 1.1

4,000,000 115200 34 6 0 -2.1 0.6 -2.5 3.1

4,000,000 230400 17 3 0 -2.1 4.8 -6.8 5.8

4,194,304 9600 436 7 0 -0.3 0 -0.3 0.2

492 Universal Serial Communication Interface – UART Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Operation – UART Mode

Table 19-4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0 (continued)

BRCLK Baud Rate Maximum TX Error Maximum RX ErrorFrequency UCBRx UCBRSx UCBRFx(baud) (%) (%)(Hz)

4,194,304 19200 218 4 0 -0.2 0.2 -0.3 0.6

4,194,304 57600 72 7 0 -1.1 0.6 -1.3 1.9

4,194,304 115200 36 3 0 -1.9 1.5 -2.7 3.4

8,000,000 9600 833 2 0 -0.1 0 -0.2 0.1

8,000,000 19200 416 6 0 -0.2 0.2 -0.2 0.4

8,000,000 38400 208 3 0 -0.2 0.5 -0.3 0.8

8,000,000 57600 138 7 0 -0.7 0 -0.8 0.6

8,000,000 115200 69 4 0 -0.6 0.8 -1.8 1.1

8,000,000 230400 34 6 0 -2.1 0.6 -2.5 3.1

8,000,000 460800 17 3 0 -2.1 4.8 -6.8 5.8

8,388,608 9600 873 7 0 -0.1 0.06 -0.2 0,1

8,388,608 19200 436 7 0 -0.3 0 -0.3 0.2

8,388,608 57600 145 5 0 -0.5 0.3 -1.0 0.5

8,388,608 115200 72 7 0 -1.1 0.6 -1.3 1.9

12,000,000 9600 1250 0 0 0 0 -0.05 0.05

12,000,000 19200 625 0 0 0 0 -0.2 0

12,000,000 38400 312 4 0 -0.2 0 -0.2 0.2

12,000,000 57600 208 2 0 -0.5 0.2 -0.6 0.5

12,000,000 115200 104 1 0 -0.5 0.6 -0.9 1.2

12,000,000 230400 52 0 0 -1.8 0 -2.6 0.9

12,000,000 460800 26 0 0 -1.8 0 -3.6 1.8

16,000,000 9600 1666 6 0 -0.05 0.05 -0.05 0.1

16,000,000 19200 833 2 0 -0.1 0.05 -0.2 0.1

16,000,000 38400 416 6 0 -0.2 0.2 -0.2 0.4

16,000,000 57600 277 7 0 -0.3 0.3 -0.5 0.4

16,000,000 115200 138 7 0 -0.7 0 -0.8 0.6

16,000,000 230400 69 4 0 -0.6 0.8 -1.8 1.1

16,000,000 460800 34 6 0 -2.1 0.6 -2.5 3.1

16,777,216 9600 1747 5 0 -0.04 0.03 -0.08 0.05

16,777,216 19200 873 7 0 -0.09 0.06 -0.2 0.1

16,777,216 57600 291 2 0 -0.2 0.2 -0.5 0.2

16,777,216 115200 145 5 0 -0.5 0.3 -1.0 0.5

20,000,000 9600 2083 2 0 -0.05 0.02 -0.09 0.02

20,000,000 19200 1041 6 0 -0.06 0.06 -0.1 0.1

20,000,000 38400 520 7 0 -0.2 0.06 -0.2 0.2

20,000,000 57600 347 2 0 -0.06 0.2 -0.3 0.3

20,000,000 115200 173 5 0 -0.4 0.3 -0.8 0.5

20,000,000 230400 86 7 0 -1.0 0.6 -1.0 1.7

20,000,000 460800 43 3 0 -1.4 1.3 -3.3 1.8

493SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – UART Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USCI Operation – UART Mode www.ti.com

Table 19-5. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1

BRCLK Baud Rate Maximum TX Error Maximum RX ErrorFrequency UCBRx UCBRSx UCBRFx(baud) (%) (%)(Hz)

1,000,000 9600 6 0 8 -1.8 0 -2.2 0.4

1,000,000 19200 3 0 4 -1.8 0 -2.6 0.9

1,048,576 9600 6 0 13 -2.3 0 -2.2 0.8

1,048,576 19200 3 1 6 -4.6 3.2 -5.0 4.7

4,000,000 9600 26 0 1 0 0.9 0 1.1

4,000,000 19200 13 0 0 -1.8 0 -1.9 0.2

4,000,000 38400 6 0 8 -1.8 0 -2.2 0.4

4,000,000 57600 4 5 3 -3.5 3.2 -1.8 6.4

4,000,000 115200 2 3 2 -2.1 4.8 -2.5 7.3

4,194,304 9600 27 0 5 0 0.2 0 0.5

4,194,304 19200 13 0 10 -2.3 0 -2.4 0.1

4,194,304 57600 4 4 7 -2.5 2.5 -1.3 5.1

4,194,304 115200 2 6 3 -3.9 2.0 -1.9 6.7

8,000,000 9600 52 0 1 -0.4 0 -0.4 0.1

8,000,000 19200 26 0 1 0 0.9 0 1.1

8,000,000 38400 13 0 0 -1.8 0 -1.9 0.2

8,000,000 57600 8 0 11 0 0.88 0 1.6

8,000,000 115200 4 5 3 -3.5 3.2 -1.8 6.4

8,000,000 230400 2 3 2 -2.1 4.8 -2.5 7.3

8,388,608 9600 54 0 10 0 0.2 -0.05 0.3

8,388,608 19200 27 0 5 0 0.2 0 0.5

8,388,608 57600 9 0 2 0 2.8 -0.2 3.0

8,388,608 115200 4 4 7 -2.5 2.5 -1.3 5.1

12,000,000 9600 78 0 2 0 0 -0.05 0.05

12,000,000 19200 39 0 1 0 0 0 0.2

12,000,000 38400 19 0 8 -1.8 0 -1.8 0.1

12,000,000 57600 13 0 0 -1.8 0 -1.9 0.2

12,000,000 115200 6 0 8 -1.8 0 -2.2 0.4

12,000,000 230400 3 0 4 -1.8 0 -2.6 0.9

16,000,000 9600 104 0 3 0 0.2 0 0.3

16,000,000 19200 52 0 1 -0.4 0 -0.4 0.1

16,000,000 38400 26 0 1 0 0.9 0 1.1

16,000,000 57600 17 0 6 0 0.9 -0.1 1.0

16,000,000 115200 8 0 11 0 0.9 0 1.6

16,000,000 230400 4 5 3 -3.5 3.2 -1.8 6.4

16,000,000 460800 2 3 2 -2.1 4.8 -2.5 7.3

16,777,216 9600 109 0 4 0 0.2 -0.02 0.3

16,777,216 19200 54 0 10 0 0.2 -0.05 0.3

16,777,216 57600 18 0 3 -1.0 0 -1.0 0.3

16,777,216 115200 9 0 2 0 2.8 -0.2 3.0

20,000,000 9600 130 0 3 -0.2 0 -0.2 0.04

20,000,000 19200 65 0 2 0 0.4 -0.03 0.4

20,000,000 38400 32 0 9 0 0.4 0 0.5

20,000,000 57600 21 0 11 -0.7 0 -0.7 0.3

20,000,000 115200 10 0 14 0 2.5 -0.2 2.6

20,000,000 230400 5 0 7 0 2.5 0 3.5

494 Universal Serial Communication Interface – UART Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Operation – UART Mode

Table 19-5. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1 (continued)

BRCLK Baud Rate Maximum TX Error Maximum RX ErrorFrequency UCBRx UCBRSx UCBRFx(baud) (%) (%)(Hz)

20,000,000 460800 2 6 10 -3.2 1.8 -2.8 4.6

19.3.14 Using the USCI Module in UART Mode With Low-Power Modes

The USCI module provides automatic clock activation for use with low-power modes. When the USCI
clock source is inactive because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock source. The clock remains
active until the USCI module returns to its idle condition. After the USCI module returns to the idle
condition, control of the clock source reverts to the settings of its control bits.

19.3.15 USCI Interrupts

The USCI has only one interrupt vector that is shared for transmission and for reception. USCI_Ax and
USC_Bx do not share the same interrupt vector.

19.3.15.1 USCI Transmit Interrupt Operation

The UCTXIFG interrupt flag is set by the transmitter to indicate that UCAxTXBUF is ready to accept
another character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is
automatically reset if a character is written to UCAxTXBUF.

UCTXIFG is set after a PUC or when UCSWRST = 1. UCTXIE is reset after a PUC or when
UCSWRST = 1.

19.3.15.2 USCI Receive Interrupt Operation

The UCRXIFG interrupt flag is set each time a character is received and loaded into UCAxRXBUF. An
interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset by a
system reset PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCAxRXBUF is
read.

Additional interrupt control features include:

• When UCAxRXEIE = 0, erroneous characters do not set UCRXIFG.
• When UCDORM = 1, nonaddress characters do not set UCRXIFG in multiprocessor modes. In plain

UART mode, no characters are set UCRXIFG.
• When UCBRKIE = 1, a break condition sets the UCBRK bit and the UCRXIFG flag.

19.3.15.3 UCAxIV, Interrupt Vector Generator

The USCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt
vector register UCAxIV is used to determine which flag requested an interrupt. The highest-priority
enabled interrupt generates a number in the UCAxIV register that can be evaluated or added to the
program counter to automatically enter the appropriate software routine. Disabled interrupts do not affect
the UCAxIV value.

Any access, read or write, of the UCAxIV register automatically resets the highest-pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.

495SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – UART Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USCI Operation – UART Mode www.ti.com

UCAxIV Software Example

The following software example shows the recommended use of UCAxIV. The UCAxIV value is added to
the PC to automatically jump to the appropriate routine. The following example is given for USCI_A0.
USCI_UART_ISR

ADD &UCA0IV, PC ; Add offset to jump table
RETI ; Vector 0: No interrupt
JMP RXIFG_ISR ; Vector 2: RXIFG

TXIFG_ISR ; Vector 4: TXIFG
... ; Task starts here
RETI ; Return

RXIFG_ISR ; Vector 2
... ; Task starts here
RETI ; Return

496 Universal Serial Communication Interface – UART Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Registers – UART Mode

19.4 USCI Registers – UART Mode

The USCI registers applicable in UART mode listed in Table 19-6. The base address can be found in the
device-specific data sheet. The address offsets are listed in Table 19-6.

Table 19-6. USCI_Ax Registers

RegisterRegister Short Form Register Type Address Offset Initial StateAccess

USCI_Ax Control Word 0 UCAxCTLW0 Read/write Word 00h 0001h

USCI_Ax Control 1 UCAxCTL1 Read/write Byte 00h 01h

USCI_Ax Control 0 UCAxCTL0 Read/write Byte 01h 00h

USCI_Ax Baud Rate Control Word UCAxBRW Read/write Word 06h 0000h

USCI_Ax Baud Rate Control 0 UCAxBR0 Read/write Byte 06h 00h

USCI_Ax Baud Rate Control 1 UCAxBR1 Read/write Byte 07h 00h

USCI_Ax Modulation Control UCAxMCTL Read/write Byte 08h 00h

Reserved - reads zero Read Byte 09h 00h

USCI_Ax Status UCAxSTAT Read/write Byte 0Ah 00h

Reserved - reads zero Read Byte 0Bh 00h

USCI_Ax Receive Buffer UCAxRXBUF Read/write Byte 0Ch 00h

Reserved - reads zero Read Byte 0Dh 00h

USCI_Ax Transmit Buffer UCAxTXBUF Read/write Byte 0Eh 00h

Reserved - reads zero Read Byte 0Fh 00h

USCI_Ax Auto Baud Rate Control UCAxABCTL Read/write Byte 10h 00h

Reserved - reads zero Read Byte 11h 00h

USCI_Ax IrDA Control UCAxIRCTL Read/write Word 12h 0000h

USCI_Ax IrDA Transmit Control UCAxIRTCTL Read/write Byte 12h 00h

USCI_Ax IrDA Receive Control UCAxIRRCTL Read/write Byte 13h 00h

USCI_Ax Interrupt Control UCAxICTL Read/write Word 1Ch 0000h

USCI_Ax Interrupt Enable UCAxIE Read/write Byte 1Ch 00h

USCI_Ax Interrupt Flag UCAxIFG Read/write Byte 1Dh 00h

USCI_Ax Interrupt Vector UCAxIV Read Word 1Eh 0000h

497SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – UART Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USCI Registers – UART Mode www.ti.com

USCI_Ax Control Register 0 (UCAxCTL0)

7 6 5 4 3 2 1 0

UCPEN UCPAR UCMSB UC7BIT UCSPB UCMODEx UCSYNC=0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCPEN Bit 7 Parity enable

0 Parity disabled

1 Parity enabled. Parity bit is generated (UCAxTXD) and expected (UCAxRXD). In address-bit
multiprocessor mode, the address bit is included in the parity calculation.

UCPAR Bit 6 Parity select. UCPAR is not used when parity is disabled.

0 Odd parity

1 Even parity

UCMSB Bit 5 MSB first select. Controls the direction of the receive and transmit shift register.

0 LSB first

1 MSB first

UC7BIT Bit 4 Character length. Selects 7-bit or 8-bit character length.

0 8-bit data

1 7-bit data

UCSPB Bit 3 Stop bit select. Number of stop bits.

0 One stop bit

1 Two stop bits

UCMODEx Bits 2-1 USCI mode. The UCMODEx bits select the asynchronous mode when UCSYNC = 0.

00 UART mode

01 Idle-line multiprocessor mode

10 Address-bit multiprocessor mode

11 UART mode with automatic baud-rate detection

UCSYNC Bit 0 Synchronous mode enable

0 Asynchronous mode

1 Synchronous mode

498 Universal Serial Communication Interface – UART Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Registers – UART Mode

USCI_Ax Control Register 1 (UCAxCTL1)

7 6 5 4 3 2 1 0

UCSSELx UCRXEIE UCBRKIE UCDORM UCTXADDR UCTXBRK UCSWRST

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1

UCSSELx Bits 7-6 USCI clock source select. These bits select the BRCLK source clock.

00 UCAxCLK (external USCI clock)

01 ACLK

10 SMCLK

11 SMCLK

UCRXEIE Bit 5 Receive erroneous-character interrupt enable

0 Erroneous characters rejected and UCRXIFG is not set.

1 Erroneous characters received set UCRXIFG.

UCBRKIE Bit 4 Receive break character interrupt enable

0 Received break characters do not set UCRXIFG.

1 Received break characters set UCRXIFG.

UCDORM Bit 3 Dormant. Puts USCI into sleep mode.

0 Not dormant. All received characters set UCRXIFG.

1 Dormant. Only characters that are preceded by an idle-line or with address bit set UCRXIFG. In UART
mode with automatic baud-rate detection, only the combination of a break and synch field sets
UCRXIFG.

UCTXADDR Bit 2 Transmit address. Next frame to be transmitted is marked as address, depending on the selected
multiprocessor mode.

0 Next frame transmitted is data.

1 Next frame transmitted is an address.

UCTXBRK Bit 1 Transmit break. Transmits a break with the next write to the transmit buffer. In UART mode with automatic
baud-rate detection, 055h must be written into UCAxTXBUF to generate the required break/synch fields.
Otherwise, 0h must be written into the transmit buffer.

0 Next frame transmitted is not a break.

1 Next frame transmitted is a break or a break/synch.

UCSWRST Bit 0 Software reset enable

0 Disabled. USCI reset released for operation.

1 Enabled. USCI logic held in reset state.

499SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – UART Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USCI Registers – UART Mode www.ti.com

USCI_Ax Baud Rate Control Register 0 (UCAxBR0)

7 6 5 4 3 2 1 0

UCBRx - low byte

rw rw rw rw rw rw rw rw

USCI_Ax Baud Rate Control Register 1 (UCAxBR1)

7 6 5 4 3 2 1 0

UCBRx - high byte

rw rw rw rw rw rw rw rw

UCBRx Clock prescaler setting of the baud-rate generator. The 16-bit value of (UCAxBR0 + UCAxBR1 × 256) forms the prescaler
value UCBRx.

USCI_Ax Modulation Control Register (UCAxMCTL)

7 6 5 4 3 2 1 0

UCBRFx UCBRSx UCOS16

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCBRFx Bits 7-4 First modulation stage select. These bits determine the modulation pattern for BITCLK16 when UCOS16 = 1.
Ignored with UCOS16 = 0. Table 19-3 shows the modulation pattern.

UCBRSx Bits 3-1 Second modulation stage select. These bits determine the modulation pattern for BITCLK. Table 19-2 shows
the modulation pattern.

UCOS16 Bit 0 Oversampling mode enabled

0 Disabled

1 Enabled

500 Universal Serial Communication Interface – UART Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Registers – UART Mode

USCI_Ax Status Register (UCAxSTAT)

7 6 5 4 3 2 1 0

UCADDR/UCLISTEN UCFE UCOE UCPE UCBRK UCRXERR UCBUSYUCIDLE

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-0

UCLISTEN Bit 7 Listen enable. The UCLISTEN bit selects loopback mode.

0 Disabled

1 Enabled. UCAxTXD is internally fed back to the receiver.

UCFE Bit 6 Framing error flag

0 No error

1 Character received with low stop bit

UCOE Bit 5 Overrun error flag. This bit is set when a character is transferred into UCAxRXBUF before the previous
character was read. UCOE is cleared automatically when UCxRXBUF is read, and must not be cleared by
software. Otherwise, it does not function correctly.

0 No error

1 Overrun error occurred.

UCPE Bit 4 Parity error flag. When UCPEN = 0, UCPE is read as 0.

0 No error

1 Character received with parity error

UCBRK Bit 3 Break detect flag

0 No break condition

1 Break condition occurred.

UCRXERR Bit 2 Receive error flag. This bit indicates a character was received with error(s). When UCRXERR = 1, on or more
error flags, UCFE, UCPE, or UCOE is also set. UCRXERR is cleared when UCAxRXBUF is read.

0 No receive errors detected

1 Receive error detected

UCADDR Bit 1 Address received in address-bit multiprocessor mode. UCADDR is cleared when UCAxRXBUF is read.

0 Received character is data.

1 Received character is an address.

UCIDLE Idle line detected in idle-line multiprocessor mode. UCIDLE is cleared when UCAxRXBUF is read.

0 No idle line detected

1 Idle line detected

UCBUSY Bit 0 USCI busy. This bit indicates if a transmit or receive operation is in progress.

0 USCI inactive

1 USCI transmitting or receiving

USCI_Ax Receive Buffer Register (UCAxRXBUF)

7 6 5 4 3 2 1 0

UCRXBUFx

r r r r r r r r

UCRXBUFx Bits 7-0 The receive-data buffer is user accessible and contains the last received character from the receive shift
register. Reading UCAxRXBUF resets the receive-error bits, the UCADDR or UCIDLE bit, and UCRXIFG. In
7-bit data mode, UCAxRXBUF is LSB justified and the MSB is always reset.

USCI_Ax Transmit Buffer Register (UCAxTXBUF)

7 6 5 4 3 2 1 0

UCTXBUFx

rw rw rw rw rw rw rw rw

UCTXBUFx Bits 7-0 The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift
register and transmitted on UCAxTXD. Writing to the transmit data buffer clears UCTXIFG. The MSB of
UCAxTXBUF is not used for 7-bit data and is reset.

501SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – UART Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USCI Registers – UART Mode www.ti.com

USCI_Ax IrDA Transmit Control Register (UCAxIRTCTL)

7 6 5 4 3 2 1 0

UCIRTXPLx UCIRTXCLK UCIREN

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCIRTXPLx Bits 7-2 Transmit pulse length
Pulse length tPULSE = (UCIRTXPLx + 1) / (2 × fIRTXCLK)

UCIRTXCLK Bit 1 IrDA transmit pulse clock select

0 BRCLK

1 BITCLK16 when UCOS16 = 1. Otherwise, BRCLK.

UCIREN Bit 0 IrDA encoder/decoder enable

0 IrDA encoder/decoder disabled

1 IrDA encoder/decoder enabled

USCI_Ax IrDA Receive Control Register (UCAxIRRCTL)

7 6 5 4 3 2 1 0

UCIRRXFLx UCIRRXPL UCIRRXFE

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCIRRXFLx Bits 7-2 Receive filter length. The minimum pulse length for receive is given by:
tMIN = (UCIRRXFLx + 4) / (2 × fIRTXCLK)

UCIRRXPL Bit 1 IrDA receive input UCAxRXD polarity

0 IrDA transceiver delivers a high pulse when a light pulse is seen.

1 IrDA transceiver delivers a low pulse when a light pulse is seen.

UCIRRXFE Bit 0 IrDA receive filter enabled

0 Receive filter disabled

1 Receive filter enabled

USCI_Ax Auto Baud Rate Control Register (UCAxABCTL)

7 6 5 4 3 2 1 0

Reserved UCDELIMx UCSTOE UCBTOE Reserved UCABDEN

r-0 r-0 rw-0 rw-0 rw-0 rw-0 r-0 rw-0

Reserved Bits 7-6 Reserved

UCDELIMx Bits 5-4 Break/synch delimiter length

00 1 bit time

01 2 bit times

10 3 bit times

11 4 bit times

UCSTOE Bit 3 Synch field time out error

0 No error

1 Length of synch field exceeded measurable time.

UCBTOE Bit 2 Break time out error

0 No error

1 Length of break field exceeded 22 bit times.

Reserved Bit 1 Reserved

UCABDEN Bit 0 Automatic baud-rate detect enable

0 Baud-rate detection disabled. Length of break and synch field is not measured.

1 Baud-rate detection enabled. Length of break and synch field is measured and baud-rate settings are
changed accordingly.

502 Universal Serial Communication Interface – UART Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Registers – UART Mode

USCI_Ax Interrupt Enable Register (UCAxIE)

7 6 5 4 3 2 1 0

Reserved UCTXIE UCRXIE

r-0 r-0 r-0 r-0 r-0 r-0 rw-0 rw-0

Reserved Bits 7-2 Reserved

UCTXIE Bit 1 Transmit interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCRXIE Bit 0 Receive interrupt enable

0 Interrupt disabled

1 Interrupt enabled

USCI_Ax Interrupt Flag Register (UCAxIFG)

7 6 5 4 3 2 1 0

Reserved UCTXIFG UCRXIFG

r-0 r-0 r-0 r-0 r-0 r-0 rw-1 rw-0

Reserved Bits 7-2 Reserved

UCTXIFG Bit 1 Transmit interrupt flag. UCTXIFG is set when UCAxTXBUF empty.

0 No interrupt pending

1 Interrupt pending

UCRXIFG Bit 0 Receive interrupt flag. UCRXIFG is set when UCAxRXBUF has received a complete character.

0 No interrupt pending

1 Interrupt pending

USCI_Ax Interrupt Vector Register (UCAxIV)

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 0 UCIVx 0

r0 r0 r0 r-0 r-0 r-0 r-0 r0

UCIVx Bits 15-0 USCI interrupt vector value

UCAxIV Interrupt Source Interrupt Flag Interrupt PriorityContents

000h No interrupt pending

002h Data received UCRXIFG Highest

004h Transmit buffer empty UCTXIFG Lowest

503SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – UART Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

504 Universal Serial Communication Interface – UART Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 20
SLAU208E–June 2008–Revised November 2009

Universal Serial Communication Interface – SPI Mode

The universal serial communication interface (USCI) supports multiple serial communication modes with
one hardware module. This chapter discusses the operation of the synchronous peripheral interface (SPI)
mode.

Topic ... Page

20.1 Universal Serial Communication Interface (USCI) Overview 506
20.2 USCI Introduction – SPI Mode ... 507
20.3 USCI Operation – SPI Mode .. 509
20.4 USCI Registers – SPI Mode ... 514

505SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – SPI Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Universal Serial Communication Interface (USCI) Overview www.ti.com

20.1 Universal Serial Communication Interface (USCI) Overview

The universal serial communication interface (USCI) modules support multiple serial communication
modes. Different USCI modules support different modes. Each different USCI module is named with a
different letter. For example, USCI_A is different from USCI_B, etc. If more than one identical USCI
module is implemented on one device, those modules are named with incrementing numbers. For
example, if one device has two USCI_A modules, they are named USCI_A0 and USCI_A1. See the
device-specific data sheet to determine which USCI modules, if any, are implemented on which devices.

USCI_Ax modules support:

• UART mode
• Pulse shaping for IrDA communications
• Automatic baud-rate detection for LIN communications
• SPI mode

USCI_Bx modules support:

• I2C mode
• SPI mode

506 Universal Serial Communication Interface – SPI Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Introduction – SPI Mode

20.2 USCI Introduction – SPI Mode

In synchronous mode, the USCI connects the device to an external system via three or four pins:
UCxSIMO, UCxSOMI, UCxCLK, and UCxSTE. SPI mode is selected when the UCSYNC bit is set, and
SPI mode (3-pin or 4-pin) is selected with the UCMODEx bits.

SPI mode features include:

• 7-bit or 8-bit data length
• LSB-first or MSB-first data transmit and receive
• 3-pin and 4-pin SPI operation
• Master or slave modes
• Independent transmit and receive shift registers
• Separate transmit and receive buffer registers
• Continuous transmit and receive operation
• Selectable clock polarity and phase control
• Programmable clock frequency in master mode
• Independent interrupt capability for receive and transmit
• Slave operation in LPM4

Figure 20-1 shows the USCI when configured for SPI mode.

507SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – SPI Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ACLK

SMCLK

SMCLK

00

01

10

11

UCSSELx

N/A

Prescaler/Divider

Bit Clock Generator

UCxBRx

16

Receive Shift Register

Receive Buffer UCxRXBUF

Receive State Machine

UCMSB UC7BIT

1

0

UCMST

UCxSOMI

Transmit Buffer UC xTXBUF

Transmit State Machine

Transmit Shift Register

UCMSB UC7BIT

BRCLK

Set UCxRXIFG

Set UCxTXIFG

0

1

UCLISTEN

Clock Direction,

Phase and Polarity

UCCKPH UCCKPL

UCxSIMO

UCxCLK

Set UCOE

Transmit Enable

Control

2

UCMODEx

UCxSTE

Set UCFE

USCI Introduction – SPI Mode www.ti.com

Figure 20-1. USCI Block Diagram – SPI Mode

508 Universal Serial Communication Interface – SPI Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Operation – SPI Mode

20.3 USCI Operation – SPI Mode

In SPI mode, serial data is transmitted and received by multiple devices using a shared clock provided by
the master. An additional pin, UCxSTE, is provided to enable a device to receive and transmit data and is
controlled by the master.

Three or four signals are used for SPI data exchange:

• UCxSIMO slave in, master out Master mode: UCxSIMO is the data output line. Slave mode: UCxSIMO
is the data input line.

• UCxSOMI slave out, master in Master mode: UCxSOMI is the data input line. Slave mode: UCxSOMI
is the data output line.

• UCxCLK USCI SPI clock Master mode: UCxCLK is an output. Slave mode: UCxCLK is an input.
• UCxSTE slave transmit enable. Used in 4-pin mode to allow multiple masters on a single bus. Not

used in 3-pin mode. Table 20-1 describes the UCxSTE operation.

Table 20-1. UCxSTE Operation

UCMODEx UCxSTE Active State UCxSTE Slave Master

0 Inactive Active
01 High

1 Active Inactive

0 Active Inactive
10 Low

1 Inactive Active

20.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by the UCSWRST bit. After a PUC, the UCSWRST bit is automatically set,
keeping the USCI in a reset condition. When set, the UCSWRST bit resets the UCRXIE, UCTXIE,
UCRXIFG, UCOE, and UCFE bits, and sets the UCTXIFG flag. Clearing UCSWRST releases the USCI for
operation.

NOTE: Initializing or reconfiguring the USCI module

The recommended USCI initialization/reconfiguration process is:
1. Set UCSWRST (BIS.B #UCSWRST,&UCxCTL1).

2. Initialize all USCI registers with UCSWRST = 1 (including UCxCTL1).
3. Configure ports.
4. Clear UCSWRST via software (BIC.B #UCSWRST,&UCxCTL1).

5. Enable interrupts (optional) via UCRXIE and/or UCTXIE.

20.3.2 Character Format

The USCI module in SPI mode supports 7-bit and 8-bit character lengths selected by the UC7BIT bit. In
7-bit data mode, UCxRXBUF is LSB justified and the MSB is always reset. The UCMSB bit controls the
direction of the transfer and selects LSB or MSB first.

NOTE: Default character format

The default SPI character transmission is LSB first. For communication with other SPI
interfaces, MSB-first mode may be required.

NOTE: Character format for Figures

Figures throughout this chapter use MSB-first format.

509SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – SPI Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Receive Buffer

UCxRXBUF

Receive Shift Register

Transmit Buffer

UCxTXBUF

Transmit Shift Register

SPI Receive Buffer

Data Shift Register (DSR)

UCx

SOMI SOMI

UCxSIMO SIMOMASTER SLAVE

Px.x STE

UCxSTE
SS

Port.x

UCxCLK SCLK
MSP430 USCI COMMON SPI

USCI Operation – SPI Mode www.ti.com

20.3.3 Master Mode

Figure 20-2. USCI Master and External Slave

Figure 20-2 shows the USCI as a master in both 3-pin and 4-pin configurations. The USCI initiates data
transfer when data is moved to the transmit data buffer UCxTXBUF. The UCxTXBUF data is moved to the
transmit (TX) shift register when the TX shift register is empty, initiating data transfer on UCxSIMO starting
with either the MSB or LSB, depending on the UCMSB setting. Data on UCxSOMI is shifted into the
receive shift register on the opposite clock edge. When the character is received, the receive data is
moved from the receive (RX) shift register to the received data buffer UCxRXBUF and the receive
interrupt flag UCRXIFG is set, indicating the RX/TX operation is complete.

A set transmit interrupt flag, UCTXIFG, indicates that data has moved from UCxTXBUF to the TX shift
register and UCxTXBUF is ready for new data. It does not indicate RX/TX completion.

To receive data into the USCI in master mode, data must be written to UCxTXBUF, because receive and
transmit operations operate concurrently.

20.3.3.1 4-Pin SPI Master Mode

In 4-pin master mode, UCxSTE is used to prevent conflicts with another master and controls the master
as described in Table 20-1. When UCxSTE is in the master-inactive state:

• UCxSIMO and UCxCLK are set to inputs and no longer drive the bus.
• The error bit UCFE is set, indicating a communication integrity violation to be handled by the user.
• The internal state machines are reset and the shift operation is aborted.

If data is written into UCxTXBUF while the master is held inactive by UCxSTE, it is transmit as soon as
UCxSTE transitions to the master-active state. If an active transfer is aborted by UCxSTE transitioning to
the master-inactive state, the data must be rewritten into UCxTXBUF to be transferred when UCxSTE
transitions back to the master-active state. The UCxSTE input signal is not used in 3-pin master mode.

510 Universal Serial Communication Interface – SPI Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Receive Buffer

UCxRXBUF

Receive Shift Register

Transmit Buffer UCxTXBUF

Transmit Shift Register

SPI Receive Buffer

Data Shift Register DSR

UCx

SOMISOMI

UCxSIMOSIMOMASTER SLAVE

Px.x UCxSTE

STE
SS

Port.x

UCxCLKSCLK
MSP430 USCICOMMON SPI

www.ti.com USCI Operation – SPI Mode

20.3.4 Slave Mode

Figure 20-3. USCI Slave and External Master

Figure 20-3 shows the USCI as a slave in both 3-pin and 4-pin configurations. UCxCLK is used as the
input for the SPI clock and must be supplied by the external master. The data-transfer rate is determined
by this clock and not by the internal bit clock generator. Data written to UCxTXBUF and moved to the TX
shift register before the start of UCxCLK is transmitted on UCxSOMI. Data on UCxSIMO is shifted into the
receive shift register on the opposite edge of UCxCLK and moved to UCxRXBUF when the set number of
bits are received. When data is moved from the RX shift register to UCxRXBUF, the UCRXIFG interrupt
flag is set, indicating that data has been received. The overrun error bit UCOE is set when the previously
received data is not read from UCxRXBUF before new data is moved to UCxRXBUF.

20.3.4.1 4-Pin SPI Slave Mode

In 4-pin slave mode, UCxSTE is used by the slave to enable the transmit and receive operations and is
provided by the SPI master. When UCxSTE is in the slave-active state, the slave operates normally.
When UCxSTE is in the slave- inactive state:

• Any receive operation in progress on UCxSIMO is halted.
• UCxSOMI is set to the input direction.
• The shift operation is halted until the UCxSTE line transitions into the slave transmit active state.

The UCxSTE input signal is not used in 3-pin slave mode.

20.3.5 SPI Enable

When the USCI module is enabled by clearing the UCSWRST bit, it is ready to receive and transmit. In
master mode, the bit clock generator is ready, but is not clocked nor producing any clocks. In slave mode,
the bit clock generator is disabled and the clock is provided by the master.

A transmit or receive operation is indicated by UCBUSY = 1.

A PUC or set UCSWRST bit disables the USCI immediately and any active transfer is terminated.

20.3.5.1 Transmit Enable

In master mode, writing to UCxTXBUF activates the bit clock generator, and the data begins to transmit.

In slave mode, transmission begins when a master provides a clock and, in 4-pin mode, when the
UCxSTE is in the slave-active state.

511SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – SPI Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

CKPH CKPL
Cycle#

UCxCLK

UCxCLK

UCxCLK

UCxCLK

UCxSIMO/
UCxSOMI

UCxSIMO
UCxSOMI

Move to UCxTXBUF

RX Sample Points

0

1

0

0

01

1 1

0 X

1 X

MSB

MSB

1 2 3 4 5 6 7 8

LSB

LSB

TX Data Shifted Out

UCxSTE

UC UC

USCI Operation – SPI Mode www.ti.com

20.3.5.2 Receive Enable

The SPI receives data when a transmission is active. Receive and transmit operations operate
concurrently.

20.3.6 Serial Clock Control

UCxCLK is provided by the master on the SPI bus. When UCMST = 1, the bit clock is provided by the
USCI bit clock generator on the UCxCLK pin. The clock used to generate the bit clock is selected with the
UCSSELx bits. When UCMST = 0, the USCI clock is provided on the UCxCLK pin by the master, the bit
clock generator is not used, and the UCSSELx bits are don't care. The SPI receiver and transmitter
operate in parallel and use the same clock source for data transfer.

The 16-bit value of UCBRx in the bit rate control registers (UCxxBR1 and UCxxBR0) is the division factor
of the USCI clock source, BRCLK. The maximum bit clock that can be generated in master mode is
BRCLK. Modulation is not used in SPI mode, and UCAxMCTL should be cleared when using SPI mode
for USCI_A. The UCAxCLK/UCBxCLK frequency is given by:

fBitClock = fBRCLK/UCBRx

20.3.6.1 Serial Clock Polarity and Phase

The polarity and phase of UCxCLK are independently configured via the UCCKPL and UCCKPH control
bits of the USCI. Timing for each case is shown in Figure 20-4.

Figure 20-4. USCI SPI Timing With UCMSB = 1

20.3.7 Using the SPI Mode With Low-Power Modes

The USCI module provides automatic clock activation for use with low-power modes. When the USCI
clock source is inactive because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock source. The clock remains
active until the USCI module returns to its idle condition. After the USCI module returns to the idle
condition, control of the clock source reverts to the settings of its control bits.

In SPI slave mode, no internal clock source is required because the clock is provided by the external
master. It is possible to operate the USCI in SPI slave mode while the device is in LPM4 and all clock
sources are disabled. The receive or transmit interrupt can wake up the CPU from any low-power mode.

512 Universal Serial Communication Interface – SPI Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Operation – SPI Mode

20.3.8 SPI Interrupts

The USCI has only one interrupt vector that is shared for transmission and for reception. USCI_Ax and
USC_Bx do not share the same interrupt vector.

20.3.8.1 SPI Transmit Interrupt Operation

The UCTXIFG interrupt flag is set by the transmitter to indicate that UCxTXBUF is ready to accept another
character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is automatically
reset if a character is written to UCxTXBUF. UCTXIFG is set after a PUC or when UCSWRST = 1.
UCTXIE is reset after a PUC or when UCSWRST = 1.

NOTE: Writing to UCxTXBUF in SPI mode

Data written to UCxTXBUF when UCTXIFG = 0 may result in erroneous data transmission.

20.3.8.2 SPI Receive Interrupt Operation

The UCRXIFG interrupt flag is set each time a character is received and loaded into UCxRXBUF. An
interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset by a
system reset PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCxRXBUF is
read.

20.3.8.3 UCxIV, Interrupt Vector Generator

The USCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt
vector register UCxIV is used to determine which flag requested an interrupt. The highest-priority enabled
interrupt generates a number in the UCxIV register that can be evaluated or added to the program counter
(PC) to automatically enter the appropriate software routine. Disabled interrupts do not affect the UCxIV
value.

Any access, read or write, of the UCxIV register automatically resets the highest-pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.

UCxIV Software Example

The following software example shows the recommended use of UCxIV. The UCxIV value is added to the
PC to automatically jump to the appropriate routine. The following example is given for USCI_B0.
USCI_SPI_ISR

ADD &UCB0IV, PC ; Add offset to jump table
RETI ; Vector 0: No interrupt
JMP RXIFG_ISR ; Vector 2: RXIFG

TXIFG_ISR ; Vector 4: TXIFG
... ; Task starts here
RETI ; Return

RXIFG_ISR ; Vector 2
... ; Task starts here
RETI ; Return

513SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – SPI Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USCI Registers – SPI Mode www.ti.com

20.4 USCI Registers – SPI Mode

The USCI registers applicable in SPI mode are listed in Table 20-2 and Table 20-3. The base addresses
can be found in the device-specific data sheet. The address offsets are listed in Table 20-2 and
Table 20-3.

Table 20-2. USCI_Ax Registers

RegisterRegister Short Form Register Type Address Offset Initial StateAccess

USCI_Ax Control Word 0 UCAxCTLW0 Read/write Word 00h 0001h

USCI_Ax Control 1 UCAxCTL1 Read/write Byte 00h 01h

USCI_Ax Control 0 UCAxCTL0 Read/write Byte 01h 00h

USCI_Ax Bit Rate Control Word UCAxBRW Read/write Word 06h 0000h

USCI_Ax Bit Rate Control 0 UCAxBR0 Read/write Byte 06h 00h

USCI_Ax Bit Rate Control 1 UCAxBR1 Read/write Byte 07h 00h

USCI_Ax Modulation Control UCAxMCTL Read/write Byte 08h 00h

USCI_Ax Status UCAxSTAT Read/write Byte 0Ah 00h

Reserved - reads zero Read Byte 0Bh 00h

USCI_Ax Receive Buffer UCAxRXBUF Read/write Byte 0Ch 00h

Reserved - reads zero Read Byte 0Dh 00h

USCI_Ax Transmit Buffer UCAxTXBUF Read/write Byte 0Eh 00h

Reserved - reads zero Read Byte 0Fh 00h

USCI_Ax Interrupt Control UCAxICTL Read/write Word 1Ch 0200h

USCI_Ax Interrupt Enable UCAxIE Read/write Byte 1Ch 00h

USCI_Ax Interrupt Flag UCAxIFG Read/write Byte 1Dh 02h

USCI_Ax Interrupt Vector UCAxIV Read Word 1Eh 0000h

Table 20-3. USCI_Bx Registers

RegisterRegister Short Form Register Type Address Offset Initial StateAccess

USCI_Bx Control Word 0 UCBxCTLW0 Read/write Word 00h 0101h

USCI_Bx Control 1 UCBxCTL1 Read/write Byte 00h 01h

USCI_Bx Control 0 UCBxCTL0 Read/write Byte 01h 01h

USCI_Bx Bit Rate Control Word UCBxBRW Read/write Word 06h 0000h

USCI_Bx Bit Rate Control 0 UCBxBR0 Read/write Byte 06h 00h

USCI_Bx Bit Rate Control 1 UCBxBR1 Read/write Byte 07h 00h

USCI_Bx Modulation Control UCBxMCTL Read/write Byte 08h 00h

USCI_Bx Status UCBxSTAT Read/write Byte 0Ah 00h

Reserved - reads zero Read Byte 0Bh 00h

USCI_Bx Receive Buffer UCBxRXBUF Read/write Byte 0Ch 00h

Reserved - reads zero Read Byte 0Dh 00h

USCI_Bx Transmit Buffer UCBxTXBUF Read/write Byte 0Eh 00h

Reserved - reads zero Read Byte 0Fh 00h

USCI_Bx Interrupt Control UCBxICTL Read/write Word 1Ch 0200h

USCI_Bx Interrupt Enable UCBxIE Read/write Byte 1Ch 00h

USCI_Bx Interrupt Flag UCBxIFG Read/write Byte 1Dh 02h

USCI_Bx Interrupt Vector UCBxIV Read Word 1Eh 0000h

514 Universal Serial Communication Interface – SPI Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Registers – SPI Mode

USCI_Ax Control Register 0 (UCAxCTL0)
USCI_Bx Control Register 0 (UCBxCTL0)

7 6 5 4 3 2 1 0

UCCKPH UCCKPL UCMSB UC7BIT UCMST UCMODEx UCSYNC=1

rw-0 (1)

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1 (2)

UCCKPH Bit 7 Clock phase select

0 Data is changed on the first UCLK edge and captured on the following edge.

1 Data is captured on the first UCLK edge and changed on the following edge.

UCCKPL Bit 6 Clock polarity select

0 The inactive state is low.

1 The inactive state is high.

UCMSB Bit 5 MSB first select. Controls the direction of the receive and transmit shift register.

0 LSB first

1 MSB first

UC7BIT Bit 4 Character length. Selects 7-bit or 8-bit character length.

0 8-bit data

1 7-bit data

UCMST Bit 3 Master mode select

0 Slave mode

1 Master mode

UCMODEx Bits 2-1 USCI mode. The UCMODEx bits select the synchronous mode when UCSYNC = 1.

00 3-pin SPI

01 4-pin SPI with UCxSTE active high: Slave enabled when UCxSTE = 1

10 4-pin SPI with UCxSTE active low: Slave enabled when UCxSTE = 0

11 I2C mode

UCSYNC Bit 0 Synchronous mode enable

0 Asynchronous mode

1 Synchronous mode

(1) UCAxCTL0 (USCI_Ax)
(2) UCBxCTL0 (USCI_Bx)

USCI_Ax Control Register 1 (UCAxCTL1)
USCI_Bx Control Register 1 (UCBxCTL1)

7 6 5 4 3 2 1 0

UCSSELx Unused UCSWRST

rw-0 (1)

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1r0 (2)

UCSSELx Bits 7-6 USCI clock source select. These bits select the BRCLK source clock in master mode. UCxCLK is
always used in slave mode.

00 NA

01 ACLK

10 SMCLK

11 SMCLK

Unused Bits 5-1 Unused

UCSWRST Bit 0 Software reset enable

0 Disabled. USCI reset released for operation.

1 Enabled. USCI logic held in reset state.

(1) UCAxCTL1 (USCI_Ax)
(2) UCBxCTL1 (USCI_Bx)

515SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – SPI Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USCI Registers – SPI Mode www.ti.com

USCI_Ax Bit Rate Control Register 0 (UCAxBR0)
USCI_Bx Bit Rate Control Register 0 (UCBxBR0)

7 6 5 4 3 2 1 0

UCBRx - low byte

rw rw rw rw rw rw rw rw

USCI_Ax Bit Rate Control Register 1 (UCAxBR1)
USCI_Bx Bit Rate Control Register 1 (UCBxBR1)

7 6 5 4 3 2 1 0

UCBRx - high byte

rw rw rw rw rw rw rw rw

UCBRx Bits 7-0 Bit clock prescaler. The 16-bit value of (UCxxBR0 + UCxxBR1 × 256) forms the prescaler value UCBRx.

USCI_Ax Modulation Control Register (UCAxMCTL)

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Bits 7-0 Write as 0

516 Universal Serial Communication Interface – SPI Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Registers – SPI Mode

USCI_Ax Status Register (UCAxSTAT)
USCI_Bx Status Register (UCBxSTAT)

7 6 5 4 3 2 1 0

UCLISTEN UCFE UCOE Unused UCBUSY

rw-0 (1) rw-0 (1) rw-0 (1) rw-0 (1)

rw-0 rw-0 rw-0 r-0r0 (2) r0 (2) r0 (2) r0 (2)

UCLISTEN Bit 7 Listen enable. The UCLISTEN bit selects loopback mode.

0 Disabled

1 Enabled. The transmitter output is internally fed back to the receiver.

UCFE Bit 6 Framing error flag. This bit indicates a bus conflict in 4-wire master mode. UCFE is not used in 3-wire
master or any slave mode.

0 No error

1 Bus conflict occurred.

UCOE Bit 5 Overrun error flag. This bit is set when a character is transferred into UCxRXBUF before the previous
character was read. UCOE is cleared automatically when UCxRXBUF is read, and must not be cleared
by software. Otherwise, it does not function correctly.

0 No error

1 Overrun error occurred.

Unused Bits 4-1 Unused

UCBUSY Bit 0 USCI busy. This bit indicates if a transmit or receive operation is in progress.

0 USCI inactive

1 USCI transmitting or receiving

(1) UCAxSTAT (USCI_Ax)
(2) UCBxSTAT (USCI_Bx)

USCI_Ax Receive Buffer Register (UCAxRXBUF)
USCI_Bx Receive Buffer Register (UCBxRXBUF)

7 6 5 4 3 2 1 0

UCRXBUFx

r r r r r r r r

UCRXBUFx Bits 7-0 The receive-data buffer is user accessible and contains the last received character from the receive shift
register. Reading UCxRXBUF resets the receive-error bits and UCRXIFG. In 7-bit data mode,
UCxRXBUF is LSB justified and the MSB is always reset.

USCI_Ax Transmit Buffer Register (UCAxTXBUF)
USCI_Bx Transmit Buffer Register (UCBxTXBUF)

7 6 5 4 3 2 1 0

UCTXBUFx

rw rw rw rw rw rw rw rw

UCTXBUFx Bits 7-0 The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift
register and transmitted. Writing to the transmit data buffer clears UCTXIFG. The MSB of UCxTXBUF is
not used for 7-bit data and is reset.

517SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – SPI Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USCI Registers – SPI Mode www.ti.com

USCI_Ax Interrupt Enable Register (UCAxIE)
USCI_Bx Interrupt Enable Register (UCBxIE)

7 6 5 4 3 2 1 0

Reserved UCTXIE UCRXIE

r-0 r-0 r-0 r-0 r-0 r-0 rw-0 rw-0

Reserved Bits 7-2 Reserved

UCTXIE Bit 1 Transmit interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCRXIE Bit 0 Receive interrupt enable

0 Interrupt disabled

1 Interrupt enabled

USCI_Ax Interrupt Flag Register (UCAxIFG)
USCI_Bx Interrupt Flag Register (UCBxIFG)

7 6 5 4 3 2 1 0

Reserved UCTXIFG UCRXIFG

r-0 r-0 r-0 r-0 r-0 r-0 rw-1 rw-0

Reserved Bits 7-2 Reserved

UCTXIFG Bit 1 Transmit interrupt flag. UCTXIFG is set when UCxxTXBUF empty.

0 No interrupt pending

1 Interrupt pending

UCRXIFG Bit 0 Receive interrupt flag. UCRXIFG is set when UCxxRXBUF has received a complete character.

0 No interrupt pending

1 Interrupt pending

USCI_Ax Interrupt Vector Register (UCAxIV)
USCI_Bx Interrupt Vector Register (UCBxIV)

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 0 UCIVx 0

r0 r0 r0 r-0 r-0 r-0 r-0 r0

UCIVx Bits 15-0 USCI interrupt vector value

UCAxIV/
UCBxIV Interrupt Source Interrupt Flag Interrupt Priority

Contents

000h No interrupt pending –

002h Data received UCRXIFG Highest

004h Transmit buffer empty UCTXIFG Lowest

518 Universal Serial Communication Interface – SPI Mode SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 21
SLAU208E–June 2008–Revised November 2009

Universal Serial Communication Interface – I2C Mode

The universal serial communication interface (USCI) supports multiple serial communication modes with
one hardware module. This chapter discusses the operation of the I2C mode.

Topic ... Page

21.1 Universal Serial Communication Interface (USCI) Overview 520
21.2 USCI Introduction – I2C Mode .. 521
21.3 USCI Operation – I2C Mode ... 522
21.4 USCI Registers– I2C Mode ... 541

519SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Universal Serial Communication Interface (USCI) Overview www.ti.com

21.1 Universal Serial Communication Interface (USCI) Overview

The USCI modules support multiple serial communication modes. Different USCI modules support
different modes. Each different USCI module is named with a different letter. For example, USCI_A is
different from USCI_B, etc. If more than one identical USCI module is implemented on one device, those
modules are named with incrementing numbers. For example, if one device has two USCI_A modules,
they are named USCI_A0 and USCI_A1. See the device-specific data sheet to determine which USCI
modules, if any, are implemented on each device.

USCI_Ax modules support:

• UART mode
• Pulse shaping for IrDA communications
• Automatic baud-rate detection for LIN communications
• SPI mode

USCI_Bx modules support:

• I2C mode
• SPI mode

520 SLAU208E–June 2008–Revised November 2009Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Introduction – I2C Mode

21.2 USCI Introduction – I2C Mode

In I2C mode, the USCI module provides an interface between the device and I2C-compatible devices
connected by the two-wire I2C serial bus. External components attached to the I2C bus serially transmit
and/or receive serial data to/from the USCI module through the 2-wire I2C interface.

The I2C mode features include:

• Compliance to the Philips Semiconductor I2C specification v2.1
• 7-bit and 10-bit device addressing modes
• General call
• START/RESTART/STOP
• Multi-master transmitter/receiver mode
• Slave receiver/transmitter mode
• Standard mode up to 100 kbps and fast mode up to 400 kbps support
• Programmable UCxCLK frequency in master mode
• Designed for low power
• Slave receiver START detection for auto wake up from LPMx modes
• Slave operation in LPM4

Figure 21-1 shows the USCI when configured in I2C mode.

521SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

ACLK

SMCLK

SMCLK

00

01

10

11

UCSSELx

UC1CLK

Prescaler/Divider

Bit Clock Generator

UCxBRx

16

BRCLK

Slave Address UC1SA

Transmit Shift Register

UCMST

Transmit Buffer UC 1TXBUF

I2C State Machine

Own Address UC1OA

Receive Shift Register

UCA10

Receive Buffer UC1RXBUF

UCGCEN

UCxSDA

UCxSCL

UCSLA10

USCI Operation – I2C Mode www.ti.com

Figure 21-1. USCI Block Diagram – I2C Mode

21.3 USCI Operation – I2C Mode

The I2C mode supports any slave or master I2C-compatible device. Figure 21-2 shows an example of an
I2C bus. Each I2C device is recognized by a unique address and can operate as either a transmitter or a
receiver. A device connected to the I2C bus can be considered as the master or the slave when
performing data transfers. A master initiates a data transfer and generates the clock signal SCL. Any
device addressed by a master is considered a slave.

I2C data is communicated using the serial data (SDA) pin and the serial clock (SCL) pin. Both SDA and
SCL are bidirectional and must be connected to a positive supply voltage using a pullup resistor.

522 SLAU208E–June 2008–Revised November 2009Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

MSP430

VCC

Serial Data (SDA)

Serial Clock (SCL)

Device A

Device B Device C

www.ti.com USCI Operation – I2C Mode

Figure 21-2. I2C Bus Connection Diagram

NOTE: SDA and SCL levels

The SDA and SCL pins must not be pulled up above the device VCC level.

21.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the UCSWRST bit is
automatically set, keeping the USCI in a reset condition. To select I2C operation, the UCMODEx bits must
be set to 11. After module initialization, it is ready for transmit or receive operation. Clearing UCSWRST
releases the USCI for operation.

Configuring and reconfiguring the USCI module should be done when UCSWRST is set to avoid
unpredictable behavior. Setting UCSWRST in I2C mode has the following effects:

• I2C communication stops.
• SDA and SCL are high impedance.
• UCBxI2CSTAT, bits 6–0 are cleared.
• Registers UCBxIE and UCBxIFG are cleared.
• All other bits and register remain unchanged.

NOTE: Initializing or re-configuring the USCI module

The recommended USCI initialization/reconfiguration process is:
1. Set UCSWRST (BIS.B #UCSWRST,&UCxCTL1).

2. Initialize all USCI registers with UCSWRST = 1 (including UCxCTL1).
3. Configure ports.
4. Clear UCSWRST via software (BIC.B #UCSWRST,&UCxCTL1).

5. Enable interrupts (optional).

21.3.2 I2C Serial Data

One clock pulse is generated by the master device for each data bit transferred. The I2C mode operates
with byte data. Data is transferred MSB first as shown in Figure 21-3.

The first byte after a START condition consists of a 7-bit slave address and the R/W bit. When R/W = 0,
the master transmits data to a slave. When R/W = 1, the master receives data from a slave. The ACK bit
is sent from the receiver after each byte on the ninth SCL clock.

523SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

SDA

SCL

MSB Acknowledgement
Signal From Receiver

Acknowledgement
Signal From Receiver

1 2 7 8 9 1 2 8 9

ACK ACK
START

Condition (S)
STOP

Condition (P)R/W

Data Line
Stable Data

Change of Data Allowed

SDA

SCL

USCI Operation – I2C Mode www.ti.com

Figure 21-3. I2C Module Data Transfer

START and STOP conditions are generated by the master and are shown in Figure 21-3. A START
condition is a high-to-low transition on the SDA line while SCL is high. A STOP condition is a low-to-high
transition on the SDA line while SCL is high. The bus busy bit, UCBBUSY, is set after a START and
cleared after a STOP.

Data on SDA must be stable during the high period of SCL (see Figure 21-4). The high and low state of
SDA can only change when SCL is low, otherwise START or STOP conditions are generated.

Figure 21-4. Bit Transfer on I2C Bus

524 SLAU208E–June 2008–Revised November 2009Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

S Slave Address R/W ACK Data ACK Data ACK P

7 8 81 1 1 1 1 1

S

1

Slave Address 1st byte

7

Slave Address 2nd byteACKR/W

11 8

ACK

1

Data

8

ACK

1

P

1

1 1 1 1 0 X X

1 7 8 7 81 1 1 1 1 1 1 1

S Slave Address R/W ACK Data ACK S Slave Address ACK Data ACK P

1 Any
Number

1 Any Number

R/W

www.ti.com USCI Operation – I2C Mode

21.3.3 I2C Addressing Modes

The I2C mode supports 7-bit and 10-bit addressing modes.

21.3.3.1 7-Bit Addressing

In the 7-bit addressing format (see Figure 21-5), the first byte is the 7-bit slave address and the R/W bit.
The ACK bit is sent from the receiver after each byte.

Figure 21-5. I2C Module 7-Bit Addressing Format

21.3.3.2 10-Bit Addressing

In the 10-bit addressing format (see Figure 21-6), the first byte is made up of 11110b plus the two MSBs
of the 10-bit slave address and the R/W bit. The ACK bit is sent from the receiver after each byte. The
next byte is the remaining eight bits of the 10-bit slave address, followed by the ACK bit and the 8-bit data.
See I2C Slave 10-bit Addressing Mode and I2C Master 10-bit Addressing Mode for details how to use the
10-bit addressing mode with the USCI module.

Figure 21-6. I2C Module 10-Bit Addressing Format

21.3.3.3 Repeated Start Conditions

The direction of data flow on SDA can be changed by the master, without first stopping a transfer, by
issuing a repeated START condition. This is called a RESTART. After a RESTART is issued, the slave
address is again sent out with the new data direction specified by the R/W bit. The RESTART condition is
shown in Figure 21-7.

Figure 21-7. I2C Module Addressing Format With Repeated START Condition

525SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

...

USCI Master

USCI Slave

Other Master

Other Slave

... Bits set or reset by software

Bits set or reset by hardware

USCI Operation – I2C Mode www.ti.com

21.3.4 I2C Module Operating Modes

In I2C mode, the USCI module can operate in master transmitter, master receiver, slave transmitter, or
slave receiver mode. The modes are discussed in the following sections. Time lines are used to illustrate
the modes.

Figure 21-8 shows how to interpret the time-line figures. Data transmitted by the master is represented by
grey rectangles; data transmitted by the slave is represented by white rectangles. Data transmitted by the
USCI module, either as master or slave, is shown by rectangles that are taller than the others.

Actions taken by the USCI module are shown in grey rectangles with an arrow indicating where in the the
data stream the action occurs. Actions that must be handled with software are indicated with white
rectangles with an arrow pointing to where in the data stream the action must take place.

Figure 21-8. I2C Time-Line Legend

21.3.4.1 Slave Mode

The USCI module is configured as an I2C slave by selecting the I2C mode with UCMODEx = 11 and
UCSYNC = 1 and clearing the UCMST bit.

Initially, the USCI module must to be configured in receiver mode by clearing the UCTR bit to receive the
I2C address. Afterwards, transmit and receive operations are controlled automatically, depending on the
R/W bit received together with the slave address.

The USCI slave address is programmed with the UCBxI2COA register. When UCA10 = 0, 7-bit addressing
is selected. When UCA10 = 1, 10-bit addressing is selected. The UCGCEN bit selects if the slave
responds to a general call.

When a START condition is detected on the bus, the USCI module receives the transmitted address and
compare it against its own address stored in UCBxI2COA. The UCSTTIFG flag is set when address
received matches the USCI slave address.

526 SLAU208E–June 2008–Revised November 2009Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

S SLA/R A DATA A P

UCTR=1 (Transmitter)
UCSTTIFG=1
UCTXIFG=1
UCSTPIFG=0
UCBxTXBUF discarded

Reception of own
address and
transmission of data

bytes

Bus stalled (SCL held low)
until data available

DATADATA A

UCSTPIFG=1
UCSTTIFG=0

A

A

DATA A S SLA/R

UCTR=1 (Transmitter)
UCSTTIFG=1
UCTXIFG=1
UCBxTXBUF discarded

DATA A S SLA/W

UCTR=0 (Receiver)
UCSTTIFG=1

Arbitration lost as
master and

addressed as slave

UCALIFG=1
UCMST=0
UCTR=1 (Transmitter)
UCSTTIFG=1
UCTXIFG=1
UCSTPIFG=0

UCTXIFG=0

Repeated start -
continue as
slave transmitter

Repeated start -
continue as

slave receiver

Write data to UCBxTXBUF

UCTXIFG=1

UCTXIFG=0

UCTXIFG=0

Write data to UCBxTXBUF

www.ti.com USCI Operation – I2C Mode

I2C Slave Transmitter Mode

Slave transmitter mode is entered when the slave address transmitted by the master is identical to its own
address with a set R/W bit. The slave transmitter shifts the serial data out on SDA with the clock pulses
that are generated by the master device. The slave device does not generate the clock, but it does hold
SCL low while intervention of the CPU is required after a byte has been transmitted.

If the master requests data from the slave, the USCI module is automatically configured as a transmitter
and UCTR and UCTXIFG become set. The SCL line is held low until the first data to be sent is written into
the transmit buffer UCBxTXBUF. Then the address is acknowledged, the UCSTTIFG flag is cleared, and
the data is transmitted. As soon as the data is transferred into the shift register, the UCTXIFG is set again.
After the data is acknowledged by the master, the next data byte written into UCBxTXBUF is transmitted
or, if the buffer is empty, the bus is stalled during the acknowledge cycle by holding SCL low until new
data is written into UCBxTXBUF. If the master sends a NACK succeeded by a STOP condition, the
UCSTPIFG flag is set. If the NACK is succeeded by a repeated START condition, the USCI I2C state
machine returns to its address-reception state.

Figure 21-9 shows the slave transmitter operation.

Figure 21-9. I2C Slave Transmitter Mode

527SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USCI Operation – I2C Mode www.ti.com

I2C Slave Receiver Mode

Slave receiver mode is entered when the slave address transmitted by the master is identical to its own
address and a cleared R/W bit is received. In slave receiver mode, serial data bits received on SDA are
shifted in with the clock pulses that are generated by the master device. The slave device does not
generate the clock, but it can hold SCL low if intervention of the CPU is required after a byte has been
received.

If the slave should receive data from the master, the USCI module is automatically configured as a
receiver and UCTR is cleared. After the first data byte is received, the receive interrupt flag UCRXIFG is
set. The USCI module automatically acknowledges the received data and can receive the next data byte.

If the previous data was not read from the receive buffer UCBxRXBUF at the end of a reception, the bus
is stalled by holding SCL low. As soon as UCBxRXBUF is read, the new data is transferred into
UCBxRXBUF, an acknowledge is sent to the master, and the next data can be received.

Setting the UCTXNACK bit causes a NACK to be transmitted to the master during the next
acknowledgment cycle. A NACK is sent even if UCBxRXBUF is not ready to receive the latest data. If the
UCTXNACK bit is set while SCL is held low, the bus is released, a NACK is transmitted immediately, and
UCBxRXBUF is loaded with the last received data. Because the previous data was not read, that data is
lost. To avoid loss of data, the UCBxRXBUF must be read before UCTXNACK is set.

When the master generates a STOP condition, the UCSTPIFG flag is set.

If the master generates a repeated START condition, the USCI I2C state machine returns to its address
reception state.

Figure 21-10 shows the the I2C slave receiver operation.

528 SLAU208E–June 2008–Revised November 2009Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

S SLA/W A DATA A P or SReception of own
address and data
bytes. All are

acknowledged.

UCRXIFG=1

DATADATA A A

UCTXNACK=1

Refer to:
”Slave Transmitter”
Timing Diagram

Bus not stalled even if
UCBxRXBUF not read

P or SDATA A

A
Arbitration lost as
master and

addressed as slave

UCALIFG=1
UCMST=0
UCTR=0 (Receiver)
UCSTTIFG=1
(UCGC=1 if general call)
UCTXIFG=0
UCSTPIFG=0

Last byte is not
acknowledged.

UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0

Gen Call A

UCTR=0 (Receiver)
UCSTTIFG=1
UCGC=1

Reception of the
general call
address.

UCTXNACK=0

Bus stalled
(SCL held low)
if UCBxRXBUF not read

Read data from UCBxRXBUF

www.ti.com USCI Operation – I2C Mode

Figure 21-10. I2C Slave Receiver Mode

529SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

S

S 11110 xx/W A SLA (2.) A P or SReception of own
address and data

bytes. All are
acknowledged.

UCRXIFG=1

DATA DATAA A

UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0

Gen Call A

UCTR=0 (Receiver)
UCSTTIFG=1
UCGC=1

Reception of the

general call
address.

P or S

UCRXIFG=1

DATA DATAA A

S 11110 xx/W A SLA (2.) A

UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0

11110 xx/R A

UCTR=1 (Transmitter)
UCSTTIFG=1
UCTXIFG=1
UCSTPIFG=0

UCSTTIFG=0

DATA A P or SReception of own
address and
transmission of data
bytes

Slave Transmitter

Slave Receiver

USCI Operation – I2C Mode www.ti.com

I2C Slave 10-Bit Addressing Mode

The 10-bit addressing mode is selected when UCA10 = 1 and is as shown in Figure 21-11. In 10-bit
addressing mode, the slave is in receive mode after the full address is received. The USCI module
indicates this by setting the UCSTTIFG flag while the UCTR bit is cleared. To switch the slave into
transmitter mode, the master sends a repeated START condition together with the first byte of the address
but with the R/W bit set. This sets the UCSTTIFG flag if it was previously cleared by software, and the
USCI modules switches to transmitter mode with UCTR = 1.

Figure 21-11. I2C Slave 10-Bit Addressing Mode

21.3.4.2 Master Mode

The USCI module is configured as an I2C master by selecting the I2C mode with UCMODEx = 11 and
UCSYNC = 1 and setting the UCMST bit. When the master is part of a multi-master system, UCMM must
be set and its own address must be programmed into the UCBxI2COA register. When UCA10 = 0, 7-bit
addressing is selected. When UCA10 = 1, 10-bit addressing is selected. The UCGCEN bit selects if the
USCI module responds to a general call.

530 SLAU208E–June 2008–Revised November 2009Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Operation – I2C Mode

I2C Master Transmitter Mode

After initialization, master transmitter mode is initiated by writing the desired slave address to the
UCBxI2CSA register, selecting the size of the slave address with the UCSLA10 bit, setting UCTR for
transmitter mode, and setting UCTXSTT to generate a START condition.

The USCI module checks if the bus is available, generates the START condition, and transmits the slave
address. The UCTXIFG bit is set when the START condition is generated and the first data to be
transmitted can be written into UCBxTXBUF. As soon as the slave acknowledges the address, the
UCTXSTT bit is cleared.

NOTE: Handling of TXIFG in a multi-master system

In a multi-master system (UCMM =1), if the bus is unavailable, the USCI module waits and
checks for bus release. Bus unavailability can occur even after the UCTXSTT bit has been
set. While waiting for the bus to become available, the USCI may update the TXIFG based
on SCL clock line activity. Checking the UCTXSTT bit to verify if the START condition has
been sent ensures that the TXIFG is being serviced correctly.

The data written into UCBxTXBUF is transmitted if arbitration is not lost during transmission of the slave
address. UCTXIFG is set again as soon as the data is transferred from the buffer into the shift register. If
there is no data loaded to UCBxTXBUF before the acknowledge cycle, the bus is held during the
acknowledge cycle with SCL low until data is written into UCBxTXBUF. Data is transmitted or the bus is
held, as long as the UCTXSTP bit or UCTXSTT bit is not set.

Setting UCTXSTP generates a STOP condition after the next acknowledge from the slave. If UCTXSTP is
set during the transmission of the slave's address or while the USCI module waits for data to be written
into UCBxTXBUF, a STOP condition is generated, even if no data was transmitted to the slave. When
transmitting a single byte of data, the UCTXSTP bit must be set while the byte is being transmitted or
anytime after transmission begins, without writing new data into UCBxTXBUF. Otherwise, only the
address is transmitted. When the data is transferred from the buffer to the shift register, UCTXIFG is set,
indicating data transmission has begun, and the UCTXSTP bit may be set.

Setting UCTXSTT generates a repeated START condition. In this case, UCTR may be set or cleared to
configure transmitter or receiver, and a different slave address may be written into UCBxI2CSA if desired.

If the slave does not acknowledge the transmitted data, the not-acknowledge interrupt flag UCNACKIFG is
set. The master must react with either a STOP condition or a repeated START condition. If data was
already written into UCBxTXBUF, it is discarded. If this data should be transmitted after a repeated
START, it must be written into UCBxTXBUF again. Any set UCTXSTT is also discarded. To trigger a
repeated START, UCTXSTT must be set again.

Figure 21-12 shows the I2C master transmitter operation.

531SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Other master continues

S SLA/W A DATA A P
Successful
transmission to a
slave receiver

UCTXIFG=1

DATADATA A A

UCTXSTP=1
UCTXIFG=0

Next transfer started
with a repeated start

condition

DATA A S SLA/W

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

DATA A S SLA/R

1) UCTR=0 (Receiver)
2) UCTXSTT=1
3) UCTXIFG=0

Not acknowledge
received after slave

address

P

S SLA/W

S SLA/R

UCTXSTP=1

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Arbitration lost in
slave address or

data byte

A

A

Other master continues

Arbitration lost and

addressed as slave
Other master continuesA

UCALIFG=1
UCMST=0
UCTR=0 (Receiver)
UCSTTIFG=1
(UCGC=1 if general call)
UCTXIFG=0
UCSTPIFG=0

USCI continues as Slave Receiver

Not acknowledge

received after a data
byte

UCTXSTT=0 UCTXSTP=0

UCTXSTP=0

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

Bus stalled (SCL held low)
until data available

Write data to UCBxTXBUF

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

UCTXIFG=1
UCBxTXBUF discarded

UCTXSTT=0
UCNACKIFG=1
UCTXIFG=0
UCBxTXBUF discarded

UCTXIFG=1
UCBxTXBUF discarded

UCNACKIFG=1
UCTXIFG=0
UCBxTXBUF discarded

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

USCI Operation – I2C Mode www.ti.com

Figure 21-12. I2C Master Transmitter Mode

532 SLAU208E–June 2008–Revised November 2009Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Operation – I2C Mode

I2C Master Receiver Mode

After initialization, master receiver mode is initiated by writing the desired slave address to the
UCBxI2CSA register, selecting the size of the slave address with the UCSLA10 bit, clearing UCTR for
receiver mode, and setting UCTXSTT to generate a START condition.

The USCI module checks if the bus is available, generates the START condition, and transmits the slave
address. As soon as the slave acknowledges the address, the UCTXSTT bit is cleared.

After the acknowledge of the address from the slave, the first data byte from the slave is received and
acknowledged and the UCRXIFG flag is set. Data is received from the slave, as long as UCTXSTP or
UCTXSTT is not set. If UCBxRXBUF is not read, the master holds the bus during reception of the last
data bit and until the UCBxRXBUF is read.

If the slave does not acknowledge the transmitted address, the not-acknowledge interrupt flag
UCNACKIFG is set. The master must react with either a STOP condition or a repeated START condition.

Setting the UCTXSTP bit generates a STOP condition. After setting UCTXSTP, a NACK followed by a
STOP condition is generated after reception of the data from the slave, or immediately if the USCI module
is currently waiting for UCBxRXBUF to be read.

If a master wants to receive a single byte only, the UCTXSTP bit must be set while the byte is being
received. For this case, the UCTXSTT may be polled to determine when it is cleared:

BIS.B #UCTXSTT, &UCB0CTL1 ;Transmit START cond.
POLL_STT BIT.B #UCTXSTT, &UCB0CTL1 ;Poll UCTXSTT bit

JC POLL_STT ;When cleared,
BIS.B #UCTXSTP, &UCB0CTL1 ;transmit STOP cond.

Setting UCTXSTT generates a repeated START condition. In this case, UCTR may be set or cleared to
configure transmitter or receiver, and a different slave address may be written into UCBxI2CSA if desired.

Figure 21-13 shows the I2C master receiver operation.

NOTE: Consecutive master transactions without repeated START

When performing multiple consecutive I2C master transactions without the repeated START
feature, the current transaction must be completed before the next one is initiated. This can
be done by ensuring that the transmit STOP condition flag UCTXSTP is cleared before the
next I2C transaction is initiated with setting UCTXSTT = 1. Otherwise, the current transaction
might be affected.

533SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Other master continues

S SLA/R A DATA A P

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Successful
reception from a
slave transmitter

UCRXIFG=1

DATADATA A

UCTXSTP=1

Next transfer started
with a repeated start
condition

DATA S SLA/W

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

DATA S SLA/R

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Not acknowledge
received after slave
address

UCTXSTT=0
UCNACKIFG=1

P

S SLA/W

S SLA/R

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Arbitration lost in
slave address or
data byte

A

Other master continues

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

Arbitration lost and
addressed as slave

Other master continuesA

UCALIFG=1
UCMST=0
UCTR=1 (Transmitter)
UCSTTIFG=1
UCTXIFG=1
UCSTPIFG=0

USCI continues as Slave Transmitter

A

A

A

UCTXSTT=0 UCTXSTP=0

UCTXIFG=1

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

UCTXSTP=1

UCTXSTP=0

USCI Operation – I2C Mode www.ti.com

Figure 21-13. I2C Master Receiver Mode

534 SLAU208E–June 2008–Revised November 2009Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Master Transmitter

S A A P

1) UCTR=1(Transmitter)
2) UCTXSTT=1

Successful
transmission to a
slave receiver

UCTXIFG=1
UCTXIFG=1

DATADATA A A

UCTXSTP=1

UCTXSTT=0 UCTXSTP=0

11110xx/W SLA(2.)

S A P

1) UCTR=0(Receiver)
2) UCTXSTT=1

Successful
reception from a
slave transmitter

DA ATDATA A

UCTXSTP=1

A

UCTXSTT=0 UCTXSTP=0

A A11110xx W/ SLA(2.) 11110xx/R

Master Receiver

S

UCRXIFG=1

www.ti.com USCI Operation – I2C Mode

I2C Master 10-Bit Addressing Mode

The 10-bit addressing mode is selected when UCSLA10 = 1 and is shown in Figure 21-14.

Figure 21-14. I2C Master 10-Bit Addressing Mode

535SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

1

0 0 0

1

0 0 0

1 1

111

n

Device #1 Lost Arbitration

and Switches Off

Bus Line

SCL

Data From

Device #1

Data From

Device #2

Bus Line

SDA

USCI Operation – I2C Mode www.ti.com

21.3.4.3 Arbitration

If two or more master transmitters simultaneously start a transmission on the bus, an arbitration procedure
is invoked. Figure 21-15 shows the arbitration procedure between two devices. The arbitration procedure
uses the data presented on SDA by the competing transmitters. The first master transmitter that generates
a logic high is overruled by the opposing master generating a logic low. The arbitration procedure gives
priority to the device that transmits the serial data stream with the lowest binary value. The master
transmitter that lost arbitration switches to the slave receiver mode and sets the arbitration lost flag
UCALIFG. If two or more devices send identical first bytes, arbitration continues on the subsequent bytes.

Figure 21-15. Arbitration Procedure Between Two Master Transmitters

536 SLAU208E–June 2008–Revised November 2009Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Wait

State
Start HIGH

Period

SCL From

Device #1

SCL From

Device #2

Bus Line

SCL

www.ti.com USCI Operation – I2C Mode

If the arbitration procedure is in progress when a repeated START condition or STOP condition is
transmitted on SDA, the master transmitters involved in arbitration must send the repeated START
condition or STOP condition at the same position in the format frame. Arbitration is not allowed between:

• A repeated START condition and a data bit
• A STOP condition and a data bit
• A repeated START condition and a STOP condition

21.3.5 I2C Clock Generation and Synchronization

The I2C clock SCL is provided by the master on the I2C bus. When the USCI is in master mode, BITCLK is
provided by the USCI bit clock generator and the clock source is selected with the UCSSELx bits. In slave
mode, the bit clock generator is not used and the UCSSELx bits are don't care.

The 16-bit value of UCBRx in registers UCBxBR1 and UCBxBR0 is the division factor of the USCI clock
source, BRCLK. The maximum bit clock that can be used in single master mode is fBRCLK/4. In multi-master
mode, the maximum bit clock is fBRCLK/8. The BITCLK frequency is given by:

fBitClock = fBRCLK/UCBRx

The minimum high and low periods of the generated SCL are:
tLOW,MIN = tHIGH,MIN = (UCBRx/2)/fBRCLK when UCBRx is even
tLOW,MIN = tHIGH,MIN = (UCBRx – 1/2)/fBRCLK when UCBRx is odd

The USCI clock source frequency and the prescaler setting UCBRx must to be chosen such that the
minimum low and high period times of the I2C specification are met.

During the arbitration procedure the clocks from the different masters must be synchronized. A device that
first generates a low period on SCL overrules the other devices, forcing them to start their own low
periods. SCL is then held low by the device with the longest low period. The other devices must wait for
SCL to be released before starting their high periods. Figure 21-16 shows the clock synchronization. This
allows a slow slave to slow down a fast master.

Figure 21-16. Synchronization of Two I2C Clock Generators During Arbitration

537SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USCI Operation – I2C Mode www.ti.com

21.3.5.1 Clock Stretching

The USCI module supports clock stretching and also makes use of this feature as described in the
Operation Mode sections.

The UCSCLLOW bit can be used to observe if another device pulls SCL low while the USCI module
already released SCL due to the following conditions:

• USCI is acting as master and a connected slave drives SCL low.
• USCI is acting as master and another master drives SCL low during arbitration.

The UCSCLLOW bit is also active if the USCI holds SCL low because it is waiting as transmitter for data
being written into UCBxTXBUF or as receiver for the data being read from UCBxRXBUF.

The UCSCLLOW bit might get set for a short time with each rising SCL edge because the logic observes
the external SCL and compares it to the internally generated SCL.

21.3.6 Using the USCI Module in I2C Mode With Low-Power Modes

The USCI module provides automatic clock activation for use with low-power modes. When the USCI
clock source is inactive because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock source. The clock remains
active until the USCI module returns to its idle condition. After the USCI module returns to the idle
condition, control of the clock source reverts to the settings of its control bits.

In I2C slave mode, no internal clock source is required because the clock is provided by the external
master. It is possible to operate the USCI in I2C slave mode while the device is in LPM4 and all internal
clock sources are disabled. The receive or transmit interrupts can wake up the CPU from any low-power
mode.

21.3.7 USCI Interrupts in I2C Mode

The USCI has only one interrupt vector that is shared for transmission, reception, and the state change.
USCI_Ax and USC_Bx do not share the same interrupt vector.

Each interrupt flag has its own interrupt enable bit. When an interrupt is enabled and the GIE bit is set, the
interrupt flag generates an interrupt request. DMA transfers are controlled by the UCTXIFG and UCRXIFG
flags on devices with a DMA controller.

21.3.7.1 I2C Transmit Interrupt Operation

The UCTXIFG interrupt flag is set by the transmitter to indicate that UCBxTXBUF is ready to accept
another character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is
automatically reset if a character is written to UCBxTXBUF or if a NACK is received. UCTXIFG is set
when UCSWRST = 1 and the I2C mode is selected. UCTXIE is reset after a PUC or when UCSWRST = 1.

21.3.7.2 I2C Receive Interrupt Operation

The UCRXIFG interrupt flag is set when a character is received and loaded into UCBxRXBUF. An
interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset after a
PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCxRXBUF is read.

538 SLAU208E–June 2008–Revised November 2009Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Operation – I2C Mode

21.3.7.3 I2C State Change Interrupt Operation

Table 21-1 describes the I2C state change interrupt flags.

Table 21-1. I2C State Change Interrupt Flags

Interrupt Flag Interrupt Condition

UCALIFG Arbitration-lost. Arbitration can be lost when two or more transmitters start a transmission simultaneously, or
when the USCI operates as master but is addressed as a slave by another master in the system. The
UCALIFG flag is set when arbitration is lost. When UCALIFG is set, the UCMST bit is cleared and the I2C
controller becomes a slave.

UCNACKIFG Not-acknowledge interrupt. This flag is set when an acknowledge is expected but is not received.
UCNACKIFG is automatically cleared when a START condition is received.

UCSTTIFG START condition detected interrupt. This flag is set when the I2C module detects a START condition together
with its own address while in slave mode. UCSTTIFG is used in slave mode only and is automatically cleared
when a STOP condition is received.

UCSTPIFG STOP condition detected interrupt. This flag is set when the I2C module detects a STOP condition while in
slave mode. UCSTPIFG is used in slave mode only and is automatically cleared when a START condition is
received.

539SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USCI Operation – I2C Mode www.ti.com

21.3.7.4 UCBxIV, Interrupt Vector Generator

The USCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt
vector register UCBxIV is used to determine which flag requested an interrupt. The highest-priority
enabled interrupt generates a number in the UCBxIV register that can be evaluated or added to the PC to
automatically enter the appropriate software routine. Disabled interrupts do not affect the UCBxIV value.

Any access, read or write, of the UCBxIV register automatically resets the highest-pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.

UCBxIV Software Example

The following software example shows the recommended use of UCBxIV. The UCBxIV value is added to
the PC to automatically jump to the appropriate routine. The example is given for USCI_B0.
USCI_I2C_ISR

ADD &UCB0IV, PC ; Add offset to jump table
RETI ; Vector 0: No interrupt
JMP ALIFG_ISR ; Vector 2: ALIFG
JMP NACKIFG_ISR ; Vector 4: NACKIFG
JMP STTIFG_ISR ; Vector 6: STTIFG
JMP STPIFG_ISR ; Vector 8: STPIFG
JMP RXIFG_ISR ; Vector 10: RXIFG

TXIFG_ISR ; Vector 12
... ; Task starts here
RETI ; Return

ALIFG_ISR ; Vector 2
... ; Task starts here
RETI ; Return

NACKIFG_ISR ; Vector 4
... ; Task starts here
RETI ; Return

STTIFG_ISR ; Vector 6
... ; Task starts here
RETI ; Return

STPIFG_ISR ; Vector 8
... ; Task starts here
RETI ; Return

RXIFG_ISR ; Vector 10
... ; Task starts here
RETI ; Return

540 SLAU208E–June 2008–Revised November 2009Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Registers– I2C Mode

21.4 USCI Registers– I2C Mode

The USCI registers applicable in I2C mode are listed in Table 21-2. The base address can be found in the
device-specific data sheet. The address offsets are listed in Table 21-2.

Table 21-2. USCI_Bx Registers

RegisterRegister Short Form Register Type Address Offset Initial StateAccess

USCI_Bx Control Word 0 UCBxCTLW0 Read/write Word 00h 0101h

USCI_Bx Control 1 UCBxCTL1 Read/write Byte 00h 01h

USCI_Bx Control 0 UCBxCTL0 Read/write Byte 01h 01h

USCI_Bx Bit Rate Control Word UCBxBRW Read/write Word 06h 0000h

USCI_Bx Bit Rate Control 0 UCBxBR0 Read/write Byte 06h 00h

USCI_Bx Bit Rate Control 1 UCBxBR1 Read/write Byte 07h 00h

USCI_Bx Status UCBxSTAT Read/write Byte 0Ah 00h

Reserved - reads zero Read Byte 0Bh 00h

USCI_Bx Receive Buffer UCBxRXBUF Read/write Byte 0Ch 00h

Reserved - reads zero Read Byte 0Dh 00h

USCI_Bx Transmit Buffer UCBxTXBUF Read/write Byte 0Eh 00h

Reserved - reads zero Read Byte 0Fh 00h

USCI_Bx I2C Own Address UCBxI2COA Read/write Word 10h 0000h

USCI_Bx I2C Slave Address UCBxI2CSA Read/write Word 12h 0000h

USCI_Bx Interrupt Control UCBxICTL Read/write Word 1Ch 0200h

USCI_Bx Interrupt Enable UCBxIE Read/write Byte 1Ch 00h

USCI_Bx Interrupt Flag UCBxIFG Read/write Byte 1Dh 02h

USCI_Bx Interrupt Vector UCBxIV Read Word 1Eh 0000h

541SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USCI Registers– I2C Mode www.ti.com

USCI_Bx Control Register 0 (UCBxCTL0)

7 6 5 4 3 2 1 0

UCA10 UCSLA10 UCMM Unused UCMST UCMODEx=11 UCSYNC=1

R/W-0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-1

UCA10 Bit 7 Own addressing mode select

0 Own address is a 7-bit address.

1 Own address is a 10-bit address.

UCSLA10 Bit 6 Slave addressing mode select

0 Address slave with 7-bit address

1 Address slave with 10-bit address

UCMM Bit 5 Multi-master environment select

0 Single master environment. There is no other master in the system. The address compare unit is
disabled.

1 Multi-master environment

Unused Bit 4 Unused

UCMST Bit 3 Master mode select. When a master loses arbitration in a multi-master environment (UCMM = 1), the
UCMST bit is automatically cleared and the module acts as slave.

0 Slave mode

1 Master mode

UCMODEx Bits 2-1 USCI mode. The UCMODEx bits select the synchronous mode when UCSYNC = 1.

00 3-pin SPI

01 4-pin SPI (master/slave enabled if STE = 1)

10 4-pin SPI (master/slave enabled if STE = 0)

11 I2C mode

UCSYNC Bit 0 Synchronous mode enable

0 Asynchronous mode

1 Synchronous mode

542 SLAU208E–June 2008–Revised November 2009Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Registers– I2C Mode

USCI_Bx Control Register 1 (UCBxCTL1)

7 6 5 4 3 2 1 0

UCSSELx Unused UCTR UCTXNACK UCTXSTP UCTXSTT UCSWRST

rw-0 rw-0 r0 rw-0 rw-0 rw-0 rw-0 rw-1

UCSSELx Bits 7-6 USCI clock source select. These bits select the BRCLK source clock.

00 UCLKI

01 ACLK

10 SMCLK

11 SMCLK

Unused Bit 5 Unused

UCTR Bit 4 Transmitter/receiver

0 Receiver

1 Transmitter

UCTXNACK Bit 3 Transmit a NACK. UCTXNACK is automatically cleared after a NACK is transmitted.

0 Acknowledge normally

1 Generate NACK

UCTXSTP Bit 2 Transmit STOP condition in master mode. Ignored in slave mode. In master receiver mode, the STOP
condition is preceded by a NACK. UCTXSTP is automatically cleared after STOP is generated.

0 No STOP generated

1 Generate STOP

UCTXSTT Bit 1 Transmit START condition in master mode. Ignored in slave mode. In master receiver mode, a repeated
START condition is preceded by a NACK. UCTXSTT is automatically cleared after START condition and
address information is transmitted. Ignored in slave mode.

0 Do not generate START condition

1 Generate START condition

UCSWRST Bit 0 Software reset enable

0 Disabled. USCI reset released for operation.

1 Enabled. USCI logic held in reset state.

USCI_Bx Baud Rate Control Register 0 (UCBxBR0)

7 6 5 4 3 2 1 0

UCBRx - low byte

rw rw rw rw rw rw rw rw

USCI_Bx Baud Rate Control Register 1 (UCBxBR1)

7 6 5 4 3 2 1 0

UCBRx - high byte

rw rw rw rw rw rw rw rw

UCBRx Bits 7-0 Bit clock prescaler. The 16-bit value of (UCxxBR0 + UCxxBR1 × 256) forms the prescaler value UCBRx.

543SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USCI Registers– I2C Mode www.ti.com

USCI_Bx Status Register (UCBxSTAT)

7 6 5 4 3 2 1 0

Unused UCSCLLOW UCGC UCBBUSY Unused

rw-0 r-0 rw-0 r-0 r0 r0 r0 r0

Unused Bit 7 Unused

UCSCLLOW Bit 6 SCL low

0 SCL is not held low.

1 SCL is held low.

UCGC Bit 5 General call address received. UCGC is automatically cleared when a START condition is received.

0 No general call address received

1 General call address received

UCBBUSY Bit 4 Bus busy

0 Bus inactive

1 Bus busy

Unused Bits 3-0 Unused

USCI_Bx Receive Buffer Register (UCBxRXBUF)

7 6 5 4 3 2 1 0

UCRXBUFx

r r r r r r r r

UCRXBUFx Bits 7-0 The receive-data buffer is user accessible and contains the last received character from the receive shift
register. Reading UCBxRXBUF resets UCRXIFG.

USCI_Bx Transmit Buffer Register (UCBxTXBUF)

7 6 5 4 3 2 1 0

UCTXBUFx

rw rw rw rw rw rw rw rw

UCTXBUFx Bits 7-0 The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift
register and transmitted. Writing to the transmit data buffer clears UCTXIFG.

544 SLAU208E–June 2008–Revised November 2009Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Registers– I2C Mode

USCIBx I2C Own Address Register (UCBxI2COA)

15 14 13 12 11 10 9 8

UCGCEN 0 0 0 0 0 I2COAx

rw-0 r0 r0 r0 r0 r0 rw-0 rw-0

7 6 5 4 3 2 1 0

I2COAx

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCGCEN Bit 15 General call response enable

0 Do not respond to a general call

1 Respond to a general call

I2COAx Bits 9-0 I2C own address. The I2COAx bits contain the local address of the USCI_Bx I2C controller. The address
is right justified. In 7-bit addressing mode, bit 6 is the MSB and bits 9-7 are ignored. In 10-bit addressing
mode, bit 9 is the MSB.

USCI_Bx I2C Slave Address Register (UCBxI2CSA)

15 14 13 12 11 10 9 8

0 0 0 0 0 0 I2CSAx

r0 r0 r0 r0 r0 r0 rw-0 rw-0

7 6 5 4 3 2 1 0

I2CSAx

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

I2CSAx Bits 9-0 I2C slave address. The I2CSAx bits contain the slave address of the external device to be addressed by
the USCI_Bx module. It is only used in master mode. The address is right justified. In 7-bit slave
addressing mode, bit 6 is the MSB and bits 9-7 are ignored. In 10-bit slave addressing mode, bit 9 is the
MSB.

545SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USCI Registers– I2C Mode www.ti.com

USCI_Bx I2C Interrupt Enable Register (UCBxIE)

7 6 5 4 3 2 1 0

Reserved UCNACKIE UCALIE UCSTPIE UCSTTIE UCTXIE UCRXIE

r-0 r-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Reserved Bits 7-6 Reserved

UCNACKIE Bit 5 Not-acknowledge interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCALIE Bit 4 Arbitration lost interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCSTPIE Bit 3 STOP condition interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCSTTIE Bit 2 START condition interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCTXIE Bit 1 Transmit interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCRXIE Bit 0 Receive interrupt enable

0 Interrupt disabled

1 Interrupt enabled

USCI_Bx I2C Interrupt Flag Register (UCBxIFG)

7 6 5 4 3 2 1 0

Reserved UCNACKIFG UCALIFG UCSTPIFG UCSTTIFG UCTXIFG UCRXIFG

r-0 r-0 rw-0 rw-0 rw-0 rw-0 rw-1 rw-0

Reserved Bits 7-6 Reserved

UCNACKIFG Bit 5 Not-acknowledge received interrupt flag. UCNACKIFG is automatically cleared when a START condition
is received.

0 No interrupt pending

1 Interrupt pending

UCALIFG Bit 4 Arbitration lost interrupt flag

0 No interrupt pending

1 Interrupt pending

UCSTPIFG Bit 3 STOP condition interrupt flag. UCSTPIFG is automatically cleared when a START condition is received.

0 No interrupt pending

1 Interrupt pending

UCSTTIFG Bit 2 START condition interrupt flag. UCSTTIFG is automatically cleared if a STOP condition is received.

0 No interrupt pending

1 Interrupt pending

UCTXIFG Bit 1 USCI transmit interrupt flag. UCTXIFG is set when UCBxTXBUF is empty.

0 No interrupt pending

1 Interrupt pending

UCRXIFG Bit 0 USCI receive interrupt flag. UCRXIFG is set when UCBxRXBUF has received a complete character.

0 No interrupt pending

1 Interrupt pending

546 SLAU208E–June 2008–Revised November 2009Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USCI Registers– I2C Mode

USCI_Bx Interrupt Vector Register (UCBxIV)

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 UCIVx 0

r0 r0 r0 r0 r-0 r-0 r-0 r0

UCIVx Bits 15-0 USCI interrupt vector value

UCBxIV Interrupt Source Interrupt Flag Interrupt PriorityContents

000h No interrupt pending –

002h Arbitration lost UCALIFG Highest

004h Not acknowledgement UCNACKIFG

006h Start condition received UCSTTIFG

008h Stop condition received UCSTPIFG

00Ah Data received UCRXIFG

00Ch Transmit buffer empty UCTXIFG Lowest

547SLAU208E–June 2008–Revised November 2009 Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

548 SLAU208E–June 2008–Revised November 2009Universal Serial Communication Interface – I2C Mode
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 22
SLAU208E–June 2008–Revised November 2009

USB Module

This chapter describes the USB module that is available in some devices.

Topic ... Page

22.1 USB Introduction ... 550
22.2 USB Operation .. 552
22.3 USB Transfers ... 563
22.4 Registers .. 569

549SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USB Introduction www.ti.com

22.1 USB Introduction

The features of the USB module include:

• Fully compliant with the USB 2.0 Full-speed specification

– Full-speed device (12 Mbps) with integrated USB transceiver (PHY)
– Up to eight input and eight output endpoints
– Supports control, interrupt, and bulk transfers
– Supports USB suspend, resume, and remote wakeup

• A power supply system independent from the PMM system

– Integrated 3.3-V LDO regulator with sufficient output to power entire MSP430 and system circuitry
from 5-V VBUS

– Integrated 1.8-V LDO regulator for PHY and PLL
– Easily used in either bus-powered or self-powered operation
– Current-limiting capability on 3.3-V LDO output
– Autonomous power-up of MSP430 upon arrival of USB power possible (low/no battery condition)

• Internal 48-MHz USB clock

– Integrated programmable PLL
– Highly-flexible input clock frequencies for use with lowest-cost crystals

• 1904 bytes of dedicated USB buffer space for endpoints, with fully configurable size to a granularity of
eight bytes

• Timestamp generator with 62.5-ns resolution
• When USB is disabled

– Buffer space is mapped into general RAM, providing additional 2 KB to the system
– USB interface pins become high-current general purpose I/O pins

NOTE: Use of the word device

The word device is used throughout the chapter. This word can mean one of two things,
depending on the context. In a USB context, it means what the USB specification refers to as
a device, function, or peripheral; that is, a piece of equipment that can be attached to a USB
host or hub. In a semiconductor context, it refers to an integrated circuit such as the
MSP430.

To avoid confusion, the term USB device in this document refers to the USB-context
meaning of the word. The word device by itself refers to silicon devices such as the MSP430.

Figure 22-1 shows a block diagram of the USB module.

550 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

System VCORE All USB digital logic power

System RAM

USB
Buffer
RAM

VBUS

PUR

D+

D–

XT1 clock source

XT2 clock source

TSEn

USB Timer

Timerstamp
Generator

48 MHz PLL

Transceiver
(PHY)

3.3 V
LDO

1.8 V
LDO

VUSB

USB Power System

PHY, PLL power

PHY power

Serial Interface
Engine (SIE)

USB Buffer
Manager (UBM)

USB Control Registers

USB Engine

www.ti.com USB Introduction

Figure 22-1. USB Block Diagram

551SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USB Operation www.ti.com

22.2 USB Operation

The USB module is a comprehensive, full-speed USB device compliant with the USB 2.0 specification.

The USB engine coordinates all USB-related traffic. It consists of the USB SIE (serial interface engine)
and USB Buffer Manager (UBM). All traffic received on the USB receive path is de-serialized and placed
into receive buffers in the USB buffer RAM. Data in the buffer RAM marked ‘ready to be sent' are
serialized into packets and sent to the USB host.

The USB engine requires an accurate 48-MHz clock to sample the incoming data stream. This is
generated by a PLL that is fed from one of the system oscillators (XT1/XT2). A crystal greater than
1.5 MHz is required. However, the PLL is very flexible and can adapt to a wide range of frequencies,
allowing design to the most cost-effective crystal frequency.

NOTE: Some devices only support XT1 in low frequency (LF) mode of operation. The PLL can only
support inputs from the high frequency source i.e. XT1 in high frequency mode (HF) or XT2.
For these devices, only XT2 can be used as the input into the PLL for USB operation. XT1
(HF mode) and XT2 bypass modes are also supported. Please refer to the device specific
datasheet for clock sources available.

The USB buffer memory is where data is exchanged between the USB interface and the application
software. It is also where the usage of endpoints 1 to 7 are defined. This buffer memory is implemented
such that it can be easily accessed like RAM by the CPU and/or DMA.

22.2.1 USB Transceiver (PHY)

The physical layer interface (USB transceiver) is a differential line driver directly powered from VUSB
(3.3 V). The line driver is connected to the DP/DM pins, which form the signaling mechanism of the USB
interface.

When the PUSEL bit is set, DP/DM are configured to function as USB drivers controlled by the USB core
logic. When the bit is cleared, these two pins become "Port U", which is a pair of high-current general
purpose I/O pins. In this case, the pins are controlled by the UPCR register. Port U is powered from the
VUSB rail, separate from the main device DVCC. If these pins are to be used, whether for USB or general
purpose use, it is necessary that VUSB be properly powered – either from the internal regulators or an
external source.

22.2.1.1 D+ Pullup Via PUR Pin

When a full-speed USB device is attached to a USB host, it must pull up the D+ line (DP pin) in order for
the host to recognize its presence. The MSP430 USB module implements this with a software-controlled
pin that activates a pullup resistor. The bit that controls this function is PUR_EN. If software control is not
desired, the pullup can be connected directly to VUSB.

22.2.1.2 Shorts on Damaged Cables and Clamping

USB devices must tolerate connection to a cable that is damaged, such that it has developed shorts on
either ground or VBUS. The device should not become damaged by this event, either electrically or
physically. To this end, the MSP430 USB power system features a current limitation mechanism that limits
the available transceiver current in the event of a short to ground. The transceiver interface itself therefore
does not need a current limiting function.

Note that if VUSB is to be powered from a source other than the integrated regulator, the absence of
current-limiting in the transceiver means that the external power source must itself be tolerant of this same
shorting event, through its own means of current limiting.

552 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

VBUS

USB
BOR

"VBUS present"
indication

VUSBEN

"VBUS overload"
indication

PHY Power PHY, PLL Power

V18VUSB

1.8 V LDO
Overload
Detection3.3 V LDO

Low
Detection

SLDOEN

www.ti.com USB Operation

22.2.1.3 Port U Control

When PUSEL is cleared, the Port U pins (PU0/PU1, corresponding with DP/DM, respectively) function as
general-purpose, high-current I/O pins. PUDIR controls the enable of both outputs residing on the Port U
pins. The Port U pins are either both driving out, or both acting as inputs. When configured as inputs, the
PUIN0/1 pins can be read to determine the input values. When Port U outputs are enabled, the PUIN0/1
will mirror what is present on the outputs.

When PUDIR is set, both Port U pins function as outputs, controlled by PUOUT0/PUOUT1. When driven
high, they use the VUSB rail, and they are capable of a drive current higher than other I/O pins on the
device. See the device-specific datasheet for parameters.

By default, PUDIR is cleared. PU0/PU1 therefore become high-impedance when the USB module is
disabled.

22.2.2 USB Power System

The USB power system incorporates dual LDO regulators (3.3 V and 1.8 V) that allow the entire MSP430
device to be powered from 5-V VBUS when it is made available from the USB host. Alternatively, the
power system can supply power only to the USB module, or it can be unused altogether, as in a fully
self-powered device. The block diagram is shown in Figure 22-2.

Figure 22-2. USB Power System

The 3.3-V LDO receives 5 V from VBUS and provides power to the transceiver, as well as the VUSB pin.
Using this setup prevents the relatively high load of the transceiver and PLL from loading a local system
power supply, if used. Thus it is very useful in battery-powered devices.

The 1.8-V LDO receives power from the VUSB pin – which is to be sourced either from the internal 3.3-V
LDO or externally – and provides power to the USB PLL and transceiver. The 1.8-V LDO in the USB
module is not related to the LDO that resides in the MSP430 Power Management Module (PMM).

The inputs and outputs of the LDOs are shown in Figure 22-2. VBUS, VUSB, and V18 need to be
connected to external capacitors. The V18 pin is not intended to source other components in the system,
rather it exists solely for the attachment of a load capacitor.

22.2.2.1 Enabling/Disabling

The 3.3-V LDO is enabled/disabled by setting/clearing VUSBEN. Even if enabled, if the voltage on VBUS
is detected to be low or nonexistent, the LDO is suspended. When VBUS rises above the USB power
brownout level, the LDO reference and low voltage detection become enabled. When VBUS rises further
above the launch voltage VLAUNCH, the LDO module becomes enabled (see Figure 22-3).

553SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

V
BUS

V
LAUNCH

Time

V
USB

V
BUS

t
ENABLE

External Connection

VBUS
3.3 V
LDO

1.8 V
LDO

USB
Transceiver

USB PLL

USB Digital
Core

USB Power Domain MSP430 DVCC Power Domain

PMM VCORE

DVCCVUSB

I/Os

USB Operation www.ti.com

Figure 22-3. USB Power Up/Down Profile

The 1.8-V LDO can be enabled/disabled by setting SLDOEN accordingly. By default, SLDOEN is
controlled automatically according to whether power is available on VBUS. This auto-enable feature is
controlled by SLDOAON. If providing VUSB from an external source, rather than through the integrated
3.3-V LDO, keep in mind that if 5 V is not present on VBUS, the 1.8-V LDO is not automatically enabled.
In this situation, either VBUS much be attached to USB bus power, or the SLDOAON bit must be cleared
and SLDOEN set.

It is required that power from the USB cable's VBUS be directed through a Schottky diode prior to entering
the VBUS terminal. This prevents current from draining into the cable's VBUS from the LDO input,
allowing the MSP430 to tolerate a suspended/unpowered USB cable that remains electrically connected.

22.2.2.2 Powering the Rest of the MSP430 From USB Bus Power via VUSB

The output of the 3.3-V LDO can be used to power the entire MSP430 device, sourcing the DVCC rail. If
this is desired, the VUSB and DVCC should be connected externally. Power from the 3.3-V LDO is
sourced into DVCC (see Figure 22-4).

Figure 22-4. Powering Entire MSP430 From VBUS

554 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

XT1CLK

XT2CLK

UPCS UPQB

/Q

UPMB

PFD
Charge
Pump

Loop
Filter

VCO

UPLLEN

UCLKSEL

USBCLK

00

01

10

11

reserved

reserved

/M

0

1

2

6

3

www.ti.com USB Operation

With this connection made, the MSP430 allows for autonomous power up of the device when VBUS rises
above VLAUNCH. If no voltage is present on VCORE – meaning the device is unpowered (or, in LPM5 mode) –
then both the 3.3-V and 1.8-V LDOs automatically turn on when VBUS rises above VLAUNCH.

Note that if DVCC is being driven from VUSB in this manner, and if power is available from VUSB,
attempting to place the device into LPM5 results in the device immediately re-powering. This is because it
re-creates the conditions of the autonomous feature described above (no VCORE but power available on
VBUS). The resulting drop of VCORE would cause the system to immediately power up again.

When DVCC is being powered from VUSB, it is up to the user to ensure that the total current being drawn
from VBUS stays below IDET.

22.2.2.3 Powering Other Components in the System from VUSB

There is sufficient current capacity available from the 3.3-V LDO to power not only the entire MSP430 but
also other components in the system, via the VUSB pin.

If the device is to always be connected to USB, then perhaps no other power system is needed. If it only
occasionally connects to USB and is battery-powered otherwise, then sourcing system power via the 3.3-V
LDO takes power burden away from the battery. Alternatively, if the battery is rechargeable, the
recharging can be driven from VUSB.

22.2.2.4 Current Limitation / Overload Protection

The 3.3-V LDO features current limitation to protect the transceiver during shorted-cable conditions. A
short/overload condition – that is, when the output of the LDO becomes current-limited to IDET – is reported
to software via the VUOVLIFG flag.

If this event occurs, it means USB operation may become unreliable, due to insufficient power supply. As
a result, software may wish to cease USB operation. If the OVLAOFF bit is set, USB operation is
automatically terminated by clearing VUSBEN.

During overload conditions, VUSB and V18 drop below their nominal output voltage. In power scenarios
where DVCC is exclusively supplied from VUSB, repetitive system restarts may be triggered as long the
short/overload condition exists. For this reason, firmware should avoid re-enabling USB after detection of
an overload on the previous power session, until the cause of failure can be identified.

The USB power system brownout circuit is supplied from VBUS or DVCC, whichever carries the higher
voltage.

Ultimately, it is the user's responsibility to ensure that the current drawn from VBUS does not exceed IDET.

22.2.3 USB Phase-Locked Loop (PLL)

The PLL provides the low-jitter high-accuracy clock needed for USB operation (see Figure 22-5).

Figure 22-5. USB-PLL Analog Block Diagram

555SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

f = CLK ×
OUT SEL

DIVM

DIVQ
with

CLK
SEL

DIVQ
= f 1.5 MHz

UPD
³

USB Operation www.ti.com

The selection of a reference clock is made via the UPCS bit. This allows selection of one of the two
system crystal clock sources as a reference clock. A four-bit prescale counter controlled by the UPQB bits
allows division of the reference to generate the PLL update clock. The UPMB bits control the divider in the
feedback path and define the multiplication rate of the PLL (see Equation 11).

(11)

Where
CLKSEL is the selected reference frequency (XT1CLK or XT2CLK)
DIVQ is derived from Table 22-1
DIVM represents the value of UPMB field

If USB operation is used in a bus-powered configuration, disabling the PLL is necessary in order to pass
the USB requirement of not consuming more than 500 μA. The UPLLEN bit enables/disables the PLL. The
PFDEN bit must be set in order to enable the phase/frequency discriminator. Out-of-lock, loss-of-signal,
and out-of-range are indicated and flagged in the interrupt flags OOLIFG, LOSIFG, OORIFG, respectively.

NOTE: UCLKSEL bits should always be cleared, which is the default operation. All other
combinations are reserved for future usages.

Table 22-1. USB-PLL Pre-Scale Divider

UPQB DIVQ

000 1

001 2

010 3

011 4

100 6

101 8

110 12

111 16

Table 22-2. Register Settings to Generate 48 MHz Using Common Crystals

CLKSEL CLKLOOP UPLLCLK ACCURACYUPQB UPMB DIVQ DIVM(MHz) (MHz) (MHz) (ppm)

1.5 000 011111 1 32 1.5 48 0

1.6 000 011101 1 30 1.6 48 0

1.7778 000 011010 1 27 1.7778 48 0

1.8432 000 011001 1 26 1.8432 47.92 -1570

1.8461 000 011001 1 26 1.8461 48 0

1.92 000 011000 1 25 1.92 48 0

2 000 010111 1 24 2 48 0

2.4 000 010011 1 20 2.4 48 0

2.6667 000 010001 1 18 2.6667 48 0

3 000 001111 1 16 3 48 0

3.2 001 011110 2 30 1.6 48 0

3.5556 001 011010 2 27 1.7778 48 0

3.579545 001 011010 2 27 1.79 48.32 6666

3.84 001 011001 2 25 1.92 48 0

4 (1) 001 010111 2 24 2 48 0

4.1739 001 010110 2 23 2.086 48 0

(1) This frequency can be automatically detected by the factory-supplied BSL, for use in production programming of the MSP430 via
USB. Refer to the MSP430 Memory Programming User's Guide for details.

556 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USB Operation

Table 22-2. Register Settings to Generate 48 MHz Using Common Crystals (continued)

CLKSEL CLKLOOP UPLLCLK ACCURACYUPQB UPMB DIVQ DIVM(MHz) (MHz) (MHz) (ppm)

4.1943 001 010110 2 23 2.097 48.23 4884

4.332 001 010101 2 22 2.166 47.652 -7250

4.3636 001 010101 2 22 2.1818 48 0

4.5 010 011111 3 32 1.5 48 0

4.8 001 010011 2 20 2.4 48 0

5.33 (16/3) 001 010001 2 18 2.6667 48 0

5.76 010 011000 3 25 1.92 48 0

6 010 010111 3 24 2 48 0

6.4 011 011101 4 30 1.6 48 0

7.2 010 010011 3 20 2.4 48 0

7.68 011 011000 4 25 1.92 48 0

8 (1) 010 010001 3 18 2.6667 48 0

9 010 001111 3 16 3 48 0

9.6 011 010011 4 20 2.4 48 0

10.66 (32/3) 011 010001 4 18 2.6667 48 0

12 (1) 011 001111 4 16 3 48 0

12.8 101 011101 8 30 1.6 48 0

14.4 100 010011 6 20 2.4 48 0

16 100 010001 6 18 2.6667 48 0

16.9344 100 010000 6 17 2.8224 47.98 -400

16.94118 100 010000 6 17 2.8235 48 0

18 100 001111 6 16 3 48 0

19.2 101 010011 8 20 2.4 48 0

24 (1) 101 001111 8 16 3 48 0

25.6 111 011101 16 30 1.6 48 0

32 111 010111 16 24 2.6667 48 0

22.2.3.1 Modifying the Divider Values

Updating the values of UPQB (DIVQ) and UPMB (DIVM) to select the desired PLL frequency must occur
simultaneously to avoid spurious frequency artifacts. The values of UPQB and UPMB can be calculated
and written to their buffer registers; the final update of UPQB and UPMB occurs when the upper byte of
UPLLDIVB (UPQB) is written.

22.2.3.2 PLL Error Indicators

The PLL can detect three kinds of errors. Out-of-lock (OOL) is indicated if a frequency correction is
performed in the same direction (i.e., up/down) for four consecutive update periods. Loss-of-signal (LOS)
is indicated if a frequency correction is performed in the same direction (i.e., up/down) for 16 consecutive
update periods. Out-of-range (OOR) is indicated if PLL was unable to lock for more than 32 update
periods.

OOL, LOS, and OOR trigger their respective interrupt flags (USBOOLIFG, USBLOSIFG, USBOORIFG) if
errors occur, and interrupts are generated if enabled by their enable bits (USBOOLIE, USBLOSIE,
USBOORIE).

22.2.3.3 PLL Startup Sequence

To achieve the fastest startup of the PLL, the following sequence is recommended.

1. Enable VUSB and V18.

557SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Counter

Pointer

Flag X
Y

Config EPn

Counter

Pointer

Flag X
Y

Config EPn

-

EP0 to EP7 EP0 to EP7

Receive Transceive

X-Buffer
(64 bytes)

Y-Buffer
(64 bytes)

X'-Buffer
(64 bytes)

X-Buffer
(64 bytes)

X''-Buffer
(64 bytes)

Y''-Buffer
(64 bytes)

Y'-Buffer
(64 bytes)

Y-Buffer
(64 bytes)

USB Operation www.ti.com

2. Wait 2 ms for external capacitors to charge, so that proper VUSB is in place. (During this time, the
USB registers and buffers can be initialized.)

3. Activate the PLL, using the required divider values.
4. Wait 2 ms and check PLL. If it stays locked, it is ready to be used.

22.2.4 USB Controller Engine

The USB controller engine transfers data packets arriving from the USB host into the USB buffers, and
also transmits valid data from the buffers to the USB host. The controller engine has dedicated, fixed
buffer space for input endpoint 0 and output endpoint 0, which are the default USB endpoints for control
transfers.

The 14 remaining endpoints (seven input and seven output) may have one or more USB buffers assigned
to them. All the buffers are located in the USB buffer memory. This memory is implemented as "multiport"
memory, in that it can be accessed both by the USB buffer manager and also by the CPU and DMA.

Each endpoint has a dedicated set of descriptor registers that describe the use of that endpoint (see
Figure 22-6). Configuration of each endpoint is performed by setting its descriptor registers. These data
structures are located in the USB buffer memory and contain address pointers to the next memory buffer
for receive/transmit.

Assigning one or two data buffers to an endpoint, of up to 64 bytes, requires no further software
involvement after configuration. If more than three buffers per endpoint are desired, however, software
must change the address pointers on the fly during a receive/transmit process.

Synchronization of empty and full buffers is done using validation flags. All events are indicated by flags
and fire a vector interrupt when enabled. Transfer event indication can be enabled separately.

Figure 22-6. Data Buffers and Descriptors

22.2.4.1 USB Serial Interface Engine (SIE)

The SIE logic manages the USB packet protocol requirements for the packets being received and
transmitted on the bus. For packets being received, the SIE decodes the packet identifier field (packet ID)
to determine the type of packet being received and to ensure the packet ID is valid. For token and data
packets being received, the SIE calculates the packet cycle redundancy check (CRC) and compares the
value to the CRC contained in the packet to verify that the packet was not corrupted during transmission.

For token and data packets being transmitted, the SIE generates the CRC that is transmitted with the
packet. For packets being transmitted, the SIE also generates the synchronization field (SYNC), which is
an eight-bit field at the beginning of each packet. In addition, the SIE generates the correct packet ID for
all packets being transmitted.

558 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USB Operation

Another major function of the SIE is the overall serial-to-parallel conversion of the data packets being
received/transmitted.

22.2.4.2 USB Buffer Manager (UBM)

The USB buffer manager provides the control logic that interfaces the SIE to the USB endpoint buffers.

One of the major functions of the UBM is to decode the USB device address to determine if the USB host
is addressing this particular USB device. In addition, the endpoint address field and direction signal are
decoded to determine which particular USB endpoint is being addressed. Based on the direction of the
USB transaction and the endpoint number, the UBM either writes or reads the data packet to/from the
appropriate USB endpoint data buffer.

The TOGGLE bit for each output endpoint configuration register is used by the UBM to track successful
output data transactions. If a valid data packet is received and the data packet ID matches the expected
packet ID, the TOGGLE bit is toggled. Similarly, the TOGGLE bit for each input endpoint configuration is
used by the UBM to track successful input data transactions. If a valid data packet is transmitted, the
TOGGLE bit is toggled. If the TOGGLE bit is cleared, a DATA0 packet ID is transmitted in the data packet
to the host. If the TOGGLE bit is set, a DATA1 packet ID is transmitted in the data packet to the host.
Please refer to Section 22.3 regarding details of USB transfers.

22.2.4.3 USB Buffer Memory

The USB buffer memory contains the data buffers for all endpoints and for SETUP packets. In that the
buffers for endpoints 1 to 7 are flexible, there are USB buffer configuration registers that define them, and
these too are in the USB buffer memory. (Endpoint 0 is defined with a set of registers in the USB control
register space.) Storing these in open memory allows for efficient, flexible use, which is advantageous
because use of these endpoints is very application-specific.

This memory is implemented as "multiport" memory, in that it can be accessed both by the USB buffer
manager and also by the CPU and DMA. The SIE allows CPU/DMA access, but reserves priority. As a
result, CPU/DMA access is delayed using wait states if a conflict arises with an SIE access.

When the USB module is disabled (USBEN = 0), the buffer memory behaves like regular RAM. When
changing the state of the USBEN bit (enabling or disabling the USB module), the USB buffer memory
should not be accessed within four clocks before and eight clocks after changing this bit, as doing so
reconfigures the access method to the USB memory.

Each endpoint is defined by a block of six configuration "registers" (based in RAM, they are not true
registers in the strict sense of the word). These registers specify the endpoint type, buffer address, buffer
size and data packet byte count. They define an endpoint buffer space that is 1904 bytes in size. An
additional 24 bytes are allotted to three remaining blocks – the EP0_IN buffer, the EP0_OUT buffer, and
the SETUP packet buffer (see Table 22-3).

Table 22-3. USB Buffer Memory Map

AddressMemory Short Form Access Type Offset

Start of buffer space STABUFF Read/Write 0000h

1904 bytes of configurable buffer space ⋮ Read/Write ⋮
End of buffer space TOPBUFF Read/Write 076Fh

Read/Write 0770h

Output endpoint_0 buffer USBOEP0BUF Read/Write ⋮
Read/Write 0777h

Read/Write 0778h

Input endpoint_0 buffer USBIEP0BUF Read/Write ⋮
Read/Write 077Fh

Read/Write 0780h

Setup Packet Block USBSUBLK Read/Write ⋮
Read/Write 0787h

559SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

/3
USBCLK
(48 MHz)

16-Bit USB Timer (not accessible)

Reset to 0Frame Number Received
Reset

(of USB Configuration Registers)

16-Bit Time Stamp Register (read only)

000

TSE0 00
01
10
11

TSE1
TSE2
TSE3

TSESEL

001

010
011
100
101

110
111

UTSEL

UTIE

VECINT

UTIFG

TSGEN

2

3

USB Operation www.ti.com

Software can configure each buffer according to the total number of endpoints needed. Single or double
buffering of each endpoint is possible.

Unlike the descriptor registers for endpoints 1 to 7, which are defined as memory entries in USB RAM,
endpoint 0 is described by a set of four registers (two for output and two for input) in the USB control
register set. Endpoint 0 has no base-address register, since these addresses are hardwired. The bit
positions have been preserved to provide consistency with endpoint_n (n = 1 to 7).

22.2.4.4 USB Fine Timestamp

The USB module is capable of saving a timestamp associated with particular USB events (see
Figure 22-7). This can be useful in compensating for delays in software response. The timestamp values
are based on the USB module's internal timer, driven by USBCLK.

Up to four events can be selected to generate the timestamp, selected with the TSESEL bits. When they
occur, the value of the USB timer is transferred to the timestamp register USBTSREG, and thus the exact
moment of the event is recorded. The trigger options include one of three DMA channels, or a
software-driven event. The USB timer cannot be directly accessed by reading.

Furthermore, the value of the USB timer can be used to generate periodic interrupts. Since the USBCLK
can have a frequency different from the other system clocks, this gives another option for periodic system
interrupts. The UTSEL bits select the divider from the USB clock. UTIE must be set for an interrupt vector
to get triggered.

The timestamp register is set to zero on a frame-number-receive event and pseudo-start-of-frame.

TSGEN enables/disables the time stamp generator.

Figure 22-7. USB Timer and Time Stamp Generation

22.2.4.5 Suspend/Resume Logic

The USB suspend/resume logic detects suspend and resume conditions on the USB bus. These events
are flagged in SUSRIFG and RESRIFG, respectively, and they fire dedicated interrupts, if the interrupts
are enabled (SUSRIE and RESRIE).

The remote wakeup mechanism, in which a USB device can cause the USB host to awaken and resume
the device, is triggered by setting the RWUP bit of the USBCTL register.

See Section 22.2.6 for more information.

560 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USB Operation

22.2.4.6 Reset Logic

A PUC resets the USB module logic. When FRSTE = 1, the logic is also reset when a USB reset event
occurs on the bus, triggered from the USB host. (A USB reset also sets the RSTRIFG flag.) USB buffer
memory is not reset by a USB reset.

22.2.5 USB Vector Interrupts

The USB module uses a single interrupt vector generator register to handle multiple USB interrupts. All
USB-related interrupt sources trigger the USBVECINT vector, which then contains a 6-bit vector value that
identifies the interrupt source. Each of the interrupt sources results in a different offset value read. The
interrupt vector returns zero when no interrupt is pending.

Reading the interrupt vector register clears the corresponding interrupt flag and updates its value. The
interrupt with highest priority returns the value 0002h; the interrupt with lowest priority returns the value
003Eh when reading the interrupt vector register. Writing to this register clears all interrupt flags.

For each input and output endpoints resides an USB transaction interrupt indication enable. Software may
set this bit to define if interrupts are to be flagged in general. To generate an interrupt the corresponding
interrupt enable and flag must be set.

Table 22-4. USB Interrupt Vector Generation

USBVECINT Interrupt Source Interrupt Flag Bit Interrupt Enable Bit Indication Enable BitValue

0000h no interrupt – – –

0002h USB-PWR drop ind. USBPWRCTL.VUOVLIFG USBPWRCTL.VUOVLIE –

0004h USB-PLL lock error USBPLLIR.USBPLLOOLIFG USBPLLIR.USBPLLOOLIE –

0006h USB-PLL signal error USBPLLIR.USBPLLOSIFG USBPLLIR.USBPLLLOSIE –

0008h USB-PLL range error USBPLLIR.USBPLLOORIFG USBPLLIR.USBPLLOORIE –

000Ah USB-PWR VBUS-on USBPWRCTL.VBONIFG USBPWRCTL.VBONIE –

000Ch USB-PWR VBUS-off USBPWRCTL.VBOFFIFG USBPWRCTL.VBOFFIE –

000Eh reserved – – –

0010h USB timestamp event USBMAINTL.UTIFG USBMAINTL.UTIE –

0012h Input Endpoint-0 USBIEPIFG.EP0 USBIEPIE.EP0 USBIEPCNFG_0.USBIIE

0014h Output Endpoint-0 USBOEPIFG.EP0 USBOEPIE.EP0 USBOEPCNFG_0.USBIIE

0016h RSTR interrupt USBIFG.RSTRIFG USBIE.RSTRIE –

0018h SUSR interrupt USBIFG.SUSRIFG USBIE.SUSRIE –

001Ah RESR interrupt USBIFG.RESRIFG USBIE.RESRIE –

001Ch reserved – – –

001Eh reserved – – –

0024h Input Endpoint-1 USBIEPIFG.EP1 USBIEPIE.EP1 USBIEPCNF_1.USBIIE

0026h Input Endpoint-2 USBIEPIFG.EP2 USBIEPIE.EP2 USBIEPCNF_2.USBIIE

0028h Input Endpoint-3 USBIEPIFG.EP3 USBIEPIE.EP3 USBIEPCNF_3.USBIIE

002Ah Input Endpoint-4 USBIEPIFG.EP4 USBIEPIE.EP4 USBIEPCNF_4.USBIIE

002Ch Input Endpoint-5 USBIEPIFG.EP5 USBIEPIE.EP5 USBIEPCNF_5.USBIIE

002Eh Input Endpoint-6 USBIEPIFG.EP6 USBIEPIE.EP6 USBIEPCNF_6.USBIIE

0030h Input Endpoint-7 USBIEPIFG.EP7 USBIEPIE.EP7 USBIEPCNF_7.USBIIE

0032h Output Endpoint-1 USBOEPIFG.EP1 USBOEPIE.EP1 USBOEPCNF_1.USBIIE

0034h Output Endpoint-2 USBOEPIFG.EP2 USBOEPIE.EP2 USBOEPCNF_2.USBIIE

0036h Output Endpoint-3 USBOEPIFG.EP3 USBOEPIE.EP3 USBOEPCNF_3.USBIIE

0038h Output Endpoint-4 USBOEPIFG.EP4 USBOEPIE.EP4 USBOEPCNF_4.USBIIE

003Ah Output Endpoint-5 USBOEPIFG.EP5 USBOEPIE.EP5 USBOEPCNF_5.USBIIE

003Ch Output Endpoint-6 USBOEPIFG.EP6 USBOEPIE.EP6 USBOEPCNF_6.USBIIE

003Eh Output Endpoint-7 USBOEPIFG.EP7 USBOEPIE.EP7 USBOEPCNF_7.USBIIE

561SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USB Operation www.ti.com

22.2.6 Power Consumption

USB functionality consumes more power than is typically drawn in the MSP430. Since most MSP430
applications are power sensitive, the MSP430 USB module has been designed to protect the battery by
ensuring that significant power load only occurs when attached to the bus, allowing power to be drawn
from VBUS.

The two components of the USB module that draw the most current are the transceiver and the PLL. The
transceiver can consume large amounts of power while transmitting, but in its quiescent state – that is,
when not transmitting data – the transceiver actually consumes very little power. This is the amount
specified as IIDLE. This amount is so little that the transceiver can be kept active during suspend mode
without presenting a problem for bus-powered applications. Fortunately the transceiver always has access
to VBUS power when drawing the level of current required for transmitting.

The PLL consumes a larger amount of current. However, it need only be active while connected to the
host, and the host can supply the power. When the PLL is disabled (for example, during USB suspend),
USBCLK automatically is sourced from the VLO.

22.2.7 Suspend and Resume

All USB devices must support the ability to be suspended into a no-activity state, and later resumed.
When suspended, a device is not allowed to consume more than 500uA from the USB's VBUS power rail,
if the device is drawing any power from that source. A suspended device must also monitor for a resume
event on the bus.

The host initiates a suspend condition by creating a constant idle state on the bus for more than 3.0 ms. It
is the responsibility of the software to ensure the device enters its low power suspend state within 10 ms
of the suspend condition. The USB specification requires that a suspended bus-powered USB device not
draw in excess of 500 μA from the bus.

22.2.7.1 Entering Suspend

When the host suspends the USB device, a suspend interrupt is generated (SUSRIFG). From this point,
the software has 10 ms to ensure that no more than 500uA is being drawn from the host via VBUS.

For most applications, the integrated 3.3 V LDO is being used. In this case, the following actions should
be taken:

• Disable the PLL by clearing UPLLEN (UPLLEN = 0)
• Limit all current sourced from VBUS that causes the total current sourced from VBUS equal to 500 μA

minus the suspend current, ISUSPEND(refer to the device specific datasheet).

Disabling the PLL eliminates the largest on-chip draw of power from VBUS. During suspend, the USBCLK
is automatically sourced by the VLO (VLOCLK), allowing the USB module to detect resume when it
occurs. It is a good idea to also then ensure that the RESRIE bit is also set, so that an interrupt will be
generated when the host resumes the device. If desired, the high frequency crystal can also be disabled
to save additional system power, however it does not contribute to the power from VBUS since it draws
power from the DVCC supply.

22.2.7.2 Entering Resume Mode

When the USB device is in a suspended condition, any non-idle signaling, including reset signaling, on the
host side will be detected by the suspend/resume logic and device operation will be resumed. RESRIFG
will be set, causing an USB interrupt. The interrupt service routine can be used to resume USB operation.

562 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USB Transfers

22.3 USB Transfers

The USB module supports control, bulk, and interrupt data transfer types. In accordance with the USB
specification, endpoint 0 is reserved for the control endpoint and is bidirectional. In addition to the control
endpoint, the USB module is capable of supporting up to 7 input endpoints and 7 output endpoints. These
additional endpoints can be configured either as bulk or interrupt endpoints. The software handles all
control, bulk, and interrupt endpoint transactions.

22.3.1 Control Transfers

Control transfers are used for configuration, command, and status communication between the host and
the USB device. Control transfers to the USB device use input endpoint 0 and output endpoint 0. The
three types of control transfers are control write, control write with no data stage, and control read. Note
that the control endpoint must be initialized before connecting the USB device to the USB.

22.3.1.1 Control Write Transfer

The host uses a control write transfer to write data to the USB device. A control write transfer consists of a
setup stage transaction, at least one output data stage transaction, and an input status stage transaction.

The stage transactions for a control write transfer are:

• Setup stage transaction:

1. Input endpoint 0 and output endpoint 0 are initialized by programming the appropriate USB
endpoint configuration blocks. This entails enabling the endpoint interrupt (USBIIE = 1) and
enabling the endpoint (UBME = 1). The NAK bit for both input endpoint 0 and output endpoint 0
must be cleared.

2. The host sends a setup token packet followed by the setup data packet addressed to output
endpoint 0. If the data is received without an error, then the UBM will write the data to the setup
data packet buffer, set the setup stage transaction bit (SETUPIFG = 1) in the USB Interrupt Flag
register (USBIFG), return an ACK handshake to the host, and assert the setup stage transaction
interrupt. Note that as long as SETUPIFG = 1, the UBM will return a NAK handshake for any data
stage or status stage transactions regardless of the endpoint 0 NAK or STALL bit values.

3. The software services the interrupt, reads the setup data packet from the buffer, and then decodes
the command. If the command is not supported or invalid, the software should set the STALL bit in
the output endpoint 0 configuration register (USBOEPCNFG_0) and the input endpoint 0
configuration register (USBIEPCNFG_0) . This will cause the device to return a STALL handshake
for any data or status stage transaction. For control write transfers, the packet ID used by the host
for the first data packet output will be a DATA1 packet ID and the TOGGLE bit must match.

• Data stage transaction:

1. The host sends an OUT token packet followed by a data packet addressed to output endpoint 0. If
the data is received without an error, the UBM will write the data to the output endpoint buffer
(USBOEP0BUF), update the data count value, toggle the TOGGLE bit, set the NAK bit, return an
ACK handshake to the host , and assert the output endpoint interrupt 0 (OEPIFG0).

2. The software services the interrupt and reads the data packet from the output endpoint buffer. To
read the data packet, the software first needs to obtain the data count value inside the
USBOEPBCNT_0 register. After reading the data packet, the software should clear the NAK bit to
allow the reception of the next data packet from the host.

3. If the NAK bit is set when the data packet is received, the UBM simply returns a NAK handshake to
the host. If the STALL bit is set when the data packet is received, the UBM simply returns a STALL
handshake to the host. If a CRC or bit stuff error occurs when the data packet is received, then no
handshake is returned to the host.

• Status stage transaction:

1. For input endpoint 0, the software updates the data count value to zero, sets the TOGGLE bit, then
clears the NAK bit to enable the data packet to be sent to the host. Note that for a status stage
transaction, a null data packet with a DATA1 packet ID is sent to the host.

2. The host sends an IN token packet addressed to input endpoint 0. After receiving the IN token, the
UBM transmits a null data packet to the host. If the data packet is received without errors by the
host, then an ACK handshake is returned. The UBM will then toggle the TOGGLE bit and sets the

563SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USB Transfers www.ti.com

NAK bit.
3. If the NAK bit is set when the IN token packet is received, the UBM simply returns a NAK

handshake to the host. If the STALL bit is set when the IN token packet is received, the UBM
simply returns a STALL handshake to the host. If no handshake packet is received from the host,
then the UBM prepares to retransmit the same data packet again.

22.3.1.2 Control Write Transfer with No Data Stage Transfer

The host uses a control write transfer to write data to the USB device. A control write with no data stage
transfer consists of a setup stage transaction and an input status stage transaction. For this type of
transfer, the data to be written to the USB device is contained in the two byte value field of the setup stage
transaction data packet.

The stage transactions for a control write transfer with no data stage transfer are:

• Setup stage transaction:

1. Input endpoint 0 and output endpoint 0 are initialized by programming the appropriate USB
endpoint configuration blocks. This entails programming the buffer size and buffer base address,
selecting the buffer mode, enabling the endpoint interrupt (USBIIE = 1), initializing the TOGGLE bit,
enabling the endpoint (UBME = 1). The NAK bit for both input endpoint 0 and output endpoint 0
must be cleared.

2. The host sends a setup token packet followed by the setup data packet addressed to output
endpoint 0. If the data is received without an error then the UBM will write the data to the setup
data packet buffer, set the setup stage transaction (SETUP) bit in the USB status register, return an
ACK handshake to the host, and assert the setup stage transaction interrupt. Note that as long as
the setup transaction (SETUP) bit is set, the UBM will return a NAK handshake for any data stage
or status stage transaction regardless of the endpoint 0 NAK or STALL bit values.

3. The software services the interrupt and reads the setup data packet from the buffer then decodes
the command. If the command is not supported or invalid, the software should set the STALL bits in
the output endpoint 0 and the input endpoint 0 configuration registers before clearing the setup
stage transaction (SETUP) bit. This will cause the device to return a STALL handshake for data or
status stage transactions. After reading the data packet and decoding the command, the software
should clear the interrupt, which will automatically clear the setup stage transaction status bit.

• Status stage transaction:

1. For input endpoint 0, the software updates the data count value to zero, sets the TOGGLE bit, then
clears the NAK bit to enable the data packet to be sent to the host. Note that for a status stage
transaction a null data packet with a DATA1 packet ID is sent to the host.

2. The host sends an IN token packet addressed to input endpoint 0. After receiving the IN token, the
UBM transmits a null data packet to the host. If the data packet is received without errors by the
host, then an ACK handshake is returned. The UBM will then toggle the TOGGLE bit, set the NAK
bit, and assert the endpoint interrupt.

3. If the NAK bit is set when the IN token packet is received, the UBM simply returns a NAK
handshake to the host. If the STALL bit is set when the IN token packet is received, the UBM
simply returns a STALL handshake to the host. If no handshake packet is received from the host,
then the UBM prepares to retransmit the same data packet again.

22.3.1.3 Control Read Transfer

The host uses a control read transfer to read data from the USB device. A control read transfer consists of
a setup stage transaction, at least one input data stage transaction and an output status stage transaction.

The stage transactions for a control read transfer are:

• Setup stage transaction:

1. Input endpoint 0 and output endpoint 0 are initialized by programming the appropriate USB
endpoint configuration blocks. This entails enabling the endpoint interrupt (USBIIE = 1) and
enabling the endpoint (UBME = 1). The NAK bit for both input endpoint 0 and output endpoint 0
must be cleared.

2. The host sends a setup token packet followed by the setup data packet addressed to output

564 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USB Transfers

endpoint 0. If the data is received without an error, then the UBM will write the data to the setup
buffer, set the setup stage transaction (SETUP) bit in the USB status register, return an ACK
handshake to the host and assert the setup stage transaction interrupt. Note that as long as the
setup transaction (SETUP) bit is set, the UBM will return a NAK handshake for any data stage or
status stage transactions regardless of the endpoint 0 NAK or STALL bit values.

3. The software services the interrupt and reads the setup data packet from the buffer then decodes
the command. If the command is not supported or invalid, the software should set the STALL bits in
the output endpoint 0 and the input endpoint 0 configuration registers before clearing the setup
stage transaction (SETUP) bit. This will cause the device to return a STALL handshake for a data
stage or status stage transactions. After reading the data packet and decoding the command, the
software should clear the interrupt, which will automatically clear the setup stage transaction status
bit. The software should also set the TOGGLE bit in the input endpoint 0 configuration register. For
control read transfers, the packet ID used by the host for the first input data packet will be a DATA1
packet ID.

• Data stage transaction:

1. The data packet to be sent to the host is written to the input endpoint 0 buffer by the software. The
software also updates the data count value then clears the input endpoint 0 NAK bit to enable the
data packet to be sent to the host.

2. The host sends an IN token packet addressed to input endpoint 0. After receiving the IN token, the
UBM transmits the data packet to the host. If the data packet is received without errors by the host,
then an ACK handshake is returned. The UBM will set the NAK bit and assert the endpoint
interrupt.

3. The software services the interrupt and prepares to send the next data packet to the host.
4. If the NAK bit is set when the IN token packet is received, the UBM simply returns a NAK

handshake to the host. If the STALL bit is set when the IN token packet is received, the UBM
simply returns a STALL handshake to the host. If no handshake packet is received from the host,
then the UBM prepares to retransmit the same data packet again.

5. The software continues to send data packets until all data has been sent to the host.
• Status stage transaction:

1. For output endpoint 0, the software sets the TOGGLE bit, then clears the NAK bit to enable the
data packet to be sent to the host. Note that for a status stage transaction a null data packet with a
DATA1 packet ID is sent to the host.

2. The host sends an OUT token packet addressed to output endpoint 0. If the data packet is received
without an error then the UBM will update the data count value, toggle the TOGGLE bit, set the
NAK bit, return an ACK handshake to the host, and assert the endpoint interrupt.

3. The software services the interrupt. If the status stage transaction completed successfully, then the
software should clear the interrupt and clear the NAK bit.

4. If the NAK bit is set when the input data packet is received, the UBM simply returns a NAK
handshake to the host. If the STALL bit is set when the in data packet is received, the UBM simply
returns a STALL handshake to the host. If a CRC or bit stuff error occurs when the data packet is
received, then no handshake is returned to the host.

22.3.1.4 Control Read Transfer

The host uses a control read transfer to read data from the USB device. A control read transfer consists of
a setup stage transaction, at least one input data stage transaction and an output status stage transaction.

The stage transactions for a control read transfer are:

• Setup stage transaction:

1. Input endpoint 0 and output endpoint 0 are initialized by programming the appropriate USB
endpoint configuration blocks. This entails enabling the endpoint interrupt (USBIIE = 1) and
enabling the endpoint (UBME = 1). The NAK bit for both input endpoint 0 and output endpoint 0
must be cleared.

2. The host sends a setup token packet followed by the setup data packet addressed to output
endpoint 0. If the data is received without an error then the UBM will write the data to the setup
buffer, set the setup stage transaction (SETUP) bit to a 1 in the USB status register, return an ACK
handshake to the host and assert the setup stage transaction interrupt. Note that as long as the

565SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USB Transfers www.ti.com

setup transaction (SETUP) bit is set, the UBM will return a NAK handshake for any data stage or
status stage transactions regardless of the endpoint 0 NAK or STALL bit values.

3. The software services the interrupt and reads the setup data packet from the buffer then decodes
the command. If the command is not supported or invalid, the software should set the STALL bits in
the output endpoint 0 the input endpoint 0 configuration registers before clearing the setup stage
transaction (SETUP) bit. This will cause the device to return a STALL handshake for a data stage
or status stage transactions. After reading the data packet and decoding the command, the
software should clear the interrupt, which will automatically clear the setup stage transaction status
bit. The software should also set the TOGGLE bit in the input endpoint 0 configuration register. For
control read transfers, the packet ID used by the host for the first input data packet will be a DATA1
packet ID.

• Data stage transaction:

1. The data packet to be sent to the host is written to the input endpoint 0 buffer by the software. The
software also updates the data count value then clears the input endpoint 0 NAK bit to enable the
data packet to be sent to the host.

2. The host sends an IN token packet addressed to input endpoint 0. After receiving the IN token, the
UBM transmits the data packet to the host device. If the data packet is received without errors by
the host, then an ACK handshake is returned. The UBM will set the NAK bit and assert the
endpoint interrupt.

3. The software services the interrupt and prepares to send the next data packet to the host.
4. If the NAK bit is set when the IN token packet is received, the UBM simply returns a NAK

handshake to the host. If the STALL bit is set when the IN token packet is received, the UBM
simply returns a STALL handshake to the host. If a no handshake packet is received from the host,
then the UBM prepares to retransmit the same data packet again.

5. The software continues to send data packets until all data has been sent to the host.
• Status stage transaction:

1. For output endpoint 0, the software sets the TOGGLE bit, then clears the NAK bit to enable the
data packet to be sent to the host. Note that for a status stage transaction a null data packet with a
DATA1 packet ID is sent to the host.

2. The host sends an OUT token packet addressed to output endpoint 0. If the data packet is received
without an error then the UBM will update the data count value, toggle the TOGGLE bit, set the
NAK bit, return an ACK handshake to the host, and assert the endpoint interrupt.

3. The software services the interrupt. If the status stage transaction completed successfully, then the
software should clear the interrupt and clear the NAK bit.

4. If the NAK bit is set when the input data packet is received, the UBM simply returns a NAK
handshake to the host. If the STALL bit is set when the in data packet is received, the UBM simply
returns a STALL handshake to the host. If a CRC or bit stuff error occurs when the data packet is
received, then no handshake is returned to the host.

22.3.2 Interrupt Transfers

The USB module supports interrupt data transfers both to and from the host. Devices that need to send or
receive a small amount of data with a specified service period are best served by the interrupt transfer
type. Input endpoints 1 through 7 and output endpoints 1 through 7 can be configured as interrupt
endpoints.

22.3.2.1 Interrupt OUT Transfer

The steps for an interrupt OUT transfer are:

1. The software initializes one of the output endpoints as an output interrupt endpoint by programming the
appropriate endpoint configuration block. This entails programming the buffer size and buffer base
address, selecting the buffer mode, enabling the endpoint interrupt, initializing the toggle bit, enabling
the endpoint, and clearing the NAK bit.

566 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com USB Transfers

2. The host sends an OUT token packet followed by a data packet addressed to the output endpoint. If
the data is received without an error then the UBM will write the data to the endpoint buffer, update the
data count value, toggle the toggle bit, set the NAK bit, return an ACK handshake to the host, and
assert the endpoint interrupt.

3. The software services the interrupt and reads the data packet from the buffer. To read the data packet,
the software first needs to obtain the data count value. After reading the data packet, the software
should clear the interrupt and clear the NAK bit to allow the reception of the next data packet from the
host.

4. If the NAK bit is set when the data packet is received, the UBM simply returns a NAK handshake to the
host. If the STALL bit is set when the data packet is received, the UBM simply returns a STALL
handshake to the host. If a CRC or bit stuff error occurs when the data packet is received, then no
handshake is returned to the host device.

In double buffer mode, the UBM selects between the X and Y buffer based on the value of the toggle bit. If
the toggle bit is a 0, the UBM will write the data packet to the X buffer. If the toggle bit is a 1, the UBM will
write the data packet to the Y buffer. When a data packet is received, the software could determine which
buffer contains the data packet by reading the toggle bit. However, when using double buffer mode, the
possibility exists for data packets to be received and written to both the X and Y buffer before the software
responds to the endpoint interrupt. In this case, simply using the toggle bit to determine which buffer
contains the data packet would not work. Hence, in double buffer mode, the software should read the X
buffer NAK bit, the Y buffer NAK bit, and the toggle bits to determine the status of the buffers.

22.3.2.2 Interrupt IN Transfer

The steps for an interrupt IN transfer are:

1. The software initializes one of the input endpoints as an input interrupt endpoint by programming the
appropriate endpoint configuration block. This entails programming the buffer size and buffer base
address, selecting the buffer mode, enabling the endpoint interrupt, initializing the toggle bit, enabling
the endpoint, and setting the NAK bit.

2. The data packet to be sent to the host is written to the buffer by the software. The software also
updates the data count value then clears the NAK bit to enable the data packet to be sent to the host.

3. The host sends an IN token packet addressed to the input endpoint. After receiving the IN token, the
UBM transmits the data packet to the host. If the data packet is received without errors by the host,
then an ACK handshake is returned. The UBM will then toggle the toggle bit, set the NAK bit and
assert the endpoint interrupt.

4. The software services the interrupt and prepares to send the next data packet to the host.
5. If the NAK bit is set when the in token packet is received, the UBM simply returns a NAK handshake to

the host. If the STALL bit is set when the IN token packet is received, the UBM simply returns a STALL
handshake to the host. If no handshake packet is received from the host, then the UBM prepares to
retransmit the same data packet again.

In double buffer mode, the UBM selects between the X and Y buffer based on the value of the toggle bit. If
the toggle bit is a 0, the UBM will read the data packet from the X buffer. If the toggle bit is a 1, the UBM
will read the data packet from the Y buffer.

22.3.3 Bulk Transfers

The USB module supports bulk data transfers both to and from the host. Devices that need to send or
receive a large amount of data without a suitable bandwidth are best served by the bulk transfer type. In
endpoints 1 through 7 and out endpoints 1 through 7 can all be configured as bulk endpoints.

22.3.3.1 Bulk OUT Transfer

The steps for a bulk OUT transfer are:

1. The software initializes one of the output endpoints as an output bulk endpoint by programming the
appropriate endpoint configuration block. This entails programming the buffer size and buffer base
address, selecting the buffer mode, enabling the endpoint interrupt, initializing the toggle bit, enabling
the endpoint, and clearing the NAK bit.

567SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

USB Transfers www.ti.com

2. The host sends an out token packet followed by a data packet addressed to the output endpoint. If the
data is received without an error then the UBM will write the data to the endpoint buffer, update the
data count value, toggle the toggle bit, set the NAK bit, return an ACK handshake to the host, and
assert the endpoint interrupt.

3. The software services the interrupt and reads the data packet from the buffer. To read the data packet,
the software first needs to obtain the data count value. After reading the data packet, the software
should clear the interrupt and clear the NAK bit to allow the reception of the next data packet from the
host.

4. If the NAK bit is set when the data packet is received, the UBM simply returns a NAK handshake to the
host. If the STALL bit is set when the data packet is received, the UBM simply returns a STALL
handshake to the host. If a CRC or bit stuff error occurs when the data packet is received, then no
handshake is returned to the host.

In double buffer mode, the UBM selects between the X and Y buffer based on the value of the toggle bit. If
the toggle bit is a 0, the UBM will write the data packet to the X buffer. If the toggle bit is a 1, the UBM will
write the data packet to the Y buffer. When a data packet is received, the software could determine which
buffer contains the data packet by reading the toggle bit. However, when using double buffer mode, the
possibility exists for data packets to be received and written to both the X and Y buffer before the software
responds to the endpoint interrupt. In this case, simply using the toggle bit to determine which buffer
contains the data packet would not work. Hence, in double buffer mode, the software should read the X
buffer NAK bit, the Y buffer NAK bit, and the toggle bits to determine the status of the buffers.

22.3.3.2 Bulk IN Transfer

The steps for a bulk IN transfer are:

1. The software initializes one of the input endpoints as an input bulk endpoint by programming the
appropriate endpoint configuration block. This entails programming the buffer size and buffer base
address, selecting the buffer mode, enabling the endpoint interrupt, initializing the toggle bit, enabling
the endpoint, and setting the NAK bit.

2. The data packet to be sent to the host is written to the buffer by the software. The software also
updates the data count value then clears the NAK bit to enable the data packet to be sent to the host.

3. The host sends an IN token packet addressed to the input endpoint. After receiving the IN token, the
UBM transmits the data packet to the host. If the data packet is received without errors by the host,
then an ACK handshake is returned. The UBM will then toggle the toggle bit, set the NAK bit and
assert the endpoint interrupt.

4. The software services the interrupt and prepares to send the next data packet to the host.
5. If the NAK bit is set when the in token packet is received, the UBM simply returns a NAK handshake to

the host. If the STALL bit is set when the In token packet is received, the UBM simply returns a STALL
handshake to the host. If no handshake packet is received from the host, then the UBM prepares to
retransmit the same data packet again.

In double buffer mode , the UBM selects between the X and Y buffer based on the value of the toggle bit.
If the toggle bit is a 0, the UBM will read the data packet from the X buffer. If the toggle bit is a 1, the UBM
will read the data packet from the Y buffer.

568 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Registers

22.4 Registers

The USB register space is subdivided into configuration registers, control registers, and USB buffer
memory.

The configuration and control registers are physical registers located in peripheral memory, while the
buffer memory is implemented in RAM. See the device-specific datasheet for base addresses of these
register groupings.

The USB control registers may only be written while the USB module is enabled.

When the USB module is disabled, it no longer uses the RAM buffer memory. This memory then behaves
as a 2 KB RAM block, and can be used by the CPU or DMA without any limitation.

22.4.1 USB Configuration Registers

The configuration registers control the hardware functions needed to make a USB connection, including
the PHY, PLL, and LDOs.

Access to the configuration registers is allowed or disallowed using the USBKEYPID register. This register
serves as a password. Writing the proper value – 9628h – unlocks the configuration registers and enables
access. Writing any other value disables access while leaving the values of the registers intact. Locking
should be done intentionally after the configuration is finished.

The configuration registers are listed in Table 22-5. All addresses are expressed as offsets; the base
address can be found in the device-specific datasheet.

All registers are byte and word accessible.

Table 22-5. USB Configuration Registers

Register Short Form Register Type Address Offset Initial State

USB controller key and ID register USBKEYPID Read/Write 00h 0000h

USB controller configuration register USBCNF Read/Write 02h 0000h

USB-PHY control register USBPHYCTL Read/Write 04h 0000h

USB-PWR control register USBPWRCTL Read/Write 08h 1850h

USB-PLL control register USBPLLCTL Read/Write 10h 0000h

USB-PLL divider buffer register USBPLLDIVB Read/Write 12h 0000h

USB-PLL interrupt register USBPLLIR Read/Write 14h 0000h

USBKEYPID, USB Key Register

15 14 13 12 11 10 9 8

USBKEYPID
Read as A5h, Must be written as 96h

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

USBKEYPID

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

USBKEYPID Bits 15-0 Key register. Must be written with a value of 9628h in order to be recognized as a valid key. This
"unlocks" the configuration registers. If written with any other value, the registers become "locked".
Reads back as A528h if the registers are unlocked.

569SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Registers www.ti.com

USBCNF, USB Module Configuration Register

15 14 13 12 11 10 9 8

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved FNTEN BLKRDY PUR_IN PUR_EN USB_EN

r0 r0 r0 rw-0 rw-0 r rw-0 rw-0

Can be modified only when USBKEYPID is unlocked

Reserved Bits 15-5 Reserved. Read back as 0.

FNTEN Bit 4 Frame number receive trigger enable for DMA transfers

0 Frame number receive trigger is blocked.

1 Frame number receive trigger is gated through to DMA.

BLKRDY Bit 3 Block transfer ready signaling for DMA transfers

0 DMA triggering is disabled.

1 DMA is triggered whenever the USB bus interface can accept new write transfers.

PUR_IN Bit 2 PUR input value. This bit reflects the input value present on PUR. This bit may be used as an indication
to start a USB based boot loading program (USB-BSL). The PUR input logic is powered by VUSB.
PUR_IN returns zero when VUSB is zero

PUR_EN Bit 1 PUR pin enable

0 PUR pin is in high-impedance state

1 PUR pin is driven high

USB_EN Bit 0 USB module enable

0 USB module is disabled

1 USB module is enabled

USBPHYCTL, USB-PHY Control Register

15 14 13 12 11 10 9 8

Reserved Reserved Reserved

r0 r0 r0 r0 r0 r0 rw-0 rw-0

7 6 5 4 3 2 1 0

PUSEL Reserved PUDIR Reserved PUIN1 PUIN0 PUOUT1 PUOUT0

rw-0 r rw-0 rw-0 r r rw-0 rw-0

Can be modified only when USBKEYPID is unlocked

Reserved Bits 15-10 Reserved. Reads back as 0.

Reserved Bits 9-8 Reserved. Must always be written with 0.

PUSEL Bit 7 USB port function select. This bit selects the function of the PU0/DP and PU1/DM pins.

0 PU0 and PU1 function selected (general purpose I/O)

1 DP and DM function selected (USB terminals)

Reserved Bit 6 Reserved.

PUDIR Bit 5 USB port direction. This bit controls the direction of both PU0 and PU1. It is only valid when PUSEL = 0.

0 PU0 and PU1 output drivers are disabled.

1 PU0 and PU1 output drivers are enabled.

Reserved Bit 4 Reserved. Must always be written with 0.

PUIN1 Bit 3 PU1 input data, This bit reflects the logic value on the PU1 terminal.

PUIN0 Bit 2 PU0 input data, This bit reflects the logic value on the PU0 terminal.

PUOUT1 Bit 1 PU1 output data. This bits defines the value of the PU1 pin when configured as port function and PUDIR
= 1.

PUOUT0 Bit 0 PU0 output data. This bits defines the value of the PU0 pin when configured as port function and PUDIR
= 1.

570 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Registers

USBPWRCTL, USB-Power Control Register

15 14 13 12 11 10 9 8

Reserved SLDOEN VUSBEN VBOFFIE VBONIE VUOVLIE

r0 r0 r0 rw-1 rw-1 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

Reserved SLDOAON OVLAOFF USBDETEN USBBGVBV VBOFFIFG VBONIFG VUOVLIFG

r0 rw-1 rw-0 rw-1 r rw-0 rw-0 rw-0

Can be modified only when USBKEYPID is unlocked

Reserved Bits 15-13 Reserved. Reads back as 0.

SLDOEN Bit 12 1.8 V (secondary) LDO enable. When set, the LDO is enabled.

VUSBEN Bit 11 3.3-V LDO enable. When set, the LDO is enabled.

VBOFFIE Bit 10 VBUS "going OFF" interrupt enable

0 Interrupt disabled

1 Interrupt enabled

VBONIE Bit 9 VBUS "coming ON" interrupt enable

0 Interrupt disabled

1 Interrupt enabled

VUOVLIE Bit 8 VUSB overload indication interrupt enable

0 Interrupt disabled

1 Interrupt enabled

Reserved Bit 7 Reserved. Reads back as 0.

SLDOAON Bit 6 1.8-V LDO auto-on enable

0 LDO needs to be turned on manually via SLDOEN

1 A "VBUS coming on" transition sets SLDOEN

OVLAOFF Bit 5 LDO overload auto-off enable

0 During an overload on the 3.3-V LDO, the LDO automatically enters current-limiting mode and
stays there until the condition stops.

1 An overload indication clears the VUSBEN bit.

USBDETEN Bit 4 Enable bit for VBUS-on/off events.

0 USB module will not detect USB-PWR VBUS-on/off events

1 USB module will detect USB-PWR VBUS-on/off events

USBBGVBV Bit 3 VBUS valid

0 VBUS is not valid yet

1 VBUS is valid and within bounds

VBOFFIFG Bit 2 VBUS "going OFF" interrupt flag. This bit indicates that VBUS fell below the launch voltage. It is
automatically cleared when the corresponding vector of the USB interrupt vector register is read, or if a
value is written to the interrupt vector register.

0 No interrupt pending

1 Interrupt pending

VBONIFG Bit 1 VBUS "coming ON" interrupt flag. This bit indicates that VBUS rose above the launch voltage. This bit is
automatically cleared when the corresponding vector of the USB interrupt vector register is read, or if a
value is written to the interrupt vector register.

0 No interrupt pending

1 Interrupt pending

VUOVLIFG Bit 0 VUSB overload interrupt flag. This bit indicates that the 3.3-V LDO entered an overload situation.

0 No interrupt pending

1 Interrupt pending

571SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Registers www.ti.com

USBPLLCTL, USB-PLL Control Register

15 14 13 12 11 10 9 8

Reserved UPCS Reserved UPFDEN UPLLEN

r0 r0 r0 rw-0 r0 r0 rw-0 rw-0

7 6 5 4 3 2 1 0

UCLKSEL Reserved

rw-0 rw-0 r0 r0 r0 r0 r0 r0

Can be modified only when USBKEYPID is unlocked

Reserved Bits 15-13 Reserved. Reads back as 0.

UPCS Bit 12 PLL clock select

0 XT1CLK is selected as the reference clock

1 XT2CLK is selected as the reference clock

Reserved Bits 11-10 Reserved. Reads back as 0.

UPFDEN Bit 9 Phase frequency discriminator (PFD) enable

0 PFD is disabled

1 PFD is enabled

UPLLEN Bit 8 PLL enable

0 PLL is disabled

1 PLL is enabled

UCLKSEL Bits 7-6 USB module clock select. Must always be written with 00.

UCLKSEL value Selected Clock for USB Module

00 PLLCLK (default)

01 Reserved

10 Reserved

11 Reserved

Reserved Bits 5-0 Reserved. Reads back as 0.

572 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Registers

USBPLLDIVB, USB-PLL Clock Divider Buffer Register

15 14 13 12 11 10 9 8

Reserved UPQB

r0 r0 r0 r0 r0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

Reserved UPMB

r0 r0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Can be modified only when USBKEYPID is unlocked

Reserved Bits 15-11 Reserved. Reads back as 0.

UPQB Bits 10-8 PLL pre-scale divider buffer register. These bits select the pre-scale division value. The value of this
register is transferred to UPQB as soon it is written.

UPQB value Pre-Scaling Ratio

000 fUPD = fREF

001 fUPD = fREF / 2

010 fUPD = fREF / 3

011 fUPD = fREF / 4

100 fUPD = fREF / 6

101 fUPD = fREF / 8

110 fUPD = fREF / 12

111 fUPD = fREF / 16

Reserved Bits 7-6 Reserved. Reads back as 0.

UPMB Bits 5-0 USB PLL feedback divider buffer register. These bits select the value of the feedback divider. The value
of this register is transferred to UPMB automatically when UPQB is written.

UPMB value Multiplying Factor

000000 Feedback division rate: 1

000001 Feedback division rate: 2

⋮ ⋮
111111 Feedback division rate: 64

573SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Registers www.ti.com

USBPLLIR, USB-PLL Interrupt Register

15 14 13 12 11 10 9 8

Reserved USBOORIE USBLOSIE USBOOLIE

r0 r0 r0 r0 r0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

Reserved USBOORIFG USBLOSIFG USBOOLIFG

r0 r0 r0 r0 r0 rw-0 rw-0 rw-0

Can be modified only when USBKEYPID is unlocked

Reserved Bits 15-11 Reserved. Reads back as 0.

USBOORIE Bit 10 PLL out-of-range interrupt enable

0 Interrupt disabled

1 Interrupt enabled

USBLOSIE Bit 9 PLL loss-of-signal interrupt enable

0 Interrupt disabled

1 Interrupt enabled

USBOOLIE Bit 8 PLL out-of-lock interrupt enable

0 Interrupt disabled

1 Interrupt enabled

Reserved Bits 7-3 Reserved. Reads back as 0.

USBOORIFG Bit 2 PLL out-of-range interrupt flag

0 No interrupt pending

1 Interrupt pending

USBLOSIFG Bit 1 PLL loss-of-signal interrupt flag

0 No interrupt pending

1 Interrupt pending

USBOOLIFG Bit 0 PLL out-of-lock interrupt flag

0 No interrupt pending

1 Interrupt pending

574 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Registers

22.4.2 USB Control Registers

The control registers affect core USB operations that are fundamental for any USB connection. This
includes control endpoint 0, interrupts, bus address and frame, and timestamps. Control of endpoints other
than zero are found in the operation registers. Unlike the operation registers, the control registers are
actual physical registers, whereas the operation registers exist in RAM, which can be re-allocated to
general-purpose use.

The control registers are listed in Table 22-6. All addresses are expressed as offsets; the base address
can be found in the device-specific datasheet.

All registers are byte and word accessible.

Table 22-6. USB Control Registers

AddressRegister Short Form Register Type Initial StateOffset

Input endpoint_0: Configuration USBIEPCNF_0 Read/Write 00h 00h

Input endpoint_0: Byte Count USBIEPCNT_0 Read/Write 01h 80h

USBOEPCNF_Endpoint 0 configuration Output endpoint_0: Configuration Read/Write 02h 00h0

USBOEPCNT_Output endpoint_0: Byte count Read/Write 03h 00h0

Input endpoint interrupt enables USBIEPIE Read/Write 0Eh 00h

Output endpoint interrupt enables USBOEPIE Read/Write 0Fh 00h

Interrupts Input endpoint interrupt flags USBIEPIFG Read/Write 10h 00h

Output endpoint interrupt flags USBOEPIFG Read/Write 11h 00h

Vector interrupt register USBVECINT Read/Write 12h 0000h

Timestamp maintenance register USBMAINT Read/Write 16h 0000h
Timestamps

Timestamp register USBTSREG Read/Write 18h 0000h

USB frame number USBFN Read only 1Ah 0000h

USB control register USBCTL Read/Write 1Ch 00h

Basic USB control USB interrupt enable register USBIE Read/Write 1Dh 00h

USB interrupt flag register USBIFG Read/Write 1Eh 00h

Function address register USBFUNADR Read/Write 1Fh 00h

USBIEPCNF_0 USB Input Endpoint-0 Configuration Register

7 6 5 4 3 2 1 0

UBME Reserved TOGGLE Reserved STALL USBIIE Reserved

rw-0 r0 r-0 r0 rw-0 rw-0 r0 r0

Can be modified only when USBEN = 1

UBME Bit 7 UBM in endpoint-0 enable

0 UBM cannot use this endpoint

1 UBM can use this endpoint

Reserved Bit 6 Reserved. Reads back as 0.

TOGGLE Bit 5 Toggle bit. Reads back 0, since the configuration endpoint does not need to toggle.

Reserved Bit 4 Reserved

STALL Bit 3 USB stall condition. When set, hardware automatically returns a stall handshake to the USB host for any
transaction transmitted from endpoint-0. The stall bit is cleared automatically by the next setup
transaction.

0 Indicates no stall

1 Indicates stall

USBIIE Bit 2 USB transaction interrupt indication enable. Software may set this bit to define if interrupts are to be
flagged in general. To generate an interrupt the corresponding interrupt flag must be set (IEPIE).

0 Corresponding interrupt flag is not set

1 Corresponding interrupt flag is set

Reserved Bits 1-0 Reserved. Reads back as 0.

575SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Registers www.ti.com

USBIEPBCNT_0 USB Input Endpoint-0 Byte Count Register

7 6 5 4 3 2 1 0

NAK Reserved CNT

rw-0 r0 r0 r0 rw-0 rw-0 rw-0 rw-0

Can be modified only when USBEN = 1

NAK Bit 7 No acknowledge status bit. This bit is set by the UBM at the end of a successful USB IN transaction
from endpoint-0, to indicate that the EP-0 IN buffer is empty. When this bit is set, all subsequent
transactions from endpoint-0 result in a NAK handshake response to the USB host. To re-enable this
endpoint to transmit another data packet to the host, this bit must be cleared by software.

0 Buffer contains a valid data packet for host device

1 Buffer is empty (Host-In request receives a NAK)

Reserved Bits 6-4 Reserved. Reads back as 0.

CNT Bits 3-0 Byte count. The In_EP-0 buffer data count value should be set by software when a new data packet is
written to the buffer. This four-bit value contains the number of bytes in the data packet.

0000b to 1000b are valid numbers for 0 to 8 bytes to be sent

1001b to 1111b are reserved values (if used, defaults to 8)

USBOEPCNFG_0 USB Output Endpoint-0 Configuration Register

7 6 5 4 3 2 1 0

UBME Reserved TOGGLE Reserved STALL USBIIE Reserved

rw-0 r0 r-0 r0 rw-0 rw-0 r0 r0

Can be modified only when USBEN = 1

UBME Bit 7 UBM out Endpoint-0 enable

0 UBM cannot use this endpoint

1 UBM can use this endpoint

Reserved Bit 6 Reserved. Reads back as 0.

TOGGLE Bit 5 Toggle bit. Reads back 0, since the configuration endpoint does not need to toggle.

Reserved Bit 4 Reserved. Reads back as 0.

STALL Bit 3 USB stall condition. When set, hardware automatically returns a stall handshake to the USB host for any
transaction transmitted into endpoint-0. The stall bit is cleared automatically by the next setup
transaction.

0 Indicates no stall

1 Indicates stall

USBIIE Bit 2 USB transaction interrupt indication enable. Software may set this bit to define if interrupts are to be
flagged in general. To generate an interrupt the corresponding interrupt flag must be set (OEPIE).

0 Corresponding interrupt flag will not be set

1 Corresponding interrupt flag will be set

Reserved Bits 1-0 Reserved. Reads back as 0.

576 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Registers

USBOEPBCNT_0 USB Output Endpoint-0 Byte Count Register

7 6 5 4 3 2 1 0

NAK Reserved CNT

rw-0 r0 r0 r0 rw-0 rw-0 rw-0 rw-0

Can be modified only when USBEN = 1

NAK Bit 7 No acknowledge status bit. This bit is set by the UBM at the end of a successful USB out transaction
into endpoint-0, in order to indicate that the EP-0 buffer contains a valid data packet and that the buffer
data count value is valid. When this bit is set, all subsequent transactions to endpoint-0 will result in a
NAK handshake response to the USB host. To re-enable this endpoint to receive another data packet
from the host, this bit must be cleared by software.

0 No valid data in the buffer. The buffer is ready to receive a host OUT transaction

1 The buffer contains a valid packet from the host that has not been picked up. (Any subsequent
Host-Out requests receive a NAK.)

Reserved Bits 6-4 Reserved. Reads back as 0.

CNT Bits 3-0 Byte count. This data count value is set by the UBM when a new data packet is received by the buffer
for the out endpoint-0. The four-bit value contains the number of bytes received in the data buffer.

0000b to 1000b are valid numbers for 0 to 8 received bytes

1001b to 1111b are reserved values

USBIEPIE, USB Input Endpoint Interrupt Enable Register

7 6 5 4 3 2 1 0

IEPIE7 IEPIE6 IEPIE5 IEPIE4 IEPIE3 IEPIE2 IEPIE1 IEPIE0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Can be modified only when USBEN = 1

IEPIEn Bits 7-0 Input endpoint interrupt enable. These bits enable/disable whether an event can trigger an interrupt; they
do not influence whether the event gets flagged. This is enabled/disabled with the interrupt indication
enable bit in the Endpoint descriptors.

0 Event does not generate an interrupt

1 Event does generate an interrupt

USBOEPIE, USB Output Endpoint Interrupt Enable Register

7 6 5 4 3 2 1 0

OEPIE7 OEPIE6 OEPIE5 OEPIE4 OEPIE3 OEPIE2 OEPIE1 OEPIE0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Can be modified only when USBEN = 1

IEPIEn Bits 7-0 Output endpoint interrupt enable. These bits enable/disable whether an event can trigger an interrupt;
they do not influence whether the event gets flagged. This is enabled/disabled with the interrupt
indication enable bit in the Endpoint descriptors.

0 Event does not generate an interrupt

1 Event does generate an interrupt

USBIEPIFG, USB Input Endpoint Interrupt Flag Register

7 6 5 4 3 2 1 0

IEPIFG7 IEPIFG6 IEPIFG5 IEPIFG4 IEPIFG3 IEPIFG2 IEPIFG1 IEPIFG0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Can be modified only when USBEN = 1

OEPIFGn Bits 7-0 Input Endpoint Interrupt Flag. These bits are set by the UBM when a successful completion of a
transaction occurs for this endpoint. When set, a USB interrupt will be generated. The interrupt flag will
be cleared when the MCU reads the value from the USBVECINT register corresponding with this
interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared
by writing zero to that bit location.

577SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Registers www.ti.com

USBOEPIFG, USB Output Endpoint Interrupt Flag Register

7 6 5 4 3 2 1 0

OEPIFG7 OEPIFG6 OEPIFG5 OEPIFG4 OEPIFG3 OEPIFG2 OEPIFG1 OEPIFG0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Can be modified only when USBEN = 1

OEPIFGn Bits 7-0 Output Endpoint Interrupt Flag. The output endpoint interrupt flag bits for a particular USB output
endpoint are set to a "1" by the UBM when a successful completion of a transaction occurs to that out
endpoint. When a bit is set, a USB interrupt will be generated. The interrupt flag will be cleared when the
MCU reads the value from the USBVECINT register corresponding with this interrupt, or when it writes
any value to the interrupt vector register. An interrupt flag can also be cleared by writing a zero to that
bit location.

USBVECINT, USB Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 USBIV 0

r0 r0 r-0 r-0 r-0 r-0 r-0 r0

USBIV Bits 15-0 USB interrupt vector value. This register is to be accessed as a whole word only. When an interrupt is
pending, reading this register results in a value that can be added to the program counter to handle the
corresponding event. Writing to this register will clear all pending USB interrupt flags independent of the
status of USBEN.

USBIV Interrupt InterruptInterrupt SourceContents Flag Priority

00h No interrupt pending — —

02h See Section 22.2.5 Highest

3Eh Lowest

578 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Registers

USBMAINT, Timestamp Maintenance Register

15 14 13 12 11 10 9 8

UTSEL Reserved TSE3 TSESEL TSGEN

rw-0 rw-0 rw-0 r0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

Reserved UTIE UTIFG

r0 r0 r0 r0 r0 r0 rw-0 rw-0

Can be modified only when USBEN = 1

UTSEL Bits 15-13 USB timer selection

UTSEL USB Timer Period Approximate Frequency

000 4096 μs ~250 Hz (244 Hz)

001 2048 μs ~ 500 Hz (488 Hz)

010 1024 μs ~ 1 kHz (977 Hz)

011 512 μs ~ 2 kHz (1953 Hz)

100 256 μs ~ 4 kHz (3906 Hz)

101 128 μs ~ 8 kHz (7812 Hz)

110 64 μs ~ 16 kHz (15625 Hz)

111 32 μs ~ 31 kHz (31250 Hz)

Reserved Bit 12 Reserved. Read back as 0

TSE3 Bit 11 Timestamp Event #3 bit. This bit allows the triggering of a software-driven timestamp event (when
TSESEL=11).

0 no TSE3 event signaled

1 TSE3 event signaled

TSESEL Bits 10-9 Timestamp Event Selection. TSE[2:0] are connected to the event multiplexer of the three DMA channels
of the DMA controller if not otherwise noted in datasheet

TSESEL Source of Timestamp Event

TSE0 (DMA0) signal is qualified timestamp00 event

TSE1 (DMA1) signal is qualified timestamp01 event

TSE2 (DMA2) signal is qualified timestamp10 event

11 Software-driven timestamp event

TSGEN Bit 8 Timestamp Generator Enable

0 Timestamp mechanism disabled

1 Timestamp mechanism enabled

Reserved Bits 7-2 Reserved. Read back as 0

UTIE Bit 1 USB timer interrupt enable bit

0 USB timer interrupt disabled

1 USB timer interrupt enabled

UTIFG Bit 0 USB timer interrupt flag

0 No interrupt pending

1 Interrupt pending

579SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Registers www.ti.com

USBTSREG, USB Timestamp Register

15 14 13 12 11 10 9 8

TVAL

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0

7 6 5 4 3 2 1 0

TVAL

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0

Can be modified only when USBEN = 1

TVAL Bits 15-0 Timestamp high register. The timestamp value is updated by hardware from the USB timer. A qualified
timestamp trigger signal causes the current timer value to be latched into this register.

USBFN, USB Frame Number Register

15 14 13 12 11 10 9 8

Reserved USBFN

r0 r0 r0 r0 r0 r-0 r-0 r-0

7 6 5 4 3 2 1 0

USBFN

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0

Reserved Bits 15-11 Reserved. Read back as 0

USBFN Bits 10-0 USB Frame Number register. The frame number bit values are updated by hardware; each USB frame
with the frame number field value received in the USB start-of-frame packet. The frame number can be
used as a timestamp. If the local (MSP430's) frame timer is not locked to the USB host's frame timer,
then the frame number is automatically incremented from the previous value when a pseudo
start-of-frame occurs.

USBCTL, USB Control Register

7 6 5 4 3 2 1 0

Reserved FEN RWUP FRSTE Reserved DIR

r0 rw-0 rw-0 rw-0 r0 r0 r0 rw-0

Can be modified only when USBEN = 1

Reserved Bit 7 Reserved. Read back as 0.

FEN Bit 6 Function Enable Bit. This bit needs to be set to enable the USB device to respond to USB transactions.
If this bit is not set, the UBM will ignore all USB transactions. It is cleared by a USB reset. (This bit is
primarily intended for debugging.)

0 Function is disabled

1 Function is enabled

RWUP Bit 5 Device Remote Wakeup request. The remote wake-up bit is set by software to request the
suspend/resume logic to generate resume signaling upstream on the USB. This bit is used to exit a USB
low-power suspend state when a remote wake-up event occurs. The bit is self-clearing.

0 Writing 0 has no effect

1 A Remote-Wakeup pulse will be generated

FRSTE Bit 4 Function Reset Connection Enable. This bit selects whether a bus reset on the USB causes an internal
reset of the USB module.

0 Bus reset does not cause a reset of the module

1 Bus reset does cause a reset of the module

Reserved Bits 3-1 Reserved. Read back as 0.

DIR Bit 0 Data response to setup packet interrupt status bit. Software must decode the request and set/clear this
bit to reflect the data transfer direction.

0 USB data-OUT transaction (from host to device)

1 USB data-IN transaction (from device to host)

580 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Registers

USBIE, USB Interrupt Enable Register

7 6 5 4 3 2 1 0

RSTRIE SUSRIE RESRIE Reserved SETUPIE Reserved STPOWIE

rw-0 rw-0 rw-0 r0 r0 rw-0 r0 rw-0

Can be modified only when USBEN = 1

RSTRIE Bit 7 USB reset interrupt enable. Causes an interrupt to be generated if the RSTRIFG bit is set.

0 Function Reset interrupt disabled

1 Function Reset interrupt enabled

SUSRIE Bit 6 Suspend interrupt enable. Causes an interrupt to be generated if the SUSRIFG bit is set.

0 Suspend interrupt disabled

1 Suspend interrupt enabled

RESRIE Bit 5 Resume interrupt enable. Causes an interrupt to be generated if the RESRIFG bit is set.

0 Resume interrupt disabled

1 Resume interrupt enabled

Reserved Bits 4-3 Reserved. Read back as 0.

SETUPIE Bit 2 Setup interrupt enable. Causes an interrupt to be generated if the SETUPIFG bit is set.

0 Setup interrupt disabled

1 Setup interrupt enabled

Reserved Bit 1 Reserved. Read back as 0.

STPOWIE Bit 0 Setup Overwrite interrupt enable. Causes an interrupt to be generated if the STPOWIFG bit is set.

0 Setup Overwrite interrupt disabled

1 Setup Overwrite interrupt enabled

USBIFG, USB Interrupt Flag Register

7 6 5 4 3 2 1 0

RSTRIFG SUSRIFG RESRIFG Reserved SETUPIFG Reserved STPOWIFG

rw-0 rw-0 rw-0 r0 r0 rw-0 r0 rw-0

Can be modified only when USBEN = 1

RSTRIFG Bit 7 USB reset request bit. This bit is set to one by hardware in response to the host initiating a USB port
reset. A USB reset causes a reset of the USB module logic, but this bit will not be affected.

SUSRIFG Bit 6 Suspend request bit. This bit is set by hardware in response to the host/hub causing a global or
selective suspend condition.

RESRIFG Bit 5 Resume request bit. This bit is set by hardware in response to the host/hub causing a resume event.

Reserved Bits 4-3 Reserved. Read back as 0.

SETUPIFG Bit 2 Setup transaction received bit. This bit is set by hardware when a SETUP transaction is received. As
long as this bit is set, transactions on IN and OUT on endpoint-0 receive a NAK, regardless of their
corresponding NAK bit value.

Reserved Bit 1 Reserved. Read back as 0.

STPOWIFG Bit 0 Setup overwrite bit. This bit is set by hardware when a setup packet is received while there is already a
packet in the setup buffer.

USBFUNADR, USB Function Address Register

7 6 5 4 3 2 1 0

Reserved FA6 FA5 FA4 FA3 FA2 FA1 FA0

r0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Can be modified only when USBEN = 1

Reserved Bit 7 Reserved. Read back as 0.

FA[6:0] Bits 6-0 Function address (USB address 0 to 127). These bits define the current device address assigned to this
USB device. Software must write a value from 0 to 127 when a Set-Address command is received from
the host.

581SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Registers www.ti.com

22.4.3 USB Buffer Registers and Memory

The data buffers for all endpoints, as well as the registers that define endpoints 1-7, are stored in the USB
RAM buffer memory. Doing so allows for efficient, flexible use of this memory. The memory area is known
as the USB buffer memory), and the registers that define its use are the buffer descriptor registers.

The buffer memory blocks are listed in Table 22-7. The registers are listed in Table 22-8. All addresses
are expressed as offsets; the base address can be found in the device-specific datasheet.

All memory is byte and word accessible.

Table 22-7. USB Buffer Memory

Memory Short Form Access Type Address Offset

Start of buffer space USBSTABUFF Read/Write 0000h

1904 bytes of configurable buffer space ⋮ Read/Write ⋮
End of buffer space USBTOPBUFF Read/Write 076Fh

Read/Write 0770h

Output endpoint_0 buffer USBOEP0BUF Read/Write ⋮
Read/Write 0777h

Read/Write 0778h

Input endpoint_0 buffer USBIEP0BUF Read/Write ⋮
Read/Write 077Fh

Read/Write 0780h

Setup Packet Block USBSUBLK Read/Write ⋮
Read/Write 0787h

Table 22-8. USB Buffer Descriptor Registers

Register Short Form Access Type Address Offset

Configuration Register USBOEPCNF_1 Read/Write 0788h

X-buffer base address Register USBOEPBBAX_1 Read/Write 0789h

X-byte count Register USBOEPBCTX_1 Read/Write 078Ah
Output Endpoint_1

Y-buffer base address Register USBOEPBBAY_1 Read/Write 078Dh

Y-byte count Register USBOEPBCTY_1 Read/Write 078Eh

X/Y-buffer size Register USBOEPSIZXY_1 Read/Write 078Fh

Configuration Register USBOEPCNF_2 Read/Write 0790h

X-buffer base address Register USBOEPBBAX_2 Read/Write 0791h

X-byte count Register USBOEPBCTX_2 Read/Write 0792h
Output Endpoint_2

Y-buffer base address Register USBOEPBBAY_2 Read/Write 0795h

Y-byte count Register USBOEPBCTY_2 Read/Write 0796h

X/Y-buffer size Register USBOEPSIZXY_2 Read/Write 0797h

Configuration Register USBOEPCNF_3 Read/Write 0798h

X-buffer base address Register USBOEPBBAX_3 Read/Write 0799h

X-byte count Register USBOEPBCTX_3 Read/Write 079Ah
Output Endpoint_3

Y-buffer base address Register USBOEPBBAY_3 Read/Write 079Dh

Y-byte count Register USBOEPBCTY_3 Read/Write 079Eh

X/Y-buffer size Register USBOEPSIZXY_3 Read/Write 079Fh

582 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Registers

Table 22-8. USB Buffer Descriptor Registers (continued)

Register Short Form Access Type Address Offset

Configuration Register USBOEPCNF_4 Read/Write 07A0h

X-buffer base address Register USBOEPBBAX_4 Read/Write 07A1h

X-byte count Register USBOEPBCTX_4 Read/Write 07A2h
Output Endpoint_4

Y-buffer base address Register USBOEPBBAY_4 Read/Write 07A5h

Y-byte count Register USBOEPBCTY_4 Read/Write 07A6h

X/Y-buffer size Register USBOEPSIZXY_4 Read/Write 07A7h

Configuration Register USBOEPCNF_5 Read/Write 07A8h

X-buffer base address Register USBOEPBBAX_5 Read/Write 07A9h

X-byte count Register USBOEPBCTX_5 Read/Write 07AAh
Output Endpoint_5

Y-buffer base address Register USBOEPBBAY_5 Read/Write 07ADh

Y-byte count Register USBOEPBCTY_5 Read/Write 07AEh

X/Y-buffer size Register USBOEPSIZXY_5 Read/Write 07AFh

Configuration Register USBOEPCNF_6 Read/Write 07B0h

X-buffer base address Register USBOEPBBAX_6 Read/Write 07B1h

X-byte count Register USBOEPBCTX_6 Read/Write 07B2h
Output Endpoint_6

Y-buffer base address Register USBOEPBBAY_6 Read/Write 07B5h

Y-byte count Register USBOEPBCTY_6 Read/Write 07B6h

X/Y-buffer size Register USBOEPSIZXY_6 Read/Write 07B7h

Configuration Register USBOEPCNF_7 Read/Write 07B8h

X-buffer base address Register USBOEPBBAX_7 Read/Write 07B9h

X-byte count Register USBOEPBCTX_7 Read/Write 07BAh
Output Endpoint_7

Y-buffer base address Register USBOEPBBAY_7 Read/Write 07BDh

Y-byte count Register USBOEPBCTY_7 Read/Write 07BEh

X/Y-buffer size Register USBOEPSIZXY_7 Read/Write 07BFh

Configuration Register USBIEPCNF_1 Read/Write 07C8h

X-buffer base address Register USBIEPBBAX_1 Read/Write 07C9h

X-byte count Register USBIEPBCTX_1 Read/Write 07CAh
Input Endpoint_1

Y-buffer base address Register USBIEPBBAY_1 Read/Write 07CDh

Y-byte count Register USBIEPBCTY_1 Read/Write 07CEh

X/Y-buffer size Register USBIEPSIZXY_1 Read/Write 07CFh

Configuration Register USBIEPCNF_2 Read/Write 07D0h

X-buffer base address Register USBIEPBBAX_2 Read/Write 07D1h

X-byte count Register USBIEPBCTX_2 Read/Write 07D2h
Input Endpoint_2

Y-buffer base address Register USBIEPBBAY_2 Read/Write 07D5h

Y-byte count Register USBIEPBCTY_2 Read/Write 07D6h

X/Y-buffer size Register USBIEPSIZXY_2 Read/Write 07D7h

Configuration Register USBIEPCNF_3 Read/Write 07D8h

X-buffer base address Register USBIEPBBAX_3 Read/Write 07D9h

X-byte count Register USBIEPBCTX_3 Read/Write 07DAh
Input Endpoint_3

Y-buffer base address Register USBIEPBBAY_3 Read/Write 07DDh

Y-byte count Register USBIEPBCTY_3 Read/Write 07DEh

X/Y-buffer size Register USBIEPSIZXY_3 Read/Write 07DFh

583SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Registers www.ti.com

Table 22-8. USB Buffer Descriptor Registers (continued)

Register Short Form Access Type Address Offset

Configuration Register USBIEPCNF_4 Read/Write 07E0h

X-buffer base address Register USBIEPBBAX_4 Read/Write 07E1h

X-byte count Register USBIEPBCTX_4 Read/Write 07E2h
Input Endpoint_4

Y-buffer base address Register USBIEPBBAY_4 Read/Write 07E5h

Y-byte count Register USBIEPBCTY_4 Read/Write 07E6h

X/Y-buffer size Register USBIEPSIZXY_4 Read/Write 07E7h

Configuration Register USBIEPCNF_5 Read/Write 07E8h

X-buffer base address Register USBIEPBBAX_5 Read/Write 07E9h

X-byte count Register USBIEPBCTX_5 Read/Write 07EAh
Input Endpoint_5

Y-buffer base address Register USBIEPBBAY_5 Read/Write 07EDh

Y-byte count Register USBIEPBCTY_5 Read/Write 07EEh

X/Y-buffer size Register USBIEPSIZXY_5 Read/Write 07EFh

Configuration Register USBIEPCNF_6 Read/Write 07F0h

X-buffer base address Register USBIEPBBAX_6 Read/Write 07F1h

X-byte count Register USBIEPBCTX_6 Read/Write 07F2h
Input Endpoint_6

Y-buffer base address Register USBIEPBBAY_6 Read/Write 07F5h

Y-byte count Register USBIEPBCTY_6 Read/Write 07F6h

X/Y-buffer size Register USBIEPSIZXY_6 Read/Write 07F7h

Configuration Register USBIEPCNF_7 Read/Write 07F8h

X-buffer base address Register USBIEPBBAX_7 Read/Write 07F9h

X-byte count Register USBIEPBCTX_7 Read/Write 07FAh
Input Endpoint_7

Y-buffer base address Register USBIEPBBAY_7 Read/Write 07FDh

Y-byte count Register USBIEPBCTY_7 Read/Write 07FEh

X/Y-buffer size Register USBIEPSIZXY_7 Read/Write 07FFh

584 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Registers

USBOEPCNF_n, Output Endpoint-n Configuration Register

7 6 5 4 3 2 1 0

UBME Reserved TOGGLE DBUF STALL USBIIE Reserved

rw r0 rw rw rw rw r0 r0

Can be modified only when USBEN = 1

UBME Bit 7 UBM out endpoint-n enable. This bit is to be set/cleared by software.

0 UBM cannot use this endpoint

1 UBM can use this endpoint

Reserved Bit 6 Reserved. Read back as 0.

TOGGLE Bit 5 Toggle bit. The toggle bit is controlled by the UBM and is toggled at the end of a successful out data
stage transaction, if a valid data packet is received and the data packet's packet ID matches the
expected packet ID.

DBUF Bit 4 Double buffer enable. This bit can be set to enable the use of both the X and Y data packet buffers for
USB transactions, for a particular out endpoint. Clearing it results in the use of single buffer mode. In
this mode, only the X buffer is used.

0 Primary buffer only (X-buffer only)

1 Toggle bit selects buffer

STALL Bit 3 USB stall condition. This bit can be set to cause endpoint transactions to be stalled. When set, the
hardware will automatically return a stall handshake to the host for any transaction received on
endpoint-0. The stall bit is cleared automatically by the next setup transaction.

0 Indicates no stall

1 Indicates stall

USBIIE Bit 2 USB transaction interrupt indication enable. Can be set/cleared to define if interrupts are to be flagged in
general. To generate an interrupt, the corresponding interrupt flag must be set (OEPIE).

0 Corresponding interrupt flag will not be set

1 Corresponding interrupt flag will be set

Reserved Bits 1-0 Reserved. Read back as 0.

USBOEPBBAX_n, Output Endpoint-n X-buffer Base Address Register

7 6 5 4 3 2 1 0

ADR

rw rw rw rw rw rw rw rw

Can be modified only when USBEN = 1

ADR Bits 7-0 X-buffer base address. These are the upper seven bits of the X-buffer's base address. The three LSBs
are assumed to be zero, for a total of 11 bits. This value needs to be set by software. The UBM uses
this value as the start address of a given transaction. It does not change this value at the end of a
transaction.

USBOEPBCTX_n, Output Endpoint-n X-byte Count Register

7 6 5 4 3 2 1 0

NAK CNT

rw rw rw rw rw rw rw rw

Can be modified only when USBEN = 1

NAK Bit 7 No-acknowledge status bit. The NAK status bit is set by the UBM at the end of a successful USB out
transaction to that endpoint, in order to indicate that the USB endpoint-"n" buffer contains a valid data
packet, and that the buffer data count value is valid. When this bit is set, all subsequent transactions to
that endpoint will result in a NAK handshake response to the USB host. To re-enable this endpoint to
receive another data packet from the host, this bit must be cleared.

0 No valid data in buffer. The buffer is ready to receive OUT packets from the host.

1 The buffer contains a valid packet from the host, and it has not been picked up (subsequent
host-out requests receive a NAK)

CNT Bits 6-0 X-buffer data count. The Out_EP-n data count value is set by the UBM when a new data packet is
written to the X-buffer for that out endpoint. It is set to the number of bytes received in the data buffer.

585SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Registers www.ti.com

USBOEPBBAY_n, Output Endpoint-n Y-buffer Base Address Register

7 6 5 4 3 2 1 0

ADR

rw rw rw rw rw rw rw rw

Can be modified only when USBEN = 1

ADR Bits 7-0 Y-buffer base address. These are the upper seven bits of the Y-buffer's base address. The three LSBs
are assumed to be zero, for a total of 11 bits. This value needs to be set by software. The UBM uses
this value as the start address of a given transaction. It does not change this value at the end of a
transaction.

USBOEPBCTY_n, Output Endpoint-n X-byte Count Register

7 6 5 4 3 2 1 0

NAK CNT

rw rw rw rw rw rw rw rw

Can be modified only when USBEN = 1

NAK Bit 7 No-acknowledge status bit. The NAK status bit is set by the UBM at the end of a successful USB out
transaction to that endpoint, in order to indicate that the USB endpoint-"n" buffer contains a valid data
packet, and that the buffer data count value is valid. When this bit is set, all subsequent transactions to
that endpoint will result in a NAK handshake response to the USB host. To re-enable this endpoint to
receive another data packet from the host, this bit must be cleared.

0 No valid data in buffer. The buffer is ready to receive OUT packets from the host.

1 The buffer contains a valid packet from the host, and it has not been picked up (subsequent
host-out requests receive a NAK)

CNT Bits 6-0 Y-buffer data count. The Out_EP-n data count value is set by the UBM when a new data packet is
written to the X-buffer for that out endpoint. It is set to the number of bytes received in the data buffer.

USBOEPSIZXY_n, Output Endpoint-n X/Y-buffer Size Register

7 6 5 4 3 2 1 0

Reserved SIZx

r0 rw rw rw rw rw rw rw

Can be modified only when USBEN = 1

Reserved Bit 7 Reserved. Read back as 0.

SIZx Bits 6-0 Buffer size count. This value needs to be set by software to configure the size of the X and Y data
packet buffers. Both buffers are set to the same size, based on this value.

000:0000b to 100:0000b are valid numbers for 0 to 64 bytes.

Any value ≥ 100:0001b results in unpredictable results.

586 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com Registers

USBIEPCNF_n, Input Endpoint-n Configuration Register

7 6 5 4 3 2 1 0

UBME Reserved TOGGLE DBUF STALL USBIIE Reserved

rw r0 rw rw rw rw r0 r0

Can be modified only when USBEN = 1

UBME Bit 7 UBM in endpoint-n enable. This value needs to be set/cleared by software.

0 UBM cannot use this endpoint

1 UBM can use this endpoint

Reserved Bit 6 Reserved. Read back as 0.

TOGGLE Bit 5 Toggle bit. The toggle bit is controlled by the UBM and is toggled at the end of a successful in data
stage transaction, if a valid data packet is transmitted. If this bit is cleared, a DATA0 packet ID is
transmitted in the data packet to the host. If this bit is set, a DATA1 packet ID is transmitted in the data
packet.

DBUF Bit 4 Double buffer enable. This bit can be set to enable the use of both the X and Y data packet buffers for
USB transactions, for a particular out endpoint. Clearing it results in the use of single buffer mode. In
this mode, only the X buffer is used.

0 Primary buffer only (X-buffer only)

1 Toggle bit selects buffer

STALL Bit 3 USB stall condition. This bit can be set to cause endpoint transactions to be stalled. When set, the
hardware will automatically return a stall handshake to the host for any transaction received on
endpoint-0. The stall bit is cleared automatically by the next setup transaction.

0 Indicates no stall

1 Indicates stall

USBIIE Bit 2 USB transaction interrupt indication enable. Can be set/cleared to define if interrupts are to be flagged in
general. To generate an interrupt the corresponding interrupt flag must be set (OEPIE).

0 Corresponding interrupt flag will not be set

1 Corresponding interrupt flag will be set

Reserved Bits 1-0 Reserved. Read back as 0.

USBIEPBBAX_n, Input Endpoint-n X-buffer Base Address Register

7 6 5 4 3 2 1 0

ADR

rw rw rw rw rw rw rw rw

Can be modified only when USBEN = 1

ADR Bits 7-0 X-buffer base address. These are the upper seven bits of the X-buffer's base address. The three LSBs
are assumed to be zero, for a total of 11 bits. This value needs to be set by software. The UBM uses
this value as the start address of a given transaction. It does not change this value at the end of a
transaction.

USBIEPBCTX_n, Input Endpoint-n X-byte Count Register

7 6 5 4 3 2 1 0

NAK CNT

rw rw rw rw rw rw rw rw

Can be modified only when USBEN = 1

NAK Bit 7 No-acknowledge status bit. The NAK status bit is set by the UBM at the end of a successful USB in
transaction from that endpoint, in order to indicate that the EP-n in buffer is empty. For interrupt or bulk
endpoints, when this bit is set, all subsequent transactions from that endpoint result in a NAK
handshake response to the USB host. To re-enable this endpoint to transmit another data packet to the
host, this bit must be cleared.

0 Buffer contains a valid data packet for the host

1 Buffer is empty (any host-In requests receive a NAK)

CNT Bits 6-0 X-buffer data count. The In_EP-n X-buffer data count value must be set by software when a new data
packet is written to the buffer. It should be the number of bytes in the data packet for interrupt, or bulk
endpoint transfers.

000:0000b to 100:0000b are valid numbers for 0 to 64 bytes.

Any value ≥ 100:0001b results in unpredictable results.

587SLAU208E–June 2008–Revised November 2009 USB Module
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Registers www.ti.com

USBIEPBBAY_n, Input Endpoint-n Y-buffer Base Address Register

7 6 5 4 3 2 1 0

ADR

rw rw rw rw rw rw rw rw

Can be modified only when USBEN = 1

ADR Bits 7-0 Y-buffer base address. These are the upper seven bits of the Y-buffer's base address. The three LSBs
are assumed to be zero, for a total of 11 bits. This value needs to be set by software. The UBM uses
this value as the start address of a given transaction. It does not change this value at the end of a
transaction.

USBIEPBCTY_n, Input Endpoint-n Y-byte Count Register

7 6 5 4 3 2 1 0

NAK CNT

rw rw rw rw rw rw rw rw

Can be modified only when USBEN = 1

NAK Bit 7 No-acknowledge status bit. The NAK status bit is set by the UBM at the end of a successful USB in
transaction from that endpoint, in order to indicate that the EP-n in buffer is empty. For interrupt or bulk
endpoints, when this bit is set, all subsequent transactions from that endpoint result in a NAK
handshake response to the host. To re-enable this endpoint to transmit another data packet to the host,
this bit must be cleared. This bit is set by USB SW-init.

0 Buffer contains a valid data packet for host device

1 Buffer is empty (any host-in requests receive a NAK)

CNT Bits 6-0 Y-Buffer data count. The In EP-n Y-buffer data count value needs to be set by software when a new
data packet is written to the buffer. It should be the number of bytes in the data packet for interrupt, or
bulk endpoint transfers.

000:0000b to 100:0000b are valid numbers for 0 to 64 bytes.

Any value ≥ 100:0001b results in unpredictable results.

USBIEPSIZXY_n, Input Endpoint-n X/Y-buffer Size Register

7 6 5 4 3 2 1 0

Reserved SIZ

r0 rw rw rw rw rw rw rw

Can be modified only when USBEN = 1

Reserved Bit 7 Reserved. Read back as 0.

SIZ Bits 6-0 Buffer size count. This value needs to be set by software to configure the size of the X and Y data
packet buffers. Both buffers are set to the same size, based on this value.

000:0000b to 100:0000b are valid numbers for 0 to 64 bytes.

Any value ≥ 100:0001b results in unpredictable results.

588 USB Module SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Chapter 23
SLAU208E–June 2008–Revised November 2009

Embedded Emulation Module (EEM)

This chapter describes the embedded emulation module (EEM) that is implemented in all flash devices.

Topic ... Page

23.1 Embedded Emulation Module (EEM) Introduction .. 590
23.2 EEM Building Blocks .. 592
23.3 EEM Configurations ... 593

589SLAU208E–June 2008–Revised November 2009 Embedded Emulation Module (EEM)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

Embedded Emulation Module (EEM) Introduction www.ti.com

23.1 Embedded Emulation Module (EEM) Introduction

Every MSP430 flash-based microcontroller implements an EEM. It is accessed and controlled through
either 4-wire JTAG mode or Spy-Bi-Wire mode. Each implementation is device dependent and is
described in Section 23.3, the EEM Configurations section, and the device-specific data sheet.

In general, the following features are available:

• Nonintrusive code execution with real-time breakpoint control
• Single-step, step-into, and step-over functionality
• Full support of all low-power modes
• Support for all system frequencies, for all clock sources
• Up to eight (device-dependent) hardware triggers/breakpoints on memory address bus (MAB) or

memory data bus (MDB)
• Up to two (device-dependent) hardware triggers/breakpoints on CPU register write accesses
• MAB, MDB, and CPU register access triggers can be combined to form up to ten (device dependent)

complex triggers/breakpoints
• Up to two (device dependent) cycle counters
• Trigger sequencing (device dependent)
• Storage of internal bus and control signals using an integrated trace buffer (device dependent)
• Clock control for timers, communication peripherals, and other modules on a global device level or on

a per-module basis during an emulation stop

Figure 23-1 shows a simplified block diagram of the largest currently-available 5xx EEM implementation.

For more details on how the features of the EEM can be used together with the IAR Embedded
Workbench ™ debugger, see the application report Advanced Debugging Using the Enhanced Emulation
Module (SLAA263) at www.msp430.com. For usage with Code Composer Essentials (CCE), see the
application report Advanced Debugging Using the Enhanced Emulation Module (SLAA393) at
www.msp430.com. Most other debuggers supporting the MSP430 have the same or a similar feature set.
For details, see the user's guide of the applicable debugger.

590 Embedded Emulation Module (EEM) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SLAA263
http://www.msp430.com
http://www.ti.com/lit/pdf/SLAA393
http://www.msp430.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

CPU Stop

Trigger
Blocks

MB0

MB1

MB2

MB3

MB4

MB5

MB6

MB7

CPU0

CPU1

&

0

Trigger Sequencer

"AND" Matrix- Combination Triggers

&

1

&

2

&

3

&

4

&

5

&

6

&

7

&

8

&

9

Start/Stop Cycle Counter

Start/Stop State Storage

OR

OR

OR

www.ti.com Embedded Emulation Module (EEM) Introduction

Figure 23-1. Large Implementation of EEM

591SLAU208E–June 2008–Revised November 2009 Embedded Emulation Module (EEM)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

EEM Building Blocks www.ti.com

23.2 EEM Building Blocks

23.2.1 Triggers

The event control in the EEM of the MSP430 system consists of triggers, which are internal signals
indicating that a certain event has happened. These triggers may be used as simple breakpoints, but it is
also possible to combine two or more triggers to allow detection of complex events and cause various
reactions other than stopping the CPU.

In general, the triggers can be used to control the following functional blocks of the EEM:

• Breakpoints (CPU stop)
• State storage
• Sequencer
• Cycle counter

There are two different types of triggers – the memory trigger and the CPU register write trigger.

Each memory trigger block can be independently selected to compare either the MAB or the MDB with a
given value. Depending on the implemented EEM, the comparison can be =, ≠, ≥, or ≤. The comparison
can also be limited to certain bits with the use of a mask. The mask is either bit-wise or byte-wise,
depending upon the device. In addition to selecting the bus and the comparison, the condition under which
the trigger is active can be selected. The conditions include read access, write access, DMA access, and
instruction fetch.

Each CPU register write trigger block can be independently selected to compare what is written into a
selected register with a given value. The observed register can be selected for each trigger independently.
The comparison can be =, ≠, ≥, or ≤. The comparison can also be limited to certain bits with the use of a
bit mask.

Both types of triggers can be combined to form more complex triggers. For example, a complex trigger
can signal when a particular value is written into a user-specified address.

23.2.2 Trigger Sequencer

The trigger sequencer allows the definition of a certain sequence of trigger signals before an event is
accepted for a break or state storage event. Within the trigger sequencer, it is possible to use the following
features:

• Four states (State 0 to State 3)
• Two transitions per state to any other state
• Reset trigger that resets the sequencer to State 0.

The trigger sequencer always starts at State 0 and must execute to State 3 to generate an action. If
State 1 or State 2 are not required, they can be bypassed.

23.2.3 State Storage (Internal Trace Buffer)

The state storage function uses a built-in buffer to store MAB, MDB, and CPU control signal information
(i.e., read, write, or instruction fetch) in a nonintrusive manner. The built-in buffer can hold up to eight
entries. The flexible configuration allows the user to record the information of interest very efficiently.

23.2.4 Cycle Counter

The cycle counter provides one or two 40-bit counters to measure the cycles used by the CPU to execute
certain tasks. On some devices, the cycle counter operation can be controlled using triggers. This allows,
for example, conditional profiling, such as profiling a specific section of code.

592 Embedded Emulation Module (EEM) SLAU208E–June 2008–Revised November 2009
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

www.ti.com EEM Configurations

23.2.5 Clock Control

The EEM provides device-dependent flexible clock control. This is useful in applications where a running
clock is needed for peripherals after the CPU is stopped (e.g., to allow a UART module to complete its
transfer of a character or to allow a timer to continue generating a PWM signal).

The clock control is flexible and supports both modules that need a running clock and modules that must
be stopped when the CPU is stopped due to a breakpoint.

23.3 EEM Configurations

Table 23-1 gives an overview of the EEM configurations in the MSP430 5xx family. The implemented
configuration is device dependent, and device-specific details can be found in the application report
Advanced Debugging Using the Enhanced Emulation Module (EEM) With CCE Version 3 (SLAA393),
MSP-FET430 Flash Emulation Tool (FET) (for Use With IAR v3+) User's Guide (SLAU138), and
MSP-FET430 Flash Emulation Tool (FET) (for Use With CCE v3.1) User's Guide (SLAU157).

Table 23-1. 5xx EEM Configurations

Feature XS S M L

Memory bus triggers 2 3 5 8
(=, ≠ only)

Memory bus trigger mask for 1) Low byte 1) Low byte 1) Low byte All 16 or 20 bits
2) High byte 2) High byte 2) High byte
3) Four upper addr bits 3) Four upper addr bits 3) Four upper addr bits

CPU register write triggers 0 1 1 2

Combination triggers 2 4 6 10

Sequencer No No Yes Yes

State storage No No No Yes

Cycle counter 1 1 1 2
(including

triggered start/stop)

In general, the following features can be found on any device:

• At least two MAB/MDB triggers supporting:

– Distinction between CPU, DMA, read, and write accesses
– =, ≠, ≥, or ≤ comparison (in XS, only =, ≠)

• At least two trigger combination registers
• Hardware breakpoints using the CPU stop reaction
• At least one 40-bit cycle counter
• Enhanced clock control with individual control of module clocks

593SLAU208E–June 2008–Revised November 2009 Embedded Emulation Module (EEM)
Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SLAA393
http://www.ti.com/lit/pdf/SLAU138
http://www.ti.com/lit/pdf/SLAU157
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU208E

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/broadband
http://dsp.ti.com
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/military
http://logic.ti.com
http://www.ti.com/opticalnetwork
http://power.ti.com
http://www.ti.com/security
http://microcontroller.ti.com
http://www.ti.com/telephony
http://www.ti-rfid.com
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

	Table of Contents
	Preface
	1 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)
	1.1 System Control Module (SYS) Introduction
	1.2 System Reset and Initialization
	1.2.1 Device Initial Conditions After System Reset

	1.3 Interrupts
	1.3.1 (Non)Maskable Interrupts (NMIs)
	1.3.2 SNMI Timing
	1.3.3 Maskable Interrupts
	1.3.4 Interrupt Processing
	1.3.4.1 Interrupt Acceptance
	1.3.4.2 Return From Interrupt

	1.3.5 Interrupt Nesting
	1.3.6 Interrupt Vectors
	1.3.6.1 Alternate Interrupt Vectors

	1.3.7 SYS Interrupt Vector Generators
	1.3.7.1 SYSSNIV Software Example
	1.3.7.2 SYSBERRIV Bus Error Interrupt Vector Generator

	1.4 Operating Modes
	1.4.1 Entering and Exiting Low-Power Modes LPM0 Through LPM4
	1.4.2 Entering and Exiting Low-Power Modes LPMx.5
	1.4.3 Extended Time in Low-Power Modes

	1.5 Principles for Low-Power Applications
	1.6 Connection of Unused Pins
	1.7 Reset pin (RST /NMI) Configuration
	1.8 Configuring JTAG pins
	1.9 Boot Code
	1.10 Bootstrap Loader (BSL)
	1.11 Memory Map – Uses and Abilities
	1.11.1 Vacant Memory Space
	1.11.2 JTAG Lock Mechanism via the Electronic Fuse

	1.12 JTAG Mailbox (JMB) System
	1.12.1 JMB Configuration
	1.12.2 JMBOUT0 and JMBOUT1 Outgoing Mailbox
	1.12.3 JMBIN0 and JMBIN1 Incoming Mailbox
	1.12.4 JMB NMI Usage

	1.13 Device Descriptor Table
	1.13.1 Identifying Device Type
	1.13.2 TLV Descriptors
	1.13.3 Peripheral discovery descriptor
	1.13.4 Calibration Values
	1.13.4.1 REF Calibration
	1.13.4.2 ADC Offset and Gain Calibration
	1.13.4.3 Temperature Sensor Calibration

	1.14 Special Function Registers (SFRs)
	1.15 SYS Configuration Registers

	2 Power Management Module and Supply Voltage Supervisor
	2.1 Power Management Module (PMM) Introduction
	2.2 PMM Operation
	2.2.1 VCORE and the Regulator
	2.2.2 Supply Voltage Supervisor and Monitor
	2.2.2.1 SVS/SVM Thresholds
	Recommended SVSL Settings

	2.2.2.2 High Side Supervisor/Monitor (SVSH/SVMH)
	2.2.2.3 Low-Side Supervisor/Monitor (SVSL/SVML)

	2.2.3 Supply Voltage Supervisor and Monitor - Power-Up
	2.2.4 Increasing VCORE to Support Higher MCLK Frequencies
	2.2.5 Decreasing VCORE for Power Optimization
	2.2.6 LPM3.5, LPM4.5
	2.2.7 Brownout Reset (BOR), Software BOR, Software POR
	2.2.8 SVS/SVM Performance Modes (Normal or Full-Performance)
	2.2.9 PMM Interrupts
	2.2.10 Port I/O Control
	2.2.11 Supply Voltage Monitor Output (SVMOUT, Optional)

	2.3 PMM Registers

	3 Unified Clock System (UCS)
	3.1 Unified Clock System (UCS) Introduction
	3.2 UCS Operation
	3.2.1 UCS Module Features for Low-Power Applications
	3.2.2 Internal Very-Low-Power Low-Frequency Oscillator (VLO)
	3.2.3 Internal Trimmed Low-Frequency Reference Oscillator (REFO)
	3.2.4 XT1 Oscillator
	3.2.5 XT2 Oscillator
	3.2.6 Digitally-Controlled Oscillator (DCO)
	3.2.6.1 Adjusting DCO Frequency

	3.2.7 Frequency Locked Loop (FLL)
	3.2.8 DCO Modulator
	3.2.9 Disabling FLL Hardware and Modulator
	3.2.10 FLL Operation From Low-Power Modes
	3.2.11 Operation From Low-Power Modes, Requested by Peripheral Modules
	3.2.12 UCS Module Fail-Safe Operation
	3.2.13 Synchronization of Clock Signals

	3.3 Module Oscillator (MODOSC)
	3.3.1 MODOSC Operation

	3.4 UCS Module Registers

	4 CPUX
	4.1 MSP430X CPU (CPUX) Introduction
	4.2 Interrupts
	4.3 CPU Registers
	4.3.1 Program Counter (PC)
	4.3.2 Stack Pointer (SP)
	4.3.3 Status Register (SR)
	4.3.4 Constant Generator Registers (CG1 and CG2)
	4.3.4.1 Constant Generator – Expanded Instruction Set

	4.3.5 General-Purpose Registers (R4 –R15)

	4.4 Addressing Modes
	4.4.1 Register Mode
	4.4.2 Indexed Mode
	4.4.2.1 Indexed Mode in Lower 64-KB Memory
	4.4.2.2 MSP430 Instruction With Indexed Mode in Upper Memory
	4.4.2.3 MSP430X Instruction With Indexed Mode

	4.4.3 Symbolic Mode
	4.4.3.1 Symbolic Mode in Lower 64 KB
	4.4.3.2 MSP430 Instruction With Symbolic Mode in Upper Memory
	4.4.3.3 MSP430X Instruction With Symbolic Mode

	4.4.4 Absolute Mode
	4.4.4.1 Absolute Mode in Lower 64 KB
	4.4.4.2 MSP430X Instruction With Absolute Mode

	4.4.5 Indirect Register Mode
	4.4.6 Indirect Autoincrement Mode
	4.4.7 Immediate Mode
	4.4.7.1 MSP430 Instructions With Immediate Mode
	4.4.7.2 MSP430X Instructions With Immediate Mode

	4.5 MSP430 and MSP430X Instructions
	4.5.1 MSP430 Instructions
	4.5.1.1 MSP430 Double-Operand (Format I) Instructions
	4.5.1.2 MSP430 Single-Operand (Format II) Instructions
	4.5.1.3 Jump Instructions
	4.5.1.4 Emulated Instructions
	4.5.1.5 MSP430 Instruction Execution
	Instruction Cycles and Length for Interrupt, Reset, and Subroutines
	Format II (Single-Operand) Instruction Cycles and Lengths
	Jump Instructions Cycles and Lengths
	Format I (Double-Operand) Instruction Cycles and Lengths

	4.5.2 MSP430X Extended Instructions
	4.5.2.1 Register Mode Extension Word
	4.5.2.2 Non-Register Mode Extension Word
	4.5.2.3 Extended Double-Operand (Format I) Instructions
	4.5.2.4 Extended Single-Operand (Format II) Instructions
	Extended Format II Instruction Format Exceptions

	4.5.2.5 Extended Emulated Instructions
	4.5.2.6 MSP430X Address Instructions
	4.5.2.7 MSP430X Instruction Execution
	MSP430X Format II (Single-Operand) Instruction Cycles and Lengths
	MSP430X Format I (Double-Operand) Instruction Cycles and Lengths
	MSP430X Address Instruction Cycles and Lengths

	4.6 Instruction Set Description
	4.6.1 Extended Instruction Binary Descriptions
	4.6.2 MSP430 Instructions
	4.6.3 Extended Instructions
	4.6.4 Address Instructions

	5 Flash Memory Controller
	5.1 Flash Memory Introduction
	5.2 Flash Memory Segmentation
	5.2.1 Segment A

	5.3 Flash Memory Operation
	5.3.1 Erasing Flash Memory
	5.3.1.1 Erase Cycle
	5.3.1.2 Erasing Main Memory
	5.3.1.3 Erasing Information Memory or Flash Segments
	5.3.1.4 Initiating Erase From Flash
	5.3.1.5 Initiating Erase From RAM

	5.3.2 Writing Flash Memory
	5.3.2.1 Byte/Word Write
	5.3.2.2 Initiating Byte/Word Write From Flash
	5.3.2.3 Initiating Byte/Word Write From RAM
	5.3.2.4 Long-Word Write
	5.3.2.5 Initiating Long-Word Write From Flash
	5.3.2.6 Initiating Long-Word Write From RAM
	5.3.2.7 Block Write
	5.3.2.8 Block Write Flow and Example

	5.3.3 Flash Memory Access During Write or Erase
	5.3.4 Checking Flash memory
	5.3.5 Configuring and Accessing the Flash Memory Controller
	5.3.6 Flash Memory Controller Interrupts
	5.3.7 Programming Flash Memory Devices
	5.3.7.1 Programming Flash Memory Via JTAG
	5.3.7.2 Programming Flash Memory Via Bootstrap Loader (BSL)
	5.3.7.3 Programming Flash Memory Via Custom Solution

	5.4 Flash Memory Registers

	6 RAM Controller
	6.1 Ram Controller (RAMCTL) Introduction
	6.2 RAMCTL Operation
	6.3 RAMCTL Module Registers

	7 DMA Controller
	7.1 Direct Memory Access (DMA) Introduction
	7.2 DMA Operation
	7.2.1 DMA Addressing Modes
	7.2.2 DMA Transfer Modes
	7.2.2.1 Single Transfer
	7.2.2.2 Block Transfer
	7.2.2.3 Burst-Block Transfer

	7.2.3 Initiating DMA Transfers
	7.2.3.1 Edge-Sensitive Triggers
	7.2.3.2 Level-Sensitive Triggers

	7.2.4 Halting Executing Instructions for DMA Transfers
	7.2.5 Stopping DMA Transfers
	7.2.6 DMA Channel Priorities
	7.2.7 DMA Transfer Cycle Time
	7.2.8 Using DMA With System Interrupts
	7.2.9 DMA Controller Interrupts
	7.2.9.1 DMAIV Software Example

	7.2.10 Using the USCI_B I2C Module With the DMA Controller
	7.2.11 Using ADC12 With the DMA Controller
	7.2.12 Using DAC12 With the DMA Controller

	7.3 DMA Registers
	7.3.1 DMA Control 0 Register (DMACTL0)
	7.3.2 DMA Control 1 Register (DMACTL1)
	7.3.3 DMA Control 2 Register (DMACTL2)
	7.3.4 DMA Control 3 Register (DMACTL3)
	7.3.5 DMA Control 4 Register (DMACTL4)
	7.3.6 DMA Channel x Control Register (DMAxCTL)
	7.3.7 DMA Source Address Register (DMAxSA)
	7.3.8 DMA Destination Address Register (DMAxDA)
	7.3.9 DMA Size Address Register (DMAxSZ)
	7.3.10 DMA Interrupt Vector Register (DMAIV)

	8 Digital I/O
	8.1 Digital I/O Introduction
	8.2 Digital I/O Operation
	8.2.1 Input Registers PxIN
	8.2.2 Output Registers PxOUT
	8.2.3 Direction Registers PxDIR
	8.2.4 Pullup/Pulldown Resistor Enable Registers PxREN
	8.2.5 Output Drive Strength Registers PxDS
	8.2.6 Function Select Registers PxSEL
	8.2.7 P1 and P2 Interrupts, Port Interrupts
	8.2.7.1 P1IV, P2IV Software Example
	8.2.7.2 Interrupt Edge Select Registers P1IES, P2IES
	8.2.7.3 Interrupt Enable P1IE, P2IE

	8.2.8 Configuring Unused Port Pins

	8.3 I/O Configuration and LPMx.5 Low-Power Modes
	8.3.1 LPMx.5 Wakeup via I/O

	8.4 Digital I/O Registers

	9 Port Mapping Controller
	9.1 Port Mapping Controller Introduction
	9.2 Port Mapping Controller Operation
	9.2.1 Access
	9.2.2 Mapping
	9.2.3 Software Example

	9.3 Port Mapping Controller Registers

	10 CRC Module
	10.1 Cyclic Redundancy Check (CRC) Module Introduction
	10.2 CRC Checksum Generation
	10.2.1 CRC Implementation
	10.2.2 Assembler Examples
	10.2.2.1 General Assembler Example
	10.2.2.2 Reference Data Sequence

	10.3 CRC Module Registers

	11 Watchdog Timer (WDT_A)
	11.1 WDT_A Introduction
	11.2 WDT_A Operation
	11.2.1 Watchdog Timer Counter (WDTCNT)
	11.2.2 Watchdog Mode
	11.2.3 Interval Timer Mode
	11.2.4 Watchdog Timer Interrupts
	11.2.5 Clock Fail-Safe Feature
	11.2.6 Operation in Low-Power Modes
	11.2.7 Software Examples

	11.3 WDT_A Registers

	12 Timer_A
	12.1 Timer_A Introduction
	12.2 Timer_A Operation
	12.2.1 16-Bit Timer Counter
	12.2.1.1 Clock Source Select and Divider

	12.2.2 Starting the Timer
	12.2.3 Timer Mode Control
	12.2.3.1 Up Mode
	Changing Period Register TAxCCR0

	12.2.3.2 Continuous Mode
	12.2.3.3 Use of Continuous Mode
	12.2.3.4 Up/Down Mode
	Changing Period Register TAxCCR0

	12.2.3.5 Use of Up/Down Mode

	12.2.4 Capture/Compare Blocks
	12.2.4.1 Capture Mode
	Capture Initiated by Software

	12.2.4.2 Compare Mode

	12.2.5 Output Unit
	12.2.5.1 Output Modes
	Output Example—Timer in Up Mode
	Output Example – Timer in Continuous Mode
	Output Example – Timer in Up/Down Mode

	12.2.6 Timer_A Interrupts
	12.2.6.1 TAxCCR0 Interrupt
	12.2.6.2 TAxIV, Interrupt Vector Generator
	TAxIV Software Example

	12.3 Timer_A Registers

	13 Timer_B
	13.1 Timer_B Introduction
	13.1.1 Similarities and Differences From Timer_A

	13.2 Timer_B Operation
	13.2.1 16-Bit Timer Counter
	13.2.1.1 TBxR Length
	13.2.1.2 Clock Source Select and Divider

	13.2.2 Starting the Timer
	13.2.3 Timer Mode Control
	13.2.3.1 Up Mode
	Changing Period Register TBxCL0

	13.2.3.2 Continuous Mode
	13.2.3.3 Use of Continuous Mode
	13.2.3.4 Up/Down Mode
	Changing the Value of Period Register TBxCL0

	13.2.3.5 Use of Up/Down Mode

	13.2.4 Capture/Compare Blocks
	13.2.4.1 Capture Mode
	Capture Initiated by Software

	13.2.4.2 Compare Mode
	Compare Latch TBxCLn
	Grouping Compare Latches

	13.2.5 Output Unit
	13.2.5.1 Output Modes
	Output Example – Timer in Up Mode
	Output Example – Timer in Continuous Mode
	Output Example – Timer in Up/Down Mode

	13.2.6 Timer_B Interrupts
	13.2.6.1 TBxCCR0 Interrupt Vector
	13.2.6.2 TBxIV, Interrupt Vector Generator
	13.2.6.3 TBxIV, Interrupt Handler Examples

	13.3 Timer_B Registers

	14 Real-Time Clock (RTC_A)
	14.1 RTC_A Introduction
	14.2 RTC_A Operation
	14.2.1 Counter Mode
	14.2.2 Calendar Mode
	14.2.2.1  Real-Time Clock and Prescale Dividers
	14.2.2.2  Real-Time Clock Alarm Function
	14.2.2.3  Reading or Writing Real-Time Clock Registers in Calendar Mode

	14.2.3 Real-Time Clock Interrupts
	14.2.3.1  Real-Time Clock Interrupts in Calendar Mode
	14.2.3.2  Real-Time Clock Interrupts in Counter Mode
	RTCIV Software Example

	14.2.4 Real-Time Clock Calibration

	14.3 Real-Time Clock Registers

	15 32-Bit Hardware Multiplier (MPY32)
	15.1 32-Bit Hardware Multiplier (MPY32) Introduction
	15.2 MPY32 Operation
	15.2.1 Operand Registers
	15.2.2 Result Registers
	15.2.2.1 MACS Underflow and Overflow

	15.2.3 Software Examples
	15.2.4 Fractional Numbers
	15.2.4.1 Fractional Number Mode
	15.2.4.2 Saturation Mode

	15.2.5 Putting It All Together
	15.2.6 Indirect Addressing of Result Registers
	15.2.7 Using Interrupts
	15.2.7.1 Save and Restore

	15.2.8 Using DMA

	15.3 MPY32 Registers

	16 REF
	16.1 REF Introduction
	16.2 Principle of Operation
	16.2.1 Low-Power Operation
	16.2.2 REFCTL
	16.2.3 Reference System Requests
	16.2.3.1 REFBGACT, REFGENACT, REFGENBUSY
	16.2.3.2 ADC12_A
	16.2.3.3 DAC12_A
	16.2.3.4 LCD_B

	16.3 REF Registers

	17 ADC12_A
	17.1 ADC12_A Introduction
	17.2 ADC12_A Operation
	17.2.1 12-Bit ADC Core
	17.2.1.1 Conversion Clock Selection

	17.2.2 ADC12_A Inputs and Multiplexer
	17.2.2.1 Analog Port Selection

	17.2.3 Voltage Reference Generator
	17.2.3.1 Internal Reference Low-Power Features

	17.2.4 Auto Power Down
	17.2.5 Sample and Conversion Timing
	17.2.5.1 Extended Sample Mode
	17.2.5.2 Pulse Sample Mode
	17.2.5.3 Sample Timing Considerations

	17.2.6 Conversion Memory
	17.2.7 ADC12_A Conversion Modes
	17.2.7.1 Single-Channel Single-Conversion Mode
	17.2.7.2 Sequence-of-Channels Mode
	17.2.7.3 Repeat-Single-Channel Mode
	17.2.7.4 Repeat-Sequence-of-Channels Mode
	17.2.7.5 Using the Multiple Sample and Convert (ADC12MSC) Bit
	17.2.7.6 Stopping Conversions

	17.2.8 Using the Integrated Temperature Sensor
	17.2.9 ADC12_A Grounding and Noise Considerations
	17.2.10 ADC12_A Interrupts
	17.2.10.1 ADC12IV, Interrupt Vector Generator
	17.2.10.2 ADC12_A Interrupt Handling Software Example

	17.3 ADC12_A Registers

	18 Comp_B
	18.1 Comp_B Introduction
	18.2 Comp_B Operation
	18.2.1 Comparator
	18.2.2 Analog Input Switches
	18.2.3 Port Logic
	18.2.4 Input Short Switch
	18.2.5 Output Filter
	18.2.6 Reference Voltage Generator
	18.2.7 Comp_B, Port Disable Register CBPD
	18.2.8 Comp_B Interrupts
	18.2.9 Comp_B Used to Measure Resistive Elements

	18.3 Comp_B Registers

	19 Universal Serial Communication Interface – UART Mode
	19.1 Universal Serial Communication Interface (USCI) Overview
	19.2 USCI Introduction – UART Mode
	19.3 USCI Operation – UART Mode
	19.3.1 USCI Initialization and Reset
	19.3.2 Character Format
	19.3.3 Asynchronous Communication Format
	19.3.3.1 Idle-Line Multiprocessor Format
	Transmitting an Idle Frame

	19.3.3.2 Address-Bit Multiprocessor Format
	Break Reception and Generation

	19.3.4 Automatic Baud-Rate Detection
	19.3.4.1 Transmitting a Break/Synch Field

	19.3.5 IrDA Encoding and Decoding
	19.3.5.1 IrDA Encoding
	19.3.5.2 IrDA Decoding

	19.3.6 Automatic Error Detection
	19.3.7 USCI Receive Enable
	19.3.7.1 Receive Data Glitch Suppression

	19.3.8 USCI Transmit Enable
	19.3.9 UART Baud-Rate Generation
	19.3.9.1 Low-Frequency Baud-Rate Generation
	19.3.9.2 Oversampling Baud-Rate Generation

	19.3.10 Setting a Baud Rate
	19.3.10.1 Low-Frequency Baud-Rate Mode Setting
	19.3.10.2 Oversampling Baud-Rate Mode Setting

	19.3.11 Transmit Bit Timing
	19.3.11.1 Low-Frequency Baud-Rate Mode Bit Timing
	19.3.11.2 Oversampling Baud-Rate Mode Bit Timing

	19.3.12 Receive Bit Timing
	19.3.13 Typical Baud Rates and Errors
	19.3.14 Using the USCI Module in UART Mode With Low-Power Modes
	19.3.15 USCI Interrupts
	19.3.15.1 USCI Transmit Interrupt Operation
	19.3.15.2 USCI Receive Interrupt Operation
	19.3.15.3 UCAxIV, Interrupt Vector Generator
	UCAxIV Software Example

	19.4 USCI Registers – UART Mode

	20 Universal Serial Communication Interface – SPI Mode
	20.1 Universal Serial Communication Interface (USCI) Overview
	20.2 USCI Introduction – SPI Mode
	20.3 USCI Operation – SPI Mode
	20.3.1 USCI Initialization and Reset
	20.3.2 Character Format
	20.3.3 Master Mode
	20.3.3.1 4-Pin SPI Master Mode

	20.3.4 Slave Mode
	20.3.4.1 4-Pin SPI Slave Mode

	20.3.5 SPI Enable
	20.3.5.1 Transmit Enable
	20.3.5.2 Receive Enable

	20.3.6 Serial Clock Control
	20.3.6.1 Serial Clock Polarity and Phase

	20.3.7 Using the SPI Mode With Low-Power Modes
	20.3.8 SPI Interrupts
	20.3.8.1 SPI Transmit Interrupt Operation
	20.3.8.2 SPI Receive Interrupt Operation
	20.3.8.3 UCxIV, Interrupt Vector Generator
	UCxIV Software Example

	20.4 USCI Registers – SPI Mode

	21 Universal Serial Communication Interface – I2C Mode
	21.1 Universal Serial Communication Interface (USCI) Overview
	21.2 USCI Introduction – I2C Mode
	21.3 USCI Operation – I2C Mode
	21.3.1 USCI Initialization and Reset
	21.3.2 I2C Serial Data
	21.3.3 I2C Addressing Modes
	21.3.3.1 7-Bit Addressing
	21.3.3.2 10-Bit Addressing
	21.3.3.3 Repeated Start Conditions

	21.3.4 I2C Module Operating Modes
	21.3.4.1 Slave Mode
	I2C Slave Transmitter Mode
	I2C Slave Receiver Mode
	I2C Slave 10-Bit Addressing Mode

	21.3.4.2 Master Mode
	I2C Master Transmitter Mode
	I2C Master Receiver Mode
	I2C Master 10-Bit Addressing Mode

	21.3.4.3 Arbitration

	21.3.5 I2C Clock Generation and Synchronization
	21.3.5.1 Clock Stretching

	21.3.6 Using the USCI Module in I2C Mode With Low-Power Modes
	21.3.7 USCI Interrupts in I2C Mode
	21.3.7.1 I2C Transmit Interrupt Operation
	21.3.7.2 I2C Receive Interrupt Operation
	21.3.7.3 I2C State Change Interrupt Operation
	21.3.7.4 UCBxIV, Interrupt Vector Generator
	UCBxIV Software Example

	21.4 USCI Registers– I2C Mode

	22 USB Module
	22.1 USB Introduction
	22.2 USB Operation
	22.2.1 USB Transceiver (PHY)
	22.2.1.1 D+ Pullup Via PUR Pin
	22.2.1.2 Shorts on Damaged Cables and Clamping
	22.2.1.3 Port U Control

	22.2.2 USB Power System
	22.2.2.1 Enabling/Disabling
	22.2.2.2 Powering the Rest of the MSP430 From USB Bus Power via VUSB
	22.2.2.3 Powering Other Components in the System from VUSB
	22.2.2.4 Current Limitation / Overload Protection

	22.2.3 USB Phase-Locked Loop (PLL)
	22.2.3.1 Modifying the Divider Values
	22.2.3.2 PLL Error Indicators
	22.2.3.3 PLL Startup Sequence

	22.2.4 USB Controller Engine
	22.2.4.1 USB Serial Interface Engine (SIE)
	22.2.4.2 USB Buffer Manager (UBM)
	22.2.4.3 USB Buffer Memory
	22.2.4.4 USB Fine Timestamp
	22.2.4.5 Suspend/Resume Logic
	22.2.4.6 Reset Logic

	22.2.5 USB Vector Interrupts
	22.2.6 Power Consumption
	22.2.7 Suspend and Resume
	22.2.7.1 Entering Suspend
	22.2.7.2 Entering Resume Mode

	22.3 USB Transfers
	22.3.1 Control Transfers
	22.3.1.1 Control Write Transfer
	22.3.1.2 Control Write Transfer with No Data Stage Transfer
	22.3.1.3 Control Read Transfer
	22.3.1.4 Control Read Transfer

	22.3.2 Interrupt Transfers
	22.3.2.1 Interrupt OUT Transfer
	22.3.2.2 Interrupt IN Transfer

	22.3.3 Bulk Transfers
	22.3.3.1 Bulk OUT Transfer
	22.3.3.2 Bulk IN Transfer

	22.4 Registers
	22.4.1 USB Configuration Registers
	22.4.2 USB Control Registers
	22.4.3 USB Buffer Registers and Memory

	23 Embedded Emulation Module (EEM)
	23.1 Embedded Emulation Module (EEM) Introduction
	23.2 EEM Building Blocks
	23.2.1 Triggers
	23.2.2 Trigger Sequencer
	23.2.3 State Storage (Internal Trace Buffer)
	23.2.4 Cycle Counter
	23.2.5 Clock Control

	23.3 EEM Configurations

